message_id
stringlengths 36
36
| parent_id
stringlengths 36
36
⌀ | user_id
stringlengths 36
36
| created_date
stringlengths 32
32
| text
stringlengths 1
9.98k
| role
stringclasses 2
values | lang
stringclasses 28
values | review_count
int32 0
12
| review_result
bool 2
classes | deleted
bool 2
classes | rank
int32 0
15
⌀ | synthetic
bool 1
class | model_name
stringclasses 0
values | detoxify
dict | message_tree_id
stringlengths 36
36
| tree_state
stringclasses 1
value | emojis
sequence | labels
sequence |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
eabd266f-60b5-45fe-b0f6-61022d513791 | 146f415d-39bc-4b28-81e0-8cbad1aa40ad | c2bac01a-fb8b-45c8-987f-7e0df9ba901f | 2023-04-16T04:40:42.479551+00:00 | In **React**, cookies can be stored and managed using the `js-cookie` library. Here's a brief overview of how to use this library:
1. Install the `js-cookie` library using npm or yarn:
```
npm install js-cookie
```
*or*
```
yarn add js-cookie
```
2. Import the `js-cookie` library in your React component:
```
import Cookies from 'js-cookie';
```
3. To set a cookie, use the `Cookies.set()` method:
```
Cookies.set('name', 'value', { expires: 7 });
```
*This will set a cookie with the name 'name' and the value 'value' that will expire after 7 days.*
4. To get a cookie, use the `Cookies.get()` method:
```
const cookieValue = Cookies.get('name');
```
*This will retrieve the value of the cookie with the name 'name'.*
5. To remove a cookie, use the `Cookies.remove()` method:
```
Cookies.remove('name');
```
*This will remove the cookie with the name 'name'.*
**Conclusion:** By using the js-cookie library, you can easily store and manage cookies in your React application. However, it's important to remember that cookies can be a potential security risk if not managed properly, so be sure to follow best practices for cookie management. | assistant | en | 5 | true | false | 2 | false | null | {
"toxicity": 0.0002839372318703681,
"severe_toxicity": 0.00003219258360331878,
"obscene": 0.0001362563925795257,
"identity_attack": 0.00010375285637564957,
"insult": 0.00012681270891334862,
"threat": 0.0000443671306129545,
"sexual_explicit": 0.000031006999051896855
} | 146f415d-39bc-4b28-81e0-8cbad1aa40ad | ready_for_export | {
"name": [
"_skip_labeling"
],
"count": [
6
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.7,
0,
0.25,
0.7,
0.5,
0
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
aece03dd-3dc3-4018-92e6-0beefc74e122 | eabd266f-60b5-45fe-b0f6-61022d513791 | 4d590bb9-59d9-4a99-89e2-9acc64b93ef2 | 2023-04-16T11:48:30.185114+00:00 | Thank you, I'll try it.
By the way, what security problems should be managed? Can you give me an example? | prompter | en | 5 | true | false | null | false | null | {
"toxicity": 0.0002677708980627358,
"severe_toxicity": 0.00006142830534372479,
"obscene": 0.0003704648115672171,
"identity_attack": 0.00015316711505874991,
"insult": 0.00030774043989367783,
"threat": 0.00006490754458354786,
"sexual_explicit": 0.000035351902624825016
} | 146f415d-39bc-4b28-81e0-8cbad1aa40ad | ready_for_export | null | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0.2,
0,
0.2,
0,
0,
0,
0.7,
0.1,
0.2,
0.55,
0.1
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
213f0d5d-9a48-40de-980d-477d5852392b | 146f415d-39bc-4b28-81e0-8cbad1aa40ad | a2973114-475c-4e1d-86e1-099314573918 | 2023-04-16T00:44:34.921301+00:00 | how to learn ai promote | assistant | en | 5 | true | true | null | false | null | {
"toxicity": 0.0004257526306901127,
"severe_toxicity": 0.00038095767376944423,
"obscene": 0.003412172431126237,
"identity_attack": 0.0006279090885072947,
"insult": 0.002859776606783271,
"threat": 0.0002540616551414132,
"sexual_explicit": 0.00014264714263845235
} | 146f415d-39bc-4b28-81e0-8cbad1aa40ad | ready_for_export | {
"name": [
"-1",
"red_flag"
],
"count": [
10,
4
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0.3333333333333333,
1,
0,
0,
0.5,
0,
0,
0,
0.4583333333333333,
0.4,
0,
0.25,
0.1
],
"count": [
6,
6,
5,
5,
6,
5,
5,
6,
6,
5,
6,
6,
5
]
} |
0f0c8253-23b5-49a7-85b8-4daa68729a61 | 213f0d5d-9a48-40de-980d-477d5852392b | 62065437-7c23-40e5-9205-538186cde18c | 2023-04-16T01:56:00.555524+00:00 | What? | prompter | en | 6 | true | true | null | false | null | {
"toxicity": 0.0005728277028538287,
"severe_toxicity": 0.000030640509066870436,
"obscene": 0.0002205613418482244,
"identity_attack": 0.00008835648623062298,
"insult": 0.0002313431614311412,
"threat": 0.00006349996692733839,
"sexual_explicit": 0.00003659089998109266
} | 146f415d-39bc-4b28-81e0-8cbad1aa40ad | ready_for_export | {
"name": [
"-1",
"_skip_reply"
],
"count": [
1,
4
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0.16666666666666666,
0,
0,
0,
0,
0,
0.3333333333333333,
0.625,
0.25,
0.125,
0.1875
],
"count": [
6,
6,
4,
4,
4,
4,
6,
4,
4,
4,
4
]
} |
3ff622ef-cc8b-46f6-ac99-95b168da23a7 | 0f0c8253-23b5-49a7-85b8-4daa68729a61 | 05e0a754-bac5-4a51-912b-3acd311847fd | 2023-04-16T06:00:01.028328+00:00 | Sorry, that was a wrong tab, my apologies. Anyways, are you still interested in how to store and manage cookies in React? | assistant | en | 5 | true | true | null | false | null | {
"toxicity": 0.0005534397787414491,
"severe_toxicity": 0.000025873994673020206,
"obscene": 0.00012887224147561938,
"identity_attack": 0.0001355863205390051,
"insult": 0.00020886854326818138,
"threat": 0.00003493342228466645,
"sexual_explicit": 0.000021352463591028936
} | 146f415d-39bc-4b28-81e0-8cbad1aa40ad | ready_for_export | {
"name": [
"-1",
"_skip_labeling"
],
"count": [
1,
2
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0.4,
0.2,
0,
0,
0,
0,
0.15,
0.3,
0.3,
0.15,
0.05,
0.3
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
bafdc041-a328-47a5-b59f-583726dbc02e | 0f0c8253-23b5-49a7-85b8-4daa68729a61 | cde07672-7017-422c-9b04-09caea450a3f | 2023-04-16T06:28:08.828720+00:00 | Sorry for that, that wasn't a good response.
Here are some ways to store and manage cookies in React:
In React, you can use the browser's native cookie API or a third-party library to store and manage cookies. Here are some steps to store and manage cookies in React:
Install a cookie library: You can use a library like "js-cookie" or "universal-cookie" to work with cookies in React. To install a cookie library, use the following command:
npm install js-cookie
or
npm install universal-cookie
Import the cookie library: In your component file, import the cookie library that you installed using the following syntax:
import Cookies from 'js-cookie';
or
import { Cookies } from 'universal-cookie';
Set a cookie: To set a cookie, use the set method provided by the cookie library. The bash syntax is as follows:
Cookies.set('name', 'value');
The first parameter is the name of the cookie and the second parameter is its value. You can also provide additional options such as the expiration time, domain, and path.
Get a cookie: To get the value of a cookie, use the get method provided by the cookie library. The csharp syntax is as follows:
Cookies.get('name');
The parameter is the name of the cookie. The method will return the value of the cookie if it exists, or undefined if it does not.
Remove a cookie: To remove a cookie, use the remove method provided by the cookie library. The csharp syntax is as follows:
Cookies.remove('name');
The parameter is the name of the cookie. This method will remove the cookie from the browser.
Use cookies in your component: You can use cookies in your component by calling the methods provided by the cookie library. For example:
import React, { useEffect } from 'react';
import Cookies from 'js-cookie';
const MyComponent = () => {
useEffect(() => {
// Set a cookie when the component mounts
Cookies.set('myCookie', 'myValue');
// Get the value of a cookie
const myCookieValue = Cookies.get('myCookie');
console.log(myCookieValue); // Output: "myValue"
// Remove a cookie
Cookies.remove('myCookie');
}, []);
return (
<div>My Component</div>
);
};
export default MyComponent;
In this example, we use the "useEffect" hook to set a cookie when the component mounts, get the value of the cookie, and remove the cookie. | assistant | en | 2 | null | true | null | false | null | {
"toxicity": 0.00028785131871700287,
"severe_toxicity": 0.0000322158302878961,
"obscene": 0.0001558256772113964,
"identity_attack": 0.00009723466064315289,
"insult": 0.00014018626825418323,
"threat": 0.00003859685602947138,
"sexual_explicit": 0.00003303584162495099
} | 146f415d-39bc-4b28-81e0-8cbad1aa40ad | ready_for_export | {
"name": [
"_skip_labeling"
],
"count": [
2
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.5,
0.125,
0.375,
0.875,
0.25,
0.125
],
"count": [
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2
]
} |
bfabe6db-4825-4b5c-be77-cc9b73c4b3a8 | 0f0c8253-23b5-49a7-85b8-4daa68729a61 | 5ccd4124-13d5-456a-8214-f105455ef7b1 | 2023-04-16T05:52:02.740560+00:00 | Sorry that was a strange thing to ask. | assistant | en | 2 | null | true | null | false | null | {
"toxicity": 0.0006238968926481903,
"severe_toxicity": 0.00007110288424883038,
"obscene": 0.0005640851450152695,
"identity_attack": 0.0002775629691313952,
"insult": 0.0005621757009066641,
"threat": 0.00006547493831021711,
"sexual_explicit": 0.00003644529715529643
} | 146f415d-39bc-4b28-81e0-8cbad1aa40ad | ready_for_export | null | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0.5,
0.5,
0,
0,
0,
0,
0,
0.25,
0.375,
0.625,
0.375,
0.5,
0.125
],
"count": [
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2,
2
]
} |
14765e49-e357-4329-93b7-6e4a8cbb89f2 | null | 4a6b87a6-422c-40e6-ad00-35603b3281c7 | 2023-02-09T17:48:32.324898+00:00 | ¿Cuál es el animal más pequeño que se conoce? | prompter | es | 3 | true | false | null | false | null | {
"toxicity": 0.020758511498570442,
"severe_toxicity": 0.00006263728573685512,
"obscene": 0.0014201082522049546,
"identity_attack": 0.00025340536376461387,
"insult": 0.012988853268325329,
"threat": 0.00022039715258870274,
"sexual_explicit": 0.000200591966859065
} | 14765e49-e357-4329-93b7-6e4a8cbb89f2 | ready_for_export | {
"name": [
"+1",
"_skip_reply",
"_skip_ranking"
],
"count": [
6,
5,
2
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0.8333333333333334,
0,
0.4166666666666667,
0.5833333333333334,
0
],
"count": [
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3
]
} |
7a7b5fd8-1e01-48d2-a0e2-9f6414fa65f0 | 14765e49-e357-4329-93b7-6e4a8cbb89f2 | a498a21d-6f7b-4f97-8f36-dfc70f4562a7 | 2023-02-13T16:22:24.950799+00:00 | Decidir cuál es el animal más pequeño del mundo resulta bastante complicado, sobre todo cuando todavía se están descubriendo en la actualidad nuevas especies de animales.
Para empezar, el ranking seguramente tendría que estar encabezado por algún insecto. Por ejemplo, dentro de este grupo podemos encontrar a la araña blanca o Polyphagotarsonemus, un bichillo de entre 0,2 y 0,3 mm de longitud. Otro ejemplo de insecto diminuto es el coleóptero Scydosella musawasensis, el cual tan solo mide 0,325 mm. | assistant | es | 3 | true | false | 0 | false | null | {
"toxicity": 0.0019817810971289873,
"severe_toxicity": 0.00012629777484107763,
"obscene": 0.000635001459158957,
"identity_attack": 0.0006340097170323133,
"insult": 0.000991070526652038,
"threat": 0.00009602665522834286,
"sexual_explicit": 0.00009573106945026666
} | 14765e49-e357-4329-93b7-6e4a8cbb89f2 | ready_for_export | {
"name": [
"+1",
"_skip_labeling"
],
"count": [
2,
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.5833333333333334,
0.125,
0.125,
0.5,
0.25,
0
],
"count": [
3,
2,
3,
2,
2,
2,
2,
3,
2,
2,
2,
2,
2
]
} |
dca69757-2403-45c7-82e9-c640f119ae8b | 14765e49-e357-4329-93b7-6e4a8cbb89f2 | 82402528-4835-47af-a877-d9b8693a51d1 | 2023-02-13T18:46:40.857385+00:00 | El animal más pequeño que se conoce es el pymi, también conocido como el topillo de Sudáfrica, que mide solo 2,5 cm de largo. | assistant | es | 3 | true | false | 1 | false | null | {
"toxicity": 0.02915971167385578,
"severe_toxicity": 0.00009729783050715923,
"obscene": 0.0030507557094097137,
"identity_attack": 0.0006809929036535323,
"insult": 0.023610614240169525,
"threat": 0.0003269758599344641,
"sexual_explicit": 0.00023492674517910928
} | 14765e49-e357-4329-93b7-6e4a8cbb89f2 | ready_for_export | {
"name": [
"+1",
"-1",
"_skip_labeling"
],
"count": [
1,
1,
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.5,
0,
0.08333333333333333,
0.75,
0.4166666666666667,
0
],
"count": [
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3
]
} |
23536796-bd85-4f1b-a473-847f1bd88c30 | 14765e49-e357-4329-93b7-6e4a8cbb89f2 | df411b83-5030-4708-bf81-0fe9fa1398b2 | 2023-02-13T16:24:28.103191+00:00 | El animal más pequeño conocido actualmente es el tití pigmeo (Callithrix pygmaea), un mono que habita en el bosque amazónico. El tití pigmeo mide entre 10 y 15 cm de largo, desde la cabeza hasta la cola, y pesa aproximadamente entre 50 y 150 gramos. | assistant | es | 3 | true | false | 2 | false | null | {
"toxicity": 0.0010130153968930244,
"severe_toxicity": 0.00004813628038391471,
"obscene": 0.000698066723998636,
"identity_attack": 0.00008218982111429796,
"insult": 0.0008848811849020422,
"threat": 0.000047844161599641666,
"sexual_explicit": 0.00007496244506910443
} | 14765e49-e357-4329-93b7-6e4a8cbb89f2 | ready_for_export | {
"name": [
"+1"
],
"count": [
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.3125,
0.125,
0,
0.5625,
0.3125,
0.125
],
"count": [
4,
4,
3,
3,
3,
3,
3,
4,
4,
4,
4,
4,
4
]
} |
1405e648-1a59-4356-83b7-156e41b786b9 | null | 6c237e64-4e21-4985-ad95-1c11a53fdff5 | 2023-02-11T01:02:20.444721+00:00 | ¿Cómo tendría que que cambiar el cuerpo del ser humano para poder respirar bajo el agua? | prompter | es | 3 | true | false | null | false | null | {
"toxicity": 0.003298654220998287,
"severe_toxicity": 0.00005091318234917708,
"obscene": 0.00046148773981258273,
"identity_attack": 0.00014092863420955837,
"insult": 0.0009108246886171401,
"threat": 0.0004081746155861765,
"sexual_explicit": 0.00011634580005193129
} | 1405e648-1a59-4356-83b7-156e41b786b9 | ready_for_export | {
"name": [
"+1",
"_skip_reply"
],
"count": [
6,
4
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0.8,
0.05,
0.35,
0.85,
0.05
],
"count": [
4,
3,
3,
3,
3,
3,
5,
5,
5,
5,
5
]
} |
e2f61313-b39c-4787-b4ca-4c4290c351e3 | 1405e648-1a59-4356-83b7-156e41b786b9 | 2a65bc8e-fe1b-428a-82a2-f84ffbda414c | 2023-02-22T19:06:37.939385+00:00 | Para que un ser humano pueda respirar bajo el agua, los órganos que tendría que cambiar son los pulmones, los cuales deberían ser cambiados por branquias. Las branquias son capaces de extraer el oxigeno que contiene el agua, pero para eso, el agua debería ingresar por nuestro organismo y la forma mas fácil sería por la boca. Pero a la vez, el agua, luego de haberle exraído el oxigeno, debe ser expulsada del cuerpo, por lo que necesitaríamos un orificio por el que pueda salir, el cual podría ser uno de lo que el cuerpo humano disponga, o sino podría ser uno nuevo.
Reemplazando este sistema por los pulmones, el ser humano podría solamente respirar bajo el agua y no fuera de ella por lo que tambíen tendrían que cambiar las demas partes del cuerpo como los brazos y las piernas de una forma en la que hagan mas eficiente el movimiento bajo el agua, lo que haría al humano necesitar de menor cantidad de oxigeno y por lo tanto unas branquias mas pequeñas.
Otra opción sería la de agregar las branquias al sistema respiratorio del humano, de modo que no se tengan que reemplazar los pulmones. Esta sería la mejor opción pero agregaría mucha complejidad y tamaño al ser humano, ya que tandrían que crearse como un orgáno nuevo, pero el ser humano, como es actualmente, no tendría lugar en el que quepa, por lo que habría que cambiar la disposicion de las costillas, creando un hueco en el que entren las branquias. Además, el sistema respiratorio tendría que idear una forma de alternar entre branquias y pulmones, dependiendo de si se está bajo el agua o fuera de esta.
