|
import cv2 |
|
import numpy as np |
|
|
|
from navsim.common.extraction.helpers import transformation |
|
|
|
|
|
def draw_pcs_on_images(pc, cam_infos, eps=1e-3): |
|
for cam_type, cam_info in cam_infos.items(): |
|
cur_img_path = cam_info["data_path"] |
|
cur_img = cv2.imread(cur_img_path) |
|
cur_img_h, cur_img_w = cur_img.shape[:2] |
|
|
|
cur_pc_cam, cur_pc_in_fov = transformation.transform_pcs_to_images( |
|
pc, |
|
cam_info["sensor2lidar_rotation"], |
|
cam_info["sensor2lidar_translation"], |
|
cam_info["cam_intrinsic"], |
|
img_shape=(cur_img_h, cur_img_w), |
|
eps=eps, |
|
) |
|
|
|
cur_pc_cam = cur_pc_cam[cur_pc_in_fov] |
|
for x, y in cur_pc_cam: |
|
cv2.circle(cur_img, (int(x), int(y)), 3, (255, 0, 0), 3) |
|
cv2.imwrite(f"dbg/{cam_type}.png", cur_img) |
|
return None |
|
|
|
|
|
def draw_pcs(points, labels, color_map): |
|
"""Draw point cloud from BEV |
|
|
|
Args: |
|
points: A ndarray with shape as [-1, 3] |
|
labels: the label of each point with shape [-1] |
|
color_map: color of each label. |
|
""" |
|
import matplotlib.pyplot as plt |
|
|
|
_, ax = plt.subplots(1, 1, figsize=(9, 9)) |
|
axes_limit = 40 |
|
|
|
viz_points = points |
|
dists = np.sqrt(np.sum(viz_points[:, :2] ** 2, axis=1)) |
|
colors = np.minimum(1, dists / axes_limit / np.sqrt(2)) |
|
|
|
|
|
points_color = color_map[labels] / 255.0 |
|
|
|
point_scale = 0.2 |
|
scatter = ax.scatter(viz_points[:, 0], viz_points[:, 1], c=points_color, s=point_scale) |
|
|
|
ax.plot(0, 0, "x", color="red") |
|
ax.set_xlim(-axes_limit, axes_limit) |
|
ax.set_ylim(-axes_limit, axes_limit) |
|
ax.axis("off") |
|
ax.set_aspect("equal") |
|
plt.savefig("dbg/dbg.png", bbox_inches="tight", pad_inches=0, dpi=200) |
|
|
|
|
|
def draw_sweep_pcs(info, sweeps): |
|
cur_pc_file = info["lidar_path"] |
|
cur_pc = transformation._load_points(cur_pc_file) |
|
viz_pcs = [cur_pc[:, :3]] |
|
viz_labels = [np.ones_like(cur_pc)[:, 0] * 0.0] |
|
|
|
for idx, sweep in enumerate(sweeps): |
|
sweep_pc_file = sweep["data_path"] |
|
sweep_pc = transformation._load_points(sweep_pc_file) |
|
sweep_pc = transformation.transform_sweep_pc_to_lidar_top( |
|
sweep_pc, sweep["sensor2lidar_rotation"], sweep["sensor2lidar_translation"] |
|
) |
|
|
|
viz_pcs.append(sweep_pc) |
|
viz_labels.append(np.ones_like(sweep_pc)[:, 0] * (idx + 1)) |
|
|
|
viz_pcs = np.concatenate(viz_pcs, 0) |
|
viz_labels = np.concatenate(viz_labels, 0).astype(np.int) |
|
color_map = np.array( |
|
[ |
|
[245, 150, 100], |
|
[245, 230, 100], |
|
[250, 80, 100], |
|
[150, 60, 30], |
|
[255, 0, 0], |
|
[180, 30, 80], |
|
[255, 0, 0], |
|
[30, 30, 255], |
|
[200, 40, 255], |
|
[90, 30, 150], |
|
] |
|
) |
|
draw_pcs(viz_pcs, viz_labels, color_map) |
|
return None |
|
|