repo_name
stringlengths
6
61
path
stringlengths
4
230
copies
stringlengths
1
3
size
stringlengths
4
6
text
stringlengths
1.01k
850k
license
stringclasses
15 values
hash
int64
-9,220,477,234,079,998,000
9,219,060,020B
line_mean
float64
11.6
96.6
line_max
int64
32
939
alpha_frac
float64
0.26
0.9
autogenerated
bool
1 class
ratio
float64
1.62
6.1
config_test
bool
2 classes
has_no_keywords
bool
2 classes
few_assignments
bool
1 class
BasioMeusPuga/pyGames
Snake.py
1
4991
#!/usr/bin/python3 import sys import random import pygame import os.path BLACK = (0, 0, 0) WHITE = (255, 255, 255) RED = (255, 0, 0) GREEN = (0, 255, 0) FPS = 60 pygame.init() displaysurface = pygame.display.set_mode((400, 400)) displaysurface.fill(WHITE) pygame.display.set_caption('Ghatiya snake') clock = pygame.time.Clock() my_dir = os.path.dirname(os.path.realpath(__file__)) food_sound = pygame.mixer.Sound(my_dir + '/resources/ping.wav') oooh_sound = pygame.mixer.Sound(my_dir + '/resources/oooh.wav') class GameState: score = 0 speed_multiplier = 1 paused = False game_over = False keylock = False class Food: def __init__(self): self.foodx = 105 self.foody = 105 def new_food(self): self.foodx = random.randrange(15, 386, 10) self.foody = random.randrange(15, 386, 10) class Snake: def __init__(self): self.segments = [[15, 5], [5, 5]] self.direction = 'RIGHT' def direction_update(self, direction_input): if self.direction == 'RIGHT' and direction_input == 'LEFT' or \ self.direction == 'LEFT' and direction_input == 'RIGHT' or \ self.direction == 'DOWN' and direction_input == 'UP' or \ self.direction == 'UP' and direction_input == 'DOWN': pass else: if GameState.keylock is False: self.direction = direction_input GameState.keylock = True def embiggen(self): self.segments.append(self.segments[-1]) snek = Snake() chow = Food() def draw_me_like_one_of_your_french_girls(): displaysurface.fill(WHITE) # Score font = pygame.font.SysFont('calibri', 20, bold=True) text = font.render(str(GameState.score), True, (0, 128, 0)) x_c = len(str(GameState.score)) text_rect = text.get_rect(center=(385 - x_c, 10)) displaysurface.blit(text, text_rect) # Food pygame.draw.rect(displaysurface, GREEN, [chow.foodx, chow.foody, 10, 10]) # Snake for i in snek.segments: pygame.draw.rect(displaysurface, BLACK, [i[0], i[1], 10, 10]) def snake_update(): if snek.direction == 'UP': x_mult = 0 y_mult = -1 if snek.direction == 'DOWN': x_mult = 0 y_mult = 1 if snek.direction == 'LEFT': x_mult = -1 y_mult = 0 if snek.direction == 'RIGHT': x_mult = 1 y_mult = 0 new_snek = [[snek.segments[0][0] + (10 * x_mult), snek.segments[0][1] + (10 * y_mult)]] GameState.keylock = False for i in snek.segments[:-1]: new_snek.append(i) snek.segments = new_snek # Collisions snake_head = snek.segments[0] if snake_head in snek.segments[1:] or \ (snake_head[0] < 5 or snake_head[0] > 395) or \ (snake_head[1] < 5 or snake_head[1] > 395): oooh_sound.play() GameState.game_over = True def make_it_grow(): snek.embiggen() chow.new_food() GameState.score += 1 GameState.speed_multiplier = int(GameState.score / 5) food_sound.play() if snake_head == [chow.foodx, chow.foody]: make_it_grow() draw_me_like_one_of_your_french_girls() def main(): while True: if GameState.game_over is False: for event in pygame.event.get(): if event.type == pygame.KEYDOWN: if event.key == pygame.K_UP: snek.direction_update('UP') elif event.key == pygame.K_DOWN: snek.direction_update('DOWN') elif event.key == pygame.K_LEFT: snek.direction_update('LEFT') elif event.key == pygame.K_RIGHT: snek.direction_update('RIGHT') elif event.key == pygame.K_RETURN: # Toggle Pause if GameState.paused is True: GameState.paused = False elif GameState.paused is False: GameState.paused = True elif event.key == pygame.K_ESCAPE or event.key == pygame.K_q: pygame.quit() sys.exit() elif event.type == pygame.QUIT: pygame.quit() sys.exit() if GameState.paused is False: snake_update() pygame.time.wait((100 - 10 * GameState.speed_multiplier)) else: displaysurface.fill(WHITE) font = pygame.font.SysFont('calibri', 60, bold=True) text = font.render('PAUSED', True, RED) text_rect = text.get_rect(center=(200, 200)) displaysurface.blit(text, text_rect) elif GameState.game_over is True: # Draw the head in red on getting a game over snake_head = snek.segments[0] pygame.draw.rect(displaysurface, RED, [snake_head[0], snake_head[1], 10, 10]) # Game over message font = pygame.font.SysFont('calibri', 60, bold=True) text = font.render('GAME OVER', True, RED) text_rect = text.get_rect(center=(200, 200)) displaysurface.blit(text, text_rect) for event in pygame.event.get(): if event.type == pygame.KEYDOWN: if event.key == pygame.K_r: # Reset all variables and restart the game on pressing r GameState.game_over = False GameState.score = 0 GameState.speed_multiplier = 1 snek.__init__() chow.__init__() main() elif event.key == pygame.K_ESCAPE or event.key == pygame.K_q: pygame.quit() sys.exit() elif event.type == pygame.QUIT: pygame.quit() sys.exit() pygame.display.update() clock.tick(FPS) if __name__ == '__main__': main()
gpl-3.0
3,223,128,494,537,172,000
24.335025
88
0.64436
false
2.680451
false
false
false
uclmr/inferbeddings
inferbeddings/nli/disan/disan.py
1
10785
# -*- coding: utf-8 -*- import tensorflow as tf from functools import reduce from operator import mul VERY_BIG_NUMBER = 1e30 VERY_SMALL_NUMBER = 1e-30 VERY_POSITIVE_NUMBER = VERY_BIG_NUMBER VERY_NEGATIVE_NUMBER = -VERY_BIG_NUMBER # --------------- DiSAN Interface ---------------- def disan(rep_tensor, rep_mask, scope=None, keep_prob=1., is_train=None, wd=0., activation='elu', tensor_dict=None, name=''): with tf.variable_scope(scope or 'DiSAN'): with tf.variable_scope('ct_attn'): fw_res = directional_attention_with_dense( rep_tensor, rep_mask, 'forward', 'dir_attn_fw', keep_prob, is_train, wd, activation, tensor_dict=tensor_dict, name=name+'_fw_attn') bw_res = directional_attention_with_dense( rep_tensor, rep_mask, 'backward', 'dir_attn_bw', keep_prob, is_train, wd, activation, tensor_dict=tensor_dict, name=name+'_bw_attn') seq_rep = tf.concat([fw_res, bw_res], -1) with tf.variable_scope('sent_enc_attn'): sent_rep = multi_dimensional_attention( seq_rep, rep_mask, 'multi_dimensional_attention', keep_prob, is_train, wd, activation, tensor_dict=tensor_dict, name=name+'_attn') return sent_rep # --------------- supporting networks ---------------- def directional_attention_with_dense(rep_tensor, rep_mask, direction=None, scope=None, keep_prob=1., is_train=None, wd=0., activation='elu', tensor_dict=None, name=None): def scaled_tanh(x, scale=5.): return scale * tf.nn.tanh(1./scale * x) bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(rep_tensor)[2] ivec = rep_tensor.get_shape()[2] with tf.variable_scope(scope or 'directional_attention_%s' % direction or 'diag'): # mask generation sl_indices = tf.range(sl, dtype=tf.int32) sl_col, sl_row = tf.meshgrid(sl_indices, sl_indices) if direction is None: direct_mask = tf.cast(tf.diag(- tf.ones([sl], tf.int32)) + 1, tf.bool) else: if direction == 'forward': direct_mask = tf.greater(sl_row, sl_col) else: direct_mask = tf.greater(sl_col, sl_row) direct_mask_tile = tf.tile(tf.expand_dims(direct_mask, 0), [bs, 1, 1]) # bs,sl,sl rep_mask_tile = tf.tile(tf.expand_dims(rep_mask, 1), [1, sl, 1]) # bs,sl,sl attn_mask = tf.logical_and(direct_mask_tile, rep_mask_tile) # bs,sl,sl # non-linear rep_map = bn_dense_layer(rep_tensor, ivec, True, 0., 'bn_dense_map', activation, False, wd, keep_prob, is_train) rep_map_tile = tf.tile(tf.expand_dims(rep_map, 1), [1, sl, 1, 1]) # bs,sl,sl,vec rep_map_dp = dropout(rep_map, keep_prob, is_train) # attention with tf.variable_scope('attention'): # bs,sl,sl,vec f_bias = tf.get_variable('f_bias',[ivec], tf.float32, tf.constant_initializer(0.)) dependent = linear(rep_map_dp, ivec, False, scope='linear_dependent') # bs,sl,vec dependent_etd = tf.expand_dims(dependent, 1) # bs,1,sl,vec head = linear(rep_map_dp, ivec, False, scope='linear_head') # bs,sl,vec head_etd = tf.expand_dims(head, 2) # bs,sl,1,vec logits = scaled_tanh(dependent_etd + head_etd + f_bias, 5.0) # bs,sl,sl,vec logits_masked = exp_mask_for_high_rank(logits, attn_mask) attn_score = tf.nn.softmax(logits_masked, 2) # bs,sl,sl,vec attn_score = mask_for_high_rank(attn_score, attn_mask) attn_result = tf.reduce_sum(attn_score * rep_map_tile, 2) # bs,sl,vec with tf.variable_scope('output'): o_bias = tf.get_variable('o_bias',[ivec], tf.float32, tf.constant_initializer(0.)) # input gate fusion_gate = tf.nn.sigmoid( linear(rep_map, ivec, True, 0., 'linear_fusion_i', False, wd, keep_prob, is_train) + linear(attn_result, ivec, True, 0., 'linear_fusion_a', False, wd, keep_prob, is_train) + o_bias) output = fusion_gate * rep_map + (1-fusion_gate) * attn_result output = mask_for_high_rank(output, rep_mask) # save attn if tensor_dict is not None and name is not None: tensor_dict[name + '_dependent'] = dependent tensor_dict[name + '_head'] = head tensor_dict[name] = attn_score tensor_dict[name + '_gate'] = fusion_gate return output def multi_dimensional_attention(rep_tensor, rep_mask, scope=None, keep_prob=1., is_train=None, wd=0., activation='elu', tensor_dict=None, name=None): bs, sl, vec = tf.shape(rep_tensor)[0], tf.shape(rep_tensor)[1], tf.shape(rep_tensor)[2] ivec = rep_tensor.get_shape()[2] with tf.variable_scope(scope or 'multi_dimensional_attention'): map1 = bn_dense_layer(rep_tensor, ivec, True, 0., 'bn_dense_map1', activation, False, wd, keep_prob, is_train) map2 = bn_dense_layer(map1, ivec, True, 0., 'bn_dense_map2', 'linear', False, wd, keep_prob, is_train) map2_masked = exp_mask_for_high_rank(map2, rep_mask) soft = tf.nn.softmax(map2_masked, 1) # bs,sl,vec attn_output = tf.reduce_sum(soft * rep_tensor, 1) # bs, vec # save attn if tensor_dict is not None and name is not None: tensor_dict[name] = soft return attn_output def bn_dense_layer(input_tensor, hn, bias, bias_start=0.0, scope=None, activation='relu', enable_bn=True, wd=0., keep_prob=1.0, is_train=None): if is_train is None: is_train = False # activation if activation == 'linear': activation_func = tf.identity elif activation == 'relu': activation_func = tf.nn.relu elif activation == 'elu': activation_func = tf.nn.elu elif activation == 'selu': activation_func = selu else: raise AttributeError('no activation function named as %s' % activation) with tf.variable_scope(scope or 'bn_dense_layer'): linear_map = linear(input_tensor, hn, bias, bias_start, 'linear_map', False, wd, keep_prob, is_train) if enable_bn: linear_map = tf.contrib.layers.batch_norm( linear_map, center=True, scale=True, is_training=is_train, scope='bn') return activation_func(linear_map) def dropout(x, keep_prob, is_train, noise_shape=None, seed=None, name=None): with tf.name_scope(name or "dropout"): assert is_train is not None if keep_prob < 1.0: d = tf.nn.dropout(x, keep_prob, noise_shape=noise_shape, seed=seed) out = tf.cond(is_train, lambda: d, lambda: x) return out return x def linear(args, output_size, bias, bias_start=0.0, scope=None, squeeze=False, wd=0.0, input_keep_prob=1.0, is_train=None): if args is None or (isinstance(args, (tuple, list)) and not args): raise ValueError("`args` must be specified") if not isinstance(args, (tuple, list)): args = [args] flat_args = [flatten(arg, 1) for arg in args] # for dense layer [(-1, d)] if input_keep_prob < 1.0: assert is_train is not None flat_args = [tf.cond(is_train, lambda: tf.nn.dropout(arg, input_keep_prob), lambda: arg)# for dense layer [(-1, d)] for arg in flat_args] flat_out = _linear(flat_args, output_size, bias, bias_start=bias_start, scope=scope) # dense out = reconstruct(flat_out, args[0], 1) if squeeze: out = tf.squeeze(out, [len(args[0].get_shape().as_list())-1]) if wd: add_reg_without_bias() return out def _linear(xs,output_size,bias,bias_start=0., scope=None): with tf.variable_scope(scope or 'linear_layer'): x = tf.concat(xs,-1) input_size = x.get_shape()[-1] W = tf.get_variable('W', shape=[input_size,output_size],dtype=tf.float32, ) if bias: bias = tf.get_variable('bias', shape=[output_size],dtype=tf.float32, initializer=tf.constant_initializer(bias_start)) out = tf.matmul(x, W) + bias else: out = tf.matmul(x, W) return out def flatten(tensor, keep): fixed_shape = tensor.get_shape().as_list() start = len(fixed_shape) - keep left = reduce(mul, [fixed_shape[i] or tf.shape(tensor)[i] for i in range(start)]) out_shape = [left] + [fixed_shape[i] or tf.shape(tensor)[i] for i in range(start, len(fixed_shape))] flat = tf.reshape(tensor, out_shape) return flat def reconstruct(tensor, ref, keep, dim_reduced_keep=None): dim_reduced_keep = dim_reduced_keep or keep ref_shape = ref.get_shape().as_list() # original shape tensor_shape = tensor.get_shape().as_list() # current shape ref_stop = len(ref_shape) - keep # flatten dims list tensor_start = len(tensor_shape) - dim_reduced_keep # start pre_shape = [ref_shape[i] or tf.shape(ref)[i] for i in range(ref_stop)] # keep_shape = [tensor_shape[i] or tf.shape(tensor)[i] for i in range(tensor_start, len(tensor_shape))] # # pre_shape = [tf.shape(ref)[i] for i in range(len(ref.get_shape().as_list()[:-keep]))] # keep_shape = tensor.get_shape().as_list()[-keep:] target_shape = pre_shape + keep_shape out = tf.reshape(tensor, target_shape) return out def mask_for_high_rank(val, val_mask, name=None): val_mask = tf.expand_dims(val_mask, -1) return tf.multiply(val, tf.cast(val_mask, tf.float32), name=name or 'mask_for_high_rank') def exp_mask_for_high_rank(val, val_mask, name=None): val_mask = tf.expand_dims(val_mask, -1) return tf.add(val, (1 - tf.cast(val_mask, tf.float32)) * VERY_NEGATIVE_NUMBER, name=name or 'exp_mask_for_high_rank') def selu(x): with tf.name_scope('elu') as scope: alpha = 1.6732632423543772848170429916717 scale = 1.0507009873554804934193349852946 return scale*tf.where(x>=0.0, x, alpha*tf.nn.elu(x)) def add_reg_without_bias(scope=None): scope = scope or tf.get_variable_scope().name variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope) counter = 0 for var in variables: if len(var.get_shape().as_list()) <= 1: continue tf.add_to_collection('reg_vars', var) counter += 1 return counter
mit
6,246,170,103,102,162,000
41.972112
123
0.583496
false
3.231945
false
false
false
okuchaiev/f-lm
glstm.py
1
8571
"""Module for constructing RNN Cells.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import math from tensorflow.contrib.compiler import jit from tensorflow.contrib.layers.python.layers import layers from tensorflow.contrib.rnn.python.ops import core_rnn_cell from tensorflow.python.framework import dtypes from tensorflow.python.framework import op_def_registry from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import clip_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import rnn_cell_impl from tensorflow.python.ops import variable_scope as vs from tensorflow.python.ops import partitioned_variables from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import nest # pylint: disable=protected-access _Linear = core_rnn_cell._Linear # pylint: disable=invalid-name # pylint: enable=protected-access class GLSTMCell(rnn_cell_impl.RNNCell): """Group LSTM cell (G-LSTM). The implementation is based on: https://arxiv.org/abs/1703.10722 O. Kuchaiev and B. Ginsburg "Factorization Tricks for LSTM Networks", ICLR 2017 workshop. """ def __init__(self, num_units, initializer=None, num_proj=None, number_of_groups=1, forget_bias=1.0, activation=math_ops.tanh, reuse=None): """Initialize the parameters of G-LSTM cell. Args: num_units: int, The number of units in the G-LSTM cell initializer: (optional) The initializer to use for the weight and projection matrices. num_proj: (optional) int, The output dimensionality for the projection matrices. If None, no projection is performed. number_of_groups: (optional) int, number of groups to use. If `number_of_groups` is 1, then it should be equivalent to LSTM cell forget_bias: Biases of the forget gate are initialized by default to 1 in order to reduce the scale of forgetting at the beginning of the training. activation: Activation function of the inner states. reuse: (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised. Raises: ValueError: If `num_units` or `num_proj` is not divisible by `number_of_groups`. """ super(GLSTMCell, self).__init__(_reuse=reuse) self._num_units = num_units self._initializer = initializer self._num_proj = num_proj self._forget_bias = forget_bias self._activation = activation self._number_of_groups = number_of_groups if self._num_units % self._number_of_groups != 0: raise ValueError("num_units must be divisible by number_of_groups") if self._num_proj: if self._num_proj % self._number_of_groups != 0: raise ValueError("num_proj must be divisible by number_of_groups") self._group_shape = [int(self._num_proj / self._number_of_groups), int(self._num_units / self._number_of_groups)] else: self._group_shape = [int(self._num_units / self._number_of_groups), int(self._num_units / self._number_of_groups)] if num_proj: self._state_size = rnn_cell_impl.LSTMStateTuple(num_units, num_proj) self._output_size = num_proj else: self._state_size = rnn_cell_impl.LSTMStateTuple(num_units, num_units) self._output_size = num_units self._linear1 = [None] * self._number_of_groups self._linear2 = None @property def state_size(self): return self._state_size @property def output_size(self): return self._output_size def _get_input_for_group(self, inputs, group_id, group_size): """Slices inputs into groups to prepare for processing by cell's groups Args: inputs: cell input or it's previous state, a Tensor, 2D, [batch x num_units] group_id: group id, a Scalar, for which to prepare input group_size: size of the group Returns: subset of inputs corresponding to group "group_id", a Tensor, 2D, [batch x num_units/number_of_groups] """ return array_ops.slice(input_=inputs, begin=[0, group_id * group_size], size=[self._batch_size, group_size], name=("GLSTM_group%d_input_generation" % group_id)) def call(self, inputs, state): """Run one step of G-LSTM. Args: inputs: input Tensor, 2D, [batch x num_units]. state: this must be a tuple of state Tensors, both `2-D`, with column sizes `c_state` and `m_state`. Returns: A tuple containing: - A `2-D, [batch x output_dim]`, Tensor representing the output of the G-LSTM after reading `inputs` when previous state was `state`. Here output_dim is: num_proj if num_proj was set, num_units otherwise. - LSTMStateTuple representing the new state of G-LSTM cell after reading `inputs` when the previous state was `state`. Raises: ValueError: If input size cannot be inferred from inputs via static shape inference. """ (c_prev, m_prev) = state self._batch_size = inputs.shape[0].value or array_ops.shape(inputs)[0] input_size = inputs.shape[-1].value or array_ops.shape(inputs)[-1] dtype = inputs.dtype scope = vs.get_variable_scope() with vs.variable_scope(scope, initializer=self._initializer): i_parts = [] j_parts = [] f_parts = [] o_parts = [] for group_id in range(self._number_of_groups): with vs.variable_scope("group%d" % group_id): x_g_id = array_ops.concat( [self._get_input_for_group(inputs, group_id, int(input_size / self._number_of_groups)), #self._group_shape[0]), # this is only correct if inputs dim = num_units!!! self._get_input_for_group(m_prev, group_id, int(self._output_size / self._number_of_groups))], axis=1) #self._group_shape[0])], axis=1) if self._linear1[group_id] is None: self._linear1[group_id] = _Linear(x_g_id, 4 * self._group_shape[1], False) R_k = self._linear1[group_id](x_g_id) # pylint: disable=invalid-name i_k, j_k, f_k, o_k = array_ops.split(R_k, 4, 1) i_parts.append(i_k) j_parts.append(j_k) f_parts.append(f_k) o_parts.append(o_k) bi = vs.get_variable(name="bias_i", shape=[self._num_units], dtype=dtype, initializer= init_ops.constant_initializer(0.0, dtype=dtype)) bj = vs.get_variable(name="bias_j", shape=[self._num_units], dtype=dtype, initializer= init_ops.constant_initializer(0.0, dtype=dtype)) bf = vs.get_variable(name="bias_f", shape=[self._num_units], dtype=dtype, initializer= init_ops.constant_initializer(0.0, dtype=dtype)) bo = vs.get_variable(name="bias_o", shape=[self._num_units], dtype=dtype, initializer= init_ops.constant_initializer(0.0, dtype=dtype)) i = nn_ops.bias_add(array_ops.concat(i_parts, axis=1), bi) j = nn_ops.bias_add(array_ops.concat(j_parts, axis=1), bj) f = nn_ops.bias_add(array_ops.concat(f_parts, axis=1), bf) o = nn_ops.bias_add(array_ops.concat(o_parts, axis=1), bo) c = (math_ops.sigmoid(f + self._forget_bias) * c_prev + math_ops.sigmoid(i) * math_ops.tanh(j)) m = math_ops.sigmoid(o) * self._activation(c) if self._num_proj is not None: with vs.variable_scope("projection"): if self._linear2 is None: self._linear2 = _Linear(m, self._num_proj, False) m = self._linear2(m) new_state = rnn_cell_impl.LSTMStateTuple(c, m) return m, new_state
mit
5,373,462,395,989,063,000
41.435644
114
0.614397
false
3.757562
false
false
false
strazzere/py010parser
z.py
3
2648
import sys from pycparser.c_ast import * from pycparser.c_parser import CParser, Coord, ParseError from pycparser.c_lexer import CLexer def expand_decl(decl): """ Converts the declaration into a nested list. """ typ = type(decl) if typ == TypeDecl: return ['TypeDecl', expand_decl(decl.type)] elif typ == IdentifierType: return ['IdentifierType', decl.names] elif typ == ID: return ['ID', decl.name] elif typ in [Struct, Union]: decls = [expand_decl(d) for d in decl.decls or []] return [typ.__name__, decl.name, decls] else: nested = expand_decl(decl.type) if typ == Decl: if decl.quals: return ['Decl', decl.quals, decl.name, nested] else: return ['Decl', decl.name, nested] elif typ == Typename: # for function parameters if decl.quals: return ['Typename', decl.quals, nested] else: return ['Typename', nested] elif typ == ArrayDecl: dimval = decl.dim.value if decl.dim else '' return ['ArrayDecl', dimval, nested] elif typ == PtrDecl: return ['PtrDecl', nested] elif typ == Typedef: return ['Typedef', decl.name, nested] elif typ == FuncDecl: if decl.args: params = [expand_decl(param) for param in decl.args.params] else: params = [] return ['FuncDecl', params, nested] #----------------------------------------------------------------- class NodeVisitor(object): def __init__(self): self.current_parent = None def visit(self, node): """ Visit a node. """ method = 'visit_' + node.__class__.__name__ visitor = getattr(self, method, self.generic_visit) return visitor(node) def visit_FuncCall(self, node): print("Visiting FuncCall") print(node.show()) print('---- parent ----') print(self.current_parent.show()) def generic_visit(self, node): """ Called if no explicit visitor function exists for a node. Implements preorder visiting of the node. """ oldparent = self.current_parent self.current_parent = node for c in node.children(): self.visit(c) self.current_parent = oldparent if __name__ == "__main__": source_code = r'''void foo() { L"hi" L"there"; } ''' parser = CParser() ast = parser.parse(source_code, filename='zz') ast.show(showcoord=True, attrnames=True, nodenames=True)
bsd-3-clause
-2,917,543,122,236,092,000
30.152941
75
0.54003
false
4.04893
false
false
false
ethereum/pydevp2p
devp2p/tests/test_peermanager.py
1
1405
from devp2p import peermanager from devp2p import crypto from devp2p.app import BaseApp from rlp.utils import encode_hex import devp2p.muxsession import rlp import devp2p.p2p_protocol import time import gevent import copy import socket def try_tcp_connect(addr): s = socket.socket() s.connect(addr) s.close() def test_app_restart(): host, port = '127.0.0.1', 3020 a_config = dict(p2p=dict(listen_host=host, listen_port=port), node=dict(privkey_hex=encode_hex(crypto.sha3(b'a')))) a_app = BaseApp(a_config) peermanager.PeerManager.register_with_app(a_app) # Restart app 10-times: there should be no exception for i in range(10): a_app.start() assert a_app.services.peermanager.server.started try_tcp_connect((host, port)) assert a_app.services.peermanager.num_peers() == 0 a_app.stop() assert a_app.services.peermanager.is_stopped # Start the app 10-times: there should be no exception like 'Bind error' for i in range(10): a_app.start() assert a_app.services.peermanager.server.started try_tcp_connect((host, port)) a_app.stop() assert a_app.services.peermanager.is_stopped if __name__ == '__main__': # ethereum -loglevel 5 --bootnodes '' import ethereum.slogging ethereum.slogging.configure(config_string=':debug') test_app_restart()
mit
-3,365,345,710,625,542,000
26.54902
76
0.669039
false
3.252315
false
false
false
CacheBrowser/cachebrowser
cachebrowser/pipes/scrambler.py
1
19207
# cdn.jsdelivr.net import logging from time import time, sleep from threading import Thread, RLock from random import random, shuffle, choice from six.moves.urllib.parse import urlparse from mitmproxy.models import HTTPResponse from netlib.http import Headers from cachebrowser.pipes.base import FlowPipe from cachebrowser.util import get_flow_size, pretty_bytes logger = logging.getLogger(__name__) DOWNSTREAM_STD = 100000 def should_i(prob): return random() < prob class ScramblerPipe(FlowPipe): PROB_AD_BLOCK = 1.0 PROB_AD_DECOY = 1.0 PROB_DECOY = 0.2 OVERHEAD = 0.1 BLOCK_ADS = True def __init__(self, *args, **kwargs): super(ScramblerPipe, self).__init__(*args, **kwargs) self.overhead = self.OVERHEAD self.drop_ads = True self.send_decoys = True self.org_names = self.read_org_names() self.adblocker = AdBlocker() self.netstats = NetStatKeeper(self.org_names) self.decoymaker = DecoyMaker(self.netstats, self.org_names) self.api = ScramblerAPI(self.context, self) self.block_count = 0 self.notblock_count = 0 self.upstream_overhead = 0 self.upstream_traffic = 0 # Non-Overhead traffic self.downstream_overhead = 0 self.downstream_traffic = 0 self.decoysent = 0 self.decoyreceived = 0 self.user_requests = 0 self.blocked_requests = 0 def start(self): # super(Scrambler, self).start() self.adblocker.load_blacklist(self.context.settings.data_path('scrambler/ad-domains'), self.context.settings.data_path('scrambler/blacklist')) self.decoymaker.load_decoys(self.context.settings.data_path('scrambler/decoy.json')) def reset(self): self.block_count = 0 self.notblock_count = 0 self.netstats.reset() self.upstream_overhead = 0 self.upstream_traffic = 0 # Non-Overhead traffic self.downstream_overhead = 0 self.downstream_traffic = 0 self.decoysent = 0 self.decoyreceived = 0 self.decoymaker.inflight = 0 self.user_requests = 0 self.blocked_requests = 0 def get_stats(self): return { 'blocked': 0, 'upstream_overhead': self.upstream_overhead, 'upstream_normal': self.upstream_traffic, 'downstream_overhead': self.downstream_overhead, 'downstream_normal': self.downstream_traffic, 'decoys': self.decoyreceived, 'decoys_sent': self.decoysent, 'max_overhead': self.overhead, 'user_requests': self.user_requests, 'blocked_requests': self.blocked_requests, 'adblock_enabled': self.BLOCK_ADS } def serverconnect(self, server_conn): pass def print_stats(self): print(self.decoymaker.inflight) print("Sent: {} Received: {} Overhead: {} Traffic: {} Overhead: {} Traffic: {} ".format(self.decoysent, self.decoyreceived, pretty_bytes(self.downstream_overhead), pretty_bytes(self.downstream_traffic), pretty_bytes(self.upstream_overhead), pretty_bytes(self.upstream_traffic))) def request(self, flow): is_decoy = hasattr(flow, 'is_decoy') and flow.is_decoy if is_decoy: self.netstats.update_real_upstream(flow) self.upstream_overhead += get_flow_size(flow)[0] self.decoysent += 1 else: self.netstats.update_real_upstream(flow) self.netstats.update_requested_upstream(flow) self.upstream_traffic += get_flow_size(flow)[0] self.user_requests += 1 if self.BLOCK_ADS and self.adblocker.should_block(flow): self.blocked_requests += 1 self.dummy_response(flow) self._send_decoy_request(skip_netname=_whois(flow, self.org_names)) else: for i in range(6): wanted = sum(self.netstats.requested_downstream_traffic.values()) actual = sum(self.netstats.real_downstream_traffic.values()) if actual + self.decoymaker.inflight < wanted + wanted * self.overhead: self._send_decoy_request() # self.print_stats() # print("") # logging.info('>> {} {} '.format(self.notblock_count, self.block_count)) def response(self, flow): is_decoy = hasattr(flow, 'is_decoy') and flow.is_decoy if is_decoy: self.netstats.update_real_downstream(flow) self.decoymaker.record_decoy_received(flow) self.decoyreceived += 1 self.downstream_overhead += get_flow_size(flow)[1] else: self.netstats.update_real_downstream(flow) self.netstats.update_requested_downstream(flow) self.downstream_traffic += get_flow_size(flow)[1] def read_org_names(self): with open(self.context.settings.data_path('scrambler/decoy.json')) as f: import json netname_data = json.loads(f.read()) org_names = netname_data.keys() org_names.append('OTHER') return org_names def _send_decoy_request(self, skip_netname=None): decoyurl = self.decoymaker.get_decoy_url(skip_netname) # logging.info("Sending DECOY to {}".format(decoyurl)) if decoyurl is not None: new_flow = self.create_request_from_url('GET', decoyurl) # Don't update stats on dummy request new_flow.outgoing_request = True new_flow.is_decoy = True self.send_request(new_flow, run_hooks=True) self.decoymaker.record_decoy_sent(new_flow, decoyurl) def handle_ads(self, flow): domain = urlparse(flow.request.url).netloc if self.adblocker.should_block(flow) and self.drop_ads and should_i(self.PROB_AD_BLOCK): self.dummy_response(flow) if self.send_decoys and should_i(self.PROB_AD_DECOY): decoy_url = self.decoymaker.get_decoy_url(flow) if decoy_url is not None: # logging.info("@@@@@@@@@@@@@@ Sending Decoy Request {}".format(decoy_url)) new_flow = self.create_request_from_url('GET', decoy_url) # Don't update stats on dummy request new_flow.outgoing_request = True new_flow.is_dummy = True self.send_request(new_flow, run_hooks=True) return True return False def dummy_response(self, flow): resp = HTTPResponse( "HTTP/1.1", 444, "Blocked", Headers(Content_Type="text/html"), "You got blocked by CDNReaper") flow.reply(resp) def error(self, flow): pass class ScramblerAPI(object): def __init__(self, context, scrambler): self.scrambler = scrambler context.ipc.register_rpc('/scrambler/get/settings', self.get_settings) context.ipc.register_rpc('/scrambler/set/settings', self.set_settings) context.ipc.register_rpc('/scrambler/enable', self.enable_scrambler) context.ipc.register_rpc('/scrambler/disable', self.disable_scrambler) def get_settings(self, context, request): request.reply({ 'result': 'success', 'settings': { 'enabled': self.scrambler.enabled, 'overhead': self.scrambler.overhead, 'drops': self.scrambler.drop_ads, 'decoys': self.scrambler.send_decoys } }) def set_settings(self, context, request): if 'enabled' in request.params: self.scrambler.enabled = bool(request.params['enabled']) if 'overhead' in request.params: self.scrambler.overhead = int(request.params['overhead']) if 'drops' in request.params: self.scrambler.drop_ads = bool(request.params['drops']) if 'decoys' in request.params: self.scrambler.send_decoys = bool(request.params['decoys']) request.reply({ 'result': 'success' }) def enable_scrambler(self, context, request): self.scrambler.enable() request.reply({'result': 'success'}) def disable_scrambler(self, context, request): self.scrambler.disable() request.reply({'result': 'success'}) class NetStatKeeper(object): UPSTREAM_STD = 200 DOWNSTREAM_STD = DOWNSTREAM_STD S = 10 def __init__(self, org_names): from collections import deque self.org_names = org_names self.requested_upstream = {} self.requested_downstream = {} self.requested_upstream_traffic = {} self.requested_downstream_traffic = {} self.real_upstream = {} self.real_downstream = {} self.real_upstream_traffic = {} self.real_downstream_traffic = {} self.lock = RLock() # self.outgoing_lock = RLock() for org in org_names: self.requested_upstream[org] = deque() self.requested_downstream[org] = deque() self.real_downstream[org] = deque() self.real_upstream[org] = deque() self.real_downstream_traffic[org] = 0 self.real_upstream_traffic[org] = 0 self.requested_downstream_traffic[org] = 0 self.requested_upstream_traffic[org] = 0 def refresher(): def refresh(ds): for k in ds: while len(ds[k]): if ds[k][0][0] < threshold: ds[k].popleft() else: break while True: sleep(1) now = time() threshold = now - self.S with self.lock: refresh(self.requested_downstream) refresh(self.requested_upstream) refresh(self.real_downstream) refresh(self.real_upstream) for netname in org_names: self.requested_upstream_traffic[netname] = 0 for item in self.requested_upstream[netname]: self.requested_upstream_traffic[netname] += item[1] self.requested_downstream_traffic[netname] = 0 for item in self.requested_downstream[netname]: self.requested_downstream_traffic[netname] += item[1] self.real_upstream_traffic[netname] = 0 for item in self.real_upstream[netname]: self.real_upstream_traffic[netname] += item[1] self.real_downstream_traffic[netname] = 0 for item in self.real_downstream[netname]: self.real_downstream_traffic[netname] += item[1] refresh_thread = Thread(target=refresher) refresh_thread.daemon = True refresh_thread.start() def update_requested_downstream(self, flow): ip = _get_flow_ip(flow) if ip is None: return _, resp = get_flow_size(flow) netname = _whois(ip, self.org_names) with self.lock: self.requested_downstream_traffic[netname] += resp self.requested_downstream[netname].append((time(), resp)) def update_requested_upstream(self, flow): ip = _get_flow_ip(flow) if ip is None: return req, _ = get_flow_size(flow) netname = _whois(ip, self.org_names) with self.lock: self.requested_upstream_traffic[netname] += req self.requested_upstream[netname].append((time(), req)) def update_real_downstream(self, flow): ip = _get_flow_ip(flow) if ip is None: return _, resp = get_flow_size(flow) netname = _whois(ip, self.org_names) with self.lock: self.real_downstream_traffic[netname] += resp self.real_downstream[netname].append((time(), resp)) def update_real_upstream(self, flow): ip = _get_flow_ip(flow) if ip is None: return req, _ = get_flow_size(flow) netname = _whois(ip, self.org_names) with self.lock: self.real_upstream_traffic[netname] += req self.real_upstream[netname].append((time(), req)) def reset(self): with self.lock: for key in self.requested_downstream: self.requested_downstream[key].clear() self.requested_upstream[key].clear() self.real_downstream[key].clear() self.real_upstream[key].clear() class DecoyMaker(object): def __init__(self, netstats, org_names): self.netstats = netstats self.decoy_urls = {} self.decoy_sizes = {} self.netnames = [] self.inflight = 0 for org in org_names: self.netnames.append(org) def get_decoy_url(self, skip_netname=None): flow_netname = skip_netname shuffle(self.netnames) def key(netname): if netname == flow_netname: return 100000 if netname == 'OTHER': return 100000 if netname not in self.decoy_urls or not len(self.decoy_urls[netname]): return 50000 return self.netstats.requested_upstream_traffic[netname] self.netnames.sort(key=key) netname = self.netnames[0] if netname not in self.decoy_urls or not len(self.decoy_urls[netname]): return None # return self.decoy_urls[netname][0] return choice(self.decoy_urls[netname]) def record_decoy_sent(self, flow, url): flow.estimated_size = self.decoy_sizes[url] self.inflight += flow.estimated_size def record_decoy_received(self, flow): self.inflight -= flow.estimated_size def load_decoys(self, decoys_path): import yaml import json # json loads strings as unicode, causes problems with saving flows with open(decoys_path) as f: # decoy_urls = yaml.safe_load(f.read()) decoy_urls = json.loads(f.read()) for netname in decoy_urls: self.decoy_urls[netname] = [str(s) for s in decoy_urls[netname].keys()] for url in decoy_urls[netname]: self.decoy_sizes[str(url)] = decoy_urls[netname][url] # self.decoy_sizes.update(decoy_urls[netname]) class AdBlocker(object): def __init__(self): self.single_dom = set() self.multi_dom = set() self.adset = set() self.blacklist = [] def should_block(self, flow): from fnmatch import fnmatch domain = urlparse(flow.request.url).netloc parts = domain.split('.') dom = parts.pop() while parts: dom = '{}.{}'.format(parts.pop(), dom) if dom in self.adset: return True url = flow.request.url.replace('https://', '').replace('http://', '') for pattern in self.blacklist: if fnmatch(url, pattern): return True return False def load_blacklist(self, ad_domains_path, blacklist_path): with open(ad_domains_path) as f: for ad in f: ad = ad.strip() if not ad: continue if ad.count('.') == 1: self.single_dom.add(ad) else: self.multi_dom.add(ad) self.adset.add(ad) with open(blacklist_path) as f: for dom in f: dom = dom.strip() if dom: self.blacklist.append(dom) def _get_flow_ip(flow): if flow.server_conn and flow.server_conn.peer_address: return flow.server_conn.peer_address.host domain = urlparse(flow.request.url).netloc ips, domains = _dig(domain) if len(ips): return ips[0] return None _whois_cache = {} def _whois(ip, org_names): from ipwhois import IPWhois if type(ip) is not str: ip = _get_flow_ip(ip) if ip not in _whois_cache: whois = IPWhois(ip) try: name = whois.lookup_rdap()['network']['name'] if not name: name = whois.lookup()['nets'][0]['name'] except: print("WHOIS ERROR") name = 'OTHER' _whois_cache[ip] = _clean_netname(org_names, name, ip) return _whois_cache[ip] def clean_netname(netname): """ Convert a whois netname into an organization name """ # from cdn import cdn_list ORGS = [ ('GOOGLE', ['google']), ('AKAMAI', ['akamai', 'umass']), ('AMAZON', ['at-', 'amazo']), # ('CLOUDFRONT', []), ('FASTLY', ['fastly']), ('CLOUDFLARE', ['cloudflare']), ('EDGECAST', ['edgecast']), ('HIGHWINDS', ['highwind']), ('INCAPSULA', ['incapsula']), ('MAXCDN', ['netdna']), ('CDNET', ['cdnet']), ('TWITTER', ['twitter']), ('INAP', ['inap-']), ('LINODE', ['linode']), ('DIGITALOCEAN', ['digitalocean']), ('YAHOO', ['yahoo']), ('FACEBOOK', ['facebook', 'ord1', 'tfbnet']), ('OTHER', []) ] if ' ' in netname: netname = netname.split()[0] lower = netname.lower() for org in ORGS: if any([x in lower for x in org[1]]): return org[0] else: org = netname.split()[0] # if '-' in org: # org = org[:org.rindex('-')] parts = org.split('-') if len(parts) < 3: org = parts[0] elif parts[1].isdigit() : org = parts[0] else: org = parts[0] + '-' + parts[1] #+ '-' + parts[2] # if org.startswith('AMAZO') or org.startswith('AT-'): # org = 'AMAZON' if org.startswith('WEBAIRINTERNET12'): org = 'WEBAIRINTERNET12' return org def _clean_netname(org_names, name, ip): org = clean_netname(name) if name in org_names: return name return 'OTHER' def _parse_dig(raw_dig): import re if len(raw_dig.strip()) == 0: return [], [] lines = raw_dig.strip().split('\n') ip = [] domains = [] for line in lines: line = line.strip() if re.match('^\d+[.]\d+[.]\d+[.]\d+$', line): ip.append(line) else: domains.append(line) return ip, domains def _dig(site, raw=False): from subprocess import Popen, PIPE process = Popen(["dig", "+short", site], stdout=PIPE) (output, err) = process.communicate() exit_code = process.wait() if raw: return output return _parse_dig(output)
mit
-7,097,376,522,005,328,000
30.799669
151
0.552038
false
3.686564
false
false
false
pschmitt/zhue
zhue/model/config.py
1
1540
from __future__ import absolute_import from __future__ import unicode_literals from .basemodel import HueBaseObject from .user import User class BridgeConfig(HueBaseObject): def __init__(self, bridge, json): super(BridgeConfig, self).__init__(bridge, 'config', json) # Versions @property def api_version(self): return self._json['apiversion'] @property def version(self): return self._json['swversion'] @property def bridge_id(self): return self._json['bridgeid'] # Network stuff @property def dhcp(self): return self._json['dhcp'] @property def gateway(self): return self._json['gateway'] @property def mac(self): return self._json['mac'] @property def netmask(self): return self._json['netmask'] @property def zigbeechannel(self): return self._json['zigbeechannel'] @property def factorynew(self): return self._json['factorynew'] @property def timezone(self): return self._json['timezone'] @property def localtime(self): return self._json['localtime'] @property def utc(self): return self._json['UTC'] @property def users(self): u = [] for k, v in self._json['whitelist'].items(): u.append(User(username=k, json=v)) return u def update_check(self): res = self._request(data={"swupdate": {"checkforupdate":True}}) self.update() return res
gpl-3.0
1,750,811,497,076,904,700
20.690141
71
0.593506
false
4.031414
false
false
false
dewitt/webfingerclient-dclinton
xrd.py
1
8816
#!/usr/bin/python2.5 # # Parses XRD documents. # # Copyright 2009 DeWitt Clinton # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import imports import xrd_pb2 # As specified in: # http://www.oasis-open.org/committees/download.php/33772/xrd-1.0-wd04.html XRD_NAMESPACE = 'http://docs.oasis-open.org/ns/xri/xrd-1.0' # As specifed in http://www.w3.org/TR/xml-names/ XML_NAMESPACE = 'http://www.w3.org/XML/1998/namespace' # As specified in http://www.w3.org/TR/xmlschema-1/ XSI_NAMESPACE = 'http://www.w3.org/2001/XMLSchema-instance' # The etree syntax for qualified element names XRD_QNAME = '{%s}%s' % (XRD_NAMESPACE, 'XRD') EXPIRES_QNAME = '{%s}%s' % (XRD_NAMESPACE, 'Expires') SUBJECT_QNAME = '{%s}%s' % (XRD_NAMESPACE, 'Subject') PROPERTY_QNAME = '{%s}%s' % (XRD_NAMESPACE, 'Property') ALIAS_QNAME = '{%s}%s' % (XRD_NAMESPACE, 'Alias') LINK_QNAME = '{%s}%s' % (XRD_NAMESPACE, 'Link') TITLE_QNAME = '{%s}%s' % (XRD_NAMESPACE, 'Title') # The etree syntax for qualified attribute names ID_ATTRIBUTE = '{%s}%s' % (XML_NAMESPACE, 'id') LANG_ATTRIBUTE = '{%s}%s' % (XML_NAMESPACE, 'lang') NIL_ATTRIBUTE = '{%s}%s' % (XSI_NAMESPACE, 'nil') class ParseError(Exception): """Raised in the event an XRD document can not be parsed.""" pass class Parser(object): """Converts XML documents into xrd_pb2.Xrd instances.""" def __init__(self, etree=None): """Constructs a new XRD parser. Args: etree: The etree module to use [optional] """ if etree: self._etree = etree else: import xml.etree.cElementTree self._etree = xml.etree.cElementTree def parse(self, string): """Converts XML strings into an xrd_pb2.Xrd instances Args: string: A string containing an XML XRD document. Returns: A xrd_pb2.Xrd instance. Raises: ParseError if the element can not be parsed """ if not string: raise ParseError('Empty input string.') try: document = self._etree.fromstring(string) except SyntaxError, e: raise ParseError('Could not parse %s\nError: %s' % (string, e)) if document.tag != XRD_QNAME: raise ParseError('Root is not an <XRD/> element: %s' % document) description = xrd_pb2.Xrd() self._parse_id(document, description) self._parse_expires(document, description) self._parse_subject(document, description) self._parse_properties(document, description) self._parse_aliases(document, description) self._parse_links(document, description) return description def _parse_id(self, xrd_element, description): """Finds a xml:id attribute and adds it to the Xrd proto. Args: xrd_element: An XRD Element description: The xrd_pb2.Xrd instance to be added to """ id_attribute = xrd_element.get(ID_ATTRIBUTE) if id_attribute is not None: description.id = id_attribute def _parse_expires(self, xrd_element, description): """Finds an Expires element and adds it to the Xrd proto. Args: xrd_element: An XRD Element description: The xrd_pb2.Xrd instance to be added to """ expires_element = xrd_element.find(EXPIRES_QNAME) if expires_element is not None: description.expires = expires_element.text def _parse_subject(self, xrd_element, description): """Finds an Subject element and adds it to the Xrd proto. Args: xrd_element: An XRD Element description: The xrd_pb2.Xrd instance to be added to """ subject_element = xrd_element.find(SUBJECT_QNAME) if subject_element is not None: description.subject = subject_element.text def _parse_properties(self, xrd_element, description): """Finds Property elements and adds them to the Xrd proto. Args: xrd_element: An XRD Element description: The xrd_pb2.Xrd instance to be added to """ for property_element in xrd_element.findall(PROPERTY_QNAME): property_pb = description.properties.add() property_pb.nil = (property_element.get(NIL_ATTRIBUTE) == 'true') property_type = property_element.get('type') if property_type != None: property_pb.type = property_type if property_element.text is not None: property_pb.value = property_element.text def _parse_aliases(self, xrd_element, description): """Finds Alias elements and adds them to the Xrd proto. Args: xrd_element: An XRD Element description: The xrd_pb2.Xrd instance added to """ for alias_element in xrd_element.findall(ALIAS_QNAME): description.aliases.append(alias_element.text) def _parse_links(self, xrd_element, description): """Finds Link elements and adds them to the Xrd proto. Args: xrd_element: An XRD Element description: The xrd_pb2.Xrd instance to be added to """ for link_element in xrd_element.findall(LINK_QNAME): link = description.links.add() rel = link_element.get('rel') if rel is not None: link.rel = rel type_attribute = link_element.get('type') if type_attribute is not None: link.type = type_attribute href = link_element.get('href') if href is not None: link.href = href template = link_element.get('template') if template is not None: link.template = template self._parse_properties(link_element, link) self._parse_titles(link_element, link) def _parse_titles(self, xrd_element, description): """Finds Title elements and adds them to the proto. Args: xrd_element: An XRD Element description: The xrd_pb2.Xrd instance to be added to """ for title_element in xrd_element.findall(TITLE_QNAME): title = description.titles.add() lang = title_element.get(LANG_ATTRIBUTE) if lang is not None: title.lang = lang if title_element.text is not None: title.value = title_element.text class JsonMarshaller(object): def __init__(self): try: import simplejson as json except ImportError: import json self._json = json def to_json(self, description_or_descriptions, pretty=False): if isinstance(description_or_descriptions, list): output = list() for description in description_or_descriptions: output.append(self._to_object(description)) else: output = self._to_object(description_or_descriptions) if pretty: return self._json.dumps(output, indent=2) else: return self._json.dumps(output) def _to_object(self, description): output = dict() if description.id: output['id'] = description.id if description.expires: output['expires'] = description.expires if description.subject: # jsmarr: note we're intentionally dropping any attributes on subject output['subject'] = description.subject if description.aliases: # jsmarr: note we're intentionally dropping any attributes on aliases output['aliases'] = [str(alias) for alias in description.aliases] if description.properties: output['properties'] = list() for p in description.properties: prop_val = dict() if p.type: prop_val['type'] = p.type if p.value: prop_val['value'] = p.value output['properties'].append(prop_val) if description.links: output['links'] = list() for link in description.links: link_dict = dict() if link.rel: link_dict['rel'] = link.rel if link.type: link_dict['type'] = link.type if link.href: link_dict['href'] = link.href if link.template: link_dict['template'] = link.template if link.titles: # jsmarr: note we're assuming at most one title-per-language title_dict = dict() for title in link.titles: if not title.value: continue title_lang = title.lang or '' if title_lang not in title_dict: title_dict[title_lang] = title.value if title_dict: link_dict['titles'] = title_dict output['links'].append(link_dict) # jsmarr: note we're not representing signature in json return output
apache-2.0
-8,425,790,412,987,392,000
32.907692
77
0.645644
false
3.668747
false
false
false
okfn/jsontableschema-openrefine-py
jsontableschema/plugins/openrefine/openrefine_client.py
1
2646
import requests import six import six.moves.urllib.parse as urlparse class OpenRefineClient(object): _COMMANDS = { 'get_version': 'command/core/get-version', 'get_all_project_metadata': 'command/core/get-all-project-metadata', 'get_project_metadata': 'command/core/get-project-metadata', 'create_project_from_upload': 'command/core/create-project-from-upload', 'delete_project': 'command/core/delete-project', 'export_rows': 'command/core/export-rows', } def __init__(self, server_url): if not isinstance(server_url, six.string_types): raise TypeError('"server_url" must be a string') self.server_url = server_url @property def version(self): url = self._generate_url(self._COMMANDS['get_version']) res = requests.get(url) return res.json()['version'] def create_project(self, name, filepath): url = self._generate_url(self._COMMANDS['create_project_from_upload']) with open(filepath, 'rb') as project_file: params = { 'project-name': name, } files = { 'file': project_file, } res = requests.post(url, allow_redirects=False, data=params, files=files) if res.is_redirect and res.headers.get('location'): redirected_to = urlparse.urlparse(res.headers.get('location')) query_params = urlparse.parse_qs(redirected_to.query) return query_params.get('project')[0] def get_projects(self): url = self._generate_url(self._COMMANDS['get_all_project_metadata']) res = requests.get(url) return res.json().get('projects', {}) def get_project(self, project_id): url = self._generate_url(self._COMMANDS['get_project_metadata']) res = requests.get(url, params={'project': project_id}) if res.status_code == 200: return res.json() def delete_project(self, project_id): url = self._generate_url(self._COMMANDS['delete_project']) res = requests.post(url, params={'project': project_id}) if res.status_code == 200: return res.json().get('code') == 'ok' def export_project(self, project_id, file_format='csv'): url = self._generate_url(self._COMMANDS['export_rows']) res = requests.post(url, params={ 'project': project_id, 'format': file_format, }) return res.text def _generate_url(self, command): return urlparse.urljoin(self.server_url, command)
mit
-8,839,431,766,508,617,000
35.75
80
0.589569
false
3.92
false
false
false
bjamesv/pymoldmaker
image.py
1
2378
#!/bin/python3 """ this file is a part of pymoldmaker Copyright (C) 2015 Brandon J. Van Vaerenbergh This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ from PIL import Image from PIL import ImageDraw class Canvas: """ an object representing a drawable vector image that can be written out to disk as an image file. """ def __init__(self): """ initializes the internal self.image object and pairs it with a self.draw object for composing new visual content. """ # create a Python Image Library image object mode = 'RGB' self.dpi = 72 #25.4*15 size = (400, 300) color_background = 'white' self.image = Image.new(mode, size, color_background) #prepare Image for drawing color_lines = 'black' self.draw = ImageDraw.Draw(self.image) self.draw.setink( color_lines) def draw_line(self, poly_line_mm): """ draws a polygonal line onto the image. Arguments: poly_line_mm a list of x,y tuplets representing the vertices of a polygonal shape in milimeters. """ # now draw something onto it self.draw.line( poly_line_mm) def save(self, destination): """ saves the internal image representation to the specified path or file object. """ # .. and save it out to disk self.image.save( destination) def mm_to_px(self, mm): mm_per_inch = 25.4 pixels_per_mm = self.dpi/mm_per_inch pixels_to_draw = mm*pixels_per_mm if( (pixels_to_draw % 1) != 0): pass #TODO: fix above to support mapping 1/3 mm to PS strokes/dots #raise ValueError("specified dpi has resulted in lost precision") return int(pixels_to_draw)
gpl-3.0
-3,171,076,100,930,244,600
36.15625
79
0.650967
false
4.030508
false
false
false
alexanderfefelov/nav
python/nav/netmap/metadata.py
1
17323
# # Copyright (C) 2012 UNINETT AS # # This file is part of Network Administration Visualized (NAV). # # NAV is free software: you can redistribute it and/or modify it under # the terms of the GNU General Public License version 2 as published by # the Free Software Foundation. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # more details. You should have received a copy of the GNU General Public # License along with NAV. If not, see <http://www.gnu.org/licenses/>. # """Handles attaching and converting metadata in a netmap networkx toplogy graph""" from collections import defaultdict import logging from django.core.urlresolvers import reverse import operator from nav.netmap.config import NETMAP_CONFIG from nav.errors import GeneralException from nav.models.manage import GwPortPrefix, Interface from nav.netmap import stubs from nav.web.netmap.common import get_status_image_link _LOGGER = logging.getLogger(__name__) class NetmapException(GeneralException): """Generic Netmap Exception""" pass class GraphException(NetmapException): """Graph Exception This exception is normally thrown if it finds something odd in the graph from nav.topology or the metadata contains known errors. """ pass # Ignore too few methods in class # pylint: disable=R0903 class Node(object): """Node object represent a node in the netmap_graph Makes it easier to validate data and convert node to valid json. """ def __init__(self, node, nx_node_metadata=None): self.node = node if nx_node_metadata and 'metadata' in nx_node_metadata: self.metadata = nx_node_metadata['metadata'] else: self.metadata = None def __repr__(self): return "netmap.Node(metadata={0!r})".format(self.metadata) def to_json(self): """json presentation of Node""" json = {} if self.metadata: if 'position' in self.metadata: json.update({ 'position': { 'x': self.metadata['position'].x, 'y': self.metadata['position'].y }}) if 'vlans' in self.metadata: # Layer2 metadata json.update({ 'vlans': [nav_vlan_id for nav_vlan_id, _ in self.metadata['vlans']] }) if NETMAP_CONFIG.getboolean('API_DEBUG'): json.update({ 'd_vlans': [vlan_to_json(swpv.vlan) for _, swpv in self.metadata['vlans']] }) if isinstance(self.node, stubs.Netbox): json.update({ 'id': str(self.node.id), 'sysname': self.node.sysname, 'category': str(self.node.category_id), 'is_elink_node': True }) else: json.update({ 'id': str(self.node.id), 'sysname': str(self.node.sysname), 'category': str(self.node.category_id), 'ip': self.node.ip, 'ipdevinfo_link': reverse('ipdevinfo-details-by-name', args=[self.node.sysname]), 'up': str(self.node.up), 'up_image': get_status_image_link(self.node.up), 'roomid': self.node.room.id, 'locationid': unicode(self.node.room.location.id), 'location': unicode(self.node.room.location.description), 'room': unicode(self.node.room), 'is_elink_node': False, }) return {unicode(self.node.id) : json} # Ignore too few methods in class # pylint: disable=R0903 class Group(object): """Grouping object for representing a Netbox and Interface in a Edge""" def __init__(self, netbox=None, interface=None): self.netbox = netbox self.interface = interface self.gw_ip = None self.virtual = None self.vlans = None def __repr__(self): return ("netmap.Group(netbox={0!r}, interface={1!r}, gw_ip={2!r}" ", virtual={3!r}, vlans={4!r})").format( self.netbox, self.interface, self.gw_ip, self.virtual, self.vlans) def __hash__(self): return hash(self.netbox) + hash(self.interface) def __eq__(self, other): if not isinstance(other, type(self)): return False else: return (self.netbox == other.netbox and self.interface == other.interface) def to_json(self): """json presentation of Group""" json = { 'netbox': unicode(self.netbox.id), } if self.interface is not None: ipdevinfo_link = None if self.interface.ifname and self.interface.ifname != '?': ipdevinfo_link = reverse( 'ipdevinfo-interface-details-by-name', kwargs={'netbox_sysname': unicode( self.netbox.sysname), 'port_name': unicode( self.interface.ifname)}) json.update({'interface': { 'ifname': unicode(self.interface.ifname), 'ipdevinfo_link': ipdevinfo_link }}) if self.gw_ip is not None: json.update({'gw_ip': self.gw_ip}) if self.virtual is not None: json.update({'virtual': self.virtual}) if self.vlans is not None: json.update({'vlans': [swpv.vlan.id for swpv in self.vlans]}) if NETMAP_CONFIG.getboolean('API_DEBUG'): json.update({'d_netbox_sysname': unicode(self.netbox.sysname)}) json.update( {'d_vlans': [vlan_to_json(swpv.vlan) for swpv in self.vlans]}) return json # Ignore too few methods in class # pylint: disable=R0903 class Edge(object): """Represent either a edge pair in Layer2 or Layer3""" def _valid_layer2(self, edge): return isinstance(edge, Interface) or isinstance(edge, stubs.Interface) def _valid_layer3(self, edge): return isinstance(edge, GwPortPrefix) or isinstance(edge, stubs.GwPortPrefix) def _get_layer(self, source, target): if (self._valid_layer2(source) or source is None and self._valid_layer2(target) or target is None): return 2 elif (self._valid_layer3(source) or source is None and self._valid_layer3(target) or target is None): return 3 else: raise NetmapException("Could not determine layer for this edge." " This should _not_ happend") def _same_layer(self, source, target): return (self._valid_layer2(source) and self._valid_layer2(target) or self._valid_layer3(source) and self._valid_layer3(target) ) def __init__(self, nx_edge, source, target, traffic=None): """ :param nx_edge: NetworkX edge representing (source,target) in a tuple .(they be nav.models.Netbox or nav.netmap.stubs.Netbox) :param source: source, where it is either of type Interface or type GwPortPrefix. :param target: target, where it is either of type Interface or type GwPortPrefix :param vlans: List of SwPortVlan on this particular edge pair :return: """ if source is not None and target is not None: if not self._same_layer(source, target): raise GraphException( "Source and target has to be of same type, typically " "Interfaces in layer2 graph or" "GwPortPrefixes in layer3 graph") elif source is None and target is None: raise GraphException("Source & target can't both be None! Bailing!") self.errors = [] self.source = self.target = self.vlan = self.prefix = None nx_source, nx_target = nx_edge if self._valid_layer2(source) : self.source = Group(source.netbox, source) elif self._valid_layer3(source): self.source = Group(source.interface.netbox, source.interface) self.source.gw_ip = source.gw_ip self.source.virtual = source.virtual if self._valid_layer2(target): self.target = Group(target.netbox, target) elif self._valid_layer3(target): self.target = Group(target.interface.netbox, target.interface) self.target.gw_ip = target.gw_ip self.target.virtual = target.virtual # Basic metadata validation, lets copy over Netbox data which is valid # as metadata if metadata building didn't manage to fetch it's data. # (this is due to Metadata in L2 is built on Interface<->Interface, # both sides is not necessary known in the topology graph when building # it) # This could also be the case for L3, but since the topology method # stubs.Netbox and stubs.Interface, we don't really have the same issue # in an L3 graph. if self.source is None: self.source = Group(nx_source) if self.target is None: self.target = Group(nx_target) # Swap directional metadata to follow nx graph edge. if (self.source.netbox.id != nx_source.id) and ( self.source.netbox.id == nx_target.id): tmp = self.source self.source = self.target self.target = tmp self.layer = self._get_layer(source, target) if self.layer == 3: assert source.prefix.vlan.id == target.prefix.vlan.id, ( "Source and target GwPortPrefix must reside in same VLan for " "Prefix! Bailing") self.prefix = source.prefix self.vlan = source.prefix.vlan self.traffic = traffic if (self.source and self.source.interface is not None) and ( self.target and self.target.interface is not None): if self.source.interface.speed == self.target.interface.speed: self.link_speed = self.source.interface.speed else: self.errors.append("Mismatch between interface speed") if self.source.interface.speed < self.target.interface.speed: self.link_speed = self.source.interface.speed else: self.link_speed = self.target.interface.speed elif self.source and self.source.interface is not None: self.link_speed = self.source.interface.speed elif self.target and self.target.interface is not None: self.link_speed = self.target.interface.speed self.vlans = [] def __hash__(self): return hash(self.source) + hash(self.target) def __eq__(self, other): if not isinstance(other, type(self)): return False else: return self.source == other.source and self.target == other.target def __ne__(self, other): return not self.__eq__(other) def __repr__(self): return ("netmap.Edge(layer={0!r}, source={1!r}, target={2!r}," "link_speed={3!r}, vlans={4!r}, vlan={5!r}," "prefix={6!r})").format(self.layer, self.source, self.target, self.link_speed, self.vlans, self.vlan, self.prefix) def to_json(self): """json presentation of Edge""" json = { 'source': self.source.to_json() or 'null', 'target': self.target.to_json() or 'null', } if self.layer == 3: json.update({'prefix': { 'net_address': unicode(self.prefix.net_address), 'report_link': reverse('report-prefix-prefix', kwargs={'prefix_id': self.prefix.id}) }}) json.update({'vlan': self.prefix.vlan.id}) elif self.layer == 2: json.update({'vlans': [swpv.vlan.id for swpv in self.vlans]}) json.update({'link_speed': self.link_speed or 'N/A'}) json.update( {'traffic': self.traffic and self.traffic.to_json() or None}) return json def vlan_to_json(vlan): return {'vlan': vlan.vlan, 'nav_vlan': vlan.id, 'net_ident': vlan.net_ident, 'description': vlan.description } def get_vlan_lookup_json(vlan_by_interface): vlan_lookup = {} for list_of_swpv in vlan_by_interface.itervalues(): for swpv in list_of_swpv: vlan_lookup[swpv.vlan.id] = vlan_to_json(swpv.vlan) return vlan_lookup def node_to_json_layer2(node, nx_metadata=None): """Convert a node to json, for use in a netmap layer2 graph :param node A Netbox model :param nx_metadata Metadata from networkx graph. :return json presentation of a node. """ return Node(node, nx_metadata).to_json() def node_to_json_layer3(node, nx_metadata=None): """Convert a node to json, for use in a netmap layer3 graph :param node A Netbox model :param nx_metadata Metadata from networkx graph. :return json presentation of a node. """ return Node(node, nx_metadata).to_json() def edge_to_json_layer2(nx_edge, metadata): """Convert a edge between A and B in a netmap layer2 graph to JSON :param edge Metadata from netmap networkx graph :return edge representation in JSON """ source, target = nx_edge edges = metadata['metadata'] metadata_for_edges = [] all_vlans = set() for edge in edges: all_vlans = all_vlans | edge.vlans metadata_for_edges.append(edge.to_json()) json = { 'source': unicode(source.id), 'target': unicode(target.id), 'vlans' : [swpv.vlan.id for swpv in all_vlans], 'edges': metadata_for_edges } if NETMAP_CONFIG.getboolean('API_DEBUG'): json.update({ 'd_source_sysname': unicode(source.sysname), 'd_target_sysname': unicode(target.sysname), 'd_vlans': [vlan_to_json(swpv.vlan) for swpv in all_vlans] }) return json def edge_to_json_layer3(nx_edge, nx_metadata): """Convert a edge between A and B in a netmap layer 3 graph to JSON :param nx_metadata: Metadata from netmap networkx graph :type nx_metadata: dict :return edge representation in JSON """ source, target = nx_edge # todo: fix sorted list keyed on prefix :-)) metadata_collection = defaultdict(list) for vlan_id, edges in nx_metadata['metadata'].iteritems(): for edge in edges: metadata_collection[vlan_id].append(edge.to_json()) for key, value in metadata_collection.iteritems(): value = sorted(value, key=operator.itemgetter('prefix')) json = { 'source': unicode(source.id), 'target': unicode(target.id), 'edges': metadata_collection } if NETMAP_CONFIG.getboolean('API_DEBUG'): json.update({ 'd_source_sysname': unicode(source.sysname), 'd_target_sysname': unicode(target.sysname), }) return json def edge_metadata_layer3(nx_edge, source, target, traffic): """ :param nx_edge tuple containing source and target (nav.models.manage.Netbox or nav.netmap.stubs.Netbox) :param source nav.models.manage.GwPortPrefix :param target nav.models.manage.GwPortPrefix :param prefixes list of prefixes (Prefix) :returns metadata to attach to netmap graph """ # Note about GwPortPrefix and L3 graph: We always have interface.netbox # avaiable under L3 topology graph due to stubbing Netboxes etc for # elinks. edge = Edge((nx_edge), source, target, traffic) return edge #return metadata def edge_metadata_layer2(nx_edge, source, target, vlans_by_interface, traffic): """ Adds edge meta data with python types for given edge (layer2) :param nx_edge tuple containing source and target (nav.models.manage.Netbox or nav.netmap.stubs.Netbox) :param source nav.models.manage.Interface (from port_pairs nx metadata) :param target nav.models.manage.Interface (from port_pairs nx metadata) :param vlans_by_interface VLAN dict access for fetching SwPortVlan list :returns metadata to attach to netmap graph as metadata. """ edge = Edge(nx_edge, source, target, traffic) source_vlans = target_vlans = [] if vlans_by_interface and source in vlans_by_interface: source_vlans = tuple(vlans_by_interface.get(source)) if vlans_by_interface and target in vlans_by_interface: target_vlans = tuple(vlans_by_interface.get(target)) #key=lambda x: x.vlan.vlan) edge.source.vlans = set(source_vlans) - set(target_vlans) edge.target.vlans = set(target_vlans) - set(source_vlans) edge.vlans = set(source_vlans) | set(target_vlans) return edge
gpl-2.0
5,255,806,333,531,376,000
35.623679
80
0.592334
false
3.995157
true
false
false
xalt/xalt
old/altd/sbin/setDb.py
1
3753
#!/usr/bin/python -E import sys,os import MySQLdb import ConfigParser import base64 import time import getpass def readFromUser(): global HOST,USER,PASSWD,DB HOST=raw_input("Database host:") USER=raw_input("Database user:") PASSWD=getpass.getpass("Database pass:") DB=raw_input("Database name:") def readConfig(): try: global HOST,USER,PASSWD,DB config=ConfigParser.ConfigParser() config.read("altd_db.conf") HOST=config.get("MYSQL","HOST") USER=config.get("MYSQL","USER") PASSWD=base64.b64decode(config.get("MYSQL","PASSWD")) DB=config.get("MYSQL","DB") except ConfigParser.NoOptionError as err: sys.stderr.write("\nCannot parse the config file\n") sys.stderr.write("Switch to user input mode...\n\n") readFromUser() def writeConfig(): config=ConfigParser.ConfigParser() config.add_section("MYSQL") config.set("MYSQL","HOST",HOST) config.set("MYSQL","USER",USER) config.set("MYSQL","PASSWD",base64.b64encode(PASSWD)) config.set("MYSQL","DB",DB) t=time.strftime("%m%d%H%M%Y") f=open('altd_db.'+t,'w') config.write(f) f.close() os.chmod('altd_db.'+t,0640) if(os.path.exists('altd_db.conf')): os.remove('altd_db.conf') os.symlink('altd_db.'+t,"altd_db.conf") if(os.path.exists('altd_db.conf')): print "ALTD database configuration file exists!" q=raw_input("Do you want to use the file to fill database information?[y/n]") if(q.lower() == "y"): readConfig() else: readFromUser() else: readFromUser() MACHINE=raw_input("Machine name:") # connect to the MySQL server try: conn = MySQLdb.connect (HOST,USER,PASSWD) except MySQLdb.Error as e: print "Error %d: %s" % (e.args[0], e.args[1]) sys.exit (1) # create database and related tables try: cursor = conn.cursor() # If MySQL version < 4.1, comment out the line below cursor.execute("SET SQL_MODE=\"NO_AUTO_VALUE_ON_ZERO\"") # If the database does not exist, create it, otherwise, switch to the database. cursor.execute("CREATE DATABASE IF NOT EXISTS %s DEFAULT CHARACTER SET utf8 COLLATE utf8_general_ci" % DB) cursor.execute("USE "+DB) # Table structure for table `altd_<MACHINE>_jobs` cursor.execute(""" CREATE TABLE `altd_%s_jobs` ( `run_inc` int(11) NOT NULL auto_increment, `tag_id` int(11) NOT NULL, `executable` varchar(1024) NOT NULL, `username` varchar(64) NOT NULL, `run_date` date NOT NULL, `job_launch_id` int(11) NOT NULL, `build_machine` varchar(64) NOT NULL, PRIMARY KEY (`run_inc`) ) ENGINE=MyISAM DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 """ % MACHINE) # Table structure for table `altd_<MACHINE>_link_tags` cursor.execute(""" CREATE TABLE `altd_%s_link_tags` ( `tag_id` int(11) NOT NULL auto_increment, `linkline_id` int(11) NOT NULL, `username` varchar(64) NOT NULL, `exit_code` tinyint(4) NOT NULL, `link_date` date NOT NULL, PRIMARY KEY (`tag_id`) ) ENGINE=MyISAM DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 """ % MACHINE) # Table structure for table `altd_<MACHINE>_linkline` cursor.execute(""" CREATE TABLE `altd_%s_linkline` ( `linking_inc` int(11) NOT NULL auto_increment, `linkline` varchar(4096) NOT NULL, PRIMARY KEY (`linking_inc`) ) ENGINE=MyISAM DEFAULT CHARSET=utf8 AUTO_INCREMENT=1 """ % MACHINE) cursor.close() writeConfig() except MySQLdb.Error as e: print "Error %d: %s" % (e.args[0], e.args[1]) sys.exit (1)
lgpl-2.1
1,474,715,430,726,963,000
30.016529
110
0.612843
false
3.318302
true
false
false
andrewcurtis/SSVMetric
src/PatternEvaluator.py
1
9126
# imports import numpy as np import scipy import scipy.sparse.linalg from scipy.sparse.linalg import ArpackNoConvergence from scipy.sparse.linalg import ArpackError import time from SamplingPattern import SamplingPattern from defaults import BASE_N from utils import ft, ift, ft2, ift2, sumsq class PatternEvaluator(object): """ PatternEvaluator Co-ordinates computation of max and min singular values associated with a given SamplingPattern of k-space sample loci. """ def __init__(self, base_sz = BASE_N, sens=[], max_tries=2): super(PatternEvaluator, self).__init__() # Base size self.base_sz = base_sz # SamplingPattern instance we want to test. self.pattern = None # init kernel for (optional) regularization # regl'n not yet implemented self.init_kern18() # space for the vectors we need self.xnew = np.zeros((self.base_sz, self.base_sz), dtype='complex') self.xm = np.zeros((self.base_sz, self.base_sz), dtype='complex') # actual array of sampling loci. self.sampling = np.zeros((self.base_sz, self.base_sz), dtype='float') # max repeats in case of arpack numerical problems self.max_tries = max_tries if sens: self.sens = sens def init_kern18(self): """ optimized sqrt(18) radius kernel for spatial regularization filter """ self.root18 = np.zeros(32) self.root18[1] = 0.04071725 self.root18[2] = 0.03499660 self.root18[4] = 0.02368359 self.root18[5] = 0.02522255 self.root18[8] = 0.02024067 self.root18[9] = 0.01407202 self.root18[10] = 0.01345276 self.root18[13] = 0.00850939 self.root18[16] = 0.00812839 self.root18[17] = 0.00491274 self.root18[18] = 0.00396661 def set_single_coil(self): """ set sensitivity to single uniform coil (e.g. test sampling w/o sense ) """ self.sens = np.ones([1, self.base_sz, self.base_sz], dtype='complex') self.n_coils = self.sens.shape[0] ss = sumsq(self.sens) self.mask = np.ones([ self.base_sz, self.base_sz])>0 self.mask_sz = np.sum(self.mask.ravel()) def load_sens(self, fname, mask_eps=1e-6): """ load coil sensitivity and masking info from file. Warning: assumes data size is (n_coils, nx, ny) Looking for numpy npz file with variable 'sens' Mask from sqrt-sum-of-squares of coil maps. """ fdat = np.load(fname) #except error self.sens = fdat['sens'].copy() self.n_coils = self.sens.shape[0] ss = sumsq(self.sens) self.mask = ss > mask_eps self.mask_sz = np.sum(self.mask.ravel()) #normalize coil maps self.sens[:,self.mask] /= ss[self.mask] def set_norm_fac(self, p): """ Adjust normalization factor. Used for testing overall scaling behaviour of the system. Use n_coils. """ if hasattr(p, 'norm_fac') and p.norm_fac > 0: print 'Using pattern normfac of {}'.format(p.norm_fac) self.norm_fac = p.norm_fac else: self.norm_fac = self.n_coils print 'Using normfac of {}'.format(self.norm_fac) def eval_pattern(self, pat): """ Main driver routine. """ self.pattern = pat self.sampling = pat.sampling.copy().astype('float') self.set_norm_fac(pat) self.solve_high() self.solve_low() self.pattern.calcd = True print pat.hi_eigs print pat.low_eigs def solve_high(self): """ co-ordinate calling ARPACK with our linear operator and get largest eigs """ t_start = time.time() sysA = scipy.sparse.linalg.LinearOperator( (self.mask_sz, self.mask_sz), matvec=self.calc_AtA, dtype='complex') solved = False for j in range(self.max_tries): try: a1,v1 = scipy.sparse.linalg.eigsh( sysA, k=self.pattern.n_eigs, which='LM', maxiter=self.pattern.iter_max, tol=self.pattern.hitol, ncv=self.pattern.ncv, return_eigenvectors=True) # sometimes it "solves" but with crazy errors ~1e+_300 if np.any(np.abs(a1) > self.n_coils): continue else: solved = True break except ArpackError as e: print e if e.info == -8: print('error on try {}'.format(j)) t_end = time.time() print "Elapased: {}s".format(t_end - t_start) self.pattern.hi_eigs = a1 def solve_low(self): t_start = time.time() sysA = scipy.sparse.linalg.LinearOperator( (self.mask_sz, self.mask_sz), matvec=self.calc_AtA, dtype='complex') solved = False for j in range(self.max_tries): try: adyn,vdyn = scipy.sparse.linalg.eigsh( sysA, k=self.pattern.n_eigs, which='SM', maxiter=self.pattern.iter_max, tol=self.pattern.tol, ncv=self.pattern.ncv, return_eigenvectors=True) # sometimes it "solves" but with awful numerical problems # this seems to be a function of a bad input vector, and typically # is resolved by just running again. if we re-implement arpack # we could probably find out why, but until then, we just check for # strange values and re-compute. if np.any(np.abs(adyn) > 1e3): # much bigger than nCoils ever will be continue else: solved = True break except ArpackError as e: print('Arpack error in solve_low {}'.format(e)) t_end = time.time() print "Elapased: {}s".format(t_end - t_start) self.pattern.low_eigs = adyn if not solved: self.pattern.low_eigs = -1 def calc_AtA(self, x0): """ calculate system matrix (normal equations) """ nSamp = np.sum(self.sampling) maskSz = np.sum(self.mask) nCoils, nv, npts = self.sens.shape if x0.dtype <> np.complex128: x0 = x0.astype('complex128') x_img = x0 result = np.zeros(maskSz, dtype='complex') # Compute A A_back = sys_sense(x_img, self.sens, self.sampling>0, self.mask) result[:] = A_back[:] / self.norm_fac #copy / flatten return result ## -- # Rountines for the system matrix are below. # To speed things up, we implement these python prototypes in C # # Note: fun testing w/ auto-jitting does little here. # # Interleaving of the FFT's and dot products are the main slowdown. # Interestingly, python's default fftpack doesn't do a stellar job # if we pass in a 3D array and ask for the 2D FT... We can look to move # to a fftw wrapper in future. # # Instead, we overload PatternEvaluator.calc_AtA() to call some # C functions via the CFFI that do fast dots and call FFTW. # Its a bit messier for distribution since it requries compilation. def sys_sense(im_mask, coils, pattern, mask): """ linear system for sense imaging input 1d vector to iterator on (from arpack) - insert into 2d image mask - compute 2d FT's and dots with sens - sample k space - inverse - extract """ nCoils, nv, npts = coils.shape #print coils.shape #print data.shape image = np.zeros((nv, npts), dtype='complex128') image[mask] = im_mask nD = image.ndim accum = 0.0 tmpGrad = [] zeroPat = pattern<1 gradient = np.zeros_like(im_mask) ft_scale = 1.0/np.sqrt(nv*npts) #compute one coil at a time to save working memory space for c in range(nCoils): coilPtr = coils[c,...] # todo: zeropad scratch = (coilPtr) * image scratch = ift2(scratch) # zero out non-sampled locations scratch[zeroPat]=0 # ft back scratch = ft2(scratch) # todo: crop scratch = np.conj(coilPtr) * scratch # accumulate gradient = gradient + scratch[mask] gout = (gradient) gout.shape = (-1) return gout
mit
-3,858,472,168,336,106,000
27.698113
86
0.53364
false
3.810438
false
false
false
iyer-arvind/PyFR
pyfr/backends/openmp/generator.py
3
7202
