repo_name
stringlengths
7
79
path
stringlengths
4
179
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
959
798k
license
stringclasses
15 values
bismayan/MaterialsMachineLearning
src/fingerprint_refactoring.py
2
4163
#! /usr/bin/env/python """ contains code that is used to cluster the fingerprint functions and then plot the clusters or refactor them in the periodic table. """ import numpy as np from sklearn.cluster import KMeans def clust_finger(finger_array, num_clusts=15, get_object=True): with KMeans(n_clusters=num_clusts,random_state=42) as Km: clusts=Km.fit_predict(finger_array) if get_object: return (clusts, Km) else: return (clusts) def get_scatterplot_summed(ref_array, Z_tag): """ Return the arrays required to create scatter plots for the summed array :param ref_array: The array of clustered elements :param Z_tag: the atomic number of element you want to get arrays for :return: (x,y,z,dz) array for plotting 3d bar plot """ count = 0 xarr = np.zeros(8464) yarr = np.zeros(8464) zarr = np.zeros(8464) dzarr = np.zeros(8464) ref_summed=np.sum(ref_array,axis=3) for (a, b), d in np.ndenumerate(ref_summed[Z_tag - 1]): if d > 0: xarr[count] = a + 1 yarr[count] = b + 1 dzarr[count] = d count = count + 1 xarr = xarr[0:count] yarr = yarr[0:count] zarr = zarr[0:count] dzarr = dzarr[0:count] return (xarr, yarr, zarr, dzarr) def get_scatterplot_summed_refactored(ref_array, Z_tag, Zlist): """ get the refactored arrays for creating scatter plots for elements relabeled by Zlist. :param ref_array: The array of refactored clustered elements :param Z_tag: the atomic number of element you want to get arrays for :param Zlist: the list containing numeric indices for the different elements after regrouping :return: (x,y,z,dz) array for plotting 3d bar plot """ count = 0 xarr = np.zeros(8464) yarr = np.zeros(8464) zarr = np.zeros(8464) ref_summed = np.sum(ref_array, axis=3) for (a, b), d in np.ndenumerate(ref_summed[Z_tag - 1]): if d > 0: xarr[count] = Zlist.index(a + 1) yarr[count] = Zlist.index(b + 1) zarr[count] = d count = count + 1 xarr = xarr[0:count] yarr = yarr[0:count] zarr = zarr[0:count] return (xarr, yarr, zarr) def get_restructured_array(Formulas_s,clusters_s): """ Get refactored array with clustering information reorganized by the order of elements defined by their atomic numbers :param Formulas_s: The Formulas of the compounds :param clusters_s: The clusters of the compounds :return: The refactored array containing the clusters as indexed by Zlist """ from pymatgen import Composition from itertools import permutations Comps_s = [Composition(i) for i in Formulas_s] Z_max = max([E.Z for comp in Comps_s for E in comp.elements]) Z_array = np.array([[E.Z for E in comp.elements] for comp in Comps_s]) refactor_array = np.zeros((Z_max, Z_max, Z_max, np.amax(clusters_s) + 1)) for i in range(len(clusters_s)): for index in set(permutations(Z_array[i])): refactor_array[index[0] - 1, index[1] - 1, index[2] - 1][clusters_s[i]] += 1 return refactor_array def get_refactored_array(Formulas_s, clusters_s,Z_list): """ Get refactored array with clustering information reorganized by the order of elements defined in Z_list :param Formulas_s: The Formulas of the compounds :param clusters_s: The clusters of the compounds :param Z_list: the list containing the reordered atomic numbers :return: The refactored array containing the clusters as indexed by Zlist """ from pymatgen import Composition from itertools import permutations Comps_s = [Composition(i) for i in Formulas_s] Z_max = max([E.Z for comp in Comps_s for E in comp.elements]) Z_array = np.array([[E.Z for E in comp.elements] for comp in Comps_s]) refactor_array = np.zeros((Z_max, Z_max, Z_max, np.amax(clusters_s) + 1)) for i in range(len(clusters_s)): for index in set(permutations(Z_array[i])): refactor_array[Z_list.index([index[0] - 1]), Z_list.index([index[1] - 1]),Z_list.index([index[2] - 1])][clusters_s[i]] += 1 return refactor_array
mit
plotly/plotly.py
packages/python/plotly/_plotly_utils/tests/validators/test_enumerated_validator.py
1
4355
import pytest import numpy as np import pandas as pd from _plotly_utils.basevalidators import EnumeratedValidator # Fixtures # -------- @pytest.fixture() def validator(): values = ["first", "second", "third", 4] return EnumeratedValidator("prop", "parent", values, array_ok=False) @pytest.fixture() def validator_re(): values = ["foo", "/bar(\d)+/", "baz"] return EnumeratedValidator("prop", "parent", values, array_ok=False) @pytest.fixture() def validator_aok(): values = ["first", "second", "third", 4] return EnumeratedValidator("prop", "parent", values, array_ok=True) @pytest.fixture() def validator_aok_re(): values = ["foo", "/bar(\d)+/", "baz"] return EnumeratedValidator("prop", "parent", values, array_ok=True) # Array not ok # ------------ # ### Acceptance ### @pytest.mark.parametrize("val", ["first", "second", "third", 4]) def test_acceptance(val, validator): # Values should be accepted and returned unchanged assert validator.validate_coerce(val) == val # ### Value Rejection ### @pytest.mark.parametrize( "val", [True, 0, 1, 23, np.inf, set(), ["first", "second"], [True], ["third", 4], [4]], ) def test_rejection_by_value(val, validator): with pytest.raises(ValueError) as validation_failure: validator.validate_coerce(val) assert "Invalid value" in str(validation_failure.value) # Array not ok, regular expression # -------------------------------- @pytest.mark.parametrize("val", ["foo", "bar0", "bar1", "bar234"]) def test_acceptance(val, validator_re): # Values should be accepted and returned unchanged assert validator_re.validate_coerce(val) == val # ### Value Rejection ### @pytest.mark.parametrize("val", [12, set(), "bar", "BAR0", "FOO"]) def test_rejection_by_value(val, validator_re): with pytest.raises(ValueError) as validation_failure: validator_re.validate_coerce(val) assert "Invalid value" in str(validation_failure.value) # Array ok # -------- # ### Acceptance ### @pytest.mark.parametrize( "val", [ "first", "second", "third", 4, [], ["first", 4], [4], ["third", "first"], ["first", "second", "third", 4], ], ) def test_acceptance_aok(val, validator_aok): # Values should be accepted and returned unchanged coerce_val = validator_aok.validate_coerce(val) if isinstance(val, (list, np.ndarray)): assert np.array_equal(coerce_val, np.array(val, dtype=coerce_val.dtype)) else: assert coerce_val == val # ### Rejection by value ### @pytest.mark.parametrize("val", [True, 0, 1, 23, np.inf, set()]) def test_rejection_by_value_aok(val, validator_aok): with pytest.raises(ValueError) as validation_failure: validator_aok.validate_coerce(val) assert "Invalid value" in str(validation_failure.value) # ### Reject by elements ### @pytest.mark.parametrize( "val", [[True], [0], [1, 23], [np.inf, set()], ["ffirstt", "second", "third"]] ) def test_rejection_by_element_aok(val, validator_aok): with pytest.raises(ValueError) as validation_failure: validator_aok.validate_coerce(val) assert "Invalid element(s)" in str(validation_failure.value) # Array ok, regular expression # ---------------------------- # ### Acceptance ### @pytest.mark.parametrize( "val", [ "foo", "bar12", "bar21", [], ["bar12"], ("foo", "bar012", "baz"), np.array([], dtype="object"), np.array(["bar12"]), np.array(["foo", "bar012", "baz"]), ], ) def test_acceptance_aok(val, validator_aok_re): # Values should be accepted and returned unchanged coerce_val = validator_aok_re.validate_coerce(val) if isinstance(val, (np.ndarray, pd.Series)): assert coerce_val == list(np.array(val)) elif isinstance(val, (list, tuple)): assert validator_aok_re.present(coerce_val) == tuple(val) else: assert validator_aok_re.present(coerce_val) == val # ### Reject by elements ### @pytest.mark.parametrize("val", [["bar", "bar0"], ["foo", 123]]) def test_rejection_by_element_aok(val, validator_aok_re): with pytest.raises(ValueError) as validation_failure: validator_aok_re.validate_coerce(val) assert "Invalid element(s)" in str(validation_failure.value)
mit
ryanjmccall/nupic.research
vehicle-control/agent/run_sm.py
1
4942
#!/usr/bin/env python # ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2015, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- from collections import defaultdict import operator import numpy from unity_client.fetcher import Fetcher from nupic.encoders.coordinate import CoordinateEncoder from nupic.encoders.scalar import ScalarEncoder from nupic.research.monitor_mixin.trace import CountsTrace from sensorimotor.general_temporal_memory import GeneralTemporalMemory from nupic.research.monitor_mixin.temporal_memory_monitor_mixin import ( TemporalMemoryMonitorMixin) class MonitoredGeneralTemporalMemory(TemporalMemoryMonitorMixin, GeneralTemporalMemory): pass SCALE = 5 RADIUS = 7 def run(plotEvery=1): encoder = CoordinateEncoder(n=1024, w=21) motorEncoder = ScalarEncoder(21, -1, 1, n=1024) fetcher = Fetcher() tm = MonitoredGeneralTemporalMemory( columnDimensions=[2048], cellsPerColumn=1, initialPermanence=0.5, connectedPermanence=0.6, permanenceIncrement=0.1, permanenceDecrement=0.02, minThreshold=35, activationThreshold=35, maxNewSynapseCount=40) plotter = Plotter(tm) lastState = None lastAction = None while True: outputData = fetcher.sync() if outputData is None: continue if fetcher.skippedTimesteps > 0: print ("Warning: skipped {0} timesteps, " "now at {1}").format(fetcher.skippedTimesteps, fetcher.timestep) if not ("reset" in outputData and "location" in outputData and "steer" in outputData): print ("Warning: Missing data on timestep {0}: {1}".format( fetcher.timestep, outputData)) plotter.render() continue if outputData["reset"]: print "Reset." tm.reset() location = outputData["location"] steer = outputData["steer"] x = int(location["x"] * SCALE) z = int(location["z"] * SCALE) coordinate = numpy.array([x, z]) encoding = encoder.encode((coordinate, RADIUS)) motorEncoding = motorEncoder.encode(steer) sensorPattern = set(encoding.nonzero()[0]) motorPattern = set(motorEncoding.nonzero()[0]) tm.compute(sensorPattern, activeExternalCells=motorPattern, formInternalConnections=True) print tm.mmPrettyPrintMetrics(tm.mmGetDefaultMetrics()) overlap = 0 if lastState is not None: overlap = (lastState & encoding).sum() plotter.update(overlap) # if fetcher.timestep % plotEvery == 0 and outputData["reset"]: # plotter.render() lastState = encoding lastAction = steer class Plotter(object): def __init__(self, tm): self.tm = tm self.overlaps = [] import matplotlib.pyplot as plt self.plt = plt import matplotlib.cm as cm self.cm = cm from pylab import rcParams rcParams.update({'figure.figsize': (6, 9)}) rcParams.update({'figure.autolayout': True}) rcParams.update({'figure.facecolor': 'white'}) self.plt.ion() self.plt.show() def update(self, overlap): self.overlaps.append(overlap) def render(self): self.plt.figure(1) self.plt.clf() traces = self.tm.mmGetDefaultTraces() traces = [trace for trace in traces if type(trace) is CountsTrace] n = len(traces) + 1 for i in xrange(len(traces)): trace = traces[i] self.plt.subplot(n, 1, i+1) self._plot(trace.data, trace.title) self.plt.subplot(n, 1, n) self._plot(self.overlaps, "Overlap between encoding at t and t-1") self.plt.draw() def _plot(self, data, title): self.plt.title(title) self.plt.xlim(0, len(data)) self.plt.plot(range(len(data)), data) def _imshow(self, data, title): self.plt.title(title) self.plt.imshow(data, cmap=self.cm.Greys, interpolation="nearest", aspect='auto', vmin=0, vmax=1) if __name__ == "__main__": run()
gpl-3.0
bavardage/statsmodels
statsmodels/stats/tests/test_weightstats.py
30
21864
'''tests for weightstats, compares with replication no failures but needs cleanup update 2012-09-09: added test after fixing bug in covariance TODOs: - I don't remember what all the commented out code is doing - should be refactored to use generator or inherited tests - still gaps in test coverage - value/diff in ttest_ind is tested in test_tost.py - what about pandas data structures? Author: Josef Perktold License: BSD (3-clause) ''' import numpy as np from scipy import stats from numpy.testing import assert_almost_equal, assert_equal, assert_allclose from statsmodels.stats.weightstats import \ DescrStatsW, CompareMeans, ttest_ind, ztest, zconfint #import statsmodels.stats.weightstats as smws class Holder(object): pass class TestWeightstats(object): def __init__(self): np.random.seed(9876789) n1, n2 = 20,20 m1, m2 = 1, 1.2 x1 = m1 + np.random.randn(n1) x2 = m2 + np.random.randn(n2) x1_2d = m1 + np.random.randn(n1, 3) x2_2d = m2 + np.random.randn(n2, 3) w1_ = 2. * np.ones(n1) w2_ = 2. * np.ones(n2) w1 = np.random.randint(1,4, n1) w2 = np.random.randint(1,4, n2) self.x1, self.x2 = x1, x2 self.w1, self.w2 = w1, w2 self.x1_2d, self.x2_2d = x1_2d, x2_2d def test_weightstats_1(self): x1, x2 = self.x1, self.x2 w1, w2 = self.w1, self.w2 w1_ = 2. * np.ones(len(x1)) w2_ = 2. * np.ones(len(x2)) d1 = DescrStatsW(x1) # print ttest_ind(x1, x2) # print ttest_ind(x1, x2, usevar='unequal') # #print ttest_ind(x1, x2, usevar='unequal') # print stats.ttest_ind(x1, x2) # print ttest_ind(x1, x2, usevar='unequal', alternative='larger') # print ttest_ind(x1, x2, usevar='unequal', alternative='smaller') # print ttest_ind(x1, x2, usevar='unequal', weights=(w1_, w2_)) # print stats.ttest_ind(np.r_[x1, x1], np.r_[x2,x2]) assert_almost_equal(ttest_ind(x1, x2, weights=(w1_, w2_))[:2], stats.ttest_ind(np.r_[x1, x1], np.r_[x2,x2])) def test_weightstats_2(self): x1, x2 = self.x1, self.x2 w1, w2 = self.w1, self.w2 d1 = DescrStatsW(x1) d1w = DescrStatsW(x1, weights=w1) d2w = DescrStatsW(x2, weights=w2) x1r = d1w.asrepeats() x2r = d2w.asrepeats() # print 'random weights' # print ttest_ind(x1, x2, weights=(w1, w2)) # print stats.ttest_ind(x1r, x2r) assert_almost_equal(ttest_ind(x1, x2, weights=(w1, w2))[:2], stats.ttest_ind(x1r, x2r), 14) #not the same as new version with random weights/replication # assert x1r.shape[0] == d1w.sum_weights # assert x2r.shape[0] == d2w.sum_weights assert_almost_equal(x2r.mean(0), d2w.mean, 14) assert_almost_equal(x2r.var(), d2w.var, 14) assert_almost_equal(x2r.std(), d2w.std, 14) #note: the following is for 1d assert_almost_equal(np.cov(x2r, bias=1), d2w.cov, 14) #assert_almost_equal(np.corrcoef(np.x2r), d2w.corrcoef, 19) #TODO: exception in corrcoef (scalar case) #one-sample tests # print d1.ttest_mean(3) # print stats.ttest_1samp(x1, 3) # print d1w.ttest_mean(3) # print stats.ttest_1samp(x1r, 3) assert_almost_equal(d1.ttest_mean(3)[:2], stats.ttest_1samp(x1, 3), 11) assert_almost_equal(d1w.ttest_mean(3)[:2], stats.ttest_1samp(x1r, 3), 11) def test_weightstats_3(self): x1_2d, x2_2d = self.x1_2d, self.x2_2d w1, w2 = self.w1, self.w2 d1w_2d = DescrStatsW(x1_2d, weights=w1) d2w_2d = DescrStatsW(x2_2d, weights=w2) x1r_2d = d1w_2d.asrepeats() x2r_2d = d2w_2d.asrepeats() assert_almost_equal(x2r_2d.mean(0), d2w_2d.mean, 14) assert_almost_equal(x2r_2d.var(0), d2w_2d.var, 14) assert_almost_equal(x2r_2d.std(0), d2w_2d.std, 14) assert_almost_equal(np.cov(x2r_2d.T, bias=1), d2w_2d.cov, 14) assert_almost_equal(np.corrcoef(x2r_2d.T), d2w_2d.corrcoef, 14) # print d1w_2d.ttest_mean(3) # #scipy.stats.ttest is also vectorized # print stats.ttest_1samp(x1r_2d, 3) t,p,d = d1w_2d.ttest_mean(3) assert_almost_equal([t, p], stats.ttest_1samp(x1r_2d, 3), 11) #print [stats.ttest_1samp(xi, 3) for xi in x1r_2d.T] cm = CompareMeans(d1w_2d, d2w_2d) ressm = cm.ttest_ind() resss = stats.ttest_ind(x1r_2d, x2r_2d) assert_almost_equal(ressm[:2], resss, 14) ## #doesn't work for 2d, levene doesn't use weights ## cm = CompareMeans(d1w_2d, d2w_2d) ## ressm = cm.test_equal_var() ## resss = stats.levene(x1r_2d, x2r_2d) ## assert_almost_equal(ressm[:2], resss, 14) def test_weightstats_ddof_tests(self): # explicit test that ttest and confint are independent of ddof # one sample case x1_2d = self.x1_2d w1 = self.w1 d1w_d0 = DescrStatsW(x1_2d, weights=w1, ddof=0) d1w_d1 = DescrStatsW(x1_2d, weights=w1, ddof=1) d1w_d2 = DescrStatsW(x1_2d, weights=w1, ddof=2) #check confint independent of user ddof res0 = d1w_d0.ttest_mean() res1 = d1w_d1.ttest_mean() res2 = d1w_d2.ttest_mean() # concatenate into one array with np.r_ assert_almost_equal(np.r_[res1], np.r_[res0], 14) assert_almost_equal(np.r_[res2], np.r_[res0], 14) res0 = d1w_d0.ttest_mean(0.5) res1 = d1w_d1.ttest_mean(0.5) res2 = d1w_d2.ttest_mean(0.5) assert_almost_equal(np.r_[res1], np.r_[res0], 14) assert_almost_equal(np.r_[res2], np.r_[res0], 14) #check confint independent of user ddof res0 = d1w_d0.tconfint_mean() res1 = d1w_d1.tconfint_mean() res2 = d1w_d2.tconfint_mean() assert_almost_equal(res1, res0, 14) assert_almost_equal(res2, res0, 14) class CheckWeightstats1dMixin(object): def test_basic(self): x1r = self.x1r d1w = self.d1w assert_almost_equal(x1r.mean(0), d1w.mean, 14) assert_almost_equal(x1r.var(0, ddof=d1w.ddof), d1w.var, 14) assert_almost_equal(x1r.std(0, ddof=d1w.ddof), d1w.std, 14) var1 = d1w.var_ddof(ddof=1) assert_almost_equal(x1r.var(0, ddof=1), var1, 14) std1 = d1w.std_ddof(ddof=1) assert_almost_equal(x1r.std(0, ddof=1), std1, 14) assert_almost_equal(np.cov(x1r.T, bias=1-d1w.ddof), d1w.cov, 14) # #assert_almost_equal(np.corrcoef(x1r.T), d1w.corrcoef, 14) def test_ttest(self): x1r = self.x1r d1w = self.d1w assert_almost_equal(d1w.ttest_mean(3)[:2], stats.ttest_1samp(x1r, 3), 11) # def # assert_almost_equal(ttest_ind(x1, x2, weights=(w1, w2))[:2], # stats.ttest_ind(x1r, x2r), 14) def test_ttest_2sample(self): x1, x2 = self.x1, self.x2 x1r, x2r = self.x1r, self.x2r w1, w2 = self.w1, self.w2 #Note: stats.ttest_ind handles 2d/nd arguments res_sp = stats.ttest_ind(x1r, x2r) assert_almost_equal(ttest_ind(x1, x2, weights=(w1, w2))[:2], res_sp, 14) #check correct ttest independent of user ddof cm = CompareMeans(DescrStatsW(x1, weights=w1, ddof=0), DescrStatsW(x2, weights=w2, ddof=1)) assert_almost_equal(cm.ttest_ind()[:2], res_sp, 14) cm = CompareMeans(DescrStatsW(x1, weights=w1, ddof=1), DescrStatsW(x2, weights=w2, ddof=2)) assert_almost_equal(cm.ttest_ind()[:2], res_sp, 14) cm0 = CompareMeans(DescrStatsW(x1, weights=w1, ddof=0), DescrStatsW(x2, weights=w2, ddof=0)) cm1 = CompareMeans(DescrStatsW(x1, weights=w1, ddof=0), DescrStatsW(x2, weights=w2, ddof=1)) cm2 = CompareMeans(DescrStatsW(x1, weights=w1, ddof=1), DescrStatsW(x2, weights=w2, ddof=2)) res0 = cm0.ttest_ind(usevar='unequal') res1 = cm1.ttest_ind(usevar='unequal') res2 = cm2.ttest_ind(usevar='unequal') assert_almost_equal(res1, res0, 14) assert_almost_equal(res2, res0, 14) #check confint independent of user ddof res0 = cm0.tconfint_diff(usevar='pooled') res1 = cm1.tconfint_diff(usevar='pooled') res2 = cm2.tconfint_diff(usevar='pooled') assert_almost_equal(res1, res0, 14) assert_almost_equal(res2, res0, 14) res0 = cm0.tconfint_diff(usevar='unequal') res1 = cm1.tconfint_diff(usevar='unequal') res2 = cm2.tconfint_diff(usevar='unequal') assert_almost_equal(res1, res0, 14) assert_almost_equal(res2, res0, 14) def test_confint_mean(self): #compare confint_mean with ttest d1w = self.d1w alpha = 0.05 low, upp = d1w.tconfint_mean() t, p, d = d1w.ttest_mean(low) assert_almost_equal(p, alpha * np.ones(p.shape), 8) t, p, d = d1w.ttest_mean(upp) assert_almost_equal(p, alpha * np.ones(p.shape), 8) t, p, d = d1w.ttest_mean(np.vstack((low, upp))) assert_almost_equal(p, alpha * np.ones(p.shape), 8) class CheckWeightstats2dMixin(CheckWeightstats1dMixin): def test_corr(self): x1r = self.x1r d1w = self.d1w assert_almost_equal(np.corrcoef(x1r.T), d1w.corrcoef, 14) class TestWeightstats1d_ddof(CheckWeightstats1dMixin): @classmethod def setup_class(self): np.random.seed(9876789) n1, n2 = 20,20 m1, m2 = 1, 1.2 x1 = m1 + np.random.randn(n1, 1) x2 = m2 + np.random.randn(n2, 1) w1 = np.random.randint(1,4, n1) w2 = np.random.randint(1,4, n2) self.x1, self.x2 = x1, x2 self.w1, self.w2 = w1, w2 self.d1w = DescrStatsW(x1, weights=w1, ddof=1) self.d2w = DescrStatsW(x2, weights=w2, ddof=1) self.x1r = self.d1w.asrepeats() self.x2r = self.d2w.asrepeats() class TestWeightstats2d(CheckWeightstats2dMixin): @classmethod def setup_class(self): np.random.seed(9876789) n1, n2 = 20,20 m1, m2 = 1, 1.2 x1 = m1 + np.random.randn(n1, 3) x2 = m2 + np.random.randn(n2, 3) w1_ = 2. * np.ones(n1) w2_ = 2. * np.ones(n2) w1 = np.random.randint(1,4, n1) w2 = np.random.randint(1,4, n2) self.x1, self.x2 = x1, x2 self.w1, self.w2 = w1, w2 self.d1w = DescrStatsW(x1, weights=w1) self.d2w = DescrStatsW(x2, weights=w2) self.x1r = self.d1w.asrepeats() self.x2r = self.d2w.asrepeats() class TestWeightstats2d_ddof(CheckWeightstats2dMixin): @classmethod def setup_class(self): np.random.seed(9876789) n1, n2 = 20,20 m1, m2 = 1, 1.2 x1 = m1 + np.random.randn(n1, 3) x2 = m2 + np.random.randn(n2, 3) w1 = np.random.randint(1,4, n1) w2 = np.random.randint(1,4, n2) self.x1, self.x2 = x1, x2 self.w1, self.w2 = w1, w2 self.d1w = DescrStatsW(x1, weights=w1, ddof=1) self.d2w = DescrStatsW(x2, weights=w2, ddof=1) self.x1r = self.d1w.asrepeats() self.x2r = self.d2w.asrepeats() class TestWeightstats2d_nobs(CheckWeightstats2dMixin): @classmethod def setup_class(self): np.random.seed(9876789) n1, n2 = 20,30 m1, m2 = 1, 1.2 x1 = m1 + np.random.randn(n1, 3) x2 = m2 + np.random.randn(n2, 3) w1 = np.random.randint(1,4, n1) w2 = np.random.randint(1,4, n2) self.x1, self.x2 = x1, x2 self.w1, self.w2 = w1, w2 self.d1w = DescrStatsW(x1, weights=w1, ddof=0) self.d2w = DescrStatsW(x2, weights=w2, ddof=1) self.x1r = self.d1w.asrepeats() self.x2r = self.d2w.asrepeats() def test_ttest_ind_with_uneq_var(): #from scipy # check vs. R a = (1, 2, 3) b = (1.1, 2.9, 4.2) pr = 0.53619490753126731 tr = -0.68649512735572582 t, p, df = ttest_ind(a, b, usevar='unequal') assert_almost_equal([t,p], [tr, pr], 13) a = (1, 2, 3, 4) pr = 0.84354139131608286 tr = -0.2108663315950719 t, p, df = ttest_ind(a, b, usevar='unequal') assert_almost_equal([t,p], [tr, pr], 13) def test_ztest_ztost(): # compare weightstats with separately tested proportion ztest ztost import statsmodels.stats.proportion as smprop x1 = [0, 1] w1 = [5, 15] res2 = smprop.proportions_ztest(15, 20., value=0.5) d1 = DescrStatsW(x1, w1) res1 = d1.ztest_mean(0.5) assert_allclose(res1, res2, rtol=0.03, atol=0.003) d2 = DescrStatsW(x1, np.array(w1)*21./20) res1 = d2.ztest_mean(0.5) assert_almost_equal(res1, res2, decimal=12) res1 = d2.ztost_mean(0.4, 0.6) res2 = smprop.proportions_ztost(15, 20., 0.4, 0.6) assert_almost_equal(res1[0], res2[0], decimal=12) x2 = [0, 1] w2 = [10, 10] #d2 = DescrStatsW(x1, np.array(w1)*21./20) d2 = DescrStatsW(x2, w2) res1 = ztest(d1.asrepeats(), d2.asrepeats()) res2 = smprop.proportions_chisquare(np.asarray([15, 10]), np.asarray([20., 20])) #TODO: check this is this difference expected?, see test_proportion assert_allclose(res1[1], res2[1], rtol=0.03) res1a = CompareMeans(d1, d2).ztest_ind() assert_allclose(res1a[1], res2[1], rtol=0.03) assert_almost_equal(res1a, res1, decimal=12) ###### test for ztest and z confidence interval against R BSDA z.test # Note: I needed to calculate the pooled standard deviation for R # std = np.std(np.concatenate((x-x.mean(),y-y.mean())), ddof=2) #> zt = z.test(x, sigma.x=0.57676142668828667, y, sigma.y=0.57676142668828667) #> cat_items(zt, "ztest.") ztest_ = Holder() ztest_.statistic = 6.55109865675183 ztest_.p_value = 5.711530850508982e-11 ztest_.conf_int = np.array([1.230415246535603, 2.280948389828034]) ztest_.estimate = np.array([7.01818181818182, 5.2625]) ztest_.null_value = 0 ztest_.alternative = 'two.sided' ztest_.method = 'Two-sample z-Test' ztest_.data_name = 'x and y' #> zt = z.test(x, sigma.x=0.57676142668828667, y, sigma.y=0.57676142668828667, alternative="less") #> cat_items(zt, "ztest_smaller.") ztest_smaller = Holder() ztest_smaller.statistic = 6.55109865675183 ztest_smaller.p_value = 0.999999999971442 ztest_smaller.conf_int = np.array([np.nan, 2.196499421109045]) ztest_smaller.estimate = np.array([7.01818181818182, 5.2625]) ztest_smaller.null_value = 0 ztest_smaller.alternative = 'less' ztest_smaller.method = 'Two-sample z-Test' ztest_smaller.data_name = 'x and y' #> zt = z.test(x, sigma.x=0.57676142668828667, y, sigma.y=0.57676142668828667, alternative="greater") #> cat_items(zt, "ztest_larger.") ztest_larger = Holder() ztest_larger.statistic = 6.55109865675183 ztest_larger.p_value = 2.855760072861813e-11 ztest_larger.conf_int = np.array([1.314864215254592, np.nan]) ztest_larger.estimate = np.array([7.01818181818182, 5.2625 ]) ztest_larger.null_value = 0 ztest_larger.alternative = 'greater' ztest_larger.method = 'Two-sample z-Test' ztest_larger.data_name = 'x and y' #> zt = z.test(x, sigma.x=0.57676142668828667, y, sigma.y=0.57676142668828667, mu=1, alternative="two.sided") #> cat_items(zt, "ztest_mu.") ztest_mu = Holder() ztest_mu.statistic = 2.81972854805176 ztest_mu.p_value = 0.00480642898427981 ztest_mu.conf_int = np.array([1.230415246535603, 2.280948389828034]) ztest_mu.estimate = np.array([7.01818181818182, 5.2625]) ztest_mu.null_value = 1 ztest_mu.alternative = 'two.sided' ztest_mu.method = 'Two-sample z-Test' ztest_mu.data_name = 'x and y' #> zt = z.test(x, sigma.x=0.57676142668828667, y, sigma.y=0.57676142668828667, mu=1, alternative="greater") #> cat_items(zt, "ztest_larger_mu.") ztest_larger_mu = Holder() ztest_larger_mu.statistic = 2.81972854805176 ztest_larger_mu.p_value = 0.002403214492139871 ztest_larger_mu.conf_int = np.array([1.314864215254592, np.nan]) ztest_larger_mu.estimate = np.array([7.01818181818182, 5.2625]) ztest_larger_mu.null_value = 1 ztest_larger_mu.alternative = 'greater' ztest_larger_mu.method = 'Two-sample z-Test' ztest_larger_mu.data_name = 'x and y' #> zt = z.test(x, sigma.x=0.57676142668828667, y, sigma.y=0.57676142668828667, mu=2, alternative="less") #> cat_items(zt, "ztest_smaller_mu.") ztest_smaller_mu = Holder() ztest_smaller_mu.statistic = -0.911641560648313 ztest_smaller_mu.p_value = 0.1809787183191324 ztest_smaller_mu.conf_int = np.array([np.nan, 2.196499421109045]) ztest_smaller_mu.estimate = np.array([7.01818181818182, 5.2625]) ztest_smaller_mu.null_value = 2 ztest_smaller_mu.alternative = 'less' ztest_smaller_mu.method = 'Two-sample z-Test' ztest_smaller_mu.data_name = 'x and y' #> zt = z.test(x, sigma.x=0.46436662631627995, mu=6.4, alternative="two.sided") #> cat_items(zt, "ztest_mu_1s.") ztest_mu_1s = Holder() ztest_mu_1s.statistic = 4.415212090914452 ztest_mu_1s.p_value = 1.009110038015147e-05 ztest_mu_1s.conf_int = np.array([6.74376372125119, 7.29259991511245]) ztest_mu_1s.estimate = 7.01818181818182 ztest_mu_1s.null_value = 6.4 ztest_mu_1s.alternative = 'two.sided' ztest_mu_1s.method = 'One-sample z-Test' ztest_mu_1s.data_name = 'x' #> zt = z.test(x, sigma.x=0.46436662631627995, mu=7.4, alternative="less") #> cat_items(zt, "ztest_smaller_mu_1s.") ztest_smaller_mu_1s = Holder() ztest_smaller_mu_1s.statistic = -2.727042762035397 ztest_smaller_mu_1s.p_value = 0.00319523783881176 ztest_smaller_mu_1s.conf_int = np.array([np.nan, 7.248480744895716]) ztest_smaller_mu_1s.estimate = 7.01818181818182 ztest_smaller_mu_1s.null_value = 7.4 ztest_smaller_mu_1s.alternative = 'less' ztest_smaller_mu_1s.method = 'One-sample z-Test' ztest_smaller_mu_1s.data_name = 'x' #> zt = z.test(x, sigma.x=0.46436662631627995, mu=6.4, alternative="greater") #> cat_items(zt, "ztest_greater_mu_1s.") ztest_larger_mu_1s = Holder() ztest_larger_mu_1s.statistic = 4.415212090914452 ztest_larger_mu_1s.p_value = 5.045550190097003e-06 ztest_larger_mu_1s.conf_int = np.array([6.78788289146792, np.nan]) ztest_larger_mu_1s.estimate = 7.01818181818182 ztest_larger_mu_1s.null_value = 6.4 ztest_larger_mu_1s.alternative = 'greater' ztest_larger_mu_1s.method = 'One-sample z-Test' ztest_larger_mu_1s.data_name = 'x' alternatives = {'less' : 'smaller', 'greater' : 'larger', 'two.sided' : 'two-sided'} class TestZTest(object): # all examples use the same data # no weights used in tests @classmethod def setup_class(cls): cls.x1 = np.array([7.8, 6.6, 6.5, 7.4, 7.3, 7., 6.4, 7.1, 6.7, 7.6, 6.8]) cls.x2 = np.array([4.5, 5.4, 6.1, 6.1, 5.4, 5., 4.1, 5.5]) cls.d1 = DescrStatsW(cls.x1) cls.d2 = DescrStatsW(cls.x2) cls.cm = CompareMeans(cls.d1, cls.d2) def test(self): x1, x2 = self.x1, self.x2 cm = self.cm # tc : test cases for tc in [ztest_, ztest_smaller, ztest_larger, ztest_mu, ztest_smaller_mu, ztest_larger_mu]: zstat, pval = ztest(x1, x2, value=tc.null_value, alternative=alternatives[tc.alternative]) assert_allclose(zstat, tc.statistic, rtol=1e-10) assert_allclose(pval, tc.p_value, rtol=1e-10, atol=1e-16) zstat, pval = cm.ztest_ind(value=tc.null_value, alternative=alternatives[tc.alternative]) assert_allclose(zstat, tc.statistic, rtol=1e-10) assert_allclose(pval, tc.p_value, rtol=1e-10, atol=1e-16) #overwrite nan in R's confint tc_conf_int = tc.conf_int.copy() if np.isnan(tc_conf_int[0]): tc_conf_int[0] = - np.inf if np.isnan(tc_conf_int[1]): tc_conf_int[1] = np.inf # Note: value is shifting our confidence interval in zconfint ci = zconfint(x1, x2, value=0, alternative=alternatives[tc.alternative]) assert_allclose(ci, tc_conf_int, rtol=1e-10) ci = cm.zconfint_diff(alternative=alternatives[tc.alternative]) assert_allclose(ci, tc_conf_int, rtol=1e-10) ci = zconfint(x1, x2, value=tc.null_value, alternative=alternatives[tc.alternative]) assert_allclose(ci, tc_conf_int - tc.null_value, rtol=1e-10) # 1 sample test copy-paste d1 = self.d1 for tc in [ztest_mu_1s, ztest_smaller_mu_1s, ztest_larger_mu_1s]: zstat, pval = ztest(x1, value=tc.null_value, alternative=alternatives[tc.alternative]) assert_allclose(zstat, tc.statistic, rtol=1e-10) assert_allclose(pval, tc.p_value, rtol=1e-10, atol=1e-16) zstat, pval = d1.ztest_mean(value=tc.null_value, alternative=alternatives[tc.alternative]) assert_allclose(zstat, tc.statistic, rtol=1e-10) assert_allclose(pval, tc.p_value, rtol=1e-10, atol=1e-16) #overwrite nan in R's confint tc_conf_int = tc.conf_int.copy() if np.isnan(tc_conf_int[0]): tc_conf_int[0] = - np.inf if np.isnan(tc_conf_int[1]): tc_conf_int[1] = np.inf # Note: value is shifting our confidence interval in zconfint ci = zconfint(x1, value=0, alternative=alternatives[tc.alternative]) assert_allclose(ci, tc_conf_int, rtol=1e-10) ci = d1.zconfint_mean(alternative=alternatives[tc.alternative]) assert_allclose(ci, tc_conf_int, rtol=1e-10)
bsd-3-clause
yanlend/scikit-learn
examples/neural_networks/plot_rbm_logistic_classification.py
258
4609
""" ============================================================== Restricted Boltzmann Machine features for digit classification ============================================================== For greyscale image data where pixel values can be interpreted as degrees of blackness on a white background, like handwritten digit recognition, the Bernoulli Restricted Boltzmann machine model (:class:`BernoulliRBM <sklearn.neural_network.BernoulliRBM>`) can perform effective non-linear feature extraction. In order to learn good latent representations from a small dataset, we artificially generate more labeled data by perturbing the training data with linear shifts of 1 pixel in each direction. This example shows how to build a classification pipeline with a BernoulliRBM feature extractor and a :class:`LogisticRegression <sklearn.linear_model.LogisticRegression>` classifier. The hyperparameters of the entire model (learning rate, hidden layer size, regularization) were optimized by grid search, but the search is not reproduced here because of runtime constraints. Logistic regression on raw pixel values is presented for comparison. The example shows that the features extracted by the BernoulliRBM help improve the classification accuracy. """ from __future__ import print_function print(__doc__) # Authors: Yann N. Dauphin, Vlad Niculae, Gabriel Synnaeve # License: BSD import numpy as np import matplotlib.pyplot as plt from scipy.ndimage import convolve from sklearn import linear_model, datasets, metrics from sklearn.cross_validation import train_test_split from sklearn.neural_network import BernoulliRBM from sklearn.pipeline import Pipeline ############################################################################### # Setting up def nudge_dataset(X, Y): """ This produces a dataset 5 times bigger than the original one, by moving the 8x8 images in X around by 1px to left, right, down, up """ direction_vectors = [ [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]]] shift = lambda x, w: convolve(x.reshape((8, 8)), mode='constant', weights=w).ravel() X = np.concatenate([X] + [np.apply_along_axis(shift, 1, X, vector) for vector in direction_vectors]) Y = np.concatenate([Y for _ in range(5)], axis=0) return X, Y # Load Data digits = datasets.load_digits() X = np.asarray(digits.data, 'float32') X, Y = nudge_dataset(X, digits.target) X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001) # 0-1 scaling X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0) # Models we will use logistic = linear_model.LogisticRegression() rbm = BernoulliRBM(random_state=0, verbose=True) classifier = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)]) ############################################################################### # Training # Hyper-parameters. These were set by cross-validation, # using a GridSearchCV. Here we are not performing cross-validation to # save time. rbm.learning_rate = 0.06 rbm.n_iter = 20 # More components tend to give better prediction performance, but larger # fitting time rbm.n_components = 100 logistic.C = 6000.0 # Training RBM-Logistic Pipeline classifier.fit(X_train, Y_train) # Training Logistic regression logistic_classifier = linear_model.LogisticRegression(C=100.0) logistic_classifier.fit(X_train, Y_train) ############################################################################### # Evaluation print() print("Logistic regression using RBM features:\n%s\n" % ( metrics.classification_report( Y_test, classifier.predict(X_test)))) print("Logistic regression using raw pixel features:\n%s\n" % ( metrics.classification_report( Y_test, logistic_classifier.predict(X_test)))) ############################################################################### # Plotting plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(rbm.components_): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape((8, 8)), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('100 components extracted by RBM', fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
dmnfarrell/epitopepredict
epitopepredict/mhclearn.py
2
6334
#!/usr/bin/env python """ Basic MHC binding prediction predictors Created October 2018 Copyright (C) Damien Farrell This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA """ from __future__ import absolute_import, print_function import sys, os, math import numpy as np import pandas as pd from collections import OrderedDict from epitopepredict import peptutils, sequtils home = os.path.expanduser("~") config_path = os.path.join(home, '.config/epitopepredict') module_path = os.path.dirname(os.path.abspath(__file__)) datadir = os.path.join(module_path, 'mhcdata') models_path = os.path.join(config_path, 'models') nlf = pd.read_csv(os.path.join(datadir,'NLF.csv'),index_col=0) blosum62 = pd.read_csv(os.path.join(datadir,'blosum62.csv')) blosum50 = pd.read_csv(os.path.join(datadir,'blosum50.csv')) codes = ['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y'] def check_valid_prot_seq(seq): for i in seq: if i not in mhclearn.codes: return False def aff2log50k(a): return 1 - (math.log(a) / math.log(50000)) def log50k2aff(a): return np.power(50000,1-a) def random_encode(p): """Random encoding of a peptide for testing""" return [np.random.randint(20) for i in pep] def one_hot_encode(seq): """One hot encoding of peptide""" o = list(set(codes) - set(seq)) s = pd.DataFrame(list(seq)) x = pd.DataFrame(np.zeros((len(seq),len(o)),dtype=int),columns=o) a = s[0].str.get_dummies(sep=',') a = a.join(x) a = a.sort_index(axis=1) #a = a.set_index([a.index,list(seq)]) #show_matrix(a) e = a.values.flatten() return e def blosum_encode(seq): """Blosum62 encoding of peptide""" s=list(seq) x = pd.DataFrame([blosum62[i] for i in seq]).reset_index(drop=True) x = x.iloc[:,:-4] e = x.values.flatten() return e def nlf_encode(seq): """NLF encoding of a peptide (from Nanni and Lumini)""" x = pd.DataFrame([nlf[i] for i in seq]).reset_index(drop=True) e = x.values.flatten() return e def auc_score(true, sc, cutoff=None): from sklearn import metrics if cutoff!=None: true = (true<=cutoff).astype(int) sc = (sc<=cutoff).astype(int) fpr, tpr, thresholds = metrics.roc_curve(true, sc, pos_label=1) r = metrics.auc(fpr, tpr) return r def get_protein_set(): syf = os.path.join(datadir, 'SYF_set.fasta') return sequtils.fasta_to_dataframe(syf) def get_training_set(allele=None, length=None): """Get training set for MHC-I data.""" b = pd.read_csv(os.path.join(datadir, 'curated_training_data.no_mass_spec.zip')) eval1 = get_evaluation_set1() df = b.loc[~b.peptide.isin(eval1.peptide)].copy() if allele is not None: df = b.loc[b.allele==allele].copy() df['log50k'] = df.ic50.apply(lambda x: aff2log50k(x)) df['length'] = df.peptide.str.len() if length != None: df = df[(df.length==length)] df = df[df.ic50<50000] df = df[df.measurement_type=='quantitative'] #df['binder'] = df.loc[df.ic50<500].astype(int) return df def get_evaluation_set1(allele=None, length=None): """Get eval set of peptides""" e = pd.read_csv(os.path.join(datadir, 'binding_data_2013.zip'),comment='#') if allele is not None: e = e[e.allele==allele] if length != None: e = e[(e.length==length) ] e['log50k'] = e.ic50.apply(lambda x: aff2log50k(x)).round(2) return e def get_allele_names(): """Get allele names from training set""" b = get_training_set() a = b.allele.value_counts() a = a[a>100] return list(a.index) def build_predictor(allele, length=9, encoder=None): """Build a regression model using peptide encoder and test data""" from sklearn.neural_network import MLPRegressor #get allele specific predictor if encoder==None: encoder=one_hot_encode data = get_training_set(allele, length=length) if len(data)<100: return reg = MLPRegressor(hidden_layer_sizes=(1,), alpha=0.0005, max_iter=1500, activation='logistic', solver='lbfgs', random_state=2) #reg = LinearRegression() X = data.peptide.apply(lambda x: pd.Series(encoder(x)),1) y = data.log50k print ('trained model:', allele, len(X), length) reg.fit(X,y) return reg def train_models(overwrite=False, alleles=None, encoder=None): """Train and save models. May be needed if version of joblib is different.""" os.makedirs(models_path, exist_ok=True) #encoders = {'blosum':blosum_encode, 'onehot':one_hot_encode, 'nlf':nlf_encode} import joblib if alleles == None: alleles = get_allele_names() if type(alleles) is str: alleles = [alleles] if encoder == None: encoder = one_hot_encode #else: # encoder = encoders[encoder] lengths = [9,10,11] for a in alleles: for l in lengths: fname = os.path.join(models_path, a+'_'+str(l)+'.joblib') #print (fname) if os.path.exists(fname) and overwrite == False: continue reg = build_predictor(a, l, encoder) if reg is not None: joblib.dump(reg, fname, protocol=2) return def get_model(allele, length): """Get a regression model.""" try: import sklearn except: print ('you need scikit-learn to use this predictor') import joblib #os.makedirs(models_path, exist_ok=True) fname = os.path.join(models_path, allele+'_'+str(length)+'.joblib') if os.path.exists(fname): reg = joblib.load(fname) return reg
apache-2.0
jaeddy/bripipetools
bripipetools/postprocessing/stitching.py
1
9689
""" Combine parsed data from a set of batch processing output files and write to a single CSV file. """ import logging import os import re import csv import pandas as pd from .. import io from .. import parsing from .. import util logger = logging.getLogger(__name__) class OutputStitcher(object): """ Given a path to an output folder or list of files, combine parsed data from files and write CSV. """ def __init__(self, path, output_type=None, outputs=None): logger.debug("creating `OutputStitcher` for path '{}'".format(path)) self.path = path if output_type is None: self.type = self._sniff_output_type() def _sniff_output_type(self): """ Return predicted output type based on specified path. """ output_types = ['metrics', 'QC', 'counts', 'validation'] output_match = [t.lower() for t in output_types if re.search(t, self.path)] if len(output_match): return output_match[0] def _get_outputs(self, output_type): """ Return list of outputs of specified type. """ output_filetypes = {'metrics': 'txt|html', 'qc': 'txt', 'counts': 'txt', 'validation': 'csv'} return [os.path.join(self.path, f) for f in os.listdir(self.path) if re.search(output_type, f) and not re.search('combined', f) and re.search(output_filetypes[output_type], os.path.splitext(f)[-1])] def _get_parser(self, output_type, output_source): """ Return the appropriate parser for the current output file. """ parsers = { 'metrics': {'htseq': getattr(io, 'HtseqMetricsFile'), 'picard-rnaseq': getattr(io, 'PicardMetricsFile'), 'picard-markdups': getattr(io, 'PicardMetricsFile'), 'picard-align': getattr(io, 'PicardMetricsFile'), 'picard-alignment': getattr(io, 'PicardMetricsFile'), 'tophat-stats': getattr(io, 'TophatStatsFile')}, 'qc': {'fastqc': getattr(io, 'FastQCFile')}, 'counts': {'htseq': getattr(io, 'HtseqCountsFile')}, 'validation': {'sexcheck': getattr(io, 'SexcheckFile')} } logger.debug("matched parser '{}' for output type '{}' and source '{}'" .format(parsers[output_type][output_source], output_type, output_source)) return parsers[output_type][output_source] def _read_data(self): """ Parse and store data for each output file. """ outputs = self._get_outputs(self.type) self.data = {} for o in outputs: logger.debug("parsing output file '{}'".format(o)) out_items = parsing.parse_output_filename(o) proclib_id = out_items['sample_id'] out_type = out_items['type'] out_source = out_items['source'] logger.debug("storing data from '{}' in '{}' '{}'".format( out_source, proclib_id, out_type)) out_parser = self._get_parser(out_type, out_source)(path=o) self.data.setdefault( out_type, {}).setdefault(proclib_id, []).append( {out_source: out_parser.parse()} ) def _build_table(self): """ Combine parsed data into table for writing. """ output_data = self.data[self.type] if self.type == 'counts': logger.info("combining counts data") for idx, (sample_id, sample_data) in enumerate(output_data.items()): data = sample_data[0]['htseq'] data = data.rename(index=str, columns={'count': sample_id}) if idx == 0: table_data = data else: table_data = pd.merge(table_data, data, on='geneName') else: logger.info("combining non-counts data") table_data = [] for sample_id, sample_data in output_data.items(): header = [field for source in sample_data for name, data in source.items() for field in data.keys()] logger.debug("header row: {}".format(header)) values = [value for source in sample_data for name, data in source.items() for value in data.values()] logger.debug("values: {}".format(values)) if not len(table_data): table_data.append(['libId'] + sorted(header)) logger.debug("added header row: {}".format(table_data[-1])) table_data.append( [sample_id] + [v for h, v in sorted(zip(header, values))] ) logger.debug("added values row: {}".format(table_data[-1])) return table_data def _add_mapped_reads_column(self, data): """ Add mapped_reads_w_dups column to metrics table data. """ try: for idx, row in enumerate(data[1:]): metrics = dict(zip(data[0], row)) # handle pct mapped reads calculation differently for PE reads if(metrics['category'] == 'unpaired'): mapped_reads = (float(metrics['unpaired_reads_examined']) / float(metrics['fastq_total_reads'])) else: mapped_reads = ((float(metrics['unpaired_reads_examined']) + float(metrics['read_pairs_examined'])) / float(metrics['fastq_total_reads'])) data[idx + 1].append(mapped_reads) data[0].append('mapped_reads_w_dups') except KeyError: logger.warn("required fields missing; skipping calculation " "of 'mapped_reads_w_dups") return data def _build_combined_filename(self): """ Parse input path to create filename for combined CSV file. """ path_parts = re.sub('.*Illumina/|.*ICAC/', '', self.path).split('/') logger.debug("building combined filename from path parts {}" .format(path_parts)) run_items = parsing.parse_flowcell_run_id(path_parts[0]) project_label = parsing.get_project_label(path_parts[1]) date = util.matchdefault('[0-9]{6}', path_parts[1]) if project_label != '' and run_items['flowcell_id'] != '': filename_base = '{}_{}_{}'.format(project_label, run_items['flowcell_id'], date) else: filename_base = path_parts[0] return '{}_combined_{}.csv'.format(filename_base.rstrip('_'), self.type) def _build_overrepresented_seq_table(self): """ Parse and combine overrepresented sequences tables from FastQC files. """ outputs = self._get_outputs(self.type) overrep_seq_table = pd.DataFrame([]) if self.type == 'qc': for o in outputs: logger.debug("parsing overrepresented sequences " "from output file '{}'".format(o)) out_items = parsing.parse_output_filename(o) proclib_id = out_items['sample_id'] out_type = out_items['type'] out_source = out_items['source'] logger.debug("storing data from {} in {} {}".format( out_source, proclib_id, out_type)) out_parser = io.FastQCFile(path=o) o_table = (pd.DataFrame(out_parser .parse_overrepresented_seqs()) .assign(libId=proclib_id)) logger.debug("found {} overrepresented sequence(s) " "for sample '{}'".format(len(o_table), proclib_id)) overrep_seq_table = overrep_seq_table.append(o_table) return overrep_seq_table def write_overrepresented_seq_table(self): """ Write combined overrepresented sequences table to CSV file. """ table_path = os.path.join(self.path, self._build_combined_filename()) table_path = re.sub('_qc', '_overrep_seqs', table_path) table_data = self._build_overrepresented_seq_table() logger.debug("writing overrepresented seqs to file '{}'" .format(table_path)) table_data.to_csv(table_path, index=False) def write_table(self): """ Write the combined table to a CSV file. """ self._read_data() table_data = self._build_table() if self.type == 'metrics': table_data = self._add_mapped_reads_column(table_data) table_path = os.path.join(self.path, self._build_combined_filename()) logger.debug("writing to file {}".format(table_path)) if self.type == 'counts': table_data.to_csv(table_path, index=False) else: with open(table_path, 'w') as f: writer = csv.writer(f, lineterminator='\n') for row in table_data: writer.writerow(row) return table_path
mit
sarahgrogan/scikit-learn
examples/datasets/plot_iris_dataset.py
283
1928
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= The Iris Dataset ========================================================= This data sets consists of 3 different types of irises' (Setosa, Versicolour, and Virginica) petal and sepal length, stored in a 150x4 numpy.ndarray The rows being the samples and the columns being: Sepal Length, Sepal Width, Petal Length and Petal Width. The below plot uses the first two features. See `here <http://en.wikipedia.org/wiki/Iris_flower_data_set>`_ for more information on this dataset. """ print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets from sklearn.decomposition import PCA # import some data to play with iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. Y = iris.target x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 plt.figure(2, figsize=(8, 6)) plt.clf() # Plot the training points plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) # To getter a better understanding of interaction of the dimensions # plot the first three PCA dimensions fig = plt.figure(1, figsize=(8, 6)) ax = Axes3D(fig, elev=-150, azim=110) X_reduced = PCA(n_components=3).fit_transform(iris.data) ax.scatter(X_reduced[:, 0], X_reduced[:, 1], X_reduced[:, 2], c=Y, cmap=plt.cm.Paired) ax.set_title("First three PCA directions") ax.set_xlabel("1st eigenvector") ax.w_xaxis.set_ticklabels([]) ax.set_ylabel("2nd eigenvector") ax.w_yaxis.set_ticklabels([]) ax.set_zlabel("3rd eigenvector") ax.w_zaxis.set_ticklabels([]) plt.show()
bsd-3-clause
JackKelly/neuralnilm_prototype
scripts/e232.py
2
6618
from __future__ import print_function, division import matplotlib matplotlib.use('Agg') # Must be before importing matplotlib.pyplot or pylab! from neuralnilm import Net, RealApplianceSource, BLSTMLayer, DimshuffleLayer from lasagne.nonlinearities import sigmoid, rectify from lasagne.objectives import crossentropy, mse from lasagne.init import Uniform, Normal from lasagne.layers import LSTMLayer, DenseLayer, Conv1DLayer, ReshapeLayer, FeaturePoolLayer from lasagne.updates import nesterov_momentum from functools import partial import os from neuralnilm.source import standardise, discretize, fdiff, power_and_fdiff from neuralnilm.experiment import run_experiment from neuralnilm.net import TrainingError import __main__ NAME = os.path.splitext(os.path.split(__main__.__file__)[1])[0] PATH = "/homes/dk3810/workspace/python/neuralnilm/figures" SAVE_PLOT_INTERVAL = 250 GRADIENT_STEPS = 100 """ e103 Discovered that bottom layer is hardly changing. So will try just a single lstm layer e104 standard init lower learning rate e106 lower learning rate to 0.001 e108 is e107 but with batch size of 5 e109 Normal(1) for BLSTM e110 * Back to Uniform(5) for BLSTM * Using nntools eb17bd923ef9ff2cacde2e92d7323b4e51bb5f1f RESULTS: Seems to run fine again! e111 * Try with nntools head * peepholes=False RESULTS: appears to be working well. Haven't seen a NaN, even with training rate of 0.1 e112 * n_seq_per_batch = 50 e114 * Trying looking at layer by layer training again. * Start with single BLSTM layer e115 * Learning rate = 1 e116 * Standard inits e117 * Uniform(1) init e119 * Learning rate 10 # Result: didn't work well! e120 * init: Normal(1) * not as good as Uniform(5) e121 * Uniform(25) e122 * Just 10 cells * Uniform(5) e125 * Pre-train lower layers e128 * Add back all 5 appliances * Seq length 1500 * skip_prob = 0.7 e129 * max_input_power = None * 2nd layer has Uniform(5) * pre-train bottom layer for 2000 epochs * add third layer at 4000 epochs e131 e138 * Trying to replicate e82 and then break it ;) e140 diff e141 conv1D layer has Uniform(1), as does 2nd BLSTM layer e142 diff AND power e144 diff and power and max power is 5900 e145 Uniform(25) for first layer e146 gradient clip and use peepholes e147 * try again with new code e148 * learning rate 0.1 e150 * Same as e149 but without peepholes and using BLSTM not BBLSTM e151 * Max pooling 171 lower learning rate 172 even lower learning rate 173 slightly higher learning rate! 175 same as 174 but with skip prob = 0, and LSTM not BLSTM, and only 4000 epochs 176 new cost function 177 another new cost func (this one avoids NaNs) skip prob 0.7 10x higher learning rate 178 refactored cost func (functionally equiv to 177) 0.1x learning rate e180 * mse e181 * back to scaled cost * different architecture: - convd1 at input (2x) - then 3 LSTM layers, each with a 2x conv in between - no diff input e189 * divide dominant appliance power * mse 217 no peepholes 218 don't clip gradient lag=64 219 back to lag=32 try all 5 appliances (with max input = 500) """ # def scaled_cost(x, t): # raw_cost = (x - t) ** 2 # energy_per_seq = t.sum(axis=1) # energy_per_batch = energy_per_seq.sum(axis=1) # energy_per_batch = energy_per_batch.reshape((-1, 1)) # normaliser = energy_per_seq / energy_per_batch # cost = raw_cost.mean(axis=1) * (1 - normaliser) # return cost.mean() from theano.ifelse import ifelse import theano.tensor as T THRESHOLD = 0 def scaled_cost(x, t): sq_error = (x - t) ** 2 def mask_and_mean_sq_error(mask): masked_sq_error = sq_error[mask.nonzero()] mean = masked_sq_error.mean() mean = ifelse(T.isnan(mean), 0.0, mean) return mean above_thresh_mean = mask_and_mean_sq_error(t > THRESHOLD) below_thresh_mean = mask_and_mean_sq_error(t <= THRESHOLD) return (above_thresh_mean + below_thresh_mean) / 2.0 def exp_a(name): # global source # source = RealApplianceSource( # filename='/data/dk3810/ukdale.h5', # appliances=[ # ['fridge freezer', 'fridge', 'freezer'], # 'hair straighteners', # 'television', # 'dish washer', # ['washer dryer', 'washing machine'] # ], # max_appliance_powers=None,#[500] * 5, # on_power_thresholds=[5] * 5, # max_input_power=2500, # min_on_durations=[60, 60, 60, 1800, 1800], # min_off_durations=[12, 12, 12, 1800, 600], # window=("2013-06-01", "2014-07-01"), # seq_length=1500, # output_one_appliance=False, # boolean_targets=False, # train_buildings=[1], # validation_buildings=[1], # skip_probability=0.7, # n_seq_per_batch=25, # # subsample_target=4, # # input_padding=0, # include_diff=False, # clip_appliance_power=False, # lag=0 # ) net = Net( experiment_name=name, source=source, save_plot_interval=1000, loss_function=scaled_cost, updates=partial(nesterov_momentum, learning_rate=0.0001), layers_config=[ { 'type': DenseLayer, 'num_units': 200, 'nonlinearity': sigmoid, 'W': Uniform(5), 'b': Uniform(5) }, { 'type': DenseLayer, 'num_units': 50, 'nonlinearity': sigmoid, 'W': Uniform(1), 'b': Uniform(1) }, { 'type': DenseLayer, 'num_units': source.n_outputs, 'nonlinearity': None, 'W': Uniform(25) } ] ) return net def init_experiment(experiment): full_exp_name = NAME + experiment func_call = 'exp_{:s}(full_exp_name)'.format(experiment) print("***********************************") print("Preparing", full_exp_name, "...") net = eval(func_call) return net def main(): for experiment in list('a'): full_exp_name = NAME + experiment path = os.path.join(PATH, full_exp_name) try: net = init_experiment(experiment) run_experiment(net, path, epochs=None) except KeyboardInterrupt: break except TrainingError as exception: print("EXCEPTION:", exception) except Exception as exception: raise print("EXCEPTION:", exception) import ipdb; ipdb.set_trace() if __name__ == "__main__": main()
mit
goblinr/omim
tools/python/booking_hotels_quality.py
20
2632
#!/usr/bin/env python # coding: utf8 from __future__ import print_function from collections import namedtuple, defaultdict from datetime import datetime from sklearn import metrics import argparse import base64 import json import logging import matplotlib.pyplot as plt import os import pickle import time import urllib2 import re # init logging logging.basicConfig(level=logging.DEBUG, format='[%(asctime)s] %(levelname)s: %(message)s') def load_binary_list(path): """Loads reference binary classifier output. """ bits = [] with open(path, 'r') as fd: for line in fd: if (not line.strip()) or line.startswith('#'): continue bits.append(1 if line.startswith('y') else 0) return bits def load_score_list(path): """Loads list of matching scores. """ scores = [] with open(path, 'r') as fd: for line in fd: if (not line.strip()) or line.startswith('#'): continue scores.append(float(re.search(r'result score: (\d*\.\d+)', line).group(1))) return scores def process_options(): # TODO(mgsergio): Fix description. parser = argparse.ArgumentParser(description="Download and process booking hotels.") parser.add_argument("-v", "--verbose", action="store_true", dest="verbose") parser.add_argument("-q", "--quiet", action="store_false", dest="verbose") parser.add_argument("--reference_list", dest="reference_list", help="Path to data files") parser.add_argument("--sample_list", dest="sample_list", help="Name and destination for output file") parser.add_argument("--show", dest="show", default=False, action="store_true", help="Show graph for precision and recall") options = parser.parse_args() if not options.reference_list or not options.sample_list: parser.print_help() exit() return options def main(): options = process_options() reference = load_binary_list(options.reference_list) sample = load_score_list(options.sample_list) precision, recall, threshold = metrics.precision_recall_curve(reference, sample) aa = zip(precision, recall, threshold) max_by_hmean = max(aa, key=lambda (p, r, t): p*r/(p+r)) print("Optimal threshold: {2} for precision: {0} and recall: {1}".format(*max_by_hmean)) print("AUC: {0}".format(metrics.roc_auc_score(reference, sample))) if options.show: plt.plot(recall, precision) plt.title("Precision/Recall") plt.ylabel("Precision") plt.xlabel("Recall") plt.show() if __name__ == "__main__": main()
apache-2.0
victorbergelin/scikit-learn
sklearn/tests/test_grid_search.py
68
28778
""" Testing for grid search module (sklearn.grid_search) """ from collections import Iterable, Sized from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.externals.six.moves import xrange from itertools import chain, product import pickle import sys import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_false, assert_true from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import ignore_warnings from sklearn.utils.mocking import CheckingClassifier, MockDataFrame from scipy.stats import bernoulli, expon, uniform from sklearn.externals.six.moves import zip from sklearn.base import BaseEstimator from sklearn.datasets import make_classification from sklearn.datasets import make_blobs from sklearn.datasets import make_multilabel_classification from sklearn.grid_search import (GridSearchCV, RandomizedSearchCV, ParameterGrid, ParameterSampler, ChangedBehaviorWarning) from sklearn.svm import LinearSVC, SVC from sklearn.tree import DecisionTreeRegressor from sklearn.tree import DecisionTreeClassifier from sklearn.cluster import KMeans from sklearn.neighbors import KernelDensity from sklearn.metrics import f1_score from sklearn.metrics import make_scorer from sklearn.metrics import roc_auc_score from sklearn.cross_validation import KFold, StratifiedKFold, FitFailedWarning from sklearn.preprocessing import Imputer from sklearn.pipeline import Pipeline # Neither of the following two estimators inherit from BaseEstimator, # to test hyperparameter search on user-defined classifiers. class MockClassifier(object): """Dummy classifier to test the cross-validation""" def __init__(self, foo_param=0): self.foo_param = foo_param def fit(self, X, Y): assert_true(len(X) == len(Y)) return self def predict(self, T): return T.shape[0] predict_proba = predict decision_function = predict transform = predict def score(self, X=None, Y=None): if self.foo_param > 1: score = 1. else: score = 0. return score def get_params(self, deep=False): return {'foo_param': self.foo_param} def set_params(self, **params): self.foo_param = params['foo_param'] return self class LinearSVCNoScore(LinearSVC): """An LinearSVC classifier that has no score method.""" @property def score(self): raise AttributeError X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) y = np.array([1, 1, 2, 2]) def assert_grid_iter_equals_getitem(grid): assert_equal(list(grid), [grid[i] for i in range(len(grid))]) def test_parameter_grid(): # Test basic properties of ParameterGrid. params1 = {"foo": [1, 2, 3]} grid1 = ParameterGrid(params1) assert_true(isinstance(grid1, Iterable)) assert_true(isinstance(grid1, Sized)) assert_equal(len(grid1), 3) assert_grid_iter_equals_getitem(grid1) params2 = {"foo": [4, 2], "bar": ["ham", "spam", "eggs"]} grid2 = ParameterGrid(params2) assert_equal(len(grid2), 6) # loop to assert we can iterate over the grid multiple times for i in xrange(2): # tuple + chain transforms {"a": 1, "b": 2} to ("a", 1, "b", 2) points = set(tuple(chain(*(sorted(p.items())))) for p in grid2) assert_equal(points, set(("bar", x, "foo", y) for x, y in product(params2["bar"], params2["foo"]))) assert_grid_iter_equals_getitem(grid2) # Special case: empty grid (useful to get default estimator settings) empty = ParameterGrid({}) assert_equal(len(empty), 1) assert_equal(list(empty), [{}]) assert_grid_iter_equals_getitem(empty) assert_raises(IndexError, lambda: empty[1]) has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}]) assert_equal(len(has_empty), 4) assert_equal(list(has_empty), [{'C': 1}, {'C': 10}, {}, {'C': .5}]) assert_grid_iter_equals_getitem(has_empty) def test_grid_search(): # Test that the best estimator contains the right value for foo_param clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, verbose=3) # make sure it selects the smallest parameter in case of ties old_stdout = sys.stdout sys.stdout = StringIO() grid_search.fit(X, y) sys.stdout = old_stdout assert_equal(grid_search.best_estimator_.foo_param, 2) for i, foo_i in enumerate([1, 2, 3]): assert_true(grid_search.grid_scores_[i][0] == {'foo_param': foo_i}) # Smoke test the score etc: grid_search.score(X, y) grid_search.predict_proba(X) grid_search.decision_function(X) grid_search.transform(X) # Test exception handling on scoring grid_search.scoring = 'sklearn' assert_raises(ValueError, grid_search.fit, X, y) @ignore_warnings def test_grid_search_no_score(): # Test grid-search on classifier that has no score function. clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] clf_no_score = LinearSVCNoScore(random_state=0) grid_search = GridSearchCV(clf, {'C': Cs}, scoring='accuracy') grid_search.fit(X, y) grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}, scoring='accuracy') # smoketest grid search grid_search_no_score.fit(X, y) # check that best params are equal assert_equal(grid_search_no_score.best_params_, grid_search.best_params_) # check that we can call score and that it gives the correct result assert_equal(grid_search.score(X, y), grid_search_no_score.score(X, y)) # giving no scoring function raises an error grid_search_no_score = GridSearchCV(clf_no_score, {'C': Cs}) assert_raise_message(TypeError, "no scoring", grid_search_no_score.fit, [[1]]) def test_grid_search_score_method(): X, y = make_classification(n_samples=100, n_classes=2, flip_y=.2, random_state=0) clf = LinearSVC(random_state=0) grid = {'C': [.1]} search_no_scoring = GridSearchCV(clf, grid, scoring=None).fit(X, y) search_accuracy = GridSearchCV(clf, grid, scoring='accuracy').fit(X, y) search_no_score_method_auc = GridSearchCV(LinearSVCNoScore(), grid, scoring='roc_auc').fit(X, y) search_auc = GridSearchCV(clf, grid, scoring='roc_auc').fit(X, y) # Check warning only occurs in situation where behavior changed: # estimator requires score method to compete with scoring parameter score_no_scoring = assert_no_warnings(search_no_scoring.score, X, y) score_accuracy = assert_warns(ChangedBehaviorWarning, search_accuracy.score, X, y) score_no_score_auc = assert_no_warnings(search_no_score_method_auc.score, X, y) score_auc = assert_warns(ChangedBehaviorWarning, search_auc.score, X, y) # ensure the test is sane assert_true(score_auc < 1.0) assert_true(score_accuracy < 1.0) assert_not_equal(score_auc, score_accuracy) assert_almost_equal(score_accuracy, score_no_scoring) assert_almost_equal(score_auc, score_no_score_auc) def test_trivial_grid_scores(): # Test search over a "grid" with only one point. # Non-regression test: grid_scores_ wouldn't be set by GridSearchCV. clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1]}) grid_search.fit(X, y) assert_true(hasattr(grid_search, "grid_scores_")) random_search = RandomizedSearchCV(clf, {'foo_param': [0]}, n_iter=1) random_search.fit(X, y) assert_true(hasattr(random_search, "grid_scores_")) def test_no_refit(): # Test that grid search can be used for model selection only clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=False) grid_search.fit(X, y) assert_true(hasattr(grid_search, "best_params_")) def test_grid_search_error(): # Test that grid search will capture errors on data with different # length X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_[:180], y_) def test_grid_search_iid(): # test the iid parameter # noise-free simple 2d-data X, y = make_blobs(centers=[[0, 0], [1, 0], [0, 1], [1, 1]], random_state=0, cluster_std=0.1, shuffle=False, n_samples=80) # split dataset into two folds that are not iid # first one contains data of all 4 blobs, second only from two. mask = np.ones(X.shape[0], dtype=np.bool) mask[np.where(y == 1)[0][::2]] = 0 mask[np.where(y == 2)[0][::2]] = 0 # this leads to perfect classification on one fold and a score of 1/3 on # the other svm = SVC(kernel='linear') # create "cv" for splits cv = [[mask, ~mask], [~mask, mask]] # once with iid=True (default) grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # for first split, 1/4 of dataset is in test, for second 3/4. # take weighted average assert_almost_equal(first.mean_validation_score, 1 * 1. / 4. + 1. / 3. * 3. / 4.) # once with iid=False grid_search = GridSearchCV(svm, param_grid={'C': [1, 10]}, cv=cv, iid=False) grid_search.fit(X, y) first = grid_search.grid_scores_[0] assert_equal(first.parameters['C'], 1) # scores are the same as above assert_array_almost_equal(first.cv_validation_scores, [1, 1. / 3.]) # averaged score is just mean of scores assert_almost_equal(first.mean_validation_score, np.mean(first.cv_validation_scores)) def test_grid_search_one_grid_point(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) param_dict = {"C": [1.0], "kernel": ["rbf"], "gamma": [0.1]} clf = SVC() cv = GridSearchCV(clf, param_dict) cv.fit(X_, y_) clf = SVC(C=1.0, kernel="rbf", gamma=0.1) clf.fit(X_, y_) assert_array_equal(clf.dual_coef_, cv.best_estimator_.dual_coef_) def test_grid_search_bad_param_grid(): param_dict = {"C": 1.0} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": []} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) param_dict = {"C": np.ones(6).reshape(3, 2)} clf = SVC() assert_raises(ValueError, GridSearchCV, clf, param_dict) def test_grid_search_sparse(): # Test that grid search works with both dense and sparse matrices X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(X_[:180].tocoo(), y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_true(np.mean(y_pred == y_pred2) >= .9) assert_equal(C, C2) def test_grid_search_sparse_scoring(): X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred = cv.predict(X_[180:]) C = cv.best_estimator_.C X_ = sp.csr_matrix(X_) clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1") cv.fit(X_[:180], y_[:180]) y_pred2 = cv.predict(X_[180:]) C2 = cv.best_estimator_.C assert_array_equal(y_pred, y_pred2) assert_equal(C, C2) # Smoke test the score # np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]), # cv.score(X_[:180], y[:180])) # test loss where greater is worse def f1_loss(y_true_, y_pred_): return -f1_score(y_true_, y_pred_) F1Loss = make_scorer(f1_loss, greater_is_better=False) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss) cv.fit(X_[:180], y_[:180]) y_pred3 = cv.predict(X_[180:]) C3 = cv.best_estimator_.C assert_equal(C, C3) assert_array_equal(y_pred, y_pred3) def test_grid_search_precomputed_kernel(): # Test that grid search works when the input features are given in the # form of a precomputed kernel matrix X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) # compute the training kernel matrix corresponding to the linear kernel K_train = np.dot(X_[:180], X_[:180].T) y_train = y_[:180] clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) cv.fit(K_train, y_train) assert_true(cv.best_score_ >= 0) # compute the test kernel matrix K_test = np.dot(X_[180:], X_[:180].T) y_test = y_[180:] y_pred = cv.predict(K_test) assert_true(np.mean(y_pred == y_test) >= 0) # test error is raised when the precomputed kernel is not array-like # or sparse assert_raises(ValueError, cv.fit, K_train.tolist(), y_train) def test_grid_search_precomputed_kernel_error_nonsquare(): # Test that grid search returns an error with a non-square precomputed # training kernel matrix K_train = np.zeros((10, 20)) y_train = np.ones((10, )) clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, K_train, y_train) def test_grid_search_precomputed_kernel_error_kernel_function(): # Test that grid search returns an error when using a kernel_function X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0) kernel_function = lambda x1, x2: np.dot(x1, x2.T) clf = SVC(kernel=kernel_function) cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) assert_raises(ValueError, cv.fit, X_, y_) class BrokenClassifier(BaseEstimator): """Broken classifier that cannot be fit twice""" def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y): assert_true(not hasattr(self, 'has_been_fit_')) self.has_been_fit_ = True def predict(self, X): return np.zeros(X.shape[0]) def test_refit(): # Regression test for bug in refitting # Simulates re-fitting a broken estimator; this used to break with # sparse SVMs. X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = GridSearchCV(BrokenClassifier(), [{'parameter': [0, 1]}], scoring="precision", refit=True) clf.fit(X, y) def test_gridsearch_nd(): # Pass X as list in GridSearchCV X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2) y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11) check_X = lambda x: x.shape[1:] == (5, 3, 2) check_y = lambda x: x.shape[1:] == (7, 11) clf = CheckingClassifier(check_X=check_X, check_y=check_y) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_4d, y_3d).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_X_as_list(): # Pass X as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_X=lambda x: isinstance(x, list)) cv = KFold(n=len(X), n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X.tolist(), y).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_y_as_list(): # Pass y as list in GridSearchCV X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) clf = CheckingClassifier(check_y=lambda x: isinstance(x, list)) cv = KFold(n=len(X), n_folds=3) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, cv=cv) grid_search.fit(X, y.tolist()).score(X, y) assert_true(hasattr(grid_search, "grid_scores_")) def test_pandas_input(): # check cross_val_score doesn't destroy pandas dataframe types = [(MockDataFrame, MockDataFrame)] try: from pandas import Series, DataFrame types.append((DataFrame, Series)) except ImportError: pass X = np.arange(100).reshape(10, 10) y = np.array([0] * 5 + [1] * 5) for InputFeatureType, TargetType in types: # X dataframe, y series X_df, y_ser = InputFeatureType(X), TargetType(y) check_df = lambda x: isinstance(x, InputFeatureType) check_series = lambda x: isinstance(x, TargetType) clf = CheckingClassifier(check_X=check_df, check_y=check_series) grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}) grid_search.fit(X_df, y_ser).score(X_df, y_ser) grid_search.predict(X_df) assert_true(hasattr(grid_search, "grid_scores_")) def test_unsupervised_grid_search(): # test grid-search with unsupervised estimator X, y = make_blobs(random_state=0) km = KMeans(random_state=0) grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4]), scoring='adjusted_rand_score') grid_search.fit(X, y) # ARI can find the right number :) assert_equal(grid_search.best_params_["n_clusters"], 3) # Now without a score, and without y grid_search = GridSearchCV(km, param_grid=dict(n_clusters=[2, 3, 4])) grid_search.fit(X) assert_equal(grid_search.best_params_["n_clusters"], 4) def test_gridsearch_no_predict(): # test grid-search with an estimator without predict. # slight duplication of a test from KDE def custom_scoring(estimator, X): return 42 if estimator.bandwidth == .1 else 0 X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) search = GridSearchCV(KernelDensity(), param_grid=dict(bandwidth=[.01, .1, 1]), scoring=custom_scoring) search.fit(X) assert_equal(search.best_params_['bandwidth'], .1) assert_equal(search.best_score_, 42) def test_param_sampler(): # test basic properties of param sampler param_distributions = {"kernel": ["rbf", "linear"], "C": uniform(0, 1)} sampler = ParameterSampler(param_distributions=param_distributions, n_iter=10, random_state=0) samples = [x for x in sampler] assert_equal(len(samples), 10) for sample in samples: assert_true(sample["kernel"] in ["rbf", "linear"]) assert_true(0 <= sample["C"] <= 1) def test_randomized_search_grid_scores(): # Make a dataset with a lot of noise to get various kind of prediction # errors across CV folds and parameter settings X, y = make_classification(n_samples=200, n_features=100, n_informative=3, random_state=0) # XXX: as of today (scipy 0.12) it's not possible to set the random seed # of scipy.stats distributions: the assertions in this test should thus # not depend on the randomization params = dict(C=expon(scale=10), gamma=expon(scale=0.1)) n_cv_iter = 3 n_search_iter = 30 search = RandomizedSearchCV(SVC(), n_iter=n_search_iter, cv=n_cv_iter, param_distributions=params, iid=False) search.fit(X, y) assert_equal(len(search.grid_scores_), n_search_iter) # Check consistency of the structure of each cv_score item for cv_score in search.grid_scores_: assert_equal(len(cv_score.cv_validation_scores), n_cv_iter) # Because we set iid to False, the mean_validation score is the # mean of the fold mean scores instead of the aggregate sample-wise # mean score assert_almost_equal(np.mean(cv_score.cv_validation_scores), cv_score.mean_validation_score) assert_equal(list(sorted(cv_score.parameters.keys())), list(sorted(params.keys()))) # Check the consistency with the best_score_ and best_params_ attributes sorted_grid_scores = list(sorted(search.grid_scores_, key=lambda x: x.mean_validation_score)) best_score = sorted_grid_scores[-1].mean_validation_score assert_equal(search.best_score_, best_score) tied_best_params = [s.parameters for s in sorted_grid_scores if s.mean_validation_score == best_score] assert_true(search.best_params_ in tied_best_params, "best_params_={0} is not part of the" " tied best models: {1}".format( search.best_params_, tied_best_params)) def test_grid_search_score_consistency(): # test that correct scores are used clf = LinearSVC(random_state=0) X, y = make_blobs(random_state=0, centers=2) Cs = [.1, 1, 10] for score in ['f1', 'roc_auc']: grid_search = GridSearchCV(clf, {'C': Cs}, scoring=score) grid_search.fit(X, y) cv = StratifiedKFold(n_folds=3, y=y) for C, scores in zip(Cs, grid_search.grid_scores_): clf.set_params(C=C) scores = scores[2] # get the separate runs from grid scores i = 0 for train, test in cv: clf.fit(X[train], y[train]) if score == "f1": correct_score = f1_score(y[test], clf.predict(X[test])) elif score == "roc_auc": dec = clf.decision_function(X[test]) correct_score = roc_auc_score(y[test], dec) assert_almost_equal(correct_score, scores[i]) i += 1 def test_pickle(): # Test that a fit search can be pickled clf = MockClassifier() grid_search = GridSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True) grid_search.fit(X, y) pickle.dumps(grid_search) # smoke test random_search = RandomizedSearchCV(clf, {'foo_param': [1, 2, 3]}, refit=True, n_iter=3) random_search.fit(X, y) pickle.dumps(random_search) # smoke test def test_grid_search_with_multioutput_data(): # Test search with multi-output estimator X, y = make_multilabel_classification(return_indicator=True, random_state=0) est_parameters = {"max_depth": [1, 2, 3, 4]} cv = KFold(y.shape[0], random_state=0) estimators = [DecisionTreeRegressor(random_state=0), DecisionTreeClassifier(random_state=0)] # Test with grid search cv for est in estimators: grid_search = GridSearchCV(est, est_parameters, cv=cv) grid_search.fit(X, y) for parameters, _, cv_validation_scores in grid_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) # Test with a randomized search for est in estimators: random_search = RandomizedSearchCV(est, est_parameters, cv=cv, n_iter=3) random_search.fit(X, y) for parameters, _, cv_validation_scores in random_search.grid_scores_: est.set_params(**parameters) for i, (train, test) in enumerate(cv): est.fit(X[train], y[train]) correct_score = est.score(X[test], y[test]) assert_almost_equal(correct_score, cv_validation_scores[i]) def test_predict_proba_disabled(): # Test predict_proba when disabled on estimator. X = np.arange(20).reshape(5, -1) y = [0, 0, 1, 1, 1] clf = SVC(probability=False) gs = GridSearchCV(clf, {}, cv=2).fit(X, y) assert_false(hasattr(gs, "predict_proba")) def test_grid_search_allows_nans(): # Test GridSearchCV with Imputer X = np.arange(20, dtype=np.float64).reshape(5, -1) X[2, :] = np.nan y = [0, 0, 1, 1, 1] p = Pipeline([ ('imputer', Imputer(strategy='mean', missing_values='NaN')), ('classifier', MockClassifier()), ]) GridSearchCV(p, {'classifier__foo_param': [1, 2, 3]}, cv=2).fit(X, y) class FailingClassifier(BaseEstimator): """Classifier that raises a ValueError on fit()""" FAILING_PARAMETER = 2 def __init__(self, parameter=None): self.parameter = parameter def fit(self, X, y=None): if self.parameter == FailingClassifier.FAILING_PARAMETER: raise ValueError("Failing classifier failed as required") def predict(self, X): return np.zeros(X.shape[0]) def test_grid_search_failing_classifier(): # GridSearchCV with on_error != 'raise' # Ensures that a warning is raised and score reset where appropriate. X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we only want to check that errors caused by fits # to individual folds will be caught and warnings raised instead. If # refit was done, then an exception would be raised on refit and not # caught by grid_search (expected behavior), and this would cause an # error in this test. gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=0.0) assert_warns(FitFailedWarning, gs.fit, X, y) # Ensure that grid scores were set to zero as required for those fits # that are expected to fail. assert all(np.all(this_point.cv_validation_scores == 0.0) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score=float('nan')) assert_warns(FitFailedWarning, gs.fit, X, y) assert all(np.all(np.isnan(this_point.cv_validation_scores)) for this_point in gs.grid_scores_ if this_point.parameters['parameter'] == FailingClassifier.FAILING_PARAMETER) def test_grid_search_failing_classifier_raise(): # GridSearchCV with on_error == 'raise' raises the error X, y = make_classification(n_samples=20, n_features=10, random_state=0) clf = FailingClassifier() # refit=False because we want to test the behaviour of the grid search part gs = GridSearchCV(clf, [{'parameter': [0, 1, 2]}], scoring='accuracy', refit=False, error_score='raise') # FailingClassifier issues a ValueError so this is what we look for. assert_raises(ValueError, gs.fit, X, y) def test_parameters_sampler_replacement(): # raise error if n_iter too large params = {'first': [0, 1], 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params, n_iter=7) assert_raises(ValueError, list, sampler) # degenerates to GridSearchCV if n_iter the same as grid_size sampler = ParameterSampler(params, n_iter=6) samples = list(sampler) assert_equal(len(samples), 6) for values in ParameterGrid(params): assert_true(values in samples) # test sampling without replacement in a large grid params = {'a': range(10), 'b': range(10), 'c': range(10)} sampler = ParameterSampler(params, n_iter=99, random_state=42) samples = list(sampler) assert_equal(len(samples), 99) hashable_samples = ["a%db%dc%d" % (p['a'], p['b'], p['c']) for p in samples] assert_equal(len(set(hashable_samples)), 99) # doesn't go into infinite loops params_distribution = {'first': bernoulli(.5), 'second': ['a', 'b', 'c']} sampler = ParameterSampler(params_distribution, n_iter=7) samples = list(sampler) assert_equal(len(samples), 7)
bsd-3-clause
kjung/scikit-learn
sklearn/grid_search.py
8
38406
""" The :mod:`sklearn.grid_search` includes utilities to fine-tune the parameters of an estimator. """ from __future__ import print_function # Author: Alexandre Gramfort <[email protected]>, # Gael Varoquaux <[email protected]> # Andreas Mueller <[email protected]> # Olivier Grisel <[email protected]> # License: BSD 3 clause from abc import ABCMeta, abstractmethod from collections import Mapping, namedtuple, Sized from functools import partial, reduce from itertools import product import operator import warnings import numpy as np from .base import BaseEstimator, is_classifier, clone from .base import MetaEstimatorMixin from .cross_validation import check_cv from .cross_validation import _fit_and_score from .externals.joblib import Parallel, delayed from .externals import six from .utils import check_random_state from .utils.random import sample_without_replacement from .utils.validation import _num_samples, indexable from .utils.metaestimators import if_delegate_has_method from .metrics.scorer import check_scoring from .exceptions import ChangedBehaviorWarning __all__ = ['GridSearchCV', 'ParameterGrid', 'fit_grid_point', 'ParameterSampler', 'RandomizedSearchCV'] warnings.warn("This module has been deprecated in favor of the " "model_selection module into which all the refactored classes " "and functions are moved. This module will be removed in 0.20.", DeprecationWarning) class ParameterGrid(object): """Grid of parameters with a discrete number of values for each. Can be used to iterate over parameter value combinations with the Python built-in function iter. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- param_grid : dict of string to sequence, or sequence of such The parameter grid to explore, as a dictionary mapping estimator parameters to sequences of allowed values. An empty dict signifies default parameters. A sequence of dicts signifies a sequence of grids to search, and is useful to avoid exploring parameter combinations that make no sense or have no effect. See the examples below. Examples -------- >>> from sklearn.grid_search import ParameterGrid >>> param_grid = {'a': [1, 2], 'b': [True, False]} >>> list(ParameterGrid(param_grid)) == ( ... [{'a': 1, 'b': True}, {'a': 1, 'b': False}, ... {'a': 2, 'b': True}, {'a': 2, 'b': False}]) True >>> grid = [{'kernel': ['linear']}, {'kernel': ['rbf'], 'gamma': [1, 10]}] >>> list(ParameterGrid(grid)) == [{'kernel': 'linear'}, ... {'kernel': 'rbf', 'gamma': 1}, ... {'kernel': 'rbf', 'gamma': 10}] True >>> ParameterGrid(grid)[1] == {'kernel': 'rbf', 'gamma': 1} True See also -------- :class:`GridSearchCV`: uses ``ParameterGrid`` to perform a full parallelized parameter search. """ def __init__(self, param_grid): if isinstance(param_grid, Mapping): # wrap dictionary in a singleton list to support either dict # or list of dicts param_grid = [param_grid] self.param_grid = param_grid def __iter__(self): """Iterate over the points in the grid. Returns ------- params : iterator over dict of string to any Yields dictionaries mapping each estimator parameter to one of its allowed values. """ for p in self.param_grid: # Always sort the keys of a dictionary, for reproducibility items = sorted(p.items()) if not items: yield {} else: keys, values = zip(*items) for v in product(*values): params = dict(zip(keys, v)) yield params def __len__(self): """Number of points on the grid.""" # Product function that can handle iterables (np.product can't). product = partial(reduce, operator.mul) return sum(product(len(v) for v in p.values()) if p else 1 for p in self.param_grid) def __getitem__(self, ind): """Get the parameters that would be ``ind``th in iteration Parameters ---------- ind : int The iteration index Returns ------- params : dict of string to any Equal to list(self)[ind] """ # This is used to make discrete sampling without replacement memory # efficient. for sub_grid in self.param_grid: # XXX: could memoize information used here if not sub_grid: if ind == 0: return {} else: ind -= 1 continue # Reverse so most frequent cycling parameter comes first keys, values_lists = zip(*sorted(sub_grid.items())[::-1]) sizes = [len(v_list) for v_list in values_lists] total = np.product(sizes) if ind >= total: # Try the next grid ind -= total else: out = {} for key, v_list, n in zip(keys, values_lists, sizes): ind, offset = divmod(ind, n) out[key] = v_list[offset] return out raise IndexError('ParameterGrid index out of range') class ParameterSampler(object): """Generator on parameters sampled from given distributions. Non-deterministic iterable over random candidate combinations for hyper- parameter search. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters. Note that as of SciPy 0.12, the ``scipy.stats.distributions`` do not accept a custom RNG instance and always use the singleton RNG from ``numpy.random``. Hence setting ``random_state`` will not guarantee a deterministic iteration whenever ``scipy.stats`` distributions are used to define the parameter search space. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- param_distributions : dict Dictionary where the keys are parameters and values are distributions from which a parameter is to be sampled. Distributions either have to provide a ``rvs`` function to sample from them, or can be given as a list of values, where a uniform distribution is assumed. n_iter : integer Number of parameter settings that are produced. random_state : int or RandomState Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. Returns ------- params : dict of string to any **Yields** dictionaries mapping each estimator parameter to as sampled value. Examples -------- >>> from sklearn.grid_search import ParameterSampler >>> from scipy.stats.distributions import expon >>> import numpy as np >>> np.random.seed(0) >>> param_grid = {'a':[1, 2], 'b': expon()} >>> param_list = list(ParameterSampler(param_grid, n_iter=4)) >>> rounded_list = [dict((k, round(v, 6)) for (k, v) in d.items()) ... for d in param_list] >>> rounded_list == [{'b': 0.89856, 'a': 1}, ... {'b': 0.923223, 'a': 1}, ... {'b': 1.878964, 'a': 2}, ... {'b': 1.038159, 'a': 2}] True """ def __init__(self, param_distributions, n_iter, random_state=None): self.param_distributions = param_distributions self.n_iter = n_iter self.random_state = random_state def __iter__(self): # check if all distributions are given as lists # in this case we want to sample without replacement all_lists = np.all([not hasattr(v, "rvs") for v in self.param_distributions.values()]) rnd = check_random_state(self.random_state) if all_lists: # look up sampled parameter settings in parameter grid param_grid = ParameterGrid(self.param_distributions) grid_size = len(param_grid) if grid_size < self.n_iter: raise ValueError( "The total space of parameters %d is smaller " "than n_iter=%d." % (grid_size, self.n_iter) + " For exhaustive searches, use GridSearchCV.") for i in sample_without_replacement(grid_size, self.n_iter, random_state=rnd): yield param_grid[i] else: # Always sort the keys of a dictionary, for reproducibility items = sorted(self.param_distributions.items()) for _ in six.moves.range(self.n_iter): params = dict() for k, v in items: if hasattr(v, "rvs"): params[k] = v.rvs() else: params[k] = v[rnd.randint(len(v))] yield params def __len__(self): """Number of points that will be sampled.""" return self.n_iter def fit_grid_point(X, y, estimator, parameters, train, test, scorer, verbose, error_score='raise', **fit_params): """Run fit on one set of parameters. Parameters ---------- X : array-like, sparse matrix or list Input data. y : array-like or None Targets for input data. estimator : estimator object A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. parameters : dict Parameters to be set on estimator for this grid point. train : ndarray, dtype int or bool Boolean mask or indices for training set. test : ndarray, dtype int or bool Boolean mask or indices for test set. scorer : callable or None. If provided must be a scorer callable object / function with signature ``scorer(estimator, X, y)``. verbose : int Verbosity level. **fit_params : kwargs Additional parameter passed to the fit function of the estimator. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Returns ------- score : float Score of this parameter setting on given training / test split. parameters : dict The parameters that have been evaluated. n_samples_test : int Number of test samples in this split. """ score, n_samples_test, _ = _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, error_score) return score, parameters, n_samples_test def _check_param_grid(param_grid): if hasattr(param_grid, 'items'): param_grid = [param_grid] for p in param_grid: for v in p.values(): if isinstance(v, np.ndarray) and v.ndim > 1: raise ValueError("Parameter array should be one-dimensional.") check = [isinstance(v, k) for k in (list, tuple, np.ndarray)] if True not in check: raise ValueError("Parameter values should be a list.") if len(v) == 0: raise ValueError("Parameter values should be a non-empty " "list.") class _CVScoreTuple (namedtuple('_CVScoreTuple', ('parameters', 'mean_validation_score', 'cv_validation_scores'))): # A raw namedtuple is very memory efficient as it packs the attributes # in a struct to get rid of the __dict__ of attributes in particular it # does not copy the string for the keys on each instance. # By deriving a namedtuple class just to introduce the __repr__ method we # would also reintroduce the __dict__ on the instance. By telling the # Python interpreter that this subclass uses static __slots__ instead of # dynamic attributes. Furthermore we don't need any additional slot in the # subclass so we set __slots__ to the empty tuple. __slots__ = () def __repr__(self): """Simple custom repr to summarize the main info""" return "mean: {0:.5f}, std: {1:.5f}, params: {2}".format( self.mean_validation_score, np.std(self.cv_validation_scores), self.parameters) class BaseSearchCV(six.with_metaclass(ABCMeta, BaseEstimator, MetaEstimatorMixin)): """Base class for hyper parameter search with cross-validation.""" @abstractmethod def __init__(self, estimator, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise'): self.scoring = scoring self.estimator = estimator self.n_jobs = n_jobs self.fit_params = fit_params if fit_params is not None else {} self.iid = iid self.refit = refit self.cv = cv self.verbose = verbose self.pre_dispatch = pre_dispatch self.error_score = error_score @property def _estimator_type(self): return self.estimator._estimator_type def score(self, X, y=None): """Returns the score on the given data, if the estimator has been refit. This uses the score defined by ``scoring`` where provided, and the ``best_estimator_.score`` method otherwise. Parameters ---------- X : array-like, shape = [n_samples, n_features] Input data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. Returns ------- score : float Notes ----- * The long-standing behavior of this method changed in version 0.16. * It no longer uses the metric provided by ``estimator.score`` if the ``scoring`` parameter was set when fitting. """ if self.scorer_ is None: raise ValueError("No score function explicitly defined, " "and the estimator doesn't provide one %s" % self.best_estimator_) if self.scoring is not None and hasattr(self.best_estimator_, 'score'): warnings.warn("The long-standing behavior to use the estimator's " "score function in {0}.score has changed. The " "scoring parameter is now used." "".format(self.__class__.__name__), ChangedBehaviorWarning) return self.scorer_(self.best_estimator_, X, y) @if_delegate_has_method(delegate='estimator') def predict(self, X): """Call predict on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict(X) @if_delegate_has_method(delegate='estimator') def predict_proba(self, X): """Call predict_proba on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict_proba``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict_proba(X) @if_delegate_has_method(delegate='estimator') def predict_log_proba(self, X): """Call predict_log_proba on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict_log_proba``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict_log_proba(X) @if_delegate_has_method(delegate='estimator') def decision_function(self, X): """Call decision_function on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``decision_function``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.decision_function(X) @if_delegate_has_method(delegate='estimator') def transform(self, X): """Call transform on the estimator with the best found parameters. Only available if the underlying estimator supports ``transform`` and ``refit=True``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.transform(X) @if_delegate_has_method(delegate='estimator') def inverse_transform(self, Xt): """Call inverse_transform on the estimator with the best found parameters. Only available if the underlying estimator implements ``inverse_transform`` and ``refit=True``. Parameters ----------- Xt : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.transform(Xt) def _fit(self, X, y, parameter_iterable): """Actual fitting, performing the search over parameters.""" estimator = self.estimator cv = self.cv self.scorer_ = check_scoring(self.estimator, scoring=self.scoring) n_samples = _num_samples(X) X, y = indexable(X, y) if y is not None: if len(y) != n_samples: raise ValueError('Target variable (y) has a different number ' 'of samples (%i) than data (X: %i samples)' % (len(y), n_samples)) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) if self.verbose > 0: if isinstance(parameter_iterable, Sized): n_candidates = len(parameter_iterable) print("Fitting {0} folds for each of {1} candidates, totalling" " {2} fits".format(len(cv), n_candidates, n_candidates * len(cv))) base_estimator = clone(self.estimator) pre_dispatch = self.pre_dispatch out = Parallel( n_jobs=self.n_jobs, verbose=self.verbose, pre_dispatch=pre_dispatch )( delayed(_fit_and_score)(clone(base_estimator), X, y, self.scorer_, train, test, self.verbose, parameters, self.fit_params, return_parameters=True, error_score=self.error_score) for parameters in parameter_iterable for train, test in cv) # Out is a list of triplet: score, estimator, n_test_samples n_fits = len(out) n_folds = len(cv) scores = list() grid_scores = list() for grid_start in range(0, n_fits, n_folds): n_test_samples = 0 score = 0 all_scores = [] for this_score, this_n_test_samples, _, parameters in \ out[grid_start:grid_start + n_folds]: all_scores.append(this_score) if self.iid: this_score *= this_n_test_samples n_test_samples += this_n_test_samples score += this_score if self.iid: score /= float(n_test_samples) else: score /= float(n_folds) scores.append((score, parameters)) # TODO: shall we also store the test_fold_sizes? grid_scores.append(_CVScoreTuple( parameters, score, np.array(all_scores))) # Store the computed scores self.grid_scores_ = grid_scores # Find the best parameters by comparing on the mean validation score: # note that `sorted` is deterministic in the way it breaks ties best = sorted(grid_scores, key=lambda x: x.mean_validation_score, reverse=True)[0] self.best_params_ = best.parameters self.best_score_ = best.mean_validation_score if self.refit: # fit the best estimator using the entire dataset # clone first to work around broken estimators best_estimator = clone(base_estimator).set_params( **best.parameters) if y is not None: best_estimator.fit(X, y, **self.fit_params) else: best_estimator.fit(X, **self.fit_params) self.best_estimator_ = best_estimator return self class GridSearchCV(BaseSearchCV): """Exhaustive search over specified parameter values for an estimator. Important members are fit, predict. GridSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated grid-search over a parameter grid. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- estimator : estimator object. A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. param_grid : dict or list of dictionaries Dictionary with parameters names (string) as keys and lists of parameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are explored. This enables searching over any sequence of parameter settings. scoring : string, callable or None, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. If ``None``, the ``score`` method of the estimator is used. fit_params : dict, optional Parameters to pass to the fit method. n_jobs : int, default=1 Number of jobs to run in parallel. .. versionchanged:: 0.17 Upgraded to joblib 0.9.3. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. refit : boolean, default=True Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this GridSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Examples -------- >>> from sklearn import svm, grid_search, datasets >>> iris = datasets.load_iris() >>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]} >>> svr = svm.SVC() >>> clf = grid_search.GridSearchCV(svr, parameters) >>> clf.fit(iris.data, iris.target) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS GridSearchCV(cv=None, error_score=..., estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=..., decision_function_shape=None, degree=..., gamma=..., kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=..., verbose=False), fit_params={}, iid=..., n_jobs=1, param_grid=..., pre_dispatch=..., refit=..., scoring=..., verbose=...) Attributes ---------- grid_scores_ : list of named tuples Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes: * ``parameters``, a dict of parameter settings * ``mean_validation_score``, the mean score over the cross-validation folds * ``cv_validation_scores``, the list of scores for each fold best_estimator_ : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. best_score_ : float Score of best_estimator on the left out data. best_params_ : dict Parameter setting that gave the best results on the hold out data. scorer_ : function Scorer function used on the held out data to choose the best parameters for the model. Notes ------ The parameters selected are those that maximize the score of the left out data, unless an explicit score is passed in which case it is used instead. If `n_jobs` was set to a value higher than one, the data is copied for each point in the grid (and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also --------- :class:`ParameterGrid`: generates all the combinations of a an hyperparameter grid. :func:`sklearn.cross_validation.train_test_split`: utility function to split the data into a development set usable for fitting a GridSearchCV instance and an evaluation set for its final evaluation. :func:`sklearn.metrics.make_scorer`: Make a scorer from a performance metric or loss function. """ def __init__(self, estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise'): super(GridSearchCV, self).__init__( estimator, scoring, fit_params, n_jobs, iid, refit, cv, verbose, pre_dispatch, error_score) self.param_grid = param_grid _check_param_grid(param_grid) def fit(self, X, y=None): """Run fit with all sets of parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. """ return self._fit(X, y, ParameterGrid(self.param_grid)) class RandomizedSearchCV(BaseSearchCV): """Randomized search on hyper parameters. RandomizedSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated search over parameter settings. In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter settings is sampled from the specified distributions. The number of parameter settings that are tried is given by n_iter. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters. Read more in the :ref:`User Guide <randomized_parameter_search>`. Parameters ---------- estimator : estimator object. A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. param_distributions : dict Dictionary with parameters names (string) as keys and distributions or lists of parameters to try. Distributions must provide a ``rvs`` method for sampling (such as those from scipy.stats.distributions). If a list is given, it is sampled uniformly. n_iter : int, default=10 Number of parameter settings that are sampled. n_iter trades off runtime vs quality of the solution. scoring : string, callable or None, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. If ``None``, the ``score`` method of the estimator is used. fit_params : dict, optional Parameters to pass to the fit method. n_jobs : int, default=1 Number of jobs to run in parallel. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`StratifiedKFold` used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. refit : boolean, default=True Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this RandomizedSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. random_state : int or RandomState Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Attributes ---------- grid_scores_ : list of named tuples Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes: * ``parameters``, a dict of parameter settings * ``mean_validation_score``, the mean score over the cross-validation folds * ``cv_validation_scores``, the list of scores for each fold best_estimator_ : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. best_score_ : float Score of best_estimator on the left out data. best_params_ : dict Parameter setting that gave the best results on the hold out data. Notes ----- The parameters selected are those that maximize the score of the held-out data, according to the scoring parameter. If `n_jobs` was set to a value higher than one, the data is copied for each parameter setting(and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also -------- :class:`GridSearchCV`: Does exhaustive search over a grid of parameters. :class:`ParameterSampler`: A generator over parameter settings, constructed from param_distributions. """ def __init__(self, estimator, param_distributions, n_iter=10, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', random_state=None, error_score='raise'): self.param_distributions = param_distributions self.n_iter = n_iter self.random_state = random_state super(RandomizedSearchCV, self).__init__( estimator=estimator, scoring=scoring, fit_params=fit_params, n_jobs=n_jobs, iid=iid, refit=refit, cv=cv, verbose=verbose, pre_dispatch=pre_dispatch, error_score=error_score) def fit(self, X, y=None): """Run fit on the estimator with randomly drawn parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. """ sampled_params = ParameterSampler(self.param_distributions, self.n_iter, random_state=self.random_state) return self._fit(X, y, sampled_params)
bsd-3-clause
valexandersaulys/airbnb_kaggle_contest
venv/lib/python3.4/site-packages/pandas/tools/pivot.py
9
15098
