repo_name
stringlengths
6
61
path
stringlengths
4
230
copies
stringlengths
1
3
size
stringlengths
4
6
text
stringlengths
1.01k
850k
license
stringclasses
15 values
hash
int64
-9,220,477,234,079,998,000
9,219,060,020B
line_mean
float64
11.6
96.6
line_max
int64
32
939
alpha_frac
float64
0.26
0.9
autogenerated
bool
1 class
ratio
float64
1.62
6.1
config_test
bool
2 classes
has_no_keywords
bool
2 classes
few_assignments
bool
1 class
wdavilaneto/ultron
mlcore/pipeline/bag_of_bigrams.py
1
1609
#!/usr/bin/env python3 # pylint: disable=C0103 """This module does nothing ....""" import math from document.utils import printProgressBar from nltk.collocations import BigramCollocationFinder from nltk.metrics import BigramAssocMeasures from mlcore import TextService import progressbar import pyorient orientdb = pyorient.OrientDB("localhost", 2424) orientdb.connect("root", "root") orientdb.db_open('datascience', "root", "root") text_service = TextService() def bag_of_bigrams_words(words, n=100, score_fn=BigramAssocMeasures.chi_sq): bigram_finder = BigramCollocationFinder.from_words(words) bigrams = bigram_finder.nbest(score_fn, n) return dict([(bigram, True) for bigram in bigrams]) def save_bigrams_as_many(bigrams): default_cluster = (orientdb.command("SELECT FROM ( SELECT expand( classes ) FROM metadata:schema ) WHERE name = 'Bigrams'")[0]).oRecordData['defaultClusterId'] #orientdb.command("delete from Bigrams") for key in bigrams.keys(): w = dict(id=key, qtd=bigrams.get(key)) # orientdb.record_create(default_cluster, w) print (w) if __name__ == "__main__": print("bigramming..") result = orientdb.query("select * from Documento LIMIT 100") current = 0 total = len(result) bar = progressbar.ProgressBar(max_value=total) all_texts = "" for each in result: current += 1 bar.update(current) all_texts = all_texts + each.texto_arquivo bar.finish() # save_bigrams_as_many(bigra bigrams = bag_of_bigrams_words(text_service.tokenize(all_texts)) save_bigrams_as_many(bigrams)
gpl-3.0
-959,391,149,232,723,200
33.234043
163
0.699814
false
3.198807
false
false
false
arpan-chavda/rh_app
libs/venus/planet/idindex.py
1
3113
from glob import glob import os, sys if __name__ == '__main__': rootdir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0, rootdir) from planet.spider import filename from planet import config def open(): try: cache = config.cache_directory() index=os.path.join(cache,'index') if not os.path.exists(index): return None import dbhash return dbhash.open(filename(index, 'id'),'w') except Exception, e: if e.__class__.__name__ == 'DBError': e = e.args[-1] from planet import logger as log log.error(str(e)) def destroy(): from planet import logger as log cache = config.cache_directory() index=os.path.join(cache,'index') if not os.path.exists(index): return None idindex = filename(index, 'id') if os.path.exists(idindex): os.unlink(idindex) os.removedirs(index) log.info(idindex + " deleted") def create(): from planet import logger as log cache = config.cache_directory() index=os.path.join(cache,'index') if not os.path.exists(index): os.makedirs(index) import dbhash index = dbhash.open(filename(index, 'id'),'c') try: import libxml2 except: libxml2 = False from xml.dom import minidom for file in glob(cache+"/*"): if os.path.isdir(file): continue elif libxml2: try: doc = libxml2.parseFile(file) ctxt = doc.xpathNewContext() ctxt.xpathRegisterNs('atom','http://www.w3.org/2005/Atom') entry = ctxt.xpathEval('/atom:entry/atom:id') source = ctxt.xpathEval('/atom:entry/atom:source/atom:id') if entry and source: index[filename('',entry[0].content)] = source[0].content doc.freeDoc() except: log.error(file) else: try: doc = minidom.parse(file) doc.normalize() ids = doc.getElementsByTagName('id') entry = [e for e in ids if e.parentNode.nodeName == 'entry'] source = [e for e in ids if e.parentNode.nodeName == 'source'] if entry and source: index[filename('',entry[0].childNodes[0].nodeValue)] = \ source[0].childNodes[0].nodeValue doc.freeDoc() except: log.error(file) log.info(str(len(index.keys())) + " entries indexed") index.close() return open() if __name__ == '__main__': if len(sys.argv) < 2: print 'Usage: %s [-c|-d]' % sys.argv[0] sys.exit(1) config.load(sys.argv[1]) if len(sys.argv) > 2 and sys.argv[2] == '-c': create() elif len(sys.argv) > 2 and sys.argv[2] == '-d': destroy() else: from planet import logger as log index = open() if index: log.info(str(len(index.keys())) + " entries indexed") index.close() else: log.info("no entries indexed")
gpl-3.0
-2,870,029,551,038,159,400
30.444444
78
0.54417
false
3.787105
false
false
false
ghidalgo3/gen-javadoc
JavadocCreator.py
1
2107
import sublime, sublime_plugin from Javadoc import * class JavadocCommand(sublime_plugin.TextCommand): def determineIndentation(self,region): (row, col) = self.view.rowcol(region.begin()) indent_region = self.view.find('^\s+', self.view.text_point(row, 0)) indent_level = len(self.view.substr(indent_region))/4 return indent_level def alreadyCommented(self,region): (row,col)= self.view.rowcol(region.begin()) previous_line = self.view.line(self.view.text_point(row-1,0)) if "*/" in self.view.substr(previous_line): return True else: return False def run(self, edit): #check if it's a java file #fileName = self.view.file_name()[-4:] classSignature = self.view.find("""(public|private|protected) (abstract )?(class|interface|enum)""",0) #indentation_level = self.determineIndentation(classSignature) #maybe do this better? javadocer = Javadoc() if not self.alreadyCommented(classSignature): self.view.insert(edit,classSignature.begin(), javadocer.createClassJavadoc()) startSearchPoint = 0 foundPublicsCount = self.view.find_all("public.*\\)") #use the [region] as a counter of how many comments we're inserting for methodSignatures in foundPublicsCount: #find from startSearchPoint because everytime we insert comments, #all characters move so we have to continually keep searching for #the next method signature methodSignature = self.view.find("public.*\\)", startSearchPoint) methodSignatureString = self.view.substr(methodSignature) indentation_level = self.determineIndentation(methodSignature) javadocer = Javadoc(indentation_level, methodSignatureString) if not self.alreadyCommented(methodSignature): self.view.insert(edit,methodSignature.begin(),javadocer.createMethodJavadoc()) startSearchPoint = methodSignature.end()+javadocer.charactersAdded
mit
-1,093,159,872,325,818,500
45.822222
110
0.657807
false
3.975472
false
false
false
skies-io/django-rest-api
setup.py
1
1233
from setuptools import setup # find_packages from codecs import open from os import path with open(path.join(path.abspath(path.dirname(__file__)), 'README.rst'), encoding='utf-8') as f: long_description = f.read() setup( name='django-rest-api', version='0.1.5', description='Django REST API', long_description=long_description, url='https://github.com/skies-io/django-rest-api', author='Skies', author_email='[email protected]', license='MIT', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', # 'Programming Language :: Python :: 2', # 'Programming Language :: Python :: 2.6', # 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', ], keywords='django rest api', # packages=find_packages(exclude=['contrib', 'docs', 'tests*']), packages=['rest_api'], install_requires=['Django>=1.6'], )
mit
-5,980,093,340,751,972,000
35.264706
96
0.614761
false
3.901899
false
true
false
lmascare/utils
python/bin/watch_adobe.py
1
1617
#!/usr/local/bin/python3 """Script to watch Adobe Security page This script looks at https://helpx.adobe.com/security.html and parses the html file for all the products. It then determines if the page was updated from the last check. Design Spec - Create 2 tables with the following schemas Table 1 - Product Name - Product URL - Published Date Table 2 - Product Name - Link - Title - Posted - Updated - collection_date """ import urllib.request from urllib.parse import urljoin import bs4 as bs url = "https://helpx.adobe.com/security.html" def main(): """Fabled main, where it all begins.""" print (url) sauce = urllib.request.urlopen(url).read() soup = bs.BeautifulSoup(sauce, "html.parser") for meta in soup.find_all('meta', attrs = {'name': 'publishDate'}, content=True): # print (type(meta)) print ("Published Date : {}".format(meta.get('content'))) bulletin_items = soup.find(class_="noHeader") b_href = bulletin_items.find_all("a") # Loop through the Table records for t_row in bulletin_items.find_all("tr")[1::]: t_data = t_row.find_all("td") #link = t_row.find_all("a") link = t_row.find_all("a") link = link[0].get("href") href = urljoin(url,link) print ("Link : {}\n" "Title : {}\n" "Posted : {}\n" "Updated : {}\n".format(href, t_data[0].text, t_data[1].text, t_data[2].text)) f_href = urllib.request.urlopen(href).read() print(f_href) exit(0) if __name__ == "__main__": main()
artistic-2.0
7,700,682,488,215,118,000
26.896552
93
0.595547
false
3.334021
false
false
false
pszemus/grpc
tools/profiling/bloat/bloat_diff.py
5
2816
#!/usr/bin/env python2.7 # # Copyright 2017 gRPC authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import glob import multiprocessing import os import shutil import subprocess import sys sys.path.append( os.path.join( os.path.dirname(sys.argv[0]), '..', '..', 'run_tests', 'python_utils')) import check_on_pr argp = argparse.ArgumentParser(description='Perform diff on microbenchmarks') argp.add_argument( '-d', '--diff_base', type=str, help='Commit or branch to compare the current one to') argp.add_argument('-j', '--jobs', type=int, default=multiprocessing.cpu_count()) args = argp.parse_args() LIBS = [ 'libgrpc.so', 'libgrpc++.so', ] def build(where): subprocess.check_call('make -j%d' % args.jobs, shell=True, cwd='.') shutil.rmtree('bloat_diff_%s' % where, ignore_errors=True) os.rename('libs', 'bloat_diff_%s' % where) build('new') if args.diff_base: old = 'old' where_am_i = subprocess.check_output( ['git', 'rev-parse', '--abbrev-ref', 'HEAD']).strip() subprocess.check_call(['git', 'checkout', args.diff_base]) subprocess.check_call(['git', 'submodule', 'update']) try: try: build('old') except subprocess.CalledProcessError, e: subprocess.check_call(['make', 'clean']) build('old') finally: subprocess.check_call(['git', 'checkout', where_am_i]) subprocess.check_call(['git', 'submodule', 'update']) subprocess.check_call( 'make -j%d' % args.jobs, shell=True, cwd='third_party/bloaty') text = '' for lib in LIBS: text += '****************************************************************\n\n' text += lib + '\n\n' old_version = glob.glob('bloat_diff_old/opt/%s' % lib) new_version = glob.glob('bloat_diff_new/opt/%s' % lib) assert len(new_version) == 1 cmd = 'third_party/bloaty/bloaty -d compileunits,symbols' if old_version: assert len(old_version) == 1 text += subprocess.check_output( '%s %s -- %s' % (cmd, new_version[0], old_version[0]), shell=True) else: text += subprocess.check_output( '%s %s' % (cmd, new_version[0]), shell=True) text += '\n\n' print text check_on_pr.check_on_pr('Bloat Difference', '```\n%s\n```' % text)
apache-2.0
1,848,135,676,354,107,600
29.27957
82
0.622514
false
3.364397
false
false
false
squarebracket/coen315
timing.py
1
4898
import GNUCapSimulationData as gc import numpy as np import plotly.plotly as py from plotly.graph_objs import * py.sign_in('squarebracket', '6edn8gin4t') for x in [1, 2, 3]: sim_data = None sim_data = gc.GNUCapSimulationData('circuit%s.csv' % x, index_col='Time', delim_whitespace=True) (vol, voh, total_current, total_power, avg_prop) = sim_data.get_properties(vout_node='sum', signal_node='a', psu_name='VDD') print('Parameters for Circuit %s' % x) print('VOL: %f' % vol) print('VOH: %f' % voh) print('total current: %s' % total_current) print('total power: %s' % total_power) print('average tprop: %s' % avg_prop) subplot_data = [ ['V(a)', 'V(a_inv)'], ['V(b)', 'V(b_inv)'], ['V(cin)', 'V(cin_inv)'], ['V(h)', 'V(i)'], ['V(j)', 'V(k)'], ['V(x)', 'V(y)'], ['V(sum)', 'V(sum_inv)'], ] f = sim_data.plot_timing_diagram(subplot_data, y1_label=r'$\mathrm{Voltage}$', line_style={'alpha': 1}, sec_line_style={'linestyle': '--', 'alpha': 1}) f.savefig('vtd_%s.pdf' % x) subplot_data = ['I(VDD)', 'I(CH)', 'I(CI)', 'I(CJ)', 'I(CK)', 'I(CX)', 'I(CY)', 'I(CSum)', 'I(CSum_inv)'] sim_data.df['I(PMOS)'] = sim_data.df['ID(M1P)'] + sim_data.df['ID(M5P)'] + \ sim_data.df['ID(M9P)'] + sim_data.df['ID(M13P)'] subplot_data = [ ['I(VDD)',], # ['I(CH)', 'ID(M1P)', 'ID(M2N)',], # ['I(CI)', 'ID(M5P)', 'ID(M6N)',], # ['I(CJ)', 'ID(M9P)', 'ID(M10N)',], # ['I(CK)', 'ID(M13P)', 'ID(M14N)',], # ['I(CX)'], # ['I(CY)'], # ['I(CH)', 'ID(M1P)', 'ID(M2N)', 'ID(M3N)', 'ID(M4N)'], # ['I(CI)', 'ID(M5P)', 'ID(M6N)', 'ID(M7N)', 'ID(M8N)'], # ['I(CJ)', 'ID(M9P)', 'ID(M10N)', 'ID(M11N)', 'ID(M12N)'], # ['I(CK)', 'ID(M13P)', 'ID(M14N)', 'ID(M15N)', 'ID(M16N)'], # ['ID(M1P)', 'ID(M2N)', 'ID(M3N)', 'ID(M4N)'], # ['ID(M5P)', 'ID(M6N)', 'ID(M7N)', 'ID(M8N)'], # ['ID(M9P)', 'ID(M10N)', 'ID(M11N)', 'ID(M12N)'], # ['ID(M13P)', 'ID(M14N)', 'ID(M15N)', 'ID(M16N)'], ['ID(M1P)', 'ID(M5P)', 'ID(M9P)', 'ID(M13P)'], ['ID(M2N)', 'ID(M6N)', 'ID(M10N)', 'ID(M14N)'], ['I(CH)', 'I(CI)', 'I(CJ)', 'I(CK)'], ] f = sim_data.plot_timing_diagram(subplot_data, y1_label=r'$\mathrm{Current}$', line_style={'alpha': 0.5}, unit='A', yscale=1, sec_line_style={'alpha': 0.5}, y1_lim=(-0.0006, 0.0006), hspace=None) f.savefig('itd_%s.pdf' % x) subplot_data = [ ('V(h)', ['I(CH)', 'ID(M1P)', 'ID(M2N)']), ('V(i)', ['I(CI)', 'ID(M5P)', 'ID(M6N)']), ('V(j)', ['I(CJ)', 'ID(M9P)', 'ID(M10N)']), ('V(k)', ['I(CK)', 'ID(M13P)', 'ID(M14N)']), ('V(x)', ['I(CX)', 'ID(M3N)', 'ID(M4N)', 'ID(M7N)', 'ID(M12N)']), ('V(y)', ['I(CY)', 'ID(M8N)', 'ID(M11N)', 'ID(M15N)', 'ID(M16N)']), ('V(sum)', ['I(CSum)', 'ID(M4N)', 'ID(M8N)']) ] if x == 3: subplot_data[6][1].append('ID(M17P)') time_slices=( (np.float64('5E-9'), np.float64('7E-9')), (np.float64('10E-9'), np.float64('12E-9')), (np.float64('15E-9'), np.float64('17E-9')), (np.float64('20E-9'), np.float64('22E-9')), ) f = sim_data.plot3(subplot_data, right_line_style={'alpha': 0.75}, left_unit='V', right_unit='A', yscale=1.2, left_line_style={'alpha': 0.2}, hspace=0, time_slices=time_slices) f.savefig('itd3_%s.pdf' % x) f = sim_data.plot2(subplot_data, right_line_style={'alpha': 0.75}, left_unit='V', right_unit='A', yscale=1.2, left_line_style={'alpha': 0.2}, hspace=0) f.savefig('itd2_%s.pdf' % x) # ax = sim_data.df[['ID(M1P)', 'ID(M5P)', 'ID(M9P)', 'ID(M13P)']].plot(kind='area', figsize=(8,1.2)) # ax.figure.savefig('../report/test.pdf') subplot_data = ( (['V(h)'], ['I(CH)', 'ID(M1P)', 'ID(M2N)', 'ID(M3N)']), (['V(x)', 'V(h)', 'V(i)'], ['ID(M3N)', 'ID(M4N)', 'ID(M7N)', 'ID(M12N)', 'I(CH)', 'I(CI)', 'I(CX)']), ) f = sim_data.plot2(subplot_data, line_style={'alpha': 0.7}, left_unit='V', right_unit='A') f.savefig('current_%s.pdf' % x) f = sim_data.plot_timing_diagram(['V(x)', 'VTH(M3N)', 'VTH(M4N)', 'VTH(M7N)', 'VTH(M12N)']) f.savefig('a%s.pdf' % x) f = sim_data.plot_timing_diagram([['V(sum)', 'V(sum_inv)'], ['I(VDD)']], line_style={'alpha': 0.8}, sec_line_style={'alpha': 0.8, 'linestyle': '--'}, start_time=np.float64('4.E-9'), end_time=np.float64('9.E-9'), sharey=False) f.savefig('blip_%s.pdf' % x)
gpl-2.0
5,969,815,710,889,868,000
43.93578
128
0.444059
false
2.427156
false
false
false
kunitoki/nublas
nublas/db/fields/color.py
1
1094
import re from django.db import models from django.core.validators import RegexValidator from django.utils.encoding import smart_text from django.utils.translation import ugettext as _ #============================================================================== color_re = re.compile('^\#([a-fA-F0-9]{6}|[a-fA-F0-9]{3})$') validate_color = RegexValidator(color_re, _("Enter a valid color."), 'invalid') #============================================================================== class RGBColorField(models.CharField): default_validators = [validate_color] def __init__(self, *args, **kwargs): kwargs['max_length'] = 7 super(RGBColorField, self).__init__(*args, **kwargs) def clean(self, value, model_instance): if value[0] != '#': value = '#' + value value = super(RGBColorField, self).clean(value, model_instance) return smart_text(value) def deconstruct(self): name, path, args, kwargs = super(RGBColorField, self).deconstruct() del kwargs["max_length"] return name, path, args, kwargs
mit
3,558,500,804,969,140,700
35.466667
79
0.555759
false
4.223938
false
false
false
andreasots/lrrbot
lrrbot/twitchfollows.py
2
1782
import asyncio from common.config import config from common import rpc from common import storm from common import twitch from common import utils import dateutil.parser FOLLOWER_CHECK_DELAY = 60 class TwitchFollows: def __init__(self, lrrbot, loop): self.lrrbot = lrrbot self.loop = loop self.last_timestamp = None self.last_users = set() self.schedule_check() def schedule_check(self): asyncio.ensure_future(self.check_follows(), loop=self.loop).add_done_callback(utils.check_exception) self.loop.call_later(FOLLOWER_CHECK_DELAY, self.schedule_check) async def check_follows(self): if self.last_timestamp is None: async for follower in twitch.get_followers(): if self.last_timestamp is None or self.last_timestamp == follower['created_at']: self.last_timestamp = follower['created_at'] self.last_users.add(follower['user']['_id']) else: break else: last_users = self.last_users self.last_users = set() events = [] async for follower in twitch.get_followers(): if follower['created_at'] >= self.last_timestamp: if follower['user']['_id'] not in last_users: events.append(( follower['user'].get('display_name') or follower['user']['name'], follower['user'].get('logo'), follower['created_at'], )) self.last_users.add(follower['user']['_id']) else: break if not events: self.last_users = last_users for name, avatar, timestamp in events[::-1]: self.last_timestamp = timestamp timestamp = dateutil.parser.parse(timestamp) event = { 'name': name, 'avatar': avatar, 'count': storm.increment(self.lrrbot.engine, self.lrrbot.metadata, 'twitch-follow'), } await rpc.eventserver.event('twitch-follow', event, timestamp)
apache-2.0
-1,351,116,069,295,548,700
28.213115
102
0.676207
false
3.25777
false
false
false
mingot/detectme_server
detectme/detectme/urls.py
1
2056
from django.conf.urls import patterns, include, url from django.views.generic import TemplateView from django.conf import settings # Uncomment the next two lines to enable the admin: from django.contrib import admin admin.autodiscover() urlpatterns = patterns( '', url(r'^$', TemplateView.as_view(template_name='index.html'), name="home"), url(r'^detectors/', include('detectors.urls')), url(r'^leaderboard/', include('leaderboards.urls')), url(r'^videostream/', include('videostream.urls')), url(r'^how_it_works/$', TemplateView.as_view(template_name='how_it_works.html'), name="how_it_works"), url(r'^api_documentation/$', TemplateView.as_view(template_name='api_documentation.html'), name="api_documentation"), url(r'^about/$', TemplateView.as_view(template_name='about.html'), name="about"), url(r'^contact/', include('envelope.urls'), name="contact"), # create account over api (r'^accounts/api/', include('accounts.urls')), # userena app (r'^accounts/', include('userena.urls')), # Uncomment the admin/doc line below to enable admin documentation: # url(r'^admin/doc/', include('django.contrib.admindocs.urls')), # Uncomment the next line to enable the admin: url(r'^admin/', include(admin.site.urls)), ) # Include the login and logout views for the API. urlpatterns += patterns('', url(r'^api-token-auth/', 'rest_framework.authtoken.views.obtain_auth_token') ) # Metrics urlpatterns += patterns('', url(r'^metrics/', include('redis_metrics.urls')), url(r'^profiler/', include('profiler.urls')), ) url(r'^metrics/', include('redis_metrics.urls')), # Allow access to the Media folder from the browser if settings.DEBUG: urlpatterns += patterns( '', url(r'^media/(?P<path>.*)$', 'django.views.static.serve', { 'document_root': settings.MEDIA_ROOT, }), url(r'^static/(?P<path>.*)$', 'django.views.static.serve', { 'document_root': settings.STATIC_ROOT, }), )
mit
3,397,887,765,450,255,000
33.847458
94
0.648346
false
3.684588
false
false
false
nw0/mealy
views.py
1
13867
from django.contrib.auth.decorators import login_required, user_passes_test, \ permission_required from django.shortcuts import get_object_or_404, render from django.http import HttpResponse, HttpResponseRedirect, Http404 from django.template import loader from django.core.urlresolvers import reverse, reverse_lazy from django.views import generic from django.utils.decorators import method_decorator from django.core.exceptions import ValidationError from django.db.models import Avg, Value, Sum, Count from django.db.models.functions import Coalesce from .forms import MealForm, DishForm, TicketForm, TicketFormSet, \ InstAmtForm, InstPriceForm, \ NewInstForm, NewInstStdForm, NewStdInstForm import json, datetime, time from .models import Resource_Type, Resource_Inst, Resource_Ticket, \ TicketManager, Meal, Dish, Standard_Inst from .admin import other_checks # Create your views here. decs = [ login_required, user_passes_test(other_checks)] SEMI_OPEN_STATE_THRESHOLD = 10 ENABLE_CAL_PROGRESS_BARS = True def iso_to_gregorian(iso_year, iso_week, iso_day): "Gregorian calendar date for the given ISO year, week and day" fifth_jan = datetime.date(iso_year, 1, 5) _, fifth_jan_week, fifth_jan_day = fifth_jan.isocalendar() return fifth_jan + datetime.timedelta(days=iso_day-fifth_jan_day, weeks=iso_week-fifth_jan_week) @login_required @user_passes_test(other_checks) def index(request): # We want to know what meals there are meal_list = Meal.objects.filter( meal_owner=request.user.id).order_by('-cons_time') cal = {} for meal in meal_list: iy, im, iw = meal.cons_time.isocalendar() if (iy, im) not in cal: cal[(iy, im)] = {} if iw not in cal[(iy, im)]: cal[(iy, im)][iw] = [] cal[(iy, im)][iw].append(meal) for e in cal: # e is a week, e.g. (2016, 1) # cal[e] is a dict of meals by day {iw: [meal]} that week weekMeals = [[] for i in range(7)] tot, mc, opensum = 0, 0, 0 for w in xrange(7): weekMeals[w] = cal[e][w+1] if w+1 in cal[e] else [] for meal in weekMeals[w]: tot += meal.get_meal_cost() mc += 1 opensum += meal.open_cost weekMeals[w] = [ (u"%s \xA3%.2f" % (meal.meal_type[0], meal.get_meal_cost()/100), reverse("mealy:meal_detail", args=(meal.id,)), meal.open_cost, meal.get_meal_cost()) for meal in weekMeals[w]] # weekMeals[0] = (monday) [ ("L 2.77", det_link, 0.56, 2.77), ... ] weekMeals[w] = [iso_to_gregorian(e[0], e[1], w+1).strftime("%b %d"), weekMeals[w]] # weekMeals[0] = [ "Mar 14", [("L...", det_link, 0.56, 2.77), ...] ] weekMeals[w][1].sort() weekMeals.append(["", [(u"T \xA3%.2f (%.2f)" % (tot/100, opensum/100), False, opensum, tot), (u"A \xA3%.2f (%.2f)" % (tot/100/mc, opensum/100/mc), False, opensum/mc, tot/mc)]]) cal[e] = weekMeals cal = sorted(list(cal.items()), reverse=True) template = loader.get_template("mealy/meals.html") contDict = { 'meal_list': meal_list, 'mtypes': Meal.MEAL_TYPES, 'meal_form': MealForm, 'user': request.user, 'cal_meals': cal, 'semi_open': SEMI_OPEN_STATE_THRESHOLD, 'prog_bars': ENABLE_CAL_PROGRESS_BARS, } return HttpResponse(template.render(contDict, request)) @method_decorator(decs, name='dispatch') class MealView(generic.DetailView): def get_queryset(self): return Meal.objects.filter( id=self.kwargs['pk'], meal_owner=self.request.user) def get_context_data(self, **kwargs): context = super(MealView, self).get_context_data(**kwargs) context['dish_form'] = DishForm return context @method_decorator(decs, name='dispatch') class NewMeal(generic.edit.CreateView): form_class = MealForm success_url = reverse_lazy("mealy:index") def form_invalid(self, form): raise ValidationError("Invalid form value", code='invalid') def form_valid(self, form): form.instance.meal_owner = self.request.user return super(NewMeal, self).form_valid(form) @method_decorator(decs, name='dispatch') class DeleteMeal(generic.edit.DeleteView): models = Meal def get_queryset(self): return Meal.objects.filter( id=self.kwargs['pk'], meal_owner=self.request.user, dish__isnull=True) def get(self, *args, **kwargs): return HttpResponseRedirect(reverse("mealy:meal_detail", args=[self.get_object().id])) def get_success_url(self): return reverse("mealy:index") @method_decorator(decs, name='dispatch') class NewDish(generic.edit.CreateView): form_class = DishForm def form_invalid(self, form): raise ValidationError("Invalid form value", code='invalid') def form_valid(self, form): form.instance.par_meal = Meal.objects.get( id=self.kwargs['meal_id'], meal_owner=self.request.user, ) return super(NewDish, self).form_valid(form) def get_success_url(self): return reverse("mealy:meal_detail", args=[self.kwargs['meal_id']]) @method_decorator(decs, name='dispatch') class DeleteDish(generic.edit.DeleteView): models = Dish def get_queryset(self): return Dish.objects.filter( id=self.kwargs['pk'], par_meal__meal_owner=self.request.user, resource_ticket__isnull=True) def get(self, *args, **kwargs): return HttpResponseRedirect(reverse("mealy:dish_detail", args=[self.get_object().id])) def get_success_url(self): return reverse("mealy:meal_detail", args=[self.object.par_meal.id]) @method_decorator(decs, name='dispatch') class DishView(generic.DetailView): def get_queryset(self): return Dish.objects.filter( id=self.kwargs['pk'], par_meal__meal_owner=self.request.user) def get_context_data(self, **kwargs): context = super(DishView, self).get_context_data(**kwargs) context['tkt_form'] = TicketForm(self.request.user) return context def post(self, *args, **kwargs): form = TicketForm(self.request.user, self.request.POST) if form.is_valid(): self.object = self.get_object() res_inst = form.cleaned_data['resource_inst'] uu = form.cleaned_data['units_used'] exhausted = form.cleaned_data['exhausted'] nt = Resource_Ticket.objects.create_ticket( res_inst, uu, self.object, exhausted) else: raise Http404("Invalid form") return HttpResponseRedirect( reverse("mealy:dish_detail", args=[self.object.id])) @method_decorator(decs, name='dispatch') class TypesOverview(generic.ListView): queryset = Resource_Type.objects.order_by('r_parent') @method_decorator(decs, name='dispatch') class TypesView(generic.DetailView): slug_field = "r_name" queryset = Resource_Type.objects.all() @method_decorator(decs, name='dispatch') class StdInstListView(generic.ListView): queryset = Standard_Inst.objects.order_by('inst_type') def get_context_data(self, **kwargs): context = super(StdInstListView, self).get_context_data(**kwargs) context['nsiForm'] = NewStdInstForm return context @method_decorator(decs, name='dispatch') class StdInstDetailView(generic.DetailView): queryset = Standard_Inst.objects.all() @method_decorator(decs + [permission_required('mealy.can_add_standard_resource_instance')], name='dispatch') class NewStdInst(generic.edit.CreateView): form_class = NewStdInstForm success_url = reverse_lazy("mealy:std_insts") def form_invalid(self, form): raise ValidationError("Invalid form value", code='invalid') @method_decorator(decs, name='dispatch') class InventView(generic.ListView): def get_queryset(self): objs = Resource_Inst.objects.filter(inst_owner=self.request.user) if not self.kwargs['showAll']: objs = objs.filter(exhausted=False) return objs.order_by('res_type', 'purchase_date') def get_context_data(self, **kwargs): context = super(InventView, self).get_context_data(**kwargs) context['types'] = Resource_Type.objects.all() context['showAll'] = self.kwargs['showAll'] context['niForm'] = NewInstForm context['nisForm'] = NewInstStdForm(auto_id='newinststdform_%s') return context @method_decorator(decs, name='dispatch') class DeleteTicket(generic.edit.DeleteView): models = Resource_Ticket def get_queryset(self): return Resource_Ticket.objects.filter( id=self.kwargs['pk'], resource_inst__inst_owner=self.request.user) def get(self, *args, **kwargs): return HttpResponseRedirect(reverse("mealy:inv_detail", args=[self.get_object().resource_inst.id])) def get_success_url(self): return reverse("mealy:inv_detail", args=[self.object.resource_inst.id]) @login_required @user_passes_test(other_checks) def invent_detail(request, inst_id): inst = get_object_or_404(Resource_Inst, id=inst_id, inst_owner=request.user) if request.method == "POST": formType = request.POST['formtype'] if formType == "finalise": defin = request.POST['finalisation'] if defin == "final": inst.finalise() elif defin == "definal": inst.definalise() else: raise Http404("Finalisation invalid") elif formType == "pricechange": initf = inst.exhausted if initf: inst.definalise() newPrice = int(request.POST['price']) inst.change_price(newPrice) if initf: inst.finalise() elif formType == "amtchange": newAmt = float(request.POST['orig_amt']) inst.change_amt(newAmt) else: raise Http404("We're not sure what form you submitted") return HttpResponseRedirect(reverse("mealy:inv_detail", args=[inst.id])) tickets = Resource_Ticket.objects.filter(resource_inst=inst).order_by('par_dish') similar_insts = inst.similar_set() similar_att = inst.similar_attrs() template = loader.get_template("mealy/inv_detail.html") contDict = { 'inst': inst, 'price_form': InstPriceForm, 'amt_form': InstAmtForm, 'tickets': tickets, 'sim_list': similar_insts, 'sim_att': similar_att, } return HttpResponse(template.render(contDict, request)) @method_decorator(decs, name='dispatch') class NewInst(generic.edit.CreateView): form_class = NewInstForm success_url = reverse_lazy("mealy:inventory") def form_invalid(self, form): raise ValidationError("Invalid form value", code='invalid') def form_valid(self, form): form.instance.inst_owner = self.request.user form.instance.unit_use_formal = False return super(NewInst, self).form_valid(form) @method_decorator(decs, name='dispatch') class DeleteInst(generic.edit.DeleteView): models = Resource_Inst success_url = reverse_lazy("mealy:inventory") def get_queryset(self): return Resource_Inst.objects.filter( id=self.kwargs['pk'], inst_owner=self.request.user, resource_ticket__isnull=True) def get(self, *args, **kwargs): return HttpResponseRedirect(reverse("mealy:invent_detail", args=[self.get_object().id])) @method_decorator(decs, name='dispatch') class NewInstStd(generic.edit.CreateView): form_class = NewInstStdForm success_url = reverse_lazy("mealy:inventory") def form_invalid(self, form): raise ValidationError("Invalid form value", code='invalid') def form_valid(self, form): form.instance.inst_owner = self.request.user form.instance.unit_use_formal = False form.instance.res_name = form.cleaned_data['std_inst'].inst_name form.instance.res_type = form.cleaned_data['std_inst'].inst_type form.instance.orig_unit = form.cleaned_data['std_inst'].orig_unit form.instance.amt_original = form.cleaned_data['std_inst'].orig_amt form.instance.best_before = form.cleaned_data['std_inst'].use_bestbef if form.cleaned_data['std_inst'].is_relative: form.instance.amt_original = form.cleaned_data['amt_dummy'] return super(NewInstStd, self).form_valid(form) @login_required @user_passes_test(other_checks) def getStandardInst(request): inst = get_object_or_404(Standard_Inst, id=request.GET['id']) return HttpResponse(inst.show_fields())
gpl-3.0
-3,726,163,514,609,451,500
39.905605
113
0.591909
false
3.695896
false
false
false
sammyf/dungeon-bot
redis-dungeon.py
1
2533
#!/usr/bin/python2 """ initialize the redis databases and create and store a random maze recursively """ import redis import random import sys import math global gMaze, sx, sy, it gMaze = [] maxX = 6 maxY = 6 sx = 6 sy = 6 it = 0 sys.setrecursionlimit( 2000) db_MazeLayout = 0 db_Entities = 1 random.seed() for i in range( 0, maxX*maxY): gMaze.append({0:'w',1:'w',2:'w',3:'w','visited':False}) def recurse(x, y): global gMaze, sy, sy, it print "iteration: "+str(it)+" Room @ "+str(x)+" : "+str(y) it = it + 1 gMaze[(y*sx) + x]['visited'] = True seq = [0,1,2,3] random.shuffle( seq) for i in range(0,4): neighbour = seq[i] if neighbour == 0: nx = x ny = y-1 if ny < 0 or gMaze[(ny*sx) + nx]['visited']: continue else: gMaze[(y*sx) + x][0] = 'd' gMaze[(ny*sx) + nx][2] = 'd' recurse(x, ny) elif neighbour == 1: nx = x+1 ny = y if nx >= sx or gMaze[(ny*sx) + nx]['visited']: continue else: gMaze[(y*sx) + x][1] = 'd' gMaze[(ny*sx) + nx][3] = 'd' recurse(nx, y) elif neighbour == 2: nx = x ny = y+1 if ny >= sy or gMaze[(ny*sx) + x]['visited']: continue else: gMaze[(y*sx) + x][2] = 'd' gMaze[(ny*sx) + nx][0] = 'd' recurse(x, ny) elif neighbour == 3: nx = x-1 ny = y if nx < 0 or gMaze[(ny*sx) + nx]['visited']: continue else: gMaze[(y*sx) + x][3] = 'd' gMaze[(ny*sx) + nx][1] = 'd' recurse(nx,y) def createStoreMaze(): global gMaze, sx, sy recurse( 0,0) r = redis.StrictRedis( host='localhost', port=6379, db=db_Entities) r.flushdb() r = redis.StrictRedis( host='localhost', port=6379, db=db_MazeLayout) r.flushdb() for i in range( 0, sy): for s in range( 0, sx): items="" if s==(sx-1) and i==(sy-1): items = "stairs" data = {'walls':( gMaze[(i*sx)+s][0], gMaze[(i*sx)+s][1], gMaze[(i*sx)+s][2], gMaze[(i*sx)+s][3]), 'entities':[], 'items':[items], 'grafiti':""}; k = "x"+str(s)+"y"+str(i) r.set( k, data) print "\ndone\n" createStoreMaze();
gpl-3.0
-3,030,606,899,594,232,000
25.663158
157
0.437821
false
3.008314
false
false
false
aprotopopov/lifetimes
tests/test_plotting.py
1
5568
import pytest import matplotlib matplotlib.use('AGG') # use a non-interactive backend from matplotlib import pyplot as plt from lifetimes import plotting from lifetimes import BetaGeoFitter, ParetoNBDFitter, ModifiedBetaGeoFitter from lifetimes.datasets import load_cdnow_summary, load_transaction_data from lifetimes import utils bgf = BetaGeoFitter() cd_data = load_cdnow_summary() bgf.fit(cd_data['frequency'], cd_data['recency'], cd_data['T'], iterative_fitting=1) @pytest.mark.plottest class TestPlotting(): @pytest.mark.mpl_image_compare(tolerance=30) def test_plot_period_transactions(self): plt.figure() plotting.plot_period_transactions(bgf) return plt.gcf() @pytest.mark.mpl_image_compare(tolerance=30) def test_plot_period_transactions_parento(self): pnbd = ParetoNBDFitter() pnbd.fit(cd_data['frequency'], cd_data['recency'], cd_data['T'], iterative_fitting=1) plt.figure() plotting.plot_period_transactions(pnbd) return plt.gcf() @pytest.mark.mpl_image_compare(tolerance=30) def test_plot_period_transactions_mbgf(self): mbgf = ModifiedBetaGeoFitter() mbgf.fit(cd_data['frequency'], cd_data['recency'], cd_data['T'], iterative_fitting=1) plt.figure() plotting.plot_period_transactions(mbgf) return plt.gcf() @pytest.mark.mpl_image_compare(tolerance=30) def test_plot_period_transactions_max_frequency(self): plt.figure() plotting.plot_period_transactions(bgf, max_frequency=12) return plt.gcf() @pytest.mark.mpl_image_compare(tolerance=30) def test_plot_period_transactions_labels(self): plt.figure() plotting.plot_period_transactions(bgf, label=['A', 'B']) return plt.gcf() @pytest.mark.mpl_image_compare(tolerance=30) def test_plot_frequency_recency_matrix(self): plt.figure() plotting.plot_frequency_recency_matrix(bgf) return plt.gcf() @pytest.mark.mpl_image_compare(tolerance=30) def test_plot_frequency_recency_matrix_max_recency(self): plt.figure() plotting.plot_frequency_recency_matrix(bgf, max_recency=100) return plt.gcf() @pytest.mark.mpl_image_compare(tolerance=30) def test_plot_frequency_recency_matrix_max_frequency(self): plt.figure() plotting.plot_frequency_recency_matrix(bgf, max_frequency=100) return plt.gcf() @pytest.mark.mpl_image_compare(tolerance=30) def test_plot_frequency_recency_matrix_max_frequency_max_recency(self): plt.figure() plotting.plot_frequency_recency_matrix(bgf, max_frequency=100, max_recency=100) return plt.gcf() @pytest.mark.mpl_image_compare(tolerance=30) def test_plot_probability_alive_matrix(self): plt.figure() plotting.plot_probability_alive_matrix(bgf) return plt.gcf() @pytest.mark.mpl_image_compare(tolerance=30) def test_plot_probability_alive_matrix_max_frequency(self): plt.figure() plotting.plot_probability_alive_matrix(bgf, max_frequency=100) return plt.gcf() @pytest.mark.mpl_image_compare(tolerance=30) def test_plot_probability_alive_matrix_max_recency(self): plt.figure() plotting.plot_probability_alive_matrix(bgf, max_recency=100) return plt.gcf() @pytest.mark.mpl_image_compare(tolerance=30) def test_plot_probability_alive_matrix_max_frequency_max_recency(self): plt.figure() plotting.plot_probability_alive_matrix(bgf, max_frequency=100, max_recency=100) return plt.gcf() @pytest.mark.mpl_image_compare(tolerance=30) def test_plot_expected_repeat_purchases(self): plt.figure() plotting.plot_expected_repeat_purchases(bgf) return plt.gcf() @pytest.mark.mpl_image_compare(tolerance=30) def test_plot_expected_repeat_purchases_with_label(self): plt.figure() plotting.plot_expected_repeat_purchases(bgf, label='test label') return plt.gcf() @pytest.mark.mpl_image_compare(tolerance=30) def test_plot_customer_alive_history(self): plt.figure() transaction_data = load_transaction_data() # yes I know this is using the wrong data, but I'm testing plotting here. id = 35 days_since_birth = 200 sp_trans = transaction_data.loc[transaction_data['id'] == id] plotting.plot_history_alive(bgf, days_since_birth, sp_trans, 'date') return plt.gcf() @pytest.mark.mpl_image_compare(tolerance=30) def test_plot_calibration_purchases_vs_holdout_purchases(self): transaction_data = load_transaction_data() summary = utils.calibration_and_holdout_data(transaction_data, 'id', 'date', '2014-09-01', '2014-12-31') bgf.fit(summary['frequency_cal'], summary['recency_cal'], summary['T_cal']) plt.figure() plotting.plot_calibration_purchases_vs_holdout_purchases(bgf, summary) return plt.gcf() @pytest.mark.mpl_image_compare(tolerance=30) def test_plot_calibration_purchases_vs_holdout_purchases_time_since_last_purchase(self): transaction_data = load_transaction_data() summary = utils.calibration_and_holdout_data(transaction_data, 'id', 'date', '2014-09-01', '2014-12-31') bgf.fit(summary['frequency_cal'], summary['recency_cal'], summary['T_cal']) plt.figure() plotting.plot_calibration_purchases_vs_holdout_purchases(bgf, summary, kind='time_since_last_purchase') return plt.gcf()
mit
235,944,716,493,724,300
37.4
112
0.679598
false
3.334132
true
false
false
hivemined/queen
src/hivemined/container.py
1
4385
#!/usr/bin/python3 import docker import docker.utils from .core import Docker from .image import Image __author__ = 'Ryan Clarke - [email protected]' class Container: """Base Container class for docker containers managed by Hivemined.""" label = 'hivemined.container' def __init__(self, name, image, command='', volumes=list(), port=None, memory=None, swap=None, cpu=None, **kwargs): self.name = str(name) self.command = str(command) # Type checking for image if isinstance(image, Image): self.image = image else: raise TypeError('Parameter must be an Image', image) # Type checking for volumes if next((False for v in volumes if not isinstance(v, Container)), True): self.volumes = volumes else: raise TypeError('Parameter must be a list of Containers.', volumes) # Set network port and resource limits self.port = port self.limits = {} if memory: self.limits['Memory'] = str(memory) if swap: self.limits['Swap'] = str(swap) if cpu: self.limits['Cpu'] = int(cpu) self.restart = { 'Name': 'always', # 'always' | 'on-failure' | 'no' 'MaximumRetryCount': 0 } self.container = None self.create(**kwargs) def list(self, show_all=False, quiet=False): """List all containers manages by the calling class (respects inheritance).""" return Docker.containers(all=show_all, quiet=quiet, filters={'label': type(self).label}) def exists(self, running=False): """Return True if the container referenced by this object exists, or False otherwise. If running==True, check if the container is running instead. """ if not self.container.get('Id'): return False containers = self.list(show_all=(not running)) return next((True for c in containers if c.get('Id') == self.container.get('Id')), False) def create(self, force=False, **kwargs): """Create a new managed docker container. If force==True, create new a container even if one already exists. Propagates LookupError from self.image.get() f the image does not exist and cannot be pulled or built, Raises Warning if container creation resulted in warnings form Docker. """ labels = {type(self).label: None, 'name': self.name} if self.exists() and not force: return try: self.image.get() # Ensure that the specified Image exists. except LookupError as e: print(e) raise volume_list = [] for v in self.volumes: volume_list.append(v.container.get("Id")) if self.port: host_cfg = docker.utils.create_host_config( volumes_from=volume_list, restart_policy=self.restart, port_bindings={25565: int(self.port)}) else: host_cfg = docker.utils.create_host_config( volumes_from=volume_list, restart_policy=self.restart, publish_all_ports=True) self.container = Docker.create_container( host_config=host_cfg, labels=labels, image=self.image.name, command=self.command, mem_limit=self.limits.get('memory'), memswap_limit=self.limits.get('swap'), cpu_shares=self.limits.get('cpu'), **kwargs) if self.container.get('Warnings'): raise Warning("Container creation warning.", self) def delete(self, volumes=True): if self.exists(running=True): self.stop() Docker.remove_container(self.container.get('Id'), v=volumes) def update(self): self.image.get(update=True) old_container = self.container self.create(force=True) Docker.remove_container(old_container.get('Id')) def start(self, tty=False): if not self.exists(): self.create() Docker.start(self.container.get('Id'), tty=tty) def stop(self): Docker.stop(self.container.get('Id')) def restart(self): Docker.restart(self.container.get('Id')) def command(self, command, tty=False): exec_str = Docker.exec_create(self.container.get('Id'), cmd=command, tty=tty) Docker.exec_start(exec_str, tty=tty)
apache-2.0
5,664,839,434,192,485,000
34.942623
119
0.605701
false
4.041475
false
false
false
neothemachine/crowfood
crowfood/engine.py
1
12443
from __future__ import print_function, absolute_import from six.moves import filter from io import open # to use encoding kw in Python 2 import os from collections import defaultdict from crowfood.utils import is_subdir import re import sys import itertools def get_roots_and_include_paths(args): # convention: # input roots are the directories of the files to scan # include roots are the directories given by -I input_roots = set() for path in args.path: if os.path.isfile(path): path = os.path.dirname(path) input_roots.add(path) external_roots = set(args.external_roots) # make any include path an additional external root if it is outside any existing root external_roots.update( set(filter(lambda include_path: not any(is_subdir(include_path, root) for root in input_roots.union(external_roots)), args.include_paths))) input_include_paths = defaultdict(list) # input root -> include paths external_include_paths = defaultdict(list) # external root -> include paths for include_path in args.include_paths: input_root = [root for root in input_roots if is_subdir(include_path, root)] if input_root: input_include_paths[input_root[0]].append(include_path) else: external_root = [root for root in external_roots if is_subdir(include_path, root) or include_path == root] external_include_paths[external_root[0]].append(include_path) for root in input_roots: if root not in input_include_paths: input_include_paths[root].append(root) for root in external_roots: if root not in external_include_paths: external_include_paths[root].append(root) return input_roots, input_include_paths, external_roots, external_include_paths def run(args): input_roots, input_include_paths, external_roots, external_include_paths =\ get_roots_and_include_paths(args) # for every found directory and file we need to output: #((root, 'relative/path/to/root'), (None, None)) # We scan all requested files and directories and stop at the outer # level of any dependencies found at the include search paths. # Files in the include paths are not scanned for #include's. # Get a list of all files with .c/.cc/.cpp/.cxx/.h/.hpp/.hxx extension # from the directories to scan for, if any. exts = ['c', 'h', 'cc', 'cpp', 'cxx', 'hpp', 'hxx'] + args.additional_exts files = defaultdict(list) # input root -> file paths relative to root def get_input_root(path): return next(filter(lambda root: root in path, input_roots)) if args.fuzzy: filemap = defaultdict(list) # filename -> (root,relpath) for path in args.path: if os.path.isfile(path): root = get_input_root(path) files[root].append(os.path.relpath(path, root)) else: for base, _, filenames in os.walk(path): if base in args.ignore_paths: continue root = get_input_root(base) filenames = list(filter(lambda f: any(f.endswith('.' + ext) for ext in exts), filenames)) filepaths = map(lambda f: os.path.join(base, f), filenames) filepaths = list(map(lambda p: os.path.relpath(p, root), filepaths)) files[root].extend(filepaths) if args.fuzzy: for filename, filepath in zip(filenames,filepaths): filemap[filename].append((root,filepath)) # parse the #include's of all files quotes = dict({'both': ('["|<]', '["|>]'), 'angle': ('<', '>'), 'quote': ('"', '"') })[args.quotetypes] include_re = re.compile(r'#include {}([a-zA-Z0-9_\-\.\/]+){}'.format(*quotes)) includes = dict() # (root,relpath) -> [include paths] for root, filepaths in files.items(): for filepath in filepaths: print('parsing', filepath, file=sys.stderr) with open(os.path.join(root, filepath), encoding='utf8') as fp: includes[(root,filepath)] = include_re.findall(fp.read()) # for each include, find the root it belongs to includes_roots = dict() # include path -> root includes_unique = set(itertools.chain.from_iterable(includes.values())) def find_in_root(include, root, include_paths, cache=None): for include_path in include_paths: full_path = os.path.join(include_path, include) rel = os.path.relpath(full_path, root) if cache: if rel in cache[root]: return rel elif os.path.exists(full_path): return rel return False def find_in_roots(include, root_includepaths, cache=False): for root, include_paths in root_includepaths: rel = find_in_root(include, root, include_paths, cache) if rel: return root, rel return False, False for include in includes_unique: # first we search within the input roots, then in the external roots root, relpath = find_in_roots(include, input_include_paths.items(), files) if not root: root, relpath = find_in_roots(include, external_include_paths.items()) if root: includes_roots[include] = root, relpath not_found = defaultdict(list) for (root, filepath), includepaths in list(includes.items()): includes[(root, filepath)] = [] for include in includepaths: root_path = False if not args.no_include_current: # look in current folder and prefer this over the other results rel = find_in_root(include, root, [os.path.join(root, os.path.dirname(filepath))], files) if rel: root_path = root, rel if not root_path: root_path = includes_roots.get(include) if not root_path and args.fuzzy: filename = os.path.basename(include) if filename in filemap: res = filemap[filename] if len(res) > 1: print('WARNING: ignoring fuzzy result as multiple ' '{} candidates were found (from {}): {}'.\ format(filename, filepath, [p for _,p in res]), file=sys.stderr) else: root_path = res[0] if root_path: includes[(root, filepath)].append((root_path[0],root_path[1])) else: not_found[include].append(filepath) if not_found: print('\nWARNING: some includes could not be found:\n', file=sys.stderr) for include in sorted(not_found.keys()): print('{} not found'.format(include), file=sys.stderr) if args.verbose: for filepath in sorted(not_found[include]): print(' from {}'.format(filepath), file=sys.stderr) # Unify roots when a file was found over multiple roots. # This happens when an include search path is given that is above # an internal root. roots = input_roots.union(external_roots) nested_roots = list(filter(lambda r: is_subdir(*r), itertools.product(roots, roots))) if nested_roots: print('going to unify paths as there are nested roots', file=sys.stderr) def move_root(subroot, root, filepath): full = os.path.join(root, filepath) if is_subdir(full, subroot) or os.path.dirname(full) == subroot: rel = os.path.relpath(full, subroot) print('moving root: {} -> {} for {}'.format(root, subroot, filepath), file=sys.stderr) return (subroot, rel) else: return (root, filepath) for subroot,root in nested_roots: # the strategy is to move all includes from root to the subroot if they # are actually within the subroot for rf,includepaths in includes.items(): includes[rf] = [move_root(subroot,root,filepath) if root_ == root else (root_,filepath) for root_,filepath in includepaths] # merge .h/.c files if requested if args.merge == 'module': # The tricky part is: how do we know which files belong together? # Obviously this is only possible if there is a 1-1 relationship # in naming of the .c/.h files, that is the base is the same. # Also, the .h file must be included in the matching .c file. # We merge transitive dependencies of the same base name # into the including .c file entry, thereby collapsing # the dependencies of the matching files. def find_matches(base, includepaths): ''' returns a list of (root,filepath) items ''' if not includepaths: return [] matches = ((root,filepath) for (root,filepath) in includepaths if os.path.splitext(os.path.basename(filepath))[0] == base) return itertools.chain(matches, itertools.chain.from_iterable( find_matches(base, includes[match]) for match in matches) ) for (root,filepath),includepaths in list(includes.items()): if (root,filepath) not in includes: # already merged continue filename = os.path.basename(filepath) base,ext = os.path.splitext(filename) if not ext.startswith('.c'): continue # Recursively get all includes with matching base name # starting from the current c file. # This becomes the set of files to merge into the including .c entry. # Recursion only follows paths where the base name matches, # that is, a.c -> a.h -> a.inc will be picked up, but not # a.c -> b.h -> a.inc. # Cyclic imports will lead to an error. matches = set(find_matches(base, includepaths)) deps = itertools.chain.from_iterable(includes.get(match, []) for match in matches) includes[(root,filepath)] = list((set(includepaths) | set(deps)) - matches) for match in matches: if match in includes: del includes[match] # move old references to the merged module for k, includepaths in includes.items(): if match in includepaths: includes[k] = [(root,filepath) if dep == match else dep for dep in includepaths] # remove file extensions as these don't make sense anymore now newincludes = dict() for (root1,path1),includepaths in includes.items(): newincludes[(root1,os.path.splitext(path1)[0])] =\ [(root2,os.path.splitext(path2)[0]) for (root2,path2) in includepaths] includes = newincludes # return dependencies as ((root,path),(root,path)) tuples deps = [] dirs = set() for (root,filepath),includepaths in includes.items(): deps.append(((root,filepath),(None,None))) directory = os.path.dirname(os.path.join(root, filepath)) if directory not in dirs: dirs.add(directory) deps.append(((root,os.path.dirname(filepath)),(None,None))) for root_,filepath_ in includepaths: deps.append(((root,filepath),(root_,filepath_))) directory = os.path.dirname(os.path.join(root_, filepath_)) if directory not in dirs: dirs.add(directory) deps.append(((root_,os.path.dirname(filepath_)),(None,None))) return deps
mit
7,126,259,649,590,224,000
44.75
105
0.562565
false
4.372101
false
false
false
nutszebra/multimodal_word2vec
word2vec/downloadCIFAR100.py
1
3055
#!/usr/bin/env python from six.moves.urllib import request import cPickle as pickle import os import cv2 import subprocess import numpy as np picBase = "/mnt/s3pic/cifar10/" def save_object(obj, filename): with open(filename, 'wb') as output: pickle.dump(obj, output, pickle.HIGHEST_PROTOCOL) def checkExistance(path): if os.path.exists(path): return True else: return False def makeDirectory(path): if not checkExistance(path): os.makedirs(path) def downloadPic(url, name): cmd = "wget " + url + " -O " + name + " -q" subprocess.call(cmd, shell=True) def extractExtension(name): return re.findall(r"^.*(\..*)$", name)[0] def moveFile(path, name): cmd = "mv " + name + " " + path subprocess.call(cmd, shell=True) def cifar100Extract(): makeDirectory(picBase) makeDirectory(picBase + "train") makeDirectory(picBase + "test") makeDirectory(picBase + "label") if not os.path.exists("cifar-100-python"): request.urlretrieve( "http://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz", "./cifar-100-python.tar.gz" ) cmd = "tar -xvzf cifar-100-python.tar.gz" subprocess.call(cmd, shell=True) cmd = "rm -r cifar-100-python.tar.gz" subprocess.call(cmd, shell=True) def unpickle(file): import cPickle fo = open(file, 'rb') dict = cPickle.load(fo) fo.close() return dict train = unpickle("cifar-100-python/train") test = unpickle("cifar-100-python/test") tag = unpickle("cifar-100-python/meta") tagWith_ = ['aquarium_fish', 'lawn_mower', 'maple_tree', 'oak_tree', 'palm_tree', 'pickup_truck', 'pine_tree', 'sweet_pepper', 'willow_tree'] tagAlter = ["fish", "lawnmower", "maple", "oak", "palm", "truck", "pine", "paprika", "willow"] index = [tag["fine_label_names"].index(with_) for with_ in tagWith_] count = 0 for i in index: tag["fine_label_names"][i] = tagAlter[count] count = count + 1 y_train = {} y_test = {} x_test = test['data'] x_test = x_test.reshape(len(x_test),3,32,32) x_train = train['data'] x_train= x_train.reshape(len(x_train),3,32,32) # for x in zip(x_test, test["filenames"], test["fine_labels"]): # cv2.imwrite(picBase + "test/" + x[1], x[0].transpose(1,2,0)[:,:,::-1].copy()) # y_test[x[1]] = x[2] # for x in zip(x_train, train["filenames"], train["fine_labels"]): # cv2.imwrite(picBase + "train/" + x[1], x[0].transpose(1,2,0)[:,:,::-1].copy()) # y_train[x[1]] = x[2] # save_object(y_test, picBase + "label/y_test.pkl") # save_object(y_train, picBase + "label/y_train.pkl") return (train, test, tag) """ In [38]: tag.keys() Out[38]: ['fine_label_names', 'coarse_label_names'] In [40]: train.keys() Out[40]: ['data', 'batch_label', 'fine_labels', 'coarse_labels', 'filenames' In [41]: len(train["data"]) Out[41]: 50000 In [42]: len(train["data"][0]) Out[42]: 3072 // it means 32*32*3 """ if __name__ == '__main__': # x_train, y_train, x_test, y_test, tag = cifar100Extract() train, test, tag = cifar100Extract()
mit
-1,638,127,540,387,665,400
26.522523
83
0.618658
false
2.69163
true
false
false
EMATech/autopower
autopower.py
2
1804