# -*- coding: utf-8 -*- import re from pyfr.backends.base.generator import BaseKernelGenerator from pyfr.util import ndrange class OpenMPKernelGenerator(BaseKernelGenerator): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Specialise self._dims = ['_nx'] if self.ndim == 1 else ['_ny', '_nx'] def render(self): # Kernel spec spec = self._emit_spec() if self.ndim == 1: body = self._emit_body_1d() return ''' {spec} {{ #pragma omp parallel {{ int align = PYFR_ALIGN_BYTES / sizeof(fpdtype_t); int cb, ce; loop_sched_1d(_nx, align, &cb, &ce); for (int _x = cb; _x < ce; _x++) {{ {body} }} }} }}'''.format(spec=spec, body=body) else: innerfn = self._emit_inner_func() innercall = self._emit_inner_call() return '''{innerfn} {spec} {{ #pragma omp parallel {{ int align = PYFR_ALIGN_BYTES / sizeof(fpdtype_t); int rb, re, cb, ce; loop_sched_2d(_ny, _nx, align, &rb, &re, &cb, &ce); for (int _y = rb; _y < re; _y++) {{ {innercall} }} }} }}'''.format(innerfn=innerfn, spec=spec, innercall=innercall) def _emit_inner_func(self): # Get the specification and body spec = self._emit_inner_spec() body = self._emit_body_2d() # Combine return '''{spec} {{ for (int _x = 0; _x < _nx; _x++) {{ {body} }} }}'''.format(spec=spec, body=body) def _emit_inner_call(self): # Arguments for the inner function iargs = ['ce - cb'] iargs.extend(sa.name for sa in self.scalargs) for va in self.vectargs: iargs.extend(self._offset_arg_array_2d(va)) return '{0}_inner({1});'.format(self.name, ', '.join(iargs)) def _emit_inner_spec(self): # Inner dimension ikargs = ['int _nx'] # Add any scalar arguments ikargs.extend('{0.dtype} {0.name}'.format(sa) for sa in self.scalargs) # Vector arguments (always arrays as we're 2D) for va in self.vectargs: const = 'const' if va.intent == 'in' else '' stmt = '{0} {1.dtype} *__restrict__ {1.name}_v'.format(const, va) stmt = stmt.strip() if va.ncdim == 0: ikargs.append(stmt) else: for ij in ndrange(*va.cdims): ikargs.append(stmt + 'v'.join(str(n) for n in ij)) return ('static PYFR_NOINLINE void {0}_inner({1})' .format(self.name, ', '.join(ikargs))) def _emit_spec(self): # We first need the argument list; starting with the dimensions kargs = ['int ' + d for d in self._dims] # Now add any scalar arguments kargs.extend('{0.dtype} {0.name}'.format(sa) for sa in self.scalargs) # Finally, add the vector arguments for va in self.vectargs: # Views if va.isview: kargs.append('{0.dtype}* __restrict__ {0.name}_v'.format(va)) kargs.append('const int* __restrict__ {0.name}_vix' .format(va)) if va.ncdim >= 1: kargs.append('const int* __restrict__ {0.name}_vcstri' .format(va)) if va.ncdim == 2: kargs.append('const int* __restrict__ {0.name}_vrstri' .format(va)) # Arrays else: # Intent in arguments should be marked constant const = 'const' if va.intent == 'in' else '' kargs.append('{0} {1.dtype}* __restrict__ {1.name}_v' .format(const, va).strip()) # If we are a matrix (ndim = 2) or a non-MPI stacked # vector then a leading (sub) dimension is required if self.ndim == 2 or (va.ncdim > 0 and not va.ismpi): kargs.append('int lsd{0.name}'.format(va)) return 'void {0}({1})'.format(self.name, ', '.join(kargs)) def _emit_body_1d(self): body = self.body ptns = [r'\b{0}\b', r'\b{0}\[(\d+)\]', r'\b{0}\[(\d+)\]\[(\d+)\]'] for va in self.vectargs: # Dereference the argument darg = self._deref_arg(va) # Substitute body = re.sub(ptns[va.ncdim].format(va.name), darg, body) return body def _emit_body_2d(self): body = self.body ptns = [r'\b{0}\b', r'\b{0}\[(\d+)\]', r'\b{0}\[(\d+)\]\[(\d+)\]'] subs = ['{0}_v[_x]', r'{0}_v\1[_x]', r'{0}_v\1v\2[_x]'] for va in self.vectargs: body = re.sub(ptns[va.ncdim].format(va.name), subs[va.ncdim].format(va.name), body) return body def _deref_arg(self, arg): if arg.isview: ptns = ['{0}_v[{0}_vix[_x]]', r'{0}_v[{0}_vix[_x] + {0}_vcstri[_x]*\1]', r'{0}_v[{0}_vix[_x] + {0}_vrstri[_x]*\1' r' + {0}_vcstri[_x]*\2]'] return ptns[arg.ncdim].format(arg.name) else: # Leading (sub) dimension lsdim = 'lsd' + arg.name if not arg.ismpi else '_nx' # Vector name_v[_x] if arg.ncdim == 0: ix = '_x' # Stacked vector; name_v[lsdim*\1 + _x] elif arg.ncdim == 1: ix = r'{0}*\1 + _x'.format(lsdim) # Doubly stacked vector; name_v[lsdim*nv*\1 + lsdim*\2 + _x] else: ix = r'{0}*{1}*\1 + {0}*\2 + _x'.format(lsdim, arg.cdims[1]) return '{0}_v[{1}]'.format(arg.name, ix) def _offset_arg_array_2d(self, arg): stmts = [] # Matrix; name + _y*lsdim + cb if arg.ncdim == 0: stmts.append('{0}_v + _y*lsd{0} + cb'.format(arg.name)) # Stacked matrix; name + (_y*nv + <0>)*lsdim + cb elif arg.ncdim == 1: stmts.extend('{0}_v + (_y*{1} + {2})*lsd{0} + cb' .format(arg.name, arg.cdims[0], i) for i in range(arg.cdims[0])) # Doubly stacked matrix; name + ((<0>*_ny + _y)*nv + <1>)*lsdim + cb else: stmts.extend('{0}_v + (({1}*_ny + _y)*{2} + {3})*lsd{0} + cb' .format(arg.name, i, arg.cdims[1], j) for i, j in ndrange(*arg.cdims)) return stmts
bsd-3-clause
6,854,901,861,240,827,000
34.653465
78
0.425993
false
3.583085
false
false
false
AerisCloud/AerisCloud
aeriscloud/log.py
1
1415
import logging import sys LOGGING_FORMAT = '%(asctime)s [%(levelname)s] %(name)s: %(message)s' FILE_LOGGING_FORMAT = '%(asctime)s,%(levelname)s,%(name)s,%(message)s' # captureWarnings exists only since 2.7 _nh = None if sys.hexversion > 0x2070000: logging.captureWarnings(True) _nh = logging.NullHandler() else: # doesn't exists in older versions class NullHandler(logging.Handler): def emit(self, record): pass _nh = NullHandler() logging.root.name = 'aeriscloud' _logger = logging.root _logger.addHandler(_nh) # disable all logs _logger.setLevel(60) # prevent root logger from outputting _logger.propagate = False def get_logger(name=None, parent=_logger): if name: if not hasattr(parent, 'getChild'): return parent.manager.getLogger('.'.join([parent.name, name])) return parent.getChild(name) return parent def set_log_level(lvl): # custom stream handler by default if _nh in _logger.handlers: _logger.removeHandler(_nh) _handler = logging.StreamHandler() _handler.setFormatter(logging.Formatter(LOGGING_FORMAT)) _logger.addHandler(_handler) _logger.setLevel(lvl) def set_log_file(filename): _logger.removeHandler(_nh) _file_handler = logging.FileHandler(filename) _file_handler.setFormatter(logging.Formatter(FILE_LOGGING_FORMAT)) _logger.addHandler(_file_handler)
mit
-6,147,397,567,664,631,000
26.745098
74
0.683392
false
3.618926
false
false
false
wimmuskee/ontolex-db
database/mysql.py
1
22736
# -*- coding: utf-8 -*- import pymysql.cursors import uuid from urllib.parse import urlparse """ Some explanation for this set of functions. set: put a partical subset in a class var insert: insert one row without checks and dependencies, optionally commit store: insert multiples and calling separate insert functions, always commits and has optional safemode check: returns True or False get: get an individual value todo, find and get """ class Database: def __init__(self,config): self.host = config["host"] self.user = config["user"] self.passwd = config["passwd"] self.name = config["name"] self.lexicalEntries = [] self.lexicalEntryRelations = [] self.lexicalForms = [] self.lexicalProperties = [] self.lexicalSenses = [] self.senseReferences = [] self.lexicalEntryComponents = [] self.components = [] self.lexicalEntryLabels = {} self.lexicalSenseDefinitions = {} self.posses = {} self.languages = {} self.properties = {} self.senserelations = [] self.entryrelations = {} def connect(self): self.DB = pymysql.connect(host=self.host,user=self.user, passwd=self.passwd,db=self.name,charset='utf8',use_unicode=1,cursorclass=pymysql.cursors.DictCursor) def setPosses(self): for row in self.__getRows("SELECT * FROM partOfSpeechVocabulary"): self.posses[row["value"]] = row["id"] def setLanguages(self): for row in self.__getRows("SELECT * FROM languageVocabulary"): self.languages[row["iso_639_1"]] = row["id"] def setProperties(self): for row in self.__getRows("SELECT * FROM propertyVocabulary"): key = self.__getUrlPart(row["property"]) + ":" + self.__getUrlPart(row["value"]) self.properties[key] = row["id"] def setEntryRelations(self): for row in self.__getRows("SELECT * FROM relationVocabulary"): key = "lexinfo:" + self.__getUrlPart(row["relation"]) self.entryrelations[key] = row["relationID"] def setSenseRelations(self): """ Should not be manual, but for now there is validation. """ self.senserelations.extend( ["ontolex:reference"] ) self.senserelations.extend( ["lexinfo:antonym", "lexinfo:synonym", "lexinfo:pertainsTo", "lexinfo:relatedTerm", "lexinfo:hypernym"] ) def setLexicalEntries(self): query = "SELECT lexicalEntryID, class, pos.value AS pos_value, lex.identifier AS lex_identifier FROM lexicalEntry AS lex \ LEFT JOIN partOfSpeechVocabulary AS pos ON lex.partOfSpeechID = pos.id" self.lexicalEntries = self.__getRows(query) def setLexicalEntry(self,lexicalEntryID): query = "SELECT lexicalEntryID, class, pos.value AS pos_value, identifier AS lex_identifier FROM lexicalEntry AS lex \ LEFT JOIN partOfSpeechVocabulary AS pos ON lex.partOfSpeechID = pos.id \ WHERE lexicalEntryID = %s" self.lexicalEntries = self.__getRows(query,(lexicalEntryID)) def setLexicalEntryRelations(self): query = "SELECT lex.identifier AS lex_identifier, entryrel.reference, vocab.relation FROM lexicalEntryRelation AS entryrel \ LEFT JOIN lexicalEntry AS lex ON entryrel.lexicalEntryID = lex.lexicalEntryID \ LEFT JOIN relationVocabulary AS vocab ON entryrel.relationID = vocab.relationID" self.lexicalEntryRelations = self.__getRows(query) def setLexicalEntryRelationsByID(self,lexicalEntryID): query = "SELECT lex.identifier AS lex_identifier, entryrel.reference, vocab.relation FROM lexicalEntryRelation AS entryrel \ LEFT JOIN lexicalEntry AS lex ON entryrel.lexicalEntryID = lex.lexicalEntryID \ LEFT JOIN relationVocabulary AS vocab ON entryrel.relationID = vocab.relationID \ WHERE entryrel.lexicalEntryID = %s" self.lexicalEntryRelations = self.__getRows(query,(lexicalEntryID)) def setLexicalForms(self,lang_id): query = "SELECT form.lexicalEntryID, form.lexicalFormID, type, rep.value AS rep_value, lex.identifier AS lex_identifier, form.identifier AS form_identifier, rep.syllableCount AS syllableCount FROM lexicalForm AS form \ LEFT JOIN lexicalEntry AS lex ON form.lexicalEntryID = lex.lexicalEntryID \ LEFT JOIN writtenRep AS rep ON form.lexicalFormID = rep.lexicalFormID \ WHERE rep.languageID = %s" self.lexicalForms = self.__getRows(query,(lang_id)) def setLexicalForm(self,lexicalEntryID,lang_id): query = "SELECT form.lexicalEntryID, form.lexicalFormID, type, rep.value AS rep_value, lex.identifier AS lex_identifier, form.identifier AS form_identifier, rep.syllableCount AS syllableCount FROM lexicalForm AS form \ LEFT JOIN lexicalEntry AS lex ON form.lexicalEntryID = lex.lexicalEntryID \ LEFT JOIN writtenRep AS rep ON form.lexicalFormID = rep.lexicalFormID \ WHERE form.lexicalEntryID = %s \ AND rep.languageID = %s" self.lexicalForms.extend(self.__getRows(query,(lexicalEntryID,lang_id))) def setLexicalFormsByEntries(self,lang_id): for entry in self.lexicalEntries: self.setLexicalForm(entry["lexicalEntryID"],lang_id) def setLexicalEntryLabels(self): """ Sets easy lookup labels for use in setLexicalSenses without needing big joins. Called seperately because setLexicalFormsByEntries calls setLexicalForm. """ for form in self.lexicalForms: if form["type"] == "canonicalForm": self.lexicalEntryLabels[form["lexicalEntryID"]] = form["rep_value"] def setLexicalFormProperties(self): query = "SELECT form.identifier AS form_identifier, vocab.property, vocab.value FROM formProperties AS formprop \ LEFT JOIN lexicalForm AS form ON formprop.lexicalFormID = form.lexicalFormID \ LEFT JOIN propertyVocabulary AS vocab ON formprop.propertyID = vocab.id" self.lexicalProperties = self.__getRows(query) def setLexicalFormPropertiesByID(self): for form in self.lexicalForms: query = "SELECT form.identifier AS form_identifier, vocab.property, vocab.value FROM formProperties AS formprop \ LEFT JOIN lexicalForm AS form ON formprop.lexicalFormID = form.lexicalFormID \ LEFT JOIN propertyVocabulary AS vocab ON formprop.propertyID = vocab.id \ WHERE formprop.lexicalFormID = %s" self.lexicalProperties.extend(self.__getRows(query,(form["lexicalFormID"]))) def setLexicalSenses(self): query = "SELECT sense.lexicalSenseID, sense.lexicalEntryID, lex.identifier AS lex_identifier, sense.identifier AS sense_identifier FROM lexicalSense AS sense \ LEFT JOIN lexicalEntry AS lex ON sense.lexicalEntryID = lex.lexicalEntryID" self.lexicalSenses = self.__getRows(query) def setLexicalSensesByID(self,lexicalEntryID): query = "SELECT sense.lexicalSenseID, sense.lexicalEntryID, lex.identifier AS lex_identifier, sense.identifier AS sense_identifier FROM lexicalSense AS sense \ LEFT JOIN lexicalEntry AS lex ON sense.lexicalEntryID = lex.lexicalEntryID \ WHERE sense.lexicalEntryID = %s" self.lexicalSenses.extend(self.__getRows(query,(lexicalEntryID))) def setLexicalSensesByEntries(self): for entry in self.lexicalEntries: self.setLexicalSensesByID(entry["lexicalEntryID"]) def setSenseDefinitions(self,lang_id): """ Definition is optional.""" for sense in self.lexicalSenses: query = "SELECT value FROM senseDefinition WHERE lexicalSenseID = %s AND languageID = %s" row = self.__getRow(query,(sense["lexicalSenseID"],lang_id)) if row: self.lexicalSenseDefinitions[sense["sense_identifier"]] = row["value"] def setSenseReferences(self): query = "SELECT sense.identifier AS sense_identifier, namespace, property, reference FROM senseReference \ LEFT JOIN lexicalSense AS sense ON senseReference.lexicalSenseID = sense.lexicalSenseID" self.senseReferences = self.__getRows(query) def setSenseReferencesByID(self): for sense in self.lexicalSenses: query = "SELECT sense.identifier AS sense_identifier, namespace, property, reference FROM senseReference \ LEFT JOIN lexicalSense AS sense ON senseReference.lexicalSenseID = sense.lexicalSenseID \ WHERE senseReference.lexicalSenseID = %s" self.senseReferences.extend(self.__getRows(query,(sense["lexicalSenseID"]))) def setLexicalComponents(self): query = "SELECT lex.identifier AS lex_identifier, comp.identifier AS comp_identifier, position FROM lexicalEntryComponent AS lexcomp \ LEFT JOIN lexicalEntry AS lex ON lexcomp.lexicalEntryID = lex.lexicalEntryID \ LEFT JOIN component AS comp ON lexcomp.componentID = comp.componentID" self.lexicalEntryComponents.extend(self.__getRows(query)) def setLexicalComponentsByID(self,lexicalEntryID): query = "SELECT lex.identifier AS lex_identifier, comp.identifier AS comp_identifier, position FROM lexicalEntryComponent AS lexcomp \ LEFT JOIN lexicalEntry AS lex ON lexcomp.lexicalEntryID = lex.lexicalEntryID \ LEFT JOIN component AS comp ON lexcomp.componentID = comp.componentID \ WHERE lexcomp.lexicalEntryID = %s" self.lexicalEntryComponents.extend(self.__getRows(query,(lexicalEntryID))) def setComponents(self): query = "SELECT DISTINCT comp.identifier AS comp_identifier, lex.identifier AS lex_identifier, form.identifier AS form_identifier FROM component AS comp \ LEFT JOIN lexicalEntry AS lex ON comp.lexicalEntryID = lex.lexicalEntryID \ LEFT JOIN lexicalForm AS form ON comp.lexicalFormID = form.lexicalFormID" self.components.extend(self.__getRows(query)) def setComponentsByID(self,lexicalEntryID,lang_id): query = "SELECT DISTINCT comp.identifier AS comp_identifier, lex.identifier AS lex_identifier, form.identifier AS form_identifier, rep.value AS rep_value FROM component AS comp \ LEFT JOIN lexicalEntryComponent AS lexcomp ON comp.componentID = lexcomp.componentID \ LEFT JOIN lexicalEntry AS lex ON comp.lexicalEntryID = lex.lexicalEntryID \ LEFT JOIN lexicalForm AS form ON comp.lexicalFormID = form.lexicalFormID \ LEFT JOIN writtenRep AS rep ON form.lexicalFormID = rep.lexicalFormID \ WHERE lexcomp.lexicalEntryID = %s \ AND rep.languageID = %s" self.components.extend(self.__getRows(query,(lexicalEntryID,lang_id))) # and add single component to output (but not connected to actual component part of lexicalEntry # useful for management, and checking loose components if not self.components: query = "SELECT DISTINCT comp.identifier AS comp_identifier, lex.identifier AS lex_identifier, form.identifier AS form_identifier, rep.value AS rep_value FROM component AS comp \ LEFT JOIN lexicalEntry AS lex ON comp.lexicalEntryID = lex.lexicalEntryID \ LEFT JOIN lexicalForm AS form ON comp.lexicalFormID = form.lexicalFormID \ LEFT JOIN writtenRep AS rep ON form.lexicalFormID = rep.lexicalFormID \ WHERE lex.lexicalEntryID = %s \ AND rep.languageID = %s" self.components.extend(self.__getRows(query,(lexicalEntryID,lang_id))) def saveVerbPastSingular(self,lexicalEntryID,value,lang_id): lex_id = self.getID(lexicalEntryID,"lexicalEntry") form_id = self.storeOtherForm(lex_id,value,lang_id) self.insertFormProperty(form_id,self.properties["tense:past"],True) self.insertFormProperty(form_id,self.properties["number:singular"],True) def saveVerbPastParticiple(self,lexicalEntryID,value,lang_id): lex_id = self.getID(lexicalEntryID,"lexicalEntry") # store with safemode False form_id = self.storeOtherForm(lex_id,value,lang_id,False) self.insertFormProperty(form_id,self.properties["tense:past"],True) self.insertFormProperty(form_id,self.properties["verbFormMood:participle"],True) def getLexicalEntryID(self,value,partOfSpeechID): query = "SELECT lexicalEntryID FROM lexicalEntry WHERE value = %s AND partOfSpeechID = %s" row = self.__getRow(query,(value,partOfSpeechID)) return row["lexicalEntryID"] def getLexicalSenseID(self,lexicalEntryID): query = "SELECT lexicalSenseID FROM lexicalSense WHERE lexicalEntryID = %s" row = self.__getRow(query,(lexicalEntryID)) return row["lexicalSenseID"] def getID(self,identifier,table): """ Return the real database ID from either entry, form or sense, based on identifier. """ field = table + "ID" query = "SELECT " + field + " FROM " + table + " WHERE identifier = %s" row = self.__getRow(query,(identifier)) return row[field] def getIdentifier(self,id,table): """ Return the identifier from either entry, form or sense, based on the real DB id. """ field = table + "ID" query = "SELECT identifier FROM " + table + " WHERE " + field + " = %s" row = self.__getRow(query,(id)) return row["identifier"] def getCountlexicalSenses(self,lexicalEntryID): query = "SELECT count(*) AS count FROM lexicalSense WHERE lexicalEntryID = %s" row = self.__getRow(query,(lexicalEntryID)) return int(row["count"]) def getWrittenRepsWithoutSyllableCount(self,lang_id): query = "SELECT DISTINCT value FROM writtenRep WHERE syllableCount IS NULL AND languageID = %s" return self.__getRows(query,(lang_id)) def checkSenseReferenceExists(self,lexicalSenseID,relation,reference): namespace = relation.split(":")[0] property = relation.split(":")[1] query = "SELECT * FROM senseReference WHERE lexicalSenseID = %s AND namespace = %s AND property = %s AND reference = %s" row = self.__getRow(query,(lexicalSenseID,namespace,property,reference)) if row: return True else: return False def checkLexicalEntryRelationExists(self,lexicalEntryID,relation,reference): query = "SELECT * FROM lexicalEntryRelation WHERE lexicalEntryID = %s AND relationID = %s AND reference = %s" row = self.__getRow(query,(lexicalEntryID,relation,reference)) if row: return True else: return False def checkLexicalFormPropertyExists(self,lexicalFormID,propertyID): query = "SELECT * FROM formProperties WHERE lexicalFormID = %s AND propertyID = %s" row = self.__getRow(query,(lexicalFormID,propertyID)) if row: return True else: return False def storeCanonical(self,word,lang_id,pos_id,safemode=True): """ Stores new lexicalEntry and canonicalForm if entry does not exist.""" if self.findLexicalEntry(word,pos_id) and safemode: print("found this entry already: " + word) return None lexicalEntryID = self.insertLexicalEntry(word,pos_id) lexicalFormID = self.insertLexicalForm(lexicalEntryID,"canonicalForm") self.insertWrittenRep(lexicalFormID,word,lang_id) # store infinitive form for verb if pos_id == self.posses["verb"]: self.insertFormProperty(lexicalFormID,self.properties["verbFormMood:infinitive"]) self.DB.commit() return lexicalEntryID def storeOtherForm(self,lexicalEntryID,word,lang_id,safemode=True): if self.findlexicalForm(lexicalEntryID,word,lang_id) and safemode: print("found this form already: " + word) return None lexicalFormID = self.insertLexicalForm(lexicalEntryID,"otherForm") self.insertWrittenRep(lexicalFormID,word,lang_id) self.DB.commit() return lexicalFormID def storeFormProperties(self,lexicalFormID,properties,safemode=True): # no safemode yet for property in properties: # p in form <property>:<value> self.insertFormProperty(lexicalFormID,self.properties[property]) self.DB.commit() def storeLexicalSense(self,lexicalEntryID,relation,reference,safemode=True): """ Adds lexicalSense to lexicxalEntry, and adds a relation. """ senseCount = self.getCountlexicalSenses(lexicalEntryID) if senseCount == 0: # no senses yet, we can safely add a sense and a relation lexicalSenseID = self.insertLexicalSense(lexicalEntryID) self.insertSenseReference(lexicalSenseID,relation,reference) elif senseCount == 1: # asume we're adding to this sense, retrieve the senseID and add reference if not exists lexicalSenseID = self.getLexicalSenseID(lexicalEntryID) if not self.checkSenseReferenceExists(lexicalSenseID,relation,reference): self.insertSenseReference(lexicalSenseID,relation,reference) else: lexicalSenseID = None self.DB.commit() return lexicalSenseID def storeLexicalEntryRelation(self,lexicalEntryID,relation,reference): """ Check whether relation already exists, and if not, adds it. """ if not self.checkLexicalEntryRelationExists(lexicalEntryID,relation,reference): self.insertLexicalEntryRelation(lexicalEntryID,relation,reference) self.DB.commit() def storeComponent(self,lexicalFormID): """ Stores component, based on lexicalFormID. """ query = "SELECT lexicalEntryID FROM lexicalForm WHERE lexicalFormID = %s" row = self.__getRow(query,(lexicalFormID)) if row: return self.insertComponent(row["lexicalEntryID"],lexicalFormID,True) else: return "failed" def findLexicalEntry(self,word,pos_id): query = "SELECT lexicalEntryID FROM lexicalEntry WHERE value = %s AND partOfSpeechID = %s" row = self.__getRow(query,(word,pos_id)) if row: return row["lexicalEntryID"] else: return None def findlexicalForm(self,lexicalEntryID,word,lang_id): query = "SELECT form.lexicalFormID FROM lexicalForm AS form \ LEFT JOIN writtenRep AS rep ON form.lexicalFormID = rep.lexicalFormID \ WHERE form.lexicalEntryID = %s \ AND rep.value = %s \ AND rep.languageID = %s" row = self.__getRow(query,(lexicalEntryID,word,lang_id)) if row: return row["lexicalFormID"] else: return None def insertLexicalEntry(self,word,pos_id,commit=False): c = self.DB.cursor() entryclass = "Word" if word.count(" ") > 0: entryclass = "MultiwordExpression" identifier = "urn:uuid:" + str(uuid.uuid4()) query = "INSERT INTO lexicalEntry (value,identifier,partOfSpeechID,class) VALUES (%s,%s,%s,%s)" c.execute(query, (word,identifier,pos_id,entryclass)) lexicalEntryID = c.lastrowid c.close() if commit: self.DB.commit() return lexicalEntryID def insertLexicalEntryRelation(self,lexicalEntryID,relationID,reference,commit=False): c = self.DB.cursor() query = "INSERT INTO lexicalEntryRelation (lexicalEntryID,relationID,reference) VALUES (%s,%s,%s)" c.execute(query, (lexicalEntryID,relationID,reference)) c.close() if commit: self.DB.commit() def insertLexicalForm(self,lexicalEntryID,type,commit=False): c = self.DB.cursor() identifier = "urn:uuid:" + str(uuid.uuid4()) query = "INSERT INTO lexicalForm (lexicalEntryID,identifier,type) VALUES (%s,%s,%s)" c.execute(query, (lexicalEntryID,identifier,type)) lexicalFormID = c.lastrowid c.close() if commit: self.DB.commit() return lexicalFormID def insertWrittenRep(self,lexicalFormID,word,lang_id,commit=False): c = self.DB.cursor() query = "INSERT INTO writtenRep (lexicalFormID,languageID,value) VALUES (%s,%s,%s)" c.execute(query, (lexicalFormID,lang_id,word)) c.close() if commit: self.DB.commit() def insertFormProperty(self,lexicalFormID,propertyID,commit=False): if self.checkLexicalFormPropertyExists(lexicalFormID,propertyID): return c = self.DB.cursor() query = "INSERT INTO formProperties (lexicalFormID,propertyID) VALUES (%s,%s)" c.execute(query, (lexicalFormID,propertyID)) c.close() if commit: self.DB.commit() def insertLexicalSense(self,lexicalEntryID,commit=False): """ Insert lexicalSense, and optionally commit.""" c = self.DB.cursor() identifier = "urn:uuid:" + str(uuid.uuid4()) query = "INSERT INTO lexicalSense (lexicalEntryID,identifier) VALUES (%s,%s)" c.execute(query, (lexicalEntryID,identifier)) lexicalSenseID = c.lastrowid c.close() if commit: self.DB.commit() return lexicalSenseID def insertLexicalSenseDefinition(self,lexicalSenseID,languageID,definition,commit=False): c = self.DB.cursor() query = "INSERT INTO senseDefinition (lexicalSenseID,languageID,value) VALUES (%s,%s,%s)" c.execute(query, (lexicalSenseID,languageID,definition)) c.close() if commit: self.DB.commit() def insertSenseReference(self,lexicalSenseID,relation,reference,commit=False): c = self.DB.cursor() namespace = relation.split(":")[0] property = relation.split(":")[1] query = "INSERT INTO senseReference (lexicalSenseID,namespace,property,reference) VALUES (%s,%s,%s,%s)" c.execute(query, (lexicalSenseID,namespace,property,reference)) c.close() if commit: self.DB.commit() def insertComponent(self,lexicalEntryID,lexicalFormID,commit=False): c = self.DB.cursor() # we should have a checkExists for this query = "SELECT componentID FROM component WHERE lexicalEntryID = %s AND lexicalFormID = %s" c.execute(query,(lexicalEntryID,lexicalFormID)) row = c.fetchone() if row: return row["componentID"] else: identifier = "urn:uuid:" + str(uuid.uuid4()) query = "INSERT INTO component (identifier,lexicalEntryID,lexicalFormID) VALUES (%s,%s,%s)" c.execute(query,(identifier,lexicalEntryID,lexicalFormID)) componentID = c.lastrowid c.close() if commit: self.DB.commit() return componentID def insertLexicalEntryComponent(self,lexicalEntryID,componentID,position,commit=False): c = self.DB.cursor() # more another checkExists, where nothing is returned query = "SELECT * FROM lexicalEntryComponent WHERE lexicalEntryID = %s AND componentID = %s AND position = %s" c.execute(query,(lexicalEntryID,componentID,position)) row = c.fetchone() if not row: query = "INSERT INTO lexicalEntryComponent (lexicalEntryID,componentID,position) VALUES (%s,%s,%s)" c.execute(query,(lexicalEntryID,componentID,position)) c.close() if commit: self.DB.commit() def updateLexicalEntryValue(self,lexicalEntryID,label,languageID): c = self.DB.cursor() # find canonicalForm query = "SELECT * FROM lexicalForm WHERE lexicalEntryID = %s AND type = 'canonicalForm'" c.execute(query, (lexicalEntryID)) canonicalform = c.fetchone() # update entry and writtenrep query = "UPDATE lexicalEntry SET value = %s WHERE lexicalEntryID = %s" c.execute(query, (label,lexicalEntryID)) query = "UPDATE writtenRep SET value = %s WHERE lexicalFormID = %s AND languageID = %s" c.execute(query,(label,canonicalform["lexicalFormID"],languageID)) c.close() self.DB.commit() def updateLexicalEntryPOS(self,lexicalEntryID,partOfSpeechID): c = self.DB.cursor() query = "UPDATE lexicalEntry SET partOfSpeechID = %s WHERE lexicalEntryID = %s" c.execute(query, (partOfSpeechID,lexicalEntryID)) c.close() self.DB.commit() def updateSyllableCount(self,value,syllableCount,languageID): c = self.DB.cursor() query = "UPDATE writtenRep SET syllableCount = %s WHERE value = %s AND languageID = %s" c.execute(query,(syllableCount,value,languageID)) c.close() self.DB.commit() def __getRow(self,query,args=None): c = self.DB.cursor() c.execute(query,args) row = c.fetchone() c.close() return row def __getRows(self,query,args=None): c = self.DB.cursor() c.execute(query,args) rows = c.fetchall() c.close() return rows def __getUrlPart(self,url): """ Helper function to get the last part of the property url.""" parsed = urlparse(url) if parsed.fragment: return parsed.fragment else: return parsed.path.split('/')[-1]
mit
-5,469,644,514,981,064,000
37.083752
220
0.747229
false
3.176306
false
false
false
senser/xmppBot
ZenPacks/community/xmppBot/Jabber/plugins/graph.py
1
6750
"""Extract graphs.""" from Jabber.Plugins import Plugin from Jabber.ZenAdapter import ZenAdapter from Jabber.Options import Options from optparse import OptionError class Graph(Plugin): name = 'graph' capabilities = ['graph', 'help'] def call(self, args, log, **kw): #Dirty hack to make it work with multiword options (they must be in '' or "") i=-1 appnd=False args1=[] for arg in args: if appnd: args1[i]+=' '+arg.replace("'",'').replace('"','') else: i+=1 args1.append(arg.replace("'",'').replace('"','')) if arg[0] in ('"', "'"): appnd=True if arg[-1] in ('"', "'"): appnd=False args=args1 log.debug('Graph extraction plugin running with arguments %s' % args) opts = self.options() adapter = ZenAdapter() try: (options, arguments) = opts.parse_args(args) log.debug('Done parsing arguments. Options are "%s", arguments expanded to %s' % (options, arguments)) except OptionError, message: return str(message) if options.deviceName is None or (not options.list and options.graphName is None): return 'NO. You must specify both device and graph with -d and -g.' devices = adapter.devices(options.deviceName) if len(devices) == 0: return 'Cannot find a device, ip or mac for "%s"' % options.deviceName log.debug('Found %d devices matching %s' % (len(devices), devices)) if options.list: message='' if options.subComponent: for device in devices: componentList = adapter.components(device, options.subComponent) if componentList: for component in componentList: for validGraph in component.getDefaultGraphDefs(): message += validGraph['title'] + ' (' + component.absolute_url_path().split(device.id)[1][1:] + ')\n' else: for device in devices: for validGraph in device.getDefaultGraphDefs(): message += validGraph['title'] + '\n' return 'Valid graphs:\n' + message log.debug('Going to look for graph %s' % options.graphName) # rrdtool cannot accept arguments in unicode, so convert graphName to ascii first message = self.obtainValues(adapter, devices, options.graphName.encode('ascii', 'ignore'), options.subComponent, log) return message def obtainValues(self, adapter, devices, graph, component, log): import time message = '' log.debug('Have %d devices to check for %s' % (len(devices), graph)) for device in devices: log.debug('Checking %s. For the graph %s' % (device.id, graph)) # try to get it directly from the device first. if self.hasGraph(device, graph): log.debug('The device %s does have the graph %s' % (device.id, graph)) message += '%s %s: %s\n' % (device.name(), graph, self.shorten(self.upload(self.render(device.getGraphDefUrl(graph)), device.name() + '/' + graph.replace(' ', '_') + '_' + time.strftime('%Y%m%d_%H%M%S',time.localtime()) +'.png'))) elif component is not None: compList = adapter.components(device, component) if not compList: return 'Sorry. Cannot find a component %s on %s' % (component, device) if len(compList)>1: return 'Multiple components found. Please, define more exaclty.' comp=compList[0] log.debug('Looking for graph %s in component %s' % (graph, comp.name())) if self.hasGraph(comp, graph): message += '%s %s %s: %s\n' % (device.name(), component, graph, self.shorten(self.upload(self.render(comp.getGraphDefUrl(graph)), device.name() + comp.absolute_url_path()[comp.absolute_url_path().find(device.id)+len(device.id):] + '/' + graph.replace(' ', '_') +'_' + time.strftime('%Y%m%d_%H%M%S',time.localtime()) +'.png'))) else: message += '%s %s: Does not have a graph named %s. Remember, spelling and case matter. Try -l for a list of graphs' % (device.name(), component, graph) else: message += '%s: Unable to find the graph %s. Remember, spelling and case matter. Try -l for a list of graphs' % (device.name(), graph) return message def hasGraph(self, entity, graph): hasGr = False for gr in entity.getDefaultGraphDefs(): if gr['title'] == graph: hasGr = True break return hasGr def render(self, url): from urlparse import urlparse, parse_qsl import StringIO png = StringIO.StringIO() from Products.ZenRRD.zenrender import RenderServer png.write(eval('RenderServer("").render('+','.join(['%s="%s"' % k for k in parse_qsl(urlparse(url)[4])])+')')) png.seek(0) return png def upload(self, strObj, saveAs): import ftplib con = ftplib.FTP('ftp.nm.ru', 'zenbot', 'qwe123#') #create path if it doesn't exists and cwd to it for dir in saveAs.split('/')[:-1]: try: con.cwd(dir) except ftplib.error_perm: con.mkd(dir) con.cwd(dir) con.storbinary('STOR ' + saveAs.split('/')[-1], strObj) con.quit() return 'http://zenbot.nm.ru/' + saveAs def shorten(self,url): import urllib2 html=urllib2.urlopen("http://tinyurl.com/create.php?url=%s" % url).read() return html[html.find("<b>http://tinyurl.com/")+3:html.find("</b>",html.find("<b>http://tinyurl.com/"))] def private(self): return False # parse the options def options(self): parser = Options(description = 'Retrieve graph. Simple example:\n graph -d 10.1.1.1 -g IO', prog = 'graph') parser.add_option('-d', '--device', dest='deviceName', help='Device name, IP or MAC.') parser.add_option('-g', '--graph', dest='graphName', help='Name of graph.') parser.add_option('-l', '--list', dest='list', action='store_true', help='Only list graphs for the device and/or component.') parser.add_option('-s', '--subcomponent', dest='subComponent', help='Optional subcomponent name, if the graph does not reside directly on the device. You will probably have to specify this.') return parser def help(self): opts = self.options() return str(opts.help())
gpl-2.0
2,868,993,540,534,500,000
47.561151
347
0.567852
false
3.982301
false
false
false
Chromium97/lnmiithackathon
website/settings.py
1
2237
""" Django settings for website project. For more information on this file, see https://docs.djangoproject.com/en/1.7/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.7/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'y8dz)a%5b0+-bgb=2(1ry1pt41rbng1x41cruigaht9c-n(yn=' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = False ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'query', #'blog', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'website.urls' WSGI_APPLICATION = 'website.wsgi.application' # Database # https://docs.djangoproject.com/en/1.7/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.7/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.7/howto/static-files/ STATIC_ROOT = 'staticfiles' STATIC_URL = '/static/' STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'static'), ) STATICFILES_STORAGE = 'whitenoise.django.GzipManifestStaticFilesStorage'
mit
-621,911,359,711,887,500
23.855556
72
0.725078
false
3.284875
false
false
false
CornellProjects/hlthpal
web/project/main/views.py
1
28275
import os import datetime from django.utils.dateparse import parse_datetime import collections, json from django.http import HttpResponse, JsonResponse from django.http import HttpResponseForbidden from django.shortcuts import render from django.template import loader from django.contrib.auth import get_user_model from rest_framework.authentication import TokenAuthentication from django.utils.encoding import smart_str from django.core.urlresolvers import reverse_lazy from django.db.models.signals import post_save from django.core.mail import send_mail from django.conf import settings from wsgiref.util import FileWrapper from rest_framework.decorators import detail_route from rest_framework import generics from django.db import IntegrityError # Custom models from .models import Record, Answer, Entity, Question, Symptom, Notes, Patient, Log, Doctor # Serializers import from .serializers import ( UserCreateSerializer, UserLoginSerializer, UserProfileSerializer, UserGetSerializer, AnswerSerializer, AnswerGetSerializer, RecordSerializer, # DoctorCreateSerializer, DoctorSerializer, EntityCreateSerializer, QuestionGetSerializer, SymptomSerializer, SymptomGetSerializer, QuestionSerializer, NotesCreateSerializer, NotesGetSerializer, PatientActivateSerializer, PatientGetSerializer, PatientSectorSerializer, PatientStatusGetSerializer, PatientScoreGetSerializer, PatientRecordGetSerializer) # rest_framework imports from rest_framework import status from rest_framework import filters from rest_framework.views import APIView from rest_framework.response import Response from rest_framework.generics import ( CreateAPIView, ListAPIView, UpdateAPIView, ListCreateAPIView, RetrieveUpdateDestroyAPIView, get_object_or_404) # Import permissions from rest_framework.permissions import ( AllowAny, IsAuthenticated, IsAdminUser, ) from .permissions import IsOwner from .emails import send_user_registration_emails User = get_user_model() ##################################################################################### # Set up trigger for registration email if os.environ.get('DJANGO_SEND_EMAIL'): post_save.connect(send_user_registration_emails, sender=User) ###################################################################################### # Build paths BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) DOWNLOADS_DIR = BASE_DIR + '/downloads/' RELEASE_APK = 'app-release.apk' ###################################################################################### # Method based views # endpoint for '/home' def index(request): #get the template template = loader.get_template('index.html') data = {'images' : settings.MEDIA_URL} return HttpResponse(template.render(data)) # endpoint for '/dashboard' def dashboard(request): #get the template template = loader.get_template('dashboard.html') return HttpResponse(template.render()) # Method based views # endpoint for '/home' def download_android(request): file_name = DOWNLOADS_DIR + RELEASE_APK; #file_size = os.stat(file).st_size file_size = os.path.getsize(file_name) wrapper = FileWrapper(file(file_name)) response = HttpResponse(wrapper, content_type='application/vnd.android.package-archive') response['Content-Disposition'] = 'attachment; filename=%s' % smart_str(RELEASE_APK) response['Content-Length'] = file_size return response ###################################################################################### # Class based user views class UserCreateView(CreateAPIView): '''API to create a new user ''' serializer_class = UserCreateSerializer permission_classes = [AllowAny] queryset = User.objects.all() def post(self, request, *args, **kwargs): serializer = UserCreateSerializer(data=request.data) try: serializer.is_valid(raise_exception=True) if not request.user.is_anonymous: Log.objects.create(user=request.user, activity='add_new_patient') return self.create(request, *args, **kwargs) except: # print(serializer.errors) # print('Errors') if not request.user.is_anonymous: Log.objects.create(user=request.user, activity='fail_add_new_patient') # failed sign in or sign out. return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class UserLoginView(APIView): '''API to login and obtain an auth token''' serializer_class = UserLoginSerializer permission_classes = [AllowAny] queryset = User.objects.all() def post(self, request, *args, **kwargs): data = request.data serializer = UserLoginSerializer(data=data) if serializer.is_valid(raise_exception=True): result = serializer.data # Only return token if result.has_key('username'): result.pop('username') if result.has_key('email'): result.pop('email') if not request.user.is_anonymous: Log.objects.create(user=request.user, activity='success_sign_in') return Response(result, status=status.HTTP_200_OK) else: if not request.user.is_anonymous: Log.objects.create(user=request.user, activity='failed_sign_in') # failed sign in or sign out. return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class UserLogoutView(APIView): '''API to logout and delete an auth token for TokenAuthentication Method''' serializer_class = UserLoginSerializer permission_classes = [IsAuthenticated, IsAdminUser] # queryset = User.objects.all() def post(self, request, *args, **kwargs): try: request.user.auth_token.delete() except Exception as e: print(e) return Response({"failure": "Not found."}, status=status.HTTP_400_BAD_REQUEST) return Response({"success": "Successfully logged out."}, status=status.HTTP_204_OK) class UserValidateEmail(CreateAPIView): serializer_class = UserLoginSerializer permission_classes = [AllowAny] queryset = User.objects.all() def post(self, request, *args, **kwargs): '''Validates if user can be registered by checking email/username doesn't already exist''' data = request.data if User.objects.filter(username=data['email']) or User.objects.filter(email=data['email']): return Response({'status': False}, status=status.HTTP_200_OK) else: return Response({'status': True}, status=status.HTTP_200_OK) class UserProfileView(APIView): '''API to GET user profile information.''' serializer_class = UserProfileSerializer permission_classes = [IsAuthenticated] queryset = User.objects.all() def get(self, request, format=None): user_obj = self.request.user query = User.objects.filter(username=user_obj) serializer = UserProfileSerializer(user_obj) return Response(serializer.data) class AnswerAPIView(ListCreateAPIView): '''API to create one or multiple Answer instances ''' queryset = Answer.objects.all() serializer_class = AnswerSerializer permission_classes = [IsAuthenticated] def post(self, request, *args, **kwargs): '''Validates if user can be registered by checking email/username doesn't already exist''' for i in range(len(request.data)): request.data[i]['question'] = str(Question.objects.get(question_number=request.data[i]['question']).id) # sql returns long integers so need to cast back serializer = AnswerSerializer(data=request.data, many=True) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def get_serializer(self, *args, **kwargs): if "data" in kwargs: data = kwargs["data"] if isinstance(data, list): kwargs["many"] = True return super(AnswerAPIView, self).get_serializer(*args, **kwargs) class SymptomAPIView(ListCreateAPIView): '''API to create one or multiple Symptom instances ''' queryset = Symptom.objects.all() serializer_class = SymptomSerializer permission_classes = [IsAuthenticated] def get_serializer(self, *args, **kwargs): if "data" in kwargs: data = kwargs["data"] if isinstance(data, list): kwargs["many"] = True return super(SymptomAPIView, self).get_serializer(*args, **kwargs) class RecordAPIView(ListCreateAPIView): '''API to GET or create a new Record ''' queryset = Record.objects.all() serializer_class = RecordSerializer permission_classes = [IsAuthenticated] def create(self, request): if 'created_date' in request.data: request.data['created_date'] = datetime.datetime.fromtimestamp(int(request.data['created_date'])/1000).strftime('%Y-%m-%d %H:%M:%S'+'Z') try: record = Record.objects.get(user=request.user, created_date=request.data['created_date']) print("One instance already initiated") return Response({"detail": "Instance already initiated"}, status=status.HTTP_400_BAD_REQUEST) except Record.MultipleObjectsReturned: print("Multiple instances initiated") return Response({"detail": "Instance already initiated"}, status=status.HTTP_400_BAD_REQUEST) except Record.DoesNotExist: print("Creating new record") serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) try: serializer.save(user=self.request.user, created_date=request.data['created_date']) except IntegrityError: return Response({"detail": "Instance already initiated"}, status=status.HTTP_400_BAD_REQUEST) else: serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) serializer.save(user=self.request.user) return Response(serializer.data, status=status.HTTP_201_CREATED) def get_queryset(self): return Record.objects.filter(user=self.request.user) class RecordUpdateView(RetrieveUpdateDestroyAPIView): serializer_class = RecordSerializer queryset = Record.objects.all() permission_classes = [IsAuthenticated] def update(self, request, pk=None): record = get_object_or_404(Record, pk=pk) for param in request.data: if param == 'score': record.score = request.data[param] print('updating score', record.signed) if param == 'update_user': record.signed = request.user if record.signed == None else None print('updating user', record.signed) record.save() return Response({'detail': 'Signed user info updated'}, status=status.HTTP_200_OK) # class RecordUpdateView(RetrieveUpdateDestroyAPIView): # '''API to delete or edit a Record ''' # queryset = Record.objects.filter() # serializer_class = RecordSerializer # permission_classes = [IsAuthenticated] # def update(self, request) # model = Record # success_url = reverse_lazy('id') class QuestionUpdateView(RetrieveUpdateDestroyAPIView): '''API to delete or edit a question ''' queryset = Question.objects.filter() serializer_class = QuestionSerializer permission_classes = [IsAuthenticated] model = Question success_url = reverse_lazy('id') # Custom mixin for Generic views in Django Rest Framework API Guide class MultipleFieldLookupMixin(object): """ Apply this mixin to any view or viewset to get multiple field filtering based on a `lookup_fields` attribute, instead of the default single field filtering. """ def get_object(self): queryset = self.get_queryset() # Get the base queryset queryset = self.filter_queryset(queryset) # Apply any filter backends filter = {} for field in self.lookup_fields: if self.kwargs[field]: # Ignore empty fields. filter[field] = self.kwargs[field] return get_object_or_404(queryset, **filter) # Lookup the object class AnswerUpdateView(RetrieveUpdateDestroyAPIView, MultipleFieldLookupMixin): ''' API to delete or edit an answer based on the question associated with it ''' queryset = Answer.objects.filter() serializer_class = AnswerSerializer permission_classes = [IsAuthenticated] model = Answer success_url = reverse_lazy('record', 'question') lookup_field = 'record' lookup_field = 'question' class SymptomUpdateView(RetrieveUpdateDestroyAPIView, MultipleFieldLookupMixin): ''' API to delete or edit a symptom ''' queryset = Symptom.objects.filter() serializer_class = SymptomSerializer permission_classes = [IsAuthenticated] model = Symptom success_url = reverse_lazy('record', 'symptom') lookup_field = 'record' lookup_field = 'symptom' class QuestionGetAPIView(ListAPIView): '''API to get questions in the database ''' serializer_class = QuestionGetSerializer permission_classes = [IsAuthenticated] queryset = Question.objects.all() class CurrentUserView(APIView): '''API to get current user's information ''' permission_classes = [IsAuthenticated] def get(self, request): serializer = UserCreateSerializer(self.request.user) return Response(serializer.data) ###################################################################################### # Class based privileged user views ###################################################################################### class PatientHistoryView(APIView): '''API to get patient history ''' serializer_class = PatientActivateSerializer permission_classes = [IsAuthenticated, IsAdminUser] queryset = User.objects.filter(is_staff=False) def post(self, request, *args, **kwargs): data = request.data # Check if request contains username username = data.get("username", None) result = {} if not username: error = "username is required" result['error'] = error return Response(result, status=status.HTTP_400_BAD_REQUEST) else: pass #print "username found", data['username'] # Check if username is valid if User.objects.filter(username=username).exists(): user = User.objects.filter(username=username).first() if user.is_staff: error = "user is not a patient!" result['error'] = error return Response(result, status=status.HTTP_400_BAD_REQUEST) user_serial = PatientActivateSerializer(user) query = Record.objects.filter(user=user) result = [] for record in query: clean_result = {} record_serial = RecordSerializer(record) clean_result['record'] = record_serial.data answers = Answer.objects.filter(record=record_serial.data['id']) symptoms = Symptom.objects.filter(record=record_serial.data['id']) ans_result, symp_result = [], [] for ans in answers: ans_serial = AnswerGetSerializer(ans); ans_result.append(ans_serial.data) for symp in symptoms: symp_serial = SymptomGetSerializer(symp); symp_result.append(symp_serial.data) clean_result['data'] = ans_result clean_result['symp'] = symp_result result.append(clean_result) # print(result) return Response(result, status=status.HTTP_200_OK) else: error = "username does not exist!" result['error'] = error return Response(result, status=status.HTTP_400_BAD_REQUEST) class PatientActivateView(APIView): ''' API to activate a patient account ''' serializer_class = PatientActivateSerializer permission_classes = [IsAuthenticated, IsAdminUser] queryset = User.objects.filter(is_staff=False) def post(self, request, *args, **kwargs): data = request.data # Check if request contains username username = data.get("username", None) result = {} if not username: error = "username is required" result['error'] = error return Response(result, status=status.HTTP_400_BAD_REQUEST) else: pass #print "username found", data['username'] # Check if username is valid if User.objects.filter(username=username).exists(): user = User.objects.filter(username=username).first() if user.is_staff: error = "user is not a patient" result['error'] = error return Response(result, status=status.HTTP_400_BAD_REQUEST) user.is_active = True user.save() user_serial = PatientActivateSerializer(user) return Response(user_serial.data, status=status.HTTP_200_OK) else: error = "username does not exist" result['error'] = error return Response(result, status=status.HTTP_400_BAD_REQUEST) class PatientDeactivateView(APIView): '''API to deactivate a patient account ''' serializer_class = PatientActivateSerializer permission_classes = [IsAuthenticated, IsAdminUser] queryset = User.objects.filter(is_staff=False) def post(self, request, *args, **kwargs): data = request.data # Check if request contains username username = data.get("username", None) result = {} if not username: error = "username is required" result['error'] = error return Response(result, status=status.HTTP_400_BAD_REQUEST) else: pass #print "username found", data['username'] # Check if username is valid if User.objects.filter(username=username).exists(): user = User.objects.filter(username=username).first() if user.is_staff: error = "user is not a patient" result['error'] = error return Response(result, status=status.HTTP_400_BAD_REQUEST) user.is_active = False user.save() user_serial = PatientActivateSerializer(user) return Response(user_serial.data, status=status.HTTP_200_OK) else: error = "username does not exist" result['error'] = error return Response(result, status=status.HTTP_400_BAD_REQUEST) class EntityCreateView(CreateAPIView): '''API to create a new Entity ''' serializer_class = EntityCreateSerializer permission_classes = [IsAuthenticated, IsAdminUser] queryset = Entity.objects.all() class DoctorCreateView(CreateAPIView): '''API to create a new doctor user ''' serializer_class = DoctorSerializer permission_classes = [IsAuthenticated, IsAdminUser] queryset = Doctor.objects.all() class DoctorGetView(ListAPIView): '''API to get doctor users ''' serializer_class = DoctorSerializer permission_classes = [IsAuthenticated, IsAdminUser] queryset = Doctor.objects.all() class PatientGetView(ListAPIView): '''API to Get a list of all patients ''' serializer_class = PatientStatusGetSerializer permission_classes = [IsAuthenticated, IsAdminUser] queryset = User.objects.filter(is_staff=False) class PatientDataGetView(ListAPIView): '''API to get all patients latest data ''' permission_classes = [IsAuthenticated, IsAdminUser] queryset = User.objects.filter(is_staff=False) def get(self, request, format=None): patients = User.objects.filter(is_staff=False, is_active=True, date_joined__gte=datetime.date(2018, 06, 28)) # patients = User.objects.filter(is_staff=False, is_active=True) result = [] if not request.user.is_anonymous: Log.objects.create(user=request.user, activity='view_dashboard') for user in patients: # query = Record.objects.filter(user=user).order_by('-date').first() # Get last submission for each patient entry = collections.OrderedDict() user_serial = PatientGetSerializer(user) entry['user'] = user_serial.data; patient = Patient.objects.filter(user=user).first() # Get sector data if patient is not None: sector_serial = PatientSectorSerializer(patient) entry['location'] = sector_serial.data # print(patient,' sector: ', sector_serial.data) else: entry['location'] = { 'sector': ''} # print(patient, 'no sector') # Get latest score notes = Notes.objects.filter(patient=user).last() if notes is not None: notes_serial = NotesGetSerializer(notes) entry['notes'] = notes_serial.data else: entry['notes'] = {} query = Record.objects.filter(user=user).last() if query is not None: rec = RecordSerializer(query) entry['record'] = rec.data; query = Answer.objects.filter(record=rec.data['id']) ans = PatientRecordGetSerializer(query, many=True); entry['data'] = ans.data; result.append(entry) else: entry['record'] = {'date':'1900-05-24T07:27:21.238535Z'} entry['data'] = [] result.append(entry) result = sorted(result, key=lambda x: float(parse_datetime(x['record']['date']).strftime('%s')), reverse=True) return Response(result) class PatientScoreGetView(ListAPIView): '''API to get all patients latest score ''' permission_classes = [IsAuthenticated, IsAdminUser] queryset = User.objects.filter(is_staff=False) def get(self, request, format=None): patients = User.objects.filter(is_staff=False, is_active=True) result = [] for user in patients: # query = Record.objects.filter(user=user).order_by('-date').first() # Get last submission for each patient entry = collections.OrderedDict() user_serial = PatientGetSerializer(user) entry['user'] = user_serial.data; patient = Patient.objects.filter(user=user).first() if patient is not None: sector_serial = PatientSectorSerializer(patient) entry['location'] = sector_serial.data else: entry['location'] = { 'sector': ''} query = Record.objects.filter(user=user).last() if query is not None: rec = RecordSerializer(query) entry['record'] = rec.data; result.append(entry) return Response(result) class NotesCreateView(APIView): '''API to add notes for a patient ''' permission_classes = [IsAuthenticated, IsAdminUser] queryset = User.objects.filter(is_staff=False) def post(self, request, format=None): if not request.user.is_anonymous: Log.objects.create(user=request.user, activity='add_patient_note') data = request.data result = {} # Check who posted auth_user = None if request and request.user: auth_user = request.user #print "Auth user: ", str(auth_user) # Check if request contains notes username notes = data.get("notes", None) if not notes: error = "notes is required!" result['error'] = error return Response(result, status=status.HTTP_400_BAD_REQUEST) username = data.get("username", None) if not username: error = "username is required!" result['error'] = error return Response(result, status=status.HTTP_400_BAD_REQUEST) # Check if requested user is a patient if User.objects.filter(username=username).exists(): user = User.objects.filter(username=username).first() if user.is_staff: error = "user is not a patient" result['error'] = error return Response(result, status=status.HTTP_400_BAD_REQUEST) # Dosage is optional dosage = data.get("dosage", None) if not dosage: saved_notes = Notes.objects.create(author=auth_user, patient=user, notes=notes) else: saved_notes = Notes.objects.create(author=auth_user, patient=user, notes=notes, dosage=dosage) notes_serial = NotesCreateSerializer(saved_notes) # print notes_serial.data return Response(notes_serial.data, status=status.HTTP_201_CREATED) else: error = "username does not exist!" result['error'] = error return Response(result, status=status.HTTP_400_BAD_REQUEST) return Response(result) class NotesGetAPIView(ListAPIView): '''API to get notes for all users''' permission_classes = [IsAuthenticated, IsAdminUser] queryset = Notes.objects.all() def get(self, request, format=None): patients = User.objects.filter(is_staff=False, is_active=True) result = [] for patient in patients: # query = Record.objects.filter(user=user).order_by('-date').first() # Get last submission for each patient entry = collections.OrderedDict() user_serial = PatientGetSerializer(patient) entry['patient'] = user_serial.data; notes = Notes.objects.filter(patient=patient).last() if notes is not None: notes_serial = NotesGetSerializer(notes) entry['notes'] = notes_serial.data else: entry['notes'] = {} result.append(entry) return Response(result) class NotesHistoryGetView(APIView): '''API to get patient history ''' permission_classes = [IsAuthenticated, IsAdminUser] queryset = User.objects.filter(is_staff=False) def post(self, request, *args, **kwargs): data = request.data if not request.user.is_anonymous: Log.objects.create(user=request.user, activity='view_patient_details') # Check if request contains username username = data.get("username", None) result = {} if not username: error = "username is required" result['error'] = error return Response(result, status=status.HTTP_400_BAD_REQUEST) else: pass #print "username found", data['username'] # Check if username is valid if User.objects.filter(username=username).exists(): user = User.objects.filter(username=username).first() if user.is_staff: error = "user is not a patient!" result['error'] = error return Response(result, status=status.HTTP_400_BAD_REQUEST) user_serial = UserGetSerializer(user) query = Notes.objects.filter(patient=user) result = [] for record in query: notes_serial = NotesGetSerializer(record) result.append(notes_serial.data) return Response(result, status=status.HTTP_200_OK) else: error = "username does not exist!" result['error'] = error return Response(result, status=status.HTTP_400_BAD_REQUEST)
apache-2.0
1,060,832,617,351,029,600
36.651132
164
0.62359
false
4.369495
false
false
false
bubakazouba/Robinhood-for-Google-Finance
google_finance_export.py
1
1431
from GetRobinhoodTrades import getRobinhoodTrades import argparse import Exporter exporter = Exporter.Exporter("trades") parser = argparse.ArgumentParser(description='Export Robinhood trades to a CSV file') parser.add_argument('--debug', action='store_true', help='store raw JSON output to debug.json') parser.add_argument('--username', required=True, help='your Robinhood username') parser.add_argument('--password', required=True, help='your Robinhood password') exporter.addArgumentsToParser(parser) args = parser.parse_args() username = args.username password = args.password exporter.parseArguments(args) trades = getRobinhoodTrades(username, password, args.debug) # CSV headers # filter out keys we dont need, also change names of keys desired_keys_mappings = { "price": "Purchase price per share", "timestamp": "Date purchased", "fees": "Commission", "quantity": "Shares", "symbol": "Symbol", "side": "Transaction type" } desired_keys = sorted(desired_keys_mappings.keys()) keys = [desired_keys_mappings[key] for key in sorted(trades[0].keys()) if key in desired_keys] csv = "" csv += ",".join(keys) csv += "\n" # CSV rows csvb = [] for trade in trades: line = ','.join([str(trade[key]) for key in desired_keys]) csvb.append(line) #google finance seems to prefer dates in ascending order, so we must reverse the given order csv += '\n'.join(reversed(csvb)) exporter.exportText(csv)
mit
-5,983,913,685,366,143,000
28.833333
95
0.725367
false
3.439904
false
false
false
lanyeit/lanye-self
pandarss/utils.py
2
2767
#!/usr/bin/env python #coding=utf-8 import decimal import time import random import datetime import calendar random_generator = random.SystemRandom() class Utils: """ 工具模块类 """ _base_id = 0 _CurrentID = random_generator.randrange(1, 1024) @staticmethod def fen2yuan(fen=0): f = decimal.Decimal(fen or 0) y = f / decimal.Decimal(100) return str(y.quantize(decimal.Decimal('1.00'))) @staticmethod def yuan2fen(yuan=0): y = decimal.Decimal(yuan or 0) f = y * decimal.Decimal(100) return int(f.to_integral_value()) @staticmethod def kb2mb(ik): _kb = decimal.Decimal(ik or 0) _mb = _kb / decimal.Decimal(1024) return str(_mb.quantize(decimal.Decimal('1.00'))) @staticmethod def sec2hour(sec=0): _sec = decimal.Decimal(sec or 0) _hor = _sec / decimal.Decimal(3600) return str(_hor.quantize(decimal.Decimal('1.00'))) @staticmethod def bps2mbps(bps): _bps = decimal.Decimal(bps or 0) _mbps = _bps / decimal.Decimal(1024*1024) return str(_mbps.quantize(decimal.Decimal('1.00'))) @staticmethod def gen_order_id(): if Utils._base_id >= 9999:Utils._base_id=0 Utils._base_id += 1 _num = str(Utils._base_id).zfill(4) return datetime.datetime.now().strftime("%Y%m%d%H%M%S") + _num @staticmethod def add_months(dt,months, days=0): month = dt.month - 1 + months year = dt.year + month / 12 month = month % 12 + 1 day = min(dt.day,calendar.monthrange(year,month)[1]) dt = dt.replace(year=year, month=month, day=day) return dt + datetime.timedelta(days=days) class MemCache: ''' 内存缓存 ''' def __init__(self): self.cache = {} def set(self, key, obj, expire=0): if obj in ("", None) or key in ("", None): return None objdict = dict(obj=obj,expire=expire,time=time.time()) self.cache[key] = objdict def get(self, key): if key in self.cache: objdict = self.cache[key] _time = time.time() if objdict['expire'] == 0 or (_time - objdict['time']) < objdict['expire']: return objdict['obj'] else: del self.cache[key] return None else: return None def aget(self, key, fetchfunc, *args, **kwargs): if key in self.cache: return self.get(key) elif fetchfunc: expire = kwargs.pop('expire',600) result = fetchfunc(*args,**kwargs) if result: self.set(key,result,expire=expire) return result memcache = MemCache()
bsd-3-clause
-2,332,832,476,347,254,000
26.767677
87
0.559112
false
3.47096
false
false
false
wy315700/dota2_match
dota2/Match.py
1
3864
from dota2Error import Dota2APIError import time import datetime # import dota2 from MysqlHelper import * from APIConnection import * from multiprocessing import Process, Queue, Lock, freeze_support import time import random start_seq_num = 0 api = APIConnection() process_num = 5 base_num = 1000000 base_start_num = 600000000 base_end_num = 650000000 max_process_num = (base_end_num - base_start_num) / base_num def fetch_history_by_seq_num(data_queue, start_seq_num, callback_queue): max_seq_num = start_seq_num + base_num while True: matchs = api._getMatchBySeqNum(start_seq_num) for x in matchs: while data_queue.full(): print "queue is full" time.sleep(random.random()) data_queue.put(x) start_seq_num = x['match_seq_num'] start_seq_num += 1 if start_seq_num >= max_seq_num: callback_queue.put(1) break def saveToDB(queue): while True: x = queue.get() handle = MatchHandle() match = DotaMatchModel(); match.match_id = x['match_id'] match.match_seq_num = x['match_seq_num'] try: match.player0 = str(x['players'][0]) match.player1 = str(x['players'][1]) match.player2 = str(x['players'][2]) match.player3 = str(x['players'][3]) match.player4 = str(x['players'][4]) match.player5 = str(x['players'][5]) match.player6 = str(x['players'][6]) match.player7 = str(x['players'][7]) match.player8 = str(x['players'][8]) match.player9 = str(x['players'][9]) except Exception, e: pass match.radiant_win = 0 if x['radiant_win'] == False else 1 match.duration = x['duration'] match.start_time = datetime.datetime.fromtimestamp( int(x['start_time']) ).strftime('%Y-%m-%d %H:%M:%S') match.first_blood_time = x['first_blood_time'] match.tower_status_radiant = x['tower_status_radiant'] match.tower_status_dire = x['tower_status_dire'] match.barracks_status_radiant = x['barracks_status_radiant'] match.barracks_status_dire = x['barracks_status_dire'] match.cluster = x['cluster'] match.lobby_type = x['lobby_type'] match.human_players = x['human_players'] match.leagueid = x['leagueid'] match.positive_votes = x['positive_votes'] match.negative_votes = x['negative_votes'] match.game_mode = x['game_mode'] handle.saveMatchToDB(match) start_seq_num = start_seq_num + 1 if __name__ == '__main__': freeze_support() process_list = [] q = Queue() callback_queue = Queue() for i in xrange(0,process_num): process_list.append(Process(target=fetch_history_by_seq_num,args=(q, base_start_num + base_num * i, callback_queue,))) current_num = process_num process_list.append(Process(target=saveToDB,args=(q,))) for x in process_list: x.start() result = callback_queue.get() while result == 1: print current_num if current_num >= max_process_num: break Process(target=fetch_history_by_seq_num,args=(q, base_start_num + base_num * current_num, callback_queue,)).start() current_num += 1 result = callback_queue.get() for x in process_list: x.join()
gpl-2.0
-7,039,144,919,082,925,000
33.19469
126
0.524586
false
3.711816
false
false
false
michal-ruzicka/archivematica
src/MCPServer/lib/unitFile.py
1
2379
#!/usr/bin/python -OO # This file is part of Archivematica. # # Copyright 2010-2013 Artefactual Systems Inc. <http://artefactual.com> # # Archivematica is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Archivematica is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Archivematica. If not, see <http://www.gnu.org/licenses/>. # @package Archivematica # @subpackage MCPServer # @author Joseph Perry <[email protected]> import logging import sys sys.path.append("/usr/lib/archivematica/archivematicaCommon") from dicts import ReplacementDict LOGGER = logging.getLogger('archivematica.mcp.server') class unitFile(object): """For objects representing a File""" def __init__(self, currentPath, UUID="None", owningUnit=None): self.currentPath = currentPath self.UUID = UUID self.owningUnit = owningUnit self.fileGrpUse = 'None' self.fileList = {currentPath: self} self.pathString = "" if owningUnit: self.pathString = owningUnit.pathString def __str__(self): return 'unitFile: <UUID: {u.UUID}, path: {u.currentPath}>'.format(u=self) def getReplacementDic(self, target=None): if target is not None and self.owningUnit: return self.owningUnit.getReplacementDic(self.owningUnit.currentPath) elif self.UUID != "None": return ReplacementDict.frommodel( type_='file', file_=self.UUID ) # If no UUID has been assigned yet, we can't use the # ReplacementDict.frommodel constructor; fall back to the # old style of manual construction. else: return ReplacementDict({ "%relativeLocation%": self.currentPath, "%fileUUID%": self.UUID, "%fileGrpUse%": self.fileGrpUse }) def reload(self): pass def reloadFileList(self): pass
agpl-3.0
-8,173,164,090,468,189,000
33.478261
81
0.666246
false
3.843296
false
false
false
joopert/home-assistant
homeassistant/components/hlk_sw16/switch.py
12
1410
"""Support for HLK-SW16 switches.""" import logging from homeassistant.components.switch import ToggleEntity from homeassistant.const import CONF_NAME from . import DATA_DEVICE_REGISTER, SW16Device _LOGGER = logging.getLogger(__name__) def devices_from_config(hass, domain_config): """Parse configuration and add HLK-SW16 switch devices.""" switches = domain_config[0] device_id = domain_config[1] device_client = hass.data[DATA_DEVICE_REGISTER][device_id] devices = [] for device_port, device_config in switches.items(): device_name = device_config.get(CONF_NAME, device_port) device = SW16Switch(device_name, device_port, device_id, device_client) devices.append(device) return devices async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up the HLK-SW16 platform.""" async_add_entities(devices_from_config(hass, discovery_info)) class SW16Switch(SW16Device, ToggleEntity): """Representation of a HLK-SW16 switch.""" @property def is_on(self): """Return true if device is on.""" return self._is_on async def async_turn_on(self, **kwargs): """Turn the device on.""" await self._client.turn_on(self._device_port) async def async_turn_off(self, **kwargs): """Turn the device off.""" await self._client.turn_off(self._device_port)
apache-2.0
-2,503,243,105,140,089,300
31.045455
86
0.680851
false
3.643411
true
false
false
rogerlew/py-st-a-ggre-lite3
setup.py
2
1523
# Copyright (c) 2011, Roger Lew [see LICENSE.txt] # This software is funded in part by NIH Grant P20 RR016454. ##from distutils.core import setup from setuptools import setup setup(name='pystaggrelite3', version='0.1.3', description='Pure Python sqlite3 statistics aggregate functions', author='Roger Lew', author_email='[email protected]', license = "BSD", classifiers=["Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", "Natural Language :: English", "Programming Language :: Python :: 2.5", "Programming Language :: Python :: 2.6", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.0", "Programming Language :: Python :: 3.1", "Programming Language :: Python :: 3.2", "Topic :: Database", "Topic :: Database :: Database Engines/Servers", "Topic :: Scientific/Engineering :: Information Analysis", "Topic :: Scientific/Engineering :: Mathematics", "Topic :: Software Development :: Libraries :: Python Modules"], url='http://code.google.com/p/py-st-a-ggre-lite3/', py_modules=['pystaggrelite3',], ) """setup.py sdist upload --identity="Roger Lew" --sign"""
bsd-3-clause
-6,954,211,580,426,667,000
44.151515
81
0.562049
false
4.389049
false
true
false
mitsei/dlkit
dlkit/primordium/mapping/spatial_units.py
1
4657
""" Implementions of osid.mapping.SpatialUnit. Can be used by implementations and consumer applications alike. """ from dlkit.abstract_osid.mapping import primitives as abc_mapping_primitives from dlkit.abstract_osid.osid.errors import NullArgument, InvalidArgument from ..osid.primitives import OsidPrimitive from ..type.primitives import Type from dlkit.primordium.mapping.coordinate_primitives import BasicCoordinate from decimal import Decimal class SpatialUnitFactory(object): """returns the right SpatialUnit depending on the record type in the spatial_unit_map Assumes only one record type for now! """ def get_spatial_unit(self, spatial_unit_map): record_type = Type(idstr=spatial_unit_map['recordTypes'][0]) if (record_type.get_authority() != 'ODL.MIT.EDU' or record_type.get_identifier_namespace() != 'osid.mapping.SpatialUnit'): raise InvalidArgument() if record_type.get_identifier() == 'rectangle': return RectangularSpatialUnit(spatial_unit_map=spatial_unit_map) raise InvalidArgument() class RectangularSpatialUnit(abc_mapping_primitives.SpatialUnit, OsidPrimitive): """ A spatial unit represents a region in space. In this case a rectangle in a 2 dimensional coordinate space. """ def __init__(self, coordinate=None, width=None, height=None, spatial_unit_map=None): if spatial_unit_map is None and coordinate is None and width is None and height is None: raise NullArgument('must provide a coordinate or a spatial_unit_map') if spatial_unit_map is not None: self._coordinate = BasicCoordinate(spatial_unit_map['coordinateValues']) self._width = spatial_unit_map['width'] self._height = spatial_unit_map['height'] else: if not isinstance(coordinate, abc_mapping_primitives.Coordinate): raise InvalidArgument('coordinate must be a Coordinate') if height is None: raise NullArgument('height must be provided with a coordinate') if width is None: raise NullArgument('width must be provided with a coordinate') if not (isinstance(height, int) or isinstance(height, float)): raise InvalidArgument('height must be an int or float') if not (isinstance(width, int) or isinstance(width, float)): raise InvalidArgument('width must be an int or float') if width <= 0 or height <= 0: raise InvalidArgument('width and height must be positive values') self._coordinate = coordinate self._width = width self._height = height def get_center_coordinate(self): x, y = self._coordinate.get_values() return BasicCoordinate([ float(Decimal(x) + Decimal(self._width) / 2), float(Decimal(y) + Decimal(self._height) / 2) ]) center_coordinate = property(fget=get_center_coordinate) def get_bounding_coordinates(self): x, y = self._coordinate.get_values() return [ self._coordinate, BasicCoordinate([x + self._width, y]), BasicCoordinate([x + self._width, y + self._height]), BasicCoordinate([x, y + self._height]) ] bounding_coordinates = property(fget=get_bounding_coordinates) def get_spatial_unit_record(self): pass # This should return a record type for spatial_unit_record = property(fget=get_spatial_unit_record) def __contains__(self, coordinate): if not isinstance(coordinate, abc_mapping_primitives.Coordinate): raise TypeError('osid.mapping.SpatialUnit requires osid.mapping.Coordinate as left operand') x, y = self._coordinate.get_values() return bool(coordinate >= self._coordinate and coordinate <= BasicCoordinate([x + self._width, y + self._height])) def get_record_types(self): return [ Type(authority='ODL.MIT.EDU', namespace='osid.mapping.SpatialUnit', identifier='rectangle')] def is_of_record_type(self, record_type): return bool(record_type in self.get_record_types()) def get_spatial_unit_map(self): record_types = [] for rtype in self.get_record_types(): record_types.append(str(rtype)) return { 'type': 'SpatialUnit', 'recordTypes': record_types, 'coordinateValues': self._coordinate.get_values(), 'width': self._width, 'height': self._height }
mit
4,065,296,784,621,175,000
39.146552
104
0.638394
false
4.308048
false
false
false
tmcrosario/odoo-tmc
tmc/models/dependence.py
1
1112
from odoo import _, api, fields, models class Dependence(models.Model): _name = 'tmc.dependence' _description = 'Dependence' name = fields.Char() abbreviation = fields.Char(size=6) document_type_ids = fields.Many2many(comodel_name='tmc.document_type') document_topic_ids = fields.Many2many(comodel_name='tmc.document_topic') system_ids = fields.Many2many(comodel_name='tmc.system') in_actual_nomenclator = fields.Boolean() @api.model def name_search(self, name, args=None, operator='ilike', limit=100): if not args: args = [] if self._context.get('search_default_filter_actual_nomenclator'): args.extend([('in_actual_nomenclator', '=', True)]) return super(Dependence, self).name_search(name=name, args=args, operator=operator, limit=limit) _sql_constraints = [('name_unique', 'UNIQUE(name)', _('Dependence name must be unique'))]
agpl-3.0
2,107,047,882,029,457,700
32.69697
76
0.554856
false
4.058394
false
false
false
mshubian/BAK_open-hackathon
open-hackathon-adminUI/src/app/database/models.py
1
3577
import sys import email sys.path.append("..") from . import UserMixin from . import db from datetime import datetime import json def to_json(inst, cls): # add your coversions for things like datetime's # and what-not that aren't serializable. convert = dict() convert[db.DateTime] = str d = dict() for c in cls.__table__.columns: v = getattr(inst, c.name) if c.type.__class__ in convert.keys() and v is not None: try: func = convert[c.type.__class__] d[c.name] = func(v) except: d[c.name] = "Error: Failed to covert using ", str(convert[c.type.__class__]) elif v is None: d[c.name] = str() else: d[c.name] = v return json.dumps(d) class AdminUser(db.Model, UserMixin): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(50)) nickname = db.Column(db.String(50)) openid = db.Column(db.String(100)) avatar_url = db.Column(db.String(200)) access_token = db.Column(db.String(100)) online = db.Column(db.Integer) # 0:offline 1:online create_time = db.Column(db.DateTime) last_login_time = db.Column(db.DateTime) def get_admin_id(self): return self.id def json(self): return to_json(self, self.__class__) def __init__(self, **kwargs): super(AdminUser, self).__init__(**kwargs) if self.create_time is None: self.create_time = datetime.utcnow() if self.last_login_time is None: self.last_login_time = datetime.utcnow() # if self.slug is None: # self.slug = str(uuid.uuid1())[0:8] # todo generate a real slug class AdminEmail(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(80)) email = db.Column(db.String(120)) primary_email = db.Column(db.Integer) # 0:NOT Primary Email 1:Primary Email verified = db.Column(db.Integer) # 0 for not verified, 1 for verified admin_id = db.Column(db.Integer, db.ForeignKey('admin_user.id', ondelete='CASCADE')) admin = db.relationship('AdminUser', backref=db.backref('emails', lazy='dynamic')) def __init__(self, **kwargs): super(AdminEmail, self).__init__(**kwargs) class AdminToken(db.Model): id = db.Column(db.Integer, primary_key=True) token = db.Column(db.String(50), unique=True, nullable=False) admin_id = db.Column(db.Integer, db.ForeignKey('admin_user.id', ondelete='CASCADE')) admin = db.relationship('AdminUser', backref=db.backref('tokens', lazy='dynamic')) issue_date = db.Column(db.DateTime) expire_date = db.Column(db.DateTime, nullable=False) def json(self): return to_json(self, self.__class__) def __init__(self, **kwargs): super(AdminToken, self).__init__(**kwargs) if self.issue_date is None: issue_date = datetime.utcnow() def __repr__(self): return "AdminToken: " + self.json() class AdminUserHackathonRel(db.Model): id = db.Column(db.Integer, primary_key=True) admin_email = db.Column(db.String(120)) role_type = db.Column(db.Integer) hackathon_id = db.Column(db.Integer) state = db.Column(db.Integer) remarks = db.Column(db.String(255)) create_time = db.Column(db.DateTime) def json(self): return to_json(self, self.__class__) def __init__(self, **kwargs): super(AdminUserHackathonRel, self).__init__(**kwargs) def __repr__(self): return "AdminUserGroup: " + self.json()
apache-2.0
3,798,570,820,496,018,400
29.844828
93
0.612524
false
3.396961
false
false
false
waneric/PyMapLib
src/gabbs/controls/MapToolAction.py
1
6234
