File size: 14,511 Bytes
68c1778
 
 
 
 
652313e
68c1778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
652313e
82010fa
68c1778
 
 
 
 
 
 
1b31332
 
95727dd
68c1778
 
1b31332
fe672a0
3c7085e
9d7bbc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68c1778
 
fe672a0
68c1778
 
 
 
fe672a0
68c1778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62538c3
68c1778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62538c3
 
 
9d7bbc1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
---
annotations_creators:
- machine-generated
language_creators:
- expert-generated
language:
- cs
- de
- el
- en
- es
- fr
- hu
- ja
- ko
- pt
- ro
- ru
- sk
- uk
- zh
license:
- cc-by-4.0
multilinguality:
- translation
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
- translation
task_ids:
- language-modeling
- masked-language-modeling
paperswithcode_id: parapat
pretty_name: Parallel Corpus of Patents Abstracts
dataset_info:
- config_name: el-en
  features:
  - name: index
    dtype: int32
  - name: family_id
    dtype: int32
  - name: translation
    dtype:
      translation:
        languages:
        - el
        - en
  splits:
  - name: train
    num_bytes: 24818840
    num_examples: 10855
  download_size: 24894705
  dataset_size: 24818840
- config_name: cs-en
  features:
  - name: index
    dtype: int32
  - name: family_id
    dtype: int32
  - name: translation
    dtype:
      translation:
        languages:
        - cs
        - en
  splits:
  - name: train
    num_bytes: 117555722
    num_examples: 78977
  download_size: 118010340
  dataset_size: 117555722
- config_name: en-hu
  features:
  - name: index
    dtype: int32
  - name: family_id
    dtype: int32
  - name: translation
    dtype:
      translation:
        languages:
        - en
        - hu
  splits:
  - name: train
    num_bytes: 80637157
    num_examples: 42629
  download_size: 80893995
  dataset_size: 80637157
- config_name: en-ro
  features:
  - name: index
    dtype: int32
  - name: family_id
    dtype: int32
  - name: translation
    dtype:
      translation:
        languages:
        - en
        - ro
  splits:
  - name: train
    num_bytes: 80290819
    num_examples: 48789
  download_size: 80562562
  dataset_size: 80290819
- config_name: en-sk
  features:
  - name: index
    dtype: int32
  - name: family_id
    dtype: int32
  - name: translation
    dtype:
      translation:
        languages:
        - en
        - sk
  splits:
  - name: train
    num_bytes: 31510348
    num_examples: 23410
  download_size: 31707728
  dataset_size: 31510348
- config_name: en-uk
  features:
  - name: index
    dtype: int32
  - name: family_id
    dtype: int32
  - name: translation
    dtype:
      translation:
        languages:
        - en
        - uk
  splits:
  - name: train
    num_bytes: 136808871
    num_examples: 89226
  download_size: 137391928
  dataset_size: 136808871
- config_name: es-fr
  features:
  - name: index
    dtype: int32
  - name: family_id
    dtype: int32
  - name: translation
    dtype:
      translation:
        languages:
        - es
        - fr
  splits:
  - name: train
    num_bytes: 53767035
    num_examples: 32553
  download_size: 53989438
  dataset_size: 53767035
- config_name: fr-ru
  features:
  - name: index
    dtype: int32
  - name: family_id
    dtype: int32
  - name: translation
    dtype:
      translation:
        languages:
        - fr
        - ru
  splits:
  - name: train
    num_bytes: 33915203
    num_examples: 10889
  download_size: 33994490
  dataset_size: 33915203
- config_name: de-fr
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - de
        - fr
  splits:
  - name: train
    num_bytes: 655742822
    num_examples: 1167988
  download_size: 204094654
  dataset_size: 655742822
- config_name: en-ja
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - en
        - ja
  splits:
  - name: train
    num_bytes: 3100002828
    num_examples: 6170339
  download_size: 1093334863
  dataset_size: 3100002828
- config_name: en-es
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - en
        - es
  splits:
  - name: train
    num_bytes: 337690858
    num_examples: 649396
  download_size: 105202237
  dataset_size: 337690858
- config_name: en-fr
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - en
        - fr
  splits:
  - name: train
    num_bytes: 6103179552
    num_examples: 12223525
  download_size: 1846098331
  dataset_size: 6103179552
- config_name: de-en
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - de
        - en
  splits:
  - name: train
    num_bytes: 1059631418
    num_examples: 2165054
  download_size: 339299130
  dataset_size: 1059631418
- config_name: en-ko
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - en
        - ko
  splits:
  - name: train
    num_bytes: 1466703472
    num_examples: 2324357
  download_size: 475152089
  dataset_size: 1466703472
- config_name: fr-ja
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - fr
        - ja
  splits:
  - name: train
    num_bytes: 211127021
    num_examples: 313422
  download_size: 69038401
  dataset_size: 211127021
- config_name: en-zh
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - en
        - zh
  splits:
  - name: train
    num_bytes: 2297993338
    num_examples: 4897841
  download_size: 899568201
  dataset_size: 2297993338
- config_name: en-ru
  features:
  - name: translation
    dtype:
      translation:
        languages:
        - en
        - ru
  splits:
  - name: train
    num_bytes: 1974874480
    num_examples: 4296399
  download_size: 567240359
  dataset_size: 1974874480
- config_name: fr-ko
  features:
  - name: index
    dtype: int32
  - name: family_id
    dtype: int32
  - name: translation
    dtype:
      translation:
        languages:
        - fr
        - ko
  splits:
  - name: train
    num_bytes: 222006786
    num_examples: 120607
  download_size: 64621605
  dataset_size: 222006786
- config_name: ru-uk
  features:
  - name: index
    dtype: int32
  - name: family_id
    dtype: int32
  - name: translation
    dtype:
      translation:
        languages:
        - ru
        - uk
  splits:
  - name: train
    num_bytes: 163442529
    num_examples: 85963
  download_size: 38709524
  dataset_size: 163442529
- config_name: en-pt
  features:
  - name: index
    dtype: int32
  - name: family_id
    dtype: int32
  - name: translation
    dtype:
      translation:
        languages:
        - en
        - pt
  splits:
  - name: train
    num_bytes: 37372555
    num_examples: 23121
  download_size: 12781082
  dataset_size: 37372555
---