#!/bin/env python2 """ Automate powered loudspeakers power with EATON UPS from Denon DN-500AV pre-amplifier state """ from twisted.internet import reactor from twisted.internet.protocol import ClientFactory from twisted.conch.telnet import TelnetTransport, TelnetProtocol # Unavailable in Python3, yet from PyNUT import PyNUTClient class DenonProtocol(TelnetProtocol): ups_name = 'nutdev1' # TODO: store in a configuration file ups_var = "outlet.2.switchable" # on means power down or off power up ups_username = 'admin' # TODO: store in a configuration file ups_userpass = 'ups' # TODO: store securely? in a configuration file def connectionMade(self): # Subscribe to the power state self.transport.write("PW?\n") def dataReceived(self, bytes): ups = PyNUTClient(login=self.ups_username, password=self.ups_userpass) if 'PWON' in bytes: # Enable UPS sockets ups.SetRWVar(ups=self.ups_name, var=self.ups_var, value='no') if 'PWSTANDBY' in bytes: # Disable UPS sockets ups.SetRWVar(ups=self.ups_name, var=self.ups_var, value='yes') class TelnetFactory(ClientFactory): def buildProtocol(self, addr): return TelnetTransport(DenonProtocol) if __name__ == '__main__': """ The amplifier uses a Telnet interface (port 23) to send and receive serial commands We can subscribe to the power state using PW?\r The reply can be either PWON or PWSTANDBY The UPS is an EATON powerstation It exposes an interface through NUT to control 2 power sockets We want them to follow the amp's state """ host = '192.168.1.10' # TODO: store in a configuration file port = 23 reactor.connectTCP(host, port, TelnetFactory()) reactor.run()
gpl-3.0
7,586,736,075,752,400,000
31.8
95
0.687916
false
3.475915
false
false
false
jigarkb/CTCI
CTCI/chapter_2/2.3.py
2
1156
# Delete Middle Node: Implement an algorithm to delete a node in the middle of # singly linked list, given only access to that node from LinkedList import Node, LinkedList def delete_middle_node(node_to_delete): if node_to_delete.next is None: raise Exception("Invalid node to delete") node_to_delete.data = node_to_delete.next.data node_to_delete.next = node_to_delete.next.next if __name__ == '__main__': ll = LinkedList() continue_ans = raw_input("Do you want to add new node? (y/n): ") to_delete = "n" while continue_ans == 'y': data = raw_input("Enter data for the new node: ") data_node = Node(data) ll.append_node(data_node) if to_delete == 'n': to_delete = raw_input("Is this the one you want to remove? (y/n): ") if to_delete == 'y': node_to_delete = data_node continue_ans = raw_input("Do you want to add new node? (y/n)?") print "Initial linked list: {}".format(ll) print "Middle node to delete: {}".format(node_to_delete) delete_middle_node(node_to_delete) print "Linked list after deletion: {}".format(ll)
mit
-1,494,367,965,266,206,200
37.533333
80
0.623702
false
3.420118
false
false
false
agalitsyn/play
6-web-stream-server/server.py
1
1507
# http://flask.pocoo.org/docs/patterns/fileuploads/ import os from flask import Flask, request, redirect, url_for, send_from_directory from werkzeug import secure_filename UPLOAD_FOLDER = 'uploads' ALLOWED_EXTENSIONS = set(['txt', 'pdf', 'png', 'jpg', 'jpeg', 'gif']) app = Flask(__name__) app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER def allowed_file(filename): # this has changed from the original example because the original did not work for me return filename[-3:].lower() in ALLOWED_EXTENSIONS @app.route('/', methods=['GET', 'POST']) def upload_file(): if request.method == 'POST': file = request.files['file'] if file and allowed_file(file.filename): print '**found file', file.filename filename = secure_filename(file.filename) file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename)) # for browser, add 'redirect' function on top of 'url_for' return url_for('uploaded_file', filename=filename) return ''' <!doctype html> <title>Upload new File</title> <h1>Upload new File</h1> <form action="" method=post enctype=multipart/form-data> <p><input type=file name=file> <input type=submit value=Upload> </form> ''' @app.route('/uploads/<filename>') def uploaded_file(filename): return send_from_directory(app.config['UPLOAD_FOLDER'], filename) if __name__ == '__main__': app.run(debug=True)
gpl-3.0
5,452,678,844,395,169,000
34.069767
87
0.625083
false
3.79597
false
false
false
fginter/dep_search
bracketed2dsearch.py
1
4894
import six assert six.PY3, "Please run me with Python3" import ply.lex as lex import ply.yacc as yacc import readline import urllib.parse import requests import sys class Node: def __init__(self,dtype,children): self.dtype=dtype self.children=children def dsearch_ex_lin(self): #cases like [dep xxx xxx xxx xxx] assert sum(1 for c in self.children if isinstance(c,str))==len(self.children) exprs=[] for root_idx,root in enumerate(self.children): expr=['"'+root+'"'] for other_idx,other in enumerate(self.children): if other_idx<root_idx: expr.append('>lin@L "{}"'.format(other)) elif other_idx>root_idx: expr.append('>lin@R "{}"'.format(other)) exprs.append("("+(" ".join(expr))+")") return "("+(" | ".join(exprs))+")" def dsearch_ex(self): global macros #Now I guess I pick one of my STRING children to be the root or what? possible_roots=[c for c in self.children if isinstance(c,str)] if len(possible_roots)==len(self.children) and len(self.children)>1: return self.dsearch_ex_lin() elif len(possible_roots)>1: raise ValueError("Unsupported") assert len(possible_roots)==1 for r in possible_roots: bits=["(",macros.get(r,'"'+r+'"')] #Bits of the expression for c in self.children: if c==r: continue if isinstance(c,str): bits.extend(['>',macros.get(c,'"'+c+'"')]) elif isinstance(c,Node): if c.dtype=="dep" or c.dtype=="_": bits.append(' > ') else: bits.append(' >'+c.dtype) bits.append(c.dsearch_ex()) else: assert False, repr(c) bits.append(")") return " ".join(bits)#I guess I should then generate the others too? ### ---------- lexer ------------- # List of token names. This is always required tokens = ('LBRAC','RBRAC','STRING') def t_LBRAC(t): r'\[' return t def t_RBRAC(t): r'\]' return t def t_STRING(t): r'[^\s\[\]]+' return t # A string containing ignored characters (spaces and tabs) t_ignore = ' \t' # Error handling rule def t_error(t): print("Illegal character '%s'" % t.value[0]) t.lexer.skip(1) lexer = lex.lex() ### --------- grammar ----------- def p_expressions(p): '''expressions : expression | expression expressions ''' if len(p)==2: p[0]=[p[1]] elif len(p)==3: p[0]=[p[1]]+p[2] else: assert False def p_expr(p): '''expression : tree | STRING ''' p[0]=p[1] def p_tree(p): 'tree : LBRAC STRING expressions RBRAC' p[0]=Node(p[2],p[3]) def p_error(p): print("Syntax error in input!") parser = yacc.yacc() def get_query_url(q): url="http://bionlp-www.utu.fi/dep_search/query" url+="?"+urllib.parse.urlencode({"search":q,"db":"RU160M","case_sensitive":"False","hits_per_page":"50"}) return url def download(qry,maxnum,fname): data={"search":qry,"db":"RU160M","case":"False","retmax":maxnum} result=requests.get("http://epsilon-it.utu.fi/dep_search_webapi",params=data) print(result.url) with open(fname,"w") as f: print(result.text,file=f) ### ---------- run this ------------ # * NP-Nom = NOUN Case=Nom # * XP = any phrasal category = NOUN, ADJ, ADV, PRON, VERB # * PRON-Dat = PRON Case=Dat # * NOUN-Nom = NOUN Case=Nom # * VP = VERB # * AP = ADJ # * VP-Inf = VERB VerbForm=Inf # * Imper = Mood=Imp # * dep = any dependency label macros_def=""" NP-Nom : (NOUN&Nom) NP-Dat : (NOUN&Dat) XP : (NOUN|ADJ|ADV|PRON|VERB) PRON-Dat : (PRON&Dat) NOUN-Nom : (NOUN&Nom) VP : VERB AP : ADJ VP-Inf : (VERB&Inf) VP-Imper : (VERB&Mood=Imp) V-Past : (VERB&Past) Imper : (Mood=Imp) Cl : (VERB >nsubj _) _ : _ """ macros={} #macro -> replacement for repl in macros_def.strip().split("\n"): src,trg=repl.split(" : ",1) macros[src]=trg expressions={} #filename -> list of expressions for line in sys.stdin: line=line.strip() if not line: continue if line.startswith("["): #an expression expression_list.append(line) else: #construction name line=line.replace(" ","_") expression_list=[] expressions[line]=expression_list for fname,expression_list in sorted(expressions.items()): for expression in expression_list: print("Parsing expression", expression, file=sys.stderr, flush=True) node = parser.parse(expression) qry=node[0].dsearch_ex() print(qry) download(qry,5,"dl/"+fname+".conllu")
gpl-3.0
2,211,182,918,179,198,000
25.743169
109
0.547814
false
3.284564
false
false
false
google-research/falken
service/learner/assignment_processor.py
1
30183
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Handles assignment processing.""" import enum import json import time import traceback import uuid from learner import data_fetcher from learner import file_system from learner import model_exporter from learner import model_manager from learner import stats_collector from learner import storage from learner.brains import brain_cache as brain_cache_module from learner.brains import continuous_imitation_brain from learner.brains import demonstration_buffer from log import falken_logging # pylint: disable=g-bad-import-order import common.generate_protos # pylint: disable=unused-import import action_pb2 import episode_pb2 import data_store_pb2 as falken_schema_pb2 # How long to work on a single assignment in a single learner at most. _MAX_ASSIGNMENT_WORK_TIME_SECS = 60*60 _CHUNK_STATE_TO_STEP_PHASE = { episode_pb2.UNSPECIFIED: demonstration_buffer.StepPhase.UNSPECIFIED, episode_pb2.IN_PROGRESS: demonstration_buffer.StepPhase.IN_PROGRESS, episode_pb2.SUCCESS: demonstration_buffer.StepPhase.SUCCESS, episode_pb2.FAILURE: demonstration_buffer.StepPhase.FAILURE, episode_pb2.ABORTED: demonstration_buffer.StepPhase.ABORTED, episode_pb2.GAVE_UP: demonstration_buffer.StepPhase.GAVE_UP, } _DEFAULT_LEARNER_HPARAMS = { # Should learning continue or restart when new data is received? 'continuous': True, # The minimum interval between model saves, measured in batches trained. # If set to None, the model is never saved. 'save_interval_batches': 20_000, # Minimum number of (steps * batch_size) before finishing training (or # restarting). If None, we don't require a minimum amount of steps to train. 'min_train_examples': None, # Maximum number of (steps * batch_size). If None, we don't require # a maximum amount of steps to train. 'max_train_examples': None, # Export models in the main thread. 'synchronous_export': False, } class Error(Exception): """Base class for exceptions.""" class HParamError(Exception): """Raised if there is an unknown hyperparameter in the assignment.""" class NoDataError(Error): """Learner could not find new data to train on.""" class ExceededMaxWorkTimeError(Error): """Learner exceeded maximum work time on a single assignment.""" class AssignmentStats: """Returns stats about assignment processing for testing / debugging. In contrast to StatsCollector these are stats that are use to track information about an entire assignment rather than information about each trained model. Attributes: queries_completed: Number of Spanner fetch chunk queries completed. frames_added: Number of frames added to the brain from fetched demonstration data. models_recorded: Number of models saved during this assignment. brain_train_steps: Number of calls to brain.train() during the assignment. num_restarts: Number of times training has been restarted from scratch with a newly initialized model. brain_global_step: The value of the global step variable. (Resets with restarts.) """ def __init__(self): self.queries_completed = 0 self.frames_added = 0 self.models_recorded = 0 self.brain_train_steps = 0 self.num_restarts = 0 self.brain_global_step = 0 # Lists the possible processing assignment status, e.g. those that # ProcessAssignmentUntil can handle. class ProcessAssignmentStatus(enum.Enum): """Possible stopping points for assignment processing. Can be used in calls to ProcessAssignmentUntil. """ # A step has been processed in the current assignment. PROCESSED_STEP = 1 # A step has been processed in the current assignment, and training should # restart before processing the next step. PROCESSED_STEP_NEEDS_RESTART = 2 # A model has been saved. SAVED_MODEL = 3 # The assignment is about to fetch data. Useful for making sure more data # is available when it fetches, during a test. WILL_FETCH_DATA = 4 # The assignment finished processing. FINISHED = 5 def _step_generator(episode_chunks): """Yields steps from EpisodeChunks.""" for chunk in episode_chunks: for i, step in enumerate(chunk.data.steps): step_phase = demonstration_buffer.StepPhase.IN_PROGRESS if chunk.chunk_id == 0 and i == 0: # First step of first chunk is the start of the episode. step_phase = demonstration_buffer.StepPhase.START elif i == len(chunk.data.steps) - 1: # Last step of any chunk has equivalent phase as the chunk state. step_phase = _CHUNK_STATE_TO_STEP_PHASE.get( chunk.data.episode_state, demonstration_buffer.StepPhase.UNSPECIFIED) if step_phase == demonstration_buffer.StepPhase.UNSPECIFIED: raise ValueError( f'Unexpected chunk state: {chunk.data.episode_state}.') yield (chunk.episode_id, chunk.chunk_id, step.observation, step.reward.reward_value, step_phase, step.action, chunk.created_micros) def _get_hparams(assignment_id): """Parse a hyperparemeters dictionary from an assignment ID. Args: assignment_id: Assignment ID to parse. If this is "default" an empty dictionary is returned. Returns: Dictionary containing the parsed hyperparameters. Raises: HParamError: If the assignment is malformed. """ falken_logging.info(f'GetHParams got assignment_id {assignment_id}') if assignment_id == 'default': return {} try: return json.loads(assignment_id) except json.decoder.JSONDecodeError as error: error_message = (f'Failed to parse assignment ID: {error}\n' + assignment_id) falken_logging.error(error_message) raise HParamError(error_message) def populate_hparams_with_defaults_and_validate(hparams): """Construct hyperparameters for brain creation. Args: hparams: Hyperparameters that override the default learner hyperparameters. Returns: Hyperparameters dictionary that can be used to create a brain. Raises: HParamError: If the provided hyperparmeters overlap with default learner parameters or they're unknown. """ result_hparams = continuous_imitation_brain.BCAgent.default_hparams() for hparam in _DEFAULT_LEARNER_HPARAMS: if hparam in result_hparams: raise HParamError(f'Learner HParam overlaps with brain HParam: {hparam}') result_hparams.update(_DEFAULT_LEARNER_HPARAMS) for hparam in hparams: if hparam not in result_hparams: raise HParamError(f'Unknown hparam in assignment: {hparam}') result_hparams.update(hparams) return result_hparams class AssignmentProcessor: """Trains models based on incoming Assignments.""" # How often to check the DB for new data. _DB_QUERY_INTERVAL_SECS = 10.0 # How long to wait for training data _WAIT_FOR_DATA_BRAIN_SECS = 60 def __init__(self, read_assignment: falken_schema_pb2.Assignment, filesys_helper: file_system.FileSystem, storage_helper: storage.Storage, brain_cache: brain_cache_module.BrainCache, get_session_state=None, write_assignment=None, always_block_when_fetching=False): """Create a new assignment processor. Args: read_assignment: The Assignment proto received from the queue. filesys_helper: A filesystem.Filesystem object. storage_helper: A storage.Storage helper. brain_cache: BrainCache instance. get_session_state: Callable which takes no arguments and returns storage.SessionState for the assignment. When this is None the session state is retrieved from the session associated with read_assignment in the database. write_assignment: Assignment proto used to write assignment results. If this is None, results are written to read_assignment. always_block_when_fetching: If True, always block during fetching. Useful for removing racing conditions in tests. """ self._brain_cache = brain_cache self._read_assignment = read_assignment self._write_assignment = ( write_assignment if write_assignment else read_assignment) falken_logging.info(f'Reading from {self._read_assignment}, ' f'writing to {self._write_assignment}') self._episode_id = '' self._episode_chunk_id = 0 self._most_recent_demo_micros = 0 self._file = filesys_helper self._storage = storage_helper self._brain = None self._hparams = None self._model_manager = None self._always_block_when_fetching = always_block_when_fetching self._stats = stats_collector.StatsCollector( self._write_assignment.project_id, self._write_assignment.brain_id, self._write_assignment.session_id, self._write_assignment.assignment_id) self._assignment_stats = AssignmentStats() if get_session_state: self._get_session_state = get_session_state else: def _get_session_state(): return self._storage.get_session_state( self._read_assignment.project_id, self._read_assignment.brain_id, self._read_assignment.session_id) self._get_session_state = _get_session_state def __enter__(self): """Start processing an assignment.""" return self def __exit__(self, *unused_args): """Stop processing an assignment and clean up temporary storage.""" self._file.wipe_checkpoints(self._write_assignment) @property def stats(self): """Returns StatsCollector about the processing task.""" return self._stats @property def assignment_stats(self): """Returns AssignmentStats statistics about the processing task.""" return self._assignment_stats @property def _min_train_batches(self): """Min amount of batches to train (or None if unrestricted).""" min_train_examples = self._hparams['min_train_examples'] if min_train_examples is None: return None return int(min_train_examples / self._hparams['batch_size']) @property def _max_train_batches(self): """Max amount of batches to train (or None if unlimited).""" max_train_examples = self._hparams['max_train_examples'] if max_train_examples is None: return None return int(max_train_examples / self._hparams['batch_size']) def _create_brain(self): """Creates a Brain.""" brain_spec = self._storage.get_brain_spec( self._read_assignment.project_id, self._read_assignment.brain_id) falken_logging.info('Creating brain.', brain_spec=brain_spec, project_id=self._write_assignment.project_id, brain_id=self._write_assignment.brain_id, session_id=self._write_assignment.session_id) if not brain_spec: raise ValueError( f'Brain spec not found for project_id: ' f'{self._read_assignment.project_id} and ' f'brain_id: {self._read_assignment.brain_id}.') checkpoint_path = self._file.create_checkpoints_path(self._write_assignment) summary_path = self._file.create_summary_path(self._write_assignment) return self._brain_cache.GetOrCreateBrain( _get_hparams(self._read_assignment.assignment_id), brain_spec, checkpoint_path, summary_path) def _add_episode_chunks(self, chunks): """Insert new EpisodeData into the brain's replay buffer. Args: chunks: A batch of EpisodeChunks Returns: The number of demo frames contained in the provided chunks. """ falken_logging.info('Adding {} new chunks.'.format(len(chunks)), project_id=self._write_assignment.project_id, brain_id=self._write_assignment.brain_id, session_id=self._write_assignment.session_id) demo_frames = 0 for (episode_id, chunk_id, observation, reward, phase, action, timestamp) in _step_generator(chunks): self._episode_id = episode_id self._episode_chunk_id = chunk_id self.assignment_stats.frames_added += 1 self._brain.record_step(observation, reward, phase, episode_id, action, timestamp) if action.source == action_pb2.ActionData.HUMAN_DEMONSTRATION: demo_frames += 1 if timestamp > self._most_recent_demo_micros: self._most_recent_demo_micros = timestamp falken_logging.info( f'Finished adding {len(chunks)} new chunks with {demo_frames} ' f'demo frames', project_id=self._write_assignment.project_id, brain_id=self._write_assignment.brain_id, session_id=self._write_assignment.session_id) return demo_frames def _chunk_generator(self): """Generates lists of chunks by querying the database. Yields: List of new chunks if available, None otherwise. """ earliest_timestamp_micros = 0 # Fetch data associated with ancestors AND with the current session. session_ids = self._storage.get_ancestor_session_ids( self._read_assignment.project_id, self._read_assignment.brain_id, self._read_assignment.session_id) session_ids.add(self._read_assignment.session_id) def generate_chunk_key(chunk): """Returns a unique string identifier for an episode chunk proto. Args: chunk: data_store_pb2.EpisodeChunk proto. Returns: Unique identifier for the chunk proto. """ return f'{chunk.session_id}_{chunk.episode_id}_{chunk.chunk_id}' previous_chunk_keys = set() while True: # Yield new chunks, potentially forever. new_chunks = [] new_chunk_keys = set() for chunk in self._storage.get_episode_chunks( self._read_assignment.project_id, self._read_assignment.brain_id, session_ids, earliest_timestamp_micros): chunk_key = generate_chunk_key(chunk) if chunk_key not in previous_chunk_keys: # Update date_timestamp_micros to avoid refetching data. earliest_timestamp_micros = max(earliest_timestamp_micros, chunk.created_micros) new_chunks.append(chunk) new_chunk_keys.add(chunk_key) self.assignment_stats.queries_completed += 1 if new_chunks: previous_chunk_keys = new_chunk_keys yield new_chunks else: yield None def _session_complete(self): """Returns true if the session is stale or ended.""" session_state = self._get_session_state() complete = session_state in ( storage.SessionState.STALE, storage.SessionState.ENDED) if complete: falken_logging.info( 'Session complete, with state: ' f'{storage.SessionState.as_string(session_state)}', project_id=self._write_assignment.project_id, brain_id=self._write_assignment.brain_id, session_id=self._write_assignment.session_id) return complete def _training_complete(self): """Returns true if training on the assignment is complete.""" if self._session_complete(): falken_logging.info( 'Stopping training, reason: session has completed.', project_id=self._write_assignment.project_id, brain_id=self._write_assignment.brain_id, session_id=self._write_assignment.session_id) return True if self._min_train_batches is not None and ( self._brain.tf_agent.train_step_counter < self._min_train_batches): # Unless the session is closed, we train the brain for min steps. return False if self._model_manager and self._model_manager.should_stop(): falken_logging.info( f'Stopping training, reason: {self._model_manager.should_stop()}', project_id=self._write_assignment.project_id, brain_id=self._write_assignment.brain_id, session_id=self._write_assignment.session_id) return True if self._max_train_batches is not None and ( self._brain.global_step >= self._max_train_batches): falken_logging.info( 'Stopping training, reason: Exceeded max_train_batches of ' f'{self._max_train_batches}', project_id=self._write_assignment.project_id, brain_id=self._write_assignment.brain_id, session_id=self._write_assignment.session_id) return True return False def _save_and_evaluate_policy(self, exporter): """Saves the current policy and evaluates it vs current best. Args: exporter: A ModelExporter. Returns: The ID of the model that was written. """ if self._session_complete(): falken_logging.info( 'Skipping model export on completed session.', project_id=self._write_assignment.project_id, brain_id=self._write_assignment.brain_id, session_id=self._write_assignment.session_id) return falken_logging.info( 'Writing tmp model.', project_id=self._write_assignment.project_id, brain_id=self._write_assignment.brain_id, session_id=self._write_assignment.session_id) self._stats.demonstration_frames = self._brain.num_train_frames self._stats.evaluation_frames = self._brain.num_eval_frames model_id = str(uuid.uuid4()) with self._stats.record_event( stats_collector.FALKEN_EXPORT_CHECKPOINT_EVENT_NAME): tmp_checkpoint_path = self._file.create_tmp_checkpoint_path( self._write_assignment, model_id) self._brain.save_checkpoint(tmp_checkpoint_path) falken_logging.info( 'Finished writing tmp model.', project_id=self._write_assignment.project_id, brain_id=self._write_assignment.brain_id, session_id=self._write_assignment.session_id) with self._stats.record_event(stats_collector.FALKEN_EVAL_EVENT_NAME): evals = list(self._brain.compute_full_evaluation()) training_examples_completed = ( self._brain.global_step * self._hparams['batch_size']) # The hparam can be set explicitly to None so we need to check for it. max_training_examples = ( self._hparams['max_train_examples'] if self._hparams.get('max_train_examples', None) else 0) exporter.export_model(tmp_checkpoint_path, evals, self._stats, model_id, self._episode_id, self._episode_chunk_id, training_examples_completed, max_training_examples, self._most_recent_demo_micros) self.assignment_stats.models_recorded += 1 # Compare new model to previous best and update accordingly. self._model_manager.record_new_model(model_id, evals) return model_id def _fetch_data(self, fetcher, initial_wait_for_data): """Fetches training / eval data from a fetcher and adds it to the brain. Args: fetcher: A data_fetcher.DataFetcher. initial_wait_for_data: Whether to wait for data on the first queue fetch. Returns: The number of demonstration frames that were added. """ falken_logging.info( 'Checking for new training data.', project_id=self._write_assignment.project_id, brain_id=self._write_assignment.brain_id, session_id=self._write_assignment.session_id) first_fetch = True demo_frames = 0 while True: try: block, timeout = False, None if initial_wait_for_data and first_fetch: # Wait longer on the first fetch. block, timeout = True, self._WAIT_FOR_DATA_BRAIN_SECS # TODO(lph): Change datafetcher to auto-block on first query. elif self._always_block_when_fetching: # Short block for other fetches. block, timeout = True, 5 first_fetch = False chunks = fetcher.get(block=block, timeout=timeout) demo_frames += self._add_episode_chunks(chunks) except data_fetcher.Empty: # If the underlying SQL queries did not complete, then we're not # waiting long enough for data to arrive. if (initial_wait_for_data and not self.assignment_stats.queries_completed): # We are in the first loop iteration and have not completed any # queries after _WAIT_FOR_DATA_BRAIN_SECS. raise NoDataError('Could not query DB for chunks.') return demo_frames def _process_step(self, fetcher): """Create and train a model. Args: fetcher: A data_fetcher.DataFetcher object to pull fresh data from. Yields: Pairs (ProcessAssignmentStatus, status_metadata). This allows for functions like ProcessAssignmentUntil to pause and resume Process. Raises: ExceededMaxWorkTimeError: If assignment takes too long to process. """ if not self._brain: self._brain, self._hparams = self._create_brain() self._stats.training_steps = self._hparams['training_steps'] self._stats.batch_size = self._hparams['batch_size'] self._model_manager = model_manager.ModelManager() else: self._brain.reinitialize_agent() self._model_manager.reset_counters() with model_exporter.ModelExporter(self._write_assignment, self._storage, self._file, self._model_manager, self._brain.hparams) as exporter: saved_model_id = None loop_counter = 0 restart_requested = False # Whether to restart. # Enter main training loop. while not self._training_complete(): if restart_requested and ( self._min_train_batches is None or self._brain.tf_agent.train_step_counter >= self._min_train_batches): if saved_model_id is None: # Save if we didn't auto-save last loop iteration. saved_model_id = self._save_and_evaluate_policy(exporter) yield ProcessAssignmentStatus.SAVED_MODEL, saved_model_id falken_logging.info( f'Restarting training after {loop_counter} iterations.', project_id=self._write_assignment.project_id, brain_id=self._write_assignment.brain_id, session_id=self._write_assignment.session_id) yield ProcessAssignmentStatus.PROCESSED_STEP_NEEDS_RESTART, None return time_elapsed = time.perf_counter() - self._start_timestamp falken_logging.info( f'{time_elapsed}s elapsed since start of assignment.', brain_id=self._write_assignment.brain_id, session_id=self._write_assignment.session_id, assignment_id=self._write_assignment.assignment_id) if time_elapsed > _MAX_ASSIGNMENT_WORK_TIME_SECS: raise ExceededMaxWorkTimeError( f'Assignment took too long. Started {time_elapsed} seconds ago.' ) # Grab all data from the fetcher. with self._stats.record_event( stats_collector.FALKEN_FETCH_CHUNK_EVENT_NAME): yield ProcessAssignmentStatus.WILL_FETCH_DATA, None demo_frames = self._fetch_data( fetcher, initial_wait_for_data=(loop_counter == 0)) continuous = self._hparams['continuous'] falken_logging.info( f'Finished data fetch, training iteration {loop_counter}. ' f'Got {demo_frames} new demo frames, continuous={continuous}', project_id=self._write_assignment.project_id, brain_id=self._write_assignment.brain_id, session_id=self._write_assignment.session_id) if not continuous and loop_counter and demo_frames: restart_requested = True falken_logging.info('Received new data, requesting a restart.', project_id=self._write_assignment.project_id, brain_id=self._write_assignment.brain_id, session_id=self._write_assignment.session_id) if not self._brain.num_train_frames: falken_logging.error( 'No training frames available.', brain_id=self._write_assignment.brain_id, session_id=self._write_assignment.session_id, assignment_id=self._write_assignment.assignment_id) break # Perform training. with self._stats.record_event( stats_collector.FALKEN_TRAIN_BRAIN_EVENT_NAME): try: falken_logging.info('Training brain.', project_id=self._write_assignment.project_id, brain_id=self._write_assignment.brain_id, session_id=self._write_assignment.session_id) self._brain.train() self.assignment_stats.brain_train_steps += 1 self.assignment_stats.brain_global_step = self._brain.global_step except Exception as e: # pylint: disable=broad-except falken_logging.error( f'Exception found when running _train_step: {e}.' f'Traceback:\n{traceback.format_exc()}', brain_id=self._write_assignment.brain_id, session_id=self._write_assignment.session_id, assignment_id=self._write_assignment.assignment_id) raise e batch_count = (self.assignment_stats.brain_train_steps * self._hparams['training_steps']) if (self._hparams['save_interval_batches'] is not None and batch_count % self._hparams['save_interval_batches'] == 0): saved_model_id = self._save_and_evaluate_policy(exporter) yield ProcessAssignmentStatus.SAVED_MODEL, saved_model_id else: saved_model_id = None loop_counter += 1 # End of main training loop. if saved_model_id is None and self.assignment_stats.brain_train_steps: # If the last loop didn't save, save now. saved_model_id = self._save_and_evaluate_policy(exporter) yield ProcessAssignmentStatus.SAVED_MODEL, saved_model_id # End of exporter context # Learner completed normally, no restart indicated. yield ProcessAssignmentStatus.PROCESSED_STEP, None def process(self): """Train one or multiple brains. Yields: Pairs (ProcessAssignmentStatus, status_metadata). This allows for functions like ProcessAssignmentUntil to pause and resume Process. """ with self._stats.record_event(stats_collector.FALKEN_PROCESS_EVENT_NAME): self._start_timestamp = time.perf_counter() if self._session_complete(): falken_logging.info('Returning since assignment is ' 'associated with closed or stale session.', brain_id=self._read_assignment.brain_id, session_id=self._read_assignment.session_id, assignment_id=self._read_assignment.assignment_id) return falken_logging.info('Starting work on assignment.', project_id=self._write_assignment.project_id, brain_id=self._write_assignment.brain_id, session_id=self._write_assignment.session_id, assignment_id=self._write_assignment.assignment_id) with self._stats.record_event( stats_collector.FALKEN_MAIN_TRAINING_LOOP_EVENT_NAME): with data_fetcher.DataFetcher(self._chunk_generator(), self._DB_QUERY_INTERVAL_SECS) as fetcher: has_next_step = True while has_next_step: # Actually do the work. has_next_step = False for status, metadata in self._process_step(fetcher): if status == ProcessAssignmentStatus.PROCESSED_STEP_NEEDS_RESTART: has_next_step = True yield status, metadata if has_next_step: falken_logging.info( 'Restarting work on assignment.', project_id=self._write_assignment.project_id, brain_id=self._write_assignment.brain_id, session_id=self._write_assignment.session_id, assignment_id=self._write_assignment.assignment_id) self.assignment_stats.num_restarts += 1 # Delete checkpoints to ensure that restarts start from scratch. self._file.wipe_checkpoints(self._write_assignment) if self.assignment_stats.brain_train_steps: falken_logging.info( 'Completed assignment. ' f'Called brain.train {self.assignment_stats.brain_train_steps} ' 'times.', project_id=self._write_assignment.project_id, brain_id=self._write_assignment.brain_id, session_id=self._write_assignment.session_id, assignment_id=self._write_assignment.assignment_id) else: # This should only happen in rare cases: A learner failed to ACK # after training to completion, e.g., due to preemption of the # learner at the end of training. falken_logging.warn( 'Completed assignment without training.', project_id=self._write_assignment.project_id, brain_id=self._write_assignment.brain_id, session_id=self._write_assignment.session_id, assignment_id=self._write_assignment.assignment_id) # Clean-up checkpoints dir. self._file.wipe_checkpoints(self._write_assignment)
apache-2.0
-273,857,898,316,733,730
39.030504
80
0.654541
false
4.001458
false
false
false
bittner/django-cms
cms/templatetags/cms_admin.py
1
9639
# -*- coding: utf-8 -*- from classytags.arguments import Argument from classytags.core import Options, Tag from classytags.helpers import InclusionTag from cms.constants import PUBLISHER_STATE_PENDING from cms.toolbar.utils import get_plugin_toolbar_js from cms.utils.admin import render_admin_rows from sekizai.helpers import get_varname from django import template from django.conf import settings from django.utils.encoding import force_text from django.utils.safestring import mark_safe from django.utils.translation import ugettext_lazy as _ register = template.Library() CMS_ADMIN_ICON_BASE = "%sadmin/img/" % settings.STATIC_URL @register.simple_tag(takes_context=True) def show_admin_menu_for_pages(context, pages): request = context['request'] if 'cl' in context: filtered = context['cl'].is_filtered or context['cl'].query else: filtered = False site = context['cms_current_site'] language = context['preview_language'] return render_admin_rows(request, pages=pages, site=site, filtered=filtered, language=language) class TreePublishRow(Tag): name = "tree_publish_row" options = Options( Argument('page'), Argument('language') ) def render_tag(self, context, page, language): if page.is_published(language) and page.publisher_public_id and page.publisher_public.is_published(language): if page.is_dirty(language): cls = "cms-pagetree-node-state cms-pagetree-node-state-dirty dirty" text = _("unpublished changes") else: cls = "cms-pagetree-node-state cms-pagetree-node-state-published published" text = _("published") else: if language in page.languages: public_pending = page.publisher_public_id and page.publisher_public.get_publisher_state( language) == PUBLISHER_STATE_PENDING if public_pending or page.get_publisher_state( language) == PUBLISHER_STATE_PENDING: cls = "cms-pagetree-node-state cms-pagetree-node-state-unpublished-parent unpublishedparent" text = _("unpublished parent") else: cls = "cms-pagetree-node-state cms-pagetree-node-state-unpublished unpublished" text = _("unpublished") else: cls = "cms-pagetree-node-state cms-pagetree-node-state-empty empty" text = _("no content") return mark_safe( '<span class="cms-hover-tooltip cms-hover-tooltip-left cms-hover-tooltip-delay %s" ' 'data-cms-tooltip="%s"></span>' % (cls, force_text(text))) register.tag(TreePublishRow) @register.filter def is_published(page, language): if page.is_published(language) and page.publisher_public_id and page.publisher_public.is_published(language): return True else: if language in page.languages and page.publisher_public_id and page.publisher_public.get_publisher_state( language) == PUBLISHER_STATE_PENDING: return True return False @register.filter def is_dirty(page, language): return page.is_dirty(language) @register.filter def all_ancestors_are_published(page, language): """ Returns False if any of the ancestors of page (and language) are unpublished, otherwise True. """ page = page.parent while page: if not page.is_published(language): return False page = page.parent return True class CleanAdminListFilter(InclusionTag): """ used in admin to display only these users that have actually edited a page and not everybody """ name = 'clean_admin_list_filter' template = 'admin/cms/page/tree/filter.html' options = Options( Argument('cl'), Argument('spec'), ) def get_context(self, context, cl, spec): choices = sorted(list(spec.choices(cl)), key=lambda k: k['query_string']) query_string = None unique_choices = [] for choice in choices: if choice['query_string'] != query_string: unique_choices.append(choice) query_string = choice['query_string'] return {'title': spec.title, 'choices': unique_choices} register.tag(CleanAdminListFilter) @register.filter def boolean_icon(value): BOOLEAN_MAPPING = {True: 'yes', False: 'no', None: 'unknown'} return mark_safe( u'<img src="%sicon-%s.gif" alt="%s" />' % (CMS_ADMIN_ICON_BASE, BOOLEAN_MAPPING.get(value, 'unknown'), value)) @register.filter def preview_link(page, language): if settings.USE_I18N: # Which one of page.get_slug() and page.get_path() is the right # one to use in this block? They both seem to return the same thing. try: # attempt to retrieve the localized path/slug and return return page.get_absolute_url(language, fallback=False) except: # no localized path/slug. therefore nothing to preview. stay on the same page. # perhaps the user should be somehow notified for this. return '' return page.get_absolute_url(language) class PageSubmitRow(InclusionTag): name = 'page_submit_row' template = 'admin/cms/page/submit_row.html' def get_context(self, context): opts = context['opts'] change = context['change'] is_popup = context['is_popup'] save_as = context['save_as'] basic_info = context.get('basic_info', False) advanced_settings = context.get('advanced_settings', False) change_advanced_settings = context.get('can_change_advanced_settings', False) language = context.get('language', '') filled_languages = context.get('filled_languages', []) show_buttons = language in filled_languages if show_buttons: show_buttons = (basic_info or advanced_settings) and change_advanced_settings context = { # TODO check this (old code: opts.get_ordered_objects() ) 'onclick_attrib': (opts and change and 'onclick="submitOrderForm();"' or ''), 'show_delete_link': False, 'show_save_as_new': not is_popup and change and save_as, 'show_save_and_add_another': False, 'show_save_and_continue': not is_popup and context['has_change_permission'], 'is_popup': is_popup, 'basic_info_active': basic_info, 'advanced_settings_active': advanced_settings, 'show_buttons': show_buttons, 'show_save': True, 'language': language, 'language_is_filled': language in filled_languages, 'object_id': context.get('object_id', None) } return context register.tag(PageSubmitRow) def in_filtered(seq1, seq2): return [x for x in seq1 if x in seq2] in_filtered = register.filter('in_filtered', in_filtered) @register.simple_tag def admin_static_url(): """ If set, returns the string contained in the setting ADMIN_MEDIA_PREFIX, otherwise returns STATIC_URL + 'admin/'. """ return getattr(settings, 'ADMIN_MEDIA_PREFIX', None) or ''.join([settings.STATIC_URL, 'admin/']) class CMSAdminIconBase(Tag): name = 'cms_admin_icon_base' def render_tag(self, context): return CMS_ADMIN_ICON_BASE register.tag(CMSAdminIconBase) @register.simple_tag(takes_context=True) def render_plugin_toolbar_config(context, plugin): content_renderer = context['cms_content_renderer'] instance, plugin_class = plugin.get_plugin_instance() if not instance: return '' with context.push(): content = content_renderer.render_editable_plugin( instance, context, plugin_class, ) # render_editable_plugin will populate the plugin # parents and children cache. placeholder_cache = content_renderer.get_rendered_plugins_cache(instance.placeholder) toolbar_js = get_plugin_toolbar_js( instance, request_language=content_renderer.request_language, children=placeholder_cache['plugin_children'][instance.plugin_type], parents=placeholder_cache['plugin_parents'][instance.plugin_type], ) varname = get_varname() toolbar_js = '<script>{}</script>'.format(toolbar_js) # Add the toolbar javascript for this plugin to the # sekizai "js" namespace. context[varname]['js'].append(toolbar_js) return mark_safe(content) @register.inclusion_tag('admin/cms/page/plugin/submit_line.html', takes_context=True) def submit_row_plugin(context): """ Displays the row of buttons for delete and save. """ opts = context['opts'] change = context['change'] is_popup = context['is_popup'] save_as = context['save_as'] ctx = { 'opts': opts, 'show_delete_link': context.get('has_delete_permission', False) and change and context.get('show_delete', True), 'show_save_as_new': not is_popup and change and save_as, 'show_save_and_add_another': context['has_add_permission'] and not is_popup and (not save_as or context['add']), 'show_save_and_continue': not is_popup and context['has_change_permission'], 'is_popup': is_popup, 'show_save': True, 'preserved_filters': context.get('preserved_filters'), } if context.get('original') is not None: ctx['original'] = context['original'] return ctx
bsd-3-clause
-2,619,761,319,136,201,700
34.178832
120
0.634713
false
3.924674
false
false
false
open-synergy/event
event_sale_registration_partner_unique/models/sale_order.py
1
1091
# -*- coding: utf-8 -*- # © 2016 Antiun Ingeniería S.L. - Jairo Llopis # License AGPL-3.0 or later (http://www.gnu.org/licenses/agpl.html). from openerp import _, api, models from openerp.addons.event_registration_partner_unique import exceptions class SaleOrderLine(models.Model): _inherit = "sale.order.line" @api.multi def button_confirm(self): """Add registrations to the already existing record if possible.""" for s in self: try: with self.env.cr.savepoint(): super(SaleOrderLine, s).button_confirm() # A registration already exists except exceptions.DuplicatedPartnerError as error: regs = error._kwargs["registrations"].with_context( mail_create_nolog=True) qty = int(s.product_uom_qty) for reg in regs: reg.nb_register += qty regs.message_post(_("%d new registrations sold in %s.") % (qty, s.order_id.display_name)) return True
agpl-3.0
2,935,847,197,673,163,300
35.3
75
0.573921
false
4.01845
false
false
false
hanw/connectal
scripts/adb/adb_protocol.py
3
13753
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ADB protocol implementation. Implements the ADB protocol as seen in android's adb/adbd binaries, but only the host side. """ import struct import time import usb_exceptions # Maximum amount of data in an ADB packet. MAX_ADB_DATA = 4096 # ADB protocol version. VERSION = 0x01000000 # AUTH constants for arg0. AUTH_TOKEN = 1 AUTH_SIGNATURE = 2 AUTH_RSAPUBLICKEY = 3 class InvalidCommandError(Exception): """Got an invalid command over USB.""" def __init__(self, message, response_header, response_data): if response_header == 'FAIL': message = 'Command failed, device said so. (%s)' % message super(InvalidCommandError, self).__init__( message, response_header, response_data) class InvalidResponseError(Exception): """Got an invalid response to our command.""" class InvalidChecksumError(Exception): """Checksum of data didn't match expected checksum.""" class InterleavedDataError(Exception): """We only support command sent serially.""" def MakeWireIDs(ids): id_to_wire = { cmd_id: sum(ord(c) << (i * 8) for i, c in enumerate(cmd_id)) for cmd_id in ids } wire_to_id = {wire: cmd_id for cmd_id, wire in id_to_wire.items()} return id_to_wire, wire_to_id class AuthSigner(object): """Signer for use with authenticated ADB, introduced in 4.4.x/KitKat.""" def Sign(self, data): """Signs given data using a private key.""" raise NotImplementedError() def GetPublicKey(self): """Returns the public key in PEM format without headers or newlines.""" raise NotImplementedError() class _AdbConnection(object): """ADB Connection.""" def __init__(self, usb, local_id, remote_id, timeout_ms): self.usb = usb self.local_id = local_id self.remote_id = remote_id self.timeout_ms = timeout_ms def _Send(self, command, arg0, arg1, data=''): message = AdbMessage(command, arg0, arg1, data) message.Send(self.usb, self.timeout_ms) def Write(self, data): """Write a packet and expect an Ack.""" self._Send('WRTE', arg0=self.local_id, arg1=self.remote_id, data=data) # Expect an ack in response. cmd, okay_data = self.ReadUntil('OKAY') if cmd != 'OKAY': if cmd == 'FAIL': raise usb_exceptions.AdbCommandFailureException( 'Command failed.', okay_data) raise InvalidCommandError( 'Expected an OKAY in response to a WRITE, got %s (%s)', cmd, okay_data) return len(data) def Okay(self): self._Send('OKAY', arg0=self.local_id, arg1=self.remote_id) def ReadUntil(self, *expected_cmds): """Read a packet, Ack any write packets.""" cmd, remote_id, local_id, data = AdbMessage.Read( self.usb, expected_cmds, self.timeout_ms) if local_id != 0 and self.local_id != local_id: raise InterleavedDataError("We don't support multiple streams...") if remote_id != 0 and self.remote_id != remote_id: raise InvalidResponseError( 'Incorrect remote id, expected %s got %s' % ( self.remote_id, remote_id)) # Ack write packets. if cmd == 'WRTE': self.Okay() return cmd, data def ReadUntilClose(self): """Yield packets until a Close packet is received.""" while True: cmd, data = self.ReadUntil('CLSE', 'WRTE') if cmd == 'CLSE': self._Send('CLSE', arg0=self.local_id, arg1=self.remote_id) break if cmd != 'WRTE': if cmd == 'FAIL': raise usb_exceptions.AdbCommandFailureException( 'Command failed.', data) raise InvalidCommandError('Expected a WRITE or a CLOSE, got %s (%s)', cmd, data) yield data def Close(self): self._Send('CLSE', arg0=self.local_id, arg1=self.remote_id) cmd, data = self.ReadUntil('CLSE') if cmd != 'CLSE': if cmd == 'FAIL': raise usb_exceptions.AdbCommandFailureException('Command failed.', data) raise InvalidCommandError('Expected a CLSE response, got %s (%s)', cmd, data) class AdbMessage(object): """ADB Protocol and message class. Protocol Notes local_id/remote_id: Turns out the documentation is host/device ambidextrous, so local_id is the id for 'the sender' and remote_id is for 'the recipient'. So since we're only on the host, we'll re-document with host_id and device_id: OPEN(host_id, 0, 'shell:XXX') READY/OKAY(device_id, host_id, '') WRITE(0, host_id, 'data') CLOSE(device_id, host_id, '') """ ids = ['SYNC', 'CNXN', 'AUTH', 'OPEN', 'OKAY', 'CLSE', 'WRTE'] commands, constants = MakeWireIDs(ids) # An ADB message is 6 words in little-endian. format = '<6I' connections = 0 def __init__(self, command=None, arg0=None, arg1=None, data=''): self.command = self.commands[command] self.magic = self.command ^ 0xFFFFFFFF self.arg0 = arg0 self.arg1 = arg1 self.data = data @property def checksum(self): return self.CalculateChecksum(self.data) @staticmethod def CalculateChecksum(data): # The checksum is just a sum of all the bytes. I swear. return sum(map(ord, data)) & 0xFFFFFFFF def Pack(self): """Returns this message in an over-the-wire format.""" return struct.pack(self.format, self.command, self.arg0, self.arg1, len(self.data), self.checksum, self.magic) @classmethod def Unpack(cls, message): try: cmd, arg0, arg1, data_length, data_checksum, unused_magic = struct.unpack( cls.format, message) except struct.error as e: raise ValueError('Unable to unpack ADB command.', cls.format, message, e) return cmd, arg0, arg1, data_length, data_checksum def Send(self, usb, timeout_ms=None): """Send this message over USB.""" usb.BulkWrite(self.Pack(), timeout_ms) usb.BulkWrite(self.data, timeout_ms) @classmethod def Read(cls, usb, expected_cmds, timeout_ms=None, total_timeout_ms=None): """Receive a response from the device.""" total_timeout_ms = usb.Timeout(total_timeout_ms) start = time.time() while True: msg = usb.BulkRead(24, timeout_ms) cmd, arg0, arg1, data_length, data_checksum = cls.Unpack(msg) command = cls.constants.get(cmd) if not command: raise InvalidCommandError( 'Unknown command: %x' % cmd, cmd, (arg0, arg1)) if command in expected_cmds: break if time.time() - start > total_timeout_ms: raise InvalidCommandError( 'Never got one of the expected responses (%s)' % expected_cmds, cmd, (timeout_ms, total_timeout_ms)) if data_length > 0: data = '' while data_length > 0: temp = usb.BulkRead(data_length, timeout_ms) data += temp data_length -= len(temp) actual_checksum = cls.CalculateChecksum(data) if actual_checksum != data_checksum: raise InvalidChecksumError( 'Received checksum %s != %s', (actual_checksum, data_checksum)) else: data = '' return command, arg0, arg1, data @classmethod def Connect(cls, usb, banner='notadb', rsa_keys=None, auth_timeout_ms=100): """Establish a new connection to the device. Args: usb: A USBHandle with BulkRead and BulkWrite methods. banner: A string to send as a host identifier. rsa_keys: List of AuthSigner subclass instances to be used for authentication. The device can either accept one of these via the Sign method, or we will send the result of GetPublicKey from the first one if the device doesn't accept any of them. auth_timeout_ms: Timeout to wait for when sending a new public key. This is only relevant when we send a new public key. The device shows a dialog and this timeout is how long to wait for that dialog. If used in automation, this should be low to catch such a case as a failure quickly; while in interactive settings it should be high to allow users to accept the dialog. We default to automation here, so it's low by default. Returns: The device's reported banner. Always starts with the state (device, recovery, or sideload), sometimes includes information after a : with various product information. Raises: usb_exceptions.DeviceAuthError: When the device expects authentication, but we weren't given any valid keys. InvalidResponseError: When the device does authentication in an unexpected way. """ msg = cls( command='CNXN', arg0=VERSION, arg1=MAX_ADB_DATA, data='host::%s\0' % banner) msg.Send(usb) cmd, arg0, arg1, banner = cls.Read(usb, ['CNXN', 'AUTH']) if cmd == 'AUTH': if not rsa_keys: raise usb_exceptions.DeviceAuthError( 'Device authentication required, no keys available.') # Loop through our keys, signing the last 'banner' or token. for rsa_key in rsa_keys: if arg0 != AUTH_TOKEN: raise InvalidResponseError( 'Unknown AUTH response: %s %s %s' % (arg0, arg1, banner)) signed_token = rsa_key.Sign(banner) msg = cls( command='AUTH', arg0=AUTH_SIGNATURE, arg1=0, data=signed_token) msg.Send(usb) cmd, arg0, unused_arg1, banner = cls.Read(usb, ['CNXN', 'AUTH']) if cmd == 'CNXN': return banner # None of the keys worked, so send a public key. msg = cls( command='AUTH', arg0=AUTH_RSAPUBLICKEY, arg1=0, data=rsa_keys[0].GetPublicKey() + '\0') msg.Send(usb) try: cmd, arg0, unused_arg1, banner = cls.Read( usb, ['CNXN'], timeout_ms=auth_timeout_ms) except usb_exceptions.BulkReadFailedError as e: if e.usb_error.value == -7: # Timeout. raise usb_exceptions.DeviceAuthError( 'Accept auth key on device, then retry.') raise # This didn't time-out, so we got a CNXN response. return banner return banner @classmethod def Open(cls, usb, destination, timeout_ms=None): """Opens a new connection to the device via an OPEN message. Not the same as the posix 'open' or any other google3 Open methods. Args: usb: USB device handle with BulkRead and BulkWrite methods. destination: The service:command string. timeout_ms: Timeout in milliseconds for USB packets. Raises: InvalidResponseError: Wrong local_id sent to us. InvalidCommandError: Didn't get a ready response. Returns: The local connection id. """ local_id = 1 msg = cls( command='OPEN', arg0=local_id, arg1=0, data=destination + '\0') msg.Send(usb, timeout_ms) cmd, remote_id, their_local_id, _ = cls.Read(usb, ['CLSE', 'OKAY'], timeout_ms=timeout_ms) if local_id != their_local_id: raise InvalidResponseError( 'Expected the local_id to be %s, got %s' % (local_id, their_local_id)) if cmd == 'CLSE': # Device doesn't support this service. return None if cmd != 'OKAY': raise InvalidCommandError('Expected a ready response, got %s' % cmd, cmd, (remote_id, their_local_id)) return _AdbConnection(usb, local_id, remote_id, timeout_ms) @classmethod def Command(cls, usb, service, command='', timeout_ms=None): """One complete set of USB packets for a single command. Sends service:command in a new connection, reading the data for the response. All the data is held in memory, large responses will be slow and can fill up memory. Args: usb: USB device handle with BulkRead and BulkWrite methods. service: The service on the device to talk to. command: The command to send to the service. timeout_ms: Timeout for USB packets, in milliseconds. Raises: InterleavedDataError: Multiple streams running over usb. InvalidCommandError: Got an unexpected response command. Returns: The response from the service. """ return ''.join(cls.StreamingCommand(usb, service, command, timeout_ms)) @classmethod def StreamingCommand(cls, usb, service, command='', timeout_ms=None): """One complete set of USB packets for a single command. Sends service:command in a new connection, reading the data for the response. All the data is held in memory, large responses will be slow and can fill up memory. Args: usb: USB device handle with BulkRead and BulkWrite methods. service: The service on the device to talk to. command: The command to send to the service. timeout_ms: Timeout for USB packets, in milliseconds. Raises: InterleavedDataError: Multiple streams running over usb. InvalidCommandError: Got an unexpected response command. Yields: The responses from the service. """ connection = cls.Open(usb, destination='%s:%s' % (service, command), timeout_ms=timeout_ms) for data in connection.ReadUntilClose(): yield data
mit
-4,266,882,794,569,911,000
33.906091
80
0.644369
false
3.800221
false
false
false
breakhearts/wallstreet
wallstreet/test/test_stock_api.py
1
2758
from __future__ import absolute_import from wallstreet.crawler import stockapi from wallstreet.crawler.fetcher import CurlFetcher from datetime import datetime from wallstreet import config class TestYahooStockHistoryAPI: def test_get_url_params(self): api = stockapi.YahooHistoryDataAPI() url, method, headers, data = api.get_url_params("BIDU", start_date="20150217", end_date="20150914") assert url == "http://real-chart.finance.yahoo.com/table.csv" \ "?s=BIDU&g=d&ignore=.csv&a=1&b=17&c=2015&d=8&e=14&f=2015" assert method == "GET" assert data == {} def test_parse_ret(self): api = stockapi.YahooHistoryDataAPI() url, method, headers, data = api.get_url_params("BIDU", start_date="20150218", end_date="20150220") fetcher = CurlFetcher() status_code, content = fetcher.fetch(url, method, headers, data) assert status_code == 200 days = api.parse_ret("BIDU", content) assert len(days) == 3 day_last = days[0] assert day_last.symbol == "BIDU" assert day_last.date == datetime(2015, 2, 20) class TestNasdaqStockInfoAPI: def test_all(self): api = stockapi.NasdaqStockInfoAPI() url, method, headers, data = api.get_url_params("NASDAQ") fetcher = CurlFetcher() status_code, content = fetcher.fetch(url, method, headers, data) stock_infos = api.parse_ret("NASDAQ", content) assert len(stock_infos) > 100 class TestEdgarAPI: def test_year_fiscal_report(self): api = stockapi.EdgarYearReportAPI(config.get_test("edgar", "core_key")) url, method, headers, data = api.get_url_params(["BIDU", "AAPL"], start_year=2011, end_year=2012) fetcher = CurlFetcher(timeout=30) status_code, content = fetcher.fetch(url, method, headers, data) raw_report = api.parse_ret(content) assert len(raw_report) == 4 def test_quarter_fiscal_report(self): api = stockapi.EdgarQuarterReportAPI(config.get_test("edgar", "core_key")) url, method, headers, data = api.get_url_params("FB", start_year=2014, end_year=2015, start_quarter=3, end_quarter=1) fetcher = CurlFetcher(timeout=30) status_code, content = fetcher.fetch(url, method, headers, data) raw_report = api.parse_ret(content) assert len(raw_report) == 3 def test_company_report(self): api = stockapi.EdgarCompanyAPI(config.get_test("edgar", "core_key")) url, method, headers, data = api.get_url_params(["BIDU", "BABA"]) fetcher = CurlFetcher(timeout=30) status_code, content = fetcher.fetch(url, method, headers, data) t = api.parse_ret(content) assert len(t) == 2