# -*- coding: utf-8 -*- """ MapToolAction.py - map tool for user events ====================================================================== AUTHOR: Wei Wan, Purdue University EMAIL: [email protected] Copyright (c) 2016 Purdue University See the file "license.terms" for information on usage and redistribution of this file, and for a DISCLAIMER OF ALL WARRANTIES. ====================================================================== """ from PyQt4.QtCore import * from PyQt4.QtGui import * from qgis.core import * from qgis.gui import * from gabbs.MapUtils import iface, debug_trace class MapToolFeatureAction(QgsMapTool): ''' Base class for the map select tools ''' def __init__(self, canvas): QgsMapTool.__init__(self, canvas) self.canvas = canvas self.rubberBand = None self.cursor = QCursor(Qt.ArrowCursor) # Override events def canvasReleaseEvent(self, event): layer = self.canvas.currentLayer() if not layer or layer.type() != QgsMapLayer.VectorLayer: #emit messageEmitted( tr( "To run an action, you must choose an active vector layer." ), QgsMessageBar.INFO ); return if layer not in self.canvas.layers(): #do not run actions on hidden layers return #QgsVectorLayer *vlayer = qobject_cast<QgsVectorLayer *>( layer ); #if (layer.actions().size() == 0 and \ # len(QgsMapLayerActionRegistry.instance().mapLayerActions(layer)) == 0): #emit messageEmitted( tr( "The active vector layer has no defined actions" ), QgsMessageBar::INFO ); return if(not self.doAction(layer, event.x(), event.y())): #QgisApp.instance().statusBar().showMessage(tr("No features at this position found.")) pass """ def activate(self): QgsMapTool.activate() def deactivate(self): QgsMapTool.deactivate() """ def doAction(self, layer, x, y): if (not layer): return False point = self.canvas.getCoordinateTransform().toMapCoordinates(x, y) featList = [] #toLayerCoordinates will throw an exception for an 'invalid' point. #For example, if you project a world map onto a globe using EPSG 2163 #and then click somewhere off the globe, an exception will be thrown. try: #create the search rectangle searchRadius = self.searchRadiusMU(self.canvas) r = QgsRectangle() r.setXMinimum(point.x() - searchRadius) r.setXMaximum(point.x() + searchRadius) r.setYMinimum(point.y() - searchRadius) r.setYMaximum(point.y() + searchRadius) r = self.toLayerCoordinates(layer, r) fit = layer.getFeatures(QgsFeatureRequest().setFilterRect(r).setFlags(QgsFeatureRequest.ExactIntersect)) f = QgsFeature() while(fit.nextFeature(f)): featList.append(QgsFeature(f)) except QgsCsException as cse: #Q_UNUSED(cse) #catch exception for 'invalid' point and proceed with no features found QgsDebugMsg(QString( "Caught CRS exception %1" ).arg(cse.what())) if len(featList) == 0: return False for feat in featList: if (layer.actions().defaultAction() >= 0): #define custom substitutions: layer id and clicked coords substitutionMap = {} #QMap substitutionMap["$layerid"] = layer.id() point = self.toLayerCoordinates(layer, point) substitutionMap["$clickx"] = point.x() substitutionMap["$clicky"] = point.y() actionIdx = layer.actions().defaultAction() #layer.actions().doAction(actionIdx, feat, substitutionMap) self.doAttributeAction(layer, actionIdx, feat, substitutionMap) else: mapLayerAction = QgsMapLayerActionRegistry.instance().defaultActionForLayer(layer) if(mapLayerAction): mapLayerAction.triggerForFeature(layer, feat) return True """ Reimplement method in QGIS C++ code """ def doAttributeAction(self, layer, index, feat, substitutionMap): actions = layer.actions() if (index < 0 or index >= actions.size()): return action = actions.at(index) if (not action.runable()): return # search for expressions while expanding actions # no used for python binding #context = self.createExpressionContext(layer) #context.setFeature(feat) #expandedAction = QString(QgsExpression.replaceExpressionText(action.action(), context, substitutionMap)) expandedAction = QString(QgsExpression.replaceExpressionText(action.action(), feat, layer, substitutionMap)) if (expandedAction.isEmpty()): return newAction = QgsAction(action.type(), action.name(), expandedAction, action.capture()) self.runAttributeAction(newAction) def runAttributeAction(self, action): if (action.type() == QgsAction.OpenUrl): finfo = QFileInfo(action.action()) if (finfo.exists() and finfo.isFile()): QDesktopServices.openUrl(QUrl.fromLocalFile(action.action())) else: QDesktopServices.openUrl(QUrl(action.action(), QUrl.TolerantMode)) elif (action.type() == QgsAction.GenericPython): # TODO: capture output from QgsPythonRunner (like QgsRunProcess does) QgsPythonRunner.run(action.action(), QString("Python running error")) else: #The QgsRunProcess instance created by this static function #deletes itself when no longer needed. QgsRunProcess.create(action.action(), action.capture()) """ def createExpressionContext(self, layer): context = QgsExpressionContext() context.append(QgsExpressionContextUtils.globalScope()) context.append(QgsExpressionContextUtils.projectScope()) if (layer): context.append(QgsExpressionContextUtils.layerScope(layer)) return context """
mit
1,932,736,580,259,168,300
36.787879
118
0.612608
false
4.338205
false
false
false
pfnet/chainer
tests/chainer_tests/links_tests/caffe_tests/test_caffe_function.py
4
35121
import os import tempfile import unittest import warnings import mock import numpy import six import chainer from chainer import links from chainer import testing # The caffe submodule relies on protobuf which under protobuf==3.7.0 and # Python 3.7 raises a DeprecationWarning from the collections module. with warnings.catch_warnings(): warnings.filterwarnings(action='ignore', category=DeprecationWarning) from chainer.links import caffe from chainer.links.caffe.caffe_function import caffe_pb def _iter_init(param, data): if isinstance(data, list): for d in data: if hasattr(param, 'add'): param.add() if isinstance(d, (list, dict)): _iter_init(param[-1], d) else: param[-1] = d else: param.append(d) elif isinstance(data, dict): for k, d in data.items(): if isinstance(d, (list, dict)): _iter_init(getattr(param, k), d) else: setattr(param, k, d) else: setattr(param, data) def _make_param(data): param = caffe_pb.NetParameter() _iter_init(param, data) return param class TestCaffeFunctionBase(unittest.TestCase): def setUp(self): param = _make_param(self.data) # The name can be used to open the file a second time, # while the named temporary file is still open on the Windows. with tempfile.NamedTemporaryFile(delete=False) as f: self.temp_file_path = f.name f.write(param.SerializeToString()) def tearDown(self): os.remove(self.temp_file_path) def init_func(self): self.func = caffe.CaffeFunction(self.temp_file_path) class TestCaffeFunctionBaseMock(TestCaffeFunctionBase): def setUp(self): outs = [] for shape in self.out_shapes: out_data = numpy.random.uniform(-1, 1, shape).astype(numpy.float32) outs.append(chainer.Variable(out_data)) self.outputs = tuple(outs) ret_value = outs[0] if len(outs) == 1 else tuple(outs) m = mock.MagicMock(name=self.func_name, return_value=ret_value) self.patch = mock.patch(self.func_name, m) self.mock = self.patch.start() super(TestCaffeFunctionBaseMock, self).setUp() def tearDown(self): super(TestCaffeFunctionBaseMock, self).tearDown() self.patch.stop() def call(self, inputs, outputs): invars = [] for shape in self.in_shapes: data = numpy.random.uniform(-1, 1, shape).astype(numpy.float32) invars.append(chainer.Variable(data)) self.inputs = invars with chainer.using_config('train', False): out = self.func(inputs=dict(zip(inputs, invars)), outputs=outputs) self.assertEqual(len(out), len(self.outputs)) for actual, expect in zip(out, self.outputs): self.assertIs(actual, expect) class TestConcat(TestCaffeFunctionBaseMock): func_name = 'chainer.functions.concat' in_shapes = [(3, 2, 3), (3, 2, 3)] out_shapes = [(3, 2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'Concat', 'bottom': ['x', 'y'], 'top': ['z'], 'concat_param': { 'axis': 2 } } ] } def test_concat(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x', 'y'], ['z']) self.mock.assert_called_once_with( (self.inputs[0], self.inputs[1]), axis=2) class TestConvolution(TestCaffeFunctionBaseMock): func_name = 'chainer.links.Convolution2D.forward' in_shapes = [(2, 3)] out_shapes = [(2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'Convolution', 'bottom': ['x'], 'top': ['y'], 'convolution_param': { 'kernel_size': [2], 'stride': [3], 'pad': [4], 'group': 3, 'bias_term': True, }, 'blobs': [ { 'num': 6, 'channels': 4, 'data': list(range(96)) }, { 'data': list(range(6)) } ] } ] } def test_convolution(self): self.init_func() self.assertEqual(len(self.func.layers), 1) f = self.func.l1 self.assertIsInstance(f, links.Convolution2D) for i in range(3): # 3 == group in_slice = slice(i * 4, (i + 1) * 4) # 4 == channels out_slice = slice(i * 2, (i + 1) * 2) # 2 == num / group w = f.W.data[out_slice, in_slice] numpy.testing.assert_array_equal( w.flatten(), range(i * 32, (i + 1) * 32)) numpy.testing.assert_array_equal( f.b.data, range(6)) self.call(['x'], ['y']) self.mock.assert_called_once_with(self.inputs[0]) class TestDeconvolution(TestCaffeFunctionBaseMock): func_name = 'chainer.links.Deconvolution2D.__call__' in_shapes = [(2, 3)] out_shapes = [(2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'Deconvolution', 'bottom': ['x'], 'top': ['y'], 'convolution_param': { 'kernel_size': [2], 'stride': [3], 'pad': [4], 'group': 3, 'bias_term': True, }, 'blobs': [ { 'num': 6, 'channels': 4, 'data': list(range(96)) }, { 'data': list(range(12)) } ] } ] } def test_deconvolution(self): self.init_func() self.assertEqual(len(self.func.layers), 1) f = self.func.l1 self.assertIsInstance(f, links.Deconvolution2D) for i in range(3): # 3 == group in_slice = slice(i * 4, (i + 1) * 4) # 4 == channels out_slice = slice(i * 2, (i + 1) * 2) # 2 == num / group w = f.W.data[out_slice, in_slice] numpy.testing.assert_array_equal( w.flatten(), range(i * 32, (i + 1) * 32)) numpy.testing.assert_array_equal( f.b.data, range(12)) self.call(['x'], ['y']) self.mock.assert_called_once_with(self.inputs[0]) class TestData(TestCaffeFunctionBase): data = { 'layer': [ { 'name': 'l1', 'type': 'Data', } ] } def test_data(self): self.init_func() self.assertEqual(len(self.func.layers), 0) class TestDropout(TestCaffeFunctionBaseMock): func_name = 'chainer.functions.dropout' in_shapes = [(3, 2, 3)] out_shapes = [(3, 2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'Dropout', 'bottom': ['x'], 'top': ['y'], 'dropout_param': { 'dropout_ratio': 0.25 } } ] } def test_dropout(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x'], ['y']) self.mock.assert_called_once_with( self.inputs[0], ratio=0.25) class TestInnerProduct(TestCaffeFunctionBaseMock): func_name = 'chainer.links.Linear.forward' in_shapes = [(2, 3)] out_shapes = [(2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'InnerProduct', 'bottom': ['x'], 'top': ['y'], 'inner_product_param': { 'bias_term': True, 'axis': 1 }, 'blobs': [ # weight { 'shape': { 'dim': [2, 3] }, 'data': list(range(6)), }, # bias { 'shape': { 'dim': [2] }, 'data': list(range(2)), } ] } ] } def test_linear(self): self.init_func() f = self.func.l1 self.assertIsInstance(f, links.Linear) numpy.testing.assert_array_equal( f.W.data, numpy.array([[0, 1, 2], [3, 4, 5]], dtype=numpy.float32)) numpy.testing.assert_array_equal( f.b.data, numpy.array([0, 1], dtype=numpy.float32)) self.call(['x'], ['y']) self.mock.assert_called_once_with(self.inputs[0]) class TestInnerProductDim4(TestCaffeFunctionBaseMock): func_name = 'chainer.links.Linear.forward' in_shapes = [(2, 3)] out_shapes = [(2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'InnerProduct', 'bottom': ['x'], 'top': ['y'], 'inner_product_param': { 'bias_term': False, 'axis': 1 }, 'blobs': [ # weight { 'shape': { 'dim': [4, 5, 2, 3] }, # when `ndim` == 4, `data` stored shape[2] x shape[3] # data 'data': list(range(6)), } ] } ] } def test_linear(self): self.init_func() f = self.func.l1 self.assertIsInstance(f, links.Linear) numpy.testing.assert_array_equal( f.W.data, numpy.array([[0, 1, 2], [3, 4, 5]], dtype=numpy.float32)) self.assertIsNone(f.b) self.call(['x'], ['y']) self.mock.assert_called_once_with(self.inputs[0]) class TestInnerProductInvalidDim(TestCaffeFunctionBase): data = { 'layer': [ { 'name': 'l1', 'type': 'InnerProduct', 'blobs': [ { 'shape': { 'dim': [2, 3, 4, 5, 6] # 5-dim is not supported }, }, ] } ] } def test_linear(self): with self.assertRaises(RuntimeError): self.init_func() class TestInnerProductNonDefaultAxis(TestCaffeFunctionBase): data = { 'layer': [ { 'name': 'l1', 'type': 'InnerProduct', 'inner_product_param': { 'axis': 0 # non-default axis } } ] } def test_linear(self): with self.assertRaises(RuntimeError): self.init_func() class TestLRN(TestCaffeFunctionBaseMock): func_name = 'chainer.functions.local_response_normalization' in_shapes = [(3, 2, 3)] out_shapes = [(3, 2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'LRN', 'bottom': ['x'], 'top': ['y'], 'lrn_param': { 'local_size': 4, 'alpha': 0.5, 'beta': 0.25, 'norm_region': 0, # ACROSS_CHANNELS 'k': 0.5 }, } ] } def test_lrn(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x'], ['y']) self.mock.assert_called_once_with( self.inputs[0], n=4, k=0.5, alpha=0.5 / 4, beta=0.25) class TestLRNWithinChannel(TestCaffeFunctionBase): data = { 'layer': [ { 'name': 'l1', 'type': 'LRN', 'lrn_param': { 'norm_region': 1, # WITHIN_CHANNELS is not supported }, } ] } def test_lrn(self): with self.assertRaises(RuntimeError): self.init_func() class TestMaxPooling(TestCaffeFunctionBaseMock): func_name = 'chainer.functions.max_pooling_2d' in_shapes = [(3, 2, 3)] out_shapes = [(3, 2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'Pooling', 'bottom': ['x'], 'top': ['y'], 'pooling_param': { 'pool': 0, # MAX 'kernel_h': 2, 'kernel_w': 3, 'stride_h': 4, 'stride_w': 5, 'pad_h': 6, 'pad_w': 7, } } ] } def test_max_pooling(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x'], ['y']) self.mock.assert_called_once_with( self.inputs[0], (2, 3), stride=(4, 5), pad=(6, 7)) class TestAveragePooling(TestCaffeFunctionBaseMock): func_name = 'chainer.functions.average_pooling_2d' in_shapes = [(3, 2, 3)] out_shapes = [(3, 2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'Pooling', 'bottom': ['x'], 'top': ['y'], 'pooling_param': { 'pool': 1, # AVE 'kernel_size': 2, 'stride': 4, 'pad': 6, } } ] } def test_max_pooling(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x'], ['y']) self.mock.assert_called_once_with( self.inputs[0], 2, stride=4, pad=6) class TestGlobalPooling(TestCaffeFunctionBaseMock): func_name = 'chainer.functions.max_pooling_2d' in_shapes = [(3, 2, 3, 4)] out_shapes = [(3, 2, 3, 4)] data = { 'layer': [ { 'name': 'l1', 'type': 'Pooling', 'bottom': ['x'], 'top': ['y'], 'pooling_param': { 'pool': 0, # MAX 'global_pooling': True, } } ] } def test_global_pooling(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x'], ['y']) self.mock.assert_called_once_with( self.inputs[0], (3, 4), stride=1, pad=0) class TestStochasticPooling(TestCaffeFunctionBase): data = { 'layer': [ { 'name': 'l1', 'type': 'Pooling', 'pooling_param': { 'pool': 2, # STOCHASTIC is not supported } } ] } def test_stochastic_pooling(self): with self.assertRaises(RuntimeError): self.init_func() class TestReLU(TestCaffeFunctionBaseMock): func_name = 'chainer.functions.relu' in_shapes = [(3, 2, 3)] out_shapes = [(3, 2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'ReLU', 'bottom': ['x'], 'top': ['y'], 'relu_param': { 'negative_slope': 0 } } ] } def test_lrn(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x'], ['y']) self.mock.assert_called_once_with(self.inputs[0]) class TestLeakyReLU(TestCaffeFunctionBaseMock): func_name = 'chainer.functions.leaky_relu' in_shapes = [(3, 2, 3)] out_shapes = [(3, 2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'ReLU', 'bottom': ['x'], 'top': ['y'], 'relu_param': { 'negative_slope': 0.5 } } ] } def test_lrn(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x'], ['y']) self.mock.assert_called_once_with(self.inputs[0], slope=0.5) class TestReshape(TestCaffeFunctionBaseMock): func_name = 'chainer.functions.reshape' in_shapes = [(3, 2, 3)] out_shapes = [(3, 6)] data = { 'layer': [ { 'name': 'l1', 'type': 'Reshape', 'bottom': ['x'], 'top': ['y'], 'reshape_param': { 'shape': { 'dim': [3, 6] } } } ] } def test_reshape(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x'], ['y']) self.mock.assert_called_once_with(self.inputs[0], shape=[3, 6]) class TestBatchNorm(TestCaffeFunctionBaseMock): func_name = 'chainer.links.BatchNormalization.forward' in_shapes = [(2, 3)] out_shapes = [(2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'BatchNorm', 'bottom': ['x'], 'top': ['y'], 'blobs': [ # For average mean. { 'shape': { 'dim': [3], }, 'data': list(six.moves.range(3)), }, # For average variance. { 'shape': { 'dim': [3], }, 'data': list(six.moves.range(3)), }, ], 'batch_norm_param': { 'use_global_stats': False, } } ] } def test_batchnorm(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x'], ['y']) self.mock.assert_called_once_with(self.inputs[0], finetune=False) class TestBatchNormUsingGlobalStats(TestCaffeFunctionBaseMock): func_name = 'chainer.links.BatchNormalization.forward' in_shapes = [(2, 3)] out_shapes = [(2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'BatchNorm', 'bottom': ['x'], 'top': ['y'], 'blobs': [ # For average mean. { 'shape': { 'dim': [3], }, 'data': list(six.moves.range(3)), }, # For average variance. { 'shape': { 'dim': [3], }, 'data': list(six.moves.range(3)), }, ], 'batch_norm_param': { 'use_global_stats': True, } } ] } def test_batchnorm(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x'], ['y']) self.mock.assert_called_once_with(self.inputs[0], finetune=False) class TestEltwiseProd(TestCaffeFunctionBaseMock): func_name = 'chainer.variable.Variable.__mul__' in_shapes = [(2, 3), (2, 3), (2, 3)] out_shapes = [(2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'Eltwise', 'bottom': ['x1', 'x2', 'x3'], 'top': ['y'], 'eltwise_param': { 'operation': 0, # PROD }, } ] } def test_eltwise_prod(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x1', 'x2', 'x3'], ['y']) self.mock.assert_has_calls([mock.call(self.inputs[1]), mock.call(self.inputs[2])]) class TestEltwiseSum(TestCaffeFunctionBaseMock): func_name = 'chainer.variable.Variable.__add__' in_shapes = [(2, 3), (2, 3), (2, 3)] out_shapes = [(2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'Eltwise', 'bottom': ['x1', 'x2', 'x3'], 'top': ['y'], 'eltwise_param': { 'operation': 1, # SUM }, } ] } def test_eltwise_sum(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x1', 'x2', 'x3'], ['y']) self.mock.assert_has_calls([mock.call(self.inputs[1]), mock.call(self.inputs[2])]) class TestEltwiseSumCoeff(TestCaffeFunctionBaseMock): func_name = 'chainer.variable.Variable.__add__' in_shapes = [(2, 3), (2, 3), (2, 3)] out_shapes = [(2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'Eltwise', 'bottom': ['x1', 'x2', 'x3'], 'top': ['y'], 'eltwise_param': { 'operation': 1, # SUM 'coeff': list(six.moves.range(3)), }, } ] } def test_eltwise_sum(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x1', 'x2', 'x3'], ['y']) self.assertEqual(self.mock.call_count, 2) class TestEltwiseSumInvalidCoeff(TestCaffeFunctionBaseMock): func_name = 'chainer.variable.Variable.__add__' in_shapes = [(2, 3), (2, 3), (2, 3)] out_shapes = [(2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'Eltwise', 'bottom': ['x1', 'x2', 'x3'], 'top': ['y'], 'eltwise_param': { 'operation': 1, # SUM # not same as number of bottoms 'coeff': list(six.moves.range(2)), }, } ] } def test_eltwise_sum(self): self.init_func() with self.assertRaises(AssertionError): self.call(['x1', 'x2', 'x3'], ['y']) class TestEltwiseMax(TestCaffeFunctionBaseMock): func_name = 'chainer.functions.maximum' in_shapes = [(2, 3), (2, 3), (2, 3)] out_shapes = [(2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'Eltwise', 'bottom': ['x1', 'x2', 'x3'], 'top': ['y'], 'eltwise_param': { 'operation': 2, # MAX }, } ] } def test_eltwise_max(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x1', 'x2', 'x3'], ['y']) self.mock.assert_has_calls( [mock.call(self.inputs[0], self.inputs[1]), mock.call(self.outputs[0], self.inputs[2])]) class TestScale(TestCaffeFunctionBaseMock): func_name = 'chainer.links.Scale.forward' in_shapes = [(2, 3), (2, 3)] out_shapes = [(2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'Scale', 'bottom': ['x', 'y'], 'top': ['z'], 'scale_param': { 'axis': 0, } } ] } def test_scale(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x', 'y'], ['z']) self.mock.assert_called_once_with(self.inputs[0], self.inputs[1]) class TestScaleOneBottom(TestCaffeFunctionBaseMock): func_name = 'chainer.links.Scale.forward' in_shapes = [(2, 3)] out_shapes = [(2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'Scale', 'bottom': ['x'], 'top': ['y'], 'blobs': [ { 'shape': { 'dim': [2, 3], }, 'data': list(six.moves.range(6)), } ], 'scale_param': { 'axis': 0, } } ] } def test_scale_one_bottom(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x'], ['y']) self.mock.assert_called_once_with(self.inputs[0]) class TestScaleWithBias(TestCaffeFunctionBaseMock): func_name = 'chainer.links.Scale.forward' in_shapes = [(2, 3), (2, 3)] out_shapes = [(2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'Scale', 'bottom': ['x', 'y'], 'top': ['z'], 'blobs': [ { 'shape': { 'dim': [2, 3], }, 'data': list(six.moves.range(6)), } ], 'scale_param': { 'axis': 0, 'bias_term': True, } } ] } def test_scale_with_bias(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.assertTrue(hasattr(self.func.l1, 'bias')) self.call(['x', 'y'], ['z']) self.mock.assert_called_once_with(self.inputs[0], self.inputs[1]) class TestScaleOneBottomWithBias(TestCaffeFunctionBaseMock): func_name = 'chainer.links.Scale.forward' in_shapes = [(2, 3)] out_shapes = [(2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'Scale', 'bottom': ['x'], 'top': ['y'], 'blobs': [ # For W parameter. { 'shape': { 'dim': [2, 3], }, 'data': list(six.moves.range(6)), }, # For bias. { 'shape': { 'dim': [2, 3], }, 'data': list(six.moves.range(6)), } ], 'scale_param': { 'axis': 0, 'bias_term': True, } } ] } def test_scale_one_bottom_with_bias(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.assertTrue(hasattr(self.func.l1, 'bias')) self.call(['x'], ['y']) self.mock.assert_called_once_with(self.inputs[0]) class TestSlice(TestCaffeFunctionBaseMock): func_name = 'chainer.functions.split_axis' in_shapes = [(3, 4, 3)] out_shapes = [(3, 2, 3), (3, 2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'Slice', 'bottom': ['x'], 'top': ['y1', 'y2'], 'slice_param': { 'axis': 1 } } ] } def test_slice(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x'], ['y1', 'y2']) self.mock.assert_called_once_with( self.inputs[0], indices_or_sections=2, axis=1 ) class TestSliceNoAxis(TestCaffeFunctionBaseMock): func_name = 'chainer.functions.split_axis' in_shapes = [(4, 6, 4)] out_shapes = [(2, 6, 4), (2, 6, 4)] data = { 'layer': [ { 'name': 'l1', 'type': 'Slice', 'bottom': ['x'], 'top': ['y1', 'y2'], 'slice_param': { 'slice_dim': 0 } } ] } def test_slice_no_axis(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x'], ['y1', 'y2']) self.mock.assert_called_once_with( self.inputs[0], indices_or_sections=2, axis=0 ) class TestSliceNoAxisNoSliceDim(TestCaffeFunctionBaseMock): func_name = 'chainer.functions.split_axis' in_shapes = [(4, 6, 4)] out_shapes = [(4, 3, 4), (4, 3, 4)] data = { 'layer': [ { 'name': 'l1', 'type': 'Slice', 'bottom': ['x'], 'top': ['y1', 'y2'], } ] } def test_slice_no_axis_no_slice_dim(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x'], ['y1', 'y2']) self.mock.assert_called_once_with( self.inputs[0], indices_or_sections=2, axis=1 ) class TestSliceSlicePoint(TestCaffeFunctionBaseMock): func_name = 'chainer.functions.split_axis' in_shapes = [(4, 8, 6)] out_shapes = [(4, 3, 6), (4, 2, 6), (4, 3, 6)] data = { 'layer': [ { 'name': 'l1', 'type': 'Slice', 'bottom': ['x'], 'top': ['y1', 'y2', 'y3'], 'slice_param': { 'axis': 1, 'slice_point': [3, 5] } } ] } def test_slice_slice_point(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x'], ['y1', 'y2', 'y3']) self.mock.assert_called_once_with( self.inputs[0], indices_or_sections=[3, 5], axis=1 ) class TestSigmoid(TestCaffeFunctionBaseMock): func_name = 'chainer.functions.sigmoid' in_shapes = [(2, 3)] out_shapes = [(2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'Sigmoid', 'bottom': ['x'], 'top': ['y'], } ] } def test_sigmoid(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x'], ['y']) self.mock.assert_called_once_with(self.inputs[0]) class TestSoftmax(TestCaffeFunctionBaseMock): func_name = 'chainer.functions.softmax' in_shapes = [(2, 3)] out_shapes = [(2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'Softmax', 'bottom': ['x'], 'top': ['y'], } ] } def test_softmax(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x'], ['y']) self.mock.assert_called_once_with(self.inputs[0]) class TestSoftmaxCaffeEngine(TestCaffeFunctionBaseMock): func_name = 'chainer.functions.softmax' in_shapes = [(2, 3)] out_shapes = [(2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'Softmax', 'softmax_param': { 'engine': 1, # CAFFE }, 'bottom': ['x'], 'top': ['y'], } ] } def test_softmax_caffe_engine(self): # TODO(beam2d): Check if the mock is called with # chainer.config.use_cudnn == False self.init_func() self.call(['x'], ['y']) self.mock.assert_called_once_with(self.inputs[0]) class TestSoftmaxcuDnnEngine(TestCaffeFunctionBaseMock): func_name = 'chainer.functions.softmax' in_shapes = [(2, 3)] out_shapes = [(2, 3)] data = { 'layer': [ { 'name': 'l1', 'type': 'Softmax', 'softmax_param': { 'engine': 2, # CUDNN }, 'bottom': ['x'], 'top': ['y'], } ] } def test_softmax_cuDNN_engine(self): # TODO(beam2d): Check if the mock is called with # chainer.config.use_cudnn == True self.init_func() self.call(['x'], ['y']) self.mock.assert_called_once_with(self.inputs[0]) class TestSoftmaxInvalidAxis(TestCaffeFunctionBase): data = { 'layer': [ { 'name': 'l1', 'type': 'Softmax', 'softmax_param': { 'axis': 0, # invalid axis } } ] } def test_softmax_invalid_axis(self): with self.assertRaises(RuntimeError): self.init_func() class TestSoftmaxWithLoss(TestCaffeFunctionBaseMock): func_name = 'chainer.functions.softmax_cross_entropy' in_shapes = [(3, 2, 3)] out_shapes = [()] data = { 'layer': [ { 'name': 'l1', 'type': 'SoftmaxWithLoss', 'bottom': ['x'], 'top': ['y'], } ] } def test_softmax_with_loss(self): self.init_func() self.assertEqual(len(self.func.layers), 1) self.call(['x'], ['y']) self.mock.assert_called_once_with(self.inputs[0]) class TestSoftmaxWithLossInvalidAxis(TestCaffeFunctionBase): data = { 'layer': [ { 'name': 'l1', 'type': 'SoftmaxWithLoss', 'softmax_param': { 'axis': 0, # invalid axis } } ] } def test_softmax_with_loss_invalid_axis(self): with self.assertRaises(RuntimeError): self.init_func() class TestSplit(TestCaffeFunctionBase): data = { 'layer': [ { 'name': 'l1', 'type': 'Split', 'bottom': ['x'], 'top': ['y', 'z'], } ] } def test_split(self): self.init_func() self.assertEqual(self.func.split_map, {'y': 'x', 'z': 'x'}) testing.run_module(__name__, __file__)
mit
-7,287,609,699,628,264,000
25.170641
79
0.410239
false
3.856908
true
false
false
zstackio/zstack-woodpecker
tools/trans/resource.py
1
25317
# encoding=utf-8 RUNNING = "RUNNING" STOPPED = "STOPPED" DELETED = "DELETED" EXPUNGED = "EXPUNGED" ATTACHED = "ATTACHED" DETACHED = "DETACHED" ENABLED = "ENABLED" HA = "HA" DATA = "'data'" ROOT = "'root'" VM = "'VM'" VOLUME = "'VOLUME'" QCOW2 = "'qcow2'" ISO = "'iso'" MINI = False # todo LOCAL = False class resource_dict(object): def __init__(self): self.running = [] self.enabled = [] self.stopped = [] self.attached = [] self.detached = [] self.deleted = [] self.expunged = [] self.ha = [] self.len = 0 self.group = {} def __repr__(self): temp = "Running:" temp += str(self.running) temp += "\nStopped:" temp += str(self.stopped) temp += "\nEnadbled:" temp += str(self.enabled) temp += "\nattached:" temp += str(self.attached) temp += "\nDetached:" temp += str(self.detached) temp += "\nDeleted:" temp += str(self.deleted) temp += "\nExpunged:" temp += str(self.expunged) temp += "\nHa:" temp += str(self.ha) temp += "\nGroup:" for k, v in self.group.items(): temp += ("\n\t%s:%s") % (str(k), str(v)) temp += "---%s" % v[0].description return temp def __str__(self): return self.__repr__() def __add__(self, other): resource = resource_dict() resource.group = dict(self.group, **other.group) resource.running = self.running + other.running resource.enabled = self.enabled + other.enabled resource.stopped = self.stopped + other.stopped resource.attached = self.attached + other.attached resource.detached = self.detached + other.detached resource.deleted = self.deleted + other.deleted resource.expunged = self.expunged + other.expunged resource.ha = self.ha + other.ha resource.len = self.len + other.len return resource def change_state(self, resource, src_sdt=None, dst_sdt=None): if src_sdt == RUNNING: self.running.remove(resource) elif src_sdt == ENABLED: self.enabled.remove(resource) elif src_sdt == ATTACHED: self.attached.remove(resource) elif src_sdt == DETACHED: self.detached.remove(resource) elif src_sdt == STOPPED: self.stopped.remove(resource) elif src_sdt == DELETED: self.deleted.remove(resource) elif src_sdt == HA: self.ha.remove(resource) if dst_sdt == RUNNING: self.running.append(resource) elif dst_sdt == ENABLED: self.enabled.append(resource) elif dst_sdt == ATTACHED: self.attached.append(resource) elif dst_sdt == DETACHED: self.detached.append(resource) elif dst_sdt == STOPPED: self.stopped.append(resource) elif dst_sdt == DELETED: self.deleted.append(resource) elif dst_sdt == EXPUNGED: self.expunged.append(resource) elif dst_sdt == HA: self.ha.append(resource) def add(self, resource, dst_sdt=None): if dst_sdt == RUNNING: self.running.append(resource) elif dst_sdt == STOPPED: self.stopped.append(resource) elif dst_sdt == ATTACHED: self.attached.append(resource) elif dst_sdt == ENABLED: self.enabled.append(resource) elif dst_sdt == DETACHED: self.detached.append(resource) self.len += 1 def get_not_ha_resource(self): r_list = [] for resource in self.running: if resource not in self.ha: r_list.append(resource) return r_list all_volumes = resource_dict() all_vms = resource_dict() all_snapshots = resource_dict() all_backups = resource_dict() all_images = resource_dict() def reset(): global all_volumes global all_vms global all_snapshots global all_backups global all_images all_volumes = resource_dict() all_vms = resource_dict() all_snapshots = resource_dict() all_backups = resource_dict() all_images = resource_dict() class Resource(object): def __init__(self, name=None, type=None): print "Resource %s has been created" % self.name def __repr__(self): return self.name def change_state(self, state): print "Resource [%s] changes state [%s] to [%s]" % (self.name, self.state, state) self.state = state def do_change(self, state, action_name): print "Resource [%s] must changes state [%s] to [%s] to do [%s]" % (self.name, self.state, state, action_name) pass class Vm(Resource): def __init__(self, name=None): self.state = RUNNING if not name: self.name = "'vm" + str(all_vms.len + 1) + "'" else: self.name = name self.root_name = self.name[:-1] + "-root'" self.haveHA = False self.volumes = [] self.backups = [] self.snapshots = [] self.root_volume = Volume(self.root_name, type=ROOT) self.root_volume.vm = self super(Vm, self).__init__() def start(self): all_vms.change_state(self, self.state, RUNNING) self.state = RUNNING return "[TestAction.start_vm, %s]" % self.name def stop(self): all_vms.change_state(self, self.state, STOPPED) self.state = STOPPED return "[TestAction.stop_vm, %s]" % self.name def delete(self): all_vms.change_state(self, self.state, DELETED) self.state = DELETED if self.haveHA: all_vms.change_state(self, src_sdt=HA) self.haveHA = not self.haveHA for volume in self.volumes: all_volumes.change_state(volume, ATTACHED, DETACHED) volume.state = DETACHED volume.vm = None self.volumes = [] return "[TestAction.destroy_vm, %s]" % self.name def expunge(self): all_vms.change_state(self, self.state, EXPUNGED) self.state = EXPUNGED for snapshot in self.snapshots: all_snapshots.change_state(snapshot, ENABLED, DELETED) snapshot.state = DELETED self.snapshots.remove(snapshot) groupId = snapshot.groupId if snapshot.groupId: for snap in all_snapshots.group[snapshot.groupId]: snap.groupId = None all_snapshots.group.pop(groupId) return "[TestAction.expunge_vm, %s]" % self.name def recover(self): all_vms.change_state(self, self.state, STOPPED) self.state = STOPPED return "[TestAction.recover_vm, %s]" % self.name def change_ha(self): if self.haveHA: all_vms.change_state(self, src_sdt=HA) else: all_vms.change_state(self, dst_sdt=HA) if self.state == STOPPED: all_vms.change_state(self, self.state, RUNNING) self.haveHA = not self.haveHA self.state = RUNNING return "[TestAction.change_vm_ha, %s]" % self.name def create(self, tags=None): all_vms.add(self, RUNNING) self.state = RUNNING if tags and "'data_volume=true'" in tags: volume = Volume("'auto-volume" + str(all_vms.len) + "'") self.volumes.append(volume) volume.vm = self all_volumes.add(volume, ATTACHED) volume.state = ATTACHED if MINI: return "[TestAction.create_mini_vm, %s, %s]" % (self.name, ", ".join(tags)) return "[TestAction.create_vm, %s, %s]" % (self.name, ", ".join(tags)) def reinit(self): return "[TestAction.reinit_vm, %s]" % self.name def change_vm_image(self): return "[TestAction.change_vm_image, %s]" % (self.name) def migrate(self): return "[TestAction.migrate_vm, %s]" % self.name def resize(self, tags): if not tags: return "[TestAction.resize_volume, %s, 5*1024*1024]" % self.name else: return "[TestAction.resize_volume, %s, %s]" % (self.name, ", ".join(tags)) def clone_vm(self): new_vm = Vm() all_vms.add(new_vm, RUNNING) return "[TestAction.clone_vm, %s, %s]" % (self.name, new_vm.name) def clone_vm_with_volume(self): new_vm = Vm() all_vms.add(new_vm, RUNNING) for volume in self.volumes: name = "'clone@" + volume.name[1:] new_volume = Volume(name) all_volumes.add(new_volume, ATTACHED) new_volume.state = ATTACHED new_volume.vm = new_vm new_vm.volumes.append(new_volume) return "[TestAction.clone_vm, %s, %s, 'full']" % (self.name, new_vm.name) def reboot(self): return "[TestAction.reboot_vm, %s]" % self.name def ps_migrate(self): return "[TestAction.ps_migrate_vm, %s]" % self.name def create_root_snapshot(self): # name: vm1-root-snapshot-1 snapshot_name = self.root_name[:-1] + "-snapshot" + str(all_snapshots.len + 1) + "'" snapshot = Snapshot(snapshot_name) snapshot.create() snapshot.set_volume(self.root_volume) self.snapshots.append(snapshot) return "[TestAction.create_volume_snapshot, %s, %s]" % (self.root_name, snapshot.name) def delete_root_snapshot(self, snapshot): self.snapshots.remove(snapshot) if snapshot.groupId and all_snapshots.group.has_key(snapshot.groupId): groupId = snapshot.groupId for snap in all_snapshots.group[snapshot.groupId]: snap.groupId = None all_snapshots.group.pop(groupId) return snapshot.delete() def use_root_snapshot(self, snapshot): return snapshot.use() def create_vm_snapshot(self): temp = 0 for key in all_snapshots.group.keys(): if int(key[-1]) > temp: temp = int(key[-1]) groupId = "vm_snap" + str(temp + 1) description = (self.name + "@" + "_".join([vol.name for vol in self.volumes])).replace("'", "") all_snapshots.group[groupId] = [] root_snapshot_name = self.name[:-1] + "-snapshot" + str(all_snapshots.len + 1) + "'" root_snapshot = Snapshot(root_snapshot_name) root_snapshot.create() root_snapshot.set_volume(self.root_volume) root_snapshot.set_groupId(groupId, description) self.snapshots.append(root_snapshot) for volume in self.volumes: snapshot_name = root_snapshot_name.replace(self.name[:-1], volume.name[:-1]) vol_snapshot = Snapshot(snapshot_name) vol_snapshot.create() vol_snapshot.set_volume(volume) vol_snapshot.set_groupId(groupId, description) return "[TestAction.create_vm_snapshot, %s, %s]" % (self.name, root_snapshot.name) def delete_vm_snapshot(self, groupId): vm_snapshot_name = '' for snapshot in self.root_volume.snapshots: if snapshot.groupId == groupId: self.snapshots.remove(snapshot) for vol_snapshot in all_snapshots.group[groupId]: all_snapshots.change_state(vol_snapshot, vol_snapshot.state, DELETED) if vol_snapshot.volume and vol_snapshot in vol_snapshot.volume.snapshots: vol_snapshot.volume.snapshots.remove(vol_snapshot) if vol_snapshot in self.snapshots: self.snapshots.remove(vol_snapshot) vol_snapshot.volume = None vol_snapshot.vm = None vm_snapshot_name = snapshot.name for snap in all_snapshots.group[groupId]: snap.groupId = None all_snapshots.group.pop(groupId) return "[TestAction.delete_vm_snapshot, %s]" % vm_snapshot_name def use_vm_snapshot(self, groupId): vm_snapshot_name = '' for snapshot in self.root_volume.snapshots: if snapshot.groupId == groupId: vm_snapshot_name = snapshot.name return "[TestAction.use_vm_snapshot, %s]" % vm_snapshot_name def create_root_backup(self): # name: vm1-root-backup-1 backup_name = self.root_name[:-1] + "-backup" + str(all_backups.len + 1) + "'" backup = Backup(backup_name) backup.create() backup.set_volume(self.root_volume) self.backups.append(backup) return "[TestAction.create_volume_backup, %s, %s]" % (self.root_name, backup.name) def delete_root_backup(self, backup): self.backups.remove(backup) if backup.groupId and all_backups.group.has_key(backup.groupId): groupId = backup.groupId for back in all_backups.group[backup.groupId]: back.groupId = None all_backups.group.pop(groupId) return backup.delete() def use_root_backup(self, backup): return backup.use() def create_vm_backup(self): groupId = "vm_backup" + str(len(all_backups.group) + 1) description = (self.name + "@" + "_".join([vol.name for vol in self.volumes])).replace("'", "") all_backups.group[groupId] = [] root_backup_name = self.name[:-1] + "-backup" + str(all_backups.len + 1) + "'" root_backup = Backup(root_backup_name) root_backup.create() root_backup.set_volume(self.root_volume) root_backup.set_groupId(groupId, description) self.backups.append(root_backup) for volume in self.volumes: backup_name = root_backup_name.replace(self.name[:-1], volume.name[:-1]) vol_backup = Backup(backup_name) vol_backup.create() vol_backup.set_volume(volume) vol_backup.set_groupId(groupId, description) return "[TestAction.create_vm_backup, %s, %s]" % (self.name, root_backup.name) def delete_vm_backup(self, groupId): vm_backup_name = '' for backup in self.root_volume.backups: if backup.groupId == groupId: self.backups.remove(backup) for vol_backup in all_backups.group[groupId]: all_backups.change_state(vol_backup, vol_backup.state, DELETED) vol_backup.volume.backups.remove(vol_backup) vol_backup.volume = None vm_backup_name = backup.name for back in all_backups.group[groupId]: back.groupId = None all_backups.group.pop(groupId) return "[TestAction.delete_vm_backup, %s]" % vm_backup_name def use_vm_backup(self, groupId): vm_backup_name = '' for backup in self.root_volume.backups: if backup.groupId == groupId: vm_backup_name = backup.name return "[TestAction.use_vm_backup, %s]" % vm_backup_name def create_image(self): image = Image(self.name) image.type = ROOT all_images.add(image, ENABLED) return "[TestAction.create_image_from_volume, %s, %s]" % (self.name, image.name) class Volume(Resource): def __init__(self, name=None, type=DATA): if not name: self.name = "'volume" + str(all_volumes.len + 1) + "'" else: self.name = name Resource.__init__(self) self.state = DETACHED self.vm = None self.backups = [] self.snapshots = [] self.type = type def create(self, tags): all_volumes.add(self, DETACHED) self.state = DETACHED if tags and "flag" in tags[-1]: tags[-1] = tags[-1][:-1] + ",scsi" + "'" elif not tags or "flag" not in tags[-1]: tags.append("'flag=scsi'") return "[TestAction.create_volume, %s, %s]" % (self.name, ", ".join(tags)) def attach(self, vm): all_volumes.change_state(self, self.state, ATTACHED) self.state = ATTACHED vm.volumes.append(self) self.vm = vm return "[TestAction.attach_volume, %s, %s]" % (vm.name, self.name) def detach(self): all_volumes.change_state(self, self.state, DETACHED) self.state = DETACHED self.vm.volumes.remove(self) self.vm = None return "[TestAction.detach_volume, %s]" % self.name def resize(self, tags): if not tags: return "[TestAction.resize_data_volume, %s, 5*1024*1024]" % self.name else: return "[TestAction.resize_data_volume, %s, %s]" % (self.name, ", ".join(tags)) def delete(self): all_volumes.change_state(self, self.state, DELETED) self.state = DELETED if self.vm: self.vm.volumes.remove(self) self.vm = None return "[TestAction.delete_volume, %s]" % self.name def expunge(self): all_volumes.change_state(self, self.state, EXPUNGED) self.state = EXPUNGED for snapshot in self.snapshots: all_snapshots.change_state(snapshot, ENABLED, DELETED) snapshot.state = DELETED return "[TestAction.expunge_volume, %s]" % self.name def recover(self): all_volumes.change_state(self, self.state, DETACHED) self.state = DETACHED return "[TestAction.recover_volume, %s]" % self.name def ps_migrate(self): return "[TestAction.ps_migrate_volume, %s]" % self.name def migrate(self): return "[TestAction.migrate_volume, %s]" % self.name def create_volume_snapshot(self): # name: volume1-snapshot1 snapshot_name = self.name[:-1] + "-snapshot" + str(all_snapshots.len + 1) + "'" snapshot = Snapshot(snapshot_name) snapshot.create() self.snapshots.append(snapshot) snapshot.volume = self return "[TestAction.create_volume_snapshot, %s, %s]" % (self.name, snapshot.name) def delete_volume_snapshot(self, snapshot): self.snapshots.remove(snapshot) return snapshot.delete() def use_volme_snapshot(self, snapshot): return snapshot.use() def create_volume_backup(self): backup_name = self.name[:-1] + "-backup" + str(all_backups.len + 1) + "'" backup = Backup(backup_name) backup.create() self.backups.append(backup) backup.volume = self return "[TestAction.create_volume_backup, %s, %s]" % (self.name, backup.name) def delete_volume_backup(self, backup): self.backups.remove(backup) return backup.delete() def use_volume_backup(self, backup): return backup.use() def create_image(self): image = Image(self.name) image.type = DATA all_images.add(image, ENABLED) return "[TestAction.create_data_vol_template_from_volume, %s, %s]" % (self.name, image.name) class Snapshot(Resource): def __init__(self, name): self.name = name self.state = ENABLED self.volume = None self.groupId = None self.description = "" Resource.__init__(self) def create(self): all_snapshots.add(self, ENABLED) def set_groupId(self, groupId, description=None): self.groupId = groupId self.description = description all_snapshots.group[groupId].append(self) def set_volume(self, volume): self.volume = volume volume.snapshots.append(self) def delete(self): all_snapshots.change_state(self, self.state, DELETED) self.state = DELETED self.volume = None self.vm = None return "[TestAction.delete_volume_snapshot, %s]" % self.name def use(self): return "[TestAction.use_volume_snapshot, %s]" % self.name def detach_vm_snapshot(self): for snap in all_snapshots.group[self.groupId]: snap.groupId = None all_snapshots.group.pop(self.groupId) return "[TestAction.ungroup_volume_snapshot, %s]" % self.name def create_image(self): image_name = self.name.split('-')[0] + "'" image = Image(image_name) if "vm" in self.name: image.type = ROOT else: image.type = DATA all_images.add(image, ENABLED) return "[TestAction.create_image_from_snapshot, %s, %s]" % (self.name, image.name) class Backup(Resource): def __init__(self, name): self.name = name self.state = ENABLED self.volume = None self.groupId = None self.description = "" Resource.__init__(self) def create(self): all_backups.add(self, ENABLED) def set_groupId(self, groupId, description=None): self.groupId = groupId self.description = description all_backups.group[groupId].append(self) def set_volume(self, volume): self.volume = volume volume.backups.append(self) def delete(self): all_backups.change_state(self, self.state, DELETED) self.state = DELETED self.volume = None return "[TestAction.delete_volume_backup, %s]" % self.name def use(self): return "[TestAction.use_volume_backup, %s]" % self.name def create_vm(self): vm = None volumes = [] for res in all_backups.group[self.groupId]: new_name = res.name.split("-")[0] + "-from-" + res.name.split("-")[1] if "vm" in res.name: vm = Vm(new_name) all_vms.add(vm, RUNNING) else: volume = Volume(new_name) all_volumes.add(volume, ATTACHED) volumes.append(volume) vm.volumes = volumes for volume in volumes: volume.vm = vm return "[TestAction.create_vm_from_vmbackup, %s]" % self.name def create_image(self): image_name = self.name.split('-')[0] + "'" image = Image(image_name) if "vm" in self.name: image.type = ROOT else: image.type = DATA all_images.add(image, ENABLED) return "[TestAction.create_image_from_backup, %s, %s]" % (self.name, image.name) class Image(Resource): def __init__(self, name=None): if not name: self.name = "'image" + str(all_images.len + 1) + "'" else: self.name = name[:-1] + "-image" + str(all_images.len + 1) + "'" self.state = ENABLED self.volume = None self.groupId = None self.type = ROOT self.format = QCOW2 Resource.__init__(self) def add(self, type = ROOT, url="'http://172.20.1.28/mirror/diskimages/centos_vdbench.qcow2'"): all_images.add(self, ENABLED) if self.format == ISO: url = "os.environ.get('isoForVmUrl')" return "[TestAction.add_image, %s, %s, %s]" % (self.name, type, url) def delete(self): all_images.change_state(self, self.state, DELETED) self.state = DELETED return "[TestAction.delete_image, %s]" % self.name def recover(self): all_images.change_state(self, self.state, ENABLED) self.state = ENABLED return "[TestAction.recover_image, %s]" % self.name def expunge(self): all_images.change_state(self, self.state, EXPUNGED) self.state = EXPUNGED return "[TestAction.expunge_image, %s]" % self.name def create_vm(self, tags): vm = Vm() all_vms.add(vm, RUNNING) return "[TestAction.create_vm_by_image, %s, %s, %s]" % (self.name, self.format, vm.name) def create_volume(self): # todo: mini robot action must support this function volume = Volume() all_volumes.add(volume, DETACHED) # return [TestAction.create_data_volume_from_image, "volume2", "=scsi"], return "[TestAction.create_volume_from_image, %s, %s]" % (self.name, volume.name) def batch_delete_snapshot(snapshots): for snap in snapshots: all_snapshots.change_state(snap, snap.state, DELETED) if snap.groupId and all_snapshots.group.has_key(snap.groupId): groupId = snap.groupId for _snap in all_snapshots.group[snap.groupId]: _snap.groupId = None all_snapshots.group.pop(groupId) if "vm" in snap.name: snap.volume.vm.snapshots.remove(snap) else: snap.volume.snapshots.remove(snap) return ("[TestAction.batch_delete_volume_snapshot, [" + "%s," * len(snapshots) + "]]") % tuple([i.name for i in snapshots]) if __name__ == "__main__": vm1 = Vm() print vm1.create(["'data_volume=true'"]) vm2 = Vm() print vm2.create([]) vol1 = Volume() print vol1.create([]) # vol2 = Volume() # print vol2.create([]) # vol3 = Volume() # print vol3.create([]) print vol1.attach(vm1) print vm1.delete() # print vol3.attach(vm1) # print vol2.attach(vm2) # # # print vol1.create_volume_snapshot() # print vm1.create_vm_snapshot() # print vm2.create_vm_snapshot() print vol1.create_volume_backup() print vm1.create_vm_backup() print vm2.create_root_backup() all_resources = all_vms + all_volumes + all_snapshots + all_backups + all_images print all_resources
apache-2.0
-8,923,569,609,837,443,000
33.444898
127
0.576846
false
3.582932
true
false
false
arielbro/HarmoniTag
data_acquisition/chords/sources/chordie.py
1
1894
from bs4 import BeautifulSoup from urllib2 import urlopen BASE_URL = "http://www.chordie.com" def make_soup(url): html = urlopen(url).read() return BeautifulSoup(html, "lxml") def get_url(option): try: line = option.findAll("tr")[1].findAll("td")[1].i.a if line.span.text=="CHORDS": return BASE_URL+ line["href"] else: return None except: return None """ Chordie is a based on a chord search engine - hence it contains several results for each song. We filter out the non-Chord type of results, and parse each of the remaining into a chord vector. Returns an array containing all available chord vectors. """ def get_chord_options(chords_url): soup = make_soup(chords_url) all_text = soup.find("div", {"id": "resultc"}) if not all_text: return None all_song_chords = all_text.findAll("table") chord_options = [] for option in all_song_chords: url = get_url(option) if not url==None: chord_vector = get_chord_vector(url) if not chord_vector==None and len(chord_vector)>0: #print url+": "+str(chord_vector) chord_options.append(chord_vector) return chord_options """ Given a relevant url, parses it into a chord vector """ def get_chord_vector(chords_url): soup = make_soup(chords_url) song_chords = soup.findAll("td", "c") chord_vector = [str(chord.text) for chord in song_chords] return chord_vector """ Given (artist, title), scrapes *all* suiteble chord vectors """ def get_chords(title,artist): name = "songtitle/"+title.replace(' ','+')+"/songartist/"+artist.replace(' ','+')+"/index.html" all_chords_url = (BASE_URL +"/allsongs.php/"+ name) chord_options = get_chord_options(all_chords_url) return chord_options def test(): get_chords("Suzanne", "leonard cohen")
gpl-2.0
4,818,141,216,001,924,000
30.065574
99
0.63622
false
3.282496
false
false
false
hashware/tflearn-learn
examples/nlp/seq2seq_example.py
1
27637
''' Pedagogical example realization of seq2seq recurrent neural networks, using TensorFlow and TFLearn. More info at https://github.com/ichuang/tflearn_seq2seq ''' from __future__ import division, print_function import os import sys import tflearn import argparse import json import numpy as np import tensorflow as tf from tensorflow.python.ops import seq2seq from tensorflow.python.ops import rnn_cell #----------------------------------------------------------------------------- class SequencePattern(object): INPUT_SEQUENCE_LENGTH = 10 OUTPUT_SEQUENCE_LENGTH = 10 INPUT_MAX_INT = 9 OUTPUT_MAX_INT = 9 PATTERN_NAME = "sorted" def __init__(self, name=None, in_seq_len=None, out_seq_len=None): if name is not None: assert hasattr(self, "%s_sequence" % name) self.PATTERN_NAME = name if in_seq_len: self.INPUT_SEQUENCE_LENGTH = in_seq_len if out_seq_len: self.OUTPUT_SEQUENCE_LENGTH = out_seq_len def generate_output_sequence(self, x): ''' For a given input sequence, generate the output sequence. x is a 1D numpy array of integers, with length INPUT_SEQUENCE_LENGTH. Returns a 1D numpy array of length OUTPUT_SEQUENCE_LENGTH This procedure defines the pattern which the seq2seq RNN will be trained to find. ''' return getattr(self, "%s_sequence" % self.PATTERN_NAME)(x) def maxmin_dup_sequence(self, x): ''' Generate sequence with [max, min, rest of original entries] ''' x = np.array(x) y = [ x.max(), x.min()] + list(x[2:]) return np.array(y)[:self.OUTPUT_SEQUENCE_LENGTH] # truncate at out seq len def sorted_sequence(self, x): ''' Generate sorted version of original sequence ''' return np.array( sorted(x) )[:self.OUTPUT_SEQUENCE_LENGTH] def reversed_sequence(self, x): ''' Generate reversed version of original sequence ''' return np.array( x[::-1] )[:self.OUTPUT_SEQUENCE_LENGTH] #----------------------------------------------------------------------------- class TFLearnSeq2Seq(object): ''' seq2seq recurrent neural network, implemented using TFLearn. ''' AVAILABLE_MODELS = ["embedding_rnn", "embedding_attention"] def __init__(self, sequence_pattern, seq2seq_model=None, verbose=None, name=None, data_dir=None): ''' sequence_pattern_class = a SequencePattern class instance, which defines pattern parameters (input, output lengths, name, generating function) seq2seq_model = string specifying which seq2seq model to use, e.g. "embedding_rnn" ''' self.sequence_pattern = sequence_pattern self.seq2seq_model = seq2seq_model or "embedding_rnn" assert self.seq2seq_model in self.AVAILABLE_MODELS self.in_seq_len = self.sequence_pattern.INPUT_SEQUENCE_LENGTH self.out_seq_len = self.sequence_pattern.OUTPUT_SEQUENCE_LENGTH self.in_max_int = self.sequence_pattern.INPUT_MAX_INT self.out_max_int = self.sequence_pattern.OUTPUT_MAX_INT self.verbose = verbose or 0 self.n_input_symbols = self.in_max_int + 1 self.n_output_symbols = self.out_max_int + 2 # extra one for GO symbol self.model_instance = None self.name = name self.data_dir = data_dir def generate_trainig_data(self, num_points): ''' Generate training dataset. Produce random (integer) sequences X, and corresponding expected output sequences Y = generate_output_sequence(X). Return xy_data, y_data (both of type uint32) xy_data = numpy array of shape [num_points, in_seq_len + out_seq_len], with each point being X + Y y_data = numpy array of shape [num_points, out_seq_len] ''' x_data = np.random.randint(0, self.in_max_int, size=(num_points, self.in_seq_len)) # shape [num_points, in_seq_len] x_data = x_data.astype(np.uint32) # ensure integer type y_data = [ self.sequence_pattern.generate_output_sequence(x) for x in x_data ] y_data = np.array(y_data) xy_data = np.append(x_data, y_data, axis=1) # shape [num_points, 2*seq_len] return xy_data, y_data def sequence_loss(self, y_pred, y_true): ''' Loss function for the seq2seq RNN. Reshape predicted and true (label) tensors, generate dummy weights, then use seq2seq.sequence_loss to actually compute the loss function. ''' if self.verbose > 2: print ("my_sequence_loss y_pred=%s, y_true=%s" % (y_pred, y_true)) logits = tf.unstack(y_pred, axis=1) # list of [-1, num_decoder_synbols] elements targets = tf.unstack(y_true, axis=1) # y_true has shape [-1, self.out_seq_len]; unpack to list of self.out_seq_len [-1] elements if self.verbose > 2: print ("my_sequence_loss logits=%s" % (logits,)) print ("my_sequence_loss targets=%s" % (targets,)) weights = [tf.ones_like(yp, dtype=tf.float32) for yp in targets] if self.verbose > 4: print ("my_sequence_loss weights=%s" % (weights,)) sl = seq2seq.sequence_loss(logits, targets, weights) if self.verbose > 2: print ("my_sequence_loss return = %s" % sl) return sl def accuracy(self, y_pred, y_true, x_in): # y_pred is [-1, self.out_seq_len, num_decoder_symbols]; y_true is [-1, self.out_seq_len] ''' Compute accuracy of the prediction, based on the true labels. Use the average number of equal values. ''' pred_idx = tf.to_int32(tf.argmax(y_pred, 2)) # [-1, self.out_seq_len] if self.verbose > 2: print ("my_accuracy pred_idx = %s" % pred_idx) accuracy = tf.reduce_mean(tf.cast(tf.equal(pred_idx, y_true), tf.float32), name='acc') return accuracy def model(self, mode="train", num_layers=1, cell_size=32, cell_type="BasicLSTMCell", embedding_size=20, learning_rate=0.0001, tensorboard_verbose=0, checkpoint_path=None): ''' Build tensor specifying graph of operations for the seq2seq neural network model. mode = string, either "train" or "predict" cell_type = attribute of rnn_cell specifying which RNN cell type to use cell_size = size for the hidden layer in the RNN cell num_layers = number of RNN cell layers to use Return TFLearn model instance. Use DNN model for this. ''' assert mode in ["train", "predict"] checkpoint_path = checkpoint_path or ("%s%ss2s_checkpoint.tfl" % (self.data_dir or "", "/" if self.data_dir else "")) GO_VALUE = self.out_max_int + 1 # unique integer value used to trigger decoder outputs in the seq2seq RNN network = tflearn.input_data(shape=[None, self.in_seq_len + self.out_seq_len], dtype=tf.int32, name="XY") encoder_inputs = tf.slice(network, [0, 0], [-1, self.in_seq_len], name="enc_in") # get encoder inputs encoder_inputs = tf.unstack(encoder_inputs, axis=1) # transform into list of self.in_seq_len elements, each [-1] decoder_inputs = tf.slice(network, [0, self.in_seq_len], [-1, self.out_seq_len], name="dec_in") # get decoder inputs decoder_inputs = tf.unstack(decoder_inputs, axis=1) # transform into list of self.out_seq_len elements, each [-1] go_input = tf.multiply( tf.ones_like(decoder_inputs[0], dtype=tf.int32), GO_VALUE ) # insert "GO" symbol as the first decoder input; drop the last decoder input decoder_inputs = [go_input] + decoder_inputs[: self.out_seq_len-1] # insert GO as first; drop last decoder input feed_previous = not (mode=="train") if self.verbose > 3: print ("feed_previous = %s" % str(feed_previous)) print ("encoder inputs: %s" % str(encoder_inputs)) print ("decoder inputs: %s" % str(decoder_inputs)) print ("len decoder inputs: %s" % len(decoder_inputs)) self.n_input_symbols = self.in_max_int + 1 # default is integers from 0 to 9 self.n_output_symbols = self.out_max_int + 2 # extra "GO" symbol for decoder inputs single_cell = getattr(rnn_cell, cell_type)(cell_size, state_is_tuple=True) if num_layers==1: cell = single_cell else: cell = rnn_cell.MultiRNNCell([single_cell] * num_layers) if self.seq2seq_model=="embedding_rnn": model_outputs, states = seq2seq.embedding_rnn_seq2seq(encoder_inputs, # encoder_inputs: A list of 2D Tensors [batch_size, input_size]. decoder_inputs, cell, num_encoder_symbols=self.n_input_symbols, num_decoder_symbols=self.n_output_symbols, embedding_size=embedding_size, feed_previous=feed_previous) elif self.seq2seq_model=="embedding_attention": model_outputs, states = seq2seq.embedding_attention_seq2seq(encoder_inputs, # encoder_inputs: A list of 2D Tensors [batch_size, input_size]. decoder_inputs, cell, num_encoder_symbols=self.n_input_symbols, num_decoder_symbols=self.n_output_symbols, embedding_size=embedding_size, num_heads=1, initial_state_attention=False, feed_previous=feed_previous) else: raise Exception('[TFLearnSeq2Seq] Unknown seq2seq model %s' % self.seq2seq_model) tf.add_to_collection(tf.GraphKeys.LAYER_VARIABLES + '/' + "seq2seq_model", model_outputs) # for TFLearn to know what to save and restore # model_outputs: list of the same length as decoder_inputs of 2D Tensors with shape [batch_size x output_size] containing the generated outputs. if self.verbose > 2: print ("model outputs: %s" % model_outputs) network = tf.stack(model_outputs, axis=1) # shape [-1, n_decoder_inputs (= self.out_seq_len), num_decoder_symbols] if self.verbose > 2: print ("packed model outputs: %s" % network) if self.verbose > 3: all_vars = tf.get_collection(tf.GraphKeys.VARIABLES) print ("all_vars = %s" % all_vars) with tf.name_scope("TargetsData"): # placeholder for target variable (i.e. trainY input) targetY = tf.placeholder(shape=[None, self.out_seq_len], dtype=tf.int32, name="Y") network = tflearn.regression(network, placeholder=targetY, optimizer='adam', learning_rate=learning_rate, loss=self.sequence_loss, metric=self.accuracy, name="Y") model = tflearn.DNN(network, tensorboard_verbose=tensorboard_verbose, checkpoint_path=checkpoint_path) return model def train(self, num_epochs=20, num_points=100000, model=None, model_params=None, weights_input_fn=None, validation_set=0.1, snapshot_step=5000, batch_size=128, weights_output_fn=None): ''' Train model, with specified number of epochs, and dataset size. Use specified model, or create one if not provided. Load initial weights from file weights_input_fn, if provided. validation_set specifies what to use for the validation. Returns logits for prediction, as an numpy array of shape [out_seq_len, n_output_symbols]. ''' trainXY, trainY = self.generate_trainig_data(num_points) print ("[TFLearnSeq2Seq] Training on %d point dataset (pattern '%s'), with %d epochs" % (num_points, self.sequence_pattern.PATTERN_NAME, num_epochs)) if self.verbose > 1: print (" model parameters: %s" % json.dumps(model_params, indent=4)) model_params = model_params or {} model = model or self.setup_model("train", model_params, weights_input_fn) model.fit(trainXY, trainY, n_epoch=num_epochs, validation_set=validation_set, batch_size=batch_size, shuffle=True, show_metric=True, snapshot_step=snapshot_step, snapshot_epoch=False, run_id="TFLearnSeq2Seq" ) print ("Done!") if weights_output_fn is not None: weights_output_fn = self.canonical_weights_fn(weights_output_fn) model.save(weights_output_fn) print ("Saved %s" % weights_output_fn) self.weights_output_fn = weights_output_fn return model def canonical_weights_fn(self, iteration_num=0): ''' Construct canonical weights filename, based on model and pattern names. ''' if not type(iteration_num)==int: try: iteration_num = int(iteration_num) except Exception as err: return iteration_num model_name = self.name or "basic" wfn = "ts2s__%s__%s_%s.tfl" % (model_name, self.sequence_pattern.PATTERN_NAME, iteration_num) if self.data_dir: wfn = "%s/%s" % (self.data_dir, wfn) self.weights_filename = wfn return wfn def setup_model(self, mode, model_params=None, weights_input_fn=None): ''' Setup a model instance, using the specified mode and model parameters. Load the weights from the specified file, if it exists. If weights_input_fn is an integer, use that the model name, and the pattern name, to construct a canonical filename. ''' model_params = model_params or {} model = self.model_instance or self.model(mode=mode, **model_params) self.model_instance = model if weights_input_fn: if type(weights_input_fn)==int: weights_input_fn = self.canonical_weights_fn(weights_input_fn) if os.path.exists(weights_input_fn): model.load(weights_input_fn) print ("[TFLearnSeq2Seq] model weights loaded from %s" % weights_input_fn) else: print ("[TFLearnSeq2Seq] MISSING model weights file %s" % weights_input_fn) return model def predict(self, Xin, model=None, model_params=None, weights_input_fn=None): ''' Make a prediction, using the seq2seq model, for the given input sequence Xin. If model is not provided, create one (or use last created instance). Return prediction, y prediction = array of integers, giving output prediction. Length = out_seq_len y = array of shape [out_seq_len, out_max_int], giving logits for output prediction ''' if not model: model = self.model_instance or self.setup_model("predict", model_params, weights_input_fn) if self.verbose: print ("Xin = %s" % str(Xin)) X = np.array(Xin).astype(np.uint32) assert len(X)==self.in_seq_len if self.verbose: print ("X Input shape=%s, data=%s" % (X.shape, X)) print ("Expected output = %s" % str(self.sequence_pattern.generate_output_sequence(X))) Yin = [0]*self.out_seq_len XY = np.append(X, np.array(Yin).astype(np.float32)) XY = XY.reshape([-1, self.in_seq_len + self.out_seq_len]) # batch size 1 if self.verbose > 1: print ("XY Input shape=%s, data=%s" % (XY.shape, XY)) res = model.predict(XY) res = np.array(res) if self.verbose > 1: print ("prediction shape = %s" % str(res.shape)) y = res.reshape(self.out_seq_len, self.n_output_symbols) prediction = np.argmax(y, axis=1) if self.verbose: print ("Predicted output sequence: %s" % str(prediction)) return prediction, y #----------------------------------------------------------------------------- class VAction(argparse.Action): def __call__(self, parser, args, values, option_string=None): curval = getattr(args, self.dest, 0) or 0 values=values.count('v')+1 setattr(args, self.dest, values + curval) #----------------------------------------------------------------------------- def CommandLine(args=None, arglist=None): ''' Main command line. Accepts args, to allow for simple unit testing. ''' help_text = """ Commands: train - give size of training set to use, as argument predict - give input sequence as argument (or specify inputs via --from-file <filename>) """ parser = argparse.ArgumentParser(description=help_text, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument("cmd", help="command") parser.add_argument("cmd_input", nargs='*', help="input to command") parser.add_argument('-v', "--verbose", nargs=0, help="increase output verbosity (add more -v to increase versbosity)", action=VAction, dest='verbose') parser.add_argument("-m", "--model", help="seq2seq model name: either embedding_rnn (default) or embedding_attention", default=None) parser.add_argument("-r", "--learning-rate", type=float, help="learning rate (default 0.0001)", default=0.0001) parser.add_argument("-e", "--epochs", type=int, help="number of trainig epochs", default=10) parser.add_argument("-i", "--input-weights", type=str, help="tflearn file with network weights to load", default=None) parser.add_argument("-o", "--output-weights", type=str, help="new tflearn file where network weights are to be saved", default=None) parser.add_argument("-p", "--pattern-name", type=str, help="name of pattern to use for sequence", default=None) parser.add_argument("-n", "--name", type=str, help="name of model, used when generating default weights filenames", default=None) parser.add_argument("--in-len", type=int, help="input sequence length (default 10)", default=None) parser.add_argument("--out-len", type=int, help="output sequence length (default 10)", default=None) parser.add_argument("--from-file", type=str, help="name of file to take input data sequences from (json format)", default=None) parser.add_argument("--iter-num", type=int, help="training iteration number; specify instead of input- or output-weights to use generated filenames", default=None) parser.add_argument("--data-dir", help="directory to use for storing checkpoints (also used when generating default weights filenames)", default=None) # model parameters parser.add_argument("-L", "--num-layers", type=int, help="number of RNN layers to use in the model (default 1)", default=1) parser.add_argument("--cell-size", type=int, help="size of RNN cell to use (default 32)", default=32) parser.add_argument("--cell-type", type=str, help="type of RNN cell to use (default BasicLSTMCell)", default="BasicLSTMCell") parser.add_argument("--embedding-size", type=int, help="size of embedding to use (default 20)", default=20) parser.add_argument("--tensorboard-verbose", type=int, help="tensorboard verbosity level (default 0)", default=0) if not args: args = parser.parse_args(arglist) if args.iter_num is not None: args.input_weights = args.iter_num args.output_weights = args.iter_num + 1 model_params = dict(num_layers=args.num_layers, cell_size=args.cell_size, cell_type=args.cell_type, embedding_size=args.embedding_size, learning_rate=args.learning_rate, tensorboard_verbose=args.tensorboard_verbose, ) if args.cmd=="train": try: num_points = int(args.cmd_input[0]) except: raise Exception("Please specify the number of datapoints to use for training, as the first argument") sp = SequencePattern(args.pattern_name, in_seq_len=args.in_len, out_seq_len=args.out_len) ts2s = TFLearnSeq2Seq(sp, seq2seq_model=args.model, data_dir=args.data_dir, name=args.name, verbose=args.verbose) ts2s.train(num_epochs=args.epochs, num_points=num_points, weights_output_fn=args.output_weights, weights_input_fn=args.input_weights, model_params=model_params) return ts2s elif args.cmd=="predict": if args.from_file: inputs = json.loads(args.from_file) try: input_x = map(int, args.cmd_input) inputs = [input_x] except: raise Exception("Please provide a space-delimited input sequence as the argument") sp = SequencePattern(args.pattern_name, in_seq_len=args.in_len, out_seq_len=args.out_len) ts2s = TFLearnSeq2Seq(sp, seq2seq_model=args.model, data_dir=args.data_dir, name=args.name, verbose=args.verbose) results = [] for x in inputs: prediction, y = ts2s.predict(x, weights_input_fn=args.input_weights, model_params=model_params) print("==> For input %s, prediction=%s (expected=%s)" % (x, prediction, sp.generate_output_sequence(x))) results.append([prediction, y]) ts2s.prediction_results = results return ts2s else: print("Unknown command %s" % args.cmd) #----------------------------------------------------------------------------- # unit tests def test_sp1(): ''' Test two different SequencePattern instances ''' sp = SequencePattern("maxmin_dup") y = sp.generate_output_sequence(range(10)) assert all(y==np.array([9, 0, 2, 3, 4, 5, 6, 7, 8, 9])) sp = SequencePattern("sorted") y = sp.generate_output_sequence([5,6,1,2,9]) assert all(y==np.array([1, 2, 5, 6, 9])) sp = SequencePattern("reversed") y = sp.generate_output_sequence(range(10)) assert all(y==np.array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])) def test_sp2(): ''' Test two SequencePattern instance with lengths different from default ''' sp = SequencePattern("sorted", in_seq_len=20, out_seq_len=5) x = np.random.randint(0, 9, 20) y = sp.generate_output_sequence(x) assert len(y)==5 y_exp = sorted(x)[:5] assert all(y==y_exp) def test_train1(): ''' Test simple training of an embedding_rnn seq2seq model ''' sp = SequencePattern() ts2s = TFLearnSeq2Seq(sp) ofn = "test_%s" % ts2s.canonical_weights_fn(0) print ("using weights filename %s" % ofn) if os.path.exists(ofn): os.unlink(ofn) tf.reset_default_graph() ts2s.train(num_epochs=1, num_points=10000, weights_output_fn=ofn) assert os.path.exists(ofn) def test_predict1(): ''' Test simple preductions using weights just produced (in test_train1) ''' sp = SequencePattern() ts2s = TFLearnSeq2Seq(sp, verbose=1) wfn = "test_%s" % ts2s.canonical_weights_fn(0) print ("using weights filename %s" % wfn) tf.reset_default_graph() prediction, y = ts2s.predict(Xin=range(10), weights_input_fn=wfn) assert len(prediction==10) def test_train_predict2(): ''' Test that the embedding_attention model works, with saving and loading of weights ''' import tempfile sp = SequencePattern() tempdir = tempfile.mkdtemp() ts2s = TFLearnSeq2Seq(sp, seq2seq_model="embedding_attention", data_dir=tempdir, name="attention") tf.reset_default_graph() ts2s.train(num_epochs=1, num_points=1000, weights_output_fn=1, weights_input_fn=0) assert os.path.exists(ts2s.weights_output_fn) tf.reset_default_graph() ts2s = TFLearnSeq2Seq(sp, seq2seq_model="embedding_attention", data_dir="DATA", name="attention", verbose=1) prediction, y = ts2s.predict(Xin=range(10), weights_input_fn=1) assert len(prediction==10) os.system("rm -rf %s" % tempdir) def test_train_predict3(): ''' Test that a model trained on sequencees of one length can be used for predictions on other sequence lengths ''' import tempfile sp = SequencePattern("sorted", in_seq_len=10, out_seq_len=10) tempdir = tempfile.mkdtemp() ts2s = TFLearnSeq2Seq(sp, seq2seq_model="embedding_attention", data_dir=tempdir, name="attention") tf.reset_default_graph() ts2s.train(num_epochs=1, num_points=1000, weights_output_fn=1, weights_input_fn=0) assert os.path.exists(ts2s.weights_output_fn) tf.reset_default_graph() sp = SequencePattern("sorted", in_seq_len=20, out_seq_len=8) tf.reset_default_graph() ts2s = TFLearnSeq2Seq(sp, seq2seq_model="embedding_attention", data_dir="DATA", name="attention", verbose=1) x = np.random.randint(0, 9, 20) prediction, y = ts2s.predict(x, weights_input_fn=1) assert len(prediction==8) os.system("rm -rf %s" % tempdir) def test_main1(): ''' Integration test - training ''' import tempfile tempdir = tempfile.mkdtemp() arglist = "--data-dir %s -e 2 --iter-num=1 -v -v --tensorboard-verbose=1 train 5000" % tempdir arglist = arglist.split(' ') tf.reset_default_graph() ts2s = CommandLine(arglist=arglist) assert os.path.exists(ts2s.weights_output_fn) os.system("rm -rf %s" % tempdir) def test_main2(): ''' Integration test - training then prediction ''' import tempfile tempdir = tempfile.mkdtemp() arglist = "--data-dir %s -e 2 --iter-num=1 -v -v --tensorboard-verbose=1 train 5000" % tempdir arglist = arglist.split(' ') tf.reset_default_graph() ts2s = CommandLine(arglist=arglist) wfn = ts2s.weights_output_fn assert os.path.exists(wfn) arglist = "-i %s predict 1 2 3 4 5 6 7 8 9 0" % wfn arglist = arglist.split(' ') tf.reset_default_graph() ts2s = CommandLine(arglist=arglist) assert len(ts2s.prediction_results[0][0])==10 os.system("rm -rf %s" % tempdir) def test_main3(): ''' Integration test - training then prediction: attention model ''' import tempfile wfn = "tmp_weights.tfl" if os.path.exists(wfn): os.unlink(wfn) arglist = "-e 2 -o tmp_weights.tfl -v -v -v -v -m embedding_attention train 5000" arglist = arglist.split(' ') tf.reset_default_graph() ts2s = CommandLine(arglist=arglist) assert os.path.exists(wfn) arglist = "-i tmp_weights.tfl -v -v -v -v -m embedding_attention predict 1 2 3 4 5 6 7 8 9 0" arglist = arglist.split(' ') tf.reset_default_graph() ts2s = CommandLine(arglist=arglist) assert len(ts2s.prediction_results[0][0])==10 #----------------------------------------------------------------------------- if __name__=="__main__": CommandLine()
mit
6,505,902,849,354,478,000
46.081772
168
0.595036
false
3.756558
true
false
false
ArvinPan/pyzmq
examples/security/woodhouse.py
6
2293
#!/usr/bin/env python ''' Woodhouse extends Strawhouse with a name and password check. This uses the PLAIN mechanism which does plain-text username and password authentication). It's not really secure, and anyone sniffing the network (trivial with WiFi) can capture passwords and then login. Author: Chris Laws ''' import logging import sys import zmq import zmq.auth from zmq.auth.thread import ThreadAuthenticator def run(): '''Run woodhouse example''' valid_client_test_pass = False invalid_client_test_pass = False ctx = zmq.Context.instance() # Start an authenticator for this context. auth = ThreadAuthenticator(ctx) auth.start() auth.allow('127.0.0.1') # Instruct authenticator to handle PLAIN requests auth.configure_plain(domain='*', passwords={'admin': 'secret'}) server = ctx.socket(zmq.PUSH) server.plain_server = True # must come before bind server.bind('tcp://*:9000') client = ctx.socket(zmq.PULL) client.plain_username = b'admin' client.plain_password = b'secret' client.connect('tcp://127.0.0.1:9000') server.send(b"Hello") if client.poll(): msg = client.recv() if msg == b"Hello": valid_client_test_pass = True client.close() # now use invalid credentials - expect no msg received client2 = ctx.socket(zmq.PULL) client2.plain_username = b'admin' client2.plain_password = b'bogus' client2.connect('tcp://127.0.0.1:9000') server.send(b"World") if client2.poll(50): msg = client.recv() if msg == "World": invalid_client_test_pass = False else: # no message is expected invalid_client_test_pass = True # stop auth thread auth.stop() if valid_client_test_pass and invalid_client_test_pass: logging.info("Woodhouse test OK") else: logging.error("Woodhouse test FAIL") if __name__ == '__main__': if zmq.zmq_version_info() < (4,0): raise RuntimeError("Security is not supported in libzmq version < 4.0. libzmq version {0}".format(zmq.zmq_version())) if '-v' in sys.argv: level = logging.DEBUG else: level = logging.INFO logging.basicConfig(level=level, format="[%(levelname)s] %(message)s") run()
bsd-3-clause
4,298,470,329,914,838,500
24.477778
125
0.648059
false
3.571651
true
false
false
erja-gp/openthread
tools/harness-automation/autothreadharness/harness_controller.py
16
5053
#!/usr/bin/env python # # Copyright (c) 2016, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import ConfigParser import logging import os import subprocess import time from autothreadharness import settings logger = logging.getLogger(__name__) HARNESS_SVN_VERSION_R44 = 1471 """int: this is the first published release that miniweb was removed from Harness""" def _try_kill(proc): logger.info('Try kill process') times = 1 while proc.poll() is None: proc.kill() time.sleep(5) if proc.poll() is not None: logger.info('Process has been killed') break logger.info('Trial %d failed', times) times += 1 if times > 3: raise SystemExit() class HarnessController(object): """Harness service control This controls harness service, including the harness back-end and front-end. """ harness = None """harness back-end""" miniweb = None """harness front-end""" def __init__(self, result_dir=None): self.result_dir = result_dir self.harness_file = '' harness_info = ConfigParser.ConfigParser() harness_info.read('%s\\info.ini' % settings.HARNESS_HOME) self.version = harness_info.getint('Thread_Harness_Info', 'SVN') def start(self): logger.info('Starting harness service') if self.harness: logger.warning('Harness already started') else: env = dict(os.environ, PYTHONPATH='%s\\Thread_Harness;%s\\ThirdParty\\hsdk-python\\src' % (settings.HARNESS_HOME, settings.HARNESS_HOME)) self.harness_file = '%s\\harness-%s.log' % (self.result_dir, time.strftime('%Y%m%d%H%M%S')) with open(self.harness_file, 'w') as harness_out: self.harness = subprocess.Popen([settings.HARNESS_HOME + '\\Python27\\python.exe', settings.HARNESS_HOME + '\\Thread_Harness\\Run.py'], cwd=settings.HARNESS_HOME, stdout=harness_out, stderr=harness_out, env=env) time.sleep(2) if self.version >= HARNESS_SVN_VERSION_R44: return if self.miniweb: logger.warning('Miniweb already started') else: with open('%s\\miniweb-%s.log' % (self.result_dir, time.strftime('%Y%m%d%H%M%S')), 'w') as miniweb_out: self.miniweb = subprocess.Popen([settings.HARNESS_HOME + '\\MiniWeb\\miniweb.exe'], stdout=miniweb_out, stderr=miniweb_out, cwd=settings.HARNESS_HOME + '\\MiniWeb') def stop(self): logger.info('Stopping harness service') if self.harness: _try_kill(self.harness) self.harness = None else: logger.warning('Harness not started yet') if self.version >= HARNESS_SVN_VERSION_R44: return if self.miniweb: _try_kill(self.miniweb) self.miniweb = None else: logger.warning('Miniweb not started yet') def tail(self): with open(self.harness_file) as harness_out: harness_out.seek(-100, 2) return ''.join(harness_out.readlines()) def __del__(self): self.stop()
bsd-3-clause
-7,499,389,205,181,361,000
36.154412
115
0.610924
false
4.356034
false
false
false
OCA/contract
agreement_legal/models/agreement.py
1
14411
