repo_name
stringlengths
6
61
path
stringlengths
4
230
copies
stringlengths
1
3
size
stringlengths
4
6
text
stringlengths
1.01k
850k
license
stringclasses
15 values
hash
int64
-9,220,477,234,079,998,000
9,219,060,020B
line_mean
float64
11.6
96.6
line_max
int64
32
939
alpha_frac
float64
0.26
0.9
autogenerated
bool
1 class
ratio
float64
1.62
6.1
config_test
bool
2 classes
has_no_keywords
bool
2 classes
few_assignments
bool
1 class
tommy-u/enable
examples/kiva/pyglet_gl.py
1
1319
from __future__ import with_statement from numpy import array from pyglet.window import key, Window try: from kiva.gl import GraphicsContext except ImportError, e: raise Exception(e) from kiva.constants import FILL, STROKE, FILL_STROKE class TestWindow(Window): """ Press Q or Escape to exit """ def __init__(self, *args, **kw): Window.__init__(self, *args, **kw) self.init_window() def init_window(self): self.gc = GraphicsContext(size=(self.width, self.height)) self.gc.gl_init() def on_key_press(self, symbol, modifiers): if symbol in (key.ESCAPE, key.Q): self.has_exit = True def draw(self): gc = self.gc with gc: gc.clear((0, 1, 0, 1)) gc.set_stroke_color((1,1,1,1)) gc.set_line_width(2) pts = array([[50, 50], [50,100], [100,100], [100,50]]) gc.begin_path() gc.lines(pts) gc.close_path() gc.draw_path(STROKE) gc.flush() def main(): win = TestWindow(width = 640, height=480) exit = False while not exit: win.switch_to() win.dispatch_events() win.clear() win.draw() win.flip() exit = win.has_exit if __name__ == "__main__": main()
bsd-3-clause
-925,883,367,172,672,600
22.553571
66
0.542077
false
3.408269
false
false
false
halmd-org/h5md-tools
h5mdtools/_plot/pdf.py
1
8436
# -*- coding: utf-8 -*- # # pdf - compute and plot pair distribution function # # Copyright © 2008-2012 Felix Höfling and Peter Colberg # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. # from __future__ import print_function """ Compute and plot pair distribution function g(r) """ def plot(args): import os, os.path import h5py from matplotlib import pyplot as plt import h5mdtools._plot.label from numpy import linspace ax = plt.axes() label = None ax.axhline(y=1, color='black', lw=0.5) ax.set_color_cycle(args.colors) for (i, fn) in enumerate(args.input): try: f = h5py.File(fn, 'r') except IOError: raise SystemExit('failed to open HDF5 file: %s' % fn) try: # determine file type, prefer precomputed static structure factor data if 'structure' in f.keys() and 'ssf' in f['structure'].keys(): import filon import h5mdtools._plot.ssf as ssf from scipy.constants import pi param = f['parameters'] # load static structure factor from file H5 = f['structure/ssf/' + '/'.join(args.flavour)] q = f['structure/ssf/wavenumber'].__array__() # convert to NumPy array S_q, S_q_err = ssf.load_ssf(H5, args) # read some parameters dim = param['box'].attrs['dimension'] density = param['box'].attrs['density'] length = param['box'].attrs['length'] # compute pair distribution function xlim = args.xlim or (0, min(length) / 2) r = linspace(xlim[0], xlim[1], num=args.bins) if r[0] == 0: r = r[1:] if dim == 3: # convert 3-dim Fourier transform F[S_q - 1] / (2π)³ to 1-dim Fourier integral pdf = filon.filon(q * (S_q - 1), q, r).imag / (2 * pi * pi * r) pdf_err = filon.filon(q * S_q_err, q, r).imag / (2 * pi * pi * r) pdf = 1 + pdf / density # add δ-contribution pdf_err = pdf_err / density elif 'particles' in f.keys(): # compute SSF from trajectory data H5 = f['particles/' + args.flavour[0]] r, pdf, pdf_err = pdf_from_trajectory(H5, args) else: raise SystemExit('Input file provides neither data for the static structure factor nor a trajectory') # before closing the file, store attributes for later use if 'param' in locals(): attrs = h5mdtools._plot.label.attributes(param) except IndexError: raise SystemExit('invalid phase space sample offset') except KeyError as what: raise SystemExit(str(what) + '\nmissing simulation data in file: %s' % fn) finally: f.close() if args.label: label = args.label[i % len(args.label)] % attrs elif args.legend or not args.small: basename = os.path.splitext(os.path.basename(fn))[0] label = r'%s' % basename.replace('_', r'\_') if args.title: title = args.title % attrs c = args.colors[i % len(args.colors)] ax.plot(r, pdf, '-', color=c, label=label) if 'pdf_err' in locals(): ax.errorbar(r, pdf, pdf_err, fmt='o', color=c, markerfacecolor=c, markeredgecolor=c, markersize=2, linewidth=.5) else: ax.plot(r, pdf, 'o', markerfacecolor=c, markeredgecolor=c, markersize=2) # write plot data to file if args.dump: f = open(args.dump, 'a') print('# %s, sample %s' % (label.replace(r'\_', '_'), args.sample), file=f) if 'pdf_err' in locals(): print('# r g(r) g_err(r)', file=f) savetxt(f, array((r, pdf, pdf_err)).T) else: print('# r g(r)', file=f) savetxt(f, array((r, pdf)).T) print('\n', file=f) f.close() # adjust axis ranges ax.axis('tight') if args.xlim: plt.setp(ax, xlim=args.xlim) if args.ylim: plt.setp(ax, ylim=args.ylim) else: plt.setp(ax, ylim=(0, plt.ylim()[1])) # optionally plot with logarithmic scale(s) if args.axes == 'xlog': ax.set_xscale('log') if args.axes == 'ylog': ax.set_yscale('log') if args.axes == 'loglog': ax.set_xscale('log') ax.set_yscale('log') if args.legend or not args.small: l = ax.legend(loc=args.legend) l.legendPatch.set_alpha(0.7) plt.xlabel(args.xlabel or r'distance $r / \sigma$') plt.ylabel(args.ylabel or r'pair distribution function $g(r)$') if args.output is None: plt.show() else: plt.savefig(args.output, dpi=args.dpi) """ Compute pair distribution function from trajectory data """ def pdf_from_trajectory(H5group, args): from scipy.constants import pi from scipy.special import gamma from numpy import array, diagonal, float32, histogram, power, prod, round_, sqrt, sum, zeros import re # read periodically extended particle positions, # read one or several samples, convert to single precision idx = [int(x) for x in re.split(':', args.sample)] data = H5group['position/value'] if len(idx) == 1: samples = array([data[idx[0]],], dtype=float32) elif len(idx) == 2: samples = array(data[idx[0]:idx[1]], dtype=float32) elif len(idx) == 3: samples = array(data[idx[0]:idx[1]:idx[2]], dtype=float32) # positional coordinates dimension dim = H5group['box'].attrs['dimension'] # periodic simulation box length length = diagonal(H5group['box/edges']) # number of particles N = data.shape[1] density = N / prod(length) r_max = args.xlim or (0, min(length) / 2) H = zeros(args.bins) for r in samples: for (i, j) in enumerate(range(r.shape[0] - 1, 0, -1)): # particle distance vectors dr = r[:j] - r[i + 1:] # minimum image distances dr = dr - round_(dr / length) * length # magnitude of distance vectors r_norm = sqrt(sum(dr * dr, axis=1)) # accumulate histogram of minimum image distances h, bins = histogram(r_norm, bins=args.bins, range=r_max) H += 2 * h # volume of n-dimensional unit sphere Vn = power(pi, dim / 2.) / gamma(dim / 2. + 1.) # average number of atoms in ideal gas per interval n = Vn * density * (power(bins[1:], dim) - power(bins[:-1], dim)) # compute pair distribution function g(r) pdf = H / samples.shape[0] / n / N pdf_err = sqrt(H) / samples.shape[0] / n / N return .5 * (bins[1:] + bins[:-1]), pdf, pdf_err def add_parser(subparsers): parser = subparsers.add_parser('pdf', help='pair distribution function') parser.add_argument('input', nargs='+', metavar='INPUT', help='HDF5 file with trajectory or ssf data') parser.add_argument('--flavour', nargs=2, help='particle flavours') parser.add_argument('--sample', help='index of phase space sample(s)') parser.add_argument('--bins', type=int, help='number of histogram bins') parser.add_argument('--xlim', metavar='VALUE', type=float, nargs=2, help='limit x-axis to given range') parser.add_argument('--ylim', metavar='VALUE', type=float, nargs=2, help='limit y-axis to given range') parser.add_argument('--axes', choices=['xlog', 'ylog', 'loglog'], help='logarithmic scaling') parser.add_argument('--verbose', action='store_true') parser.set_defaults(flavour=('A', 'A'), sample='0', bins=50,)
gpl-3.0
-7,613,585,320,662,006,000
37.674312
124
0.580002
false
3.613802
false
false
false
w0rp/w0rpzone
w0rplib/templatetags/markdown.py
1
1374
from django import template from django.template.defaultfilters import stringfilter from django.utils.safestring import mark_safe import bleach import markdown2 register = template.Library() # Not really safe, but Django needs to think it is. @register.filter(is_safe=True) @stringfilter def unsafe_markdown(value): return mark_safe(markdown2.markdown( text=value, extras=[ "fenced-code-blocks", "code-friendly", "tables", "highlightjs-lang", ], )) @register.filter(is_safe=True) @stringfilter def markdown(value): html = unsafe_markdown(value) return bleach.clean( html, tags=[ 'a', 'abbr', 'acronym', 'b', 'blockquote', 'code', 'em', 'i', 'li', 'ol', 'p', 'pre', 'strong', 'table', 'tbody', 'td', 'tfoot', 'th', 'thead', 'tr', 'ul', ], attributes={ 'a': ['href', 'title'], 'abbr': ['title'], 'acroynym': ['title'], 'code': ['class'], }, protocols=[ 'http', 'https', 'mailto', ], )
bsd-2-clause
4,200,208,242,134,314,000
19.507463
55
0.437409
false
4.240741
false
false
false
dhruvbaldawa/fitbit
plot_sleep.py
1
2126
import os import logging import itertools import json import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import pylab from datetime import datetime from utils import gen_next_day, setup_logging sns.set() plt.switch_backend('Qt4Agg') ROOT = os.getcwd() CONFIG_FILE = os.path.join(ROOT, 'config.ini') DATA_DIR = os.path.join(ROOT, 'data', 'sleep') DATA_DB_FILE = os.path.join(DATA_DIR, '.db') FILENAME_TEMPLATE = 'sleep-{date}.json' DATE_FORMAT = '%Y-%m-%d' ASLEEP, AWAKE, REALLY_AWAKE, DEFAULT = 1, 2, 3, -1 logger = logging.getLogger(__name__) def format_date(date): return datetime.strftime(date, DATE_FORMAT) def convert_ts_to_minute(ts): hour, minute, seconds = ts.split(':', 2) return int(hour) * 60 + int(minute) def get_minute_data(day): filename = FILENAME_TEMPLATE.format(date=format_date(day)) filepath = os.path.join(DATA_DIR, filename) with open(filepath, 'r') as f: data = json.loads(f.read()) minute_data = [] for record in data['sleep']: minute_data += record['minuteData'] return minute_data def write_to_dataframe(dataframe, day, minute_data): for record in minute_data: minute = convert_ts_to_minute(record['dateTime']) dataframe[minute][format_date(day)] = int(record['value']) def main(): start_date = datetime.strptime('2015-02-06', DATE_FORMAT) end_date = datetime.strptime('2015-03-21', DATE_FORMAT) days = itertools.takewhile(lambda x: x <= end_date, gen_next_day(start_date)) date_index = pd.date_range(start_date, end_date) df = pd.DataFrame(index=date_index, columns=range(24 * 60), dtype='uint8') print df.dtypes for day in days: logger.info('Processing day {}'.format(format_date(day))) minute_data = get_minute_data(day) write_to_dataframe(df, day, minute_data) df = df.fillna(0) sns.heatmap(df, xticklabels=False, yticklabels=False, linewidths=0) # df.plot() pylab.show() if __name__ == '__main__': setup_logging(logger, logging.INFO) main()
mit
-6,007,969,226,944,758,000
26.25641
78
0.645343
false
3.250765
false
false
false
Karajlug/karajlug
books/views.py
1
2202
# ----------------------------------------------------------------------------- # Karajlug.org # Copyright (C) 2010 Karajlug community # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # ----------------------------------------------------------------------------- from django.shortcuts import render_to_response as rr from django.http import Http404 from django.template import RequestContext from django.core.paginator import Paginator, InvalidPage, EmptyPage from django.conf import settings from .models import Book def books_index(request): """ Main index of registered books. """ books = Book.objects.all().order_by("weight") book_per_page = 4 try: book_per_page = settings.BOOK_IN_PAGE except AttributeError: pass paginator = Paginator(books, book_per_page) try: page = int(request.GET.get('page', '1')) except ValueError: page = 1 try: books_list = paginator.page(page) except (EmptyPage, InvalidPage): # if provided page value in GET was out of range books_list = paginator.page(paginator.num_pages) return rr("books.html", {"books": books_list}, context_instance=RequestContext(request)) def book_view(request, slug): """ View of each Book """ try: book = Book.objects.get(slug=slug) except Book.DoesNotExist: raise Http404() return rr("book_view.html", {"book": book}, context_instance=RequestContext(request))
gpl-2.0
6,594,413,010,891,017,000
33.40625
79
0.631698
false
4.284047
false
false
false
kursitet/edx-ora2
openassessment/assessment/serializers/base.py
2
10587
# coding=utf-8 """ Serializers common to all assessment types. """ from copy import deepcopy import logging from django.core.cache import cache from rest_framework import serializers from openassessment.assessment.models import ( Assessment, AssessmentPart, Criterion, CriterionOption, Rubric, ) logger = logging.getLogger(__name__) class InvalidRubric(Exception): """This can be raised during the deserialization process.""" def __init__(self, errors): Exception.__init__(self, repr(errors)) self.errors = deepcopy(errors) class NestedModelSerializer(serializers.ModelSerializer): """Model Serializer that supports deserialization with arbitrary nesting. The Django REST Framework does not currently support deserialization more than one level deep (so a parent and children). We want to be able to create a :class:`Rubric` → :class:`Criterion` → :class:`CriterionOption` hierarchy. Much of the base logic already "just works" and serialization of arbritrary depth is supported. So we just override the save_object method to recursively link foreign key relations instead of doing it one level deep. We don't touch many-to-many relationships because we don't need to for our purposes, so those still only work one level deep. """ def recursively_link_related(self, obj, **kwargs): if getattr(obj, '_related_data', None): for accessor_name, related in obj._related_data.items(): setattr(obj, accessor_name, related) for related_obj in related: self.recursively_link_related(related_obj, **kwargs) del(obj._related_data) def save_object(self, obj, **kwargs): obj.save(**kwargs) # The code for many-to-many relationships is just copy-pasted from the # Django REST Framework ModelSerializer if getattr(obj, '_m2m_data', None): for accessor_name, object_list in obj._m2m_data.items(): setattr(obj, accessor_name, object_list) del(obj._m2m_data) # This is our only real change from ModelSerializer self.recursively_link_related(obj, **kwargs) class CriterionOptionSerializer(NestedModelSerializer): """Serializer for :class:`CriterionOption`""" class Meta: model = CriterionOption fields = ('order_num', 'points', 'name', 'label', 'explanation') class CriterionSerializer(NestedModelSerializer): """Serializer for :class:`Criterion`""" options = CriterionOptionSerializer(required=True, many=True) points_possible = serializers.Field(source='points_possible') class Meta: model = Criterion fields = ('order_num', 'name', 'label', 'prompt', 'options', 'points_possible') class RubricSerializer(NestedModelSerializer): """Serializer for :class:`Rubric`.""" criteria = CriterionSerializer(required=True, many=True) points_possible = serializers.Field(source='points_possible') class Meta: model = Rubric fields = ('id', 'content_hash', 'structure_hash', 'criteria', 'points_possible') def validate_criteria(self, attrs, source): """Make sure we have at least one Criterion in the Rubric.""" criteria = attrs[source] if not criteria: raise serializers.ValidationError("Must have at least one criterion") return attrs @classmethod def serialized_from_cache(cls, rubric, local_cache=None): """For a given `Rubric` model object, return a serialized version. This method will attempt to use the cache if possible, first looking at the `local_cache` dict you can pass in, and then looking at whatever Django cache is configured. Args: rubric (Rubric): The Rubric model to get the serialized form of. local_cach (dict): Mapping of `rubric.content_hash` to serialized rubric dictionary. We include this so that we can call this method in a loop. Returns: dict: `Rubric` fields as a dictionary, with `criteria` and `options` relations followed. """ # Optional local cache you can send in (for when you're calling this # in a loop). local_cache = local_cache or {} # Check our in-memory cache... if rubric.content_hash in local_cache: return local_cache[rubric.content_hash] # Check the external cache (e.g. memcached) rubric_dict_cache_key = ( "RubricSerializer.serialized_from_cache.{}" .format(rubric.content_hash) ) rubric_dict = cache.get(rubric_dict_cache_key) if rubric_dict: local_cache[rubric.content_hash] = rubric_dict return rubric_dict # Grab it from the database rubric_dict = RubricSerializer(rubric).data cache.set(rubric_dict_cache_key, rubric_dict) local_cache[rubric.content_hash] = rubric_dict return rubric_dict class AssessmentPartSerializer(serializers.ModelSerializer): """Serializer for :class:`AssessmentPart`.""" class Meta: model = AssessmentPart fields = ('option', 'criterion', 'feedback') class AssessmentSerializer(serializers.ModelSerializer): """Simplified serializer for :class:`Assessment` that's lighter on the DB.""" class Meta: model = Assessment fields = ( 'submission_uuid', 'rubric', 'scored_at', 'scorer_id', 'score_type', 'feedback', ) def serialize_assessments(assessments_qset): assessments = list(assessments_qset.select_related("rubric")) rubric_cache = {} return [ full_assessment_dict( assessment, RubricSerializer.serialized_from_cache( assessment.rubric, rubric_cache ) ) for assessment in assessments ] def full_assessment_dict(assessment, rubric_dict=None): """ Return a dict representation of the Assessment model, including nested assessment parts. We do some of the serialization ourselves here instead of relying on the Django REST Framework serializers. This is for performance reasons -- we have a cached rubric easily available, and we don't want to follow all the DB relations from assessment -> assessment part -> option -> criterion. Args: assessment (Assessment): The Assessment model to serialize Returns: dict with keys 'rubric' (serialized Rubric model) and 'parts' (serialized assessment parts) """ assessment_cache_key = "assessment.full_assessment_dict.{}.{}.{}".format( assessment.id, assessment.submission_uuid, assessment.scored_at.isoformat() ) assessment_dict = cache.get(assessment_cache_key) if assessment_dict: return assessment_dict assessment_dict = AssessmentSerializer(assessment).data if not rubric_dict: rubric_dict = RubricSerializer.serialized_from_cache(assessment.rubric) assessment_dict["rubric"] = rubric_dict # This part looks a little goofy, but it's in the name of saving dozens of # SQL lookups. The rubric_dict has the entire serialized output of the # `Rubric`, its child `Criterion` and grandchild `CriterionOption`. This # includes calculated things like `points_possible` which aren't actually in # the DB model. Instead of invoking the serializers for `Criterion` and # `CriterionOption` again, we simply index into the places we expect them to # be from the big, saved `Rubric` serialization. parts = [] for part in assessment.parts.all().select_related("criterion", "option"): criterion_dict = rubric_dict["criteria"][part.criterion.order_num] options_dict = None if part.option is not None: options_dict = criterion_dict["options"][part.option.order_num] options_dict["criterion"] = criterion_dict parts.append({ "option": options_dict, "criterion": criterion_dict, "feedback": part.feedback }) # Now manually built up the dynamically calculated values on the # `Assessment` so we can again avoid DB calls. assessment_dict["parts"] = parts assessment_dict["points_earned"] = sum( part_dict["option"]["points"] if part_dict["option"] is not None else 0 for part_dict in parts ) assessment_dict["points_possible"] = rubric_dict["points_possible"] cache.set(assessment_cache_key, assessment_dict) return assessment_dict def rubric_from_dict(rubric_dict): """Given a dict of rubric information, return the corresponding Rubric This will create the Rubric and its children if it does not exist already. Sample data (one criterion, two options):: { "prompt": "Create a plan to deliver ora2!", "criteria": [ { "order_num": 0, "name": "realistic", "prompt": "Is the deadline realistic?", "options": [ { "order_num": 0, "points": 0, "name": "No", "explanation": "We need more time!" }, { "order_num": 1, "points": 2, "name": "Yes", "explanation": "We got this." }, ] } ] } """ rubric_dict = deepcopy(rubric_dict) # Calculate the hash based on the rubric content... content_hash = Rubric.content_hash_from_dict(rubric_dict) try: rubric = Rubric.objects.get(content_hash=content_hash) except Rubric.DoesNotExist: rubric_dict["content_hash"] = content_hash rubric_dict["structure_hash"] = Rubric.structure_hash_from_dict(rubric_dict) for crit_idx, criterion in enumerate(rubric_dict.get("criteria", {})): if "order_num" not in criterion: criterion["order_num"] = crit_idx for opt_idx, option in enumerate(criterion.get("options", {})): if "order_num" not in option: option["order_num"] = opt_idx rubric_serializer = RubricSerializer(data=rubric_dict) if not rubric_serializer.is_valid(): raise InvalidRubric(rubric_serializer.errors) rubric = rubric_serializer.save() return rubric
agpl-3.0
4,205,798,340,659,545,000
34.874576
99
0.631768
false
4.248495
false
false
false
bitmovin/bitmovin-python
bitmovin/services/manifests/generic_media_service.py
1
2056
from bitmovin.errors import MissingArgumentError, FunctionalityNotAvailableError from bitmovin.services.manifests.media_custom_tag_service import MediaCustomTag from bitmovin.services.rest_service import RestService class GenericMediaService(RestService): BASE_ENDPOINT_URL = 'encoding/manifests/hls/{manifest_id}/media/{media_type}' def __init__(self, http_client, media_type_url, resource_class): if not media_type_url: raise MissingArgumentError('media_type_url must be given') if not resource_class: raise MissingArgumentError('resource_class must be given') self.media_type_url = media_type_url self.resource_class = resource_class super().__init__(http_client=http_client, relative_url=self.BASE_ENDPOINT_URL, class_=self.resource_class) self.CustomTag = MediaCustomTag(http_client=http_client) def _get_endpoint_url(self, manifest_id): if not manifest_id: raise MissingArgumentError('manifest_id must be given') endpoint_url = self.BASE_ENDPOINT_URL\ .replace('{manifest_id}', manifest_id)\ .replace('{media_type}', self.media_type_url) return endpoint_url def create(self, object_, manifest_id): self.relative_url = self._get_endpoint_url(manifest_id=manifest_id) return super().create(object_) def delete(self, manifest_id, media_id): self.relative_url = self._get_endpoint_url(manifest_id=manifest_id) return super().delete(id_=media_id) def retrieve(self, manifest_id, media_id): self.relative_url = self._get_endpoint_url(manifest_id=manifest_id) return super().retrieve(id_=media_id) def list(self, manifest_id, offset=None, limit=None): self.relative_url = self._get_endpoint_url(manifest_id=manifest_id) return super().list(offset, limit) def retrieve_custom_data(self, manifest_id, media_id): raise FunctionalityNotAvailableError('Retrieve Custom Data is not available for HLS Manifest Medias')
unlicense
-556,082,224,711,346,800
45.727273
114
0.692121
false
3.821561
false
false
false
rossant/spiky
experimental/_correlation/loader.py
1
7874
"""This module provides utility classes and functions to load spike sorting data sets.""" # ----------------------------------------------------------------------------- # Imports # ----------------------------------------------------------------------------- import os.path import re import numpy as np from iotools import (find_filename, find_index, load_text, load_xml, normalize, load_binary) from selection import select from logger import debug, info, warn # ----------------------------------------------------------------------------- # File loading functions # ----------------------------------------------------------------------------- def read_xml(filename_xml, fileindex): """Read the XML file associated to the current dataset, and return a metadata dictionary.""" params = load_xml(filename_xml, fileindex=fileindex) # klusters tests metadata = dict( nchannels=params['nchannels'], nsamples=params['nsamples'], fetdim=params['fetdim'], freq=params['rate']) return metadata def read_features(filename_fet, nchannels, fetdim, freq): """Read a .fet file and return the normalize features array, as well as the spiketimes.""" features = load_text(filename_fet, np.int32, skiprows=1) features = np.array(features, dtype=np.float32) # HACK: There are either 1 or 5 dimensions more than fetdim*nchannels # we can't be sure so we first try 1, if it does not work we try 5. for nextradim in [1, 5]: try: features = features.reshape((-1, fetdim * nchannels + nextradim)) # if the features array could be reshape, directly break the loop break except ValueError: features = None if features is None: raise ValueError("""The number of columns in the feature matrix is not fetdim (%d) x nchannels (%d) + 1 or 5.""" % (fetdim, nchannels)) # get the spiketimes spiketimes = features[:,-1].copy() spiketimes *= (1. / freq) # count the number of extra features nextrafet = features.shape[1] - nchannels * fetdim # normalize normal features while keeping symmetry features[:,:-nextrafet] = normalize(features[:,:-nextrafet], symmetric=True) # normalize extra features without keeping symmetry features[:,-nextrafet:] = normalize(features[:,-nextrafet:], symmetric=False) return features, spiketimes def read_clusters(filename_clu): clusters = load_text(filename_clu, np.int32) clusters = clusters[1:] return clusters def read_masks(filename_mask, fetdim): full_masks = load_text(filename_mask, np.float32, skiprows=1) masks = full_masks[:,:-1:fetdim] return masks, full_masks def read_waveforms(filename_spk, nsamples, nchannels): waveforms = load_binary(filename_spk) waveforms = waveforms.reshape((-1, nsamples, nchannels)) return waveforms # ----------------------------------------------------------------------------- # KlustersLoader class # ----------------------------------------------------------------------------- class KlustersLoader(object): # Initialization methods # ---------------------- def __init__(self, filename=None): """Initialize a Loader object for loading Klusters-formatted files. Arguments: * filename: the full path of any file belonging to the same dataset. """ if filename: self.open(filename) def open(self, filename): """Open a file.""" self.filename = filename # Find the file index associated to the filename, or 1 by default. self.fileindex = find_index(filename) or 1 self.find_filenames() self.read() def find_filenames(self): """Find the filenames of the different files for the current dataset.""" self.filename_xml = find_filename(self.filename, 'xml') self.filename_fet = find_filename(self.filename, 'fet') self.filename_clu = find_filename(self.filename, 'clu') # fmask or mask file self.filename_mask = find_filename(self.filename, 'fmask') if not self.filename_mask: self.filename_mask = find_filename(self.filename, 'mask') self.filename_spk = find_filename(self.filename, 'spk') # Input-Output methods # -------------------- def read(self): # Read metadata. try: self.metadata = read_xml(self.filename_xml, self.fileindex) except IOError: # Die if no XML file is available for this dataset, as it contains # critical metadata. raise IOError("The XML file is missing.") nsamples = self.metadata.get('nsamples') nchannels = self.metadata.get('nchannels') fetdim = self.metadata.get('fetdim') freq = self.metadata.get('freq') # Read features. try: self.features, self.spiketimes = read_features(self.filename_fet, nchannels, fetdim, freq) except IOError: raise IOError("The FET file is missing.") # Count the number of spikes and save it in the metadata. nspikes = self.features.shape[0] self.metadata['nspikes'] = nspikes # Read clusters. try: self.clusters = read_clusters(self.filename_clu) except IOError: warn("The CLU file is missing.") # Default clusters if the CLU file is not available. self.clusters = np.zeros(nspikes + 1, dtype=np.int32) self.clusters[0] = 1 # Read masks. try: self.masks, self.masks_full = read_masks(self.filename_mask, fetdim) except IOError: warn("The MASKS/FMASKS file is missing.") # Default masks if the MASK/FMASK file is not available. self.masks = np.ones((nspikes, nchannels)) self.masks_full = np.ones(features.shape) # Read waveforms. try: self.waveforms = read_waveforms(self.filename_spk, nsamples, nchannels) except IOError: warn("The SPK file is missing.") self.waveforms = np.zeros((nspikes, nsamples, nchannels)) def close(self): self.filename = None self.fileindex = None self.filename_xml = None self.filename_fet = None self.filename_clu = None self.filename_mask = None self.filename_spk = None self.features = None self.spiketimes = None self.clusters = None self.masks = None self.masks_full = None self.waveforms = None self.metadata = {} # Access to the data # ------------------ def get_features(self, spikes=None): return select(self.features, spikes) def get_spiketimes(self, spikes=None): return select(self.spiketimes, spikes) def get_clusters(self, spikes=None): return select(self.clusters, spikes) def get_masks(self, spikes=None, full=None): if not full: masks = self.masks else: masks = self.masks_full return select(masks, spikes) def get_waveforms(self, spikes=None): return select(self.waveforms, spikes) if __name__ == '__main__': filename = "D:\Git\spiky\_test\data\subset41test.clu.1" l = KlustersLoader(filename) print l.metadata
bsd-3-clause
-5,610,675,824,701,268,000
33.23913
79
0.546355
false
4.359911
false
false
false
Clyde-fare/scikit-learn
sklearn/manifold/mds.py
257
15138
""" Multi-dimensional Scaling (MDS) """ # author: Nelle Varoquaux <[email protected]> # Licence: BSD import numpy as np import warnings from ..base import BaseEstimator from ..metrics import euclidean_distances from ..utils import check_random_state, check_array, check_symmetric from ..externals.joblib import Parallel from ..externals.joblib import delayed from ..isotonic import IsotonicRegression def _smacof_single(similarities, metric=True, n_components=2, init=None, max_iter=300, verbose=0, eps=1e-3, random_state=None): """ Computes multidimensional scaling using SMACOF algorithm Parameters ---------- similarities: symmetric ndarray, shape [n * n] similarities between the points metric: boolean, optional, default: True compute metric or nonmetric SMACOF algorithm n_components: int, optional, default: 2 number of dimension in which to immerse the similarities overwritten if initial array is provided. init: {None or ndarray}, optional if None, randomly chooses the initial configuration if ndarray, initialize the SMACOF algorithm with this array max_iter: int, optional, default: 300 Maximum number of iterations of the SMACOF algorithm for a single run verbose: int, optional, default: 0 level of verbosity eps: float, optional, default: 1e-6 relative tolerance w.r.t stress to declare converge random_state: integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Returns ------- X: ndarray (n_samples, n_components), float coordinates of the n_samples points in a n_components-space stress_: float The final value of the stress (sum of squared distance of the disparities and the distances for all constrained points) n_iter : int Number of iterations run. """ similarities = check_symmetric(similarities, raise_exception=True) n_samples = similarities.shape[0] random_state = check_random_state(random_state) sim_flat = ((1 - np.tri(n_samples)) * similarities).ravel() sim_flat_w = sim_flat[sim_flat != 0] if init is None: # Randomly choose initial configuration X = random_state.rand(n_samples * n_components) X = X.reshape((n_samples, n_components)) else: # overrides the parameter p n_components = init.shape[1] if n_samples != init.shape[0]: raise ValueError("init matrix should be of shape (%d, %d)" % (n_samples, n_components)) X = init old_stress = None ir = IsotonicRegression() for it in range(max_iter): # Compute distance and monotonic regression dis = euclidean_distances(X) if metric: disparities = similarities else: dis_flat = dis.ravel() # similarities with 0 are considered as missing values dis_flat_w = dis_flat[sim_flat != 0] # Compute the disparities using a monotonic regression disparities_flat = ir.fit_transform(sim_flat_w, dis_flat_w) disparities = dis_flat.copy() disparities[sim_flat != 0] = disparities_flat disparities = disparities.reshape((n_samples, n_samples)) disparities *= np.sqrt((n_samples * (n_samples - 1) / 2) / (disparities ** 2).sum()) # Compute stress stress = ((dis.ravel() - disparities.ravel()) ** 2).sum() / 2 # Update X using the Guttman transform dis[dis == 0] = 1e-5 ratio = disparities / dis B = - ratio B[np.arange(len(B)), np.arange(len(B))] += ratio.sum(axis=1) X = 1. / n_samples * np.dot(B, X) dis = np.sqrt((X ** 2).sum(axis=1)).sum() if verbose >= 2: print('it: %d, stress %s' % (it, stress)) if old_stress is not None: if(old_stress - stress / dis) < eps: if verbose: print('breaking at iteration %d with stress %s' % (it, stress)) break old_stress = stress / dis return X, stress, it + 1 def smacof(similarities, metric=True, n_components=2, init=None, n_init=8, n_jobs=1, max_iter=300, verbose=0, eps=1e-3, random_state=None, return_n_iter=False): """ Computes multidimensional scaling using SMACOF (Scaling by Majorizing a Complicated Function) algorithm The SMACOF algorithm is a multidimensional scaling algorithm: it minimizes a objective function, the *stress*, using a majorization technique. The Stress Majorization, also known as the Guttman Transform, guarantees a monotone convergence of Stress, and is more powerful than traditional techniques such as gradient descent. The SMACOF algorithm for metric MDS can summarized by the following steps: 1. Set an initial start configuration, randomly or not. 2. Compute the stress 3. Compute the Guttman Transform 4. Iterate 2 and 3 until convergence. The nonmetric algorithm adds a monotonic regression steps before computing the stress. Parameters ---------- similarities : symmetric ndarray, shape (n_samples, n_samples) similarities between the points metric : boolean, optional, default: True compute metric or nonmetric SMACOF algorithm n_components : int, optional, default: 2 number of dimension in which to immerse the similarities overridden if initial array is provided. init : {None or ndarray of shape (n_samples, n_components)}, optional if None, randomly chooses the initial configuration if ndarray, initialize the SMACOF algorithm with this array n_init : int, optional, default: 8 Number of time the smacof algorithm will be run with different initialisation. The final results will be the best output of the n_init consecutive runs in terms of stress. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. max_iter : int, optional, default: 300 Maximum number of iterations of the SMACOF algorithm for a single run verbose : int, optional, default: 0 level of verbosity eps : float, optional, default: 1e-6 relative tolerance w.r.t stress to declare converge random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. return_n_iter : bool Whether or not to return the number of iterations. Returns ------- X : ndarray (n_samples,n_components) Coordinates of the n_samples points in a n_components-space stress : float The final value of the stress (sum of squared distance of the disparities and the distances for all constrained points) n_iter : int The number of iterations corresponding to the best stress. Returned only if `return_n_iter` is set to True. Notes ----- "Modern Multidimensional Scaling - Theory and Applications" Borg, I.; Groenen P. Springer Series in Statistics (1997) "Nonmetric multidimensional scaling: a numerical method" Kruskal, J. Psychometrika, 29 (1964) "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis" Kruskal, J. Psychometrika, 29, (1964) """ similarities = check_array(similarities) random_state = check_random_state(random_state) if hasattr(init, '__array__'): init = np.asarray(init).copy() if not n_init == 1: warnings.warn( 'Explicit initial positions passed: ' 'performing only one init of the MDS instead of %d' % n_init) n_init = 1 best_pos, best_stress = None, None if n_jobs == 1: for it in range(n_init): pos, stress, n_iter_ = _smacof_single( similarities, metric=metric, n_components=n_components, init=init, max_iter=max_iter, verbose=verbose, eps=eps, random_state=random_state) if best_stress is None or stress < best_stress: best_stress = stress best_pos = pos.copy() best_iter = n_iter_ else: seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init) results = Parallel(n_jobs=n_jobs, verbose=max(verbose - 1, 0))( delayed(_smacof_single)( similarities, metric=metric, n_components=n_components, init=init, max_iter=max_iter, verbose=verbose, eps=eps, random_state=seed) for seed in seeds) positions, stress, n_iters = zip(*results) best = np.argmin(stress) best_stress = stress[best] best_pos = positions[best] best_iter = n_iters[best] if return_n_iter: return best_pos, best_stress, best_iter else: return best_pos, best_stress class MDS(BaseEstimator): """Multidimensional scaling Read more in the :ref:`User Guide <multidimensional_scaling>`. Parameters ---------- metric : boolean, optional, default: True compute metric or nonmetric SMACOF (Scaling by Majorizing a Complicated Function) algorithm n_components : int, optional, default: 2 number of dimension in which to immerse the similarities overridden if initial array is provided. n_init : int, optional, default: 4 Number of time the smacof algorithm will be run with different initialisation. The final results will be the best output of the n_init consecutive runs in terms of stress. max_iter : int, optional, default: 300 Maximum number of iterations of the SMACOF algorithm for a single run verbose : int, optional, default: 0 level of verbosity eps : float, optional, default: 1e-6 relative tolerance w.r.t stress to declare converge n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : integer or numpy.RandomState, optional The generator used to initialize the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. dissimilarity : string Which dissimilarity measure to use. Supported are 'euclidean' and 'precomputed'. Attributes ---------- embedding_ : array-like, shape [n_components, n_samples] Stores the position of the dataset in the embedding space stress_ : float The final value of the stress (sum of squared distance of the disparities and the distances for all constrained points) References ---------- "Modern Multidimensional Scaling - Theory and Applications" Borg, I.; Groenen P. Springer Series in Statistics (1997) "Nonmetric multidimensional scaling: a numerical method" Kruskal, J. Psychometrika, 29 (1964) "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis" Kruskal, J. Psychometrika, 29, (1964) """ def __init__(self, n_components=2, metric=True, n_init=4, max_iter=300, verbose=0, eps=1e-3, n_jobs=1, random_state=None, dissimilarity="euclidean"): self.n_components = n_components self.dissimilarity = dissimilarity self.metric = metric self.n_init = n_init self.max_iter = max_iter self.eps = eps self.verbose = verbose self.n_jobs = n_jobs self.random_state = random_state @property def _pairwise(self): return self.kernel == "precomputed" def fit(self, X, y=None, init=None): """ Computes the position of the points in the embedding space Parameters ---------- X : array, shape=[n_samples, n_features], or [n_samples, n_samples] \ if dissimilarity='precomputed' Input data. init : {None or ndarray, shape (n_samples,)}, optional If None, randomly chooses the initial configuration if ndarray, initialize the SMACOF algorithm with this array. """ self.fit_transform(X, init=init) return self def fit_transform(self, X, y=None, init=None): """ Fit the data from X, and returns the embedded coordinates Parameters ---------- X : array, shape=[n_samples, n_features], or [n_samples, n_samples] \ if dissimilarity='precomputed' Input data. init : {None or ndarray, shape (n_samples,)}, optional If None, randomly chooses the initial configuration if ndarray, initialize the SMACOF algorithm with this array. """ X = check_array(X) if X.shape[0] == X.shape[1] and self.dissimilarity != "precomputed": warnings.warn("The MDS API has changed. ``fit`` now constructs an" " dissimilarity matrix from data. To use a custom " "dissimilarity matrix, set " "``dissimilarity='precomputed'``.") if self.dissimilarity == "precomputed": self.dissimilarity_matrix_ = X elif self.dissimilarity == "euclidean": self.dissimilarity_matrix_ = euclidean_distances(X) else: raise ValueError("Proximity must be 'precomputed' or 'euclidean'." " Got %s instead" % str(self.dissimilarity)) self.embedding_, self.stress_, self.n_iter_ = smacof( self.dissimilarity_matrix_, metric=self.metric, n_components=self.n_components, init=init, n_init=self.n_init, n_jobs=self.n_jobs, max_iter=self.max_iter, verbose=self.verbose, eps=self.eps, random_state=self.random_state, return_n_iter=True) return self.embedding_
bsd-3-clause
2,097,884,011,881,603,800
35.389423
79
0.625512
false
4.124796
true
false
false
pw31/GGchem
data/SUPCRT92/make_SH90.py
1
1725
import numpy as np import matplotlib.pyplot as plt import sys #========================================================================== # read Sharp & Huebner data #========================================================================== SHnam = np.loadtxt('SharpHuebner.dat',skiprows=0,usecols=[0],dtype='str') SHcoeff = np.loadtxt('SharpHuebner.dat',skiprows=0,usecols=[1,2,3,4,5]) #========================================================================== # read GGchem data #========================================================================== f = open('../../data/DustChem.dat','r') lines = f.readlines()[:] f.close Nline = len(lines) Ncond = len(SHnam) Nfound = 0 f = open('DustChem_SH90.dat','w') f.write('dust species\n') f.write('============\n') f.write('%d\n' %(Ncond)) for i in range(0,Ncond): cond = SHnam[i]+'[s]' lenc = len(cond) found = 0 for j in range(0,Nline): line = lines[j] if (line[0:lenc]==cond): found = 1 Nfound = Nfound+1 print cond,j f.write('\n') correct = 0 while True: line = lines[j] if (line=='\n'): break if (line[0]=='#'): correct=1 if (correct==1): line = '#'+line[1:] if (correct==0): f.write(line) j = j+1 c = SHcoeff[i,0:5] f.write('# Sharp & Huebner (1990):\n') f.write(' 1 %12.5e %12.5e %12.5e %12.5e %12.5e\n' %(c[0],c[1],c[2],c[3],c[4])) if (found==0): print cond," not found." f.write('\n') f.write(cond+'\n') f.write('# Sharp & Huebner (1990):\n') f.write(' 1 %12.5e %12.5e %12.5e %12.5e %12.5e\n' %(c[0],c[1],c[2],c[3],c[4])) f.close print Nfound," condensates found." print Ncond-Nfound," condensates not found."
gpl-3.0
-6,609,831,724,567,343,000
29.803571
85
0.456812
false
2.928693
false
false
false
rjferrier/fluidity
mayavi/mayavi_amcg/filters/data_set_clipper.py
7
3812
"""This filter enables one to select a portion of an input dataset using a plane and clip it so only one side remains. Many thanks to Prabhu for ScalarCutPlane and TransformData. Wouldn't have been able to code this otherwise. """ # Author: Samir Talwar <[email protected]> # License: BSD Style. # Enthought library imports. from enthought.traits.api import Instance, Int, Trait, TraitMap, Button from enthought.traits.ui.api import View, Group, Item from enthought.tvtk.api import tvtk # Local imports from enthought.mayavi.core.common import error from enthought.mayavi.filters.filter_base import FilterBase from enthought.mayavi.core.pipeline_info import PipelineInfo from enthought.mayavi.components.implicit_plane import ImplicitPlane ###################################################################### # `DataSetClipper` class. ###################################################################### class DataSetClipper(FilterBase): # The version of this class. Used for persistence. __version__ = 0 # The implicit plane widget used to easily place the implicit function. implicit_plane = Instance(ImplicitPlane, allow_none=False) # The actual filter. filter = Instance(tvtk.ClipDataSet, allow_none=False) # I'm not sure what this'll work with. vtkUnstructuredGrid is confirmed. # Everything else is somewhat possible. input_info = PipelineInfo(datasets=['any'], attribute_types=['any'], attributes=['any']) output_info = PipelineInfo(datasets=['any'], attribute_types=['any'], attributes=['any']) ######################################## # View related traits. # Button to reset the boundaries of the plane. # This should really be done automatically. reset_button = Button('Reset Boundaries') # The View for this object. view = View(Group(Item(name='reset_button'), Item(name='implicit_plane', style='custom'), show_labels=False, ), ) ###################################################################### # `Filter` interface ###################################################################### def setup_pipeline(self): self.implicit_plane = ImplicitPlane() self.filter = tvtk.ClipDataSet() def update_pipeline(self): inputs = self.inputs if len(inputs) == 0: return implicit_plane = self.implicit_plane implicit_plane.inputs = inputs implicit_plane.update_pipeline() widget = self.implicit_plane.widget widget.outline_translation = 0 self.widgets = [widget] filter = self.filter filter.input = inputs[0].outputs[0] filter.clip_function = implicit_plane.plane filter.update() self._set_outputs([filter.output]) self.pipeline_changed = True def update_data(self): # Do nothing if there is no input. if len(self.inputs) == 0: return # Propagate the data_changed event. self.data_changed = True ###################################################################### # Non-public methods. ###################################################################### def _on_implicit_plane_changed(self): self.filter.clip_function = self.implicit_plane.plane self.filter.update() self.render() def _reset_button_fired(self): if len(self.widgets) == 0: return self.widgets[0].place_widget() self.render()
lgpl-2.1
908,296,905,546,060,200
33.035714
76
0.536201
false
4.741294
false
false
false
pvital/patchew
api/migrations/0021_fix_recipients_utf8.py
2
1084
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations import json import email.header def _parse_header(header): r = "" for h, c in email.header.decode_header(header): if isinstance(h, bytes): h = h.decode(c or "utf-8", "replace") r += h return r def fix_utf8_recipients(apps, schema_editor): # We can't import the models directly as they may be a newer # version than this migration expects. We use the historical version. Message = apps.get_model("api", "Message") msgs = Message.objects.all() msgs = msgs.filter(recipients__contains="?") for m in msgs: recipients = json.loads(m.recipients) recipients = [[_parse_header(x[0]), x[1]] for x in recipients] m.recipients = json.dumps(recipients) m.save() class Migration(migrations.Migration): dependencies = [("api", "0020_auto_20180204_0647")] operations = [ migrations.RunPython( fix_utf8_recipients, reverse_code=migrations.RunPython.noop ) ]
mit
-1,629,429,450,629,336,000
26.794872
73
0.632841
false
3.737931
false
false
false
palfrey/book-blog
bofh.py
1
2431
from common import * from re import compile, DOTALL, MULTILINE from urlgrab import Cache from urlparse import urljoin linkPattern = compile("<h3><a href=\"(/[^\"]+)\">(.+?)</a></h3>") earlierPattern = compile("<a href='([^\']+)'>.+?Earlier Stories.+?</a>", DOTALL | MULTILINE) titlePattern = compile("<h2>(.+?)</h2>") subtitlePattern = compile("<p class=\"standfirst\">(.+?)</p>") contentPattern = compile("<strong class=\"trailer\">.+?</p>(.+?)(?:(?:<p>(?:(?:<i>)|(?:<small>)|(?:<font size=\"-2\">)|(?:<br>\n))?BOFH .+? Simon Travaglia)|(?:<ul class=\"noindent\">)|(?:<ul>.+?<li><a href=\"http://www.theregister.co.uk/content/30/index.html\">BOFH: The whole shebang</a></li>)|(?:</form>))", DOTALL| MULTILINE) adPattern = compile("(<div id=ad-mu1-spot>.+?</div>)", MULTILINE | DOTALL) episodePattern = compile("<strong class=\"trailer\">Episode \d+") url = "http://www.theregister.co.uk/data_centre/bofh/" pages = [url] cache = Cache() while True: print url data = cache.get(url).read() links = linkPattern.findall(data) if links == []: break pages.insert(0, url) earlier = earlierPattern.findall(data) url = urljoin(url, earlier[0]) skipTitles = ["Salmon Days is Go!"] year = None newItems = False for mainPage in pages: data = cache.get(mainPage).read() links = linkPattern.findall(data) links.reverse() for l in links: url = urljoin(mainPage, l[0]) newyear = url.split("/")[3] if newyear != year: if year != None: if int(newyear) < int(year): raise Exception, (year, newyear) tocEnd(toc) makeMobi(folder, "Simon Travaglia", newitems = newItems) newItems = False folder = "BOFH-%s"%newyear toc = tocStart(folder) year = newyear data = cache.get(url, max_age = -1).read() episode = episodePattern.findall(data) if len(episode) == 0: print "Skipping", url continue print url title = titlePattern.findall(data)[0] print title if title in skipTitles: print "skipping", title continue subtitle = subtitlePattern.findall(data)[0] content = contentPattern.findall(data)[0] ad = adPattern.findall(data)[0] content = content.replace(ad, "") content = content.decode('utf-8') title = title.decode("utf-8") subtitle = subtitle.decode("utf-8") assert len(content)>0 if generatePage(url, title, subtitle + "<br />\n" + content, folder, toc): newItems = True #break print links tocEnd(toc) makeMobi(folder, "Simon Travaglia")
agpl-3.0
-3,325,928,608,387,939,300
28.646341
329
0.647059
false
2.897497
false
false
false
Ektorus/bohrium
test/cil/Unittest/Benchmarks/IronPython/cphhpc/signal/convolution.py
1
3399
#!/usr/bin/python # -*- coding: utf-8 -*- # # --- BEGIN_HEADER --- # # convolution - http://www.songho.ca/dsp/convolution/convolution.html # Copyright (C) 2011-2012 The CPHHPC Project lead by Brian Vinter # # This file is part of CPHHPC Toolbox. # # CPHHPC Toolbox is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # CPHHPC Toolbox is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, # USA. # # -- END_HEADER --- # """Convolution: http://www.songho.ca/dsp/convolution/convolution.html""" from numcil import zeros def convolve2d(input, window, out=None, data_type=None): """ Convolve two 2-dimensional arrays: http://www.songho.ca/dsp/convolution/convolution.html Parameters ---------- input : ndarray A 2-dimensional input array window: ndarray A 2-dimensional convolution window array (shape must be odd) out : ndarray, optional Output argument. This must have the exact kind that would be returned if it was not used. In particular, it must have the right shape and must be C-contiguous. This is a performance feature. Therefore, if these conditions are not met, an exception is raised, instead of attempting to be flexible. data_type : data-type, optional The precision of the created `out` ndarray if `out` is None Raises ------ ValueError If shape of `window` is even If shape of `out` doesn't match those of `input` """ if window.shape[0] % 2 == 0 or window.shape[1] % 2 == 0: msg = "window.shape: %s is _NOT_ odd" % (str(window.shape)) raise ValueError(msg) window_radius = (window.shape[0]/2, window.shape[1]/2) zero_pad_shape = (input.shape[0] + (window_radius[0]*2), input.shape[1] + (window_radius[1]*2)) zero_padded_input = zeros(zero_pad_shape, dtype=data_type) zero_padded_input[window_radius[0]:-window_radius[0], window_radius[1]:-window_radius[1]] = input if out != None: if out.shape != input.shape: msg = "input.shape: %s and out.shape: %s doesn't match" % (str(input.shape), str(out.shape)) raise ValueError(msg) else: if data_type == None: out = zeros(input.shape, dtype=input.dtype) else: out = zeros(input.shape, dtype=data_type) start_y = window_radius[0]*2 end_y = zero_pad_shape[0] for y in xrange(window.shape[0]): start_x = window_radius[1]*2 end_x = zero_pad_shape[1] for x in xrange(window.shape[1]): tmp = zero_padded_input * window[y][x] out += tmp[start_y:end_y, start_x:end_x] start_x -= 1 end_x -= 1 start_y -= 1 end_y -= 1 return out
lgpl-3.0
9,024,390,674,542,501,000
33.333333
104
0.624595
false
3.658773
false
false
false
avasilevich/spolks
icmp/utils/ip_packet.py
1
1482
import struct import socket from collections import namedtuple IPv4Header = namedtuple('IPv4Header', [ 'version', 'ihl', 'tos', 'total_length', 'id', 'flags', 'fragment_offset', 'ttl', 'proto', 'checksum', 'src', 'dest', ]) class IpHeader(IPv4Header): _format = '!BBHHHBBH4s4s' def pack(self): to_pack = ( self[0] << 4 | self[1], self[2], self[3], self[4], self[5] << 13 | self[6], self[7], self[8], self[9], self[10], self[11], ) return struct.pack(self._format, *to_pack) @classmethod def unpack(cls, byte_obj): (ver_ihl, tos, tot_len, id, flags_offset, *others) = struct.unpack( cls._format, byte_obj) version = ver_ihl >> 4 ihl = ver_ihl & 0xf flags = flags_offset >> 13 fragment_offset = flags_offset & 0x1fff return IPv4Header( version, ihl, tos, tot_len, id, flags, fragment_offset, *others) def __len__(self): return struct.calcsize(self._format) def make_ip_packet(dest_addr, ip_proto, payload, source_addr, ttl=64): source_addr = socket.inet_aton(source_addr) dest_addr = socket.inet_aton(dest_addr) id = 13371 header = IpHeader( 4, 5, 0, 0, id, 2, 0, ttl, ip_proto, 0, source_addr, dest_addr) data = header.pack() + payload return data
mit
4,343,442,371,421,247,000
22.15625
76
0.527665
false
3.32287
false
false
false
PKRoma/python-for-android
pythonforandroid/recipes/liblzma/__init__.py
4
2591
import sh from multiprocessing import cpu_count from os.path import exists, join from pythonforandroid.archs import Arch from pythonforandroid.logger import shprint from pythonforandroid.recipe import Recipe from pythonforandroid.util import current_directory, ensure_dir class LibLzmaRecipe(Recipe): version = '5.2.4' url = 'https://tukaani.org/xz/xz-{version}.tar.gz' built_libraries = {'liblzma.so': 'install/lib'} def build_arch(self, arch: Arch) -> None: env = self.get_recipe_env(arch) install_dir = join(self.get_build_dir(arch.arch), 'install') with current_directory(self.get_build_dir(arch.arch)): if not exists('configure'): shprint(sh.Command('./autogen.sh'), _env=env) shprint(sh.Command('autoreconf'), '-vif', _env=env) shprint(sh.Command('./configure'), '--host=' + arch.command_prefix, '--prefix=' + install_dir, '--disable-builddir', '--disable-static', '--enable-shared', '--disable-xz', '--disable-xzdec', '--disable-lzmadec', '--disable-lzmainfo', '--disable-scripts', '--disable-doc', _env=env) shprint( sh.make, '-j', str(cpu_count()), _env=env ) ensure_dir('install') shprint(sh.make, 'install', _env=env) def get_library_includes(self, arch: Arch) -> str: """ Returns a string with the appropriate `-I<lib directory>` to link with the lzma lib. This string is usually added to the environment variable `CPPFLAGS`. """ return " -I" + join( self.get_build_dir(arch.arch), 'install', 'include', ) def get_library_ldflags(self, arch: Arch) -> str: """ Returns a string with the appropriate `-L<lib directory>` to link with the lzma lib. This string is usually added to the environment variable `LDFLAGS`. """ return " -L" + join( self.get_build_dir(arch.arch), self.built_libraries['liblzma.so'], ) @staticmethod def get_library_libs_flag() -> str: """ Returns a string with the appropriate `-l<lib>` flags to link with the lzma lib. This string is usually added to the environment variable `LIBS`. """ return " -llzma" recipe = LibLzmaRecipe()
mit
-3,836,365,355,632,390,000
32.217949
78
0.545735
false
4.054773
false
false
false
peak6/st2
st2common/tests/unit/test_jinja_render_crypto_filters.py
3
2246
# Licensed to the StackStorm, Inc ('StackStorm') under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from oslo_config import cfg from st2tests.base import CleanDbTestCase from st2common.constants.keyvalue import FULL_SYSTEM_SCOPE, SYSTEM_SCOPE, DATASTORE_PARENT_SCOPE from st2common.models.db.keyvalue import KeyValuePairDB from st2common.persistence.keyvalue import KeyValuePair from st2common.services.keyvalues import KeyValueLookup from st2common.util import jinja as jinja_utils from st2common.util.crypto import read_crypto_key, symmetric_encrypt class JinjaUtilsDecryptTestCase(CleanDbTestCase): def test_filter_decrypt_kv(self): secret = 'Build a wall' crypto_key_path = cfg.CONF.keyvalue.encryption_key_path crypto_key = read_crypto_key(key_path=crypto_key_path) secret_value = symmetric_encrypt(encrypt_key=crypto_key, plaintext=secret) KeyValuePair.add_or_update(KeyValuePairDB(name='k8', value=secret_value, scope=FULL_SYSTEM_SCOPE, secret=True)) env = jinja_utils.get_jinja_environment() context = {} context.update({SYSTEM_SCOPE: KeyValueLookup(scope=SYSTEM_SCOPE)}) context.update({ DATASTORE_PARENT_SCOPE: { SYSTEM_SCOPE: KeyValueLookup(scope=FULL_SYSTEM_SCOPE) } }) template = '{{st2kv.system.k8 | decrypt_kv}}' actual = env.from_string(template).render(context) self.assertEqual(actual, secret)
apache-2.0
-2,793,195,057,411,800,000
44.836735
96
0.705254
false
4.083636
false
false
false
trojjer/romaine
src/romaine/core.py
1
1344
import os class Core(object): """ The core of the Romaine, provides BDD test API. """ # All located features feature_file_paths = set() instance = None def __init__(self): """ Initialise Romaine core. """ self.steps = {} Core.instance = self def locate_features(self, path): """ Locate any features given a path. Keyword arguments: path -- The path to search for features, recursively. Returns: List of features located in the path given. """ walked_paths = os.walk(path) # Features in this path are stored in an intermediate list before # being added to the class variable so that we can return only the # ones we find on this invocation of locate_features feature_candidates = [] for walked_path in walked_paths: base_directory, sub_directories, feature_files = walked_path for feature_file in feature_files: feature_candidates.append( os.path.join( base_directory, feature_file ) ) self.feature_file_paths.update(feature_candidates) return feature_candidates
mit
5,296,890,157,354,747,000
27
74
0.541667
false
4.887273
false
false
false
Darrel12/FFAudX
MyListWidget.py
1
6481
from PyQt5.QtWidgets import QAbstractItemView, QFrame, QListWidget, QListWidgetItem from PyQt5.QtCore import Qt import os from mimetypes import MimeTypes from urllib import request from PyQt5 import QtGui, QtCore import savedData as sd from pytube import YouTube from pprint import pprint # Customized list widget item to hold more data than just the absolute path of the item # class MyListWidgetItem(QListWidgetItem): def __init__(self, path, dest, video_checked=False, video=None, audio_checked=False, audio=None): super().__init__() self.absFilePath = path # determine if new item is a url or file path - handle accordingly if os.path.exists(path): print("path exists:", path) # extract the path without the filename and render it back to a string self.path = '/'.join(path.split('/')[0:-1]) + '/' # print("directory path: " + self.path) # idk if this is useful anymore # extract the last part of the path to get the file name self.fName = path.split('/')[-1] # file name without the extension self.no_extension = self.fName.split('.')[0] # use MimeTypes to determine the file type self.fType = identifyItem(path) # set the save destination for when the conversion is done self.fDest = dest # the audio/video type to convert to if they have one - blank by default # TODO maybe make them the currently checked values? and/or reset checked values when adding new item? self.audio = audio if audio_checked else "" self.video = video if video_checked else "" else: print("Pathhh:", path) # TODO put something here? see how this corresponds to the above self.path self.path = path self.yt = YouTube(path) # use the youtube scraper to get the youtube video name self.no_extension = self.yt.filename self.fName = self.no_extension + "." + sd.initVidFmt self.fType = ('youtube/video', None) # save a custom mime-type TODO extract the mime type from the metadata self.fDest = dest self.audio = audio if audio_checked else "" self.video = video if video_checked else "" print("fType:", self.fType) def __repr__(self): try: return self.fName except Exception as err: print("I think fName is trying to be accessed when it hasn't been created:") pprint(err.args) def getAudio(self, audio=""): if audio != "": self.audio = audio return self.audio def getVideo(self, video=""): if video != "": self.video = video return self.video def getFileType(self): return self.fType # identify the type of item the user is adding to the queue # def identifyItem(path): """ :param path: the file path or url the user is providing :return: the type of file the user is providing """ mime = MimeTypes() url = request.pathname2url(path) mime_type = mime.guess_type(url) print("MimeType: " + str(mime_type)) return mime_type # Customized list widget to allow internal/external drag-and-drop actions # class MyListWidget(QListWidget): def __init__(self, parent): super(MyListWidget, self).__init__(parent) self.setAcceptDrops(True) self.setDragDropMode(QAbstractItemView.InternalMove) self.setFrameShadow(QFrame.Plain) self.setFrameShape(QFrame.Box) # do stuff if a dragged item enters the widget # def dragEnterEvent(self, event): if event.mimeData().hasUrls(): event.acceptProposedAction() else: super(MyListWidget, self).dragEnterEvent(event) # do stuff repeatedly if a dragged item is moving around in the widget # def dragMoveEvent(self, event): super(MyListWidget, self).dragMoveEvent(event) # handle internal and external drag-and-drop actions # def dropEvent(self, event): # capture the main windows audio/video configuration to be applied to the next added items video_checked = self.parent().parent().parent().ui.chk_video.isChecked() audio_checked = self.parent().parent().parent().ui.chk_audio.isChecked() video = self.parent().parent().parent().ui.combo_video.currentText() audio = self.parent().parent().parent().ui.combo_audio.currentText() # handle external drop if event.mimeData().hasUrls(): for url in event.mimeData().urls(): print("url: " + str(url)) print(url) path = url.toLocalFile() if os.path.isfile(path): item = MyListWidgetItem(path, sd.initSaveDir, video_checked, video, audio_checked, audio) print("local file:", item) self.addItem(item) else: item = MyListWidgetItem(url.toString(), sd.initSaveDir, video_checked, video, audio_checked, audio) print("Youtube Video:", item) self.addItem(item) # make the item display its name self.item(self.count() - 1).setText(item.no_extension) self.item(self.count() - 1).setSelected(True) else: # default internal drop super(MyListWidget, self).dropEvent(event) # noinspection PyArgumentList def keyPressEvent(self, event): """ Assign the following functions to keystrokes delete -> delete the highlighted items ctrl + a -> highlight all items in the queue :param event: signal event to determine if it's a keyboard event """ # TODO make arrow keys move selection to above/below item # TODO Ctrl + arrow keys to move the highlighted items priority modifiers = QtGui.QApplication.keyboardModifiers() if event.key() == Qt.Key_Delete: self._del_item() elif modifiers == QtCore.Qt.ControlModifier and event.key() == Qt.Key_A: self._highlight_all() # remove the selected item def _del_item(self): for item in self.selectedItems(): self.takeItem(self.row(item)) # highlight all items in the list def _highlight_all(self): self.selectAll()
mit
-9,006,226,964,796,633,000
40.280255
120
0.613486
false
4.263816
false
false
false
kgizdov/EasyClangComplete
plugin/completion/base_complete.py
1
3073
"""Contains base class for completers. Attributes: log (logging.Logger): logger for this module """ import logging from ..tools import Tools log = logging.getLogger("ECC") class BaseCompleter: """A base class for clang based completions. Attributes: compiler_variant (CompilerVariant): compiler specific options valid (bool): is completer valid version_str (str): version string of format "3.4.0" error_vis (obj): an object of error visualizer """ name = "base" valid = False def __init__(self, settings, error_vis): """Initialize the BaseCompleter. Args: settings (SettingsStorage): an object that stores current settings error_vis (ErrorVis): an object of error visualizer Raises: RuntimeError: if clang not defined we throw an error """ # check if clang binary is defined if not settings.clang_binary: raise RuntimeError("clang binary not defined") self.compiler_variant = None self.version_str = settings.clang_version self.clang_binary = settings.clang_binary # initialize error visualization self.error_vis = error_vis def complete(self, completion_request): """Function to generate completions. See children for implementation. Args: completion_request (ActionRequest): request object Raises: NotImplementedError: Guarantees we do not call this abstract method """ raise NotImplementedError("calling abstract method") def info(self, tooltip_request): """Provide information about object in given location. Using the current translation unit it queries libclang for available information about cursor. Args: tooltip_request (tools.ActionRequest): A request for action from the plugin. Raises: NotImplementedError: Guarantees we do not call this abstract method """ raise NotImplementedError("calling abstract method") def update(self, view, settings): """Update the completer for this view. This can increase consequent completion speeds or is needed to just show errors. Args: view (sublime.View): this view settings: all plugin settings Raises: NotImplementedError: Guarantees we do not call this abstract method """ raise NotImplementedError("calling abstract method") def show_errors(self, view, output): """Show current complie errors. Args: view (sublime.View): Current view output (object): opaque output to be parsed by compiler variant """ errors = self.compiler_variant.errors_from_output(output) if not Tools.is_valid_view(view): log.error("cannot show errors. View became invalid!") return self.error_vis.generate(view, errors) self.error_vis.show_errors(view)
mit
-550,637,532,913,715,000
29.425743
79
0.634884
false
4.94847
false
false
false
ssorj/haystack
python/haystack.py
1
15893
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import brbn import email.utils as _email import json as _json import logging as _logging import os as _os import quopri as _quopri import re as _re import sqlite3 as _sqlite import time as _time import textwrap as _textwrap from datetime import datetime as _datetime from pencil import * _log = _logging.getLogger("haystack") _strings = StringCatalog(__file__) _topics = _json.loads(_strings["topics"]) class Haystack(brbn.Application): def __init__(self, home_dir): super().__init__(home_dir) path = _os.path.join(self.home, "data", "data.sqlite") self.database = Database(path) self.root_resource = _IndexPage(self) self.search_page = _SearchPage(self) self.thread_page = _ThreadPage(self) self.message_page = _MessagePage(self) def receive_request(self, request): request.database_connection = self.database.connect() try: return super().receive_request(request) finally: request.database_connection.close() class _IndexPage(brbn.Page): def __init__(self, app): super().__init__(app, "/", _strings["index_page_body"]) def get_title(self, request): return "Haystack" @brbn.xml def render_topics(self, request): items = list() for topic in _topics: href = self.app.search_page.get_href(request, query=topic) text = xml_escape(topic) items.append(html_a(text, href)) return html_ul(items, class_="four-column") class _SearchPage(brbn.Page): def __init__(self, app): super().__init__(app, "/search", _strings["search_page_body"]) def get_title(self, request): query = request.get("query") return "Search '{}'".format(query) def render_query(self, request): return request.get("query") @brbn.xml def render_threads(self, request): query = request.get("query") sql = ("select * from messages where id in " "(select distinct thread_id from messages_fts " " where messages_fts match ? limit 1000) " "order by date desc") escaped_query = query.replace("\"", "\"\"") records = self.app.database.query(request, sql, escaped_query) thread = Thread() rows = list() for record in records: thread.load_from_record(record) thread_link = thread.get_link(request) row = [ thread_link, xml_escape(thread.from_address), thread.authored_words, xml_escape(str(_email.formatdate(thread.date)[:-6])), ] rows.append(row) return html_table(rows, False, class_="messages four") class _ThreadPage(brbn.Page): def __init__(self, app): super().__init__(app, "/thread", _strings["thread_page_body"]) def get_title(self, request): return "Thread '{}'".format(request.thread.subject) def process(self, request): id = request.get("id") request.thread = self.app.database.get(request, Message, id) sql = ("select * from messages " "where thread_id = ? " "order by thread_position, date asc " "limit 1000") records = self.app.database.query(request, sql, request.thread.id) request.messages = list() request.messages_by_id = dict() for record in records: message = Message() message.load_from_record(record) request.messages.append(message) request.messages_by_id[message.id] = message def render_title(self, request): return request.thread.subject @brbn.xml def render_index(self, request): rows = list() for i, message in enumerate(request.messages): date = _time.strftime("%d %b %Y", _time.gmtime(message.date)) number = i + 1 title = self.get_message_title(request, message, number) row = [ html_a(xml_escape(title), "#{}".format(number)), xml_escape(date), message.authored_words, ] rows.append(row) return html_table(rows, False, class_="messages") @brbn.xml def render_messages(self, request): out = list() for i, message in enumerate(request.messages): number = i + 1 title = self.get_message_title(request, message, number) out.append(html_elem("h2", title, id=str(number))) out.append(html_elem("pre", xml_escape(message.content))) return "\n".join(out) def get_message_title(self, request, message, number): title = "{}. {}".format(number, message.from_name) if message.in_reply_to_id is not None: rmessage = request.messages_by_id.get(message.in_reply_to_id) if rmessage is not None: rperson = rmessage.from_name title = "{} replying to {}".format(title, rperson) return title class _MessagePage(brbn.Page): def __init__(self, app): super().__init__(app, "/message", _strings["message_page_body"]) def get_title(self, request): return "Message '{}'".format(request.message.subject) def process(self, request): id = request.get("id") request.message = self.app.database.get(request, Message, id) def render_title(self, request): return request.message.subject @brbn.xml def render_thread_link(self, request): thread = None thread_id = request.message.thread_id thread_link = xml_escape(thread_id) if thread_id is not None: try: thread = self.app.database.get(request, Message, thread_id) except ObjectNotFound: pass if thread is not None: thread_link = thread.get_link(request) return thread_link @brbn.xml def render_in_reply_to_link(self, request): rmessage = None rmessage_id = request.message.in_reply_to_id rmessage_link = nvl(xml_escape(rmessage_id), "[None]") if rmessage_id is not None: try: rmessage = self.database.get(request, Message, rmessage_id) except ObjectNotFound: pass if rmessage is not None: rmessage_link = rmessage.get_link(request) return rmessage_link @brbn.xml def render_headers(self, request): message = request.message from_field = "{} <{}>".format(message.from_name, message.from_address) items = ( ("ID", xml_escape(message.id)), ("List", xml_escape(message.list_id)), ("From", xml_escape(from_field)), ("Date", xml_escape(_email.formatdate(message.date))), ("Subject", xml_escape(message.subject)), ) return html_table(items, False, True, class_="headers") @brbn.xml def render_content(self, request): message = request.message content = "" if message.content is not None: lines = list() for line in message.content.splitlines(): line = line.strip() if line.startswith(">"): m = _re.match("^[> ]+", line) prefix = "\n{}".format(m.group(0)) line = prefix.join(_textwrap.wrap(line, 80)) line = html_span(xml_escape(line), class_="quoted") else: line = "\n".join(_textwrap.wrap(line, 80)) line = xml_escape(line) lines.append(line) content = "\n".join(lines) return content class Database: def __init__(self, path): self.path = path _log.info("Using database at {}".format(self.path)) def connect(self): # XXX thread local connections return _sqlite.connect(self.path) def create_schema(self): columns = list() for name in Message.fields: field_type = Message.field_types.get(name, str) column_type = "text" if field_type == int: column_type = "integer" column = "{} {}".format(name, column_type) columns.append(column) statements = list() columns = ", ".join(columns) ddl = "create table messages ({});".format(columns) statements.append(ddl) ddl = "create index messages_id_idx on messages (id);" statements.append(ddl) columns = ", ".join(Message.fts_fields) ddl = ("create virtual table messages_fts using fts4 " "({}, notindexed=id, notindexed=thread_id, tokenize=porter)" "".format(columns)) statements.append(ddl) conn = self.connect() cursor = conn.cursor() try: for statement in statements: cursor.execute(statement) finally: conn.close() def optimize(self): conn = self.connect() cursor = conn.cursor() ddl = "insert into messages_fts (messages_fts) values ('optimize')" try: cursor.execute(ddl) finally: conn.close() def cursor(self, request): return request.database_connection.cursor() def query(self, request, sql, *args): cursor = self.cursor(request) try: cursor.execute(sql, args) return cursor.fetchall() finally: cursor.close() def get(self, request, cls, id): _log.debug("Getting {} with ID {}".format(cls.__name__, id)) assert issubclass(cls, _DatabaseObject), cls assert id is not None sql = "select * from {} where id = ?".format(cls.table) cursor = self.cursor(request) try: cursor.execute(sql, [id]) record = cursor.fetchone() finally: cursor.close() if record is None: raise ObjectNotFound() obj = cls() obj.load_from_record(record) return obj class ObjectNotFound(Exception): pass class _DatabaseObject: table = None def __init__(self, id, name, parent=None): self.id = id self._name = name self.parent = parent def __repr__(self): return format_repr(self, self.id) @property def name(self): return self._name def get_link_href(self, request): raise NotImplementedError() def get_link_text(self, request): return self.name def get_link(self, request, text=None): href = self.get_link_href(request) if text is None: text = self.get_link_text(request) return "<a href=\"{}\">{}</a>".format(href, xml_escape(text)) class Message(_DatabaseObject): table = "messages" fields = [ "id", "in_reply_to_id", "from_name", "from_address", "list_id", "date", "subject", "content_type", "content", "authored_content", "authored_words", "thread_id", "thread_position", ] field_types = { "date": int, "authored_words": int, "thread_position": int, } field_mbox_keys = { "id": "Message-ID", "in_reply_to_id": "In-Reply-To", "list_id": "List-Id", "subject": "Subject", "content_type": "Content-Type", } fts_fields = [ "id", "thread_id", "subject", "authored_content", ] def __init__(self): super().__init__(None, None) for name in self.fields: setattr(self, name, None) @property def name(self): return self.subject def load_from_mbox_message(self, mbox_message): for name in self.field_mbox_keys: mbox_key = self.field_mbox_keys[name] value = mbox_message.get(mbox_key) field_type = self.field_types.get(name, str) if value is not None: value = field_type(value) setattr(self, name, value) name, address = _email.parseaddr(mbox_message["From"]) self.from_name = name self.from_address = address tup = _email.parsedate(mbox_message["Date"]) self.date = _time.mktime(tup) content = _get_mbox_content(mbox_message) assert content is not None self.content = content self.authored_content = _get_authored_content(self.content) self.authored_words = len(self.authored_content.split()) def load_from_record(self, record): for i, name in enumerate(self.fields): value = record[i] field_type = self.field_types.get(name, str) if value is not None: value = field_type(value) setattr(self, name, value) def save(self, cursor): columns = ", ".join(self.fields) values = ", ".join("?" * len(self.fields)) args = [getattr(self, x) for x in self.fields] dml = "insert into messages ({}) values ({})".format(columns, values) cursor.execute(dml, args) columns = ", ".join(self.fts_fields) values = ", ".join("?" * len(self.fts_fields)) args = [getattr(self, x) for x in self.fts_fields] dml = "insert into messages_fts ({}) values ({})".format(columns, values) cursor.execute(dml, args) def get_link_href(self, request): return request.app.message_page.get_href(request, id=self.id) def get_link_title(self, request): return self.subject class Thread(Message): def get_link_href(self, request): return request.app.thread_page.get_href(request, id=self.id) def _get_mbox_content(mbox_message): content_type = None content_encoding = None content = None if mbox_message.is_multipart(): for part in mbox_message.walk(): if part.get_content_type() == "text/plain": content_type = "text/plain" content_encoding = part["Content-Transfer-Encoding"] content = part.get_payload() if content_type is None: content_type = mbox_message.get_content_type() content_encoding = mbox_message["Content-Transfer-Encoding"] content = mbox_message.get_payload() assert content_type is not None assert content is not None if content_encoding == "quoted-printable": content = _quopri.decodestring(content) content = content.decode("utf-8", errors="replace") if content_type == "text/html": content = strip_tags(content) return content def _get_authored_content(content): lines = list() for line in content.splitlines(): line = line.strip() if line.startswith(">"): continue lines.append(line) return "\n".join(lines)
apache-2.0
1,053,662,476,856,937,300
27.129204
81
0.569118
false
3.950534
false
false
false
yuyuz/FLASH
tests/unittests/test_benchmark_util.py
5
2920
## # wrapping: A program making it easy to use hyperparameter # optimization software. # Copyright (C) 2013 Katharina Eggensperger and Matthias Feurer # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import os import unittest import sys import HPOlib.benchmark_util as benchmark_util class BenchmarkUtilTest(unittest.TestCase): def setUp(self): # Change into the parent of the test directory os.chdir(os.path.join("..", os.path.dirname(os.path.realpath(__file__)))) # Make sure there is no config file try: os.remove("./config.cfg") except: pass def test_read_parameters_from_command_line(self): # Legal call sys.argv = ["test.py", "--folds", "10", "--fold", "0", "--params", "-x", "3"] args, params = benchmark_util.parse_cli() self.assertEqual(params, {'x': '3'}) self.assertEqual(args, {'folds': '10', 'fold': '0'}) # illegal call, arguments with one minus before --params sys.argv = ["test.py", "-folds", "10", "--fold", "0", "--params", "-x", "3"] with self.assertRaises(ValueError) as cm1: benchmark_util.parse_cli() self.assertEqual(cm1.exception.message, "You either try to use arguments" " with only one leading minus or try to specify a " "hyperparameter before the --params argument. test.py" " -folds 10 --fold 0 --params -x 3") # illegal call, trying to specify an arguments after --params sys.argv = ["test.py", "--folds", "10", "--params", "-x", "'3'", "--fold", "0"] with self.assertRaises(ValueError) as cm5: benchmark_util.parse_cli() self.assertEqual(cm5.exception.message, "You are trying to specify an argument after the " "--params argument. Please change the order.") # illegal call, no - in front of parameter name sys.argv = ["test_cv.py", "--params", "x", "'5'"] with self.assertRaises(ValueError) as cm2: benchmark_util.parse_cli() self.assertEqual(cm2.exception.message, "Illegal command line string, expected a hyperpara" "meter starting with - but found x")
gpl-3.0
-8,210,264,829,300,046,000
41.955882
99
0.612671
false
4.118477
true
false
false
paris-ci/CloudBot
plugins/core_misc.py
1
3369
import asyncio import socket from cloudbot import hook socket.setdefaulttimeout(10) # Auto-join on Invite (Configurable, defaults to True) @asyncio.coroutine @hook.irc_raw('INVITE') def invite(irc_paramlist, conn, event): """ :type irc_paramlist: list[str] :type conn: cloudbot.client.Client """ invite_join = conn.config.get('invite_join', True) if invite_join: conn.join(irc_paramlist[-1]) invite = event.irc_raw.replace(":", "") head, sep, tail = invite.split()[ 0].partition('!') # message(invite.split()[0] + " invited me to " + invite.split()[-1], invite.split()[-1]) conn.message(irc_paramlist[-1].strip(":"), "Hello! I'm " + conn.config["nick"] + ". " + head + " invited me here! Check what I can do with " + conn.config[ "command_prefix"] + "help.") conn.message(irc_paramlist[-1].strip(":"), "You can check more info about me at github : https://github.com/paris-ci/CloudBot") # Identify to NickServ (or other service) @asyncio.coroutine @hook.irc_raw('004') def onjoin(conn, bot): """ :type conn: cloudbot.clients.clients.IrcClient :type bot: cloudbot.bot.CloudBot """ bot.logger.info("[{}|misc] Bot is sending join commands for network.".format(conn.name)) nickserv = conn.config.get('nickserv') if nickserv and nickserv.get("enabled", True): bot.logger.info("[{}|misc] Bot is authenticating with NickServ.".format(conn.name)) nickserv_password = nickserv.get('nickserv_password', '') nickserv_name = nickserv.get('nickserv_name', 'nickserv') nickserv_account_name = nickserv.get('nickserv_user', '') nickserv_command = nickserv.get('nickserv_command', 'IDENTIFY') if nickserv_password: if "censored_strings" in bot.config and nickserv_password in bot.config['censored_strings']: bot.config['censored_strings'].remove(nickserv_password) if nickserv_account_name: conn.message(nickserv_name, "{} {} {}".format(nickserv_command, nickserv_account_name, nickserv_password)) else: conn.message(nickserv_name, "{} {}".format(nickserv_command, nickserv_password)) if "censored_strings" in bot.config: bot.config['censored_strings'].append(nickserv_password) yield from asyncio.sleep(1) # Set bot modes mode = conn.config.get('mode') if mode: bot.logger.info("[{}|misc] Bot is setting mode on itself: {}".format(conn.name, mode)) conn.cmd('MODE', conn.nick, mode) # Join config-defined channels bot.logger.info("[{}|misc] Bot is joining channels for network.".format(conn.name)) for channel in conn.channels: conn.join(channel) yield from asyncio.sleep(0.4) conn.ready = True bot.logger.info("[{}|misc] Bot has finished sending join commands for network.".format(conn.name)) @asyncio.coroutine @hook.irc_raw('004') def keep_alive(conn): """ :type conn: cloudbot.clients.clients.IrcClient """ keepalive = conn.config.get('keep_alive', False) if keepalive: while True: conn.cmd('PING', conn.nick) yield from asyncio.sleep(60)
gpl-3.0
-2,460,782,346,248,535,600
38.635294
133
0.61027
false
3.614807
true
false
false
gjr80/weewx
bin/weewx/drivers/wmr100.py
3
17667
