hexsha
stringlengths
40
40
size
int64
4
1.02M
ext
stringclasses
8 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
209
max_stars_repo_name
stringlengths
5
121
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
209
max_issues_repo_name
stringlengths
5
121
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
209
max_forks_repo_name
stringlengths
5
121
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
4
1.02M
avg_line_length
float64
1.07
66.1k
max_line_length
int64
4
266k
alphanum_fraction
float64
0.01
1
9f514a9af593f0be206ac89710f6f10e51760c0c
1,112
py
Python
BeautyWorld/urls.py
leoniknik/BeautyWorldDjango
93c44cd7ebf283b663020f166ec7075ceeb070c8
[ "MIT" ]
null
null
null
BeautyWorld/urls.py
leoniknik/BeautyWorldDjango
93c44cd7ebf283b663020f166ec7075ceeb070c8
[ "MIT" ]
null
null
null
BeautyWorld/urls.py
leoniknik/BeautyWorldDjango
93c44cd7ebf283b663020f166ec7075ceeb070c8
[ "MIT" ]
null
null
null
from django.conf.urls import url, include from BeautyWorld.views import api_category, sign_up, sign_in, api_salon, api_cart, api_orders, api_offers, api_choose_offer,api_create_order, getfile, login urlpatterns = [ #url(r'^signin$', signin), # POST #url(r'^signup$', signup), # POST #url(r'^edit_user$', edit_user), # POST #url(r'^add_vehicle$', add_vehicle), # POST #url(r'^edit_vehicle$', edit_vehicle), # POST #url(r'^get_list_of_actual_crashes$', get_list_of_actual_crashes), # GET #url(r'^get_list_of_history_crashes$', get_list_of_history_crashes), # GET #url(r'^get_list_of_offers$', get_list_of_offers), # GET ##url(r'^get_list_of_vehicles$', get_list_of_vehicles), # GET url(r'^category$', api_category), # GET url(r'^salon$', api_salon), # GET url(r'^signup$', sign_up), # POST url(r'^signin$', sign_in), # POST #url(r'^cart$', api_cart), # POST url(r'^order$', api_orders), # GET url(r'^offer$', api_offers), # GET url(r'^choose_offer$', api_choose_offer),# POST url(r'^create_order$', api_create_order),# POST ]
48.347826
156
0.667266
8ed93dbd35c78800f001b35ce84682de3169c04f
1,126
py
Python
examples/vedirect_mqtt.py
NickNothom/vedirect
9219b75d18640b2bd7e5bbe5ab1df3cb21e8d89f
[ "MIT" ]
59
2016-06-14T18:03:07.000Z
2022-03-26T10:25:33.000Z
examples/vedirect_mqtt.py
NickNothom/vedirect
9219b75d18640b2bd7e5bbe5ab1df3cb21e8d89f
[ "MIT" ]
8
2019-01-19T21:11:07.000Z
2022-03-28T20:17:54.000Z
examples/vedirect_mqtt.py
NickNothom/vedirect
9219b75d18640b2bd7e5bbe5ab1df3cb21e8d89f
[ "MIT" ]
30
2016-05-26T14:48:34.000Z
2022-03-26T10:20:19.000Z
#!/usr/bin/python3 # -*- coding: utf-8 -*- import argparse, os import paho.mqtt.client as mqtt from vedirect import Vedirect if __name__ == '__main__': parser = argparse.ArgumentParser(description='Process VE.Direct protocol') parser.add_argument('--port', help='Serial port') parser.add_argument('--timeout', help='Serial port read timeout', type=int, default='60') parser.add_argument('--mqttbroker', help='MQTT broker address', type=str, default='test.mosquitto.org') parser.add_argument('--mqttbrokerport', help='MQTT broker port', type=int, default='1883') parser.add_argument('--topicprefix', help='MQTT topic prefix', type=str, default='vedirect/') args = parser.parse_args() ve = Vedirect(args.port, args.timeout) client = mqtt.Client() client.connect(args.mqttbroker, args.mqttbrokerport, 60) client.loop_start() def mqtt_send_callback(packet): for key, value in packet.items(): if key != 'SER#': # topic cannot contain MQTT wildcards client.publish(args.topicprefix + key, value) ve.read_data_callback(mqtt_send_callback)
38.827586
107
0.694494
f09a1109c79327fb8f0575413ce51f995cd6104f
1,250
py
Python
applications/experimental/pipelines/pipelines/nodes/__init__.py
SunYanCN/PaddleNLP
31deea6c989f399b4552ee711d9f7d62768d645f
[ "Apache-2.0" ]
null
null
null
applications/experimental/pipelines/pipelines/nodes/__init__.py
SunYanCN/PaddleNLP
31deea6c989f399b4552ee711d9f7d62768d645f
[ "Apache-2.0" ]
null
null
null
applications/experimental/pipelines/pipelines/nodes/__init__.py
SunYanCN/PaddleNLP
31deea6c989f399b4552ee711d9f7d62768d645f
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pipelines.utils.import_utils import safe_import from pipelines.nodes.base import BaseComponent from pipelines.nodes.file_classifier import FileTypeClassifier from pipelines.nodes.file_converter import ( BaseConverter, DocxToTextConverter, ImageToTextConverter, MarkdownConverter, PDFToTextConverter, PDFToTextOCRConverter, TextConverter, ) from pipelines.nodes.preprocessor import BasePreProcessor, PreProcessor from pipelines.nodes.ranker import BaseRanker, ErnieRanker from pipelines.nodes.reader import BaseReader, ErnieReader from pipelines.nodes.retriever import BaseRetriever, DensePassageRetriever
40.322581
74
0.8024
ff364b21424309db83018d192f67cf61996debfa
2,562
py
Python
receive_email.py
iamywang/gtk_email
2bee07b851a830ec76603baa8f0b2460a5dc06a8
[ "MIT" ]
null
null
null
receive_email.py
iamywang/gtk_email
2bee07b851a830ec76603baa8f0b2460a5dc06a8
[ "MIT" ]
null
null
null
receive_email.py
iamywang/gtk_email
2bee07b851a830ec76603baa8f0b2460a5dc06a8