# pylint: disable=E1103 from pandas import Series, DataFrame from pandas.core.index import MultiIndex, Index from pandas.core.groupby import Grouper from pandas.tools.merge import concat from pandas.tools.util import cartesian_product from pandas.compat import range, lrange, zip from pandas import compat import pandas.core.common as com import numpy as np def pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All'): """ Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame Parameters ---------- data : DataFrame values : column to aggregate, optional index : a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values. columns : a column, Grouper, array which has the same length as data, or list of them. Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values. aggfunc : function, default numpy.mean, or list of functions If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves) fill_value : scalar, default None Value to replace missing values with margins : boolean, default False Add all row / columns (e.g. for subtotal / grand totals) dropna : boolean, default True Do not include columns whose entries are all NaN margins_name : string, default 'All' Name of the row / column that will contain the totals when margins is True. Examples -------- >>> df A B C D 0 foo one small 1 1 foo one large 2 2 foo one large 2 3 foo two small 3 4 foo two small 3 5 bar one large 4 6 bar one small 5 7 bar two small 6 8 bar two large 7 >>> table = pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum) >>> table small large foo one 1 4 two 6 NaN bar one 5 4 two 6 7 Returns ------- table : DataFrame """ index = _convert_by(index) columns = _convert_by(columns) if isinstance(aggfunc, list): pieces = [] keys = [] for func in aggfunc: table = pivot_table(data, values=values, index=index, columns=columns, fill_value=fill_value, aggfunc=func, margins=margins) pieces.append(table) keys.append(func.__name__) return concat(pieces, keys=keys, axis=1) keys = index + columns values_passed = values is not None if values_passed: if isinstance(values, (list, tuple)): values_multi = True else: values_multi = False values = [values] else: values = list(data.columns.drop(keys)) if values_passed: to_filter = [] for x in keys + values: if isinstance(x, Grouper): x = x.key try: if x in data: to_filter.append(x) except TypeError: pass if len(to_filter) < len(data.columns): data = data[to_filter] grouped = data.groupby(keys) agged = grouped.agg(aggfunc) table = agged if table.index.nlevels > 1: to_unstack = [agged.index.names[i] or i for i in range(len(index), len(keys))] table = agged.unstack(to_unstack) if not dropna: try: m = MultiIndex.from_arrays(cartesian_product(table.index.levels)) table = table.reindex_axis(m, axis=0) except AttributeError: pass # it's a single level try: m = MultiIndex.from_arrays(cartesian_product(table.columns.levels)) table = table.reindex_axis(m, axis=1) except AttributeError: pass # it's a single level or a series if isinstance(table, DataFrame): if isinstance(table.columns, MultiIndex): table = table.sortlevel(axis=1) else: table = table.sort_index(axis=1) if fill_value is not None: table = table.fillna(value=fill_value, downcast='infer') if margins: table = _add_margins(table, data, values, rows=index, cols=columns, aggfunc=aggfunc, margins_name=margins_name) # discard the top level if values_passed and not values_multi: table = table[values[0]] if len(index) == 0 and len(columns) > 0: table = table.T return table DataFrame.pivot_table = pivot_table def _add_margins(table, data, values, rows, cols, aggfunc, margins_name='All'): if not isinstance(margins_name, compat.string_types): raise ValueError('margins_name argument must be a string') exception_msg = 'Conflicting name "{0}" in margins'.format(margins_name) for level in table.index.names: if margins_name in table.index.get_level_values(level): raise ValueError(exception_msg) grand_margin = _compute_grand_margin(data, values, aggfunc, margins_name) # could be passed a Series object with no 'columns' if hasattr(table, 'columns'): for level in table.columns.names[1:]: if margins_name in table.columns.get_level_values(level): raise ValueError(exception_msg) if len(rows) > 1: key = (margins_name,) + ('',) * (len(rows) - 1) else: key = margins_name if not values and isinstance(table, Series): # If there are no values and the table is a series, then there is only # one column in the data. Compute grand margin and return it. return table.append(Series({key: grand_margin[margins_name]})) if values: marginal_result_set = _generate_marginal_results(table, data, values, rows, cols, aggfunc, grand_margin, margins_name) if not isinstance(marginal_result_set, tuple): return marginal_result_set result, margin_keys, row_margin = marginal_result_set else: marginal_result_set = _generate_marginal_results_without_values( table, data, rows, cols, aggfunc, margins_name) if not isinstance(marginal_result_set, tuple): return marginal_result_set result, margin_keys, row_margin = marginal_result_set row_margin = row_margin.reindex(result.columns) # populate grand margin for k in margin_keys: if isinstance(k, compat.string_types): row_margin[k] = grand_margin[k] else: row_margin[k] = grand_margin[k[0]] margin_dummy = DataFrame(row_margin, columns=[key]).T row_names = result.index.names try: result = result.append(margin_dummy) except TypeError: # we cannot reshape, so coerce the axis result.index = result.index._to_safe_for_reshape() result = result.append(margin_dummy) result.index.names = row_names return result def _compute_grand_margin(data, values, aggfunc, margins_name='All'): if values: grand_margin = {} for k, v in data[values].iteritems(): try: if isinstance(aggfunc, compat.string_types): grand_margin[k] = getattr(v, aggfunc)() elif isinstance(aggfunc, dict): if isinstance(aggfunc[k], compat.string_types): grand_margin[k] = getattr(v, aggfunc[k])() else: grand_margin[k] = aggfunc[k](v) else: grand_margin[k] = aggfunc(v) except TypeError: pass return grand_margin else: return {margins_name: aggfunc(data.index)} def _generate_marginal_results(table, data, values, rows, cols, aggfunc, grand_margin, margins_name='All'): if len(cols) > 0: # need to "interleave" the margins table_pieces = [] margin_keys = [] def _all_key(key): return (key, margins_name) + ('',) * (len(cols) - 1) if len(rows) > 0: margin = data[rows + values].groupby(rows).agg(aggfunc) cat_axis = 1 for key, piece in table.groupby(level=0, axis=cat_axis): all_key = _all_key(key) # we are going to mutate this, so need to copy! piece = piece.copy() try: piece[all_key] = margin[key] except TypeError: # we cannot reshape, so coerce the axis piece.set_axis(cat_axis, piece._get_axis(cat_axis)._to_safe_for_reshape()) piece[all_key] = margin[key] table_pieces.append(piece) margin_keys.append(all_key) else: margin = grand_margin cat_axis = 0 for key, piece in table.groupby(level=0, axis=cat_axis): all_key = _all_key(key) table_pieces.append(piece) table_pieces.append(Series(margin[key], index=[all_key])) margin_keys.append(all_key) result = concat(table_pieces, axis=cat_axis) if len(rows) == 0: return result else: result = table margin_keys = table.columns if len(cols) > 0: row_margin = data[cols + values].groupby(cols).agg(aggfunc) row_margin = row_margin.stack() # slight hack new_order = [len(cols)] + lrange(len(cols)) row_margin.index = row_margin.index.reorder_levels(new_order) else: row_margin = Series(np.nan, index=result.columns) return result, margin_keys, row_margin def _generate_marginal_results_without_values( table, data, rows, cols, aggfunc, margins_name='All'): if len(cols) > 0: # need to "interleave" the margins margin_keys = [] def _all_key(): if len(cols) == 1: return margins_name return (margins_name, ) + ('', ) * (len(cols) - 1) if len(rows) > 0: margin = data[rows].groupby(rows).apply(aggfunc) all_key = _all_key() table[all_key] = margin result = table margin_keys.append(all_key) else: margin = data.groupby(level=0, axis=0).apply(aggfunc) all_key = _all_key() table[all_key] = margin result = table margin_keys.append(all_key) return result else: result = table margin_keys = table.columns if len(cols): row_margin = data[cols].groupby(cols).apply(aggfunc) else: row_margin = Series(np.nan, index=result.columns) return result, margin_keys, row_margin def _convert_by(by): if by is None: by = [] elif (np.isscalar(by) or isinstance(by, (np.ndarray, Index, Series, Grouper)) or hasattr(by, '__call__')): by = [by] else: by = list(by) return by def crosstab(index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, dropna=True): """ Compute a simple cross-tabulation of two (or more) factors. By default computes a frequency table of the factors unless an array of values and an aggregation function are passed Parameters ---------- index : array-like, Series, or list of arrays/Series Values to group by in the rows columns : array-like, Series, or list of arrays/Series Values to group by in the columns values : array-like, optional Array of values to aggregate according to the factors aggfunc : function, optional If no values array is passed, computes a frequency table rownames : sequence, default None If passed, must match number of row arrays passed colnames : sequence, default None If passed, must match number of column arrays passed margins : boolean, default False Add row/column margins (subtotals) dropna : boolean, default True Do not include columns whose entries are all NaN Notes ----- Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are specified Examples -------- >>> a array([foo, foo, foo, foo, bar, bar, bar, bar, foo, foo, foo], dtype=object) >>> b array([one, one, one, two, one, one, one, two, two, two, one], dtype=object) >>> c array([dull, dull, shiny, dull, dull, shiny, shiny, dull, shiny, shiny, shiny], dtype=object) >>> crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c']) b one two c dull shiny dull shiny a bar 1 2 1 0 foo 2 2 1 2 Returns ------- crosstab : DataFrame """ index = com._maybe_make_list(index) columns = com._maybe_make_list(columns) rownames = _get_names(index, rownames, prefix='row') colnames = _get_names(columns, colnames, prefix='col') data = {} data.update(zip(rownames, index)) data.update(zip(colnames, columns)) if values is None: df = DataFrame(data) df['__dummy__'] = 0 table = df.pivot_table('__dummy__', index=rownames, columns=colnames, aggfunc=len, margins=margins, dropna=dropna) return table.fillna(0).astype(np.int64) else: data['__dummy__'] = values df = DataFrame(data) table = df.pivot_table('__dummy__', index=rownames, columns=colnames, aggfunc=aggfunc, margins=margins, dropna=dropna) return table def _get_names(arrs, names, prefix='row'): if names is None: names = [] for i, arr in enumerate(arrs): if isinstance(arr, Series) and arr.name is not None: names.append(arr.name) else: names.append('%s_%d' % (prefix, i)) else: if len(names) != len(arrs): raise AssertionError('arrays and names must have the same length') if not isinstance(names, list): names = list(names) return names
gpl-2.0
nirdizati/nirdizati-runtime
PredictiveMethods/RemainingTime/remaining-time-kafka-processor.py
1
3620
""" Copyright (c) 2016-2017 The Nirdizati Project. This file is part of "Nirdizati". "Nirdizati" is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. "Nirdizati" is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see <http://www.gnu.org/licenses/lgpl.html>. """ from PredictiveMonitor import PredictiveMonitor import pandas as pd import sys import cPickle import json from kafka import KafkaProducer, KafkaConsumer from StringIO import StringIO if len(sys.argv) != 5: sys.exit("Usage: python {} bootstrap-server:port events-topic predictions-topic dataset-name".format(sys.argv[0])) bootstrap_server, events_topic, predictions_topic, dataset = sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[4] dataset_params = pd.read_json("PredictiveMethods/data/dataset_params.json", orient="index", typ="series") consumer = KafkaConsumer(events_topic, group_id='remainingTime({})'.format(dataset), bootstrap_servers=bootstrap_server, auto_offset_reset='earliest') producer = KafkaProducer(bootstrap_servers=bootstrap_server) """ Read from the Kafka topic """ for message in consumer: jsonValue = json.loads(message.value) s = StringIO(json.dumps(jsonValue)) test = pd.read_json(s, orient='records') s.close() case_id_col = dataset_params[dataset][u'case_id_col'] event_nr_col = dataset_params[dataset][u'event_nr_col'] static_cols = dataset_params[dataset][u'RemainingTime'][u'static_cols'] dynamic_cols = dataset_params[dataset][u'RemainingTime'][u'dynamic_cols'] cat_cols = dataset_params[dataset][u'RemainingTime'][u'cat_cols'] encoder_kwargs = {"event_nr_col": event_nr_col, "static_cols": static_cols, "dynamic_cols": dynamic_cols, "cat_cols": cat_cols, "fillna": True, "random_state": 22} cls_method = dataset_params[dataset][u'RemainingTime'][u'cls_method'] if cls_method == "rf": cls_kwargs = {"n_estimators": dataset_params[dataset][u'RemainingTime'][u'n_estimators'], "max_features": dataset_params[dataset][u'RemainingTime'][u'max_features'], "random_state": 22} elif cls_method == "gbm": cls_kwargs = {"n_estimators": dataset_params[dataset][u'RemainingTime'][u'n_estimators'], "learning_rate": dataset_params[dataset][u'RemainingTime'][u'learning_rate'], "random_state": 22} else: print("Classifier method not known") predictive_monitor = PredictiveMonitor(event_nr_col=event_nr_col, case_id_col=case_id_col, cls_method=cls_method, encoder_kwargs=encoder_kwargs, cls_kwargs=cls_kwargs) with open('PredictiveMethods/pkl/predictive_monitor_%s_remtime.pkl' % dataset, 'rb') as f: predictive_monitor.models = cPickle.load(f) outcome = predictive_monitor.test(test) output = { "log": jsonValue[-1]["log"], "case_id": jsonValue[-1]["case_id"], "event_nr": jsonValue[-1]["event_nr"], "predictions": { "remainingTime": outcome } } print(json.dumps(output)) producer.send(predictions_topic, json.dumps(output))
lgpl-3.0
franzpl/sweep
log_sweep_kaiser_window_bandlimited_script5/log_sweep_kaiser_window_bandlimited_script5.py
2
2156
#!/usr/bin/env python3 """The influence of windowing of log. bandlimited sweep signals when using a Kaiser Window by fixing beta (=2) and fade_out (=0). fstart = 100 Hz fstop = 5000 Hz """ import sys sys.path.append('..') import measurement_chain import plotting import calculation import ir_imitation import generation import matplotlib.pyplot as plt import windows from scipy.signal import lfilter, fftconvolve import numpy as np # Parameters of the measuring system fs = 44100 fstart = 100 fstop = 5000 duration = 1 pad = 4 # Generate excitation signal excitation = generation.log_sweep(fstart, fstop, duration, fs) N = len(excitation) # Noise in measurement chain noise_level_db = -30 noise = measurement_chain.additive_noise(noise_level_db) # FIR-Filter-System dirac_system = measurement_chain.convolution([1.0]) # Combinate system elements system = measurement_chain.chained(dirac_system, noise) # Lists beta = 7 fade_in_list = np.arange(0, 1001, 1) fade_out = 0 # Spectrum of dirac for reference dirac = np.zeros(pad * fs) dirac[0] = 1 dirac_f = np.fft.rfft(dirac) def get_results(fade_in): excitation_windowed = excitation * windows.window_kaiser(N, fade_in, fade_out, fs, beta) excitation_windowed_zeropadded = generation.zero_padding( excitation_windowed, pad, fs) system_response = system(excitation_windowed_zeropadded) ir = calculation.deconv_process(excitation_windowed_zeropadded, system_response, fs) return ir with open("log_sweep_kaiser_window_bandlimited_script5.txt", "w") as f: for fade_in in fade_in_list: ir = get_results(fade_in) pnr = calculation.pnr_db(ir[0], ir[1:4 * fs]) spectrum_distance = calculation.vector_distance( dirac_f, np.fft.rfft(ir[:pad * fs])) f.write( str(fade_in) + " " + str(pnr) + " " + str(spectrum_distance) + " \n")
mit
elkingtonmcb/scikit-learn
examples/mixture/plot_gmm_classifier.py
250
3918
""" ================== GMM classification ================== Demonstration of Gaussian mixture models for classification. See :ref:`gmm` for more information on the estimator. Plots predicted labels on both training and held out test data using a variety of GMM classifiers on the iris dataset. Compares GMMs with spherical, diagonal, full, and tied covariance matrices in increasing order of performance. Although one would expect full covariance to perform best in general, it is prone to overfitting on small datasets and does not generalize well to held out test data. On the plots, train data is shown as dots, while test data is shown as crosses. The iris dataset is four-dimensional. Only the first two dimensions are shown here, and thus some points are separated in other dimensions. """ print(__doc__) # Author: Ron Weiss <[email protected]>, Gael Varoquaux # License: BSD 3 clause # $Id$ import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np from sklearn import datasets from sklearn.cross_validation import StratifiedKFold from sklearn.externals.six.moves import xrange from sklearn.mixture import GMM def make_ellipses(gmm, ax): for n, color in enumerate('rgb'): v, w = np.linalg.eigh(gmm._get_covars()[n][:2, :2]) u = w[0] / np.linalg.norm(w[0]) angle = np.arctan2(u[1], u[0]) angle = 180 * angle / np.pi # convert to degrees v *= 9 ell = mpl.patches.Ellipse(gmm.means_[n, :2], v[0], v[1], 180 + angle, color=color) ell.set_clip_box(ax.bbox) ell.set_alpha(0.5) ax.add_artist(ell) iris = datasets.load_iris() # Break up the dataset into non-overlapping training (75%) and testing # (25%) sets. skf = StratifiedKFold(iris.target, n_folds=4) # Only take the first fold. train_index, test_index = next(iter(skf)) X_train = iris.data[train_index] y_train = iris.target[train_index] X_test = iris.data[test_index] y_test = iris.target[test_index] n_classes = len(np.unique(y_train)) # Try GMMs using different types of covariances. classifiers = dict((covar_type, GMM(n_components=n_classes, covariance_type=covar_type, init_params='wc', n_iter=20)) for covar_type in ['spherical', 'diag', 'tied', 'full']) n_classifiers = len(classifiers) plt.figure(figsize=(3 * n_classifiers / 2, 6)) plt.subplots_adjust(bottom=.01, top=0.95, hspace=.15, wspace=.05, left=.01, right=.99) for index, (name, classifier) in enumerate(classifiers.items()): # Since we have class labels for the training data, we can # initialize the GMM parameters in a supervised manner. classifier.means_ = np.array([X_train[y_train == i].mean(axis=0) for i in xrange(n_classes)]) # Train the other parameters using the EM algorithm. classifier.fit(X_train) h = plt.subplot(2, n_classifiers / 2, index + 1) make_ellipses(classifier, h) for n, color in enumerate('rgb'): data = iris.data[iris.target == n] plt.scatter(data[:, 0], data[:, 1], 0.8, color=color, label=iris.target_names[n]) # Plot the test data with crosses for n, color in enumerate('rgb'): data = X_test[y_test == n] plt.plot(data[:, 0], data[:, 1], 'x', color=color) y_train_pred = classifier.predict(X_train) train_accuracy = np.mean(y_train_pred.ravel() == y_train.ravel()) * 100 plt.text(0.05, 0.9, 'Train accuracy: %.1f' % train_accuracy, transform=h.transAxes) y_test_pred = classifier.predict(X_test) test_accuracy = np.mean(y_test_pred.ravel() == y_test.ravel()) * 100 plt.text(0.05, 0.8, 'Test accuracy: %.1f' % test_accuracy, transform=h.transAxes) plt.xticks(()) plt.yticks(()) plt.title(name) plt.legend(loc='lower right', prop=dict(size=12)) plt.show()
bsd-3-clause
DSLituiev/scikit-learn
examples/ensemble/plot_gradient_boosting_regression.py
87
2510
""" ============================ Gradient Boosting regression ============================ Demonstrate Gradient Boosting on the Boston housing dataset. This example fits a Gradient Boosting model with least squares loss and 500 regression trees of depth 4. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn import datasets from sklearn.utils import shuffle from sklearn.metrics import mean_squared_error ############################################################################### # Load data boston = datasets.load_boston() X, y = shuffle(boston.data, boston.target, random_state=13) X = X.astype(np.float32) offset = int(X.shape[0] * 0.9) X_train, y_train = X[:offset], y[:offset] X_test, y_test = X[offset:], y[offset:] ############################################################################### # Fit regression model params = {'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 2, 'learning_rate': 0.01, 'loss': 'ls'} clf = ensemble.GradientBoostingRegressor(**params) clf.fit(X_train, y_train) mse = mean_squared_error(y_test, clf.predict(X_test)) print("MSE: %.4f" % mse) ############################################################################### # Plot training deviance # compute test set deviance test_score = np.zeros((params['n_estimators'],), dtype=np.float64) for i, y_pred in enumerate(clf.staged_predict(X_test)): test_score[i] = clf.loss_(y_test, y_pred) plt.figure(figsize=(12, 6)) plt.subplot(1, 2, 1) plt.title('Deviance') plt.plot(np.arange(params['n_estimators']) + 1, clf.train_score_, 'b-', label='Training Set Deviance') plt.plot(np.arange(params['n_estimators']) + 1, test_score, 'r-', label='Test Set Deviance') plt.legend(loc='upper right') plt.xlabel('Boosting Iterations') plt.ylabel('Deviance') ############################################################################### # Plot feature importance feature_importance = clf.feature_importances_ # make importances relative to max importance feature_importance = 100.0 * (feature_importance / feature_importance.max()) sorted_idx = np.argsort(feature_importance) pos = np.arange(sorted_idx.shape[0]) + .5 plt.subplot(1, 2, 2) plt.barh(pos, feature_importance[sorted_idx], align='center') plt.yticks(pos, boston.feature_names[sorted_idx]) plt.xlabel('Relative Importance') plt.title('Variable Importance') plt.show()
bsd-3-clause
xuewei4d/scikit-learn
benchmarks/bench_glm.py
31
1478
""" A comparison of different methods in GLM Data comes from a random square matrix. """ from datetime import datetime import numpy as np from sklearn import linear_model if __name__ == '__main__': import matplotlib.pyplot as plt n_iter = 40 time_ridge = np.empty(n_iter) time_ols = np.empty(n_iter) time_lasso = np.empty(n_iter) dimensions = 500 * np.arange(1, n_iter + 1) for i in range(n_iter): print('Iteration %s of %s' % (i, n_iter)) n_samples, n_features = 10 * i + 3, 10 * i + 3 X = np.random.randn(n_samples, n_features) Y = np.random.randn(n_samples) start = datetime.now() ridge = linear_model.Ridge(alpha=1.) ridge.fit(X, Y) time_ridge[i] = (datetime.now() - start).total_seconds() start = datetime.now() ols = linear_model.LinearRegression() ols.fit(X, Y) time_ols[i] = (datetime.now() - start).total_seconds() start = datetime.now() lasso = linear_model.LassoLars() lasso.fit(X, Y) time_lasso[i] = (datetime.now() - start).total_seconds() plt.figure('scikit-learn GLM benchmark results') plt.xlabel('Dimensions') plt.ylabel('Time (s)') plt.plot(dimensions, time_ridge, color='r') plt.plot(dimensions, time_ols, color='g') plt.plot(dimensions, time_lasso, color='b') plt.legend(['Ridge', 'OLS', 'LassoLars'], loc='upper left') plt.axis('tight') plt.show()
bsd-3-clause
evidation-health/bokeh
bokeh/compat/mplexporter/tools.py
75
1732
""" Tools for matplotlib plot exporting """ def ipynb_vega_init(): """Initialize the IPython notebook display elements This function borrows heavily from the excellent vincent package: http://github.com/wrobstory/vincent """ try: from IPython.core.display import display, HTML except ImportError: print('IPython Notebook could not be loaded.') require_js = ''' if (window['d3'] === undefined) {{ require.config({{ paths: {{d3: "http://d3js.org/d3.v3.min"}} }}); require(["d3"], function(d3) {{ window.d3 = d3; {0} }}); }}; if (window['topojson'] === undefined) {{ require.config( {{ paths: {{topojson: "http://d3js.org/topojson.v1.min"}} }} ); require(["topojson"], function(topojson) {{ window.topojson = topojson; }}); }}; ''' d3_geo_projection_js_url = "http://d3js.org/d3.geo.projection.v0.min.js" d3_layout_cloud_js_url = ("http://wrobstory.github.io/d3-cloud/" "d3.layout.cloud.js") topojson_js_url = "http://d3js.org/topojson.v1.min.js" vega_js_url = 'http://trifacta.github.com/vega/vega.js' dep_libs = '''$.getScript("%s", function() { $.getScript("%s", function() { $.getScript("%s", function() { $.getScript("%s", function() { $([IPython.events]).trigger("vega_loaded.vincent"); }) }) }) });''' % (d3_geo_projection_js_url, d3_layout_cloud_js_url, topojson_js_url, vega_js_url) load_js = require_js.format(dep_libs) html = '<script>'+load_js+'</script>' display(HTML(html))
bsd-3-clause
theislab/scanpy
scanpy/tools/_score_genes.py
1
8121
"""Calculate scores based on the expression of gene lists. """ from typing import Sequence, Optional import numpy as np import pandas as pd from anndata import AnnData from scipy.sparse import issparse from .. import logging as logg from .._utils import AnyRandom from scanpy._utils import _check_use_raw def _sparse_nanmean(X, axis): """ np.nanmean equivalent for sparse matrices """ if not issparse(X): raise TypeError("X must be a sparse matrix") # count the number of nan elements per row/column (dep. on axis) Z = X.copy() Z.data = np.isnan(Z.data) Z.eliminate_zeros() n_elements = Z.shape[axis] - Z.sum(axis) # set the nans to 0, so that a normal .sum() works Y = X.copy() Y.data[np.isnan(Y.data)] = 0 Y.eliminate_zeros() # the average s = Y.sum(axis, dtype='float64') # float64 for score_genes function compatibility) m = s / n_elements return m def score_genes( adata: AnnData, gene_list: Sequence[str], ctrl_size: int = 50, gene_pool: Optional[Sequence[str]] = None, n_bins: int = 25, score_name: str = 'score', random_state: AnyRandom = 0, copy: bool = False, use_raw: bool = None, ) -> Optional[AnnData]: """\ Score a set of genes [Satija15]_. The score is the average expression of a set of genes subtracted with the average expression of a reference set of genes. The reference set is randomly sampled from the `gene_pool` for each binned expression value. This reproduces the approach in Seurat [Satija15]_ and has been implemented for Scanpy by Davide Cittaro. Parameters ---------- adata The annotated data matrix. gene_list The list of gene names used for score calculation. ctrl_size Number of reference genes to be sampled from each bin. If `len(gene_list)` is not too low, you can set `ctrl_size=len(gene_list)`. gene_pool Genes for sampling the reference set. Default is all genes. n_bins Number of expression level bins for sampling. score_name Name of the field to be added in `.obs`. random_state The random seed for sampling. copy Copy `adata` or modify it inplace. use_raw Whether to use `raw` attribute of `adata`. Defaults to `True` if `.raw` is present. .. versionchanged:: 1.4.5 Default value changed from `False` to `None`. Returns ------- Depending on `copy`, returns or updates `adata` with an additional field `score_name`. Examples -------- See this `notebook <https://github.com/theislab/scanpy_usage/tree/master/180209_cell_cycle>`__. """ start = logg.info(f'computing score {score_name!r}') adata = adata.copy() if copy else adata if random_state is not None: np.random.seed(random_state) gene_list_in_var = [] var_names = adata.raw.var_names if use_raw else adata.var_names genes_to_ignore = [] for gene in gene_list: if gene in var_names: gene_list_in_var.append(gene) else: genes_to_ignore.append(gene) if len(genes_to_ignore) > 0: logg.warning(f'genes are not in var_names and ignored: {genes_to_ignore}') gene_list = set(gene_list_in_var[:]) if len(gene_list) == 0: raise ValueError("No valid genes were passed for scoring.") if gene_pool is None: gene_pool = list(var_names) else: gene_pool = [x for x in gene_pool if x in var_names] # Trying here to match the Seurat approach in scoring cells. # Basically we need to compare genes against random genes in a matched # interval of expression. use_raw = _check_use_raw(adata, use_raw) _adata = adata.raw if use_raw else adata _adata_subset = ( _adata[:, gene_pool] if len(gene_pool) < len(_adata.var_names) else _adata ) if issparse(_adata_subset.X): obs_avg = pd.Series( np.array(_sparse_nanmean(_adata_subset.X, axis=0)).flatten(), index=gene_pool, ) # average expression of genes else: obs_avg = pd.Series( np.nanmean(_adata_subset.X, axis=0), index=gene_pool ) # average expression of genes obs_avg = obs_avg[ np.isfinite(obs_avg) ] # Sometimes (and I don't know how) missing data may be there, with nansfor n_items = int(np.round(len(obs_avg) / (n_bins - 1))) obs_cut = obs_avg.rank(method='min') // n_items control_genes = set() # now pick `ctrl_size` genes from every cut for cut in np.unique(obs_cut.loc[gene_list]): r_genes = np.array(obs_cut[obs_cut == cut].index) np.random.shuffle(r_genes) # uses full r_genes if ctrl_size > len(r_genes) control_genes.update(set(r_genes[:ctrl_size])) # To index, we need a list – indexing implies an order. control_genes = list(control_genes - gene_list) gene_list = list(gene_list) X_list = _adata[:, gene_list].X if issparse(X_list): X_list = np.array(_sparse_nanmean(X_list, axis=1)).flatten() else: X_list = np.nanmean(X_list, axis=1, dtype='float64') X_control = _adata[:, control_genes].X if issparse(X_control): X_control = np.array(_sparse_nanmean(X_control, axis=1)).flatten() else: X_control = np.nanmean(X_control, axis=1, dtype='float64') score = X_list - X_control adata.obs[score_name] = pd.Series( np.array(score).ravel(), index=adata.obs_names, dtype='float64' ) logg.info( ' finished', time=start, deep=( 'added\n' f' {score_name!r}, score of gene set (adata.obs).\n' f' {len(control_genes)} total control genes are used.' ), ) return adata if copy else None def score_genes_cell_cycle( adata: AnnData, s_genes: Sequence[str], g2m_genes: Sequence[str], copy: bool = False, **kwargs, ) -> Optional[AnnData]: """\ Score cell cycle genes [Satija15]_. Given two lists of genes associated to S phase and G2M phase, calculates scores and assigns a cell cycle phase (G1, S or G2M). See :func:`~scanpy.tl.score_genes` for more explanation. Parameters ---------- adata The annotated data matrix. s_genes List of genes associated with S phase. g2m_genes List of genes associated with G2M phase. copy Copy `adata` or modify it inplace. **kwargs Are passed to :func:`~scanpy.tl.score_genes`. `ctrl_size` is not possible, as it's set as `min(len(s_genes), len(g2m_genes))`. Returns ------- Depending on `copy`, returns or updates `adata` with the following fields. **S_score** : `adata.obs`, dtype `object` The score for S phase for each cell. **G2M_score** : `adata.obs`, dtype `object` The score for G2M phase for each cell. **phase** : `adata.obs`, dtype `object` The cell cycle phase (`S`, `G2M` or `G1`) for each cell. See also -------- score_genes Examples -------- See this `notebook <https://github.com/theislab/scanpy_usage/tree/master/180209_cell_cycle>`__. """ logg.info('calculating cell cycle phase') adata = adata.copy() if copy else adata ctrl_size = min(len(s_genes), len(g2m_genes)) # add s-score score_genes( adata, gene_list=s_genes, score_name='S_score', ctrl_size=ctrl_size, **kwargs ) # add g2m-score score_genes( adata, gene_list=g2m_genes, score_name='G2M_score', ctrl_size=ctrl_size, **kwargs, ) scores = adata.obs[['S_score', 'G2M_score']] # default phase is S phase = pd.Series('S', index=scores.index) # if G2M is higher than S, it's G2M phase[scores.G2M_score > scores.S_score] = 'G2M' # if all scores are negative, it's G1... phase[np.all(scores < 0, axis=1)] = 'G1' adata.obs['phase'] = phase logg.hint(' \'phase\', cell cycle phase (adata.obs)') return adata if copy else None
bsd-3-clause
tswast/google-cloud-python
translate/docs/conf.py
2
11927
# -*- coding: utf-8 -*- # # google-cloud-translate documentation build configuration file # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import shlex # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath("..")) __version__ = "0.1.0" # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. needs_sphinx = "1.6.3" # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.autosummary", "sphinx.ext.doctest", "sphinx.ext.intersphinx", "sphinx.ext.coverage", "sphinx.ext.napoleon", "sphinx.ext.todo", "sphinx.ext.viewcode", ] # autodoc/autosummary flags autoclass_content = "both" autodoc_default_flags = ["members"] autosummary_generate = True # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # Allow markdown includes (so releases.md can include CHANGLEOG.md) # http://www.sphinx-doc.org/en/master/markdown.html source_parsers = {".md": "recommonmark.parser.CommonMarkParser"} # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # source_suffix = ['.rst', '.md'] source_suffix = [".rst", ".md"] # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = "index" # General information about the project. project = u"google-cloud-translate" copyright = u"2017, Google" author = u"Google APIs" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The full version, including alpha/beta/rc tags. release = __version__ # The short X.Y version. version = ".".join(release.split(".")[0:2]) # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ["_build"] # The reST default role (used for this markup: `text`) to use for all # documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = "alabaster" # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. html_theme_options = { "description": "Google Cloud Client Libraries for Python", "github_user": "googleapis", "github_repo": "google-cloud-python", "github_banner": True, "font_family": "'Roboto', Georgia, sans", "head_font_family": "'Roboto', Georgia, serif", "code_font_family": "'Roboto Mono', 'Consolas', monospace", } # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' # html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value # html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. # html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = "google-cloud-translate-doc" # -- Options for warnings ------------------------------------------------------ suppress_warnings = [ # Temporarily suppress this to avoid "more than one target found for # cross-reference" warning, which are intractable for us to avoid while in # a mono-repo. # See https://github.com/sphinx-doc/sphinx/blob # /2a65ffeef5c107c19084fabdd706cdff3f52d93c/sphinx/domains/python.py#L843 "ref.python" ] # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', # Latex figure (float) alignment #'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ( master_doc, "google-cloud-translate.tex", u"google-cloud-translate Documentation", author, "manual", ) ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ( master_doc, "google-cloud-translate", u"google-cloud-translate Documentation", [author], 1, ) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( master_doc, "google-cloud-translate", u"google-cloud-translate Documentation", author, "google-cloud-translate", "GAPIC library for the {metadata.shortName} v3beta1 service", "APIs", ) ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. # texinfo_no_detailmenu = False # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = { "python": ("http://python.readthedocs.org/en/latest/", None), "gax": ("https://gax-python.readthedocs.org/en/latest/", None), "google-auth": ("https://google-auth.readthedocs.io/en/stable", None), "google-gax": ("https://gax-python.readthedocs.io/en/latest/", None), "google.api_core": ("https://googleapis.dev/python/google-api-core/latest", None), "grpc": ("https://grpc.io/grpc/python/", None), "requests": ("https://requests.kennethreitz.org/en/stable/", None), "fastavro": ("https://fastavro.readthedocs.io/en/stable/", None), "pandas": ("https://pandas.pydata.org/pandas-docs/stable/", None), } # Napoleon settings napoleon_google_docstring = True napoleon_numpy_docstring = True napoleon_include_private_with_doc = False napoleon_include_special_with_doc = True napoleon_use_admonition_for_examples = False napoleon_use_admonition_for_notes = False napoleon_use_admonition_for_references = False napoleon_use_ivar = False napoleon_use_param = True napoleon_use_rtype = True
apache-2.0
alankarkotwal/ee679-assignments
ComputingAssignment2/2a.py
1
2131
from scipy import signal import numpy as np from math import pi import matplotlib.pyplot as plt from scipy.io.wavfile import read # Define the autocorrelation function def autocorr(x): result = np.correlate(x, x, mode='full') return result[result.size/2:] # Read data and set parameters harmFreq = 120 [fSamp, data] = read('a-'+str(harmFreq)+'.wav'); winTime = 30.0/1000.0 #ms nSamp = fSamp*winTime filterOrder = 8 #4, 6, 8, 10 # Window the first nSamp samples win = data[:nSamp]*np.hamming(nSamp) fig1 = plt.figure() plt.title('LPC Filters: Frequency Response for /a/ at '+str(harmFreq)+' Hz') plt.ylabel('Amplitude [dB]') plt.xlabel('Frequency [rad/sample]') colors = {2: 'r', 4: 'g', 6: 'b', 8: 'y', 10: 'm'} for filterOrder in [2, 4, 6, 8, 10]: # Use Levinson's algorithm to calculate a[k] R = autocorr(win) a = np.zeros(filterOrder+1) ao = np.zeros(a.shape) E = R[0] for m in range(1, filterOrder+1): k = 0 ao[1:len(a)] = a[1:len(a)] Eo = E # Calculate k for l in range(1, m): k = k + ao[l]*R[m-l] k = (R[m] - k)/Eo # Calculate a a[m] = k for l in range(1, m): a[l] = ao[l] - k*ao[m-l] E = (1-k*k)*Eo a[0] = 1.0 a[1:len(a)] = -a[1:len(a)] b = np.zeros(a.shape) b[0] = 1 w, h = signal.freqz(b, a) plt.plot(fSamp*w/(2*pi), 10*filterOrder + 20 * np.log10(abs(h)), colors[filterOrder]) formants = np.asarray([730, 1090, 2440]) bandwidths = np.asarray([50, 50, 50]) # Calculate pole angles and radii R = np.exp(-pi*bandwidths/fSamp) theta = 2*pi*formants/fSamp # Get poles and an equal number of zeros poles = np.concatenate([R * np.exp(1j*theta), R * np.exp(-1j*theta)]) zeros = np.zeros(poles.shape, poles.dtype) # Get transfer function b, a = signal.zpk2tf(zeros, poles, 1) # Get frequency response wf, hf = signal.freqz(b, a) # Plot plt.plot(fSamp*wf/(2*pi), 120 + 20 * np.log10(abs(hf)), 'c') plt.legend(['Order 2', 'Order 4', 'Order 6', 'Order 8', 'Order 10', 'Orig']) plt.grid() #plt.savefig('figs/1-'+str(harmFreq)+'.png') plt.show()
gpl-2.0
dr-rodriguez/The-Divided-States-of-America
tweetloader.py
1
9294
# Class for loading and processing tweets import requests import simplejson from requests_oauthlib import OAuth1 # used for twitter's api from pandas.io.json import json_normalize import pandas as pd import time import os import numpy as np class TweetLoader: def __init__(self, screen_name='', filename='tweets.json', track_location=False, path='data/'): self.screen_name = screen_name self.tweets = [] self.columns = ['id', 'text', 'created_at', 'user.screen_name'] # which information to save self.track_location = track_location self.verbose = False self.path = path # Save location information if track_location: self.columns = self.columns + ['geo.coordinates', 'user.location'] if screen_name == 'HillaryClinton': self.filename = 'hillary.json' elif screen_name == 'realDonaldTrump': self.filename = 'trump.json' elif screen_name == 'BernieSanders': self.filename = 'sanders.json' else: self.filename = filename if self.verbose: print('Using {}'.format(self.filename)) # Twitter authorization with open("twitter_secrets.json.nogit") as f: secrets = simplejson.loads(f.read()) self.auth = OAuth1( secrets["api_key"], secrets["api_secret"], secrets["access_token"], secrets["access_token_secret"] ) def timeline(self, max_tweets=200, exclude_replies='true', include_rts='false'): """ Load Twitter timeline for the specified user :param screen_name: Twitter screen name to process :param max_tweets: maximum number of tweets to get. (Default: 3200, the API maximum) :param exclude_replies: exclude replies? (Default: true) :param include_rts: include retweets? (Default: false) :return: pandas DataFrame of tweets """ # API only allows up to 200 tweets per page max_pages = int(min(max_tweets, 3200) // 200) if max_pages < 1: max_pages = 1 # Need to be strings not booleans if isinstance(exclude_replies, type(True)): exclude_replies = str(exclude_replies).lower() if isinstance(include_rts, type(True)): include_rts = str(include_rts).lower() if max_tweets < 200: count = int(max_tweets) else: count = 200 page = 0 url = 'https://api.twitter.com/1.1/statuses/user_timeline.json' for i in range(max_pages): if page == 0: params = {'screen_name': self.screen_name, 'count': count, 'lang': 'en', 'exclude_replies': exclude_replies, 'include_rts': include_rts} else: max_id = data[-1]['id'] - 1 params = {'screen_name': self.screen_name, 'count': count, 'lang': 'en', 'exclude_replies': exclude_replies, 'include_rts': include_rts, 'max_id': max_id} r = requests.get(url, auth=self.auth, params=params) data = simplejson.loads(r.text) if page == 0: df = json_normalize(data) else: df = df.append(json_normalize(data), ignore_index=True) page += 1 if len(self.tweets) == 0: self.tweets = df[self.columns] else: self.tweets = self.merge(df[self.columns]) def stream(self): # Not yet implemented # Accessing the stream API (live tweets) US_BOUNDING_BOX = "-125.00,24.94,-66.93,49.59" def search(self, query, max_tweets=200, remove_rts=True, hard_remove=True): # Search API only allows 100 tweets per page max_pages = int(max_tweets) // 100 if max_pages < 1: max_pages = 1 if max_tweets < 100: count = int(max_tweets) else: count = 100 # Prepare query if remove_rts: query += ' -filter:retweets' if hard_remove: query += ' -RT' # eliminates anything with RT, which may not always be a retweet # encoded_query = urllib.quote_plus(query) page = 0 url = 'https://api.twitter.com/1.1/search/tweets.json' for i in range(max_pages): if page == 0: params = {'q': query, 'result_type': 'recent', 'count': count, 'lang': 'en'} else: max_id = data[-1]['id'] - 1 params = {'q': query, 'result_type': 'recent', 'count': count, 'lang': 'en', 'max_id': max_id} r = requests.get(url, auth=self.auth, params=params) data = simplejson.loads(r.text)['statuses'] if len(data) == 0: if self.verbose: print('No more results found') break if page == 0: df = json_normalize(data) else: df = df.append(json_normalize(data)) page += 1 # Check that all columns are there, if not add empty ones for col in self.columns: if col not in df.columns: df[col] = pd.Series([np.nan] * len(df), index=df.index) if len(self.tweets) == 0: self.tweets = df[self.columns] else: self.tweets = self.merge(df[self.columns]) # Filter by location if self.track_location: if self.verbose: print('Filtering by location') self.get_geo() return def get_geo(self): """ Get latitude and longitude from the Google API and a user's location """ # Eliminate empty locations self.tweets = self.tweets[self.tweets['user.location'] != u''] # Search locations self.tweets.index = range(len(self.tweets)) # self.tweets.reset_index(drop=True, inplace=True) droplist = [] for i in range(len(self.tweets)): geo = self.tweets.iloc[i]['geo.coordinates'] loc = self.tweets.iloc[i]['user.location'] if geo is not None: try: if not check_US(*geo): droplist.append(i) if self.verbose: print 'Removing: ', i, geo, loc continue except TypeError: if self.verbose: print geo # Using Google API for geocoding time.sleep(0.2) # avoid API limits status, geo = geo_api_search(loc) if status in ['ZERO_RESULTS']: droplist.append(i) continue if status in ['OK']: # Remove non-US tweets if not check_US(*geo): droplist.append(i) if self.verbose: print 'Removing: ', i, geo, loc else: self.tweets.set_value(i, 'geo.coordinates', geo) # Add to tweet else: if self.verbose: print(status) if self.verbose: print geo, loc self.tweets.drop(droplist, inplace=True) return def load(self): if not os.path.isfile(self.path + self.filename): print('File does not exist. Create it first.') return data = pd.read_json(self.path + self.filename) if len(self.tweets) == 0: self.tweets = data else: self.tweets = self.merge(data) return def merge(self, data): # Merge data newdf = pd.concat([self.tweets, data], axis=0, join='outer', join_axes=None, ignore_index=True, keys=None, levels=None, names=None, verify_integrity=False) # Eliminate duplicates newdf = newdf.drop_duplicates(subset=['id']) return newdf def save(self): # self.tweets.reset_index(drop=True).to_json(self.path+self.filename) self.tweets.index = range(len(self.tweets)) self.tweets.to_json(self.path + self.filename) return def makebackup(self): data = pd.read_json(self.path + self.filename) newfile = self.filename[:-5] + '_' + time.strftime("%Y-%m-%d") + '.json' data.to_json(self.path + 'backup/' + newfile) return def check_US(lat, lon): # US_BOUNDING_BOX = "-125.00,24.94,-66.93,49.59" good = False if (lat >= 24.94) and (lat <= 49.59) and (lon >= -125) and (lon <= -66.93): good = True else: good = False return good def geo_api_search(loc): """ Use Google API to get location information :param loc: string to parse :return: status, latitude, longitude """ url = 'http://maps.googleapis.com/maps/api/geocode/json' params = {'address': loc.strip(), 'sensor': 'false'} r = requests.get(url, params=params) data = simplejson.loads(r.text) if data['status'] in ['OK']: lat = data['results'][0]['geometry']['location']['lat'] lon = data['results'][0]['geometry']['location']['lng'] geo = [lat, lon] # lat first, then lon else: geo = None return data['status'], geo
mit
murali-munna/scikit-learn
examples/linear_model/plot_lasso_coordinate_descent_path.py
254
2639
""" ===================== Lasso and Elastic Net ===================== Lasso and elastic net (L1 and L2 penalisation) implemented using a coordinate descent. The coefficients can be forced to be positive. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import lasso_path, enet_path from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target X /= X.std(axis=0) # Standardize data (easier to set the l1_ratio parameter) # Compute paths eps = 5e-3 # the smaller it is the longer is the path print("Computing regularization path using the lasso...") alphas_lasso, coefs_lasso, _ = lasso_path(X, y, eps, fit_intercept=False) print("Computing regularization path using the positive lasso...") alphas_positive_lasso, coefs_positive_lasso, _ = lasso_path( X, y, eps, positive=True, fit_intercept=False) print("Computing regularization path using the elastic net...") alphas_enet, coefs_enet, _ = enet_path( X, y, eps=eps, l1_ratio=0.8, fit_intercept=False) print("Computing regularization path using the positve elastic net...") alphas_positive_enet, coefs_positive_enet, _ = enet_path( X, y, eps=eps, l1_ratio=0.8, positive=True, fit_intercept=False) # Display results plt.figure(1) ax = plt.gca() ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k']) l1 = plt.plot(-np.log10(alphas_lasso), coefs_lasso.T) l2 = plt.plot(-np.log10(alphas_enet), coefs_enet.T, linestyle='--') plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Lasso and Elastic-Net Paths') plt.legend((l1[-1], l2[-1]), ('Lasso', 'Elastic-Net'), loc='lower left') plt.axis('tight') plt.figure(2) ax = plt.gca() ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k']) l1 = plt.plot(-np.log10(alphas_lasso), coefs_lasso.T) l2 = plt.plot(-np.log10(alphas_positive_lasso), coefs_positive_lasso.T, linestyle='--') plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Lasso and positive Lasso') plt.legend((l1[-1], l2[-1]), ('Lasso', 'positive Lasso'), loc='lower left') plt.axis('tight') plt.figure(3) ax = plt.gca() ax.set_color_cycle(2 * ['b', 'r', 'g', 'c', 'k']) l1 = plt.plot(-np.log10(alphas_enet), coefs_enet.T) l2 = plt.plot(-np.log10(alphas_positive_enet), coefs_positive_enet.T, linestyle='--') plt.xlabel('-Log(alpha)') plt.ylabel('coefficients') plt.title('Elastic-Net and positive Elastic-Net') plt.legend((l1[-1], l2[-1]), ('Elastic-Net', 'positive Elastic-Net'), loc='lower left') plt.axis('tight') plt.show()
bsd-3-clause
jcurbelo/networkx
networkx/convert_matrix.py
9
33216
"""Functions to convert NetworkX graphs to and from numpy/scipy matrices. The preferred way of converting data to a NetworkX graph is through the graph constuctor. The constructor calls the to_networkx_graph() function which attempts to guess the input type and convert it automatically. Examples -------- Create a 10 node random graph from a numpy matrix >>> import numpy >>> a = numpy.reshape(numpy.random.random_integers(0,1,size=100),(10,10)) >>> D = nx.DiGraph(a) or equivalently >>> D = nx.to_networkx_graph(a,create_using=nx.DiGraph()) See Also -------- nx_pygraphviz, nx_pydot """ # Copyright (C) 2006-2014 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. import warnings import itertools import networkx as nx from networkx.convert import _prep_create_using from networkx.utils import not_implemented_for __author__ = """\n""".join(['Aric Hagberg <[email protected]>', 'Pieter Swart ([email protected])', 'Dan Schult([email protected])']) __all__ = ['from_numpy_matrix', 'to_numpy_matrix', 'from_pandas_dataframe', 'to_pandas_dataframe', 'to_numpy_recarray', 'from_scipy_sparse_matrix', 'to_scipy_sparse_matrix'] def to_pandas_dataframe(G, nodelist=None, multigraph_weight=sum, weight='weight', nonedge=0.0): """Return the graph adjacency matrix as a Pandas DataFrame. Parameters ---------- G : graph The NetworkX graph used to construct the Pandas DataFrame. nodelist : list, optional The rows and columns are ordered according to the nodes in `nodelist`. If `nodelist` is None, then the ordering is produced by G.nodes(). multigraph_weight : {sum, min, max}, optional An operator that determines how weights in multigraphs are handled. The default is to sum the weights of the multiple edges. weight : string or None, optional The edge attribute that holds the numerical value used for the edge weight. If an edge does not have that attribute, then the value 1 is used instead. nonedge : float, optional The matrix values corresponding to nonedges are typically set to zero. However, this could be undesirable if there are matrix values corresponding to actual edges that also have the value zero. If so, one might prefer nonedges to have some other value, such as nan. Returns ------- df : Pandas DataFrame Graph adjacency matrix Notes ----- The DataFrame entries are assigned to the weight edge attribute. When an edge does not have a weight attribute, the value of the entry is set to the number 1. For multiple (parallel) edges, the values of the entries are determined by the 'multigraph_weight' parameter. The default is to sum the weight attributes for each of the parallel edges. When `nodelist` does not contain every node in `G`, the matrix is built from the subgraph of `G` that is induced by the nodes in `nodelist`. The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Pandas DataFrame can be modified as follows: >>> import pandas as pd >>> import numpy as np >>> G = nx.Graph([(1,1)]) >>> df = nx.to_pandas_dataframe(G) >>> df 1 1 1 >>> df.values[np.diag_indices_from(df)] *= 2 >>> df 1 1 2 Examples -------- >>> G = nx.MultiDiGraph() >>> G.add_edge(0,1,weight=2) >>> G.add_edge(1,0) >>> G.add_edge(2,2,weight=3) >>> G.add_edge(2,2) >>> nx.to_pandas_dataframe(G, nodelist=[0,1,2]) 0 1 2 0 0 2 0 1 1 0 0 2 0 0 4 """ import pandas as pd M = to_numpy_matrix(G, nodelist, None, None, multigraph_weight, weight, nonedge) if nodelist is None: nodelist = list(G) return pd.DataFrame(data=M, index=nodelist, columns=nodelist) def from_pandas_dataframe(df, source, target, edge_attr=None, create_using=None): """Return a graph from Pandas DataFrame. The Pandas DataFrame should contain at least two columns of node names and zero or more columns of node attributes. Each row will be processed as one edge instance. Note: This function iterates over DataFrame.values, which is not guaranteed to retain the data type across columns in the row. This is only a problem if your row is entirely numeric and a mix of ints and floats. In that case, all values will be returned as floats. See the DataFrame.iterrows documentation for an example. Parameters ---------- df : Pandas DataFrame An edge list representation of a graph source : str or int A valid column name (string or iteger) for the source nodes (for the directed case). target : str or int A valid column name (string or iteger) for the target nodes (for the directed case). edge_attr : str or int, iterable, True A valid column name (str or integer) or list of column names that will be used to retrieve items from the row and add them to the graph as edge attributes. If `True`, all of the remaining columns will be added. create_using : NetworkX graph Use specified graph for result. The default is Graph() See Also -------- to_pandas_dataframe Examples -------- Simple integer weights on edges: >>> import pandas as pd >>> import numpy as np >>> r = np.random.RandomState(seed=5) >>> ints = r.random_integers(1, 10, size=(3,2)) >>> a = ['A', 'B', 'C'] >>> b = ['D', 'A', 'E'] >>> df = pd.DataFrame(ints, columns=['weight', 'cost']) >>> df[0] = a >>> df['b'] = b >>> df weight cost 0 b 0 4 7 A D 1 7 1 B A 2 10 9 C E >>> G=nx.from_pandas_dataframe(df, 0, 'b', ['weight', 'cost']) >>> G['E']['C']['weight'] 10 >>> G['E']['C']['cost'] 9 """ g = _prep_create_using(create_using) # Index of source and target src_i = df.columns.get_loc(source) tar_i = df.columns.get_loc(target) if edge_attr: # If all additional columns requested, build up a list of tuples # [(name, index),...] if edge_attr is True: # Create a list of all columns indices, ignore nodes edge_i = [] for i, col in enumerate(df.columns): if col is not source and col is not target: edge_i.append((col, i)) # If a list or tuple of name is requested elif isinstance(edge_attr, (list, tuple)): edge_i = [(i, df.columns.get_loc(i)) for i in edge_attr] # If a string or int is passed else: edge_i = [(edge_attr, df.columns.get_loc(edge_attr)),] # Iteration on values returns the rows as Numpy arrays for row in df.values: g.add_edge(row[src_i], row[tar_i], {i:row[j] for i, j in edge_i}) # If no column names are given, then just return the edges. else: for row in df.values: g.add_edge(row[src_i], row[tar_i]) return g def to_numpy_matrix(G, nodelist=None, dtype=None, order=None, multigraph_weight=sum, weight='weight', nonedge=0.0): """Return the graph adjacency matrix as a NumPy matrix. Parameters ---------- G : graph The NetworkX graph used to construct the NumPy matrix. nodelist : list, optional The rows and columns are ordered according to the nodes in ``nodelist``. If ``nodelist`` is None, then the ordering is produced by G.nodes(). dtype : NumPy data type, optional A valid single NumPy data type used to initialize the array. This must be a simple type such as int or numpy.float64 and not a compound data type (see to_numpy_recarray) If None, then the NumPy default is used. order : {'C', 'F'}, optional Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. If None, then the NumPy default is used. multigraph_weight : {sum, min, max}, optional An operator that determines how weights in multigraphs are handled. The default is to sum the weights of the multiple edges. weight : string or None optional (default = 'weight') The edge attribute that holds the numerical value used for the edge weight. If an edge does not have that attribute, then the value 1 is used instead. nonedge : float (default = 0.0) The matrix values corresponding to nonedges are typically set to zero. However, this could be undesirable if there are matrix values corresponding to actual edges that also have the value zero. If so, one might prefer nonedges to have some other value, such as nan. Returns ------- M : NumPy matrix Graph adjacency matrix See Also -------- to_numpy_recarray, from_numpy_matrix Notes ----- The matrix entries are assigned to the weight edge attribute. When an edge does not have a weight attribute, the value of the entry is set to the number 1. For multiple (parallel) edges, the values of the entries are determined by the ``multigraph_weight`` parameter. The default is to sum the weight attributes for each of the parallel edges. When ``nodelist`` does not contain every node in ``G``, the matrix is built from the subgraph of ``G`` that is induced by the nodes in ``nodelist``. The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Numpy matrix can be modified as follows: >>> import numpy as np >>> G = nx.Graph([(1, 1)]) >>> A = nx.to_numpy_matrix(G) >>> A matrix([[ 1.]]) >>> A.A[np.diag_indices_from(A)] *= 2 >>> A matrix([[ 2.]]) Examples -------- >>> G = nx.MultiDiGraph() >>> G.add_edge(0,1,weight=2) >>> G.add_edge(1,0) >>> G.add_edge(2,2,weight=3) >>> G.add_edge(2,2) >>> nx.to_numpy_matrix(G, nodelist=[0,1,2]) matrix([[ 0., 2., 0.], [ 1., 0., 0.], [ 0., 0., 4.]]) """ import numpy as np if nodelist is None: nodelist = list(G) nodeset = set(nodelist) if len(nodelist) != len(nodeset): msg = "Ambiguous ordering: `nodelist` contained duplicates." raise nx.NetworkXError(msg) nlen=len(nodelist) undirected = not G.is_directed() index=dict(zip(nodelist,range(nlen))) # Initially, we start with an array of nans. Then we populate the matrix # using data from the graph. Afterwards, any leftover nans will be # converted to the value of `nonedge`. Note, we use nans initially, # instead of zero, for two reasons: # # 1) It can be important to distinguish a real edge with the value 0 # from a nonedge with the value 0. # # 2) When working with multi(di)graphs, we must combine the values of all # edges between any two nodes in some manner. This often takes the # form of a sum, min, or max. Using the value 0 for a nonedge would # have undesirable effects with min and max, but using nanmin and # nanmax with initially nan values is not problematic at all. # # That said, there are still some drawbacks to this approach. Namely, if # a real edge is nan, then that value is a) not distinguishable from # nonedges and b) is ignored by the default combinator (nansum, nanmin, # nanmax) functions used for multi(di)graphs. If this becomes an issue, # an alternative approach is to use masked arrays. Initially, every # element is masked and set to some `initial` value. As we populate the # graph, elements are unmasked (automatically) when we combine the initial # value with the values given by real edges. At the end, we convert all # masked values to `nonedge`. Using masked arrays fully addresses reason 1, # but for reason 2, we would still have the issue with min and max if the # initial values were 0.0. Note: an initial value of +inf is appropriate # for min, while an initial value of -inf is appropriate for max. When # working with sum, an initial value of zero is appropriate. Ideally then, # we'd want to allow users to specify both a value for nonedges and also # an initial value. For multi(di)graphs, the choice of the initial value # will, in general, depend on the combinator function---sensible defaults # can be provided. if G.is_multigraph(): # Handle MultiGraphs and MultiDiGraphs M = np.zeros((nlen, nlen), dtype=dtype, order=order) + np.nan # use numpy nan-aware operations operator={sum:np.nansum, min:np.nanmin, max:np.nanmax} try: op=operator[multigraph_weight] except: raise ValueError('multigraph_weight must be sum, min, or max') for u,v,attrs in G.edges(data=True): if (u in nodeset) and (v in nodeset): i, j = index[u], index[v] e_weight = attrs.get(weight, 1) M[i,j] = op([e_weight, M[i,j]]) if undirected: M[j,i] = M[i,j] else: # Graph or DiGraph, this is much faster than above M = np.zeros((nlen,nlen), dtype=dtype, order=order) + np.nan for u,nbrdict in G.adjacency(): for v,d in nbrdict.items(): try: M[index[u],index[v]] = d.get(weight,1) except KeyError: # This occurs when there are fewer desired nodes than # there are nodes in the graph: len(nodelist) < len(G) pass M[np.isnan(M)] = nonedge M = np.asmatrix(M) return M def from_numpy_matrix(A, parallel_edges=False, create_using=None): """Return a graph from numpy matrix. The numpy matrix is interpreted as an adjacency matrix for the graph. Parameters ---------- A : numpy matrix An adjacency matrix representation of a graph parallel_edges : Boolean If this is ``True``, ``create_using`` is a multigraph, and ``A`` is an integer matrix, then entry *(i, j)* in the matrix is interpreted as the number of parallel edges joining vertices *i* and *j* in the graph. If it is ``False``, then the entries in the adjacency matrix are interpreted as the weight of a single edge joining the vertices. create_using : NetworkX graph Use specified graph for result. The default is Graph() Notes ----- If ``create_using`` is an instance of :class:`networkx.MultiGraph` or :class:`networkx.MultiDiGraph`, ``parallel_edges`` is ``True``, and the entries of ``A`` are of type ``int``, then this function returns a multigraph (of the same type as ``create_using``) with parallel edges. If ``create_using`` is an undirected multigraph, then only the edges indicated by the upper triangle of the matrix `A` will be added to the graph. If the numpy matrix has a single data type for each matrix entry it will be converted to an appropriate Python data type. If the numpy matrix has a user-specified compound data type the names of the data fields will be used as attribute keys in the resulting NetworkX graph. See Also -------- to_numpy_matrix, to_numpy_recarray Examples -------- Simple integer weights on edges: >>> import numpy >>> A=numpy.matrix([[1, 1], [2, 1]]) >>> G=nx.from_numpy_matrix(A) If ``create_using`` is a multigraph and the matrix has only integer entries, the entries will be interpreted as weighted edges joining the vertices (without creating parallel edges): >>> import numpy >>> A = numpy.matrix([[1, 1], [1, 2]]) >>> G = nx.from_numpy_matrix(A, create_using = nx.MultiGraph()) >>> G[1][1] {0: {'weight': 2}} If ``create_using`` is a multigraph and the matrix has only integer entries but ``parallel_edges`` is ``True``, then the entries will be interpreted as the number of parallel edges joining those two vertices: >>> import numpy >>> A = numpy.matrix([[1, 1], [1, 2]]) >>> temp = nx.MultiGraph() >>> G = nx.from_numpy_matrix(A, parallel_edges = True, create_using = temp) >>> G[1][1] {0: {'weight': 1}, 1: {'weight': 1}} User defined compound data type on edges: >>> import numpy >>> dt = [('weight', float), ('cost', int)] >>> A = numpy.matrix([[(1.0, 2)]], dtype = dt) >>> G = nx.from_numpy_matrix(A) >>> list(G.edges()) [(0, 0)] >>> G[0][0]['cost'] 2 >>> G[0][0]['weight'] 1.0 """ # This should never fail if you have created a numpy matrix with numpy... import numpy as np kind_to_python_type={'f':float, 'i':int, 'u':int, 'b':bool, 'c':complex, 'S':str, 'V':'void'} try: # Python 3.x blurb = chr(1245) # just to trigger the exception kind_to_python_type['U']=str except ValueError: # Python 2.6+ kind_to_python_type['U']=unicode G=_prep_create_using(create_using) n,m=A.shape if n!=m: raise nx.NetworkXError("Adjacency matrix is not square.", "nx,ny=%s"%(A.shape,)) dt=A.dtype try: python_type=kind_to_python_type[dt.kind] except: raise TypeError("Unknown numpy data type: %s"%dt) # Make sure we get even the isolated nodes of the graph. G.add_nodes_from(range(n)) # Get a list of all the entries in the matrix with nonzero entries. These # coordinates will become the edges in the graph. edges = zip(*(np.asarray(A).nonzero())) # handle numpy constructed data type if python_type is 'void': # Sort the fields by their offset, then by dtype, then by name. fields = sorted((offset, dtype, name) for name, (dtype, offset) in A.dtype.fields.items()) triples = ((u, v, {name: kind_to_python_type[dtype.kind](val) for (_, dtype, name), val in zip(fields, A[u, v])}) for u, v in edges) # If the entries in the adjacency matrix are integers, the graph is a # multigraph, and parallel_edges is True, then create parallel edges, each # with weight 1, for each entry in the adjacency matrix. Otherwise, create # one edge for each positive entry in the adjacency matrix and set the # weight of that edge to be the entry in the matrix. elif python_type is int and G.is_multigraph() and parallel_edges: chain = itertools.chain.from_iterable # The following line is equivalent to: # # for (u, v) in edges: # for d in range(A[u, v]): # G.add_edge(u, v, weight=1) # triples = chain(((u, v, dict(weight=1)) for d in range(A[u, v])) for (u, v) in edges) else: # basic data type triples = ((u, v, dict(weight=python_type(A[u, v]))) for u, v in edges) # If we are creating an undirected multigraph, only add the edges from the # upper triangle of the matrix. Otherwise, add all the edges. This relies # on the fact that the vertices created in the # ``_generated_weighted_edges()`` function are actually the row/column # indices for the matrix ``A``. # # Without this check, we run into a problem where each edge is added twice # when ``G.add_edges_from()`` is invoked below. if G.is_multigraph() and not G.is_directed(): triples = ((u, v, d) for u, v, d in triples if u <= v) G.add_edges_from(triples) return G @not_implemented_for('multigraph') def to_numpy_recarray(G,nodelist=None, dtype=[('weight',float)], order=None): """Return the graph adjacency matrix as a NumPy recarray. Parameters ---------- G : graph The NetworkX graph used to construct the NumPy matrix. nodelist : list, optional The rows and columns are ordered according to the nodes in `nodelist`. If `nodelist` is None, then the ordering is produced by G.nodes(). dtype : NumPy data-type, optional A valid NumPy named dtype used to initialize the NumPy recarray. The data type names are assumed to be keys in the graph edge attribute dictionary. order : {'C', 'F'}, optional Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. If None, then the NumPy default is used. Returns ------- M : NumPy recarray The graph with specified edge data as a Numpy recarray Notes ----- When `nodelist` does not contain every node in `G`, the matrix is built from the subgraph of `G` that is induced by the nodes in `nodelist`. Examples -------- >>> G = nx.Graph() >>> G.add_edge(1,2,weight=7.0,cost=5) >>> A=nx.to_numpy_recarray(G,dtype=[('weight',float),('cost',int)]) >>> print(A.weight) [[ 0. 7.] [ 7. 0.]] >>> print(A.cost) [[0 5] [5 0]] """ import numpy as np if nodelist is None: nodelist = list(G) nodeset = set(nodelist) if len(nodelist) != len(nodeset): msg = "Ambiguous ordering: `nodelist` contained duplicates." raise nx.NetworkXError(msg) nlen=len(nodelist) undirected = not G.is_directed() index=dict(zip(nodelist,range(nlen))) M = np.zeros((nlen,nlen), dtype=dtype, order=order) names=M.dtype.names for u,v,attrs in G.edges(data=True): if (u in nodeset) and (v in nodeset): i,j = index[u],index[v] values=tuple([attrs[n] for n in names]) M[i,j] = values if undirected: M[j,i] = M[i,j] return M.view(np.recarray) def to_scipy_sparse_matrix(G, nodelist=None, dtype=None, weight='weight', format='csr'): """Return the graph adjacency matrix as a SciPy sparse matrix. Parameters ---------- G : graph The NetworkX graph used to construct the NumPy matrix. nodelist : list, optional The rows and columns are ordered according to the nodes in `nodelist`. If `nodelist` is None, then the ordering is produced by G.nodes(). dtype : NumPy data-type, optional A valid NumPy dtype used to initialize the array. If None, then the NumPy default is used. weight : string or None optional (default='weight') The edge attribute that holds the numerical value used for the edge weight. If None then all edge weights are 1. format : str in {'bsr', 'csr', 'csc', 'coo', 'lil', 'dia', 'dok'} The type of the matrix to be returned (default 'csr'). For some algorithms different implementations of sparse matrices can perform better. See [1]_ for details. Returns ------- M : SciPy sparse matrix Graph adjacency matrix. Notes ----- The matrix entries are populated using the edge attribute held in parameter weight. When an edge does not have that attribute, the value of the entry is 1. For multiple edges the matrix values are the sums of the edge weights. When `nodelist` does not contain every node in `G`, the matrix is built from the subgraph of `G` that is induced by the nodes in `nodelist`. Uses coo_matrix format. To convert to other formats specify the format= keyword. The convention used for self-loop edges in graphs is to assign the diagonal matrix entry value to the weight attribute of the edge (or the number 1 if the edge has no weight attribute). If the alternate convention of doubling the edge weight is desired the resulting Scipy sparse matrix can be modified as follows: >>> import scipy as sp >>> G = nx.Graph([(1,1)]) >>> A = nx.to_scipy_sparse_matrix(G) >>> print(A.todense()) [[1]] >>> A.setdiag(A.diagonal()*2) >>> print(A.todense()) [[2]] Examples -------- >>> G = nx.MultiDiGraph() >>> G.add_edge(0,1,weight=2) >>> G.add_edge(1,0) >>> G.add_edge(2,2,weight=3) >>> G.add_edge(2,2) >>> S = nx.to_scipy_sparse_matrix(G, nodelist=[0,1,2]) >>> print(S.todense()) [[0 2 0] [1 0 0] [0 0 4]] References ---------- .. [1] Scipy Dev. References, "Sparse Matrices", http://docs.scipy.org/doc/scipy/reference/sparse.html """ from scipy import sparse if nodelist is None: nodelist = list(G) nlen = len(nodelist) if nlen == 0: raise nx.NetworkXError("Graph has no nodes or edges") if len(nodelist) != len(set(nodelist)): msg = "Ambiguous ordering: `nodelist` contained duplicates." raise nx.NetworkXError(msg) index = dict(zip(nodelist,range(nlen))) if G.number_of_edges() == 0: row,col,data=[],[],[] else: row,col,data = zip(*((index[u],index[v],d.get(weight,1)) for u,v,d in G.edges(nodelist, data=True) if u in index and v in index)) if G.is_directed(): M = sparse.coo_matrix((data,(row,col)), shape=(nlen,nlen), dtype=dtype) else: # symmetrize matrix d = data + data r = row + col c = col + row # selfloop entries get double counted when symmetrizing # so we subtract the data on the diagonal selfloops = list(G.selfloop_edges(data=True)) if selfloops: diag_index,diag_data = zip(*((index[u],-d.get(weight,1)) for u,v,d in selfloops if u in index and v in index)) d += diag_data r += diag_index c += diag_index M = sparse.coo_matrix((d, (r, c)), shape=(nlen,nlen), dtype=dtype) try: return M.asformat(format) except AttributeError: raise nx.NetworkXError("Unknown sparse matrix format: %s"%format) def _csr_gen_triples(A): """Converts a SciPy sparse matrix in **Compressed Sparse Row** format to an iterable of weighted edge triples. """ nrows = A.shape[0] data, indices, indptr = A.data, A.indices, A.indptr for i in range(nrows): for j in range(indptr[i], indptr[i+1]): yield i, indices[j], data[j] def _csc_gen_triples(A): """Converts a SciPy sparse matrix in **Compressed Sparse Column** format to an iterable of weighted edge triples. """ ncols = A.shape[1] data, indices, indptr = A.data, A.indices, A.indptr for i in range(ncols): for j in range(indptr[i], indptr[i+1]): yield indices[j], i, data[j] def _coo_gen_triples(A): """Converts a SciPy sparse matrix in **Coordinate** format to an iterable of weighted edge triples. """ row, col, data = A.row, A.col, A.data return zip(row, col, data) def _dok_gen_triples(A): """Converts a SciPy sparse matrix in **Dictionary of Keys** format to an iterable of weighted edge triples. """ for (r, c), v in A.items(): yield r, c, v def _generate_weighted_edges(A): """Returns an iterable over (u, v, w) triples, where u and v are adjacent vertices and w is the weight of the edge joining u and v. `A` is a SciPy sparse matrix (in any format). """ if A.format == 'csr': return _csr_gen_triples(A) if A.format == 'csc': return _csc_gen_triples(A) if A.format == 'dok': return _dok_gen_triples(A) # If A is in any other format (including COO), convert it to COO format. return _coo_gen_triples(A.tocoo()) def from_scipy_sparse_matrix(A, parallel_edges=False, create_using=None, edge_attribute='weight'): """Creates a new graph from an adjacency matrix given as a SciPy sparse matrix. Parameters ---------- A: scipy sparse matrix An adjacency matrix representation of a graph parallel_edges : Boolean If this is ``True``, `create_using` is a multigraph, and `A` is an integer matrix, then entry *(i, j)* in the matrix is interpreted as the number of parallel edges joining vertices *i* and *j* in the graph. If it is ``False``, then the entries in the adjacency matrix are interpreted as the weight of a single edge joining the vertices. create_using: NetworkX graph Use specified graph for result. The default is Graph() edge_attribute: string Name of edge attribute to store matrix numeric value. The data will have the same type as the matrix entry (int, float, (real,imag)). Notes ----- If `create_using` is an instance of :class:`networkx.MultiGraph` or :class:`networkx.MultiDiGraph`, `parallel_edges` is ``True``, and the entries of `A` are of type ``int``, then this function returns a multigraph (of the same type as `create_using`) with parallel edges. In this case, `edge_attribute` will be ignored. If `create_using` is an undirected multigraph, then only the edges indicated by the upper triangle of the matrix `A` will be added to the graph. Examples -------- >>> import scipy.sparse >>> A = scipy.sparse.eye(2,2,1) >>> G = nx.from_scipy_sparse_matrix(A) If `create_using` is a multigraph and the matrix has only integer entries, the entries will be interpreted as weighted edges joining the vertices (without creating parallel edges): >>> import scipy >>> A = scipy.sparse.csr_matrix([[1, 1], [1, 2]]) >>> G = nx.from_scipy_sparse_matrix(A, create_using=nx.MultiGraph()) >>> G[1][1] {0: {'weight': 2}} If `create_using` is a multigraph and the matrix has only integer entries but `parallel_edges` is ``True``, then the entries will be interpreted as the number of parallel edges joining those two vertices: >>> import scipy >>> A = scipy.sparse.csr_matrix([[1, 1], [1, 2]]) >>> G = nx.from_scipy_sparse_matrix(A, parallel_edges=True, ... create_using=nx.MultiGraph()) >>> G[1][1] {0: {'weight': 1}, 1: {'weight': 1}} """ G = _prep_create_using(create_using) n,m = A.shape if n != m: raise nx.NetworkXError(\ "Adjacency matrix is not square. nx,ny=%s"%(A.shape,)) # Make sure we get even the isolated nodes of the graph. G.add_nodes_from(range(n)) # Create an iterable over (u, v, w) triples and for each triple, add an # edge from u to v with weight w. triples = _generate_weighted_edges(A) # If the entries in the adjacency matrix are integers, the graph is a # multigraph, and parallel_edges is True, then create parallel edges, each # with weight 1, for each entry in the adjacency matrix. Otherwise, create # one edge for each positive entry in the adjacency matrix and set the # weight of that edge to be the entry in the matrix. if A.dtype.kind in ('i', 'u') and G.is_multigraph() and parallel_edges: chain = itertools.chain.from_iterable # The following line is equivalent to: # # for (u, v) in edges: # for d in range(A[u, v]): # G.add_edge(u, v, weight=1) # triples = chain(((u, v, 1) for d in range(w)) for (u, v, w) in triples) # If we are creating an undirected multigraph, only add the edges from the # upper triangle of the matrix. Otherwise, add all the edges. This relies # on the fact that the vertices created in the # ``_generated_weighted_edges()`` function are actually the row/column # indices for the matrix ``A``. # # Without this check, we run into a problem where each edge is added twice # when `G.add_weighted_edges_from()` is invoked below. if G.is_multigraph() and not G.is_directed(): triples = ((u, v, d) for u, v, d in triples if u <= v) G.add_weighted_edges_from(triples, weight=edge_attribute) return G # fixture for nose tests def setup_module(module): from nose import SkipTest try: import numpy except: raise SkipTest("NumPy not available") try: import scipy except: raise SkipTest("SciPy not available")
bsd-3-clause
plotly/python-api
packages/python/plotly/plotly/express/__init__.py
1
1840
""" `plotly.express` is a terse, consistent, high-level wrapper around `plotly.graph_objects` for rapid data exploration and figure generation. Learn more at https://plotly.express/ """ from __future__ import absolute_import from plotly import optional_imports pd = optional_imports.get_module("pandas") if pd is None: raise ImportError( """\ Plotly express requires pandas to be installed.""" ) from ._imshow import imshow from ._chart_types import ( # noqa: F401 scatter, scatter_3d, scatter_polar, scatter_ternary, scatter_mapbox, scatter_geo, line, line_3d, line_polar, line_ternary, line_mapbox, line_geo, area, bar, bar_polar, violin, box, strip, histogram, scatter_matrix, parallel_coordinates, parallel_categories, choropleth, density_contour, density_heatmap, pie, sunburst, treemap, funnel, funnel_area, choropleth_mapbox, density_mapbox, ) from ._core import ( # noqa: F401 set_mapbox_access_token, defaults, get_trendline_results, ) from . import data, colors # noqa: F401 __all__ = [ "scatter", "scatter_3d", "scatter_polar", "scatter_ternary", "scatter_mapbox", "scatter_geo", "scatter_matrix", "density_contour", "density_heatmap", "density_mapbox", "line", "line_3d", "line_polar", "line_ternary", "line_mapbox", "line_geo", "parallel_coordinates", "parallel_categories", "area", "bar", "bar_polar", "violin", "box", "strip", "histogram", "choropleth", "choropleth_mapbox", "pie", "sunburst", "treemap", "funnel", "funnel_area", "imshow", "data", "colors", "set_mapbox_access_token", "get_trendline_results", ]
mit
mnwhite/HARK
cAndCwithStickyE/cAndCwithStickyE.py
1
8417
''' Runs the exercises and regressions for the cAndCwithStickyE paper. ''' import sys import os sys.path.insert(0, os.path.abspath('../')) sys.path.insert(0, os.path.abspath('../ConsumptionSaving')) import numpy as np #from copy import copy, deepcopy from StickyEmodel import StickyEconsumerSOEType, StickyEconsumerDSGEType from ConsAggShockModel import SmallOpenEconomy, CobbDouglasEconomy from HARKutilities import plotFuncs import matplotlib.pyplot as plt periods_to_sim = 1200 ignore_periods = 500 # Define parameters for the small open economy version of the model init_SOE_consumer = { 'CRRA': 2.0, 'DiscFac': 0.969, 'LivPrb': [0.995], 'PermGroFac': [1.0], 'AgentCount': 10000, 'aXtraMin': 0.00001, 'aXtraMax': 40.0, 'aXtraNestFac': 3, 'aXtraCount': 48, 'aXtraExtra': [None], 'PermShkStd': [np.sqrt(0.004)], 'PermShkCount': 7, 'TranShkStd': [np.sqrt(0.12)], 'TranShkCount': 7, 'UnempPrb': 0.05, 'UnempPrbRet': 0.0, 'IncUnemp': 0.0, 'IncUnempRet': 0.0, 'BoroCnstArt':0.0, 'tax_rate':0.0, 'T_retire':0, 'MgridBase': np.array([0.5,1.5]), 'aNrmInitMean' : np.log(0.00001), 'aNrmInitStd' : 0.0, 'pLvlInitMean' : 0.0, 'pLvlInitStd' : 0.0, 'PermGroFacAgg' : 1.0, 'UpdatePrb' : 0.25, 'T_age' : None, 'T_cycle' : 1, 'cycles' : 0, 'T_sim' : periods_to_sim } init_DSGE_consumer = { 'CRRA': 2.0, 'DiscFac': 1.0/1.014189682528173, 'LivPrb': [1.0], 'PermGroFac': [1.0], 'AgentCount': 1, 'aXtraMin': 0.00001, 'aXtraMax': 40.0, 'aXtraNestFac': 3, 'aXtraCount': 48, 'aXtraExtra': [None], 'PermShkStd': [0.0], 'PermShkCount': 1, 'TranShkStd': [0.0], 'TranShkCount': 1, 'UnempPrb': 0.0, 'UnempPrbRet': 0.0, 'IncUnemp': 0.0, 'IncUnempRet': 0.0, 'BoroCnstArt':0.0, 'tax_rate':0.0, 'T_retire':0, 'MgridBase': np.array([0.1,0.3,0.6,0.8,0.9,0.98,1.0,1.02,1.1,1.2,1.6,2.0,3.0]), 'aNrmInitMean' : np.log(0.00001), 'aNrmInitStd' : 0.0, 'pLvlInitMean' : 0.0, 'pLvlInitStd' : 0.0, 'PermGroFacAgg' : 1.0, 'UpdatePrb' : 0.25, 'CapShare' : 0.36, 'T_age' : None, 'T_cycle' : 1, 'cycles' : 0, 'T_sim' : periods_to_sim } init_SOE_market = { 'PermShkAggCount': 3, 'TranShkAggCount': 3, 'PermShkAggStd': np.sqrt(0.00004), 'TranShkAggStd': np.sqrt(0.00001), 'DeprFac': 1.0 - 0.94**(0.25), 'CapShare': 0.36, 'Rfree': 1.014189682528173, 'wRte': 2.5895209258224536, 'act_T': periods_to_sim } init_DSGE_market = { 'PermShkAggCount': 7, 'TranShkAggCount': 7, 'PermShkAggStd': np.sqrt(0.00004), 'TranShkAggStd': np.sqrt(0.00001), 'DeprFac': 1.0 - 0.94**(0.25), 'CapShare': 0.36, 'CRRA': 2.0, 'DiscFac': 1.0/1.014189682528173, 'slope_prev': 1.0, 'intercept_prev': 0.0, 'kSS':12.0**(1.0/(1.0-0.36)), 'AggregateL': 1.0, 'ignore_periods':ignore_periods, 'tolerance':0.0001, 'act_T': periods_to_sim } # Make a small open economy and the consumers who live in it StickySOEconsumers = StickyEconsumerSOEType(**init_SOE_consumer) StickySOEconomy = SmallOpenEconomy(**init_SOE_market) StickySOEconomy.agents = [StickySOEconsumers] StickySOEconomy.makeAggShkHist() StickySOEconsumers.getEconomyData(StickySOEconomy) StickySOEconsumers.track_vars = ['aLvlNow','mNrmNow','cNrmNow','pLvlNow','pLvlErrNow'] # Solve the model and display some output StickySOEconomy.solveAgents() StickySOEconomy.makeHistory() # Plot some of the results cFunc = lambda m : StickySOEconsumers.solution[0].cFunc(m,np.ones_like(m)) plotFuncs(cFunc,0.0,20.0) plt.plot(np.mean(StickySOEconsumers.aLvlNow_hist,axis=1)) plt.show() plt.plot(np.mean(StickySOEconsumers.mNrmNow_hist*StickySOEconsumers.pLvlNow_hist,axis=1)) plt.show() plt.plot(np.mean(StickySOEconsumers.cNrmNow_hist*StickySOEconsumers.pLvlNow_hist,axis=1)) plt.show() plt.plot(np.mean(StickySOEconsumers.pLvlNow_hist,axis=1)) plt.plot(np.mean(StickySOEconsumers.pLvlErrNow_hist,axis=1)) plt.show() print('Average aggregate assets = ' + str(np.mean(StickySOEconsumers.aLvlNow_hist[ignore_periods:,:]))) print('Average aggregate consumption = ' + str(np.mean(StickySOEconsumers.cNrmNow_hist[ignore_periods:,:]*StickySOEconsumers.pLvlNow_hist[ignore_periods:,:]))) print('Standard deviation of log aggregate assets = ' + str(np.std(np.log(np.mean(StickySOEconsumers.aLvlNow_hist[ignore_periods:,:],axis=1))))) LogC = np.log(np.mean(StickySOEconsumers.cNrmNow_hist*StickySOEconsumers.pLvlNow_hist,axis=1))[ignore_periods:] DeltaLogC = LogC[1:] - LogC[0:-1] print('Standard deviation of change in log aggregate consumption = ' + str(np.std(DeltaLogC))) print('Standard deviation of log individual assets = ' + str(np.mean(np.std(np.log(StickySOEconsumers.aLvlNow_hist[ignore_periods:,:]),axis=1)))) print('Standard deviation of log individual consumption = ' + str(np.mean(np.std(np.log(StickySOEconsumers.cNrmNow_hist[ignore_periods:,:]*StickySOEconsumers.pLvlNow_hist[ignore_periods:,:]),axis=1)))) print('Standard deviation of log individual productivity = ' + str(np.mean(np.std(np.log(StickySOEconsumers.pLvlNow_hist[ignore_periods:,:]),axis=1)))) Logc = np.log(StickySOEconsumers.cNrmNow_hist*StickySOEconsumers.pLvlNow_hist)[ignore_periods:,:] DeltaLogc = Logc[1:,:] - Logc[0:-1,:] print('Standard deviation of change in log individual consumption = ' + str(np.mean(np.std(DeltaLogc,axis=1)))) # Make a Cobb Douglas economy and the representative agent who lives in it StickyDSGEconsumer = StickyEconsumerDSGEType(**init_DSGE_consumer) StickyDSGEeconomy = CobbDouglasEconomy(**init_DSGE_market) StickyDSGEeconomy.agents = [StickyDSGEconsumer] StickyDSGEeconomy.makeAggShkHist() StickyDSGEconsumer.getEconomyData(StickyDSGEeconomy) StickyDSGEconsumer.track_vars = ['aLvlNow','mNrmNow','cNrmNow','pLvlNow','pLvlErrNow'] # Test the solution StickyDSGEeconomy.solve() m_grid = np.linspace(0,10,200) for M in StickyDSGEconsumer.Mgrid.tolist(): c_at_this_M = StickyDSGEconsumer.solution[0].cFunc(m_grid,M*np.ones_like(m_grid)) plt.plot(m_grid,c_at_this_M) plt.show() print('Average aggregate assets = ' + str(np.mean(StickyDSGEconsumer.aLvlNow_hist[ignore_periods:,:]))) print('Average aggregate consumption = ' + str(np.mean(StickyDSGEconsumer.cNrmNow_hist[ignore_periods:,:]*StickyDSGEconsumer.pLvlNow_hist[ignore_periods:,:]))) print('Standard deviation of log aggregate assets = ' + str(np.std(np.log(StickyDSGEconsumer.aLvlNow_hist[ignore_periods:,:])))) LogC = np.log(np.mean(StickyDSGEconsumer.cNrmNow_hist*StickyDSGEconsumer.pLvlNow_hist,axis=1))[ignore_periods:] DeltaLogC = LogC[1:] - LogC[0:-1] print('Standard deviation of change in log aggregate consumption = ' + str(np.std(DeltaLogC)))
apache-2.0
victor-prado/broker-manager
environment/lib/python3.5/site-packages/pandas/tests/frame/test_apply.py
7
17403
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime import warnings import numpy as np from pandas import (notnull, DataFrame, Series, MultiIndex, date_range, Timestamp, compat) import pandas as pd from pandas.types.dtypes import CategoricalDtype from pandas.util.testing import (assert_series_equal, assert_frame_equal) import pandas.util.testing as tm from pandas.tests.frame.common import TestData class TestDataFrameApply(tm.TestCase, TestData): _multiprocess_can_split_ = True def test_apply(self): with np.errstate(all='ignore'): # ufunc applied = self.frame.apply(np.sqrt) assert_series_equal(np.sqrt(self.frame['A']), applied['A']) # aggregator applied = self.frame.apply(np.mean) self.assertEqual(applied['A'], np.mean(self.frame['A'])) d = self.frame.index[0] applied = self.frame.apply(np.mean, axis=1) self.assertEqual(applied[d], np.mean(self.frame.xs(d))) self.assertIs(applied.index, self.frame.index) # want this # invalid axis df = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=['a', 'a', 'c']) self.assertRaises(ValueError, df.apply, lambda x: x, 2) # GH9573 df = DataFrame({'c0': ['A', 'A', 'B', 'B'], 'c1': ['C', 'C', 'D', 'D']}) df = df.apply(lambda ts: ts.astype('category')) self.assertEqual(df.shape, (4, 2)) self.assertTrue(isinstance(df['c0'].dtype, CategoricalDtype)) self.assertTrue(isinstance(df['c1'].dtype, CategoricalDtype)) def test_apply_mixed_datetimelike(self): # mixed datetimelike # GH 7778 df = DataFrame({'A': date_range('20130101', periods=3), 'B': pd.to_timedelta(np.arange(3), unit='s')}) result = df.apply(lambda x: x, axis=1) assert_frame_equal(result, df) def test_apply_empty(self): # empty applied = self.empty.apply(np.sqrt) self.assertTrue(applied.empty) applied = self.empty.apply(np.mean) self.assertTrue(applied.empty) no_rows = self.frame[:0] result = no_rows.apply(lambda x: x.mean()) expected = Series(np.nan, index=self.frame.columns) assert_series_equal(result, expected) no_cols = self.frame.ix[:, []] result = no_cols.apply(lambda x: x.mean(), axis=1) expected = Series(np.nan, index=self.frame.index) assert_series_equal(result, expected) # 2476 xp = DataFrame(index=['a']) rs = xp.apply(lambda x: x['a'], axis=1) assert_frame_equal(xp, rs) # reduce with an empty DataFrame x = [] result = self.empty.apply(x.append, axis=1, reduce=False) assert_frame_equal(result, self.empty) result = self.empty.apply(x.append, axis=1, reduce=True) assert_series_equal(result, Series( [], index=pd.Index([], dtype=object))) empty_with_cols = DataFrame(columns=['a', 'b', 'c']) result = empty_with_cols.apply(x.append, axis=1, reduce=False) assert_frame_equal(result, empty_with_cols) result = empty_with_cols.apply(x.append, axis=1, reduce=True) assert_series_equal(result, Series( [], index=pd.Index([], dtype=object))) # Ensure that x.append hasn't been called self.assertEqual(x, []) def test_apply_standard_nonunique(self): df = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=['a', 'a', 'c']) rs = df.apply(lambda s: s[0], axis=1) xp = Series([1, 4, 7], ['a', 'a', 'c']) assert_series_equal(rs, xp) rs = df.T.apply(lambda s: s[0], axis=0) assert_series_equal(rs, xp) def test_apply_broadcast(self): broadcasted = self.frame.apply(np.mean, broadcast=True) agged = self.frame.apply(np.mean) for col, ts in compat.iteritems(broadcasted): self.assertTrue((ts == agged[col]).all()) broadcasted = self.frame.apply(np.mean, axis=1, broadcast=True) agged = self.frame.apply(np.mean, axis=1) for idx in broadcasted.index: self.assertTrue((broadcasted.xs(idx) == agged[idx]).all()) def test_apply_raw(self): result0 = self.frame.apply(np.mean, raw=True) result1 = self.frame.apply(np.mean, axis=1, raw=True) expected0 = self.frame.apply(lambda x: x.values.mean()) expected1 = self.frame.apply(lambda x: x.values.mean(), axis=1) assert_series_equal(result0, expected0) assert_series_equal(result1, expected1) # no reduction result = self.frame.apply(lambda x: x * 2, raw=True) expected = self.frame * 2 assert_frame_equal(result, expected) def test_apply_axis1(self): d = self.frame.index[0] tapplied = self.frame.apply(np.mean, axis=1) self.assertEqual(tapplied[d], np.mean(self.frame.xs(d))) def test_apply_ignore_failures(self): result = self.mixed_frame._apply_standard(np.mean, 0, ignore_failures=True) expected = self.mixed_frame._get_numeric_data().apply(np.mean) assert_series_equal(result, expected) def test_apply_mixed_dtype_corner(self): df = DataFrame({'A': ['foo'], 'B': [1.]}) result = df[:0].apply(np.mean, axis=1) # the result here is actually kind of ambiguous, should it be a Series # or a DataFrame? expected = Series(np.nan, index=pd.Index([], dtype='int64')) assert_series_equal(result, expected) df = DataFrame({'A': ['foo'], 'B': [1.]}) result = df.apply(lambda x: x['A'], axis=1) expected = Series(['foo'], index=[0]) assert_series_equal(result, expected) result = df.apply(lambda x: x['B'], axis=1) expected = Series([1.], index=[0]) assert_series_equal(result, expected) def test_apply_empty_infer_type(self): no_cols = DataFrame(index=['a', 'b', 'c']) no_index = DataFrame(columns=['a', 'b', 'c']) def _check(df, f): with warnings.catch_warnings(record=True): test_res = f(np.array([], dtype='f8')) is_reduction = not isinstance(test_res, np.ndarray) def _checkit(axis=0, raw=False): res = df.apply(f, axis=axis, raw=raw) if is_reduction: agg_axis = df._get_agg_axis(axis) tm.assertIsInstance(res, Series) self.assertIs(res.index, agg_axis) else: tm.assertIsInstance(res, DataFrame) _checkit() _checkit(axis=1) _checkit(raw=True) _checkit(axis=0, raw=True) with np.errstate(all='ignore'): _check(no_cols, lambda x: x) _check(no_cols, lambda x: x.mean()) _check(no_index, lambda x: x) _check(no_index, lambda x: x.mean()) result = no_cols.apply(lambda x: x.mean(), broadcast=True) tm.assertIsInstance(result, DataFrame) def test_apply_with_args_kwds(self): def add_some(x, howmuch=0): return x + howmuch def agg_and_add(x, howmuch=0): return x.mean() + howmuch def subtract_and_divide(x, sub, divide=1): return (x - sub) / divide result = self.frame.apply(add_some, howmuch=2) exp = self.frame.apply(lambda x: x + 2) assert_frame_equal(result, exp) result = self.frame.apply(agg_and_add, howmuch=2) exp = self.frame.apply(lambda x: x.mean() + 2) assert_series_equal(result, exp) res = self.frame.apply(subtract_and_divide, args=(2,), divide=2) exp = self.frame.apply(lambda x: (x - 2.) / 2.) assert_frame_equal(res, exp) def test_apply_yield_list(self): result = self.frame.apply(list) assert_frame_equal(result, self.frame) def test_apply_reduce_Series(self): self.frame.ix[::2, 'A'] = np.nan expected = self.frame.mean(1) result = self.frame.apply(np.mean, axis=1) assert_series_equal(result, expected) def test_apply_differently_indexed(self): df = DataFrame(np.random.randn(20, 10)) result0 = df.apply(Series.describe, axis=0) expected0 = DataFrame(dict((i, v.describe()) for i, v in compat.iteritems(df)), columns=df.columns) assert_frame_equal(result0, expected0) result1 = df.apply(Series.describe, axis=1) expected1 = DataFrame(dict((i, v.describe()) for i, v in compat.iteritems(df.T)), columns=df.index).T assert_frame_equal(result1, expected1) def test_apply_modify_traceback(self): data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) data.loc[4, 'C'] = np.nan def transform(row): if row['C'].startswith('shin') and row['A'] == 'foo': row['D'] = 7 return row def transform2(row): if (notnull(row['C']) and row['C'].startswith('shin') and row['A'] == 'foo'): row['D'] = 7 return row try: transformed = data.apply(transform, axis=1) # noqa except AttributeError as e: self.assertEqual(len(e.args), 2) self.assertEqual(e.args[1], 'occurred at index 4') self.assertEqual( e.args[0], "'float' object has no attribute 'startswith'") def test_apply_bug(self): # GH 6125 positions = pd.DataFrame([[1, 'ABC0', 50], [1, 'YUM0', 20], [1, 'DEF0', 20], [2, 'ABC1', 50], [2, 'YUM1', 20], [2, 'DEF1', 20]], columns=['a', 'market', 'position']) def f(r): return r['market'] expected = positions.apply(f, axis=1) positions = DataFrame([[datetime(2013, 1, 1), 'ABC0', 50], [datetime(2013, 1, 2), 'YUM0', 20], [datetime(2013, 1, 3), 'DEF0', 20], [datetime(2013, 1, 4), 'ABC1', 50], [datetime(2013, 1, 5), 'YUM1', 20], [datetime(2013, 1, 6), 'DEF1', 20]], columns=['a', 'market', 'position']) result = positions.apply(f, axis=1) assert_series_equal(result, expected) def test_apply_convert_objects(self): data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) result = data.apply(lambda x: x, axis=1) assert_frame_equal(result._convert(datetime=True), data) def test_apply_attach_name(self): result = self.frame.apply(lambda x: x.name) expected = Series(self.frame.columns, index=self.frame.columns) assert_series_equal(result, expected) result = self.frame.apply(lambda x: x.name, axis=1) expected = Series(self.frame.index, index=self.frame.index) assert_series_equal(result, expected) # non-reductions result = self.frame.apply(lambda x: np.repeat(x.name, len(x))) expected = DataFrame(np.tile(self.frame.columns, (len(self.frame.index), 1)), index=self.frame.index, columns=self.frame.columns) assert_frame_equal(result, expected) result = self.frame.apply(lambda x: np.repeat(x.name, len(x)), axis=1) expected = DataFrame(np.tile(self.frame.index, (len(self.frame.columns), 1)).T, index=self.frame.index, columns=self.frame.columns) assert_frame_equal(result, expected) def test_apply_multi_index(self): s = DataFrame([[1, 2], [3, 4], [5, 6]]) s.index = MultiIndex.from_arrays([['a', 'a', 'b'], ['c', 'd', 'd']]) s.columns = ['col1', 'col2'] res = s.apply(lambda x: Series({'min': min(x), 'max': max(x)}), 1) tm.assertIsInstance(res.index, MultiIndex) def test_apply_dict(self): # GH 8735 A = DataFrame([['foo', 'bar'], ['spam', 'eggs']]) A_dicts = pd.Series([dict([(0, 'foo'), (1, 'spam')]), dict([(0, 'bar'), (1, 'eggs')])]) B = DataFrame([[0, 1], [2, 3]]) B_dicts = pd.Series([dict([(0, 0), (1, 2)]), dict([(0, 1), (1, 3)])]) fn = lambda x: x.to_dict() for df, dicts in [(A, A_dicts), (B, B_dicts)]: reduce_true = df.apply(fn, reduce=True) reduce_false = df.apply(fn, reduce=False) reduce_none = df.apply(fn, reduce=None) assert_series_equal(reduce_true, dicts) assert_frame_equal(reduce_false, df) assert_series_equal(reduce_none, dicts) def test_applymap(self): applied = self.frame.applymap(lambda x: x * 2) assert_frame_equal(applied, self.frame * 2) result = self.frame.applymap(type) # GH #465, function returning tuples result = self.frame.applymap(lambda x: (x, x)) tm.assertIsInstance(result['A'][0], tuple) # GH 2909, object conversion to float in constructor? df = DataFrame(data=[1, 'a']) result = df.applymap(lambda x: x) self.assertEqual(result.dtypes[0], object) df = DataFrame(data=[1., 'a']) result = df.applymap(lambda x: x) self.assertEqual(result.dtypes[0], object) # GH2786 df = DataFrame(np.random.random((3, 4))) df2 = df.copy() cols = ['a', 'a', 'a', 'a'] df.columns = cols expected = df2.applymap(str) expected.columns = cols result = df.applymap(str) assert_frame_equal(result, expected) # datetime/timedelta df['datetime'] = Timestamp('20130101') df['timedelta'] = pd.Timedelta('1 min') result = df.applymap(str) for f in ['datetime', 'timedelta']: self.assertEqual(result.loc[0, f], str(df.loc[0, f])) def test_applymap_box(self): # ufunc will not be boxed. Same test cases as the test_map_box df = pd.DataFrame({'a': [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-01-02')], 'b': [pd.Timestamp('2011-01-01', tz='US/Eastern'), pd.Timestamp('2011-01-02', tz='US/Eastern')], 'c': [pd.Timedelta('1 days'), pd.Timedelta('2 days')], 'd': [pd.Period('2011-01-01', freq='M'), pd.Period('2011-01-02', freq='M')]}) res = df.applymap(lambda x: '{0}'.format(x.__class__.__name__)) exp = pd.DataFrame({'a': ['Timestamp', 'Timestamp'], 'b': ['Timestamp', 'Timestamp'], 'c': ['Timedelta', 'Timedelta'], 'd': ['Period', 'Period']}) tm.assert_frame_equal(res, exp) # See gh-12244 def test_apply_non_numpy_dtype(self): df = DataFrame({'dt': pd.date_range( "2015-01-01", periods=3, tz='Europe/Brussels')}) result = df.apply(lambda x: x) assert_frame_equal(result, df) result = df.apply(lambda x: x + pd.Timedelta('1day')) expected = DataFrame({'dt': pd.date_range( "2015-01-02", periods=3, tz='Europe/Brussels')}) assert_frame_equal(result, expected) df = DataFrame({'dt': ['a', 'b', 'c', 'a']}, dtype='category') result = df.apply(lambda x: x) assert_frame_equal(result, df)
mit
stefanseibert/DataMining
experiment01/01_finance/b102_stockMarketPrediction.py
2
3650
# -*- coding:utf8 -*- # author: Stefan Seibert # File for task 3.1.2 import pandas as pd from matplotlib import pyplot as plt from sklearn import svm pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) def getmae(actual, predicted): return sum(abs(actual - predicted))/len(actual) def getmodel(daysUsedForEstimation, dataframe): columnnames = ["T-" + str(r) for r in range(daysUsedForEstimation, 0, -1)] #excluding the zero model = pd.DataFrame(columns=columnnames).T # having a list of days with values before the actual day, for everyday target = pd.Series() #a list of the values that the value really has normally for currentCalculatedDay in range(0, len(dataframe.index)-daysUsedForEstimation): model[currentCalculatedDay] = dataframe[currentCalculatedDay: currentCalculatedDay + daysUsedForEstimation].values target.set_value(currentCalculatedDay, dataframe[currentCalculatedDay + daysUsedForEstimation]) model = model.T return model, target; # reading in the csv file into a pandas dataframe dataFrame = pd.DataFrame().from_csv("effectiveRates.csv") # plotting the courses from sony, canon, cisco, hewlett-packard and yahoo plt.figure("compartment of different companies") plt.plot(dataFrame.index, dataFrame["SNE"], "bo-", color="c", ms=2, label="Sony") plt.plot(dataFrame.index, dataFrame["CAJ"], "bo-", color="m", ms=2, label="Canon") plt.plot(dataFrame.index, dataFrame["CSCO"], "bo-", color="r", ms=2, label="Cisco") plt.plot(dataFrame.index, dataFrame["HPQ"], "bo-", color="g", ms=2, label="Hewlett-Packard") plt.plot(dataFrame.index, dataFrame["YHOO"], "bo-", color="b", ms=2, label="Yahoo") plt.legend(bbox_to_anchor=(1.05, 1), loc=2) plt.ylabel("prices") plt.xlabel("time") plt.grid() # Script Variables, change them for different behaviour TRAININGS_TIME = 650 PREDICTION_TIME = 30 TIME_DELAY = 24 C_VALUE = 0.5 EPSILON_VALUE = 0.06 # getting model and target model, target = getmodel(TIME_DELAY, dataFrame["YHOO"]) # defining the learning period trainData = model[:TRAININGS_TIME+1] trainDataTargets = target[:TRAININGS_TIME+1] predictionData = model[TRAININGS_TIME+1:TRAININGS_TIME+PREDICTION_TIME+1] # fitting the SVR to our data svr = svm.SVR(kernel="rbf", C=C_VALUE, epsilon=EPSILON_VALUE) svr.fit(trainData, trainDataTargets) forecastValues = [] predictedValues = svr.predict(trainData) for i in range(0, PREDICTION_TIME): forecastValue = svr.predict(predictionData[i:i+1]) forecastValue = forecastValue[0] forecastValues.append(forecastValue) pd.set_option('mode.chained_assignment', 'warn') for y in range(1, TIME_DELAY+1): predictionData.loc[i+y+TRAININGS_TIME, "T-"+str(y)] = forecastValue forecastValues = pd.Series(forecastValues, index = dataFrame["YHOO"][TRAININGS_TIME+TIME_DELAY+1:TRAININGS_TIME+TIME_DELAY+PREDICTION_TIME+1].index) mae = getmae(dataFrame["YHOO"][TRAININGS_TIME+TIME_DELAY+1:TRAININGS_TIME+TIME_DELAY+PREDICTION_TIME+1], forecastValues) print "Mean Absolute Error: " + str(mae) + ", C = " + str(C_VALUE) + ", epsilon = " + str(EPSILON_VALUE) + ", delay = " + str(TIME_DELAY) plt.figure("Yahoo Stock Prediction") plt.plot(dataFrame.index, dataFrame["YHOO"], "b", color="b", ms=2, label="real") plt.plot(dataFrame.index[TIME_DELAY:TRAININGS_TIME+TIME_DELAY+1], predictedValues, "bo-", color="g", ms=2, label="predict") plt.plot(dataFrame.index[TRAININGS_TIME+TIME_DELAY+1:TRAININGS_TIME+TIME_DELAY+PREDICTION_TIME+1], forecastValues, "bo-", color="r", ms=2, label="forecast") plt.legend(bbox_to_anchor=(1.05, 1), loc=2) plt.ylabel("prices") plt.xlabel("time") plt.grid() plt.show()
mit
kdebrab/pandas
pandas/core/reshape/pivot.py
1
21107
# pylint: disable=E1103 from pandas.core.dtypes.common import ( is_list_like, is_scalar, is_integer_dtype) from pandas.core.dtypes.generic import ABCDataFrame, ABCSeries from pandas.core.dtypes.cast import maybe_downcast_to_dtype from pandas.core.reshape.concat import concat from pandas.core.series import Series from pandas.core.groupby import Grouper from pandas.core.reshape.util import cartesian_product from pandas.core.index import Index, _get_objs_combined_axis from pandas.compat import range, lrange, zip from pandas import compat import pandas.core.common as com from pandas.util._decorators import Appender, Substitution from pandas.core.frame import _shared_docs # Note: We need to make sure `frame` is imported before `pivot`, otherwise # _shared_docs['pivot_table'] will not yet exist. TODO: Fix this dependency import numpy as np @Substitution('\ndata : DataFrame') @Appender(_shared_docs['pivot_table'], indents=1) def pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All'): index = _convert_by(index) columns = _convert_by(columns) if isinstance(aggfunc, list): pieces = [] keys = [] for func in aggfunc: table = pivot_table(data, values=values, index=index, columns=columns, fill_value=fill_value, aggfunc=func, margins=margins, margins_name=margins_name) pieces.append(table) keys.append(getattr(func, '__name__', func)) return concat(pieces, keys=keys, axis=1) keys = index + columns values_passed = values is not None if values_passed: if is_list_like(values): values_multi = True values = list(values) else: values_multi = False values = [values] # GH14938 Make sure value labels are in data for i in values: if i not in data: raise KeyError(i) to_filter = [] for x in keys + values: if isinstance(x, Grouper): x = x.key try: if x in data: to_filter.append(x) except TypeError: pass if len(to_filter) < len(data.columns): data = data[to_filter] else: values = data.columns for key in keys: try: values = values.drop(key) except (TypeError, ValueError, KeyError): pass values = list(values) # group by the cartesian product of the grouper # if we have a categorical grouped = data.groupby(keys, observed=False) agged = grouped.agg(aggfunc) if dropna and isinstance(agged, ABCDataFrame) and len(agged.columns): agged = agged.dropna(how='all') # gh-21133 # we want to down cast if # the original values are ints # as we grouped with a NaN value # and then dropped, coercing to floats for v in [v for v in values if v in data and v in agged]: if (is_integer_dtype(data[v]) and not is_integer_dtype(agged[v])): agged[v] = maybe_downcast_to_dtype(agged[v], data[v].dtype) table = agged if table.index.nlevels > 1: # Related GH #17123 # If index_names are integers, determine whether the integers refer # to the level position or name. index_names = agged.index.names[:len(index)] to_unstack = [] for i in range(len(index), len(keys)): name = agged.index.names[i] if name is None or name in index_names: to_unstack.append(i) else: to_unstack.append(name) table = agged.unstack(to_unstack) if not dropna: from pandas import MultiIndex if table.index.nlevels > 1: m = MultiIndex.from_arrays(cartesian_product(table.index.levels), names=table.index.names) table = table.reindex(m, axis=0) if table.columns.nlevels > 1: m = MultiIndex.from_arrays(cartesian_product(table.columns.levels), names=table.columns.names) table = table.reindex(m, axis=1) if isinstance(table, ABCDataFrame): table = table.sort_index(axis=1) if fill_value is not None: table = table.fillna(value=fill_value, downcast='infer') if margins: if dropna: data = data[data.notna().all(axis=1)] table = _add_margins(table, data, values, rows=index, cols=columns, aggfunc=aggfunc, observed=dropna, margins_name=margins_name, fill_value=fill_value) # discard the top level if values_passed and not values_multi and not table.empty and \ (table.columns.nlevels > 1): table = table[values[0]] if len(index) == 0 and len(columns) > 0: table = table.T # GH 15193 Make sure empty columns are removed if dropna=True if isinstance(table, ABCDataFrame) and dropna: table = table.dropna(how='all', axis=1) return table def _add_margins(table, data, values, rows, cols, aggfunc, observed=None, margins_name='All', fill_value=None): if not isinstance(margins_name, compat.string_types): raise ValueError('margins_name argument must be a string') msg = u'Conflicting name "{name}" in margins'.format(name=margins_name) for level in table.index.names: if margins_name in table.index.get_level_values(level): raise ValueError(msg) grand_margin = _compute_grand_margin(data, values, aggfunc, margins_name) # could be passed a Series object with no 'columns' if hasattr(table, 'columns'): for level in table.columns.names[1:]: if margins_name in table.columns.get_level_values(level): raise ValueError(msg) if len(rows) > 1: key = (margins_name,) + ('',) * (len(rows) - 1) else: key = margins_name if not values and isinstance(table, ABCSeries): # If there are no values and the table is a series, then there is only # one column in the data. Compute grand margin and return it. return table.append(Series({key: grand_margin[margins_name]})) if values: marginal_result_set = _generate_marginal_results(table, data, values, rows, cols, aggfunc, observed, grand_margin, margins_name) if not isinstance(marginal_result_set, tuple): return marginal_result_set result, margin_keys, row_margin = marginal_result_set else: marginal_result_set = _generate_marginal_results_without_values( table, data, rows, cols, aggfunc, observed, margins_name) if not isinstance(marginal_result_set, tuple): return marginal_result_set result, margin_keys, row_margin = marginal_result_set row_margin = row_margin.reindex(result.columns, fill_value=fill_value) # populate grand margin for k in margin_keys: if isinstance(k, compat.string_types): row_margin[k] = grand_margin[k] else: row_margin[k] = grand_margin[k[0]] from pandas import DataFrame margin_dummy = DataFrame(row_margin, columns=[key]).T row_names = result.index.names try: for dtype in set(result.dtypes): cols = result.select_dtypes([dtype]).columns margin_dummy[cols] = margin_dummy[cols].astype(dtype) result = result.append(margin_dummy) except TypeError: # we cannot reshape, so coerce the axis result.index = result.index._to_safe_for_reshape() result = result.append(margin_dummy) result.index.names = row_names return result def _compute_grand_margin(data, values, aggfunc, margins_name='All'): if values: grand_margin = {} for k, v in data[values].iteritems(): try: if isinstance(aggfunc, compat.string_types): grand_margin[k] = getattr(v, aggfunc)() elif isinstance(aggfunc, dict): if isinstance(aggfunc[k], compat.string_types): grand_margin[k] = getattr(v, aggfunc[k])() else: grand_margin[k] = aggfunc[k](v) else: grand_margin[k] = aggfunc(v) except TypeError: pass return grand_margin else: return {margins_name: aggfunc(data.index)} def _generate_marginal_results(table, data, values, rows, cols, aggfunc, observed, grand_margin, margins_name='All'): if len(cols) > 0: # need to "interleave" the margins table_pieces = [] margin_keys = [] def _all_key(key): return (key, margins_name) + ('',) * (len(cols) - 1) if len(rows) > 0: margin = data[rows + values].groupby( rows, observed=observed).agg(aggfunc) cat_axis = 1 for key, piece in table.groupby(level=0, axis=cat_axis, observed=observed): all_key = _all_key(key) # we are going to mutate this, so need to copy! piece = piece.copy() try: piece[all_key] = margin[key] except TypeError: # we cannot reshape, so coerce the axis piece.set_axis(piece._get_axis( cat_axis)._to_safe_for_reshape(), axis=cat_axis, inplace=True) piece[all_key] = margin[key] table_pieces.append(piece) margin_keys.append(all_key) else: margin = grand_margin cat_axis = 0 for key, piece in table.groupby(level=0, axis=cat_axis, observed=observed): all_key = _all_key(key) table_pieces.append(piece) table_pieces.append(Series(margin[key], index=[all_key])) margin_keys.append(all_key) result = concat(table_pieces, axis=cat_axis) if len(rows) == 0: return result else: result = table margin_keys = table.columns if len(cols) > 0: row_margin = data[cols + values].groupby( cols, observed=observed).agg(aggfunc) row_margin = row_margin.stack() # slight hack new_order = [len(cols)] + lrange(len(cols)) row_margin.index = row_margin.index.reorder_levels(new_order) else: row_margin = Series(np.nan, index=result.columns) return result, margin_keys, row_margin def _generate_marginal_results_without_values( table, data, rows, cols, aggfunc, observed, margins_name='All'): if len(cols) > 0: # need to "interleave" the margins margin_keys = [] def _all_key(): if len(cols) == 1: return margins_name return (margins_name, ) + ('', ) * (len(cols) - 1) if len(rows) > 0: margin = data[rows].groupby(rows, observed=observed).apply(aggfunc) all_key = _all_key() table[all_key] = margin result = table margin_keys.append(all_key) else: margin = data.groupby(level=0, axis=0, observed=observed).apply(aggfunc) all_key = _all_key() table[all_key] = margin result = table margin_keys.append(all_key) return result else: result = table margin_keys = table.columns if len(cols): row_margin = data[cols].groupby(cols, observed=observed).apply(aggfunc) else: row_margin = Series(np.nan, index=result.columns) return result, margin_keys, row_margin def _convert_by(by): if by is None: by = [] elif (is_scalar(by) or isinstance(by, (np.ndarray, Index, ABCSeries, Grouper)) or hasattr(by, '__call__')): by = [by] else: by = list(by) return by def crosstab(index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, margins_name='All', dropna=True, normalize=False): """ Compute a simple cross-tabulation of two (or more) factors. By default computes a frequency table of the factors unless an array of values and an aggregation function are passed Parameters ---------- index : array-like, Series, or list of arrays/Series Values to group by in the rows columns : array-like, Series, or list of arrays/Series Values to group by in the columns values : array-like, optional Array of values to aggregate according to the factors. Requires `aggfunc` be specified. aggfunc : function, optional If specified, requires `values` be specified as well rownames : sequence, default None If passed, must match number of row arrays passed colnames : sequence, default None If passed, must match number of column arrays passed margins : boolean, default False Add row/column margins (subtotals) margins_name : string, default 'All' Name of the row / column that will contain the totals when margins is True. .. versionadded:: 0.21.0 dropna : boolean, default True Do not include columns whose entries are all NaN normalize : boolean, {'all', 'index', 'columns'}, or {0,1}, default False Normalize by dividing all values by the sum of values. - If passed 'all' or `True`, will normalize over all values. - If passed 'index' will normalize over each row. - If passed 'columns' will normalize over each column. - If margins is `True`, will also normalize margin values. .. versionadded:: 0.18.1 Notes ----- Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are specified. Any input passed containing Categorical data will have **all** of its categories included in the cross-tabulation, even if the actual data does not contain any instances of a particular category. In the event that there aren't overlapping indexes an empty DataFrame will be returned. Examples -------- >>> a = np.array(["foo", "foo", "foo", "foo", "bar", "bar", ... "bar", "bar", "foo", "foo", "foo"], dtype=object) >>> b = np.array(["one", "one", "one", "two", "one", "one", ... "one", "two", "two", "two", "one"], dtype=object) >>> c = np.array(["dull", "dull", "shiny", "dull", "dull", "shiny", ... "shiny", "dull", "shiny", "shiny", "shiny"], ... dtype=object) >>> pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c']) ... # doctest: +NORMALIZE_WHITESPACE b one two c dull shiny dull shiny a bar 1 2 1 0 foo 2 2 1 2 >>> foo = pd.Categorical(['a', 'b'], categories=['a', 'b', 'c']) >>> bar = pd.Categorical(['d', 'e'], categories=['d', 'e', 'f']) >>> crosstab(foo, bar) # 'c' and 'f' are not represented in the data, # and will not be shown in the output because # dropna is True by default. Set 'dropna=False' # to preserve categories with no data ... # doctest: +SKIP col_0 d e row_0 a 1 0 b 0 1 >>> crosstab(foo, bar, dropna=False) # 'c' and 'f' are not represented # in the data, but they still will be counted # and shown in the output ... # doctest: +SKIP col_0 d e f row_0 a 1 0 0 b 0 1 0 c 0 0 0 Returns ------- crosstab : DataFrame """ index = com._maybe_make_list(index) columns = com._maybe_make_list(columns) rownames = _get_names(index, rownames, prefix='row') colnames = _get_names(columns, colnames, prefix='col') common_idx = _get_objs_combined_axis(index + columns, intersect=True, sort=False) data = {} data.update(zip(rownames, index)) data.update(zip(colnames, columns)) if values is None and aggfunc is not None: raise ValueError("aggfunc cannot be used without values.") if values is not None and aggfunc is None: raise ValueError("values cannot be used without an aggfunc.") from pandas import DataFrame df = DataFrame(data, index=common_idx) if values is None: df['__dummy__'] = 0 kwargs = {'aggfunc': len, 'fill_value': 0} else: df['__dummy__'] = values kwargs = {'aggfunc': aggfunc} table = df.pivot_table('__dummy__', index=rownames, columns=colnames, margins=margins, margins_name=margins_name, dropna=dropna, **kwargs) # Post-process if normalize is not False: table = _normalize(table, normalize=normalize, margins=margins, margins_name=margins_name) return table def _normalize(table, normalize, margins, margins_name='All'): if not isinstance(normalize, bool) and not isinstance(normalize, compat.string_types): axis_subs = {0: 'index', 1: 'columns'} try: normalize = axis_subs[normalize] except KeyError: raise ValueError("Not a valid normalize argument") if margins is False: # Actual Normalizations normalizers = { 'all': lambda x: x / x.sum(axis=1).sum(axis=0), 'columns': lambda x: x / x.sum(), 'index': lambda x: x.div(x.sum(axis=1), axis=0) } normalizers[True] = normalizers['all'] try: f = normalizers[normalize] except KeyError: raise ValueError("Not a valid normalize argument") table = f(table) table = table.fillna(0) elif margins is True: column_margin = table.loc[:, margins_name].drop(margins_name) index_margin = table.loc[margins_name, :].drop(margins_name) table = table.drop(margins_name, axis=1).drop(margins_name) # to keep index and columns names table_index_names = table.index.names table_columns_names = table.columns.names # Normalize core table = _normalize(table, normalize=normalize, margins=False) # Fix Margins if normalize == 'columns': column_margin = column_margin / column_margin.sum() table = concat([table, column_margin], axis=1) table = table.fillna(0) elif normalize == 'index': index_margin = index_margin / index_margin.sum() table = table.append(index_margin) table = table.fillna(0) elif normalize == "all" or normalize is True: column_margin = column_margin / column_margin.sum() index_margin = index_margin / index_margin.sum() index_margin.loc[margins_name] = 1 table = concat([table, column_margin], axis=1) table = table.append(index_margin) table = table.fillna(0) else: raise ValueError("Not a valid normalize argument") table.index.names = table_index_names table.columns.names = table_columns_names else: raise ValueError("Not a valid margins argument") return table def _get_names(arrs, names, prefix='row'): if names is None: names = [] for i, arr in enumerate(arrs): if isinstance(arr, ABCSeries) and arr.name is not None: names.append(arr.name) else: names.append('{prefix}_{i}'.format(prefix=prefix, i=i)) else: if len(names) != len(arrs): raise AssertionError('arrays and names must have the same length') if not isinstance(names, list): names = list(names) return names
bsd-3-clause