# # Copyright (c) 2009-2015 Tom Keffer <[email protected]> # # See the file LICENSE.txt for your full rights. # """Classees and functions for interfacing with an Oregon Scientific WMR100 station. The WMRS200 reportedly works with this driver (NOT the WMR200, which is a different beast). The wind sensor reports wind speed, wind direction, and wind gust. It does not report wind gust direction. WMR89: - data logger - up to 3 channels - protocol 3 sensors - THGN800, PRCR800, WTG800 WMR86: - no data logger - protocol 3 sensors - THGR800, WGR800, PCR800, UVN800 The following references were useful for figuring out the WMR protocol: From Per Ejeklint: https://github.com/ejeklint/WLoggerDaemon/blob/master/Station_protocol.md From Rainer Finkeldeh: http://www.bashewa.com/wmr200-protocol.php The WMR driver for the wfrog weather system: http://code.google.com/p/wfrog/source/browse/trunk/wfdriver/station/wmrs200.py Unfortunately, there is no documentation for PyUSB v0.4, so you have to back it out of the source code, available at: https://pyusb.svn.sourceforge.net/svnroot/pyusb/branches/0.4/pyusb.c """ from __future__ import absolute_import from __future__ import print_function import logging import time import operator from functools import reduce import usb import weewx.drivers import weewx.wxformulas import weeutil.weeutil log = logging.getLogger(__name__) DRIVER_NAME = 'WMR100' DRIVER_VERSION = "3.5.0" def loader(config_dict, engine): # @UnusedVariable return WMR100(**config_dict[DRIVER_NAME]) def confeditor_loader(): return WMR100ConfEditor() class WMR100(weewx.drivers.AbstractDevice): """Driver for the WMR100 station.""" DEFAULT_MAP = { 'pressure': 'pressure', 'windSpeed': 'wind_speed', 'windDir': 'wind_dir', 'windGust': 'wind_gust', 'windBatteryStatus': 'battery_status_wind', 'inTemp': 'temperature_0', 'outTemp': 'temperature_1', 'extraTemp1': 'temperature_2', 'extraTemp2': 'temperature_3', 'extraTemp3': 'temperature_4', 'extraTemp4': 'temperature_5', 'extraTemp5': 'temperature_6', 'extraTemp6': 'temperature_7', 'extraTemp7': 'temperature_8', 'inHumidity': 'humidity_0', 'outHumidity': 'humidity_1', 'extraHumid1': 'humidity_2', 'extraHumid2': 'humidity_3', 'extraHumid3': 'humidity_4', 'extraHumid4': 'humidity_5', 'extraHumid5': 'humidity_6', 'extraHumid6': 'humidity_7', 'extraHumid7': 'humidity_8', 'inTempBatteryStatus': 'battery_status_0', 'outTempBatteryStatus': 'battery_status_1', 'extraBatteryStatus1': 'battery_status_2', 'extraBatteryStatus2': 'battery_status_3', 'extraBatteryStatus3': 'battery_status_4', 'extraBatteryStatus4': 'battery_status_5', 'extraBatteryStatus5': 'battery_status_6', 'extraBatteryStatus6': 'battery_status_7', 'extraBatteryStatus7': 'battery_status_8', 'rain': 'rain', 'rainTotal': 'rain_total', 'rainRate': 'rain_rate', 'hourRain': 'rain_hour', 'rain24': 'rain_24', 'rainBatteryStatus': 'battery_status_rain', 'UV': 'uv', 'uvBatteryStatus': 'battery_status_uv'} def __init__(self, **stn_dict): """Initialize an object of type WMR100. NAMED ARGUMENTS: model: Which station model is this? [Optional. Default is 'WMR100'] timeout: How long to wait, in seconds, before giving up on a response from the USB port. [Optional. Default is 15 seconds] wait_before_retry: How long to wait before retrying. [Optional. Default is 5 seconds] max_tries: How many times to try before giving up. [Optional. Default is 3] vendor_id: The USB vendor ID for the WMR [Optional. Default is 0xfde] product_id: The USB product ID for the WM [Optional. Default is 0xca01] interface: The USB interface [Optional. Default is 0] IN_endpoint: The IN USB endpoint used by the WMR. [Optional. Default is usb.ENDPOINT_IN + 1] """ log.info('Driver version is %s' % DRIVER_VERSION) self.model = stn_dict.get('model', 'WMR100') # TODO: Consider putting these in the driver loader instead: self.record_generation = stn_dict.get('record_generation', 'software') self.timeout = float(stn_dict.get('timeout', 15.0)) self.wait_before_retry = float(stn_dict.get('wait_before_retry', 5.0)) self.max_tries = int(stn_dict.get('max_tries', 3)) self.vendor_id = int(stn_dict.get('vendor_id', '0x0fde'), 0) self.product_id = int(stn_dict.get('product_id', '0xca01'), 0) self.interface = int(stn_dict.get('interface', 0)) self.IN_endpoint = int(stn_dict.get('IN_endpoint', usb.ENDPOINT_IN + 1)) self.sensor_map = dict(self.DEFAULT_MAP) if 'sensor_map' in stn_dict: self.sensor_map.update(stn_dict['sensor_map']) log.info('Sensor map is %s' % self.sensor_map) self.last_rain_total = None self.devh = None self.openPort() def openPort(self): dev = self._findDevice() if not dev: log.error("Unable to find USB device (0x%04x, 0x%04x)" % (self.vendor_id, self.product_id)) raise weewx.WeeWxIOError("Unable to find USB device") self.devh = dev.open() # Detach any old claimed interfaces try: self.devh.detachKernelDriver(self.interface) except usb.USBError: pass try: self.devh.claimInterface(self.interface) except usb.USBError as e: self.closePort() log.error("Unable to claim USB interface: %s" % e) raise weewx.WeeWxIOError(e) def closePort(self): try: self.devh.releaseInterface() except usb.USBError: pass try: self.devh.detachKernelDriver(self.interface) except usb.USBError: pass def genLoopPackets(self): """Generator function that continuously returns loop packets""" # Get a stream of raw packets, then convert them, depending on the # observation type. for _packet in self.genPackets(): try: _packet_type = _packet[1] if _packet_type in WMR100._dispatch_dict: # get the observations from the packet _raw = WMR100._dispatch_dict[_packet_type](self, _packet) if _raw is not None: # map the packet labels to schema fields _record = dict() for k in self.sensor_map: if self.sensor_map[k] in _raw: _record[k] = _raw[self.sensor_map[k]] # if there are any observations, add time and units if _record: for k in ['dateTime', 'usUnits']: _record[k] = _raw[k] yield _record except IndexError: log.error("Malformed packet: %s" % _packet) def genPackets(self): """Generate measurement packets. These are 8 to 17 byte long packets containing the raw measurement data. For a pretty good summary of what's in these packets see https://github.com/ejeklint/WLoggerDaemon/blob/master/Station_protocol.md """ # Wrap the byte generator function in GenWithPeek so we # can peek at the next byte in the stream. The result, the variable # genBytes, will be a generator function. genBytes = weeutil.weeutil.GenWithPeek(self._genBytes_raw()) # Start by throwing away any partial packets: for ibyte in genBytes: if genBytes.peek() != 0xff: break buff = [] # March through the bytes generated by the generator function genBytes: for ibyte in genBytes: # If both this byte and the next one are 0xff, then we are at the end of a record if ibyte == 0xff and genBytes.peek() == 0xff: # We are at the end of a packet. # Compute its checksum. This can throw an exception if the packet is empty. try: computed_checksum = reduce(operator.iadd, buff[:-2]) except TypeError as e: log.debug("Exception while calculating checksum: %s" % e) else: actual_checksum = (buff[-1] << 8) + buff[-2] if computed_checksum == actual_checksum: # Looks good. Yield the packet yield buff else: log.debug("Bad checksum on buffer of length %d" % len(buff)) # Throw away the next character (which will be 0xff): next(genBytes) # Start with a fresh buffer buff = [] else: buff.append(ibyte) @property def hardware_name(self): return self.model #=============================================================================== # USB functions #=============================================================================== def _findDevice(self): """Find the given vendor and product IDs on the USB bus""" for bus in usb.busses(): for dev in bus.devices: if dev.idVendor == self.vendor_id and dev.idProduct == self.product_id: return dev def _genBytes_raw(self): """Generates a sequence of bytes from the WMR USB reports.""" try: # Only need to be sent after a reset or power failure of the station: self.devh.controlMsg(usb.TYPE_CLASS + usb.RECIP_INTERFACE, # requestType 0x0000009, # request [0x20,0x00,0x08,0x01,0x00,0x00,0x00,0x00], # buffer 0x0000200, # value 0x0000000, # index 1000) # timeout except usb.USBError as e: log.error("Unable to send USB control message: %s" % e) # Convert to a Weewx error: raise weewx.WakeupError(e) nerrors = 0 while True: try: # Continually loop, retrieving "USB reports". They are 8 bytes long each. report = self.devh.interruptRead(self.IN_endpoint, 8, # bytes to read int(self.timeout * 1000)) # While the report is 8 bytes long, only a smaller, variable portion of it # has measurement data. This amount is given by byte zero. Return each # byte, starting with byte one: for i in range(1, report[0] + 1): yield report[i] nerrors = 0 except (IndexError, usb.USBError) as e: log.debug("Bad USB report received: %s" % e) nerrors += 1 if nerrors > self.max_tries: log.error("Max retries exceeded while fetching USB reports") raise weewx.RetriesExceeded("Max retries exceeded while fetching USB reports") time.sleep(self.wait_before_retry) # ========================================================================= # LOOP packet decoding functions #========================================================================== def _rain_packet(self, packet): # NB: in my experiments with the WMR100, it registers in increments of # 0.04 inches. Per Ejeklint's notes have you divide the packet values # by 10, but this would result in an 0.4 inch bucket --- too big. So, # I'm dividing by 100. _record = { 'rain_rate' : ((packet[3] << 8) + packet[2]) / 100.0, 'rain_hour' : ((packet[5] << 8) + packet[4]) / 100.0, 'rain_24' : ((packet[7] << 8) + packet[6]) / 100.0, 'rain_total' : ((packet[9] << 8) + packet[8]) / 100.0, 'battery_status_rain': packet[0] >> 4, 'dateTime': int(time.time() + 0.5), 'usUnits': weewx.US} # Because the WMR does not offer anything like bucket tips, we must # calculate it by looking for the change in total rain. Of course, this # won't work for the very first rain packet. _record['rain'] = weewx.wxformulas.calculate_rain( _record['rain_total'], self.last_rain_total) self.last_rain_total = _record['rain_total'] return _record def _temperature_packet(self, packet): _record = {'dateTime': int(time.time() + 0.5), 'usUnits': weewx.METRIC} # Per Ejeklint's notes don't mention what to do if temperature is # negative. I think the following is correct. Also, from experience, we # know that the WMR has problems measuring dewpoint at temperatures # below about 20F. So ignore dewpoint and let weewx calculate it. T = (((packet[4] & 0x7f) << 8) + packet[3]) / 10.0 if packet[4] & 0x80: T = -T R = float(packet[5]) channel = packet[2] & 0x0f _record['temperature_%d' % channel] = T _record['humidity_%d' % channel] = R _record['battery_status_%d' % channel] = (packet[0] & 0x40) >> 6 return _record def _temperatureonly_packet(self, packet): # function added by fstuyk to manage temperature-only sensor THWR800 _record = {'dateTime': int(time.time() + 0.5), 'usUnits': weewx.METRIC} # Per Ejeklint's notes don't mention what to do if temperature is # negative. I think the following is correct. T = (((packet[4] & 0x7f) << 8) + packet[3])/10.0 if packet[4] & 0x80: T = -T channel = packet[2] & 0x0f _record['temperature_%d' % channel] = T _record['battery_status_%d' % channel] = (packet[0] & 0x40) >> 6 return _record def _pressure_packet(self, packet): # Although the WMR100 emits SLP, not all consoles in the series # (notably, the WMRS200) allow the user to set altitude. So we # record only the station pressure (raw gauge pressure). SP = float(((packet[3] & 0x0f) << 8) + packet[2]) _record = {'pressure': SP, 'dateTime': int(time.time() + 0.5), 'usUnits': weewx.METRIC} return _record def _uv_packet(self, packet): _record = {'uv': float(packet[3]), 'battery_status_uv': packet[0] >> 4, 'dateTime': int(time.time() + 0.5), 'usUnits': weewx.METRIC} return _record def _wind_packet(self, packet): """Decode a wind packet. Wind speed will be in kph""" _record = { 'wind_speed': ((packet[6] << 4) + ((packet[5]) >> 4)) / 10.0, 'wind_gust': (((packet[5] & 0x0f) << 8) + packet[4]) / 10.0, 'wind_dir': (packet[2] & 0x0f) * 360.0 / 16.0, 'battery_status_wind': (packet[0] >> 4), 'dateTime': int(time.time() + 0.5), 'usUnits': weewx.METRICWX} # Sometimes the station emits a wind gust that is less than the # average wind. If this happens, ignore it. if _record['wind_gust'] < _record['wind_speed']: _record['wind_gust'] = None return _record def _clock_packet(self, packet): """The clock packet is not used by weewx. However, the last time is saved in case getTime() is called.""" tt = (2000 + packet[8], packet[7], packet[6], packet[5], packet[4], 0, 0, 0, -1) self.last_time = time.mktime(tt) return None # Dictionary that maps a measurement code, to a function that can decode it _dispatch_dict = {0x41: _rain_packet, 0x42: _temperature_packet, 0x46: _pressure_packet, 0x47: _uv_packet, 0x48: _wind_packet, 0x60: _clock_packet, 0x44: _temperatureonly_packet} class WMR100ConfEditor(weewx.drivers.AbstractConfEditor): @property def default_stanza(self): return """ [WMR100] # This section is for the Oregon Scientific WMR100 # The driver to use driver = weewx.drivers.wmr100 # The station model, e.g., WMR100, WMR100N, WMRS200 model = WMR100 """ def modify_config(self, config_dict): print(""" Setting rainRate calculation to hardware.""") config_dict.setdefault('StdWXCalculate', {}) config_dict['StdWXCalculate'].setdefault('Calculations', {}) config_dict['StdWXCalculate']['Calculations']['rainRate'] = 'hardware'
gpl-3.0
4,452,557,909,837,226,000
39.243736
98
0.54299
false
3.907764
true
false
false
alexsavio/aizkolari
aizkolari_measure.py
1
16654
#!/usr/bin/python #------------------------------------------------------------------------------- #License GPL v3.0 #Author: Alexandre Manhaes Savio <[email protected]> #Grupo de Inteligencia Computational <www.ehu.es/ccwintco> #Universidad del Pais Vasco UPV/EHU #Use this at your own risk! #------------------------------------------------------------------------------- #DEPENDENCIES: #sudo apt-get install python-argparse python-numpy python-numpy-ext python-matplotlib python-scipy python-nibabel #For development: #sudo apt-get install ipython python-nifti python-nitime #from IPython.core.debugger import Tracer; debug_here = Tracer() import os import sys import argparse import logging import numpy as np import nibabel as nib import aizkolari_utils as au import aizkolari_preproc as pre import aizkolari_pearson as pear import aizkolari_bhattacharyya as bat import aizkolari_ttest as ttst import aizkolari_postproc as post #------------------------------------------------------------------------------- def set_parser(): parser = argparse.ArgumentParser(description='Slices and puts together a list of subjects to perform voxe-wise group calculations, e.g., Pearson correlations and bhattacharyya distance. \n The Pearson correlation is calculated between each voxel site for all subjects and the class label vector of the same subjects. \n Bhatthacharyya distance is calculated between each two groups using voxelwise Gaussian univariate distributions of each group. \n Student t-test is calculated as a Welch t-test where the two population variances are assumed to be different.') parser.add_argument('-c', '--classesf', dest='classes', required=True, help='class label file. one line per class: <class_label>,<class_name>.') parser.add_argument('-i', '--insubjsf', dest='subjs', required=True, help='file with a list of the volume files and its labels for the analysis. Each line: <class_label>,<subject_file>') parser.add_argument('-o', '--outdir', dest='outdir', required=True, help='name of the output directory where the results will be put.') parser.add_argument('-e', '--exclude', dest='exclude', default='', required=False, help='subject list mask, i.e., text file where each line has 0 or 1 indicating with 1 which subject should be excluded in the measure. To help calculating measures for cross-validation folds, for leave-one-out you can use the -l option.') parser.add_argument('-l', '--leave', dest='leave', default=-1, required=False, type=int, help='index from subject list (counting from 0) indicating one subject to be left out of the measure. For leave-one-out measures.') parser.add_argument('-d', '--datadir', dest='datadir', required=False, help='folder path where the subjects are, if the absolute path is not included in the subjects list file.', default='') parser.add_argument('-m', '--mask', dest='mask', required=False, help='Brain mask volume file for all subjects.') parser.add_argument('-n', '--measure', dest='measure', default='pearson', choices=['pearson','bhatta','bhattacharyya','ttest'], required=False, help='name of the distance/correlation method. Allowed: pearson (Pearson Correlation), bhatta (Bhattacharyya distance), ttest (Student`s t-test). (default: pearson)') parser.add_argument('-k', '--cleanup', dest='cleanup', action='store_true', help='if you want to clean up all the temp files after processing') parser.add_argument('-f', '--foldno', dest='foldno', required=False, type=int, default=-1, help='number to identify the fold for this run, in case you will run many different folds.') parser.add_argument('-x', '--expname', dest='expname', required=False, type=str, default='', help='name to identify this run, in case you will run many different experiments.') parser.add_argument('-a', '--absolute', dest='absolute', required=False, action='store_true', help='put this if you want absolute values of the measure.') parser.add_argument('-v', '--verbosity', dest='verbosity', required=False, type=int, default=2, help='Verbosity level: Integer where 0 for Errors, 1 for Progression reports, 2 for Debug reports') parser.add_argument('--checklist', dest='checklist', required=False, action='store_true', help='If set will use and update a checklist file, which will control the steps already done in case the process is interrupted.') return parser #------------------------------------------------------------------------------- def decide_whether_usemask (maskfname): usemask = False if maskfname: usemask = True if usemask: if not os.path.exists(maskfname): print ('Mask file ' + maskfname + ' not found!') usemask = False return usemask #------------------------------------------------------------------------------- def get_fold_numberstr (foldno): if foldno == -1: return '' else: return zeropad (foldno) #------------------------------------------------------------------------------- def get_measure_shortname (measure_name): if measure_name == 'bhattacharyya' or measure_name == 'bhatta': measure = 'bat' elif measure_name == 'pearson': measure = 'pea' elif measure_name == 'ttest': measure = 'ttest' return measure #------------------------------------------------------------------------------- def parse_labels_file (classf): labels = [] classnames = [] labfile = open(classf, 'r') for l in labfile: line = l.strip().split(',') labels .append (int(line[0])) classnames.append (line[1]) labfile.close() return [labels, classnames] #------------------------------------------------------------------------------- def parse_subjects_list (subjsfname, datadir=''): subjlabels = [] subjs = [] if datadir: datadir += os.path.sep try: subjfile = open(subjsfname, 'r') for s in subjfile: line = s.strip().split(',') subjlabels.append(int(line[0])) subjfname = line[1].strip() if not os.path.isabs(subjfname): subjs.append (datadir + subjfname) else: subjs.append (subjfname) subjfile.close() except: log.error( "Unexpected error: ", sys.exc_info()[0] ) sys.exit(-1) return [subjlabels, subjs] #------------------------------------------------------------------------------- def parse_exclude_list (excluf, leave=-1): excluded =[] if (excluf): try: excluded = np.loadtxt(excluf, dtype=int) #if leave already excluded, dont take it into account if leave > -1: if excluded[leave] == 1: au.log.warn ('Your left out subject (-l) is already being excluded in the exclusion file (-e).') leave = -1 except: au.log.error ('Error processing file ' + excluf) au.log.error ('Unexpected error: ' + str(sys.exc_info()[0])) sys.exit(-1) return excluded #------------------------------------------------------------------------------- def main(argv=None): parser = set_parser() try: args = parser.parse_args () except argparse.ArgumentError, exc: print (exc.message + '\n' + exc.argument) parser.error(str(msg)) return -1 datadir = args.datadir.strip() classf = args.classes.strip() subjsf = args.subjs.strip() maskf = args.mask.strip() outdir = args.outdir.strip() excluf = args.exclude.strip() measure = args.measure.strip() expname = args.expname.strip() foldno = args.foldno cleanup = args.cleanup leave = args.leave absval = args.absolute verbose = args.verbosity chklst = args.checklist au.setup_logger(verbose) usemask = decide_whether_usemask(maskf) foldno = get_fold_numberstr (foldno) measure = get_measure_shortname (measure) classnum = au.file_len(classf) subjsnum = au.file_len(subjsf) #reading label file [labels, classnames] = parse_labels_file (classf) #reading subjects list [subjlabels, subjs] = parse_subjects_list (subjsf, datadir) #if output dir does not exist, create if not(os.path.exists(outdir)): os.mkdir(outdir) #checklist_fname if chklst: chkf = outdir + os.path.sep + au.checklist_str() if not(os.path.exists(chkf)): au.touch(chkf) else: chkf = '' #saving data in files where further processes can find them outf_subjs = outdir + os.path.sep + au.subjects_str() outf_labels = outdir + os.path.sep + au.labels_str() np.savetxt(outf_subjs, subjs, fmt='%s') np.savetxt(outf_labels, subjlabels, fmt='%i') #creating folder for slices slidir = outdir + os.path.sep + au.slices_str() if not(os.path.exists(slidir)): os.mkdir(slidir) #slice the volumes #creating group and mask slices pre.slice_and_merge(outf_subjs, outf_labels, chkf, outdir, maskf) #creating measure output folder if measure == 'pea': measure_fname = au.pearson_str() elif measure == 'bat': measure_fname = au.bhattacharyya_str() elif measure == 'ttest': measure_fname = au.ttest_str() #checking the leave parameter if leave > (subjsnum - 1): au.log.warning('aizkolari_measure: the leave (-l) argument value is ' + str(leave) + ', bigger than the last index of subject: ' + str(subjsnum - 1) + '. Im setting it to -1.') leave = -1 #reading exclusion list excluded = parse_exclude_list (excluf, leave) #setting the output folder mdir extension mdir = outdir + os.path.sep + measure_fname if expname: mdir += '_' + expname if foldno: mdir += '_' + foldno #setting the stats folder statsdir = outdir + os.path.sep + au.stats_str() if expname: statsdir += '_' + expname if foldno: statsdir += '_' + foldno #setting a string with step parameters step_params = ' ' + measure_fname + ' ' + mdir absolute_str = '' if absval: absolute_str = ' ' + au.abs_str() step_params += absolute_str leave_str = '' if leave > -1: leave_str = ' excluding subject ' + str(leave) step_params += leave_str #checking if this measure has already been done endstep = au.measure_str() + step_params stepdone = au.is_done(chkf, endstep) #add pluses to output dir if it already exists if stepdone: while os.path.exists (mdir): mdir += '+' else: #work in the last folder used plus = False while os.path.exists (mdir): mdir += '+' plus = True if plus: mdir = mdir[0:-1] #setting statsdir pluses = mdir.count('+') for i in np.arange(pluses): statsdir += '+' #merging mask slices to mdir if not stepdone: #creating output folders if not os.path.exists (mdir): os.mkdir(mdir) #copying files to mdir au.copy(outf_subjs, mdir) au.copy(outf_labels, mdir) #saving exclude files in mdir outf_exclude = '' if (excluf): outf_exclude = au.exclude_str() if expname: outf_exclude += '_' + expname if foldnumber: outf_exclude += '_' + foldnumber np.savetxt(outdir + os.path.sep + outf_exclude , excluded, fmt='%i') np.savetxt(mdir + os.path.sep + au.exclude_str(), excluded, fmt='%i') excluf = mdir + os.path.sep + au.exclude_str() step = au.maskmerging_str() + ' ' + measure_fname + ' ' + mdir if usemask and not au.is_done(chkf, step): maskregex = au.mask_str() + '_' + au.slice_str() + '*' post.merge_slices (slidir, maskregex, au.mask_str(), mdir, False) au.checklist_add(chkf, step) #CORRELATION #read the measure argument and start processing if measure == 'pea': #measure pearson correlation for each population slice step = au.measureperslice_str() + step_params if not au.is_done(chkf, step): pear.pearson_correlation (outdir, mdir, usemask, excluf, leave) au.checklist_add(chkf, step) #merge all correlation slice measures step = au.postmerging_str() + step_params if not au.is_done(chkf, step): pearegex = au.pearson_str() + '_' + au.slice_str() + '*' peameasf = mdir + os.path.sep + au.pearson_str() if leave > -1: pearegex += '_' + au.excluded_str() + str(leave) + '*' peameasf += '_' + au.excluded_str() + str(leave) + '_' + au.pearson_str() post.merge_slices (mdir, pearegex, peameasf, mdir) if absval: post.change_to_absolute_values(peameasf) au.checklist_add(chkf, step) #BHATTACHARYYA AND T-TEST elif measure == 'bat' or measure == 'ttest': if not os.path.exists (statsdir): os.mkdir(statsdir) gsize = np.zeros([len(classnames),2], dtype=int) for c in range(len(classnames)): gname = classnames[c] glabel = labels [c] godir = mdir + os.path.sep + gname au.log.debug ('Processing group ' + gname) gselect = np.zeros(len(subjs)) gsubjs = list() glabels = list() for s in range(len(subjs)): slabel = subjlabels[s] if slabel == glabel: gsubjs .append (subjs[s]) glabels.append (slabel) gselect[s] = 1 if outf_exclude: if excluded[s]: gselect[s] = 0 gsize[c,0] = glabel gsize[c,1] = np.sum(gselect) outf_subjs = mdir + os.path.sep + gname + '_' + au.subjects_str() outf_labels = mdir + os.path.sep + gname + '_' + au.labels_str() outf_group = mdir + os.path.sep + gname + '_' + au.members_str() np.savetxt(outf_subjs , gsubjs, fmt='%s') np.savetxt(outf_labels, glabels, fmt='%i') np.savetxt(outf_group , gselect, fmt='%i') step = au.groupfilter_str() + ' ' + gname + ' ' + statsdir if not au.is_done(chkf, step): au.group_filter (outdir, statsdir, gname, outf_group, usemask) au.checklist_add(chkf, step) grp_step_params = ' ' + au.stats_str() + ' ' + gname + ' ' + statsdir step = au.measureperslice_str() + grp_step_params if not au.is_done(chkf, step): post.group_stats (statsdir, gname, gsize[c,1], statsdir) au.checklist_add(chkf, step) statfnames = {} step = au.postmerging_str() + grp_step_params if not au.is_done(chkf, step): statfnames[gname] = post.merge_stats_slices (statsdir, gname) au.checklist_add(chkf, step) sampsizef = mdir + os.path.sep + au.groupsizes_str() np.savetxt(sampsizef, gsize, fmt='%i,%i') #decide which group distance function to use if measure == 'bat': distance_func = bat.measure_bhattacharyya_distance elif measure == 'ttest': distance_func = ttst.measure_ttest #now we deal with the indexed excluded subject step = au.postmerging_str() + ' ' + str(classnames) + step_params exsubf = '' exclas = '' if leave > -1: exsubf = subjs[leave] exclas = classnames[subjlabels[leave]] if not au.is_done(chkf, step): #group distance called here, in charge of removing the 'leave' subject from stats as well measfname = post.group_distance (distance_func, statsdir, classnames, gsize, chkf, absval, mdir, foldno, expname, leave, exsubf, exclas) if usemask: au.apply_mask (measfname, mdir + os.path.sep + au.mask_str()) au.checklist_add(chkf, step) #adding step end indication au.checklist_add(chkf, endstep) #CLEAN SPACE SUGGESTION rmcomm = 'rm -rf ' + outdir + os.path.sep + au.slices_str() + ';' if cleanup: au.log.debug ('Cleaning folders:') au.log.info (rmcomm) os.system (rmcomm) else: au.log.info ('If you need disk space, remove the temporary folders executing:') au.log.info (rmcomm.replace(';','\n')) if leave > -1: au.log.info ('You should not remove these files if you are doing further leave-one-out measures.') #------------------------------------------------------------------------------- if __name__ == "__main__": sys.exit(main())
bsd-3-clause
636,419,978,259,120,100
37.461894
565
0.584064
false
3.642607
true
false
false
jegger/kivy
kivy/uix/recycleview/views.py
7
13895
''' RecycleView Views ================= .. versionadded:: 1.10.0 The adapter part of the RecycleView which together with the layout is the view part of the model-view-controller pattern. The view module handles converting the data to a view using the adapter class which is then displayed by the layout. A view can be any Widget based class. However, inheriting from RecycleDataViewBehavior adds methods for converting the data to a view. TODO: * Make view caches specific to each view class type. ''' from kivy.properties import StringProperty, ObjectProperty from kivy.event import EventDispatcher from kivy.factory import Factory from collections import defaultdict _view_base_cache = {} '''Cache whose keys are classes and values is a boolean indicating whether the class inherits from :class:`RecycleDataViewBehavior`. ''' _cached_views = defaultdict(list) '''A size limited cache that contains old views (instances) that are not used. Each key is a class whose value is the list of the instances of that class. ''' # current number of unused classes in the class cache _cache_count = 0 # maximum number of items in the class cache _max_cache_size = 1000 def _clean_cache(): '''Trims _cached_views cache to half the size of `_max_cache_size`. ''' # all keys will be reduced to max_size. max_size = (_max_cache_size // 2) // len(_cached_views) global _cache_count for cls, instances in _cached_views.items(): _cache_count -= max(0, len(instances) - max_size) del instances[max_size:] class RecycleDataViewBehavior(object): '''A optional base class for data views (:attr:`RecycleView`.viewclass). If a view inherits from this class, the class's functions will be called when the view needs to be updated due to a data change or layout update. ''' def refresh_view_attrs(self, rv, index, data): '''Called by the :class:`RecycleAdapter` when the view is initially populated with the values from the `data` dictionary for this item. Any pos or size info should be removed because they are set subsequently with :attr:`refresh_view_layout`. :Parameters: `rv`: :class:`RecycleView` instance The :class:`RecycleView` that caused the update. `data`: dict The data dict used to populate this view. ''' sizing_attrs = RecycleDataAdapter._sizing_attrs for key, value in data.items(): if key not in sizing_attrs: setattr(self, key, value) def refresh_view_layout(self, rv, index, layout, viewport): '''Called when the view's size is updated by the layout manager, :class:`RecycleLayoutManagerBehavior`. :Parameters: `rv`: :class:`RecycleView` instance The :class:`RecycleView` that caused the update. `viewport`: 4-tuple The coordinates of the bottom left and width height in layout manager coordinates. This may be larger than this view item. :raises: `LayoutChangeException`: If the sizing or data changed during a call to this method, raising a `LayoutChangeException` exception will force a refresh. Useful when data changed and we don't want to layout further since it'll be overwritten again soon. ''' w, h = layout.pop('size') if w is None: if h is not None: self.height = h else: if h is None: self.width = w else: self.size = w, h for name, value in layout.items(): setattr(self, name, value) def apply_selection(self, rv, index, is_selected): pass class RecycleDataAdapter(EventDispatcher): '''The class that converts data to a view. --- Internal details --- A view can have 3 states. * It can be completely in sync with the data, which occurs when the view is displayed. These are stored in :attr:`views`. * It can be dirty, which occurs when the view is in sync with the data, except for the size/pos parameters which is controlled by the layout. This occurs when the view is not currently displayed but the data has not changed. These views are stored in :attr:`dirty_views`. * Finally the view can be dead which occurs when the data changes and the view was not updated or when a view is just created. Such views are typically added to the internal cache. Typically what happens is that the layout manager lays out the data and then asks for views, using :meth:`set_visible_views,` for some specific data items that it displays. These views are gotten from the current views, dirty or global cache. Then depending on the view state :meth:`refresh_view_attrs` is called to bring the view up to date with the data (except for sizing parameters). Finally, the layout manager gets these views, updates their size and displays them. ''' recycleview = ObjectProperty(None, allownone=True) '''The :class:`~kivy.uix.recycleview.RecycleViewBehavior` associated with this instance. ''' # internals views = {} # current displayed items # items whose attrs, except for pos/size is still accurate dirty_views = defaultdict(dict) _sizing_attrs = { 'size', 'width', 'height', 'size_hint', 'size_hint_x', 'size_hint_y', 'pos', 'x', 'y', 'center', 'center_x', 'center_y', 'pos_hint', 'size_hint_min', 'size_hint_min_x', 'size_hint_min_y', 'size_hint_max', 'size_hint_max_x', 'size_hint_max_y'} def attach_recycleview(self, rv): '''Associates a :class:`~kivy.uix.recycleview.RecycleViewBehavior` with this instance. It is stored in :attr:`recycleview`. ''' self.recycleview = rv def detach_recycleview(self): '''Removes the :class:`~kivy.uix.recycleview.RecycleViewBehavior` associated with this instance and clears :attr:`recycleview`. ''' self.recycleview = None def create_view(self, index, data_item, viewclass): '''(internal) Creates and initializes the view for the data at `index`. The returned view is synced with the data, except for the pos/size information. ''' if viewclass is None: return view = viewclass() self.refresh_view_attrs(index, data_item, view) return view def get_view(self, index, data_item, viewclass): '''(internal) Returns a view instance for the data at `index` It looks through the various caches and finally creates a view if it doesn't exist. The returned view is synced with the data, except for the pos/size information. If found in the cache it's removed from the source before returning. It doesn't check the current views. ''' # is it in the dirtied views? dirty_views = self.dirty_views if viewclass is None: return stale = False view = None if viewclass in dirty_views: # get it first from dirty list dirty_class = dirty_views[viewclass] if index in dirty_class: # we found ourself in the dirty list, no need to update data! view = dirty_class.pop(index) elif _cached_views[viewclass]: # global cache has this class, update data view, stale = _cached_views[viewclass].pop(), True elif dirty_class: # random any dirty view element - update data view, stale = dirty_class.popitem()[1], True elif _cached_views[viewclass]: # otherwise go directly to cache # global cache has this class, update data view, stale = _cached_views[viewclass].pop(), True if view is None: view = self.create_view(index, data_item, viewclass) if view is None: return if stale: self.refresh_view_attrs(index, data_item, view) return view def refresh_view_attrs(self, index, data_item, view): '''(internal) Syncs the view and brings it up to date with the data. This method calls :meth:`RecycleDataViewBehavior.refresh_view_attrs` if the view inherits from :class:`RecycleDataViewBehavior`. See that method for more details. .. note:: Any sizing and position info is skipped when syncing with the data. ''' viewclass = view.__class__ if viewclass not in _view_base_cache: _view_base_cache[viewclass] = isinstance(view, RecycleDataViewBehavior) if _view_base_cache[viewclass]: view.refresh_view_attrs(self.recycleview, index, data_item) else: sizing_attrs = RecycleDataAdapter._sizing_attrs for key, value in data_item.items(): if key not in sizing_attrs: setattr(view, key, value) def refresh_view_layout(self, index, layout, view, viewport): '''Updates the sizing information of the view. viewport is in coordinates of the layout manager. This method calls :meth:`RecycleDataViewBehavior.refresh_view_attrs` if the view inherits from :class:`RecycleDataViewBehavior`. See that method for more details. .. note:: Any sizing and position info is skipped when syncing with the data. ''' if view.__class__ not in _view_base_cache: _view_base_cache[view.__class__] = isinstance( view, RecycleDataViewBehavior) if _view_base_cache[view.__class__]: view.refresh_view_layout( self.recycleview, index, layout, viewport) else: w, h = layout.pop('size') if w is None: if h is not None: view.height = h else: if h is None: view.width = w else: view.size = w, h for name, value in layout.items(): setattr(view, name, value) def make_view_dirty(self, view, index): '''(internal) Used to flag this view as dirty, ready to be used for others. See :meth:`make_views_dirty`. ''' del self.views[index] self.dirty_views[view.__class__][index] = view def make_views_dirty(self): '''Makes all the current views dirty. Dirty views are still in sync with the corresponding data. However, the size information may go out of sync. Therefore a dirty view can be reused by the same index by just updating the sizing information. Once the underlying data of this index changes, the view should be removed from the dirty views and moved to the global cache with :meth:`invalidate`. This is typically called when the layout manager needs to re-layout all the data. ''' views = self.views if not views: return dirty_views = self.dirty_views for index, view in views.items(): dirty_views[view.__class__][index] = view self.views = {} def invalidate(self): '''Moves all the current views into the global cache. As opposed to making a view dirty where the view is in sync with the data except for sizing information, this will completely disconnect the view from the data, as it is assumed the data has gone out of sync with the view. This is typically called when the data changes. ''' global _cache_count for view in self.views.values(): _cached_views[view.__class__].append(view) _cache_count += 1 for cls, views in self.dirty_views.items(): _cached_views[cls].extend(views.values()) _cache_count += len(views) if _cache_count >= _max_cache_size: _clean_cache() self.views = {} self.dirty_views.clear() def set_visible_views(self, indices, data, viewclasses): '''Gets a 3-tuple of the new, remaining, and old views for the current viewport. The new views are synced to the data except for the size/pos properties. The old views need to be removed from the layout, and the new views added. The new views are not necessarily *new*, but are all the currently visible views. ''' visible_views = {} previous_views = self.views ret_new = [] ret_remain = [] get_view = self.get_view # iterate though the visible view # add them into the container if not already done for index in indices: view = previous_views.pop(index, None) if view is not None: # was current view visible_views[index] = view ret_remain.append((index, view)) else: view = get_view(index, data[index], viewclasses[index]['viewclass']) if view is None: continue visible_views[index] = view ret_new.append((index, view)) old_views = previous_views.items() self.make_views_dirty() self.views = visible_views return ret_new, ret_remain, old_views def get_visible_view(self, index): '''Returns the currently visible view associated with ``index``. If no view is currently displayed for ``index`` it returns ``None``. ''' return self.views.get(index)
mit
-7,012,238,564,549,061,000
36.352151
79
0.611227
false
4.339475
false
false
false
douban/tfmesos
tfmesos/scheduler.py
1
16913
import os import sys import math import select import socket import getpass import logging import textwrap from addict import Dict from six import iteritems from six.moves import urllib from pymesos import Scheduler, MesosSchedulerDriver from tfmesos.utils import send, recv, setup_logger import uuid FOREVER = 0xFFFFFFFF logger = logging.getLogger(__name__) class Job(object): def __init__(self, name, num, cpus=1.0, mem=1024.0, gpus=0, cmd=None, start=0): self.name = name self.num = num self.cpus = cpus self.gpus = gpus self.mem = mem self.cmd = cmd self.start = start class Task(object): def __init__(self, mesos_task_id, job_name, task_index, cpus=1.0, mem=1024.0, gpus=0, cmd=None, volumes={}, env={}): self.mesos_task_id = mesos_task_id self.job_name = job_name self.task_index = task_index self.cpus = cpus self.gpus = gpus self.mem = mem self.cmd = cmd self.volumes = volumes self.env = env self.offered = False self.addr = None self.connection = None self.initalized = False def __str__(self): return textwrap.dedent(''' <Task mesos_task_id=%s addr=%s >''' % (self.mesos_task_id, self.addr)) def to_task_info(self, offer, master_addr, gpu_uuids=[], gpu_resource_type=None, containerizer_type='MESOS', force_pull_image=False): ti = Dict() ti.task_id.value = str(self.mesos_task_id) ti.agent_id.value = offer.agent_id.value ti.name = '/job:%s/task:%s' % (self.job_name, self.task_index) ti.resources = resources = [] cpus = Dict() resources.append(cpus) cpus.name = 'cpus' cpus.type = 'SCALAR' cpus.scalar.value = self.cpus mem = Dict() resources.append(mem) mem.name = 'mem' mem.type = 'SCALAR' mem.scalar.value = self.mem image = os.environ.get('DOCKER_IMAGE') if image is not None: if containerizer_type == 'DOCKER': ti.container.type = 'DOCKER' ti.container.docker.image = image ti.container.docker.force_pull_image = force_pull_image ti.container.docker.parameters = parameters = [] p = Dict() p.key = 'memory-swap' p.value = '-1' parameters.append(p) if self.gpus and gpu_uuids: hostname = offer.hostname url = 'http://%s:3476/docker/cli?dev=%s' % ( hostname, urllib.parse.quote( ' '.join(gpu_uuids) ) ) try: docker_args = urllib.request.urlopen(url).read() for arg in docker_args.split(): k, v = arg.split('=') assert k.startswith('--') k = k[2:] p = Dict() parameters.append(p) p.key = k p.value = v except Exception: logger.exception( 'fail to determine remote device parameter,' ' disable gpu resources' ) gpu_uuids = [] elif containerizer_type == 'MESOS': ti.container.type = 'MESOS' ti.container.mesos.image.type = 'DOCKER' ti.container.mesos.image.docker.name = image # "cached" means the opposite of "force_pull_image" ti.container.mesos.image.cached = not force_pull_image else: assert False, ( 'Unsupported containerizer: %s' % containerizer_type ) ti.container.volumes = volumes = [] for path in ['/etc/passwd', '/etc/group']: v = Dict() volumes.append(v) v.host_path = v.container_path = path v.mode = 'RO' for src, dst in iteritems(self.volumes): v = Dict() volumes.append(v) v.container_path = dst v.host_path = src v.mode = 'RW' if self.gpus and gpu_uuids and gpu_resource_type is not None: if gpu_resource_type == 'SET': gpus = Dict() resources.append(gpus) gpus.name = 'gpus' gpus.type = 'SET' gpus.set.item = gpu_uuids else: gpus = Dict() resources.append(gpus) gpus.name = 'gpus' gpus.type = 'SCALAR' gpus.scalar.value = len(gpu_uuids) ti.command.shell = True cmd = [ sys.executable, '-m', '%s.server' % __package__, str(self.mesos_task_id), master_addr ] ti.command.value = ' '.join(cmd) ti.command.environment.variables = variables = [ Dict(name=name, value=value) for name, value in self.env.items() if name != 'PYTHONPATH' ] env = Dict() variables.append(env) env.name = 'PYTHONPATH' env.value = ':'.join(sys.path) return ti class TFMesosScheduler(Scheduler): MAX_FAILURE_COUNT = 3 def __init__(self, task_spec, role=None, master=None, name=None, quiet=False, volumes={}, containerizer_type=None, force_pull_image=False, forward_addresses=None, protocol='grpc', env={}, extra_config={}): self.started = False self.master = master or os.environ['MESOS_MASTER'] self.name = name or '[tensorflow] %s %s' % ( os.path.abspath(sys.argv[0]), ' '.join(sys.argv[1:])) self.task_spec = task_spec self.containerizer_type = containerizer_type self.force_pull_image = force_pull_image self.protocol = protocol self.extra_config = extra_config self.forward_addresses = forward_addresses self.role = role or '*' self.tasks = {} self.task_failure_count = {} self.job_finished = {} for job in task_spec: self.job_finished[job.name] = 0 for task_index in range(job.start, job.num): mesos_task_id = str(uuid.uuid4()) task = Task( mesos_task_id, job.name, task_index, cpus=job.cpus, mem=job.mem, gpus=job.gpus, cmd=job.cmd, volumes=volumes, env=env ) self.tasks[mesos_task_id] = task self.task_failure_count[self.decorated_task_index(task)] = 0 if not quiet: global logger setup_logger(logger) def resourceOffers(self, driver, offers): ''' Offer resources and launch tasks ''' for offer in offers: if all(task.offered for id, task in iteritems(self.tasks)): self.driver.suppressOffers() driver.declineOffer(offer.id, Dict(refuse_seconds=FOREVER)) continue offered_cpus = offered_mem = 0.0 offered_gpus = [] offered_tasks = [] gpu_resource_type = None for resource in offer.resources: if resource.name == 'cpus': offered_cpus = resource.scalar.value elif resource.name == 'mem': offered_mem = resource.scalar.value elif resource.name == 'gpus': if resource.type == 'SET': offered_gpus = resource.set.item else: offered_gpus = list(range(int(resource.scalar.value))) gpu_resource_type = resource.type for id, task in iteritems(self.tasks): if task.offered: continue if not (task.cpus <= offered_cpus and task.mem <= offered_mem and task.gpus <= len(offered_gpus)): continue offered_cpus -= task.cpus offered_mem -= task.mem gpus = int(math.ceil(task.gpus)) gpu_uuids = offered_gpus[:gpus] offered_gpus = offered_gpus[gpus:] task.offered = True offered_tasks.append( task.to_task_info( offer, self.addr, gpu_uuids=gpu_uuids, gpu_resource_type=gpu_resource_type, containerizer_type=self.containerizer_type, force_pull_image=self.force_pull_image ) ) driver.launchTasks(offer.id, offered_tasks) @property def targets(self): targets = {} for id, task in iteritems(self.tasks): target_name = '/job:%s/task:%s' % (task.job_name, task.task_index) grpc_addr = 'grpc://%s' % task.addr targets[target_name] = grpc_addr return targets def _start_tf_cluster(self): cluster_def = {} tasks = sorted(self.tasks.values(), key=lambda task: task.task_index) for task in tasks: cluster_def.setdefault(task.job_name, []).append(task.addr) for id, task in iteritems(self.tasks): response = { 'job_name': task.job_name, 'task_index': task.task_index, 'cpus': task.cpus, 'mem': task.mem, 'gpus': task.gpus, 'cmd': task.cmd, 'cwd': os.getcwd(), 'cluster_def': cluster_def, 'forward_addresses': self.forward_addresses, 'extra_config': self.extra_config, 'protocol': self.protocol } send(task.connection, response) assert recv(task.connection) == 'ok' logger.info( 'Device /job:%s/task:%s activated @ grpc://%s ', task.job_name, task.task_index, task.addr ) task.connection.close() def start(self): def readable(fd): return bool(select.select([fd], [], [], 0.1)[0]) lfd = socket.socket() try: lfd.bind(('', 0)) self.addr = '%s:%s' % (socket.gethostname(), lfd.getsockname()[1]) lfd.listen(10) framework = Dict() framework.user = getpass.getuser() framework.name = self.name framework.hostname = socket.gethostname() framework.role = self.role self.driver = MesosSchedulerDriver( self, framework, self.master, use_addict=True ) self.driver.start() task_start_count = 0 while any((not task.initalized for id, task in iteritems(self.tasks))): if readable(lfd): c, _ = lfd.accept() if readable(c): mesos_task_id, addr = recv(c) task = self.tasks[mesos_task_id] task.addr = addr task.connection = c task.initalized = True task_start_count += 1 logger.info('Task %s with mesos_task_id %s has ' 'registered', '{}:{}'.format(task.job_name, task.task_index), mesos_task_id) logger.info('Out of %d tasks ' '%d tasks have been registered', len(self.tasks), task_start_count) else: c.close() self.started = True self._start_tf_cluster() except Exception: self.stop() raise finally: lfd.close() def registered(self, driver, framework_id, master_info): logger.info( 'Tensorflow cluster registered. ' '( http://%s:%s/#/frameworks/%s )', master_info.hostname, master_info.port, framework_id.value ) if self.containerizer_type is None: version = tuple(int(x) for x in driver.version.split(".")) self.containerizer_type = ( 'MESOS' if version >= (1, 0, 0) else 'DOCKER' ) def statusUpdate(self, driver, update): logger.debug('Received status update %s', str(update.state)) mesos_task_id = update.task_id.value if self._is_terminal_state(update.state): task = self.tasks.get(mesos_task_id) if task is None: # This should be very rare and hence making this info. logger.info("Task not found for mesos task id {}" .format(mesos_task_id)) return if self.started: if update.state != 'TASK_FINISHED': logger.error('Task failed: %s, %s with state %s', task, update.message, update.state) raise RuntimeError( 'Task %s failed! %s with state %s' % (task, update.message, update.state) ) else: self.job_finished[task.job_name] += 1 else: logger.warn('Task failed while launching the server: %s, ' '%s with state %s', task, update.message, update.state) if task.connection: task.connection.close() self.task_failure_count[self.decorated_task_index(task)] += 1 if self._can_revive_task(task): self.revive_task(driver, mesos_task_id, task) else: raise RuntimeError('Task %s failed %s with state %s and ' 'retries=%s' % (task, update.message, update.state, TFMesosScheduler.MAX_FAILURE_COUNT)) def revive_task(self, driver, mesos_task_id, task): logger.info('Going to revive task %s ', task.task_index) self.tasks.pop(mesos_task_id) task.offered = False task.addr = None task.connection = None new_task_id = task.mesos_task_id = str(uuid.uuid4()) self.tasks[new_task_id] = task driver.reviveOffers() def _can_revive_task(self, task): return self.task_failure_count[self.decorated_task_index(task)] < \ TFMesosScheduler.MAX_FAILURE_COUNT @staticmethod def decorated_task_index(task): return '{}.{}'.format(task.job_name, str(task.task_index)) @staticmethod def _is_terminal_state(task_state): return task_state in ["TASK_FINISHED", "TASK_FAILED", "TASK_KILLED", "TASK_ERROR"] def slaveLost(self, driver, agent_id): if self.started: logger.error('Slave %s lost:', agent_id.value) raise RuntimeError('Slave %s lost' % agent_id) def executorLost(self, driver, executor_id, agent_id, status): if self.started: logger.error('Executor %s lost:', executor_id.value) raise RuntimeError('Executor %s@%s lost' % (executor_id, agent_id)) def error(self, driver, message): logger.error('Mesos error: %s', message) raise RuntimeError('Error ' + message) def stop(self): logger.debug('exit') if hasattr(self, 'tasks'): for id, task in iteritems(self.tasks): if task.connection: task.connection.close() del self.tasks if hasattr(self, 'driver'): self.driver.stop() self.driver.join() del self.driver def finished(self): return any( self.job_finished[job.name] >= job.num for job in self.task_spec ) def processHeartBeat(self): # compatibility with pymesos pass
bsd-3-clause
-6,295,978,636,634,129,000
34.162162
79
0.482765
false
4.307947
false
false
false
jasontbradshaw/plinth
util.py
1
2215
import collections import threading import errors import tokens def ensure_type(required_class, item, *rest): ''' Raises a WrongArgumentTypeError if all the items aren't instances of the required class/classes tuple. ''' if not isinstance(item, required_class): raise errors.WrongArgumentTypeError.build(item, required_class) for thing in rest: if not isinstance(thing, required_class): raise errors.WrongArgumentTypeError.build(thing, required_class) def ensure_args(supplied_args, num_required=0, num_optional=0, is_variadic=False): ''' Enforces the argument format specified by the keyword arguments. This format is: required arguments first, optional arguments next, and a single optional variadic arg last. num_required defaults to 0, num_optional defaults to 0, and is_variadic defaults to False. Raises an IncorrectArgumentCountError if the args don't match the spec. ''' # get the various counts we need to determine if the number of args is good min_args = num_required max_args = float('inf') if is_variadic else num_required + num_optional # determine whether the arg spec was met by the supplied arg list num_supplied = len(supplied_args) if num_supplied < min_args or num_supplied > max_args: raise errors.IncorrectArgumentCountError.build(min_args, max_args, num_supplied, is_variadic=is_variadic) def file_char_iter(f): '''Iterate over an open file one character at a time.''' for line in f: for c in line: yield c def to_string(x): '''Convert an atom to a string as it appears in our language.''' if isinstance(x, bool): return tokens.TRUE if x else tokens.FALSE elif isinstance(x, basestring): # TODO: escape properly return tokens.STRING + x + tokens.STRING return unicode(x) class ThreadSafeCounter: '''When called, returns increasing ints in order.''' def __init__(self, count=0): self.count = count self.lock = threading.Lock() def __call__(self): with self.lock: c = self.count self.count += 1 return c
mit
2,962,825,229,518,733,000
30.642857
82
0.669074
false
4.109462
false
false
false
anandology/pyjamas
pyjs/src/pyjs/options.py
1
10069
debug_options={} speed_options={} pythonic_options={} all_compile_options = dict( internal_ast = False, debug = False, print_statements=True, function_argument_checking=False, attribute_checking=False, getattr_support=True, bound_methods=True, descriptors=False, source_tracking=False, line_tracking=False, store_source=False, inline_code=False, operator_funcs=True, number_classes=False, create_locals=False, stupid_mode=False, translator='proto', ) def add_compile_options(parser): global debug_options, speed_options, pythonic_options parser.add_option("--internal-ast", dest="internal_ast", action="store_true", help="Use internal AST parser instead of standard python one" ) parser.add_option("--no-internal-ast", dest="internal_ast", action="store_false", help="Use internal AST parser instead of standard python one" ) parser.add_option("--debug-wrap", dest="debug", action="store_true", help="Wrap function calls with javascript debug code", ) parser.add_option("--no-debug-wrap", dest="debug", action="store_false", ) debug_options['debug'] = True speed_options['debug'] = False parser.add_option("--no-print-statements", dest="print_statements", action="store_false", help="Remove all print statements", ) parser.add_option("--print-statements", dest="print_statements", action="store_true", help="Generate code for print statements", ) speed_options['print_statements'] = False parser.add_option("--no-function-argument-checking", dest = "function_argument_checking", action="store_false", help = "Do not generate code for function argument checking", ) parser.add_option("--function-argument-checking", dest = "function_argument_checking", action="store_true", help = "Generate code for function argument checking", ) speed_options['function_argument_checking'] = False pythonic_options['function_argument_checking'] = True parser.add_option("--no-attribute-checking", dest = "attribute_checking", action="store_false", help = "Do not generate code for attribute checking", ) parser.add_option("--attribute-checking", dest = "attribute_checking", action="store_true", help = "Generate code for attribute checking", ) speed_options['attribute_checking'] = False pythonic_options['attribute_checking'] = True parser.add_option("--no-getattr-support", dest = "getattr_support", action="store_false", help = "Do not support __getattr__()", ) parser.add_option("--getattr-support", dest = "getattr_support", action="store_true", help = "Support __getattr__()", ) speed_options['getattr_support'] = False pythonic_options['getattr_support'] = True parser.add_option("--no-bound-methods", dest = "bound_methods", action="store_false", help = "Do not generate code for binding methods", ) parser.add_option("--bound-methods", dest = "bound_methods", action="store_true", help = "Generate code for binding methods", ) speed_options['bound_methods'] = False pythonic_options['bound_methods'] = True parser.add_option("--no-descriptors", dest = "descriptors", action="store_false", help = "Do not generate code for descriptor calling", ) parser.add_option("--descriptors", dest = "descriptors", action="store_true", help = "Generate code for descriptor calling", ) speed_options['descriptors'] = False pythonic_options['descriptors'] = True parser.add_option("--no-source-tracking", dest = "source_tracking", action="store_false", help = "Do not generate code for source tracking", ) parser.add_option("--source-tracking", dest = "source_tracking", action="store_true", help = "Generate code for source tracking", ) debug_options['source_tracking'] = True speed_options['source_tracking'] = False pythonic_options['source_tracking'] = True parser.add_option("--no-line-tracking", dest = "line_tracking", action="store_true", help = "Do not generate code for source tracking on every line", ) parser.add_option("--line-tracking", dest = "line_tracking", action="store_true", help = "Generate code for source tracking on every line", ) debug_options['line_tracking'] = True pythonic_options['line_tracking'] = True parser.add_option("--no-store-source", dest = "store_source", action="store_false", help = "Do not store python code in javascript", ) parser.add_option("--store-source", dest = "store_source", action="store_true", help = "Store python code in javascript", ) debug_options['store_source'] = True pythonic_options['store_source'] = True parser.add_option("--no-inline-code", dest = "inline_code", action="store_false", help = "Do not generate inline code for bool/eq/len", ) parser.add_option("--inline-code", dest = "inline_code", action="store_true", help = "Generate inline code for bool/eq/len", ) speed_options['inline_code'] = True parser.add_option("--no-operator-funcs", dest = "operator_funcs", action="store_false", help = "Do not generate function calls for operators", ) parser.add_option("--operator-funcs", dest = "operator_funcs", action="store_true", help = "Generate function calls for operators", ) speed_options['operator_funcs'] = False pythonic_options['operator_funcs'] = True parser.add_option("--no-number-classes", dest = "number_classes", action="store_false", help = "Do not use number classes", ) parser.add_option("--number-classes", dest = "number_classes", action="store_true", help = "Use classes for numbers (float, int, long)", ) speed_options['number_classes'] = False pythonic_options['number_classes'] = True parser.add_option("--create-locals", dest = "create_locals", action="store_true", help = "Create locals", ) parser.add_option("--no-stupid-mode", dest = "stupid_mode", action="store_false", help = "Doesn't rely on javascriptisms", ) parser.add_option("--stupid-mode", dest = "stupid_mode", action="store_true", help = "Creates minimalist code, relying on javascript", ) parser.add_option("--translator", dest = "translator", default="proto", help = "Specify the translator: proto|dict", ) def set_multiple(option, opt_str, value, parser, **kwargs): for k in kwargs.keys(): setattr(parser.values, k, kwargs[k]) parser.add_option("-d", "--debug", action="callback", callback = set_multiple, callback_kwargs = debug_options, help="Set all debugging options", ) parser.add_option("-O", action="callback", callback = set_multiple, callback_kwargs = speed_options, help="Set all options that maximize speed", ) parser.add_option("--strict", action="callback", callback = set_multiple, callback_kwargs = pythonic_options, help="Set all options that mimic standard python behavior", ) parser.set_defaults(**all_compile_options) def get_compile_options(opts): d = {} for opt in all_compile_options: d[opt] = getattr(opts, opt) return d
apache-2.0
-3,915,245,851,955,995,000
38.178988
86
0.478399
false
5.155658
false
false
false
ebmscruff/studsup
matches.py
1
1877
#!/usr/bin/python3 import random from humans import Human from cities import City from clubs import Club class Match(): def __init__(self, teamHome, teamAway): self.teamHome = teamHome self.teamAway = teamAway self.homeScore = 0 self.awayScore = 0 self.result = 0 # 0 = unplayed def sim_match(self): homeTier = 0.0 awayTier = 0.0 # add player tiers for player in self.teamHome.players: homeTier += player.tier for player in self.teamAway.players: awayTier += player.tier homeTier = homeTier*random.uniform(0,2) awayTier = awayTier*random.uniform(0,2) # do some randoms.. more chances to score based on your tier # you must have a higher end result than the opponent for to score a goal for goalAtt in range(0, 5): home = random.randint(0, 10) + homeTier away = random.randint(0, 8) + awayTier if home > away: self.homeScore += 1 for goalAtt in range(0, 4): home = random.randint(0, 8) + homeTier away = random.randint(0, 10) + awayTier if away > home: self.awayScore += 1 # 1: home win -- 2: away win -- 3: draw if self.homeScore > self.awayScore: self.result = 1 elif self.awayScore > self.homeScore: self.result = 2 else: self.result = 3 def print_postmatch(self): print(" Home: {homeScore} :{teamHome}\n Away: {awayScore} :{teamAway}\n".format(homeScore=self.homeScore, teamHome=self.teamHome.name, awayScore=self.awayScore, teamAway=self.teamAway.name)) def print_prematch(self): print(" HOME: {0}\n AWAY: {1}\n".format(self.teamHome.name, self.teamAway.name))
gpl-3.0
5,004,726,597,598,686,000
31.929825
198
0.572722
false
3.568441
false
false
false
nzjrs/conduit
conduit/DBus.py
2
21538
""" DBus related functionality including the DBus interface and utility functions Copyright: John Stowers, 2006 License: GPLv2 """ import os.path import dbus import dbus.service import logging log = logging.getLogger("DBus") import conduit import conduit.utils as Utils import conduit.Conduit as Conduit import conduit.SyncSet as SyncSet ERROR = -1 SUCCESS = 0 DEBUG_ALL_CALLS = True APPLICATION_DBUS_IFACE="org.conduit.Application" SYNCSET_DBUS_IFACE="org.conduit.SyncSet" CONDUIT_DBUS_IFACE="org.conduit.Conduit" EXPORTER_DBUS_IFACE="org.conduit.Exporter" DATAPROVIDER_DBUS_IFACE="org.conduit.DataProvider" ################################################################################ # DBus API Docs ################################################################################ # # ==== Main Application ==== # Service org.conduit.Application # Interface org.conduit.Application # Object path / # # Methods: # BuildConduit(source, sink) # BuildExporter(self, sinkKey) # ListAllDataProviders # GetDataProvider # NewSyncSet # Quit # # Signals: # DataproviderAvailable(key) # DataproviderUnavailable(key) # # ==== SyncSet ==== # Service org.conduit.SyncSet # Interface org.conduit.SyncSet # Object path /syncset/{dbus, gui, UUID} # # Methods: # AddConduit # DeleteConduit # SaveToXml # RestoreFromXml # # Signals: # ConduitAdded(key) # ConduitRemoved(key) # # ==== Conduit ==== # Service org.conduit.Conduit # Interface org.conduit.Conduit # Object path /conduit/{some UUID} # # Methods: # EnableTwoWaySync # DisableTwoWaySync # IsTwoWay # AddDataprovider # DeleteDataprovider # Sync # Refresh # # Signals: # SyncStarted # SyncCompleted(aborted, error, conflict) # SyncConflict # SyncProgress(progress, completedUIDs) # DataproviderAdded # DataproviderRemoved # # ==== Exporter Conduit ==== # Service org.conduit.Conduit # Interface org.conduit.Exporter # Object path /conduit/{some UUID} # # Methods: # AddData # SinkConfigure # SinkGetInformation # SinkGetConfigurationXml # SinkSetConfigurationXml # # ==== DataProvider ==== # Service org.conduit.DataProvider # Interface org.conduit.DataProvider # Object path /dataprovider/{some UUID} # # Methods: # IsPending # IsConfigured # SetConfigurationXML # GetConfigurationXML # Configure # GetInformation # AddData # # Signals: #All objects currently exported over the bus EXPORTED_OBJECTS = {} class ConduitException(dbus.DBusException): _dbus_error_name = 'org.conduit.ConduitException' class DBusItem(dbus.service.Object): def __init__(self, iface, path): bus_name = dbus.service.BusName(iface, bus=dbus.SessionBus()) dbus.service.Object.__init__(self, bus_name, path) log.debug("DBus Exported: %s" % self.get_path()) def get_path(self): return self.__dbus_object_path__ def _print(self, message): if DEBUG_ALL_CALLS: log.debug("DBus Message from %s: %s" % (self.get_path(), message)) class ConduitDBusItem(DBusItem): def __init__(self, sync_manager, conduit, uuid): DBusItem.__init__(self, iface=CONDUIT_DBUS_IFACE, path="/conduit/%s" % uuid) self.sync_manager = sync_manager self.conduit = conduit self.conduit.connect("sync-started", self._on_sync_started) self.conduit.connect("sync-completed", self._on_sync_completed) self.conduit.connect("sync-conflict", self._on_sync_conflict) self.conduit.connect("sync-progress", self._on_sync_progress) def _on_sync_started(self, cond): if cond == self.conduit: self.SyncStarted() def _on_sync_completed(self, cond, aborted, error, conflict): if cond == self.conduit: self.SyncCompleted(bool(aborted), bool(error), bool(conflict)) def _on_sync_progress(self, cond, progress, UIDs): if cond == self.conduit: self.SyncProgress(float(progress), UIDs) def _on_sync_conflict(self, cond, conflict): if cond == self.conduit: self.SyncConflict() # # org.conduit.Conduit # @dbus.service.method(CONDUIT_DBUS_IFACE, in_signature='', out_signature='') def EnableTwoWaySync(self): self._print("EnableTwoWaySync") self.conduit.enable_two_way_sync() @dbus.service.method(CONDUIT_DBUS_IFACE, in_signature='', out_signature='') def DisableTwoWaySync(self): self._print("DisableTwoWaySync") self.conduit.disable_two_way_sync() @dbus.service.method(CONDUIT_DBUS_IFACE, in_signature='', out_signature='b') def IsTwoWay(self): self._print("IsTwoWay") return self.conduit.is_two_way() @dbus.service.method(CONDUIT_DBUS_IFACE, in_signature='ob', out_signature='') def AddDataprovider(self, dp, trySource): self._print("AddDataprovider: %s" % dp) #get the actual dps from their object paths try: dpw = EXPORTED_OBJECTS[str(dp)].dataprovider except KeyError, e: raise ConduitException("Could not locate dataprovider: %s" % e) if not self.conduit.add_dataprovider(dpw): raise ConduitException("Could not add dataprovider: %s" % e) @dbus.service.method(CONDUIT_DBUS_IFACE, in_signature='o', out_signature='') def DeleteDataprovider(self, dp): self._print("DeleteDataprovider: %s" % dp) #get the actual dps from their object paths try: dpw = EXPORTED_OBJECTS[str(dp)].dataprovider except KeyError, e: raise ConduitException("Could not locate dataprovider: %s" % e) if not self.conduit.delete_dataprovider(dpw): raise ConduitException("Could not delete dataprovider: %s" % e) @dbus.service.method(CONDUIT_DBUS_IFACE, in_signature='', out_signature='') def Sync(self): self._print("Sync") self.conduit.sync() @dbus.service.method(CONDUIT_DBUS_IFACE, in_signature='', out_signature='') def Refresh(self): self._print("Refresh") self.conduit.refresh() @dbus.service.signal(CONDUIT_DBUS_IFACE, signature='') def SyncStarted(self): self._print("SyncStarted") @dbus.service.signal(CONDUIT_DBUS_IFACE, signature='bbb') def SyncCompleted(self, aborted, error, conflict): self._print("SyncCompleted (abort:%s error:%s conflict:%s)" % (aborted,error,conflict)) @dbus.service.signal(CONDUIT_DBUS_IFACE, signature='') def SyncConflict(self): self._print("SyncConflict") @dbus.service.signal(CONDUIT_DBUS_IFACE, signature='das') def SyncProgress(self, progress, UIDs): self._print("SyncProgress %s%%\n\t%s" % ((progress*100.0), UIDs)) # # org.conduit.Exporter # @dbus.service.method(EXPORTER_DBUS_IFACE, in_signature='s', out_signature='') def SinkSetConfigurationXml(self, xml): self._print("SinkSetConfigurationXml: %s" % xml) if len(self.conduit.datasinks) != 1: raise ConduitException("Simple exporter must only have one sink") self.conduit.datasinks[0].set_configuration_xml(xml) @dbus.service.method(EXPORTER_DBUS_IFACE, in_signature='', out_signature='') def SinkConfigure(self): self._print("SinkConfigure") if len(self.conduit.datasinks) != 1: raise ConduitException("Simple exporter must only have one sink") dataprovider = self.conduit.datasinks[0] #FIXME Hard-coded GtkUI from conduit.gtkui.WindowConfigurator import WindowConfigurator from conduit.gtkui.ConfigContainer import ConfigContainer configurator = WindowConfigurator(None) container = dataprovider.module.get_config_container( configContainerKlass=ConfigContainer, name=dataprovider.get_name(), icon=dataprovider.get_icon(), configurator=configurator ) configurator.set_containers([container]) configurator.run(container) @dbus.service.method(EXPORTER_DBUS_IFACE, in_signature='s', out_signature='b') def AddData(self, uri): self._print("AddData: %s" % uri) if self.conduit.datasource == None: raise ConduitException("Simple exporter must have a source") return self.conduit.datasource.module.add(uri) @dbus.service.method(EXPORTER_DBUS_IFACE, in_signature='', out_signature='a{ss}') def SinkGetInformation(self): self._print("SinkGetInformation") if len(self.conduit.datasinks) != 1: raise ConduitException("Simple exporter must only have one sink") #Need to call get_icon so that the icon_name/path is loaded try: self.conduit.datasinks[0].get_icon() except: log.warn("DBus could not lookup dp icon") info = {} info["name"] = self.conduit.datasinks[0].name info["description"] = self.conduit.datasinks[0].description info["module_type"] = self.conduit.datasinks[0].module_type info["category"] = self.conduit.datasinks[0].category.name info["in_type"] = self.conduit.datasinks[0].get_input_type() info["out_type"] = self.conduit.datasinks[0].get_output_type() info["classname"] = self.conduit.datasinks[0].classname info["key"] = self.conduit.datasinks[0].get_key() info["enabled"] = str( self.conduit.datasinks[0].enabled) info["UID"] = self.conduit.datasinks[0].get_UID() info["icon_name"] = self.conduit.datasinks[0].icon_name info["icon_path"] = self.conduit.datasinks[0].icon_path return info @dbus.service.method(EXPORTER_DBUS_IFACE, in_signature='', out_signature='s') def SinkGetConfigurationXml(self): self._print("SinkGetConfigurationXml") if len(self.conduit.datasinks) != 1: raise ConduitException("Simple exporter must only have one sink") return self.conduit.datasinks[0].get_configuration_xml() class DataProviderDBusItem(DBusItem): def __init__(self, dataprovider, uuid): DBusItem.__init__(self, iface=DATAPROVIDER_DBUS_IFACE, path="/dataprovider/%s" % uuid) self.dataprovider = dataprovider @dbus.service.method(DATAPROVIDER_DBUS_IFACE, in_signature='', out_signature='b') def IsPending(self): self._print("IsPending") return self.dataprovider.module == None @dbus.service.method(DATAPROVIDER_DBUS_IFACE, in_signature='bb', out_signature='b') def IsConfigured(self, isSource, isTwoWay): self._print("IsConfigured") if self.dataprovider.module != None: return self.dataprovider.module.is_configured(isSource, isTwoWay) return False @dbus.service.method(DATAPROVIDER_DBUS_IFACE, in_signature='', out_signature='a{ss}') def GetInformation(self): self._print("GetInformation") #Need to call get_icon so that the icon_name/path is loaded try: self.dataprovider.get_icon() except: log.warn("DBus could not lookup dp icon") info = {} info["name"] = self.dataprovider.name info["description"] = self.dataprovider.description info["module_type"] = self.dataprovider.module_type info["category"] = self.dataprovider.category.name info["in_type"] = self.dataprovider.get_input_type() info["out_type"] = self.dataprovider.get_output_type() info["classname"] = self.dataprovider.classname info["key"] = self.dataprovider.get_key() info["enabled"] = str(self.dataprovider.enabled) info["UID"] = self.dataprovider.get_UID() info["icon_name"] = self.dataprovider.icon_name info["icon_path"] = self.dataprovider.icon_path return info @dbus.service.method(DATAPROVIDER_DBUS_IFACE, in_signature='', out_signature='s') def GetConfigurationXml(self): self._print("GetConfigurationXml") return self.dataprovider.get_configuration_xml() @dbus.service.method(DATAPROVIDER_DBUS_IFACE, in_signature='s', out_signature='') def SetConfigurationXml(self, xml): self._print("SetConfigurationXml: %s" % xml) self.dataprovider.set_configuration_xml(xml) @dbus.service.method(DATAPROVIDER_DBUS_IFACE, in_signature='', out_signature='') def Configure(self): self._print("Configure") #FIXME Hard-coded GtkUI from conduit.gtkui.WindowConfigurator import WindowConfigurator from conduit.gtkui.ConfigContainer import ConfigContainer configurator = WindowConfigurator(None) container = self.dataprovider.module.get_config_container( configContainerKlass=ConfigContainer, name=self.dataprovider.get_name(), icon=self.dataprovider.get_icon(), configurator=configurator ) configurator.set_containers([container]) configurator.run(container) @dbus.service.method(DATAPROVIDER_DBUS_IFACE, in_signature='s', out_signature='b') def AddData(self, uri): self._print("AddData: %s" % uri) return self.dataprovider.module.add(uri) class SyncSetDBusItem(DBusItem): def __init__(self, syncSet, name): DBusItem.__init__(self, iface=SYNCSET_DBUS_IFACE, path="/syncset/%s" % name) self.syncSet = syncSet self.syncSet.connect("conduit-added", self._on_conduit_added) self.syncSet.connect("conduit-removed", self._on_conduit_removed) def _on_conduit_added(self, syncset, cond): self.ConduitAdded() def _on_conduit_removed(self, syncset, cond): self.ConduitRemoved() @dbus.service.signal(SYNCSET_DBUS_IFACE, signature='') def ConduitAdded(self): self._print("Emmiting DBus signal ConduitAdded") @dbus.service.signal(SYNCSET_DBUS_IFACE, signature='') def ConduitRemoved(self): self._print("Emmiting DBus signal ConduitRemoved") @dbus.service.method(SYNCSET_DBUS_IFACE, in_signature='o', out_signature='') def AddConduit(self, cond): self._print("AddConduit: %s" % cond) try: c = EXPORTED_OBJECTS[str(cond)].conduit except KeyError, e: raise ConduitException("Could not locate Conduit: %s" % e) self.syncSet.add_conduit(c) @dbus.service.method(SYNCSET_DBUS_IFACE, in_signature='o', out_signature='') def DeleteConduit(self, cond): self._print("DeleteConduit: %s" % cond) try: c = EXPORTED_OBJECTS[str(cond)].conduit except KeyError, e: raise ConduitException("Could not locate Conduit: %s" % e) self.syncSet.remove_conduit(c) @dbus.service.method(SYNCSET_DBUS_IFACE, in_signature='s', out_signature='') def SaveToXml(self, path): self._print("SaveToXml: %s" % path) self.syncSet.save_to_xml(os.path.abspath(path)) @dbus.service.method(SYNCSET_DBUS_IFACE, in_signature='s', out_signature='') def RestoreFromXml(self, path): self._print("RestoreFromXml: %s" % path) self.syncSet.restore_from_xml(os.path.abspath(path)) class DBusInterface(DBusItem): def __init__(self, conduitApplication, moduleManager, typeConverter, syncManager, guiSyncSet): DBusItem.__init__(self, iface=APPLICATION_DBUS_IFACE, path="/") self.conduitApplication = conduitApplication #setup the module manager self.moduleManager = moduleManager self.moduleManager.connect("dataprovider-available", self._on_dataprovider_available) self.moduleManager.connect("dataprovider-unavailable", self._on_dataprovider_unavailable) #type converter and sync manager self.type_converter = typeConverter self.sync_manager = syncManager #export the syncsets new = SyncSetDBusItem(guiSyncSet, "gui") EXPORTED_OBJECTS[new.get_path()] = new self.sync_set = SyncSet.SyncSet(moduleManager,syncManager) new = SyncSetDBusItem(self.sync_set, "dbus") EXPORTED_OBJECTS[new.get_path()] = new #export myself EXPORTED_OBJECTS[self.get_path()] = self def _get_all_dps(self): datasources = self.moduleManager.get_modules_by_type("source") datasinks = self.moduleManager.get_modules_by_type("sink") twoways = self.moduleManager.get_modules_by_type("twoway") return datasources + datasinks + twoways def _new_syncset(self): ss = SyncSet.SyncSet( moduleManager=self.moduleManager, syncManager=self.sync_manager ) i = Utils.uuid_string() new = SyncSetDBusItem(ss, i) EXPORTED_OBJECTS[new.get_path()] = new return new def _get_dataprovider(self, key): """ Instantiates a new dataprovider (source or sink), storing it appropriately. @param key: Key of the DP to create @returns: The new DP """ dpw = self.moduleManager.get_module_wrapper_with_instance(key) if dpw == None: raise ConduitException("Could not find dataprovider with key: %s" % key) i = Utils.uuid_string() new = DataProviderDBusItem(dpw, i) EXPORTED_OBJECTS[new.get_path()] = new return new def _get_conduit(self, source=None, sink=None, sender=None): """ Instantiates a new dataprovider (source or sink), storing it appropriately. @param key: Key of the DP to create @returns: The new DP """ if sender == None: raise ConduitException("Invalid DBus Caller") cond = Conduit.Conduit(self.sync_manager) if source != None: if not cond.add_dataprovider(dataprovider_wrapper=source, trySourceFirst=True): raise ConduitException("Error adding source to conduit") if sink != None: if not cond.add_dataprovider(dataprovider_wrapper=sink, trySourceFirst=False): raise ConduitException("Error adding source to conduit") i = Utils.uuid_string() new = ConduitDBusItem(self.sync_manager, cond, i) EXPORTED_OBJECTS[new.get_path()] = new return new def _on_dataprovider_available(self, loader, dataprovider): self.DataproviderAvailable(dataprovider.get_key()) def _on_dataprovider_unavailable(self, loader, dataprovider): self.DataproviderUnavailable(dataprovider.get_key()) def quit(self): #need to call quit() on all sync sets or conduits as they may have been #created here... for path in EXPORTED_OBJECTS: if path.startswith("/syncset/"): EXPORTED_OBJECTS[path].syncSet.quit() elif path.startswith("/conduit/"): EXPORTED_OBJECTS[path].conduit.quit() def get_syncset(self): return self.sync_set def get_all_syncsets(self): return [EXPORTED_OBJECTS[path].syncSet for path in EXPORTED_OBJECTS if path.startswith("/syncset/") ] @dbus.service.signal(APPLICATION_DBUS_IFACE, signature='s') def DataproviderAvailable(self, key): self._print("Emmiting DBus signal DataproviderAvailable %s" % key) @dbus.service.signal(APPLICATION_DBUS_IFACE, signature='s') def DataproviderUnavailable(self, key): self._print("Emiting DBus signal DataproviderUnavailable %s" % key) @dbus.service.method(APPLICATION_DBUS_IFACE, in_signature='', out_signature='o') def NewSyncSet(self): self._print("NewSyncSet") return self._new_syncset() @dbus.service.method(APPLICATION_DBUS_IFACE, in_signature='', out_signature='as') def GetAllDataProviders(self): self._print("GetAllDataProviders") return [i.get_key() for i in self._get_all_dps()] @dbus.service.method(APPLICATION_DBUS_IFACE, in_signature='s', out_signature='o') def GetDataProvider(self, key): self._print("GetDataProvider: %s" % key) return self._get_dataprovider(key) @dbus.service.method(APPLICATION_DBUS_IFACE, in_signature='oo', out_signature='o', sender_keyword='sender') def BuildConduit(self, source, sink, sender=None): self._print("BuildConduit (sender: %s:) %s --> %s" % (sender, source, sink)) #get the actual dps from their object paths try: source = EXPORTED_OBJECTS[str(source)].dataprovider sink = EXPORTED_OBJECTS[str(sink)].dataprovider except KeyError, e: raise ConduitException("Could not find dataprovider with key: %s" % e) return self._get_conduit(source, sink, sender) @dbus.service.method(APPLICATION_DBUS_IFACE, in_signature='s', out_signature='o', sender_keyword='sender') def BuildExporter(self, key, sender=None): self._print("BuildExporter (sender: %s:) --> %s" % (sender,key)) source = self._get_dataprovider("FileSource") sink = self._get_dataprovider(key) return self._get_conduit(source.dataprovider, sink.dataprovider, sender) @dbus.service.method(APPLICATION_DBUS_IFACE, in_signature='', out_signature='') def Quit(self): if self.conduitApplication != None: self.conduitApplication.Quit()
gpl-2.0
-548,939,383,247,523,200
35.505085
111
0.640124
false
3.520432
true
false
false
mufaddalq/cloudstack-datera-driver
tools/cli/cloudmonkey/cachemaker.py
2
5977
# -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. try: import json import os import types from config import config_fields except ImportError, e: import sys print "ImportError", e sys.exit(1) def getvalue(dictionary, key): if key in dictionary: return dictionary[key] else: return None def splitcsvstring(string): if string is not None: return filter(lambda x: x.strip() != '', string.split(',')) else: return [] def splitverbsubject(string): idx = 0 for char in string: if char.islower(): idx += 1 else: break return string[:idx].lower(), string[idx:].lower() def savecache(apicache, json_file): """ Saves apicache dictionary as json_file, returns dictionary as indented str """ if apicache is None or apicache is {}: return "" apicachestr = json.dumps(apicache, indent=2) with open(json_file, 'w') as cache_file: cache_file.write(apicachestr) return apicachestr def loadcache(json_file): """ Loads json file as dictionary, feeds it to monkeycache and spits result """ f = open(json_file, 'r') data = f.read() f.close() try: apicache = json.loads(data) except ValueError, e: print "Error processing json:", json_file, e return {} return apicache def monkeycache(apis): """ Feed this a dictionary of api bananas, it spits out processed cache """ if isinstance(type(apis), types.NoneType) or apis is None: return {} responsekey = filter(lambda x: 'response' in x, apis.keys()) if len(responsekey) == 0: print "[monkeycache] Invalid dictionary, has no response" return None if len(responsekey) != 1: print "[monkeycache] Multiple responsekeys, chosing first one" responsekey = responsekey[0] verbs = set() cache = {} cache['count'] = getvalue(apis[responsekey], 'count') cache['asyncapis'] = [] apilist = getvalue(apis[responsekey], 'api') if apilist is None: print "[monkeycache] Server response issue, no apis found" for api in apilist: name = getvalue(api, 'name') verb, subject = splitverbsubject(name) apidict = {} apidict['name'] = name apidict['description'] = getvalue(api, 'description') apidict['isasync'] = getvalue(api, 'isasync') if apidict['isasync']: cache['asyncapis'].append(name) apidict['related'] = splitcsvstring(getvalue(api, 'related')) required = [] apiparams = [] for param in getvalue(api, 'params'): apiparam = {} apiparam['name'] = getvalue(param, 'name') apiparam['description'] = getvalue(param, 'description') apiparam['required'] = (getvalue(param, 'required') is True) apiparam['length'] = int(getvalue(param, 'length')) apiparam['type'] = getvalue(param, 'type') apiparam['related'] = splitcsvstring(getvalue(param, 'related')) if apiparam['required']: required.append(apiparam['name']) apiparams.append(apiparam) apidict['requiredparams'] = required apidict['params'] = apiparams if verb not in cache: cache[verb] = {} cache[verb][subject] = apidict verbs.add(verb) cache['verbs'] = list(verbs) return cache def main(json_file): """ cachemaker.py creates a precache datastore of all available apis of CloudStack and dumps the precache dictionary in an importable python module. This way we cheat on the runtime overhead of completing commands and help docs. This reduces the overall search and cache_miss (computation) complexity from O(n) to O(1) for any valid cmd. """ f = open("precache.py", "w") f.write("""# -*- coding: utf-8 -*- # Auto-generated code by cachemaker.py # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License.""") f.write("\napicache = %s" % loadcache(json_file)) f.close() if __name__ == "__main__": cache_file = config_fields['core']['cache_file'] print "[cachemaker] Pre-caching using user's cloudmonkey cache", cache_file if os.path.exists(cache_file): main(cache_file) else: print "[cachemaker] Unable to cache apis, file not found", cache_file print "[cachemaker] Run cloudmonkey sync to generate cache"
apache-2.0
-8,580,099,564,586,530,000
32.022099
79
0.650661
false
3.963528
false
false
false
Leopardob/dice-dev
dice/dice_extras/scheduler.py
1
4324
from sys import stderr from dice.app import BasicApp from threading import _start_new_thread def debug(msg): stderr.write(msg+"\n") stderr.flush() class Scheduler: def __init__(self, project): self.__project = project self.__run_stack = [] self.__prepare_stack = [] def schedule_run(self, app): """ Tries to run an application. The algorithm is to get all input apps into the FINISHED state (by calling schedule_run for them if needed) and calling prepare() and run() for the actual app. :param app: :return: """ # debug("schedule run for "+str(app)) if app in self.__run_stack: # debug("stack contains "+str(app)) return self.__run_stack.append(app) # app.connect("statusChanged", self.__process_run_signals(app)) app.status_changed.connect(self.__process_run_signals(app)) _start_new_thread(self.__schedule_run, (app,)) def schedule_prepare(self, app): # TODO app.prepare() def __process_run_signals(self, app): """ Returns a function that handles status changes for the given scheduled app. :param app: :return: """ def status_change_handler(): # debug(str(app)+" changed status to "+app.get_status()) if app.status == BasicApp.FINISHED: try: self.__run_stack.remove(app) except: pass # app.disconnect("statusChanged", status_change_handler) app.status_changed.disconnect(status_change_handler) for output_app in app.output_apps: if output_app in self.__run_stack: self.__try_run(output_app) elif app.status == BasicApp.ERROR: try: self.__run_stack.remove(app) except: pass return status_change_handler def __schedule_run(self, app): """ Scheduling part of schedule_run, extracted to run in its own thread :param app: :return: """ to_schedule = self.__try_run(app) # add the input apps to the scheduler if they are not finished for input_app in to_schedule: self.schedule_run(input_app) def __try_run(self, app): """ Tries to run the given app if all inputs apps of the app are finished. Otherwise it returns a list of all unfinished input apps. :param app: :return: """ all_input_apps_are_finished = True to_schedule = [] for input_app in app.input_apps: if input_app.status != BasicApp.FINISHED: all_input_apps_are_finished = False to_schedule.append(input_app) if all_input_apps_are_finished: # This is the default run behavior: # prepare() if not already prepared and call run() if prepare() was successful prepared = app.status == BasicApp.PREPARED if not prepared: app.status = BasicApp.PREPARING try: if app.prepare(): app.status = BasicApp.PREPARED prepared = True except BaseException as e: app.status = BasicApp.ERROR self.__project.dice.process_exception(e) return [] # do not schedule any more apps if prepared: app.status = BasicApp.RUNNING try: if app.run(): app.status = BasicApp.FINISHED else: app.status = BasicApp.ERROR except BaseException as e: app.status = BasicApp.ERROR self.__project.dice.process_exception(e) return [] # do not schedule any more apps else: # Set on WAITING. If called by schedule_run, all apps in to_schedule will be scheduled as well. # This will cause __process_run_signals to call __try_run again as needed. app.status = BasicApp.WAITING return to_schedule
gpl-3.0
-5,139,901,510,796,492,000
35.336134
107
0.533302
false
4.49948
false
false
false
mothsART/linkmanager
linkmserver/__init__.py
1
5077
import os import subprocess import json import arrow from flask import ( Flask, render_template, abort, request, jsonify, g ) from flask.ext.assets import Environment # from werkzeug.debug import get_current_traceback from werkzeug.contrib.cache import SimpleCache cache = SimpleCache() from linkmanager import settings from linkmanager.db import DataBase app = Flask(__name__) assets = Environment(app) if settings.SERVER: var_path = '/var/cache/linkmanager' if not os.path.exists(var_path): os.makedirs(var_path, mode=0o755) static_path = os.path.join(var_path, 'static') if not os.path.exists(static_path): os.symlink(assets.directory, static_path) assets.directory = static_path assets.url = assets.url[1:] db = DataBase() db.editmode = settings.EDITMODE def read_only(func): """ Decorator : get an Unauthorize 403 when read only's settings is True. """ def wrapper(): if settings.READ_ONLY: return abort(403) return func() return wrapper def is_server(func): """ Decorator : get an Unauthorize 403 when server settings is True """ def wrapper(): if settings.SERVER: return abort(403) return func() return wrapper def launch_browser(BROWSER=False): subprocess.call( 'sleep 0.5;nohup %s http://127.0.0.1:%s/ &' % ( BROWSER, settings.HTTP_PORT ), stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True ) @app.route("/") def index(): return render_template( 'index.html', DEBUG=settings.DEBUG, SERVER=settings.SERVER, READ_ONLY=settings.READ_ONLY, EDITMODE=settings.EDITMODE, DELETEDIALOG=settings.DELETEDIALOG, nb_links=len(db) ) # try: # error # except Exception: # track = get_current_traceback( # skip=1, show_hidden_frames=True, # ignore_system_exceptions=False # ) # track.log() # abort(500) @read_only @is_server @app.route("/editmode", methods=['GET', 'POST']) def editmode(): if request.method == 'GET': return jsonify({'editmode': db.editmode}) db.editmode = not db.editmode return jsonify({'editmode': db.editmode}) @read_only @app.route("/add", methods=['POST']) def add(): fixture = {} link = request.form['link'] fixture[link] = { "tags": request.form['tags'].split(), "priority": request.form['priority'], "description": request.form['description'], "title": request.form['title'], "init date": str(arrow.now()) } result = db.add_link(json.dumps(fixture)) return jsonify({'is_add': result}) @read_only @app.route("/update", methods=['POST']) def update(): fixture = {} link = request.form['link'] if request.form['link'] != request.form['newlink']: result = db.delete_link(request.form['link']) if not result: return jsonify({'is_update': False}) link = request.form['newlink'] old_link = db.get_link_properties(link) fixture[link] = { "tags": request.form['tags'].split(), "priority": request.form['priority'], "description": request.form['description'], "title": request.form['title'], "init date": old_link['init date'], "update date": str(arrow.now()) } if request.form['link'] != request.form['newlink']: fixture[link]["init date"] = str(arrow.now()) fixture[link]["update date"] = old_link['update date'] result = db.add_link(json.dumps(fixture)) return jsonify({'is_update': result}) @read_only @app.route("/delete", methods=['POST']) def delete(): result = db.delete_link(request.form['link']) return jsonify({'is_delete': result}) @app.route("/search") def search(): results = {} try: tags = next(request.args.items())[0].split() links = db.sorted_links(*tags) except: links = db.sorted_links() results = {} for l in links: properties = db.get_link_properties(l) results[l] = properties return jsonify(**results) @app.route("/suggest") def suggest(): tags = request.args.get('tags') if not tags: return jsonify({}) keywords = tags.split() last_keyword = keywords[len(keywords) - 1] str_suggestion = ' '.join(keywords[:-1]) suggestions = {} for s in db.complete_tags(last_keyword): if s not in keywords: suggestions[str_suggestion + ' ' + s] = 10 return jsonify(**suggestions) def run(browser=None): BROWSER = settings.BROWSER if browser: BROWSER = browser if os.environ.get('WERKZEUG_RUN_MAIN') != 'true': launch_browser(BROWSER) app.debug = settings.DEBUG app.run(host=settings.HTTP_HOST, port=settings.HTTP_PORT) settings.set_user_conf(WEBAPP=['EDITMODE', db.editmode]) if __name__ == '__main__': app.debug = settings.DEBUG app.run(host=settings.HTTP_HOST, port=settings.HTTP_PORT)
bsd-2-clause
3,865,095,246,136,694,300
25.862434
62
0.609218
false
3.600709
false
false
false
bfagundez/apex_paperboy
apex_executor.py
1
4129
# -*- coding: utf-8 -*- # unicode color codes OKGREEN = '\033[92m' NOTOKRED = '\033[91m' OKBLUE = '\033[94m' WARNING = '\033[93m' HEADER = '\033[95m' ENDC = '\033[0m' from lib.sforce.base import SforceBaseClient from suds import WebFault from lib.sforce.partner import SforcePartnerClient from lib.sforce.metadata import SforceMetadataClient from lib.sforce.apex import SforceApexClient from lib.sforce.tooling import SforceToolingClient from optparse import OptionParser import lib.mm_util as mm_util import time import os import sys # Adds an option to command line to clean up all transactions and mappings on start # for dev purposes only. parser = OptionParser() parser.add_option("-u", "--user", dest="user", type="string", help="Salesforce username") parser.add_option("-p", "--password", dest="password", type="string", help="Salesforce password") parser.add_option("-t", "--token", dest="token", type="string", help="Salesforce token") parser.add_option("-s", "--apex-script", dest="apexscriptfilename", type="string", help="Apex code to execute") (options, args) = parser.parse_args() missing_args = False error_log = '\n'+NOTOKRED+' ✗'+ENDC+' Errors found \n\n' if options.user == None: missing_args = True error_log += " ~ Salesforce username is required \n" if options.password == None: missing_args = True error_log += " ~ Salesforce password is required \n" if options.apexscriptfilename == None: missing_args = True error_log += " ~ Apex script filename is required \n" if missing_args: print error_log else: print ' \n🏁 Starting apex execution \n ' print '- Loading partner WSDL' try: wsdl_location = os.path.join(mm_util.WSDL_PATH, 'partner.xml') client = SforcePartnerClient( wsdl_location, apiVersion=None, environment='production', sid=None, metadata_server_url=None, server_url=None) print OKGREEN+'✓'+ENDC+' WSDL loaded \n ' except Exception, e: print '\n'+NOTOKRED+'✗'+ENDC+' Unable to load the WSDL ' print e.message sys.exit() try: # login using partner wsdl print '- Authenticating' # sometimes password and token are provided together. # token parameter is not required. token_safe = '' if options.token: token_safe = options.token client.login(options.user,options.password,token_safe) # use token with apex wsdl apex_wsdl_location = os.path.join(mm_util.WSDL_PATH, 'apex.xml') apex_client = SforceApexClient( apex_wsdl_location, apiVersion=mm_util.SFDC_API_VERSION, environment='production', sid=client.getSessionId(), metadata_server_url=client.getMetadaServerUrl(), server_url=mm_util.get_sfdc_endpoint_by_type('enterprise')) print OKGREEN+'✓'+ENDC+' Authentication succesful. \n ' except Exception, e: print '\n'+NOTOKRED+'✗'+ENDC+' Error during authentication ' print e.message sys.exit() try: print '- Opening the file' # open script file f = open(options.apexscriptfilename, "r") apex_code = f.read() print OKGREEN+'✓'+ENDC+' File loaded succesfully. \n ' except Exception, e: print '\n'+NOTOKRED+'✗'+ENDC+' Error found reading the file ' print e.message sys.exit() try: # Execute code print '- Executing the script' t0 = time.clock() apex_execution = apex_client.executeAnonymous({"body":apex_code}) if apex_execution.success: print OKGREEN+'✓'+ENDC+' Script executed succesfully 🍻 \n ' print 'Code executed in '+str(time.clock() - t0)+ ' seconds. \n' else: print NOTOKRED+'✗'+ENDC+' Errors found: ' if apex_execution.exceptionMessage: print apex_execution.exceptionMessage if apex_execution.compileProblem: print 'Compilation error: '+apex_execution.compileProblem print 'Line: '+str(apex_execution.line) except Exception, e: #logger.error(str(e.message)) print '\n'+NOTOKRED+'✗'+ENDC+' Errors found ' print e.message sys.exit()
mit