apache-2.0
6,489,140,336,624,224,000
42.793651
125
0.642857
false
3.256198
true
false
false
lpsinger/astropy
examples/coordinates/plot_galactocentric-frame.py
8
8058
# -*- coding: utf-8 -*- """ ======================================================================== Transforming positions and velocities to and from a Galactocentric frame ======================================================================== This document shows a few examples of how to use and customize the `~astropy.coordinates.Galactocentric` frame to transform Heliocentric sky positions, distance, proper motions, and radial velocities to a Galactocentric, Cartesian frame, and the same in reverse. The main configurable parameters of the `~astropy.coordinates.Galactocentric` frame control the position and velocity of the solar system barycenter within the Galaxy. These are specified by setting the ICRS coordinates of the Galactic center, the distance to the Galactic center (the sun-galactic center line is always assumed to be the x-axis of the Galactocentric frame), and the Cartesian 3-velocity of the sun in the Galactocentric frame. We'll first demonstrate how to customize these values, then show how to set the solar motion instead by inputting the proper motion of Sgr A*. Note that, for brevity, we may refer to the solar system barycenter as just "the sun" in the examples below. *By: Adrian Price-Whelan* *License: BSD* """ ############################################################################## # Make `print` work the same in all versions of Python, set up numpy, # matplotlib, and use a nicer set of plot parameters: import numpy as np import matplotlib.pyplot as plt from astropy.visualization import astropy_mpl_style plt.style.use(astropy_mpl_style) ############################################################################## # Import the necessary astropy subpackages import astropy.coordinates as coord import astropy.units as u ############################################################################## # Let's first define a barycentric coordinate and velocity in the ICRS frame. # We'll use the data for the star HD 39881 from the `Simbad # <simbad.harvard.edu/simbad/>`_ database: c1 = coord.SkyCoord(ra=89.014303*u.degree, dec=13.924912*u.degree, distance=(37.59*u.mas).to(u.pc, u.parallax()), pm_ra_cosdec=372.72*u.mas/u.yr, pm_dec=-483.69*u.mas/u.yr, radial_velocity=0.37*u.km/u.s, frame='icrs') ############################################################################## # This is a high proper-motion star; suppose we'd like to transform its position # and velocity to a Galactocentric frame to see if it has a large 3D velocity # as well. To use the Astropy default solar position and motion parameters, we # can simply do: gc1 = c1.transform_to(coord.Galactocentric) ############################################################################## # From here, we can access the components of the resulting # `~astropy.coordinates.Galactocentric` instance to see the 3D Cartesian # velocity components: print(gc1.v_x, gc1.v_y, gc1.v_z) ############################################################################## # The default parameters for the `~astropy.coordinates.Galactocentric` frame # are detailed in the linked documentation, but we can modify the most commonly # changes values using the keywords ``galcen_distance``, ``galcen_v_sun``, and # ``z_sun`` which set the sun-Galactic center distance, the 3D velocity vector # of the sun, and the height of the sun above the Galactic midplane, # respectively. The velocity of the sun can be specified as an # `~astropy.units.Quantity` object with velocity units and is interepreted as a # Cartesian velocity, as in the example below. Note that, as with the positions, # the Galactocentric frame is a right-handed system (i.e., the Sun is at negative # x values) so ``v_x`` is opposite of the Galactocentric radial velocity: v_sun = [11.1, 244, 7.25] * (u.km / u.s) # [vx, vy, vz] gc_frame = coord.Galactocentric( galcen_distance=8*u.kpc, galcen_v_sun=v_sun, z_sun=0*u.pc) ############################################################################## # We can then transform to this frame instead, with our custom parameters: gc2 = c1.transform_to(gc_frame) print(gc2.v_x, gc2.v_y, gc2.v_z) ############################################################################## # It's sometimes useful to specify the solar motion using the `proper motion # of Sgr A* <https://arxiv.org/abs/astro-ph/0408107>`_ instead of Cartesian # velocity components. With an assumed distance, we can convert proper motion # components to Cartesian velocity components using `astropy.units`: galcen_distance = 8*u.kpc pm_gal_sgrA = [-6.379, -0.202] * u.mas/u.yr # from Reid & Brunthaler 2004 vy, vz = -(galcen_distance * pm_gal_sgrA).to(u.km/u.s, u.dimensionless_angles()) ############################################################################## # We still have to assume a line-of-sight velocity for the Galactic center, # which we will again take to be 11 km/s: vx = 11.1 * u.km/u.s v_sun2 = u.Quantity([vx, vy, vz]) # List of Quantity -> a single Quantity gc_frame2 = coord.Galactocentric(galcen_distance=galcen_distance, galcen_v_sun=v_sun2, z_sun=0*u.pc) gc3 = c1.transform_to(gc_frame2) print(gc3.v_x, gc3.v_y, gc3.v_z) ############################################################################## # The transformations also work in the opposite direction. This can be useful # for transforming simulated or theoretical data to observable quantities. As # an example, we'll generate 4 theoretical circular orbits at different # Galactocentric radii with the same circular velocity, and transform them to # Heliocentric coordinates: ring_distances = np.arange(10, 25+1, 5) * u.kpc circ_velocity = 220 * u.km/u.s phi_grid = np.linspace(90, 270, 512) * u.degree # grid of azimuths ring_rep = coord.CylindricalRepresentation( rho=ring_distances[:,np.newaxis], phi=phi_grid[np.newaxis], z=np.zeros_like(ring_distances)[:,np.newaxis]) angular_velocity = (-circ_velocity / ring_distances).to(u.mas/u.yr, u.dimensionless_angles()) ring_dif = coord.CylindricalDifferential( d_rho=np.zeros(phi_grid.shape)[np.newaxis]*u.km/u.s, d_phi=angular_velocity[:,np.newaxis], d_z=np.zeros(phi_grid.shape)[np.newaxis]*u.km/u.s ) ring_rep = ring_rep.with_differentials(ring_dif) gc_rings = coord.SkyCoord(ring_rep, frame=coord.Galactocentric) ############################################################################## # First, let's visualize the geometry in Galactocentric coordinates. Here are # the positions and velocities of the rings; note that in the velocity plot, # the velocities of the 4 rings are identical and thus overlaid under the same # curve: fig,axes = plt.subplots(1, 2, figsize=(12,6)) # Positions axes[0].plot(gc_rings.x.T, gc_rings.y.T, marker='None', linewidth=3) axes[0].text(-8., 0, r'$\odot$', fontsize=20) axes[0].set_xlim(-30, 30) axes[0].set_ylim(-30, 30) axes[0].set_xlabel('$x$ [kpc]') axes[0].set_ylabel('$y$ [kpc]') # Velocities axes[1].plot(gc_rings.v_x.T, gc_rings.v_y.T, marker='None', linewidth=3) axes[1].set_xlim(-250, 250) axes[1].set_ylim(-250, 250) axes[1].set_xlabel(f"$v_x$ [{(u.km / u.s).to_string('latex_inline')}]") axes[1].set_ylabel(f"$v_y$ [{(u.km / u.s).to_string('latex_inline')}]") fig.tight_layout() plt.show() ############################################################################## # Now we can transform to Galactic coordinates and visualize the rings in # observable coordinates: gal_rings = gc_rings.transform_to(coord.Galactic) fig, ax = plt.subplots(1, 1, figsize=(8, 6)) for i in range(len(ring_distances)): ax.plot(gal_rings[i].l.degree, gal_rings[i].pm_l_cosb.value, label=str(ring_distances[i]), marker='None', linewidth=3) ax.set_xlim(360, 0) ax.set_xlabel('$l$ [deg]') ax.set_ylabel(fr'$\mu_l \, \cos b$ [{(u.mas/u.yr).to_string("latex_inline")}]') ax.legend() plt.show()
bsd-3-clause
7,444,938,070,177,072,000
40.323077
81
0.61169
false
3.385714
false
false
false
stxnext-kindergarten/presence-analyzer-drudkiewicz
src/presence_analyzer/utils.py
1
5035
# -*- coding: utf-8 -*- """ Helper functions used in views. """ import csv from lxml import etree from json import dumps from functools import wraps from datetime import datetime from flask import Response from presence_analyzer.main import app import logging log = logging.getLogger(__name__) # pylint: disable=C0103 def jsonify(function): """ Creates a response with the JSON representation of wrapped function result. """ @wraps(function) def inner(*args, **kwargs): """ Inner function of jsonify. """ return Response(dumps(function(*args, **kwargs)), mimetype='application/json') return inner def get_menu_data(): """ Extracts menu data from CSV file It creates structure like this: data = [{ 'link': 'mainpage', 'title': 'This is mainpage' }] """ data = [] with open(app.config['MENU_CSV'], 'r') as csvfile: menu_reader = csv.reader(csvfile, delimiter=',') for row in menu_reader: data.append({ 'link': row[0], 'title': row[1] }) return data @app.template_global() def get_menu(page_url): """ Gets links and their titles. Adds 'selected' attribute to current page. """ pages = get_menu_data() for page in pages: if page.get('link') == page_url: page['selected'] = True return pages @app.template_global() def get_users(): """ Gets dictionary with users data imported from xml file """ data = etree.parse(app.config['DATA_USERS']).getroot() server = data.find('server') host = '{0}://{1}:{2}'.format( server.find('protocol').text, server.find('host').text, server.find('port').text, ) data_users = data.find('users') users = { user.get('id'): { 'name': unicode(user.find('name').text), 'avatar': host + user.find('avatar').text } for user in data_users } return users def get_data(): """ Extracts presence data from CSV file and groups it by user_id. It creates structure like this: data = { 'user_id': { datetime.date(2013, 10, 1): { 'start': datetime.time(9, 0, 0), 'end': datetime.time(17, 30, 0), }, datetime.date(2013, 10, 2): { 'start': datetime.time(8, 30, 0), 'end': datetime.time(16, 45, 0), }, } } """ data = {} with open(app.config['DATA_CSV'], 'r') as csvfile: presence_reader = csv.reader(csvfile, delimiter=',') for i, row in enumerate(presence_reader): if len(row) != 4: # ignore header and footer lines continue try: user_id = int(row[0]) date = datetime.strptime(row[1], '%Y-%m-%d').date() start = datetime.strptime(row[2], '%H:%M:%S').time() end = datetime.strptime(row[3], '%H:%M:%S').time() data.setdefault(user_id, {})[date] = { 'start': start, 'end': end } except (ValueError, TypeError): log.debug('Problem with line %d: ', i, exc_info=True) return data def group_by_weekday(items): """ Groups presence entries by weekday. """ result = {i: [] for i in range(7)} for date in items: start = items[date]['start'] end = items[date]['end'] result[date.weekday()].append(interval(start, end)) return result def seconds_since_midnight(time): """ Calculates amount of seconds since midnight. """ return time.hour * 3600 + time.minute * 60 + time.second def interval(start, end): """ Calculates inverval in seconds between two datetime.time objects. """ return seconds_since_midnight(end) - seconds_since_midnight(start) def mean(items): """ Calculates arithmetic mean. Returns zero for empty lists. """ return float(sum(items)) / len(items) if len(items) > 0 else 0 def group_by_weekday_start_end(items): """ Groups start and end presences by weekday. """ weekdays = { i: { 'start': [], 'end': [] } for i in range(7) } for date in items: start = seconds_since_midnight(items[date]['start']) end = seconds_since_midnight(items[date]['end']) weekdays[date.weekday()]['start'].append(start) weekdays[date.weekday()]['end'].append(end) return weekdays def presence_start_end(items): """ Groups mean start and mean end presences by weekday. """ weekdays = group_by_weekday_start_end(items) result = { weekday: { 'start': int(mean(time['start'])), 'end': int(mean(time['end'])), } for weekday, time in weekdays.items() } return result
mit
-7,590,320,113,156,924,000
23.802956
79
0.540417
false
3.915241
false
false
false
ghtmtt/DataPlotly
DataPlotly/core/plot_settings.py
1
9944
# -*- coding: utf-8 -*- """Encapsulates settings for a plot .. note:: This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. """ from qgis.PyQt.QtCore import ( QFile, QIODevice ) from qgis.PyQt.QtXml import QDomDocument, QDomElement from qgis.core import ( QgsXmlUtils, QgsPropertyCollection, QgsPropertyDefinition ) class PlotSettings: # pylint: disable=too-many-instance-attributes """ The PlotSettings class encapsulates all settings relating to a plot, and contains methods for serializing and deserializing these settings. """ PROPERTY_FILTER = 1 PROPERTY_MARKER_SIZE = 2 PROPERTY_COLOR = 3 PROPERTY_STROKE_COLOR = 4 PROPERTY_STROKE_WIDTH = 5 PROPERTY_X_MIN = 6 PROPERTY_X_MAX = 7 PROPERTY_Y_MIN = 8 PROPERTY_Y_MAX = 9 PROPERTY_TITLE = 10 PROPERTY_LEGEND_TITLE = 11 PROPERTY_X_TITLE = 12 PROPERTY_Y_TITLE = 13 PROPERTY_Z_TITLE = 14 DYNAMIC_PROPERTIES = { PROPERTY_FILTER: QgsPropertyDefinition('filter', 'Feature filter', QgsPropertyDefinition.Boolean), PROPERTY_MARKER_SIZE: QgsPropertyDefinition('marker_size', 'Marker size', QgsPropertyDefinition.DoublePositive), PROPERTY_COLOR: QgsPropertyDefinition('color', 'Color', QgsPropertyDefinition.ColorWithAlpha), PROPERTY_STROKE_COLOR: QgsPropertyDefinition('stroke_color', 'Stroke color', QgsPropertyDefinition.ColorWithAlpha), PROPERTY_STROKE_WIDTH: QgsPropertyDefinition('stroke_width', 'Stroke width', QgsPropertyDefinition.DoublePositive), PROPERTY_TITLE: QgsPropertyDefinition('title', 'Plot title', QgsPropertyDefinition.String), PROPERTY_LEGEND_TITLE: QgsPropertyDefinition('legend_title', 'Legend title', QgsPropertyDefinition.String), PROPERTY_X_TITLE: QgsPropertyDefinition('x_title', 'X title', QgsPropertyDefinition.String), PROPERTY_Y_TITLE: QgsPropertyDefinition('y_title', 'Y title', QgsPropertyDefinition.String), PROPERTY_Z_TITLE: QgsPropertyDefinition('z_title', 'Z title', QgsPropertyDefinition.String), PROPERTY_X_MIN: QgsPropertyDefinition('x_min', 'X axis minimum', QgsPropertyDefinition.Double), PROPERTY_X_MAX: QgsPropertyDefinition('x_max', 'X axis maximum', QgsPropertyDefinition.Double), PROPERTY_Y_MIN: QgsPropertyDefinition('y_min', 'Y axis minimum', QgsPropertyDefinition.Double), PROPERTY_Y_MAX: QgsPropertyDefinition('y_max', 'Y axis maximum', QgsPropertyDefinition.Double) } def __init__(self, plot_type: str = 'scatter', properties: dict = None, layout: dict = None, source_layer_id=None): # Define default plot dictionary used as a basis for plot initialization # prepare the default dictionary with None values # plot properties plot_base_properties = { 'marker': 'markers', 'custom': None, 'hover_text': None, 'additional_hover_text': None, 'hover_label_text': None, 'x_name': '', 'y_name': '', 'z_name': '', 'in_color': '#8ebad9', 'out_color': '#1f77b4', 'marker_width': 1, 'marker_size': 10, 'marker_symbol': 0, 'line_dash': 'solid', 'box_orientation': 'v', 'box_stat': None, 'box_outliers': False, 'name': '', 'normalization': None, 'cont_type': 'fill', 'color_scale': None, 'show_lines': False, 'cumulative': False, 'show_colorscale_legend': False, 'invert_color_scale': False, 'invert_hist': 'increasing', 'bins': 0, 'selected_features_only': False, 'visible_features_only': False, 'color_scale_data_defined_in_check': False, 'color_scale_data_defined_in_invert_check': False, 'marker_type_combo': 'Points', 'point_combo': '', 'line_combo': 'Solid Line', 'contour_type_combo': 'Fill', 'show_lines_check': False, 'opacity': 1, 'violin_side': None, 'violin_box': False, 'show_mean_line': False, 'layout_filter_by_map': False, 'layout_filter_by_atlas': False } # layout nested dictionary plot_base_layout = { 'title': 'Plot Title', 'legend': True, 'legend_title': None, 'legend_orientation': 'h', 'x_title': '', 'y_title': '', 'z_title': '', 'xaxis': None, 'bar_mode': None, 'x_type': None, 'y_type': None, 'x_inv': None, 'y_inv': None, 'x_min': None, 'x_max': None, 'y_min': None, 'y_max': None, 'range_slider': {'borderwidth': 1, 'visible': False}, 'bargaps': 0, 'polar': {'angularaxis': {'direction': 'clockwise'}}, 'additional_info_expression': '', 'bins_check': False, 'gridcolor': '#bdbfc0' } self.plot_base_dic = { 'plot_type': None, 'layer': None, 'plot_prop': plot_base_properties, 'layout_prop': plot_base_layout } self.data_defined_properties = QgsPropertyCollection() # Set class properties - we use the base dictionaries, replacing base values with # those from the passed properties dicts if properties is None: self.properties = plot_base_properties else: self.properties = {**plot_base_properties, **properties} if layout is None: self.layout = plot_base_layout else: self.layout = {**plot_base_layout, **layout} self.plot_type = plot_type self.x = [] self.y = [] self.z = [] self.feature_ids = [] self.additional_hover_text = [] self.data_defined_marker_sizes = [] self.data_defined_colors = [] self.data_defined_stroke_colors = [] self.data_defined_stroke_widths = [] # layout properties self.data_defined_title = "" self.data_defined_legend_title = "" self.data_defined_x_title = "" self.data_defined_y_title = "" self.data_defined_z_title = "" self.data_defined_x_min = None self.data_defined_x_max = None self.data_defined_y_min = None self.data_defined_y_max = None self.source_layer_id = source_layer_id def write_xml(self, document: QDomDocument): """ Writes the plot settings to an XML element """ element = QgsXmlUtils.writeVariant({ 'plot_type': self.plot_type, 'plot_properties': self.properties, 'plot_layout': self.layout, 'source_layer_id': self.source_layer_id, 'dynamic_properties': self.data_defined_properties.toVariant(PlotSettings.DYNAMIC_PROPERTIES) }, document) return element def read_xml(self, element: QDomElement) -> bool: """ Reads the plot settings from an XML element """ res = QgsXmlUtils.readVariant(element) if not isinstance(res, dict) or \ 'plot_type' not in res or \ 'plot_properties' not in res or \ 'plot_layout' not in res: return False self.plot_type = res['plot_type'] self.properties = res['plot_properties'] self.layout = res['plot_layout'] self.source_layer_id = res.get('source_layer_id', None) self.data_defined_properties.loadVariant(res.get('dynamic_properties', None), PlotSettings.DYNAMIC_PROPERTIES) return True def write_to_project(self, document: QDomDocument): """ Writes the settings to a project (represented by the given DOM document) """ elem = self.write_xml(document) parent_elem = document.createElement('DataPlotly') parent_elem.appendChild(elem) root_node = document.elementsByTagName("qgis").item(0) root_node.appendChild(parent_elem) def read_from_project(self, document: QDomDocument): """ Reads the settings from a project (represented by the given DOM document) """ root_node = document.elementsByTagName("qgis").item(0) if root_node.isNull(): return False node = root_node.toElement().firstChildElement('DataPlotly') if node.isNull(): return False elem = node.toElement() return self.read_xml(elem.firstChildElement()) def write_to_file(self, file_name: str) -> bool: """ Writes the settings to an XML file """ document = QDomDocument("dataplotly") elem = self.write_xml(document) document.appendChild(elem) try: with open(file_name, "w") as f: f.write('<?xml version="1.0" encoding="UTF-8"?>\n') f.write(document.toString()) return True except FileNotFoundError: return False def read_from_file(self, file_name: str) -> bool: """ Reads the settings from an XML file """ f = QFile(file_name) if f.open(QIODevice.ReadOnly): document = QDomDocument() if document.setContent(f): if self.read_xml(document.firstChildElement()): return True return False
gpl-2.0
3,380,574,620,063,825,000
36.104478
120
0.573109
false
4.024282
false
false
false
basilboli/playground
pubsub-hello/subscribe.py
1
1330
from client import * import base64 client = create_pubsub_client() # You can fetch multiple messages with a single API call. batch_size = 100 subscription = 'projects/single-object-747/subscriptions/mysubscription' # Create a POST body for the Pub/Sub request body = { # Setting ReturnImmediately to false instructs the API to wait # to collect the message up to the size of MaxEvents, or until # the timeout. 'returnImmediately': False, 'maxMessages': batch_size, } while True: resp = client.projects().subscriptions().pull( subscription=subscription, body=body).execute() received_messages = resp.get('receivedMessages') if received_messages is not None: ack_ids = [] for received_message in received_messages: pubsub_message = received_message.get('message') if pubsub_message: # Process messages print base64.b64decode(str(pubsub_message.get('data'))) # Get the message's ack ID ack_ids.append(received_message.get('ackId')) # Create a POST body for the acknowledge request ack_body = {'ackIds': ack_ids} # Acknowledge the message. client.projects().subscriptions().acknowledge( subscription=subscription, body=ack_body).execute()
unlicense
-353,386,624,742,801,900
32.275
72
0.658647
false
4.222222
false
false
false
dhyeon/ingredient2vec
src/IngredientAnalysis.py
1
1337
# import implemented python files import Config from utils import DataLoader, GensimModels, DataPlotter class IngredientAnalysis: def __init__(self, word_vectors): print "\nIngredientAnalysis initialized" self.word_vectors = word_vectors def analogy(self): list_most_similar_cosmul = self.word_vectors.most_similar(positive=['orange', 'apple_juice'], negative=['apple']) print "\nIngredient Analogy" for dic in list_most_similar_cosmul: word = dic[0] score = dic[1] if score > 0.5 : print word, score else: print "No similar words" if __name__ == '__main__': gensimLoader = GensimModels.GensimModels() model = gensimLoader.load_word2vec(path=Config.path_embeddings_ingredients) vocab = model.vocab """ Analyze Intredient2Vec """ # analgoy test ingredientAnalyzer = IngredientAnalysis(model) ingredientAnalyzer.analogy() """ Plot Ingredient2Vec """ # TSNE model_TSNE = DataPlotter.load_TSNE(model) # plot data with category DataPlotter.plot_category(model=model, model_tsne=model_TSNE, path=Config.path_plottings_ingredients_category, withLegends=True) # plot data with clustering DataPlotter.plot_clustering(model=model, model_tsne=model_TSNE, path=Config.path_plottings_ingredients_clustering)
apache-2.0
-8,695,295,712,565,464,000
19.253968
129
0.697083
false
3.102088
false
false
false
mcocdawc/chemcoord
setup.py
1
2131
#!/usr/bin/env python # -*- coding: utf-8 -*- """Setup file for the chemcoord package. """ from __future__ import with_statement from __future__ import absolute_import from setuptools import setup, find_packages from io import open # pylint:disable=redefined-builtin import version MAIN_PACKAGE = 'chemcoord' DESCRIPTION = "Python module for dealing with chemical coordinates." LICENSE = 'LGPLv3' AUTHOR = 'Oskar Weser' EMAIL = '[email protected]' URL = 'https://github.com/mcocdawc/chemcoord' INSTALL_REQUIRES = ['numpy>=1.14', 'scipy', 'pandas>=1.0', 'numba>=0.35', 'sortedcontainers', 'sympy', 'six', 'pymatgen'] KEYWORDS = ['chemcoord', 'transformation', 'cartesian', 'internal', 'chemistry', 'zmatrix', 'xyz', 'zmat', 'coordinates', 'coordinate system'] CLASSIFIERS = [ 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: GNU Lesser General Public License v3 (LGPLv3)', 'Operating System :: Unix', 'Operating System :: POSIX', 'Operating System :: Microsoft :: Windows', 'Natural Language :: English', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Scientific/Engineering :: Chemistry', 'Topic :: Scientific/Engineering :: Physics'] def readme(): '''Return the contents of the README.md file.''' with open('README.md') as freadme: return freadme.read() def setup_package(): setup( name=MAIN_PACKAGE, version=version.get_version(pep440=True), url=URL, description=DESCRIPTION, author=AUTHOR, author_email=EMAIL, include_package_data=True, keywords=KEYWORDS, license=LICENSE, long_description=readme(), classifiers=CLASSIFIERS, packages=find_packages('src'), package_dir={'': 'src'}, install_requires=INSTALL_REQUIRES, ) if __name__ == "__main__": setup_package()
lgpl-3.0
-9,055,857,766,856,021,000
30.80597
79
0.635382
false
3.791815
false
false
false
mcrute/pydora
pydora/utils.py
1
5542
import os import sys import getpass import subprocess class TerminalPlatformUnsupported(Exception): """Platform-specific functionality is not supported Raised by code that can not be used to interact with the terminal on this platform. """ pass class Colors: def __wrap_with(raw_code): @staticmethod def inner(text, bold=False): code = raw_code if bold: code = "1;{}".format(code) return "\033[{}m{}\033[0m".format(code, text) return inner red = __wrap_with("31") green = __wrap_with("32") yellow = __wrap_with("33") blue = __wrap_with("34") magenta = __wrap_with("35") cyan = __wrap_with("36") white = __wrap_with("37") class PosixEchoControl: """Posix Console Echo Control Driver Uses termios on POSIX compliant platforms to control console echo. Is not supported on Windows as termios is not available and will throw a TerminalPlatformUnsupported exception if contructed on Windows. """ def __init__(self): try: import termios self.termios = termios except ImportError: raise TerminalPlatformUnsupported("POSIX not supported") def set_echo(self, enabled): handle = sys.stdin.fileno() if not os.isatty(handle): return attrs = self.termios.tcgetattr(handle) if enabled: attrs[3] |= self.termios.ECHO else: attrs[3] &= ~self.termios.ECHO self.termios.tcsetattr(handle, self.termios.TCSANOW, attrs) class Win32EchoControl: """Windows Console Echo Control Driver This uses the console API from WinCon.h and ctypes to control console echo on Windows clients. It is not possible to construct this class on non-Windows systems, on those systems it will throw a TerminalPlatformUnsupported exception. """ STD_INPUT_HANDLE = -10 ENABLE_ECHO_INPUT = 0x4 DISABLE_ECHO_INPUT = ~ENABLE_ECHO_INPUT def __init__(self): import ctypes if not hasattr(ctypes, "windll"): raise TerminalPlatformUnsupported("Windows not supported") from ctypes import wintypes self.ctypes = ctypes self.wintypes = wintypes self.kernel32 = ctypes.windll.kernel32 def _GetStdHandle(self, handle): return self.kernel32.GetStdHandle(handle) def _GetConsoleMode(self, handle): mode = self.wintypes.DWORD() self.kernel32.GetConsoleMode(handle, self.ctypes.byref(mode)) return mode.value def _SetConsoleMode(self, handle, value): self.kernel32.SetConsoleMode(handle, value) def set_echo(self, enabled): stdin = self._GetStdHandle(self.STD_INPUT_HANDLE) mode = self._GetConsoleMode(stdin) if enabled: self._SetConsoleMode(stdin, mode | self.ENABLE_ECHO_INPUT) else: self._SetConsoleMode(stdin, mode & self.DISABLE_ECHO_INPUT) class Screen: def __init__(self): try: self._echo_driver = PosixEchoControl() except TerminalPlatformUnsupported: pass try: self._echo_driver = Win32EchoControl() except TerminalPlatformUnsupported: pass if not self._echo_driver: raise TerminalPlatformUnsupported("No supported terminal driver") def set_echo(self, enabled): self._echo_driver.set_echo(enabled) @staticmethod def clear(): sys.stdout.write("\x1b[2J\x1b[H") sys.stdout.flush() @staticmethod def print_error(msg): print(Colors.red(msg)) @staticmethod def print_success(msg): print(Colors.green(msg)) @staticmethod def get_string(prompt): while True: value = input(prompt).strip() if not value: print(Colors.red("Value Required!")) else: return value @staticmethod def get_password(prompt="Password: "): while True: value = getpass.getpass(prompt) if not value: print(Colors.red("Value Required!")) else: return value @staticmethod def get_integer(prompt): """Gather user input and convert it to an integer Will keep trying till the user enters an interger or until they ^C the program. """ while True: try: return int(input(prompt).strip()) except ValueError: print(Colors.red("Invalid Input!")) def iterate_forever(func, *args, **kwargs): """Iterate over a finite iterator forever When the iterator is exhausted will call the function again to generate a new iterator and keep iterating. """ output = func(*args, **kwargs) while True: try: playlist_item = next(output) playlist_item.prepare_playback() yield playlist_item except StopIteration: output = func(*args, **kwargs) class SilentPopen(subprocess.Popen): """A Popen varient that dumps it's output and error""" def __init__(self, *args, **kwargs): self._dev_null = open(os.devnull, "w") kwargs["stdin"] = subprocess.PIPE kwargs["stdout"] = subprocess.PIPE kwargs["stderr"] = self._dev_null super().__init__(*args, **kwargs) def __del__(self): self._dev_null.close() super().__del__()
mit
2,048,144,627,866,843,600
25.644231
78
0.600686
false
4.243492
false
false
false
tfiers/arenberg-online
ticketing/management/commands/prefill_given_paper_tickets.py
1
2064
from django.core.management.base import BaseCommand from given_paper_tickets import given_paper_tickets from core.models import User from ticketing.models import GivenPaperTickets, Performance from datetime import datetime, date from django.contrib.contenttypes.models import ContentType import django.utils.timezone as django_tz def fill_in_existing_data(): do = Performance.objects.get(date__contains=date(2015,5,7)) vr = Performance.objects.get(date__contains=date(2015,5,8)) tz = django_tz.get_default_timezone() for tup in given_paper_tickets['23 for do']: GivenPaperTickets.objects.update_or_create( given_on=datetime(2015,4,23,22,45,tzinfo=tz), given_to=User.objects.get(first_name__iexact=tup[0], last_name__iexact=tup[1]), for_what_type=ContentType.objects.get_for_model(Performance), for_what_id=do.id, count=tup[2], ) for tup in given_paper_tickets['23 for vr']: GivenPaperTickets.objects.update_or_create( given_on=datetime(2015,4,23,22,45,tzinfo=tz), given_to=User.objects.get(first_name__iexact=tup[0], last_name__iexact=tup[1]), for_what_type=ContentType.objects.get_for_model(Performance), for_what_id=vr.id, count=tup[2], ) for tup in given_paper_tickets['30 for do']: GivenPaperTickets.objects.update_or_create( given_on=datetime(2015,4,30,22,45,tzinfo=tz), given_to=User.objects.get(first_name__iexact=tup[0], last_name__iexact=tup[1]), for_what_type=ContentType.objects.get_for_model(Performance), for_what_id=do.id, count=tup[2], ) for tup in given_paper_tickets['30 for vr']: GivenPaperTickets.objects.update_or_create( given_on=datetime(2015,4,30,22,45,tzinfo=tz), given_to=User.objects.get(first_name__iexact=tup[0], last_name__iexact=tup[1]), for_what_type=ContentType.objects.get_for_model(Performance), for_what_id=vr.id, count=tup[2], ) class Command(BaseCommand): args = 'none' help = "yo do this" def handle(self, *args, **options): fill_in_existing_data() self.stdout.write('Succesfully filled in existing given_paper_tickets data.')
mit
3,304,924,674,308,608,500
34
82
0.731589
false
2.831276
false
false
false
rendermotion/RMMel
rig/constraintSwitch.py
1
5465
import pymel.core as pm from RMPY.rig import rigBase class ConstraintSwitchModel(rigBase.BaseModel): def __init__(self): super(ConstraintSwitchModel, self).__init__() self.outputs = [] self.list_a = [] self.list_b = [] self.constraints = [] self.attribute_output_a = None self.attribute_output_b = None class ConstraintSwitch(rigBase.RigBase): def __init__(self, *args, **kwargs): super(ConstraintSwitch, self).__init__(*args, **kwargs) self._model = ConstraintSwitchModel() self.constraint_func = {'parent': pm.parentConstraint, 'point': pm.pointConstraint, 'orient': pm.orientConstraint} @property def attribute_output_b(self): return self._model.attribute_output_b @attribute_output_b.setter def attribute_output_b(self, value): self._model.attribute_output_b = value @property def attribute_output_a(self): return self._model.attribute_output_a @attribute_output_a.setter def attribute_output_a(self, value): self._model.attribute_output_a = value @property def controls(self): return self._model.controls @controls.setter def controls(self, value): self._model.controls = value @property def outputs(self): return self._model.outputs @outputs.setter def outputs(self, value): self._model.outputs = value @property def constraints(self): return self._model.constraints @constraints.setter def constraints(self, value): self._model.constraints = value @property def list_a(self): return self._model.list_a @list_a.setter def list_a(self, value): self._model.list_a = value @property def list_b(self): return self._model.list_b @list_b.setter def list_b(self, value): self._model.list_b = value def build(self, list_a, list_b, **kwargs): control = kwargs.pop('control', None) self.create_list_base(list_a, list_b) if control: print 'control found {}, {}'.format(control, kwargs) self.create_attribute_control(control, **kwargs) self.link_attribute_to_constraints() self.controls.append(control) def create_list_base(self, list_a, list_b, **kwargs): destination = kwargs.pop('destination', None) constraint_type = kwargs.pop('constraint_type', 'parent') output_type = kwargs.pop('output_type', 'joint') root_group = pm.group(empty=True) self.name_convention.rename_name_in_format(root_group, name='intermediate') if output_type == 'group' or output_type == 'locator': root_group.setParent(self.rig_system.kinematics) else: root_group.setParent(self.rig_system.joints) if len(list_a) == len(list_b): for index, (constraint_a, constraint_b) in enumerate(zip(list_a, list_b)): if not destination: if output_type == 'group': output = self.create.group.point_base(constraint_a, name='intermediate') output.setParent(root_group) elif output_type == 'locator': output = self.create.space_locator.point_base(constraint_a, name='intermediate') output.setParent(root_group) else: reset, output = self.create.joint.point_base(constraint_a, name='intermediate') reset.setParent(root_group) else: output = destination[index] self.outputs.append(output) constraint = self.constraint_func[constraint_type](constraint_a, output) constraint.interpType.set(2) self.constraint_func[constraint_type](constraint_b, output) self.constraints.append(constraint) else: print 'list_a and list_b should be the same size' def create_attribute_control(self, control, **kwargs): self.controls.append(control) attribute_name = kwargs.pop('attribute_name', 'space_switch') if attribute_name not in pm.listAttr(self.controls[0]): pm.addAttr(self.controls[0], ln=attribute_name, hnv=True, hxv=True, min=0, max=10, k=True) reverse = pm.shadingNode('reverse', asUtility=True, name="reverse") multiply = pm.createNode('unitConversion', name="multiplier") self.name_convention.rename_name_in_format(reverse) self.name_convention.rename_name_in_format(multiply) pm.connectAttr('{}.{}'.format(self.controls[0], attribute_name), "{}.input".format(multiply)) pm.setAttr("{}.conversionFactor".format(multiply), 0.1) pm.connectAttr("{}.output".format(multiply), "{}.inputX".format(reverse)) self.attribute_output_a = multiply.output self.attribute_output_b = reverse.outputX def link_attribute_to_constraints(self): for each_constraint in self.constraints: for attribute_control, weight_alias in zip([self.attribute_output_a, self.attribute_output_b], each_constraint.getWeightAliasList()): attribute_control >> weight_alias if __name__ == '__main__': pass
lgpl-3.0
-212,268,365,905,434,180
35.684564
106
0.597987
false
4.027266
false
false
false
latreides/SE_Team3
flashcards/migrations/0002_auto_20140922_1421.py
1
2495
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('flashcards', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='card', name='Card_ID', ), migrations.RemoveField( model_name='deck', name='Deck_ID', ), migrations.RemoveField( model_name='image', name='Image_ID', ), migrations.AddField( model_name='card', name='id', field=models.AutoField(auto_created=True, primary_key=True, default=0, serialize=False, verbose_name='ID'), preserve_default=False, ), migrations.AddField( model_name='deck', name='id', field=models.AutoField(auto_created=True, primary_key=True, default=None, serialize=False, verbose_name='ID'), preserve_default=False, ), migrations.AddField( model_name='image', name='id', field=models.AutoField(auto_created=True, primary_key=True, default=None, serialize=False, verbose_name='ID'), preserve_default=False, ), migrations.AlterField( model_name='card', name='Back_Img_ID', field=models.ForeignKey(related_name=b'Back_Image', blank=True, to='flashcards.Image'), ), migrations.AlterField( model_name='card', name='Back_Text', field=models.TextField(blank=True), ), migrations.AlterField( model_name='card', name='Difficulty', field=models.IntegerField(blank=True), ), migrations.AlterField( model_name='card', name='Front_Img_ID', field=models.ForeignKey(related_name=b'Front_Image', blank=True, to='flashcards.Image'), ), migrations.AlterField( model_name='card', name='Front_Text', field=models.TextField(blank=True), ), migrations.AlterField( model_name='card', name='Last_Attempted', field=models.DateTimeField(blank=True), ), migrations.AlterField( model_name='deck', name='Accessed_Date', field=models.DateTimeField(blank=True), ), ]
mit
8,965,067,324,240,967,000
30.582278
122
0.536273
false
4.400353
false
false
false
aosingh/lexpy
lexpy/trie.py
1
1734
from lexpy._base.node import FSANode from lexpy._base.automata import FSA __all__ = ['Trie'] class Trie(FSA): __slots__ = 'root' """ Description: To create a Trie instance, create an object of this class. Attributes: root: (_TrieNode) The Top level node which is created every time you create a Trie instance """ def __init__(self): """ Description: This method initializes the Trie instance by creating the root node. By default, the id of the root node is 1 and number of words in the Trie is also 1. The label of the root node is an empty string ''. """ root = FSANode(0, '') super(Trie, self).__init__(root) def __len__(self): """ Description: Returns the number of nodes in the Trie Data Structure Returns: :returns (int) Number of Nodes in the trie data structure :return: """ return self._id def add(self, word, count=1): """ Description: Adds a word in the trie data structure. Args: :arg word (str) : The word that you want to insert in the trie. Raises: :raises: ``AssertionError`` if the word is None """ assert word is not None, "Input word cannot be None" node = self.root for i, letter in enumerate(word): if letter not in node.children: self._id += 1 node.add_child(letter, _id=self._id) node = node[letter] if i == len(word)-1: node.eow = True node.count += count self._num_of_words += count
gpl-3.0
1,698,374,852,213,542,100
26.109375
99
0.535755
false
4.25
false
false
false
CorundumGames/Invasodado
game/player.py
1
9349
from functools import partial from itertools import chain from math import sin, cos, pi from random import gauss, uniform from pygame import Rect, Surface from pygame.constants import * import pygame.key from core import color from core import config from core.particles import ParticleEmitter, ParticlePool, Particle from game import gamedata from game.combocounter import get_combo_counter from game.gameobject import GameObject from game.shipbullet import ShipBullet from game.enemy import Enemy ### Functions ################################################################## def _burst_appear(self): self.acceleration[1] = GRAVITY self.velocity = [gauss(0, 25), uniform(-10, -20)] def _radius_appear(self): self.progress = 0 distance_magnitude = gauss(300, 50) angle = uniform(0, -pi) self.position[0] = START_POS.centerx + distance_magnitude * cos(angle) self.position[1] = START_POS.centery + distance_magnitude * sin(angle) self.startpos = tuple(self.position) self.rect.topleft = (self.position[0] + .5, self.position[1] + .5) def _radius_move(self): self.progress += 1 position = self.position percent = self.progress / 30 if percent == 1: #If we've reached our target location... self.change_state(Particle.STATES.LEAVING) else: dx = (percent**2) * (3-2*percent) ddx = 1 - dx position[0] = (self.startpos[0] * ddx) + (START_POS.centerx * dx) position[1] = (self.startpos[1] * ddx) + (START_POS.centery * dx) self.rect.topleft = (position[0] + .5, position[1] + .5) ################################################################################ ### Constants ################################################################## PART_IMAGE = Rect(4, 170, 4, 4) APPEAR = config.load_sound('appear.wav') APPEAR_POOL = ParticlePool(config.get_sprite(PART_IMAGE), _radius_move, _radius_appear) DEATH = config.load_sound('death.wav') DEATH_POOL = ParticlePool(config.get_sprite(PART_IMAGE), appear_func=_burst_appear) FRAMES = tuple(config.get_sprite(Rect(32 * i, 128, 32, 32)) for i in range(5)) GRAVITY = 0.5 SHIP_STATES = ('IDLE', 'SPAWNING', 'ACTIVE', 'DYING', 'DEAD', 'RESPAWN') SPEED = 4 START_POS = Rect(config.SCREEN_WIDTH / 2, config.SCREEN_HEIGHT * .8, 32, 32) ################################################################################ ### Preparation ################################################################ for i in FRAMES: i.set_colorkey(color.COLOR_KEY, config.BLIT_FLAGS) ################################################################################ class FlameTrail(GameObject): ''' FlameTrail is the jet left by the Ship's engines. This is purely a graphical effect. ''' FRAMES = tuple(config.get_sprite(Rect(32*i, 0, 32, 32)) for i in range(6)) GROUP = None def __init__(self): super().__init__() self.anim = 0.0 self.image = FlameTrail.FRAMES[0] self.position = [-300.0, -300.0] self.rect = Rect(self.position, self.image.get_size()) self.state = 1 del self.acceleration, self.velocity for i in self.__class__.FRAMES: i.set_colorkey(color.COLOR_KEY, config.BLIT_FLAGS) def animate(self): self.anim += 1/3 self.image = FlameTrail.FRAMES[int(3 * sin(self.anim / 2)) + 3] actions = {1 : 'animate'} ################################################################################ class LightColumn(GameObject): ''' This class exists to let the player know where exactly he's aiming. ''' SIZE = Rect(0, 0, 32, config.SCREEN_HEIGHT - 32 * 3) def __init__(self): super().__init__() self.image = Surface(self.__class__.SIZE.size, config.BLIT_FLAGS) self.position = [-300.0, -300.0] self.rect = Rect(self.position, self.__class__.SIZE.size) self.state = 1 self.image.fill(color.WHITE) self.image.set_alpha(128) del self.acceleration, self.velocity actions = {1 : None} ################################################################################ class Ship(GameObject): ''' The Ship is the player character. There's only going to be one instance of it, but it has to inherit from pygame.sprite.Sprite, so we can't make it a true Python singleton (i.e. a module). ''' STATES = config.Enum(*SHIP_STATES) GROUP = None def __init__(self): ''' @ivar anim: A counter for ship animation @ivar image: The graphic @ivar invincible: How many frames of invincibility the player has if any @ivar my_bullet: The single bullet this ship may fire ''' super().__init__() self.anim = 0.0 self.appear_emitter = ParticleEmitter(APPEAR_POOL, START_POS.copy(), 2) self.emitter = ParticleEmitter(DEATH_POOL, START_POS.copy(), 2) self.flames = FlameTrail() self.image = FRAMES[0] self.invincible = 0 self.light_column = LightColumn() self.my_bullet = ShipBullet() self.position = list(START_POS.topleft) self.rect = START_POS.copy() self.respawn_time = 3 * 60 # In frames self.change_state(Ship.STATES.RESPAWN) def on_fire_bullet(self): bul = self.my_bullet if bul.state == ShipBullet.STATES.IDLE and self.state == Ship.STATES.ACTIVE: #If our bullet is not already on-screen... bul.add(Ship.GROUP) self.anim = 1 self.image = FRAMES[self.anim] bul.rect.center = self.rect.center bul.position = list(self.rect.topleft) bul.change_state(ShipBullet.STATES.FIRED) def respawn(self): self.appear_emitter.burst(200) APPEAR.stop() APPEAR.play() for i in chain(FRAMES, FlameTrail.FRAMES, {self.light_column.image}): i.set_alpha(128) self.invincible = 250 self.light_column.rect.midbottom = self.rect.midtop self.position = list(START_POS.topleft) self.rect = START_POS.copy() self.respawn_time = 3 * 60 self.change_state(Ship.STATES.ACTIVE) def move(self): keys = pygame.key.get_pressed() #Shorthand for which keys are pressed rect = self.rect width = self.image.get_width() if self.state not in {Ship.STATES.DYING, Ship.STATES.DEAD, Ship.STATES.IDLE}: if (keys[K_LEFT] or keys[K_a]) and rect.left > 0: #If we're pressing left and not at the left edge of the screen... self.position[0] -= SPEED elif (keys[K_RIGHT] or keys[K_d]) and rect.right < config.SCREEN_RECT.right: #If we're pressing right and not at the right edge of the screen... self.position[0] += SPEED rect.left = self.position[0] + 0.5 self.flames.rect.midtop = (rect.midbottom[0], rect.midbottom[1] - 1) #Compensate for the gap in the flames ^^^ self.light_column.position[0] = self.position[0] self.light_column.rect.left = round(self.light_column.position[0] / width) * width if self.invincible: #If we're invincible... self.invincible -= 1 elif self.image.get_alpha() == 128: for i in chain(FRAMES, FlameTrail.FRAMES): i.set_alpha(255) self.anim = self.anim + (0 < self.anim < len(FRAMES) - 1) / 3 if self.anim != 4 else 0.0 self.image = FRAMES[int(self.anim)] if gamedata.combo_time == gamedata.MAX_COMBO_TIME and gamedata.combo > 1: counter = get_combo_counter(gamedata.combo, self.rect.topleft) counter.rect.midbottom = self.rect.midtop counter.position = list(counter.rect.topleft) counter.change_state(counter.__class__.STATES.APPEARING) Ship.GROUP.add(counter) def die(self): DEATH.play() for i in chain(FRAMES, FlameTrail.FRAMES, (self.light_column.image,)): i.set_alpha(0) self.emitter.rect = self.rect self.emitter.burst(100) self.change_state(Ship.STATES.DEAD) def instadie(self, other): if gamedata.lives: #If we have any lives... gamedata.lives = 0 self.die() def wait_to_respawn(self): self.respawn_time -= 1 if not self.respawn_time: #If we're done waiting to respawn... self.change_state(Ship.STATES.RESPAWN) actions = { STATES.IDLE : None , STATES.SPAWNING : 'respawn' , STATES.ACTIVE : 'move' , STATES.DYING : 'die' , STATES.DEAD : 'wait_to_respawn', STATES.RESPAWN : 'respawn' , } collisions = { Enemy: instadie, }
gpl-3.0
-2,049,556,484,475,392,000
38.121339
96
0.535886
false
3.63209
true
false
false
hughobrien/shimmer-nokia-fall-detection
MovementGrapher.py
1
6767
# Accelerometer Grapher and Fall Dector - Hugh O'Brien March 2009 # #This is a script for PyS60 that opens a bluetooth serial connection #to a pre-programmed SHIMMER sensor, The SHIMMER provides accelerometer #data in the form "1111 1111 1111" where '1111' will be in the range #of 0 -> 4400. The three values represent the data gathered #from monitoring the three axis of the accelerometer. # #The script reduces the accuracy of these values in order to be able #to graph them on a screen that is only 320x240px in size # #The script also monitors the difference between two subsequent #readings in order to determine if a large movement has occured. #This can be interpreted as a fall. A call is then placed to a #pre-defined telephone number and the details of the victim are #read out to the receiver. import e32, appuifw, audio, telephone #btsocket is the 'old' BT system, new version introduced in #PyS60 1.9.1 is harder to work with. import btsocket as socket #a predefined BT MAC address can be set here to skip discovery process target = '' contact_name = "John Watson" contact_number = "5550137" victim_name = "Mr. Sherlock Holmes" victim_address = "221 B. Baker Street. London" sensitivity = 28 def fall(): global app_lock, contact_name, contact_number, victim_name,\ victim_address, data, prev audio.say("Dialling %s now" % contact_name) telephone.dial(contact_number) e32.ao_sleep(7) #7 sec delay for someone to answer for i in range(2, -1, -1): audio.say("This is an automated message. A fall has been detected.\ Please assist %s at address %s. \ This message will repeat %d more times" \ % (victim_name, victim_address, i) ) telephone.hang_up() data = ( 40, 40, 40 ) #reset values so as not to trigger again prev = data app_lock.signal() #unlock the main loop def connect(): #this function sets up the BT socket connection global btsocket, target try: #socket params passed to the OS btsocket=socket.socket(socket.AF_BT,socket.SOCK_STREAM) if target == '': #if no target defined, begin OS discovery routine address,services = socket.bt_discover() target = (address, services.values()[0]) btsocket.connect(target) #initiate connection and notify user appuifw.note(u"Connected to " + str(address), "info") except: #fail cleanly appuifw.note(u"Error connecting to device") btsocket.close() def getData(): #this receives single characters over the bitstream #until it encounters a newline and carraige return it then #returns the characters it has buffered until that point global btsocket #use the globally defined socket buffer = "" #create an empty buffer rxChar = btsocket.recv(1) #receive 1 char over BT and save in rxChar #spin here until we get a 'real' char while (rxChar == '\n') or (rxChar == '\r'): rxChar = btsocket.recv(1) #as long as we receive 'real' chars buffer them while (rxChar != '\n') and (rxChar != '\r'): buffer += rxChar rxChar = btsocket.recv(1) return buffer #return the buffer contents def graph_data(input): #this function produces the graphs on the screen. the screen is #landscape oriented with a resolution of 240x320. The constants seen #here are used to define where on the screen the graphs should be drawn global count, canvas, prev, data #take the input string formated like "1111 1111 1111" and parse it #to acquire 3 sets of chars and then interpret them as digits saving #them to a list in this format: ( '1111', '1111', '1111' ) #the values are then divided by 60 as they will be in the range #0 -> x -> 4400 as the screen is only 240px high. furthermore as there #are three graphs being drawn each is confined to (240 / 3 )px of #height. The divisor of 60 accommodates this at the cost of accuracy. try: data = (\ int(input[0:4]) / 60, \ int(input[5:9]) / 60, \ int(input[10:14]) / 60\ ) #sane defaults if we receive a malformed reading except ValueError: data = ( 36, 36, 36 ) #redraw the screen if there are more than 280 samples displayed. if count > 280: reset() #draw a line, with the X1 starting 10 points from the left and #expanding right, Y1 being the previous value of Y2 (initially zero) #plus a vertical offset so the graphs don't overlap each other, X2 #being one point right of X1 and Y2 one of the 3 XYZ readings plus #the vertical offset. other options are purely aesthetic. canvas.line(\ (count + 10, prev[0], count + 11, data[0] ), \ outline = 0xFF0000, width = 1) canvas.line(\ (count + 10, prev[1] + 80, count + 11, data[1] + 80), \ outline = 0x00DD00, width = 1) canvas.line(\ (count + 10, prev[2] + 160, count + 11, data[2] + 160), \ outline = 0x4444FF, width = 1) #increment counter - data should also be pushed into prev here #but this happens in the main loop for monitoring reasons count = count + 1 def reset(): # this function redraws the screen when it becomes full global count, canvas #reset the count and redraw a blank canvas count = 0 canvas.rectangle((0, 0, 320, 240), fill = 0x000000) #Main data = ( 0, 0, 0 ) prev = (40, 40, 40) #initial zero values for 'previous values' of the data canvas = appuifw.Canvas() #create a new Canvas object appuifw.app.body = canvas appuifw.app.screen = "full" #go 'fullscreen' appuifw.app.orientation = "landscape" # draw in landscape orientation appuifw.app.title = u"Activity Monitor" #name the program app_lock = e32.Ao_lock() #locking system connect() #open the BT socket e32.ao_sleep(1) # sleep for 1 second in case of graphical slowness reset() # initially reset the screen to draw the canvas while 1: #loop the following code infinitely e32.reset_inactivity() #keep the screensaver away graph_data( getData() ) # poll the BT data passing it to the grapher. #test the movement level between the last two samples if ( (abs(data[0] - prev[0]) > sensitivity ) \ or (abs(data[1] - prev[1]) > sensitivity ) \ or (abs(data[2] - prev[2]) > sensitivity ) ): fall() #if too much, take action app_lock.wait() #pause this loop until fall() finishes e32.ao_sleep(1) reset() prev = data #move current data into previous data buffer
mit
-3,011,709,792,132,006,400
36.242938
75
0.648589
false
3.574749
false
false
false
proflayton/iPerfParser
ParserStructure/Pings.py
1
4794
# ------------------------------------------------------------------------ # This block checks to see if the script is being run directly, # i.e. through the command line. If it is, then it stops and exits the # program, asking the user to use these files by running the main.py # ------------------------------------------------------------------------ try: from .utils import testForMain except: from utils import testForMain testForMain(__name__) # ------------------------------------------------------------------------ # PINGS.PY # # AUTHOR(S): Peter Walker [email protected] # Brandon Layton [email protected] # # PURPOSE- Holds a single measurement of data transfer speed in a single test # (i.e. This object represent one line of text in a speed test) # # VARIABLES: # secIntervalStart Float, represents the start time of this Ping # secIntervalEnd Float, represents the end time of this Ping (should always be start + 1) # size Float, represents this Ping's size in Kbits sent # speed Float, represents this Ping's speed in KBytes/sec # size_string String, converted from size, used in __str__ # size_units String, units to be appended to string # speed_string String, converted from speed, used in __str__ # speed_units String, units to be appended to string # # FUNCTIONS: # __init__ - Used to initialize an object of this class # INPUTS- self: reference to the object calling this method (i.e. Java's THIS) # OUTPUTS- none # # __str__ - Returns a string represenation of the object # INPUTS- self: reference to the object calling this method (i.e. Java's THIS) # OUTPUTS- String, representing the attributes of the object (THIS) # ------------------------------------------------------------------------ from .utils import global_str_padding as pad; pad = pad*4 class Ping(object): # ------------------ # Initializing some class attributes secIntervalStart = 0 secIntervalEnd = 0 size = 0 speed = 0 size_string = "" size_units = "" speed_string = "" speed_units = "" # ------------------ # DESC: Initializing class def __init__(self, data, size_u, speed_u): self.size_units = size_u self.speed_units = speed_u #This takes the given data String and parses the object information data_start = data.split("-")[0].split("]")[1].strip() data = data.split("-")[1] data_end = data.split("sec", 1)[0].strip() data = data.split("sec", 1)[1] data_size = data.split(self.size_units)[0].strip() data = data.split(self.size_units)[1] data_speed = data.split(self.speed_units)[0].strip() self.secIntervalStart = float(data_start) self.secIntervalEnd = float(data_end) self.size = float(data_size) self.speed = float(data_speed) #This section adds the zeros following the speed and size numbers, as sometimes # the size may vary between ##.# and ### if ("." in data_size): if (len(data_size.split(".")[1]) == 1): data_size += "0" #END IF else: data_size += ".00" self.size_string = data_size if ("." in data_speed): if (len(data_speed.split(".")[1]) == 1): data_speed += "0" #END IF else: data_speed += ".00" self.speed_string = data_speed #Creating the padding of spaces needed to line up all of the numbers # The padding after the time varies because the time may be between 0 and 99. # If the start and end are both 1 digit, two spaces are needed. If start and end are # a 1 and 2 digit number, one space is needed self.time_pad = "" if self.secIntervalEnd < 10.0: self.time_pad = " " elif self.secIntervalStart < 10.0 and self.secIntervalEnd >= 10.0: self.time_pad = " " from math import log10 self.size_pad = (" " * (4 - int(log10(self.size)))) if self.size else (" " * 4) self.speed_pad = (" " * (4 - int(log10(self.speed)))) if self.speed else (" " * 4) #END DEF # DESC: Creating a string representation of our object def __str__(self): return (pad + str(self.secIntervalStart) + "-" + str(self.secIntervalEnd) + self.time_pad + " " + self.size_pad + str(self.size_string) + " " + str(self.size_units) + " " + self.speed_pad + str(self.speed_string) + " " + str(self.speed_units) ) #END DEF #END CLASS
mit