andyraib/data-storage
python_scripts/env/lib/python3.6/site-packages/pandas/tseries/period.py
7
40636
# pylint: disable=E1101,E1103,W0232 from datetime import datetime, timedelta import numpy as np import warnings from pandas.core import common as com from pandas.types.common import (is_integer, is_float, is_object_dtype, is_integer_dtype, is_float_dtype, is_scalar, is_datetime64_dtype, is_datetime64tz_dtype, is_timedelta64_dtype, is_period_dtype, is_bool_dtype, pandas_dtype, _ensure_int64, _ensure_object) from pandas.types.dtypes import PeriodDtype from pandas.types.generic import ABCSeries import pandas.tseries.frequencies as frequencies from pandas.tseries.frequencies import get_freq_code as _gfc from pandas.tseries.index import DatetimeIndex, Int64Index, Index from pandas.tseries.tdi import TimedeltaIndex from pandas.tseries.base import DatelikeOps, DatetimeIndexOpsMixin from pandas.tseries.tools import parse_time_string import pandas.tseries.offsets as offsets import pandas._period as period from pandas._period import (Period, IncompatibleFrequency, get_period_field_arr, _validate_end_alias, _quarter_to_myear) from pandas.core.base import _shared_docs from pandas.indexes.base import _index_shared_docs, _ensure_index from pandas import compat from pandas.util.decorators import Appender, cache_readonly, Substitution from pandas.lib import infer_dtype import pandas.tslib as tslib from pandas.compat import zip, u def _field_accessor(name, alias, docstring=None): def f(self): base, mult = _gfc(self.freq) return get_period_field_arr(alias, self._values, base) f.__name__ = name f.__doc__ = docstring return property(f) def dt64arr_to_periodarr(data, freq, tz): if data.dtype != np.dtype('M8[ns]'): raise ValueError('Wrong dtype: %s' % data.dtype) freq = Period._maybe_convert_freq(freq) base, mult = _gfc(freq) return period.dt64arr_to_periodarr(data.view('i8'), base, tz) # --- Period index sketch _DIFFERENT_FREQ_INDEX = period._DIFFERENT_FREQ_INDEX def _period_index_cmp(opname, nat_result=False): """ Wrap comparison operations to convert datetime-like to datetime64 """ def wrapper(self, other): if isinstance(other, Period): func = getattr(self._values, opname) other_base, _ = _gfc(other.freq) if other.freq != self.freq: msg = _DIFFERENT_FREQ_INDEX.format(self.freqstr, other.freqstr) raise IncompatibleFrequency(msg) result = func(other.ordinal) elif isinstance(other, PeriodIndex): if other.freq != self.freq: msg = _DIFFERENT_FREQ_INDEX.format(self.freqstr, other.freqstr) raise IncompatibleFrequency(msg) result = getattr(self._values, opname)(other._values) mask = self._isnan | other._isnan if mask.any(): result[mask] = nat_result return result elif other is tslib.NaT: result = np.empty(len(self._values), dtype=bool) result.fill(nat_result) else: other = Period(other, freq=self.freq) func = getattr(self._values, opname) result = func(other.ordinal) if self.hasnans: result[self._isnan] = nat_result return result return wrapper class PeriodIndex(DatelikeOps, DatetimeIndexOpsMixin, Int64Index): """ Immutable ndarray holding ordinal values indicating regular periods in time such as particular years, quarters, months, etc. A value of 1 is the period containing the Gregorian proleptic datetime Jan 1, 0001 00:00:00. This ordinal representation is from the scikits.timeseries project. For instance, # construct period for day 1/1/1 and get the first second i = Period(year=1,month=1,day=1,freq='D').asfreq('S', 'S') i.ordinal ===> 1 Index keys are boxed to Period objects which carries the metadata (eg, frequency information). Parameters ---------- data : array-like (1-dimensional), optional Optional period-like data to construct index with copy : bool Make a copy of input ndarray freq : string or period object, optional One of pandas period strings or corresponding objects start : starting value, period-like, optional If data is None, used as the start point in generating regular period data. periods : int, optional, > 0 Number of periods to generate, if generating index. Takes precedence over end argument end : end value, period-like, optional If periods is none, generated index will extend to first conforming period on or just past end argument year : int, array, or Series, default None month : int, array, or Series, default None quarter : int, array, or Series, default None day : int, array, or Series, default None hour : int, array, or Series, default None minute : int, array, or Series, default None second : int, array, or Series, default None tz : object, default None Timezone for converting datetime64 data to Periods dtype : str or PeriodDtype, default None Examples -------- >>> idx = PeriodIndex(year=year_arr, quarter=q_arr) >>> idx2 = PeriodIndex(start='2000', end='2010', freq='A') """ _box_scalars = True _typ = 'periodindex' _attributes = ['name', 'freq'] _datetimelike_ops = ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'weekday', 'dayofyear', 'quarter', 'qyear', 'freq', 'days_in_month', 'daysinmonth', 'to_timestamp', 'asfreq', 'start_time', 'end_time', 'is_leap_year'] _is_numeric_dtype = False _infer_as_myclass = True freq = None __eq__ = _period_index_cmp('__eq__') __ne__ = _period_index_cmp('__ne__', nat_result=True) __lt__ = _period_index_cmp('__lt__') __gt__ = _period_index_cmp('__gt__') __le__ = _period_index_cmp('__le__') __ge__ = _period_index_cmp('__ge__') def __new__(cls, data=None, ordinal=None, freq=None, start=None, end=None, periods=None, copy=False, name=None, tz=None, dtype=None, **kwargs): if periods is not None: if is_float(periods): periods = int(periods) elif not is_integer(periods): raise ValueError('Periods must be a number, got %s' % str(periods)) if name is None and hasattr(data, 'name'): name = data.name if dtype is not None: dtype = pandas_dtype(dtype) if not is_period_dtype(dtype): raise ValueError('dtype must be PeriodDtype') if freq is None: freq = dtype.freq elif freq != dtype.freq: msg = 'specified freq and dtype are different' raise IncompatibleFrequency(msg) if data is None: if ordinal is not None: data = np.asarray(ordinal, dtype=np.int64) else: data, freq = cls._generate_range(start, end, periods, freq, kwargs) else: ordinal, freq = cls._from_arraylike(data, freq, tz) data = np.array(ordinal, dtype=np.int64, copy=copy) return cls._simple_new(data, name=name, freq=freq) @classmethod def _generate_range(cls, start, end, periods, freq, fields): if freq is not None: freq = Period._maybe_convert_freq(freq) field_count = len(fields) if com._count_not_none(start, end) > 0: if field_count > 0: raise ValueError('Can either instantiate from fields ' 'or endpoints, but not both') subarr, freq = _get_ordinal_range(start, end, periods, freq) elif field_count > 0: subarr, freq = _range_from_fields(freq=freq, **fields) else: raise ValueError('Not enough parameters to construct ' 'Period range') return subarr, freq @classmethod def _from_arraylike(cls, data, freq, tz): if freq is not None: freq = Period._maybe_convert_freq(freq) if not isinstance(data, (np.ndarray, PeriodIndex, DatetimeIndex, Int64Index)): if is_scalar(data) or isinstance(data, Period): raise ValueError('PeriodIndex() must be called with a ' 'collection of some kind, %s was passed' % repr(data)) # other iterable of some kind if not isinstance(data, (list, tuple)): data = list(data) try: data = _ensure_int64(data) if freq is None: raise ValueError('freq not specified') data = np.array([Period(x, freq=freq) for x in data], dtype=np.int64) except (TypeError, ValueError): data = _ensure_object(data) if freq is None: freq = period.extract_freq(data) data = period.extract_ordinals(data, freq) else: if isinstance(data, PeriodIndex): if freq is None or freq == data.freq: freq = data.freq data = data._values else: base1, _ = _gfc(data.freq) base2, _ = _gfc(freq) data = period.period_asfreq_arr(data._values, base1, base2, 1) else: if is_object_dtype(data): inferred = infer_dtype(data) if inferred == 'integer': data = data.astype(np.int64) if freq is None and is_object_dtype(data): # must contain Period instance and thus extract ordinals freq = period.extract_freq(data) data = period.extract_ordinals(data, freq) if freq is None: msg = 'freq not specified and cannot be inferred' raise ValueError(msg) if data.dtype != np.int64: if np.issubdtype(data.dtype, np.datetime64): data = dt64arr_to_periodarr(data, freq, tz) else: data = _ensure_object(data) data = period.extract_ordinals(data, freq) return data, freq @classmethod def _simple_new(cls, values, name=None, freq=None, **kwargs): if not is_integer_dtype(values): values = np.array(values, copy=False) if (len(values) > 0 and is_float_dtype(values)): raise TypeError("PeriodIndex can't take floats") else: return cls(values, name=name, freq=freq, **kwargs) values = np.array(values, dtype='int64', copy=False) result = object.__new__(cls) result._data = values result.name = name if freq is None: raise ValueError('freq is not specified') result.freq = Period._maybe_convert_freq(freq) result._reset_identity() return result def _shallow_copy_with_infer(self, values=None, **kwargs): """ we always want to return a PeriodIndex """ return self._shallow_copy(values=values, **kwargs) def _shallow_copy(self, values=None, **kwargs): if kwargs.get('freq') is None: # freq must be provided kwargs['freq'] = self.freq if values is None: values = self._values return super(PeriodIndex, self)._shallow_copy(values=values, **kwargs) def _coerce_scalar_to_index(self, item): """ we need to coerce a scalar to a compat for our index type Parameters ---------- item : scalar item to coerce """ return PeriodIndex([item], **self._get_attributes_dict()) def __contains__(self, key): if isinstance(key, Period): if key.freq != self.freq: return False else: return key.ordinal in self._engine else: try: self.get_loc(key) return True except Exception: return False return False @property def asi8(self): return self._values.view('i8') @cache_readonly def _int64index(self): return Int64Index(self.asi8, name=self.name, fastpath=True) @property def values(self): return self.asobject.values @property def _values(self): return self._data def __array__(self, dtype=None): if is_integer_dtype(dtype): return self.asi8 else: return self.asobject.values def __array_wrap__(self, result, context=None): """ Gets called after a ufunc. Needs additional handling as PeriodIndex stores internal data as int dtype Replace this to __numpy_ufunc__ in future version """ if isinstance(context, tuple) and len(context) > 0: func = context[0] if (func is np.add): pass elif (func is np.subtract): name = self.name left = context[1][0] right = context[1][1] if (isinstance(left, PeriodIndex) and isinstance(right, PeriodIndex)): name = left.name if left.name == right.name else None return Index(result, name=name) elif isinstance(left, Period) or isinstance(right, Period): return Index(result, name=name) elif isinstance(func, np.ufunc): if 'M->M' not in func.types: msg = "ufunc '{0}' not supported for the PeriodIndex" # This should be TypeError, but TypeError cannot be raised # from here because numpy catches. raise ValueError(msg.format(func.__name__)) if is_bool_dtype(result): return result # the result is object dtype array of Period # cannot pass _simple_new as it is return PeriodIndex(result, freq=self.freq, name=self.name) @property def _box_func(self): return lambda x: Period._from_ordinal(ordinal=x, freq=self.freq) def _to_embed(self, keep_tz=False): """ return an array repr of this object, potentially casting to object """ return self.asobject.values @property def _formatter_func(self): return lambda x: "'%s'" % x def asof_locs(self, where, mask): """ where : array of timestamps mask : array of booleans where data is not NA """ where_idx = where if isinstance(where_idx, DatetimeIndex): where_idx = PeriodIndex(where_idx.values, freq=self.freq) locs = self._values[mask].searchsorted(where_idx._values, side='right') locs = np.where(locs > 0, locs - 1, 0) result = np.arange(len(self))[mask].take(locs) first = mask.argmax() result[(locs == 0) & (where_idx._values < self._values[first])] = -1 return result @Appender(_index_shared_docs['astype']) def astype(self, dtype, copy=True, how='start'): dtype = pandas_dtype(dtype) if is_object_dtype(dtype): return self.asobject elif is_integer_dtype(dtype): if copy: return self._int64index.copy() else: return self._int64index elif is_datetime64_dtype(dtype): return self.to_timestamp(how=how) elif is_datetime64tz_dtype(dtype): return self.to_timestamp(how=how).tz_localize(dtype.tz) elif is_period_dtype(dtype): return self.asfreq(freq=dtype.freq) raise ValueError('Cannot cast PeriodIndex to dtype %s' % dtype) @Substitution(klass='PeriodIndex', value='key') @Appender(_shared_docs['searchsorted']) def searchsorted(self, key, side='left', sorter=None): if isinstance(key, Period): if key.freq != self.freq: msg = _DIFFERENT_FREQ_INDEX.format(self.freqstr, key.freqstr) raise IncompatibleFrequency(msg) key = key.ordinal elif isinstance(key, compat.string_types): key = Period(key, freq=self.freq).ordinal return self._values.searchsorted(key, side=side, sorter=sorter) @property def is_all_dates(self): return True @property def is_full(self): """ Returns True if there are any missing periods from start to end """ if len(self) == 0: return True if not self.is_monotonic: raise ValueError('Index is not monotonic') values = self.values return ((values[1:] - values[:-1]) < 2).all() def asfreq(self, freq=None, how='E'): """ Convert the PeriodIndex to the specified frequency `freq`. Parameters ---------- freq : str a frequency how : str {'E', 'S'} 'E', 'END', or 'FINISH' for end, 'S', 'START', or 'BEGIN' for start. Whether the elements should be aligned to the end or start within pa period. January 31st ('END') vs. Janury 1st ('START') for example. Returns ------- new : PeriodIndex with the new frequency Examples -------- >>> pidx = pd.period_range('2010-01-01', '2015-01-01', freq='A') >>> pidx <class 'pandas.tseries.period.PeriodIndex'> [2010, ..., 2015] Length: 6, Freq: A-DEC >>> pidx.asfreq('M') <class 'pandas.tseries.period.PeriodIndex'> [2010-12, ..., 2015-12] Length: 6, Freq: M >>> pidx.asfreq('M', how='S') <class 'pandas.tseries.period.PeriodIndex'> [2010-01, ..., 2015-01] Length: 6, Freq: M """ how = _validate_end_alias(how) freq = Period._maybe_convert_freq(freq) base1, mult1 = _gfc(self.freq) base2, mult2 = _gfc(freq) asi8 = self.asi8 # mult1 can't be negative or 0 end = how == 'E' if end: ordinal = asi8 + mult1 - 1 else: ordinal = asi8 new_data = period.period_asfreq_arr(ordinal, base1, base2, end) if self.hasnans: new_data[self._isnan] = tslib.iNaT return self._simple_new(new_data, self.name, freq=freq) def to_datetime(self, dayfirst=False): """ DEPRECATED: use :meth:`to_timestamp` instead. Cast to DatetimeIndex. """ warnings.warn("to_datetime is deprecated. Use self.to_timestamp(...)", FutureWarning, stacklevel=2) return self.to_timestamp() year = _field_accessor('year', 0, "The year of the period") month = _field_accessor('month', 3, "The month as January=1, December=12") day = _field_accessor('day', 4, "The days of the period") hour = _field_accessor('hour', 5, "The hour of the period") minute = _field_accessor('minute', 6, "The minute of the period") second = _field_accessor('second', 7, "The second of the period") weekofyear = _field_accessor('week', 8, "The week ordinal of the year") week = weekofyear dayofweek = _field_accessor('dayofweek', 10, "The day of the week with Monday=0, Sunday=6") weekday = dayofweek dayofyear = day_of_year = _field_accessor('dayofyear', 9, "The ordinal day of the year") quarter = _field_accessor('quarter', 2, "The quarter of the date") qyear = _field_accessor('qyear', 1) days_in_month = _field_accessor('days_in_month', 11, "The number of days in the month") daysinmonth = days_in_month @property def is_leap_year(self): """ Logical indicating if the date belongs to a leap year """ return tslib._isleapyear_arr(self.year) @property def start_time(self): return self.to_timestamp(how='start') @property def end_time(self): return self.to_timestamp(how='end') def _mpl_repr(self): # how to represent ourselves to matplotlib return self.asobject.values def to_timestamp(self, freq=None, how='start'): """ Cast to DatetimeIndex Parameters ---------- freq : string or DateOffset, default 'D' for week or longer, 'S' otherwise Target frequency how : {'s', 'e', 'start', 'end'} Returns ------- DatetimeIndex """ how = _validate_end_alias(how) if freq is None: base, mult = _gfc(self.freq) freq = frequencies.get_to_timestamp_base(base) else: freq = Period._maybe_convert_freq(freq) base, mult = _gfc(freq) new_data = self.asfreq(freq, how) new_data = period.periodarr_to_dt64arr(new_data._values, base) return DatetimeIndex(new_data, freq='infer', name=self.name) def _maybe_convert_timedelta(self, other): if isinstance(other, (timedelta, np.timedelta64, offsets.Tick)): offset = frequencies.to_offset(self.freq.rule_code) if isinstance(offset, offsets.Tick): nanos = tslib._delta_to_nanoseconds(other) offset_nanos = tslib._delta_to_nanoseconds(offset) if nanos % offset_nanos == 0: return nanos // offset_nanos elif isinstance(other, offsets.DateOffset): freqstr = other.rule_code base = frequencies.get_base_alias(freqstr) if base == self.freq.rule_code: return other.n msg = _DIFFERENT_FREQ_INDEX.format(self.freqstr, other.freqstr) raise IncompatibleFrequency(msg) elif isinstance(other, np.ndarray): if is_integer_dtype(other): return other elif is_timedelta64_dtype(other): offset = frequencies.to_offset(self.freq) if isinstance(offset, offsets.Tick): nanos = tslib._delta_to_nanoseconds(other) offset_nanos = tslib._delta_to_nanoseconds(offset) if (nanos % offset_nanos).all() == 0: return nanos // offset_nanos elif is_integer(other): # integer is passed to .shift via # _add_datetimelike_methods basically # but ufunc may pass integer to _add_delta return other # raise when input doesn't have freq msg = "Input has different freq from PeriodIndex(freq={0})" raise IncompatibleFrequency(msg.format(self.freqstr)) def _add_delta(self, other): ordinal_delta = self._maybe_convert_timedelta(other) return self.shift(ordinal_delta) def _sub_datelike(self, other): if other is tslib.NaT: new_data = np.empty(len(self), dtype=np.int64) new_data.fill(tslib.iNaT) return TimedeltaIndex(new_data, name=self.name) return NotImplemented def _sub_period(self, other): if self.freq != other.freq: msg = _DIFFERENT_FREQ_INDEX.format(self.freqstr, other.freqstr) raise IncompatibleFrequency(msg) asi8 = self.asi8 new_data = asi8 - other.ordinal if self.hasnans: new_data = new_data.astype(np.float64) new_data[self._isnan] = np.nan # result must be Int64Index or Float64Index return Index(new_data, name=self.name) def shift(self, n): """ Specialized shift which produces an PeriodIndex Parameters ---------- n : int Periods to shift by Returns ------- shifted : PeriodIndex """ values = self._values + n * self.freq.n if self.hasnans: values[self._isnan] = tslib.iNaT return PeriodIndex(data=values, name=self.name, freq=self.freq) @cache_readonly def dtype(self): return PeriodDtype.construct_from_string(self.freq) @property def inferred_type(self): # b/c data is represented as ints make sure we can't have ambiguous # indexing return 'period' def get_value(self, series, key): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ s = com._values_from_object(series) try: return com._maybe_box(self, super(PeriodIndex, self).get_value(s, key), series, key) except (KeyError, IndexError): try: asdt, parsed, reso = parse_time_string(key, self.freq) grp = frequencies.Resolution.get_freq_group(reso) freqn = frequencies.get_freq_group(self.freq) vals = self._values # if our data is higher resolution than requested key, slice if grp < freqn: iv = Period(asdt, freq=(grp, 1)) ord1 = iv.asfreq(self.freq, how='S').ordinal ord2 = iv.asfreq(self.freq, how='E').ordinal if ord2 < vals[0] or ord1 > vals[-1]: raise KeyError(key) pos = np.searchsorted(self._values, [ord1, ord2]) key = slice(pos[0], pos[1] + 1) return series[key] elif grp == freqn: key = Period(asdt, freq=self.freq).ordinal return com._maybe_box(self, self._engine.get_value(s, key), series, key) else: raise KeyError(key) except TypeError: pass key = Period(key, self.freq).ordinal return com._maybe_box(self, self._engine.get_value(s, key), series, key) def get_indexer(self, target, method=None, limit=None, tolerance=None): target = _ensure_index(target) if hasattr(target, 'freq') and target.freq != self.freq: msg = _DIFFERENT_FREQ_INDEX.format(self.freqstr, target.freqstr) raise IncompatibleFrequency(msg) if isinstance(target, PeriodIndex): target = target.asi8 if tolerance is not None: tolerance = self._convert_tolerance(tolerance) return Index.get_indexer(self._int64index, target, method, limit, tolerance) def _get_unique_index(self, dropna=False): """ wrap Index._get_unique_index to handle NaT """ res = super(PeriodIndex, self)._get_unique_index(dropna=dropna) if dropna: res = res.dropna() return res def get_loc(self, key, method=None, tolerance=None): """ Get integer location for requested label Returns ------- loc : int """ try: return self._engine.get_loc(key) except KeyError: if is_integer(key): raise try: asdt, parsed, reso = parse_time_string(key, self.freq) key = asdt except TypeError: pass try: key = Period(key, freq=self.freq) except ValueError: # we cannot construct the Period # as we have an invalid type raise KeyError(key) try: ordinal = tslib.iNaT if key is tslib.NaT else key.ordinal if tolerance is not None: tolerance = self._convert_tolerance(tolerance) return self._int64index.get_loc(ordinal, method, tolerance) except KeyError: raise KeyError(key) def _maybe_cast_slice_bound(self, label, side, kind): """ If label is a string or a datetime, cast it to Period.ordinal according to resolution. Parameters ---------- label : object side : {'left', 'right'} kind : {'ix', 'loc', 'getitem'} Returns ------- bound : Period or object Notes ----- Value of `side` parameter should be validated in caller. """ assert kind in ['ix', 'loc', 'getitem'] if isinstance(label, datetime): return Period(label, freq=self.freq) elif isinstance(label, compat.string_types): try: _, parsed, reso = parse_time_string(label, self.freq) bounds = self._parsed_string_to_bounds(reso, parsed) return bounds[0 if side == 'left' else 1] except Exception: raise KeyError(label) elif is_integer(label) or is_float(label): self._invalid_indexer('slice', label) return label def _parsed_string_to_bounds(self, reso, parsed): if reso == 'year': t1 = Period(year=parsed.year, freq='A') elif reso == 'month': t1 = Period(year=parsed.year, month=parsed.month, freq='M') elif reso == 'quarter': q = (parsed.month - 1) // 3 + 1 t1 = Period(year=parsed.year, quarter=q, freq='Q-DEC') elif reso == 'day': t1 = Period(year=parsed.year, month=parsed.month, day=parsed.day, freq='D') elif reso == 'hour': t1 = Period(year=parsed.year, month=parsed.month, day=parsed.day, hour=parsed.hour, freq='H') elif reso == 'minute': t1 = Period(year=parsed.year, month=parsed.month, day=parsed.day, hour=parsed.hour, minute=parsed.minute, freq='T') elif reso == 'second': t1 = Period(year=parsed.year, month=parsed.month, day=parsed.day, hour=parsed.hour, minute=parsed.minute, second=parsed.second, freq='S') else: raise KeyError(reso) return (t1.asfreq(self.freq, how='start'), t1.asfreq(self.freq, how='end')) def _get_string_slice(self, key): if not self.is_monotonic: raise ValueError('Partial indexing only valid for ' 'ordered time series') key, parsed, reso = parse_time_string(key, self.freq) grp = frequencies.Resolution.get_freq_group(reso) freqn = frequencies.get_freq_group(self.freq) if reso in ['day', 'hour', 'minute', 'second'] and not grp < freqn: raise KeyError(key) t1, t2 = self._parsed_string_to_bounds(reso, parsed) return slice(self.searchsorted(t1.ordinal, side='left'), self.searchsorted(t2.ordinal, side='right')) def _convert_tolerance(self, tolerance): tolerance = DatetimeIndexOpsMixin._convert_tolerance(self, tolerance) return self._maybe_convert_timedelta(tolerance) def insert(self, loc, item): if not isinstance(item, Period) or self.freq != item.freq: return self.asobject.insert(loc, item) idx = np.concatenate((self[:loc].asi8, np.array([item.ordinal]), self[loc:].asi8)) return self._shallow_copy(idx) def join(self, other, how='left', level=None, return_indexers=False): """ See Index.join """ self._assert_can_do_setop(other) result = Int64Index.join(self, other, how=how, level=level, return_indexers=return_indexers) if return_indexers: result, lidx, ridx = result return self._apply_meta(result), lidx, ridx return self._apply_meta(result) def _assert_can_do_setop(self, other): super(PeriodIndex, self)._assert_can_do_setop(other) if not isinstance(other, PeriodIndex): raise ValueError('can only call with other PeriodIndex-ed objects') if self.freq != other.freq: msg = _DIFFERENT_FREQ_INDEX.format(self.freqstr, other.freqstr) raise IncompatibleFrequency(msg) def _wrap_union_result(self, other, result): name = self.name if self.name == other.name else None result = self._apply_meta(result) result.name = name return result def _apply_meta(self, rawarr): if not isinstance(rawarr, PeriodIndex): rawarr = PeriodIndex(rawarr, freq=self.freq) return rawarr def _format_native_types(self, na_rep=u('NaT'), date_format=None, **kwargs): values = self.asobject.values if date_format: formatter = lambda dt: dt.strftime(date_format) else: formatter = lambda dt: u('%s') % dt if self.hasnans: mask = self._isnan values[mask] = na_rep imask = ~mask values[imask] = np.array([formatter(dt) for dt in values[imask]]) else: values = np.array([formatter(dt) for dt in values]) return values def __setstate__(self, state): """Necessary for making this object picklable""" if isinstance(state, dict): super(PeriodIndex, self).__setstate__(state) elif isinstance(state, tuple): # < 0.15 compat if len(state) == 2: nd_state, own_state = state data = np.empty(nd_state[1], dtype=nd_state[2]) np.ndarray.__setstate__(data, nd_state) # backcompat self.freq = Period._maybe_convert_freq(own_state[1]) else: # pragma: no cover data = np.empty(state) np.ndarray.__setstate__(self, state) self._data = data else: raise Exception("invalid pickle state") _unpickle_compat = __setstate__ def tz_convert(self, tz): """ Convert tz-aware DatetimeIndex from one time zone to another (using pytz/dateutil) Parameters ---------- tz : string, pytz.timezone, dateutil.tz.tzfile or None Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding UTC time. Returns ------- normalized : DatetimeIndex Note ---- Not currently implemented for PeriodIndex """ raise NotImplementedError("Not yet implemented for PeriodIndex") def tz_localize(self, tz, infer_dst=False): """ Localize tz-naive DatetimeIndex to given time zone (using pytz/dateutil), or remove timezone from tz-aware DatetimeIndex Parameters ---------- tz : string, pytz.timezone, dateutil.tz.tzfile or None Time zone for time. Corresponding timestamps would be converted to time zone of the TimeSeries. None will remove timezone holding local time. infer_dst : boolean, default False Attempt to infer fall dst-transition hours based on order Returns ------- localized : DatetimeIndex Note ---- Not currently implemented for PeriodIndex """ raise NotImplementedError("Not yet implemented for PeriodIndex") PeriodIndex._add_numeric_methods_disabled() PeriodIndex._add_logical_methods_disabled() PeriodIndex._add_datetimelike_methods() def _get_ordinal_range(start, end, periods, freq, mult=1): if com._count_not_none(start, end, periods) < 2: raise ValueError('Must specify 2 of start, end, periods') if freq is not None: _, mult = _gfc(freq) if start is not None: start = Period(start, freq) if end is not None: end = Period(end, freq) is_start_per = isinstance(start, Period) is_end_per = isinstance(end, Period) if is_start_per and is_end_per and start.freq != end.freq: raise ValueError('Start and end must have same freq') if (start is tslib.NaT or end is tslib.NaT): raise ValueError('Start and end must not be NaT') if freq is None: if is_start_per: freq = start.freq elif is_end_per: freq = end.freq else: # pragma: no cover raise ValueError('Could not infer freq from start/end') if periods is not None: periods = periods * mult if start is None: data = np.arange(end.ordinal - periods + mult, end.ordinal + 1, mult, dtype=np.int64) else: data = np.arange(start.ordinal, start.ordinal + periods, mult, dtype=np.int64) else: data = np.arange(start.ordinal, end.ordinal + 1, mult, dtype=np.int64) return data, freq def _range_from_fields(year=None, month=None, quarter=None, day=None, hour=None, minute=None, second=None, freq=None): if hour is None: hour = 0 if minute is None: minute = 0 if second is None: second = 0 if day is None: day = 1 ordinals = [] if quarter is not None: if freq is None: freq = 'Q' base = frequencies.FreqGroup.FR_QTR else: base, mult = _gfc(freq) if base != frequencies.FreqGroup.FR_QTR: raise AssertionError("base must equal FR_QTR") year, quarter = _make_field_arrays(year, quarter) for y, q in zip(year, quarter): y, m = _quarter_to_myear(y, q, freq) val = period.period_ordinal(y, m, 1, 1, 1, 1, 0, 0, base) ordinals.append(val) else: base, mult = _gfc(freq) arrays = _make_field_arrays(year, month, day, hour, minute, second) for y, mth, d, h, mn, s in zip(*arrays): ordinals.append(period.period_ordinal( y, mth, d, h, mn, s, 0, 0, base)) return np.array(ordinals, dtype=np.int64), freq def _make_field_arrays(*fields): length = None for x in fields: if isinstance(x, (list, np.ndarray, ABCSeries)): if length is not None and len(x) != length: raise ValueError('Mismatched Period array lengths') elif length is None: length = len(x) arrays = [np.asarray(x) if isinstance(x, (np.ndarray, list, ABCSeries)) else np.repeat(x, length) for x in fields] return arrays def pnow(freq=None): return Period(datetime.now(), freq=freq) def period_range(start=None, end=None, periods=None, freq='D', name=None): """ Return a fixed frequency datetime index, with day (calendar) as the default frequency Parameters ---------- start : starting value, period-like, optional end : ending value, period-like, optional periods : int, default None Number of periods in the index freq : str/DateOffset, default 'D' Frequency alias name : str, default None Name for the resulting PeriodIndex Returns ------- prng : PeriodIndex """ return PeriodIndex(start=start, end=end, periods=periods, freq=freq, name=name)
apache-2.0
TylerSandman/py-bst
pybst/draw.py
4
6317
#!/usr/bin/env python # Author: Tyler Sanderson <[email protected]> # # This file is part of PyBST. # # PyBST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # PyBST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with PyBST. If not, see <http://www.gnu.org/licenses/>. import matplotlib.pyplot as plt import networkx as nx import bstree as bst def _get_pos_list(tree): """ _get_pos_list(tree) -> Mapping. Produces a mapping of nodes as keys, and their coordinates for plotting as values. Since pyplot or networkx don't have built in methods for plotting binary search trees, this somewhat choppy method has to be used. """ return _get_pos_list_from(tree,tree.Root,{},0,(0,0),1.0) def _get_pos_list_from(tree,node,poslst,index,coords,gap): """ _get_pos_list_from(tree,node,poslst,index,coords,gap) -> Mapping. Produces a mapping of nodes as keys, and their coordinates for plotting as values. Non-straightforward arguments: index: represents the index of node in a list of all Nodes in tree in preorder. coords: represents coordinates of node's parent. Used to determine coordinates of node for plotting. gap: represents horizontal distance from node and node's parent. To achieve plotting consistency each time we move down the tree we half this value. """ positions = poslst if node and node.key == tree.Root.key: positions[0] = (0,0) positions = _get_pos_list_from(tree,tree.Root.left,positions,1,(0,0),gap) positions = _get_pos_list_from(tree,tree.Root.right,positions,1+tree.get_element_count(node.left),(0,0),gap) return positions elif node: if node.parent.right and node.parent.right.key == node.key: new_coords = (coords[0]+gap,coords[1]-1) positions[index] = new_coords else: new_coords = (coords[0]-gap,coords[1]-1) positions[index] = new_coords positions = _get_pos_list_from(tree,node.left,positions,index+1,new_coords,gap/2) positions = _get_pos_list_from(tree,node.right,positions,1+ index + tree.get_element_count(node.left), new_coords,gap/2) return positions else: return positions def _get_edge_list(tree): """ _get_edge_list(tree) -> Sequence. Produces a sequence of tuples representing edges to be drawn. """ return _get_edge_list_from(tree,tree.Root,[],0) def _get_edge_list_from(tree,node,edgelst,index): """ _get_edge_list_from(tree,node,edgelst,index) -> Sequence. Produces a sequence of tuples representing edges to be drawn. As stated before, index represents the index of node in a list of all Nodes in tree in preorder. """ edges = edgelst if node and node.key == tree.Root.key: new_index = 1 + tree.get_element_count(node.left) if node.left: edges.append((0,1)) edges = _get_edge_list_from(tree,node.left,edges,1) if node.right: edges.append((0,new_index)) edges = _get_edge_list_from(tree,node.right,edges,new_index) return edges elif node: new_index = 1 + index + tree.get_element_count(node.left) if node.left: edges.append((index,index+1)) if node.right: edges.append((index,new_index)) edges = _get_edge_list_from(tree,node.left,edges,index+1) edges = _get_edge_list_from(tree,node.right,edges,new_index) return edges else: return edges def _preorder(tree,*args): """ _preorder(tree,...) -> Sequence. Produces a sequence of the Nodes in tree, obtained in preorder. Used to get information for plotting. """ if len(args) == 0: elements = [] node = tree.Root else: node = tree elements = args[0] elements.append(node) if node.left: _preorder(node.left,elements) if node.right: _preorder(node.right,elements) return elements def _get_label_list(tree): """ _get_pos_list(tree) -> Mapping. Produces a mapping of nodes as keys, and their labels for plotting as values. """ nodelist = _preorder(tree) labellist = {} index = 0 for node in nodelist: labellist[index] = node.key index = index + 1 return labellist def _get_color_list(tree): """ _get_color_list(tree) -> Sequence. Produces a sequence of colors in tree for plotting. NOTE: Assumes tree is a Red Black Tree. This is checked first in the main function draw(). """ nodelist = _preorder(tree) colorlist = [] for node in nodelist: if node.color: colorlist.append(node.color) return colorlist def plot_tree(tree): """ plot_tree(tree). Utilizes networkx and the methods above to create a graph to represent a binary search tree, and then utilizes pyplot to draw the tree to the screen. """ G=nx.Graph() pos = _get_pos_list(tree) nodes = [x for x in pos.keys()] edges = _get_edge_list(tree) labels = _get_label_list(tree) colors = [] try: colors = _get_color_list(tree) except AttributeError: pass G.add_edges_from(edges) G.add_nodes_from(nodes) if len(colors) > 0: nx.draw_networkx_nodes(G,pos,node_size=400,node_color=colors) nx.draw_networkx_edges(G,pos) nx.draw_networkx_labels(G,pos,labels,font_color='w') else: nx.draw_networkx_nodes(G,pos,node_size=400,node_color='r') nx.draw_networkx_edges(G,pos) nx.draw_networkx_labels(G,pos,labels) plt.axis('off') plt.show()
gpl-3.0
killthekitten/kaggle-carvana-2017
find_bounding_boxes.py
1
2471
import numpy as np import pandas as pd from scipy import ndimage import os from params import args MARGIN = 64 def find_slices(mask_img): mask = mask_img > 100 label_im, nb_labels = ndimage.label(mask) # Find the largest connect component sizes = ndimage.sum(mask, label_im, range(nb_labels + 1)) mask_size = sizes < 50000 remove_pixel = mask_size[label_im] label_im[remove_pixel] = 0 labels = np.unique(label_im) label_im = np.searchsorted(labels, label_im) # Now that we have only one connect component, extract it's bounding box slice_y, slice_x = ndimage.find_objects(label_im == 1)[0] return slice_x, slice_y def find_bounding_boxes(): img_width = args.img_width img_height = args.img_height masks_dir = args.pred_mask_dir boxes = process_images(img_height, img_width, masks_dir) df = pd.DataFrame(boxes) df.to_csv("boxes.csv", header=['filename', 'y_start', 'y_end', 'x_start', 'x_end'], index=False) def process_images(img_height, img_width, masks_dir): boxes = [] for i, filename in enumerate(sorted(os.listdir(masks_dir))): mask_img = ndimage.imread(os.path.join(masks_dir, filename), mode='L') expanded = np.zeros((1280, 1920), dtype=mask_img.dtype) expanded[:, 1:-1] = mask_img mask_img = expanded slice_x, slice_y = find_slices(mask_img) # we should expand by at least 32px + ceil to closest divisible 32 x_start = max(slice_x.start - MARGIN, 0) x_end = min(slice_x.stop + MARGIN, img_width) y_start = max(slice_y.start - MARGIN, 0) y_end = min(slice_y.stop + MARGIN, img_height) bb_height = y_end - y_start bb_width = x_end - x_start if bb_width % MARGIN != 0: bb_width_expand = (bb_width // MARGIN + 1) * MARGIN x_start = min(x_start, max(0, x_start - MARGIN)) x_end = x_start + bb_width_expand if bb_height % MARGIN != 0: bb_height_expand = (bb_height // MARGIN + 1) * MARGIN y_start = min(y_start, max(0, y_start - MARGIN)) y_end = y_start + bb_height_expand assert (x_end - x_start) % MARGIN == 0 assert (y_end - y_start) % MARGIN == 0 boxes.append((filename[:-4] + ".jpg", y_start, y_end, x_start, x_end)) if i % 100 == 0: print("processed {} images".format(i)) return boxes if __name__ == '__main__': find_bounding_boxes()
mit
michigraber/scikit-learn
sklearn/neighbors/tests/test_ball_tree.py
129
10192
import pickle import numpy as np from numpy.testing import assert_array_almost_equal from sklearn.neighbors.ball_tree import (BallTree, NeighborsHeap, simultaneous_sort, kernel_norm, nodeheap_sort, DTYPE, ITYPE) from sklearn.neighbors.dist_metrics import DistanceMetric from sklearn.utils.testing import SkipTest, assert_allclose rng = np.random.RandomState(10) V = rng.rand(3, 3) V = np.dot(V, V.T) DIMENSION = 3 METRICS = {'euclidean': {}, 'manhattan': {}, 'minkowski': dict(p=3), 'chebyshev': {}, 'seuclidean': dict(V=np.random.random(DIMENSION)), 'wminkowski': dict(p=3, w=np.random.random(DIMENSION)), 'mahalanobis': dict(V=V)} DISCRETE_METRICS = ['hamming', 'canberra', 'braycurtis'] BOOLEAN_METRICS = ['matching', 'jaccard', 'dice', 'kulsinski', 'rogerstanimoto', 'russellrao', 'sokalmichener', 'sokalsneath'] def dist_func(x1, x2, p): return np.sum((x1 - x2) ** p) ** (1. / p) def brute_force_neighbors(X, Y, k, metric, **kwargs): D = DistanceMetric.get_metric(metric, **kwargs).pairwise(Y, X) ind = np.argsort(D, axis=1)[:, :k] dist = D[np.arange(Y.shape[0])[:, None], ind] return dist, ind def test_ball_tree_query(): np.random.seed(0) X = np.random.random((40, DIMENSION)) Y = np.random.random((10, DIMENSION)) def check_neighbors(dualtree, breadth_first, k, metric, kwargs): bt = BallTree(X, leaf_size=1, metric=metric, **kwargs) dist1, ind1 = bt.query(Y, k, dualtree=dualtree, breadth_first=breadth_first) dist2, ind2 = brute_force_neighbors(X, Y, k, metric, **kwargs) # don't check indices here: if there are any duplicate distances, # the indices may not match. Distances should not have this problem. assert_array_almost_equal(dist1, dist2) for (metric, kwargs) in METRICS.items(): for k in (1, 3, 5): for dualtree in (True, False): for breadth_first in (True, False): yield (check_neighbors, dualtree, breadth_first, k, metric, kwargs) def test_ball_tree_query_boolean_metrics(): np.random.seed(0) X = np.random.random((40, 10)).round(0) Y = np.random.random((10, 10)).round(0) k = 5 def check_neighbors(metric): bt = BallTree(X, leaf_size=1, metric=metric) dist1, ind1 = bt.query(Y, k) dist2, ind2 = brute_force_neighbors(X, Y, k, metric) assert_array_almost_equal(dist1, dist2) for metric in BOOLEAN_METRICS: yield check_neighbors, metric def test_ball_tree_query_discrete_metrics(): np.random.seed(0) X = (4 * np.random.random((40, 10))).round(0) Y = (4 * np.random.random((10, 10))).round(0) k = 5 def check_neighbors(metric): bt = BallTree(X, leaf_size=1, metric=metric) dist1, ind1 = bt.query(Y, k) dist2, ind2 = brute_force_neighbors(X, Y, k, metric) assert_array_almost_equal(dist1, dist2) for metric in DISCRETE_METRICS: yield check_neighbors, metric def test_ball_tree_query_radius(n_samples=100, n_features=10): np.random.seed(0) X = 2 * np.random.random(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail bt = BallTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind = bt.query_radius(query_pt, r + eps)[0] i = np.where(rad <= r + eps)[0] ind.sort() i.sort() assert_array_almost_equal(i, ind) def test_ball_tree_query_radius_distance(n_samples=100, n_features=10): np.random.seed(0) X = 2 * np.random.random(size=(n_samples, n_features)) - 1 query_pt = np.zeros(n_features, dtype=float) eps = 1E-15 # roundoff error can cause test to fail bt = BallTree(X, leaf_size=5) rad = np.sqrt(((X - query_pt) ** 2).sum(1)) for r in np.linspace(rad[0], rad[-1], 100): ind, dist = bt.query_radius(query_pt, r + eps, return_distance=True) ind = ind[0] dist = dist[0] d = np.sqrt(((query_pt - X[ind]) ** 2).sum(1)) assert_array_almost_equal(d, dist) def compute_kernel_slow(Y, X, kernel, h): d = np.sqrt(((Y[:, None, :] - X) ** 2).sum(-1)) norm = kernel_norm(h, X.shape[1], kernel) if kernel == 'gaussian': return norm * np.exp(-0.5 * (d * d) / (h * h)).sum(-1) elif kernel == 'tophat': return norm * (d < h).sum(-1) elif kernel == 'epanechnikov': return norm * ((1.0 - (d * d) / (h * h)) * (d < h)).sum(-1) elif kernel == 'exponential': return norm * (np.exp(-d / h)).sum(-1) elif kernel == 'linear': return norm * ((1 - d / h) * (d < h)).sum(-1) elif kernel == 'cosine': return norm * (np.cos(0.5 * np.pi * d / h) * (d < h)).sum(-1) else: raise ValueError('kernel not recognized') def test_ball_tree_kde(n_samples=100, n_features=3): np.random.seed(0) X = np.random.random((n_samples, n_features)) Y = np.random.random((n_samples, n_features)) bt = BallTree(X, leaf_size=10) for kernel in ['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']: for h in [0.01, 0.1, 1]: dens_true = compute_kernel_slow(Y, X, kernel, h) def check_results(kernel, h, atol, rtol, breadth_first): dens = bt.kernel_density(Y, h, atol=atol, rtol=rtol, kernel=kernel, breadth_first=breadth_first) assert_allclose(dens, dens_true, atol=atol, rtol=max(rtol, 1e-7)) for rtol in [0, 1E-5]: for atol in [1E-6, 1E-2]: for breadth_first in (True, False): yield (check_results, kernel, h, atol, rtol, breadth_first) def test_gaussian_kde(n_samples=1000): # Compare gaussian KDE results to scipy.stats.gaussian_kde from scipy.stats import gaussian_kde np.random.seed(0) x_in = np.random.normal(0, 1, n_samples) x_out = np.linspace(-5, 5, 30) for h in [0.01, 0.1, 1]: bt = BallTree(x_in[:, None]) try: gkde = gaussian_kde(x_in, bw_method=h / np.std(x_in)) except TypeError: raise SkipTest("Old version of scipy, doesn't accept " "explicit bandwidth.") dens_bt = bt.kernel_density(x_out[:, None], h) / n_samples dens_gkde = gkde.evaluate(x_out) assert_array_almost_equal(dens_bt, dens_gkde, decimal=3) def test_ball_tree_two_point(n_samples=100, n_features=3): np.random.seed(0) X = np.random.random((n_samples, n_features)) Y = np.random.random((n_samples, n_features)) r = np.linspace(0, 1, 10) bt = BallTree(X, leaf_size=10) D = DistanceMetric.get_metric("euclidean").pairwise(Y, X) counts_true = [(D <= ri).sum() for ri in r] def check_two_point(r, dualtree): counts = bt.two_point_correlation(Y, r=r, dualtree=dualtree) assert_array_almost_equal(counts, counts_true) for dualtree in (True, False): yield check_two_point, r, dualtree def test_ball_tree_pickle(): np.random.seed(0) X = np.random.random((10, 3)) bt1 = BallTree(X, leaf_size=1) # Test if BallTree with callable metric is picklable bt1_pyfunc = BallTree(X, metric=dist_func, leaf_size=1, p=2) ind1, dist1 = bt1.query(X) ind1_pyfunc, dist1_pyfunc = bt1_pyfunc.query(X) def check_pickle_protocol(protocol): s = pickle.dumps(bt1, protocol=protocol) bt2 = pickle.loads(s) s_pyfunc = pickle.dumps(bt1_pyfunc, protocol=protocol) bt2_pyfunc = pickle.loads(s_pyfunc) ind2, dist2 = bt2.query(X) ind2_pyfunc, dist2_pyfunc = bt2_pyfunc.query(X) assert_array_almost_equal(ind1, ind2) assert_array_almost_equal(dist1, dist2) assert_array_almost_equal(ind1_pyfunc, ind2_pyfunc) assert_array_almost_equal(dist1_pyfunc, dist2_pyfunc) for protocol in (0, 1, 2): yield check_pickle_protocol, protocol def test_neighbors_heap(n_pts=5, n_nbrs=10): heap = NeighborsHeap(n_pts, n_nbrs) for row in range(n_pts): d_in = np.random.random(2 * n_nbrs).astype(DTYPE) i_in = np.arange(2 * n_nbrs, dtype=ITYPE) for d, i in zip(d_in, i_in): heap.push(row, d, i) ind = np.argsort(d_in) d_in = d_in[ind] i_in = i_in[ind] d_heap, i_heap = heap.get_arrays(sort=True) assert_array_almost_equal(d_in[:n_nbrs], d_heap[row]) assert_array_almost_equal(i_in[:n_nbrs], i_heap[row]) def test_node_heap(n_nodes=50): vals = np.random.random(n_nodes).astype(DTYPE) i1 = np.argsort(vals) vals2, i2 = nodeheap_sort(vals) assert_array_almost_equal(i1, i2) assert_array_almost_equal(vals[i1], vals2) def test_simultaneous_sort(n_rows=10, n_pts=201): dist = np.random.random((n_rows, n_pts)).astype(DTYPE) ind = (np.arange(n_pts) + np.zeros((n_rows, 1))).astype(ITYPE) dist2 = dist.copy() ind2 = ind.copy() # simultaneous sort rows using function simultaneous_sort(dist, ind) # simultaneous sort rows using numpy i = np.argsort(dist2, axis=1) row_ind = np.arange(n_rows)[:, None] dist2 = dist2[row_ind, i] ind2 = ind2[row_ind, i] assert_array_almost_equal(dist, dist2) assert_array_almost_equal(ind, ind2) def test_query_haversine(): np.random.seed(0) X = 2 * np.pi * np.random.random((40, 2)) bt = BallTree(X, leaf_size=1, metric='haversine') dist1, ind1 = bt.query(X, k=5) dist2, ind2 = brute_force_neighbors(X, X, k=5, metric='haversine') assert_array_almost_equal(dist1, dist2) assert_array_almost_equal(ind1, ind2)
bsd-3-clause
thegooglecodearchive/nmrglue
examples/plotting/1d_spectrum/plot_1d_pipe_freq.py
10
1137
#! /usr/bin/env python # Create a 1D plot of NMRPipe data import nmrglue as ng import matplotlib.pyplot as plt import numpy as np # read in the data from a NMRPipe file dic,data = ng.pipe.read("../../common_data/1d_pipe/test.ft") # create a unit conversion object for the axis uc = ng.pipe.make_uc(dic,data) # plot the spectrum fig = plt.figure() ax = fig.add_subplot(111) ax.plot(uc.ppm_scale(),data,'k-') # annotate the figure ax.annotate('CO region',xy=(173,2.15e6),xycoords='data', xytext=(30,20),textcoords='offset points', arrowprops=dict(arrowstyle="->") ) ax.text(59,1.55e6,"alphatic region") ax.annotate('',xy=(70,1.2e6),xycoords='data', xytext=(10,1.2e6),textcoords='data', arrowprops=dict(arrowstyle="<->", connectionstyle="bar", ec="k", shrinkA=5,shrinkB=5,)) # decorate axes ax.set_yticklabels([]) ax.set_title("Protein 1D Spectrum") ax.set_xlabel("13C ppm") ax.set_xlim(200,0) ax.set_ylim(-80000,2500000) # save the figure fig.savefig("spectrum.png") # change this to .pdf, .ps, etc
bsd-3-clause
Midafi/scikit-image
doc/examples/plot_regional_maxima.py
18
3316
""" ========================= Filtering regional maxima ========================= Here, we use morphological reconstruction to create a background image, which we can subtract from the original image to isolate bright features (regional maxima). First we try reconstruction by dilation starting at the edges of the image. We initialize a seed image to the minimum intensity of the image, and set its border to be the pixel values in the original image. These maximal pixels will get dilated in order to reconstruct the background image. """ import numpy as np from scipy.ndimage import gaussian_filter import matplotlib.pyplot as plt from skimage import data from skimage import img_as_float from skimage.morphology import reconstruction # Convert to float: Important for subtraction later which won't work with uint8 image = img_as_float(data.coins()) image = gaussian_filter(image, 1) seed = np.copy(image) seed[1:-1, 1:-1] = image.min() mask = image dilated = reconstruction(seed, mask, method='dilation') """ Subtracting the dilated image leaves an image with just the coins and a flat, black background, as shown below. """ fig, (ax1, ax2, ax3) = plt.subplots(ncols=3, figsize=(8, 2.5)) ax1.imshow(image) ax1.set_title('original image') ax1.axis('off') ax2.imshow(dilated, vmin=image.min(), vmax=image.max()) ax2.set_title('dilated') ax2.axis('off') ax3.imshow(image - dilated) ax3.set_title('image - dilated') ax3.axis('off') fig.tight_layout() """ .. image:: PLOT2RST.current_figure Although the features (i.e. the coins) are clearly isolated, the coins surrounded by a bright background in the original image are dimmer in the subtracted image. We can attempt to correct this using a different seed image. Instead of creating a seed image with maxima along the image border, we can use the features of the image itself to seed the reconstruction process. Here, the seed image is the original image minus a fixed value, ``h``. """ h = 0.4 seed = image - h dilated = reconstruction(seed, mask, method='dilation') hdome = image - dilated """ To get a feel for the reconstruction process, we plot the intensity of the mask, seed, and dilated images along a slice of the image (indicated by red line). """ fig, (ax1, ax2, ax3) = plt.subplots(ncols=3, figsize=(8, 2.5)) yslice = 197 ax1.plot(mask[yslice], '0.5', label='mask') ax1.plot(seed[yslice], 'k', label='seed') ax1.plot(dilated[yslice], 'r', label='dilated') ax1.set_ylim(-0.2, 2) ax1.set_title('image slice') ax1.set_xticks([]) ax1.legend() ax2.imshow(dilated, vmin=image.min(), vmax=image.max()) ax2.axhline(yslice, color='r', alpha=0.4) ax2.set_title('dilated') ax2.axis('off') ax3.imshow(hdome) ax3.axhline(yslice, color='r', alpha=0.4) ax3.set_title('image - dilated') ax3.axis('off') fig.tight_layout() plt.show() """ .. image:: PLOT2RST.current_figure As you can see in the image slice, each coin is given a different baseline intensity in the reconstructed image; this is because we used the local intensity (shifted by ``h``) as a seed value. As a result, the coins in the subtracted image have similar pixel intensities. The final result is known as the h-dome of an image since this tends to isolate regional maxima of height ``h``. This operation is particularly useful when your images are unevenly illuminated. """
bsd-3-clause
oxtopus/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/scale.py
69
13414
import textwrap import numpy as np from numpy import ma MaskedArray = ma.MaskedArray from cbook import dedent from ticker import NullFormatter, ScalarFormatter, LogFormatterMathtext, Formatter from ticker import NullLocator, LogLocator, AutoLocator, SymmetricalLogLocator, FixedLocator from transforms import Transform, IdentityTransform class ScaleBase(object): """ The base class for all scales. Scales are separable transformations, working on a single dimension. Any subclasses will want to override: - :attr:`name` - :meth:`get_transform` And optionally: - :meth:`set_default_locators_and_formatters` - :meth:`limit_range_for_scale` """ def get_transform(self): """ Return the :class:`~matplotlib.transforms.Transform` object associated with this scale. """ raise NotImplementedError def set_default_locators_and_formatters(self, axis): """ Set the :class:`~matplotlib.ticker.Locator` and :class:`~matplotlib.ticker.Formatter` objects on the given axis to match this scale. """ raise NotImplementedError def limit_range_for_scale(self, vmin, vmax, minpos): """ Returns the range *vmin*, *vmax*, possibly limited to the domain supported by this scale. *minpos* should be the minimum positive value in the data. This is used by log scales to determine a minimum value. """ return vmin, vmax class LinearScale(ScaleBase): """ The default linear scale. """ name = 'linear' def __init__(self, axis, **kwargs): pass def set_default_locators_and_formatters(self, axis): """ Set the locators and formatters to reasonable defaults for linear scaling. """ axis.set_major_locator(AutoLocator()) axis.set_major_formatter(ScalarFormatter()) axis.set_minor_locator(NullLocator()) axis.set_minor_formatter(NullFormatter()) def get_transform(self): """ The transform for linear scaling is just the :class:`~matplotlib.transforms.IdentityTransform`. """ return IdentityTransform() def _mask_non_positives(a): """ Return a Numpy masked array where all non-positive values are masked. If there are no non-positive values, the original array is returned. """ mask = a <= 0.0 if mask.any(): return ma.MaskedArray(a, mask=mask) return a class LogScale(ScaleBase): """ A standard logarithmic scale. Care is taken so non-positive values are not plotted. For computational efficiency (to push as much as possible to Numpy C code in the common cases), this scale provides different transforms depending on the base of the logarithm: - base 10 (:class:`Log10Transform`) - base 2 (:class:`Log2Transform`) - base e (:class:`NaturalLogTransform`) - arbitrary base (:class:`LogTransform`) """ name = 'log' class Log10Transform(Transform): input_dims = 1 output_dims = 1 is_separable = True base = 10.0 def transform(self, a): a = _mask_non_positives(a * 10.0) if isinstance(a, MaskedArray): return ma.log10(a) return np.log10(a) def inverted(self): return LogScale.InvertedLog10Transform() class InvertedLog10Transform(Transform): input_dims = 1 output_dims = 1 is_separable = True base = 10.0 def transform(self, a): return ma.power(10.0, a) / 10.0 def inverted(self): return LogScale.Log10Transform() class Log2Transform(Transform): input_dims = 1 output_dims = 1 is_separable = True base = 2.0 def transform(self, a): a = _mask_non_positives(a * 2.0) if isinstance(a, MaskedArray): return ma.log(a) / np.log(2) return np.log2(a) def inverted(self): return LogScale.InvertedLog2Transform() class InvertedLog2Transform(Transform): input_dims = 1 output_dims = 1 is_separable = True base = 2.0 def transform(self, a): return ma.power(2.0, a) / 2.0 def inverted(self): return LogScale.Log2Transform() class NaturalLogTransform(Transform): input_dims = 1 output_dims = 1 is_separable = True base = np.e def transform(self, a): a = _mask_non_positives(a * np.e) if isinstance(a, MaskedArray): return ma.log(a) return np.log(a) def inverted(self): return LogScale.InvertedNaturalLogTransform() class InvertedNaturalLogTransform(Transform): input_dims = 1 output_dims = 1 is_separable = True base = np.e def transform(self, a): return ma.power(np.e, a) / np.e def inverted(self): return LogScale.NaturalLogTransform() class LogTransform(Transform): input_dims = 1 output_dims = 1 is_separable = True def __init__(self, base): Transform.__init__(self) self.base = base def transform(self, a): a = _mask_non_positives(a * self.base) if isinstance(a, MaskedArray): return ma.log(a) / np.log(self.base) return np.log(a) / np.log(self.base) def inverted(self): return LogScale.InvertedLogTransform(self.base) class InvertedLogTransform(Transform): input_dims = 1 output_dims = 1 is_separable = True def __init__(self, base): Transform.__init__(self) self.base = base def transform(self, a): return ma.power(self.base, a) / self.base def inverted(self): return LogScale.LogTransform(self.base) def __init__(self, axis, **kwargs): """ *basex*/*basey*: The base of the logarithm *subsx*/*subsy*: Where to place the subticks between each major tick. Should be a sequence of integers. For example, in a log10 scale: ``[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]`` will place 10 logarithmically spaced minor ticks between each major tick. """ if axis.axis_name == 'x': base = kwargs.pop('basex', 10.0) subs = kwargs.pop('subsx', None) else: base = kwargs.pop('basey', 10.0) subs = kwargs.pop('subsy', None) if base == 10.0: self._transform = self.Log10Transform() elif base == 2.0: self._transform = self.Log2Transform() elif base == np.e: self._transform = self.NaturalLogTransform() else: self._transform = self.LogTransform(base) self.base = base self.subs = subs def set_default_locators_and_formatters(self, axis): """ Set the locators and formatters to specialized versions for log scaling. """ axis.set_major_locator(LogLocator(self.base)) axis.set_major_formatter(LogFormatterMathtext(self.base)) axis.set_minor_locator(LogLocator(self.base, self.subs)) axis.set_minor_formatter(NullFormatter()) def get_transform(self): """ Return a :class:`~matplotlib.transforms.Transform` instance appropriate for the given logarithm base. """ return self._transform def limit_range_for_scale(self, vmin, vmax, minpos): """ Limit the domain to positive values. """ return (vmin <= 0.0 and minpos or vmin, vmax <= 0.0 and minpos or vmax) class SymmetricalLogScale(ScaleBase): """ The symmetrical logarithmic scale is logarithmic in both the positive and negative directions from the origin. Since the values close to zero tend toward infinity, there is a need to have a range around zero that is linear. The parameter *linthresh* allows the user to specify the size of this range (-*linthresh*, *linthresh*). """ name = 'symlog' class SymmetricalLogTransform(Transform): input_dims = 1 output_dims = 1 is_separable = True def __init__(self, base, linthresh): Transform.__init__(self) self.base = base self.linthresh = linthresh self._log_base = np.log(base) self._linadjust = (np.log(linthresh) / self._log_base) / linthresh def transform(self, a): a = np.asarray(a) sign = np.sign(a) masked = ma.masked_inside(a, -self.linthresh, self.linthresh, copy=False) log = sign * ma.log(np.abs(masked)) / self._log_base if masked.mask.any(): return np.asarray(ma.where(masked.mask, a * self._linadjust, log)) else: return np.asarray(log) def inverted(self): return SymmetricalLogScale.InvertedSymmetricalLogTransform(self.base, self.linthresh) class InvertedSymmetricalLogTransform(Transform): input_dims = 1 output_dims = 1 is_separable = True def __init__(self, base, linthresh): Transform.__init__(self) self.base = base self.linthresh = linthresh self._log_base = np.log(base) self._log_linthresh = np.log(linthresh) / self._log_base self._linadjust = linthresh / (np.log(linthresh) / self._log_base) def transform(self, a): a = np.asarray(a) return np.where(a <= self._log_linthresh, np.where(a >= -self._log_linthresh, a * self._linadjust, -(np.power(self.base, -a))), np.power(self.base, a)) def inverted(self): return SymmetricalLogScale.SymmetricalLogTransform(self.base) def __init__(self, axis, **kwargs): """ *basex*/*basey*: The base of the logarithm *linthreshx*/*linthreshy*: The range (-*x*, *x*) within which the plot is linear (to avoid having the plot go to infinity around zero). *subsx*/*subsy*: Where to place the subticks between each major tick. Should be a sequence of integers. For example, in a log10 scale: ``[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]`` will place 10 logarithmically spaced minor ticks between each major tick. """ if axis.axis_name == 'x': base = kwargs.pop('basex', 10.0) linthresh = kwargs.pop('linthreshx', 2.0) subs = kwargs.pop('subsx', None) else: base = kwargs.pop('basey', 10.0) linthresh = kwargs.pop('linthreshy', 2.0) subs = kwargs.pop('subsy', None) self._transform = self.SymmetricalLogTransform(base, linthresh) self.base = base self.linthresh = linthresh self.subs = subs def set_default_locators_and_formatters(self, axis): """ Set the locators and formatters to specialized versions for symmetrical log scaling. """ axis.set_major_locator(SymmetricalLogLocator(self.get_transform())) axis.set_major_formatter(LogFormatterMathtext(self.base)) axis.set_minor_locator(SymmetricalLogLocator(self.get_transform(), self.subs)) axis.set_minor_formatter(NullFormatter()) def get_transform(self): """ Return a :class:`SymmetricalLogTransform` instance. """ return self._transform _scale_mapping = { 'linear' : LinearScale, 'log' : LogScale, 'symlog' : SymmetricalLogScale } def get_scale_names(): names = _scale_mapping.keys() names.sort() return names def scale_factory(scale, axis, **kwargs): """ Return a scale class by name. ACCEPTS: [ %(names)s ] """ scale = scale.lower() if scale is None: scale = 'linear' if scale not in _scale_mapping: raise ValueError("Unknown scale type '%s'" % scale) return _scale_mapping[scale](axis, **kwargs) scale_factory.__doc__ = dedent(scale_factory.__doc__) % \ {'names': " | ".join(get_scale_names())} def register_scale(scale_class): """ Register a new kind of scale. *scale_class* must be a subclass of :class:`ScaleBase`. """ _scale_mapping[scale_class.name] = scale_class def get_scale_docs(): """ Helper function for generating docstrings related to scales. """ docs = [] for name in get_scale_names(): scale_class = _scale_mapping[name] docs.append(" '%s'" % name) docs.append("") class_docs = dedent(scale_class.__init__.__doc__) class_docs = "".join([" %s\n" % x for x in class_docs.split("\n")]) docs.append(class_docs) docs.append("") return "\n".join(docs)
gpl-3.0
fabioticconi/scikit-learn
examples/plot_multilabel.py
236
4157
# Authors: Vlad Niculae, Mathieu Blondel # License: BSD 3 clause """ ========================= Multilabel classification ========================= This example simulates a multi-label document classification problem. The dataset is generated randomly based on the following process: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is more than 2, and that the document length is never zero. Likewise, we reject classes which have already been chosen. The documents that are assigned to both classes are plotted surrounded by two colored circles. The classification is performed by projecting to the first two principal components found by PCA and CCA for visualisation purposes, followed by using the :class:`sklearn.multiclass.OneVsRestClassifier` metaclassifier using two SVCs with linear kernels to learn a discriminative model for each class. Note that PCA is used to perform an unsupervised dimensionality reduction, while CCA is used to perform a supervised one. Note: in the plot, "unlabeled samples" does not mean that we don't know the labels (as in semi-supervised learning) but that the samples simply do *not* have a label. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_multilabel_classification from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC from sklearn.preprocessing import LabelBinarizer from sklearn.decomposition import PCA from sklearn.cross_decomposition import CCA def plot_hyperplane(clf, min_x, max_x, linestyle, label): # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(min_x - 5, max_x + 5) # make sure the line is long enough yy = a * xx - (clf.intercept_[0]) / w[1] plt.plot(xx, yy, linestyle, label=label) def plot_subfigure(X, Y, subplot, title, transform): if transform == "pca": X = PCA(n_components=2).fit_transform(X) elif transform == "cca": X = CCA(n_components=2).fit(X, Y).transform(X) else: raise ValueError min_x = np.min(X[:, 0]) max_x = np.max(X[:, 0]) min_y = np.min(X[:, 1]) max_y = np.max(X[:, 1]) classif = OneVsRestClassifier(SVC(kernel='linear')) classif.fit(X, Y) plt.subplot(2, 2, subplot) plt.title(title) zero_class = np.where(Y[:, 0]) one_class = np.where(Y[:, 1]) plt.scatter(X[:, 0], X[:, 1], s=40, c='gray') plt.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b', facecolors='none', linewidths=2, label='Class 1') plt.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange', facecolors='none', linewidths=2, label='Class 2') plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--', 'Boundary\nfor class 1') plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.', 'Boundary\nfor class 2') plt.xticks(()) plt.yticks(()) plt.xlim(min_x - .5 * max_x, max_x + .5 * max_x) plt.ylim(min_y - .5 * max_y, max_y + .5 * max_y) if subplot == 2: plt.xlabel('First principal component') plt.ylabel('Second principal component') plt.legend(loc="upper left") plt.figure(figsize=(8, 6)) X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=True, random_state=1) plot_subfigure(X, Y, 1, "With unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 2, "With unlabeled samples + PCA", "pca") X, Y = make_multilabel_classification(n_classes=2, n_labels=1, allow_unlabeled=False, random_state=1) plot_subfigure(X, Y, 3, "Without unlabeled samples + CCA", "cca") plot_subfigure(X, Y, 4, "Without unlabeled samples + PCA", "pca") plt.subplots_adjust(.04, .02, .97, .94, .09, .2) plt.show()
bsd-3-clause
thientu/scikit-learn
sklearn/metrics/__init__.py
214
3440
""" The :mod:`sklearn.metrics` module includes score functions, performance metrics and pairwise metrics and distance computations. """ from .ranking import auc from .ranking import average_precision_score from .ranking import coverage_error from .ranking import label_ranking_average_precision_score from .ranking import label_ranking_loss from .ranking import precision_recall_curve from .ranking import roc_auc_score from .ranking import roc_curve from .classification import accuracy_score from .classification import classification_report from .classification import cohen_kappa_score from .classification import confusion_matrix from .classification import f1_score from .classification import fbeta_score from .classification import hamming_loss from .classification import hinge_loss from .classification import jaccard_similarity_score from .classification import log_loss from .classification import matthews_corrcoef from .classification import precision_recall_fscore_support from .classification import precision_score from .classification import recall_score from .classification import zero_one_loss from .classification import brier_score_loss from . import cluster from .cluster import adjusted_mutual_info_score from .cluster import adjusted_rand_score from .cluster import completeness_score from .cluster import consensus_score from .cluster import homogeneity_completeness_v_measure from .cluster import homogeneity_score from .cluster import mutual_info_score from .cluster import normalized_mutual_info_score from .cluster import silhouette_samples from .cluster import silhouette_score from .cluster import v_measure_score from .pairwise import euclidean_distances from .pairwise import pairwise_distances from .pairwise import pairwise_distances_argmin from .pairwise import pairwise_distances_argmin_min from .pairwise import pairwise_kernels from .regression import explained_variance_score from .regression import mean_absolute_error from .regression import mean_squared_error from .regression import median_absolute_error from .regression import r2_score from .scorer import make_scorer from .scorer import SCORERS from .scorer import get_scorer __all__ = [ 'accuracy_score', 'adjusted_mutual_info_score', 'adjusted_rand_score', 'auc', 'average_precision_score', 'classification_report', 'cluster', 'completeness_score', 'confusion_matrix', 'consensus_score', 'coverage_error', 'euclidean_distances', 'explained_variance_score', 'f1_score', 'fbeta_score', 'get_scorer', 'hamming_loss', 'hinge_loss', 'homogeneity_completeness_v_measure', 'homogeneity_score', 'jaccard_similarity_score', 'label_ranking_average_precision_score', 'label_ranking_loss', 'log_loss', 'make_scorer', 'matthews_corrcoef', 'mean_absolute_error', 'mean_squared_error', 'median_absolute_error', 'mutual_info_score', 'normalized_mutual_info_score', 'pairwise_distances', 'pairwise_distances_argmin', 'pairwise_distances_argmin_min', 'pairwise_distances_argmin_min', 'pairwise_kernels', 'precision_recall_curve', 'precision_recall_fscore_support', 'precision_score', 'r2_score', 'recall_score', 'roc_auc_score', 'roc_curve', 'SCORERS', 'silhouette_samples', 'silhouette_score', 'v_measure_score', 'zero_one_loss', 'brier_score_loss', ]
bsd-3-clause
BernhardWenzel/google-taxonomy-matcher
matcher.py
1
7798
import os import argparse import logging import pandas as pd from pandas.core.series import Series import requests from whoosh import writing from yaml import load, Loader from whoosh.analysis import StemmingAnalyzer from whoosh.filedb.filestore import RamStorage from whoosh.fields import * from whoosh.qparser import QueryParser from whoosh.query import Variations def load_taxonomy(base_category, taxonomy_file, taxonomy_url, fetch_online=False): if fetch_online: r = requests.get(taxonomy_url) taxonomy_content = r.text else: taxonomy_content = open(taxonomy_file).read() lines = taxonomy_content.split('\n') if base_category: filtered_lines = [] for index, bc in enumerate(base_category): base_category[index] = bc.strip().lower() for bc in base_category: filtered_lines += [line for line in lines if line.strip().lower().startswith(bc.strip().lower())] return filtered_lines else: return lines def index_product_info(product_dict): schema = Schema(path=ID(stored=True, analyzer=StemmingAnalyzer()), content=TEXT(stored=True, analyzer=StemmingAnalyzer())) st = RamStorage() st.create() ix = st.create_index(schema) writer = ix.writer() for key in product_dict.keys(): writer.add_document(path=unicode(key, "utf-8"), content=unicode(product_dict[key], "utf-8")) writer.commit(mergetype=writing.CLEAR) return ix def match(ix, category, weights=None): # get the leaf of a category, e.g. only "Chairs" from Furniture > Chairs index, c = get_category(category) # adjust query # replace comma and ampersand with OR query = re.sub('[,&]', ' OR ', c) with ix.searcher() as searcher: parsed_query = QueryParser("content", schema=ix.schema, termclass=Variations).parse(query) results = searcher.search(parsed_query, terms=True) score = 0 if results: logging.debug("Category: %s => Query: %s" % (category, query)) for r in results: weight = 1 if weights: weight = weights[r['path']] logging.debug("Result: %s [score: %d weight: %d]" % (r, r.score, weight)) score += r.score * weight return score def get_category(string): index = -1 name = None if string: for s in string.split(">"): name = s.strip() index += 1 return index, name def get_best_match(matches): if not matches: return '' # find most hits best_score = 0 best_category = None for match, score in matches.items(): if score > best_score: best_score = score best_category = match # if equal score: choose the category with greater detail level elif score == best_score: index, name = get_category(best_category) hit_index, hit_name = get_category(match) if hit_index > index: best_category = match return best_category def safe_get(row, column): value = row.get(column) if isinstance(value, basestring): return value return '' if __name__ == "__main__": # read command line arguments parser = argparse.ArgumentParser(description='Finds category based on Google\'s taxonomy in a product description') parser.add_argument('base_category', metavar='bc', help='The base categories of the product. Can speed up execution a lot. Example: "Furniture", "Home & Garden"', nargs="*") parser.add_argument('-o', '--overwrite', const=True, nargs="?", help='If set category column in product file will be overwritten') parser.add_argument('--log', nargs="?", help="The log level") args = parser.parse_args() # logging if args.log: logging.basicConfig(level=args.log.upper()) # load settings settings = {} if os.path.exists("settings.yaml"): settings = load(open("settings.yaml"), Loader=Loader) taxonomy_file = settings.get("google_taxonomy_file", "taxonomy.en-US.txt") taxonomy_url = settings.get("google_taxonomy_url", "http://www.google.com/basepages/producttype/taxonomy.en-GB.txt") fetch_online = settings.get("fetch_taxonomy_online", True) product_file = settings.get("product_file", "product.csv") output_product_file = settings.get("output_product_file", "product.matched.csv") product_columns = settings.get("product_columns", ["title", "product type", "description"]) product_column_weights = settings.get("product_column_weights", [3, 2, 1]) weights = {} for index, pc in enumerate(product_columns): weights[pc] = product_column_weights[index] google_category_column = settings.get("google_category_column", "google product category") if args.overwrite: overwrite_category = True else: overwrite_category = settings.get("overwrite_category", False) # load taxonomy print "Loading taxonomy. Base categories: %s ..." % ", ".join(args.base_category) categories = load_taxonomy(args.base_category, taxonomy_file=taxonomy_file, taxonomy_url=taxonomy_url, fetch_online=fetch_online) if not categories: print "Error: base category %s not found in taxonomy" % args.base_category if not args.base_category: print "Warning: you did not specify a base category. This can take *very* long time to complete. See matcher -h for help." # load product csv file print "Parsing input file: %s" % product_file product_data = pd.read_csv(product_file, sep='\t', usecols=product_columns + [google_category_column]) print "Processing %d rows ..." % product_data.shape[0] # if target google category column doesnt exist in file: add if not google_category_column in product_data.columns: product_data[google_category_column] = Series() # iterate through data row by row and match category index = 1 replacements = 0 for row_index, row in product_data.iterrows(): index += 1 if index % 10 == 0: print "Progress: %d rows finished" % index p = {} for col in product_columns: value = safe_get(row, col) if value: p[col] = row.get(col) gcat = safe_get(row, google_category_column) # create index of product fields ix = index_product_info(p) # find all matches matches = {} for category in categories: if not category: continue score = match(ix, category, weights) if score: if not matches.get(category): matches[category] = score else: matches[category] += score # select best match best_match = get_best_match(matches) logging.debug("MATCHES: %s" % str(matches)) logging.debug("======> best match: %s" % best_match) if not gcat or overwrite_category: if best_match: product_data.ix[index - 2, google_category_column] = best_match # row[google_category_column] = best_match replacements += 1 # write back result # copy category column into original file gcat_col = product_data[google_category_column] original_data = pd.read_csv(product_file, sep='\t') original_data[google_category_column] = gcat_col original_data.to_csv(output_product_file, sep='\t', index=False) print "processed %d rows of '%s', replaced %d, output written to '%s'" % ( (index - 1), product_file, replacements, output_product_file)
apache-2.0
alephu5/Soundbyte
environment/lib/python3.3/site-packages/matplotlib/tight_layout.py
16
13115
""" This module provides routines to adjust subplot params so that subplots are nicely fit in the figure. In doing so, only axis labels, tick labels and axes titles are currently considered. Internally, it assumes that the margins (left_margin, etc.) which are differences between ax.get_tightbbox and ax.bbox are independent of axes position. This may fail if Axes.adjustable is datalim. Also, This will fail for some cases (for example, left or right margin is affected by xlabel). """ import warnings import matplotlib from matplotlib.transforms import TransformedBbox, Bbox from matplotlib.font_manager import FontProperties rcParams = matplotlib.rcParams def _get_left(tight_bbox, axes_bbox): return axes_bbox.xmin - tight_bbox.xmin def _get_right(tight_bbox, axes_bbox): return tight_bbox.xmax - axes_bbox.xmax def _get_bottom(tight_bbox, axes_bbox): return axes_bbox.ymin - tight_bbox.ymin def _get_top(tight_bbox, axes_bbox): return tight_bbox.ymax - axes_bbox.ymax def auto_adjust_subplotpars(fig, renderer, nrows_ncols, num1num2_list, subplot_list, ax_bbox_list=None, pad=1.08, h_pad=None, w_pad=None, rect=None): """ Return a dictionary of subplot parameters so that spacing between subplots are adjusted. Note that this function ignore geometry information of subplot itself, but uses what is given by *nrows_ncols* and *num1num2_list* parameteres. Also, the results could be incorrect if some subplots have ``adjustable=datalim``. Parameters: nrows_ncols number of rows and number of columns of the grid. num1num2_list list of numbers specifying the area occupied by the subplot subplot_list list of subplots that will be used to calcuate optimal subplot_params. pad : float padding between the figure edge and the edges of subplots, as a fraction of the font-size. h_pad, w_pad : float padding (height/width) between edges of adjacent subplots. Defaults to `pad_inches`. rect [left, bottom, right, top] in normalized (0, 1) figure coordinates. """ rows, cols = nrows_ncols pad_inches = pad * FontProperties( size=rcParams["font.size"]).get_size_in_points() / 72. if h_pad is not None: vpad_inches = h_pad * FontProperties( size=rcParams["font.size"]).get_size_in_points() / 72. else: vpad_inches = pad_inches if w_pad is not None: hpad_inches = w_pad * FontProperties( size=rcParams["font.size"]).get_size_in_points() / 72. else: hpad_inches = pad_inches if len(subplot_list) == 0: raise RuntimeError("") if len(num1num2_list) != len(subplot_list): raise RuntimeError("") if rect is None: margin_left = None margin_bottom = None margin_right = None margin_top = None else: margin_left, margin_bottom, _right, _top = rect if _right: margin_right = 1. - _right else: margin_right = None if _top: margin_top = 1. - _top else: margin_top = None vspaces = [[] for i in range((rows + 1) * cols)] hspaces = [[] for i in range(rows * (cols + 1))] union = Bbox.union if ax_bbox_list is None: ax_bbox_list = [] for subplots in subplot_list: ax_bbox = union([ax.get_position(original=True) for ax in subplots]) ax_bbox_list.append(ax_bbox) for subplots, ax_bbox, (num1, num2) in zip(subplot_list, ax_bbox_list, num1num2_list): #ax_bbox = union([ax.get_position(original=True) for ax in subplots]) tight_bbox_raw = union([ax.get_tightbbox(renderer) for ax in subplots]) tight_bbox = TransformedBbox(tight_bbox_raw, fig.transFigure.inverted()) row1, col1 = divmod(num1, cols) if num2 is None: # left hspaces[row1 * (cols + 1) + col1].append( _get_left(tight_bbox, ax_bbox)) # right hspaces[row1 * (cols + 1) + (col1 + 1)].append( _get_right(tight_bbox, ax_bbox)) # top vspaces[row1 * cols + col1].append( _get_top(tight_bbox, ax_bbox)) # bottom vspaces[(row1 + 1) * cols + col1].append( _get_bottom(tight_bbox, ax_bbox)) else: row2, col2 = divmod(num2, cols) for row_i in range(row1, row2 + 1): # left hspaces[row_i * (cols + 1) + col1].append( _get_left(tight_bbox, ax_bbox)) # right hspaces[row_i * (cols + 1) + (col2 + 1)].append( _get_right(tight_bbox, ax_bbox)) for col_i in range(col1, col2 + 1): # top vspaces[row1 * cols + col_i].append( _get_top(tight_bbox, ax_bbox)) # bottom vspaces[(row2 + 1) * cols + col_i].append( _get_bottom(tight_bbox, ax_bbox)) fig_width_inch, fig_height_inch = fig.get_size_inches() # margins can be negative for axes with aspect applied. And we # append + [0] to make minimum margins 0 if not margin_left: margin_left = max([sum(s) for s in hspaces[::cols + 1]] + [0]) margin_left += pad_inches / fig_width_inch if not margin_right: margin_right = max([sum(s) for s in hspaces[cols::cols + 1]] + [0]) margin_right += pad_inches / fig_width_inch if not margin_top: margin_top = max([sum(s) for s in vspaces[:cols]] + [0]) margin_top += pad_inches / fig_height_inch if not margin_bottom: margin_bottom = max([sum(s) for s in vspaces[-cols:]] + [0]) margin_bottom += pad_inches / fig_height_inch kwargs = dict(left=margin_left, right=1 - margin_right, bottom=margin_bottom, top=1 - margin_top) if cols > 1: hspace = max([sum(s) for i in range(rows) for s in hspaces[i * (cols + 1) + 1:(i + 1) * (cols + 1) - 1]]) hspace += hpad_inches / fig_width_inch h_axes = ((1 - margin_right - margin_left) - hspace * (cols - 1)) / cols kwargs["wspace"] = hspace / h_axes if rows > 1: vspace = max([sum(s) for s in vspaces[cols:-cols]]) vspace += vpad_inches / fig_height_inch v_axes = ((1 - margin_top - margin_bottom) - vspace * (rows - 1)) / rows kwargs["hspace"] = vspace / v_axes return kwargs def get_renderer(fig): if fig._cachedRenderer: renderer = fig._cachedRenderer else: canvas = fig.canvas if canvas and hasattr(canvas, "get_renderer"): renderer = canvas.get_renderer() else: # not sure if this can happen warnings.warn("tight_layout : falling back to Agg renderer") from matplotlib.backends.backend_agg import FigureCanvasAgg canvas = FigureCanvasAgg(fig) renderer = canvas.get_renderer() return renderer def get_subplotspec_list(axes_list, grid_spec=None): """ Return a list of subplotspec from the given list of axes. For an instance of axes that does not support subplotspec, None is inserted in the list. If grid_spec is given, None is inserted for those not from the given grid_spec. """ subplotspec_list = [] for ax in axes_list: axes_or_locator = ax.get_axes_locator() if axes_or_locator is None: axes_or_locator = ax if hasattr(axes_or_locator, "get_subplotspec"): subplotspec = axes_or_locator.get_subplotspec() subplotspec = subplotspec.get_topmost_subplotspec() gs = subplotspec.get_gridspec() if grid_spec is not None: if gs != grid_spec: subplotspec = None elif gs.locally_modified_subplot_params(): subplotspec = None else: subplotspec = None subplotspec_list.append(subplotspec) return subplotspec_list def get_tight_layout_figure(fig, axes_list, subplotspec_list, renderer, pad=1.08, h_pad=None, w_pad=None, rect=None): """ Return subplot parameters for tight-layouted-figure with specified padding. Parameters: *fig* : figure instance *axes_list* : a list of axes *subplotspec_list* : a list of subplotspec associated with each axes in axes_list *renderer* : renderer instance *pad* : float padding between the figure edge and the edges of subplots, as a fraction of the font-size. *h_pad*, *w_pad* : float padding (height/width) between edges of adjacent subplots. Defaults to `pad_inches`. *rect* : if rect is given, it is interpreted as a rectangle (left, bottom, right, top) in the normalized figure coordinate that the whole subplots area (including labels) will fit into. Default is (0, 0, 1, 1). """ subplot_list = [] nrows_list = [] ncols_list = [] ax_bbox_list = [] subplot_dict = {} # multiple axes can share # same subplot_interface (e.g., axes_grid1). Thus # we need to join them together. subplotspec_list2 = [] for ax, subplotspec in zip(axes_list, subplotspec_list): if subplotspec is None: continue subplots = subplot_dict.setdefault(subplotspec, []) if not subplots: myrows, mycols, _, _ = subplotspec.get_geometry() nrows_list.append(myrows) ncols_list.append(mycols) subplotspec_list2.append(subplotspec) subplot_list.append(subplots) ax_bbox_list.append(subplotspec.get_position(fig)) subplots.append(ax) max_nrows = max(nrows_list) max_ncols = max(ncols_list) num1num2_list = [] for subplotspec in subplotspec_list2: rows, cols, num1, num2 = subplotspec.get_geometry() div_row, mod_row = divmod(max_nrows, rows) div_col, mod_col = divmod(max_ncols, cols) if (mod_row != 0) or (mod_col != 0): raise RuntimeError("") rowNum1, colNum1 = divmod(num1, cols) if num2 is None: rowNum2, colNum2 = rowNum1, colNum1 else: rowNum2, colNum2 = divmod(num2, cols) num1num2_list.append((rowNum1 * div_row * max_ncols + colNum1 * div_col, ((rowNum2 + 1) * div_row - 1) * max_ncols + (colNum2 + 1) * div_col - 1)) kwargs = auto_adjust_subplotpars(fig, renderer, nrows_ncols=(max_nrows, max_ncols), num1num2_list=num1num2_list, subplot_list=subplot_list, ax_bbox_list=ax_bbox_list, pad=pad, h_pad=h_pad, w_pad=w_pad) if rect is not None: # if rect is given, the whole subplots area (including # labels) will fit into the rect instead of the # figure. Note that the rect argument of # *auto_adjust_subplotpars* specify the area that will be # covered by the total area of axes.bbox. Thus we call # auto_adjust_subplotpars twice, where the second run # with adjusted rect parameters. left, bottom, right, top = rect if left is not None: left += kwargs["left"] if bottom is not None: bottom += kwargs["bottom"] if right is not None: right -= (1 - kwargs["right"]) if top is not None: top -= (1 - kwargs["top"]) #if h_pad is None: h_pad = pad #if w_pad is None: w_pad = pad kwargs = auto_adjust_subplotpars(fig, renderer, nrows_ncols=(max_nrows, max_ncols), num1num2_list=num1num2_list, subplot_list=subplot_list, ax_bbox_list=ax_bbox_list, pad=pad, h_pad=h_pad, w_pad=w_pad, rect=(left, bottom, right, top)) return kwargs
gpl-3.0
chapmanb/bcbio-nextgen
bcbio/qc/srna.py
4
3339
""" Create log files to be parsed by multiqc """ from __future__ import print_function import os import pandas as pd from bcbio import utils from bcbio.provenance.programs import get_version_manifest from bcbio.distributed.transaction import file_transaction from bcbio.pipeline import datadict as dd def run(bam_file, data, out_dir): """Create several log files""" m = {"base": None, "secondary": []} m.update(_mirbase_stats(data, out_dir)) m["secondary"].append(_seqcluster_stats(data, out_dir)) def _mirbase_stats(data, out_dir): """Create stats from miraligner""" utils.safe_makedir(out_dir) out_file = os.path.join(out_dir, "%s_bcbio_mirbase.txt" % dd.get_sample_name(data)) out_file_novel = os.path.join(out_dir, "%s_bcbio_mirdeeep2.txt" % dd.get_sample_name(data)) mirbase_fn = data.get("seqbuster", None) if mirbase_fn: _get_stats_from_miraligner(mirbase_fn, out_file, "seqbuster") mirdeep_fn = data.get("seqbuster_novel", None) if mirdeep_fn: _get_stats_from_miraligner(mirdeep_fn, out_file_novel, "mirdeep2") return {"base": out_file, "secondary": [out_file_novel]} def _get_stats_from_miraligner(fn, out_file, name): df = pd.read_csv(fn, sep="\t", dtype={"mism": "str", "add": "str", "t5": "str", "t3": "str"}, na_values=["."]) dfmirs = df[['mir', 'freq']].groupby(['mir']).count() df5 = df.loc[df.t5 != "0", ['mir', 't5']].groupby(['mir']).count() df3 = df.loc[df.t3 != "0", ['mir', 't3']].groupby(['mir']).count() dfadd = df.loc[df["add"] != "0", ['mir', 'add']].groupby(['mir']).count() dfmut = df.loc[df.mism != "0", ['mir', 'mism']].groupby(['mir']).count() if not utils.file_exists(out_file): version = get_version_manifest("seqbuster") with file_transaction(out_file) as tx_out: with open(tx_out, "w") as out_handle: print(("# stats {name}, version: {version}").format(**locals()), file=out_handle) print(("mirs\t{mirs}\nisomirs\t{isomirs}").format( mirs=len(dfmirs.index), isomirs=len(df.index)), file=out_handle) print(("mirs_mutations\t{muts}\nmirs_additions\t{add}").format( muts=len(dfmut.index), add=len(dfadd.index)), file=out_handle) print(("mirs_5-trimming\t{t5}\nmirs_3-trimming\t{t3}").format( t5=len(df5.index), t3=len(df3.index)), file=out_handle) print(("iso_mutations\t{muts}\niso_additions\t{add}").format( muts=sum(dfmut.mism), add=sum(dfadd["add"])), file=out_handle) print(("iso_5-trimming\t{t5}\niso_3-trimming\t{t3}").format( t5=sum(df5.t5), t3=sum(df3.t3)), file=out_handle) return out_file def _seqcluster_stats(data, out_dir): """Parse seqcluster output""" name = dd.get_sample_name(data) fn = data.get("seqcluster", {}).get("stat_file", None) if not fn: return None out_file = os.path.join(out_dir, "%s.txt" % name) df = pd.read_csv(fn, sep="\t", names = ["reads", "sample", "type"]) df_sample = df[df["sample"] == name] df_sample.to_csv(out_file, sep="\t") return out_file
mit
Lyleo/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/collections.py
69
39876