-8,470,200,002,246,769,000
30.083333
111
0.660736
false
3.393714
false
false
false
garbear/EventGhost
plugins/PS3/__init__.py
1
55108
README = """\ <u><b>1) Bluetooth</b></u> Tested succesfully working with Bluetooth Software : WIDCOMM Bluetooth Software 5.1.0.1100. 5.1.0.1100 is not the last version, but it's the most versatile version and works with most of Bluetooth adapter in a patched version. See <a href"http://forum.gsmhosting.com/vbb/forumdisplay.php?f=237"> this thread</a> to help about patched WIDCOMM Bluetooth Software 5.1.0.1100 (Restart PC, right click on bluetooth icon in task bar and stop/start bluetooth device can help) On remote, to activate discoverable mode, press simultaneously "start+enter". On PC choose "Next (no code)" Check in "Device Manager" / "Human Interface Devices" that the PS3 Remote appears as "HID-compliant game controller". If not, if it appears as "HID Keyboard Device" in "Keyboards", delete it, right click on bluetooth icon in task bar and stop/start bluetooth device to force new device detection. This time should appears as "HID-compliant game controller" <u><b>2) Plugin</b></u> This plugin generates: <ul> <li>ENDURING events named like "HID.Eject"</li> </ul> and lot of additional NORMAL events for: <ul> <li>short click on remote, events name end with ".S" eg. "HID.Eject.S"</li> <li>long click on remote, events name end with ".L"</li> <li>double click on remote, events name end with ".D"</li> </ul> and special selectable or not events: <ul> <li>"Sleep" when remote is not used</li> <li>"Hibernate" when remote is not use during a long time (also puts the remote into low-power mode if using the Widcomm Bluetooth stack)</li> <li>"WakeUp" for first event after "Sleep" or "Hibernate"</li> <li>"Zone.X" where X is relative to Zone Key in Remote (see Remote paper manual) event generated when a new key is pressed in another zone. each remote key belong of on zone except one, the key with strange symbol below the directional pad. this is by design.</li> <li>"Release" can be generated for each relase of each key.</li> </ul> Of course all these additional events are not needed, it's possible to do the same thing by EventGhost configuration but it's far more simple to have these events available ready to use, than play with timer inside EventGhost. This remote can generate events when 2 keys are pressed simultaneously. In this case the event code genered is an hexadecimal value. Note: some keys combination generate the same event. This is a Remote issue. After the "Hibernate" period expires, the remote will be put into a low-power (SNIFF) mode. It may take a few seconds for the first button press to be registered in this mode. The plugin will also automatically re-detect the PS3 remote after being in standby mode. """ eg.RegisterPlugin( name = "PlayStation 3 Bluetooth Remote", author = "Thierry Couquillou, Tim Delaney", version = "3.0.0", kind = "remote", url="http://www.eventghost.net/forum/viewtopic.php?t=640", description = "Hardware plugin for the PS3 Bluetooth Remote (based on the HID code of Bartman)", canMultiLoad = True, help = README, ) import itertools import time import binascii import ctypes import _winreg import sys import threading import win32con import win32event import win32file import wx import wx.lib.mixins.listctrl as listmix from ctypes import Structure, Union, c_byte, c_ubyte, c_char, c_int, c_long, c_ulong, c_ushort, c_wchar from ctypes import pointer, byref, sizeof, POINTER from ctypes.wintypes import ULONG, BOOLEAN, BOOL class Ps3Remote: button = {} button["000000FFFFFFFFFFFF00"]= "Release" button["00000016FFFFFFFFFF01"]= "Eject" button["00000064FFFFFFFFFF01"]= "Audio" button["00000065FFFFFFFFFF01"]= "Angle" button["00000063FFFFFFFFFF01"]= "Subtitle" button["00000000FFFFFFFFFF01"]= "Num1" button["00000001FFFFFFFFFF01"]= "Num2" button["00000002FFFFFFFFFF01"]= "Num3" button["00000003FFFFFFFFFF01"]= "Num4" button["00000004FFFFFFFFFF01"]= "Num5" button["00000005FFFFFFFFFF01"]= "Num6" button["00000006FFFFFFFFFF01"]= "Num7" button["00000007FFFFFFFFFF01"]= "Num8" button["00000008FFFFFFFFFF01"]= "Num9" button["0000000FFFFFFFFFFF01"]= "Clear" button["00000009FFFFFFFFFF01"]= "Num0" button["00000028FFFFFFFFFF01"]= "Time" button["00000081FFFFFFFFFF01"]= "Red" button["00000082FFFFFFFFFF01"]= "Green" button["00000083FFFFFFFFFF01"]= "Yellow" button["00000080FFFFFFFFFF01"]= "Blue" button["00000070FFFFFFFFFF01"]= "Display" button["0000001AFFFFFFFFFF01"]= "TopMenu" button["00000040FFFFFFFFFF01"]= "PopUpMenu" button["0000000EFFFFFFFFFF01"]= "Return" button["10000054FFFFFFFFFF01"]= "Up" button["300000FFFFFFFFFFFF01"]= "RightUp" button["20000055FFFFFFFFFF01"]= "Right" button["600000FFFFFFFFFFFF01"]= "RightDown" button["40000056FFFFFFFFFF01"]= "Down" button["C00000FFFFFFFFFFFF01"]= "LeftDown" button["80000057FFFFFFFFFF01"]= "Left" button["900000FFFFFFFFFFFF01"]= "LeftUp" button["0000080BFFFFFFFFFF01"]= "Enter" button["0010005CFFFFFFFFFF01"]= "Triangle" button["0020005DFFFFFFFFFF01"]= "Circle" button["0080005FFFFFFFFFFF01"]= "Square" button["0040005EFFFFFFFFFF01"]= "Cross" button["0004005AFFFFFFFFFF01"]= "L1" button["00010058FFFFFFFFFF01"]= "L2" button["02000051FFFFFFFFFF01"]= "L3" button["00000143FFFFFFFFFF01"]= "Zarbi" button["01000050FFFFFFFFFF01"]= "Select" button["08000053FFFFFFFFFF01"]= "Start" button["0008005BFFFFFFFFFF01"]= "R1" button["00020059FFFFFFFFFF01"]= "R2" button["04000052FFFFFFFFFF01"]= "R3" button["00000033FFFFFFFFFF01"]= "Scan-" button["00000032FFFFFFFFFF01"]= "Play" button["00000034FFFFFFFFFF01"]= "Scan+" button["00000030FFFFFFFFFF01"]= "Prev" button["00000038FFFFFFFFFF01"]= "Stop" button["00000031FFFFFFFFFF01"]= "Next" button["00000060FFFFFFFFFF01"]= "SlowStep-" button["00000039FFFFFFFFFF01"]= "Pause" button["00000061FFFFFFFFFF01"]= "SlowStep+" zone = {} zone["000000FFFFFFFFFFFF00"]= "none" zone["00000016FFFFFFFFFF01"]= "Zone.A1" zone["00000064FFFFFFFFFF01"]= "Zone.A1" zone["00000065FFFFFFFFFF01"]= "Zone.A1" zone["00000063FFFFFFFFFF01"]= "Zone.A1" zone["00000000FFFFFFFFFF01"]= "Zone.A2" zone["00000001FFFFFFFFFF01"]= "Zone.A2" zone["00000002FFFFFFFFFF01"]= "Zone.A2" zone["00000003FFFFFFFFFF01"]= "Zone.A2" zone["00000004FFFFFFFFFF01"]= "Zone.A2" zone["00000005FFFFFFFFFF01"]= "Zone.A2" zone["00000006FFFFFFFFFF01"]= "Zone.A2" zone["00000007FFFFFFFFFF01"]= "Zone.A2" zone["00000008FFFFFFFFFF01"]= "Zone.A2" zone["0000000FFFFFFFFFFF01"]= "Zone.A2" zone["00000009FFFFFFFFFF01"]= "Zone.A2" zone["00000028FFFFFFFFFF01"]= "Zone.A2" zone["00000081FFFFFFFFFF01"]= "Zone.A3" zone["00000082FFFFFFFFFF01"]= "Zone.A3" zone["00000083FFFFFFFFFF01"]= "Zone.A3" zone["00000080FFFFFFFFFF01"]= "Zone.A3" zone["00000070FFFFFFFFFF01"]= "Zone.A3" zone["0000001AFFFFFFFFFF01"]= "Zone.A3" zone["00000040FFFFFFFFFF01"]= "Zone.A3" zone["0000000EFFFFFFFFFF01"]= "Zone.A3" zone["10000054FFFFFFFFFF01"]= "Zone.Pad" zone["300000FFFFFFFFFFFF01"]= "Zone.Pad" zone["20000055FFFFFFFFFF01"]= "Zone.Pad" zone["600000FFFFFFFFFFFF01"]= "Zone.Pad" zone["40000056FFFFFFFFFF01"]= "Zone.Pad" zone["C00000FFFFFFFFFFFF01"]= "Zone.Pad" zone["80000057FFFFFFFFFF01"]= "Zone.Pad" zone["900000FFFFFFFFFFFF01"]= "Zone.Pad" zone["0000080BFFFFFFFFFF01"]= "Zone.Pad" zone["0010005CFFFFFFFFFF01"]= "Zone.B1" zone["0020005DFFFFFFFFFF01"]= "Zone.B1" zone["0080005FFFFFFFFFFF01"]= "Zone.B1" zone["0040005EFFFFFFFFFF01"]= "Zone.B1" zone["0004005AFFFFFFFFFF01"]= "Zone.B2" zone["00010058FFFFFFFFFF01"]= "Zone.B2" zone["02000051FFFFFFFFFF01"]= "Zone.B2" zone["00000143FFFFFFFFFF01"]= "none" zone["01000050FFFFFFFFFF01"]= "Zone.B2" zone["08000053FFFFFFFFFF01"]= "Zone.B2" zone["0008005BFFFFFFFFFF01"]= "Zone.B2" zone["00020059FFFFFFFFFF01"]= "Zone.B2" zone["04000052FFFFFFFFFF01"]= "Zone.B2" zone["00000033FFFFFFFFFF01"]= "Zone.C" zone["00000032FFFFFFFFFF01"]= "Zone.C" zone["00000034FFFFFFFFFF01"]= "Zone.C" zone["00000030FFFFFFFFFF01"]= "Zone.C" zone["00000038FFFFFFFFFF01"]= "Zone.C" zone["00000031FFFFFFFFFF01"]= "Zone.C" zone["00000060FFFFFFFFFF01"]= "Zone.C" zone["00000039FFFFFFFFFF01"]= "Zone.C" zone["00000061FFFFFFFFFF01"]= "Zone.C" class Text: manufacturer = "Manufacturer" deviceName = "Device Name" connected = "Connected" eventName = "Event prefix (optional):" yes = "Yes" no = "No" eventsSettings = "Remote Events Settings" enduringEvents = "Trigger enduring events for buttons" rawDataEvents = "Use raw Data as event name" ps3Settings = "PS3 Remote Events Settings" ps3DataEvents = "Use ps3 Remote Key as event name" ps3Release = "Generate ps3 Remote Release event" ps3Zone = "Generate ps3 Remote Zone event" shortKeyTime = "Short press if lower than" longKeyTime = "Long press if greater than" sleepTime = "Sleep event generated after" hibernateTime = "Hibernate event generated after" seconds = "seconds" noOtherPort = "Use selected device only if connected to current port" errorFind = "Error finding HID device: " errorOpen = "Error opening HID device: " errorRead = "Error reading HID device: " errorRetrieval = "Error getting HID device info." errorMultipleDevices = "Multiple devices found. Don't know which to use." errorInvalidDataIndex = "Found data index not defined as button or control value." vendorID = "Vendor ID " enteredLowPower = "%s entered low-power mode" exitedLowPower = "%s exited low-power mode" #structures for ctypes class GUID(Structure): _fields_ = [ ("Data1", c_ulong), ("Data2", c_ushort), ("Data3", c_ushort), ("Data4", c_byte * 8) ] class SP_DEVICE_INTERFACE_DATA(Structure): _fields_ = [("cbSize", c_ulong), ("InterfaceClassGuid", GUID), ("Flags", c_ulong), ("Reserved", POINTER(ULONG)) ] class SP_DEVICE_INTERFACE_DETAIL_DATA_A(Structure): _fields_ = [("cbSize", c_ulong), ("DevicePath", c_char * 255) ] class HIDD_ATTRIBUTES(Structure): _fields_ = [("cbSize", c_ulong), ("VendorID", c_ushort), ("ProductID", c_ushort), ("VersionNumber", c_ushort) ] class HIDP_CAPS(Structure): _fields_ = [ ("Usage", c_ushort), ("UsagePage", c_ushort), ("InputReportByteLength", c_ushort), ("OutputReportByteLength", c_ushort), ("FeatureReportByteLength", c_ushort), ("Reserved", c_ushort * 17), ("NumberLinkCollectionNodes", c_ushort), ("NumberInputButtonCaps", c_ushort), ("NumberInputValueCaps", c_ushort), ("NumberInputDataIndices", c_ushort), ("NumberOutputButtonCaps", c_ushort), ("NumberOutputValueCaps", c_ushort), ("NumberOutputDataIndices", c_ushort), ("NumberFeatureButtonCaps", c_ushort), ("NumberFeatureValueCaps", c_ushort), ("NumberFeatureDataIndices", c_ushort) ] class HIDP_CAPS_UNION(Union): class HIDP_BUTTON_CAPS_RANGE(Structure): _fields_ = [ ("UsageMin", c_ushort), ("UsageMax", c_ushort), ("StringMin", c_ushort), ("StringMax", c_ushort), ("DesignatorMin", c_ushort), ("DesignatorMax", c_ushort), ("DataIndexMin", c_ushort), ("DataIndexMax", c_ushort) ] class HIDP_BUTTON_CAPS_NOT_RANGE(Structure): _fields_ = [ ("Usage", c_ushort), ("Reserved1", c_ushort), ("StringIndex", c_ushort), ("Reserved2", c_ushort), ("DesignatorIndex", c_ushort), ("Reserved3", c_ushort), ("DataIndex", c_ushort), ("Reserved4", c_ushort) ] _fields_ = [ ("Range", HIDP_BUTTON_CAPS_RANGE), ("NotRange", HIDP_BUTTON_CAPS_NOT_RANGE) ] class HIDP_BUTTON_CAPS(Structure): _fields_ = [ ("UsagePage", c_ushort), ("ReportID", c_char), ("IsAlias", BOOLEAN), ("BitField", c_ushort), ("LinkCollection", c_ushort), ("LinkUsage", c_ushort), ("LinkUsagePage", c_ushort), ("IsRange", BOOLEAN), ("IsStringRange", BOOLEAN), ("IsDesignatorRange", BOOLEAN), ("IsAbsolute", BOOLEAN), ("Reserved", c_ulong * 10), ("Info", HIDP_CAPS_UNION) ] class HIDP_VALUE_CAPS(Structure): _fields_ = [ ("UsagePage", c_ushort), ("ReportID", c_char), ("IsAlias", BOOLEAN), ("BitField", c_ushort), ("LinkCollection", c_ushort), ("LinkUsage", c_ushort), ("LinkUsagePage", c_ushort), ("IsRange", BOOLEAN), ("IsStringRange", BOOLEAN), ("IsDesignatorRange", BOOLEAN), ("IsAbsolute", BOOLEAN), ("HasNull", BOOLEAN), ("Reserved", c_char), ("BitSize", c_ushort), ("ReportCount", c_ushort), ("Reserved2", c_ushort * 5), ("UnitsExp", c_ulong), ("Units", c_ulong), ("LogicalMin", c_long), ("LogicalMax", c_long), ("PhysicalMin", c_long), ("PhysicalMax", c_long), ("Info", HIDP_CAPS_UNION) ] class HIDP_DATA(Structure): class HIDP_DATA_VALUE(Union): _fields_ = [ ("RawValue", c_ulong), ("On", BOOLEAN), ] _fields_ = [ ("DataIndex", c_ushort), ("Reserved", c_ushort), ("Data", HIDP_DATA_VALUE) ] # Flags controlling what is included in the device information set built # by SetupDiGetClassDevs DIGCF_DEFAULT = 0x00000001 # only valid with DIGCF_DEVICEINTERFACE DIGCF_PRESENT = 0x00000002 DIGCF_ALLCLASSES = 0x00000004 DIGCF_PROFILE = 0x00000008 DIGCF_DEVICEINTERFACE = 0x00000010 #constants to identify the device info DEVICE_PATH = 0 VENDOR_ID = 1 VENDOR_STRING = 2 PRODUCT_ID = 3 PRODUCT_STRING = 4 VERSION_NUMBER= 5 BLUETOOTH_ADDRESS = 6 BLUETOOTH_LINK_MODE = MAX_INDEX = 7 #link mode ( LINK_MODE_NORMAL, LINK_MODE_HOLD, LINK_MODE_SNIFF, LINK_MODE_PARK, ) = xrange(4) # See if we've got widcomm - if not, we won't be changing the link mode ALLOW_CANCEL_SNIFF = True try: widcommDLL = ctypes.cdll.widcommsdk except WindowsError: widcommDLL = None else: IsStackServerUp = getattr(widcommDLL, '?IsStackServerUp@CBtIf@@QAEHXZ') IsStackServerUp.restype = BOOL if not IsStackServerUp(): widcommDLL = None if widcommDLL is None: def set_sniff_mode(bd_addr): return False def cancel_sniff_mode(bd_addr): return False def read_link_mode(bd_addr): return None else: SetSniffMode = getattr(widcommDLL, '?SetSniffMode@CBtIf@@SAHQAE@Z') SetSniffMode.restype = BOOL CancelSniffMode = getattr(widcommDLL, '?CancelSniffMode@CBtIf@@SAHQAE@Z') CancelSniffMode.restype = BOOL ReadLinkMode = getattr(widcommDLL, '?ReadLinkMode@CBtIf@@SAHQAEPAE@Z') ReadLinkMode.restype = BOOLEAN def set_sniff_mode(bd_addr): result = SetSniffMode(bd_addr) return bool(result) def cancel_sniff_mode(bd_addr): if ALLOW_CANCEL_SNIFF: result = CancelSniffMode(bd_addr) return bool(result) return False def read_link_mode(bd_addr): mode = c_ubyte(0) result = ReadLinkMode(bd_addr, byref(mode)) if result: return mode.value return None def check_link_mode_sniff(device): if device is None: return mode = read_link_mode(device[BLUETOOTH_ADDRESS]) if mode == LINK_MODE_SNIFF and mode != device[BLUETOOTH_LINK_MODE]: device[BLUETOOTH_LINK_MODE] = mode print Text.enteredLowPower % (device_name(device),) def check_link_mode_no_sniff(device): if device is None: return mode = read_link_mode(device[BLUETOOTH_ADDRESS]) if mode == LINK_MODE_NORMAL and mode != device[BLUETOOTH_LINK_MODE]: device[BLUETOOTH_LINK_MODE] = mode print Text.exitedLowPower % (device_name(device),) #helper class to iterate, find and open hid devices class HIDHelper: text = Text deviceList = [] def __init__(self): self.UpdateDeviceList() def UpdateDeviceList(self): self.deviceList = [] #dll references setupapiDLL = ctypes.windll.setupapi hidDLL = ctypes.windll.hid #prepare Interfacedata interfaceInfo = SP_DEVICE_INTERFACE_DATA() interfaceInfo.cbSize = sizeof(interfaceInfo) #prepare InterfaceDetailData Structure interfaceDetailData = SP_DEVICE_INTERFACE_DETAIL_DATA_A() interfaceDetailData.cbSize = 5 #prepare HIDD_ATTRIBUTES hiddAttributes = HIDD_ATTRIBUTES() hiddAttributes.cbSize = sizeof(hiddAttributes) #get guid for HID device class g = GUID() hidDLL.HidD_GetHidGuid(byref(g)) #get handle to the device information set hinfo = setupapiDLL.SetupDiGetClassDevsA(byref(g), None, None, DIGCF_PRESENT + DIGCF_DEVICEINTERFACE) #enumerate devices i = 0 while setupapiDLL.SetupDiEnumDeviceInterfaces(hinfo, None, byref(g), i, byref(interfaceInfo)): device = {} i += 1 #get the required size requiredSize = c_ulong() setupapiDLL.SetupDiGetDeviceInterfaceDetailA(hinfo, byref(interfaceInfo), None, 0, byref(requiredSize), None) if requiredSize.value > 250: eg.PrintError(self.text.errorRetrieval) continue #prevent a buffer overflow #get the actual info setupapiDLL.SetupDiGetDeviceInterfaceDetailA( hinfo, byref(interfaceInfo), byref(interfaceDetailData), requiredSize, pointer(requiredSize), None ) device[DEVICE_PATH] = interfaceDetailData.DevicePath #get handle to HID device try: hidHandle = win32file.CreateFile( device[DEVICE_PATH], win32con.GENERIC_READ | win32con.GENERIC_WRITE, win32con.FILE_SHARE_READ | win32con.FILE_SHARE_WRITE, None, win32con.OPEN_EXISTING, 0, 0 ) #skipping devices which cannot be opened #(e.g. mice & keyboards, which are opened exclusivly by OS) if int(hidHandle) <= 0: continue except: continue #getting additional info hidDLL.HidD_GetAttributes(int(hidHandle), byref(hiddAttributes)) device[VENDOR_ID] = hiddAttributes.VendorID device[PRODUCT_ID] = hiddAttributes.ProductID device[VERSION_NUMBER] = hiddAttributes.VersionNumber #prepare string buffer for device info strings hidpStringType = c_wchar * 128 infoStr = hidpStringType() #getting manufacturer result = hidDLL.HidD_GetManufacturerString( int(hidHandle), byref(infoStr), ctypes.sizeof(infoStr)) if not result or len(infoStr.value) == 0: #build a generic ManufacturerString with the vendor ID device[VENDOR_STRING] = self.text.vendorID + str(hiddAttributes.VendorID) else: device[VENDOR_STRING] = infoStr.value #getting device name result = hidDLL.HidD_GetProductString( int(hidHandle), byref(infoStr), ctypes.sizeof(infoStr)) if not result or len(infoStr.value) == 0: #getting product name via registry devicePathSplit = device[DEVICE_PATH][4:].split("#") regkey = "SYSTEM\\CurrentControlSet\\Enum\\" + devicePathSplit[0] + \ "\\" + devicePathSplit[1] + "\\" + devicePathSplit[2] regHandle = _winreg.OpenKey( _winreg.HKEY_LOCAL_MACHINE, regkey) device[PRODUCT_STRING], regType = _winreg.QueryValueEx(regHandle, "DeviceDesc") _winreg.CloseKey(regHandle) else: device[PRODUCT_STRING] = infoStr.value #close handle win32file.CloseHandle(hidHandle) #add device to internal list self.deviceList.append(device) #end loop #destroy deviceinfolist setupapiDLL.SetupDiDestroyDeviceInfoList(hinfo) # try to find Bluetooth device IDs self.findBluetoothDeviceIds(self.deviceList) def findBluetoothDeviceIds(self, deviceList): # try to find Bluetooth device ID - we'll check the Widcomm section of the registry regkey = "SYSTEM\\CurrentControlSet\\Enum\\{95C7A0A0-3094-11D7-A202-00508B9D7D5A}" mapping = self.findBluetoothDeviceIdNameMapping(regkey) for d in deviceList: devicePathSplit = d[DEVICE_PATH][4:].split("#") parentId = devicePathSplit[2] for parentIdPrefix in mapping: if parentId.startswith(parentIdPrefix): d[BLUETOOTH_ADDRESS] = mapping[parentIdPrefix] d[BLUETOOTH_LINK_MODE] = read_link_mode(d[BLUETOOTH_ADDRESS]) break else: d[BLUETOOTH_ADDRESS] = None d[BLUETOOTH_LINK_MODE] = None def findBluetoothDeviceIdNameMapping(self, regkey, stack=None, mapping=None): # iterate through all the subkeys, looking for the 'ParentIdPrefix' and 'BdAddr' # values. 'LocationInformation' will match the PRODUCT_STRING above. if stack is None: stack = [] if mapping is None: mapping = {} appended_parent = False try: regHandle = _winreg.OpenKey( _winreg.HKEY_LOCAL_MACHINE, regkey) except WindowsError: return mapping try: parentIdPrefix, regType = _winreg.QueryValueEx(regHandle, "ParentIdPrefix") stack.append(parentIdPrefix) appended_parent = True except EnvironmentError: pass try: bdaddr, regType = _winreg.QueryValueEx(regHandle, "BdAddr") if stack: mapping[stack[-1]] = bdaddr except EnvironmentError: pass subkeys = [] try: for i in itertools.count(0): subkeys.append(_winreg.EnumKey(regHandle, i)) except EnvironmentError: pass _winreg.CloseKey(regHandle) for k in subkeys: subkey = regkey + '\\' + k self.findBluetoothDeviceIdNameMapping(subkey, stack, mapping) if appended_parent: stack.pop() return mapping def _get_device(self, noOtherPort, devicePath, vendorID, productID, versionNumber ): found = 0 path = "" for item in self.deviceList: if noOtherPort: #just search for devicepath if item[DEVICE_PATH] == devicePath: #found right device return item else: #find the right vendor and product ids if item[VENDOR_ID] == vendorID \ and item[PRODUCT_ID] == productID \ and item[VERSION_NUMBER] == versionNumber: found = found + 1 if item[DEVICE_PATH] == devicePath: #found right device return item if found == 1: return item #multiple devices found #don't know which to use if found > 1: eg.PrintError(self.text.errorMultipleDevices) return None #gets the devicePath #the devicePath parameter is only used with multiple same devices def GetDevicePath(self, noOtherPort, devicePath, vendorID, productID, versionNumber ): device = self._get_device(noOtherPort, devicePath, vendorID, productID, versionNumber) if device is None: return None return device[DEVICE_PATH] #gets the device bluetooth address #the devicePath parameter is only used with multiple same devices def GetDeviceBTAddress(self, noOtherPort, devicePath, vendorID, productID, versionNumber ): device = self._get_device(noOtherPort, devicePath, vendorID, productID, versionNumber) if device is None: return None return device[BLUETOOTH_ADDRESS] class TimerThread(threading.Thread): def __init__(self, plugin, name, interval, prefix, evtName, ): self.start_time = time.time() self.plugin = plugin self.name = name self.interval = interval self.prefix = prefix self.evtName = evtName threading.Thread.__init__(self, name = name) self.finished = threading.Event() self.abort = False def run(self): now = time.time() elapsed = now - self.start_time remaining = max(0, min(self.interval, self.interval - elapsed)) self.finished.wait(remaining) self.finished.clear() if not self.abort: eg.TriggerEvent(self.evtName, prefix = self.prefix) def stop(self): self.abort = True self.finished.set() DEVICE = None class HIDThread(threading.Thread): def __init__(self, plugin, helper, enduringEvents, rawDataEvents, ps3DataEvents, ps3Release, ps3Zone, shortKeyTime, longKeyTime, sleepTime, hibernateTime, noOtherPort, devicePath, vendorID, vendorString, productID, productString, versionNumber, ): self.ps3Remote = Ps3Remote self.text = Text self.deviceName = vendorString + " " + productString self.abort = False self._overlappedRead = win32file.OVERLAPPED() self._overlappedRead.hEvent = win32event.CreateEvent(None, 1, 0, None) self.evtName = "None" self.zoneName = "None" self.maskRegularEvent = False self.regularEvent = False self.Started = True self.timeStarted = time.time() #getting devicePath self.devicePath = helper.GetDevicePath( noOtherPort, devicePath, vendorID, productID, versionNumber ) if not self.devicePath: self.stop_enduring_event() eg.PrintError(self.text.errorFind + self.deviceName) return threading.Thread.__init__(self, name = self.devicePath) #setting members self.plugin = plugin self.helper = helper self.enduringEvents = enduringEvents self.rawDataEvents = rawDataEvents self.ps3DataEvents = ps3DataEvents self.ps3Release = ps3Release self.ps3Zone = ps3Zone self.shortKeyTime = shortKeyTime self.longKeyTime = longKeyTime self.sleepTime = sleepTime self.hibernateTime = hibernateTime global DEVICE DEVICE = helper._get_device( noOtherPort, devicePath, vendorID, productID, versionNumber ) self.bdAddr = DEVICE[BLUETOOTH_ADDRESS] self.start() def AbortThread(self): self.abort = True win32event.SetEvent(self._overlappedRead.hEvent) def run(self): #open file/devcice try: handle = win32file.CreateFile( self.devicePath, win32con.GENERIC_READ | win32con.GENERIC_WRITE, win32con.FILE_SHARE_READ | win32con.FILE_SHARE_WRITE, None, # no security win32con.OPEN_EXISTING, win32con.FILE_ATTRIBUTE_NORMAL | win32con.FILE_FLAG_OVERLAPPED, 0 ) except: self.stop_enduring_event() eg.PrintError(self.text.errorOpen + self.deviceName) return #getting data to get the right buffer size hidDLL = ctypes.windll.hid setupapiDLL = ctypes.windll.setupapi #get preparsed data preparsedData = c_ulong() result = hidDLL.HidD_GetPreparsedData( int(handle), ctypes.byref(preparsedData) ) #getCaps hidpCaps = HIDP_CAPS() result = hidDLL.HidP_GetCaps(preparsedData, ctypes.byref(hidpCaps)) n = hidpCaps.InputReportByteLength rt = c_int(0) #report type input rl = c_ulong(n) #report length maxDataL = hidDLL.HidP_MaxDataListLength(rt, preparsedData) #getting button caps bCapsArrL = c_ushort(hidpCaps.NumberInputButtonCaps) bCapsArrType = HIDP_BUTTON_CAPS * bCapsArrL.value bCapsArr = bCapsArrType() hidDLL.HidP_GetButtonCaps( rt, ctypes.byref(bCapsArr), ctypes.byref(bCapsArrL), preparsedData ) #getting value caps vCapsArrL = c_ushort(hidpCaps.NumberInputValueCaps) vCapsArrType = HIDP_VALUE_CAPS * vCapsArrL.value vCapsArr = vCapsArrType() hidDLL.HidP_GetValueCaps( rt, ctypes.byref(vCapsArr), ctypes.byref(vCapsArrL), preparsedData ) #parsing caps # prepare a list to find and store for each index # whether it is a button or value oldValues = {} dataIndexType = [0] * hidpCaps.NumberInputDataIndices #list entries depending on caps for i in range(bCapsArrL.value): if bCapsArr[i].IsRange: for ii in range( bCapsArr[i].Info.Range.DataIndexMin, bCapsArr[i].Info.Range.DataIndexMax + 1 ): dataIndexType[ii] = 1 else: ii = bCapsArr[i].Info.NotRange.DataIndex dataIndexType[ii] = 1 for i in range(vCapsArrL.value): if vCapsArr[i].IsRange: for ii in range( vCapsArr[i].Info.Range.DataIndexMin, vCapsArr[i].Info.Range.DataIndexMax + 1 ): dataIndexType[ii] = 2 oldValues[ii] = sys.maxint else: ii = vCapsArr[i].Info.NotRange.DataIndex dataIndexType[ii] = 2 oldValues[ii] = sys.maxint #prepare data array with maximum possible length DataArrayType = HIDP_DATA * maxDataL data = DataArrayType() while not self.abort: #try to read and wait for an event to happen try: win32event.ResetEvent(self._overlappedRead.hEvent) rc, buf = win32file.ReadFile(handle, n, self._overlappedRead) #waiting for an event win32event.WaitForSingleObject( self._overlappedRead.hEvent, win32event.INFINITE ) except: self.stop_enduring_event() eg.PrintError(self.text.errorRead + self.deviceName) self.abort = True #parse data if len(buf) == n and not self.abort: #raw data events if self.ps3DataEvents: read = str(buf) keycode = binascii.hexlify(read).upper()[2:22] try: evtName = self.ps3Remote.button[keycode] zoneName = self.ps3Remote.zone[keycode] regularEvent = True except KeyError: evtName = keycode zoneName = "Extended" regularEvent = False # Make sure any time we get a keypress, we come out of low-power mode cancel_sniff_mode(self.bdAddr) if result: eg.scheduler.AddTask(1.0, check_link_mode_no_sniff, DEVICE) if self.enduringEvents: self.stop_enduring_event() prefix = self.plugin.info.eventPrefix currentTime = time.time() elapsedTime = currentTime - self.timeStarted self.timeStarted = time.time() if self.Started: if not self.regularEvent or evtName == "Release": if elapsedTime < self.shortKeyTime: self.plugin.TriggerEvent(self.evtName + ".S") self.Started = False if evtName == "Release": if self.sleepTime > 0: self.Timer2 = TimerThread(self.plugin, "Timer2", self.sleepTime, prefix, "Sleep") self.Timer2.start() if self.hibernateTime > 0: self.Timer3 = TimerThread(self.plugin, "Timer3", self.hibernateTime, prefix, "Hibernate") self.Timer3.start() if self.ps3Release: self.plugin.TriggerEvent(evtName) self.maskRegularEvent = False else: if not self.maskRegularEvent or not regularEvent: if elapsedTime > self.sleepTime and self.sleepTime > 0: self.plugin.TriggerEvent("WakeUp") self.zoneName = "None" if self.ps3Zone and self.zoneName != zoneName and zoneName != "none": self.plugin.TriggerEvent(zoneName) self.plugin.TriggerEnduringEvent(evtName) if elapsedTime < self.shortKeyTime and evtName == self.evtName: self.Timer1 = TimerThread(self.plugin, "Timer1", self.longKeyTime, prefix, evtName + ".M") self.Timer1.start() eg.TriggerEvent(evtName + ".D", prefix = prefix) else: self.Timer1 = TimerThread(self.plugin, "Timer1", self.longKeyTime, prefix, evtName + ".L") self.Timer1.start() self.Started = True self.evtName = evtName self.zoneName = zoneName self.regularEvent = regularEvent if not regularEvent: self.maskRegularEvent = True else: self.plugin.TriggerEvent(evtName) elif maxDataL == 0 or self.rawDataEvents: read = str(buf) self.plugin.TriggerEvent( binascii.hexlify(read).upper() ) else: dataL = c_ulong(maxDataL) result = hidDLL.HidP_GetData( rt, ctypes.byref(data), ctypes.byref(dataL), preparsedData, ctypes.c_char_p(str(buf)), rl ) #parse data to trigger events btnPressed = [] for i in range(dataL.value): tmpIndex = data[i].DataIndex if dataIndexType[tmpIndex] == 1:#button #collect buttons pressed btnPressed.append(str(tmpIndex)) elif dataIndexType[tmpIndex] == 2:#control value newValue = int(data[i].Data.RawValue) if newValue == oldValues[tmpIndex]: continue oldValues[tmpIndex] = newValue self.plugin.TriggerEvent( "Value." + str(tmpIndex), payload = newValue ) else: eg.PrintError(self.text.errorInvalidDataIndex) if len(btnPressed): #one or more buttons pressed #btnPressed.sort() evtName = "Button." + "+".join(btnPressed) if self.enduringEvents: self.plugin.TriggerEnduringEvent(evtName) else: self.plugin.TriggerEvent(evtName) elif self.enduringEvents: #no buttons pressed anymore self.plugin.EndLastEvent() else: #trigger event so that releasing all buttons #can get noticed even w/o enduring events self.plugin.TriggerEvent("Button.None") #loop aborted if self.enduringEvents: self.stop_enduring_event() win32file.CloseHandle(handle) #free references hidDLL.HidD_FreePreparsedData(ctypes.byref(preparsedData)) #HID thread finished def stop_enduring_event(self): try: enduringEvents = self.enduringEvents except AttributeError: enduringEvents = False if enduringEvents: try: if self.Timer1.isAlive(): self.Timer1.stop() except AttributeError: pass else: del self.Timer1 try: if self.Timer2.isAlive(): self.Timer2.stop() except AttributeError: pass else: del self.Timer2 try: if self.Timer3.isAlive(): self.Timer3.stop() except AttributeError: pass else: del self.Timer3 self.plugin.EndLastEvent() def device_name(device): return device[VENDOR_STRING] + " " + device[PRODUCT_STRING] def handle_wake_up(event): global ALLOW_CANCEL_SNIFF if event.string == 'System.Resume': ALLOW_CANCEL_SNIFF = True device = DEVICE if device is None: return bd_addr = device[BLUETOOTH_ADDRESS] result = cancel_sniff_mode(bd_addr) if result: eg.scheduler.AddTask(1.0, check_link_mode_no_sniff, DEVICE) def handle_sleep(event): device = DEVICE if device is None: return bd_addr = device[BLUETOOTH_ADDRESS] result = set_sniff_mode(bd_addr) if result: eg.scheduler.AddTask(1.0, check_link_mode_sniff, DEVICE) def handle_init(event): # Put the PS3 remote to sleep if it isn't already handle_sleep(event) def handle_machine_sleep(event): global ALLOW_CANCEL_SNIFF if event.string == 'System.Suspend': ALLOW_CANCEL_SNIFF = False return handle_sleep(event) INSTANCE = None def handle_device_attached(event): instance = INSTANCE if not isinstance(instance, PS3): return eg.actionThread.Call(instance.__stop__) eg.actionThread.Call(instance.__start__, *instance.args) class PS3(eg.PluginClass): helper = None text = Text thread = None def __start__(self, *args): global INSTANCE INSTANCE = self # We store the arguments away so that we can use them again later (i.e. when we resume # from standby and need to restart ourself). self.args = args self.__start(*args) def __start(self, eventName, enduringEvents, rawDataEvents, ps3DataEvents, ps3Release, ps3Zone, shortKeyTime, longKeyTime, sleepTime, hibernateTime, noOtherPort, devicePath, vendorID, vendorString, productID, productString, versionNumber, # For backwards-compatibility with 2.0.2 and 3.0.0 - if a new config option is added this can just be replaced dummy=None ): # Set up bindings to ensure that we handle power states, etc correctly. eg.Bind('Main.OnInit', handle_init) eg.Bind('HID.WakeUp', handle_wake_up) eg.Bind('System.Resume', handle_wake_up) eg.Bind('HID.Hibernate', handle_sleep) eg.Bind('System.QuerySuspend', handle_machine_sleep) eg.Bind('System.Suspend', handle_machine_sleep) # If we get one of these, we __stop__ and __start__ the plugin so that we # pick up the device (if necessary). eg.Bind('System.DeviceAttached', handle_device_attached) if eventName: self.info.eventPrefix = eventName else: self.info.eventPrefix = "HID" #ensure helper object is up to date if not self.helper: self.helper = HIDHelper() else: self.helper.UpdateDeviceList() #create thread self.thread = HIDThread(self, self.helper, enduringEvents, rawDataEvents, ps3DataEvents, ps3Release, ps3Zone, shortKeyTime, longKeyTime, sleepTime, hibernateTime, noOtherPort, devicePath, vendorID, vendorString, productID, productString, versionNumber ) def __stop__(self): global INSTANCE INSTANCE = None self.thread.AbortThread() eg.Unbind('Main.OnInit', handle_init) eg.Unbind('HID.Hibernate', handle_sleep) eg.Unbind('System.QuerySuspend', handle_machine_sleep) eg.Unbind('System.Suspend', handle_machine_sleep) eg.Unbind('HID.Wake', handle_wake_up) eg.Unbind('System.Resume', handle_wake_up) eg.Unbind('System.DeviceAttached', handle_device_attached) def Configure(self, eventName = "", enduringEvents = True, rawDataEvents = False, ps3DataEvents = False, ps3Release = False, ps3Zone = False, shortKeyTime = 0.3, longKeyTime = 0.5, sleepTime = 5.0, hibernateTime = 60.0, noOtherPort = False, devicePath = None, vendorID = None, vendorString = None, productID = None, productString = None, versionNumber = None, # For backwards-compatibility with 2.0.2 and 3.0.0 - if a new config option is added this can just be replaced dummy=None ): #ensure helper object is up to date if not self.helper: self.helper = HIDHelper() else: self.helper.UpdateDeviceList() panel = eg.ConfigPanel(self, resizable=True) #building dialog hidList = wx.ListCtrl(panel, -1, pos=wx.DefaultPosition, size=wx.DefaultSize, style=wx.LC_REPORT | wx.LC_SINGLE_SEL) #create GUI hidList.InsertColumn(0, self.text.deviceName) hidList.InsertColumn(1, self.text.manufacturer) hidList.InsertColumn(2, self.text.connected) path = self.helper.GetDevicePath(noOtherPort, devicePath, vendorID, productID, versionNumber) #fill list devices = {} idx = 0 for item in self.helper.deviceList: idx = hidList.InsertStringItem(sys.maxint, item[PRODUCT_STRING]) hidList.SetStringItem(idx, 1, item[VENDOR_STRING]) hidList.SetStringItem(idx, 2, self.text.yes) if item[DEVICE_PATH] == path: hidList.Select(idx) devices[idx] = item #add not connected device to bottom of list if not path: if not devicePath: #just select first entry on first start hidList.Select(0) else: item = { DEVICE_PATH: devicePath, VENDOR_ID: vendorID, VENDOR_STRING: vendorString, PRODUCT_ID: productID, PRODUCT_STRING: productString, VERSION_NUMBER: versionNumber, } idx = hidList.InsertStringItem(sys.maxint, item[PRODUCT_STRING]) hidList.SetStringItem(idx, 1, item[VENDOR_STRING]) hidList.SetStringItem(idx, 2, self.text.no) hidList.Select(idx) devices[idx] = item if hidList.GetFirstSelected() == -1: #no device selected, disable ok and apply button panel.dialog.buttonRow.okButton.Enable(False) panel.dialog.buttonRow.applyButton.Enable(False) #layout for i in range(hidList.GetColumnCount()): hidList.SetColumnWidth(i, wx.LIST_AUTOSIZE_USEHEADER) size = hidList.GetColumnWidth(i) hidList.SetColumnWidth(i, wx.LIST_AUTOSIZE) hidList.SetColumnWidth(i, max(size, hidList.GetColumnWidth(i) + 5)) panel.sizer.Add(hidList, 1, flag = wx.EXPAND) panel.sizer.Add((15,15)) #sizers eventsGroupSizer = wx.StaticBoxSizer( wx.StaticBox(panel, -1, self.text.eventsSettings), wx.VERTICAL ) eventsSizer = wx.GridBagSizer(0, 5) #eventname eventsSizer.Add( wx.StaticText(panel, -1, self.text.eventName), (0, 0), flag = wx.ALIGN_CENTER_VERTICAL) eventNameCtrl = wx.TextCtrl(panel, value = eventName) eventNameCtrl.SetMaxLength(32) eventsSizer.Add(eventNameCtrl, (0, 1), (1, 2), flag = wx.EXPAND) #checkbox for no other port option noOtherPortCtrl = wx.CheckBox(panel, -1, self.text.noOtherPort) noOtherPortCtrl.SetValue(noOtherPort) eventsSizer.Add(noOtherPortCtrl, (1, 0), (1, 3)) #checkbox for enduring event option enduringEventsCtrl = wx.CheckBox(panel, -1, self.text.enduringEvents) enduringEventsCtrl.SetValue(enduringEvents) eventsSizer.Add(enduringEventsCtrl, (2, 0), (1, 3)) #checkbox for raw data events rawDataEventsCtrl = wx.CheckBox(panel, -1, self.text.rawDataEvents) rawDataEventsCtrl.SetValue(rawDataEvents) eventsSizer.Add(rawDataEventsCtrl, (3, 0), (1, 3)) eventsGroupSizer.Add(eventsSizer, 0, wx.ALL, 10) panel.sizer.Add(eventsGroupSizer, 0, wx.EXPAND) panel.sizer.Add((15,15)) #sizers ps3GroupSizer = wx.StaticBoxSizer( wx.StaticBox(panel, -1, self.text.ps3Settings), wx.VERTICAL ) ps3Sizer = wx.GridBagSizer(0, 5) #checkbox for ps3 data events ps3DataEventsCtrl = wx.CheckBox(panel, -1, self.text.ps3DataEvents) ps3DataEventsCtrl.SetValue(ps3DataEvents) ps3Sizer.Add(ps3DataEventsCtrl, (0, 0), (1, 3)) #checkbox for ps3 release event ps3ReleaseCtrl = wx.CheckBox(panel, -1, self.text.ps3Release) ps3ReleaseCtrl.SetValue(ps3Release) ps3Sizer.Add(ps3ReleaseCtrl, (1, 0), (1, 3)) #checkbox for ps3 zone event ps3ZoneCtrl = wx.CheckBox(panel, -1, self.text.ps3Zone) ps3ZoneCtrl.SetValue(ps3Zone) ps3Sizer.Add(ps3ZoneCtrl, (2, 0), (1, 3)) #short key time ps3Sizer.Add( wx.StaticText(panel, -1, self.text.shortKeyTime), (3, 0), flag = wx.ALIGN_CENTER_VERTICAL) shortKeyTimeCtrl = eg.SpinNumCtrl( panel, -1, shortKeyTime, size=(200,-1), integerWidth=7, increment=0.05 ) ps3Sizer.Add(shortKeyTimeCtrl, (3, 1), flag = wx.EXPAND) ps3Sizer.Add( wx.StaticText(panel, -1, self.text.seconds), (3, 2), (1, 2), flag = wx.ALIGN_CENTER_VERTICAL) #long key time ps3Sizer.Add( wx.StaticText(panel, -1, self.text.longKeyTime), (4, 0), flag = wx.ALIGN_CENTER_VERTICAL) longKeyTimeCtrl = eg.SpinNumCtrl( panel, -1, longKeyTime, size=(200,-1), integerWidth=7, increment=0.05 ) ps3Sizer.Add(longKeyTimeCtrl, (4, 1), flag = wx.EXPAND) ps3Sizer.Add( wx.StaticText(panel, -1, self.text.seconds), (4, 2), (1, 2), flag = wx.ALIGN_CENTER_VERTICAL) #sleep time ps3Sizer.Add( wx.StaticText(panel, -1, self.text.sleepTime), (5, 0), flag = wx.ALIGN_CENTER_VERTICAL) sleepTimeCtrl = eg.SpinNumCtrl( panel, -1, sleepTime, size=(200,-1), integerWidth=7, increment=1.00 ) ps3Sizer.Add(sleepTimeCtrl, (5, 1), flag = wx.EXPAND) ps3Sizer.Add( wx.StaticText(panel, -1, self.text.seconds), (5, 2), (1, 2), flag = wx.ALIGN_CENTER_VERTICAL) #hibernate time ps3Sizer.Add( wx.StaticText(panel, -1, self.text.hibernateTime), (6, 0), flag = wx.ALIGN_CENTER_VERTICAL) hibernateTimeCtrl = eg.SpinNumCtrl( panel, -1, hibernateTime, size=(200,-1), integerWidth=7, increment=1.00 ) ps3Sizer.Add(hibernateTimeCtrl, (6, 1), flag = wx.EXPAND) ps3Sizer.Add( wx.StaticText(panel, -1, self.text.seconds), (6, 2), (1, 2), flag = wx.ALIGN_CENTER_VERTICAL) ps3GroupSizer.Add(ps3Sizer, 0, wx.ALL, 10) panel.sizer.Add(ps3GroupSizer, 0, wx.EXPAND) def OnHidListSelect(event): panel.dialog.buttonRow.okButton.Enable(True) panel.dialog.buttonRow.applyButton.Enable(True) event.Skip() def OnRawDataEventsChange(event): enduringEventsCtrl.Enable(not rawDataEventsCtrl.GetValue()) ps3DataEventsCtrl.Enable(not rawDataEventsCtrl.GetValue()) event.Skip() def OnEnduringEventsChange(event): rawDataEventsCtrl.Enable(not enduringEventsCtrl.GetValue()) ps3ReleaseCtrl.Enable(enduringEventsCtrl.GetValue() and ps3DataEventsCtrl.GetValue()) ps3ZoneCtrl.Enable(enduringEventsCtrl.GetValue() and ps3DataEventsCtrl.GetValue()) event.Skip() def OnPs3DataEventsChange(event): rawDataEventsCtrl.Enable(not ps3DataEventsCtrl.GetValue()) ps3ReleaseCtrl.Enable(enduringEventsCtrl.GetValue() and ps3DataEventsCtrl.GetValue()) ps3ZoneCtrl.Enable(enduringEventsCtrl.GetValue() and ps3DataEventsCtrl.GetValue()) event.Skip() def OnPs3ReleaseChange(event): rawDataEventsCtrl.Enable(not ps3DataEventsCtrl.GetValue()) event.Skip() def OnPs3ZoneChange(event): rawDataEventsCtrl.Enable(not ps3DataEventsCtrl.GetValue()) event.Skip() OnRawDataEventsChange(wx.CommandEvent()) OnPs3DataEventsChange(wx.CommandEvent()) OnPs3ReleaseChange(wx.CommandEvent()) OnPs3ZoneChange(wx.CommandEvent()) OnEnduringEventsChange(wx.CommandEvent()) rawDataEventsCtrl.Bind(wx.EVT_CHECKBOX, OnRawDataEventsChange) ps3DataEventsCtrl.Bind(wx.EVT_CHECKBOX, OnPs3DataEventsChange) ps3ReleaseCtrl.Bind(wx.EVT_CHECKBOX, OnPs3ReleaseChange) ps3ZoneCtrl.Bind(wx.EVT_CHECKBOX, OnPs3ZoneChange) enduringEventsCtrl.Bind(wx.EVT_CHECKBOX, OnEnduringEventsChange) hidList.Bind(wx.EVT_LIST_ITEM_SELECTED, OnHidListSelect) while panel.Affirmed(): device = devices[hidList.GetFirstSelected()] panel.SetResult( eventNameCtrl.GetValue(), enduringEventsCtrl.GetValue(), rawDataEventsCtrl.GetValue(), ps3DataEventsCtrl.GetValue(), ps3ReleaseCtrl.GetValue(), ps3ZoneCtrl.GetValue(), shortKeyTimeCtrl.GetValue(), longKeyTimeCtrl.GetValue(), sleepTimeCtrl.GetValue(), hibernateTimeCtrl.GetValue(), noOtherPortCtrl.GetValue(), device[DEVICE_PATH], device[VENDOR_ID], device[VENDOR_STRING], device[PRODUCT_ID], device[PRODUCT_STRING], device[VERSION_NUMBER] )
gpl-2.0
3,992,069,199,257,997,000
32.55047
126
0.562804
false
4.023069
false
false
false
rocky/python2-trepan
trepan/bwprocessor/msg.py
1
1030
# -*- coding: utf-8 -*- ''' Common I/O routines''' # Note for errmsg, msg, and msg_nocr we don't want to simply make # an assignment of method names like self.msg = self.debugger.intf.msg, # because we want to allow the interface (intf) to change # dynamically. That is, the value of self.debugger may change # in the course of the program and if we made such an method assignemnt # we wouldn't pick up that change in our self.msg def errmsg(proc_obj, message, opts={}): response = proc_obj.response if 'set_name' in opts: response['name'] = 'error' return response['errs'].append(message) def msg(proc_obj, message, opts={}): response = proc_obj.response return response['msg'].append(message) # Demo it if __name__=='__main__': class Demo: def __init__(self): self.response = {'errs': [], 'msg' : []} pass pass import pprint demo = Demo() msg(demo, 'hi') pp = pprint.PrettyPrinter() pp.pprint(demo.response)
gpl-3.0
-3,844,177,047,269,908,500
28.428571
71
0.618447
false
3.691756
false
false
false
Scalr/scalr-ctl
scalrctl/commands/farm.py
2
6362
__author__ = 'Dmitriy Korsakov' __doc__ = 'Farm management' import json import copy from scalrctl import commands from scalrctl import click from scalrctl import request, settings class FarmTerminate(commands.SimplifiedAction): epilog = "Example: scalr-ctl farms terminate --farmId <ID> --force" post_template = { "terminateFarmRequest": {"force": True} } def get_options(self): hlp = "It is used to terminate the Server immediately ignoring scalr.system.server_terminate_timeout." force_terminate = click.Option(('--force', 'force'), is_flag=True, default=False, help=hlp) options = [force_terminate, ] options.extend(super(FarmTerminate, self).get_options()) return options def pre(self, *args, **kwargs): """ before request is made """ force = kwargs.pop("force", None) post_data = copy.deepcopy(self.post_template) post_data["terminateFarmRequest"]["force"] = force kv = {"import-data": post_data} kv.update(kwargs) arguments, kw = super(FarmTerminate, self).pre(*args, **kv) return arguments, kw class FarmLaunch(commands.SimplifiedAction): epilog = "Example: scalr-ctl farms launch --farmId <ID>" post_template = {} def pre(self, *args, **kwargs): """ before request is made """ kv = {"import-data": {}} kv.update(kwargs) arguments, kw = super(FarmLaunch, self).pre(*args, **kv) return arguments, kw class FarmClone(commands.SimplifiedAction): epilog = "Example: scalr-ctl farms clone --farmId <ID> --name MyNewFarm" post_template = { "cloneFarmRequest": {"name": ""} } def get_options(self): hlp = "The name of a new Farm." name = click.Option(('--name', 'name'), required=True, help=hlp) options = [name, ] options.extend(super(FarmClone, self).get_options()) return options def pre(self, *args, **kwargs): """ before request is made """ name = kwargs.pop("name", None) post_data = copy.deepcopy(self.post_template) post_data["cloneFarmRequest"]["name"] = name kv = {"import-data": post_data} kv.update(kwargs) arguments, kw = super(FarmClone, self).pre(*args, **kv) return arguments, kw class FarmSuspend(FarmLaunch): epilog = "Example: scalr-ctl farms suspend --farmId <ID>" post_template = {} class FarmResume(FarmLaunch): epilog = "Example: scalr-ctl farms resume --farmId <ID>" post_template = {} class FarmLock(commands.SimplifiedAction): epilog = "Example: scalr-ctl farm lock --farmId <ID> --comment <COMMENT> --unlock-permission <ANYONE|OWNER|TEAM>" post_template = { "lockFarmRequest": {"lockComment": "", "unlockPermission": "anyone"} } def get_options(self): comment = click.Option(('--lockComment', 'comment'), default="", help="Comment to lock a Farm.") hlp = "If you would like to prevent other users unlocking the Farm you should set 'owner' options.\ With 'team' options only members of the Farm's Teams can unlock this Farm.\ Default value 'anyone' means that anyone with access can unlock this Farm." unlock_permission = click.Option(( '--unlockPermission', 'unlock_permission'), default="anyone", show_default=True, help=hlp) options = [comment, unlock_permission] options.extend(super(FarmLock, self).get_options()) return options def pre(self, *args, **kwargs): """ before request is made """ comment = kwargs.pop("comment", None) unlock_permission = kwargs.pop("unlock_permission", "anyone") post_data = copy.deepcopy(self.post_template) post_data["lockFarmRequest"]["lockComment"] = comment post_data["lockFarmRequest"]["unlockPermission"] = unlock_permission kv = {"import-data": post_data} kv.update(kwargs) arguments, kw = super(FarmLock, self).pre(*args, **kv) return arguments, kw class FarmCreateFromTemplate(commands.Action): def pre(self, *args, **kwargs): """ before request is made """ kwargs = self._apply_arguments(**kwargs) stdin = kwargs.pop('stdin', None) kwargs["FarmTemplate"] = self._read_object() if stdin else self._edit_example() return args, kwargs def run(self, *args, **kwargs): """ Callback for click subcommand. """ hide_output = kwargs.pop('hide_output', False) # [ST-88] args, kwargs = self.pre(*args, **kwargs) uri = self._request_template payload = {} data = {} if '{envId}' in uri and not kwargs.get('envId') and settings.envId: kwargs['envId'] = settings.envId if kwargs: # filtering in-body and empty params uri = self._request_template.format(**kwargs) for key, value in kwargs.items(): param = '{{{}}}'.format(key) if value and (param not in self._request_template): data.update(value) if self.dry_run: click.echo('{} {} {} {}'.format(self.http_method, uri, payload, data)) # returns dummy response return json.dumps({'data': {}, 'meta': {}}) data = json.dumps(data) raw_response = request.request(self.http_method, self.api_level, uri, payload, data) response = self.post(raw_response) text = self._format_response(response, hidden=hide_output, **kwargs) if text is not None: click.echo(text) return response def _edit_example(self): commentary = \ '''# The body must be a valid FarmTemplate object. # # Type your FarmTemplate object below this line. The above text will not be sent to the API server.''' text = click.edit(commentary) if text: raw_object = "".join([line for line in text.splitlines() if not line.startswith("#")]).strip() else: raw_object = "" return json.loads(raw_object)
apache-2.0
738,455,535,190,341,600
31.793814
117
0.584565
false
3.929586
false
false
false
dusteye/greasemonkey-scripts
autologin.py
1
1930
#!/usr/bin/python3 #coding:utf-8 import urllib.request import urllib.parse import http.cookiejar import smtplib from email.mime.text import MIMEText from email.header import Header user = '[email protected]' passwd = '202,118,239,46' to = '[email protected]' def autologin(url, params, req_encoding, res_encoding): cookiejar = http.cookiejar.CookieJar() opener = urllib.request.build_opener(urllib.request.HTTPCookieProcessor(cookiejar)) urllib.request.install_opener(opener) params = urllib.parse.urlencode(params) params = params.encode(req_encoding) response = urllib.request.urlopen(url, params) text = response.read() text_decode = text.decode(req_encoding) text = text_decode.encode(res_encoding) return text def check(ip, passwd): params = {"fr":"00", "id_ip":ip, "pass":passwd, "set":"进入"} req_encoding = 'gb2312' res_encoding = 'utf-8' text = autologin('http://hitsun.hit.edu.cn/index1.php', params, req_encoding, res_encoding) text = str(text, 'utf-8') search_text = '所剩余额' for line in text.splitlines(): if line.find(search_text)!=-1: return(line.split(';')[2].split(' ')[0]) def genMail(iplist, user, to): context = '' for (ip,passwd) in iplist.items(): context += ip + ": " + check(ip, passwd) + '\n' context += '\n' msg = MIMEText(context.encode('utf-8'), 'plain', 'utf-8') sub = Header('当月服务器余额情况', 'utf-8') msg['Subject'] = sub msg['From'] = user msg['To'] = to return msg def sendMail(From, FromPass, To, mail): if not mail: return server = smtplib.SMTP("smtp.gmail.com", 587) server.ehlo() server.starttls() server.ehlo() server.login(From, FromPass) server.sendmail(From, To, mail) server.close() if __name__ == '__main__': iplist = { '202.118.239.46':'123456', '202.118.250.18':'123456', '202.118.250.19':'123456'} mail = genMail(iplist, user, to) sendMail(user, passwd, to, mail.as_string())
gpl-2.0
511,054,629,723,975,300
25.388889
92
0.680526
false
2.698864
false
false
false
huaweiswitch/neutron
neutron/agent/ovs_cleanup_util.py
8
3836
# Copyright (c) 2012 OpenStack Foundation. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo.config import cfg from neutron.agent.common import config as agent_config from neutron.agent import l3_agent from neutron.agent.linux import interface from neutron.agent.linux import ip_lib from neutron.agent.linux import ovs_lib from neutron.common import config from neutron.openstack.common import log as logging LOG = logging.getLogger(__name__) def setup_conf(): """Setup the cfg for the clean up utility. Use separate setup_conf for the utility because there are many options from the main config that do not apply during clean-up. """ opts = [ cfg.BoolOpt('ovs_all_ports', default=False, help=_('True to delete all ports on all the OpenvSwitch ' 'bridges. False to delete ports created by ' 'Neutron on integration and external network ' 'bridges.')) ] conf = cfg.CONF conf.register_cli_opts(opts) conf.register_opts(l3_agent.L3NATAgent.OPTS) conf.register_opts(interface.OPTS) agent_config.register_interface_driver_opts_helper(conf) agent_config.register_use_namespaces_opts_helper(conf) agent_config.register_root_helper(conf) return conf def collect_neutron_ports(bridges, root_helper): """Collect ports created by Neutron from OVS.""" ports = [] for bridge in bridges: ovs = ovs_lib.OVSBridge(bridge, root_helper) ports += [port.port_name for port in ovs.get_vif_ports()] return ports def delete_neutron_ports(ports, root_helper): """Delete non-internal ports created by Neutron Non-internal OVS ports need to be removed manually. """ for port in ports: if ip_lib.device_exists(port): device = ip_lib.IPDevice(port, root_helper) device.link.delete() LOG.info(_("Delete %s"), port) def main(): """Main method for cleaning up OVS bridges. The utility cleans up the integration bridges used by Neutron. """ conf = setup_conf() conf() config.setup_logging() configuration_bridges = set([conf.ovs_integration_bridge, conf.external_network_bridge]) ovs_bridges = set(ovs_lib.get_bridges(conf.AGENT.root_helper)) available_configuration_bridges = configuration_bridges & ovs_bridges if conf.ovs_all_ports: bridges = ovs_bridges else: bridges = available_configuration_bridges # Collect existing ports created by Neutron on configuration bridges. # After deleting ports from OVS bridges, we cannot determine which # ports were created by Neutron, so port information is collected now. ports = collect_neutron_ports(available_configuration_bridges, conf.AGENT.root_helper) for bridge in bridges: LOG.info(_("Cleaning %s"), bridge) ovs = ovs_lib.OVSBridge(bridge, conf.AGENT.root_helper) ovs.delete_ports(all_ports=conf.ovs_all_ports) # Remove remaining ports created by Neutron (usually veth pair) delete_neutron_ports(ports, conf.AGENT.root_helper) LOG.info(_("OVS cleanup completed successfully"))
apache-2.0
-5,369,221,548,570,687,000
33.872727
78
0.671794
false
4.033649
true
false
false
GoogleCloudPlatform/appengine-gcs-client
python/test/rest_api_test.py
2
10917
# Copyright 2012 Google Inc. All Rights Reserved. import httplib import pickle import unittest import mock from google.appengine.ext import ndb from google.appengine.api import app_identity from google.appengine.api import memcache from google.appengine.api import urlfetch from google.appengine.ext import testbed try: from cloudstorage import api_utils from cloudstorage import rest_api from cloudstorage import test_utils except ImportError: from google.appengine.ext.cloudstorage import api_utils from google.appengine.ext.cloudstorage import rest_api from google.appengine.ext.cloudstorage import test_utils class RestApiTest(unittest.TestCase): def setUp(self): super(RestApiTest, self).setUp() self.testbed = testbed.Testbed() self.testbed.activate() self.testbed.init_app_identity_stub() self.testbed.init_datastore_v3_stub() self.testbed.init_memcache_stub() self.testbed.init_urlfetch_stub() api_utils._thread_local_settings.retry_params = None def tearDown(self): self.testbed.deactivate() super(RestApiTest, self).tearDown() def testBasicCall(self): api = rest_api._RestApi('scope') self.assertEqual(api.scopes, ['scope']) fut_get_token = ndb.Future() fut_get_token.set_result('blah') api.get_token_async = mock.create_autospec(api.get_token_async, return_value=fut_get_token) fut_urlfetch = ndb.Future() fut_urlfetch.set_result( test_utils.MockUrlFetchResult(200, {'foo': 'bar'}, 'yoohoo')) ctx_urlfetch = mock.Mock(return_value=fut_urlfetch) ndb.get_context().urlfetch = ctx_urlfetch res = api.do_request('http://example.com') self.assertEqual(res, (200, {'foo': 'bar'}, 'yoohoo')) ctx_urlfetch.assert_called_once_with( 'http://example.com', headers={'authorization': 'OAuth blah', 'User-Agent': 'AppEngine-Python-GCS'}, follow_redirects=False, payload=None, method='GET', deadline=None, callback=None) def testBasicCallWithUserAgent(self): user_agent = 'Test User Agent String' retry_params = api_utils.RetryParams(_user_agent=user_agent) api = rest_api._RestApi('scope', retry_params=retry_params) self.assertEqual(api.scopes, ['scope']) fut_get_token = ndb.Future() fut_get_token.set_result('blah') api.get_token_async = mock.create_autospec(api.get_token_async, return_value=fut_get_token) fut_urlfetch = ndb.Future() fut_urlfetch.set_result( test_utils.MockUrlFetchResult(200, {'foo': 'bar'}, 'yoohoo')) ctx_urlfetch = mock.Mock(return_value=fut_urlfetch) ndb.get_context().urlfetch = ctx_urlfetch res = api.do_request('http://example.com') self.assertEqual(res, (200, {'foo': 'bar'}, 'yoohoo')) ctx_urlfetch.assert_called_once_with( 'http://example.com', headers={'authorization': 'OAuth blah', 'User-Agent': user_agent}, follow_redirects=False, payload=None, method='GET', deadline=None, callback=None) def testNoToken(self): api = rest_api._RestApi('scope') self.assertEqual(api.scopes, ['scope']) fut_get_token = ndb.Future() fut_get_token.set_result(None) api.get_token_async = mock.create_autospec(api.get_token_async, return_value=fut_get_token) fut_urlfetch = ndb.Future() fut_urlfetch.set_result( test_utils.MockUrlFetchResult(200, {'foo': 'bar'}, 'yoohoo')) ctx_urlfetch = mock.Mock(return_value=fut_urlfetch) ndb.get_context().urlfetch = ctx_urlfetch res = api.do_request('http://example.com') self.assertEqual(res, (200, {'foo': 'bar'}, 'yoohoo')) ctx_urlfetch.assert_called_once_with( 'http://example.com', headers={'User-Agent': 'AppEngine-Python-GCS'}, follow_redirects=False, payload=None, method='GET', deadline=None, callback=None) def testMultipleScopes(self): api = rest_api._RestApi(['scope1', 'scope2']) self.assertEqual(api.scopes, ['scope1', 'scope2']) def testNegativeTimeout(self): api = rest_api._RestApi('scope') fut1 = ndb.Future() fut1.set_result(('token1', 0)) fut2 = ndb.Future() fut2.set_result(('token2', 0)) api.make_token_async = mock.create_autospec( api.make_token_async, side_effect=[fut1, fut2]) token1 = api.get_token() token2 = api.get_token() self.assertNotEqual(token1, token2) def testNoExpiredToken(self): with mock.patch('time.time') as t: t.side_effect = [2, 4, 5, 6] api = rest_api._RestApi('scope') fut1 = ndb.Future() fut1.set_result(('token1', 3 + api.expiration_headroom)) fut2 = ndb.Future() fut2.set_result(('token2', 7 + api.expiration_headroom)) api.make_token_async = mock.create_autospec( api.make_token_async, side_effect=[fut1, fut2]) token = api.get_token() self.assertEqual('token1', token) token = api.get_token() self.assertEqual('token2', token) token = api.get_token() self.assertEqual('token2', token) def testTokenMemoized(self): ndb_ctx = ndb.get_context() ndb_ctx.set_cache_policy(lambda key: False) ndb_ctx.set_memcache_policy(lambda key: False) api = rest_api._RestApi('scope') t1 = api.get_token() self.assertNotEqual(None, t1) api = rest_api._RestApi('scope') t2 = api.get_token() self.assertEqual(t2, t1) def testTokenSaved(self): retry_params = api_utils.RetryParams(save_access_token=True) api = rest_api._RestApi('scope', retry_params=retry_params) t1 = api.get_token() self.assertNotEqual(None, t1) api = rest_api._RestApi('scope', retry_params=retry_params) t2 = api.get_token() self.assertEqual(t2, t1) memcache.flush_all() ndb.get_context().clear_cache() api = rest_api._RestApi('scope', retry_params=retry_params) t3 = api.get_token() self.assertEqual(t3, t1) def testDifferentServiceAccounts(self): api1 = rest_api._RestApi('scope', 123) api2 = rest_api._RestApi('scope', 456) t1 = api1.get_token() t2 = api2.get_token() self.assertNotEqual(t1, t2) def testSameServiceAccount(self): api1 = rest_api._RestApi('scope', 123) api2 = rest_api._RestApi('scope', 123) t1 = api1.get_token() t2 = api2.get_token() self.assertEqual(t1, t2) def testCallUrlFetch(self): api = rest_api._RestApi('scope') fut = ndb.Future() fut.set_result(test_utils.MockUrlFetchResult(200, {}, 'response')) ndb.Context.urlfetch = mock.create_autospec( ndb.Context.urlfetch, return_value=fut) res = api.urlfetch('http://example.com', method='PUT', headers={'a': 'b'}) self.assertEqual(res.status_code, 200) self.assertEqual(res.content, 'response') def testPickling(self): retry_params = api_utils.RetryParams(max_retries=1000) api = rest_api._RestApi('scope', service_account_id=1, retry_params=retry_params) self.assertNotEqual(None, api.get_token()) pickled_api = pickle.loads(pickle.dumps(api)) self.assertEqual(0, len(set(api.__dict__.keys()) ^ set(pickled_api.__dict__.keys()))) for k, v in api.__dict__.iteritems(): if not hasattr(v, '__call__'): self.assertEqual(v, pickled_api.__dict__[k]) pickled_api.token = None fut_urlfetch = ndb.Future() fut_urlfetch.set_result( test_utils.MockUrlFetchResult(200, {'foo': 'bar'}, 'yoohoo')) pickled_api.urlfetch_async = mock.create_autospec( pickled_api.urlfetch_async, return_value=fut_urlfetch) res = pickled_api.do_request('http://example.com') self.assertEqual(res, (200, {'foo': 'bar'}, 'yoohoo')) def testUrlFetchCalledWithUserProvidedDeadline(self): retry_params = api_utils.RetryParams(urlfetch_timeout=90) api = rest_api._RestApi('scope', retry_params=retry_params) resp_fut1 = ndb.Future() resp_fut1.set_exception(urlfetch.DownloadError()) resp_fut2 = ndb.Future() resp_fut2.set_result(test_utils.MockUrlFetchResult(httplib.ACCEPTED, None, None)) ndb.Context.urlfetch = mock.create_autospec( ndb.Context.urlfetch, side_effect=[resp_fut1, resp_fut2]) self.assertEqual(httplib.ACCEPTED, api.do_request('foo')[0]) self.assertEqual( 90, ndb.Context.urlfetch.call_args_list[0][1]['deadline']) self.assertEqual( 90, ndb.Context.urlfetch.call_args_list[1][1]['deadline']) def testRetryAfterDoRequestUrlFetchTimeout(self): api = rest_api._RestApi('scope') resp_fut1 = ndb.Future() resp_fut1.set_exception(urlfetch.DownloadError()) resp_fut2 = ndb.Future() resp_fut2.set_result(test_utils.MockUrlFetchResult(httplib.ACCEPTED, None, None)) ndb.Context.urlfetch = mock.create_autospec( ndb.Context.urlfetch, side_effect=[resp_fut1, resp_fut2]) self.assertEqual(httplib.ACCEPTED, api.do_request('foo')[0]) self.assertEqual(2, ndb.Context.urlfetch.call_count) def testRetryAfterDoRequestResponseTimeout(self): api = rest_api._RestApi('scope') resp_fut1 = ndb.Future() resp_fut1.set_result(test_utils.MockUrlFetchResult(httplib.REQUEST_TIMEOUT, None, None)) resp_fut2 = ndb.Future() resp_fut2.set_result(test_utils.MockUrlFetchResult(httplib.ACCEPTED, None, None)) ndb.Context.urlfetch = mock.create_autospec( ndb.Context.urlfetch, side_effect=[resp_fut1, resp_fut2]) self.assertEqual(httplib.ACCEPTED, api.do_request('foo')[0]) self.assertEqual(2, ndb.Context.urlfetch.call_count) def testRetryAfterAppIdentityError(self): api = rest_api._RestApi('scope') token_fut = ndb.Future() token_fut.set_result('token1') api.get_token_async = mock.create_autospec( api.get_token_async, side_effect=[app_identity.InternalError, app_identity.InternalError, token_fut]) resp_fut = ndb.Future() resp_fut.set_result(test_utils.MockUrlFetchResult(httplib.ACCEPTED, None, None)) ndb.Context.urlfetch = mock.create_autospec( ndb.Context.urlfetch, side_effect=[resp_fut]) self.assertEqual(httplib.ACCEPTED, api.do_request('foo')[0]) self.assertEqual( 'OAuth token1', ndb.Context.urlfetch.call_args[1]['headers']['authorization']) self.assertEqual(3, api.get_token_async.call_count) if __name__ == '__main__': unittest.main()
apache-2.0
-69,337,176,130,697,900
32.798762
79
0.633599
false
3.38932
true
false
false
blackpioter/sendgrid-python
sendgrid/helpers/mail/mail.py
1
10679
"""v3/mail/send response body builder""" from .personalization import Personalization from .header import Header class Mail(object): """A request to be sent with the SendGrid v3 Mail Send API (v3/mail/send). Use get() to get the request body. """ def __init__( self, from_email=None, subject=None, to_email=None, content=None): """Create a Mail object. If parameters are supplied, all parameters must be present. :param from_email: Email address to send from. :type from_email: Email, optional :param subject: Subject line of emails. :type subject: string, optional :param to_email: Email address to send to. :type to_email: Email, optional :param content: Content of the message. :type content: Content, optional """ self._from_email = None self._subject = None self._template_id = None self._send_at = None self._batch_id = None self._asm = None self._ip_pool_name = None self._mail_settings = None self._tracking_settings = None self._reply_to = None self._personalizations = [] self._contents = [] self._attachments = [] self._sections = [] self._headers = [] self._categories = [] self._custom_args = [] # Minimum required to send an email if from_email and subject and to_email and content: self.from_email = from_email self.subject = subject personalization = Personalization() personalization.add_to(to_email) self.add_personalization(personalization) self.add_content(content) def __str__(self): """Get a JSON representation of this Mail request. :rtype: string """ return str(self.get()) def get(self): """Get a response body for this Mail. :rtype: dict """ mail = {} if self.from_email is not None: mail["from"] = self.from_email.get() if self.subject is not None: mail["subject"] = self.subject if self.personalizations: mail["personalizations"] = [ personalization.get() for personalization in self.personalizations ] if self.contents: mail["content"] = [ob.get() for ob in self.contents] if self.attachments: mail["attachments"] = [ob.get() for ob in self.attachments] if self.template_id is not None: mail["template_id"] = self.template_id if self.sections: sections = {} for key in self.sections: sections.update(key.get()) mail["sections"] = sections if self.headers: headers = {} for key in self.headers: headers.update(key.get()) mail["headers"] = headers if self.categories: mail["categories"] = [category.get() for category in self.categories] if self.custom_args: custom_args = {} for key in self.custom_args: custom_args.update(key.get()) mail["custom_args"] = custom_args if self.send_at is not None: mail["send_at"] = self.send_at if self.batch_id is not None: mail["batch_id"] = self.batch_id if self.asm is not None: mail["asm"] = self.asm.get() if self.ip_pool_name is not None: mail["ip_pool_name"] = self.ip_pool_name if self.mail_settings is not None: mail["mail_settings"] = self.mail_settings.get() if self.tracking_settings is not None: mail["tracking_settings"] = self.tracking_settings.get() if self.reply_to is not None: mail["reply_to"] = self.reply_to.get() return mail @property def from_email(self): """The email from which this Mail will be sent. :rtype: string """ return self._from_email @from_email.setter def from_email(self, value): self._from_email = value @property def subject(self): """The global, or "message level", subject of this Mail. This may be overridden by personalizations[x].subject. :rtype: string """ return self._subject @subject.setter def subject(self, value): self._subject = value @property def template_id(self): """The id of a template that you would like to use. If you use a template that contains a subject and content (either text or html), you do not need to specify those at the personalizations nor message level. :rtype: int """ return self._template_id @template_id.setter def template_id(self, value): self._template_id = value @property def send_at(self): """A unix timestamp allowing you to specify when you want your email to be delivered. This may be overridden by the personalizations[x].send_at parameter. Scheduling more than 72 hours in advance is forbidden. :rtype: int """ return self._send_at @send_at.setter def send_at(self, value): self._send_at = value @property def batch_id(self): """An ID for this batch of emails. This represents a batch of emails sent at the same time. Including a batch_id in your request allows you include this email in that batch, and also enables you to cancel or pause the delivery of that batch. For more information, see https://sendgrid.com/docs/API_Reference/Web_API_v3/cancel_schedule_send.html :rtype: int """ return self._batch_id @batch_id.setter def batch_id(self, value): self._batch_id = value @property def asm(self): """The ASM for this Mail. :rtype: ASM """ return self._asm @asm.setter def asm(self, value): self._asm = value @property def mail_settings(self): """The MailSettings for this Mail. :rtype: MailSettings """ return self._mail_settings @mail_settings.setter def mail_settings(self, value): self._mail_settings = value @property def tracking_settings(self): """The TrackingSettings for this Mail. :rtype: TrackingSettings """ return self._tracking_settings @tracking_settings.setter def tracking_settings(self, value): self._tracking_settings = value @property def ip_pool_name(self): """The IP Pool that you would like to send this Mail email from. :rtype: string """ return self._ip_pool_name @ip_pool_name.setter def ip_pool_name(self, value): self._ip_pool_name = value @property def reply_to(self): """The email address to use in the Reply-To header. :rtype: Email """ return self._reply_to @reply_to.setter def reply_to(self, value): self._reply_to = value @property def personalizations(self): """The Personalizations applied to this Mail. Each object within personalizations can be thought of as an envelope - it defines who should receive an individual message and how that message should be handled. A maximum of 1000 personalizations can be included. :rtype: list """ return self._personalizations def add_personalization(self, personalizations): """Add a new Personalization to this Mail. :type personalizations: Personalization """ self._personalizations.append(personalizations) @property def contents(self): """The Contents of this Mail. Must include at least one MIME type. :rtype: list(Content) """ return self._contents def add_content(self, content): """Add a new Content to this Mail. Usually the plaintext or HTML message contents. :type content: Content """ if self._contents is None: self._contents = [] # Text content should be before HTML content if content._type == "text/plain": self._contents.insert(0, content) else: self._contents.append(content) @property def attachments(self): """The attachments included with this Mail. :returns: List of Attachment objects. :rtype: list(Attachment) """ return self._attachments def add_attachment(self, attachment): """Add an Attachment to this Mail. :type attachment: Attachment """ self._attachments.append(attachment) @property def sections(self): """The sections included with this Mail. :returns: List of Section objects. :rtype: list(Section) """ return self._sections def add_section(self, section): """Add a Section to this Mail. :type attachment: Section """ self._sections.append(section) @property def headers(self): """The Headers included with this Mail. :returns: List of Header objects. :rtype: list(Header) """ return self._headers def add_header(self, header): """Add a Header to this Mail. The header provided can be a Header or a dictionary with a single key-value pair. :type header: object """ if isinstance(header, dict): (k, v) = list(header.items())[0] self._headers.append(Header(k, v)) else: self._headers.append(header) @property def categories(self): """The Categories applied to this Mail. Must not exceed 10 items :rtype: list(Category) """ return self._categories def add_category(self, category): """Add a Category to this Mail. Must be less than 255 characters. :type category: string """ self._categories.append(category) @property def custom_args(self): """The CustomArgs attached to this Mail. Must not exceed 10,000 characters. :rtype: list(CustomArg) """ return self._custom_args def add_custom_arg(self, custom_arg): if self._custom_args is None: self._custom_args = [] self._custom_args.append(custom_arg)
mit
-4,177,295,920,119,920,000
26.665803
110
0.575709
false
4.371265
false
false
false
Philippe-Lawrence/pyBar
classDialog.py
1
3451
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright 2007 Philippe LAWRENCE # # This file is part of pyBar. # pyBar is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # pyBar is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with pyBar; if not, write to the Free Software # Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA from gi.repository import Gtk, GLib class Singleton(object): def __new__(cls, *args, **kwargs): if '_inst' not in vars(cls): cls._inst = object.__new__(cls, *args, **kwargs) return cls._inst class Message(Singleton): def __init__(self): # ne rien mettre ici pass def set_message(self, content): """Formate le message (ne conserve que la première ligne) et lance son affichage si nécessaire""" #print "set_message", content if self._content == content: return if content is None: self._content = None else: text, ind = content pos = text.find('\n') if not pos == -1: text = text[:pos] self._content = (text, ind) if self.has_changed is False: self.has_changed = True GLib.idle_add(self._print_message) def ini_message(self, box): self.has_changed = False self.box = box self._content = None def _print_message(self): """type = 0 : error; 1 : warning; 2 : info""" #print "_print_message", self._content self.has_changed = False box = self.box if box is None: return for elem in box.get_children(): box.remove(elem) if self._content is None: return text, type = self._content # icone image = Gtk.Image() if type == 0: image.set_from_icon_name('dialog-error', Gtk.IconSize.BUTTON) elif type == 1: image.set_from_icon_name('dialog-warning', Gtk.IconSize.BUTTON) elif type == 2: image.set_from_icon_name("dialog-information", Gtk.IconSize.BUTTON) elif type == 3: image.set_from_icon_name("dialog-information", Gtk.IconSize.BUTTON) image.show() box.pack_start(image, False, True, 0) box.set_spacing(10) label = Gtk.Label() label.set_text(text) label.set_use_markup(True) label.show() box.pack_start(label, False, True, 0) class Dialog: def __init__(self, errors): text = '\n'.join(errors) if text == '': return dialog = Gtk.Dialog("Erreur", None, Gtk.DialogFlags.MODAL | Gtk.DialogFlags.DESTROY_WITH_PARENT, (Gtk.STOCK_CLOSE, Gtk.ResponseType.CLOSE)) dialog.set_icon_from_file("glade/logo.png") box = dialog.get_content_area() box.set_border_width(80) hbox = Gtk.HBox() image = Gtk.Image() image.set_from_icon_name('dialog-error', Gtk.IconSize.DIALOG) hbox.pack_start(image, False, False, 0) label = Gtk.Label(label=text) label.set_margin_start(10) label.show() hbox.pack_start(label, False, False, 0) hbox.show_all() box.add(hbox) result = dialog.run() dialog.destroy()
gpl-3.0
-4,579,491,287,271,453,000
28.228814
101
0.641635
false
3.371457
false
false
false
ContinuumIO/blaze
blaze/expr/expressions.py
3
29015
from __future__ import absolute_import, division, print_function from collections import Mapping from keyword import iskeyword import re import datashape from datashape import ( dshape, DataShape, Record, Var, Fixed, promote, Option, Null, ) from datashape.predicates import ( isscalar, iscollection, isboolean, isrecord, istabular, ) import numpy as np from odo.utils import copydoc import toolz from toolz import concat, memoize, partial, first, unique, merge from toolz.curried import map, filter from ..compatibility import _strtypes, builtins, boundmethod, PY2 from .core import ( Node, _setattr, common_subexpression, path, resolve_args, subs, ) from .method_dispatch import select_functions from ..dispatch import dispatch from .utils import hashable_index, replace_slices, maxshape from ..utils import attribute, as_attribute __all__ = [ 'Apply', 'Cast', 'Coalesce', 'Coerce', 'ElemWise', 'Expr', 'Field', 'Label', 'Map', 'Projection', 'ReLabel', 'Selection', 'SimpleSelection', 'Slice', 'Symbol', 'apply', 'cast', 'coalesce', 'coerce', 'discover', 'drop_field', 'label', 'ndim', 'projection', 'relabel', 'selection', 'shape', 'symbol', ] def isvalid_identifier(s): """Check whether a string is a valid Python identifier Examples -------- >>> isvalid_identifier('Hello') True >>> isvalid_identifier('Hello world') False >>> isvalid_identifier('Helloworld!') False >>> isvalid_identifier('1a') False >>> isvalid_identifier('a1') True >>> isvalid_identifier('for') False >>> isvalid_identifier(None) False """ # the re module compiles and caches regexs so no need to compile it return (s is not None and not iskeyword(s) and re.match(r'^[_a-zA-Z][_a-zA-Z0-9]*$', s) is not None) def valid_identifier(s): """Rewrite a string to be a valid identifier if it contains >>> valid_identifier('hello') 'hello' >>> valid_identifier('hello world') 'hello_world' >>> valid_identifier('hello.world') 'hello_world' >>> valid_identifier('hello-world') 'hello_world' >>> valid_identifier(None) >>> valid_identifier('1a') """ if isinstance(s, _strtypes): if not s or s[0].isdigit(): return return s.replace(' ', '_').replace('.', '_').replace('-', '_') return s class Expr(Node): """ Symbolic expression of a computation All Blaze expressions (Join, By, Sort, ...) descend from this class. It contains shared logic and syntax. It in turn inherits from ``Node`` which holds all tree traversal logic """ def __repr__(self): return str(self) def _get_field(self, fieldname): if not isinstance(self.dshape.measure, (Record, datashape.Map)): if fieldname == self._name: return self raise ValueError( "Can not get field '%s' of non-record expression %s" % (fieldname, self)) return Field(self, fieldname) def __getitem__(self, key): if isinstance(key, _strtypes) and key in self.fields: return self._get_field(key) elif isinstance(key, Expr) and iscollection(key.dshape): return self._select(key) elif (isinstance(key, list) and builtins.all(isinstance(k, _strtypes) for k in key)): if set(key).issubset(self.fields): return self._project(key) else: raise ValueError('Names %s not consistent with known names %s' % (key, self.fields)) elif (isinstance(key, tuple) and all(isinstance(k, (int, slice, type(None), list, np.ndarray)) for k in key)): return sliceit(self, key) elif isinstance(key, (slice, int, type(None), list, np.ndarray)): return sliceit(self, (key,)) raise ValueError("Not understood %s[%s]" % (self, key)) def map(self, func, schema=None, name=None): return Map(self, func, schema, name) @attribute def schema(self): try: m = self._schema except AttributeError: schema = datashape.dshape(self.dshape.measure) else: schema = m() return _setattr(self, 'schema', schema) @attribute def dshape(self): return _setattr(self, 'dshape', self._dshape()) @property def fields(self): measure = self.dshape.measure if isinstance(self.dshape.measure, Option): measure = measure.ty if isinstance(measure, Record): return measure.names elif isinstance(measure, datashape.Map): if not isrecord(self.dshape.measure.value): raise TypeError('Foreign key must reference a ' 'Record datashape') return measure.value.names name = getattr(self, '_name', None) if name is not None: return [self._name] return [] def _len(self): try: return int(self.dshape[0]) except TypeError: raise ValueError('Can not determine length of table with the ' 'following datashape: %s' % self.dshape) def __len__(self): # pragma: no cover return self._len() def __iter__(self): raise NotImplementedError( 'Iteration over expressions is not supported.\n' 'Iterate over computed result instead, e.g. \n' "\titer(expr) # don't do this\n" "\titer(compute(expr)) # do this instead") def __dir__(self): result = dir(type(self)) if (isrecord(self.dshape.measure) or isinstance(self.dshape.measure, datashape.Map) and self.fields): result.extend(map(valid_identifier, self.fields)) result.extend(toolz.merge(schema_methods(self.dshape.measure), dshape_methods(self.dshape))) return sorted(set(filter(isvalid_identifier, result))) def __getattr__(self, key): assert key != '_hash', \ '%s should set _hash in _init' % type(self).__name__ try: result = object.__getattribute__(self, key) except AttributeError: fields = dict(zip(map(valid_identifier, self.fields), self.fields)) measure = self.dshape.measure if isinstance(measure, datashape.Map): # Foreign key measure = measure.key # prefer the method if there's a field with the same name methods = toolz.merge( schema_methods(measure), dshape_methods(self.dshape) ) if key in methods: func = methods[key] if func in method_properties: result = func(self) elif getattr(func, '__get__', None): result = func.__get__(self, type(self)) else: result = boundmethod(func, self) elif self.fields and key in fields: if isscalar(self.dshape.measure): # t.foo.foo is t.foo result = self else: result = self[fields[key]] else: raise # cache the attribute lookup, getattr will not be invoked again. _setattr(self, key, result) return result @attribute def _name(self): measure = self.dshape.measure if len(self._inputs) == 1 and isscalar(getattr(measure, 'key', measure)): child_measure = self._child.dshape.measure if isscalar(getattr(child_measure, 'key', child_measure)): # memoize the result return _setattr(self, '_name', self._child._name) def __enter__(self): """ Enter context """ return self def __exit__(self, *args): """ Exit context Close any open resource if we are called in context """ for value in self._resources().values(): try: value.close() except AttributeError: pass return True # Add some placeholders to help with refactoring. If we forget to attach # these methods later we will get better errors. # To find the real definition, look for usage of ``@as_attribute`` for method in ('_project', '_select', 'cast'): @attribute def _(self): raise AssertionError('method added after class definition') locals()[method] = _ del _ del method def sanitized_dshape(dshape, width=50): pretty_dshape = datashape.pprint(dshape, width=width).replace('\n', '') if len(pretty_dshape) > width: pretty_dshape = "{}...".format(pretty_dshape[:width]) return pretty_dshape class Symbol(Expr): """ Symbolic data. The leaf of a Blaze expression Examples -------- >>> points = symbol('points', '5 * 3 * {x: int, y: int}') >>> points <`points` symbol; dshape='5 * 3 * {x: int32, y: int32}'> >>> points.dshape dshape("5 * 3 * {x: int32, y: int32}") """ _arguments = '_name', 'dshape', '_token' _input_attributes = () def __repr__(self): fmt = "<`{}` symbol; dshape='{}'>" return fmt.format(self._name, sanitized_dshape(self.dshape)) def __str__(self): return self._name or '' def _resources(self): return {} @copydoc(Symbol) def symbol(name, dshape, token=None): return Symbol(name, datashape.dshape(dshape), token or 0) @dispatch(Symbol, Mapping) def _subs(o, d): """ Subs symbols using symbol function Supports caching""" newargs = (subs(arg, d) for arg in o._args) return symbol(*newargs) class ElemWise(Expr): """ Elementwise operation. The shape of this expression matches the shape of the child. """ def _dshape(self): return datashape.DataShape( *(self._child.dshape.shape + tuple(self.schema)) ) class Field(ElemWise): """ A single field from an expression. Get a single field from an expression with record-type schema. We store the name of the field in the ``_name`` attribute. Examples -------- >>> points = symbol('points', '5 * 3 * {x: int32, y: int32}') >>> points.x.dshape dshape("5 * 3 * int32") For fields that aren't valid Python identifiers, use ``[]`` syntax: >>> points = symbol('points', '5 * 3 * {"space station": float64}') >>> points['space station'].dshape dshape("5 * 3 * float64") """ _arguments = '_child', '_name' def __str__(self): fmt = '%s.%s' if isvalid_identifier(self._name) else '%s[%r]' return fmt % (self._child, self._name) @property def _expr(self): return symbol(self._name, datashape.DataShape(self.dshape.measure)) def _dshape(self): shape = self._child.dshape.shape measure = self._child.dshape.measure # TODO: is this too special-case-y? schema = getattr(measure, 'value', measure).dict[self._name] shape = shape + schema.shape schema = (schema.measure,) return DataShape(*(shape + schema)) class Projection(ElemWise): """Select a subset of fields from data. Examples -------- >>> accounts = symbol('accounts', ... 'var * {name: string, amount: int, id: int}') >>> accounts[['name', 'amount']].schema dshape("{name: string, amount: int32}") >>> accounts[['name', 'amount']] accounts[['name', 'amount']] See Also -------- blaze.expr.expressions.Field """ _arguments = '_child', '_fields' @property def fields(self): return list(self._fields) def _schema(self): measure = self._child.schema.measure d = getattr(measure, 'value', measure).dict return DataShape(Record((name, d[name]) for name in self.fields)) def __str__(self): return '%s[%s]' % (self._child, self.fields) def _project(self, key): if isinstance(key, list) and set(key).issubset(set(self.fields)): return self._child[key] raise ValueError("Column Mismatch: %s" % key) def _get_field(self, fieldname): if fieldname in self.fields: return Field(self._child, fieldname) raise ValueError("Field %s not found in columns %s" % (fieldname, self.fields)) @as_attribute(Expr, '_project') @copydoc(Projection) def projection(expr, names): if not names: raise ValueError("Projection with no names") if not isinstance(names, (tuple, list)): raise TypeError("Wanted list of strings, got %s" % names) if not set(names).issubset(expr.fields): raise ValueError("Mismatched names. Asking for names %s " "where expression has names %s" % (names, expr.fields)) return Projection(expr, tuple(names)) def sanitize_index_lists(ind): """ Handle lists/arrays of integers/bools as indexes >>> sanitize_index_lists([2, 3, 5]) [2, 3, 5] >>> sanitize_index_lists([True, False, True, False]) [0, 2] >>> sanitize_index_lists(np.array([1, 2, 3])) [1, 2, 3] >>> sanitize_index_lists(np.array([False, True, True])) [1, 2] """ if not isinstance(ind, (list, np.ndarray)): return ind if isinstance(ind, np.ndarray): ind = ind.tolist() if isinstance(ind, list) and ind and isinstance(ind[0], bool): ind = [a for a, b in enumerate(ind) if b] return ind def sliceit(child, index): index2 = tuple(map(sanitize_index_lists, index)) index3 = hashable_index(index2) s = Slice(child, index3) hash(s) return s class Slice(Expr): """Elements `start` until `stop`. On many backends, a `step` parameter is also allowed. Examples -------- >>> from blaze import symbol >>> accounts = symbol('accounts', 'var * {name: string, amount: int}') >>> accounts[2:7].dshape dshape("5 * {name: string, amount: int32}") >>> accounts[2:7:2].dshape dshape("3 * {name: string, amount: int32}") """ _arguments = '_child', '_index' def _dshape(self): return self._child.dshape.subshape[self.index] @property def index(self): return replace_slices(self._index) def __str__(self): if isinstance(self.index, tuple): index = ', '.join(map(str, self._index)) else: index = str(self._index) return '%s[%s]' % (self._child, index) class Selection(Expr): """ Filter elements of expression based on predicate Examples -------- >>> accounts = symbol('accounts', ... 'var * {name: string, amount: int, id: int}') >>> deadbeats = accounts[accounts.amount < 0] """ _arguments = '_child', 'predicate' _input_attributes = '_child', 'predicate' @property def _name(self): return self._child._name def __str__(self): return "%s[%s]" % (self._child, self.predicate) def _dshape(self): shape = list(self._child.dshape.shape) shape[0] = Var() return DataShape(*(shape + [self._child.dshape.measure])) class SimpleSelection(Selection): """Internal selection class that does not treat the predicate as an input. """ _arguments = Selection._arguments _input_attributes = '_child', @as_attribute(Expr, '_select') @copydoc(Selection) def selection(table, predicate): subexpr = common_subexpression(table, predicate) if not builtins.all( isinstance(node, (VarArgsExpr, ElemWise, Symbol)) or node.isidentical(subexpr) for node in concat([path(predicate, subexpr), path(table, subexpr)])): raise ValueError("Selection not properly matched with table:\n" "child: %s\n" "apply: %s\n" "predicate: %s" % (subexpr, table, predicate)) if not isboolean(predicate.dshape): raise TypeError("Must select over a boolean predicate. Got:\n" "%s[%s]" % (table, predicate)) return table._subs({subexpr: Selection(subexpr, predicate)}) class Label(ElemWise): """An expression with a name. Examples -------- >>> accounts = symbol('accounts', 'var * {name: string, amount: int}') >>> expr = accounts.amount * 100 >>> expr._name 'amount' >>> expr.label('new_amount')._name 'new_amount' See Also -------- blaze.expr.expressions.ReLabel """ _arguments = '_child', 'label' def _schema(self): return self._child.schema @property def _name(self): return self.label def _get_field(self, key): if key[0] == self.fields[0]: return self raise ValueError("Column Mismatch: %s" % key) def __str__(self): return 'label(%s, %r)' % (self._child, self.label) @copydoc(Label) def label(expr, lab): if expr._name == lab: return expr return Label(expr, lab) class ReLabel(ElemWise): """ Table with same content but with new labels Examples -------- >>> accounts = symbol('accounts', 'var * {name: string, amount: int}') >>> accounts.schema dshape("{name: string, amount: int32}") >>> accounts.relabel(amount='balance').schema dshape("{name: string, balance: int32}") >>> accounts.relabel(not_a_column='definitely_not_a_column') Traceback (most recent call last): ... ValueError: Cannot relabel non-existent child fields: {'not_a_column'} >>> s = symbol('s', 'var * {"0": int64}') >>> s.relabel({'0': 'foo'}) s.relabel({'0': 'foo'}) >>> s.relabel(0='foo') # doctest: +SKIP Traceback (most recent call last): ... SyntaxError: keyword can't be an expression Notes ----- When names are not valid Python names, such as integers or string with spaces, you must pass a dictionary to ``relabel``. For example .. code-block:: python >>> s = symbol('s', 'var * {"0": int64}') >>> s.relabel({'0': 'foo'}) s.relabel({'0': 'foo'}) >>> t = symbol('t', 'var * {"whoo hoo": ?float32}') >>> t.relabel({"whoo hoo": 'foo'}) t.relabel({'whoo hoo': 'foo'}) See Also -------- blaze.expr.expressions.Label """ _arguments = '_child', 'labels' def _schema(self): subs = dict(self.labels) param = self._child.dshape.measure.parameters[0] return DataShape(Record([[subs.get(name, name), dtype] for name, dtype in param])) def __str__(self): labels = self.labels if all(map(isvalid_identifier, map(first, labels))): rest = ', '.join('%s=%r' % l for l in labels) else: rest = '{%s}' % ', '.join('%r: %r' % l for l in labels) return '%s.relabel(%s)' % (self._child, rest) @copydoc(ReLabel) def relabel(child, labels=None, **kwargs): labels = {k: v for k, v in toolz.merge(labels or {}, kwargs).items() if k != v} label_keys = set(labels) fields = child.fields if not label_keys.issubset(fields): non_existent_fields = label_keys.difference(fields) raise ValueError("Cannot relabel non-existent child fields: {%s}" % ', '.join(map(repr, non_existent_fields))) if not labels: return child if isinstance(labels, Mapping): # Turn dict into tuples labels = tuple(sorted(labels.items())) if isscalar(child.dshape.measure): if child._name == labels[0][0]: return child.label(labels[0][1]) else: return child return ReLabel(child, labels) class Map(ElemWise): """ Map an arbitrary Python function across elements in a collection Examples -------- >>> from datetime import datetime >>> t = symbol('t', 'var * {price: real, time: int64}') # times as integers >>> datetimes = t.time.map(datetime.utcfromtimestamp) Optionally provide extra schema information >>> datetimes = t.time.map(datetime.utcfromtimestamp, ... schema='{time: datetime}') See Also -------- blaze.expr.expresions.Apply """ _arguments = '_child', 'func', '_asschema', '_name0' def _schema(self): if self._asschema: return dshape(self._asschema) else: raise NotImplementedError("Schema of mapped column not known.\n" "Please specify datashape keyword in " ".map method.\nExample: " "t.columnname.map(function, 'int64')") def label(self, name): assert isscalar(self.dshape.measure) return Map(self._child, self.func, self.schema, name) @property def shape(self): return self._child.shape @property def ndim(self): return self._child.ndim @property def _name(self): if self._name0: return self._name0 else: return self._child._name if PY2: copydoc(Map, Expr.map.im_func) else: copydoc(Map, Expr.map) class Apply(Expr): """ Apply an arbitrary Python function onto an expression Examples -------- >>> t = symbol('t', 'var * {name: string, amount: int}') >>> h = t.apply(hash, dshape='int64') # Hash value of resultant dataset You must provide the datashape of the result with the ``dshape=`` keyword. For datashape examples see http://datashape.pydata.org/grammar.html#some-simple-examples If using a chunking backend and your operation may be safely split and concatenated then add the ``splittable=True`` keyword argument >>> t.apply(f, dshape='...', splittable=True) # doctest: +SKIP See Also -------- blaze.expr.expressions.Map """ _arguments = '_child', 'func', '_asdshape', '_splittable' def _schema(self): if iscollection(self.dshape): return self.dshape.subshape[0] else: raise TypeError("Non-tabular datashape, %s" % self.dshape) def _dshape(self): return self._asdshape @copydoc(Apply) def apply(expr, func, dshape, splittable=False): return Apply(expr, func, datashape.dshape(dshape), splittable) class Coerce(ElemWise): """Coerce an expression to a different type. Examples -------- >>> t = symbol('t', '100 * float64') >>> t.coerce(to='int64') t.coerce(to='int64') >>> t.coerce('float32') t.coerce(to='float32') >>> t.coerce('int8').dshape dshape("100 * int8") """ _arguments = '_child', 'to' def _schema(self): return self.to def __str__(self): return '%s.coerce(to=%r)' % (self._child, str(self.schema)) @copydoc(Coerce) def coerce(expr, to): return Coerce(expr, dshape(to) if isinstance(to, _strtypes) else to) class Cast(Expr): """Cast an expression to a different type. This is only an expression time operation. Examples -------- >>> s = symbol('s', '?int64') >>> s.cast('?int32').dshape dshape("?int32") # Cast to correct mislabeled optionals >>> s.cast('int64').dshape dshape("int64") # Cast to give concrete dimension length >>> t = symbol('t', 'var * float32') >>> t.cast('10 * float32').dshape dshape("10 * float32") """ _arguments = '_child', 'to' def _dshape(self): return self.to def __str__(self): return 'cast(%s, to=%r)' % (self._child, str(self.to)) @as_attribute(Expr) @copydoc(Cast) def cast(expr, to): return Cast(expr, dshape(to) if isinstance(to, _strtypes) else to) def binop_name(expr): if not isscalar(expr.dshape.measure): return None l = getattr(expr.lhs, '_name', None) r = getattr(expr.rhs, '_name', None) if bool(l) ^ bool(r): return l or r elif l == r: return l return None def binop_inputs(expr): if isinstance(expr.lhs, Expr): yield expr.lhs if isinstance(expr.rhs, Expr): yield expr.rhs class Coalesce(Expr): """SQL like coalesce. .. code-block:: python coalesce(a, b) = { a if a is not NULL b otherwise } Examples -------- >>> coalesce(1, 2) 1 >>> coalesce(1, None) 1 >>> coalesce(None, 2) 2 >>> coalesce(None, None) is None True """ _arguments = 'lhs', 'rhs', 'dshape' _input_attributes = 'lhs', 'rhs' def __str__(self): return 'coalesce(%s, %s)' % (self.lhs, self.rhs) _name = property(binop_name) @property def _inputs(self): return tuple(binop_inputs(self)) @copydoc(Coalesce) def coalesce(a, b): a_dshape = discover(a) a_measure = a_dshape.measure isoption = isinstance(a_measure, Option) if isoption: a_measure = a_measure.ty isnull = isinstance(a_measure, Null) if isnull: # a is always null, this is just b return b if not isoption: # a is not an option, this is just a return a b_dshape = discover(b) return Coalesce(a, b, DataShape(*( maxshape((a_dshape.shape, b_dshape.shape)) + (promote(a_measure, b_dshape.measure),) ))) dshape_method_list = list() schema_method_list = list() method_properties = set() dshape_methods = memoize(partial(select_functions, dshape_method_list)) schema_methods = memoize(partial(select_functions, schema_method_list)) @dispatch(DataShape) def shape(ds): s = ds.shape s = tuple(int(d) if isinstance(d, Fixed) else d for d in s) return s @dispatch(object) def shape(expr): """ Shape of expression >>> symbol('s', '3 * 5 * int32').shape (3, 5) Works on anything discoverable >>> shape([[1, 2], [3, 4]]) (2, 2) """ s = list(discover(expr).shape) for i, elem in enumerate(s): try: s[i] = int(elem) except TypeError: pass return tuple(s) def ndim(expr): """ Number of dimensions of expression >>> symbol('s', '3 * var * int32').ndim 2 """ return len(shape(expr)) def drop_field(expr, field, *fields): """Drop a field or fields from a tabular expression. Parameters ---------- expr : Expr A tabular expression to drop columns from. *fields The names of the fields to drop. Returns ------- dropped : Expr The new tabular expression with some columns missing. Raises ------ TypeError Raised when ``expr`` is not tabular. ValueError Raised when a column is not in the fields of ``expr``. See Also -------- :func:`blaze.expr.expressions.projection` """ to_remove = set((field,)).union(fields) new_fields = [] for field in expr.fields: if field not in to_remove: new_fields.append(field) else: to_remove.remove(field) if to_remove: raise ValueError( 'fields %r were not in the fields of expr (%r)' % ( sorted(to_remove), expr.fields ), ) return expr[new_fields] dshape_method_list.extend([ (lambda ds: True, {apply}), (iscollection, {shape, ndim}), (lambda ds: iscollection(ds) and isscalar(ds.measure), {coerce}), (istabular, {drop_field}), ]) schema_method_list.extend([ (isscalar, {label, relabel, coerce}), (isrecord, {relabel}), (lambda ds: isinstance(ds, Option), {coalesce}), ]) method_properties.update([shape, ndim]) @dispatch(Expr) def discover(expr): return expr.dshape class VarArgsExpr(Expr): """An expression used for collecting variadic arguments into a single, typed container. Parameters ---------- _inputs : tuple[any] The arguments that this expression will compute. """ _arguments = '_inputs', @attribute def _inputs(self): raise NotImplementedError('overridden in _init') def _dshape(self): return DataShape(datashape.void) def varargsexpr(args): """Create a varargs expr which will be materialzed as a ``VarArgs`` """ # lazy import to break cycle from blaze.compute.varargs import register_varargs_arity args = tuple(args) register_varargs_arity(len(args)) return VarArgsExpr(args)