-2,295,991,434,001,595,400
40.695652
97
0.539007
false
3.872375
false
false
false
HKuz/Test_Code
setup.py
1
4412
#!/Applications/anaconda/envs/Python3/bin import sys def main(): '''Python 3 Quick Start Code Examples''' # Get input from user and display it # feels = input("On a scale of 1-10, how do you feel? ") # print("You selected: {}".format(feels)) # Python Data Types integer = 42 floater = 3.14 stringer = 'Hello, World!' noner = None # singleton value, check: if var is None tupler = (1, 2, 3) lister = [1, 2, 3] dicter = dict( one = 1, two = 2, three = 3 ) boolTrue = True boolFalse = False # Conditionals print("=========== Conditionals ==========") num1, num2 = 0, 1 if (num1 > num2): # print("{} is greater than {}".format(num1, num2)) pass elif (num1 < num2): # print("{} is less than {}".format(num1, num2)) pass else: # print("{} is equal to {}".format(num1, num2)) pass # Python version of ternary operator bigger = num1 if num1 >= num2 else num2 smaller = num1 if num1 < num2 else num2 # print("Conditional statment says {} is greater than or equal to {}".format(bigger, smaller)) # Python version of a switch statement choices = dict( a = 'First', b = 'Second', c = 'Third', d = 'Fourth', e = 'Fifth' ) opt1 = 'c' opt2 = 'f' default = 'Option not found' # print("Python 'switch' statment using a dict: {}".format(choices)) # print("Option 1 was {} and returned: {}".format(opt1, choices.get(opt1, default))) # print("Option 2 was {} and returned: {}".format(opt2, choices.get(opt2, default))) print("==============================") # Loops print("=========== Loops ==========") print("Fibonacci series up to 100:") a, b = 0, 1 while b < 100: print(b, end=" ") a, b = b, a + b print() # print("For loop printing parts of {}".format(stringer)) for letter in stringer: # Don't print the vowels if letter in 'aeiouAEIOU': continue # Stop looping at punctuation if letter in '!@#$%^&*.,?;:-_+=|': break # print(letter, end=" ") # print() print("==============================") # Get an index using a for loop with enumerate() # for index, letter in enumerate(stringer): # print("Index: {} is letter: {}".format(index, letter)) # List comprehensions print("=========== List Comprehensions ==========") # Create a new list - [expression for variable in list] listOne = [0, 1, 2, 3, 4, 5] listSquares = [x*x for x in listOne] print("List comprehension: {}".format(listSquares)) # Filter a list - [expression for variable in list if condition] listOdd = [x for x in listSquares if x % 2 == 1] print("Filtered list comprehension: {}".format(listOdd)) # Dictionary comprehensions print("=========== Dict Comprehensions ==========") dictComp = {chr(64+x): x for x in range(1, 27)} print("Dict comprehension: {}".format(dictComp)) # Set comprehension print("=========== Set Comprehensions ==========") setComp = {x**5 for x in range(2,8)} print("Set comprehension: {}".format(setComp)) print("==============================") # Check if a type is an iterable print("=========== Is X Type Interable? ==========") print("Is a string an iterable? {}".format(hasattr(str, '__iter__'))) print("Is a Boolean an iterable? {}".format(hasattr(bool, '__iter__'))) print("Is a list an iterable? {}".format(hasattr(list, '__iter__'))) print("Is a set an iterable? {}".format(hasattr(set, '__iter__'))) print("Is an int an iterable? {}".format(hasattr(int, '__iter__'))) print("==============================") # Generator Expressions # Similar to list comprehension, less space in memory print("=========== Generator Expressions ==========") genExp = (x**5 for x in range(2,8)) listComp = [x**5 for x in range(2,8)] print("Type of a generator expression: {}".format(type(genExp))) print("Actual generator expression: {}".format(genExp)) print("Size of generator expression: {}".format(sys.getsizeof(genExp))) print("Size of same list comprehension: {}".format(sys.getsizeof(listComp))) print("==============================") return 0 if __name__ == '__main__': main()
mit
3,006,655,741,803,645,000
32.172932
98
0.541024
false
3.758092
false
false
false
TEAM-HRA/hra_suite
HRAGUI/src/hra_gui/qt/docks/tachogram_plot_statistics_dock_widget.py
1
4657
''' Created on 04-04-2013 @author: jurek ''' from hra_core.special import ImportErrorMessage try: from PyQt4.QtCore import * # @UnusedWildImport from PyQt4.QtGui import * # @UnusedWildImport from hra_core.misc import Params from hra_math.model.data_vector_listener import DataVectorListener from hra_math.statistics.tachogram_statistics import calculate_tachogram_statistics # @IgnorePep8 from hra_gui.qt.utils.dnd import CopyDragger from hra_gui.qt.widgets.dock_widget_widget import DockWidgetWidget from hra_gui.qt.widgets.table_view_widget import TableViewWidget from hra_gui.qt.plots.tachogram_plot_const import STATISTIC_MIME_ID from hra_gui.qt.plots.tachogram_plot_const import STATISTIC_CLASS_NAME_ID except ImportError as error: ImportErrorMessage(error, __name__) class TachogramPlotStatisticsDockWidget(DockWidgetWidget): """ a dock widget for tachogram plot statistics """ def __init__(self, parent, **params): self.params = Params(**params) super(TachogramPlotStatisticsDockWidget, self).__init__(parent, title=params.get('title', 'Tachogram plot statistics'), **params) self.data_accessor = self.params.data_accessor # alias self.data_accessor.addListener(self, __TachogramStatisticsDataVectorListener__(self)) self.__createStatisticsWidget__(QVBoxLayout()) parent.addDockWidget(Qt.RightDockWidgetArea, self) def __createStatisticsWidget__(self, _layout): self.statisticsWidget = TachogramStatisticsWidget(self.dockComposite, layout=_layout) self.fillStatisticsWidget() def fillStatisticsWidget(self): statistics = calculate_tachogram_statistics( signal=self.data_accessor.signal, annotation=self.data_accessor.annotation) self.statisticsWidget.setTachogramStatistics(statistics) class TachogramStatisticsWidget(TableViewWidget): """ a widget to display basic tachogram's statistics """ def __init__(self, parent, **params): TableViewWidget.__init__(self, parent, **params) self.__dragger__ = CopyDragger(self, STATISTIC_MIME_ID, drag_only=True) self.setSelectionMode(QAbstractItemView.SingleSelection) self.setSelectionBehavior(QAbstractItemView.SelectRows) self.__createModel__() def __createModel__(self): model = TachogramStatisticsModel(self) labels = QStringList(["class_name", "Statistic", "Value"]) model.setHorizontalHeaderLabels(labels) self.setModel(model) def setTachogramStatistics(self, _statistics): model = self.model() model.removeRows(0, model.rowCount()) values = _statistics[0] descriptions = _statistics[1] self.class_names = sorted([name for name in values]) for name in sorted([name for name in self.class_names]): model.appendRow([QStandardItem(str(name)), QStandardItem(str(descriptions[name])), QStandardItem(str(values[name]))]) self.setColumnHidden(0, True) # "class_name" is a hidden column def startDrag(self, dropActions): row = self.model().itemFromIndex(self.currentIndex()).row() self.__dragger__.clear() self.__dragger__.dragObject(STATISTIC_CLASS_NAME_ID, self.class_names[row]) self.__dragger__.startDrag() class TachogramStatisticsModel(QStandardItemModel): def __init__(self, parent): QStandardItemModel.__init__(self, parent=parent) def data(self, _modelIndex, _role): #the third column (indexing starts from 0) is a value of statistic if _modelIndex.column() == 2 and _role == Qt.TextAlignmentRole: return Qt.AlignRight else: return super(TachogramStatisticsModel, self).data(_modelIndex, _role) class __TachogramStatisticsDataVectorListener__(DataVectorListener): """ class used to recalculate tachogram statistics for tachogram statistics widget when signal or annotation data is changing """ def __init__(self, _dock_widget): self.__dock_widget__ = _dock_widget def changeSignal(self, _signal, **params): self.__dock_widget__.fillStatisticsWidget() def changeAnnotation(self, _annotation, **params): self.__dock_widget__.fillStatisticsWidget()
lgpl-3.0
8,411,936,265,652,319,000
40.954955
102
0.643333
false
4.124889
false
false
false
zsiki/ulyxes
pyapi/bluetoothiface.py
1
5203
#!/usr/bin/env python # -*- coding: utf-8 -*- """ .. module:: bluetoothiface.py :platform: Unix, Windows :synopsis: Ulyxes - an open source project to drive total stations and publish observation results. GPL v2.0 license Copyright (C) 2010-2013 Zoltan Siki <[email protected]>. sudo apt-get -y install bluetooth bluez bluez-tools rfkill to turn on/off bluetooth interface from the command line: rfkill unblock bluetooth or sudo /etc/init.d/bluetooth stop rfkill block bluetooth or sudo /etc/init.d/bluetooth start make connection from command line hciconfig https://computingforgeeks.com/connect-to-bluetooth-device-from-linux-terminal/ .. moduleauthor:: Zoltan Siki <[email protected]>, Kecskeméti Máté <[email protected]> """ import logging import bluetooth import time from iface import Iface class BluetoothIface(Iface): """ Interface to communicate through bluetooth interfacei as a client. This class depends on pybluez. :param name: name of bluetooth interface (str) :param mac: mac address of server to connect :param port: bluetooth port, default 3 :param eomRead: end of message char from instrument (str), default '\\r\\n' :param eomWrite: end of message char from computer (str), default '\\r\\n' """ def __init__(self, name, mac, port=3, timeout=5, eomRead='\r\n', eomWrite='\r\n'): """ Constructor for bluetooth client """ super(BluetoothIface, self).__init__(name) self.mac = mac self.port = port self.timeout = timeout self.eomRead = eomRead self.eomWrite = eomWrite self.socket = None self.Open() def __del__(self): """ Destructor for bluetooth client """ self.Close() self.socket = None def Open(self): """ Open bluetooth communication """ self.socket = bluetooth.BluetoothSocket(bluetooth.RFCOMM) try: self.socket.connect((self.mac, self.port)) except Exception: logging.error(" error opening bluetooth connection") self.state = self.IF_SOURCE self.socket = None def Close(self): """ Close bluetooth communication """ try: self.socket.close() except Exception: pass def GetLine(self): """ read a line from bluetooth """ if self.socket is None or self.state != self.IF_OK: logging.error(" bluetooth connection not opened or in error state") return None # read answer till end of message marker ans = '' w = -1 * len(self.eomRead) while ans[w:] != self.eomRead: ch = '' try: ch = (self.socket.recv(1)).decode('ascii') except Exception: self.state = self.IF_READ logging.error(" cannot read bluetooth connection") break if ch == '': # timeout exit loop self.state = self.IF_TIMEOUT logging.error(" timeout on bluetooth") break ans += ch # remove end of line logging.debug(" message got: %s", ans) ans = ans.strip(self.eomRead) return ans def PutLine(self, msg): """ Send message through bluetooth :param msg: message to send (str) :returns: 0 - on OK, -1 on error or interface is in error state """ # do nothing if interface is in error state if self.socket is None or self.state != self.IF_OK: logging.error(" bluetooth connection not opened or in error state") return -1 # add CR/LF to message end w = -1 * len(self.eomWrite) if msg[w:] != self.eomWrite: msg += self.eomWrite # remove special characters msg = msg.encode('ascii', 'ignore') # send message to bluetooth interface logging.debug(" message sent: %s", msg) try: self.socket.settimeout(self.timeout) self.socket.send(msg) except Exception: self.state = self.IF_WRITE logging.error(" cannot write to bluetooth connection") return -1 return 0 def Send(self, msg): """ send message to bluetooth and wait for answer :param msg: message to send, it can be multipart message separated by '|' (str) :returns: answer from instrument (str) """ msglist = msg.split("|") res = '' #sending for m in msglist: if self.PutLine(m) == 0: time.sleep(5) res += self.GetLine() + '|' if res.endswith('|'): res = res[:-1] return res if __name__ == "__main__": #a = BluetoothIface('test', '00:12:F3:04:ED:06', 1) # leica 1200 a = BluetoothIface('test', '00:07:80:57:3B:6E', 1) # topcon hiper II rover if a.GetState() == a.IF_OK: print(a.Send('%R1Q,2008:1,0')) print(a.GetState())
gpl-2.0
-7,032,048,408,603,781,000
32.333333
91
0.566923
false
3.954373
false
false
false
ntt-nflex/flexer
examples/get_logs.py
1
3563
"""This is an example implementation of a "get_logs" handler for cmp-connectors. For the purpose of this example, a python generator is generating fake logs """ import datetime as dt import itertools def get_logs(event, context): # mock the credentials for now, they're usually inside the event # e.g. credentials = event['credentials'] credentials = { "username": "usr", "password": "pass", "region": "eu" } try: username = credentials["username"] password = credentials["password"] region = credentials["region"] # Provider region of the resource provider_id = event["provider_id"] # Provider ID of the resource resource_id = event["resource_id"] # CMP ID of the resource start_date = event["start_date"] end_date = event["end_date"] except KeyError as e: raise Exception("Missing \"%s\" from the event" % e) client = NTTTrainingClient(username=username, password=password, region=region) logs = client.get_logs(provider_id=provider_id, start_date=start_date, end_date=end_date) context.log("Collected %d logs from Prototype provider" % len(logs)) cmp_logs = build_cmp_logs(context, resource_id, logs) context.log("Built %d CMP logs" % len(cmp_logs)) return post_logs(context=context, data=cmp_logs) ADJECTIVES = [ "bad", "terrible", "awful", "sinister", "despicable", "good", "great", "groovy", "wonderful", "marvelous", "weird", "mysterious", "unexpected", "worrying", ] def logs_generator(adjectives): values = ["Something %s happened" % adj for adj in adjectives] return itertools.cycle(values) logs = logs_generator(adjectives=ADJECTIVES) class NTTTrainingClient(object): """Fake provider client that generates logs. It uses the logs generator above to generate fake data """ def __init__(self, *args, **kwargs): """The arguments depend on the format of the provider credentials""" self.provider = 'ntt-training' def get_logs(self, provider_id, start_date, end_date): """Query the provider for log data and return it""" start = dt.datetime.strptime(start_date, "%Y-%m-%dT%H:%M:%S.%fZ") end = dt.datetime.strptime(end_date, "%Y-%m-%dT%H:%M:%S.%fZ") return self._generate_logs(logs, start, end) def _generate_logs(self, iterator, start, end): logs = [] t = start while t <= end: logs.append({ "message": next(iterator), "level": "INFO", "time": t.strftime("%Y-%m-%dT%H:%M:%S.%fZ") }) t += dt.timedelta(minutes=1) return logs def build_cmp_logs(context, resource_id, logs): """Convert the provider logs into a CMP-friendly format""" cmp_logs = [] for log in logs: cmp_logs.append({ "service": "nflex.cmp-adapter.ntt-training", "resource_id": resource_id, "severity": log["level"], "timestamp": log["time"], "message": log["message"], }) return cmp_logs def post_logs(context, data): """Send the logs to CMP""" try: response = context.api.post(path="/logs", data=data) response.raise_for_status() return response.json() except Exception as err: context.log("Error sending logs to CMP: %s" % err, severity="ERROR")
gpl-2.0
-4,423,594,845,112,025,600
30.254386
76
0.586304
false
3.802561
false
false
false
foraliving/pilot
foraliving/forms.py
1
2864
from django import forms from django.forms import CharField, Form, PasswordInput from .models import * from django.contrib.auth.models import User, Group from django.db.models.fields import BLANK_CHOICE_DASH class volunteerUserSignupForm(forms.ModelForm): password = forms.CharField(widget=PasswordInput()) class Meta: model = User fields = ['first_name', 'last_name', 'email', 'username', 'password', ] class volunteerSignupForm(forms.ModelForm): hsGradChoices = ( ("", 'Select range'), (1, '1-4'), (2, '5-10'), (3, '11 or more'), (4, 'Have not graduated'),) collegeLevelChoice = ( ("", "Select"), (1, "associate"), (2, "bachelor's"), (3, "master's"), (4, "doctoral"), (5, "none"),) canGetText = forms.TypedChoiceField(coerce=lambda x: x == 'True', choices=((True, 'Yes'), (False, 'No')), widget=forms.RadioSelect, label="Can we text you on this number?", required=True) isBusinessOwner = forms.BooleanField(label="I am a business owner", initial=True, required=False) yearsInIndustry = forms.CharField(label="Number of years in this industry", required=True, widget=forms.NumberInput(attrs={'size': '10', 'placeholder': ''})) workTitle = forms.CharField(label="Work title", required=False) workIndustry = forms.CharField(label="Work industry", required=False) linkedinProfile = forms.CharField(label="Your Linkedin profile", required=False) yearsSinceHSGraduation = forms.ChoiceField(hsGradChoices, label="Year since high school graduation", required=True) collegeLevel = forms.ChoiceField(choices=collegeLevelChoice, label="Highest college degree", required=True, initial="") collegeMajor = forms.CharField(label="College major(s)", required=False) skills = forms.CharField(label="Please enter skills related to your job, role and industry", required=False) interests = forms.CharField(label="Please provide some interests that lead you to your career choice", required=False) def __init__(self, *args, **kwargs): super(volunteerSignupForm, self).__init__(*args, **kwargs) self.fields['yearsInIndustry'].widget.attrs['style'] = "width:20%" class Meta: model = Volunteer_User_Add_Ons # fields = '__all__' exclude = ['user'] class TeacherAddClass(forms.Form): class_name = forms.CharField(label="Class name") students_csv = forms.FileField(required=True, label='Upload File') class TeacherAddClassAssignment(forms.Form): assignment_name = forms.CharField(label="Assignment name") description = forms.CharField(label="Description", required=False)
mit
-6,639,675,033,360,926,000
43.061538
121
0.639665
false
3.912568
false
false
false
wangjun/pyload
module/plugins/hoster/UlozTo.py
1
6962
# -*- coding: utf-8 -*- """ This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see <http://www.gnu.org/licenses/>. @author: zoidberg """ import re import time from module.plugins.internal.SimpleHoster import SimpleHoster, create_getInfo from module.common.json_layer import json_loads def convertDecimalPrefix(m): # decimal prefixes used in filesize and traffic return ("%%.%df" % {'k': 3, 'M': 6, 'G': 9}[m.group(2)] % float(m.group(1))).replace('.', '') class UlozTo(SimpleHoster): __name__ = "UlozTo" __type__ = "hoster" __pattern__ = r"http://(\w*\.)?(uloz\.to|ulozto\.(cz|sk|net)|bagruj.cz|zachowajto.pl)/(?:live/)?(?P<id>\w+/[^/?]*)" __version__ = "0.95" __description__ = """uloz.to""" __author_name__ = ("zoidberg") FILE_NAME_PATTERN = r'<a href="#download" class="jsShowDownload">(?P<N>[^<]+)</a>' FILE_SIZE_PATTERN = r'<span id="fileSize">.*?(?P<S>[0-9.]+\s[kMG]?B)</span>' FILE_INFO_PATTERN = r'<p>File <strong>(?P<N>[^<]+)</strong> is password protected</p>' FILE_OFFLINE_PATTERN = r'<title>404 - Page not found</title>|<h1 class="h1">File (has been deleted|was banned)</h1>' FILE_SIZE_REPLACEMENTS = [('([0-9.]+)\s([kMG])B', convertDecimalPrefix)] FILE_URL_REPLACEMENTS = [(r"(?<=http://)([^/]+)", "www.ulozto.net")] PASSWD_PATTERN = r'<div class="passwordProtectedFile">' VIPLINK_PATTERN = r'<a href="[^"]*\?disclaimer=1" class="linkVip">' FREE_URL_PATTERN = r'<div class="freeDownloadForm"><form action="([^"]+)"' PREMIUM_URL_PATTERN = r'<div class="downloadForm"><form action="([^"]+)"' def setup(self): self.multiDL = self.premium self.resumeDownload = True def process(self, pyfile): pyfile.url = re.sub(r"(?<=http://)([^/]+)", "www.ulozto.net", pyfile.url) self.html = self.load(pyfile.url, decode=True, cookies=True) passwords = self.getPassword().splitlines() while self.PASSWD_PATTERN in self.html: if passwords: password = passwords.pop(0) self.logInfo("Password protected link, trying " + password) self.html = self.load(pyfile.url, get={"do": "passwordProtectedForm-submit"}, post={"password": password, "password_send": 'Send'}, cookies=True) else: self.fail("No or incorrect password") if re.search(self.VIPLINK_PATTERN, self.html): self.html = self.load(pyfile.url, get={"disclaimer": "1"}) self.file_info = self.getFileInfo() if self.premium and self.checkTrafficLeft(): self.handlePremium() else: self.handleFree() self.doCheckDownload() def handleFree(self): action, inputs = self.parseHtmlForm('id="frm-downloadDialog-freeDownloadForm"') if not action or not inputs: self.parseError("free download form") self.logDebug('inputs.keys() = ' + str(inputs.keys())) # get and decrypt captcha if inputs.has_key('captcha_value') and inputs.has_key('captcha_id') and inputs.has_key('captcha_key'): # Old version - last seen 9.12.2013 self.logDebug('Using "old" version') captcha_value = self.decryptCaptcha("http://img.uloz.to/captcha/%s.png" % inputs['captcha_id']) self.logDebug('CAPTCHA ID: ' + inputs['captcha_id'] + ', CAPTCHA VALUE: ' + captcha_value) inputs.update({'captcha_id': inputs['captcha_id'], 'captcha_key': inputs['captcha_key'], 'captcha_value': captcha_value}) elif inputs.has_key("captcha_value") and inputs.has_key("timestamp") and inputs.has_key("salt") and inputs.has_key("hash"): # New version - better to get new parameters (like captcha reload) because of image url - since 6.12.2013 self.logDebug('Using "new" version') xapca = self.load("http://www.ulozto.net/reloadXapca.php", get = { "rnd": str(int(time.time()))}) self.logDebug('xapca = ' + str(xapca)) data = json_loads(xapca) captcha_value = self.decryptCaptcha(str(data['image'])) self.logDebug('CAPTCHA HASH: ' + data['hash'] + ', CAPTCHA SALT: ' + str(data['salt']) + ', CAPTCHA VALUE: ' + captcha_value) inputs.update({'timestamp': data['timestamp'], 'salt': data['salt'], 'hash': data['hash'], 'captcha_value': captcha_value}) else: self.parseError("CAPTCHA form changed") self.multiDL = True self.download("http://www.ulozto.net" + action, post=inputs, cookies=True, disposition=True) def handlePremium(self): self.download(self.pyfile.url + "?do=directDownload", disposition=True) #parsed_url = self.findDownloadURL(premium=True) #self.download(parsed_url, post={"download": "Download"}) def findDownloadURL(self, premium=False): msg = "%s link" % ("Premium" if premium else "Free") found = re.search(self.PREMIUM_URL_PATTERN if premium else self.FREE_URL_PATTERN, self.html) if not found: self.parseError(msg) parsed_url = "http://www.ulozto.net" + found.group(1) self.logDebug("%s: %s" % (msg, parsed_url)) return parsed_url def doCheckDownload(self): check = self.checkDownload({ "wrong_captcha": re.compile(r'<ul class="error">\s*<li>Error rewriting the text.</li>'), "offline": re.compile(self.FILE_OFFLINE_PATTERN), "passwd": self.PASSWD_PATTERN, "server_error": 'src="http://img.ulozto.cz/error403/vykricnik.jpg"', # paralell dl, server overload etc. "not_found": "<title>Ulož.to</title>" }) if check == "wrong_captcha": #self.delStorage("captcha_id") #self.delStorage("captcha_text") self.invalidCaptcha() self.retry(reason="Wrong captcha code") elif check == "offline": self.offline() elif check == "passwd": self.fail("Wrong password") elif check == "server_error": self.logError("Server error, try downloading later") self.multiDL = False self.setWait(3600, True) self.wait() self.retry() elif check == "not_found": self.fail("Server error - file not downloadable") getInfo = create_getInfo(UlozTo)
gpl-3.0
-4,936,276,214,774,120,000
44.201299
137
0.605085
false
3.575244
false
false
false
opennode/nodeconductor-saltstack
src/nodeconductor_saltstack/saltstack/apps.py
1
2254
from django.apps import AppConfig from django.db.models import signals from nodeconductor.structure import SupportedServices class SaltStackConfig(AppConfig): name = 'nodeconductor_saltstack.saltstack' verbose_name = 'SaltStack Core' service_name = 'SaltStack' def ready(self): from .backend import SaltStackBackend from .models import SaltStackProperty import handlers SupportedServices.register_backend(SaltStackBackend) from nodeconductor.structure.models import ServiceSettings from nodeconductor.quotas.fields import QuotaField, CounterQuotaField from ..exchange.models import ExchangeTenant ServiceSettings.add_quota_field( name='sharepoint_storage', quota_field=QuotaField( creation_condition=lambda service_settings: service_settings.type == SaltStackConfig.service_name, ), ) ServiceSettings.add_quota_field( name='exchange_storage', quota_field=QuotaField( creation_condition=lambda service_settings: service_settings.type == SaltStackConfig.service_name, ), ) ServiceSettings.add_quota_field( name='exchange_tenant_count', quota_field=CounterQuotaField( creation_condition=lambda service_settings: service_settings.type == SaltStackConfig.service_name, target_models=[ExchangeTenant], path_to_scope='service_project_link.service.settings', ) ) for index, model in enumerate(SaltStackProperty.get_all_models()): signals.post_save.connect( handlers.log_saltstack_property_created, sender=model, dispatch_uid='nodeconductor_saltstack.saltstack.handlers.log_saltstack_property_created{}_{}'.format( model.__name__, index), ) signals.post_delete.connect( handlers.log_saltstack_property_deleted, sender=model, dispatch_uid='nodeconductor_saltstack.saltstack.handlers.log_saltstack_property_deleted{}_{}'.format( model.__name__, index), )
mit
-2,577,255,075,806,401,500
37.862069
117
0.63354
false
4.63786
true
false
false
MeGotsThis/Hanabi-AI
server.py
1
20140
import math import random from enum import Enum from typing import Any, Dict, List, Optional, Tuple, Type from bot import bot from enums import Action, Clue, Rank, Suit, Variant from game import Game names: List[str] = ['Alice', 'Bob', 'Cathy', 'Donald', 'Emily'] numberWords: List[str] = ['zero', 'one', 'two', 'three', 'four', 'five'] class CardStatus(Enum): Deck = 0 Hand = 1 Play = 2 Discard = 3 class ServerGame: def __init__(self, variant: Variant, players: int, botCls: Type[bot.Bot], *, print_messages: Any=False, print_verbose: Any=False, null_clues: Any=False, seed: Any=None, **kwargs) -> None: if variant not in Variant: raise ValueError('variant') if players < 2 or players > 5: raise ValueError('players') self.seed: Any = seed self.rng: random.Random = random.Random(self.seed) self.variant: Variant = variant self.printVerbose: Optional[bool] = convert_print(print_verbose) self.printMessages: Optional[bool]= convert_print(print_messages) self.allowNullClues: bool = bool(null_clues) self.gameLog: List[Tuple[str, dict]] = [] self.messages: List[str] = [] self.verbose: List[str] = [] self.deck: List[ServerCard] self.initialize_deck() self.hands: List[List[int]] = [[] for _ in range(players)] self.discards: Dict[Suit, List[int]] self.discards = {s: [] for s in self.variant.pile_suits} self.plays: Dict[Suit, List[int]] self.plays = {s: [] for s in self.variant.pile_suits} self.nextDraw: int = 0 self.turnCount: int = 0 self.endTurn: Optional[int] = None self.maxScore: int = 25 self.score: int = 0 self.clues: int = 8 self.strikes: int = 0 self.loss: bool = False self.connections: List[ServerConnection] self.connections = [ServerConnection(p, self) for p in range(players)] self.players: List[Game] self.players = [Game(self.connections[p], self.variant, names[:players], p, botCls, **kwargs) for p in range(players)] self.currentPlayer: int = self.rng.randrange(players) self.lastAction: int = (self.currentPlayer - 1) % players def isGameComplete(self) -> bool: if self.strikes == 3 or self.score >= self.maxScore: return True if self.turnCount > (self.endTurn or math.inf): return True return False def updateMaxScore(self) -> None: maxScore: int = 0 s: Suit for s in self.variant.pile_suits: possible: int = 5 copies: Dict[Rank, int] = {r: 0 for r in Rank} d: int for d in self.discards[s]: card: ServerCard = self.deck[d] copies[card.rank] += 1 r: Rank for r in reversed(Rank): # type: ignore totalCopies: int = r.num_copies if self.variant == Variant.OneOfEach and s == Suit.Extra: totalCopies += 1 if copies[r] == totalCopies: possible = r.value - 1 maxScore += possible self.maxScore = maxScore def print(self, message: Optional[str]=None, verbose: Optional[str]=None, final: bool=False) -> None: verbose = verbose if verbose is not None else message if verbose is not None: self.verbose.append(verbose) if self.printVerbose: print(verbose) if message is not None: self.messages.append(message) if not self.printVerbose and self.printMessages: print(message) if final and self.printMessages is None: print(message) def run_game(self) -> None: self.log('game_start', {'replay': False}) p: Game for p in self.players: self.log('init', {'seat': p.botPosition, 'names': names[:len(self.players)], 'variant': self.variant.value, 'replay': False, 'spectating': False}) handSize: int = 4 if len(self.players) > 3 else 5 for p in self.players: for _ in range(handSize): self.draw_card(p.botPosition) self.print('{} goes first'.format(names[self.currentPlayer])) while not self.isGameComplete(): self.send('notify', {'type': 'status', 'clues': self.clues, 'score': self.score}) self.send('notify', {'type': 'turn', 'who': self.currentPlayer, 'num': self.turnCount}) self.send('action', {'can_clue': self.clues > 0, 'can_discard': self.clues < 8}, player=self.currentPlayer) self.turnCount += 1 self.currentPlayer = (self.currentPlayer + 1) % len(self.players) self.updateMaxScore() self.send('notify', {'type': 'game_over'}) self.loss = self.strikes == 3 if not self.loss: self.print("Players score {} points".format(self.score), final=True) else: self.print("Players lost", final=True) self.print(verbose='') self.print(verbose='Number of Players: {}'.format(len(self.players))) self.print(verbose='Variant: {}'.format(self.variant.full_name)) self.print(verbose='Deck Size: {}'.format(len(self.deck))) self.recordGameState() def recordGameState(self) -> None: deckSize: int = len(self.deck) - self.nextDraw lastPlayer: int = (self.currentPlayer - 1) % len(self.players) self.print(verbose='Deck Count: {}'.format(deckSize)) self.print(verbose='Clue Count: {}'.format(self.clues)) self.print(verbose='Score: {}'.format(self.score)) self.print(verbose='Strikes: {}'.format(self.strikes)) self.print(verbose='Max Possible Score: {}'.format(self.maxScore)) self.print(verbose='Turn Count: {}'.format(self.turnCount)) self.print(verbose='End Turn: {}'.format(self.endTurn)) self.print(verbose='Next Draw Index: {}'.format(self.nextDraw)) self.print(verbose='Last Player: {}'.format(names[lastPlayer])) self.print(verbose='') self.print(verbose='Player Hands (Newest To Oldest)') p: int hand: List[int] for p, hand in enumerate(self.hands): cards = [] for deckIdx in reversed(hand): card = self.deck[deckIdx] cards.append('{} {}'.format(card.suit.full_name(self.variant), card.rank.value)) self.print(verbose='{}: {}'.format(names[p], ', '.join(cards))) self.print(verbose='') self.print(verbose='Played Cards') s: Suit for s in self.variant.pile_suits: self.print(verbose='{}: {}'.format(s.full_name(self.variant), len(self.plays[s]))) self.print(verbose='') self.print(verbose='Discarded Cards') for s in self.variant.pile_suits: discards: List[int] = [] for deckIdx in self.discards[s]: card = self.deck[deckIdx] discards.append(card.rank.value) discards.sort() self.print(verbose='{}: {}'.format( s.full_name(self.variant), ', '.join(str(d) for d in discards))) self.print(verbose='') def log(self, type: str, resp: dict) -> None: self.gameLog.append((type, resp)) def send(self, type: str, resp: dict, *, player: Optional[int]=None) -> None: if player is not None: p = self.players[player] p.received(type, resp) else: for p in self.players: p.received(type, resp) self.log(type, resp) def initialize_deck(self) -> None: self.deck = [] index: int = 0 s: Suit r: Rank i: int for s in self.variant.pile_suits: for r in Rank: if not (s == Suit.Extra and self.variant == Variant.OneOfEach): for i in range(r.num_copies): self.deck.append(ServerCard(index, s, r, self.variant)) index += 1 else: self.deck.append(ServerCard(index, s, r, self.variant)) index += 1 self.rng.shuffle(self.deck) card: ServerCard for i, card in enumerate(self.deck): card.position = i card.status = CardStatus.Deck def draw_card(self, player: int) -> None: if self.nextDraw >= len(self.deck): return card: ServerCard = self.deck[self.nextDraw] if card.status != CardStatus.Deck: raise GameException('Bad Card Status', card.status) card.player = player card.status = CardStatus.Hand p: Game info: dict for p in self.players: info = {'type': 'draw', 'who': player, 'order': self.nextDraw} if p.botPosition != player: info['suit'] = card.suit.value info['rank'] = card.rank.value self.send('notify', info, player=p.botPosition) info = {'type': 'draw', 'who': player, 'order': self.nextDraw, 'suit': card.suit.value, 'rank': card.rank.value} self.log('notify', info) self.hands[player].append(self.nextDraw) self.nextDraw += 1 if self.nextDraw >= len(self.deck): self.endTurn = self.turnCount + len(self.players) self.send('notify', {'type': 'draw_size', 'size': len(self.deck) - self.nextDraw}) self.print(verbose="{} draws {} {}".format( names[player], card.suit.full_name(self.variant), card.rank.value)) def clue_player(self, player: int, target: int, type: int, value: int) -> None: if self.isGameComplete(): raise GameException('Game is complete') if self.lastAction == player: raise GameException('Player already made a move', player) if self.currentPlayer != player: raise GameException('Wrong Player Turn', player) if player == target: raise GameException('Cannot clue self') if self.clues == 0: raise GameException('Cannot Clue') if target >= len(self.players): raise GameException('Target does not exist', target) rank: Rank suit: Suit positions: List[int] cards: List[int] card: ServerCard i: int h: int if type == Clue.Rank.value: rank = Rank(value) if not rank.valid(): raise GameException('Invalid rank value', value) positions = [] cards = [] for i, h in enumerate(self.hands[target]): card = self.deck[h] if card.rank == rank: positions.insert(0, len(self.hands[target]) - i) cards.append(h) if not cards and not self.allowNullClues: raise GameException('No Cards Clued') self.send('notify', {'type': 'clue', 'giver': player, 'target': target, 'clue': {'type': type, 'value': value}, 'list': cards}) self.clues -= 1 self.lastAction = player self.print( "{} tells {} about {} {}'s".format( names[player], names[target], numberWords[len(cards)], rank.value), "{} tells {} about {} {}'s in slots {}".format( names[player], names[target], numberWords[len(cards)], rank.value, ', '.join(str(p) for p in positions))) elif type == Clue.Suit.value: suit = Suit(value) if not suit.valid(self.variant): raise GameException('Invalid suit value', value) positions = [] cards = [] for i, h in enumerate(self.hands[target]): card = self.deck[h] if card.suit == suit: positions.insert(0, len(self.hands[target]) - i) cards.append(h) if self.variant == Variant.Rainbow and card.suit == Suit.Extra: cards.append(h) if not cards and not self.allowNullClues: raise GameException('No Cards Clued') self.send('notify', {'type': 'clue', 'giver': player, 'target': target, 'clue': {'type': type, 'value': value}, 'list': cards}) self.clues -= 1 self.lastAction = player self.print( "{} tells {} about {} {}'s".format( names[player], names[target], numberWords[len(cards)], suit.full_name(self.variant)), "{} tells {} about {} {}'s in slots {}".format( names[player], names[target], numberWords[len(cards)], suit.full_name(self.variant), ', '.join(str(p) for p in positions))) else: raise GameException('Invalid clue type', type) def play_card(self, player: int, deckIdx: int) -> None: if self.isGameComplete(): raise GameException('Game is complete') if self.lastAction == player: raise GameException('Player already made a move', player) if self.currentPlayer != player: raise GameException('Wrong Player Turn', player) card: ServerCard = self.deck[deckIdx] if card.status != CardStatus.Hand: raise GameException('Bad Card Status', card.status) if card.player != player: raise GameException('Card does not belong to player', card.player) nextRank: int = len(self.plays[card.suit]) + 1 position: int position = len(self.hands[player]) - self.hands[player].index(deckIdx) if card.rank.value == nextRank: self.plays[card.suit].append(card.position) self.send('notify', {'type': 'played', 'which': {'suit': card.suit, 'rank': card.rank, 'index': card.index, 'order': card.position}}) self.score += 1 card.status = CardStatus.Play self.hands[player].remove(deckIdx) self.print( "{} plays {} {}".format( names[player], card.suit.full_name(self.variant), card.rank.value), "{} plays {} {} from slot {}".format( names[player], card.suit.full_name(self.variant), card.rank.value, position)) else: self.discards[card.suit].append(card.position) self.strikes += 1 self.send('notify', {'type': 'discard', 'which': {'suit': card.suit, 'rank': card.rank, 'index': card.index, 'order': card.position}}) self.send('notify', {'type': 'strike', 'num': self.strikes}) card.status = CardStatus.Discard self.hands[player].remove(deckIdx) self.print( "{} fails to play {} {}".format( names[player], card.suit.full_name(self.variant), card.rank.value), "{} fails to play {} {} from slot {}".format( names[player], card.suit.full_name(self.variant), card.rank.value, position)) self.draw_card(player) self.lastAction = player def discard_card(self, player: int, deckIdx: int) -> None: if self.isGameComplete(): raise GameException('Game is complete') if self.lastAction == player: raise GameException('Player already made a move', player) if self.currentPlayer != player: raise GameException('Wrong Player Turn', player) if self.clues == 8: raise GameException('Cannot Discard') card: ServerCard = self.deck[deckIdx] if card.status != CardStatus.Hand: raise GameException('Bad Card Status', card.status) if card.player != player: raise GameException('Card does not belong to player', card.player) self.discards[card.suit].append(card.position) self.send('notify', {'type': 'discard', 'which': {'suit': card.suit, 'rank': card.rank, 'index': card.index, 'order': card.position}}) card.status = CardStatus.Discard position: int position = len(self.hands[player]) - self.hands[player].index(deckIdx) self.hands[player].remove(deckIdx) self.clues += 1 self.print( "{} discards {} {}".format( names[player], card.suit.full_name(self.variant), card.rank.value), "{} discards {} {} from slot {}".format( names[player], card.suit.full_name(self.variant), card.rank.value, position)) self.draw_card(player) self.lastAction = player class ServerCard: def __init__(self, index: int, suit: Suit, rank: Rank, variant: Variant) -> None: self.variant:Variant = variant self.index: int = index self.position: int self.suit: Suit = suit self.rank: Rank = rank self.status: CardStatus self.player: int = None def __str__(self) -> str: return "{color} {number}".format( color=self.suit.full_name(self.variant), number=self.rank.value) class ServerConnection: def __init__(self, position: int, game: ServerGame) -> None: self.position: int = position self.game: ServerGame = game def emit(self, *args) -> None: if len(args) == 2: type: str data: dict type, data = args if type != 'message': raise GameException('emit type') if data['type'] != 'action': raise GameException('data type') if data['resp']['type'] == Action.Clue.value: self.game.clue_player( self.position, data['resp']['target'], data['resp']['clue']['type'], data['resp']['clue']['value']) elif data['resp']['type'] == Action.Play.value: self.game.play_card(self.position, data['resp']['target']) elif data['resp']['type'] == Action.Discard.value: self.game.discard_card(self.position, data['resp']['target']) else: raise GameException('emit action type') class GameException(Exception): pass def convert_print(arg: Any) -> Optional[bool]: if isinstance(arg, str): if arg.lower() in ['false', '0', '']: return False if arg.lower() in ['none']: return None return bool(arg)
gpl-3.0
8,164,153,947,375,564,000
39.04175
79
0.511867
false
4.117767
false
false
false
Enteee/pdml2flow
pdml2flow/cli.py
1
4583
# vim: set fenc=utf8 ts=4 sw=4 et : import sys import xml.sax import imp from os import path from signal import signal, SIGINT from shutil import copytree, ignore_patterns from pkg_resources import resource_filename from configparser import ConfigParser from .logging import * from .conf import Conf from .plugin import * from .pdmlhandler import PdmlHandler def _add_common_arguments(argparser): argparser.add_argument( '-s', dest='EXTRACT_SHOW', action='store_true', help='Extract show names, every data leaf will now look like {{ raw : [] , show: [] }} [default: {}]'.format( Conf.EXTRACT_SHOW ) ) argparser.add_argument( '-d', dest='DEBUG', action='store_true', help='Debug mode [default: {}]'.format( Conf.DEBUG ) ) def pdml2flow(): def add_arguments_cb(argparser): argparser.add_argument( '-f', dest='FLOW_DEF_STR', action='append', help='Fields which define the flow, nesting with: \'{}\' [default: {}]'.format( Conf.FLOW_DEF_NESTCHAR, Conf.FLOW_DEF_STR ) ) argparser.add_argument( '-t', type=int, dest='FLOW_BUFFER_TIME', help='Lenght (in seconds) to buffer a flow before writing the packets [default: {}]'.format( Conf.FLOW_BUFFER_TIME ) ) argparser.add_argument( '-l', type=int, dest='DATA_MAXLEN', help='Maximum lenght of data in tshark pdml-field [default: {}]'.format( Conf.DATA_MAXLEN ) ) argparser.add_argument( '-c', dest='COMPRESS_DATA', action='store_true', help='Removes duplicate data when merging objects, will not preserve order of leaves [default: {}]'.format( Conf.COMPRESS_DATA ) ) argparser.add_argument( '-a', dest='FRAMES_ARRAY', action='store_true', help='Instead of merging the frames will append them to an array [default: {}]'.format( Conf.FRAMES_ARRAY ) ) _add_common_arguments(argparser) def postprocess_conf_cb(conf): """Split each flowdef to a path.""" if conf['FLOW_DEF_STR'] is not None: conf['FLOW_DEF'] = Conf.get_real_paths( conf['FLOW_DEF_STR'], Conf.FLOW_DEF_NESTCHAR ) Conf.load( 'Aggregates wireshark pdml to flows', add_arguments_cb, postprocess_conf_cb ) start_parser() def pdml2frame(): def add_arguments_cb(argparser): _add_common_arguments(argparser) def postprocess_conf_cb(conf): conf['DATA_MAXLEN'] = sys.maxsize conf['FLOW_BUFFER_TIME'] = 0 conf['FLOW_DEF_STR'] = [ 'frame.number' ] conf['FLOW_DEF'] = Conf.get_real_paths( conf['FLOW_DEF_STR'], Conf.FLOW_DEF_NESTCHAR ) Conf.load( 'Converts wireshark pdml to frames', add_arguments_cb, postprocess_conf_cb ) start_parser() def start_parser(): # print config for name, value in Conf.get().items(): debug('{} : {}'.format(name, value)) handler = PdmlHandler() def sigint_handler(sig, frame): handler.endDocument() sys.exit(0) signal(SIGINT, sigint_handler) try: xml.sax.parse( Conf.IN, handler ) except xml.sax._exceptions.SAXParseException as e: # this might happen when a pdml file is malformed warning('Parser returned exception: {}'.format(e)) handler.endDocument() def pdml2flow_new_plugin(): def add_arguments_cb(argparser): argparser.add_argument( 'DST', type=str, nargs='+', help='Where to initialize the plugin, basename will become the plugin name' ) Conf.load( 'Initializes a new plugin', add_arguments_cb ) for dst in Conf.DST: plugin_name = path.basename(dst) plugin_conf = ConfigParser({ 'plugin_name': plugin_name }) copytree( resource_filename(__name__, 'plugin-skeleton'), dst, ignore=ignore_patterns('__pycache__') ) with open(path.join(dst, Conf.PLUGIN_CONF_NAME), mode='w') as fd: plugin_conf.write(fd)
apache-2.0
7,527,734,594,599,178,000
26.443114
119
0.543749
false
3.957686
false
false
false
demisto/content
Packs/OpenCTI/Integrations/OpenCTI/OpenCTI.py
1
24064
import copy from typing import List, Optional from io import StringIO import sys import demistomock as demisto # noqa: E402 lgtm [py/polluting-import] import urllib3 from CommonServerPython import * # noqa: E402 lgtm [py/polluting-import] from pycti import OpenCTIApiClient, Identity # Disable insecure warnings urllib3.disable_warnings() # Disable info logging from the api logging.getLogger().setLevel(logging.ERROR) XSOAR_TYPES_TO_OPENCTI = { 'account': "User-Account", 'domain': "Domain-Name", 'email': "Email-Addr", 'file-md5': "StixFile", 'file-sha1': "StixFile", 'file-sha256': "StixFile", 'file': 'StixFile', 'host': "X-OpenCTI-Hostname", 'ip': "IPv4-Addr", 'ipv6': "IPv6-Addr", 'registry key': "Windows-Registry-Key", 'url': "Url" } OPENCTI_TYPES_TO_XSOAR = { "User-Account": 'Account', "Domain-Name": 'Domain', "Email-Addr": 'Email', "StixFile": "File", "X-OpenCTI-Hostname": 'Host', "IPv4-Addr": 'IP', "IPv6-Addr": 'IPv6', "Windows-Registry-Key": 'Registry Key', "Url": 'URL' } KEY_TO_CTI_NAME = { 'description': 'x_opencti_description', 'score': 'x_opencti_score' } FILE_TYPES = { 'file-md5': "file.hashes.md5", 'file-sha1': "file.hashes.sha-1", 'file-sha256': "file.hashes.sha-256" } def label_create(client: OpenCTIApiClient, label_name: Optional[str]): """ Create label at opencti Args: client: OpenCTI Client object label_name(str): label name to create Returns: readable_output, raw_response """ try: label = client.label.create(value=label_name) except Exception as e: demisto.error(str(e)) raise DemistoException("Can't create label.") return label def build_indicator_list(indicator_list: List[str]) -> List[str]: """Builds an indicator list for the query Args: indicator_list: List of XSOAR indicators types to return.. Returns: indicators: list of OPENCTI indicators types""" result = [] if 'ALL' in indicator_list: # Replaces "ALL" for all types supported on XSOAR. result = ['User-Account', 'Domain-Name', 'Email-Addr', 'StixFile', 'X-OpenCTI-Hostname', 'IPv4-Addr', 'IPv6-Addr', 'Windows-Registry-Key', 'Url'] else: result = [XSOAR_TYPES_TO_OPENCTI.get(indicator.lower(), indicator) for indicator in indicator_list] return result def reset_last_run(): """ Reset the last run from the integration context """ demisto.setIntegrationContext({}) return CommandResults(readable_output='Fetch history deleted successfully') def get_indicators(client: OpenCTIApiClient, indicator_types: List[str], score: List[str] = None, limit: Optional[int] = 500, last_run_id: Optional[str] = None) -> dict: """ Retrieving indicators from the API Args: score: Range of scores to filter by. client: OpenCTI Client object. indicator_types: List of indicators types to return. last_run_id: The last id from the previous call to use pagination. limit: the max indicators to fetch Returns: indicators: dict of indicators """ indicator_type = build_indicator_list(indicator_types) filters = [{ 'key': 'entity_type', 'values': indicator_type }] if score: filters.append({ 'key': 'x_opencti_score', 'values': score }) indicators = client.stix_cyber_observable.list(after=last_run_id, first=limit, withPagination=True, filters=filters) return indicators def get_indicators_command(client: OpenCTIApiClient, args: dict) -> CommandResults: """ Gets indicator from opencti to readable output Args: client: OpenCTI Client object args: demisto.args() Returns: readable_output, raw_response """ indicator_types = argToList(args.get("indicator_types")) last_run_id = args.get("last_run_id") limit = arg_to_number(args.get('limit', 50)) start = arg_to_number(args.get('score_start', 1)) end = arg_to_number(args.get('score_end', 100)) + 1 # type:ignore score = None if start or end: score = [str(i) for i in range(start, end)] # type:ignore raw_response = get_indicators( client=client, indicator_types=indicator_types, limit=limit, last_run_id=last_run_id, score=score ) last_run = raw_response.get('pagination', {}).get('endCursor') # type: ignore if indicators_list := copy.deepcopy(raw_response.get('entities')): indicators = [{'type': OPENCTI_TYPES_TO_XSOAR.get(indicator['entity_type'], indicator['entity_type']), 'value': indicator.get('observable_value'), 'id': indicator.get('id'), 'createdBy': indicator.get('createdBy').get('id') if indicator.get('createdBy') else None, 'score': indicator.get('x_opencti_score'), 'description': indicator.get('x_opencti_description'), 'labels': [label.get('value') for label in indicator.get('objectLabel')], 'marking': [mark.get('definition') for mark in indicator.get('objectMarking')], 'externalReferences': indicator.get('externalReferences') } for indicator in indicators_list] readable_output = tableToMarkdown('Indicators', indicators, headers=["type", "value", "id"], removeNull=True) outputs = { 'OpenCTI.Indicators(val.lastRunID)': {'lastRunID': last_run}, 'OpenCTI.Indicators.IndicatorsList(val.id === obj.id)': indicators } return CommandResults( outputs=outputs, readable_output=readable_output, raw_response=indicators_list ) else: return CommandResults(readable_output='No indicators') def indicator_delete_command(client: OpenCTIApiClient, args: dict) -> CommandResults: """ Delete indicator from opencti Args: client: OpenCTI Client object args: demisto.args() Returns: readable_output, raw_response """ indicator_id = args.get("id") try: client.stix_cyber_observable.delete(id=indicator_id) except Exception as e: demisto.error(str(e)) raise DemistoException("Can't delete indicator.") return CommandResults(readable_output='Indicator deleted.') def indicator_field_update_command(client: OpenCTIApiClient, args: dict) -> CommandResults: """ Update indicator field at opencti Args: client: OpenCTI Client object args: demisto.args() Returns: readable_output, raw_response """ indicator_id = args.get("id") # works only with score and description key = KEY_TO_CTI_NAME[args.get("field")] # type: ignore value = args.get("value") try: result = client.stix_cyber_observable.update_field(id=indicator_id, key=key, value=value) except Exception as e: demisto.error(str(e)) raise DemistoException(f"Can't update indicator with field: {key}.") return CommandResults( outputs_prefix='OpenCTI.Indicator', outputs_key_field='id', outputs={'id': result.get('id')}, readable_output=f'Indicator {indicator_id} updated successfully.', raw_response=result ) def indicator_create_command(client: OpenCTIApiClient, args: Dict[str, str]) -> CommandResults: """ Create indicator at opencti Args: client: OpenCTI Client object args: demisto.args() Returns: readable_output, raw_response """ indicator_type = args.get("type") created_by = args.get("created_by") marking_id = args.get("marking_id") label_id = args.get("label_id") external_references_id = args.get("external_references_id") description = args.get("description") score = arg_to_number(args.get("score", '50')) value = args.get("value") data = {'type': XSOAR_TYPES_TO_OPENCTI.get(indicator_type.lower(), indicator_type), # type:ignore 'value': value} if indicator_type == 'Registry Key': data['key'] = value if indicator_type == 'Account': data['account_login'] = value simple_observable_key = None simple_observable_value = None if 'file' in indicator_type.lower(): # type: ignore simple_observable_key = FILE_TYPES.get(indicator_type.lower(), indicator_type) # type: ignore simple_observable_value = value try: # cti code prints to stdout so we need to catch it. old_stdout = sys.stdout sys.stdout = StringIO() result = client.stix_cyber_observable.create( simple_observable_key=simple_observable_key, simple_observable_value=simple_observable_value, type=indicator_type, createdBy=created_by, objectMarking=marking_id, objectLabel=label_id, externalReferences=external_references_id, simple_observable_description=description, x_opencti_score=score, observableData=data ) sys.stdout = old_stdout except KeyError as e: raise DemistoException(f'Missing argument at data {e}') if id := result.get('id'): readable_output = f'Indicator created successfully. New Indicator id: {id}' outputs = { 'id': result.get('id'), 'value': value, 'type': indicator_type } else: raise DemistoException("Can't create indicator.") return CommandResults( outputs_prefix='OpenCTI.Indicator', outputs_key_field='id', outputs=outputs, readable_output=readable_output, raw_response=result ) def indicator_add_marking(client: OpenCTIApiClient, id: Optional[str], value: Optional[str]): """ Add indicator marking to opencti Args: client: OpenCTI Client object id(str): indicator id to update value(str): marking name to add Returns: true if added successfully, else false. """ try: result = client.stix_cyber_observable.add_marking_definition(id=id, marking_definition_id=value) except Exception as e: demisto.error(str(e)) raise DemistoException("Can't add marking to indicator.") return result def indicator_add_label(client: OpenCTIApiClient, id: Optional[str], value: Optional[str]): """ Add indicator label to opencti Args: client: OpenCTI Client object id(str): indicator id to update value(str): label name to add Returns: true if added successfully, else false. """ try: result = client.stix_cyber_observable.add_label(id=id, label_id=value) except Exception as e: demisto.error(str(e)) raise DemistoException("Can't add label to indicator.") return result def indicator_field_add_command(client: OpenCTIApiClient, args: Dict[str, str]) -> CommandResults: """ Add indicator marking or label to opencti Args: client: OpenCTI Client object args: demisto.args() Returns: readable_output """ indicator_id = args.get("id") # works only with marking and label key = args.get("field") value = args.get("value") result = {} if key == 'marking': result = indicator_add_marking(client=client, id=indicator_id, value=value) elif key == 'label': result = indicator_add_label(client=client, id=indicator_id, value=value) if result: return CommandResults(readable_output=f'Added {key} successfully.') else: return CommandResults(readable_output=f'Cant add {key} to indicator.') def indicator_remove_label(client: OpenCTIApiClient, id: Optional[str], value: Optional[str]): """ Remove indicator label from opencti Args: client: OpenCTI Client object id(str): indicator id to update value(str): label name to remove Returns: true if removed successfully, else false. """ try: result = client.stix_cyber_observable.remove_label(id=id, label_id=value) except Exception as e: demisto.error(str(e)) raise DemistoException("Can't remove label from indicator.") return result def indicator_remove_marking(client: OpenCTIApiClient, id: Optional[str], value: Optional[str]): """ Remove indicator marking from opencti Args: client: OpenCTI Client object id(str): indicator id to update value(str): marking name to remove Returns: true if removed successfully, else false. """ try: result = client.stix_cyber_observable.remove_marking_definition(id=id, marking_definition_id=value) except Exception as e: demisto.error(str(e)) raise DemistoException("Can't remove marking from indicator.") return result def indicator_field_remove_command(client: OpenCTIApiClient, args: Dict[str, str]) -> CommandResults: """ Remove indicator marking or label from opencti Args: client: OpenCTI Client object args: demisto.args() Returns: readable_output """ indicator_id = args.get("id") # works only with marking and label key = args.get("field") value = args.get("value") result = {} if key == 'marking': result = indicator_remove_marking(client=client, id=indicator_id, value=value) elif key == 'label': result = indicator_remove_label(client=client, id=indicator_id, value=value) if result: readable_output = f'{key}: {value} was removed successfully from indicator: {indicator_id}.' else: raise DemistoException(f"Can't remove {key}.") return CommandResults(readable_output=readable_output) def organization_list_command(client: OpenCTIApiClient, args: Dict[str, str]) -> CommandResults: """ Get organizations list from opencti Args: client: OpenCTI Client object args: demisto.args() Returns: readable_output, raw_response """ limit = arg_to_number(args.get('limit', '50')) last_run_id = args.get('last_run_id') organizations_list = client.identity.list(types='Organization', first=limit, after=last_run_id, withPagination=True) if organizations_list: new_last_run = organizations_list.get('pagination').get('endCursor') organizations = [ {'name': organization.get('name'), 'id': organization.get('id')} for organization in organizations_list.get('entities')] readable_output = tableToMarkdown('Organizations', organizations, headers=['name', 'id'], headerTransform=pascalToSpace) outputs = { 'OpenCTI.Organizations(val.organizationsLastRun)': {'organizationsLastRun': new_last_run}, 'OpenCTI.Organizations.OrganizationsList(val.id === obj.id)': organizations } return CommandResults( outputs=outputs, readable_output=readable_output, raw_response=organizations_list ) else: return CommandResults(readable_output='No organizations') def organization_create_command(client: OpenCTIApiClient, args: Dict[str, str]) -> CommandResults: """ Create organization at opencti Args: client: OpenCTI Client object args: demisto.args() Returns: readable_output, raw_response """ name = args.get("name") description = args.get("description") reliability = args.get('reliability') try: identity = Identity(client) result = identity.create(name=name, type='Organization', x_opencti_reliability=reliability, description=description) except Exception as e: demisto.error(str(e)) raise DemistoException("Can't remove label from indicator.") if organization_id := result.get('id'): readable_output = f'Organization {name} was created successfully with id: {organization_id}.' return CommandResults(outputs_prefix='OpenCTI.Organization', outputs_key_field='id', outputs={'id': result.get('id')}, readable_output=readable_output, raw_response=result) else: raise DemistoException("Can't create organization.") def label_list_command(client: OpenCTIApiClient, args: Dict[str, str]) -> CommandResults: """ Get label list from opencti Args: client: OpenCTI Client object args: demisto.args() Returns: readable_output, raw_response """ limit = arg_to_number(args.get('limit', '50')) last_run_id = args.get('last_run_id') label_list = client.label.list(first=limit, after=last_run_id, withPagination=True) if label_list: new_last_run = label_list.get('pagination').get('endCursor') labels = [ {'value': label.get('value'), 'id': label.get('id')} for label in label_list.get('entities')] readable_output = tableToMarkdown('Labels', labels, headers=['value', 'id'], headerTransform=pascalToSpace) outputs = { 'OpenCTI.Labels(val.labelsLastRun)': {'labelsLastRun': new_last_run}, 'OpenCTI.Labels.LabelsList(val.id === obj.id)': labels } return CommandResults( outputs=outputs, readable_output=readable_output, raw_response=label_list ) else: return CommandResults(readable_output='No labels') def label_create_command(client: OpenCTIApiClient, args: Dict[str, str]) -> CommandResults: """ Create label at opencti Args: client: OpenCTI Client object args: demisto.args() Returns: readable_output, raw_response """ name = args.get("name") result = label_create(client=client, label_name=name) if label_id := result.get('id'): readable_output = f'Label {name} was created successfully with id: {label_id}.' return CommandResults(outputs_prefix='OpenCTI.Label', outputs_key_field='id', outputs={'id': result.get('id')}, readable_output=readable_output, raw_response=result) else: raise DemistoException("Can't create label.") def external_reference_create_command(client: OpenCTIApiClient, args: Dict[str, str]) -> CommandResults: """ Create external reference at opencti Args: client: OpenCTI Client object args: demisto.args() Returns: readable_output, raw_response """ external_references_source_name = args.get('source_name') external_references_url = args.get('url') result = client.external_reference.create( source_name=external_references_source_name, url=external_references_url ) if external_reference_id := result.get('id'): readable_output = f'Reference {external_references_source_name} was created successfully with id: ' \ f'{external_reference_id}.' return CommandResults(outputs_prefix='OpenCTI.externalReference', outputs_key_field='id', outputs={'id': result.get('id')}, readable_output=readable_output, raw_response=result) else: raise DemistoException("Can't create external reference.") def marking_list_command(client: OpenCTIApiClient, args: Dict[str, str]) -> CommandResults: """ Get marking list from opencti Args: client: OpenCTI Client object args: demisto.args() Returns: readable_output, raw_response """ limit = arg_to_number(args.get('limit', '50')) last_run_id = args.get('last_run_id') marking_list = client.marking_definition.list(first=limit, after=last_run_id, withPagination=True) if marking_list: new_last_run = marking_list.get('pagination').get('endCursor') markings = [ {'value': mark.get('definition'), 'id': mark.get('id')} for mark in marking_list.get('entities')] readable_output = tableToMarkdown('Markings', markings, headers=['value', 'id'], headerTransform=pascalToSpace) outputs = { 'OpenCTI.MarkingDefinitions(val.markingsLastRun)': {'markingsLastRun': new_last_run}, 'OpenCTI.MarkingDefinitions.MarkingDefinitionsList(val.id === obj.id)': markings } return CommandResults( outputs=outputs, readable_output=readable_output, raw_response=marking_list ) else: return CommandResults(readable_output='No markings') def main(): params = demisto.params() args = demisto.args() credentials = params.get('credentials', {}) api_key = credentials.get('password') base_url = params.get('base_url').strip('/') try: client = OpenCTIApiClient(base_url, api_key, ssl_verify=params.get('insecure'), log_level='error') command = demisto.command() demisto.info(f"Command being called is {command}") # Switch case if command == "test-module": '''When setting up an OpenCTI Client it is checked that it is valid and allows requests to be sent. and if not he immediately sends an error''' get_indicators_command(client, args) return_results('ok') elif command == "opencti-get-indicators": return_results(get_indicators_command(client, args)) elif command == "opencti-indicator-delete": return_results(indicator_delete_command(client, args)) elif command == "opencti-indicator-field-update": return_results(indicator_field_update_command(client, args)) elif command == "opencti-indicator-create": return_results(indicator_create_command(client, args)) elif command == "opencti-indicator-field-add": return_results(indicator_field_add_command(client, args)) elif command == "opencti-indicator-field-remove": return_results(indicator_field_remove_command(client, args)) elif command == "opencti-organization-list": return_results(organization_list_command(client, args)) elif command == "opencti-organization-create": return_results(organization_create_command(client, args)) elif command == "opencti-label-list": return_results(label_list_command(client, args)) elif command == "opencti-label-create": return_results(label_create_command(client, args)) elif command == "opencti-external-reference-create": return_results(external_reference_create_command(client, args)) elif command == "opencti-marking-definition-list": return_results(marking_list_command(client, args)) except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f"Error:\n [{e}]") if __name__ in ('__main__', '__builtin__', 'builtins'): main()
mit
1,067,112,909,605,929,900
34.284457
120
0.607713
false
3.993362
false
false
false
daniilidis-group/bird_recording
src/find_onset.py
1
4304
#!/usr/bin/env python # # read and plot audio file # import numpy as np import matplotlib.pyplot as plt; import struct import sys, os import argparse import scipy.signal import ipdb from scipy.io import wavfile def plot_wave(t, s): if s.ndim > 1: for i in range(0, s.shape[1]): plt.subplot(s.shape[1], 1, i + 1) plt.plot(t, s[:,i]) else: plt.plot(t, s) plt.show() def fft_correlate(a, b): af = np.fft.fft(a, axis=0) bf = np.fft.fft(b, axis=0) ft = np.multiply(np.conj(af), bf) cc = np.real(np.fft.ifft(ft)) return cc def read_file(f): ffmt = struct.unpack('i', f.read(struct.calcsize('i'))) depth = f.read(5) sz = struct.unpack('2i', f.read(struct.calcsize('2i'))) # t_start: time at which the rosbag started # t1: time at which first audio packet was received # t0: time at which first sample must have been generated # dt: delta time between samples, matched to recording # t = t0 + idx * dt = best rostime estimate # t - t_start = best estimate for time since start of bag recording rate, t_start, t0, t1, dt = struct.unpack('5f', f.read(struct.calcsize('5f'))) print "bag start: %f, rate: %f, depth: %s, number of samples: %d, number of channels: %d" % (t_start, rate, depth, sz[0], sz[1]) ts = t0 + np.arange(0,sz[0]) * dt dtype = np.int16 if depth == 'int16' else np.int32 smpl = np.fromfile(f,dtype=dtype) samples = np.reshape(smpl, sz) t = t0 + np.arange(0, sz[0]) * dt - t_start; # gives best estimate return t, rate, samples if __name__ == '__main__': parser = argparse.ArgumentParser(description='find audio onset.') parser.add_argument('--start', '-s', action='store', default=0.0, type=float, help='start time') parser.add_argument('--end', '-e', action='store', default=1e30, type=float, help='end time') parser.add_argument('--song', action='store', default='song.wav', help = 'wav file with pattern to search for') parser.add_argument('--file', action='store', required=True, help = 'audio.dat file generated from rosbag') parser.add_argument('--songstart', action='store', default=0, type=float, help = 'start time of call within song file') args = parser.parse_args() f = open(args.file) t, rate_recording, recording = read_file(f) rate_song, song = wavfile.read(args.song) #song = np.pad(song, (0,int(rate_recording*20)), 'constant', constant_values=(0,0)) # XXX # average channels of recording recording = np.sum(recording, axis=1) # add across channels to get average # resample song to recording frequency song = scipy.signal.resample(song, int(song.shape[0] * rate_recording / rate_song)) # pad whichever is shorter with zeros num_pad = abs(recording.shape[0] - song.shape[0]) if (song.shape[0] < recording.shape[0]): print "padding %d zero samples to song" % num_pad song = np.expand_dims(np.pad(song, (0,num_pad), 'constant', constant_values=(0,0)), -1) if (recording.shape[0] < song.shape[0]): print "padding %d zero samples to recording" % num_pad recording = np.pad(recording, (0,num_pad), 'constant', constant_values=(0,0)) # expand dimensions so we can stack it #song = np.expand_dims(song, axis=-1) print 'recording rate: %d, song rate: %d' % (rate_recording, rate_song) recording_exp = np.expand_dims(recording, axis=-1) #cc = fft_correlate(song[:,0], samples[:,0]) # use this for individual channels cc = fft_correlate(song[:,0], recording) amax = np.argmax(cc, axis=0) # find maximum correlation song_rolled = np.roll(song, amax) idx = np.where((t >= args.start) & (t <= args.end)) t_ss = args.songstart + amax / rate_recording if t_ss > song.shape[0] / rate_recording: t_ss = t_ss - song.shape[0] / rate_recording print 'max correlation roll: %d, song start: %f' % (amax, t_ss) # stacked = np.hstack((song_rolled[idx[0],:], song[idx[0],:], cc[idx[0],:])) # stacked = np.hstack((song_rolled[idx[0],:], recording_exp[idx[0],:])) stacked = np.hstack((song[idx[0],:], recording_exp[idx[0],:], np.expand_dims(cc[idx[0]],-1))) plot_wave(t[idx[0]], stacked)
mit
3,815,214,340,486,254,600
43.833333
132
0.618727
false
3.125635
false
false
false
fake-name/ReadableWebProxy
WebMirror/management/rss_parser_funcs/feed_parse_extractCleverneckoHomeBlog.py
1
1509
def extractCleverneckoHomeBlog(item): ''' Parser for 'clevernecko.home.blog' ''' badwords = [ 'movie review', 'badword', ] if any([bad in item['tags'] for bad in badwords]): return None vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or "preview" in item['title'].lower(): return None tagmap = [ ('your husband’s leg is broken', 'your husband’s leg is broken', 'translated'), ('the case of the 27 knife stabs', 'the case of the 27 knife stabs', 'translated'), ('Fate', 'Fate, something so wonderful', 'translated'), ('kimi no shiawase wo negatteita', 'kimi no shiawase wo negatteita', 'translated'), ('warm waters', 'warm waters', 'translated'), ('after being marked by a powerful love rival', 'after being marked by a powerful love rival', 'translated'), ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
bsd-3-clause
-7,540,003,231,956,800,000
39.702703
138
0.495017
false
3.725248
false
false
false
j3camero/canada-election-forecast
calculate_redistributed_2011_results.py
1
1836
import csv party_names = [ ('Conservative', 'cpc'), ('NDP', 'ndp'), ('Liberal', 'lpc'), ('Bloc', 'bq'), ('Green', 'gpc'), ('Other', 'oth'), ] ridings = {} def AddVotes(riding_number, party_code, additional_votes): if riding_number not in ridings: ridings[riding_number] = {} riding = ridings[riding_number] if party_code not in riding: riding[party_code] = 0 riding[party_code] += additional_votes def NormalizeDictVector(v): norm = {} divisor = sum(v.values()) for key, value in v.items(): norm[key] = float(value) / divisor return norm with open('TRANSPOSITION_338FED.csv', 'rb') as input_file: # Skip the first few lines of the file, to get to the data part. for i in range(4): next(input_file) reader = csv.DictReader(input_file) for row in reader: riding_number = row['2013 FED Number'] riding_name = row['2013 FED Name'] for column_header, value in row.items(): try: value = int(value) except: continue for party_name, party_code in party_names: if column_header.startswith(party_name): AddVotes(riding_number, party_code, value) with open('redistributed_2011_results.csv', 'wb') as output_file: writer = csv.writer(output_file) writer.writerow(['riding', 'date', 'sample_size'] + [p for _, p in party_names]) for riding_number, vote_counts in ridings.items(): vote_fractions = NormalizeDictVector(vote_counts) ordered_vote_fractions = [vote_fractions[p] for _, p in party_names] sample_size = sum(vote_counts.values()) writer.writerow([riding_number, '2011-05-02', sample_size] + ordered_vote_fractions)
apache-2.0
15,204,818,751,444,074
33
76
0.587691
false
3.497143
false
false
false
tomncooper/heron
heron/tools/explorer/src/python/version.py
5
1401
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. ''' version.py ''' import heron.tools.common.src.python.utils.config as config import heron.tools.explorer.src.python.args as args def create_parser(subparsers): """ create parser """ parser = subparsers.add_parser( 'version', help='Display version', usage="%(prog)s", add_help=False) args.add_titles(parser) parser.set_defaults(subcommand='version') return parser # pylint: disable=unused-argument def run(command, parser, known_args, unknown_args): """ run command """ config.print_build_info() return True
apache-2.0
2,370,272,471,565,272,600
33.170732
63
0.725196
false
3.796748
false
false
false
googleapis/googleapis-gen
google/ads/googleads/v7/googleads-py/google/ads/googleads/v7/resources/types/keyword_plan_campaign.py
1
3725
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.ads.googleads.v7.enums.types import keyword_plan_network as gage_keyword_plan_network __protobuf__ = proto.module( package='google.ads.googleads.v7.resources', marshal='google.ads.googleads.v7', manifest={ 'KeywordPlanCampaign', 'KeywordPlanGeoTarget', }, ) class KeywordPlanCampaign(proto.Message): r"""A Keyword Plan campaign. Max number of keyword plan campaigns per plan allowed: 1. Attributes: resource_name (str): Immutable. The resource name of the Keyword Plan campaign. KeywordPlanCampaign resource names have the form: ``customers/{customer_id}/keywordPlanCampaigns/{kp_campaign_id}`` keyword_plan (str): The keyword plan this campaign belongs to. id (int): Output only. The ID of the Keyword Plan campaign. name (str): The name of the Keyword Plan campaign. This field is required and should not be empty when creating Keyword Plan campaigns. language_constants (Sequence[str]): The languages targeted for the Keyword Plan campaign. Max allowed: 1. keyword_plan_network (google.ads.googleads.v7.enums.types.KeywordPlanNetworkEnum.KeywordPlanNetwork): Targeting network. This field is required and should not be empty when creating Keyword Plan campaigns. cpc_bid_micros (int): A default max cpc bid in micros, and in the account currency, for all ad groups under the campaign. This field is required and should not be empty when creating Keyword Plan campaigns. geo_targets (Sequence[google.ads.googleads.v7.resources.types.KeywordPlanGeoTarget]): The geo targets. Max number allowed: 20. """ resource_name = proto.Field( proto.STRING, number=1, ) keyword_plan = proto.Field( proto.STRING, number=9, optional=True, ) id = proto.Field( proto.INT64, number=10, optional=True, ) name = proto.Field( proto.STRING, number=11, optional=True, ) language_constants = proto.RepeatedField( proto.STRING, number=12, ) keyword_plan_network = proto.Field( proto.ENUM, number=6, enum=gage_keyword_plan_network.KeywordPlanNetworkEnum.KeywordPlanNetwork, ) cpc_bid_micros = proto.Field( proto.INT64, number=13, optional=True, ) geo_targets = proto.RepeatedField( proto.MESSAGE, number=8, message='KeywordPlanGeoTarget', ) class KeywordPlanGeoTarget(proto.Message): r"""A geo target. Attributes: geo_target_constant (str): Required. The resource name of the geo target. """ geo_target_constant = proto.Field( proto.STRING, number=2, optional=True, ) __all__ = tuple(sorted(__protobuf__.manifest))
apache-2.0
-3,534,356,946,514,556,000
29.284553
109
0.62953
false
4.204289
false
false
false
mapix/WebHello
WebHello/response.py
1
1510
# -*- coding:utf-8 -*- import Cookie import datetime __all__ = ['Response'] class Response(object): status = "200 OK" def __init__(self, output="", request=None): self.output = output self.request = request self.cookies = Cookie.SimpleCookie() self.response_headers = [('Content-Type', 'text/html')] def __call__(self, environ, start_response): output = self.output if self.status.split(' ', 1)[0] == '200' else self.html response_headers = self.response_headers response_headers.extend(tuple(cookie.split(':', 1)) for cookie in self.cookies.output().split('\r\n') if cookie) response_headers.append(('Content-Length', str(len(output)))) start_response(self.status, response_headers) return [output] def set_cookie(self, name, value, domain=None, path='/', expires=None, max_age=None, secure=None, httponly=None, version=None): self.cookies[name] = value self.cookies[name]["path"] = path if domain: self.cookies[name]["domain"] = domain if expires: expiration = datetime.datetime.now() + datetime.timedelta(days=expires) self.cookies[name]["expires"] = expiration.strftime("%a, %d-%b-%Y %H:%M:%S PST") if max_age: self.cookies[name]["max-age"] = max_age if secure: self.cookies[name]["secure"] = secure if httponly: self.cookies[name]["httponly"] = httponly
bsd-3-clause
305,731,184,399,917,760
35.829268
120
0.593377
false
3.852041
false
false
false
shawnhermans/cyborgcrm
cycomments/migrations/0001_initial.py
1
1964
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django.utils.timezone from django.conf import settings import django_extensions.db.fields import audit_log.models.fields class Migration(migrations.Migration): dependencies = [ ('contenttypes', '0002_remove_content_type_name'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('created_with_session_key', audit_log.models.fields.CreatingSessionKeyField(max_length=40, null=True, editable=False)), ('modified_with_session_key', audit_log.models.fields.LastSessionKeyField(max_length=40, null=True, editable=False)), ('created', django_extensions.db.fields.CreationDateTimeField(default=django.utils.timezone.now, verbose_name='created', editable=False, blank=True)), ('modified', django_extensions.db.fields.ModificationDateTimeField(default=django.utils.timezone.now, verbose_name='modified', editable=False, blank=True)), ('object_id', models.PositiveIntegerField()), ('comment', models.TextField()), ('content_type', models.ForeignKey(to='contenttypes.ContentType')), ('created_by', audit_log.models.fields.CreatingUserField(related_name='created_cycomments_comment_set', editable=False, to=settings.AUTH_USER_MODEL, null=True, verbose_name='created by')), ('modified_by', audit_log.models.fields.LastUserField(related_name='modified_cycomments_comment_set', editable=False, to=settings.AUTH_USER_MODEL, null=True, verbose_name='modified by')), ], options={ 'abstract': False, }, ), ]
bsd-2-clause
-4,017,765,377,546,259,000
52.081081
204
0.660387
false
4.205567
false
false
false
kaushik94/sympy
examples/intermediate/coupled_cluster.py
3
3691
#!/usr/bin/env python """ Calculates the Coupled-Cluster energy- and amplitude equations See 'An Introduction to Coupled Cluster Theory' by T. Daniel Crawford and Henry F. Schaefer III. Other Resource : http://vergil.chemistry.gatech.edu/notes/sahan-cc-2010.pdf """ from sympy.physics.secondquant import (AntiSymmetricTensor, wicks, F, Fd, NO, evaluate_deltas, substitute_dummies, Commutator, simplify_index_permutations, PermutationOperator) from sympy import ( symbols, Rational, latex, Dummy ) pretty_dummies_dict = { 'above': 'cdefgh', 'below': 'klmno', 'general': 'pqrstu' } def get_CC_operators(): """ Returns a tuple (T1,T2) of unique operators. """ i = symbols('i', below_fermi=True, cls=Dummy) a = symbols('a', above_fermi=True, cls=Dummy) t_ai = AntiSymmetricTensor('t', (a,), (i,)) ai = NO(Fd(a)*F(i)) i, j = symbols('i,j', below_fermi=True, cls=Dummy) a, b = symbols('a,b', above_fermi=True, cls=Dummy) t_abij = AntiSymmetricTensor('t', (a, b), (i, j)) abji = NO(Fd(a)*Fd(b)*F(j)*F(i)) T1 = t_ai*ai T2 = Rational(1, 4)*t_abij*abji return (T1, T2) def main(): print() print("Calculates the Coupled-Cluster energy- and amplitude equations") print("See 'An Introduction to Coupled Cluster Theory' by") print("T. Daniel Crawford and Henry F. Schaefer III") print("Reference to a Lecture Series: http://vergil.chemistry.gatech.edu/notes/sahan-cc-2010.pdf") print() # setup hamiltonian p, q, r, s = symbols('p,q,r,s', cls=Dummy) f = AntiSymmetricTensor('f', (p,), (q,)) pr = NO((Fd(p)*F(q))) v = AntiSymmetricTensor('v', (p, q), (r, s)) pqsr = NO(Fd(p)*Fd(q)*F(s)*F(r)) H = f*pr + Rational(1, 4)*v*pqsr print("Using the hamiltonian:", latex(H)) print("Calculating 4 nested commutators") C = Commutator T1, T2 = get_CC_operators() T = T1 + T2 print("commutator 1...") comm1 = wicks(C(H, T)) comm1 = evaluate_deltas(comm1) comm1 = substitute_dummies(comm1) T1, T2 = get_CC_operators() T = T1 + T2 print("commutator 2...") comm2 = wicks(C(comm1, T)) comm2 = evaluate_deltas(comm2) comm2 = substitute_dummies(comm2) T1, T2 = get_CC_operators() T = T1 + T2 print("commutator 3...") comm3 = wicks(C(comm2, T)) comm3 = evaluate_deltas(comm3) comm3 = substitute_dummies(comm3) T1, T2 = get_CC_operators() T = T1 + T2 print("commutator 4...") comm4 = wicks(C(comm3, T)) comm4 = evaluate_deltas(comm4) comm4 = substitute_dummies(comm4) print("construct Hausdorff expansion...") eq = H + comm1 + comm2/2 + comm3/6 + comm4/24 eq = eq.expand() eq = evaluate_deltas(eq) eq = substitute_dummies(eq, new_indices=True, pretty_indices=pretty_dummies_dict) print("*********************") print() print("extracting CC equations from full Hbar") i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) print() print("CC Energy:") print(latex(wicks(eq, simplify_dummies=True, keep_only_fully_contracted=True))) print() print("CC T1:") eqT1 = wicks(NO(Fd(i)*F(a))*eq, simplify_kronecker_deltas=True, keep_only_fully_contracted=True) eqT1 = substitute_dummies(eqT1) print(latex(eqT1)) print() print("CC T2:") eqT2 = wicks(NO(Fd(i)*Fd(j)*F(b)*F(a))*eq, simplify_dummies=True, keep_only_fully_contracted=True, simplify_kronecker_deltas=True) P = PermutationOperator eqT2 = simplify_index_permutations(eqT2, [P(a, b), P(i, j)]) print(latex(eqT2)) if __name__ == "__main__": main()
bsd-3-clause
5,840,633,361,370,606,000
29.504132
134
0.614739
false
2.787764
false
false
false
MelanieBittl/dolfin
demo/undocumented/petsc4py/python/demo_petsc4py.py
3
2737
"""This demo program solves Poisson's equation - div grad u(x, y) = f(x, y) on the unit square with source f given by f(x, y) = 10*exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02) and boundary conditions given by u(x, y) = 0 for x = 0 or x = 1 du/dn(x, y) = sin(5*x) for y = 0 or y = 1 It demonstrates how to extract petsc4py objects from dolfin objects and use them in a petsc4py Krylov solver. Based on "demo/pde/poisson/python/demo_poisson.py" """ # Copyright (C) 2007-2011, 2013 Anders Logg, Lawrence Mitchell # # This file is part of DOLFIN. # # DOLFIN is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # DOLFIN is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with DOLFIN. If not, see <http://www.gnu.org/licenses/>. # # Begin demo from __future__ import print_function from dolfin import * from six import print_ try: from petsc4py import PETSc except: print_("*** You need to have petsc4py installed for this demo to run", end=' ') print("Exiting.") exit() if not has_petsc4py(): print_("*** DOLFIN has not been compiled with petsc4py support", end=' ') print("Exiting.") exit() parameters["linear_algebra_backend"] = "PETSc" # Create mesh and define function space mesh = UnitSquareMesh(32, 32) V = FunctionSpace(mesh, "Lagrange", 1) # Define Dirichlet boundary (x = 0 or x = 1) def boundary(x): return x[0] < DOLFIN_EPS or x[0] > 1.0 - DOLFIN_EPS # Define boundary condition u0 = Constant(0.0) bc = DirichletBC(V, u0, boundary) # Define variational problem u = TrialFunction(V) v = TestFunction(V) f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)") g = Expression("sin(5*x[0])") a = inner(grad(u), grad(v))*dx L = f*v*dx + g*v*ds # Compute solution u = Function(V) A, b = assemble_system(a, L, bc) # Fetch underlying PETSc objects A_petsc = as_backend_type(A).mat() b_petsc = as_backend_type(b).vec() x_petsc = as_backend_type(u.vector()).vec() # Create solver, apply preconditioner and solve system ksp = PETSc.KSP().create() ksp.setOperators(A_petsc) pc = PETSc.PC().create() pc.setOperators(A_petsc) pc.setType(pc.Type.JACOBI) ksp.setPC(pc) ksp.solve(b_petsc, x_petsc) # Plot solution plot(u, interactive=True) # Save solution to file file = File("poisson.pvd") file << u
gpl-3.0
8,582,205,401,691,385,000
25.833333
83
0.686518
false
2.887131
false
false
false
davidzchen/tensorflow
tensorflow/python/keras/mixed_precision/experimental/loss_scale_benchmark.py
3
6827
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Benchmarks for LossScaleOptimizer.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import time from tensorflow.python.distribute import distribution_strategy_context from tensorflow.python.distribute import mirrored_strategy from tensorflow.python.eager import backprop from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.framework import config from tensorflow.python.keras.mixed_precision.experimental import loss_scale_optimizer from tensorflow.python.keras.optimizer_v2 import adam from tensorflow.python.ops import math_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test from tensorflow.python.training.experimental import loss_scale as loss_scale_module def _get_strategy(num_gpus): if num_gpus > 1: return mirrored_strategy.MirroredStrategy( ['/GPU:%d' % i for i in range(num_gpus)]) else: return distribution_strategy_context.get_strategy() # The default strategy class LossScaleBenchmark(test.Benchmark): """Benchmark for loss scaling.""" def _benchmark(self, gradient_type, num_gpus, mode, loss_scaling): """Benchmarks loss scaling. We run a simple model with several scalar variables. The loss is the sum of all variables. The model is simple because we want to measure only the performance of loss scaling, not the performance of the model itself. Args: gradient_type: "optimizer" or "gradient_tape". How gradients are computed. "optimizer" uses Optimizer.minimize. "gradient_tape" uses GradientTape.gradient along with LossScaleOptimizer.get_scaled_loss and LossScaleOptimizer.get_unscaled_gradients. num_gpus: The number of GPUs to use. Must be at least 1. mode: "eager" or "tf_function". "tf_function" causes all computations to be wrapped in a tf.function, while "eager" runs computations eagerly. loss_scaling: "fixed", "dynamic", or None. The type of loss scaling to use. None means use no loss scaling, which is useful as a baseline to see how much slower loss scaling is in comparison. """ ls_str = loss_scaling or 'no_loss_scaling' name = '%s_%d_GPU_%s_%s' % (gradient_type, num_gpus, mode, ls_str) with context.eager_mode(), _get_strategy(num_gpus).scope() as strategy: opt = adam.Adam() if loss_scaling == 'fixed': loss_scale = loss_scale_module.FixedLossScale(2.) elif loss_scaling == 'dynamic': # Make increment_period so high that it's effectively infinite. This # means the loss scale will never change. Any performance overhead # from increasing/decreasing the loss scale is typically negligible # since it happens infrequently, so we only benchmark the common case # of the loss scale not changing. increment_period = 1000000 loss_scale = loss_scale_module.DynamicLossScale( initial_loss_scale=2., increment_period=increment_period) else: assert loss_scaling is None loss_scale = None if loss_scale: opt = loss_scale_optimizer.LossScaleOptimizer(opt, loss_scale) num_vars = 200 num_warmup_iters = 1 num_iters = 20 # By using scalar variables, we reduce overhead of the actual GPU work of # multiplying variables, dividing gradients, and checking gradients for # NaNs. Measuring these overheads isn't very useful as there is little we # can do to reduce them (one such way would be to fuse dividing gradients # and checking them for NaNs). We still have all other overheads, such as # all-reducing the `is_finite` values and having a tf.cond or # tf.while_loop based on whether gradients are NaNs. Currently, these # other overheads are much more significant than the GPU work. var_list = [ variables.Variable(i, dtype='float32') for i in range(num_vars)] def get_loss(): return math_ops.add_n(var_list) if gradient_type == 'gradient_tape': if loss_scale is None: def minimize_fn(): with backprop.GradientTape() as tape: loss = get_loss() grads = tape.gradient(loss, var_list) return opt.apply_gradients(zip(grads, var_list)) else: def minimize_fn(): with backprop.GradientTape() as tape: loss = get_loss() scaled_loss = opt.get_scaled_loss(loss) scaled_grads = tape.gradient(scaled_loss, var_list) grads = opt.get_unscaled_gradients(scaled_grads) return opt.apply_gradients(zip(grads, var_list)) else: assert gradient_type == 'optimizer' def minimize_fn(): return opt.minimize(get_loss, var_list) def run_fn(): strategy.run(minimize_fn) if mode == 'tf_function': run_fn = def_function.function(run_fn) for _ in range(num_warmup_iters): run_fn() start = time.time() for _ in range(num_iters): run_fn() end = time.time() self.report_benchmark(iters=num_iters, wall_time=(end - start) / num_iters, name=name) def _gpus_to_test_with(self): num_gpus = len(config.list_logical_devices('GPU')) gpus_to_test_with = [] if num_gpus >= 1: gpus_to_test_with.append(1) if num_gpus >= 2: gpus_to_test_with.append(2) if num_gpus >= 8: gpus_to_test_with.append(8) return gpus_to_test_with def benchmark_optimizer(self): for num_gpus in self._gpus_to_test_with(): for mode in 'eager', 'tf_function': for loss_scaling in None, 'fixed', 'dynamic': self._benchmark('optimizer', num_gpus, mode, loss_scaling) def benchmark_gradient_tape(self): for num_gpus in self._gpus_to_test_with(): for mode in 'eager', 'tf_function': for loss_scaling in None, 'fixed', 'dynamic': self._benchmark('gradient_tape', num_gpus, mode, loss_scaling) if __name__ == '__main__': test.main()
apache-2.0
-5,343,875,307,564,638,000
40.628049
85
0.666178
false
3.943963
true
false
false
xiaohan2012/capitalization-restoration-train
tests/test_util.py
1
3055
# -*- coding: utf-8 -*- import os from nose.tools import assert_equal, assert_true, assert_false from capitalization_train.util import (extract_title, get_document_content_paf, is_monocase, get_title_and_content_by_paf) CURDIR = os.path.dirname(os.path.realpath(__file__)) def test_extract_title(): actual = extract_title(CURDIR + '/data/docs_okformed/001BBB8BFFE6841FA498FCE88C43B63A') expected = u'UPDATE - Nanobiotix gets early Positive Safety rEsults IN head and neck clinical trial' assert_equal(actual, expected) def test_get_document_content_paf_empty(): actual = get_document_content_paf(CURDIR + '/data/empty_doc') expected = '\n\n' assert_equal(actual, expected) def test_get_document_content_paf(): actual = get_document_content_paf(CURDIR + '/data/docs_okformed/001BBB8BFFE6841FA498FCE88C43B63A') assert_true(len(actual.strip()) > 400) def test_get_title_and_content_by_paf(): starting_content, title, body\ = get_title_and_content_by_paf( CURDIR + '/data/docs_okformed/001BBB8BFFE6841FA498FCE88C43B63A' ) assert_equal(starting_content, "20150609\n001BBB8BFFE6841FA498FCE88C43B63A\n") assert_equal( title, "UPDATE - Nanobiotix gets early Positive Safety rEsults IN head and neck clinical trial" ) assert_true(len(body.strip()) > 400) def test_is_monocase(): assert_true( is_monocase( "The Inside Story of How the iPhone Crippled BlackBerry".split() ) ) # this assert_true( is_monocase( "Ayla Networks Executives Speaking at Key IoT Conferences this Spring".split() ) ) # annoying 'du' assert_true( is_monocase( "KSL Capital Partners Announces the Sale of Malmaison and Hotel du Vin".split() ) ) assert_true( is_monocase("Global Eagle Entertainment and SES Sign a Strategic Partnership to Deliver Global Ku-Band Satellite in-Flight Connectivity to Airlines".split()) ) assert_false( is_monocase("Agenda Released for the 17th annual Summit on Superbugs & Superdrugs".split()) ) assert_true( is_monocase("How Find Your Inner Martin Scorsese to Build Brand & Rule the World".split()) ) assert_true( is_monocase("Half of YouTube 's Traffic is Now Coming From Mobile: CEO".split()) ) assert_true( is_monocase("Crystal Bridges Announces 2015 Exhibits, Including Warhol, van Gogh, Pollock".split()) ) assert_true( is_monocase("Why American Airlines Threw Away Paper Flight Plans in Favor of iPads".split()) ) # len(ac) == 0 assert_false( is_monocase("Why american airlines threw away paper flight plans in favor of ipads".split()) ) assert_true( is_monocase("Amy Pascal to Work on Sony 's Spider-Man Team".split()) )
mit
683,156,147,735,513,900
30.173469
165
0.630442
false
3.260406
false
false
false
dallingham/regenerate
setup.py
1
1326
try: from setuputils import setup except ImportError: from distutils.core import setup setup( name='regenerate', version='1.0.0', license='License.txt', author='Donald N. Allingham', author_email='[email protected]', description='Register editor for ASIC/FPGA designs', long_description='Allows users to manange registers for ' 'ASIC and FPGA designs. Capable of generating Verilog ' 'RTL, test code, C and assembler header files, and documentation.', packages=["regenerate", "regenerate.db", "regenerate.importers", "regenerate.extras", "regenerate.settings", "regenerate.ui", "regenerate.writers"], package_data={ 'regenerate': ['data/ui/*.ui', 'data/media/*.svg', 'data/help/*.rst', 'data/media/*.png', 'data/extra/*.odt', 'data/*.*', 'writers/templates/*'] }, url="https://github.com/dallingham/regenerate", scripts=["bin/regenerate", "bin/regbuild", "bin/regupdate", "bin/regxref", "bin/regdiff", "bin/ipxact2reg"], classifiers= ['Operating System :: POSIX', 'Programming Language :: Python :: 2.7', 'License :: OSI Approved :: GNU General Public License v2 or later (GPLv2+)', 'Topic :: Scientific/Engineering :: Electronic Design Automation (EDA)'], )
gpl-2.0
6,191,504,294,718,468,000
43.2
82
0.636501
false
3.693593
false
false
false
altai/altai-api
altai_api/blueprints/invites.py
1
3002
# vim: tabstop=8 shiftwidth=4 softtabstop=4 expandtab smarttab autoindent # Altai API Service # Copyright (C) 2012-2013 Grid Dynamics Consulting Services, Inc # All Rights Reserved # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program. If not, see # <http://www.gnu.org/licenses/>. from flask import Blueprint, abort from openstackclient_base import exceptions as osc_exc from altai_api.blueprints.users import (user_to_view, InvitesDAO, update_user_data) from altai_api import auth from altai_api.schema import Schema from altai_api.schema import types as st from altai_api.utils import make_json_response, parse_request_data from altai_api.utils.decorators import no_auth_endpoint, root_endpoint BP = Blueprint('invites', __name__) def _invite_and_user(code): user_mgr = auth.admin_client_set().identity_admin.users invite = InvitesDAO.get(code) try: assert not invite.complete user = user_mgr.get(invite.user_id) assert not user.enabled except (osc_exc.NotFound, AssertionError): abort(404) return invite, user @BP.route('/') @root_endpoint('invites') def list_invites(): # just a stub to mark with root_endpoint abort(404) @BP.route('/<code>', methods=('GET',)) @no_auth_endpoint def get_user_by_code(code): invite, user = _invite_and_user(code) return make_json_response(user_to_view(user, invite)) _ACCEPT_SCHEMA = Schema(( st.String('name'), st.String('fullname', allow_empty=True), st.String('email'), )) _ACCEPT_REQUIRES = Schema(( st.String('password'), )) @BP.route('/<code>', methods=('PUT',)) @no_auth_endpoint def accept_invite(code): data = parse_request_data(_ACCEPT_SCHEMA, _ACCEPT_REQUIRES) invite, user = _invite_and_user(code) data['enabled'] = True try: update_user_data(user, data) user = auth.admin_client_set().identity_admin.users.get(user.id) except osc_exc.NotFound: abort(404) InvitesDAO.complete_for_user(user.id) return make_json_response(user_to_view(user, invite), 200) @BP.route('/<code>', methods=('DELETE',)) @no_auth_endpoint def drop_invite(code): """Refuse to accept invite""" invite, user = _invite_and_user(code) try: user.delete() except osc_exc.NotFound: abort(404) InvitesDAO.complete_for_user(invite.user_id) return make_json_response(None, status_code=204)
lgpl-2.1
-2,387,585,171,577,959,000
27.590476
73
0.692871
false
3.438717
false
false
false
Christoph-D/Japanese-Tools
reading/read.py
1
4247
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: Damien Elmes <[email protected]> # License: GNU GPL, version 3 or later; http://www.gnu.org/copyleft/gpl.html # # Automatic reading generation with kakasi and mecab. # See http://ichi2.net/anki/wiki/JapaneseSupport # # Adapted for stand-alone use by # Christoph Dittmann <[email protected]>. import sys, os, platform, re, subprocess, codecs MAX_OUTPUT_LENGTH = 300 kakasiCmd = ["kakasi", "-iutf8", "-outf8", "-u", "-JH", "-KH"] mecabCmd = ["mecab", '--node-format=%m[%f[5]] ', '--eos-format=\n', '--unk-format=%m[] '] class KakasiController(object): def __init__(self): self.kakasi = None def ensureOpen(self): if not self.kakasi: try: self.kakasi = subprocess.Popen( kakasiCmd, bufsize=-1, stdin=subprocess.PIPE, stdout=subprocess.PIPE) except OSError: raise Exception("Please install kakasi.") def toHiragana(self, expr): self.ensureOpen() self.kakasi.stdin.write(expr.encode("utf8", "ignore")+'\n') self.kakasi.stdin.flush() res = unicode(self.kakasi.stdout.readline().rstrip('\r\n'), "utf8") return res kakasi = KakasiController() def fixExpr(expr): out = [] expr_split = re.split("([^\[]+\[[^\]]*\])", expr) for node in expr_split: if node == '': continue m = re.match("(.+)\[(.*)\]", node.decode("utf-8")) if not m: out.append(node.decode("utf-8")) continue (kanji, reading) = m.groups() # hiragana, katakana, punctuation, not japanese, or lacking a reading if kanji == reading or not reading: out.append(kanji) continue # convert to hiragana reading = kakasi.toHiragana(reading) # ended up the same if reading == kanji: out.append(kanji) continue # don't add readings of numbers if kanji.strip() in u"0123456789": # u"一二三四五六七八九十0123456789": out.append(kanji) continue # strip matching characters and beginning and end of reading and kanji # reading should always be at least as long as the kanji placeL = 0 placeR = 0 for i in range(1,len(kanji)): if kanji[-i] != reading[-i]: break placeR = i for i in range(0,len(kanji)-1): if kanji[i] != reading[i]: break placeL = i+1 if placeL == 0: if placeR == 0: out.append(" %s[%s]" % (kanji, reading)) else: out.append(" %s[%s]%s" % ( kanji[:-placeR], reading[:-placeR], reading[-placeR:])) else: if placeR == 0: out.append("%s %s[%s]" % ( reading[:placeL], kanji[placeL:], reading[placeL:])) else: out.append("%s %s[%s]%s" % ( reading[:placeL], kanji[placeL:-placeR], reading[placeL:-placeR], reading[-placeR:])) fin = "" for c, s in enumerate(out): if c < len(out) - 1 and re.match("^[A-Za-z0-9]+$", out[c+1]): s += " " fin += s fin = fin.strip() fin = re.sub(u"\[\]", u"", fin) fin = re.sub(u" +", u" ", fin) return fin def get_readings(expr): try: mecab = subprocess.Popen( mecabCmd, bufsize=-1, stdin=subprocess.PIPE, stdout=subprocess.PIPE) return mecab.communicate(expr)[0] except OSError: raise Exception("Please install mecab.") if __name__ == "__main__": sys.stdout = codecs.open("/dev/stdout", "w", 'utf-8') if len(sys.argv) != 2 or len(sys.argv[1]) == 0: print 'Please provide one argument.' sys.exit(0) try: result = fixExpr(get_readings(sys.argv[1])) result = re.sub(u"\\n", u"", result) except Exception, (e): print e sys.exit(1) if len(result) > MAX_OUTPUT_LENGTH: print result[0:MAX_OUTPUT_LENGTH - 3] + u'...' else: print result
gpl-3.0
-5,141,048,142,559,384,000
32.230159
78
0.523525
false
3.30205
false
false
false
robinandeer/puzzle
puzzle/plugins/base_variant_mixin.py
1
2440
from puzzle.utils import (get_gene_info, get_cytoband_coord) class BaseVariantMixin(object): """Base class for variant mixins""" def variants(self, case_id, skip=0, count=30, filters=None): """Return a results tuple with variants and nr_of_variants. """ raise NotImplementedError def variant(self, variant_id): """Return a specific variant.""" raise NotImplementedError def _get_genes(self, variant): """Add the genes for a variant Get the hgnc symbols from all transcripts and add them to the variant Args: variant (dict): A variant dictionary Returns: genes (list): A list of Genes """ ensembl_ids = [] hgnc_symbols = [] for transcript in variant.transcripts: if transcript.ensembl_id: ensembl_ids.append(transcript.ensembl_id) if transcript.hgnc_symbol: hgnc_symbols.append(transcript.hgnc_symbol) genes = get_gene_info( ensembl_ids=ensembl_ids, hgnc_symbols=hgnc_symbols ) return genes def _add_sv_coordinates(self, variant): """Add the neccesary sv coordinates for a variant Args: variant (puzzle.models.variant) """ variant.stop_chrom = variant.CHROM variant.start = int(variant.POS) # If we have a translocation: if ':' in variant.ALT: other_coordinates = variant.ALT.strip('ACGTN[]').split(':') variant.stop_chrom = other_coordinates[0].lstrip('chrCHR') other_position = other_coordinates[1] # variant.stop = other_position #Set 'infinity' to length if translocation variant.sv_len = float('inf') variant.sv_type = 'BND' else: variant.sv_len = variant.stop - variant.start variant['cytoband_start'] = get_cytoband_coord( chrom=variant.CHROM, pos=variant.start ) variant['cytoband_stop'] = get_cytoband_coord( chrom=variant.stop_chrom, pos=variant.stop )
mit
-7,586,782,505,556,927,000
31.972973
71
0.515574
false
4.518519
false
false
false
yantisj/netgrph
nglib/ngtree/upgrade.py
1
1274
'Upgrade older ngtrees to newer version' import logging logger = logging.getLogger(__name__) def upgrade_ngt_v2(ngt): 'Upgrade ngt structures to version 2 for the API' stack = list() # Add dictionary to stack stack.append(ngt) # upgrade keys on all dictionaries for tree in stack: # Copy NGT and traverse nt = tree.copy() for f in nt: # Upgrade dictionary key tree.pop(f) tree[_new_name(f)] = nt[f] # Found a nested dict, add to stack if isinstance(nt[f], dict): stack.append(nt[f]) # Found a nested list elif isinstance(nt[f], list): for en in nt[f]: # nested dict in list, add to stack if isinstance(en, dict): stack.append(en) return ngt def _new_name(old): 'Get new name for fields (lowercase, replace spaces with _)' nmap = { 'StandbyRouter': 'standby_router', 'SecurityLevel': 'security_level', 'mgmtgroup': 'mgmt_group' } if old in nmap: return nmap[old] old = old.replace(' ', '_') old = old.lower() if old == 'data': old = 'xdata' return old
agpl-3.0
-167,502,471,302,788,800
22.163636
64
0.526688
false
3.98125
false
false
false
DarKnight--/owtf
framework/plugin/scanner.py
2
8554
#!/usr/bin/env python ''' The scan_network scans the network for different ports and call network plugins for different services running on target ''' import re import logging from framework.dependency_management.dependency_resolver import BaseComponent from framework.utils import FileOperations SCANS_FOLDER = "scans" # Folder under which all scans will be saved PING_SWEEP_FILE = "%s/00_ping_sweep" % SCANS_FOLDER DNS_INFO_FILE= "%s/01_dns_info" % SCANS_FOLDER FAST_SCAN_FILE = "%s/02_fast_scan" % SCANS_FOLDER STD_SCAN_FILE = "%s/03_std_scan" % SCANS_FOLDER FULL_SCAN_FILE = "%s/04_full_scan" % SCANS_FOLDER class Scanner(BaseComponent): COMPONENT_NAME = "scanner" def __init__(self): self.register_in_service_locator() self.shell = self.get_component("shell") self.config = self.get_component("config") self.plugin_handler = self.get_component("plugin_handler") self.shell.shell_exec("mkdir %s" % SCANS_FOLDER) def ping_sweep(self, target, scantype): if scantype == "full": logging.info("Performing Intense Host discovery") self.shell.shell_exec("nmap -n -v -sP -PE -PP -PS21,22,23,25,80,443,113,21339 -PA80,113,443,10042" " --source_port 53 %s -oA %s" % (target, PING_SWEEP_FILE)) if scantype == "arp": logging.info("Performing ARP host discovery") self.shell.shell_exec("nmap -n -v -sP -PR %s -oA %s" % (target, PING_SWEEP_FILE)) self.shell.shell_exec('grep Up %s.gnmap | cut -f2 -d\" \" > %s.ips' % (PING_SWEEP_FILE, PING_SWEEP_FILE)) def dns_sweep(self, file_with_ips, file_prefix): logging.info("Finding misconfigured DNS servers that might allow zone transfers among live ips ..") self.shell.shell_exec("nmap -PN -n -sS -p 53 -iL %s -oA %s" % (file_with_ips, file_prefix)) # Step 2 - Extract IPs dns_servers = "%s.dns_server.ips" % file_prefix self.shell.shell_exec('grep \"53/open/tcp\" %s.gnmap | cut -f 2 -d \" \" > %s' % (file_prefix, dns_servers)) file = FileOperations.open(dns_servers) domain_names = "%s.domain_names" % file_prefix self.shell.shell_exec("rm -f %s" % domain_names) num_dns_servers = 0 for line in file: if line.strip('\n'): dns_server = line.strip('\n') self.shell.shell_exec("host %s %s | grep 'domain name' | cut -f 5 -d' ' | cut -f 2,3,4,5,6,7 -d. " "| sed 's/\.$//' >> %s" % (dns_server, dns_server, domain_names)) num_dns_servers += 1 try: file = FileOperations.open(domain_names, owtf_clean=False) except IOError: return for line in file: domain = line.strip('\n') raw_axfr = "%s.%s.%s.axfr.raw" % (file_prefix, dns_server, domain) self.shell.shell_exec("host -l %s %s | grep %s > %s" % (domain, dns_server, domain, raw_axfr)) success = self.shell.shell_exec("wc -l %s | cut -f 1 -d ' '" % raw_axfr) if success > 3: logging.info("Attempting zone transfer on $dns_server using domain %s.. Success!" % domain) axfr = "%s.%s.%s.axfr" % (file_prefix, dns_server, domain) self.shell.shell_exec("rm -f %s" % axfr) logging.info(self.shell.shell_exec("grep 'has address' %s | cut -f 1,4 -d ' ' | sort -k 2 -t ' ' " "| sed 's/ /#/g'" % raw_axfr)) else: logging.info("Attempting zone transfer on $dns_server using domain %s.. Success!" % domain) self.shell.shell_exec("rm -f %s" % raw_axfr) if num_dns_servers == 0: return def scan_and_grab_banners(self, file_with_ips, file_prefix, scan_type, nmap_options): if scan_type == "tcp": logging.info("Performing TCP portscan, OS detection, Service detection, banner grabbing, etc") self.shell.shell_exec("nmap -PN -n -v --min-parallelism=10 -iL %s -sS -sV -O -oA %s.tcp %s") % ( file_with_ips, file_prefix, nmap_options) self.shell.shell_exec("amap -1 -i %s.tcp.gnmap -Abq -m -o %s.tcp.amap -t 90 -T 90 -c 64" % (file_prefix, file_prefix)) if scan_type == "udp": logging.info("Performing UDP portscan, Service detection, banner grabbing, etc") self.shell.shell_exec("nmap -PN -n -v --min-parallelism=10 -iL %s -sU -sV -O -oA %s.udp %s" % ( file_with_ips, file_prefix, nmap_options)) self.shell.shell_exec("amap -1 -i %s.udp.gnmap -Abq -m -o %s.udp.amap" % (file_prefix, file_prefix)) def get_nmap_services_file(self): return '/usr/share/nmap/nmap-services' def get_ports_for_service(self, service, protocol): regexp = '(.*?)\t(.*?/.*?)\t(.*?)($|\t)(#.*){0,1}' re.compile(regexp) list = [] f = FileOperations.open(self.get_nmap_services_file()) for line in f.readlines(): if line.lower().find(service) >= 0: match = re.findall(regexp, line) if match: port = match[0][1].split('/')[0] prot = match[0][1].split('/')[1] if (not protocol or protocol == prot) and port not in list: list.append(port) f.close() return list def target_service(self, nmap_file, service): ports_for_service = self.get_ports_for_service(service, "") f = FileOperations.open(nmap_file.strip()) response = "" for host_ports in re.findall('Host: (.*?)\tPorts: (.*?)[\t\n]', f.read()): host = host_ports[0].split(' ')[0] # Remove junk at the end ports = host_ports[1].split(',') for port_info in ports: if len(port_info) < 1: continue chunk = port_info.split('/') port = chunk[0].strip() port_state = chunk[1].strip() # No point in wasting time probing closed/filtered ports!! # (nmap sometimes adds these to the gnmap file for some reason ..) if port_state in ['closed', 'filtered']: continue try: prot = chunk[2].strip() except: continue if port in ports_for_service: response += "%s:%s:%s##" % (host, port, prot) f.close() return response def probe_service_for_hosts(self, nmap_file, target): services = [] # Get all available plugins from network plugin order file net_plugins = self.config.Plugin.GetOrder("network") for plugin in net_plugins: services.append(plugin['Name']) services.append("http") total_tasks = 0 tasklist = "" plugin_list = [] http = [] for service in services: if plugin_list.count(service) > 0: continue tasks_for_service = len(self.target_service(nmap_file, service).split("##")) - 1 total_tasks += tasks_for_service tasklist = "%s [ %s - %s tasks ]" % (tasklist, service, str(tasks_for_service)) for line in self.target_service(nmap_file, service).split("##"): if line.strip("\n"): ip = line.split(":")[0] port = line.split(":")[1] plugin_to_invoke = service service1 = plugin_to_invoke self.config.Set("%s_PORT_NUMBER" % service1.upper(), port) if service != 'http': plugin_list.append(plugin_to_invoke) http.append(port) logging.info("We have to probe %s:%s for service %s", str(ip), str(port), plugin_to_invoke) return http def scan_network(self, target): self.ping_sweep(target.split("//")[1], "full") self.dns_sweep("%s.ips" % PING_SWEEP_FILE, DNS_INFO_FILE) def probe_network(self, target, protocol, port): self.scan_and_grab_banners("%s.ips" % PING_SWEEP_FILE, FAST_SCAN_FILE, protocol, "-p %s" % port) return self.probe_service_for_hosts("%s.%s.gnmap" % (FAST_SCAN_FILE, protocol), target.split("//")[1])
bsd-3-clause
-6,012,392,452,692,870,000
47.327684
120
0.535773
false
3.492854
false
false
false
bungoume/webhook-deploy
webhook_deploy/core/models.py
1
1442
from django.db import models from django.utils import timezone from jsonfield import JSONField class Repository(models.Model): # github, gitbucket, etc... hub = models.CharField(max_length=191, db_index=True) # user user = models.CharField(max_length=191) # repository_name name = models.CharField(max_length=191) # username/reponame full_name = models.CharField(max_length=191, db_index=True) # Secret Key secret = models.CharField(max_length=191, db_index=True) def __str__(self): return '{}: {}'.format(self.hub, self.full_name) class DeploySetting(models.Model): repository = models.ForeignKey(Repository) branch = models.CharField(max_length=191) command = models.TextField() def __str__(self): return '{}: {}'.format(self.repository, self.branch) class HookLog(models.Model): data = JSONField() created_at = models.DateTimeField(auto_now_add=True) def __str__(self): dt_text = timezone.localtime(self.created_at).strftime('%Y-%m-%d %H:%M:%S') return '{}: {}'.format(dt_text, self.data.get('path')) class DeployLog(models.Model): log = models.TextField() return_code = models.IntegerField() created_at = models.DateTimeField(auto_now_add=True) def __str__(self): dt_text = timezone.localtime(self.created_at).strftime('%Y-%m-%d %H:%M:%S') return '{}: {}'.format(dt_text, self.return_code)
mit
-1,986,875,627,614,209,300
29.680851
83
0.654646
false
3.483092
false
false
false
Yelp/kafka-python
test/test_admin_client_integration.py
1
2702
