Datasets:

License:
sephyli's picture
Upload folder using huggingface_hub
c1eaa40
raw
history blame
6.5 kB
from re import A
from typing import Dict, List, Tuple
import warnings
import numpy as np
import numpy.typing as npt
from shapely.geometry import Point
from nuplan.common.maps.abstract_map import AbstractMap
from nuplan.common.actor_state.state_representation import StateSE2
from nuplan.common.maps.maps_datatypes import SemanticMapLayer
from nuplan.common.maps.abstract_map_objects import (
LaneGraphEdgeMapObject,
RoadBlockGraphEdgeMapObject,
)
from navsim.planning.simulation.planner.pdm_planner.utils.route_utils import (
route_roadblock_correction,
)
from navsim.planning.simulation.planner.pdm_planner.utils.graph_search.dijkstra import (
Dijkstra,
)
from navsim.planning.simulation.planner.pdm_planner.utils.pdm_path import PDMPath
from navsim.planning.simulation.planner.pdm_planner.utils.pdm_geometry_utils import (
convert_absolute_to_relative_se2_array,
)
from navsim.planning.simulation.planner.pdm_planner.utils.pdm_enums import (
SE2Index,
)
# shapely runtime warning
warnings.filterwarnings("ignore", category=RuntimeWarning)
def get_driving_command(
ego_pose: StateSE2,
map_api: AbstractMap,
route_roadblock_ids: List[str],
distance: float = 20,
lateral_offset: float = 2,
) -> npt.NDArray[np.int]:
"""
Creates the one-hot (left, forward, right)driving command for the ego vehicle
:param ego_pose: (x, y, heading) object for global ego pose
:param map_api: nuPlan's map interface
:param route_roadblock_ids: roadblock ids of route
:param distance: longitudinal distance to interpolate on th centerline, defaults to 10
:param lateral_offset: lateral offset for left/right threshold, to defaults to 2
:return: numpy one-hot array of driving_command
"""
driving_command = np.zeros((3,), dtype=int) # one-hot: (left, forward, right)
# If no route available, go straight
if len(route_roadblock_ids) == 0:
driving_command[1] = 1
return driving_command
# Apply route correction on route_roadblock_ids
route_roadblock_dict, _ = get_route_dicts(map_api, route_roadblock_ids)
corrected_route_roadblock_ids = route_roadblock_correction(
ego_pose, map_api, route_roadblock_dict
)
route_roadblock_dict, route_lane_dict = get_route_dicts(map_api, corrected_route_roadblock_ids)
# Find the nearest lane, graph search, and centerline extraction
current_lane = get_current_lane(ego_pose, route_lane_dict)
discrete_centerline = get_discrete_centerline(
current_lane, route_roadblock_dict, route_lane_dict
)
centerline = PDMPath(discrete_centerline)
# Interpolate target distance on centerline
current_progress = centerline.project(Point(*ego_pose.array))
target_progress = current_progress + distance
current_pose_array, target_pose_array = centerline.interpolate(
[current_progress, target_progress], as_array=True
)
target_pose_array = convert_absolute_to_relative_se2_array(
StateSE2(*current_pose_array), target_pose_array[None,...]
)[0]
# Threshold for driving command
if target_pose_array[SE2Index.Y] >= lateral_offset:
driving_command[0] = 1
elif target_pose_array[SE2Index.Y] <= -lateral_offset:
driving_command[2] = 1
else:
driving_command[1] = 1
# delete some variables for memory management
del route_roadblock_dict, route_lane_dict, _, centerline
return driving_command
def get_route_dicts(
map_api: AbstractMap, route_roadblock_ids: List[str]
) -> Tuple[Dict[str, RoadBlockGraphEdgeMapObject], Dict[str, LaneGraphEdgeMapObject]]:
"""
Loads the roadblock and lane dicts
:param map_api: nuPlan's map interface
:param route_roadblock_ids: roadblock ids of route
:return: tuple of roadblock and lane dicts
"""
# remove repeated ids while remaining order in list
route_roadblock_ids = list(dict.fromkeys(route_roadblock_ids))
route_roadblock_dict: Dict[str, RoadBlockGraphEdgeMapObject] = {}
route_lane_dict: Dict[str, LaneGraphEdgeMapObject] = {}
for id_ in route_roadblock_ids:
block = map_api.get_map_object(id_, SemanticMapLayer.ROADBLOCK)
block = block or map_api.get_map_object(id_, SemanticMapLayer.ROADBLOCK_CONNECTOR)
route_roadblock_dict[block.id] = block
for lane in block.interior_edges:
route_lane_dict[lane.id] = lane
return route_roadblock_dict, route_lane_dict
def get_current_lane(
ego_pose: StateSE2, route_lane_dict: Dict[str, LaneGraphEdgeMapObject]
) -> LaneGraphEdgeMapObject:
"""
Find current lane, either if intersection with ego pose, or by distance.
:param ego_pose: (x, y, heading) object for global ego pose
:param route_lane_dict: Dictionary of roadblock ids and objects
:return: Lane object
"""
closest_distance = np.inf
starting_lane = None
for edge in route_lane_dict.values():
if edge.contains_point(ego_pose):
starting_lane = edge
break
distance = edge.polygon.distance(Point(*ego_pose.array))
if distance < closest_distance:
starting_lane = edge
closest_distance = distance
return starting_lane
def get_discrete_centerline(
current_lane: LaneGraphEdgeMapObject,
route_roadblock_dict: Dict[str, RoadBlockGraphEdgeMapObject],
route_lane_dict: Dict[str, LaneGraphEdgeMapObject],
search_depth: int = 30,
) -> List[StateSE2]:
"""
Given the current lane, apply graph search, and extract centerline.
:param current_lane: Lane object closest to ego
:param route_roadblock_dict: Dictionary of roadblock ids and objects
:param route_lane_dict: Dictionary of lane ids and objects
:param search_depth: max search depth of Dijkstra, defaults to 30
:return: List of (x, y, heading) objects
"""
roadblocks = list(route_roadblock_dict.values())
roadblock_ids = list(route_roadblock_dict.keys())
# find current roadblock index
start_idx = np.argmax(np.array(roadblock_ids) == current_lane.get_roadblock_id())
roadblock_window = roadblocks[start_idx : start_idx + search_depth]
graph_search = Dijkstra(current_lane, list(route_lane_dict.keys()))
route_plan, _ = graph_search.search(roadblock_window[-1])
centerline_discrete_path: List[StateSE2] = []
for lane in route_plan:
centerline_discrete_path.extend(lane.baseline_path.discrete_path)
return centerline_discrete_path