task_type
stringclasses
1 value
dataset
stringclasses
1 value
input
list
output
stringlengths
28
294
situation
stringclasses
1 value
label
stringclasses
1 value
extra
stringclasses
1 value
instruction
stringclasses
1 value
generation
aste-data-v2
[ "The food was average or above including some surprising tasty dishes ." ]
[['food', 'average or above', 'positive'], ['dishes', 'tasty', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "They do n't seem to place an emphasis on specials or fresh ingredients which to me is necessary for good thai ." ]
[['ingredients', 'good', 'negative'], ['thai', 'good', 'neutral']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The crust is thin , the ingredients are fresh and the staff is friendly ." ]
[['crust', 'thin', 'positive'], ['staff', 'friendly', 'positive'], ['ingredients', 'fresh', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Also a little more expensive than your average bagel place ." ]
[['bagel', 'expensive', 'neutral']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "the food was undercooked -the sauce watery , and the vegetables raw ." ]
[['food', 'undercooked', 'negative'], ['vegetables', 'raw', 'negative'], ['sauce', 'watery', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "And the fried clams had just enough kick to them to make 'em worth eating ." ]
[['fried clams', 'enough', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The sauces used are also not that exciting ." ]
[['sauces', 'not that exciting', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The secret is the lunch menu which offers a complimentary appetizer with every entree ordered ." ]
[['lunch menu', 'secret', 'positive'], ['appetizer', 'complimentary', 'positive'], ['entree', 'complimentary', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The shrimp scampi was excellent and the antipasti were plentiful ." ]
[['shrimp scampi', 'excellent', 'positive'], ['antipasti', 'plentiful', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "I got the $ 10 10-piece dim sum combo , every bite of which was great ." ]
[['dim sum combo', 'great', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "There is also very limited seating and there can be a substantial wait in getting food at peak times ." ]
[['seating', 'limited', 'negative'], ['wait', 'substantial', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "If it 's just a quick martini at the bar ( which I recommend Jeffery 's ) or a mind blowing Roast Chicken , go to Village !" ]
[['martini', 'quick', 'neutral'], ['bar', 'recommend', 'neutral'], ['Roast Chicken', 'mind blowing', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "There was a long wait for a table outside , but it was a little too hot in the sun anyway so our insde table was very nice ." ]
[['table', 'long wait', 'neutral'], ['insde table', 'nice', 'positive'], ['wait', 'long', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The prices are wonderfully low ." ]
[['prices', 'wonderfully low', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "I have never been disappointed but their true strength lays in their amazingly delicious and cheap lunch specials ." ]
[['lunch specials', 'delicious', 'positive'], ['lunch specials', 'cheap', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "So much more than the usual bar food , go there to enjoy the menu while sampling one of their hand-crafted beers ." ]
[['menu', 'enjoy', 'positive'], ['hand-crafted beers', 'hand-crafted', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "No free drink ." ]
[['drink', 'No free', 'neutral']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "This is my first time writing a review for a restaurant because the food and service was excellent ." ]
[['food', 'excellent', 'positive'], ['service', 'excellent', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Do n't waste money on decor ." ]
[['decor', 'waste', 'neutral']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "They also have a back garden open in the summer - cute and French with outdoor seating - what more could you ask for ?" ]
[['back garden', 'cute', 'positive'], ['back garden', 'French', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "I have never before eaten 40 pieces of relatively good nigiri ." ]
[['nigiri', 'good', 'neutral']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Given the incredible architecture surrounding it , this place has no character ." ]
[['architecture', 'incredible', 'positive'], ['place', 'no character', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "While the place is not a hotspot hangout , the drinks are unique and pack a lot of bang for the buck ." ]
[['drinks', 'unique', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Their eggplant is so delicate , sweet tender !" ]
[['eggplant', 'delicate', 'positive'], ['eggplant', 'sweet tender', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Each bite of food at Kai was indeed delicious , fresh , and elegant ." ]
[['food', 'delicious', 'positive'], ['food', 'fresh', 'positive'], ['food', 'elegant', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "all the food was excellent - considering the quality of food in most moderately priced restaurants is mediocre this was slightly more pricey and well worth it ." ]