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: UTF-8 -*- from email.parser import Parser from email.header import decode_header from email.utils import parseaddr import poplib # 输入邮件地址, 口令和POP3服务器地址: email = input('Email: ') password = input('Password: ') pop3_server = input('POP3 server: ') def guess_charset(msg): charset = msg.get_charset() if charset is None: content_type = msg.get('Content-Type', '').lower() pos = content_type.find('charset=') if pos >= 0: charset = content_type[pos + 8:].strip() return charset def decode_str(s): value, charset = decode_header(s)[0] if charset: value = value.decode(charset) return value def print_info(msg, indent=0): if indent == 0: for header in ['From', 'To', 'Subject']: value = msg.get(header, '') if value: if header == 'Subject': value = decode_str(value) else: hdr, addr = parseaddr(value) name = decode_str(hdr) value = u'%s <%s>' % (name, addr) print('%s%s: %s' % (' ' * indent, header, value)) if (msg.is_multipart()): parts = msg.get_payload() for n, part in enumerate(parts): print('%spart %s' % (' ' * indent, n)) print('%s--------------------' % (' ' * indent)) print_info(part, indent + 1) else: content_type = msg.get_content_type() if content_type == 'text/plain' or content_type == 'text/html': content = msg.get_payload(decode=True) charset = guess_charset(msg) if charset: content = content.decode(charset) print('%sText: %s' % (' ' * indent, content + '...')) else: print('%sAttachment: %s' % (' ' * indent, content_type)) # 连接到POP3服务器: server = poplib.POP3(pop3_server) # 可以打开或关闭调试信息: server.set_debuglevel(1) # 可选:打印POP3服务器的欢迎文字: print(server.getwelcome().decode('utf-8')) # 身份认证: server.user(email) server.pass_(password) # stat()返回邮件数量和占用空间: print('Messages: %s. Size: %s' % server.stat()) # list()返回所有邮件的编号: resp, mails, octets = server.list() # 可以查看返回的列表类似[b'1 82923', b'2 2184', ...] print(mails) # 获取最新一封邮件, 注意索引号从1开始: index = len(mails) resp, lines, octets = server.retr(index) # lines存储了邮件的原始文本的每一行, # 可以获得整个邮件的原始文本: msg_content = b'\r\n'.join(lines).decode('utf-8') # 稍后解析出邮件: msg = Parser().parsestr(msg_content) print_info(msg) # 可以根据邮件索引号直接从服务器删除邮件: # server.dele(index) # 关闭连接: server.quit()
28.466667
71
0.578845
2609197ee0f113173c7e6231d8f22b0277068c6a
9,366
py
Python
server/models/shape/__init__.py
jirsat/PlanarAlly
8c3ed434f3a1d83aa89216b3daded916096f8acd
[ "MIT" ]
null
null
null
server/models/shape/__init__.py
jirsat/PlanarAlly
8c3ed434f3a1d83aa89216b3daded916096f8acd
[ "MIT" ]
null
null
null
server/models/shape/__init__.py
jirsat/PlanarAlly
8c3ed434f3a1d83aa89216b3daded916096f8acd
[ "MIT" ]
null
null
null
import json from peewee import BooleanField, FloatField, ForeignKeyField, IntegerField, TextField from playhouse.shortcuts import model_to_dict, update_model_from_dict from typing import Any, Dict, List, Tuple from utils import logger from ..asset import Asset from ..base import BaseModel from ..campaign import Layer from ..groups import Group from ..label import Label from ..user import User __all__ = [ "AssetRect", "Aura", "Circle", "CircularToken", "Line", "Polygon", "Rect", "Shape", "ShapeLabel", "ShapeOwner", "Text", "Tracker", ] class Shape(BaseModel): uuid = TextField(primary_key=True) layer = ForeignKeyField(Layer, backref="shapes", on_delete="CASCADE") type_ = TextField() x = FloatField() y = FloatField() name = TextField(null=True) name_visible = BooleanField(default=True) fill_colour = TextField(default="#000") stroke_colour = TextField(default="#fff") vision_obstruction = BooleanField(default=False) movement_obstruction = BooleanField(default=False) is_token = BooleanField(default=False) annotation = TextField(default="") draw_operator = TextField(default="source-over") index = IntegerField() options = TextField(null=True) badge = IntegerField(default=1) show_badge = BooleanField(default=False) default_edit_access = BooleanField(default=False) default_vision_access = BooleanField(default=False) is_invisible = BooleanField(default=False) is_defeated = BooleanField(default=False) default_movement_access = BooleanField(default=False) is_locked = BooleanField(default=False) angle = FloatField(default=0) stroke_width = IntegerField(default=2) asset = ForeignKeyField(Asset, backref="shapes", null=True, default=None) group = ForeignKeyField(Group, backref="members", null=True, default=None) annotation_visible = BooleanField(default=False) ignore_zoom_size = BooleanField(default=False) def __repr__(self): return f"<Shape {self.get_path()}>" def get_path(self): try: return f"{self.name}@{self.layer.get_path()}" except: return self.name def get_options(self) -> Dict[str, Any]: return dict(json.loads(self.options)) def set_options(self, options: Dict[str, Any]) -> None: self.options = json.dumps([[k, v] for k, v in options.items()]) # todo: Change this API to accept a PlayerRoom instead def as_dict(self, user: User, dm: bool): data = model_to_dict(self, recurse=False, exclude=[Shape.layer, Shape.index]) # Owner query > list of usernames data["owners"] = [owner.as_dict() for owner in self.owners] # Layer query > layer name data["layer"] = self.layer.name data["floor"] = self.layer.floor.name # Aura and Tracker queries > json owned = ( dm or self.default_edit_access or self.default_vision_access or any(user.name == o["user"] for o in data["owners"]) ) tracker_query = self.trackers aura_query = self.auras label_query = self.labels.join(Label) if not owned: if not self.annotation_visible: data["annotation"] = "" tracker_query = tracker_query.where(Tracker.visible) aura_query = aura_query.where(Aura.visible) label_query = label_query.where(Label.visible) if not self.name_visible: data["name"] = "?" data["trackers"] = [t.as_dict() for t in tracker_query] data["auras"] = [a.as_dict() for a in aura_query] data["labels"] = [l.as_dict() for l in label_query] # Subtype data.update(**self.subtype.as_dict(exclude=[self.subtype.