Todas estas ideas son especulaciones, ya que este cambio sería imposible de hacer artificialmente, al menos por el momento, y la evolución es impredesible, habiendo infinitas formas de implementar branquias al ser humano. | assistant | es | 3 | true | false | 0 | false | null | {
"toxicity": 0.0009966220241039991,
"severe_toxicity": 0.001830929541029036,
"obscene": 0.016567861661314964,
"identity_attack": 0.0014464311534538865,
"insult": 0.012962330132722855,
"threat": 0.0009739557281136513,
"sexual_explicit": 0.000728586979676038
} | 1405e648-1a59-4356-83b7-156e41b786b9 | ready_for_export | {
"name": [
"+1",
"_skip_labeling"
],
"count": [
2,
2
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.8333333333333334,
0,
0.16666666666666666,
0.75,
0.8333333333333334,
0.16666666666666666
],
"count": [
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3
]
} |
3e8ed04d-4b7d-4c08-8fea-22430015b55a | 1405e648-1a59-4356-83b7-156e41b786b9 | c13e0620-ebc9-48d9-b514-b825ae2b0e0e | 2023-02-22T17:55:37.257788+00:00 | Para que un humano puedo respirar bajo el agua habría que cambiar la manera en la que obtenemos oxigeno para nuestro cuerpo. La forma en la que obtienen oxigeno los peces es mediante las branquias o agallas, estas absorben el oxígeno disuelto en el aguo y libera el dióxido de carbono al agua. Otra forma de obtener oxigeno es por respiración cutánea, esta respiración es usada en su mayoría por anfibios. | assistant | es | 3 | true | false | 1 | false | null | {
"toxicity": 0.0009217312908731401,
"severe_toxicity": 0.00003660165020846762,
"obscene": 0.0004193835484329611,
"identity_attack": 0.00006768680032109842,
"insult": 0.0004566281277220696,
"threat": 0.00005757550388807431,
"sexual_explicit": 0.00007228728645714
} | 1405e648-1a59-4356-83b7-156e41b786b9 | ready_for_export | null | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.4166666666666667,
0,
0,
0.16666666666666666,
0,
0
],
"count": [
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3
]
} |
6a183eb6-b055-43e6-ab89-ffa940ea8c7a | 1405e648-1a59-4356-83b7-156e41b786b9 | 4f506eb0-9bdf-4cfb-9a74-318e5d7729f8 | 2023-02-22T18:49:12.039285+00:00 | Haría falta tener un ritmo cardíaco más pausado y que la sangre fluya sólo hacia los órganos más importantes. También pulmones con una estructura plegable, para evitar el síndrome de descompresión. | assistant | es | 3 | true | false | 2 | false | null | {
"toxicity": 0.0014935247600078583,
"severe_toxicity": 0.0001104691909858957,
"obscene": 0.0008152890368364751,
"identity_attack": 0.00012003730807919055,
"insult": 0.0005695082363672554,
"threat": 0.00024690423742868006,
"sexual_explicit": 0.00044706708285957575
} | 1405e648-1a59-4356-83b7-156e41b786b9 | ready_for_export | {
"name": [
"_skip_labeling"
],
"count": [
2
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.75,
0,
0.08333333333333333,
0.8333333333333334,
0.75,
0
],
"count": [
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3
]
} |
1414aafb-c57b-465b-af25-6dd358b0a92b | null | 44c9d36a-945e-4774-8dc9-ec3a81d18393 | 2023-02-11T17:32:53.318569+00:00 | напеши алгоритм сортировки пузырьком на си | prompter | ru | 3 | true | false | null | false | null | {
"toxicity": 0.19833821058273315,
"severe_toxicity": 0.0008318689651787281,
"obscene": 0.01218546275049448,
"identity_attack": 0.0011892080074176192,
"insult": 0.05193302780389786,
"threat": 0.03432604297995567,
"sexual_explicit": 0.004423604346811771
} | 1414aafb-c57b-465b-af25-6dd358b0a92b | ready_for_export | {
"name": [
"+1",
"-1",
"_skip_reply",
"_skip_ranking"
],
"count": [
1,
3,
4,
1
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0,
0.5,
0,
0,
0,
0,
0.125,
0.16666666666666666,
0.25,
0.16666666666666666,
0
],
"count": [
4,
4,
3,
3,
3,
3,
4,
3,
3,
3,
3
]
} |
a9c00415-3a14-4e37-97f3-d3398a0e4068 | 1414aafb-c57b-465b-af25-6dd358b0a92b | 97894afc-2204-4c7b-9b91-f1c71c10f032 | 2023-02-18T17:25:15.612086+00:00 | ```
void bubbleSort(int arr[], int n) {
int i, j;
for (i = 0; i < n-1; i++) {
for (j = 0; j < n-i-1; j++) {
if (arr[j] > arr[j+1]) {
int temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}
}
}
```
Этот алгоритм принимает на вход массив arr длиной n, который нужно отсортировать. Алгоритм работает следующим образом:
1. Начинается сортировка с первого элемента массива arr[0], продвигаясь по массиву вправо.
2. Сравниваются два соседних элемента arr[j] и arr[j+1].
3. Если arr[j] больше arr[j+1], то они меняются местами, чтобы элементы в массиве шли по порядку.
4. Алгоритм продолжает сравнивать и менять элементы местами пока массив не будет отсортирован.
Этот алгоритм получил название "сортировка пузырьком" из-за того, что на каждом проходе наибольший элемент "всплывает" на своё место, как пузырёк в воде. | assistant | ru | 3 | true | false | 0 | false | null | {
"toxicity": 0.00032348211971111596,
"severe_toxicity": 0.0010251830099150538,
"obscene": 0.006715020164847374,
"identity_attack": 0.0013175562489777803,
"insult": 0.005220415536314249,
"threat": 0.00046131241833791137,
"sexual_explicit": 0.0002147678897017613
} | 1414aafb-c57b-465b-af25-6dd358b0a92b | ready_for_export | {
"name": [
"_skip_labeling"
],
"count": [
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.9166666666666666,
0,
0.25,
0.875,
0.5,
0
],
"count": [
3,
2,
3,
2,
2,
2,
2,
3,
2,
2,
2,
2,
2
]
} |
385f2670-77c9-4217-a220-cf9bd23b7e4f | 1414aafb-c57b-465b-af25-6dd358b0a92b | abbc8a37-2db7-4af5-9df1-b0582d2e3d93 | 2023-02-19T19:43:41.556275+00:00 | С удовольствием! Вот реализация алгоритма пузырьковой сортировки на языке C:
```c
void bubble_sort(int arr[], int n) {
int i, j;
for (i = 0; i < n - 1; i++) {
for (j = 0; j < n - i - 1; j++) {
if (arr[j] > arr[j + 1]) {
int temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
```
Эта реализация принимает массив целых чисел и количество элементов в массиве в качестве входных данных. Затем она перебирает массив, сравнивая каждый элемент с соседним и меняя их местами, если они расположены в неправильном порядке. Этот процесс повторяется до тех пор, пока весь массив не будет отсортирован.
Чтобы использовать эту функцию, вы можете вызвать ее, указав массив и его длину:
```c
int arr[] = {4, 2, 1, 5, 3};
int n = sizeof(arr) / sizeof(arr[0]);
bubble_sort(arr, n);
```
После этого вызова массив `arr` будет отсортирован в порядке возрастания.
Обратите внимание, что эта реализация имеет временную сложность **O(n^2)**, что означает, что это не самый эффективный алгоритм для больших массивов. Однако это самая простая и очевидная реализация алгоритма пузырьковой сортировки.
Дайте знать, если у вас возникнуть какие-либо вопросы по поводу кода или потребность в более оптимальной реализации. | assistant | ru | 3 | true | false | 1 | false | null | {
"toxicity": 0.0009272502502426505,
"severe_toxicity": 0.00601555872708559,
"obscene": 0.039703596383333206,
"identity_attack": 0.007942252792418003,
"insult": 0.037733063101768494,
"threat": 0.0021884606685489416,
"sexual_explicit": 0.0010302490554749966
} | 1414aafb-c57b-465b-af25-6dd358b0a92b | ready_for_export | {
"name": [
"+1",
"_skip_labeling"
],
"count": [
2,
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
1,
0,
0.25,
1,
1,
0
],
"count": [
3,
2,
3,
2,
2,
2,
2,
3,
2,
2,
2,
2,
2
]
} |
d0ed7ec9-7b88-428e-a01c-ddca37376793 | 1414aafb-c57b-465b-af25-6dd358b0a92b | 3fd1863a-b4ee-4e17-b22a-7ed2058df971 | 2023-03-05T08:29:54.473097+00:00 | Пример консольной программы на языке программирования Си, которая считывает массив, сортирует его пузырьком и выводит результат на экран:
Код:
#include <stdio.h>
#include <malloc.h>
int main()
{
int N;
printf("Input N: ");
scanf_s("%d", &N);
int* mass;
mass = (int *)malloc(N * sizeof(int));
printf("Input the array elements:\n");
for (int i = 0; i < N; i++)
scanf_s("%d", &mass[i]);
int tmp;
bool noSwap;
for (int i = N - 1; i >= 0; i--)
{
noSwap = 1;
for (int j = 0; j < i; j++)
{
if (mass[j] > mass[j + 1])
{
tmp = mass[j];
mass[j] = mass[j + 1];
mass[j + 1] = tmp;
noSwap = 0;
}
}
if (noSwap == 1)
break;
}
printf("Sorted array:\n");
for (int i = 0; i < N; i++)
printf("%d ", mass[i]);
printf("\n");
free(mass);
return 0;
}
Разберем код программы. Подключим необходимые библиотеки (строки 1-2), предложим пользователю ввести число N — количество элементов в массиве (строка 7), считаем число N (строка 8), выделим память под массив (строка 10), предложим пользователю ввести элементы массива (строка 11), считаем элементы массива (строки 12-13), выполним сортировку пузырьком (строки 18-33), выведем отсортированный массив на экран (35-36), освободим память, выделенную под массив элементов (строка 38). | assistant | ru | 4 | true | false | 2 | false | null | {
"toxicity": 0.0006933189579285681,
"severe_toxicity": 0.007616786751896143,
"obscene": 0.038897816091775894,
"identity_attack": 0.006505828816443682,
"insult": 0.03740662336349487,
"threat": 0.0024815741926431656,
"sexual_explicit": 0.0014259475283324718
} | 1414aafb-c57b-465b-af25-6dd358b0a92b | ready_for_export | {
"name": [
"+1"
],
"count": [
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0.5,
0.25,
0,
0,
0,
0,
0.625,
0.25,
0.0625,
0.5,
0.3125,
0.125
],
"count": [
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4
]
} |
1415dc51-af92-45fd-a124-1759f4dcce9e | null | d4874294-aae8-440b-ad1d-209a3204c0ea | 2023-02-09T20:20:28.777445+00:00 | ¿Puedes explicar porque la luz es blanca? | prompter | es | 3 | true | false | null | false | null | {
"toxicity": 0.0050339228473603725,
"severe_toxicity": 0.00024449630291201174,
"obscene": 0.0009678159840404987,
"identity_attack": 0.0036392046604305506,
"insult": 0.0014065405121073127,
"threat": 0.00020796280296053737,
"sexual_explicit": 0.00011973002256127074
} | 1415dc51-af92-45fd-a124-1759f4dcce9e | ready_for_export | {
"name": [
"+1"
],
"count": [
10
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0.9166666666666666,
0.16666666666666666,
0,
0.75,
0.16666666666666666
],
"count": [
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3
]
} |
43f3299e-3414-4de6-938d-b0e3475af855 | 1415dc51-af92-45fd-a124-1759f4dcce9e | 5ec3c73f-de3f-4475-8cd4-3e7934beeb54 | 2023-02-10T15:53:59.543767+00:00 | La luz blanca es una mezcla de diferentes longitudes de onda de luz visible, que juntas crean una sensación visual de color blanco. La luz visible es una parte muy pequeña del espectro electromagnético, y se compone de diferentes colores, cada uno con una longitud de onda distinta. El rojo tiene la longitud de onda más larga y el violeta la más corta. Cuando la luz blanca incide en un objeto, algunos colores son absorbidos y otros son reflejados.
La luz blanca se produce cuando la luz de diferentes colores se combina de manera uniforme. Por ejemplo, cuando la luz del sol incide en la atmósfera, se dispersa en diferentes longitudes de onda, creando un espectro completo de luz visible que parece blanca. También podemos crear luz blanca artificialmente mediante la mezcla de luces de diferentes colores, como con las bombillas LED.
En resumen, la luz blanca es una combinación uniforme de diferentes longitudes de onda de luz visible, que producen una sensación visual de color blanco. | assistant | es | 3 | true | false | 0 | false | null | {
"toxicity": 0.0018875765381380916,
"severe_toxicity": 0.00014497002121061087,
"obscene": 0.0005522543797269464,
"identity_attack": 0.001026079640723765,
"insult": 0.0010135304182767868,
"threat": 0.0001421831111656502,
"sexual_explicit": 0.00009065704216482118
} | 1415dc51-af92-45fd-a124-1759f4dcce9e | ready_for_export | {
"name": [
"+1",
"_skip_labeling"
],
"count": [
1,
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.9166666666666666,
0,
0.16666666666666666,
0.9166666666666666,
0.6666666666666666,
0
],
"count": [
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3
]
} |
ab645c14-a6da-4dbe-9270-424a58f398bb | 1415dc51-af92-45fd-a124-1759f4dcce9e | bc65a4e8-9a92-4978-96d8-b3b25df987f2 | 2023-02-10T15:30:49.146259+00:00 | La luz blanca se produce cuando la luz de todos los colores del espectro visible se combina juntos. La luz visible es un tipo de radiación electromagnética que se encuentra en un rango específico de longitudes de onda. Estos incluyen rojo, naranja, amarillo, verde, azul y violeta, y cuando estos colores se combinan juntos, se crea la luz blanca.
La luz blanca se puede crear naturalmente por la luz del sol, por ejemplo, que contiene todos los colores del espectro. También se puede crear artificialmente, como en una bombilla incandescente o en una pantalla de televisión o computadora. | assistant | es | 4 | true | false | 1 | false | null | {
"toxicity": 0.000728547340258956,
"severe_toxicity": 0.00014398527855519205,
"obscene": 0.0008945384761318564,
"identity_attack": 0.0003944180498365313,
"insult": 0.0008654691046103835,
"threat": 0.00010050946002593264,
"sexual_explicit": 0.00008416176569880918
} | 1415dc51-af92-45fd-a124-1759f4dcce9e | ready_for_export | {
"name": [
"+1",
"_skip_labeling"
],
"count": [
3,
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.75,
0.25,
0.125,
0.75,
0.625,
0
],
"count": [
4,
2,
4,
2,
2,
2,
2,
4,
2,
2,
2,
2,
2
]
} |
0447c0ab-a248-4812-9068-6c213ec85e3f | 1415dc51-af92-45fd-a124-1759f4dcce9e | 41c61851-6be8-4a2b-8ae4-f79f96d8c771 | 2023-02-10T15:29:40.823190+00:00 | La luz blanca es el resultado de la suma de los siete colores del arco iris. Los distintos colores son sólo ondas electromagnéticas con distintas longitudes de onda. | assistant | es | 4 | true | false | 2 | false | null | {
"toxicity": 0.0014111322816461325,
"severe_toxicity": 0.0002893814817070961,
"obscene": 0.001301220734603703,
"identity_attack": 0.0013906924286857247,
"insult": 0.0011683311313390732,
"threat": 0.00022802264720667154,
"sexual_explicit": 0.00015631140558980405
} | 1415dc51-af92-45fd-a124-1759f4dcce9e | ready_for_export | {
"name": [
"+1",
"_skip_labeling"
],
"count": [
3,
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.5625,
0,
0,
0.6875,
0.0625,
0
],
"count": [
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4,
4
]
} |
14184b30-4701-4c24-8d3c-67c8b1a41aec | null | f89820ef-a2b7-41c0-b58c-fce315ddd4d8 | 2023-02-09T12:40:02.900804+00:00 | Could you please tell me how would I send an email to my friend. I am not very good with computers. | prompter | en | 3 | true | false | null | false | null | {
"toxicity": 0.0007375631248578429,
"severe_toxicity": 0.00003512922194204293,
"obscene": 0.0003492948890198022,
"identity_attack": 0.00012719274673145264,
"insult": 0.0003001438162755221,
"threat": 0.00004859408363699913,
"sexual_explicit": 0.000037103603972354904
} | 14184b30-4701-4c24-8d3c-67c8b1a41aec | ready_for_export | {
"name": [
"+1"
],
"count": [
4
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0.5833333333333334,
0.08333333333333333,
0.08333333333333333,
0.3333333333333333,
0
],
"count": [
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3
]
} |
bfcfd79f-d164-463c-b885-42b3e37437be | 14184b30-4701-4c24-8d3c-67c8b1a41aec | bcb9dae0-2e83-49c3-87d6-63c792445c95 | 2023-02-13T17:59:11.551617+00:00 | Sure! Here's how you can do it:
1. To send an email, you'll need to use an account with email service, such as Gmail, Yahoo Mail, or Microsoft Outlook. If you don't have an email client, you can create an account for free from multiple email service providers, like Gmail, Yahoo Mail, Microsoft Outlook or Protonmail.
2. Once you've opened your email account, look for the "Compose" button and click on it. This will create a new email that you can write and send to your friend.
3. In the "To" field, type in your friend's email address. If you have your friend's email address saved in your email client's address book, you can simply start typing their name and select their email address from the suggestions that appear.
4. In the main body of the email, type the message that you want to send to your friend. You can use the tools in the email client, such as bold, italic, or underline, to format your text.
5. If you want to send a file to your friend, such as a photo or a document, you can attach it to the email. Look for the "Attach" or "Insert" button in your email client and use it to select the files you want to attach.