[['food', 'excellent', 'positive'], ['quality of food', 'mediocre', 'positive'], ['priced', 'moderately', 'neutral']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "I had the cod with paella ( spicy and very filling , I 'm a big eater and could only eat half ) while my boyfriend had the classic fish and chips ( again , a big serving - at least 5 pieces of fish and a basketful of fries ) ." ]
[['cod with paella', 'spicy', 'negative'], ['cod with paella', 'filling', 'negative'], ['fish and chips', 'classic', 'negative'], ['fish and chips', 'big', 'negative'], ['serving', 'big', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "It 's a shame that a nice , convenient place like the Pink Pony can be so ruined by lousy service ." ]
[['place', 'convenient', 'positive'], ['service', 'lousy', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Try the spicy wontons and the salt pepper shrimps ." ]
[['spicy wontons', 'Try', 'positive'], ['salt pepper shrimps', 'Try', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The fries are yummy ." ]
[['fries', 'yummy', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Friendly and informative staff , very attentive and prompt raw bar service ." ]
[['staff', 'Friendly', 'positive'], ['staff', 'informative', 'positive'], ['staff', 'attentive', 'positive'], ['bar service', 'raw', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Best Taiwanese food in NY !" ]
[['Taiwanese food', 'Best', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "This place is a great stop for great food ." ]
[['food', 'great', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "All the pastas are fantastic and the homemade lasagna is some of the best that I have had in the City ." ]
[['pastas', 'fantastic', 'positive'], ['homemade lasagna', 'best', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "And the prices were way to high for what you get ." ]
[['prices', 'high', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The staff ignored my friends and I the entire time we were there ." ]
[['staff', 'ignored', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Yet paired with such rude service , would never recommend for anyone interested in carrying any kind of conversation while there ." ]
[['service', 'rude', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The in-house lady DJ on Saturday nights has outrageously good taste in music , and moreover , takes requests ." ]
[['in-house lady DJ', 'good taste', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Great wine list , reasonably priced . -- Sara" ]
[['wine list', 'Great', 'positive'], ['priced', 'reasonably', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The hot dogs were cold in the middle and the buns were stale ." ]
[['hot dogs', 'cold', 'negative'], ['buns', 'stale', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "While the food was excellent , it was n't cheap ( though not extremely expensive either ) ." ]
[['food', 'excellent', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Beef noodle soup is good as well ." ]
[['Beef noodle soup', 'good', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Delivery service is great too ." ]
[['Delivery service', 'great', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The food 's dazzling flavors overwhelm the palate , truly embracing the beauty of authentic Thai cuisine ." ]
[['food', 'overwhelm', 'positive'], ['Thai cuisine', 'authentic', 'positive'], ['flavors', 'overwhelm', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "I recieved prompt service with a smile ." ]
[['service', 'prompt', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "They pray to their Food Gods to make them into a good pizza like VT 's ." ]
[['pizza', 'good', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The place was quiet and delightful ." ]
[['place', 'quiet', 'positive'], ['place', 'delightful', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The food is a diamond in rough -- the food is delicious and homemade with the perfect balance of herbs and tomatoes ." ]
[['food', 'diamond', 'positive'], ['food', 'delicious', 'positive'], ['food', 'homemade', 'positive'], ['herbs', 'perfect', 'positive'], ['tomatoes', 'perfect', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "As much as I like the food there , I ca n't bring myself to go back ." ]
[['food', 'like', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The prices and ambience are especially great considering it 's in the West Village ." ]
[['prices', 'great', 'positive'], ['ambience', 'great', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The soup is pretty good too ." ]
[['soup', 'good', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "It is so easy to get a reservation at a top place in NYC with a week 's notice ." ]
[['reservation', 'easy', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "not the food , not the ambiance , not the service , I agree with the previous reviews you wait and wait , the wait staff are very rude and when you get in they are looking to get you right out ." ]
[['wait staff', 'rude', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "I always get the Shabu-Shabu dinner and the beef is always fresh ." ]
[['beef', 'fresh', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The pizza was delivered cold and the cheese was n't even fully melted !" ]