bsd-3-clause
5,986,935,608,387,100,000
26.015829
80
0.56781
false
3.825818
false
false
false
jireh-father/tensorflow-alexnet
ops.py
1
1864
import tensorflow as tf def conv(inputs, kernel_size, output_num, stride_size=1, init_bias=0.0, conv_padding='SAME', stddev=0.01, activation_func=tf.nn.relu): input_size = inputs.get_shape().as_list()[-1] conv_weights = tf.Variable( tf.random_normal([kernel_size, kernel_size, input_size, output_num], dtype=tf.float32, stddev=stddev), name='weights') conv_biases = tf.Variable(tf.constant(init_bias, shape=[output_num], dtype=tf.float32), 'biases') conv_layer = tf.nn.conv2d(inputs, conv_weights, [1, stride_size, stride_size, 1], padding=conv_padding) conv_layer = tf.nn.bias_add(conv_layer, conv_biases) if activation_func: conv_layer = activation_func(conv_layer) return conv_layer def fc(inputs, output_size, init_bias=0.0, activation_func=tf.nn.relu, stddev=0.01): input_shape = inputs.get_shape().as_list() if len(input_shape) == 4: fc_weights = tf.Variable( tf.random_normal([input_shape[1] * input_shape[2] * input_shape[3], output_size], dtype=tf.float32, stddev=stddev), name='weights') inputs = tf.reshape(inputs, [-1, fc_weights.get_shape().as_list()[0]]) else: fc_weights = tf.Variable(tf.random_normal([input_shape[-1], output_size], dtype=tf.float32, stddev=stddev), name='weights') fc_biases = tf.Variable(tf.constant(init_bias, shape=[output_size], dtype=tf.float32), name='biases') fc_layer = tf.matmul(inputs, fc_weights) fc_layer = tf.nn.bias_add(fc_layer, fc_biases) if activation_func: fc_layer = activation_func(fc_layer) return fc_layer def lrn(inputs, depth_radius=2, alpha=0.0001, beta=0.75, bias=1.0): return tf.nn.local_response_normalization(inputs, depth_radius=depth_radius, alpha=alpha, beta=beta, bias=bias)
mit
5,898,839,375,387,653,000
46.794872
115
0.645386
false
3.180887
false
false
false
virtualsciences/egg.releaser
egg/releaser/git.py
1
3721
import logging import ConfigParser import io import sys import utils from zest.releaser.git import Git as OGGit logger = logging.getLogger(__name__) class Git(OGGit): """ Command proxy for Git enhanced with gitflow commands. """ def cmd_gitflow_release_start(self, version, base=''): return 'git flow release start %s %s' % (version, base) def cmd_gitflow_release_finish(self, version): return 'git flow release finish -m "Release-%s" %s' % (version, version) def cmd_gitflow_hotfix_start(self, version, basename=''): return "git flow hotfix start %s %s" % (version, basename) def cmd_gitflow_hotfix_finish(self, version): return "git flow hotfix finish %s" % version def _config(self): """ Parse the git config into a ConfigParser object. """ config = open('./.git/config', 'r').read().replace('\t', '') config = config.replace('\t', '') # ConfigParser doesn't like tabs parser = ConfigParser.ConfigParser() parser.readfp(io.BytesIO(config)) return parser @property def extensions(self): config = self._config() return ['gitflow'] if 'gitflow "branch"' in config.sections() else [] def cmd_create_tag(self, version, base=''): if 'gitflow' in self.extensions: msg = "Release-%s" % version _start_cmd = 'git flow release start %s %s' % (version, base) _finish_cmd = 'git flow release finish -m "%s" %s' % (msg, version) return '; '.join([_start_cmd, _finish_cmd]) else: super(OGGit, self).cmd_create_tag(version) def gitflow_branches(self): config = self._config() return dict(config.items('gitflow "branch"')) def gitflow_get_branch(self, branch): branches = self.gitflow_branches() if branch in branches: return branches.get(branch) else: logger.critical( '"%s" is not a valid gitflow branch.' % branch) sys.exit(1) def gitflow_prefixes(self): config = self._config() return dict(config.items('gitflow "prefix"')) def gitflow_get_prefix(self, prefix): prefixes = self.gitflow_prefixes() if prefix in prefixes: return prefixes.get(prefix) else: logger.critical( '"%s" is not a valid gitflow prefix.' % prefix) sys.exit(1) def gitflow_check_prefix(self, prefix): prefix = self.gitflow_get_prefix(prefix) current = self.current_branch() return current.startswith(prefix) def gitflow_check_branch(self, branch, switch=False): branch = self.gitflow_get_branch(branch) current = self.current_branch() if current != branch: if switch: self.gitflow_switch_to_branch(branch, silent=False) else: logger.critical( 'You are not on the "%s" branch.' % branch) sys.exit(1) def gitflow_switch_to_branch(self, branch, silent=True): if not silent: logger.info( 'You are not on the "%s" branch, switching now.' % branch) utils.execute_command(self.cmd_checkout_from_tag(branch, '.')) def current_branch(self): return utils.execute_command("git rev-parse --abbrev-ref HEAD").strip() def enhance_with_gitflow(vcs): """ Return the vcs determined by the original function, unless we are dealing with git, in which case we return our gitflow enhanced Git(). """ return Git() if isinstance(vcs, OGGit) else vcs
gpl-2.0
-6,212,874,634,522,170,000
33.453704
79
0.586133
false
3.98821
true
false
false
piyushmaurya23/twitter-clone
config/settings/local.py
1
2021
# -*- coding: utf-8 -*- """ Local settings - Run in Debug mode - Use console backend for emails - Add Django Debug Toolbar - Add django-extensions as app """ from .common import * # noqa # DEBUG # ------------------------------------------------------------------------------ DEBUG = env.bool('DJANGO_DEBUG', default=True) TEMPLATES[0]['OPTIONS']['debug'] = DEBUG # SECRET CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#secret-key # Note: This key only used for development and testing. SECRET_KEY = env('DJANGO_SECRET_KEY', default='r%-xf7+jh0o_!8-f3x&c#2iil!3-g!=anoo!m=_yge1io#bv3)') # Mail settings # ------------------------------------------------------------------------------ DATABASE_URL="postgres://postgres:[email protected]:5432/twitter" EMAIL_PORT = 1025 EMAIL_HOST = 'localhost' EMAIL_BACKEND = env('DJANGO_EMAIL_BACKEND', default='django.core.mail.backends.console.EmailBackend') # CACHING # ------------------------------------------------------------------------------ CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': '' } } # django-debug-toolbar # ------------------------------------------------------------------------------ MIDDLEWARE_CLASSES += ('debug_toolbar.middleware.DebugToolbarMiddleware',) INSTALLED_APPS += ('debug_toolbar', ) INTERNAL_IPS = ('127.0.0.1', '10.0.2.2',) DEBUG_TOOLBAR_CONFIG = { 'DISABLE_PANELS': [ 'debug_toolbar.panels.redirects.RedirectsPanel', ], 'SHOW_TEMPLATE_CONTEXT': True, } # django-extensions # ------------------------------------------------------------------------------ INSTALLED_APPS += ('django_extensions', ) # TESTING # ------------------------------------------------------------------------------ TEST_RUNNER = 'django.test.runner.DiscoverRunner' # Your local stuff: Below this line define 3rd party library settings
mit
233,340,992,603,222,370
29.164179
99
0.492825
false
4.099391
false
false
false
pandreetto/info-glue-provider
src/GLUEInfoProvider/GLUE2ServiceHandler.py
1
2292
# Copyright (c) Members of the EGEE Collaboration. 2004. # See http://www.eu-egee.org/partners/ for details on the copyright # holders. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from GLUEInfoProvider import CommonUtils # # This module should replace glite-ce-glue2-computingservice-static # and the related YAIM function config_cream_gip_glue2 # def process(siteDefs, out=sys.stdout): now = CommonUtils.getNow() srvType = 'org.glite.ce.CREAM' endpointCount = 2 # CREAM + RTEPublisher (CEMon ?) shareCount = siteDefs.ruleTable.getShareCount() resourceCount = len(siteDefs.resourceTable) out.write("dn: GLUE2ServiceID=%s,GLUE2GroupID=resource,o=glue\n" % siteDefs.compServiceID) out.write("objectClass: GLUE2Entity\n") out.write("objectClass: GLUE2Service\n") out.write("objectClass: GLUE2ComputingService\n") out.write("GLUE2EntityCreationTime: %s\n" % now) out.write("GLUE2EntityName: Computing Service %s\n" % siteDefs.compServiceID) out.write("GLUE2EntityOtherInfo: InfoProviderName=%s\n" % CommonUtils.providerName) out.write("GLUE2EntityOtherInfo: InfoProviderVersion=%s\n" % CommonUtils.providerVersion) out.write("GLUE2EntityOtherInfo: InfoProviderHost=%s\n" % siteDefs.ceHost) out.write("GLUE2ServiceID: %s\n" % siteDefs.compServiceID) out.write("GLUE2ServiceType: %s\n" % srvType) out.write("GLUE2ServiceCapability: executionmanagement.jobexecution\n") out.write("GLUE2ServiceQualityLevel: production\n") out.write("GLUE2ServiceComplexity: endpointType=%d, share=%d, resource=%d\n" % (endpointCount, shareCount, resourceCount)) out.write("GLUE2ServiceAdminDomainForeignKey: %s\n" % siteDefs.siteName) out.write("\n")
apache-2.0
-8,300,528,381,849,291,000
39.210526
94
0.72993
false
3.293103
false
false
false
thomastweets/PythonRSA
rsa.py
1
15107
# -*- coding: utf-8 -*- ################################################################################ ################# Representational Similarity Analysis ######################### ################################################################################ # Amelie Haugg # Julia Brehm # Pia Schröder import os from os.path import dirname, abspath import numpy as np from scipy.spatial.distance import cdist from scipy.stats import spearmanr import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable import datetime import markdown import webbrowser # Global variables and their default values matrix_plot1 = True matrix_plot2 = False bar_plot = False correlations1 = False correlations2 = False pvalues = False no_relabelings = 10000 dist_metric = 1 output_first = True output_second = False scale_to_max = False now = datetime.datetime.now() def import_data(paths): """ Import header and data matrix from VOM files specified in paths. Returns dictionary DATA containing data set names as keys.""" DATA = dict() # Iterate through files and save data in dictionary for set_no, file_name in enumerate(paths): header = dict() # Read header and store last line with open(file_name, 'r') as file: for index, line in enumerate(file): string_list = line.split() item_list = [int(i) if i.isdigit() else i for i in string_list] # For non empty list save first element as key and rest as value in # header dictionary if item_list: key = item_list.pop(0) if len(item_list) > 1: header[key] = item_list else: header[key] = item_list.pop() # Use 'NrOfVoxels' as indicator for the end of the header if 'NrOfVoxels:' in line: break header_end = index + 1 # Read data into array data = np.loadtxt(file_name, skiprows = header_end) # Save data set in DATA dictionary key = "data_set_" + str(set_no + 1) DATA[key] = {'header': header, 'data': data} return DATA def extract_data(DATA): """ Get voxel data from data matrices in DATA. One matrix per area, rows = voxels, columns = conditions. """ # Extracts those columns in data that contain measurements (excluding voxel coordinates) data = [] for i in range(1,len(DATA)+1): data.append(DATA['data_set_' + str(i)]['data'][:,3:]) return data def first_order_rdm(condition_data): """ Return Specified distance matrices (1 = Pearson correlation, 2 = Euclidian distance, 3 = Absolute activation difference) of data in input matrices. One matrix per area/subject/method/... Number of rows/columns = number of conditions = number of columns in each matrix in condition_data""" RDMs = list() # Iterate through matrices in condition_data and save one RDM per matrix for i in range(len(condition_data)): if dist_metric == 1: # Use correlation distance RDM = 1-np.corrcoef(condition_data[i],rowvar=0) elif dist_metric == 2: # Use Eucledian distance RDM = cdist(condition_data[i].T,condition_data[i].T,'euclidean') elif dist_metric == 3: # Use absolute activation difference means = np.mean(condition_data[i], axis=0) # Determine mean activation per condition m, n = np.meshgrid(means,means) # Create all possible combinations RDM = abs(m-n) # Calculate difference for each combination RDMs.append(RDM) return RDMs def get_pvalue(matrix1, matrix2): """ Randomize condition labels to test significance """ order = range(0,len(matrix2)) dist = np.zeros(no_relabelings) # First, determine actual correlation flat1 = matrix1.flatten(1).transpose() flat2 = matrix2.flatten(1).transpose() corr = spearmanr(flat1,flat2)[0] # Relabel N times to obtain distribution of correlations for i in range(0,no_relabelings): np.random.shuffle(order) dummy = matrix2.take(order, axis=1).take(order, axis=0) flat2 = dummy.flatten(1).transpose() dist[i] = spearmanr(flat1,flat2)[0] # Determine p value of actual correlation from distribution p = float((dist >= corr).sum()) / len(dist) # Mit dieser Methode braucht man mindestens 4 conditions, also 4!=24 mögliche # Reihenfolgen um auf p < 0.05 zu kommen. Nicht gut! return p def bootstrap(data): """ computes the variability of the obtained second-order RDM (i.e. distance between areas, models, ...) for the same experiment with different stimuli by bootstrapping 100 times from the condition set. """ all_RDMs = list() # Iterate through 100 resamplings for ind in range(100): index = np.random.random_integers(0, high=len(data[0].T)-1, size=(1,len(data[0].T)))[0] new_data = np.array(data) # Reorder columns in data (conditions) for elem in range(len(data)): new_data[elem] = new_data[elem][:,index] # Recompute first and second-order RDMs with new conditions new_RDM1 = first_order_rdm(list(new_data)) new_RDM2 = second_order_rdm(new_RDM1, data, False)[0] # Remove off-diagonal zeros to avoid artefactually small standard deviations m_index = [new_RDM2 == 0] ident = np.invert(np.identity(len(new_RDM2), dtype=bool)) m_index = m_index & ident new_RDM2[m_index[0]] = np.nan all_RDMs.append(new_RDM2) all_RDMs = np.array(all_RDMs) # Compute standard deviation along first dimension (across RDMs) variability = np.nanstd(all_RDMs,0) return variability def second_order_rdm(RDMs, data, firstcall): """ Returns representational dissimilarity matrix computed with Spearman rank correlations between variable number of equally sized input matrices. """ # Flatten input matrices flat = [m.flatten(1) for m in RDMs] flat = np.array(flat).transpose() # Compute Spearman rank correlation matrix c_matrix = spearmanr(flat)[0] # In case only two conditions are compared, spearmanr returns single correlation # coefficient and c_matrix has to be built manually if not(isinstance(c_matrix, np.ndarray)): c_matrix = np.array([[1,c_matrix],[c_matrix,1]]) # Compute RDM (distance matrix) with correlation distance: 1 - correlation RDM = np.ones(c_matrix.shape) - c_matrix p_values = [] variability = [] if firstcall: if bar_plot: # Determine variability of distance estimates for different stimuli # Bootstrap from condition set (100 times, with replacement) variability = bootstrap(data) if pvalues or bar_plot: # Determine significance of second order RDM p_values = np.zeros(RDM.shape) # Iterate through pvalue matrix and fill in p-values but only for upper # triangle to improve performance for i in range(0,len(p_values)): for j in range(i,len(p_values)): p_values[i,j] = get_pvalue(RDMs[i], RDMs[j]) # mirror matrix to obtain all p-values p_values = p_values + np.triu(p_values,1).T return [RDM, p_values, variability] def plot_RDM(RDMs, labels, names, fig): """ Create RDM plot. Creates one first-order plot for each area if fig=1 and a single second-order plot if fig=2.""" # Determine optimal arrangement for plots rows = int(np.sqrt(len(RDMs))) columns = int(np.ceil(len(RDMs)/float(rows))) ticks = np.arange(len(labels)) # Use maximum value in RDMs for scaling if desired dist_max = np.max(np.array(RDMs)) if fig == 1: f = plt.figure(fig, figsize=(18, 8)) if fig == 2: f = plt.figure(fig, figsize=(6, 6)) # New: add_subplot instead of subplots to control figure instance for index in np.arange(len(RDMs)): ax = f.add_subplot(rows,columns,index+1, xticklabels = labels, yticklabels = labels, xticks = ticks, yticks = ticks) if scale_to_max: im = ax.imshow(RDMs[index], interpolation = 'none', cmap = 'jet', vmin = 0, vmax = dist_max) else: im = ax.imshow(RDMs[index], interpolation = 'none', cmap = 'jet') for label in ax.get_xticklabels(): label.set_fontsize(6) ax.xaxis.tick_top() ax.set_title(names[index], y = 1.08) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) dist_max = np.max(RDMs[index]) cbar = plt.colorbar(im, ticks=[0, dist_max], cax=cax) cbar.ax.set_yticklabels(['0', str(np.around(dist_max,decimals=2))]) cbar.ax.set_ylabel('Dissimilarity') f.subplots_adjust(hspace=0.1, wspace=0.3) if fig == 1: if dist_metric == 1: f.suptitle('First order distance metric: Correlation distance', y=0.9, fontsize=18) elif dist_metric == 2: f.suptitle('First order distance metric: Euclidean distance', y=0.9, fontsize=18) elif dist_metric == 3: f.suptitle('First order distance metric: Absolute activation difference', y=0.9, fontsize=18) figure_name = "Figure%d_%d-%d-%d-%d-%d-%d.png" % (fig, now.day, now.month, now.year, now.hour, now.minute, now.second) plt.savefig(figure_name, transparent=True) return figure_name def plot_bars(RDM, pvalues, variability, names): """ Creates bar plot depicticting the distances between different areas. Bars are sorted by significance, errorbars indicate the standard error of the distnace estimate (estimated as the standard deviation of 100 distance estimates obtained from bootstrapping of the condition labels)""" length = len(RDM) f = plt.figure(3, figsize=(14,6)) for index in np.arange(length): maxim = np.max(RDM[index]) xticks = np.arange(length-1)+1 d_values = RDM[index,:] plot_dvalues = d_values[d_values != 0] v_values = variability[index,:] plot_vvalues = v_values[d_values != 0] p_values = pvalues[index,:] plot_pvalues = np.around(p_values[d_values != 0], decimals=4) plot_names = np.array(names)[d_values != 0] sort = np.argsort(plot_pvalues) ax = f.add_subplot(1,length, index+1, xticks = xticks, xticklabels = plot_pvalues[sort]) ax.set_ylabel('Correlation distance (1-Spearman rank correlation)') ax.set_xlabel('P-values') ax.bar(xticks, plot_dvalues[sort], 0.5, yerr = plot_vvalues[sort], error_kw=dict(ecolor='black', lw=2), align = 'center') scale_y = max(plot_dvalues + plot_vvalues)+maxim*0.1 plt.axis([0.5, length-0.5, 0, scale_y]) ax.set_title(names[index]) for ind in np.arange(length-1): ax.text(xticks[ind], scale_y*0.1, plot_names[sort][ind], rotation='vertical', horizontalalignment='center', backgroundcolor='w', color='k', visible=True) f.subplots_adjust(hspace=0.1, wspace=0.3) figure_name = "Figure3_%d-%d-%d-%d-%d-%d.png" % (now.day, now.month, now.year, now.hour, now.minute, now.second) plt.savefig(figure_name, transparent=True) return figure_name def generate_output(*args): """ Generates text file including all output and converts it into html (markdown) file """ if len(args) > 3: [withinRDMs, betweenRDM, names, labels] = args else: [withinRDMs, names, labels] = args # Produce text file filename = "RSA_output_%d-%d-%d-%d-%d-%d.txt" % (now.day, now.month, now.year, now.hour, now.minute, now.second) output = "RSA_output_%d-%d-%d-%d-%d-%d.html" % (now.day, now.month, now.year, now.hour, now.minute, now.second) with open(filename, 'w') as fid: fid.write("#Representational similarity analysis\n\n") fid.write("###Areas: "+str(', '.join(names))+"\n") fid.write("###Conditions: "+str(', '.join(labels))+"\n\n\n\n") # first-order RDMs if output_first: fid.write("##First-order analysis\n\n") # Numerical correlations if correlations1: distances = {1:'Correlation distance', 2:'Euclidean distance', 3:'Absolute activation difference'} fid.write("###Dissimilarity between conditions: "+distances[dist_metric]+"\n\n") for ind in np.arange(len(withinRDMs)): fid.write("\n###"+names[ind]+"\n") np.savetxt(fid, withinRDMs[ind], fmt='%.4f')# , header="\n"+names[ind]+"\n") fid.write("\n") # RDM Plot if matrix_plot1: figure_name = plot_RDM(withinRDMs, labels, names, 1) fid.write("![Figure1](%s)" % figure_name) # second-order RDM if output_second: fid.write("\n") fid.write("##Second-order analysis\n\n") # Numerical correlations if correlations2: fid.write("###Dissimilarity between areas: 1-Spearman rank correlation\n\n") np.savetxt(fid, betweenRDM[0], fmt='%.4f') fid.write("\n\n") # P-values if pvalues: fid.write("###Statistical significance of Dissimilarity between areas\n") fid.write("P-values are obtained by random relabeling of conditions.\nNo. of relabelings = %d \n\n" % (no_relabelings)) np.savetxt(fid, betweenRDM[1], fmt='%.4f') fid.write("\n\n") # RDM plot if matrix_plot2: figure_name = plot_RDM([betweenRDM[0]], names, ['Second order RDM'], 2) fid.write("\n") fid.write("![Figure2](%s)" % figure_name) fid.write("\n") # Bar plot if bar_plot: figure_name = plot_bars(betweenRDM[0], betweenRDM[1], betweenRDM[2], names) fid.write("\n") fid.write("![Figure3](%s)" % figure_name) fid.write("\n") with open(output, 'w') as output_file: html = markdown.markdownFromFile(filename, output_file, extensions=['markdown.extensions.nl2br']) os.remove(filename) webbrowser.open(output, new=2) def RSA(paths, files, labels): ''' Imports input files, extracts relevant data, computes first and second order RDMs and plots them''' data = import_data(paths) data = extract_data(data) withinRDMs = first_order_rdm(data) names = [file[0:-4] for file in files] if output_second: betweenRDM = second_order_rdm(withinRDMs, data, True) if output_second: generate_output(withinRDMs, betweenRDM, names, labels) else: generate_output(withinRDMs, names, labels)
gpl-2.0
192,519,840,704,321,060
33.174208
135
0.601721
false
3.594717
false
false
false
mamrhein/identifiers
src/identifiers/isbnutils.py
1
2204
# -*- coding: utf-8 -*- # --------------------------------------------------------------------------- # Name: isbnutils # Purpose: Utility functions for checking ISBNs # # Author: Michael Amrhein ([email protected]) # # Copyright: (c) 2016 Michael Amrhein # License: This program is part of a larger application. For license # details please read the file LICENSE.TXT provided together # with the application. # --------------------------------------------------------------------------- # $Source$ # $Revision$ """Utility functions for checking ISBNs""" import os.path from bisect import bisect from typing import Iterator, Tuple from xml.etree import ElementTree as ETree def _iter_rules(root: ETree.Element) -> Iterator: for elem in root.findall('RegistrationGroups/Group'): prefix = elem.findtext('Prefix').replace('-', '') prefix_length = len(prefix) for subelem in elem.findall('Rules/Rule'): number_range = subelem.findtext('Range') lower, upper = number_range.split('-') lower_prefix = prefix + lower upper_prefix = prefix + upper length = int(subelem.findtext('Length')) if length > 0: item_idx = prefix_length + length else: item_idx = 0 yield lower_prefix, upper_prefix, prefix_length, item_idx file_name = os.path.join(os.path.dirname(__file__), "ISBN_Ranges.xml") etree = ETree.parse(file_name) root = etree.getroot() rule_list = list(_iter_rules(root)) def lookup_isbn_prefix(digits: str) -> Tuple[int, int]: """Check ISBN prefix in `digits`.""" idx = max(bisect(rule_list, (digits,)) - 1, 0) lower_prefix, upper_prefix, registrant_idx, item_idx = rule_list[idx] if lower_prefix <= digits <= upper_prefix: if item_idx > 0: return registrant_idx, item_idx raise ValueError(f"Excluded prefix range: '{lower_prefix}' - " f"'{upper_prefix}'.") if lower_prefix[:3] != digits[:3]: raise ValueError("Undefined prefix.") raise ValueError("Undefined registration group or registrant.")
bsd-2-clause
7,380,924,420,951,742,000
35.131148
77
0.577586
false
4.02925
false
false
false
nddsg/SimpleDBMS
simple_dbms/insert_row.py
1
1183
from data_output_stream import DataOutputStream from column import Column class InsertRow: # Constants for special offsets # The field with this offset is a primary key. IS_PKEY = -1 # The field with this offset has a null value. IS_NULL = -2 def __init__(self, table, values): """ Constructs an InsertRow object for a row containing the specified values that is to be inserted in the specified table. :param table: :param values: """ self._table = table self._values = values # These objects will be created by the marshall() method. self._key = None self._data = None def marshall(self): """ Takes the collection of values for this InsertRow and marshalls them into a key/data pair. :return: """ def get_key(self): """ Returns the key in the key/data pair for this row. :return: the key """ return self._key def get_data(self): """ Returns the data item in the key/data pair for this row. :return: the data """ return self._data
gpl-3.0
-3,515,780,267,484,842,000
24.717391
73
0.578191
false
4.39777
false
false
false
toirl/ringo
ringo/lib/history.py
1
1556
import urlparse class History: def __init__(self, history): self.history = history def push(self, url): """Adds an url to the history if the url is not already the most recent entry. The scheme and network location (host, port, username, password), if present, are removed from the URL before storing it. If there are more than 5 entries in the list the oldes entry will be removed. """ # normalize the URL by removing scheme and netloc. This avoids # problems with the URLs when running ringo behind reverse # proxies. split = urlparse.urlsplit(url) normalized_url = urlparse.urlunsplit(("", "") + split[2:]) if not self.history or normalized_url != self.history[-1]: self.history.append(normalized_url) if len(self.history) > 5: del self.history[0] def pop(self, num=1): """Returns a url form the history and deletes the item and all decendants from the history. On default it will return the last recent entry in the history. Optionally you can provide a number to the pop method to get e.g the 2 most recent entry.""" url = None for x in range(num): if len(self.history) > 0: url = self.history.pop() return url def last(self): """Returns the last element from the history stack without removing it""" if len(self.history) > 0: return self.history[-1] return None
gpl-2.0
-5,592,376,716,367,176,000
34.363636
72
0.607969
false
4.471264
false
false
false
KSG-IT/ksg-nett
economy/admin.py
1
1195
from django.contrib import admin from economy.models import Deposit, SociBankAccount, SociProduct, SociSession, ProductOrder @admin.register(SociBankAccount) class SociBankAccountAdmin(admin.ModelAdmin): list_display = ['user', 'card_uuid', 'balance'] readonly_fields = ['balance'] @admin.register(SociProduct) class SociProductAdmin(admin.ModelAdmin): list_display = ['sku_number', 'icon', 'name', 'price', 'description', 'start'] @admin.register(Deposit) class DepositAdmin(admin.ModelAdmin): list_display = ['id', 'user', 'amount', 'has_receipt', 'is_valid'] @staticmethod def user(deposit: Deposit): return deposit.account.user def has_receipt(self, deposit): return bool(deposit.receipt) has_receipt.boolean = True def is_valid(self, deposit): return deposit.is_valid is_valid.boolean = True @admin.register(SociSession) class SociSessionAdmin(admin.ModelAdmin): pass @admin.register(ProductOrder) class ProductOrderAdmin(admin.ModelAdmin): list_display = ['id', 'product', 'order_size', 'source', 'cost'] @staticmethod def cost(product_order: ProductOrder): return product_order.cost
gpl-3.0
-4,060,153,103,539,028,000
24.425532
91
0.704603
false
3.556548
false
false
false
nickhand/nbodykit
nbodykit/extern/docrep.py
1
34200
import types import six import inspect import re from warnings import warn __version__ = '0.2.5' __author__ = 'Philipp Sommer' try: from matplotlib.cbook import dedent as dedents except ImportError: from textwrap import dedent as _dedents def dedents(s): return '\n'.join(_dedents(s or '').splitlines()[1:]) substitution_pattern = re.compile( r"""(?s)(?<!%)(%%)*%(?!%) # uneven number of % \((?P<key>.*?)\)# key enclosed in brackets""", re.VERBOSE) summary_patt = re.compile(r'(?s).*?(?=(\n\s*\n)|$)') class _StrWithIndentation(object): """A convenience class that indents the given string if requested through the __str__ method""" def __init__(self, s, indent=0, *args, **kwargs): self._indent = '\n' + ' ' * indent self._s = s def __str__(self): return self._indent.join(self._s.splitlines()) def __repr__(self): return repr(self._indent.join(self._s.splitlines())) def safe_modulo(s, meta, checked='', print_warning=True, stacklevel=2): """Safe version of the modulo operation (%) of strings Parameters ---------- s: str string to apply the modulo operation with meta: dict or tuple meta informations to insert (usually via ``s % meta``) checked: {'KEY', 'VALUE'}, optional Security parameter for the recursive structure of this function. It can be set to 'VALUE' if an error shall be raised when facing a TypeError or ValueError or to 'KEY' if an error shall be raised when facing a KeyError. This parameter is mainly for internal processes. print_warning: bool If True and a key is not existent in `s`, a warning is raised stacklevel: int The stacklevel for the :func:`warnings.warn` function Examples -------- The effects are demonstrated by this example:: >>> from docrep import safe_modulo >>> s = "That's %(one)s string %(with)s missing 'with' and %s key" >>> s % {'one': 1} # raises KeyError because of missing 'with' Traceback (most recent call last): File "<stdin>", line 1, in <module> KeyError: 'with' >>> s % {'one': 1, 'with': 2} # raises TypeError because of '%s' Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: not enough arguments for format string >>> safe_modulo(s, {'one': 1}) "That's 1 string %(with)s missing 'with' and %s key" """ try: return s % meta except (ValueError, TypeError, KeyError): # replace the missing fields by %% keys = substitution_pattern.finditer(s) for m in keys: key = m.group('key') if not isinstance(meta, dict) or key not in meta: if print_warning: warn("%r is not a valid key!" % key, SyntaxWarning, stacklevel) full = m.group() s = s.replace(full, '%' + full) if 'KEY' not in checked: return safe_modulo(s, meta, checked=checked + 'KEY', print_warning=print_warning, stacklevel=stacklevel) if not isinstance(meta, dict) or 'VALUE' in checked: raise s = re.sub(r"""(?<!%)(%%)*%(?!%) # uneven number of % \s*(\w|$) # format strings""", '%\g<0>', s, flags=re.VERBOSE) return safe_modulo(s, meta, checked=checked + 'VALUE', print_warning=print_warning, stacklevel=stacklevel) class DocstringProcessor(object): """Class that is intended to process docstrings It is, but only to minor extends, inspired by the :class:`matplotlib.docstring.Substitution` class. Examples -------- Create docstring processor via:: >>> from docrep import DocstringProcessor >>> d = DocstringProcessor(doc_key='My doc string') And then use it as a decorator to process the docstring:: >>> @d ... def doc_test(): ... '''That's %(doc_key)s''' ... pass >>> print(doc_test.__doc__) That's My doc string Use the :meth:`get_sectionsf` method to extract Parameter sections (or others) form the docstring for later usage (and make sure, that the docstring is dedented):: >>> @d.get_sectionsf('docstring_example', ... sections=['Parameters', 'Examples']) ... @d.dedent ... def doc_test(a=1, b=2): ... ''' ... That's %(doc_key)s ... ... Parameters ... ---------- ... a: int, optional ... A dummy parameter description ... b: int, optional ... A second dummy parameter ... ... Examples ... -------- ... Some dummy example doc''' ... print(a) >>> @d.dedent ... def second_test(a=1, b=2): ... ''' ... My second function where I want to use the docstring from ... above ... ... Parameters ... ---------- ... %(docstring_example.parameters)s ... ... Examples ... -------- ... %(docstring_example.examples)s''' ... pass >>> print(second_test.__doc__) My second function where I want to use the docstring from above <BLANKLINE> Parameters ---------- a: int, optional A dummy parameter description b: int, optional A second dummy parameter <BLANKLINE> Examples -------- Some dummy example doc Another example uses non-dedented docstrings:: >>> @d.get_sectionsf('not_dedented') ... def doc_test2(a=1): ... '''That's the summary ... ... Parameters ... ---------- ... a: int, optional ... A dummy parameter description''' ... print(a) These sections must then be used with the :meth:`with_indent` method to indent the inserted parameters:: >>> @d.with_indent(4) ... def second_test2(a=1): ... ''' ... My second function where I want to use the docstring from ... above ... ... Parameters ... ---------- ... %(not_dedented.parameters)s''' ... pass """ #: :class:`dict`. Dictionary containing the compiled patterns to identify #: the Parameters, Other Parameters, Warnings and Notes sections in a #: docstring patterns = {} #: :class:`dict`. Dictionary containing the parameters that are used in for #: substitution. params = {} #: sections that behave the same as the `Parameter` section by defining a #: list param_like_sections = ['Parameters', 'Other Parameters', 'Returns', 'Raises'] #: sections that include (possibly not list-like) text text_sections = ['Warnings', 'Notes', 'Examples', 'See Also', 'References'] #: The action on how to react on classes in python 2 #: #: When calling:: #: #: >>> @docstrings #: ... class NewClass(object): #: ... """%(replacement)s""" #: #: This normaly raises an AttributeError, because the ``__doc__`` attribute #: of a class in python 2 is not writable. This attribute may be one of #: ``'ignore', 'raise' or 'warn'`` python2_classes = 'ignore' def __init__(self, *args, **kwargs): """ Parameters ---------- ``*args`` and ``**kwargs`` Parameters that shall be used for the substitution. Note that you can only provide either ``*args`` or ``**kwargs``, furthermore most of the methods like `get_sectionsf` require ``**kwargs`` to be provided.""" if len(args) and len(kwargs): raise ValueError("Only positional or keyword args are allowed") self.params = args or kwargs patterns = {} all_sections = self.param_like_sections + self.text_sections for section in self.param_like_sections: patterns[section] = re.compile( '(?s)(?<=%s\n%s\n)(.+?)(?=\n\n\S+|$)' % ( section, '-'*len(section))) all_sections_patt = '|'.join( '%s\n%s\n' % (s, '-'*len(s)) for s in all_sections) # examples and see also for section in self.text_sections: patterns[section] = re.compile( '(?s)(?<=%s\n%s\n)(.+?)(?=%s|$)' % ( section, '-'*len(section), all_sections_patt)) self._extended_summary_patt = re.compile( '(?s)(.+?)(?=%s|$)' % all_sections_patt) self._all_sections_patt = re.compile(all_sections_patt) self.patterns = patterns def __call__(self, func): """ Substitute in a docstring of a function with :attr:`params` Parameters ---------- func: function function with the documentation whose sections shall be inserted from the :attr:`params` attribute See Also -------- dedent: also dedents the doc with_indent: also indents the doc""" doc = func.__doc__ and safe_modulo(func.__doc__, self.params, stacklevel=3) return self._set_object_doc(func, doc) def get_sections(self, s, base, sections=['Parameters', 'Other Parameters']): """ Method that extracts the specified sections out of the given string if (and only if) the docstring follows the numpy documentation guidelines [1]_. Note that the section either must appear in the :attr:`param_like_sections` or the :attr:`text_sections` attribute. Parameters ---------- s: str Docstring to split base: str base to use in the :attr:`sections` attribute sections: list of str sections to look for. Each section must be followed by a newline character ('\\n') and a bar of '-' (following the numpy (napoleon) docstring conventions). Returns ------- str The replaced string References ---------- .. [1] https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt See Also -------- delete_params, keep_params, delete_types, keep_types, delete_kwargs: For manipulating the docstring sections save_docstring: for saving an entire docstring """ params = self.params # Remove the summary and dedent the rest s = self._remove_summary(s) for section in sections: key = '%s.%s' % (base, section.lower().replace(' ', '_')) params[key] = self._get_section(s, section) return s def _remove_summary(self, s): # if the string does not start with one of the sections, we remove the # summary if not self._all_sections_patt.match(s.lstrip()): # remove the summary lines = summary_patt.sub('', s, 1).splitlines() # look for the first line with content first = next((i for i, l in enumerate(lines) if l.strip()), 0) # dedent the lines s = dedents('\n' + '\n'.join(lines[first:])) return s def _get_section(self, s, section): try: return self.patterns[section].search(s).group(0).rstrip() except AttributeError: return '' def get_sectionsf(self, *args, **kwargs): """ Decorator method to extract sections from a function docstring Parameters ---------- ``*args`` and ``**kwargs`` See the :meth:`get_sections` method. Note, that the first argument will be the docstring of the specified function Returns ------- function Wrapper that takes a function as input and registers its sections via the :meth:`get_sections` method""" def func(f): doc = f.__doc__ self.get_sections(doc or '', *args, **kwargs) return f return func def _set_object_doc(self, obj, doc, stacklevel=3): """Convenience method to set the __doc__ attribute of a python object """ if isinstance(obj, types.MethodType) and six.PY2: obj = obj.im_func try: obj.__doc__ = doc except AttributeError: # probably python2 class if (self.python2_classes != 'raise' and (inspect.isclass(obj) and six.PY2)): if self.python2_classes == 'warn': warn("Cannot modify docstring of classes in python2!", stacklevel=stacklevel) else: raise return obj def dedent(self, func): """ Dedent the docstring of a function and substitute with :attr:`params` Parameters ---------- func: function function with the documentation to dedent and whose sections shall be inserted from the :attr:`params` attribute""" doc = func.__doc__ and self.dedents(func.__doc__, stacklevel=4) return self._set_object_doc(func, doc) def dedents(self, s, stacklevel=3): """ Dedent a string and substitute with the :attr:`params` attribute Parameters ---------- s: str string to dedent and insert the sections of the :attr:`params` attribute stacklevel: int The stacklevel for the warning raised in :func:`safe_module` when encountering an invalid key in the string""" s = dedents(s) return safe_modulo(s, self.params, stacklevel=stacklevel) def with_indent(self, indent=0): """ Substitute in the docstring of a function with indented :attr:`params` Parameters ---------- indent: int The number of spaces that the substitution should be indented Returns ------- function Wrapper that takes a function as input and substitutes it's ``__doc__`` with the indented versions of :attr:`params` See Also -------- with_indents, dedent""" def replace(func): doc = func.__doc__ and self.with_indents( func.__doc__, indent=indent, stacklevel=4) return self._set_object_doc(func, doc) return replace def with_indents(self, s, indent=0, stacklevel=3): """ Substitute a string with the indented :attr:`params` Parameters ---------- s: str The string in which to substitute indent: int The number of spaces that the substitution should be indented stacklevel: int The stacklevel for the warning raised in :func:`safe_module` when encountering an invalid key in the string Returns ------- str The substituted string See Also -------- with_indent, dedents""" # we make a new dictionary with objects that indent the original # strings if necessary. Note that the first line is not indented d = {key: _StrWithIndentation(val, indent) for key, val in six.iteritems(self.params)} return safe_modulo(s, d, stacklevel=stacklevel) def delete_params(self, base_key, *params): """ Method to delete a parameter from a parameter documentation. This method deletes the given `param` from the `base_key` item in the :attr:`params` dictionary and creates a new item with the original documentation without the description of the param. This method works for the ``'Parameters'`` sections. The new docstring without the selected parts will be accessible as ``base_key + '.no_' + '|'.join(params)``, e.g. ``'original_key.no_param1|param2'``. See the :meth:`keep_params` method for an example. Parameters ---------- base_key: str key in the :attr:`params` dictionary ``*params`` str. Parameter identifier of which the documentations shall be deleted See Also -------- delete_types, keep_params""" self.params[ base_key + '.no_' + '|'.join(params)] = self.delete_params_s( self.params[base_key], params) @staticmethod def delete_params_s(s, params): """ Delete the given parameters from a string Same as :meth:`delete_params` but does not use the :attr:`params` dictionary Parameters ---------- s: str The string of the parameters section params: list of str The names of the parameters to delete Returns ------- str The modified string `s` without the descriptions of `params` """ patt = '(?s)' + '|'.join( '(?<=\n)' + s + '\s*:.+?\n(?=\S+|$)' for s in params) return re.sub(patt, '', '\n' + s.strip() + '\n').strip() def delete_kwargs(self, base_key, args=None, kwargs=None): """ Deletes the ``*args`` or ``**kwargs`` part from the parameters section Either `args` or `kwargs` must not be None. The resulting key will be stored in ``base_key + 'no_args'`` if `args` is not None and `kwargs` is None ``base_key + 'no_kwargs'`` if `args` is None and `kwargs` is not None ``base_key + 'no_args_kwargs'`` if `args` is not None and `kwargs` is not None Parameters ---------- base_key: str The key in the :attr:`params` attribute to use args: None or str The string for the args to delete kwargs: None or str The string for the kwargs to delete Notes ----- The type name of `args` in the base has to be like ````*<args>```` (i.e. the `args` argument preceeded by a ``'*'`` and enclosed by double ``'`'``). Similarily, the type name of `kwargs` in `s` has to be like ````**<kwargs>````""" if not args and not kwargs: warn("Neither args nor kwargs are given. I do nothing for %s" % ( base_key)) return ext = '.no' + ('_args' if args else '') + ('_kwargs' if kwargs else '') self.params[base_key + ext] = self.delete_kwargs_s( self.params[base_key], args, kwargs) @classmethod def delete_kwargs_s(cls, s, args=None, kwargs=None): """ Deletes the ``*args`` or ``**kwargs`` part from the parameters section Either `args` or `kwargs` must not be None. Parameters ---------- s: str The string to delete the args and kwargs from args: None or str The string for the args to delete kwargs: None or str The string for the kwargs to delete Notes ----- The type name of `args` in `s` has to be like ````*<args>```` (i.e. the `args` argument preceeded by a ``'*'`` and enclosed by double ``'`'``). Similarily, the type name of `kwargs` in `s` has to be like ````**<kwargs>````""" if not args and not kwargs: return s types = [] if args is not None: types.append('`?`?\*%s`?`?' % args) if kwargs is not None: types.append('`?`?\*\*%s`?`?' % kwargs) return cls.delete_types_s(s, types) def delete_types(self, base_key, out_key, *types): """ Method to delete a parameter from a parameter documentation. This method deletes the given `param` from the `base_key` item in the :attr:`params` dictionary and creates a new item with the original documentation without the description of the param. This method works for ``'Results'`` like sections. See the :meth:`keep_types` method for an example. Parameters ---------- base_key: str key in the :attr:`params` dictionary out_key: str Extension for the base key (the final key will be like ``'%s.%s' % (base_key, out_key)`` ``*types`` str. The type identifier of which the documentations shall deleted See Also -------- delete_params""" self.params['%s.%s' % (base_key, out_key)] = self.delete_types_s( self.params[base_key], types) @staticmethod def delete_types_s(s, types): """ Delete the given types from a string Same as :meth:`delete_types` but does not use the :attr:`params` dictionary Parameters ---------- s: str The string of the returns like section types: list of str The type identifiers to delete Returns ------- str The modified string `s` without the descriptions of `types` """ patt = '(?s)' + '|'.join( '(?<=\n)' + s + '\n.+?\n(?=\S+|$)' for s in types) return re.sub(patt, '', '\n' + s.strip() + '\n',).strip() def keep_params(self, base_key, *params): """ Method to keep only specific parameters from a parameter documentation. This method extracts the given `param` from the `base_key` item in the :attr:`params` dictionary and creates a new item with the original documentation with only the description of the param. This method works for ``'Parameters'`` like sections. The new docstring with the selected parts will be accessible as ``base_key + '.' + '|'.join(params)``, e.g. ``'original_key.param1|param2'`` Parameters ---------- base_key: str key in the :attr:`params` dictionary ``*params`` str. Parameter identifier of which the documentations shall be in the new section See Also -------- keep_types, delete_params Examples -------- To extract just two parameters from a function and reuse their docstrings, you can type:: >>> from docrep import DocstringProcessor >>> d = DocstringProcessor() >>> @d.get_sectionsf('do_something') ... def do_something(a=1, b=2, c=3): ... ''' ... That's %(doc_key)s ... ... Parameters ... ---------- ... a: int, optional ... A dummy parameter description ... b: int, optional ... A second dummy parameter that will be excluded ... c: float, optional ... A third parameter''' ... print(a) >>> d.keep_params('do_something.parameters', 'a', 'c') >>> @d.dedent ... def do_less(a=1, c=4): ... ''' ... My second function with only `a` and `c` ... ... Parameters ... ---------- ... %(do_something.parameters.a|c)s''' ... pass >>> print(do_less.__doc__) My second function with only `a` and `c` <BLANKLINE> Parameters ---------- a: int, optional A dummy parameter description c: float, optional A third parameter Equivalently, you can use the :meth:`delete_params` method to remove parameters:: >>> d.delete_params('do_something.parameters', 'b') >>> @d.dedent ... def do_less(a=1, c=4): ... ''' ... My second function with only `a` and `c` ... ... Parameters ... ---------- ... %(do_something.parameters.no_b)s''' ... pass """ self.params[base_key + '.' + '|'.join(params)] = self.keep_params_s( self.params[base_key], params) @staticmethod def keep_params_s(s, params): """ Keep the given parameters from a string Same as :meth:`keep_params` but does not use the :attr:`params` dictionary Parameters ---------- s: str The string of the parameters like section params: list of str The parameter names to keep Returns ------- str The modified string `s` with only the descriptions of `params` """ patt = '(?s)' + '|'.join( '(?<=\n)' + s + '\s*:.+?\n(?=\S+|$)' for s in params) return ''.join(re.findall(patt, '\n' + s.strip() + '\n')).rstrip() def keep_types(self, base_key, out_key, *types): """ Method to keep only specific parameters from a parameter documentation. This method extracts the given `type` from the `base_key` item in the :attr:`params` dictionary and creates a new item with the original documentation with only the description of the type. This method works for the ``'Results'`` sections. Parameters ---------- base_key: str key in the :attr:`params` dictionary out_key: str Extension for the base key (the final key will be like ``'%s.%s' % (base_key, out_key)`` ``*types`` str. The type identifier of which the documentations shall be in the new section See Also -------- delete_types, keep_params Examples -------- To extract just two return arguments from a function and reuse their docstrings, you can type:: >>> from docrep import DocstringProcessor >>> d = DocstringProcessor() >>> @d.get_sectionsf('do_something', sections=['Returns']) ... def do_something(): ... ''' ... That's %(doc_key)s ... ... Returns ... ------- ... float ... A random number ... int ... A random integer''' ... return 1.0, 4 >>> d.keep_types('do_something.returns', 'int_only', 'int') >>> @d.dedent ... def do_less(): ... ''' ... My second function that only returns an integer ... ... Returns ... ------- ... %(do_something.returns.int_only)s''' ... return do_something()[1] >>> print(do_less.__doc__) My second function that only returns an integer <BLANKLINE> Returns ------- int A random integer Equivalently, you can use the :meth:`delete_types` method to remove parameters:: >>> d.delete_types('do_something.returns', 'no_float', 'float') >>> @d.dedent ... def do_less(): ... ''' ... My second function with only `a` and `c` ... ... Returns ... ---------- ... %(do_something.returns.no_float)s''' ... return do_something()[1] """ self.params['%s.%s' % (base_key, out_key)] = self.keep_types_s( self.params[base_key], types) @staticmethod def keep_types_s(s, types): """ Keep the given types from a string Same as :meth:`keep_types` but does not use the :attr:`params` dictionary Parameters ---------- s: str The string of the returns like section types: list of str The type identifiers to keep Returns ------- str The modified string `s` with only the descriptions of `types` """ patt = '|'.join('(?<=\n)' + s + '\n(?s).+?\n(?=\S+|$)' for s in types) return ''.join(re.findall(patt, '\n' + s.strip() + '\n')).rstrip() def save_docstring(self, key): """ Descriptor method to save a docstring from a function Like the :meth:`get_sectionsf` method this method serves as a descriptor for functions but saves the entire docstring""" def func(f): self.params[key] = f.__doc__ or '' return f return func def get_summary(self, s, base=None): """ Get the summary of the given docstring This method extracts the summary from the given docstring `s` which is basicly the part until two newlines appear Parameters ---------- s: str The docstring to use base: str or None A key under which the summary shall be stored in the :attr:`params` attribute. If not None, the summary will be stored in ``base + '.summary'``. Otherwise, it will not be stored at all Returns ------- str The extracted summary""" summary = summary_patt.search(s).group() if base is not None: self.params[base + '.summary'] = summary return summary def get_summaryf(self, *args, **kwargs): """ Extract the summary from a function docstring Parameters ---------- ``*args`` and ``**kwargs`` See the :meth:`get_summary` method. Note, that the first argument will be the docstring of the specified function Returns ------- function Wrapper that takes a function as input and registers its summary via the :meth:`get_summary` method""" def func(f): doc = f.__doc__ self.get_summary(doc or '', *args, **kwargs) return f return func def get_extended_summary(self, s, base=None): """Get the extended summary from a docstring This here is the extended summary Parameters ---------- s: str The docstring to use base: str or None A key under which the summary shall be stored in the :attr:`params` attribute. If not None, the summary will be stored in ``base + '.summary_ext'``. Otherwise, it will not be stored at all Returns ------- str The extracted extended summary""" # Remove the summary and dedent s = self._remove_summary(s) ret = '' if not self._all_sections_patt.match(s): m = self._extended_summary_patt.match(s) if m is not None: ret = m.group().strip() if base is not None: self.params[base + '.summary_ext'] = ret return ret def get_extended_summaryf(self, *args, **kwargs): """Extract the extended summary from a function docstring This function can be used as a decorator to extract the extended summary of a function docstring (similar to :meth:`get_sectionsf`). Parameters ---------- ``*args`` and ``**kwargs`` See the :meth:`get_extended_summary` method. Note, that the first argument will be the docstring of the specified function Returns ------- function Wrapper that takes a function as input and registers its summary via the :meth:`get_extended_summary` method""" def func(f): doc = f.__doc__ self.get_extended_summary(doc or '', *args, **kwargs) return f return func def get_full_description(self, s, base=None): """Get the full description from a docstring This here and the line above is the full description (i.e. the combination of the :meth:`get_summary` and the :meth:`get_extended_summary`) output Parameters ---------- s: str The docstring to use base: str or None A key under which the description shall be stored in the :attr:`params` attribute. If not None, the summary will be stored in ``base + '.full_desc'``. Otherwise, it will not be stored at all Returns ------- str The extracted full description""" summary = self.get_summary(s) extended_summary = self.get_extended_summary(s) ret = (summary + '\n\n' + extended_summary).strip() if base is not None: self.params[base + '.full_desc'] = ret return ret def get_full_descriptionf(self, *args, **kwargs): """Extract the full description from a function docstring This function can be used as a decorator to extract the full descriptions of a function docstring (similar to :meth:`get_sectionsf`). Parameters ---------- ``*args`` and ``**kwargs`` See the :meth:`get_full_description` method. Note, that the first argument will be the docstring of the specified function Returns ------- function Wrapper that takes a function as input and registers its summary via the :meth:`get_full_description` method""" def func(f): doc = f.__doc__ self.get_full_description(doc or '', *args, **kwargs) return f return func
gpl-3.0
-3,629,700,325,544,615,000
32.595285
84
0.522485
false
4.495859
false
false
false
wcmckee/moejobs-site
cache/.mako.tmp/comments_helper_googleplus.tmpl.py
1
2430
# -*- coding:utf-8 -*- from mako import runtime, filters, cache UNDEFINED = runtime.UNDEFINED STOP_RENDERING = runtime.STOP_RENDERING __M_dict_builtin = dict __M_locals_builtin = locals _magic_number = 10 _modified_time = 1443802885.4031692 _enable_loop = True _template_filename = '/usr/local/lib/python3.4/dist-packages/nikola/data/themes/base/templates/comments_helper_googleplus.tmpl' _template_uri = 'comments_helper_googleplus.tmpl' _source_encoding = 'utf-8' _exports = ['comment_link_script', 'comment_form', 'comment_link'] def render_body(context,**pageargs): __M_caller = context.caller_stack._push_frame() try: __M_locals = __M_dict_builtin(pageargs=pageargs) __M_writer = context.writer() __M_writer('\n\n') __M_writer('\n\n') __M_writer('\n') return '' finally: context.caller_stack._pop_frame() def render_comment_link_script(context): __M_caller = context.caller_stack._push_frame() try: __M_writer = context.writer() __M_writer('\n') return '' finally: context.caller_stack._pop_frame() def render_comment_form(context,url,title,identifier): __M_caller = context.caller_stack._push_frame() try: __M_writer = context.writer() __M_writer('\n<script src="https://apis.google.com/js/plusone.js"></script>\n<div class="g-comments"\n data-href="') __M_writer(str(url)) __M_writer('"\n data-first_party_property="BLOGGER"\n data-view_type="FILTERED_POSTMOD">\n</div>\n') return '' finally: context.caller_stack._pop_frame() def render_comment_link(context,link,identifier): __M_caller = context.caller_stack._push_frame() try: __M_writer = context.writer() __M_writer('\n<div class="g-commentcount" data-href="') __M_writer(str(link)) __M_writer('"></div>\n<script src="https://apis.google.com/js/plusone.js"></script>\n') return '' finally: context.caller_stack._pop_frame() """ __M_BEGIN_METADATA {"uri": "comments_helper_googleplus.tmpl", "source_encoding": "utf-8", "filename": "/usr/local/lib/python3.4/dist-packages/nikola/data/themes/base/templates/comments_helper_googleplus.tmpl", "line_map": {"33": 16, "39": 2, "57": 12, "43": 2, "44": 5, "45": 5, "16": 0, "51": 11, "21": 9, "22": 14, "23": 17, "56": 12, "55": 11, "29": 16, "63": 57}} __M_END_METADATA """
mit
-6,546,587,520,571,600,000
35.268657
348
0.617695
false
3.079848
false
false
false
tomkuba/vRAAPIClient
examples/reservation/createReservationsJinja2/createReservation-AllBusinessGroups.py
2
1557
#!/usr/bin/python import getpass import json import os from globalconfig import passwd, url, usr from jinja2 import Environment, FileSystemLoader from vraapiclient import reservation #Get the current directory currentDirectory = os.path.dirname(os.path.abspath(__file__)) client = reservation.ReservationClient(url, usr, passwd) #Set up jinja2 environment env = Environment(loader=FileSystemLoader(currentDirectory)) template = env.get_template('reservationTemplate.json') #Get all business groups businessGroups = client.getAllBusinessGroups(show="json") #Loop through each group in the businessGroups object and pull out #id and name, format the reservation name and inject both values #in to the params dict. for group in businessGroups: #This is where we format the reservation name. #[ComputeResource]-Res-BusinessGroupName(nospaces) name = 'CLTEST01-Res-{groupname}'.format(groupname = group['name'].replace(" ","")) #Set all configurable parameters here params = { 'ReservationName': name, 'SubTenantId': group['id'], } #Create the JSON payload for the POST #This is where params are added to the json payload payload = json.loads(template.render(params=params)) #Attempt to create each reservation. Catch any errors and continue try: reservation = client.createReservation(payload) print "Reservation created: {id}".format(id=reservation) except Exception, e: pass
mit
699,249,831,173,375,500
31.4375
91
0.69878
false
4.373596
false
false
false
OCA/sale-workflow
sale_automatic_workflow/tests/test_automatic_workflow_base.py
1
2654
# Copyright 2014 Camptocamp SA (author: Guewen Baconnier) # License AGPL-3.0 or later (http://www.gnu.org/licenses/agpl). from odoo.tests import common class TestAutomaticWorkflowBase(common.TransactionCase): def create_sale_order(self, workflow, override=None): sale_obj = self.env['sale.order'] partner_values = {'name': 'Imperator Caius Julius Caesar Divus'} partner = self.env['res.partner'].create(partner_values) product_values = {'name': 'Bread', 'list_price': 5, 'type': 'product'} product = self.env['product.product'].create(product_values) self.product_uom_unit = self.env.ref('uom.product_uom_unit') values = { 'partner_id': partner.id, 'order_line': [(0, 0, { 'name': product.name, 'product_id': product.id, 'product_uom': self.product_uom_unit.id, 'price_unit': product.list_price, 'product_uom_qty': 1})], 'workflow_process_id': workflow.id, } if override: values.update(override) order = sale_obj.create(values) # Create inventory for add stock qty to lines # With this commit https://goo.gl/fRTLM3 the moves that where # force-assigned are not transferred in the picking for line in order.order_line: if line.product_id.type == 'product': inventory = self.env['stock.inventory'].create({ 'name': 'Inventory for move %s' % line.name, 'filter': 'product', 'product_id': line.product_id.id, 'line_ids': [(0, 0, { 'product_id': line.product_id.id, 'product_qty': line.product_uom_qty, 'location_id': self.env.ref('stock.stock_location_stock').id })] }) inventory.post_inventory() return order def create_full_automatic(self, override=None): workflow_obj = self.env['sale.workflow.process'] values = workflow_obj.create({ 'name': 'Full Automatic', 'picking_policy': 'one', 'validate_order': True, 'validate_picking': True, 'create_invoice': True, 'validate_invoice': True, 'invoice_date_is_order_date': True, }) if override: values.update(override) return values def progress(self): self.env['automatic.workflow.job'].run()
agpl-3.0
5,893,069,417,804,947,000
39.212121
72
0.529766
false
4.076805
false
false
false
glibin/tortik
tortik/util/__init__.py
1
3283
# -*- encoding: utf-8 -*- from types import FunctionType import tornado.web from tornado.util import unicode_type try: import urlparse # py2 except ImportError: import urllib.parse as urlparse # py3 try: from urllib import urlencode # py2 except ImportError: from urllib.parse import urlencode # py3 def decorate_all(decorator_list): def is_method_need_to_decorate(func_name, func_obj, check_param): """check if an object should be decorated""" methods = ["get", "head", "post", "put", "delete", "patch"] return (func_name in methods and isinstance(func_obj, FunctionType) and getattr(func_obj, check_param, True)) """decorate all instance methods (unless excluded) with the same decorator""" class DecorateAll(type): def __new__(cls, name, bases, dct): for func_name, func_obj in dct.items(): for item in decorator_list: decorator, check_param = item if is_method_need_to_decorate(func_name, func_obj, check_param): dct[func_name] = decorator(dct[func_name]) return super(DecorateAll, cls).__new__(cls, name, bases, dct) def __setattr__(self, func_name, func_obj): for item in decorator_list: decorator, check_param = item if is_method_need_to_decorate(func_name, func_obj, check_param): func_obj = decorator(func_obj) super(DecorateAll, self).__setattr__(func_name, func_obj) return DecorateAll def make_list(val): if isinstance(val, list): return val else: return [val] def real_ip(request): # split is for X-Forwarded-For header that can consist of many IPs: X-Forwarded-For: client, proxy1, proxy2 return (request.headers.get('X-Real-Ip', None) or request.headers.get('X-Forwarded-For', None) or request.remote_ip or '127.0.0.1').split(',')[0] HTTPError = tornado.web.HTTPError ITERABLE = (set, frozenset, list, tuple) def update_url(url, update_args=None, remove_args=None): scheme, sep, url_new = url.partition('://') if len(scheme) == len(url): scheme = '' else: url = '//' + url_new url_split = urlparse.urlsplit(url) query_dict = urlparse.parse_qs(url_split.query, keep_blank_values=True) # add args if update_args: query_dict.update(update_args) # remove args if remove_args: query_dict = dict([(k, query_dict.get(k)) for k in query_dict if k not in remove_args]) query = make_qs(query_dict) return urlparse.urlunsplit((scheme, url_split.netloc, url_split.path, query, url_split.fragment)) def make_qs(query_args): def _encode(s): if isinstance(s, unicode_type): return s.encode('utf-8') else: return s kv_pairs = [] for key, val in query_args.items(): if val is not None: encoded_key = _encode(key) if isinstance(val, ITERABLE): for v in val: kv_pairs.append((encoded_key, _encode(v))) else: kv_pairs.append((encoded_key, _encode(val))) qs = urlencode(kv_pairs, doseq=True) return qs
mit
-2,950,805,595,275,233,300
31.186275
111
0.598843
false
3.643729
false
false
false
Facenapalm/NapalmBot
scripts/tow.py
1
3430
""" Script updates russian {{Перевод недели}} template according to Translate of the Week project. Usage: python tow.py """ import re import pywikibot META_TEMPLATE = "Template:TOWThisweek" LOCAL_TEMPLATE = "Шаблон:Перевод недели" ORIGINAL_ID = "original" LOCAL_ID = "russian" ARCHIVE_PAGE = "Проект:Переводы/Невыполненные переводы недели" ARCHIVE_ALL = False ARCHIVE_LABEL = "<!-- NapalmBot: insert here -->" ARCHIVE_DEFAULT = "???" ARCHIVE_FORMAT = "|-\n| {local} || {original}\n" DEFAULT_TEXT = "'''[[Шаблон:Перевод недели|Укажите название статьи]]'''" UPDATE_COMMENT = "Обновление перевода недели." ARCHIVE_COMMENT = "Архивация перевода недели." def parse_meta_template(): """Return (link, langcode, pagename) tuple.""" site = pywikibot.Site("meta", "meta") template = pywikibot.Page(site, META_TEMPLATE) match = re.search(r"\[\[:([A-Za-z\-]+):(.*?)\]\]", template.text) return (match.group(0), match.group(1), match.group(2)) def get_sitelink(site, lang, name): """Return interwiki of [[:lang:name]] in current site.""" try: page = pywikibot.Page(pywikibot.Site(lang), name) result = pywikibot.ItemPage.fromPage(page).getSitelink(site) except: result = None return result def get_regexps(): """ Return (original, local) re object tuple for matching links: $1 — prefix, $2 — link, $3 — postfix. """ regexp = r"(<span id\s*=\s*\"{}\">)(.*?)(</span>)" wrap = lambda x: re.compile(regexp.format(x)) return (wrap(ORIGINAL_ID), wrap(LOCAL_ID)) def archive(site, local, original): """Archive link if neccessary.""" if ARCHIVE_PAGE == "": return if local != DEFAULT_TEXT: if not ARCHIVE_ALL: match = re.match(r"\[\[(.*?)[\]|]", local) if match is None: return try: if pywikibot.Page(site, match.group(1)).exists(): return except: return else: local = ARCHIVE_DEFAULT page = pywikibot.Page(site, ARCHIVE_PAGE) text = page.text pos = text.find(ARCHIVE_LABEL) if pos == -1: return text = text[:pos] + ARCHIVE_FORMAT.format(local=local, original=original) + text[pos:] page.text = text page.save(ARCHIVE_COMMENT, minor=False) def main(): """Main script function.""" site = pywikibot.Site() (interwiki, lang, name) = parse_meta_template() local = get_sitelink(site, lang, name) if local: local = "[[{}]]".format(local) else: local = DEFAULT_TEXT (interwiki_re, local_re) = get_regexps() template = pywikibot.Page(site, LOCAL_TEMPLATE) result = template.text old_interwiki = interwiki_re.search(result).group(2) old_local = local_re.search(result).group(2) if interwiki == old_interwiki: return else: archive(site, old_local, old_interwiki) result = local_re.sub("\\1" + local + "\\3", result) result = interwiki_re.sub("\\1" + interwiki + "\\3", result) template.text = result template.save(UPDATE_COMMENT, minor=False) if __name__ == "__main__": main()
mit
-6,701,825,818,206,077,000
28.504673
90
0.585784
false
3.117479
false
false
false
meeb/txhttprelay
txhttprelay/transport.py
1
5773
''' Copyright 2012 Joe Harris Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import json import time from urlparse import urlsplit, urlunsplit from zope.interface import implements from twisted.python import failure from twisted.internet import reactor, protocol from twisted.web.client import Agent from twisted.web.iweb import IBodyProducer from twisted.web.http_headers import Headers from twisted.internet.defer import succeed from txhttprelay.parser import ParserError # try and import the verifying SSL context from txverifyssl try: from txverifyssl.context import VerifyingSSLContext as SSLContextFactory except ImportError: # if txverifyssl is not installed default to the built-in SSL context, this works but has no SSL verification from twisted.internet.ssl import ClientContextFactory class SSLContextFactory(ClientContextFactory): def getContext(self, hostname, port): return ClientContextFactory.getContext(self) class RequestError(Exception): pass class HttpRequest(object): METHODS = ('get', 'post', 'put', 'delete', 'head', 'options') def __init__(self, id='', method='', url='', expected=200, parser=None): method = method.lower().strip() if method not in self.METHODS: raise RequestError('invalid HTTP method: {}'.format(method)) self.method = method self.url = urlsplit(url) self.expected = expected self.parser = parser self.headers = {} self.body = None self.set_header('User-Agent', 'txhttprelay') if self.method == 'post': self.set_header('Content-Type', 'application/x-www-form-urlencoded') self.id = id self.start_time = 0 def __unicode__(self): return u'<HttpRequest ({} {})>'.format( self.method.upper(), urlunsplit(self.url) ) def __str__(self): return self.__unicode__() def start_timer(self): self.start_time = time.time() def set_header(self, name, value): self.headers.setdefault(str(name), []).append(str(value)) def set_body(self, body): if body: self.body = self.parser.request(body) class HttpResponse(object): def __init__(self, request, code, headers, body): self.request = request self.code = int(code) self.headers = list(headers) self.body = str(body) def ok(self): return int(self.request.expected) == int(self.code) def data(self): if not self.request.parser: return self.body try: return self.request.parser.response(self.body) except ParserError: return None class TransportError(Exception): pass class StringProducer(object): implements(IBodyProducer) def __init__(self, data): self.body = data self.length = len(self.body) def startProducing(self, consumer): consumer.write(self.body) return succeed(None) def pauseProducing(self): pass def stopProducing(self): pass class StringReceiver(protocol.Protocol): def __init__(self, response, callback): self.response = response self.callback = callback def dataReceived(self, data): self.response.body += data def connectionLost(self, reason): self.callback(self.response) class HttpTransport(object): def __init__(self, request): self.request = request def _request(self): method = self.request.method.upper() scheme = self.request.url.scheme.lower() if scheme == 'https': context = SSLContextFactory() if hasattr(context, 'set_expected_host'): context.set_expected_host(self.request.url.netloc) agent = Agent(reactor, context) elif scheme == 'http': agent = Agent(reactor) else: raise TransportError('only HTTP and HTTPS schemes are supported') producer = StringProducer(self.request.body) if self.request.body else None self.request.start_timer() return agent.request( method, urlunsplit(self.request.url), Headers(self.request.headers), producer ) def go(self, callback=None): if not callback: raise TransportError('go() requires a callback as the only parameter') def _got_response(raw_response): if isinstance(raw_response, failure.Failure): error_body = json.dumps({'error':raw_response.getErrorMessage()}) response = HttpResponse(request=self.request, code=0, headers={}, body=error_body) callback(response) else: response = HttpResponse( request=self.request, code=raw_response.code, headers=raw_response.headers.getAllRawHeaders(), body='' ) raw_response.deliverBody(StringReceiver(response, callback)) self._request().addBoth(_got_response) ''' eof '''
apache-2.0
1,102,819,096,241,351,200
29.871658
113
0.618916
false
4.444188
false
false
false
vollov/django-blog
image/migrations/0001_initial.py
1
1822
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2016-11-08 19:18 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import image.models import image.storage import uuid class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Albumn', fields=[ ('id', models.CharField(default=uuid.uuid4, max_length=64, primary_key=True, serialize=False, verbose_name='Activation key')), ('name', models.CharField(db_index=True, max_length=60, unique=True)), ('weight', models.IntegerField(default=0)), ('slug', models.SlugField(max_length=150, unique=True)), ('created', models.DateTimeField(auto_now_add=True, db_index=True)), ('active', models.BooleanField(default=True)), ], ), migrations.CreateModel( name='Image', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(blank=True, max_length=60, null=True)), ('image_key', models.CharField(default=uuid.uuid4, max_length=64, verbose_name='Activation key')), ('image', models.ImageField(storage=image.storage.OverwriteStorage(), upload_to=image.models.image_upload_path)), ('created', models.DateTimeField(auto_now_add=True)), ('active', models.BooleanField(default=True)), ('weight', models.IntegerField(default=0)), ('albumn', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='image.Albumn')), ], ), ]
mit
-1,071,830,020,456,034,800
40.409091
142
0.598244
false
4.140909
false
false
false
hradec/gaffer
python/GafferUITest/GadgetTest.py
6
9854
########################################################################## # # Copyright (c) 2011-2012, John Haddon. All rights reserved. # Copyright (c) 2011-2012, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import unittest import imath import IECore import Gaffer import GafferTest import GafferUI import GafferUITest class GadgetTest( GafferUITest.TestCase ) : def testTransform( self ) : g = GafferUI.TextGadget( "hello" ) self.assertEqual( g.getTransform(), imath.M44f() ) t = imath.M44f().scale( imath.V3f( 2 ) ) g.setTransform( t ) self.assertEqual( g.getTransform(), t ) c1 = GafferUI.LinearContainer() c1.addChild( g ) c2 = GafferUI.LinearContainer() c2.addChild( c1 ) t2 = imath.M44f().translate( imath.V3f( 1, 2, 3 ) ) c2.setTransform( t2 ) self.assertEqual( g.fullTransform(), t * t2 ) self.assertEqual( g.fullTransform( c1 ), t ) def testToolTip( self ) : g = GafferUI.TextGadget( "hello" ) self.assertEqual( g.getToolTip( IECore.LineSegment3f() ), "" ) g.setToolTip( "hi" ) self.assertEqual( g.getToolTip( IECore.LineSegment3f() ), "hi" ) def testDerivationInPython( self ) : class MyGadget( GafferUI.Gadget ) : def __init__( self ) : GafferUI.Gadget.__init__( self ) self.layersRendered = set() def bound( self ) : return imath.Box3f( imath.V3f( -20, 10, 2 ), imath.V3f( 10, 15, 5 ) ) def doRenderLayer( self, layer, style ) : self.layersRendered.add( layer ) mg = MyGadget() # we can't call the methods of the gadget directly in python to test the # bindings, as that doesn't prove anything (we're no exercising the virtual # method override code in the wrapper). instead cause c++ to call through # for us by adding our gadget to a parent and making calls to the parent. c = GafferUI.IndividualContainer() c.addChild( mg ) self.assertEqual( c.bound().size(), mg.bound().size() ) with GafferUI.Window() as w : GafferUI.GadgetWidget( c ) w.setVisible( True ) self.waitForIdle( 1000 ) self.assertEqual( mg.layersRendered, set( GafferUI.Gadget.Layer.values.values() ) ) def testStyle( self ) : g = GafferUI.TextGadget( "test" ) l = GafferUI.LinearContainer() l.addChild( g ) self.assertEqual( g.getStyle(), None ) self.assertEqual( l.getStyle(), None ) self.assertTrue( g.style().isSame( GafferUI.Style.getDefaultStyle() ) ) self.assertTrue( l.style().isSame( GafferUI.Style.getDefaultStyle() ) ) s = GafferUI.StandardStyle() l.setStyle( s ) self.assertTrue( l.getStyle().isSame( s ) ) self.assertEqual( g.getStyle(), None ) self.assertTrue( g.style().isSame( s ) ) self.assertTrue( l.style().isSame( s ) ) def testTypeNamePrefixes( self ) : self.assertTypeNamesArePrefixed( GafferUI ) self.assertTypeNamesArePrefixed( GafferUITest ) def testRenderRequestOnStyleChange( self ) : g = GafferUI.Gadget() cs = GafferTest.CapturingSlot( g.renderRequestSignal() ) self.assertEqual( len( cs ), 0 ) s = GafferUI.StandardStyle() g.setStyle( s ) self.assertEqual( len( cs ), 1 ) self.assertTrue( cs[0][0].isSame( g ) ) s2 = GafferUI.StandardStyle() g.setStyle( s2 ) self.assertEqual( len( cs ), 2 ) self.assertTrue( cs[1][0].isSame( g ) ) s2.setColor( GafferUI.StandardStyle.Color.BackgroundColor, imath.Color3f( 1 ) ) self.assertEqual( len( cs ), 3 ) self.assertTrue( cs[2][0].isSame( g ) ) def testHighlighting( self ) : g = GafferUI.Gadget() self.assertEqual( g.getHighlighted(), False ) g.setHighlighted( True ) self.assertEqual( g.getHighlighted(), True ) g.setHighlighted( False ) self.assertEqual( g.getHighlighted(), False ) cs = GafferTest.CapturingSlot( g.renderRequestSignal() ) g.setHighlighted( False ) self.assertEqual( len( cs ), 0 ) g.setHighlighted( True ) self.assertEqual( len( cs ), 1 ) self.assertTrue( cs[0][0].isSame( g ) ) def testVisibility( self ) : g1 = GafferUI.Gadget() self.assertEqual( g1.getVisible(), True ) self.assertEqual( g1.visible(), True ) g1.setVisible( False ) self.assertEqual( g1.getVisible(), False ) self.assertEqual( g1.visible(), False ) g2 = GafferUI.Gadget() g1.addChild( g2 ) self.assertEqual( g2.getVisible(), True ) self.assertEqual( g2.visible(), False ) g1.setVisible( True ) self.assertEqual( g2.visible(), True ) g3 = GafferUI.Gadget() g2.addChild( g3 ) self.assertEqual( g3.getVisible(), True ) self.assertEqual( g3.visible(), True ) g1.setVisible( False ) self.assertEqual( g3.getVisible(), True ) self.assertEqual( g3.visible(), False ) self.assertEqual( g3.visible( relativeTo = g2 ), True ) self.assertEqual( g3.visible( relativeTo = g1 ), True ) def testVisibilitySignals( self ) : g = GafferUI.Gadget() cs = GafferTest.CapturingSlot( g.renderRequestSignal() ) self.assertEqual( len( cs ), 0 ) g.setVisible( True ) self.assertEqual( len( cs ), 0 ) g.setVisible( False ) self.assertEqual( len( cs ), 1 ) self.assertEqual( cs[0][0], g ) g.setVisible( False ) self.assertEqual( len( cs ), 1 ) self.assertEqual( cs[0][0], g ) g.setVisible( True ) self.assertEqual( len( cs ), 2 ) self.assertEqual( cs[1][0], g ) def testBoundIgnoresHiddenChildren( self ) : g = GafferUI.Gadget() t = GafferUI.TextGadget( "text" ) g.addChild( t ) b = t.bound() self.assertEqual( g.bound(), b ) t.setVisible( False ) # we still want to know what the bound would be for t, # even when it's hidden. self.assertEqual( t.bound(), b ) # but we don't want it taken into account when computing # the parent bound. self.assertEqual( g.bound(), imath.Box3f() ) def testVisibilityChangedSignal( self ) : g = GafferUI.Gadget() g["a"] = GafferUI.Gadget() g["a"]["c"] = GafferUI.Gadget() g["b"] = GafferUI.Gadget() events = [] def visibilityChanged( gadget ) : events.append( ( gadget, gadget.visible() ) ) connnections = [ g.visibilityChangedSignal().connect( visibilityChanged ), g["a"].visibilityChangedSignal().connect( visibilityChanged ), g["a"]["c"].visibilityChangedSignal().connect( visibilityChanged ), g["b"].visibilityChangedSignal().connect( visibilityChanged ), ] g["b"].setVisible( True ) self.assertEqual( len( events ), 0 ) g["b"].setVisible( False ) self.assertEqual( len( events ), 1 ) self.assertEqual( events[0], ( g["b"], False ) ) g["b"].setVisible( True ) self.assertEqual( len( events ), 2 ) self.assertEqual( events[1], ( g["b"], True ) ) g["a"].setVisible( True ) self.assertEqual( len( events ), 2 ) g["a"].setVisible( False ) self.assertEqual( len( events ), 4 ) self.assertEqual( events[-2], ( g["a"]["c"], False ) ) self.assertEqual( events[-1], ( g["a"], False ) ) g["a"].setVisible( True ) self.assertEqual( len( events ), 6 ) self.assertEqual( events[-2], ( g["a"]["c"], True ) ) self.assertEqual( events[-1], ( g["a"], True ) ) g["a"]["c"].setVisible( False ) self.assertEqual( len( events ), 7 ) self.assertEqual( events[-1], ( g["a"]["c"], False ) ) g.setVisible( False ) self.assertEqual( len( events ), 10 ) self.assertEqual( events[-3], ( g["a"], False ) ) self.assertEqual( events[-2], ( g["b"], False ) ) self.assertEqual( events[-1], ( g, False ) ) g["a"]["c"].setVisible( True ) self.assertEqual( len( events ), 10 ) def testEnabled( self ) : g1 = GafferUI.Gadget() self.assertEqual( g1.getEnabled(), True ) self.assertEqual( g1.enabled(), True ) g1.setEnabled( False ) self.assertEqual( g1.getEnabled(), False ) self.assertEqual( g1.enabled(), False ) g2 = GafferUI.Gadget() g1.addChild( g2 ) self.assertEqual( g2.getEnabled(), True ) self.assertEqual( g2.enabled(), False ) g1.setEnabled( True ) self.assertEqual( g2.enabled(), True ) g3 = GafferUI.Gadget() g2.addChild( g3 ) self.assertEqual( g3.getEnabled(), True ) self.assertEqual( g3.enabled(), True ) g1.setEnabled( False ) self.assertEqual( g3.getEnabled(), True ) self.assertEqual( g3.enabled(), False ) self.assertEqual( g3.enabled( relativeTo = g2 ), True ) self.assertEqual( g3.enabled( relativeTo = g1 ), True ) if __name__ == "__main__": unittest.main()
bsd-3-clause
-6,002,373,824,026,318,000
27.897361
85
0.66298
false
3.203511
true
false
false
InspectorIncognito/visualization
AndroidRequests/migrations/0023_auto_20170310_1529.py
1
1247
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db.models import F from django.db import models, migrations """ PROCEDURE - Delete aux column """ class Migration(migrations.Migration): dependencies = [ ('AndroidRequests', '0022_auto_20170310_1525'), ] operations = [ # remove aux columns migrations.RemoveField( model_name='servicesbybusstop', name='busStop_id_aux', ), migrations.RemoveField( model_name='servicestopdistance', name='busStop_id_aux', ), migrations.RemoveField( model_name='eventforbusstop', name='busStop_id_aux', ), migrations.RemoveField( model_name='nearbybuseslog', name='busStop_id_aux', ), # Service model migrations.RemoveField( model_name='servicesbybusstop', name='service_id_aux', ), # Token model migrations.RemoveField( model_name='poseintrajectoryoftoken', name='token_id_aux', ), migrations.RemoveField( model_name='activetoken', name='token_id_aux', ), ]
gpl-3.0
-268,970,102,853,448,700
24.44898
55
0.55012
false
4.227119
false
false
false
flippym/toolbox
yum-package.py
1
1083