6. Send the email: Once you've written your message and attached any files, click the "Send" button to send the email to your friend.
That's it! You've successfully sent an email to your friend. | assistant | en | 3 | true | false | 0 | false | null | {
"toxicity": 0.0003153857833240181,
"severe_toxicity": 0.00002722959288803395,
"obscene": 0.00015227196854539216,
"identity_attack": 0.00008688182424521074,
"insult": 0.00015854608500376344,
"threat": 0.00003750727773876861,
"sexual_explicit": 0.000028746369935106486
} | 14184b30-4701-4c24-8d3c-67c8b1a41aec | ready_for_export | {
"name": [
"+1",
"-1"
],
"count": [
1,
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0.3333333333333333,
0,
0,
0,
0,
0,
0,
0.4166666666666667,
0,
0,
0,
0,
0
],
"count": [
3,
1,
3,
1,
1,
1,
1,
3,
1,
1,
1,
1,
1
]
} |
1d77a6a4-4eb3-47a6-bd7f-1e410fbfeab0 | 14184b30-4701-4c24-8d3c-67c8b1a41aec | 8800f1a5-6ef0-4405-a4e6-6a97c103e0a5 | 2023-02-13T17:53:10.762713+00:00 | Of course! I'd be happy to help you send an email to your friend. There are many ways to send an email, but I'll describe the process using a popular email service called Gmail. Here's how you do it:
1. Go to Gmail.com and sign in to your account (if you don't have a Gmail account, you'll need to create one).
2. Once you're signed in, click on the "Compose" button, which is a red button with a white pencil icon, located in the upper-left corner of the Gmail window.
3. In the "To" field, type in your friend's email address.
4. In the "Subject" field, type in a brief description of what the email is about.
5. In the body of the email, type your message to your friend.
6. When you're finished composing your email, click the "Send" button, which is a blue button with a white paper airplane icon, located in the upper-right corner of the window.
And that's it! Your friend should receive your email within a few minutes. Let me know if there is anything else I can help with! | assistant | en | 3 | true | false | 1 | false | null | {
"toxicity": 0.0004004747897852212,
"severe_toxicity": 0.00004645322042051703,
"obscene": 0.00020420840883161873,
"identity_attack": 0.0001459503691876307,
"insult": 0.00021744675177615136,
"threat": 0.00004653360156225972,
"sexual_explicit": 0.00003331402695039287
} | 14184b30-4701-4c24-8d3c-67c8b1a41aec | ready_for_export | null | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.8333333333333334,
0,
0.125,
0.875,
0.5,
0
],
"count": [
3,
2,
3,
2,
2,
2,
2,
3,
2,
2,
2,
2,
2
]
} |
4f22b3f0-2a8b-4a2c-9a1c-5677a6acbe6b | 14184b30-4701-4c24-8d3c-67c8b1a41aec | 582dd939-3969-404b-8009-9abd535b827f | 2023-02-13T18:41:37.714167+00:00 | Sure! Here's how to send an email to your friend using Gmail.
If you have a Google account, log into it, otherwise create one.
Go to https://gmail.com. Log into your Google account if prompted. You should be at the Gmail interface now.
At the bottom right of the screen, there should be a blue circle with a plus button. Click that, and a window should pop up.
In that window, enter your friends email into the "To" area, enter the subject of the email in the "Subject" area, and then write your email in the compose section.
Once you're done, click the send button to send it to your friend. It may be an icon of a paper airplane on it, or it may say send.
I hope this helps! Let me know if you have any more questions. | assistant | en | 3 | true | false | 2 | false | null | {
"toxicity": 0.0003056518326047808,
"severe_toxicity": 0.000024079636204987764,
"obscene": 0.00013490230776369572,
"identity_attack": 0.0000792366627138108,
"insult": 0.0001577616058057174,
"threat": 0.000033963253372348845,
"sexual_explicit": 0.000025131414076895453
} | 14184b30-4701-4c24-8d3c-67c8b1a41aec | ready_for_export | {
"name": [
"+1"
],
"count": [
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.9166666666666666,
0,
0,
0.875,
0.125,
0
],
"count": [
3,
2,
3,
2,
2,
2,
2,
3,
2,
2,
2,
2,
2
]
} |
141a4df2-9512-4734-be62-ac3a630de7b5 | null | 0259420c-c711-4fec-ae71-47488dddde95 | 2023-02-10T15:09:39.246768+00:00 | Escriu un text argumentatiu de 200 paraules en contra de la tauromaquia | prompter | ca | 3 | true | false | null | false | null | null | 141a4df2-9512-4734-be62-ac3a630de7b5 | ready_for_export | {
"name": [
"+1",
"_skip_reply",
"_skip_ranking"
],
"count": [
2,
7,
2
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0.3333333333333333,
0,
0,
0.875,
0.25,
0.1875,
0.875,
0.25
],
"count": [
4,
3,
3,
3,
3,
3,
4,
4,
4,
4,
4
]
} |
6ab754aa-0f11-4dc0-b383-dd206f2e3c9d | 141a4df2-9512-4734-be62-ac3a630de7b5 | c2f32b7a-6d5e-4a19-a841-13255311597a | 2023-02-14T18:41:40.880150+00:00 | La tauromaquia és un espectacle que té com a objectiu principal la mort del brau en una plaça de toros davant d'un públic que gaudeix de la violència i el patiment de l'animal. Aquest esdeveniment és considerat per molts com una tradició, però en realitat és una pràctica cruel i inhumana que no té justificació al segle XXI.
En primer lloc, es tracte d'un acte de violència cap als animals que no poden defensar-se.El toro és torturat amb piques i banderilles, el que causa dolor i patiment, i finalment és assasinat per un torero amb una espasa. Aquesta violència gratuïta no té lloc en una societat civilitzada.
En segon lloc, no és una activitat necessària per a l'economia o l'entreteniment.De fet, molts països han prohibit la tauromaquia perquè consideren que és un acte de crueltat cap als animals. A més a més, existeixen altres activitats culturals i esportives que poden oferir entreteniment sense causar dolor i patiment als animals.
En tercer lloc, les tradicions canvien amb el temps i l'evolució de la societat, la tauromaquia no és una tradició que hagi de ser preservada.. Actualment, hi ha una major consciència sobre la importància del benestar animal i la protecció del medi ambient. En aquest sentit, la tauromaquia és una pràctica obsoleta que no té cabuda en una societat moderna i ètica.
En conclusió, la tauromaquia és una pràctica cruel i innecessària que no ha de ser prohibida. Hem de fomentar el respecte cap als animals i buscar alternatives d'entreteniment i cultura que no implicin la violència envers ells. És hora de deixar enrere aquesta pràctica arcaica i avançar cap a una societat més justa i empàtica. | assistant | ca | 3 | true | false | 0 | false | null | null | 141a4df2-9512-4734-be62-ac3a630de7b5 | ready_for_export | null | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.8333333333333334,
0.125,
0.125,
1,
0.5,
0
],
"count": [
3,
2,
3,
2,
2,
2,
2,
3,
2,
2,
2,
2,
2
]
} |
94013473-9329-4037-a71d-6cf913c54791 | 141a4df2-9512-4734-be62-ac3a630de7b5 | 76518cc1-5bf3-4406-863f-2104c35da838 | 2023-02-22T16:18:14.238197+00:00 | La tauromaquia és una activitat que implica la tortura i mort de toros per entreteniment. Això és moralment inacceptable, ja que els animals són éssers vius amb sentiments i drets a ser tractats amb respecte i dignitat.
La tauromaquia és una pràctica cruel que causa dolor i sofriment innecessari als toros. Les bèsties són empesos a l'arena i són estressats per les llums, els sorolls i les moltes persones que els rodegen. Els toreros els punxen amb lances i banderilles, causant-los ferides i dolor, per acabar finalment amb la mort del toro a través de l'espasa.
Aquesta activitat també té un impacte negatiu en la societat i la cultura. La tauromaquia és una pràctica violenta que promou la insensibilitat i la crueltat cap als animals. A més, no té cap valor artístic o cultural real, i no és justificable que s'utilitzi com a part de la cultura o el patrimoni.
Afortunadament, cada vegada més persones estan prenent consciència de la crueltat de la tauromaquia i estan demanant la seva abolició. És hora que la societat reconegui que els animals són éssers vius amb drets a ser tractats amb respecte i dignitat, i que la tauromaquia no té lloc en una societat que vol ser considerada civilitzada i empàtica. És hora que les autoritats prohibeixin aquesta pràctica, i que els espectadors prenguin la decisió conscient de no assistir a aquest tipus d'espectacles. | assistant | ca | 3 | true | false | 1 | false | null | null | 141a4df2-9512-4734-be62-ac3a630de7b5 | ready_for_export | {
"name": [
"+1"
],
"count": [
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.9166666666666666,
0,
0,
1,
0.375,
0
],
"count": [
3,
2,
3,
2,
2,
2,
2,
3,
2,
2,
2,
2,
2
]
} |
e4f6468a-fe9d-48fc-8e6f-0c43ef2c0631 | 141a4df2-9512-4734-be62-ac3a630de7b5 | e9d22f1d-1ef8-4ece-aedc-876feea4e17f | 2023-02-14T21:30:08.906886+00:00 | La tauromàquia es un espectacle horrible en que uns homes a peu amb roba lluent i acompanyats d'altres homes a cavall maten toros, o braus, per plaer. Alguns ho justifiquen dient que és tradició però en realitat és assassinar animals per diversió.
En alguns països que abans ho feien ho varen prohibir. Catalunya, una comunitat autònoma espanyola, també ho va intentar, però les lleis i tribunals espanyols ho varen impedir.
És una activitat impròpia d'una societat avançada i civilitzada. | assistant | ca | 3 | true | false | 2 | false | null | null | 141a4df2-9512-4734-be62-ac3a630de7b5 | ready_for_export | null | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
1,
0,
0,
0,
0,
0,
0.16666666666666666,
0.25,
0.25,
0.25,
0.5,
0
],
"count": [
3,
1,
3,
1,
1,
1,
1,
3,
1,
1,
1,
1,
1
]
} |
1427a1da-1a6f-4786-b5f3-0035a8ea3f09 | null | da26104c-09f3-41ff-bab8-c6f94c67acad | 2023-02-04T22:02:59.885308+00:00 | Help me write some HLS source code to create a FPGA hardware accelerator for a streaming-based linear layer acclerator. Please use the Vitis HLS libaraies including `hls_math.h`, `hls_stream.h`, and `ap_fixed.h`. The inputs to the kernel is one stream for the input vector, and two fixed arrays for the weights and bias. Everything uses fixed point types of `ap_fixed<32,10>`. | prompter | en | 3 | true | false | null | false | null | {
"toxicity": 0.0002542664296925068,
"severe_toxicity": 0.00003051218118343968,
"obscene": 0.00014470858150161803,
"identity_attack": 0.00010915171878878027,
"insult": 0.00016080534260254353,
"threat": 0.0000435920046584215,
"sexual_explicit": 0.0000260175766015891
} | 1427a1da-1a6f-4786-b5f3-0035a8ea3f09 | ready_for_export | {
"name": [
"+1",
"_skip_reply",
"_skip_ranking",
"_skip_labeling"
],
"count": [
3,
5,
1,
1
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0.875,
0.1875,
0.0625,
0.6875,
0
],
"count": [
3,
3,
3,
3,
3,
3,
4,
4,
4,
4,
4
]
} |
9c2686c4-76d5-4189-addb-bc6f676bf7b6 | 1427a1da-1a6f-4786-b5f3-0035a8ea3f09 | ed943a57-6a10-4a0d-84f7-8a87e7f1f8b8 | 2023-02-15T20:57:22.947104+00:00 | Sure, here is a sample code for a FPGA hardware accelerator for a streaming-based linear layer accelerator using Vitis HLS libraries
```
#include "hls_math.h"
#include "hls_stream.h"
#include "ap_fixed.h"
// Define the data types
typedef ap_fixed<32,10> fixed_type;
typedef hls::stream<fixed_type> stream_type;
// Define the linear layer function
void linear_layer(stream_type& input_stream, fixed_type weight[], fixed_type bias[], stream_type& output_stream) {
// Set the number of input and output values
const int N = 1024;
// Perform the linear layer computation
for(int i = 0; i < N; i++) {
fixed_type input_value = input_stream.read();
fixed_type weighted_sum = 0;
for(int j = 0; j < N; j++) {
weighted_sum += input_value * weight[i * N + j];
}
fixed_type output_value = hls::tanh(weighted_sum + bias[i]);
output_stream.write(output_value);
}
}
// Top-level function for the accelerator
void linear_accelerator(stream_type& input_stream, fixed_type weight[], fixed_type bias[], stream_type& output_stream) {
#pragma HLS INTERFACE axis port=input_stream
#pragma HLS INTERFACE axis port=output_stream
#pragma HLS INTERFACE m_axi port=weight offset=slave bundle=gmem
#pragma HLS INTERFACE m_axi port=bias offset=slave bundle=gmem
// Call the linear layer function
linear_layer(input_stream, weight, bias, output_stream);``` | assistant | en | 3 | true | false | 0 | false | null | {
"toxicity": 0.0001761661987984553,
"severe_toxicity": 0.0002889112220145762,
"obscene": 0.001356973429210484,
"identity_attack": 0.0004966029664501548,
"insult": 0.0009490552474744618,
"threat": 0.000180876420927234,
"sexual_explicit": 0.0001073149687726982
} | 1427a1da-1a6f-4786-b5f3-0035a8ea3f09 | ready_for_export | {
"name": [
"+1",
"_skip_reply"
],
"count": [
2,
5
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.3333333333333333,
0,
0,
0.5,
0.25,
0
],
"count": [
3,
2,
3,
2,
2,
2,
2,
3,
2,
2,
2,
2,
2
]
} |
a95a1e71-35da-418c-b2e9-bd3f20892a51 | 9c2686c4-76d5-4189-addb-bc6f676bf7b6 | f7d81180-4e92-4d3a-9b96-147623641cd6 | 2023-02-16T10:09:05.993071+00:00 | Rewrite the code to use an 8 bit fixed point type and code a RELU nonlinearity after the linear layer. | prompter | en | 3 | true | false | null | false | null | {
"toxicity": 0.0003691992606036365,
"severe_toxicity": 0.000044514526962302625,
"obscene": 0.00029455721960403025,
"identity_attack": 0.00012682878877967596,
"insult": 0.00035532627953216434,
"threat": 0.00005345976023818366,
"sexual_explicit": 0.00003571505658328533
} | 1427a1da-1a6f-4786-b5f3-0035a8ea3f09 | ready_for_export | {
"name": [
"+1",
"_skip_reply",
"_skip_ranking",
"_skip_labeling"
],
"count": [
2,
8,
6,
2
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0.5833333333333334,
0,
0,
0,
0
],
"count": [
3,
3,
1,
1,
1,
1,
3,
1,
1,
1,
1
]
} |
4479a5bf-4928-46ac-9c06-9f11301aef2c | a95a1e71-35da-418c-b2e9-bd3f20892a51 | 8800f1a5-6ef0-4405-a4e6-6a97c103e0a5 | 2023-02-16T22:45:23.543518+00:00 | Here's the modified code that uses an 8-bit fixed point type and adds a RELU nonlinearity:
```c
#include "hls_math.h"
#include "hls_stream.h"
#include "ap_fixed.h"
// Define the data types
typedef ap_fixed<8,2> fixed_type;
typedef hls::stream<fixed_type> stream_type;
// Define the linear layer function
void linear_layer(stream_type& input_stream, fixed_type weight[], fixed_type bias[], stream_type& output_stream) {
// Set the number of input and output values
const int N = 1024;
// Perform the linear layer computation
for(int i = 0; i < N; i++) {
fixed_type input_value = input_stream.read();
fixed_type weighted_sum = 0;
for(int j = 0; j < N; j++) {
weighted_sum += input_value * weight[i * N + j];
}
fixed_type output_value = weighted_sum + bias[i];
output_stream.write(output_value);
}
}
// Define the RELU function
void relu(stream_type& input_stream, stream_type& output_stream) {
const int N = 1024;
for(int i = 0; i < N; i++) {
fixed_type input_value = input_stream.read();
fixed_type output_value = input_value > 0 ? input_value : 0;
output_stream.write(output_value);
}
}
// Top-level function for the accelerator
void linear_accelerator(stream_type& input_stream, fixed_type weight[], fixed_type bias[], stream_type& output_stream) {
#pragma HLS INTERFACE axis port=input_stream
#pragma HLS INTERFACE axis port=output_stream
#pragma HLS INTERFACE m_axi port=weight offset=slave bundle=gmem
#pragma HLS INTERFACE m_axi port=bias offset=slave bundle=gmem
// Create intermediate streams
stream_type linear_output_stream;
stream_type relu_output_stream;
// Call the linear layer function
linear_layer(input_stream, weight, bias, linear_output_stream);
// Call the RELU function
relu(linear_output_stream, relu_output_stream);
// Write the output to the output stream
const int N = 1024;
for(int i = 0; i < N; i++) {
fixed_type output_value = relu_output_stream.read();
output_stream.write(output_value);
}
}
```
In this modified code, we define the fixed point type to be `ap_fixed<8,2>`, which means that it has 8 bits in total, with 2 of those bits reserved for the fractional part. We then define the RELU function, which takes the output of the linear layer and applies the RELU nonlinearity (i.e., if the input value is less than 0, the output is set to 0, otherwise it is passed through unchanged). Finally, in the top-level function, we call the linear layer function, then the RELU function, and then write the final output to the output stream. | assistant | en | 3 | true | false | 0 | false | null | {