# Copyright (C) 2018 - TODAY, Pavlov Media # License AGPL-3.0 or later (http://www.gnu.org/licenses/agpl). from odoo import _, api, fields, models class Agreement(models.Model): _inherit = "agreement" # General name = fields.Char(string="Title", required=True) version = fields.Integer( string="Version", default=1, copy=False, help="The versions are used to keep track of document history and " "previous versions can be referenced.") revision = fields.Integer( string="Revision", default=0, copy=False, help="The revision will increase with every save event.") description = fields.Text( string="Description", track_visibility="onchange", help="Description of the agreement") dynamic_description = fields.Text( compute="_compute_dynamic_description", string="Dynamic Description", help="Compute dynamic description") start_date = fields.Date( string="Start Date", track_visibility="onchange", help="When the agreement starts.") end_date = fields.Date( string="End Date", track_visibility="onchange", help="When the agreement ends.") color = fields.Integer(string="Color") active = fields.Boolean( string="Active", default=True, help="If unchecked, it will allow you to hide the agreement without " "removing it.") company_signed_date = fields.Date( string="Signed on", track_visibility="onchange", help="Date the contract was signed by Company.") partner_signed_date = fields.Date( string="Signed on (Partner)", track_visibility="onchange", help="Date the contract was signed by the Partner.") term = fields.Integer( string="Term (Months)", track_visibility="onchange", help="Number of months this agreement/contract is in effect with the " "partner.") expiration_notice = fields.Integer( string="Exp. Notice (Days)", track_visibility="onchange", help="Number of Days before expiration to be notified.") change_notice = fields.Integer( string="Change Notice (Days)", track_visibility="onchange", help="Number of Days to be notified before changes.") special_terms = fields.Text( string="Special Terms", track_visibility="onchange", help="Any terms that you have agreed to and want to track on the " "agreement/contract.") dynamic_special_terms = fields.Text( compute="_compute_dynamic_special_terms", string="Dynamic Special Terms", help="Compute dynamic special terms") code = fields.Char( string="Reference", required=True, default=lambda self: _("New"), track_visibility="onchange", copy=False, help="ID used for internal contract tracking.") increase_type_id = fields.Many2one( "agreement.increasetype", string="Increase Type", track_visibility="onchange", help="The amount that certain rates may increase.") termination_requested = fields.Date( string="Termination Requested Date", track_visibility="onchange", help="Date that a request for termination was received.") termination_date = fields.Date( string="Termination Date", track_visibility="onchange", help="Date that the contract was terminated.") reviewed_date = fields.Date( string="Reviewed Date", track_visibility="onchange") reviewed_user_id = fields.Many2one( "res.users", string="Reviewed By", track_visibility="onchange") approved_date = fields.Date( string="Approved Date", track_visibility="onchange") approved_user_id = fields.Many2one( "res.users", string="Approved By", track_visibility="onchange") currency_id = fields.Many2one("res.currency", string="Currency") partner_id = fields.Many2one( "res.partner", string="Partner", required=False, copy=True, help="The customer or vendor this agreement is related to.") partner_contact_id = fields.Many2one( "res.partner", string="Partner Contact", copy=True, help="The primary partner contact (If Applicable).") partner_contact_phone = fields.Char( related="partner_contact_id.phone", string="Partner Phone") partner_contact_email = fields.Char( related="partner_contact_id.email", string="Partner Email") company_contact_id = fields.Many2one( "res.partner", string="Company Contact", copy=True, help="The primary contact in the company.") company_contact_phone = fields.Char( related="company_contact_id.phone", string="Phone") company_contact_email = fields.Char( related="company_contact_id.email", string="Email") use_parties_content = fields.Boolean( string="Use parties content", help="Use custom content for parties") company_partner_id = fields.Many2one( related="company_id.partner_id", string="Company's Partner") def _get_default_parties(self): deftext = """ <h3>Company Information</h3> <p> ${object.company_id.partner_id.name or ''}.<br> ${object.company_id.partner_id.street or ''} <br> ${object.company_id.partner_id.state_id.code or ''} ${object.company_id.partner_id.zip or ''} ${object.company_id.partner_id.city or ''}<br> ${object.company_id.partner_id.country_id.name or ''}.<br><br> Represented by <b>${object.company_contact_id.name or ''}.</b> </p> <p></p> <h3>Partner Information</h3> <p> ${object.partner_id.name or ''}.<br> ${object.partner_id.street or ''} <br> ${object.partner_id.state_id.code or ''} ${object.partner_id.zip or ''} ${object.partner_id.city or ''}<br> ${object.partner_id.country_id.name or ''}.<br><br> Represented by <b>${object.partner_contact_id.name or ''}.</b> </p> """ return deftext parties = fields.Html( string="Parties", track_visibility="onchange", default=_get_default_parties, help="Parties of the agreement") dynamic_parties = fields.Html( compute="_compute_dynamic_parties", string="Dynamic Parties", help="Compute dynamic parties") agreement_type_id = fields.Many2one( track_visibility="onchange", ) agreement_subtype_id = fields.Many2one( "agreement.subtype", string="Agreement Sub-type", track_visibility="onchange", help="Select the sub-type of this agreement. Sub-Types are related to " "agreement types.") product_ids = fields.Many2many( "product.template", string="Products & Services") assigned_user_id = fields.Many2one( "res.users", string="Assigned To", track_visibility="onchange", help="Select the user who manages this agreement.") company_signed_user_id = fields.Many2one( "res.users", string="Signed By", track_visibility="onchange", help="The user at our company who authorized/signed the agreement or " "contract.") partner_signed_user_id = fields.Many2one( "res.partner", string="Signed By (Partner)", track_visibility="onchange", help="Contact on the account that signed the agreement/contract.") parent_agreement_id = fields.Many2one( "agreement", string="Parent Agreement", help="Link this agreement to a parent agreement. For example if this " "agreement is an amendment to another agreement. This list will " "only show other agreements related to the same account.") renewal_type_id = fields.Many2one( "agreement.renewaltype", string="Renewal Type", track_visibility="onchange", help="Describes what happens after the contract expires.") recital_ids = fields.One2many( "agreement.recital", "agreement_id", string="Recitals", copy=True) sections_ids = fields.One2many( "agreement.section", "agreement_id", string="Sections", copy=True) clauses_ids = fields.One2many( "agreement.clause", "agreement_id", string="Clauses") appendix_ids = fields.One2many( "agreement.appendix", "agreement_id", string="Appendices", copy=True) previous_version_agreements_ids = fields.One2many( "agreement", "parent_agreement_id", string="Previous Versions", copy=False, domain=[("active", "=", False)]) child_agreements_ids = fields.One2many( "agreement", "parent_agreement_id", string="Child Agreements", copy=False, domain=[("active", "=", True)]) line_ids = fields.One2many( "agreement.line", "agreement_id", string="Products/Services", copy=False) state = fields.Selection( [("draft", "Draft"), ("active", "Active"), ("inactive", "Inactive")], default="draft", track_visibility="always") notification_address_id = fields.Many2one( "res.partner", string="Notification Address", help="The address to send notificaitons to, if different from " "customer address.(Address Type = Other)") signed_contract_filename = fields.Char(string="Filename") signed_contract = fields.Binary( string="Signed Document", track_visibility="always") # Dynamic field editor field_domain = fields.Char(string='Field Expression', default='[["active", "=", True]]') default_value = fields.Char( string="Default Value", help="Optional value to use if the target field is empty.") copyvalue = fields.Char( string="Placeholder Expression", help="""Final placeholder expression, to be copy-pasted in the desired template field.""") @api.onchange("field_domain", "default_value") def onchange_copyvalue(self): self.copyvalue = False if self.field_domain: string_list = self.field_domain.split(",") if string_list: field_domain = string_list[0][3:-1] self.copyvalue = "${{object.{} or {}}}".format( field_domain, self.default_value or "''") # compute the dynamic content for mako expression @api.multi def _compute_dynamic_description(self): MailTemplates = self.env["mail.template"] for agreement in self: lang = agreement.partner_id.lang or "en_US" description = MailTemplates.with_context( lang=lang )._render_template( agreement.description, "agreement", agreement.id ) agreement.dynamic_description = description @api.multi def _compute_dynamic_parties(self): MailTemplates = self.env["mail.template"] for agreement in self: lang = agreement.partner_id.lang or "en_US" parties = MailTemplates.with_context( lang=lang )._render_template( agreement.parties, "agreement", agreement.id ) agreement.dynamic_parties = parties @api.multi def _compute_dynamic_special_terms(self): MailTemplates = self.env["mail.template"] for agreement in self: lang = agreement.partner_id.lang or "en_US" special_terms = MailTemplates.with_context( lang=lang )._render_template( agreement.special_terms, "agreement", agreement.id ) agreement.dynamic_special_terms = special_terms # Used for Kanban grouped_by view @api.model def _read_group_stage_ids(self, stages, domain, order): stage_ids = self.env["agreement.stage"].search( [('stage_type', '=', 'agreement')]) return stage_ids stage_id = fields.Many2one( "agreement.stage", string="Stage", group_expand="_read_group_stage_ids", help="Select the current stage of the agreement.", track_visibility="onchange", index=True) # Create New Version Button @api.multi def create_new_version(self, vals): for rec in self: if not rec.state == "draft": # Make sure status is draft rec.state = "draft" default_vals = { "name": "{} - OLD VERSION".format(rec.name), "active": False, "parent_agreement_id": rec.id, } # Make a current copy and mark it as old rec.copy(default=default_vals) # Increment the Version rec.version = rec.version + 1 # Reset revision to 0 since it's a new version vals["revision"] = 0 return super(Agreement, self).write(vals) def create_new_agreement(self): default_vals = { "name": "NEW", "active": True, "version": 1, "revision": 0, "state": "draft", "stage_id": self.env.ref("agreement_legal.agreement_stage_new").id, } res = self.copy(default=default_vals) res.sections_ids.mapped('clauses_ids').write({'agreement_id': res.id}) return { "res_model": "agreement", "type": "ir.actions.act_window", "view_mode": "form", "view_type": "form", "res_id": res.id, } @api.model def create(self, vals): if vals.get("code", _("New")) == _("New"): vals["code"] = self.env["ir.sequence"].next_by_code( "agreement" ) or _("New") if not vals.get('stage_id'): vals["stage_id"] = \ self.env.ref("agreement_legal.agreement_stage_new").id return super(Agreement, self).create(vals) # Increments the revision on each save action @api.multi def write(self, vals): res = True for rec in self: vals["revision"] = rec.revision + 1 res = super(Agreement, rec).write(vals) return res
agpl-3.0
-390,334,634,178,866,200
37.429333
79
0.595448
false
4.173472
false
false
false
feikname/spades-server
pyspades/gamemodes.py
1
2853
from pyspades import contained as loaders from pyspades.collision import vector_collision, collision_3d from pyspades.constants import TC_CAPTURE_DISTANCE ctf_data = loaders.CTFState() tc_data = loaders.TCState() class IntelBasedGamemode: name = "ctf" def __init__(self, protocol): self.protocol = protocol self.green_flag = protocol.green_team.flag self.blue_flag = protocol.blue_team.flag self.state_loader = loaders.CTFState() self.drop_intel_loader = loaders.IntelDrop() self.drop_pickup_loader = loaders.IntelPickup() self.drop_capture_loader = loaders.IntelCapture() def on_position_update(self, player): target_flag = self.get_target_flag(player) if vector_collision(player.world_object.position, player.team.base): if target_flag.player is self: player.capture_flag() player.check_refill() if target_flag.player is None and vector_collision( player.position, target_flag): player.take_flag() def get_state_packet(self): return def on_player_reset(self, player): flag = self.get_player_flag(player) if flag is None: return position = player.position x = int(position.x) y = int(position.y) z = max(0, int(position.z)) z = self.protocol.map.get_z(x, y, z) flag.set(x, y, z) flag.player = None intel_drop = loaders.IntelDrop() intel_drop.player_id = player.player_id intel_drop.x = flag.x intel_drop.y = flag.y intel_drop.z = flag.z self.protocol.broadcast_contained(intel_drop, save=True) player.on_flag_drop() def get_player_flag(self, player): for flag in (self.blue_flag, self.green_flag): if flag.player is self: return flag return None def get_target_flag(self, connection): return connection.team.other_flag class TerritoryBasedGamemode(object): name = "tc" def __init__(self, protocol): self.protocol = protocol self.state_loader = loaders.TCState() def get_state_packet(self): return def on_position_update(self, connection): for entity in self.protocol.entities: collides = vector_collision( entity, connection.world_object.position, TC_CAPTURE_DISTANCE) if self in entity.players: if not collides: entity.remove_player(self) else: if collides: entity.add_player(self) if collides and vector_collision(entity, connection.world_object.position): connection.check_refill()
gpl-3.0
6,317,517,780,846,743,000
30.7
79
0.590957
false
3.951524
false
false
false
estaban/pyload
module/plugins/crypter/TnyCz.py
1
1303
# -*- coding: utf-8 -*- """ This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see <http://www.gnu.org/licenses/>. """ from module.plugins.internal.SimpleCrypter import SimpleCrypter import re class TnyCz(SimpleCrypter): __name__ = "TnyCz" __version__ = "0.01" __type__ = "crypter" __pattern__ = r'http://(?:www\.)?tny\.cz/\w+' __description__ = """Tny.cz decrypter plugin""" __author_name__ = "Walter Purcaro" __author_mail__ = "[email protected]" TITLE_PATTERN = r'<title>(?P<title>.+) - .+</title>' def getLinks(self): m = re.search(r'<a id=\'save_paste\' href="(.+save\.php\?hash=.+)">', self.html) return re.findall(".+", self.load(m.group(1), decode=True)) if m else None
gpl-3.0
-5,228,202,936,129,360,000
32.410256
88
0.655411
false
3.512129
false
false
false
CERNatschool/particle-rate-plotter
process-frames.py
1
5413
#!/usr/bin/env python # -*- coding: utf-8 -*- """ CERN@school - Processing Frames See the README.md file for more information. """ #...for the operating stuff. import os #...for the file processing. import glob #...for parsing the arguments. import argparse #...for the logging. import logging as lg #...for file manipulation. from shutil import rmtree # Import the JSON library. import json #...for processing the datasets. from cernatschool.dataset import Dataset #...for making time. from cernatschool.handlers import make_time_dir #...for making the frame and clusters images. from visualisation.visualisation import makeFrameImage if __name__ == "__main__": print("*") print("*======================================*") print("* CERN@school - local frame processing *") print("*======================================*") # Get the datafile path from the command line. parser = argparse.ArgumentParser() parser.add_argument("inputPath", help="Path to the input dataset.") parser.add_argument("outputPath", help="The path for the output files.") parser.add_argument("-v", "--verbose", help="Increase output verbosity", action="store_true") args = parser.parse_args() ## The path to the data file. datapath = args.inputPath # # Check if the input directory exists. If it doesn't, quit. if not os.path.isdir(datapath): raise IOError("* ERROR: '%s' input directory does not exist!" % (datapath)) ## The output path. outputpath = args.outputPath # Check if the output directory exists. If it doesn't, quit. if not os.path.isdir(outputpath): raise IOError("* ERROR: '%s' output directory does not exist!" % (outputpath)) # Set the logging level. if args.verbose: level=lg.DEBUG else: level=lg.INFO # Configure the logging. lg.basicConfig(filename = outputpath + '/log_process-frames.log', filemode='w', level=level) print("*") print("* Input path : '%s'" % (datapath)) print("* Output path : '%s'" % (outputpath)) print("*") # Set up the directories #------------------------ # Create the subdirectories. ## The path to the frame images. frame_output_path = os.path.join(outputpath, "PNG") # if os.path.isdir(frame_output_path): rmtree(frame_output_path) lg.info(" * Removing directory '%s'..." % (frame_output_path)) os.mkdir(frame_output_path) lg.info(" * Creating directory '%s'..." % (frame_output_path)) lg.info("") ## The path to the dataset. dataset_path = os.path.join(datapath, "RAW/ASCIIxyC") ## The dataset to process. ds = Dataset(dataset_path) # Get the metadata from the JSON. ## The frame metadata. fmd = None # with open(os.path.join(datapath, "geo.json"), "r") as fmdf: fmd = json.load(fmdf, fmd) # ## Latitude of the dataset [deg.]. lat = fmd['lat'] # [deg.] # ## Longitude of the dataset [deg.]. lon = fmd['lon'] # [deg.] # ## Altitude of the dataset [m]. alt = fmd['alt'] # [m] ## The pixel mask. pixel_mask = {} with open(os.path.join(datapath, "masked_pixels.txt"), "r") as mpf: rows = mpf.readlines() for row in rows: vals = [int(val) for val in row.strip().split("\t")] x = vals[0]; y = vals[1]; X = (256*y) + x; C = 1 pixel_mask[X] = C ## The frames from the dataset. frames = ds.getFrames((lat, lon, alt), pixelmask = pixel_mask) lg.info("* Found %d datafiles." % (len(frames))) ## A list of frames. mds = [] # Loop over the frames and upload them to the DFC. for f in frames: ## The basename for the data frame, based on frame information. bn = "%s_%s" % (f.getChipId(), make_time_dir(f.getStartTimeSec())) #bn = "%s_%d-%06d" % (f.getChipId(), f.getStartTimeSec(), f.getStartTimeSubSec()) # Create the frame image. makeFrameImage(bn, f.getPixelMap(), frame_output_path, f.getPixelMask()) # Create the metadata dictionary for the frame. metadata = { "id" : bn, # "chipid" : f.getChipId(), "hv" : f.getBiasVoltage(), "ikrum" : f.getIKrum(), # "lat" : f.getLatitude(), "lon" : f.getLongitude(), "alt" : f.getAltitude(), # "start_time" : f.getStartTimeSec(), "end_time" : f.getEndTimeSec(), "acqtime" : f.getAcqTime(), # "n_pixel" : f.getNumberOfUnmaskedPixels(), "occ" : f.getOccupancy(), "occ_pc" : f.getOccupancyPc(), # "n_kluster" : f.getNumberOfKlusters(), "n_gamma" : f.getNumberOfGammas(), "n_non_gamma" : f.getNumberOfNonGammas(), # "ismc" : int(f.isMC()) } # Add the frame metadata to the list of frames. mds.append(metadata) # Write out the frame information to a JSON file. # We will use this later to make the frame plots, # rather than processing the whole frame set again. # with open(os.path.join(outputpath, "frames.json"), "w") as jf: json.dump(mds, jf)
mit
-2,368,854,573,512,871,400
28.418478
97
0.558286
false
3.59429
false
false
false
Ledoux/ShareYourSystem
Pythonlogy/ShareYourSystem/Standards/Classors/Switcher/__init__.py
2
10216
# -*- coding: utf-8 -*- """ <DefineSource> @Date : Fri Nov 14 13:20:38 2014 \n @Author : Erwan Ledoux \n\n </DefineSource> The Switcher """ #<DefineAugmentation> import ShareYourSystem as SYS BaseModuleStr="ShareYourSystem.Standards.Classors.Watcher" DecorationModuleStr="ShareYourSystem.Standards.Classors.Tester" SYS.setSubModule(globals()) #</DefineAugmentation> #<ImportSpecificModules> import operator import copy from ShareYourSystem.Standards.Classors import Doer,Observer #</ImportSpecificModules> #<DefineFunctions> def setSwitch( _InstanceVariable, _DoMethodVariable=None, _DoerClassVariable=None, _HookVariable=None ): #Debug ''' print('l 31 setSwitch') print('_DoerVariable is ',_DoerVariable) print('_DoVariable is ',_DoVariable) print('_HookVariable is ',_HookVariable) #print('_InstanceVariable.__class__.NameStr is ',_InstanceVariable.__class__.NameStr) print('') ''' #/#################/# # Adapt the shape of the do method str to switch # #Check if type(_DoMethodVariable)!=list: #Check if _DoMethodVariable==None: #/#################/# # Give all the do method str # #alias #DoMethodStrsList=_InstanceVariable.DoMethodStrsList #/#################/# # Give just the last DoMethodStr # #Check if _InstanceVariable.__class__.DoMethodStr in _InstanceVariable.__class__.SwitchMethodDict: #listify DoMethodStrsList=[_InstanceVariable.__class__.DoMethodStr] else: #listify DoMethodStrsList=[] else: #listify DoMethodStrsList=[_DoMethodVariable] else: #just alias DoMethodStrsList=_DoMethodVariable #/#################/# # Adapt the shape of the mro doer to switch # #get DoerClassesList=SYS.GetList(_DoerClassVariable) #Debug ''' print('l 94 Switcher') print('_DoerClassVariable is') print(_DoerClassVariable) print('DoerClassesList is') print(DoerClassesList) print('') ''' #Check if _DoerClassVariable==None: #/#################/# # by default this is all the mro doer that have all the switch do method # so do the intersection #Check if len(DoMethodStrsList)>0: #intersection DoerClassesList=list( set.intersection(* map( lambda __DoMethodStr: set(_InstanceVariable.__class__.SwitchMethodDict[__DoMethodStr]), DoMethodStrsList ) ) ) else: #init DoerClassesList=[] #/#################/# # Adapt the shape of the hook strs # #Check if type(_HookVariable)!=list: if _HookVariable==None: HookStrsList=['Before','After'] else: HookStrsList=[_HookVariable] else: HookStrsList=_HookVariable #/#################/# # Now map the switch # #Debug ''' print('l 139 Switcher') #print('_InstanceVariable is ') #print(_InstanceVariable) print('DoMethodStrsList is') print(DoMethodStrsList) print('DoerClassesList is ') print(DoerClassesList) print('HookStrsList is ') print(HookStrsList) print('') ''' #map map( lambda __HookStr: map( lambda __DoerClass: map( lambda __DoMethodStr: _InstanceVariable.__setattr__( 'Watch'+__HookStr+__DoMethodStr[0].upper( )+__DoMethodStr[1:]+'With'+__DoerClass.NameStr+'Bool', False ), DoMethodStrsList, ), DoerClassesList ), HookStrsList ) #Debug ''' print('l 170 Switcher') print('End of setSwitch') print('') ''' #return return _InstanceVariable def switch(_InstanceVariable,*_LiargVariablesList,**_KwargVariablesDict): #Debug ''' print('l 196 Switcher') print('In the switch function ') print('_KwargVariablesDict is ') print(_KwargVariablesDict) print('') ''' """ #alias FuncDict=switch.__dict__ #Debug ''' print('l 52') print('In the switch function ') print('FuncDict is ') print(FuncDict) print('') ''' """ #Check if hasattr(_InstanceVariable,_KwargVariablesDict['WatchBeforeDoBoolKeyStr']): #Debug ''' print('Switcher l 201') print('Check for a WatchBeforeDoBoolKeyStr') print("_KwargVariablesDict['WatchBeforeDoBoolKeyStr'] is ") print(_KwargVariablesDict['WatchBeforeDoBoolKeyStr']) print('') ''' #get WatchDoBool=getattr( _InstanceVariable, _KwargVariablesDict['WatchBeforeDoBoolKeyStr'] ) #Debug ''' print('Switcher l 236') print('WatchDoBool is') print(WatchDoBool) ''' #Switch if WatchDoBool: return _InstanceVariable #get the wrapped method WrapUnboundMethod=getattr( getattr( SYS, _KwargVariablesDict['BindDoClassStr'] ), _KwargVariablesDict['BindObserveWrapMethodStr'] ) #del map( lambda __KeyStr: _KwargVariablesDict.__delitem__(__KeyStr), [ 'BindObserveWrapMethodStr', 'BindDoClassStr', 'WatchBeforeDoBoolKeyStr' ] ) #Call return WrapUnboundMethod( _InstanceVariable, *_LiargVariablesList, **_KwargVariablesDict ) def getSwitch(_InstanceVariable,_MethodVariable=None): #Check if _MethodVariable==None: SwitchItemTuplesList=_InstanceVariable.SwitchMethodDict.items() elif type(_MethodVariable) in [list,tuple]: SwitchItemTuplesList=map( lambda __MethodStr: ( __MethodStr, _InstanceVariable.SwitchMethodDict[__MethodStr] ), _MethodVariable ) else: SwitchItemTuplesList=[ ( _MethodVariable, _InstanceVariable.SwitchMethodDict[_MethodVariable] ) ] #Debug ''' print('getSwitch l 266') print('_MethodVariable is ') print(_MethodVariable) print('SwitchItemTuplesList is ') print(SwitchItemTuplesList) print('') ''' #return WatchKeyStrsList=SYS.flat( SYS.flat( map( lambda __SwitchItemTuple: map( lambda __ClassStr: map( lambda __HookStr: 'Watch'+__HookStr+SYS.getUpperWordStr( __SwitchItemTuple[0] )+'With'+SYS.getNameStrWithClassStr( __ClassStr )+'Bool', ['Before','After'] ), map(lambda __Class:__Class.__name__,__SwitchItemTuple[1]) ), SwitchItemTuplesList ) ) ) #Debug ''' print('getSwitch l 300') print('WatchKeyStrsList is ') print(WatchKeyStrsList) print('WatchKeyStrsList is ') print(WatchKeyStrsList) print('') ''' #return return dict( zip( WatchKeyStrsList, map( lambda __WatchKeyStr: getattr(_InstanceVariable,__WatchKeyStr), WatchKeyStrsList ) ) ) #</DefineFunctions> #<DefineClass> @DecorationClass() class SwitcherClass(BaseClass): #Definition RepresentingKeyStrsList=[ 'SwitchingIsBool', 'SwitchingWrapMethodStr' ] def default_init(self, _SwitchingIsBool=False, _SwitchingWrapMethodStr="", **_KwargVariablesDict ): #Call the parent init method BaseClass.__init__(self,**_KwargVariablesDict) def __call__(self,_Class): #Call the parent method Observer.ObserverClass.__bases__[0].__call__(self,_Class) #reset self.switch() #Return return _Class def do_switch(self): #Check if self.SwitchingIsBool: #alias SwitchedClass=self.DoClass #Debug ''' print('l 195 Switcher') print('self.SwitchingWrapMethodStr is '+self.SwitchingWrapMethodStr) print('') ''' #watch first self.watch( True, **{'ObservingWrapMethodStr':self.SwitchingWrapMethodStr} ) #Debug ''' print('l 204 Switcher') print('self.WatchedDecorationMethodStr is ',self.WatchedDecorationMethodStr) print('') ''' #first bind self.bind( True, switch, "", switch.__name__, [('WatchBeforeDoBoolKeyStr',self.WatchedBeforeDoBoolKeyStr)], **{'ObservingWrapMethodStr':self.WatchedDecorationMethodStr} ) #Define SwitchedDecorationUnboundMethod=getattr( SwitchedClass, self.BindedDecorationMethodStr ) #Now make the amalgam setattr( SwitchedClass, self.SwitchingWrapMethodStr, SwitchedDecorationUnboundMethod ) #/##################/# # Set maybe for the first time # the setSwitch and the getSwitch #Check if hasattr(SwitchedClass,'setSwitch')==False: #set setattr( SwitchedClass, setSwitch.__name__, setSwitch ) #get the unbound setSwitchUnboundMethod=getattr( SwitchedClass, setSwitch.__name__ ) #add in the inspect SwitchedClass.InspectMethodDict[setSwitch.__name__]=setSwitchUnboundMethod SwitchedClass.InspectInspectDict[setSwitch.__name__]=SYS.InspectDict( setSwitchUnboundMethod ) #set self.setMethod( getSwitch.__name__, getSwitch ) #/##################/# # Init the SwitchMethodDict # #Check if hasattr(SwitchedClass,'SwitchMethodDict')==False: #Debug ''' print('Switcher l 345') print('SwitchedClass is ') print(SwitchedClass) print('we init a SwitchMethodDict') print('') ''' #Check if hasattr(SwitchedClass.__bases__[0],'SwitchMethodDict'): #Debug print('Switcher l 488') print('SwitchedClass is ') print(SwitchedClass) print('SwitchedClass.__bases__[0] is ') print(SwitchedClass.__bases__[0]) print('') #copy SwitchedClass.SwitchMethodDict=copy.copy( SwitchedClass.__bases__[0].SwitchMethodDict ) else: #init SwitchedClass.SwitchMethodDict={ self.SwitchingWrapMethodStr:[SwitchedClass] } else: #/##################/# # add # #Debug ''' print('Switcher l 514') print('SwitchedClass is ') print(SwitchedClass) print('there is already a SwitchMethodDict') print('self.SwitchingWrapMethodStr is ') print(self.SwitchingWrapMethodStr) print('SwitchedClass.SwitchMethodDict is ') print(SwitchedClass.SwitchMethodDict) print('') ''' #copy SwitchedClass.SwitchMethodDict=copy.copy( SwitchedClass.SwitchMethodDict ) #update if self.SwitchingWrapMethodStr in self.DoClass.SwitchMethodDict: SwitchedClass.SwitchMethodDict[ self.SwitchingWrapMethodStr ].append(SwitchedClass) else: SwitchedClass.SwitchMethodDict[ self.SwitchingWrapMethodStr ]=[SwitchedClass] #Add to the KeyStrsList SwitchedClass.KeyStrsList+=[ 'SwitchMethodDict' ] #</DefineClass>
mit
-2,826,561,491,702,759,400
17.608379
94
0.649178
false
3.088271
false
false
false
citrix-openstack-build/heat
heat/openstack/common/lockutils.py
6
9338
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2011 OpenStack Foundation. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import contextlib import errno import functools import os import time import weakref from eventlet import semaphore from oslo.config import cfg from heat.openstack.common import fileutils from heat.openstack.common.gettextutils import _ # noqa from heat.openstack.common import local from heat.openstack.common import log as logging LOG = logging.getLogger(__name__) util_opts = [ cfg.BoolOpt('disable_process_locking', default=False, help='Whether to disable inter-process locks'), cfg.StrOpt('lock_path', help=('Directory to use for lock files.')) ] CONF = cfg.CONF CONF.register_opts(util_opts) def set_defaults(lock_path): cfg.set_defaults(util_opts, lock_path=lock_path) class _InterProcessLock(object): """Lock implementation which allows multiple locks, working around issues like bugs.debian.org/cgi-bin/bugreport.cgi?bug=632857 and does not require any cleanup. Since the lock is always held on a file descriptor rather than outside of the process, the lock gets dropped automatically if the process crashes, even if __exit__ is not executed. There are no guarantees regarding usage by multiple green threads in a single process here. This lock works only between processes. Exclusive access between local threads should be achieved using the semaphores in the @synchronized decorator. Note these locks are released when the descriptor is closed, so it's not safe to close the file descriptor while another green thread holds the lock. Just opening and closing the lock file can break synchronisation, so lock files must be accessed only using this abstraction. """ def __init__(self, name): self.lockfile = None self.fname = name def __enter__(self): self.lockfile = open(self.fname, 'w') while True: try: # Using non-blocking locks since green threads are not # patched to deal with blocking locking calls. # Also upon reading the MSDN docs for locking(), it seems # to have a laughable 10 attempts "blocking" mechanism. self.trylock() return self except IOError as e: if e.errno in (errno.EACCES, errno.EAGAIN): # external locks synchronise things like iptables # updates - give it some time to prevent busy spinning time.sleep(0.01) else: raise def __exit__(self, exc_type, exc_val, exc_tb): try: self.unlock() self.lockfile.close() except IOError: LOG.exception(_("Could not release the acquired lock `%s`"), self.fname) def trylock(self): raise NotImplementedError() def unlock(self): raise NotImplementedError() class _WindowsLock(_InterProcessLock): def trylock(self): msvcrt.locking(self.lockfile.fileno(), msvcrt.LK_NBLCK, 1) def unlock(self): msvcrt.locking(self.lockfile.fileno(), msvcrt.LK_UNLCK, 1) class _PosixLock(_InterProcessLock): def trylock(self): fcntl.lockf(self.lockfile, fcntl.LOCK_EX | fcntl.LOCK_NB) def unlock(self): fcntl.lockf(self.lockfile, fcntl.LOCK_UN) if os.name == 'nt': import msvcrt InterProcessLock = _WindowsLock else: import fcntl InterProcessLock = _PosixLock _semaphores = weakref.WeakValueDictionary() @contextlib.contextmanager def lock(name, lock_file_prefix=None, external=False, lock_path=None): """Context based lock This function yields a `semaphore.Semaphore` instance unless external is True, in which case, it'll yield an InterProcessLock instance. :param lock_file_prefix: The lock_file_prefix argument is used to provide lock files on disk with a meaningful prefix. :param external: The external keyword argument denotes whether this lock should work across multiple processes. This means that if two different workers both run a a method decorated with @synchronized('mylock', external=True), only one of them will execute at a time. :param lock_path: The lock_path keyword argument is used to specify a special location for external lock files to live. If nothing is set, then CONF.lock_path is used as a default. """ # NOTE(soren): If we ever go natively threaded, this will be racy. # See http://stackoverflow.com/questions/5390569/dyn # amically-allocating-and-destroying-mutexes sem = _semaphores.get(name, semaphore.Semaphore()) if name not in _semaphores: # this check is not racy - we're already holding ref locally # so GC won't remove the item and there was no IO switch # (only valid in greenthreads) _semaphores[name] = sem with sem: LOG.debug(_('Got semaphore "%(lock)s"'), {'lock': name}) # NOTE(mikal): I know this looks odd if not hasattr(local.strong_store, 'locks_held'): local.strong_store.locks_held = [] local.strong_store.locks_held.append(name) try: if external and not CONF.disable_process_locking: LOG.debug(_('Attempting to grab file lock "%(lock)s"'), {'lock': name}) # We need a copy of lock_path because it is non-local local_lock_path = lock_path or CONF.lock_path if not local_lock_path: raise cfg.RequiredOptError('lock_path') if not os.path.exists(local_lock_path): fileutils.ensure_tree(local_lock_path) LOG.info(_('Created lock path: %s'), local_lock_path) def add_prefix(name, prefix): if not prefix: return name sep = '' if prefix.endswith('-') else '-' return '%s%s%s' % (prefix, sep, name) # NOTE(mikal): the lock name cannot contain directory # separators lock_file_name = add_prefix(name.replace(os.sep, '_'), lock_file_prefix) lock_file_path = os.path.join(local_lock_path, lock_file_name) try: lock = InterProcessLock(lock_file_path) with lock as lock: LOG.debug(_('Got file lock "%(lock)s" at %(path)s'), {'lock': name, 'path': lock_file_path}) yield lock finally: LOG.debug(_('Released file lock "%(lock)s" at %(path)s'), {'lock': name, 'path': lock_file_path}) else: yield sem finally: local.strong_store.locks_held.remove(name) def synchronized(name, lock_file_prefix=None, external=False, lock_path=None): """Synchronization decorator. Decorating a method like so:: @synchronized('mylock') def foo(self, *args): ... ensures that only one thread will execute the foo method at a time. Different methods can share the same lock:: @synchronized('mylock') def foo(self, *args): ... @synchronized('mylock') def bar(self, *args): ... This way only one of either foo or bar can be executing at a time. """ def wrap(f): @functools.wraps(f) def inner(*args, **kwargs): with lock(name, lock_file_prefix, external, lock_path): LOG.debug(_('Got semaphore / lock "%(function)s"'), {'function': f.__name__}) return f(*args, **kwargs) LOG.debug(_('Semaphore / lock released "%(function)s"'), {'function': f.__name__}) return inner return wrap def synchronized_with_prefix(lock_file_prefix): """Partial object generator for the synchronization decorator. Redefine @synchronized in each project like so:: (in nova/utils.py) from nova.openstack.common import lockutils synchronized = lockutils.synchronized_with_prefix('nova-') (in nova/foo.py) from nova import utils @utils.synchronized('mylock') def bar(self, *args): ... The lock_file_prefix argument is used to provide lock files on disk with a meaningful prefix. """ return functools.partial(synchronized, lock_file_prefix=lock_file_prefix)
apache-2.0
4,315,550,123,892,458,000
32.833333
78
0.612872
false
4.301244
false
false
false
mjhea0/flask-basic-registration
project/__init__.py
1
1596
# project/__init__.py ################# #### imports #### ################# import os from flask import Flask, render_template from flask_login import LoginManager from flask_bcrypt import Bcrypt from flask_mail import Mail from flask_debugtoolbar import DebugToolbarExtension from flask_sqlalchemy import SQLAlchemy ################ #### config #### ################ app = Flask(__name__) app.config.from_object(os.environ['APP_SETTINGS']) #################### #### extensions #### #################### login_manager = LoginManager() login_manager.init_app(app) bcrypt = Bcrypt(app) mail = Mail(app) toolbar = DebugToolbarExtension(app) db = SQLAlchemy(app) #################### #### blueprints #### #################### from project.main.views import main_blueprint from project.user.views import user_blueprint app.register_blueprint(main_blueprint) app.register_blueprint(user_blueprint) #################### #### flask-login #### #################### from project.models import User login_manager.login_view = "user.login" login_manager.login_message_category = "danger" @login_manager.user_loader def load_user(user_id): return User.query.filter(User.id == int(user_id)).first() ######################## #### error handlers #### ######################## @app.errorhandler(403) def forbidden_page(error): return render_template("errors/403.html"), 403 @app.errorhandler(404) def page_not_found(error): return render_template("errors/404.html"), 404 @app.errorhandler(500) def server_error_page(error): return render_template("errors/500.html"), 500
mit
-949,184,860,191,624,200
19.202532
61
0.620301
false
3.746479
false
false
false
ulaskan/RegEx
regex.py
1
2233
#! /usr/bin/python # Author: Ulas A. # Date: 14 Nov 2015 # Python version: 2.7 # This program takes a text file input by the user in a Linux filesystem and searches for a user input string # The search simulates Regular expressions. The program can search for text anywhere in the opened file # the beginning of each line (^) or the end of lines $ import os, re, subprocess ### User inputs and variable definitions TheFile = raw_input('Type in the file to search: ') while os.path.exists(TheFile) is False: print 'Invalid file/folder name, please try again!' TheFile = raw_input('Type in the file/folder to search: ') Search = raw_input('Type string to search: ') print 'Choose an option: \n \ta - Search anywhere in the line \n \t^ - Search beginning of a line \n\t$ - Search end of a line' option = raw_input('a/^/$: ') while option not in ('a', '^', '$'): print 'Invalid option!' option = raw_input('a/^/$: ') ### Check if the file is binary def NonBinary(path): return (re.search(r':.* text', subprocess.Popen(["file", '-L', path], stdout=subprocess.PIPE).stdout.read()) is not None) ### Search anywhere option if option == "a": if NonBinary(TheFile): with open(TheFile, 'rt') as txt: for line in txt: if Search in line: print TheFile, ':', line, if not os.access(TheFile, os.R_OK): print TheFile, ': Permission denied' ### Search the beginning of a line option elif option == "^": if NonBinary(TheFile): with open(TheFile, 'rt') as txt: for line in txt: CurrentLine = line regex = re.match(Search, CurrentLine) if regex: print TheFile, ':', line, if not os.access(TheFile, os.R_OK): print TheFile, ': Permission denied' ### Search the end of a line option elif option == "$": if NonBinary(TheFile): with open(TheFile, 'rt') as txt: for line in txt: CurrentLine = line if re.search(Search+r'$', CurrentLine): print TheFile, ':', line, if not os.access(TheFile, os.R_OK): print TheFile, ': Permission denied'
gpl-2.0
409,560,282,669,412,900
34.444444
127
0.600537
false
3.72788
false
false
false
JackGavin13/octoprint-test-not-finished
src/octoprint/filemanager/util.py
9
6227
# coding=utf-8 from __future__ import absolute_import, division, print_function __author__ = "Gina Häußge <[email protected]>" __license__ = 'GNU Affero General Public License http://www.gnu.org/licenses/agpl.html' __copyright__ = "Copyright (C) 2015 The OctoPrint Project - Released under terms of the AGPLv3 License" import io from octoprint.util import atomic_write class AbstractFileWrapper(object): """ Wrapper for file representations to save to storages. Arguments: filename (str): The file's name """ def __init__(self, filename): self.filename = filename def save(self, path): """ Saves the file's content to the given absolute path. Arguments: path (str): The absolute path to where to save the file """ raise NotImplementedError() def stream(self): """ Returns a Python stream object (subclass of io.IOBase) representing the file's contents. Returns: io.IOBase: The file's contents as a stream. """ raise NotImplementedError() class DiskFileWrapper(AbstractFileWrapper): """ An implementation of :class:`.AbstractFileWrapper` that wraps an actual file on disk. The `save` implementations will either copy the file to the new path (preserving file attributes) or -- if `move` is `True` (the default) -- move the file. Arguments: filename (str): The file's name path (str): The file's absolute path move (boolean): Whether to move the file upon saving (True, default) or copying. """ def __init__(self, filename, path, move=True): AbstractFileWrapper.__init__(self, filename) self.path = path self.move = move def save(self, path): import shutil if self.move: shutil.move(self.path, path) else: shutil.copy2(self.path, path) def stream(self): return io.open(self.path, "rb") class StreamWrapper(AbstractFileWrapper): """ A wrapper allowing processing of one or more consecutive streams. Arguments: *streams (io.IOBase): One or more streams to process one after another to save to storage. """ def __init__(self, filename, *streams): if not len(streams) > 0: raise ValueError("Need at least one stream to wrap") AbstractFileWrapper.__init__(self, filename) self.streams = streams def save(self, path): """ Will dump the contents of all streams provided during construction into the target file, in the order they were provided. """ import shutil with atomic_write(path, "wb") as dest: with self.stream() as source: shutil.copyfileobj(source, dest) def stream(self): """ If more than one stream was provided to the constructor, will return a :class:`.MultiStream` wrapping all provided streams in the order they were provided, else the first and only stream is returned directly. """ if len(self.streams) > 1: return MultiStream(*self.streams) else: return self.streams[0] class MultiStream(io.RawIOBase): """ A stream implementation which when read reads from multiple streams, one after the other, basically concatenating their contents in the order they are provided to the constructor. Arguments: *streams (io.IOBase): One or more streams to concatenate. """ def __init__(self, *streams): io.RawIOBase.__init__(self) self.streams = streams self.current_stream = 0 def read(self, n=-1): if n == 0: return b'' if len(self.streams) == 0: return b'' while self.current_stream < len(self.streams): stream = self.streams[self.current_stream] result = stream.read(n) if result is None or len(result) != 0: return result else: self.current_stream += 1 return b'' def readinto(self, b): n = len(b) read = self.read(n) b[:len(read)] = read return len(read) def close(self): for stream in self.streams: try: stream.close() except: pass def readable(self, *args, **kwargs): return True def seekable(self, *args, **kwargs): return False def writable(self, *args, **kwargs): return False class LineProcessorStream(io.RawIOBase): """ While reading from this stream the provided `input_stream` is read line by line, calling the (overridable) method :meth:`.process_line` for each read line. Sub classes can thus modify the contents of the `input_stream` in line, while it is being read. Arguments: input_stream (io.IOBase): The stream to process on the fly. """ def __init__(self, input_stream): io.RawIOBase.__init__(self) self.input_stream = io.BufferedReader(input_stream) self.leftover = None def read(self, n=-1): if n == 0: return b'' result = b'' while len(result) < n or n == -1: bytes_left = (n - len(result)) if n != -1 else -1 if self.leftover is not None: if bytes_left != -1 and bytes_left < len(self.leftover): result += self.leftover[:bytes_left] self.leftover = self.leftover[bytes_left:] break else: result += self.leftover self.leftover = None processed_line = None while processed_line is None: line = self.input_stream.readline() if not line: break processed_line = self.process_line(line) if processed_line is None: break bytes_left = (n - len(result)) if n != -1 else -1 if bytes_left != -1 and bytes_left < len(processed_line): result += processed_line[:bytes_left] self.leftover = processed_line[bytes_left:] break else: result += processed_line return result def readinto(self, b): n = len(b) read = self.read(n) b[:len(read)] = read return len(read) def process_line(self, line): """ Called from the `read` Method of this stream with each line read from `self.input_stream`. By returning ``None`` the line will not be returned from the read stream, effectively being stripped from the wrapper `input_stream`. Arguments: line (str): The line as read from `self.input_stream` Returns: str or None: The processed version of the line (might also be multiple lines), or None if the line is to be stripped from the processed stream. """ return line def close(self): self.input_stream.close() def readable(self, *args, **kwargs): return True def seekable(self, *args, **kwargs): return False def writable(self, *args, **kwargs): return False
agpl-3.0
-5,343,517,159,775,421,000
24.829876
114
0.68257
false
3.352181
false
false
false
cloudera/hue
desktop/core/ext-py/openpyxl-2.6.4/openpyxl/workbook/_writer.py
2
6579
from __future__ import absolute_import # Copyright (c) 2010-2019 openpyxl """Write the workbook global settings to the archive.""" from copy import copy from openpyxl.utils import absolute_coordinate, quote_sheetname from openpyxl.xml.constants import ( ARC_APP, ARC_CORE, ARC_WORKBOOK, PKG_REL_NS, CUSTOMUI_NS, ARC_ROOT_RELS, ) from openpyxl.xml.functions import tostring, fromstring from openpyxl.packaging.relationship import Relationship, RelationshipList from openpyxl.workbook.defined_name import DefinedName from openpyxl.workbook.external_reference import ExternalReference from openpyxl.packaging.workbook import ChildSheet, WorkbookPackage, PivotCache from openpyxl.workbook.properties import WorkbookProperties from openpyxl.utils.datetime import CALENDAR_MAC_1904 def get_active_sheet(wb): """ Return the index of the active sheet. If the sheet set to active is hidden return the next visible sheet or None """ visible_sheets = [idx for idx, sheet in enumerate(wb._sheets) if sheet.sheet_state == "visible"] if not visible_sheets: raise IndexError("At least one sheet must be visible") idx = wb._active_sheet_index sheet = wb.active if sheet and sheet.sheet_state == "visible": return idx for idx in visible_sheets[idx:]: wb.active = idx return idx return None class WorkbookWriter: def __init__(self, wb): self.wb = wb self.rels = RelationshipList() self.package = WorkbookPackage() self.package.workbookProtection = wb.security self.package.calcPr = wb.calculation def write_properties(self): props = WorkbookProperties() # needs a mapping to the workbook for preservation if self.wb.code_name is not None: props.codeName = self.wb.code_name if self.wb.excel_base_date == CALENDAR_MAC_1904: props.date1904 = True self.package.workbookPr = props def write_worksheets(self): for idx, sheet in enumerate(self.wb._sheets, 1): sheet_node = ChildSheet(name=sheet.title, sheetId=idx, id="rId{0}".format(idx)) rel = Relationship(type=sheet._rel_type, Target=sheet.path) self.rels.append(rel) if not sheet.sheet_state == 'visible': if len(self.wb._sheets) == 1: raise ValueError("The only worksheet of a workbook cannot be hidden") sheet_node.state = sheet.sheet_state self.package.sheets.append(sheet_node) def write_refs(self): for link in self.wb._external_links: # need to match a counter with a workbook's relations rId = len(self.wb.rels) + 1 rel = Relationship(type=link._rel_type, Target=link.path) self.rels.append(rel) ext = ExternalReference(id=rel.id) self.package.externalReferences.append(ext) def write_names(self): defined_names = copy(self.wb.defined_names) # Defined names -> autoFilter for idx, sheet in enumerate(self.wb.worksheets): auto_filter = sheet.auto_filter.ref if auto_filter: name = DefinedName(name='_FilterDatabase', localSheetId=idx, hidden=True) name.value = u"{0}!{1}".format(quote_sheetname(sheet.title), absolute_coordinate(auto_filter) ) defined_names.append(name) # print titles if sheet.print_titles: name = DefinedName(name="Print_Titles", localSheetId=idx) name.value = ",".join([u"{0}!{1}".format(quote_sheetname(sheet.title), r) for r in sheet.print_titles.split(",")]) defined_names.append(name) # print areas if sheet.print_area: name = DefinedName(name="Print_Area", localSheetId=idx) name.value = ",".join([u"{0}!{1}".format(quote_sheetname(sheet.title), r) for r in sheet.print_area]) defined_names.append(name) self.package.definedNames = defined_names def write_pivots(self): pivot_caches = set() for pivot in self.wb._pivots: if pivot.cache not in pivot_caches: pivot_caches.add(pivot.cache) c = PivotCache(cacheId=pivot.cacheId) self.package.pivotCaches.append(c) rel = Relationship(Type=pivot.cache.rel_type, Target=pivot.cache.path) self.rels.append(rel) c.id = rel.id #self.wb._pivots = [] # reset def write_views(self): active = get_active_sheet(self.wb) if self.wb.views: self.wb.views[0].activeTab = active self.package.bookViews = self.wb.views def write(self): """Write the core workbook xml.""" self.write_properties() self.write_worksheets() self.write_names() self.write_pivots() self.write_views() self.write_refs() return tostring(self.package.to_tree()) def write_rels(self): """Write the workbook relationships xml.""" styles = Relationship(type='styles', Target='styles.xml') self.rels.append(styles) theme = Relationship(type='theme', Target='theme/theme1.xml') self.rels.append(theme) if self.wb.vba_archive: vba = Relationship(type='', Target='vbaProject.bin') vba.Type ='http://schemas.microsoft.com/office/2006/relationships/vbaProject' self.rels.append(vba) return tostring(self.rels.to_tree()) def write_root_rels(self): """Write the package relationships""" rels = RelationshipList() rel = Relationship(type="officeDocument", Target=ARC_WORKBOOK) rels.append(rel) rel = Relationship(Type="%s/metadata/core-properties" % PKG_REL_NS, Target=ARC_CORE) rels.append(rel) rel = Relationship(type="extended-properties", Target=ARC_APP) rels.append(rel) if self.wb.vba_archive is not None: # See if there was a customUI relation and reuse it xml = fromstring(self.wb.vba_archive.read(ARC_ROOT_RELS)) root_rels = RelationshipList.from_tree(xml) for rel in root_rels.find(CUSTOMUI_NS): rels.append(rel) return tostring(rels.to_tree())
apache-2.0
2,303,528,685,725,274,000
33.088083
100
0.605563
false
3.833916
false
false
false
hpparvi/PyTransit
notebooks/contamination/src/plotting.py
1
5677
# PyTransit: fast and easy exoplanet transit modelling in Python. # Copyright (C) 2010-2019 Hannu Parviainen # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. import matplotlib as mpl import matplotlib.pyplot as pl import seaborn as sb from matplotlib.gridspec import GridSpec from numpy import sqrt, percentile, ceil, linspace, concatenate, histogram color = sb.color_palette()[0] color_rgb = mpl.colors.colorConverter.to_rgb(color) colors = [sb.utils.set_hls_values(color_rgb, l=l) for l in linspace(1, 0, 12)] cmap = sb.blend_palette(colors, as_cmap=True) color = sb.color_palette()[1] color_rgb = mpl.colors.colorConverter.to_rgb(color) colors = [sb.utils.set_hls_values(color_rgb, l=l) for l in linspace(1, 0, 12)] cmap2 = sb.blend_palette(colors, as_cmap=True) c_ob = "#002147" # Oxford blue c_bo = "#CC5500" # Burnt orange def marginal_radius_ratio_plot(df, bins: int = 40, klim: tuple = None, figsize: tuple = (6, 5)): if klim is None: klim = percentile(concatenate([df.k_app.values, df.k_true.values]), [0.0, 99.9]) v1, e = histogram(df.k_app, range=klim, bins=bins, density=True) v2, e = histogram(df.k_true, range=klim, bins=bins, density=True) fig, ax = pl.subplots(figsize=figsize, constrained_layout=True) ax.fill_betweenx(e[:-1], -10 - v1, -10, step='post', linewidth=1, edgecolor='k') ax.fill_betweenx(e[:-1], 10 + v2, 10, step='post', linewidth=1, edgecolor='k') ax.text(-0.5 * v1.max(), klim[1], 'Apparent radius ratio', ha='center', va='top') ax.text(0.5 * v2.max(), klim[1], 'True radius ratio', ha='center', va='top') pl.setp(ax, xlabel='Posterior density', ylabel='Radius ratio', xticks=[], ylim=klim) sb.despine(fig, offset=5) return fig def _jplot(hte, cte, cnr, imp, rho, fw=10, nb=30, gs=25, ylabel='Contamination in $i\'$', **kwargs): htelim = kwargs.get('htelim', (2000, 8000)) ctelim = kwargs.get('ctelim', (4000, 12000)) blim = kwargs.get('blim', (0, 1)) rlim = kwargs.get('rlim', (0, 15)) clim = kwargs.get('clim', (0, 1)) fig = pl.figure(figsize=(fw, fw / 4)) gs_tt = GridSpec(2, 1, bottom=0.2, top=1, left=0.1, right=0.3, hspace=0, wspace=0, height_ratios=[0.15, 0.85], figure=fig) gs_ct = GridSpec(2, 5, bottom=0.2, top=1, left=0.38, right=1, hspace=0.05, wspace=0.05, height_ratios=[0.15, 0.85], width_ratios=[1, 1, 1, 1, 0.2], figure=fig) ax_tt = pl.subplot(gs_tt[1, 0]) ax_chj = pl.subplot(gs_ct[1, 0]) ax_ccj = pl.subplot(gs_ct[1, 1]) ax_cbj = pl.subplot(gs_ct[1, 2]) ax_crj = pl.subplot(gs_ct[1, 3]) ax_thm = pl.subplot(gs_ct[0, 0]) ax_ctm = pl.subplot(gs_ct[0, 1]) ax_bm = pl.subplot(gs_ct[0, 2]) ax_rm = pl.subplot(gs_ct[0, 3]) ax_cnm = pl.subplot(gs_ct[1, 4]) ax_tt.hexbin(hte, cte, gridsize=gs, cmap=cmap, extent=(htelim[0], htelim[1], ctelim[0], ctelim[1])) ax_chj.hexbin(hte, cnr, gridsize=gs, cmap=cmap, extent=(htelim[0], htelim[1], clim[0], clim[1])) ax_ccj.hexbin(cte, cnr, gridsize=gs, cmap=cmap, extent=(ctelim[0], ctelim[1], clim[0], clim[1])) ax_cbj.hexbin(imp, cnr, gridsize=gs, cmap=cmap, extent=(blim[0], blim[1], clim[0], clim[1])) ax_crj.hexbin(rho, cnr, gridsize=gs, cmap=cmap, extent=(rlim[0], rlim[1], clim[0], clim[1])) ax_thm.hist(hte, bins=nb, alpha=0.5, range=htelim, histtype='stepfilled') ax_ctm.hist(cte, bins=nb, alpha=0.5, range=ctelim, histtype='stepfilled') ax_bm.hist(imp, bins=nb, alpha=0.5, range=blim, histtype='stepfilled') ax_rm.hist(rho, bins=nb, alpha=0.5, range=rlim, histtype='stepfilled') ax_cnm.hist(cnr, bins=nb, alpha=0.5, range=clim, histtype='stepfilled', orientation='horizontal') pl.setp(ax_tt, xlabel='Host $T_\mathrm{Eff}$', ylabel='Contaminant $T_\mathrm{Eff}$') pl.setp(ax_chj, xlabel='Host $T_\mathrm{Eff}$', ylabel=ylabel) pl.setp(ax_ccj, xlabel='Contaminant $T_\mathrm{Eff}$') pl.setp(ax_cbj, xlabel='Impact parameter') pl.setp(ax_crj, xlabel='Stellar density') pl.setp(ax_thm, xlim=ax_chj.get_xlim()) pl.setp(ax_ctm, xlim=ax_ccj.get_xlim()) pl.setp(ax_bm, xlim=ax_cbj.get_xlim()) pl.setp([ax_ccj, ax_cnm], ylim=ax_chj.get_ylim()) pl.setp([ax_chj, ax_ccj, ax_cbj, ax_crj, ax_cnm], ylim=clim) pl.setp([ax_thm, ax_ctm, ax_cnm, ax_bm, ax_rm], yticks=[], xticks=[]) pl.setp(ax_ccj.get_yticklabels(), visible=False) pl.setp(ax_cbj.get_yticklabels(), visible=False) pl.setp(ax_crj.get_yticklabels(), visible=False) [sb.despine(ax=ax, left=True, offset=0.1) for ax in [ax_thm, ax_ctm, ax_bm, ax_rm]] [sb.despine(ax=ax) for ax in [ax_chj, ax_ccj, ax_cbj, ax_crj]] sb.despine(ax=ax_cnm, bottom=True) return fig, ax_tt, ax_chj, ax_cbj, ax_ccj, ax_crj def joint_radius_ratio_plot(df, fw=10, nb=30, gs=25, **kwargs): return _jplot(df.teff_h, df.teff_c, df.k_true, df.b, df.rho, fw, nb, gs, ylabel='True radius ratio', **kwargs)[0] def joint_contamination_plot(df, fw=10, nb=30, gs=25, **kwargs): return _jplot(df.teff_h, df.teff_c, df.cnt, df.b, df.rho, fw, nb, gs, **kwargs)[0]
gpl-2.0
-746,157,780,433,276,000
45.917355
126
0.648758
false
2.503086
false
false
false
tribhuvanesh/R3PI-PO
persistent_helpers.py
1
3488
#!flask/bin/python import json import os import urllib2 import httplib2 as http import requests from creds import bigOvenAPIkey try: from urlparse import urlparse except ImportError: from urllib.parse import urlparse from flask import Flask, jsonify recipe_blob_dct = { 1 : { 'id': 1, 'title': 'Chicken Alfredo', 'description': 'Chicken & Pasta & Cream.', 'img': 'https://c1.staticflickr.com/3/2504/3874012191_48ec021023.jpg' }, 2 : { 'id': 2, 'title': 'Lasagna', 'description': 'Garfield\'s Favorite.', 'img': 'https://upload.wikimedia.org/wikipedia/commons/6/6b/Lasagna_(1).jpg' }, 3 : { 'id': 3, 'title': 'Pizza', 'description': 'Best served cold, just like revenge.', 'img': 'https://upload.wikimedia.org/wikipedia/commons/9/95/Pizza_with_various_toppings.jpg' } } def get_recipe_ids(): """Returns a list of valid recipe IDS. @return: a JSON object - list of recipe IDs, where recipe ID is a number """ """ 1. Get listing of files in the directory 2. Make array of integers with the names of the files """ dirListing = os.listdir("recipeJSONs/") lst = [] tempName = [] for item in dirListing: if ".json" in item: tempName = os.path.splitext(item)[0] lst.append(int(tempName)) response = json.dumps({'response' : lst}) return response def get_recipe_short_descriptions(): """Returns a list of valid recipe IDS with small descriptions. @return: a JSON object - list of recipe IDs, where recipe ID is a number """ """ 1. Get listing of files in the directory 2. Make array of integers with the names of the files """ dirListing = os.listdir("recipeJSONs/") lst = [] tempName = [] for item in dirListing: if ".json" in item: tempName = os.path.splitext(item)[0] with open(os.path.join("recipeJSONs", item)) as f: recipeInfo = json.load(f) lst.append({ "RecipeID": recipeInfo["RecipeID"], "Title": recipeInfo["Title"], "Description": recipeInfo["Description"], "ImageURL": recipeInfo["ImageURL"] }) response = json.dumps({'response' : lst}) return response #return jsonify({'list': recipe_blob_dct.keys()}) def get_recipe_info(recipe_id): """Information about the recipe @type recipe_id: number @return: a JSON object """ """ 1. Get list of files 2. If recipe_id present in list, get the contents of the files 3. Else, make API call to get the JSON data from bigOven 4. jsonify the data and return """ dct = json.loads(get_recipe_ids()) lst = dct['response'] if recipe_id not in lst: url_path = "http://api.bigoven.com/recipe/" + str(recipe_id) + "?api_key=" + bigOvenAPIkey headers = {'content-type': 'application/json'} req = requests.get(url_path, headers=headers) content = req.content recipe_info = json.loads(content) else: json_fname = "%d.json" % recipe_id json_path = os.path.join("recipeJSONs", json_fname) recipe_info_str = open(json_path).read() recipe_info = json.loads(recipe_info_str) return json.dumps({'response' : recipe_info}) def main(): print get_recipe_info(158905) if __name__ == '__main__': main()
apache-2.0
-4,177,722,889,112,337,000
27.357724
100
0.59547
false
3.577436
false
false
false
hrayr-artunyan/shuup
shuup/default_tax/models.py
2
4052
# This file is part of Shuup. # # Copyright (c) 2012-2016, Shoop Ltd. All rights reserved. # # This source code is licensed under the AGPLv3 license found in the # LICENSE file in the root directory of this source tree. from __future__ import unicode_literals from django.db import models from django.db.models import Q from django.utils.encoding import python_2_unicode_compatible from django.utils.translation import ugettext_lazy as _ from shuup.core.models import CustomerTaxGroup, Tax, TaxClass from shuup.utils.patterns import Pattern, pattern_matches class TaxRuleQuerySet(models.QuerySet): def may_match_postal_code(self, postalcode): null = Q(_postal_codes_min__isnull=True) in_range = Q() if postalcode: in_range = Q(_postal_codes_min__lte=postalcode, _postal_codes_max__gte=postalcode) return self.filter(null | in_range) @python_2_unicode_compatible class TaxRule(models.Model): enabled = models.BooleanField(default=True, verbose_name=_('enabled'), db_index=True) tax_classes = models.ManyToManyField( TaxClass, verbose_name=_("tax classes"), help_text=_( "Tax classes of the items to be taxed")) customer_tax_groups = models.ManyToManyField( CustomerTaxGroup, blank=True, verbose_name=_("customer tax groups")) country_codes_pattern = models.CharField( max_length=300, blank=True, verbose_name=_("country codes pattern")) region_codes_pattern = models.CharField( max_length=500, blank=True, verbose_name=_("region codes pattern")) postal_codes_pattern = models.CharField( max_length=500, blank=True, verbose_name=_("postal codes pattern")) _postal_codes_min = models.CharField(max_length=100, blank=True, null=True) _postal_codes_max = models.CharField(max_length=100, blank=True, null=True) priority = models.IntegerField( default=0, verbose_name=_("priority"), help_text=_( "Rules with same priority define added taxes (e.g. US taxes) " "and rules with different priority define compound taxes " "(e.g. Canada Quebec PST case)")) override_group = models.IntegerField( default=0, verbose_name=_("override group number"), help_text=_( "If several rules match, only the rules with the highest " "override group number will be effective. This can be " "used, for example, to implement tax exemption by adding " "a rule with very high override group that sets a zero tax.")) tax = models.ForeignKey(Tax, on_delete=models.PROTECT, verbose_name=_('tax')) objects = TaxRuleQuerySet.as_manager() def matches(self, taxing_context): """ Check if this tax rule matches given taxing context. :type taxing_context: shuup.core.taxing.TaxingContext """ if taxing_context.customer_tax_group: tax_groups = set(self.customer_tax_groups.all()) if tax_groups: if taxing_context.customer_tax_group not in tax_groups: return False if self.country_codes_pattern: if not pattern_matches(self.country_codes_pattern, taxing_context.country_code): return False if self.region_codes_pattern: if not pattern_matches(self.region_codes_pattern, taxing_context.region_code): return False if self.postal_codes_pattern: if not pattern_matches(self.postal_codes_pattern, taxing_context.postal_code): return False return True def save(self, *args, **kwargs): if self.postal_codes_pattern: min_value, max_value = Pattern(self.postal_codes_pattern).get_alphabetical_limits() self._postal_codes_min = min_value self._postal_codes_max = max_value return super(TaxRule, self).save(*args, **kwargs) def __str__(self): return _("Tax rule {} ({})").format(self.pk, self.tax)
agpl-3.0
-5,399,539,020,065,074,000
40.773196
95
0.651037
false
3.960899
false
false
false
SalesforceEng/Providence
tests/repos/test_repotracker.py
1
2927
''' Copyright (c) 2015, Salesforce.com, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Salesforce.com nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' import unittest import os import json import string import random import getpass from datetime import datetime from Empire.creds import CredentialManager import config configuration = config.Configuration() credentials_file = configuration.get('credentials_file') credential_key = os.environ.get('CREDENTIAL_KEY') if credential_key is None: credential_key = getpass.getpass('Credential Key:') credential_manager = CredentialManager(credentials_file, credential_key) config.credential_manager = credential_manager from repos.repotracker import RepoTracker def id_generator(size=6, chars=string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for _ in range(size)) class RepoTrackerTest(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def test_last_identifier(self): repo = RepoTracker() temp_identifier = id_generator() repo.update_identifier("test-identifier", temp_identifier) fetched_identifier = repo.last_identifier("test-identifier") self.assertEqual(temp_identifier, fetched_identifier) def test_last_run_completed(self): repo = RepoTracker() temp_last_run = datetime.utcnow() repo.update_last_run_completed("test-last-run",temp_last_run) fetched_last_run = repo.last_run_completed("test-last-run") self.assertEqual(temp_last_run, fetched_last_run)
bsd-3-clause
-3,761,808,230,218,270,000
45.460317
755
0.767339
false
4.49616
true
false
false
buxx/intelligine
intelligine/simulation/object/molecule/MoleculeGland.py
1
1276
from intelligine.core.exceptions import BestMoleculeHere, MoleculeGlandDisabled from intelligine.simulation.molecule.DirectionMolecule import DirectionMolecule class MoleculeGland(): def __init__(self, host, context): self._molecule_type = None self._host = host self._context = context self._enabled = False def set_molecule_type(self, molecule_type): self._molecule_type = molecule_type def get_molecule_type(self): if self._molecule_type is None: raise Exception("molecule_type not specified") return self._molecule_type def get_molecule(self): raise NotImplementedError() def appose(self): if not self._enabled: raise MoleculeGlandDisabled() try: DirectionMolecule.appose(self._context, self._host.get_position(), self.get_molecule()) except BestMoleculeHere as best_molecule_here: self._host.get_brain().set_distance_from_objective(best_molecule_here.get_best_distance()) def disable(self): self._enabled = False def enable(self): self._enabled = True def is_enabled(self): return self._enabled
apache-2.0
1,086,530,290,361,724,900
29.404762
102
0.618339
false
4.4
false
false
false
jeliasherrero/SeminarioTheano2015
logistic_reg.py
1
1781
import numpy import theano import theano.tensor as T rng = numpy.random N = 400 feats = 784 D = (rng.randn(N, feats).astype(theano.config.floatX), rng.randint(size=N,low=0, high=2).astype(theano.config.floatX)) training_steps = 10000 # Declare Theano symbolic variables x = T.matrix("x") y = T.vector("y") w = theano.shared(rng.randn(feats).astype(theano.config.floatX), name="w") b = theano.shared(numpy.asarray(0., dtype=theano.config.floatX), name="b") x.tag.test_value = D[0] y.tag.test_value = D[1] #print "Initial model:" #print w.get_value(), b.get_value() # Construct Theano expression graph p_1 = 1 / (1 + T.exp(-T.dot(x, w)-b)) # Probability of having a one prediction = p_1 > 0.5 # The prediction that is done: 0 or 1 xent = -y*T.log(p_1) - (1-y)*T.log(1-p_1) # Cross-entropy cost = xent.mean() + 0.01*(w**2).sum() # The cost to optimize gw,gb = T.grad(cost, [w,b]) # Compile expressions to functions train = theano.function( inputs=[x,y], outputs=[prediction, xent], updates={w:w-0.01*gw, b:b-0.01*gb}, name = "train") predict = theano.function(inputs=[x], outputs=prediction, name = "predict") if any([x.op.__class__.__name__ in ['Gemv', 'CGemv', 'Gemm', 'CGemm'] for x in train.maker.fgraph.toposort()]): print 'Used the cpu' elif any([x.op.__class__.__name__ in ['GpuGemm', 'GpuGemv'] for x in train.maker.fgraph.toposort()]): print 'Used the gpu' else: print 'ERROR, not able to tell if theano used the cpu or the gpu' print train.maker.fgraph.toposort() for i in range(training_steps): pred, err = train(D[0], D[1]) #print "Final model:" #print w.get_value(), b.get_value() print "target values for D" print D[1] print "prediction on D" print predict(D[0])
gpl-2.0
-1,169,153,566,435,132,400
29.706897
78
0.64009
false
2.800314
false
false
false
rorytrent/the-duke
duke/tile.py
1
1517
from .actions import parse_actions, parse_commands class Tile(object): def __init__(self, name, front=None, back=None, front_commands=None, back_commands=None): self.name = name self.front = parse_actions(front) self.back = parse_actions(back) self.front_commands = parse_commands(front_commands) self.back_commands = parse_commands(back_commands) def __str__(self): return self.name def __repr__(self): return '<Tile {}>'.format(self.name.upper()) def action(self, x, y, side): actions = self.front if side == 'front' else self.back return actions.get((x, y)) def command(self, x, y, side): commands = self.front_commands if side == 'front' else self.back_commands return commands.get((x, y)) def on_board(self, color): return BoardTile(self, color) class BoardTile(Tile): def __init__(self, parent, color): super(BoardTile, self).__init__(front=parent.front, back=parent.back, front_commands=parent.front_commands, back_commands=parent.back_commands) self.color = color self.side = 'front' def flip(self): self.side = 'back' if self.side == 'front' else 'front' def action(self, x, y): return super(BoardTile, self).action(x, y, self.side) def command(self, x, y): return super(BoardTile, self).command(x, y, self.side)
gpl-3.0
-8,379,709,236,508,500,000
30.604167
81
0.584047
false
3.764268
false
false
false
koditr/xbmc-tr-team-turkish-addons
plugin.video.temizlik.imandan.gelir/default.py
1
7503
import urllib,urllib2,re,xbmcplugin,xbmcgui #!/usr/bin/python # -*- coding: utf-8 -*- XbmcTRteam='http://XbcmTR.com' def CATEGORIES(): addDir('[COLOR red][B]>> INFOYU OKUYUNUZ <<[/B][/COLOR] ', "INFO(name)",'7','http://www.kanal23.com/dosya/unlem-1.jpg') addDir('[COLOR orange][B]>> [/B][/COLOR]'+ '[COLOR beige][B]PACKAGES TEMIZLIGI - 1 -[/B][/COLOR] ', "MAINDEL(name)",'1','http://ryayla.com/uploads/images/okey.png') addDir('[COLOR orange][B]>> [/B][/COLOR]'+ '[COLOR beige][B]CACHE TEMIZLIGI - 2 -[ Sadece PC ][/B][/COLOR] ', "MAINDEL2(name)",'2','http://ryayla.com/uploads/images/okey.png') addDir('[COLOR yellow][B]>> [/B][/COLOR]'+ '[COLOR yellow][B]! Apple TV & Android BOX Cache Temizligi ![/B][/COLOR] ', "MAINDEL3(name)",'11','http://ryayla.com/uploads/images/okey.png') def MAINDEL(name): dialog = xbmcgui.Dialog() ret = dialog.yesno('DreamTR Team UYARI', 'PACKAGES temizliginden Eminmisiniz ! ','','','No', 'Yes') if ret: import os folder = xbmc.translatePath(os.path.join('special://home/addons/packages/', '')) for the_file in os.listdir(folder): file_path = os.path.join(folder, the_file) try: if os.path.isfile(file_path): os.unlink(file_path) except Exception, e: dialog = xbmcgui.Dialog(e) i = dialog.ok('!!! Packages !!!', "[COLOR beige]Packages Temizliginiz Bitmistir[/COLOR]","[COLOR pink]iyi kullanimlar.[/COLOR]") def MAINDEL2(name): dialog = xbmcgui.Dialog() ret = dialog.yesno('DreamTR Team UYARI', 'CACHE temizliginden Eminmisiniz ! ','','','No', 'Yes') if ret: import os folder = xbmc.translatePath(os.path.join('special://home/cache', '')) for the_file in os.listdir(folder): file_path = os.path.join(folder, the_file) try: if os.path.isfile(file_path): os.unlink(file_path) except Exception, e: dialog = xbmcgui.Dialog(e) i = dialog.ok('Temizlendi Uyarisi !!!', "[COLOR beige]Temizliginiz basariyla bitmistir[/COLOR]","[COLOR pink]iyi kullanimlar.[/COLOR]") def MAINDEL3(name): dialog = xbmcgui.Dialog() ret = dialog.yesno('DreamTR Team UYARI', 'Apple TV & Android Box - CACHE temizliginden Eminmisiniz ! ','','','No', 'Yes') if ret: import os folder = xbmc.translatePath(os.path.join('special://home/temp', '')) for the_file in os.listdir(folder): file_path = os.path.join(folder, the_file) try: if os.path.isfile(file_path): os.unlink(file_path) except Exception, e: dialog = xbmcgui.Dialog(e) i = dialog.ok('Temizlendi Uyarisi !!!', "[COLOR beige]Temizliginiz basariyla bitmistir[/COLOR]","[COLOR pink]iyi kullanimlar.[/COLOR]") def MAINDEL4(name): dialog = xbmcgui.Dialog() ret = dialog.yesno('!!Dream Sifrenizi Silmek icin Eminmisiniz !!', '! Dream Sifrelerinizi Silmek istediginizden Eminmisiniz !! ','','','No', 'Yes') if ret: import os folder = xbmc.translatePath(os.path.join('special://home/userdata/addon_data/plugin.video.dream-clup', '')) for the_file in os.listdir(folder): file_path = os.path.join(folder, the_file) try: if os.path.isfile(file_path): os.unlink(file_path) except Exception, e: dialog = xbmcgui.Dialog(e) i = dialog.ok('!Dream Sifreniz Silindi!', "[COLOR beige]Dream Sifreler Silindi ![/COLOR]","[COLOR pink]iyi kullanimlar.[/COLOR]") def MAINDEL5(name): dialog = xbmcgui.Dialog() ret = dialog.yesno('!!MagicTR Sifrenizi Silmek icin Eminmisiniz !!', '! MagicTR Sifrelerinizi Silmek istediginizden Eminmisiniz !! ','','','No', 'Yes') if ret: import os folder = xbmc.translatePath(os.path.join('special://home/userdata/addon_data/plugin.video.magicTR', '')) for the_file in os.listdir(folder): file_path = os.path.join(folder, the_file) try: if os.path.isfile(file_path): os.unlink(file_path) except Exception, e: dialog = xbmcgui.Dialog(e) i = dialog.ok('!MagicTR Sifreniz Silindi!', "[COLOR beige]MagicTR Sifreler Silindi ![/COLOR]","[COLOR pink]iyi kullanimlar.[/COLOR]") def INFO(url): try: CATEGORIES() dialog = xbmcgui.Dialog() i = dialog.ok(url, "[COLOR beige]XBMC daha hizli ve sorunsuz kullanmaniz icindir.[/COLOR]","[COLOR yellow]Bu Islemleri SIK SIK YAPINIZ !![/COLOR]") except: pass def get_params(): param=[] paramstring=sys.argv[2] if len(paramstring)>=2: params=sys.argv[2] cleanedparams=params.replace('?','') if (params[len(params)-1]=='/'): params=params[0:len(params)-2] pairsofparams=cleanedparams.split('&') param={} for i in range(len(pairsofparams)): splitparams={} splitparams=pairsofparams[i].split('=') if (len(splitparams))==2: param[splitparams[0]]=splitparams[1] return param def addLink(name,url,iconimage): ok=True liz=xbmcgui.ListItem(name, iconImage="DefaultVideo.png", thumbnailImage=iconimage) liz.setInfo( type="Video", infoLabels={ "Title": name } ) ok=xbmcplugin.addDirectoryItem(handle=int(sys.argv[1]),url=url,listitem=liz) return ok def addDir(name,url,mode,iconimage): u=sys.argv[0]+"?url="+urllib.quote_plus(url)+"&mode="+str(mode)+"&name="+urllib.quote_plus(name) ok=True liz=xbmcgui.ListItem(name, iconImage="DefaultFolder.png", thumbnailImage=iconimage) liz.setInfo( type="Video", infoLabels={ "Title": name } ) ok=xbmcplugin.addDirectoryItem(handle=int(sys.argv[1]),url=u,listitem=liz,isFolder=True) return ok params=get_params() url=None name=None mode=None try: url=urllib.unquote_plus(params["url"]) except: pass try: name=urllib.unquote_plus(params["name"]) except: pass try: mode=int(params["mode"]) except: pass print "Mode: "+str(mode) print "URL: "+str(url) print "Name: "+str(name) if mode==None or url==None or len(url)<1: print "" CATEGORIES() elif mode==1: print ""+url MAINDEL(name) elif mode==2: print ""+url MAINDEL2(name) elif mode==11: print ""+url MAINDEL3(name) elif mode==12: print ""+url MAINDEL4(name) elif mode==13: print ""+url MAINDEL5(name) elif mode==7: print ""+url INFO(url) xbmcplugin.endOfDirectory(int(sys.argv[1]))
gpl-2.0
-1,518,281,774,249,439,200
39
193
0.536585
false
3.391953
false
false
false
hoskerism/reefx
systemmonitor.py
1
2341
#!/user/bin/python from datetime import datetime, timedelta import os from constants import MessageCodes, Sensors, Statuses, DebugLevels import db from workerthread import WorkerThread class SystemMonitor(WorkerThread): def __init__(self, inQueue, outQueue): self.initTime = datetime.now() super(SystemMonitor, self).__init__(inQueue, outQueue) RUNTIME = 900 EXCEPTION_TIMEOUT = 60 FRIENDLY_NAME = "System Monitor" def dowork(self): diskSpace = self.readsensor(Sensors.DISK_SPACE) if diskSpace < 100*10**6: self.setstatus(Statuses.ALERT, "Diskspace {0}MB below 100MB".format(int(diskSpace/10**6))) elif diskSpace < 1000*10**6: self.setstatus(Statuses.WARNING, "Diskspace {0}MB below 1000MB".format(int(diskSpace/10**6))) availableMemory = self.readsensor(Sensors.AVAILABLE_MEMORY) if availableMemory < 30: self.setstatus(Statuses.ALERT, "Available memory {0}% below 25%".format(availableMemory)) elif availableMemory < 50: self.setstatus(Statuses.WARNING, "Available memory {0}% below 30%".format(availableMemory)) # TODO: We can add a CPU fan if necessary cpuTemp = self.readsensor(Sensors.CPU_TEMP) if cpuTemp > 70: self.setstatus(Statuses.ALERT, "CPU temp {0} above 70".format(cpuTemp)) elif cpuTemp > 60: self.setstatus(Statuses.WARNING, "CPU temp {0} above 60".format(cpuTemp)) def getcapabilities(self, request): upTime = datetime.now() - self.initTime self.sensorReadings['SYSTEM_UP_TIME'] = { MessageCodes.VALUE:upTime, MessageCodes.FRIENDLY_VALUE:self.formatTimeDelta(upTime), MessageCodes.FRIENDLY_NAME:'System Up Time' } return super(SystemMonitor, self).getcapabilities(request) def formatTimeDelta(self, upTime): daysPart = "{0} day, ".format(upTime.days) if upTime.days == 1 else "{0} days, ".format(upTime.days) timePart = timedelta(seconds = upTime.seconds) out = daysPart + str(timePart) return out def setup(self): """Nothing to do""" return def teardown(self, message): """Nothing to do""" return
gpl-2.0
1,238,680,166,440,448,800
35.15873
108
0.626655
false
3.818923
false
false
false
ultra-lstm/RNA-GAN
cGAN/utils.py
1
2258
""" Some codes from https://github.com/Newmu/dcgan_code """ from __future__ import division import math import json import random import scipy.misc import numpy as np from time import gmtime, strftime # ----------------------------- # new added functions for pix2pix def load_data(image_path, image_size, input_c_dim, output_c_dim, is_train=False): input_img = imread(image_path) images = np.split(input_img, input_c_dim + output_c_dim, axis=1) half_offset = 8 offset = half_offset * 2 hypersize = image_size + offset fullsize = 512 + offset h1 = int(np.ceil(np.random.uniform(1e-2, offset))) w1 = int(np.ceil(np.random.uniform(1e-2, offset))) conv = [] for image in images: #print(image.shape) top = int((fullsize - image.shape[1]) / 2) bottom = fullsize - image.shape[1] - top image = np.append(np.zeros((image.shape[0], top)), image, axis=1) image = np.append(image, np.zeros((image.shape[0], bottom)), axis=1) left = int((fullsize - image.shape[0]) / 2) right = fullsize - image.shape[0] - left image = np.append(np.zeros((left, image.shape[1])), image, axis=0) image = np.append(image, np.zeros((right, image.shape[1])), axis=0) tmp = scipy.misc.imresize(image, [hypersize, hypersize], interp='nearest') if is_train: image = tmp[h1:h1+image_size, w1:w1+image_size] else: image = tmp[half_offset:half_offset+image_size, half_offset:half_offset+image_size] image = image/127.5 - 1. conv.append(image) return np.stack(conv, axis=2) # ----------------------------- def save_images(images, size, image_path): return imsave(inverse_transform(images), size, image_path) def imread(path): return scipy.misc.imread(path).astype(np.float) def merge(images, size): h, w = images.shape[1], images.shape[2] img = np.zeros((h * size[0], w * size[1], 3)) for idx, image in enumerate(images): i = idx % size[1] j = idx // size[1] img[j*h:j*h+h, i*w:i*w+w, :] = image return img def imsave(images, size, path): return scipy.misc.imsave(path, merge(images, size)) def inverse_transform(images): return (images+1.)/2.