# Dataset Card for ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts](https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632)
- **Repository:** [ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts](https://github.com/soares-f/parapat)
- **Paper:** [ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts](https://www.aclweb.org/anthology/2020.lrec-1.465/)
- **Point of Contact:** [Felipe Soares]([email protected])

### Dataset Summary

ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts

This dataset contains the developed parallel corpus from the open access Google Patents dataset in 74 language pairs, comprising more than 68 million sentences and 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm for the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

The dataset contains samples in cs, de, el, en, es, fr, hu, ja, ko, pt, ro, ru, sk, uk, zh, hu

## Dataset Structure

### Data Instances

They are of 2 types depending on the dataset:

First type
{
   "translation":{
      "en":"A method for converting a series of m-bit information words to a modulated signal is described.",
      "es":"Se describe un método para convertir una serie de palabras de informacion de bits m a una señal modulada."
   }
}

Second type
{
   "family_id":10944407,
   "index":844,
   "translation":{
      "el":"αφές ο οποίος παρασκευάζεται με χαρμάνι ελληνικού καφέ είτε σε συσκευή καφέ εσπρέσο είτε σε συσκευή γαλλικού καφέ (φίλτρου) είτε κατά τον παραδοσιακό τρόπο του ελληνικού καφέ και διυλίζεται, κτυπιέται στη συνέχεια με πάγο σε χειροκίνητο ή ηλεκτρικόμίξερ ώστε να παγώσει ομοιόμορφα και να αποκτήσει πλούσιο αφρό και σερβίρεται σε ποτήρι. ΰ",
      "en":"offee prepared using the mix for Greek coffee either in an espresso - type coffee making machine, or in a filter coffee making machine or in the traditional way for preparing Greek coffee and is then filtered , shaken with ice manually or with an electric mixer so that it freezes homogeneously, obtains a rich froth and is served in a glass."
   }
}

### Data Fields

**index:** position in the corpus
**family id:** for each abstract, such that researchers can use that information for other text mining purposes.
**translation:** distionary containing source and target sentence for that example

### Data Splits

No official train/val/test splits given.