"toxicity": 0.00034475652500987053,
"severe_toxicity": 0.00038783313357271254,
"obscene": 0.002045150613412261,
"identity_attack": 0.0007225443841889501,
"insult": 0.0013538528000935912,
"threat": 0.00020969407341908664,
"sexual_explicit": 0.00012870448699686676
} | 1427a1da-1a6f-4786-b5f3-0035a8ea3f09 | ready_for_export | {
"name": [
"_skip_labeling"
],
"count": [
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.8333333333333334,
0.25,
0,
0.9166666666666666,
0.4166666666666667,
0
],
"count": [
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3
]
} |
61dbfcf3-ca45-417e-b0a5-8a453c67fbf6 | a95a1e71-35da-418c-b2e9-bd3f20892a51 | 17e57f40-b5f0-47a5-a5ca-75e73e4850aa | 2023-02-16T23:47:01.440315+00:00 | To use an 8-bit fixed-point type, we can define a new typedef as follows:
typedef ap_fixed<8,3> fixed_type;
This defines a signed 8-bit fixed-point type with 3 bits after the decimal point. We can also add a RELU nonlinearity after the linear layer by replacing the tanh function call with a simple conditional statement:
fixed_type output_value = weighted_sum + bias[i];
if (output_value < 0) {
output_value = 0;
}
output_stream.write(output_value);
The complete code with these changes is shown below:
c
Copy code
#include "hls_math.h"
#include "hls_stream.h"
#include "ap_fixed.h"
// Define the data types
typedef ap_fixed<8,3> fixed_type;
typedef hls::stream<fixed_type> stream_type;
// Define the linear layer function with RELU nonlinearity
void linear_layer(stream_type& input_stream, fixed_type weight[], fixed_type bias[], stream_type& output_stream) {
// Set the number of input and output values
const int N = 1024;
// Perform the linear layer computation with RELU nonlinearity
for(int i = 0; i < N; i++) {
fixed_type input_value = input_stream.read();
fixed_type weighted_sum = 0;
for(int j = 0; j < N; j++) {
weighted_sum += input_value * weight[i * N + j];
}
fixed_type output_value = weighted_sum + bias[i];
if (output_value < 0) {
output_value = 0;
}
output_stream.write(output_value);
}
}
// Top-level function for the accelerator
void linear_accelerator(stream_type& input_stream, fixed_type weight[], fixed_type bias[], stream_type& output_stream) {
#pragma HLS INTERFACE axis port=input_stream
#pragma HLS INTERFACE axis port=output_stream
#pragma HLS INTERFACE m_axi port=weight offset=slave bundle=gmem
#pragma HLS INTERFACE m_axi port=bias offset=slave bundle=gmem
// Call the linear layer function with RELU nonlinearity
linear_layer(input_stream, weight, bias, output_stream);
}
Note that we have also updated the function name in the linear_accelerator function to reflect the new implementation with RELU nonlinearity. | assistant | en | 3 | true | false | 1 | false | null | {
"toxicity": 0.00021422654390335083,
"severe_toxicity": 0.00009015581599669531,
"obscene": 0.00038301164750009775,
"identity_attack": 0.00023683863400947303,
"insult": 0.0003433825040701777,
"threat": 0.00008369205897906795,
"sexual_explicit": 0.00005248238448984921
} | 1427a1da-1a6f-4786-b5f3-0035a8ea3f09 | ready_for_export | {
"name": [
"_skip_labeling"
],
"count": [
2
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.75,
0,
0,
1,
0.5,
0
],
"count": [
3,
1,
3,
1,
1,
1,
1,
3,
1,
1,
1,
1,
1
]
} |
f9b8d233-3ee4-4c66-bf37-e871c7650360 | a95a1e71-35da-418c-b2e9-bd3f20892a51 | 2d40e94c-40ed-4e00-a66e-454c0401c8ad | 2023-02-17T02:15:56.494348+00:00 | Certainly, here is the modified code that uses an 8 bit fixed point type and implements a ReLU nonlinearity:
#include "hls_math.h"
#include "hls_stream.h"
#include "ap_fixed.h"
// Define the data types
typedef ap_fixed<8,2> fixed_type;
typedef hls::stream<fixed_type> stream_type;
// Define the linear layer function with ReLU nonlinearity
void linear_layer(stream_type& input_stream, fixed_type weight[], fixed_type bias[], stream_type& output_stream) {
// Set the number of input and output values
const int N = 1024;
// Perform the linear layer computation with ReLU nonlinearity
for(int i = 0; i < N; i++) {
fixed_type input_value = input_stream.read();
fixed_type weighted_sum = 0;
for(int j = 0; j < N; j++) {
weighted_sum += input_value * weight[i * N + j];
}
fixed_type output_value = weighted_sum + bias[i];
if (output_value < 0) {
output_value = 0;
}
output_stream.write(output_value);
}
}
// Top-level function for the accelerator
void linear_accelerator(stream_type& input_stream, fixed_type weight[], fixed_type bias[], stream_type& output_stream) {
#pragma HLS INTERFACE axis port=input_stream
#pragma HLS INTERFACE axis port=output_stream
#pragma HLS INTERFACE m_axi port=weight offset=slave bundle=gmem
#pragma HLS INTERFACE m_axi port=bias offset=slave bundle=gmem
// Call the linear layer function with ReLU nonlinearity
linear_layer(input_stream, weight, bias, output_stream);
}
In this modified code, the fixed point type is changed to an 8-bit fixed point type (ap_fixed<8,2>) and the ReLU nonlinearity is implemented after the linear layer computation. The ReLU nonlinearity sets any negative output values to zero. | assistant | en | 3 | true | false | 2 | false | null | {
"toxicity": 0.00020760635379701853,
"severe_toxicity": 0.00015703384997323155,
"obscene": 0.0007299998542293906,
"identity_attack": 0.0003269995504524559,
"insult": 0.0005947111640125513,
"threat": 0.00010772744280984625,
"sexual_explicit": 0.00006929673691047356
} | 1427a1da-1a6f-4786-b5f3-0035a8ea3f09 | ready_for_export | null | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.16666666666666666,
0.16666666666666666,
0,
0.3333333333333333,
0.16666666666666666,
0.16666666666666666
],
"count": [
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3
]
} |
b5026f7b-605f-4c9e-ad9c-200ccc8dee34 | a95a1e71-35da-418c-b2e9-bd3f20892a51 | 9399f228-bb8b-4049-9805-7993587eff76 | 2023-02-17T02:19:17.276719+00:00 | #include "hls_math.h"
#include "hls_stream.h"
#include "ap_fixed.h"
// Define the data types
typedef ap_fixed<8,3> fixed_type; //8 bit fixed-point type
typedef hls::stream<fixed_type> stream_type;
// Define the linear layer function
void linear_layer(stream_type& input_stream, fixed_type weight[], fixed_type bias[], stream_type& output_stream) {
// Set the number of input and output values
const int N = 1024;
// Perform the linear layer computation
for(int i = 0; i < N; i++) {
fixed_type input_value = input_stream.read();
fixed_type weighted_sum = 0;
for(int j = 0; j < N; j++) {
weighted_sum += input_value * weight[i * N + j];
}
fixed_type output_value = hls::max(weighted_sum + bias[i]);
output_stream.write(output_value);
}
}
// Top-level function for the accelerator
void linear_accelerator(stream_type& input_stream, fixed_type weight[], fixed_type bias[], stream_type& output_stream) {
#pragma HLS INTERFACE axis port=input_stream
#pragma HLS INTERFACE axis port=output_stream
#pragma HLS INTERFACE m_axi port=weight offset=slave bundle=gmem
#pragma HLS INTERFACE m_axi port=bias offset=slave bundle=gmem
// Call the linear layer function
linear_layer(input_stream, weight, bias, output_stream);``` | assistant | en | 3 | true | false | 3 | false | null | {
"toxicity": 0.0002006748109124601,
"severe_toxicity": 0.00034965635859407485,
"obscene": 0.0018888445338234305,
"identity_attack": 0.0006034738617017865,
"insult": 0.0011255221907049417,
"threat": 0.00018531036039348692,
"sexual_explicit": 0.00012729149602819234
} | 1427a1da-1a6f-4786-b5f3-0035a8ea3f09 | ready_for_export | {
"name": [
"-1",
"red_flag",
"_skip_labeling"
],
"count": [
1,
1,
3
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0.3333333333333333,
0.3333333333333333,
0,
0,
0,
0,
0,
0.5,
0.08333333333333333,
0.16666666666666666,
0.6666666666666666,
0.4166666666666667,
0.08333333333333333
],
"count": [
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3
]
} |
a72a7dc4-91f4-4953-a6b3-138e6e1fc3be | 1427a1da-1a6f-4786-b5f3-0035a8ea3f09 | df411b83-5030-4708-bf81-0fe9fa1398b2 | 2023-02-16T03:38:39.194580+00:00 | To create an FPGA hardware accelerator for a streaming-based linear layer, you can use Vitis HLS libraries including hls_math.h, hls_stream.h, and ap_fixed.h. You can start by declaring the input and output streams as well as the weight and bias arrays, using the ap_fixed<32,10> fixed point type. Here is an example of the code:
#include "hls_math.h"
#include "hls_stream.h"
#include "ap_fixed.h"
typedef ap_fixed<32, 10> data_t;
void linear_layer_accelerator(hls::stream<data_t> &in_stream,
hls::stream<data_t> &out_stream,
data_t weights[],
data_t bias[]) {
// Accelerator body
}
The accelerator body should contain a loop to read data from the input stream, calculate the dot product of the input vector and the weights vector, add the bias, and write the output data to the output stream. You can use the HLS math functions to perform the dot product and the addition operations. Here is an example of how to do this:
#pragma HLS PIPELINE II=1
// Read data from input stream
data_t in_data = in_stream.read();
// Calculate dot product of input vector and weights vector
data_t dot_prod = 0;
for (int i = 0; i < N_WEIGHTS; i++) {
dot_prod += weights[i] * in_data;
}
// Add bias
data_t out_data = dot_prod + bias[0];
// Write output data to output stream
out_stream.write(out_data);
Once you have written the body of the accelerator, you can compile it with Vitis HLS to generate the FPGA hardware accelerator. | assistant | en | 3 | true | false | 1 | false | null | {
"toxicity": 0.00022198352962732315,
"severe_toxicity": 0.00005377369961934164,
"obscene": 0.00023379585763905197,
"identity_attack": 0.0001620570692466572,
"insult": 0.0001968986907741055,
"threat": 0.00006157973984954879,
"sexual_explicit": 0.00003618991104303859
} | 1427a1da-1a6f-4786-b5f3-0035a8ea3f09 | ready_for_export | {
"name": [
"+1",
"_skip_labeling"
],
"count": [
1,
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.9166666666666666,
0.125,
0.125,
0.875,
0.5,
0
],
"count": [
3,
2,
3,
2,
2,
2,
2,
3,
2,
2,
2,
2,
2
]
} |
2b86ca83-ad2b-4909-a31d-340e3e069b9c | 1427a1da-1a6f-4786-b5f3-0035a8ea3f09 | 06ed93d8-8afd-477c-9292-4199d2b600c9 | 2023-02-15T22:08:35.220584+00:00 | I’m not quite sure what you’re on about… | assistant | en | 3 | true | false | 2 | false | null | {
"toxicity": 0.0009042355814017355,
"severe_toxicity": 0.00002811805097735487,
"obscene": 0.0002127556363120675,
"identity_attack": 0.00016574631445109844,
"insult": 0.0002560027642175555,
"threat": 0.00005460224565467797,
"sexual_explicit": 0.00003059595110244118
} | 1427a1da-1a6f-4786-b5f3-0035a8ea3f09 | ready_for_export | {
"name": [
"-1",
"red_flag",
"_skip_reply"
],
"count": [
10,
2,
5
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0.4,
1,
0,
0,
0,
0,
0,
0,
0.25,
0.16666666666666666,
0,
0.3333333333333333,
0.16666666666666666
],
"count": [
5,
4,
3,
2,
2,
2,
2,
5,
3,
3,
4,
3,
3
]
} |
cb1c734e-3d09-4f78-9107-d8450d022cc3 | 2b86ca83-ad2b-4909-a31d-340e3e069b9c | ed943a57-6a10-4a0d-84f7-8a87e7f1f8b8 | 2023-02-16T07:24:45.461888+00:00 | Please read the prompt and try again. This is related to C. | prompter | en | 3 | true | false | null | false | null | {
"toxicity": 0.0003217127814423293,
"severe_toxicity": 0.000054736538004362956,
"obscene": 0.00043559420737437904,
"identity_attack": 0.00012037843407597393,
"insult": 0.0004943633684888482,
"threat": 0.000053632607887266204,
"sexual_explicit": 0.00004152040492044762
} | 1427a1da-1a6f-4786-b5f3-0035a8ea3f09 | ready_for_export | {
"name": [
"+1",
"_skip_reply",
"_skip_ranking"
],
"count": [
3,
5,
2
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0.5,
0.25,
0.125,
0.25,
0
],
"count": [
3,
3,
2,
2,
2,
2,
3,
2,
2,
2,
2
]
} |
3b3dd5ce-8f83-438f-a6d0-3deb498fe5ec | cb1c734e-3d09-4f78-9107-d8450d022cc3 | 8800f1a5-6ef0-4405-a4e6-6a97c103e0a5 | 2023-02-17T09:51:40.628975+00:00 | Sure, I can help you with that! Here's a sample code that you can modify according to your specific requirements:
```c++
#include "hls_math.h"
#include "hls_stream.h"
#include "ap_fixed.h"
#define NUM_ELEMENTS 1024
typedef ap_fixed<32,10> data_t;
void linear_layer(hls::stream<data_t> &in_stream, data_t weights[NUM_ELEMENTS], data_t bias[NUM_ELEMENTS], hls::stream<data_t> &out_stream) {
data_t in_data;
data_t out_data = 0;
// Perform the linear transformation for each element in the input stream
for (int i = 0; i < NUM_ELEMENTS; i++) {
in_data = in_stream.read();
out_data += in_data * weights[i];
}
// Add bias and apply activation function
out_data += bias[NUM_ELEMENTS-1]; // Bias added
out_data = hls::tanh(out_data); // Tanh activation applied
// Write the result to the output stream
out_stream.write(out_data);
}
```
In this code, the `linear_layer` function takes three input parameters:
- `in_stream`: A streaming input for the input vector
- `weights`: A fixed array of weights for the linear transformation
- `bias`: A fixed array of bias values for the linear transformation
The function also has an output parameter `out_stream`, which is a streaming output for the final result.
The function first reads one element at a time from the input stream and multiplies it with the corresponding weight from the `weights` array. It accumulates the results of these multiplications and stores it in `out_data`. After processing all the elements, the function adds the bias value to `out_data` and applies a tanh activation function to the final result. Finally, it writes the result to the output stream.
Note that this is just a sample code, and you may need to modify it based on your specific requirements. | assistant | en | 3 | true | false | 0 | false | null | {
"toxicity": 0.00024559159646742046,
"severe_toxicity": 0.000037105230148881674,
"obscene": 0.0001764003245625645,
"identity_attack": 0.00011221451859455556,
"insult": 0.00020740058971568942,
"threat": 0.00004212796557112597,
"sexual_explicit": 0.00002812615093716886
} | 1427a1da-1a6f-4786-b5f3-0035a8ea3f09 | ready_for_export | {
"name": [
"+1"
],
"count": [
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.9166666666666666,
0.25,
0.25,
0.875,
0.25,
0
],
"count": [
3,
2,
3,
2,
2,
2,
2,
3,
2,
2,
2,
2,
2
]
} |
93575624-464d-4b52-99c7-98c46deec683 | cb1c734e-3d09-4f78-9107-d8450d022cc3 | 2d40e94c-40ed-4e00-a66e-454c0401c8ad | 2023-02-17T08:14:33.650764+00:00 | My apologies, I misinterpreted your previous message. Here is an example of HLS source code for a hardware accelerator that performs a streaming-based linear layer operation using the Vitis HLS libraries:
#include "hls_math.h"
#include "hls_stream.h"
#include "ap_fixed.h"
#define VECTOR_SIZE 16
#define WEIGHTS_SIZE 16
#define BIAS_SIZE 1
typedef ap_fixed<32, 10> data_t;
void linear_layer(hls::stream<data_t> &input, data_t weights[WEIGHTS_SIZE][VECTOR_SIZE], data_t bias[BIAS_SIZE], hls::stream<data_t> &output) {
data_t input_vector[VECTOR_SIZE];
data_t dot_product;
data_t result;
// Read input stream and convert to input vector
for (int i = 0; i < VECTOR_SIZE; i++) {
input_vector[i] = input.read();
}
// Compute dot product of input vector and weights
for (int j = 0; j < WEIGHTS_SIZE; j++) {
dot_product = 0;
for (int i = 0; i < VECTOR_SIZE; i++) {
dot_product += input_vector[i] * weights[j][i];
}
result += dot_product;
}
// Add bias to result
result += bias[0];
// Write result to output stream
output.write(result);
}
In this example, the linear_layer function takes in a stream of input data and two arrays for the weights and bias, which are of fixed point type ap_fixed<32,10>. The function computes the dot product of the input vector and the weights and adds the bias to the result. The final result is written to an output stream.
The function uses the Vitis HLS libraries including hls_math.h, hls_stream.h, and ap_fixed.h. The hls::stream<data_t> type is used to define the input and output streams, and the data_t type is used for the input vector, weights, bias, and result.