# Yum package checker and installer __author__ = "Frederico Martins" __license__ = "GPLv3" __version__ = 1.2 from os import system from output_handler import OutputWaiting class Package(object): def __init__(self, packages): if type(packages) is list or type(packages) is tuple or type(packages) is set: pass elif type(packages) is str: packages = [packages] else: OutputWaiting.Info('Packages to be asserted must be in string or list format') exit(-1) if self.Check(packages): self.Install('Installing {}'.format(' and '.join(self.packages)), True) def Check(self, packages): self.packages = [] for each in packages: if system('rpm -q {} > /dev/null'.format(each)): self.packages.append(each) return self.packages @OutputWaiting def Install(self): return system('yum -y install {} > /dev/null'.format(' '.join(self.packages)))
gpl-3.0
-9,131,135,238,154,205,000
25.414634
90
0.555863
false
4.314741
false
false
false
iulian787/spack
var/spack/repos/builtin/packages/libvdwxc/package.py
2
1769
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Libvdwxc(AutotoolsPackage): """Portable C library of density functionals with van der Waals interactions for density functional theory""" homepage = "https://libvdwxc.gitlab.io/libvdwxc/" url = "https://launchpad.net/libvdwxc/stable/0.4.0/+download/libvdwxc-0.4.0.tar.gz" version("0.4.0", sha256="3524feb5bb2be86b4688f71653502146b181e66f3f75b8bdaf23dd1ae4a56b33") variant("mpi", default=True, description="Enable MPI support") variant("pfft", default=False, description="Enable support for PFFT") depends_on("fftw-api@3") depends_on("mpi@2:", when="+mpi") depends_on("pfft", when="+pfft") # pfft needs MPI conflicts("~mpi", "+pfft") conflicts("^fftw~mpi", "+mpi") def configure_args(self): spec = self.spec args = [ "--{0}-pfft".format( "with" if self.spec.satisfies("+pfft") else "without" ), "MPICC=", # make sure both variables are always unset "MPIFC=", # otherwise the configure scripts complains ] if spec.satisfies("+mpi"): # work around b0rken MPI detection: the MPI detection tests are # run with CC instead of MPICC, triggering an error. So, setting # CC/FC to the MPI compiler wrappers. args += [ "--with-mpi", "CC={0}".format(spec["mpi"].mpicc), "FC={0}".format(spec["mpi"].mpifc), ] else: args += ["--without-mpi"] return args
lgpl-2.1
2,800,756,667,424,239,600
32.377358
95
0.6026
false
3.552209
false
false
false
jhpyle/docassemble
docassemble_base/docassemble/base/ocr.py
1
18129
import tempfile import subprocess from PIL import Image, ImageEnhance from docassemble.base.functions import get_config, get_language, ReturnValue from docassemble.base.core import DAFile, DAFileList, DAFileCollection, DAStaticFile import PyPDF2 from docassemble.base.logger import logmessage from docassemble.base.error import DAError import pycountry import sys import os import shutil import re QPDF_PATH = 'qpdf' def safe_pypdf_reader(filename): try: return PyPDF2.PdfFileReader(open(filename, 'rb')) except PyPDF2.utils.PdfReadError: new_filename = tempfile.NamedTemporaryFile(prefix="datemp", mode="wb", suffix=".pdf", delete=False) qpdf_subprocess_arguments = [QPDF_PATH, filename, new_filename.name] try: result = subprocess.run(qpdf_subprocess_arguments, timeout=60).returncode except subprocess.TimeoutExpired: result = 1 if result != 0: raise Exception("Call to qpdf failed for template " + str(filename) + " where arguments were " + " ".join(qpdf_subprocess_arguments)) return PyPDF2.PdfFileReader(open(new_filename.name, 'rb')) def ocr_finalize(*pargs, **kwargs): #sys.stderr.write("ocr_finalize started") if kwargs.get('pdf', False): target = kwargs['target'] dafilelist = kwargs['dafilelist'] filename = kwargs['filename'] file_list = [] input_number = target.number for parg in pargs: if type(parg) is list: for item in parg: if type(item) is ReturnValue: if isinstance(item.value, dict): if 'page' in item.value: file_list.append([item.value['indexno'], int(item.value['page']), item.value['doc']._pdf_page_path(int(item.value['page']))]) else: file_list.append([item.value['indexno'], 0, item.value['doc'].path()]) else: if type(parg) is ReturnValue: if isinstance(item.value, dict): if 'page' in item.value: file_list.append([parg.value['indexno'], int(parg.value['page']), parg.value['doc']._pdf_page_path(int(parg.value['page']))]) else: file_list.append([parg.value['indexno'], 0, parg.value['doc'].path()]) from docassemble.base.pandoc import concatenate_files pdf_path = concatenate_files([y[2] for y in sorted(file_list, key=lambda x: x[0]*10000 + x[1])]) target.initialize(filename=filename, extension='pdf', mimetype='application/pdf', reinitialize=True) shutil.copyfile(pdf_path, target.file_info['path']) del target.file_info target._make_pdf_thumbnail(1, both_formats=True) target.commit() target.retrieve() return (target, dafilelist) output = dict() #index = 0 for parg in pargs: #sys.stderr.write("ocr_finalize: index " + str(index) + " is a " + str(type(parg)) + "\n") if type(parg) is list: for item in parg: #sys.stderr.write("ocr_finalize: sub item is a " + str(type(item)) + "\n") if type(item) is ReturnValue and isinstance(item.value, dict): output[int(item.value['page'])] = item.value['text'] else: if type(parg) is ReturnValue and isinstance(item.value, dict): output[int(parg.value['page'])] = parg.value['text'] #index += 1 #sys.stderr.write("ocr_finalize: assembling output\n") final_output = "\f".join([output[x] for x in sorted(output.keys())]) #sys.stderr.write("ocr_finalize: final output has length " + str(len(final_output)) + "\n") return final_output def get_ocr_language(language): langs = get_available_languages() if language is None: language = get_language() ocr_langs = get_config("ocr languages") if ocr_langs is None: ocr_langs = dict() if language in langs: lang = language else: if language in ocr_langs and ocr_langs[language] in langs: lang = ocr_langs[language] else: try: pc_lang = pycountry.languages.get(alpha_2=language) lang_three_letter = pc_lang.alpha_3 if lang_three_letter in langs: lang = lang_three_letter else: if 'eng' in langs: lang = 'eng' else: lang = langs[0] raise Exception("could not get OCR language for language " + str(language) + "; using language " + str(lang)) except Exception as the_error: if 'eng' in langs: lang = 'eng' else: lang = langs[0] raise Exception("could not get OCR language for language " + str(language) + "; using language " + str(lang) + "; error was " + str(the_error)) return lang def get_available_languages(): try: output = subprocess.check_output(['tesseract', '--list-langs'], stderr=subprocess.STDOUT).decode() except subprocess.CalledProcessError as err: raise Exception("get_available_languages: failed to list available languages: " + str(err)) else: result = output.splitlines() result.pop(0) return result def ocr_page_tasks(image_file, language=None, psm=6, x=None, y=None, W=None, H=None, user_code=None, user=None, pdf=False, preserve_color=False, **kwargs): #sys.stderr.write("ocr_page_tasks running\n") if isinstance(image_file, set): return [] if not (isinstance(image_file, DAFile) or isinstance(image_file, DAFileList)): return word("(Not a DAFile or DAFileList object)") pdf_to_ppm = get_config("pdftoppm") if pdf_to_ppm is None: pdf_to_ppm = 'pdftoppm' ocr_resolution = get_config("ocr dpi") if ocr_resolution is None: ocr_resolution = '300' langs = get_available_languages() if language is None: language = get_language() if language in langs: lang = language else: ocr_langs = get_config("ocr languages") if ocr_langs is None: ocr_langs = dict() if language in ocr_langs and ocr_langs[language] in langs: lang = ocr_langs[language] else: try: pc_lang = pycountry.languages.get(alpha_2=language) lang_three_letter = pc_lang.alpha_3 if lang_three_letter in langs: lang = lang_three_letter else: if 'eng' in langs: lang = 'eng' else: lang = langs[0] sys.stderr.write("ocr_file: could not get OCR language for language " + str(language) + "; using language " + str(lang) + "\n") except Exception as the_error: if 'eng' in langs: lang = 'eng' else: lang = langs[0] sys.stderr.write("ocr_file: could not get OCR language for language " + str(language) + "; using language " + str(lang) + "; error was " + str(the_error) + "\n") if isinstance(image_file, DAFile): image_file = [image_file] todo = list() for doc in image_file: if hasattr(doc, 'extension'): if doc.extension not in ['pdf', 'png', 'jpg', 'gif', 'docx', 'doc', 'odt', 'rtf']: raise Exception("document with extension " + doc.extension + " is not a readable image file") if doc.extension == 'pdf': #doc.page_path(1, 'page') for i in range(safe_pypdf_reader(doc.path()).getNumPages()): todo.append(dict(doc=doc, page=i+1, lang=lang, ocr_resolution=ocr_resolution, psm=psm, x=x, y=y, W=W, H=H, pdf_to_ppm=pdf_to_ppm, user_code=user_code, user=user, pdf=pdf, preserve_color=preserve_color)) elif doc.extension in ("docx", "doc", "odt", "rtf"): import docassemble.base.util doc_conv = docassemble.base.util.pdf_concatenate(doc) for i in range(safe_pypdf_reader(doc_conv.path()).getNumPages()): todo.append(dict(doc=doc_conv, page=i+1, lang=lang, ocr_resolution=ocr_resolution, psm=psm, x=x, y=y, W=W, H=H, pdf_to_ppm=pdf_to_ppm, user_code=user_code, user=user, pdf=pdf, preserve_color=preserve_color)) else: todo.append(dict(doc=doc, page=None, lang=lang, ocr_resolution=ocr_resolution, psm=psm, x=x, y=y, W=W, H=H, pdf_to_ppm=pdf_to_ppm, user_code=user_code, user=user, pdf=pdf, preserve_color=preserve_color)) #sys.stderr.write("ocr_page_tasks finished\n") return todo def make_png_for_pdf(doc, prefix, resolution, pdf_to_ppm, page=None): path = doc.path() make_png_for_pdf_path(path, prefix, resolution, pdf_to_ppm, page=page) doc.commit() def make_png_for_pdf_path(path, prefix, resolution, pdf_to_ppm, page=None): basefile = os.path.splitext(path)[0] test_path = basefile + prefix + '-in-progress' with open(test_path, 'a'): os.utime(test_path, None) if page is None: try: result = subprocess.run([str(pdf_to_ppm), '-r', str(resolution), '-png', str(path), str(basefile + prefix)], timeout=3600).returncode except subprocess.TimeoutExpired: result = 1 else: try: result = subprocess.run([str(pdf_to_ppm), '-f', str(page), '-l', str(page), '-r', str(resolution), '-png', str(path), str(basefile + prefix)], timeout=3600).returncode except subprocess.TimeoutExpired: result = 1 if os.path.isfile(test_path): os.remove(test_path) if result > 0: raise Exception("Unable to extract images from PDF file") def ocr_pdf(*pargs, target=None, filename=None, lang=None, psm=6, dafilelist=None, preserve_color=False): if preserve_color: device = 'tiff48nc' else: device = 'tiffgray' docs = [] if not isinstance(target, DAFile): raise DAError("ocr_pdf: target must be a DAFile") for other_file in pargs: if isinstance(other_file, DAFileList): for other_file_sub in other_file.elements: docs.append(other_file_sub) elif isinstance(other_file, DAFileCollection): if hasattr(other_file, 'pdf'): docs.append(other_file.pdf) elif hasattr(other_file, 'docx'): docs.append(other_file.docx) else: raise DAError('ocr_pdf: DAFileCollection object did not have pdf or docx attribute.') elif isinstance(other_file, DAStaticFile): docs.append(other_file) elif isinstance(other_file, (str, DAFile)): docs.append(other_file) if len(docs) == 0: docs.append(target) if psm is None: psm = 6 output = [] for doc in docs: if not hasattr(doc, 'extension'): continue if doc._is_pdf() and hasattr(doc, 'has_ocr') and doc.has_ocr: output.append(doc.path()) continue if doc.extension in ['png', 'jpg', 'gif']: import docassemble.base.util doc = docassemble.base.util.pdf_concatenate(doc) elif doc.extension in ['docx', 'doc', 'odt', 'rtf']: import docassemble.base.util output.append(docassemble.base.util.pdf_concatenate(doc).path()) continue elif not doc._is_pdf(): logmessage("ocr_pdf: not a readable image file") continue path = doc.path() pdf_file = tempfile.NamedTemporaryFile(prefix="datemp", mode="wb", delete=False) pdf_file.close() if doc.extension == 'pdf': tiff_file = tempfile.NamedTemporaryFile(prefix="datemp", mode="wb", suffix=".tiff", delete=False) params = ['gs', '-q', '-dNOPAUSE', '-sDEVICE=' + device, '-r600', '-sOutputFile=' + tiff_file.name, path, '-c', 'quit'] try: result = subprocess.run(params, timeout=60*60).returncode except subprocess.TimeoutExpired: result = 1 logmessage("ocr_pdf: call to gs took too long") if result != 0: raise Exception("ocr_pdf: failed to run gs with command " + " ".join(params)) params = ['tesseract', tiff_file.name, pdf_file.name, '-l', str(lang), '--psm', str(psm), '--dpi', '600', 'pdf'] try: result = subprocess.run(params, timeout=60*60).returncode except subprocess.TimeoutExpired: result = 1 logmessage("ocr_pdf: call to tesseract took too long") if result != 0: raise Exception("ocr_pdf: failed to run tesseract with command " + " ".join(params)) else: params = ['tesseract', path, pdf_file.name, '-l', str(lang), '--psm', str(psm), '--dpi', '300', 'pdf'] try: result = subprocess.run(params, timeout=60*60).returncode except subprocess.TimeoutExpired: result = 1 logmessage("ocr_pdf: call to tesseract took too long") if result != 0: raise Exception("ocr_pdf: failed to run tesseract with command " + " ".join(params)) output.append(pdf_file.name + '.pdf') if len(output) == 0: return None if len(output) == 1: the_file = tempfile.NamedTemporaryFile(prefix="datemp", mode="wb", delete=False) the_file.close() shutil.copyfile(output[0], the_file.name) source_file = the_file.name else: import docassemble.base.pandoc source_file = docassemble.base.pandoc.concatenate_files(output) if filename is None: filename = 'file.pdf' target.initialize(filename=filename, extension='pdf', mimetype='application/pdf', reinitialize=True) shutil.copyfile(source_file, target.file_info['path']) del target.file_info target._make_pdf_thumbnail(1, both_formats=True) target.commit() target.retrieve() return target def ocr_page(indexno, doc=None, lang=None, pdf_to_ppm='pdf_to_ppm', ocr_resolution=300, psm=6, page=None, x=None, y=None, W=None, H=None, user_code=None, user=None, pdf=False, preserve_color=False): """Runs optical character recognition on an image or a page of a PDF file and returns the recognized text.""" if page is None: page = 1 if psm is None: psm = 6 sys.stderr.write("ocr_page running on page " + str(page) + "\n") the_file = None if not hasattr(doc, 'extension'): return None #sys.stderr.write("ocr_page running with extension " + str(doc.extension) + "\n") if doc.extension not in ['pdf', 'png', 'jpg', 'gif']: raise Exception("Not a readable image file") #sys.stderr.write("ocr_page calling doc.path()\n") path = doc.path() if doc.extension == 'pdf': the_file = None if x is None and y is None and W is None and H is None: the_file = doc.page_path(page, 'page', wait=False) if the_file is None: output_file = tempfile.NamedTemporaryFile() args = [str(pdf_to_ppm), '-r', str(ocr_resolution), '-f', str(page), '-l', str(page)] if x is not None: args.extend(['-x', str(x)]) if y is not None: args.extend(['-y', str(y)]) if W is not None: args.extend(['-W', str(W)]) if H is not None: args.extend(['-H', str(H)]) args.extend(['-singlefile', '-png', str(path), str(output_file.name)]) try: result = subprocess.run(args, timeout=120).returncode except subprocess.TimeoutExpired: result = 1 if result > 0: return word("(Unable to extract images from PDF file)") the_file = output_file.name + '.png' else: the_file = path file_to_read = tempfile.NamedTemporaryFile() if pdf and preserve_color: shutil.copyfile(the_file, file_to_read.name) else: image = Image.open(the_file) color = ImageEnhance.Color(image) bw = color.enhance(0.0) bright = ImageEnhance.Brightness(bw) brightened = bright.enhance(1.5) contrast = ImageEnhance.Contrast(brightened) final_image = contrast.enhance(2.0) file_to_read = tempfile.TemporaryFile() final_image.convert('RGBA').save(file_to_read, "PNG") file_to_read.seek(0) if pdf: outfile = doc._pdf_page_path(page) params = ['tesseract', 'stdin', re.sub(r'\.pdf$', '', outfile), '-l', str(lang), '--psm', str(psm), '--dpi', str(ocr_resolution), 'pdf'] sys.stderr.write("ocr_page: piping to command " + " ".join(params) + "\n") try: text = subprocess.check_output(params, stdin=file_to_read).decode() except subprocess.CalledProcessError as err: raise Exception("ocr_page: failed to run tesseract with command " + " ".join(params) + ": " + str(err) + " " + str(err.output.decode())) sys.stderr.write("ocr_page finished with pdf page " + str(page) + "\n") doc.commit() return dict(indexno=indexno, page=page, doc=doc) params = ['tesseract', 'stdin', 'stdout', '-l', str(lang), '--psm', str(psm), '--dpi', str(ocr_resolution)] sys.stderr.write("ocr_page: piping to command " + " ".join(params) + "\n") try: text = subprocess.check_output(params, stdin=file_to_read).decode() except subprocess.CalledProcessError as err: raise Exception("ocr_page: failed to run tesseract with command " + " ".join(params) + ": " + str(err) + " " + str(err.output.decode())) sys.stderr.write("ocr_page finished with page " + str(page) + "\n") return dict(indexno=indexno, page=page, text=text)
mit
-5,302,447,009,926,579,000
46.960317
227
0.579072
false
3.631611
false
false
false
XcomConvent/xcom40k-shades
xcom40k/app/migrations/0026_auto_20120106_2212.py
1
1819
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import datetime from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('app', '0025_auto_20150923_0843'), ] operations = [ migrations.CreateModel( name='BlogEntry', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=100)), ('text', models.CharField(max_length=10000)), ('pub_date', models.DateField()), ('author', models.ForeignKey(to='app.Account')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='BlogEntryTag', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=100)), ('desc', models.CharField(max_length=500)), ], options={ 'abstract': False, }, ), migrations.AddField( model_name='mission', name='finalize_date', field=models.DateField(default=datetime.datetime(2012, 1, 6, 22, 12, 50, 101184, tzinfo=utc)), preserve_default=False, ), migrations.AlterField( model_name='neurorequest', name='closed_date', field=models.DateField(), ), migrations.AddField( model_name='blogentry', name='tags', field=models.ManyToManyField(to='app.BlogEntryTag'), ), ]
apache-2.0
-3,998,331,126,975,175,700
31.482143
114
0.523364
false
4.53616
false
false
false
asceth/devsyn
devsyn/cameras/firstperson.py
1
3702
import __builtin__ from direct.showbase.DirectObject import DirectObject from direct.task.Task import Task from devsyn.entities import Entity base = __builtin__.base class FirstPersonCamera(Entity): # TODO: Make speed configurable # constants speed = 50 def __init__(self, parent = base.render): # basic properties ## keeps track of mouse movement self.pos = [0.0, 0.0] # our prime is the camera self.prime = base.camera # who are we attached to? self.parent = parent # initialize various velocities self.rotation_velocity = 0.05 def activate(self, reparent = True): print "Activated FirstPerson Camera" # initialize camera base.camLens.setFov(70) # field of view if reparent == True: self.reset_parent() # initialize camera task base.taskMgr.add(self.update, "update_camera_task") def deactivate(self): self.reset_parent(base.render) base.taskMgr.remove("update_camera_task") def reset_parent(self, parent = None): if parent != None: if isinstance(parent, Entity): self.parent = parent.prime else: self.parent = parent # attach to our parent self.attachTo(self.parent) # has to be a way to get the height of the model.... self.setZ(self.getZ() + 1.0) self.parent.hide() def update(self, task): # rotate the camera pointer = base.win.getPointer(0) new_position = [pointer.getX(), pointer.getY()] # new position - last position gives us difference in mouse movement d = [new_position[0] - self.pos[0], new_position[1] - self.pos[1]] # interpolate mouse last position to new position self.pos[0] += d[0] * 0.5 self.pos[1] += d[1] * 0.5 # rotate camera using x vector (left/right) camright = base.camera.getNetTransform().getMat().getRow3(0) camright.normalize() base.camera.setH(base.camera.getH() - (d[0] * self.rotation_velocity)) # rotate camera using z vector (up/down) camup = base.camera.getNetTransform().getMat().getRow3(2) camup.normalize() base.camera.setP(base.camera.getP() - (d[1] * self.rotation_velocity * 2.5)) # collisions are taken care of through our # parent (usually a player etc) # For smoother mouse movement on all platforms # we don't immediately set the 'cursor' in the window # back to the center. Instead we let it freely travel # within a square region inside the actual window. # In this case the region has a 1/4 margin around # our game window. # If the cursor travels outside of this region # we set it back to the center of the region. # We ONLY reset the axis that moves out of bounds. ## If the mouse escapes the region via the x-axis ## reset the x axis to half screen width (center of screen) if (self.pos[0] < (base.win.getXSize() * 0.25)): self.pos[0] = (base.win.getXSize() / 2) base.win.movePointer(0, base.win.getXSize() / 2, int(self.pos[1])) elif (self.pos[0] > (base.win.getXSize() * 0.75)): self.pos[0] = (base.win.getXSize() / 2) base.win.movePointer(0, base.win.getXSize() / 2, int(self.pos[1])) ## If the mouse escapes the region via the y-axis ## reset the y axis to half the screen height (center of screen) if (self.pos[1] < (base.win.getYSize() * 0.25)): self.pos[1] = (base.win.getYSize() / 2) base.win.movePointer(0, int(self.pos[0]), base.win.getYSize() / 2) elif (self.pos[1] > (base.win.getYSize() * 0.75)): self.pos[1] = (base.win.getYSize() / 2) base.win.movePointer(0, int(self.pos[0]), base.win.getYSize() / 2) return Task.cont
mit
-5,657,496,182,112,678,000
31.761062
72
0.640194
false
3.329137
false
false
false
MKuranowski/WarsawGTFS
static/shapes/helpers.py
1
3586
from pyroutelib3 import distHaversine from contextlib import contextmanager from typing import IO, Optional, List, Union, Tuple from time import time import signal import math import os from ..const import DIR_SHAPE_CACHE, SHAPE_CACHE_TTL from ..util import ensure_dir_exists _Pt = Tuple[float, float] @contextmanager def time_limit(sec): "Time limter based on https://gist.github.com/Rabbit52/7449101" def handler(x, y): raise TimeoutError signal.signal(signal.SIGALRM, handler) signal.alarm(sec) try: yield finally: signal.alarm(0) def total_length(x: List[_Pt]) -> float: dist = 0.0 for i in range(1, len(x)): dist += distHaversine(x[i-1], x[i]) return dist def dist_point_to_line(r: _Pt, p1: _Pt, p2: _Pt) -> float: """Defines distance from point r to line defined by point p1 and p2.""" # See https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line, # algorithm "Line defined by two points" # Unpack coordinates x0, y0 = r x1, y1 = p1 x2, y2 = p2 # DIfferences between p1, p2 coordinates dx = x2 - x1 dy = y2 - y1 return abs(dy*x0 - dx*y0 + x2*y1 - y2*x1) / math.sqrt(dy**2 + dx**2) def simplify_line(x: List[_Pt], threshold: float) -> List[_Pt]: """Simplifies line x using the Ramer-Douglas-Peucker algorithm""" # Unable to simplify 2-point lines any further if len(x) <= 2: return x # Find point furthest away from line (x[0], x[-1]) furthest_pt_dist = 0 furthest_pt_index = -1 for pt_idx, pt in enumerate(x[1:-1], start=1): pt_dist = dist_point_to_line(pt, x[0], x[-1]) if pt_dist > furthest_pt_dist: furthest_pt_dist = pt_dist furthest_pt_index = pt_idx # If furthest point is further then given threshold, simplify recursively both parts if furthest_pt_dist > threshold: left_simplified = simplify_line(x[:furthest_pt_index + 1], threshold) right_simplified = simplify_line(x[furthest_pt_index:], threshold) # strip last point from `left_simplified` to avoid furthest point being included twice return left_simplified[:-1] + right_simplified # If furthest point is close then given threshold, the simplification is just the # segment from start & end of x. else: return [x[0], x[-1]] def cache_retr(file: str, ttl_minutes: int = SHAPE_CACHE_TTL) -> Optional[IO[bytes]]: """ Tries to read specified from cahce. If file is older then specified time-to-live, or cahced files doesn't exist at all, returns None. Otherwise, returns a file-like object. """ file_path = os.path.join(DIR_SHAPE_CACHE, file) # Check if cahced file exists if not os.path.exists(file_path): return # Try to get file's last-modified attribute file_stat = os.stat(file_path) file_timediff = (time() - file_stat.st_mtime) / 60 # File was modified earlier then specified time-to-live, return a IO object to that file if file_timediff < ttl_minutes: return open(file_path, "rb") def cache_save(file: str, reader: Union[IO[bytes], bytes]): """Caches contents of `reader` in DIR_SHAPE_CACHE/{file}.""" ensure_dir_exists(DIR_SHAPE_CACHE, clear=False) file_path = os.path.join(DIR_SHAPE_CACHE, file) # Check if cahced file exists with open(file_path, "wb") as writer: if isinstance(reader, bytes): writer.write(reader) else: while (chunk := reader.read(1024 * 16)): writer.write(chunk)
mit
4,947,337,439,888,656,000
30.45614
94
0.64222
false
3.210385
false
false
false
priomsrb/vimswitch
vimswitch/test/FileSystemSandbox.py
1
3987
import os import shutil import vimswitch.six.moves.builtins as builtins class FileSystemSandbox: """ This static class sets up a global sandbox where all disk modification is disabled except inside the sandbox directory. If an operation outside the sandbox directory occurs, a FileSystemSandboxError is thrown. Read-only disk operations will still be allowed outside the sandbox directory, however. """ enabled = False sandboxRoot = '' def enable(self, sandboxRoot): if self.enabled: raise RuntimeError('Sandbox already enabled') self.enabled = True self.sandboxRoot = sandboxRoot self._setUpSafeOperations() def disable(self): if not self.enabled: raise RuntimeError('Sandbox already disabled') self.enabled = False self._tearDownSafeOperations() def _setUpSafeOperations(self): self._real_builtin_open = builtins.open self._real_os_mkdir = os.mkdir self._real_os_makedirs = os.makedirs self._real_os_remove = os.remove self._real_os_path_isfile = os.path.isfile self._real_os_path_isdir = os.path.isdir self._real_shutil_copy = shutil.copy self._real_shutil_move = shutil.move self._real_shutil_copytree = shutil.copytree self._real_shutil_rmtree = shutil.rmtree builtins.open = self._safe_builtin_open os.mkdir = self._safe_os_mkdir os.makedirs = self._safe_os_makedirs os.remove = self._safe_os_remove shutil.copy = self._safe_shutil_copy shutil.move = self._safe_shutil_move shutil.copytree = self._safe_shutil_copytree shutil.rmtree = self._safe_shutil_rmtree def _tearDownSafeOperations(self): builtins.open = self._real_builtin_open os.mkdir = self._real_os_mkdir os.makedirs = self._real_os_makedirs os.remove = self._real_os_remove shutil.copy = self._real_shutil_copy shutil.move = self._real_shutil_move shutil.copytree = self._real_shutil_copytree shutil.rmtree = self._real_shutil_rmtree def _safe_builtin_open(self, path, mode='r', *args, **kwargs): # We only verify if the file is being opened for writing or appending. # Read only access should be allowed. if mode.find('w') != -1 or mode.find('a') != -1: self._verifyPath(path) return self._real_builtin_open(path, mode, *args, **kwargs) def _safe_os_mkdir(self, path, *args, **kwargs): self._verifyPath(path) self._real_os_mkdir(path, *args, **kwargs) def _safe_os_makedirs(self, path, *args, **kwargs): self._verifyPath(path) self._real_os_makedirs(path, *args, **kwargs) def _safe_os_remove(self, path): self._verifyPath(path) self._real_os_remove(path) def _safe_shutil_copy(self, src, dst): # Only need to verify destination path since src will not be modified self._verifyPath(dst) self._real_shutil_copy(src, dst) def _safe_shutil_move(self, src, dst): self._verifyPath(src) self._verifyPath(dst) self._real_shutil_move(src, dst) def _safe_shutil_copytree(self, src, dst, *args, **kwargs): # Only need to verify destination path since src will not be modified self._verifyPath(dst) self._real_shutil_copytree(src, dst, *args, **kwargs) def _safe_shutil_rmtree(self, path, *args, **kwargs): self._verifyPath(path) self._real_shutil_rmtree(path, *args, **kwargs) def _verifyPath(self, path): "Checks that path is inside the sandbox" absPath = os.path.abspath(path) if not absPath.startswith(self.sandboxRoot): raise FileSystemSandboxError(path) class FileSystemSandboxError(Exception): def __init__(self, path): Exception.__init__(self, 'Tried to access path outside sandbox: %s' % path)
gpl-2.0
7,276,454,648,368,458,000
34.598214
83
0.637823
false
3.901174
false
false
false
moses-rolston/err
errbot/backends/base.py
1
44212
import difflib import inspect import io import logging import traceback import warnings from collections import deque, defaultdict from xml.etree import cElementTree as ET from xml.etree.cElementTree import ParseError from errbot import botcmd, PY2 from errbot.utils import get_sender_username, xhtml2txt, parse_jid, split_string_after, deprecated from errbot.templating import tenv from errbot.bundled.threadpool import ThreadPool, WorkRequest class ACLViolation(Exception): """Exceptions raised when user is not allowed to execute given command due to ACLs""" class RoomError(Exception): """General exception class for MUC-related errors""" class RoomNotJoinedError(RoomError): """Exception raised when performing MUC operations that require the bot to have joined the room""" class RoomDoesNotExistError(RoomError): """Exception that is raised when performing an operation on a room that doesn't exist""" class Identifier(object): """ This class is the parent and the basic contract of all the ways the backends are identifying a person on their system. """ def __init__(self, jid=None, node='', domain='', resource=''): if jid: self._node, self._domain, self._resource = parse_jid(jid) else: self._node = node self._domain = domain self._resource = resource @property def node(self): return self._node @property def domain(self): return self._domain @property def resource(self): return self._resource @property def stripped(self): if self._domain: return self._node + '@' + self._domain return self._node # if the backend has no domain notion def bare_match(self, other): """ checks if 2 identifiers are equal, ignoring the resource """ return other.stripped == self.stripped def __str__(self): answer = self.stripped if self._resource: answer += '/' + self._resource return answer def __unicode__(self): return str(self.__str__()) # deprecated stuff ... @deprecated(node) def getNode(self): """ will be removed on the next version """ @deprecated(domain) def getDomain(self): """ will be removed on the next version """ @deprecated(bare_match) def bareMatch(self, other): """ will be removed on the next version """ @deprecated(stripped) def getStripped(self): """ will be removed on the next version """ @deprecated(resource) def getResource(self): """ will be removed on the next version """ class Message(object): """ A chat message. This class represents chat messages that are sent or received by the bot. It is modeled after XMPP messages so not all methods make sense in the context of other back-ends. """ fr = Identifier('unknown@localhost') def __init__(self, body, type_='chat', html=None): """ :param body: The plaintext body of the message. :param type_: The type of message (generally one of either 'chat' or 'groupchat'). :param html: An optional HTML representation of the body. """ # it is either unicode or assume it is utf-8 if isinstance(body, str): self._body = body else: self._body = body.decode('utf-8') self._html = html self._type = type_ self._from = None self._to = None self._delayed = False self._nick = None @property def to(self): """ Get the recipient of the message. :returns: An :class:`~errbot.backends.base.Identifier` identifying the recipient. """ return self._to @to.setter def to(self, to): """ Set the recipient of the message. :param to: An :class:`~errbot.backends.base.Identifier`, or string which may be parsed as one, identifying the recipient. """ if isinstance(to, Identifier): self._to = to else: self._to = Identifier(to) # assume a parseable string @property def type(self): """ Get the type of the message. :returns: The message type as a string (generally one of either 'chat' or 'groupchat') """ return self._type @type.setter def type(self, type_): """ Set the type of the message. :param type_: The message type (generally one of either 'chat' or 'groupchat'). """ self._type = type_ @property def frm(self): """ Get the sender of the message. :returns: An :class:`~errbot.backends.base.Identifier` identifying the sender. """ return self._from @frm.setter def frm(self, from_): """ Set the sender of the message. :param from_: An :class:`~errbot.backends.base.Identifier`, or string which may be parsed as one, identifying the sender. """ if isinstance(from_, Identifier): self._from = from_ else: self._from = Identifier(from_) # assume a parseable string @property def body(self): """ Get the plaintext body of the message. :returns: The body as a string. """ return self._body @property def html(self): """ Get the HTML representation of the message. :returns: A string containing the HTML message or `None` when there is none. """ return self._html @html.setter def html(self, html): """ Set the HTML representation of the message :param html: The HTML message. """ self._html = html @property def delayed(self): return self._delayed @delayed.setter def delayed(self, delayed): self._delayed = delayed @property def nick(self): return self._nick @nick.setter def nick(self, nick): self._nick = nick def __str__(self): return self._body # deprecated stuff ... @deprecated(to) def getTo(self): """ will be removed on the next version """ @deprecated(to.fset) def setTo(self, to): """ will be removed on the next version """ @deprecated(type) def getType(self): """ will be removed on the next version """ @deprecated(type.fset) def setType(self, type_): """ will be removed on the next version """ @deprecated(frm) def getFrom(self): """ will be removed on the next version """ @deprecated(frm.fset) def setFrom(self, from_): """ will be removed on the next version """ @deprecated(body) def getBody(self): """ will be removed on the next version """ @deprecated(html) def getHTML(self): """ will be removed on the next version """ @deprecated(html.fset) def setHTML(self, html): """ will be removed on the next version """ @deprecated(delayed) def isDelayed(self): """ will be removed on the next version """ @deprecated(delayed.fset) def setDelayed(self, delayed): """ will be removed on the next version """ @deprecated(nick) def setMuckNick(self, nick): """ will be removed on the next version """ @deprecated(nick.fset) def getMuckNick(self): """ will be removed on the next version """ ONLINE = 'online' OFFLINE = 'offline' AWAY = 'away' DND = 'dnd' class Presence(object): """ This class represents a presence change for a user or a user in a chatroom. Instances of this class are passed to :meth:`~errbot.botplugin.BotPlugin.callback_presence` when the presence of people changes. """ def __init__(self, nick=None, identifier=None, status=None, chatroom=None, message=None): if nick is None and identifier is None: raise ValueError('Presence: nick and identifiers are both None') if nick is None and chatroom is not None: raise ValueError('Presence: nick is None when chatroom is not') if status is None and message is None: raise ValueError('Presence: at least a new status or a new status message mustbe present') self._nick = nick self._identifier = identifier self._chatroom = chatroom self._status = status self._message = message @property def chatroom(self): """ Returns the Identifier pointing the room in which the event occurred. If it returns None, the event occurred outside of a chatroom. """ return self._chatroom @property def nick(self): """ Returns a plain string of the presence nick. (In some chatroom implementations, you cannot know the real identifier of a person in it). Can return None but then identifier won't be None. """ return self._nick @property def identifier(self): """ Returns the identifier of the event. Can be None *only* if chatroom is not None """ return self._identifier @property def status(self): """ Returns the status of the presence change. It can be one of the constants ONLINE, OFFLINE, AWAY, DND, but can also be custom statuses depending on backends. It can be None if it is just an update of the status message (see get_message) """ return self._status @property def message(self): """ Returns a human readable message associated with the status if any. like : "BRB, washing the dishes" It can be None if it is only a general status update (see get_status) """ return self._message def __str__(self): response = '' if self._nick: response += 'Nick:%s ' % self._nick if self._identifier: response += 'Idd:%s ' % self._identifier if self._status: response += 'Status:%s ' % self._status if self._chatroom: response += 'Room:%s ' % self._chatroom if self._message: response += 'Msg:%s ' % self._message return response def __unicode__(self): return str(self.__str__()) STREAM_WAITING_TO_START = 'pending' STREAM_TRANSFER_IN_PROGRESS = 'in progress' STREAM_SUCCESSFULLY_TRANSFERED = 'success' STREAM_PAUSED = 'paused' STREAM_ERROR = 'error' STREAM_REJECTED = 'rejected' DEFAULT_REASON = 'unknown' class Stream(io.BufferedReader): """ This class represents a stream request. Instances of this class are passed to :meth:`~errbot.botplugin.BotPlugin.callback_stream` when an incoming stream is requested. """ def __init__(self, identifier, fsource, name=None, size=None, stream_type=None): super(Stream, self).__init__(fsource) self._identifier = identifier self._name = name self._size = size self._stream_type = stream_type self._status = STREAM_WAITING_TO_START self._reason = DEFAULT_REASON @property def identifier(self): """ The identity the stream is coming from if it is an incoming request or to if it is an outgoing request. """ return self._identifier @property def name(self): """ The name of the stream/file if it has one or None otherwise. !! Be carefull of injections if you are using this name directly as a filename. """ return self._name @property def size(self): """ The expected size in bytes of the stream if it is known or None. """ return self._size @property def stream_type(self): """ The mimetype of the stream if it is known or None. """ return self._stream_type @property def status(self): """ The status for this stream. """ return self._status def accept(self): """ Signal that the stream has been accepted. """ if self._status != STREAM_WAITING_TO_START: raise ValueError("Invalid state, the stream is not pending.") self._status = STREAM_TRANSFER_IN_PROGRESS def reject(self): """ Signal that the stream has been rejected. """ if self._status != STREAM_WAITING_TO_START: raise ValueError("Invalid state, the stream is not pending.") self._status = STREAM_REJECTED def error(self, reason=DEFAULT_REASON): """ An internal plugin error prevented the transfer. """ self._status = STREAM_ERROR self._reason = reason def success(self): """ The streaming finished normally. """ if self._status != STREAM_TRANSFER_IN_PROGRESS: raise ValueError("Invalid state, the stream is not in progress.") self._status = STREAM_SUCCESSFULLY_TRANSFERED def clone(self, new_fsource): """ Creates a clone and with an alternative stream """ return Stream(self._identifier, new_fsource, self._name, self._size, self._stream_type) class MUCRoom(Identifier): """ This class represents a Multi-User Chatroom. """ def join(self, username=None, password=None): """ Join the room. If the room does not exist yet, this will automatically call :meth:`create` on it first. """ raise NotImplementedError("It should be implemented specifically for your backend") def leave(self, reason=None): """ Leave the room. :param reason: An optional string explaining the reason for leaving the room. """ raise NotImplementedError("It should be implemented specifically for your backend") def create(self): """ Create the room. Calling this on an already existing room is a no-op. """ raise NotImplementedError("It should be implemented specifically for your backend") def destroy(self): """ Destroy the room. Calling this on a non-existing room is a no-op. """ raise NotImplementedError("It should be implemented specifically for your backend") @property def exists(self): """ Boolean indicating whether this room already exists or not. :getter: Returns `True` if the room exists, `False` otherwise. """ raise NotImplementedError("It should be implemented specifically for your backend") @property def joined(self): """ Boolean indicating whether this room has already been joined. :getter: Returns `True` if the room has been joined, `False` otherwise. """ raise NotImplementedError("It should be implemented specifically for your backend") @property def topic(self): """ The room topic. :getter: Returns the topic (a string) if one is set, `None` if no topic has been set at all. .. note:: Back-ends may return an empty string rather than `None` when no topic has been set as a network may not differentiate between no topic and an empty topic. :raises: :class:`~MUCNotJoinedError` if the room has not yet been joined. """ raise NotImplementedError("It should be implemented specifically for your backend") @topic.setter def topic(self, topic): """ Set the room's topic. :param topic: The topic to set. """ raise NotImplementedError("It should be implemented specifically for your backend") @property def occupants(self): """ The room's occupants. :getter: Returns a list of :class:`~errbot.backends.base.MUCOccupant` instances. :raises: :class:`~MUCNotJoinedError` if the room has not yet been joined. """ raise NotImplementedError("It should be implemented specifically for your backend") def invite(self, *args): """ Invite one or more people into the room. :*args: One or more JID's to invite into the room. """ raise NotImplementedError("It should be implemented specifically for your backend") class MUCOccupant(Identifier): """ This class represents a person inside a MUC. This class exists to expose additional information about occupants inside a MUC. For example, the XMPP back-end may expose backend-specific information such as the real JID of the occupant and whether or not that person is a moderator or owner of the room. See the parent class for additional details. """ pass def build_text_html_message_pair(source): node = None text_plain = None try: node = ET.XML(source) text_plain = xhtml2txt(source) except ParseError as ee: if source.strip(): # avoids keep alive pollution logging.debug('Could not parse [%s] as XHTML-IM, assume pure text Parsing error = [%s]' % (source, ee)) text_plain = source except UnicodeEncodeError: text_plain = source return text_plain, node def build_message(text, message_class, conversion_function=None): """Builds an xhtml message without attributes. If input is not valid xhtml-im fallback to normal.""" message = None # keeps the compiler happy try: text = text.replace('', '*') # there is a weird chr IRC is sending that we need to filter out if PY2: ET.XML(text.encode('utf-8')) # test if is it xml else: ET.XML(text) edulcorated_html = conversion_function(text) if conversion_function else text try: text_plain, node = build_text_html_message_pair(edulcorated_html) message = message_class(body=text_plain) message.html = node except ET.ParseError as ee: logging.error('Error translating to hipchat [%s] Parsing error = [%s]' % (edulcorated_html, ee)) except ET.ParseError as ee: if text.strip(): # avoids keep alive pollution logging.debug('Determined that [%s] is not XHTML-IM (%s)' % (text, ee)) message = message_class(body=text) return message class Backend(object): """ Implements the basic Bot logic (logic independent from the backend) and leaves you to implement the missing parts """ cmd_history = defaultdict(lambda: deque(maxlen=10)) # this will be a per user history MSG_ERROR_OCCURRED = 'Sorry for your inconvenience. ' \ 'An unexpected error occurred.' MSG_HELP_TAIL = 'Type help <command name> to get more info ' \ 'about that specific command.' MSG_HELP_UNDEFINED_COMMAND = 'That command is not defined.' def __init__(self, config): """ Those arguments will be directly those put in BOT_IDENTITY """ if config.BOT_ASYNC: self.thread_pool = ThreadPool(3) logging.debug('created the thread pool' + str(self.thread_pool)) self.commands = {} # the dynamically populated list of commands available on the bot self.re_commands = {} # the dynamically populated list of regex-based commands available on the bot self.MSG_UNKNOWN_COMMAND = 'Unknown command: "%(command)s". ' \ 'Type "' + config.BOT_PREFIX + 'help" for available commands.' if config.BOT_ALT_PREFIX_CASEINSENSITIVE: self.bot_alt_prefixes = tuple(prefix.lower() for prefix in config.BOT_ALT_PREFIXES) else: self.bot_alt_prefixes = config.BOT_ALT_PREFIXES def send_message(self, mess): """Should be overridden by backends""" def send_simple_reply(self, mess, text, private=False): """Send a simple response to a message""" self.send_message(self.build_reply(mess, text, private)) def build_reply(self, mess, text=None, private=False): """Build a message for responding to another message. Message is NOT sent""" msg_type = mess.type response = self.build_message(text) response.frm = self.jid if msg_type == 'groupchat' and not private: # stripped returns the full [email protected]/chat_username # but in case of a groupchat, we should only try to send to the MUC address # itself ([email protected]) response.to = mess.frm.stripped.split('/')[0] elif str(mess.to) == self.bot_config.BOT_IDENTITY['username']: # This is a direct private message, not initiated through a MUC. Use # stripped to remove the resource so that the response goes to the # client with the highest priority response.to = mess.frm.stripped else: # This is a private message that was initiated through a MUC. Don't use # stripped here to retain the resource, else the XMPP server doesn't # know which user we're actually responding to. response.to = mess.frm response.type = 'chat' if private else msg_type return response def callback_presence(self, presence): """ Implemented by errBot. """ pass def callback_room_joined(self, room): """ See :class:`~errbot.errBot.ErrBot` """ pass def callback_room_left(self, room): """ See :class:`~errbot.errBot.ErrBot` """ pass def callback_room_topic(self, room): """ See :class:`~errbot.errBot.ErrBot` """ pass def callback_message(self, mess): """ Needs to return False if we want to stop further treatment """ # Prepare to handle either private chats or group chats type_ = mess.type jid = mess.frm text = mess.body username = get_sender_username(mess) user_cmd_history = self.cmd_history[username] if mess.delayed: logging.debug("Message from history, ignore it") return False if type_ not in ("groupchat", "chat"): logging.debug("unhandled message type %s" % mess) return False # Ignore messages from ourselves. Because it isn't always possible to get the # real JID from a MUC participant (including ourself), matching the JID against # ourselves isn't enough (see https://github.com/gbin/err/issues/90 for # background discussion on this). Matching against CHATROOM_FN isn't technically # correct in all cases because a MUC could give us another nickname, but it # covers 99% of the MUC cases, so it should suffice for the time being. if (jid.bare_match(self.jid) or type_ == "groupchat" and mess.nick == self.bot_config.CHATROOM_FN): # noqa logging.debug("Ignoring message from self") return False logging.debug("*** jid = %s" % jid) logging.debug("*** username = %s" % username) logging.debug("*** type = %s" % type_) logging.debug("*** text = %s" % text) # If a message format is not supported (eg. encrypted), # txt will be None if not text: return False surpress_cmd_not_found = False prefixed = False # Keeps track whether text was prefixed with a bot prefix only_check_re_command = False # Becomes true if text is determed to not be a regular command tomatch = text.lower() if self.bot_config.BOT_ALT_PREFIX_CASEINSENSITIVE else text if len(self.bot_config.BOT_ALT_PREFIXES) > 0 and tomatch.startswith(self.bot_alt_prefixes): # Yay! We were called by one of our alternate prefixes. Now we just have to find out # which one... (And find the longest matching, in case you have 'err' and 'errbot' and # someone uses 'errbot', which also matches 'err' but would leave 'bot' to be taken as # part of the called command in that case) prefixed = True longest = 0 for prefix in self.bot_alt_prefixes: l = len(prefix) if tomatch.startswith(prefix) and l > longest: longest = l logging.debug("Called with alternate prefix '{}'".format(text[:longest])) text = text[longest:] # Now also remove the separator from the text for sep in self.bot_config.BOT_ALT_PREFIX_SEPARATORS: # While unlikely, one may have separators consisting of # more than one character l = len(sep) if text[:l] == sep: text = text[l:] elif type_ == "chat" and self.bot_config.BOT_PREFIX_OPTIONAL_ON_CHAT: logging.debug("Assuming '%s' to be a command because BOT_PREFIX_OPTIONAL_ON_CHAT is True" % text) # In order to keep noise down we surpress messages about the command # not being found, because it's possible a plugin will trigger on what # was said with trigger_message. surpress_cmd_not_found = True elif not text.startswith(self.bot_config.BOT_PREFIX): only_check_re_command = True if text.startswith(self.bot_config.BOT_PREFIX): text = text[len(self.bot_config.BOT_PREFIX):] prefixed = True text = text.strip() text_split = text.split(' ') cmd = None command = None args = '' if not only_check_re_command: if len(text_split) > 1: command = (text_split[0] + '_' + text_split[1]).lower() if command in self.commands: cmd = command args = ' '.join(text_split[2:]) if not cmd: command = text_split[0].lower() args = ' '.join(text_split[1:]) if command in self.commands: cmd = command if len(text_split) > 1: args = ' '.join(text_split[1:]) if command == self.bot_config.BOT_PREFIX: # we did "!!" so recall the last command if len(user_cmd_history): cmd, args = user_cmd_history[-1] else: return False # no command in history elif command.isdigit(): # we did "!#" so we recall the specified command index = int(command) if len(user_cmd_history) >= index: cmd, args = user_cmd_history[-index] else: return False # no command in history # Try to match one of the regex commands if the regular commands produced no match matched_on_re_command = False if not cmd: if prefixed: commands = self.re_commands else: commands = {k: self.re_commands[k] for k in self.re_commands if not self.re_commands[k]._err_command_prefix_required} for name, func in commands.items(): if func._err_command_matchall: match = list(func._err_command_re_pattern.finditer(text)) else: match = func._err_command_re_pattern.search(text) if match: logging.debug("Matching '{}' against '{}' produced a match" .format(text, func._err_command_re_pattern.pattern)) matched_on_re_command = True self._process_command(mess, name, text, match) else: logging.debug("Matching '{}' against '{}' produced no match" .format(text, func._err_command_re_pattern.pattern)) if matched_on_re_command: return True if cmd: self._process_command(mess, cmd, args, match=None) elif not only_check_re_command: logging.debug("Command not found") if surpress_cmd_not_found: logging.debug("Surpressing command not found feedback") else: reply = self.unknown_command(mess, command, args) if reply is None: reply = self.MSG_UNKNOWN_COMMAND % {'command': command} if reply: self.send_simple_reply(mess, reply) return True def _process_command(self, mess, cmd, args, match): """Process and execute a bot command""" jid = mess.frm username = get_sender_username(mess) user_cmd_history = self.cmd_history[username] logging.info("Processing command '{}' with parameters '{}' from {}/{}".format(cmd, args, jid, mess.nick)) if (cmd, args) in user_cmd_history: user_cmd_history.remove((cmd, args)) # Avoids duplicate history items try: self.check_command_access(mess, cmd) except ACLViolation as e: if not self.bot_config.HIDE_RESTRICTED_ACCESS: self.send_simple_reply(mess, str(e)) return f = self.re_commands[cmd] if match else self.commands[cmd] if f._err_command_admin_only and self.bot_config.BOT_ASYNC: # If it is an admin command, wait until the queue is completely depleted so # we don't have strange concurrency issues on load/unload/updates etc... self.thread_pool.wait() if f._err_command_historize: user_cmd_history.append((cmd, args)) # add it to the history only if it is authorized to be so # Don't check for None here as None can be a valid argument to str.split. # '' was chosen as default argument because this isn't a valid argument to str.split() if not match and f._err_command_split_args_with != '': try: if hasattr(f._err_command_split_args_with, "parse_args"): args = f._err_command_split_args_with.parse_args(args) elif callable(f._err_command_split_args_with): args = f._err_command_split_args_with(args) else: args = args.split(f._err_command_split_args_with) except Exception as e: self.send_simple_reply( mess, "Sorry, I couldn't parse your arguments. {}".format(e) ) return if self.bot_config.BOT_ASYNC: wr = WorkRequest( self._execute_and_send, [], {'cmd': cmd, 'args': args, 'match': match, 'mess': mess, 'jid': jid, 'template_name': f._err_command_template} ) self.thread_pool.putRequest(wr) if f._err_command_admin_only: # Again, if it is an admin command, wait until the queue is completely # depleted so we don't have strange concurrency issues. self.thread_pool.wait() else: self._execute_and_send(cmd=cmd, args=args, match=match, mess=mess, jid=jid, template_name=f._err_command_template) def _execute_and_send(self, cmd, args, match, mess, jid, template_name=None): """Execute a bot command and send output back to the caller cmd: The command that was given to the bot (after being expanded) args: Arguments given along with cmd match: A re.MatchObject if command is coming from a regex-based command, else None mess: The message object jid: The jid of the person executing the command template_name: The name of the template which should be used to render html-im output, if any """ def process_reply(reply_): # integrated templating if template_name: reply_ = tenv().get_template(template_name + '.html').render(**reply_) # Reply should be all text at this point (See https://github.com/gbin/err/issues/96) return str(reply_) def send_reply(reply_): for part in split_string_after(reply_, self.bot_config.MESSAGE_SIZE_LIMIT): self.send_simple_reply(mess, part, cmd in self.bot_config.DIVERT_TO_PRIVATE) commands = self.re_commands if match else self.commands try: if inspect.isgeneratorfunction(commands[cmd]): replies = commands[cmd](mess, match) if match else commands[cmd](mess, args) for reply in replies: if reply: send_reply(process_reply(reply)) else: reply = commands[cmd](mess, match) if match else commands[cmd](mess, args) if reply: send_reply(process_reply(reply)) except Exception as e: tb = traceback.format_exc() logging.exception('An error happened while processing ' 'a message ("%s") from %s: %s"' % (mess.body, jid, tb)) send_reply(self.MSG_ERROR_OCCURRED + ':\n %s' % e) def is_admin(self, usr): """ an overridable check to see if a user is an administrator """ return usr in self.bot_config.BOT_ADMINS def check_command_access(self, mess, cmd): """ Check command against ACL rules Raises ACLViolation() if the command may not be executed in the given context """ usr = str(get_jid_from_message(mess)) typ = mess.type if cmd not in self.bot_config.ACCESS_CONTROLS: self.bot_config.ACCESS_CONTROLS[cmd] = self.bot_config.ACCESS_CONTROLS_DEFAULT if ('allowusers' in self.bot_config.ACCESS_CONTROLS[cmd] and usr not in self.bot_config.ACCESS_CONTROLS[cmd]['allowusers']): raise ACLViolation("You're not allowed to access this command from this user") if ('denyusers' in self.bot_config.ACCESS_CONTROLS[cmd] and usr in self.bot_config.ACCESS_CONTROLS[cmd]['denyusers']): raise ACLViolation("You're not allowed to access this command from this user") if typ == 'groupchat': stripped = mess.frm.stripped if ('allowmuc' in self.bot_config.ACCESS_CONTROLS[cmd] and self.bot_config.ACCESS_CONTROLS[cmd]['allowmuc'] is False): raise ACLViolation("You're not allowed to access this command from a chatroom") if ('allowrooms' in self.bot_config.ACCESS_CONTROLS[cmd] and stripped not in self.bot_config.ACCESS_CONTROLS[cmd]['allowrooms']): raise ACLViolation("You're not allowed to access this command from this room") if ('denyrooms' in self.bot_config.ACCESS_CONTROLS[cmd] and stripped in self.bot_config.ACCESS_CONTROLS[cmd]['denyrooms']): raise ACLViolation("You're not allowed to access this command from this room") else: if ('allowprivate' in self.bot_config.ACCESS_CONTROLS[cmd] and self.bot_config.ACCESS_CONTROLS[cmd]['allowprivate'] is False): raise ACLViolation("You're not allowed to access this command via private message to me") f = self.commands[cmd] if cmd in self.commands else self.re_commands[cmd] if f._err_command_admin_only: if typ == 'groupchat': raise ACLViolation("You cannot administer the bot from a chatroom, message the bot directly") if not self.is_admin(usr): raise ACLViolation("This command requires bot-admin privileges") def unknown_command(self, _, cmd, args): """ Override the default unknown command behavior """ full_cmd = cmd + ' ' + args.split(' ')[0] if args else None if full_cmd: part1 = 'Command "%s" / "%s" not found.' % (cmd, full_cmd) else: part1 = 'Command "%s" not found.' % cmd ununderscore_keys = [m.replace('_', ' ') for m in self.commands.keys()] matches = difflib.get_close_matches(cmd, ununderscore_keys) if full_cmd: matches.extend(difflib.get_close_matches(full_cmd, ununderscore_keys)) matches = set(matches) if matches: return (part1 + '\n\nDid you mean "' + self.bot_config.BOT_PREFIX + ('" or "' + self.bot_config.BOT_PREFIX).join(matches) + '" ?') else: return part1 def inject_commands_from(self, instance_to_inject): classname = instance_to_inject.__class__.__name__ for name, value in inspect.getmembers(instance_to_inject, inspect.ismethod): if getattr(value, '_err_command', False): commands = self.re_commands if getattr(value, '_err_re_command') else self.commands name = getattr(value, '_err_command_name') if name in commands: f = commands[name] new_name = (classname + '-' + name).lower() self.warn_admins('%s.%s clashes with %s.%s so it has been renamed %s' % ( classname, name, type(f.__self__).__name__, f.__name__, new_name)) name = new_name commands[name] = value if getattr(value, '_err_re_command'): logging.debug('Adding regex command : %s -> %s' % (name, value.__name__)) self.re_commands = commands else: logging.debug('Adding command : %s -> %s' % (name, value.__name__)) self.commands = commands def remove_commands_from(self, instance_to_inject): for name, value in inspect.getmembers(instance_to_inject, inspect.ismethod): if getattr(value, '_err_command', False): name = getattr(value, '_err_command_name') if getattr(value, '_err_re_command') and name in self.re_commands: del (self.re_commands[name]) elif not getattr(value, '_err_re_command') and name in self.commands: del (self.commands[name]) def warn_admins(self, warning): for admin in self.bot_config.BOT_ADMINS: self.send(admin, warning) def top_of_help_message(self): """Returns a string that forms the top of the help message Override this method in derived class if you want to add additional help text at the beginning of the help message. """ return "" def bottom_of_help_message(self): """Returns a string that forms the bottom of the help message Override this method in derived class if you want to add additional help text at the end of the help message. """ return "" @botcmd def help(self, mess, args): """ Returns a help string listing available options. Automatically assigned to the "help" command.""" if not args: if self.__doc__: description = self.__doc__.strip() else: description = 'Available commands:' usage = '\n'.join(sorted([ self.bot_config.BOT_PREFIX + '%s: %s' % (name, (command.__doc__ or '(undocumented)').strip().split('\n', 1)[0]) for (name, command) in self.commands.items() if name != 'help' and not command._err_command_hidden ])) usage = '\n\n' + '\n\n'.join(filter(None, [usage, self.MSG_HELP_TAIL])) else: description = '' if args in self.commands: usage = (self.commands[args].__doc__ or 'undocumented').strip() else: usage = self.MSG_HELP_UNDEFINED_COMMAND top = self.top_of_help_message() bottom = self.bottom_of_help_message() return ''.join(filter(None, [top, description, usage, bottom])) def send(self, user, text, in_reply_to=None, message_type='chat', groupchat_nick_reply=False): """Sends a simple message to the specified user.""" nick_reply = self.bot_config.GROUPCHAT_NICK_PREFIXED if (message_type == 'groupchat' and in_reply_to and nick_reply and groupchat_nick_reply): reply_text = self.groupchat_reply_format().format(in_reply_to.nick, text) else: reply_text = text mess = self.build_message(reply_text) if hasattr(user, 'stripped'): mess.to = user.stripped else: mess.to = user if in_reply_to: mess.type = in_reply_to.type mess.frm = in_reply_to.to.stripped else: mess.type = message_type mess.frm = self.jid self.send_message(mess) # ##### HERE ARE THE SPECIFICS TO IMPLEMENT PER BACKEND def groupchat_reply_format(self): raise NotImplementedError("It should be implemented specifically for your backend") def build_message(self, text): raise NotImplementedError("It should be implemented specifically for your backend") def serve_forever(self): raise NotImplementedError("It should be implemented specifically for your backend") def connect(self): """Connects the bot to server or returns current connection """ raise NotImplementedError("It should be implemented specifically for your backend") def join_room(self, room, username=None, password=None): """ Join a room (MUC). :param room: The JID/identifier of the room to join. :param username: An optional username to use. :param password: An optional password to use (for password-protected rooms). .. deprecated:: 2.2.0 Use the methods on :class:`MUCRoom` instead. """ warnings.warn( "Using join_room is deprecated, use query_room and the join " "method on the resulting response instead.", DeprecationWarning ) self.query_room(room).join(username=username, password=password) def query_room(self, room): """ Query a room for information. :param room: The JID/identifier of the room to query for. :returns: An instance of :class:`~MUCRoom`. """ raise NotImplementedError("It should be implemented specifically for your backend") def shutdown(self): pass def connect_callback(self): pass def disconnect_callback(self): pass @property def mode(self): raise NotImplementedError("It should be implemented specifically for your backend") def rooms(self): """ Return a list of rooms the bot is currently in. :returns: A list of :class:`~errbot.backends.base.MUCRoom` instances. """ raise NotImplementedError("It should be implemented specifically for your backend") def get_jid_from_message(mess): if mess.type == 'chat': # strip the resource for direct chats return mess.frm.stripped fr = mess.frm jid = Identifier(node=fr.node, domain=fr.domain, resource=fr.resource) return jid
gpl-3.0
-6,755,025,033,461,585,000
34.200637
115
0.580815
false
4.331962
true
false
false
Nokorbis/unodp
src/main/resources/scripts/dataset_profiler/main.py
1
1870
""" Script that tries to parse a dataset to profile its variables""" import os import sys from databasehelper import DatabaseHelper from profiler import Profiler def main(): """ Main function of the program Arguments should be: 1) path of the file to analyse 2) format of the file 3) id of the resource """ if len(sys.argv) < 4: # TO!DO: Print to log print('Call should be: py <script.py> <path> <file_format> ' '<resource_id>') return -1 path = sys.argv[1] file_format = sys.argv[2] resource_id = sys.argv[3] if os.path.exists(path) and os.path.isfile(path): with open(path, 'rb') as file: profiler = Profiler(file, file_format.lower()) profiler.profile_dataset() save_to_database(resource_id, profiler) return 0 def save_to_database(resource_id: int, profiler: Profiler): """ Save the structure of the dataset resource in the database """ db_hlpr = DatabaseHelper() db_hlpr.open_connection() types = db_hlpr.get_variable_types_id(profiler.final_types) pfl_id = db_hlpr.create_profile(resource_id) tbl_id = db_hlpr.add_resource_table(pfl_id, offset_y=profiler.offset) length = len(profiler.final_types) variables = [None]*length for i in range(0, length): typ = profiler.final_types[i] if profiler.real_headers: name = profiler.real_headers[i] else: name = "Col-" + str(i) idt = db_hlpr.add_variable(tbl_id, i, types[typ], name) variables[i] = idt i = 0 for row in profiler.row_set: if i < (profiler.offset+1): i = i + 1 continue db_hlpr.add_row(tbl_id, i, row, variables) i = i + 1 db_hlpr.close_connection() if __name__ == "__main__": sys.exit(main())
apache-2.0
-5,158,722,433,175,688,000
25.338028
73
0.596257
false
3.456562
false
false
false
guglielmino/pushetta-api-django
pushetta/api/subscriber_sl.py
1
3851
# coding=utf-8 # Progetto: Pushetta API # Service layer con le funzionalità per la gestione Subscribers from rest_framework import generics, permissions from rest_framework.response import Response from rest_framework import status from django.conf import settings from core.models import Subscriber, Channel, ChannelSubscribeRequest from core.models import ACCEPTED, PENDING from api.serializers import SubscriberSerializer, ChannelSerializer, ChannelSubscribeRequestSerializer from core.subscriber_manager import SubscriberManager class SubscriberList(generics.GenericAPIView): """ Handle device subscription to Pushetta """ serializer_class = SubscriberSerializer def post(self, request, format=None): serializer = SubscriberSerializer(data=request.DATA) if serializer.is_valid(): is_sandbox = (True if settings.ENVIRONMENT == "dev" else False) subscriber_data = serializer.object subscriber, created = Subscriber.objects.get_or_create(device_id=subscriber_data["device_id"], defaults={'sub_type': subscriber_data["sub_type"], 'sandbox': is_sandbox, 'enabled': True, 'name': subscriber_data["name"], 'token': subscriber_data["token"]}) if not created: subscriber.token = subscriber_data["token"] subscriber.name = subscriber_data["name"] subscriber.save() # Update del token nelle subscription del device subMamager = SubscriberManager() channel_subscriptions = subMamager.get_device_subscriptions(subscriber_data["device_id"]) for channel_sub in channel_subscriptions: subMamager.subscribe(channel_sub, subscriber_data["sub_type"], subscriber_data["device_id"], subscriber_data["token"]) return Response(serializer.data, status=status.HTTP_201_CREATED) else: return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class SubcriptionsList(generics.GenericAPIView): """ Handle subscriptions to channels of a specific device """ permission_classes = [ permissions.AllowAny ] serializer_class = ChannelSerializer def get(self, request, format=None, deviceId=None): channel_names = SubscriberManager().get_device_subscriptions(deviceId) channels = Channel.objects.filter(name__in=channel_names) serializer = ChannelSerializer(channels, many=True) return Response(serializer.data) class DeviceSubscriptionsRequests(generics.GenericAPIView): """ Handle list of device requests (subscribed and pending subscriptions) """ permission_classes = [ permissions.AllowAny ] serializer_class = ChannelSubscribeRequestSerializer def get(self, request, format=None, deviceId=None): channel_names = SubscriberManager().get_device_subscriptions(deviceId) # Uso ChannelSubscribeRequestSerializer e quelli già sottoscritti li aggiungo fake come ACCEPTED channels = Channel.objects.filter(name__in=channel_names) subscribed = [ChannelSubscribeRequest(channel=ch, device_id=deviceId, status=ACCEPTED) for ch in channels] # Le richieste visualizzate client side sono solo quelle requests = ChannelSubscribeRequest.objects.filter(device_id=deviceId).filter(status=PENDING) serializer = ChannelSubscribeRequestSerializer(subscribed + list(requests), many=True) return Response(serializer.data)
gpl-3.0
3,609,743,969,598,237,700
38.27551
117
0.651078
false
4.699634
false
false
false
hammadi123/CF_Algorithms
baseline.py
1
3368
from __future__ import division import numpy as np import matplotlib.pyplot as plt import math import operator import time import operator def readratings(f): ratings = {} index=0 somme=0 for row in f: line = row.split("\t") userid, movieid, rating = int(line[0]), int(line[1]), int(line[2]) ratings.setdefault(userid, {}) ratings[userid][movieid] = rating somme=somme+rating index=index+1 return ratings,somme/index def transpose(util): transposed = {} for id1 in util: for id2 in util[id1]: transposed.setdefault(id2, {}) transposed[id2][id1] = util[id1][id2] return transposed def normalize(util): avgs = {} for id1 in util: avg = 0.0 for id2 in util[id1]: avg += util[id1][id2] avg = float(avg)/len(util[id1]) for id2 in util[id1]: util[id1][id2] -= avg avgs[id1] = avg return avgs def bais_item(movies,mean,lamda=5): bais_items={} for item in movies: somme=0 index=0 for user in movies[item]: somme=somme+(movies[item][user]-mean) index=index+1 bais_items[item]=somme/(index+lamda) return bais_items def bais_user(users,mean,bais_items,lamda=5): bais_users={} for user in users: somme=0 index=0 for movie in users[user]: somme=somme+(users[user][movie]-mean-bais_items[movie]) index=index+1 bais_users[user]=somme/(index+lamda) return bais_users def dcg_at_k(r, k, method=0): r = np.asfarray(r)[:k] if r.size: if method == 0: return r[0] + np.sum(r[1:] / np.log2(np.arange(2, r.size + 1))) elif method == 1: return np.sum(r / np.log2(np.arange(2, r.size + 2))) else: raise ValueError('method must be 0 or 1.') return 0 def ndcg_at_k(r, k, method=0): dcg_max = dcg_at_k(sorted(r, reverse=True), k, method) if not dcg_max: return 0. return dcg_at_k(r, k, method) / dcg_max def histogram_plot(users): list=[] for u in users: for j in users[u]: list.append(users[u][j]) x=np.array(list) print type(x) print x n = 4 bins=np.arange(1,7,1) fig, ax = plt.subplots(1,1) ax.hist(x, bins=bins, align='left') ax.set_xticks(bins[:-1]) plt.xlabel("Rating value") plt.ylabel("Frequency") plt.show() if __name__ == "__main__": init = time.time() # read in training data set f1 = open("ua.base") users,s = readratings(f1) f1.close() histogram_plot(users) # read in test data set f2 = open("ua.test") rated,a = readratings(f2) # normalize user ratings movies = transpose(users) b_items=bais_item(movies,s,lamda=5) b_users=bais_user(users,s,b_items,lamda=5) total = 0 totalrmse = 0.0 totalndcg=0 for userid in rated: list=[] for movieid in rated[userid]: if movieid in movies: list.append((rated[userid][movieid],-(s+b_items[movieid]+b_users[userid]))) totalrmse += (s+b_items[movieid]+b_users[userid]-rated[userid][movieid])**2 total += 1 list.sort(key=operator.itemgetter(1)) totalndcg=totalndcg+ndcg_at_k([list[i][0] for i in xrange(len(list))],len(list)) print "RMSE= ", math.sqrt(totalrmse/total) print "NDCG=", totalndcg/len(rated) print "elapsed time=",time.time()-init
gpl-3.0
3,464,100,723,694,914,600
23.23741
85
0.597981
false
2.772016
false
false
false
codysmithd/PyGPS
NMEA.py
1
4501
''' NMEA.py Defines NMEA sentence and other useful classes ''' class Point: ''' Point: Simple coordinate point Attributes: lat: Latutude (decimal) lng: Longitude (decimal) alt: Altitude (meters) ''' def __init__(self, lat=0, lng=0, alt=0): self.lat = lat self.lng = lng self.alt = alt def __str__(self): return '{0}, {1}, {2} meters'.format(self.lat, self.lng, self.alt) def getDistance(self, toPoint): ''' Gets the distance (in arbitrary units) to another point ''' return math.sqrt(math.pow((self.lat - toPoint.lat),2) + math.pow((self.lng - toPoint.lng),2)) class GGA : ''' NMEA GGA: fix data Attributes: time: String with UTC time lat: Latitude (decimal value) lng: Longitude (decimal value) fix_quality: 0 = Error (no fix) 1 = GPS fix (SPS) 2 = DGPS fix 3 = PPS fix 4 = Real Time Kinematic 5 = Float RTK 6 = estimated (dead reckoning) (2.3 feature) 7 = Manual input mode 8 = Simulation mode num_sats: number of satellites being tracked hdp: Horizontal dilution of position alt: Altitude, Meters, above mean sea level geoid_height: Height of geoid (mean sea level) above WGS84 ellipsoid checkum: message checksum valid: is this a valid or invalid message (based on complete data and checksum) ''' def __init__(self, inputString=''): s = inputString.split(',') if not len(s) == 15 or not s[0] == '$GPGGA': raise ValueError('Invalid input string for NMEA GGA object, given string was: ' + inputString) else: try: self.time = s[1] self.lat = float(s[2][:2]) + float(s[2][2:])/60 if(s[3] == 'S'): self.lat = -1 * self.lat self.lng = float(s[4][:3]) + float(s[4][3:])/60 if(s[5] == 'W'): self.lng = -1 * self.lng self.fix_quality = s[6] self.num_sats = int(s[7]) self.hdp = float(s[8]) self.alt = float(s[9]) self.geoid_height = float(s[11]) self.checksum = s[14] self.valid = _validateChecksum(inputString, self.checksum) except ValueError: if not len(self.time): self.time = '' if not hasattr(self, 'lat') or not self.lat: self.lat = 0.0 if not hasattr(self, 'lng') or not self.lng: self.lng = 0.0 if not hasattr(self, 'fix_quality') or not self.fix_quality: self.fix_quality = 0 if not hasattr(self, 'num_sats') or not self.num_sats: self.num_sats = 0 if not hasattr(self, 'hdp') or not self.hdp: self.hdp = 0.0 if not hasattr(self, 'alt') or not self.alt: self.alt = 0.0 if not hasattr(self, 'geoid_height') or not self.geoid_height: self.geoid_height = 0.0 if not hasattr(self, 'checksum') or not self.checksum: self.checksum = '' self.valid = False def getPoint(self): ''' Returns a Point version of itself ''' return Point(self.lat, self.lng, self.alt) def getNMEA(line): ''' Given a line of text, tries to make a NMEA object from it, or returns None. Args: line: NMEA sentence Returns: NMEA object if valid line (eg. GGA), None if not valid ''' if not line: return None else: s = line.split(',') if len(s) == 15 and s[0] == '$GPGGA': return GGA(line) else: return None def _validateChecksum(line): ''' Given a NMEA sentence line, validates the checksum Args: line: NMEA sentence Returns: True if valid, False otherwise ''' try: if line.index('$') == 0 and '*' in line: check_against = line[1:line.index('*')] checksum = int(line[line.index('*')+1:], 16) result = 0 for char in check_against: result = result ^ ord(char) return checksum == result except ValueError: return False
apache-2.0
5,130,355,820,602,922,000
31.615942
106
0.504999
false
3.791912
false
false
false
Panda3D-google-code-repositories/panda3d-beast
rttcache/beast/Color.py
2
5605
#!/usr/bin/python #encoding: utf-8 ''' This file is part of the Panda3D user interface library, Beast. See included "License.txt" ''' class Color(object): ''' Converts a full color eg, 255 color, (255, 255, 255) OR (255, 255, 255, 255) to a float color (1.0, 1.0, 1.0, 1.0) Also accepts a float color, in which case it simply returns the float color after validation. Good for ensuring a full 255 or float color is indeed a float color. ''' @staticmethod def fullToFloat(floatOrFull): assert type(floatOrFull) == list or type(floatOrFull) == tuple assert len(floatOrFull) == 3 or len(floatOrFull) == 4 # Float color must stay within 0-1, and (1, 1, 1) could be 255 full color! # So within range 0-1, with floats is float color # And within range 1 with int is full 255 color isFloatColor = True for c in floatOrFull: if c > 1.0: isFloatColor = False break elif (c == 1) and (type(c) == int or type(c) == long): isFloatColor = False break if isFloatColor: if len(floatOrFull) == 3: floatOrFull = (floatOrFull[0], floatOrFull[1], floatOrFull[2], 1.0) return floatOrFull r = floatOrFull[0] / 255.0 g = floatOrFull[1] / 255.0 b = floatOrFull[2] / 255.0 if len(floatOrFull) == 4: a = floatOrFull[3] / 255.0 else: a = 1.0 return (r, g, b, a) ''' Converts a hex color eg, #FFFFFF OR #FFFFFFFF, to a float color (1.0, 1.0, 1.0, 1.0) ''' @staticmethod def hexToFloat(hexColor): assert type(hexColor) == str or type(hexColor) == unicode if hexColor.startswith('#'): hexColor = hexColor[1:] assert len(hexColor) == 6 or len(hexColor) == 8, 'Hex color must be either #RRGGBB or #RRGGBBAA format!' r, g, b = int(hexColor[:2], 16), int(hexColor[2:4], 16), int(hexColor[4:6], 16) if len(hexColor) == 8: a = int(hexColor[6:8], 16) else: a = 255 return Color.fullToFloat((r, g, b, a)) ''' Converts a float color eg, (1.0, 1.0, 1.0) OR (1.0, 1.0, 1.0, 1.0) to a full color, (255, 255, 255, 255) ''' @staticmethod def floatToFull(floatColor): assert type(floatColor) == list or type(floatColor) == tuple assert len(floatColor) == 3 or len(floatColor) == 4 r = int(round(floatColor[0] * 255.0, 0)) g = int(round(floatColor[1] * 255.0, 0)) b = int(round(floatColor[2] * 255.0, 0)) if len(floatColor) == 4: a = int(round(floatColor[3] * 255.0, 0)) else: a = 255 return (r, g, b, a) ''' Converts a float color eg, (1.0, 1.0, 1.0) OR (1.0, 1.0, 1.0, 1.0) to a hex color, #FFFFFFFF ''' @staticmethod def floatToHex(floatColor, withPound = True): fullColor = Color.floatToFull(floatColor) assert type(fullColor) == list or type(fullColor) == tuple assert len(fullColor) == 3 or len(fullColor) == 4 if len(fullColor) == 3: hexColor = '%02x%02x%02x' % fullColor elif len(fullColor) == 4: hexColor = '%02x%02x%02x%02x' % fullColor if len(hexColor) == 6: hexColor = hexColor + 'FF' hexColor = hexColor.upper() if withPound: return '#' + hexColor else: return hexColor ''' Color storage class, takes a single color, in any compatible format, and can convert it to other formats (1.0, 1.0, 1.0), or (1.0, 1.0, 1.0, 1.0) (255, 255, 255), or (255, 255, 255, 255) #RRGGBB, or #RRGGBBAA (with or without pound sign) ''' def __init__(self, color = None): self.__color = (0.0, 0.0, 0.0, 0.0) if color: self.setColor(color) ''' Change the color stored by this instance to a different one, this is the same as the constructor optional argument ''' def setColor(self, color): if type(color) == str or type(color) == unicode: self.__color = self.hexToFloat(color) elif type(color) == tuple or type(color) == list: self.__color = self.fullToFloat(color) else: raise AssertionError('Invalid color format, should be either string, unicode, tuple, or list') ''' Convert the stored color into a tuple of floats, ranging from 0-1, eg (0.5, 0.5, 0.5, 0.5) ''' def getAsFloat(self): return tuple(self.__color) ''' Convert the stored color into a full 255 color, ranging from 0-255, eg (128, 128, 128, 128) ''' def getAsFull(self): return self.floatToFull(self.__color) ''' Convert the stored color into a hex color, optionally starting with a pound # sign, eg #80808080 Note: Third argument is Alpha/Transparency, which may just be FF. For "fully solid" ''' def getAsHex(self, withPound = True): return self.floatToHex(self.__color, withPound) if __name__ == '__main__': def log(col, c): c.setColor(col) print '-> %s' % (col,) print '-> float -> %s' % (c.getAsFloat(),) print '-> full -> %s' % (c.getAsFull(),) print '-> hex -> %s' % (c.getAsHex(),) print c = Color() log((0.5, 0.5, 0.5), c) log((0.5, 0.5, 0.5, 0.5), c) log((128, 128, 128), c) log((128, 128, 128, 128), c) log('#808080', c) log('#80808080', c)
bsd-2-clause
6,329,967,598,123,207,000
34.251572
122
0.548439
false
3.322466
false
false
false
kwoodhouse93/astro-bomber
source/weapon.py
1
4940
import pygame import pymunk from pymunk.vec2d import Vec2d from source import game from source.constants import * from source.utilities import * class Projectile: def __init__(self, position, velocity, impulse): self.radius = BULLET_RADIUS mass = BULLET_MASS moment = pymunk.moment_for_circle(mass, 0, self.radius) self.body = pymunk.Body(mass, moment) self.body.position = position self.shape = pymunk.Circle(self.body, self.radius) self.shape.collision_type = CT_BULLET game.space.add(self.body, self.shape) self.strength = BULLET_STRENGTH self.body.velocity = velocity self.body.apply_impulse_at_world_point(impulse) game.object_manager.register(self) def update(self): Utils.remove_if_outside_game_area(self.body, self, self.radius) def hit(self, damage): self.strength -= damage if self.strength < 0: game.object_manager.unregister(self) def delete(self): # print('Bullet removed') game.space.remove(self.body, self.shape) def draw(self): draw_tuple = Utils.vec2d_to_draw_tuple(self.body.position) pygame.draw.circle(game.screen, (255, 255, 255), draw_tuple, self.radius) class Bomb: def __init__(self, position, velocity, impulse): self.radius = BOMB_RADIUS mass = BOMB_MASS moment = pymunk.moment_for_circle(mass, 0, self.radius) self.body = pymunk.Body(mass, moment) self.body.position = position self.shape = pymunk.Circle(self.body, self.radius) self.shape.collision_type = CT_BOMB game.space.add(self.body, self.shape) self.strength = BOMB_STRENGTH self.body.velocity = velocity self.body.apply_impulse_at_world_point(impulse) game.object_manager.register(self) self.birth = pygame.time.get_ticks() self.lifetime = BOMB_TIMER self.exploded = False def explode(self): print('BANG!') # BOMB_BLAST_RADIUS # # Create blast sensor shape self.blast_shape = pymunk.Circle(self.body, BOMB_BLAST_RADIUS) self.blast_shape.sensor = True self.blast_shape.collision_type = CT_BLAST game.space.add(self.blast_shape) # game.object_manager.unregister(self) self.exploded = True def update(self): if self.exploded: game.object_manager.unregister(self) age = pygame.time.get_ticks() - self.birth if age > self.lifetime and not self.exploded: self.explode() Utils.remove_if_outside_game_area(self.body, self, BOMB_BLAST_RADIUS) def hit(self, damage): self.strength -= damage if self.strength < 0: self.explode() game.object_manager.unregister(self) def delete(self): print('Bomb removed') if hasattr(self, 'blast_shape'): game.space.remove(self.blast_shape) game.space.remove(self.body, self.shape) def draw(self): draw_tuple = Utils.vec2d_to_draw_tuple(self.body.position) pygame.draw.circle(game.screen, (0, 255, 0), draw_tuple, self.radius) class PrimaryCannon: def __init__(self, parent): self.parent = parent game.object_manager.register(self) self.cannon_power = CANNON_POWER def activate(self): position = self.pos local_impulse = Vec2d(0, CANNON_POWER) parent_angle = self.parent.body.angle impulse = local_impulse.rotated(parent_angle) velocity = self.parent.body.velocity Projectile(position, velocity, impulse) def update(self): parent_pos = self.parent.body.position parent_angle = self.parent.body.angle local_offset = Vec2d(0, BOMBER_HEIGHT/2) self.pos = parent_pos + (local_offset.rotated(parent_angle)) self.draw_pos = Utils.vec2d_to_draw_tuple(self.pos) def delete(self): pass def draw(self): pygame.draw.circle(game.screen, (255, 0, 0), self.draw_pos, 1) class SecondaryBombLauncher: def __init__(self, parent): self.parent = parent game.object_manager.register(self) def activate(self): position = self.pos local_impulse = Vec2d(0, -BOMB_LAUNCHER_POWER) parent_angle = self.parent.body.angle impulse = local_impulse.rotated(parent_angle) velocity = self.parent.body.velocity Bomb(position, velocity, impulse) def update(self): parent_pos = self.parent.body.position parent_angle = self.parent.body.angle local_offset = Vec2d(0, -BOMBER_HEIGHT/2) self.pos = parent_pos + (local_offset.rotated(parent_angle)) self.draw_pos = Utils.vec2d_to_draw_tuple(self.pos) def delete(self): pass def draw(self): pygame.draw.circle(game.screen, (0, 0, 255), self.draw_pos, 3)
mit
8,768,513,573,241,920,000
31.077922
81
0.62915
false
3.416321
false
false
false
ksmaheshkumar/gitfs
tests/views/test_read_only.py
3
1735
# Copyright 2014 PressLabs SRL # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest from fuse import FuseOSError from gitfs.views.read_only import ReadOnlyView class TestReadOnly(object): def test_cant_write(self): view = ReadOnlyView() for method in ["write", "create", "utimens", "chmod", "mkdir"]: with pytest.raises(FuseOSError): getattr(view, method)("path", 1) with pytest.raises(FuseOSError): view.getxattr("path", "name", 1) with pytest.raises(FuseOSError): view.chown("path", 1, 1) def test_always_return_0(self): view = ReadOnlyView() for method in ["flush", "releasedir", "release"]: assert getattr(view, method)("path", 1) == 0 assert view.opendir("path") == 0 def test_open(self): view = ReadOnlyView() with pytest.raises(FuseOSError): view.open("path", os.O_WRONLY) assert view.open("path", os.O_RDONLY) == 0 def test_access(self): view = ReadOnlyView() with pytest.raises(FuseOSError): view.access("path", os.W_OK) assert view.access("path", os.R_OK) == 0
apache-2.0
7,316,076,637,565,921,000
27.916667
74
0.633429
false
3.821586
true
false
false
klpdotorg/disereports
handlers/Demographics.py
1
5855
import web import psycopg2 import traceback import sys, os,traceback from operator import itemgetter import db.KLPDB import db.Queries_dise from utils.CommonUtil import CommonUtil #connection = db.KLPDB.getConnection() #cursor = connection.cursor() cursor = db.KLPDB.getWebDbConnection1() class Demographics: def generateData(self,cons_type, constid): data = {} constype = "mp" if cons_type == 1: data["const_type"]='MP' constype = "mp" elif cons_type == 2: data["const_type"]='MLA' constype = "mla" elif cons_type == 3: data["const_type"]='Corporator' constype = "corporator" elif cons_type == 4: data["const_type"]='District' constype = "district" elif cons_type == 5: data["const_type"]='Block' constype = "block" elif cons_type == 6: data["const_type"]='Cluster' constype = "cluster" data["const_name"]=str(constid[0]) queries = ['gend_sch'] #,'gend_presch'] data.update(self.genderGraphs(constype,constid,queries)) #queries = ['mt_sch'] #,'mt_presch'] #data.update(self.mtGraphs(constype,constid,queries)) queries = ['moi_sch','cat_sch','enrol_sch'] #,'enrol_presch'] data.update(self.pieGraphs(constype,constid,queries)) data.update(self.constituencyData(constype,constid)) return data def genderGraphs(self,constype,constid,qkeys): data = {} for querykey in qkeys: result = cursor.query(db.Queries_dise.getDictionary(constype)[constype + '_' + querykey],{'s':constid}) chartdata ={} for row in result: chartdata[str(row.sex.strip())] = int(row.sum) if len(chartdata.keys()) > 0: total = chartdata['Boy']+chartdata['Girl'] percBoys = round(float(chartdata['Boy'])/total*100,0) percGirls = round(float(chartdata['Girl'])/total*100,0) data[querykey+"_tb"]=chartdata else: data[querykey+"_hasdata"] = 0 return data def mtGraphs(self,constype,constid,qkeys): data = {} for querykey in qkeys: result = cursor.query(db.Queries_dise.getDictionary(constype)[constype + '_' + querykey],{'s':constid}) tabledata = {} invertdata = {} order_lst = [] for row in result: invertdata[int(row.sum)] = str(row.mt.strip().title()) if len(invertdata.keys()) > 0: checklist = sorted(invertdata) others = 0 for i in checklist[0:len(checklist)-4]: others = others + i del invertdata[i] invertdata[others] = 'Others' tabledata = dict(zip(invertdata.values(),invertdata.keys())) if 'Other' in tabledata.keys(): tabledata['Others'] = tabledata['Others'] + tabledata['Other'] del tabledata['Other'] for i in sorted(tabledata,key=tabledata.get,reverse=True): order_lst.append(i) if len(tabledata.keys()) > 0: data[querykey + "_tb"] = tabledata data[querykey + "_ord_lst"] = order_lst else: data[querykey + "_hasdata"] = 0 return data def pieGraphs(self,constype,constid,qkeys): data = {} for querykey in qkeys: result = cursor.query(db.Queries_dise.getDictionary(constype)[constype + '_' + querykey],{'s':constid}) tabledata = {} for row in result: tabledata[str(row.a1.strip().title())] = str(int(row.a2)) sorted_x = sorted(tabledata.items(), key=itemgetter(1)) tabledata = dict(sorted_x) if len(tabledata.keys()) > 0: data[querykey + "_tb"] = tabledata else: data[querykey + "_hasdata"] = 0 return data def constituencyData(self,constype,constid): data = {} util = CommonUtil() ret_data = util.constituencyData(constype,constid) data.update(ret_data[0]) neighbors = self.neighboursData(ret_data[1],ret_data[2]) if neighbors: data.update(neighbors) return data def neighboursData(self, neighbours, constype): data = {} constype_str = constype try: if len(neighbours) > 0: neighbours_sch = {} neighbours_presch = {} result = cursor.query(db.Queries_dise.getDictionary(constype)[constype_str + '_neighbour_sch'], {'s':tuple(neighbours)}) for row in result: neighbours_sch[row.const_ward_name.strip()]={'schcount':str(row.count)} #result = cursor.query(db.Queries_dise.getDictionary(constype)[constype_str + '_neighbour_presch'], {'s':tuple(neighbours)}) #for row in result: #neighbours_presch[row.const_ward_name.strip()] = 0 #{'preschcount':str(row.count)} result = cursor.query(db.Queries_dise.getDictionary(constype)[constype_str + '_neighbour_gendsch'],{'s':tuple(neighbours)}) for row in result: neighbours_sch[row.const_ward_name.strip()][row.sex.strip()] = str(row.sum) #result = cursor.query(db.Queries_dise.getDictionary(constype)[constype_str + '_neighbour_gendpresch'],{'s':tuple(neighbours)}) #for row in result: #neighbours_presch[row.const_ward_name.strip()][row.sex.strip()] = str(row.sum) #neighbours_presch[row.const_ward_name.strip()]['Boys'] = 0 #str(row.sum) #neighbours_presch[row.const_ward_name.strip()]['Girls'] = 0 #str(row.sum) if len(neighbours_sch.keys()) > 0: data["neighbours_sch"] = neighbours_sch else: data["neighbours_sch_hasdata"] = 0 if len(neighbours_presch.keys()) > 0: data["neighbours_presch"] = neighbours_presch else: data["neighbours_presch_hasdata"] = 0 else: data["neighbours_sch_hasdata"] = 0 data["neighbours_presch_hasdata"] = 0 return data except: print "Unexpected error:", sys.exc_info() traceback.print_exc(file=sys.stdout) return None