mit
4,987,736,922,287,926,000
29.931507
95
0.605846
false
3.093151
false
false
false
closeio/nylas
migrations/versions/056_message_unique_constraint.py
8
2132
""" Remove duplicated Gmail Message objects and tighten constraints for Gmail messages. Revision ID: 4b4c5579c083 Revises: 1925c535a52d Create Date: 2014-07-17 00:01:09.410292 """ # revision identifiers, used by Alembic. revision = '4b4c5579c083' down_revision = '4b4674f1a726' from alembic import op from sqlalchemy import func def upgrade(): op.drop_constraint('messagecontactassociation_ibfk_1', 'messagecontactassociation', type_='foreignkey') op.drop_constraint('messagecontactassociation_ibfk_2', 'messagecontactassociation', type_='foreignkey') op.create_foreign_key('messagecontactassociation_ibfk_1', 'messagecontactassociation', 'contact', ['contact_id'], ['id'], ondelete='CASCADE') op.create_foreign_key('messagecontactassociation_ibfk_2', 'messagecontactassociation', 'message', ['message_id'], ['id'], ondelete='CASCADE') op.drop_constraint('imapuid_ibfk_2', 'imapuid', type_='foreignkey') op.create_foreign_key('imapuid_ibfk_2', 'imapuid', 'message', ['message_id'], ['id'], ondelete='CASCADE') from inbox.models import Message from inbox.models.session import session_scope with session_scope(versioned=False) \ as db_session: groups = db_session.query( Message.id, Message.thread_id, Message.g_msgid)\ .filter(~Message.g_msgid.is_(None))\ .group_by(Message.thread_id, Message.g_msgid).having( func.count(Message.id) > 1).all() for message_id, thread_id, g_msgid in groups: print "deleting duplicates of ({}, {}), saving {}".format( thread_id, g_msgid, message_id) db_session.query(Message).filter( Message.thread_id == thread_id, Message.g_msgid == g_msgid, Message.id != message_id).delete() op.execute('ALTER TABLE message ADD UNIQUE INDEX ix_message_thread_id_g_msgid (thread_id, g_msgid)') def downgrade(): pass
agpl-3.0
2,814,679,746,964,648,400
38.481481
104
0.613039
false
3.883424
false
false
false
hellodata/wubacrawler
wubacrawler2_v1.1/process/start.py
1
2178
# -*- coding:utf-8 -*- """ start.py获取详细页html源码的程序 存放在数据库code_0507里面 start2.py对详细页html源码解析 存放在数据库code_0507里面 功能:先爬取……后解析…… """ import redis import time from process.html_save import FetchDetailHtml from process.list_page import SummaryFetchParse def main(): """ 爬取详细页源码 存入code_0507数据库中 """ r = redis.Redis(host = 'localhost', port = 6379, db = 1) r.flushdb() url_set = set() #河南省 + 新疆省 #湖北省 + 湖南省 + 黑龙江省 + 吉林省 +广东省 #四川省 + 云南省 + 贵州省 + 陕西省 #城市简称列表 city_name_list = ['bt','chifeng','erds','hu','sjz','xj','changji','bygl','yili','aks', 'ks','hami','klmy','betl','tlf','ht', 'shz','kzls','ale','wjq','tmsk', 'ganzhou','nc','liuzhou','qinzhou','haikou', 'zz','luoyang','xx',] #城市简称字典 city_dict = {'bt':24,'chifeng':32,'erds':13,'hu':48,'sjz':70,'xj':70,'changji':6,'bygl':7,'yili':5,'aks':6, 'ks':4,'hami':4,'klmy':4,'betl':4,'tlf':4,'ht':4, 'shz':6,'kzls':3,'ale':3,'wjq':3,'tmsk':3, 'ganzhou':31,'nc':70,'liuzhou':46,'qinzhou':5,'haikou':23, 'zz':70,'luoyang':28,'xx':12,} while len(city_name_list) > 0: city_name = city_name_list.pop() print "======城市%s爬取开始======"%(city_name) page_nums = city_dict.get(city_name) page_num_start = 1 page_num_end = 2 while page_num_start <= page_nums: p1 = SummaryFetchParse(r, url_set, page_num_start, page_num_end) p1.get_city_list(city_name) p2 = FetchDetailHtml(r, url_set) p2.parser_to_save() print "*********本次爬取结束***********" time.sleep(60*1) page_num_start = page_num_end + 1 page_num_end = page_num_end + 2 print "=====城市%s爬取结束====="%(city_name) if __name__ == "__main__": main()
artistic-2.0
2,794,046,091,661,662,700
25.465753
111
0.495859
false
2.251748
false
false
false
Evanus/redstoner-utils
misc.py
1
9100
#pylint: disable = F0401 from helpers import * from time import time as now from time import sleep from sys import exc_info import thread import org.bukkit.inventory.ItemStack as ItemStack import org.bukkit.Bukkit as Bukkit from basecommands import simplecommand @hook.event("player.PlayerJoinEvent", "monitor") def on_join(event): """ Welcome new players """ player = event.getPlayer() # send welcome broadcast if not player.hasPlayedBefore(): broadcast("utils.greet_new", "\n&a&lPlease welcome &f" + player.getDisplayName() + " &a&lto Redstoner!\n") # clear out some eventual crap before msg(player, " \n \n \n \n \n \n \n \n \n \n \n \n ") msg(player, " &4Welcome to the Redstoner Server!") msg(player, " &6Before you ask us things, take a quick") msg(player, " &6look at &a&nredstoner.com/info") msg(player, " \n&6thank you and happy playing ;)") msg(player, " \n \n") # teleport to spawn when spawning inside portal loginloc = player.getLocation().getBlock().getType() headloc = player.getEyeLocation().getBlock().getType() if "PORTAL" in [str(headloc), str(loginloc)]: msg(player, "&4Looks like you spawned in a portal... Let me help you out") msg(player, "&6You can use /back if you &nreally&6 want to go back") player.teleport(player.getWorld().getSpawnLocation()) """ This code fixes /up 0 destroying/replacing blocks in plots that are not yours. If you use //up, this is caught by plotme and cancelled if you are not allowed to build. However, if you use //up, WorldEdit does the following on "low" priority: * Change the command to /up with the same arguments * Run another event with /up but its cancelled (dunno why it does this) Keep in mind that, on "lowest" priority, PlotMe might cancel events. """ dup = 0 #Used to store when someone used //up @hook.event("player.PlayerCommandPreprocessEvent", "lowest") def cmd_event(event): global dup if event.getMessage().split(" ")[0] in ("//up", "/worldedit:/up"): dup = True @hook.event("player.PlayerCommandPreprocessEvent", "normal") def cmd_event2(event): global dup args = event.getMessage().split(" ") if args[0].lower() in ("/up", "/worldedit:up"): if dup: #If plotme cancelled this, it will not matter. This lets it through but PlotMe doesn't. dup = False elif not event.isCancelled(): event.setCancelled(True) event.getPlayer().chat("//up " + " ".join(args[1:])) """ Disabled while builder can't access Trusted @hook.event("player.PlayerGameModeChangeEvent", "low") def on_gamemode(event): user = event.getPlayer() if str(event.getNewGameMode()) != "SPECTATOR" and user.getWorld().getName() == "Trusted" and not user.hasPermission("mv.bypass.gamemode.Trusted"): event.setCancelled(True) """ @hook.event("player.PlayerBedEnterEvent") def on_bed_enter(event): world = event.getPlayer().getWorld() if world.getName() in ("Survival_1", "TrustedSurvival_1"): for player in world.getPlayers(): player.setSleepingIgnored(True) @hook.event("player.PlayerTeleportEvent") def on_player_teleport(event): """ Disable spectator teleportation """ player = event.getPlayer() if not event.isCancelled() and str(event.getCause()) == "SPECTATE" and not player.hasPermission("utils.tp.spectate"): event.setCancelled(True) msg(event.getPlayer(), "&cSpectator teleportation is disabled") @hook.event("block.BlockFromToEvent", "highest") def on_flow(event): if event.isCancelled(): return block = event.getToBlock() if block.getWorld().getName() == "Creative" and rs_material_broken_by_flow(str(block.getType())): event.setCancelled(True) def rs_material_broken_by_flow(material): if material in ("REDSTONE", "LEVER", "TRIPWIRE"): return True parts = material.split("_") length = len(parts) return length > 1 and (parts[0] == "DIODE" or parts[1] in ("TORCH", "WIRE", "BUTTON", "HOOK") or (length == 3 and parts[1] == "COMPARATOR")) @simplecommand("sudo", usage = "<player> [cmd..]", description = "Makes <player> write [cmd..] in chat", amin = 2, helpNoargs = True) def on_sudo_command(sender, command, label, args): target = args[0] cmd = " ".join(args[1:]) msg(sender, "&2[SUDO] &rRunning '&e%s&r' as &3%s" % (cmd, target)) is_cmd = cmd[0] == "/" is_console = target.lower() in ["server", "console"] if is_console: server.dispatchCommand(server.getConsoleSender(), cmd[1:] if is_cmd else cmd) return None target_player = server.getPlayer(target) if target_player and uid(target_player) not in pythoners: target_player.chat(cmd) return None return "&cPlayer %s not found!" % target @simplecommand("me", usage = "[message..]", description = "Sends a message in third person", helpNoargs = True) def on_me_command(sender, command, label, args): text = colorify("&7- %s &7%s " % (sender.getDisplayName() if isinstance(sender, Player) else "&9CONSOLE", u"\u21E6")) broadcast("utils.me", text + " ".join(args), usecolor = sender.hasPermission("essentials.chat.color")) return None @hook.command("pluginversions") def on_pluginversions_command(sender, command, label, args): """ /pluginversions print all plugins + versions; useful when updating plugins """ try: plugin_header(sender, "Plugin versions") plugins = [pl.getDescription() for pl in list(ArrayList(java_array_to_list(server.getPluginManager().getPlugins())))] info(type(plugins[0]).__name__) plugins.sort(key = lambda pl: pl.getDescription().getName()) msg(sender, "&3Listing all " + str(len(plugins)) + " plugins and their version:") for plugin in plugins: msg(sender, "&6" + pl.getDescription().getName() + "&r: &e" + pl.getDescription().getVersion()) return True except: error(trace()) @hook.command("echo") def on_echo_command(sender, command, label, args): """ /echo essentials echo sucks and prints mail alerts sometimes """ msg(sender, " ".join(args).replace("\\n", "\n")) def eval_thread(sender, code): """ /pyeval run python ingame """ try: result = eval(code) msg(sender, ">>> %s: %s" % (colorify("&3") + type(result).__name__, colorify("&a") + unicode(result) + "\n "), usecolor = False) except: e = exc_info()[1] try: eclass = e.__class__ except AttributeError: eclass = type(e) msg(sender, ">>> %s: %s" % (eclass.__name__, e) + "\n ", False, "c") thread.exit() pythoners = [ "e452e012-2c82-456d-853b-3ac8e6b581f5", # Nemes "ae795aa8-6327-408e-92ab-25c8a59f3ba1", # jomo "305ccbd7-0589-403e-a45b-d791dcfdee7d" # PanFritz ] @simplecommand("pyeval", usage = "[code..]", description = "Runs python [code..] and returns the result", helpNoargs = True) def on_pyeval_command(sender, command, label, args): if is_player(sender) and uid(sender) not in pythoners: return noperm(sender) msg(sender, " ".join(args), False, "e") thread.start_new_thread(eval_thread, (sender, " ".join(args))) return None @simplecommand("tempadd", usage = "<user> <group> [duration]", description = "Temporarily adds <user> to <group> for \n[duration] minutes. Defaults to 1 week.", helpNoargs = True, helpSubcmd = True, amin = 2, amax = 3) def tempadd_command(sender, command, label, args): if not sender.hasPermission("permissions.manage.membership." + args[1]): return "&cYou do not have permission to manage that group!" if len(args) == 3: if not args[2].isdigit(): return "&cThats not a number!" duration = int(args[2]) * 60 else: duration = 604800 if duration <= 0: return "&cThats too short!" cmd = "pex user %s group add %s * %s" % (args[0], args[1], duration) runas(sender, cmd) m, s = divmod(duration, 60) h, m = divmod(m, 60) d, h = divmod(h, 24) return "&aAdded to group for %dd%dh%dm" % (d, h, m) @hook.command("modules") def on_modules_command(sender, command, label, args): """ /modules list all modules, unloaded modules in red """ plugin_header(sender, "Modules") msg(sender, ", ".join([(("&a" if mod in shared["modules"] else "&c") + mod) for mod in shared["load_modules"]])) """ Something I'm planning for schematics @hook.event("player.PlayerCommandPreprocessEvent", "low") def on_command(event): msg = " ".split(event.getMessage()) if len(msg) < 3: return if msg[0].lower() not in ("/schematic", "/schem"): return if msg[1].lower() not in ("save", "load"): return msg[2] = event.getPlayer().getName() + "/" + msg[2] """
mit
-4,678,912,113,602,412,000
32.828996
150
0.621978
false
3.36414
false
false
false
tensorflow/probability
tensorflow_probability/python/internal/backend/numpy/ops.py
1
22151
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Numpy implementations of TensorFlow functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import contextlib import functools # Dependency imports import numpy as np import numpy as onp # Avoid JAX rewrite. # pylint: disable=reimported import six from tensorflow_probability.python.internal.backend.numpy import _utils as utils from tensorflow_probability.python.internal.backend.numpy import nest from tensorflow_probability.python.internal.backend.numpy.gen import tensor_shape try: # May not be available, not a core dep for TFP. import wrapt # pylint: disable=g-import-not-at-top except ImportError: wrapt = None __all__ = [ 'bitcast', 'broadcast_dynamic_shape', 'broadcast_static_shape', 'broadcast_to', 'cast', 'clip_by_value', 'constant', 'control_dependencies', 'convert_to_tensor', 'custom_gradient', 'device', 'enable_v2_behavior', 'ensure_shape', 'executing_eagerly', 'get_static_value', 'identity', 'init_scope', 'is_tensor', 'name_scope', 'newaxis', 'register_tensor_conversion_function', 'stop_gradient', 'GradientTape', 'Module', 'Tensor', 'Variable', # 'gradients', ] JAX_MODE = False if JAX_MODE: import jax # pylint: disable=g-import-not-at-top class _NullContext(object): def __init__(self, *args, **kwargs): pass def __enter__(self): pass def __exit__(self, type_arg, value_arg, traceback_arg): return False # False values do not suppress exceptions. def _broadcast_static_shape(shape_x, shape_y): """Reimplements `tf.broadcast_static_shape` in JAX/NumPy.""" if (tensor_shape.TensorShape(shape_x).ndims is None or tensor_shape.TensorShape(shape_y).ndims is None): return tensor_shape.TensorShape(None) shape_x = tuple(tensor_shape.TensorShape(shape_x).as_list()) shape_y = tuple(tensor_shape.TensorShape(shape_y).as_list()) try: if JAX_MODE: error_message = 'Incompatible shapes for broadcasting' return tensor_shape.TensorShape(lax.broadcast_shapes(shape_x, shape_y)) error_message = ('shape mismatch: objects cannot be broadcast to' ' a single shape') return tensor_shape.TensorShape( np.broadcast(np.zeros(shape_x), np.zeros(shape_y)).shape) except ValueError as e: # Match TF error message if error_message in str(e): raise ValueError( 'Incompatible shapes for broadcasting: {} and {}'.format( shape_x, shape_y)) raise def _broadcast_dynamic_shape(shape_x, shape_y): """Reimplements `tf.broadcast_dynamic_shape` in JAX/NumPy.""" return convert_to_tensor(_broadcast_static_shape(shape_x, shape_y)) broadcast_shape = _broadcast_static_shape def _constant(value, dtype=None, shape=None, name='Const'): # pylint: disable=unused-argument x = convert_to_tensor(value, dtype=dtype) if shape is None: return x if not x.shape: return np.full(shape, x) return np.reshape(x, shape) def _control_dependencies(control_inputs): if control_inputs: for control in control_inputs: if callable(control): control() return _NullContext() tensor_conversion_registry = {} def register_tensor_conversion_function(base_type, conversion_func): # No priority system like TensorFlow yet tensor_conversion_registry[base_type] = conversion_func def _convert_to_tensor(value, dtype=None, dtype_hint=None, name=None): # pylint: disable=unused-argument """Emulates tf.convert_to_tensor.""" dtype = utils.numpy_dtype(dtype) dtype_hint = utils.numpy_dtype(dtype_hint) if is_tensor(value) and not isinstance(value, Variable): # In NumPy mode, we are lenient on the dtype compatibility check because # some codepaths rely on flexible conversion from int/float64 to 32. if dtype is not None and value.dtype != dtype: if JAX_MODE: raise TypeError(('Tensor conversion requested dtype {} for array with ' 'dtype {}: {}').format(dtype, value.dtype, value)) return value.astype(dtype) return value conversion_func = tensor_conversion_registry.get(type(value), _default_convert_to_tensor) ret = None if dtype is None and dtype_hint is not None: try: ret = conversion_func(value, dtype=dtype_hint) except (TypeError, ValueError): pass if ret is None: ret = conversion_func(value, dtype=dtype) return ret def _infer_dtype(value, default_dtype): """Guesses an object's dtype.""" # Need to check for onp type first because onp types are subclasses of Python # types. if hasattr(value, 'dtype'): # Duck-typing onp types return value.dtype elif isinstance(value, bool): return np.bool_ elif isinstance(value, six.integer_types): return np.int32 elif isinstance(value, float): return np.float32 elif isinstance(value, complex): return np.complex128 elif isinstance(value, (tuple, list)): # Try inferring the type from items in the object if possible. for v in nest.flatten(value): if hasattr(v, 'dtype'): return v.dtype try: # Finally fall back to raw types (int, bool). return _infer_dtype(value[0], default_dtype) except (IndexError, TypeError): return default_dtype raise ValueError(('Attempt to convert a value ({})' ' with an unsupported type ({}) to a Tensor.').format( value, type(value))) class _Int64ToInt32Error(TypeError): """Error thrown when trying to convert an int64 to int32.""" def __init__(self, int_value): self.int_value = int_value super(_Int64ToInt32Error, self).__init__('Overflow when casting an int64 to' ' an int32.') class _FloatToIntError(TypeError): """Error thrown when trying to convert a float to an int.""" def _is_int64(value): return value > onp.iinfo(onp.int32).max or value < onp.iinfo(onp.int32).min def _default_convert_to_tensor(value, dtype=None): """Default tensor conversion function for array, bool, int, float, and complex.""" inferred_dtype = _infer_dtype(value, np.float32) # When a dtype is provided, we can go ahead and try converting to the dtype # and force overflow/underflow if an int64 is converted to an int32. if dtype is not None: try: return _default_convert_to_tensor_with_dtype(value, dtype) except _Int64ToInt32Error as e: # Force conversion to int32 if requested return e.int_value # If no dtype is provided, we try the inferred dtype and fallback to int64 or # float32 depending on the type of conversion error we see. try: return _default_convert_to_tensor_with_dtype(value, inferred_dtype) except _Int64ToInt32Error as e: return np.array(value, dtype=np.int64) except _FloatToIntError as e: return np.array(value, dtype=np.float32) class TypeConversionError(TypeError): def __init__(self, value, dtype): super(TypeConversionError, self).__init__( 'Cannot convert {} to array of dtype {}'.format(value, dtype)) class MixedTypesError(ValueError): def __init__(self): super(MixedTypesError, self).__init__('Can\'t convert Python sequence with' ' mixed types to Tensor.') def _default_convert_to_tensor_with_dtype(value, dtype, error_if_mismatch=False): """Converts a value to a tensor with a given dtype. Args: value: An object to be converted to tensor. dtype: A NPTF dtype. error_if_mismatch: Enables a stricter check for use when converting an iterable from a tensor. Returns: A tensor. Raises: TypeConversionError: If type conversion fails. MixedTypesError: If types are mismatched in an iterable context. ValueError: If object isn't convertible to tensor. _Int64ToInt32Error: If trying to convert an int64 to an int32. _FloatToIntError: If trying to convert a float to an int. """ is_arraylike = hasattr(value, 'dtype') if is_arraylike: # Duck-typed for `onp.array`/`onp.generic` arr = np.array(value) if dtype is not None: # arr.astype(None) forces conversion to float64 return arr.astype(dtype) return arr elif isinstance(value, complex): dtype_compatible = np.issubdtype(dtype, np.complexfloating) if not dtype_compatible: if error_if_mismatch: raise MixedTypesError() raise TypeConversionError(value, dtype) elif isinstance(value, bool): # Bool check needs to happen before int check because bools are instances of # int. dtype_compatible = (dtype == np.bool_ or np.issubdtype(dtype, np.integer) or np.issubdtype(dtype, np.floating)) if not dtype_compatible: if error_if_mismatch: raise MixedTypesError() raise TypeError(value, dtype) elif isinstance(value, six.integer_types): if error_if_mismatch and not (np.issubdtype(dtype, np.integer) or np.issubdtype(dtype, np.floating)): raise MixedTypesError() if dtype == np.int32 and _is_int64(value): raise _Int64ToInt32Error(np.array(value, dtype=dtype)) if dtype == np.bool_: # Can't downcast an int to a bool raise TypeConversionError(value, dtype) elif isinstance(value, float): if error_if_mismatch and not (np.issubdtype(dtype, np.integer) or np.issubdtype(dtype, np.floating)): raise MixedTypesError() if np.issubdtype(dtype, np.integer): raise _FloatToIntError( 'Cannot convert {} to array of dtype {}'.format(value, dtype)) if not (np.issubdtype(dtype, np.floating) or np.issubdtype(dtype, np.complexfloating)): raise TypeConversionError(value, dtype) else: # Try to iterate through object and throw ValueError if we can't. if hasattr(value, '__getitem__'): ret = [] error_in_list = False for v in value: ret.append(_default_convert_to_tensor_with_dtype( v, dtype, error_if_mismatch=error_in_list)) error_in_list = True value = ret else: raise ValueError( ('Attempting to convert a value {} with an' ' unsupported type {} to a Tensor.').format(value, type(value))) return np.array(value, dtype=dtype) @contextlib.contextmanager def _init_scope(): yield # --- Begin Public Functions -------------------------------------------------- class GradientTape(object): """tf.GradientTape stub.""" def __init__(self, persistent=False, watch_accessed_variables=True): # pylint: disable=unused-argument raise NotImplementedError('GradientTape not currently supported in JAX and ' 'NumPy backends.') def __enter__(self): return self def __exit__(self, typ, value, traceback): # pylint: disable=unused-argument pass def watch(self, tensor): # pylint: disable=unused-argument pass def gradient(self, target, sources, output_gradients=None, # pylint: disable=unused-argument unconnected_gradients=None): # pylint: disable=unused-argument raise NotImplementedError def batch_jacobian(self, target, source, # pylint: disable=unused-argument unconnected_gradients=None, # pylint: disable=unused-argument parallel_iterations=None, experimental_use_pfor=True): # pylint: disable=unused-argument raise NotImplementedError bitcast = utils.copy_docstring( 'tf.bitcast', lambda input, type, name=None: convert_to_tensor( # pylint: disable=g-long-lambda input, dtype_hint=type).view(type)) broadcast_dynamic_shape = utils.copy_docstring( 'tf.broadcast_dynamic_shape', _broadcast_dynamic_shape) broadcast_static_shape = utils.copy_docstring( 'tf.broadcast_static_shape', _broadcast_static_shape) broadcast_to = utils.copy_docstring( 'tf.broadcast_to', lambda input, shape, name=None: np.broadcast_to(input, shape)) def _cast(x, dtype): x = np.asarray(x) if (np.issubdtype(x.dtype, np.complexfloating) and not np.issubdtype(dtype, np.complexfloating)): x = np.real(x) return x.astype(dtype) cast = utils.copy_docstring( 'tf.cast', lambda x, dtype, name=None: _cast(x, utils.numpy_dtype(dtype))) clip_by_value = utils.copy_docstring( 'tf.clip_by_value', lambda t, clip_value_min, clip_value_max, name=None: # pylint: disable=g-long-lambda np.clip(t, clip_value_min, clip_value_max)) constant = utils.copy_docstring( 'tf.constant', _constant) control_dependencies = utils.copy_docstring( 'tf.control_dependencies', _control_dependencies) convert_to_tensor = utils.copy_docstring( 'tf.convert_to_tensor', _convert_to_tensor) def _custom_gradient(f): """JAX implementation of tf.custom_gradient.""" if not JAX_MODE: # Numpy backend ignores custom gradients, so we do too. return lambda *args, **kwargs: f(*args, **kwargs)[0] @jax.custom_gradient @functools.wraps(f) def wrapped(*args, **kwargs): value, vjp = f(*args, **kwargs) def vjp_(cts_out): cts_in = vjp(cts_out) if isinstance(cts_in, list): cts_in = tuple(cts_in) return cts_in return value, vjp_ return wrapped custom_gradient = utils.copy_docstring( 'tf.custom_gradient', _custom_gradient) device = lambda _: _NullContext() def _ensure_shape(x, shape, name=None): # pylint: disable=unused-argument x_shape = tensor_shape.TensorShape(x.shape) shape = tensor_shape.TensorShape(shape) if not shape.is_compatible_with(x_shape): msg = 'Shape of tensor x {} is not compatible with expected shape {}' raise ValueError(msg.format(x_shape, shape)) return x ensure_shape = utils.copy_docstring( 'tf.ensure_shape', _ensure_shape) executing_eagerly = utils.copy_docstring( 'tf.executing_eagerly', lambda: True) def _get_static_value_jax(tensor, partial=False): """JAX implementation of tf.get_static_value.""" del partial if isinstance(tensor, jax.core.Tracer): return None if isinstance(tensor, NumpyVariable): return None if isinstance(tensor, Module): return None if isinstance(tensor, np.ndarray): return onp.array(tensor) return tensor def _get_static_value_numpy(tensor, partial=False): """NumPy implementation of tf.get_static_value.""" del partial if isinstance(tensor, NumpyVariable): return None if isinstance(tensor, Module): return None return tensor get_static_value = utils.copy_docstring( 'tf.get_static_value', _get_static_value_jax if JAX_MODE else _get_static_value_numpy) identity = utils.copy_docstring( 'tf.identity', lambda input, name=None: np.array(input)) is_tensor = utils.copy_docstring( 'tf.is_tensor', lambda x: isinstance(x, Tensor)) init_scope = utils.copy_docstring('tf.init_scope', _init_scope) class name_scope(object): # pylint: disable=invalid-name """A context manager for use when defining a Python op. This context manager pushes a name scope, which will make the name of all operations added within it have a prefix. For example, to define a new Python op called `my_op`: ```python def my_op(a, b, c, name=None): with tf.name_scope("MyOp") as scope: a = tf.convert_to_tensor(a, name="a") b = tf.convert_to_tensor(b, name="b") c = tf.convert_to_tensor(c, name="c") # Define some computation that uses `a`, `b`, and `c`. return foo_op(..., name=scope) ``` When executed, the Tensors `a`, `b`, `c`, will have names `MyOp/a`, `MyOp/b`, and `MyOp/c`. If the scope name already exists, the name will be made unique by appending `_n`. For example, calling `my_op` the second time will generate `MyOp_1/a`, etc. """ @property def name(self): return self._name def __init__(self, name, *args, **kwargs): del args, kwargs self._name = name def __enter__(self): return self._name def __exit__(self, type_arg, value_arg, traceback_arg): return False # False values do not suppress exceptions. newaxis = np.newaxis if JAX_MODE: from jax import lax # pylint: disable=g-import-not-at-top stop_gradient = utils.copy_docstring( 'tf.stop_gradient', lambda input, name=None: lax.stop_gradient(input)) else: stop_gradient = utils.copy_docstring( 'tf.stop_gradient', lambda input, name=None: np.array(input)) def _convert_tensorshape_to_tensor(value, dtype=None): """Copied from TF's TensorShape conversion.""" if not value.is_fully_defined(): raise ValueError( 'Cannot convert a partially known TensorShape to a Tensor: {}'.format( value)) value_list = value.as_list() int64_value = 0 for dim in value_list: if dim >= 2**31: int64_value = dim break if dtype is not None: if dtype not in (np.int32, np.int64): raise TypeConversionError(value, dtype) if dtype == np.int32 and int64_value: raise ValueError('Cannot convert a TensorShape to dtype int32; ' 'a dimension is too large ({})'.format(int64_value)) else: dtype = np.int64 if int64_value else np.int32 return convert_to_tensor(value_list, dtype=dtype) register_tensor_conversion_function(tensor_shape.TensorShape, _convert_tensorshape_to_tensor) def _convert_dimension_to_tensor(value, dtype=None): dtype = dtype or np.int32 if dtype not in (np.int32, np.int64): raise TypeConversionError(value, dtype) return convert_to_tensor(tensor_shape.dimension_value(value), dtype=dtype) register_tensor_conversion_function(tensor_shape.Dimension, _convert_dimension_to_tensor) class NumpyVariable(getattr(wrapt, 'ObjectProxy', object)): """Stand-in for tf.Variable.""" __slots__ = ('initializer',) # pylint: disable=unused-argument def __init__( self, initial_value=None, trainable=True, validate_shape=True, caching_device=None, name=None, variable_def=None, dtype=None, import_scope=None, constraint=None, shape=None): assert constraint is None v = convert_to_tensor(initial_value) if dtype is not None: v = v.astype(utils.numpy_dtype(dtype)) super(NumpyVariable, self).__init__(v) self._self_name = name self.initializer = None # pylint: enable=unused-argument @property def name(self): return self._self_name if self._self_name is not None else str(id(self)) def __array__(self, dtype=None): if dtype is not None: dtype = utils.numpy_dtype(dtype) return self.__wrapped__.__array__(dtype) # Passing in dtype=None to __array__ has differing behavior in numpy. # When an `np.ndarray` has `.__array__(None)` invoked, the array is casted # to `float64`. Thus we handle this case separately. return self.__wrapped__.__array__() def assign(self, value, **_): super(NumpyVariable, self).__init__(onp.array(value, dtype=self.dtype)) return self def assign_add(self, value, **_): super(NumpyVariable, self).__init__( onp.array(self, dtype=self.dtype) + onp.array(value, dtype=self.dtype)) return self def assign_sub(self, value, **_): super(NumpyVariable, self).__init__( onp.array(self, dtype=self.dtype) - onp.array(value, dtype=self.dtype)) return self if JAX_MODE: jax.interpreters.xla.canonicalize_dtype_handlers[NumpyVariable] = ( jax.interpreters.xla.canonicalize_dtype_handlers[onp.ndarray]) jax.interpreters.xla.pytype_aval_mappings[NumpyVariable] = ( jax.interpreters.xla.pytype_aval_mappings[onp.ndarray]) jax.core.pytype_aval_mappings[NumpyVariable] = ( jax.core.pytype_aval_mappings[onp.ndarray]) def _convert_variable_to_tensor(value, dtype=None): return convert_to_tensor(value.__wrapped__, dtype=dtype) register_tensor_conversion_function(NumpyVariable, _convert_variable_to_tensor) Variable = NumpyVariable class _TensorMeta(type(np.ndarray)): @classmethod def __instancecheck__(cls, instance): if JAX_MODE: return isinstance(instance, (jax.xla.DeviceArray, jax.core.Tracer)) return isinstance(instance, np.ndarray) class Tensor(six.with_metaclass(_TensorMeta)): OVERLOADABLE_OPERATORS = frozenset(( # Binary. '__add__', '__radd__', '__sub__', '__rsub__', '__mul__', '__rmul__', '__truediv__', '__rtruediv__', '__floordiv__', '__rfloordiv__', '__mod__', '__rmod__', '__lt__', '__le__', '__gt__', '__ge__', '__ne__', '__eq__', '__and__', '__rand__', '__or__', '__ror__', '__xor__', '__rxor__', '__getitem__', '__pow__', '__rpow__', # Unary. '__invert__', '__neg__', '__abs__', '__matmul__', '__rmatmul__' )) class Module(object): """tf.Module.""" _TF_MODULE_IGNORED_PROPERTIES = frozenset() def __init__(self, name): self._name = name def _no_dependency(self, x): return x @property def trainable_variables(self): return [] @property def variables(self): return [] enable_v2_behavior = lambda: None
apache-2.0
-8,286,430,538,326,064,000
29.98042
110
0.652612
false
3.669814
false
false
false
kshedstrom/pyroms
examples/cobalt-preproc/Clim_bio/make_clim_file_bio_addons.py
1
4460
import subprocess import os import sys import commands import numpy as np import pyroms import pyroms_toolbox from remap_bio_woa import remap_bio_woa from remap_bio_glodap import remap_bio_glodap data_dir_woa = '/archive/u1/uaf/kate/COBALT/' data_dir_glodap = '/archive/u1/uaf/kate/COBALT/' dst_dir='./' src_grd = pyroms_toolbox.BGrid_GFDL.get_nc_BGrid_GFDL('/archive/u1/uaf/kate/COBALT/GFDL_CM2.1_grid.nc', name='ESM2M_NWGOA3') dst_grd = pyroms.grid.get_ROMS_grid('NWGOA3') # define all tracer stuff list_tracer = ['alk', 'cadet_arag', 'cadet_calc', 'dic', 'fed', 'fedet', 'fedi', 'felg', 'fesm', 'ldon', 'ldop', 'lith', 'lithdet', 'nbact', 'ndet', 'ndi', 'nlg', 'nsm', 'nh4', 'no3', 'o2', 'pdet', 'po4', 'srdon', 'srdop', 'sldon', 'sldop', 'sidet', 'silg', 'sio4', 'nsmz', 'nmdz', 'nlgz'] tracer_longname = ['Alkalinity', 'Detrital CaCO3', 'Detrital CaCO3', 'Dissolved Inorganic Carbon', 'Dissolved Iron', 'Detrital Iron', 'Diazotroph Iron', 'Large Phytoplankton Iron', 'Small Phytoplankton Iron', 'labile DON', 'labile DOP', 'Lithogenic Aluminosilicate', 'lithdet', 'bacterial', 'ndet', 'Diazotroph Nitrogen', 'Large Phytoplankton Nitrogen', 'Small Phytoplankton Nitrogen', 'Ammonia', 'Nitrate', 'Oxygen', 'Detrital Phosphorus', 'Phosphate', 'Semi-Refractory DON', 'Semi-Refractory DOP', 'Semilabile DON', 'Semilabile DOP', 'Detrital Silicon', 'Large Phytoplankton Silicon', 'Silicate', 'Small Zooplankton Nitrogen', 'Medium-sized zooplankton Nitrogen', 'large Zooplankton Nitrogen'] tracer_units = ['mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'g/kg', 'g/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg', 'mol/kg'] #------- WOA13 --------------------------------- id_tracer_update_woa = [19,20,22,29] list_tracer_update_woa = [] tracer_longname_update_woa = [] tracer_units_update_woa = [] for idtra in id_tracer_update_woa: print list_tracer[idtra] for idtra in id_tracer_update_woa: # add to tracer update list_tracer_update_woa.append(list_tracer[idtra]) tracer_longname_update_woa.append(tracer_longname[idtra]) tracer_units_update_woa.append(tracer_units[idtra]) for mm in np.arange(12): clim_file = dst_dir + dst_grd.name + '_clim_bio_GFDL+WOA+GLODAP_m' + str(mm+1).zfill(2) + '.nc' print '\nBuild CLIM file for month', mm for ktr in np.arange(len(list_tracer_update_woa)): ctra = list_tracer_update_woa[ktr] if ctra == 'sio4': ctra = 'si' mydict = {'tracer':list_tracer_update_woa[ktr],'longname':tracer_longname_update_woa[ktr],'units':tracer_units_update_woa[ktr],'file':data_dir_woa + ctra + '_WOA13-CM2.1_monthly.nc', \ 'frame':mm} remap_bio_woa(mydict, src_grd, dst_grd, dst_dir=dst_dir) out_file = dst_dir + dst_grd.name + '_clim_bio_' + list_tracer_update_woa[ktr] + '.nc' command = ('ncks', '-a', '-A', out_file, clim_file) subprocess.check_call(command) os.remove(out_file) #--------- GLODAP ------------------------------- id_tracer_update_glodap = [0,3] list_tracer_update_glodap = [] tracer_longname_update_glodap = [] tracer_units_update_glodap = [] for idtra in id_tracer_update_glodap: print list_tracer[idtra] for idtra in id_tracer_update_glodap: # add to tracer update list_tracer_update_glodap.append(list_tracer[idtra]) tracer_longname_update_glodap.append(tracer_longname[idtra]) tracer_units_update_glodap.append(tracer_units[idtra]) for mm in np.arange(12): clim_file = dst_dir + dst_grd.name + '_clim_bio_GFDL+WOA+GLODAP_m' + str(mm+1).zfill(2) + '.nc' print '\nBuild CLIM file for month', mm for ktr in np.arange(len(list_tracer_update_glodap)): ctra = list_tracer_update_glodap[ktr] mydict = {'tracer':list_tracer_update_glodap[ktr],'longname':tracer_longname_update_glodap[ktr],'units':tracer_units_update_glodap[ktr],'file':data_dir_glodap + ctra + '_GLODAP-ESM2M_annual.nc', \ 'frame':mm} remap_bio_glodap(mydict, src_grd, dst_grd, dst_dir=dst_dir) out_file = dst_dir + dst_grd.name + '_clim_bio_' + list_tracer_update_glodap[ktr] + '.nc' command = ('ncks', '-a', '-A', out_file, clim_file) subprocess.check_call(command) os.remove(out_file)
bsd-3-clause
6,384,273,527,730,413,000
51.470588
695
0.64148
false
2.505618
false
false
false
Seeker1911/talent
server/talent/migrations/0002_auto_20160919_1522.py
1
1432
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2016-09-19 15:22 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('talent', '0001_initial'), ] operations = [ migrations.AlterField( model_name='musicians', name='bio', field=models.TextField(blank=True, default=None, max_length=500, null=True), ), migrations.AlterField( model_name='musicians', name='company', field=models.CharField(blank=True, default=None, max_length=200, null=True), ), migrations.AlterField( model_name='musicians', name='genre', field=models.CharField(blank=True, default=None, max_length=200, null=True), ), migrations.AlterField( model_name='musicians', name='location', field=models.CharField(blank=True, default=None, max_length=30, null=True), ), migrations.AlterField( model_name='musicians', name='phone', field=models.CharField(default=None, max_length=15, null=True), ), migrations.AlterField( model_name='musicians', name='social', field=models.CharField(blank=True, default=None, max_length=200, null=True), ), ]
mit
4,036,881,197,054,677,000
30.822222
88
0.569832
false
4.045198
false
false
false
CityofPittsburgh/pittsburgh-purchasing-suite
purchasing_test/integration/conductor/test_conductor.py
1
39808
# -*- coding: utf-8 -*- import json import datetime import urllib2 from mock import Mock, patch from flask import session from werkzeug.datastructures import ImmutableMultiDict from purchasing.users.models import User from purchasing.data.contracts import ContractBase from purchasing.data.contract_stages import ContractStage, ContractStageActionItem from purchasing.data.stages import Stage from purchasing.data.flows import Flow from purchasing.opportunities.models import Opportunity from purchasing.extensions import mail from purchasing.conductor.util import assign_a_contract from purchasing_test.factories import ContractTypeFactory, DepartmentFactory, CategoryFactory from purchasing_test.test_base import BaseTestCase from purchasing_test.util import ( insert_a_contract, insert_a_stage, insert_a_flow, insert_a_role, insert_a_user ) class TestConductorSetup(BaseTestCase): def setUp(self): super(TestConductorSetup, self).setUp() # create a conductor and general staff person self.county_type = ContractTypeFactory.create(**{ 'name': 'County', 'allow_opportunities': True, 'managed_by_conductor': True }) self.department = DepartmentFactory.create(**{'name': 'test department'}) self.conductor_role_id = insert_a_role('conductor') self.staff_role_id = insert_a_role('staff') self.conductor = insert_a_user(email='[email protected]', role=self.conductor_role_id) self.staff = insert_a_user(email='[email protected]', role=self.staff_role_id) self.conductor2 = insert_a_user(email='[email protected]', role=self.conductor_role_id) # create three stages, and set up a flow between them self.stage1 = insert_a_stage( name='stage1', send_notifs=True, post_opportunities=True, default_message='i am a default message' ) self.stage2 = insert_a_stage(name='stage2', send_notifs=True, post_opportunities=False) self.stage3 = insert_a_stage(name='stage3', send_notifs=False, post_opportunities=False) self.flow = insert_a_flow(stage_ids=[self.stage1.id, self.stage2.id, self.stage3.id]) self.flow2 = insert_a_flow(name='test2', stage_ids=[self.stage1.id, self.stage3.id, self.stage2.id]) self.simple_flow = insert_a_flow(name='simple', stage_ids=[self.stage1.id]) # create two contracts self.contract1 = insert_a_contract( contract_type=self.county_type, description='scuba supplies', financial_id=123, expiration_date=datetime.date.today(), properties=[{'key': 'Spec Number', 'value': '123'}], is_visible=True, department=self.department, has_metrics=True ) self.contract2 = insert_a_contract( contract_type=self.county_type, description='scuba repair', financial_id=456, expiration_date=datetime.date.today() + datetime.timedelta(120), properties=[{'key': 'Spec Number', 'value': '456'}], is_visible=True, has_metrics=True ) self.category = CategoryFactory.create() self.login_user(self.conductor) self.detail_view = '/conductor/contract/{}/stage/{}' self.transition_view = '/conductor/contract/{}/stage/{}/' def assign_contract(self, flow=None, contract=None, start_time=None): flow = flow if flow else self.flow contract = contract if contract else self.contract1 start_time = start_time if start_time else datetime.datetime.now() assign_a_contract(contract, flow, self.conductor, start_time=start_time) return contract.children[0] def get_current_contract_stage_id(self, contract, old_stage=None): if contract.current_stage_id is None: return -1 if not old_stage: stage = ContractStage.query.filter( contract.current_stage_id == ContractStage.stage_id, contract.id == ContractStage.contract_id ).first() else: stage = ContractStage.query.filter( old_stage.id == ContractStage.stage_id, contract.id == ContractStage.contract_id ).first() return stage.id def build_detail_view(self, contract, old_stage=None): contract = contract.children[0] if len(contract.children) > 0 else contract return self.detail_view.format( contract.id, self.get_current_contract_stage_id(contract, old_stage) ) def tearDown(self): super(TestConductorSetup, self).tearDown() session.clear() class TestConductor(TestConductorSetup): render_templates = True def test_conductor_contract_list(self): index_view = self.client.get('/conductor', follow_redirects=True) self.assert200(index_view) self.assert_template_used('conductor/index.html') # we have 2 contracts _all = self.get_context_variable('_all') self.assertEquals(len(_all), 2) # we can't get to the page normally self.logout_user() index_view = self.client.get('/conductor', follow_redirects=True) self.assert200(index_view) # it should redirect us to the home page self.assert_template_used('public/home.html') self.login_user(self.staff) index_view = self.client.get('/conductor', follow_redirects=True) self.assert200(index_view) # it should redirect us to the home page self.assert_template_used('public/home.html') def test_conductor_start_new(self): self.assertEquals(ContractStage.query.count(), 0) self.assert200(self.client.get('/conductor/contract/new')) self.client.post('/conductor/contract/new', data={ 'description': 'totally new wow', 'flow': self.flow.id, 'assigned': self.conductor.id, 'department': self.department.id }) self.assertEquals(ContractStage.query.count(), len(self.flow.stage_order)) self.assertEquals( ContractBase.query.filter(ContractBase.description == 'totally new wow').first().current_stage_id, self.flow.stage_order[0] ) self.assertEquals(ContractBase.query.count(), 3) def test_conductor_start_existing(self): start_work_url = '/conductor/contract/{}/start'.format(self.contract1.id) old_contract_id = self.contract1.id old_description = self.contract1.description self.assertEquals(ContractStage.query.count(), 0) self.assert200(self.client.get(start_work_url)) self.assertEquals(self.get_context_variable('form').description.data, self.contract1.description) self.client.post(start_work_url, data={ 'description': 'updated!', 'flow': self.flow.id, 'assigned': self.conductor.id, 'department': self.department.id }) old_contract = ContractBase.query.get(old_contract_id) new_contract = ContractBase.query.get(old_contract_id).children[0] self.assertEquals(old_contract.description, old_description) self.assertEquals(new_contract.description, 'updated!') self.assertEquals(ContractStage.query.count(), len(self.flow.stage_order)) self.assertEquals(new_contract.current_stage_id, self.flow.stage_order[0]) self.assertEquals(ContractBase.query.count(), 3) def test_conductor_modify_start(self): assign = self.assign_contract() start_url = '/conductor/contract/{}/start'.format(self.contract1.id) # should load successfully on first stage self.assert200(self.client.get(start_url)) self.client.post(start_url, data={ 'description': 'totally new wow', 'flow': self.flow.id, 'assigned': self.conductor.id, 'department': self.department.id, 'start': datetime.datetime.now() - datetime.timedelta(1) }) transition_url = self.build_detail_view(assign) + '/transition' self.client.get(transition_url) # should redirect on not-first stage self.assertTrue(self.client.get(start_url).status_code, 302) def test_conductor_contract_assign(self): self.assertEquals(ContractStage.query.count(), 0) assign = self.assign_contract() self.assertEquals(ContractStage.query.count(), len(self.flow.stage_order)) self.assertEquals(assign.current_stage_id, self.flow.stage_order[0]) self.assertEquals(assign.assigned_to, self.conductor.id) # re-assigning shouldn't cause problems self.assign_contract() def test_conductor_assign_unstarted_contract(self): self.client.get('/conductor/contract/{}/assign/{}'.format( self.contract1.id, self.staff.id )) self.assert_flashes( 'That user does not have the right permissions to be assigned a contract', 'alert-danger' ) self.assertTrue(self.contract1.assigned is None) self.client.get('/conductor/contract/{}/assign/{}'.format( self.contract1.id, self.conductor.id )) self.assert_flashes( 'Successfully assigned {} to {}!'.format(self.contract1.description, self.conductor.email), 'alert-success' ) self.assertTrue(self.contract1.assigned is not None) self.assertEquals(self.contract1.assigned, self.conductor) def test_conductor_reassign_in_progress(self): self.assign_contract(contract=self.contract1) self.client.get('/conductor/contract/{}/assign/{}'.format( self.contract1.id, self.conductor2.id )) self.assert_flashes( 'Successfully assigned {} to {}!'.format(self.contract1.description, self.conductor2.email), 'alert-success' ) self.assertTrue(self.contract1.assigned is not None) self.assertEquals(self.contract1.assigned, self.conductor2) def test_conductor_contract_detail_view(self): self.assert404(self.client.get(self.detail_view.format(999, 999))) assign = self.assign_contract() detail_view_url = self.build_detail_view(assign) detail = self.client.get(self.build_detail_view(assign)) self.assert200(detail) self.assert_template_used('conductor/detail.html') self.assertEquals(self.get_context_variable('active_tab'), '#activity') self.assertEquals( self.get_context_variable('current_stage').id, self.get_context_variable('active_stage').id ) self.assertEquals(len(self.get_context_variable('actions')), 1) # make sure the redirect works redir = self.client.get('/conductor/contract/{}'.format(assign.id)) self.assertEquals(redir.status_code, 302) self.assertEquals(redir.location, 'http://localhost' + detail_view_url) self.logout_user() # make sure we can't get to it unless we are the right user detail = self.client.get(detail_view_url, follow_redirects=True) self.assert200(detail) # it should redirect us to the home page self.assert_template_used('public/home.html') self.login_user(self.staff) detail = self.client.get(detail_view_url, follow_redirects=True) self.assert200(detail) # it should redirect us to the home page self.assert_template_used('public/home.html') def test_conductor_contract_transition(self): assign = self.assign_contract() transition_url = self.build_detail_view(assign) + '/transition' transition = self.client.get(transition_url) self.assertEquals(transition.status_code, 302) new_page = self.client.get(self.build_detail_view(assign)) self.assertTrue('<a href="#post" aria-controls="post" role="tab" data-toggle="tab">' not in new_page.data) contract_stages = ContractStage.query.all() for stage in contract_stages: if stage.stage_id == self.stage1.id: self.assertTrue(stage.entered is not None and stage.exited is not None) elif stage.stage_id == self.stage2.id: self.assertTrue(stage.entered is not None and stage.exited is None) elif stage.stage_id == self.stage3.id: self.assertTrue(stage.entered is None and stage.exited is None) def test_conductor_auto_fix_dates(self): two_days_ago = datetime.datetime.now() - datetime.timedelta(days=2) assign = self.assign_contract(start_time=two_days_ago) transition_url = self.build_detail_view(assign) + '/transition' self.client.post(transition_url, data={'complete': two_days_ago}) self.client.post(transition_url, data={'complete': two_days_ago}) revert_url = self.build_detail_view(assign) + '/transition?destination={}' self.client.post(revert_url.format(self.stage2.id), data={ 'complete': datetime.datetime.now() - datetime.timedelta(days=1) }) contract_stage_1 = ContractStage.query.filter(ContractStage.stage_id == self.stage1.id).first() contract_stage_2 = ContractStage.query.filter(ContractStage.stage_id == self.stage2.id).first() self.assertNotEquals(contract_stage_1.exited, contract_stage_2.entered) self.client.get(transition_url) self.assertEquals(contract_stage_1.exited, contract_stage_2.entered) def test_conductor_transition_complete_date_validation(self): assign = self.assign_contract() transition_url = self.build_detail_view(assign) + '/transition' early = self.client.post(transition_url, data={ 'complete': datetime.datetime.now() - datetime.timedelta(days=1) }, follow_redirects=True) self.assertTrue('Invalid date (before step start)' in early.data) late = self.client.post(transition_url, data={ 'complete': datetime.datetime.now() + datetime.timedelta(days=1) }, follow_redirects=True) self.assertTrue('Invalid date (in future)' in late.data) contract_stages = ContractStage.query.all() for stage in contract_stages: if stage.id == self.stage1.id: self.assertTrue(stage.entered is not None and stage.exited is not None) elif stage.id == self.stage2.id: self.assertTrue(stage.entered is not None and stage.exited is None) elif stage.id == self.stage3.id: self.assertTrue(stage.entered is None and stage.exited is None) def test_conductor_directed_transition(self): assign = self.assign_contract() self.assertEquals(ContractStageActionItem.query.count(), 1) # transition to the third stage transition_url = self.build_detail_view(assign) + '/transition' self.client.get(transition_url) self.assertEquals(ContractStageActionItem.query.count(), 3) self.client.get(transition_url) self.assertEquals(ContractStageActionItem.query.count(), 5) self.assertEquals(assign.current_stage_id, self.stage3.id) revert_url = self.build_detail_view(assign) + '/transition?destination={}' # revert to the original stage self.client.get(revert_url.format(self.stage1.id)) self.assertEquals(ContractStageActionItem.query.count(), 6) self.assertEquals(assign.current_stage_id, self.stage1.id) self.assertTrue(ContractStage.query.filter(ContractStage.stage_id == self.stage1.id).first().entered is not None) self.assertTrue(ContractStage.query.filter(ContractStage.stage_id == self.stage2.id).first().entered is None) self.assertTrue(ContractStage.query.filter(ContractStage.stage_id == self.stage3.id).first().entered is None) self.assertTrue(ContractStage.query.filter(ContractStage.stage_id == self.stage1.id).first().exited is None) self.assertTrue(ContractStage.query.filter(ContractStage.stage_id == self.stage2.id).first().exited is None) self.assertTrue(ContractStage.query.filter(ContractStage.stage_id == self.stage3.id).first().exited is None) def test_conductor_link_directions(self): assign = self.assign_contract() self.client.get(self.detail_view.format(assign.id, assign.get_current_stage().id) + '/transition') # assert the current stage is stage 2 redir = self.client.get('/conductor/contract/{}'.format(assign.id)) self.assertEquals(redir.status_code, 302) self.assertEquals(redir.location, 'http://localhost' + self.build_detail_view(assign)) # assert we can/can't go the correct locations old_view = self.client.get(self.build_detail_view(assign, old_stage=self.stage1)) self.assert200(old_view) self.assertTrue('This stage has been completed.' in old_view.data) self.assert200(self.client.get(self.build_detail_view(assign, old_stage=self.stage2))) self.assert404(self.client.get(self.build_detail_view(assign, old_stage=self.stage3))) def test_conductor_flow_switching(self): assign = self.assign_contract() self.client.get(self.detail_view.format(assign.id, assign.get_current_stage().id) + '/transition') # we should have three actions -- entered, exited, entered self.assertEquals(ContractStageActionItem.query.count(), 3) self.client.get(self.detail_view.format(assign.id, self.stage2.id) + '/flow-switch/{}'.format(self.flow2.id)) # assert that we have been updated appropriately self.assertEquals(assign.flow_id, self.flow2.id) self.assertEquals(assign.current_stage_id, self.flow2.stage_order[0]) # assert that the action log has been properly cleaned new_actions = ContractStageActionItem.query.all() self.assertEquals(len(new_actions), 2) flow_switch_action, entered_action = 0, 0 for i in new_actions: if i.action_type == 'entered': entered_action += 1 elif i.action_type == 'flow_switch': flow_switch_action += 1 self.assertEquals(entered_action, 1) self.assertEquals(flow_switch_action, 1) # assert that the old contract stages from the previous flow # have had their enter/exit times cleared old_stages = ContractStage.query.filter( ContractStage.flow_id == self.flow.id, ContractStage.contract_id == assign.id ).all() for i in old_stages: self.assertTrue(i.entered is None) self.assertTrue(i.exited is None) # assert that you can transition back to the original flow current_stage = ContractStage.query.filter( ContractStage.stage_id == assign.current_stage_id, ContractStage.contract_id == assign.id, ContractStage.flow_id == assign.flow_id ).first() # switch back to the first stage self.client.get( self.detail_view.format(assign.id, current_stage.id) + '/flow-switch/{}'.format(self.flow.id) ) # assert that our contract properties work as expected self.assertEquals(assign.flow_id, self.flow.id) self.assertEquals(assign.current_stage_id, self.flow.stage_order[0]) # assert that the actions were logged correctly new_actions = ContractStageActionItem.query.all() self.assertEquals(len(new_actions), 3) flow_switch_action, entered_action, restarted_action = 0, 0, 0 for i in new_actions: if i.action_type == 'entered': entered_action += 1 elif i.action_type == 'flow_switch': flow_switch_action += 1 elif i.action_type == 'restarted': restarted_action += 1 self.assertEquals(entered_action, 1) self.assertEquals(flow_switch_action, 2) self.assertEquals(restarted_action, 0) @patch('urllib2.urlopen') def test_url_validation(self, urlopen): mock_open = Mock() mock_open.getcode.side_effect = [ 200, urllib2.HTTPError('', 404, 'broken', {}, file), urllib2.URLError('') ] urlopen.return_value = mock_open post_url = '/conductor/contract/{}/edit/url-exists'.format(self.contract1.id) post1 = self.client.post( post_url, data=json.dumps(dict(no_url='')), headers={'Content-Type': 'application/json;charset=UTF-8'} ) self.assertEquals(json.loads(post1.data).get('status'), 404) post2 = self.client.post( post_url, data=json.dumps(dict(url='works')), headers={'Content-Type': 'application/json;charset=UTF-8'} ) self.assertEquals(json.loads(post2.data).get('status'), 200) post3 = self.client.post( post_url, data=json.dumps(dict(url='doesnotwork')), headers={'Content-Type': 'application/json;charset=UTF-8'} ) self.assertEquals(json.loads(post3.data).get('status'), 404) post4 = self.client.post( post_url, data=json.dumps(dict(url='doesnotwork')), headers={'Content-Type': 'application/json;charset=UTF-8'} ) self.assertEquals(json.loads(post4.data).get('status'), 500) def test_conductor_contract_post_note(self): assign = self.assign_contract() self.assertEquals(ContractStageActionItem.query.count(), 1) detail_view_url = self.build_detail_view(assign) self.client.post(detail_view_url + '?form=activity', data=dict( note='a test note!' )) self.assertEquals(ContractStageActionItem.query.count(), 2) detail_view = self.client.get(detail_view_url) self.assertEquals(len(self.get_context_variable('actions')), 2) self.assertTrue('a test note!' in detail_view.data) # make sure you can't post notes to an unstarted stage self.assert404(self.client.post( self.build_detail_view(assign, old_stage=self.stage3) + '?form=activity', data=dict(note='a test note!') )) # make sure you can't post a note to an unstarted contract self.assert404(self.client.post( self.build_detail_view(self.contract2) + '?form=activity', data=dict(note='a test note!') )) def test_delete_note(self): assign = self.assign_contract() self.assertEquals(ContractStageActionItem.query.count(), 1) detail_view_url = self.build_detail_view(assign) self.client.post(detail_view_url + '?form=activity', data=dict( note='a test note!' )) self.client.post(detail_view_url + '?form=activity', data=dict( note='a second test note!' )) first_note = ContractStageActionItem.query.filter( ContractStageActionItem.action_type == 'activity' ).first() self.assertEquals(ContractStageActionItem.query.count(), 3) self.client.get('/conductor/contract/1/stage/1/note/{}/delete'.format(first_note.id)) self.assertEquals(ContractStageActionItem.query.count(), 2) self.client.get('/conductor/contract/1/stage/1/note/100/delete') self.assert_flashes("That note doesn't exist!", 'alert-warning') self.logout_user() # make sure you can't delete notes randomly self.assert200( self.client.get('/conductor/contract/1/stage/1/note/1/delete', follow_redirects=True) ) self.assertEquals(ContractStageActionItem.query.count(), 2) self.assert_template_used('public/home.html') def test_conductor_stage_default_message(self): assign = self.assign_contract() self.assertEquals(ContractStageActionItem.query.count(), 1) detail_view_url = self.build_detail_view(assign) request = self.client.get(detail_view_url) self.assertTrue('i am a default message' in request.data) def test_conductor_send_update(self): assign = self.assign_contract() self.assertEquals(ContractStageActionItem.query.count(), 1) detail_view_url = self.build_detail_view(assign) # make sure the form validators work bad_post = self.client.post(detail_view_url + '?form=update', data=dict( send_to='bademail', subject='test', body='test' ), follow_redirects=True) self.assertEquals(ContractStageActionItem.query.count(), 1) self.assertEquals(bad_post.status_code, 200) self.assertTrue('One of the supplied emails is invalid' in bad_post.data) with mail.record_messages() as outbox: good_post = self.client.post(detail_view_url + '?form=update', data=dict( send_to='[email protected]; [email protected]', subject='test', body='test', send_to_cc='[email protected]' ), follow_redirects=True) self.assertEquals(len(outbox), 1) self.assertEquals(ContractStageActionItem.query.count(), 2) self.assertTrue('test' in outbox[0].subject) self.assertTrue('with the subject' in good_post.data) self.assertTrue(len(outbox[0].cc), 1) self.assertTrue(len(outbox[0].recipients), 2) good_post_ccs = self.client.post(detail_view_url + '?form=update', data=dict( send_to='[email protected]', subject='test', body='test', send_to_cc='[email protected]; [email protected]' ), follow_redirects=True) self.assertEquals(len(outbox), 2) self.assertEquals(ContractStageActionItem.query.count(), 3) self.assertTrue('test' in outbox[1].subject) self.assertTrue('with the subject' in good_post_ccs.data) self.assertTrue(len(outbox[1].cc), 2) self.assertTrue(len(outbox[1].recipients), 1) def test_conductor_post_to_beacon(self): assign = self.assign_contract() detail_view_url = self.build_detail_view(assign) old_view = self.client.get(detail_view_url) self.assertTrue(self.department.name in old_view.data) self.client.post(detail_view_url + '?form=post', data={ 'contact_email': self.conductor.email, 'title': 'foobar', 'description': 'barbaz', 'planned_publish': datetime.date.today() + datetime.timedelta(1), 'planned_submission_start': datetime.date.today() + datetime.timedelta(2), 'planned_submission_end': datetime.datetime.today() + datetime.timedelta(days=2), 'department': self.department.id, 'subcategories-{}'.format(self.category.id): 'on', 'opportunity_type': self.county_type.id }) self.assertEquals(Opportunity.query.count(), 1) self.assertEquals(ContractStageActionItem.query.count(), 2) detail_view = self.client.get(detail_view_url) self.assertEquals(len(self.get_context_variable('actions')), 2) self.assertTrue('barbaz' in detail_view.data) def test_edit_contract_metadata(self): assign = self.assign_contract() detail_view_url = self.build_detail_view(assign, self.stage1) self.client.post(detail_view_url + '?form=update-metadata', data=dict( financial_id=999 )) self.assertEquals(ContractStageActionItem.query.count(), 2) for i in ContractStageActionItem.query.all(): self.assertTrue(i.action_detail is not None) self.assertEquals(assign.financial_id, '999') def test_edit_contract_complete(self): assign = self.assign_contract(flow=self.simple_flow) should_redir = self.client.get('/conductor/contract/{}/edit/contract'.format(assign.id)) self.assertEquals(should_redir.status_code, 302) self.assertEquals( should_redir.location, 'http://localhost/conductor/contract/{}'.format(assign.id) ) should_redir = self.client.get('/conductor/contract/{}/edit/company'.format(assign.id)) self.assertEquals(should_redir.status_code, 302) self.assertEquals( should_redir.location, 'http://localhost/conductor/contract/{}/edit/contract'.format(assign.id) ) should_redir = self.client.get('/conductor/contract/{}/edit/contacts'.format(assign.id)) self.assertEquals(should_redir.status_code, 302) self.assertEquals( should_redir.location, 'http://localhost/conductor/contract/{}/edit/contract'.format(assign.id) ) def test_contract_completion_session_set(self): with self.client as c: assign = self.assign_contract(flow=self.simple_flow) transition_url = self.build_detail_view(assign) + '/transition' self.client.get(transition_url) self.assertTrue(assign.completed_last_stage()) self.assert200(c.get('/conductor/contract/{}/edit/contract'.format(assign.id))) c.post('conductor/contract/{}/edit/contract'.format(assign.id), data=dict( expiration_date=datetime.date(2020, 1, 1), spec_number='abcd', description='foo' )) self.assertTrue(session['contract-{}'.format(assign.id)] is not None) self.assert200(c.get('/conductor/contract/{}/edit/company'.format(assign.id))) c.post('conductor/contract/{}/edit/company'.format(assign.id), data=ImmutableMultiDict([ ('companies-0-new_company_controller_number', u'1234'), ('companies-0-company_name', u'__None'), ('companies-0-controller_number', u''), ('companies-0-new_company_name', u'test') ])) self.assertTrue(session['companies-{}'.format(assign.id)] is not None) self.assert200(c.get('/conductor/contract/{}/edit/contacts'.format(assign.id))) def test_edit_contract_form_validators(self): with self.client as c: assign = self.assign_contract(flow=self.simple_flow) transition_url = self.build_detail_view(assign) + '/transition' self.client.get(transition_url) # set contract session variable so we can post to the company endpoint c.post('conductor/contract/{}/edit/contract'.format(assign.id), data=dict( expiration_date=datetime.date(2020, 1, 1), spec_number='abcd', description='foo' )) self.assertTrue('companies-{}'.format(assign.id) not in session.keys()) # assert you can't set both controller numbers c.post('conductor/contract/{}/edit/company'.format(assign.id), data=ImmutableMultiDict([ ('companies-0-new_company_controller_number', u'1234'), ('companies-0-company_name', u'__None'), ('companies-0-controller_number', u'1234'), ('companies-0-new_company_name', u'') ])) self.assertTrue('companies-{}'.format(assign.id) not in session.keys()) # assert you can't set both company names c.post('conductor/contract/{}/edit/company'.format(assign.id), data=ImmutableMultiDict([ ('companies-0-new_company_controller_number', u''), ('companies-0-company_name', u'foobar'), ('companies-0-controller_number', u''), ('companies-0-new_company_name', u'foobar') ])) self.assertTrue('companies-{}'.format(assign.id) not in session.keys()) # assert you can't set mismatched names/numbers c.post('conductor/contract/{}/edit/company'.format(assign.id), data=ImmutableMultiDict([ ('companies-0-new_company_controller_number', u''), ('companies-0-company_name', u''), ('companies-0-controller_number', u'1234'), ('companies-0-new_company_name', u'foobar') ])) self.assertTrue('companies-{}'.format(assign.id) not in session.keys()) # assert new works c.post('conductor/contract/{}/edit/company'.format(assign.id), data=ImmutableMultiDict([ ('companies-0-new_company_controller_number', u'1234'), ('companies-0-company_name', u''), ('companies-0-controller_number', u''), ('companies-0-new_company_name', u'foobar') ])) self.assertTrue(session['companies-{}'.format(assign.id)] is not None) session.pop('companies-{}'.format(assign.id)) # assert old works c.post('conductor/contract/{}/edit/company'.format(assign.id), data=ImmutableMultiDict([ ('companies-0-new_company_controller_number', u''), ('companies-0-company_name', u'foobar'), ('companies-0-controller_number', u'1234'), ('companies-0-new_company_name', u'') ])) self.assertTrue(session['companies-{}'.format(assign.id)] is not None) session.pop('companies-{}'.format(assign.id)) # assert multiple companies work c.post('conductor/contract/{}/edit/company'.format(assign.id), data=ImmutableMultiDict([ ('companies-0-new_company_controller_number', u''), ('companies-0-company_name', u'foobar'), ('companies-0-controller_number', u'1234'), ('companies-0-new_company_name', u''), ('companies-1-new_company_controller_number', u'1234'), ('companies-1-company_name', u''), ('companies-1-controller_number', u''), ('companies-1-new_company_name', u'foobar2') ])) self.assertTrue(session['companies-{}'.format(assign.id)] is not None) session.pop('companies-{}'.format(assign.id)) def test_actual_contract_completion(self): with self.client as c: self.assertTrue(self.contract1.is_visible) assign = self.assign_contract(flow=self.simple_flow) transition_url = self.build_detail_view(assign) + '/transition' self.client.get(transition_url) c.post('conductor/contract/{}/edit/contract'.format(assign.id), data=dict( expiration_date=datetime.date(2020, 1, 1), spec_number='abcd', description='foo' )) c.post('conductor/contract/{}/edit/company'.format(assign.id), data=ImmutableMultiDict([ ('companies-0-new_company_controller_number', u'1234'), ('companies-0-company_name', u''), ('companies-0-controller_number', u''), ('companies-0-new_company_name', u'foobar') ])) c.post('/conductor/contract/{}/edit/contacts'.format(assign.id), data=ImmutableMultiDict([ ('companies-0-contacts-0-first_name', 'foo'), ('companies-0-contacts-0-last_name', 'bar'), ('companies-0-contacts-0-phone_number', '123-456-7890'), ('companies-0-contacts-0-email', '[email protected]'), ])) self.assertTrue(assign.parent.is_archived) self.assertFalse(assign.parent.is_visible) self.assertTrue(assign.is_visible) self.assertEquals(ContractBase.query.count(), 3) self.assertEquals(assign.description, 'foo') self.assertEquals(assign.parent.description, 'scuba supplies [Archived]') def test_actual_contract_completion_multi_company(self): with self.client as c: self.assertTrue(self.contract1.is_visible) assign = self.assign_contract(flow=self.simple_flow) transition_url = self.build_detail_view(assign) + '/transition' self.client.get(transition_url) c.post('conductor/contract/{}/edit/contract'.format(assign.id), data=dict( expiration_date=datetime.date(2020, 1, 1), spec_number='abcd', description='foo' )) c.post('conductor/contract/{}/edit/company'.format(assign.id), data=ImmutableMultiDict([ ('companies-0-new_company_controller_number', u'1234'), ('companies-0-company_name', u''), ('companies-0-controller_number', u''), ('companies-0-new_company_name', u'foobar'), ('companies-2-new_company_controller_number', u'5678'), ('companies-2-company_name', u''), ('companies-2-controller_number', u''), ('companies-2-new_company_name', u'foobar3'), ('companies-1-new_company_controller_number', u'1234'), ('companies-1-company_name', u''), ('companies-1-controller_number', u''), ('companies-1-new_company_name', u'foobar2'), ])) c.post('/conductor/contract/{}/edit/contacts'.format(assign.id), data=ImmutableMultiDict([ ('companies-0-contacts-0-first_name', 'foo'), ('companies-0-contacts-0-last_name', 'bar'), ('companies-0-contacts-0-phone_number', '123-456-7890'), ('companies-0-contacts-0-email', '[email protected]'), ('companies-1-contacts-0-first_name', 'foo'), ('companies-1-contacts-0-last_name', 'bar'), ('companies-1-contacts-0-phone_number', '123-456-7890'), ('companies-1-contacts-0-email', '[email protected]'), ('companies-2-contacts-0-first_name', 'foo'), ('companies-2-contacts-0-last_name', 'bar'), ('companies-2-contacts-0-phone_number', '123-456-7890'), ('companies-2-contacts-0-email', '[email protected]'), ])) # we should create two new contract objects self.assertEquals(ContractBase.query.count(), 4) self.assertTrue(assign.parent.is_archived) self.assertFalse(assign.parent.is_visible) # two of the contracts should be children of our parent contract children = assign.parent.children self.assertEquals(len(children), 2) for child in children: self.assertTrue(child.is_visible) self.assertEquals(child.description, 'foo') self.assertEquals(child.parent.description, 'scuba supplies [Archived]') self.assertEquals(assign.assigned, child.assigned) if child.financial_id == 1234: self.assertEquals(len(child.companies), 2) def test_contract_extension(self): assign = self.assign_contract() detail_view_url = self.build_detail_view(assign) extend = self.client.get(detail_view_url + '/extend') self.assertEquals(extend.status_code, 302) self.assertEquals( extend.location, 'http://localhost/conductor/contract/{}/edit/contract'.format(assign.parent.id) ) extend_post = self.client.post('conductor/contract/{}/edit/contract'.format(assign.parent.id), data=dict( expiration_date=datetime.date.today(), spec_number='1234', description=assign.parent.description )) self.assertEquals(extend_post.status_code, 302) self.assertEquals( extend_post.location, 'http://localhost/conductor/' ) self.assertEquals(assign.parent.expiration_date, datetime.date.today()) # our child contract should be untouched self.assertEquals(assign.current_stage_id, self.flow.stage_order[0]) self.assertTrue(assign.parent.is_visible) self.assertFalse(assign.is_visible)
bsd-3-clause
-1,775,423,843,746,313,700
44.494857
121
0.626382
false
3.856243
true
false
false
jgust/SublimeCscope
sublime_cscope/event_listener.py
1
3885
import sublime import sublime_plugin from ..SublimeCscope import DEBUG from . import indexer # These commands should trigger a state change event in the indexer PROJECT_COMMANDS = ('prompt_add_folder', 'prompt_open_project_or_workspace', 'prompt_switch_project_or_workspace', 'prompt_select_workspace', 'open_recent_project_or_workspace') class EventListener(sublime_plugin.EventListener): """Monitors events from the editor and tries to figure out when it is meaningful to notify the indexers""" def __init__(self): super().__init__() self._curr_active_window = 0 self._project_command_in_progres = [] self._last_saved_buffer = None self._last_closed_buffer = None def _check_active_window(self): curr_active_window = sublime.active_window().id() # don't notify any change the first time if self._curr_active_window == 0: self._curr_active_window = curr_active_window return False prev_active_window = self._curr_active_window self._curr_active_window = curr_active_window #A change in active window can mean that a new window was created, #a window was closed or the user switched between windows. if prev_active_window != curr_active_window: return True return False def _clear_last_saved_buffer(self): self._last_saved_buffer = None def _clear_last_closed_buffer(self): self._last_closed_buffer = None def _find_open_file(self, file_name): for win in sublime.windows(): if win.find_open_file(file_name): return True return False def on_post_save(self, view): self._check_active_window() file_name = view.file_name() if not view.is_scratch() and file_name: # ignore multiple calls for the same buffer for 1 second. if file_name != self._last_saved_buffer: self._last_saved_buffer = file_name indexer.buffer_promoted(file_name) sublime.set_timeout_async(self._clear_last_saved_buffer, 1000) def on_close(self, view): self._check_active_window() file_name = view.file_name() if not view.is_scratch() and file_name: # only send buffer demoted if all views into the buffer have been # closed. if file_name != self._last_closed_buffer and not self._find_open_file(file_name): self._last_closed_buffer = file_name indexer.buffer_demoted(file_name) sublime.set_timeout_async(self._clear_last_closed_buffer, 1000) def on_activated(self, view): focus_changed = self._check_active_window() window_id = view.window().id() if view.window() else 0 proj_command_complete = False if window_id in self._project_command_in_progres: proj_command_complete = True self._project_command_in_progres.remove(window_id) if window_id and (focus_changed or proj_command_complete): indexer.window_state_changed() def on_window_command(self, win, cmd_name, args): self._check_active_window() if not win.id(): return # if DEBUG: # print("Got window command: %s" % cmd_name) if cmd_name in PROJECT_COMMANDS: if win.id() not in self._project_command_in_progres: self._project_command_in_progres.append(win.id()) else: print("Got command %s from win: %d while other already in progress") elif cmd_name == 'refresh_folder_list': indexer.refresh(win) elif cmd_name == 'remove_folder': indexer.window_state_changed()
mit
-3,228,152,396,314,666,000
31.923729
93
0.599743
false
4.038462
false
false
false
Azure/azure-sdk-for-python
sdk/compute/azure-mgmt-compute/azure/mgmt/compute/v2021_03_01/operations/_cloud_service_roles_operations.py
1
8658