[['pizza', 'cold', 'negative'], ['cheese', "was n't even fully melted", 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "We were very surprised by how good the food was on our first visit here on a Sunday night ." ]
[['food', 'good', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Nha Trang , while being notorious for utter lack of comfort and decor , horribly slow wait staff and horribly quick meals , is one of the best vietnamese restaurants i 've ever been to . the pho is delicious and comes with very fresh vegtables ." ]
[['comfort', 'lack', 'negative'], ['decor', 'lack', 'negative'], ['wait staff', 'horribly slow', 'negative'], ['meals', 'horribly quick', 'negative'], ['pho', 'delicious', 'positive'], ['vegtables', 'fresh', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "On the other hand , if you are not fooled easily , you will find hundreds of restaurants that will give you service and ambiance that is on par with Alain Ducasse , and food that will outshine in presentaion , taste , choice , quality and quantity ." ]
[['service', 'on par', 'neutral'], ['ambiance', 'on par', 'neutral'], ['food', 'outshine', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "If I could rate the people this place would be off the charts - unfortunately - the pizza , sorry - not the best in NYC ." ]
[['people', 'best', 'positive'], ['pizza', 'best', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Having not been home in the last 2 years may skew this reviewer a bit , but the food was tasty and spicy sans the oil that comes floating along at similar venues ." ]
[['food', 'tasty', 'positive'], ['food', 'spicy', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The portions are now very small , the sauces are overly ambitious usually inedible while the service is still good , the restaurant , due to its popularity , seems frantic ." ]
[['portions', 'small', 'negative'], ['sauces', 'ambitious', 'negative'], ['sauces', 'inedible', 'negative'], ['service', 'good', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The owner is very friendly and a great guy , go try his pizza , you 'll like it !" ]
[['owner', 'friendly', 'positive'], ['owner', 'great', 'positive'], ['pizza', 'try', 'positive'], ['pizza', 'like', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The atmosphere is great ! ! !" ]
[['atmosphere', 'great', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "With so many good restaurants on the UWS , I do n't need overpriced food , absurdly arrogant wait-staff who do n't recognize they work at a glorified diner , clumsy service , and management that does n't care ." ]
[['food', 'overpriced', 'negative'], ['wait-staff', 'arrogant', 'negative'], ['service', 'clumsy', 'negative'], ['management', "does n't care", 'negative'], ['diner', 'glorified', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "I tend to judge a sushi restaurant by its sea urchin , which was heavenly at sushi rose ." ]
[['sea urchin', 'heavenly', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The service is a little scatty at times but all is forgiven when the food arrives ." ]
[['service', 'scatty', 'negative'], ['food', 'forgiven', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The bruscetta is a bit soggy , but the salads were fresh , included a nice mix of greens ( not iceberg ) all dishes are served piping hot from the kitchen ." ]
[['bruscetta', 'soggy', 'negative'], ['salads', 'fresh', 'positive'], ['dishes', 'hot', 'positive'], ['mix of greens', 'nice', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The atmosphere is n't the greatest , but I suppose that 's how they keep the prices down ." ]
[['atmosphere', "is n't the greatest", 'neutral'], ['prices', 'down', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The pickles were great addition ." ]
[['pickles', 'great', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "If your favorite Chinese food is General Tao chicken , then this is NOT your place ." ]
[['General Tao chicken', 'favorite', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "You must try the shrimp appetizers ." ]
[['shrimp appetizers', 'try', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Not only is the cuisine the best around , the service has always been attentive and charming ." ]
[['cuisine', 'best', 'positive'], ['service', 'attentive', 'positive'], ['service', 'charming', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The production is a symphony , alot of fun to experience.The food sublime for the most part ." ]
[['food', 'sublime', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Waiters tend to forget drinks completely , food portions are so tiny , two people have trouble sharing one entree ." ]
[['Waiters', 'forget', 'negative'], ['food portions', 'tiny', 'negative'], ['drinks', 'forget', 'neutral'], ['entree', 'trouble', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "But the thing that my wife and I hated was it was so loud and it felt like ' bar ' or ' pub ' ." ]
[['bar', 'loud', 'negative'], ['pub', 'loud', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "While there are plenty of places to go for a good corned beef sandwich , Katz 's has a charm about it ." ]