""" Classes for the efficient drawing of large collections of objects that share most properties, e.g. a large number of line segments or polygons. The classes are not meant to be as flexible as their single element counterparts (e.g. you may not be able to select all line styles) but they are meant to be fast for common use cases (e.g. a bunch of solid line segemnts) """ import copy, math, warnings import numpy as np from numpy import ma import matplotlib as mpl import matplotlib.cbook as cbook import matplotlib.colors as _colors # avoid conflict with kwarg import matplotlib.cm as cm import matplotlib.transforms as transforms import matplotlib.artist as artist import matplotlib.backend_bases as backend_bases import matplotlib.path as mpath import matplotlib.mlab as mlab class Collection(artist.Artist, cm.ScalarMappable): """ Base class for Collections. Must be subclassed to be usable. All properties in a collection must be sequences or scalars; if scalars, they will be converted to sequences. The property of the ith element of the collection is:: prop[i % len(props)] Keyword arguments and default values: * *edgecolors*: None * *facecolors*: None * *linewidths*: None * *antialiaseds*: None * *offsets*: None * *transOffset*: transforms.IdentityTransform() * *norm*: None (optional for :class:`matplotlib.cm.ScalarMappable`) * *cmap*: None (optional for :class:`matplotlib.cm.ScalarMappable`) *offsets* and *transOffset* are used to translate the patch after rendering (default no offsets). If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds* are None, they default to their :data:`matplotlib.rcParams` patch setting, in sequence form. The use of :class:`~matplotlib.cm.ScalarMappable` is optional. If the :class:`~matplotlib.cm.ScalarMappable` matrix _A is not None (ie a call to set_array has been made), at draw time a call to scalar mappable will be made to set the face colors. """ _offsets = np.array([], np.float_) _transOffset = transforms.IdentityTransform() _transforms = [] zorder = 1 def __init__(self, edgecolors=None, facecolors=None, linewidths=None, linestyles='solid', antialiaseds = None, offsets = None, transOffset = None, norm = None, # optional for ScalarMappable cmap = None, # ditto pickradius = 5.0, urls = None, **kwargs ): """ Create a Collection %(Collection)s """ artist.Artist.__init__(self) cm.ScalarMappable.__init__(self, norm, cmap) self.set_edgecolor(edgecolors) self.set_facecolor(facecolors) self.set_linewidth(linewidths) self.set_linestyle(linestyles) self.set_antialiased(antialiaseds) self.set_urls(urls) self._uniform_offsets = None self._offsets = np.array([], np.float_) if offsets is not None: offsets = np.asarray(offsets) if len(offsets.shape) == 1: offsets = offsets[np.newaxis,:] # Make it Nx2. if transOffset is not None: self._offsets = offsets self._transOffset = transOffset else: self._uniform_offsets = offsets self._pickradius = pickradius self.update(kwargs) def _get_value(self, val): try: return (float(val), ) except TypeError: if cbook.iterable(val) and len(val): try: float(val[0]) except TypeError: pass # raise below else: return val raise TypeError('val must be a float or nonzero sequence of floats') def _get_bool(self, val): try: return (bool(val), ) except TypeError: if cbook.iterable(val) and len(val): try: bool(val[0]) except TypeError: pass # raise below else: return val raise TypeError('val must be a bool or nonzero sequence of them') def get_paths(self): raise NotImplementedError def get_transforms(self): return self._transforms def get_datalim(self, transData): transform = self.get_transform() transOffset = self._transOffset offsets = self._offsets paths = self.get_paths() if not transform.is_affine: paths = [transform.transform_path_non_affine(p) for p in paths] transform = transform.get_affine() if not transOffset.is_affine: offsets = transOffset.transform_non_affine(offsets) transOffset = transOffset.get_affine() offsets = np.asarray(offsets, np.float_) result = mpath.get_path_collection_extents( transform.frozen(), paths, self.get_transforms(), offsets, transOffset.frozen()) result = result.inverse_transformed(transData) return result def get_window_extent(self, renderer): bbox = self.get_datalim(transforms.IdentityTransform()) #TODO:check to ensure that this does not fail for #cases other than scatter plot legend return bbox def _prepare_points(self): """Point prep for drawing and hit testing""" transform = self.get_transform() transOffset = self._transOffset offsets = self._offsets paths = self.get_paths() if self.have_units(): paths = [] for path in self.get_paths(): vertices = path.vertices xs, ys = vertices[:, 0], vertices[:, 1] xs = self.convert_xunits(xs) ys = self.convert_yunits(ys) paths.append(mpath.Path(zip(xs, ys), path.codes)) if len(self._offsets): xs = self.convert_xunits(self._offsets[:0]) ys = self.convert_yunits(self._offsets[:1]) offsets = zip(xs, ys) offsets = np.asarray(offsets, np.float_) if not transform.is_affine: paths = [transform.transform_path_non_affine(path) for path in paths] transform = transform.get_affine() if not transOffset.is_affine: offsets = transOffset.transform_non_affine(offsets) transOffset = transOffset.get_affine() return transform, transOffset, offsets, paths def draw(self, renderer): if not self.get_visible(): return renderer.open_group(self.__class__.__name__) self.update_scalarmappable() clippath, clippath_trans = self.get_transformed_clip_path_and_affine() if clippath_trans is not None: clippath_trans = clippath_trans.frozen() transform, transOffset, offsets, paths = self._prepare_points() renderer.draw_path_collection( transform.frozen(), self.clipbox, clippath, clippath_trans, paths, self.get_transforms(), offsets, transOffset, self.get_facecolor(), self.get_edgecolor(), self._linewidths, self._linestyles, self._antialiaseds, self._urls) renderer.close_group(self.__class__.__name__) def contains(self, mouseevent): """ Test whether the mouse event occurred in the collection. Returns True | False, ``dict(ind=itemlist)``, where every item in itemlist contains the event. """ if callable(self._contains): return self._contains(self,mouseevent) if not self.get_visible(): return False,{} transform, transOffset, offsets, paths = self._prepare_points() ind = mpath.point_in_path_collection( mouseevent.x, mouseevent.y, self._pickradius, transform.frozen(), paths, self.get_transforms(), offsets, transOffset, len(self._facecolors)>0) return len(ind)>0,dict(ind=ind) def set_pickradius(self,pickradius): self.pickradius = 5 def get_pickradius(self): return self.pickradius def set_urls(self, urls): if urls is None: self._urls = [None,] else: self._urls = urls def get_urls(self): return self._urls def set_offsets(self, offsets): """ Set the offsets for the collection. *offsets* can be a scalar or a sequence. ACCEPTS: float or sequence of floats """ offsets = np.asarray(offsets, np.float_) if len(offsets.shape) == 1: offsets = offsets[np.newaxis,:] # Make it Nx2. #This decision is based on how they are initialized above if self._uniform_offsets is None: self._offsets = offsets else: self._uniform_offsets = offsets def get_offsets(self): """ Return the offsets for the collection. """ #This decision is based on how they are initialized above in __init__() if self._uniform_offsets is None: return self._offsets else: return self._uniform_offsets def set_linewidth(self, lw): """ Set the linewidth(s) for the collection. *lw* can be a scalar or a sequence; if it is a sequence the patches will cycle through the sequence ACCEPTS: float or sequence of floats """ if lw is None: lw = mpl.rcParams['patch.linewidth'] self._linewidths = self._get_value(lw) def set_linewidths(self, lw): """alias for set_linewidth""" return self.set_linewidth(lw) def set_lw(self, lw): """alias for set_linewidth""" return self.set_linewidth(lw) def set_linestyle(self, ls): """ Set the linestyle(s) for the collection. ACCEPTS: ['solid' | 'dashed', 'dashdot', 'dotted' | (offset, on-off-dash-seq) ] """ try: dashd = backend_bases.GraphicsContextBase.dashd if cbook.is_string_like(ls): if ls in dashd: dashes = [dashd[ls]] elif ls in cbook.ls_mapper: dashes = [dashd[cbook.ls_mapper[ls]]] else: raise ValueError() elif cbook.iterable(ls): try: dashes = [] for x in ls: if cbook.is_string_like(x): if x in dashd: dashes.append(dashd[x]) elif x in cbook.ls_mapper: dashes.append(dashd[cbook.ls_mapper[x]]) else: raise ValueError() elif cbook.iterable(x) and len(x) == 2: dashes.append(x) else: raise ValueError() except ValueError: if len(ls)==2: dashes = ls else: raise ValueError() else: raise ValueError() except ValueError: raise ValueError('Do not know how to convert %s to dashes'%ls) self._linestyles = dashes def set_linestyles(self, ls): """alias for set_linestyle""" return self.set_linestyle(ls) def set_dashes(self, ls): """alias for set_linestyle""" return self.set_linestyle(ls) def set_antialiased(self, aa): """ Set the antialiasing state for rendering. ACCEPTS: Boolean or sequence of booleans """ if aa is None: aa = mpl.rcParams['patch.antialiased'] self._antialiaseds = self._get_bool(aa) def set_antialiaseds(self, aa): """alias for set_antialiased""" return self.set_antialiased(aa) def set_color(self, c): """ Set both the edgecolor and the facecolor. ACCEPTS: matplotlib color arg or sequence of rgba tuples .. seealso:: :meth:`set_facecolor`, :meth:`set_edgecolor` """ self.set_facecolor(c) self.set_edgecolor(c) def set_facecolor(self, c): """ Set the facecolor(s) of the collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence ACCEPTS: matplotlib color arg or sequence of rgba tuples """ if c is None: c = mpl.rcParams['patch.facecolor'] self._facecolors_original = c self._facecolors = _colors.colorConverter.to_rgba_array(c, self._alpha) def set_facecolors(self, c): """alias for set_facecolor""" return self.set_facecolor(c) def get_facecolor(self): return self._facecolors get_facecolors = get_facecolor def get_edgecolor(self): if self._edgecolors == 'face': return self.get_facecolors() else: return self._edgecolors get_edgecolors = get_edgecolor def set_edgecolor(self, c): """ Set the edgecolor(s) of the collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence. If *c* is 'face', the edge color will always be the same as the face color. ACCEPTS: matplotlib color arg or sequence of rgba tuples """ if c == 'face': self._edgecolors = 'face' self._edgecolors_original = 'face' else: if c is None: c = mpl.rcParams['patch.edgecolor'] self._edgecolors_original = c self._edgecolors = _colors.colorConverter.to_rgba_array(c, self._alpha) def set_edgecolors(self, c): """alias for set_edgecolor""" return self.set_edgecolor(c) def set_alpha(self, alpha): """ Set the alpha tranparencies of the collection. *alpha* must be a float. ACCEPTS: float """ try: float(alpha) except TypeError: raise TypeError('alpha must be a float') else: artist.Artist.set_alpha(self, alpha) try: self._facecolors = _colors.colorConverter.to_rgba_array( self._facecolors_original, self._alpha) except (AttributeError, TypeError, IndexError): pass try: if self._edgecolors_original != 'face': self._edgecolors = _colors.colorConverter.to_rgba_array( self._edgecolors_original, self._alpha) except (AttributeError, TypeError, IndexError): pass def get_linewidths(self): return self._linewidths get_linewidth = get_linewidths def get_linestyles(self): return self._linestyles get_dashes = get_linestyle = get_linestyles def update_scalarmappable(self): """ If the scalar mappable array is not none, update colors from scalar data """ if self._A is None: return if self._A.ndim > 1: raise ValueError('Collections can only map rank 1 arrays') if len(self._facecolors): self._facecolors = self.to_rgba(self._A, self._alpha) else: self._edgecolors = self.to_rgba(self._A, self._alpha) def update_from(self, other): 'copy properties from other to self' artist.Artist.update_from(self, other) self._antialiaseds = other._antialiaseds self._edgecolors_original = other._edgecolors_original self._edgecolors = other._edgecolors self._facecolors_original = other._facecolors_original self._facecolors = other._facecolors self._linewidths = other._linewidths self._linestyles = other._linestyles self._pickradius = other._pickradius # these are not available for the object inspector until after the # class is built so we define an initial set here for the init # function and they will be overridden after object defn artist.kwdocd['Collection'] = """\ Valid Collection keyword arguments: * *edgecolors*: None * *facecolors*: None * *linewidths*: None * *antialiaseds*: None * *offsets*: None * *transOffset*: transforms.IdentityTransform() * *norm*: None (optional for :class:`matplotlib.cm.ScalarMappable`) * *cmap*: None (optional for :class:`matplotlib.cm.ScalarMappable`) *offsets* and *transOffset* are used to translate the patch after rendering (default no offsets) If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds* are None, they default to their :data:`matplotlib.rcParams` patch setting, in sequence form. """ class QuadMesh(Collection): """ Class for the efficient drawing of a quadrilateral mesh. A quadrilateral mesh consists of a grid of vertices. The dimensions of this array are (*meshWidth* + 1, *meshHeight* + 1). Each vertex in the mesh has a different set of "mesh coordinates" representing its position in the topology of the mesh. For any values (*m*, *n*) such that 0 <= *m* <= *meshWidth* and 0 <= *n* <= *meshHeight*, the vertices at mesh coordinates (*m*, *n*), (*m*, *n* + 1), (*m* + 1, *n* + 1), and (*m* + 1, *n*) form one of the quadrilaterals in the mesh. There are thus (*meshWidth* * *meshHeight*) quadrilaterals in the mesh. The mesh need not be regular and the polygons need not be convex. A quadrilateral mesh is represented by a (2 x ((*meshWidth* + 1) * (*meshHeight* + 1))) numpy array *coordinates*, where each row is the *x* and *y* coordinates of one of the vertices. To define the function that maps from a data point to its corresponding color, use the :meth:`set_cmap` method. Each of these arrays is indexed in row-major order by the mesh coordinates of the vertex (or the mesh coordinates of the lower left vertex, in the case of the colors). For example, the first entry in *coordinates* is the coordinates of the vertex at mesh coordinates (0, 0), then the one at (0, 1), then at (0, 2) .. (0, meshWidth), (1, 0), (1, 1), and so on. """ def __init__(self, meshWidth, meshHeight, coordinates, showedges, antialiased=True): Collection.__init__(self) self._meshWidth = meshWidth self._meshHeight = meshHeight self._coordinates = coordinates self._showedges = showedges self._antialiased = antialiased self._paths = None self._bbox = transforms.Bbox.unit() self._bbox.update_from_data_xy(coordinates.reshape( ((meshWidth + 1) * (meshHeight + 1), 2))) # By converting to floats now, we can avoid that on every draw. self._coordinates = self._coordinates.reshape((meshHeight + 1, meshWidth + 1, 2)) self._coordinates = np.array(self._coordinates, np.float_) def get_paths(self, dataTrans=None): if self._paths is None: self._paths = self.convert_mesh_to_paths( self._meshWidth, self._meshHeight, self._coordinates) return self._paths #@staticmethod def convert_mesh_to_paths(meshWidth, meshHeight, coordinates): """ Converts a given mesh into a sequence of :class:`matplotlib.path.Path` objects for easier rendering by backends that do not directly support quadmeshes. This function is primarily of use to backend implementers. """ Path = mpath.Path if ma.isMaskedArray(coordinates): c = coordinates.data else: c = coordinates points = np.concatenate(( c[0:-1, 0:-1], c[0:-1, 1: ], c[1: , 1: ], c[1: , 0:-1], c[0:-1, 0:-1] ), axis=2) points = points.reshape((meshWidth * meshHeight, 5, 2)) return [Path(x) for x in points] convert_mesh_to_paths = staticmethod(convert_mesh_to_paths) def get_datalim(self, transData): return self._bbox def draw(self, renderer): if not self.get_visible(): return renderer.open_group(self.__class__.__name__) transform = self.get_transform() transOffset = self._transOffset offsets = self._offsets if self.have_units(): if len(self._offsets): xs = self.convert_xunits(self._offsets[:0]) ys = self.convert_yunits(self._offsets[:1]) offsets = zip(xs, ys) offsets = np.asarray(offsets, np.float_) if self.check_update('array'): self.update_scalarmappable() clippath, clippath_trans = self.get_transformed_clip_path_and_affine() if clippath_trans is not None: clippath_trans = clippath_trans.frozen() if not transform.is_affine: coordinates = self._coordinates.reshape( (self._coordinates.shape[0] * self._coordinates.shape[1], 2)) coordinates = transform.transform(coordinates) coordinates = coordinates.reshape(self._coordinates.shape) transform = transforms.IdentityTransform() else: coordinates = self._coordinates if not transOffset.is_affine: offsets = transOffset.transform_non_affine(offsets) transOffset = transOffset.get_affine() renderer.draw_quad_mesh( transform.frozen(), self.clipbox, clippath, clippath_trans, self._meshWidth, self._meshHeight, coordinates, offsets, transOffset, self.get_facecolor(), self._antialiased, self._showedges) renderer.close_group(self.__class__.__name__) class PolyCollection(Collection): def __init__(self, verts, sizes = None, closed = True, **kwargs): """ *verts* is a sequence of ( *verts0*, *verts1*, ...) where *verts_i* is a sequence of *xy* tuples of vertices, or an equivalent :mod:`numpy` array of shape (*nv*, 2). *sizes* is *None* (default) or a sequence of floats that scale the corresponding *verts_i*. The scaling is applied before the Artist master transform; if the latter is an identity transform, then the overall scaling is such that if *verts_i* specify a unit square, then *sizes_i* is the area of that square in points^2. If len(*sizes*) < *nv*, the additional values will be taken cyclically from the array. *closed*, when *True*, will explicitly close the polygon. %(Collection)s """ Collection.__init__(self,**kwargs) self._sizes = sizes self.set_verts(verts, closed) __init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd def set_verts(self, verts, closed=True): '''This allows one to delay initialization of the vertices.''' if closed: self._paths = [] for xy in verts: if np.ma.isMaskedArray(xy): if len(xy) and (xy[0] != xy[-1]).any(): xy = np.ma.concatenate([xy, [xy[0]]]) else: xy = np.asarray(xy) if len(xy) and (xy[0] != xy[-1]).any(): xy = np.concatenate([xy, [xy[0]]]) self._paths.append(mpath.Path(xy)) else: self._paths = [mpath.Path(xy) for xy in verts] def get_paths(self): return self._paths def draw(self, renderer): if self._sizes is not None: self._transforms = [ transforms.Affine2D().scale( (np.sqrt(x) * self.figure.dpi / 72.0)) for x in self._sizes] return Collection.draw(self, renderer) class BrokenBarHCollection(PolyCollection): """ A collection of horizontal bars spanning *yrange* with a sequence of *xranges*. """ def __init__(self, xranges, yrange, **kwargs): """ *xranges* sequence of (*xmin*, *xwidth*) *yrange* *ymin*, *ywidth* %(Collection)s """ ymin, ywidth = yrange ymax = ymin + ywidth verts = [ [(xmin, ymin), (xmin, ymax), (xmin+xwidth, ymax), (xmin+xwidth, ymin), (xmin, ymin)] for xmin, xwidth in xranges] PolyCollection.__init__(self, verts, **kwargs) __init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd @staticmethod def span_where(x, ymin, ymax, where, **kwargs): """ Create a BrokenBarHCollection to plot horizontal bars from over the regions in *x* where *where* is True. The bars range on the y-axis from *ymin* to *ymax* A :class:`BrokenBarHCollection` is returned. *kwargs* are passed on to the collection """ xranges = [] for ind0, ind1 in mlab.contiguous_regions(where): xslice = x[ind0:ind1] if not len(xslice): continue xranges.append((xslice[0], xslice[-1]-xslice[0])) collection = BrokenBarHCollection(xranges, [ymin, ymax-ymin], **kwargs) return collection class RegularPolyCollection(Collection): """Draw a collection of regular polygons with *numsides*.""" _path_generator = mpath.Path.unit_regular_polygon def __init__(self, numsides, rotation = 0 , sizes = (1,), **kwargs): """ *numsides* the number of sides of the polygon *rotation* the rotation of the polygon in radians *sizes* gives the area of the circle circumscribing the regular polygon in points^2 %(Collection)s Example: see :file:`examples/dynamic_collection.py` for complete example:: offsets = np.random.rand(20,2) facecolors = [cm.jet(x) for x in np.random.rand(20)] black = (0,0,0,1) collection = RegularPolyCollection( numsides=5, # a pentagon rotation=0, sizes=(50,), facecolors = facecolors, edgecolors = (black,), linewidths = (1,), offsets = offsets, transOffset = ax.transData, ) """ Collection.__init__(self,**kwargs) self._sizes = sizes self._numsides = numsides self._paths = [self._path_generator(numsides)] self._rotation = rotation self.set_transform(transforms.IdentityTransform()) __init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd def draw(self, renderer): self._transforms = [ transforms.Affine2D().rotate(-self._rotation).scale( (np.sqrt(x) * self.figure.dpi / 72.0) / np.sqrt(np.pi)) for x in self._sizes] return Collection.draw(self, renderer) def get_paths(self): return self._paths def get_numsides(self): return self._numsides def get_rotation(self): return self._rotation def get_sizes(self): return self._sizes class StarPolygonCollection(RegularPolyCollection): """ Draw a collection of regular stars with *numsides* points.""" _path_generator = mpath.Path.unit_regular_star class AsteriskPolygonCollection(RegularPolyCollection): """ Draw a collection of regular asterisks with *numsides* points.""" _path_generator = mpath.Path.unit_regular_asterisk class LineCollection(Collection): """ All parameters must be sequences or scalars; if scalars, they will be converted to sequences. The property of the ith line segment is:: prop[i % len(props)] i.e., the properties cycle if the ``len`` of props is less than the number of segments. """ zorder = 2 def __init__(self, segments, # Can be None. linewidths = None, colors = None, antialiaseds = None, linestyles = 'solid', offsets = None, transOffset = None, norm = None, cmap = None, pickradius = 5, **kwargs ): """ *segments* a sequence of (*line0*, *line1*, *line2*), where:: linen = (x0, y0), (x1, y1), ... (xm, ym) or the equivalent numpy array with two columns. Each line can be a different length. *colors* must be a sequence of RGBA tuples (eg arbitrary color strings, etc, not allowed). *antialiaseds* must be a sequence of ones or zeros *linestyles* [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ] a string or dash tuple. The dash tuple is:: (offset, onoffseq), where *onoffseq* is an even length tuple of on and off ink in points. If *linewidths*, *colors*, or *antialiaseds* is None, they default to their rcParams setting, in sequence form. If *offsets* and *transOffset* are not None, then *offsets* are transformed by *transOffset* and applied after the segments have been transformed to display coordinates. If *offsets* is not None but *transOffset* is None, then the *offsets* are added to the segments before any transformation. In this case, a single offset can be specified as:: offsets=(xo,yo) and this value will be added cumulatively to each successive segment, so as to produce a set of successively offset curves. *norm* None (optional for :class:`matplotlib.cm.ScalarMappable`) *cmap* None (optional for :class:`matplotlib.cm.ScalarMappable`) *pickradius* is the tolerance for mouse clicks picking a line. The default is 5 pt. The use of :class:`~matplotlib.cm.ScalarMappable` is optional. If the :class:`~matplotlib.cm.ScalarMappable` matrix :attr:`~matplotlib.cm.ScalarMappable._A` is not None (ie a call to :meth:`~matplotlib.cm.ScalarMappable.set_array` has been made), at draw time a call to scalar mappable will be made to set the colors. """ if colors is None: colors = mpl.rcParams['lines.color'] if linewidths is None: linewidths = (mpl.rcParams['lines.linewidth'],) if antialiaseds is None: antialiaseds = (mpl.rcParams['lines.antialiased'],) self.set_linestyles(linestyles) colors = _colors.colorConverter.to_rgba_array(colors) Collection.__init__( self, edgecolors=colors, linewidths=linewidths, linestyles=linestyles, antialiaseds=antialiaseds, offsets=offsets, transOffset=transOffset, norm=norm, cmap=cmap, pickradius=pickradius, **kwargs) self.set_facecolors([]) self.set_segments(segments) def get_paths(self): return self._paths def set_segments(self, segments): if segments is None: return _segments = [] for seg in segments: if not np.ma.isMaskedArray(seg): seg = np.asarray(seg, np.float_) _segments.append(seg) if self._uniform_offsets is not None: _segments = self._add_offsets(_segments) self._paths = [mpath.Path(seg) for seg in _segments] set_verts = set_segments # for compatibility with PolyCollection def _add_offsets(self, segs): offsets = self._uniform_offsets Nsegs = len(segs) Noffs = offsets.shape[0] if Noffs == 1: for i in range(Nsegs): segs[i] = segs[i] + i * offsets else: for i in range(Nsegs): io = i%Noffs segs[i] = segs[i] + offsets[io:io+1] return segs def set_color(self, c): """ Set the color(s) of the line collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence ACCEPTS: matplotlib color arg or sequence of rgba tuples """ self._edgecolors = _colors.colorConverter.to_rgba_array(c) def color(self, c): """ Set the color(s) of the line collection. *c* can be a matplotlib color arg (all patches have same color), or a sequence or rgba tuples; if it is a sequence the patches will cycle through the sequence ACCEPTS: matplotlib color arg or sequence of rgba tuples """ warnings.warn('LineCollection.color deprecated; use set_color instead') return self.set_color(c) def get_color(self): return self._edgecolors get_colors = get_color # for compatibility with old versions class CircleCollection(Collection): """ A collection of circles, drawn using splines. """ def __init__(self, sizes, **kwargs): """ *sizes* Gives the area of the circle in points^2 %(Collection)s """ Collection.__init__(self,**kwargs) self._sizes = sizes self.set_transform(transforms.IdentityTransform()) self._paths = [mpath.Path.unit_circle()] __init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd def draw(self, renderer): # sizes is the area of the circle circumscribing the polygon # in points^2 self._transforms = [ transforms.Affine2D().scale( (np.sqrt(x) * self.figure.dpi / 72.0) / np.sqrt(np.pi)) for x in self._sizes] return Collection.draw(self, renderer) def get_paths(self): return self._paths class EllipseCollection(Collection): """ A collection of ellipses, drawn using splines. """ def __init__(self, widths, heights, angles, units='points', **kwargs): """ *widths*: sequence half-lengths of first axes (e.g., semi-major axis lengths) *heights*: sequence half-lengths of second axes *angles*: sequence angles of first axes, degrees CCW from the X-axis *units*: ['points' | 'inches' | 'dots' | 'width' | 'height' | 'x' | 'y'] units in which majors and minors are given; 'width' and 'height' refer to the dimensions of the axes, while 'x' and 'y' refer to the *offsets* data units. Additional kwargs inherited from the base :class:`Collection`: %(Collection)s """ Collection.__init__(self,**kwargs) self._widths = np.asarray(widths).ravel() self._heights = np.asarray(heights).ravel() self._angles = np.asarray(angles).ravel() *(np.pi/180.0) self._units = units self.set_transform(transforms.IdentityTransform()) self._transforms = [] self._paths = [mpath.Path.unit_circle()] self._initialized = False __init__.__doc__ = cbook.dedent(__init__.__doc__) % artist.kwdocd def _init(self): def on_dpi_change(fig): self._transforms = [] self.figure.callbacks.connect('dpi_changed', on_dpi_change) self._initialized = True def set_transforms(self): if not self._initialized: self._init() self._transforms = [] ax = self.axes fig = self.figure if self._units in ('x', 'y'): if self._units == 'x': dx0 = ax.viewLim.width dx1 = ax.bbox.width else: dx0 = ax.viewLim.height dx1 = ax.bbox.height sc = dx1/dx0 else: if self._units == 'inches': sc = fig.dpi elif self._units == 'points': sc = fig.dpi / 72.0 elif self._units == 'width': sc = ax.bbox.width elif self._units == 'height': sc = ax.bbox.height elif self._units == 'dots': sc = 1.0 else: raise ValueError('unrecognized units: %s' % self._units) _affine = transforms.Affine2D for x, y, a in zip(self._widths, self._heights, self._angles): trans = _affine().scale(x * sc, y * sc).rotate(a) self._transforms.append(trans) def draw(self, renderer): if True: ###not self._transforms: self.set_transforms() return Collection.draw(self, renderer) def get_paths(self): return self._paths class PatchCollection(Collection): """ A generic collection of patches. This makes it easier to assign a color map to a heterogeneous collection of patches. This also may improve plotting speed, since PatchCollection will draw faster than a large number of patches. """ def __init__(self, patches, match_original=False, **kwargs): """ *patches* a sequence of Patch objects. This list may include a heterogeneous assortment of different patch types. *match_original* If True, use the colors and linewidths of the original patches. If False, new colors may be assigned by providing the standard collection arguments, facecolor, edgecolor, linewidths, norm or cmap. If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds* are None, they default to their :data:`matplotlib.rcParams` patch setting, in sequence form. The use of :class:`~matplotlib.cm.ScalarMappable` is optional. If the :class:`~matplotlib.cm.ScalarMappable` matrix _A is not None (ie a call to set_array has been made), at draw time a call to scalar mappable will be made to set the face colors. """ if match_original: def determine_facecolor(patch): if patch.fill: return patch.get_facecolor() return [0, 0, 0, 0] facecolors = [determine_facecolor(p) for p in patches] edgecolors = [p.get_edgecolor() for p in patches] linewidths = [p.get_linewidths() for p in patches] antialiaseds = [p.get_antialiased() for p in patches] Collection.__init__( self, edgecolors=edgecolors, facecolors=facecolors, linewidths=linewidths, linestyles='solid', antialiaseds = antialiaseds) else: Collection.__init__(self, **kwargs) paths = [p.get_transform().transform_path(p.get_path()) for p in patches] self._paths = paths def get_paths(self): return self._paths artist.kwdocd['Collection'] = patchstr = artist.kwdoc(Collection) for k in ('QuadMesh', 'PolyCollection', 'BrokenBarHCollection', 'RegularPolyCollection', 'StarPolygonCollection', 'PatchCollection', 'CircleCollection'): artist.kwdocd[k] = patchstr artist.kwdocd['LineCollection'] = artist.kwdoc(LineCollection)
gpl-3.0
ChanderG/scikit-learn
sklearn/cluster/tests/test_hierarchical.py
230
19795
""" Several basic tests for hierarchical clustering procedures """ # Authors: Vincent Michel, 2010, Gael Varoquaux 2012, # Matteo Visconti di Oleggio Castello 2014 # License: BSD 3 clause from tempfile import mkdtemp import shutil from functools import partial import numpy as np from scipy import sparse from scipy.cluster import hierarchy from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.cluster import ward_tree from sklearn.cluster import AgglomerativeClustering, FeatureAgglomeration from sklearn.cluster.hierarchical import (_hc_cut, _TREE_BUILDERS, linkage_tree) from sklearn.feature_extraction.image import grid_to_graph from sklearn.metrics.pairwise import PAIRED_DISTANCES, cosine_distances,\ manhattan_distances, pairwise_distances from sklearn.metrics.cluster import normalized_mutual_info_score from sklearn.neighbors.graph import kneighbors_graph from sklearn.cluster._hierarchical import average_merge, max_merge from sklearn.utils.fast_dict import IntFloatDict from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_warns def test_linkage_misc(): # Misc tests on linkage rng = np.random.RandomState(42) X = rng.normal(size=(5, 5)) assert_raises(ValueError, AgglomerativeClustering(linkage='foo').fit, X) assert_raises(ValueError, linkage_tree, X, linkage='foo') assert_raises(ValueError, linkage_tree, X, connectivity=np.ones((4, 4))) # Smoke test FeatureAgglomeration FeatureAgglomeration().fit(X) # test hiearchical clustering on a precomputed distances matrix dis = cosine_distances(X) res = linkage_tree(dis, affinity="precomputed") assert_array_equal(res[0], linkage_tree(X, affinity="cosine")[0]) # test hiearchical clustering on a precomputed distances matrix res = linkage_tree(X, affinity=manhattan_distances) assert_array_equal(res[0], linkage_tree(X, affinity="manhattan")[0]) def test_structured_linkage_tree(): # Check that we obtain the correct solution for structured linkage trees. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) # Avoiding a mask with only 'True' entries mask[4:7, 4:7] = 0 X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for tree_builder in _TREE_BUILDERS.values(): children, n_components, n_leaves, parent = \ tree_builder(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) # Check that ward_tree raises a ValueError with a connectivity matrix # of the wrong shape assert_raises(ValueError, tree_builder, X.T, np.ones((4, 4))) # Check that fitting with no samples raises an error assert_raises(ValueError, tree_builder, X.T[:0], connectivity) def test_unstructured_linkage_tree(): # Check that we obtain the correct solution for unstructured linkage trees. rng = np.random.RandomState(0) X = rng.randn(50, 100) for this_X in (X, X[0]): # With specified a number of clusters just for the sake of # raising a warning and testing the warning code with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, ward_tree, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) for tree_builder in _TREE_BUILDERS.values(): for this_X in (X, X[0]): with ignore_warnings(): children, n_nodes, n_leaves, parent = assert_warns( UserWarning, tree_builder, this_X.T, n_clusters=10) n_nodes = 2 * X.shape[1] - 1 assert_equal(len(children) + n_leaves, n_nodes) def test_height_linkage_tree(): # Check that the height of the results of linkage tree is sorted. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for linkage_func in _TREE_BUILDERS.values(): children, n_nodes, n_leaves, parent = linkage_func(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert_true(len(children) + n_leaves == n_nodes) def test_agglomerative_clustering(): # Check that we obtain the correct number of clusters with # agglomerative clustering. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) n_samples = 100 X = rng.randn(n_samples, 50) connectivity = grid_to_graph(*mask.shape) for linkage in ("ward", "complete", "average"): clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage=linkage) clustering.fit(X) # test caching try: tempdir = mkdtemp() clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, memory=tempdir, linkage=linkage) clustering.fit(X) labels = clustering.labels_ assert_true(np.size(np.unique(labels)) == 10) finally: shutil.rmtree(tempdir) # Turn caching off now clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity, linkage=linkage) # Check that we obtain the same solution with early-stopping of the # tree building clustering.compute_full_tree = False clustering.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering.labels_, labels), 1) clustering.connectivity = None clustering.fit(X) assert_true(np.size(np.unique(clustering.labels_)) == 10) # Check that we raise a TypeError on dense matrices clustering = AgglomerativeClustering( n_clusters=10, connectivity=sparse.lil_matrix( connectivity.toarray()[:10, :10]), linkage=linkage) assert_raises(ValueError, clustering.fit, X) # Test that using ward with another metric than euclidean raises an # exception clustering = AgglomerativeClustering( n_clusters=10, connectivity=connectivity.toarray(), affinity="manhattan", linkage="ward") assert_raises(ValueError, clustering.fit, X) # Test using another metric than euclidean works with linkage complete for affinity in PAIRED_DISTANCES.keys(): # Compare our (structured) implementation to scipy clustering = AgglomerativeClustering( n_clusters=10, connectivity=np.ones((n_samples, n_samples)), affinity=affinity, linkage="complete") clustering.fit(X) clustering2 = AgglomerativeClustering( n_clusters=10, connectivity=None, affinity=affinity, linkage="complete") clustering2.fit(X) assert_almost_equal(normalized_mutual_info_score(clustering2.labels_, clustering.labels_), 1) # Test that using a distance matrix (affinity = 'precomputed') has same # results (with connectivity constraints) clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage="complete") clustering.fit(X) X_dist = pairwise_distances(X) clustering2 = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, affinity='precomputed', linkage="complete") clustering2.fit(X_dist) assert_array_equal(clustering.labels_, clustering2.labels_) def test_ward_agglomeration(): # Check that we obtain the correct solution in a simplistic case rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity) agglo.fit(X) assert_true(np.size(np.unique(agglo.labels_)) == 5) X_red = agglo.transform(X) assert_true(X_red.shape[1] == 5) X_full = agglo.inverse_transform(X_red) assert_true(np.unique(X_full[0]).size == 5) assert_array_almost_equal(agglo.transform(X_full), X_red) # Check that fitting with no samples raises a ValueError assert_raises(ValueError, agglo.fit, X[:0]) def assess_same_labelling(cut1, cut2): """Util for comparison with scipy""" co_clust = [] for cut in [cut1, cut2]: n = len(cut) k = cut.max() + 1 ecut = np.zeros((n, k)) ecut[np.arange(n), cut] = 1 co_clust.append(np.dot(ecut, ecut.T)) assert_true((co_clust[0] == co_clust[1]).all()) def test_scikit_vs_scipy(): # Test scikit linkage with full connectivity (i.e. unstructured) vs scipy n, p, k = 10, 5, 3 rng = np.random.RandomState(0) # Not using a lil_matrix here, just to check that non sparse # matrices are well handled connectivity = np.ones((n, n)) for linkage in _TREE_BUILDERS.keys(): for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out = hierarchy.linkage(X, method=linkage) children_ = out[:, :2].astype(np.int) children, _, n_leaves, _ = _TREE_BUILDERS[linkage](X, connectivity) cut = _hc_cut(k, children, n_leaves) cut_ = _hc_cut(k, children_, n_leaves) assess_same_labelling(cut, cut_) # Test error management in _hc_cut assert_raises(ValueError, _hc_cut, n_leaves + 1, children, n_leaves) def test_connectivity_propagation(): # Check that connectivity in the ward tree is propagated correctly during # merging. X = np.array([(.014, .120), (.014, .099), (.014, .097), (.017, .153), (.017, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .153), (.018, .152), (.018, .149), (.018, .144)]) connectivity = kneighbors_graph(X, 10, include_self=False) ward = AgglomerativeClustering( n_clusters=4, connectivity=connectivity, linkage='ward') # If changes are not propagated correctly, fit crashes with an # IndexError ward.fit(X) def test_ward_tree_children_order(): # Check that children are ordered in the same way for both structured and # unstructured versions of ward_tree. # test on five random datasets n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X) out_structured = ward_tree(X, connectivity=connectivity) assert_array_equal(out_unstructured[0], out_structured[0]) def test_ward_linkage_tree_return_distance(): # Test return_distance option on linkage and ward trees # test that return_distance when set true, gives same # output on both structured and unstructured clustering. n, p = 10, 5 rng = np.random.RandomState(0) connectivity = np.ones((n, n)) for i in range(5): X = .1 * rng.normal(size=(n, p)) X -= 4. * np.arange(n)[:, np.newaxis] X -= X.mean(axis=1)[:, np.newaxis] out_unstructured = ward_tree(X, return_distance=True) out_structured = ward_tree(X, connectivity=connectivity, return_distance=True) # get children children_unstructured = out_unstructured[0] children_structured = out_structured[0] # check if we got the same clusters assert_array_equal(children_unstructured, children_structured) # check if the distances are the same dist_unstructured = out_unstructured[-1] dist_structured = out_structured[-1] assert_array_almost_equal(dist_unstructured, dist_structured) for linkage in ['average', 'complete']: structured_items = linkage_tree( X, connectivity=connectivity, linkage=linkage, return_distance=True)[-1] unstructured_items = linkage_tree( X, linkage=linkage, return_distance=True)[-1] structured_dist = structured_items[-1] unstructured_dist = unstructured_items[-1] structured_children = structured_items[0] unstructured_children = unstructured_items[0] assert_array_almost_equal(structured_dist, unstructured_dist) assert_array_almost_equal( structured_children, unstructured_children) # test on the following dataset where we know the truth # taken from scipy/cluster/tests/hierarchy_test_data.py X = np.array([[1.43054825, -7.5693489], [6.95887839, 6.82293382], [2.87137846, -9.68248579], [7.87974764, -6.05485803], [8.24018364, -6.09495602], [7.39020262, 8.54004355]]) # truth linkage_X_ward = np.array([[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 9.10208346, 4.], [7., 9., 24.7784379, 6.]]) linkage_X_complete = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.96742194, 4.], [7., 9., 18.77445997, 6.]]) linkage_X_average = np.array( [[3., 4., 0.36265956, 2.], [1., 5., 1.77045373, 2.], [0., 2., 2.55760419, 2.], [6., 8., 6.55832839, 4.], [7., 9., 15.44089605, 6.]]) n_samples, n_features = np.shape(X) connectivity_X = np.ones((n_samples, n_samples)) out_X_unstructured = ward_tree(X, return_distance=True) out_X_structured = ward_tree(X, connectivity=connectivity_X, return_distance=True) # check that the labels are the same assert_array_equal(linkage_X_ward[:, :2], out_X_unstructured[0]) assert_array_equal(linkage_X_ward[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(linkage_X_ward[:, 2], out_X_unstructured[4]) assert_array_almost_equal(linkage_X_ward[:, 2], out_X_structured[4]) linkage_options = ['complete', 'average'] X_linkage_truth = [linkage_X_complete, linkage_X_average] for (linkage, X_truth) in zip(linkage_options, X_linkage_truth): out_X_unstructured = linkage_tree( X, return_distance=True, linkage=linkage) out_X_structured = linkage_tree( X, connectivity=connectivity_X, linkage=linkage, return_distance=True) # check that the labels are the same assert_array_equal(X_truth[:, :2], out_X_unstructured[0]) assert_array_equal(X_truth[:, :2], out_X_structured[0]) # check that the distances are correct assert_array_almost_equal(X_truth[:, 2], out_X_unstructured[4]) assert_array_almost_equal(X_truth[:, 2], out_X_structured[4]) def test_connectivity_fixing_non_lil(): # Check non regression of a bug if a non item assignable connectivity is # provided with more than one component. # create dummy data x = np.array([[0, 0], [1, 1]]) # create a mask with several components to force connectivity fixing m = np.array([[True, False], [False, True]]) c = grid_to_graph(n_x=2, n_y=2, mask=m) w = AgglomerativeClustering(connectivity=c, linkage='ward') assert_warns(UserWarning, w.fit, x) def test_int_float_dict(): rng = np.random.RandomState(0) keys = np.unique(rng.randint(100, size=10).astype(np.intp)) values = rng.rand(len(keys)) d = IntFloatDict(keys, values) for key, value in zip(keys, values): assert d[key] == value other_keys = np.arange(50).astype(np.intp)[::2] other_values = 0.5 * np.ones(50)[::2] other = IntFloatDict(other_keys, other_values) # Complete smoke test max_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) average_merge(d, other, mask=np.ones(100, dtype=np.intp), n_a=1, n_b=1) def test_connectivity_callable(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering( connectivity=partial(kneighbors_graph, n_neighbors=3, include_self=False)) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_connectivity_ignores_diagonal(): rng = np.random.RandomState(0) X = rng.rand(20, 5) connectivity = kneighbors_graph(X, 3, include_self=False) connectivity_include_self = kneighbors_graph(X, 3, include_self=True) aglc1 = AgglomerativeClustering(connectivity=connectivity) aglc2 = AgglomerativeClustering(connectivity=connectivity_include_self) aglc1.fit(X) aglc2.fit(X) assert_array_equal(aglc1.labels_, aglc2.labels_) def test_compute_full_tree(): # Test that the full tree is computed if n_clusters is small rng = np.random.RandomState(0) X = rng.randn(10, 2) connectivity = kneighbors_graph(X, 5, include_self=False) # When n_clusters is less, the full tree should be built # that is the number of merges should be n_samples - 1 agc = AgglomerativeClustering(n_clusters=2, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - 1) # When n_clusters is large, greater than max of 100 and 0.02 * n_samples. # we should stop when there are n_clusters. n_clusters = 101 X = rng.randn(200, 2) connectivity = kneighbors_graph(X, 10, include_self=False) agc = AgglomerativeClustering(n_clusters=n_clusters, connectivity=connectivity) agc.fit(X) n_samples = X.shape[0] n_nodes = agc.children_.shape[0] assert_equal(n_nodes, n_samples - n_clusters) def test_n_components(): # Test n_components returned by linkage, average and ward tree rng = np.random.RandomState(0) X = rng.rand(5, 5) # Connectivity matrix having five components. connectivity = np.eye(5) for linkage_func in _TREE_BUILDERS.values(): assert_equal(ignore_warnings(linkage_func)(X, connectivity)[1], 5) def test_agg_n_clusters(): # Test that an error is raised when n_clusters <= 0 rng = np.random.RandomState(0) X = rng.rand(20, 10) for n_clus in [-1, 0]: agc = AgglomerativeClustering(n_clusters=n_clus) msg = ("n_clusters should be an integer greater than 0." " %s was provided." % str(agc.n_clusters)) assert_raise_message(ValueError, msg, agc.fit, X)
bsd-3-clause
acapet/GHER-POSTPROC
Examples/MonthlyMapsBottomAge_2Ddist.py
1
3445
import numpy as np import numpy.ma as ma from netCDF4 import Dataset #from mpl_toolkits.basemap import Basemap #from multiprocessing import Pool #import gsw import matplotlib matplotlib.use('pdf') import matplotlib.pyplot as plt import matplotlib.dates as mdates import datetime as dt import sys import os import cmocean import G3D_class import calendar firstyear=1 lastyear =5 # Compile the complite Age profile time series for yy in range(firstyear,lastyear+1): G1 = G3D_class.G3D('../../data/postfpCARTseq/r'+str(yy)+'.nc') maskDS = (G1.bat>120) | (G1.bat.mask) # a1 has two dimension : ztab and original time. G1.gload('T1age') G1.T1age=G1.maskvar(G1.T1age,maskDS.squeeze()) botmaxage = G1.T1age[:,11] if yy==firstyear: bmaa=botmaxage datesa=G1.dates else: bmaa=ma.append(bmaa,botmaxage,0) datesa=datesa+G1.dates if not(yy==lastyear): del G1 else: G1.testz() minyear = np.min([ i.year for i in datesa]) maxyear = np.max([ i.year for i in datesa]) fig,ax = plt.subplots() labels=[] ccm=plt.get_cmap('spring',maxyear-minyear+1) count=0 ccs=[] for yy in range(minyear,maxyear): count=count+1 # Select the good part of datesa and bmaa indx = [i for i,x in enumerate(datesa) if x.year==yy] locdates = [datesa[i] for i in indx] loca = bmaa[indx] mxa = loca.max(axis=0) idxma = loca.argmax(0) dayl = [ i.timetuple().tm_yday for i in locdates ] dayd = dict(enumerate(dayl)) b=ma.copy(idxma) for old, new in dayd.items(): b[idxma == old] = new b[b<100]=b[b<100]+365 H, xedges, yedges = np.histogram2d(mxa[~mxa.mask].flatten(),b[~mxa.mask].flatten(),bins=[ np.r_[1:366:20],np.r_[150:450:20]]) H = np.flipud(H) H = np.rot90(H) cs=ax.contour((xedges[1:]+xedges[:-1])/2,(yedges[1:]+yedges[:-1])/2,H/H.sum()*100,levels=[ 1, 10], colors=[ccm(count),]) ccs.append(cs) plt.xlim([0,400]) lines= [ c.collections[0] for c in ccs] labels=[str(yy) for yy in range(minyear,maxyear)] lgd=plt.legend(lines,labels, bbox_to_anchor=(1.05, 0.5), loc=6, borderaxespad=0.) plt.xlabel( 'Max Age of Bottom Waters') plt.ylabel( 'Day of the year of occurence') ax.grid('on') fig.savefig(G1.figoutputdir+'2Dhist_BottomAge.png', bbox_extra_artists=(lgd,), bbox_inches='tight') ''' ztab = -1*np.concatenate([np.arange(0,10,2), np.arange(10,40,5),np.arange(50,120,10),np.arange(120,320,50)]) firstyear=1 lastyear =1 yy=1 G1 = G3D_class.G3D('../Out_CARTseq/r'+str(yy)+'.nc') maskDS = (G1.bat<120) | (G1.bat.mask) maskDS3D=np.tile(maskDS,(31,1,1)) G1.gload('T1age') G1.testz() months = [g.month for g in G1.dates] year = [g.month for g in G1.year] for yy in [1982]: for mm in range(1,13): tindexes = np.where((np.array(months)==4 )& (np.array(year)==1982))[0] locbotage=ma.mean(G1.T1age[tindexes,11],axis=0) fig=plt.figure(figsize=(6, 6)) ax=plt.subplot(1, 1, 1) plt.contourf(G1.lon,G1.lat,locbotage,cmap='RdPu') '''
gpl-3.0
graitanto21/UniboQuad
libraries/AP_Math/tools/geodesic_grid/plot.py
110
2876
# Copyright (C) 2016 Intel Corporation. All rights reserved. # # This file is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This file is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program. If not, see <http://www.gnu.org/licenses/>. import matplotlib.pyplot as plt import matplotlib.patches as mpatches from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection import icosahedron as ico import grid fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.set_xlim3d(-2, 2) ax.set_ylim3d(-2, 2) ax.set_zlim3d(-2, 2) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') ax.invert_zaxis() ax.invert_xaxis() ax.set_aspect('equal') added_polygons = set() added_sections = set() def polygons(polygons): for p in polygons: polygon(p) def polygon(polygon): added_polygons.add(polygon) def section(s): added_sections.add(s) def sections(sections): for s in sections: section(s) def show(subtriangles=False): polygons = [] facecolors = [] triangles_indexes = set() subtriangle_facecolors = ( '#CCCCCC', '#CCE5FF', '#E5FFCC', '#FFCCCC', ) if added_sections: subtriangles = True for p in added_polygons: try: i = ico.triangles.index(p) except ValueError: polygons.append(p) continue if subtriangles: sections(range(i * 4, i * 4 + 4)) else: triangles_indexes.add(i) polygons.append(p) facecolors.append('#DDDDDD') for s in added_sections: triangles_indexes.add(int(s / 4)) subtriangle_index = s % 4 polygons.append(grid.section_triangle(s)) facecolors.append(subtriangle_facecolors[subtriangle_index]) ax.add_collection3d(Poly3DCollection( polygons, facecolors=facecolors, edgecolors="#777777", )) for i in triangles_indexes: t = ico.triangles[i] mx = my = mz = 0 for x, y, z in t: mx += x my += y mz += z ax.text(mx / 2.6, my / 2.6, mz / 2.6, i, color='#444444') if subtriangles: ax.legend( handles=tuple( mpatches.Patch(color=c, label='Sub-triangle #%d' % i) for i, c in enumerate(subtriangle_facecolors) ), ) plt.show()
gpl-3.0
FORTH-ModelBasedTracker/PyOpenPose
scripts/JustHandNet.py
1
3448
""" Example script using only the Hand detector of Openpose. """ import PyOpenPose as OP import time import cv2 import numpy as np import os from matplotlib import pyplot as plt from OpLoop_heatmaps_example import showHeatmaps OPENPOSE_ROOT = os.environ["OPENPOSE_ROOT"] def ComputeBB(hand, padding=1.5): minX = np.min(hand[:, 0]) minY = np.min(hand[:, 1]) maxX = np.max(hand[:, 0]) maxY = np.max(hand[:, 1]) width = maxX - minX height = maxY - minY cx = minX + width/2 cy = minY + height/2 width = height = max(width, height) width = height = width * padding minX = cx - width/2 minY = cy - height/2 score = np.mean(hand[:, 2]) return score, [int(minX), int(minY), int(width), int(height)] def run(): cap = cv2.VideoCapture(0) ret, frame = cap.read() imgSize = list(frame.shape) outSize = imgSize[1::-1] print("Net output size: ", outSize) download_heatmaps = True with_hands = True with_face = False op = OP.OpenPose((656, 368), (240, 240), tuple(outSize), "COCO", OPENPOSE_ROOT + os.sep + "models" + os.sep, 0, download_heatmaps, OP.OpenPose.ScaleMode.ZeroToOne, with_face, with_hands) actual_fps = 0 paused = False delay = {True: 0, False: 1} newHandBB = initHandBB = handBB = [270, 190, 200, 200] print("Entering main Loop. Put your hand into the box to start tracking") while True: start_time = time.time() try: ret, frame = cap.read() rgb = frame[:, :outSize[0]] except Exception as e: print("Failed to grab", e) break t = time.time() op.detectHands(rgb, np.array(handBB + [0, 0, 0, 0], dtype=np.int32).reshape((1, 8))) t = time.time() - t op_fps = 1.0 / t res = op.render(rgb) cv2.putText(res, 'UI FPS = %f, OP-HAND FPS = %f. Press \'r\' to reset.' % (actual_fps, op_fps), (20, 20), 0, 0.5, (0, 0, 255)) cv2.rectangle(res, (handBB[0], handBB[1]), (handBB[0] + handBB[2], handBB[1] + handBB[3]), [50, 155, 50], 2) cv2.rectangle(res, (newHandBB[0], newHandBB[1]), (newHandBB[0] + newHandBB[2], newHandBB[1] + newHandBB[3]), [250, 55, 50], 1) if download_heatmaps: left_hands, right_hands = op.getHandHeatmaps() for pidx in range(len(left_hands)): hm = showHeatmaps(left_hands[pidx], "Left Hand"+str(pidx)) plt.imshow(hm) hm = hm[:, ::-1] x,y,w,h = handBB hs = cv2.resize(hm,(w,h)) hs3 = (np.dstack((hs,hs,hs)) * 255).astype(np.ubyte) res[y:y+h, x:x+w] += hs3 cv2.imshow("OpenPose result", res) leftHand = op.getKeypoints(op.KeypointType.HAND)[0].reshape(-1, 3) score, newHandBB = ComputeBB(leftHand) print("Res Score, HandBB: ", score, newHandBB) # if score > 0.5: # update BB only when score is good. # handBB = newHandBB key = cv2.waitKey(delay[paused]) if key & 255 == ord('p'): paused = not paused if key & 255 == ord('q'): break if key & 255 == ord('r'): handBB = initHandBB if key & 255 == ord('u'): plt.show() actual_fps = 1.0 / (time.time() - start_time) if __name__ == '__main__': run()
bsd-3-clause
iohannez/gnuradio
gr-fec/python/fec/polar/channel_construction_bec.py
7
8225
#!/usr/bin/env python # # Copyright 2015 Free Software Foundation, Inc. # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from __future__ import print_function from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import numpy as np from . import helper_functions as hf def bec_channel(eta): ''' binary erasure channel (BEC) for each y e Y W(y|0) * W(y|1) = 0 or W(y|0) = W(y|1) transitions are 1 -> 1 or 0 -> 0 or {0, 1} -> ? (erased symbol) ''' # looks like BSC but should be interpreted differently. w = np.array((1 - eta, eta, 1 - eta), dtype=float) return w def odd_rec(iwn): return iwn ** 2 def even_rec(iwn): return 2 * iwn - iwn ** 2 def calc_one_recursion(iw0): iw1 = np.zeros(2 * len(iw0)) # double values for i in range(len(iw0)): # careful indices screw you because paper is '1' based :( iw1[2 * i] = odd_rec(iw0[i]) iw1[2 * i + 1] = even_rec(iw0[i]) return iw1 def calculate_bec_channel_capacities_loop(initial_channel, block_power): # compare [0, Arikan] eq. 6 iw = np.array([initial_channel, ], dtype=float) for i in range(block_power): iw = calc_one_recursion(iw) return iw def calc_vector_capacities_one_recursion(iw0): degraded = odd_rec(iw0) upgraded = even_rec(iw0) iw1 = np.empty(2 * len(iw0), dtype=degraded.dtype) iw1[0::2] = degraded iw1[1::2] = upgraded return iw1 def calculate_bec_channel_capacities_vector(initial_channel, block_power): # compare [0, Arikan] eq. 6 # this version is ~ 180 times faster than the loop version with 2**22 synthetic channels iw = np.array([initial_channel, ], dtype=float) for i in range(block_power): iw = calc_vector_capacities_one_recursion(iw) return iw def calculate_bec_channel_capacities(eta, block_size): # compare [0, Arikan] eq. 6 iw = 1 - eta # holds for BEC as stated in paper lw = hf.power_of_2_int(block_size) return calculate_bec_channel_capacities_vector(iw, lw) def calculate_z_parameters_one_recursion(z_params): z_next = np.empty(2 * z_params.size, dtype=z_params.dtype) z_sq = z_params ** 2 z_low = 2 * z_params - z_sq z_next[0::2] = z_low z_next[1::2] = z_sq return z_next def calculate_bec_channel_z_parameters(eta, block_size): # compare [0, Arikan] eq. 38 block_power = hf.power_of_2_int(block_size) z_params = np.array([eta, ], dtype=float) for block_size in range(block_power): z_params = calculate_z_parameters_one_recursion(z_params) return z_params def design_snr_to_bec_eta(design_snr): # minimum design snr = -1.5917 corresponds to BER = 0.5 s = 10. ** (design_snr / 10.) return np.exp(-s) def bhattacharyya_bounds(design_snr, block_size): ''' Harish Vangala, Emanuele Viterbo, Yi Hong: 'A Comparative Study of Polar Code Constructions for the AWGN Channel', 2015 In this paper it is called Bhattacharyya bounds channel construction and is abbreviated PCC-0 Best design SNR for block_size = 2048, R = 0.5, is 0dB. Compare with Arikan: 'Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels. Proposition 5. inequalities turn into equalities for BEC channel. Otherwise they represent an upper bound. Also compare [0, Arikan] eq. 6 and 38 For BEC that translates to capacity(i) = 1 - bhattacharyya(i) :return Z-parameters in natural bit-order. Choose according to desired rate. ''' eta = design_snr_to_bec_eta(design_snr) return calculate_bec_channel_z_parameters(eta, block_size) def plot_channel_capacities(capacity, save_file=None): block_size = len(capacity) try: import matplotlib.pyplot as plt # FUN with matplotlib LaTeX fonts! http://matplotlib.org/users/usetex.html plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.rc('figure', autolayout=True) plt.plot(capacity) plt.xlim([0, block_size]) plt.ylim([-0.01, 1.01]) plt.xlabel('synthetic channel number') plt.ylabel('channel capacity') # plt.title('BEC channel construction') plt.grid() plt.gcf().set_size_inches(plt.gcf().get_size_inches() * .5) if save_file: plt.savefig(save_file) plt.show() except ImportError: pass # only plot in case matplotlib is installed def plot_average_channel_distance(save_file=None): eta = 0.5 # design_snr_to_bec_eta(-1.5917) powers = np.arange(4, 26) try: import matplotlib.pyplot as plt import matplotlib # FUN with matplotlib LaTeX fonts! http://matplotlib.org/users/usetex.html plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.rc('figure', autolayout=True) dist = [] medians = [] initial_channel = 1 - eta for p in powers: bs = int(2 ** p) capacities = calculate_bec_channel_capacities(eta, bs) avg_capacity = np.repeat(initial_channel, len(capacities)) averages = np.abs(capacities - avg_capacity) avg_distance = np.sum(averages) / float(len(capacities)) dist.append(avg_distance) variance = np.std(averages) medians.append(variance) plt.errorbar(powers, dist, yerr=medians) plt.grid() plt.xlabel(r'block size $N$') plt.ylabel(r'$\frac{1}{N} \sum_i |I(W_N^{(i)}) - 0.5|$') axes = plt.axes() tick_values = np.array(axes.get_xticks().tolist()) tick_labels = np.array(tick_values, dtype=int) tick_labels = ['$2^{' + str(i) + '}$' for i in tick_labels] plt.xticks(tick_values, tick_labels) plt.xlim((powers[0], powers[-1])) plt.ylim((0.2, 0.5001)) plt.gcf().set_size_inches(plt.gcf().get_size_inches() * .5) if save_file: plt.savefig(save_file) plt.show() except ImportError: pass def plot_capacity_histogram(design_snr, save_file=None): eta = design_snr_to_bec_eta(design_snr) # capacities = calculate_bec_channel_capacities(eta, block_size) try: import matplotlib.pyplot as plt # FUN with matplotlib LaTeX fonts! http://matplotlib.org/users/usetex.html plt.rc('text', usetex=True) plt.rc('font', family='serif') plt.rc('figure', autolayout=True) block_sizes = [32, 128, 512] for b in block_sizes: capacities = calculate_bec_channel_capacities(eta, b) w = 1. / float(len(capacities)) weights = [w, ] * b plt.hist(capacities, bins=b, weights=weights, range=(0.95, 1.0)) plt.grid() plt.xlabel('synthetic channel capacity') plt.ylabel('normalized item count') print(plt.gcf().get_size_inches()) plt.gcf().set_size_inches(plt.gcf().get_size_inches() * .5) if save_file: plt.savefig(save_file) plt.show() except ImportError: pass def main(): print('channel construction main') n = 11 block_size = int(2 ** n) design_snr = -1.59 eta = design_snr_to_bec_eta(design_snr) # print(calculate_bec_channel_z_parameters(eta, block_size)) # capacity = calculate_bec_channel_capacities(eta, block_size) # plot_average_channel_distance() calculate_bec_channel_z_parameters(eta, block_size) if __name__ == '__main__': main()
gpl-3.0
RPGOne/Skynet
scikit-learn-0.18.1/sklearn/linear_model/stochastic_gradient.py
20
51086
# Authors: Peter Prettenhofer <[email protected]> (main author) # Mathieu Blondel (partial_fit support) # # License: BSD 3 clause """Classification and regression using Stochastic Gradient Descent (SGD).""" import numpy as np from abc import ABCMeta, abstractmethod from ..externals.joblib import Parallel, delayed from .base import LinearClassifierMixin, SparseCoefMixin from .base import make_dataset from ..base import BaseEstimator, RegressorMixin from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import (check_array, check_random_state, check_X_y, deprecated) from ..utils.extmath import safe_sparse_dot from ..utils.multiclass import _check_partial_fit_first_call from ..utils.validation import check_is_fitted from ..externals import six from .sgd_fast import plain_sgd, average_sgd from ..utils.fixes import astype from ..utils import compute_class_weight from .sgd_fast import Hinge from .sgd_fast import SquaredHinge from .sgd_fast import Log from .sgd_fast import ModifiedHuber from .sgd_fast import SquaredLoss from .sgd_fast import Huber from .sgd_fast import EpsilonInsensitive from .sgd_fast import SquaredEpsilonInsensitive LEARNING_RATE_TYPES = {"constant": 1, "optimal": 2, "invscaling": 3, "pa1": 4, "pa2": 5} PENALTY_TYPES = {"none": 0, "l2": 2, "l1": 1, "elasticnet": 3} DEFAULT_EPSILON = 0.1 # Default value of ``epsilon`` parameter. class BaseSGD(six.with_metaclass(ABCMeta, BaseEstimator, SparseCoefMixin)): """Base class for SGD classification and regression.""" def __init__(self, loss, penalty='l2', alpha=0.0001, C=1.0, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=0.1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, warm_start=False, average=False): self.loss = loss self.penalty = penalty self.learning_rate = learning_rate self.epsilon = epsilon self.alpha = alpha self.C = C self.l1_ratio = l1_ratio self.fit_intercept = fit_intercept self.n_iter = n_iter self.shuffle = shuffle self.random_state = random_state self.verbose = verbose self.eta0 = eta0 self.power_t = power_t self.warm_start = warm_start self.average = average self._validate_params() self.coef_ = None if self.average > 0: self.standard_coef_ = None self.average_coef_ = None # iteration count for learning rate schedule # must not be int (e.g. if ``learning_rate=='optimal'``) self.t_ = None def set_params(self, *args, **kwargs): super(BaseSGD, self).set_params(*args, **kwargs) self._validate_params() return self @abstractmethod def fit(self, X, y): """Fit model.""" def _validate_params(self): """Validate input params. """ if not isinstance(self.shuffle, bool): raise ValueError("shuffle must be either True or False") if self.n_iter <= 0: raise ValueError("n_iter must be > zero") if not (0.0 <= self.l1_ratio <= 1.0): raise ValueError("l1_ratio must be in [0, 1]") if self.alpha < 0.0: raise ValueError("alpha must be >= 0") if self.learning_rate in ("constant", "invscaling"): if self.eta0 <= 0.0: raise ValueError("eta0 must be > 0") if self.learning_rate == "optimal" and self.alpha == 0: raise ValueError("alpha must be > 0 since " "learning_rate is 'optimal'. alpha is used " "to compute the optimal learning rate.") # raises ValueError if not registered self._get_penalty_type(self.penalty) self._get_learning_rate_type(self.learning_rate) if self.loss not in self.loss_functions: raise ValueError("The loss %s is not supported. " % self.loss) def _get_loss_function(self, loss): """Get concrete ``LossFunction`` object for str ``loss``. """ try: loss_ = self.loss_functions[loss] loss_class, args = loss_[0], loss_[1:] if loss in ('huber', 'epsilon_insensitive', 'squared_epsilon_insensitive'): args = (self.epsilon, ) return loss_class(*args) except KeyError: raise ValueError("The loss %s is not supported. " % loss) def _get_learning_rate_type(self, learning_rate): try: return LEARNING_RATE_TYPES[learning_rate] except KeyError: raise ValueError("learning rate %s " "is not supported. " % learning_rate) def _get_penalty_type(self, penalty): penalty = str(penalty).lower() try: return PENALTY_TYPES[penalty] except KeyError: raise ValueError("Penalty %s is not supported. " % penalty) def _validate_sample_weight(self, sample_weight, n_samples): """Set the sample weight array.""" if sample_weight is None: # uniform sample weights sample_weight = np.ones(n_samples, dtype=np.float64, order='C') else: # user-provided array sample_weight = np.asarray(sample_weight, dtype=np.float64, order="C") if sample_weight.shape[0] != n_samples: raise ValueError("Shapes of X and sample_weight do not match.") return sample_weight def _allocate_parameter_mem(self, n_classes, n_features, coef_init=None, intercept_init=None): """Allocate mem for parameters; initialize if provided.""" if n_classes > 2: # allocate coef_ for multi-class if coef_init is not None: coef_init = np.asarray(coef_init, order="C") if coef_init.shape != (n_classes, n_features): raise ValueError("Provided ``coef_`` does not match " "dataset. ") self.coef_ = coef_init else: self.coef_ = np.zeros((n_classes, n_features), dtype=np.float64, order="C") # allocate intercept_ for multi-class if intercept_init is not None: intercept_init = np.asarray(intercept_init, order="C") if intercept_init.shape != (n_classes, ): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init else: self.intercept_ = np.zeros(n_classes, dtype=np.float64, order="C") else: # allocate coef_ for binary problem if coef_init is not None: coef_init = np.asarray(coef_init, dtype=np.float64, order="C") coef_init = coef_init.ravel() if coef_init.shape != (n_features,): raise ValueError("Provided coef_init does not " "match dataset.") self.coef_ = coef_init else: self.coef_ = np.zeros(n_features, dtype=np.float64, order="C") # allocate intercept_ for binary problem if intercept_init is not None: intercept_init = np.asarray(intercept_init, dtype=np.float64) if intercept_init.shape != (1,) and intercept_init.shape != (): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init.reshape(1,) else: self.intercept_ = np.zeros(1, dtype=np.float64, order="C") # initialize average parameters if self.average > 0: self.standard_coef_ = self.coef_ self.standard_intercept_ = self.intercept_ self.average_coef_ = np.zeros(self.coef_.shape, dtype=np.float64, order="C") self.average_intercept_ = np.zeros(self.standard_intercept_.shape, dtype=np.float64, order="C") def _prepare_fit_binary(est, y, i): """Initialization for fit_binary. Returns y, coef, intercept. """ y_i = np.ones(y.shape, dtype=np.float64, order="C") y_i[y != est.classes_[i]] = -1.0 average_intercept = 0 average_coef = None if len(est.classes_) == 2: if not est.average: coef = est.coef_.ravel() intercept = est.intercept_[0] else: coef = est.standard_coef_.ravel() intercept = est.standard_intercept_[0] average_coef = est.average_coef_.ravel() average_intercept = est.average_intercept_[0] else: if not est.average: coef = est.coef_[i] intercept = est.intercept_[i] else: coef = est.standard_coef_[i] intercept = est.standard_intercept_[i] average_coef = est.average_coef_[i] average_intercept = est.average_intercept_[i] return y_i, coef, intercept, average_coef, average_intercept def fit_binary(est, i, X, y, alpha, C, learning_rate, n_iter, pos_weight, neg_weight, sample_weight): """Fit a single binary classifier. The i'th class is considered the "positive" class. """ # if average is not true, average_coef, and average_intercept will be # unused y_i, coef, intercept, average_coef, average_intercept = \ _prepare_fit_binary(est, y, i) assert y_i.shape[0] == y.shape[0] == sample_weight.shape[0] dataset, intercept_decay = make_dataset(X, y_i, sample_weight) penalty_type = est._get_penalty_type(est.penalty) learning_rate_type = est._get_learning_rate_type(learning_rate) # XXX should have random_state_! random_state = check_random_state(est.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) if not est.average: return plain_sgd(coef, intercept, est.loss_function, penalty_type, alpha, C, est.l1_ratio, dataset, n_iter, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay) else: standard_coef, standard_intercept, average_coef, \ average_intercept = average_sgd(coef, intercept, average_coef, average_intercept, est.loss_function, penalty_type, alpha, C, est.l1_ratio, dataset, n_iter, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay, est.average) if len(est.classes_) == 2: est.average_intercept_[0] = average_intercept else: est.average_intercept_[i] = average_intercept return standard_coef, standard_intercept class BaseSGDClassifier(six.with_metaclass(ABCMeta, BaseSGD, LinearClassifierMixin)): loss_functions = { "hinge": (Hinge, 1.0), "squared_hinge": (SquaredHinge, 1.0), "perceptron": (Hinge, 0.0), "log": (Log, ), "modified_huber": (ModifiedHuber, ), "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average=False): super(BaseSGDClassifier, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average) self.class_weight = class_weight self.classes_ = None self.n_jobs = int(n_jobs) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, classes, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C") n_samples, n_features = X.shape self._validate_params() _check_partial_fit_first_call(self, classes) n_classes = self.classes_.shape[0] # Allocate datastructures from input arguments self._expanded_class_weight = compute_class_weight(self.class_weight, self.classes_, y) sample_weight = self._validate_sample_weight(sample_weight, n_samples) if self.coef_ is None or coef_init is not None: self._allocate_parameter_mem(n_classes, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous " "data %d." % (n_features, self.coef_.shape[-1])) self.loss_function = self._get_loss_function(loss) if self.t_ is None: self.t_ = 1.0 # delegate to concrete training procedure if n_classes > 2: self._fit_multiclass(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) elif n_classes == 2: self._fit_binary(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) else: raise ValueError("The number of class labels must be " "greater than one.") return self def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if hasattr(self, "classes_"): self.classes_ = None X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C") n_samples, n_features = X.shape # labels can be encoded as float, int, or string literals # np.unique sorts in asc order; largest class id is positive class classes = np.unique(y) if self.warm_start and self.coef_ is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self.standard_coef_ = self.coef_ self.standard_intercept_ = self.intercept_ self.average_coef_ = None self.average_intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = None self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, classes, sample_weight, coef_init, intercept_init) return self def _fit_binary(self, X, y, alpha, C, sample_weight, learning_rate, n_iter): """Fit a binary classifier on X and y. """ coef, intercept = fit_binary(self, 1, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[1], self._expanded_class_weight[0], sample_weight) self.t_ += n_iter * X.shape[0] # need to be 2d if self.average > 0: if self.average <= self.t_ - 1: self.coef_ = self.average_coef_.reshape(1, -1) self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_.reshape(1, -1) self.standard_intercept_ = np.atleast_1d(intercept) self.intercept_ = self.standard_intercept_ else: self.coef_ = coef.reshape(1, -1) # intercept is a float, need to convert it to an array of length 1 self.intercept_ = np.atleast_1d(intercept) def _fit_multiclass(self, X, y, alpha, C, learning_rate, sample_weight, n_iter): """Fit a multi-class classifier by combining binary classifiers Each binary classifier predicts one class versus all others. This strategy is called OVA: One Versus All. """ # Use joblib to fit OvA in parallel. result = Parallel(n_jobs=self.n_jobs, backend="threading", verbose=self.verbose)( delayed(fit_binary)(self, i, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[i], 1., sample_weight) for i in range(len(self.classes_))) for i, (_, intercept) in enumerate(result): self.intercept_[i] = intercept self.t_ += n_iter * X.shape[0] if self.average > 0: if self.average <= self.t_ - 1.0: self.coef_ = self.average_coef_ self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_ self.standard_intercept_ = np.atleast_1d(self.intercept_) self.intercept_ = self.standard_intercept_ def partial_fit(self, X, y, classes=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of the training data y : numpy array, shape (n_samples,) Subset of the target values classes : array, shape (n_classes,) Classes across all calls to partial_fit. Can be obtained by via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn't need to contain all labels in `classes`. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ if self.class_weight in ['balanced', 'auto']: raise ValueError("class_weight '{0}' is not supported for " "partial_fit. In order to use 'balanced' weights," " use compute_class_weight('{0}', classes, y). " "In place of y you can us a large enough sample " "of the full training set target to properly " "estimate the class frequency distributions. " "Pass the resulting weights as the class_weight " "parameter.".format(self.class_weight)) return self._partial_fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, classes=classes, sample_weight=sample_weight, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_classes, n_features) The initial coefficients to warm-start the optimization. intercept_init : array, shape (n_classes,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. These weights will be multiplied with class_weight (passed through the constructor) if class_weight is specified Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) class SGDClassifier(BaseSGDClassifier, _LearntSelectorMixin): """Linear classifiers (SVM, logistic regression, a.o.) with SGD training. This estimator implements regularized linear models with stochastic gradient descent (SGD) learning: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). SGD allows minibatch (online/out-of-core) learning, see the partial_fit method. For best results using the default learning rate schedule, the data should have zero mean and unit variance. This implementation works with data represented as dense or sparse arrays of floating point values for the features. The model it fits can be controlled with the loss parameter; by default, it fits a linear support vector machine (SVM). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. Read more in the :ref:`User Guide <sgd>`. Parameters ---------- loss : str, 'hinge', 'log', 'modified_huber', 'squared_hinge',\ 'perceptron', or a regression loss: 'squared_loss', 'huber',\ 'epsilon_insensitive', or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'hinge', which gives a linear SVM. The 'log' loss gives logistic regression, a probabilistic classifier. 'modified_huber' is another smooth loss that brings tolerance to outliers as well as probability estimates. 'squared_hinge' is like hinge but is quadratically penalized. 'perceptron' is the linear loss used by the perceptron algorithm. The other losses are designed for regression but can be useful in classification as well; see SGDRegressor for a description. penalty : str, 'none', 'l2', 'l1', or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 Also used to compute learning_rate when set to 'optimal'. l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). The number of iterations is set to 1 if using partial_fit. Defaults to 5. shuffle : bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to True. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level epsilon : float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. n_jobs : integer, optional The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. -1 means 'all CPUs'. Defaults to 1. learning_rate : string, optional The learning rate schedule: - 'constant': eta = eta0 - 'optimal': eta = 1.0 / (alpha * (t + t0)) [default] - 'invscaling': eta = eta0 / pow(t, power_t) where t0 is chosen by a heuristic proposed by Leon Bottou. eta0 : double The initial learning rate for the 'constant' or 'invscaling' schedules. The default value is 0.0 as eta0 is not used by the default schedule 'optimal'. power_t : double The exponent for inverse scaling learning rate [default 0.5]. class_weight : dict, {class_label: weight} or "balanced" or None, optional Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So ``average=10`` will begin averaging after seeing 10 samples. Attributes ---------- coef_ : array, shape (1, n_features) if n_classes == 2 else (n_classes,\ n_features) Weights assigned to the features. intercept_ : array, shape (1,) if n_classes == 2 else (n_classes,) Constants in decision function. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> Y = np.array([1, 1, 2, 2]) >>> clf = linear_model.SGDClassifier() >>> clf.fit(X, Y) ... #doctest: +NORMALIZE_WHITESPACE SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.15, learning_rate='optimal', loss='hinge', n_iter=5, n_jobs=1, penalty='l2', power_t=0.5, random_state=None, shuffle=True, verbose=0, warm_start=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- LinearSVC, LogisticRegression, Perceptron """ def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average=False): super(SGDClassifier, self).__init__( loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, n_jobs=n_jobs, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, class_weight=class_weight, warm_start=warm_start, average=average) def _check_proba(self): check_is_fitted(self, "t_") if self.loss not in ("log", "modified_huber"): raise AttributeError("probability estimates are not available for" " loss=%r" % self.loss) @property def predict_proba(self): """Probability estimates. This method is only available for log loss and modified Huber loss. Multiclass probability estimates are derived from binary (one-vs.-rest) estimates by simple normalization, as recommended by Zadrozny and Elkan. Binary probability estimates for loss="modified_huber" are given by (clip(decision_function(X), -1, 1) + 1) / 2. For other loss functions it is necessary to perform proper probability calibration by wrapping the classifier with :class:`sklearn.calibration.CalibratedClassifierCV` instead. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples, n_classes) Returns the probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. References ---------- Zadrozny and Elkan, "Transforming classifier scores into multiclass probability estimates", SIGKDD'02, http://www.research.ibm.com/people/z/zadrozny/kdd2002-Transf.pdf The justification for the formula in the loss="modified_huber" case is in the appendix B in: http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf """ self._check_proba() return self._predict_proba def _predict_proba(self, X): if self.loss == "log": return self._predict_proba_lr(X) elif self.loss == "modified_huber": binary = (len(self.classes_) == 2) scores = self.decision_function(X) if binary: prob2 = np.ones((scores.shape[0], 2)) prob = prob2[:, 1] else: prob = scores np.clip(scores, -1, 1, prob) prob += 1. prob /= 2. if binary: prob2[:, 0] -= prob prob = prob2 else: # the above might assign zero to all classes, which doesn't # normalize neatly; work around this to produce uniform # probabilities prob_sum = prob.sum(axis=1) all_zero = (prob_sum == 0) if np.any(all_zero): prob[all_zero, :] = 1 prob_sum[all_zero] = len(self.classes_) # normalize prob /= prob_sum.reshape((prob.shape[0], -1)) return prob else: raise NotImplementedError("predict_(log_)proba only supported when" " loss='log' or loss='modified_huber' " "(%r given)" % self.loss) @property def predict_log_proba(self): """Log of probability estimates. This method is only available for log loss and modified Huber loss. When loss="modified_huber", probability estimates may be hard zeros and ones, so taking the logarithm is not possible. See ``predict_proba`` for details. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- T : array-like, shape (n_samples, n_classes) Returns the log-probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. """ self._check_proba() return self._predict_log_proba def _predict_log_proba(self, X): return np.log(self.predict_proba(X)) class BaseSGDRegressor(BaseSGD, RegressorMixin): loss_functions = { "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False, average=False): super(BaseSGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, "csr", copy=False, order='C', dtype=np.float64) y = astype(y, np.float64, copy=False) n_samples, n_features = X.shape self._validate_params() # Allocate datastructures from input arguments sample_weight = self._validate_sample_weight(sample_weight, n_samples) if self.coef_ is None: self._allocate_parameter_mem(1, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous " "data %d." % (n_features, self.coef_.shape[-1])) if self.average > 0 and self.average_coef_ is None: self.average_coef_ = np.zeros(n_features, dtype=np.float64, order="C") self.average_intercept_ = np.zeros(1, dtype=np.float64, order="C") self._fit_regressor(X, y, alpha, C, loss, learning_rate, sample_weight, n_iter) return self def partial_fit(self, X, y, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of training data y : numpy array of shape (n_samples,) Subset of target values sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ return self._partial_fit(X, y, self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, sample_weight=sample_weight, coef_init=None, intercept_init=None) def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if self.warm_start and self.coef_ is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self.standard_intercept_ = self.intercept_ self.standard_coef_ = self.coef_ self.average_coef_ = None self.average_intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = None return self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, sample_weight, coef_init, intercept_init) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_features,) The initial coefficients to warm-start the optimization. intercept_init : array, shape (1,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) @deprecated(" and will be removed in 0.19.") def decision_function(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ return self._decision_function(X) def _decision_function(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ check_is_fitted(self, ["t_", "coef_", "intercept_"], all_or_any=all) X = check_array(X, accept_sparse='csr') scores = safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ return scores.ravel() def predict(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ return self._decision_function(X) def _fit_regressor(self, X, y, alpha, C, loss, learning_rate, sample_weight, n_iter): dataset, intercept_decay = make_dataset(X, y, sample_weight) loss_function = self._get_loss_function(loss) penalty_type = self._get_penalty_type(self.penalty) learning_rate_type = self._get_learning_rate_type(learning_rate) if self.t_ is None: self.t_ = 1.0 random_state = check_random_state(self.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) if self.average > 0: self.standard_coef_, self.standard_intercept_, \ self.average_coef_, self.average_intercept_ =\ average_sgd(self.standard_coef_, self.standard_intercept_[0], self.average_coef_, self.average_intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay, self.average) self.average_intercept_ = np.atleast_1d(self.average_intercept_) self.standard_intercept_ = np.atleast_1d(self.standard_intercept_) self.t_ += n_iter * X.shape[0] if self.average <= self.t_ - 1.0: self.coef_ = self.average_coef_ self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_ self.intercept_ = self.standard_intercept_ else: self.coef_, self.intercept_ = \ plain_sgd(self.coef_, self.intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay) self.t_ += n_iter * X.shape[0] self.intercept_ = np.atleast_1d(self.intercept_) class SGDRegressor(BaseSGDRegressor, _LearntSelectorMixin): """Linear model fitted by minimizing a regularized empirical loss with SGD SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. This implementation works with data represented as dense numpy arrays of floating point values for the features. Read more in the :ref:`User Guide <sgd>`. Parameters ---------- loss : str, 'squared_loss', 'huber', 'epsilon_insensitive', \ or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'squared_loss' which refers to the ordinary least squares fit. 'huber' modifies 'squared_loss' to focus less on getting outliers correct by switching from squared to linear loss past a distance of epsilon. 'epsilon_insensitive' ignores errors less than epsilon and is linear past that; this is the loss function used in SVR. 'squared_epsilon_insensitive' is the same but becomes squared loss past a tolerance of epsilon. penalty : str, 'none', 'l2', 'l1', or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 Also used to compute learning_rate when set to 'optimal'. l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). The number of iterations is set to 1 if using partial_fit. Defaults to 5. shuffle : bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to True. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level. epsilon : float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. learning_rate : string, optional The learning rate schedule: - 'constant': eta = eta0 - 'optimal': eta = 1.0 / (alpha * (t + t0)) [default] - 'invscaling': eta = eta0 / pow(t, power_t) where t0 is chosen by a heuristic proposed by Leon Bottou. eta0 : double, optional The initial learning rate [default 0.01]. power_t : double, optional The exponent for inverse scaling learning rate [default 0.25]. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So ``average=10`` will begin averaging after seeing 10 samples. Attributes ---------- coef_ : array, shape (n_features,) Weights assigned to the features. intercept_ : array, shape (1,) The intercept term. average_coef_ : array, shape (n_features,) Averaged weights assigned to the features. average_intercept_ : array, shape (1,) The averaged intercept term. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = linear_model.SGDRegressor() >>> clf.fit(X, y) ... #doctest: +NORMALIZE_WHITESPACE SGDRegressor(alpha=0.0001, average=False, epsilon=0.1, eta0=0.01, fit_intercept=True, l1_ratio=0.15, learning_rate='invscaling', loss='squared_loss', n_iter=5, penalty='l2', power_t=0.25, random_state=None, shuffle=True, verbose=0, warm_start=False) See also -------- Ridge, ElasticNet, Lasso, SVR """ def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False, average=False): super(SGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average)
bsd-3-clause
jwiggins/scikit-image
doc/examples/xx_applications/plot_coins_segmentation.py
6
4903
""" =============================================================== Comparing edge-based segmentation and region-based segmentation =============================================================== In this example, we will see how to segment objects from a background. We use the ``coins`` image from ``skimage.data``, which shows several coins outlined against a darker background. """ import numpy as np import matplotlib.pyplot as plt from skimage import data coins = data.coins() hist = np.histogram(coins, bins=np.arange(0, 256)) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 3)) ax1.imshow(coins, cmap=plt.cm.gray, interpolation='nearest') ax1.axis('off') ax2.plot(hist[1][:-1], hist[0], lw=2) ax2.set_title('histogram of grey values') """ .. image:: PLOT2RST.current_figure Thresholding ============ A simple way to segment the coins is to choose a threshold based on the histogram of grey values. Unfortunately, thresholding this image gives a binary image that either misses significant parts of the coins or merges parts of the background with the coins: """ fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(6, 3), sharex=True, sharey=True) ax1.imshow(coins > 100, cmap=plt.cm.gray, interpolation='nearest') ax1.set_title('coins > 100') ax1.axis('off') ax1.set_adjustable('box-forced') ax2.imshow(coins > 150, cmap=plt.cm.gray, interpolation='nearest') ax2.set_title('coins > 150') ax2.axis('off') ax2.set_adjustable('box-forced') margins = dict(hspace=0.01, wspace=0.01, top=1, bottom=0, left=0, right=1) fig.subplots_adjust(**margins) """ .. image:: PLOT2RST.current_figure Edge-based segmentation ======================= Next, we try to delineate the contours of the coins using edge-based segmentation. To do this, we first get the edges of features using the Canny edge-detector. """ from skimage.feature import canny edges = canny(coins/255.) fig, ax = plt.subplots(figsize=(4, 3)) ax.imshow(edges, cmap=plt.cm.gray, interpolation='nearest') ax.axis('off') ax.set_title('Canny detector') """ .. image:: PLOT2RST.current_figure These contours are then filled using mathematical morphology. """ from scipy import ndimage as ndi fill_coins = ndi.binary_fill_holes(edges) fig, ax = plt.subplots(figsize=(4, 3)) ax.imshow(fill_coins, cmap=plt.cm.gray, interpolation='nearest') ax.axis('off') ax.set_title('Filling the holes') """ .. image:: PLOT2RST.current_figure Small spurious objects are easily removed by setting a minimum size for valid objects. """ from skimage import morphology coins_cleaned = morphology.remove_small_objects(fill_coins, 21) fig, ax = plt.subplots(figsize=(4, 3)) ax.imshow(coins_cleaned, cmap=plt.cm.gray, interpolation='nearest') ax.axis('off') ax.set_title('Removing small objects') """ .. image:: PLOT2RST.current_figure However, this method is not very robust, since contours that are not perfectly closed are not filled correctly, as is the case for one unfilled coin above. Region-based segmentation ========================= We therefore try a region-based method using the watershed transform. First, we find an elevation map using the Sobel gradient of the image. """ from skimage.filters import sobel elevation_map = sobel(coins) fig, ax = plt.subplots(figsize=(4, 3)) ax.imshow(elevation_map, cmap=plt.cm.jet, interpolation='nearest') ax.axis('off') ax.set_title('elevation_map') """ .. image:: PLOT2RST.current_figure Next we find markers of the background and the coins based on the extreme parts of the histogram of grey values. """ markers = np.zeros_like(coins) markers[coins < 30] = 1 markers[coins > 150] = 2 fig, ax = plt.subplots(figsize=(4, 3)) ax.imshow(markers, cmap=plt.cm.spectral, interpolation='nearest') ax.axis('off') ax.set_title('markers') """ .. image:: PLOT2RST.current_figure Finally, we use the watershed transform to fill regions of the elevation map starting from the markers determined above: """ segmentation = morphology.watershed(elevation_map, markers) fig, ax = plt.subplots(figsize=(4, 3)) ax.imshow(segmentation, cmap=plt.cm.gray, interpolation='nearest') ax.axis('off') ax.set_title('segmentation') """ .. image:: PLOT2RST.current_figure This last method works even better, and the coins can be segmented and labeled individually. """ from skimage.color import label2rgb segmentation = ndi.binary_fill_holes(segmentation - 1) labeled_coins, _ = ndi.label(segmentation) image_label_overlay = label2rgb(labeled_coins, image=coins) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(6, 3), sharex=True, sharey=True) ax1.imshow(coins, cmap=plt.cm.gray, interpolation='nearest') ax1.contour(segmentation, [0.5], linewidths=1.2, colors='y') ax1.axis('off') ax1.set_adjustable('box-forced') ax2.imshow(image_label_overlay, interpolation='nearest') ax2.axis('off') ax2.set_adjustable('box-forced') fig.subplots_adjust(**margins) """ .. image:: PLOT2RST.current_figure """ plt.show()
bsd-3-clause
ibis-project/ibis
ibis/backends/pandas/tests/execution/test_operations.py
1
25648
import operator from operator import methodcaller import numpy as np import numpy.testing as npt import pandas as pd import pandas.testing as tm import pytest import ibis import ibis.expr.datatypes as dt from ... import Backend, execute pytestmark = pytest.mark.pandas def test_table_column(t, df): expr = t.plain_int64 result = expr.execute() expected = df.plain_int64 tm.assert_series_equal(result, expected) def test_literal(client): assert client.execute(ibis.literal(1)) == 1 def test_selection(t, df): expr = t[ ((t.plain_strings == 'a') | (t.plain_int64 == 3)) & (t.dup_strings == 'd') ] result = expr.execute() expected = df[ ((df.plain_strings == 'a') | (df.plain_int64 == 3)) & (df.dup_strings == 'd') ].reset_index(drop=True) tm.assert_frame_equal(result[expected.columns], expected) def test_mutate(t, df): expr = t.mutate(x=t.plain_int64 + 1, y=t.plain_int64 * 2) result = expr.execute() expected = df.assign(x=df.plain_int64 + 1, y=df.plain_int64 * 2) tm.assert_frame_equal(result[expected.columns], expected) def test_project_scope_does_not_override(t, df): col = t.plain_int64 expr = t[ [ col.name('new_col'), col.sum() .over(ibis.window(group_by='dup_strings')) .name('grouped'), ] ] result = expr.execute() expected = pd.concat( [ df[['plain_int64', 'dup_strings']].rename( columns={'plain_int64': 'new_col'} ), df.groupby('dup_strings') .plain_int64.transform('sum') .reset_index(drop=True) .rename('grouped'), ], axis=1, )[['new_col', 'grouped']] tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( 'where', [ lambda t: None, lambda t: t.dup_strings == 'd', lambda t: (t.dup_strings == 'd') | (t.plain_int64 < 100), ], ) @pytest.mark.parametrize( ('ibis_func', 'pandas_func'), [ (methodcaller('abs'), np.abs), (methodcaller('ceil'), np.ceil), (methodcaller('exp'), np.exp), (methodcaller('floor'), np.floor), (methodcaller('ln'), np.log), (methodcaller('log10'), np.log10), (methodcaller('log', 2), lambda x: np.log(x) / np.log(2)), (methodcaller('log2'), np.log2), (methodcaller('round', 0), lambda x: x.round(0).astype('int64')), (methodcaller('round', -2), methodcaller('round', -2)), (methodcaller('round', 2), methodcaller('round', 2)), (methodcaller('round'), lambda x: x.round().astype('int64')), (methodcaller('sign'), np.sign), (methodcaller('sqrt'), np.sqrt), ], ) def test_aggregation_group_by(t, df, where, ibis_func, pandas_func): ibis_where = where(t) expr = t.group_by(t.dup_strings).aggregate( avg_plain_int64=t.plain_int64.mean(where=ibis_where), sum_plain_float64=t.plain_float64.sum(where=ibis_where), mean_float64_positive=ibis_func(t.float64_positive).mean( where=ibis_where ), neg_mean_int64_with_zeros=(-t.int64_with_zeros).mean(where=ibis_where), nunique_dup_ints=t.dup_ints.nunique(), ) result = expr.execute() pandas_where = where(df) mask = slice(None) if pandas_where is None else pandas_where expected = ( df.groupby('dup_strings') .agg( { 'plain_int64': lambda x, mask=mask: x[mask].mean(), 'plain_float64': lambda x, mask=mask: x[mask].sum(), 'dup_ints': 'nunique', 'float64_positive': ( lambda x, mask=mask, func=pandas_func: func(x[mask]).mean() ), 'int64_with_zeros': lambda x, mask=mask: (-x[mask]).mean(), } ) .reset_index() .rename( columns={ 'plain_int64': 'avg_plain_int64', 'plain_float64': 'sum_plain_float64', 'dup_ints': 'nunique_dup_ints', 'float64_positive': 'mean_float64_positive', 'int64_with_zeros': 'neg_mean_int64_with_zeros', } ) ) # TODO(phillipc): Why does pandas not return floating point values here? expected['avg_plain_int64'] = expected.avg_plain_int64.astype('float64') result['avg_plain_int64'] = result.avg_plain_int64.astype('float64') expected[ 'neg_mean_int64_with_zeros' ] = expected.neg_mean_int64_with_zeros.astype('float64') result[ 'neg_mean_int64_with_zeros' ] = result.neg_mean_int64_with_zeros.astype('float64') expected['mean_float64_positive'] = expected.mean_float64_positive.astype( 'float64' ) result['mean_float64_positive'] = result.mean_float64_positive.astype( 'float64' ) lhs = result[expected.columns] rhs = expected tm.assert_frame_equal(lhs, rhs) def test_aggregation_without_group_by(t, df): expr = t.aggregate( avg_plain_int64=t.plain_int64.mean(), sum_plain_float64=t.plain_float64.sum(), ) result = expr.execute()[['avg_plain_int64', 'sum_plain_float64']] new_names = { 'plain_float64': 'sum_plain_float64', 'plain_int64': 'avg_plain_int64', } expected = ( pd.Series( [df['plain_int64'].mean(), df['plain_float64'].sum()], index=['plain_int64', 'plain_float64'], ) .to_frame() .T.rename(columns=new_names) ) tm.assert_frame_equal(result[expected.columns], expected) def test_group_by_with_having(t, df): expr = ( t.group_by(t.dup_strings) .having(t.plain_float64.sum() == 5) .aggregate(avg_a=t.plain_int64.mean(), sum_c=t.plain_float64.sum()) ) result = expr.execute() expected = ( df.groupby('dup_strings') .agg({'plain_int64': 'mean', 'plain_float64': 'sum'}) .reset_index() .rename(columns={'plain_int64': 'avg_a', 'plain_float64': 'sum_c'}) ) expected = expected.loc[expected.sum_c == 5, ['avg_a', 'sum_c']] tm.assert_frame_equal(result[expected.columns], expected) def test_group_by_rename_key(t, df): expr = t.groupby(t.dup_strings.name('foo')).aggregate( dup_string_count=t.dup_strings.count() ) assert 'foo' in expr.schema() result = expr.execute() assert 'foo' in result.columns expected = ( df.groupby('dup_strings') .dup_strings.count() .rename('dup_string_count') .reset_index() .rename(columns={'dup_strings': 'foo'}) ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('reduction', ['mean', 'sum', 'count', 'std', 'var']) @pytest.mark.parametrize( 'where', [ lambda t: (t.plain_strings == 'a') | (t.plain_strings == 'c'), lambda t: (t.dup_strings == 'd') & ((t.plain_int64 == 1) | (t.plain_int64 == 3)), lambda t: None, ], ) def test_reduction(t, df, reduction, where): func = getattr(t.plain_int64, reduction) mask = where(t) expr = func(where=mask) result = expr.execute() df_mask = where(df) expected_func = getattr( df.loc[df_mask if df_mask is not None else slice(None), 'plain_int64'], reduction, ) expected = expected_func() assert result == expected @pytest.mark.parametrize( 'reduction', [ lambda x: x.any(), lambda x: x.all(), lambda x: ~(x.any()), lambda x: ~(x.all()), ], ) def test_boolean_aggregation(t, df, reduction): expr = reduction(t.plain_int64 == 1) result = expr.execute() expected = reduction(df.plain_int64 == 1) assert result == expected @pytest.mark.parametrize('column', ['float64_with_zeros', 'int64_with_zeros']) def test_null_if_zero(t, df, column): expr = t[column].nullifzero() result = expr.execute() expected = df[column].replace(0, np.nan) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( ('left', 'right', 'expected', 'compare'), [ pytest.param( lambda t: ibis.literal(1), lambda t: ibis.literal(1), lambda df: np.nan, np.testing.assert_array_equal, # treats NaNs as equal id='literal_literal_equal', ), pytest.param( lambda t: ibis.literal(1), lambda t: ibis.literal(2), lambda df: 1, np.testing.assert_equal, id='literal_literal_not_equal', ), pytest.param( lambda t: t.dup_strings, lambda t: ibis.literal('a'), lambda df: df.dup_strings.where(df.dup_strings != 'a'), tm.assert_series_equal, id='series_literal', ), pytest.param( lambda t: t.dup_strings, lambda t: t.dup_strings, lambda df: df.dup_strings.where(df.dup_strings != df.dup_strings), tm.assert_series_equal, id='series_series', ), pytest.param( lambda t: ibis.literal('a'), lambda t: t.dup_strings, lambda df: pd.Series( np.where(df.dup_strings == 'a', np.nan, 'a'), index=df.index ), tm.assert_series_equal, id='literal_series', ), ], ) def test_nullif(t, df, left, right, expected, compare): expr = left(t).nullif(right(t)) result = execute(expr) compare(result, expected(df)) def test_nullif_inf(): df = pd.DataFrame({'a': [np.inf, 3.14, -np.inf, 42.0]}) con = Backend().connect({'t': df}) t = con.table('t') expr = t.a.nullif(np.inf).nullif(-np.inf) result = expr.execute() expected = pd.Series([np.nan, 3.14, np.nan, 42.0], name='a') tm.assert_series_equal(result, expected) def test_group_concat(t, df): expr = t.groupby(t.dup_strings).aggregate( foo=t.plain_int64.group_concat(',') ) result = expr.execute() expected = ( df.groupby('dup_strings') .apply(lambda df: ','.join(df.plain_int64.astype(str))) .reset_index() .rename(columns={0: 'foo'}) ) tm.assert_frame_equal(result[expected.columns], expected) @pytest.mark.parametrize('offset', [0, 2]) def test_frame_limit(t, df, offset): n = 5 df_expr = t.limit(n, offset=offset) result = df_expr.execute() expected = df.iloc[offset : offset + n].reset_index(drop=True) tm.assert_frame_equal(result[expected.columns], expected) @pytest.mark.xfail( raises=AttributeError, reason='TableColumn does not implement limit' ) @pytest.mark.parametrize('offset', [0, 2]) def test_series_limit(t, df, offset): n = 5 s_expr = t.plain_int64.limit(n, offset=offset) result = s_expr.execute() tm.assert_series_equal(result, df.plain_int64.iloc[offset : offset + n]) @pytest.mark.parametrize( ('key', 'pandas_by', 'pandas_ascending'), [ (lambda t, col: [ibis.desc(t[col])], lambda col: [col], False), ( lambda t, col: [t[col], ibis.desc(t.plain_int64)], lambda col: [col, 'plain_int64'], [True, False], ), ( lambda t, col: [ibis.desc(t.plain_int64 * 2)], lambda col: ['plain_int64'], False, ), ], ) @pytest.mark.parametrize( 'column', ['plain_datetimes_naive', 'plain_datetimes_ny', 'plain_datetimes_utc'], ) def test_sort_by(t, df, column, key, pandas_by, pandas_ascending): expr = t.sort_by(key(t, column)) result = expr.execute() expected = df.sort_values( pandas_by(column), ascending=pandas_ascending ).reset_index(drop=True) tm.assert_frame_equal(result[expected.columns], expected) def test_complex_sort_by(t, df): expr = t.sort_by( [ibis.desc(t.plain_int64 * t.plain_float64), t.plain_float64] ) result = expr.execute() expected = ( df.assign(foo=df.plain_int64 * df.plain_float64) .sort_values(['foo', 'plain_float64'], ascending=[False, True]) .drop(['foo'], axis=1) .reset_index(drop=True) ) tm.assert_frame_equal(result[expected.columns], expected) def test_distinct(t, df): expr = t.dup_strings.distinct() result = expr.execute() expected = pd.Series(df.dup_strings.unique(), name='dup_strings') tm.assert_series_equal(result, expected) def test_count_distinct(t, df): expr = t.dup_strings.nunique() result = expr.execute() expected = df.dup_strings.nunique() assert result == expected def test_value_counts(t, df): expr = t.dup_strings.value_counts() result = expr.execute() expected = ( df.dup_strings.value_counts() .reset_index() .rename(columns={'dup_strings': 'count'}) .rename(columns={'index': 'dup_strings'}) .sort_values(['dup_strings']) .reset_index(drop=True) ) tm.assert_frame_equal(result[expected.columns], expected) def test_table_count(t, df): expr = t.count() result = expr.execute() expected = len(df) assert result == expected def test_weighted_average(t, df): expr = t.groupby(t.dup_strings).aggregate( avg=(t.plain_float64 * t.plain_int64).sum() / t.plain_int64.sum() ) result = expr.execute() expected = ( df.groupby('dup_strings') .apply( lambda df: (df.plain_int64 * df.plain_float64).sum() / df.plain_int64.sum() ) .reset_index() .rename(columns={0: 'avg'}) ) tm.assert_frame_equal(result[expected.columns], expected) def test_group_by_multiple_keys(t, df): expr = t.groupby([t.dup_strings, t.dup_ints]).aggregate( avg_plain_float64=t.plain_float64.mean() ) result = expr.execute() expected = ( df.groupby(['dup_strings', 'dup_ints']) .agg({'plain_float64': 'mean'}) .reset_index() .rename(columns={'plain_float64': 'avg_plain_float64'}) ) tm.assert_frame_equal(result[expected.columns], expected) def test_mutate_after_group_by(t, df): gb = t.groupby(t.dup_strings).aggregate( avg_plain_float64=t.plain_float64.mean() ) expr = gb.mutate(x=gb.avg_plain_float64) result = expr.execute() expected = ( df.groupby('dup_strings') .agg({'plain_float64': 'mean'}) .reset_index() .rename(columns={'plain_float64': 'avg_plain_float64'}) ) expected = expected.assign(x=expected.avg_plain_float64) tm.assert_frame_equal(result[expected.columns], expected) def test_groupby_with_unnamed_arithmetic(t, df): expr = t.groupby(t.dup_strings).aggregate( naive_variance=( (t.plain_float64 ** 2).sum() - t.plain_float64.mean() ** 2 ) / t.plain_float64.count() ) result = expr.execute() expected = ( df.groupby('dup_strings') .agg( { 'plain_float64': lambda x: ((x ** 2).sum() - x.mean() ** 2) / x.count() } ) .reset_index() .rename(columns={'plain_float64': 'naive_variance'}) ) tm.assert_frame_equal(result[expected.columns], expected) def test_isnull(t, df): expr = t.strings_with_nulls.isnull() result = expr.execute() expected = df.strings_with_nulls.isnull() tm.assert_series_equal(result, expected) def test_notnull(t, df): expr = t.strings_with_nulls.notnull() result = expr.execute() expected = df.strings_with_nulls.notnull() tm.assert_series_equal(result, expected) @pytest.mark.parametrize('raw_value', [0.0, 1.0]) def test_scalar_parameter(t, df, raw_value): value = ibis.param(dt.double) expr = t.float64_with_zeros == value result = expr.execute(params={value: raw_value}) expected = df.float64_with_zeros == raw_value tm.assert_series_equal(result, expected) @pytest.mark.parametrize('elements', [[1], (1,), {1}, frozenset({1})]) def test_isin(t, df, elements): expr = t.plain_float64.isin(elements) expected = df.plain_float64.isin(elements) result = expr.execute() tm.assert_series_equal(result, expected) @pytest.mark.parametrize('elements', [[1], (1,), {1}, frozenset({1})]) def test_notin(t, df, elements): expr = t.plain_float64.notin(elements) expected = ~df.plain_float64.isin(elements) result = expr.execute() tm.assert_series_equal(result, expected) def test_cast_on_group_by(t, df): expr = t.groupby(t.dup_strings).aggregate( casted=(t.float64_with_zeros == 0).cast('int64').sum() ) result = expr.execute() expected = ( df.groupby('dup_strings') .float64_with_zeros.apply(lambda s: (s == 0).astype('int64').sum()) .reset_index() .rename(columns={'float64_with_zeros': 'casted'}) ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( 'op', [ operator.add, operator.mul, operator.sub, operator.truediv, operator.floordiv, operator.mod, operator.pow, ], ids=operator.attrgetter('__name__'), ) @pytest.mark.parametrize('args', [lambda c: (1.0, c), lambda c: (c, 1.0)]) def test_left_binary_op(t, df, op, args): expr = op(*args(t.float64_with_zeros)) result = expr.execute() expected = op(*args(df.float64_with_zeros)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( 'op', [ operator.add, operator.mul, operator.sub, operator.truediv, operator.floordiv, operator.mod, operator.pow, ], ids=operator.attrgetter('__name__'), ) @pytest.mark.parametrize('argfunc', [lambda c: (1.0, c), lambda c: (c, 1.0)]) def test_left_binary_op_gb(t, df, op, argfunc): expr = t.groupby('dup_strings').aggregate( foo=op(*argfunc(t.float64_with_zeros)).sum() ) result = expr.execute() expected = ( df.groupby('dup_strings') .float64_with_zeros.apply(lambda s: op(*argfunc(s)).sum()) .reset_index() .rename(columns={'float64_with_zeros': 'foo'}) ) tm.assert_frame_equal(result, expected) def test_where_series(t, df): col_expr = t['plain_int64'] result = ibis.where(col_expr > col_expr.mean(), col_expr, 0.0).execute() ser = df['plain_int64'] expected = ser.where(ser > ser.mean(), other=0.0) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( ('cond', 'expected_func'), [ (True, lambda df: df['plain_int64']), (False, lambda df: pd.Series(np.repeat(3.0, len(df)))), ], ) def test_where_scalar(t, df, cond, expected_func): expr = ibis.where(cond, t['plain_int64'], 3.0) result = expr.execute() expected = expected_func(df) tm.assert_series_equal(result, expected) def test_where_long(batting, batting_df): col_expr = batting['AB'] result = ibis.where(col_expr > col_expr.mean(), col_expr, 0.0).execute() ser = batting_df['AB'] expected = ser.where(ser > ser.mean(), other=0.0) tm.assert_series_equal(result, expected) def test_round(t, df): precision = 2 mult = 3.33333 result = (t.count() * mult).round(precision).execute() expected = np.around(len(df) * mult, precision) npt.assert_almost_equal(result, expected, decimal=precision) def test_quantile_groupby(batting, batting_df): def q_fun(x, quantile, interpolation): res = x.quantile(quantile, interpolation=interpolation).tolist() return [res for _ in range(len(x))] frac = 0.2 intp = 'linear' result = ( batting.groupby('teamID') .mutate(res=lambda x: x.RBI.quantile([frac, 1 - frac], intp)) .res.execute() ) expected = ( batting_df.groupby('teamID') .RBI.transform(q_fun, quantile=[frac, 1 - frac], interpolation=intp) .rename('res') ) tm.assert_series_equal(result, expected) def test_summary_numeric(batting, batting_df): expr = batting.G.summary() result = expr.execute() assert len(result) == 1 G = batting_df.G expected = { 'count': G.count(), 'nulls': G.isnull().sum(), 'min': G.min(), 'max': G.max(), 'sum': G.sum(), 'mean': G.mean(), 'approx_nunique': G.nunique(), } assert dict(result.iloc[0]) == expected def test_summary_numeric_group_by(batting, batting_df): expr = batting.groupby('teamID').G.summary() result = expr.execute() expected = ( batting_df.groupby('teamID') .G.apply( lambda s: pd.DataFrame( { 'count': s.count(), 'nulls': s.isnull().sum(), 'min': s.min(), 'max': s.max(), 'sum': s.sum(), 'mean': s.mean(), 'approx_nunique': s.nunique(), }, index=[0], ) ) .reset_index(level=1, drop=True) .reset_index() ) columns = expected.columns # TODO: fix isnull().sum() in the pandas backend: the type is incorrect tm.assert_frame_equal(result[columns], expected, check_dtype=False) def test_summary_non_numeric(batting, batting_df): expr = batting.teamID.summary() result = expr.execute() assert len(result) == 1 assert len(result.columns) == 3 expected = { 'count': batting_df.teamID.count(), 'nulls': batting_df.teamID.isnull().sum(), 'uniques': batting_df.teamID.nunique(), } assert dict(result.iloc[0]) == expected def test_summary_non_numeric_group_by(batting, batting_df): expr = batting.groupby('teamID').playerID.summary() result = expr.execute() expected = ( batting_df.groupby('teamID') .playerID.apply( lambda s: pd.DataFrame( { 'count': s.count(), 'nulls': s.isnull().sum(), 'uniques': s.nunique(), }, index=[0], ) ) .reset_index(level=1, drop=True) .reset_index() ) columns = expected.columns tm.assert_frame_equal(result[columns], expected, check_dtype=False) def test_searched_case_scalar(client): expr = ibis.case().when(True, 1).when(False, 2).end() result = client.execute(expr) expected = np.int8(1) assert result == expected def test_searched_case_column(batting, batting_df): t = batting df = batting_df expr = ( ibis.case() .when(t.RBI < 5, 'really bad team') .when(t.teamID == 'PH1', 'ph1 team') .else_(t.teamID) .end() ) result = expr.execute() expected = pd.Series( np.select( [df.RBI < 5, df.teamID == 'PH1'], ['really bad team', 'ph1 team'], df.teamID, ) ) tm.assert_series_equal(result, expected) def test_simple_case_scalar(client): x = ibis.literal(2) expr = x.case().when(2, x - 1).when(3, x + 1).when(4, x + 2).end() result = client.execute(expr) expected = np.int8(1) assert result == expected def test_simple_case_column(batting, batting_df): t = batting df = batting_df expr = ( t.RBI.case() .when(5, 'five') .when(4, 'four') .when(3, 'three') .else_('could be good?') .end() ) result = expr.execute() expected = pd.Series( np.select( [df.RBI == 5, df.RBI == 4, df.RBI == 3], ['five', 'four', 'three'], 'could be good?', ) ) tm.assert_series_equal(result, expected) def test_table_distinct(t, df): expr = t[['dup_strings']].distinct() result = expr.execute() expected = df[['dup_strings']].drop_duplicates() tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("distinct", [True, False]) def test_union(client, df1, distinct): t = client.table('df1') expr = t.union(t, distinct=distinct) result = expr.execute() expected = ( df1 if distinct else pd.concat([df1, df1], axis=0, ignore_index=True) ) tm.assert_frame_equal(result, expected) def test_intersect(client, df1, intersect_df2): t1 = client.table('df1') t2 = client.table('intersect_df2') expr = t1.intersect(t2) result = expr.execute() expected = df1.merge(intersect_df2, on=list(df1.columns)) tm.assert_frame_equal(result, expected) def test_difference(client, df1, intersect_df2): t1 = client.table('df1') t2 = client.table('intersect_df2') expr = t1.difference(t2) result = expr.execute() merged = df1.merge( intersect_df2, on=list(df1.columns), how="outer", indicator=True ) expected = merged[merged["_merge"] != "both"].drop("_merge", 1) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "distinct", [ pytest.param( True, marks=pytest.mark.xfail( raises=TypeError, reason=( "Pandas cannot compute the distinct element of an " "array column" ), ), ), False, ], ) def test_union_with_list_types(t, df, distinct): expr = t.union(t, distinct=distinct) result = expr.execute() expected = ( df if distinct else pd.concat([df, df], axis=0, ignore_index=True) ) tm.assert_frame_equal(result, expected)
apache-2.0
crisbarros/trading-with-python
nautilus/nautilus.py
77
5403
''' Created on 26 dec. 2011 Copyright: Jev Kuznetsov License: BSD ''' from PyQt4.QtCore import * from PyQt4.QtGui import * from ib.ext.Contract import Contract from ib.opt import ibConnection from ib.ext.Order import Order import tradingWithPython.lib.logger as logger from tradingWithPython.lib.eventSystem import Sender, ExampleListener import tradingWithPython.lib.qtpandas as qtpandas import numpy as np import pandas priceTicks = {1:'bid',2:'ask',4:'last',6:'high',7:'low',9:'close', 14:'open'} class PriceListener(qtpandas.DataFrameModel): def __init__(self): super(PriceListener,self).__init__() self._header = ['position','bid','ask','last'] def addSymbol(self,symbol): data = dict(zip(self._header,[0,np.nan,np.nan,np.nan])) row = pandas.DataFrame(data, index = pandas.Index([symbol])) self.df = self.df.append(row[self._header]) # append data and set correct column order def priceHandler(self,sender,event,msg=None): if msg['symbol'] not in self.df.index: self.addSymbol(msg['symbol']) if msg['type'] in self._header: self.df.ix[msg['symbol'],msg['type']] = msg['price'] self.signalUpdate() #print self.df class Broker(Sender): def __init__(self, name = "broker"): super(Broker,self).__init__() self.name = name self.log = logger.getLogger(self.name) self.log.debug('Initializing broker. Pandas version={0}'.format(pandas.__version__)) self.contracts = {} # a dict to keep track of subscribed contracts self._id2symbol = {} # id-> symbol dict self.tws = None self._nextId = 1 # tws subscription id self.nextValidOrderId = None def connect(self): """ connect to tws """ self.tws = ibConnection() # tws interface self.tws.registerAll(self._defaultHandler) self.tws.register(self._nextValidIdHandler,'NextValidId') self.log.debug('Connecting to tws') self.tws.connect() self.tws.reqAccountUpdates(True,'') self.tws.register(self._priceHandler,'TickPrice') def subscribeStk(self,symbol, secType='STK', exchange='SMART',currency='USD'): ''' subscribe to stock data ''' self.log.debug('Subscribing to '+symbol) c = Contract() c.m_symbol = symbol c.m_secType = secType c.m_exchange = exchange c.m_currency = currency subId = self._nextId self._nextId += 1 self.tws.reqMktData(subId,c,'',False) self._id2symbol[subId] = c.m_symbol self.contracts[symbol]=c def disconnect(self): self.tws.disconnect() #------event handlers-------------------- def _defaultHandler(self,msg): ''' default message handler ''' #print msg.typeName if msg.typeName == 'Error': self.log.error(msg) def _nextValidIdHandler(self,msg): self.nextValidOrderId = msg.orderId self.log.debug( 'Next valid order id:{0}'.format(self.nextValidOrderId)) def _priceHandler(self,msg): #translate to meaningful messages message = {'symbol':self._id2symbol[msg.tickerId], 'price':msg.price, 'type':priceTicks[msg.field]} self.dispatch('price',message) #-----------------GUI elements------------------------- class TableView(QTableView): """ extended table view """ def __init__(self,name='TableView1', parent=None): super(TableView,self).__init__(parent) self.name = name self.setSelectionBehavior(QAbstractItemView.SelectRows) def contextMenuEvent(self, event): menu = QMenu(self) Action = menu.addAction("print selected rows") Action.triggered.connect(self.printName) menu.exec_(event.globalPos()) def printName(self): print "Action triggered from " + self.name print 'Selected :' for idx in self.selectionModel().selectedRows(): print self.model().df.ix[idx.row(),:] class Form(QDialog): def __init__(self,parent=None): super(Form,self).__init__(parent) self.broker = Broker() self.price = PriceListener() self.broker.connect() symbols = ['SPY','XLE','QQQ','VXX','XIV'] for symbol in symbols: self.broker.subscribeStk(symbol) self.broker.register(self.price.priceHandler, 'price') widget = TableView(parent=self) widget.setModel(self.price) widget.horizontalHeader().setResizeMode(QHeaderView.Stretch) layout = QVBoxLayout() layout.addWidget(widget) self.setLayout(layout) def __del__(self): print 'Disconnecting.' self.broker.disconnect() if __name__=="__main__": print "Running nautilus" import sys app = QApplication(sys.argv) form = Form() form.show() app.exec_() print "All done."