__class__.shape])) return data def center_at(self, x: int, y: int) -> None: x_off, y_off = self.subtype.get_center_offset(x, y) self.x = x - x_off self.y = y - y_off @property def subtype(self): return getattr(self, f"{self.type_}_set").get() class ShapeLabel(BaseModel): shape = ForeignKeyField(Shape, backref="labels", on_delete="CASCADE") label = ForeignKeyField(Label, backref="shapes", on_delete="CASCADE") def as_dict(self): return self.label.as_dict() class Tracker(BaseModel): uuid = TextField(primary_key=True) shape = ForeignKeyField(Shape, backref="trackers", on_delete="CASCADE") visible = BooleanField() name = TextField() value = IntegerField() maxvalue = IntegerField() draw = BooleanField() primary_color = TextField() secondary_color = TextField() def __repr__(self): return f"<Tracker {self.name} {self.shape.get_path()}>" def as_dict(self): return model_to_dict(self, recurse=False, exclude=[Tracker.shape]) class Aura(BaseModel): uuid = TextField(primary_key=True) shape = ForeignKeyField(Shape, backref="auras", on_delete="CASCADE") vision_source = BooleanField() visible = BooleanField() name = TextField() value = IntegerField() dim = IntegerField() colour = TextField() active = BooleanField() border_colour = TextField() angle = IntegerField() direction = IntegerField() def __repr__(self): return f"<Aura {self.name} {self.shape.get_path()}>" def as_dict(self): return model_to_dict(self, recurse=False, exclude=[Aura.shape]) class ShapeOwner(BaseModel): shape = ForeignKeyField(Shape, backref="owners", on_delete="CASCADE") user = ForeignKeyField(User, backref="shapes", on_delete="CASCADE") edit_access = BooleanField() vision_access = BooleanField() movement_access = BooleanField() def __repr__(self): return f"<ShapeOwner {self.user.name} {self.shape.get_path()}>" def as_dict(self): return { "shape": self.shape.uuid, "user": self.user.name, "edit_access": self.edit_access, "movement_access": self.movement_access, "vision_access": self.vision_access, } class ShapeType(BaseModel): shape = ForeignKeyField(Shape, primary_key=True, on_delete="CASCADE") @staticmethod def pre_create(**kwargs): return kwargs @staticmethod def post_create(subshape, **kwargs): """ Used for special shapes that need extra behaviour after being created. """ pass def as_dict(self, *args, **kwargs): return model_to_dict(self, *args, **kwargs) def update_from_dict(self, data, *args, **kwargs): return update_model_from_dict(self, data, *args, **kwargs) def get_center_offset(self, x: int, y: int) -> Tuple[int, int]: return 0, 0 def set_location(self, points: List[List[int]]) -> None: logger.error("Attempt to set location on shape without location info") class BaseRect(ShapeType): width = FloatField() height = FloatField() def get_center_offset(self, x: int, y: int) -> Tuple[int, int]: return self.width / 2, self.height / 2 class AssetRect(BaseRect): src = TextField() class Circle(ShapeType): radius = FloatField() viewing_angle = FloatField(null=True) class CircularToken(Circle): text = TextField() font = TextField() class Line(ShapeType): x2 = FloatField() y2 = FloatField() line_width = IntegerField() def get_center_offset(self, x: int, y: int) -> Tuple[int, int]: return (self.x2 - self.x) / 2, (self.y2 - self.y) / 2 class Polygon(ShapeType): vertices = TextField() line_width = IntegerField() open_polygon = BooleanField() @staticmethod def pre_create(**kwargs): kwargs["vertices"] = json.dumps(kwargs["vertices"]) return kwargs def as_dict(self, *args, **kwargs): model = model_to_dict(self, *args, **kwargs) model["vertices"] = json.loads(model["vertices"]) return model def update_from_dict(self, data, *args, **kwargs): data["vertices"] = json.dumps(data["vertices"]) return update_model_from_dict(self, data, *args, **kwargs) def set_location(self, points: List[List[int]]) -> None: self.vertices = json.dumps(points) self.save() class Rect(BaseRect): pass class Text(ShapeType): text = TextField() font_size = IntegerField() class ToggleComposite(ShapeType): """ Toggle shapes are composites that have multiple variants but only show one at a time. """ active_variant = TextField(null=True) @staticmethod def post_create(subshape, **kwargs): for variant in kwargs.get("variants", []): CompositeShapeAssociation.create( parent=subshape, variant=variant["uuid"], name=variant["name"] ) def as_dict(self, *args, **kwargs): model = model_to_dict(self, *args, **kwargs) model["variants"] = [ {"uuid": sv.variant.uuid, "name": sv.name} for sv in self.shape.shape_variants ] return model class CompositeShapeAssociation(BaseModel): variant = ForeignKeyField(Shape, backref="composite_parent", on_delete="CASCADE") parent = ForeignKeyField(Shape, backref="shape_variants", on_delete="CASCADE") name = TextField()
30.508143
89
0.647128
fa31cc1e7dde45f7fe8905e46d960d04e407c152
1,006
py
Python
src/gimelstudio/api/api.py
yonMaor/GimelStudio
7ed7db429e61e0413791ad261583c7018f888953