Parallel corpora aligned into sentence level

|Language Pair|# Sentences|# Unique Tokens|
|--------|-----|------|
|EN/ZH|4.9M|155.8M|
|EN/JA|6.1M|189.6M|
|EN/FR|12.2M|455M|
|EN/KO|2.3M|91.4M|
|EN/DE|2.2M|81.7M|
|EN/RU|4.3M|107.3M|
|DE/FR|1.2M|38.8M|
|FR/JA|0.3M|9.9M|
|EN/ES|0.6M|24.6M|

Parallel corpora aligned into abstract level

|Language Pair|# Abstracts|
|--------|-----|
|FR/KO|120,607|
|EN/UK|89,227|
|RU/UK|85,963|
|CS/EN|78,978|
|EN/RO|48,789|
|EN/HU|42,629|
|ES/FR|32,553|
|EN/SK|23,410|
|EN/PT|23,122|
|BG/EN|16,177|
|FR/RU|10,889|


## Dataset Creation

### Curation Rationale

The availability of parallel corpora is required by current Statistical and Neural Machine Translation systems (SMT and NMT). Acquiring a high-quality parallel corpus that is large enough to train MT systems, particularly NMT ones, is not a trivial task due to the need for correct alignment and, in many cases, human curation. In this context, the automated creation of parallel corpora from freely available resources is extremely important in Natural Language Pro- cessing (NLP).

### Source Data

#### Initial Data Collection and Normalization

Google makes patents data available under the Google Cloud Public Datasets. BigQuery is a Google service that supports the efficient storage and querying of massive datasets which are usually a challenging task for usual SQL databases. For instance, filtering the September 2019 release of the dataset, which contains more than 119 million rows, can take less than 1 minute for text fields. The on-demand billing for BigQuery is based on the amount of data processed by each query run, thus for a single query that performs a full-scan, the cost can be over USD 15.00, since the cost per TB is currently USD 5.00.

#### Who are the source language producers?

BigQuery is a Google service that supports the efficient storage and querying of massive datasets which are usually a challenging task for usual SQL databases.

### Annotations

#### Annotation process

The following steps describe the process of producing patent aligned abstracts:

1. Load the nth individual file
2. Remove rows where the number of abstracts with more than one language is less than 2 for a given family id. The family id attribute is used to group patents that refers to the same invention. By removing these rows, we remove abstracts that are available only in one language.
3. From the resulting set, create all possible parallel abstracts from the available languages. For instance, an abstract may be available in English, French and German, thus, the possible language pairs are English/French, English/German, and French/German.
4. Store the parallel patents into an SQL database for easier future handling and sampling.

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

Funded by Google Tensorflow Research Cloud.

### Licensing Information

CC BY 4.0

### Citation Information

```
@inproceedings{soares-etal-2020-parapat,
    title = "{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts",
    author = "Soares, Felipe  and
      Stevenson, Mark  and
      Bartolome, Diego  and
      Zaretskaya, Anna",
    booktitle = "Proceedings of The 12th Language Resources and Evaluation Conference",
    month = may,
    year = "2020",
    address = "Marseille, France",
    publisher = "European Language Resources Association",
    url = "https://www.aclweb.org/anthology/2020.lrec-1.465",
    pages = "3769--3774",
    language = "English",
    ISBN = "979-10-95546-34-4",
}
```

[DOI](https://doi.org/10.6084/m9.figshare.12627632)
### Contributions

Thanks to [@bhavitvyamalik](https://github.com/bhavitvyamalik) for adding this dataset.