bsd-3-clause
HuanglabPurdue/NCS
python3-6/NCSdemo_simulation.py
1
1969
""" ------ Demo code for noise correction algorithm for sCMOS camera (NCS algorithm) on simulated data------------ reference: Liu,Sheng,et al.,sCMOS noise-correction algorithm for microscopy images,Nature Methods 14,760-761(2017) software requirement: Python 3.6 (C) Copyright 2017 The Huang Lab All rights reserved Weldon School of Biomedical Engineering Purdue University West Lafayette, Indiana USA @author: Sheng Liu and David A. Miller, August 2017 """ import numpy as np import matplotlib.pyplot as plt import time import pyNCS.denoisetools as ncs if __name__ == "__main__": # create normalized ideal image fpath1 = r'randwlcposition.mat' imgsz = 128 zoom = 8 Pixelsize = 0.1 NA = 1.4 Lambda = 0.7 t = time.time() res = ncs.genidealimage(imgsz,Pixelsize,zoom,NA,Lambda,fpath1) elapsed = time.time()-t print('Elapsed time for generating ideal image:', elapsed) imso = res[0] plt.imshow(imso,cmap=plt.cm.gray) # select variance map from calibrated map data fpath = r'gaincalibration_561_gain.mat' noisemap = ncs.gennoisemap(imgsz,fpath) varsub = noisemap[0]*10 # increase the readout noise by 10 to demonstrate the effect of NCS algorithm gainsub = noisemap[1] # generate simulated data I = 100 bg = 10 offset = 100 N = 1 dataimg = ncs.gendatastack(imso,varsub,gainsub,I,bg,offset,N) imsd = dataimg[1] # generate noise corrected image NA = 1.4 Lambda = 0.7 Rs = 8 iterationN = 15 alpha = 0.1 out = ncs.reducenoise(Rs,imsd[0:1],varsub,gainsub,imgsz,Pixelsize,NA,Lambda,alpha,iterationN) f,(ax1,ax2) = plt.subplots(1,2,sharey=False) ax1.imshow(imsd[0],aspect='equal',cmap=plt.cm.gray) ax2.imshow(out[0],aspect ='equal',cmap=plt.cm.gray) plt.show()
gpl-3.0
amueller/advanced_training
plots/plot_linear_svc_regularization.py
15
1065
import matplotlib.pyplot as plt import numpy as np from sklearn.svm import SVC from sklearn.datasets import make_blobs def plot_linear_svc_regularization(): X, y = make_blobs(centers=2, random_state=4, n_samples=30) fig, axes = plt.subplots(1, 3, figsize=(12, 4)) # a carefully hand-designed dataset lol y[7] = 0 y[27] = 0 x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 for ax, C in zip(axes, [1e-2, 1, 1e2]): ax.scatter(X[:, 0], X[:, 1], s=150, c=np.array(['red', 'blue'])[y]) svm = SVC(kernel='linear', C=C, tol=0.00001).fit(X, y) w = svm.coef_[0] a = -w[0] / w[1] xx = np.linspace(6, 13) yy = a * xx - (svm.intercept_[0]) / w[1] ax.plot(xx, yy, label="C = %.e" % C, c='k') ax.set_xlim(x_min, x_max) ax.set_ylim(y_min, y_max) ax.set_xticks(()) ax.set_yticks(()) ax.set_title("C = %f" % C) if __name__ == "__main__": plot_linear_svc_regularization() plt.show()
bsd-2-clause
ryfeus/lambda-packs
Skimage_numpy/source/scipy/interpolate/interpolate.py
14
104866
""" Classes for interpolating values. """ from __future__ import division, print_function, absolute_import __all__ = ['interp1d', 'interp2d', 'spline', 'spleval', 'splmake', 'spltopp', 'ppform', 'lagrange', 'PPoly', 'BPoly', 'NdPPoly', 'RegularGridInterpolator', 'interpn'] import itertools from numpy import (shape, sometrue, array, transpose, searchsorted, ones, logical_or, atleast_1d, atleast_2d, ravel, dot, poly1d, asarray, intp) import numpy as np import scipy.linalg import scipy.special as spec from scipy.special import comb import math import warnings import functools import operator from scipy._lib.six import xrange, integer_types, string_types from . import fitpack from . import dfitpack from . import _fitpack from .polyint import _Interpolator1D from . import _ppoly from .fitpack2 import RectBivariateSpline from .interpnd import _ndim_coords_from_arrays def reduce_sometrue(a): all = a while len(shape(all)) > 1: all = sometrue(all, axis=0) return all def prod(x): """Product of a list of numbers; ~40x faster vs np.prod for Python tuples""" if len(x) == 0: return 1 return functools.reduce(operator.mul, x) def lagrange(x, w): """ Return a Lagrange interpolating polynomial. Given two 1-D arrays `x` and `w,` returns the Lagrange interpolating polynomial through the points ``(x, w)``. Warning: This implementation is numerically unstable. Do not expect to be able to use more than about 20 points even if they are chosen optimally. Parameters ---------- x : array_like `x` represents the x-coordinates of a set of datapoints. w : array_like `w` represents the y-coordinates of a set of datapoints, i.e. f(`x`). Returns ------- lagrange : numpy.poly1d instance The Lagrange interpolating polynomial. """ M = len(x) p = poly1d(0.0) for j in xrange(M): pt = poly1d(w[j]) for k in xrange(M): if k == j: continue fac = x[j]-x[k] pt *= poly1d([1.0, -x[k]])/fac p += pt return p # !! Need to find argument for keeping initialize. If it isn't # !! found, get rid of it! class interp2d(object): """ interp2d(x, y, z, kind='linear', copy=True, bounds_error=False, fill_value=nan) Interpolate over a 2-D grid. `x`, `y` and `z` are arrays of values used to approximate some function f: ``z = f(x, y)``. This class returns a function whose call method uses spline interpolation to find the value of new points. If `x` and `y` represent a regular grid, consider using RectBivariateSpline. Methods ------- __call__ Parameters ---------- x, y : array_like Arrays defining the data point coordinates. If the points lie on a regular grid, `x` can specify the column coordinates and `y` the row coordinates, for example:: >>> x = [0,1,2]; y = [0,3]; z = [[1,2,3], [4,5,6]] Otherwise, `x` and `y` must specify the full coordinates for each point, for example:: >>> x = [0,1,2,0,1,2]; y = [0,0,0,3,3,3]; z = [1,2,3,4,5,6] If `x` and `y` are multi-dimensional, they are flattened before use. z : array_like The values of the function to interpolate at the data points. If `z` is a multi-dimensional array, it is flattened before use. The length of a flattened `z` array is either len(`x`)*len(`y`) if `x` and `y` specify the column and row coordinates or ``len(z) == len(x) == len(y)`` if `x` and `y` specify coordinates for each point. kind : {'linear', 'cubic', 'quintic'}, optional The kind of spline interpolation to use. Default is 'linear'. copy : bool, optional If True, the class makes internal copies of x, y and z. If False, references may be used. The default is to copy. bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data (x,y), a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If omitted (None), values outside the domain are extrapolated. See Also -------- RectBivariateSpline : Much faster 2D interpolation if your input data is on a grid bisplrep, bisplev : Spline interpolation based on FITPACK BivariateSpline : a more recent wrapper of the FITPACK routines interp1d : one dimension version of this function Notes ----- The minimum number of data points required along the interpolation axis is ``(k+1)**2``, with k=1 for linear, k=3 for cubic and k=5 for quintic interpolation. The interpolator is constructed by `bisplrep`, with a smoothing factor of 0. If more control over smoothing is needed, `bisplrep` should be used directly. Examples -------- Construct a 2-D grid and interpolate on it: >>> from scipy import interpolate >>> x = np.arange(-5.01, 5.01, 0.25) >>> y = np.arange(-5.01, 5.01, 0.25) >>> xx, yy = np.meshgrid(x, y) >>> z = np.sin(xx**2+yy**2) >>> f = interpolate.interp2d(x, y, z, kind='cubic') Now use the obtained interpolation function and plot the result: >>> import matplotlib.pyplot as plt >>> xnew = np.arange(-5.01, 5.01, 1e-2) >>> ynew = np.arange(-5.01, 5.01, 1e-2) >>> znew = f(xnew, ynew) >>> plt.plot(x, z[0, :], 'ro-', xnew, znew[0, :], 'b-') >>> plt.show() """ def __init__(self, x, y, z, kind='linear', copy=True, bounds_error=False, fill_value=None): x = ravel(x) y = ravel(y) z = asarray(z) rectangular_grid = (z.size == len(x) * len(y)) if rectangular_grid: if z.ndim == 2: if z.shape != (len(y), len(x)): raise ValueError("When on a regular grid with x.size = m " "and y.size = n, if z.ndim == 2, then z " "must have shape (n, m)") if not np.all(x[1:] >= x[:-1]): j = np.argsort(x) x = x[j] z = z[:, j] if not np.all(y[1:] >= y[:-1]): j = np.argsort(y) y = y[j] z = z[j, :] z = ravel(z.T) else: z = ravel(z) if len(x) != len(y): raise ValueError( "x and y must have equal lengths for non rectangular grid") if len(z) != len(x): raise ValueError( "Invalid length for input z for non rectangular grid") try: kx = ky = {'linear': 1, 'cubic': 3, 'quintic': 5}[kind] except KeyError: raise ValueError("Unsupported interpolation type.") if not rectangular_grid: # TODO: surfit is really not meant for interpolation! self.tck = fitpack.bisplrep(x, y, z, kx=kx, ky=ky, s=0.0) else: nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth( x, y, z, None, None, None, None, kx=kx, ky=ky, s=0.0) self.tck = (tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)], kx, ky) self.bounds_error = bounds_error self.fill_value = fill_value self.x, self.y, self.z = [array(a, copy=copy) for a in (x, y, z)] self.x_min, self.x_max = np.amin(x), np.amax(x) self.y_min, self.y_max = np.amin(y), np.amax(y) def __call__(self, x, y, dx=0, dy=0, assume_sorted=False): """Interpolate the function. Parameters ---------- x : 1D array x-coordinates of the mesh on which to interpolate. y : 1D array y-coordinates of the mesh on which to interpolate. dx : int >= 0, < kx Order of partial derivatives in x. dy : int >= 0, < ky Order of partial derivatives in y. assume_sorted : bool, optional If False, values of `x` and `y` can be in any order and they are sorted first. If True, `x` and `y` have to be arrays of monotonically increasing values. Returns ------- z : 2D array with shape (len(y), len(x)) The interpolated values. """ x = atleast_1d(x) y = atleast_1d(y) if x.ndim != 1 or y.ndim != 1: raise ValueError("x and y should both be 1-D arrays") if not assume_sorted: x = np.sort(x) y = np.sort(y) if self.bounds_error or self.fill_value is not None: out_of_bounds_x = (x < self.x_min) | (x > self.x_max) out_of_bounds_y = (y < self.y_min) | (y > self.y_max) any_out_of_bounds_x = np.any(out_of_bounds_x) any_out_of_bounds_y = np.any(out_of_bounds_y) if self.bounds_error and (any_out_of_bounds_x or any_out_of_bounds_y): raise ValueError("Values out of range; x must be in %r, y in %r" % ((self.x_min, self.x_max), (self.y_min, self.y_max))) z = fitpack.bisplev(x, y, self.tck, dx, dy) z = atleast_2d(z) z = transpose(z) if self.fill_value is not None: if any_out_of_bounds_x: z[:, out_of_bounds_x] = self.fill_value if any_out_of_bounds_y: z[out_of_bounds_y, :] = self.fill_value if len(z) == 1: z = z[0] return array(z) def _check_broadcast_up_to(arr_from, shape_to, name): """Helper to check that arr_from broadcasts up to shape_to""" shape_from = arr_from.shape if len(shape_to) >= len(shape_from): for t, f in zip(shape_to[::-1], shape_from[::-1]): if f != 1 and f != t: break else: # all checks pass, do the upcasting that we need later if arr_from.size != 1 and arr_from.shape != shape_to: arr_from = np.ones(shape_to, arr_from.dtype) * arr_from return arr_from.ravel() # at least one check failed raise ValueError('%s argument must be able to broadcast up ' 'to shape %s but had shape %s' % (name, shape_to, shape_from)) def _do_extrapolate(fill_value): """Helper to check if fill_value == "extrapolate" without warnings""" return (isinstance(fill_value, string_types) and fill_value == 'extrapolate') class interp1d(_Interpolator1D): """ Interpolate a 1-D function. `x` and `y` are arrays of values used to approximate some function f: ``y = f(x)``. This class returns a function whose call method uses interpolation to find the value of new points. Parameters ---------- x : (N,) array_like A 1-D array of real values. y : (...,N,...) array_like A N-D array of real values. The length of `y` along the interpolation axis must be equal to the length of `x`. kind : str or int, optional Specifies the kind of interpolation as a string ('linear', 'nearest', 'zero', 'slinear', 'quadratic, 'cubic' where 'slinear', 'quadratic' and 'cubic' refer to a spline interpolation of first, second or third order) or as an integer specifying the order of the spline interpolator to use. Default is 'linear'. axis : int, optional Specifies the axis of `y` along which to interpolate. Interpolation defaults to the last axis of `y`. copy : bool, optional If True, the class makes internal copies of x and y. If False, references to `x` and `y` are used. The default is to copy. bounds_error : bool, optional If True, a ValueError is raised any time interpolation is attempted on a value outside of the range of x (where extrapolation is necessary). If False, out of bounds values are assigned `fill_value`. By default, an error is raised unless `fill_value="extrapolate"`. fill_value : array-like or (array-like, array_like) or "extrapolate", optional - if a ndarray (or float), this value will be used to fill in for requested points outside of the data range. If not provided, then the default is NaN. The array-like must broadcast properly to the dimensions of the non-interpolation axes. - If a two-element tuple, then the first element is used as a fill value for ``x_new < x[0]`` and the second element is used for ``x_new > x[-1]``. Anything that is not a 2-element tuple (e.g., list or ndarray, regardless of shape) is taken to be a single array-like argument meant to be used for both bounds as ``below, above = fill_value, fill_value``. .. versionadded:: 0.17.0 - If "extrapolate", then points outside the data range will be extrapolated. ("nearest" and "linear" kinds only.) .. versionadded:: 0.17.0 assume_sorted : bool, optional If False, values of `x` can be in any order and they are sorted first. If True, `x` has to be an array of monotonically increasing values. Methods ------- __call__ See Also -------- splrep, splev Spline interpolation/smoothing based on FITPACK. UnivariateSpline : An object-oriented wrapper of the FITPACK routines. interp2d : 2-D interpolation Examples -------- >>> import matplotlib.pyplot as plt >>> from scipy import interpolate >>> x = np.arange(0, 10) >>> y = np.exp(-x/3.0) >>> f = interpolate.interp1d(x, y) >>> xnew = np.arange(0, 9, 0.1) >>> ynew = f(xnew) # use interpolation function returned by `interp1d` >>> plt.plot(x, y, 'o', xnew, ynew, '-') >>> plt.show() """ def __init__(self, x, y, kind='linear', axis=-1, copy=True, bounds_error=None, fill_value=np.nan, assume_sorted=False): """ Initialize a 1D linear interpolation class.""" _Interpolator1D.__init__(self, x, y, axis=axis) self.bounds_error = bounds_error # used by fill_value setter self.copy = copy if kind in ['zero', 'slinear', 'quadratic', 'cubic']: order = {'nearest': 0, 'zero': 0, 'slinear': 1, 'quadratic': 2, 'cubic': 3}[kind] kind = 'spline' elif isinstance(kind, int): order = kind kind = 'spline' elif kind not in ('linear', 'nearest'): raise NotImplementedError("%s is unsupported: Use fitpack " "routines for other types." % kind) x = array(x, copy=self.copy) y = array(y, copy=self.copy) if not assume_sorted: ind = np.argsort(x) x = x[ind] y = np.take(y, ind, axis=axis) if x.ndim != 1: raise ValueError("the x array must have exactly one dimension.") if y.ndim == 0: raise ValueError("the y array must have at least one dimension.") # Force-cast y to a floating-point type, if it's not yet one if not issubclass(y.dtype.type, np.inexact): y = y.astype(np.float_) # Backward compatibility self.axis = axis % y.ndim # Interpolation goes internally along the first axis self.y = y self._y = self._reshape_yi(self.y) self.x = x del y, x # clean up namespace to prevent misuse; use attributes self._kind = kind self.fill_value = fill_value # calls the setter, can modify bounds_err # Adjust to interpolation kind; store reference to *unbound* # interpolation methods, in order to avoid circular references to self # stored in the bound instance methods, and therefore delayed garbage # collection. See: http://docs.python.org/2/reference/datamodel.html if kind in ('linear', 'nearest'): # Make a "view" of the y array that is rotated to the interpolation # axis. minval = 2 if kind == 'nearest': # Do division before addition to prevent possible integer overflow self.x_bds = self.x / 2.0 self.x_bds = self.x_bds[1:] + self.x_bds[:-1] self._call = self.__class__._call_nearest else: # Check if we can delegate to numpy.interp (2x-10x faster). cond = self.x.dtype == np.float_ and self.y.dtype == np.float_ cond = cond and self.y.ndim == 1 cond = cond and not _do_extrapolate(fill_value) if cond: self._call = self.__class__._call_linear_np else: self._call = self.__class__._call_linear else: minval = order + 1 self._spline = splmake(self.x, self._y, order=order) self._call = self.__class__._call_spline if len(self.x) < minval: raise ValueError("x and y arrays must have at " "least %d entries" % minval) @property def fill_value(self): # backwards compat: mimic a public attribute return self._fill_value_orig @fill_value.setter def fill_value(self, fill_value): # extrapolation only works for nearest neighbor and linear methods if _do_extrapolate(fill_value): if self._kind not in ('nearest', 'linear'): raise ValueError("Extrapolation does not work with " "kind=%s" % self._kind) if self.bounds_error: raise ValueError("Cannot extrapolate and raise " "at the same time.") self.bounds_error = False self._extrapolate = True else: broadcast_shape = (self.y.shape[:self.axis] + self.y.shape[self.axis + 1:]) if len(broadcast_shape) == 0: broadcast_shape = (1,) # it's either a pair (_below_range, _above_range) or a single value # for both above and below range if isinstance(fill_value, tuple) and len(fill_value) == 2: below_above = [np.asarray(fill_value[0]), np.asarray(fill_value[1])] names = ('fill_value (below)', 'fill_value (above)') for ii in range(2): below_above[ii] = _check_broadcast_up_to( below_above[ii], broadcast_shape, names[ii]) else: fill_value = np.asarray(fill_value) below_above = [_check_broadcast_up_to( fill_value, broadcast_shape, 'fill_value')] * 2 self._fill_value_below, self._fill_value_above = below_above self._extrapolate = False if self.bounds_error is None: self.bounds_error = True # backwards compat: fill_value was a public attr; make it writeable self._fill_value_orig = fill_value def _call_linear_np(self, x_new): # Note that out-of-bounds values are taken care of in self._evaluate return np.interp(x_new, self.x, self.y) def _call_linear(self, x_new): # 2. Find where in the orignal data, the values to interpolate # would be inserted. # Note: If x_new[n] == x[m], then m is returned by searchsorted. x_new_indices = searchsorted(self.x, x_new) # 3. Clip x_new_indices so that they are within the range of # self.x indices and at least 1. Removes mis-interpolation # of x_new[n] = x[0] x_new_indices = x_new_indices.clip(1, len(self.x)-1).astype(int) # 4. Calculate the slope of regions that each x_new value falls in. lo = x_new_indices - 1 hi = x_new_indices x_lo = self.x[lo] x_hi = self.x[hi] y_lo = self._y[lo] y_hi = self._y[hi] # Note that the following two expressions rely on the specifics of the # broadcasting semantics. slope = (y_hi - y_lo) / (x_hi - x_lo)[:, None] # 5. Calculate the actual value for each entry in x_new. y_new = slope*(x_new - x_lo)[:, None] + y_lo return y_new def _call_nearest(self, x_new): """ Find nearest neighbour interpolated y_new = f(x_new).""" # 2. Find where in the averaged data the values to interpolate # would be inserted. # Note: use side='left' (right) to searchsorted() to define the # halfway point to be nearest to the left (right) neighbour x_new_indices = searchsorted(self.x_bds, x_new, side='left') # 3. Clip x_new_indices so that they are within the range of x indices. x_new_indices = x_new_indices.clip(0, len(self.x)-1).astype(intp) # 4. Calculate the actual value for each entry in x_new. y_new = self._y[x_new_indices] return y_new def _call_spline(self, x_new): return spleval(self._spline, x_new) def _evaluate(self, x_new): # 1. Handle values in x_new that are outside of x. Throw error, # or return a list of mask array indicating the outofbounds values. # The behavior is set by the bounds_error variable. x_new = asarray(x_new) y_new = self._call(self, x_new) if not self._extrapolate: below_bounds, above_bounds = self._check_bounds(x_new) if len(y_new) > 0: # Note fill_value must be broadcast up to the proper size # and flattened to work here y_new[below_bounds] = self._fill_value_below y_new[above_bounds] = self._fill_value_above return y_new def _check_bounds(self, x_new): """Check the inputs for being in the bounds of the interpolated data. Parameters ---------- x_new : array Returns ------- out_of_bounds : bool array The mask on x_new of values that are out of the bounds. """ # If self.bounds_error is True, we raise an error if any x_new values # fall outside the range of x. Otherwise, we return an array indicating # which values are outside the boundary region. below_bounds = x_new < self.x[0] above_bounds = x_new > self.x[-1] # !! Could provide more information about which values are out of bounds if self.bounds_error and below_bounds.any(): raise ValueError("A value in x_new is below the interpolation " "range.") if self.bounds_error and above_bounds.any(): raise ValueError("A value in x_new is above the interpolation " "range.") # !! Should we emit a warning if some values are out of bounds? # !! matlab does not. return below_bounds, above_bounds class _PPolyBase(object): """Base class for piecewise polynomials.""" __slots__ = ('c', 'x', 'extrapolate', 'axis') def __init__(self, c, x, extrapolate=None, axis=0): self.c = np.asarray(c) self.x = np.ascontiguousarray(x, dtype=np.float64) if extrapolate is None: extrapolate = True elif extrapolate != 'periodic': extrapolate = bool(extrapolate) self.extrapolate = extrapolate if not (0 <= axis < self.c.ndim - 1): raise ValueError("%s must be between 0 and %s" % (axis, c.ndim-1)) self.axis = axis if axis != 0: # roll the interpolation axis to be the first one in self.c # More specifically, the target shape for self.c is (k, m, ...), # and axis !=0 means that we have c.shape (..., k, m, ...) # ^ # axis # So we roll two of them. self.c = np.rollaxis(self.c, axis+1) self.c = np.rollaxis(self.c, axis+1) if self.x.ndim != 1: raise ValueError("x must be 1-dimensional") if self.x.size < 2: raise ValueError("at least 2 breakpoints are needed") if self.c.ndim < 2: raise ValueError("c must have at least 2 dimensions") if self.c.shape[0] == 0: raise ValueError("polynomial must be at least of order 0") if self.c.shape[1] != self.x.size-1: raise ValueError("number of coefficients != len(x)-1") if np.any(self.x[1:] - self.x[:-1] < 0): raise ValueError("x-coordinates are not in increasing order") dtype = self._get_dtype(self.c.dtype) self.c = np.ascontiguousarray(self.c, dtype=dtype) def _get_dtype(self, dtype): if np.issubdtype(dtype, np.complexfloating) \ or np.issubdtype(self.c.dtype, np.complexfloating): return np.complex_ else: return np.float_ @classmethod def construct_fast(cls, c, x, extrapolate=None, axis=0): """ Construct the piecewise polynomial without making checks. Takes the same parameters as the constructor. Input arguments `c` and `x` must be arrays of the correct shape and type. The `c` array can only be of dtypes float and complex, and `x` array must have dtype float. """ self = object.__new__(cls) self.c = c self.x = x self.axis = axis if extrapolate is None: extrapolate = True self.extrapolate = extrapolate return self def _ensure_c_contiguous(self): """ c and x may be modified by the user. The Cython code expects that they are C contiguous. """ if not self.x.flags.c_contiguous: self.x = self.x.copy() if not self.c.flags.c_contiguous: self.c = self.c.copy() def extend(self, c, x, right=True): """ Add additional breakpoints and coefficients to the polynomial. Parameters ---------- c : ndarray, size (k, m, ...) Additional coefficients for polynomials in intervals ``self.x[-1] <= x < x_right[0]``, ``x_right[0] <= x < x_right[1]``, ..., ``x_right[m-2] <= x < x_right[m-1]`` x : ndarray, size (m,) Additional breakpoints. Must be sorted and either to the right or to the left of the current breakpoints. right : bool, optional Whether the new intervals are to the right or to the left of the current intervals. """ c = np.asarray(c) x = np.asarray(x) if c.ndim < 2: raise ValueError("invalid dimensions for c") if x.ndim != 1: raise ValueError("invalid dimensions for x") if x.shape[0] != c.shape[1]: raise ValueError("x and c have incompatible sizes") if c.shape[2:] != self.c.shape[2:] or c.ndim != self.c.ndim: raise ValueError("c and self.c have incompatible shapes") if right: if x[0] < self.x[-1]: raise ValueError("new x are not to the right of current ones") else: if x[-1] > self.x[0]: raise ValueError("new x are not to the left of current ones") if c.size == 0: return dtype = self._get_dtype(c.dtype) k2 = max(c.shape[0], self.c.shape[0]) c2 = np.zeros((k2, self.c.shape[1] + c.shape[1]) + self.c.shape[2:], dtype=dtype) if right: c2[k2-self.c.shape[0]:, :self.c.shape[1]] = self.c c2[k2-c.shape[0]:, self.c.shape[1]:] = c self.x = np.r_[self.x, x] else: c2[k2-self.c.shape[0]:, :c.shape[1]] = c c2[k2-c.shape[0]:, c.shape[1]:] = self.c self.x = np.r_[x, self.x] self.c = c2 def __call__(self, x, nu=0, extrapolate=None): """ Evaluate the piecewise polynomial or its derivative. Parameters ---------- x : array_like Points to evaluate the interpolant at. nu : int, optional Order of derivative to evaluate. Must be non-negative. extrapolate : {bool, 'periodic', None}, optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. If None (default), use `self.extrapolate`. Returns ------- y : array_like Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of x. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ if extrapolate is None: extrapolate = self.extrapolate x = np.asarray(x) x_shape, x_ndim = x.shape, x.ndim x = np.ascontiguousarray(x.ravel(), dtype=np.float_) # With periodic extrapolation we map x to the segment # [self.x[0], self.x[-1]]. if extrapolate == 'periodic': x = self.x[0] + (x - self.x[0]) % (self.x[-1] - self.x[0]) extrapolate = False out = np.empty((len(x), prod(self.c.shape[2:])), dtype=self.c.dtype) self._ensure_c_contiguous() self._evaluate(x, nu, extrapolate, out) out = out.reshape(x_shape + self.c.shape[2:]) if self.axis != 0: # transpose to move the calculated values to the interpolation axis l = list(range(out.ndim)) l = l[x_ndim:x_ndim+self.axis] + l[:x_ndim] + l[x_ndim+self.axis:] out = out.transpose(l) return out class PPoly(_PPolyBase): """ Piecewise polynomial in terms of coefficients and breakpoints The polynomial in the ith interval is ``x[i] <= xp < x[i+1]``:: S = sum(c[m, i] * (xp - x[i])**(k-m) for m in range(k+1)) where ``k`` is the degree of the polynomial. This representation is the local power basis. Parameters ---------- c : ndarray, shape (k, m, ...) Polynomial coefficients, order `k` and `m` intervals x : ndarray, shape (m+1,) Polynomial breakpoints. These must be sorted in increasing order. extrapolate : bool or 'periodic', optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. axis : int, optional Interpolation axis. Default is zero. Attributes ---------- x : ndarray Breakpoints. c : ndarray Coefficients of the polynomials. They are reshaped to a 3-dimensional array with the last dimension representing the trailing dimensions of the original coefficient array. axis : int Interpolation axis. Methods ------- __call__ derivative antiderivative integrate solve roots extend from_spline from_bernstein_basis construct_fast See also -------- BPoly : piecewise polynomials in the Bernstein basis Notes ----- High-order polynomials in the power basis can be numerically unstable. Precision problems can start to appear for orders larger than 20-30. """ def _evaluate(self, x, nu, extrapolate, out): _ppoly.evaluate(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, x, nu, bool(extrapolate), out) def derivative(self, nu=1): """ Construct a new piecewise polynomial representing the derivative. Parameters ---------- nu : int, optional Order of derivative to evaluate. Default is 1, i.e. compute the first derivative. If negative, the antiderivative is returned. Returns ------- pp : PPoly Piecewise polynomial of order k2 = k - n representing the derivative of this polynomial. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ if nu < 0: return self.antiderivative(-nu) # reduce order if nu == 0: c2 = self.c.copy() else: c2 = self.c[:-nu,:].copy() if c2.shape[0] == 0: # derivative of order 0 is zero c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype) # multiply by the correct rising factorials factor = spec.poch(np.arange(c2.shape[0], 0, -1), nu) c2 *= factor[(slice(None),) + (None,)*(c2.ndim-1)] # construct a compatible polynomial return self.construct_fast(c2, self.x, self.extrapolate, self.axis) def antiderivative(self, nu=1): """ Construct a new piecewise polynomial representing the antiderivative. Antiderivativative is also the indefinite integral of the function, and derivative is its inverse operation. Parameters ---------- nu : int, optional Order of antiderivative to evaluate. Default is 1, i.e. compute the first integral. If negative, the derivative is returned. Returns ------- pp : PPoly Piecewise polynomial of order k2 = k + n representing the antiderivative of this polynomial. Notes ----- The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up to floating point rounding error. If antiderivative is computed and ``self.extrapolate='periodic'``, it will be set to False for the returned instance. This is done because the antiderivative is no longer periodic and its correct evaluation outside of the initially given x interval is difficult. """ if nu <= 0: return self.derivative(-nu) c = np.zeros((self.c.shape[0] + nu, self.c.shape[1]) + self.c.shape[2:], dtype=self.c.dtype) c[:-nu] = self.c # divide by the correct rising factorials factor = spec.poch(np.arange(self.c.shape[0], 0, -1), nu) c[:-nu] /= factor[(slice(None),) + (None,)*(c.ndim-1)] # fix continuity of added degrees of freedom self._ensure_c_contiguous() _ppoly.fix_continuity(c.reshape(c.shape[0], c.shape[1], -1), self.x, nu - 1) if self.extrapolate == 'periodic': extrapolate = False else: extrapolate = self.extrapolate # construct a compatible polynomial return self.construct_fast(c, self.x, extrapolate, self.axis) def integrate(self, a, b, extrapolate=None): """ Compute a definite integral over a piecewise polynomial. Parameters ---------- a : float Lower integration bound b : float Upper integration bound extrapolate : {bool, 'periodic', None}, optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. If None (default), use `self.extrapolate`. Returns ------- ig : array_like Definite integral of the piecewise polynomial over [a, b] """ if extrapolate is None: extrapolate = self.extrapolate # Swap integration bounds if needed sign = 1 if b < a: a, b = b, a sign = -1 range_int = np.empty((prod(self.c.shape[2:]),), dtype=self.c.dtype) self._ensure_c_contiguous() # Compute the integral. if extrapolate == 'periodic': # Split the integral into the part over period (can be several # of them) and the remaining part. xs, xe = self.x[0], self.x[-1] period = xe - xs interval = b - a n_periods, left = divmod(interval, period) if n_periods > 0: _ppoly.integrate( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, xs, xe, False, out=range_int) range_int *= n_periods else: range_int.fill(0) # Map a to [xs, xe], b is always a + left. a = xs + (a - xs) % period b = a + left # If b <= xe then we need to integrate over [a, b], otherwise # over [a, xe] and from xs to what is remained. remainder_int = np.empty_like(range_int) if b <= xe: _ppoly.integrate( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, a, b, False, out=remainder_int) range_int += remainder_int else: _ppoly.integrate( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, a, xe, False, out=remainder_int) range_int += remainder_int _ppoly.integrate( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, xs, xs + left + a - xe, False, out=remainder_int) range_int += remainder_int else: _ppoly.integrate( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, a, b, bool(extrapolate), out=range_int) # Return range_int *= sign return range_int.reshape(self.c.shape[2:]) def solve(self, y=0., discontinuity=True, extrapolate=None): """ Find real solutions of the the equation ``pp(x) == y``. Parameters ---------- y : float, optional Right-hand side. Default is zero. discontinuity : bool, optional Whether to report sign changes across discontinuities at breakpoints as roots. extrapolate : {bool, 'periodic', None}, optional If bool, determines whether to return roots from the polynomial extrapolated based on first and last intervals, 'periodic' works the same as False. If None (default), use `self.extrapolate`. Returns ------- roots : ndarray Roots of the polynomial(s). If the PPoly object describes multiple polynomials, the return value is an object array whose each element is an ndarray containing the roots. Notes ----- This routine works only on real-valued polynomials. If the piecewise polynomial contains sections that are identically zero, the root list will contain the start point of the corresponding interval, followed by a ``nan`` value. If the polynomial is discontinuous across a breakpoint, and there is a sign change across the breakpoint, this is reported if the `discont` parameter is True. Examples -------- Finding roots of ``[x**2 - 1, (x - 1)**2]`` defined on intervals ``[-2, 1], [1, 2]``: >>> from scipy.interpolate import PPoly >>> pp = PPoly(np.array([[1, -4, 3], [1, 0, 0]]).T, [-2, 1, 2]) >>> pp.roots() array([-1., 1.]) """ if extrapolate is None: extrapolate = self.extrapolate self._ensure_c_contiguous() if np.issubdtype(self.c.dtype, np.complexfloating): raise ValueError("Root finding is only for " "real-valued polynomials") y = float(y) r = _ppoly.real_roots(self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, y, bool(discontinuity), bool(extrapolate)) if self.c.ndim == 2: return r[0] else: r2 = np.empty(prod(self.c.shape[2:]), dtype=object) # this for-loop is equivalent to ``r2[...] = r``, but that's broken # in numpy 1.6.0 for ii, root in enumerate(r): r2[ii] = root return r2.reshape(self.c.shape[2:]) def roots(self, discontinuity=True, extrapolate=None): """ Find real roots of the the piecewise polynomial. Parameters ---------- discontinuity : bool, optional Whether to report sign changes across discontinuities at breakpoints as roots. extrapolate : {bool, 'periodic', None}, optional If bool, determines whether to return roots from the polynomial extrapolated based on first and last intervals, 'periodic' works the same as False. If None (default), use `self.extrapolate`. Returns ------- roots : ndarray Roots of the polynomial(s). If the PPoly object describes multiple polynomials, the return value is an object array whose each element is an ndarray containing the roots. See Also -------- PPoly.solve """ return self.solve(0, discontinuity, extrapolate) @classmethod def from_spline(cls, tck, extrapolate=None): """ Construct a piecewise polynomial from a spline Parameters ---------- tck A spline, as returned by `splrep` extrapolate : bool or 'periodic', optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. """ t, c, k = tck cvals = np.empty((k + 1, len(t)-1), dtype=c.dtype) for m in xrange(k, -1, -1): y = fitpack.splev(t[:-1], tck, der=m) cvals[k - m, :] = y/spec.gamma(m+1) return cls.construct_fast(cvals, t, extrapolate) @classmethod def from_bernstein_basis(cls, bp, extrapolate=None): """ Construct a piecewise polynomial in the power basis from a polynomial in Bernstein basis. Parameters ---------- bp : BPoly A Bernstein basis polynomial, as created by BPoly extrapolate : bool or 'periodic', optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. """ dx = np.diff(bp.x) k = bp.c.shape[0] - 1 # polynomial order rest = (None,)*(bp.c.ndim-2) c = np.zeros_like(bp.c) for a in range(k+1): factor = (-1)**(a) * comb(k, a) * bp.c[a] for s in range(a, k+1): val = comb(k-a, s-a) * (-1)**s c[k-s] += factor * val / dx[(slice(None),)+rest]**s if extrapolate is None: extrapolate = bp.extrapolate return cls.construct_fast(c, bp.x, extrapolate, bp.axis) class BPoly(_PPolyBase): """Piecewise polynomial in terms of coefficients and breakpoints. The polynomial in the ``i``-th interval ``x[i] <= xp < x[i+1]`` is written in the Bernstein polynomial basis:: S = sum(c[a, i] * b(a, k; x) for a in range(k+1)), where ``k`` is the degree of the polynomial, and:: b(a, k; x) = binom(k, a) * t**k * (1 - t)**(k - a), with ``t = (x - x[i]) / (x[i+1] - x[i])`` and ``binom`` is a binomial coefficient. Parameters ---------- c : ndarray, shape (k, m, ...) Polynomial coefficients, order `k` and `m` intervals x : ndarray, shape (m+1,) Polynomial breakpoints. These must be sorted in increasing order. extrapolate : bool, optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. axis : int, optional Interpolation axis. Default is zero. Attributes ---------- x : ndarray Breakpoints. c : ndarray Coefficients of the polynomials. They are reshaped to a 3-dimensional array with the last dimension representing the trailing dimensions of the original coefficient array. axis : int Interpolation axis. Methods ------- __call__ extend derivative antiderivative integrate construct_fast from_power_basis from_derivatives See also -------- PPoly : piecewise polynomials in the power basis Notes ----- Properties of Bernstein polynomials are well documented in the literature. Here's a non-exhaustive list: .. [1] http://en.wikipedia.org/wiki/Bernstein_polynomial .. [2] Kenneth I. Joy, Bernstein polynomials, http://www.idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf .. [3] E. H. Doha, A. H. Bhrawy, and M. A. Saker, Boundary Value Problems, vol 2011, article ID 829546, doi:10.1155/2011/829543 Examples -------- >>> from scipy.interpolate import BPoly >>> x = [0, 1] >>> c = [[1], [2], [3]] >>> bp = BPoly(c, x) This creates a 2nd order polynomial .. math:: B(x) = 1 \\times b_{0, 2}(x) + 2 \\times b_{1, 2}(x) + 3 \\times b_{2, 2}(x) \\\\ = 1 \\times (1-x)^2 + 2 \\times 2 x (1 - x) + 3 \\times x^2 """ def _evaluate(self, x, nu, extrapolate, out): _ppoly.evaluate_bernstein( self.c.reshape(self.c.shape[0], self.c.shape[1], -1), self.x, x, nu, bool(extrapolate), out) def derivative(self, nu=1): """ Construct a new piecewise polynomial representing the derivative. Parameters ---------- nu : int, optional Order of derivative to evaluate. Default is 1, i.e. compute the first derivative. If negative, the antiderivative is returned. Returns ------- bp : BPoly Piecewise polynomial of order k - nu representing the derivative of this polynomial. """ if nu < 0: return self.antiderivative(-nu) if nu > 1: bp = self for k in range(nu): bp = bp.derivative() return bp # reduce order if nu == 0: c2 = self.c.copy() else: # For a polynomial # B(x) = \sum_{a=0}^{k} c_a b_{a, k}(x), # we use the fact that # b'_{a, k} = k ( b_{a-1, k-1} - b_{a, k-1} ), # which leads to # B'(x) = \sum_{a=0}^{k-1} (c_{a+1} - c_a) b_{a, k-1} # # finally, for an interval [y, y + dy] with dy != 1, # we need to correct for an extra power of dy rest = (None,)*(self.c.ndim-2) k = self.c.shape[0] - 1 dx = np.diff(self.x)[(None, slice(None))+rest] c2 = k * np.diff(self.c, axis=0) / dx if c2.shape[0] == 0: # derivative of order 0 is zero c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype) # construct a compatible polynomial return self.construct_fast(c2, self.x, self.extrapolate, self.axis) def antiderivative(self, nu=1): """ Construct a new piecewise polynomial representing the antiderivative. Parameters ---------- nu : int, optional Order of antiderivative to evaluate. Default is 1, i.e. compute the first integral. If negative, the derivative is returned. Returns ------- bp : BPoly Piecewise polynomial of order k + nu representing the antiderivative of this polynomial. Notes ----- If antiderivative is computed and ``self.extrapolate='periodic'``, it will be set to False for the returned instance. This is done because the antiderivative is no longer periodic and its correct evaluation outside of the initially given x interval is difficult. """ if nu <= 0: return self.derivative(-nu) if nu > 1: bp = self for k in range(nu): bp = bp.antiderivative() return bp # Construct the indefinite integrals on individual intervals c, x = self.c, self.x k = c.shape[0] c2 = np.zeros((k+1,) + c.shape[1:], dtype=c.dtype) c2[1:, ...] = np.cumsum(c, axis=0) / k delta = x[1:] - x[:-1] c2 *= delta[(None, slice(None)) + (None,)*(c.ndim-2)] # Now fix continuity: on the very first interval, take the integration # constant to be zero; on an interval [x_j, x_{j+1}) with j>0, # the integration constant is then equal to the jump of the `bp` at x_j. # The latter is given by the coefficient of B_{n+1, n+1} # *on the previous interval* (other B. polynomials are zero at the breakpoint) # Finally, use the fact that BPs form a partition of unity. c2[:,1:] += np.cumsum(c2[k,:], axis=0)[:-1] if self.extrapolate == 'periodic': extrapolate = False else: extrapolate = self.extrapolate return self.construct_fast(c2, x, extrapolate, axis=self.axis) def integrate(self, a, b, extrapolate=None): """ Compute a definite integral over a piecewise polynomial. Parameters ---------- a : float Lower integration bound b : float Upper integration bound extrapolate : {bool, 'periodic', None}, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. If None (default), use `self.extrapolate`. Returns ------- array_like Definite integral of the piecewise polynomial over [a, b] """ # XXX: can probably use instead the fact that # \int_0^{1} B_{j, n}(x) \dx = 1/(n+1) ib = self.antiderivative() if extrapolate is None: extrapolate = self.extrapolate # ib.extrapolate shouldn't be 'periodic', it is converted to # False for 'periodic. in antiderivative() call. if extrapolate != 'periodic': ib.extrapolate = extrapolate if extrapolate == 'periodic': # Split the integral into the part over period (can be several # of them) and the remaining part. # For simplicity and clarity convert to a <= b case. if a <= b: sign = 1 else: a, b = b, a sign = -1 xs, xe = self.x[0], self.x[-1] period = xe - xs interval = b - a n_periods, left = divmod(interval, period) res = n_periods * (ib(xe) - ib(xs)) # Map a and b to [xs, xe]. a = xs + (a - xs) % period b = a + left # If b <= xe then we need to integrate over [a, b], otherwise # over [a, xe] and from xs to what is remained. if b <= xe: res += ib(b) - ib(a) else: res += ib(xe) - ib(a) + ib(xs + left + a - xe) - ib(xs) return sign * res else: return ib(b) - ib(a) def extend(self, c, x, right=True): k = max(self.c.shape[0], c.shape[0]) self.c = self._raise_degree(self.c, k - self.c.shape[0]) c = self._raise_degree(c, k - c.shape[0]) return _PPolyBase.extend(self, c, x, right) extend.__doc__ = _PPolyBase.extend.__doc__ @classmethod def from_power_basis(cls, pp, extrapolate=None): """ Construct a piecewise polynomial in Bernstein basis from a power basis polynomial. Parameters ---------- pp : PPoly A piecewise polynomial in the power basis extrapolate : bool or 'periodic', optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. """ dx = np.diff(pp.x) k = pp.c.shape[0] - 1 # polynomial order rest = (None,)*(pp.c.ndim-2) c = np.zeros_like(pp.c) for a in range(k+1): factor = pp.c[a] / comb(k, k-a) * dx[(slice(None),)+rest]**(k-a) for j in range(k-a, k+1): c[j] += factor * comb(j, k-a) if extrapolate is None: extrapolate = pp.extrapolate return cls.construct_fast(c, pp.x, extrapolate, pp.axis) @classmethod def from_derivatives(cls, xi, yi, orders=None, extrapolate=None): """Construct a piecewise polynomial in the Bernstein basis, compatible with the specified values and derivatives at breakpoints. Parameters ---------- xi : array_like sorted 1D array of x-coordinates yi : array_like or list of array_likes ``yi[i][j]`` is the ``j``-th derivative known at ``xi[i]`` orders : None or int or array_like of ints. Default: None. Specifies the degree of local polynomials. If not None, some derivatives are ignored. extrapolate : bool or 'periodic', optional If bool, determines whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. If 'periodic', periodic extrapolation is used. Default is True. Notes ----- If ``k`` derivatives are specified at a breakpoint ``x``, the constructed polynomial is exactly ``k`` times continuously differentiable at ``x``, unless the ``order`` is provided explicitly. In the latter case, the smoothness of the polynomial at the breakpoint is controlled by the ``order``. Deduces the number of derivatives to match at each end from ``order`` and the number of derivatives available. If possible it uses the same number of derivatives from each end; if the number is odd it tries to take the extra one from y2. In any case if not enough derivatives are available at one end or another it draws enough to make up the total from the other end. If the order is too high and not enough derivatives are available, an exception is raised. Examples -------- >>> from scipy.interpolate import BPoly >>> BPoly.from_derivatives([0, 1], [[1, 2], [3, 4]]) Creates a polynomial `f(x)` of degree 3, defined on `[0, 1]` such that `f(0) = 1, df/dx(0) = 2, f(1) = 3, df/dx(1) = 4` >>> BPoly.from_derivatives([0, 1, 2], [[0, 1], [0], [2]]) Creates a piecewise polynomial `f(x)`, such that `f(0) = f(1) = 0`, `f(2) = 2`, and `df/dx(0) = 1`. Based on the number of derivatives provided, the order of the local polynomials is 2 on `[0, 1]` and 1 on `[1, 2]`. Notice that no restriction is imposed on the derivatives at `x = 1` and `x = 2`. Indeed, the explicit form of the polynomial is:: f(x) = | x * (1 - x), 0 <= x < 1 | 2 * (x - 1), 1 <= x <= 2 So that f'(1-0) = -1 and f'(1+0) = 2 """ xi = np.asarray(xi) if len(xi) != len(yi): raise ValueError("xi and yi need to have the same length") if np.any(xi[1:] - xi[:1] <= 0): raise ValueError("x coordinates are not in increasing order") # number of intervals m = len(xi) - 1 # global poly order is k-1, local orders are <=k and can vary try: k = max(len(yi[i]) + len(yi[i+1]) for i in range(m)) except TypeError: raise ValueError("Using a 1D array for y? Please .reshape(-1, 1).") if orders is None: orders = [None] * m else: if isinstance(orders, (integer_types, np.integer)): orders = [orders] * m k = max(k, max(orders)) if any(o <= 0 for o in orders): raise ValueError("Orders must be positive.") c = [] for i in range(m): y1, y2 = yi[i], yi[i+1] if orders[i] is None: n1, n2 = len(y1), len(y2) else: n = orders[i]+1 n1 = min(n//2, len(y1)) n2 = min(n - n1, len(y2)) n1 = min(n - n2, len(y2)) if n1+n2 != n: raise ValueError("Point %g has %d derivatives, point %g" " has %d derivatives, but order %d requested" % (xi[i], len(y1), xi[i+1], len(y2), orders[i])) if not (n1 <= len(y1) and n2 <= len(y2)): raise ValueError("`order` input incompatible with" " length y1 or y2.") b = BPoly._construct_from_derivatives(xi[i], xi[i+1], y1[:n1], y2[:n2]) if len(b) < k: b = BPoly._raise_degree(b, k - len(b)) c.append(b) c = np.asarray(c) return cls(c.swapaxes(0, 1), xi, extrapolate) @staticmethod def _construct_from_derivatives(xa, xb, ya, yb): """Compute the coefficients of a polynomial in the Bernstein basis given the values and derivatives at the edges. Return the coefficients of a polynomial in the Bernstein basis defined on `[xa, xb]` and having the values and derivatives at the endpoints ``xa`` and ``xb`` as specified by ``ya`` and ``yb``. The polynomial constructed is of the minimal possible degree, i.e., if the lengths of ``ya`` and ``yb`` are ``na`` and ``nb``, the degree of the polynomial is ``na + nb - 1``. Parameters ---------- xa : float Left-hand end point of the interval xb : float Right-hand end point of the interval ya : array_like Derivatives at ``xa``. ``ya[0]`` is the value of the function, and ``ya[i]`` for ``i > 0`` is the value of the ``i``-th derivative. yb : array_like Derivatives at ``xb``. Returns ------- array coefficient array of a polynomial having specified derivatives Notes ----- This uses several facts from life of Bernstein basis functions. First of all, .. math:: b'_{a, n} = n (b_{a-1, n-1} - b_{a, n-1}) If B(x) is a linear combination of the form .. math:: B(x) = \sum_{a=0}^{n} c_a b_{a, n}, then :math: B'(x) = n \sum_{a=0}^{n-1} (c_{a+1} - c_{a}) b_{a, n-1}. Iterating the latter one, one finds for the q-th derivative .. math:: B^{q}(x) = n!/(n-q)! \sum_{a=0}^{n-q} Q_a b_{a, n-q}, with .. math:: Q_a = \sum_{j=0}^{q} (-)^{j+q} comb(q, j) c_{j+a} This way, only `a=0` contributes to :math: `B^{q}(x = xa)`, and `c_q` are found one by one by iterating `q = 0, ..., na`. At `x = xb` it's the same with `a = n - q`. """ ya, yb = np.asarray(ya), np.asarray(yb) if ya.shape[1:] != yb.shape[1:]: raise ValueError('ya and yb have incompatible dimensions.') dta, dtb = ya.dtype, yb.dtype if (np.issubdtype(dta, np.complexfloating) or np.issubdtype(dtb, np.complexfloating)): dt = np.complex_ else: dt = np.float_ na, nb = len(ya), len(yb) n = na + nb c = np.empty((na+nb,) + ya.shape[1:], dtype=dt) # compute coefficients of a polynomial degree na+nb-1 # walk left-to-right for q in range(0, na): c[q] = ya[q] / spec.poch(n - q, q) * (xb - xa)**q for j in range(0, q): c[q] -= (-1)**(j+q) * comb(q, j) * c[j] # now walk right-to-left for q in range(0, nb): c[-q-1] = yb[q] / spec.poch(n - q, q) * (-1)**q * (xb - xa)**q for j in range(0, q): c[-q-1] -= (-1)**(j+1) * comb(q, j+1) * c[-q+j] return c @staticmethod def _raise_degree(c, d): """Raise a degree of a polynomial in the Bernstein basis. Given the coefficients of a polynomial degree `k`, return (the coefficients of) the equivalent polynomial of degree `k+d`. Parameters ---------- c : array_like coefficient array, 1D d : integer Returns ------- array coefficient array, 1D array of length `c.shape[0] + d` Notes ----- This uses the fact that a Bernstein polynomial `b_{a, k}` can be identically represented as a linear combination of polynomials of a higher degree `k+d`: .. math:: b_{a, k} = comb(k, a) \sum_{j=0}^{d} b_{a+j, k+d} \ comb(d, j) / comb(k+d, a+j) """ if d == 0: return c k = c.shape[0] - 1 out = np.zeros((c.shape[0] + d,) + c.shape[1:], dtype=c.dtype) for a in range(c.shape[0]): f = c[a] * comb(k, a) for j in range(d+1): out[a+j] += f * comb(d, j) / comb(k+d, a+j) return out class NdPPoly(object): """ Piecewise tensor product polynomial The value at point `xp = (x', y', z', ...)` is evaluated by first computing the interval indices `i` such that:: x[0][i[0]] <= x' < x[0][i[0]+1] x[1][i[1]] <= y' < x[1][i[1]+1] ... and then computing:: S = sum(c[k0-m0-1,...,kn-mn-1,i[0],...,i[n]] * (xp[0] - x[0][i[0]])**m0 * ... * (xp[n] - x[n][i[n]])**mn for m0 in range(k[0]+1) ... for mn in range(k[n]+1)) where ``k[j]`` is the degree of the polynomial in dimension j. This representation is the piecewise multivariate power basis. Parameters ---------- c : ndarray, shape (k0, ..., kn, m0, ..., mn, ...) Polynomial coefficients, with polynomial order `kj` and `mj+1` intervals for each dimension `j`. x : ndim-tuple of ndarrays, shapes (mj+1,) Polynomial breakpoints for each dimension. These must be sorted in increasing order. extrapolate : bool, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. Default: True. Attributes ---------- x : tuple of ndarrays Breakpoints. c : ndarray Coefficients of the polynomials. Methods ------- __call__ construct_fast See also -------- PPoly : piecewise polynomials in 1D Notes ----- High-order polynomials in the power basis can be numerically unstable. """ def __init__(self, c, x, extrapolate=None): self.x = tuple(np.ascontiguousarray(v, dtype=np.float64) for v in x) self.c = np.asarray(c) if extrapolate is None: extrapolate = True self.extrapolate = bool(extrapolate) ndim = len(self.x) if any(v.ndim != 1 for v in self.x): raise ValueError("x arrays must all be 1-dimensional") if any(v.size < 2 for v in self.x): raise ValueError("x arrays must all contain at least 2 points") if c.ndim < 2*ndim: raise ValueError("c must have at least 2*len(x) dimensions") if any(np.any(v[1:] - v[:-1] < 0) for v in self.x): raise ValueError("x-coordinates are not in increasing order") if any(a != b.size - 1 for a, b in zip(c.shape[ndim:2*ndim], self.x)): raise ValueError("x and c do not agree on the number of intervals") dtype = self._get_dtype(self.c.dtype) self.c = np.ascontiguousarray(self.c, dtype=dtype) @classmethod def construct_fast(cls, c, x, extrapolate=None): """ Construct the piecewise polynomial without making checks. Takes the same parameters as the constructor. Input arguments `c` and `x` must be arrays of the correct shape and type. The `c` array can only be of dtypes float and complex, and `x` array must have dtype float. """ self = object.__new__(cls) self.c = c self.x = x if extrapolate is None: extrapolate = True self.extrapolate = extrapolate return self def _get_dtype(self, dtype): if np.issubdtype(dtype, np.complexfloating) \ or np.issubdtype(self.c.dtype, np.complexfloating): return np.complex_ else: return np.float_ def _ensure_c_contiguous(self): if not self.c.flags.c_contiguous: self.c = self.c.copy() if not isinstance(self.x, tuple): self.x = tuple(self.x) def __call__(self, x, nu=None, extrapolate=None): """ Evaluate the piecewise polynomial or its derivative Parameters ---------- x : array-like Points to evaluate the interpolant at. nu : tuple, optional Orders of derivatives to evaluate. Each must be non-negative. extrapolate : bool, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. Returns ------- y : array-like Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of x. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ if extrapolate is None: extrapolate = self.extrapolate else: extrapolate = bool(extrapolate) ndim = len(self.x) x = _ndim_coords_from_arrays(x) x_shape = x.shape x = np.ascontiguousarray(x.reshape(-1, x.shape[-1]), dtype=np.float_) if nu is None: nu = np.zeros((ndim,), dtype=np.intc) else: nu = np.asarray(nu, dtype=np.intc) if nu.ndim != 1 or nu.shape[0] != ndim: raise ValueError("invalid number of derivative orders nu") dim1 = prod(self.c.shape[:ndim]) dim2 = prod(self.c.shape[ndim:2*ndim]) dim3 = prod(self.c.shape[2*ndim:]) ks = np.array(self.c.shape[:ndim], dtype=np.intc) out = np.empty((x.shape[0], dim3), dtype=self.c.dtype) self._ensure_c_contiguous() _ppoly.evaluate_nd(self.c.reshape(dim1, dim2, dim3), self.x, ks, x, nu, bool(extrapolate), out) return out.reshape(x_shape[:-1] + self.c.shape[2*ndim:]) def _derivative_inplace(self, nu, axis): """ Compute 1D derivative along a selected dimension in-place May result to non-contiguous c array. """ if nu < 0: return self._antiderivative_inplace(-nu, axis) ndim = len(self.x) axis = axis % ndim # reduce order if nu == 0: # noop return else: sl = [slice(None)]*ndim sl[axis] = slice(None, -nu, None) c2 = self.c[sl] if c2.shape[axis] == 0: # derivative of order 0 is zero shp = list(c2.shape) shp[axis] = 1 c2 = np.zeros(shp, dtype=c2.dtype) # multiply by the correct rising factorials factor = spec.poch(np.arange(c2.shape[axis], 0, -1), nu) sl = [None]*c2.ndim sl[axis] = slice(None) c2 *= factor[sl] self.c = c2 def _antiderivative_inplace(self, nu, axis): """ Compute 1D antiderivative along a selected dimension May result to non-contiguous c array. """ if nu <= 0: return self._derivative_inplace(-nu, axis) ndim = len(self.x) axis = axis % ndim perm = list(range(ndim)) perm[0], perm[axis] = perm[axis], perm[0] perm = perm + list(range(ndim, self.c.ndim)) c = self.c.transpose(perm) c2 = np.zeros((c.shape[0] + nu,) + c.shape[1:], dtype=c.dtype) c2[:-nu] = c # divide by the correct rising factorials factor = spec.poch(np.arange(c.shape[0], 0, -1), nu) c2[:-nu] /= factor[(slice(None),) + (None,)*(c.ndim-1)] # fix continuity of added degrees of freedom perm2 = list(range(c2.ndim)) perm2[1], perm2[ndim+axis] = perm2[ndim+axis], perm2[1] c2 = c2.transpose(perm2) c2 = c2.copy() _ppoly.fix_continuity(c2.reshape(c2.shape[0], c2.shape[1], -1), self.x[axis], nu-1) c2 = c2.transpose(perm2) c2 = c2.transpose(perm) # Done self.c = c2 def derivative(self, nu): """ Construct a new piecewise polynomial representing the derivative. Parameters ---------- nu : ndim-tuple of int Order of derivatives to evaluate for each dimension. If negative, the antiderivative is returned. Returns ------- pp : NdPPoly Piecewise polynomial of orders (k[0] - nu[0], ..., k[n] - nu[n]) representing the derivative of this polynomial. Notes ----- Derivatives are evaluated piecewise for each polynomial segment, even if the polynomial is not differentiable at the breakpoints. The polynomial intervals in each dimension are considered half-open, ``[a, b)``, except for the last interval which is closed ``[a, b]``. """ p = self.construct_fast(self.c.copy(), self.x, self.extrapolate) for axis, n in enumerate(nu): p._derivative_inplace(n, axis) p._ensure_c_contiguous() return p def antiderivative(self, nu): """ Construct a new piecewise polynomial representing the antiderivative. Antiderivativative is also the indefinite integral of the function, and derivative is its inverse operation. Parameters ---------- nu : ndim-tuple of int Order of derivatives to evaluate for each dimension. If negative, the derivative is returned. Returns ------- pp : PPoly Piecewise polynomial of order k2 = k + n representing the antiderivative of this polynomial. Notes ----- The antiderivative returned by this function is continuous and continuously differentiable to order n-1, up to floating point rounding error. """ p = self.construct_fast(self.c.copy(), self.x, self.extrapolate) for axis, n in enumerate(nu): p._antiderivative_inplace(n, axis) p._ensure_c_contiguous() return p def integrate_1d(self, a, b, axis, extrapolate=None): r""" Compute NdPPoly representation for one dimensional definite integral The result is a piecewise polynomial representing the integral: .. math:: p(y, z, ...) = \int_a^b dx\, p(x, y, z, ...) where the dimension integrated over is specified with the `axis` parameter. Parameters ---------- a, b : float Lower and upper bound for integration. axis : int Dimension over which to compute the 1D integrals extrapolate : bool, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. Returns ------- ig : NdPPoly or array-like Definite integral of the piecewise polynomial over [a, b]. If the polynomial was 1-dimensional, an array is returned, otherwise, an NdPPoly object. """ if extrapolate is None: extrapolate = self.extrapolate else: extrapolate = bool(extrapolate) ndim = len(self.x) axis = int(axis) % ndim # Reuse 1D integration routines c = self.c swap = list(range(c.ndim)) swap.insert(0, swap[axis]) del swap[axis + 1] swap.insert(1, swap[ndim + axis]) del swap[ndim + axis + 1] c = c.transpose(swap) p = PPoly.construct_fast(c.reshape(c.shape[0], c.shape[1], -1), self.x[axis], extrapolate=extrapolate) out = p.integrate(a, b, extrapolate=extrapolate) # Construct result if ndim == 1: return out.reshape(c.shape[2:]) else: c = out.reshape(c.shape[2:]) x = self.x[:axis] + self.x[axis+1:] return self.construct_fast(c, x, extrapolate=extrapolate) def integrate(self, ranges, extrapolate=None): """ Compute a definite integral over a piecewise polynomial. Parameters ---------- ranges : ndim-tuple of 2-tuples float Sequence of lower and upper bounds for each dimension, ``[(a[0], b[0]), ..., (a[ndim-1], b[ndim-1])]`` extrapolate : bool, optional Whether to extrapolate to out-of-bounds points based on first and last intervals, or to return NaNs. Returns ------- ig : array_like Definite integral of the piecewise polynomial over [a[0], b[0]] x ... x [a[ndim-1], b[ndim-1]] """ ndim = len(self.x) if extrapolate is None: extrapolate = self.extrapolate else: extrapolate = bool(extrapolate) if not hasattr(ranges, '__len__') or len(ranges) != ndim: raise ValueError("Range not a sequence of correct length") self._ensure_c_contiguous() # Reuse 1D integration routine c = self.c for n, (a, b) in enumerate(ranges): swap = list(range(c.ndim)) swap.insert(1, swap[ndim - n]) del swap[ndim - n + 1] c = c.transpose(swap) p = PPoly.construct_fast(c, self.x[n], extrapolate=extrapolate) out = p.integrate(a, b, extrapolate=extrapolate) c = out.reshape(c.shape[2:]) return c class RegularGridInterpolator(object): """ Interpolation on a regular grid in arbitrary dimensions The data must be defined on a regular grid; the grid spacing however may be uneven. Linear and nearest-neighbour interpolation are supported. After setting up the interpolator object, the interpolation method (*linear* or *nearest*) may be chosen at each evaluation. Parameters ---------- points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, ) The points defining the regular grid in n dimensions. values : array_like, shape (m1, ..., mn, ...) The data on the regular grid in n dimensions. method : str, optional The method of interpolation to perform. Supported are "linear" and "nearest". This parameter will become the default for the object's ``__call__`` method. Default is "linear". bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Methods ------- __call__ Notes ----- Contrary to LinearNDInterpolator and NearestNDInterpolator, this class avoids expensive triangulation of the input data by taking advantage of the regular grid structure. .. versionadded:: 0.14 Examples -------- Evaluate a simple example function on the points of a 3D grid: >>> from scipy.interpolate import RegularGridInterpolator >>> def f(x,y,z): ... return 2 * x**3 + 3 * y**2 - z >>> x = np.linspace(1, 4, 11) >>> y = np.linspace(4, 7, 22) >>> z = np.linspace(7, 9, 33) >>> data = f(*np.meshgrid(x, y, z, indexing='ij', sparse=True)) ``data`` is now a 3D array with ``data[i,j,k] = f(x[i], y[j], z[k])``. Next, define an interpolating function from this data: >>> my_interpolating_function = RegularGridInterpolator((x, y, z), data) Evaluate the interpolating function at the two points ``(x,y,z) = (2.1, 6.2, 8.3)`` and ``(3.3, 5.2, 7.1)``: >>> pts = np.array([[2.1, 6.2, 8.3], [3.3, 5.2, 7.1]]) >>> my_interpolating_function(pts) array([ 125.80469388, 146.30069388]) which is indeed a close approximation to ``[f(2.1, 6.2, 8.3), f(3.3, 5.2, 7.1)]``. See also -------- NearestNDInterpolator : Nearest neighbour interpolation on unstructured data in N dimensions LinearNDInterpolator : Piecewise linear interpolant on unstructured data in N dimensions References ---------- .. [1] Python package *regulargrid* by Johannes Buchner, see https://pypi.python.org/pypi/regulargrid/ .. [2] Trilinear interpolation. (2013, January 17). In Wikipedia, The Free Encyclopedia. Retrieved 27 Feb 2013 01:28. http://en.wikipedia.org/w/index.php?title=Trilinear_interpolation&oldid=533448871 .. [3] Weiser, Alan, and Sergio E. Zarantonello. "A note on piecewise linear and multilinear table interpolation in many dimensions." MATH. COMPUT. 50.181 (1988): 189-196. http://www.ams.org/journals/mcom/1988-50-181/S0025-5718-1988-0917826-0/S0025-5718-1988-0917826-0.pdf """ # this class is based on code originally programmed by Johannes Buchner, # see https://github.com/JohannesBuchner/regulargrid def __init__(self, points, values, method="linear", bounds_error=True, fill_value=np.nan): if method not in ["linear", "nearest"]: raise ValueError("Method '%s' is not defined" % method) self.method = method self.bounds_error = bounds_error if not hasattr(values, 'ndim'): # allow reasonable duck-typed values values = np.asarray(values) if len(points) > values.ndim: raise ValueError("There are %d point arrays, but values has %d " "dimensions" % (len(points), values.ndim)) if hasattr(values, 'dtype') and hasattr(values, 'astype'): if not np.issubdtype(values.dtype, np.inexact): values = values.astype(float) self.fill_value = fill_value if fill_value is not None: fill_value_dtype = np.asarray(fill_value).dtype if (hasattr(values, 'dtype') and not np.can_cast(fill_value_dtype, values.dtype, casting='same_kind')): raise ValueError("fill_value must be either 'None' or " "of a type compatible with values") for i, p in enumerate(points): if not np.all(np.diff(p) > 0.): raise ValueError("The points in dimension %d must be strictly " "ascending" % i) if not np.asarray(p).ndim == 1: raise ValueError("The points in dimension %d must be " "1-dimensional" % i) if not values.shape[i] == len(p): raise ValueError("There are %d points and %d values in " "dimension %d" % (len(p), values.shape[i], i)) self.grid = tuple([np.asarray(p) for p in points]) self.values = values def __call__(self, xi, method=None): """ Interpolation at coordinates Parameters ---------- xi : ndarray of shape (..., ndim) The coordinates to sample the gridded data at method : str The method of interpolation to perform. Supported are "linear" and "nearest". """ method = self.method if method is None else method if method not in ["linear", "nearest"]: raise ValueError("Method '%s' is not defined" % method) ndim = len(self.grid) xi = _ndim_coords_from_arrays(xi, ndim=ndim) if xi.shape[-1] != len(self.grid): raise ValueError("The requested sample points xi have dimension " "%d, but this RegularGridInterpolator has " "dimension %d" % (xi.shape[1], ndim)) xi_shape = xi.shape xi = xi.reshape(-1, xi_shape[-1]) if self.bounds_error: for i, p in enumerate(xi.T): if not np.logical_and(np.all(self.grid[i][0] <= p), np.all(p <= self.grid[i][-1])): raise ValueError("One of the requested xi is out of bounds " "in dimension %d" % i) indices, norm_distances, out_of_bounds = self._find_indices(xi.T) if method == "linear": result = self._evaluate_linear(indices, norm_distances, out_of_bounds) elif method == "nearest": result = self._evaluate_nearest(indices, norm_distances, out_of_bounds) if not self.bounds_error and self.fill_value is not None: result[out_of_bounds] = self.fill_value return result.reshape(xi_shape[:-1] + self.values.shape[ndim:]) def _evaluate_linear(self, indices, norm_distances, out_of_bounds): # slice for broadcasting over trailing dimensions in self.values vslice = (slice(None),) + (None,)*(self.values.ndim - len(indices)) # find relevant values # each i and i+1 represents a edge edges = itertools.product(*[[i, i + 1] for i in indices]) values = 0. for edge_indices in edges: weight = 1. for ei, i, yi in zip(edge_indices, indices, norm_distances): weight *= np.where(ei == i, 1 - yi, yi) values += np.asarray(self.values[edge_indices]) * weight[vslice] return values def _evaluate_nearest(self, indices, norm_distances, out_of_bounds): idx_res = [] for i, yi in zip(indices, norm_distances): idx_res.append(np.where(yi <= .5, i, i + 1)) return self.values[idx_res] def _find_indices(self, xi): # find relevant edges between which xi are situated indices = [] # compute distance to lower edge in unity units norm_distances = [] # check for out of bounds xi out_of_bounds = np.zeros((xi.shape[1]), dtype=bool) # iterate through dimensions for x, grid in zip(xi, self.grid): i = np.searchsorted(grid, x) - 1 i[i < 0] = 0 i[i > grid.size - 2] = grid.size - 2 indices.append(i) norm_distances.append((x - grid[i]) / (grid[i + 1] - grid[i])) if not self.bounds_error: out_of_bounds += x < grid[0] out_of_bounds += x > grid[-1] return indices, norm_distances, out_of_bounds def interpn(points, values, xi, method="linear", bounds_error=True, fill_value=np.nan): """ Multidimensional interpolation on regular grids. Parameters ---------- points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, ) The points defining the regular grid in n dimensions. values : array_like, shape (m1, ..., mn, ...) The data on the regular grid in n dimensions. xi : ndarray of shape (..., ndim) The coordinates to sample the gridded data at method : str, optional The method of interpolation to perform. Supported are "linear" and "nearest", and "splinef2d". "splinef2d" is only supported for 2-dimensional data. bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then `fill_value` is used. fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Extrapolation is not supported by method "splinef2d". Returns ------- values_x : ndarray, shape xi.shape[:-1] + values.shape[ndim:] Interpolated values at input coordinates. Notes ----- .. versionadded:: 0.14 See also -------- NearestNDInterpolator : Nearest neighbour interpolation on unstructured data in N dimensions LinearNDInterpolator : Piecewise linear interpolant on unstructured data in N dimensions RegularGridInterpolator : Linear and nearest-neighbor Interpolation on a regular grid in arbitrary dimensions RectBivariateSpline : Bivariate spline approximation over a rectangular mesh """ # sanity check 'method' kwarg if method not in ["linear", "nearest", "splinef2d"]: raise ValueError("interpn only understands the methods 'linear', " "'nearest', and 'splinef2d'. You provided %s." % method) if not hasattr(values, 'ndim'): values = np.asarray(values) ndim = values.ndim if ndim > 2 and method == "splinef2d": raise ValueError("The method spline2fd can only be used for " "2-dimensional input data") if not bounds_error and fill_value is None and method == "splinef2d": raise ValueError("The method spline2fd does not support extrapolation.") # sanity check consistency of input dimensions if len(points) > ndim: raise ValueError("There are %d point arrays, but values has %d " "dimensions" % (len(points), ndim)) if len(points) != ndim and method == 'splinef2d': raise ValueError("The method spline2fd can only be used for " "scalar data with one point per coordinate") # sanity check input grid for i, p in enumerate(points): if not np.all(np.diff(p) > 0.): raise ValueError("The points in dimension %d must be strictly " "ascending" % i) if not np.asarray(p).ndim == 1: raise ValueError("The points in dimension %d must be " "1-dimensional" % i) if not values.shape[i] == len(p): raise ValueError("There are %d points and %d values in " "dimension %d" % (len(p), values.shape[i], i)) grid = tuple([np.asarray(p) for p in points]) # sanity check requested xi xi = _ndim_coords_from_arrays(xi, ndim=len(grid)) if xi.shape[-1] != len(grid): raise ValueError("The requested sample points xi have dimension " "%d, but this RegularGridInterpolator has " "dimension %d" % (xi.shape[1], len(grid))) for i, p in enumerate(xi.T): if bounds_error and not np.logical_and(np.all(grid[i][0] <= p), np.all(p <= grid[i][-1])): raise ValueError("One of the requested xi is out of bounds " "in dimension %d" % i) # perform interpolation if method == "linear": interp = RegularGridInterpolator(points, values, method="linear", bounds_error=bounds_error, fill_value=fill_value) return interp(xi) elif method == "nearest": interp = RegularGridInterpolator(points, values, method="nearest", bounds_error=bounds_error, fill_value=fill_value) return interp(xi) elif method == "splinef2d": xi_shape = xi.shape xi = xi.reshape(-1, xi.shape[-1]) # RectBivariateSpline doesn't support fill_value; we need to wrap here idx_valid = np.all((grid[0][0] <= xi[:, 0], xi[:, 0] <= grid[0][-1], grid[1][0] <= xi[:, 1], xi[:, 1] <= grid[1][-1]), axis=0) result = np.empty_like(xi[:, 0]) # make a copy of values for RectBivariateSpline interp = RectBivariateSpline(points[0], points[1], values[:]) result[idx_valid] = interp.ev(xi[idx_valid, 0], xi[idx_valid, 1]) result[np.logical_not(idx_valid)] = fill_value return result.reshape(xi_shape[:-1]) # backward compatibility wrapper class ppform(PPoly): """ Deprecated piecewise polynomial class. New code should use the `PPoly` class instead. """ def __init__(self, coeffs, breaks, fill=0.0, sort=False): warnings.warn("ppform is deprecated -- use PPoly instead", category=DeprecationWarning) if sort: breaks = np.sort(breaks) else: breaks = np.asarray(breaks) PPoly.__init__(self, coeffs, breaks) self.coeffs = self.c self.breaks = self.x self.K = self.coeffs.shape[0] self.fill = fill self.a = self.breaks[0] self.b = self.breaks[-1] def __call__(self, x): return PPoly.__call__(self, x, 0, False) def _evaluate(self, x, nu, extrapolate, out): PPoly._evaluate(self, x, nu, extrapolate, out) out[~((x >= self.a) & (x <= self.b))] = self.fill return out @classmethod def fromspline(cls, xk, cvals, order, fill=0.0): # Note: this spline representation is incompatible with FITPACK N = len(xk)-1 sivals = np.empty((order+1, N), dtype=float) for m in xrange(order, -1, -1): fact = spec.gamma(m+1) res = _fitpack._bspleval(xk[:-1], xk, cvals, order, m) res /= fact sivals[order-m, :] = res return cls(sivals, xk, fill=fill) def _dot0(a, b): """Similar to numpy.dot, but sum over last axis of a and 1st axis of b""" if b.ndim <= 2: return dot(a, b) else: axes = list(range(b.ndim)) axes.insert(-1, 0) axes.pop(0) return dot(a, b.transpose(axes)) def _find_smoothest(xk, yk, order, conds=None, B=None): # construct Bmatrix, and Jmatrix # e = J*c # minimize norm(e,2) given B*c=yk # if desired B can be given # conds is ignored N = len(xk)-1 K = order if B is None: B = _fitpack._bsplmat(order, xk) J = _fitpack._bspldismat(order, xk) u, s, vh = scipy.linalg.svd(B) ind = K-1 V2 = vh[-ind:,:].T V1 = vh[:-ind,:].T A = dot(J.T,J) tmp = dot(V2.T,A) Q = dot(tmp,V2) p = scipy.linalg.solve(Q, tmp) tmp = dot(V2,p) tmp = np.eye(N+K) - tmp tmp = dot(tmp,V1) tmp = dot(tmp,np.diag(1.0/s)) tmp = dot(tmp,u.T) return _dot0(tmp, yk) def _setdiag(a, k, v): if not a.ndim == 2: raise ValueError("Input array should be 2-D.") M,N = a.shape if k > 0: start = k num = N - k else: num = M + k start = abs(k)*N end = start + num*(N+1)-1 a.flat[start:end:(N+1)] = v # Return the spline that minimizes the dis-continuity of the # "order-th" derivative; for order >= 2. def _find_smoothest2(xk, yk): N = len(xk) - 1 Np1 = N + 1 # find pseudo-inverse of B directly. Bd = np.empty((Np1, N)) for k in range(-N,N): if (k < 0): l = np.arange(-k, Np1) v = (l+k+1) if ((k+1) % 2): v = -v else: l = np.arange(k,N) v = N - l if ((k % 2)): v = -v _setdiag(Bd, k, v) Bd /= (Np1) V2 = np.ones((Np1,)) V2[1::2] = -1 V2 /= math.sqrt(Np1) dk = np.diff(xk) b = 2*np.diff(yk, axis=0)/dk J = np.zeros((N-1,N+1)) idk = 1.0/dk _setdiag(J,0,idk[:-1]) _setdiag(J,1,-idk[1:]-idk[:-1]) _setdiag(J,2,idk[1:]) A = dot(J.T,J) val = dot(V2,dot(A,V2)) res1 = dot(np.outer(V2,V2)/val,A) mk = dot(np.eye(Np1)-res1, _dot0(Bd,b)) return mk def _get_spline2_Bb(xk, yk, kind, conds): Np1 = len(xk) dk = xk[1:]-xk[:-1] if kind == 'not-a-knot': # use banded-solver nlu = (1,1) B = ones((3,Np1)) alpha = 2*(yk[1:]-yk[:-1])/dk zrs = np.zeros((1,)+yk.shape[1:]) row = (Np1-1)//2 b = np.concatenate((alpha[:row],zrs,alpha[row:]),axis=0) B[0,row+2:] = 0 B[2,:(row-1)] = 0 B[0,row+1] = dk[row-1] B[1,row] = -dk[row]-dk[row-1] B[2,row-1] = dk[row] return B, b, None, nlu else: raise NotImplementedError("quadratic %s is not available" % kind) def _get_spline3_Bb(xk, yk, kind, conds): # internal function to compute different tri-diagonal system # depending on the kind of spline requested. # conds is only used for 'second' and 'first' Np1 = len(xk) if kind in ['natural', 'second']: if kind == 'natural': m0, mN = 0.0, 0.0 else: m0, mN = conds # the matrix to invert is (N-1,N-1) # use banded solver beta = 2*(xk[2:]-xk[:-2]) alpha = xk[1:]-xk[:-1] nlu = (1,1) B = np.empty((3,Np1-2)) B[0,1:] = alpha[2:] B[1,:] = beta B[2,:-1] = alpha[1:-1] dyk = yk[1:]-yk[:-1] b = (dyk[1:]/alpha[1:] - dyk[:-1]/alpha[:-1]) b *= 6 b[0] -= m0 b[-1] -= mN def append_func(mk): # put m0 and mN into the correct shape for # concatenation ma = array(m0,copy=0,ndmin=yk.ndim) mb = array(mN,copy=0,ndmin=yk.ndim) if ma.shape[1:] != yk.shape[1:]: ma = ma*(ones(yk.shape[1:])[np.newaxis,...]) if mb.shape[1:] != yk.shape[1:]: mb = mb*(ones(yk.shape[1:])[np.newaxis,...]) mk = np.concatenate((ma,mk),axis=0) mk = np.concatenate((mk,mb),axis=0) return mk return B, b, append_func, nlu elif kind in ['clamped', 'endslope', 'first', 'not-a-knot', 'runout', 'parabolic']: if kind == 'endslope': # match slope of lagrange interpolating polynomial of # order 3 at end-points. x0,x1,x2,x3 = xk[:4] sl_0 = (1./(x0-x1)+1./(x0-x2)+1./(x0-x3))*yk[0] sl_0 += (x0-x2)*(x0-x3)/((x1-x0)*(x1-x2)*(x1-x3))*yk[1] sl_0 += (x0-x1)*(x0-x3)/((x2-x0)*(x2-x1)*(x3-x2))*yk[2] sl_0 += (x0-x1)*(x0-x2)/((x3-x0)*(x3-x1)*(x3-x2))*yk[3] xN3,xN2,xN1,xN0 = xk[-4:] sl_N = (1./(xN0-xN1)+1./(xN0-xN2)+1./(xN0-xN3))*yk[-1] sl_N += (xN0-xN2)*(xN0-xN3)/((xN1-xN0)*(xN1-xN2)*(xN1-xN3))*yk[-2] sl_N += (xN0-xN1)*(xN0-xN3)/((xN2-xN0)*(xN2-xN1)*(xN3-xN2))*yk[-3] sl_N += (xN0-xN1)*(xN0-xN2)/((xN3-xN0)*(xN3-xN1)*(xN3-xN2))*yk[-4] elif kind == 'clamped': sl_0, sl_N = 0.0, 0.0 elif kind == 'first': sl_0, sl_N = conds # Now set up the (N+1)x(N+1) system of equations beta = np.r_[0,2*(xk[2:]-xk[:-2]),0] alpha = xk[1:]-xk[:-1] gamma = np.r_[0,alpha[1:]] B = np.diag(alpha,k=-1) + np.diag(beta) + np.diag(gamma,k=1) d1 = alpha[0] dN = alpha[-1] if kind == 'not-a-knot': d2 = alpha[1] dN1 = alpha[-2] B[0,:3] = [d2,-d1-d2,d1] B[-1,-3:] = [dN,-dN1-dN,dN1] elif kind == 'runout': B[0,:3] = [1,-2,1] B[-1,-3:] = [1,-2,1] elif kind == 'parabolic': B[0,:2] = [1,-1] B[-1,-2:] = [-1,1] elif kind == 'periodic': raise NotImplementedError elif kind == 'symmetric': raise NotImplementedError else: B[0,:2] = [2*d1,d1] B[-1,-2:] = [dN,2*dN] # Set up RHS (b) b = np.empty((Np1,)+yk.shape[1:]) dyk = (yk[1:]-yk[:-1])*1.0 if kind in ['not-a-knot', 'runout', 'parabolic']: b[0] = b[-1] = 0.0 elif kind == 'periodic': raise NotImplementedError elif kind == 'symmetric': raise NotImplementedError else: b[0] = (dyk[0]/d1 - sl_0) b[-1] = -(dyk[-1]/dN - sl_N) b[1:-1,...] = (dyk[1:]/alpha[1:]-dyk[:-1]/alpha[:-1]) b *= 6.0 return B, b, None, None else: raise ValueError("%s not supported" % kind) # conds is a tuple of an array and a vector # giving the left-hand and the right-hand side # of the additional equations to add to B def _find_user(xk, yk, order, conds, B): lh = conds[0] rh = conds[1] B = np.concatenate((B, lh), axis=0) w = np.concatenate((yk, rh), axis=0) M, N = B.shape if (M > N): raise ValueError("over-specification of conditions") elif (M < N): return _find_smoothest(xk, yk, order, None, B) else: return scipy.linalg.solve(B, w) # If conds is None, then use the not_a_knot condition # at K-1 farthest separated points in the interval def _find_not_a_knot(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # If conds is None, then ensure zero-valued second # derivative at K-1 farthest separated points def _find_natural(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # If conds is None, then ensure zero-valued first # derivative at K-1 farthest separated points def _find_clamped(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) def _find_fixed(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # If conds is None, then use coefficient periodicity # If conds is 'function' then use function periodicity def _find_periodic(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # Doesn't use conds def _find_symmetric(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) # conds is a dictionary with multiple values def _find_mixed(xk, yk, order, conds, B): raise NotImplementedError return _find_user(xk, yk, order, conds, B) def splmake(xk, yk, order=3, kind='smoothest', conds=None): """ Return a representation of a spline given data-points at internal knots Parameters ---------- xk : array_like The input array of x values of rank 1 yk : array_like The input array of y values of rank N. `yk` can be an N-d array to represent more than one curve, through the same `xk` points. The first dimension is assumed to be the interpolating dimension and is the same length of `xk`. order : int, optional Order of the spline kind : str, optional Can be 'smoothest', 'not_a_knot', 'fixed', 'clamped', 'natural', 'periodic', 'symmetric', 'user', 'mixed' and it is ignored if order < 2 conds : optional Conds Returns ------- splmake : tuple Return a (`xk`, `cvals`, `k`) representation of a spline given data-points where the (internal) knots are at the data-points. """ yk = np.asanyarray(yk) order = int(order) if order < 0: raise ValueError("order must not be negative") if order == 0: return xk, yk[:-1], order elif order == 1: return xk, yk, order try: func = eval('_find_%s' % kind) except: raise NotImplementedError # the constraint matrix B = _fitpack._bsplmat(order, xk) coefs = func(xk, yk, order, conds, B) return xk, coefs, order def spleval(xck, xnew, deriv=0): """ Evaluate a fixed spline represented by the given tuple at the new x-values The `xj` values are the interior knot points. The approximation region is `xj[0]` to `xj[-1]`. If N+1 is the length of `xj`, then `cvals` should have length N+k where `k` is the order of the spline. Parameters ---------- (xj, cvals, k) : tuple Parameters that define the fixed spline xj : array_like Interior knot points cvals : array_like Curvature k : int Order of the spline xnew : array_like Locations to calculate spline deriv : int Deriv Returns ------- spleval : ndarray If `cvals` represents more than one curve (`cvals.ndim` > 1) and/or `xnew` is N-d, then the result is `xnew.shape` + `cvals.shape[1:]` providing the interpolation of multiple curves. Notes ----- Internally, an additional `k`-1 knot points are added on either side of the spline. """ (xj,cvals,k) = xck oldshape = np.shape(xnew) xx = np.ravel(xnew) sh = cvals.shape[1:] res = np.empty(xx.shape + sh, dtype=cvals.dtype) for index in np.ndindex(*sh): sl = (slice(None),)+index if issubclass(cvals.dtype.type, np.complexfloating): res[sl].real = _fitpack._bspleval(xx,xj,cvals.real[sl],k,deriv) res[sl].imag = _fitpack._bspleval(xx,xj,cvals.imag[sl],k,deriv) else: res[sl] = _fitpack._bspleval(xx,xj,cvals[sl],k,deriv) res.shape = oldshape + sh return res def spltopp(xk, cvals, k): """Return a piece-wise polynomial object from a fixed-spline tuple. """ return ppform.fromspline(xk, cvals, k) def spline(xk, yk, xnew, order=3, kind='smoothest', conds=None): """ Interpolate a curve at new points using a spline fit Parameters ---------- xk, yk : array_like The x and y values that define the curve. xnew : array_like The x values where spline should estimate the y values. order : int Default is 3. kind : string One of {'smoothest'} conds : Don't know Don't know Returns ------- spline : ndarray An array of y values; the spline evaluated at the positions `xnew`. """ return spleval(splmake(xk,yk,order=order,kind=kind,conds=conds),xnew)
mit
bokeh/bokeh
examples/reference/models/radio_button_group_server.py
1
1307
## Bokeh server for Radio Button Group import pandas as pd from bokeh.io import curdoc from bokeh.layouts import row from bokeh.models import ColumnDataSource, RadioButtonGroup from bokeh.plotting import figure x=[3,4,6,12,10,1,5,6,3,8] y=[7,1,3,4,1,6,10,4,10,3] label=['Red', 'Orange', 'Red', 'Orange','Red', 'Orange','Red', 'Orange','Red', 'Orange',] df=pd.DataFrame({'x':x,'y':y,'label':label}) source = ColumnDataSource(data=dict(x=df.x, y=df.y,label=df.label)) plot_figure = figure(title='Radio Button Group',height=450, width=600, tools="save,reset", toolbar_location="below") plot_figure.scatter('x', 'y',color='label', source=source, size=10) radio_button_group = RadioButtonGroup(labels=["Red", "Orange"]) def radiogroup_click(attr,old,new): active_radio=radio_button_group.active ##Getting radio button value # filter the dataframe with value in radio-button if active_radio==0: selected_df = df[df['label'] == 'Red'] elif active_radio==1: selected_df = df[df['label'] == "Orange"] source.data=dict(x=selected_df.x, y=selected_df.y,label=selected_df.label) radio_button_group.on_change('active',radiogroup_click) layout=row(radio_button_group, plot_figure) curdoc().add_root(layout) curdoc().title = "Radio Button Group Bokeh Server"
bsd-3-clause
zfrenchee/pandas
pandas/tests/generic/test_label_or_level_utils.py
2
13147
import pytest import pandas as pd import pandas.util.testing as tm from pandas.core.dtypes.missing import array_equivalent # Fixtures # ======== @pytest.fixture def df(): """DataFrame with columns 'L1', 'L2', and 'L3' """ return pd.DataFrame({'L1': [1, 2, 3], 'L2': [11, 12, 13], 'L3': ['A', 'B', 'C']}) @pytest.fixture(params=[[], ['L1'], ['L1', 'L2'], ['L1', 'L2', 'L3']]) def df_levels(request, df): """DataFrame with columns or index levels 'L1', 'L2', and 'L3' """ levels = request.param if levels: df = df.set_index(levels) return df @pytest.fixture def df_ambig(df): """DataFrame with levels 'L1' and 'L2' and labels 'L1' and 'L3' """ df = df.set_index(['L1', 'L2']) df['L1'] = df['L3'] return df @pytest.fixture def df_duplabels(df): """DataFrame with level 'L1' and labels 'L2', 'L3', and 'L2' """ df = df.set_index(['L1']) df = pd.concat([df, df['L2']], axis=1) return df @pytest.fixture def panel(): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): return pd.Panel() # Test is label/level reference # ============================= def get_labels_levels(df_levels): expected_labels = list(df_levels.columns) expected_levels = [name for name in df_levels.index.names if name is not None] return expected_labels, expected_levels def assert_label_reference(frame, labels, axis): for label in labels: assert frame._is_label_reference(label, axis=axis) assert not frame._is_level_reference(label, axis=axis) assert frame._is_label_or_level_reference(label, axis=axis) def assert_level_reference(frame, levels, axis): for level in levels: assert frame._is_level_reference(level, axis=axis) assert not frame._is_label_reference(level, axis=axis) assert frame._is_label_or_level_reference(level, axis=axis) # DataFrame # --------- @pytest.mark.parametrize('axis', [0, 1]) def test_is_level_or_label_reference_df_simple(df_levels, axis): # Compute expected labels and levels expected_labels, expected_levels = get_labels_levels(df_levels) # Transpose frame if axis == 1 if axis == 1: df_levels = df_levels.T # Perform checks assert_level_reference(df_levels, expected_levels, axis=axis) assert_label_reference(df_levels, expected_labels, axis=axis) @pytest.mark.parametrize('axis', [0, 1]) def test_is_level_reference_df_ambig(df_ambig, axis): # Transpose frame if axis == 1 if axis == 1: df_ambig = df_ambig.T # df has both an on-axis level and off-axis label named L1 # Therefore L1 should reference the label, not the level assert_label_reference(df_ambig, ['L1'], axis=axis) # df has an on-axis level named L2 and it is not ambiguous # Therefore L2 is an level reference assert_level_reference(df_ambig, ['L2'], axis=axis) # df has a column named L3 and it not an level reference assert_label_reference(df_ambig, ['L3'], axis=axis) # Series # ------ def test_is_level_reference_series_simple_axis0(df): # Make series with L1 as index s = df.set_index('L1').L2 assert_level_reference(s, ['L1'], axis=0) assert not s._is_level_reference('L2') # Make series with L1 and L2 as index s = df.set_index(['L1', 'L2']).L3 assert_level_reference(s, ['L1', 'L2'], axis=0) assert not s._is_level_reference('L3') def test_is_level_reference_series_axis1_error(df): # Make series with L1 as index s = df.set_index('L1').L2 with tm.assert_raises_regex(ValueError, "No axis named 1"): s._is_level_reference('L1', axis=1) # Panel # ----- def test_is_level_reference_panel_error(panel): msg = ("_is_level_reference is not implemented for {type}" .format(type=type(panel))) with tm.assert_raises_regex(NotImplementedError, msg): panel._is_level_reference('L1', axis=0) def test_is_label_reference_panel_error(panel): msg = ("_is_label_reference is not implemented for {type}" .format(type=type(panel))) with tm.assert_raises_regex(NotImplementedError, msg): panel._is_label_reference('L1', axis=0) def test_is_label_or_level_reference_panel_error(panel): msg = ("_is_label_or_level_reference is not implemented for {type}" .format(type=type(panel))) with tm.assert_raises_regex(NotImplementedError, msg): panel._is_label_or_level_reference('L1', axis=0) # Test _check_label_or_level_ambiguity_df # ======================================= # DataFrame # --------- @pytest.mark.parametrize('axis', [0, 1]) def test_check_label_or_level_ambiguity_df(df_ambig, axis): # Transpose frame if axis == 1 if axis == 1: df_ambig = df_ambig.T # df_ambig has both an on-axis level and off-axis label named L1 # Therefore L1 is ambiguous with tm.assert_produces_warning(FutureWarning, clear=True, check_stacklevel=False) as w: assert df_ambig._check_label_or_level_ambiguity('L1', axis=axis) warning_msg = w[0].message.args[0] if axis == 0: assert warning_msg.startswith("'L1' is both an index level " "and a column label") else: assert warning_msg.startswith("'L1' is both a column level " "and an index label") # df_ambig has an on-axis level named L2 and it is not ambiguous # No warning should be raised with tm.assert_produces_warning(None): assert not df_ambig._check_label_or_level_ambiguity('L2', axis=axis) # df_ambig has an off-axis label named L3 and it is not ambiguous with tm.assert_produces_warning(None): assert not df_ambig._is_level_reference('L3', axis=axis) # Series # ------ def test_check_label_or_level_ambiguity_series(df): # A series has no columns and therefore references are never ambiguous # Make series with L1 as index s = df.set_index('L1').L2 with tm.assert_produces_warning(None): assert not s._check_label_or_level_ambiguity('L1', axis=0) assert not s._check_label_or_level_ambiguity('L2', axis=0) # Make series with L1 and L2 as index s = df.set_index(['L1', 'L2']).L3 with tm.assert_produces_warning(None): assert not s._check_label_or_level_ambiguity('L1', axis=0) assert not s._check_label_or_level_ambiguity('L2', axis=0) assert not s._check_label_or_level_ambiguity('L3', axis=0) def test_check_label_or_level_ambiguity_series_axis1_error(df): # Make series with L1 as index s = df.set_index('L1').L2 with tm.assert_raises_regex(ValueError, "No axis named 1"): s._check_label_or_level_ambiguity('L1', axis=1) # Panel # ----- def test_check_label_or_level_ambiguity_panel_error(panel): msg = ("_check_label_or_level_ambiguity is not implemented for {type}" .format(type=type(panel))) with tm.assert_raises_regex(NotImplementedError, msg): panel._check_label_or_level_ambiguity('L1', axis=0) # Test _get_label_or_level_values # =============================== def assert_label_values(frame, labels, axis): for label in labels: if axis == 0: expected = frame[label]._values else: expected = frame.loc[label]._values result = frame._get_label_or_level_values(label, axis=axis) assert array_equivalent(expected, result) def assert_level_values(frame, levels, axis): for level in levels: if axis == 0: expected = frame.index.get_level_values(level=level)._values else: expected = (frame.columns .get_level_values(level=level) ._values) result = frame._get_label_or_level_values(level, axis=axis) assert array_equivalent(expected, result) # DataFrame # --------- @pytest.mark.parametrize('axis', [0, 1]) def test_get_label_or_level_values_df_simple(df_levels, axis): # Compute expected labels and levels expected_labels, expected_levels = get_labels_levels(df_levels) # Transpose frame if axis == 1 if axis == 1: df_levels = df_levels.T # Perform checks assert_label_values(df_levels, expected_labels, axis=axis) assert_level_values(df_levels, expected_levels, axis=axis) @pytest.mark.parametrize('axis', [0, 1]) def test_get_label_or_level_values_df_ambig(df_ambig, axis): # Transpose frame if axis == 1 if axis == 1: df_ambig = df_ambig.T # df has both an on-axis level and off-axis label named L1 # Therefore L1 is ambiguous but will default to label with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert_label_values(df_ambig, ['L1'], axis=axis) # df has an on-axis level named L2 and it is not ambiguous with tm.assert_produces_warning(None): assert_level_values(df_ambig, ['L2'], axis=axis) # df has an off-axis label named L3 and it is not ambiguous with tm.assert_produces_warning(None): assert_label_values(df_ambig, ['L3'], axis=axis) @pytest.mark.parametrize('axis', [0, 1]) def test_get_label_or_level_values_df_duplabels(df_duplabels, axis): # Transpose frame if axis == 1 if axis == 1: df_duplabels = df_duplabels.T # df has unambiguous level 'L1' assert_level_values(df_duplabels, ['L1'], axis=axis) # df has unique label 'L3' assert_label_values(df_duplabels, ['L3'], axis=axis) # df has duplicate labels 'L2' if axis == 0: expected_msg = "The column label 'L2' is not unique" else: expected_msg = "The index label 'L2' is not unique" with tm.assert_raises_regex(ValueError, expected_msg): assert_label_values(df_duplabels, ['L2'], axis=axis) # Series # ------ def test_get_label_or_level_values_series_axis0(df): # Make series with L1 as index s = df.set_index('L1').L2 assert_level_values(s, ['L1'], axis=0) # Make series with L1 and L2 as index s = df.set_index(['L1', 'L2']).L3 assert_level_values(s, ['L1', 'L2'], axis=0) def test_get_label_or_level_values_series_axis1_error(df): # Make series with L1 as index s = df.set_index('L1').L2 with tm.assert_raises_regex(ValueError, "No axis named 1"): s._get_label_or_level_values('L1', axis=1) # Panel # ----- def test_get_label_or_level_values_panel_error(panel): msg = ("_get_label_or_level_values is not implemented for {type}" .format(type=type(panel))) with tm.assert_raises_regex(NotImplementedError, msg): panel._get_label_or_level_values('L1', axis=0) # Test _drop_labels_or_levels # =========================== def assert_labels_dropped(frame, labels, axis): for label in labels: df_dropped = frame._drop_labels_or_levels(label, axis=axis) if axis == 0: assert label in frame.columns assert label not in df_dropped.columns else: assert label in frame.index assert label not in df_dropped.index def assert_levels_dropped(frame, levels, axis): for level in levels: df_dropped = frame._drop_labels_or_levels(level, axis=axis) if axis == 0: assert level in frame.index.names assert level not in df_dropped.index.names else: assert level in frame.columns.names assert level not in df_dropped.columns.names # DataFrame # --------- @pytest.mark.parametrize('axis', [0, 1]) def test_drop_labels_or_levels_df(df_levels, axis): # Compute expected labels and levels expected_labels, expected_levels = get_labels_levels(df_levels) # Transpose frame if axis == 1 if axis == 1: df_levels = df_levels.T # Perform checks assert_labels_dropped(df_levels, expected_labels, axis=axis) assert_levels_dropped(df_levels, expected_levels, axis=axis) with tm.assert_raises_regex(ValueError, "not valid labels or levels"): df_levels._drop_labels_or_levels('L4', axis=axis) # Series # ------ def test_drop_labels_or_levels_series(df): # Make series with L1 as index s = df.set_index('L1').L2 assert_levels_dropped(s, ['L1'], axis=0) with tm.assert_raises_regex(ValueError, "not valid labels or levels"): s._drop_labels_or_levels('L4', axis=0) # Make series with L1 and L2 as index s = df.set_index(['L1', 'L2']).L3 assert_levels_dropped(s, ['L1', 'L2'], axis=0) with tm.assert_raises_regex(ValueError, "not valid labels or levels"): s._drop_labels_or_levels('L4', axis=0) # Panel # ----- def test_drop_labels_or_levels_panel_error(panel): msg = ("_drop_labels_or_levels is not implemented for {type}" .format(type=type(panel))) with tm.assert_raises_regex(NotImplementedError, msg): panel._drop_labels_or_levels('L1', axis=0)
bsd-3-clause
huggingface/transformers
examples/pytorch/language-modeling/run_mlm.py
1
24032
#!/usr/bin/env python # coding=utf-8 # Copyright 2020 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for masked language modeling (BERT, ALBERT, RoBERTa...) on a text file or a dataset. Here is the full list of checkpoints on the hub that can be fine-tuned by this script: https://huggingface.co/models?filter=masked-lm """ # You can also adapt this script on your own masked language modeling task. Pointers for this are left as comments. import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional import datasets from datasets import load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForLanguageModeling, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.9.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt") logger = logging.getLogger(__name__) MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": "The model checkpoint for weights initialization." "Don't set if you want to train a model from scratch." }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_overrides: Optional[str] = field( default=None, metadata={ "help": "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" }, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script " "with private models)." }, ) def __post_init__(self): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( "--config_overrides can't be used in combination with --config_name or --model_name_or_path" ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) validation_split_percentage: Optional[int] = field( default=5, metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" }, ) max_seq_length: Optional[int] = field( default=None, metadata={ "help": "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated." }, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) mlm_probability: float = field( default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) line_by_line: bool = field( default=False, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) pad_to_max_length: bool = field( default=False, metadata={ "help": "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." }, ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) log_level = training_args.get_process_log_level() logger.setLevel(log_level) datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub # # For CSV/JSON files, this script will use the column called 'text' or the first column. You can easily tweak this # behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir ) if "validation" not in raw_datasets.keys(): raw_datasets["validation"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, ) raw_datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, ) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] if extension == "txt": extension = "text" raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir) # If no validation data is there, validation_split_percentage will be used to divide the dataset. if "validation" not in raw_datasets.keys(): raw_datasets["validation"] = load_dataset( extension, data_files=data_files, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, ) raw_datasets["train"] = load_dataset( extension, data_files=data_files, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config_kwargs = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.config_name: config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs) elif model_args.model_name_or_path: config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}") config.update_from_string(model_args.config_overrides) tokenizer_kwargs = { "cache_dir": model_args.cache_dir, "use_fast": model_args.use_fast_tokenizer, "revision": model_args.model_revision, "use_auth_token": True if model_args.use_auth_token else None, } if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: model = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info("Training new model from scratch") model = AutoModelForMaskedLM.from_config(config) model.resize_token_embeddings(len(tokenizer)) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: column_names = raw_datasets["train"].column_names else: column_names = raw_datasets["validation"].column_names text_column_name = "text" if "text" in column_names else column_names[0] if data_args.max_seq_length is None: max_seq_length = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " "Picking 1024 instead. You can change that default value by passing --max_seq_length xxx." ) max_seq_length = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) if data_args.line_by_line: # When using line_by_line, we just tokenize each nonempty line. padding = "max_length" if data_args.pad_to_max_length else False def tokenize_function(examples): # Remove empty lines examples[text_column_name] = [ line for line in examples[text_column_name] if len(line) > 0 and not line.isspace() ] return tokenizer( examples[text_column_name], padding=padding, truncation=True, max_length=max_seq_length, # We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it # receives the `special_tokens_mask`. return_special_tokens_mask=True, ) with training_args.main_process_first(desc="dataset map tokenization"): tokenized_datasets = raw_datasets.map( tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on dataset line_by_line", ) else: # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts. # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more # efficient when it receives the `special_tokens_mask`. def tokenize_function(examples): return tokenizer(examples[text_column_name], return_special_tokens_mask=True) with training_args.main_process_first(desc="dataset map tokenization"): tokenized_datasets = raw_datasets.map( tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on every text in dataset", ) # Main data processing function that will concatenate all texts from our dataset and generate chunks of # max_seq_length. def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. total_length = (total_length // max_seq_length) * max_seq_length # Split by chunks of max_len. result = { k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)] for k, t in concatenated_examples.items() } return result # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value # might be slower to preprocess. # # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map with training_args.main_process_first(desc="grouping texts together"): tokenized_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, desc=f"Grouping texts in chunks of {max_seq_length}", ) if training_args.do_train: if "train" not in tokenized_datasets: raise ValueError("--do_train requires a train dataset") train_dataset = tokenized_datasets["train"] if data_args.max_train_samples is not None: train_dataset = train_dataset.select(range(data_args.max_train_samples)) if training_args.do_eval: if "validation" not in tokenized_datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = tokenized_datasets["validation"] if data_args.max_eval_samples is not None: eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) # Data collator # This one will take care of randomly masking the tokens. pad_to_multiple_of_8 = data_args.line_by_line and training_args.fp16 and not data_args.pad_to_max_length data_collator = DataCollatorForLanguageModeling( tokenizer=tokenizer, mlm_probability=data_args.mlm_probability, pad_to_multiple_of=8 if pad_to_multiple_of_8 else None, ) # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=tokenizer, data_collator=data_collator, ) # Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() # Saves the tokenizer too for easy upload metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) ) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate() max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) try: perplexity = math.exp(metrics["eval_loss"]) except OverflowError: perplexity = float("inf") metrics["perplexity"] = perplexity trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) if training_args.push_to_hub: kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "fill-mask"} if data_args.dataset_name is not None: kwargs["dataset_tags"] = data_args.dataset_name if data_args.dataset_config_name is not None: kwargs["dataset_args"] = data_args.dataset_config_name kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" else: kwargs["dataset"] = data_args.dataset_name trainer.push_to_hub(**kwargs) def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