[ "Apache-2.0" ]
null
null
null
src/gimelstudio/api/api.py
yonMaor/GimelStudio
7ed7db429e61e0413791ad261583c7018f888953
[ "Apache-2.0" ]
null
null
null
src/gimelstudio/api/api.py
yonMaor/GimelStudio
7ed7db429e61e0413791ad261583c7018f888953
[ "Apache-2.0" ]
null
null
null
# ---------------------------------------------------------------------------- # Gimel Studio Copyright 2019-2022 by the Gimel Studio project contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ---------------------------------------------------------------------------- # Nothing here yet... class Output(object): def __init__(self, idname, datatype, label, visible=True): self.idname = idname self.datatype = datatype self.label = label self.visible = visible
40.24
78
0.619284
b0d9522651744807cd30e6d36c14a6868d46401d
2,994
py
Python
lldb/packages/Python/lldbsuite/test/functionalities/data-formatter/data-formatter-stl/libcxx/unordered/TestDataFormatterUnordered.py
dan-zheng/llvm-project
6b792850da0345274758c9260fda5df5e57ab486
[ "Apache-2.0" ]
765
2015-12-03T16:44:59.000Z
2022-03-07T12:41:10.000Z
lldb/packages/Python/lldbsuite/test/functionalities/data-formatter/data-formatter-stl/libcxx/unordered/TestDataFormatterUnordered.py
dan-zheng/llvm-project
6b792850da0345274758c9260fda5df5e57ab486
[ "Apache-2.0" ]
1,815
2015-12-11T23:56:05.000Z
2020-01-10T19:28:43.000Z
lldb/packages/Python/lldbsuite/test/functionalities/data-formatter/data-formatter-stl/libcxx/unordered/TestDataFormatterUnordered.py
dan-zheng/llvm-project
6b792850da0345274758c9260fda5df5e57ab486
[ "Apache-2.0" ]
284
2015-12-03T16:47:25.000Z
2022-03-12T05:39:48.000Z
""" Test lldb data formatter subsystem. """ from __future__ import print_function import lldb from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test import lldbutil class LibcxxUnorderedDataFormatterTestCase(TestBase): mydir = TestBase.compute_mydir(__file__) def setUp(self): TestBase.setUp(self) ns = 'ndk' if lldbplatformutil.target_is_android() else '' self.namespace = 'std::__' + ns + '1' @add_test_categories(["libc++"]) def test_with_run_command(self): self.build() self.runCmd("file " + self.getBuildArtifact("a.out"), CURRENT_EXECUTABLE_SET) lldbutil.run_break_set_by_source_regexp( self, "Set break point at this line.") self.runCmd("run", RUN_SUCCEEDED) # The stop reason of the thread should be breakpoint. self.expect("thread list", STOPPED_DUE_TO_BREAKPOINT, substrs=['stopped', 'stop reason = breakpoint']) # This is the function to remove the custom formats in order to have a # clean slate for the next test case. def cleanup(): self.runCmd('type format clear', check=False) self.runCmd('type summary clear', check=False) self.runCmd('type filter clear', check=False) self.runCmd('type synth clear', check=False) self.runCmd( "settings set target.max-children-count 256", check=False) # Execute the cleanup function during test case tear down. self.addTearDownHook(cleanup) ns = self.namespace self.look_for_content_and_continue( "map", ['%s::unordered_map' % ns, 'size=5 {', 'hello', 'world', 'this', 'is', 'me']) self.look_for_content_and_continue( "mmap", ['%s::unordered_multimap' % ns, 'size=6 {', 'first = 3', 'second = "this"', 'first = 2', 'second = "hello"']) self.look_for_content_and_continue( "iset", ['%s::unordered_set' % ns, 'size=5 {', '\[\d\] = 5', '\[\d\] = 3', '\[\d\] = 2']) self.look_for_content_and_continue( "sset", ['%s::unordered_set' % ns, 'size=5 {', '\[\d\] = "is"', '\[\d\] = "world"', '\[\d\] = "hello"']) self.look_for_content_and_continue( "imset", ['%s::unordered_multiset' % ns, 'size=6 {', '(\[\d\] = 3(\\n|.)+){3}', '\[\d\] = 2', '\[\d\] = 1']) self.look_for_content_and_continue( "smset", ['%s::unordered_multiset' % ns, 'size=5 {', '(\[\d\] = "is"(\\n|.)+){2}', '(\[\d\] = "world"(\\n|.)+){2}']) def look_for_content_and_continue(self, var_name, patterns): self.expect(("frame variable %s" % var_name), patterns=patterns) self.expect(("frame variable %s" % var_name), patterns=patterns) self.runCmd("continue")
36.962963
95
0.560454
ea6255e1350834ec3b2d09ac0e0b4520eaff3b17
2,177
py
Python
test/SConsGnu/AcProgChecks/AcCheckProgs/sconstest-accheckprogs-example1.py
ptomulik/scons-gnu-build
9c46908eed50679d7aaaaf472e324c97545ac837
[ "Unlicense" ]
null
null
null
test/SConsGnu/AcProgChecks/AcCheckProgs/sconstest-accheckprogs-example1.py
ptomulik/scons-gnu-build
9c46908eed50679d7aaaaf472e324c97545ac837
[ "Unlicense" ]
1
2015-02-13T04:30:45.000Z
2015-02-13T04:30:45.000Z
test/SConsGnu/AcProgChecks/AcCheckProgs/sconstest-accheckprogs-example1.py
ptomulik/scons-gnu-build
9c46908eed50679d7aaaaf472e324c97545ac837
[ "Unlicense" ]
null
null
null
# # Copyright (c) 2012-2014 by Pawel Tomulik # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE __docformat__ = "restructuredText" """ TODO: write description """ import TestSCons ############################################################################## # ############################################################################## test = TestSCons.TestSCons() test.dir_fixture('../../../../SConsGnu', 'site_scons/SConsGnu') test.write('SConstruct', """ # SConstruct from SConsGnu import AcProgChecks env = Environment() # create an environment cfg = Configure(env) # create SConf object cfg.AddTests(AcProgChecks.Tests()) # add tets for alternative programs curl = cfg.AcCheckProgs(['gcurl', 'curl']) # perform the check env = cfg.Finish() # finish configuration print "curl: %r" % curl # print returned value """) test.run() test.must_contain_all_lines(test.stdout(), [ 'Checking for gcurl... ', 'Checking for curl... ', 'curl: ' ]) test.pass_test() # Local Variables: # # tab-width:4 # # indent-tabs-mode:nil # # End: # vim: set syntax=python expandtab tabstop=4 shiftwidth=4:
36.283333