import os import time import unittest import pytest from kafka.admin_client import AdminClient, NewTopic, NewPartitionsInfo from kafka.protocol.metadata import MetadataRequest from test.fixtures import ZookeeperFixture, KafkaFixture from test.testutil import KafkaIntegrationTestCase, env_kafka_version KAFKA_ADMIN_TIMEOUT_SECONDS = 5 class TestKafkaAdminClientIntegration(KafkaIntegrationTestCase): @classmethod def setUpClass(cls): if not os.environ.get('KAFKA_VERSION'): return cls.zk = ZookeeperFixture.instance() cls.server = KafkaFixture.instance(0, cls.zk) @classmethod def tearDownClass(cls): if not os.environ.get('KAFKA_VERSION'): return cls.server.close() cls.zk.close() @pytest.mark.skipif(env_kafka_version() < (0, 10, 1), reason='Unsupported Kafka Version') def test_create_delete_topics(self): admin = AdminClient(self.client_async) topic = NewTopic( name='topic', num_partitions=1, replication_factor=1, ) metadata_request = MetadataRequest[1]() response = admin.create_topics(topics=[topic], timeout=KAFKA_ADMIN_TIMEOUT_SECONDS) # Error code 7 means that RequestTimedOut but we can safely assume # that topic is created or will be created eventually. # see this https://cwiki.apache.org/confluence/display/KAFKA/ # KIP-4+-+Command+line+and+centralized+administrative+operations self.assertTrue( response[0].topic_errors[0][1] == 0 or response[0].topic_errors[0][1] == 7 ) time.sleep(1) # allows the topic to be created delete_response = admin.delete_topics(['topic'], timeout=1) self.assertTrue( response[0].topic_errors[0][1] == 0 or response[0].topic_errors[0][1] == 7 ) @pytest.mark.skipif(env_kafka_version() < (1, 0, 0), reason='Unsupported Kafka Version') def test_create_partitions(self): admin = AdminClient(self.client_async) topic = NewTopic( name='topic', num_partitions=1, replication_factor=1, ) metadata_request = MetadataRequest[1]() admin.create_topics(topics=[topic], timeout=KAFKA_ADMIN_TIMEOUT_SECONDS) time.sleep(1) # allows the topic to be created new_partitions_info = NewPartitionsInfo('topic', 2, [[0]]) response = admin.create_partitions([new_partitions_info], timeout=1, validate_only=False) self.assertTrue( response[0].topic_errors[0][1] == 0 or response[0].topic_errors[0][1] == 7 )
apache-2.0
4,979,695,835,716,379,000
35.513514
97
0.634345
false
3.910275
true
false
false
normalnorway/avtalegiro
ordernumber.py
1
1492
r""" ORDER NUMBER: Numerical, 7 positions. Unique numbering must be used for orders per payee's recipient agreement, 12 months + one day ahead. An atomic incrementing counter is used, modulu 1e8. A check is done to assert that order number is not reused in the last 12 months + 1 day. @todo implement that check! """ # @todo new name. does more than generate order numbers # Only store one row with one column #SQL_TABLE1 = 'CREATE TABLE order_number (next BIGINT)' # one row per order_number? use auto increment primary key? import sqlite3 conn = sqlite3.connect ('transmissions.db') cursor = conn.cursor() def _init_db(): cursor.execute ('create table keyval (key TEXT, val BIGINT)') cursor.execute ('insert into keyval values (?,?)', ('order_number', 1)) def next_order_number(): """Note: Will wrap around after 10 million numbers are generated""" oldlevel = conn.isolation_level try: conn.isolation_level = 'EXCLUSIVE' params = ('order_number',) cursor.execute ('select val from keyval where key=?', params) number = cursor.fetchone()[0] cursor.execute ('update keyval set val=val+1 where key=?', params) conn.commit() except sqlite3.OperationalError as ex: conn.rollback() # needed? done by default? if ex.message != 'no such table: keyval': raise ex _init_db() return next_order_number() finally: conn.isolation_level = oldlevel return number % int(1e8)
gpl-3.0
-4,596,594,146,202,820,000
32.155556
75
0.676273
false
3.767677
false
false
false
easyCZ/SLIP-A-2015
respiratory/Processed Datasets/Processed Datasets/week6.py
1
2409
class patients(object): def __init__(self,number,scores,stats,participated,rank,actual_rank,overall): self.number = number # integer from 1-10. patient number. self.scores = scores # list of floats element of [0,10]. Floats are scores for a given exercise. self.stats = stats # for n exercises this is a list containing n lists of the form [avg,min,max], where avg is the patient's avg br for a given exercise, min is the patient's min br for a given exercise... etc. self.participated = participated # list of booleans. True if patient participated in a gievn exercise, False if a patient did not. self.rank = rank self.actual_rank = actual_rank self.overall = overall # float element of [0,10]. Overall scor of patient. # swap rows i and j of matrix A. def row_swap(A,i,j): row_i = A[i] A[i] = A[j] A[j] = row_i return A # In matrix A, add factor*row_i to row j. def row_add(A,i,j,factor): dim_col = len(A[0]) for k in range(0,dim_col): A[j][k] = A[j][k]+ factor*A[i][k] return A def zeros(n,m): output = [] for i in range(0,n): output.append([]) for j in range(0,m): output[i].append(0) return output def multiply(A,B): row_dim = len(A) col_dim = len(B[0]) sum_length = len(A[0]) AB = zeros(row_dim,col_dim) for i in range(0,row_dim): for j in range(0,col_dim): for k in range(0,sum_length): AB[i][j] = AB[i][j] + A[i][k]*B[k][j] return AB # Takes A,b from Ax = b and returns triangular matrix T along with modified b. def Gaussian(A,b): dim = len(A) for i in range(0,dim): if A[i][i] == 0: count = 0 while A[i+count][i] == 0: count += 1 if i+count > dim: return "failure" break row_swap(A,i,i+count) row_swap(b,i,i+count) for j in range(i+1,dim): row_add(b,i,j,-A[j][i]/A[i][i]) row_add(A,i,j,-A[j][i]/A[i][i]) return [A,b] A = [[1,2,3],[2,3,5],[5,2,4]] b = [[1],[2],[3]] Tb = Gaussian(A,b) T = Tb[0] b = Tb[1] def list_to_int(b): for i in range(0,len(b)): b[i] = b[i][0] return b # takes triangular matrix T, vector y and solves for x in Tx = y def backsub(T,y): y = list_to_int(y) dim = len(T) print T[dim-1][dim-1] x = [] for i in range(0,dim): x.append(0) x[dim-1] = y[dim-1]/float(T[dim-1][dim-1]) rows = reversed(range(0,dim-1)) for i in rows: x[i] = float(y[i]) for j in range(i+1,dim): x[i] -= T[i][j]*x[j] x[i] = x[i]/T[i][i] return x print backsub(T,b)
mit
-4,914,040,263,418,544,000
25.483516
214
0.611042
false
2.283412
false
false
false
aaichsmn/tacc_stats
tacc_stats/analysis/job_printer.py
1
2175
#!/usr/bin/env python import sys, os import cPickle as pickle from datetime import datetime from tacc_stats import cfg as cfg from tacc_stats.pickler import batch_acct,job_stats def main(**args): acct = batch_acct.factory(cfg.batch_system, cfg.acct_path, cfg.host_name_ext) reader = acct.find_jobids(args['jobid']).next() date_dir = os.path.join(cfg.pickles_dir, datetime.fromtimestamp(reader['end_time']).strftime('%Y-%m-%d')) pickle_file = os.path.join(date_dir, reader['id']) with open(pickle_file) as fd: data = pickle.load(fd) print "Hosts:", data.hosts.keys() if not args['host']: pass elif args['host'] in data.hosts: data.hosts = { args['host'] : data.hosts[args['host']] } else: print args['host'],"does not exist in", args['file'] return for host_name, host in data.hosts.iteritems(): print "Host:",host_name print "Types:",host.stats.keys() print host.marks if not args['type']: pass elif args['type'] in host.stats: host.stats = { args['type'] : host.stats[args['type']] } else: print args['type'],"does not exist in", args['file'] return for type_name, type_device in host.stats.iteritems(): print '' print "Type:", type_name print "Schema:", data.get_schema(type_name).keys() for device_name, device in type_device.iteritems(): print "Device:",device_name print device if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='Print job using Job ID or pickle file path') parser.add_argument('file', help='Pickle file to print', nargs='?', type=str) parser.add_argument('-jobid', help='Job ID to print', nargs='+', type=str) parser.add_argument('-type', help='Restrict print to this type') parser.add_argument('-host', help='Restrict print to this host') main(**vars(parser.parse_args()))
lgpl-2.1
5,620,917,312,338,584,000
33.52381
94
0.567816
false
3.983516
false
false
false
prontodev/ban2stats_dynamodb
stats/tests/test_blocked_country_package.py
1
2434
from django.test import SimpleTestCase from django.conf import settings from stats.models import BlockedCountry from stats.packages.blocked_country import BlockedCountryPackageBuilder import time class TestBlockedCountryPackageBuilder(SimpleTestCase): def setUp(self): self.builder = BlockedCountryPackageBuilder() if not BlockedCountry.exists(): BlockedCountry.create_table() time.sleep(settings.TESTING_SLEEP_TIME) self.item1 = BlockedCountry(country_code='US', country_name='United States', count=22) self.item1.save() self.item2 = BlockedCountry(country_code='TH', country_name='Thailand', count=3000) self.item2.save() self.item3 = BlockedCountry(country_code='SG', country_name='Singapore', count=12094) self.item3.save() self.item4 = BlockedCountry(country_code='AL', country_name='Albania', count=3) self.item4.save() self.item5 = BlockedCountry(country_code='MA', country_name='Morocco', count=34123) self.item5.save() self.item6 = BlockedCountry(country_code='PE', country_name='Peru', count=50) self.item6.save() def tearDown(self): BlockedCountry.delete_table() time.sleep(settings.TESTING_SLEEP_TIME) def test_get_top_5(self): objects = self.builder.get_top_5_objects() self.assertEqual(len(objects), 5) self.assertEqual(objects[0].count, 34123) self.assertEqual(objects[1].count, 12094) self.assertEqual(objects[2].count, 3000) self.assertEqual(objects[3].count, 50) self.assertEqual(objects[4].count, 22) def test_render_each_object(self): content = self.builder.render_each_object(self.item5) self.assertIn('{', content) self.assertIn('"country_name": "Morocco"', content) self.assertIn('"count": "34,123"', content) self.assertIn('}', content) def test_render_all_objects(self): content = self.builder.render_all_objects() self.assertIn('{', content) self.assertIn('"country_name": "Morocco"', content) self.assertIn('"count": "34,123"', content) self.assertIn('}', content) self.assertNotEqual(',', content[-1]) def test_render_as_javascript(self): content = self.builder.render_as_javascript() expected_content = u''']''' self.assertIn(expected_content, content)
gpl-2.0
-482,902,131,101,907,100
39.583333
94
0.657354
false
3.6823
true
false
false
rjw57/edpcmentoring
edpcmentoring/cuedmembers/migrations/0001_initial.py
2
2205
# -*- coding: utf-8 -*- # Generated by Django 1.9.5 on 2016-04-26 12:51 from __future__ import unicode_literals from django.conf import settings from django.core.management import call_command from django.db import migrations, models import django.db.models.deletion def load_dept_structure(apps, schema_editor): call_command('loaddata', 'cuedmembers/divisions_and_research_groups.json') class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Division', fields=[ ('letter', models.CharField(max_length=1, primary_key=True, serialize=False)), ('name', models.CharField(max_length=256)), ], ), migrations.CreateModel( name='Member', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('first_names', models.CharField(blank=True, default='', max_length=100)), ('is_active', models.BooleanField(default=True)), ], ), migrations.CreateModel( name='ResearchGroup', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=256)), ('division', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='research_groups', to='cuedmembers.Division')), ], ), migrations.AddField( model_name='member', name='research_group', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='members', to='cuedmembers.ResearchGroup'), ), migrations.AddField( model_name='member', name='user', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='cued_member', to=settings.AUTH_USER_MODEL), ), migrations.RunPython(load_dept_structure), ]
mit
-1,037,518,257,966,597,800
38.375
152
0.609524
false
4.176136
false
false
false
mlufei/depot_tools
third_party/gsutil/gslib/addlhelp/metadata.py
51
8027
# Copyright 2012 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from gslib.help_provider import HELP_NAME from gslib.help_provider import HELP_NAME_ALIASES from gslib.help_provider import HELP_ONE_LINE_SUMMARY from gslib.help_provider import HelpProvider from gslib.help_provider import HELP_TEXT from gslib.help_provider import HelpType from gslib.help_provider import HELP_TYPE _detailed_help_text = (""" <B>OVERVIEW OF METADATA</B> Objects can have associated metadata, which control aspects of how GET requests are handled, including Content-Type, Cache-Control, Content-Disposition, and Content-Encoding (discussed in more detail in the subsections below). In addition, you can set custom metadata that can be used by applications (e.g., tagging that particular objects possess some property). There are two ways to set metadata on objects: - at upload time you can specify one or more headers to associate with objects, using the gsutil -h option. For example, the following command would cause gsutil to set the Content-Type and Cache-Control for each of the files being uploaded: gsutil -h "Content-Type:text/html" -h "Cache-Control:public, max-age=3600" cp -r images gs://bucket/images Note that -h is an option on the gsutil command, not the cp sub-command. - You can set or remove metadata fields from already uploaded objects using the gsutil setmeta command. See "gsutil help setmeta". More details about specific pieces of metadata are discussed below. <B>CONTENT TYPE</B> The most commonly set metadata is Content-Type (also known as MIME type), which allows browsers to render the object properly. gsutil sets the Content-Type automatically at upload time, based on each filename extension. For example, uploading files with names ending in .txt will set Content-Type to text/plain. If you're running gsutil on Linux or MacOS and would prefer to have content type set based on naming plus content examination, see the use_magicfile configuration variable in the gsutil/boto configuration file (See also "gsutil help config"). In general, using use_magicfile is more robust and configurable, but is not available on Windows. If you specify a -h header when uploading content (like the example gsutil command given in the previous section), it overrides the Content-Type that would have been set based on filename extension or content. This can be useful if the Content-Type detection algorithm doesn't work as desired for some of your files. You can also completely suppress content type detection in gsutil, by specifying an empty string on the Content-Type header: gsutil -h 'Content-Type:' cp -r images gs://bucket/images In this case, the Google Cloud Storage service will attempt to detect the content type. In general this approach will work better than using filename extension-based content detection in gsutil, because the list of filename extensions is kept more current in the server-side content detection system than in the Python library upon which gsutil content type detection depends. (For example, at the time of writing this, the filename extension ".webp" was recognized by the server-side content detection system, but not by gsutil.) <B>CACHE-CONTROL</B> Another commonly set piece of metadata is Cache-Control, which allows you to control whether and for how long browser and Internet caches are allowed to cache your objects. Cache-Control only applies to objects with a public-read ACL. Non-public data are not cacheable. Here's an example of uploading an object set to allow caching: gsutil -h "Cache-Control:public,max-age=3600" cp -a public-read -r html gs://bucket/html This command would upload all files in the html directory (and subdirectories) and make them publicly readable and cacheable, with cache expiration of one hour. Note that if you allow caching, at download time you may see older versions of objects after uploading a newer replacement object. Note also that because objects can be cached at various places on the Internet there is no way to force a cached object to expire globally (unlike the way you can force your browser to refresh its cache). <B>CONTENT-ENCODING</B> You could specify Content-Encoding to indicate that an object is compressed, using a command like: gsutil -h "Content-Encoding:gzip" cp *.gz gs://bucket/compressed Note that Google Cloud Storage does not compress or decompress objects. If you use this header to specify a compression type or compression algorithm (for example, deflate), Google Cloud Storage preserves the header but does not compress or decompress the object. Instead, you need to ensure that the files have been compressed using the specified Content-Encoding before using gsutil to upload them. For compressible content, using Content-Encoding:gzip saves network and storage costs, and improves content serving performance (since most browsers are able to decompress objects served this way). Note also that gsutil provides an easy way to cause content to be compressed and stored with Content-Encoding:gzip: see the -z option in "gsutil help cp". <B>CONTENT-DISPOSITION</B> You can set Content-Disposition on your objects, to specify presentation information about the data being transmitted. Here's an example: gsutil -h 'Content-Disposition:attachment; filename=filename.ext' \\ cp -r attachments gs://bucket/attachments Setting the Content-Disposition allows you to control presentation style of the content, for example determining whether an attachment should be automatically displayed vs should require some form of action from the user to open it. See http://www.w3.org/Protocols/rfc2616/rfc2616-sec19.html#sec19.5.1 for more details about the meaning of Content-Disposition. <B>CUSTOM METADATA</B> You can add your own custom metadata (e.g,. for use by your application) to an object by setting a header that starts with "x-goog-meta", for example: gsutil -h x-goog-meta-reviewer:jane cp mycode.java gs://bucket/reviews You can add multiple differently named custom metadata fields to each object. <B>SETTABLE FIELDS; FIELD VALUES</B> You can't set some metadata fields, such as ETag and Content-Length. The fields you can set are: - Cache-Control - Content-Disposition - Content-Encoding - Content-Language - Content-MD5 - Content-Type - Any field starting with X-GOOG-META- (i.e., custom metadata). Header names are case-insensitive. X-GOOG-META- fields can have data set to arbitrary Unicode values. All other fields must have ASCII values. <B>VIEWING CURRENTLY SET METADATA</B> You can see what metadata is currently set on an object by using: gsutil ls -L gs://the_bucket/the_object """) class CommandOptions(HelpProvider): """Additional help about object metadata.""" help_spec = { # Name of command or auxiliary help info for which this help applies. HELP_NAME : 'metadata', # List of help name aliases. HELP_NAME_ALIASES : ['cache-control', 'caching', 'content type', 'mime type', 'mime', 'type'], # Type of help: HELP_TYPE : HelpType.ADDITIONAL_HELP, # One line summary of this help. HELP_ONE_LINE_SUMMARY : 'Working with object metadata', # The full help text. HELP_TEXT : _detailed_help_text, }
bsd-3-clause
-694,530,456,639,687,000
42.155914
114
0.754952
false
4.297109
false
false
false
KRHS-GameProgramming-2014/SUPER-AWESOME-NINJA-GAME
HUD.py
1
1412
import pygame class Text(): def __init__(self, pos, text = "", textSize = 12, textColor=(255,255,255), font = None): self.text = text self.textColor = textColor self.font = pygame.font.Font(font, textSize) self.image = self.font.render(self.text, 1, textColor) self.rect = self.image.get_rect() self.place(pos) def place(self, pos): self.rect.center = pos def setText(self, text): self.text = text self.image = self.font.render(text, 1, textColor) self.rect = self.image.get_rect(center = self.rect.center) def update(self, width, height): pass class Score(Text): def __init__(self, pos, baseText = "Score: ", textSize = 12, textColor=(255,255,255), font = None): self.score = 0 self.baseText = baseText self.text = self.baseText + str(self.score) Text.__init__(self, pos, self.text, textSize, textColor, font) self.change = False def setText(self, text): self.baseText = text self.change = True def update(self): if self.change: self.text = self.baseText + str(self.score) self.image = self.font.render(self.text, 1, self.textColor) self.rect = self.image.get_rect(center = self.rect.center) self.change = False def setScore(self, score): self.score = score self.change = True def increaseScore(self, amount = 1): self.score += amount self.change = True def resetScore(self): self.score = 0 self.change = True
bsd-2-clause
5,879,221,224,374,994,000
25.641509
100
0.667847
false
2.881633
false
false
false
ifermon/garagePi
event.py
1
1068
class Event(object): _event_groups = {} @classmethod def get_events(cls, key="Default"): return cls._event_groups.get(key, []) def __init__(self, name, msg=None, group_key="Default"): self._name = name self._msg = msg self._my_group = group_key groups = Event._event_groups groups[group_key] = groups.get(group_key, []) + [self,] return def localize(self, msg): return Event(self.name, msg, self._my_group) @property def name(self): return self._name @property def msg(self): return self._msg def __hash__(self): return hash(self._name) def __ne__(self): return not(self == other) def __str__(self): return self._name def __repr__(self): return self._name def __eq__(self, other): return self._name == other._name if __name__ == "__main__": grp = "a group" a = Event("a", "a msg", grp) b = Event("b", "b msg") c = Event("c", "c msg", grp) print(c.__dict__)
gpl-2.0
-2,078,049,025,914,573,300
20.36
63
0.519663
false
3.56
false
false
false
argaen/restmote
restmote/sync.py
1
2059
import requests import logging import urlparse from django.conf import settings root = urlparse.urljoin(settings.RESTMOTE_HOST + ":" + settings.RESTMOTE_PORT, settings.RESTMOTE_API_ROOT) def get_data(url): if hasattr(settings, "RESTMOTE_USER") and hasattr(settings, "RESTMOTE_PASSWORD"): r = requests.get(url, timeout=15, auth=(settings.RESTMOTE_USER, settings.RESTMOTE_PASSWORD)) else: r = requests.get(url, timeout=15) if r.status_code == 200: logging.info(url) logging.info(r.json()) return True, r.json() else: logging.info("Connection failed: %s" % r.text) return False, [] def build_objects(obj_class, obj_string, data, field_bindings, nested=[]): for e in data: try: o = obj_class.objects.get(**{'id' + obj_string: e["id"]}) except obj_class.DoesNotExist: o = obj_class() for f in [x for x in e if x in field_bindings]: setattr(o, field_bindings[f], e[f]) for n in nested: for f in [x for x in e[n] if x in field_bindings]: setattr(o, field_bindings[f], e[n][f]) setattr(o, "id" + obj_string, e["id"]) o.save() logging.info("Added %s: %s" % (obj_string, o.pk)) def sync_objects(url, qfilter, obj_class, obj_string, field_bindings, nested=[]): status, data = get_data(root + url + '?' + qfilter) if status: build_objects(obj_class, obj_string, data, field_bindings, nested) return 1 else: return 0 def remove_objects(url, obj_class, obj_string): status, remote_ids = get_data(root + url) if status: local_ids = obj_class.objects.values_list('id' + obj_string, flat=True) must_remove = list(set(local_ids).difference(remote_ids)) obj_class.objects.filter(**{'id' + obj_string + '__in': must_remove}).delete() if must_remove: logging.info("Deleted %s: %s" % (obj_string, ', '.join(str(x) for x in must_remove))) return 1 else: return 0
apache-2.0
-7,204,773,143,457,903,000
31.171875
106
0.595435
false
3.35342
false
false
false
ChenJunor/hue
apps/pig/src/pig/models.py
4
5507
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import posixpath from django.db import models from django.contrib.auth.models import User from django.contrib.contenttypes import generic from django.core.urlresolvers import reverse from django.utils.translation import ugettext as _, ugettext_lazy as _t from desktop.lib.exceptions_renderable import PopupException from desktop.models import Document as Doc, SAMPLE_USER_ID from hadoop.fs.hadoopfs import Hdfs class Document(models.Model): owner = models.ForeignKey(User, db_index=True, verbose_name=_t('Owner'), help_text=_t('User who can modify the job.')) is_design = models.BooleanField(default=True, db_index=True, verbose_name=_t('Is a user document, not a document submission.'), help_text=_t('If the document is not a submitted job but a real query, script, workflow.')) def is_editable(self, user): # Deprecated return user.is_superuser or self.owner == user def can_edit_or_exception(self, user, exception_class=PopupException): # Deprecated if self.is_editable(user): return True else: raise exception_class(_('Only superusers and %s are allowed to modify this document.') % user) class PigScript(Document): _ATTRIBUTES = ['script', 'name', 'properties', 'job_id', 'parameters', 'resources', 'hadoopProperties'] data = models.TextField(default=json.dumps({ 'script': '', 'name': '', 'properties': [], 'job_id': None, 'parameters': [], 'resources': [], 'hadoopProperties': [] })) doc = generic.GenericRelation(Doc, related_name='pig_doc') def update_from_dict(self, attrs): data_dict = self.dict for attr in PigScript._ATTRIBUTES: if attrs.get(attr) is not None: data_dict[attr] = attrs[attr] if 'name' in attrs: self.doc.update(name=attrs['name']) self.data = json.dumps(data_dict) @property def dict(self): return json.loads(self.data) def get_absolute_url(self): return reverse('pig:index') + '#edit/%s' % self.id @property def use_hcatalog(self): script = self.dict['script'] return ('org.apache.hcatalog.pig.HCatStorer' in script or 'org.apache.hcatalog.pig.HCatLoader' in script) or \ ('org.apache.hive.hcatalog.pig.HCatLoader' in script or 'org.apache.hive.hcatalog.pig.HCatStorer' in script) # New classes @property def use_hbase(self): script = self.dict['script'] return 'org.apache.pig.backend.hadoop.hbase.HBaseStorage' in script def create_or_update_script(id, name, script, user, parameters, resources, hadoopProperties, is_design=True): try: pig_script = PigScript.objects.get(id=id) if id == str(SAMPLE_USER_ID): # Special case for the Example, just create an history is_design = False raise PigScript.DoesNotExist() pig_script.doc.get().can_write_or_exception(user) except PigScript.DoesNotExist: pig_script = PigScript.objects.create(owner=user, is_design=is_design) Doc.objects.link(pig_script, owner=pig_script.owner, name=name) if not is_design: pig_script.doc.get().add_to_history() # A user decided eventually to save an unsaved script after execution: if is_design and pig_script.doc.get().is_historic(): pig_script.doc.get().remove_from_history() pig_script.update_from_dict({ 'name': name, 'script': script, 'parameters': parameters, 'resources': resources, 'hadoopProperties': hadoopProperties }) return pig_script def get_scripts(user, is_design=None): scripts = [] data = Doc.objects.available(PigScript, user) if is_design is not None: data = [job for job in data if job.is_design] for script in data: data = script.dict massaged_script = { 'id': script.id, 'docId': script.doc.get().id, 'name': data['name'], 'script': data['script'], 'parameters': data['parameters'], 'resources': data['resources'], 'hadoopProperties': data.get('hadoopProperties', []), 'isDesign': script.is_design, 'can_write': script.doc.get().can_write(user) } scripts.append(massaged_script) return scripts def get_workflow_output(oozie_workflow, fs): # TODO: guess from the Input(s):/Output(s) output = None if 'workflowRoot' in oozie_workflow.conf_dict: output = oozie_workflow.conf_dict.get('workflowRoot') if output and not fs.exists(output): output = None return output def hdfs_link(url): if url: path = Hdfs.urlsplit(url)[2] if path: if path.startswith(posixpath.sep): return "/filebrowser/view=" + path else: return "/filebrowser/home_relative_view=/" + path else: return url else: return url
apache-2.0
6,807,907,979,281,745,000
31.585799
130
0.684402
false
3.620644
false
false
false
AdamMagoon/WhatCD
WhatMain.py
1
3126
from Models import query_all_requests, organize_data_model from WhatApi import get_login, similar, GazelleAPIMod, \ get_requests_soup, parse_requests_page, match_two_sets, \ filter_torrent_alphabetically u_name, pw = get_login() # user = UserSession(user_name=u_name, password=pw) def update_album_requests(): exists = False pages = list(range(1, 1000)) for page in pages: soup = get_requests_soup(page=page) parsed_soup = parse_requests_page(soup) exists = organize_data_model(parsed_soup) if exists: return page def find_matches(): """ Finds matches between existing Album Requests and existing torrents on What.cd Takes into account Artist Name Album Name Acceptable Formats (FLAC, FLAC 24, MP3) Acceptable Bitrates (Lossless, Lossy) Acceptable Media (WEB, CD) """ matches = {} what_object = GazelleAPIMod(username=u_name, password=pw) # Query all of our requests from our stored database all_requests = [(x.id, x.name) for x in query_all_requests() if x.name.find('-') >= 0] for req_id, full_name in all_requests: name_part = full_name.split('-') artist = name_part[0].strip() album = name_part[1].strip() request_object = what_object.request_search_by_id(req_id) # Query API with artist name - returns all existing artist material artist_data = what_object.get_artist_json(artist) # torrentgroup keyword filters just torrents, removing metadata torrent_groups = artist_data.get('torrentgroup', []) # artist_id = artist_query['id'] filtered_groups = filter_torrent_alphabetically(torrent_groups, album) # Iterate over torrent groups for torrent_group in filtered_groups: torrent_group_album = torrent_group['groupName'] if similar(album, torrent_group_album, threshold=0.8): matches[request_object] = [torrent_group] print(matches) # bitrate = set(request_object.acceptable_bitrates) _format = set(request_object.acceptable_formats) media = set(request_object.acceptable_media) # Iterate individual torrents for tor in torrent_group['torrent']: tor_format = tor['format'] tor_media = tor['media'] # tor_bitrate = tor['encoding'] tor_id = tor['id'] format_match = match_two_sets(set(tor_format), _format) media_match = match_two_sets(media, set(tor_media)) if format_match and media_match: package = (req_id, tor_id) with open('matches.txt', 'a+') as f: f.write("Request Id: {}\nTorrent Id: {}\n\n" .format(package[0], package[1])) return matches if __name__ == '__main__': # find_matches() update_album_requests()
mit
-2,521,717,268,370,013,000
36.214286
78
0.574216
false
4.049223
false
false
false
sam-m888/gprime
gprime/datehandler/_date_bg.py
1
10250
# -*- coding: utf-8 -*- # # gPrime - A web-based genealogy program # # Copyright (C) 2004-2006 Donald N. Allingham # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # """ Bulgarian-specific classes for parsing and displaying dates. """ #------------------------------------------------------------------------- # # Python modules # #------------------------------------------------------------------------- import re #------------------------------------------------------------------------- # # Gprime modules # #------------------------------------------------------------------------- from ..lib.date import Date from ._dateparser import DateParser from ._datedisplay import DateDisplay from ._datehandler import register_datehandler #------------------------------------------------------------------------- # # Bulgarian parser # #------------------------------------------------------------------------- class DateParserBG(DateParser): modifier_to_int = { 'преди' : Date.MOD_BEFORE, 'пр.' : Date.MOD_BEFORE, 'пр' : Date.MOD_BEFORE, 'след' : Date.MOD_AFTER, 'сл.' : Date.MOD_AFTER, 'сл' : Date.MOD_AFTER, 'ок' : Date.MOD_ABOUT, 'ок.' : Date.MOD_ABOUT, 'около' : Date.MOD_ABOUT, 'примерно' : Date.MOD_ABOUT, 'прим' : Date.MOD_ABOUT, 'прим.' : Date.MOD_ABOUT, 'приблизително' : Date.MOD_ABOUT, 'приб.' : Date.MOD_ABOUT, 'прибл.' : Date.MOD_ABOUT, 'приб' : Date.MOD_ABOUT, 'прибл' : Date.MOD_ABOUT, } calendar_to_int = { 'григориански' : Date.CAL_GREGORIAN, 'г' : Date.CAL_GREGORIAN, 'юлиански' : Date.CAL_JULIAN, 'ю' : Date.CAL_JULIAN, 'еврейски' : Date.CAL_HEBREW, 'е' : Date.CAL_HEBREW, 'ислямски' : Date.CAL_ISLAMIC, 'и' : Date.CAL_ISLAMIC, 'френски републикански' : Date.CAL_FRENCH, 'републикански' : Date.CAL_FRENCH, 'фр.реп.' : Date.CAL_FRENCH, 'р' : Date.CAL_FRENCH, 'френски' : Date.CAL_FRENCH, 'фр.' : Date.CAL_FRENCH, 'персийски' : Date.CAL_PERSIAN, 'п' : Date.CAL_PERSIAN, } quality_to_int = { 'приблизително' : Date.QUAL_ESTIMATED, 'прибл.' : Date.QUAL_ESTIMATED, 'изчислено' : Date.QUAL_CALCULATED, 'изчисл.' : Date.QUAL_CALCULATED, 'изч.' : Date.QUAL_CALCULATED, } hebrew_to_int = { "тишрей":1, "мархешван":2, "кислев":3, "тевет":4, "шват":5, "адар":6, "адар бет":7, "нисан":8, "ияр":9, "сиван":10, "тамуз":11, "ав":12, "eлул":13, } islamic_to_int = { "мухаррам":1, "саффар":2, "рабиу-л-ауал":3, "рабиу-с-сани":4, "джумадал-уля":5, "джумада-с-сания":6, "раджаб":7, "шаабан":8, "рамадан":9, "шауал":10, "зу-л-кида":11, "зул-л-хиджа":12, } persian_to_int = { "фарвардин":1, "урдбихищ":2, "хурдад":3, "тир":4, "мурдад":5, "шахривар":6, "михр":7, "абан":8, "азар":9, "дай":10, "бахман":11, "исфаидармуз":12, } french_to_int = { "вандемер":1, "брюмер":2, "фример":3, "нивоз":4, "плювиоз":5, "вантоз":6, "жерминал":7, "флореал":8, "прериал":9, "месидор":10, "термидор":11, "фрюктидор":12, "допълнителен":13, } bce = [ 'преди Христа', 'пр. Хр.', 'пр.Хр.' ] + DateParser.bce def init_strings(self): DateParser.init_strings(self) _span_1 = ['от'] _span_2 = ['до'] _range_1 = ['между'] _range_2 = ['и'] self._span = re.compile("(%s)\s+(?P<start>.+)\s+(%s)\s+(?P<stop>.+)" % ('|'.join(_span_1), '|'.join(_span_2)), re.IGNORECASE) self._range = re.compile("(%s)\s+(?P<start>.+)\s+(%s)\s+(?P<stop>.+)" % ('|'.join(_range_1), '|'.join(_range_2)), re.IGNORECASE) #------------------------------------------------------------------------- # # Bulgarian displayer # #------------------------------------------------------------------------- class DateDisplayBG(DateDisplay): """ Bulgarian language date display class. """ long_months = ( "", "януари", "февруари", "март", "април", "май", "юни", "юли", "август", "септември", "октомври", "ноември", "декември" ) short_months = ( "", "яну", "февр", "март", "апр", "май", "юни", "юли", "авг", "септ", "окт", "ное", "дек" ) calendar = ( "", "юлиански", "еврейски", "републикански", "персийски", "ислямски", "шведски" ) _mod_str = ("", "преди ", "след ", "около ", "", "", "") _qual_str = ("", "приблизително ", "изчислено ") _bce_str = "%s пр. Хр." formats = ( "ГГГГ-ММ-ДД (ISO)", "Числов", "Месец Ден, Година", "Мес. Ден, Година", "Ден Месец Година", "Ден Мес. Година" ) # this must agree with DateDisplayEn's "formats" definition # (since no locale-specific _display_gregorian exists, here) hebrew = ( "", "Тишрей", "Мархешван", "Кислев", "Тевет", "Шват", "Адар", "Адар бет", "Нисан", "Ияр", "Сиван", "Тамуз", "Ав", "Елул", ) islamic = ( "", "Мухаррам", "Саффар", "Рабиу-л-ауал", "Рабиу-с-сани", "Джумадал-уля", "Джумада-с-сания", "Раджаб", "Шаабан", "Рамадан", "Шауал", "Зу-л-кида", "Зул-л-хиджа", ) persian = ( "", "Фарвардин", "Урдбихищ", "Хурдад", "Тир", "Мурдад", "Шахривар", "Михр", "Абан", "Азар", "Дай", "Бахман", "Исфаидармуз", ) french = ( "", "Вандемер", "Брюмер", "Фример", "Нивоз", "Плювиоз", "Вантоз", "Жерминал", "Флореал", "Прериал", "Мессидор", "Термидор", "Фрюктидор", "Допълнителен" ) def display(self, date): """ Returns a text string representing the date. """ mod = date.get_modifier() cal = date.get_calendar() qual = date.get_quality() start = date.get_start_date() newyear = date.get_new_year() qual_str = self._qual_str[qual] if mod == Date.MOD_TEXTONLY: return date.get_text() elif start == Date.EMPTY: return "" elif mod == Date.MOD_SPAN: d1 = self.display_cal[cal](start) d2 = self.display_cal[cal](date.get_stop_date()) scal = self.format_extras(cal, newyear) return "%s%s %s %s %s%s" % (qual_str, 'от', d1, 'до', d2, scal) elif mod == Date.MOD_RANGE: d1 = self.display_cal[cal](start) d2 = self.display_cal[cal](date.get_stop_date()) scal = self.format_extras(cal, newyear) return "%s%s %s %s %s%s" % (qual_str, 'между', d1, 'и', d2, scal) else: text = self.display_cal[date.get_calendar()](start) scal = self.format_extras(cal, newyear) return "%s%s%s%s" % (qual_str, self._mod_str[mod], text, scal) #------------------------------------------------------------------------- # # Register classes # #------------------------------------------------------------------------- register_datehandler(('bg_BG', 'bg', 'bulgarian', 'Bulgarian'), DateParserBG, DateDisplayBG)
gpl-2.0
4,148,409,983,572,741,600
27.898089
116
0.426603
false
2.758893
false
false
false
telegraphic/allantools
tests/np_tests.py
1
26560
#!/usr/bin/env python """ np_tests.py ----------- Compare output validity and speedup of numpy-accelerated codes to reference pure python codes. TODO: Tidy this up """ import numpy as np import allantools.allantools_pure_python as alt import allantools.allantools as alp import time if __name__ == "__main__": print "Compare results and speed of pure-python allantools against numpy allantools" ####################### # MTIE_PHASE() ####################### print "\ntesting mtie_phase()" data = np.random.random(1000) taus = [1, 3, 5, 16, 128] rates = [1, 20, 10.7] strides = [1, 10, 7] for rate in rates: for stride in strides: #print "TAU: %i, RATE: %2.2f, STRIDE: %i" % (tau, rate, stride) o_taus, o_dev, o_err, o_n = alt.mtie_phase_purepy(data, rate, taus) o_taus_, o_dev_, o_err_, o_n_ = alp.mtie_phase(data, rate, taus) assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) stride = 1 tau = 1280 rate = 2.1 data = np.random.random(100000) t1 = time.time() o_taus, o_dev, o_err, o_n = alt.mtie_phase_purepy(data, rate, taus) t2 = time.time() t3 = time.time() o_taus_, o_dev_, o_err_, o_n_ = alp.mtie_phase(data, rate, taus) t4 = time.time() #print (o_dev, o_dev_) assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) ####################### # MTIE() ####################### print "\ntesting mtie()" data = np.random.random(1000) taus = [1, 3, 5, 16, 128] rates = [1, 20, 10.7] strides = [1, 10, 7] for rate in rates: for stride in strides: #print "TAU: %i, RATE: %2.2f, STRIDE: %i" % (tau, rate, stride) o_taus, o_dev, o_err, o_n = alt.mtie(data, rate, taus) o_taus_, o_dev_, o_err_, o_n_ = alp.mtie(data, rate, taus) assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) stride = 1 tau = 128000 rate = 2.1 data = np.random.random(10000) t1 = time.time() o_taus, o_dev, o_err, o_n = alt.mtie(data, rate, taus) t2 = time.time() t3 = time.time() o_taus_, o_dev_, o_err_, o_n_ = alp.mtie(data, rate, taus) t4 = time.time() assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) ####################### # THREE_CORNERED_HAT_PHASE() ####################### print "\ntesting three_cornered_hat_phase()" stride = 1 taus = [2, 4, 8, 16] rate = 2.1 pdata_ab = np.random.random(100000) pdata_bc = np.random.random(100000) pdata_ca = np.random.random(100000) t1 = time.time() function = alt.adev tau, dev_a = alt.three_cornered_hat_phase(pdata_ab, pdata_bc, pdata_ca, rate, taus, function) t2 = time.time() t3 = time.time() function = alp.adev tau_, dev_a_ = alp.three_cornered_hat_phase(pdata_ab, pdata_bc, pdata_ca, rate, taus, function) t4 = time.time() assert np.allclose(tau, tau_) assert np.allclose(dev_a, dev_a_) print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) ####################### # TIERMS_PHASE() ####################### print "\ntesting tierms_phase()" data = np.random.random(1000) taus = [1, 3, 5, 16, 128] rates = [1, 20, 10.7] strides = [1, 10, 7] for rate in rates: for stride in strides: #print "TAU: %i, RATE: %2.2f, STRIDE: %i" % (tau, rate, stride) o_taus, o_dev, o_err, o_n = alt.tierms_phase(data, rate, taus) o_taus_, o_dev_, o_err_, o_n_ = alp.tierms_phase(data, rate, taus) assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) stride = 1 tau = 16 rate = 2.1 data = np.random.random(100000) t1 = time.time() o_taus, o_dev, o_err, o_n = alt.tierms_phase(data, rate, taus) t2 = time.time() t3 = time.time() o_taus_, o_dev_, o_err_, o_n_ = alp.tierms_phase(data, rate, taus) t4 = time.time() assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) ####################### # TIERMS() ####################### print "\ntesting tierms()" data = np.random.random(1000) taus = [1, 3, 5, 16, 128] rates = [1, 20, 10.7] strides = [1, 10, 7] for rate in rates: for stride in strides: #print "TAU: %i, RATE: %2.2f, STRIDE: %i" % (tau, rate, stride) o_taus, o_dev, o_err, o_n = alt.tierms(data, rate, taus) o_taus_, o_dev_, o_err_, o_n_ = alp.tierms(data, rate, taus) assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) stride = 1 tau = 16 rate = 2.1 data = np.random.random(100000) t1 = time.time() o_taus, o_dev, o_err, o_n = alt.tierms(data, rate, taus) t2 = time.time() t3 = time.time() o_taus_, o_dev_, o_err_, o_n_ = alp.tierms(data, rate, taus) t4 = time.time() assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) ####################### # TOTDEV_PHASE() ####################### print "\ntesting totdev_phase()" data = np.random.random(1000) taus = [1, 3, 5, 16, 128] rates = [1, 20, 10.7] strides = [1, 10, 7] for rate in rates: for stride in strides: #print "TAU: %i, RATE: %2.2f, STRIDE: %i" % (tau, rate, stride) o_taus, o_dev, o_err, o_n = alt.totdev_phase(data, rate, taus) o_taus_, o_dev_, o_err_, o_n_ = alp.totdev_phase(data, rate, taus) assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) stride = 1 tau = 16 rate = 2.1 data = np.random.random(100000) t1 = time.time() o_taus, o_dev, o_err, o_n = alt.totdev_phase(data, rate, taus) t2 = time.time() t3 = time.time() o_taus_, o_dev_, o_err_, o_n_ = alp.totdev_phase(data, rate, taus) t4 = time.time() assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) ####################### # TOTDEV() ####################### print "\ntesting totdev()" data = np.random.random(1000) taus = [1, 3, 5, 16, 128] rates = [1, 20, 10.7] strides = [1, 10, 7] for rate in rates: for stride in strides: #print "TAU: %i, RATE: %2.2f, STRIDE: %i" % (tau, rate, stride) o_taus, o_dev, o_err, o_n = alt.totdev(data, rate, taus) o_taus_, o_dev_, o_err_, o_n_ = alp.totdev(data, rate, taus) assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) stride = 1 tau = 16 rate = 2.1 data = np.random.random(100000) t1 = time.time() o_taus, o_dev, o_err, o_n = alt.totdev(data, rate, taus) t2 = time.time() t3 = time.time() o_taus_, o_dev_, o_err_, o_n_ = alp.totdev(data, rate, taus) t4 = time.time() assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) ####################### # OHDEV() ####################### print "\ntesting ohdev()" data = np.random.random(10000) taus = [1, 3, 5, 16, 128] rates = [1, 20, 10.7] strides = [1, 10, 7] for rate in rates: for stride in strides: #print "TAU: %i, RATE: %2.2f, STRIDE: %i" % (tau, rate, stride) o_taus, o_dev, o_err, o_n = alt.ohdev(data, rate, taus) o_taus_, o_dev_, o_err_, o_n_ = alp.ohdev(data, rate, taus) assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) stride = 1 tau = 16 rate = 2.1 data = np.random.random(100000) t1 = time.time() o_taus, o_dev, o_err, o_n = alt.ohdev(data, rate, taus) t2 = time.time() t3 = time.time() o_taus_, o_dev_, o_err_, o_n_ = alp.ohdev(data, rate, taus) t4 = time.time() assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) ####################### # OHDEV_PHASE() ####################### print "\ntesting ohdev_phase()" data = np.random.random(10000) taus = [1, 3, 5, 16, 128] rates = [1, 20, 10.7] strides = [1, 10, 7] for rate in rates: for stride in strides: #print "TAU: %i, RATE: %2.2f, STRIDE: %i" % (tau, rate, stride) o_taus, o_dev, o_err, o_n = alt.ohdev_phase(data, rate, taus) o_taus_, o_dev_, o_err_, o_n_ = alp.ohdev_phase(data, rate, taus) assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) stride = 1 tau = 16 rate = 2.1 data = np.random.random(100000) t1 = time.time() o_taus, o_dev, o_err, o_n = alt.ohdev_phase(data, rate, taus) t2 = time.time() t3 = time.time() o_taus_, o_dev_, o_err_, o_n_ = alp.ohdev_phase(data, rate, taus) t4 = time.time() assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) ####################### # HDEV_PHASE_CALC() ####################### print "\ntesting hdev_phase_calc()" data = np.random.random(10000) taus = [1, 3, 5, 16, 128] rates = [1, 20, 10.7] strides = [1, 10, 7] for tau in taus: for rate in rates: for stride in strides: #print "TAU: %i, RATE: %2.2f, STRIDE: %i" % (tau, rate, stride) mj = tau dev, deverr, n = alt.calc_hdev_phase(data, rate, mj, stride) dev_, deverr_, n_ = alp.calc_hdev_phase(data, rate, mj, stride) assert np.isclose(dev, dev_) assert np.isclose(n, n_) assert np.isclose(deverr, deverr_) stride = 1 tau = 16 rate = 2.0 t1 = time.time() dev, deverr, n = alt.calc_hdev_phase(data, rate, mj, stride) t2 = time.time() t3 = time.time() dev_, deverr_, n_ = alp.calc_hdev_phase(data, rate, mj, stride) t4 = time.time() assert np.isclose(dev, dev_) assert np.isclose(n, n_) assert np.isclose(deverr, deverr_) print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) ####################### # OADEV_PHASE() ####################### print "\ntesting oadev_phase()" data = np.random.random(10000) taus = [1, 3, 5, 16, 128] rates = [1, 20, 10.7] strides = [1, 10, 7] for rate in rates: for stride in strides: #print "TAU: %i, RATE: %2.2f, STRIDE: %i" % (tau, rate, stride) o_taus, o_dev, o_err, o_n = alt.oadev_phase(data, rate, taus) o_taus_, o_dev_, o_err_, o_n_ = alp.oadev_phase(data, rate, taus) assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) stride = 1 tau = 16 rate = 2.1 data = np.random.random(100000) t1 = time.time() o_taus, o_dev, o_err, o_n = alt.oadev_phase(data, rate, taus) t2 = time.time() t3 = time.time() o_taus_, o_dev_, o_err_, o_n_ = alp.oadev_phase(data, rate, taus) t4 = time.time() assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) ####################### # HDEV_PHASE() ####################### print "\ntesting hdev_phase()" data = np.random.random(10000) taus = [1, 3, 5, 16, 128] rates = [1, 20, 10.7] strides = [1, 10, 7] for rate in rates: for stride in strides: #print "TAU: %i, RATE: %2.2f, STRIDE: %i" % (tau, rate, stride) o_taus, o_dev, o_err, o_n = alt.hdev_phase(data, rate, taus) o_taus_, o_dev_, o_err_, o_n_ = alp.hdev_phase(data, rate, taus) assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) stride = 1 tau = 16 rate = 2.1 data = np.random.random(100000) t1 = time.time() o_taus, o_dev, o_err, o_n = alt.hdev_phase(data, rate, taus) t2 = time.time() t3 = time.time() o_taus_, o_dev_, o_err_, o_n_ = alp.hdev_phase(data, rate, taus) t4 = time.time() assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) ####################### # HDEV() ####################### print "\ntesting hdev()" data = np.random.random(10000) taus = [1, 3, 5, 16, 128] rates = [1, 20, 10.7] strides = [1, 10, 7] for rate in rates: for stride in strides: #print "TAU: %i, RATE: %2.2f, STRIDE: %i" % (tau, rate, stride) o_taus, o_dev, o_err, o_n = alt.hdev(data, rate, taus) o_taus_, o_dev_, o_err_, o_n_ = alp.hdev(data, rate, taus) assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) stride = 1 tau = 16 rate = 2.1 data = np.random.random(100000) t1 = time.time() o_taus, o_dev, o_err, o_n = alt.hdev(data, rate, taus) t2 = time.time() t3 = time.time() o_taus_, o_dev_, o_err_, o_n_ = alp.hdev(data, rate, taus) t4 = time.time() assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) ####################### # OADEV_PHASE() ####################### print "\ntesting oadev_phase()" data = np.random.random(10000) taus = [1, 3, 5, 16, 128] rates = [1, 20, 10.7] strides = [1, 10, 7] for rate in rates: for stride in strides: #print "TAU: %i, RATE: %2.2f, STRIDE: %i" % (tau, rate, stride) o_taus, o_dev, o_err, o_n = alt.oadev_phase(data, rate, taus) o_taus_, o_dev_, o_err_, o_n_ = alp.oadev_phase(data, rate, taus) assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) stride = 1 tau = 16 rate = 2.1 data = np.random.random(100000) t1 = time.time() o_taus, o_dev, o_err, o_n = alt.oadev_phase(data, rate, taus) t2 = time.time() t3 = time.time() o_taus_, o_dev_, o_err_, o_n_ = alp.oadev_phase(data, rate, taus) t4 = time.time() assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) ####################### # OADEV() ####################### print "\ntesting oadev()" data = np.random.random(10000) taus = [1, 3, 5, 16, 128] rates = [1, 20, 10.7] strides = [1, 10, 7] for rate in rates: for stride in strides: #print "TAU: %i, RATE: %2.2f, STRIDE: %i" % (tau, rate, stride) o_taus, o_dev, o_err, o_n = alt.oadev(data, rate, taus) o_taus_, o_dev_, o_err_, o_n_ = alp.oadev(data, rate, taus) assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) stride = 1 tau = 16 rate = 2.1 data = np.random.random(100000) t1 = time.time() o_taus, o_dev, o_err, o_n = alt.oadev(data, rate, taus) t2 = time.time() t3 = time.time() o_taus_, o_dev_, o_err_, o_n_ = alp.oadev(data, rate, taus) t4 = time.time() assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) ####################### # ADEV_PHASE() ####################### print "\ntesting adev_phase()" data = np.random.random(10000) taus = [1, 3, 5, 16, 128] rates = [1, 20, 10.7] strides = [1, 10, 7] for rate in rates: for stride in strides: #print "TAU: %i, RATE: %2.2f, STRIDE: %i" % (tau, rate, stride) o_taus, o_dev, o_err, o_n = alt.adev_phase(data, rate, taus) o_taus_, o_dev_, o_err_, o_n_ = alp.adev_phase(data, rate, taus) assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) stride = 1 tau = 16 rate = 2.1 data = np.random.random(100000) t1 = time.time() o_taus, o_dev, o_err, o_n = alt.adev_phase(data, rate, taus) t2 = time.time() t3 = time.time() o_taus_, o_dev_, o_err_, o_n_ = alp.adev_phase(data, rate, taus) t4 = time.time() assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) ####################### # ADEV() ####################### print "\ntesting adev()" data = np.random.random(10000) taus = [1, 3, 5, 16, 128] rates = [1, 20, 10.7] strides = [1, 10, 7] for rate in rates: for stride in strides: #print "TAU: %i, RATE: %2.2f, STRIDE: %i" % (tau, rate, stride) o_taus, o_dev, o_err, o_n = alt.adev(data, rate, taus) o_taus_, o_dev_, o_err_, o_n_ = alp.adev(data, rate, taus) assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) stride = 1 tau = 16 rate = 2.1 data = np.random.random(100000) t1 = time.time() o_taus, o_dev, o_err, o_n = alt.adev(data, rate, taus) t2 = time.time() t3 = time.time() o_taus_, o_dev_, o_err_, o_n_ = alp.adev(data, rate, taus) t4 = time.time() assert np.allclose(o_taus, o_taus_) assert np.allclose(o_dev, o_dev_) assert np.allclose(o_err, o_err_) print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) ####################### # CALC_ADEV_PHASE() ####################### print "\ntesting calc_adev_phase()" data = np.random.random(10000) taus = [1, 3, 5, 16, 128] rates = [1, 20, 10.7] strides = [1, 10, 7] for tau in taus: for rate in rates: for stride in strides: #print "TAU: %i, RATE: %2.2f, STRIDE: %i" % (tau, rate, stride) mj = tau dev, deverr, n = alt.calc_adev_phase(data, rate, mj, stride) dev_, deverr_, n_ = alp.adev_phase_calc(data, rate, mj, stride) assert np.isclose(dev, dev_) assert np.isclose(n, n_) assert np.isclose(deverr, deverr_) stride = 1 tau = 16 rate = 2.0 t1 = time.time() dev, deverr, n = alt.calc_adev_phase(data, rate, mj, stride) t2 = time.time() t3 = time.time() dev_, deverr_, n_ = alp.adev_phase_calc(data, rate, mj, stride) t4 = time.time() assert np.isclose(dev, dev_) assert np.isclose(n, n_) assert np.isclose(deverr, deverr_) print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) ####################### # TAU_M() ####################### print "\ntesting tau_m()" taus = [1, 2, 4, 8, 16, -4, 10000, -3.1, 3.141] data = np.random.random(10000) rates = [1, 2, 7.1, 123.12] for rate in rates: m, taus2 = alt.tau_m(data, rate, taus) data_, m_, taus2_ = alp.tau_m(data, rate, taus) assert np.allclose(m, m_) assert np.allclose(taus2, taus2_) taus = np.random.randint(low=-100, high=10000, size=(10000,)) rate = 1.234 t1 = time.time() m, taus2 = alt.tau_m(data, rate, taus) t2 = time.time() t3 = time.time() data_, m_, taus2_ = alp.tau_m(data, rate, taus) t4 = time.time() assert np.allclose(m, m_) assert np.allclose(taus2, taus2_) print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) ####################### # FREQUENCY2PHASE() ####################### print "\ntesting frequency2phase()" freqdata = np.random.random(10000) rates = [1, 2, 7.1, 123.12] for rate in rates: phase = alt.frequency2phase(freqdata, rate) phase_ = alp.frequency2phase(freqdata, rate) assert len(phase) == len(phase_) assert np.allclose(phase, phase_) freqdata = np.random.random(100000) t1 = time.time() phase = alt.frequency2phase(freqdata, rate) t2 = time.time() t3 = time.time() phase_ = alp.frequency2phase(freqdata, rate) t4 = time.time() print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) ####################### # TDEV_PHASE() ####################### print "\ntesting tdev_phase()" rate = 1.0 # 1000 Hz sample rate obs_s = 10000 # 1 hour n_samples = rate * obs_s t = np.arange(0, n_samples) phase = np.random.random(n_samples) + np.sin(t / n_samples) taus = [4] t1 = time.time() taus2, td, tde, ns = alt.tdev_phase(phase, rate, taus) t2 = time.time() t3 = time.time() taus2_, td_, tde_, ns_ = alp.tdev_phase(phase, rate, taus) t4 = time.time() assert np.allclose(taus2, taus2_) assert np.allclose(td, td_) assert np.allclose(tde, tde_) assert np.allclose(ns, ns_) print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) ####################### # TDEV() ####################### print "\ntesting tdev()" rate = 2.0 # 1000 Hz sample rate obs_s = 32768 # 1 hour n_samples = rate * obs_s t = np.arange(0, n_samples) phase = np.random.random(n_samples) + np.sin(t / n_samples) taus = [1, 2, 4] t1 = time.time() taus2, td, tde, ns = alt.tdev(phase, rate, taus) t2 = time.time() t3 = time.time() taus2_, td_, tde_, ns_ = alp.tdev(phase, rate, taus) t4 = time.time() assert np.allclose(taus2, taus2_) assert np.allclose(td, td_) assert np.allclose(tde, tde_) assert np.allclose(ns, ns_) print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) ####################### # MDEV_PHASE() ####################### print "\ntesting mdev_phase()" rate = 1.0 # 1000 Hz sample rate obs_s = 10000 # 1 hour n_samples = rate * obs_s t = np.arange(0, n_samples) phase = np.random.random(n_samples) + np.sin(t / n_samples) taus = [4] t1 = time.time() taus2, td, tde, ns = alt.mdev_phase(phase, rate, taus) t2 = time.time() t3 = time.time() taus2_, td_, tde_, ns_ = alp.mdev_phase(phase, rate, taus) t4 = time.time() assert np.allclose(taus2, taus2_) assert np.allclose(td, td_) assert np.allclose(tde, tde_) assert np.allclose(ns, ns_) print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) ####################### # MDEV() ####################### print "\ntesting mdev()" rate = 2.0 # 1000 Hz sample rate obs_s = 32768 # 1 hour n_samples = rate * obs_s t = np.arange(0, n_samples) phase = np.random.random(n_samples) + np.sin(t / n_samples) taus = [1, 2, 4] t1 = time.time() taus2, td, tde, ns = alt.mdev(phase, rate, taus) t2 = time.time() t3 = time.time() taus2_, td_, tde_, ns_ = alp.mdev(phase, rate, taus) t4 = time.time() assert np.allclose(taus2, taus2_) assert np.allclose(td, td_) assert np.allclose(tde, tde_) assert np.allclose(ns, ns_) print "Original: %2.3fs" % (t2 - t1) print "New: %2.3fs" % (t4 - t3) print "Speedup: %2.2fx" % ((t2 - t1) / (t4 - t3)) print "\nAll DONE!"