mit
-8,367,429,558,039,493,000
34.484848
135
0.614518
false
3.236595
false
false
false
tBaxter/tango-contact-manager
setup.py
1
1109
# -*- coding: utf-8 -*- from distutils.core import setup from setuptools import find_packages with open('docs/requirements.txt') as f: required = f.read().splitlines() setup( name='tango-contact-manager', version='0.10.0', author=u'Tim Baxter', author_email='[email protected]', url='https://github.com/tBaxter/tango-contact-manager', license='LICENSE', description="""Provides contact forms and any other user submission form you might want. Create user submission forms on the fly, straight from the Django admin. """, long_description=open('README.md').read(), zip_safe=False, packages=find_packages(), include_package_data=True, install_requires=required, classifiers=[ "Development Status :: 4 - Beta", "Environment :: Web Environment", "Framework :: Django", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Programming Language :: Python", 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', ], )
mit
5,236,171,838,286,252,000
32.606061
92
0.639315
false
4.092251
false
true
false
mesosphere/dcos-cli
cli/tests/integrations/helpers/job.py
1
3171
import contextlib import json from .common import assert_command, exec_command from .marathon import watch_deployment def remove_job(job_id): """ Remove a job :param job_id: id of job to remove :type job_id: str :rtype: None """ assert_command(['dcos', 'job', 'remove', '--stop-current-job-runs', job_id]) def show_job(app_id): """Show details of a Metronome job. :param app_id: The id for the application :type app_id: str :returns: The requested Metronome job. :rtype: dict """ cmd = ['dcos', 'job', 'show', app_id] returncode, stdout, stderr = exec_command(cmd) assert returncode == 0 assert stderr == b'' result = json.loads(stdout.decode('utf-8')) assert isinstance(result, dict) assert result['id'] == app_id return result def show_job_schedule(app_id, schedule_id): """Show details of a Metronome schedule. :param app_id: The id for the job :type app_id: str :param schedule_id: The id for the schedule :type schedule_id: str :returns: The requested Metronome job. :rtype: dict """ cmd = ['dcos', 'job', 'schedule', 'show', app_id, '--json'] returncode, stdout, stderr = exec_command(cmd) assert returncode == 0 assert stderr == b'' result = json.loads(stdout.decode('utf-8')) assert isinstance(result[0], dict) assert result[0]['id'] == schedule_id return result[0] @contextlib.contextmanager def job(path, job_id): """Context manager that deploys a job on entrance, and removes it on exit. :param path: path to job's json definition: :type path: str :param job_id: job id :type job_id: str :param wait: whether to wait for the deploy :type wait: bool :rtype: None """ add_job(path) try: yield finally: remove_job(job_id) def watch_job_deployments(count=300): """Wait for all deployments to complete. :param count: max number of seconds to wait :type count: int :rtype: None """ deps = list_job_deployments() for dep in deps: watch_deployment(dep['id'], count) def add_job(job_path): """ Add a job, and wait for it to deploy :param job_path: path to job's json definition :type job_path: str :param wait: whether to wait for the deploy :type wait: bool :rtype: None """ assert_command(['dcos', 'job', 'add', job_path]) def list_job_deployments(expected_count=None, app_id=None): """Get all active deployments. :param expected_count: assert that number of active deployments equals `expected_count` :type expected_count: int :param app_id: only get deployments for this app :type app_id: str :returns: active deployments :rtype: [dict] """ cmd = ['dcos', 'job', 'list', '--json'] if app_id is not None: cmd.append(app_id) returncode, stdout, stderr = exec_command(cmd) result = json.loads(stdout.decode('utf-8')) assert returncode == 0 if expected_count is not None: assert len(result) == expected_count assert stderr == b'' return result
apache-2.0
-8,802,720,673,048,894,000
21.65
72
0.62157
false
3.583051
false
false
false
Royal-Society-of-New-Zealand/NZ-ORCID-Hub
tests/test_forms.py
1
7889
# -*- coding: utf-8 -*- """Tests for forms and WTForms extensions.""" # noqa: D103 import itertools from unittest.mock import MagicMock import pytest from wtforms import Form, StringField from orcid_hub.forms import validate_orcid_id_field # noqa: E128 from orcid_hub.forms import BitmapMultipleValueField, CountrySelectField, PartialDate, PartialDateField from orcid_hub.models import PartialDate as PartialDateDbField def test_partial_date_widget(): # noqa assert '<option selected value="1995">1995</option>' in PartialDate()( MagicMock(data=PartialDateDbField(1995))) field = MagicMock(label="LABEL", id="ID", data=PartialDateDbField(2017, 5, 13)) field.name = "NAME" pd = PartialDate()(field) assert '<option selected value="2017">2017</option>' in pd assert '<option selected value="5">05</option>' in pd assert '<option selected value="13">13</option><option value="14">14</option>' in pd assert '"NAME:year"' in pd assert '"NAME:month"' in pd assert '"NAME:day"' in pd @pytest.fixture def test_form(): # noqa class F(Form): pdf1 = PartialDateField("f1", default=PartialDateDbField(1995), id="test-id-1") pdf2 = PartialDateField("f2", default=PartialDateDbField(2017, 5, 13), id="test-id-2") pdf3 = PartialDateField("f3") csf1 = CountrySelectField() csf2 = CountrySelectField(label="Select Country") bmvf1 = BitmapMultipleValueField(choices=[ ( 1, "one", ), ( 2, "two", ), ( 4, "four", ), ]) bmvf2 = BitmapMultipleValueField( choices=[ ( 1, "one", ), ( 2, "two", ), ( 4, "four", ), ], ) bmvf2.is_bitmap_value = False return F def test_partial_date_field_defaults(test_form): # noqa tf = test_form() assert tf.pdf1.data == PartialDateDbField(1995) assert tf.pdf2.data == PartialDateDbField(2017, 5, 13) assert tf.pdf1.label.text == "f1" class DummyPostData(dict): # noqa def __init__(self, data): # noqa super().__init__() self.update(data) def getlist(self, key): # noqa v = self[key] if not isinstance(v, (list, tuple)): v = [v] return v def test_partial_date_field_with_data(test_form): # noqa tf = test_form(DummyPostData({"pdf1:year": "2000", "pdf1:month": "1", "pdf1:day": "31"})) pdf1 = tf.pdf1() assert '<option selected value="31">' in pdf1 assert '<option value="2001">2001</option><option selected value="2000">2000</option>' in pdf1 assert '<option value="">Month</option><option selected value="1">01</option><option value="2">' in pdf1 def test_partial_date_field_errors(test_form): # noqa tf = test_form( DummyPostData({ "pdf1:year": "ERROR", "pdf1:month": "ERROR", "pdf1:day": "ERROR" })) tf.validate() assert len(tf.pdf1.process_errors) > 0 tf = test_form(DummyPostData({"pdf1:year": "2001", "pdf1:month": "", "pdf1:day": "31"})) tf.validate() assert len(tf.pdf1.errors) > 0 tf = test_form(DummyPostData({"pdf1:year": "", "pdf1:month": "12", "pdf1:day": "31"})) tf.validate() assert len(tf.pdf1.errors) > 0 tf = test_form(DummyPostData({"pdf1:year": "2001", "pdf1:month": "13", "pdf1:day": ""})) tf.validate() assert len(tf.pdf1.errors) > 0 tf = test_form(DummyPostData({"pdf1:year": "2001", "pdf1:month": "-1", "pdf1:day": ""})) tf.validate() assert len(tf.pdf1.errors) > 0 tf = test_form(DummyPostData({"pdf1:year": "1995", "pdf1:month": "2", "pdf1:day": "29"})) tf.validate() assert len(tf.pdf1.errors) > 0 tf = test_form(DummyPostData({"pdf1:year": "1996", "pdf1:month": "2", "pdf1:day": "29"})) tf.validate() assert not tf.pdf1.errors tf = test_form(DummyPostData({"pdf1:year": "1994", "pdf1:month": "2", "pdf1:day": "30"})) tf.validate() assert len(tf.pdf1.errors) > 0 tf = test_form(DummyPostData({"pdf1:year": "1994", "pdf1:month": "4", "pdf1:day": "31"})) tf.validate() assert len(tf.pdf1.errors) > 0 for m in itertools.chain(range(9, 13, 2), range(2, 8, 2)): tf = test_form(DummyPostData({"pdf1:year": "1994", "pdf1:month": f"{m}", "pdf1:day": "31"})) tf.validate() assert len(tf.pdf1.errors) > 0 def test_partial_date_field_with_filter(test_form): # noqa test_form.pdf = PartialDateField( "f", filters=[lambda pd: PartialDateDbField(pd.year + 1, pd.month + 1, pd.day + 1)]) tf = test_form(DummyPostData({"pdf:year": "2012", "pdf:month": "4", "pdf:day": "12"})) pdf = tf.pdf() assert '<option selected value="13">' in pdf assert '<option selected value="2013">' in pdf assert '<option selected value="5">' in pdf assert len(tf.pdf1.process_errors) == 0 def failing_filter(*args, **kwargs): raise ValueError("ERROR!!!") test_form.pdf = PartialDateField("f", filters=[failing_filter]) tf = test_form(DummyPostData({"pdf:year": "2012", "pdf:month": "4", "pdf:day": "12"})) assert len(tf.pdf.process_errors) > 0 assert "ERROR!!!" in tf.pdf.process_errors def test_partial_date_field_with_obj(test_form): # noqa tf = test_form(None, obj=MagicMock(pdf1=PartialDateDbField(2017, 1, 13))) pdf1 = tf.pdf1() assert '<option selected value="13">' in pdf1 assert '<option selected value="2017">2017</option>' in pdf1 assert '<option value="">Month</option><option selected value="1">01</option><option value="2">' in pdf1 tf = test_form(None, obj=MagicMock(pdf3=PartialDateDbField(2017))) pdf3 = tf.pdf3() assert '<option selected value="">' in pdf3 assert '<option selected value="2017">2017</option>' in pdf3 assert '<option selected value="">Month</option><option value="1">01</option><option value="2">' in pdf3 def test_partial_date_field_with_data_and_obj(test_form): # noqa tf = test_form( DummyPostData({ "pdf1:year": "2000" }), MagicMock(pdf1=PartialDateDbField(2017, 1, 13))) pdf1 = tf.pdf1() assert '<option selected value="13">' in pdf1 assert '<option value="2001">2001</option><option selected value="2000">2000</option>' in pdf1 assert '<option value="">Month</option><option selected value="1">01</option><option value="2">' in pdf1 def test_orcid_validation(test_form): # noqa orcid_id = StringField("ORCID iD", [ validate_orcid_id_field, ]) orcid_id.data = "0000-0001-8228-7153" validate_orcid_id_field(test_form, orcid_id) orcid_id.data = "INVALID FORMAT" with pytest.raises(ValueError) as excinfo: validate_orcid_id_field(test_form, orcid_id) assert f"Invalid ORCID iD {orcid_id.data}. It should be in the form of 'xxxx-xxxx-xxxx-xxxx' where x is a digit." \ in str(excinfo.value) orcid_id.data = "0000-0001-8228-7154" with pytest.raises(ValueError) as excinfo: validate_orcid_id_field(test_form, orcid_id) assert f"Invalid ORCID iD {orcid_id.data} checksum. Make sure you have entered correct ORCID iD." in str( excinfo.value) def test_country_select_field(test_form): # noqa tf = test_form() assert tf.csf1.label.text == "Country" assert tf.csf2.label.text == "Select Country" def test_bitmap_multiple_value_field(test_form): # noqa tf = test_form() tf.bmvf1.data = 3 tf.bmvf2.data = ( 1, 4, ) tf.validate() tf.bmvf1.process_data(5) tf.bmvf1.process_data([1, 4])
mit
-951,219,314,364,749,000
31.870833
119
0.593611
false
3.247839
true
false
false
walchko/pyxl320
bin/set_angle.py
1
1405
#!/usr/bin/env python ############################################## # The MIT License (MIT) # Copyright (c) 2016 Kevin Walchko # see LICENSE for full details ############################################## from pyxl320 import Packet # from pyxl320 import DummySerial from pyxl320 import ServoSerial import argparse DESCRIPTION = """ Set the angle of a servo in degrees. Example: set servo 3 to angle 45 ./set_angle /dev/serial0 45 -i 3 """ def handleArgs(): parser = argparse.ArgumentParser(description=DESCRIPTION, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-i', '--id', help='servo id', type=int, default=1) parser.add_argument('port', help='serial port or \'dummy\' for testing', type=str) parser.add_argument('angle', help='servo angle in degrees: 0.0 - 300.0', type=float) args = vars(parser.parse_args()) return args def main(): args = handleArgs() ID = args['id'] port = args['port'] # '/dev/tty.usbserial-A5004Flb' angle = args['angle'] print('Setting servo[{}] to {:.2f} on port {}'.format(ID, angle, port)) if port.lower() == 'dummy': serial = ServoSerial(port=port, fake=True) else: serial = ServoSerial(port=port) serial.open() pkt = Packet.makeServoPacket(ID, angle) # move servo 1 to 158.6 degrees ans = serial.sendPkt(pkt) # send packet to servo if ans: print('status: {}'.format(ans)) if __name__ == '__main__': main()
mit
5,071,201,303,506,127,000
24.089286
105
0.641993
false
3.164414
false
false
false
prathapsridharan/health_project
health_project/questions/forms.py
1
2744
"""Contains form class defintions for form for the questions app. Classes: [ SurveyQuestionForm ] """ from django import forms from django.core.urlresolvers import reverse from crispy_forms.bootstrap import FormActions from crispy_forms.helper import FormHelper from crispy_forms.layout import Submit, Layout from . import config from .models import ChoiceSelectionAnswerFormat, ListInputAnswerFormat class SurveyQuestionForm(forms.Form): """Models a form for how a question should be posed to the user.""" answer_input = forms.CharField( label = "", required=False, widget=forms.Textarea() ) class Meta: fields = ("answer_input") def __init__(self, *args, **kwargs): survey_question = kwargs.pop('survey_question', None) super().__init__(*args, **kwargs) # NOTE: It is assumed that all answer_formats belonging to a question # is of the same type. # TODO: ENHANCEMENT: Enforce same answer format instances or throw an # error answer_formats = survey_question.question.answer_formats.all() answer_format = answer_formats[0] # Determine what the type of 'answer_input' form field is and its # associated widget type. if isinstance(answer_format, ChoiceSelectionAnswerFormat): choices = ((a.id, a.choice_name) for a in answer_formats) label = "" required = False if (answer_format.answer_format_type == config.CHOICE_SELECTION_MANY_FORMAT): self.fields['answer_input'] = forms.MultipleChoiceField( label=label, required=required, choices=choices ) self.fields['answer_input'].widget = forms.CheckboxSelectMultiple() else: self.fields['answer_input'] = forms.ChoiceField( label=label, required=required, choices=choices ) self.fields['answer_input'].widget = forms.RadioSelect() elif isinstance(answer_format, ListInputAnswerFormat): self.fields['answer_input'].help_text = "Please enter each new item on a new line." self.helper = FormHelper() self.helper.form_class = 'form-horizontal' self.helper.form_method = 'post' self.helper.form_action = reverse("questions:answer-survey-question") self.helper.layout = Layout( 'answer_input', ) self.helper.layout.append( FormActions( Submit('skip', 'Skip'), Submit('submit', 'Submit', css_class='btn-primary'), ) )
bsd-3-clause
8,239,022,131,864,577,000
32.876543
95
0.601676
false
4.469055
false
false
false
jcorrius/go-oo-mingw32-soc
scratch/mso-dumper/src/ole.py
1
22475
######################################################################## # # OpenOffice.org - a multi-platform office productivity suite # # Author: # Kohei Yoshida <[email protected]> # # The Contents of this file are made available subject to the terms # of GNU Lesser General Public License Version 2.1 and any later # version. # ######################################################################## import sys import globals from globals import getSignedInt # ---------------------------------------------------------------------------- # Reference: The Microsoft Compound Document File Format by Daniel Rentz # http://sc.openoffice.org/compdocfileformat.pdf # ---------------------------------------------------------------------------- from globals import output class NoRootStorage(Exception): pass class ByteOrder: LittleEndian = 0 BigEndian = 1 Unknown = 2 class BlockType: MSAT = 0 SAT = 1 SSAT = 2 Directory = 3 class StreamLocation: SAT = 0 SSAT = 1 class Header(object): @staticmethod def byteOrder (chars): b1, b2 = ord(chars[0]), ord(chars[1]) if b1 == 0xFE and b2 == 0xFF: return ByteOrder.LittleEndian elif b1 == 0xFF and b2 == 0xFE: return ByteOrder.BigEndian else: return ByteOrder.Unknown def __init__ (self, bytes, params): self.bytes = bytes self.MSAT = None self.docId = None self.uId = None self.revision = 0 self.version = 0 self.byteOrder = ByteOrder.Unknown self.minStreamSize = 0 self.numSecMSAT = 0 self.numSecSSAT = 0 self.numSecSAT = 0 self.__secIDFirstMSAT = -2 self.__secIDFirstDirStrm = -2 self.__secIDFirstSSAT = -2 self.secSize = 512 self.secSizeShort = 64 self.params = params def getSectorSize (self): return 2**self.secSize def getShortSectorSize (self): return 2**self.secSizeShort def getFirstSectorID (self, blockType): if blockType == BlockType.MSAT: return self.__secIDFirstMSAT elif blockType == BlockType.SSAT: return self.__secIDFirstSSAT elif blockType == BlockType.Directory: return self.__secIDFirstDirStrm return -2 def output (self): def printRawBytes (bytes): for b in bytes: output("%2.2X "%ord(b)) output("\n") def printSep (c='-', w=68, prefix=''): print(prefix + c*w) printSep('=', 68) print("Compound Document Header") printSep('-', 68) if self.params.debug: globals.dumpBytes(self.bytes[0:512]) printSep('-', 68) # document ID and unique ID output("Document ID: ") printRawBytes(self.docId) output("Unique ID: ") printRawBytes(self.uId) # revision and version print("Revision: %d Version: %d"%(self.revision, self.version)) # byte order output("Byte order: ") if self.byteOrder == ByteOrder.LittleEndian: print("little endian") elif self.byteOrder == ByteOrder.BigEndian: print("big endian") else: print("unknown") # sector size (usually 512 bytes) print("Sector size: %d (%d)"%(2**self.secSize, self.secSize)) # short sector size (usually 64 bytes) print("Short sector size: %d (%d)"%(2**self.secSizeShort, self.secSizeShort)) # total number of sectors in SAT (equals the number of sector IDs # stored in the MSAT). print("Total number of sectors used in SAT: %d"%self.numSecSAT) print("Sector ID of the first sector of the directory stream: %d"% self.__secIDFirstDirStrm) print("Minimum stream size: %d"%self.minStreamSize) if self.__secIDFirstSSAT == -2: print("Sector ID of the first SSAT sector: [none]") else: print("Sector ID of the first SSAT sector: %d"%self.__secIDFirstSSAT) print("Total number of sectors used in SSAT: %d"%self.numSecSSAT) if self.__secIDFirstMSAT == -2: # There is no more sector ID stored outside the header. print("Sector ID of the first MSAT sector: [end of chain]") else: # There is more sector IDs than 109 IDs stored in the header. print("Sector ID of the first MSAT sector: %d"%(self.__secIDFirstMSAT)) print("Total number of sectors used to store additional MSAT: %d"%self.numSecMSAT) def parse (self): # document ID and unique ID self.docId = self.bytes[0:8] self.uId = self.bytes[8:24] # revision and version self.revision = getSignedInt(self.bytes[24:26]) self.version = getSignedInt(self.bytes[26:28]) # byte order self.byteOrder = Header.byteOrder(self.bytes[28:30]) # sector size (usually 512 bytes) self.secSize = getSignedInt(self.bytes[30:32]) # short sector size (usually 64 bytes) self.secSizeShort = getSignedInt(self.bytes[32:34]) # total number of sectors in SAT (equals the number of sector IDs # stored in the MSAT). self.numSecSAT = getSignedInt(self.bytes[44:48]) self.__secIDFirstDirStrm = getSignedInt(self.bytes[48:52]) self.minStreamSize = getSignedInt(self.bytes[56:60]) self.__secIDFirstSSAT = getSignedInt(self.bytes[60:64]) self.numSecSSAT = getSignedInt(self.bytes[64:68]) self.__secIDFirstMSAT = getSignedInt(self.bytes[68:72]) self.numSecMSAT = getSignedInt(self.bytes[72:76]) # master sector allocation table self.MSAT = MSAT(2**self.secSize, self.bytes, self.params) # First part of MSAT consisting of an array of up to 109 sector IDs. # Each sector ID is 4 bytes in length. for i in xrange(0, 109): pos = 76 + i*4 id = getSignedInt(self.bytes[pos:pos+4]) if id == -1: break self.MSAT.appendSectorID(id) if self.__secIDFirstMSAT != -2: # additional sectors are used to store more SAT sector IDs. secID = self.__secIDFirstMSAT size = self.getSectorSize() inLoop = True while inLoop: pos = 512 + secID*size bytes = self.bytes[pos:pos+size] n = int(size/4) for i in xrange(0, n): pos = i*4 id = getSignedInt(bytes[pos:pos+4]) if id < 0: inLoop = False break elif i == n-1: # last sector ID - points to the next MSAT sector. secID = id break else: self.MSAT.appendSectorID(id) return 512 def getMSAT (self): return self.MSAT def getSAT (self): return self.MSAT.getSAT() def getSSAT (self): ssatID = self.getFirstSectorID(BlockType.SSAT) if ssatID < 0: return None chain = self.getSAT().getSectorIDChain(ssatID) if len(chain) == 0: return None obj = SSAT(2**self.secSize, self.bytes, self.params) for secID in chain: obj.addSector(secID) obj.buildArray() return obj def getDirectory (self): dirID = self.getFirstSectorID(BlockType.Directory) if dirID < 0: return None chain = self.getSAT().getSectorIDChain(dirID) if len(chain) == 0: return None obj = Directory(self, self.params) for secID in chain: obj.addSector(secID) return obj def dummy (): pass class MSAT(object): """Master Sector Allocation Table (MSAT) This class represents the master sector allocation table (MSAT) that stores sector IDs that point to all the sectors that are used by the sector allocation table (SAT). The actual SAT are to be constructed by combining all the sectors pointed by the sector IDs in order of occurrence. """ def __init__ (self, sectorSize, bytes, params): self.sectorSize = sectorSize self.secIDs = [] self.bytes = bytes self.__SAT = None self.params = params def appendSectorID (self, id): self.secIDs.append(id) def output (self): print('') print("="*68) print("Master Sector Allocation Table (MSAT)") print("-"*68) for id in self.secIDs: print("sector ID: %5d (pos: %7d)"%(id, 512+id*self.sectorSize)) def getSATSectorPosList (self): list = [] for id in self.secIDs: pos = 512 + id*self.sectorSize list.append([id, pos]) return list def getSAT (self): if self.__SAT != None: return self.__SAT obj = SAT(self.sectorSize, self.bytes, self.params) for id in self.secIDs: obj.addSector(id) obj.buildArray() self.__SAT = obj return self.__SAT class SAT(object): """Sector Allocation Table (SAT) """ def __init__ (self, sectorSize, bytes, params): self.sectorSize = sectorSize self.sectorIDs = [] self.bytes = bytes self.array = [] self.params = params def getSectorSize (self): return self.sectorSize def addSector (self, id): self.sectorIDs.append(id) def buildArray (self): if len(self.array) > 0: # array already built. return numItems = int(self.sectorSize/4) self.array = [] for secID in self.sectorIDs: pos = 512 + secID*self.sectorSize for i in xrange(0, numItems): beginPos = pos + i*4 id = getSignedInt(self.bytes[beginPos:beginPos+4]) self.array.append(id) def outputRawBytes (self): bytes = "" for secID in self.sectorIDs: pos = 512 + secID*self.sectorSize bytes += self.bytes[pos:pos+self.sectorSize] globals.dumpBytes(bytes, 512) def outputArrayStats (self): sectorTotal = len(self.array) sectorP = 0 # >= 0 sectorM1 = 0 # -1 sectorM2 = 0 # -2 sectorM3 = 0 # -3 sectorM4 = 0 # -4 sectorMElse = 0 # < -4 sectorLiveTotal = 0 for i in xrange(0, len(self.array)): item = self.array[i] if item >= 0: sectorP += 1 elif item == -1: sectorM1 += 1 elif item == -2: sectorM2 += 1 elif item == -3: sectorM3 += 1 elif item == -4: sectorM4 += 1 elif item < -4: sectorMElse += 1 else: sectorLiveTotal += 1 print("total sector count: %4d"%sectorTotal) print("* live sector count: %4d"%sectorP) print("* end-of-chain sector count: %4d"%sectorM2) # end-of-chain is also live print("* free sector count: %4d"%sectorM1) print("* SAT sector count: %4d"%sectorM3) print("* MSAT sector count: %4d"%sectorM4) print("* other sector count: %4d"%sectorMElse) def output (self): print('') print("="*68) print("Sector Allocation Table (SAT)") print("-"*68) if self.params.debug: self.outputRawBytes() print("-"*68) for i in xrange(0, len(self.array)): print("%5d: %5d"%(i, self.array[i])) print("-"*68) self.outputArrayStats() def getSectorIDChain (self, initID): if initID < 0: return [] chain = [initID] nextID = self.array[initID] while nextID != -2: chain.append(nextID) nextID = self.array[nextID] return chain class SSAT(SAT): """Short Sector Allocation Table (SSAT) SSAT contains an array of sector ID chains of all short streams, as oppposed to SAT which contains an array of sector ID chains of all standard streams. The sector IDs included in the SSAT point to the short sectors in the short stream container stream. The first sector ID of SSAT is in the header, and the IDs of the remaining sectors are contained in the SAT as a sector ID chain. """ def output (self): print('') print("="*68) print("Short Sector Allocation Table (SSAT)") print("-"*68) if self.params.debug: self.outputRawBytes() print("-"*68) for i in xrange(0, len(self.array)): item = self.array[i] output("%3d : %3d\n"%(i, item)) self.outputArrayStats() class Directory(object): """Directory Entries This stream contains a list of directory entries that are stored within the entire file stream. """ class Type: Empty = 0 UserStorage = 1 UserStream = 2 LockBytes = 3 Property = 4 RootStorage = 5 class NodeColor: Red = 0 Black = 1 Unknown = 99 class Entry: def __init__ (self): self.Name = '' self.CharBufferSize = 0 self.Type = Directory.Type.Empty self.NodeColor = Directory.NodeColor.Unknown self.DirIDLeft = -1 self.DirIDRight = -1 self.DirIDRoot = -1 self.UniqueID = None self.UserFlags = None self.TimeCreated = None self.TimeModified = None self.StreamSectorID = -2 self.StreamSize = 0 self.bytes = [] def __init__ (self, header, params): self.sectorSize = header.getSectorSize() self.bytes = header.bytes self.minStreamSize = header.minStreamSize self.sectorIDs = [] self.entries = [] self.SAT = header.getSAT() self.SSAT = header.getSSAT() self.header = header self.RootStorage = None self.RootStorageBytes = "" self.params = params def __buildRootStorageBytes (self): if self.RootStorage == None: # no root storage exists. return firstSecID = self.RootStorage.StreamSectorID chain = self.header.getSAT().getSectorIDChain(firstSecID) for secID in chain: pos = 512 + secID*self.sectorSize self.RootStorageBytes += self.header.bytes[pos:pos+self.sectorSize] def __getRawStream (self, entry): chain = [] if entry.StreamLocation == StreamLocation.SAT: chain = self.header.getSAT().getSectorIDChain(entry.StreamSectorID) elif entry.StreamLocation == StreamLocation.SSAT: chain = self.header.getSSAT().getSectorIDChain(entry.StreamSectorID) if entry.StreamLocation == StreamLocation.SSAT: # Get the root storage stream. if self.RootStorage == None: raise NoRootStorage bytes = "" self.__buildRootStorageBytes() size = self.header.getShortSectorSize() for id in chain: pos = id*size bytes += self.RootStorageBytes[pos:pos+size] return bytes offset = 512 size = self.header.getSectorSize() bytes = "" for id in chain: pos = offset + id*size bytes += self.header.bytes[pos:pos+size] return bytes def getRawStreamByName (self, name): bytes = [] for entry in self.entries: if entry.Name == name: bytes = self.__getRawStream(entry) break return bytes def addSector (self, id): self.sectorIDs.append(id) def output (self, debug=False): print('') print("="*68) print("Directory") if debug: print("-"*68) print("sector(s) used:") for secID in self.sectorIDs: print(" sector %d"%secID) print("") for secID in self.sectorIDs: print("-"*68) print(" Raw Hex Dump (sector %d)"%secID) print("-"*68) pos = globals.getSectorPos(secID, self.sectorSize) globals.dumpBytes(self.bytes[pos:pos+self.sectorSize], 128) for entry in self.entries: self.__outputEntry(entry, debug) def __outputEntry (self, entry, debug): print("-"*68) if len(entry.Name) > 0: name = entry.Name if ord(name[0]) <= 5: name = "<%2.2Xh>%s"%(ord(name[0]), name[1:]) print("name: %s (name buffer size: %d bytes)"%(name, entry.CharBufferSize)) else: print("name: [empty] (name buffer size: %d bytes)"%entry.CharBufferSize) if self.params.debug: print("-"*68) globals.dumpBytes(entry.bytes) print("-"*68) output("type: ") if entry.Type == Directory.Type.Empty: print("empty") elif entry.Type == Directory.Type.LockBytes: print("lock bytes") elif entry.Type == Directory.Type.Property: print("property") elif entry.Type == Directory.Type.RootStorage: print("root storage") elif entry.Type == Directory.Type.UserStorage: print("user storage") elif entry.Type == Directory.Type.UserStream: print("user stream") else: print("[unknown type]") output("node color: ") if entry.NodeColor == Directory.NodeColor.Red: print("red") elif entry.NodeColor == Directory.NodeColor.Black: print("black") elif entry.NodeColor == Directory.NodeColor.Unknown: print("[unknown color]") print("linked dir entries: left: %d; right: %d; root: %d"% (entry.DirIDLeft, entry.DirIDRight, entry.DirIDRoot)) self.__outputRaw("unique ID", entry.UniqueID) self.__outputRaw("user flags", entry.UserFlags) self.__outputRaw("time created", entry.TimeCreated) self.__outputRaw("time last modified", entry.TimeModified) output("stream info: ") if entry.StreamSectorID < 0: print("[empty stream]") else: strmLoc = "SAT" if entry.StreamLocation == StreamLocation.SSAT: strmLoc = "SSAT" print("(first sector ID: %d; size: %d; location: %s)"% (entry.StreamSectorID, entry.StreamSize, strmLoc)) satObj = None secSize = 0 if entry.StreamLocation == StreamLocation.SAT: satObj = self.SAT secSize = self.header.getSectorSize() elif entry.StreamLocation == StreamLocation.SSAT: satObj = self.SSAT secSize = self.header.getShortSectorSize() if satObj != None: chain = satObj.getSectorIDChain(entry.StreamSectorID) print("sector count: %d"%len(chain)) print("total sector size: %d"%(len(chain)*secSize)) if self.params.showSectorChain: self.__outputSectorChain(chain) def __outputSectorChain (self, chain): line = "sector chain: " lineLen = len(line) for id in chain: frag = "%d, "%id fragLen = len(frag) if lineLen + fragLen > 68: print(line) line = frag lineLen = fragLen else: line += frag lineLen += fragLen if line[-2:] == ", ": line = line[:-2] lineLen -= 2 if lineLen > 0: print(line) def __outputRaw (self, name, bytes): if bytes == None: return output("%s: "%name) for byte in bytes: output("%2.2X "%ord(byte)) print("") def getDirectoryNames (self): names = [] for entry in self.entries: names.append(entry.Name) return names def parseDirEntries (self): if len(self.entries): # directory entries already built return # combine all sectors first. bytes = "" for secID in self.sectorIDs: pos = globals.getSectorPos(secID, self.sectorSize) bytes += self.bytes[pos:pos+self.sectorSize] self.entries = [] # each directory entry is exactly 128 bytes. numEntries = int(len(bytes)/128) if numEntries == 0: return for i in xrange(0, numEntries): pos = i*128 self.entries.append(self.parseDirEntry(bytes[pos:pos+128])) def parseDirEntry (self, bytes): entry = Directory.Entry() entry.bytes = bytes name = globals.getUTF8FromUTF16(bytes[0:64]) entry.Name = name entry.CharBufferSize = getSignedInt(bytes[64:66]) entry.Type = getSignedInt(bytes[66:67]) entry.NodeColor = getSignedInt(bytes[67:68]) entry.DirIDLeft = getSignedInt(bytes[68:72]) entry.DirIDRight = getSignedInt(bytes[72:76]) entry.DirIDRoot = getSignedInt(bytes[76:80]) entry.UniqueID = bytes[80:96] entry.UserFlags = bytes[96:100] entry.TimeCreated = bytes[100:108] entry.TimeModified = bytes[108:116] entry.StreamSectorID = getSignedInt(bytes[116:120]) entry.StreamSize = getSignedInt(bytes[120:124]) entry.StreamLocation = StreamLocation.SAT if entry.Type != Directory.Type.RootStorage and \ entry.StreamSize < self.header.minStreamSize: entry.StreamLocation = StreamLocation.SSAT if entry.Type == Directory.Type.RootStorage and entry.StreamSectorID >= 0: # This is an existing root storage. self.RootStorage = entry return entry
lgpl-3.0
-4,926,262,211,372,972,000
29.248991
90
0.542158
false
3.967343
false
false
false
ADicksonLab/wepy
src/wepy/hdf5.py
1
206591
# -*- coding: utf-8 -*- """Primary wepy simulation database driver and access API using the HDF5 format. The HDF5 Format Specification ============================= As part of the wepy framework this module provides a fully-featured API for creating and accessing data generated in weighted ensemble simulations run with wepy. The need for a special purpose format is many-fold but primarily it is the nonlinear branching structure of walker trajectories coupled with weights. That is for standard simulations data is organized as independent linear trajectories of frames each related linearly to the one before it and after it. In weighted ensemble due to the resampling (i.e. cloning and merging) of walkers, a single frame may have multiple 'child' frames. This is the primary motivation for this format. However, in practice it solves several other issues and itself is a more general and flexible format than for just weighted ensemble simulations. Concretely the WepyHDF5 format is simply an informally described schema that is commensurable with the HDF5 constructs of hierarchical groups (similar to unix filesystem directories) arranged as a tree with datasets as the leaves. The hierarchy is fairly deep and so we will progress downwards from the top and describe each broad section in turn breaking it down when necessary. Header ------ The items right under the root of the tree are: - runs - topology - _settings The first item 'runs' is itself a group that contains all of the primary data from simulations. In WepyHDF5 the run is the unit dataset. All data internal to a run is self contained. That is for multiple dependent trajectories (e.g. from cloning and merging) all exist within a single run. This excludes metadata-like things that may be needed for interpreting this data, such as the molecular topology that imposes structure over a frame of atom positions. This information is placed in the 'topology' item. The topology field has no specified internal structure at this time. However, with the current implementation of the WepyHDF5Reporter (which is the principal implementation of generating a WepyHDF5 object/file from simulations) this is simply a string dataset. This string dataset should be a JSON compliant string. The format of which is specified elsewhere and was borrowed from the mdtraj library. Warning! this format and specification for the topology is subject to change in the future and will likely be kept unspecified indefinitely. For most intents and purposes (which we assume to be for molecular or molecular-like simulations) the 'topology' item (and perhaps any other item at the top level other than those proceeded by and underscore, such as in the '_settings' item) is merely useful metadata that applies to ALL runs and is not dynamical. In the language of the orchestration module all data in 'runs' uses the same 'apparatus' which is the function that takes in the initial conditions for walkers and produces new walkers. The apparatus may differ in the specific values of parameters but not in kind. This is to facilitate runs that are continuations of other runs. For these kinds of simulations the state of the resampler, boundary conditions, etc. will not be as they were initially but are the same in kind or type. All of the necessary type information of data in runs is kept in the '_settings' group. This is used to serialize information about the data types, shapes, run to run continuations etc. This allows for the initialization of an empty (no runs) WepyHDF5 database at one time and filling of data at another time. Otherwise types of datasets would have to be inferred from the data itself, which may not exist yet. As a convention items which are preceeded by an underscore (following the python convention) are to be considered hidden and mechanical to the proper functioning of various WepyHDF5 API features, such as sparse trajectory fields. The '_settings' is specified as a simple key-value structure, however values may be arbitrarily complex. Runs ---- The meat of the format is contained within the runs group: - runs - 0 - 1 - 2 - ... Under the runs group are a series of groups for each run. Runs are named according to the order in which they were added to the database. Within a run (say '0' from above) we have a number of items: - 0 - init_walkers - trajectories - decision - resampling - resampler - warping - progress - boundary_conditions Trajectories ^^^^^^^^^^^^ The 'trajectories' group is where the data for the frames of the walker trajectories is stored. Even though the tree-like trajectories of weighted ensemble data may be well suited to having a tree-like storage topology we have opted to use something more familiar to the field, and have used a collection of linear "trajectories". This way of breaking up the trajectory data coupled with proper records of resampling (see below) allows for the imposition of a tree structure without committing to that as the data storage topology. This allows the WepyHDF5 format to be easily used as a container format for collections of linear trajectories. While this is not supported in any real capacity it is one small step to convergence. We feel that a format that contains multiple trajectories is important for situations like weighted ensemble where trajectories are interdependent. The transition to a storage format like HDF5 however opens up many possibilities for new features for trajectories that have not occurred despite several attempts to forge new formats based on HDF5 (TODO: get references right; see work in mdtraj and MDHDF5). Perhaps these formats have not caught on because the existing formats (e.g. XTC, DCD) for simple linear trajectories are good enough and there is little motivation to migrate. However, by making the WepyHDF5 format (and related sub-formats to be described e.g. record groups and the trajectory format) both cover a new use case which can't be achieved with old formats and old ones with ease. Once users see the power of using a format like HDF5 from using wepy they may continue to use it for simpler simulations. In any case the 'trajectories' in the group for weighted ensemble simulations should be thought of only as containers and not literally as trajectories. That is frame 4 does not necessarily follow from frame 3. So one may think of them more as "lanes" or "slots" for trajectory data that needs to be stitched together with the appropriate resampling records. The routines and methods for generating contiguous trajectories from the data in WepyHDF5 are given through the 'analysis' module, which generates "traces" through the dataset. With this in mind we will describe the sub-format of a trajectory now. The 'trajectories' group is similar to the 'runs' group in that it has sub-groups whose names are numbers. These numbers however are not the order in which they are created but an index of that trajectory which are typically laid out all at once. For a wepy simulation with a constant number of walkers you will only ever need as many trajectories/slots as there are walkers. So if you have 8 walkers then you will have trajectories 0 through 7. Concretely: - runs - 0 - trajectories - 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 If we look at trajectory 0 we might see the following groups within: - positions - box_vectors - velocities - weights Which is what you would expect for a constant pressure molecular dynamics simulation where you have the positions of the atoms, the box size, and velocities of the atoms. The particulars for what "fields" a trajectory in general has are not important but this important use-case is directly supported in the WepyHDF5 format. In any such simulation, however, the 'weights' field will appear since this is the weight of the walker of this frame and is a value important to weighted ensemble and not the underlying dynamics. The naive approach to these fields is that each is a dataset of dimension (n_frames, feature_vector_shape[0], ...) where the first dimension is the cycle_idx and the rest of the dimensions are determined by the atomic feature vector for each field for a single frame. For example, the positions for a molecular simulation with 100 atoms with x, y, and z coordinates that ran for 1000 cycles would be a dataset of the shape (1000, 100, 3). Similarly the box vectors would be (1000, 3, 3) and the weights would be (1000, 1). This uniformity vastly simplifies accessing and adding new variables and requires that individual state values in walkers always be arrays with shapes, even when they are single values (e.g. energy). The exception being the weight which is handled separately. However, this situation is actually more complex to allow for special features. First of all is the presence of compound fields which allow nesting of multiple groups. The above "trajectory fields" would have identifiers such as the literal strings 'positions' and 'box_vectors', while a compound field would have an identifier 'observables/rmsd' or 'alt_reps/binding_site'. Use of trajectory field names using the '/' path separator will automatically make a field a group and the last element of the field name the dataset. So for the observables example we might have: - 0 - observables - rmsd - sasa Where the rmsd would be accessed as a trajectory field of trajectory 0 as 'observables/rmsd' and the solvent accessible surface area as 'observables/sasa'. This example introduces how the WepyHDF5 format is not only useful for storing data produced by simulation but also in the analysis of that data and computation of by-frame quantities. The 'observables' compound group key prefix is special and will be used in the 'compute_observables' method. The other special compound group key prefix is 'alt_reps' which is used for particle simulations to store "alternate representation" of the positions. This is useful in cooperation with the next feature of wepy trajectory fields to allow for more economical storage of data. The next feature (and complication of the format) is the allowance for sparse fields. As the fields were introduced we said that they should have as many feature vectors as there are frames for the simulation. In the example however, you will notice that storing both the full atomic positions and velocities for a long simulation requires a heavy storage burden. So perhaps you only want to store the velocities (or forces) every 100 frames so that you can be able to restart a simulation form midway through the simulation. This is achieved through sparse fields. A sparse field is no longer a dataset but a group with two items: - _sparse_idxs - data The '_sparse_idxs' are simply a dataset of integers that assign each element of the 'data' dataset to a frame index. Using the above example we run a simulation for 1000 frames with 100 atoms and we save the velocities every 100 frames we would have a 'velocities/data' dataset of shape (100, 100, 3) which is 10 times less data than if it were saved every frame. While this complicates the storage format use of the proper API methods should be transparent whether you are returning a sparse field or not. As alluded to above the use of sparse fields can be used for more than just accessory fields. In many simulations, such as those with full atomistic simulations of proteins in solvent we often don't care about the dynamics of most of the atoms in the simulation and so would like to not have to save them. The 'alt_reps' compound field is meant to solve this. For example, the WepyHDF5Reporter supports a special option to save only a subset of the atoms in the main 'positions' field but also to save the full atomic system as an alternate representation, which is the field name 'alt_reps/all_atoms'. So that you can still save the full system every once in a while but be economical in what positions you save every single frame. Note that there really isn't a way to achieve this with other formats. You either make a completely new trajectory with only the atoms of interest and now you are duplicating those in two places, or you duplicate and then filter your full systems trajectory file and rely on some sort of index to always live with it in the filesystem, which is a very precarious scenario. The situation is particularly hopeless for weighted ensemble trajectories. Init Walkers ^^^^^^^^^^^^ The data stored in the 'trajectories' section is the data that is returned after running dynamics in a cycle. Since we view the WepyHDF5 as a completely self-contained format for simulations it seems negligent to rely on outside sources (such as the filesystem) for the initial structures that seeded the simulations. These states (and weights) can be stored in this group. The format of this group is identical to the one for trajectories except that there is only one frame for each slot and so the shape of the datasets for each field is just the shape of the feature vector. Record Groups ^^^^^^^^^^^^^ TODO: add reference to reference groups The last five items are what are called 'record groups' and all follow the same format. Each record group contains itself a number of datasets, where the names of the datasets correspond to the 'field names' from the record group specification. So each record groups is simply a key-value store where the values must be datasets. For instance the fields in the 'resampling' (which is particularly important as it encodes the branching structure) record group for a WExplore resampler simulation are: - step_idx - walker_idx - decision_id - target_idxs - region_assignment Where the 'step_idx' is an integer specifying which step of resampling within the cycle the resampling action took place (the cycle index is metadata for the group). The 'walker_idx' is the index of the walker that this action was assigned to. The 'decision_id' is an integer that is related to an enumeration of decision types that encodes which discrete action is to be taken for this resampling event (the enumeration is in the 'decision' item of the run groups). The 'target_idxs' is a variable length 1-D array of integers which assigns the results of the action to specific target 'slots' (which was discussed for the 'trajectories' run group). And the 'region_assignment' is specific to WExplore which reports on which region the walker was in at that time, and is a variable length 1-D array of integers. Additionally, record groups are broken into two types: - continual - sporadic Continual records occur once per cycle and so there is no extra indexing necessary. Sporadic records can happen multiple or zero times per cycle and so require a special index for them which is contained in the extra dataset '_cycle_idxs'. It is worth noting that the underlying methods for each record group are general. So while these are the official wepy record groups that are supported if there is a use-case that demands a new record group it is a fairly straightforward task from a developers perspective. """ import os.path as osp from collections import Sequence, namedtuple, defaultdict, Counter import itertools as it import json from warnings import warn from copy import copy import logging import gc import numpy as np import h5py import networkx as nx from wepy.analysis.parents import resampling_panel from wepy.util.mdtraj import mdtraj_to_json_topology, json_to_mdtraj_topology, \ traj_fields_to_mdtraj from wepy.util.util import traj_box_vectors_to_lengths_angles from wepy.util.json_top import json_top_subset, json_top_atom_count # optional dependencies try: import mdtraj as mdj except ModuleNotFoundError: warn("mdtraj is not installed and that functionality will not work", RuntimeWarning) try: import pandas as pd except ModuleNotFoundError: warn("pandas is not installed and that functionality will not work", RuntimeWarning) ## h5py settings # we set the libver to always be the latest (which should be 1.10) so # that we know we can always use SWMR and the newest features. We # don't care about backwards compatibility with HDF5 1.8. Just update # in a new virtualenv if this is a problem for you H5PY_LIBVER = 'latest' ## Header and settings keywords TOPOLOGY = 'topology' """Default header apparatus dataset. The molecular topology dataset.""" SETTINGS = '_settings' """Name of the settings group in the header group.""" RUNS = 'runs' """The group name for runs.""" ## metadata fields RUN_IDX = 'run_idx' """Metadata field for run groups for the run index within this file.""" RUN_START_SNAPSHOT_HASH = 'start_snapshot_hash' """Metadata field for a run that corresponds to the hash of the starting simulation snapshot in orchestration.""" RUN_END_SNAPSHOT_HASH = 'end_snapshot_hash' """Metadata field for a run that corresponds to the hash of the ending simulation snapshot in orchestration.""" TRAJ_IDX = 'traj_idx' """Metadata field for trajectory groups for the trajectory index in that run.""" ## Misc. Names CYCLE_IDX = 'cycle_idx' """String for setting the names of cycle indices in records and miscellaneous situations.""" ## Settings field names SPARSE_FIELDS = 'sparse_fields' """Settings field name for sparse field trajectory field flags.""" N_ATOMS = 'n_atoms' """Settings field name group for the number of atoms in the default positions field.""" N_DIMS_STR = 'n_dims' """Settings field name for positions field spatial dimensions.""" MAIN_REP_IDXS = 'main_rep_idxs' """Settings field name for the indices of the full apparatus topology in the default positions trajectory field.""" ALT_REPS_IDXS = 'alt_reps_idxs' """Settings field name for the different 'alt_reps'. The indices of the atoms from the full apparatus topology for each.""" FIELD_FEATURE_SHAPES_STR = 'field_feature_shapes' """Settings field name for the trajectory field shapes.""" FIELD_FEATURE_DTYPES_STR = 'field_feature_dtypes' """Settings field name for the trajectory field data types.""" UNITS = 'units' """Settings field name for the units of the trajectory fields.""" RECORD_FIELDS = 'record_fields' """Settings field name for the record fields that are to be included in the truncated listing of record group fields.""" CONTINUATIONS = 'continuations' """Settings field name for the continuations relationships between runs.""" ## Run Fields Names TRAJECTORIES = 'trajectories' """Run field name for the trajectories group.""" INIT_WALKERS = 'init_walkers' """Run field name for the initial walkers group.""" DECISION = 'decision' """Run field name for the decision enumeration group.""" ## Record Groups Names RESAMPLING = 'resampling' """Record group run field name for the resampling records """ RESAMPLER = 'resampler' """Record group run field name for the resampler records """ WARPING = 'warping' """Record group run field name for the warping records """ PROGRESS = 'progress' """Record group run field name for the progress records """ BC = 'boundary_conditions' """Record group run field name for the boundary conditions records """ ## Record groups constants # special datatypes strings NONE_STR = 'None' """String signifying a field of unspecified shape. Used for serializing the None python object.""" CYCLE_IDXS = '_cycle_idxs' """Group name for the cycle indices of sporadic records.""" # records can be sporadic or continual. Continual records are # generated every cycle and are saved every cycle and are for all # walkers. Sporadic records are generated conditional on specific # events taking place and thus may or may not be produced each # cycle. There also is not a single record for each (cycle, step) like # there would be for continual ones because they can occur for single # walkers, boundary conditions, or resamplers. SPORADIC_RECORDS = (RESAMPLER, WARPING, RESAMPLING, BC) """Enumeration of the record groups that are sporadic.""" ## Trajectories Group # Default Trajectory Constants N_DIMS = 3 """Number of dimensions for the default positions.""" # Required Trajectory Fields WEIGHTS = 'weights' """The field name for the frame weights.""" # default fields for trajectories POSITIONS = 'positions' """The field name for the default positions.""" BOX_VECTORS = 'box_vectors' """The field name for the default box vectors.""" VELOCITIES = 'velocities' """The field name for the default velocities.""" FORCES = 'forces' """The field name for the default forces.""" TIME = 'time' """The field name for the default time.""" KINETIC_ENERGY = 'kinetic_energy' """The field name for the default kinetic energy.""" POTENTIAL_ENERGY = 'potential_energy' """The field name for the default potential energy.""" BOX_VOLUME = 'box_volume' """The field name for the default box volume.""" PARAMETERS = 'parameters' """The field name for the default parameters.""" PARAMETER_DERIVATIVES = 'parameter_derivatives' """The field name for the default parameter derivatives.""" ALT_REPS = 'alt_reps' """The field name for the default compound field observables.""" OBSERVABLES = 'observables' """The field name for the default compound field observables.""" ## Trajectory Field Constants WEIGHT_SHAPE = (1,) """Weights feature vector shape.""" WEIGHT_DTYPE = np.float """Weights feature vector data type.""" # Default Trajectory Field Constants FIELD_FEATURE_SHAPES = ((TIME, (1,)), (BOX_VECTORS, (3,3)), (BOX_VOLUME, (1,)), (KINETIC_ENERGY, (1,)), (POTENTIAL_ENERGY, (1,)), ) """Default shapes for the default fields.""" FIELD_FEATURE_DTYPES = ((POSITIONS, np.float), (VELOCITIES, np.float), (FORCES, np.float), (TIME, np.float), (BOX_VECTORS, np.float), (BOX_VOLUME, np.float), (KINETIC_ENERGY, np.float), (POTENTIAL_ENERGY, np.float), ) """Default data types for the default fields.""" # Positions (and thus velocities and forces) are determined by the # N_DIMS (which can be customized) and more importantly the number of # particles which is always different. All the others are always wacky # and different. POSITIONS_LIKE_FIELDS = (VELOCITIES, FORCES) """Default trajectory fields which are the same shape as the main positions field.""" ## Trajectory field features keys # sparse trajectory fields DATA = 'data' """Name of the dataset in sparse trajectory fields.""" SPARSE_IDXS = '_sparse_idxs' """Name of the dataset that indexes sparse trajectory fields.""" # utility for paths def _iter_field_paths(grp): """Return all subgroup field name paths from a group. Useful for compound fields. For example if you have the group observables with multiple subfields: - observables - rmsd - sasa Passing the h5py group 'observables' will return the full field names for each subfield: - 'observables/rmsd' - 'observables/sasa' Parameters ---------- grp : h5py.Group The group to enumerate subfield names for. Returns ------- subfield_names : list of str The full names for the subfields of the group. """ field_paths = [] for field_name in grp: if isinstance(grp[field_name], h5py.Group): for subfield in grp[field_name]: # if it is a sparse field don't do the subfields since # they will be _sparse_idxs and data which are not # what we want here if field_name not in grp.file['_settings/sparse_fields']: field_paths.append(field_name + '/' + subfield) else: field_paths.append(field_name) return field_paths class WepyHDF5(object): """Wrapper for h5py interface to an HDF5 file object for creation and access of WepyHDF5 data. This is the primary implementation of the API for creating, accessing, and modifying data in an HDF5 file that conforms to the WepyHDF5 specification. """ MODES = ('r', 'r+', 'w', 'w-', 'x', 'a') """The recognized modes for opening the WepyHDF5 file.""" WRITE_MODES = ('r+', 'w', 'w-', 'x', 'a') #### dunder methods def __init__(self, filename, mode='x', topology=None, units=None, sparse_fields=None, feature_shapes=None, feature_dtypes=None, n_dims=None, alt_reps=None, main_rep_idxs=None, swmr_mode=False, expert_mode=False ): """Constructor for the WepyHDF5 class. Initialize a new Wepy HDF5 file. This will create an h5py.File object. The File will be closed after construction by default. mode: r Readonly, file must exist r+ Read/write, file must exist w Create file, truncate if exists x or w- Create file, fail if exists a Read/write if exists, create otherwise Parameters ---------- filename : str File path mode : str Mode specification for opening the HDF5 file. topology : str JSON string representing topology of system being simulated. units : dict of str : str, optional Mapping of trajectory field names to string specs for units. sparse_fields : list of str, optional List of trajectory fields that should be initialized as sparse. feature_shapes : dict of str : shape_spec, optional Mapping of trajectory fields to their shape spec for initialization. feature_dtypes : dict of str : dtype_spec, optional Mapping of trajectory fields to their shape spec for initialization. n_dims : int, default: 3 Set the number of spatial dimensions for the default positions trajectory field. alt_reps : dict of str : list of int, optional Specifies that there will be 'alt_reps' of positions each named by the keys of this mapping and containing the indices in each value list. main_rep_idxs : list of int, optional The indices of atom positions to save as the main 'positions' trajectory field. Defaults to all atoms. expert_mode : bool If True no initialization is performed other than the setting of the filename. Useful mainly for debugging. Raises ------ AssertionError If the mode is not one of the supported mode specs. AssertionError If a topology is not given for a creation mode. Warns ----- If initialization data was given but the file was opened in a read mode. """ self._filename = filename self._swmr_mode = swmr_mode if expert_mode is True: self._h5 = None self._wepy_mode = None self._h5py_mode = None self.closed = None # terminate the constructor here return None assert mode in self.MODES, \ "mode must be either one of: {}".format(', '.join(self.MODES)) # the top level mode enforced by wepy.hdf5 self._wepy_mode = mode # the lower level h5py mode. THis was originally different to # accomodate different modes at teh wepy level for # concatenation. I will leave these separate because this is # used elsewhere and could be a feature in the future. self._h5py_mode = mode # Temporary metadata: used to initialize the object but not # used after that self._topology = topology self._units = units self._n_dims = n_dims self._n_coords = None # set hidden feature shapes and dtype, which are only # referenced if needed when trajectories are created. These # will be saved in the settings section in the actual HDF5 # file self._field_feature_shapes_kwarg = feature_shapes self._field_feature_dtypes_kwarg = feature_dtypes self._field_feature_dtypes = None self._field_feature_shapes = None # save the sparse fields as a private variable for use in the # create constructor if sparse_fields is None: self._sparse_fields = [] else: self._sparse_fields = sparse_fields # if we specify an atom subset of the main POSITIONS field # we must save them self._main_rep_idxs = main_rep_idxs # a dictionary specifying other alt_reps to be saved if alt_reps is not None: self._alt_reps = alt_reps # all alt_reps are sparse alt_rep_keys = ['{}/{}'.format(ALT_REPS, key) for key in self._alt_reps.keys()] self._sparse_fields.extend(alt_rep_keys) else: self._alt_reps = {} # open the file and then run the different constructors based # on the mode with h5py.File(filename, mode=self._h5py_mode, libver=H5PY_LIBVER, swmr=self._swmr_mode) as h5: self._h5 = h5 # set SWMR mode if asked for if we are in write mode also if self._swmr_mode is True and mode in self.WRITE_MODES: self._h5.swmr_mode = swmr_mode # create file mode: 'w' will create a new file or overwrite, # 'w-' and 'x' will not overwrite but will create a new file if self._wepy_mode in ['w', 'w-', 'x']: self._create_init() # read/write mode: in this mode we do not completely overwrite # the old file and start again but rather write over top of # values if requested elif self._wepy_mode in ['r+']: self._read_write_init() # add mode: read/write create if doesn't exist elif self._wepy_mode in ['a']: if osp.exists(self._filename): self._read_write_init() else: self._create_init() # read only mode elif self._wepy_mode == 'r': # if any data was given, warn the user if any([kwarg is not None for kwarg in [topology, units, sparse_fields, feature_shapes, feature_dtypes, n_dims, alt_reps, main_rep_idxs]]): warn("Data was given but opening in read-only mode", RuntimeWarning) # then run the initialization process self._read_init() # flush the buffers self._h5.flush() # set the h5py mode to the value in the actual h5py.File # object after creation self._h5py_mode = self._h5.mode # get rid of the temporary variables del self._topology del self._units del self._n_dims del self._n_coords del self._field_feature_shapes_kwarg del self._field_feature_dtypes_kwarg del self._field_feature_shapes del self._field_feature_dtypes del self._sparse_fields del self._main_rep_idxs del self._alt_reps # variable to reflect if it is closed or not, should be closed # after initialization self.closed = True # end of the constructor return None # TODO is this right? shouldn't we actually delete the data then close def __del__(self): self.close() # context manager methods def __enter__(self): self.open() # self._h5 = h5py.File(self._filename, # libver=H5PY_LIBVER, swmr=self._swmr_mode) # self.closed = False return self def __exit__(self, exc_type, exc_value, exc_tb): self.close() @property def swmr_mode(self): return self._swmr_mode @swmr_mode.setter def swmr_mode(self, val): self._swmr_mode = val # TODO custom deepcopy to avoid copying the actual HDF5 object #### hidden methods (_method_name) ### constructors def _create_init(self): """Creation mode constructor. Completely overwrite the data in the file. Reinitialize the values and set with the new ones if given. """ assert self._topology is not None, \ "Topology must be given for a creation constructor" # initialize the runs group runs_grp = self._h5.create_group(RUNS) # initialize the settings group settings_grp = self._h5.create_group(SETTINGS) # create the topology dataset self._h5.create_dataset(TOPOLOGY, data=self._topology) # sparse fields if self._sparse_fields is not None: # make a dataset for the sparse fields allowed. this requires # a 'special' datatype for variable length strings. This is # supported by HDF5 but not numpy. vlen_str_dt = h5py.special_dtype(vlen=str) # create the dataset with empty values for the length of the # sparse fields given sparse_fields_ds = settings_grp.create_dataset(SPARSE_FIELDS, (len(self._sparse_fields),), dtype=vlen_str_dt, maxshape=(None,)) # set the flags for i, sparse_field in enumerate(self._sparse_fields): sparse_fields_ds[i] = sparse_field # field feature shapes and dtypes # initialize to the defaults, this gives values to # self._n_coords, and self.field_feature_dtypes, and # self.field_feature_shapes self._set_default_init_field_attributes(n_dims=self._n_dims) # save the number of dimensions and number of atoms in settings settings_grp.create_dataset(N_DIMS_STR, data=np.array(self._n_dims)) settings_grp.create_dataset(N_ATOMS, data=np.array(self._n_coords)) # the main rep atom idxs settings_grp.create_dataset(MAIN_REP_IDXS, data=self._main_rep_idxs, dtype=np.int) # alt_reps settings alt_reps_idxs_grp = settings_grp.create_group(ALT_REPS_IDXS) for alt_rep_name, idxs in self._alt_reps.items(): alt_reps_idxs_grp.create_dataset(alt_rep_name, data=idxs, dtype=np.int) # if both feature shapes and dtypes were specified overwrite # (or initialize if not set by defaults) the defaults if (self._field_feature_shapes_kwarg is not None) and\ (self._field_feature_dtypes_kwarg is not None): self._field_feature_shapes.update(self._field_feature_shapes_kwarg) self._field_feature_dtypes.update(self._field_feature_dtypes_kwarg) # any sparse field with unspecified shape and dtype must be # set to None so that it will be set at runtime for sparse_field in self.sparse_fields: if (not sparse_field in self._field_feature_shapes) or \ (not sparse_field in self._field_feature_dtypes): self._field_feature_shapes[sparse_field] = None self._field_feature_dtypes[sparse_field] = None # save the field feature shapes and dtypes in the settings group shapes_grp = settings_grp.create_group(FIELD_FEATURE_SHAPES_STR) for field_path, field_shape in self._field_feature_shapes.items(): if field_shape is None: # set it as a dimensionless array of NaN field_shape = np.array(np.nan) shapes_grp.create_dataset(field_path, data=field_shape) dtypes_grp = settings_grp.create_group(FIELD_FEATURE_DTYPES_STR) for field_path, field_dtype in self._field_feature_dtypes.items(): if field_dtype is None: dt_str = NONE_STR else: # make a json string of the datatype that can be read # in again, we call np.dtype again because there is no # np.float.descr attribute dt_str = json.dumps(np.dtype(field_dtype).descr) dtypes_grp.create_dataset(field_path, data=dt_str) # initialize the units group unit_grp = self._h5.create_group(UNITS) # if units were not given set them all to None if self._units is None: self._units = {} for field_path in self._field_feature_shapes.keys(): self._units[field_path] = None # set the units for field_path, unit_value in self._units.items(): # ignore the field if not given if unit_value is None: continue unit_path = '{}/{}'.format(UNITS, field_path) unit_grp.create_dataset(unit_path, data=unit_value) # create the group for the run data records records_grp = settings_grp.create_group(RECORD_FIELDS) # create a dataset for the continuation run tuples # (continuation_run, base_run), where the first element # of the new run that is continuing the run in the second # position self._init_continuations() def _read_write_init(self): """Read-write mode constructor.""" self._read_init() def _add_init(self): """The addition mode constructor. Create the dataset if it doesn't exist and put it in r+ mode, otherwise, just open in r+ mode. """ if not any(self._exist_flags): self._create_init() else: self._read_write_init() def _read_init(self): """Read mode constructor.""" pass def _set_default_init_field_attributes(self, n_dims=None): """Sets the feature_shapes and feature_dtypes to be the default for this module. These will be used to initialize field datasets when no given during construction (i.e. for sparse values) Parameters ---------- n_dims : int """ # we use the module defaults for the datasets to initialize them field_feature_shapes = dict(FIELD_FEATURE_SHAPES) field_feature_dtypes = dict(FIELD_FEATURE_DTYPES) # get the number of coordinates of positions. If there is a # main_reps then we have to set the number of atoms to that, # if not we count the number of atoms in the topology if self._main_rep_idxs is None: self._n_coords = json_top_atom_count(self.topology) self._main_rep_idxs = list(range(self._n_coords)) else: self._n_coords = len(self._main_rep_idxs) # get the number of dimensions as a default if n_dims is None: self._n_dims = N_DIMS # feature shapes for positions and positions-like fields are # not known at the module level due to different number of # coordinates (number of atoms) and number of dimensions # (default 3 spatial). We set them now that we know this # information. # add the postitions shape field_feature_shapes[POSITIONS] = (self._n_coords, self._n_dims) # add the positions-like field shapes (velocities and forces) as the same for poslike_field in POSITIONS_LIKE_FIELDS: field_feature_shapes[poslike_field] = (self._n_coords, self._n_dims) # set the attributes self._field_feature_shapes = field_feature_shapes self._field_feature_dtypes = field_feature_dtypes def _get_field_path_grp(self, run_idx, traj_idx, field_path): """Given a field path for the trajectory returns the group the field's dataset goes in and the key for the field name in that group. The field path for a simple field is just the name of the field and for a compound field it is the compound field group name with the subfield separated by a '/' like 'observables/observable1' where 'observables' is the compound field group and 'observable1' is the subfield name. Parameters ---------- run_idx : int traj_idx : int field_path : str Returns ------- group : h5py.Group field_name : str """ # check if it is compound if '/' in field_path: # split it grp_name, field_name = field_path.split('/') # get the hdf5 group grp = self.h5['{}/{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx, grp_name)] # its simple so just return the root group and the original path else: grp = self.h5 field_name = field_path return grp, field_name def _init_continuations(self): """This will either create a dataset in the settings for the continuations or if continuations already exist it will reinitialize them and delete the data that exists there. Returns ------- continuation_dset : h5py.Dataset """ # if the continuations dset already exists we reinitialize the # data if CONTINUATIONS in self.settings_grp: cont_dset = self.settings_grp[CONTINUATIONS] cont_dset.resize( (0,2) ) # otherwise we just create the data else: cont_dset = self.settings_grp.create_dataset(CONTINUATIONS, shape=(0,2), dtype=np.int, maxshape=(None, 2)) return cont_dset def _add_run_init(self, run_idx, continue_run=None): """Routines for creating a run includes updating and setting object global variables, increasing the counter for the number of runs. Parameters ---------- run_idx : int continue_run : int Index of the run to continue. """ # add the run idx as metadata in the run group self._h5['{}/{}'.format(RUNS, run_idx)].attrs[RUN_IDX] = run_idx # if this is continuing another run add the tuple (this_run, # continues_run) to the continutations settings if continue_run is not None: self.add_continuation(run_idx, continue_run) def _add_init_walkers(self, init_walkers_grp, init_walkers): """Adds the run field group for the initial walkers. Parameters ---------- init_walkers_grp : h5py.Group The group to add the walker data to. init_walkers : list of objects implementing the Walker interface The walkers to save in the group """ # add the initial walkers to the group by essentially making # new trajectories here that will only have one frame for walker_idx, walker in enumerate(init_walkers): walker_grp = init_walkers_grp.create_group(str(walker_idx)) # weights # get the weight from the walker and make a feature array of it weights = np.array([[walker.weight]]) # then create the dataset and set it walker_grp.create_dataset(WEIGHTS, data=weights) # state fields data for field_key, field_value in walker.state.dict().items(): # values may be None, just ignore them if field_value is not None: # just create the dataset by making it a feature array # (wrapping it in another list) walker_grp.create_dataset(field_key, data=np.array([field_value])) def _init_run_sporadic_record_grp(self, run_idx, run_record_key, fields): """Initialize a sporadic record group for a run. Parameters ---------- run_idx : int run_record_key : str The record group name. fields : list of field specs Each field spec is a 3-tuple of (field_name : str, field_shape : shape_spec, field_dtype : dtype_spec) Returns ------- record_group : h5py.Group """ # create the group run_grp = self.run(run_idx) record_grp = run_grp.create_group(run_record_key) # initialize the cycles dataset that maps when the records # were recorded record_grp.create_dataset(CYCLE_IDXS, (0,), dtype=np.int, maxshape=(None,)) # for each field simply create the dataset for field_name, field_shape, field_dtype in fields: # initialize this field self._init_run_records_field(run_idx, run_record_key, field_name, field_shape, field_dtype) return record_grp def _init_run_continual_record_grp(self, run_idx, run_record_key, fields): """Initialize a continual record group for a run. Parameters ---------- run_idx : int run_record_key : str The record group name. fields : list of field specs Each field spec is a 3-tuple of (field_name : str, field_shape : shape_spec, field_dtype : dtype_spec) Returns ------- record_group : h5py.Group """ # create the group run_grp = self.run(run_idx) record_grp = run_grp.create_group(run_record_key) # for each field simply create the dataset for field_name, field_shape, field_dtype in fields: self._init_run_records_field(run_idx, run_record_key, field_name, field_shape, field_dtype) return record_grp def _init_run_records_field(self, run_idx, run_record_key, field_name, field_shape, field_dtype): """Initialize a single field for a run record group. Parameters ---------- run_idx : int run_record_key : str The name of the record group. field_name : str The name of the field in the record group. field_shape : tuple of int The shape of the dataset for the field. field_dtype : dtype_spec An h5py recognized data type. Returns ------- dataset : h5py.Dataset """ record_grp = self.run(run_idx)[run_record_key] # check if it is variable length if field_shape is Ellipsis: # make a special dtype that allows it to be # variable length vlen_dt = h5py.special_dtype(vlen=field_dtype) # this is only allowed to be a single dimension # since no real shape was given dset = record_grp.create_dataset(field_name, (0,), dtype=vlen_dt, maxshape=(None,)) # its not just make it normally else: # create the group dset = record_grp.create_dataset(field_name, (0, *field_shape), dtype=field_dtype, maxshape=(None, *field_shape)) return dset def _is_sporadic_records(self, run_record_key): """Tests whether a record group is sporadic or not. Parameters ---------- run_record_key : str Record group name. Returns ------- is_sporadic : bool True if the record group is sporadic False if not. """ # assume it is continual and check if it is in the sporadic groups if run_record_key in SPORADIC_RECORDS: return True else: return False def _init_traj_field(self, run_idx, traj_idx, field_path, feature_shape, dtype): """Initialize a trajectory field. Initialize a data field in the trajectory to be empty but resizeable. Parameters ---------- run_idx : int traj_idx : int field_path : str Field name specification. feature_shape : shape_spec Specification of shape of a feature vector of the field. dtype : dtype_spec Specification of the feature vector datatype. """ # check whether this is a sparse field and create it # appropriately if field_path in self.sparse_fields: # it is a sparse field self._init_sparse_traj_field(run_idx, traj_idx, field_path, feature_shape, dtype) else: # it is not a sparse field (AKA simple) self._init_contiguous_traj_field(run_idx, traj_idx, field_path, feature_shape, dtype) def _init_contiguous_traj_field(self, run_idx, traj_idx, field_path, shape, dtype): """Initialize a contiguous (non-sparse) trajectory field. Parameters ---------- run_idx : int traj_idx : int field_path : str Field name specification. feature_shape : tuple of int Shape of the feature vector of the field. dtype : dtype_spec H5py recognized datatype """ traj_grp = self._h5['{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx)] # create the empty dataset in the correct group, setting # maxshape so it can be resized for new feature vectors to be added traj_grp.create_dataset(field_path, (0, *[0 for i in shape]), dtype=dtype, maxshape=(None, *shape)) def _init_sparse_traj_field(self, run_idx, traj_idx, field_path, shape, dtype): """ Parameters ---------- run_idx : int traj_idx : int field_path : str Field name specification. feature_shape : shape_spec Specification for the shape of the feature. dtype : dtype_spec Specification for the dtype of the feature. """ traj_grp = self._h5['{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx)] # check to see that neither the shape and dtype are # None which indicates it is a runtime defined value and # should be ignored here if (shape is None) or (dtype is None): # do nothing pass else: # only create the group if you are going to add the # datasets so the extend function can know if it has been # properly initialized easier sparse_grp = traj_grp.create_group(field_path) # create the dataset for the feature data sparse_grp.create_dataset(DATA, (0, *[0 for i in shape]), dtype=dtype, maxshape=(None, *shape)) # create the dataset for the sparse indices sparse_grp.create_dataset(SPARSE_IDXS, (0,), dtype=np.int, maxshape=(None,)) def _init_traj_fields(self, run_idx, traj_idx, field_paths, field_feature_shapes, field_feature_dtypes): """Initialize a number of fields for a trajectory. Parameters ---------- run_idx : int traj_idx : int field_paths : list of str List of field names. field_feature_shapes : list of shape_specs field_feature_dtypes : list of dtype_specs """ for i, field_path in enumerate(field_paths): self._init_traj_field(run_idx, traj_idx, field_path, field_feature_shapes[i], field_feature_dtypes[i]) def _add_traj_field_data(self, run_idx, traj_idx, field_path, field_data, sparse_idxs=None, ): """Add a trajectory field to a trajectory. If the sparse indices are given the field will be created as a sparse field otherwise a normal one. Parameters ---------- run_idx : int traj_idx : int field_path : str Field name. field_data : numpy.array The data array to set for the field. sparse_idxs : arraylike of int of shape (1,) List of cycle indices that the data corresponds to. """ # get the traj group traj_grp = self._h5['{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx)] # if it is a sparse dataset we need to add the data and add # the idxs in a group if sparse_idxs is None: # first require that the dataset exist and is exactly the # same as the one that already exists (if indeed it # does). If it doesn't raise a specific error letting the # user know that they will have to delete the dataset if # they want to change it to something else try: dset = traj_grp.require_dataset(field_path, shape=field_data.shape, dtype=field_data.dtype, exact=True, maxshape=(None, *field_data.shape[1:])) except TypeError: raise TypeError("For changing the contents of a trajectory field it must be the same shape and dtype.") # if that succeeds then go ahead and set the data to the # dataset (overwriting if it is still there) dset[...] = field_data else: sparse_grp = traj_grp.create_group(field_path) # add the data to this group sparse_grp.create_dataset(DATA, data=field_data, maxshape=(None, *field_data.shape[1:])) # add the sparse idxs sparse_grp.create_dataset(SPARSE_IDXS, data=sparse_idxs, maxshape=(None,)) def _extend_contiguous_traj_field(self, run_idx, traj_idx, field_path, field_data): """Add multiple new frames worth of data to the end of an existing contiguous (non-sparse)trajectory field. Parameters ---------- run_idx : int traj_idx : int field_path : str Field name field_data : numpy.array The frames of data to add. """ traj_grp = self.h5['{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx)] field = traj_grp[field_path] # make sure this is a feature vector assert len(field_data.shape) > 1, \ "field_data must be a feature vector with the same number of dimensions as the number" # of datase new frames n_new_frames = field_data.shape[0] # check the field to make sure it is not empty if all([i == 0 for i in field.shape]): # check the feature shape against the maxshape which gives # the feature dimensions for an empty dataset assert field_data.shape[1:] == field.maxshape[1:], \ "field feature dimensions must be the same, i.e. all but the first dimension" # if it is empty resize it to make an array the size of # the new field_data with the maxshape for the feature # dimensions feature_dims = field.maxshape[1:] field.resize( (n_new_frames, *feature_dims) ) # set the new data to this field[0:, ...] = field_data else: # make sure the new data has the right dimensions against # the shape it already has assert field_data.shape[1:] == field.shape[1:], \ "field feature dimensions must be the same, i.e. all but the first dimension" # append to the dataset on the first dimension, keeping the # others the same, these must be feature vectors and therefore # must exist field.resize( (field.shape[0] + n_new_frames, *field.shape[1:]) ) # add the new data field[-n_new_frames:, ...] = field_data def _extend_sparse_traj_field(self, run_idx, traj_idx, field_path, values, sparse_idxs): """Add multiple new frames worth of data to the end of an existing contiguous (non-sparse)trajectory field. Parameters ---------- run_idx : int traj_idx : int field_path : str Field name values : numpy.array The frames of data to add. sparse_idxs : list of int The cycle indices the values correspond to. """ field = self.h5['{}/{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx, field_path)] field_data = field[DATA] field_sparse_idxs = field[SPARSE_IDXS] # number of new frames n_new_frames = values.shape[0] # if this sparse_field has been initialized empty we need to resize if all([i == 0 for i in field_data.shape]): # check the feature shape against the maxshape which gives # the feature dimensions for an empty dataset assert values.shape[1:] == field_data.maxshape[1:], \ "input value features have shape {}, expected {}".format( values.shape[1:], field_data.maxshape[1:]) # if it is empty resize it to make an array the size of # the new values with the maxshape for the feature # dimensions feature_dims = field_data.maxshape[1:] field_data.resize( (n_new_frames, *feature_dims) ) # set the new data to this field_data[0:, ...] = values else: # make sure the new data has the right dimensions assert values.shape[1:] == field_data.shape[1:], \ "field feature dimensions must be the same, i.e. all but the first dimension" # append to the dataset on the first dimension, keeping the # others the same, these must be feature vectors and therefore # must exist field_data.resize( (field_data.shape[0] + n_new_frames, *field_data.shape[1:]) ) # add the new data field_data[-n_new_frames:, ...] = values # add the sparse idxs in the same way field_sparse_idxs.resize( (field_sparse_idxs.shape[0] + n_new_frames, *field_sparse_idxs.shape[1:]) ) # add the new data field_sparse_idxs[-n_new_frames:, ...] = sparse_idxs def _add_sparse_field_flag(self, field_path): """Register a trajectory field as sparse in the header settings. Parameters ---------- field_path : str Name of the trajectory field you want to flag as sparse """ sparse_fields_ds = self._h5['{}/{}'.format(SETTINGS, SPARSE_FIELDS)] # make sure it isn't already in the sparse_fields if field_path in sparse_fields_ds[:]: warn("sparse field {} already a sparse field, ignoring".format(field_path)) sparse_fields_ds.resize( (sparse_fields_ds.shape[0] + 1,) ) sparse_fields_ds[sparse_fields_ds.shape[0] - 1] = field_path def _add_field_feature_shape(self, field_path, field_feature_shape): """Add the shape to the header settings for a trajectory field. Parameters ---------- field_path : str The name of the trajectory field you want to set for. field_feature_shape : shape_spec The shape spec to serialize as a dataset. """ shapes_grp = self._h5['{}/{}'.format(SETTINGS, FIELD_FEATURE_SHAPES_STR)] shapes_grp.create_dataset(field_path, data=np.array(field_feature_shape)) def _add_field_feature_dtype(self, field_path, field_feature_dtype): """Add the data type to the header settings for a trajectory field. Parameters ---------- field_path : str The name of the trajectory field you want to set for. field_feature_dtype : dtype_spec The dtype spec to serialize as a dataset. """ feature_dtype_str = json.dumps(field_feature_dtype.descr) dtypes_grp = self._h5['{}/{}'.format(SETTINGS, FIELD_FEATURE_DTYPES_STR)] dtypes_grp.create_dataset(field_path, data=feature_dtype_str) def _set_field_feature_shape(self, field_path, field_feature_shape): """Add the trajectory field shape to header settings or set the value. Parameters ---------- field_path : str The name of the trajectory field you want to set for. field_feature_shape : shape_spec The shape spec to serialize as a dataset. """ # check if the field_feature_shape is already set if field_path in self.field_feature_shapes: # check that the shape was previously saved as "None" as we # won't overwrite anything else if self.field_feature_shapes[field_path] is None: full_path = '{}/{}/{}'.format(SETTINGS, FIELD_FEATURE_SHAPES_STR, field_path) # we have to delete the old data and set new data del self.h5[full_path] self.h5.create_dataset(full_path, data=field_feature_shape) else: raise AttributeError( "Cannot overwrite feature shape for {} with {} because it is {} not {}".format( field_path, field_feature_shape, self.field_feature_shapes[field_path], NONE_STR)) # it was not previously set so we must create then save it else: self._add_field_feature_shape(field_path, field_feature_shape) def _set_field_feature_dtype(self, field_path, field_feature_dtype): """Add the trajectory field dtype to header settings or set the value. Parameters ---------- field_path : str The name of the trajectory field you want to set for. field_feature_dtype : dtype_spec The dtype spec to serialize as a dataset. """ feature_dtype_str = json.dumps(field_feature_dtype.descr) # check if the field_feature_dtype is already set if field_path in self.field_feature_dtypes: # check that the dtype was previously saved as "None" as we # won't overwrite anything else if self.field_feature_dtypes[field_path] is None: full_path = '{}/{}/{}'.format(SETTINGS, FIELD_FEATURE_DTYPES_STR, field_path) # we have to delete the old data and set new data del self.h5[full_path] self.h5.create_dataset(full_path, data=feature_dtype_str) else: raise AttributeError( "Cannot overwrite feature dtype for {} with {} because it is {} not ".format( field_path, field_feature_dtype, self.field_feature_dtypes[field_path], NONE_STR)) # it was not previously set so we must create then save it else: self._add_field_feature_dtype(field_path, field_feature_dtype) def _extend_run_record_data_field(self, run_idx, run_record_key, field_name, field_data): """Primitive record append method. Adds data for a single field dataset in a run records group. This is done without paying attention to whether it is sporadic or continual and is supposed to be only the data write method. Parameters ---------- run_idx : int run_record_key : str Name of the record group. field_name : str Name of the field in the record group to add to. field_data : arraylike The data to add to the field. """ records_grp = self.h5['{}/{}/{}'.format(RUNS, run_idx, run_record_key)] field = records_grp[field_name] # make sure this is a feature vector assert len(field_data.shape) > 1, \ "field_data must be a feature vector with the same number of dimensions as the number" # of datase new frames n_new_frames = field_data.shape[0] # check whether it is a variable length record, by getting the # record dataset dtype and using the checker to see if it is # the vlen special type in h5py if h5py.check_dtype(vlen=field.dtype) is not None: # if it is we have to treat it differently, since it # cannot be multidimensional # if the dataset has no data in it we need to reshape it if all([i == 0 for i in field.shape]): # initialize this array # if it is empty resize it to make an array the size of # the new field_data with the maxshape for the feature # dimensions field.resize( (n_new_frames,) ) # set the new data to this for i, row in enumerate(field_data): field[i] = row # otherwise just add the data else: # resize the array but it is only of rank because # of variable length data field.resize( (field.shape[0] + n_new_frames, ) ) # add each row to the newly made space for i, row in enumerate(field_data): field[(field.shape[0] - 1) + i] = row # if it is not variable length we don't have to treat it # differently else: # if this is empty we need to reshape the dataset to accomodate data if all([i == 0 for i in field.shape]): # check the feature shape against the maxshape which gives # the feature dimensions for an empty dataset assert field_data.shape[1:] == field.maxshape[1:], \ "field feature dimensions must be the same, i.e. all but the first dimension" # if it is empty resize it to make