|
--- |
|
YAML tags: |
|
annotations_creators: |
|
- found |
|
language_creators: |
|
- found |
|
- expert-generated |
|
languages: |
|
- hu |
|
licenses: |
|
- bsd-2-clause |
|
multilinguality: |
|
- monolingual |
|
pretty_name: HuSST |
|
size_categories: |
|
- unknown |
|
source_datasets: |
|
- extended|other |
|
task_categories: |
|
- text-classification |
|
- text-scoring |
|
task_ids: |
|
- sentiment-classification |
|
- sentiment-scoring |
|
--- |
|
|
|
# Dataset Card for HuSST |
|
|
|
## Table of Contents |
|
|
|
- [Table of Contents](#table-of-contents) |
|
|
|
- [Dataset Description](#dataset-description) |
|
|
|
- [Dataset Summary](#dataset-summary) |
|
|
|
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) |
|
|
|
- [Languages](#languages) |
|
|
|
- [Dataset Structure](#dataset-structure) |
|
|
|
- [Data Instances](#data-instances) |
|
|
|
- [Data Fields](#data-fields) |
|
|
|
- [Data Splits](#data-splits) |
|
|
|
- [Dataset Creation](#dataset-creation) |
|
|
|
- [Curation Rationale](#curation-rationale) |
|
|
|
- [Source Data](#source-data) |
|
|
|
- [Annotations](#annotations) |
|
|
|
- [Personal and Sensitive Information](#personal-and-sensitive-information) |
|
|
|
- [Considerations for Using the Data](#considerations-for-using-the-data) |
|
|
|
- [Social Impact of Dataset](#social-impact-of-dataset) |
|
|
|
- [Discussion of Biases](#discussion-of-biases) |
|
|
|
- [Other Known Limitations](#other-known-limitations) |
|
|
|
- [Additional Information](#additional-information) |
|
|
|
- [Dataset Curators](#dataset-curators) |
|
|
|
- [Licensing Information](#licensing-information) |
|
|
|
- [Citation Information](#citation-information) |
|
|
|
- [Contributions](#contributions) |
|
|
|
## Dataset Description |
|
- **Homepage:** |
|
- **Repository:** |
|
[HuCoPA dataset](https://github.com/nytud/HuSST) |
|
- **Paper:** |
|
- **Leaderboard:** |
|
- **Point of Contact:** |
|
[lnnoemi](mailto:[email protected]) |
|
|
|
### Dataset Summary |
|
|
|
This is the dataset card for the Hungarian version of the Stanford Sentiment Treebank. This dataset which is also part of the Hungarian Language Understanding Evaluation Benchmark Kit [HuLU](hulu.nlp.nytud.hu). The corpus was created by translating and re-annotating the original SST (Roemmele et al., 2011). |
|
|
|
### Supported Tasks and Leaderboards |
|
|
|
'sentiment classification' |
|
|
|
|
|
'sentiment scoring' |
|
|
|
### Languages |
|
|
|
The BCP-47 code for Hungarian, the only represented language in this dataset, is hu-HU. |
|
|
|
## Dataset Structure |
|
|
|
### Data Instances |
|
|
|
For each instance, there is an id, a sentence and a sentiment label. |
|
|
|
An example: |
|
|
|
``` |
|
{ |
|
"Sent_id": "dev_0", |
|
"Sent": "Nos, a Jason elment Manhattanbe és a Pokolba kapcsán, azt hiszem, az elkerülhetetlen folytatások ötletlistájáról kihúzhatunk egy űrállomást 2455-ben (hé, ne lődd le a poént).", |
|
"Label": "neutral" |
|
} |
|
|
|
``` |
|
|
|
### Data Fields |
|
|
|
- Sent_id: unique id of the instances; |
|
|
|
- Sent: the sentence, translation of an instance of the SST dataset; |
|
|
|
- Label: "negative", "neutral", or "positive". |
|
|
|
### Data Splits |
|
|
|
HuSST has 3 splits: *train*, *validation* and *test*. |
|
|
|
| Dataset split | Number of instances in the split | |
|
|---------------|----------------------------------| |
|
| train | 9344 | |
|
| validation | 1168 | |
|
| test | 1168 | |
|
|
|
The test data is distributed without the labels. To evaluate your model, please [contact us](mailto:[email protected]), or check [HuLU's website](hulu.nlp.nytud.hu) for an automatic evaluation (this feature is under construction at the moment). |
|
|
|
## Dataset Creation |
|
|
|
### Source Data |
|
|
|
#### Initial Data Collection and Normalization |
|
|
|
The data is a translation of the content of the SST dataset (only the whole sentences were used). Each sentence was translated by a human translator. Each translation was manually checked and further refined by another annotator. |
|
|
|
### Annotations |
|
|
|
#### Annotation process |
|
|
|
The translated sentences were annotated by three human annotators with one of the following labels: negative, neutral and positive. Each sentence was then curated by a fourth annotator (the 'curator'). The final label is the decision of the curator based on the three labels of the annotators. |
|
|
|
#### Who are the annotators? |
|
|
|
The translators were native Hungarian speakers with English proficiency. The annotators were university students with some linguistic background. |
|
|
|
## Additional Information |
|
|
|
### Licensing Information |
|
|
|
|
|
### Citation Information |
|
|
|
If you use this resource or any part of its documentation, please refer to: |
|
|
|
Ligeti-Nagy, N., Ferenczi, G., Héja, E., Jelencsik-Mátyus, K., Laki, L. J., Vadász, N., Yang, Z. Gy. and Vadász, T. (2022) HuLU: magyar nyelvű benchmark adatbázis |
|
kiépítése a neurális nyelvmodellek kiértékelése céljából [HuLU: Hungarian benchmark dataset to evaluate neural language models]. XVIII. Magyar Számítógépes Nyelvészeti Konferencia. (in press) |
|
|
|
``` |
|
|
|
@inproceedings{ligetinagy2022hulu, |
|
title={HuLU: magyar nyelvű benchmark adatbázis kiépítése a neurális nyelvmodellek kiértékelése céljából}, |
|
author={Ligeti-Nagy, N. and Ferenczi, G. and Héja, E. and Jelencsik-Mátyus, K. and Laki, L. J. and Vadász, N. and Yang, Z. Gy. and Vadász, T.}, |
|
booktitle={XVIII. Magyar Számítógépes Nyelvészeti Konferencia}, |
|
year={2022} |
|
} |
|
|
|
``` |
|
|
|
and to: |
|
|
|
Socher et al. (2013), Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. 1631--1642. |
|
|
|
``` |
|
|
|
@inproceedings{socher-etal-2013-recursive, |
|
title = "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank", |
|
author = "Socher, Richard and |
|
Perelygin, Alex and |
|
Wu, Jean and |
|
Chuang, Jason and |
|
Manning, Christopher D. and |
|
Ng, Andrew and |
|
Potts, Christopher", |
|
booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing", |
|
month = oct, |
|
year = "2013", |
|
address = "Seattle, Washington, USA", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://www.aclweb.org/anthology/D13-1170", |
|
pages = "1631--1642", |
|
} |
|
|
|
``` |
|
|
|
### Contributions |
|
|
|
Thanks to [lnnoemi](https://github.com/lnnoemi) for adding this dataset. |