gpl-3.0
-3,758,425,467,134,489,000
29.955711
99
0.503539
false
2.659457
true
false
false
jwesstrom/cleverMirror
testStuff/animationTesting.py
1
1907
from kivy.app import App from kivy.uix.widget import Widget from kivy.clock import Clock from kivy.graphics import Color, Ellipse from kivy.uix.button import Button from kivy.uix.label import Label from kivy.animation import Animation class timerWidget(Widget): def __init__(self, x=350, y =350, sizeWH=200, angle=0, id='counter',**kwargs): # make sure we aren't overriding any important functionality super(timerWidget, self).__init__(**kwargs) self.id = id self.angle = angle self.sizeWH = sizeWH self.pos = [x,y] #self.size = sizeWH Clock.schedule_interval(self.update, 1/25) with self.canvas: Color(0.0, 1.0, 0.0) Ellipse(pos=(self.pos[0], self.pos[1]), size=(self.sizeWH, sizeWH), group='a', angle_start=0, angle_end = 10) def update(self, dt, x=None, y=None): if self.angle < 360: self.angle = self.angle + 1 else: self.angle = 360 self.canvas.get_group('a')[1].angle_end = self.angle class windowWidget(Widget): def __init__(self, **kwargs): super(windowWidget, self).__init__(**kwargs) pos = [30,350,90] size = 100 id = 'c' aDiv = 360-45 for i in range(4): div = (pos[0]*i) + (pos[2]*i) aDiv = (aDiv) - (45*i) self.add_widget(timerWidget(div,pos[1],size,aDiv,id+str(i))) def update(self, dt): for i in self.children: if i.angle == 360: #self.outAnim(i) #i.x = 300 print i.x def outAnim(self, obj): anim = Animation(x=50, t='in_quad') anim.start(obj) class GfxApp(App): def build(self): gWindow = windowWidget() Clock.schedule_interval(gWindow.update, 1/30) return gWindow if __name__ == '__main__': GfxApp().run()
gpl-3.0
749,775,957,101,477,100
24.77027
121
0.558469
false
3.381206
false
false
false
dimatura/pydisp
pydisp/cli.py
1
1988
# -*- coding: utf-8 -*- import os import base64 import time import click import pydisp @click.command(context_settings={'help_option_names':['-h','--help']}) @click.argument('images', nargs=-1, type=click.Path(exists=True), required=True) @click.option('--title', '-t', type=str, help='Window title') @click.option('--win', type=str, help='Window ID. By default, a generated unique id. %p will use path as id. %f will use filename.') @click.option('--width', '-w', type=int, help='Initial indow width.' ) @click.option('--pause', '-p', default=0.2, help='Pause between images in seconds') @click.option('--port', type=int, help='Display server port. Default is read from .display/config.json, or 8000.') @click.option('--hostname', type=str, help='Display server hostname. Default is read from .display/config.json, or localhost.') def main(images, title, win, width, pause, port, hostname): # TODO tiling option if port is not None: pydisp.CONFIG.PORT = port if hostname is not None: pydisp.CONFIG.HOSTNAME = hostname for img_fname in images: click.echo('loading {}'.format(img_fname)) base, ext = os.path.splitext(img_fname) ext = ext.lower().replace('.', '').replace('jpg', 'jpeg') if not pydisp.is_valid_image_mime_type(ext): raise click.BadParameter('unrecognized image format: {}'.format(ext)) with open(img_fname, 'rb') as f: encoded = pydisp.b64_encode(f.read(), ext) if title == '': title = img_fname if win=='%f': win = img_fname elif win=='%p': win = os.path.basename(img_fname) pydisp.pane('image', win=win, title=title, content={'src': encoded, 'width': width, }) if (len(img_fname) > 1) and (pause > 0.0): time.sleep(pause) if __name__ == '__main__': main()
mit
-8,539,764,335,290,668,000
35.145455
132
0.579477
false
3.674677
false
false
false
derkling/trappy
tests/test_run.py
1
12778
# Copyright 2015-2015 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import matplotlib import os import re import shutil import tempfile import unittest from test_thermal import BaseTestThermal import trappy import utils_tests class TestRun(BaseTestThermal): def __init__(self, *args, **kwargs): super(TestRun, self).__init__(*args, **kwargs) self.map_label = {"00000000,00000006": "A57", "00000000,00000039": "A53"} def test_run_has_all_classes(self): """The Run() class has members for all classes""" run = trappy.Run() for attr in run.class_definitions.iterkeys(): self.assertTrue(hasattr(run, attr)) def test_run_has_all_classes_scope_all(self): """The Run() class has members for all classes with scope=all""" run = trappy.Run(scope="all") for attr in run.class_definitions.iterkeys(): self.assertTrue(hasattr(run, attr)) def test_run_has_all_classes_scope_thermal(self): """The Run() class has only members for thermal classes with scope=thermal""" run = trappy.Run(scope="thermal") for attr in run.thermal_classes.iterkeys(): self.assertTrue(hasattr(run, attr)) for attr in run.sched_classes.iterkeys(): self.assertFalse(hasattr(run, attr)) def test_run_has_all_classes_scope_sched(self): """The Run() class has only members for sched classes with scope=sched""" run = trappy.Run(scope="sched") for attr in run.thermal_classes.iterkeys(): self.assertFalse(hasattr(run, attr)) for attr in run.sched_classes.iterkeys(): self.assertTrue(hasattr(run, attr)) def test_run_accepts_name(self): """The Run() class has members for all classes""" run = trappy.Run(name="foo") self.assertEquals(run.name, "foo") def test_fail_if_no_trace_dat(self): """Raise an IOError with the path if there's no trace.dat and trace.txt""" os.remove("trace.txt") self.assertRaises(IOError, trappy.Run) cwd = os.getcwd() try: trappy.Run(cwd) except IOError as exception: pass self.assertTrue(cwd in str(exception)) def test_other_directory(self): """Run() can grab the trace.dat from other directories""" other_random_dir = tempfile.mkdtemp() os.chdir(other_random_dir) dfr = trappy.Run(self.out_dir).thermal.data_frame self.assertTrue(len(dfr) > 0) self.assertEquals(os.getcwd(), other_random_dir) def test_run_arbitrary_trace_txt(self): """Run() works if the trace is called something other than trace.txt""" arbitrary_trace_name = "my_trace.txt" shutil.move("trace.txt", arbitrary_trace_name) dfr = trappy.Run(arbitrary_trace_name).thermal.data_frame self.assertTrue(len(dfr) > 0) self.assertFalse(os.path.exists("trace.txt")) # As there is no raw trace requested. The mytrace.raw.txt # Should not have been generated self.assertFalse(os.path.exists("mytrace.raw.txt")) def test_run_autonormalize_time(self): """Run() normalizes by default""" run = trappy.Run() self.assertEquals(round(run.thermal.data_frame.index[0], 7), 0) def test_run_dont_normalize_time(self): """Run() doesn't normalize if asked not to""" run = trappy.Run(normalize_time=False) self.assertNotEquals(round(run.thermal.data_frame.index[0], 7), 0) def test_run_basetime(self): """Test that basetime calculation is correct""" run = trappy.Run(normalize_time=False) basetime = run.thermal.data_frame.index[0] self.assertEqual(run.get_basetime(), basetime) def test_run_duration(self): """Test that duration calculation is correct""" run = trappy.Run(normalize_time=False) duration = run.thermal_governor.data_frame.index[-1] - run.thermal.data_frame.index[0] self.assertEqual(run.get_duration(), duration) def test_run_normalize_time(self): """Run().normalize_time() works accross all classes""" run = trappy.Run(normalize_time=False) prev_inpower_basetime = run.cpu_in_power.data_frame.index[0] prev_inpower_last = run.cpu_in_power.data_frame.index[-1] basetime = run.thermal.data_frame.index[0] run.normalize_time(basetime) self.assertEquals(round(run.thermal.data_frame.index[0], 7), 0) exp_inpower_first = prev_inpower_basetime - basetime self.assertEquals(round(run.cpu_in_power.data_frame.index[0] - exp_inpower_first, 7), 0) exp_inpower_last = prev_inpower_last - basetime self.assertEquals(round(run.cpu_in_power.data_frame.index[-1] - exp_inpower_last, 7), 0) def test_get_all_freqs_data(self): """Test get_all_freqs_data()""" allfreqs = trappy.Run().get_all_freqs_data(self.map_label) self.assertEquals(allfreqs[1][1]["A53_freq_out"].iloc[3], 850) self.assertEquals(allfreqs[1][1]["A53_freq_in"].iloc[1], 850) self.assertEquals(allfreqs[0][1]["A57_freq_out"].iloc[2], 1100) self.assertTrue("gpu_freq_in" in allfreqs[2][1].columns) # Make sure there are no NaNs in the middle of the array self.assertTrue(allfreqs[0][1]["A57_freq_in"].notnull().all()) def test_plot_freq_hists(self): """Test that plot_freq_hists() doesn't bomb""" run = trappy.Run() _, axis = matplotlib.pyplot.subplots(nrows=2) run.plot_freq_hists(self.map_label, axis) matplotlib.pyplot.close('all') def test_plot_load(self): """Test that plot_load() doesn't explode""" run = trappy.Run() run.plot_load(self.map_label, title="Util") _, ax = matplotlib.pyplot.subplots() run.plot_load(self.map_label, ax=ax) def test_plot_normalized_load(self): """Test that plot_normalized_load() doesn't explode""" run = trappy.Run() _, ax = matplotlib.pyplot.subplots() run.plot_normalized_load(self.map_label, ax=ax) def test_plot_allfreqs(self): """Test that plot_allfreqs() doesn't bomb""" run = trappy.Run() run.plot_allfreqs(self.map_label) matplotlib.pyplot.close('all') _, axis = matplotlib.pyplot.subplots(nrows=2) run.plot_allfreqs(self.map_label, ax=axis) matplotlib.pyplot.close('all') def test_trace_metadata(self): """Test if metadata gets populated correctly""" expected_metadata = {} expected_metadata["version"] = "6" expected_metadata["cpus"] = "6" run = trappy.Run() for key, value in expected_metadata.items(): self.assertTrue(hasattr(run, "_" + key)) self.assertEquals(getattr(run, "_" + key), value) def test_missing_metadata(self): """Test if trappy.Run() works with a trace missing metadata info""" lines = [] with open("trace.txt", "r") as fil: lines += fil.readlines() lines = lines[7:] fil.close() with open("trace.txt", "w") as fil: fil.write("".join(lines)) fil.close() run = trappy.Run() self.assertEquals(run._cpus, None) self.assertEquals(run._version, None) self.assertTrue(len(run.thermal.data_frame) > 0) @unittest.skipUnless(utils_tests.trace_cmd_installed(), "trace-cmd not installed") class TestRunRawDat(utils_tests.SetupDirectory): def __init__(self, *args, **kwargs): super(TestRunRawDat, self).__init__( [("raw_trace.dat", "trace.dat")], *args, **kwargs) def test_raw_dat(self): """Tests an event that relies on raw parsing""" run = trappy.Run() self.assertTrue(hasattr(run, "sched_switch")) self.assertTrue(len(run.sched_switch.data_frame) > 0) self.assertTrue("prev_comm" in run.sched_switch.data_frame.columns) def test_raw_dat_arb_name(self): """Tests an event that relies on raw parsing with arbitrary .dat file name""" arbitrary_name = "my_trace.dat" shutil.move("trace.dat", arbitrary_name) run = trappy.Run(arbitrary_name) self.assertTrue(os.path.isfile("my_trace.raw.txt")) self.assertTrue(hasattr(run, "sched_switch")) self.assertTrue(len(run.sched_switch.data_frame) > 0) class TestRunRawBothTxt(utils_tests.SetupDirectory): def __init__(self, *args, **kwargs): super(TestRunRawBothTxt, self).__init__( [("raw_trace.txt", "trace.txt"), ("raw_trace.raw.txt", "trace.raw.txt")], *args, **kwargs) def test_both_txt_files(self): """test raw parsing for txt files""" self.assertFalse(os.path.isfile("trace.dat")) run = trappy.Run() self.assertTrue(hasattr(run, "sched_switch")) self.assertTrue(len(run.sched_switch.data_frame) > 0) def test_both_txt_arb_name(self): """Test raw parsing for txt files arbitrary name""" arbitrary_name = "my_trace.txt" arbitrary_name_raw = "my_trace.raw.txt" shutil.move("trace.txt", arbitrary_name) shutil.move("trace.raw.txt", arbitrary_name_raw) run = trappy.Run(arbitrary_name) self.assertTrue(hasattr(run, "sched_switch")) self.assertTrue(len(run.sched_switch.data_frame) > 0) class TestRunSched(utils_tests.SetupDirectory): """Tests using a trace with only sched info and no (or partial) thermal""" def __init__(self, *args, **kwargs): super(TestRunSched, self).__init__( [("trace_empty.txt", "trace.txt")], *args, **kwargs) def test_run_basetime_empty(self): """Test that basetime is 0 if data frame of all data objects is empty""" run = trappy.Run(normalize_time=False) self.assertEqual(run.get_basetime(), 0) def test_run_normalize_some_tracepoints(self): """Test that normalizing time works if not all the tracepoints are in the trace""" with open("trace.txt", "a") as fil: fil.write(" kworker/4:1-1219 [004] 508.424826: thermal_temperature: thermal_zone=exynos-therm id=0 temp_prev=24000 temp=24000") run = trappy.Run() self.assertEqual(run.thermal.data_frame.index[0], 0) @unittest.skipUnless(utils_tests.trace_cmd_installed(), "trace-cmd not installed") class TestTraceDat(utils_tests.SetupDirectory): """Test that trace.dat handling work""" def __init__(self, *args, **kwargs): super(TestTraceDat, self).__init__( [("trace.dat", "trace.dat")], *args, **kwargs) def test_do_txt_if_not_there(self): """Create trace.txt if it's not there""" self.assertFalse(os.path.isfile("trace.txt")) trappy.Run() found = False with open("trace.txt") as fin: for line in fin: if re.search("thermal", line): found = True break self.assertTrue(found) def test_do_raw_txt_if_not_there(self): """Create trace.raw.txt if it's not there""" self.assertFalse(os.path.isfile("trace.raw.txt")) trappy.Run() found = False with open("trace.raw.txt") as fin: for line in fin: if re.search("thermal", line): found = True break def test_run_arbitrary_trace_dat(self): """Run() works if asked to parse a binary trace with a filename other than trace.dat""" arbitrary_trace_name = "my_trace.dat" shutil.move("trace.dat", arbitrary_trace_name) dfr = trappy.Run(arbitrary_trace_name).thermal.data_frame self.assertTrue(os.path.exists("my_trace.txt")) self.assertTrue(os.path.exists("my_trace.raw.txt")) self.assertTrue(len(dfr) > 0) self.assertFalse(os.path.exists("trace.dat")) self.assertFalse(os.path.exists("trace.txt")) self.assertFalse(os.path.exists("trace.raw.txt"))
apache-2.0
8,696,708,809,115,110,000
32.362924
147
0.613789
false
3.628052
true
false
false
Wevolver/HAVE
multiple/repositories/backends/git/main.py
1
6122
import calendar import collections import io import itertools import stat import time import dulwich import dulwich.objects from multiple import repositories from multiple import utils class RepositoryGit(repositories.RepositoryBase): def __init__(self, dulwich_repository): self.backend = dulwich_repository def commit(self, index, message=b'', author=None, committer=None, at_time=None): # @todo time support if not committer: committer = author if not at_time: at_time = time.gmtime() commit = dulwich.objects.Commit() commit.tree = index.root_tree commit.author = author commit.committer = committer commit.commit_time = commit.author_time = calendar.timegm(at_time) commit.commit_timezone = commit.author_timezone = at_time.tm_isdst commit.message = message self.backend.object_store.add_object(commit) def open_index_at(self, reference): root_tree = None if reference: commit = self.backend[reference] if isinstance(commit, dulwich.objects.Commit): root_tree = self.backend[commit.tree] else: raise ValueError( "bad reference '%r' is not a " "dulwich.objects.Commit" % commit ) else: root_tree = dulwich.objects.Tree() return MemoryIndex(root_tree, self.backend.object_store) def get(self, path, reference, default=None): result = default commit = self.backend[reference] if isinstance(commit, dulwich.objects.Commit): tree = self.backend[commit.tree] blob_object = tree.lookup_path(path) if isinstance(blob_object, dulwich.objects.Blob): result = blob_object.data if isinstance(result, str): result = io.StringIO(result) return result class MemoryIndex(object): def __init__(self, root_tree, object_store): """ Args: root_tree (dulwich.objects.Tree): The root tree of the index object_store (dulwich.object_store.BaseObjectStore): The object store where to store the objects. """ self.object_store = object_store self._objects = dict(self._get_objects(root_tree)) @property def root_tree(self): return self._objects[b''].copy() @property def objects(self): return { path: obj.copy() for path, obj in self._objects.items() } def _get_objects(self, start_tree): """ Load in memory all the needed objects Returns: (Dict(Tuple(str, dulwich.objects.ShaFile))) """ contents = self.object_store.iter_tree_contents(start_tree.id, True) for entry in contents: yield entry.path, self.object_store[entry.sha] def _get_or_create_tree(self, path): try: return self._objects[path] except KeyError: tree = dulwich.objects.Tree() self._objects[path] = tree return tree def get(self, path, default=None): return self._objects.get(path, default) def add(self, contents): # @todo a true bulk add without considering every file individually for content, path in contents: blob = dulwich.objects.Blob.from_string(content.read()) self._add(path, blob) def _add(self, path, blob, file_mode=0o100644): processed_path = ProcessedPath.from_path(path) self.object_store.add_object(blob) self._objects[processed_path.rootless_path] = blob paths = list(processed_path.intermediate_paths()) # first update the leaf tree with the blob objects to add leaf_path = paths[-1] leaf_tree = self._get_or_create_tree(leaf_path) leaf_tree.add(processed_path.basename, file_mode, blob.id) self.object_store.add_object(leaf_tree) # iterate the other trees from the nearest until the root # and update them indexed_paths = list(enumerate(reversed(paths))) for idx, intermediate_path in indexed_paths: if intermediate_path: # if intermediate_path == '' it's the root tree _, parent_path = indexed_paths[idx + 1] parent_tree = self._get_or_create_tree(parent_path) child_tree = self._get_or_create_tree(intermediate_path) child_idx = processed_path.tokens_n - 1 - idx child_name = processed_path.tokens[child_idx] parent_tree.add(child_name, stat.S_IFDIR, child_tree.id) self.object_store.add_object(child_tree) self.object_store.add_object(parent_tree) else: break _ProcessedPath = collections.namedtuple( '_ProcessedPath', ( 'path', # intial path with a leading / 'dirname', # dirname extracted from the path 'basename', # basename extracted from the path 'tokens', # tokens of the dirname 'tokens_n' # number of tokens ) ) class ProcessedPath(_ProcessedPath): @classmethod def from_path(cls, path): if not path.startswith(b'/'): path = b'/' + path dirname, basename = utils.paths.path_split(path) dirname_tokens = dirname.split(b'/') n_dirname_tokens = len(dirname_tokens) return cls(path, dirname, basename, dirname_tokens, n_dirname_tokens) def intermediate_paths(self): """ Generate the intermediate paths with the ProcessedPath.tokens values. b'/data/files/data.json' -> ['', 'data', 'data/files'] Returns: (iter) """ return itertools.accumulate(self.tokens, utils.paths.path_join) @property def rootless_path(self): return self.path[1:]
gpl-3.0
-2,013,109,953,934,375,700
28.574879
77
0.583633
false
4.081333
false
false
false
goodfeli/pylearn2
pylearn2/datasets/dense_design_matrix.py
2
54738
""" The DenseDesignMatrix class and related code. Functionality for representing data that can be described as a dense matrix (rather than a sparse matrix) with each row containing an example and each column corresponding to a different feature. DenseDesignMatrix also supports other "views" of the data, for example a dataset of images can be viewed either as a matrix of flattened images or as a stack of 2D multi-channel images. However, the images must all be the same size, so that each image may be mapped to a matrix row by the same transformation. """ __authors__ = "Ian Goodfellow and Mehdi Mirza" __copyright__ = "Copyright 2010-2012, Universite de Montreal" __credits__ = ["Ian Goodfellow"] __license__ = "3-clause BSD" __maintainer__ = "LISA Lab" __email__ = "pylearn-dev@googlegroups" import functools import logging import warnings import numpy as np from theano.compat.six.moves import xrange from pylearn2.datasets import cache from pylearn2.utils.iteration import ( FiniteDatasetIterator, resolve_iterator_class ) import copy # Don't import tables initially, since it might not be available # everywhere. tables = None from pylearn2.datasets.dataset import Dataset from pylearn2.datasets import control from pylearn2.space import CompositeSpace, Conv2DSpace, VectorSpace, IndexSpace from pylearn2.utils import safe_zip from pylearn2.utils.exc import reraise_as from pylearn2.utils.rng import make_np_rng from pylearn2.utils import contains_nan from theano import config logger = logging.getLogger(__name__) def ensure_tables(): """ Makes sure tables module has been imported """ global tables if tables is None: import tables class DenseDesignMatrix(Dataset): """ A class for representing datasets that can be stored as a dense design matrix (and optionally, associated targets). Parameters ---------- X : ndarray, 2-dimensional, optional Should be supplied if `topo_view` is not. A design \ matrix of shape (number examples, number features) \ that defines the dataset. topo_view : ndarray, optional Should be supplied if X is not. An array whose first \ dimension is of length number examples. The remaining \ dimensions are examples with topological significance, \ e.g. for images the remaining axes are rows, columns, \ and channels. y : ndarray, optional Targets for each example (e.g., class ids, values to be predicted in a regression task). Currently three formats are supported: - None: Pass `None` if there are no target values. In this case the dataset may not be some tasks such as supervised learning or evaluation of a supervised learning system, but it can be used for some other tasks. For example, a supervised learning system can make predictions on it, or an unsupervised learning system can be trained on it. - 1D ndarray of integers: This format may be used when the targets are class labels. In this format, the array should have one entry for each example. Each entry should be an integer, in the range [0, N) where N is the number of classes. This is the format that the `SVM` class expects. - 2D ndarray, data type optional: This is the most common format and can be used for a variety of problem types. Each row of the matrix becomes the target for a different example. Specific models / costs can interpret this target vector differently. For example, the `Linear` output layer for the `MLP` class expects the target for each example to be a vector of real-valued regression targets. (It can be a vector of size one if you only have one regression target). The `Softmax` output layer of the `MLP` class expects the target to be a vector of N elements, where N is the number of classes, and expects all but one of the elements to 0. One element should have value 1., and the index of this element identifies the target class. view_converter : object, optional An object for converting between the design matrix \ stored internally and the topological view of the data. axes: tuple, optional The axes ordering of the provided topo_view. Must be some permutation of ('b', 0, 1, 'c') where 'b' indicates the axis indexing examples, 0 and 1 indicate the row/cols dimensions and 'c' indicates the axis indexing color channels. rng : object, optional A random number generator used for picking random \ indices into the design matrix when choosing minibatches. X_labels : int, optional If X contains labels then X_labels must be passed to indicate the total number of possible labels e.g. the size of a the vocabulary when X contains word indices. This will make the set use IndexSpace. y_labels : int, optional If y contains labels then y_labels must be passed to indicate the total number of possible labels e.g. 10 for the MNIST dataset where the targets are numbers. This will make the set use IndexSpace. See Also -------- DenseDesignMatrixPytables : Use this class if your data is too big to fit in memory. Notes ----- - What kind of data can be stored in this way? A design matrix is a matrix where each row contains a single example. Each column within the row is a feature of that example. By dense, we mean that every entry in the matrix is explicitly given a value. Examples of datasets that can be stored this way include MNIST and CIFAR10. Some datasets cannot be stored as a design matrix. For example, a collection of images, each image having a different size, can't be stored in this way, because we can't reshape each image to the same length of matrix row. Some datasets can, conceptually, be represented as a design matrix, but it may not be efficient to store them as dense matrices. For example, a dataset of sentences with a bag of words representation, might have a very high number of features but most of the values are zero, so it would be better to store the data as a sparse matrix. - What if my examples aren't best thought of as vectors? The DenseDesignMatrix class supports two views of the data, the "design matrix view" in which each example is just a vector, and the "topological view" in which each example is formatted using some kind of data structure with meaningful topology. For example, a dataset of images can be viewed as a design matrix where each row contains a flattened version of each image, or it can be viewed as a 4D tensor, where each example is a 3D subtensor, with one axis corresponding to rows of the image, one axis corresponding to columns of the image, and one axis corresponding to the color channels. This structure can be thought of as having meaningful topology because neighboring coordinates on the row and column axes correspond to neighboring pixels in the image. """ _default_seed = (17, 2, 946) def __init__(self, X=None, topo_view=None, y=None, view_converter=None, axes=('b', 0, 1, 'c'), rng=_default_seed, preprocessor=None, fit_preprocessor=False, X_labels=None, y_labels=None): self.X = X self.y = y self.view_converter = view_converter self.X_labels = X_labels self.y_labels = y_labels self._check_labels() if topo_view is not None: assert view_converter is None self.set_topological_view(topo_view, axes) else: assert X is not None, ("DenseDesignMatrix needs to be provided " "with either topo_view, or X") if view_converter is not None: # Get the topo_space (usually Conv2DSpace) from the # view_converter if not hasattr(view_converter, 'topo_space'): raise NotImplementedError("Not able to get a topo_space " "from this converter: %s" % view_converter) # self.X_topo_space stores a "default" topological space that # will be used only when self.iterator is called without a # data_specs, and with "topo=True", which is deprecated. self.X_topo_space = view_converter.topo_space else: self.X_topo_space = None # Update data specs, if not done in set_topological_view X_source = 'features' if X_labels is None: X_space = VectorSpace(dim=X.shape[1]) else: if X.ndim == 1: dim = 1 else: dim = X.shape[-1] X_space = IndexSpace(dim=dim, max_labels=X_labels) if y is None: space = X_space source = X_source else: if y.ndim == 1: dim = 1 else: dim = y.shape[-1] if y_labels is not None: y_space = IndexSpace(dim=dim, max_labels=y_labels) else: y_space = VectorSpace(dim=dim) y_source = 'targets' space = CompositeSpace((X_space, y_space)) source = (X_source, y_source) self.data_specs = (space, source) self.X_space = X_space self.compress = False self.design_loc = None self.rng = make_np_rng(rng, which_method="random_integers") # Defaults for iterators self._iter_mode = resolve_iterator_class('sequential') self._iter_topo = False self._iter_targets = False self._iter_data_specs = (self.X_space, 'features') if preprocessor: preprocessor.apply(self, can_fit=fit_preprocessor) self.preprocessor = preprocessor def _check_labels(self): """Sanity checks for X_labels and y_labels.""" if self.X_labels is not None: assert self.X is not None assert self.view_converter is None assert self.X.ndim <= 2 assert np.all(self.X < self.X_labels) if self.y_labels is not None: assert self.y is not None assert self.y.ndim <= 2 assert np.all(self.y < self.y_labels) @functools.wraps(Dataset.iterator) def iterator(self, mode=None, batch_size=None, num_batches=None, rng=None, data_specs=None, return_tuple=False): [mode, batch_size, num_batches, rng, data_specs] = self._init_iterator( mode, batch_size, num_batches, rng, data_specs) # If there is a view_converter, we have to use it to convert # the stored data for "features" into one that the iterator # can return. space, source = data_specs if isinstance(space, CompositeSpace): sub_spaces = space.components sub_sources = source else: sub_spaces = (space,) sub_sources = (source,) convert = [] for sp, src in safe_zip(sub_spaces, sub_sources): if src == 'features' and \ getattr(self, 'view_converter', None) is not None: conv_fn = ( lambda batch, self=self, space=sp: self.view_converter.get_formatted_batch(batch, space)) else: conv_fn = None convert.append(conv_fn) return FiniteDatasetIterator(self, mode(self.get_num_examples(), batch_size, num_batches, rng), data_specs=data_specs, return_tuple=return_tuple, convert=convert) def get_data(self): """ Returns all the data, as it is internally stored. The definition and format of these data are described in `self.get_data_specs()`. Returns ------- data : numpy matrix or 2-tuple of matrices The data """ if self.y is None: return self.X else: return (self.X, self.y) def use_design_loc(self, path): """ Calling this function changes the serialization behavior of the object permanently. If this function has been called, when the object is serialized, it will save the design matrix to `path` as a .npy file rather than pickling the design matrix along with the rest of the dataset object. This avoids pickle's unfortunate behavior of using 2X the RAM when unpickling. TODO: Get rid of this logic, use custom array-aware picklers (joblib, custom pylearn2 serialization format). Parameters ---------- path : str The path to save the design matrix to """ if not path.endswith('.npy'): raise ValueError("path should end with '.npy'") self.design_loc = path def get_topo_batch_axis(self): """ The index of the axis of the batches Returns ------- axis : int The axis of a topological view of this dataset that corresponds to indexing over different examples. """ axis = self.view_converter.axes.index('b') return axis def enable_compression(self): """ If called, when pickled the dataset will be saved using only 8 bits per element. .. todo:: Not sure this should be implemented as something a base dataset does. Perhaps as a mixin that specific datasets (i.e. CIFAR10) inherit from. """ self.compress = True def __getstate__(self): """ .. todo:: WRITEME """ rval = copy.copy(self.__dict__) # TODO: Not sure this should be implemented as something a base dataset # does. Perhaps as a mixin that specific datasets (i.e. CIFAR10) # inherit from. if self.compress: rval['compress_min'] = rval['X'].min(axis=0) # important not to do -= on this line, as that will modify the # original object rval['X'] = rval['X'] - rval['compress_min'] rval['compress_max'] = rval['X'].max(axis=0) rval['compress_max'][rval['compress_max'] == 0] = 1 rval['X'] *= 255. / rval['compress_max'] rval['X'] = np.cast['uint8'](rval['X']) if self.design_loc is not None: # TODO: Get rid of this logic, use custom array-aware picklers # (joblib, custom pylearn2 serialization format). np.save(self.design_loc, rval['X']) del rval['X'] return rval def __setstate__(self, d): """ .. todo:: WRITEME """ if d['design_loc'] is not None: if control.get_load_data(): fname = cache.datasetCache.cache_file(d['design_loc']) d['X'] = np.load(fname) else: d['X'] = None if d['compress']: X = d['X'] mx = d['compress_max'] mn = d['compress_min'] del d['compress_max'] del d['compress_min'] d['X'] = 0 self.__dict__.update(d) if X is not None: self.X = np.cast['float32'](X) * mx / 255. + mn else: self.X = None else: self.__dict__.update(d) # To be able to unpickle older data after the addition of # the data_specs mechanism if not all(m in d for m in ('data_specs', 'X_space', '_iter_data_specs', 'X_topo_space')): X_space = VectorSpace(dim=self.X.shape[1]) X_source = 'features' if self.y is None: space = X_space source = X_source else: y_space = VectorSpace(dim=self.y.shape[-1]) y_source = 'targets' space = CompositeSpace((X_space, y_space)) source = (X_source, y_source) self.data_specs = (space, source) self.X_space = X_space self._iter_data_specs = (X_space, X_source) view_converter = d.get('view_converter', None) if view_converter is not None: # Get the topo_space from the view_converter if not hasattr(view_converter, 'topo_space'): raise NotImplementedError("Not able to get a topo_space " "from this converter: %s" % view_converter) # self.X_topo_space stores a "default" topological space that # will be used only when self.iterator is called without a # data_specs, and with "topo=True", which is deprecated. self.X_topo_space = view_converter.topo_space def _apply_holdout(self, _mode="sequential", train_size=0, train_prop=0): """ This function splits the dataset according to the number of train_size if defined by the user with respect to the mode provided by the user. Otherwise it will use the train_prop to divide the dataset into a training and holdout validation set. This function returns the training and validation dataset. Parameters ----------- _mode : WRITEME train_size : int Number of examples that will be assigned to the training dataset. train_prop : float Proportion of training dataset split. Returns ------- WRITEME """ """ This function splits the dataset according to the number of train_size if defined by the user with respect to the mode provided by the user. Otherwise it will use the train_prop to divide the dataset into a training and holdout validation set. This function returns the training and validation dataset. Parameters ----------- _mode : WRITEME train_size : int Number of examples that will be assigned to the training dataset. train_prop : float Proportion of training dataset split. Returns ------- WRITEME """ if train_size != 0: size = train_size elif train_prop != 0: size = np.round(self.get_num_examples() * train_prop) else: raise ValueError("Initialize either split ratio and split size to " "non-zero value.") if size < self.get_num_examples() - size: dataset_iter = self.iterator( mode=_mode, batch_size=(self.get_num_examples() - size)) valid = dataset_iter.next() train = dataset_iter.next()[:(self.get_num_examples() - valid.shape[0])] else: dataset_iter = self.iterator(mode=_mode, batch_size=size) train = dataset_iter.next() valid = dataset_iter.next()[:(self.get_num_examples() - train.shape[0])] return (train, valid) def split_dataset_nfolds(self, nfolds=0): """ This function splits the dataset into to the number of n folds given by the user. Returns an array of folds. Parameters ---------- nfolds : int, optional The number of folds for the the validation set. Returns ------- WRITEME """ folds_iter = self.iterator(mode="sequential", num_batches=nfolds) folds = list(folds_iter) return folds def split_dataset_holdout(self, train_size=0, train_prop=0): """ This function splits the dataset according to the number of train_size if defined by the user. Otherwise it will use the train_prop to divide the dataset into a training and holdout validation set. This function returns the training and validation dataset. Parameters ---------- train_size : int Number of examples that will be assigned to the training dataset. train_prop : float Proportion of dataset split. """ return self._apply_holdout("sequential", train_size, train_prop) def bootstrap_nfolds(self, nfolds, rng=None): """ This function splits the dataset using the random_slice and into the n folds. Returns the folds. Parameters ---------- nfolds : int The number of folds for the dataset. rng : WRITEME Random number generation class to be used. """ folds_iter = self.iterator(mode="random_slice", num_batches=nfolds, rng=rng) folds = list(folds_iter) return folds def bootstrap_holdout(self, train_size=0, train_prop=0, rng=None): """ This function splits the dataset according to the number of train_size defined by the user. Parameters ---------- train_size : int Number of examples that will be assigned to the training dataset. nfolds : int The number of folds for the the validation set. rng : WRITEME Random number generation class to be used. """ return self._apply_holdout("random_slice", train_size, train_prop) def get_stream_position(self): """ If we view the dataset as providing a stream of random examples to read, the object returned uniquely identifies our current position in that stream. """ return copy.copy(self.rng) def set_stream_position(self, pos): """ .. todo:: WRITEME properly Return to a state specified by an object returned from get_stream_position. Parameters ---------- pos : object WRITEME """ self.rng = copy.copy(pos) def restart_stream(self): """ Return to the default initial state of the random example stream. """ self.reset_RNG() def reset_RNG(self): """ Restore the default seed of the rng used for choosing random examples. """ if 'default_rng' not in dir(self): self.default_rng = make_np_rng(None, [17, 2, 946], which_method="random_integers") self.rng = copy.copy(self.default_rng) def apply_preprocessor(self, preprocessor, can_fit=False): """ .. todo:: WRITEME Parameters ---------- preprocessor : object preprocessor object can_fit : bool, optional WRITEME """ preprocessor.apply(self, can_fit) def get_topological_view(self, mat=None): """ Convert an array (or the entire dataset) to a topological view. Parameters ---------- mat : ndarray, 2-dimensional, optional An array containing a design matrix representation of training examples. If unspecified, the entire dataset (`self.X`) is used instead. This parameter is not named X because X is generally used to refer to the design matrix for the current problem. In this case we want to make it clear that `mat` need not be the design matrix defining the dataset. """ if self.view_converter is None: raise Exception("Tried to call get_topological_view on a dataset " "that has no view converter") if mat is None: mat = self.X return self.view_converter.design_mat_to_topo_view(mat) def get_formatted_view(self, mat, dspace): """ Convert an array (or the entire dataset) to a destination space. Parameters ---------- mat : ndarray, 2-dimensional An array containing a design matrix representation of training examples. dspace : Space A Space we want the data in mat to be formatted in. It can be a VectorSpace for a design matrix output, a Conv2DSpace for a topological output for instance. Valid values depend on the type of `self.view_converter`. Returns ------- WRITEME """ if self.view_converter is None: raise Exception("Tried to call get_formatted_view on a dataset " "that has no view converter") self.X_space.np_validate(mat) return self.view_converter.get_formatted_batch(mat, dspace) def get_weights_view(self, mat): """ .. todo:: WRITEME properly Return a view of mat in the topology preserving format. Currently the same as get_topological_view. Parameters ---------- mat : ndarray, 2-dimensional WRITEME """ if self.view_converter is None: raise Exception("Tried to call get_weights_view on a dataset " "that has no view converter") return self.view_converter.design_mat_to_weights_view(mat) def set_topological_view(self, V, axes=('b', 0, 1, 'c')): """ Sets the dataset to represent V, where V is a batch of topological views of examples. .. todo:: Why is this parameter named 'V'? Parameters ---------- V : ndarray An array containing a design matrix representation of training examples. axes : tuple, optional The axes ordering of the provided topo_view. Must be some permutation of ('b', 0, 1, 'c') where 'b' indicates the axis indexing examples, 0 and 1 indicate the row/cols dimensions and 'c' indicates the axis indexing color channels. """ if len(V.shape) != len(axes): raise ValueError("The topological view must have exactly 4 " "dimensions, corresponding to %s" % str(axes)) assert not contains_nan(V) rows = V.shape[axes.index(0)] cols = V.shape[axes.index(1)] channels = V.shape[axes.index('c')] self.view_converter = DefaultViewConverter([rows, cols, channels], axes=axes) self.X = self.view_converter.topo_view_to_design_mat(V) # self.X_topo_space stores a "default" topological space that # will be used only when self.iterator is called without a # data_specs, and with "topo=True", which is deprecated. self.X_topo_space = self.view_converter.topo_space assert not contains_nan(self.X) # Update data specs X_space = VectorSpace(dim=self.X.shape[1]) X_source = 'features' if self.y is None: space = X_space source = X_source else: if self.y.ndim == 1: dim = 1 else: dim = self.y.shape[-1] # This is to support old pickled models if getattr(self, 'y_labels', None) is not None: y_space = IndexSpace(dim=dim, max_labels=self.y_labels) elif getattr(self, 'max_labels', None) is not None: y_space = IndexSpace(dim=dim, max_labels=self.max_labels) else: y_space = VectorSpace(dim=dim) y_source = 'targets' space = CompositeSpace((X_space, y_space)) source = (X_source, y_source) self.data_specs = (space, source) self.X_space = X_space self._iter_data_specs = (X_space, X_source) def get_design_matrix(self, topo=None): """ Return topo (a batch of examples in topology preserving format), in design matrix format. Parameters ---------- topo : ndarray, optional An array containing a topological representation of training examples. If unspecified, the entire dataset (`self.X`) is used instead. Returns ------- WRITEME """ if topo is not None: if self.view_converter is None: raise Exception("Tried to convert from topological_view to " "design matrix using a dataset that has no " "view converter") return self.view_converter.topo_view_to_design_mat(topo) return self.X def set_design_matrix(self, X): """ .. todo:: WRITEME Parameters ---------- X : ndarray WRITEME """ assert len(X.shape) == 2 assert not contains_nan(X) self.X = X def get_targets(self): """ .. todo:: WRITEME """ return self.y def get_batch_design(self, batch_size, include_labels=False): """ .. todo:: WRITEME Parameters ---------- batch_size : int WRITEME include_labels : bool WRITEME """ try: idx = self.rng.randint(self.X.shape[0] - batch_size + 1) except ValueError: if batch_size > self.X.shape[0]: reraise_as(ValueError("Requested %d examples from a dataset " "containing only %d." % (batch_size, self.X.shape[0]))) raise rx = self.X[idx:idx + batch_size, :] if include_labels: if self.y is None: return rx, None ry = self.y[idx:idx + batch_size] return rx, ry rx = np.cast[config.floatX](rx) return rx def get_batch_topo(self, batch_size, include_labels=False): """ .. todo:: WRITEME Parameters ---------- batch_size : int WRITEME include_labels : bool WRITEME """ if include_labels: batch_design, labels = self.get_batch_design(batch_size, True) else: batch_design = self.get_batch_design(batch_size) rval = self.view_converter.design_mat_to_topo_view(batch_design) if include_labels: return rval, labels return rval @functools.wraps(Dataset.get_num_examples) def get_num_examples(self): return self.X.shape[0] def view_shape(self): """ .. todo:: WRITEME """ return self.view_converter.view_shape() def weights_view_shape(self): """ .. todo:: WRITEME """ return self.view_converter.weights_view_shape() def has_targets(self): """ .. todo:: WRITEME """ return self.y is not None def restrict(self, start, stop): """ .. todo:: WRITEME properly Restricts the dataset to include only the examples in range(start, stop). Ignored if both arguments are None. Parameters ---------- start : int start index stop : int stop index """ assert (start is None) == (stop is None) if start is None: return assert start >= 0 assert stop > start assert stop <= self.X.shape[0] assert self.X.shape[0] == self.y.shape[0] self.X = self.X[start:stop, :] if self.y is not None: self.y = self.y[start:stop, :] assert self.X.shape[0] == self.y.shape[0] assert self.X.shape[0] == stop - start def convert_to_one_hot(self, min_class=0): """ .. todo:: WRITEME properly If y exists and is a vector of ints, converts it to a binary matrix Otherwise will raise some exception Parameters ---------- min_class : int WRITEME """ if self.y is None: raise ValueError("Called convert_to_one_hot on a " "DenseDesignMatrix with no labels.") if self.y.ndim != 1: raise ValueError("Called convert_to_one_hot on a " "DenseDesignMatrix whose labels aren't scalar.") if 'int' not in str(self.y.dtype): raise ValueError("Called convert_to_one_hot on a " "DenseDesignMatrix whose labels aren't " "integer-valued.") self.y = self.y - min_class if self.y.min() < 0: raise ValueError("We do not support negative classes. You can use " "the min_class argument to remap negative " "classes to positive values, but we require this " "to be done explicitly so you are aware of the " "remapping.") # Note: we don't check that the minimum occurring class is exactly 0, # since this dataset could be just a small subset of a larger dataset # and may not contain all the classes. num_classes = self.y.max() + 1 y = np.zeros((self.y.shape[0], num_classes)) for i in xrange(self.y.shape[0]): y[i, self.y[i]] = 1 self.y = y # Update self.data_specs with the updated dimension of self.y init_space, source = self.data_specs X_space, init_y_space = init_space.components new_y_space = VectorSpace(dim=num_classes) new_space = CompositeSpace((X_space, new_y_space)) self.data_specs = (new_space, source) def adjust_for_viewer(self, X): """ .. todo:: WRITEME Parameters ---------- X : ndarray The data to be adjusted """ return X / np.abs(X).max() def adjust_to_be_viewed_with(self, X, ref, per_example=None): """ .. todo:: WRITEME Parameters ---------- X : int WRITEME ref : float WRITEME per_example : obejct, optional WRITEME """ if per_example is not None: logger.warning("ignoring per_example") return np.clip(X / np.abs(ref).max(), -1., 1.) def get_data_specs(self): """ Returns the data_specs specifying how the data is internally stored. This is the format the data returned by `self.get_data()` will be. """ return self.data_specs def set_view_converter_axes(self, axes): """ .. todo:: WRITEME properly Change the axes of the view_converter, if any. This function is only useful if you intend to call self.iterator without data_specs, and with "topo=True", which is deprecated. Parameters ---------- axes : WRITEME WRITEME """ assert self.view_converter is not None self.view_converter.set_axes(axes) # Update self.X_topo_space, which stores the "default" # topological space, which is the topological output space # of the view_converter self.X_topo_space = self.view_converter.topo_space class DenseDesignMatrixPyTables(DenseDesignMatrix): """ DenseDesignMatrix based on PyTables Parameters ---------- X : ndarray, 2-dimensional, optional Should be supplied if `topo_view` is not. A design matrix of shape (number examples, number features) that defines the dataset. topo_view : ndarray, optional Should be supplied if X is not. An array whose first dimension is of length number examples. The remaining dimensions are xamples with topological significance, e.g. for images the remaining axes are rows, columns, and channels. y : ndarray, 1-dimensional(?), optional Labels or targets for each example. The semantics here are not quite nailed down for this yet. view_converter : object, optional An object for converting between design matrices and topological views. Currently DefaultViewConverter is the only type available but later we may want to add one that uses the retina encoding that the U of T group uses. axes : WRITEME WRITEME rng : object, optional A random number generator used for picking random indices into the design matrix when choosing minibatches. """ _default_seed = (17, 2, 946) def __init__(self, X=None, topo_view=None, y=None, view_converter=None, axes=('b', 0, 1, 'c'), rng=_default_seed): super_self = super(DenseDesignMatrixPyTables, self) super_self.__init__(X=X, topo_view=topo_view, y=y, view_converter=view_converter, axes=axes, rng=rng) ensure_tables() if not hasattr(self, 'filters'): self.filters = tables.Filters(complib='blosc', complevel=5) def set_design_matrix(self, X, start=0): """ .. todo:: WRITEME """ assert len(X.shape) == 2 assert not contains_nan(X) DenseDesignMatrixPyTables.fill_hdf5(file_handle=self.h5file, data_x=X, start=start) def set_topological_view(self, V, axes=('b', 0, 1, 'c'), start=0): """ Sets the dataset to represent V, where V is a batch of topological views of examples. .. todo:: Why is this parameter named 'V'? Parameters ---------- V : ndarray An array containing a design matrix representation of training \ examples. axes : tuple, optional The axes ordering of the provided topo_view. Must be some permutation of ('b', 0, 1, 'c') where 'b' indicates the axis indexing examples, 0 and 1 indicate the row/cols dimensions and 'c' indicates the axis indexing color channels. start : int The start index to write data. """ assert not contains_nan(V) rows = V.shape[axes.index(0)] cols = V.shape[axes.index(1)] channels = V.shape[axes.index('c')] self.view_converter = DefaultViewConverter([rows, cols, channels], axes=axes) X = self.view_converter.topo_view_to_design_mat(V) assert not contains_nan(X) DenseDesignMatrixPyTables.fill_hdf5(file_handle=self.h5file, data_x=X, start=start) def init_hdf5(self, path, shapes): """ Initializes the hdf5 file into which the data will be stored. This must be called before calling fill_hdf5. Parameters ---------- path : string The name of the hdf5 file. shapes : tuple The shapes of X and y. """ x_shape, y_shape = shapes # make pytables ensure_tables() h5file = tables.openFile(path, mode="w", title="SVHN Dataset") gcolumns = h5file.createGroup(h5file.root, "Data", "Data") atom = (tables.Float32Atom() if config.floatX == 'float32' else tables.Float64Atom()) h5file.createCArray(gcolumns, 'X', atom=atom, shape=x_shape, title="Data values", filters=self.filters) h5file.createCArray(gcolumns, 'y', atom=atom, shape=y_shape, title="Data targets", filters=self.filters) return h5file, gcolumns @staticmethod def fill_hdf5(file_handle, data_x, data_y=None, node=None, start=0, batch_size=5000): """ Saves the data to the hdf5 file. PyTables tends to crash if you write large amounts of data into them at once. As such this function writes data in batches. Parameters ---------- file_handle : hdf5 file handle Handle to an hdf5 object. data_x : nd array X data. Must be the same shape as specified to init_hdf5. data_y : nd array, optional y data. Must be the same shape as specified to init_hdf5. node : string, optional The hdf5 node into which the data should be stored. start : int The start index to write data. batch_size : int, optional The size of the batch to be saved. """ if node is None: node = file_handle.getNode('/', 'Data') data_size = data_x.shape[0] last = np.floor(data_size / float(batch_size)) * batch_size for i in xrange(0, data_size, batch_size): stop = (i + np.mod(data_size, batch_size) if i >= last else i + batch_size) assert len(range(start + i, start + stop)) == len(range(i, stop)) assert (start + stop) <= (node.X.shape[0]) node.X[start + i: start + stop, :] = data_x[i:stop, :] if data_y is not None: node.y[start + i: start + stop, :] = data_y[i:stop, :] file_handle.flush() def resize(self, h5file, start, stop): """ Resizes the X and y tables. This must be called before calling fill_hdf5. Parameters ---------- h5file : hdf5 file handle Handle to an hdf5 object. start : int The start index to write data. stop : int The index of the record following the last record to be written. """ ensure_tables() # TODO is there any smarter and more efficient way to this? data = h5file.getNode('/', "Data") try: gcolumns = h5file.createGroup('/', "Data_", "Data") except tables.exceptions.NodeError: h5file.removeNode('/', "Data_", 1) gcolumns = h5file.createGroup('/', "Data_", "Data") start = 0 if start is None else start stop = gcolumns.X.nrows if stop is None else stop atom = (tables.Float32Atom() if config.floatX == 'float32' else tables.Float64Atom()) x = h5file.createCArray(gcolumns, 'X', atom=atom, shape=((stop - start, data.X.shape[1])), title="Data values", filters=self.filters) y = h5file.createCArray(gcolumns, 'y', atom=atom, shape=((stop - start, data.y.shape[1])), title="Data targets", filters=self.filters) x[:] = data.X[start:stop] y[:] = data.y[start:stop] h5file.removeNode('/', "Data", 1) h5file.renameNode('/', "Data", "Data_") h5file.flush() return h5file, gcolumns class DefaultViewConverter(object): """ .. todo:: WRITEME Parameters ---------- shape : list [num_rows, num_cols, channels] axes : tuple The axis ordering to use in topological views of the data. Must be some permutation of ('b', 0, 1, 'c'). Default: ('b', 0, 1, 'c') """ def __init__(self, shape, axes=('b', 0, 1, 'c')): self.shape = shape self.pixels_per_channel = 1 for dim in self.shape[:-1]: self.pixels_per_channel *= dim self.axes = axes self._update_topo_space() def view_shape(self): """ .. todo:: WRITEME """ return self.shape def weights_view_shape(self): """ .. todo:: WRITEME """ return self.shape def design_mat_to_topo_view(self, design_matrix): """ Returns a topological view/copy of design matrix. Parameters ---------- design_matrix: numpy.ndarray A design matrix with data in rows. Data is assumed to be laid out in memory according to the axis order ('b', 'c', 0, 1) returns: numpy.ndarray A matrix with axis order given by self.axes and batch shape given by self.shape (if you reordered self.shape to match self.axes, as self.shape is always in 'c', 0, 1 order). This will try to return a view into design_matrix if possible; otherwise it will allocate a new ndarray. """ if len(design_matrix.shape) != 2: raise ValueError("design_matrix must have 2 dimensions, but shape " "was %s." % str(design_matrix.shape)) expected_row_size = np.prod(self.shape) if design_matrix.shape[1] != expected_row_size: raise ValueError("This DefaultViewConverter's self.shape = %s, " "for a total size of %d, but the design_matrix's " "row size was different (%d)." % (str(self.shape), expected_row_size, design_matrix.shape[1])) bc01_shape = tuple([design_matrix.shape[0], ] + # num. batches # Maps the (0, 1, 'c') of self.shape to ('c', 0, 1) [self.shape[i] for i in (2, 0, 1)]) topo_array_bc01 = design_matrix.reshape(bc01_shape) axis_order = [('b', 'c', 0, 1).index(axis) for axis in self.axes] return topo_array_bc01.transpose(*axis_order) def design_mat_to_weights_view(self, X): """ .. todo:: WRITEME """ rval = self.design_mat_to_topo_view(X) # weights view is always for display rval = np.transpose(rval, tuple(self.axes.index(axis) for axis in ('b', 0, 1, 'c'))) return rval def topo_view_to_design_mat(self, topo_array): """ Returns a design matrix view/copy of topological matrix. Parameters ---------- topo_array: numpy.ndarray An N-D array with axis order given by self.axes. Non-batch axes' dimension sizes must agree with corresponding sizes in self.shape. returns: numpy.ndarray A design matrix with data in rows. Data, is laid out in memory according to the default axis order ('b', 'c', 0, 1). This will try to return a view into topo_array if possible; otherwise it will allocate a new ndarray. """ for shape_elem, axis in safe_zip(self.shape, (0, 1, 'c')): if topo_array.shape[self.axes.index(axis)] != shape_elem: raise ValueError( "topo_array's %s axis has a different size " "(%d) from the corresponding size (%d) in " "self.shape.\n" " self.shape: %s (uses standard axis order: 0, 1, " "'c')\n" " self.axes: %s\n" " topo_array.shape: %s (should be in self.axes' order)") topo_array_bc01 = topo_array.transpose([self.axes.index(ax) for ax in ('b', 'c', 0, 1)]) return topo_array_bc01.reshape((topo_array_bc01.shape[0], np.prod(topo_array_bc01.shape[1:]))) def get_formatted_batch(self, batch, dspace): """ .. todo:: WRITEME properly Reformat batch from the internal storage format into dspace. """ if isinstance(dspace, VectorSpace): # If a VectorSpace is requested, batch should already be in that # space. We call np_format_as anyway, in case the batch needs to be # cast to dspace.dtype. This also validates the batch shape, to # check that it's a valid batch in dspace. return dspace.np_format_as(batch, dspace) elif isinstance(dspace, Conv2DSpace): # design_mat_to_topo_view will return a batch formatted # in a Conv2DSpace, but not necessarily the right one. topo_batch = self.design_mat_to_topo_view(batch) if self.topo_space.axes != self.axes: warnings.warn("It looks like %s.axes has been changed " "directly, please use the set_axes() method " "instead." % self.__class__.__name__) self._update_topo_space() return self.topo_space.np_format_as(topo_batch, dspace) else: raise ValueError("%s does not know how to format a batch into " "%s of type %s." % (self.__class__.__name__, dspace, type(dspace))) def __setstate__(self, d): """ .. todo:: WRITEME """ # Patch old pickle files that don't have the axes attribute. if 'axes' not in d: d['axes'] = ['b', 0, 1, 'c'] self.__dict__.update(d) # Same for topo_space if 'topo_space' not in self.__dict__: self._update_topo_space() def _update_topo_space(self): """Update self.topo_space from self.shape and self.axes""" rows, cols, channels = self.shape self.topo_space = Conv2DSpace(shape=(rows, cols), num_channels=channels, axes=self.axes) def set_axes(self, axes): """ .. todo:: WRITEME """ self.axes = axes self._update_topo_space() def from_dataset(dataset, num_examples): """ Constructs a random subset of a DenseDesignMatrix Parameters ---------- dataset : DenseDesignMatrix num_examples : int Returns ------- sub_dataset : DenseDesignMatrix A new dataset containing `num_examples` examples. It is a random subset of continuous 'num_examples' examples drawn from `dataset`. """ if dataset.view_converter is not None: try: V, y = dataset.get_batch_topo(num_examples, True) except TypeError: # This patches a case where control.get_load_data() is false so # dataset.X is None This logic should be removed whenever we # implement lazy loading if isinstance(dataset, DenseDesignMatrix) and \ dataset.X is None and \ not control.get_load_data(): warnings.warn("from_dataset wasn't able to make subset of " "dataset, using the whole thing") return DenseDesignMatrix( X=None, view_converter=dataset.view_converter ) raise rval = DenseDesignMatrix(topo_view=V, y=y, y_labels=dataset.y_labels) rval.adjust_for_viewer = dataset.adjust_for_viewer else: X, y = dataset.get_batch_design(num_examples, True) rval = DenseDesignMatrix(X=X, y=y, y_labels=dataset.y_labels) return rval def dataset_range(dataset, start, stop): """ Returns a new dataset formed by extracting a range of examples from an existing dataset. Parameters ---------- dataset : DenseDesignMatrix The existing dataset to extract examples from. start : int Extract examples starting at this index. stop : int Stop extracting examples at this index. Do not include this index itself (like the python `range` builtin) Returns ------- sub_dataset : DenseDesignMatrix The new dataset containing examples [start, stop). """ if dataset.X is None: return DenseDesignMatrix(X=None, y=None, view_converter=dataset.view_converter) X = dataset.X[start:stop, :].copy() if dataset.y is None: y = None else: if dataset.y.ndim == 2: y = dataset.y[start:stop, :].copy() else: y = dataset.y[start:stop].copy() assert X.shape[0] == y.shape[0] assert X.shape[0] == stop - start topo = dataset.get_topological_view(X) rval = DenseDesignMatrix(topo_view=topo, y=y) rval.adjust_for_viewer = dataset.adjust_for_viewer return rval def convert_to_one_hot(dataset, min_class=0): """ .. todo:: WRITEME properly Convenient way of accessing convert_to_one_hot from a yaml file """ dataset.convert_to_one_hot(min_class=min_class) return dataset def set_axes(dataset, axes): """ .. todo:: WRITEME """ dataset.set_view_converter_axes(axes) return dataset