an array the size of # the new field_data with the maxshape for the feature # dimensions feature_dims = field.maxshape[1:] field.resize( (n_new_frames, *feature_dims) ) # set the new data to this field[0:, ...] = field_data # otherwise just add the data else: # append to the dataset on the first dimension, keeping the # others the same, these must be feature vectors and therefore # must exist field.resize( (field.shape[0] + n_new_frames, *field.shape[1:]) ) # add the new data field[-n_new_frames:, ...] = field_data def _run_record_namedtuple(self, run_record_key): """Generate a namedtuple record type for a record group. The class name will be formatted like '{}_Record' where the {} will be replaced with the name of the record group. Parameters ---------- run_record_key : str Name of the record group Returns ------- RecordType : namedtuple The record type to generate records for this record group. """ Record = namedtuple('{}_Record'.format(run_record_key), [CYCLE_IDX] + self.record_fields[run_record_key]) return Record def _convert_record_field_to_table_column(self, run_idx, run_record_key, record_field): """Converts a dataset of feature vectors to more palatable values for use in external datasets. For single value feature vectors it unwraps them into single values. For 1-D feature vectors it casts them as tuples. Anything of higher rank will raise an error. Parameters ---------- run_idx : int run_record_key : str Name of the record group record_field : str Name of the field of the record group Returns ------- record_dset : list Table-ified values Raises ------ TypeError If the field feature vector shape rank is greater than 1. """ # get the field dataset rec_grp = self.records_grp(run_idx, run_record_key) dset = rec_grp[record_field] # if it is variable length or if it has more than one element # cast all elements to tuples if h5py.check_dtype(vlen=dset.dtype) is not None: rec_dset = [tuple(value) for value in dset[:]] # if it is not variable length make sure it is not more than a # 1D feature vector elif len(dset.shape) > 2: raise TypeError( "cannot convert fields with feature vectors more than 1 dimension," " was given {} for {}/{}".format( dset.shape[1:], run_record_key, record_field)) # if it is only a rank 1 feature vector and it has more than # one element make a tuple out of it elif dset.shape[1] > 1: rec_dset = [tuple(value) for value in dset[:]] # otherwise just get the single value instead of keeping it as # a single valued feature vector else: rec_dset = [value[0] for value in dset[:]] return rec_dset def _convert_record_fields_to_table_columns(self, run_idx, run_record_key): """Convert record group data to truncated namedtuple records. This uses the specified record fields from the header settings to choose which record group fields to apply this to. Does no checking to make sure the fields are "table-ifiable". If a field is not it will raise a TypeError. Parameters ---------- run_idx : int run_record_key : str The name of the record group Returns ------- table_fields : dict of str : list Mapping of the record group field to the table-ified values. """ fields = {} for record_field in self.record_fields[run_record_key]: fields[record_field] = self._convert_record_field_to_table_column( run_idx, run_record_key, record_field) return fields def _make_records(self, run_record_key, cycle_idxs, fields): """Generate a list of proper (nametuple) records for a record group. Parameters ---------- run_record_key : str Name of the record group cycle_idxs : list of int The cycle indices you want to get records for. fields : list of str The fields to make record entries for. Returns ------- records : list of namedtuple objects """ Record = self._run_record_namedtuple(run_record_key) # for each record we make a tuple and yield it records = [] for record_idx in range(len(cycle_idxs)): # make a record for this cycle record_d = {CYCLE_IDX : cycle_idxs[record_idx]} for record_field, column in fields.items(): datum = column[record_idx] record_d[record_field] = datum record = Record(*(record_d[key] for key in Record._fields)) records.append(record) return records def _run_records_sporadic(self, run_idxs, run_record_key): """Generate records for a sporadic record group for a multi-run contig. If multiple run indices are given assumes that these are a contig (e.g. the second run index is a continuation of the first and so on). This method is considered low-level and does no checking to make sure this is true. The cycle indices of records from "continuation" runs will be modified so as the records will be indexed as if they are a single run. Uses the record fields settings to decide which fields to use. Parameters ---------- run_idxs : list of int The indices of the runs in the order they are in the contig run_record_key : str Name of the record group Returns ------- records : list of namedtuple objects """ # we loop over the run_idxs in the contig and get the fields # and cycle idxs for the whole contig fields = None cycle_idxs = np.array([], dtype=int) # keep a cumulative total of the runs cycle idxs prev_run_cycle_total = 0 for run_idx in run_idxs: # get all the value columns from the datasets, and convert # them to something amenable to a table run_fields = self._convert_record_fields_to_table_columns(run_idx, run_record_key) # we need to concatenate each field to the end of the # field in the master dictionary, first we need to # initialize it if it isn't already made if fields is None: # if it isn't initialized we just set it as this first # run fields dictionary fields = run_fields else: # if it is already initialized we need to go through # each field and concatenate for field_name, field_data in run_fields.items(): # just add it to the list of fields that will be concatenated later fields[field_name].extend(field_data) # get the cycle idxs for this run rec_grp = self.records_grp(run_idx, run_record_key) run_cycle_idxs = rec_grp[CYCLE_IDXS][:] # add the total number of cycles that came before this run # to each of the cycle idxs to get the cycle_idxs in terms # of the full contig run_contig_cycle_idxs = run_cycle_idxs + prev_run_cycle_total # add these cycle indices to the records for the whole contig cycle_idxs = np.hstack( (cycle_idxs, run_contig_cycle_idxs) ) # add the total number of cycle_idxs from this run to the # running total prev_run_cycle_total += self.num_run_cycles(run_idx) # then make the records from the fields records = self._make_records(run_record_key, cycle_idxs, fields) return records def _run_records_continual(self, run_idxs, run_record_key): """Generate records for a continual record group for a multi-run contig. If multiple run indices are given assumes that these are a contig (e.g. the second run index is a continuation of the first and so on). This method is considered low-level and does no checking to make sure this is true. The cycle indices of records from "continuation" runs will be modified so as the records will be indexed as if they are a single run. Uses the record fields settings to decide which fields to use. Parameters ---------- run_idxs : list of int The indices of the runs in the order they are in the contig run_record_key : str Name of the record group Returns ------- records : list of namedtuple objects """ cycle_idxs = np.array([], dtype=int) fields = None prev_run_cycle_total = 0 for run_idx in run_idxs: # get all the value columns from the datasets, and convert # them to something amenable to a table run_fields = self._convert_record_fields_to_table_columns(run_idx, run_record_key) # we need to concatenate each field to the end of the # field in the master dictionary, first we need to # initialize it if it isn't already made if fields is None: # if it isn't initialized we just set it as this first # run fields dictionary fields = run_fields else: # if it is already initialized we need to go through # each field and concatenate for field_name, field_data in run_fields.items(): # just add it to the list of fields that will be concatenated later fields[field_name].extend(field_data) # get one of the fields (if any to iterate over) record_fields = self.record_fields[run_record_key] main_record_field = record_fields[0] # make the cycle idxs from that run_rec_grp = self.records_grp(run_idx, run_record_key) run_cycle_idxs = np.array(range(run_rec_grp[main_record_field].shape[0])) # add the total number of cycles that came before this run # to each of the cycle idxs to get the cycle_idxs in terms # of the full contig run_contig_cycle_idxs = run_cycle_idxs + prev_run_cycle_total # add these cycle indices to the records for the whole contig cycle_idxs = np.hstack( (cycle_idxs, run_contig_cycle_idxs) ) # add the total number of cycle_idxs from this run to the # running total prev_run_cycle_total += self.num_run_cycles(run_idx) # then make the records from the fields records = self._make_records(run_record_key, cycle_idxs, fields) return records def _get_contiguous_traj_field(self, run_idx, traj_idx, field_path, frames=None): """Access actual data for a trajectory field. Parameters ---------- run_idx : int traj_idx : int field_path : str Trajectory field name to access frames : list of int, optional The indices of the frames to return if you don't want all of them. Returns ------- field_data : arraylike The data requested for the field. """ full_path = '{}/{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx, field_path) if frames is None: field = self._h5[full_path][:] else: field = self._h5[full_path][list(frames)] return field def _get_sparse_traj_field(self, run_idx, traj_idx, field_path, frames=None, masked=True): """Access actual data for a trajectory field. Parameters ---------- run_idx : int traj_idx : int field_path : str Trajectory field name to access frames : list of int, optional The indices of the frames to return if you don't want all of them. masked : bool If True returns the array data as numpy masked array, and only the available values if False. Returns ------- field_data : arraylike The data requested for the field. """ traj_path = '{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx) traj_grp = self.h5[traj_path] field = traj_grp[field_path] n_frames = traj_grp[POSITIONS].shape[0] if frames is None: data = field[DATA][:] # if it is to be masked make the masked array if masked: sparse_idxs = field[SPARSE_IDXS][:] filled_data = np.full( (n_frames, *data.shape[1:]), np.nan) filled_data[sparse_idxs] = data mask = np.full( (n_frames, *data.shape[1:]), True) mask[sparse_idxs] = False data = np.ma.masked_array(filled_data, mask=mask) else: # get the sparse idxs and the frames to slice from the # data sparse_idxs = field[SPARSE_IDXS][:] # we get a boolean array of the rows of the data table # that we are to slice from sparse_frame_idxs = np.argwhere(np.isin(sparse_idxs, frames)) data = field[DATA][list(sparse_frame_idxs)] # if it is to be masked make the masked array if masked: # the empty arrays the size of the number of requested frames filled_data = np.full( (len(frames), *field[DATA].shape[1:]), np.nan) mask = np.full( (len(frames), *field[DATA].shape[1:]), True ) # take the data which exists and is part of the frames # selection, and put it into the filled data where it is # supposed to be filled_data[np.isin(frames, sparse_idxs)] = data # unmask the present values mask[np.isin(frames, sparse_idxs)] = False data = np.ma.masked_array(filled_data, mask=mask) return data def _add_run_field(self, run_idx, field_path, data, sparse_idxs=None, force=False): """Add a trajectory field to all trajectories in a run. By enforcing adding it to all trajectories at one time we promote in-run consistency. Parameters ---------- run_idx : int field_path : str Name to set the trajectory field as. Can be compound. data : arraylike of shape (n_trajectories, n_cycles, feature_vector_shape[0],...) The data for all trajectories to be added. sparse_idxs : list of int If the data you are adding is sparse specify which cycles to apply them to. If 'force' is turned on, no checking for constraints will be done. """ # TODO, SNIPPET: check that we have the right permissions # if field_exists: # # if we are in a permissive write mode we delete the # # old dataset and add the new one, overwriting old data # if self.mode in ['w', 'w-', 'x', 'r+']: # logging.info("Dataset already present. Overwriting.") # del obs_grp[field_name] # obs_grp.create_dataset(field_name, data=results) # # this will happen in 'c' and 'c-' modes # else: # raise RuntimeError( # "Dataset already exists and file is in concatenate mode ('c' or 'c-')") # check that the data has the correct number of trajectories if not force: assert len(data) == self.num_run_trajs(run_idx),\ "The number of trajectories in data, {}, is different than the number"\ "of trajectories in the run, {}.".format(len(data), self.num_run_trajs(run_idx)) # for each trajectory check that the data is compliant for traj_idx, traj_data in enumerate(data): if not force: # check that the number of frames is not larger than that for the run if traj_data.shape[0] > self.num_run_cycles(run_idx): raise ValueError("The number of frames in data for traj {} , {}," "is larger than the number of frames" "for this run, {}.".format( traj_idx, data.shape[1], self.num_run_cycles(run_idx))) # if the number of frames given is the same or less than # the number of frames in the run elif (traj_data.shape[0] <= self.num_run_cycles(run_idx)): # if sparse idxs were given we check to see there is # the right number of them # and that they match the number of frames given if data.shape[0] != len(sparse_idxs[traj_idx]): raise ValueError("The number of frames provided for traj {}, {}," "was less than the total number of frames, {}," "but an incorrect number of sparse idxs were supplied, {}."\ .format(traj_idx, traj_data.shape[0], self.num_run_cycles(run_idx), len(sparse_idxs[traj_idx]))) # if there were strictly fewer frames given and the # sparse idxs were not given we need to raise an error elif (traj_data.shape[0] < self.num_run_cycles(run_idx)): raise ValueError("The number of frames provided for traj {}, {}," "was less than the total number of frames, {}," "but sparse_idxs were not supplied.".format( traj_idx, traj_data.shape[0], self.num_run_cycles(run_idx))) # add it to each traj for i, idx_tup in enumerate(self.run_traj_idx_tuples([run_idx])): if sparse_idxs is None: self._add_traj_field_data(*idx_tup, field_path, data[i]) else: self._add_traj_field_data(*idx_tup, field_path, data[i], sparse_idxs=sparse_idxs[i]) def _add_field(self, field_path, data, sparse_idxs=None, force=False): """Add a trajectory field to all runs in a file. Parameters ---------- field_path : str Name of trajectory field data : list of arraylike Each element of this list corresponds to a single run. The elements of which are arraylikes of shape (n_trajectories, n_cycles, feature_vector_shape[0],...) for each run. sparse_idxs : list of list of int The list of cycle indices to set for the sparse fields. If None, no trajectories are set as sparse. """ for i, run_idx in enumerate(self.run_idxs): if sparse_idxs is not None: self._add_run_field(run_idx, field_path, data[i], sparse_idxs=sparse_idxs[i], force=force) else: self._add_run_field(run_idx, field_path, data[i], force=force) #### Public Methods ### File Utilities @property def filename(self): """The path to the underlying HDF5 file.""" return self._filename def open(self, mode=None): """Open the underlying HDF5 file for access. Parameters ---------- mode : str Valid mode spec. Opens the HDF5 file in this mode if given otherwise uses the existing mode. """ if mode is None: mode = self.mode if self.closed: self.set_mode(mode) self._h5 = h5py.File(self._filename, mode, libver=H5PY_LIBVER, swmr=self.swmr_mode) self.closed = False else: raise IOError("This file is already open") def close(self): """Close the underlying HDF5 file. """ if not self.closed: self._h5.flush() self._h5.close() self.closed = True @property def mode(self): """The WepyHDF5 mode this object was created with.""" return self._wepy_mode @mode.setter def mode(self, mode): """Set the mode for opening the file with.""" self.set_mode(mode) def set_mode(self, mode): """Set the mode for opening the file with.""" if not self.closed: raise AttributeError("Cannot set the mode while the file is open.") self._set_h5_mode(mode) self._wepy_mode = mode @property def h5_mode(self): """The h5py.File mode the HDF5 file currently has.""" return self._h5.mode def _set_h5_mode(self, h5_mode): """Set the mode to open the HDF5 file with. This really shouldn't be set without using the main wepy mode as they need to be aligned. """ if not self.closed: raise AttributeError("Cannot set the mode while the file is open.") self._h5py_mode = h5_mode @property def h5(self): """The underlying h5py.File object.""" return self._h5 ### h5py object access def run(self, run_idx): """Get the h5py.Group for a run. Parameters ---------- run_idx : int Returns ------- run_group : h5py.Group """ return self._h5['{}/{}'.format(RUNS, int(run_idx))] def traj(self, run_idx, traj_idx): """Get an h5py.Group trajectory group. Parameters ---------- run_idx : int traj_idx : int Returns ------- traj_group : h5py.Group """ return self._h5['{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx)] def run_trajs(self, run_idx): """Get the trajectories group for a run. Parameters ---------- run_idx : int Returns ------- trajectories_grp : h5py.Group """ return self._h5['{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES)] @property def runs(self): """The runs group.""" return self.h5[RUNS] def run_grp(self, run_idx): """A group for a single run.""" return self.runs["{}".format(run_idx)] def run_start_snapshot_hash(self, run_idx): """Hash identifier for the starting snapshot of a run from orchestration. """ return self.run_grp(run_idx).attrs[RUN_START_SNAPSHOT_HASH] def run_end_snapshot_hash(self, run_idx): """Hash identifier for the ending snapshot of a run from orchestration. """ return self.run_grp(run_idx).attrs[RUN_END_SNAPSHOT_HASH] def set_run_start_snapshot_hash(self, run_idx, snaphash): """Set the starting snapshot hash identifier for a run from orchestration. """ if RUN_START_SNAPSHOT_HASH not in self.run_grp(run_idx).attrs: self.run_grp(run_idx).attrs[RUN_START_SNAPSHOT_HASH] = snaphash else: raise AttributeError("The snapshot has already been set.") def set_run_end_snapshot_hash(self, run_idx, snaphash): """Set the ending snapshot hash identifier for a run from orchestration. """ if RUN_END_SNAPSHOT_HASH not in self.run_grp(run_idx).attrs: self.run_grp(run_idx).attrs[RUN_END_SNAPSHOT_HASH] = snaphash else: raise AttributeError("The snapshot has already been set.") @property def settings_grp(self): """The header settings group.""" settings_grp = self.h5[SETTINGS] return settings_grp def decision_grp(self, run_idx): """Get the decision enumeration group for a run. Parameters ---------- run_idx : int Returns ------- decision_grp : h5py.Group """ return self.run(run_idx)[DECISION] def init_walkers_grp(self, run_idx): """Get the group for the initial walkers for a run. Parameters ---------- run_idx : int Returns ------- init_walkers_grp : h5py.Group """ return self.run(run_idx)[INIT_WALKERS] def records_grp(self, run_idx, run_record_key): """Get a record group h5py.Group for a run. Parameters ---------- run_idx : int run_record_key : str Name of the record group Returns ------- run_record_group : h5py.Group """ path = '{}/{}/{}'.format(RUNS, run_idx, run_record_key) return self.h5[path] def resampling_grp(self, run_idx): """Get this record group for a run. Parameters ---------- run_idx : int Returns ------- run_record_group : h5py.Group """ return self.records_grp(run_idx, RESAMPLING) def resampler_grp(self, run_idx): """Get this record group for a run. Parameters ---------- run_idx : int Returns ------- run_record_group : h5py.Group """ return self.records_grp(run_idx, RESAMPLER) def warping_grp(self, run_idx): """Get this record group for a run. Parameters ---------- run_idx : int Returns ------- run_record_group : h5py.Group """ return self.records_grp(run_idx, WARPING) def bc_grp(self, run_idx): """Get this record group for a run. Parameters ---------- run_idx : int Returns ------- run_record_group : h5py.Group """ return self.records_grp(run_idx, BC) def progress_grp(self, run_idx): """Get this record group for a run. Parameters ---------- run_idx : int Returns ------- run_record_group : h5py.Group """ return self.records_grp(run_idx, PROGRESS) def iter_runs(self, idxs=False, run_sel=None): """Generator for iterating through the runs of a file. Parameters ---------- idxs : bool If True yields the run index in addition to the group. run_sel : list of int, optional If not None should be a list of the runs you want to iterate over. Yields ------ run_idx : int, if idxs is True run_group : h5py.Group """ if run_sel is None: run_sel = self.run_idxs for run_idx in self.run_idxs: if run_idx in run_sel: run = self.run(run_idx) if idxs: yield run_idx, run else: yield run def iter_trajs(self, idxs=False, traj_sel=None): """Generator for iterating over trajectories in a file. Parameters ---------- idxs : bool If True returns a tuple of the run index and trajectory index in addition to the trajectory group. traj_sel : list of int, optional If not None is a list of tuples of (run_idx, traj_idx) selecting which trajectories to iterate over. Yields ------ traj_id : tuple of int, if idxs is True A tuple of (run_idx, traj_idx) for the group trajectory : h5py.Group """ # set the selection of trajectories to iterate over if traj_sel is None: idx_tups = self.run_traj_idx_tuples() else: idx_tups = traj_sel # get each traj for each idx_tup and yield them for the generator for run_idx, traj_idx in idx_tups: traj = self.traj(run_idx, traj_idx) if idxs: yield (run_idx, traj_idx), traj else: yield traj def iter_run_trajs(self, run_idx, idxs=False): """Iterate over the trajectories of a run. Parameters ---------- run_idx : int idxs : bool If True returns a tuple of the run index and trajectory index in addition to the trajectory group. Returns ------- iter_trajs_generator : generator for the iter_trajs method """ run_sel = self.run_traj_idx_tuples([run_idx]) return self.iter_trajs(idxs=idxs, traj_sel=run_sel) ### Settings @property def defined_traj_field_names(self): """A list of the settings defined field names all trajectories have in the file.""" return list(self.field_feature_shapes.keys()) @property def observable_field_names(self): """Returns a list of the names of the observables that all trajectories have. If this encounters observable fields that don't occur in all trajectories (inconsistency) raises an inconsistency error. """ n_trajs = self.num_trajs field_names = Counter() for traj in self.iter_trajs(): for name in list(traj['observables']): field_names[name] += 1 # if any of the field names has not occured for every # trajectory we raise an error for field_name, count in field_names.items(): if count != n_trajs: raise TypeError("observable field names are inconsistent") # otherwise return the field names for the observables return list(field_names.keys()) def _check_traj_field_consistency(self, field_names): """Checks that every trajectory has the given fields across the entire dataset. Parameters ---------- field_names : list of str The field names to check for. Returns ------- consistent : bool True if all trajs have the fields, False otherwise """ n_trajs = self.num_trajs field_names = Counter() for traj in self.iter_trajs(): for name in field_names: if name in traj: field_names[name] += 1 # if any of the field names has not occured for every # trajectory we raise an error for field_name, count in field_names: if count != n_trajs: return False return True @property def record_fields(self): """The record fields for each record group which are selected for inclusion in the truncated records. These are the fields which are considered to be table-ified. Returns ------- record_fields : dict of str : list of str Mapping of record group name to alist of the record group fields. """ record_fields_grp = self.settings_grp[RECORD_FIELDS] record_fields_dict = {} for group_name, dset in record_fields_grp.items(): record_fields_dict[group_name] = list(dset) return record_fields_dict @property def sparse_fields(self): """The trajectory fields that are sparse.""" return self.h5['{}/{}'.format(SETTINGS, SPARSE_FIELDS)][:] @property def main_rep_idxs(self): """The indices of the atoms included from the full topology in the default 'positions' trajectory """ if '{}/{}'.format(SETTINGS, MAIN_REP_IDXS) in self.h5: return self.h5['{}/{}'.format(SETTINGS, MAIN_REP_IDXS)][:] else: return None @property def alt_reps_idxs(self): """Mapping of the names of the alt reps to the indices of the atoms from the topology that they include in their datasets.""" idxs_grp = self.h5['{}/{}'.format(SETTINGS, ALT_REPS_IDXS)] return {name : ds[:] for name, ds in idxs_grp.items()} @property def alt_reps(self): """Names of the alt reps.""" idxs_grp = self.h5['{}/{}'.format(SETTINGS, ALT_REPS_IDXS)] return {name for name in idxs_grp.keys()} @property def field_feature_shapes(self): """Mapping of the names of the trajectory fields to their feature vector shapes.""" shapes_grp = self.h5['{}/{}'.format(SETTINGS, FIELD_FEATURE_SHAPES_STR)] field_paths = _iter_field_paths(shapes_grp) shapes = {} for field_path in field_paths: shape = shapes_grp[field_path][()] if np.isnan(shape).all(): shapes[field_path] = None else: shapes[field_path] = shape return shapes @property def field_feature_dtypes(self): """Mapping of the names of the trajectory fields to their feature vector numpy dtypes.""" dtypes_grp = self.h5['{}/{}'.format(SETTINGS, FIELD_FEATURE_DTYPES_STR)] field_paths = _iter_field_paths(dtypes_grp) dtypes = {} for field_path in field_paths: dtype_str = dtypes_grp[field_path][()] # if there is 'None' flag for the dtype then return None if dtype_str == NONE_STR: dtypes[field_path] = None else: dtype_obj = json.loads(dtype_str) dtype_obj = [tuple(d) for d in dtype_obj] dtype = np.dtype(dtype_obj) dtypes[field_path] = dtype return dtypes @property def continuations(self): """The continuation relationships in this file.""" return self.settings_grp[CONTINUATIONS][:] @property def metadata(self): """File metadata (h5py.attrs).""" return dict(self._h5.attrs) def decision_enum(self, run_idx): """Mapping of decision enumerated names to their integer representations. Parameters ---------- run_idx : int Returns ------- decision_enum : dict of str : int Mapping of the decision ID string to the integer representation. See Also -------- WepyHDF5.decision_value_names : for the reverse mapping """ enum_grp = self.decision_grp(run_idx) enum = {} for decision_name, dset in enum_grp.items(): enum[decision_name] = dset[()] return enum def decision_value_names(self, run_idx): """Mapping of the integer values for decisions to the decision ID strings. Parameters ---------- run_idx : int Returns ------- decision_enum : dict of int : str Mapping of the decision integer to the decision ID string representation. See Also -------- WepyHDF5.decision_enum : for the reverse mapping """ enum_grp = self.decision_grp(run_idx) rev_enum = {} for decision_name, dset in enum_grp.items(): value = dset[()] rev_enum[value] = decision_name return rev_enum ### Topology def get_topology(self, alt_rep=POSITIONS): """Get the JSON topology for a particular represenation of the positions. By default gives the topology for the main 'positions' field (when alt_rep 'positions'). To get the full topology the file was initialized with set `alt_rep` to `None`. Topologies for alternative representations (subfields of 'alt_reps') can be obtained by passing in the key for that alt_rep. For example, 'all_atoms' for the field in alt_reps called 'all_atoms'. Parameters ---------- alt_rep : str The base name of the alternate representation, or 'positions', or None. Returns ------- topology : str The JSON topology string for the representation. """ top = self.topology # if no alternative representation is given we just return the # full topology if alt_rep is None: pass # otherwise we either give the main representation topology # subset elif alt_rep == POSITIONS: top = json_top_subset(top, self.main_rep_idxs) # or choose one of the alternative representations elif alt_rep in self.alt_reps_idxs: top = json_top_subset(top, self.alt_reps_idxs[alt_rep]) # and raise an error if the given alternative representation # is not given else: raise ValueError("alt_rep {} not found".format(alt_rep)) return top @property def topology(self): """The topology for the full simulated system. May not be the main representation in the POSITIONS field; for that use the `get_topology` method. Returns ------- topology : str The JSON topology string for the full representation. """ return self._h5[TOPOLOGY][()] def get_mdtraj_topology(self, alt_rep=POSITIONS): """Get an mdtraj.Topology object for a system representation. By default gives the topology for the main 'positions' field (when alt_rep 'positions'). To get the full topology the file was initialized with set `alt_rep` to `None`. Topologies for alternative representations (subfields of 'alt_reps') can be obtained by passing in the key for that alt_rep. For example, 'all_atoms' for the field in alt_reps called 'all_atoms'. Parameters ---------- alt_rep : str The base name of the alternate representation, or 'positions', or None. Returns ------- topology : str The JSON topology string for the full representation. """ json_top = self.get_topology(alt_rep=alt_rep) return json_to_mdtraj_topology(json_top) ## Initial walkers def initial_walker_fields(self, run_idx, fields, walker_idxs=None): """Get fields from the initial walkers of the simulation. Parameters ---------- run_idx : int Run to get initial walkers for. fields : list of str Names of the fields you want to retrieve. walker_idxs : None or list of int If None returns all of the walkers fields, otherwise a list of ints that are a selection from those walkers. Returns ------- walker_fields : dict of str : array of shape Dictionary mapping fields to the values for all walkers. Frames will be either in counting order if no indices were requested or the order of the walker indices as given. """ # set the walker indices if not specified if walker_idxs is None: walker_idxs = range(self.num_init_walkers(run_idx)) init_walker_fields = {field : [] for field in fields} # for each walker go through and add the selected fields for walker_idx in walker_idxs: init_walker_grp = self.init_walkers_grp(run_idx)[str(walker_idx)] for field in fields: # we remove the first dimension because we just want # them as a single frame init_walker_fields[field].append(init_walker_grp[field][:][0]) # convert the field values to arrays init_walker_fields = {field : np.array(val) for field, val in init_walker_fields.items()} return init_walker_fields def initial_walkers_to_mdtraj(self, run_idx, walker_idxs=None, alt_rep=POSITIONS): """Generate an mdtraj Trajectory from a trace of frames from the runs. Uses the default fields for positions (unless an alternate representation is specified) and box vectors which are assumed to be present in the trajectory fields. The time value for the mdtraj trajectory is set to the cycle indices for each trace frame. This is useful for converting WepyHDF5 data to common molecular dynamics data formats accessible through the mdtraj library. Parameters ---------- run_idx : int Run to get initial walkers for. fields : list of str Names of the fields you want to retrieve. walker_idxs : None or list of int If None returns all of the walkers fields, otherwise a list of ints that are a selection from those walkers. alt_rep : None or str If None uses default 'positions' representation otherwise chooses the representation from the 'alt_reps' compound field. Returns ------- traj : mdtraj.Trajectory """ rep_path = self._choose_rep_path(alt_rep) init_walker_fields = self.initial_walker_fields(run_idx, [rep_path, BOX_VECTORS], walker_idxs=walker_idxs) return self.traj_fields_to_mdtraj(init_walker_fields, alt_rep=alt_rep) ### Counts and Indexing @property def num_atoms(self): """The number of atoms in the full topology representation.""" return self.h5['{}/{}'.format(SETTINGS, N_ATOMS)][()] @property def num_dims(self): """The number of spatial dimensions in the positions and alt_reps trajectory fields.""" return self.h5['{}/{}'.format(SETTINGS, N_DIMS_STR)][()] @property def num_runs(self): """The number of runs in the file.""" return len(self._h5[RUNS]) @property def num_trajs(self): """The total number of trajectories in the entire file.""" return len(list(self.run_traj_idx_tuples())) def num_init_walkers(self, run_idx): """The number of initial walkers for a run. Parameters ---------- run_idx : int Returns ------- n_walkers : int """ return len(self.init_walkers_grp(run_idx)) def num_walkers(self, run_idx, cycle_idx): """Get the number of walkers at a given cycle in a run. Parameters ---------- run_idx : int cycle_idx : int Returns ------- n_walkers : int """ if cycle_idx >= self.num_run_cycles(run_idx): raise ValueError( f"Run {run_idx} has {self.num_run_cycles(run_idx)} cycles, {cycle_idx} requested") # TODO: currently we do not have a well-defined mechanism for # actually storing variable number of walkers in the # trajectory data so just return the number of trajectories return self.num_run_trajs(run_idx) def num_run_trajs(self, run_idx): """The number of trajectories in a run. Parameters ---------- run_idx : int Returns ------- n_trajs : int """ return len(self._h5['{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES)]) def num_run_cycles(self, run_idx): """The number of cycles in a run. Parameters ---------- run_idx : int Returns ------- n_cycles : int """ return self.num_traj_frames(run_idx, 0) def num_traj_frames(self, run_idx, traj_idx): """The number of frames in a given trajectory. Parameters ---------- run_idx : int traj_idx : int Returns ------- n_frames : int """ return self.traj(run_idx, traj_idx)[POSITIONS].shape[0] @property def run_idxs(self): """The indices of the runs in the file.""" return list(range(len(self._h5[RUNS]))) def run_traj_idxs(self, run_idx): """The indices of trajectories in a run. Parameters ---------- run_idx : int Returns ------- traj_idxs : list of int """ return list(range(len(self._h5['{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES)]))) def run_traj_idx_tuples(self, runs=None): """Get identifier tuples (run_idx, traj_idx) for all trajectories in all runs. Parameters ---------- runs : list of int, optional If not None, a list of run indices to restrict to. Returns ------- run_traj_tuples : list of tuple of int A listing of all trajectories by their identifying tuple of (run_idx, traj_idx). """ tups = [] if runs is None: run_idxs = self.run_idxs else: run_idxs = runs for run_idx in run_idxs: for traj_idx in self.run_traj_idxs(run_idx): tups.append((run_idx, traj_idx)) return tups def get_traj_field_cycle_idxs(self, run_idx, traj_idx, field_path): """Returns the cycle indices for a sparse trajectory field. Parameters ---------- run_idx : int traj_idx : int field_path : str Name of the trajectory field Returns ------- cycle_idxs : arraylike of int """ traj_path = '{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx) if not field_path in self._h5[traj_path]: raise KeyError("key for field {} not found".format(field_path)) # if the field is not sparse just return the cycle indices for # that run if field_path not in self.sparse_fields: cycle_idxs = np.array(range(self.num_run_cycles(run_idx))) else: cycle_idxs = self._h5[traj_path][field_path][SPARSE_IDXS][:] return cycle_idxs def next_run_idx(self): """The index of the next run if it were to be added. Because runs are named as the integer value of the order they were added this gives the index of the next run that would be added. Returns ------- next_run_idx : int """ return self.num_runs def next_run_traj_idx(self, run_idx): """The index of the next trajectory for this run. Parameters ---------- run_idx : int Returns ------- next_traj_idx : int """ return self.num_run_trajs(run_idx) ### Aggregation def is_run_contig(self, run_idxs): """This method checks that if a given list of run indices is a valid contig or not. Parameters ---------- run_idxs : list of int The run indices that would make up the contig in order. Returns ------- is_contig : bool """ run_idx_continuations = [np.array([run_idxs[idx+1], run_idxs[idx]]) for idx in range(len(run_idxs)-1)] #gets the contigs array continuations = self.settings_grp[CONTINUATIONS][:] # checks if sub contigs are in contigs list or not. for run_continuous in run_idx_continuations: contig = False for continuous in continuations: if np.array_equal(run_continuous, continuous): contig = True if not contig: return False return True def clone(self, path, mode='x'): """Clone the header information of this file into another file. Clones this WepyHDF5 file without any of the actual runs and run data. This includes the topology, units, sparse_fields, feature shapes and dtypes, alt_reps, and main representation information. This method will flush the buffers for this file. Does not preserve metadata pertaining to inter-run relationships like continuations. Parameters ---------- path : str File path to save the new file. mode : str The mode to open the new file with. Returns ------- new_file : h5py.File The handle to the new file. It will be closed. """ assert mode in ['w', 'w-', 'x'], "must be opened in a file creation mode" # we manually construct an HDF5 and copy the groups over new_h5 = h5py.File(path, mode=mode, libver=H5PY_LIBVER) new_h5.require_group(RUNS) # flush the datasets buffers self.h5.flush() new_h5.flush() # copy the existing datasets to the new one h5py.h5o.copy(self._h5.id, TOPOLOGY.encode(), new_h5.id, TOPOLOGY.encode()) h5py.h5o.copy(self._h5.id, UNITS.encode(), new_h5.id, UNITS.encode()) h5py.h5o.copy(self._h5.id, SETTINGS.encode(), new_h5.id, SETTINGS.encode()) # now make a WepyHDF5 object in "expert_mode" which means it # is just empy and we construct it manually, "surgically" as I # like to call it new_wepy_h5 = WepyHDF5(path, expert_mode=True) # perform the surgery: # attach the h5py.File new_wepy_h5._h5 = new_h5 # set the wepy mode to read-write since the creation flags # were already used in construction of the h5py.File object new_wepy_h5._wepy_mode = 'r+' new_wepy_h5._h5py_mode = 'r+' # for the settings we need to get rid of the data for interun # relationships like the continuations, so we reinitialize the # continuations for the new file new_wepy_h5._init_continuations() # close the h5py.File and set the attribute to closed new_wepy_h5._h5.close() new_wepy_h5.closed = True # return the runless WepyHDF5 object return new_wepy_h5 def link_run(self, filepath, run_idx, continue_run=None, **kwargs): """Add a run from another file to this one as an HDF5 external link. Parameters ---------- filepath : str File path to the HDF5 file that the run is on. run_idx : int The run index from the target file you want to link. continue_run : int, optional The run from the linking WepyHDF5 file you want the target linked run to continue. kwargs : dict Adds metadata (h5py.attrs) to the linked run. Returns ------- linked_run_idx : int The index of the linked run in the linking file. """ # link to the external run ext_run_link = h5py.ExternalLink(filepath, '{}/{}'.format(RUNS, run_idx)) # the run index in this file, as determined by the counter here_run_idx = self.next_run_idx() # set the local run as the external link to the other run self._h5['{}/{}'.format(RUNS, here_run_idx)] = ext_run_link # run the initialization routines for adding a run self._add_run_init(here_run_idx, continue_run=continue_run) run_grp = self._h5['{}/{}'.format(RUNS, here_run_idx)] # add metadata if given for key, val in kwargs.items(): if key != RUN_IDX: run_grp.attrs[key] = val else: warn('run_idx metadata is set by wepy and cannot be used', RuntimeWarning) return here_run_idx def link_file_runs(self, wepy_h5_path): """Link all runs from another WepyHDF5 file. This preserves continuations within that file. This will open the file if not already opened. Parameters ---------- wepy_h5_path : str Filepath to the file you want to link runs from. Returns ------- new_run_idxs : list of int The new run idxs from the linking file. """ wepy_h5 = WepyHDF5(wepy_h5_path, mode='r') with wepy_h5: ext_run_idxs = wepy_h5.run_idxs continuations = wepy_h5.continuations # add the runs new_run_idxs = [] for ext_run_idx in ext_run_idxs: # link the next run, and get its new run index new_run_idx = self.link_run(wepy_h5_path, ext_run_idx) # save that run idx new_run_idxs.append(new_run_idx) # copy the continuations over translating the run idxs, # for each continuation in the other files continuations for continuation in continuations: # translate each run index from the external file # continuations to the run idxs they were just assigned in # this file self.add_continuation(new_run_idxs[continuation[0]], new_run_idxs[continuation[1]]) return new_run_idxs def extract_run(self, filepath, run_idx, continue_run=None, run_slice=None, **kwargs): """Add a run from another file to this one by copying it and truncating it if necessary. Parameters ---------- filepath : str File path to the HDF5 file that the run is on. run_idx : int The run index from the target file you want to link. continue_run : int, optional The run from the linking WepyHDF5 file you want the target linked run to continue. run_slice : kwargs : dict Adds metadata (h5py.attrs) to the linked run. Returns ------- linked_run_idx : int The index of the linked run in the linking file. """ # close ourselves if not already done, so we can write using # the lower level API was_open = False if not self.closed: self.close() was_open = True # do the copying # open the other file and get the runs in it and the # continuations it has wepy_h5 = WepyHDF5(filepath, mode='r') with self: # normalize our HDF5s path self_path = osp.realpath(self.filename) # the run index in this file, as determined by the counter here_run_idx = self.next_run_idx() # get the group name for the new run in this HDF5 target_grp_path = "/runs/{}".format(here_run_idx) with wepy_h5: # link the next run, and get its new run index new_h5 = wepy_h5.copy_run_slice(run_idx, self_path, target_grp_path, run_slice=run_slice, mode='r+') # close it since we are done new_h5.close() with self: # run the initialization routines for adding a run, just # sets some metadata self._add_run_init(here_run_idx, continue_run=continue_run) run_grp = self._h5['{}/{}'.format(RUNS, here_run_idx)] # add metadata if given for key, val in kwargs.items(): if key != RUN_IDX: run_grp.attrs[key] = val else: warn('run_idx metadata is set by wepy and cannot be used', RuntimeWarning) if was_open: self.open() return here_run_idx def extract_file_runs(self, wepy_h5_path, run_slices=None): """Extract (copying and truncating appropriately) all runs from another WepyHDF5 file. This preserves continuations within that file. This will open the file if not already opened. Parameters ---------- wepy_h5_path : str Filepath to the file you want to link runs from. Returns ------- new_run_idxs : list of int The new run idxs from the linking file. """ if run_slices is None: run_slices = {} # open the other file and get the runs in it and the # continuations it has wepy_h5 = WepyHDF5(wepy_h5_path, mode='r') with wepy_h5: # the run idx in the external file ext_run_idxs = wepy_h5.run_idxs continuations = wepy_h5.continuations # then for each run in it copy them to this file new_run_idxs = [] for ext_run_idx in ext_run_idxs: # get the run_slice spec for the run in the other file run_slice = run_slices[ext_run_idx] # get the index this run should be when it is added new_run_idx = self.extract_run(wepy_h5_path, ext_run_idx, run_slice=run_slice) # save that run idx new_run_idxs.append(new_run_idx) was_closed = False if self.closed: self.open() was_closed = True # copy the continuations over translating the run idxs, # for each continuation in the other files continuations for continuation in continuations: # translate each run index from the external file # continuations to the run idxs they were just assigned in # this file self.add_continuation(new_run_idxs[continuation[0]], new_run_idxs[continuation[1]]) if was_closed: self.close() return new_run_idxs def join(self, other_h5): """Given another WepyHDF5 file object does a left join on this file, renumbering the runs starting from this file. This function uses the H5O function for copying. Data will be copied not linked. Parameters ---------- other_h5 : h5py.File File handle to the file you want to join to this one. """ with other_h5 as h5: for run_idx in h5.run_idxs: # the other run group handle other_run = h5.run(run_idx) # copy this run to this file in the next run_idx group self.h5.copy(other_run, '{}/{}'.format(RUNS, self.next_run_idx())) ### initialization and data generation def add_metadata(self, key, value): """Add metadata for the whole file. Parameters ---------- key : str value : h5py value h5py valid metadata value. """ self._h5.attrs[key] = value def init_record_fields(self, run_record_key, record_fields): """Initialize the settings record fields for a record group in the settings group. Save which records are to be considered from a run record group's datasets to be in the table like representation. This exists to allow there to large and small datasets for records to be stored together but allow for a more compact single table like representation to be produced for serialization. Parameters ---------- run_record_key : str Name of the record group you want to set this for. record_fields : list of str Names of the fields you want to set as record fields. """ record_fields_grp = self.settings_grp[RECORD_FIELDS] # make a dataset for the sparse fields allowed. this requires # a 'special' datatype for variable length strings. This is # supported by HDF5 but not numpy. vlen_str_dt = h5py.special_dtype(vlen=str) # create the dataset with the strings of the fields which are records record_group_fields_ds = record_fields_grp.create_dataset(run_record_key, (len(record_fields),), dtype=vlen_str_dt, maxshape=(None,)) # set the flags for i, record_field in enumerate(record_fields): record_group_fields_ds[i] = record_field def init_resampling_record_fields(self, resampler): """Initialize the record fields for this record group. Parameters ---------- resampler : object implementing the Resampler interface The resampler which contains the data for which record fields to set. """ self.init_record_fields(RESAMPLING, resampler.resampling_record_field_names()) def init_resampler_record_fields(self, resampler): """Initialize the record fields for this record group. Parameters ---------- resampler : object implementing the Resampler interface The resampler which contains the data for which record fields to set. """ self.init_record_fields(RESAMPLER, resampler.resampler_record_field_names()) def init_bc_record_fields(self, bc): """Initialize the record fields for this record group. Parameters ---------- bc : object implementing the BoundaryConditions interface The boundary conditions object which contains the data for which record fields to set. """ self.init_record_fields(BC, bc.bc_record_field_names()) def init_warping_record_fields(self, bc): """Initialize the record fields for this record group. Parameters ---------- bc : object implementing the BoundaryConditions interface The boundary conditions object which contains the data for which record fields to set. """ self.init_record_fields(WARPING, bc.warping_record_field_names()) def init_progress_record_fields(self, bc): """Initialize the record fields for this record group. Parameters ---------- bc : object implementing the BoundaryConditions interface The boundary conditions object which contains the data for which record fields to set. """ self.init_record_fields(PROGRESS, bc.progress_record_field_names()) def add_continuation(self, continuation_run, base_run): """Add a continuation between runs. Parameters ---------- continuation_run : int The run index of the run that will be continuing another base_run : int The run that is being continued. """ continuations_dset = self.settings_grp[CONTINUATIONS] continuations_dset.resize((continuations_dset.shape[0] + 1, continuations_dset.shape[1],)) continuations_dset[continuations_dset.shape[0] - 1] = np.array([continuation_run, base_run]) def new_run(self, init_walkers, continue_run=None, **kwargs): """Initialize a new run. Parameters ---------- init_walkers : list of objects implementing the Walker interface The walkers that will be the start of this run. continue_run : int, optional If this run is a continuation of another set which one it is continuing. kwargs : dict Metadata to set for the run. Returns ------- run_grp : h5py.Group The group of the newly created run. """ # check to see if the continue_run is actually in this file if continue_run is not None: if continue_run not in self.run_idxs: raise ValueError("The continue_run idx given, {}, is not present in this file".format( continue_run)) # get the index for this run new_run_idx = self.next_run_idx() # create a new group named the next integer in the counter run_grp = self._h5.create_group('{}/{}'.format(RUNS, new_run_idx)) # set the initial walkers group init_walkers_grp = run_grp.create_group(INIT_WALKERS) self._add_init_walkers(init_walkers_grp, init_walkers) # initialize the walkers group traj_grp = run_grp.create_group(TRAJECTORIES) # run the initialization routines for adding a run self._add_run_init(new_run_idx, continue_run=continue_run) # add metadata if given for key, val in kwargs.items(): if key != RUN_IDX: run_grp.attrs[key] = val else: warn('run_idx metadata is set by wepy and cannot be used', RuntimeWarning) return run_grp # application level methods for setting the fields for run record # groups given the objects themselves def init_run_resampling(self, run_idx, resampler): """Initialize data for resampling records. Initialized the run record group as well as settings for the fields. This method also creates the decision group for the run. Parameters ---------- run_idx : int resampler : object implementing the Resampler interface The resampler which contains the data for which record fields to set. Returns ------- record_grp : h5py.Group """ # set the enumeration of the decisions self.init_run_resampling_decision(0, resampler) # set the data fields that can be used for table like records resampler.resampler_record_field_names() resampler.resampling_record_field_names() # then make the records group fields = resampler.resampling_fields() grp = self.init_run_record_grp(run_idx, RESAMPLING, fields) return grp def init_run_resampling_decision(self, run_idx, resampler): """Initialize the decision group for the run resampling records. Parameters ---------- run_idx : int resampler : object implementing the Resampler interface The resampler which contains the data for which record fields to set. """ self.init_run_fields_resampling_decision(run_idx, resampler.DECISION.enum_dict_by_name()) def init_run_resampler(self, run_idx, resampler): """Initialize data for this record group in a run. Initialized the run record group as well as settings for the fields. Parameters ---------- run_idx : int resampler : object implementing the Resampler interface The resampler which contains the data for which record fields to set. Returns ------- record_grp : h5py.Group """ fields = resampler.resampler_fields() grp = self.init_run_record_grp(run_idx, RESAMPLER, fields) return grp def init_run_warping(self, run_idx, bc): """Initialize data for this record group in a run. Initialized the run record group as well as settings for the fields. Parameters ---------- run_idx : int bc : object implementing the BoundaryConditions interface The boundary conditions object which contains the data for which record fields to set. Returns ------- record_grp : h5py.Group """ fields = bc.warping_fields() grp = self.init_run_record_grp(run_idx, WARPING, fields) return grp def init_run_progress(self, run_idx, bc): """Initialize data for this record group in a run. Initialized the run record group as well as settings for the fields. Parameters ---------- run_idx : int bc : object implementing the BoundaryConditions interface The boundary conditions object which contains the data for which record fields to set. Returns ------- record_grp : h5py.Group """ fields = bc.progress_fields() grp = self.init_run_record_grp(run_idx, PROGRESS, fields) return grp def init_run_bc(self, run_idx, bc): """Initialize data for this record group in a run. Initialized the run record group as well as settings for the fields. Parameters ---------- run_idx : int bc : object implementing the BoundaryConditions interface The boundary conditions object which contains the data for which record fields to set. Returns ------- record_grp : h5py.Group """ fields = bc.bc_fields() grp = self.init_run_record_grp(run_idx, BC, fields) return grp # application level methods for initializing the run records # groups with just the fields and without the objects def init_run_fields_resampling(self, run_idx, fields): """Initialize this record group fields datasets. Parameters ---------- run_idx : int fields : list of str Names of the fields to initialize Returns ------- record_grp : h5py.Group """ grp = self.init_run_record_grp(run_idx, RESAMPLING, fields) return grp def init_run_fields_resampling_decision(self, run_idx, decision_enum_dict): """Initialize the decision group for this run. Parameters ---------- run_idx : int decision_enum_dict : dict of str : int Mapping of decision ID strings to integer representation. """ decision_grp = self.run(run_idx).create_group(DECISION) for name, value in decision_enum_dict.items(): decision_grp.create_dataset(name, data=value) def init_run_fields_resampler(self, run_idx, fields): """Initialize this record group fields datasets. Parameters ---------- run_idx : int fields : list of str Names of the fields to initialize Returns ------- record_grp : h5py.Group """ grp = self.init_run_record_grp(run_idx, RESAMPLER, fields) return grp def init_run_fields_warping(self, run_idx, fields): """Initialize this record group fields datasets. Parameters ---------- run_idx : int fields : list of str Names of the fields to initialize Returns ------- record_grp : h5py.Group """ grp = self.init_run_record_grp(run_idx, WARPING, fields) return grp def init_run_fields_progress(self, run_idx, fields): """Initialize this record group fields datasets. Parameters ---------- run_idx : int fields : list of str Names of the fields to initialize Returns ------- record_grp : h5py.Group """ grp = self.init_run_record_grp(run_idx, PROGRESS, fields) return grp def init_run_fields_bc(self, run_idx, fields): """Initialize this record group fields datasets. Parameters ---------- run_idx : int fields : list of str Names of the fields to initialize Returns ------- record_grp : h5py.Group """ grp = self.init_run_record_grp(run_idx, BC, fields) return grp def init_run_record_grp(self, run_idx, run_record_key, fields): """Initialize a record group for a run. Parameters ---------- run_idx : int run_record_key : str The name of the record group. fields : list of str The names of the fields to set for the record group. """ # initialize the record group based on whether it is sporadic # or continual if self._is_sporadic_records(run_record_key): grp = self._init_run_sporadic_record_grp(run_idx, run_record_key, fields) else: grp = self._init_run_continual_record_grp(run_idx, run_record_key, fields) # TODO: should've been removed already just double checking things are good without it # def traj_n_frames(self, run_idx, traj_idx): # """ # Parameters # ---------- # run_idx : # traj_idx : # Returns # ------- # """ # return self.traj(run_idx, traj_idx)[POSITIONS].shape[0] def add_traj(self, run_idx, data, weights=None, sparse_idxs=None, metadata=None): """Add a full trajectory to a run. Parameters ---------- run_idx : int data : dict of str : arraylike Mapping of trajectory fields to the data for them to add. weights : 1-D arraylike of float The weights of each frame. If None defaults all frames to 1.0. sparse_idxs : list of int Cycle indices the data corresponds to. metadata : dict of str : value Metadata for the trajectory. Returns ------- traj_grp : h5py.Group """ # convenient alias traj_data = data # initialize None kwargs if sparse_idxs is None: sparse_idxs = {} if metadata is None: metadata = {} # positions are mandatory assert POSITIONS in traj_data, "positions must be given to create a trajectory" assert isinstance(traj_data[POSITIONS], np.ndarray) n_frames = traj_data[POSITIONS].shape[0] # if weights are None then we assume they are 1.0 if weights is None: weights = np.ones((n_frames, 1), dtype=float) else: assert isinstance(weights, np.ndarray), "weights must be a numpy.ndarray" assert weights.shape[0] == n_frames,\ "weights and the number of frames must be the same length" # current traj_idx traj_idx = self.next_run_traj_idx(run_idx) # make a group for this trajectory, with the current traj_idx # for this run traj_grp = self._h5.create_group( '{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx)) # add the run_idx as metadata traj_grp.attrs[RUN_IDX] = run_idx # add the traj_idx as metadata traj_grp.attrs[TRAJ_IDX] = traj_idx # add the rest of the metadata if given for key, val in metadata.items(): if not key in [RUN_IDX, TRAJ_IDX]: traj_grp.attrs[key] = val else: warn("run_idx and traj_idx are used by wepy and cannot be set", RuntimeWarning) # check to make sure the positions are the right shape assert traj_data[POSITIONS].shape[1] == self.num_atoms, \ "positions given have different number of atoms: {}, should be {}".format( traj_data[POSITIONS].shape[1], self.num_atoms) assert traj_data[POSITIONS].shape[2] == self.num_dims, \ "positions given have different number of dims: {}, should be {}".format( traj_data[POSITIONS].shape[2], self.num_dims) # add datasets to the traj group # weights traj_grp.create_dataset(WEIGHTS, data=weights, dtype=WEIGHT_DTYPE, maxshape=(None, *WEIGHT_SHAPE)) # positions positions_shape = traj_data[POSITIONS].shape # add the rest of the traj_data for field_path, field_data in traj_data.items(): # if there were sparse idxs for this field pass them in if field_path in sparse_idxs: field_sparse_idxs = sparse_idxs[field_path] # if this is a sparse field and no sparse_idxs were given # we still need to initialize it as a sparse field so it # can be extended properly so we make sparse_idxs to match # the full length of this initial trajectory data elif field_path in self.sparse_fields: field_sparse_idxs = np.arange(positions_shape[0]) # otherwise it is not a sparse field so we just pass in None else: field_sparse_idxs = None self._add_traj_field_data(run_idx, traj_idx, field_path, field_data, sparse_idxs=field_sparse_idxs) ## initialize empty sparse fields # get the sparse field datasets that haven't been initialized traj_init_fields = list(sparse_idxs.keys()) + list(traj_data.keys()) uninit_sparse_fields = set(self.sparse_fields).difference(traj_init_fields) # the shapes uninit_sparse_shapes = [self.field_feature_shapes[field] for field in uninit_sparse_fields] # the dtypes uninit_sparse_dtypes = [self.field_feature_dtypes[field] for field in uninit_sparse_fields] # initialize the sparse fields in the hdf5 self._init_traj_fields(run_idx, traj_idx, uninit_sparse_fields, uninit_sparse_shapes, uninit_sparse_dtypes) return traj_grp def extend_traj(self, run_idx, traj_idx, data, weights=None): """Extend a trajectory with data for all fields. Parameters ---------- run_idx : int traj_idx : int data : dict of str : arraylike The data to add for each field of the trajectory. Must all have the same first dimension. weights : arraylike Weights for the frames of the trajectory. If None defaults all frames to 1.0. """ if self._wepy_mode == 'c-': assert self._append_flags[dataset_key], "dataset is not available for appending to" # convenient alias traj_data = data # number of frames to add n_new_frames = traj_data[POSITIONS].shape[0] n_frames = self.num_traj_frames(run_idx, traj_idx) # calculate the new sparse idxs for sparse fields that may be # being added sparse_idxs = np.array(range(n_frames, n_frames + n_new_frames)) # get the trajectory group traj_grp = self._h5['{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx)] ## weights # if weights are None then we assume they are 1.0 if weights is None: weights = np.ones((n_new_frames, 1), dtype=float) else: assert isinstance(weights, np.ndarray), "weights must be a numpy.ndarray" assert weights.shape[0] == n_new_frames,\ "weights and the number of frames must be the same length" # add the weights weights_ds = traj_grp[WEIGHTS] # append to the dataset on the first dimension, keeping the # others the same, if they exist if len(weights_ds.shape) > 1: weights_ds.resize( (weights_ds.shape[0] + n_new_frames, *weights_ds.shape[1:]) ) else: weights_ds.resize( (weights_ds.shape[0] + n_new_frames, ) ) # add the new data weights_ds[-n_new_frames:, ...] = weights # add the other fields for field_path, field_data in traj_data.items(): # if the field hasn't been initialized yet initialize it, # unless we are in SWMR mode if not field_path in traj_grp: # if in SWMR mode you cannot create groups so if we # are in SWMR mode raise a warning that the data won't # be recorded if self.swmr_mode: warn("New datasets cannot be created while in SWMR mode. The field {} will" "not be saved. If you want to save this it must be" "previously created".format(field_path)) else: feature_shape = field_data.shape[1:] feature_dtype = field_data.dtype # not specified as sparse_field, no settings if (not field_path in self.field_feature_shapes) and \ (not field_path in self.field_feature_dtypes) and \ not field_path in self.sparse_fields: # only save if it is an observable is_observable = False if '/' in field_path: group_name = field_path.split('/')[0] if group_name == OBSERVABLES: is_observable = True if is_observable: warn("the field '{}' was received but not previously specified" " but is being added because it is in observables.".format(field_path)) # save sparse_field flag, shape, and dtype self._add_sparse_field_flag(field_path) self._set_field_feature_shape(field_path, feature_shape) self._set_field_feature_dtype(field_path, feature_dtype) else: raise ValueError("the field '{}' was received but not previously specified" "it is being ignored because it is not an observable.".format(field_path)) # specified as sparse_field but no settings given elif (self.field_feature_shapes[field_path] is None and self.field_feature_dtypes[field_path] is None) and \ field_path in self.sparse_fields: # set the feature shape and dtype since these # should be 0 in the settings self._set_field_feature_shape(field_path, feature_shape) self._set_field_feature_dtype(field_path, feature_dtype) # initialize self._init_traj_field(run_idx, traj_idx, field_path, feature_shape, feature_dtype) # extend it either as a sparse field or a contiguous field if field_path in self.sparse_fields: self._extend_sparse_traj_field(run_idx, traj_idx, field_path, field_data, sparse_idxs) else: self._extend_contiguous_traj_field(run_idx, traj_idx, field_path, field_data) ## application level append methods for run records groups def extend_cycle_warping_records(self, run_idx, cycle_idx, warping_data): """Add records for each field for this record group. Parameters ---------- run_idx : int cycle_idx : int The cycle index these records correspond to. warping_data : dict of str : arraylike Mapping of the record group fields to a collection of values for each field. """ self.extend_cycle_run_group_records(run_idx, WARPING, cycle_idx, warping_data) def extend_cycle_bc_records(self, run_idx, cycle_idx, bc_data): """Add records for each field for this record group. Parameters ---------- run_idx : int cycle_idx : int The cycle index these records correspond to. bc_data : dict of str : arraylike Mapping of the record group fields to a collection of values for each field. """ self.extend_cycle_run_group_records(run_idx, BC, cycle_idx, bc_data) def extend_cycle_progress_records(self, run_idx, cycle_idx, progress_data): """Add records for each field for this record group. Parameters ---------- run_idx : int cycle_idx : int The cycle index these records correspond to. progress_data : dict of str : arraylike Mapping of the record group fields to a collection of values for each field. """ self.extend_cycle_run_group_records(run_idx, PROGRESS, cycle_idx, progress_data) def extend_cycle_resampling_records(self, run_idx, cycle_idx, resampling_data): """Add records for each field for this record group. Parameters ---------- run_idx : int cycle_idx : int The cycle index these records correspond to. resampling_data : dict of str : arraylike Mapping of the record group fields to a collection of values for each field. """ self.extend_cycle_run_group_records(run_idx, RESAMPLING, cycle_idx, resampling_data) def extend_cycle_resampler_records(self, run_idx, cycle_idx, resampler_data): """Add records for each field for this record group. Parameters ---------- run_idx : int cycle_idx : int The cycle index these records correspond to. resampler_data : dict of str : arraylike Mapping of the record group fields to a collection of values for each field. """ self.extend_cycle_run_group_records(run_idx, RESAMPLER, cycle_idx, resampler_data) def extend_cycle_run_group_records(self, run_idx, run_record_key, cycle_idx, fields_data): """Extend data for a whole records group. This must have the cycle index for the data it is appending as this is done for sporadic and continual datasets. Parameters ---------- run_idx : int run_record_key : str Name of the record group. cycle_idx : int The cycle index these records correspond to. fields_data : dict of str : arraylike Mapping of the field name to the values for the records being added. """ record_grp = self.records_grp(run_idx, run_record_key) # if it is sporadic add the cycle idx if self._is_sporadic_records(run_record_key): # get the cycle idxs dataset record_cycle_idxs_ds = record_grp[CYCLE_IDXS] # number of old and new records n_new_records = len(fields_data) n_existing_records = record_cycle_idxs_ds.shape[0] # make a new chunk for the new records record_cycle_idxs_ds.resize( (n_existing_records + n_new_records,) ) # add an array of the cycle idx for each record record_cycle_idxs_ds[n_existing_records:] = np.full((n_new_records,), cycle_idx) # then add all the data for the field for record_dict in fields_data: for field_name, field_data in record_dict.items(): self._extend_run_record_data_field(run_idx, run_record_key, field_name, np.array([field_data])) ### Analysis Routines ## Record Getters def run_records(self, run_idx, run_record_key): """Get the records for a record group for a single run. Parameters ---------- run_idx : int run_record_key : str The name of the record group. Returns ------- records : list of namedtuple objects The list of records for the run's record group. """ # wrap this in a list since the underlying functions accept a # list of records run_idxs = [run_idx] return self.run_contig_records(run_idxs, run_record_key) def run_contig_records(self, run_idxs, run_record_key): """Get the records for a record group for the contig that is formed by the run indices. This alters the cycle indices for the records so that they appear to have come from a single run. That is they are the cycle indices of the contig. Parameters ---------- run_idxs : list of int The run indices that form a contig. (i.e. element 1 continues element 0) run_record_key : str Name of the record group. Returns ------- records : list of namedtuple objects The list of records for the contig's record group. """ # if there are no fields return an empty list record_fields = self.record_fields[run_record_key] if len(record_fields) == 0: return [] # get the iterator for the record idxs, if the group is # sporadic then we just use the cycle idxs if self._is_sporadic_records(run_record_key): records = self._run_records_sporadic(run_idxs, run_record_key) else: records = self._run_records_continual(run_idxs, run_record_key) return records def run_records_dataframe(self, run_idx, run_record_key): """Get the records for a record group for a single run in the form of a pandas DataFrame. Parameters ---------- run_idx : int run_record_key : str Name of record group. Returns ------- record_df : pandas.DataFrame """ records = self.run_records(run_idx, run_record_key) return pd.DataFrame(records) def run_contig_records_dataframe(self, run_idxs, run_record_key): """Get the records for a record group for a contig of runs in the form of a pandas DataFrame. Parameters ---------- run_idxs : list of int The run indices that form a contig. (i.e. element 1 continues element 0) run_record_key : str The name of the record group. Returns ------- records_df : pandas.DataFrame """ records = self.run_contig_records(run_idxs, run_record_key) return pd.DataFrame(records) # application level specific methods for each main group # resampling def resampling_records(self, run_idxs): """Get the records this record group for the contig that is formed by the run indices. This alters the cycle indices for the records so that they appear to have come from a single run. That is they are the cycle indices of the contig. Parameters ---------- run_idxs : list of int The run indices that form a contig. (i.e. element 1 continues element 0) Returns ------- records : list of namedtuple objects The list of records for the contig's record group. """ return self.run_contig_records(run_idxs, RESAMPLING) def resampling_records_dataframe(self, run_idxs): """Get the records for this record group for a contig of runs in the form of a pandas DataFrame. Parameters ---------- run_idxs : list of int The run indices that form a contig. (i.e. element 1 continues element 0) Returns ------- records_df : pandas.DataFrame """ return pd.DataFrame(self.resampling_records(run_idxs)) # resampler records def resampler_records(self, run_idxs): """Get the records this record group for the contig that is formed by the run indices. This alters the cycle indices for the records so that they appear to have come from a single run. That is they are the cycle indices of the contig. Parameters ---------- run_idxs : list of int The run indices that form a contig. (i.e. element 1 continues element 0) Returns ------- records : list of namedtuple objects The list of records for the contig's record group. """ return self.run_contig_records(run_idxs, RESAMPLER) def resampler_records_dataframe(self, run_idxs): """Get the records for this record group for a contig of runs in the form of a pandas DataFrame. Parameters ---------- run_idxs : list of int The run indices that form a contig. (i.e. element 1 continues element 0) Returns ------- records_df : pandas.DataFrame """ return pd.DataFrame(self.resampler_records(run_idxs)) # warping def warping_records(self, run_idxs): """Get the records this record group for the contig that is formed by the run indices. This alters the cycle indices for the records so that they appear to have come from a single run. That is they are the cycle indices of the contig. Parameters ---------- run_idxs : list of int The run indices that form a contig. (i.e. element 1 continues element 0) Returns ------- records : list of namedtuple objects The list of records for the contig's record group. """ return self.run_contig_records(run_idxs, WARPING) def warping_records_dataframe(self, run_idxs): """Get the records for this record group for a contig of runs in the form of a pandas DataFrame. Parameters ---------- run_idxs : list of int The run indices that form a contig. (i.e. element 1 continues element 0) Returns ------- records_df : pandas.DataFrame """ return pd.DataFrame(self.warping_records(run_idxs)) # boundary conditions def bc_records(self, run_idxs): """Get the records this record group for the contig that is formed by the run indices. This alters the cycle indices for the records so that they appear to have come from a single run. That is they are the cycle indices of the contig. Parameters ---------- run_idxs : list of int The run indices that form a contig. (i.e. element 1 continues element 0) Returns ------- records : list of namedtuple objects The list of records for the contig's record group. """ return self.run_contig_records(run_idxs, BC) def bc_records_dataframe(self, run_idxs): """Get the records for this record group for a contig of runs in the form of a pandas DataFrame. Parameters ---------- run_idxs : list of int The run indices that form a contig. (i.e. element 1 continues element 0) Returns ------- records_df : pandas.DataFrame """ return pd.DataFrame(self.bc_records(run_idxs)) # progress def progress_records(self, run_idxs): """Get the records this record group for the contig that is formed by the run indices. This alters the cycle indices for the records so that they appear to have come from a single run. That is they are the cycle indices of the contig. Parameters ---------- run_idxs : list of int The run indices that form a contig. (i.e. element 1 continues element 0) Returns ------- records : list of namedtuple objects The list of records for the contig's record group. """ return self.run_contig_records(run_idxs, PROGRESS) def progress_records_dataframe(self, run_idxs): """Get the records for this record group for a contig of runs in the form of a pandas DataFrame. Parameters ---------- run_idxs : list of int The run indices that form a contig. (i.e. element 1 continues element 0) Returns ------- records_df : pandas.DataFrame """ return pd.DataFrame(self.progress_records(run_idxs)) def run_resampling_panel(self, run_idx): """Generate a resampling panel from the resampling records of a run. Parameters ---------- run_idx : int Returns ------- resampling_panel : list of list of list of namedtuple records The panel (list of tables) of resampling records in order (cycle, step, walker) """ return self.run_contig_resampling_panel([run_idx]) def run_contig_resampling_panel(self, run_idxs): """Generate a resampling panel from the resampling records of a contig, which is a series of runs. Parameters ---------- run_idxs : list of int The run indices that form a contig. (i.e. element 1 continues element 0) Returns ------- resampling_panel : list of list of list of namedtuple records The panel (list of tables) of resampling records in order (cycle, step, walker) """ # check the contig to make sure it is a valid contig if not self.is_run_contig(run_idxs): raise ValueError("The run_idxs provided are not a valid contig, {}.".format( run_idxs)) # make the resampling panel from the resampling records for the contig contig_resampling_panel = resampling_panel(self.resampling_records(run_idxs), is_sorted=False) return contig_resampling_panel # Trajectory Field Setters def add_run_observable(self, run_idx, observable_name, data, sparse_idxs=None): """Add a trajectory sub-field in the compound field "observables" for a single run. Parameters ---------- run_idx : int observable_name : str What to name the observable subfield. data : arraylike of shape (n_trajs, feature_vector_shape[0], ...) The data for all of the trajectories that will be set to this observable field. sparse_idxs : list of int, optional If not None, specifies the cycle indices this data corresponds to. """ obs_path = '{}/{}'.format(OBSERVABLES, observable_name) self._add_run_field(run_idx, obs_path, data, sparse_idxs=sparse_idxs) def add_traj_observable(self, observable_name, data, sparse_idxs=None): """Add a trajectory sub-field in the compound field "observables" for an entire file, on a trajectory basis. Parameters ---------- observable_name : str What to name the observable subfield. data : list of arraylike The data for each run are the elements of this argument. Each element is an arraylike of shape (n_traj_frames, feature_vector_shape[0],...) where the n_run_frames is the number of frames in trajectory. sparse_idxs : list of list of int, optional If not None, specifies the cycle indices this data corresponds to. First by run, then by trajectory. """ obs_path = '{}/{}'.format(OBSERVABLES, observable_name) run_results = [] for run_idx in range(self.num_runs): run_num_trajs = self.num_run_trajs(run_idx) run_results.append([]) for traj_idx in range(run_num_trajs): run_results[run_idx].append(data[(run_idx * run_num_trajs) + traj_idx]) run_sparse_idxs = None if sparse_idxs is not None: run_sparse_idxs = [] for run_idx in range(self.num_runs): run_num_trajs = self.num_run_trajs(run_idx) run_sparse_idxs.append([]) for traj_idx in range(run_num_trajs): run_sparse_idxs[run_idx].append(sparse_idxs[(run_idx * run_num_trajs) + traj_idx]) self.add_observable(observable_name, run_results, sparse_idxs=run_sparse_idxs) def add_observable(self, observable_name, data, sparse_idxs=None): """Add a trajectory sub-field in the compound field "observables" for an entire file, on a compound run and trajectory basis. Parameters ---------- observable_name : str What to name the observable subfield. data : list of list of arraylike The data for each run are the elements of this argument. Each element is a list of the trajectory observable arraylikes of shape (n_traj_frames, feature_vector_shape[0],...). sparse_idxs : list of list of int, optional If not None, specifies the cycle indices this data corresponds to. First by run, then by trajectory. """ obs_path = '{}/{}'.format(OBSERVABLES, observable_name) self._add_field( obs_path, data, sparse_idxs=sparse_idxs, ) def compute_observable(self, func, fields, args, map_func=map, traj_sel=None, save_to_hdf5=None, idxs=False, return_results=True): """Compute an observable on the trajectory data according to a function. Optionally save that data in the observables data group for the trajectory. Parameters ---------- func : callable The function to apply to the trajectory fields (by cycle). Must accept a dictionary mapping string trajectory field names to a feature vector for that cycle and return an arraylike. May accept other positional arguments as well. fields : list of str A list of trajectory field names to pass to the mapped function. args : tuple A single tuple of arguments which will be expanded and passed to the mapped function for every evaluation. map_func : callable The mapping function. The implementation of how to map the computation function over the data. Default is the python builtin `map` function. Can be a parallel implementation for example. traj_sel : list of tuple, optional If not None, a list of trajectory identifier tuple (run_idx, traj_idx) to restrict the computation to. save_to_hdf5 : None or string, optional If not None, a string that specifies the name of the observables sub-field that the computed values will be saved to. idxs : bool If True will return the trajectory identifier tuple (run_idx, traj_idx) along with other return values. return_results : bool If True will return the results of the mapping. If not using the 'save_to_hdf5' option, be sure to use this or results will be lost. Returns ------- traj_id_tuples : list of tuple of int, if 'idxs' option is True A list of the tuple identifiers for each trajectory result. results : list of arraylike, if 'return_results' option is True A list of arraylike feature vectors for each trajectory. """ if save_to_hdf5 is not None: assert self.mode in ['w', 'w-', 'x', 'r+', 'c', 'c-'],\ "File must be in a write mode" assert isinstance(save_to_hdf5, str),\ "`save_to_hdf5` should be the field name to save the data in the `observables`"\ " group in each trajectory" # the field name comes from this kwarg if it satisfies the # string condition above field_name = save_to_hdf5 # calculate the results and accumulate them here results = [] # and the indices of the results result_idxs = [] # map over the trajectories and apply the function and save # the results for result in self.traj_fields_map(func, fields, args, map_func=map_func, traj_sel=traj_sel, idxs=True): idx_tup, obs_features = result results.append(obs_features) result_idxs.append(idx_tup) # we want to separate writing and computation so we can do it # in parallel without having multiple writers. So if we are # writing directly to the HDF5 we add the results to it. # if we are saving this to the trajectories observables add it as a dataset if save_to_hdf5: # reshape the results to be in the observable shape: observable = [[] for run_idx in self.run_idxs] for result_idx, traj_results in zip(result_idxs, results): run_idx, traj_idx = result_idx observable[run_idx].append(traj_results) self.add_observable( field_name, observable, sparse_idxs=None, ) if return_results: if idxs: return result_idxs, results else: return results ## Trajectory Getters def get_traj_field(self, run_idx, traj_idx, field_path, frames=None, masked=True): """Returns a numpy array for the given trajectory field. You can control how sparse fields are returned using the `masked` option. When True (default) a masked numpy array will be returned such that you can get which cycles it is from, when False an unmasked array of the data will be returned which has no cycle information. Parameters ---------- run_idx : int traj_idx : int field_path : str Name of the trajectory field to get frames : None or list of int If not None, a list of the frame indices of the trajectory to return values for. masked : bool If true will return sparse field values as masked arrays, otherwise just returns the compacted data. Returns ------- field_data : arraylike The data for the trajectory field. """ traj_path = '{}/{}/{}/{}'.format(RUNS, run_idx, TRAJECTORIES, traj_idx) # if the field doesn't exist return None if not field_path in self._h5[traj_path]: raise KeyError("key for field {} not found".format(field_path)) # return None # get the field depending on whether it is sparse or not if field_path in self.sparse_fields: return self._get_sparse_traj_field(run_idx, traj_idx, field_path, frames=frames, masked=masked) else: return self._get_contiguous_traj_field(run_idx, traj_idx, field_path, frames=frames) def get_trace_fields(self, frame_tups, fields, same_order=True, ): """Get trajectory field data for the frames specified by the trace. Parameters ---------- frame_tups : list of tuple of int The trace values. Each tuple is of the form (run_idx, traj_idx, frame_idx). fields : list of str The names of the fields to get for each frame. same_order : bool (Default = True) If True will ensure that the results will be sorted exactly as the order of the frame_tups were. If False will return them in an arbitrary implementation determined order that should be more efficient. Returns ------- trace_fields : dict of str : arraylike Mapping of the field names to the array of feature vectors for the trace. """ # TODO, WARN: this is known to not work properly in all # cases. While this is an important feature, we defer the # implementation of chunking to another function or interace if False: def argsort(seq): return sorted(range(len(seq)), key=seq.