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class CloudServiceRolesOperations(object): """CloudServiceRolesOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.compute.v2021_03_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def get( self, role_name, # type: str resource_group_name, # type: str cloud_service_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.CloudServiceRole" """Gets a role from a cloud service. :param role_name: Name of the role. :type role_name: str :param resource_group_name: :type resource_group_name: str :param cloud_service_name: :type cloud_service_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: CloudServiceRole, or the result of cls(response) :rtype: ~azure.mgmt.compute.v2021_03_01.models.CloudServiceRole :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.CloudServiceRole"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-03-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'roleName': self._serialize.url("role_name", role_name, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'cloudServiceName': self._serialize.url("cloud_service_name", cloud_service_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('CloudServiceRole', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/cloudServices/{cloudServiceName}/roles/{roleName}'} # type: ignore def list( self, resource_group_name, # type: str cloud_service_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["_models.CloudServiceRoleListResult"] """Gets a list of all roles in a cloud service. Use nextLink property in the response to get the next page of roles. Do this till nextLink is null to fetch all the roles. :param resource_group_name: :type resource_group_name: str :param cloud_service_name: :type cloud_service_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CloudServiceRoleListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.compute.v2021_03_01.models.CloudServiceRoleListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.CloudServiceRoleListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-03-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'cloudServiceName': self._serialize.url("cloud_service_name", cloud_service_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('CloudServiceRoleListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/cloudServices/{cloudServiceName}/roles'} # type: ignore
mit
-5,821,989,288,854,121,000
45.8
190
0.639524
false
4.388241
true
false
false
lach76/scancode-toolkit
src/scancode/api.py
2
6971
# # Copyright (c) 2015 nexB Inc. and others. All rights reserved. # http://nexb.com and https://github.com/nexB/scancode-toolkit/ # The ScanCode software is licensed under the Apache License version 2.0. # Data generated with ScanCode require an acknowledgment. # ScanCode is a trademark of nexB Inc. # # You may not use this software except in compliance with the License. # You may obtain a copy of the License at: http://apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. # # When you publish or redistribute any data created with ScanCode or any ScanCode # derivative work, you must accompany this data with the following acknowledgment: # # Generated with ScanCode and provided on an "AS IS" BASIS, WITHOUT WARRANTIES # OR CONDITIONS OF ANY KIND, either express or implied. No content created from # ScanCode should be considered or used as legal advice. Consult an Attorney # for any legal advice. # ScanCode is a free software code scanning tool from nexB Inc. and others. # Visit https://github.com/nexB/scancode-toolkit/ for support and download. from __future__ import print_function, absolute_import from collections import OrderedDict """ Main scanning functions. Note: this API is unstable and still evolving. """ def extract_archives(location, recurse=True): """ Extract recursively any archives found at location and yield an iterable of ExtractEvents. If verbose is False, only the "done" event is returned at extraction completion. If verbose is True, both "start" and "done" events are returned. """ from extractcode.extract import extract from extractcode import default_kinds for xevent in extract(location, kinds=default_kinds, recurse=recurse): yield xevent def get_copyrights(location): """ Yield an iterable of dictionaries of copyright data detected in the file at location. Each item contains a list of copyright statements and a start and end line. """ from cluecode.copyrights import detect_copyrights for copyrights, authors, _years, holders, start_line, end_line in detect_copyrights(location): if not copyrights: continue result = OrderedDict() # FIXME: we should call this copyright instead, and yield one item per statement result['statements'] = copyrights result['holders'] = holders result['authors'] = authors result['start_line'] = start_line result['end_line'] = end_line yield result def get_emails(location): """ Yield an iterable of dictionaries of emails detected in the file at location. """ from cluecode.finder import find_emails for email, line_num in find_emails(location): if not email: continue misc = OrderedDict() misc['email'] = email misc['start_line'] = line_num misc['end_line'] = line_num yield misc def get_urls(location): """ Yield an iterable of dictionaries of urls detected in the file at location. """ from cluecode.finder import find_urls for urls, line_num in find_urls(location): if not urls: continue misc = OrderedDict() misc['url'] = urls misc['start_line'] = line_num misc['end_line'] = line_num yield misc DEJACODE_LICENSE_URL = 'https://enterprise.dejacode.com/license_library/Demo/{}/' def get_licenses(location, minimum_score=100): """ Yield an iterable of dictionaries of license data detected in the file at location for each detected license. minimum_score is the minimum score threshold from 0 to 100. The default is 100 means only exact licenses will be detected. With any value below 100, approximate license results are included. Note that the minimum length for an approximate match is four words. """ from licensedcode.models import get_license from licensedcode.detect import get_license_matches for match in get_license_matches(location, minimum_score=minimum_score): for license_key in match.rule.licenses: lic = get_license(license_key) result = OrderedDict() result['key'] = lic.key result['score'] = match.score result['short_name'] = lic.short_name result['category'] = lic.category result['owner'] = lic.owner result['homepage_url'] = lic.homepage_url result['text_url'] = lic.text_urls[0] if lic.text_urls else '' result['dejacode_url'] = DEJACODE_LICENSE_URL.format(lic.key) result['spdx_license_key'] = lic.spdx_license_key result['spdx_url'] = lic.spdx_url result['start_line'] = match.query_position.start_line result['end_line'] = match.query_position.end_line yield result def get_file_infos(location): """ Return a list of dictionaries of informations collected from the file or directory at location. """ from commoncode import fileutils from commoncode import filetype from commoncode.hash import sha1, md5 from typecode import contenttype T = contenttype.get_type(location) is_file = T.is_file is_dir = T.is_dir infos = OrderedDict() infos['type'] = filetype.get_type(location, short=False) infos['name'] = fileutils.file_name(location) infos['extension'] = is_file and fileutils.file_extension(location) or '' infos['date'] = is_file and filetype.get_last_modified_date(location) or None infos['size'] = T.size infos['sha1'] = is_file and sha1(location) or None infos['md5'] = is_file and md5(location) or None infos['files_count'] = is_dir and filetype.get_file_count(location) or None infos['mime_type'] = is_file and T.mimetype_file or None infos['file_type'] = is_file and T.filetype_file or None infos['programming_language'] = is_file and T.programming_language or None infos['is_binary'] = is_file and T.is_binary or None infos['is_text'] = is_file and T.is_text or None infos['is_archive'] = is_file and T.is_archive or None infos['is_media'] = is_file and T.is_media or None infos['is_source'] = is_file and T.is_source or None infos['is_script'] = is_file and T.is_script or None return [infos] def get_package_infos(location): """ Return a list of dictionaries of package information collected from the location or an empty list. """ from packagedcode.recognize import recognize_packaged_archives package = recognize_packaged_archives(location) if not package: return [] return [package.as_dict(simple=True)]
apache-2.0
8,704,822,094,559,690,000
37.302198
98
0.683259
false
4.001722
false
false
false
ellezv/data_structures
src/dll.py
1
2544
"""An implementation of a doubly linked list in Python.""" class Node(): """Instantiate a node.""" def __init__(self, value=None, nxt=None, previous=None): """.""" self.value = value self.next = nxt self.previous = previous class DbLinkedList(): """Instantiate a doubly linked list.""" def __init__(self, value=None): """.""" self.head = None self.tail = None self.length = 0 if value: self.push(value) def push(self, value=None): """Push value to the head of dll.""" new_node = Node(value, nxt=self.head) if self.length < 1: self.tail = new_node else: self.head.previous = new_node self.head = new_node self.length += 1 def append(self, value): """Append value to the tail of dll.""" new_node = Node(value, None, self.tail) if self.length < 1: self.head = new_node else: self.tail.next = new_node self.tail = new_node self.length += 1 def pop(self): """Pop first value off of the head of dll.""" if self.head: returned_value = self.head.value self.head = self.head.next self.head.previous = None self.length -= 1 return returned_value raise ValueError("Cannot pop from an empty list") def shift(self): """Remove and return the last value of the dll.""" if self.head: returned_value = self.tail.value self.tail = self.tail.previous self.tail.next = None self.length -= 1 return returned_value raise ValueError("Cannot shift from an empty list") def remove(self, value): """Remove the value from the dll.""" curr_node = self.head if not self.length: raise ValueError("Cannot remove from an empty list") else: if curr_node.value == value: self.pop() else: while curr_node is not None: if curr_node.value == value: curr_node.previous.next = curr_node.next curr_node.next.previous = curr_node.previous print("{} was removed".format(value)) return else: curr_node = curr_node.next raise ValueError("{} not in the list".format(value))
mit
3,400,972,026,953,004,500
30.02439
68
0.512579
false
4.393782
false
false
false
jeske/csla
pysrc/clearsilver/odb_mysql.py
1
1981
#! /usr/bin/env python """ usage: %(progname)s [args] """ import os, sys, string, time, getopt from log import * import odb import MySQLdb class Cursor(odb.Cursor): def insert_id(self, tablename, colname): return self.cursor.insert_id() class Connection(odb.Connection): def __init__(self, host, user, passwd, db): odb.Connection.__init__(self) self._conn = MySQLdb.connect(host=host, user=user, passwd=passwd, db=db) self.SQLError = MySQLdb.Error def getConnType(self): return "mysql" def cursor(self): return Cursor(self._conn.cursor()) def escape(self,str): if str is None: return None return MySQLdb.escape_string(str) def listTables(self, cursor): cursor.execute("show tables") rows = cursor.fetchall() tables = [] for row in rows: tables.append(row[0]) return tables def listIndices(self, tableName, cursor): cursor.execute("show index from %s" % tableName) rows = cursor.fetchall() tables = map(lambda row: row[2], rows) return tables def listFieldsDict(self, table_name, cursor): sql = "show columns from %s" % table_name cursor.execute(sql) rows = cursor.fetchall() columns = {} for row in rows: colname = row[0] columns[colname] = row return columns def alterTableToMatch(self, table, cursor): invalidAppCols, invalidDBCols = table.checkTable() if not invalidAppCols: return defs = [] for colname in invalidAppCols.keys(): col = table.getColumnDef(colname) colname = col[0] coltype = col[1] options = col[2] defs.append(table._colTypeToSQLType(colname, coltype, options)) defs = string.join(defs, ", ") sql = "alter table %s add column " % table.getTableName() sql = sql + "(" + defs + ")" print sql cursor.execute(sql) def createTable(self, sql, cursor): sql = sql + " TYPE=INNODB" return sql def supportsTriggers(self): return False
bsd-2-clause
-8,139,343,470,660,586,000
22.034884
76
0.644119
false
3.5375
false
false
false
yk-tanigawa/2015gci
webdata/webdata1.py
1
1436
#!/usr/bin/env python # coding: utf-8 ################################################################### # カーリルAPIを用いて,東大図書館の蔵書の貸出可否を調べるスクリプト # 2015.05.25 yk_tani ################################################################### import urllib2, sys, json try: isbn = sys.argv[1] # specify ISBN in commandline argument except: isbn = '9784873112107' # defalut value def pp(obj): # unicode を含む dictionary を eval して表示する関数 # adapted from http://taichino.com/programming/1599 # https://github.com/taichino/prettyprint if isinstance(obj, list) or isinstance(obj, dict): orig = json.dumps(obj, indent=4) print eval("u'''%s'''" % orig).encode('utf-8') else: print obj appkey = 'gci2015' systemid = 'Univ_Tokyo' # 東大図書館をデフォルトで指定 # apiからデータを取る resp = urllib2.urlopen('http://api.calil.jp/check?appkey={%s}&isbn=4834000826&systemid=%s&format=json'%(appkey, systemid)).read() # validなjsonに整える resp = resp.replace('callback(', '', 1).replace(');', '' ,1) # dictionaryに変換 data = json.loads(resp) for b in data["books"]: # 所蔵している図書室と,貸出可能かを表示 #print type(data["books"][b][systemid]['libkey']) #print data["books"][b][systemid]['libkey'] pp( data["books"][b][systemid]['libkey'] )
mit
-1,285,989,182,587,320,000
31.102564
129
0.586262
false
2.489066
false
false
false
agravier/pycogmo
common/pynn_utils.py
1
34258
#!/usr/bin/env python2 # Copyright 2011, 2012 Alexandre Gravier (al.gravier@gmail) # This file is part of PyCogMo. # PyCogMo is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # PyCogMo is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with PyCogMo. If not, see <http://www.gnu.org/licenses/>. """ Functions and classes wrapping or complementing PyNN functionality. """ import csv import itertools import functools from math import isnan, ceil import magic import math import numpy import operator from PIL import Image import pyNN.brian as pynnn import SimPy.Simulation as sim import types from utils import LOGGER, is_square, splice class InvalidFileFormatError(Exception): def __init__(self, mime_type, mime_subtype): self._type = mime_type self._subtype = mime_subtype def __str__(self): return "%s files of type %s are not supported." % \ (self._type, self._subtype) class InvalidMatrixShapeError(Exception): def __init__(self, req_dim1, req_dim2, prov_dim1, prov_dim2): self._req = req_dim1, req_dim2 self._prov = prov_dim1, prov_dim2 def __str__(self): return ("The required input data shape should be " "%s,%s, but the shape of the data provided is " "%s,%s.") % (self._req[0], self._req[1], \ self._prov[0], self._prov[1]) class SimulationError(Exception): def __init__(self, msg): self._msg = msg def __str__(self): return self._msg def presynaptic_outputs(unit, projection, t=None): """Returns the vector of all firing rates of units in the presynaptic population that are connected to the given unit. The t parameter can be set to restrict the computation to activity younger than t units of time. The presynaptic population must have a registered rate encoder with records.""" pre_population = projection.pre post_population = projection.post if unit not in post_population: raise SimulationError("Unit not found in post-synaptic " "population.") unit_index = post_population.id_to_index(unit) renc = get_rate_encoder(pre_population) if renc.idx < 0: raise SimulationError( "Cannot compute presynaptic activation because the " "rate encoder of the presynaptic population does not " "contain any record.") connectivity = projection.get('weight', 'array') connectivity_to_unit = \ [(i, not math.isnan(connectivity[i][unit_index])) for i in xrange(len(connectivity))] rates = numpy.array( [renc.get_rate_for_unit_index(i, t) for i, _ in itertools.ifilter((lambda v: v[1]), connectivity_to_unit)]) return rates class Weights(object): """Wraps a 2D array of floating-point numbers that has the same dimensions as the connectivity matrix between the two populations of neurons connected. Non-connected units i and j have weights[i][j] == NaN. Initial weights should be input (and are internally stored) in nA or micro-Siemens. As they need to be normalized for the purpose of learning, max_weight needs to be provided. It is a model-specific and should reflect the maximum conductance of a synapse/group of synpatic connections from one cell to the other. It is the physical value corresponding to the normalized weight value of 1 between 2 cells. All methods and properties return normalized weights unless specified otherwise.""" def __init__(self, weights_array, max_weight): self._max_weight = max_weight * 1. self._weights = numpy.array(weights_array) / self._max_weight self._update_shape() # TODO: use max_weight for hard bounding here and make soft bounded # learning functions in nettraining. def __eq__(self, other): internalw = None if isinstance(other, numpy.ndarray): internalw = other elif isinstance(other, list): internalw = numpy.array(other) elif not isinstance(other, Weights): return False else: if other.max_weight != self.max_weight: return False internalw = other.non_normalized_numpy_weights if len(numpy.atleast_1d(self.non_normalized_numpy_weights)) != \ len(numpy.atleast_1d(internalw)): return False n_r = len(self.non_normalized_numpy_weights) for i in xrange(n_r): l = len(numpy.atleast_1d(self.non_normalized_numpy_weights[i])) if l != len(numpy.atleast_1d(internalw[i])): return False for j in xrange(l): v1 = self.non_normalized_numpy_weights[i][j] v2 = internalw[i][j] if (isnan(v1) and isnan(v2)): continue if v1 != v2: return False return True def _update_shape(self): shape = self._weights.shape self._dim1 = shape[0] if len(shape) > 1: self._dim2 = shape[1] else: self._dim2 = 0 @property def max_weight(self): return self._max_weight @property def shape(self): return self._dim1, self._dim2 @property def non_normalized_weights(self): return (self._weights * self._max_weight).tolist() @non_normalized_weights.setter def non_normalized_weights(self, weights_array): if isinstance(weights_array, numpy.ndarray): self._weights = weights_array / self._max_weight elif isinstance(weights_array, list): self._weights = numpy.array(weights_array) / self._max_weight elif isinstance(weights_array, Weights): self._weights = weights_array.normalized_numpy_weights else: raise TypeError("Weights can be assigned to " "numpy.ndarray, common.pynn_utils.Weights," " or list types.") self._update_shape() @property def flat_non_normalized_weights(self): return list(itertools.chain.from_iterable((self._weights * self._max_weight).tolist())) @flat_non_normalized_weights.setter def flat_non_normalized_weights(self, w): wr = numpy.reshape(w, self.shape) self._weights = wr / self._max_weight @property def non_normalized_numpy_weights(self): return self._weights * self._max_weight @non_normalized_numpy_weights.setter def non_normalized_numpy_weights(self, w): self._weights = w / self._max_weight self._update_shape() @property def normalized_numpy_weights(self): return self._weights @normalized_numpy_weights.setter def normalized_numpy_weights(self, w): self._weights = w self._update_shape() def __getitem__(self, i): return self._weights[i] def set_normalized_weight(self, i, j, w): self._weights[i][j] = w def set_non_normalized_weight(self, i, j, w): self._weights[i][j] = w / self._max_weight def _apply_binary_scalar_operator(self, operator, other): oshape = None r = None try: if isinstance(other, Weights): if other._max_weight != self._max_weight: ValueError("Operation not possible as operands have " "incompatible maximum conductances.") oshape = other.shape r = numpy.array(self._weights) else: if isinstance(other, list): oshape = numpy.shape(other) elif not hasattr(initializer, '__getitem__'): raise TypeError("Second operand could not be interpreted " "as an array of weights.") if oshape != None and oshape != self.shape: raise IndexError if r == None: r = numpy.zeros(oshape) for x in xrange(self._dim1): for y in xrange(self._dim2): r[x][y] = operator(self._weights[x][y], other[x][y]) else: r -= other._weights except IndexError: raise ValueError("Operation not possible as operands have " "incompatible shapes.") w = Weights([0], max_weight=self._max_weight) w._dim1, w._dim2 = self.shape w._weights = r return w def __add__(self, other): return self._apply_binary_scalar_operator(operator.add, other) def __sub__(self, other): return self._apply_binary_scalar_operator(operator.sub, other) def __radd__(self, other): return self._apply_binary_scalar_operator(operator.add, other) def __rsub__(self, other): return self._apply_binary_scalar_operator(lambda a, b: b - a, other) def get_normalized_weights_vector(self, target_idx): """Returns the weights vector to unit target_idx (target unit index in target population). NaNs (weights of connections from non-connected units) are omitted.""" w_with_nans = [self._weights[i][target_idx] for i in xrange(self._dim1)] return list(itertools.ifilterfalse(math.isnan, w_with_nans)) def set_normalized_weights_vector(self, target_idx, weights): """Sets the weights vector to unit target_idx (target unit index in target population). The weight vector should have as many elements as connected units (no NaN allowed).""" wi = 0 try: for i in xrange(self._dim1): if not math.isnan(self._weights[i][target_idx]): self._weights[i][target_idx] = weights[wi] wi += 1 except IndexError: raise SimulationError("Dimension mismatch (not enough elements " "to assign to weights vector).") if wi < len(weights): raise SimulationError("Dimension mismatch (too many elements " "to assign to weights vector).") def __repr__(self): "Prints the weights, mostly for debug purposes" old_printopt = numpy.get_printoptions() try: import sys numpy.set_printoptions(threshold=sys.maxint, suppress=True) import os rows, columns = map(int, os.popen('stty size', 'r').read().split()) r = "Weights(weights_array= \\\n%s, max_weight=%r)" % \ (numpy.array_str(a=self._weights, max_line_width=columns-5, precision=2), self._max_weight) finally: numpy.set_printoptions(**old_printopt) return r def get_weights(proj, max_weight): """Returns a Weights object with the values of the weights of the projection. Use max_w to setup the maximal conductance in micro-S or current in nA.""" return Weights(proj.getWeights(format='array'), max_weight=max_weight) def set_weights(proj, w): """Sets the weights of the projection to the internal (non-normalized) values in w.""" if isinstance(w, Weights): proj.setWeights(w.flat_non_normalized_weights) else: raise TypeError("Requires an argument of class Weights.") def read_input_data(file_path, dim1, dim2, m=None): """The libmagic file identifier can be passed as argument m (used for testing).""" if m == None: m = magic.Magic(mime=True) mime = m.from_file(file_path) mime = mime.lower().split('/') float_array = None if mime[0] == 'image': float_array = read_image_data(file_path) elif mime[0] == 'text': if mime[1] == 'plain': float_array = read_csv_data(file_path) else: raise InvalidFileFormatError(mime[0], mime[1]) else: raise InvalidFileFormatError(mime[0], mime[1]) verify_input_array(float_array, dim1, dim2) return float_array def read_image_data(file_path): """Raises IOError if the file is not an image.""" im = Image.open(file_path) # if im.size != (dim1, dim2): # raise InvalidMatrixShapeError((dim1, dim2), im.size) byte_array = numpy.array(im.convert("L")) # grayscale, [0 255] norm_array = byte_array / 255. return norm_array def read_csv_data(file_path): """Raises IOError if the file is not a CSV file.""" float_array = [] try: with open(file_path, 'rb') as f: row_reader = csv.reader(f) for r in itertools.ifilter(None, row_reader): float_array.append(map(float, r)) return numpy.array(float_array) except ValueError as e: raise IOError(str(e)) def verify_input_array(float_array, dim1, dim2): d1 = len(float_array) if d1 != dim1: raise InvalidMatrixShapeError(dim1, dim2, d1, "unkown") for r in float_array: d2 = len(r) if d2 != dim2: raise InvalidMatrixShapeError(dim1, dim2, d1, d2) real = numpy.isreal(r) if not isinstance(real, bool): real = real.all() if not real: # row test raise TypeError("The input array contains invalid data.") class InputSample(object): """Wraps a 2D array of normalized floating-point numbers that has the same dimensions as the InputLayer to which it is presented. The data can be an array, or copied from an object with [][] accessor, loaded from a file, uniformly initialized to the same value, or initialized by a user-provided function.""" # implement an [][] accessor def __init__(self, dim1, dim2, initializer, expand=True): """The initializer can be an array, an object with [][] accessor, a file path (string), a single floating point number within [0,1] (the array is uniformly initialized to the same value), or a user-provided callable that takes two integers x and y in [0, dim1[ and [0, dim2[ respectively, and returns the value to be stored in the array at [x][y]. The optional parameter expand affects the case where the initializer is a callable, an object with __getitem__, or a single number. In those case, setting expand to False prevents the precomputation of the whole array, and the InputSample accessor encapsulate the function call, the object accessor, or always returns the given number. If expand is True, the InputSample created is mutable. If expand is False, the InputSample is immutable.""" self._array = [] self._getitem = lambda k: self._array[k] self._setitem = self._assign_to_array if isinstance(initializer, basestring): try: self._array = read_input_data(initializer, dim1, dim2) except IOError as e: LOGGER.error("Could not read file %s.", initializer) raise e elif isinstance(initializer, types.FileType): raise TypeError("Pass a string with the filepath to the " "InputSample initializer, instead of a " "file descriptor.") elif isinstance(initializer, list): self._array = initializer elif hasattr(initializer, '__getitem__'): if expand: for x in xrange(dim1): self._array.append([]) for y in xrange(dim2): self._array[x].append(initializer[x][y]) else: self._array = initializer self._setitem = self._raise_immutable elif hasattr(initializer, '__call__'): # to restrict to functions: # isinstance(initializer, # (types.FunctionType, types.BuiltinFunctionType)) if expand: for x in xrange(dim1): self._array.append([]) for y in xrange(dim2): self._array[x].append(initializer(x,y)) else: class InitCont(object): def __init__(self, x): self._x = x def __getitem__(self, y): return initializer(self._x, y) self._getitem = lambda x: InitCont(x) self._setitem = self._raise_immutable self._dim1 = dim1 self._dim2 = dim2 if expand: verify_input_array(self._array, dim1, dim2) def _raise_immutable(self, *args): raise TypeError("Attempted change of state on an " "immutable InputSample (created with " "expand=False)") def _assign_to_array(self, k, v): self._array[k] = v def __getitem__(self, k): return self._getitem(k) def __setitem__(self, k, v): self._setitem(k, v) @property def shape(self): return self._dim1, self._dim2 class RectilinearLayerAdapter(object): """Base class adapting PyNN layers.""" def __init__(self, pynn_pop, dim1, dim2): self.unit_adapters_mat = [] for x in xrange(dim1): self.unit_adapters_mat.append([]) for y in xrange(dim2): self.unit_adapters_mat[x].append([None, pynn_pop[x*dim2+y]]) self._dim1 = dim1 self._dim2 = dim2 self.pynn_population = pynn_pop @property def shape(self): return self._dim1, self._dim2 def __getitem__(self, i): return self.unit_adapters_mat[i] def get_unit(self, i, j): return self.unit_adapters_mat[i][j][1] INPUT_LAYER_MAX_NAMP_DEFAULT = 100 class RectilinearInputLayer(RectilinearLayerAdapter): """Wraps a 2D array of electrodes with the same dimensions (dim1, dim2) as the PyNN population in which it injects current. The stimulation scale can be adjusted by providing the max input amplitude in nA.""" def __init__(self, pynn_pop, dim1, dim2, max_namp=INPUT_LAYER_MAX_NAMP_DEFAULT): super(RectilinearInputLayer, self).__init__(pynn_pop, dim1, dim2) self.input_scaling = max_namp # DCSources have to be recreated each time. def apply_input(self, sample, start_time, duration, max_namp = None, dcsource_class = pynnn.DCSource): """Given a sample of type InputSample and of same shape as the input layer, and a duration, creates and connects electrodes that apply the input specified by the input sample matrix to the input population. A max_namp value can be specified in nanoamperes to override the max current corresponding to an input value of 1 given at construction time. dcsource_class is here as a primitive dependency injection facility, for testing.""" if max_namp == None: max_namp = self.input_scaling # TODO: Common current source for cells what should get the # exact same input for x in xrange(self._dim1): for y in xrange(self._dim2): # Will the GC collect the electrodes? Does PyNN delete # them after use? self.unit_adapters_mat[x][y][0] = \ dcsource_class({"amplitude": max_namp * sample[x][y], "start" : start_time, "stop" : start_time+duration}) self.unit_adapters_mat[x][y][0].inject_into( [self.unit_adapters_mat[x][y][1]]) class RectilinearOutputRateEncoder(RectilinearLayerAdapter): """Keeps track of the weighted averages on a sliding window of the output rates of all units in the topographically rectilinear population of units. The update period and can be overridden at update time.""" # Default width of the sliding window in simulator time units. The # weight of past rates in activity calculation decreases linearly # so that it is 0 when window_width old, and 1 for sim.now() DEFAULT_WINDOW_WIDTH = 100; DEFAULT_UPDATE_PERIOD = 10 def __init__(self, pynn_pop, dim1, dim2, update_period = DEFAULT_UPDATE_PERIOD, window_width=DEFAULT_WINDOW_WIDTH): super(RectilinearOutputRateEncoder, self).__init__(pynn_pop, dim1, dim2) self.window_width = window_width self.update_period = update_period # the number of records needs to be one more than requested # because we are interested in the rate of firing, which is # the difference in total number of spikes fired between now # and 1 update period ago. In general, we need n+1 data points # to determine n such differences. self.hist_len = int(ceil(self.window_width/self.update_period)) + 1 for x in xrange(self._dim1): for y in xrange(self._dim2): self.unit_adapters_mat[x][y][0] = \ numpy.zeros(self.hist_len, dtype=numpy.int) self.idx = -1 self.update_history = None # initialized at first update def extend_capacity(self, idx): """Adds one cell to all logging structures at position idx, and increments self.hist_len.""" if idx == 0: # Edge case: extension at the end of the records idx = self.hist_len for x in xrange(self._dim1): for y in xrange(self._dim2): self.unit_adapters_mat[x][y][0] = numpy.concatenate( (self.unit_adapters_mat[x][y][0][:idx], [-1], self.unit_adapters_mat[x][y][0][idx:])) self.update_history = numpy.concatenate( (self.update_history[:idx], [-1], self.update_history[idx:])) self.hist_len += 1 def make_hist_weights_vec(self, update_history=None, window_width=None, idx=None): """ Returns the ndarray of weights by which to multiply the rates history vector to calculate the weighted recent activity of the unit. Parameters are the update times array (update_history), the rate averaging window width (window_width), and the current time index in the update times array (idx). If update_history is not provided, self.update_history is usedIf window_width is not provided, self.window_width is used. If idx is not provided, self.idx is used. The weight for the oldest rate is the head of the array. The sum of weights is 1 if the update_history array covers at least the duration of window_width.""" if update_history == None: update_history = self.update_history if idx == None: idx = self.idx if window_width == None: window_width = self.window_width update_hist = numpy.append(update_history[idx+1:], update_history[:idx+1]) update_dt = numpy.diff(update_hist) cumsum_dt = update_dt[::-1].cumsum()[::-1] # reversed cumulative sum last_t = update_hist[-1] cutoff_t = last_t - window_width l_h = 1 - cumsum_dt / (window_width * 1.) r_h = 1 - (numpy.append(cumsum_dt[1:], [0]) / (window_width * 1.)) areas = numpy.fromiter( itertools.imap(lambda i, x: # in window -> area; out -> 0; border -> triangle (l_h[i] + r_h[i]) * update_dt[i] if x <= window_width else max(abs(r_h[i]) * (update_hist[i + 1] - cutoff_t), 0), itertools.count(), cumsum_dt), numpy.float) return areas / window_width def advance_idx(self): self.idx = self.next_idx @property def next_idx(self): return self.idx_offset(1) @property def last_update_time(self): if self.update_history != None: return self.update_history[self.idx] return None @property def previous_idx(self): return self.idx_offset(-1) def idx_offset(self, offset): """Returns the value of the index with the (positive or negative) offset added.""" return (self.idx + offset) % self.hist_len # The data structure for the rate history of one unit is a # circular list of rates, and an integer index (self.idx, common # to all units) pointing to the most recent record. The size of # this list is determined in __init__ by the window_width and # update_period. Each unit's history is kept in the # RectilinearLayerAdapter's unit_adapters_mat[x][y][0]. There is # an additional circular list of updates timestamps for testing. # We assume that the necessary recorders have been set up. def update_rates(self, t_now): """t_now is the timestamp for the current rates being recorded.""" if self.idx != -1: # Not the first update, so the state is consistent. dt = t_now - self.update_history[self.idx] if dt < 0: raise SimulationError("update_rates was called with a past " "update time. Only monotonic updates " "are supported.") if dt == 0.: # It's a re-update of the current record! Let's rewind history! self.idx = self.previous_idx elif dt < self.update_period: # Premature update -> we may need to increase the arrays length # to have enough place to cover the full window width. # The total time covered by the rate log after idx increment # will be: total_covered_dt = t_now - \ self.update_history[self.next_idx] if total_covered_dt < self.window_width: # The arrays are insufficient to cover the whole window # width. We need to extend all arrays by one (add one entry # to all logging structures). self.extend_capacity(self.next_idx) else: # First update: # Initialize the update times log to past values to have a # consistent state without having to wait for the whole update # window to have been crawled once. self.update_history = t_now - self.update_period * \ numpy.array([0] + range(self.hist_len-1, 0, -1)) self.advance_idx() self.update_history[self.idx] = t_now rec = self.pynn_population.get_spike_counts(); for x in xrange(self._dim1): for y in xrange(self._dim2): self.unit_adapters_mat[x][y][0][self.idx] = \ rec.get(self.pynn_population[x*self._dim2+y]) def get_rates(self, t=None): """Returns the matrix of units weighted firing rates for the last t time units, or for the whole window width of this rate encoder it t is not specified.""" r = numpy.zeros((self._dim1, self._dim2), dtype=numpy.float) for x in xrange(self._dim1): for y in xrange(self._dim2): r[x][y] = self.get_rate(x, y, t=t) return r def get_rate_for_unit_index(self, unit_index, t=None): return self.get_rate(unit_index / self._dim1, unit_index % self._dim2, t=t) def get_rate(self, x, y, t=None): return self.f_rate(self.unit_adapters_mat[x][y][0], t=t) def f_rate(self, np_a, t=None, update_history=None): """Returns the weighted average of the rates recorded in the differences of the array np_a. The t parameter can be used to silence rate information older than t units of time, which is necessary to select the firing rate pertaining to one event only. If now-t does not fall on a recording boundary, the more recent boundary is used, otherwise the rate recording may be contaminated by spikes older than t. If that leaves no record available (i.e. t < age of previous record), an error is raised. The update_history parameter overrides the rate encoder's update history, it should only be used for testing.""" if update_history == None: update_history = self.update_history update_hist = numpy.append(update_history[self.idx+1:], update_history[:self.idx+1]) cut_i = 0 if t != None: cut_t = sim.now() - t cut_i = numpy.searchsorted(update_hist, cut_t, side='left') # t must not be in the last interval: if cut_i >= len(update_hist) - 1: raise SimulationError("The rate encoder resolution is " "insufficient to get any rate " "data on the requested period.") update_hist = update_hist[cut_i:] update_dt = numpy.diff(update_hist) * 1. np_a = numpy.append(np_a[self.idx+1:], np_a[:self.idx+1]) np_a = np_a[cut_i:] rates = numpy.diff(np_a) window_width = min(sum(update_dt), self.window_width) if t!= None \ else self.window_width return self.make_hist_weights_vec(update_history=update_hist, window_width=window_width, idx=len(update_hist) ).dot(rates / update_dt) def __repr__(self): "Returns a string representation for debugging." old_printopt = numpy.get_printoptions() try: import sys numpy.set_printoptions(threshold=sys.maxint, suppress=True) import os rows, columns = map(int, os.popen('stty size', 'r').read().split()) # We don't return the rates in self.unit_adapters_mat array_str = numpy.array_str(a=self.update_history, max_line_width=columns-26, precision=2) \ if self.update_history != None \ else None r = ( "RectilinearOuputRateEncoder(\n" " self.pynn_pop = %r\n" " self.shape = %r\n" " self.window_width = %r\n" " self.update_period = %r\n" " self.hist_len = %r\n" " self.idx = %r\n" " self.update_history = %s\n" ")" ) % \ (self.pynn_population, (self._dim1, self._dim2), self.window_width, self.update_period, self.hist_len, self.idx, array_str) finally: numpy.set_printoptions(**old_printopt) return r def rectilinear_shape(population): try: pos = population.positions except Exception, e: LOGGER.warning(("Could not retrieve units positions for population " "%s; assuming square shape."), population.label) if not is_square(population.size): raise TypeError(("The shape population %s is not square and could " "neither be retreived nor guessed."), population.label) dim1 = dim2 = int(math.sqrt(population.size)) else: dim1 = len(set(pos[1])) dim2 = len(set(pos[0])) return (dim1, dim2) # WARNING / TODO: The following function reveals a design flaw in # pycogmo. PyNN is insufficient and its networks should be # encapsulated along with more metadata. def population_adpater_provider(pop_prov_dict, provided_class, population): """Factory function providing an adapter of the specified class for the population parameter. pop_prov_dict is a dictionary taking a (population, provided_class) tuple as key, and returning an instance of provided_class initialized with 3 arguments: the population, its size in the first dimension, and its size in the second dimension.""" key = (population, provided_class) if pop_prov_dict.has_key(key): return pop_prov_dict[key] else: LOGGER.warning("No %s for population %s, creating one.", provided_class.__name__, population.label) dim1, dim2 = rectilinear_shape(population) inst = provided_class(population, dim1, dim2) return pop_prov_dict.setdefault(key, inst) POP_ADAPT_DICT = {} get_input_layer = functools.partial(population_adpater_provider, POP_ADAPT_DICT, RectilinearInputLayer) get_input_layer.__doc__ = ("Provides a unique input layer for the " "given population.") get_rate_encoder = functools.partial(population_adpater_provider, POP_ADAPT_DICT, RectilinearOutputRateEncoder) get_rate_encoder.__doc__ = ("Provides a unique rectilinear output rate " "encoder for the given population.") def enable_recording(*p): """Turns on spike recorders for all populations in parameter""" for pop in p: pop.record(to_file=False)
gpl-3.0
-7,213,629,115,506,757,000
40.175481
95
0.580769
false
4.113099
false
false
false
mtholder/phyloplumber
getting_started.py
1
4446
#!/usr/bin/env python import sys, os, subprocess, urllib, logging log = logging.getLogger(__name__) major, minor = [int(i) for i in sys.version_info[:2]] if major != 2 or minor < 4: sys.exit("""Please install python. Versions 2.4, 2.5, 2.6, and 2.7 should all work If you have python installed, make sure that \"python\" is on your PATH """) if not os.path.exists('mydevenv/bin/activate'): if not os.path.exists('go-pylons.py'): try: sys.stderr.write('Downloading go-pylons.py\n') o = open('go-pylons.py', 'w') o.write(urllib.urlopen('http://pylonshq.com/download/1.0/go-pylons.py').read()) o.close() except: raise sys.exit("""The script needs go-pylons.py but the attempt to download it using urllib failed. Please, download the go-pylons.py script from http://pylonshq.com/download/1.0/go-pylons.py and then place the downloaded script in this directory. """) sys.stderr.write('Running go-pylons.py\n') if subprocess.call([sys.executable, 'go-pylons.py', '--no-site-packages', 'mydevenv']) != 0: sys.exit(1) if not os.path.exists('phyloplumber'): try: result = subprocess.call(['git', 'clone', 'git://github.com/mtholder/phyloplumber.git']) except: sys.exit("""The attempt to pull down the latest version of phyloplumber using git failed. If you do not have git installed, you can download it from http://git-scm.com If you have installed git, make sure that it is on your path.""") if result != 0: sys.exit(1) string_args = {'pp' : os.path.abspath(os.curdir) } if not os.path.exists('phyloplumber_env.sh'): sys.stdout.write("Creating phyloplumber_env.sh bash script\n") o = open('phyloplumber_env.sh', 'w') o.write('''#!/bin/sh export PHYLOPLUMBER_PARENT="%(pp)s" export PHYLOPLUMBER_ROOT=${PHYLOPLUMBER_PARENT}/phyloplumber source ${PHYLOPLUMBER_PARENT}/mydevenv/bin/activate ''' % string_args) o.close() if os.path.exists('dendropy'): string_args['dd'] = 'dendropy' else: string_args['dd'] = 'DendroPy' if not os.path.exists(string_args['dd']): try: result = subprocess.call(['git', 'clone', 'git://github.com/jeetsukumaran/DendroPy.git']) except: sys.exit("""The attempt to pull down the latest version of dendropy using git failed. If you do not have git installed, you can download it from http://git-scm.com If you have installed git, make sure that it is on your path.""") if result != 0: sys.exit(1) if sys.platform.upper().startswith('WIN'): sys.exit("""At this point you will need to execute the "%(pp)s/mydevenv/bin/activate.bat" script, then 1. run "easy_install sphinx" 2. change the working directory to phyloplumber and run "python setup.py develop" 3. change the working directory to %(dd)s and run "python setup.py develop" to finish the installation process. You will need to execute the "%(pp)s/mydevenv/bin/activate.bat" script each time you launch the phyloplumber server. """ % string_args) else: fn = 'finish_phyloplumber_installation.sh' o = open(fn, 'w') o.write('''#!/bin/sh source phyloplumber_env.sh || exit 1 ################################################################################ # Install sphinx to the devenv ################################################################################ easy_install sphinx ################################################################################ # Checkout dendropy and use "setup.py develop" command to install it the dev env ################################################################################ cd %(dd)s || exit 1 python setup.py develop || exit 1 cd .. ################################################################################ # install phyloplumber using the "setup.py develop" command ################################################################################ cd phyloplumber || exit 1 python setup.py develop || exit 1 cd .. echo "phyloplumber_env.sh has been written. Whenever you want to work on phyloplumber" echo " from the command line, then (from a bash shell) source this file to " echo " configure your environment" ''' % string_args) o.close() result = subprocess.call(['/bin/sh', fn]) if result == 0: os.remove(fn) else: sys.exit(1)
gpl-3.0
-4,168,957,450,927,577,000
35.442623
106
0.583446
false
3.623472
false
false
false
ZeusWPI/Haldis
app/views/general.py
1
6260
"Script to generate the general views of Haldis" import os from datetime import datetime, timedelta import yaml from typing import Optional from flask import Flask, render_template, make_response from flask import request, jsonify from flask import Blueprint, abort from flask import current_app as app from flask import send_from_directory, url_for from flask_login import login_required from utils import first from hlds.definitions import location_definitions from hlds.models import Location from models import Order # import views from views.order import get_orders import json from flask import jsonify general_bp = Blueprint("general_bp", __name__) with open(os.path.join(os.path.dirname(__file__), "themes.yml"), "r") as _stream: _theme_data = yaml.safe_load(_stream) THEME_OPTIONS = _theme_data["options"] THEMES = _theme_data["themes"] @general_bp.route("/") def home() -> str: "Generate the home view" prev_day = datetime.now() - timedelta(days=1) recently_closed = get_orders( ((Order.stoptime > prev_day) & (Order.stoptime < datetime.now())) ) return render_template( "home.html", orders=get_orders(), recently_closed=recently_closed ) def is_theme_active(theme, now): theme_type = theme["type"] if theme_type == "static": return True if theme_type == "seasonal": start_day, start_month = map(int, theme["start"].split("/")) start_datetime = datetime(year=now.year, day=start_day, month=start_month) end_day, end_month = map(int, theme["end"].split("/")) end_year = now.year + (1 if start_month > end_month else 0) end_datetime = datetime(year=end_year, day=end_day, month=end_month) return start_datetime <= now <= end_datetime raise Exception("Unknown theme type {}".format(theme_type)) def get_theme_css(theme, options): # Build filename # Each option's chosen value is appended, to get something like mytheme_darkmode_heavy.css filename = theme["file"] for option in theme.get("options", []): theme_name = theme["name"] assert option in THEME_OPTIONS, f"Theme `{theme_name}` uses undefined option `{option}`" chosen_value = options[option] possible_values = list(THEME_OPTIONS[option].keys()) value = chosen_value if chosen_value in possible_values \ else THEME_OPTIONS[option]["_default"] filename += "_" + value filename += ".css" theme_css_dir = "static/css/themes/" return os.path.join(app.root_path, theme_css_dir, filename) def get_active_themes(): now = datetime.now() return [theme for theme in THEMES if is_theme_active(theme, now)] @general_bp.route("/theme.css") def theme_css(): "Send appropriate CSS for current theme" themes = get_active_themes() theme_name = request.cookies.get("theme", None) theme = first((t for t in themes if t["file"] == theme_name), default=themes[-1]) options = { name: request.cookies.get("theme_" + name, None) for name in ["atmosphere", "performance"] } path = get_theme_css(theme, options) with open(path) as f: response = make_response(f.read()) response.headers["Content-Type"] = "text/css" return response @general_bp.route("/current_theme.js") def current_theme_js(): themes = get_active_themes() selected_theme_name = request.cookies.get("theme", None) matching_theme = first((t for t in themes if t["file"] == selected_theme_name)) cur_theme = matching_theme or themes[-1] response = make_response(rf''' var currentTheme = {json.dumps(cur_theme['file'])}; var currentThemeOptions = {json.dumps(cur_theme.get('options', []))}; ''') response.headers["Content-Type"] = "text/javascript" # Theme name that is not valid at this moment: delete cookie if matching_theme is None: response.delete_cookie("theme", path="/") return response @general_bp.route("/map") def map_view() -> str: "Generate the map view" return render_template("maps.html", locations=location_definitions) @general_bp.route("/location") def locations() -> str: "Generate the location view" return render_template("locations.html", locations=location_definitions) @general_bp.route("/location/<location_id>") def location(location_id) -> str: "Generate the location view given an id" loc = first(filter(lambda l: l.id == location_id, location_definitions)) if loc is None: abort(404) return render_template("location.html", location=loc, title=loc.name) @general_bp.route("/location/<location_id>/<dish_id>") def location_dish(location_id, dish_id) -> str: loc: Optional[Location] = first( filter(lambda l: l.id == location_id, location_definitions) ) if loc is None: abort(404) dish = loc.dish_by_id(dish_id) if dish is None: abort(404) return jsonify([ { "type": c[0], "id": c[1].id, "name": c[1].name, "description": c[1].description, "options": [ { "id": o.id, "name": o.name, "description": o.description, "price": o.price, "tags": o.tags, } for o in c[1].options ], } for c in dish.choices ]) @general_bp.route("/about/") def about() -> str: "Generate the about view" return render_template("about.html") @general_bp.route("/profile/") @login_required def profile() -> str: "Generate the profile view" return render_template("profile.html", themes_list=get_active_themes()) @general_bp.route("/favicon.ico") def favicon() -> str: "Generate the favicon" # pylint: disable=R1705 if not get_orders((Order.stoptime > datetime.now())): return send_from_directory( os.path.join(app.root_path, "static"), "favicon.ico", mimetype="image/x-icon", ) else: return send_from_directory( os.path.join(app.root_path, "static"), "favicon_orange.ico", mimetype="image/x-icon", )
mit
2,933,671,513,590,761,000
27.715596
96
0.62476
false
3.662961
false
false
false
Havate/havate-openstack
proto-build/gui/horizon/Horizon_GUI/horizon/utils/fields.py
5
5684
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from django.core.exceptions import ValidationError # noqa from django.forms import forms from django.forms import widgets from django.utils.encoding import force_unicode from django.utils.functional import Promise # noqa from django.utils.html import conditional_escape from django.utils.html import escape from django.utils.translation import ugettext_lazy as _ import netaddr import re ip_allowed_symbols_re = re.compile(r'^[a-fA-F0-9:/\.]+$') IPv4 = 1 IPv6 = 2 class IPField(forms.Field): """Form field for entering IP/range values, with validation. Supports IPv4/IPv6 in the format: .. xxx.xxx.xxx.xxx .. xxx.xxx.xxx.xxx/zz .. ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff .. ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff/zz and all compressed forms. Also the short forms are supported: xxx/yy xxx.xxx/yy .. attribute:: version Specifies which IP version to validate, valid values are 1 (fields.IPv4), 2 (fields.IPv6) or both - 3 (fields.IPv4 | fields.IPv6). Defaults to IPv4 (1) .. attribute:: mask Boolean flag to validate subnet masks along with IP address. E.g: 10.0.0.1/32 .. attribute:: mask_range_from Subnet range limitation, e.g. 16 That means the input mask will be checked to be in the range 16:max_value. Useful to limit the subnet ranges to A/B/C-class networks. """ invalid_format_message = _("Incorrect format for IP address") invalid_version_message = _("Invalid version for IP address") invalid_mask_message = _("Invalid subnet mask") max_v4_mask = 32 max_v6_mask = 128 def __init__(self, *args, **kwargs): self.mask = kwargs.pop("mask", None) self.min_mask = kwargs.pop("mask_range_from", 0) self.version = kwargs.pop('version', IPv4) super(IPField, self).__init__(*args, **kwargs) def validate(self, value): super(IPField, self).validate(value) if not value and not self.required: return try: if self.mask: self.ip = netaddr.IPNetwork(value) else: self.ip = netaddr.IPAddress(value) except Exception: raise ValidationError(self.invalid_format_message) if not any([self.version & IPv4 > 0 and self.ip.version == 4, self.version & IPv6 > 0 and self.ip.version == 6]): raise ValidationError(self.invalid_version_message) if self.mask: if self.ip.version == 4 and \ not self.min_mask <= self.ip.prefixlen <= self.max_v4_mask: raise ValidationError(self.invalid_mask_message) if self.ip.version == 6 and \ not self.min_mask <= self.ip.prefixlen <= self.max_v6_mask: raise ValidationError(self.invalid_mask_message) def clean(self, value): super(IPField, self).clean(value) return str(getattr(self, "ip", "")) class MultiIPField(IPField): """Extends IPField to allow comma-separated lists of addresses.""" def validate(self, value): self.addresses = [] if value: addresses = value.split(',') for ip in addresses: super(MultiIPField, self).validate(ip) self.addresses.append(ip) else: super(MultiIPField, self).validate(value) def clean(self, value): super(MultiIPField, self).clean(value) return str(','.join(getattr(self, "addresses", []))) class SelectWidget(widgets.Select): """Customizable select widget, that allows to render data-xxx attributes from choices. .. attribute:: data_attrs Specifies object properties to serialize as data-xxx attribute. If passed ('id', ), this will be rendered as: <option data-id="123">option_value</option> where 123 is the value of choice_value.id .. attribute:: transform A callable used to render the display value from the option object. """ def __init__(self, attrs=None, choices=(), data_attrs=(), transform=None): self.data_attrs = data_attrs self.transform = transform super(SelectWidget, self).__init__(attrs, choices) def render_option(self, selected_choices, option_value, option_label): option_value = force_unicode(option_value) other_html = (option_value in selected_choices) and \ u' selected="selected"' or '' if not isinstance(option_label, (basestring, Promise)): for data_attr in self.data_attrs: data_value = conditional_escape( force_unicode(getattr(option_label, data_attr, ""))) other_html += ' data-%s="%s"' % (data_attr, data_value) if self.transform: option_label = self.transform(option_label) return u'<option value="%s"%s>%s</option>' % ( escape(option_value), other_html, conditional_escape(force_unicode(option_label)))
apache-2.0
-760,614,181,745,484,900
35.203822
79
0.622977
false
4.048433
false
false
false
bullxpfs/lustre-shine
lib/Shine/Lustre/Actions/StartTarget.py
3
3994
# StartTarget.py -- Lustre action class : start (mount) target # Copyright (C) 2009-2013 CEA # # This file is part of shine # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. # """ This module contains a FSAction class to start a Lustre target. """ import os from ClusterShell.Task import task_self from Shine.Configuration.Globals import Globals from Shine.Lustre.Actions.Action import FSAction, Result class StartTarget(FSAction): """ File system target start action class. Lustre, since 1.6, starts a target simply by mounting it. """ NAME = 'start' def __init__(self, target, **kwargs): FSAction.__init__(self, target, **kwargs) self.mount_options = kwargs.get('mount_options') self.mount_paths = kwargs.get('mount_paths') def _already_done(self): """Return a Result object is the target is already mounted.""" # Already done? if self.comp.is_started(): return Result("%s is already started" % self.comp.label) # LBUG #18624 if not self.comp.dev_isblk: task_self().set_info("fanout", 1) return None def _prepare_cmd(self): """Mount file system target.""" # If there is a user-defined path if self.mount_paths and self.comp.TYPE in self.mount_paths: mount_path = self.mount_paths[self.comp.TYPE] else: # Default mount path mount_path = "/mnt/$fs_name/$type/$index" # Replace variables var_map = {'index': str(self.comp.index), 'dev' : os.path.basename(self.comp.dev)} if self.comp.journal: var_map['jdev'] = os.path.basename(self.comp.journal.dev) mount_path = self._vars_substitute(mount_path, var_map) # # Build command # command = ["mkdir -p \"%s\"" % mount_path] command += ["&& /bin/mount -t lustre"] # Loop devices handling if not self.comp.dev_isblk: command.append("-o loop") options = [] # Mount options from configuration if self.mount_options and self.mount_options.get(self.comp.TYPE): options += [self.mount_options.get(self.comp.TYPE)] # Mount options from command line if self.addopts: options += [self.addopts] # When device detection order is variable, jdev could have a different # major/minor than the one it has on previous mount. # In this case, we must be sure we use the current one to avoid error. # # (Note: We can use `blkid' instead of jdev and extract the current # journal UUID if we have issue using directly jdev path.) if self.comp.journal: majorminor = os.stat(self.comp.journal.dev).st_rdev options += ["journal_dev=%#x" % majorminor] if len(options): command.append('-o ' + ','.join(options)) command.append(self.comp.dev) command.append(mount_path) return command def needed_modules(self): if Globals().lustre_version_is_smaller('2.4') or \ not Globals().lustre_version_is_smaller('2.5'): return ['lustre', 'ldiskfs'] else: # lustre 2.4 needs fsfilt_ldiskfs return ['lustre', 'fsfilt_ldiskfs']
gpl-2.0
-6,228,267,472,566,826,000
32.283333
78
0.623185
false
3.836695
false
false
false
Heathckliff/cantera
interfaces/cython/cantera/examples/thermo/rankine.py
4
1770
""" A Rankine vapor power cycle """ import cantera as ct # parameters eta_pump = 0.6 # pump isentropic efficiency eta_turbine = 0.8 # turbine isentropic efficiency p_max = 8.0e5 # maximum pressure def pump(fluid, p_final, eta): """Adiabatically pump a fluid to pressure p_final, using a pump with isentropic efficiency eta.""" h0 = fluid.h s0 = fluid.s fluid.SP = s0, p_final h1s = fluid.h isentropic_work = h1s - h0 actual_work = isentropic_work / eta h1 = h0 + actual_work fluid.HP = h1, p_final return actual_work def expand(fluid, p_final, eta): """Adiabatically expand a fluid to pressure p_final, using a turbine with isentropic efficiency eta.""" h0 = fluid.h s0 = fluid.s fluid.SP =s0, p_final h1s = fluid.h isentropic_work = h0 - h1s actual_work = isentropic_work * eta h1 = h0 - actual_work fluid.HP = h1, p_final return actual_work def printState(n, fluid): print('\n***************** State {0} ******************'.format(n)) print(fluid.report()) if __name__ == '__main__': # create an object representing water w = ct.Water() # start with saturated liquid water at 300 K w.TX = 300.0, 0.0 h1 = w.h p1 = w.P printState(1, w) # pump it adiabatically to p_max pump_work = pump(w, p_max, eta_pump) h2 = w.h printState(2, w) # heat it at constant pressure until it reaches the saturated vapor state # at this pressure w.PX = p_max, 1.0 h3 = w.h heat_added = h3 - h2 printState(3, w) # expand back to p1 turbine_work = expand(w, p1, eta_turbine) printState(4, w) # efficiency eff = (turbine_work - pump_work)/heat_added print('efficiency = ', eff)
bsd-3-clause
-2,803,135,325,289,463,300
22.6
77
0.602825
false
2.954925
false
false
false
paulmadore/Eric-IDE
6-6.0.9/eric/Plugins/VcsPlugins/vcsMercurial/HgConflictsListDialog.py
2
14728
# -*- coding: utf-8 -*- # Copyright (c) 2014 - 2015 Detlev Offenbach <[email protected]> # """ Module implementing a dialog to show a list of files which had or still have conflicts. """ from __future__ import unicode_literals import os from PyQt5.QtCore import pyqtSlot, Qt, QPoint, QProcess, QTimer from PyQt5.QtGui import QWidget from PyQt5.QtWidgets import QAbstractButton, QDialogButtonBox, QHeaderView, \ QTreeWidgetItem, QLineEdit, QApplication from E5Gui import E5MessageBox from E5Gui.E5Application import e5App from .Ui_HgConflictsListDialog import Ui_HgConflictsListDialog import Utilities.MimeTypes class HgConflictsListDialog(QWidget, Ui_HgConflictsListDialog): """ Class implementing a dialog to show a list of files which had or still have conflicts. """ StatusRole = Qt.UserRole + 1 FilenameRole = Qt.UserRole + 2 def __init__(self, vcs, parent=None): """ Constructor @param vcs reference to the vcs object @param parent parent widget (QWidget) """ super(HgConflictsListDialog, self).__init__(parent) self.setupUi(self) self.__position = QPoint() self.buttonBox.button(QDialogButtonBox.Close).setEnabled(False) self.buttonBox.button(QDialogButtonBox.Cancel).setDefault(True) self.conflictsList.headerItem().setText( self.conflictsList.columnCount(), "") self.conflictsList.header().setSortIndicator(0, Qt.AscendingOrder) self.refreshButton = self.buttonBox.addButton( self.tr("&Refresh"), QDialogButtonBox.ActionRole) self.refreshButton.setToolTip( self.tr("Press to refresh the list of conflicts")) self.refreshButton.setEnabled(False) self.vcs = vcs self.project = e5App().getObject("Project") self.__hgClient = vcs.getClient() if self.__hgClient: self.process = None else: self.process = QProcess() self.process.finished.connect(self.__procFinished) self.process.readyReadStandardOutput.connect(self.__readStdout) self.process.readyReadStandardError.connect(self.__readStderr) def closeEvent(self, e): """ Protected slot implementing a close event handler. @param e close event (QCloseEvent) """ if self.__hgClient: if self.__hgClient.isExecuting(): self.__hgClient.cancel() else: if self.process is not None and \ self.process.state() != QProcess.NotRunning: self.process.terminate() QTimer.singleShot(2000, self.process.kill) self.process.waitForFinished(3000) self.__position = self.pos() e.accept() def show(self): """ Public slot to show the dialog. """ if not self.__position.isNull(): self.move(self.__position) super(HgConflictsListDialog, self).show() def start(self, path): """ Public slot to start the tags command. @param path name of directory to list conflicts for (string) """ self.errorGroup.hide() QApplication.processEvents() self.intercept = False dname, fname = self.vcs.splitPath(path) # find the root of the repo self.__repodir = dname while not os.path.isdir( os.path.join(self.__repodir, self.vcs.adminDir)): self.__repodir = os.path.dirname(self.__repodir) if os.path.splitdrive(self.__repodir)[1] == os.sep: return self.activateWindow() self.raise_() self.conflictsList.clear() self.__started = True self.__getEntries() def __getEntries(self): """ Private method to get the conflict entries. """ args = self.vcs.initCommand("resolve") args.append('--list') if self.__hgClient: self.inputGroup.setEnabled(False) self.inputGroup.hide() out, err = self.__hgClient.runcommand(args) if err: self.__showError(err) if out: for line in out.splitlines(): self.__processOutputLine(line) if self.__hgClient.wasCanceled(): break self.__finish() else: self.process.kill() self.process.setWorkingDirectory(self.__repodir) self.process.start('hg', args) procStarted = self.process.waitForStarted(5000) if not procStarted: self.inputGroup.setEnabled(False) self.inputGroup.hide() E5MessageBox.critical( self, self.tr('Process Generation Error'), self.tr( 'The process {0} could not be started. ' 'Ensure, that it is in the search path.' ).format('hg')) else: self.inputGroup.setEnabled(True) self.inputGroup.show() def __finish(self): """ Private slot called when the process finished or the user pressed the button. """ if self.process is not None and \ self.process.state() != QProcess.NotRunning: self.process.terminate() QTimer.singleShot(2000, self.process.kill) self.process.waitForFinished(3000) QApplication.restoreOverrideCursor() self.buttonBox.button(QDialogButtonBox.Close).setEnabled(True) self.buttonBox.button(QDialogButtonBox.Cancel).setEnabled(False) self.buttonBox.button(QDialogButtonBox.Close).setDefault(True) self.inputGroup.setEnabled(False) self.inputGroup.hide() self.refreshButton.setEnabled(True) self.__resizeColumns() self.__resort() self.on_conflictsList_itemSelectionChanged() @pyqtSlot(QAbstractButton) def on_buttonBox_clicked(self, button): """ Private slot called by a button of the button box clicked. @param button button that was clicked (QAbstractButton) """ if button == self.buttonBox.button(QDialogButtonBox.Close): self.close() elif button == self.buttonBox.button(QDialogButtonBox.Cancel): if self.__hgClient: self.__hgClient.cancel() else: self.__finish() elif button == self.refreshButton: self.on_refreshButton_clicked() def __procFinished(self, exitCode, exitStatus): """ Private slot connected to the finished signal. @param exitCode exit code of the process (integer) @param exitStatus exit status of the process (QProcess.ExitStatus) """ self.__finish() def __resort(self): """ Private method to resort the tree. """ self.conflictsList.sortItems( self.conflictsList.sortColumn(), self.conflictsList.header().sortIndicatorOrder()) def __resizeColumns(self): """ Private method to resize the list columns. """ self.conflictsList.header().resizeSections( QHeaderView.ResizeToContents) self.conflictsList.header().setStretchLastSection(True) def __generateItem(self, status, name): """ Private method to generate a tag item in the tag list. @param status status of the file (string) @param name name of the file (string) """ itm = QTreeWidgetItem(self.conflictsList) if status == "U": itm.setText(0, self.tr("Unresolved")) elif status == "R": itm.setText(0, self.tr("Resolved")) else: itm.setText(0, self.tr("Unknown Status")) itm.setText(1, name) itm.setData(0, self.StatusRole, status) itm.setData(0, self.FilenameRole, self.project.getAbsolutePath(name)) def __readStdout(self): """ Private slot to handle the readyReadStdout signal. It reads the output of the process, formats it and inserts it into the contents pane. """ self.process.setReadChannel(QProcess.StandardOutput) while self.process.canReadLine(): s = str(self.process.readLine(), self.vcs.getEncoding(), 'replace').strip() self.__processOutputLine(s) def __processOutputLine(self, line): """ Private method to process the lines of output. @param line output line to be processed (string) """ status, filename = line.strip().split(None, 1) self.__generateItem(status, filename) @pyqtSlot() def on_refreshButton_clicked(self): """ Private slot to refresh the log. """ self.buttonBox.button(QDialogButtonBox.Close).setEnabled(False) self.buttonBox.button(QDialogButtonBox.Cancel).setEnabled(True) self.buttonBox.button(QDialogButtonBox.Cancel).setDefault(True) self.inputGroup.setEnabled(True) self.inputGroup.show() self.refreshButton.setEnabled(False) self.start(self.__repodir) def __readStderr(self): """ Private slot to handle the readyReadStderr signal. It reads the error output of the process and inserts it into the error pane. """ if self.process is not None: s = str(self.process.readAllStandardError(), self.vcs.getEncoding(), 'replace') self.__showError(s) def __showError(self, out): """ Private slot to show some error. @param out error to be shown (string) """ self.errorGroup.show() self.errors.insertPlainText(out) self.errors.ensureCursorVisible() def on_passwordCheckBox_toggled(self, isOn): """ Private slot to handle the password checkbox toggled. @param isOn flag indicating the status of the check box (boolean) """ if isOn: self.input.setEchoMode(QLineEdit.Password) else: self.input.setEchoMode(QLineEdit.Normal) @pyqtSlot() def on_sendButton_clicked(self): """ Private slot to send the input to the subversion process. """ input = self.input.text() input += os.linesep if self.passwordCheckBox.isChecked(): self.errors.insertPlainText(os.linesep) self.errors.ensureCursorVisible() else: self.errors.insertPlainText(input) self.errors.ensureCursorVisible() self.process.write(input) self.passwordCheckBox.setChecked(False) self.input.clear() def on_input_returnPressed(self): """ Private slot to handle the press of the return key in the input field. """ self.intercept = True self.on_sendButton_clicked() def keyPressEvent(self, evt): """ Protected slot to handle a key press event. @param evt the key press event (QKeyEvent) """ if self.intercept: self.intercept = False evt.accept() return super(HgConflictsListDialog, self).keyPressEvent(evt) @pyqtSlot(QTreeWidgetItem, int) def on_conflictsList_itemDoubleClicked(self, item, column): """ Private slot to open the double clicked entry. @param item reference to the double clicked item (QTreeWidgetItem) @param column column that was double clicked (integer) """ self.on_editButton_clicked() @pyqtSlot() def on_conflictsList_itemSelectionChanged(self): """ Private slot to handle a change of selected conflict entries. """ selectedCount = len(self.conflictsList.selectedItems()) unresolved = resolved = 0 for itm in self.conflictsList.selectedItems(): status = itm.data(0, self.StatusRole) if status == "U": unresolved += 1 elif status == "R": resolved += 1 self.resolvedButton.setEnabled(unresolved > 0) self.unresolvedButton.setEnabled(resolved > 0) self.reMergeButton.setEnabled(unresolved > 0) self.editButton.setEnabled( selectedCount == 1 and Utilities.MimeTypes.isTextFile( self.conflictsList.selectedItems()[0].data( 0, self.FilenameRole))) @pyqtSlot() def on_resolvedButton_clicked(self): """ Private slot to mark the selected entries as resolved. """ names = [ itm.data(0, self.FilenameRole) for itm in self.conflictsList.selectedItems() if itm.data(0, self.StatusRole) == "U" ] if names: self.vcs.hgResolved(names) self.on_refreshButton_clicked() @pyqtSlot() def on_unresolvedButton_clicked(self): """ Private slot to mark the selected entries as unresolved. """ names = [ itm.data(0, self.FilenameRole) for itm in self.conflictsList.selectedItems() if itm.data(0, self.StatusRole) == "R" ] if names: self.vcs.hgResolved(names, unresolve=True) self.on_refreshButton_clicked() @pyqtSlot() def on_reMergeButton_clicked(self): """ Private slot to re-merge the selected entries. """ names = [ itm.data(0, self.FilenameRole) for itm in self.conflictsList.selectedItems() if itm.data(0, self.StatusRole) == "U" ] if names: self.vcs.hgReMerge(names) @pyqtSlot() def on_editButton_clicked(self): """ Private slot to open the selected file in an editor. """ itm = self.conflictsList.selectedItems()[0] filename = itm.data(0, self.FilenameRole) if Utilities.MimeTypes.isTextFile(filename): e5App().getObject("ViewManager").getEditor(filename)
gpl-3.0
238,113,331,321,496,500
32.022422
78
0.57299
false
4.412223
false
false
false
MaxNoe/cta_event_viewer
protobuf/cta_event_pb2.py
1
2433
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: cta_event.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='cta_event.proto', package='cta_event', serialized_pb=_b('\n\x0f\x63ta_event.proto\x12\tcta_event\"2\n\x08\x43TAEvent\x12\x14\n\x0ctelescope_id\x18\x01 \x02(\r\x12\x10\n\x04\x64\x61ta\x18\x04 \x03(\x02\x42\x02\x10\x01') ) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _CTAEVENT = _descriptor.Descriptor( name='CTAEvent', full_name='cta_event.CTAEvent', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='telescope_id', full_name='cta_event.CTAEvent.telescope_id', index=0, number=1, type=13, cpp_type=3, label=2, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='data', full_name='cta_event.CTAEvent.data', index=1, number=4, type=2, cpp_type=6, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=_descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\020\001'))), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, extension_ranges=[], oneofs=[ ], serialized_start=30, serialized_end=80, ) DESCRIPTOR.message_types_by_name['CTAEvent'] = _CTAEVENT CTAEvent = _reflection.GeneratedProtocolMessageType('CTAEvent', (_message.Message,), dict( DESCRIPTOR = _CTAEVENT, __module__ = 'cta_event_pb2' # @@protoc_insertion_point(class_scope:cta_event.CTAEvent) )) _sym_db.RegisterMessage(CTAEvent) _CTAEVENT.fields_by_name['data'].has_options = True _CTAEVENT.fields_by_name['data']._options = _descriptor._ParseOptions(descriptor_pb2.FieldOptions(), _b('\020\001')) # @@protoc_insertion_point(module_scope)
mit
-9,132,853,243,116,970,000
31.013158
181
0.7127
false
3.056533
false
true
false
philiparvidsson/pymake2
src/pymake2/cli/main.py
1
2868
""" Provides the command-line interface for pymake2. """ #--------------------------------------- # IMPORTS #--------------------------------------- import os import sys from pymake2 import report from pymake2.cli import info, options from pymake2.core import makeconf from pymake2.core.exceptions import NoSuchTargetError from pymake2.core.maker import Maker from pymake2.core.target import Target from pymake2.utils import color #--------------------------------------- # CONSTANTS #--------------------------------------- # Exit code when a fatal error has been encountered. EXIT_FATAL = -1 # Exit code all went well. EXIT_MAKE_OK = 0 # Exit code when there was nothing to do. EXIT_NO_MAKE = 1 #--------------------------------------- # GLOBALS #--------------------------------------- # Pymake exit code. exit_code = EXIT_MAKE_OK #--------------------------------------- # FUNCTIONS #--------------------------------------- def fatal(s, *args): s = "fatal: " + s.format(*args) if not options.disable_color: s = color.red(s) println(s) sys.exit(EXIT_FATAL) def println(s=None, *args): if s: s = s.format(*args) print s else: print def pymake2(conf=None, args=None): args = sys.argv if args is None else [sys.argv[0]] + args # Keep arguments beginning with two hyphens. opts = [arg for arg in args if arg.startswith('--')] # Keep arguments *not* beginning with two hyphens. args = [arg for arg in args if arg not in opts] # Parse command line options. options.parse(opts) if conf and isinstance(conf, dict): conf = makeconf.from_dict(conf) conf = conf or options.conf or makeconf.from_dict({}) if options.conf: conf = makeconf.merge(conf, options.conf) Maker.inst().check_targets() report_problems() targets = args[1:] if not targets: targets = [ None ] for name in targets: if not name and not Maker.inst().def_target: println("\nNo target specified and there is no default target.") info.print_targets() sys.exit(EXIT_NO_MAKE) try: Maker.inst().make(name, conf) except NoSuchTargetError as e: fatal("no such target: '{}'", e.target_name) #sys.exit(exit_code) def report_problems(): any_errors = False # Report all problems for problem in report.problems(): if problem.is_error: any_errors = True s = problem.text if not options.disable_color: if problem.is_error: s = color.red (s) else : s = color.yellow(s) if problem.is_error or not options.disable_warnings: println(s) if any_errors: fatal("there were errors; aborting.")
