Datasets:
Size:
10K<n<100K
License:
File size: 14,511 Bytes
68c1778 652313e 68c1778 652313e 82010fa 68c1778 1b31332 95727dd 68c1778 1b31332 fe672a0 3c7085e 9d7bbc1 68c1778 fe672a0 68c1778 fe672a0 68c1778 62538c3 68c1778 62538c3 9d7bbc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
---
annotations_creators:
- machine-generated
language_creators:
- expert-generated
language:
- cs
- de
- el
- en
- es
- fr
- hu
- ja
- ko
- pt
- ro
- ru
- sk
- uk
- zh
license:
- cc-by-4.0
multilinguality:
- translation
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
- translation
task_ids:
- language-modeling
- masked-language-modeling
paperswithcode_id: parapat
pretty_name: Parallel Corpus of Patents Abstracts
dataset_info:
- config_name: el-en
features:
- name: index
dtype: int32
- name: family_id
dtype: int32
- name: translation
dtype:
translation:
languages:
- el
- en
splits:
- name: train
num_bytes: 24818840
num_examples: 10855
download_size: 24894705
dataset_size: 24818840
- config_name: cs-en
features:
- name: index
dtype: int32
- name: family_id
dtype: int32
- name: translation
dtype:
translation:
languages:
- cs
- en
splits:
- name: train
num_bytes: 117555722
num_examples: 78977
download_size: 118010340
dataset_size: 117555722
- config_name: en-hu
features:
- name: index
dtype: int32
- name: family_id
dtype: int32
- name: translation
dtype:
translation:
languages:
- en
- hu
splits:
- name: train
num_bytes: 80637157
num_examples: 42629
download_size: 80893995
dataset_size: 80637157
- config_name: en-ro
features:
- name: index
dtype: int32
- name: family_id
dtype: int32
- name: translation
dtype:
translation:
languages:
- en
- ro
splits:
- name: train
num_bytes: 80290819
num_examples: 48789
download_size: 80562562
dataset_size: 80290819
- config_name: en-sk
features:
- name: index
dtype: int32
- name: family_id
dtype: int32
- name: translation
dtype:
translation:
languages:
- en
- sk
splits:
- name: train
num_bytes: 31510348
num_examples: 23410
download_size: 31707728
dataset_size: 31510348
- config_name: en-uk
features:
- name: index
dtype: int32
- name: family_id
dtype: int32
- name: translation
dtype:
translation:
languages:
- en
- uk
splits:
- name: train
num_bytes: 136808871
num_examples: 89226
download_size: 137391928
dataset_size: 136808871
- config_name: es-fr
features:
- name: index
dtype: int32
- name: family_id
dtype: int32
- name: translation
dtype:
translation:
languages:
- es
- fr
splits:
- name: train
num_bytes: 53767035
num_examples: 32553
download_size: 53989438
dataset_size: 53767035
- config_name: fr-ru
features:
- name: index
dtype: int32
- name: family_id
dtype: int32
- name: translation
dtype:
translation:
languages:
- fr
- ru
splits:
- name: train
num_bytes: 33915203
num_examples: 10889
download_size: 33994490
dataset_size: 33915203
- config_name: de-fr
features:
- name: translation
dtype:
translation:
languages:
- de
- fr
splits:
- name: train
num_bytes: 655742822
num_examples: 1167988
download_size: 204094654
dataset_size: 655742822
- config_name: en-ja
features:
- name: translation
dtype:
translation:
languages:
- en
- ja
splits:
- name: train
num_bytes: 3100002828
num_examples: 6170339
download_size: 1093334863
dataset_size: 3100002828
- config_name: en-es
features:
- name: translation
dtype:
translation:
languages:
- en
- es
splits:
- name: train
num_bytes: 337690858
num_examples: 649396
download_size: 105202237
dataset_size: 337690858
- config_name: en-fr
features:
- name: translation
dtype:
translation:
languages:
- en
- fr
splits:
- name: train
num_bytes: 6103179552
num_examples: 12223525
download_size: 1846098331
dataset_size: 6103179552
- config_name: de-en
features:
- name: translation
dtype:
translation:
languages:
- de
- en
splits:
- name: train
num_bytes: 1059631418
num_examples: 2165054
download_size: 339299130
dataset_size: 1059631418
- config_name: en-ko
features:
- name: translation
dtype:
translation:
languages:
- en
- ko
splits:
- name: train
num_bytes: 1466703472
num_examples: 2324357
download_size: 475152089
dataset_size: 1466703472
- config_name: fr-ja
features:
- name: translation
dtype:
translation:
languages:
- fr
- ja
splits:
- name: train
num_bytes: 211127021
num_examples: 313422
download_size: 69038401
dataset_size: 211127021
- config_name: en-zh
features:
- name: translation
dtype:
translation:
languages:
- en
- zh
splits:
- name: train
num_bytes: 2297993338
num_examples: 4897841
download_size: 899568201
dataset_size: 2297993338
- config_name: en-ru
features:
- name: translation
dtype:
translation:
languages:
- en
- ru
splits:
- name: train
num_bytes: 1974874480
num_examples: 4296399
download_size: 567240359
dataset_size: 1974874480
- config_name: fr-ko
features:
- name: index
dtype: int32
- name: family_id
dtype: int32
- name: translation
dtype:
translation:
languages:
- fr
- ko
splits:
- name: train
num_bytes: 222006786
num_examples: 120607
download_size: 64621605
dataset_size: 222006786
- config_name: ru-uk
features:
- name: index
dtype: int32
- name: family_id
dtype: int32
- name: translation
dtype:
translation:
languages:
- ru
- uk
splits:
- name: train
num_bytes: 163442529
num_examples: 85963
download_size: 38709524
dataset_size: 163442529
- config_name: en-pt
features:
- name: index
dtype: int32
- name: family_id
dtype: int32
- name: translation
dtype:
translation:
languages:
- en
- pt
splits:
- name: train
num_bytes: 37372555
num_examples: 23121
download_size: 12781082
dataset_size: 37372555
---
# Dataset Card for ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts](https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632)
- **Repository:** [ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts](https://github.com/soares-f/parapat)
- **Paper:** [ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts](https://www.aclweb.org/anthology/2020.lrec-1.465/)
- **Point of Contact:** [Felipe Soares]([email protected])
### Dataset Summary
ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts
This dataset contains the developed parallel corpus from the open access Google Patents dataset in 74 language pairs, comprising more than 68 million sentences and 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm for the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The dataset contains samples in cs, de, el, en, es, fr, hu, ja, ko, pt, ro, ru, sk, uk, zh, hu
## Dataset Structure
### Data Instances
They are of 2 types depending on the dataset:
First type
{
"translation":{
"en":"A method for converting a series of m-bit information words to a modulated signal is described.",
"es":"Se describe un método para convertir una serie de palabras de informacion de bits m a una señal modulada."