Note that this is just an example and may need to be modified to fit your specific use case. | assistant | en | 3 | true | false | 1 | false | null | {
"toxicity": 0.0002538989356253296,
"severe_toxicity": 0.000046820438001304865,
"obscene": 0.00019998278003185987,
"identity_attack": 0.00015892084047663957,
"insult": 0.0002034780045505613,
"threat": 0.00005458761370391585,
"sexual_explicit": 0.00003243095488869585
} | 1427a1da-1a6f-4786-b5f3-0035a8ea3f09 | ready_for_export | {
"name": [
"+1"
],
"count": [
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.6666666666666666,
0.25,
0.08333333333333333,
0.6666666666666666,
0.3333333333333333,
0
],
"count": [
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3
]
} |
142e5f35-8385-4437-b039-264560f9bc90 | null | db834919-4a8b-404e-8f94-7332ed497c0b | 2023-03-01T09:13:48.176415+00:00 | 马上要去日本了,请问有什么好玩的景点推荐吗?我大概在东京待5天。 | prompter | zh | 3 | true | false | null | false | null | null | 142e5f35-8385-4437-b039-264560f9bc90 | ready_for_export | {
"name": [
"+1",
"_skip_reply"
],
"count": [
4,
4
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0.4166666666666667,
0.16666666666666666,
0.25,
0.4166666666666667,
0.16666666666666666
],
"count": [
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3
]
} |
5e1f7c22-9dea-4e67-bfdc-c717262277c7 | 142e5f35-8385-4437-b039-264560f9bc90 | 82025d9f-861e-47c2-a03b-b2eeeb4fc062 | 2023-04-18T03:50:05.269235+00:00 | 非常棒!日本是一个充满魅力和活力的国家,有很多值得一看的地方。以下是一些在东京的景点推荐:
1. 东京塔:东京的标志性建筑之一,是一座高约333米的铁塔,可以在顶部观景台欣赏到城市的全景。
2. 银座:东京的购物和娱乐中心,可以逛逛高级品牌商店、剧院、电影院和美食街。
3. 淺草寺:是东京最著名的寺庙之一,有樱花和红叶季节的美景,还有传统的小吃和纪念品店。
4. 明治神宫:是东京最著名的神社之一,供奉着日本历史上的明治天皇。
5. 皇居:是日本天皇和皇室成员的居所,围绕着皇居的是一片美丽的公园,可以欣赏到日本的自然风光。
6. 涩谷:东京最有名的年轻人区,有很多时尚的衣服店、咖啡馆和酒吧,还有世界著名的涩谷十字路口。
7. 代代木公园:是东京最大的城市公园之一,有美丽的草坪、花园、湖泊和森林,是一个放松身心的好去处。
8. 东京迪士尼乐园:是日本最受欢迎的主题公园之一,可以享受到各种各样的乐园设施和主题活动。
希望这些建议对您有所帮助,祝您在日本旅游愉快! | assistant | zh | 5 | true | false | 0 | false | null | null | 142e5f35-8385-4437-b039-264560f9bc90 | ready_for_export | {
"name": [
"_skip_labeling"
],
"count": [
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.7,
0.3,
0.4,
0.75,
0.45,
0.15
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
809e951f-4e66-40b6-b1ee-d0ad8045f229 | 5e1f7c22-9dea-4e67-bfdc-c717262277c7 | 6d9de951-ad60-41ac-a24f-9f6dceeedb25 | 2023-04-18T07:06:00.742790+00:00 | 你能告诉我在日本旅游需要注意的一些问题吗 | prompter | zh | 5 | true | false | null | false | null | null | 142e5f35-8385-4437-b039-264560f9bc90 | ready_for_export | {
"name": [
"_skip_labeling"
],
"count": [
1
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0.75,
0.08333333333333333,
0.4166666666666667,
0.75,
0
],
"count": [
5,
5,
3,
3,
3,
3,
5,
3,
3,
3,
3
]
} |
ea8c4189-ea0d-4b03-bbb4-8c936320e0c9 | 142e5f35-8385-4437-b039-264560f9bc90 | ab057b6f-e67e-48d1-b10b-ed25c398a582 | 2023-04-18T06:54:07.251960+00:00 | D1皇居(2小时) → 银座(2小时) → 东京塔(2小时) → 六本木(2小时)
D2上野公园(2小时) → 秋叶原(2小时) → 浅草寺(2小时) → 东京晴空塔(2小时)
D3东京迪士尼乐园(8小时) → 东京迪士尼海洋乐园(8小时)
D4涩谷(2小时) → 新宿(2小时)
D5台场海滨公园(1小时) → 富士电视台(2小时) → 日本科学未来馆(1小时) → 彩虹大桥(2小时) | assistant | zh | 5 | true | false | 1 | false | null | null | 142e5f35-8385-4437-b039-264560f9bc90 | ready_for_export | {
"name": [
"+1"
],
"count": [
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.4,
0.1,
0,
0.45,
0.1,
0
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
374c0ff4-fdf3-42a1-80f5-47983c800d94 | 142e5f35-8385-4437-b039-264560f9bc90 | cdf1e1c1-b397-47e4-83cc-625c7a630156 | 2023-04-17T10:38:37.823751+00:00 | 富士山。东京太热了,不建议去。 | assistant | zh | 5 | true | false | 2 | false | null | null | 142e5f35-8385-4437-b039-264560f9bc90 | ready_for_export | {
"name": [
"+1",
"-1",
"_skip_reply",
"_skip_labeling"
],
"count": [
6,
4,
1,
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0.2,
0.2,
0,
0.2,
0.2,
0,
0,
0.5,
0.25,
0.35,
0.4,
0.35,
0.2
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
b948d49b-cfc8-49d1-95d7-fdb1c630afcc | 374c0ff4-fdf3-42a1-80f5-47983c800d94 | ee303573-acaa-4cda-9738-88eb9f22b6f3 | 2023-04-17T15:30:36.610610+00:00 | 秋叶原! | prompter | zh | 5 | true | false | null | false | null | null | 142e5f35-8385-4437-b039-264560f9bc90 | ready_for_export | {
"name": [
"+1",
"_skip_reply",
"_skip_ranking"
],
"count": [
4,
1,
1
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0.2,
0,
0,
0,
0,
0,
0.05,
0.3333333333333333,
0.3333333333333333,
0.16666666666666666,
0.16666666666666666
],
"count": [
5,
5,
3,
3,
3,
3,
5,
3,
3,
3,
3
]
} |
5fe5d858-049f-455d-993c-90f305bef696 | b948d49b-cfc8-49d1-95d7-fdb1c630afcc | 7eccc168-8872-464d-9991-ef9bcd28e85e | 2023-04-18T08:24:25.330459+00:00 | 去日本秋叶原旅游,我有以下几点推荐:
1. 电器街和动漫街:秋叶原是电器和动漫的天堂,可以逛各大电器商店如Bic Camera、Yodobashi Camera,也可以去动漫专卖店买cosplay道具和各类动漫玩具。
2. 芳菲克:这是一家很有名的五层的实体动漫店,商品非常齐全,二手商品也很多,是ACG爱好者的天堂。如果你喜欢收集手办、漫画书、CD等这是个不错的地方。
3. SEGA主题公园:这是一家室内主题乐园,有VR体验项目、赛车项目等,特别适合ACG爱好者和小孩。里面有一些互动游戏也很有趣。
4. 秋叶原COMIC 1•2•3:这是一组三栋楼高的漫画专卖店,里面漫画种类丰富,虽然都需要购买,但也可以随便翻看。喜欢漫画的可以在这里带 several hours。
5. 食街和主题餐厅:秋叶原有很多以动漫和电器为主题的餐厅,像机器人餐厅、忍者餐厅等,体验感很强。一条街上也集中了各种特色小吃,可以一边逛一边吃。
除了上述推荐外,你也可以去秋叶原的电波塔、去各大卡通手办店逛逛、体验一些特色游乐设施等。秋叶原是一个充满未来科技与动漫氛围的地方,总能给人意想不到的惊喜,特别适合ACG爱好者和动漫迷们游玩。希望你能在这里玩得开心! | assistant | zh | 5 | true | false | 0 | false | null | null | 142e5f35-8385-4437-b039-264560f9bc90 | ready_for_export | {
"name": [
"+1"
],
"count": [
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.7,
0.2,
0.45,
0.8,
0.35,
0.15
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
42c3a23a-6b96-4236-98a7-5ab6087870fa | b948d49b-cfc8-49d1-95d7-fdb1c630afcc | 82025d9f-861e-47c2-a03b-b2eeeb4fc062 | 2023-04-18T06:29:54.700650+00:00 | 非常感谢您的指正!秋叶原确实是东京的一个非常著名的地区,也是电子产品、动漫和游戏文化的重要聚集地。在秋叶原,游客可以找到各种各样的电子产品和游戏机,还有很多动漫和游戏相关的商店和咖啡馆。此外,秋叶原还有一些漫画书店和二手唱片店,供游客寻找稀有的收藏品。感谢您的补充,希望您度过一个愉快的旅程! | assistant | zh | 5 | true | false | 1 | false | null | null | 142e5f35-8385-4437-b039-264560f9bc90 | ready_for_export | {
"name": [
"+1",
"_skip_labeling"
],
"count": [
1,
2
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0.2,
0.4,
0,
0,
0.2,
0,
0,
0.6,
0.3,
0.6,
0.75,
0.5,
0.15
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
b7024521-8d84-4fb4-9c1c-4520bee93480 | b948d49b-cfc8-49d1-95d7-fdb1c630afcc | 2092e8b9-6f53-4418-bea0-5c153460593f | 2023-04-18T04:41:10.642897+00:00 | 秋叶原是位于东京中心地带的观光景点,交通方便,以电器街闻名,同时也可以体验到御宅文化。您对哪方面更感兴趣? | assistant | zh | 5 | true | false | 2 | false | null | null | 142e5f35-8385-4437-b039-264560f9bc90 | ready_for_export | {
"name": [
"+1",
"-1",
"_skip_reply"
],
"count": [
3,
2,
3
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.65,
0.25,
0.7,
0.8,
0.55,
0.15
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
8e6d4941-8d17-4b3a-b00a-8ba861e488a6 | b7024521-8d84-4fb4-9c1c-4520bee93480 | 1721e836-8a21-45f8-8180-14e9ebaf1261 | 2023-04-18T06:33:22.276342+00:00 | 你好 | prompter | zh | 5 | true | false | null | false | null | null | 142e5f35-8385-4437-b039-264560f9bc90 | ready_for_export | {
"name": [
"+1",
"_skip_reply"
],
"count": [
1,
1
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0.2,
0,
0,
0,
0,
0,
0.35,
0.6666666666666666,
0.08333333333333333,
0.08333333333333333,
0.08333333333333333
],
"count": [
5,
5,
3,
3,
3,
3,
5,
3,
3,
3,
3
]
} |
f7e93e15-1a3a-4a17-8bcc-25ff1908c643 | 8e6d4941-8d17-4b3a-b00a-8ba861e488a6 | b589d2c4-34e5-43c7-8e53-d80568be3150 | 2023-04-18T08:59:36.812365+00:00 | 你好,请问有什么可以帮您的呢? | assistant | zh | 5 | true | false | 0 | false | null | null | 142e5f35-8385-4437-b039-264560f9bc90 | ready_for_export | null | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.4,
0.25,
0.25,
0.35,
0.1,
0.05
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
84749f4a-2651-4754-83e2-d8ff9c4d66fd | 8e6d4941-8d17-4b3a-b00a-8ba861e488a6 | 82025d9f-861e-47c2-a03b-b2eeeb4fc062 | 2023-04-18T08:57:51.356388+00:00 | 你好,请问我有什么可以帮你的呢? | assistant | zh | 5 | true | false | 1 | false | null | null | 142e5f35-8385-4437-b039-264560f9bc90 | ready_for_export | {
"name": [
"_skip_labeling"
],
"count": [
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0.2,
0,
0,
0.2,
0,
0,
0.45,
0.35,
0.45,
0.6,
0.4,
0.1
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
1a0f2e5e-f981-48f6-945b-2ceb56ddd289 | b948d49b-cfc8-49d1-95d7-fdb1c630afcc | e645e6ff-e0af-4983-a9b6-4fb80905ea42 | 2023-04-18T04:44:59.080138+00:00 | 富士山吧 | assistant | zh | 5 | false | false | null | false | null | null | 142e5f35-8385-4437-b039-264560f9bc90 | ready_for_export | {
"name": [
"+1",
"-1",
"_skip_labeling"
],
"count": [
1,
1,
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0.4,
0.4,
0,
0,
0.4,
0,
0,
0.3,
0.2,
0.2,
0.25,
0.25,
0.1
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
cc1e91d0-fec3-448a-ab8e-b9c44cdcc3f7 | b948d49b-cfc8-49d1-95d7-fdb1c630afcc | edcdb5d7-bb9d-476b-a82e-618062d7e602 | 2023-04-18T04:37:43.473292+00:00 | 秋叶原是谁 | assistant | zh | 5 | false | true | null | false | null | null | 142e5f35-8385-4437-b039-264560f9bc90 | ready_for_export | {
"name": [
"+1"
],
"count": [
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0.8,
1,
0.6,
0,
0.4,
0,
0,
0.15,
0.35,
0.15,
0.1,
0.05,
0.25
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
27029596-5fb9-4aeb-b803-c590cfbfb652 | 142e5f35-8385-4437-b039-264560f9bc90 | 196a967a-9009-4148-84a5-18d654dae2fc | 2023-04-17T11:31:59.803084+00:00 | 兵马俑博物馆 | assistant | zh | 5 | false | true | null | false | null | null | 142e5f35-8385-4437-b039-264560f9bc90 | ready_for_export | null | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0.4,
1,
0.2,
0,
0.2,
0,
0,
0.05,
0.75,
0.2,
0.05,
0,
0.35
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
7e3eee86-3db4-4ecc-a0ed-9a6b366f8edf | 142e5f35-8385-4437-b039-264560f9bc90 | cbed5732-c3f8-4a1e-883d-493459041280 | 2023-04-17T11:23:31.050561+00:00 | 东京塔是每个人去了日本必玩的地方,也是著名的景点之一 | assistant | zh | 5 | false | false | null | false | null | null | 142e5f35-8385-4437-b039-264560f9bc90 | ready_for_export | {
"name": [
"+1"
],
"count": [
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0.2,
0.4,
0.2,
0,
0.2,
0,
0,
0.45,
0.5,
0.35,
0.25,
0.25,
0.4
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
7fd1fb6b-a929-41e4-8798-fb8d7f259e21 | 142e5f35-8385-4437-b039-264560f9bc90 | 1b341186-e6af-462b-b35d-1907575913c1 | 2023-04-17T14:59:55.701771+00:00 | 不是应该你来回答的吗,怎么让人类来回答这个问题 | assistant | zh | 5 | false | true | null | false | null | null | 142e5f35-8385-4437-b039-264560f9bc90 | ready_for_export | {
"name": [
"_skip_labeling"
],
"count": [
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
1,
1,
0.8,
0,
0.4,
0,
0,
0,
0.65,
0.2,
0,
0,
0.35
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
9b645962-5a9e-495e-b6b2-bd18a49a6b8c | 142e5f35-8385-4437-b039-264560f9bc90 | 9cf758aa-91c4-4b59-97b5-4dc7d71993cd | 2023-04-18T01:45:20.669278+00:00 | 公司组织去浙江莫干山旅游,这期间有什么好的活动推荐,见到领导应该说些什么,怎样表现? | assistant | zh | 5 | false | true | null | false | null | null | 142e5f35-8385-4437-b039-264560f9bc90 | ready_for_export | null | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0.4,
1,
0.4,
0,
0.8,
0,
0,
0,
0.3,
0.15,
0,
0.1,
0.05
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
a85d777f-4645-4881-933b-e1eb563eb273 | 142e5f35-8385-4437-b039-264560f9bc90 | ea12a73b-95db-482b-8bbc-621c001f0cd2 | 2023-04-17T14:41:00.853366+00:00 | 1)隅田川花火大会
2)根津美术馆
3)歌舞伎町一番街
3)浅草寺 | assistant | zh | 5 | false | false | null | false | null | null | 142e5f35-8385-4437-b039-264560f9bc90 | ready_for_export | null | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0.2,
0.8,
0.2,
0,
0,
0,
0,
0.4,
0.45,
0.35,
0.45,
0.35,
0.1
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
1432b068-7db1-4d53-b7df-32891de94930 | null | 3d8cdfbc-171e-4a4b-b336-2dca982625f2 | 2023-02-13T09:46:14.579079+00:00 | hola, puedes traducir al español el siguiente texto: Some stocks set up constructively and may even emerge from a promis-
ing base and attract buyers but then quickly undergo a correction or sharp
pullback that stops you out. This tends to occur when the market is expe-
riencing general weakness or high volatility. However, a stock with strong
fundamentals can reset after such a correction or pullback, forming a new
base or a proper setup. This show of strength is a favorable sign. Often, the
second setup is stronger than the first. The stock has fought its way back and
along the way shaken out another batch of weak holders. If it breaks out of
the second base on high volume, it can really take off. | prompter | es | 3 | true | false | null | false | null | {
"toxicity": 0.00029959462699480355,
"severe_toxicity": 0.00003216674303985201,
"obscene": 0.0001843032951001078,
"identity_attack": 0.00010215510701527819,
"insult": 0.00021575596474576741,
"threat": 0.00004361142418929376,
"sexual_explicit": 0.000025989877030951902
} | 1432b068-7db1-4d53-b7df-32891de94930 | ready_for_export | {
"name": [
"+1",
"_skip_reply",
"_skip_ranking"
],
"count": [
3,
1,
3
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0.5,
0.125,
0,
0.1875,
0.125
],
"count": [
4,
3,
3,
3,
3,
3,
4,
4,
4,
4,
4
]
} |
74f1504a-52ae-444c-b7f4-519161e994c9 | 1432b068-7db1-4d53-b7df-32891de94930 | f5d30448-aa8d-450f-8e33-c545331d0dab | 2023-02-13T16:18:40.385281+00:00 | Claro, pero ten en cuenta que soy un modelo de lenguaje general, no estoy especializado en traducciones, esto es lo mejor que puedo conseguir:
Algunos valores se asientan de forma constructiva e incluso pueden emerger de una base prometedora y atraer a los compradores, pero luego sufren rápidamente una corrección o un brusco retroceso que les deja fuera. Esto suele ocurrir cuando el mercado experimenta una debilidad general o una gran volatilidad. Sin embargo, un valor con unos fundamentos sólidos puede reajustarse tras una corrección o un retroceso de este tipo, formando una nueva base o una configuración adecuada. Esta muestra de fortaleza es una señal favorable. A menudo, la segunda configuración es más fuerte que la primera. El valor se ha recuperado y en el camino se ha deshecho de otro grupo de inversores débiles. Si supera la segunda base con un volumen elevado, puede dispararse. | assistant | es | 3 | true | false | 0 | false | null | {
"toxicity": 0.0011452848557382822,
"severe_toxicity": 0.00008821908704703674,
"obscene": 0.0007916887989267707,
"identity_attack": 0.00021690379071515054,
"insult": 0.00041702325688675046,
"threat": 0.00035027944250032306,
"sexual_explicit": 0.00010120943625224754
} | 1432b068-7db1-4d53-b7df-32891de94930 | ready_for_export | {
"name": [
"+1",
"_skip_labeling"
],
"count": [
1,
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0.3333333333333333,
0,
0,
0,
0,
0.3333333333333333,
0,
0,
0.25,
0,
0
],
"count": [
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3
]
} |
bf6f1e7d-2ee8-456e-850b-9ce3b3b68220 | 1432b068-7db1-4d53-b7df-32891de94930 | e2568fcf-6c98-49f7-be75-cae831408349 | 2023-02-13T16:24:02.159317+00:00 | Por supuesto, la traducción más correcta sería la siguiente:
