Datasets:
Size:
10K<n<100K
License:
File size: 8,358 Bytes
68c1778 62538c3 68c1778 62538c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
---
annotations_creators:
- machine-generated
language_creators:
- expert-generated
languages:
- cs
- de
- el
- en
- es
- fr
- hu
- ja
- ko
- pt
- ro
- ru
- sk
- uk
- zh
- hu
licenses:
- cc-by-4-0
multilinguality:
- translation
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- sequence-modeling
task_ids:
- language-modeling
---
# Dataset Card Creation Guide
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts](https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632)
- **Repository:** [ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts](https://github.com/soares-f/parapat)
- **Paper:** [ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts](https://www.aclweb.org/anthology/2020.lrec-1.465/)
- **Point of Contact:** [Felipe Soares]([email protected])
### Dataset Summary
ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts
This dataset contains the developed parallel corpus from the open access Google Patents dataset in 74 language pairs, comprising more than 68 million sentences and 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm for the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The dataset contains samples in cs, de, el, en, es, fr, hu, ja, ko, pt, ro, ru, sk, uk, zh, hu
## Dataset Structure
### Data Instances
They are of 2 types depending on the dataset:
First type
{
"translation":{
"en":"A method for converting a series of m-bit information words to a modulated signal is described.",
"es":"Se describe un método para convertir una serie de palabras de informacion de bits m a una señal modulada."
}
}
Second type
{
"family_id":10944407,
"index":844,
"translation":{
"el":"αφές ο οποίος παρασκευάζεται με χαρμάνι ελληνικού καφέ είτε σε συσκευή καφέ εσπρέσο είτε σε συσκευή γαλλικού καφέ (φίλτρου) είτε κατά τον παραδοσιακό τρόπο του ελληνικού καφέ και διυλίζεται, κτυπιέται στη συνέχεια με πάγο σε χειροκίνητο ή ηλεκτρικόμίξερ ώστε να παγώσει ομοιόμορφα και να αποκτήσει πλούσιο αφρό και σερβίρεται σε ποτήρι. ΰ",
"en":"offee prepared using the mix for Greek coffee either in an espresso - type coffee making machine, or in a filter coffee making machine or in the traditional way for preparing Greek coffee and is then filtered , shaken with ice manually or with an electric mixer so that it freezes homogeneously, obtains a rich froth and is served in a glass."
}
}
### Data Fields
**index:** position in the corpus
**family id:** for each abstract, such that researchers can use that information for other text mining purposes.
**translation:** distionary containing source and target sentence for that example
### Data Splits
No official train/val/test splits given.
Parallel corpora aligned into sentence level
|Language Pair|# Sentences|# Unique Tokens|
|--------|-----|------|
|EN/ZH|4.9M|155.8M|
|EN/JA|6.1M|189.6M|
|EN/FR|12.2M|455M|
|EN/KO|2.3M|91.4M|
|EN/DE|2.2M|81.7M|
|EN/RU|4.3M|107.3M|
|DE/FR|1.2M|38.8M|
|FR/JA|0.3M|9.9M|
|EN/ES|0.6M|24.6M|
Parallel corpora aligned into abstract level
|Language Pair|# Abstracts|
|--------|-----|
|FR/KO|120,607|
|EN/UK|89,227|
|RU/UK|85,963|
|CS/EN|78,978|
|EN/RO|48,789|
|EN/HU|42,629|
|ES/FR|32,553|
|EN/SK|23,410|
|EN/PT|23,122|
|BG/EN|16,177|
|FR/RU|10,889|
## Dataset Creation
### Curation Rationale
The availability of parallel corpora is required by current Statistical and Neural Machine Translation systems (SMT and NMT). Acquiring a high-quality parallel corpus that is large enough to train MT systems, particularly NMT ones, is not a trivial task due to the need for correct alignment and, in many cases, human curation. In this context, the automated creation of parallel corpora from freely available resources is extremely important in Natural Language Pro- cessing (NLP).
### Source Data
#### Initial Data Collection and Normalization
Google makes patents data available under the Google Cloud Public Datasets. BigQuery is a Google service that supports the efficient storage and querying of massive datasets which are usually a challenging task for usual SQL databases. For instance, filtering the September 2019 release of the dataset, which contains more than 119 million rows, can take less than 1 minute for text fields. The on-demand billing for BigQuery is based on the amount of data processed by each query run, thus for a single query that performs a full-scan, the cost can be over USD 15.00, since the cost per TB is currently USD 5.00.
#### Who are the source language producers?
BigQuery is a Google service that supports the efficient storage and querying of massive datasets which are usually a challenging task for usual SQL databases.
### Annotations
#### Annotation process
The following steps describe the process of producing patent aligned abstracts:
1. Load the nth individual file
2. Remove rows where the number of abstracts with more than one language is less than 2 for a given family id. The family id attribute is used to group patents that refers to the same invention. By removing these rows, we remove abstracts that are available only in one language.
3. From the resulting set, create all possible parallel abstracts from the available languages. For instance, an abstract may be available in English, French and German, thus, the possible language pairs are English/French, English/German, and French/German.
4. Store the parallel patents into an SQL database for easier future handling and sampling.
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
Funded by Google Tensorflow Research Cloud.
### Licensing Information
CC BY 4.0
### Citation Information
```
@inproceedings{soares-etal-2020-parapat,
title = "{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts",
author = "Soares, Felipe and
Stevenson, Mark and
Bartolome, Diego and
Zaretskaya, Anna",
booktitle = "Proceedings of The 12th Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://www.aclweb.org/anthology/2020.lrec-1.465",
pages = "3769--3774",
language = "English",
ISBN = "979-10-95546-34-4",
}
```
[DOI](https://doi.org/10.6084/m9.figshare.12627632)
### Contributions
Thanks to [@bhavitvyamalik](https://github.com/bhavitvyamalik) for adding this dataset. |