}
}
Second type
{
"family_id":10944407,
"index":844,
"translation":{
"el":"αφές ο οποίος παρασκευάζεται με χαρμάνι ελληνικού καφέ είτε σε συσκευή καφέ εσπρέσο είτε σε συσκευή γαλλικού καφέ (φίλτρου) είτε κατά τον παραδοσιακό τρόπο του ελληνικού καφέ και διυλίζεται, κτυπιέται στη συνέχεια με πάγο σε χειροκίνητο ή ηλεκτρικόμίξερ ώστε να παγώσει ομοιόμορφα και να αποκτήσει πλούσιο αφρό και σερβίρεται σε ποτήρι. ΰ",
"en":"offee prepared using the mix for Greek coffee either in an espresso - type coffee making machine, or in a filter coffee making machine or in the traditional way for preparing Greek coffee and is then filtered , shaken with ice manually or with an electric mixer so that it freezes homogeneously, obtains a rich froth and is served in a glass."
}
}
### Data Fields
**index:** position in the corpus
**family id:** for each abstract, such that researchers can use that information for other text mining purposes.
**translation:** distionary containing source and target sentence for that example
### Data Splits
No official train/val/test splits given.
Parallel corpora aligned into sentence level
|Language Pair|# Sentences|# Unique Tokens|
|--------|-----|------|
|EN/ZH|4.9M|155.8M|
|EN/JA|6.1M|189.6M|
|EN/FR|12.2M|455M|
|EN/KO|2.3M|91.4M|
|EN/DE|2.2M|81.7M|
|EN/RU|4.3M|107.3M|
|DE/FR|1.2M|38.8M|
|FR/JA|0.3M|9.9M|
|EN/ES|0.6M|24.6M|
Parallel corpora aligned into abstract level
|Language Pair|# Abstracts|
|--------|-----|
|FR/KO|120,607|
|EN/UK|89,227|
|RU/UK|85,963|
|CS/EN|78,978|
|EN/RO|48,789|
|EN/HU|42,629|
|ES/FR|32,553|
|EN/SK|23,410|
|EN/PT|23,122|
|BG/EN|16,177|
|FR/RU|10,889|
## Dataset Creation
### Curation Rationale
The availability of parallel corpora is required by current Statistical and Neural Machine Translation systems (SMT and NMT). Acquiring a high-quality parallel corpus that is large enough to train MT systems, particularly NMT ones, is not a trivial task due to the need for correct alignment and, in many cases, human curation. In this context, the automated creation of parallel corpora from freely available resources is extremely important in Natural Language Pro- cessing (NLP).
### Source Data
#### Initial Data Collection and Normalization
Google makes patents data available under the Google Cloud Public Datasets. BigQuery is a Google service that supports the efficient storage and querying of massive datasets which are usually a challenging task for usual SQL databases. For instance, filtering the September 2019 release of the dataset, which contains more than 119 million rows, can take less than 1 minute for text fields. The on-demand billing for BigQuery is based on the amount of data processed by each query run, thus for a single query that performs a full-scan, the cost can be over USD 15.00, since the cost per TB is currently USD 5.00.
#### Who are the source language producers?
BigQuery is a Google service that supports the efficient storage and querying of massive datasets which are usually a challenging task for usual SQL databases.
### Annotations
#### Annotation process
The following steps describe the process of producing patent aligned abstracts:
1. Load the nth individual file
2. Remove rows where the number of abstracts with more than one language is less than 2 for a given family id. The family id attribute is used to group patents that refers to the same invention. By removing these rows, we remove abstracts that are available only in one language.
3. From the resulting set, create all possible parallel abstracts from the available languages. For instance, an abstract may be available in English, French and German, thus, the possible language pairs are English/French, English/German, and French/German.
4. Store the parallel patents into an SQL database for easier future handling and sampling.
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
Funded by Google Tensorflow Research Cloud.
### Licensing Information
CC BY 4.0
### Citation Information
```
@inproceedings{soares-etal-2020-parapat,
title = "{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts",
author = "Soares, Felipe and
Stevenson, Mark and
Bartolome, Diego and
Zaretskaya, Anna",
booktitle = "Proceedings of The 12th Language Resources and Evaluation Conference",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://www.aclweb.org/anthology/2020.lrec-1.465",
pages = "3769--3774",
language = "English",
ISBN = "979-10-95546-34-4",
}
```
[DOI](https://doi.org/10.6084/m9.figshare.12627632)
### Contributions
Thanks to [@bhavitvyamalik](https://github.com/bhavitvyamalik) for adding this dataset. |