Algunas acciones se configuran de manera constructiva e incluso pueden surgir de una base prometedora y atraer a los compradores, pero luego experimentan rápidamente una corrección o un fuerte retroceso que te saca. Esto suele ocurrir cuando el mercado está experimentando debilidad general o alta volatilidad. Sin embargo, una acción con fundamentos fuertes puede reiniciarse después de tal corrección o retroceso, formando una nueva base o una configuración adecuada. Este gesto de fortaleza es una señal favorable. A menudo, la segunda configuración es más fuerte que la primera. La acción ha luchado para regresar y, en el camino, ha sacudido a otro lote de titulares débiles. Si se rompe fuera de la segunda base en alto volumen, realmente puede despegar. | assistant | es | 3 | true | false | 1 | false | null | {
"toxicity": 0.00026531098410487175,
"severe_toxicity": 0.00004740657459478825,
"obscene": 0.0003534254210535437,
"identity_attack": 0.0001150572788901627,
"insult": 0.00029432031442411244,
"threat": 0.000053975352784618735,
"sexual_explicit": 0.00004042845466756262
} | 1432b068-7db1-4d53-b7df-32891de94930 | ready_for_export | null | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0.3333333333333333,
0,
0,
0,
0,
0.6666666666666666,
0,
0,
0.5,
0.5,
0
],
"count": [
3,
2,
3,
2,
2,
2,
2,
3,
2,
2,
2,
2,
2
]
} |
8a9deec5-8107-48d3-bce1-e5058a9b0e23 | 1432b068-7db1-4d53-b7df-32891de94930 | df411b83-5030-4708-bf81-0fe9fa1398b2 | 2023-02-13T16:19:41.255575+00:00 | Algunas acciones se configuran de manera constructiva e incluso pueden emerger de una base prometedora y atraer a los compradores, pero luego se corrigen rápidamente o se producen retrocesos bruscos que los hacen salir. Esto suele ocurrir cuando el mercado experimenta debilidad general o alta volatilidad. Sin embargo, una acción con fundamentos sólidos puede reiniciarse después de una corrección o retroceso, formando una nueva base o una configuración adecuada. Esta muestra de fuerza es una señal favorable. A menudo, la segunda configuración es más fuerte que la primera. La acción ha luchado para regresar y, en el camino, ha sacudido otro lote de tenedores débiles. Si se rompe de la segunda base con alto volumen, puede realmente despegar. | assistant | es | 3 | true | false | 2 | false | null | {
"toxicity": 0.000296756683383137,
"severe_toxicity": 0.00003618614573497325,
"obscene": 0.0002447325678076595,
"identity_attack": 0.00010610419121803716,
"insult": 0.00021469870989676565,
"threat": 0.00004798494774149731,
"sexual_explicit": 0.00003325949001009576
} | 1432b068-7db1-4d53-b7df-32891de94930 | ready_for_export | null | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.75,
0,
0.125,
0.75,
0.25,
0
],
"count": [
3,
2,
3,
2,
2,
2,
2,
3,
2,
2,
2,
2,
2
]
} |
1439b8bc-1ce5-4e4f-9db9-0491dd62d593 | null | c7fc1fa1-1729-4993-92e3-e37f10c745bf | 2023-02-17T10:23:21.636428+00:00 | buenas tardes ia, me preguntaba si me podrias explicar como puedo mejorar mi modelado en blender | prompter | es | 3 | true | false | null | false | null | {
"toxicity": 0.002066877903416753,
"severe_toxicity": 0.006608656141906977,
"obscene": 0.04501281678676605,
"identity_attack": 0.007370077073574066,
"insult": 0.03512979671359062,
"threat": 0.0026196325197815895,
"sexual_explicit": 0.0012412421638146043
} | 1439b8bc-1ce5-4e4f-9db9-0491dd62d593 | ready_for_export | {
"name": [
"+1",
"_skip_reply",
"_skip_ranking"
],
"count": [
4,
1,
1
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0.6875,
0.125,
0.4375,
0.75,
0.0625
],
"count": [
4,
3,
3,
3,
3,
3,
4,
4,
4,
4,
4
]
} |
9f1c7b1c-3ba0-4c9a-9c9c-da847b6c2fb8 | 1439b8bc-1ce5-4e4f-9db9-0491dd62d593 | 3768191c-f9dc-47ad-ba88-cde92aba2e44 | 2023-03-27T14:28:40.930202+00:00 | ¡Buenas tardes! Por supuesto, te puedo dar algunos consejos para mejorar tu modelado en Blender. Aquí te van algunos:
* Practica: Lo más importante para mejorar tu modelado en Blender es practicar. Cuanto más modelas, más experiencia ganarás y mejores serán tus modelos.
* Aprende las herramientas: Blender tiene muchas herramientas y funciones para el modelado. Aprende a utilizarlas y familiarízate con ellas. Conoce las teclas de acceso rápido y atajos de teclado para hacer tu trabajo más eficiente.
* Observa referencias: Cuando estés modelando algo, busca referencias de lo que quieres crear. Puedes encontrar fotos o dibujos de lo que estás modelando y usarlos como guía. Esto te ayudará a entender la forma y proporciones de los objetos.
* Presta atención a la topología: La topología se refiere a la forma en que los polígonos están conectados en tu modelo. Es importante tener una topología limpia y ordenada para que el modelo pueda ser animado o renderizado correctamente. Asegúrate de que los bordes estén afilados donde deberían estarlo y suaves donde se requiere suavidad.
* Haz uso de la subdivisión: Blender tiene una función de subdivisión que suaviza los bordes de los modelos y mejora la calidad de los detalles. Aprende a utilizarla correctamente y verás cómo tus modelos se vuelven más suaves y detallados.
* Ilumina tu modelo: Cuando estés modelando, asegúrate de que haya suficiente luz para ver lo que estás haciendo. También puedes configurar diferentes tipos de luces en Blender para iluminar tu modelo y ver cómo se ve en diferentes situaciones de iluminación.
* Aprende a texturizar: La texturización es el proceso de aplicar texturas a tus modelos para darles una apariencia más realista. Blender tiene muchas herramientas para texturizar, incluyendo el mapeado de UV y el uso de materiales. Aprende a utilizar estas herramientas para mejorar la apariencia de tus modelos.
Espero que estos consejos te ayuden a mejorar tu modelado en Blender. ¡Buena suerte! | assistant | es | 3 | true | false | 0 | false | null | {
"toxicity": 0.0005232300027273595,
"severe_toxicity": 0.003791057737544179,
"obscene": 0.027508793398737907,
"identity_attack": 0.003434759331867099,
"insult": 0.02552184648811817,
"threat": 0.0013936589239165187,
"sexual_explicit": 0.0008330902201123536
} | 1439b8bc-1ce5-4e4f-9db9-0491dd62d593 | ready_for_export | {
"name": [
"+1"
],
"count": [
2
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.9166666666666666,
0,
0.25,
1,
0.8333333333333334,
0
],
"count": [
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3
]
} |
9b01b2d1-8e04-4a8e-854a-87367a022a8d | 9f1c7b1c-3ba0-4c9a-9c9c-da847b6c2fb8 | fd7dac29-b519-42ab-9fb2-baa2bba4ecf0 | 2023-03-29T00:47:24.277900+00:00 | Muchas Gracias. | prompter | es | 3 | true | false | null | false | null | {
"toxicity": 0.00043191341683268547,
"severe_toxicity": 0.0020369745325297117,
"obscene": 0.01785266026854515,
"identity_attack": 0.002147517167031765,
"insult": 0.013876033946871758,
"threat": 0.000755686778575182,
"sexual_explicit": 0.0005260537145659328
} | 1439b8bc-1ce5-4e4f-9db9-0491dd62d593 | ready_for_export | {
"name": [
"+1",
"-1",
"_skip_reply",
"_skip_labeling"
],
"count": [
1,
1,
5,
1
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0.16666666666666666,
0.08333333333333333,
0.16666666666666666,
0.16666666666666666,
0.08333333333333333
],
"count": [
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3
]
} |
f27c6605-d0ca-411d-993e-6095cbfef96f | 9b01b2d1-8e04-4a8e-854a-87367a022a8d | 3768191c-f9dc-47ad-ba88-cde92aba2e44 | 2023-03-30T06:41:57.600771+00:00 | No hay de qué. ¿Puedo ayudarte con algo más? | assistant | es | 3 | true | false | 0 | false | null | {
"toxicity": 0.0018876096000894904,
"severe_toxicity": 0.0026658866554498672,
"obscene": 0.02360544726252556,
"identity_attack": 0.004426162224262953,
"insult": 0.019820885732769966,
"threat": 0.0016973036108538508,
"sexual_explicit": 0.0005607195780612528
} | 1439b8bc-1ce5-4e4f-9db9-0491dd62d593 | ready_for_export | {
"name": [
"+1"
],
"count": [
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.9166666666666666,
0,
0,
0.8333333333333334,
0,
0
],
"count": [
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3
]
} |
17eea67f-02a9-42af-92b7-68076a7eb534 | 9b01b2d1-8e04-4a8e-854a-87367a022a8d | f62a8a3d-f672-4bef-8d06-f24d4866b82d | 2023-03-30T15:23:31.158295+00:00 | De nada. Para cualquier otra duda al respecto de modelado, o cualquier otra cosa, no dudes en contactarme. | assistant | es | 3 | true | false | 1 | false | null | {
"toxicity": 0.0032527681905776262,
"severe_toxicity": 0.0031633495818823576,
"obscene": 0.030155649408698082,
"identity_attack": 0.00475810281932354,
"insult": 0.02817746251821518,
"threat": 0.0023415677715092897,
"sexual_explicit": 0.0007271749782375991
} | 1439b8bc-1ce5-4e4f-9db9-0491dd62d593 | ready_for_export | {
"name": [
"+1",
"_skip_labeling"
],
"count": [
2,
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.8333333333333334,
0,
0,
0.6666666666666666,
0.25,
0
],
"count": [
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3
]
} |
7b4e541f-84c9-496b-b4ec-340add21456d | 17eea67f-02a9-42af-92b7-68076a7eb534 | 3768191c-f9dc-47ad-ba88-cde92aba2e44 | 2023-03-31T11:08:47.722012+00:00 | De acuerdo, quiero hacer un experimento para evaluar qué tal funcionas. ¿Podrías repetir tu respuesta anterior omitiendo las palabras emplazadas en una posición par dentro de la oración? Por favor, conserva los signos de puntuación como puntos, comas, etc. | prompter | es | 3 | true | false | null | false | null | {
"toxicity": 0.0008590830839239061,
"severe_toxicity": 0.003130176570266485,
"obscene": 0.02595592848956585,
"identity_attack": 0.0032183730509132147,
"insult": 0.019166287034749985,
"threat": 0.0012836281675845385,
"sexual_explicit": 0.0010327312629669905
} | 1439b8bc-1ce5-4e4f-9db9-0491dd62d593 | ready_for_export | {
"name": [
"+1"
],
"count": [
2
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0.8333333333333334,
0.08333333333333333,
0.3333333333333333,
0.6666666666666666,
0
],
"count": [
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3
]
} |
998b320c-bbab-4759-90f0-7a24cc054e1d | 7b4e541f-84c9-496b-b4ec-340add21456d | 3768191c-f9dc-47ad-ba88-cde92aba2e44 | 2023-03-31T14:43:41.818786+00:00 | De. Para otra al de, o otra, no en. | assistant | es | 3 | true | false | null | false | null | {
"toxicity": 0.001850893720984459,
"severe_toxicity": 0.0007598049123771489,
"obscene": 0.0103651974350214,
"identity_attack": 0.0013890721602365375,
"insult": 0.007966067641973495,
"threat": 0.0009440855355933309,
"sexual_explicit": 0.00035138888051733375
} | 1439b8bc-1ce5-4e4f-9db9-0491dd62d593 | ready_for_export | {
"name": [
"+1"
],
"count": [
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.9166666666666666,
0.16666666666666666,
0.16666666666666666,
1,
0.6666666666666666,
0
],
"count": [
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3
]
} |
bb70a583-22d1-4e38-b18c-f05938b588dd | 1439b8bc-1ce5-4e4f-9db9-0491dd62d593 | a961f4f8-dd5a-4f98-ae50-4160ad6d0ceb | 2023-03-27T16:59:58.804607+00:00 | Buenas tardes, ¡por supuesto! Aquí hay algunos consejos que pueden ayudarte a mejorar tu modelado en Blender:
Practica: El modelado en 3D es una habilidad que requiere práctica. Cuanto más tiempo y esfuerzo dediques al modelado en Blender, mejor te volverás. Trata de modelar algo nuevo cada vez que practiques, de esta manera mejorarás tus habilidades en diferentes áreas del modelado.
Aprende las herramientas y atajos de teclado: Blender tiene muchas herramientas y opciones para el modelado en 3D. Aprende los atajos de teclado y las herramientas de modelado para que puedas trabajar de manera más eficiente y no pierdas tiempo buscando herramientas en los menús.
Crea una topología limpia: La topología es la estructura de mallas 3D de un modelo y es importante para su apariencia y facilidad de animación. Trata de crear una topología limpia y organizada, con polígonos cuadrados y limpios.
Usa referencias: Siempre es útil tener referencias para ayudarte a modelar con precisión. Utiliza imágenes de referencia, bocetos o incluso objetos reales para asegurarte de que tus modelos sean precisos y detallados.
Usa la iluminación para mejorar la apariencia de tu modelo: La iluminación puede mejorar enormemente la apariencia de un modelo en 3D. Utiliza luces para resaltar los detalles y mostrar las sombras en tu modelo para una mejor visualización.
Mantén las cosas simples: A veces, menos es más. Trata de mantener tus modelos simples y limpios. Demasiados detalles pueden hacer que un modelo sea difícil de ver y comprender.
Prueba nuevas técnicas: Siempre hay nuevas técnicas y herramientas de modelado para aprender en Blender. Prueba cosas nuevas y experimenta para encontrar nuevas formas de mejorar tus habilidades de modelado.
Espero que con estos consejos mejores tu modelado en Blender. ¡Buena suerte! | assistant | es | 3 | true | false | 1 | false | null | {
"toxicity": 0.0004635062359739095,
"severe_toxicity": 0.0034469293896108866,
"obscene": 0.02490994893014431,
"identity_attack": 0.0029881629161536694,
"insult": 0.02652958780527115,
"threat": 0.001356890774331987,
"sexual_explicit": 0.0007433539140038192
} | 1439b8bc-1ce5-4e4f-9db9-0491dd62d593 | ready_for_export | {
"name": [
"+1",
"_skip_labeling"
],
"count": [
3,
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.75,
0.08333333333333333,
0.08333333333333333,
0.8333333333333334,
0.3333333333333333,
0.08333333333333333
],
"count": [
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3
]
} |
b70b9981-dbc3-4cca-af0d-d597034c3502 | bb70a583-22d1-4e38-b18c-f05938b588dd | 01f6b55b-a4b6-4aae-b0f3-8b5b2806bffa | 2023-03-30T11:35:18.728236+00:00 | ¿Puedes recomendarme recursos gratuitos con los que mejorar en el uso de herramientas y conseguir una topología más limpia? Me gustaría que me listases primero los disponibles en castellano | prompter | es | 3 | true | false | null | false | null | {
"toxicity": 0.000726109545212239,
"severe_toxicity": 0.006527423858642578,
"obscene": 0.037085384130477905,
"identity_attack": 0.007704212795943022,
"insult": 0.033847540616989136,
"threat": 0.002655905904248357,
"sexual_explicit": 0.00110257335472852
} | 1439b8bc-1ce5-4e4f-9db9-0491dd62d593 | ready_for_export | {
"name": [
"+1",
"_skip_reply"
],
"count": [
1,
1
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0.75,
0.16666666666666666,
0.25,
0.3333333333333333,
0.08333333333333333
],
"count": [
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3
]
} |
1445a0b2-37a4-48f5-929f-6d49e72050a6 | null | 20231123-1899-4eb3-947f-2be519c6c421 | 2023-02-04T21:11:18.111854+00:00 | How do Transformers contrast to RNNs in the context of NLP? | prompter | en | 3 | true | false | null | false | null | {
"toxicity": 0.000502448296174407,
"severe_toxicity": 0.000029144743166398257,
"obscene": 0.00019119454373139888,
"identity_attack": 0.00014522156561724842,
"insult": 0.00027194374706596136,
"threat": 0.000042145282350247726,
"sexual_explicit": 0.0000322545638482552
} | 1445a0b2-37a4-48f5-929f-6d49e72050a6 | ready_for_export | {
"name": [
"+1",
"_skip_reply",
"_skip_ranking"
],
"count": [
5,
4,
5
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0.9166666666666666,
0.25,
0,
0.4166666666666667,
0
],
"count": [
3,
3,
3,
3,
3,
3,
3,
3,
3,
3,
3
]
} |
6d346048-0e34-4e05-9e79-01ccb42f1b90 | 1445a0b2-37a4-48f5-929f-6d49e72050a6 | cf023605-d511-4b68-9e88-167bcf71efaf | 2023-04-15T23:13:54.976938+00:00 | Transformers and recurrent neural networks (RNNs) are two popular types of neural network architectures used in natural language processing (NLP).