bsd-3-clause
8,283,100,961,385,428,000
33.644304
79
0.547389
false
4.456766
false
false
false
galaxy-team/website
newrelic/hooks/framework_cherrypy.py
1
4772
from __future__ import with_statement import sys import types import newrelic.api.transaction import newrelic.api.web_transaction import newrelic.api.function_trace import newrelic.api.object_wrapper import newrelic.api.error_trace class HandlerWrapper(object): def __init__(self, wrapped): self.__name = newrelic.api.object_wrapper.callable_name(wrapped) self.__wrapped = wrapped def __getattr__(self, name): return getattr(self.__wrapped, name) def __get__(self, instance, klass): if instance is None: return self descriptor = self.__wrapped.__get__(instance, klass) return self.__class__(descriptor) def __call__(self, *args, **kwargs): transaction = newrelic.api.transaction.current_transaction() if transaction: transaction.name_transaction(name=self.__name, priority=2) with newrelic.api.error_trace.ErrorTrace(transaction): with newrelic.api.function_trace.FunctionTrace( transaction, name=self.__name): try: return self.__wrapped(*args, **kwargs) except: transaction.record_exception(*sys.exc_info()) raise else: return self.__wrapped(*args, **kwargs) class ResourceWrapper(object): def __init__(self, wrapped): self.__wrapped = wrapped def __dir__(self): return dir(self.__wrapped) def __getattr__(self, name): attr = getattr(self.__wrapped, name) if name.isupper(): return HandlerWrapper(attr) return attr class ResolverWrapper(object): def __init__(self, wrapped): if type(wrapped) == types.TupleType: (instance, wrapped) = wrapped else: instance = None self.__instance = instance self.__wrapped = wrapped def __getattr__(self, name): return getattr(self.__wrapped, name) def __get__(self, instance, klass): if instance is None: return self descriptor = self.__wrapped.__get__(instance, klass) return self.__class__((instance, descriptor)) def __call__(self, *args, **kwargs): transaction = newrelic.api.transaction.current_transaction() if transaction: try: obj, vpath = self.__wrapped(*args, **kwargs) if obj: klass = self.__instance.__class__ if klass.__name__ == 'MethodDispatcher': transaction.name_transaction('405', group='Uri') obj = ResourceWrapper(obj) else: obj = HandlerWrapper(obj) else: transaction.name_transaction('404', group='Uri') return obj, vpath except: transaction.record_exception(*sys.exc_info()) raise else: return self.__wrapped(*args, **kwargs) class RoutesResolverWrapper(object): def __init__(self, wrapped): if type(wrapped) == types.TupleType: (instance, wrapped) = wrapped else: instance = None self.__instance = instance self.__wrapped = wrapped def __getattr__(self, name): return getattr(self.__wrapped, name) def __get__(self, instance, klass): if instance is None: return self descriptor = self.__wrapped.__get__(instance, klass) return self.__class__((instance, descriptor)) def __call__(self, *args, **kwargs): transaction = newrelic.api.transaction.current_transaction() if transaction: try: handler = self.__wrapped(*args, **kwargs) if handler: handler = HandlerWrapper(handler) else: transaction.name_transaction('404', group='Uri') return handler except: transaction.record_exception(*sys.exc_info()) raise else: return self.__wrapped(*args, **kwargs) def instrument_cherrypy_cpdispatch(module): newrelic.api.object_wrapper.wrap_object(module, 'Dispatcher.find_handler', ResolverWrapper) newrelic.api.object_wrapper.wrap_object(module, 'RoutesDispatcher.find_handler', RoutesResolverWrapper) def instrument_cherrypy_cpwsgi(module): newrelic.api.web_transaction.wrap_wsgi_application( module, 'CPWSGIApp.__call__') def instrument_cherrypy_cptree(module): newrelic.api.web_transaction.wrap_wsgi_application( module, 'Application.__call__')
agpl-3.0
-5,887,581,141,992,436,000
31.684932
72
0.564334
false
4.570881
false
false
false
Bergiu/smarthomepi
packages/shp/client/ServerController.py
1
3142
# from ..Controller import Controller from .Server import Server class ServerController ( Controller ): table_name="tbl_server" def __init__( self, process, database): """ @database: Database @**kwargs user_controller: UserController program_controller: ProgramController bwl_list_controller: BwlListController """ super(ServerController,self).__init__(process,database) self.initiateAllFromDB() def createItem(self, **kwargs): """ @**kwargs: ip_adress:string key:string """ missing="ServerController createItem: Missing " params={} if "ip_adress" in kwargs.keys(): params["ip_adress"]=str(kwargs["ip_adress"]) else: raise ValueError(missing+"ip_adress") if "key" in kwargs.keys(): params["key"]=str(kwargs["key"]) else: raise ValueError(missing+"key") duplicate=self.getIdByIp(params["ip_adress"]) if duplicate: raise Exception("ServerController createItem: The server %s is already in use") params["id"]=int(self.database.insert(self.table_name,**params)) item=Server(**params) validation=self.addItem(item) if validation: return item.getId() else: return False def delItem( self, id_item ): """ @id_item:int """ item=self.getItemById(id_item) if item: validation=self.database.delete(self.table_name,id_item) if not validation: return False self.itemList.remove(item) self.indexIdx-=1 return True else: raise Exception("No Server with id=%s"%(id_item)) def initiateFromDB( self, id_item ): """ @id_item:int @validation:boolean """ item_data=self.database.load(self.table_name,id_item) if item_data: params={} params["id"]=int(item_data[0]) duplicate=self.isItem(params["id"]) if duplicate: self.removeItem(params["id"]) params["ip_adress"]=str(item_data[1]) params["key"]=str(item_data[2]) item=Server(**params) self.addItem(item) return True else: return False def initiateAllFromDB( self ): """ @validation:boolean """ item_datas=self.database.loadTable(self.table_name) for item_data in item_datas: params={} params["id"]=int(item_data[0]) duplicate=self.isItem(params["id"]) if duplicate: self.removeItem(params["id"]) params["ip_adress"]=str(item_data[1]) params["key"]=str(item_data[2]) item=Server(**params) self.addItem(item) return True #end interface #public: def getId( self, idx_server): """ @idx_server:int @id:int """ if len(self.itemList)>idx_server: return self.itemList[idx_server].getId() else: return False def getIdByIp(self, ip_adress): for item in self.itemList: if item.getIpAdress() == str(ip_adress): return item.getId() return False def getIpAdress( self, id_server): """ @id_server:int @ip_adress:string """ item=self.getItemById(id_server) if item: return item.getIpAdress() else: return False def checkKey( self, id_server, key): """ @id_server:int @key:text @validation:boolean """ item=self.getItemById(id_server) if item: return item.checkKey(key) else: return False
gpl-3.0
1,749,547,383,230,368,300
21.442857
82
0.660089
false
2.964151
false
false
false
2013Commons/HUE-SHARK
build/env/lib/python2.7/site-packages/pip-0.6.3-py2.7.egg/pip/vcs/subversion.py
1
10484
import os import re from pip import call_subprocess from pip.index import Link from pip.util import rmtree, display_path from pip.log import logger from pip.vcs import vcs, VersionControl _svn_xml_url_re = re.compile('url="([^"]+)"') _svn_rev_re = re.compile('committed-rev="(\d+)"') _svn_url_re = re.compile(r'URL: (.+)') _svn_revision_re = re.compile(r'Revision: (.+)') class Subversion(VersionControl): name = 'svn' dirname = '.svn' repo_name = 'checkout' schemes = ('svn', 'svn+ssh', 'svn+http', 'svn+https') bundle_file = 'svn-checkout.txt' guide = ('# This was an svn checkout; to make it a checkout again run:\n' 'svn checkout --force -r %(rev)s %(url)s .\n') def get_info(self, location): """Returns (url, revision), where both are strings""" assert not location.rstrip('/').endswith(self.dirname), 'Bad directory: %s' % location output = call_subprocess( ['svn', 'info', location], show_stdout=False, extra_environ={'LANG': 'C'}) match = _svn_url_re.search(output) if not match: logger.warn('Cannot determine URL of svn checkout %s' % display_path(location)) logger.info('Output that cannot be parsed: \n%s' % output) return None, None url = match.group(1).strip() match = _svn_revision_re.search(output) if not match: logger.warn('Cannot determine revision of svn checkout %s' % display_path(location)) logger.info('Output that cannot be parsed: \n%s' % output) return url, None return url, match.group(1) def parse_vcs_bundle_file(self, content): for line in content.splitlines(): if not line.strip() or line.strip().startswith('#'): continue match = re.search(r'^-r\s*([^ ])?', line) if not match: return None, None rev = match.group(1) rest = line[match.end():].strip().split(None, 1)[0] return rest, rev return None, None def unpack(self, location): """Check out the svn repository at the url to the destination location""" url, rev = self.get_url_rev() logger.notify('Checking out svn repository %s to %s' % (url, location)) logger.indent += 2 try: if os.path.exists(location): # Subversion doesn't like to check out over an existing directory # --force fixes this, but was only added in svn 1.5 rmtree(location) call_subprocess( ['svn', 'checkout', url, location], filter_stdout=self._filter, show_stdout=False) finally: logger.indent -= 2 def export(self, location): """Export the svn repository at the url to the destination location""" url, rev = self.get_url_rev() logger.notify('Checking out svn repository %s to %s' % (url, location)) logger.indent += 2 try: if os.path.exists(location): # Subversion doesn't like to check out over an existing directory # --force fixes this, but was only added in svn 1.5 rmtree(location) call_subprocess( ['svn', 'export', url, location], filter_stdout=self._filter, show_stdout=False) finally: logger.indent -= 2 def switch(self, dest, url, rev_options): call_subprocess( ['svn', 'switch'] + rev_options + [url, dest]) def update(self, dest, rev_options): call_subprocess( ['svn', 'update'] + rev_options + [dest]) def obtain(self, dest): url, rev = self.get_url_rev() if rev: rev_options = ['-r', rev] rev_display = ' (to revision %s)' % rev else: rev_options = [] rev_display = '' if self.check_destination(dest, url, rev_options, rev_display): logger.notify('Checking out %s%s to %s' % (url, rev_display, display_path(dest))) call_subprocess( ['svn', 'checkout', '-q'] + rev_options + [url, dest]) def get_location(self, dist, dependency_links): egg_fragment_re = re.compile(r'#egg=(.*)$') for url in dependency_links: egg_fragment = Link(url).egg_fragment if not egg_fragment: continue if '-' in egg_fragment: ## FIXME: will this work when a package has - in the name? key = '-'.join(egg_fragment.split('-')[:-1]).lower() else: key = egg_fragment if key == dist.key: return url.split('#', 1)[0] return None def get_revision(self, location): """ Return the maximum revision for all files under a given location """ # Note: taken from setuptools.command.egg_info revision = 0 for base, dirs, files in os.walk(location): if self.dirname not in dirs: dirs[:] = [] continue # no sense walking uncontrolled subdirs dirs.remove(self.dirname) entries_fn = os.path.join(base, self.dirname, 'entries') if not os.path.exists(entries_fn): ## FIXME: should we warn? continue f = open(entries_fn) data = f.read() f.close() if data.startswith('8') or data.startswith('9') or data.startswith('10'): data = map(str.splitlines,data.split('\n\x0c\n')) del data[0][0] # get rid of the '8' dirurl = data[0][3] revs = [int(d[9]) for d in data if len(d)>9 and d[9]]+[0] if revs: localrev = max(revs) else: localrev = 0 elif data.startswith('<?xml'): dirurl = _svn_xml_url_re.search(data).group(1) # get repository URL revs = [int(m.group(1)) for m in _svn_rev_re.finditer(data)]+[0] if revs: localrev = max(revs) else: localrev = 0 else: logger.warn("Unrecognized .svn/entries format; skipping %s", base) dirs[:] = [] continue if base == location: base_url = dirurl+'/' # save the root url elif not dirurl.startswith(base_url): dirs[:] = [] continue # not part of the same svn tree, skip it revision = max(revision, localrev) return revision def get_url(self, location): # In cases where the source is in a subdirectory, not alongside setup.py # we have to look up in the location until we find a real setup.py orig_location = location while not os.path.exists(os.path.join(location, 'setup.py')): last_location = location location = os.path.dirname(location) if location == last_location: # We've traversed up to the root of the filesystem without finding setup.py logger.warn("Could not find setup.py for directory %s (tried all parent directories)" % orig_location) return None f = open(os.path.join(location, self.dirname, 'entries')) data = f.read() f.close() if data.startswith('8') or data.startswith('9') or data.startswith('10'): data = map(str.splitlines,data.split('\n\x0c\n')) del data[0][0] # get rid of the '8' return data[0][3] elif data.startswith('<?xml'): match = _svn_xml_url_re.search(data) if not match: raise ValueError('Badly formatted data: %r' % data) return match.group(1) # get repository URL else: logger.warn("Unrecognized .svn/entries format in %s" % location) # Or raise exception? return None def get_tag_revs(self, svn_tag_url): stdout = call_subprocess( ['svn', 'ls', '-v', svn_tag_url], show_stdout=False) results = [] for line in stdout.splitlines(): parts = line.split() rev = int(parts[0]) tag = parts[-1].strip('/') results.append((tag, rev)) return results def find_tag_match(self, rev, tag_revs): best_match_rev = None best_tag = None for tag, tag_rev in tag_revs: if (tag_rev > rev and (best_match_rev is None or best_match_rev > tag_rev)): # FIXME: Is best_match > tag_rev really possible? # or is it a sign something is wacky? best_match_rev = tag_rev best_tag = tag return best_tag def get_src_requirement(self, dist, location, find_tags=False): repo = self.get_url(location) if repo is None: return None parts = repo.split('/') ## FIXME: why not project name? egg_project_name = dist.egg_name().split('-', 1)[0] rev = self.get_revision(location) if parts[-2] in ('tags', 'tag'): # It's a tag, perfect! full_egg_name = '%s-%s' % (egg_project_name, parts[-1]) elif parts[-2] in ('branches', 'branch'): # It's a branch :( full_egg_name = '%s-%s-r%s' % (dist.egg_name(), parts[-1], rev) elif parts[-1] == 'trunk': # Trunk :-/ full_egg_name = '%s-dev_r%s' % (dist.egg_name(), rev) if find_tags: tag_url = '/'.join(parts[:-1]) + '/tags' tag_revs = self.get_tag_revs(tag_url) match = self.find_tag_match(rev, tag_revs) if match: logger.notify('trunk checkout %s seems to be equivalent to tag %s' % match) repo = '%s/%s' % (tag_url, match) full_egg_name = '%s-%s' % (egg_project_name, match) else: # Don't know what it is logger.warn('svn URL does not fit normal structure (tags/branches/trunk): %s' % repo) full_egg_name = '%s-dev_r%s' % (egg_project_name, rev) return 'svn+%s@%s#egg=%s' % (repo, rev, full_egg_name) vcs.register(Subversion)
apache-2.0
2,218,389,806,356,872,200
40.438735
101
0.52499
false
3.974223
false
false
false
nccgroup/featherduster
feathermodules/auxiliary/rand_time.py
1
2373
import cryptanalib as ca import feathermodules from time import time import random def rand_seeded_with_time_check(samples): def seed_and_generate_value(seed, lowest, highest): random.seed(seed) return random.randint(lowest, highest) options = feathermodules.current_options options_tmp = dict(options) check_arguments(options_tmp) if options_tmp == False: return False timestamps = range(options_tmp['base_timestamp']-86400,options_tmp['base_timestamp']+86400) prng_outputs = map(lambda timestamp: seed_and_generate_value(timestamp, options_tmp['lowest'], options_tmp['highest']), timestamps) converted_samples = map(lambda sample: int(sample, options_tmp['base']), samples) matches = set(prng_outputs) & set(converted_samples) if matches: print '[!] %d matches were discovered! This suggests random outputs are based on Mersenne Twister output seeded with the current system time.' % len(matches) return matches else: print '[+] No matches discovered.' return False def check_arguments(options): try: print '[+] Checking provided timestamp...' options['base_timestamp'] = int(options['base_timestamp']) print '[+] Checking provided format...' if options['format'].lower() in ['hex', 'h']: options['base'] = 16 elif options['format'].lower() in ['dec', 'd', 'decimal']: options['base'] = 10 else: print '[*] Format option was not recognized. Please use \'hex\' or \'dec\'.' print '[+] Checking lowest possible value...' options['lowest'] = int(options['lowest'], options['base']) print '[+] Checking highest possible value...' options['highest'] = int(options['highest'], options['base']) return options except: print '[*] One or more numeric arguments could not be converted to a number. Please try again.' return False feathermodules.module_list['rand_time'] = { 'attack_function':rand_seeded_with_time_check, 'type':'auxiliary', 'keywords':['random'], 'description':'A brute force attack attempting to match captured samples to the output of the Mersenne Twister PRNG seeded with the current system time.', 'options':{'base_timestamp': str(int(time())), 'format': 'hex', 'lowest': '00000000', 'highest': 'FFFFFFFF' } }
bsd-3-clause
35,931,700,480,913,720
37.274194
163
0.657817
false
3.968227
false
false
false
rpav/io_scene_consmodel
nodes.py
1
6385
__all__ = ["make_node", "CM_Node"] import bpy import bpy.types import bpy_types import bmesh import bmesh.ops import math import mathutils import pyconspack as cpk from array import array from pyconspack import Conspack from mathutils import Matrix import io_scene_consmodel.consmodel as consmodel from io_scene_consmodel.util import (matrix_to_vec, AttrPack, defencode) # Nodes class CM_Node(AttrPack): def preinit(self, ob=None, **kw): if(not ob): return self.name = ob.name self.transform = (hasattr(ob, 'matrix_local') and matrix_to_vec(ob.matrix_local)) vals = () if(hasattr(ob, 'children')): vals = ob.children elif(hasattr(ob, 'objects')): vals = ob.objects if(vals): self.children = cpk.Vector() for val in vals: if(not val.parent or val.parent == ob): self.children.append(make_node(val)) def best_integer_type(i): if (i < 2**8): return 'B' elif(i < 2**16): return 'H' else: return 'I' def int_array(a): return array(best_integer_type(len(a)), a) class CM_Mesh(CM_Node): def preinit(self, ob=None, **kw): super().preinit(ob, **kw) self.primitive_type = cpk.keyword('triangle') self.faces = array('I') self.vertices = array('f') self.normals = array('f') self.materials = cpk.Vector() self.face_normals = cpk.Vector() if(ob): if(ob.data in Cache.MESH_CACHE): self.faces, self.normals, self.face_normals, self.vertices, self.materials = Cache.MESH_CACHE[ob.data] else: bm = bmesh.new() bm.from_mesh(ob.data) bmesh.ops.triangulate(bm, faces=bm.faces) for v in bm.verts: self.vertices.extend(v.co.xyz) self.normals.extend(v.normal) for f in bm.faces: self.faces.extend((v.index for v in f.verts)) self.normals.extend(f.normal) fni = math.floor(len(self.normals)/3)-1 if(f.smooth): self.face_normals.extend((v.index for v in f.verts)) else: self.face_normals.extend((fni, fni, fni)) self.faces = int_array(self.faces) self.face_normals = int_array(self.face_normals) bm.free() for slot in ob.material_slots: if(slot.material in Cache.MAT_CACHE): mat = Cache.MAT_CACHE[slot.material] else: mat = CM_Material(ob=slot.material) self.materials.append(mat) Cache.MESH_CACHE[ob.data] = (self.faces, self.normals, self.face_normals, self.vertices, self.materials) class CM_Camera(CM_Node): def preinit(self, ob=None, **kw): super().preinit(ob, **kw) self.fov = ob.data.angle self.clip_near = ob.data.clip_start self.clip_far = ob.data.clip_end self.aspect = ob.data.sensor_width / ob.data.sensor_height class CM_LightPoint(CM_Node): def preinit(self, ob=None, **kw): super().preinit(ob, **kw) self.position = array('f', ob.location) self.diffuse = array('f', (0, 0, 0)) self.specular = array('f', (0, 0, 0)) if(ob.data.use_diffuse): self.diffuse = array('f', ob.data.energy * ob.data.color) if(ob.data.use_specular): self.specular = array('f', ob.data.energy * ob.data.color) self.attenuation_constant = 1.0 self.attenuation_linear = 0.0 self.attenuation_quadratic = 0.0 if(ob.data.falloff_type == 'CONSTANT'): self.attenuation_constant = ob.data.distance elif(ob.data.falloff_type == 'INVERSE_LINEAR'): self.attenuation_linear = 1/ob.data.distance elif(ob.data.falloff_type == 'INVERSE_SQUARE'): self.attenuation_quadratic = 1/(ob.data.distance**2) elif(ob.data.falloff_type == 'LINEAR_QUADRATIC_WEIGHTED'): self.attenuation_linear = 1/(ob.data.linear_attenuation * ob.data.distance) self.attenuation_quadratic = 1/((ob.data.quadratic_attenuation * ob.data.distance)**2) class CM_Material(AttrPack): def preinit(self, ob=None, **kw): self.name = "" self.values = v = dict() m = ob world = consmodel.Consmodel.SCENE.world if(ob): self.name = m.name v['alpha'] = m.alpha v['ambient'] = array('f', world.ambient_color * m.ambient) v['diffuse'] = array('f', m.diffuse_color * m.diffuse_intensity) # This was taken from the Blinn specular code in shadeoutput.c roughness = m.specular_hardness * m.specular_intensity if(roughness < 0.00001): roughness = 0.0 elif(roughness < 100.0): roughness = math.sqrt(1.0/roughness) else: roughness = math.sqrt(100.0/roughness) v['roughness'] = roughness specular = list(m.specular_color * m.specular_alpha) v['specular'] = array('f', specular) v['specular-ior'] = m.specular_ior Cache.MAT_CACHE[ob] = self # make_node class Cache: CACHE = dict() MESH_CACHE = dict() MAT_CACHE = dict() def make_node(bval): if(bval in Cache.CACHE): return Cache.CACHE[bval] if(isinstance(bval, bpy.types.Scene)): ob = CM_Node(ob=bval) elif(isinstance(bval, bpy_types.Object)): if(bval.type == 'MESH'): ob = CM_Mesh(ob=bval) elif(bval.type == 'CAMERA'): ob = CM_Camera(ob=bval) elif(bval.type == 'LAMP' and bval.data.type == 'POINT'): ob = CM_LightPoint(ob=bval) else: ob = CM_Node(ob=bval) Cache.CACHE[bval] = ob return ob def clear_cache(): Cache.CACHE = dict() Cache.MESH_CACHE = dict() Cache.MAT_CACHE = dict() # Conspack regs defencode(CM_Node, "node") defencode(CM_Mesh, "mesh") defencode(CM_Camera, "camera") defencode(CM_LightPoint, "light-point") defencode(CM_Material, "material-simple")
bsd-2-clause
-6,084,708,919,340,452,000
29.697115
120
0.552702
false
3.362296
false
false
false
steven-cutting/latinpigsay
latinpigsay/tmp/experiments/timedtest.py
1
1262
# -*- coding: utf-8 -*- __title__ = 'latinpigsay' __license__ = 'MIT' __author__ = 'Steven Cutting' __author_email__ = '[email protected]' __created_on__ = '12/3/2014' def func1(listofstrings): return max([len(string) for string in listofstrings]) def func2(listofstrings): return max(len(string) for string in listofstrings) def func3(listofstrings): return len(max(mylist, key=len)) # handle a massive file using generator def filereader_gen(file): with open(file) as f: for line in f: yield line def fileprocessor(file, function): filegen = filereader_gen() filegen2 = (process(x) for x in g) ## # Iterate over the lines of a string foo = """ this is a multi-line string. """ def f1(foo=foo): return iter(foo.splitlines()) def f2(foo=foo): retval = '' for char in foo: retval += char if not char == '\n' else '' if char == '\n': yield retval retval = '' if retval: yield retval def f3(foo=foo): prevnl = -1 while True: nextnl = foo.find('\n', prevnl + 1) if nextnl < 0: break yield foo[prevnl + 1:nextnl] prevnl = nextnl if __name__ == '__main__': for f in f1, f2, f3: print list(f())
mit
-2,829,386,036,969,377,300
17.558824
57
0.588748
false
3.100737
false
false
false
Patrick-Cole/pygmi
pygmi/pfmod/datatypes.py
1
12775
# ----------------------------------------------------------------------------- # Name: datatypes.py (part of PyGMI) # # Author: Patrick Cole # E-Mail: [email protected] # # Copyright: (c) 2013 Council for Geoscience # Licence: GPL-3.0 # # This file is part of PyGMI # # PyGMI is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # PyGMI is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ----------------------------------------------------------------------------- """Class for data types.""" import numpy as np from pygmi.raster.datatypes import Data class LithModel(): """ Lithological Model Data. This is the main data structure for the modelling program Attributes ---------- mlut : dictionary color table for lithologies numx : int number of columns per layer in model numy : int): number of rows per layer in model numz : int number of layers in model dxy : float dimension of cubes in the x and y directions d_z : float dimension of cubes in the z direction lith_index : numpy array 3D array of lithological indices. curlayer : int Current layer xrange : list minimum and maximum x coordinates yrange : list minimum and maximum y coordinates zrange : list minimum and maximum z coordinates curprof : int current profile (in x or y direction) griddata : dictionary dictionary of Data classes with raster data custprofx : dictionary custom profile x coordinates custprofy : dictionary custom profile y coordinates profpics : dictionary profile pictures lith_list : dictionary list of lithologies lith_list_reverse : dictionary reverse lookup for lith_list mht : float height of magnetic sensor ght : float height of gravity sensor gregional : float gravity regional correction name : str name of the model """ def __init__(self): self.mlut = {0: [170, 125, 90], 1: [255, 255, 0]} self.numx = None self.numy = None self.numz = None self.dxy = None self.d_z = None self.lith_index = None self.lith_index_grv_old = None self.lith_index_mag_old = None self.xrange = [None, None] self.yrange = [None, None] self.zrange = [None, None] self.griddata = {} self.custprofx = {} self.custprofy = {} self.profpics = {} self.lith_list = {} self.lith_list_reverse = {} self.mht = None self.ght = None self.gregional = 0. self.dataid = '3D Model' self.tmpfiles = None # Next line calls a function to update the variables above. self.update(50, 40, 5, 0., 0., 0., 100., 100., 100., 0.) self.olith_index = None self.odxy = None self.od_z = None self.oxrng = None self.oyrng = None self.ozrng = None self.onumx = None self.onumy = None self.onumz = None # Obsolete # self.curlayer = None # self.is_ew = True # self.curprof = None def lithold_to_lith(self, nodtm=False, pbar=None): """ Transfers an old lithology to the new one, using update parameters. Parameters ---------- nodtm : bool, optional Flag for a DTM. The default is False. pbar : pygmi.misc.ProgressBar, optional Progressbar. The default is None. Returns ------- None. """ if self.olith_index is None: return if pbar is not None: piter = pbar.iter else: piter = iter xvals = np.arange(self.xrange[0], self.xrange[1], self.dxy) yvals = np.arange(self.yrange[0], self.yrange[1], self.dxy) zvals = np.arange(self.zrange[0], self.zrange[1], self.d_z) if xvals[-1] == self.xrange[1]: xvals = xvals[:-1] if yvals[-1] == self.yrange[1]: yvals = yvals[:-1] if zvals[-1] == self.zrange[1]: yvals = yvals[:-1] xvals += 0.5 * self.dxy yvals += 0.5 * self.dxy zvals += 0.5 * self.d_z xvals = xvals[self.oxrng[0] < xvals] xvals = xvals[xvals < self.oxrng[1]] yvals = yvals[self.oyrng[0] < yvals] yvals = yvals[yvals < self.oyrng[1]] zvals = zvals[self.ozrng[0] < zvals] zvals = zvals[zvals < self.ozrng[1]] for x_i in piter(xvals): o_i = int((x_i - self.oxrng[0]) / self.odxy) i = int((x_i - self.xrange[0]) / self.dxy) for x_j in yvals: o_j = int((x_j - self.oyrng[0]) / self.odxy) j = int((x_j - self.yrange[0]) / self.dxy) for x_k in zvals: o_k = int((self.ozrng[1] - x_k) / self.od_z) k = int((self.zrange[1] - x_k) / self.d_z) if (self.lith_index[i, j, k] != -1 and self.olith_index[o_i, o_j, o_k] != -1) or nodtm: self.lith_index[i, j, k] = \ self.olith_index[o_i, o_j, o_k] def dtm_to_lith(self, pbar=None): """ Assign the DTM to the model. This means creating nodata values in areas above the DTM. These values are assigned a lithology of -1. Parameters ---------- pbar : pygmi.misc.ProgressBar, optional Progressbar. The default is None. Returns ------- None. """ if 'DTM Dataset' not in self.griddata: return if pbar is not None: piter = pbar.iter else: piter = iter self.lith_index = np.zeros([self.numx, self.numy, self.numz], dtype=int) curgrid = self.griddata['DTM Dataset'] d_x = curgrid.xdim d_y = curgrid.ydim gxmin = curgrid.extent[0] gymax = curgrid.extent[-1] grows, gcols = curgrid.data.shape utlz = curgrid.data.max() self.lith_index[:, :, :] = 0 for i in piter(range(self.numx)): xcrd = self.xrange[0] + (i + .5) * self.dxy xcrd2 = int((xcrd - gxmin) / d_x) for j in range(self.numy): ycrd = self.yrange[1] - (j + .5) * self.dxy ycrd2 = grows - int((gymax - ycrd) / d_y) if ycrd2 == grows: ycrd2 = grows-1 # if (ycrd2 >= 0 and xcrd2 >= 0 and ycrd2 < grows and # xcrd2 < gcols): if (0 <= ycrd2 < grows and 0 <= xcrd2 < gcols): alt = curgrid.data.data[ycrd2, xcrd2] if (curgrid.data.mask[ycrd2, xcrd2] or np.isnan(alt) or alt == curgrid.nullvalue): alt = curgrid.data.mean() k_2 = int((utlz - alt) / self.d_z) self.lith_index[i, j, :k_2] = -1 def init_grid(self, data): """ Initialize raster variables in the Data class. Parameters ---------- data : numpy array Masked array containing raster data. Returns ------- grid : PyGMI Data PyGMI raster dataset. """ grid = Data() grid.data = data grid.xdim = self.dxy grid.ydim = self.dxy grid.extent = [self.xrange[0], self.xrange[1], self.yrange[0], self.yrange[1]] return grid def init_calc_grids(self): """ Initialize mag and gravity from the model. Returns ------- None. """ tmp = np.ma.zeros([self.numy, self.numx]) self.griddata['Calculated Magnetics'] = self.init_grid(tmp.copy()) self.griddata['Calculated Magnetics'].dataid = 'Calculated Magnetics' self.griddata['Calculated Magnetics'].units = 'nT' self.griddata['Calculated Gravity'] = self.init_grid(tmp.copy()) self.griddata['Calculated Gravity'].dataid = 'Calculated Gravity' self.griddata['Calculated Gravity'].units = 'mGal' def is_modified(self, modified=True): """ Update modified flag. Parameters ---------- modified : bool, optional Flag for whether the lithology has been modified. The default is True. Returns ------- None. """ for i in self.lith_list: self.lith_list[i].modified = modified def update(self, cols, rows, layers, utlx, utly, utlz, dxy, d_z, mht=-1, ght=-1, usedtm=True, pbar=None): """ Update the local variables for the LithModel class. Parameters ---------- cols : int Number of columns per layer in model. rows : int Number of rows per layer in model. layers : int Number of layers in model. utlx : float Upper top left (NW) x coordinate. utly : float Upper top left (NW) y coordinate. utlz : float Upper top left (NW) z coordinate. dxy : float Dimension of cubes in the x and y directions. d_z : float Dimension of cubes in the z direction. mht : float, optional Height of magnetic sensor. The default is -1. ght : float, optional Height of gravity sensor. The default is -1. usedtm : bool, optional Flag to use a DTM. The default is True. pbar : pygmi.misc.ProgressBar, optional Progressbar. The default is None. Returns ------- None. """ if mht != -1: self.mht = mht if ght != -1: self.ght = ght self.olith_index = self.lith_index self.odxy = self.dxy self.od_z = self.d_z self.oxrng = np.copy(self.xrange) self.oyrng = np.copy(self.yrange) self.ozrng = np.copy(self.zrange) self.onumx = self.numx self.onumy = self.numy self.onumz = self.numz xextent = cols * dxy yextent = rows * dxy zextent = layers * d_z self.numx = cols self.numy = rows self.numz = layers self.xrange = [utlx, utlx + xextent] self.yrange = [utly - yextent, utly] self.zrange = [utlz - zextent, utlz] self.dxy = dxy self.d_z = d_z self.lith_index = np.zeros([self.numx, self.numy, self.numz], dtype=int) self.lith_index_mag_old = np.zeros([self.numx, self.numy, self.numz], dtype=int) self.lith_index_mag_old[:] = -1 self.lith_index_grv_old = np.zeros([self.numx, self.numy, self.numz], dtype=int) self.lith_index_grv_old[:] = -1 self.init_calc_grids() if usedtm: self.dtm_to_lith(pbar) self.lithold_to_lith(not usedtm, pbar) self.update_lithlist() self.is_modified() def update_lithlist(self): """ Update lith_list from local variables. Returns ------- None. """ for i in self.lith_list: self.lith_list[i].set_xyz(self.numx, self.numy, self.numz, self.dxy, self.mht, self.ght, self.d_z, modified=False) def update_lith_list_reverse(self): """ Update the lith_list reverse lookup. It must be run at least once before using lith_list_reverse. Returns ------- None. """ keys = list(self.lith_list.keys()) values = list(self.lith_list.values()) if not keys: return self.lith_list_reverse = {} for i in range(len(keys)): self.lith_list_reverse[list(values)[i].lith_index] = list(keys)[i]
gpl-3.0
-730,418,106,219,455,900
29.200946
79
0.517417
false
3.601635
false
false
false
bmccann/examples
super_resolution/main.py
6
3291
from __future__ import print_function import argparse from math import log10 import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable from torch.utils.data import DataLoader from model import Net from data import get_training_set, get_test_set # Training settings parser = argparse.ArgumentParser(description='PyTorch Super Res Example') parser.add_argument('--upscale_factor', type=int, required=True, help="super resolution upscale factor") parser.add_argument('--batchSize', type=int, default=64, help='training batch size') parser.add_argument('--testBatchSize', type=int, default=10, help='testing batch size') parser.add_argument('--nEpochs', type=int, default=2, help='number of epochs to train for') parser.add_argument('--lr', type=float, default=0.01, help='Learning Rate. Default=0.01') parser.add_argument('--cuda', action='store_true', help='use cuda?') parser.add_argument('--threads', type=int, default=4, help='number of threads for data loader to use') parser.add_argument('--seed', type=int, default=123, help='random seed to use. Default=123') opt = parser.parse_args() print(opt) cuda = opt.cuda if cuda and not torch.cuda.is_available(): raise Exception("No GPU found, please run without --cuda") torch.manual_seed(opt.seed) if cuda: torch.cuda.manual_seed(opt.seed) print('===> Loading datasets') train_set = get_training_set(opt.upscale_factor) test_set = get_test_set(opt.upscale_factor) training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True) testing_data_loader = DataLoader(dataset=test_set, num_workers=opt.threads, batch_size=opt.testBatchSize, shuffle=False) print('===> Building model') model = Net(upscale_factor=opt.upscale_factor) criterion = nn.MSELoss() if cuda: model = model.cuda() criterion = criterion.cuda() optimizer = optim.Adam(model.parameters(), lr=opt.lr) def train(epoch): epoch_loss = 0 for iteration, batch in enumerate(training_data_loader, 1): input, target = Variable(batch[0]), Variable(batch[1]) if cuda: input = input.cuda() target = target.cuda() optimizer.zero_grad() loss = criterion(model(input), target) epoch_loss += loss.data[0] loss.backward() optimizer.step() print("===> Epoch[{}]({}/{}): Loss: {:.4f}".format(epoch, iteration, len(training_data_loader), loss.data[0])) print("===> Epoch {} Complete: Avg. Loss: {:.4f}".format(epoch, epoch_loss / len(training_data_loader))) def test(): avg_psnr = 0 for batch in testing_data_loader: input, target = Variable(batch[0]), Variable(batch[1]) if cuda: input = input.cuda() target = target.cuda() prediction = model(input) mse = criterion(prediction, target) psnr = 10 * log10(1 / mse.data[0]) avg_psnr += psnr print("===> Avg. PSNR: {:.4f} dB".format(avg_psnr / len(testing_data_loader))) def checkpoint(epoch): model_out_path = "model_epoch_{}.pth".format(epoch) torch.save(model, model_out_path) print("Checkpoint saved to {}".format(model_out_path)) for epoch in range(1, opt.nEpochs + 1): train(epoch) test() checkpoint(epoch)
bsd-3-clause
8,631,834,601,338,594,000
34.010638
120
0.679733
false
3.358163
true
false
false
SuperHouse/esp-open-rtos
utils/filteroutput.py
16
3583
#!/usr/bin/env python # # A thin Python wrapper around addr2line, can monitor esp-open-rtos # output and uses gdb to convert any suitable looking hex numbers # found in the output into function and line numbers. # # Works with a serial port if the --port option is supplied. # Otherwise waits for input on stdin. # import serial import argparse import re import os import os.path import subprocess import termios import sys import time # Try looking up anything in the executable address space RE_EXECADDR = r"(0x)?40([0-9]|[a-z]){6}" def find_elf_file(): out_files = [] for top,_,files in os.walk('.', followlinks=False): for f in files: if f.endswith(".out"): out_files.append(os.path.join(top,f)) if len(out_files) == 1: return out_files[0] elif len(out_files) > 1: print("Found multiple .out files: %s. Please specify one with the --elf option." % out_files) else: print("No .out file found under current directory. Please specify one with the --elf option.") sys.exit(1) def main(): parser = argparse.ArgumentParser(description='esp-open-rtos output filter tool', prog='filteroutput') parser.add_argument( '--elf', '-e', help="ELF file (*.out file) to load symbols from (if not supplied, will search for one)"), parser.add_argument( '--port', '-p', help='Serial port to monitor (will monitor stdin if None)', default=None) parser.add_argument( '--baud', '-b', help='Baud rate for serial port', type=int, default=74880) parser.add_argument( '--reset-on-connect', '-r', help='Reset ESP8266 (via DTR) on serial connect. (Linux resets even if not set, except when using NodeMCU-style auto-reset circuit.)', action='store_true') args = parser.parse_args() if args.elf is None: args.elf = find_elf_file() elif not os.path.exists(args.elf): print("ELF file '%s' not found" % args.elf) sys.exit(1) if args.port is not None: print("Opening %s at %dbps..." % (args.port, args.baud)) port = serial.Serial(args.port, baudrate=args.baud) if args.reset_on_connect: print("Resetting...") port.setDTR(False) time.sleep(0.1) port.setDTR(True) else: print("Reading from stdin...") port = sys.stdin # disable echo try: old_attr = termios.tcgetattr(sys.stdin.fileno()) attr = termios.tcgetattr(sys.stdin.fileno()) attr[3] = attr[3] & ~termios.ECHO termios.tcsetattr(sys.stdin.fileno(), termios.TCSADRAIN, attr) except termios.error: pass try: while True: line = port.readline() if line == '': break print(line.strip()) for match in re.finditer(RE_EXECADDR, line, re.IGNORECASE): addr = match.group(0) if not addr.startswith("0x"): addr = "0x"+addr # keeping addr2line and feeding it addresses on stdin didn't seem to work smoothly addr2line = subprocess.check_output(["xtensa-lx106-elf-addr2line","-pfia","-e","%s" % args.elf, addr], cwd=".").strip() if not addr2line.endswith(": ?? ??:0"): print("\n%s\n" % addr2line.strip()) finally: if args.port is None: # restore echo termios.tcsetattr(sys.stdin.fileno(), termios.TCSADRAIN, old_attr) if __name__ == "__main__": main()
bsd-3-clause
-3,975,044,797,260,328,400
33.12381
142
0.590008
false
3.630193
false
false
false
birm/dbops
dbops/RecursiveDep.py
1
3451
import os class RecursiveDep(object): """ Map all dependencies for a database/schema, to advise changes. args: host: the hostname to use to connect to database: the database to check against form: the form to return the result """ def __init__(self, host="localhost", database="mysql", table="user", form="tree"): """create assertion object.""" self.host = host self.database = database self.table = table self.form = form self.storage = set() # set of lists for result def _run_mysql(self, command): """Run the mysql query and get the result as a list.""" cmd = ["mysql", "-h", self.host, self.database, "-sss", "-e", "\"{command};\"".format(command=command)] return os.subprocess.check_output(cmd).splitlines() def find(self): """Find, store, and show all dependencies.""" # get tables in db table_query = "select TABLE_NAME from information_schema.TABLES \ where TABLE_SCHEMA='{db}'".format(db=self.database) tables = self._run_mysql(table_query) # call _find_deps for all and store for table in tables: self._store(table, self._find_deps(table)) # call the appropriate result function def _store(self, from_table, to_table): """Store the result to internal variable.""" self.storage.add([from_table, to_table]) def _find_deps(self, tablename): """Find dependencies for a given table, given by name.""" dep_query = """select TABLE_NAME from information_schema.KEY_COLUMN_USAGE where TABLE_SCHEMA = "{db}" and REFERENCED_TABLE_NAME = "{table}" and referenced_column_name is not NULL;""".format(db=self.database, table=tablename) return self._run_mysql(dep_query) def _connect_deps(self, tablename, maxdep=5): """Get the tree of dependencies for a table, up to maxdep times. input: tablename(str) - which table to start with. maxdep(int) - (optional) how many layers deep to go output: """ connecting = True # while condition set # for each iteration working = [] # list of tables to work through working2 = [] # list of tables to add next iteration result = [] pos = 0 # position for result, and for maxdep working.append(tablename) while connecting: for table in working: # remove from working working.remove(table) # all tables with relevant depenency midres = [x[1] for x in self.storage if x[0]==table] #add to working working2.extend(midres) # prepare for next level deep working = list(set(working2)) working2 = [] # check if we should continue result[pos] = working # save the result pos = pos + 1 if (not midres) or (pos >= maxdep): continue = False # end the loop def _graph_result(self): """The result display function for the graph output.""" pass def _text_result(self): """The result displa function for text or command line output.""" pass
gpl-3.0
-2,130,449,234,815,290,400
38.215909
81
0.558968
false
4.464424
false
false
false
smartanthill/smartanthill1_0
smartanthill/network/service.py
1
8242
# Copyright (C) Ivan Kravets <[email protected]> # See LICENSE for details. # pylint: disable=W0613 from binascii import hexlify from twisted.internet import reactor from twisted.internet.defer import inlineCallbacks, maybeDeferred, returnValue from twisted.internet.serialport import SerialPort import smartanthill.network.protocol as sanp from smartanthill.exception import NetworkRouterConnectFailure from smartanthill.service import SAMultiService from smartanthill.util import get_service_named class ControlService(SAMultiService): def __init__(self, name): SAMultiService.__init__(self, name) self._protocol = sanp.ControlProtocolWrapping( self.climessage_protocallback) self._litemq = None def startService(self): self._litemq = get_service_named("litemq") self._protocol.makeConnection(self) self._litemq.consume("network", "control.in", "transport->control", self.inmessage_mqcallback) self._litemq.consume("network", "control.out", "client->control", self.outmessage_mqcallback) SAMultiService.startService(self) def stopService(self): SAMultiService.stopService(self) self._litemq.unconsume("network", "control.in") self._litemq.unconsume("network", "control.out") def write(self, message): self._litemq.produce("network", "control->transport", message, dict(binary=True)) def inmessage_mqcallback(self, message, properties): self.log.debug("Received incoming raw message %s" % hexlify(message)) self._protocol.dataReceived(message) def outmessage_mqcallback(self, message, properties): self.log.debug("Received outgoing %s and properties=%s" % (message, properties)) self._protocol.send_message(message) def climessage_protocallback(self, message): self.log.debug("Received incoming client %s" % message) self._litemq.produce("network", "control->client", message) class TransportService(SAMultiService): def __init__(self, name): SAMultiService.__init__(self, name) self._protocol = sanp.TransportProtocolWrapping( self.rawmessage_protocallback) self._litemq = None def startService(self): self._litemq = get_service_named("litemq") self._protocol.makeConnection(self) self._litemq.consume("network", "transport.in", "routing->transport", self.insegment_mqcallback) self._litemq.consume("network", "transport.out", "control->transport", self.outmessage_mqcallback, ack=True) SAMultiService.startService(self) def stopService(self): SAMultiService.stopService(self) self._litemq.unconsume("network", "transport.in") self._litemq.unconsume("network", "transport.out") def rawmessage_protocallback(self, message): self.log.debug("Received incoming raw message %s" % hexlify(message)) self._litemq.produce("network", "transport->control", message, dict(binary=True)) def write(self, segment): self._litemq.produce("network", "transport->routing", segment, dict(binary=True)) def insegment_mqcallback(self, message, properties): self.log.debug("Received incoming segment %s" % hexlify(message)) self._protocol.dataReceived(message) @inlineCallbacks def outmessage_mqcallback(self, message, properties): self.log.debug("Received outgoing message %s" % hexlify(message)) ctrlmsg = sanp.ControlProtocol.rawmessage_to_message(message) def _on_err(failure): self._litemq.produce("network", "transport->err", ctrlmsg) failure.raiseException() d = maybeDeferred(self._protocol.send_message, message) d.addErrback(_on_err) result = yield d if result and ctrlmsg.ack: self._litemq.produce("network", "transport->ack", ctrlmsg) returnValue(result) class RouterService(SAMultiService): RECONNECT_DELAY = 1 # in seconds def __init__(self, name, options): SAMultiService.__init__(self, name, options) self._protocol = sanp.RoutingProtocolWrapping( self.inpacket_protocallback) self._router_device = None self._litemq = None self._reconnect_nums = 0 self._reconnect_callid = None def startService(self): connection = self.options['connection'] try: if connection.get_type() == "serial": _kwargs = connection.params _kwargs['protocol'] = self._protocol _kwargs['reactor'] = reactor # rename port's argument if "port" in _kwargs: _kwargs['deviceNameOrPortNumber'] = _kwargs['port'] del _kwargs['port'] self._router_device = SerialPort(**_kwargs) except: self.log.error(NetworkRouterConnectFailure(self.options)) self._reconnect_nums += 1 self._reconnect_callid = reactor.callLater( self._reconnect_nums * self.RECONNECT_DELAY, self.startService) return self._litemq = get_service_named("litemq") self._litemq.consume( exchange="network", queue="routing.out." + self.name, routing_key="transport->routing", callback=self.outsegment_mqcallback ) SAMultiService.startService(self) def stopService(self): SAMultiService.stopService(self) if self._reconnect_callid: self._reconnect_callid.cancel() if self._router_device: self._router_device.loseConnection() if self._litemq: self._litemq.unconsume("network", "routing.out." + self.name) def inpacket_protocallback(self, packet): self.log.debug("Received incoming packet %s" % hexlify(packet)) self._litemq.produce("network", "routing->transport", sanp.RoutingProtocol.packet_to_segment(packet), dict(binary=True)) def outsegment_mqcallback(self, message, properties): # check destination ID @TODO if ord(message[2]) not in self.options['deviceids']: return False self.log.debug("Received outgoing segment %s" % hexlify(message)) self._protocol.send_segment(message) class ConnectionInfo(object): def __init__(self, uri): assert ":" in uri self.uri = uri parts = uri.split(":") self.type_ = parts[0] self.params = dict() for part in parts[1:]: key, value = part.split("=") self.params[key] = value def __repr__(self): return "ConnectionInfo: %s" % self.uri def get_uri(self): return self.uri def get_type(self): return self.type_ class NetworkService(SAMultiService): def __init__(self, name, options): SAMultiService.__init__(self, name, options) self._litemq = None def startService(self): self._litemq = get_service_named("litemq") self._litemq.declare_exchange("network") ControlService("network.control").setServiceParent(self) TransportService("network.transport").setServiceParent(self) devices = get_service_named("device").get_devices() for devid, devobj in devices.iteritems(): netopts = devobj.options.get("network", {}) rconn = netopts.get("router", None) if not rconn: continue _options = {"connection": ConnectionInfo(rconn), "deviceids": [devid]} RouterService("network.router.%d" % devid, _options).setServiceParent(self) SAMultiService.startService(self) def stopService(self): SAMultiService.stopService(self) self._litemq.undeclare_exchange("network") def makeService(name, options): return NetworkService(name, options)
mit
1,871,958,403,645,602,300
34.373391
79
0.615749
false
4.110723
false
false
false
locationtech/geowave
python/src/main/python/pygw/geotools/simple_feature_type_builder.py
2
2794
# # Copyright (c) 2013-2020 Contributors to the Eclipse Foundation # # See the NOTICE file distributed with this work for additional information regarding copyright # ownership. All rights reserved. This program and the accompanying materials are made available # under the terms of the Apache License, Version 2.0 which accompanies this distribution and is # available at http://www.apache.org/licenses/LICENSE-2.0.txt # =============================================================================================== from pygw.config import java_pkg from pygw.base import GeoWaveObject from .simple_feature_type import SimpleFeatureType from .attribute_descriptor import AttributeDescriptor class SimpleFeatureTypeBuilder(GeoWaveObject): """ Builds `pygw.geotools.simple_feature_type.SimpleFeatureType` instances. """ def __init__(self): self.attributes = [] super().__init__(java_pkg.org.geotools.feature.simple.SimpleFeatureTypeBuilder()) def set_name(self, name): """ Sets the name of the feature type. Args: name (str): The name to use. Returns: This feature type builder. """ self._java_ref.setName(name) return self def set_namespace_uri(self, namespace_uri): """ Sets the namespace URI of the feature type. Args: namespace_uri (str): The namespace URI to use. Returns: This feature type builder. """ self._java_ref.setNamespaceURI(namespace_uri) return self def set_srs(self, srs): """ Sets the spatial reference system of the feature type. Args: srs (str): The spatial reference system to use. Returns: This feature type builder. """ self._java_ref.setSRS(srs) return self def add(self, attribute_descriptor): """ Adds an attribute to the feature type. Args: attribute_descriptor (pygw.geotools.attribute_descriptor.AttributeDescriptor): The attribute to add. Returns: This feature type builder. """ if isinstance(attribute_descriptor, AttributeDescriptor): self.attributes.append(attribute_descriptor) self._java_ref.add(attribute_descriptor._java_ref) return self else: raise ValueError("attribute_descriptor should be of type AttributeDescriptor") def build_feature_type(self): """ Builds the configured feature type. Returns: A `pygw.geotools.simple_feature_type.SimpleFeatureType` with the given configuration. """ return SimpleFeatureType(self._java_ref.buildFeatureType(), self.attributes)
apache-2.0
3,524,314,869,859,865,000
31.488372
112
0.622047
false
4.633499
false
false
false
subutai/nupic
tests/integration/nupic/algorithms/knn_classifier_test/categories_test.py
10
3864
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2014, Numenta, Inc. Unless you have purchased from # Numenta, Inc. a separate commercial license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import logging import unittest2 as unittest import numpy from nupic.algorithms.knn_classifier import KNNClassifier LOGGER = logging.getLogger(__name__) class KNNCategoriesTest(unittest.TestCase): """Tests how k Nearest Neighbor classifier handles categories""" def testCategories(self): # We need determinism! # # "Life is like a game of cards. The hand you are dealt is determinism; the # way you play it is free will." Jawaharlal Nehru # # What the heck, let's just set the random seed numpy.random.seed(42) failures, _knn = simulateCategories() self.assertEqual(len(failures), 0, "Tests failed: \n" + failures) def simulateCategories(numSamples=100, numDimensions=500): """Simulate running KNN classifier on many disjoint categories""" failures = "" LOGGER.info("Testing the sparse KNN Classifier on many disjoint categories") knn = KNNClassifier(k=1, distanceNorm=1.0, useSparseMemory=True) for i in range(0, numSamples): # select category randomly and generate vector c = 2*numpy.random.randint(0, 50) + 50 v = createPattern(c, numDimensions) knn.learn(v, c) # Go through each category and ensure we have at least one from each! for i in range(0, 50): c = 2*i+50 v = createPattern(c, numDimensions) knn.learn(v, c) errors = 0 for i in range(0, numSamples): # select category randomly and generate vector c = 2*numpy.random.randint(0, 50) + 50 v = createPattern(c, numDimensions) inferCat, _kir, _kd, _kcd = knn.infer(v) if inferCat != c: LOGGER.info("Mistake with %s %s %s %s %s", v[v.nonzero()], \ "mapped to category", inferCat, "instead of category", c) LOGGER.info(" %s", v.nonzero()) errors += 1 if errors != 0: failures += "Failure in handling non-consecutive category indices\n" # Test closest methods errors = 0 for i in range(0, 10): # select category randomly and generate vector c = 2*numpy.random.randint(0, 50) + 50 v = createPattern(c, numDimensions) p = knn.closestTrainingPattern(v, c) if not (c in p.nonzero()[0]): LOGGER.info("Mistake %s %s", p.nonzero(), v.nonzero()) LOGGER.info("%s %s", p[p.nonzero()], v[v.nonzero()]) errors += 1 if errors != 0: failures += "Failure in closestTrainingPattern method\n" return failures, knn def createPattern(c, numDimensions): """ Create a sparse pattern from category c with the given number of dimensions. The pattern is created by setting element c to be a high random number. Element c-1 and c+1 are set to low random numbers. numDimensions must be > c. """ v = numpy.zeros(numDimensions) v[c] = 5*numpy.random.random() + 10 v[c+1] = numpy.random.random() if c > 0: v[c-1] = numpy.random.random() return v if __name__ == "__main__": unittest.main()
agpl-3.0
3,642,878,663,968,790,000
29.666667
79
0.658644
false
3.726133
true
false
false
happeninghq/happening
src/happening/templatetags/forms.py
2
1471
"""Form helpers.""" from django import template from django.template.loader import render_to_string from collections import OrderedDict register = template.Library() @register.filter def render_as_blocks(form): """Render a form using blocks to contain sections.""" o_label_suffix = form.label_suffix form.label_suffix = "" categories = {} for bf in form: field = bf.field if not hasattr(field, "category"): # This should deal with EnabledDisabledFields if hasattr(field, "field"): field = field.field category = "General" if hasattr(field, "category"): category = field.category if category not in categories: categories[category] = [] categories[category].append(bf) # Sort categories alphabetically categories = OrderedDict(sorted(categories.items())) rendered = render_to_string("forms/_blocks_form.html", {"categories": categories}) form.label_suffix = o_label_suffix return rendered @register.filter def render(form): """Render a form.""" o_label_suffix = form.label_suffix form.label_suffix = "" rendered = render_to_string("forms/_form.html", {"form": form}) form.label_suffix = o_label_suffix return rendered @register.simple_tag def render_field(field, name, value): """Render a field.""" return field.widget.render(name, value, {})
mit
-6,167,044,077,358,500,000
26.240741
67
0.634262
false
4.263768
false
false
false