mit
1,219,372,225,046,710,000
23.305085
76
0.541144
false
3.875676
false
false
false
IntelLabs/hpat
sdc/tests/tests_perf/generator.py
1
4291
import time import numpy as np from typing import NamedTuple from sdc.io.csv_ext import to_varname from sdc.tests.test_utils import * class CallExpression(NamedTuple): """ code: function or method call as a string type_: type of function performed (Python, Numba, SDC) jitted: option indicating whether to jit call """ code: str type_: str jitted: bool class TestCase(NamedTuple): """ name: name of the API item, e.g. method, operator size: size of the generated data for tests params: method parameters in format 'par1, par2, ...' call_expr: call expression as a string, e.g. '(A+B).sum()' where A, B are Series or DF usecase_params: input parameters for usecase in format 'par1, par2, ...', e.g. 'data, other' data_num: total number of generated data, e.g. 2 (data, other) input_data: input data for generating test data skip: flag for skipping a test """ name: str size: list params: str = '' call_expr: str = None usecase_params: str = None data_num: int = 1 input_data: list = None skip: bool = False def to_varname_without_excess_underscores(string): """Removing excess underscores from the string.""" return '_'.join(i for i in to_varname(string).split('_') if i) def generate_test_cases(cases, class_add, typ, prefix=''): for test_case in cases: test_name_parts = ['test', typ, prefix, test_case.name, gen_params_wo_data(test_case)] test_name = to_varname_without_excess_underscores('_'.join(test_name_parts)) setattr(class_add, test_name, gen_test(test_case, prefix)) def gen_params_wo_data(test_case): """Generate API item parameters without parameters with data, e.g. without parameter other""" extra_data_num = test_case.data_num - 1 method_params = test_case.params.split(', ')[extra_data_num:] return ', '.join(method_params) def gen_usecase_params(test_case): """Generate usecase parameters based on method parameters and number of extra generated data""" extra_data_num = test_case.data_num - 1 extra_usecase_params = test_case.params.split(', ')[:extra_data_num] usecase_params_parts = ['data'] + extra_usecase_params return ', '.join(usecase_params_parts) def gen_call_expr(test_case, prefix): """Generate call expression based on method name and parameters and method prefix, e.g. str""" prefix_as_list = [prefix] if prefix else [] call_expr_parts = ['data'] + prefix_as_list + ['{}({})'.format(test_case.name, test_case.params)] return '.'.join(call_expr_parts) def gen_test(test_case, prefix): func_name = 'func' usecase = gen_usecase(test_case, prefix) skip = '@skip_numba_jit\n' if test_case.skip else '' test_name = test_case.name if test_case.params: test_name = f'{test_name}({test_case.params})' func_text = f""" {skip}def {func_name}(self): self._test_case(usecase, name='{test_name}', total_data_length={test_case.size}, data_num={test_case.data_num}, input_data={test_case.input_data}) """ loc_vars = {} global_vars = {'usecase': usecase, 'skip_numba_jit': skip_numba_jit} exec(func_text, global_vars, loc_vars) func = loc_vars[func_name] return func def create_func(usecase_params, call_expr): func_name = 'func' func_text = f""" def {func_name}({usecase_params}): start_time = time.time() res = {call_expr} finish_time = time.time() return finish_time - start_time, res """ loc_vars = {} exec(func_text, globals(), loc_vars) func = loc_vars[func_name] return func def gen_usecase(test_case, prefix): usecase_params = test_case.usecase_params call_expr = test_case.call_expr if call_expr is None: if usecase_params is None: usecase_params = gen_usecase_params(test_case) call_expr = gen_call_expr(test_case, prefix) if isinstance(call_expr, list): results = [] for ce in call_expr: results.append({ 'func': create_func(usecase_params, ce.code), 'type_': ce.type_, 'jitted': ce.jitted }) return results func = create_func(usecase_params, call_expr) return func
bsd-2-clause
-4,105,631,501,158,639,000
29.006993
101
0.636215
false
3.389415
true
false
false
indico/indico
indico/modules/events/management/controllers/protection.py
3
7204
# This file is part of Indico. # Copyright (C) 2002 - 2021 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. from operator import attrgetter from flask import flash, jsonify, redirect, request from werkzeug.exceptions import NotFound from indico.core.db.sqlalchemy.protection import ProtectionMode, render_acl from indico.core.permissions import (get_available_permissions, get_permissions_info, get_principal_permissions, update_permissions) from indico.modules.categories.models.roles import CategoryRole from indico.modules.categories.util import serialize_category_role from indico.modules.core.controllers import PrincipalsMixin from indico.modules.events import Event from indico.modules.events.controllers.base import RHAuthenticatedEventBase from indico.modules.events.management.controllers.base import RHManageEventBase from indico.modules.events.management.forms import EventProtectionForm from indico.modules.events.management.views import WPEventProtection from indico.modules.events.operations import update_event_protection from indico.modules.events.roles.util import serialize_event_role from indico.modules.events.sessions import COORDINATOR_PRIV_SETTINGS, session_settings from indico.modules.events.sessions.operations import update_session_coordinator_privs from indico.modules.events.util import get_object_from_args from indico.util import json from indico.util.i18n import _ from indico.util.marshmallow import PrincipalDict from indico.web.args import use_rh_kwargs from indico.web.flask.util import url_for from indico.web.forms.base import FormDefaults from indico.web.forms.fields.principals import PermissionsField, serialize_principal from indico.web.rh import RH from indico.web.util import jsonify_template class RHShowNonInheriting(RHManageEventBase): """Show a list of non-inheriting child objects.""" def _process_args(self): RHManageEventBase._process_args(self) self.obj = get_object_from_args()[2] if self.obj is None: raise NotFound def _process(self): objects = self.obj.get_non_inheriting_objects() return jsonify_template('events/management/non_inheriting_objects.html', objects=objects) class RHEventACL(RHManageEventBase): """Display the inherited ACL of the event.""" def _process(self): return render_acl(self.event) class RHEventACLMessage(RHManageEventBase): """Render the inheriting ACL message.""" def _process(self): mode = ProtectionMode[request.args['mode']] return jsonify_template('forms/protection_field_acl_message.html', object=self.event, mode=mode, endpoint='event_management.acl') class RHEventProtection(RHManageEventBase): """Show event protection.""" def _process(self): form = EventProtectionForm(obj=FormDefaults(**self._get_defaults()), event=self.event) selectable_permissions = {k for k, v in get_available_permissions(Event).items() if v.user_selectable} user_permissions = [(p.principal, set(p.permissions)) for p in self.event.acl_entries] hidden_permissions = sorted(( (principal, sorted(perms)) for principal, perms in user_permissions if perms and not (perms & selectable_permissions) ), key=lambda x: (x[0].principal_order, x[0].name.lower())) form.permissions.hidden_permissions = [(p.name, perms) for p, perms in hidden_permissions] if form.validate_on_submit(): update_permissions(self.event, form) update_event_protection(self.event, {'protection_mode': form.protection_mode.data, 'own_no_access_contact': form.own_no_access_contact.data, 'access_key': form.access_key.data, 'visibility': form.visibility.data, 'public_regform_access': form.public_regform_access.data}) self._update_session_coordinator_privs(form) flash(_('Protection settings have been updated'), 'success') return redirect(url_for('.protection', self.event)) return WPEventProtection.render_template('event_protection.html', self.event, 'protection', form=form) def _get_defaults(self): registration_managers = {p.principal for p in self.event.acl_entries if p.has_management_permission('registration', explicit=True)} event_session_settings = session_settings.get_all(self.event) coordinator_privs = {name: event_session_settings[val] for name, val in COORDINATOR_PRIV_SETTINGS.items() if event_session_settings.get(val)} permissions = [[serialize_principal(p.principal), list(get_principal_permissions(p, Event))] for p in self.event.acl_entries] permissions = [item for item in permissions if item[1]] return dict({'protection_mode': self.event.protection_mode, 'registration_managers': registration_managers, 'access_key': self.event.access_key, 'visibility': self.event.visibility, 'own_no_access_contact': self.event.own_no_access_contact, 'public_regform_access': self.event.public_regform_access, 'permissions': permissions}, **coordinator_privs) def _update_session_coordinator_privs(self, form): data = {field: getattr(form, field).data for field in form.priv_fields} update_session_coordinator_privs(self.event, data) class RHPermissionsDialog(RH): def _process(self): principal = json.loads(request.form['principal']) permissions_tree = get_permissions_info(PermissionsField.type_mapping[request.view_args['type']])[1] return jsonify_template('events/management/permissions_dialog.html', permissions_tree=permissions_tree, permissions=request.form.getlist('permissions'), principal=principal) class RHEventPrincipals(PrincipalsMixin, RHAuthenticatedEventBase): @use_rh_kwargs({ 'values': PrincipalDict(allow_groups=True, allow_external_users=True, allow_event_roles=True, allow_category_roles=True, allow_registration_forms=True, allow_emails=True, missing={}) }, rh_context=('event',)) def _process(self, values): self.values = values return PrincipalsMixin._process(self) class RHEventRolesJSON(RHAuthenticatedEventBase): def _process(self): event_roles = sorted(self.event.roles, key=attrgetter('code')) return jsonify([serialize_event_role(er, legacy=False) for er in event_roles]) class RHCategoryRolesJSON(RHAuthenticatedEventBase): def _process(self): category_roles = CategoryRole.get_category_roles(self.event.category) return jsonify([serialize_category_role(cr, legacy=False) for cr in category_roles])
mit
4,333,181,202,084,517,000
48.682759
115
0.686008
false
4.109527
false
false
false
jdwittenauer/ionyx
ionyx/contrib/category_to_numeric.py
1
2642
import numpy as np class CategoryToNumeric(object): """ Transform class that replaces a categorical value with a representative target value for instances that belong to that category. This technique is useful as a method to turn categorical features into numeric values for use in an estimator, and can be viewed as an alternative approach to one-hot encoding. Only suitable for regression tasks. Parameters ---------- categorical_features : list A list of integers representing the column indices to apply the transform to. metric : {'mean', 'median', 'std'}, optional, default 'mean' The method used to calculate the replacement value for a category. Attributes ---------- feature_map_ : dict Mapping of categorical to target values. """ def __init__(self, categorical_features, metric='mean'): self.categorical_features = categorical_features self.metric = metric self.feature_map_ = {} def fit(self, X, y): """ Fit the transform using X as the training data and y as the label. Parameters ---------- X : array-like Training input samples. y : array-like Target values. """ for i in self.categorical_features: self.feature_map_[i] = {} distinct = list(np.unique(X[:, i])) for j in distinct: if self.metric == 'mean': self.feature_map_[i][j] = y[X[:, i] == j].mean() elif self.metric == 'median': self.feature_map_[i][j] = y[X[:, i] == j].median() elif self.metric == 'std': self.feature_map_[i][j] = y[X[:, i] == j].std() else: raise Exception('Metric not recognized.') def transform(self, X): """ Apply the transform to the data. Parameters ---------- X : array-like Training input samples. """ X_trans = np.copy(X) for i in self.categorical_features: distinct = list(np.unique(X_trans[:, i])) for j in distinct: X_trans[X_trans[:, i] == j, i] = self.feature_map_[i][j] return X_trans def fit_transform(self, X, y): """ Wrapper method that calls fit and transform sequentially. Parameters ---------- X : array-like Training input samples. y : array-like Target values. """ self.fit(X, y) return self.transform(X)
apache-2.0
3,332,585,937,923,979,300
30.082353
88
0.539364
false
4.531732
false
false
false
DemocracyClub/yournextrepresentative
ynr/apps/people/migrations/0004_move_person_data.py
1
1879
# -*- coding: utf-8 -*- # Generated by Django 1.10.8 on 2018-10-23 18:45 from __future__ import unicode_literals from django.db import migrations def move_person_from_popolo(apps, schema_editor): PopoloPerson = apps.get_model("popolo", "Person") PeoplePerson = apps.get_model("people", "Person") for pperson in PopoloPerson.objects.all(): people_person = PeoplePerson.objects.create( pk=pperson.pk, start_date=pperson.start_date, end_date=pperson.end_date, created_at=pperson.created_at, updated_at=pperson.updated_at, name=pperson.name, family_name=pperson.family_name, given_name=pperson.given_name, additional_name=pperson.additional_name, honorific_prefix=pperson.honorific_prefix, honorific_suffix=pperson.honorific_suffix, patronymic_name=pperson.patronymic_name, sort_name=pperson.sort_name, email=pperson.email, gender=pperson.gender, birth_date=pperson.birth_date, death_date=pperson.death_date, summary=pperson.summary, biography=pperson.biography, national_identity=pperson.national_identity, versions=pperson.versions, ) for election in pperson.not_standing.all(): people_person.not_standing.add(election) class Migration(migrations.Migration): dependencies = [("people", "0003_add_person_model")] operations = [ migrations.RunPython( move_person_from_popolo, migrations.RunPython.noop ), migrations.RunSQL( """ SELECT setval('people_person_id_seq', COALESCE((SELECT MAX(id)+1 FROM people_person), 1)); """, migrations.RunSQL.noop, ), ]
agpl-3.0
3,368,418,970,247,607,300
33.163636
79
0.602448
false
3.750499
false
false
false
alberthxf/custodian
setup.py
1
1560
import os from ez_setup import use_setuptools use_setuptools() from setuptools import setup, find_packages with open("README.rst") as f: long_desc = f.read() ind = long_desc.find("\n") long_desc = long_desc[ind + 1:] setup( name="custodian", packages=find_packages(), version="0.8.1", install_requires=["monty>=0.5.9", "six"], extras_require={"vasp, nwchem, qchem": ["pymatgen>=3.0.2"]}, package_data={}, author="Shyue Ping Ong, William Davidson Richards, Stephen Dacek, " "Xiaohui Qu", author_email="[email protected]", maintainer="Shyue Ping Ong", url="https://github.com/materialsproject/custodian", license="MIT", description="A simple JIT job management framework in Python.", long_description=long_desc, keywords=["jit", "just-in-time", "job", "management", "vasp"], classifiers=[ "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Development Status :: 4 - Beta", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Topic :: Scientific/Engineering :: Physics", "Topic :: Scientific/Engineering :: Chemistry", "Topic :: Software Development :: Libraries :: Python Modules" ], scripts=[os.path.join("scripts", f) for f in os.listdir("scripts")] )
mit
3,628,376,852,117,945,000
35.27907
71
0.619231
false
3.653396
false
false
false
vascotenner/holoviews
holoviews/__init__.py
1
3414
from __future__ import print_function, absolute_import import os, sys, pydoc import numpy as np # noqa (API import) _cwd = os.path.abspath(os.path.split(__file__)[0]) sys.path.insert(0, os.path.join(_cwd, '..', 'param')) import param __version__ = param.Version(release=(1,5,0), fpath=__file__, commit="$Format:%h$", reponame='holoviews') from .core import archive # noqa (API import) from .core.dimension import OrderedDict, Dimension # noqa (API import) from .core.boundingregion import BoundingBox # noqa (API import) from .core.options import Options, Store, StoreOptions # noqa (API import) from .core.layout import * # noqa (API import) from .core.element import * # noqa (API import) from .core.overlay import * # noqa (API import) from .core.tree import * # noqa (API import) from .core.spaces import * # noqa (API import) from .interface import * # noqa (API import) from .operation import ElementOperation, MapOperation, TreeOperation # noqa (API import) from .element import * # noqa (API import) # Surpress warnings generated by NumPy in matplotlib # Expected to be fixed in next matplotlib release import warnings warnings.filterwarnings("ignore", message="elementwise comparison failed; returning scalar instead") try: import IPython # noqa (API import) from .ipython import notebook_extension except ImportError as e: class notebook_extension(param.ParameterizedFunction): def __call__(self, *args, **opts): raise Exception("IPython notebook not available") if str(e) != 'No module named IPython': raise e # A single holoviews.rc file may be executed if found. for rcfile in [os.environ.get("HOLOVIEWSRC", ''), "~/.holoviews.rc", "~/.config/holoviews/holoviews.rc"]: try: filename = os.path.expanduser(rcfile) with open(filename) as f: code = compile(f.read(), filename, 'exec') try: exec(code) except Exception as e: print("Warning: Could not load %r [%r]" % (filename, str(e))) break except IOError: pass def help(obj, visualization=True, ansi=True, backend='matplotlib', recursive=False, pattern=None): """ Extended version of the built-in help that supports parameterized functions and objects. A pattern (regular expression) may be used to filter the output and if recursive is set to True, documentation for the supplied object is shown. Note that the recursive option will only work with an object instance and not a class. If ansi is set to False, all ANSI color codes are stripped out. """ info = Store.info(obj, ansi=ansi, backend=backend, visualization=visualization, recursive=recursive, pattern=pattern) msg = ( "\nTo view the visualization options applicable to this " "object or class, use:\n\n" " holoviews.help(obj, visualization=True)\n\n") if info: print((msg if visualization is False else '') + info) else: pydoc.help(obj)
bsd-3-clause
414,004,592,514,076,860
40.634146
90
0.603984
false
4.272841
false
false
false
arne-cl/discoursegraphs
src/discoursegraphs/readwrite/rst/rstlatex.py
1
8330
#!/usr/bin/env python # -*- coding: utf-8 -*- # Author: Arne Neumann <[email protected]> """ This module contains code to generate figures of RST trees in Latex (using the rst.sty package). """ # Python 2/3 compatibility from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * import codecs import string import re import nltk from discoursegraphs.readwrite.rst.rs3.rs3tree import RSTTree MULTISAT_RELNAME = 'MONONUC-MULTISAT' RSTSEGMENT_TEMPLATE = string.Template("""\\rstsegment{$segment}""") # \rstsegment{Foo} NUC_TEMPLATE = string.Template("""{}{$nucleus}""") SAT_TEMPLATE = string.Template("""{$relation}{$satellite}""") MULTINUC_TEMPLATE = string.Template("""\multirel{$relation}$nucleus_segments""") RSTLATEX_TREE_RE = re.compile("\\\(dirrel|multirel)") class RSTLatexFileWriter(object): def __init__(self, tree, output_filepath=None): self.tree = tree self.rstlatextree = rsttree2rstlatex(tree) if output_filepath is not None: with codecs.open(output_filepath, 'w', 'utf-8') as outfile: outfile.write(self.rstlatextree + '\n') def __str__(self): return self.rstlatextree def is_nltktreelike(obj): """Returns true, iff the given object behaves like an nltk.Tree. This is a "duck-typing" workaround as most RST tree classes do not inherit from nltk.Tree but rather embed it. """ return hasattr(obj, 'label') and callable(obj.label) def get_node_type(tree): """Returns the type of the root node of the given RST tree (one of 'N', 'S', 'relation' or 'edu'.) """ if is_nltktreelike(tree): if tree.label() in ('N', 'S'): return tree.label() else: return 'relation' elif isinstance(tree, basestring): return 'edu' else: raise ValueError("Unknown tree/node type: {}".format(type(tree))) def is_edu_segment(rstlatex_string): """Returns true, iff the given string does not contain an RST subtree.""" return RSTLATEX_TREE_RE.search(rstlatex_string) is None def wrap_edu_segment(edu_segment): """Wraps the string content of an EDU in RST Latex markup.""" return RSTSEGMENT_TEMPLATE.substitute(segment=edu_segment) def make_nucsat(relname, nuc_types, elements): """Creates a rst.sty Latex string representation of a standard RST relation (one nucleus, one satellite). """ assert len(elements) == 2 and len(nuc_types) == 2, \ "A nucsat relation must have two elements." assert set(nuc_types) == set(['N', 'S']), \ "A nucsat relation must consist of one nucleus and one satellite." result = "\dirrel" for i, nuc_type in enumerate(nuc_types): element = elements[i] if is_edu_segment(element): element = wrap_edu_segment(element) if nuc_type == 'N': result += '\n\t' + NUC_TEMPLATE.substitute(nucleus=element) else: result += '\n\t' + SAT_TEMPLATE.substitute(satellite=element, relation=relname) return result def make_multinuc(relname, nucleii): """Creates a rst.sty Latex string representation of a multi-nuclear RST relation.""" nuc_strings = [] for nucleus in nucleii: if is_edu_segment(nucleus): nucleus = wrap_edu_segment(nucleus) nuc_strings.append('{' + nucleus + '}') nucleii_string = "\n\t" + "\n\t".join(nuc_strings) return MULTINUC_TEMPLATE.substitute(relation=relname, nucleus_segments=nucleii_string) def make_multisat(nucsat_tuples): """Creates a rst.sty Latex string representation of a multi-satellite RST subtree (i.e. merge a set of nucleus-satellite relations that share the same nucleus into one subtree). """ nucsat_tuples = [tup for tup in nucsat_tuples] # unpack the iterable, so we can check its length assert len(nucsat_tuples) > 1, \ "A multisat relation bundle must contain more than one relation" result = "\dirrel\n\t" first_relation, remaining_relations = nucsat_tuples[0], nucsat_tuples[1:] relname, nuc_types, elements = first_relation first_nucleus_pos = current_nucleus_pos = nuc_types.index('N') result_segments = [] # add elements (nucleus and satellite) from first relation to resulting (sub)tree for i, nuc_type in enumerate(nuc_types): element = elements[i] if is_edu_segment(element): element = wrap_edu_segment(element) if nuc_type == 'N': result_segments.append(NUC_TEMPLATE.substitute(nucleus=element)) else: result_segments.append(SAT_TEMPLATE.substitute(satellite=element, relation=relname)) # reorder elements of the remaining relation and add them to the resulting (sub)tree for (relname, nuc_types, elements) in remaining_relations: for i, nuc_type in enumerate(nuc_types): if nuc_type == 'N': # all relations share the same nucleus, so we don't need to reprocess it. continue else: element = elements[i] if is_edu_segment(element): element = wrap_edu_segment(element) result_segment = SAT_TEMPLATE.substitute(satellite=element, relation=relname) if i < first_nucleus_pos: # satellite comes before the nucleus result_segments.insert(current_nucleus_pos, result_segment) current_nucleus_pos += 1 else: result_segments.append(result_segment) return result + '\n\t'.join(result_segments) def rsttree2rstlatex(tree, indent_level=0): node_type = get_node_type(tree) if node_type == 'relation': relname = tree.label() expected_types = set(['N', 'S']) child_node_types = [get_node_type(child) for child in tree] observed_types = set(child_node_types) unexpected_types = observed_types.difference(expected_types) assert unexpected_types == set(), \ "Observed types ({}) contain unexpected types ({})".format(observed_types, unexpected_types) subtree_strings = [rsttree2rstlatex(grandchild, indent_level=indent_level+1) for child in tree for grandchild in child] if observed_types == set('N'): # relation only consists of nucleii return indent_tab(make_multinuc(relname=relname, nucleii=subtree_strings), indent_level) elif relname == MULTISAT_RELNAME: # multiple relations sharing the same nucleus relations = [grandchild for child in tree for grandchild in child] relnames = [rel.label() for rel in relations] nuctypes_per_relation = [[elem.label() for elem in relation] for relation in relations] subtree_strings_per_relation = [[rsttree2rstlatex(elem[0]) for elem in relation] for relation in relations] nucsat_tuples = zip(relnames, nuctypes_per_relation, subtree_strings_per_relation) return indent_tab(make_multisat(nucsat_tuples), indent_level) else: # a "normal" relation between one nucleus and one satellite assert len(child_node_types) == 2, "A nuc/sat relationship must consist of two elements" return indent_tab(make_nucsat(relname, child_node_types, subtree_strings), indent_level) elif node_type == 'edu': return " ".join(tree.split()) elif node_type in ('N', 'S'): # a single segment not in any relation return indent_tab(string.Template("\rstsegment{$content}").substitute(content=tree[0]), indent_level) else: raise ValueError("Can't handle this node: {}".format(tree.label())) def indent(text, amount, ch=' '): """Indents a string by the given amount of characters.""" padding = amount * ch return ''.join(padding+line for line in text.splitlines(True)) def indent_tab(text, number): """Indents a string by the given number of tabs (one tab = 8 spaces).""" return indent(text, number, '\t') def write_rstlatex(tree, output_file=None): """Converts an RST tree into a rst.sty Latex string representation""" return RSTLatexFileWriter(tree, output_filepath=output_file)
bsd-3-clause
-8,106,414,627,086,261,000
37.211009
119
0.646218
false
3.650307
false
false
false
getsentry/zeus
tests/zeus/utils/test_metrics.py
1
1845
from time import time from zeus.utils.metrics import Counter, HitCounter, gauge def test_hit_counter(): current_ts = int(time()) c = HitCounter(size=3) c.incr(current_ts=current_ts) c.incr(current_ts=current_ts) assert c.count(current_ts=current_ts) == 2 assert c.count(1, current_ts=current_ts) == 2 assert c.count(2, current_ts=current_ts) == 2 current_ts += 1 c.incr(current_ts=current_ts) assert c.count(current_ts=current_ts) == 3 assert c.count(1, current_ts=current_ts) == 1 assert c.count(2, current_ts=current_ts) == 3 current_ts += 1 c.incr(current_ts=current_ts) assert c.count(current_ts=current_ts) == 4 assert c.count(1, current_ts=current_ts) == 1 assert c.count(2, current_ts=current_ts) == 2 current_ts += 1 c.incr(current_ts=current_ts) assert c.count(current_ts=current_ts) == 3 assert c.count(1, current_ts=current_ts) == 1 assert c.count(2, current_ts=current_ts) == 2 # dont incr here as it will force a truncate, and we just want to test # the fact that count skips invalid buckets current_ts += 1 assert c.count(current_ts=current_ts) == 2 assert c.count(1, current_ts=current_ts) == 0 assert c.count(2, current_ts=current_ts) == 1 current_ts += 1 assert c.count(current_ts=current_ts) == 1 assert c.count(1, current_ts=current_ts) == 0 assert c.count(2, current_ts=current_ts) == 0 current_ts += 1 assert c.count(current_ts=current_ts) == 0 assert c.count(1, current_ts=current_ts) == 0 assert c.count(2, current_ts=current_ts) == 0 def test_gauge(): counter = Counter() with gauge(counter): assert counter.value == 1 with gauge(counter): assert counter.value == 2 assert counter.value == 1 assert counter.value == 0
apache-2.0
-3,649,925,010,883,005,400
30.810345
74
0.63794
false
3.085284
false
false
false
PriviPK/privipk-sync-engine
inbox/util/misc.py
3
5298
import sys import pkgutil import time import re from datetime import datetime from email.utils import parsedate_tz, mktime_tz from inbox.log import get_logger from inbox.providers import providers class ProviderSpecificException(Exception): pass def or_none(value, selector): if value is None: return None else: return selector(value) def strip_plaintext_quote(text): """ Strip out quoted text with no inline responses. TODO: Make sure that the line before the quote looks vaguely like a quote header. May be hard to do in an internationalized manner? """ found_quote = False lines = text.strip().splitlines() quote_start = None for i, line in enumerate(lines): if line.startswith('>'): found_quote = True if quote_start is None: quote_start = i else: found_quote = False if found_quote: return '\n'.join(lines[:quote_start - 1]) else: return text def parse_ml_headers(headers): """ Parse the mailing list headers described in RFC 4021, these headers are optional (RFC 2369). """ attrs = {} attrs['List-Archive'] = headers.get('List-Archive') attrs['List-Help'] = headers.get('List-Help') attrs['List-Id'] = headers.get('List-Id') attrs['List-Owner'] = headers.get('List-Owner') attrs['List-Post'] = headers.get('List-Post') attrs['List-Subscribe'] = headers.get('List-Subscribe') attrs['List-Unsubscribe'] = headers.get('List-Unsubscribe') return attrs def parse_references(references, in_reply_to): """ Parse a References: header and returns an array of MessageIDs. The returned array contains the MessageID in In-Reply-To if the header is present. Parameters ---------- references: string the contents of the referfences header in_reply_to: string the contents of the in-reply-to header Returns ------- list of MessageIds (strings) or an empty list. """ replyto = in_reply_to.split()[0] if in_reply_to else in_reply_to if not references: if replyto: return [replyto] else: return [] references = references.split() if replyto not in references: references.append(replyto) return references def dt_to_timestamp(dt): return int((dt - datetime(1970, 1, 1)).total_seconds()) def get_internaldate(date, received): """ Get the date from the headers. """ if date is None: other, date = received.split(';') # All in UTC parsed_date = parsedate_tz(date) timestamp = mktime_tz(parsed_date) dt = datetime.utcfromtimestamp(timestamp) return dt def timed(fn): """ A decorator for timing methods. """ def timed_fn(self, *args, **kwargs): start_time = time.time() ret = fn(self, *args, **kwargs) # TODO some modules like gmail.py don't have self.logger try: if self.log: fn_logger = self.log except AttributeError: fn_logger = get_logger() # out = None fn_logger.info('[timer] {0} took {1:.3f} seconds.'.format( str(fn), float(time.time() - start_time))) return ret return timed_fn # Based on: http://stackoverflow.com/a/8556471 def load_modules(base_name, base_path): """ Imports all modules underneath `base_module` in the module tree. Note that if submodules are located in different directory trees, you need to use `pkgutil.extend_path` to make all the folders appear in the module's `__path__`. Returns ------- list All the modules in the base module tree. """ modules = [] for importer, module_name, _ in pkgutil.iter_modules(base_path): full_module_name = '{}.{}'.format(base_name, module_name) if full_module_name not in sys.modules: module = importer.find_module(module_name).load_module( full_module_name) else: module = sys.modules[full_module_name] modules.append(module) return modules def register_backends(base_name, base_path): """ Dynamically loads all packages contained within thread backends module, including those by other module install paths """ modules = load_modules(base_name, base_path) mod_for = {} for module in modules: if hasattr(module, 'PROVIDER'): provider_name = module.PROVIDER if provider_name == 'generic': for p_name, p in providers.iteritems(): p_type = p.get('type', None) if p_type == 'generic' and p_name not in mod_for: mod_for[p_name] = module else: mod_for[provider_name] = module return mod_for def cleanup_subject(subject_str): """Clean-up a message subject-line. For instance, 'Re: Re: Re: Birthday party' becomes 'Birthday party'""" if subject_str is None: return '' # TODO consider expanding to all # http://en.wikipedia.org/wiki/List_of_email_subject_abbreviations cleanup_regexp = "(?i)^((re|fw|fwd|aw|wg):\s*)+" return re.sub(cleanup_regexp, "", subject_str)
agpl-3.0
4,643,929,602,232,661,000
25.893401
74
0.61174
false
3.927354
false
false
false
apache/incubator-superset
superset/dashboards/commands/bulk_delete.py
3
2873
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import logging from typing import List, Optional from flask_appbuilder.security.sqla.models import User from flask_babel import lazy_gettext as _ from superset.commands.base import BaseCommand from superset.commands.exceptions import DeleteFailedError from superset.dashboards.commands.exceptions import ( DashboardBulkDeleteFailedError, DashboardBulkDeleteFailedReportsExistError, DashboardForbiddenError, DashboardNotFoundError, ) from superset.dashboards.dao import DashboardDAO from superset.exceptions import SupersetSecurityException from superset.models.dashboard import Dashboard from superset.reports.dao import ReportScheduleDAO from superset.views.base import check_ownership logger = logging.getLogger(__name__) class BulkDeleteDashboardCommand(BaseCommand): def __init__(self, user: User, model_ids: List[int]): self._actor = user self._model_ids = model_ids self._models: Optional[List[Dashboard]] = None def run(self) -> None: self.validate() try: DashboardDAO.bulk_delete(self._models) return None except DeleteFailedError as ex: logger.exception(ex.exception) raise DashboardBulkDeleteFailedError() def validate(self) -> None: # Validate/populate model exists self._models = DashboardDAO.find_by_ids(self._model_ids) if not self._models or len(self._models) != len(self._model_ids): raise DashboardNotFoundError() # Check there are no associated ReportSchedules reports = ReportScheduleDAO.find_by_dashboard_ids(self._model_ids) if reports: report_names = [report.name for report in reports] raise DashboardBulkDeleteFailedReportsExistError( _("There are associated alerts or reports: %s" % ",".join(report_names)) ) # Check ownership for model in self._models: try: check_ownership(model) except SupersetSecurityException: raise DashboardForbiddenError()
apache-2.0
3,141,048,109,437,204,500
38.902778
88
0.714236
false
4.300898
false
false
false
t1m0thyj/aiyprojects-raspbian
src/aiy/_drivers/_tts.py
1
2331
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Wrapper around a TTS system.""" import functools import logging import os import subprocess import tempfile from aiy import i18n # Path to a tmpfs directory to avoid SD card wear TMP_DIR = '/run/user/%d' % os.getuid() logger = logging.getLogger('tts') def create_say(player): """Return a function say(words) for the given player.""" lang = i18n.get_language_code() return functools.partial(say, player, lang=lang) def say(player, words, lang='en-US', volume=60, pitch=130): """Say the given words with TTS. Args: player: To play the text-to-speech audio. words: string to say aloud. lang: language for the text-to-speech engine. volume: volume for the text-to-speech engine. pitch: pitch for the text-to-speech engine. """ try: (fd, tts_wav) = tempfile.mkstemp(suffix='.wav', dir=TMP_DIR) except IOError: logger.exception('Using fallback directory for TTS output') (fd, tts_wav) = tempfile.mkstemp(suffix='.wav') os.close(fd) words = '<volume level="' + str(volume) + '"><pitch level="' + str(pitch) + \ '">' + words + '</pitch></volume>' try: subprocess.call(['pico2wave', '--lang', lang, '-w', tts_wav, words]) player.play_wav(tts_wav) finally: os.unlink(tts_wav) def _main(): import argparse from aiy import audio logging.basicConfig(level=logging.INFO) parser = argparse.ArgumentParser(description='Test TTS wrapper') parser.add_argument('words', nargs='*', help='Words to say') args = parser.parse_args() if args.words: words = ' '.join(args.words) player = audio.get_player() create_say(player)(words) if __name__ == '__main__': _main()
apache-2.0
-8,534,463,058,438,349,000
28.884615
81
0.659374
false
3.630841
false
false
false
Pluto-tv/chromium-crosswalk
tools/telemetry/third_party/gsutilz/gslib/third_party/storage_apitools/storage_v1_client.py
12
44162
# Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Generated client library for storage version v1.""" import os import sys from apitools.base.py import base_api import gslib from gslib.third_party.storage_apitools import storage_v1_messages as messages class StorageV1(base_api.BaseApiClient): """Generated client library for service storage version v1.""" MESSAGES_MODULE = messages _PACKAGE = u'storage' _SCOPES = [u'https://www.googleapis.com/auth/devstorage.full_control', u'https://www.googleapis.com/auth/devstorage.read_only', u'https://www.googleapis.com/auth/devstorage.read_write'] _VERSION = u'v1' _CLIENT_ID = 'nomatter' _CLIENT_SECRET = 'nomatter' _USER_AGENT = 'apitools gsutil/%s (%s)' % (gslib.VERSION, sys.platform) if os.environ.get('CLOUDSDK_WRAPPER') == '1': _USER_AGENT += ' Cloud SDK Command Line Tool' if os.environ.get('CLOUDSDK_VERSION'): _USER_AGENT += ' %s' % os.environ.get('CLOUDSDK_VERSION') _CLIENT_CLASS_NAME = u'StorageV1' _URL_VERSION = u'v1' def __init__(self, url='', credentials=None, get_credentials=True, http=None, model=None, log_request=False, log_response=False, credentials_args=None, default_global_params=None, version=_VERSION): """Create a new storage handle.""" url = url or u'https://www.googleapis.com/storage/v1/' super(StorageV1, self).__init__( url, credentials=credentials, get_credentials=get_credentials, http=http, model=model, log_request=log_request, log_response=log_response, credentials_args=credentials_args, default_global_params=default_global_params) self._version = version self.bucketAccessControls = self.BucketAccessControlsService(self) self.buckets = self.BucketsService(self) self.channels = self.ChannelsService(self) self.defaultObjectAccessControls = self.DefaultObjectAccessControlsService(self) self.objectAccessControls = self.ObjectAccessControlsService(self) self.objects = self.ObjectsService(self) class BucketAccessControlsService(base_api.BaseApiService): """Service class for the bucketAccessControls resource.""" _NAME = u'bucketAccessControls' def __init__(self, client): super(StorageV1.BucketAccessControlsService, self).__init__(client) self._method_configs = { 'Delete': base_api.ApiMethodInfo( http_method=u'DELETE', method_id=u'storage.bucketAccessControls.delete', ordered_params=[u'bucket', u'entity'], path_params=[u'bucket', u'entity'], query_params=[], relative_path=u'b/{bucket}/acl/{entity}', request_field='', request_type_name=u'StorageBucketAccessControlsDeleteRequest', response_type_name=u'StorageBucketAccessControlsDeleteResponse', supports_download=False, ), 'Get': base_api.ApiMethodInfo( http_method=u'GET', method_id=u'storage.bucketAccessControls.get', ordered_params=[u'bucket', u'entity'], path_params=[u'bucket', u'entity'], query_params=[], relative_path=u'b/{bucket}/acl/{entity}', request_field='', request_type_name=u'StorageBucketAccessControlsGetRequest', response_type_name=u'BucketAccessControl', supports_download=False, ), 'Insert': base_api.ApiMethodInfo( http_method=u'POST', method_id=u'storage.bucketAccessControls.insert', ordered_params=[u'bucket'], path_params=[u'bucket'], query_params=[], relative_path=u'b/{bucket}/acl', request_field='<request>', request_type_name=u'BucketAccessControl', response_type_name=u'BucketAccessControl', supports_download=False, ), 'List': base_api.ApiMethodInfo( http_method=u'GET', method_id=u'storage.bucketAccessControls.list', ordered_params=[u'bucket'], path_params=[u'bucket'], query_params=[], relative_path=u'b/{bucket}/acl', request_field='', request_type_name=u'StorageBucketAccessControlsListRequest', response_type_name=u'BucketAccessControls', supports_download=False, ), 'Patch': base_api.ApiMethodInfo( http_method=u'PATCH', method_id=u'storage.bucketAccessControls.patch', ordered_params=[u'bucket', u'entity'], path_params=[u'bucket', u'entity'], query_params=[], relative_path=u'b/{bucket}/acl/{entity}', request_field='<request>', request_type_name=u'BucketAccessControl', response_type_name=u'BucketAccessControl', supports_download=False, ), 'Update': base_api.ApiMethodInfo( http_method=u'PUT', method_id=u'storage.bucketAccessControls.update', ordered_params=[u'bucket', u'entity'], path_params=[u'bucket', u'entity'], query_params=[], relative_path=u'b/{bucket}/acl/{entity}', request_field='<request>', request_type_name=u'BucketAccessControl', response_type_name=u'BucketAccessControl', supports_download=False, ), } self._upload_configs = { } def Delete(self, request, global_params=None): """Permanently deletes the ACL entry for the specified entity on the specified bucket. Args: request: (StorageBucketAccessControlsDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (StorageBucketAccessControlsDeleteResponse) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) def Get(self, request, global_params=None): """Returns the ACL entry for the specified entity on the specified bucket. Args: request: (StorageBucketAccessControlsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (BucketAccessControl) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) def Insert(self, request, global_params=None): """Creates a new ACL entry on the specified bucket. Args: request: (BucketAccessControl) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (BucketAccessControl) The response message. """ config = self.GetMethodConfig('Insert') return self._RunMethod( config, request, global_params=global_params) def List(self, request, global_params=None): """Retrieves ACL entries on the specified bucket. Args: request: (StorageBucketAccessControlsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (BucketAccessControls) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) def Patch(self, request, global_params=None): """Updates an ACL entry on the specified bucket. This method supports patch semantics. Args: request: (BucketAccessControl) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (BucketAccessControl) The response message. """ config = self.GetMethodConfig('Patch') return self._RunMethod( config, request, global_params=global_params) def Update(self, request, global_params=None): """Updates an ACL entry on the specified bucket. Args: request: (BucketAccessControl) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (BucketAccessControl) The response message. """ config = self.GetMethodConfig('Update') return self._RunMethod( config, request, global_params=global_params) class BucketsService(base_api.BaseApiService): """Service class for the buckets resource.""" _NAME = u'buckets' def __init__(self, client): super(StorageV1.BucketsService, self).__init__(client) self._method_configs = { 'Delete': base_api.ApiMethodInfo( http_method=u'DELETE', method_id=u'storage.buckets.delete', ordered_params=[u'bucket'], path_params=[u'bucket'], query_params=[u'ifMetagenerationMatch', u'ifMetagenerationNotMatch'], relative_path=u'b/{bucket}', request_field='', request_type_name=u'StorageBucketsDeleteRequest', response_type_name=u'StorageBucketsDeleteResponse', supports_download=False, ), 'Get': base_api.ApiMethodInfo( http_method=u'GET', method_id=u'storage.buckets.get', ordered_params=[u'bucket'], path_params=[u'bucket'], query_params=[u'ifMetagenerationMatch', u'ifMetagenerationNotMatch', u'projection'], relative_path=u'b/{bucket}', request_field='', request_type_name=u'StorageBucketsGetRequest', response_type_name=u'Bucket', supports_download=False, ), 'Insert': base_api.ApiMethodInfo( http_method=u'POST', method_id=u'storage.buckets.insert', ordered_params=[u'project'], path_params=[], query_params=[u'predefinedAcl', u'predefinedDefaultObjectAcl', u'project', u'projection'], relative_path=u'b', request_field=u'bucket', request_type_name=u'StorageBucketsInsertRequest', response_type_name=u'Bucket', supports_download=False, ), 'List': base_api.ApiMethodInfo( http_method=u'GET', method_id=u'storage.buckets.list', ordered_params=[u'project'], path_params=[], query_params=[u'maxResults', u'pageToken', u'prefix', u'project', u'projection'], relative_path=u'b', request_field='', request_type_name=u'StorageBucketsListRequest', response_type_name=u'Buckets', supports_download=False, ), 'Patch': base_api.ApiMethodInfo( http_method=u'PATCH', method_id=u'storage.buckets.patch', ordered_params=[u'bucket'], path_params=[u'bucket'], query_params=[u'ifMetagenerationMatch', u'ifMetagenerationNotMatch', u'predefinedAcl', u'predefinedDefaultObjectAcl', u'projection'], relative_path=u'b/{bucket}', request_field=u'bucketResource', request_type_name=u'StorageBucketsPatchRequest', response_type_name=u'Bucket', supports_download=False, ), 'Update': base_api.ApiMethodInfo( http_method=u'PUT', method_id=u'storage.buckets.update', ordered_params=[u'bucket'], path_params=[u'bucket'], query_params=[u'ifMetagenerationMatch', u'ifMetagenerationNotMatch', u'predefinedAcl', u'predefinedDefaultObjectAcl', u'projection'], relative_path=u'b/{bucket}', request_field=u'bucketResource', request_type_name=u'StorageBucketsUpdateRequest', response_type_name=u'Bucket', supports_download=False, ), } self._upload_configs = { } def Delete(self, request, global_params=None): """Permanently deletes an empty bucket. Args: request: (StorageBucketsDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (StorageBucketsDeleteResponse) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) def Get(self, request, global_params=None): """Returns metadata for the specified bucket. Args: request: (StorageBucketsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Bucket) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) def Insert(self, request, global_params=None): """Creates a new bucket. Args: request: (StorageBucketsInsertRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Bucket) The response message. """ config = self.GetMethodConfig('Insert') return self._RunMethod( config, request, global_params=global_params) def List(self, request, global_params=None): """Retrieves a list of buckets for a given project. Args: request: (StorageBucketsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Buckets) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) def Patch(self, request, global_params=None): """Updates a bucket. This method supports patch semantics. Args: request: (StorageBucketsPatchRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Bucket) The response message. """ config = self.GetMethodConfig('Patch') return self._RunMethod( config, request, global_params=global_params) def Update(self, request, global_params=None): """Updates a bucket. Args: request: (StorageBucketsUpdateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Bucket) The response message. """ config = self.GetMethodConfig('Update') return self._RunMethod( config, request, global_params=global_params) class ChannelsService(base_api.BaseApiService): """Service class for the channels resource.""" _NAME = u'channels' def __init__(self, client): super(StorageV1.ChannelsService, self).__init__(client) self._method_configs = { 'Stop': base_api.ApiMethodInfo( http_method=u'POST', method_id=u'storage.channels.stop', ordered_params=[], path_params=[], query_params=[], relative_path=u'channels/stop', request_field='<request>', request_type_name=u'Channel', response_type_name=u'StorageChannelsStopResponse', supports_download=False, ), } self._upload_configs = { } def Stop(self, request, global_params=None): """Stop watching resources through this channel. Args: request: (Channel) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (StorageChannelsStopResponse) The response message. """ config = self.GetMethodConfig('Stop') return self._RunMethod( config, request, global_params=global_params) class DefaultObjectAccessControlsService(base_api.BaseApiService): """Service class for the defaultObjectAccessControls resource.""" _NAME = u'defaultObjectAccessControls' def __init__(self, client): super(StorageV1.DefaultObjectAccessControlsService, self).__init__(client) self._method_configs = { 'Delete': base_api.ApiMethodInfo( http_method=u'DELETE', method_id=u'storage.defaultObjectAccessControls.delete', ordered_params=[u'bucket', u'entity'], path_params=[u'bucket', u'entity'], query_params=[], relative_path=u'b/{bucket}/defaultObjectAcl/{entity}', request_field='', request_type_name=u'StorageDefaultObjectAccessControlsDeleteRequest', response_type_name=u'StorageDefaultObjectAccessControlsDeleteResponse', supports_download=False, ), 'Get': base_api.ApiMethodInfo( http_method=u'GET', method_id=u'storage.defaultObjectAccessControls.get', ordered_params=[u'bucket', u'entity'], path_params=[u'bucket', u'entity'], query_params=[], relative_path=u'b/{bucket}/defaultObjectAcl/{entity}', request_field='', request_type_name=u'StorageDefaultObjectAccessControlsGetRequest', response_type_name=u'ObjectAccessControl', supports_download=False, ), 'Insert': base_api.ApiMethodInfo( http_method=u'POST', method_id=u'storage.defaultObjectAccessControls.insert', ordered_params=[u'bucket'], path_params=[u'bucket'], query_params=[], relative_path=u'b/{bucket}/defaultObjectAcl', request_field='<request>', request_type_name=u'ObjectAccessControl', response_type_name=u'ObjectAccessControl', supports_download=False, ), 'List': base_api.ApiMethodInfo( http_method=u'GET', method_id=u'storage.defaultObjectAccessControls.list', ordered_params=[u'bucket'], path_params=[u'bucket'], query_params=[u'ifMetagenerationMatch', u'ifMetagenerationNotMatch'], relative_path=u'b/{bucket}/defaultObjectAcl', request_field='', request_type_name=u'StorageDefaultObjectAccessControlsListRequest', response_type_name=u'ObjectAccessControls', supports_download=False, ), 'Patch': base_api.ApiMethodInfo( http_method=u'PATCH', method_id=u'storage.defaultObjectAccessControls.patch', ordered_params=[u'bucket', u'entity'], path_params=[u'bucket', u'entity'], query_params=[], relative_path=u'b/{bucket}/defaultObjectAcl/{entity}', request_field='<request>', request_type_name=u'ObjectAccessControl', response_type_name=u'ObjectAccessControl', supports_download=False, ), 'Update': base_api.ApiMethodInfo( http_method=u'PUT', method_id=u'storage.defaultObjectAccessControls.update', ordered_params=[u'bucket', u'entity'], path_params=[u'bucket', u'entity'], query_params=[], relative_path=u'b/{bucket}/defaultObjectAcl/{entity}', request_field='<request>', request_type_name=u'ObjectAccessControl', response_type_name=u'ObjectAccessControl', supports_download=False, ), } self._upload_configs = { } def Delete(self, request, global_params=None): """Permanently deletes the default object ACL entry for the specified entity on the specified bucket. Args: request: (StorageDefaultObjectAccessControlsDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (StorageDefaultObjectAccessControlsDeleteResponse) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) def Get(self, request, global_params=None): """Returns the default object ACL entry for the specified entity on the specified bucket. Args: request: (StorageDefaultObjectAccessControlsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ObjectAccessControl) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) def Insert(self, request, global_params=None): """Creates a new default object ACL entry on the specified bucket. Args: request: (ObjectAccessControl) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ObjectAccessControl) The response message. """ config = self.GetMethodConfig('Insert') return self._RunMethod( config, request, global_params=global_params) def List(self, request, global_params=None): """Retrieves default object ACL entries on the specified bucket. Args: request: (StorageDefaultObjectAccessControlsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ObjectAccessControls) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) def Patch(self, request, global_params=None): """Updates a default object ACL entry on the specified bucket. This method supports patch semantics. Args: request: (ObjectAccessControl) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ObjectAccessControl) The response message. """ config = self.GetMethodConfig('Patch') return self._RunMethod( config, request, global_params=global_params) def Update(self, request, global_params=None): """Updates a default object ACL entry on the specified bucket. Args: request: (ObjectAccessControl) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ObjectAccessControl) The response message. """ config = self.GetMethodConfig('Update') return self._RunMethod( config, request, global_params=global_params) class ObjectAccessControlsService(base_api.BaseApiService): """Service class for the objectAccessControls resource.""" _NAME = u'objectAccessControls' def __init__(self, client): super(StorageV1.ObjectAccessControlsService, self).__init__(client) self._method_configs = { 'Delete': base_api.ApiMethodInfo( http_method=u'DELETE', method_id=u'storage.objectAccessControls.delete', ordered_params=[u'bucket', u'object', u'entity'], path_params=[u'bucket', u'entity', u'object'], query_params=[u'generation'], relative_path=u'b/{bucket}/o/{object}/acl/{entity}', request_field='', request_type_name=u'StorageObjectAccessControlsDeleteRequest', response_type_name=u'StorageObjectAccessControlsDeleteResponse', supports_download=False, ), 'Get': base_api.ApiMethodInfo( http_method=u'GET', method_id=u'storage.objectAccessControls.get', ordered_params=[u'bucket', u'object', u'entity'], path_params=[u'bucket', u'entity', u'object'], query_params=[u'generation'], relative_path=u'b/{bucket}/o/{object}/acl/{entity}', request_field='', request_type_name=u'StorageObjectAccessControlsGetRequest', response_type_name=u'ObjectAccessControl', supports_download=False, ), 'Insert': base_api.ApiMethodInfo( http_method=u'POST', method_id=u'storage.objectAccessControls.insert', ordered_params=[u'bucket', u'object'], path_params=[u'bucket', u'object'], query_params=[u'generation'], relative_path=u'b/{bucket}/o/{object}/acl', request_field=u'objectAccessControl', request_type_name=u'StorageObjectAccessControlsInsertRequest', response_type_name=u'ObjectAccessControl', supports_download=False, ), 'List': base_api.ApiMethodInfo( http_method=u'GET', method_id=u'storage.objectAccessControls.list', ordered_params=[u'bucket', u'object'], path_params=[u'bucket', u'object'], query_params=[u'generation'], relative_path=u'b/{bucket}/o/{object}/acl', request_field='', request_type_name=u'StorageObjectAccessControlsListRequest', response_type_name=u'ObjectAccessControls', supports_download=False, ), 'Patch': base_api.ApiMethodInfo( http_method=u'PATCH', method_id=u'storage.objectAccessControls.patch', ordered_params=[u'bucket', u'object', u'entity'], path_params=[u'bucket', u'entity', u'object'], query_params=[u'generation'], relative_path=u'b/{bucket}/o/{object}/acl/{entity}', request_field=u'objectAccessControl', request_type_name=u'StorageObjectAccessControlsPatchRequest', response_type_name=u'ObjectAccessControl', supports_download=False, ), 'Update': base_api.ApiMethodInfo( http_method=u'PUT', method_id=u'storage.objectAccessControls.update', ordered_params=[u'bucket', u'object', u'entity'], path_params=[u'bucket', u'entity', u'object'], query_params=[u'generation'], relative_path=u'b/{bucket}/o/{object}/acl/{entity}', request_field=u'objectAccessControl', request_type_name=u'StorageObjectAccessControlsUpdateRequest', response_type_name=u'ObjectAccessControl', supports_download=False, ), } self._upload_configs = { } def Delete(self, request, global_params=None): """Permanently deletes the ACL entry for the specified entity on the specified object. Args: request: (StorageObjectAccessControlsDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (StorageObjectAccessControlsDeleteResponse) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) def Get(self, request, global_params=None): """Returns the ACL entry for the specified entity on the specified object. Args: request: (StorageObjectAccessControlsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ObjectAccessControl) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params) def Insert(self, request, global_params=None): """Creates a new ACL entry on the specified object. Args: request: (StorageObjectAccessControlsInsertRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ObjectAccessControl) The response message. """ config = self.GetMethodConfig('Insert') return self._RunMethod( config, request, global_params=global_params) def List(self, request, global_params=None): """Retrieves ACL entries on the specified object. Args: request: (StorageObjectAccessControlsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ObjectAccessControls) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) def Patch(self, request, global_params=None): """Updates an ACL entry on the specified object. This method supports patch semantics. Args: request: (StorageObjectAccessControlsPatchRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ObjectAccessControl) The response message. """ config = self.GetMethodConfig('Patch') return self._RunMethod( config, request, global_params=global_params) def Update(self, request, global_params=None): """Updates an ACL entry on the specified object. Args: request: (StorageObjectAccessControlsUpdateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ObjectAccessControl) The response message. """ config = self.GetMethodConfig('Update') return self._RunMethod( config, request, global_params=global_params) class ObjectsService(base_api.BaseApiService): """Service class for the objects resource.""" _NAME = u'objects' def __init__(self, client): super(StorageV1.ObjectsService, self).__init__(client) self._method_configs = { 'Compose': base_api.ApiMethodInfo( http_method=u'POST', method_id=u'storage.objects.compose', ordered_params=[u'destinationBucket', u'destinationObject'], path_params=[u'destinationBucket', u'destinationObject'], query_params=[u'destinationPredefinedAcl', u'ifGenerationMatch', u'ifMetagenerationMatch'], relative_path=u'b/{destinationBucket}/o/{destinationObject}/compose', request_field=u'composeRequest', request_type_name=u'StorageObjectsComposeRequest', response_type_name=u'Object', supports_download=True, ), 'Copy': base_api.ApiMethodInfo( http_method=u'POST', method_id=u'storage.objects.copy', ordered_params=[u'sourceBucket', u'sourceObject', u'destinationBucket', u'destinationObject'], path_params=[u'destinationBucket', u'destinationObject', u'sourceBucket', u'sourceObject'], query_params=[u'destinationPredefinedAcl', u'ifGenerationMatch', u'ifGenerationNotMatch', u'ifMetagenerationMatch', u'ifMetagenerationNotMatch', u'ifSourceGenerationMatch', u'ifSourceGenerationNotMatch', u'ifSourceMetagenerationMatch', u'ifSourceMetagenerationNotMatch', u'projection', u'sourceGeneration'], relative_path=u'b/{sourceBucket}/o/{sourceObject}/copyTo/b/{destinationBucket}/o/{destinationObject}', request_field=u'object', request_type_name=u'StorageObjectsCopyRequest', response_type_name=u'Object', supports_download=True, ), 'Delete': base_api.ApiMethodInfo( http_method=u'DELETE', method_id=u'storage.objects.delete', ordered_params=[u'bucket', u'object'], path_params=[u'bucket', u'object'], query_params=[u'generation', u'ifGenerationMatch', u'ifGenerationNotMatch', u'ifMetagenerationMatch', u'ifMetagenerationNotMatch'], relative_path=u'b/{bucket}/o/{object}', request_field='', request_type_name=u'StorageObjectsDeleteRequest', response_type_name=u'StorageObjectsDeleteResponse', supports_download=False, ), 'Get': base_api.ApiMethodInfo( http_method=u'GET', method_id=u'storage.objects.get', ordered_params=[u'bucket', u'object'], path_params=[u'bucket', u'object'], query_params=[u'generation', u'ifGenerationMatch', u'ifGenerationNotMatch', u'ifMetagenerationMatch', u'ifMetagenerationNotMatch', u'projection'], relative_path=u'b/{bucket}/o/{object}', request_field='', request_type_name=u'StorageObjectsGetRequest', response_type_name=u'Object', supports_download=True, ), 'Insert': base_api.ApiMethodInfo( http_method=u'POST', method_id=u'storage.objects.insert', ordered_params=[u'bucket'], path_params=[u'bucket'], query_params=[u'contentEncoding', u'ifGenerationMatch', u'ifGenerationNotMatch', u'ifMetagenerationMatch', u'ifMetagenerationNotMatch', u'name', u'predefinedAcl', u'projection'], relative_path=u'b/{bucket}/o', request_field=u'object', request_type_name=u'StorageObjectsInsertRequest', response_type_name=u'Object', supports_download=True, ), 'List': base_api.ApiMethodInfo( http_method=u'GET', method_id=u'storage.objects.list', ordered_params=[u'bucket'], path_params=[u'bucket'], query_params=[u'delimiter', u'maxResults', u'pageToken', u'prefix', u'projection', u'versions'], relative_path=u'b/{bucket}/o', request_field='', request_type_name=u'StorageObjectsListRequest', response_type_name=u'Objects', supports_download=False, ), 'Patch': base_api.ApiMethodInfo( http_method=u'PATCH', method_id=u'storage.objects.patch', ordered_params=[u'bucket', u'object'], path_params=[u'bucket', u'object'], query_params=[u'generation', u'ifGenerationMatch', u'ifGenerationNotMatch', u'ifMetagenerationMatch', u'ifMetagenerationNotMatch', u'predefinedAcl', u'projection'], relative_path=u'b/{bucket}/o/{object}', request_field=u'objectResource', request_type_name=u'StorageObjectsPatchRequest', response_type_name=u'Object', supports_download=False, ), 'Rewrite': base_api.ApiMethodInfo( http_method=u'POST', method_id=u'storage.objects.rewrite', ordered_params=[u'sourceBucket', u'sourceObject', u'destinationBucket', u'destinationObject'], path_params=[u'destinationBucket', u'destinationObject', u'sourceBucket', u'sourceObject'], query_params=[u'destinationPredefinedAcl', u'ifGenerationMatch', u'ifGenerationNotMatch', u'ifMetagenerationMatch', u'ifMetagenerationNotMatch', u'ifSourceGenerationMatch', u'ifSourceGenerationNotMatch', u'ifSourceMetagenerationMatch', u'ifSourceMetagenerationNotMatch', u'maxBytesRewrittenPerCall', u'projection', u'rewriteToken', u'sourceGeneration'], relative_path=u'b/{sourceBucket}/o/{sourceObject}/rewriteTo/b/{destinationBucket}/o/{destinationObject}', request_field=u'object', request_type_name=u'StorageObjectsRewriteRequest', response_type_name=u'RewriteResponse', supports_download=False, ), 'Update': base_api.ApiMethodInfo( http_method=u'PUT', method_id=u'storage.objects.update', ordered_params=[u'bucket', u'object'], path_params=[u'bucket', u'object'], query_params=[u'generation', u'ifGenerationMatch', u'ifGenerationNotMatch', u'ifMetagenerationMatch', u'ifMetagenerationNotMatch', u'predefinedAcl', u'projection'], relative_path=u'b/{bucket}/o/{object}', request_field=u'objectResource', request_type_name=u'StorageObjectsUpdateRequest', response_type_name=u'Object', supports_download=True, ), 'WatchAll': base_api.ApiMethodInfo( http_method=u'POST', method_id=u'storage.objects.watchAll', ordered_params=[u'bucket'], path_params=[u'bucket'], query_params=[u'delimiter', u'maxResults', u'pageToken', u'prefix', u'projection', u'versions'], relative_path=u'b/{bucket}/o/watch', request_field=u'channel', request_type_name=u'StorageObjectsWatchAllRequest', response_type_name=u'Channel', supports_download=False, ), } self._upload_configs = { 'Insert': base_api.ApiUploadInfo( accept=['*/*'], max_size=None, resumable_multipart=True, resumable_path=u'/resumable/upload/storage/' + self._client._version + '/b/{bucket}/o', simple_multipart=True, simple_path=u'/upload/storage/' + self._client._version + '/b/{bucket}/o', ), } def Compose(self, request, global_params=None, download=None): """Concatenates a list of existing objects into a new object in the same bucket. Args: request: (StorageObjectsComposeRequest) input message global_params: (StandardQueryParameters, default: None) global arguments download: (Download, default: None) If present, download data from the request via this stream. Returns: (Object) The response message. """ config = self.GetMethodConfig('Compose') return self._RunMethod( config, request, global_params=global_params, download=download) def Copy(self, request, global_params=None, download=None): """Copies an object to a specified location. Optionally overrides metadata. Args: request: (StorageObjectsCopyRequest) input message global_params: (StandardQueryParameters, default: None) global arguments download: (Download, default: None) If present, download data from the request via this stream. Returns: (Object) The response message. """ config = self.GetMethodConfig('Copy') return self._RunMethod( config, request, global_params=global_params, download=download) def Delete(self, request, global_params=None): """Deletes an object and its metadata. Deletions are permanent if versioning is not enabled for the bucket, or if the generation parameter is used. Args: request: (StorageObjectsDeleteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (StorageObjectsDeleteResponse) The response message. """ config = self.GetMethodConfig('Delete') return self._RunMethod( config, request, global_params=global_params) def Get(self, request, global_params=None, download=None): """Retrieves an object or its metadata. Args: request: (StorageObjectsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments download: (Download, default: None) If present, download data from the request via this stream. Returns: (Object) The response message. """ config = self.GetMethodConfig('Get') return self._RunMethod( config, request, global_params=global_params, download=download) def Insert(self, request, global_params=None, upload=None, download=None): """Stores a new object and metadata. Args: request: (StorageObjectsInsertRequest) input message global_params: (StandardQueryParameters, default: None) global arguments upload: (Upload, default: None) If present, upload this stream with the request. download: (Download, default: None) If present, download data from the request via this stream. Returns: (Object) The response message. """ config = self.GetMethodConfig('Insert') upload_config = self.GetUploadConfig('Insert') return self._RunMethod( config, request, global_params=global_params, upload=upload, upload_config=upload_config, download=download) def List(self, request, global_params=None): """Retrieves a list of objects matching the criteria. Args: request: (StorageObjectsListRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Objects) The response message. """ config = self.GetMethodConfig('List') return self._RunMethod( config, request, global_params=global_params) def Patch(self, request, global_params=None): """Updates an object's metadata. This method supports patch semantics. Args: request: (StorageObjectsPatchRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Object) The response message. """ config = self.GetMethodConfig('Patch') return self._RunMethod( config, request, global_params=global_params) def Rewrite(self, request, global_params=None): """Rewrites a source object to a destination object. Optionally overrides metadata. Args: request: (StorageObjectsRewriteRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (RewriteResponse) The response message. """ config = self.GetMethodConfig('Rewrite') return self._RunMethod( config, request, global_params=global_params) def Update(self, request, global_params=None, download=None): """Updates an object's metadata. Args: request: (StorageObjectsUpdateRequest) input message global_params: (StandardQueryParameters, default: None) global arguments download: (Download, default: None) If present, download data from the request via this stream. Returns: (Object) The response message. """ config = self.GetMethodConfig('Update') return self._RunMethod( config, request, global_params=global_params, download=download) def WatchAll(self, request, global_params=None): """Watch for changes on all objects in a bucket. Args: request: (StorageObjectsWatchAllRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (Channel) The response message. """ config = self.GetMethodConfig('WatchAll') return self._RunMethod( config, request, global_params=global_params)
bsd-3-clause
2,455,258,158,905,939,000
41.341323
367
0.621349
false
4.343661
true
false
false
biota/sourcetracker2
sourcetracker/tests/test_sourcetracker.py
1
58590