apache-2.0
pcuzner/fio-tools
reporting/fio_plot.py
1
4693
__author__ = 'paul' # todo import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np from textwrap import wrap def convert_2_ms(x, p): return "%d" % (x/1000) class FIOPlot(object): def __init__(self, chart_type, data, ceiling=50000, title='', xlabel='', ylabel=''): mpl.rcParams['figure.facecolor'] = 'white' # interactive chart mpl.rcParams['savefig.facecolor'] = 'white' # saved chart colour self.chart_type=chart_type self.dataset = data # dict expected from the caller #self.num_entries = self.__get_max_size() self.num_entries = len(data) # print "number of entries in the dataset is %d " % self.num_entries if 'Aggregated Data' in self.dataset: # aggregated data received, so define the xaxis by the number of entries self.xseries = range(1, (len(self.dataset['Aggregated Data']) + 1), 1) else: self.xseries = range(1, (self.num_entries + 1), 1) if ceiling is not None: self.dataset['Ceiling'] = [ceiling]*len(self.xseries) # print "xseries set to %s" % self.xseries self.title = "\n".join(wrap(title, 60)) self.xlabel = xlabel self.ylabel = ylabel #def __get_max_size(self): # return max((len(obs_list)) for key, obs_list in self.dataset.iteritems()) def generate_plot(self, filename): fig, ax = plt.subplots() # num_cols defines the no. columns in the legend. matplotlib will split the legend # entries across this number of columns as evenly as possible num_cols = (len(self.dataset) // 16) + 1 # determine the max y axis value by looking at the data y_values = [] for key in self.dataset: if key is not "Ceiling": y_values += self.dataset[key] y_maximum = max(y_values)*1.2 plt.ylim(0,y_maximum) fig.set_size_inches(13, 8) if self.num_entries > 20: x_major = np.arange(0,len(self.dataset)+1,5) else: #x_major = np.arange(0,len(self.dataset)+1,1) x_major = self.xseries # replace the first label since our data series starts at 1 i.e. 1 job x_major[0] = 1 x_minor = np.arange(0,len(self.dataset),1) ax.set_xticks(x_major) ax.set_xticks(x_minor,minor=True) ax.get_xaxis().set_tick_params(which='both', direction='out') ax.grid(which='minor', alpha=0.5) # minor grid more faint than major grid plot_color = iter(plt.cm.Set1(np.linspace(0, 1, len(self.xseries) + 1))) for key in sorted(self.dataset): c = next(plot_color) lwidth = 1 plot_marker = None lstyle = 'solid' if key.startswith('Ceiling'): lwidth = 2 lstyle = 'dashed' c = 'r' elif key.startswith('Aggregated'): plot_marker = '.' c='b' ax.plot(self.xseries, self.dataset[key], ls=lstyle, marker=plot_marker, markersize=10, c=c, linewidth=lwidth, label=key) plt.title(self.title) plt.tick_params(axis='x', which='both', bottom='on', top='off', labelbottom='on') plt.tick_params(axis='y', right='off',direction='out',which='both') if self.chart_type == 'latency': # latency data is provided in usec, so we need to convert to ms ax.yaxis.set_major_formatter(mpl.ticker.FuncFormatter(convert_2_ms)) if y_maximum < 10000: ax.yaxis.set_minor_locator(mpl.ticker.MultipleLocator(200)) #y_interval = int(y_maximum/10) - (int(y_maximum/10) % 1000) #y_major = np.arange(0,y_maximum,y_interval) #y_minor = np.arange(0,y_maximum, int(y_interval/5)) #ax.set_yticks(y_major) #ax.set_yticks(y_minor,minor=True) else: pass plt.ylabel(self.ylabel) plt.xlabel(self.xlabel) box = ax.get_position() ax.set_position([box.x0, box.y0, box.width*0.8, box.height]) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), ncol=num_cols, frameon=False) # set the font size in the legend to 10 plt.setp(plt.gca().get_legend().get_texts(), fontsize='10') plt.grid() # show the grid plt.savefig(filename) # save the graph to a file
gpl-3.0
yuyu2172/chainercv
examples/ssd/demo.py
3
1410
import argparse import matplotlib.pyplot as plt import chainer from chainercv.datasets import voc_bbox_label_names from chainercv.links import SSD300 from chainercv.links import SSD512 from chainercv import utils from chainercv.visualizations import vis_bbox def main(): parser = argparse.ArgumentParser() parser.add_argument( '--model', choices=('ssd300', 'ssd512'), default='ssd300') parser.add_argument('--gpu', type=int, default=-1) parser.add_argument('--pretrained-model') parser.add_argument( '--dataset', choices=('voc',), default='voc') parser.add_argument('image') args = parser.parse_args() if args.model == 'ssd300': cls = SSD300 elif args.model == 'ssd512': cls = SSD512 if args.dataset == 'voc': if args.pretrained_model is None: args.pretrained_model = 'voc0712' label_names = voc_bbox_label_names model = cls(n_fg_class=len(label_names), pretrained_model=args.pretrained_model) if args.gpu >= 0: chainer.cuda.get_device_from_id(args.gpu).use() model.to_gpu() img = utils.read_image(args.image, color=True) bboxes, labels, scores = model.predict([img]) bbox, label, score = bboxes[0], labels[0], scores[0] vis_bbox( img, bbox, label, score, label_names=label_names) plt.show() if __name__ == '__main__': main()
mit
fzalkow/scikit-learn
sklearn/metrics/regression.py
175
16953
"""Metrics to assess performance on regression task Functions named as ``*_score`` return a scalar value to maximize: the higher the better Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize: the lower the better """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck <[email protected]> # Joel Nothman <[email protected]> # Noel Dawe <[email protected]> # Manoj Kumar <[email protected]> # Michael Eickenberg <[email protected]> # Konstantin Shmelkov <[email protected]> # License: BSD 3 clause from __future__ import division import numpy as np from ..utils.validation import check_array, check_consistent_length from ..utils.validation import column_or_1d import warnings __ALL__ = [ "mean_absolute_error", "mean_squared_error", "median_absolute_error", "r2_score", "explained_variance_score" ] def _check_reg_targets(y_true, y_pred, multioutput): """Check that y_true and y_pred belong to the same regression task Parameters ---------- y_true : array-like, y_pred : array-like, multioutput : array-like or string in ['raw_values', uniform_average', 'variance_weighted'] or None None is accepted due to backward compatibility of r2_score(). Returns ------- type_true : one of {'continuous', continuous-multioutput'} The type of the true target data, as output by 'utils.multiclass.type_of_target' y_true : array-like of shape = (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples, n_outputs) Estimated target values. multioutput : array-like of shape = (n_outputs) or string in ['raw_values', uniform_average', 'variance_weighted'] or None Custom output weights if ``multioutput`` is array-like or just the corresponding argument if ``multioutput`` is a correct keyword. """ check_consistent_length(y_true, y_pred) y_true = check_array(y_true, ensure_2d=False) y_pred = check_array(y_pred, ensure_2d=False) if y_true.ndim == 1: y_true = y_true.reshape((-1, 1)) if y_pred.ndim == 1: y_pred = y_pred.reshape((-1, 1)) if y_true.shape[1] != y_pred.shape[1]: raise ValueError("y_true and y_pred have different number of output " "({0}!={1})".format(y_true.shape[1], y_pred.shape[1])) n_outputs = y_true.shape[1] multioutput_options = (None, 'raw_values', 'uniform_average', 'variance_weighted') if multioutput not in multioutput_options: multioutput = check_array(multioutput, ensure_2d=False) if n_outputs == 1: raise ValueError("Custom weights are useful only in " "multi-output cases.") elif n_outputs != len(multioutput): raise ValueError(("There must be equally many custom weights " "(%d) as outputs (%d).") % (len(multioutput), n_outputs)) y_type = 'continuous' if n_outputs == 1 else 'continuous-multioutput' return y_type, y_true, y_pred, multioutput def mean_absolute_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean absolute error regression loss Read more in the :ref:`User Guide <mean_absolute_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats If multioutput is 'raw_values', then mean absolute error is returned for each output separately. If multioutput is 'uniform_average' or an ndarray of weights, then the weighted average of all output errors is returned. MAE output is non-negative floating point. The best value is 0.0. Examples -------- >>> from sklearn.metrics import mean_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_absolute_error(y_true, y_pred) 0.5 >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> mean_absolute_error(y_true, y_pred) 0.75 >>> mean_absolute_error(y_true, y_pred, multioutput='raw_values') array([ 0.5, 1. ]) >>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.849... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) output_errors = np.average(np.abs(y_pred - y_true), weights=sample_weight, axis=0) if multioutput == 'raw_values': return output_errors elif multioutput == 'uniform_average': # pass None as weights to np.average: uniform mean multioutput = None return np.average(output_errors, weights=multioutput) def mean_squared_error(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Mean squared error regression loss Read more in the :ref:`User Guide <mean_squared_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average'] or array-like of shape (n_outputs) Defines aggregating of multiple output values. Array-like value defines weights used to average errors. 'raw_values' : Returns a full set of errors in case of multioutput input. 'uniform_average' : Errors of all outputs are averaged with uniform weight. Returns ------- loss : float or ndarray of floats A non-negative floating point value (the best value is 0.0), or an array of floating point values, one for each individual target. Examples -------- >>> from sklearn.metrics import mean_squared_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> mean_squared_error(y_true, y_pred) 0.375 >>> y_true = [[0.5, 1],[-1, 1],[7, -6]] >>> y_pred = [[0, 2],[-1, 2],[8, -5]] >>> mean_squared_error(y_true, y_pred) # doctest: +ELLIPSIS 0.708... >>> mean_squared_error(y_true, y_pred, multioutput='raw_values') ... # doctest: +ELLIPSIS array([ 0.416..., 1. ]) >>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7]) ... # doctest: +ELLIPSIS 0.824... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) output_errors = np.average((y_true - y_pred) ** 2, axis=0, weights=sample_weight) if multioutput == 'raw_values': return output_errors elif multioutput == 'uniform_average': # pass None as weights to np.average: uniform mean multioutput = None return np.average(output_errors, weights=multioutput) def median_absolute_error(y_true, y_pred): """Median absolute error regression loss Read more in the :ref:`User Guide <median_absolute_error>`. Parameters ---------- y_true : array-like of shape = (n_samples) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) Estimated target values. Returns ------- loss : float A positive floating point value (the best value is 0.0). Examples -------- >>> from sklearn.metrics import median_absolute_error >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> median_absolute_error(y_true, y_pred) 0.5 """ y_type, y_true, y_pred, _ = _check_reg_targets(y_true, y_pred, 'uniform_average') if y_type == 'continuous-multioutput': raise ValueError("Multioutput not supported in median_absolute_error") return np.median(np.abs(y_pred - y_true)) def explained_variance_score(y_true, y_pred, sample_weight=None, multioutput='uniform_average'): """Explained variance regression score function Best possible score is 1.0, lower values are worse. Read more in the :ref:`User Guide <explained_variance_score>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average', \ 'variance_weighted'] or array-like of shape (n_outputs) Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. 'raw_values' : Returns a full set of scores in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. 'variance_weighted' : Scores of all outputs are averaged, weighted by the variances of each individual output. Returns ------- score : float or ndarray of floats The explained variance or ndarray if 'multioutput' is 'raw_values'. Notes ----- This is not a symmetric function. Examples -------- >>> from sklearn.metrics import explained_variance_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> explained_variance_score(y_true, y_pred) # doctest: +ELLIPSIS 0.957... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> explained_variance_score(y_true, y_pred, multioutput='uniform_average') ... # doctest: +ELLIPSIS 0.983... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) y_diff_avg = np.average(y_true - y_pred, weights=sample_weight, axis=0) numerator = np.average((y_true - y_pred - y_diff_avg) ** 2, weights=sample_weight, axis=0) y_true_avg = np.average(y_true, weights=sample_weight, axis=0) denominator = np.average((y_true - y_true_avg) ** 2, weights=sample_weight, axis=0) nonzero_numerator = numerator != 0 nonzero_denominator = denominator != 0 valid_score = nonzero_numerator & nonzero_denominator output_scores = np.ones(y_true.shape[1]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) output_scores[nonzero_numerator & ~nonzero_denominator] = 0. if multioutput == 'raw_values': # return scores individually return output_scores elif multioutput == 'uniform_average': # passing to np.average() None as weights results is uniform mean avg_weights = None elif multioutput == 'variance_weighted': avg_weights = denominator else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights) def r2_score(y_true, y_pred, sample_weight=None, multioutput=None): """R^2 (coefficient of determination) regression score function. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0. Read more in the :ref:`User Guide <r2_score>`. Parameters ---------- y_true : array-like of shape = (n_samples) or (n_samples, n_outputs) Ground truth (correct) target values. y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs) Estimated target values. sample_weight : array-like of shape = (n_samples), optional Sample weights. multioutput : string in ['raw_values', 'uniform_average', 'variance_weighted'] or None or array-like of shape (n_outputs) Defines aggregating of multiple output scores. Array-like value defines weights used to average scores. Default value correponds to 'variance_weighted', but will be changed to 'uniform_average' in next versions. 'raw_values' : Returns a full set of scores in case of multioutput input. 'uniform_average' : Scores of all outputs are averaged with uniform weight. 'variance_weighted' : Scores of all outputs are averaged, weighted by the variances of each individual output. Returns ------- z : float or ndarray of floats The R^2 score or ndarray of scores if 'multioutput' is 'raw_values'. Notes ----- This is not a symmetric function. Unlike most other scores, R^2 score may be negative (it need not actually be the square of a quantity R). References ---------- .. [1] `Wikipedia entry on the Coefficient of determination <http://en.wikipedia.org/wiki/Coefficient_of_determination>`_ Examples -------- >>> from sklearn.metrics import r2_score >>> y_true = [3, -0.5, 2, 7] >>> y_pred = [2.5, 0.0, 2, 8] >>> r2_score(y_true, y_pred) # doctest: +ELLIPSIS 0.948... >>> y_true = [[0.5, 1], [-1, 1], [7, -6]] >>> y_pred = [[0, 2], [-1, 2], [8, -5]] >>> r2_score(y_true, y_pred, multioutput='variance_weighted') # doctest: +ELLIPSIS 0.938... """ y_type, y_true, y_pred, multioutput = _check_reg_targets( y_true, y_pred, multioutput) if sample_weight is not None: sample_weight = column_or_1d(sample_weight) weight = sample_weight[:, np.newaxis] else: weight = 1. numerator = (weight * (y_true - y_pred) ** 2).sum(axis=0, dtype=np.float64) denominator = (weight * (y_true - np.average( y_true, axis=0, weights=sample_weight)) ** 2).sum(axis=0, dtype=np.float64) nonzero_denominator = denominator != 0 nonzero_numerator = numerator != 0 valid_score = nonzero_denominator & nonzero_numerator output_scores = np.ones([y_true.shape[1]]) output_scores[valid_score] = 1 - (numerator[valid_score] / denominator[valid_score]) # arbitrary set to zero to avoid -inf scores, having a constant # y_true is not interesting for scoring a regression anyway output_scores[nonzero_numerator & ~nonzero_denominator] = 0. if multioutput is None and y_true.shape[1] != 1: # @FIXME change in 0.18 warnings.warn("Default 'multioutput' behavior now corresponds to " "'variance_weighted' value, it will be changed " "to 'uniform_average' in 0.18.", DeprecationWarning) multioutput = 'variance_weighted' if multioutput == 'raw_values': # return scores individually return output_scores elif multioutput == 'uniform_average': # passing None as weights results is uniform mean avg_weights = None elif multioutput == 'variance_weighted': avg_weights = denominator # avoid fail on constant y or one-element arrays if not np.any(nonzero_denominator): if not np.any(nonzero_numerator): return 1.0 else: return 0.0 else: avg_weights = multioutput return np.average(output_scores, weights=avg_weights)
bsd-3-clause
almarklein/scikit-image
doc/examples/plot_rank_mean.py
3
1498
""" ============ Mean filters ============ This example compares the following mean filters of the rank filter package: * **local mean**: all pixels belonging to the structuring element to compute average gray level. * **percentile mean**: only use values between percentiles p0 and p1 (here 10% and 90%). * **bilateral mean**: only use pixels of the structuring element having a gray level situated inside g-s0 and g+s1 (here g-500 and g+500) Percentile and usual mean give here similar results, these filters smooth the complete image (background and details). Bilateral mean exhibits a high filtering rate for continuous area (i.e. background) while higher image frequencies remain untouched. """ import numpy as np import matplotlib.pyplot as plt from skimage import data from skimage.morphology import disk from skimage.filter import rank image = (data.coins()).astype(np.uint16) * 16 selem = disk(20) percentile_result = rank.mean_percentile(image, selem=selem, p0=.1, p1=.9) bilateral_result = rank.mean_bilateral(image, selem=selem, s0=500, s1=500) normal_result = rank.mean(image, selem=selem) fig, axes = plt.subplots(nrows=3, figsize=(8, 10)) ax0, ax1, ax2 = axes ax0.imshow(np.hstack((image, percentile_result))) ax0.set_title('Percentile mean') ax0.axis('off') ax1.imshow(np.hstack((image, bilateral_result))) ax1.set_title('Bilateral mean') ax1.axis('off') ax2.imshow(np.hstack((image, normal_result))) ax2.set_title('Local mean') ax2.axis('off') plt.show()
bsd-3-clause
evanlong/etching
ImageScripts/Edges.py
1
1043
#!/usr/bin/env python import matplotlib.pyplot as plt from skimage.data import camera from skimage.filter import roberts, sobel, canny from skimage import data from skimage import transform as tf from skimage.feature import CENSURE from skimage.color import rgb2gray import matplotlib.pyplot as plt from scipy import misc import sys from skimage.exposure import rescale_intensity image = rescale_intensity(misc.imread(sys.argv[1], True)) edge_roberts = roberts(image) edge_sobel = sobel(image) edge_canny_2 = canny(image, sigma=2) edge_canny_3 = canny(image, sigma=3) fig, (ax0, ax1, ax2, ax3) = plt.subplots(ncols=4) ax0.imshow(edge_roberts, cmap=plt.cm.gray) ax0.set_title('Roberts Edge Detection') ax0.axis('off') ax1.imshow(edge_sobel, cmap=plt.cm.gray) ax1.set_title('Sobel Edge Detection') ax1.axis('off') ax2.imshow(edge_canny_2, cmap=plt.cm.gray) ax2.set_title('Canny Edge Detection sigma=2') ax2.axis('off') ax3.imshow(edge_canny_3, cmap=plt.cm.gray) ax3.set_title('Canny Edge Detection sigma=3') ax3.axis('off') plt.show()
mit
MSeifert04/numpy
numpy/linalg/linalg.py
3
86155
"""Lite version of scipy.linalg. Notes ----- This module is a lite version of the linalg.py module in SciPy which contains high-level Python interface to the LAPACK library. The lite version only accesses the following LAPACK functions: dgesv, zgesv, dgeev, zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf, zgetrf, dpotrf, zpotrf, dgeqrf, zgeqrf, zungqr, dorgqr. """ from __future__ import division, absolute_import, print_function __all__ = ['matrix_power', 'solve', 'tensorsolve', 'tensorinv', 'inv', 'cholesky', 'eigvals', 'eigvalsh', 'pinv', 'slogdet', 'det', 'svd', 'eig', 'eigh', 'lstsq', 'norm', 'qr', 'cond', 'matrix_rank', 'LinAlgError', 'multi_dot'] import functools import operator import warnings from numpy.core import ( array, asarray, zeros, empty, empty_like, intc, single, double, csingle, cdouble, inexact, complexfloating, newaxis, all, Inf, dot, add, multiply, sqrt, fastCopyAndTranspose, sum, isfinite, finfo, errstate, geterrobj, moveaxis, amin, amax, product, abs, atleast_2d, intp, asanyarray, object_, matmul, swapaxes, divide, count_nonzero, isnan, sign ) from numpy.core.multiarray import normalize_axis_index from numpy.core.overrides import set_module from numpy.core import overrides from numpy.lib.twodim_base import triu, eye from numpy.linalg import lapack_lite, _umath_linalg array_function_dispatch = functools.partial( overrides.array_function_dispatch, module='numpy.linalg') # For Python2/3 compatibility _N = b'N' _V = b'V' _A = b'A' _S = b'S' _L = b'L' fortran_int = intc @set_module('numpy.linalg') class LinAlgError(Exception): """ Generic Python-exception-derived object raised by linalg functions. General purpose exception class, derived from Python's exception.Exception class, programmatically raised in linalg functions when a Linear Algebra-related condition would prevent further correct execution of the function. Parameters ---------- None Examples -------- >>> from numpy import linalg as LA >>> LA.inv(np.zeros((2,2))) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "...linalg.py", line 350, in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype))) File "...linalg.py", line 249, in solve raise LinAlgError('Singular matrix') numpy.linalg.LinAlgError: Singular matrix """ def _determine_error_states(): errobj = geterrobj() bufsize = errobj[0] with errstate(invalid='call', over='ignore', divide='ignore', under='ignore'): invalid_call_errmask = geterrobj()[1] return [bufsize, invalid_call_errmask, None] # Dealing with errors in _umath_linalg _linalg_error_extobj = _determine_error_states() del _determine_error_states def _raise_linalgerror_singular(err, flag): raise LinAlgError("Singular matrix") def _raise_linalgerror_nonposdef(err, flag): raise LinAlgError("Matrix is not positive definite") def _raise_linalgerror_eigenvalues_nonconvergence(err, flag): raise LinAlgError("Eigenvalues did not converge") def _raise_linalgerror_svd_nonconvergence(err, flag): raise LinAlgError("SVD did not converge") def _raise_linalgerror_lstsq(err, flag): raise LinAlgError("SVD did not converge in Linear Least Squares") def get_linalg_error_extobj(callback): extobj = list(_linalg_error_extobj) # make a copy extobj[2] = callback return extobj def _makearray(a): new = asarray(a) wrap = getattr(a, "__array_prepare__", new.__array_wrap__) return new, wrap def isComplexType(t): return issubclass(t, complexfloating) _real_types_map = {single : single, double : double, csingle : single, cdouble : double} _complex_types_map = {single : csingle, double : cdouble, csingle : csingle, cdouble : cdouble} def _realType(t, default=double): return _real_types_map.get(t, default) def _complexType(t, default=cdouble): return _complex_types_map.get(t, default) def _linalgRealType(t): """Cast the type t to either double or cdouble.""" return double def _commonType(*arrays): # in lite version, use higher precision (always double or cdouble) result_type = single is_complex = False for a in arrays: if issubclass(a.dtype.type, inexact): if isComplexType(a.dtype.type): is_complex = True rt = _realType(a.dtype.type, default=None) if rt is None: # unsupported inexact scalar raise TypeError("array type %s is unsupported in linalg" % (a.dtype.name,)) else: rt = double if rt is double: result_type = double if is_complex: t = cdouble result_type = _complex_types_map[result_type] else: t = double return t, result_type # _fastCopyAndTranpose assumes the input is 2D (as all the calls in here are). _fastCT = fastCopyAndTranspose def _to_native_byte_order(*arrays): ret = [] for arr in arrays: if arr.dtype.byteorder not in ('=', '|'): ret.append(asarray(arr, dtype=arr.dtype.newbyteorder('='))) else: ret.append(arr) if len(ret) == 1: return ret[0] else: return ret def _fastCopyAndTranspose(type, *arrays): cast_arrays = () for a in arrays: if a.dtype.type is type: cast_arrays = cast_arrays + (_fastCT(a),) else: cast_arrays = cast_arrays + (_fastCT(a.astype(type)),) if len(cast_arrays) == 1: return cast_arrays[0] else: return cast_arrays def _assertRank2(*arrays): for a in arrays: if a.ndim != 2: raise LinAlgError('%d-dimensional array given. Array must be ' 'two-dimensional' % a.ndim) def _assertRankAtLeast2(*arrays): for a in arrays: if a.ndim < 2: raise LinAlgError('%d-dimensional array given. Array must be ' 'at least two-dimensional' % a.ndim) def _assertNdSquareness(*arrays): for a in arrays: m, n = a.shape[-2:] if m != n: raise LinAlgError('Last 2 dimensions of the array must be square') def _assertFinite(*arrays): for a in arrays: if not (isfinite(a).all()): raise LinAlgError("Array must not contain infs or NaNs") def _isEmpty2d(arr): # check size first for efficiency return arr.size == 0 and product(arr.shape[-2:]) == 0 def _assertNoEmpty2d(*arrays): for a in arrays: if _isEmpty2d(a): raise LinAlgError("Arrays cannot be empty") def transpose(a): """ Transpose each matrix in a stack of matrices. Unlike np.transpose, this only swaps the last two axes, rather than all of them Parameters ---------- a : (...,M,N) array_like Returns ------- aT : (...,N,M) ndarray """ return swapaxes(a, -1, -2) # Linear equations def _tensorsolve_dispatcher(a, b, axes=None): return (a, b) @array_function_dispatch(_tensorsolve_dispatcher) def tensorsolve(a, b, axes=None): """ Solve the tensor equation ``a x = b`` for x. It is assumed that all indices of `x` are summed over in the product, together with the rightmost indices of `a`, as is done in, for example, ``tensordot(a, x, axes=b.ndim)``. Parameters ---------- a : array_like Coefficient tensor, of shape ``b.shape + Q``. `Q`, a tuple, equals the shape of that sub-tensor of `a` consisting of the appropriate number of its rightmost indices, and must be such that ``prod(Q) == prod(b.shape)`` (in which sense `a` is said to be 'square'). b : array_like Right-hand tensor, which can be of any shape. axes : tuple of ints, optional Axes in `a` to reorder to the right, before inversion. If None (default), no reordering is done. Returns ------- x : ndarray, shape Q Raises ------ LinAlgError If `a` is singular or not 'square' (in the above sense). See Also -------- numpy.tensordot, tensorinv, numpy.einsum Examples -------- >>> a = np.eye(2*3*4) >>> a.shape = (2*3, 4, 2, 3, 4) >>> b = np.random.randn(2*3, 4) >>> x = np.linalg.tensorsolve(a, b) >>> x.shape (2, 3, 4) >>> np.allclose(np.tensordot(a, x, axes=3), b) True """ a, wrap = _makearray(a) b = asarray(b) an = a.ndim if axes is not None: allaxes = list(range(0, an)) for k in axes: allaxes.remove(k) allaxes.insert(an, k) a = a.transpose(allaxes) oldshape = a.shape[-(an-b.ndim):] prod = 1 for k in oldshape: prod *= k a = a.reshape(-1, prod) b = b.ravel() res = wrap(solve(a, b)) res.shape = oldshape return res def _solve_dispatcher(a, b): return (a, b) @array_function_dispatch(_solve_dispatcher) def solve(a, b): """ Solve a linear matrix equation, or system of linear scalar equations. Computes the "exact" solution, `x`, of the well-determined, i.e., full rank, linear matrix equation `ax = b`. Parameters ---------- a : (..., M, M) array_like Coefficient matrix. b : {(..., M,), (..., M, K)}, array_like Ordinate or "dependent variable" values. Returns ------- x : {(..., M,), (..., M, K)} ndarray Solution to the system a x = b. Returned shape is identical to `b`. Raises ------ LinAlgError If `a` is singular or not square. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The solutions are computed using LAPACK routine ``_gesv``. `a` must be square and of full-rank, i.e., all rows (or, equivalently, columns) must be linearly independent; if either is not true, use `lstsq` for the least-squares best "solution" of the system/equation. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 22. Examples -------- Solve the system of equations ``3 * x0 + x1 = 9`` and ``x0 + 2 * x1 = 8``: >>> a = np.array([[3,1], [1,2]]) >>> b = np.array([9,8]) >>> x = np.linalg.solve(a, b) >>> x array([2., 3.]) Check that the solution is correct: >>> np.allclose(np.dot(a, x), b) True """ a, _ = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) b, wrap = _makearray(b) t, result_t = _commonType(a, b) # We use the b = (..., M,) logic, only if the number of extra dimensions # match exactly if b.ndim == a.ndim - 1: gufunc = _umath_linalg.solve1 else: gufunc = _umath_linalg.solve signature = 'DD->D' if isComplexType(t) else 'dd->d' extobj = get_linalg_error_extobj(_raise_linalgerror_singular) r = gufunc(a, b, signature=signature, extobj=extobj) return wrap(r.astype(result_t, copy=False)) def _tensorinv_dispatcher(a, ind=None): return (a,) @array_function_dispatch(_tensorinv_dispatcher) def tensorinv(a, ind=2): """ Compute the 'inverse' of an N-dimensional array. The result is an inverse for `a` relative to the tensordot operation ``tensordot(a, b, ind)``, i. e., up to floating-point accuracy, ``tensordot(tensorinv(a), a, ind)`` is the "identity" tensor for the tensordot operation. Parameters ---------- a : array_like Tensor to 'invert'. Its shape must be 'square', i. e., ``prod(a.shape[:ind]) == prod(a.shape[ind:])``. ind : int, optional Number of first indices that are involved in the inverse sum. Must be a positive integer, default is 2. Returns ------- b : ndarray `a`'s tensordot inverse, shape ``a.shape[ind:] + a.shape[:ind]``. Raises ------ LinAlgError If `a` is singular or not 'square' (in the above sense). See Also -------- numpy.tensordot, tensorsolve Examples -------- >>> a = np.eye(4*6) >>> a.shape = (4, 6, 8, 3) >>> ainv = np.linalg.tensorinv(a, ind=2) >>> ainv.shape (8, 3, 4, 6) >>> b = np.random.randn(4, 6) >>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b)) True >>> a = np.eye(4*6) >>> a.shape = (24, 8, 3) >>> ainv = np.linalg.tensorinv(a, ind=1) >>> ainv.shape (8, 3, 24) >>> b = np.random.randn(24) >>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b)) True """ a = asarray(a) oldshape = a.shape prod = 1 if ind > 0: invshape = oldshape[ind:] + oldshape[:ind] for k in oldshape[ind:]: prod *= k else: raise ValueError("Invalid ind argument.") a = a.reshape(prod, -1) ia = inv(a) return ia.reshape(*invshape) # Matrix inversion def _unary_dispatcher(a): return (a,) @array_function_dispatch(_unary_dispatcher) def inv(a): """ Compute the (multiplicative) inverse of a matrix. Given a square matrix `a`, return the matrix `ainv` satisfying ``dot(a, ainv) = dot(ainv, a) = eye(a.shape[0])``. Parameters ---------- a : (..., M, M) array_like Matrix to be inverted. Returns ------- ainv : (..., M, M) ndarray or matrix (Multiplicative) inverse of the matrix `a`. Raises ------ LinAlgError If `a` is not square or inversion fails. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. Examples -------- >>> from numpy.linalg import inv >>> a = np.array([[1., 2.], [3., 4.]]) >>> ainv = inv(a) >>> np.allclose(np.dot(a, ainv), np.eye(2)) True >>> np.allclose(np.dot(ainv, a), np.eye(2)) True If a is a matrix object, then the return value is a matrix as well: >>> ainv = inv(np.matrix(a)) >>> ainv matrix([[-2. , 1. ], [ 1.5, -0.5]]) Inverses of several matrices can be computed at once: >>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]]) >>> inv(a) array([[[-2. , 1. ], [ 1.5 , -0.5 ]], [[-1.25, 0.75], [ 0.75, -0.25]]]) """ a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) signature = 'D->D' if isComplexType(t) else 'd->d' extobj = get_linalg_error_extobj(_raise_linalgerror_singular) ainv = _umath_linalg.inv(a, signature=signature, extobj=extobj) return wrap(ainv.astype(result_t, copy=False)) def _matrix_power_dispatcher(a, n): return (a,) @array_function_dispatch(_matrix_power_dispatcher) def matrix_power(a, n): """ Raise a square matrix to the (integer) power `n`. For positive integers `n`, the power is computed by repeated matrix squarings and matrix multiplications. If ``n == 0``, the identity matrix of the same shape as M is returned. If ``n < 0``, the inverse is computed and then raised to the ``abs(n)``. .. note:: Stacks of object matrices are not currently supported. Parameters ---------- a : (..., M, M) array_like Matrix to be "powered". n : int The exponent can be any integer or long integer, positive, negative, or zero. Returns ------- a**n : (..., M, M) ndarray or matrix object The return value is the same shape and type as `M`; if the exponent is positive or zero then the type of the elements is the same as those of `M`. If the exponent is negative the elements are floating-point. Raises ------ LinAlgError For matrices that are not square or that (for negative powers) cannot be inverted numerically. Examples -------- >>> from numpy.linalg import matrix_power >>> i = np.array([[0, 1], [-1, 0]]) # matrix equiv. of the imaginary unit >>> matrix_power(i, 3) # should = -i array([[ 0, -1], [ 1, 0]]) >>> matrix_power(i, 0) array([[1, 0], [0, 1]]) >>> matrix_power(i, -3) # should = 1/(-i) = i, but w/ f.p. elements array([[ 0., 1.], [-1., 0.]]) Somewhat more sophisticated example >>> q = np.zeros((4, 4)) >>> q[0:2, 0:2] = -i >>> q[2:4, 2:4] = i >>> q # one of the three quaternion units not equal to 1 array([[ 0., -1., 0., 0.], [ 1., 0., 0., 0.], [ 0., 0., 0., 1.], [ 0., 0., -1., 0.]]) >>> matrix_power(q, 2) # = -np.eye(4) array([[-1., 0., 0., 0.], [ 0., -1., 0., 0.], [ 0., 0., -1., 0.], [ 0., 0., 0., -1.]]) """ a = asanyarray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) try: n = operator.index(n) except TypeError: raise TypeError("exponent must be an integer") # Fall back on dot for object arrays. Object arrays are not supported by # the current implementation of matmul using einsum if a.dtype != object: fmatmul = matmul elif a.ndim == 2: fmatmul = dot else: raise NotImplementedError( "matrix_power not supported for stacks of object arrays") if n == 0: a = empty_like(a) a[...] = eye(a.shape[-2], dtype=a.dtype) return a elif n < 0: a = inv(a) n = abs(n) # short-cuts. if n == 1: return a elif n == 2: return fmatmul(a, a) elif n == 3: return fmatmul(fmatmul(a, a), a) # Use binary decomposition to reduce the number of matrix multiplications. # Here, we iterate over the bits of n, from LSB to MSB, raise `a` to # increasing powers of 2, and multiply into the result as needed. z = result = None while n > 0: z = a if z is None else fmatmul(z, z) n, bit = divmod(n, 2) if bit: result = z if result is None else fmatmul(result, z) return result # Cholesky decomposition @array_function_dispatch(_unary_dispatcher) def cholesky(a): """ Cholesky decomposition. Return the Cholesky decomposition, `L * L.H`, of the square matrix `a`, where `L` is lower-triangular and .H is the conjugate transpose operator (which is the ordinary transpose if `a` is real-valued). `a` must be Hermitian (symmetric if real-valued) and positive-definite. Only `L` is actually returned. Parameters ---------- a : (..., M, M) array_like Hermitian (symmetric if all elements are real), positive-definite input matrix. Returns ------- L : (..., M, M) array_like Upper or lower-triangular Cholesky factor of `a`. Returns a matrix object if `a` is a matrix object. Raises ------ LinAlgError If the decomposition fails, for example, if `a` is not positive-definite. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The Cholesky decomposition is often used as a fast way of solving .. math:: A \\mathbf{x} = \\mathbf{b} (when `A` is both Hermitian/symmetric and positive-definite). First, we solve for :math:`\\mathbf{y}` in .. math:: L \\mathbf{y} = \\mathbf{b}, and then for :math:`\\mathbf{x}` in .. math:: L.H \\mathbf{x} = \\mathbf{y}. Examples -------- >>> A = np.array([[1,-2j],[2j,5]]) >>> A array([[ 1.+0.j, -0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> L = np.linalg.cholesky(A) >>> L array([[1.+0.j, 0.+0.j], [0.+2.j, 1.+0.j]]) >>> np.dot(L, L.T.conj()) # verify that L * L.H = A array([[1.+0.j, 0.-2.j], [0.+2.j, 5.+0.j]]) >>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like? >>> np.linalg.cholesky(A) # an ndarray object is returned array([[1.+0.j, 0.+0.j], [0.+2.j, 1.+0.j]]) >>> # But a matrix object is returned if A is a matrix object >>> np.linalg.cholesky(np.matrix(A)) matrix([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) """ extobj = get_linalg_error_extobj(_raise_linalgerror_nonposdef) gufunc = _umath_linalg.cholesky_lo a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) signature = 'D->D' if isComplexType(t) else 'd->d' r = gufunc(a, signature=signature, extobj=extobj) return wrap(r.astype(result_t, copy=False)) # QR decompostion def _qr_dispatcher(a, mode=None): return (a,) @array_function_dispatch(_qr_dispatcher) def qr(a, mode='reduced'): """ Compute the qr factorization of a matrix. Factor the matrix `a` as *qr*, where `q` is orthonormal and `r` is upper-triangular. Parameters ---------- a : array_like, shape (M, N) Matrix to be factored. mode : {'reduced', 'complete', 'r', 'raw'}, optional If K = min(M, N), then * 'reduced' : returns q, r with dimensions (M, K), (K, N) (default) * 'complete' : returns q, r with dimensions (M, M), (M, N) * 'r' : returns r only with dimensions (K, N) * 'raw' : returns h, tau with dimensions (N, M), (K,) The options 'reduced', 'complete, and 'raw' are new in numpy 1.8, see the notes for more information. The default is 'reduced', and to maintain backward compatibility with earlier versions of numpy both it and the old default 'full' can be omitted. Note that array h returned in 'raw' mode is transposed for calling Fortran. The 'economic' mode is deprecated. The modes 'full' and 'economic' may be passed using only the first letter for backwards compatibility, but all others must be spelled out. See the Notes for more explanation. Returns ------- q : ndarray of float or complex, optional A matrix with orthonormal columns. When mode = 'complete' the result is an orthogonal/unitary matrix depending on whether or not a is real/complex. The determinant may be either +/- 1 in that case. r : ndarray of float or complex, optional The upper-triangular matrix. (h, tau) : ndarrays of np.double or np.cdouble, optional The array h contains the Householder reflectors that generate q along with r. The tau array contains scaling factors for the reflectors. In the deprecated 'economic' mode only h is returned. Raises ------ LinAlgError If factoring fails. Notes ----- This is an interface to the LAPACK routines ``dgeqrf``, ``zgeqrf``, ``dorgqr``, and ``zungqr``. For more information on the qr factorization, see for example: https://en.wikipedia.org/wiki/QR_factorization Subclasses of `ndarray` are preserved except for the 'raw' mode. So if `a` is of type `matrix`, all the return values will be matrices too. New 'reduced', 'complete', and 'raw' options for mode were added in NumPy 1.8.0 and the old option 'full' was made an alias of 'reduced'. In addition the options 'full' and 'economic' were deprecated. Because 'full' was the previous default and 'reduced' is the new default, backward compatibility can be maintained by letting `mode` default. The 'raw' option was added so that LAPACK routines that can multiply arrays by q using the Householder reflectors can be used. Note that in this case the returned arrays are of type np.double or np.cdouble and the h array is transposed to be FORTRAN compatible. No routines using the 'raw' return are currently exposed by numpy, but some are available in lapack_lite and just await the necessary work. Examples -------- >>> a = np.random.randn(9, 6) >>> q, r = np.linalg.qr(a) >>> np.allclose(a, np.dot(q, r)) # a does equal qr True >>> r2 = np.linalg.qr(a, mode='r') >>> np.allclose(r, r2) # mode='r' returns the same r as mode='full' True Example illustrating a common use of `qr`: solving of least squares problems What are the least-squares-best `m` and `y0` in ``y = y0 + mx`` for the following data: {(0,1), (1,0), (1,2), (2,1)}. (Graph the points and you'll see that it should be y0 = 0, m = 1.) The answer is provided by solving the over-determined matrix equation ``Ax = b``, where:: A = array([[0, 1], [1, 1], [1, 1], [2, 1]]) x = array([[y0], [m]]) b = array([[1], [0], [2], [1]]) If A = qr such that q is orthonormal (which is always possible via Gram-Schmidt), then ``x = inv(r) * (q.T) * b``. (In numpy practice, however, we simply use `lstsq`.) >>> A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]]) >>> A array([[0, 1], [1, 1], [1, 1], [2, 1]]) >>> b = np.array([1, 0, 2, 1]) >>> q, r = np.linalg.qr(A) >>> p = np.dot(q.T, b) >>> np.dot(np.linalg.inv(r), p) array([ 1.1e-16, 1.0e+00]) """ if mode not in ('reduced', 'complete', 'r', 'raw'): if mode in ('f', 'full'): # 2013-04-01, 1.8 msg = "".join(( "The 'full' option is deprecated in favor of 'reduced'.\n", "For backward compatibility let mode default.")) warnings.warn(msg, DeprecationWarning, stacklevel=3) mode = 'reduced' elif mode in ('e', 'economic'): # 2013-04-01, 1.8 msg = "The 'economic' option is deprecated." warnings.warn(msg, DeprecationWarning, stacklevel=3) mode = 'economic' else: raise ValueError("Unrecognized mode '%s'" % mode) a, wrap = _makearray(a) _assertRank2(a) m, n = a.shape t, result_t = _commonType(a) a = _fastCopyAndTranspose(t, a) a = _to_native_byte_order(a) mn = min(m, n) tau = zeros((mn,), t) if isComplexType(t): lapack_routine = lapack_lite.zgeqrf routine_name = 'zgeqrf' else: lapack_routine = lapack_lite.dgeqrf routine_name = 'dgeqrf' # calculate optimal size of work data 'work' lwork = 1 work = zeros((lwork,), t) results = lapack_routine(m, n, a, max(1, m), tau, work, -1, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) # do qr decomposition lwork = max(1, n, int(abs(work[0]))) work = zeros((lwork,), t) results = lapack_routine(m, n, a, max(1, m), tau, work, lwork, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) # handle modes that don't return q if mode == 'r': r = _fastCopyAndTranspose(result_t, a[:, :mn]) return wrap(triu(r)) if mode == 'raw': return a, tau if mode == 'economic': if t != result_t : a = a.astype(result_t, copy=False) return wrap(a.T) # generate q from a if mode == 'complete' and m > n: mc = m q = empty((m, m), t) else: mc = mn q = empty((n, m), t) q[:n] = a if isComplexType(t): lapack_routine = lapack_lite.zungqr routine_name = 'zungqr' else: lapack_routine = lapack_lite.dorgqr routine_name = 'dorgqr' # determine optimal lwork lwork = 1 work = zeros((lwork,), t) results = lapack_routine(m, mc, mn, q, max(1, m), tau, work, -1, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) # compute q lwork = max(1, n, int(abs(work[0]))) work = zeros((lwork,), t) results = lapack_routine(m, mc, mn, q, max(1, m), tau, work, lwork, 0) if results['info'] != 0: raise LinAlgError('%s returns %d' % (routine_name, results['info'])) q = _fastCopyAndTranspose(result_t, q[:mc]) r = _fastCopyAndTranspose(result_t, a[:, :mc]) return wrap(q), wrap(triu(r)) # Eigenvalues @array_function_dispatch(_unary_dispatcher) def eigvals(a): """ Compute the eigenvalues of a general matrix. Main difference between `eigvals` and `eig`: the eigenvectors aren't returned. Parameters ---------- a : (..., M, M) array_like A complex- or real-valued matrix whose eigenvalues will be computed. Returns ------- w : (..., M,) ndarray The eigenvalues, each repeated according to its multiplicity. They are not necessarily ordered, nor are they necessarily real for real matrices. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eig : eigenvalues and right eigenvectors of general arrays eigvalsh : eigenvalues of real symmetric or complex Hermitian (conjugate symmetric) arrays. eigh : eigenvalues and eigenvectors of real symmetric or complex Hermitian (conjugate symmetric) arrays. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. This is implemented using the ``_geev`` LAPACK routines which compute the eigenvalues and eigenvectors of general square arrays. Examples -------- Illustration, using the fact that the eigenvalues of a diagonal matrix are its diagonal elements, that multiplying a matrix on the left by an orthogonal matrix, `Q`, and on the right by `Q.T` (the transpose of `Q`), preserves the eigenvalues of the "middle" matrix. In other words, if `Q` is orthogonal, then ``Q * A * Q.T`` has the same eigenvalues as ``A``: >>> from numpy import linalg as LA >>> x = np.random.random() >>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]]) >>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :]) (1.0, 1.0, 0.0) Now multiply a diagonal matrix by ``Q`` on one side and by ``Q.T`` on the other: >>> D = np.diag((-1,1)) >>> LA.eigvals(D) array([-1., 1.]) >>> A = np.dot(Q, D) >>> A = np.dot(A, Q.T) >>> LA.eigvals(A) array([ 1., -1.]) # random """ a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) _assertFinite(a) t, result_t = _commonType(a) extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) signature = 'D->D' if isComplexType(t) else 'd->D' w = _umath_linalg.eigvals(a, signature=signature, extobj=extobj) if not isComplexType(t): if all(w.imag == 0): w = w.real result_t = _realType(result_t) else: result_t = _complexType(result_t) return w.astype(result_t, copy=False) def _eigvalsh_dispatcher(a, UPLO=None): return (a,) @array_function_dispatch(_eigvalsh_dispatcher) def eigvalsh(a, UPLO='L'): """ Compute the eigenvalues of a complex Hermitian or real symmetric matrix. Main difference from eigh: the eigenvectors are not computed. Parameters ---------- a : (..., M, M) array_like A complex- or real-valued matrix whose eigenvalues are to be computed. UPLO : {'L', 'U'}, optional Specifies whether the calculation is done with the lower triangular part of `a` ('L', default) or the upper triangular part ('U'). Irrespective of this value only the real parts of the diagonal will be considered in the computation to preserve the notion of a Hermitian matrix. It therefore follows that the imaginary part of the diagonal will always be treated as zero. Returns ------- w : (..., M,) ndarray The eigenvalues in ascending order, each repeated according to its multiplicity. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigh : eigenvalues and eigenvectors of real symmetric or complex Hermitian (conjugate symmetric) arrays. eigvals : eigenvalues of general real or complex arrays. eig : eigenvalues and right eigenvectors of general real or complex arrays. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The eigenvalues are computed using LAPACK routines ``_syevd``, ``_heevd``. Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, -2j], [2j, 5]]) >>> LA.eigvalsh(a) array([ 0.17157288, 5.82842712]) # may vary >>> # demonstrate the treatment of the imaginary part of the diagonal >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]]) >>> a array([[5.+2.j, 9.-2.j], [0.+2.j, 2.-1.j]]) >>> # with UPLO='L' this is numerically equivalent to using LA.eigvals() >>> # with: >>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]]) >>> b array([[5.+0.j, 0.-2.j], [0.+2.j, 2.+0.j]]) >>> wa = LA.eigvalsh(a) >>> wb = LA.eigvals(b) >>> wa; wb array([1., 6.]) array([6.+0.j, 1.+0.j]) """ UPLO = UPLO.upper() if UPLO not in ('L', 'U'): raise ValueError("UPLO argument must be 'L' or 'U'") extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) if UPLO == 'L': gufunc = _umath_linalg.eigvalsh_lo else: gufunc = _umath_linalg.eigvalsh_up a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) signature = 'D->d' if isComplexType(t) else 'd->d' w = gufunc(a, signature=signature, extobj=extobj) return w.astype(_realType(result_t), copy=False) def _convertarray(a): t, result_t = _commonType(a) a = _fastCT(a.astype(t)) return a, t, result_t # Eigenvectors @array_function_dispatch(_unary_dispatcher) def eig(a): """ Compute the eigenvalues and right eigenvectors of a square array. Parameters ---------- a : (..., M, M) array Matrices for which the eigenvalues and right eigenvectors will be computed Returns ------- w : (..., M) array The eigenvalues, each repeated according to its multiplicity. The eigenvalues are not necessarily ordered. The resulting array will be of complex type, unless the imaginary part is zero in which case it will be cast to a real type. When `a` is real the resulting eigenvalues will be real (0 imaginary part) or occur in conjugate pairs v : (..., M, M) array The normalized (unit "length") eigenvectors, such that the column ``v[:,i]`` is the eigenvector corresponding to the eigenvalue ``w[i]``. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigvals : eigenvalues of a non-symmetric array. eigh : eigenvalues and eigenvectors of a real symmetric or complex Hermitian (conjugate symmetric) array. eigvalsh : eigenvalues of a real symmetric or complex Hermitian (conjugate symmetric) array. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. This is implemented using the ``_geev`` LAPACK routines which compute the eigenvalues and eigenvectors of general square arrays. The number `w` is an eigenvalue of `a` if there exists a vector `v` such that ``dot(a,v) = w * v``. Thus, the arrays `a`, `w`, and `v` satisfy the equations ``dot(a[:,:], v[:,i]) = w[i] * v[:,i]`` for :math:`i \\in \\{0,...,M-1\\}`. The array `v` of eigenvectors may not be of maximum rank, that is, some of the columns may be linearly dependent, although round-off error may obscure that fact. If the eigenvalues are all different, then theoretically the eigenvectors are linearly independent. Likewise, the (complex-valued) matrix of eigenvectors `v` is unitary if the matrix `a` is normal, i.e., if ``dot(a, a.H) = dot(a.H, a)``, where `a.H` denotes the conjugate transpose of `a`. Finally, it is emphasized that `v` consists of the *right* (as in right-hand side) eigenvectors of `a`. A vector `y` satisfying ``dot(y.T, a) = z * y.T`` for some number `z` is called a *left* eigenvector of `a`, and, in general, the left and right eigenvectors of a matrix are not necessarily the (perhaps conjugate) transposes of each other. References ---------- G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, Various pp. Examples -------- >>> from numpy import linalg as LA (Almost) trivial example with real e-values and e-vectors. >>> w, v = LA.eig(np.diag((1, 2, 3))) >>> w; v array([1., 2., 3.]) array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) Real matrix possessing complex e-values and e-vectors; note that the e-values are complex conjugates of each other. >>> w, v = LA.eig(np.array([[1, -1], [1, 1]])) >>> w; v array([1.+1.j, 1.-1.j]) array([[0.70710678+0.j , 0.70710678-0.j ], [0. -0.70710678j, 0. +0.70710678j]]) Complex-valued matrix with real e-values (but complex-valued e-vectors); note that ``a.conj().T == a``, i.e., `a` is Hermitian. >>> a = np.array([[1, 1j], [-1j, 1]]) >>> w, v = LA.eig(a) >>> w; v array([2.+0.j, 0.+0.j]) array([[ 0. +0.70710678j, 0.70710678+0.j ], # may vary [ 0.70710678+0.j , -0. +0.70710678j]]) Be careful about round-off error! >>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]]) >>> # Theor. e-values are 1 +/- 1e-9 >>> w, v = LA.eig(a) >>> w; v array([1., 1.]) array([[1., 0.], [0., 1.]]) """ a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) _assertFinite(a) t, result_t = _commonType(a) extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) signature = 'D->DD' if isComplexType(t) else 'd->DD' w, vt = _umath_linalg.eig(a, signature=signature, extobj=extobj) if not isComplexType(t) and all(w.imag == 0.0): w = w.real vt = vt.real result_t = _realType(result_t) else: result_t = _complexType(result_t) vt = vt.astype(result_t, copy=False) return w.astype(result_t, copy=False), wrap(vt) @array_function_dispatch(_eigvalsh_dispatcher) def eigh(a, UPLO='L'): """ Return the eigenvalues and eigenvectors of a complex Hermitian (conjugate symmetric) or a real symmetric matrix. Returns two objects, a 1-D array containing the eigenvalues of `a`, and a 2-D square array or matrix (depending on the input type) of the corresponding eigenvectors (in columns). Parameters ---------- a : (..., M, M) array Hermitian or real symmetric matrices whose eigenvalues and eigenvectors are to be computed. UPLO : {'L', 'U'}, optional Specifies whether the calculation is done with the lower triangular part of `a` ('L', default) or the upper triangular part ('U'). Irrespective of this value only the real parts of the diagonal will be considered in the computation to preserve the notion of a Hermitian matrix. It therefore follows that the imaginary part of the diagonal will always be treated as zero. Returns ------- w : (..., M) ndarray The eigenvalues in ascending order, each repeated according to its multiplicity. v : {(..., M, M) ndarray, (..., M, M) matrix} The column ``v[:, i]`` is the normalized eigenvector corresponding to the eigenvalue ``w[i]``. Will return a matrix object if `a` is a matrix object. Raises ------ LinAlgError If the eigenvalue computation does not converge. See Also -------- eigvalsh : eigenvalues of real symmetric or complex Hermitian (conjugate symmetric) arrays. eig : eigenvalues and right eigenvectors for non-symmetric arrays. eigvals : eigenvalues of non-symmetric arrays. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The eigenvalues/eigenvectors are computed using LAPACK routines ``_syevd``, ``_heevd``. The eigenvalues of real symmetric or complex Hermitian matrices are always real. [1]_ The array `v` of (column) eigenvectors is unitary and `a`, `w`, and `v` satisfy the equations ``dot(a, v[:, i]) = w[i] * v[:, i]``. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pg. 222. Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, -2j], [2j, 5]]) >>> a array([[ 1.+0.j, -0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> w, v = LA.eigh(a) >>> w; v array([0.17157288, 5.82842712]) array([[-0.92387953+0.j , -0.38268343+0.j ], # may vary [ 0. +0.38268343j, 0. -0.92387953j]]) >>> np.dot(a, v[:, 0]) - w[0] * v[:, 0] # verify 1st e-val/vec pair array([5.55111512e-17+0.0000000e+00j, 0.00000000e+00+1.2490009e-16j]) >>> np.dot(a, v[:, 1]) - w[1] * v[:, 1] # verify 2nd e-val/vec pair array([0.+0.j, 0.+0.j]) >>> A = np.matrix(a) # what happens if input is a matrix object >>> A matrix([[ 1.+0.j, -0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> w, v = LA.eigh(A) >>> w; v array([0.17157288, 5.82842712]) matrix([[-0.92387953+0.j , -0.38268343+0.j ], # may vary [ 0. +0.38268343j, 0. -0.92387953j]]) >>> # demonstrate the treatment of the imaginary part of the diagonal >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]]) >>> a array([[5.+2.j, 9.-2.j], [0.+2.j, 2.-1.j]]) >>> # with UPLO='L' this is numerically equivalent to using LA.eig() with: >>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]]) >>> b array([[5.+0.j, 0.-2.j], [0.+2.j, 2.+0.j]]) >>> wa, va = LA.eigh(a) >>> wb, vb = LA.eig(b) >>> wa; wb array([1., 6.]) array([6.+0.j, 1.+0.j]) >>> va; vb array([[-0.4472136 +0.j , -0.89442719+0.j ], # may vary [ 0. +0.89442719j, 0. -0.4472136j ]]) array([[ 0.89442719+0.j , -0. +0.4472136j], [-0. +0.4472136j, 0.89442719+0.j ]]) """ UPLO = UPLO.upper() if UPLO not in ('L', 'U'): raise ValueError("UPLO argument must be 'L' or 'U'") a, wrap = _makearray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) extobj = get_linalg_error_extobj( _raise_linalgerror_eigenvalues_nonconvergence) if UPLO == 'L': gufunc = _umath_linalg.eigh_lo else: gufunc = _umath_linalg.eigh_up signature = 'D->dD' if isComplexType(t) else 'd->dd' w, vt = gufunc(a, signature=signature, extobj=extobj) w = w.astype(_realType(result_t), copy=False) vt = vt.astype(result_t, copy=False) return w, wrap(vt) # Singular value decomposition def _svd_dispatcher(a, full_matrices=None, compute_uv=None, hermitian=None): return (a,) @array_function_dispatch(_svd_dispatcher) def svd(a, full_matrices=True, compute_uv=True, hermitian=False): """ Singular Value Decomposition. When `a` is a 2D array, it is factorized as ``u @ np.diag(s) @ vh = (u * s) @ vh``, where `u` and `vh` are 2D unitary arrays and `s` is a 1D array of `a`'s singular values. When `a` is higher-dimensional, SVD is applied in stacked mode as explained below. Parameters ---------- a : (..., M, N) array_like A real or complex array with ``a.ndim >= 2``. full_matrices : bool, optional If True (default), `u` and `vh` have the shapes ``(..., M, M)`` and ``(..., N, N)``, respectively. Otherwise, the shapes are ``(..., M, K)`` and ``(..., K, N)``, respectively, where ``K = min(M, N)``. compute_uv : bool, optional Whether or not to compute `u` and `vh` in addition to `s`. True by default. hermitian : bool, optional If True, `a` is assumed to be Hermitian (symmetric if real-valued), enabling a more efficient method for finding singular values. Defaults to False. .. versionadded:: 1.17.0 Returns ------- u : { (..., M, M), (..., M, K) } array Unitary array(s). The first ``a.ndim - 2`` dimensions have the same size as those of the input `a`. The size of the last two dimensions depends on the value of `full_matrices`. Only returned when `compute_uv` is True. s : (..., K) array Vector(s) with the singular values, within each vector sorted in descending order. The first ``a.ndim - 2`` dimensions have the same size as those of the input `a`. vh : { (..., N, N), (..., K, N) } array Unitary array(s). The first ``a.ndim - 2`` dimensions have the same size as those of the input `a`. The size of the last two dimensions depends on the value of `full_matrices`. Only returned when `compute_uv` is True. Raises ------ LinAlgError If SVD computation does not converge. Notes ----- .. versionchanged:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The decomposition is performed using LAPACK routine ``_gesdd``. SVD is usually described for the factorization of a 2D matrix :math:`A`. The higher-dimensional case will be discussed below. In the 2D case, SVD is written as :math:`A = U S V^H`, where :math:`A = a`, :math:`U= u`, :math:`S= \\mathtt{np.diag}(s)` and :math:`V^H = vh`. The 1D array `s` contains the singular values of `a` and `u` and `vh` are unitary. The rows of `vh` are the eigenvectors of :math:`A^H A` and the columns of `u` are the eigenvectors of :math:`A A^H`. In both cases the corresponding (possibly non-zero) eigenvalues are given by ``s**2``. If `a` has more than two dimensions, then broadcasting rules apply, as explained in :ref:`routines.linalg-broadcasting`. This means that SVD is working in "stacked" mode: it iterates over all indices of the first ``a.ndim - 2`` dimensions and for each combination SVD is applied to the last two indices. The matrix `a` can be reconstructed from the decomposition with either ``(u * s[..., None, :]) @ vh`` or ``u @ (s[..., None] * vh)``. (The ``@`` operator can be replaced by the function ``np.matmul`` for python versions below 3.5.) If `a` is a ``matrix`` object (as opposed to an ``ndarray``), then so are all the return values. Examples -------- >>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6) >>> b = np.random.randn(2, 7, 8, 3) + 1j*np.random.randn(2, 7, 8, 3) Reconstruction based on full SVD, 2D case: >>> u, s, vh = np.linalg.svd(a, full_matrices=True) >>> u.shape, s.shape, vh.shape ((9, 9), (6,), (6, 6)) >>> np.allclose(a, np.dot(u[:, :6] * s, vh)) True >>> smat = np.zeros((9, 6), dtype=complex) >>> smat[:6, :6] = np.diag(s) >>> np.allclose(a, np.dot(u, np.dot(smat, vh))) True Reconstruction based on reduced SVD, 2D case: >>> u, s, vh = np.linalg.svd(a, full_matrices=False) >>> u.shape, s.shape, vh.shape ((9, 6), (6,), (6, 6)) >>> np.allclose(a, np.dot(u * s, vh)) True >>> smat = np.diag(s) >>> np.allclose(a, np.dot(u, np.dot(smat, vh))) True Reconstruction based on full SVD, 4D case: >>> u, s, vh = np.linalg.svd(b, full_matrices=True) >>> u.shape, s.shape, vh.shape ((2, 7, 8, 8), (2, 7, 3), (2, 7, 3, 3)) >>> np.allclose(b, np.matmul(u[..., :3] * s[..., None, :], vh)) True >>> np.allclose(b, np.matmul(u[..., :3], s[..., None] * vh)) True Reconstruction based on reduced SVD, 4D case: >>> u, s, vh = np.linalg.svd(b, full_matrices=False) >>> u.shape, s.shape, vh.shape ((2, 7, 8, 3), (2, 7, 3), (2, 7, 3, 3)) >>> np.allclose(b, np.matmul(u * s[..., None, :], vh)) True >>> np.allclose(b, np.matmul(u, s[..., None] * vh)) True """ a, wrap = _makearray(a) if hermitian: # note: lapack returns eigenvalues in reverse order to our contract. # reversing is cheap by design in numpy, so we do so to be consistent if compute_uv: s, u = eigh(a) s = s[..., ::-1] u = u[..., ::-1] # singular values are unsigned, move the sign into v vt = transpose(u * sign(s)[..., None, :]).conjugate() s = abs(s) return wrap(u), s, wrap(vt) else: s = eigvalsh(a) s = s[..., ::-1] s = abs(s) return s _assertRankAtLeast2(a) t, result_t = _commonType(a) extobj = get_linalg_error_extobj(_raise_linalgerror_svd_nonconvergence) m, n = a.shape[-2:] if compute_uv: if full_matrices: if m < n: gufunc = _umath_linalg.svd_m_f else: gufunc = _umath_linalg.svd_n_f else: if m < n: gufunc = _umath_linalg.svd_m_s else: gufunc = _umath_linalg.svd_n_s signature = 'D->DdD' if isComplexType(t) else 'd->ddd' u, s, vh = gufunc(a, signature=signature, extobj=extobj) u = u.astype(result_t, copy=False) s = s.astype(_realType(result_t), copy=False) vh = vh.astype(result_t, copy=False) return wrap(u), s, wrap(vh) else: if m < n: gufunc = _umath_linalg.svd_m else: gufunc = _umath_linalg.svd_n signature = 'D->d' if isComplexType(t) else 'd->d' s = gufunc(a, signature=signature, extobj=extobj) s = s.astype(_realType(result_t), copy=False) return s def _cond_dispatcher(x, p=None): return (x,) @array_function_dispatch(_cond_dispatcher) def cond(x, p=None): """ Compute the condition number of a matrix. This function is capable of returning the condition number using one of seven different norms, depending on the value of `p` (see Parameters below). Parameters ---------- x : (..., M, N) array_like The matrix whose condition number is sought. p : {None, 1, -1, 2, -2, inf, -inf, 'fro'}, optional Order of the norm: ===== ============================ p norm for matrices ===== ============================ None 2-norm, computed directly using the ``SVD`` 'fro' Frobenius norm inf max(sum(abs(x), axis=1)) -inf min(sum(abs(x), axis=1)) 1 max(sum(abs(x), axis=0)) -1 min(sum(abs(x), axis=0)) 2 2-norm (largest sing. value) -2 smallest singular value ===== ============================ inf means the numpy.inf object, and the Frobenius norm is the root-of-sum-of-squares norm. Returns ------- c : {float, inf} The condition number of the matrix. May be infinite. See Also -------- numpy.linalg.norm Notes ----- The condition number of `x` is defined as the norm of `x` times the norm of the inverse of `x` [1]_; the norm can be the usual L2-norm (root-of-sum-of-squares) or one of a number of other matrix norms. References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, Orlando, FL, Academic Press, Inc., 1980, pg. 285. Examples -------- >>> from numpy import linalg as LA >>> a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]]) >>> a array([[ 1, 0, -1], [ 0, 1, 0], [ 1, 0, 1]]) >>> LA.cond(a) 1.4142135623730951 >>> LA.cond(a, 'fro') 3.1622776601683795 >>> LA.cond(a, np.inf) 2.0 >>> LA.cond(a, -np.inf) 1.0 >>> LA.cond(a, 1) 2.0 >>> LA.cond(a, -1) 1.0 >>> LA.cond(a, 2) 1.4142135623730951 >>> LA.cond(a, -2) 0.70710678118654746 # may vary >>> min(LA.svd(a, compute_uv=False))*min(LA.svd(LA.inv(a), compute_uv=False)) 0.70710678118654746 # may vary """ x = asarray(x) # in case we have a matrix _assertNoEmpty2d(x) if p is None or p == 2 or p == -2: s = svd(x, compute_uv=False) with errstate(all='ignore'): if p == -2: r = s[..., -1] / s[..., 0] else: r = s[..., 0] / s[..., -1] else: # Call inv(x) ignoring errors. The result array will # contain nans in the entries where inversion failed. _assertRankAtLeast2(x) _assertNdSquareness(x) t, result_t = _commonType(x) signature = 'D->D' if isComplexType(t) else 'd->d' with errstate(all='ignore'): invx = _umath_linalg.inv(x, signature=signature) r = norm(x, p, axis=(-2, -1)) * norm(invx, p, axis=(-2, -1)) r = r.astype(result_t, copy=False) # Convert nans to infs unless the original array had nan entries r = asarray(r) nan_mask = isnan(r) if nan_mask.any(): nan_mask &= ~isnan(x).any(axis=(-2, -1)) if r.ndim > 0: r[nan_mask] = Inf elif nan_mask: r[()] = Inf # Convention is to return scalars instead of 0d arrays if r.ndim == 0: r = r[()] return r def _matrix_rank_dispatcher(M, tol=None, hermitian=None): return (M,) @array_function_dispatch(_matrix_rank_dispatcher) def matrix_rank(M, tol=None, hermitian=False): """ Return matrix rank of array using SVD method Rank of the array is the number of singular values of the array that are greater than `tol`. .. versionchanged:: 1.14 Can now operate on stacks of matrices Parameters ---------- M : {(M,), (..., M, N)} array_like Input vector or stack of matrices. tol : (...) array_like, float, optional Threshold below which SVD values are considered zero. If `tol` is None, and ``S`` is an array with singular values for `M`, and ``eps`` is the epsilon value for datatype of ``S``, then `tol` is set to ``S.max() * max(M.shape) * eps``. .. versionchanged:: 1.14 Broadcasted against the stack of matrices hermitian : bool, optional If True, `M` is assumed to be Hermitian (symmetric if real-valued), enabling a more efficient method for finding singular values. Defaults to False. .. versionadded:: 1.14 Returns ------- rank : (...) array_like Rank of M. Notes ----- The default threshold to detect rank deficiency is a test on the magnitude of the singular values of `M`. By default, we identify singular values less than ``S.max() * max(M.shape) * eps`` as indicating rank deficiency (with the symbols defined above). This is the algorithm MATLAB uses [1]. It also appears in *Numerical recipes* in the discussion of SVD solutions for linear least squares [2]. This default threshold is designed to detect rank deficiency accounting for the numerical errors of the SVD computation. Imagine that there is a column in `M` that is an exact (in floating point) linear combination of other columns in `M`. Computing the SVD on `M` will not produce a singular value exactly equal to 0 in general: any difference of the smallest SVD value from 0 will be caused by numerical imprecision in the calculation of the SVD. Our threshold for small SVD values takes this numerical imprecision into account, and the default threshold will detect such numerical rank deficiency. The threshold may declare a matrix `M` rank deficient even if the linear combination of some columns of `M` is not exactly equal to another column of `M` but only numerically very close to another column of `M`. We chose our default threshold because it is in wide use. Other thresholds are possible. For example, elsewhere in the 2007 edition of *Numerical recipes* there is an alternative threshold of ``S.max() * np.finfo(M.dtype).eps / 2. * np.sqrt(m + n + 1.)``. The authors describe this threshold as being based on "expected roundoff error" (p 71). The thresholds above deal with floating point roundoff error in the calculation of the SVD. However, you may have more information about the sources of error in `M` that would make you consider other tolerance values to detect *effective* rank deficiency. The most useful measure of the tolerance depends on the operations you intend to use on your matrix. For example, if your data come from uncertain measurements with uncertainties greater than floating point epsilon, choosing a tolerance near that uncertainty may be preferable. The tolerance may be absolute if the uncertainties are absolute rather than relative. References ---------- .. [1] MATLAB reference documention, "Rank" https://www.mathworks.com/help/techdoc/ref/rank.html .. [2] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, "Numerical Recipes (3rd edition)", Cambridge University Press, 2007, page 795. Examples -------- >>> from numpy.linalg import matrix_rank >>> matrix_rank(np.eye(4)) # Full rank matrix 4 >>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix >>> matrix_rank(I) 3 >>> matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0 1 >>> matrix_rank(np.zeros((4,))) 0 """ M = asarray(M) if M.ndim < 2: return int(not all(M==0)) S = svd(M, compute_uv=False, hermitian=hermitian) if tol is None: tol = S.max(axis=-1, keepdims=True) * max(M.shape[-2:]) * finfo(S.dtype).eps else: tol = asarray(tol)[..., newaxis] return count_nonzero(S > tol, axis=-1) # Generalized inverse def _pinv_dispatcher(a, rcond=None, hermitian=None): return (a,) @array_function_dispatch(_pinv_dispatcher) def pinv(a, rcond=1e-15, hermitian=False): """ Compute the (Moore-Penrose) pseudo-inverse of a matrix. Calculate the generalized inverse of a matrix using its singular-value decomposition (SVD) and including all *large* singular values. .. versionchanged:: 1.14 Can now operate on stacks of matrices Parameters ---------- a : (..., M, N) array_like Matrix or stack of matrices to be pseudo-inverted. rcond : (...) array_like of float Cutoff for small singular values. Singular values less than or equal to ``rcond * largest_singular_value`` are set to zero. Broadcasts against the stack of matrices. hermitian : bool, optional If True, `a` is assumed to be Hermitian (symmetric if real-valued), enabling a more efficient method for finding singular values. Defaults to False. .. versionadded:: 1.17.0 Returns ------- B : (..., N, M) ndarray The pseudo-inverse of `a`. If `a` is a `matrix` instance, then so is `B`. Raises ------ LinAlgError If the SVD computation does not converge. Notes ----- The pseudo-inverse of a matrix A, denoted :math:`A^+`, is defined as: "the matrix that 'solves' [the least-squares problem] :math:`Ax = b`," i.e., if :math:`\\bar{x}` is said solution, then :math:`A^+` is that matrix such that :math:`\\bar{x} = A^+b`. It can be shown that if :math:`Q_1 \\Sigma Q_2^T = A` is the singular value decomposition of A, then :math:`A^+ = Q_2 \\Sigma^+ Q_1^T`, where :math:`Q_{1,2}` are orthogonal matrices, :math:`\\Sigma` is a diagonal matrix consisting of A's so-called singular values, (followed, typically, by zeros), and then :math:`\\Sigma^+` is simply the diagonal matrix consisting of the reciprocals of A's singular values (again, followed by zeros). [1]_ References ---------- .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL, Academic Press, Inc., 1980, pp. 139-142. Examples -------- The following example checks that ``a * a+ * a == a`` and ``a+ * a * a+ == a+``: >>> a = np.random.randn(9, 6) >>> B = np.linalg.pinv(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) True >>> np.allclose(B, np.dot(B, np.dot(a, B))) True """ a, wrap = _makearray(a) rcond = asarray(rcond) if _isEmpty2d(a): m, n = a.shape[-2:] res = empty(a.shape[:-2] + (n, m), dtype=a.dtype) return wrap(res) a = a.conjugate() u, s, vt = svd(a, full_matrices=False, hermitian=hermitian) # discard small singular values cutoff = rcond[..., newaxis] * amax(s, axis=-1, keepdims=True) large = s > cutoff s = divide(1, s, where=large, out=s) s[~large] = 0 res = matmul(transpose(vt), multiply(s[..., newaxis], transpose(u))) return wrap(res) # Determinant @array_function_dispatch(_unary_dispatcher) def slogdet(a): """ Compute the sign and (natural) logarithm of the determinant of an array. If an array has a very small or very large determinant, then a call to `det` may overflow or underflow. This routine is more robust against such issues, because it computes the logarithm of the determinant rather than the determinant itself. Parameters ---------- a : (..., M, M) array_like Input array, has to be a square 2-D array. Returns ------- sign : (...) array_like A number representing the sign of the determinant. For a real matrix, this is 1, 0, or -1. For a complex matrix, this is a complex number with absolute value 1 (i.e., it is on the unit circle), or else 0. logdet : (...) array_like The natural log of the absolute value of the determinant. If the determinant is zero, then `sign` will be 0 and `logdet` will be -Inf. In all cases, the determinant is equal to ``sign * np.exp(logdet)``. See Also -------- det Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. .. versionadded:: 1.6.0 The determinant is computed via LU factorization using the LAPACK routine ``z/dgetrf``. Examples -------- The determinant of a 2-D array ``[[a, b], [c, d]]`` is ``ad - bc``: >>> a = np.array([[1, 2], [3, 4]]) >>> (sign, logdet) = np.linalg.slogdet(a) >>> (sign, logdet) (-1, 0.69314718055994529) # may vary >>> sign * np.exp(logdet) -2.0 Computing log-determinants for a stack of matrices: >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ]) >>> a.shape (3, 2, 2) >>> sign, logdet = np.linalg.slogdet(a) >>> (sign, logdet) (array([-1., -1., -1.]), array([ 0.69314718, 1.09861229, 2.07944154])) >>> sign * np.exp(logdet) array([-2., -3., -8.]) This routine succeeds where ordinary `det` does not: >>> np.linalg.det(np.eye(500) * 0.1) 0.0 >>> np.linalg.slogdet(np.eye(500) * 0.1) (1, -1151.2925464970228) """ a = asarray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) real_t = _realType(result_t) signature = 'D->Dd' if isComplexType(t) else 'd->dd' sign, logdet = _umath_linalg.slogdet(a, signature=signature) sign = sign.astype(result_t, copy=False) logdet = logdet.astype(real_t, copy=False) return sign, logdet @array_function_dispatch(_unary_dispatcher) def det(a): """ Compute the determinant of an array. Parameters ---------- a : (..., M, M) array_like Input array to compute determinants for. Returns ------- det : (...) array_like Determinant of `a`. See Also -------- slogdet : Another way to represent the determinant, more suitable for large matrices where underflow/overflow may occur. Notes ----- .. versionadded:: 1.8.0 Broadcasting rules apply, see the `numpy.linalg` documentation for details. The determinant is computed via LU factorization using the LAPACK routine ``z/dgetrf``. Examples -------- The determinant of a 2-D array [[a, b], [c, d]] is ad - bc: >>> a = np.array([[1, 2], [3, 4]]) >>> np.linalg.det(a) -2.0 # may vary Computing determinants for a stack of matrices: >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ]) >>> a.shape (3, 2, 2) >>> np.linalg.det(a) array([-2., -3., -8.]) """ a = asarray(a) _assertRankAtLeast2(a) _assertNdSquareness(a) t, result_t = _commonType(a) signature = 'D->D' if isComplexType(t) else 'd->d' r = _umath_linalg.det(a, signature=signature) r = r.astype(result_t, copy=False) return r # Linear Least Squares def _lstsq_dispatcher(a, b, rcond=None): return (a, b) @array_function_dispatch(_lstsq_dispatcher) def lstsq(a, b, rcond="warn"): r""" Return the least-squares solution to a linear matrix equation. Solves the equation :math:`a x = b` by computing a vector `x` that minimizes the squared Euclidean 2-norm :math:`\| b - a x \|^2_2`. The equation may be under-, well-, or over-determined (i.e., the number of linearly independent rows of `a` can be less than, equal to, or greater than its number of linearly independent columns). If `a` is square and of full rank, then `x` (but for round-off error) is the "exact" solution of the equation. Parameters ---------- a : (M, N) array_like "Coefficient" matrix. b : {(M,), (M, K)} array_like Ordinate or "dependent variable" values. If `b` is two-dimensional, the least-squares solution is calculated for each of the `K` columns of `b`. rcond : float, optional Cut-off ratio for small singular values of `a`. For the purposes of rank determination, singular values are treated as zero if they are smaller than `rcond` times the largest singular value of `a`. .. versionchanged:: 1.14.0 If not set, a FutureWarning is given. The previous default of ``-1`` will use the machine precision as `rcond` parameter, the new default will use the machine precision times `max(M, N)`. To silence the warning and use the new default, use ``rcond=None``, to keep using the old behavior, use ``rcond=-1``. Returns ------- x : {(N,), (N, K)} ndarray Least-squares solution. If `b` is two-dimensional, the solutions are in the `K` columns of `x`. residuals : {(1,), (K,), (0,)} ndarray Sums of residuals; squared Euclidean 2-norm for each column in ``b - a*x``. If the rank of `a` is < N or M <= N, this is an empty array. If `b` is 1-dimensional, this is a (1,) shape array. Otherwise the shape is (K,). rank : int Rank of matrix `a`. s : (min(M, N),) ndarray Singular values of `a`. Raises ------ LinAlgError If computation does not converge. Notes ----- If `b` is a matrix, then all array results are returned as matrices. Examples -------- Fit a line, ``y = mx + c``, through some noisy data-points: >>> x = np.array([0, 1, 2, 3]) >>> y = np.array([-1, 0.2, 0.9, 2.1]) By examining the coefficients, we see that the line should have a gradient of roughly 1 and cut the y-axis at, more or less, -1. We can rewrite the line equation as ``y = Ap``, where ``A = [[x 1]]`` and ``p = [[m], [c]]``. Now use `lstsq` to solve for `p`: >>> A = np.vstack([x, np.ones(len(x))]).T >>> A array([[ 0., 1.], [ 1., 1.], [ 2., 1.], [ 3., 1.]]) >>> m, c = np.linalg.lstsq(A, y, rcond=None)[0] >>> m, c (1.0 -0.95) # may vary Plot the data along with the fitted line: >>> import matplotlib.pyplot as plt >>> _ = plt.plot(x, y, 'o', label='Original data', markersize=10) >>> _ = plt.plot(x, m*x + c, 'r', label='Fitted line') >>> _ = plt.legend() >>> plt.show() """ a, _ = _makearray(a) b, wrap = _makearray(b) is_1d = b.ndim == 1 if is_1d: b = b[:, newaxis] _assertRank2(a, b) m, n = a.shape[-2:] m2, n_rhs = b.shape[-2:] if m != m2: raise LinAlgError('Incompatible dimensions') t, result_t = _commonType(a, b) # FIXME: real_t is unused real_t = _linalgRealType(t) result_real_t = _realType(result_t) # Determine default rcond value if rcond == "warn": # 2017-08-19, 1.14.0 warnings.warn("`rcond` parameter will change to the default of " "machine precision times ``max(M, N)`` where M and N " "are the input matrix dimensions.\n" "To use the future default and silence this warning " "we advise to pass `rcond=None`, to keep using the old, " "explicitly pass `rcond=-1`.", FutureWarning, stacklevel=3) rcond = -1 if rcond is None: rcond = finfo(t).eps * max(n, m) if m <= n: gufunc = _umath_linalg.lstsq_m else: gufunc = _umath_linalg.lstsq_n signature = 'DDd->Ddid' if isComplexType(t) else 'ddd->ddid' extobj = get_linalg_error_extobj(_raise_linalgerror_lstsq) if n_rhs == 0: # lapack can't handle n_rhs = 0 - so allocate the array one larger in that axis b = zeros(b.shape[:-2] + (m, n_rhs + 1), dtype=b.dtype) x, resids, rank, s = gufunc(a, b, rcond, signature=signature, extobj=extobj) if m == 0: x[...] = 0 if n_rhs == 0: # remove the item we added x = x[..., :n_rhs] resids = resids[..., :n_rhs] # remove the axis we added if is_1d: x = x.squeeze(axis=-1) # we probably should squeeze resids too, but we can't # without breaking compatibility. # as documented if rank != n or m <= n: resids = array([], result_real_t) # coerce output arrays s = s.astype(result_real_t, copy=False) resids = resids.astype(result_real_t, copy=False) x = x.astype(result_t, copy=True) # Copying lets the memory in r_parts be freed return wrap(x), wrap(resids), rank, s def _multi_svd_norm(x, row_axis, col_axis, op): """Compute a function of the singular values of the 2-D matrices in `x`. This is a private utility function used by `numpy.linalg.norm()`. Parameters ---------- x : ndarray row_axis, col_axis : int The axes of `x` that hold the 2-D matrices. op : callable This should be either numpy.amin or `numpy.amax` or `numpy.sum`. Returns ------- result : float or ndarray If `x` is 2-D, the return values is a float. Otherwise, it is an array with ``x.ndim - 2`` dimensions. The return values are either the minimum or maximum or sum of the singular values of the matrices, depending on whether `op` is `numpy.amin` or `numpy.amax` or `numpy.sum`. """ y = moveaxis(x, (row_axis, col_axis), (-2, -1)) result = op(svd(y, compute_uv=False), axis=-1) return result def _norm_dispatcher(x, ord=None, axis=None, keepdims=None): return (x,) @array_function_dispatch(_norm_dispatcher) def norm(x, ord=None, axis=None, keepdims=False): """ Matrix or vector norm. This function is able to return one of eight different matrix norms, or one of an infinite number of vector norms (described below), depending on the value of the ``ord`` parameter. Parameters ---------- x : array_like Input array. If `axis` is None, `x` must be 1-D or 2-D. ord : {non-zero int, inf, -inf, 'fro', 'nuc'}, optional Order of the norm (see table under ``Notes``). inf means numpy's `inf` object. axis : {int, 2-tuple of ints, None}, optional If `axis` is an integer, it specifies the axis of `x` along which to compute the vector norms. If `axis` is a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed. If `axis` is None then either a vector norm (when `x` is 1-D) or a matrix norm (when `x` is 2-D) is returned. .. versionadded:: 1.8.0 keepdims : bool, optional If this is set to True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original `x`. .. versionadded:: 1.10.0 Returns ------- n : float or ndarray Norm of the matrix or vector(s). Notes ----- For values of ``ord <= 0``, the result is, strictly speaking, not a mathematical 'norm', but it may still be useful for various numerical purposes. The following norms can be calculated: ===== ============================ ========================== ord norm for matrices norm for vectors ===== ============================ ========================== None Frobenius norm 2-norm 'fro' Frobenius norm -- 'nuc' nuclear norm -- inf max(sum(abs(x), axis=1)) max(abs(x)) -inf min(sum(abs(x), axis=1)) min(abs(x)) 0 -- sum(x != 0) 1 max(sum(abs(x), axis=0)) as below -1 min(sum(abs(x), axis=0)) as below 2 2-norm (largest sing. value) as below -2 smallest singular value as below other -- sum(abs(x)**ord)**(1./ord) ===== ============================ ========================== The Frobenius norm is given by [1]_: :math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}` The nuclear norm is the sum of the singular values. References ---------- .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*, Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15 Examples -------- >>> from numpy import linalg as LA >>> a = np.arange(9) - 4 >>> a array([-4, -3, -2, ..., 2, 3, 4]) >>> b = a.reshape((3, 3)) >>> b array([[-4, -3, -2], [-1, 0, 1], [ 2, 3, 4]]) >>> LA.norm(a) 7.745966692414834 >>> LA.norm(b) 7.745966692414834 >>> LA.norm(b, 'fro') 7.745966692414834 >>> LA.norm(a, np.inf) 4.0 >>> LA.norm(b, np.inf) 9.0 >>> LA.norm(a, -np.inf) 0.0 >>> LA.norm(b, -np.inf) 2.0 >>> LA.norm(a, 1) 20.0 >>> LA.norm(b, 1) 7.0 >>> LA.norm(a, -1) -4.6566128774142013e-010 >>> LA.norm(b, -1) 6.0 >>> LA.norm(a, 2) 7.745966692414834 >>> LA.norm(b, 2) 7.3484692283495345 >>> LA.norm(a, -2) 0.0 >>> LA.norm(b, -2) 1.8570331885190563e-016 # may vary >>> LA.norm(a, 3) 5.8480354764257312 # may vary >>> LA.norm(a, -3) 0.0 Using the `axis` argument to compute vector norms: >>> c = np.array([[ 1, 2, 3], ... [-1, 1, 4]]) >>> LA.norm(c, axis=0) array([ 1.41421356, 2.23606798, 5. ]) >>> LA.norm(c, axis=1) array([ 3.74165739, 4.24264069]) >>> LA.norm(c, ord=1, axis=1) array([ 6., 6.]) Using the `axis` argument to compute matrix norms: >>> m = np.arange(8).reshape(2,2,2) >>> LA.norm(m, axis=(1,2)) array([ 3.74165739, 11.22497216]) >>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :]) (3.7416573867739413, 11.224972160321824) """ x = asarray(x) if not issubclass(x.dtype.type, (inexact, object_)): x = x.astype(float) # Immediately handle some default, simple, fast, and common cases. if axis is None: ndim = x.ndim if ((ord is None) or (ord in ('f', 'fro') and ndim == 2) or (ord == 2 and ndim == 1)): x = x.ravel(order='K') if isComplexType(x.dtype.type): sqnorm = dot(x.real, x.real) + dot(x.imag, x.imag) else: sqnorm = dot(x, x) ret = sqrt(sqnorm) if keepdims: ret = ret.reshape(ndim*[1]) return ret # Normalize the `axis` argument to a tuple. nd = x.ndim if axis is None: axis = tuple(range(nd)) elif not isinstance(axis, tuple): try: axis = int(axis) except Exception: raise TypeError("'axis' must be None, an integer or a tuple of integers") axis = (axis,) if len(axis) == 1: if ord == Inf: return abs(x).max(axis=axis, keepdims=keepdims) elif ord == -Inf: return abs(x).min(axis=axis, keepdims=keepdims) elif ord == 0: # Zero norm return (x != 0).astype(x.real.dtype).sum(axis=axis, keepdims=keepdims) elif ord == 1: # special case for speedup return add.reduce(abs(x), axis=axis, keepdims=keepdims) elif ord is None or ord == 2: # special case for speedup s = (x.conj() * x).real return sqrt(add.reduce(s, axis=axis, keepdims=keepdims)) else: try: ord + 1 except TypeError: raise ValueError("Invalid norm order for vectors.") absx = abs(x) absx **= ord ret = add.reduce(absx, axis=axis, keepdims=keepdims) ret **= (1 / ord) return ret elif len(axis) == 2: row_axis, col_axis = axis row_axis = normalize_axis_index(row_axis, nd) col_axis = normalize_axis_index(col_axis, nd) if row_axis == col_axis: raise ValueError('Duplicate axes given.') if ord == 2: ret = _multi_svd_norm(x, row_axis, col_axis, amax) elif ord == -2: ret = _multi_svd_norm(x, row_axis, col_axis, amin) elif ord == 1: if col_axis > row_axis: col_axis -= 1 ret = add.reduce(abs(x), axis=row_axis).max(axis=col_axis) elif ord == Inf: if row_axis > col_axis: row_axis -= 1 ret = add.reduce(abs(x), axis=col_axis).max(axis=row_axis) elif ord == -1: if col_axis > row_axis: col_axis -= 1 ret = add.reduce(abs(x), axis=row_axis).min(axis=col_axis) elif ord == -Inf: if row_axis > col_axis: row_axis -= 1 ret = add.reduce(abs(x), axis=col_axis).min(axis=row_axis) elif ord in [None, 'fro', 'f']: ret = sqrt(add.reduce((x.conj() * x).real, axis=axis)) elif ord == 'nuc': ret = _multi_svd_norm(x, row_axis, col_axis, sum) else: raise ValueError("Invalid norm order for matrices.") if keepdims: ret_shape = list(x.shape) ret_shape[axis[0]] = 1 ret_shape[axis[1]] = 1 ret = ret.reshape(ret_shape) return ret else: raise ValueError("Improper number of dimensions to norm.") # multi_dot def _multidot_dispatcher(arrays): return arrays @array_function_dispatch(_multidot_dispatcher) def multi_dot(arrays): """ Compute the dot product of two or more arrays in a single function call, while automatically selecting the fastest evaluation order. `multi_dot` chains `numpy.dot` and uses optimal parenthesization of the matrices [1]_ [2]_. Depending on the shapes of the matrices, this can speed up the multiplication a lot. If the first argument is 1-D it is treated as a row vector. If the last argument is 1-D it is treated as a column vector. The other arguments must be 2-D. Think of `multi_dot` as:: def multi_dot(arrays): return functools.reduce(np.dot, arrays) Parameters ---------- arrays : sequence of array_like If the first argument is 1-D it is treated as row vector. If the last argument is 1-D it is treated as column vector. The other arguments must be 2-D. Returns ------- output : ndarray Returns the dot product of the supplied arrays. See Also -------- dot : dot multiplication with two arguments. References ---------- .. [1] Cormen, "Introduction to Algorithms", Chapter 15.2, p. 370-378 .. [2] https://en.wikipedia.org/wiki/Matrix_chain_multiplication Examples -------- `multi_dot` allows you to write:: >>> from numpy.linalg import multi_dot >>> # Prepare some data >>> A = np.random.random((10000, 100)) >>> B = np.random.random((100, 1000)) >>> C = np.random.random((1000, 5)) >>> D = np.random.random((5, 333)) >>> # the actual dot multiplication >>> _ = multi_dot([A, B, C, D]) instead of:: >>> _ = np.dot(np.dot(np.dot(A, B), C), D) >>> # or >>> _ = A.dot(B).dot(C).dot(D) Notes ----- The cost for a matrix multiplication can be calculated with the following function:: def cost(A, B): return A.shape[0] * A.shape[1] * B.shape[1] Assume we have three matrices :math:`A_{10x100}, B_{100x5}, C_{5x50}`. The costs for the two different parenthesizations are as follows:: cost((AB)C) = 10*100*5 + 10*5*50 = 5000 + 2500 = 7500 cost(A(BC)) = 10*100*50 + 100*5*50 = 50000 + 25000 = 75000 """ n = len(arrays) # optimization only makes sense for len(arrays) > 2 if n < 2: raise ValueError("Expecting at least two arrays.") elif n == 2: return dot(arrays[0], arrays[1]) arrays = [asanyarray(a) for a in arrays] # save original ndim to reshape the result array into the proper form later ndim_first, ndim_last = arrays[0].ndim, arrays[-1].ndim # Explicitly convert vectors to 2D arrays to keep the logic of the internal # _multi_dot_* functions as simple as possible. if arrays[0].ndim == 1: arrays[0] = atleast_2d(arrays[0]) if arrays[-1].ndim == 1: arrays[-1] = atleast_2d(arrays[-1]).T _assertRank2(*arrays) # _multi_dot_three is much faster than _multi_dot_matrix_chain_order if n == 3: result = _multi_dot_three(arrays[0], arrays[1], arrays[2]) else: order = _multi_dot_matrix_chain_order(arrays) result = _multi_dot(arrays, order, 0, n - 1) # return proper shape if ndim_first == 1 and ndim_last == 1: return result[0, 0] # scalar elif ndim_first == 1 or ndim_last == 1: return result.ravel() # 1-D else: return result def _multi_dot_three(A, B, C): """ Find the best order for three arrays and do the multiplication. For three arguments `_multi_dot_three` is approximately 15 times faster than `_multi_dot_matrix_chain_order` """ a0, a1b0 = A.shape b1c0, c1 = C.shape # cost1 = cost((AB)C) = a0*a1b0*b1c0 + a0*b1c0*c1 cost1 = a0 * b1c0 * (a1b0 + c1) # cost2 = cost(A(BC)) = a1b0*b1c0*c1 + a0*a1b0*c1 cost2 = a1b0 * c1 * (a0 + b1c0) if cost1 < cost2: return dot(dot(A, B), C) else: return dot(A, dot(B, C)) def _multi_dot_matrix_chain_order(arrays, return_costs=False): """ Return a np.array that encodes the optimal order of mutiplications. The optimal order array is then used by `_multi_dot()` to do the multiplication. Also return the cost matrix if `return_costs` is `True` The implementation CLOSELY follows Cormen, "Introduction to Algorithms", Chapter 15.2, p. 370-378. Note that Cormen uses 1-based indices. cost[i, j] = min([ cost[prefix] + cost[suffix] + cost_mult(prefix, suffix) for k in range(i, j)]) """ n = len(arrays) # p stores the dimensions of the matrices # Example for p: A_{10x100}, B_{100x5}, C_{5x50} --> p = [10, 100, 5, 50] p = [a.shape[0] for a in arrays] + [arrays[-1].shape[1]] # m is a matrix of costs of the subproblems # m[i,j]: min number of scalar multiplications needed to compute A_{i..j} m = zeros((n, n), dtype=double) # s is the actual ordering # s[i, j] is the value of k at which we split the product A_i..A_j s = empty((n, n), dtype=intp) for l in range(1, n): for i in range(n - l): j = i + l m[i, j] = Inf for k in range(i, j): q = m[i, k] + m[k+1, j] + p[i]*p[k+1]*p[j+1] if q < m[i, j]: m[i, j] = q s[i, j] = k # Note that Cormen uses 1-based index return (s, m) if return_costs else s def _multi_dot(arrays, order, i, j): """Actually do the multiplication with the given order.""" if i == j: return arrays[i] else: return dot(_multi_dot(arrays, order, i, order[i, j]), _multi_dot(arrays, order, order[i, j] + 1, j))
bsd-3-clause
mikebenfield/scikit-learn
sklearn/utils/deprecation.py
36
2418
import warnings __all__ = ["deprecated", ] class deprecated(object): """Decorator to mark a function or class as deprecated. Issue a warning when the function is called/the class is instantiated and adds a warning to the docstring. The optional extra argument will be appended to the deprecation message and the docstring. Note: to use this with the default value for extra, put in an empty of parentheses: >>> from sklearn.utils import deprecated >>> deprecated() # doctest: +ELLIPSIS <sklearn.utils.deprecation.deprecated object at ...> >>> @deprecated() ... def some_function(): pass """ # Adapted from http://wiki.python.org/moin/PythonDecoratorLibrary, # but with many changes. def __init__(self, extra=''): """ Parameters ---------- extra : string to be added to the deprecation messages """ self.extra = extra def __call__(self, obj): if isinstance(obj, type): return self._decorate_class(obj) else: return self._decorate_fun(obj) def _decorate_class(self, cls): msg = "Class %s is deprecated" % cls.__name__ if self.extra: msg += "; %s" % self.extra # FIXME: we should probably reset __new__ for full generality init = cls.__init__ def wrapped(*args, **kwargs): warnings.warn(msg, category=DeprecationWarning) return init(*args, **kwargs) cls.__init__ = wrapped wrapped.__name__ = '__init__' wrapped.__doc__ = self._update_doc(init.__doc__) wrapped.deprecated_original = init return cls def _decorate_fun(self, fun): """Decorate function fun""" msg = "Function %s is deprecated" % fun.__name__ if self.extra: msg += "; %s" % self.extra def wrapped(*args, **kwargs): warnings.warn(msg, category=DeprecationWarning) return fun(*args, **kwargs) wrapped.__name__ = fun.__name__ wrapped.__dict__ = fun.__dict__ wrapped.__doc__ = self._update_doc(fun.__doc__) return wrapped def _update_doc(self, olddoc): newdoc = "DEPRECATED" if self.extra: newdoc = "%s: %s" % (newdoc, self.extra) if olddoc: newdoc = "%s\n\n%s" % (newdoc, olddoc) return newdoc
bsd-3-clause
mayblue9/bokeh
bokeh/charts/builder/horizon_builder.py
43
12508
"""This is the Bokeh charts interface. It gives you a high level API to build complex plot is a simple way. This is the Horizon class which lets you build your Horizon charts just passing the arguments to the Chart class and calling the proper functions. """ from __future__ import absolute_import, division import math from six import string_types from .._builder import Builder, create_and_build from ...models import ColumnDataSource, Range1d, DataRange1d, FactorRange, GlyphRenderer, CategoricalAxis from ...models.glyphs import Patches from ...properties import Any, Color, Int #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- def Horizon(values, index=None, num_folds=3, pos_color='#006400', neg_color='#6495ed', xscale='datetime', xgrid=False, ygrid=False, **kws): """ Create a Horizon chart using :class:`HorizonBuilder <bokeh.charts.builder.horizon_builder.HorizonBuilder>` render the geometry from values, index and num_folds. Args: values (iterable): iterable 2d representing the data series values matrix. index (str|1d iterable, optional): can be used to specify a common custom index for all data series as an **1d iterable** of any sort that will be used as series common index or a **string** that corresponds to the key of the mapping to be used as index (and not as data series) if area.values is a mapping (like a dict, an OrderedDict or a pandas DataFrame) num_folds (int, optional): The number of folds stacked on top of each other. (default: 3) pos_color (color, optional): The color of the positive folds. (default: "#006400") neg_color (color, optional): The color of the negative folds. (default: "#6495ed") In addition the the parameters specific to this chart, :ref:`userguide_charts_generic_arguments` are also accepted as keyword parameters. Returns: a new :class:`Chart <bokeh.charts.Chart>` Examples: .. bokeh-plot:: :source-position: above import datetime from collections import OrderedDict from bokeh.charts import Horizon, output_file, show now = datetime.datetime.now() dts = [now+datetime.timedelta(seconds=i) for i in range(10)] xyvalues = OrderedDict({'Date': dts}) y_python = xyvalues['python'] = [2, 3, 7, 5, 26, 27, 27, 28, 26, 20] y_pypy = xyvalues['pypy'] = [12, 33, 47, 15, 126, 122, 95, 90, 110, 112] y_jython = xyvalues['jython'] = [22, 43, 10, 25, 26, 25, 26, 45, 26, 30] hz = Horizon(xyvalues, index='Date', title="Horizon Example", ylabel='Sample Data', xlabel='') output_file('horizon.html') show(hz) """ tools = kws.get('tools', True) if tools == True: tools = "save,resize,reset" elif isinstance(tools, string_types): tools = tools.replace('pan', '') tools = tools.replace('wheel_zoom', '') tools = tools.replace('box_zoom', '') tools = tools.replace(',,', ',') kws['tools'] = tools chart = create_and_build( HorizonBuilder, values, index=index, num_folds=num_folds, pos_color=pos_color, neg_color=neg_color, xscale=xscale, xgrid=xgrid, ygrid=ygrid, **kws ) # Hide numerical axis chart.left[0].visible = False # Add the series names to the y axis chart.extra_y_ranges = {"series": FactorRange(factors=chart._builders[0]._series)} chart.add_layout(CategoricalAxis(y_range_name="series"), 'left') return chart class HorizonBuilder(Builder): """This is the Horizon class and it is in charge of plotting Horizon charts in an easy and intuitive way. Essentially, we provide a way to ingest the data, separate the data into a number of folds which stack on top of each others. We additionally make calculations for the ranges. And finally add the needed lines taking the references from the source. """ index = Any(help=""" An index to be used for all data series as follows: - A 1d iterable of any sort that will be used as series common index - As a string that corresponds to the key of the mapping to be used as index (and not as data series) if area.values is a mapping (like a dict, an OrderedDict or a pandas DataFrame) """) neg_color = Color("#6495ed", help=""" The color of the negative folds. (default: "#6495ed") """) num_folds = Int(3, help=""" The number of folds stacked on top of each other. (default: 3) """) pos_color = Color("#006400", help=""" The color of the positive folds. (default: "#006400") """) def __init__(self, values, **kws): """ Args: values (iterable): iterable 2d representing the data series values matrix. index (str|1d iterable, optional): can be used to specify a common custom index for all data series as follows: - As a 1d iterable of any sort (of datetime values) that will be used as series common index - As a string that corresponds to the key of the mapping to be used as index (and not as data series) if area.values is a mapping (like a dict, an OrderedDict or a pandas DataFrame). The values must be datetime values. legend (str, optional): the legend of your chart. The legend content is inferred from incoming input.It can be ``top_left``, ``top_right``, ``bottom_left``, ``bottom_right``. ``top_right`` is set if you set it as True. Defaults to None. palette(list, optional): a list containing the colormap as hex values. num_folds (int, optional): pos_color (hex color string, optional): t neg_color (hex color string, optional): the color of the negative folds (default: #6495ed) Attributes: source (obj): datasource object for your plot, initialized as a dummy None. x_range (obj): x-associated datarange object for you plot, initialized as a dummy None. y_range (obj): y-associated datarange object for you plot, initialized as a dummy None. groups (list): to be filled with the incoming groups of data. Useful for legend construction. data (dict): to be filled with the incoming data and be passed to the ColumnDataSource in each chart inherited class. Needed for _set_And_get method. attr (list): to be filled with the new attributes created after loading the data dict. Needed for _set_And_get method. """ super(HorizonBuilder, self).__init__(values, **kws) self._fold_names = [] self._source = None self._series = [] self._fold_height = {} self._max_y = 0 def fold_coordinates(self, y, fold_no, fold_height, y_origin=0, graph_ratio=1): """ Function that calculate the coordinates for a value given a fold """ height = fold_no * fold_height quotient, remainder = divmod(abs(y), float(height)) v = fold_height # quotient would be 0 if the coordinate is represented in this fold # layer if math.floor(quotient) == 0: v = 0 if remainder >= height - fold_height: v = remainder - height + fold_height v = v * graph_ratio # Return tuple of the positive and negative relevant position of # the coordinate against the provided fold layer if y > 0: return (v + y_origin, fold_height * graph_ratio + y_origin) else: return (y_origin, fold_height * graph_ratio - v + y_origin) def pad_list(self, l, padded_value=None): """ Function that insert padded values at the start and end of the list (l). If padded_value not provided, then duplicate the values next to each end of the list """ if len(l) > 0: l.insert(0, l[0] if padded_value is None else padded_value) l.append(l[-1] if padded_value is None else padded_value) return l def _process_data(self): """Use x/y data from the horizon values. It calculates the chart properties accordingly. Then build a dict containing references to all the points to be used by the multiple area glyphes inside the ``_yield_renderers`` method. """ for col in self._values.keys(): if isinstance(self.index, string_types) and col == self.index: continue self._series.append(col) self._max_y = max(max(self._values[col]), self._max_y) v_index = [x for x in self._values_index] self.set_and_get("x_", col, self.pad_list(v_index)) self._fold_height = self._max_y / self.num_folds self._graph_ratio = self.num_folds / len(self._series) fill_alpha = [] fill_color = [] for serie_no, serie in enumerate(self._series): self.set_and_get('y_', serie, self._values[serie]) y_origin = serie_no * self._max_y / len(self._series) for fold_itr in range(1, self.num_folds + 1): layers_datapoints = [self.fold_coordinates( x, fold_itr, self._fold_height, y_origin, self._graph_ratio) for x in self._values[serie]] pos_points, neg_points = map(list, zip(*(layers_datapoints))) alpha = 1.0 * (abs(fold_itr)) / self.num_folds # Y coordinates above 0 pos_points = self.pad_list(pos_points, y_origin) self.set_and_get("y_fold%s_" % fold_itr, serie, pos_points) self._fold_names.append("y_fold%s_%s" % (fold_itr, serie)) fill_color.append(self.pos_color) fill_alpha.append(alpha) # Y coordinates below 0 neg_points = self.pad_list( neg_points, self._fold_height * self._graph_ratio + y_origin) self.set_and_get("y_fold-%s_" % fold_itr, serie, neg_points) self._fold_names.append("y_fold-%s_%s" % (fold_itr, serie)) fill_color.append(self.neg_color) fill_alpha.append(alpha) # Groups shown in the legend will only appear once if serie_no == 0: self._groups.append(str(self._fold_height * fold_itr)) self._groups.append(str(self._fold_height * -fold_itr)) self.set_and_get('fill_', 'alpha', fill_alpha) self.set_and_get('fill_', 'color', fill_color) self.set_and_get('x_', 'all', [self._data[ 'x_%s' % serie] for serie in self._series for y in range(self.num_folds * 2)]) self.set_and_get( 'y_', 'all', [self._data[f_name] for f_name in self._fold_names]) def _set_sources(self): """Push the Horizon data into the ColumnDataSource and calculate the proper ranges. """ self._source = ColumnDataSource(self._data) self.x_range = DataRange1d(range_padding=0) self.y_range = Range1d(start=0, end=self._max_y) def _yield_renderers(self): """Use the patch glyphs to connect the xy points in the time series. It requires the positive and negative layers Takes reference points from the data loaded at the ColumnDataSource. """ patches = Patches( fill_color='fill_color', fill_alpha='fill_alpha', xs='x_all', ys='y_all') renderer = GlyphRenderer(data_source=self._source, glyph=patches) # self._legends.append((self._groups[i-1], [renderer])) yield renderer # TODO: Add the tooltips to display the dates and all absolute y values for each series # at any vertical places on the plot # TODO: Add the legend to display the fold ranges based on the color of # the fold