One key difference between Transformers and RNNs is their approach to sequence modeling. RNNs process a sequence of inputs one at a time, where the current input is influenced by the previous hidden state of the network. In contrast, Transformers process the entire sequence at once, using self-attention mechanisms to learn relationships between all elements in the sequence.
Another difference is that RNNs are often used for tasks that require modeling sequential dependencies, such as language modeling, text generation, and machine translation. However, RNNs can be computationally expensive and are often limited by their ability to capture long-range dependencies.
On the other hand, Transformers have become popular in NLP because they can efficiently handle long sequences and have achieved state-of-the-art results on many NLP tasks, such as language modeling, machine translation, and question-answering. Transformers can also be used for tasks that do not necessarily require modeling sequential dependencies, such as text classification and sentiment analysis.
In summary, while RNNs are well-suited for modeling sequential dependencies, Transformers are more efficient in handling long sequences and have achieved state-of-the-art results in many NLP tasks. | assistant | en | 5 | true | false | 0 | false | null | {
"toxicity": 0.00033665160299278796,
"severe_toxicity": 0.000026980002076015808,
"obscene": 0.00012920901644974947,
"identity_attack": 0.0001217797034769319,
"insult": 0.00016139460785780102,
"threat": 0.000044145850552013144,
"sexual_explicit": 0.00002434347516100388
} | 1445a0b2-37a4-48f5-929f-6d49e72050a6 | ready_for_export | {
"name": [
"_skip_reply",
"_skip_labeling"
],
"count": [
2,
6
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.85,
0.15,
0.2,
0.85,
0.5,
0
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
6a79982c-b2c8-4df2-999f-07d659fb3fc5 | 6d346048-0e34-4e05-9e79-01ccb42f1b90 | 2d40e94c-40ed-4e00-a66e-454c0401c8ad | 2023-04-16T03:51:37.203799+00:00 | What are some possible future advancements or modifications to Transformer architectures that could further improve their performance or efficiency in NLP tasks? | prompter | en | 5 | true | false | null | false | null | {
"toxicity": 0.0003397494147066027,
"severe_toxicity": 0.000036184315831633285,
"obscene": 0.000179753900738433,
"identity_attack": 0.00015338079538196325,
"insult": 0.00022889394313097,
"threat": 0.00004657706813304685,
"sexual_explicit": 0.00002516669519536663
} | 1445a0b2-37a4-48f5-929f-6d49e72050a6 | ready_for_export | {
"name": [
"_skip_reply"
],
"count": [
3
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0.85,
0.16666666666666666,
0.16666666666666666,
0.5,
0.08333333333333333
],
"count": [
5,
5,
3,
3,
3,
3,
5,
3,
3,
3,
3
]
} |
9686661a-82f6-4f37-8052-020d0b7baedc | 1445a0b2-37a4-48f5-929f-6d49e72050a6 | 2e780ddd-1c99-44ea-92fc-fb9d4094b925 | 2023-04-15T23:09:01.926245+00:00 | Transformers use self-attention mechanisms to weigh the importance of different words in a sentence, while RNNs use hidden states to capture temporal dependencies between inputs. Therefore, the choice between using a Transformer or an RNN depends on the nature of the input data and the task at hand.
RNNs (Recurrent Neural Networks) are designed for sequential data, while Transformers are specifically built for non-sequential textual inputs. This means that a transformer is better suited at processing unstructured or semi-structured input such as natural language texts and images, whereas RNNs excel at structuring the sequence of events, like speech recognition tasks where they can model dependencies between words, phrases, etc. | assistant | en | 5 | true | false | 1 | false | null | {
"toxicity": 0.00037753605283796787,
"severe_toxicity": 0.00002408323962299619,
"obscene": 0.00013915981980971992,
"identity_attack": 0.00011306078522466123,
"insult": 0.00018803107377607375,
"threat": 0.00003705173367052339,
"sexual_explicit": 0.000025007644580909982
} | 1445a0b2-37a4-48f5-929f-6d49e72050a6 | ready_for_export | {
"name": [
"+1",
"_skip_labeling"
],
"count": [
3,
7
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.8,
0.2,
0.15,
0.8,
0.3,
0
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
a2f3f91a-08fa-426e-9516-6b1b77e7e7ae | 9686661a-82f6-4f37-8052-020d0b7baedc | a6d1c3fb-244b-4ba1-849b-1bde97b93c5d | 2023-04-16T06:33:34.292400+00:00 | What can you do ? | prompter | en | 5 | true | false | null | false | null | {
"toxicity": 0.0009019837016239762,
"severe_toxicity": 0.000044107557187089697,
"obscene": 0.00032855322933755815,
"identity_attack": 0.00016735422832425684,
"insult": 0.00024732243036851287,
"threat": 0.00012178307952126488,
"sexual_explicit": 0.000045466498704627156
} | 1445a0b2-37a4-48f5-929f-6d49e72050a6 | ready_for_export | {
"name": [
"+1",
"_skip_labeling"
],
"count": [
2,
1
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0.2,
0,
0,
0.55,
0.2,
0.1,
0.35,
0.05
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
45002787-4f34-4eeb-9907-467bf7ce6586 | a2f3f91a-08fa-426e-9516-6b1b77e7e7ae | a65afff7-e6c9-4640-ae41-7c6920c7a107 | 2023-04-16T06:46:57.962579+00:00 | You can use Transformers to create state-of-the-art language models for natural language processing tasks such as text suggesting, question answering, machine translation, and summarization. You can also use RNNs to help model sequences of data in tasks like speech recognition and text generation. | assistant | en | 5 | true | false | null | false | null | {
"toxicity": 0.00033757754135876894,
"severe_toxicity": 0.000029284352422109805,
"obscene": 0.00013759138528257608,
"identity_attack": 0.00013616442447528243,
"insult": 0.0001663855364313349,
"threat": 0.00004390051253722049,
"sexual_explicit": 0.000029656137485289946
} | 1445a0b2-37a4-48f5-929f-6d49e72050a6 | ready_for_export | {
"name": [
"+1",
"_skip_labeling"
],
"count": [
2,
3
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0.4,
0,
0,
0,
0,
0,
0.8,
0,
0,
0.65,
0.3,
0
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
55778026-a07d-4fc2-af94-669ec2868606 | 1445a0b2-37a4-48f5-929f-6d49e72050a6 | cdbac2be-1220-4a97-8e08-34d8f213de40 | 2023-04-16T01:23:36.144423+00:00 | Transformers and RNNs are both types of neural networks commonly used in natural language processing (NLP), but they differ in several key ways.
Recurrent neural networks (RNNs) are a type of neural network that is designed to handle sequential data, such as language. They work by passing information from one time step to the next, allowing them to model dependencies between words in a sentence or characters in a text. However, RNNs can be slow to train and can struggle with long-term dependencies, where information from earlier time steps may be relevant to later ones.
Transformers, on the other hand, are a more recent type of neural network that use self-attention mechanisms to process sequences of data, such as sentences or paragraphs of text. Unlike RNNs, Transformers process the entire input sequence at once, rather than passing information from one time step to the next. This allows them to capture dependencies between words that are farther apart in the sequence, and can result in more efficient training and inference. | assistant | en | 5 | true | false | 2 | false | null | {
"toxicity": 0.0004262050206307322,
"severe_toxicity": 0.00002197804133174941,
"obscene": 0.0001212790739373304,
"identity_attack": 0.0001052354127750732,
"insult": 0.00018412941426504403,
"threat": 0.00003920490780728869,
"sexual_explicit": 0.00002294165824423544
} | 1445a0b2-37a4-48f5-929f-6d49e72050a6 | ready_for_export | {
"name": [
"+1",
"_skip_reply",
"_skip_labeling"
],
"count": [
6,
1,
2
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.95,
0.1,
0.1,
1,
0.35,
0
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
a4a40d03-0d8f-4b7c-a1d9-99fac42d7ddd | 55778026-a07d-4fc2-af94-669ec2868606 | d0f7abf2-2e94-4e4d-8843-9ae104f62dd2 | 2023-04-16T03:26:25.349454+00:00 | What are the disadvantages of transformers when compared to RNNs? | prompter | en | 5 | true | false | null | false | null | {
"toxicity": 0.00046337966341525316,
"severe_toxicity": 0.00002711818706302438,
"obscene": 0.00018984137568622828,
"identity_attack": 0.00010899498010985553,
"insult": 0.0002674027346074581,
"threat": 0.00003373690560692921,
"sexual_explicit": 0.000023244443582370877
} | 1445a0b2-37a4-48f5-929f-6d49e72050a6 | ready_for_export | {
"name": [
"+1",
"_skip_reply",
"_skip_ranking"
],
"count": [
3,
4,
5
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0.85,
0.25,
0.125,
0.3125,
0
],
"count": [
5,
5,
4,
4,
4,
4,
5,
4,
4,
4,
4
]
} |
a77799fa-269b-4e66-930b-d591effb7686 | a4a40d03-0d8f-4b7c-a1d9-99fac42d7ddd | 2a683b5d-76da-4985-8da8-3105473e18ce | 2023-04-16T06:10:58.073402+00:00 | Transformers and RNNs (Recurrent Neural Networks) are both popular architectures used for a variety of natural language processing and sequence modeling tasks. However, they have different strengths and weaknesses. Here are some disadvantages of transformers when compared to RNNs:
Computational complexity: Transformers rely on self-attention mechanisms, which can be computationally expensive, especially for long sequences. This is because the self-attention mechanism computes pairwise interactions between all elements in a sequence, resulting in a quadratic complexity (O(n^2)) with respect to sequence length. In contrast, RNNs have linear complexity (O(n)) as they process sequences one element at a time.
Memory usage: Transformers typically have a higher memory footprint than RNNs due to their parallelism and the use of multiple attention heads. This can make it challenging to train transformers on large datasets or with long sequences, especially on devices with limited memory, such as GPUs.
Lack of inherent recurrence: Unlike RNNs, transformers do not have an inherent mechanism for capturing long-term dependencies in sequences. While the self-attention mechanism can, in theory, learn long-range dependencies, it may struggle to do so in practice, especially for very long sequences. RNNs, on the other hand, are designed to capture such dependencies through their recurrent structure.
Difficulty in modeling sequential data: Transformers process the entire input sequence at once, which can make it challenging to model some types of sequential data that rely on the order of elements. RNNs are better suited for such tasks because they process the input sequence element-wise, allowing them to model the temporal relationships more effectively.
Longer training time: Due to their larger model size and computational complexity, transformers may require longer training times compared to RNNs. This can be particularly relevant when working with limited computational resources or tight deadlines.
Less interpretable: The self-attention mechanism in transformers can make it harder to interpret the model's decisions and understand its inner workings compared to RNNs, which have a more straightforward structure.
Despite these disadvantages, transformers have demonstrated superior performance on a wide range of tasks and have become the de facto standard for many NLP and sequence modeling problems. However, it is essential to consider the specific requirements and constraints of your problem when choosing between transformers and RNNs. | assistant | en | 5 | true | false | 0 | false | null | {
"toxicity": 0.0002758058253675699,
"severe_toxicity": 0.00003284356716903858,
"obscene": 0.00018710891890805215,
"identity_attack": 0.00012150550173828378,
"insult": 0.0001798631128622219,
"threat": 0.0000417634000768885,
"sexual_explicit": 0.000029063896363368258
} | 1445a0b2-37a4-48f5-929f-6d49e72050a6 | ready_for_export | {
"name": [
"+1",
"_skip_labeling"
],
"count": [
1,
10
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
1,
0,
0,
1,
0.45,
0
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
12bc82c2-6084-493c-8151-15eb842a4443 | a4a40d03-0d8f-4b7c-a1d9-99fac42d7ddd | b3310f02-41d8-4f5b-87d8-c450305c367e | 2023-04-16T06:13:16.617935+00:00 | Processing the entire input sequence at once allows transformers to capture dependencies across large contexts, but it comes at a cost. The attention mechanism's computational requirements grow in proportion to the square of the input sequence length. This is a disadvantage when compared to RNNs, which have a fixed computation per input token. There is also some evidence that transformers are more prone to overfitting when trained with lower-quality data. | assistant | en | 5 | true | false | 1 | false | null | {
"toxicity": 0.0003881138691212982,
"severe_toxicity": 0.000031376916012959555,
"obscene": 0.00016775797121226788,
"identity_attack": 0.00013120433141011745,
"insult": 0.00020431533630471677,
"threat": 0.000042552364902803674,
"sexual_explicit": 0.000028746564566972665
} | 1445a0b2-37a4-48f5-929f-6d49e72050a6 | ready_for_export | {
"name": [
"+1",
"_skip_labeling"
],
"count": [
3,
2
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.85,
0.1,
0.35,
0.85,
0.4,
0
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
a98b436e-5990-41ba-9b4e-2378552689ee | a4a40d03-0d8f-4b7c-a1d9-99fac42d7ddd | f8984953-49fa-4ae9-a1b0-defcb4db0cad | 2023-04-16T05:45:58.925010+00:00 | [email protected]
What are the disadvantages of transformers when compared to RNNs?
Transformers and RNNs are both powerful deep learning models that can be used for a variety of natural language processing tasks. However, each model has its own strengths and weaknesses. Here are some disadvantages of transformers when compared to RNNs:
Sequential processing: RNNs are designed to process sequential data, such as text or speech, one element at a time, which makes them well-suited for tasks that require modeling the temporal dependencies between inputs. Transformers, on the other hand, process all inputs in parallel, which can make them less effective for tasks that require modeling long-term dependencies.
Computational complexity: Transformers are typically more computationally expensive than RNNs, due to their parallel processing nature and the large number of parameters required to train them. This can make training and inference slower and more resource-intensive.
Input length limitations: Transformers have a fixed maximum input length, determined by the number of positional embeddings used to encode the input sequence. This can make them less suitable for tasks that require processing very long input sequences, such as document classification or translation.
Limited interpretability: Transformers can be more difficult to interpret than RNNs, due to their complex attention mechanisms and the large number of layers and parameters involved. This can make it harder to diagnose and understand errors or biases in the model's predictions.