#!/usr/bin/env python # ---------------------------------------------------------------------------- # Copyright (c) 2016--, Biota Technology. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- from __future__ import division from unittest import TestCase, main import numpy as np import pandas as pd import matplotlib.pyplot as plt from sourcetracker._sourcetracker import (intersect_and_sort_samples, collapse_source_data, subsample_dataframe, validate_gibbs_input, validate_gibbs_parameters, collate_gibbs_results, get_samples, generate_environment_assignments, cumulative_proportions, single_sink_feature_table, ConditionalProbability, gibbs_sampler, gibbs) from sourcetracker._plot import plot_heatmap class TestValidateGibbsInput(TestCase): def setUp(self): self.index = ['s%s' % i for i in range(5)] self.columns = ['f%s' % i for i in range(4)] def test_no_errors_(self): # A table where nothing is wrong, no changes expected. data = np.random.randint(0, 10, size=20).reshape(5, 4) sources = pd.DataFrame(data.astype(np.int32), index=self.index, columns=self.columns) exp_sources = pd.DataFrame(data.astype(np.int32), index=self.index, columns=self.columns) obs = validate_gibbs_input(sources) pd.util.testing.assert_frame_equal(obs, sources) # Sources and sinks. sinks = pd.DataFrame(data, index=self.index, columns=self.columns) exp_sinks = pd.DataFrame(data.astype(np.int32), index=self.index, columns=self.columns) obs_sources, obs_sinks = validate_gibbs_input(sources, sinks) pd.util.testing.assert_frame_equal(obs_sources, exp_sources) pd.util.testing.assert_frame_equal(obs_sinks, exp_sinks) def test_float_data(self): # Data is float, expect rounding. data = np.random.uniform(0, 1, size=20).reshape(5, 4) sources = pd.DataFrame(data, index=self.index, columns=self.columns) exp_sources = pd.DataFrame(np.zeros(20).reshape(5, 4).astype(np.int32), index=self.index, columns=self.columns) obs_sources = validate_gibbs_input(sources) pd.util.testing.assert_frame_equal(obs_sources, exp_sources) data = np.random.uniform(0, 1, size=20).reshape(5, 4) + 1. sources = pd.DataFrame(data, index=self.index, columns=self.columns) exp_sources = pd.DataFrame(np.ones(20).reshape(5, 4).astype(np.int32), index=self.index, columns=self.columns) obs_sources = validate_gibbs_input(sources) pd.util.testing.assert_frame_equal(obs_sources, exp_sources) # Sources and sinks. data = np.random.uniform(0, 1, size=20).reshape(5, 4) + 5 sinks = pd.DataFrame(data, index=self.index, columns=self.columns) exp_sinks = \ pd.DataFrame(5 * np.ones(20).reshape(5, 4).astype(np.int32), index=self.index, columns=self.columns) obs_sources, obs_sinks = validate_gibbs_input(sources, sinks) pd.util.testing.assert_frame_equal(obs_sources, exp_sources) pd.util.testing.assert_frame_equal(obs_sinks, exp_sinks) def test_negative_data(self): # Values less than 0, expect errors. data = np.random.uniform(0, 1, size=20).reshape(5, 4) - 1. sources = pd.DataFrame(data, index=self.index, columns=self.columns) self.assertRaises(ValueError, validate_gibbs_input, sources) data = -1 * np.random.randint(0, 20, size=20).reshape(5, 4) sources = pd.DataFrame(data, index=self.index, columns=self.columns) self.assertRaises(ValueError, validate_gibbs_input, sources) # Sources and sinks. data = np.random.randint(0, 10, size=20).reshape(5, 4) + 1 sources = pd.DataFrame(data.astype(np.int32), index=self.index, columns=self.columns) sinks = pd.DataFrame(-10 * data, index=self.index, columns=self.columns) self.assertRaises(ValueError, validate_gibbs_input, sources, sinks) def test_nan_data(self): # nans, expect errors. data = np.random.uniform(0, 1, size=20).reshape(5, 4) data[3, 2] = np.nan sources = pd.DataFrame(data, index=self.index, columns=self.columns) self.assertRaises(ValueError, validate_gibbs_input, sources) # Sources and sinks. data = np.random.randint(0, 10, size=20).reshape(5, 4) + 1. sources = pd.DataFrame(data, index=self.index, columns=self.columns) data[1, 3] = np.nan sinks = pd.DataFrame(data, index=self.index, columns=self.columns) self.assertRaises(ValueError, validate_gibbs_input, sources, sinks) def test_non_numeric_data(self): # data contains at least some non-numeric columns, expect errors. data = np.random.randint(0, 10, size=20).reshape(5, 4) sources = pd.DataFrame(data.astype(np.int32), index=self.index, columns=self.columns) sources.iloc[2, 2] = '3.a' self.assertRaises(ValueError, validate_gibbs_input, sources) # Sources and sinks. data = np.random.randint(0, 10, size=20).reshape(5, 4) sources = pd.DataFrame(data.astype(np.int32), index=self.index, columns=self.columns) sinks = pd.DataFrame(data.astype(np.int32), index=self.index, columns=self.columns) sinks.iloc[2, 2] = '3' self.assertRaises(ValueError, validate_gibbs_input, sources, sinks) def test_columns_identical(self): # Columns are identical, no error expected. data = np.random.randint(0, 10, size=20).reshape(5, 4) sources = pd.DataFrame(data.astype(np.int32), index=self.index, columns=self.columns) data = np.random.randint(0, 10, size=200).reshape(50, 4) sinks = pd.DataFrame(data.astype(np.int32), index=['s%s' % i for i in range(50)], columns=self.columns) obs_sources, obs_sinks = validate_gibbs_input(sources, sinks) pd.util.testing.assert_frame_equal(obs_sources, sources) pd.util.testing.assert_frame_equal(obs_sinks, sinks) def test_columns_non_identical(self): # Columns are not identical, error expected. data = np.random.randint(0, 10, size=20).reshape(5, 4) sources = pd.DataFrame(data.astype(np.int32), index=self.index, columns=self.columns) data = np.random.randint(0, 10, size=200).reshape(50, 4) sinks = pd.DataFrame(data.astype(np.int32), index=['s%s' % i for i in range(50)], columns=['feature%s' % i for i in range(4)]) self.assertRaises(ValueError, validate_gibbs_input, sources, sinks) class TestValidateGibbsParams(TestCase): def test_acceptable_inputs(self): # All values acceptable, expect no errors. alpha1 = .001 alpha2 = .1 beta = 10 restarts = 10 draws_per_restart = 1 burnin = 100 delay = 1 self.assertTrue(validate_gibbs_parameters(alpha1, alpha2, beta, restarts, draws_per_restart, burnin, delay)) alpha1 = alpha2 = beta = 0 self.assertTrue(validate_gibbs_parameters(alpha1, alpha2, beta, restarts, draws_per_restart, burnin, delay)) def test_not_acceptable_inputs(self): # One of the float params is negative. alpha1 = -.001 alpha2 = .1 beta = 10 restarts = 10 draws_per_restart = 1 burnin = 100 delay = 1 self.assertFalse(validate_gibbs_parameters(alpha1, alpha2, beta, restarts, draws_per_restart, burnin, delay)) # One of the int params is 0. alpha1 = .001 restarts = 0 self.assertFalse(validate_gibbs_parameters(alpha1, alpha2, beta, restarts, draws_per_restart, burnin, delay)) # One of the int params is a float. restarts = 1.34 self.assertFalse(validate_gibbs_parameters(alpha1, alpha2, beta, restarts, draws_per_restart, burnin, delay)) # A param is a string. restarts = '3.2232' self.assertFalse(validate_gibbs_parameters(alpha1, alpha2, beta, restarts, draws_per_restart, burnin, delay)) # A param is a nan. restarts = 3 alpha1 = np.nan self.assertFalse(validate_gibbs_parameters(alpha1, alpha2, beta, restarts, draws_per_restart, burnin, delay)) class TestIntersectAndSortSamples(TestCase): def test_partially_overlapping_tables(self): # Test an example where there are unshared samples present in both # feature and sample tables. Notice that order is different between # the samples that are shared between both tables. The order of samples # in the returned tables is set by the ordering done in np.intersect1d. sdata_c1 = [3.1, 'red', 5] sdata_c2 = [3.6, 'yellow', 7] sdata_c3 = [3.9, 'yellow', -2] sdata_c4 = [2.5, 'red', 5] sdata_c5 = [6.7, 'blue', 10] samples = ['s1', 's4', 's2', 's3', 'sX'] headers = ['pH', 'color', 'day'] stable = pd.DataFrame([sdata_c1, sdata_c4, sdata_c2, sdata_c3, sdata_c5], index=samples, columns=headers) fdata = np.arange(90).reshape(9, 10) samples = ['s%i' % i for i in range(3, 12)] columns = ['o%i' % i for i in range(1, 11)] ftable = pd.DataFrame(fdata, index=samples, columns=columns) exp_ftable = pd.DataFrame(fdata[[1, 0], :], index=['s4', 's3'], columns=columns) exp_stable = pd.DataFrame([sdata_c4, sdata_c3], index=['s4', 's3'], columns=headers) obs_stable, obs_ftable = intersect_and_sort_samples(stable, ftable) pd.util.testing.assert_frame_equal(obs_stable, exp_stable) pd.util.testing.assert_frame_equal(obs_ftable, exp_ftable) # No shared samples, expect a ValueError. ftable.index = ['ss%i' % i for i in range(9)] self.assertRaises(ValueError, intersect_and_sort_samples, stable, ftable) # All samples shared, expect no changes. fdata = np.arange(50).reshape(5, 10) samples = ['s1', 's4', 's2', 's3', 'sX'] columns = ['o%i' % i for i in range(10)] ftable = pd.DataFrame(fdata, index=samples, columns=columns) exp_ftable = ftable.loc[stable.index, :] exp_stable = stable obs_stable, obs_ftable = intersect_and_sort_samples(stable, ftable) pd.util.testing.assert_frame_equal(obs_stable, exp_stable) pd.util.testing.assert_frame_equal(obs_ftable, exp_ftable) class TestGetSamples(TestCase): def tests(self): # Make a dataframe which contains mixed data to test. col0 = ['a', 'a', 'a', 'a', 'b'] col1 = [3, 2, 3, 1, 3] col2 = ['red', 'red', 'blue', 255, 255] headers = ['sample_location', 'num_reps', 'color'] samples = ['s1', 's2', 's3', 's4', 's5'] sample_metadata = \ pd.DataFrame.from_dict({k: v for k, v in zip(headers, [col0, col1, col2])}) sample_metadata.index = samples obs = get_samples(sample_metadata, 'sample_location', 'b') exp = pd.Index(['s5'], dtype='object') pd.util.testing.assert_index_equal(obs, exp) obs = get_samples(sample_metadata, 'sample_location', 'a') exp = pd.Index(['s1', 's2', 's3', 's4'], dtype='object') pd.util.testing.assert_index_equal(obs, exp) obs = get_samples(sample_metadata, 'color', 255) exp = pd.Index(['s4', 's5'], dtype='object') pd.util.testing.assert_index_equal(obs, exp) obs = get_samples(sample_metadata, 'num_reps', 3) exp = pd.Index(['s1', 's3', 's5'], dtype='object') pd.util.testing.assert_index_equal(obs, exp) class TestCollapseSourceData(TestCase): def test_example1(self): # Simple example with 'sum' as collapse mode. samples = ['sample1', 'sample2', 'sample3', 'sample4'] category = 'pH' values = [3.0, 0.4, 3.0, 3.0] stable = pd.DataFrame(values, index=samples, columns=[category]) fdata = np.array([[10, 50, 10, 70], [0, 25, 10, 5], [0, 25, 10, 5], [100, 0, 10, 5]]) ftable = pd.DataFrame(fdata, index=stable.index, columns=map(str, np.arange(4))) source_samples = ['sample1', 'sample2', 'sample3'] method = 'sum' obs = collapse_source_data(stable, ftable, source_samples, category, method) exp_data = np.vstack((fdata[1, :], fdata[0, :] + fdata[2, :])) exp_index = [0.4, 3.0] exp = pd.DataFrame(exp_data.astype(np.int32), index=exp_index, columns=map(str, np.arange(4))) exp.index.name = 'collapse_col' pd.util.testing.assert_frame_equal(obs, exp) # Example with collapse mode 'mean'. This will cause non-integer values # to be present, which the validate_gibbs_input should catch. source_samples = ['sample1', 'sample2', 'sample3', 'sample4'] method = 'mean' obs = collapse_source_data(stable, ftable, source_samples, category, method) exp_data = np.vstack((fdata[1, :], fdata[[0, 2, 3], :].mean(0))).astype(np.int32) exp_index = [0.4, 3.0] exp = pd.DataFrame(exp_data.astype(np.int32), index=exp_index, columns=map(str, np.arange(4))) exp.index.name = 'collapse_col' pd.util.testing.assert_frame_equal(obs, exp) def test_example2(self): # Test on another arbitrary example. data = np.arange(200).reshape(20, 10) oids = ['o%s' % i for i in range(20)] sids = ['s%s' % i for i in range(10)] ftable = pd.DataFrame(data.T, index=sids, columns=oids) _stable = \ {'s4': {'cat1': '2', 'cat2': 'x', 'cat3': 'A', 'cat4': 'D'}, 's0': {'cat1': '1', 'cat2': 'y', 'cat3': 'z', 'cat4': 'D'}, 's1': {'cat1': '1', 'cat2': 'x', 'cat3': 'A', 'cat4': 'C'}, 's3': {'cat1': '2', 'cat2': 'y', 'cat3': 'z', 'cat4': 'A'}, 's2': {'cat1': '2', 'cat2': 'x', 'cat3': 'A', 'cat4': 'D'}, 's6': {'cat1': '1', 'cat2': 'y', 'cat3': 'z', 'cat4': 'R'}, 's5': {'cat1': '2', 'cat2': 'x', 'cat3': 'z', 'cat4': '0'}, 's7': {'cat1': '2', 'cat2': 'x', 'cat3': 'z', 'cat4': '0'}, 's9': {'cat1': '2', 'cat2': 'x', 'cat3': 'z', 'cat4': '0'}, 's8': {'cat1': '2', 'cat2': 'x', 'cat3': 'z', 'cat4': '0'}} stable = pd.DataFrame(_stable).T category = 'cat4' source_samples = ['s4', 's9', 's0', 's2'] method = 'sum' obs = collapse_source_data(stable, ftable, source_samples, category, method) exp_index = np.array(['0', 'D']) exp_data = np.array([[9, 19, 29, 39, 49, 59, 69, 79, 89, 99, 109, 119, 129, 139, 149, 159, 169, 179, 189, 199], [6, 36, 66, 96, 126, 156, 186, 216, 246, 276, 306, 336, 366, 396, 426, 456, 486, 516, 546, 576]], dtype=np.int32) exp = pd.DataFrame(exp_data, index=exp_index, columns=oids) exp.index.name = 'collapse_col' pd.util.testing.assert_frame_equal(obs, exp) class TestSubsampleDataframe(TestCase): def test_no_errors_expected(self): # Testing this function deterministically is hard because cython is # generating the PRNG calls. We'll settle for ensuring that the sums # are correct. fdata = np.array([[10, 50, 10, 70], [0, 25, 10, 5], [0, 25, 10, 5], [100, 0, 10, 5]]) ftable = pd.DataFrame(fdata, index=['s1', 's2', 's3', 's4'], columns=map(str, np.arange(4))) n = 30 obs = subsample_dataframe(ftable, n) self.assertTrue((obs.sum(axis=1) == n).all()) def test_subsample_with_replacement(self): # Testing this function deterministically is hard because cython is # generating the PRNG calls. We'll settle for ensuring that the sums # are correct. fdata = np.array([[10, 50, 10, 70], [0, 25, 10, 5], [0, 25, 10, 5], [100, 0, 10, 5]]) ftable = pd.DataFrame(fdata, index=['s1', 's2', 's3', 's4'], columns=map(str, np.arange(4))) n = 30 obs = subsample_dataframe(ftable, n, replace=True) self.assertTrue((obs.sum(axis=1) == n).all()) def test_shape_doesnt_change(self): # Test that when features are removed by subsampling, the shape of the # table does not change. Although rarifaction is stochastic, the # probability that the below table does not lose at least one feature # during rarefaction (and thus satisfy as the test of the condition we) # are interested in) is nearly 0. fdata = np.array([[0, 0, 0, 1e4], [0, 0, 1, 1e4], [0, 1, 0, 1e4], [1, 0, 0, 1e4]]).astype(int) ftable = pd.DataFrame(fdata, index=['s1', 's2', 's3', 's4'], columns=map(str, np.arange(4))) n = 10 obs = subsample_dataframe(ftable, n) self.assertTrue((obs.sum(axis=1) == n).all()) self.assertEqual(obs.shape, ftable.shape) class TestDataAggregationFunctions(TestCase): '''Test that returned data is collated and written correctly.''' def test_cumulative_proportions(self): # 4 draws, 4 sources + unknown, 3 sinks sink1_envcounts = np.array([[10, 100, 15, 0, 25], [150, 0, 0, 0, 0], [30, 30, 30, 30, 30], [0, 11, 7, 35, 97]]) sink2_envcounts = np.array([[100, 10, 15, 0, 25], [100, 0, 50, 0, 0], [0, 60, 30, 30, 30], [7, 11, 0, 35, 97]]) sink3_envcounts = np.array([[100, 10, 10, 5, 25], [70, 20, 30, 30, 0], [10, 30, 50, 30, 30], [0, 27, 100, 20, 3]]) all_envcounts = [sink1_envcounts, sink2_envcounts, sink3_envcounts] sink_ids = np.array(['sink1', 'sink2', 'sink3']) source_ids = np.array(['source1', 'source2', 'source3', 'source4']) cols = list(source_ids) + ['Unknown'] prp_r1 = np.array([190, 141, 52, 65, 152]) / 600. prp_r2 = np.array([207, 81, 95, 65, 152]) / 600. prp_r3 = np.array([180, 87, 190, 85, 58]) / 600. prp_data = np.vstack([prp_r1, prp_r2, prp_r3]) prp_std_data = np.zeros((3, 5), dtype=np.float64) prp_std_data[0, 0] = (np.array([10, 150, 30, 0]) / 600.).std() prp_std_data[0, 1] = (np.array([100, 0, 30, 11]) / 600.).std() prp_std_data[0, 2] = (np.array([15, 0, 30, 7]) / 600.).std() prp_std_data[0, 3] = (np.array([0, 0, 30, 35]) / 600.).std() prp_std_data[0, 4] = (np.array([25, 0, 30, 97]) / 600.).std() prp_std_data[1, 0] = (np.array([100, 100, 0, 7]) / 600.).std() prp_std_data[1, 1] = (np.array([10, 0, 60, 11]) / 600.).std() prp_std_data[1, 2] = (np.array([15, 50, 30, 0]) / 600.).std() prp_std_data[1, 3] = (np.array([0, 0, 30, 35]) / 600.).std() prp_std_data[1, 4] = (np.array([25, 0, 30, 97]) / 600.).std() prp_std_data[2, 0] = (np.array([100, 70, 10, 0]) / 600.).std() prp_std_data[2, 1] = (np.array([10, 20, 30, 27]) / 600.).std() prp_std_data[2, 2] = (np.array([10, 30, 50, 100]) / 600.).std() prp_std_data[2, 3] = (np.array([5, 30, 30, 20]) / 600.).std() prp_std_data[2, 4] = (np.array([25, 0, 30, 3]) / 600.).std() exp_prp = pd.DataFrame(prp_data, index=sink_ids, columns=cols) exp_prp_std = pd.DataFrame(prp_std_data, index=sink_ids, columns=cols) obs_prp, obs_prp_std = cumulative_proportions(all_envcounts, sink_ids, source_ids) pd.util.testing.assert_frame_equal(obs_prp, exp_prp) pd.util.testing.assert_frame_equal(obs_prp_std, exp_prp_std) def test_single_sink_feature_table(self): # 4 draws, depth of sink = 10, 5 sources + Unknown. final_env_assignments = np.array([[5, 0, 0, 0, 2, 0, 1, 0, 3, 1], [1, 1, 3, 3, 2, 2, 1, 1, 1, 1], [4, 1, 4, 4, 4, 4, 1, 1, 3, 2], [2, 1, 0, 5, 5, 5, 5, 1, 0, 2]]) # notice that each row is the same - they are determined by # `generate_taxon_sequence` before the `gibbs_sampler` runs. final_taxon_assignments = \ np.array([[0, 3, 3, 227, 550, 550, 550, 999, 999, 1100], [0, 3, 3, 227, 550, 550, 550, 999, 999, 1100], [0, 3, 3, 227, 550, 550, 550, 999, 999, 1100], [0, 3, 3, 227, 550, 550, 550, 999, 999, 1100], [0, 3, 3, 227, 550, 550, 550, 999, 999, 1100]]) # we are allowing more taxa than we have found in this sample, i.e. the # largest value in `final_taxon_assignments` will be smaller than the # largest index in the columns of the final table. nfeatures = 1250 nsources = 5 data = np.zeros((nsources + 1, nfeatures), dtype=np.int32) # for the purpose of this test code, I'll increment data taxa by taxa. data[np.array([5, 1, 4, 2]), 0] += 1 data[0, 3] += 3 data[1, 3] += 3 data[3, 3] += 1 data[4, 3] += 1 data[np.array([0, 3, 4, 5]), 227] += 1 data[0, 550] += 1 data[1, 550] += 3 data[2, 550] += 3 data[4, 550] += 2 data[5, 550] += 3 data[0, 999] += 2 data[1, 999] += 4 data[3, 999] += 2 data[1, 1100] += 2 data[2, 1100] += 2 exp_sources = ['source%s' % i for i in range(nsources)] + ['Unknown'] feature_ids = ['f%s' % i for i in range(1250)] exp = pd.DataFrame(data, index=exp_sources, columns=feature_ids) source_ids = np.array(['source%s' % i for i in range(nsources)]) obs = single_sink_feature_table(final_env_assignments, final_taxon_assignments, source_ids, feature_ids) pd.util.testing.assert_frame_equal(obs, exp) def test_collate_gibbs_results(self): # We'll vary the depth of the sinks - simulating a situation where the # user has not rarefied. # We'll set: # draws = 4 # sink_depths = [10, 15, 7] # sources = 5 (+1 unknown) final_env_counts_sink1 = np.array([[5, 2, 1, 1, 0, 1], [0, 6, 2, 2, 0, 0], [0, 3, 1, 1, 5, 0], [2, 2, 2, 0, 0, 4]]) final_env_assignments_sink1 = \ np.array([[5, 0, 0, 0, 2, 0, 1, 0, 3, 1], [1, 1, 3, 3, 2, 2, 1, 1, 1, 1], [4, 1, 4, 4, 4, 4, 1, 1, 3, 2], [2, 1, 0, 5, 5, 5, 5, 1, 0, 2]]) final_taxon_assignments_sink1 = \ np.array([[0, 3, 3, 227, 550, 550, 550, 999, 999, 1100], [0, 3, 3, 227, 550, 550, 550, 999, 999, 1100], [0, 3, 3, 227, 550, 550, 550, 999, 999, 1100], [0, 3, 3, 227, 550, 550, 550, 999, 999, 1100], [0, 3, 3, 227, 550, 550, 550, 999, 999, 1100]]) final_env_counts_sink2 = np.array([[5, 1, 3, 2, 0, 4], [1, 1, 4, 5, 1, 3], [4, 1, 3, 2, 3, 2], [2, 3, 3, 2, 1, 4]]) final_env_assignments_sink2 = \ np.array([[2, 5, 0, 5, 1, 5, 0, 0, 3, 0, 3, 5, 2, 2, 0], [3, 2, 2, 3, 2, 3, 3, 5, 5, 1, 3, 4, 2, 0, 5], [0, 2, 3, 2, 0, 0, 2, 4, 5, 4, 0, 5, 3, 1, 4], [4, 3, 2, 1, 2, 5, 3, 5, 2, 0, 1, 0, 5, 1, 5]]) final_taxon_assignments_sink2 = \ np.array([[7, 7, 7, 7, 8, 8, 8, 8, 250, 250, 250, 250, 1249, 1249], [7, 7, 7, 7, 8, 8, 8, 8, 250, 250, 250, 250, 1249, 1249], [7, 7, 7, 7, 8, 8, 8, 8, 250, 250, 250, 250, 1249, 1249], [7, 7, 7, 7, 8, 8, 8, 8, 250, 250, 250, 250, 1249, 1249]]) final_env_counts_sink3 = np.array([[4, 2, 0, 0, 1, 0], [0, 3, 1, 0, 2, 1], [0, 0, 1, 1, 3, 2], [2, 1, 0, 3, 0, 1]]) final_env_assignments_sink3 = \ np.array([[4, 0, 0, 0, 1, 0, 1], [1, 2, 1, 4, 5, 4, 1], [4, 3, 5, 4, 4, 5, 2], [3, 0, 1, 3, 3, 0, 5]]) final_taxon_assignments_sink3 = \ np.array([[3, 865, 865, 1100, 1100, 1100, 1249], [3, 865, 865, 1100, 1100, 1100, 1249], [3, 865, 865, 1100, 1100, 1100, 1249], [3, 865, 865, 1100, 1100, 1100, 1249]]) # Create expected proportion data. prp_data = np.zeros((3, 6), dtype=np.float64) prp_std_data = np.zeros((3, 6), dtype=np.float64) prp_data[0] = (final_env_counts_sink1.sum(0) / final_env_counts_sink1.sum()) prp_data[1] = (final_env_counts_sink2.sum(0) / final_env_counts_sink2.sum()) prp_data[2] = (final_env_counts_sink3.sum(0) / final_env_counts_sink3.sum()) prp_std_data[0] = \ (final_env_counts_sink1 / final_env_counts_sink1.sum()).std(0) prp_std_data[1] = \ (final_env_counts_sink2 / final_env_counts_sink2.sum()).std(0) prp_std_data[2] = \ (final_env_counts_sink3 / final_env_counts_sink3.sum()).std(0) sink_ids = ['sink1', 'sink2', 'sink3'] exp_sources = ['source%s' % i for i in range(5)] + ['Unknown'] feature_ids = ['f%s' % i for i in range(1250)] exp_prp = pd.DataFrame(prp_data, index=sink_ids, columns=exp_sources) exp_prp_std = pd.DataFrame(prp_std_data, index=sink_ids, columns=exp_sources) # Create expected feature table data. ft1 = np.zeros((6, 1250), dtype=np.int32) for r, c in zip(final_env_assignments_sink1.ravel(), final_taxon_assignments_sink1.ravel()): ft1[r, c] += 1 exp_ft1 = pd.DataFrame(ft1, index=exp_sources, columns=feature_ids) ft2 = np.zeros((6, 1250), dtype=np.int32) for r, c in zip(final_env_assignments_sink2.ravel(), final_taxon_assignments_sink2.ravel()): ft2[r, c] += 1 exp_ft2 = pd.DataFrame(ft2, index=exp_sources, columns=feature_ids) ft3 = np.zeros((6, 1250), dtype=np.int32) for r, c in zip(final_env_assignments_sink3.ravel(), final_taxon_assignments_sink3.ravel()): ft3[r, c] += 1 exp_ft3 = pd.DataFrame(ft3, index=exp_sources, columns=feature_ids) exp_fts = [exp_ft1, exp_ft2, exp_ft3] # Prepare the inputs for passing to collate_gibbs_results all_envcounts = [final_env_counts_sink1, final_env_counts_sink2, final_env_counts_sink3] all_env_assignments = [final_env_assignments_sink1, final_env_assignments_sink2, final_env_assignments_sink3] all_taxon_assignments = [final_taxon_assignments_sink1, final_taxon_assignments_sink2, final_taxon_assignments_sink3] # Test when create_feature_tables=True obs_prp, obs_prp_std, obs_fts = \ collate_gibbs_results(all_envcounts, all_env_assignments, all_taxon_assignments, np.array(sink_ids), np.array(exp_sources[:-1]), np.array(feature_ids), create_feature_tables=True, loo=False) pd.util.testing.assert_frame_equal(obs_prp, exp_prp) pd.util.testing.assert_frame_equal(obs_prp_std, exp_prp_std) for i in range(3): pd.util.testing.assert_frame_equal(obs_fts[i], exp_fts[i]) # Test when create_feature_tables=False obs_prp, obs_prp_std, obs_fts = \ collate_gibbs_results(all_envcounts, all_env_assignments, all_taxon_assignments, np.array(sink_ids), np.array(exp_sources[:-1]), np.array(feature_ids), create_feature_tables=False, loo=False) self.assertTrue(obs_fts is None) def test_collate_gibbs_results_loo(self): # We'll vary the depth of the sources - simulating a situation where # the user has not rarefied. # We'll set: # draws = 2 # source_depths = [7, 4, 5] # sources = 3 (+1 Unknown) ec1 = np.array([[6, 0, 1], [2, 2, 3]]) ea1 = np.array([[0, 2, 0, 0, 0, 0, 0], [0, 1, 0, 2, 1, 2, 2]]) ta1 = np.array([[2, 2, 2, 4, 4, 4, 6], [2, 2, 2, 4, 4, 4, 6]]) ec2 = np.array([[1, 2, 1], [2, 2, 0]]) ea2 = np.array([[0, 1, 2, 1], [0, 1, 1, 0]]) ta2 = np.array([[3, 3, 3, 3], [3, 3, 3, 3]]) ec3 = np.array([[1, 2, 2], [4, 0, 1]]) ea3 = np.array([[1, 1, 0, 2, 2], [0, 0, 0, 0, 2]]) ta3 = np.array([[3, 3, 4, 5, 5], [3, 3, 4, 5, 5]]) # Create expected proportion data. prp_data = np.array([[0, 8/14., 2/14., 4/14.], [3/8., 0, 4/8., 1/8.], [5/10., 2/10., 0, 3/10.]], dtype=np.float64) prp_std_data = np.zeros((3, 4), dtype=np.float64) prp_std_data[0, 1:] = (ec1 / ec1.sum()).std(0) prp_std_data[1, np.array([0, 2, 3])] = (ec2 / ec2.sum()).std(0) prp_std_data[2, np.array([0, 1, 3])] = (ec3 / ec3.sum()).std(0) exp_sources = ['source%s' % i for i in range(3)] + ['Unknown'] feature_ids = ['f%s' % i for i in range(7)] exp_prp = pd.DataFrame(prp_data, index=exp_sources[:-1], columns=exp_sources) exp_prp_std = pd.DataFrame(prp_std_data, index=exp_sources[:-1], columns=exp_sources) # Create expected feature table data. ft1 = np.array([[0, 0, 0, 0, 0, 0, 0], [0, 0, 4, 0, 3, 0, 1], [0, 0, 1, 0, 1, 0, 0], [0, 0, 1, 0, 2, 0, 1]], dtype=np.int64) ft2 = np.array([[0, 0, 0, 3, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 4, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]], dtype=np.int64) ft3 = np.array([[0, 0, 0, 2, 2, 1, 0], [0, 0, 0, 2, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 3, 0]], dtype=np.int64) exp_fts = [pd.DataFrame(ft1, index=exp_sources, columns=feature_ids), pd.DataFrame(ft2, index=exp_sources, columns=feature_ids), pd.DataFrame(ft3, index=exp_sources, columns=feature_ids)] # Prepare the inputs for passing to collate_gibbs_results all_envcounts = [ec1, ec2, ec3] all_env_assignments = [ea1, ea2, ea3] all_taxon_assignments = [ta1, ta2, ta3] # Test when create_feature_tables=True obs_prp, obs_prp_std, obs_fts = \ collate_gibbs_results(all_envcounts, all_env_assignments, all_taxon_assignments, np.array(exp_sources[:-1]), np.array(exp_sources[:-1]), np.array(feature_ids), create_feature_tables=True, loo=True) pd.util.testing.assert_frame_equal(obs_prp, exp_prp) pd.util.testing.assert_frame_equal(obs_prp_std, exp_prp_std) for i in range(3): pd.util.testing.assert_frame_equal(obs_fts[i], exp_fts[i]) # Test when create_feature_tables=False obs_prp, obs_prp_std, obs_fts = \ collate_gibbs_results(all_envcounts, all_env_assignments, all_taxon_assignments, np.array(exp_sources[:-1]), np.array(exp_sources[:-1]), np.array(feature_ids), create_feature_tables=False, loo=True) self.assertTrue(obs_fts is None) class TestBookkeeping(TestCase): '''Tests for fnxs which generate bookkeeping data for `gibbs_sampler`.''' def test_generate_environment_assignment(self): np.random.seed(235234234) obs_sea, obs_ecs = generate_environment_assignments(100, 10) exp_sea = \ np.array([7, 3, 4, 1, 5, 2, 6, 3, 6, 4, 4, 7, 8, 2, 7, 7, 9, 9, 4, 7, 0, 3, 6, 5, 7, 2, 7, 1, 2, 4, 1, 7, 0, 7, 5, 2, 8, 5, 3, 3, 1, 4, 3, 3, 8, 7, 7, 5, 2, 6, 0, 2, 4, 0, 0, 5, 9, 8, 2, 8, 9, 9, 8, 7, 5, 8, 0, 9, 8, 6, 3, 2, 3, 7, 3, 8, 4, 4, 9, 1, 6, 6, 0, 9, 2, 9, 9, 4, 2, 9, 0, 4, 1, 3, 4, 0, 0, 9, 8, 3]) exp_ecs = np.array([10, 6, 11, 12, 12, 7, 7, 13, 10, 12]) np.testing.assert_array_equal(obs_sea, exp_sea) np.testing.assert_array_equal(obs_ecs, exp_ecs) class ConditionalProbabilityTests(TestCase): '''Unit test for the ConditionalProbability class.''' def setUp(self): # create an object we can reuse for several of the tests self.alpha1 = .5 self.alpha2 = .001 self.beta = 10 self.source_data = np.array([[0, 0, 0, 100, 100, 100], [100, 100, 100, 0, 0, 0]]) self.cp = ConditionalProbability(self.alpha1, self.alpha2, self.beta, self.source_data) def test_init(self): exp_alpha1 = self.alpha1 exp_alpha2 = self.alpha2 exp_beta = self.beta exp_m_xivs = self.source_data exp_m_vs = np.array([[300], [300]]) exp_V = 3 exp_tau = 6 exp_joint_probability = np.array([0, 0, 0]) self.assertEqual(self.cp.alpha1, exp_alpha1) self.assertEqual(self.cp.alpha2, exp_alpha2) self.assertEqual(self.cp.beta, exp_beta) np.testing.assert_array_equal(self.cp.m_xivs, exp_m_xivs) np.testing.assert_array_equal(self.cp.m_vs, exp_m_vs) self.assertEqual(self.cp.V, exp_V) self.assertEqual(self.cp.tau, exp_tau) np.testing.assert_array_equal(self.cp.joint_probability, exp_joint_probability) def test_set_n(self): self.cp.set_n(500) self.assertEqual(self.cp.n, 500) def test_precalculate(self): alpha1 = .01 alpha2 = .3 beta = 35 source_data = np.array([[10, 5, 2, 100], [0, 76, 7, 3], [9, 5, 0, 0], [0, 38, 11, 401]]) cp = ConditionalProbability(alpha1, alpha2, beta, source_data) n = 1300 cp.set_n(n) cp.precalculate() # Calculated by hand. exp_known_p_tv = np.array( [[.085526316, .042805878, .017173636, .85449419], [.000116225, .883426313, .081473733, .034983728], [.641737892, .356837607, .000712251, .000712251], [.00002222, .084459159, .024464492, .891054129]]) exp_denominator_p_v = 1299 + 35 * 5 exp_known_source_cp = exp_known_p_tv / exp_denominator_p_v exp_alpha2_n = 390 exp_alpha2_n_tau = 1560 self.assertEqual(cp.denominator_p_v, exp_denominator_p_v) self.assertEqual(cp.alpha2_n, exp_alpha2_n) self.assertEqual(cp.alpha2_n_tau, exp_alpha2_n_tau) np.testing.assert_array_almost_equal(cp.known_p_tv, exp_known_p_tv) np.testing.assert_array_almost_equal(cp.known_source_cp, exp_known_source_cp) def test_calculate_cp_slice(self): # test with non overlapping two component mixture. n = 500 self.cp.set_n(n) self.cp.precalculate() n_vnoti = np.array([305, 1, 193]) m_xiVs = np.array([25, 30, 29, 10, 60, 39]) m_V = 193 # == m_xiVs.sum() == n_vnoti[2] # Calculated by hand. exp_jp_array = np.array( [[9.82612e-4, 9.82612e-4, 9.82612e-4, .1975051, .1975051, .1975051], [6.897003e-3, 6.897003e-3, 6.897003e-3, 3.4313e-5, 3.4313e-5, 3.4313e-5], [.049925736, .059715096, .057757224, .020557656, .118451256, .077335944]]) obs_jp_array = np.zeros((3, 6)) for i in range(6): obs_jp_array[:, i] = self.cp.calculate_cp_slice(i, m_xiVs[i], m_V, n_vnoti) np.testing.assert_array_almost_equal(obs_jp_array, exp_jp_array) # Test using Dan's R code and some print statements. Using the same # data as specified in setup. # Print statesments are added starting at line 347 of SourceTracker.r. # The output is being used to compare the p_tv * p_v calculation that # we are making. Used the following print statements: # print(sink) # print(taxon) # print(sources) # print(rowSums(sources)) # print(envcounts) # print(p_v_denominator) # print('') # print(p_tv) # print(p_v) # print(p_tv * p_v) # Results of print statements # [1] 6 # [1] 100 100 100 100 100 100 # otu_1 otu_2 otu_3 otu_4 otu_5 otu_6 # Source_1 0.5 0.5 0.5 100.5 100.5 100.5 # Source_2 100.5 100.5 100.5 0.5 0.5 0.5 # Unknown 36.6 29.6 29.6 37.6 26.6 31.6 # Source_1 Source_2 Unknown # 303.0 303.0 191.6 # [1] 213 218 198 # [1] 629 # [1] "" # Source_1 Source_2 Unknown # 0.331683168 0.001650165 0.164926931 # [1] 0.3386328 0.3465819 0.3147854 # Source_1 Source_2 Unknown # 0.1123187835 0.0005719173 0.0519165856 # The sink is the sum of the source data, self.source_data.sum(1). cp = ConditionalProbability(self.alpha1, self.alpha2, self.beta, self.source_data) cp.set_n(600) cp.precalculate() # Taxon selected by R was 6, but R is 1-indexed and python is # 0-indexed. taxon_index = 5 # Must subtract alpha2 * tau * n from the Unknown sum since the R # script adds these values to the 'Sources' matrix. unknown_sum = 188 unknown_at_t5 = 31 # Must subtract beta from each envcount because the R script adds this # value to the 'envcounts' matrix. envcounts = np.array([203, 208, 188]) obs_jp = cp.calculate_cp_slice(taxon_index, unknown_at_t5, unknown_sum, envcounts) # From the final line of R results above. exp_jp = np.array([0.1123187835, 0.0005719173, 0.0519165856]) np.testing.assert_array_almost_equal(obs_jp, exp_jp) class TestGibbs(TestCase): '''Unit tests for Gibbs based on seeding the PRNG and hand calculations.''' def test_single_pass_gibbs_sampler(self): # The data for this test was built by seeding the PRNG, and making the # calculations that Gibb's would make, and then comparing the results. restarts = 1 draws_per_restart = 1 burnin = 0 # Setting delay to 2 is the only way to stop the Sampler after a single # pass. delay = 2 alpha1 = .2 alpha2 = .1 beta = 3 source_data = np.array([[0, 1, 4, 10], [3, 2, 1, 1]]) sink = np.array([2, 1, 4, 2]) # Make calculations using gibbs function. np.random.seed(0) cp = ConditionalProbability(alpha1, alpha2, beta, source_data) obs_ec, obs_ea, obs_ta = gibbs_sampler(sink, cp, restarts, draws_per_restart, burnin, delay) # Make calculation using handrolled. np.random.seed(0) choices = np.arange(3) np.random.choice(choices, size=9, replace=True) order = np.arange(9) np.random.shuffle(order) expected_et_pairs = np.array([[2, 0, 1, 2, 0, 1, 0, 1, 0], [3, 2, 2, 2, 0, 0, 1, 2, 3]]) envcounts = np.array([4., 3., 2.]) unknown_vector = np.array([0, 0, 1, 1]) # Calculate known probabilty base as ConditionalProbability would. denominator = np.array([[(15 + (4*.2)) * (8 + 3*3)], [(7 + (4*.2)) * (8 + 3*3)]]) numerator = np.array([[0, 1, 4, 10], [3, 2, 1, 1]]) + .2 known_env_prob_base = numerator / denominator # Set up a sequence environment assignments vector. This would normally # be handled by the Sampler class. seq_env_assignments = np.zeros(9) # Set up joint probability holder, normally handeled by # ConditionalProbability class. joint_prob = np.zeros(3) for i, (e, t) in enumerate(expected_et_pairs.T): envcounts[e] -= 1 if e == 2: unknown_vector[t] -= 1 # Calculate the new probabilty as ConditionalProbability would. joint_prob = np.zeros(3) joint_prob[:-1] += envcounts[:-1] + beta joint_prob[:-1] = joint_prob[:-1] * known_env_prob_base[:2, t] joint_prob[-1] = (unknown_vector[t] + (9 * .1)) / \ (unknown_vector.sum() + (9 * .1 * 4)) joint_prob[-1] *= ((envcounts[2] + beta) / (8 + 3*3)) # Another call to the PRNG new_e = np.random.choice(np.array([0, 1, 2]), p=joint_prob/joint_prob.sum()) seq_env_assignments[i] = new_e envcounts[new_e] += 1 if new_e == 2: unknown_vector[t] += 1 # prps = envcounts / float(envcounts.sum()) # exp_mps = prps/prps.sum() # Create taxon table like Sampler class would. exp_ct = np.zeros((4, 3)) for i in range(9): exp_ct[expected_et_pairs[1, i], np.int(seq_env_assignments[i])] += 1 # np.testing.assert_array_almost_equal(obs_mps.squeeze(), exp_mps) # np.testing.assert_array_equal(obs_ct.squeeze().T, exp_ct) np.testing.assert_array_equal(obs_ec.squeeze(), envcounts) np.testing.assert_array_equal(obs_ea.squeeze()[order], seq_env_assignments) np.testing.assert_array_equal(obs_ta.squeeze()[order], expected_et_pairs[1, :]) def test_gibbs_params_bad(self): # test gibbs when the parameters passed are bad features = ['o1', 'o2', 'o3', 'o4', 'o5', 'o6'] source1 = np.array([10, 10, 10, 0, 0, 0]) source2 = np.array([0, 0, 0, 10, 10, 10]) sources = pd.DataFrame(np.vstack((source1, source2)).astype(np.int32), index=['source1', 'source2'], columns=features) self.assertRaises(ValueError, gibbs, sources, alpha1=-.3) def test_gibbs_data_bad(self): # input has nans. features = ['o1', 'o2', 'o3', 'o4', 'o5', 'o6'] source1 = np.array([10, 10, 10, 0, 0, np.nan]) source2 = np.array([0, 0, 0, 10, 10, 10]) sources = pd.DataFrame(np.vstack((source1, source2)), index=['source1', 'source2'], columns=features) self.assertRaises(ValueError, gibbs, sources) # features do not overlap. features = ['o1', 'o2', 'o3', 'o4', 'o5', 'o6'] source1 = np.array([10, 10, 10, 0, 0, 0]) source2 = np.array([0, 0, 0, 10, 10, 10]) sources = pd.DataFrame(np.vstack((source1, source2)), index=['source1', 'source2'], columns=features) features2 = ['o1', 'asdsadO2', 'o3', 'o4', 'o5', 'o6'] sink1 = np.array([10, 10, 10, 0, 0, 0]) sink2 = np.array([0, 0, 0, 10, 10, 10]) sinks = pd.DataFrame(np.vstack((sink1, sink2)), index=['sink1', 'sink2'], columns=features2) self.assertRaises(ValueError, gibbs, sources, sinks) # there are negative counts. sources.iloc[0, 2] = -10 self.assertRaises(ValueError, gibbs, sources) # non-real data in input dataframe. # copied from test of `validate_gibbs_input`. data = np.random.randint(0, 10, size=20).reshape(5, 4) sources = pd.DataFrame(data.astype(np.int32), index=['f%s' % i for i in range(5)], columns=['s%s' % i for i in range(4)]) sources.iloc[2, 2] = '3.a' self.assertRaises(ValueError, validate_gibbs_input, sources) def test_consistency_when_gibbs_seeded(self): '''Test consistency of `gibbs` (without LOO) from run to run. Notes ----- The number of calls to the PRNG should be stable (and thus this test, which is seeded, should not fail). Any changes made to the code which cause this test to fail should be scrutinized very carefully. If the number of calls to the PRNG has not been changed, then an error has been introduced somewhere else in the code. If the number of calls has been changed, the deterministic tests should fail as well, but since they are a small example they might not fail (false negative). This test is extensive (it does 201 loops through the entire `gibbs_sampler` block). ''' features = ['o1', 'o2', 'o3', 'o4', 'o5', 'o6'] source1 = np.array([10, 10, 10, 0, 0, 0]) source2 = np.array([0, 0, 0, 10, 10, 10]) sink1 = .5*source1 + .5*source2 sinks = pd.DataFrame(sink1.reshape(1, 6).astype(np.int32), index=['sink1'], columns=features) sources = pd.DataFrame(np.vstack((source1, source2)).astype(np.int32), index=['source1', 'source2'], columns=features) np.random.seed(1042) mpm, mps, fts = gibbs(sources, sinks, alpha1=.001, alpha2=.01, beta=1, restarts=3, draws_per_restart=5, burnin=50, jobs=2, delay=4, create_feature_tables=True) possible_sources = ['source1', 'source2', 'Unknown'] vals = np.array([[0.44, 0.44666667, 0.11333333]]) exp_mpm = pd.DataFrame(vals, index=['sink1'], columns=possible_sources) vals = np.array([[0.00824322, 0.00435465, 0.01047985]]) exp_mps = pd.DataFrame(vals, index=['sink1'], columns=possible_sources) vals = np.array([[69, 64, 65, 0, 0, 0], [0, 0, 0, 67, 70, 64], [6, 11, 10, 8, 5, 11]], dtype=np.int32) exp_fts = pd.DataFrame(vals, index=possible_sources, columns=features) pd.util.testing.assert_frame_equal(mpm, exp_mpm) pd.util.testing.assert_frame_equal(mps, exp_mps) pd.util.testing.assert_frame_equal(fts[0], exp_fts) def test_consistency_when_gibbs_loo_seeded(self): '''Test consistency of `gibbs` (loo) from run to run. Notes ----- The number of calls to the PRNG should be stable (and thus this test, which is seeded, should not fail). Any changes made to the code which cause this test to fail should be scrutinized very carefully. If the number of calls to the PRNG has not been changed, then an error has been introduced somewhere else in the code. If the number of calls has been changed, the deterministic tests should fail as well, but since they are a small example they might not fail (false negative). This test is extensive (it does 201 loops through the entire `gibbs_sampler` block for each source). ''' source1a = np.array([10, 10, 10, 0, 0, 0]) source1b = np.array([8, 8, 8, 2, 2, 2]) source2a = np.array([0, 0, 0, 10, 10, 10]) source2b = np.array([4, 4, 4, 6, 6, 6]) vals = np.vstack((source1a, source1b, source2a, source2b)).astype(np.int32) source_names = ['source1a', 'source1b', 'source2a', 'source2b'] feature_names = ['o1', 'o2', 'o3', 'o4', 'o5', 'o6'] sources = pd.DataFrame(vals, index=source_names, columns=feature_names) np.random.seed(1042) obs_mpm, obs_mps, obs_fts = gibbs(sources, sinks=None, alpha1=.001, alpha2=.01, beta=1, restarts=3, draws_per_restart=5, burnin=50, delay=4, create_feature_tables=True) vals = np.array([[0., 0.62444444, 0., 0.01555556, 0.36], [0.68444444, 0., 0.09333333, 0.12666667, 0.09555556], [0., 0.00888889, 0., 0.08222222, 0.90888889], [0.19111111, 0.2, 0.5, 0., 0.10888889]]) exp_mpm = pd.DataFrame(vals, index=source_names, columns=source_names + ['Unknown']) vals = np.array([[0., 0.02406393, 0., 0.0015956, 0.02445387], [0.0076923, 0., 0.00399176, 0.00824322, 0.00648476], [0., 0.00127442, 0., 0.00622575, 0.00609752], [0.00636175, 0.00786721, 0.00525874, 0., 0.00609752]]) exp_mps = pd.DataFrame(vals, index=source_names, columns=source_names + ['Unknown']) fts0_vals = np.array([[0, 0, 0, 0, 0, 0], [93, 87, 101, 0, 0, 0], [0, 0, 0, 0, 0, 0], [3, 4, 0, 0, 0, 0], [54, 59, 49, 0, 0, 0]]) fts1_vals = np.array([[113, 98, 97, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 15, 13, 14], [5, 7, 11, 11, 12, 11], [2, 15, 12, 4, 5, 5]]) fts2_vals = np.array([[0, 0, 0, 0, 0, 0], [0, 0, 0, 2, 1, 1], [0, 0, 0, 0, 0, 0], [0, 0, 0, 12, 12, 13], [0, 0, 0, 136, 137, 136]]) fts3_vals = np.array([[28, 27, 31, 0, 0, 0], [27, 24, 25, 3, 4, 7], [0, 0, 0, 80, 71, 74], [0, 0, 0, 0, 0, 0], [5, 9, 4, 7, 15, 9]]) fts_vals = [fts0_vals, fts1_vals, fts2_vals, fts3_vals] exp_fts = [pd.DataFrame(vals, index=source_names + ['Unknown'], columns=feature_names) for vals in fts_vals] pd.util.testing.assert_frame_equal(obs_mpm, exp_mpm) pd.util.testing.assert_frame_equal(obs_mps, exp_mps) for obs_fts, exp_fts in zip(obs_fts, exp_fts): pd.util.testing.assert_frame_equal(obs_fts, exp_fts) def test_gibbs_close_to_sourcetracker_1(self): '''This test is stochastic; occasional errors might occur. Notes ----- This tests against the R-code SourceTracker version 1.0, using R version 2.15.3. ''' sources_data = \ np.array([[0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0, 0, 0, 0]], dtype=np.int32) sources_names = ['source1', 'source2', 'source3'] feature_names = ['f%i' % i for i in range(32)] sources = pd.DataFrame(sources_data, index=sources_names, columns=feature_names) sinks_data = np.array([[0, 0, 0, 0, 0, 0, 170, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 385, 0, 0, 0, 0, 0, 0, 0, 350, 0, 0, 0, 0, 95], [0, 0, 0, 0, 0, 0, 170, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 380, 0, 0, 0, 0, 0, 0, 0, 350, 0, 0, 0, 0, 100], [0, 0, 0, 0, 0, 0, 170, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 378, 0, 0, 0, 0, 0, 0, 0, 350, 0, 0, 0, 0, 102], [0, 0, 0, 0, 0, 0, 170, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 386, 0, 0, 0, 0, 0, 0, 0, 350, 0, 0, 0, 0, 94]], dtype=np.int32) sinks_names = ['sink1', 'sink2', 'sink3', 'sink4'] sinks = pd.DataFrame(sinks_data, index=sinks_names, columns=feature_names) obs_mpm, obs_mps, _ = gibbs(sources, sinks, alpha1=.001, alpha2=.1, beta=10, restarts=2, draws_per_restart=2, burnin=5, delay=2, create_feature_tables=False) exp_vals = np.array([[0.1695, 0.4781, 0.3497, 0.0027], [0.1695, 0.4794, 0.3497, 0.0014], [0.1693, 0.4784, 0.3499, 0.0024], [0.1696, 0.4788, 0.3494, 0.0022]]) exp_mpm = pd.DataFrame(exp_vals, index=sinks_names, columns=sources_names + ['Unknown']) pd.util.testing.assert_index_equal(obs_mpm.index, exp_mpm.index) pd.util.testing.assert_index_equal(obs_mpm.columns, exp_mpm.columns) np.testing.assert_allclose(obs_mpm.values, exp_mpm.values, atol=.01) class PlotHeatmapTests(TestCase): def setUp(self): vals = np.array([[0., 0.62444444, 0., 0.01555556, 0.36], [0.68444444, 0., 0.09333333, 0.12666667, 0.09555556], [0., 0.00888889, 0., 0.08222222, 0.90888889], [0.19111111, 0.2, 0.5, 0., 0.10888889]]) source_names = ['source1a', 'source1b', 'source2a', 'source2b'] self.mpm = pd.DataFrame(vals, index=source_names, columns=source_names + ['Unknown']) def test_defaults(self): # plot_heatmap call returns successfully fig, ax = plot_heatmap(self.mpm) def test_non_defaults(self): # plot_heatmap call returns successfully fig, ax = plot_heatmap(self.mpm, cm=plt.cm.jet, xlabel='Other 1', ylabel='Other 2', title='Other 3') if __name__ == '__main__': main()
bsd-3-clause
-7,534,571,585,709,418,000
45.5
79
0.49133
false
3.320111
true
false
false
DanyC97/algorithms
algorithms/searching/depth_first_search.py
5
1076
""" Depth First Search ------------------ Recursive implementation of the depth first search algorithm used to traverse trees or graphs. Starts at a selected node (root) and explores the branch as far as possible before backtracking. Time Complexity: O(E + V) E = Number of edges V = Number of vertices (nodes) Pseudocode: https://en.wikipedia.org/wiki/Depth-first_search """ def dfs(graph, start, path=[]): """ Depth first search that recursively searches the path. Backtracking occurs only when the last node in the path is visited. :param graph: A dictionary of nodes and edges. :param start: The node to start the recursive search with. :param path: A list of edges to search. :rtype: A boolean indicating whether the node is included in the path. """ if start not in graph or graph[start] is None or graph[start] == []: return None path = path + [start] for edge in graph[start]: if edge not in path: path = dfs(graph, edge, path) return path
bsd-3-clause
6,116,533,381,887,268,000
29.742857
79
0.648699
false
4.203125
false
false
false
google/starthinker
starthinker/task/traffic/test.py
1
1495
########################################################################### # # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ########################################################################### from starthinker.util.google_api import API_DCM from starthinker.util.cm import get_profile_for_api def bulkdozer_test(config, task): print('testing bulkdozer') if 'verify' in task['traffic']: is_admin, profile_id = get_profile_for_api( config, task['auth'], task['traffic']['account_id']) for entity in task['traffic']['verify']: service = getattr( API_DCM(config, task['auth'], internal=is_admin), entity['type']) cm_entity = service().get(profileId=profile_id, id=entity['id']).execute() values = entity['values'] for key in values: if values[key] != cm_entity[key]: raise ValueError('%s %s expected to be %s, was %s' % (entity['type'], key, values[key], cm_entity[key]))
apache-2.0
3,856,234,003,942,590,000
37.333333
114
0.613378
false
3.986667
false
false
false
Catch-up-TV-and-More/plugin.video.catchuptvandmore
resources/lib/websites/lesargonautes.py
1
2870
# -*- coding: utf-8 -*- # Copyright: (c) 2018, SylvainCecchetto # GNU General Public License v2.0+ (see LICENSE.txt or https://www.gnu.org/licenses/gpl-2.0.txt) # This file is part of Catch-up TV & More from __future__ import unicode_literals import json import re from codequick import Listitem, Resolver, Route import urlquick from resources.lib import download from resources.lib.menu_utils import item_post_treatment # TO DO # Fix Download Mode URL_ROOT = 'http://lesargonautes.telequebec.tv' URL_VIDEOS = URL_ROOT + '/Episodes' URL_STREAM_DATAS = 'https://mnmedias.api.telequebec.tv/api/v2/media/mediaUid/%s' URL_STREAM = 'https://mnmedias.api.telequebec.tv/m3u8/%s.m3u8' # VideoId @Route.register def website_root(plugin, item_id, **kwargs): """Add modes in the listing""" resp = urlquick.get(URL_VIDEOS) list_seasons_datas = re.compile(r'li path\=\"(.*?)\"').findall(resp.text) for season_datas in list_seasons_datas: season_title = season_datas item = Listitem() item.label = season_title item.set_callback(list_videos, item_id=item_id, season_title=season_title) item_post_treatment(item) yield item @Route.register def list_videos(plugin, item_id, season_title, **kwargs): resp = urlquick.get(URL_VIDEOS) root = resp.parse("li", attrs={"path": season_title}) for video_datas in root.iterfind(".//li[@class='episode']"): video_title = video_datas.find(".//div[@class='title']").text.strip( ) + ' - Episode ' + video_datas.find( ".//span[@path='Number']").text.strip() video_image = video_datas.find(".//img[@class='screen']").get('src') video_plot = video_datas.find(".//div[@class='summary']").text.strip() video_id = video_datas.find(".//input[@path='MediaUid']").get('value') item = Listitem() item.label = video_title item.art['thumb'] = item.art['landscape'] = video_image item.info['plot'] = video_plot item.set_callback(get_video_url, item_id=item_id, video_id=video_id) item_post_treatment(item, is_playable=True, is_downloadable=True) yield item @Resolver.register def get_video_url(plugin, item_id, video_id, download_mode=False, **kwargs): """Get video URL and start video player""" if video_id == '': plugin.notify('ERROR', plugin.localize(30716)) return False resp = urlquick.get(URL_STREAM_DATAS % video_id, verify=False) json_parser = json.loads(resp.text) final_video_url = URL_STREAM % json_parser['media']['mediaId'] if download_mode: return download.download_video(final_video_url) return final_video_url
gpl-2.0
2,377,813,101,347,847,000
29.860215
96
0.61324
false
3.364596
false
false
false
south-coast-science/scs_core
tests/aqcsv/specification/country_test.py
1
1100
#!/usr/bin/env python3 """ Created on 4 Mar 2019 @author: Bruno Beloff ([email protected]) """ from scs_core.aqcsv.specification.country_iso import CountryISO from scs_core.aqcsv.specification.country_numeric import CountryNumeric from scs_core.data.json import JSONify # -------------------------------------------------------------------------------------------------------------------- print("list ISO...") for country in CountryISO.instances(): print(country) print("-") print("find ISO...") iso = "TUN" iso_country = CountryISO.instance(iso) print("iso:%s country:%s" % (iso, iso_country)) print(JSONify.dumps(iso_country)) print("-") print("list Numeric...") for country in CountryNumeric.instances(): print(country) print("-") print("find Numeric...") numeric = 788 numeric_country = CountryNumeric.instance(numeric) print("numeric:%s country:%s" % (numeric, numeric_country)) print(JSONify.dumps(numeric_country)) print("-") print("equality...") equality = iso_country == numeric_country print("iso_country == numeric_country: %s" % equality) print("-")
mit
8,914,476,633,248,161,000
22.913043
118
0.640909
false
3.548387
false
false
false
varun-suresh/Clustering
evaluation.py
1
1895
# Script to evaluate the performance of the clustering algorithm. import argparse from itertools import combinations from collections import defaultdict def count_correct_pairs(cluster, labels_lookup): """ Given a cluster, count the number of pairs belong to the same label and the total number of pairs. """ total_pairs = 0 correct_pairs = 0 pairs = combinations(cluster, 2) for f1, f2 in pairs: if labels_lookup[f1] == labels_lookup[f2]: correct_pairs += 1 total_pairs += 1 return correct_pairs, total_pairs def calculate_pairwise_pr(clusters, labels_lookup): """ Given a cluster, return pairwise precision and recall. """ correct_pairs = 0 total_pairs = 0 # Precision for cluster in clusters: cp, tp = count_correct_pairs(cluster, labels_lookup) correct_pairs += cp total_pairs += tp # Recall: gt_clusters = defaultdict(list) # Count the actual number of possible true pairs: for row_no, label in labels_lookup.items(): gt_clusters[label].append(row_no) true_pairs = 0 for cluster_id, cluster_items in gt_clusters.items(): n = len(cluster_items) true_pairs += n * (n-1)/2.0 print("Correct Pairs that are in the same cluster:{}".format(correct_pairs)) print("Total pairs as per the clusters created: {}".format(total_pairs)) print("Total possible true pairs:{}".format(true_pairs)) precision = float(correct_pairs)/total_pairs recall = float(correct_pairs)/true_pairs return precision, recall if __name__ == '__main__': parser = argparse.ArgumentError() parser.add_argument('-c', '--clusters', help='List of lists where each \ list is a cluster') parser.add_argument('-l', '--labels', help='List of labels associated \ with each vector.')
mit
7,007,695,952,947,865,000
33.454545
80
0.641689
false
4.075269
false
false
false
CheeseLord/warts
src/shared/geometry.py
1
13529
""" Functions for doing geometry calculations in the various types of coordinates shared between client and server. """ import heapq import math from src.shared.config import CHUNK_SIZE, BUILD_SIZE from src.shared.exceptions import NoPathToTargetError from src.shared.logconfig import newLogger log = newLogger(__name__) BUILDS_PER_CHUNK = CHUNK_SIZE / BUILD_SIZE # Costs used by pathfinding code. # Measure distances in unit coordinates. ORTHOGONAL_COST = CHUNK_SIZE DIAGONAL_COST = int(ORTHOGONAL_COST * math.sqrt(2)) def findPath(gameState, srcPos, destPos): """ Compute and return a path from srcPos to destPos, avoiding any obstacles. The returned path will be a list of waypoints such that a unit at srcPos could travel by straight line to each of the waypoints in order and thus get to destPos without hitting any obstacles. """ log.debug("Searching for path from %s to %s", srcPos, destPos) chunkWidth, chunkHeight = gameState.sizeInChunks # Value larger than any actual distance. farFarAway = ORTHOGONAL_COST**2 * chunkWidth * chunkHeight srcChunk = srcPos.chunk destChunk = destPos.chunk srcCX, srcCY = srcChunk destCX, destCY = destChunk # Make sure we're starting within the world. if not (0 <= srcCX < chunkWidth and 0 <= srcCY < chunkHeight): raise NoPathToTargetError("Starting point {} is outside the world." .format(srcPos)) # If the source and dest points are in the same chunk, there's no point # doing a chunk-based search to find a path, because the result will be # trivial. Just go straight to the dest. if srcChunk == destChunk: return [destPos] # This list actually serves 2 purposes. First, it keeps track of which # chunks have been visited already. Second, for those that have been # visited, it tracks which chunk came before it in the shortest path from # the srcChunk to it. parents = [[None for _y in range(chunkHeight)] for _x in range(chunkWidth)] # Set to True for a node once we know we've found a shortest path to it, so # that we don't keep checking new paths to that node. nodeFinalized = [[False for _y in range(chunkHeight)] for _x in range(chunkWidth)] # Shortest distance to each node from the start. distanceFromStart = [[farFarAway for _y in range(chunkHeight)] for _x in range(chunkWidth)] distanceFromStart[srcCX][srcCY] = 0 # Priority queue of chunks that we still need to search outward from, where # priority = distance from start + heuristic distance to end. chunksToCheck = [] heapq.heappush(chunksToCheck, (_heuristicDistance(srcChunk, destChunk), srcChunk)) while len(chunksToCheck) > 0: _, currChunk = heapq.heappop(chunksToCheck) log.debug("Pathfinding: search out from %s", currChunk) if currChunk == destChunk: break cx, cy = currChunk if nodeFinalized[cx][cy]: # Already expanded from this node; don't do it again. continue nodeFinalized[cx][cy] = True log.debug("Pathfinding: checking neighbors.") for addlDist, neighbor in _getValidNeighbors(currChunk, gameState): log.debug("Pathfinding: trying %s", neighbor) nx, ny = neighbor neighborStartDist = distanceFromStart[cx][cy] + addlDist if neighborStartDist < distanceFromStart[nx][ny]: log.debug("Pathfinding: found shorter path to neighbor.") distanceFromStart[nx][ny] = neighborStartDist parents[nx][ny] = currChunk neighborFwdDist = _heuristicDistance(neighbor, destChunk) neighborEstCost = neighborStartDist + neighborFwdDist heapq.heappush(chunksToCheck, (neighborEstCost, neighbor)) if (not _chunkInBounds(gameState, destChunk)) or \ parents[destCX][destCY] is None: raise NoPathToTargetError("No path exists from {} to {}." .format(srcPos, destPos)) # Build the list of waypoints backward, by following the trail of parents # all the way from dest to source. lim = chunkWidth * chunkHeight waypoints = [] currChunk = destChunk while currChunk != srcChunk: waypoints.append(currChunk) cx, cy = currChunk currChunk = parents[cx][cy] assert currChunk is not None # If there's a bug, crash rather than hanging (it's easier to debug). lim -= 1 assert lim >= 0, "Infinite loop detected in findPath" # Reverse the list of waypoints, since currently it's backward. waypoints.reverse() # Now convert the chunk coordinates to unit coordinates. waypoints = [Coord.fromCBU(chunk=chunk).chunkCenter for chunk in waypoints] # Note: The very first waypoint is still valid, because it's in a chunk # orthogonally adjacent to the chunk containing the source point, so # there's definitely not an obstacle in between. # We still need to correct the last waypoint, which is currently the center # of the dest chunk rather than the actual dest point. Note that we already # handled the case where srcChunk == destChunk, so waypoints can't be # empty. waypoints[-1] = destPos return waypoints def _heuristicDistance(chunkA, chunkB): """ Return a heuristic estimate of the distance between chunk A and chunk B, in *unit coordinates*. """ # Use Euclidean distance as the heuristic. ax, ay = chunkA bx, by = chunkB deltaX = ORTHOGONAL_COST * (bx - ax) deltaY = ORTHOGONAL_COST * (by - ay) return int(math.hypot(deltaX, deltaY)) # Helper function for findPath. def _getValidNeighbors(chunkPos, gameState): x, y = chunkPos # The 8 neighbors, separated into those orthogonally adjaent and those # diagonally adjacent. Within each category, the particular neighbors are # in random order. diagonals = [ (x - 1, y + 1), # northwest (x + 1, y - 1), # southeast (x - 1, y - 1), # southwest (x + 1, y + 1), # northeast ] orthogonals = [ (x, y - 1), # south (x, y + 1), # north (x + 1, y ), # east (x - 1, y ), # west ] # Try diagonals first, so that when crossing a non-square rectangle we do # the diagonal part of the path before the orthogonal part. for neighbor in diagonals: if _chunkInBounds(gameState, neighbor) and \ _chunkIsPassable(gameState, neighbor): # Check that the other two corners of the square are passable, so # we don't try to move through zero-width spaces in cases like: # @@ B # @@/ # /@@ # A @@ nx, ny = neighbor if _chunkIsPassable(gameState, ( x, ny)) and \ _chunkIsPassable(gameState, (nx, y)): yield (DIAGONAL_COST, neighbor) for neighbor in orthogonals: if _chunkInBounds(gameState, neighbor) and \ _chunkIsPassable(gameState, neighbor): yield (ORTHOGONAL_COST, neighbor) def _chunkInBounds(gameState, chunkPos): return gameState.inBounds(Coord.fromCBU(chunk=chunkPos)) def _chunkIsPassable(gameState, chunkPos): return gameState.isPassable(Coord.fromCBU(chunk=chunkPos)) class AbstractCoord(object): def __init__(self, uPos): super(AbstractCoord, self).__init__() self.x, self.y = uPos @classmethod def fromUnit(cls, unit): return cls(unit) @classmethod def fromCBU(cls, chunk=(0,0), build=(0,0), unit=(0,0)): cx, cy = chunk bx, by = build ux, uy = unit x = cx * CHUNK_SIZE + bx * BUILD_SIZE + ux y = cy * CHUNK_SIZE + by * BUILD_SIZE + uy return cls((x, y)) @property def chunk(self): return (self.x // CHUNK_SIZE, self.y // CHUNK_SIZE) @property def build(self): return (self.x // BUILD_SIZE, self.y // BUILD_SIZE) @property def unit(self): return (self.x, self.y) @property def buildSub(self): return ((self.x % CHUNK_SIZE) // BUILD_SIZE, (self.y % CHUNK_SIZE) // BUILD_SIZE) @property def unitSub(self): return (self.x % BUILD_SIZE, self.y % BUILD_SIZE) @property def truncToChunk(self): return self.fromCBU(chunk=self.chunk) @property def truncToBuild(self): return self.fromCBU(build=self.build) def serialize(self): return [str(int(x)) for x in self.unit] @classmethod def deserialize(cls, descs): assert len(descs) == 2 return cls.fromUnit(map(int, descs)) def __repr__(self): return "{}({}, {})".format(type(self).__name__, self.x, self.y) def __str__(self): cx, cy = self.chunk bx, by = self.build ux, uy = self.unit return "({cx}.{bx}.{ux}, {cy}.{by}.{uy})".format( cx=cx, cy=cy, bx=bx, by=by, ux=ux, uy=uy ) def __eq__(self, rhs): if not isinstance(self, type(rhs)) and not isinstance(rhs, type(self)): raise TypeError("Cannot compare {} with {}.".format( type(self), type(rhs) )) return self.x == rhs.x and self.y == rhs.y def __ne__(self, rhs): if not isinstance(self, type(rhs)) and not isinstance(rhs, type(self)): raise TypeError("Cannot compare {} with {}.".format( type(self), type(rhs) )) return self.x != rhs.x or self.y != rhs.y # Coord + Coord = err # Coord + Dist = Coord # Dist + Coord = Coord # Dist + Dist = Dist # # Coord - Coord = Dist # Coord - Dist = Coord # Dist - Coord = err # Dist - Dist = Dist # # - Coord = err # - Dist = Dist def __add__(self, rhs): if isinstance(self, Coord) and isinstance(rhs, Coord): raise TypeError("Cannot add two Coords.") elif isinstance(self, Distance) and isinstance(rhs, Distance): retType = Distance else: # Coord + Distance or Distance + Coord retType = Coord x = self.x + rhs.x y = self.y + rhs.y return retType((x, y)) def __sub__(self, rhs): if isinstance(self, Coord) == isinstance(rhs, Coord): # Coord - Coord or Distance - Distance retType = Distance elif isinstance(self, Coord): # Coord - Distance retType = Coord else: # Distance - Coord raise TypeError("Cannot subtract Distance - Coord.") x = self.x - rhs.x y = self.y - rhs.y return retType((x, y)) class Distance(AbstractCoord): def length(self): "Return the Euclidean length of this Distance." return math.hypot(self.x, self.y) def __neg__(self): x = - self.x y = - self.y return Distance((x, y)) def __rmul__(self, lhs): if not isinstance(lhs, int) and not isinstance(lhs, float): raise TypeError("Cannot multiply Distance by {}.".format( type(lhs) )) return Distance((int(round(self.x * lhs)), int(round(self.y * lhs)))) def __mul__(self, rhs): return rhs * self class Coord(AbstractCoord): @property def chunkCenter(self): """ Return the Coord of the center of the chunk containing this Coord. """ return self.fromCBU(chunk=self.chunk, unit=(CHUNK_SIZE // 2, CHUNK_SIZE // 2)) class Rect(object): def __init__(self, coord, dist): if not isinstance(coord, Coord): raise TypeError("Rectangle must have Coordinate. Found {}".format( type(coord) )) if not isinstance(dist, Distance): raise TypeError("Rectangle must have Distance. Found {}".format( type(dist) )) self.coord = coord self.dist = dist @property def center(self): return self.coord + 0.5*self.dist def serialize(self): return self.coord.serialize() + self.dist.serialize() @classmethod def deserialize(cls, descs): assert len(descs) == 4 cdesc = descs[:2] ddesc = descs[2:] return cls(Coord.deserialize(cdesc), Distance.deserialize(ddesc)) def isRectCollision(rect1, rect2): if not isinstance(rect1, Rect): raise TypeError("Can only compare distance between rectangles." "Found {}".format( type(rect1) )) if not isinstance(rect2, Rect): raise TypeError("Can only compare distance between rectangles." "Found {}".format( type(rect2) )) # Rectangle 1 left1, bottom1 = rect1.coord.unit right1, top1 = (rect1.coord + rect1.dist).unit right1, top1 = right1 - 1, top1 -1 # Rectangle 2 left2, bottom2 = rect2.coord.unit right2, top2 = (rect2.coord + rect2.dist).unit right2, top2 = right2 - 1, top2 -1 return ((bottom2 < top1 and top2 > bottom1) and (left2 < right1 and right2 > left1))
mit
184,582,993,762,131,330
32.992462
79
0.592357
false
3.809913
false
false
false
jesseward/harmonic-shuffle
harmonic_shuffle/harmony.py
1
3320
import logging logger = logging.getLogger(__name__) class Harmony(object): # numeric representation of the Circle of 5ths. HARMONY = { 'G': 1, 'D': 2, 'A': 3, 'E': 4, 'B': 5, 'F#': 6, 'Gb': 6, 'Db': 7, 'C#': 7, 'Ab': 8, 'Eb': 9, 'Bb': 10, 'F': 11, 'C': 12, 'Em': 101, 'Bm': 102, 'F#m': 103, 'Gbm': 103, 'Dbm': 104, 'C#m': 104, 'G#m': 105, 'Ebm': 106, 'D#m': 106, 'A#m': 107, 'Bbm': 107, 'Fm': 108, 'Cm': 109, 'Gm': 110, 'Dm': 111, 'Am': 112, } def __init__(self, root_key): """ :param root_key: A string value representing the root key signature for the song. """ if root_key not in Harmony.HARMONY.keys(): raise LookupError('{key} is not reconized'.format(key=root_key)) self.root_key = root_key self.root_key_value = Harmony.HARMONY[self.root_key] # a list representing all compatible tone for a given root_key self.harmonies = self._get_value(self.root_key_value) + self.down_shift() + self.up_shift() + self.minor() def __repr__(self): return '<Harmony key={0.root_key} value={0.root_key_value}>'.format(self) @staticmethod def _get_value(value): """ performs a look-up of the HARMONY dictionary by value. :parameter value: An integer representing a harmonic key :return: A list of keys :rtype list: """ return [note for note, fifth_value in Harmony.HARMONY.iteritems() if value == fifth_value] def down_shift(self): """ Fetches the next key(s) that represents a single tone downward :return: A list representing a compatible key :rtype list: """ # handle a roll over at position "1" on the wheel. in the case of 1 or 101 we down # shift to 12 or 112 if self.root_key_value == 1: down = Harmony._get_value(12) elif self.root_key_value == 101: down = Harmony._get_value(112) else: down = Harmony._get_value(self.root_key_value - 1) return down def up_shift(self): """ Fetches the next key(s) that represents a single tone forward . :return: A list representing a group of compatible keys :rtype list: """ # handle a rollover at the apex of the wheel . when key_value is 12 or 112 # we shift forward to 1 (major) or 101 (minor) if self.root_key_value == 12: up = Harmony._get_value(1) elif self.root_key_value == 112: up = Harmony._get_value(101) else: up = Harmony._get_value(self.root_key_value + 1) return up def minor(self): """ Fetches an adjacent key on the wheel (maj -> min or min -> maj). :return: A list representing a group of compatible keys :rtype list: """ # shift from major to minor if self.root_key_value < 100: return self._get_value(self.root_key_value + 100) # otherwise shift minor to major. else: return self._get_value(self.root_key_value - 100)
mit
-5,146,620,431,627,529,000
28.642857
114
0.528614
false
3.513228
false
false
false
kaffeebrauer/Lean
Algorithm.Python/CoarseFundamentalTop3Algorithm.py
5
3479
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("System.Core") AddReference("QuantConnect.Common") AddReference("QuantConnect.Algorithm") from System import * from QuantConnect import * from QuantConnect.Algorithm import QCAlgorithm from QuantConnect.Data.UniverseSelection import * ### <summary> ### Demonstration of using coarse and fine universe selection together to filter down a smaller universe of stocks. ### </summary> ### <meta name="tag" content="using data" /> ### <meta name="tag" content="universes" /> ### <meta name="tag" content="coarse universes" /> ### <meta name="tag" content="fine universes" /> class CoarseFundamentalTop3Algorithm(QCAlgorithm): def Initialize(self): '''Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must initialized.''' self.SetStartDate(2014,3,24) #Set Start Date self.SetEndDate(2014,4,7) #Set End Date self.SetCash(50000) #Set Strategy Cash # what resolution should the data *added* to the universe be? self.UniverseSettings.Resolution = Resolution.Daily # this add universe method accepts a single parameter that is a function that # accepts an IEnumerable<CoarseFundamental> and returns IEnumerable<Symbol> self.AddUniverse(self.CoarseSelectionFunction) self.__numberOfSymbols = 3 self._changes = None # sort the data by daily dollar volume and take the top 'NumberOfSymbols' def CoarseSelectionFunction(self, coarse): # sort descending by daily dollar volume sortedByDollarVolume = sorted(coarse, key=lambda x: x.DollarVolume, reverse=True) # return the symbol objects of the top entries from our sorted collection return [ x.Symbol for x in sortedByDollarVolume[:self.__numberOfSymbols] ] def OnData(self, data): self.Log(f"OnData({self.UtcTime}): Keys: {', '.join([key.Value for key in data.Keys])}") # if we have no changes, do nothing if self._changes is None: return # liquidate removed securities for security in self._changes.RemovedSecurities: if security.Invested: self.Liquidate(security.Symbol) # we want 1/N allocation in each security in our universe for security in self._changes.AddedSecurities: self.SetHoldings(security.Symbol, 1 / self.__numberOfSymbols) self._changes = None # this event fires whenever we have changes to our universe def OnSecuritiesChanged(self, changes): self._changes = changes self.Log(f"OnSecuritiesChanged({self.UtcTime}):: {changes}") def OnOrderEvent(self, fill): self.Log(f"OnOrderEvent({self.UtcTime}):: {fill}")
apache-2.0
-6,356,268,221,975,157,000
39.917647
151
0.708657
false
3.919955
false
false
false
redus/doodles
django-ex/survivalguide/survivalguide/settings.py
1
2136
""" Django settings for survivalguide project. For more information on this file, see https://docs.djangoproject.com/en/1.6/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.6/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.6/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'hxzazv7qqn-nv8c=2(9$ch-3og5tms5-hr4s1zkhyxtrs9p8to' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'crispy_forms', 'south', 'talks', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'survivalguide.urls' WSGI_APPLICATION = 'survivalguide.wsgi.application' # Database # https://docs.djangoproject.com/en/1.6/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.6/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.6/howto/static-files/ STATIC_URL = '/static/' TEMPLATE_DIRS = ( os.path.join(BASE_DIR, 'templates'), ) CRISPY_TEMPLATE_PACK = 'bootstrap3'
unlicense
-1,785,783,226,436,275,500
22.472527
71
0.720506
false
3.178571
false
false
false
ubuntunux/GuineaPig
PyEngine3D/Utilities/TransformObject.py
1
6511
import numpy as np from .Transform import * class TransformObject: def __init__(self, local=None): self.quat = Float4(0.0, 0.0, 0.0, 1.0) self.local = local if local is not None else Matrix4() self.updated = True self.left = WORLD_LEFT.copy() self.up = WORLD_UP.copy() self.front = WORLD_FRONT.copy() self.pos = Float3() self.rot = Float3() self.scale = Float3(1, 1, 1) self.prev_Pos = Float3() self.prev_Rot = Float3() self.prev_Scale = Float3(1, 1, 1) self.rotationMatrix = Matrix4() self.matrix = Matrix4() self.inverse_matrix = Matrix4() self.prev_matrix = Matrix4() self.prev_inverse_matrix = Matrix4() self.update_transform(True) def reset_transform(self): self.updated = True self.set_pos(Float3()) self.set_rotation(Float3()) self.set_scale(Float3(1, 1, 1)) self.update_transform(True) # Translate def get_pos(self): return self.pos def get_pos_x(self): return self.pos[0] def get_pos_y(self): return self.pos[1] def get_pos_z(self): return self.pos[2] def set_pos(self, pos): self.pos[...] = pos def set_pos_x(self, x): self.pos[0] = x def set_pos_y(self, y): self.pos[1] = y def set_pos_z(self, z): self.pos[2] = z def move(self, pos): self.pos[...] = self.pos + pos def move_front(self, pos): self.pos[...] = self.pos + self.front * pos def move_left(self, pos): self.pos[...] = self.pos + self.left * pos def move_up(self, pos): self.pos[...] = self.pos + self.up * pos def move_x(self, pos_x): self.pos[0] += pos_x def move_y(self, pos_y): self.pos[1] += pos_y def move_z(self, pos_z): self.pos[2] += pos_z # Rotation def get_rotation(self): return self.rot def get_pitch(self): return self.rot[0] def get_yaw(self): return self.rot[1] def get_roll(self): return self.rot[2] def set_rotation(self, rot): self.rot[...] = rot def set_pitch(self, pitch): if pitch > TWO_PI or pitch < 0.0: pitch %= TWO_PI self.rot[0] = pitch def set_yaw(self, yaw): if yaw > TWO_PI or yaw < 0.0: yaw %= TWO_PI self.rot[1] = yaw def set_roll(self, roll): if roll > TWO_PI or roll < 0.0: roll %= TWO_PI self.rot[2] = roll def rotation(self, rot): self.rotation_pitch(rot[0]) self.rotation_yaw(rot[1]) self.rotation_roll(rot[2]) def rotation_pitch(self, delta=0.0): self.rot[0] += delta if self.rot[0] > TWO_PI or self.rot[0] < 0.0: self.rot[0] %= TWO_PI def rotation_yaw(self, delta=0.0): self.rot[1] += delta if self.rot[1] > TWO_PI or self.rot[1] < 0.0: self.rot[1] %= TWO_PI def rotation_roll(self, delta=0.0): self.rot[2] += delta if self.rot[2] > TWO_PI or self.rot[2] < 0.0: self.rot[2] %= TWO_PI # Scale def get_scale(self): return self.scale def get_scale_x(self): return self.scale[0] def get_scale_Y(self): return self.scale[1] def get_scale_z(self): return self.scale[2] def set_scale(self, scale): self.scale[...] = scale def set_scale_x(self, x): self.scale[0] = x def set_scale_y(self, y): self.scale[1] = y def set_scale_z(self, z): self.scale[2] = z def scaling(self, scale): self.scale[...] = self.scale + scale # update Transform def update_transform(self, update_inverse_matrix=False, force_update=False): prev_updated = self.updated self.updated = False if any(self.prev_Pos != self.pos) or force_update: self.prev_Pos[...] = self.pos self.updated = True if any(self.prev_Rot != self.rot) or force_update: self.prev_Rot[...] = self.rot self.updated = True # Matrix Rotation - faster matrix_rotation(self.rotationMatrix, *self.rot) matrix_to_vectors(self.rotationMatrix, self.left, self.up, self.front) # Euler Rotation - slow # p = get_rotation_matrix_x(self.rot[0]) # y = get_rotation_matrix_y(self.rot[1]) # r = get_rotation_matrix_z(self.rot[2]) # self.rotationMatrix = np.dot(p, np.dot(y, r)) # matrix_to_vectors(self.rotationMatrix, self.right, self.up, self.front) # Quaternion Rotation - slower # euler_to_quaternion(*self.rot, self.quat) # quaternion_to_matrix(self.quat, self.rotationMatrix) # matrix_to_vectors(self.rotationMatrix, self.right, self.up, self.front) if any(self.prev_Scale != self.scale) or force_update: self.prev_Scale[...] = self.scale self.updated = True if prev_updated or self.updated: self.prev_matrix[...] = self.matrix if update_inverse_matrix: self.prev_inverse_matrix[...] = self.inverse_matrix if self.updated: self.matrix[...] = self.local transform_matrix(self.matrix, self.pos, self.rotationMatrix, self.scale) if update_inverse_matrix: # self.inverse_matrix[...] = np.linalg.inv(self.matrix) self.inverse_matrix[...] = self.local inverse_transform_matrix(self.inverse_matrix, self.pos, self.rotationMatrix, self.scale) return self.updated def get_transform_infos(self): text = "\tPosition : " + " ".join(["%2.2f" % i for i in self.pos]) text += "\n\tRotation : " + " ".join(["%2.2f" % i for i in self.rot]) text += "\n\tFront : " + " ".join(["%2.2f" % i for i in self.front]) text += "\n\tLeft : " + " ".join(["%2.2f" % i for i in self.left]) text += "\n\tUp : " + " ".join(["%2.2f" % i for i in self.up]) text += "\n\tMatrix" text += "\n\t" + " ".join(["%2.2f" % i for i in self.matrix[0, :]]) text += "\n\t" + " ".join(["%2.2f" % i for i in self.matrix[1, :]]) text += "\n\t" + " ".join(["%2.2f" % i for i in self.matrix[2, :]]) text += "\n\t" + " ".join(["%2.2f" % i for i in self.matrix[3, :]]) return text
bsd-2-clause
-1,846,344,314,063,186,700
27.682819
104
0.530948
false
3.20897
false
false
false