80
0.666973
a8ede3bdf51aeb17dd862db5cf94ba84155756f5
355
py
Python
spikeforest/sf_batch/__init__.py
tjd2002/spikeforest2
2e393564b858b2995aa2ccccd9bd73065681b5de
[ "Apache-2.0" ]
null
null
null
spikeforest/sf_batch/__init__.py
tjd2002/spikeforest2
2e393564b858b2995aa2ccccd9bd73065681b5de
[ "Apache-2.0" ]
null
null
null
spikeforest/sf_batch/__init__.py
tjd2002/spikeforest2
2e393564b858b2995aa2ccccd9bd73065681b5de
[ "Apache-2.0" ]
null
null
null
# from .sf_batch import sf_batch_prepare, sf_batch_run, sf_batch_assemble from .sf_summarize_recording import sf_summarize_recording from .sf_sort_recording import sf_sort_recording # from .sf_batch2 import clear_job_results, download_recordings, run_jobs, assemble_job_results from .compute_units_info import compute_units_info, select_units_on_channels
59.166667
95
0.884507
a2d519139b574801e88a1d639d68724c35b5e514
3,221
py
Python
test/unit/ggrc/models/test_json_comparator.py
MikalaiMikalalai/ggrc-core
f0f83b3638574bb64de474f3b70ed27436ca812a
[ "ECL-2.0", "Apache-2.0" ]
1
2019-01-12T23:46:00.000Z
2019-01-12T23:46:00.000Z
test/unit/ggrc/models/test_json_comparator.py
MikalaiMikalalai/ggrc-core
f0f83b3638574bb64de474f3b70ed27436ca812a
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
test/unit/ggrc/models/test_json_comparator.py
MikalaiMikalalai/ggrc-core
f0f83b3638574bb64de474f3b70ed27436ca812a
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Copyright (C) 2020 Google Inc. # Licensed under http://www.apache.org/licenses/LICENSE-2.0 <see LICENSE file> """Test module for with_custom_restrictions mixin""" import unittest from datetime import datetime, date import ddt from ggrc.utils import json_comparator @ddt.ddt class TestJsonComparator(unittest.TestCase): """Test class for test_custom_restrictions""" @ddt.data( (datetime(2019, 10, 24), '2019-10-24T00:00:00'), (date(2019, 10, 24), '2019-10-24') ) @ddt.unpack def test_convert_to_string(self, obj, exp_str): """Test convert_to_string method""" res_str = json_comparator.convert_to_string(obj) self.assertEqual(res_str, exp_str) @ddt.data( ( [], [], True, ), ( [1, 2, 3], [1, 2], False, ), ( [{'1': 1, '5': 5}, {'1': 1, '2': 2}], [{'1': 1, '5': 5}, {'1': 1, '2': 2}], True, ), ( [{'id': 123, 'type': 'assessment'}], [{'id': 123, 'type': 'assessment'}], True, ), ( [{'id': 123, 'type': 'assessment', 'attr1': 1}], [{'id': 123, 'type': 'assessment', 'attr2': 2, 'attr3': 3}], True, ), ( [{'id': 123, 'type': 'assessment'}], [{'id': 765, 'type': 'assessment'}], False, ), ( [{'id': 123, 'type': 'assessment'}], [{'id': 123, 'type': 'issue'}], False, ), ) @ddt.unpack def test_lists_equal(self, list1, list2, exp_result): """Test lists_equal method""" result = json_comparator.lists_equal(list1, list2) self.assertEqual(result, exp_result) @ddt.data( ( {}, {}, True, ), ( {'1': 1, '2': 2}, {'1': 1, '2': 2}, True, ), ( {'1': 1, '2': 2}, {'1': 1, '2': 2, '3': 3}, True, ), ( {'1': 1, '2': 2, '3': 3}, {'1': 1, '2': 2}, True, ), ( {'1': 1, '2': 2, '3': 5}, {'1': 1, '2': 2, '3': 3}, False, ), ( {'1': 1, '2': 2, '_3': 5}, {'1': 1, '2': 2, '_3': 3}, True, ), ) @ddt.unpack def test_dicts_equal(self, dict1, dict2, exp_result): """Test dicts_equal method""" result = json_comparator.dicts_equal(dict1, dict2) self.assertEqual(result, exp_result) @ddt.data( ( "", "", True, ), ( {'1': 1, '2': 2}, {'1': 1, '2': 2}, True, ), ( [1, 2, 3], [1, 2, 3], True, ), ( [1, 2, 5], [1, 2, 3], False, ), ( datetime(2019, 10, 24), datetime(2019, 10, 24), True, ), ( datetime(2019, 10, 24), date(2019, 10, 24), False, ), ) @ddt.unpack def test_fields_equal(self, obj_field, src_field, exp_result): """Test dicts_equal method""" result = json_comparator.fields_equal(obj_field, src_field) self.assertEqual(result, exp_result)
21.61745
78
0.427197
a3240832a0826cb0c82dbfc510e7a41c68c18900
8,803
py
Python
test/tool_shed/functional/test_0120_simple_repository_dependency_multiple_owners.py
bopopescu/phyG
023f505b705ab953f502cbc55e90612047867583
[ "CC-BY-3.0" ]
84
2017-10-25T15:49:21.000Z
2021-11-28T21:25:54.000Z
data/test/python/a3240832a0826cb0c82dbfc510e7a41c68c18900test_0120_simple_repository_dependency_multiple_owners.py
vassalos/deep-learning-lang-detection
cbb00b3e81bed3a64553f9c6aa6138b2511e544e
[ "MIT" ]
5
2018-03-29T11:50:46.000Z
2021-04-26T13:33:18.000Z
data/test/python/a3240832a0826cb0c82dbfc510e7a41c68c18900test_0120_simple_repository_dependency_multiple_owners.py
vassalos/deep-learning-lang-detection
cbb00b3e81bed3a64553f9c6aa6138b2511e544e
[ "MIT" ]
24
2017-11-22T08:31:00.000Z
2022-03-27T01:22:31.000Z