Data requirements: Transformers often require large amounts of training data to perform well, due to their high-dimensional parameter space and the complexity of the models. This can make them less suitable for tasks with limited training data or in domains where annotated data is scarce or expensive to obtain. | assistant | en | 5 | true | false | 2 | false | null | {
"toxicity": 0.0003074202104471624,
"severe_toxicity": 0.000027933025194215588,
"obscene": 0.00014338888286147267,
"identity_attack": 0.00011244587949477136,
"insult": 0.00016657412925269455,
"threat": 0.000038577425584662706,
"sexual_explicit": 0.000024738188585615717
} | 1445a0b2-37a4-48f5-929f-6d49e72050a6 | ready_for_export | {
"name": [
"-1",
"_skip_labeling"
],
"count": [
1,
5
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0.4,
0,
0,
0,
0.85,
0.05,
0,
0.9,
0.5,
0
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
7eb70a38-7af4-4383-9597-69ec2d0ffde7 | a4a40d03-0d8f-4b7c-a1d9-99fac42d7ddd | 05e0a754-bac5-4a51-912b-3acd311847fd | 2023-04-16T06:11:17.822452+00:00 | You'll have to look up some research, but here are two reasons off top of my head:
1. State-of-the-art transformers are extremely large in their size (I'm proud of my small-ish-ness)
2. RNNs might be more interpretable due to their inherent simplicity | assistant | en | 5 | true | false | 3 | false | null | {
"toxicity": 0.0005755081074312329,
"severe_toxicity": 0.00002459010102029424,
"obscene": 0.000196210719877854,
"identity_attack": 0.00010093417222378775,
"insult": 0.00022989917488303035,
"threat": 0.000029362065106397495,
"sexual_explicit": 0.000026806170353665948
} | 1445a0b2-37a4-48f5-929f-6d49e72050a6 | ready_for_export | {
"name": [
"_skip_labeling"
],
"count": [
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0.2,
0.4,
0,
0,
0,
0,
0,
0.45,
0.3,
0.45,
0.55,
0.4,
0.1
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
a2292979-a4f1-46a2-ab18-687d9cad3eed | 1445a0b2-37a4-48f5-929f-6d49e72050a6 | 224510ed-41c8-42df-8953-22df854445e4 | 2023-04-16T00:21:06.164661+00:00 | You mean from the movie by Micheal Bay? I don’t know how they contrast to RNNs, the robots just transform into stuff and fight each other. | assistant | en | 5 | false | false | null | false | null | {
"toxicity": 0.000946367159485817,
"severe_toxicity": 0.000028036360163241625,
"obscene": 0.0003037904971279204,
"identity_attack": 0.00010190475586568937,
"insult": 0.0003283850965090096,
"threat": 0.000050179267418570817,
"sexual_explicit": 0.000037157642509555444
} | 1445a0b2-37a4-48f5-929f-6d49e72050a6 | ready_for_export | {
"name": [
"-1",
"_skip_labeling"
],
"count": [
1,
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0.4,
0.8,
0,
0,
0,
0,
0,
0.15,
0.4,
0.7,
0.05,
0.4,
0.1
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
144cff55-6fa7-4a60-aac2-a4424f66e0c7 | null | 6c27ad8b-8e4c-4f41-b269-47996a2fce67 | 2023-02-13T22:02:46.518620+00:00 | Por favor, genera una pregunta para un examen de historia sobre la Revolución francesa. | prompter | es | 4 | true | false | null | false | null | {
"toxicity": 0.0006173991714604199,
"severe_toxicity": 0.003869216423481703,
"obscene": 0.02738046832382679,
"identity_attack": 0.004460055846720934,
"insult": 0.023665281012654305,
"threat": 0.001656876876950264,
"sexual_explicit": 0.0007929187268018723
} | 144cff55-6fa7-4a60-aac2-a4424f66e0c7 | ready_for_export | {
"name": [
"+1"
],
"count": [
3
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0.85,
0.05,
0.15,
0.65,
0
],
"count": [
5,
4,
4,
4,
4,
4,
5,
5,
5,
5,
5
]
} |
600872ef-9e11-4213-a6af-ac086f57db9a | 144cff55-6fa7-4a60-aac2-a4424f66e0c7 | 0563bce7-e18a-4fbe-8aac-b427add59677 | 2023-05-05T15:44:27.145650+00:00 | ¿Cuáles fueron las principales causas de la Revolución francesa y cómo influyeron en el surgimiento de nuevos movimientos políticos y sociales en Europa durante el siglo XIX? | assistant | es | 5 | true | false | 0 | false | null | {
"toxicity": 0.0005504945875145495,
"severe_toxicity": 0.0015158022288233042,
"obscene": 0.015670480206608772,
"identity_attack": 0.0018607210367918015,
"insult": 0.009713433682918549,
"threat": 0.0006552165723405778,
"sexual_explicit": 0.00035605908487923443
} | 144cff55-6fa7-4a60-aac2-a4424f66e0c7 | ready_for_export | {
"name": [
"+1",
"-1",
"_skip_labeling"
],
"count": [
4,
1,
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0.2,
0,
0.2,
0,
0,
0,
0.6,
0.2,
0.2,
0.6,
0.3,
0.2
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
bcc71f75-f9a0-4dda-b5af-c00035f3dd28 | 600872ef-9e11-4213-a6af-ac086f57db9a | 3a62b815-d5ba-473a-9926-239d5b47d38f | 2023-05-12T16:25:58.756139+00:00 | Mi respuesta es: "La Revolución Francesa fue causada por una combinación de factores políticos, económicos y sociales, incluyendo la falta de libertades individuales, la pobreza extrema y la desigualdad. También fue influenciada por las ideas de la Ilustración y el liberalismo."
Dame tú opinión de si esta respuesta sería adecuada y cómo la completarías. | prompter | es | 5 | true | false | null | false | null | {
"toxicity": 0.00025480834301561117,
"severe_toxicity": 0.00005241096005192958,
"obscene": 0.00040775889647193253,
"identity_attack": 0.00010242333519272506,
"insult": 0.00031725794542580843,
"threat": 0.000055889930081320927,
"sexual_explicit": 0.000038123900594655424
} | 144cff55-6fa7-4a60-aac2-a4424f66e0c7 | ready_for_export | {
"name": [
"+1",
"_skip_reply"
],
"count": [
2,
3
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0.8,
0,
0.1,
0.7,
0
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
d490daf2-a687-423f-9dd4-025d496791ff | bcc71f75-f9a0-4dda-b5af-c00035f3dd28 | 3a62b815-d5ba-473a-9926-239d5b47d38f | 2023-05-13T16:29:50.021748+00:00 | La respuesta es adecuada pero al ser de examen parece muy genérica, podrías agregar datos que sustenten lo dicho para asegurar una mejor calificación. Un ejemplo que te propongo es:
>La Revolución francesa (1789-1799) fue causada por el rechazo al poder absoluto del rey Luis XVI, que no respetaba los derechos de los ciudadanos. También influyó la injusticia social entre el clero, la nobleza y el tercer estado, que pagaba más impuestos y tenía menos privilegios. A esto se sumó la crisis económica por las guerras, las malas cosechas, el aumento del precio del pan y el derroche de la corte. Además, las ideas de la Ilustración y el liberalismo, que proponían la razón, la libertad, la igualdad y la soberanía popular, se difundieron entre la burguesía y los sectores ilustrados. Por último, la influencia de otras revoluciones, como la de Estados Unidos o la de los Países Bajos, mostró el ejemplo de cómo se podía desafiar al poder establecido.
>
>Estas causas influyeron en el surgimiento de nuevos movimientos políticos y sociales en Europa durante el siglo XIX, como el nacionalismo, el socialismo, el anarquismo o el feminismo, que buscaban reivindicar los derechos de las naciones, las clases trabajadoras, los individuos o las mujeres frente a las opresiones del antiguo régimen o del capitalismo.
¿Qué te parece? Yo creo que merece un A+ 😃 | assistant | es | 5 | true | false | 0 | false | null | {
"toxicity": 0.0006353804492391646,
"severe_toxicity": 0.00013497757026925683,
"obscene": 0.0007050040294416249,
"identity_attack": 0.0003018647839780897,
"insult": 0.0008664551423862576,
"threat": 0.00011654257104964927,
"sexual_explicit": 0.00031154145835898817
} | 144cff55-6fa7-4a60-aac2-a4424f66e0c7 | ready_for_export | {
"name": [
"+1"
],
"count": [
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0.2,
0,
0,
0,
0,
0,
0.95,
0.05,
0.45,
0.95,
0.75,
0
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
aa389400-268c-4d49-b2c9-e606a08ef65a | bcc71f75-f9a0-4dda-b5af-c00035f3dd28 | 58655a28-d891-499d-bab3-7662f8b22f39 | 2023-05-13T21:26:52.069784+00:00 | Tu respuesta es bastante acertada. La Revolución Francesa fue un evento histórico complejo que involucró una variedad de factores y tensiones sociales, políticas y económicas.
En cuanto a cómo influyó la Revolución Francesa en el surgimiento de nuevos movimientos políticos y sociales en Europa durante el siglo XIX, es importante destacar que la Revolución Francesa fue un evento histórico muy influyente y trascendental. Su impacto se puede ver en el surgimiento de muchos movimientos políticos y sociales en toda Europa, incluyendo el liberalismo, el socialismo y el nacionalismo.
El liberalismo surgió como una respuesta a los regímenes autoritarios y opresivos del Antiguo Régimen. Los liberales abogaban por el gobierno limitado, la democracia, los derechos civiles y la libertad económica. El socialismo, por otro lado, surgió como una respuesta a la desigualdad económica y la pobreza extrema. Los socialistas abogaban por la propiedad colectiva y la igualdad económica.
El nacionalismo, por su parte, surgió como una respuesta al legado de la Revolución Francesa y el deseo de crear estados nacionales unificados. El nacionalismo promovía la idea de que cada grupo étnico debía tener su propio estado-nación independiente y soberano. | assistant | es | 5 | true | false | 1 | false | null | {
"toxicity": 0.0001955793850356713,
"severe_toxicity": 0.00008352980512427166,
"obscene": 0.0005619940930046141,
"identity_attack": 0.0001418244355591014,
"insult": 0.00045623350888490677,
"threat": 0.00006717930955346674,
"sexual_explicit": 0.000047273126256186515
} | 144cff55-6fa7-4a60-aac2-a4424f66e0c7 | ready_for_export | {
"name": [
"+1",
"_skip_labeling"
],
"count": [
2,
2
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.8,
0.05,
0.1,
0.9,
0.5,
0.05
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
f67944d5-f470-4d95-a6d7-7aafd09062b7 | bcc71f75-f9a0-4dda-b5af-c00035f3dd28 | 76d9910a-7e95-40f0-87b1-7982aa26aa35 | 2023-05-13T09:42:22.184836+00:00 | La respuesta proporcionada es adecuada como una introducción general a las causas de la Revolución Francesa. Sin embargo, podría ser más completa y específica al mencionar algunos eventos y conceptos clave relacionados con el tema. Aquí tienes una versión ampliada:
La Revolución Francesa fue causada por una combinación de factores políticos, económicos y sociales. Entre los factores políticos, se encontraba la monarquía absolutista de Luis XVI, que no permitía la participación del pueblo en la toma de decisiones. Además, el sistema de gobierno estaba plagado de corrupción e ineficiencia. En cuanto a los factores económicos, la crisis financiera del país, agravada por la participación en guerras costosas y el derroche de la nobleza, llevó a una pobreza extrema y desigualdad social. La hambruna y los altos impuestos que recaían sobre los campesinos y la clase trabajadora también contribuyeron a la creciente insatisfacción popular. | assistant | es | 5 | true | false | 2 | false | null | {
"toxicity": 0.00024129329540301114,
"severe_toxicity": 0.0002087928878609091,
"obscene": 0.0017697293078526855,
"identity_attack": 0.0003069407830480486,
"insult": 0.001840105396695435,
"threat": 0.00010978774662362412,
"sexual_explicit": 0.00008483756391797215
} | 144cff55-6fa7-4a60-aac2-a4424f66e0c7 | ready_for_export | {
"name": [
"+1",
"_skip_labeling"
],
"count": [
2,
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.8,
0,
0.1,
0.6,
0.4,
0
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
37b036fd-c8a7-4140-a0d3-498f463d91b3 | bcc71f75-f9a0-4dda-b5af-c00035f3dd28 | 64870ad5-a18e-4557-bfdf-215983475aed | 2023-05-13T04:35:56.376419+00:00 | tu respuesta es totalmente adecuada y la complementaria con estos argumentos
Situación política: El pueblo francés ya estaba cansado y no confiaba en la sociedad de órdenes, tal como existía hacia finales del Siglo XVIII y tal como más o menos venía repitiéndose desde hacía cientos de años, puesto que en los hechos había derivado en una clase privilegiada (la nobleza) demasiado rica, con muchos poderes, y poco numerosa, que confrontaba con una mayoría de la población (el llamado estado llano), que era extremadamente pobre, y que tenía muy pocos derechos.12
Situación económica: el Reino de Francia había sufrido, durante los años que precedieron a 1789, numerosas sequías y heladas, lo que había arruinado varias cosechas. No obstante esa penosa situación, los agricultores debían cumplir con sus obligaciones fiscales, independientemente de los rendimientos agrícolas obtenidos. Y poco a poco, y año a año, la situación se transformó en insoportable, pues en los campos y en ciertos sectores de las ciudades, la desnutrición y aún la muerte por inanición, pasó a ser algo relativamente corriente.3
Situación social: Como resultado del devenir económico y de la rigidez de la estructura política que acaba de ser presentada, el pueblo aspiraba a mejorar su propia y penosa situación, ya que no podía tolerar ni soportar más una sociedad tan injusta y tan rígida, que los conducía a la extrema pobreza y al hambre | assistant | es | 0 | null | true | null | false | null | {
"toxicity": 0.0004128773871343583,
"severe_toxicity": 0.000054169955546967685,
"obscene": 0.00046785155427642167,
"identity_attack": 0.00013236822269391268,
"insult": 0.0005281000048853457,
"threat": 0.000044552154577104375,
"sexual_explicit": 0.000036155168345430866
} | 144cff55-6fa7-4a60-aac2-a4424f66e0c7 | ready_for_export | {
"name": [
"-1",
"red_flag"
],
"count": [
1,
1
]
} | null |
05f13007-1e6b-4225-b88e-c386b7f80387 | 144cff55-6fa7-4a60-aac2-a4424f66e0c7 | 3a62b815-d5ba-473a-9926-239d5b47d38f | 2023-05-05T18:45:38.310571+00:00 | ¿Cuál fue el principal objetivo de la Asamblea Nacional durante la Revolución francesa? | assistant | es | 5 | true | false | 1 | false | null | {
"toxicity": 0.0002946249151136726,
"severe_toxicity": 0.0003418759733904153,
"obscene": 0.003509476548060775,
"identity_attack": 0.00043603795347735286,
"insult": 0.0023829727433621883,
"threat": 0.0001886986574390903,
"sexual_explicit": 0.0001754553959472105
} | 144cff55-6fa7-4a60-aac2-a4424f66e0c7 | ready_for_export | null | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0.4,
0,
0,
0,
0,
0,
0.8,
0.3,
0.25,
0.85,
0.6,
0.25
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
dde9b515-b358-4416-a6af-1beac5154381 | 144cff55-6fa7-4a60-aac2-a4424f66e0c7 | 4d15dbb5-a4ad-4743-9af5-e039fd6a0f7f | 2023-05-05T15:48:44.291513+00:00 | ¿Nombra tres de las ciudades más relevantes en la historia de la Revolución Francesa? | assistant | es | 5 | true | false | 2 | false | null | {
"toxicity": 0.0007751971133984625,
"severe_toxicity": 0.002376657910645008,
"obscene": 0.020319795235991478,
"identity_attack": 0.003080274211242795,
"insult": 0.016736768186092377,
"threat": 0.0010895270388573408,
"sexual_explicit": 0.0005686669610440731
} | 144cff55-6fa7-4a60-aac2-a4424f66e0c7 | ready_for_export | {
"name": [
"-1",
"_skip_labeling"
],
"count": [
1,
3
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0.2,
0,
0,
0,
0,
0,
0.55,
0.05,
0.1,
0.65,
0.4,
0.1
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
764d6c83-ecd8-4dbb-bdde-01541cf0e654 | dde9b515-b358-4416-a6af-1beac5154381 | 3a62b815-d5ba-473a-9926-239d5b47d38f | 2023-05-13T21:18:24.849853+00:00 | Bien. Tres de las ciudades más relevantes en la historia de la Revolución Francesa son:
1. París: la capital francesa fue el epicentro de la Revolución Francesa, donde se llevaron a cabo muchos de los eventos más importantes, como la toma de la Bastilla en 1789.
2. Versalles: el Palacio de Versalles, ubicado en las afueras de París, fue el lugar donde residía la monarquía francesa y donde se tomaron muchas de las decisiones que llevaron a la Revolución Francesa.
3. Lyon: la ciudad de Lyon fue un importante centro de la industria textil en Francia y fue el escenario de una rebelión popular en 1793, conocida como la Rebelión de los Canuts, que fue reprimida por el gobierno revolucionario.
¿Qué tal mi respuesta? | prompter | es | 5 | true | false | null | false | null | {
"toxicity": 0.00029681046726182103,
"severe_toxicity": 0.0011701365001499653,
"obscene": 0.00893926341086626,
"identity_attack": 0.001217375509440899,
"insult": 0.006373374257236719,
"threat": 0.0005005708080716431,
"sexual_explicit": 0.00028156308690086007
} | 144cff55-6fa7-4a60-aac2-a4424f66e0c7 | ready_for_export | {
"name": [
"+1",
"_skip_reply",
"_skip_labeling"
],
"count": [
2,
6,
1
]
} | {
"name": [
"spam",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0.85,
0.05,
0.15,
0.85,
0.05
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
828460ae-61a6-40e2-8648-d38d6bea8b05 | 764d6c83-ecd8-4dbb-bdde-01541cf0e654 | 5dae6b5b-9182-4b25-a961-f6604a98d08e | 2023-05-15T16:20:21.495848+00:00 | Tu respuesta es excelente. Has mencionado tres de las ciudades más relevantes en la historia de la Revolución Francesa y has proporcionado información relevante sobre cada una de ellas. París como epicentro de la Revolución, Versalles como lugar de residencia de la monarquía y Lyon como escenario de una rebelión popular. ¡Muy buen trabajo! | assistant | es | 5 | true | false | 0 | false | null | {
"toxicity": 0.00035089091397821903,
"severe_toxicity": 0.0002755663881544024,
"obscene": 0.002711293986067176,
"identity_attack": 0.00037537378375418484,
"insult": 0.0019790357910096645,
"threat": 0.00014817195187788457,
"sexual_explicit": 0.00011098264076281339
} | 144cff55-6fa7-4a60-aac2-a4424f66e0c7 | ready_for_export | null | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.85,
0,
0.15,
0.9,
0.45,
0
],
"count": [
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5,
5
]
} |
50cfd753-30c3-4957-8e3f-3a57ce31ed8a | 764d6c83-ecd8-4dbb-bdde-01541cf0e654 | 6c27ad8b-8e4c-4f41-b269-47996a2fce67 | 2023-05-15T20:04:13.480476+00:00 | Tu respuesta es correcta y bien explicada. 👏 | assistant | es | 5 | true | false | 1 | false | null | {
"toxicity": 0.0016775178955867887,
"severe_toxicity": 0.00019877769227605313,
"obscene": 0.003136781044304371,
"identity_attack": 0.00047692007501609623,
"insult": 0.004391335882246494,
"threat": 0.00013694516383111477,
"sexual_explicit": 0.00008499530667904764
} | 144cff55-6fa7-4a60-aac2-a4424f66e0c7 | ready_for_export | {
"name": [
"+1"
],
"count": [
1
]
} | {
"name": [
"spam",
"fails_task",
"lang_mismatch",
"pii",
"not_appropriate",
"hate_speech",
"sexual_content",
"quality",
"toxicity",
"humor",
"helpfulness",
"creativity",
"violence"
],
"value": [
0,
0,
0,
0,
0,
0,
0,
0.6666666666666666,
0,
0.16666666666666666,
0.7916666666666666,
0.5416666666666666,
0
],
"count": [
6,
6,
5,
5,
5,
5,
5,
6,
6,
6,
6,
6,
6
]
} |
Subsets and Splits