bsd-3-clause
WafaaT/spark-tk
regression-tests/sparktkregtests/testcases/frames/cumulative_sum_test.py
13
3741
# vim: set encoding=utf-8 # Copyright (c) 2016 Intel Corporation  # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # #       http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Test cumulative sum against known values""" import unittest from sparktkregtests.lib import sparktk_test class TestCumulativeSum(sparktk_test.SparkTKTestCase): def setUp(self): """Build test frames""" super(TestCumulativeSum, self).setUp() data_sum = self.get_file("cumulative_seq_v2.csv") schema_sum = [("sequence", int), ("col1", int), ("cumulative_sum", int), ("percent_sum", float)] self.sum_frame = self.context.frame.import_csv(data_sum, schema=schema_sum) def test_cumulative_sum_and_percent(self): """Test cumulative sum and cumulative percent""" self.sum_frame.cumulative_sum("col1") self.sum_frame.cumulative_percent("col1") pd_frame = self.sum_frame.to_pandas(self.sum_frame.count()) for _, i in pd_frame.iterrows(): self.assertAlmostEqual( i['cumulative_sum'], i['col1_cumulative_sum'], delta=.0001) self.assertAlmostEqual( i['percent_sum'], i['col1_cumulative_percent'], delta=.0001) def test_cumulative_colname_collision(self): """Test column name collision resolve gracefully""" # Repeatedly run cumulative functions to force collision self.sum_frame.cumulative_sum("col1") self.sum_frame.cumulative_percent("col1") self.sum_frame.cumulative_sum("col1") self.sum_frame.cumulative_percent("col1") self.sum_frame.cumulative_sum("col1") self.sum_frame.cumulative_percent("col1") new_columns = [u'sequence', u'col1', u'cumulative_sum', u'percent_sum', u'col1_cumulative_sum', u'col1_cumulative_percent', u'col1_cumulative_sum_0', u'col1_cumulative_percent_0', u'col1_cumulative_sum_1', u'col1_cumulative_percent_1'] self.assertItemsEqual(new_columns, self.sum_frame.column_names) def test_cumulative_bad_colname_sum(self): """Test non-existant column errors""" with self.assertRaisesRegexp(Exception, "Invalid column name"): self.sum_frame.cumulative_sum("no_such_column") def test_cumulative_bad_column_name_percent(self): with self.assertRaisesRegexp(Exception, "Invalid column name"): self.sum_frame.cumulative_percent("no_such_column") def test_cumulative_none_column_sum(self): """Test none for column errors""" with self.assertRaisesRegexp(Exception, "column name for sample is required"): self.sum_frame.cumulative_sum(None) def test_cumulative_none_column_percent(self): with self.assertRaisesRegexp(Exception, "column name for sample is required"): self.sum_frame.cumulative_percent(None) if __name__ == '__main__': unittest.main()
apache-2.0
ClimbsRocks/scikit-learn
sklearn/utils/tests/test_seq_dataset.py
47
2486
# Author: Tom Dupre la Tour <[email protected]> # # License: BSD 3 clause import numpy as np import scipy.sparse as sp from sklearn.utils.seq_dataset import ArrayDataset, CSRDataset from sklearn.datasets import load_iris from numpy.testing import assert_array_equal from nose.tools import assert_equal iris = load_iris() X = iris.data.astype(np.float64) y = iris.target.astype(np.float64) X_csr = sp.csr_matrix(X) sample_weight = np.arange(y.size, dtype=np.float64) def assert_csr_equal(X, Y): X.eliminate_zeros() Y.eliminate_zeros() assert_equal(X.shape[0], Y.shape[0]) assert_equal(X.shape[1], Y.shape[1]) assert_array_equal(X.data, Y.data) assert_array_equal(X.indices, Y.indices) assert_array_equal(X.indptr, Y.indptr) def test_seq_dataset(): dataset1 = ArrayDataset(X, y, sample_weight, seed=42) dataset2 = CSRDataset(X_csr.data, X_csr.indptr, X_csr.indices, y, sample_weight, seed=42) for dataset in (dataset1, dataset2): for i in range(5): # next sample xi_, yi, swi, idx = dataset._next_py() xi = sp.csr_matrix((xi_), shape=(1, X.shape[1])) assert_csr_equal(xi, X_csr[idx]) assert_equal(yi, y[idx]) assert_equal(swi, sample_weight[idx]) # random sample xi_, yi, swi, idx = dataset._random_py() xi = sp.csr_matrix((xi_), shape=(1, X.shape[1])) assert_csr_equal(xi, X_csr[idx]) assert_equal(yi, y[idx]) assert_equal(swi, sample_weight[idx]) def test_seq_dataset_shuffle(): dataset1 = ArrayDataset(X, y, sample_weight, seed=42) dataset2 = CSRDataset(X_csr.data, X_csr.indptr, X_csr.indices, y, sample_weight, seed=42) # not shuffled for i in range(5): _, _, _, idx1 = dataset1._next_py() _, _, _, idx2 = dataset2._next_py() assert_equal(idx1, i) assert_equal(idx2, i) for i in range(5): _, _, _, idx1 = dataset1._random_py() _, _, _, idx2 = dataset2._random_py() assert_equal(idx1, idx2) seed = 77 dataset1._shuffle_py(seed) dataset2._shuffle_py(seed) for i in range(5): _, _, _, idx1 = dataset1._next_py() _, _, _, idx2 = dataset2._next_py() assert_equal(idx1, idx2) _, _, _, idx1 = dataset1._random_py() _, _, _, idx2 = dataset2._random_py() assert_equal(idx1, idx2)
bsd-3-clause
ningchi/scikit-learn
examples/linear_model/plot_sgd_separating_hyperplane.py
260
1219
""" ========================================= SGD: Maximum margin separating hyperplane ========================================= Plot the maximum margin separating hyperplane within a two-class separable dataset using a linear Support Vector Machines classifier trained using SGD. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import SGDClassifier from sklearn.datasets.samples_generator import make_blobs # we create 50 separable points X, Y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.60) # fit the model clf = SGDClassifier(loss="hinge", alpha=0.01, n_iter=200, fit_intercept=True) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane xx = np.linspace(-1, 5, 10) yy = np.linspace(-1, 5, 10) X1, X2 = np.meshgrid(xx, yy) Z = np.empty(X1.shape) for (i, j), val in np.ndenumerate(X1): x1 = val x2 = X2[i, j] p = clf.decision_function([x1, x2]) Z[i, j] = p[0] levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' plt.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles) plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.axis('tight') plt.show()
bsd-3-clause
cactusbin/nyt
matplotlib/examples/axes_grid/demo_axes_hbox_divider.py
7
1547
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.axes_divider import HBoxDivider import mpl_toolkits.axes_grid1.axes_size as Size def make_heights_equal(fig, rect, ax1, ax2, pad): # pad in inches h1, v1 = Size.AxesX(ax1), Size.AxesY(ax1) h2, v2 = Size.AxesX(ax2), Size.AxesY(ax2) pad_v = Size.Scaled(1) pad_h = Size.Fixed(pad) my_divider = HBoxDivider(fig, rect, horizontal=[h1, pad_h, h2], vertical=[v1, pad_v, v2]) ax1.set_axes_locator(my_divider.new_locator(0)) ax2.set_axes_locator(my_divider.new_locator(2)) if __name__ == "__main__": arr1 = np.arange(20).reshape((4,5)) arr2 = np.arange(20).reshape((5,4)) fig, (ax1, ax2) = plt.subplots(1,2) ax1.imshow(arr1, interpolation="nearest") ax2.imshow(arr2, interpolation="nearest") rect = 111 # subplot param for combined axes make_heights_equal(fig, rect, ax1, ax2, pad=0.5) # pad in inches for ax in [ax1, ax2]: ax.locator_params(nbins=4) # annotate ax3 = plt.axes([0.5, 0.5, 0.001, 0.001], frameon=False) ax3.xaxis.set_visible(False) ax3.yaxis.set_visible(False) ax3.annotate("Location of two axes are adjusted\n" "so that they have equal heights\n" "while maintaining their aspect ratios", (0.5, 0.5), xycoords="axes fraction", va="center", ha="center", bbox=dict(boxstyle="round, pad=1", fc="w")) plt.show()
unlicense
DTOcean/dtocean-core
test_data/inputs_wp2_tidal.py
1
8467
# -*- coding: utf-8 -*- """ Created on Thu Apr 09 10:39:38 2015 @author: 108630 """ import os import numpy as np import pandas as pd from scipy.stats import multivariate_normal, norm # Setup x = np.linspace(0.,1000.,100) y = np.linspace(0.,300.,30) nx = len(x) ny = len(y) # Bathymetry? X, Y = np.meshgrid(x,y) Z = -X * 0.1 - 1 depths = Z.T[:, :, np.newaxis] sediments = np.chararray((nx,ny,1), itemsize=20) sediments[:] = "rock" strata = {"values": {'depth': depths, 'sediment': sediments}, "coords": [x, y, ["layer 1"]]} # Mannings #geoxyz = np.vstack((X.ravel(),Y.ravel(),G.ravel())).T G = np.zeros((nx, ny)) + 0.3 geo_raw = {"values": G, "coords": [x, y]} # Machine data X = np.array([ 0. , 0.1010101 , 0.2020202 , 0.3030303 , 0.4040404 , 0.50505051, 0.60606061, 0.70707071, 0.80808081, 0.90909091, 1.01010101, 1.11111111, 1.21212121, 1.31313131, 1.41414141, 1.51515152, 1.61616162, 1.71717172, 1.81818182, 1.91919192, 2.02020202, 2.12121212, 2.22222222, 2.32323232, 2.42424242, 2.52525253, 2.62626263, 2.72727273, 2.82828283, 2.92929293, 3.03030303, 3.13131313, 3.23232323, 3.33333333, 3.43434343, 3.53535354, 3.63636364, 3.73737374, 3.83838384, 3.93939394, 4.04040404, 4.14141414, 4.24242424, 4.34343434, 4.44444444, 4.54545455, 4.64646465, 4.74747475, 4.84848485, 4.94949495, 5.05050505, 5.15151515, 5.25252525, 5.35353535, 5.45454545, 5.55555556, 5.65656566, 5.75757576, 5.85858586, 5.95959596, 6.06060606, 6.16161616, 6.26262626, 6.36363636, 6.46464646, 6.56565657, 6.66666667, 6.76767677, 6.86868687, 6.96969697, 7.07070707, 7.17171717, 7.27272727, 7.37373737, 7.47474747, 7.57575758, 7.67676768, 7.77777778, 7.87878788, 7.97979798, 8.08080808, 8.18181818, 8.28282828, 8.38383838, 8.48484848, 8.58585859, 8.68686869, 8.78787879, 8.88888889, 8.98989899, 9.09090909, 9.19191919, 9.29292929, 9.39393939, 9.49494949, 9.5959596 , 9.6969697 , 9.7979798 , 9.8989899 , 10. ]) Cp = np.array([ 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.00248182, 0.0273 , 0.05211818, 0.07693636, 0.10175455, 0.12657273, 0.15139091, 0.17620909, 0.20102727, 0.22584545, 0.25066364, 0.27548182, 0.3003 , 0.32511818, 0.34993636, 0.37475455, 0.39957273, 0.42439091, 0.44920909, 0.47402727, 0.49884545, 0.52366364, 0.54848182, 0.5733 , 0.59811818, 0.62293636, 0.64775455, 0.67257273, 0.69739091, 0.72220909, 0.74702727, 0.77184545, 0.79666364, 0.82148182, 0.8463 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 , 0.86 ]) Ct = 0.4*np.ones((100)) #p = np.array([1.]) #N = len(p) #V = 1.*np.ones((ny,nx,N)) #U = 2.*np.ones((ny,nx,N)) #SSH = 3.0*np.ones((N)) #tide_matrix = {'V':V,'U':U,'p':p,'TI':TI,'x':x,'y':y,'SSH':SSH} # Performance curves are matched to the same veloity abscissae tidal_performance = {"Velocity": X, "Coefficient of Power": Cp, "Coefficient of Thrust": Ct} # Tidal time series n_bins = 6 time_points = 48 t = pd.date_range('1/1/2011', periods=time_points, freq='H') rv = norm() time_sin = np.sin(np.linspace(0, 4*np.pi, time_points)) time_scaled = time_sin * (1. / np.amax(time_sin)) xgrid, ygrid = np.meshgrid(x,y) pos = np.dstack((xgrid, ygrid)) rv = multivariate_normal([500., 150.], [[max(x)*5., max(y)*2.], [max(y)*2., max(x)*5.]]) u_max = 0. v_max = 6. ssh_max = 1. TI = 0.1 grid_pdf = rv.pdf(pos).T #u_scaled = grid_pdf * (u_max / np.amax(grid_pdf)) u_scaled = np.ones((nx, ny)) * u_max v_scaled = np.ones((nx, ny)) * v_max ssh_scaled = grid_pdf * (ssh_max / np.amax(grid_pdf)) u_arrays = [] v_arrays = [] ssh_arrays = [] for multiplier in time_scaled: u_arrays.append(np.abs(u_scaled * multiplier)) v_arrays.append(np.abs(v_scaled * multiplier)) ssh_arrays.append(ssh_scaled * multiplier) U = np.dstack(u_arrays) V = np.dstack(v_arrays) SSH = np.dstack(ssh_arrays) TI = np.ones(SSH.shape) * TI tidal_series_raw = {"values": {"U": U, "V": V, "SSH": SSH, "TI": TI}, "coords": [x, y, t]} xc = x[int(nx/2)] yc = y[int(ny/2)] tidal_point = (xc, yc) # Fixed array layout pos = [(450., 100.), (550., 100.), (450., 150.), (550., 150.)] FixedArrayLayout = np.array(pos) # Lease area is extended beyond bathymetry limits. lease_area = np.array([[50., 50.], [1050., 50.], [1050., 250.], [50., 250.]], dtype=float) power_law_exponent = np.array([7.]) nogo_areas = {"a": np.array([[50., 50.],[60., 50.],[60., 60.],[50., 60.]])} rated_array_power = 10 main_direction = None blockage_ratio = 1. turbine_hub_height = 20. user_array_option = 'User Defined Fixed' user_array_layout = FixedArrayLayout rotor_diam = 8. turbine_interdist = 20. min_install = -np.inf max_install = 0. min_dist_x = 40. min_dist_y = 40. bidirection = True rated_power_device = 1 yaw_angle = 0. cut_in = 1. cut_out = 5. op_threshold = 0. landing_point = (0.,0.) test_data = {'bathymetry.layers': strata, 'corridor.landing_point': landing_point, 'device.bidirection': bidirection, 'device.turbine_hub_height': turbine_hub_height, 'device.cut_in_velocity': cut_in, 'device.cut_out_velocity': cut_out, 'device.installation_depth_max': max_install, 'device.installation_depth_min': min_install, 'device.minimum_distance_x': min_dist_x, 'device.minimum_distance_y': min_dist_y, 'options.optimisation_threshold': op_threshold, 'device.power_rating': rated_power_device, 'device.turbine_diameter': rotor_diam, 'device.turbine_interdistance': turbine_interdist, 'device.turbine_performance': tidal_performance, 'device.yaw': yaw_angle, 'farm.blockage_ratio': blockage_ratio, 'bathymetry.mannings': geo_raw, 'site.lease_boundary': lease_area, 'project.main_direction': main_direction, 'farm.nogo_areas': nogo_areas, 'project.rated_power': rated_array_power, 'farm.tidal_series': tidal_series_raw, 'project.tidal_occurrence_nbins': n_bins, 'farm.tidal_occurrence_point': tidal_point, 'options.user_array_layout': user_array_layout, 'options.user_array_option': user_array_option} if __name__ == "__main__": from dtocean_core.utils.files import pickle_test_data file_path = os.path.abspath(__file__) pkl_path = pickle_test_data(file_path, test_data) print "generate test data: {}".format(pkl_path)
gpl-3.0
shangwuhencc/scikit-learn
sklearn/decomposition/tests/test_factor_analysis.py
222
3055
# Author: Christian Osendorfer <[email protected]> # Alexandre Gramfort <[email protected]> # Licence: BSD3 import numpy as np from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils import ConvergenceWarning from sklearn.decomposition import FactorAnalysis def test_factor_analysis(): # Test FactorAnalysis ability to recover the data covariance structure rng = np.random.RandomState(0) n_samples, n_features, n_components = 20, 5, 3 # Some random settings for the generative model W = rng.randn(n_components, n_features) # latent variable of dim 3, 20 of it h = rng.randn(n_samples, n_components) # using gamma to model different noise variance # per component noise = rng.gamma(1, size=n_features) * rng.randn(n_samples, n_features) # generate observations # wlog, mean is 0 X = np.dot(h, W) + noise assert_raises(ValueError, FactorAnalysis, svd_method='foo') fa_fail = FactorAnalysis() fa_fail.svd_method = 'foo' assert_raises(ValueError, fa_fail.fit, X) fas = [] for method in ['randomized', 'lapack']: fa = FactorAnalysis(n_components=n_components, svd_method=method) fa.fit(X) fas.append(fa) X_t = fa.transform(X) assert_equal(X_t.shape, (n_samples, n_components)) assert_almost_equal(fa.loglike_[-1], fa.score_samples(X).sum()) assert_almost_equal(fa.score_samples(X).mean(), fa.score(X)) diff = np.all(np.diff(fa.loglike_)) assert_greater(diff, 0., 'Log likelihood dif not increase') # Sample Covariance scov = np.cov(X, rowvar=0., bias=1.) # Model Covariance mcov = fa.get_covariance() diff = np.sum(np.abs(scov - mcov)) / W.size assert_less(diff, 0.1, "Mean absolute difference is %f" % diff) fa = FactorAnalysis(n_components=n_components, noise_variance_init=np.ones(n_features)) assert_raises(ValueError, fa.fit, X[:, :2]) f = lambda x, y: np.abs(getattr(x, y)) # sign will not be equal fa1, fa2 = fas for attr in ['loglike_', 'components_', 'noise_variance_']: assert_almost_equal(f(fa1, attr), f(fa2, attr)) fa1.max_iter = 1 fa1.verbose = True assert_warns(ConvergenceWarning, fa1.fit, X) # Test get_covariance and get_precision with n_components == n_features # with n_components < n_features and with n_components == 0 for n_components in [0, 2, X.shape[1]]: fa.n_components = n_components fa.fit(X) cov = fa.get_covariance() precision = fa.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1]), 12)
bsd-3-clause
sm-github/bzrflag
bzagents/plotPf.py
1
2132
#!/usr/bin/env python import matplotlib.pyplot as plt import numpy as np from pFields import Pfield class Tank(object): def __init__(self, x, y): self.x = x self.y = y self.flag = 'die' pass def limiter (value): if value < -10: return -10 if value > 10: return 10 return value if __name__ == '__main__': # 1 - red, 2 - green, 3 - blue, 4 - purple TARGET = '1' MAP_NAME = '../maps/four_ls.bzw' #MAP_NAME = '../maps/rotated_box_world.bzw' pFields = Pfield('3', MAP_NAME) fig = plt.figure() ax = fig.add_subplot(111) ax.axis([-400,400,-400,400]) # generate grid x=np.linspace(-400, 400, 30) y=np.linspace(-400, 400, 30) # x, y=np.meshgrid(x, y) base = pFields.bases[TARGET] ''' # plot attractive field for r in range(0, len(x)): for c in range(0, len(y)): tank = Tank(x[r], y[c]) newX, newY = pFields.attractive(tank, base) ax.arrow(x[r], y[c], limiter(newX), limiter(newY), head_width=4, head_length=6) ''' circ = plt.Circle((base.x, base.y), base.r, fc='r') plt.gca().add_patch(circ) #plot repulsive or tangential field for r in range(0, len(x)): for c in range(0, len(y)): tank = Tank(x[r], y[c]) #newX, newY = pFields.attractive(tank, base) newX, newY = pFields.repulsive(tank, base) ax.arrow(x[r], y[c], limiter(newX), limiter(newY), head_width=4, head_length=6) for o in pFields.obstacles: plt.gca().add_patch(plt.Circle((o.x, o.y), o.r, fc='g')) ''' #plot the combined fields for r in range(0, len(x)): for c in range(0, len(y)): tank = Tank(x[r], y[c]) newX, newY = pFields.attractive(tank, base) repX, repY = pFields.repulsive(tank, base) ax.arrow(x[r], y[c], limiter(newX+ repX), limiter(newY + repY), head_width=4, head_length=6) ''' ax.set_xlabel('x') ax.set_ylabel('y') plt.show() plt.savefig('./plots/attrField.png')
gpl-3.0
selective-inference/selective-inference
sandbox/randomized_tests/test_estimation.py
3
3969
from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from selection.tests.instance import gaussian_instance def test_MSE(signal=1, n=100, p=10, s=1): ninstance = 1 total_mse = 0 nvalid_instance = 0 data_instance = gaussian_instance(n, p, s, signal) tau = 1. for i in range(ninstance): X, y, true_beta, nonzero, sigma = gaussian_instance(n=n, p=p, s=s, signal=signal) random_Z = np.random.standard_normal(p) lam, epsilon, active, betaE, cube, initial_soln = selection(X, y, random_Z) # selection not defined -- is in a file that was deleted print("active set", np.where(active)[0]) if lam < 0: print("no active covariates") else: est = estimation(X, y, active, betaE, cube, epsilon, lam, sigma, tau) est.compute_mle_all() mse_mle = est.mse_mle(true_beta[active]) print("MLE", est.mle) total_mse += mse_mle nvalid_instance += np.sum(active) return np.true_divide(total_mse, nvalid_instance) def MSE_three(signal=5, n=100, p=10, s=0): ninstance = 5 total_mse_mle, total_mse_unbiased, total_mse_umvu = 0, 0, 0 nvalid_instance = 0 data_instance = instance(n, p, s, signal) tau = 1. for i in range(ninstance): X, y, true_beta, nonzero, sigma = data_instance.generate_response() random_Z = np.random.standard_normal(p) lam, epsilon, active, betaE, cube, initial_soln = selection(X, y, random_Z) # selection not defined -- is in a file that was deleted if lam < 0: print("no active covariates") else: est = umvu(X, y, active, betaE, cube, epsilon, lam, sigma, tau) est.compute_unbiased_all() true_vec = true_beta[active] print("true vector", true_vec) print("MLE", est.mle, "Unbiased", est.unbiased, "UMVU", est.umvu) total_mse_mle += est.mse_mle(true_vec) mse = est.mse_unbiased(true_vec) total_mse_unbiased += mse[0] total_mse_umvu += mse[1] nvalid_instance +=np.sum(active) if nvalid_instance > 0: return total_mse_mle/float(nvalid_instance), total_mse_unbiased/float(nvalid_instance), total_mse_umvu/float(nvalid_instance) def plot_estimation_three(): signal_seq = np.linspace(-10, 10, num=50) filter = np.zeros(signal_seq.shape[0], dtype=bool) mse_mle_seq, mse_unbiased_seq, mse_umvu_seq = [], [], [] for i in range(signal_seq.shape[0]): print("parameter value", signal_seq[i]) mse = MSE_three(signal_seq[i]) if mse is not None: mse_mle, mse_unbiased, mse_umvu = mse mse_mle_seq.append(mse_mle) mse_unbiased_seq.append(mse_unbiased) mse_umvu_seq.append(mse_umvu) filter[i] = True plt.clf() plt.title("MSE") fig, ax = plt.subplots() ax.plot(signal_seq[filter], mse_mle_seq, label = "MLE", linestyle=':', marker='o') ax.plot(signal_seq[filter], mse_unbiased_seq, label = "Unbiased") ax.plot(signal_seq[filter], mse_umvu_seq, label ="UMVU") legend = ax.legend(loc='upper center', shadow=True) frame = legend.get_frame() frame.set_facecolor('0.90') for label in legend.get_texts(): label.set_fontsize('large') for label in legend.get_lines(): label.set_linewidth(1.5) # the legend line width plt.pause(0.01) plt.savefig("MSE") def make_a_plot(plot=False): signal_seq = np.linspace(-10, 10, num=20) mse_seq = [] for i in range(signal_seq.shape[0]): print("parameter value", signal_seq[i]) mse = MSE(signal_seq[i]) print("MSE", mse) mse_seq.append(mse) if plot: import matplotlib.pyplot as plt plt.clf() plt.title("MSE") plt.plot(signal_seq, mse_seq) plt.pause(0.01) plt.savefig("MSE")
bsd-3-clause
equialgo/scikit-learn
sklearn/linear_model/tests/test_bayes.py
14
2640
# Author: Alexandre Gramfort <[email protected]> # Fabian Pedregosa <[email protected]> # # License: BSD 3 clause import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import SkipTest from sklearn.linear_model.bayes import BayesianRidge, ARDRegression from sklearn import datasets from sklearn.utils.testing import assert_array_almost_equal def test_bayesian_on_diabetes(): # Test BayesianRidge on diabetes raise SkipTest("XFailed Test") diabetes = datasets.load_diabetes() X, y = diabetes.data, diabetes.target clf = BayesianRidge(compute_score=True) # Test with more samples than features clf.fit(X, y) # Test that scores are increasing at each iteration assert_array_equal(np.diff(clf.scores_) > 0, True) # Test with more features than samples X = X[:5, :] y = y[:5] clf.fit(X, y) # Test that scores are increasing at each iteration assert_array_equal(np.diff(clf.scores_) > 0, True) def test_toy_bayesian_ridge_object(): # Test BayesianRidge on toy X = np.array([[1], [2], [6], [8], [10]]) Y = np.array([1, 2, 6, 8, 10]) clf = BayesianRidge(compute_score=True) clf.fit(X, Y) # Check that the model could approximately learn the identity function test = [[1], [3], [4]] assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2) def test_toy_ard_object(): # Test BayesianRegression ARD classifier X = np.array([[1], [2], [3]]) Y = np.array([1, 2, 3]) clf = ARDRegression(compute_score=True) clf.fit(X, Y) # Check that the model could approximately learn the identity function test = [[1], [3], [4]] assert_array_almost_equal(clf.predict(test), [1, 3, 4], 2) def test_return_std(): # Test return_std option for both Bayesian regressors def f(X): return np.dot(X, w) + b def f_noise(X, noise_mult): return f(X) + np.random.randn(X.shape[0])*noise_mult d = 5 n_train = 50 n_test = 10 w = np.array([1.0, 0.0, 1.0, -1.0, 0.0]) b = 1.0 X = np.random.random((n_train, d)) X_test = np.random.random((n_test, d)) for decimal, noise_mult in enumerate([1, 0.1, 0.01]): y = f_noise(X, noise_mult) m1 = BayesianRidge() m1.fit(X, y) y_mean1, y_std1 = m1.predict(X_test, return_std=True) assert_array_almost_equal(y_std1, noise_mult, decimal=decimal) m2 = ARDRegression() m2.fit(X, y) y_mean2, y_std2 = m2.predict(X_test, return_std=True) assert_array_almost_equal(y_std2, noise_mult, decimal=decimal)
bsd-3-clause
jefffohl/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/delaunay/testfuncs.py
72
20890
"""Some test functions for bivariate interpolation. Most of these have been yoinked from ACM TOMS 792. http://netlib.org/toms/792 """ import numpy as np from triangulate import Triangulation class TestData(dict): def __init__(self, *args, **kwds): dict.__init__(self, *args, **kwds) self.__dict__ = self class TestDataSet(object): def __init__(self, **kwds): self.__dict__.update(kwds) data = TestData( franke100=TestDataSet( x=np.array([ 0.0227035, 0.0539888, 0.0217008, 0.0175129, 0.0019029, -0.0509685, 0.0395408, -0.0487061, 0.0315828, -0.0418785, 0.1324189, 0.1090271, 0.1254439, 0.093454 , 0.0767578, 0.1451874, 0.0626494, 0.1452734, 0.0958668, 0.0695559, 0.2645602, 0.2391645, 0.208899 , 0.2767329, 0.1714726, 0.2266781, 0.1909212, 0.1867647, 0.2304634, 0.2426219, 0.3663168, 0.3857662, 0.3832392, 0.3179087, 0.3466321, 0.3776591, 0.3873159, 0.3812917, 0.3795364, 0.2803515, 0.4149771, 0.4277679, 0.420001 , 0.4663631, 0.4855658, 0.4092026, 0.4792578, 0.4812279, 0.3977761, 0.4027321, 0.5848691, 0.5730076, 0.6063893, 0.5013894, 0.5741311, 0.6106955, 0.5990105, 0.5380621, 0.6096967, 0.5026188, 0.6616928, 0.6427836, 0.6396475, 0.6703963, 0.7001181, 0.633359 , 0.6908947, 0.6895638, 0.6718889, 0.6837675, 0.7736939, 0.7635332, 0.7410424, 0.8258981, 0.7306034, 0.8086609, 0.8214531, 0.729064 , 0.8076643, 0.8170951, 0.8424572, 0.8684053, 0.8366923, 0.9418461, 0.8478122, 0.8599583, 0.91757 , 0.8596328, 0.9279871, 0.8512805, 1.044982 , 0.9670631, 0.9857884, 0.9676313, 1.0129299, 0.965704 , 1.0019855, 1.0359297, 1.0414677, 0.9471506]), y=np.array([-0.0310206, 0.1586742, 0.2576924, 0.3414014, 0.4943596, 0.5782854, 0.6993418, 0.7470194, 0.9107649, 0.996289 , 0.050133 , 0.0918555, 0.2592973, 0.3381592, 0.4171125, 0.5615563, 0.6552235, 0.7524066, 0.9146523, 0.9632421, 0.0292939, 0.0602303, 0.2668783, 0.3696044, 0.4801738, 0.5940595, 0.6878797, 0.8185576, 0.9046507, 0.9805412, 0.0396955, 0.0684484, 0.2389548, 0.3124129, 0.4902989, 0.5199303, 0.6445227, 0.8203789, 0.8938079, 0.9711719, -0.0284618, 0.1560965, 0.2262471, 0.3175094, 0.3891417, 0.5084949, 0.6324247, 0.7511007, 0.8489712, 0.9978728, -0.0271948, 0.127243 , 0.2709269, 0.3477728, 0.4259422, 0.6084711, 0.6733781, 0.7235242, 0.9242411, 1.0308762, 0.0255959, 0.0707835, 0.2008336, 0.3259843, 0.4890704, 0.5096324, 0.669788 , 0.7759569, 0.9366096, 1.0064516, 0.0285374, 0.1021403, 0.1936581, 0.3235775, 0.4714228, 0.6091595, 0.6685053, 0.8022808, 0.847679 , 1.0512371, 0.0380499, 0.0902048, 0.2083092, 0.3318491, 0.4335632, 0.5910139, 0.6307383, 0.8144841, 0.904231 , 0.969603 , -0.01209 , 0.1334114, 0.2695844, 0.3795281, 0.4396054, 0.5044425, 0.6941519, 0.7459923, 0.8682081, 0.9801409])), franke33=TestDataSet( x=np.array([ 5.00000000e-02, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.00000000e-01, 1.00000000e-01, 1.50000000e-01, 2.00000000e-01, 2.50000000e-01, 3.00000000e-01, 3.50000000e-01, 5.00000000e-01, 5.00000000e-01, 5.50000000e-01, 6.00000000e-01, 6.00000000e-01, 6.00000000e-01, 6.50000000e-01, 7.00000000e-01, 7.00000000e-01, 7.00000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 8.00000000e-01, 8.00000000e-01, 8.50000000e-01, 9.00000000e-01, 9.00000000e-01, 9.50000000e-01, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00]), y=np.array([ 4.50000000e-01, 5.00000000e-01, 1.00000000e+00, 0.00000000e+00, 1.50000000e-01, 7.50000000e-01, 3.00000000e-01, 1.00000000e-01, 2.00000000e-01, 3.50000000e-01, 8.50000000e-01, 0.00000000e+00, 1.00000000e+00, 9.50000000e-01, 2.50000000e-01, 6.50000000e-01, 8.50000000e-01, 7.00000000e-01, 2.00000000e-01, 6.50000000e-01, 9.00000000e-01, 1.00000000e-01, 3.50000000e-01, 8.50000000e-01, 4.00000000e-01, 6.50000000e-01, 2.50000000e-01, 3.50000000e-01, 8.00000000e-01, 9.00000000e-01, 0.00000000e+00, 5.00000000e-01, 1.00000000e+00])), lawson25=TestDataSet( x=np.array([ 0.1375, 0.9125, 0.7125, 0.225 , -0.05 , 0.475 , 0.05 , 0.45 , 1.0875, 0.5375, -0.0375, 0.1875, 0.7125, 0.85 , 0.7 , 0.275 , 0.45 , 0.8125, 0.45 , 1. , 0.5 , 0.1875, 0.5875, 1.05 , 0.1 ]), y=np.array([ 0.975 , 0.9875 , 0.7625 , 0.8375 , 0.4125 , 0.6375 , -0.05 , 1.0375 , 0.55 , 0.8 , 0.75 , 0.575 , 0.55 , 0.4375 , 0.3125 , 0.425 , 0.2875 , 0.1875 , -0.0375 , 0.2625 , 0.4625 , 0.2625 , 0.125 , -0.06125, 0.1125 ])), random100=TestDataSet( x=np.array([ 0.0096326, 0.0216348, 0.029836 , 0.0417447, 0.0470462, 0.0562965, 0.0646857, 0.0740377, 0.0873907, 0.0934832, 0.1032216, 0.1110176, 0.1181193, 0.1251704, 0.132733 , 0.1439536, 0.1564861, 0.1651043, 0.1786039, 0.1886405, 0.2016706, 0.2099886, 0.2147003, 0.2204141, 0.2343715, 0.240966 , 0.252774 , 0.2570839, 0.2733365, 0.2853833, 0.2901755, 0.2964854, 0.3019725, 0.3125695, 0.3307163, 0.3378504, 0.3439061, 0.3529922, 0.3635507, 0.3766172, 0.3822429, 0.3869838, 0.3973137, 0.4170708, 0.4255588, 0.4299218, 0.4372839, 0.4705033, 0.4736655, 0.4879299, 0.494026 , 0.5055324, 0.5162593, 0.5219219, 0.5348529, 0.5483213, 0.5569571, 0.5638611, 0.5784908, 0.586395 , 0.5929148, 0.5987839, 0.6117561, 0.6252296, 0.6331381, 0.6399048, 0.6488972, 0.6558537, 0.6677405, 0.6814074, 0.6887812, 0.6940896, 0.7061687, 0.7160957, 0.7317445, 0.7370798, 0.746203 , 0.7566957, 0.7699998, 0.7879347, 0.7944014, 0.8164468, 0.8192794, 0.8368405, 0.8500993, 0.8588255, 0.8646496, 0.8792329, 0.8837536, 0.8900077, 0.8969894, 0.9044917, 0.9083947, 0.9203972, 0.9347906, 0.9434519, 0.9490328, 0.9569571, 0.9772067, 0.9983493]), y=np.array([ 0.3083158, 0.2450434, 0.8613847, 0.0977864, 0.3648355, 0.7156339, 0.5311312, 0.9755672, 0.1781117, 0.5452797, 0.1603881, 0.7837139, 0.9982015, 0.6910589, 0.104958 , 0.8184662, 0.7086405, 0.4456593, 0.1178342, 0.3189021, 0.9668446, 0.7571834, 0.2016598, 0.3232444, 0.4368583, 0.8907869, 0.064726 , 0.5692618, 0.2947027, 0.4332426, 0.3347464, 0.7436284, 0.1066265, 0.8845357, 0.515873 , 0.9425637, 0.4799701, 0.1783069, 0.114676 , 0.8225797, 0.2270688, 0.4073598, 0.887508 , 0.7631616, 0.9972804, 0.4959884, 0.3410421, 0.249812 , 0.6409007, 0.105869 , 0.5411969, 0.0089792, 0.8784268, 0.5515874, 0.4038952, 0.1654023, 0.2965158, 0.3660356, 0.0366554, 0.950242 , 0.2638101, 0.9277386, 0.5377694, 0.7374676, 0.4674627, 0.9186109, 0.0416884, 0.1291029, 0.6763676, 0.8444238, 0.3273328, 0.1893879, 0.0645923, 0.0180147, 0.8904992, 0.4160648, 0.4688995, 0.2174508, 0.5734231, 0.8853319, 0.8018436, 0.6388941, 0.8931002, 0.1000558, 0.2789506, 0.9082948, 0.3259159, 0.8318747, 0.0508513, 0.970845 , 0.5120548, 0.2859716, 0.9581641, 0.6183429, 0.3779934, 0.4010423, 0.9478657, 0.7425486, 0.8883287, 0.549675 ])), uniform9=TestDataSet( x=np.array([ 1.25000000e-01, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 1.25000000e-01, 1.25000000e-01, 1.25000000e-01, 1.25000000e-01, 1.25000000e-01, 1.25000000e-01, 1.25000000e-01, 1.25000000e-01, 2.50000000e-01, 2.50000000e-01, 2.50000000e-01, 2.50000000e-01, 2.50000000e-01, 2.50000000e-01, 2.50000000e-01, 2.50000000e-01, 2.50000000e-01, 3.75000000e-01, 3.75000000e-01, 3.75000000e-01, 3.75000000e-01, 3.75000000e-01, 3.75000000e-01, 3.75000000e-01, 3.75000000e-01, 3.75000000e-01, 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, 5.00000000e-01, 6.25000000e-01, 6.25000000e-01, 6.25000000e-01, 6.25000000e-01, 6.25000000e-01, 6.25000000e-01, 6.25000000e-01, 6.25000000e-01, 6.25000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 7.50000000e-01, 8.75000000e-01, 8.75000000e-01, 8.75000000e-01, 8.75000000e-01, 8.75000000e-01, 8.75000000e-01, 8.75000000e-01, 8.75000000e-01, 8.75000000e-01, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00, 1.00000000e+00]), y=np.array([ 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00, 0.00000000e+00, 1.25000000e-01, 2.50000000e-01, 3.75000000e-01, 5.00000000e-01, 6.25000000e-01, 7.50000000e-01, 8.75000000e-01, 1.00000000e+00])), ) def constant(x, y): return np.ones(x.shape, x.dtype) constant.title = 'Constant' def xramp(x, y): return x xramp.title = 'X Ramp' def yramp(x, y): return y yramp.title = 'Y Ramp' def exponential(x, y): x = x*9 y = y*9 x1 = x+1.0 x2 = x-2.0 x4 = x-4.0 x7 = x-7.0 y1 = x+1.0 y2 = y-2.0 y3 = y-3.0 y7 = y-7.0 f = (0.75 * np.exp(-(x2*x2+y2*y2)/4.0) + 0.75 * np.exp(-x1*x1/49.0 - y1/10.0) + 0.5 * np.exp(-(x7*x7 + y3*y3)/4.0) - 0.2 * np.exp(-x4*x4 -y7*y7)) return f exponential.title = 'Exponential and Some Gaussians' def cliff(x, y): f = np.tanh(9.0*(y-x) + 1.0)/9.0 return f cliff.title = 'Cliff' def saddle(x, y): f = (1.25 + np.cos(5.4*y))/(6.0 + 6.0*(3*x-1.0)**2) return f saddle.title = 'Saddle' def gentle(x, y): f = np.exp(-5.0625*((x-0.5)**2+(y-0.5)**2))/3.0 return f gentle.title = 'Gentle Peak' def steep(x, y): f = np.exp(-20.25*((x-0.5)**2+(y-0.5)**2))/3.0 return f steep.title = 'Steep Peak' def sphere(x, y): circle = 64-81*((x-0.5)**2 + (y-0.5)**2) f = np.where(circle >= 0, np.sqrt(np.clip(circle,0,100)) - 0.5, 0.0) return f sphere.title = 'Sphere' def trig(x, y): f = 2.0*np.cos(10.0*x)*np.sin(10.0*y) + np.sin(10.0*x*y) return f trig.title = 'Cosines and Sines' def gauss(x, y): x = 5.0-10.0*x y = 5.0-10.0*y g1 = np.exp(-x*x/2) g2 = np.exp(-y*y/2) f = g1 + 0.75*g2*(1 + g1) return f gauss.title = 'Gaussian Peak and Gaussian Ridges' def cloverleaf(x, y): ex = np.exp((10.0-20.0*x)/3.0) ey = np.exp((10.0-20.0*y)/3.0) logitx = 1.0/(1.0+ex) logity = 1.0/(1.0+ey) f = (((20.0/3.0)**3 * ex*ey)**2 * (logitx*logity)**5 * (ex-2.0*logitx)*(ey-2.0*logity)) return f cloverleaf.title = 'Cloverleaf' def cosine_peak(x, y): circle = np.hypot(80*x-40.0, 90*y-45.) f = np.exp(-0.04*circle) * np.cos(0.15*circle) return f cosine_peak.title = 'Cosine Peak' allfuncs = [exponential, cliff, saddle, gentle, steep, sphere, trig, gauss, cloverleaf, cosine_peak] class LinearTester(object): name = 'Linear' def __init__(self, xrange=(0.0, 1.0), yrange=(0.0, 1.0), nrange=101, npoints=250): self.xrange = xrange self.yrange = yrange self.nrange = nrange self.npoints = npoints rng = np.random.RandomState(1234567890) self.x = rng.uniform(xrange[0], xrange[1], size=npoints) self.y = rng.uniform(yrange[0], yrange[1], size=npoints) self.tri = Triangulation(self.x, self.y) def replace_data(self, dataset): self.x = dataset.x self.y = dataset.y self.tri = Triangulation(self.x, self.y) def interpolator(self, func): z = func(self.x, self.y) return self.tri.linear_extrapolator(z, bbox=self.xrange+self.yrange) def plot(self, func, interp=True, plotter='imshow'): import matplotlib as mpl from matplotlib import pylab as pl if interp: lpi = self.interpolator(func) z = lpi[self.yrange[0]:self.yrange[1]:complex(0,self.nrange), self.xrange[0]:self.xrange[1]:complex(0,self.nrange)] else: y, x = np.mgrid[self.yrange[0]:self.yrange[1]:complex(0,self.nrange), self.xrange[0]:self.xrange[1]:complex(0,self.nrange)] z = func(x, y) z = np.where(np.isinf(z), 0.0, z) extent = (self.xrange[0], self.xrange[1], self.yrange[0], self.yrange[1]) pl.ioff() pl.clf() pl.hot() # Some like it hot if plotter == 'imshow': pl.imshow(np.nan_to_num(z), interpolation='nearest', extent=extent, origin='lower') elif plotter == 'contour': Y, X = np.ogrid[self.yrange[0]:self.yrange[1]:complex(0,self.nrange), self.xrange[0]:self.xrange[1]:complex(0,self.nrange)] pl.contour(np.ravel(X), np.ravel(Y), z, 20) x = self.x y = self.y lc = mpl.collections.LineCollection(np.array([((x[i], y[i]), (x[j], y[j])) for i, j in self.tri.edge_db]), colors=[(0,0,0,0.2)]) ax = pl.gca() ax.add_collection(lc) if interp: title = '%s Interpolant' % self.name else: title = 'Reference' if hasattr(func, 'title'): pl.title('%s: %s' % (func.title, title)) else: pl.title(title) pl.show() pl.ion() class NNTester(LinearTester): name = 'Natural Neighbors' def interpolator(self, func): z = func(self.x, self.y) return self.tri.nn_extrapolator(z, bbox=self.xrange+self.yrange) def plotallfuncs(allfuncs=allfuncs): from matplotlib import pylab as pl pl.ioff() nnt = NNTester(npoints=1000) lpt = LinearTester(npoints=1000) for func in allfuncs: print func.title nnt.plot(func, interp=False, plotter='imshow') pl.savefig('%s-ref-img.png' % func.func_name) nnt.plot(func, interp=True, plotter='imshow') pl.savefig('%s-nn-img.png' % func.func_name) lpt.plot(func, interp=True, plotter='imshow') pl.savefig('%s-lin-img.png' % func.func_name) nnt.plot(func, interp=False, plotter='contour') pl.savefig('%s-ref-con.png' % func.func_name) nnt.plot(func, interp=True, plotter='contour') pl.savefig('%s-nn-con.png' % func.func_name) lpt.plot(func, interp=True, plotter='contour') pl.savefig('%s-lin-con.png' % func.func_name) pl.ion() def plot_dt(tri, colors=None): import matplotlib as mpl from matplotlib import pylab as pl if colors is None: colors = [(0,0,0,0.2)] lc = mpl.collections.LineCollection(np.array([((tri.x[i], tri.y[i]), (tri.x[j], tri.y[j])) for i, j in tri.edge_db]), colors=colors) ax = pl.gca() ax.add_collection(lc) pl.draw_if_interactive() def plot_vo(tri, colors=None): import matplotlib as mpl from matplotlib import pylab as pl if colors is None: colors = [(0,1,0,0.2)] lc = mpl.collections.LineCollection(np.array( [(tri.circumcenters[i], tri.circumcenters[j]) for i in xrange(len(tri.circumcenters)) for j in tri.triangle_neighbors[i] if j != -1]), colors=colors) ax = pl.gca() ax.add_collection(lc) pl.draw_if_interactive() def plot_cc(tri, edgecolor=None): import matplotlib as mpl from matplotlib import pylab as pl if edgecolor is None: edgecolor = (0,0,1,0.2) dxy = (np.array([(tri.x[i], tri.y[i]) for i,j,k in tri.triangle_nodes]) - tri.circumcenters) r = np.hypot(dxy[:,0], dxy[:,1]) ax = pl.gca() for i in xrange(len(r)): p = mpl.patches.Circle(tri.circumcenters[i], r[i], resolution=100, edgecolor=edgecolor, facecolor=(1,1,1,0), linewidth=0.2) ax.add_patch(p) pl.draw_if_interactive() def quality(func, mesh, interpolator='nn', n=33): """Compute a quality factor (the quantity r**2 from TOMS792). interpolator must be in ('linear', 'nn'). """ fz = func(mesh.x, mesh.y) tri = Triangulation(mesh.x, mesh.y) intp = getattr(tri, interpolator+'_extrapolator')(fz, bbox=(0.,1.,0.,1.)) Y, X = np.mgrid[0:1:complex(0,n),0:1:complex(0,n)] Z = func(X, Y) iz = intp[0:1:complex(0,n),0:1:complex(0,n)] #nans = np.isnan(iz) #numgood = n*n - np.sum(np.array(nans.flat, np.int32)) numgood = n*n SE = (Z - iz)**2 SSE = np.sum(SE.flat) meanZ = np.sum(Z.flat) / numgood SM = (Z - meanZ)**2 SSM = np.sum(SM.flat) r2 = 1.0 - SSE/SSM print func.func_name, r2, SSE, SSM, numgood return r2 def allquality(interpolator='nn', allfuncs=allfuncs, data=data, n=33): results = {} kv = data.items() kv.sort() for name, mesh in kv: reslist = results.setdefault(name, []) for func in allfuncs: reslist.append(quality(func, mesh, interpolator, n)) return results def funky(): x0 = np.array([0.25, 0.3, 0.5, 0.6, 0.6]) y0 = np.array([0.2, 0.35, 0.0, 0.25, 0.65]) tx = 0.46 ty = 0.23 t0 = Triangulation(x0, y0) t1 = Triangulation(np.hstack((x0, [tx])), np.hstack((y0, [ty]))) return t0, t1
gpl-3.0
HBNLdev/DataStore
db/quest_retrieval.py
1
8759
''' tools for downloading questionnaire data from the zork website onto the HBNL filesystem ''' import os import shutil import zipfile from glob import glob from time import sleep import pandas as pd import requests from sas7bdat import SAS7BDAT from .knowledge.questionnaires import base_url, map_ph4, map_ph4_ssaga, map_subject, ach_url # combine maps for future usage all_kmap = map_ph4.copy() all_kmap.update(map_ph4_ssaga) all_kmap.update(map_subject) all_ph4_kmap = map_ph4.copy() all_ph4_kmap.update(map_ph4_ssaga) # achenbach specific info ach_url_parts = ach_url.split(os.path.sep) ach_currentname = os.path.splitext(ach_url_parts[-1])[0] ach_currentname_spaces = ach_currentname.replace('%20', ' ') ach_currentname_nospaces = ach_currentname.replace('%20', '') def sasdir_tocsv(target_dir): ''' convert a directory filled with *.sas7bdat files to *.csv ''' sas_files = glob(target_dir + '*.sas7bdat') for sf in sas_files: sf_contents = SAS7BDAT(sf) sf_df = sf_contents.to_data_frame() sf_df.to_csv(sf + '.csv', index=False) def recursive_unzip(path): ''' given a path, recursively unzip all files within ''' # unzip files in their directories for roots, dirs, files in os.walk(path): for name in files: if name.endswith('.zip'): zipfile.ZipFile(os.path.join(roots, name)).extractall(os.path.join(roots)) print('Unzipping ' + '||' + name + '||') def zork_retrieval(user_name, password, distro_num, target_base_dir='/processed_data/zork'): ''' given a username, password, phase 4 distribution #, downloads most recent distribution of questionnaire data to a target base directory. will nest files into the correct subdirs. ''' # convert distro_num to string (if not string) distro_num = str(distro_num) distro_subdir = 'zork-phase4-' + distro_num path = os.path.join(target_base_dir, distro_subdir) succeeded = zork_download(target_base_dir, distro_subdir, user_name, password) if not succeeded: print('a download failed, aborting retrieval.') return False zork_move(target_base_dir, distro_subdir) recursive_unzip(path) zork_convert(path) aeq_dir = os.path.join(target_base_dir, distro_subdir, 'session', 'aeq') + '/' aeq_patch_dict = prepare_patchdict(aeq_dir, ['aeqa4', 'aeq4'], ['aeqascore4', 'aeqscore4']) patch(aeq_patch_dict) sensation_dir = os.path.join(target_base_dir, distro_subdir, 'session', 'sensation') + '/' sensation_patch_dict = prepare_patchdict(sensation_dir, ['ssv4'], ['ssvscore4']) patch(sensation_patch_dict) return True def zork_download(target_base_dir, distro_subdir, user_name, password): ''' downloads zork zips and places them into appropriate directories''' # create full urls from dictionary url_lst = [] for quest, quest_info in all_kmap.items(): url_lst.append(base_url + quest_info['zork_url']) # create subject and session directories for name in 'session', 'subject': new_folder = os.path.join(target_base_dir, distro_subdir, name) if not os.path.exists(new_folder): os.makedirs(new_folder) # log in and download zip files for url in url_lst: try: download = requests.get(url, auth=(user_name, password)) except: print('download failed:', url) return False sleep(3) # pause for a few seconds to give the server a break # error check -- if url doesnt exist then print missing zip??? zip_name = url.split('/')[-1] with open(os.path.join(target_base_dir, distro_subdir, zip_name), 'wb') as zip_pointer: zip_pointer.write(download.content) print('Downloading ' + '||' + zip_name + '||') return True def zork_move(target_base_dir, distro_subdir): ''' creates directories and moves zork zips around ''' # moves zip files to subject or session directory path = os.path.join(target_base_dir, distro_subdir) for file in os.listdir(path): # all phase 4 questionnaires belong in the "session" subdirectory for quest, quest_info in all_ph4_kmap.items(): if file.startswith(quest_info['zip_name']): shutil.move(os.path.join(path, file), os.path.join(path, 'session')) # all subject questionnaires beloing in the "subject" subdirectory os.chdir(os.path.join(path, 'subject')) for quest, quest_info in map_subject.items(): if file.startswith(quest_info['zip_name']): shutil.move(os.path.join(path, file), os.path.join(path, 'subject')) # create subdirectories named after questionnaires for file in os.listdir(os.path.join(path, 'session')): for quest, quest_info in all_ph4_kmap.items(): if file.startswith(quest_info['zip_name']): if not os.path.exists(os.path.join(path, 'session', quest)): os.makedirs(os.path.join(path, 'session', quest)) shutil.move(os.path.join(path, 'session', file), os.path.join(path, 'session', quest, file)) for file in os.listdir(os.path.join(path, 'subject')): for quest, quest_info in map_subject.items(): if file.startswith(quest_info['zip_name']): if not os.path.exists(os.path.join(path, 'subject', quest)): os.makedirs(os.path.join(path, 'subject', quest)) shutil.move(os.path.join(path, 'subject', file), os.path.join(path, 'subject', quest, file)) def zork_convert(path): ''' convert all .sas7bdat files within path to csvs and handle some exceptions unique to zork stuff ''' # create csvs, remove zips for roots, dirs, files in os.walk(path): for name in dirs: # for achenbach, zips nested in folder with spaces in name, so we have to rename it and move them up if name == 'achenbach': try: old_name = os.path.join(roots, name, ach_currentname_spaces) new_name = os.path.join(roots, name, ach_currentname_nospaces) os.rename(old_name, new_name) for file in os.listdir(new_name): shutil.move(os.path.join(roots, name, ach_currentname_nospaces, file), os.path.join(roots, name, file)) os.rmdir(os.path.join(roots, name, ach_currentname_nospaces)) except: print('problem with renaming achenbach') try: sasdir_tocsv(os.path.join(roots, name) + '/') print('Creating csvs for ' + '||' + name + '||') except: print('problem with converting for', name) for name in files: if name.endswith('.zip'): os.remove(os.path.join(roots, name)) def prepare_patchdict(target_dir, date_file_pfixes, score_file_pfixes, file_ext='.sas7bdat.csv', max_fups=5): fp_infolder = glob(target_dir + '*' + file_ext) # print(fp_infolder) tojoin_dict = {} for fpfix_date, fpfix_score in zip(date_file_pfixes, score_file_pfixes): for fup in range(max_fups + 1): if fup == 0: f_suff = file_ext else: f_suff = '_f' + str(fup) + file_ext fp_date = target_dir + fpfix_date + f_suff fp_score = target_dir + fpfix_score + f_suff # print(fp_date, fp_score) if fp_date in fp_infolder and fp_score in fp_infolder: tojoin_dict[fp_date] = fp_score return tojoin_dict def patch(patch_dict, date_cols=['ADM_Y', 'ADM_M', 'ADM_D']): ''' given a patching dictionary in which keys are CSVs containing date_cols, and values are row-length-matching CSVs without date_cols, join the date_cols of the former to the latter ''' for dp, np in patch_dict.items(): try: date_df = pd.read_csv(dp) nodate_df = pd.read_csv(np) if date_df.shape[0] == nodate_df.shape[0]: try: patched_df = nodate_df.join(date_df[date_cols]) except KeyError: print(dp, 'lacked date columns') continue print('success: overwriting', np) patched_df.to_csv(np, index=False) except pd.io.parsers.EmptyDataError: print(dp, 'or', np, 'was empty')
gpl-3.0
jeffschulte/protein
pyplots/time_map.py
2
1716
from __future__ import division import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import file_loader as load import sys import math import re # WIP def gaussian_smear(data,wavelength): new = np.zeros_like(data) N_A = 1.3 sigma = .21*wavelength/N_A #n_sin_theta can reach 1.4 to 1.6 in modern optics according to wikipedia print "new way sigma ",sigma dis = int(3*sigma/0.05) #for now for x in range(new.shape[0]): for y in range(new.shape[1]): for i in np.arange(-dis,dis,1): for j in np.arange(-dis,dis,1): if (x+i >= 0 and x+i < new.shape[0]-1 and y+j >= 0 and y+j < new.shape[1]-1): new[x+i,y+j] += data[x,y]*math.exp( -(i*i+j*j)*.05*.05/2.0/sigma/sigma ) return new proteinList = ['NflD'] for protein in proteinList: job_string = "data/shape-%s/%s-%s-%s-%s-%s-%s/" % (load.f_shape,load.f_param1,load.f_param2, load.f_param3,load.f_param4,load.f_param5,load.sim_type) p = re.compile('[.]') job_string = p.sub('_',job_string) data_filename = job_string + protein + '/' + 'time-map.dat' data_file = np.loadtxt(data_filename) print "starting time_map.p for ",data_filename data = gaussian_smear(data_file,.509) timemax = np.max(data) plt.figure() plt.pcolormesh(data,vmin=0) plt.axes().set_aspect('equal') plt.xlim(0,data.shape[1]) plt.ylim(0,data.shape[0]) plt.xlabel("Z grid position") plt.ylabel("Y grid position") plt.title("Time averaged view of %s"%(protein)) plt.colorbar() plt.savefig(load.print_string("time-map",protein))
mit
micahhausler/pandashells
pandashells/bin/p_df.py
7
8200
#! /usr/bin/env python # standard library imports import argparse from importlib import import_module import textwrap import os # noqa import re # noqa import sys # noqa import datetime # noqa import pandas as pd from pandashells.lib import module_checker_lib, arg_lib, io_lib def needs_plots(command_list): # define regex to identify plot commands plot_command_list = [ 'plot', 'hist', 'scatter', 'figure', 'subplot', 'xlabel', 'ylabel', 'set_xlabel', 'set_ylabel', 'title', 'set_xlim', 'set_ylim', 'legend', 'twinx', 'gca', 'gcf' ] rex_plot_str = r'.*({})\(.*\).*'.format('|'.join(plot_command_list)) if re.compile(rex_plot_str).match(' '.join(command_list)): return True else: return False def get_modules_and_shortcuts(command_list): names_shortcuts = [ ('datetime', 'datetime'), ('numpy', 'np'), ('scipy', 'scp'), ('pylab', 'pl'), ('seaborn', 'sns'), ] base_requirements = [ ('pandas', 'pd'), ('dateutil', 'dateutil'), ] out = base_requirements + [ tup for tup in names_shortcuts if '{}.'.format(tup[1]) in ' '.join(command_list) ] if needs_plots(command_list): out = list(set([('pylab', 'pl')] + out)) # make sure required modules are installed module_checker_lib.check_for_modules([m for (m, s) in out]) return out def execute(cmd, scope_entries=None, retval_name=None): scope = scope_entries if scope_entries else {} from dateutil.parser import parse scope['parse'] = parse scope['pd'] = pd for (module, shortcut) in get_modules_and_shortcuts(sys.argv): scope[shortcut] = import_module(module) exec(cmd, scope) return scope.get(retval_name, None) # TODO: same as above # This function is run in the integrations tests, but since it's being # run from a system call, coverage doesn't know about it. I'm # labeling it as no_cover because it actually does get run. def exec_plot_command(args, cmd, df): # pragma: no cover from pandashells.lib import plot_lib plot_lib.set_plot_styling(args) execute(cmd, scope_entries={'df': df}) plot_lib.refine_plot(args) plot_lib.show(args) def framify(cmd, df): if isinstance(df, pd.DataFrame): return df else: try: return pd.DataFrame(df) except pd.core.common.PandasError: msg = ( '\n\nResult of command: \n' '\'{cmd}\' \n' 'could not be cast to dataframe\n\n' ).format(cmd=cmd) sys.stderr.write(msg) sys.exit(1) def process_command(args, cmd, df): # define regex to identify if supplied command is for col assignment rex_col_cmd = re.compile(r'.*?df\[.+\].*?=') # if this is a column-assignment command, just execute it if rex_col_cmd.match(cmd): df = execute(cmd, scope_entries={'df': df}, retval_name='df') return df # if this is a plot command, execute it and quit elif needs_plots([cmd]): exec_plot_command(args, cmd, df) sys.exit(0) # if instead this is a command on the whole frame else: # put results of command in temp var cmd = 'df = {}'.format(cmd) df = execute(cmd, scope_entries={'df': df}, retval_name='df') # make sure df is still dataframe and return df = framify(cmd, df) return df # TODO: same as above # This function is run in the integrations tests, but since it's being # run from a system call, coverage doesn't know about it. I'm # labeling it as no_cover because it actually does get run. def main(): # pragma: no cover # read command line arguments msg = textwrap.dedent( """ Enables pandas dataframe processing at the unix command line. This is the real workhorse of the pandashells toolkit. It reads data from stdin as a dataframe, which is passed through any number of pandas operations provided on the command line. Output is always to stdout. Each operation assumes data is in a dataframe named df. Operations performed on this dataframe will overwrite the df variable with the results of that operation. Special consideration is taken for assignments such as df['a'] = df.b + df.c. These are understood to agument the input dataframe with a new column. By way of example, this command: p.df 'df.groupby(by="a").b.count()' 'df.reset_index()' is equivalent to the python expressions: df = df.groupby(by="a").b.count() df = df.reset_index() In addition to providing access to pandas dataframes, a number of modules are loaded into the namespace so as to be accessible from the command line. These modules are: pd = pandas np = numpy scp = scipy pl = pylab parse = dateutil.parser.parse datetime = datetime re = re ** Important ** When creating chains of dataframe operations (see examples), it is important to express your chain of operations before any options. This is because some options can take multiple arguments and the parser won't be able to properly decode your meaning. For example: cat file.csv | p.df 'df["x"] = df.y + 1' -o table noheader # GOOD cat file.csv | p.df -o table noheader 'df["x"] = df.y + 1' # BAD Input can be read in different formats as specified by the -i switch. The most common formats are csv and table (white-space-delimited). In either of these formats, p.df can accomodate input data that either does or doesn not have a header row. When no header row is indicated, The columns of the Dataframe will be labeled as c0, c1, ..., cN. Plotting methods invoked on a Dataframe generate no output, but create an interactive plot instead. There are a number of plot specific options available at the command line that govern the details of how these plots are rendered (e.g. --xlim, --legend, etc). ----------------------------------------------------------------------- Examples: * Print a csv file in nice tabular format p.example_data -d tips | p.df -o table | head * Select by row p.example_data -d tips \\ | p.df 'df[df.sex=="Female"]' 'df[df.smoker=="Yes"]' -o table * Extract columns p.example_data -d tips \\ | p.df 'df[["total_bill", "tip"]].head()' -o table * Perform grouped aggregations p.example_data -d tips | p.df \\ 'df.groupby(by=["sex", "smoker"]).tip.sum()' -o table index * Use pandas plotting methods p.example_data -d tips | p.df \\ 'df.groupby(by="day").total_bill.sum().plot(kind="barh")'\\ --xlabel 'Dollars' --title 'Total Bills by Day' * Convert between tabular and csv format with/without header rows seq 10 | awk '{print $1, 2*$1}'\\ | p.df --names a b -i table noheader | p.df -o table noheader ----------------------------------------------------------------------- """ ) parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description=msg) arg_lib.add_args(parser, 'io_in', 'io_out', 'decorating', 'example') msg = ( '(MUST come before any options) ' '[statement ...] Statement(s) to execute. ' ) parser.add_argument( "statement", help=msg, nargs="*") args = parser.parse_args() # get the input dataframe df = io_lib.df_from_input(args) # execute the statements in order # plot commands are terminal statements so will call sys.exit() for cmd in args.statement: df = process_command(args, cmd, df) # write the output io_lib.df_to_output(args, df) if __name__ == '__main__': # pragma: no cover main()
bsd-2-clause
jzt5132/scikit-learn
examples/svm/plot_svm_kernels.py
329
1971
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= SVM-Kernels ========================================================= Three different types of SVM-Kernels are displayed below. The polynomial and RBF are especially useful when the data-points are not linearly separable. """ print(__doc__) # Code source: Gaël Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import svm # Our dataset and targets X = np.c_[(.4, -.7), (-1.5, -1), (-1.4, -.9), (-1.3, -1.2), (-1.1, -.2), (-1.2, -.4), (-.5, 1.2), (-1.5, 2.1), (1, 1), # -- (1.3, .8), (1.2, .5), (.2, -2), (.5, -2.4), (.2, -2.3), (0, -2.7), (1.3, 2.1)].T Y = [0] * 8 + [1] * 8 # figure number fignum = 1 # fit the model for kernel in ('linear', 'poly', 'rbf'): clf = svm.SVC(kernel=kernel, gamma=2) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane plt.figure(fignum, figsize=(4, 3)) plt.clf() plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none', zorder=10) plt.scatter(X[:, 0], X[:, 1], c=Y, zorder=10, cmap=plt.cm.Paired) plt.axis('tight') x_min = -3 x_max = 3 y_min = -3 y_max = 3 XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()]) # Put the result into a color plot Z = Z.reshape(XX.shape) plt.figure(fignum, figsize=(4, 3)) plt.pcolormesh(XX, YY, Z > 0, cmap=plt.cm.Paired) plt.contour(XX, YY, Z, colors=['k', 'k', 'k'], linestyles=['--', '-', '--'], levels=[-.5, 0, .5]) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) fignum = fignum + 1 plt.show()
bsd-3-clause
trankmichael/scikit-learn
sklearn/neighbors/tests/test_kde.py
208
5556
import numpy as np from sklearn.utils.testing import (assert_allclose, assert_raises, assert_equal) from sklearn.neighbors import KernelDensity, KDTree, NearestNeighbors from sklearn.neighbors.ball_tree import kernel_norm from sklearn.pipeline import make_pipeline from sklearn.datasets import make_blobs from sklearn.grid_search import GridSearchCV from sklearn.preprocessing import StandardScaler def compute_kernel_slow(Y, X, kernel, h): d = np.sqrt(((Y[:, None, :] - X) ** 2).sum(-1)) norm = kernel_norm(h, X.shape[1], kernel) / X.shape[0] if kernel == 'gaussian': return norm * np.exp(-0.5 * (d * d) / (h * h)).sum(-1) elif kernel == 'tophat': return norm * (d < h).sum(-1) elif kernel == 'epanechnikov': return norm * ((1.0 - (d * d) / (h * h)) * (d < h)).sum(-1) elif kernel == 'exponential': return norm * (np.exp(-d / h)).sum(-1) elif kernel == 'linear': return norm * ((1 - d / h) * (d < h)).sum(-1) elif kernel == 'cosine': return norm * (np.cos(0.5 * np.pi * d / h) * (d < h)).sum(-1) else: raise ValueError('kernel not recognized') def test_kernel_density(n_samples=100, n_features=3): rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) Y = rng.randn(n_samples, n_features) for kernel in ['gaussian', 'tophat', 'epanechnikov', 'exponential', 'linear', 'cosine']: for bandwidth in [0.01, 0.1, 1]: dens_true = compute_kernel_slow(Y, X, kernel, bandwidth) def check_results(kernel, bandwidth, atol, rtol): kde = KernelDensity(kernel=kernel, bandwidth=bandwidth, atol=atol, rtol=rtol) log_dens = kde.fit(X).score_samples(Y) assert_allclose(np.exp(log_dens), dens_true, atol=atol, rtol=max(1E-7, rtol)) assert_allclose(np.exp(kde.score(Y)), np.prod(dens_true), atol=atol, rtol=max(1E-7, rtol)) for rtol in [0, 1E-5]: for atol in [1E-6, 1E-2]: for breadth_first in (True, False): yield (check_results, kernel, bandwidth, atol, rtol) def test_kernel_density_sampling(n_samples=100, n_features=3): rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) bandwidth = 0.2 for kernel in ['gaussian', 'tophat']: # draw a tophat sample kde = KernelDensity(bandwidth, kernel=kernel).fit(X) samp = kde.sample(100) assert_equal(X.shape, samp.shape) # check that samples are in the right range nbrs = NearestNeighbors(n_neighbors=1).fit(X) dist, ind = nbrs.kneighbors(X, return_distance=True) if kernel == 'tophat': assert np.all(dist < bandwidth) elif kernel == 'gaussian': # 5 standard deviations is safe for 100 samples, but there's a # very small chance this test could fail. assert np.all(dist < 5 * bandwidth) # check unsupported kernels for kernel in ['epanechnikov', 'exponential', 'linear', 'cosine']: kde = KernelDensity(bandwidth, kernel=kernel).fit(X) assert_raises(NotImplementedError, kde.sample, 100) # non-regression test: used to return a scalar X = rng.randn(4, 1) kde = KernelDensity(kernel="gaussian").fit(X) assert_equal(kde.sample().shape, (1, 1)) def test_kde_algorithm_metric_choice(): # Smoke test for various metrics and algorithms rng = np.random.RandomState(0) X = rng.randn(10, 2) # 2 features required for haversine dist. Y = rng.randn(10, 2) for algorithm in ['auto', 'ball_tree', 'kd_tree']: for metric in ['euclidean', 'minkowski', 'manhattan', 'chebyshev', 'haversine']: if algorithm == 'kd_tree' and metric not in KDTree.valid_metrics: assert_raises(ValueError, KernelDensity, algorithm=algorithm, metric=metric) else: kde = KernelDensity(algorithm=algorithm, metric=metric) kde.fit(X) y_dens = kde.score_samples(Y) assert_equal(y_dens.shape, Y.shape[:1]) def test_kde_score(n_samples=100, n_features=3): pass #FIXME #np.random.seed(0) #X = np.random.random((n_samples, n_features)) #Y = np.random.random((n_samples, n_features)) def test_kde_badargs(): assert_raises(ValueError, KernelDensity, algorithm='blah') assert_raises(ValueError, KernelDensity, bandwidth=0) assert_raises(ValueError, KernelDensity, kernel='blah') assert_raises(ValueError, KernelDensity, metric='blah') assert_raises(ValueError, KernelDensity, algorithm='kd_tree', metric='blah') def test_kde_pipeline_gridsearch(): # test that kde plays nice in pipelines and grid-searches X, _ = make_blobs(cluster_std=.1, random_state=1, centers=[[0, 1], [1, 0], [0, 0]]) pipe1 = make_pipeline(StandardScaler(with_mean=False, with_std=False), KernelDensity(kernel="gaussian")) params = dict(kerneldensity__bandwidth=[0.001, 0.01, 0.1, 1, 10]) search = GridSearchCV(pipe1, param_grid=params, cv=5) search.fit(X) assert_equal(search.best_params_['kerneldensity__bandwidth'], .1)
bsd-3-clause
LangmuirSim/langmuir
LangmuirPython/langmuir/analyze.py
2
6464
# -*- coding: utf-8 -*- """ .. note:: Functions for analyzing Langmuir output. 1. Combine each part of a simulation with :py:func:`combine` 2. Calculate the current with :py:func:`calculate` 3. Extract the result with :py:func:`equilibrate` 4. Average over runs with :py:func:`create_panel` .. seealso:: 1. :download:`combine.py <../../../analyze/combine.py>` 2. :download:`gather.py <../../../analyze/gather.py>` .. moduleauthor:: Adam Gagorik <[email protected]> """ import langmuir as lm import pandas as pd import numpy as np import collections import StringIO fluxes = ['eSourceL', 'eSourceR', 'hSourceL', 'hSourceR', 'eDrainL', 'eDrainR', 'hDrainL', 'hDrainR', 'xSource', 'xDrain'] try: from scipy.constants import e as _e except ImportError: _e = 1.6021765650e-19 ifactor = _e * 1e21 def create_panel(frames, index=None): """ Turn a list of :py:class:`pandas.DataFrame` into a :py:class:`pandas.Panel`. :param frames: list of :py:class:`pandas.DataFrame` :param index: major axis labels :type frames: list :type index: list >>> data1 = lm.common.load_pkl('run.0/calculated.pkl.gz') >>> data2 = lm.common.load_pkl('run.1/calculated.pkl.gz') >>> panel = create_panel([data1, data2], index=[0, 1]) """ if index is None: index = range(len(frames)) return pd.Panel({i: frame for i, frame in zip(index, frames)}) def combine(objs): """ Combine a set of panda's DataFrames into a single DataFrame. The idea is that each DataFrame holds data from a part of some series of data. The index of each part should be the *simulation:time*. :param objs: list of :py:class:`pandas.DataFrame` :type objs: list >>> data1 = lm.datfile.load('part.0/out.dat.gz') >>> data2 = lm.datfile.load('part.1/out.dat.gz') >>> combined = lm.analyze.combine([data1, data2]) """ try: assert isinstance(objs, list) except AssertionError: try: assert isinstance(objs, tuple) except AssertionError: objs = [objs] frame = None for i, obj in enumerate(objs): if isinstance(obj, str): obj = lm.datfile.load(obj) obj = obj.set_index('simulation:time', drop=False) obj['part'] = i if frame is None: frame = obj else: real = frame['real:time'][frame.index[-1]] obj['real:time'] += real frame = obj.combine_first(frame) frame['new_index'] = range(len(frame)) frame = frame.set_index('new_index', drop=True) frame.index.name = None return lm.datfile.fix(frame) def calculate(obj): """ Compute all flux statistics. Calculates current using, for example, the number of carriers exiting a drain. :param obj: data :type obj: :py:class:`pandas.DataFrame` >>> data = lm.common.load_pkl('combined.pkl.gz') >>> data = lm.analyze.calculate(data) """ for flux in fluxes: a = flux + ':attempt' s = flux + ':success' p = flux + ':prob' r = flux + ':rate' c = flux + ':current' t = 'simulation:time' obj[p] = obj[s] / obj[a].astype(float) * 100.0 obj[r] = obj[s] / obj[t].astype(float) obj[c] = obj[r] * ifactor obj['eDrain:rate'] = obj['eDrainR:rate'] - obj['eDrainL:rate'] obj['eDrain:current'] = obj['eDrain:rate'] * ifactor obj['hDrain:rate'] = obj['hDrainL:rate'] - obj['hDrainR:rate'] obj['hDrain:current'] = obj['hDrain:rate'] * ifactor obj['drain:rate'] = obj['eDrain:rate'] + obj['hDrain:rate'] obj['drain:current'] = obj['drain:rate'] * ifactor obj['eSource:rate'] = obj['eSourceR:rate'] - obj['eSourceL:rate'] obj['eSource:current'] = obj['eSource:rate'] * ifactor obj['hSource:rate'] = obj['hSourceL:rate'] - obj['hSourceR:rate'] obj['hSource:current'] = obj['hSource:rate'] * ifactor obj['source:rate'] = obj['eSource:rate'] + obj['hSource:rate'] obj['source:current'] = obj['source:rate'] * ifactor obj['carrier:count'] = obj['electron:count'] + obj['hole:count'] obj['carrier:difference'] = obj['electron:count'] - obj['hole:count'] obj['speed'] = obj['real:time'].diff() / obj['simulation:time'].diff().astype(float) obj = obj.fillna(value=0.0) return obj def equilibrate(obj, last, equil=None): """ Get the difference between two steps. :param obj: data :param last: index of last step :param equil: index of first step :type obj: :py:class:`pandas.DataFrame` :type last: int :type equil: int >>> data = lm.common.load_pkl('combined.pkl.gz') >>> data = lm.analyze.equilibrate(data, last=-1, equil=-1000) """ # sub = obj.iloc[equil:last] # return sub.iloc[-1] - sub.iloc[0] last = obj.iloc[last] if equil is None: return last equil = obj.iloc[equil] return last - equil class Stats(object): """ Compute various statistics of an array like object. ======== ================== Attr Description ======== ================== **max** max **min** min **rng** range **avg** average **std** standard deviation ======== ================== >>> s = Stats([1, 2, 3, 4, 5]) """ def __init__(self, array, prefix=''): """ :param array: array like object :type array: list """ self.prefix = prefix self.max = np.amax(array) self.min = np.amin(array) self.rng = abs(self.max - self.min) self.avg = np.mean(array) self.std = np.std(array) def to_dict(self): """ Get summary of stats. """ d = collections.OrderedDict() d['%smax' % self.prefix] = float(self.max) d['%smin' % self.prefix] = float(self.min) d['%srng' % self.prefix] = float(self.rng) d['%savg' % self.prefix] = float(self.max) d['%sstd' % self.prefix] = float(self.max) return d def __str__(self): s = StringIO.StringIO() print >> s, r'{self.prefix}max = {self.max:{fmt}}' print >> s, r'{self.prefix}min = {self.min:{fmt}}' print >> s, r'{self.prefix}rng = {self.rng:{fmt}}' print >> s, r'{self.prefix}avg = {self.avg:{fmt}}' print >> s, r'{self.prefix}std = {self.std:{fmt}}' return s.getvalue().format(fmt='+.5f', self=self)
gpl-2.0
hgrif/incubator-airflow
airflow/contrib/hooks/bigquery_hook.py
4
44979
# -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This module contains a BigQuery Hook, as well as a very basic PEP 249 implementation for BigQuery. """ import time from apiclient.discovery import build, HttpError from googleapiclient import errors from builtins import range from pandas_gbq.gbq import GbqConnector, \ _parse_data as gbq_parse_data, \ _check_google_client_version as gbq_check_google_client_version, \ _test_google_api_imports as gbq_test_google_api_imports from pandas.tools.merge import concat from past.builtins import basestring from airflow.contrib.hooks.gcp_api_base_hook import GoogleCloudBaseHook from airflow.hooks.dbapi_hook import DbApiHook from airflow.utils.log.logging_mixin import LoggingMixin class BigQueryHook(GoogleCloudBaseHook, DbApiHook, LoggingMixin): """ Interact with BigQuery. This hook uses the Google Cloud Platform connection. """ conn_name_attr = 'bigquery_conn_id' def __init__(self, bigquery_conn_id='bigquery_default', delegate_to=None): super(BigQueryHook, self).__init__( conn_id=bigquery_conn_id, delegate_to=delegate_to) def get_conn(self): """ Returns a BigQuery PEP 249 connection object. """ service = self.get_service() project = self._get_field('project') return BigQueryConnection(service=service, project_id=project) def get_service(self): """ Returns a BigQuery service object. """ http_authorized = self._authorize() return build('bigquery', 'v2', http=http_authorized) def insert_rows(self, table, rows, target_fields=None, commit_every=1000): """ Insertion is currently unsupported. Theoretically, you could use BigQuery's streaming API to insert rows into a table, but this hasn't been implemented. """ raise NotImplementedError() def get_pandas_df(self, bql, parameters=None, dialect='legacy'): """ Returns a Pandas DataFrame for the results produced by a BigQuery query. The DbApiHook method must be overridden because Pandas doesn't support PEP 249 connections, except for SQLite. See: https://github.com/pydata/pandas/blob/master/pandas/io/sql.py#L447 https://github.com/pydata/pandas/issues/6900 :param bql: The BigQuery SQL to execute. :type bql: string :param parameters: The parameters to render the SQL query with (not used, leave to override superclass method) :type parameters: mapping or iterable :param dialect: Dialect of BigQuery SQL – legacy SQL or standard SQL :type dialect: string in {'legacy', 'standard'}, default 'legacy' """ service = self.get_service() project = self._get_field('project') connector = BigQueryPandasConnector(project, service, dialect=dialect) schema, pages = connector.run_query(bql) dataframe_list = [] while len(pages) > 0: page = pages.pop() dataframe_list.append(gbq_parse_data(schema, page)) if len(dataframe_list) > 0: return concat(dataframe_list, ignore_index=True) else: return gbq_parse_data(schema, []) def table_exists(self, project_id, dataset_id, table_id): """ Checks for the existence of a table in Google BigQuery. :param project_id: The Google cloud project in which to look for the table. The connection supplied to the hook must provide access to the specified project. :type project_id: string :param dataset_id: The name of the dataset in which to look for the table. storage bucket. :type dataset_id: string :param table_id: The name of the table to check the existence of. :type table_id: string """ service = self.get_service() try: service.tables().get( projectId=project_id, datasetId=dataset_id, tableId=table_id ).execute() return True except errors.HttpError as e: if e.resp['status'] == '404': return False raise class BigQueryPandasConnector(GbqConnector): """ This connector behaves identically to GbqConnector (from Pandas), except that it allows the service to be injected, and disables a call to self.get_credentials(). This allows Airflow to use BigQuery with Pandas without forcing a three legged OAuth connection. Instead, we can inject service account credentials into the binding. """ def __init__(self, project_id, service, reauth=False, verbose=False, dialect='legacy'): gbq_check_google_client_version() gbq_test_google_api_imports() self.project_id = project_id self.reauth = reauth self.service = service self.verbose = verbose self.dialect = dialect class BigQueryConnection(object): """ BigQuery does not have a notion of a persistent connection. Thus, these objects are small stateless factories for cursors, which do all the real work. """ def __init__(self, *args, **kwargs): self._args = args self._kwargs = kwargs def close(self): """ BigQueryConnection does not have anything to close. """ pass def commit(self): """ BigQueryConnection does not support transactions. """ pass def cursor(self): """ Return a new :py:class:`Cursor` object using the connection. """ return BigQueryCursor(*self._args, **self._kwargs) def rollback(self): raise NotImplementedError( "BigQueryConnection does not have transactions") class BigQueryBaseCursor(LoggingMixin): """ The BigQuery base cursor contains helper methods to execute queries against BigQuery. The methods can be used directly by operators, in cases where a PEP 249 cursor isn't needed. """ def __init__(self, service, project_id): self.service = service self.project_id = project_id self.running_job_id = None def run_query( self, bql, destination_dataset_table = False, write_disposition = 'WRITE_EMPTY', allow_large_results=False, udf_config = False, use_legacy_sql=True, maximum_billing_tier=None, create_disposition='CREATE_IF_NEEDED', query_params=None): """ Executes a BigQuery SQL query. Optionally persists results in a BigQuery table. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param bql: The BigQuery SQL to execute. :type bql: string :param destination_dataset_table: The dotted <dataset>.<table> BigQuery table to save the query results. :param write_disposition: What to do if the table already exists in BigQuery. :type write_disposition: string :param create_disposition: Specifies whether the job is allowed to create new tables. :type create_disposition: string :param allow_large_results: Whether to allow large results. :type allow_large_results: boolean :param udf_config: The User Defined Function configuration for the query. See https://cloud.google.com/bigquery/user-defined-functions for details. :type udf_config: list :param use_legacy_sql: Whether to use legacy SQL (true) or standard SQL (false). :type use_legacy_sql: boolean :param maximum_billing_tier: Positive integer that serves as a multiplier of the basic price. :type maximum_billing_tier: integer """ configuration = { 'query': { 'query': bql, 'useLegacySql': use_legacy_sql, 'maximumBillingTier': maximum_billing_tier } } if destination_dataset_table: assert '.' in destination_dataset_table, ( 'Expected destination_dataset_table in the format of ' '<dataset>.<table>. Got: {}').format(destination_dataset_table) destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_dataset_table, default_project_id=self.project_id) configuration['query'].update({ 'allowLargeResults': allow_large_results, 'writeDisposition': write_disposition, 'createDisposition': create_disposition, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table, } }) if udf_config: assert isinstance(udf_config, list) configuration['query'].update({ 'userDefinedFunctionResources': udf_config }) if query_params: configuration['query']['queryParameters'] = query_params return self.run_with_configuration(configuration) def run_extract( # noqa self, source_project_dataset_table, destination_cloud_storage_uris, compression='NONE', export_format='CSV', field_delimiter=',', print_header=True): """ Executes a BigQuery extract command to copy data from BigQuery to Google Cloud Storage. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param source_project_dataset_table: The dotted <dataset>.<table> BigQuery table to use as the source data. :type source_project_dataset_table: string :param destination_cloud_storage_uris: The destination Google Cloud Storage URI (e.g. gs://some-bucket/some-file.txt). Follows convention defined here: https://cloud.google.com/bigquery/exporting-data-from-bigquery#exportingmultiple :type destination_cloud_storage_uris: list :param compression: Type of compression to use. :type compression: string :param export_format: File format to export. :type export_format: string :param field_delimiter: The delimiter to use when extracting to a CSV. :type field_delimiter: string :param print_header: Whether to print a header for a CSV file extract. :type print_header: boolean """ source_project, source_dataset, source_table = \ _split_tablename(table_input=source_project_dataset_table, default_project_id=self.project_id, var_name='source_project_dataset_table') configuration = { 'extract': { 'sourceTable': { 'projectId': source_project, 'datasetId': source_dataset, 'tableId': source_table, }, 'compression': compression, 'destinationUris': destination_cloud_storage_uris, 'destinationFormat': export_format, } } if export_format == 'CSV': # Only set fieldDelimiter and printHeader fields if using CSV. # Google does not like it if you set these fields for other export # formats. configuration['extract']['fieldDelimiter'] = field_delimiter configuration['extract']['printHeader'] = print_header return self.run_with_configuration(configuration) def run_copy(self, source_project_dataset_tables, destination_project_dataset_table, write_disposition='WRITE_EMPTY', create_disposition='CREATE_IF_NEEDED'): """ Executes a BigQuery copy command to copy data from one BigQuery table to another. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.copy For more details about these parameters. :param source_project_dataset_tables: One or more dotted (project:|project.)<dataset>.<table> BigQuery tables to use as the source data. Use a list if there are multiple source tables. If <project> is not included, project will be the project defined in the connection json. :type source_project_dataset_tables: list|string :param destination_project_dataset_table: The destination BigQuery table. Format is: (project:|project.)<dataset>.<table> :type destination_project_dataset_table: string :param write_disposition: The write disposition if the table already exists. :type write_disposition: string :param create_disposition: The create disposition if the table doesn't exist. :type create_disposition: string """ source_project_dataset_tables = ( [source_project_dataset_tables] if not isinstance(source_project_dataset_tables, list) else source_project_dataset_tables) source_project_dataset_tables_fixup = [] for source_project_dataset_table in source_project_dataset_tables: source_project, source_dataset, source_table = \ _split_tablename(table_input=source_project_dataset_table, default_project_id=self.project_id, var_name='source_project_dataset_table') source_project_dataset_tables_fixup.append({ 'projectId': source_project, 'datasetId': source_dataset, 'tableId': source_table }) destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_project_dataset_table, default_project_id=self.project_id) configuration = { 'copy': { 'createDisposition': create_disposition, 'writeDisposition': write_disposition, 'sourceTables': source_project_dataset_tables_fixup, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table } } } return self.run_with_configuration(configuration) def run_load(self, destination_project_dataset_table, schema_fields, source_uris, source_format='CSV', create_disposition='CREATE_IF_NEEDED', skip_leading_rows=0, write_disposition='WRITE_EMPTY', field_delimiter=',', max_bad_records=0, quote_character=None, allow_quoted_newlines=False, allow_jagged_rows=False, schema_update_options=(), src_fmt_configs={}): """ Executes a BigQuery load command to load data from Google Cloud Storage to BigQuery. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about these parameters. :param destination_project_dataset_table: The dotted (<project>.|<project>:)<dataset>.<table> BigQuery table to load data into. If <project> is not included, project will be the project defined in the connection json. :type destination_project_dataset_table: string :param schema_fields: The schema field list as defined here: https://cloud.google.com/bigquery/docs/reference/v2/jobs#configuration.load :type schema_fields: list :param source_uris: The source Google Cloud Storage URI (e.g. gs://some-bucket/some-file.txt). A single wild per-object name can be used. :type source_uris: list :param source_format: File format to export. :type source_format: string :param create_disposition: The create disposition if the table doesn't exist. :type create_disposition: string :param skip_leading_rows: Number of rows to skip when loading from a CSV. :type skip_leading_rows: int :param write_disposition: The write disposition if the table already exists. :type write_disposition: string :param field_delimiter: The delimiter to use when loading from a CSV. :type field_delimiter: string :param max_bad_records: The maximum number of bad records that BigQuery can ignore when running the job. :type max_bad_records: int :param quote_character: The value that is used to quote data sections in a CSV file. :type quote_character: string :param allow_quoted_newlines: Whether to allow quoted newlines (true) or not (false). :type allow_quoted_newlines: boolean :param allow_jagged_rows: Accept rows that are missing trailing optional columns. The missing values are treated as nulls. If false, records with missing trailing columns are treated as bad records, and if there are too many bad records, an invalid error is returned in the job result. Only applicable when soure_format is CSV. :type allow_jagged_rows: bool :param schema_update_options: Allows the schema of the desitination table to be updated as a side effect of the load job. :type schema_update_options: list :param src_fmt_configs: configure optional fields specific to the source format :type src_fmt_configs: dict """ # bigquery only allows certain source formats # we check to make sure the passed source format is valid # if it's not, we raise a ValueError # Refer to this link for more details: # https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query.tableDefinitions.(key).sourceFormat source_format = source_format.upper() allowed_formats = ["CSV", "NEWLINE_DELIMITED_JSON", "AVRO", "GOOGLE_SHEETS", "DATASTORE_BACKUP"] if source_format not in allowed_formats: raise ValueError("{0} is not a valid source format. " "Please use one of the following types: {1}" .format(source_format, allowed_formats)) # bigquery also allows you to define how you want a table's schema to change # as a side effect of a load # for more details: # https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.load.schemaUpdateOptions allowed_schema_update_options = [ 'ALLOW_FIELD_ADDITION', "ALLOW_FIELD_RELAXATION" ] if not set(allowed_schema_update_options).issuperset(set(schema_update_options)): raise ValueError( "{0} contains invalid schema update options. " "Please only use one or more of the following options: {1}" .format(schema_update_options, allowed_schema_update_options) ) destination_project, destination_dataset, destination_table = \ _split_tablename(table_input=destination_project_dataset_table, default_project_id=self.project_id, var_name='destination_project_dataset_table') configuration = { 'load': { 'createDisposition': create_disposition, 'destinationTable': { 'projectId': destination_project, 'datasetId': destination_dataset, 'tableId': destination_table, }, 'sourceFormat': source_format, 'sourceUris': source_uris, 'writeDisposition': write_disposition, } } if schema_fields: configuration['load']['schema'] = { 'fields': schema_fields } if schema_update_options: if write_disposition not in ["WRITE_APPEND", "WRITE_TRUNCATE"]: raise ValueError( "schema_update_options is only " "allowed if write_disposition is " "'WRITE_APPEND' or 'WRITE_TRUNCATE'." ) else: self.log.info( "Adding experimental " "'schemaUpdateOptions': {0}".format(schema_update_options) ) configuration['load']['schemaUpdateOptions'] = schema_update_options if max_bad_records: configuration['load']['maxBadRecords'] = max_bad_records # if following fields are not specified in src_fmt_configs, # honor the top-level params for backward-compatibility if 'skipLeadingRows' not in src_fmt_configs: src_fmt_configs['skipLeadingRows'] = skip_leading_rows if 'fieldDelimiter' not in src_fmt_configs: src_fmt_configs['fieldDelimiter'] = field_delimiter if quote_character: src_fmt_configs['quote'] = quote_character if allow_quoted_newlines: src_fmt_configs['allowQuotedNewlines'] = allow_quoted_newlines src_fmt_to_configs_mapping = { 'CSV': ['allowJaggedRows', 'allowQuotedNewlines', 'autodetect', 'fieldDelimiter', 'skipLeadingRows', 'ignoreUnknownValues', 'nullMarker', 'quote'], 'DATASTORE_BACKUP': ['projectionFields'], 'NEWLINE_DELIMITED_JSON': ['autodetect', 'ignoreUnknownValues'], 'AVRO': [], } valid_configs = src_fmt_to_configs_mapping[source_format] src_fmt_configs = {k: v for k, v in src_fmt_configs.items() if k in valid_configs} configuration['load'].update(src_fmt_configs) if allow_jagged_rows: configuration['load']['allowJaggedRows'] = allow_jagged_rows return self.run_with_configuration(configuration) def run_with_configuration(self, configuration): """ Executes a BigQuery SQL query. See here: https://cloud.google.com/bigquery/docs/reference/v2/jobs For more details about the configuration parameter. :param configuration: The configuration parameter maps directly to BigQuery's configuration field in the job object. See https://cloud.google.com/bigquery/docs/reference/v2/jobs for details. """ jobs = self.service.jobs() job_data = { 'configuration': configuration } # Send query and wait for reply. query_reply = jobs \ .insert(projectId=self.project_id, body=job_data) \ .execute() self.running_job_id = query_reply['jobReference']['jobId'] # Wait for query to finish. keep_polling_job = True while (keep_polling_job): try: job = jobs.get(projectId=self.project_id, jobId=self.running_job_id).execute() if (job['status']['state'] == 'DONE'): keep_polling_job = False # Check if job had errors. if 'errorResult' in job['status']: raise Exception( 'BigQuery job failed. Final error was: {}. The job was: {}'.format( job['status']['errorResult'], job ) ) else: self.log.info('Waiting for job to complete : %s, %s', self.project_id, self.running_job_id) time.sleep(5) except HttpError as err: if err.resp.status in [500, 503]: self.log.info('%s: Retryable error, waiting for job to complete: %s', err.resp.status, self.running_job_id) time.sleep(5) else: raise Exception( 'BigQuery job status check failed. Final error was: %s', err.resp.status) return self.running_job_id def poll_job_complete(self, job_id): jobs = self.service.jobs() try: job = jobs.get(projectId=self.project_id, jobId=job_id).execute() if (job['status']['state'] == 'DONE'): return True except HttpError as err: if err.resp.status in [500, 503]: self.log.info('%s: Retryable error while polling job with id %s', err.resp.status, job_id) else: raise Exception( 'BigQuery job status check failed. Final error was: %s', err.resp.status) return False def cancel_query(self): """ Cancel all started queries that have not yet completed """ jobs = self.service.jobs() if (self.running_job_id and not self.poll_job_complete(self.running_job_id)): self.log.info('Attempting to cancel job : %s, %s', self.project_id, self.running_job_id) jobs.cancel(projectId=self.project_id, jobId=self.running_job_id).execute() else: self.log.info('No running BigQuery jobs to cancel.') return # Wait for all the calls to cancel to finish max_polling_attempts = 12 polling_attempts = 0 job_complete = False while (polling_attempts < max_polling_attempts and not job_complete): polling_attempts = polling_attempts+1 job_complete = self.poll_job_complete(self.running_job_id) if (job_complete): self.log.info('Job successfully canceled: %s, %s', self.project_id, self.running_job_id) elif(polling_attempts == max_polling_attempts): self.log.info('Stopping polling due to timeout. Job with id %s has not completed cancel and may or may not finish.', self.running_job_id) else: self.log.info('Waiting for canceled job with id %s to finish.', self.running_job_id) time.sleep(5) def get_schema(self, dataset_id, table_id): """ Get the schema for a given datset.table. see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource :param dataset_id: the dataset ID of the requested table :param table_id: the table ID of the requested table :return: a table schema """ tables_resource = self.service.tables() \ .get(projectId=self.project_id, datasetId=dataset_id, tableId=table_id) \ .execute() return tables_resource['schema'] def get_tabledata(self, dataset_id, table_id, max_results=None, page_token=None, start_index=None): """ Get the data of a given dataset.table. see https://cloud.google.com/bigquery/docs/reference/v2/tabledata/list :param dataset_id: the dataset ID of the requested table. :param table_id: the table ID of the requested table. :param max_results: the maximum results to return. :param page_token: page token, returned from a previous call, identifying the result set. :param start_index: zero based index of the starting row to read. :return: map containing the requested rows. """ optional_params = {} if max_results: optional_params['maxResults'] = max_results if page_token: optional_params['pageToken'] = page_token if start_index: optional_params['startIndex'] = start_index return ( self.service.tabledata() .list( projectId=self.project_id, datasetId=dataset_id, tableId=table_id, **optional_params) .execute() ) def run_table_delete(self, deletion_dataset_table, ignore_if_missing=False): """ Delete an existing table from the dataset; If the table does not exist, return an error unless ignore_if_missing is set to True. :param deletion_dataset_table: A dotted (<project>.|<project>:)<dataset>.<table> that indicates which table will be deleted. :type deletion_dataset_table: str :param ignore_if_missing: if True, then return success even if the requested table does not exist. :type ignore_if_missing: boolean :return: """ assert '.' in deletion_dataset_table, ( 'Expected deletion_dataset_table in the format of ' '<dataset>.<table>. Got: {}').format(deletion_dataset_table) deletion_project, deletion_dataset, deletion_table = \ _split_tablename(table_input=deletion_dataset_table, default_project_id=self.project_id) try: tables_resource = self.service.tables() \ .delete(projectId=deletion_project, datasetId=deletion_dataset, tableId=deletion_table) \ .execute() self.log.info('Deleted table %s:%s.%s.', deletion_project, deletion_dataset, deletion_table) except HttpError: if not ignore_if_missing: raise Exception( 'Table deletion failed. Table does not exist.') else: self.log.info('Table does not exist. Skipping.') def run_table_upsert(self, dataset_id, table_resource, project_id=None): """ creates a new, empty table in the dataset; If the table already exists, update the existing table. Since BigQuery does not natively allow table upserts, this is not an atomic operation. :param dataset_id: the dataset to upsert the table into. :type dataset_id: str :param table_resource: a table resource. see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource :type table_resource: dict :param project_id: the project to upsert the table into. If None, project will be self.project_id. :return: """ # check to see if the table exists table_id = table_resource['tableReference']['tableId'] project_id = project_id if project_id is not None else self.project_id tables_list_resp = self.service.tables().list(projectId=project_id, datasetId=dataset_id).execute() while True: for table in tables_list_resp.get('tables', []): if table['tableReference']['tableId'] == table_id: # found the table, do update self.log.info( 'Table %s:%s.%s exists, updating.', project_id, dataset_id, table_id ) return self.service.tables().update(projectId=project_id, datasetId=dataset_id, tableId=table_id, body=table_resource).execute() # If there is a next page, we need to check the next page. if 'nextPageToken' in tables_list_resp: tables_list_resp = self.service.tables()\ .list(projectId=project_id, datasetId=dataset_id, pageToken=tables_list_resp['nextPageToken'])\ .execute() # If there is no next page, then the table doesn't exist. else: # do insert self.log.info( 'Table %s:%s.%s does not exist. creating.', project_id, dataset_id, table_id ) return self.service.tables().insert(projectId=project_id, datasetId=dataset_id, body=table_resource).execute() def run_grant_dataset_view_access(self, source_dataset, view_dataset, view_table, source_project = None, view_project = None): """ Grant authorized view access of a dataset to a view table. If this view has already been granted access to the dataset, do nothing. This method is not atomic. Running it may clobber a simultaneous update. :param source_dataset: the source dataset :type source_dataset: str :param view_dataset: the dataset that the view is in :type view_dataset: str :param view_table: the table of the view :type view_table: str :param source_project: the project of the source dataset. If None, self.project_id will be used. :type source_project: str :param view_project: the project that the view is in. If None, self.project_id will be used. :type view_project: str :return: the datasets resource of the source dataset. """ # Apply default values to projects source_project = source_project if source_project else self.project_id view_project = view_project if view_project else self.project_id # we don't want to clobber any existing accesses, so we have to get # info on the dataset before we can add view access source_dataset_resource = self.service.datasets().get(projectId=source_project, datasetId=source_dataset).execute() access = source_dataset_resource['access'] if 'access' in source_dataset_resource else [] view_access = {'view': {'projectId': view_project, 'datasetId': view_dataset, 'tableId': view_table}} # check to see if the view we want to add already exists. if view_access not in access: self.log.info( 'Granting table %s:%s.%s authorized view access to %s:%s dataset.', view_project, view_dataset, view_table, source_project, source_dataset ) access.append(view_access) return self.service.datasets().patch(projectId=source_project, datasetId=source_dataset, body={'access': access}).execute() else: # if view is already in access, do nothing. self.log.info( 'Table %s:%s.%s already has authorized view access to %s:%s dataset.', view_project, view_dataset, view_table, source_project, source_dataset ) return source_dataset_resource class BigQueryCursor(BigQueryBaseCursor): """ A very basic BigQuery PEP 249 cursor implementation. The PyHive PEP 249 implementation was used as a reference: https://github.com/dropbox/PyHive/blob/master/pyhive/presto.py https://github.com/dropbox/PyHive/blob/master/pyhive/common.py """ def __init__(self, service, project_id): super(BigQueryCursor, self).__init__(service=service, project_id=project_id) self.buffersize = None self.page_token = None self.job_id = None self.buffer = [] self.all_pages_loaded = False @property def description(self): """ The schema description method is not currently implemented. """ raise NotImplementedError def close(self): """ By default, do nothing """ pass @property def rowcount(self): """ By default, return -1 to indicate that this is not supported. """ return -1 def execute(self, operation, parameters=None): """ Executes a BigQuery query, and returns the job ID. :param operation: The query to execute. :type operation: string :param parameters: Parameters to substitute into the query. :type parameters: dict """ bql = _bind_parameters(operation, parameters) if parameters else operation self.job_id = self.run_query(bql) def executemany(self, operation, seq_of_parameters): """ Execute a BigQuery query multiple times with different parameters. :param operation: The query to execute. :type operation: string :param parameters: List of dictionary parameters to substitute into the query. :type parameters: list """ for parameters in seq_of_parameters: self.execute(operation, parameters) def fetchone(self): """ Fetch the next row of a query result set. """ return self.next() def next(self): """ Helper method for fetchone, which returns the next row from a buffer. If the buffer is empty, attempts to paginate through the result set for the next page, and load it into the buffer. """ if not self.job_id: return None if len(self.buffer) == 0: if self.all_pages_loaded: return None query_results = ( self.service.jobs() .getQueryResults( projectId=self.project_id, jobId=self.job_id, pageToken=self.page_token) .execute() ) if 'rows' in query_results and query_results['rows']: self.page_token = query_results.get('pageToken') fields = query_results['schema']['fields'] col_types = [field['type'] for field in fields] rows = query_results['rows'] for dict_row in rows: typed_row = ([ _bq_cast(vs['v'], col_types[idx]) for idx, vs in enumerate(dict_row['f']) ]) self.buffer.append(typed_row) if not self.page_token: self.all_pages_loaded = True else: # Reset all state since we've exhausted the results. self.page_token = None self.job_id = None self.page_token = None return None return self.buffer.pop(0) def fetchmany(self, size=None): """ Fetch the next set of rows of a query result, returning a sequence of sequences (e.g. a list of tuples). An empty sequence is returned when no more rows are available. The number of rows to fetch per call is specified by the parameter. If it is not given, the cursor's arraysize determines the number of rows to be fetched. The method should try to fetch as many rows as indicated by the size parameter. If this is not possible due to the specified number of rows not being available, fewer rows may be returned. An :py:class:`~pyhive.exc.Error` (or subclass) exception is raised if the previous call to :py:meth:`execute` did not produce any result set or no call was issued yet. """ if size is None: size = self.arraysize result = [] for _ in range(size): one = self.fetchone() if one is None: break else: result.append(one) return result def fetchall(self): """ Fetch all (remaining) rows of a query result, returning them as a sequence of sequences (e.g. a list of tuples). """ result = [] while True: one = self.fetchone() if one is None: break else: result.append(one) return result def get_arraysize(self): """ Specifies the number of rows to fetch at a time with .fetchmany() """ return self._buffersize if self.buffersize else 1 def set_arraysize(self, arraysize): """ Specifies the number of rows to fetch at a time with .fetchmany() """ self.buffersize = arraysize arraysize = property(get_arraysize, set_arraysize) def setinputsizes(self, sizes): """ Does nothing by default """ pass def setoutputsize(self, size, column=None): """ Does nothing by default """ pass def _bind_parameters(operation, parameters): """ Helper method that binds parameters to a SQL query. """ # inspired by MySQL Python Connector (conversion.py) string_parameters = {} for (name, value) in parameters.iteritems(): if value is None: string_parameters[name] = 'NULL' elif isinstance(value, basestring): string_parameters[name] = "'" + _escape(value) + "'" else: string_parameters[name] = str(value) return operation % string_parameters def _escape(s): """ Helper method that escapes parameters to a SQL query. """ e = s e = e.replace('\\', '\\\\') e = e.replace('\n', '\\n') e = e.replace('\r', '\\r') e = e.replace("'", "\\'") e = e.replace('"', '\\"') return e def _bq_cast(string_field, bq_type): """ Helper method that casts a BigQuery row to the appropriate data types. This is useful because BigQuery returns all fields as strings. """ if string_field is None: return None elif bq_type == 'INTEGER' or bq_type == 'TIMESTAMP': return int(string_field) elif bq_type == 'FLOAT': return float(string_field) elif bq_type == 'BOOLEAN': assert string_field in set(['true', 'false']) return string_field == 'true' else: return string_field def _split_tablename(table_input, default_project_id, var_name=None): assert default_project_id is not None, "INTERNAL: No default project is specified" def var_print(var_name): if var_name is None: return "" else: return "Format exception for {var}: ".format(var=var_name) if table_input.count('.') + table_input.count(':') > 3: raise Exception(( '{var}Use either : or . to specify project ' 'got {input}' ).format(var=var_print(var_name), input=table_input)) cmpt = table_input.rsplit(':', 1) project_id = None rest = table_input if len(cmpt) == 1: project_id = None rest = cmpt[0] elif len(cmpt) == 2 and cmpt[0].count(':') <= 1: if cmpt[-1].count('.') != 2: project_id = cmpt[0] rest = cmpt[1] else: raise Exception(( '{var}Expect format of (<project:)<dataset>.<table>, ' 'got {input}' ).format(var=var_print(var_name), input=table_input)) cmpt = rest.split('.') if len(cmpt) == 3: assert project_id is None, ( "{var}Use either : or . to specify project" ).format(var=var_print(var_name)) project_id = cmpt[0] dataset_id = cmpt[1] table_id = cmpt[2] elif len(cmpt) == 2: dataset_id = cmpt[0] table_id = cmpt[1] else: raise Exception(( '{var}Expect format of (<project.|<project:)<dataset>.<table>, ' 'got {input}' ).format(var=var_print(var_name), input=table_input)) if project_id is None: if var_name is not None: log = LoggingMixin().log log.info( 'Project not included in {var}: {input}; using project "{project}"'.format( var=var_name, input=table_input, project=default_project_id ) ) project_id = default_project_id return project_id, dataset_id, table_id
apache-2.0