[['corned beef sandwich', 'good', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "However , looking at the table next to ours , we both sort of wished we had ordered pizza , which looked perfect" ]
[['pizza', 'perfect', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Priced at upper intermediate range ." ]
[['Priced', 'upper intermediate', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "If you live in new york city , you 'll find better food at small restaurants outside of time square and spend half the amount ." ]
[['food', 'better', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "they did n't disappoint , service from the second i arrived at the door was extremely pleasant and attentive with almost one server per table ." ]
[['service', 'pleasant', 'positive'], ['service', 'attentive', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "I do n't know who they think they are but they have no respect for the residents of the neighborhood ever since they opened their cabaret next door and blasts loud music till three in the morning every weekend during the summer ." ]
[['music', 'loud', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The only positive was the wait staff , which was prompt , knowledgable , and likeable ." ]
[['wait staff', 'positive', 'positive'], ['wait staff', 'prompt', 'positive'], ['wait staff', 'knowledgable', 'positive'], ['wait staff', 'likeable', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "I am not a vegetarian but , almost all the dishes were great ." ]
[['dishes', 'great', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "I was very impressed by this low-key upper eastsider and their authentically thai cuisine ! ! !" ]
[['thai cuisine', 'authentically', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "For the location , the prices are very reasonable ." ]
[['prices', 'reasonable', 'positive'], ['location', 'reasonable', 'neutral']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The food is okay and the prices here are mediocre ." ]
[['food', 'okay', 'neutral'], ['prices', 'mediocre', 'neutral']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "My friend 's food was also the complete opposite of what it 's supposed to taste like ( aND look like ) ." ]
[['food', 'opposite', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "We have been to this place many times , and always have great food , wine , and service ." ]
[['food', 'great', 'positive'], ['wine', 'great', 'positive'], ['service', 'great', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Not a typical pizza joint , but good for a low key and fairly cheap nice sit down dinner ." ]
[['dinner', 'cheap nice', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The corned beef was tender and melted in my mouth ." ]
[['corned beef', 'tender', 'positive'], ['corned beef', 'melted', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "The best Chicken pad tai , I 've ever had ." ]
[['Chicken pad tai', 'best', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "$ 20 for all you can eat sushi can not be beaten ." ]
[['sushi', 'can not be beaten', 'neutral']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Haru serves very fresh fish , has a trendy , modern ambiance , prime location on Park Avenue South and friendly service ." ]
[['fish', 'fresh', 'positive'], ['service', 'friendly', 'positive'], ['ambiance', 'trendy', 'positive'], ['ambiance', 'modern', 'positive'], ['location', 'prime', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Warm and friendly in the winter and terrific outdoor seating in the warmer months ." ]
[['outdoor seating', 'terrific', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Very romantic fires - I 've literally spent hours at Lanterna , drinking wine from their extensive wine and enjoying the ambience ." ]
[['wine', 'extensive', 'positive'], ['ambience', 'enjoying', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "We got a little tipsy from the sake but is n't that what Saturday nights with the girlfriends are all about ?" ]
[['sake', 'tipsy', 'neutral']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "My turkey burger was not cooked at all , my friends salmon was completely raw ." ]
[['turkey burger', 'not cooked', 'negative'], ['salmon', 'raw', 'negative']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "His drinks are very inventive , delicious and classy ." ]
[['drinks', 'inventive', 'positive'], ['drinks', 'delicious', 'positive'], ['drinks', 'classy', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Great food , great prices , great service ." ]
[['food', 'Great', 'positive'], ['prices', 'great', 'positive'], ['service', 'great', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]
generation
aste-data-v2
[ "Awesome Pizza especially the Margheritta slice ." ]
[['Pizza', 'Awesome', 'positive'], ['Margheritta', 'Awesome', 'positive']]
none
Task: Extracting aspect terms ,their opinion words and their corresponding sentiment polarities. Input: A sentence. Output: A list of 3-tuples, where each tuple contains the extracted aspect term ,their opinion words and their corresponding sentiment polarity. Supplement: "Null" means that there is no occurrence in the sentence. Example: Input: "It has so much more speed and the screen is very sharp ." Output: [['speed', 'much more', 'positive'], ['screen', 'sharp', 'positive']]