__getitem__) def apply_argsorted(shuffled_seq, sorted_idxs): return [shuffled_seq[i] for i in sorted_idxs] # first sort the frame_tups so we can chunk them up by # (run, traj) to get more efficient reads since these are # chunked by these datasets. # we do an argsort here so that we can map fields back to # the order they came in (if requested) sorted_idxs = argsort(frame_tups) # then sort them as we will iterate through them sorted_frame_tups = apply_argsorted(frame_tups, sorted_idxs) # generate the chunks by (run, traj) read_chunks = defaultdict(list) for run_idx, traj_idx, frame_idx in sorted_frame_tups: read_chunks[(run_idx, traj_idx)].append(frame_idx) # go through each chunk and read data for each field frame_fields = {} for field in fields: # for each field collect the chunks field_chunks = [] for chunk_key, frames in read_chunks.items(): run_idx, traj_idx = chunk_key frames_field = self.get_traj_field(run_idx, traj_idx, field, frames=frames) field_chunks.append(frames_field) # then aggregate them field_unsorted = np.concatenate(field_chunks) del field_chunks; gc.collect() # if we want them sorted sort them back to the # original (unsorted) order, otherwise just return # them if same_order: frame_fields[field] = field_unsorted[sorted_idxs] else: frame_fields[field] = field_unsorted del field_unsorted; gc.collect() else: frame_fields = {field : [] for field in fields} for run_idx, traj_idx, cycle_idx in frame_tups: for field in fields: frame_field = self.get_traj_field( run_idx, traj_idx, field, frames=[cycle_idx], ) # the first dimension doesn't matter here since we # only get one frame at a time. frame_fields[field].append(frame_field[0]) # combine all the parts of each field into single arrays for field in fields: frame_fields[field] = np.array(frame_fields[field]) return frame_fields def get_run_trace_fields(self, run_idx, frame_tups, fields): """Get trajectory field data for the frames specified by the trace within a single run. Parameters ---------- run_idx : int frame_tups : list of tuple of int The trace values. Each tuple is of the form (traj_idx, frame_idx). fields : list of str The names of the fields to get for each frame. Returns ------- trace_fields : dict of str : arraylike Mapping of the field names to the array of feature vectors for the trace. """ frame_fields = {field : [] for field in fields} for traj_idx, cycle_idx in frame_tups: for field in fields: frame_field = self.get_traj_field(run_idx, traj_idx, field, frames=[cycle_idx]) # the first dimension doesn't matter here since we # only get one frame at a time. frame_fields[field].append(frame_field[0]) # combine all the parts of each field into single arrays for field in fields: frame_fields[field] = np.array(frame_fields[field]) return frame_fields def get_contig_trace_fields(self, contig_trace, fields): """Get field data for all trajectories of a contig for the frames specified by the contig trace. Parameters ---------- contig_trace : list of tuple of int The trace values. Each tuple is of the form (run_idx, frame_idx). fields : list of str The names of the fields to get for each cycle. Returns ------- contig_fields : dict of str : arraylike of shape (n_cycles, n_trajs, field_feature_shape[0],...) Mapping of the field names to the array of feature vectors for contig trace. """ # to be efficient we want to group our grabbing of fields by run # so we group them by run runs_frames = defaultdict(list) # and we get the runs in the order to fetch them run_idxs = [] for run_idx, cycle_idx in contig_trace: runs_frames[run_idx].append(cycle_idx) if not run_idx in run_idxs: run_idxs.append(run_idx) # (there must be the same number of trajectories in each run) n_trajs_test = self.num_run_trajs(run_idxs[0]) assert all([True if n_trajs_test == self.num_run_trajs(run_idx) else False for run_idx in run_idxs]) # then using this we go run by run and get all the # trajectories field_values = {} for field in fields: # we gather trajectories in "bundles" (think sticks # strapped together) and each bundle represents a run, we # will concatenate the ends of the bundles together to get # the full array at the end bundles = [] for run_idx in run_idxs: run_bundle = [] for traj_idx in self.run_traj_idxs(run_idx): # get the values for this (field, run, trajectory) traj_field_vals = self.get_traj_field(run_idx, traj_idx, field, frames=runs_frames[run_idx], masked=True) run_bundle.append(traj_field_vals) # convert this "bundle" of trajectory values (think # sticks side by side) into an array run_bundle = np.array(run_bundle) bundles.append(run_bundle) # stick the bundles together end to end to make the value # for this field , the first dimension currently is the # trajectory_index, but we want to make the cycles the # first dimension. So we stack them along that axis then # transpose the first two axes (not the rest of them which # should stay the same). Pardon the log terminology, but I # don't know a name for a bunch of bundles taped together. field_log = np.hstack(tuple(bundles)) field_log = np.swapaxes(field_log, 0, 1) field_values[field] = field_log return field_values def iter_trajs_fields(self, fields, idxs=False, traj_sel=None): """Generator for iterating over fields trajectories in a file. Parameters ---------- fields : list of str Names of the trajectory fields you want to yield. idxs : bool If True will also return the tuple identifier of the trajectory the field data is from. traj_sel : list of tuple of int If not None, a list of trajectory identifiers to restrict iteration over. Yields ------ traj_identifier : tuple of int if 'idxs' option is True Tuple identifying the trajectory the data belongs to (run_idx, traj_idx). fields_data : dict of str : arraylike Mapping of the field name to the array of feature vectors of that field for this trajectory. """ for idx_tup, traj in self.iter_trajs(idxs=True, traj_sel=traj_sel): run_idx, traj_idx = idx_tup dsets = {} # DEBUG if we ask for debug prints send in the run and # traj index so the function can print this out TESTING if # this causes no problems (it doesn't seem like it would # from the code this will be removed permanently) # dsets['run_idx'] = run_idx # dsets[TRAJ_IDX] = traj_idx for field in fields: try: dset = traj[field][:] except KeyError: warn("field \"{}\" not found in \"{}\"".format(field, traj.name), RuntimeWarning) dset = None dsets[field] = dset if idxs: yield (run_idx, traj_idx), dsets else: yield dsets def traj_fields_map(self, func, fields, args, map_func=map, idxs=False, traj_sel=None): """Function for mapping work onto field of trajectories. Parameters ---------- func : callable The function to apply to the trajectory fields (by cycle). Must accept a dictionary mapping string trajectory field names to a feature vector for that cycle and return an arraylike. May accept other positional arguments as well. fields : list of str A list of trajectory field names to pass to the mapped function. args : None or or tuple A single tuple of arguments which will be passed to the mapped function for every evaluation. map_func : callable The mapping function. The implementation of how to map the computation function over the data. Default is the python builtin `map` function. Can be a parallel implementation for example. traj_sel : list of tuple, optional If not None, a list of trajectory identifier tuple (run_idx, traj_idx) to restrict the computation to. idxs : bool If True will return the trajectory identifier tuple (run_idx, traj_idx) along with other return values. Returns ------- traj_id_tuples : list of tuple of int, if 'idxs' option is True A list of the tuple identifiers for each trajectory result. results : list of arraylike A list of arraylike feature vectors for each trajectory. """ # check the args and kwargs to see if they need expanded for # mapping inputs #first go through each run and get the number of cycles n_cycles = 0 for run_idx in self.run_idxs: n_cycles += self.num_run_cycles(run_idx) mapped_args = [] for arg in args: # make a generator out of it to map as inputs mapped_arg = (arg for i in range(n_cycles)) mapped_args.append(mapped_arg) # make a generator for the arguments to pass to the function # from the mapper, for the extra arguments we just have an # endless generator map_args = (self.iter_trajs_fields(fields, traj_sel=traj_sel, idxs=False), *(it.repeat(arg) for arg in args)) results = map_func(func, *map_args) if idxs: if traj_sel is None: traj_sel = self.run_traj_idx_tuples() return zip(traj_sel, results) else: return results def to_mdtraj(self, run_idx, traj_idx, frames=None, alt_rep=None): """Convert a trajectory to an mdtraj Trajectory object. Works if the right trajectory fields are defined. Minimally this is a representation, including the 'positions' field or an 'alt_rep' subfield. Will also set the unitcell lengths and angle if the 'box_vectors' field is present. Will also set the time for the frames if the 'time' field is present, although this is likely not useful since walker segments have the time reset. Parameters ---------- run_idx : int traj_idx : int frames : None or list of int If not None, a list of the frames to include. alt_rep : str If not None, an 'alt_reps' subfield name to use for positions instead of the 'positions' field. Returns ------- traj : mdtraj.Trajectory """ traj_grp = self.traj(run_idx, traj_idx) # the default for alt_rep is the main rep if alt_rep is None: rep_key = POSITIONS rep_path = rep_key else: rep_key = alt_rep rep_path = '{}/{}'.format(ALT_REPS, alt_rep) topology = self.get_mdtraj_topology(alt_rep=rep_key) # get the frames if they are not given if frames is None: frames = self.get_traj_field_cycle_idxs(run_idx, traj_idx, rep_path) # get the data for all or for the frames specified positions = self.get_traj_field(run_idx, traj_idx, rep_path, frames=frames, masked=False) try: time = self.get_traj_field(run_idx, traj_idx, TIME, frames=frames, masked=False)[:, 0] except KeyError: warn("time not in this trajectory, ignoring") time = None try: box_vectors = self.get_traj_field(run_idx, traj_idx, BOX_VECTORS, frames=frames, masked=False) except KeyError: warn("box_vectors not in this trajectory, ignoring") box_vectors = None if box_vectors is not None: unitcell_lengths, unitcell_angles = traj_box_vectors_to_lengths_angles(box_vectors) if (box_vectors is not None) and (time is not None): traj = mdj.Trajectory(positions, topology, time=time, unitcell_lengths=unitcell_lengths, unitcell_angles=unitcell_angles) elif box_vectors is not None: traj = mdj.Trajectory(positions, topology, unitcell_lengths=unitcell_lengths, unitcell_angles=unitcell_angles) elif time is not None: traj = mdj.Trajectory(positions, topology, time=time) else: traj = mdj.Trajectory(positions, topology) return traj def trace_to_mdtraj(self, trace, alt_rep=None): """Generate an mdtraj Trajectory from a trace of frames from the runs. Uses the default fields for positions (unless an alternate representation is specified) and box vectors which are assumed to be present in the trajectory fields. The time value for the mdtraj trajectory is set to the cycle indices for each trace frame. This is useful for converting WepyHDF5 data to common molecular dynamics data formats accessible through the mdtraj library. Parameters ---------- trace : list of tuple of int The trace values. Each tuple is of the form (run_idx, traj_idx, frame_idx). alt_rep : None or str If None uses default 'positions' representation otherwise chooses the representation from the 'alt_reps' compound field. Returns ------- traj : mdtraj.Trajectory """ rep_path = self._choose_rep_path(alt_rep) trace_fields = self.get_trace_fields(trace, [rep_path, BOX_VECTORS]) return self.traj_fields_to_mdtraj(trace_fields, alt_rep=alt_rep) def run_trace_to_mdtraj(self, run_idx, trace, alt_rep=None): """Generate an mdtraj Trajectory from a trace of frames from the runs. Uses the default fields for positions (unless an alternate representation is specified) and box vectors which are assumed to be present in the trajectory fields. The time value for the mdtraj trajectory is set to the cycle indices for each trace frame. This is useful for converting WepyHDF5 data to common molecular dynamics data formats accessible through the mdtraj library. Parameters ---------- run_idx : int The run the trace is over. run_trace : list of tuple of int The trace values. Each tuple is of the form (traj_idx, frame_idx). alt_rep : None or str If None uses default 'positions' representation otherwise chooses the representation from the 'alt_reps' compound field. Returns ------- traj : mdtraj.Trajectory """ rep_path = self._choose_rep_path(alt_rep) trace_fields = self.get_run_trace_fields(run_idx, trace, [rep_path, BOX_VECTORS]) return self.traj_fields_to_mdtraj(trace_fields, alt_rep=alt_rep) def _choose_rep_path(self, alt_rep): """Given a positions specification string, gets the field name/path for it. Parameters ---------- alt_rep : str The short name (non relative path) for a representation of the positions. Returns ------- rep_path : str The relative field path to that representation. E.g.: If you give it 'positions' or None it will simply return 'positions', however if you ask for 'all_atoms' it will return 'alt_reps/all_atoms'. """ # the default for alt_rep is the main rep if alt_rep == POSITIONS: rep_path = POSITIONS elif alt_rep is None: rep_key = POSITIONS rep_path = rep_key # if it is already a path we don't add more to it and just # return it. elif len(alt_rep.split('/')) > 1: if len(alt_rep.split('/')) > 2: raise ValueError("unrecognized alt_rep spec") elif alt_rep.split('/')[0] != ALT_REPS: raise ValueError("unrecognized alt_rep spec") else: rep_path = alt_rep else: rep_key = alt_rep rep_path = '{}/{}'.format(ALT_REPS, alt_rep) return rep_path def traj_fields_to_mdtraj(self, traj_fields, alt_rep=POSITIONS): """Create an mdtraj.Trajectory from a traj_fields dictionary. Parameters ---------- traj_fields : dict of str : arraylike Dictionary of the traj fields to their values alt_reps : str The base alt rep name for the positions representation to use for the topology, should have the corresponding alt_rep field in the traj_fields Returns ------- traj : mdtraj.Trajectory object This is mainly a convenience function to retrieve the correct topology for the positions which will be passed to the generic `traj_fields_to_mdtraj` function. """ rep_path = self._choose_rep_path(alt_rep) json_topology = self.get_topology(alt_rep=rep_path) return traj_fields_to_mdtraj(traj_fields, json_topology, rep_key=rep_path) def copy_run_slice(self, run_idx, target_file_path, target_grp_path, run_slice=None, mode='x'): """Copy this run to another HDF5 file (target_file_path) at the group (target_grp_path)""" assert mode in ['w', 'w-', 'x', 'r+'], "must be opened in write mode" if run_slice is not None: assert run_slice[1] >= run_slice[0], "Must be a contiguous slice" # get a list of the frames to use slice_frames = list(range(*run_slice)) # we manually construct an HDF5 wrapper and copy the groups over new_h5 = h5py.File(target_file_path, mode=mode, libver=H5PY_LIBVER) # flush the datasets buffers self.h5.flush() new_h5.flush() # get the run group we are interested in run_grp = self.run(run_idx) # slice the datasets in the run and set them in the new file if run_slice is not None: # initialize the group for the run new_run_grp = new_h5.require_group(target_grp_path) # copy the init walkers group self.h5.copy(run_grp[INIT_WALKERS], new_run_grp, name=INIT_WALKERS) # copy the decision group self.h5.copy(run_grp[DECISION], new_run_grp, name=DECISION) # create the trajectories group new_trajs_grp = new_run_grp.require_group(TRAJECTORIES) # slice the trajectories and copy them for traj_idx in run_grp[TRAJECTORIES]: traj_grp = run_grp[TRAJECTORIES][traj_idx] traj_id = "{}/{}".format(TRAJECTORIES, traj_idx) new_traj_grp = new_trajs_grp.require_group(str(traj_idx)) for field_name in _iter_field_paths(run_grp[traj_id]): field_path = "{}/{}".format(traj_id, field_name) data = self.get_traj_field(run_idx, traj_idx, field_name, frames=slice_frames) # if it is a sparse field we need to create the # dataset differently if field_name in self.sparse_fields: # create a group for the field new_field_grp = new_traj_grp.require_group(field_name) # slice the _sparse_idxs from the original # dataset that are between the slice cycle_idxs = self.traj(run_idx, traj_idx)[field_name]['_sparse_idxs'][:] sparse_idx_idxs = np.argwhere(np.logical_and( cycle_idxs[:] >= run_slice[0], cycle_idxs[:] < run_slice[1] )).flatten().tolist() # the cycle idxs there is data for sliced_cycle_idxs = cycle_idxs[sparse_idx_idxs] # get the data for these cycles field_data = data[sliced_cycle_idxs] # get the information on compression, # chunking, and filters and use it when we set # the new data field_data_dset = traj_grp[field_name]['data'] data_dset_kwargs = { 'chunks' : field_data_dset.chunks, 'compression' : field_data_dset.compression, 'compression_opts' : field_data_dset.compression_opts, 'shuffle' : field_data_dset.shuffle, 'fletcher32' : field_data_dset.fletcher32, } # and for the sparse idxs although it is probably overkill field_idxs_dset = traj_grp[field_name]['_sparse_idxs'] idxs_dset_kwargs = { 'chunks' : field_idxs_dset.chunks, 'compression' : field_idxs_dset.compression, 'compression_opts' : field_idxs_dset.compression_opts, 'shuffle' : field_idxs_dset.shuffle, 'fletcher32' : field_idxs_dset.fletcher32, } # then create the datasets new_field_grp.create_dataset('_sparse_idxs', data=sliced_cycle_idxs, **idxs_dset_kwargs) new_field_grp.create_dataset('data', data=field_data, **data_dset_kwargs) else: # get the information on compression, # chunking, and filters and use it when we set # the new data field_dset = traj_grp[field_name] # since we are slicing we want to make sure # that the chunks are smaller than the # slices. Normally chunks are (1, ...) for a # field, but may not be for observables # (perhaps they should but thats for another issue) chunks = (1, *field_dset.chunks[1:]) dset_kwargs = { 'chunks' : chunks, 'compression' : field_dset.compression, 'compression_opts' : field_dset.compression_opts, 'shuffle' : field_dset.shuffle, 'fletcher32' : field_dset.fletcher32, } # require the dataset first to automatically build # subpaths for compound fields if necessary dset = new_traj_grp.require_dataset(field_name, data.shape, data.dtype, **dset_kwargs) # then set the data depending on whether it is # sparse or not dset[:] = data # then do it for the records for rec_grp_name, rec_fields in self.record_fields.items(): rec_grp = run_grp[rec_grp_name] # if this is a contiguous record we can skip the cycle # indices to record indices conversion that is # necessary for sporadic records if self._is_sporadic_records(rec_grp_name): cycle_idxs = rec_grp[CYCLE_IDXS][:] # get dataset info cycle_idxs_dset = rec_grp[CYCLE_IDXS] # we use autochunk, because I can't figure out how # the chunks are set and I can't reuse them idxs_dset_kwargs = { 'chunks' : True, # 'chunks' : cycle_idxs_dset.chunks, 'compression' : cycle_idxs_dset.compression, 'compression_opts' : cycle_idxs_dset.compression_opts, 'shuffle' : cycle_idxs_dset.shuffle, 'fletcher32' : cycle_idxs_dset.fletcher32, } # get the indices of the records we are interested in record_idxs = np.argwhere(np.logical_and( cycle_idxs >= run_slice[0], cycle_idxs < run_slice[1] )).flatten().tolist() # set the cycle indices in the new run group new_recgrp_cycle_idxs_path = '{}/{}/_cycle_idxs'.format(target_grp_path, rec_grp_name) cycle_data = cycle_idxs[record_idxs] cycle_dset = new_h5.require_dataset(new_recgrp_cycle_idxs_path, cycle_data.shape, cycle_data.dtype, **idxs_dset_kwargs) cycle_dset[:] = cycle_data # if contiguous just set the record indices as the # range between the slice else: record_idxs = list(range(run_slice[0], run_slice[1])) # then for each rec_field slice those and set them in the new file for rec_field in rec_fields: field_dset = rec_grp[rec_field] # get dataset info field_dset_kwargs = { 'chunks' : True, # 'chunks' : field_dset.chunks, 'compression' : field_dset.compression, 'compression_opts' : field_dset.compression_opts, 'shuffle' : field_dset.shuffle, 'fletcher32' : field_dset.fletcher32, } rec_field_path = "{}/{}".format(rec_grp_name, rec_field) new_recfield_grp_path = '{}/{}'.format(target_grp_path, rec_field_path) # if it is a variable length dtype make the dtype # that for the dataset and we also slice the # dataset differently vlen_type = h5py.check_dtype(vlen=field_dset.dtype) if vlen_type is not None: dtype = h5py.special_dtype(vlen=vlen_type) else: dtype = field_dset.dtype # if there are no records don't attempt to add them # get the shape shape = (len(record_idxs), *field_dset.shape[1:]) new_field_dset = new_h5.require_dataset(new_recfield_grp_path, shape, dtype, **field_dset_kwargs) # if there aren't records just don't do anything, # and if there are get them and add them if len(record_idxs) > 0: rec_data = field_dset[record_idxs] # if it is a variable length data type we have # to do it 1 by 1 if vlen_type is not None: for i, vlen_rec in enumerate(rec_data): new_field_dset[i] = rec_data[i] # otherwise just set it all at once else: new_field_dset[:] = rec_data # just copy the whole thing over, since this will probably be # more efficient else: # split off the last bit of the target path, for copying we # need it's parent group but not it to exist target_grp_path_basename = target_grp_path.split('/')[-1] target_grp_path_prefix = target_grp_path.split('/')[:-1] new_run_prefix_grp = self.h5.require_group(target_grp_path_prefix) # copy the whole thing self.h5.copy(run_grp, new_run_prefix_grp, name=target_grp_path_basename) # flush the datasets buffers self.h5.flush() new_h5.flush() return new_h5
mit
-871,012,172,022,830,700
33.068437
119
0.58065
false
4.334865
false
false
false
cerivera/crossfire
bin/firefox/addon-sdk-1.15/python-lib/cuddlefish/docs/generate.py
1
9935
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import os import sys import shutil import hashlib import tarfile import StringIO from cuddlefish._version import get_versions from cuddlefish.docs import apiparser from cuddlefish.docs import apirenderer from cuddlefish.docs import webdocs from documentationitem import get_module_list from documentationitem import get_devguide_list from documentationitem import ModuleInfo from documentationitem import DevGuideItemInfo from linkrewriter import rewrite_links import simplejson as json DIGEST = "status.md5" TGZ_FILENAME = "addon-sdk-docs.tgz" def get_sdk_docs_path(env_root): return os.path.join(env_root, "doc") def get_base_url(env_root): sdk_docs_path = get_sdk_docs_path(env_root).lstrip("/") return "file://"+"/"+"/".join(sdk_docs_path.split(os.sep))+"/" def clean_generated_docs(docs_dir): status_file = os.path.join(docs_dir, "status.md5") if os.path.exists(status_file): os.remove(status_file) index_file = os.path.join(docs_dir, "index.html") if os.path.exists(index_file): os.remove(index_file) dev_guide_dir = os.path.join(docs_dir, "dev-guide") if os.path.exists(dev_guide_dir): shutil.rmtree(dev_guide_dir) api_doc_dir = os.path.join(docs_dir, "modules") if os.path.exists(api_doc_dir): shutil.rmtree(api_doc_dir) def generate_static_docs(env_root, override_version=get_versions()["version"]): clean_generated_docs(get_sdk_docs_path(env_root)) generate_docs(env_root, override_version, stdout=StringIO.StringIO()) tgz = tarfile.open(TGZ_FILENAME, 'w:gz') tgz.add(get_sdk_docs_path(env_root), "doc") tgz.close() return TGZ_FILENAME def generate_local_docs(env_root): return generate_docs(env_root, get_versions()["version"], get_base_url(env_root)) def generate_named_file(env_root, filename_and_path): module_list = get_module_list(env_root) web_docs = webdocs.WebDocs(env_root, module_list, get_versions()["version"], get_base_url(env_root)) abs_path = os.path.abspath(filename_and_path) path, filename = os.path.split(abs_path) if abs_path.startswith(os.path.join(env_root, 'doc', 'module-source')): module_root = os.sep.join([env_root, "doc", "module-source"]) module_info = ModuleInfo(env_root, module_root, path, filename) write_module_doc(env_root, web_docs, module_info, False) elif abs_path.startswith(os.path.join(get_sdk_docs_path(env_root), 'dev-guide-source')): devguide_root = os.sep.join([env_root, "doc", "dev-guide-source"]) devguideitem_info = DevGuideItemInfo(env_root, devguide_root, path, filename) write_devguide_doc(env_root, web_docs, devguideitem_info, False) else: raise ValueError("Not a valid path to a documentation file") def generate_docs(env_root, version=get_versions()["version"], base_url=None, stdout=sys.stdout): docs_dir = get_sdk_docs_path(env_root) # if the generated docs don't exist, generate everything if not os.path.exists(os.path.join(docs_dir, "dev-guide")): print >>stdout, "Generating documentation..." generate_docs_from_scratch(env_root, version, base_url) current_status = calculate_current_status(env_root) open(os.path.join(docs_dir, DIGEST), "w").write(current_status) else: current_status = calculate_current_status(env_root) previous_status_file = os.path.join(docs_dir, DIGEST) docs_are_up_to_date = False if os.path.exists(previous_status_file): docs_are_up_to_date = current_status == open(previous_status_file, "r").read() # if the docs are not up to date, generate everything if not docs_are_up_to_date: print >>stdout, "Regenerating documentation..." generate_docs_from_scratch(env_root, version, base_url) open(os.path.join(docs_dir, DIGEST), "w").write(current_status) return get_base_url(env_root) + "index.html" # this function builds a hash of the name and last modification date of: # * every file in "doc/sdk" which ends in ".md" # * every file in "doc/dev-guide-source" which ends in ".md" # * every file in "doc/static-files" which does not start with "." def calculate_current_status(env_root): docs_dir = get_sdk_docs_path(env_root) current_status = hashlib.md5() module_src_dir = os.path.join(env_root, "doc", "module-source") for (dirpath, dirnames, filenames) in os.walk(module_src_dir): for filename in filenames: if filename.endswith(".md"): current_status.update(filename) current_status.update(str(os.path.getmtime(os.path.join(dirpath, filename)))) guide_src_dir = os.path.join(docs_dir, "dev-guide-source") for (dirpath, dirnames, filenames) in os.walk(guide_src_dir): for filename in filenames: if filename.endswith(".md"): current_status.update(filename) current_status.update(str(os.path.getmtime(os.path.join(dirpath, filename)))) package_dir = os.path.join(env_root, "packages") for (dirpath, dirnames, filenames) in os.walk(package_dir): for filename in filenames: if filename.endswith(".md"): current_status.update(filename) current_status.update(str(os.path.getmtime(os.path.join(dirpath, filename)))) base_html_file = os.path.join(docs_dir, "static-files", "base.html") current_status.update(base_html_file) current_status.update(str(os.path.getmtime(os.path.join(dirpath, base_html_file)))) return current_status.digest() def generate_docs_from_scratch(env_root, version, base_url): docs_dir = get_sdk_docs_path(env_root) module_list = get_module_list(env_root) web_docs = webdocs.WebDocs(env_root, module_list, version, base_url) must_rewrite_links = True if base_url: must_rewrite_links = False clean_generated_docs(docs_dir) # py2.5 doesn't have ignore=, so we delete tempfiles afterwards. If we # required >=py2.6, we could use ignore=shutil.ignore_patterns("*~") for (dirpath, dirnames, filenames) in os.walk(docs_dir): for n in filenames: if n.endswith("~"): os.unlink(os.path.join(dirpath, n)) # generate api docs for all modules if not os.path.exists(os.path.join(docs_dir, "modules")): os.mkdir(os.path.join(docs_dir, "modules")) [write_module_doc(env_root, web_docs, module_info, must_rewrite_links) for module_info in module_list] # generate third-party module index third_party_index_file = os.sep.join([env_root, "doc", "module-source", "third-party-modules.md"]) third_party_module_list = [module_info for module_info in module_list if module_info.level() == "third-party"] write_module_index(env_root, web_docs, third_party_index_file, third_party_module_list, must_rewrite_links) # generate high-level module index high_level_index_file = os.sep.join([env_root, "doc", "module-source", "high-level-modules.md"]) high_level_module_list = [module_info for module_info in module_list if module_info.level() == "high"] write_module_index(env_root, web_docs, high_level_index_file, high_level_module_list, must_rewrite_links) # generate low-level module index low_level_index_file = os.sep.join([env_root, "doc", "module-source", "low-level-modules.md"]) low_level_module_list = [module_info for module_info in module_list if module_info.level() == "low"] write_module_index(env_root, web_docs, low_level_index_file, low_level_module_list, must_rewrite_links) # generate dev-guide docs devguide_list = get_devguide_list(env_root) [write_devguide_doc(env_root, web_docs, devguide_info, must_rewrite_links) for devguide_info in devguide_list] # make /md/dev-guide/welcome.html the top level index file doc_html = web_docs.create_guide_page(os.path.join(docs_dir, 'dev-guide-source', 'index.md')) write_file(env_root, doc_html, docs_dir, 'index', False) def write_module_index(env_root, web_docs, source_file, module_list, must_rewrite_links): doc_html = web_docs.create_module_index(source_file, module_list) base_filename, extension = os.path.splitext(os.path.basename(source_file)) destination_path = os.sep.join([env_root, "doc", "modules"]) write_file(env_root, doc_html, destination_path, base_filename, must_rewrite_links) def write_module_doc(env_root, web_docs, module_info, must_rewrite_links): doc_html = web_docs.create_module_page(module_info) write_file(env_root, doc_html, module_info.destination_path(), module_info.base_filename(), must_rewrite_links) def write_devguide_doc(env_root, web_docs, devguide_info, must_rewrite_links): doc_html = web_docs.create_guide_page(devguide_info.source_path_and_filename()) write_file(env_root, doc_html, devguide_info.destination_path(), devguide_info.base_filename(), must_rewrite_links) def write_file(env_root, doc_html, dest_dir, filename, must_rewrite_links): if not os.path.exists(dest_dir): os.makedirs(dest_dir) dest_path_html = os.path.join(dest_dir, filename) + ".html" replace_file(env_root, dest_path_html, doc_html, must_rewrite_links) return dest_path_html def replace_file(env_root, dest_path, file_contents, must_rewrite_links): if os.path.exists(dest_path): os.remove(dest_path) # before we copy the final version, we'll rewrite the links # I'll do this last, just because we know definitely what the dest_path is at this point if must_rewrite_links and dest_path.endswith(".html"): file_contents = rewrite_links(env_root, get_sdk_docs_path(env_root), file_contents, dest_path) open(dest_path, "w").write(file_contents)
mit
2,806,518,507,816,887,300
49.176768
119
0.688576
false
3.241436
false
false
false
rhnvrm/mini-projects
bioinformatics/Motifs.py
1
3302
#! /usr/bin/python3.4 # -*-coding:utf-8 -* def Count(Motifs): """ Returns the count matrix of a list of sequences. The count matrix is the number of times a nucleotid appears at a position in the pool of sequences (Motifs). :param Motifs: The sequences to make the count matrix of. :type Motifs: list of string :return: the count matrix :rtype: dict of list of int with nucleotids as keys. ..seealso:: Count() """ count = {} k = len(Motifs[0]) for symbol in "ACGT": count[symbol] = [] for j in range(k): count[symbol].append(0) t = len(Motifs) for i in range(t): for j in range(k): symbol = Motifs[i][j] count[symbol][j] += 1 return count def Profile(Motifs): """ Returns the profile matrix of a list of sequences. The profile matrix is the frequency of a nucleotid at a position in the pool of sequences (Motifs). :param Motifs: The sequences to make the profile matrix of. :type Motifs: list of string :return: the profile matrix :rtype: dict of list of float with nucleotids as keys. ..seealso:: Count() """ t = len(Motifs) k = len(Motifs[0]) profile = {} count= Count(Motifs) for symbol in "ACGT": profile[symbol] = [] for j in range(k): profile[symbol].append(0) for symbol in "ACGT": for j in range(k): if t >0: profile[symbol][j]= count[symbol][j]/t return profile def Consensus(Motifs): """ Returns the consensus sequence of several sequences. :param Motifs: the sequences to produce a consensus of. :type Motifs: list of string :return: the consensus sequence :rtype: string ..warnings:: the strings in Motifs must only be composed on the letters A,C,G,T. ..seealso:: Count() """ consensus = "" k = len(Motifs[0]) count=Count(Motifs) for j in range(k): m = 0 frequentSymbol = "" for symbol in "ACGT": if count[symbol][j] > m: m = count[symbol][j] frequentSymbol = symbol consensus += frequentSymbol return consensus def Score(Motifs): """ returns the number of unpopular letter in the motif matrix (Motifs). :param Motifs: the motif matrix. :type Motifs: a list of string :return: the number of unpopular letters in the motif matrix. :rtype: int ..seealso:: Count(), Consensus() """ t = len(Motifs) k = len(Motifs[0]) score=0 count=Count(Motifs) consensus = Consensus(Motifs) for symbol in "ACGT": for j in range(k): if symbol != consensus[j]: score += count[symbol][j] return score # Input: String Text and profile matrix Profile # Output: Pr(Text, Profile) def Pr(Text, Profile): # insert your code here compteur=0 Pr=1 for letter in Text: Pr=Pr*Profile[letter][compteur] compteur+=1 return Pr # Input: String Text, an integer k, and profile matrix Profile # Output: ProfileMostProbablePattern(Text, k, Profile) def ProfileMostProbablePattern(Text, k, Profile): prm=-1 s="" for i in range(len(Text)-k+1): pr=Pr(Text[i:i+k],Profile) if pr>prm: prm=pr s=str(Text[i:i+k]) return str(s)
mit
-4,212,984,857,459,504,000
25
109
0.608419
false
3.298701
false
false
false
aileisun/bubbleimg
bubbleimg/imgdownload/hsc/hscimgloader.py
1
12117
# hscimgloader.py # ALS 2017/05/02 import numpy as np import os import requests import astropy.units as u from astropy.io import fits import re from ..loader import imgLoader from ...filters import surveysetup from ..get_credential import getCrendential from . import hscurl nanomaggy = u.def_unit('nanomaggy', 3.631e-6*u.Jy) u.add_enabled_units([nanomaggy]) u.nanomaggy=nanomaggy class hscimgLoader(imgLoader): def __init__(self, **kwargs): """ hscimgLoader, child of imgLoader download stamps from HSC DAS Quarry download psf by either: (iaa) call sumire to infer psf from calexp and download psf from sumire (online) download calexp from server and infer psf locally on top of imgLoader init, set self.survey = 'hsc', add attributes self.img_width_pix, self.img_height_pix do not load obj.sdss.xid by default unless to_make_obj_sdss= True Additional Params ----------------- rerun = 's16a_wide' (str) release_version = 'dr1' (str) username (optional) (str): STARs account password (optional) (str): STARs account Public Methods -------------- __init__(self, **kwargs) make_stamp(self, band, overwrite=False, **kwargs) make_stamps(self, overwrite=False, **kwargs) make_psf(self, band, overwrite=False, to_keep_calexp=False) make_psfs(self, overwrite=False, to_keep_calexp=False) Instruction for stars username and password ------------------------------------------- 1) as arguments hscimgLoader(..., username=username, password=password) 2) as environmental variable $ export HSC_SSP_CAS_USERNAME $ read -s HSC_SSP_CAS_USERNAME $ export HSC_SSP_CAS_PASSWORD $ read -s HSC_SSP_CAS_PASSWORD 3) enter from terminal Attributes ---------- (in addition to loader attributes) rerun = s16a_wide semester = s16a release_version = dr1 survey = 'hsc' bands = ['g', 'r', 'i', 'z', 'y'] username password status (bool) whether an hsc object is successfully identified """ super(hscimgLoader, self).__init__(**kwargs) # set data release parameters self.rerun = kwargs.pop('rerun', 's16a_wide') self.semester = self.rerun.split('_')[0] self.release_version = kwargs.pop('release_version', 'dr1') # set hsc object parameters self.status = super(self.__class__, self).add_obj_hsc(update=False, release_version=self.release_version, rerun=self.rerun) self.survey = 'hsc' self.bands = surveysetup.surveybands[self.survey] self.pixsize = surveysetup.pixsize[self.survey] self._add_attr_img_width_pix_arcsec() # set connection parameters self.__username = kwargs.pop('username', '') self.__password = kwargs.pop('password', '') if self.__username == '' or self.__password == '': self.__username = getCrendential("HSC_SSP_CAS_USERNAME", cred_name = 'STARs username') self.__password = getCrendential("HSC_SSP_CAS_PASSWORD", cred_name = 'STARs password') def _get_fn_calexp(self, band): return 'calexp-{0}.fits'.format(band) def _get_filter_name(self, band): return "HSC-{band}".format(band=band.upper()) def make_stamp(self, band, overwrite=False, **kwargs): """ make stamp image of the specified band of the object. takes care of overwrite with argument 'overwrite'. Default: do not overwrite. See _download_stamp() for specific implementation. Params ---------- band (string) = 'r' overwrite (boolean) = False **kwargs: to be passed to _download_stamp() e.g., imgtype='coadd', tract='', rerun='', see _download_stamp() if not specified then use self.rerun. Return ---------- status: True if downloaded or skipped, False if download fails """ return self._imgLoader__make_file_core(func_download_file=self._download_stamp, func_naming_file=self.get_fn_stamp, band=band, overwrite=overwrite, **kwargs) def make_stamps(self, overwrite=False, **kwargs): """ make stamps of all bands, see make_stamp() """ return self._imgLoader__make_files_core(func_download_file=self._download_stamp, func_naming_file=self.get_fn_stamp, overwrite=overwrite, **kwargs) def _download_stamp(self, band, imgtype='coadd', tract='', tokeepraw=False, n_trials=5): """ download hsc cutout img using HSC DAS Querry. Provides only ra, dec to DAS Querry and download the default coadd. always overwrite. convert it to stamp images. ra, dec can be decimal degrees (12.345) or sexagesimal (1:23:35) for details see hsc query manual https://hscdata.mtk.nao.ac.jp/das_quarry/manual.html Args -------- band imgtype='coadd' tract='' tokeepraw = False (bool): whether to keep the downloaded raw HSC image, which has four extensions. n_trials=5 how many times to retry requesting if there is requests errors such as connection error. Return ---------- status: True if downloaded, False if download fails """ rerun = self.rerun # setting fp_out = self.get_fp_stamp(band) semi_width_inarcsec = (self.img_width_arcsec.to(u.arcsec).value/2.)-0.1 # to get pix number right semi_height_inarcsec = (self.img_height_arcsec.to(u.arcsec).value/2.)-0.1 sw = '%.5f'%semi_width_inarcsec+'asec' sh = '%.5f'%semi_height_inarcsec+'asec' # get url url = hscurl.get_hsc_cutout_url(self.ra, self.dec, band=band, rerun=rerun, tract=tract, imgtype=imgtype, sw=sw, sh=sh) # query, download, and convert to new unit # writing two files (if successful): raw img file and stamp img file. rqst = self._retry_request(url, n_trials=n_trials) if rqst.status_code == 200: fp_raw = self._write_request_to_file(rqst) self._write_fits_unit_specified_in_nanomaggy(filein=fp_raw, fileout=fp_out) if not tokeepraw: os.remove(fp_raw) return True else: print("[hscimgloader] image cannot be retrieved") return False def make_psf(self, band, overwrite=False, **kwargs): """ make psf image of the specified band of the object. See _download_psf() for details. Params ---------- band (string) = 'r' overwrite (boolean) = False **kwargs: to be passed to _download_psf() e.g., imgtype='coadd' Return ---------- status: True if downloaded or skipped, False if download fails """ return self._imgLoader__make_file_core(func_download_file=self._download_psf, func_naming_file=self.get_fn_psf, band=band, overwrite=overwrite, **kwargs) def make_psfs(self, overwrite=False, **kwargs): """ make psfs of all bands, see make_psf() """ return self._imgLoader__make_files_core(func_download_file=self._download_psf, func_naming_file=self.get_fn_psf, overwrite=overwrite, **kwargs) def _download_psf(self, band, imgtype='coadd', rerun='', tract='', patch_s='', n_trials=5): """ download hsc cutout img using HSC DAS Querry. Provides only ra, dec to DAS Querry and download the default coadd. always overwrite. If rerun not specified then use self.rerun. for details see manual https://hscdata.mtk.nao.ac.jp/psf/4/manual.html#Bulk_mode https://hscdata.mtk.nao.ac.jp/das_quarry/manual.html Args -------- band imgtype='coadd' rerun=self.rerun tract='' patch_s='' n_trials=5 how many times to retry requesting if there is requests errors such as connection error. Return ---------- status: True if downloaded, False if download fails """ if rerun == '': rerun = self.rerun # setting fp_out = self.get_fp_psf(band) # get url url = hscurl.get_hsc_psf_url(ra=self.ra, dec=self.dec, band=band, rerun=rerun, tract=tract, patch=patch_s, imgtype=imgtype) # download rqst = self._retry_request(url, n_trials=n_trials) if rqst.status_code == 200: self._write_request_to_file(rqst, fn=os.path.basename(fp_out)) return True else: print("[hscimgloader] psf cannot be retrieved") return False def _retry_request(self, url, n_trials=5): """ request url and retries for up to n_trials times if requests exceptions are raised, such as ConnectionErrors. Uses self.__username self.__password as authentication. """ for _ in range(n_trials): try: rqst = requests.get(url, auth=(self.__username, self.__password)) return rqst break except requests.exceptions.RequestException as e: print(("[hscimgloader] retrying as error detected: "+str(e))) def _write_request_to_file(self, rqst, fn=''): """ write requested file under self.dir_obj with original filename unless filename specified Args -------- rqst: request result fn ='' (str): the filename to be saved to. default: use original filename. Return -------- fp_out (string): the entire filepath to the file written """ d = rqst.headers['content-disposition'] if fn == '': fn = re.findall("filename=(.+)", d)[0][1:-1] fp_out = self.dir_obj + fn with open(fp_out, 'wb') as out: for bits in rqst.iter_content(): out.write(bits) return fp_out def _write_fits_unit_converted_to_nanomaggy(self, filein, fileout): """ !!!!!!! WARNING !!!!!!!! this funciton is not used currently Convert raw hsc image to an image with unit nanomaggy, changing the data value. take only the second hdu hdu[1] as data in output read in fits file filein with no bunit but FLUXMAG0 and convert to one fits file with unit nanomaggy, and write to fileout. Notes on Unit conversion ----------- HSC fluxmag0 is set such that a pix value of 1 has a magAB of 27 so: fluxmag0 = header_combine['FLUXMAG0'] # 63095734448.0194 pixunit = 10.**-19.44 / fluxmag0 * (u.erg * u.s**-1 * u.cm**-2 * u.Hz**-1) # u.Quantity('5.754399373371546e-31 erg / cm2 / Hz / s') nanomaggy_per_raw_unit = float((u.nanomaggy/pixunit).decompose()) # 63.099548091890085 But this function should work even with other fluxmag 0, as we set nanomaggy_per_raw_unit = fluxmag0 * 10**-9 """ hdu = fits.open(filein) header_combine = hdu[1].header+hdu[0].header # sanity check if header_combine['FLUXMAG0'] != 63095734448.0194: raise ValueError("HSC FLUXMAG0 different from usual. Although shouldnt be a problem") if 'BUNIT' in header_combine: raise ValueError("Input fits file should not have BUNIT") nanomaggy_per_raw_unit = header_combine['FLUXMAG0']*10.**-9 data_nanomaggy = hdu[1].data/nanomaggy_per_raw_unit header_combine.set(keyword='BUNIT', value='nanomaggy', comment="1 nanomaggy = 3.631e-6 Jy") header_combine['COMMENT'] = "Unit converted to nanomaggy by ALS" header_combine.remove(keyword='FLUXMAG0') hdu_abbrv = fits.PrimaryHDU(data_nanomaggy, header=header_combine) hdu_abbrv.writeto(fileout, overwrite=True) def _write_fits_unit_specified_in_nanomaggy(self, filein, fileout): """ Convert a raw hsc image to an image with unit nanomaggy, the data values unchanged. Take only the second hdu hdu[1] as data in output. read in fits file filein with no bunit but FLUXMAG0 and convert to one fits file with unit nanomaggy, and write to fileout. Notes on Unit conversion ----------- HSC fluxmag0 is set such that a pix value of 1 has a magAB of 27 so: fluxmag0 = header_combine['FLUXMAG0'] # 63095734448.0194 pixunit = 10.**-19.44 / fluxmag0 * (u.erg * u.s**-1 * u.cm**-2 * u.Hz**-1) # u.Quantity('5.754399373371546e-31 erg / cm2 / Hz / s') nanomaggy_per_raw_unit = float((u.nanomaggy/pixunit).decompose()) # 63.099548091890085 raw_unit_per_nanomaggy = 1/nanomaggy_per_raw_unit # 0.015847974038478506 But this function should work even with other fluxmag 0, as we set nanomaggy_per_raw_unit = fluxmag0 * 10**-9 """ hdu = fits.open(filein) header_combine = hdu[1].header+hdu[0].header # sanity check if header_combine['FLUXMAG0'] != 63095734448.0194: raise ValueError("HSC FLUXMAG0 different from assumed") if 'BUNIT' in header_combine: raise ValueError("Input fits file should not have BUNIT") bunit = '1.58479740e-02 nanomaggy' header_combine.set(keyword='BUNIT', value=bunit, comment="1 nanomaggy = 3.631e-6 Jy") header_combine['COMMENT'] = "Unit specified in nanomaggy by ALS" data = hdu[1].data hdu_abbrv = fits.PrimaryHDU(data, header=header_combine) hdu_abbrv.writeto(fileout, overwrite=True)
mit
-9,032,188,369,782,719,000
29.444724
185
0.68276
false
2.941019
false
false
false
kgullikson88/HET-Scripts
Smooth.py
1
6217
import numpy as np # import FitsUtils import FittingUtilities import HelperFunctions import matplotlib.pyplot as plt import sys import os from astropy import units from astropy.io import fits, ascii import DataStructures from scipy.interpolate import InterpolatedUnivariateSpline as interp import MakeModel import HelperFunctions from collections import Counter from sklearn.gaussian_process import GaussianProcess import warnings def SmoothData(order, windowsize=91, smoothorder=5, lowreject=3, highreject=3, numiters=10, expand=0, normalize=True): denoised = HelperFunctions.Denoise(order.copy()) denoised.y = FittingUtilities.Iterative_SV(denoised.y, windowsize, smoothorder, lowreject=lowreject, highreject=highreject, numiters=numiters, expand=expand) if normalize: denoised.y /= denoised.y.max() return denoised def roundodd(num): rounded = round(num) if rounded % 2 != 0: return rounded else: if rounded > num: return rounded - 1 else: return rounded + 1 def GPSmooth(data, low=0.1, high=10, debug=False): """ This will smooth the data using Gaussian processes. It will find the best smoothing parameter via cross-validation to be between the low and high. The low and high keywords are reasonable bounds for A and B stars with vsini > 100 km/s. """ smoothed = data.copy() # First, find outliers by doing a guess smooth smoothed = SmoothData(data, normalize=False) temp = smoothed.copy() temp.y = data.y / smoothed.y temp.cont = FittingUtilities.Continuum(temp.x, temp.y, lowreject=2, highreject=2, fitorder=3) outliers = HelperFunctions.FindOutliers(temp, numsiglow=3, expand=5) if len(outliers) > 0: data.y[outliers] = smoothed.y[outliers] gp = GaussianProcess(corr='squared_exponential', theta0=np.sqrt(low * high), thetaL=low, thetaU=high, normalize=False, nugget=(data.err / data.y) ** 2, random_start=1) try: gp.fit(data.x[:, None], data.y) except ValueError: #On some orders with large telluric residuals, this will fail. # Just fall back to the old smoothing method in that case. return SmoothData(data), 91 if debug: print "\tSmoothing parameter theta = ", gp.theta_ smoothed.y, smoothed.err = gp.predict(data.x[:, None], eval_MSE=True) return smoothed, gp.theta_[0][0] if __name__ == "__main__": fileList = [] plot = False vsini_file = "%s/School/Research/Useful_Datafiles/Vsini.csv" % (os.environ["HOME"]) for arg in sys.argv[1:]: if "-p" in arg: plot = True elif "-vsini" in arg: vsini_file = arg.split("=")[-1] else: fileList.append(arg) #Read in the vsini table vsini_data = ascii.read(vsini_file)[10:] if len(fileList) == 0: fileList = [f for f in os.listdir("./") if f.endswith("telluric_corrected.fits")] for fname in fileList: orders = HelperFunctions.ReadFits(fname, extensions=True, x="wavelength", y="flux", cont="continuum", errors="error") #Find the vsini of this star header = fits.getheader(fname) starname = header["object"].split()[0].replace("_", " ") found = False for data in vsini_data: if data[0] == starname: vsini = float(data[1]) found = True if not found: outfile = open("Warnings.log", "a") outfile.write("Cannot find %s in the vsini data: %s\n" % (starname, vsini_file)) outfile.close() warnings.warn("Cannot find %s in the vsini data: %s" % (starname, vsini_file)) print starname, vsini #Begin looping over the orders column_list = [] header_list = [] for i, order in enumerate(orders): print "Smoothing order %i/%i" % (i + 1, len(orders)) #Fix errors order.err[order.err > 1e8] = np.sqrt(order.y[order.err > 1e8]) #Linearize xgrid = np.linspace(order.x[0], order.x[-1], order.x.size) order = FittingUtilities.RebinData(order, xgrid) dx = order.x[1] - order.x[0] smooth_factor = 0.8 theta = roundodd(vsini / 3e5 * order.x.mean() / dx * smooth_factor) denoised = SmoothData(order, windowsize=theta, smoothorder=3, lowreject=3, highreject=3, expand=10, numiters=10) #denoised, theta = GPSmooth(order.copy()) #denoised, theta = CrossValidation(order.copy(), 5, 2, 2, 10) #denoised, theta = OptimalSmooth(order.copy()) #denoised.y *= order.cont/order.cont.mean() print "Window size = %.4f nm" % theta column = {"wavelength": denoised.x, "flux": order.y / denoised.y, "continuum": denoised.cont, "error": denoised.err} header_list.append((("Smoother", theta, "Smoothing Parameter"),)) column_list.append(column) if plot: plt.figure(1) plt.plot(order.x, order.y / order.y.mean()) plt.plot(denoised.x, denoised.y / denoised.y.mean()) plt.title(starname) plt.figure(2) plt.plot(order.x, order.y / denoised.y) plt.title(starname) #plt.plot(order.x, (order.y-denoised.y)/np.median(order.y)) #plt.show() if plot: plt.show() outfilename = "%s_smoothed.fits" % (fname.split(".fits")[0]) print "Outputting to %s" % outfilename HelperFunctions.OutputFitsFileExtensions(column_list, fname, outfilename, mode='new', headers_info=header_list)
gpl-3.0
4,576,857,145,479,174,000
37.141104
119
0.564098
false
3.770164
false
false
false
AutorestCI/azure-sdk-for-python
azure-mgmt-datalake-analytics/azure/mgmt/datalake/analytics/job/models/resource_usage_statistics.py
2
1414
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ResourceUsageStatistics(Model): """the statistics information for resource usage. Variables are only populated by the server, and will be ignored when sending a request. :ivar average: the average value. :vartype average: float :ivar minimum: the minimum value. :vartype minimum: long :ivar maximum: the maximum value. :vartype maximum: long """ _validation = { 'average': {'readonly': True}, 'minimum': {'readonly': True}, 'maximum': {'readonly': True}, } _attribute_map = { 'average': {'key': 'average', 'type': 'float'}, 'minimum': {'key': 'minimum', 'type': 'long'}, 'maximum': {'key': 'maximum', 'type': 'long'}, } def __init__(self): super(ResourceUsageStatistics, self).__init__() self.average = None self.minimum = None self.maximum = None
mit
1,628,343,292,106,821,000
30.422222
76
0.5686
false
4.666667
false
false
false
juliarizza/web2courses
controllers/default.py
1
7458
# -*- coding: utf-8 -*- # this file is released under public domain and you can use without limitations ######################################################################### ## This is a sample controller ## - index is the default action of any application ## - user is required for authentication and authorization ## - download is for downloading files uploaded in the db (does streaming) ######################################################################### import itertools def index(): return dict() def user(): """ exposes: http://..../[app]/default/user/login http://..../[app]/default/user/logout http://..../[app]/default/user/register http://..../[app]/default/user/profile http://..../[app]/default/user/retrieve_password http://..../[app]/default/user/change_password http://..../[app]/default/user/manage_users (requires membership in use @auth.requires_login() @auth.requires_membership('group name') @auth.requires_permission('read','table name',record_id) to decorate functions that need access control """ if request.args(0) == 'register': db.auth_user.bio.writable = db.auth_user.bio.readable = False db.auth_user.avatar.writable = db.auth_user.avatar.readable = False return dict(form=auth()) @cache.action() def download(): """ allows downloading of uploaded files http://..../[app]/default/download/[filename] """ return response.download(request, db) def call(): """ exposes services. for example: http://..../[app]/default/call/jsonrpc decorate with @services.jsonrpc the functions to expose supports xml, json, xmlrpc, jsonrpc, amfrpc, rss, csv """ return service() ################################################################################## #### #### #### COURSE PAGES #### #### #### ################################################################################## def courses(): courses = db(Course).select() return dict(courses=courses) def course(): course_id = request.args(0, cast=int) course = Course(id=course_id) open_classes = course.classes(Class.status == 3).select() limited_classes = [c for c in open_classes if c.available_until] Interest.course.default = course_id Interest.course.readable = Interest.course.writable = False interest_form = SQLFORM(Interest) if interest_form.process(onvalidation=check_if_exists).accepted: response.flash = T("Thank you!") elif interest_form.errors: response.flash = T("Erros no formulário!") return dict( course=course, open_classes=open_classes, limited_classes=limited_classes, interest_form=interest_form) def enroll(): class_id = request.args(0, cast=int) if not class_id in session.cart: session.cart.append(class_id) else: session.flash = T('This course is already on your shopping cart!') redirect(URL('payments', 'shopping_cart')) @auth.requires_login() def my_courses(): class_ids = db(Student.student == auth.user.id).select() my_courses = db(Course.course_owner == auth.user.id).select() classes = db(Class.id.belongs([x.class_id for x in class_ids])|\ Class.course.belongs([x.id for x in my_courses])).select() return dict(classes=classes) @auth.requires(lambda: enrolled_in_class(record_id=request.args(0, cast=int), record_type=1) | auth.has_membership("Admin")) def my_class(): class_id = request.args(0, cast=int) my_class = Class(id=class_id) my_course = my_class.course modules = db(Module.course_id == my_course).select() return dict(my_class=my_class, modules=modules) @auth.requires(lambda: enrolled_in_class(record_id=request.args(0, cast=int), record_type=2) | auth.has_membership("Admin")) def lesson(): lesson_id = request.args(0, cast=int) class_id = request.args(1, cast=int) lesson = Lesson(id=lesson_id) if db(Schedule_Lesson.lesson_id == lesson_id).select().first().release_date > request.now.date(): raise HTTP(404) page = int(request.vars.page or 1) videos = lesson.videos.select() texts = lesson.texts.select() exercises = lesson.exercises.select() merged_records = itertools.chain(videos, texts, exercises) contents = sorted(merged_records, key=lambda record: record['place']) if page <= 0 or page > len(contents): raise HTTP(404) is_correct = {} if request.vars: keys = request.vars.keys() for key in keys: if key != 'page': q_id = int(key.split('_')[1]) question = Exercise(id=q_id) if question.correct == int(request.vars[key]): is_correct[key] = True else: is_correct[key] = False return dict(lesson=lesson, content=contents[page-1], total_pages=len(contents), is_correct=is_correct, class_id=class_id) @auth.requires(lambda: enrolled_in_class(record_id=request.args(0, cast=int), record_type=1) | auth.has_membership("Admin")) def forum(): class_id = request.args(0, cast=int) topics = db(Forum.class_id == class_id).select(orderby=~Forum.created_on) return dict(topics=topics, class_id=class_id) @auth.requires(lambda: enrolled_in_class(record_id=request.args(0, cast=int), record_type=3) | auth.has_membership("Admin")) def topic(): topic_id = request.args(0, cast=int) topic = Forum(id=topic_id) comments = db(Comment.post == topic_id).select() Comment.post.default = topic_id Comment.post.readable = Comment.post.writable = False form = crud.create(Comment, next=URL('topic', args=topic_id)) return dict(topic=topic, comments=comments, form=form) @auth.requires(lambda: enrolled_in_class(record_id=request.args(0, cast=int), record_type=1) | auth.has_membership("Admin")) def new_topic(): class_id = request.args(0, cast=int) Forum.class_id.default = class_id Forum.class_id.readable = Forum.class_id.writable = False form = SQLFORM(Forum) if form.process().accepted: redirect(URL('topic', args=form.vars.id)) return dict(form=form) @auth.requires(lambda: enrolled_in_class(record_id=request.args(0, cast=int), record_type=1) | auth.has_membership("Admin")) def calendar(): class_id = request.args(0, cast=int) dates = db((Date.class_id == class_id)|(Date.class_id == None)).select() my_class = Class(id=class_id) modules = db(Module.course_id == my_class.course).select() lessons = [] for module in modules: for lesson in module.lessons.select(): lessons.append(lesson) return dict(dates=dates, my_class=my_class, lessons=lessons) @auth.requires(lambda: enrolled_in_class(record_id=request.args(0, cast=int), record_type=1) | auth.has_membership("Admin")) def announcements(): class_id = request.args(0, cast=int) announcements = db(Announcement.class_id == class_id).select() return dict(announcements=announcements, class_id=class_id)
mit
2,963,647,003,533,820,400
35.920792
124
0.593134
false
3.700744
false
false
false
jbaayen/sympy
sympy/thirdparty/__init__.py
10
1047
"""Thirdparty Packages for internal use. """ import sys import os def import_thirdparty(lib): """ Imports a thirdparty package "lib" by setting all paths correctly. At the moment, there is only the "pyglet" library, so we just put pyglet to sys.path temporarily, then import "lib" and then restore the path. With more packages, we'll just put them to sys.path as well. """ seen = set() def new_import(name, globals={}, locals={}, fromlist=[]): if name in seen: return old_import(name, globals, locals, fromlist) seen.add(name) sys.path.insert(0, os.path.join(os.path.abspath(os.path.dirname( \ __file__)), "pyglet")) try: m = old_import(name, globals, locals, fromlist) finally: del sys.path[0] return m import __builtin__ old_import = __builtin__.__import__ __builtin__.__import__ = new_import try: m = __import__(lib) finally: __builtin__.__import__ = old_import return m
bsd-3-clause
2,119,548,506,643,350,000
28.083333
80
0.588348
false
3.892193
false
false
false
bigartm/visartm
algo/tools/vkloader.py
1
1609
import os import json def download_wall(domain, dataset_folder, cut=1000000, access_token=None): import vk session = vk.Session(access_token=access_token) api = vk.API(session) info = dict() docs_folder = os.path.join(dataset_folder, "documents") os.makedirs(docs_folder, exist_ok=True) os.makedirs(os.path.join(dataset_folder, "meta"), exist_ok=True) id = 0 offset = 0 while True: posts = api.wall.get(domain=domain, offset=offset, count=100) for i in range(1, len(posts)): post = posts[i] text = post["text"].replace("<br>", "\n") if len(text) > 50: id += 1 text_id = "%06d.txt" % id info[text_id] = dict() info[text_id]["url"] = "https://vk.com/" + domain + \ "?w=wall" + str(post["from_id"]) + "_" + str(post["id"]) info[text_id]["time"] = post["date"] text_file_name = os.path.join(docs_folder, text_id) with open(text_file_name, "w", encoding='utf-8') as f: f.write(text) if id == cut: break offset += 100 # print (offset) if len(posts) != 101: break if id == cut: break with open(os.path.join(dataset_folder, "meta", "meta.json"), "wb") as f: f.write(json.dumps(info).encode("UTF-8")) if __name__ == "__main__": domain = "lurkopub_alive" download_wall( domain, "D:\\visartm\\data\\datasets\\" + domain, cut=1000000)
bsd-3-clause
5,083,216,247,126,751,000
31.18
76
0.50404
false
3.460215
false
false
false
yeongseon/django_beautifulseodang
django_beautifulseodang/settings.py
1
8083
""" Django settings for django_beautifulseodang project. Generated by 'django-admin startproject' using Django 1.8.14. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os import sys import json from django.core.exceptions import ImproperlyConfigured BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Env for dev / deploy def get_env(setting, envs): try: return envs[setting] except KeyError: error_msg = "You SHOULD set {} environ".format(setting) raise ImproperlyConfigured(error_msg) return # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'ukm)tbc+e%#gew3^%wxyk%@@e9&g%3(@zq&crilwlbvh@6n*l$' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', # Favicon 'favicon', # Disqus 'disqus', # ckeditor 'ckeditor', 'ckeditor_uploader', # Bootstrap 'bootstrap3', 'bootstrapform', 'bootstrap_pagination', 'django_social_share', # Fontawesome 'fontawesome', # home 'home', 'social_django', #'social.apps.django_app.default', 'django_beautifulseodang', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', 'social_django.middleware.SocialAuthExceptionMiddleware', ) ROOT_URLCONF = 'django_beautifulseodang.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(BASE_DIR, 'templates'), #os.path.join(BASE_DIR, 'templates', 'allauth'), os.path.join(BASE_DIR, 'templates', 'django_social_share'), ], # 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.i18n', 'django.template.context_processors.media', 'django.template.context_processors.static', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'social_django.context_processors.backends', 'social_django.context_processors.login_redirect', #'social.apps.django_app.context_processors.backends', #'social.apps.django_app.context_processors.login_redirect', ], 'loaders': [ # APP_DIRS를 주석처리 해야지 동작 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', ] }, }, ] # Django all auth settings AUTHENTICATION_BACKENDS = ( #'social_core.backends.github.GithubOAuth2', # Github for python-social-auth 'social_core.backends.twitter.TwitterOAuth', # Twitter for python-social-auth 'social_core.backends.google.GoogleOAuth2', # Google for python-social-auth 'social_core.backends.facebook.FacebookOAuth2', # Facebook for python-social-auth 'django.contrib.auth.backends.ModelBackend', ) WSGI_APPLICATION = 'django_beautifulseodang.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } TEMPLATE_DIR = ( os.path.join(BASE_DIR, 'templates'), ) # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'ko-kr' # 기본 한글 TIME_ZONE = 'Asia/Seoul' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'static'), ) STATIC_ROOT = os.path.join(BASE_DIR, 'statics') SITE_ID = 1 AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', 'OPTIONS': { 'min_length': 9, } } ] SOCIAL_AUTH_PIPELINE = ( 'social.pipeline.social_auth.social_details', 'social.pipeline.social_auth.social_uid', 'social.pipeline.social_auth.auth_allowed', 'social.pipeline.social_auth.social_user', 'social.pipeline.user.get_username', 'social.pipeline.user.create_user', #'accounts.social.create_user', # 덮어씀 #'accounts.social.update_avatar', # 추가함 'social.pipeline.social_auth.associate_user', 'social.pipeline.social_auth.load_extra_data', 'social.pipeline.user.user_details' ) SOCIAL_AUTH_LOGIN_REDIRECT_URL = '/' SOCIAL_AUTH_URL_NAMESPACE = 'social' LOGIN_URL = 'login' LOGOUT_URL = 'logout' LOGIN_REDIRECT_URL = '/' #ACCOUNT_FORMS = { # 'login': 'home.forms.MyLoginForm', # 'signup': 'home.forms.MySignupForm' #} DEV_ENVS = os.path.join(BASE_DIR, "envs_dev.json") DEPLOY_ENVS = os.path.join(BASE_DIR, "envs.json") if os.path.exists(DEV_ENVS): # Develop Env env_file = open(DEV_ENVS) elif os.path.exists(DEPLOY_ENVS): # Deploy Env env_file = open(DEPLOY_ENVS) else: env_file = None if env_file is None: # System environ try: FACEBOOK_KEY = os.environ['FACEBOOK_KEY'] FACEBOOK_SECRET = os.environ['FACEBOOK_SECRET'] GOOGLE_KEY = os.environ['GOOGLE_KEY'] GOOGLE_SECRET = os.environ['GOOGLE_SECRET'] except KeyError as error_msg: raise ImproperlyConfigured(error_msg) else: # JSON env envs = json.loads(env_file.read()) FACEBOOK_KEY = get_env('FACEBOOK_KEY', envs) FACEBOOK_SECRET = get_env('FACEBOOK_SECRET', envs) GOOGLE_KEY = get_env('GOOGLE_KEY', envs) GOOGLE_SECRET = get_env('GOOGLE_SECRET', envs) # SocialLogin: Facebook SOCIAL_AUTH_FACEBOOK_KEY = FACEBOOK_KEY SOCIAL_AUTH_FACEBOOK_SECRET = FACEBOOK_SECRET SOCIAL_AUTH_FACEBOOK_SCOPE = ['email'] SOCIAL_AUTH_FACEBOOK_PROFILE_EXTRA_PARAMS = { 'fields': 'id, name, email' } # SocialLogin: Google SOCIAL_AUTH_GOOGLE_OAUTH2_KEY = GOOGLE_KEY SOCIAL_AUTH_GOOGLE_OAUTH2_SECRET = GOOGLE_SECRET SOCIAL_AUTH_GOOGLE_OAUTH2_SCOPE = ['email'] SOCIAL_AUTH_TWITTER_KEY = 'EUQaQkvpr4R22UTNofeqIfqsV' SOCIAL_AUTH_TWITTER_SECRET = 'QLjJGjCGMxkIPvGaMymAcu7zZ2GcjMxrbHqt019v5FpIs3WTB1' SESSION_SERIALIZER = 'django.contrib.sessions.serializers.PickleSerializer' # favicon FAVICON_PATH = STATIC_URL + 'img/favicon.png' # ckeditor MEDIA_URL = '/media/' CKEDITOR_JQUERY_URL = '//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js' CKEDITOR_UPLOAD_PATH = "uploads/" CKEDITOR_CONFIGS = { 'default': { 'toolbar': None, } } # Disqus DISQUS_API_KEY = 'zcJshWHxmOREPGjOrCq6r0rviSIIELz2iHWEdwDrpYSpko5wZDVBt60c7kYsvjlP' DISQUS_WEBSITE_SHORTNAME = 'http-yeongseon-pythonanywhere-com' #try: # from .allauth_settings import * #except ImportError: # print("ImportError") # pass try: from .bootstrap3_settings import * except ImportError: print("ImportError") pass
mit
1,824,213,679,889,360,100
26.172297
85
0.674748
false
3.184086
false
false
false
ArcheProject/arche_pas
arche_pas/registration_cases.py
1
8840
# -*- coding: utf-8 -*- from __future__ import unicode_literals from uuid import uuid4 from arche.interfaces import IFlashMessages from pyramid.httpexceptions import HTTPFound from arche_pas import _ from arche_pas.models import register_case def callback_case_1(provider, user, data): provider.store(user, data) fm = IFlashMessages(provider.request) msg = _("data_tied_at_login", default="Since you already had an account with the same email address validated, " "you've been logged in as that user. Your accounts have also been linked.") fm.add(msg, type="success", auto_destruct=False) # Will return a HTTP 302 return provider.login(user) def callback_case_2(provider, user, data): user.email_validated = True provider.store(user, data) fm = IFlashMessages(provider.request) msg = _("accounts_linked_verified_since_logged_in", default="You've linked your external login to this account.") fm.add(msg, type="success", auto_destruct=False) # Will return a HTTP 302 return provider.login(user) def callback_must_be_logged_in(provider, user, data): email = provider.get_email(data, validated=False) msg = _("user_email_present", default="There's already a user registered here with your email address: '${email}' " "If this is your account, please login here first to " "connect the two accounts.", mapping={'email': email}) fm = IFlashMessages(provider.request) fm.add(msg, type='danger', auto_destruct=False, require_commit=False) raise HTTPFound(location=provider.request.resource_url(provider.request.root, 'login')) def callback_register(provider, user, data): reg_id = str(uuid4()) provider.request.session[reg_id] = data # Register this user return reg_id def callback_maybe_attach_account(provider, user, data): """ Only for logged in users.""" reg_id = str(uuid4()) provider.request.session[reg_id] = data raise HTTPFound(location=provider.request.route_url('pas_link', provider=provider.name, reg_id=reg_id)) def includeme(config): """ Different registration cases for email: 1) Validated on server, validated locally and exist 2) Validated on server, exists locally but not validated, user logged in 3) Validated on server, exists locally but not validated, user not logged in 4) Validated on server, doesn't exist locally 5) Validated on server, doesn't match locally but user logged in - change email? Serious security breach risk: 6) Not validated/trusted on server, validated locally, user logged in - Serious risk of hack: cross site scripting or accidental attach of credentials 7) Not validated/trusted on server, validated locally, user not logged in 8) Not validated/trusted on server, exists locally but not validated, user logged in 9) Not validated/trusted on server, local user not matched, user logged in 10) Not validated/trusted on server, exists locally but not validated, user not logged in 11) Not validated/trusted on server, doesn't exist locally, not logged in 12) No email from provider, user logged in 13) No email from provider, user not logged in """ register_case( config.registry, 'case1', title = "Validated on server, validated locally and user exists", require_authenticated = None, email_validated_provider = True, email_validated_locally = True, user_exist_locally = True, provider_validation_trusted = True, callback=callback_case_1, ) register_case( config.registry, 'case2', title = "Validated on server, exists locally but not validated, user logged in", require_authenticated = True, email_validated_provider = True, email_validated_locally = False, user_exist_locally = True, provider_validation_trusted = True, callback = callback_case_2, ) register_case( config.registry, 'case3', title = "Validated on server, exists locally but not validated, user not logged in", require_authenticated = False, email_validated_provider = True, email_validated_locally = False, user_exist_locally = True, provider_validation_trusted = True, callback = callback_must_be_logged_in, ) register_case( config.registry, 'case4', title = "Validated on server, doesn't exist locally", require_authenticated = False, email_validated_provider = True, #email_validated_locally = False, user_exist_locally = False, provider_validation_trusted = True, callback = callback_register, ) register_case( config.registry, 'case5', title = "Validated on server, doesn't match locally but is authenticated", require_authenticated = True, email_validated_provider = True, #email_validated_locally = False, user_exist_locally = False, provider_validation_trusted = True, callback = callback_maybe_attach_account, ) register_case( config.registry, 'case6', title="Not validated/trusted on server, validated locally, user logged in", require_authenticated = True, #email_validated_provider = None, email_validated_locally = True, #user_exist_locally = True, Should be caught by email_validated_locally? email_from_provider = None, provider_validation_trusted = False, callback = callback_maybe_attach_account, ) register_case( config.registry, 'case7', title="Not validated/trusted on server, validated locally, user not logged in", require_authenticated = False, #email_validated_provider = None, email_validated_locally = True, #user_exist_locally = True, Should be caught by email_validated_locally? email_from_provider = None, provider_validation_trusted = False, callback = callback_must_be_logged_in, ) register_case( config.registry, 'case8', title="Not validated/trusted on server, exists locally but not validated, user logged in", require_authenticated = True, email_validated_provider = None, email_validated_locally = False, user_exist_locally = True, email_from_provider = True, provider_validation_trusted = False, callback = callback_maybe_attach_account, ) register_case( config.registry, 'case9', title="Not validated/trusted on server, local user not matched, user logged in", require_authenticated = True, email_validated_provider = None, email_validated_locally = False, user_exist_locally = False, email_from_provider = True, provider_validation_trusted = False, callback = callback_maybe_attach_account, #FIXME: And change email? ) register_case( config.registry, 'case10', title="Not validated/trusted on server, exists locally but not validated, user not logged in", require_authenticated = False, email_validated_provider = None, email_validated_locally = False, user_exist_locally = True, email_from_provider = None, provider_validation_trusted = False, callback = callback_must_be_logged_in, ) register_case( config.registry, 'case11', title="Not validated/trusted on server, doesn't exist locally", require_authenticated = False, email_validated_provider = None, #email_validated_locally = False, user_exist_locally = False, email_from_provider = True, provider_validation_trusted = False, callback = callback_register, ) register_case( config.registry, 'case12', title="No email from provider, user logged in", require_authenticated = True, email_validated_provider = None, email_validated_locally = None, # user_exist_locally = True, email_from_provider = False, provider_validation_trusted = None, callback = callback_maybe_attach_account, ) register_case( config.registry, 'case13', title="No email from provider, user not logged in", require_authenticated = False, #email_validated_provider = None, #email_validated_locally = None, #user_exist_locally = None, email_from_provider = False, #provider_validation_trusted = None, callback=callback_register, #Allow registration here? )
gpl-2.0
4,128,858,310,187,192,000
36.617021
107
0.648982
false
4.266409
true
false
false
Diego999/Sudoku-Recognition
Training/Sets/create_sets.py
1
2220
from os import listdir, path from random import shuffle SEPARATOR = '_' class Attrib: def __init__(self, number, id, path): self.number, self.id, self.path = number, id, path def __str__(self): return 'Number : ' + str(self.number) + ', Id : ' + str(self.id) + ', Path : ' + self.path def __unicode__(self): return self.__str__() def __repr__(self): return self.__str__() def __eq__(self, other): return self.path == other.path def listdir_nohidden(_path): output = [] if path.isdir(_path): for f in listdir(_path): if not f.startswith('.'): output.append(f) return output def analyze_image(filepath): filename = filepath[1+filepath.rfind('/'):] words = filename.split(SEPARATOR) words[-1] = words[-1][0:words[-1].find('.')]#Remove extension return Attrib(words[0], words[1], filepath) def load_image(dirs): output = [] for d in dirs: i = 0 for f in listdir_nohidden(d): for ff in listdir_nohidden(d+f): output.append(analyze_image(d + f + '/' + ff)) i += 1 print(d, ' contains ', i, ' items') shuffle(output) return output def query(dirs, n, different_than=None): output = [] i = 0 for f in load_image(dirs): if i >= n: break if different_than is None or (different_than is not None and f not in different_than): output.append(f) i += 1 return output def save_file(path, list): with open(path, 'w+') as f: for l in list: f.write(l.path + '\n') # The data is from the Machine Learning book filepath = '/Users/Diego/Github/Digit-Dataset/' d = [filepath] nb_training = 270*0.8 nb_validation = 270*0.2 training = query(d, nb_training, different_than=None) validation = query(d, nb_validation, different_than=training) print "\nTraining ", len(training), " items\n" for t in training: print(t) print "\nValidation ", len(validation), " items\n" for v in validation: print(v) save_file('/Users/Diego/Desktop/training.list', training) save_file('/Users/Diego/Desktop/validation.list', validation)
mit
-4,436,189,453,462,923,300
24.238636
98
0.584685
false
3.457944
false
false
false
ggreg/presto-python-client
prestodb/client.py
1
18954
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This module implements the Presto protocol to submit SQL statements, track their state and retrieve their result as described in https://github.com/prestodb/presto/wiki/HTTP-Protocol and Presto source code. The outline of a query is: - Send HTTP POST to the coordinator - Retrieve HTTP response with ``nextUri`` - Get status of the query execution by sending a HTTP GET to the coordinator Presto queries are managed by the ``PrestoQuery`` class. HTTP requests are managed by the ``PrestoRequest`` class. the status of a query is represented by ``PrestoStatus`` and the result by ``PrestoResult``. The main interface is :class:`PrestoQuery`: :: >> request = PrestoRequest(host='coordinator', port=8080, user='test') >> query = PrestoQuery(request, sql) >> rows = list(query.execute()) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from typing import Any, Dict, List, Optional, Text, Tuple, Union # NOQA for mypy types import requests from prestodb import constants from prestodb import exceptions import prestodb.logging from prestodb.transaction import NO_TRANSACTION import prestodb.redirect __all__ = ['PrestoQuery', 'PrestoRequest'] logger = prestodb.logging.get_logger(__name__) MAX_ATTEMPTS = constants.DEFAULT_MAX_ATTEMPTS SOCKS_PROXY = os.environ.get('SOCKS_PROXY') if SOCKS_PROXY: PROXIES = { 'http': 'socks5://' + SOCKS_PROXY, 'https': 'socks5://' + SOCKS_PROXY, } else: PROXIES = None class ClientSession(object): def __init__( self, catalog, schema, source, user, properties=None, headers=None, transaction_id=None, ): self.catalog = catalog self.schema = schema self.source = source self.user = user if properties is None: properties = {} self._properties = properties self._headers = headers or {} self.transaction_id = transaction_id @property def properties(self): return self._properties @property def headers(self): return self._headers def get_header_values(headers, header): return [val.strip() for val in headers[header].split(',')] def get_session_property_values(headers, header): kvs = get_header_values(headers, header) return [ (k.strip(), v.strip()) for k, v in (kv.split('=', 1) for kv in kvs) ] class PrestoStatus(object): def __init__(self, id, stats, info_uri, next_uri, rows, columns=None): self.id = id self.stats = stats self.info_uri = info_uri self.next_uri = next_uri self.rows = rows self.columns = columns def __repr__(self): return ( 'PrestoStatus(' 'id={}, stats={{...}}, info_uri={}, next_uri={}, rows=<count={}>' ')'.format( self.id, self.info_uri, self.next_uri, len(self.rows), ) ) class PrestoRequest(object): """ Manage the HTTP requests of a Presto query. :param host: name of the coordinator :param port: TCP port to connect to the coordinator :param user: associated with the query. It is useful for access control and query scheduling. :param source: associated with the query. It is useful for access control and query scheduling. :param catalog: to query. The *catalog* is associated with a Presto connector. This variable sets the default catalog used by SQL statements. For example, if *catalog* is set to ``some_catalog``, the SQL statement ``SELECT * FROM some_schema.some_table`` will actually query the table ``some_catalog.some_schema.some_table``. :param schema: to query. The *schema* is a logical abstraction to group table. This variable sets the default schema used by SQL statements. For eample, if *schema* is set to ``some_schema``, the SQL statement ``SELECT * FROM some_table`` will actually query the table ``some_catalog.some_schema.some_table``. :param session_properties: set specific Presto behavior for the current session. Please refer to the output of ``SHOW SESSION`` to check the available properties. :param http_headers: HTTP headers to post/get in the HTTP requests :param http_scheme: "http" or "https" :param auth: class that manages user authentication. ``None`` means no authentication. :max_attempts: maximum number of attempts when sending HTTP requests. An attempt is an HTTP request. 5 attempts means 4 retries. :request_timeout: How long (in seconds) to wait for the server to send data before giving up, as a float or a ``(connect timeout, read timeout)`` tuple. The client initiates a query by sending an HTTP POST to the coordinator. It then gets a response back from the coordinator with: - An URI to query to get the status for the query and the remaining data - An URI to get more information about the execution of the query - Statistics about the current query execution Please refer to :class:`PrestoStatus` to access the status returned by :meth:`PrestoRequest.process`. When the client makes an HTTP request, it may encounter the following errors: - Connection or read timeout: - There is a network partition and TCP segments are either dropped or delayed. - The coordinator stalled because of an OS level stall (page allocation stall, long time to page in pages, etc...), a JVM stall (full GC), or an application level stall (thread starving, lock contention) - Connection refused: Configuration or runtime issue on the coordinator - Connection closed: As most of these errors are transient, the question the caller should set retries with respect to when they want to notify the application that uses the client. """ http = requests HTTP_EXCEPTIONS = ( http.ConnectionError, # type: ignore http.Timeout, # type: ignore ) def __init__( self, host, # type: Text port, # type: int user, # type: Text source=None, # type: Text catalog=None, # type: Text schema=None, # type: Text session_properties=None, # type: Optional[Dict[Text, Any]] http_session=None, # type: Any http_headers=None, # type: Optional[Dict[Text, Text]] transaction_id=NO_TRANSACTION, # type: Optional[Text] http_scheme=constants.HTTP, # type: Text auth=constants.DEFAULT_AUTH, # type: Optional[Any] redirect_handler=prestodb.redirect.GatewayRedirectHandler(), max_attempts=MAX_ATTEMPTS, # type: int request_timeout=constants.DEFAULT_REQUEST_TIMEOUT, # type: Union[float, Tuple[float, float]] handle_retry=exceptions.RetryWithExponentialBackoff(), ): # type: (...) -> None self._client_session = ClientSession( catalog, schema, source, user, session_properties, http_headers, transaction_id, ) self._host = host self._port = port self._next_uri = None # type: Optional[Text] if http_session is not None: self._http_session = http_session else: # mypy cannot follow module import self._http_session = self.http.Session() # type: ignore self._http_session.headers.update(self.http_headers) self._exceptions = self.HTTP_EXCEPTIONS self._auth = auth if self._auth: if http_scheme == constants.HTTP: raise ValueError('cannot use authentication with HTTP') self._auth.set_http_session(self._http_session) self._exceptions += self._auth.get_exceptions() self._redirect_handler = redirect_handler self._request_timeout = request_timeout self._handle_retry = handle_retry self.max_attempts = max_attempts self._http_scheme = http_scheme @property def transaction_id(self): return self._client_session.transaction_id @transaction_id.setter def transaction_id(self, value): self._client_session.transaction_id = value @property def http_headers(self): # type: () -> Dict[Text, Text] headers = {} headers[constants.HEADER_CATALOG] = self._client_session.catalog headers[constants.HEADER_SCHEMA] = self._client_session.schema headers[constants.HEADER_SOURCE] = self._client_session.source headers[constants.HEADER_USER] = self._client_session.user headers[constants.HEADER_SESSION] = ','.join( # ``name`` must not contain ``=`` '{}={}'.format(name, value) for name, value in self._client_session.properties.items() ) # merge custom http headers for key in self._client_session.headers: if key in headers.keys(): raise ValueError('cannot override reserved HTTP header {}'.format(key)) headers.update(self._client_session.headers) transaction_id = self._client_session.transaction_id headers[constants.HEADER_TRANSACTION] = transaction_id return headers @property def max_attempts(self): # type: () -> int return self._max_attempts @max_attempts.setter def max_attempts(self, value): # type: (int) -> None self._max_attempts = value if value == 1: # No retry self._get = self._http_session.get self._post = self._http_session.post self._delete = self._http_session.delete return with_retry = exceptions.retry_with( self._handle_retry, exceptions=self._exceptions, conditions=( # need retry when there is no exception but the status code is 503 lambda response: getattr(response, 'status_code', None) == 503, ), max_attempts=self._max_attempts, ) self._get = with_retry(self._http_session.get) self._post = with_retry(self._http_session.post) self._delete = with_retry(self._http_session.delete) def get_url(self, path): # type: (Text) -> Text return "{protocol}://{host}:{port}{path}".format( protocol=self._http_scheme, host=self._host, port=self._port, path=path ) @property def statement_url(self): # type: () -> Text return self.get_url(constants.URL_STATEMENT_PATH) @property def next_uri(self): # type: () -> Text return self._next_uri def post(self, sql): data = sql.encode('utf-8') http_headers = self.http_headers http_response = self._post( self.statement_url, data=data, headers=http_headers, timeout=self._request_timeout, allow_redirects=self._redirect_handler is None, proxies=PROXIES, ) if self._redirect_handler is not None: while http_response is not None and http_response.is_redirect: location = http_response.headers['Location'] url = self._redirect_handler.handle(location) logger.info('redirect {} from {} to {}'.format( http_response.status_code, location, url, )) http_response = self._post( url, data=data, headers=http_headers, timeout=self._request_timeout, allow_redirects=False, proxies=PROXIES, ) return http_response def get(self, url): return self._get( url, headers=self.http_headers, timeout=self._request_timeout, proxies=PROXIES, ) def delete(self, url): return self._delete( url, timeout=self._request_timeout, proxies=PROXIES, ) def _process_error(self, error, query_id): error_type = error['errorType'] if error_type == 'EXTERNAL': raise exceptions.PrestoExternalError(error, query_id) elif error_type == 'USER_ERROR': return exceptions.PrestoUserError(error, query_id) return exceptions.PrestoQueryError(error, query_id) def raise_response_error(self, http_response): if http_response.status_code == 503: raise exceptions.Http503Error('error 503: service unavailable') raise exceptions.HttpError( 'error {}{}'.format( http_response.status_code, ': {}'.format(http_response.content) if http_response.content else '', ) ) def process(self, http_response): # type: (requests.Response) -> PrestoStatus if not http_response.ok: self.raise_response_error(http_response) http_response.encoding = 'utf-8' response = http_response.json() logger.debug('HTTP {}: {}'.format(http_response.status_code, response)) if 'error' in response: raise self._process_error(response['error'], response.get('id')) if constants.HEADER_CLEAR_SESSION in http_response.headers: for prop in get_header_values( http_response.headers, constants.HEADER_CLEAR_SESSION, ): self._client_session.properties.pop(prop, None) if constants.HEADER_SET_SESSION in http_response.headers: for key, value in get_session_property_values( http_response.headers, constants.HEADER_SET_SESSION, ): self._client_session.properties[key] = value self._next_uri = response.get('nextUri') return PrestoStatus( id=response['id'], stats=response['stats'], info_uri=response['infoUri'], next_uri=self._next_uri, rows=response.get('data', []), columns=response.get('columns'), ) class PrestoResult(object): """ Represent the result of a Presto query as an iterator on rows. This class implements the iterator protocol as a generator type https://docs.python.org/3/library/stdtypes.html#generator-types """ def __init__(self, query, rows=None): self._query = query self._rows = rows or [] self._rownumber = 0 @property def rownumber(self): # type: () -> int return self._rownumber def __iter__(self): # Initial fetch from the first POST request for row in self._rows: self._rownumber += 1 yield row self._rows = None # Subsequent fetches from GET requests until next_uri is empty. while not self._query.is_finished(): rows = self._query.fetch() for row in rows: self._rownumber += 1 logger.debug('row {}'.format(row)) yield row class PrestoQuery(object): """Represent the execution of a SQL statement by Presto.""" def __init__( self, request, # type: PrestoRequest sql, # type: Text ): # type: (...) -> None self.query_id = None # type: Optional[Text] self._stats = {} # type: Dict[Any, Any] self._columns = None # type: Optional[List[Text]] self._finished = False self._cancelled = False self._request = request self._sql = sql self._result = PrestoResult(self) @property def columns(self): return self._columns @property def stats(self): return self._stats @property def result(self): return self._result def execute(self): # type: () -> PrestoResult """Initiate a Presto query by sending the SQL statement This is the first HTTP request sent to the coordinator. It sets the query_id and returns a Result object used to track the rows returned by the query. To fetch all rows, call fetch() until is_finished is true. """ if self._cancelled: raise exceptions.PrestoUserError( "Query has been cancelled", self.query_id, ) response = self._request.post(self._sql) status = self._request.process(response) self.query_id = status.id self._stats.update({u'queryId': self.query_id}) self._stats.update(status.stats) if status.next_uri is None: self._finished = True self._result = PrestoResult(self, status.rows) return self._result def fetch(self): # type: () -> List[List[Any]] """Continue fetching data for the current query_id""" response = self._request.get(self._request.next_uri) status = self._request.process(response) if status.columns: self._columns = status.columns self._stats.update(status.stats) logger.debug(status) if status.next_uri is None: self._finished = True return status.rows def cancel(self): # type: () -> None """Cancel the current query""" if self.is_finished(): return self._cancelled = True if self._request.next_uri is None: return response = self._request.delete(self._request.next_uri) if response.status_code == requests.codes.no_content: return self._request.raise_response_error(response) def is_finished(self): # type: () -> bool return self._finished
apache-2.0
7,682,619,366,289,095,000
32.846429
101
0.59101
false
4.309686
false
false
false
BrainComputationLab/ncs
applications/simulator/simulator.py
1
1304
#!/usr/bin/python import sys import json_model import pyncs def Run(argv): if len(argv) < 2: print "Usage: %s <model_file>" % argv[0] model = json_model.JSONModel(argv[1]) if not model.valid: print "Failed to load model" return model_specification = model.model_specification simulation_parameters = pyncs.SimulationParameters() simulation_parameters.thisown = False; simulation = pyncs.Simulation(model_specification, simulation_parameters) if not simulation.init(pyncs.string_list(argv)): print "Failed to initialize simulator." return print "Injecting pre-specified inputs." for name, group in model.input_groups.items(): simulation.addInput(group) print "Injection complete." print "Adding reports." sinks = {} for name, report in model.reports.items(): source = simulation.addReport(report) if not source: print "Failed to add report %s" % name return #sinks[name] = pyncs.NullSink(source) #sinks[name] = pyncs.AsciiStreamSink(source) #sinks[name] = pyncs.AsciiFileSink(source, "/dev/fd/0") sinks[name] = pyncs.AsciiFileSink(source, "/dev/fd/0") print "Starting simulation." for i in range(0,100): simulation.step() del simulation if __name__ == "__main__": Run(sys.argv)
bsd-2-clause
-4,326,328,763,696,087,600
28.636364
58
0.680982
false
3.422572
false
false
false
kenshay/ImageScripter
ProgramData/SystemFiles/Python/Lib/site-packages/dask/store/core.py
2
2913
from __future__ import absolute_import, division, print_function from collections import defaultdict from operator import getitem from datetime import datetime from time import time from ..compatibility import MutableMapping from ..core import istask, ishashable from ..utils_test import add # noqa: F401 class Store(MutableMapping): """ Store - A storage of data and computation Examples -------- Store data like a dictionary >>> import dask.store as ds >>> s = ds.Store() >>> s['x'] = 10 >>> s['x'] 10 Also store computation on that data >>> s['y'] = (add, 'x', 5) Accessing these keys results in computations. Results may be cached for reuse. >>> s['y'] 15 Design ------ A Store maintains the following state dsk: dict A dask to define all computation cache: dict-like Stores both ground data and cached intermediate values data: set The keys in the cache that can not be removed for correctness. compute_time: dict:: {key: float} dict mapping the time it took to compute each key access_times: dict:: {key: [datetimes]} The times at which a key was accessed """ def __init__(self, cache=None): self.dsk = dict() if cache is None: cache = dict() self.cache = cache self.data = set() self.compute_time = dict() self.access_times = defaultdict(list) def __setitem__(self, key, value): if key in self.dsk: if (self.dsk[key] == value or self.dsk[key] == (getitem, self.cache, key) and self.cache[key] == value): return else: raise KeyError("Can not overwrite data") if istask(value): self.dsk[key] = value else: self.cache[key] = value self.dsk[key] = (getitem, self.cache, key) self.data.add(key) def __getitem__(self, key): if isinstance(key, list): return (self[item] for item in key) if not ishashable(key): return key if key not in self.dsk: return key self.access_times[key].append(datetime.now()) if key in self.cache: return self.cache[key] task = self.dsk[key] func, args = task[0], task[1:] if func == getitem and args[0] is self.cache: return self.cache[args[1]] args = [self[arg] for arg in args] start = time() result = func(*args) end = time() self.cache[key] = result self.compute_time[key] = end - start return result def __len__(self): return len(self.dsk) def __iter__(self): return iter(self.dsk) def __delitem__(self, key): raise ValueError("Dask Store does not support deletion")
gpl-3.0
-8,787,493,078,674,475,000
24.330435
76
0.565396
false
4.040222
false
false
false