adolfocorreia/portfolio
retriever/directtreasure.py
1
2081
import string import glob import pandas as pd import re from .retriever import ValueRetriever class DirectTreasureRetriever(ValueRetriever): def __init__(self): self._complete_codes = [] ValueRetriever.__init__(self, "directtreasure") def _get_data_file_patterns(self): return [self.data_directory + "/" + code + "_%s.xls" for code in self.codes] def _available_codes(self): return self._complete_codes def _load_data_files(self): print "Loading Direct Treasure XLS files..." self._data = {} names = [ "Dia", "Taxa_Compra_Manha", "Taxa_Venda_Manha", "PU_Compra_Manha", "PU_Venda_Manha", "PU_Base_Manha" ] regex = re.compile(r"NTN-B_Princ_([0-9]{6})") file_list = sorted(glob.glob(self.data_directory + "/*.xls")) for file_name in file_list: print "Loading file %s..." % file_name excel = pd.ExcelFile(file_name) for sheet_name in excel.sheet_names: bond_code = string.replace(sheet_name, " ", "_") if regex.match(bond_code): bond_code = regex.sub(r"NTN-B_Principal_\g<1>", bond_code) self._complete_codes.append(bond_code) if bond_code not in self._data: self._data[bond_code] = pd.DataFrame() df = excel.parse( sheet_name, names=names, parse_dates=['Dia'], dayfirst=True, skiprows=1 ) df.drop_duplicates(subset='Dia', inplace=True) df.set_index('Dia', inplace=True) self._data[bond_code] = self._data[bond_code].append(df) def get_value(self, code, date): ValueRetriever.get_value(self, code, date) ts = pd.Timestamp(date) asof_ts = self._data[code].index.asof(ts) return self._data[code].ix[asof_ts].PU_Base_Manha
gpl-2.0
bartosh/zipline
zipline/pipeline/loaders/utils.py
5
15156
import datetime import numpy as np import pandas as pd from zipline.pipeline.common import TS_FIELD_NAME, SID_FIELD_NAME from zipline.utils.numpy_utils import categorical_dtype from zipline.utils.pandas_utils import mask_between_time def is_sorted_ascending(a): """Check if a numpy array is sorted.""" return (np.fmax.accumulate(a) <= a).all() def validate_event_metadata(event_dates, event_timestamps, event_sids): assert is_sorted_ascending(event_dates), "event dates must be sorted" assert len(event_sids) == len(event_dates) == len(event_timestamps), \ "mismatched arrays: %d != %d != %d" % ( len(event_sids), len(event_dates), len(event_timestamps), ) def next_event_indexer(all_dates, all_sids, event_dates, event_timestamps, event_sids): """ Construct an index array that, when applied to an array of values, produces a 2D array containing the values associated with the next event for each sid at each moment in time. Locations where no next event was known will be filled with -1. Parameters ---------- all_dates : ndarray[datetime64[ns], ndim=1] Row labels for the target output. all_sids : ndarray[int, ndim=1] Column labels for the target output. event_dates : ndarray[datetime64[ns], ndim=1] Dates on which each input events occurred/will occur. ``event_dates`` must be in sorted order, and may not contain any NaT values. event_timestamps : ndarray[datetime64[ns], ndim=1] Dates on which we learned about each input event. event_sids : ndarray[int, ndim=1] Sids assocated with each input event. Returns ------- indexer : ndarray[int, ndim=2] An array of shape (len(all_dates), len(all_sids)) of indices into ``event_{dates,timestamps,sids}``. """ validate_event_metadata(event_dates, event_timestamps, event_sids) out = np.full((len(all_dates), len(all_sids)), -1, dtype=np.int64) sid_ixs = all_sids.searchsorted(event_sids) # side='right' here ensures that we include the event date itself # if it's in all_dates. dt_ixs = all_dates.searchsorted(event_dates, side='right') ts_ixs = all_dates.searchsorted(event_timestamps) # Walk backward through the events, writing the index of the event into # slots ranging from the event's timestamp to its asof. This depends for # correctness on the fact that event_dates is sorted in ascending order, # because we need to overwrite later events with earlier ones if their # eligible windows overlap. for i in range(len(event_sids) - 1, -1, -1): start_ix = ts_ixs[i] end_ix = dt_ixs[i] out[start_ix:end_ix, sid_ixs[i]] = i return out def previous_event_indexer(all_dates, all_sids, event_dates, event_timestamps, event_sids): """ Construct an index array that, when applied to an array of values, produces a 2D array containing the values associated with the previous event for each sid at each moment in time. Locations where no previous event was known will be filled with -1. Parameters ---------- all_dates : ndarray[datetime64[ns], ndim=1] Row labels for the target output. all_sids : ndarray[int, ndim=1] Column labels for the target output. event_dates : ndarray[datetime64[ns], ndim=1] Dates on which each input events occurred/will occur. ``event_dates`` must be in sorted order, and may not contain any NaT values. event_timestamps : ndarray[datetime64[ns], ndim=1] Dates on which we learned about each input event. event_sids : ndarray[int, ndim=1] Sids assocated with each input event. Returns ------- indexer : ndarray[int, ndim=2] An array of shape (len(all_dates), len(all_sids)) of indices into ``event_{dates,timestamps,sids}``. """ validate_event_metadata(event_dates, event_timestamps, event_sids) out = np.full((len(all_dates), len(all_sids)), -1, dtype=np.int64) eff_dts = np.maximum(event_dates, event_timestamps) sid_ixs = all_sids.searchsorted(event_sids) dt_ixs = all_dates.searchsorted(eff_dts) # Walk backwards through the events, writing the index of the event into # slots ranging from max(event_date, event_timestamp) to the start of the # previously-written event. This depends for correctness on the fact that # event_dates is sorted in ascending order, because we need to have written # later events so we know where to stop forward-filling earlier events. last_written = {} for i in range(len(event_dates) - 1, -1, -1): sid_ix = sid_ixs[i] dt_ix = dt_ixs[i] out[dt_ix:last_written.get(sid_ix, None), sid_ix] = i last_written[sid_ix] = dt_ix return out def normalize_data_query_time(dt, time, tz): """Apply the correct time and timezone to a date. Parameters ---------- dt : pd.Timestamp The original datetime that represents the date. time : datetime.time The time of day to use as the cutoff point for new data. Data points that you learn about after this time will become available to your algorithm on the next trading day. tz : tzinfo The timezone to normalize your dates to before comparing against `time`. Returns ------- query_dt : pd.Timestamp The timestamp with the correct time and date in utc. """ # merge the correct date with the time in the given timezone then convert # back to utc return pd.Timestamp( datetime.datetime.combine(dt.date(), time), tz=tz, ).tz_convert('utc') def normalize_data_query_bounds(lower, upper, time, tz): """Adjust the first and last dates in the requested datetime index based on the provided query time and tz. lower : pd.Timestamp The lower date requested. upper : pd.Timestamp The upper date requested. time : datetime.time The time of day to use as the cutoff point for new data. Data points that you learn about after this time will become available to your algorithm on the next trading day. tz : tzinfo The timezone to normalize your dates to before comparing against `time`. """ # Subtract one day to grab things that happened on the first day we are # requesting. This doesn't need to be a trading day, we are only adding # a lower bound to limit the amount of in memory filtering that needs # to happen. lower -= datetime.timedelta(days=1) if time is not None: return normalize_data_query_time( lower, time, tz, ), normalize_data_query_time( upper, time, tz, ) return lower, upper _midnight = datetime.time(0, 0) def normalize_timestamp_to_query_time(df, time, tz, inplace=False, ts_field='timestamp'): """Update the timestamp field of a dataframe to normalize dates around some data query time/timezone. Parameters ---------- df : pd.DataFrame The dataframe to update. This needs a column named ``ts_field``. time : datetime.time The time of day to use as the cutoff point for new data. Data points that you learn about after this time will become available to your algorithm on the next trading day. tz : tzinfo The timezone to normalize your dates to before comparing against `time`. inplace : bool, optional Update the dataframe in place. ts_field : str, optional The name of the timestamp field in ``df``. Returns ------- df : pd.DataFrame The dataframe with the timestamp field normalized. If ``inplace`` is true, then this will be the same object as ``df`` otherwise this will be a copy. """ if not inplace: # don't mutate the dataframe in place df = df.copy() # There is a pandas bug (0.18.1) where if the timestamps in a # normalized DatetimeIndex are not sorted and one calls `tz_localize(None)` # on tha DatetimeIndex, some of the dates will be shifted by an hour # (similarly to the previously mentioned bug). Therefore, we must sort # the df here to ensure that we get the normalize correctly. df.sort_values(ts_field, inplace=True) dtidx = pd.DatetimeIndex(df.loc[:, ts_field], tz='utc') dtidx_local_time = dtidx.tz_convert(tz) to_roll_forward = mask_between_time( dtidx_local_time, time, _midnight, include_end=False, ) # For all of the times that are greater than our query time add 1 # day and truncate to the date. # We normalize twice here because of a bug in pandas 0.16.1 that causes # tz_localize() to shift some timestamps by an hour if they are not grouped # together by DST/EST. df.loc[to_roll_forward, ts_field] = ( dtidx_local_time[to_roll_forward] + datetime.timedelta(days=1) ).normalize().tz_localize(None).tz_localize('utc').normalize() df.loc[~to_roll_forward, ts_field] = dtidx[~to_roll_forward].normalize() return df def check_data_query_args(data_query_time, data_query_tz): """Checks the data_query_time and data_query_tz arguments for loaders and raises a standard exception if one is None and the other is not. Parameters ---------- data_query_time : datetime.time or None data_query_tz : tzinfo or None Raises ------ ValueError Raised when only one of the arguments is None. """ if (data_query_time is None) ^ (data_query_tz is None): raise ValueError( "either 'data_query_time' and 'data_query_tz' must both be" " None or neither may be None (got %r, %r)" % ( data_query_time, data_query_tz, ), ) def last_in_date_group(df, dates, assets, reindex=True, have_sids=True, extra_groupers=None): """ Determine the last piece of information known on each date in the date index for each group. Input df MUST be sorted such that the correct last item is chosen from each group. Parameters ---------- df : pd.DataFrame The DataFrame containing the data to be grouped. Must be sorted so that the correct last item is chosen from each group. dates : pd.DatetimeIndex The dates to use for grouping and reindexing. assets : pd.Int64Index The assets that should be included in the column multiindex. reindex : bool Whether or not the DataFrame should be reindexed against the date index. This will add back any dates to the index that were grouped away. have_sids : bool Whether or not the DataFrame has sids. If it does, they will be used in the groupby. extra_groupers : list of str Any extra field names that should be included in the groupby. Returns ------- last_in_group : pd.DataFrame A DataFrame with dates as the index and fields used in the groupby as levels of a multiindex of columns. """ idx = [dates[dates.searchsorted( df[TS_FIELD_NAME].values.astype('datetime64[D]') )]] if have_sids: idx += [SID_FIELD_NAME] if extra_groupers is None: extra_groupers = [] idx += extra_groupers last_in_group = df.drop(TS_FIELD_NAME, axis=1).groupby( idx, sort=False, ).last() # For the number of things that we're grouping by (except TS), unstack # the df. Done this way because of an unresolved pandas bug whereby # passing a list of levels with mixed dtypes to unstack causes the # resulting DataFrame to have all object-type columns. for _ in range(len(idx) - 1): last_in_group = last_in_group.unstack(-1) if reindex: if have_sids: cols = last_in_group.columns last_in_group = last_in_group.reindex( index=dates, columns=pd.MultiIndex.from_product( tuple(cols.levels[0:len(extra_groupers) + 1]) + (assets,), names=cols.names, ), ) else: last_in_group = last_in_group.reindex(dates) return last_in_group def ffill_across_cols(df, columns, name_map): """ Forward fill values in a DataFrame with special logic to handle cases that pd.DataFrame.ffill cannot and cast columns to appropriate types. Parameters ---------- df : pd.DataFrame The DataFrame to do forward-filling on. columns : list of BoundColumn The BoundColumns that correspond to columns in the DataFrame to which special filling and/or casting logic should be applied. name_map: map of string -> string Mapping from the name of each BoundColumn to the associated column name in `df`. """ df.ffill(inplace=True) # Fill in missing values specified by each column. This is made # significantly more complex by the fact that we need to work around # two pandas issues: # 1) When we have sids, if there are no records for a given sid for any # dates, pandas will generate a column full of NaNs for that sid. # This means that some of the columns in `dense_output` are now # float instead of the intended dtype, so we have to coerce back to # our expected type and convert NaNs into the desired missing value. # 2) DataFrame.ffill assumes that receiving None as a fill-value means # that no value was passed. Consequently, there's no way to tell # pandas to replace NaNs in an object column with None using fillna, # so we have to roll our own instead using df.where. for column in columns: column_name = name_map[column.name] # Special logic for strings since `fillna` doesn't work if the # missing value is `None`. if column.dtype == categorical_dtype: df[column_name] = df[ column.name ].where(pd.notnull(df[column_name]), column.missing_value) else: # We need to execute `fillna` before `astype` in case the # column contains NaNs and needs to be cast to bool or int. # This is so that the NaNs are replaced first, since pandas # can't convert NaNs for those types. df[column_name] = df[ column_name ].fillna(column.missing_value).astype(column.dtype)
apache-2.0
JacekPierzchlewski/RxCS
examples/signals/randMult_ex1.py
1
4260
""" This script is an example of how to use the Random Multitone Signal Generator module. |br| In this example 1 random multitone signal is generated. |br| Time of the signal is 1 ms, the signal representation sampling frequency is 100 kHz. The highest possible frequency of a tone in the signal is 20 kHz, the signal spectrum resolution is 1 kHz. |br| The signal contains 3 tones with specified frequencies (2000 Hz, 3000Hz and 4000 Hz). The amplitudes of these tones are 1, 2 and 3 respectively. The phases of these tones are randomly chosen by the generator. |br| The above is given in the 3 fields in the generator configuration dictionary: dSigConf['vFrqs'] = np.array([2e3, 3e3, 4e3]) |br| dSigConf['vAmps'] = np.array([1, 2, 3]) |br| dSigConf['vPhs'] = np.array([np.nan, np.nan, np.nan]) |br| Additonally, there are 3 completely random tones in the signal. |br| The power of the signal is not regulated. |br| The noise is not added to the signal. |br| After the generation, spectrum fo the signal is analyzed with an FFT and ploted. *Author*: Jacek Pierzchlewski, Aalborg University, Denmark. <[email protected]> *Version*: 0.1 | 15-MAY-2014 : * Initial version. |br| 0.2 | 20-MAY-2014 : * Docstrings added and PEP8 adjustments. |br| 1.0 | 20-MAY-2014 : * Version 1.0 released. |br| 1.0r1 | 21-MAY-2014 : * Cosmetics in the comments. |br| 1.1 | 15-JUL-2015 : * Adjusted to new name of random multitone gen. |br| 2.0 | 21-JUL-2015 : * Version 2.0 released (adjusted to v2.0 of the generator) |br| 2.0r1 | 04-AUG-2015 : * File name changed |br| *License*: BSD 2-Clause """ from __future__ import division import rxcs import numpy as np import matplotlib.pyplot as plt def _randMult_ex1(): # Put the generator on board gen = rxcs.sig.randMult() # Settings for the generator gen.tS = 1e-3 # Time of the signal is 1 ms gen.fR = 1e5 # The signal representation sampling frequency is 100 kHz gen.fMax = 40e3 # The highest possible frequency in the signal is 40 kHz gen.fRes = 1e3 # The signal spectrum resolution is 1 kHz # Frequencies given explicitely gen.vFrqs = np.array([2e3, 3e3, 4e3]) # Vector with given frequencies gen.vAmps = np.array([1, 2, 3]) # Vector with given amplitudes gen.vPhs = np.array([np.nan, np.nan, np.nan]) # Vector with given phases # Allowed phases in the random tones: gen.iMinPhs = 0 # Minimum phase of random tones gen.iGraPhs = 1 # Gradation of phase of random tones gen.iMaxPhs = 90 # Maximum phase of random tones gen.nTones = 3 # The number of random tones # Run the generator and get the output gen.run() vSig = gen.mSig[0, :] # Get the generated signal fFFTR = gen.fFFTR # Signal FFT frequency resolution # ----------------------------------------------------------------- vFFT = np.fft.fft(vSig) # Analyze the spectrum of the signal iS = vFFT.size # Get the size of the spectrum # Compute the amplitudes of tones vFFTa = 2*np.abs(vFFT[np.arange(iS/2).astype(int)])/iS # Create a vector with frequencies of the signal spectrum vF = fFFTR * np.arange(iS/2) # ----------------------------------------------------------------- # Plot half of the spectrum hFig1 = plt.figure(1) hSubPlot1 = hFig1.add_subplot(111) hSubPlot1.grid(True) hSubPlot1.set_title('Spectrum of a random multitone signal') hSubPlot1.set_xlabel('Frequency [Hz]') (markerline, stemlines, baseline) = hSubPlot1.stem(vF, vFFTa, linefmt='b-', markerfmt='bo', basefmt='r-') hSubPlot1.set_xlim(-1*1e3, 51*1e3) hSubPlot1.set_ylim(-0.1, 3.1) plt.setp(stemlines, color='b', linewidth=2.0) plt.setp(markerline, color='b', markersize=10.0) plt.show(block=True) # ===================================================================== # Trigger when start as a script # ===================================================================== if __name__ == '__main__': _randMult_ex1()
bsd-2-clause
liang42hao/bokeh
bokeh/cli/core.py
42
16025
from __future__ import absolute_import, print_function import sys, os from six.moves.urllib import request as urllib2 from six.moves import cStringIO as StringIO import pandas as pd try: import click is_click = True except ImportError: is_click = False from . import help_messages as hm from .utils import (get_chart_params, get_charts_mapping, get_data_series, keep_source_input_sync, get_data_from_url) from .. import charts as bc from ..charts import utils as bc_utils from bokeh.models.widgets import Button # Define a mapping to connect chart types supported arguments and chart classes CHARTS_MAP = get_charts_mapping() if is_click: @click.command() @click.option('--input', 'input_source', default=None,help=hm.HELP_INPUT) @click.option('--output', default='file://cli_output.html', help=hm.HELP_OUTPUT) @click.option('--title', default='Bokeh CLI') @click.option('--chart_type', default='Line') @click.option('--index', default='', help=hm.HELP_INDEX) @click.option('--series', default='', help=hm.HELP_SERIES) @click.option('--palette') @click.option('--buffer', default='f', help=hm.HELP_BUFFER) @click.option('--sync_with_source', default=False) @click.option('--update_ranges', 'update_ranges', flag_value=True, default=False) @click.option('--legend', 'show_legend', flag_value=True, default=False) @click.option('--window_size', default='0', help=hm.HELP_WIN_SIZE) @click.option('--map', 'map_', default=None) @click.option('--map_zoom', 'map_zoom', default=12) @click.option('--map_layer', 'map_layer', default="hybrid") @click.option('--smart_filters', 'smart_filters', flag_value=True, default=False) def cli(input_source, output, title, chart_type, series, palette, index, buffer, sync_with_source, update_ranges, show_legend, window_size, map_, smart_filters, map_zoom, map_layer): """Bokeh Command Line Tool is a minimal client to access high level plotting functionality provided by bokeh.charts API. Examples: >> python bokeh-cli.py --title "My Nice Plot" --series "High,Low,Close" --chart_type "Line" --palette Reds --input sample_data/stocks_data.csv >> cat sample_data/stocks_data.csv | python bokeh-cli.py --buffer t >> python bokeh-cli.py --help """ cli = CLI( input_source, output, title, chart_type, series, palette, index, buffer, sync_with_source, update_ranges, show_legend, window_size, map_, smart_filters, map_zoom, map_layer ) cli.run() else: def cli(): print("The CLI tool requires click to be installed") class CLI(object): """This is the Bokeh Command Line Interface class and it is in charge of providing a very high level access to bokeh charts and extends it with functionality. """ def __init__(self, input_source, output, title, chart_type, series, palette, index, buffer, sync_with_source, update_ranges, show_legend, window_size, map_, smart_filters, map_zoom, map_layer): """Args: input_source (str): path to the series data file (i.e.: /source/to/my/data.csv) NOTE: this can be either a path to a local file or an url output (str, optional): Selects the plotting output, which could either be sent to an html file or a bokeh server instance. Syntax convention for this option is as follows: <output_type>://<type_arg> where: - output_type: 'file' or 'server' - 'file' type options: path_to_output_file - 'server' type options syntax: docname[@url][@name] Defaults to: --output file://cli_output.html Examples: --output file://cli_output.html --output file:///home/someuser/bokeh_rocks/cli_output.html --output server://clidemo Default: file://cli_output.html. title (str, optional): the title of your chart. Default: None. chart_type (str, optional): charts classes to use to consume and render the input data. Default: Line. series (str, optional): Name of the series from the input source to include in the plot. If not specified all source series will be included. Defaults to None. palette (str, optional): name of the colors palette to use. Default: None. index (str, optional): Name of the data series to be used as the index when plotting. By default the first series found on the input file is taken Default: None buffer (str, optional): if is `t` reads data source as string from input buffer using StringIO(sys.stdin.read()) instead of reading from a file or an url. Default: "f" sync_with_source (bool, optional): if True keep the charts source created on bokeh-server sync'ed with the source acting like `tail -f`. Default: False window_size (int, optional): show up to N values then start dropping off older ones Default: '0' Attributes: source (obj): datasource object for the created chart. chart (obj): created chart object. """ self.input = input_source self.series = series self.index = index self.last_byte = -1 self.sync_with_source = sync_with_source self.update_ranges = update_ranges self.show_legend = show_legend self.window_size = int(window_size) self.smart_filters = smart_filters self.map_options = {} self.current_selection = [] self.source = self.get_input(input_source, buffer) # get the charts specified by the user self.factories = create_chart_factories(chart_type) if palette: print ("Sorry, custom palettes not supported yet, coming soon!") # define charts init parameters specified from cmd line and create chart self.chart_args = get_chart_params( title, output, show_legend=self.show_legend ) if self.smart_filters: self.chart_args['tools'] = "pan,wheel_zoom,box_zoom,reset,save," \ "box_select,lasso_select" if map_: self.map_options['lat'], self.map_options['lng'] = \ [float(x) for x in map_.strip().split(',')] self.map_options['zoom'] = int(map_zoom) # Yeah, unfortunate namings.. :-) self.map_options['map_type'] = map_layer def on_selection_changed(self, obj, attrname, old, new): self.current_selection = new def limit_source(self, source): """ Limit source to cli.window_size, if set. Args: source (mapping): dict-like object """ if self.window_size: for key in source.keys(): source[key] = source[key][-self.window_size:] def run(self): """ Start the CLI logic creating the input source, data conversions, chart instances to show and all other niceties provided by CLI """ try: self.limit_source(self.source) children = [] if self.smart_filters: copy_selection = Button(label="copy current selection") copy_selection.on_click(self.on_copy) children.append(copy_selection) self.chart = create_chart( self.series, self.source, self.index, self.factories, self.map_options, children=children, **self.chart_args ) self.chart.show() self.has_ranged_x_axis = 'ranged_x_axis' in self.source.columns self.columns = [c for c in self.source.columns if c != 'ranged_x_axis'] if self.smart_filters: for chart in self.chart.charts: chart.source.on_change('selected', self, 'on_selection_changed') self.chart.session.poll_document(self.chart.doc) except TypeError: if not self.series: series_list = ', '.join(self.chart.values.keys()) print(hm.ERR_MSG_TEMPL % series_list) raise if self.sync_with_source: keep_source_input_sync(self.input, self.update_source, self.last_byte) def on_copy(self, *args, **kws): print("COPYING CONTENT!") # TODO: EXPERIMENTAL!!! THIS EXPOSE MANY SECURITY ISSUES AND SHOULD # BE REMOVED ASAP! txt = '' for rowind in self.current_selection: row = self.source.iloc[rowind] txt += u"%s\n" % (u",".join(str(row[c]) for c in self.columns)) os.system("echo '%s' | pbcopy" % txt) def update_source(self, new_source): """ Update self.chart source with the new data retrieved from new_source. It is done by parsing the new source line, trasforming it to data to be appended to self.chart source updating it on chart.session and actually updating chart.session objects. Args: new_source (str): string that contains the new source row to read to the current chart source. """ ns = pd.read_csv(StringIO(new_source), names=self.columns) len_source = len(self.source) if self.has_ranged_x_axis: ns['ranged_x_axis'] = [len_source] self.index = 'ranged_x_axis' ns.index = [len_source] self.source = pd.concat([self.source, ns]) # TODO: This should be replaced with something that just computes # the new data and source fig = create_chart(self.series, ns, self.index, self.factories, self.map_options, **self.chart_args) for i, _c in enumerate(fig.charts): if not isinstance(_c, bc.GMap): # TODO: nested charts are getting ridiculous. Need a better # better interface for charts :-) scc = self.chart.charts[i] for k, v in _c.source.data.items(): scc.source.data[k] = list(scc.source.data[k]) + list(v) self.limit_source(scc.source.data) chart = scc.chart chart.session.store_objects(scc.source) if self.update_ranges: plot = chart.plot plot.y_range.start = min( plot.y_range.start, _c.chart.plot.y_range.start ) plot.y_range.end = max( plot.y_range.end, _c.chart.plot.y_range.end ) plot.x_range.start = min( plot.x_range.start, _c.chart.plot.x_range.start ) plot.x_range.end = max( plot.x_range.end, _c.chart.plot.x_range.end ) chart.session.store_objects(plot) def get_input(self, filepath, buffer): """Parse received input options. If buffer is not false (=='f') if gets input data from input buffer othewise opens file specified in sourcefilename, Args: filepath (str): path to the file to read from to retrieve data buffer (str): if == 't' reads data from input buffer Returns: string read from filepath/buffer """ if buffer != 'f': filepath = StringIO(sys.stdin.read()) elif filepath is None: msg = "No Input! Please specify --source_filename or --buffer t" raise IOError(msg) else: if filepath.lower().startswith('http'): # Create a request for the given URL. request = urllib2.Request(filepath) data = get_data_from_url(request) self.last_byte = len(data) else: filepath = open(filepath, 'r').read() self.last_byte = len(filepath) filepath = StringIO(filepath) source = pd.read_csv(filepath) return source def create_chart(series, source, index, factories, map_options=None, children=None, **args): """Create charts instances from types specified in factories using data series names, source, index and args Args: series (list(str)): list of strings specifying the names of the series to keep from source source (DataFrame): pandas DataFrame with the data series to be plotted index (str): name of the series of source to be used as index. factories (list(ChartObject)): list of chart classes to be used to create the charts to be plotted **args: arguments to pass to the charts when creating them. """ if not index: # if no index was specified as for x axis # we take a default "range" index = 'ranged_x_axis' # add the new x range data to the source dataframe source[index] = range(len(source[source.columns[0]])) indexes = [x for x in index.split(',') if x] data_series = get_data_series(series, source, indexes) # parse queries to create the charts.. charts = [] for chart_type in factories: if chart_type == bc.GMap: if not map_options or \ not all([x in map_options for x in ['lat', 'lng']]): raise ValueError("GMap Charts need lat and lon coordinates!") all_args = dict(map_options) all_args.update(args) chart = chart_type(**all_args) else: if chart_type == bc.TimeSeries: # in case the x axis type is datetime that column must be converted to # datetime data_series[index] = pd.to_datetime(source[index]) elif chart_type == bc.Scatter: if len(indexes) == 1: scatter_ind = [x for x in data_series.pop(indexes[0]).values] scatter_ind = [scatter_ind] * len(data_series) else: scatter_ind = [] for key in indexes: scatter_ind.append([x for x in data_series.pop(key).values]) if len(scatter_ind) != len(data_series): err_msg = "Number of multiple indexes must be equals" \ " to the number of series" raise ValueError(err_msg) for ind, key in enumerate(data_series): values = data_series[key].values data_series[key] = zip(scatter_ind[ind], values) chart = chart_type(data_series, **args) if hasattr(chart, 'index'): chart.index = index charts.append(chart) fig = bc_utils.Figure(*charts, children=children, **args) return fig def create_chart_factories(chart_types): """Receive the chart type(s) specified by the user and build a list of the their related functions. Args: series (str): string that contains the name of the chart classes to use when creating the chart, separated by `,` example: >> create_chart_factories('Line,step') [Line, Step] """ return [get_chart(name) for name in chart_types.split(',') if name] def get_chart(class_name): """Return the bokeh class specified in class_name. Args: class_name (str): name of the chart class to return (i.e.: Line|step) """ return CHARTS_MAP[class_name.strip().lower()] if __name__ == '__main__': cli()
bsd-3-clause
gfyoung/pandas
asv_bench/benchmarks/pandas_vb_common.py
3
1734
from importlib import import_module import os import numpy as np import pandas as pd # Compatibility import for lib for imp in ["pandas._libs.lib", "pandas.lib"]: try: lib = import_module(imp) break except (ImportError, TypeError, ValueError): pass # Compatibility import for the testing module try: import pandas._testing as tm except ImportError: import pandas.util.testing as tm # noqa numeric_dtypes = [ np.int64, np.int32, np.uint32, np.uint64, np.float32, np.float64, np.int16, np.int8, np.uint16, np.uint8, ] datetime_dtypes = [np.datetime64, np.timedelta64] string_dtypes = [object] try: extension_dtypes = [ pd.Int8Dtype, pd.Int16Dtype, pd.Int32Dtype, pd.Int64Dtype, pd.UInt8Dtype, pd.UInt16Dtype, pd.UInt32Dtype, pd.UInt64Dtype, pd.CategoricalDtype, pd.IntervalDtype, pd.DatetimeTZDtype("ns", "UTC"), pd.PeriodDtype("D"), ] except AttributeError: extension_dtypes = [] def setup(*args, **kwargs): # This function just needs to be imported into each benchmark file to # set up the random seed before each function. # https://asv.readthedocs.io/en/latest/writing_benchmarks.html np.random.seed(1234) class BaseIO: """ Base class for IO benchmarks """ fname = None def remove(self, f): """Remove created files""" try: os.remove(f) except OSError: # On Windows, attempting to remove a file that is in use # causes an exception to be raised pass def teardown(self, *args, **kwargs): self.remove(self.fname)
bsd-3-clause
syl20bnr/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_gtkagg.py
70
4184
""" Render to gtk from agg """ from __future__ import division import os import matplotlib from matplotlib.figure import Figure from matplotlib.backends.backend_agg import FigureCanvasAgg from matplotlib.backends.backend_gtk import gtk, FigureManagerGTK, FigureCanvasGTK,\ show, draw_if_interactive,\ error_msg_gtk, NavigationToolbar, PIXELS_PER_INCH, backend_version, \ NavigationToolbar2GTK from matplotlib.backends._gtkagg import agg_to_gtk_drawable DEBUG = False class NavigationToolbar2GTKAgg(NavigationToolbar2GTK): def _get_canvas(self, fig): return FigureCanvasGTKAgg(fig) class FigureManagerGTKAgg(FigureManagerGTK): def _get_toolbar(self, canvas): # must be inited after the window, drawingArea and figure # attrs are set if matplotlib.rcParams['toolbar']=='classic': toolbar = NavigationToolbar (canvas, self.window) elif matplotlib.rcParams['toolbar']=='toolbar2': toolbar = NavigationToolbar2GTKAgg (canvas, self.window) else: toolbar = None return toolbar def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ if DEBUG: print 'backend_gtkagg.new_figure_manager' FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass(*args, **kwargs) canvas = FigureCanvasGTKAgg(thisFig) return FigureManagerGTKAgg(canvas, num) if DEBUG: print 'backend_gtkagg.new_figure_manager done' class FigureCanvasGTKAgg(FigureCanvasGTK, FigureCanvasAgg): filetypes = FigureCanvasGTK.filetypes.copy() filetypes.update(FigureCanvasAgg.filetypes) def configure_event(self, widget, event=None): if DEBUG: print 'FigureCanvasGTKAgg.configure_event' if widget.window is None: return try: del self.renderer except AttributeError: pass w,h = widget.window.get_size() if w==1 or h==1: return # empty fig # compute desired figure size in inches dpival = self.figure.dpi winch = w/dpival hinch = h/dpival self.figure.set_size_inches(winch, hinch) self._need_redraw = True self.resize_event() if DEBUG: print 'FigureCanvasGTKAgg.configure_event end' return True def _render_figure(self, pixmap, width, height): if DEBUG: print 'FigureCanvasGTKAgg.render_figure' FigureCanvasAgg.draw(self) if DEBUG: print 'FigureCanvasGTKAgg.render_figure pixmap', pixmap #agg_to_gtk_drawable(pixmap, self.renderer._renderer, None) buf = self.buffer_rgba(0,0) ren = self.get_renderer() w = int(ren.width) h = int(ren.height) pixbuf = gtk.gdk.pixbuf_new_from_data( buf, gtk.gdk.COLORSPACE_RGB, True, 8, w, h, w*4) pixmap.draw_pixbuf(pixmap.new_gc(), pixbuf, 0, 0, 0, 0, w, h, gtk.gdk.RGB_DITHER_NONE, 0, 0) if DEBUG: print 'FigureCanvasGTKAgg.render_figure done' def blit(self, bbox=None): if DEBUG: print 'FigureCanvasGTKAgg.blit' if DEBUG: print 'FigureCanvasGTKAgg.blit', self._pixmap agg_to_gtk_drawable(self._pixmap, self.renderer._renderer, bbox) x, y, w, h = self.allocation self.window.draw_drawable (self.style.fg_gc[self.state], self._pixmap, 0, 0, 0, 0, w, h) if DEBUG: print 'FigureCanvasGTKAgg.done' def print_png(self, filename, *args, **kwargs): # Do this so we can save the resolution of figure in the PNG file agg = self.switch_backends(FigureCanvasAgg) return agg.print_png(filename, *args, **kwargs) """\ Traceback (most recent call last): File "/home/titan/johnh/local/lib/python2.3/site-packages/matplotlib/backends/backend_gtk.py", line 304, in expose_event self._render_figure(self._pixmap, w, h) File "/home/titan/johnh/local/lib/python2.3/site-packages/matplotlib/backends/backend_gtkagg.py", line 77, in _render_figure pixbuf = gtk.gdk.pixbuf_new_from_data( ValueError: data length (3156672) is less then required by the other parameters (3160608) """
gpl-3.0
pgaref/memcached_bench
Python_plots/plots/utilisation/iowait/cluster_iowait.py
1
3953
__author__ = "Panagiotis Garefalakis" __copyright__ = "Imperial College London" # The MIT License (MIT) # # Copyright (c) 2016 Panagiotis Garefalakis # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import sys import os import numpy as np import pandas as pd import datetime import plots.utils as utils from matplotlib import dates linestyle_list = ['--', '-.', ':', '-'] markers = ['o', '^', 'v', 'h', 'x'] fig = utils.plt.figure() ax1 = fig.add_subplot(111) ax1.set_xlabel("Time") ax1.set_ylabel("Memory Util \%") nodeIndex=0 def plot_timeseries(data, nodeName): global nodeIndex # Timestamps start_ts = datetime.datetime.now() x = np.array([start_ts + datetime.timedelta(seconds=j) for j in range(len(data))]) y = np.asarray(data).squeeze() utils.plt.plot(x, y, linewidth=0.5, label=nodeName, linestyle=linestyle_list[nodeIndex%len(linestyle_list)]) nodeIndex += 1 def prepare_my_legend(legend_loc=1, legend_ncol=1, legend_font='small'): utils.rc('legend', frameon=True) legfont = utils.fnt.FontProperties() legfont.set_size(legend_font) leg = utils.plt.legend(loc=legend_loc, ncol=legend_ncol, fancybox=True, prop=legfont, bbox_to_anchor=(0.5, 1.15)) leg.get_frame().set_alpha(0.7) hfmt = dates.DateFormatter('%H:%M:%S') ax1.xaxis.set_major_locator(dates.AutoDateLocator()) ax1.xaxis.set_major_formatter(hfmt) ax1.set_ylim(bottom=0) # fig.autofmt_xdate() utils.plt.xticks(rotation=15) return # Running mean/Moving average def running_mean(l, N): sum = 0 result = list( 0 for x in l) for i in range( 0, N ): sum = sum + l[i] result[i] = sum / (i+1) for i in range( N, len(l) ): sum = sum - l[i-N] + l[i] result[i] = sum / N return result def file_parser(fnames, nodes): i = 0 for f in fnames: file_data = pd.read_csv(f) cpuIoWait = file_data[['Total_CPU_usage_iowait_percent']].values # numpyMatrix = file_data[['Total_CPU_usage_percent']].values cpuIoWait = running_mean(cpuIoWait, len(cpuIoWait)) plot_timeseries(cpuIoWait, nodes[i]) i += 1 ax1.set_ylabel("CPU IO Wait % ") ax1.set_ylim(0, 100) if __name__ == '__main__': print "System Path {}".format(os.environ['PATH']) if len(sys.argv) < 2: print "Usage: cluster_iowait.py <input PATH>" sys.exit(-1) outname = "cluster_iowait" fpaths = [] nodes = [] for i in range(30, 46): file = 'wombat'+str(i)+'_stats.csv' nodes.append('wombat'+str(i)) fpaths.append(sys.argv[1]+"/"+file) # labels.append(sys.argv[2 + i]) print 'Files given: {}'.format(" | ".join(fname for fname in fpaths)) # print 'Labels given: {}'.format(" | ".join(label for label in labels)) file_parser(fpaths, nodes) prepare_my_legend(legend_loc="upper center", legend_ncol=5, legend_font=8) utils.writeout("%s"%outname)
mit
jungla/ICOM-fluidity-toolbox
Detectors/offline_advection/advect_particles_C_3Db_big.py
1
4082
import os, sys import myfun import numpy as np import lagrangian_stats import scipy.interpolate as interpolate import csv import matplotlib.pyplot as plt import advect_functions import fio from intergrid import Intergrid ## READ archive (too many points... somehow) # args: name, dayi, dayf, days #label = 'm_25_2_512' label = 'm_25_1b_particles' dayi = 60 #10*24*1 dayf = 500 #10*24*4 days = 1 #label = sys.argv[1] #basename = sys.argv[2] #dayi = int(sys.argv[3]) #dayf = int(sys.argv[4]) #days = int(sys.argv[5]) path = '../../2D/U/Velocity_CG/' time = range(dayi,dayf,days) # dimensions archives # ML exp #Xlist = np.linspace(0,10000,801) #Ylist = np.linspace(0,4000,321) Xlist = np.linspace(0,8000,641) Ylist = np.linspace(0,8000,641) dl = [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1] Zlist = 1.*np.cumsum(dl) maps = [Xlist,Ylist,Zlist] lo = np.array([ 0, 0, 0]) hi = np.array([ 8000, 8000, 50]) # highest lat, highest lon #lo = np.array([ 0, 0, 0]) #hi = np.array([ 10000, 4000, 50]) # highest lat, highest lon [X,Y,Z] = myfun.meshgrid2(Xlist,Ylist,Zlist) Y = np.reshape(Y,(np.size(Y),)) X = np.reshape(X,(np.size(X),)) Z = np.reshape(Z,(np.size(Z),)) xn = len(Xlist) yn = len(Ylist) zn = len(Zlist) dx = np.gradient(Xlist) dy = np.gradient(Ylist) dz = np.gradient(Zlist) #dt = 360 dt = 1440 time = np.asarray(range(dayi,dayf,days)) print time[0] # initial particles position x0 = range(0,5010,10) y0 = range(0,5010,10) #z0 = [5,10,17] #x0 = range(3000,4010,10) #y0 = range(2000,3010,10) #z0 = range(1,20,4) z0 = [0,5,10,15] xp = len(x0) yp = len(y0) zp = len(z0) pt = xp*yp*zp [z0,y0,x0] = myfun.meshgrid2(z0,y0,x0) x0 = np.reshape(x0, (np.size(x0))) y0 = np.reshape(y0, (np.size(y0))) z0 = np.reshape(z0, (np.size(z0))) #levels = np.zeros(x0.shape) + 1. #levels[np.where(z0 != 2)] = np.nan #x0 = lo[0] + np.random.uniform( size=(pt) ) * (hi[0] - lo[0]) #y0 = lo[1] + np.random.uniform( size=(pt) ) * (hi[1] - lo[1]) #z0 = lo[2] + np.random.uniform( size=(pt) ) * (hi[2] - lo[2]) #z0 = z0*0-1. x = np.zeros((pt)) y = np.zeros((pt)) z = np.zeros((pt)) ## ADVECT PARTICLES kick = 5. #filename = './traj_'+label+'_'+str(dayi)+'_'+str(dayf)+'_3D.csv' filename = './traj_'+label+'_'+str(dayi)+'_'+str(dayf)+'_3D_big.csv' print filename fd = open(filename,'wb') for p in range(pt): fd.write(str(x0[p])+', '+str(y0[p])+', '+str(-1.*z0[p])+', '+str(time[0])+'\n') import random for t in range(len(time)-1): print 'time:', time[t] file0 = path+'Velocity_CG_0_'+label+'_'+str(time[t])+'.csv' file1 = path+'Velocity_CG_1_'+label+'_'+str(time[t])+'.csv' file2 = path+'Velocity_CG_2_'+label+'_'+str(time[t])+'.csv' Ut0 = fio.read_Scalar(file0,xn,yn,zn) Vt0 = fio.read_Scalar(file1,xn,yn,zn) Wt0 = -1.*fio.read_Scalar(file2,xn,yn,zn) #0*Ut0 file0 = path+'Velocity_CG_0_'+label+'_'+str(time[t+1])+'.csv' file1 = path+'Velocity_CG_1_'+label+'_'+str(time[t+1])+'.csv' file2 = path+'Velocity_CG_2_'+label+'_'+str(time[t+1])+'.csv' Ut1 = fio.read_Scalar(file0,xn,yn,zn) Vt1 = fio.read_Scalar(file1,xn,yn,zn) Wt1 = -1.*fio.read_Scalar(file2,xn,yn,zn) #0*Ut0 # subcycling nt = 20 ds = 1.*dt / nt # for st in range(nt+1): # print st # Us0 = (Ut1*st + Ut0*(nt-st))/(nt) # Us1 = (Ut1*(st+1) + Ut0*(nt-st-1))/(nt) # Vs0 = (Vt1*st + Vt0*(nt-st))/(nt) # Vs1 = (Vt1*(st+1) + Vt0*(nt-st-1))/(nt) # Ws0 = (Wt1*st + Wt0*(nt-st))/(nt) # Ws1 = (Wt1*(st+1) + Wt0*(nt-st-1))/(nt) # x0,y0,z0 = advect_functions.RK4(x0,y0,z0,Us0,Vs0,Ws0,Us1,Vs1,Ws1,lo,hi,maps,ds) x0,y0,z0 = advect_functions.RK4(x0,y0,z0,Ut0,Vt0,Wt0,Ut1,Vt1,Wt1,lo,hi,maps,dt) #x0,y0,z0 = advect_functions.EULER(x0,y0,z0,Ut0,Vt0,Wt0,lo,hi,maps,dt) # random.seed() # random kick # for i in range(len(x0)): # x0[i] = x0[i] + random.uniform(-kick,kick) # y0[i] = y0[i] + random.uniform(-kick,kick) x0,y0,z0 = advect_functions.pBC(x0,y0,z0,lo,hi) # x1,y1,z1 = x0,y0,z0 # write for p in range(pt): fd.write(str(x0[p])+', '+str(y0[p])+', '+str(-1.*z0[p])+', '+str(time[t+1])+'\n') fd.close()
gpl-2.0
msto/svplot
svplot/annotation.py
1
8638
""" """ import numpy as np def _patch_size(patch, orient='v'): """ Get plotted value via patch size Height for vertical bars, width for horizontal bars Parameters ---------- patch : matplotlib patch orient : 'v' | 'h' Returns ------- size : float """ if orient == 'v': if np.isnan(patch.get_height()): return 0 else: return patch.get_height() else: if np.isnan(patch.get_width()): return 0 else: return patch.get_width() def _patch_center(patch, orient='v'): """ Get coordinate of bar center Parameters ---------- patch : matplotlib patch orient : 'v' | 'h' Returns ------- center : float """ if orient not in 'v h'.split(): raise Exception("Orientation must be 'v' or 'h'") if orient == 'v': x = patch.get_x() width = patch.get_width() xpos = x + width / 2 return xpos else: y = patch.get_y() height = patch.get_height() ypos = y + height / 2 return ypos def _bar_end_midpoint(patch, ax, orient='v'): """ Coordinates of midpoint of bar's end. Scaled to a (0, 1) axis. Parameters ---------- patch : matplotlib patch ax : matplotlib Axes orient : 'v' | 'h' Returns ------- xpos : float ypos : float """ xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() ax_width = xmax - xmin ax_height = ymax - ymin # Transform position to a (0, 1) axis def _ax_transform(pos, ax_min, ax_max): return (pos - ax_min) / (ax_max - ax_min) if orient == 'v': xpos = _patch_center(patch, orient) xpos = _ax_transform(xpos, xmin, xmax) ypos = _patch_size(patch, orient) / ax_height else: xpos = _patch_size(patch, orient) / ax_width ypos = _patch_center(patch, orient) ypos = _ax_transform(ypos, ymin, ymax) return xpos, ypos def add_count_labels(ax, count=0, pct=False, as_pct=True, orient='v', loc='above', offset=0.01, color='black', palette=None, fontsize=11, **kwargs): """ Add count labels to a bar or count plot. NOTE: Must apply after changing axis xlim/ylim Parameters ---------- ax : matplotlib Axes Axes object to annotate. orient : 'v' | 'h', optional Orientation of the plot (vertical or horizontal). loc : 'above' | 'inside', optional Position of text labels. - above: Labels will be plotted above the top each bar - inside: Labels will be plotted inside each bar, at the top - TODO: base: Labels will be plotted at the base of each bar offset : float, optional Offset of the label relative to the bar end. Scaled to a [0, 1] axis. color : matplotlib color, optional Text color. palette : list of matplotlib colors or seaborn color palette, optional Cycle of text label colors. Useful for situations where the bars are plotted with a `hue` attribute and the labels are plotted inside the bars. kwargs : key, value mappings Other keyword arguments are passed to ax.text TODO: add format string TODO: improve percentage handling """ # Input validation if orient not in 'v h'.split(): raise Exception("Orientation must be 'v' or 'h'") if loc not in 'above inside'.split(): msg = "Loc must be one of 'above', 'inside'" raise Exception(msg) # Constants if orient == 'v': ha = 'center' if loc == 'above' or loc == 'base': va = 'bottom' else: va = 'top' else: va = 'center' if loc == 'above' or loc == 'base': ha = 'left' else: ha = 'right' # sort by x position for palette cycling if orient == 'v': patches = sorted(ax.patches, key=lambda p: p.get_x()) else: patches = sorted(ax.patches, key=lambda p: p.get_y()) for i, patch in enumerate(patches): value = _patch_size(patch, orient) if np.isnan(value): value = 0 if pct: if as_pct: label = '%.1f%%' % (value * 100) fontsize = fontsize else: label = str(int(value * count)) fontsize = fontsize else: label = str(int(value)) fontsize = fontsize if palette is not None: color = palette[i % len(palette)] # Position label xpos, ypos = _bar_end_midpoint(patch, ax, orient) if orient == 'v': if loc == 'above' or loc == 'base': ypos = ypos + offset else: ypos = ypos - offset else: if loc == 'above' or loc == 'base': xpos = xpos + offset else: xpos = xpos - offset ax.text(xpos, ypos, label, color=color, ha=ha, va=va, fontsize=fontsize, transform=ax.transAxes, **kwargs) def add_comparison_bars(ax, p=None, orient='v', bar_offset=0.02, top_offset=0.1, fontsize=12, pval_offset=0.01, color='black', **kwargs): """ Add count labels to a bar or count plot. Parameters ---------- ax : matplotlib Axes Axes object to annotate. p : arraylike of float, optional Pairwise p-values to annotate with orient : 'v' | 'h', optional Orientation of the plot (vertical or horizontal). bar_offset : float, optional Distance between bottom of comparison lines and top of bars. Scaled to a (0, 1) axis. top_offset : float, optional Distance from bottom of upper comparison line to crossbar. Scaled to a (0, 1) axis. fontsize : int, optional p-value label font size pval_offset : float, optional Distance between p-value label and crossbar. Scaled to a (0, 1) axis. color : matplotlib color, optional Text color. kwargs : key, value mappings Other keyword arguments are passed to ax.plot """ # Input validation if orient not in 'v h'.split(): raise Exception("Orientation must be 'v' or 'h'") # Constants if orient == 'v': ha = 'center' va = 'bottom' else: va = 'center' ha = 'left' # sort by x position for palette cycling and comparison bar pairing if orient == 'v': patches = sorted(ax.patches, key=lambda p: p.get_x()) else: patches = sorted(ax.patches, key=lambda p: p.get_y()) patch_pairs = zip(patches[0::2], patches[1::2]) for i, (l_patch, r_patch) in enumerate(patch_pairs): l_xpos, l_ypos = _bar_end_midpoint(l_patch, ax, orient) r_xpos, r_ypos = _bar_end_midpoint(r_patch, ax, orient) if orient == 'v': max_val = max(l_ypos, r_ypos) top_pos = max_val + top_offset # Plot vertical lines ax.plot([l_xpos, l_xpos], [l_ypos + bar_offset, top_pos], 'k-', transform=ax.transAxes, **kwargs) ax.plot([r_xpos, r_xpos], [r_ypos + bar_offset, top_pos], 'k-', transform=ax.transAxes, **kwargs) # Plot crossbar ax.plot([l_xpos, r_xpos], [top_pos, top_pos], 'k-', transform=ax.transAxes, **kwargs) else: max_val = max(l_xpos, r_xpos) top_pos = max_val + top_offset # Plot vertical lines ax.plot([l_xpos + bar_offset, top_pos], [l_ypos, l_ypos], 'k-', transform=ax.transAxes, **kwargs) ax.plot([r_xpos + bar_offset, top_pos], [r_ypos, r_ypos], 'k-', transform=ax.transAxes, **kwargs) # Plot crossbar ax.plot([top_pos, top_pos], [l_ypos, r_ypos], 'k-', transform=ax.transAxes, **kwargs) # Add p-value annotations if p is not None: label = 'p={:.3f}'.format(p[i]) if orient == 'v': xpos = np.mean([l_xpos, r_xpos]) ypos = top_pos + pval_offset else: xpos = top_pos + pval_offset ypos = np.mean([l_ypos, r_ypos]) ax.text(xpos, ypos, label, ha=ha, va=va, fontsize=fontsize, transform=ax.transAxes)
mit
Nathx/think_stats
code/survival.py
65
17881
"""This file contains code for use with "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2014 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function, division import numpy as np import pandas import nsfg import thinkstats2 import thinkplot """ Outcome codes from http://www.icpsr.umich.edu/nsfg6/Controller? displayPage=labelDetails&fileCode=PREG&section=&subSec=8016&srtLabel=611932 1 LIVE BIRTH 9148 2 INDUCED ABORTION 1862 3 STILLBIRTH 120 4 MISCARRIAGE 1921 5 ECTOPIC PREGNANCY 190 6 CURRENT PREGNANCY 352 """ FORMATS = ['pdf', 'eps', 'png'] class SurvivalFunction(object): """Represents a survival function.""" def __init__(self, cdf, label=''): self.cdf = cdf self.label = label or cdf.label @property def ts(self): return self.cdf.xs @property def ss(self): return 1 - self.cdf.ps def __getitem__(self, t): return self.Prob(t) def Prob(self, t): """Returns S(t), the probability that corresponds to value t. t: time returns: float probability """ return 1 - self.cdf.Prob(t) def Probs(self, xs): """Gets probabilities for a sequence of values.""" return [self.Prob(x) for x in xs] def Mean(self): """Mean survival time.""" return self.cdf.Mean() def Items(self): """Sorted list of (t, s) pairs.""" return zip(self.ts, self.ss) def Render(self): """Generates a sequence of points suitable for plotting. returns: tuple of (sorted times, survival function) """ return self.ts, self.ss def MakeHazard(self, label=''): """Computes the hazard function. sf: survival function returns: Pmf that maps times to hazard rates """ ss = self.ss lams = {} for i, t in enumerate(self.ts[:-1]): hazard = (ss[i] - ss[i+1]) / ss[i] lams[t] = hazard return HazardFunction(lams, label=label) def MakePmf(self, filler=None): """Makes a PMF of lifetimes. filler: value to replace missing values returns: Pmf """ pmf = thinkstats2.Pmf() for val, prob in self.cdf.Items(): pmf.Set(val, prob) cutoff = self.cdf.ps[-1] if filler is not None: pmf[filler] = 1-cutoff return pmf def RemainingLifetime(self, filler=None, func=thinkstats2.Pmf.Mean): """Computes remaining lifetime as a function of age. func: function from conditional Pmf to expected liftime returns: Series that maps from age to remaining lifetime """ pmf = self.MakePmf(filler=filler) d = {} for t in sorted(pmf.Values())[:-1]: pmf[t] = 0 pmf.Normalize() d[t] = func(pmf) - t #print(t, d[t]) return pandas.Series(d) class HazardFunction(object): """Represents a hazard function.""" def __init__(self, d, label=''): """Initialize the hazard function. d: dictionary (or anything that can initialize a series) label: string """ self.series = pandas.Series(d) self.label = label def __getitem__(self, t): return self.series[t] def Render(self): """Generates a sequence of points suitable for plotting. returns: tuple of (sorted times, hazard function) """ return self.series.index, self.series.values def MakeSurvival(self, label=''): """Makes the survival function. returns: SurvivalFunction """ ts = self.series.index ss = (1 - self.series).cumprod() cdf = thinkstats2.Cdf(ts, 1-ss) sf = SurvivalFunction(cdf, label=label) return sf def Extend(self, other): """Extends this hazard function by copying the tail from another. other: HazardFunction """ last = self.series.index[-1] more = other.series[other.series.index > last] self.series = pandas.concat([self.series, more]) def ConditionalSurvival(pmf, t0): """Computes conditional survival function. Probability that duration exceeds t0+t, given that duration >= t0. pmf: Pmf of durations t0: minimum time returns: tuple of (ts, conditional survivals) """ cond = thinkstats2.Pmf() for t, p in pmf.Items(): if t >= t0: cond.Set(t-t0, p) return SurvivalFunction(thinkstats2.Cdf(cond)) def PlotConditionalSurvival(durations): """Plots conditional survival curves for a range of t0. durations: list of durations """ pmf = thinkstats2.Pmf(durations) times = [8, 16, 24, 32] thinkplot.PrePlot(len(times)) for t0 in times: sf = ConditionalSurvival(pmf, t0) label = 't0=%d' % t0 thinkplot.Plot(sf, label=label) thinkplot.Show() def PlotSurvival(complete): """Plots survival and hazard curves. complete: list of complete lifetimes """ thinkplot.PrePlot(3, rows=2) cdf = thinkstats2.Cdf(complete, label='cdf') sf = SurvivalFunction(cdf, label='survival') print(cdf[13]) print(sf[13]) thinkplot.Plot(sf) thinkplot.Cdf(cdf, alpha=0.2) thinkplot.Config() thinkplot.SubPlot(2) hf = sf.MakeHazard(label='hazard') print(hf[39]) thinkplot.Plot(hf) thinkplot.Config(ylim=[0, 0.75]) def PlotHazard(complete, ongoing): """Plots the hazard function and survival function. complete: list of complete lifetimes ongoing: list of ongoing lifetimes """ # plot S(t) based on only complete pregnancies cdf = thinkstats2.Cdf(complete) sf = SurvivalFunction(cdf) thinkplot.Plot(sf, label='old S(t)', alpha=0.1) thinkplot.PrePlot(2) # plot the hazard function hf = EstimateHazardFunction(complete, ongoing) thinkplot.Plot(hf, label='lams(t)', alpha=0.5) # plot the survival function sf = hf.MakeSurvival() thinkplot.Plot(sf, label='S(t)') thinkplot.Show(xlabel='t (weeks)') def EstimateHazardFunction(complete, ongoing, label='', shift=1e-7): """Estimates the hazard function by Kaplan-Meier. http://en.wikipedia.org/wiki/Kaplan%E2%80%93Meier_estimator complete: list of complete lifetimes ongoing: list of ongoing lifetimes label: string shift: presumed additional survival of ongoing """ # pmf and sf of complete lifetimes n = len(complete) hist_complete = thinkstats2.Hist(complete) sf_complete = SurvivalFunction(thinkstats2.Cdf(complete)) # sf for ongoing lifetimes # The shift is a regrettable hack needed to deal with simultaneity. # If a case is complete at some t and another case is ongoing # at t, we presume that the ongoing case exceeds t+shift. m = len(ongoing) cdf = thinkstats2.Cdf(ongoing).Shift(shift) sf_ongoing = SurvivalFunction(cdf) lams = {} for t, ended in sorted(hist_complete.Items()): at_risk = ended + n * sf_complete[t] + m * sf_ongoing[t] lams[t] = ended / at_risk #print(t, ended, n * sf_complete[t], m * sf_ongoing[t], at_risk) return HazardFunction(lams, label=label) def CleanData(resp): """Cleans a respondent DataFrame. resp: DataFrame of respondents """ resp.cmmarrhx.replace([9997, 9998, 9999], np.nan, inplace=True) resp['agemarry'] = (resp.cmmarrhx - resp.cmbirth) / 12.0 resp['age'] = (resp.cmintvw - resp.cmbirth) / 12.0 month0 = pandas.to_datetime('1899-12-15') dates = [month0 + pandas.DateOffset(months=cm) for cm in resp.cmbirth] resp['decade'] = (pandas.DatetimeIndex(dates).year - 1900) // 10 def AddLabelsByDecade(groups, **options): """Draws fake points in order to add labels to the legend. groups: GroupBy object """ thinkplot.PrePlot(len(groups)) for name, _ in groups: label = '%d0s' % name thinkplot.Plot([15], [1], label=label, **options) def EstimateSurvivalByDecade(groups, **options): """Groups respondents by decade and plots survival curves. groups: GroupBy object """ thinkplot.PrePlot(len(groups)) for _, group in groups: _, sf = EstimateSurvival(group) thinkplot.Plot(sf, **options) def PlotPredictionsByDecade(groups, **options): """Groups respondents by decade and plots survival curves. groups: GroupBy object """ hfs = [] for _, group in groups: hf, sf = EstimateSurvival(group) hfs.append(hf) thinkplot.PrePlot(len(hfs)) for i, hf in enumerate(hfs): if i > 0: hf.Extend(hfs[i-1]) sf = hf.MakeSurvival() thinkplot.Plot(sf, **options) def ResampleSurvival(resp, iters=101): """Resamples respondents and estimates the survival function. resp: DataFrame of respondents iters: number of resamples """ _, sf = EstimateSurvival(resp) thinkplot.Plot(sf) low, high = resp.agemarry.min(), resp.agemarry.max() ts = np.arange(low, high, 1/12.0) ss_seq = [] for _ in range(iters): sample = thinkstats2.ResampleRowsWeighted(resp) _, sf = EstimateSurvival(sample) ss_seq.append(sf.Probs(ts)) low, high = thinkstats2.PercentileRows(ss_seq, [5, 95]) thinkplot.FillBetween(ts, low, high, color='gray', label='90% CI') thinkplot.Save(root='survival3', xlabel='age (years)', ylabel='prob unmarried', xlim=[12, 46], ylim=[0, 1], formats=FORMATS) def EstimateSurvival(resp): """Estimates the survival curve. resp: DataFrame of respondents returns: pair of HazardFunction, SurvivalFunction """ complete = resp[resp.evrmarry == 1].agemarry ongoing = resp[resp.evrmarry == 0].age hf = EstimateHazardFunction(complete, ongoing) sf = hf.MakeSurvival() return hf, sf def PlotMarriageData(resp): """Plots hazard and survival functions. resp: DataFrame of respondents """ hf, sf = EstimateSurvival(resp) thinkplot.PrePlot(rows=2) thinkplot.Plot(hf) thinkplot.Config(legend=False) thinkplot.SubPlot(2) thinkplot.Plot(sf) thinkplot.Save(root='survival2', xlabel='age (years)', ylabel='prob unmarried', ylim=[0, 1], legend=False, formats=FORMATS) return sf def PlotPregnancyData(preg): """Plots survival and hazard curves based on pregnancy lengths. preg: """ complete = preg.query('outcome in [1, 3, 4]').prglngth print('Number of complete pregnancies', len(complete)) ongoing = preg[preg.outcome == 6].prglngth print('Number of ongoing pregnancies', len(ongoing)) PlotSurvival(complete) thinkplot.Save(root='survival1', xlabel='t (weeks)', formats=FORMATS) hf = EstimateHazardFunction(complete, ongoing) sf = hf.MakeSurvival() return sf def PlotRemainingLifetime(sf1, sf2): """Plots remaining lifetimes for pregnancy and age at first marriage. sf1: SurvivalFunction for pregnancy length sf2: SurvivalFunction for age at first marriage """ thinkplot.PrePlot(cols=2) rem_life1 = sf1.RemainingLifetime() thinkplot.Plot(rem_life1) thinkplot.Config(title='pregnancy length', xlabel='weeks', ylabel='mean remaining weeks') thinkplot.SubPlot(2) func = lambda pmf: pmf.Percentile(50) rem_life2 = sf2.RemainingLifetime(filler=np.inf, func=func) thinkplot.Plot(rem_life2) thinkplot.Config(title='age at first marriage', ylim=[0, 15], xlim=[11, 31], xlabel='age (years)', ylabel='median remaining years') thinkplot.Save(root='survival6', formats=FORMATS) def ReadFemResp(dct_file='2002FemResp.dct', dat_file='2002FemResp.dat.gz', **options): """Reads the NSFG respondent data. dct_file: string file name dat_file: string file name returns: DataFrame """ dct = thinkstats2.ReadStataDct(dct_file, encoding='iso-8859-1') df = dct.ReadFixedWidth(dat_file, compression='gzip', **options) CleanData(df) return df def ReadFemResp2002(): """Reads respondent data from NSFG Cycle 6. returns: DataFrame """ usecols = ['cmmarrhx', 'cmdivorcx', 'cmbirth', 'cmintvw', 'evrmarry', 'finalwgt'] resp = ReadFemResp(usecols=usecols) CleanData(resp) return resp def ReadFemResp2010(): """Reads respondent data from NSFG Cycle 7. returns: DataFrame """ usecols = ['cmmarrhx', 'cmdivorcx', 'cmbirth', 'cmintvw', 'evrmarry', 'wgtq1q16'] resp = ReadFemResp('2006_2010_FemRespSetup.dct', '2006_2010_FemResp.dat.gz', usecols=usecols) resp['finalwgt'] = resp.wgtq1q16 CleanData(resp) return resp def ReadFemResp2013(): """Reads respondent data from NSFG Cycle 8. returns: DataFrame """ usecols = ['cmmarrhx', 'cmdivorcx', 'cmbirth', 'cmintvw', 'evrmarry', 'wgt2011_2013'] resp = ReadFemResp('2011_2013_FemRespSetup.dct', '2011_2013_FemRespData.dat.gz', usecols=usecols) resp['finalwgt'] = resp.wgt2011_2013 CleanData(resp) return resp def ReadFemResp1995(): """Reads respondent data from NSFG Cycle 5. returns: DataFrame """ dat_file = '1995FemRespData.dat.gz' names = ['a_doi', 'timesmar', 'mardat01', 'bdaycenm', 'post_wt'] colspecs = [(12359, 12363), (3538, 3540), (11758, 11762), (13, 16), (12349, 12359)] df = pandas.read_fwf(dat_file, compression='gzip', colspecs=colspecs, names=names) df['cmmarrhx'] = df.mardat01 df['cmbirth'] = df.bdaycenm df['cmintvw'] = df.a_doi df['finalwgt'] = df.post_wt df.timesmar.replace([98, 99], np.nan, inplace=True) df['evrmarry'] = (df.timesmar > 0).astype(int) CleanData(df) return df def ReadFemResp1982(): """Reads respondent data from NSFG Cycle 4. returns: DataFrame """ dat_file = '1982NSFGData.dat.gz' names = ['cmmarrhx', 'MARNO', 'cmintvw', 'cmbirth', 'finalwgt'] #actual = ['MARIMO', 'MARNO', 'TL', 'TL', 'W5'] colspecs = [(1028, 1031), (1258, 1259), (841, 844), (12, 15), (976, 982)] df = pandas.read_fwf(dat_file, compression='gzip', colspecs=colspecs, names=names) df.MARNO.replace([98, 99], np.nan, inplace=True) df['evrmarry'] = (df.MARNO > 0).astype(int) CleanData(df) return df[:7969] def ReadFemResp1988(): """Reads respondent data from NSFG Cycle 4. returns: DataFrame """ dat_file = '1988FemRespData.dat.gz' names = ['F_13'] #['CMOIMO', 'F_13', 'F19M1MO', 'A_3'] # colspecs = [(799, 803)], colspecs = [(20, 22)]#, # (1538, 1542), # (26, 30), # (2568, 2574)] df = pandas.read_fwf(dat_file, compression='gzip', colspecs=colspecs, names=names) # df['cmmarrhx'] = df.F19M1MO # df['cmbirth'] = df.A_3 # df['cmintvw'] = df.CMOIMO # df['finalwgt'] = df.W5 df.F_13.replace([98, 99], np.nan, inplace=True) df['evrmarry'] = (df.F_13 > 0).astype(int) # CleanData(df) return df def PlotResampledByDecade(resps, iters=11, predict_flag=False, omit=None): """Plots survival curves for resampled data. resps: list of DataFrames iters: number of resamples to plot predict_flag: whether to also plot predictions """ for i in range(iters): samples = [thinkstats2.ResampleRowsWeighted(resp) for resp in resps] sample = pandas.concat(samples, ignore_index=True) groups = sample.groupby('decade') if omit: groups = [(name, group) for name, group in groups if name not in omit] # TODO: refactor this to collect resampled estimates and # plot shaded areas if i == 0: AddLabelsByDecade(groups, alpha=0.7) if predict_flag: PlotPredictionsByDecade(groups, alpha=0.1) EstimateSurvivalByDecade(groups, alpha=0.1) else: EstimateSurvivalByDecade(groups, alpha=0.2) def main(): thinkstats2.RandomSeed(17) preg = nsfg.ReadFemPreg() sf1 = PlotPregnancyData(preg) # make the plots based on Cycle 6 resp6 = ReadFemResp2002() sf2 = PlotMarriageData(resp6) ResampleSurvival(resp6) PlotRemainingLifetime(sf1, sf2) # read Cycles 5 and 7 resp5 = ReadFemResp1995() resp7 = ReadFemResp2010() # plot resampled survival functions by decade resps = [resp5, resp6, resp7] PlotResampledByDecade(resps) thinkplot.Save(root='survival4', xlabel='age (years)', ylabel='prob unmarried', xlim=[13, 45], ylim=[0, 1], formats=FORMATS) # plot resampled survival functions by decade, with predictions PlotResampledByDecade(resps, predict_flag=True, omit=[5]) thinkplot.Save(root='survival5', xlabel='age (years)', ylabel='prob unmarried', xlim=[13, 45], ylim=[0, 1], formats=FORMATS) if __name__ == '__main__': main()
gpl-3.0
ContextLab/hypertools
hypertools/tools/align.py
1
5648
#!/usr/bin/env python from __future__ import division from builtins import range from .._externals.srm import SRM from .procrustes import procrustes import numpy as np from .format_data import format_data as formatter from .._shared.helpers import memoize import warnings @memoize def align(data, align='hyper', normalize=None, ndims=None, method=None, format_data=True): """ Aligns a list of arrays This function takes a list of high dimensional arrays and 'hyperaligns' them to a 'common' space, or coordinate system following the approach outlined by Haxby et al, 2011. Hyperalignment uses linear transformations (rotation, reflection, translation, scaling) to register a group of arrays to a common space. This can be useful when two or more datasets describe an identical or similar system, but may not be in same coordinate system. For example, consider the example of fMRI recordings (voxels by time) from the visual cortex of a group of subjects watching the same movie: The brain responses should be highly similar, but the coordinates may not be aligned. Haxby JV, Guntupalli JS, Connolly AC, Halchenko YO, Conroy BR, Gobbini MI, Hanke M, and Ramadge PJ (2011) A common, high-dimensional model of the representational space in human ventral temporal cortex. Neuron 72, 404 -- 416. (used to implement hyperalignment, see https://github.com/PyMVPA/PyMVPA) Brain Imaging Analysis Kit, http://brainiak.org. (used to implement Shared Response Model [SRM], see https://github.com/IntelPNI/brainiak) Parameters ---------- data : numpy array, pandas df, or list of arrays/dfs A list of Numpy arrays or Pandas Dataframes align : str or dict If str, either 'hyper' or 'SRM'. If 'hyper', alignment algorithm will be hyperalignment. If 'SRM', alignment algorithm will be shared response model. You can also pass a dictionary for finer control, where the 'model' key is a string that specifies the model and the params key is a dictionary of parameter values (default : 'hyper'). format_data : bool Whether or not to first call the format_data function (default: True). normalize : None Deprecated argument. Please use new analyze function to perform combinations of transformations ndims : None Deprecated argument. Please use new analyze function to perform combinations of transformations Returns ---------- aligned : list An aligned list of numpy arrays """ # if model is None, just return data if align is None: return data elif isinstance(align, dict): if align['model'] is None: return data else: if method is not None: warnings.warn('The method argument will be deprecated. Please use align. See the API docs for more info: http://hypertools.readthedocs.io/en/latest/hypertools.tools.align.html#hypertools.tools.align') align = method if align is True: warnings.warn("Setting align=True will be deprecated. Please specify the \ type of alignment, i.e. align='hyper'. See API docs for more info: http://hypertools.readthedocs.io/en/latest/hypertools.tools.align.html#hypertools.tools.align") align = 'hyper' # common format if format_data: data = formatter(data, ppca=True) if len(data) is 1: warnings.warn('Data in list of length 1 can not be aligned. ' 'Skipping the alignment.') if data[0].shape[1] >= data[0].shape[0]: warnings.warn('The number of features exceeds number of samples. This can lead \ to overfitting. We recommend reducing the dimensionality to be \ less than the number of samples prior to hyperalignment.') if (align == 'hyper') or (method == 'hyper'): ##STEP 0: STANDARDIZE SIZE AND SHAPE## sizes_0 = [x.shape[0] for x in data] sizes_1 = [x.shape[1] for x in data] #find the smallest number of rows R = min(sizes_0) C = max(sizes_1) m = [np.empty((R,C), dtype=np.ndarray)] * len(data) for idx,x in enumerate(data): y = x[0:R,:] missing = C - y.shape[1] add = np.zeros((y.shape[0], missing)) y = np.append(y, add, axis=1) m[idx]=y ##STEP 1: TEMPLATE## for x in range(0, len(m)): if x==0: template = np.copy(m[x]) else: next = procrustes(m[x], template / (x + 1)) template += next template /= len(m) ##STEP 2: NEW COMMON TEMPLATE## #align each subj to the template from STEP 1 template2 = np.zeros(template.shape) for x in range(0, len(m)): next = procrustes(m[x], template) template2 += next template2 /= len(m) #STEP 3 (below): ALIGN TO NEW TEMPLATE aligned = [np.zeros(template2.shape)] * len(m) for x in range(0, len(m)): next = procrustes(m[x], template2) aligned[x] = next return aligned elif (align == 'SRM') or (method == 'SRM'): data = [i.T for i in data] srm = SRM(features=np.min([i.shape[0] for i in data])) fit = srm.fit(data) return [i.T for i in srm.transform(data)]
mit
chris-hld/sfs-python
doc/examples/mirror_image_source_model.py
1
1789
""" Computes the mirror image sources and the sound field in a rectangular room """ import numpy as np import sfs import matplotlib.pyplot as plt from matplotlib.patches import Rectangle L = 2, 2.7, 3 # room dimensions x0 = 1.2, 1.7, 1.5 # source position max_order = 2 # maximum order of image sources coeffs = .8, .8, .6, .6, .7, .7 # wall reflection coefficients omega = 2*np.pi*1000 # angular frequency of monocromatic sound field fs = 44100 # sample rate for boadband response signal = ([1, 0, 0], fs) # signal for broadband response # get 2D mirror image sources and their strength xs, wall_count = sfs.util.image_sources_for_box(x0[0:2], L[0:2], max_order) source_strength = np.prod(coeffs[0:4]**wall_count, axis=1) # plot mirror image sources plt.figure() plt.scatter(*xs.T, source_strength*20) plt.gca().add_patch(Rectangle((0, 0), L[0], L[1], fill=False)) plt.xlabel('x / m') plt.ylabel('y / m') plt.savefig('image_source_positions.png') # compute monochromatic sound field grid = sfs.util.xyz_grid([0, L[0]], [0, L[1]], 1.5, spacing=0.02) P = sfs.mono.source.point_image_sources(omega, x0, [1, 0, 0], grid, L, max_order, coeffs=coeffs) # plot monocromatic sound field plt.figure() sfs.plot.soundfield(P, grid, xnorm=[L[0]/2, L[1]/2, L[2]/2]) sfs.plot.virtualsource_2d(x0) plt.savefig('point_image_sources_mono.png') # compute spatio-temporal impulse response grid = sfs.util.xyz_grid([0, L[0]], [0, L[1]], 1.5, spacing=0.005) p = sfs.time.source.point_image_sources(x0, signal, 0.004, grid, L, max_order, coeffs=coeffs) # plot spatio-temporal impulse response plt.figure() sfs.plot.level(p, grid) sfs.plot.virtualsource_2d(x0) plt.savefig('point_image_sources_time_domain.png')
mit
Habasari/sms-tools
software/models_interface/stft_function.py
18
2785
# function to call the main analysis/synthesis functions in software/models/stft.py import numpy as np import matplotlib.pyplot as plt import os, sys from scipy.signal import get_window sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../models/')) import utilFunctions as UF import stft as STFT def main(inputFile = '../../sounds/piano.wav', window = 'hamming', M = 1024, N = 1024, H = 512): """ analysis/synthesis using the STFT inputFile: input sound file (monophonic with sampling rate of 44100) window: analysis window type (choice of rectangular, hanning, hamming, blackman, blackmanharris) M: analysis window size N: fft size (power of two, bigger or equal than M) H: hop size (at least 1/2 of analysis window size to have good overlap-add) """ # read input sound (monophonic with sampling rate of 44100) fs, x = UF.wavread(inputFile) # compute analysis window w = get_window(window, M) # compute the magnitude and phase spectrogram mX, pX = STFT.stftAnal(x, fs, w, N, H) # perform the inverse stft y = STFT.stftSynth(mX, pX, M, H) # output sound file (monophonic with sampling rate of 44100) outputFile = 'output_sounds/' + os.path.basename(inputFile)[:-4] + '_stft.wav' # write the sound resulting from the inverse stft UF.wavwrite(y, fs, outputFile) # create figure to plot plt.figure(figsize=(12, 9)) # frequency range to plot maxplotfreq = 5000.0 # plot the input sound plt.subplot(4,1,1) plt.plot(np.arange(x.size)/float(fs), x) plt.axis([0, x.size/float(fs), min(x), max(x)]) plt.ylabel('amplitude') plt.xlabel('time (sec)') plt.title('input sound: x') # plot magnitude spectrogram plt.subplot(4,1,2) numFrames = int(mX[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = fs*np.arange(N*maxplotfreq/fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(mX[:,:N*maxplotfreq/fs+1])) plt.xlabel('time (sec)') plt.ylabel('frequency (Hz)') plt.title('magnitude spectrogram') plt.autoscale(tight=True) # plot the phase spectrogram plt.subplot(4,1,3) numFrames = int(pX[:,0].size) frmTime = H*np.arange(numFrames)/float(fs) binFreq = fs*np.arange(N*maxplotfreq/fs)/N plt.pcolormesh(frmTime, binFreq, np.transpose(np.diff(pX[:,:N*maxplotfreq/fs+1],axis=1))) plt.xlabel('time (sec)') plt.ylabel('frequency (Hz)') plt.title('phase spectrogram (derivative)') plt.autoscale(tight=True) # plot the output sound plt.subplot(4,1,4) plt.plot(np.arange(y.size)/float(fs), y) plt.axis([0, y.size/float(fs), min(y), max(y)]) plt.ylabel('amplitude') plt.xlabel('time (sec)') plt.title('output sound: y') plt.tight_layout() plt.show() if __name__ == "__main__": main()
agpl-3.0
dsullivan7/scikit-learn
examples/model_selection/randomized_search.py
57
3208
""" ========================================================================= Comparing randomized search and grid search for hyperparameter estimation ========================================================================= Compare randomized search and grid search for optimizing hyperparameters of a random forest. All parameters that influence the learning are searched simultaneously (except for the number of estimators, which poses a time / quality tradeoff). The randomized search and the grid search explore exactly the same space of parameters. The result in parameter settings is quite similar, while the run time for randomized search is drastically lower. The performance is slightly worse for the randomized search, though this is most likely a noise effect and would not carry over to a held-out test set. Note that in practice, one would not search over this many different parameters simultaneously using grid search, but pick only the ones deemed most important. """ print(__doc__) import numpy as np from time import time from operator import itemgetter from scipy.stats import randint as sp_randint from sklearn.grid_search import GridSearchCV, RandomizedSearchCV from sklearn.datasets import load_digits from sklearn.ensemble import RandomForestClassifier # get some data iris = load_digits() X, y = iris.data, iris.target # build a classifier clf = RandomForestClassifier(n_estimators=20) # Utility function to report best scores def report(grid_scores, n_top=3): top_scores = sorted(grid_scores, key=itemgetter(1), reverse=True)[:n_top] for i, score in enumerate(top_scores): print("Model with rank: {0}".format(i + 1)) print("Mean validation score: {0:.3f} (std: {1:.3f})".format( score.mean_validation_score, np.std(score.cv_validation_scores))) print("Parameters: {0}".format(score.parameters)) print("") # specify parameters and distributions to sample from param_dist = {"max_depth": [3, None], "max_features": sp_randint(1, 11), "min_samples_split": sp_randint(1, 11), "min_samples_leaf": sp_randint(1, 11), "bootstrap": [True, False], "criterion": ["gini", "entropy"]} # run randomized search n_iter_search = 20 random_search = RandomizedSearchCV(clf, param_distributions=param_dist, n_iter=n_iter_search) start = time() random_search.fit(X, y) print("RandomizedSearchCV took %.2f seconds for %d candidates" " parameter settings." % ((time() - start), n_iter_search)) report(random_search.grid_scores_) # use a full grid over all parameters param_grid = {"max_depth": [3, None], "max_features": [1, 3, 10], "min_samples_split": [1, 3, 10], "min_samples_leaf": [1, 3, 10], "bootstrap": [True, False], "criterion": ["gini", "entropy"]} # run grid search grid_search = GridSearchCV(clf, param_grid=param_grid) start = time() grid_search.fit(X, y) print("GridSearchCV took %.2f seconds for %d candidate parameter settings." % (time() - start, len(grid_search.grid_scores_))) report(grid_search.grid_scores_)
bsd-3-clause
annayqho/TheCannon
code/lamost/xcalib_4labels/run_8.py
1
5481
""" Run the test step on all the LAMOST DR2 objects. """ import numpy as np import glob import matplotlib.pyplot as plt import sys sys.path.insert(0, '/home/annaho/') sys.path.insert(0, '/home/annaho/TheCannon') from lamost import load_spectra from TheCannon import dataset from TheCannon import model from lamost import load_spectra #from astropy.table import Table from matplotlib.colors import LogNorm from matplotlib import rc rc('font', family='serif') rc('text', usetex=True) import os def prep_data(date): dir_files = "/home/annaho/xcalib_4labels/test_obj" dir_dat = "/home/share/LAMOST/DR2/DR2_release/" test_ID = np.loadtxt("%s/%s_test_obj.txt" %(dir_files, date), dtype=str) print("%s obj" %len(test_ID)) np.savez("output/%s_ids.npz" %date, test_ID) test_ID_long = np.array([dir_dat + f for f in test_ID]) wl, test_flux, test_ivar, npix, SNRs = load_spectra(test_ID_long) np.savez("output/%s_SNRs.npz" %date, SNRs) np.savez("output/%s_frac_good_pix.npz" %date, npix) lamost_info = np.load("lamost_labels/lamost_labels_%s.npz" %date)['arr_0'] inds = np.array([np.where(lamost_info[:,0]==a)[0][0] for a in test_ID]) nstars = len(test_ID) lamost_info_sorted = np.zeros((nstars,4)) lamost_label = lamost_info[inds,:][:,1:].astype(float) lamost_info_sorted[:,0:3] = lamost_label np.savez("output/%s_tr_label" %date, lamost_label) ds = dataset.Dataset(wl, test_ID, test_flux[0:2,:], test_ivar[0:2,:], lamost_label, test_ID, test_flux, test_ivar) ds.set_label_names(['T_{eff}', '\log g', '[M/H]', '[\\alpha/Fe]']) ds.diagnostics_SNR(figname="%s_SNRdist.png" %date) ds.continuum_normalize_gaussian_smoothing(L=50) np.savez("output/%s_norm.npz" %date, ds.test_flux, ds.test_ivar) def test_step_iteration(ds, m, starting_guess): errs, chisq = m.infer_labels(ds, starting_guess) return ds.test_label_vals, chisq, errs def test_step(date): wl = np.load("../run_2_train_on_good/wl.npz")['arr_0'] test_ID = np.load("%s_test_ids.npz" %date)['arr_0'] test_flux = np.load("%s_test_flux.npz" %date)['arr_0'] test_ivar = np.load("%s_test_ivar.npz" %date)['arr_0'] nlabels = 4 nobj = len(test_ID) lamost_label_3 = np.load("%s_lamost_label.npz" %date)['arr_0'] # add extra column to make it symmetric with the inferred test labels toadd = np.ones(nobj)[...,None] lamost_label = np.hstack((lamost_label_3, toadd)) ds = dataset.Dataset(wl, test_ID, test_flux[0:2,:], test_ivar[0:2,:], lamost_label, test_ID, test_flux, test_ivar) ds.set_label_names(['T_{eff}', '\log g', '[M/H]', '[\\alpha/Fe]']) m = model.CannonModel(2) m.coeffs = np.load("../run_5_train_on_good/coeffs.npz")['arr_0'] m.scatters = np.load("../run_5_train_on_good/scatters.npz")['arr_0'] m.chisqs = np.load("../run_5_train_on_good/chisqs.npz")['arr_0'] m.pivots = np.load("../run_5_train_on_good/pivots.npz")['arr_0'] nguesses = 4 starting_guesses = np.zeros((nguesses,nlabels)) hiT_hiG_hiM = np.array([ 5.15273730e+03, 3.71762228e+00, 3.16861898e-01, 2.46907920e-02]) hiT_hiG_loM = np.array([ 5.16350098e+03, 3.45917511e+00, -9.24426436e-01, 2.49296919e-01]) loT_loG_hiM = np.array([ 4.04936841e+03, 1.47109437e+00, 2.07210138e-01, 1.49733415e-02]) loT_loG_loM = np.array([ 4.00651318e+03, 8.35013509e-01, -8.98257852e-01, 7.65705928e-02]) starting_guesses[0,:] = hiT_hiG_hiM-m.pivots starting_guesses[1,:] = hiT_hiG_loM-m.pivots starting_guesses[2,:] = loT_loG_loM-m.pivots starting_guesses[3,:] = loT_loG_hiM-m.pivots labels = np.zeros((nguesses, nobj, nlabels)) # 4,10955,4 chisq = np.zeros((nguesses, nobj)) errs = np.zeros(labels.shape) for ii,guess in enumerate(starting_guesses): a,b,c = test_step_iteration(ds,m,starting_guesses[ii]) labels[ii,:] = a chisq[ii,:] = b errs[ii,:] = c choose = np.argmin(chisq, axis=0) best_chisq = np.min(chisq, axis=0) best_labels = np.zeros((nobj, nlabels)) best_errs = np.zeros(best_labels.shape) for jj,val in enumerate(choose): best_labels[jj,:] = labels[:,jj,:][val] best_errs[jj,:] = errs[:,jj,:][val] np.savez("./%s_all_cannon_labels.npz" %date, best_labels) np.savez("./%s_cannon_label_chisq.npz" %date, best_chisq) np.savez("./%s_cannon_label_errs.npz" %date, best_errs) ds.test_label_vals = best_labels ds.diagnostics_survey_labels(figname="%s_survey_labels_triangle.png" %date) ds.diagnostics_1to1(figname = "%s_1to1_test_label.png" %date) if __name__=="__main__": dir_dat = "/home/share/LAMOST/DR2" dates = os.listdir("%s/DR2_release" %dir_dat) dates = np.array(dates) dates = np.delete(dates, np.where(dates=='.directory')[0][0]) dates = np.delete(dates, np.where(dates=='all_folders.list')[0][0]) dates = np.delete(dates, np.where(dates=='dr2.lis')[0][0]) prep_data("20120201") prep_data("20121017") prep_data("20120105") prep_data("20140118") #for date in dates: # print("running %s" %date) # if glob.glob("output/%s_norm.npz" %date): print("already done") # else: # print("prepping %s" %date) # prep_data(date) #bad = ['20111203', '20121208'] #if date not in bad: # don't know the reasons for this currently... # prep_data(date) # test_step(date)
mit
kennethcc2005/yahoo_finance_stocks
technical_analysis.py
1
13254
''' Technical analysis with popular indicators ''' import numpy as np import pandas as pd import json import time import pandas.io.data as web from datetime import date, datetime, timedelta from collections import defaultdict start = datetime(2010, 1, 1) end = date.today() df1 = pd.read_csv('data/companylist.csv') df2 = pd.read_csv('data/companylist1.csv') df3 = pd.read_csv('data/companylist2.csv') c = web.DataReader("F", 'yahoo', start, end) symbols = np.append(df1.Symbol.values, df2.Symbol.values) symbols = np.append(symbols, df3.Symbol.values) prev_er_date = date.today() - timedelta(days = 98) current_er_date = date.today() - timedelta(days = 10) symbol = 'AAPL' class tech_analysis(object): def __init__(self,symbol, prev_er_date, current_er_date): self.data = web.DataReader(symbol, 'yahoo', prev_er_date + timedelta(days = 1), current_er_date) self.prev_er_date = prev_er_date + timedelta(days = 1) self.current_er_date = current_er_date def on_balance_volume(self): '''start_date is the date after the previous earning report and end_date is the date before earning report''' data = web.DataReader("AAPL", 'yahoo', self.prev_er_date, self.current_er_date) df = data # start_date = self.prev_er_date + timedelta(days = 1) # end_date = self.current_er_date - timedelta(days = 1) # a = self.data.loc[start_date] # df = self.data.reset_index() # df = df[df['Date']<= end_date][df['Date']>= start_date] # df = df.loc[lambda df1: df1.Date > start_date and df1.Date < end_date, :] prev_obv = 0 p_price = 0 for i, value in df.iterrows(): if value['Close'] > p_price: current_obv = prev_obv + value['Volume'] elif value['Close'] < p_price: current_obv = prev_obv - value['Volume'] else: current_obv = prev_obv p_price = value['Close'] return current_obv def accumulation_distribution(self): ''' There are three steps to calculating the Accumulation Distribution Line (ADL). First, calculate the Money Flow Multiplier. Second, multiply this value by volume to find the Money Flow Volume. Third, create a running total of Money Flow Volume to form the Accumulation Distribution Line (ADL). ''' money_flow_multiplier_day = (self.data.iloc[-1]['Close']-self.data.iloc[-1]['Low'] - (self.data.iloc[-1]['High']-self.data.iloc[-1]['Close'] ))/(self.data.iloc[-1]['High']-self.data.iloc[-1]['Low']) money_flow_multiplier_week = (self.data.iloc[-1]['Close']-min(self.data['Low'][-5:]) - (max(self.data['High'][-5:])-self.data.iloc[-1]['Close'] ))/(max(self.data['High'][-5:])-min(self.data['Low'][-5:])) money_flow_multiplier_biweek = (self.data.iloc[-1]['Close']-min(self.data['Low'][-10:]) - (max(self.data['High'][-10:])-self.data.iloc[-1]['Close'] ))/(max(self.data['High'][-10:])-min(self.data['Low'][-10:])) money_flow_multiplier_quarter = (self.data.iloc[-1]['Close']-min(self.data['Low']) - (max(self.data['High'])-self.data.iloc[-1]['Close'] ))/(max(self.data['High'])-min(self.data['Low'])) money_flow_vol = None ADL = None prev_ADL = 0 return money_flow_multiplier_day, money_flow_multiplier_week, money_flow_multiplier_biweek, money_flow_multiplier_quarter def avg_true_range(self): ''' Typically, the Average True Range (ATR) is based on 14 periods and can be calculated on an intraday, daily, weekly or monthly basis. For this example, the ATR will be based on daily data. Because there must be a beginning, the first TR value is simply the High minus the Low, and the first 14-day ATR is the average of the daily TR values for the last 14 days. After that, Wilder sought to smooth the data by incorporating the previous period's ATR value. ''' data_len = self.data.shape[0] self.data.iloc[-15]['High'], self.data.iloc[-15]['Low'], self.data.iloc[-15]['Close'] TRs = [] pos_DMs = [] neg_DMs = [] DXs = [] for i in xrange(1,data_len): high = self.data.iloc[i]['High'] low = self.data.iloc[i]['Low'] prev_high = self.data.iloc[i-1]['High'] prev_close = self.data.iloc[i-1]['Close'] prev_low = self.data.iloc[i-1]['Low'] pos_DM1 = max(high-prev_high, 0) if (high-prev_high) > (prev_low - low) else 0 neg_DM1 = max(prev_low - low, 0) if (prev_low - low) > (high - prev_high) else 0 TR = max(high-low, abs(high - prev_close), abs(low - prev_close)) TRs.append(TR) pos_DMs.append(pos_DM1) neg_DMs.append(neg_DM1) if i > 13: TR14 = sum(TRs[i-14:]) pos_DM14 = sum(pos_DMs[i-14:]) neg_Dm14 = sum(neg_DMs[i-14:]) pos_DI14 = 100*pos_DM14/TR14 neg_DI14 = 100*neg_DM14/TR14 DI14_diff = abs(pos_DI14 - neg_DI14) DI14_sum = (pos_DI14 + neg_DI14) DX = 100*DI14_diff/DI14_sum DXs.append(DX) if i > 26: ADX = np.mean(DXs[i-14:]) return ADX[-1] def aroon_indicator(self, days_high = 25): ''' days_high = 25 The Aroon osciallatro is a technical indicator used to measure if a security is in a trend, and the magnitude of that trend. The indicator can also be used to identify when a new trend is set to begin. The indicator is comprised of two lines: an Aroon-up line and an Aroon-down line. A security is considered to be in an uptrend when the Aroon-up line is above 70, along with being above the Aroon-down line. The security is in a downtrend when the Aroon-down line is above 70 and also above the Aroon-up line. ''' data_len = self.data.shape[0] prev_high_ix = np.argmax(self.data['High'][:days_high+1]) prev_high = max(self.data['High'][:days_high]) prev_low_ix = np.argmin(self.data['Low'][:days_high+1]) prev_low = min(self.data['Low'][:days_high]) aroon_ups = [] aroon_downs = [] for i in xrange(days_high, data_len): if (self.data['High'][i] > prev_high) : prev_high_ix = i prev_high = self.data['High'][i] elif i - prev_high_ix > days_high: prev_high_ix += np.argmax(self.data['High'][i-days_high:i+1]) prev_high = max(self.data['High'][i-days_high:i+1]) if (self.data['Low'][i] < prev_low): prev_low_ix = i prev_low = self.data['Low'][i] elif i - prev_low_ix > days_high: prev_low_ix += np.argmin(self.data['Low'][i-days_high:i+1]) prev_low = min(self.data['Low'][i-days_high:i+1]) aroon_up = ((days_high - (i-prev_high_ix))/float(days_high))*100 aroon_down = ((days_high - (i-prev_low_ix))/float(days_high))*100 aroon_ups.append(aroon_up) aroon_downs.append(aroon_down) return aroon_ups, aroon_downs def MACD(self, EMA1_ = 12, EMA2_ = 26): ''' Moving average convergence divergence (MACD) is a trend-following momentum indicator that shows the relationship between two moving averages of prices. The MACD is calculated by subtracting the 26-day exponential moving average (EMA) from the 12-day EMA. A nine-day EMA of the MACD, called the "signal line", is then plotted on top of the MACD, functioning as a trigger for buy and sell signals. ''' EMA1 = self.EMA_(period = EMA1_) EMA2 = self.EMA_(period = EMA2_) MACDs = [] for i in xrange(len(EMA2)): MACD = EMA1[EMA2_ - EMA1_ + i] - EMA2[i] MACDs.append(MACD) signals = self.EMA_(period = 9, data = MACDs) return MACDs, signals def EMA_(self,period = 10, data = self.data['Close']): SMA = sum(data[:period])/float(period) mult = (2 / float(period + 1) ) EMA = SMA EMAs = [EMA] for i in xrange(period+1, len(data['Close'])+1): SMA = sum(data['Close'][i-period:i])/float(period) EMA = (data['Close'][i-1] - EMA) * mult + EMA EMAs.append(EMA) return EMAs def SMA_(self,period = 10, data =self.data['Close']): SMAs = [] for i in xrange(period, len(data)): SMA = sum(data[i-period:i])/float(period) SMAs.append(SMA) return SMAs def RSI(self,period = 14): ''' Relative Strength Index (RSI) is an extremely popular momentum indicator that has been featured in a number of articles, interviews and books over the years. In particular, Constance Brown's book, Technical Analysis for the Trading Professional, features the concept of bull market and bear market ranges for RSI. Andrew Cardwell, Brown's RSI mentor, introduced positive and negative reversals for RSI. In addition, Cardwell turned the notion of divergence, literally and figuratively, on its head. ''' gains = [] losses = [] avg_gains = [] avg_losses = [] RSs = [] RSIs = [] for i in xrange(1,self.data.shape[0]): change = self.data['Close'][i] - self.data['Close'][i-1] if change < 0: losses.append(abs(change)) gains.append(0) else: gains.append(change) losses.append(0) if i >= period: avg_gain = np.mean(gains[i-period+1:]) avg_loss = np.mean(losses[i-period+1:]) RS = avg_gain / avg_loss if avg_loss != 0 else 99999 RSI = 0 if avg_loss == 0 else 100 - (100/(1+RS)) RSs.append(RS) RSIs.append(RSI) avg_gains.append(avg_gain) avg_losses.append(avg_loss) return RSs,RSIs def stochastic_oscillator(self,period = 14): ''' K = (Current Close - Lowest Low)/(Highest High - Lowest Low) * 100 D = 3-day SMA of K Lowest Low = lowest low for the look-back period Highest High = highest high for the look-back period K is multiplied by 100 to move the decimal point two places ''' stochastic_oscillators = [] for i in xrange(period,self.data.shape[0]+1): high = max(slef.data['High'][i - 14, i]) low = min(slef.data['Low'][i - 14, i]) current_close = slef.data['Close'][i-1] sc = (current_close-low)/(high-low)*100 stochastic_oscillators.append(sc) D = self.SMA_(period = 3, data = stochastic_oscillators) return stochastic_oscillators, D def chaikin_money_flow(self, period = 20): ''' 1. Money Flow Multiplier = [(Close - Low) - (High - Close)] /(High - Low) 2. Money Flow Volume = Money Flow Multiplier x Volume for the Period 3. 20-period CMF = 20-period Sum of Money Flow Volume / 20 period Sum of Volume ''' mf_vols =[] CMFs = [] vols = [] for i in xrange(self.data.shape[0]): mf_mult = ((self.data['Close'][i] - self.data['Low'][i]) - (self.data['High'][i] - self.data['Close'][i]))/(self.data['High'][i] - self.data['Low'][i]) mf_vol = mf_mult * self.data['Volume'][i] vols.append(self.data['Volume'][i]) mf_vols.append(mf_vol) if i >= 19: cmf = sum(mf_vols[i-period+1:i+1])/sum(vols[i-period+1:i+1]) CMFs.append(cmf) return CMFs def price_relative(self,symbol = 'SPY'): ''' Price Relative = Base Security / Comparative Security Ratio Symbol Close = Close of First Symbol / Close of Second Symbol Ratio Symbol Open = Open of First Symbol / Close of Second Symbol Ratio Symbol High = High of First Symbol / Close of Second Symbol Ratio Symbol Low = Low of First Symbol / Close of Second Symbol ''' second_data = web.DataReader(symbol, 'yahoo', self.prev_er_date, self.current_er_date) changes = [] diffs = [] for i in xrange(1,self.data['Close']): prev_price_rel = self.data['Close'][i-1] / second_data['Close'][i-1] price_rel = self.data['Close'][i] / second_data['Close'][i] change_price_rel = (price_rel - prev_price_rel)/prev_price_rel change_data = (self.data['Close'][i] - self.data['Close'][i-1]) / self.data['Close'][i-1] change_second_data = (second_data['Close'][i] - second_data['Close'][i-1]) / second_data['Close'][i-1] diff = change_data - change_second_data changes.append(change_price_rel) diffs.append(diff) return changes, diffs a = tech_analysis(symbol,prev_er_date, current_er_date) # print a.on_balance_volume() print a.accumulation_distribution_line()
mit
nielsbuwen/ilastik
setup_mac.py
3
9591
############################################################################### # ilastik: interactive learning and segmentation toolkit # # Copyright (C) 2011-2014, the ilastik developers # <[email protected]> # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # In addition, as a special exception, the copyright holders of # ilastik give you permission to combine ilastik with applets, # workflows and plugins which are not covered under the GNU # General Public License. # # See the LICENSE file for details. License information is also available # on the ilastik web site at: # http://ilastik.org/license.html ############################################################################### # Setup script that uses py2app to generate a redistributable binary from an existing ilastik build. # To run: python setup_mac.py py2app [--include-meta-repo] import sys from setuptools import setup, find_packages from ilastik import __version__ # Running into recursion limit too quickly, which stops build. sys.setrecursionlimit(1500) APP = ['ilastik.py'] DATA_FILES = [] includes = [\ 'h5py', 'h5py.defs', 'h5py.utils', 'h5py._proxy', 'h5py._errors', 'h5py.h5ac', 'h5py._objects', 'PyQt4.pyqtconfig', 'PyQt4.uic','PyQt4.QtCore','PyQt4.QtGui', 'site', 'os', 'vtk', 'rank_filter', 'nanshe', 'vtk.vtkCommonPythonSIP', 'sklearn', 'sklearn.utils', 'skimage' ] # The py2app dependency walker finds this code, which is intended only for Python3. # Exclude it! excludes= ['PyQt4.uic.port_v3'] # By default, cplex is excluded from the bundle. if '--include-cplex' in sys.argv: sys.argv.remove('--include-cplex') dylib_forced_removal = [] else: # Since the cplex libs can't be found with macholib, the py2app dylib_excludes option doesn't work here. # We'll handle this manually in the custom run() function, below. dylib_forced_removal = ['libcplex.dylib', 'libconcert.dylib', 'libilocplex.dylib'] OPTIONS = {'argv_emulation': False, 'includes':includes, 'excludes':excludes, 'iconfile' : 'appIcon.icns', 'extra_scripts':['bin/mac_execfile.py']} packages=find_packages(exclude=["tests", "tests.*"]) package_data={'ilastik': ['ilastik-splash.png', 'ilastik-splash.xcf'], 'ilastik.applets.dataSelection': ['*.ui'], 'ilastik.applets.labeling': ['*.ui', 'icons/*.png', 'icons/*.jpg'], 'ilastik.shell.gui': ['ui/*.ui', '*.qss'], 'ilastik.ilastik_logging': ['logging_config.json'], 'ilastik.plugins': ['*.yapsy-plugin'], '': ['*.ui'] } class exclude_from_zipped_packages(object): def __init__(self, module): self.module = module def check(self, dist, mf): m = mf.findNode(self.module) if m is None: return None # Don't put the module in the site-packages.zip file return dict( packages=[self.module] ) # Exclude various packages from the site-packages.zip file, # since they don't import correctly if they're zipped. import py2app.recipes for module in ['ilastik', 'volumina', 'lazyflow', 'iiboost', 'vtk', 'sklearn', 'skimage', 'jsonschema']: setattr( py2app.recipes, module, exclude_from_zipped_packages(module) ) # Include nanshe if it's available. try: import nanshe py2app.recipes.nanshe = exclude_from_zipped_packages('nanshe') except ImportError: pass ## ## The --include-meta-repo option is a special option added by this script. ## If given, we will include the entire ilastik-meta git repo directory (which includes ilastik, lazyflow, and volumina). ## (Otherwise, py2app just includes the individual python module directories, without the supporting files.) ## include_meta_repo = False if '--include-meta-repo' in sys.argv: include_meta_repo = True sys.argv.remove('--include-meta-repo') # This hack allows us to run custom code before/after the py2app command executes. # http://www.niteoweb.com/blog/setuptools-run-custom-code-during-install import os import shutil import ilastik ilastik_meta_repo = os.path.abspath( os.path.split(ilastik.__file__)[0] + '/../..') assert os.path.exists(ilastik_meta_repo + '/ilastik') assert os.path.exists(ilastik_meta_repo + '/lazyflow') assert os.path.exists(ilastik_meta_repo + '/volumina') import py2app.build_app class custom_py2app(py2app.build_app.py2app): __dist_dir = os.path.split( os.path.abspath(__file__) )[0] + '/dist' __destination_libpython_dir = __dist_dir + '/ilastik.app/Contents/Resources/lib/python2.7' __replace_modules = ['ilastik', 'volumina', 'lazyflow'] def run(self): """ The normal py2app run() function copies the ilastik, volumina, and lazyflow modules in the .app without the enclosing repo directory. This function deletes those modules from the app (after saving the drtile.so binary), copies the ENTIRE repo directory for each module, and then creates a symlink to the inner module directory so that the final .app doesn't know the difference. Just to be clear, our usual py2app command (including our recipes) produces a lib/python2.7 directory that looks like this: $ ls -l dist/ilastik.app/Contents/Resources/lib/python2.7/ ilastik/ lazyflow/ volumina/ site-packages.zip ...etc... But with the --include-meta-repo option, we post-process the package so it looks like this: $ ls -l dist/ilastik.app/Contents/Resources/lib/python2.7/ ilastik-meta ilastik@ -> ilastik-meta/ilastik/ilastik lazyflow@ -> ilastik-meta/lazyflow/lazyflow volumina@ -> ilastik-meta/volumina/volumina site-packages.zip ...etc... Hence, the ilastik, lazyflow, and volumina modules are present via symlinks, so the .app doesn't know the difference. Also, this function removes any dylibs in the dylib_forced_removal list from the final distribution. """ # Remove modules/repos from an earlier build (if any) self.remove_repos() # Run the normal py2app command py2app.build_app.py2app.run(self) if include_meta_repo: # Save drtile.so first! shutil.move( self.__destination_libpython_dir + '/lazyflow/drtile/drtile.so', self.__dist_dir ) # Copy repos and create symlinks to modules self.install_repos() # Replace drtile.so shutil.move( self.__dist_dir + '/drtile.so', self.__destination_libpython_dir + '/ilastik-meta/lazyflow/lazyflow/drtile/drtile.so' ) # Remove excluded dylibs. # (The py2app exclude_dylib feature doesn't work if macholib can't find the dylib.) for dylib in dylib_forced_removal: dylib_path = self.__dist_dir + '/ilastik.app/Contents/Frameworks/' + dylib try: os.remove(dylib_path) print "Excluded {} from distribution.".format( dylib ) except OSError as ex: if ex.errno != 2: raise def install_repos(self): self.remove_repos() src = ilastik_meta_repo dst = self.__destination_libpython_dir + '/ilastik-meta' print "Copying {} to {}".format(src, dst ) # Don't copy copy the .app itself! # (which would lead to infinite recursion) def ignore(d, contents): return ['dist', 'build'] # Copy the whole repo shutil.copytree(src, dst, symlinks=True, ignore=ignore) # symlink to the actual module within the meta-repo for module in self.__replace_modules: relative_link = os.path.relpath( dst + '/' + module + '/' + module, self.__destination_libpython_dir ) os.symlink( relative_link, self.__destination_libpython_dir + '/' + module ) def remove_repos(self): """ Remove the existing modules/repos left in the .app tree. """ try: # repo dir created by this custom post-processing step (if present from an earlier build) p = self.__destination_libpython_dir + '/' + ilastik_meta_repo shutil.rmtree(p) except Exception as ex: pass for module in self.__replace_modules: # Remove symlink (if present from a previous build) try: p = self.__destination_libpython_dir + '/' + module os.remove( p ) except Exception as ex: pass # Module created by py2app try: p = self.__destination_libpython_dir + '/' + module shutil.rmtree(p) except Exception as ex: pass setup( cmdclass={ 'py2app' : custom_py2app }, # See hack above. app=APP, data_files=DATA_FILES, options={'py2app': OPTIONS}, setup_requires=['py2app'], version=__version__, description='Interactive Image Analysis', url='http://github.com/ilastik', packages=packages, package_data=package_data )
gpl-3.0