|
--- |
|
license: cc-by-nc-4.0 |
|
tags: |
|
- music |
|
- documents |
|
- end-to-end |
|
- full-page |
|
- system-level |
|
annotations_creators: |
|
- manually expert-generated |
|
pretty_name: Sheet Music Benchmark |
|
size_categories: |
|
- 1K<n<10K |
|
task_categories: |
|
- image-to-text |
|
- image-segmentation |
|
- text-retrieval |
|
subtasks: |
|
- document-retrieval |
|
extra_gated_fields: |
|
Affiliation: text |
|
--- |
|
|
|
|
|
# ⚠️ Work in Progress! SMB: A Multi-Texture Sheet Music Recognition Benchmark ⚠️ |
|
|
|
## Overview |
|
|
|
SMB (Sheet Music Benchmark) is a dataset of printed Common Western Modern Notation scores developed at the University of Alicante at the Pattern Recognition and Artificial Intelligence Group. |
|
|
|
## Dataset Details |
|
- **Image Format**: PNG |
|
- **Encoding Formats**: RAW Humdrum **kern, **ekern (standarized **kern version) |
|
- **Annotations**: |
|
- *Segmentation:* Bounding boxes |
|
- *Music encoding (system-level and full-page):* Humdrum **kern |
|
- **Use Cases**: |
|
- Optical Music Recognition (OMR): system-level, full-page |
|
- Image Segmentation: music regions |
|
|
|
## SMB usage 📖 |
|
SMB is publicly available at [HuggingFace](https://huggingface.co/datasets/PRAIG/SMB). |
|
|
|
To download from HuggingFace: |
|
|
|
1. Gain access to the dataset and get your HF access token from: [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens). |
|
2. Install dependencies and login HF: |
|
- Install Python |
|
- Run `pip install pillow datasets huggingface_hub[cli]` |
|
- Login by `huggingface-cli login` and paste the HF access token. Check [here](https://huggingface.co/docs/huggingface_hub/guides/cli#huggingface-cli-login) for details. |
|
3. Use the following code to load SMB and extract the regions: |
|
|
|
|
|
```python |
|
from datasets import load_dataset |
|
from PIL import Image, ImageDraw |
|
|
|
ds = load_dataset("PRAIG/SMB") |
|
|
|
# First image of the train split |
|
data = ds["train"][0] |
|
image = data["image"] |
|
|
|
# Create a drawing context |
|
draw = ImageDraw.Draw(image) |
|
|
|
for reg in data["regions"]: |
|
value = reg["bbox"] |
|
|
|
# Calculate positions and dimensions |
|
box_x = value["x"] / 100 * data["original_width"] |
|
box_y = value["y"] / 100 * data["original_height"] |
|
box_width = value["width"] / 100 * data["original_width"] |
|
box_height = value["height"] / 100 * data["original_height"] |
|
|
|
# Calculate the corners of the box |
|
top_left = (box_x, box_y) |
|
top_right = (box_x + box_width, box_y) |
|
bottom_left = (box_x, box_y + box_height) |
|
bottom_right = (box_x + box_width, box_y + box_height) |
|
|
|
# Draw the box |
|
draw.rectangle([top_left, bottom_right], width=3) |
|
|
|
# Save the image with boxes |
|
image.save("image.png") |
|
``` |
|
|
|
## Citation |
|
|
|
If you use our work, please cite us: |
|
|
|
```bibtex |
|
@preprint{MartinezSevillaPRAIG24, |
|
author = {Juan C. Martinez{-}Sevilla and |
|
Noelia Luna{-}Barahona and |
|
Joan Cerveto{-}Serrano and |
|
Antonio Rios{-}Vila and |
|
David Rizo and |
|
Jorge Calvo{-}Zaragoza}, |
|
title = {A Multi{-}Texture Sheet Music Recognition Benchmark}, |
|
year = {2024} |
|
} |
|
``` |