from tool_shed.base.twilltestcase import ShedTwillTestCase, common, os import tool_shed.base.test_db_util as test_db_util datatypes_repository_name = 'blast_datatypes_0120' datatypes_repository_description = 'Galaxy applicable datatypes for BLAST' datatypes_repository_long_description = 'Galaxy datatypes for the BLAST top hit descriptons tool' tool_repository_name = 'blastxml_to_top_descr_0120' tool_repository_description = 'BLAST top hit descriptions' tool_repository_long_description = 'Make a table from BLAST XML' ''' Tool shed side: 1) Create and populate blast_datatypes_0120. 1a) Check for appropriate strings. 2) Create and populate blastxml_to_top_descr_0120. 2a) Check for appropriate strings. 3) Upload repository_dependencies.xml to blastxml_to_top_descr_0120 that defines a relationship to blast_datatypes_0120. 3a) Check for appropriate strings. ''' base_datatypes_count = 0 repository_datatypes_count = 0 class TestRepositoryMultipleOwners( ShedTwillTestCase ): def test_0000_initiate_users( self ): """Create necessary user accounts and login as an admin user.""" """ Create all the user accounts that are needed for this test script to run independently of other tests. Previously created accounts will not be re-created. """ self.logout() self.login( email=common.test_user_1_email, username=common.test_user_1_name ) test_user_1 = test_db_util.get_user( common.test_user_1_email ) assert test_user_1 is not None, 'Problem retrieving user with email %s from the database' % common.test_user_1_email test_user_1_private_role = test_db_util.get_private_role( test_user_1 ) self.logout() self.login( email=common.test_user_2_email, username=common.test_user_2_name ) test_user_2 = test_db_util.get_user( common.test_user_1_email ) assert test_user_2 is not None, 'Problem retrieving user with email %s from the database' % common.test_user_2_email test_user_2_private_role = test_db_util.get_private_role( test_user_2 ) self.logout() self.login( email=common.admin_email, username=common.admin_username ) admin_user = test_db_util.get_user( common.admin_email ) assert admin_user is not None, 'Problem retrieving user with email %s from the database' % common.admin_email admin_user_private_role = test_db_util.get_private_role( admin_user ) def test_0005_create_datatypes_repository( self ): """Create and populate the blast_datatypes_0120 repository""" """ We are at step 1. Create and populate blast_datatypes. """ category = self.create_category( name='Test 0120', description='Description of test 0120' ) self.logout() self.login( email=common.test_user_2_email, username=common.test_user_2_name ) strings_displayed = [ 'Repository %s' % "'%s'" % datatypes_repository_name, 'Repository %s has been created' % "'%s'" % datatypes_repository_name ] repository = self.get_or_create_repository( name=datatypes_repository_name, description=datatypes_repository_description, long_description=datatypes_repository_long_description, owner=common.test_user_2_name, category_id=self.security.encode_id( category.id ), strings_displayed=strings_displayed ) self.upload_file( repository, filename='blast/blast_datatypes.tar', filepath=None, valid_tools_only=True, uncompress_file=True, remove_repo_files_not_in_tar=False, commit_message='Uploaded blast_datatypes tarball.', strings_displayed=[], strings_not_displayed=[] ) def test_0010_verify_datatypes_repository( self ): '''Verify the blast_datatypes_0120 repository.''' ''' We are at step 1a. Check for appropriate strings, most importantly BlastXml, BlastNucDb, and BlastProtDb, the datatypes that are defined in datatypes_conf.xml. ''' global repository_datatypes_count repository = test_db_util.get_repository_by_name_and_owner( datatypes_repository_name, common.test_user_2_name ) strings_displayed = [ 'BlastXml', 'BlastNucDb', 'BlastProtDb', 'application/xml', 'text/html', 'blastxml', 'blastdbn', 'blastdbp'] self.display_manage_repository_page( repository, strings_displayed=strings_displayed ) repository_datatypes_count = int( self.get_repository_datatypes_count( repository ) ) def test_0015_create_tool_repository( self ): """Create and populate the blastxml_to_top_descr_0120 repository""" """ We are at step 2. Create and populate blastxml_to_top_descr_0120. """ category = self.create_category( name='Test 0120', description='Description of test 0120' ) self.logout() self.login( email=common.test_user_1_email, username=common.test_user_1_name ) strings_displayed = [ 'Repository %s' % "'%s'" % tool_repository_name, 'Repository %s has been created' % "'%s'" % tool_repository_name ] repository = self.get_or_create_repository( name=tool_repository_name, description=tool_repository_description, long_description=tool_repository_long_description, owner=common.test_user_1_name, category_id=self.security.encode_id( category.id ), strings_displayed=strings_displayed ) self.upload_file( repository, filename='blast/blastxml_to_top_descr.tar', filepath=None, valid_tools_only=True, uncompress_file=True, remove_repo_files_not_in_tar=False, commit_message='Uploaded blastxml_to_top_descr tarball.', strings_displayed=[], strings_not_displayed=[] ) def test_0020_verify_tool_repository( self ): '''Verify the blastxml_to_top_descr_0120 repository.''' ''' We are at step 2a. Check for appropriate strings, such as tool name, description, and version. ''' repository = test_db_util.get_repository_by_name_and_owner( tool_repository_name, common.test_user_1_name ) strings_displayed = [ 'blastxml_to_top_descr_0120', 'BLAST top hit descriptions', 'Make a table from BLAST XML' ] strings_displayed.extend( [ '0.0.1', 'Valid tools'] ) self.display_manage_repository_page( repository, strings_displayed=strings_displayed ) def test_0025_create_repository_dependency( self ): '''Create a repository dependency on blast_datatypes_0120.''' ''' We are at step 3. Create a simple repository dependency for blastxml_to_top_descr_0120 that defines a dependency on blast_datatypes_0120. ''' datatypes_repository = test_db_util.get_repository_by_name_and_owner( datatypes_repository_name, common.test_user_2_name ) tool_repository = test_db_util.get_repository_by_name_and_owner( tool_repository_name, common.test_user_1_name ) dependency_xml_path = self.generate_temp_path( 'test_0120', additional_paths=[ 'dependencies' ] ) datatypes_tuple = ( self.url, datatypes_repository.name, datatypes_repository.user.username, self.get_repository_tip( datatypes_repository ) ) self.create_repository_dependency( repository=tool_repository, repository_tuples=[ datatypes_tuple ], filepath=dependency_xml_path ) def test_0040_verify_repository_dependency( self ): '''Verify the created repository dependency.''' ''' We are at step 3a. Check the newly created repository dependency to ensure that it was defined and displays correctly. ''' datatypes_repository = test_db_util.get_repository_by_name_and_owner( datatypes_repository_name, common.test_user_2_name ) tool_repository = test_db_util.get_repository_by_name_and_owner( tool_repository_name, common.test_user_1_name ) self.check_repository_dependency( tool_repository, datatypes_repository )
58.686667
150
0.667841
73472552390074553cb5b142681d0af102a1843d
1,213
bzl
Python
for_workspace/repositories.bzl
ktf/rules_foreign_cc
fe335ece190e5971432fb806cdb459047e577a42
[ "Apache-2.0" ]
null
null
null
for_workspace/repositories.bzl
ktf/rules_foreign_cc
fe335ece190e5971432fb806cdb459047e577a42
[ "Apache-2.0" ]
null
null
null
for_workspace/repositories.bzl
ktf/rules_foreign_cc
fe335ece190e5971432fb806cdb459047e577a42
[ "Apache-2.0" ]
null
null
null
""" Remote repositories, used by this project itself """ load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive") def repositories(): _all_content = """filegroup(name = "all", srcs = glob(["**"]), visibility = ["//visibility:public"])""" http_archive( name = "bazel_skylib", sha256 = "97e70364e9249702246c0e9444bccdc4b847bed1eb03c5a3ece4f83dfe6abc44", urls = [ "https://mirror.bazel.build/github.com/bazelbuild/bazel-skylib/releases/download/1.0.2/bazel-skylib-1.0.2.tar.gz", "https://github.com/bazelbuild/bazel-skylib/releases/download/1.0.2/bazel-skylib-1.0.2.tar.gz", ], ) http_archive( name = "ninja_build", build_file_content = _all_content, sha256 = "86b8700c3d0880c2b44c2ff67ce42774aaf8c28cbf57725cb881569288c1c6f4", strip_prefix = "ninja-1.8.2", urls = [ "https://github.com/ninja-build/ninja/archive/v1.8.2.tar.gz", ], ) http_archive( name = "cmake", build_file_content = _all_content, strip_prefix = "CMake-3.12.1", urls = [ "https://github.com/Kitware/CMake/archive/v3.12.1.tar.gz", ], )
34.657143
126
0.618302
e6d71d8cc2c4365ede785ddd146a1944b28da486
4,441
py
Python
calf/lexer.py
arrdem/calf
c8e83157c60eb9a14e2bdf39e14cec8bf3a827ae
[ "MIT" ]
null
null
null
calf/lexer.py
arrdem/calf
c8e83157c60eb9a14e2bdf39e14cec8bf3a827ae
[ "MIT" ]
null
null
null
calf/lexer.py
arrdem/calf
c8e83157c60eb9a14e2bdf39e14cec8bf3a827ae
[ "MIT" ]
null
null
null
""" Calf lexer. Provides machinery for lexing sources of text into sequences of tokens with textual information, as well as buffer position information appropriate for either full AST parsing, lossless syntax tree parsing, linting or other use. """ import io import re import sys from calf.token import CalfToken from calf.io.reader import PeekPosReader from calf.grammar import TOKENS from calf.util import * class CalfLexer: """ Lexer object. Wraps something you can read characters from, and presents a lazy sequence of Token objects. Raises ValueError at any time due to either a conflict in the grammar being lexed, or incomplete input. Exceptions from the backing reader object are not masked. Rule order is used to decide conflicts. If multiple patterns would match an input, the "first" in token list order wins. """ def __init__(self, stream, source=None, metadata=None, tokens=TOKENS): """FIXME""" self._stream = ( PeekPosReader(stream) if not isinstance(stream, PeekPosReader) else stream ) self.source = source self.metadata = metadata or {} self.tokens = tokens def __next__(self): """ Tries to scan the next token off of the backing stream. Starting with a list of all available tokens, an empty buffer and a single new character peeked from the backing stream, reads more character so long as adding the next character still leaves one or more possible matching "candidates" (token patterns). When adding the next character from the stream would build an invalid token, a token of the resulting single candidate type is generated. At the end of input, if we have a single candidate remaining, a final token of that type is generated. Otherwise we are in an incomplete input state either due to incomplete input or a grammar conflict. """ buffer = "" candidates = self.tokens position, chr = self._stream.peek() while chr: if not candidates: raise ValueError("Entered invalid state - no candidates!") buff2 = buffer + chr can2 = [t for t in candidates if re.fullmatch(t[0], buff2)] # Try to include the last read character to support longest-wins grammars if not can2 and len(candidates) >= 1: pat, type = candidates[0] groups = re.match(re.compile(pat), buffer).groupdict() groups.update(self.metadata) return CalfToken(type, buffer, self.source, position, groups) else: # Update the buffers buffer = buff2 candidates = can2 # consume the 'current' character for side-effects self._stream.read() # set chr to be the next peeked character _, chr = self._stream.peek() if len(candidates) >= 1: pat, type = candidates[0] groups = re.match(re.compile(pat), buffer).groupdict() groups.update(self.metadata) return CalfToken(type, buffer, self.source, position, groups) else: raise ValueError( "Encountered end of buffer with incomplete token %r" % (buffer,) ) def __iter__(self): """ Scans tokens out of the character stream. May raise ValueError if there is either an issue with the grammar or the input. Will not mask any exceptions from the backing reader. """ # While the character stream isn't empty while self._stream.peek()[1] != "": yield next(self) def lex_file(path, metadata=None): """ Returns the sequence of tokens resulting from lexing all text in the named file. """ with open(path, "r") as f: return list(CalfLexer(f, path, {})) def lex_buffer(buffer, source="<Buffer>", metadata=None): """ Returns the lazy sequence of tokens resulting from lexing all the text in a buffer. """ return CalfLexer(io.StringIO(buffer), source, metadata) def main(): """A CURSES application for using the lexer.""" from calf.cursedrepl import curse_repl def handle_buffer(buff, count): return list(lex_buffer(buff, source=f"<Example {count}>")) curse_repl(handle_buffer)
32.416058
100
0.635893
bc85437feeb63076fa7920a32b626f36134cd617
103
py
Python
my_study/mm/getpass_mima.py
zhangyage/Python-oldboy
a95c1b465929e2be641e425fcb5e15b366800831
[ "Apache-2.0" ]
1
2020-06-04T08:44:09.000Z
2020-06-04T08:44:09.000Z
my_study/mm/getpass_mima.py
zhangyage/Python-oldboy
a95c1b465929e2be641e425fcb5e15b366800831
[ "Apache-2.0" ]
null
null
null
my_study/mm/getpass_mima.py
zhangyage/Python-oldboy
a95c1b465929e2be641e425fcb5e15b366800831
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding:utf-8 -*- import getpass pwd = getpass.getpass("请输入密码:") #列表增删改查
11.444444
31
0.640777
d2871b8e017ff780f82b70b3f6ea524dd2d089ca
321
py
Python
data_src/city_sight/to_dict.py
z1514/OpenRichpedia
0ded4b2c9414160b5b39914d43e42168e4d0762c
[ "MIT" ]
31
2021-08-29T13:38:17.000Z
2022-03-12T04:46:01.000Z
data_src/city_sight/to_dict.py
z1514/OpenRichpedia
0ded4b2c9414160b5b39914d43e42168e4d0762c
[ "MIT" ]
null
null
null
data_src/city_sight/to_dict.py
z1514/OpenRichpedia
0ded4b2c9414160b5b39914d43e42168e4d0762c
[ "MIT" ]
8
2021-08-29T02:26:31.000Z
2022-03-10T12:37:19.000Z
import json from os import write w = open("json.txt","r",encoding="utf-8") f = open("dict.txt","w",encoding="utf-8") arr = json.load(w) s = dict() f.write('{') for item in arr: s[item["value"]] = item["key"] print(s) for key in s: f.write('"'+str(key)+'"'+':') f.write('"'+str(s[key])+'"'+',\n') f.write("}")
22.928571
41
0.548287
8ec4201f48ece0e9541b6992197c86862ecdb5be
5,269
py
Python
run_specific/weakEps.py
kolbt/whingdingdilly
4c17b594ebc583750fe7565d6414f08678ea7882
[ "BSD-3-Clause" ]
4
2017-09-04T14:36:57.000Z
2022-03-28T23:24:58.000Z
run_specific/weakEps.py
kolbt/whingdingdilly
4c17b594ebc583750fe7565d6414f08678ea7882
[ "BSD-3-Clause" ]
null
null
null
run_specific/weakEps.py
kolbt/whingdingdilly
4c17b594ebc583750fe7565d6414f08678ea7882
[ "BSD-3-Clause" ]
null
null
null
''' # This is an 80 character line # Purpose: run MONODISPERSE hard spheres to approximate the reentrant effect observed for soft particles. Note that the actual activity of these particles is much higher than is being reported (we maintain units in terms of the larger diameter, sigma=1.0) ''' # Initial imports import sys import os import psutil # Read in bash arguments hoomdPath = "${hoomd_path}" # path to hoomd-blue gsdPath = "${gsd_path}" # path to gsd runFor = ${runfor} # simulation length (in tauLJ) dumpPerBrownian = ${dump_freq} # how often to dump data pe = ${pe} # activity of A particles partNum = ${part_num} # total number of particles intPhi = ${phi} # system area fraction phi = float(intPhi)/100.0 seed1 = ${seed1} # seed for position seed2 = ${seed2} # seed for bd equilibration seed3 = ${seed3} # seed for initial orientations seed4 = ${seed4} # seed for A activity # Remaining imports sys.path.append(hoomdPath) import hoomd from hoomd import md from hoomd import deprecated import numpy as np # Set some constants kT = 1.0 # temperature threeEtaPiSigma = 1.0 # drag coefficient sigma = 1.0 # particle diameter D_t = kT / threeEtaPiSigma # translational diffusion constant D_r = (3.0 * D_t) / (sigma**2) # rotational diffusion constant tauBrown = (sigma**2) / D_t # brownian time scale (invariant) def computeVel(activity): "Given particle activity, output intrinsic swim speed" velocity = (activity * sigma) / (3 * (1/D_r)) return velocity def computeActiveForce(velocity): "Given particle activity, output repulsion well depth" activeForce = velocity * threeEtaPiSigma return activeForce def computeTauLJ(epsilon): "Given epsilon, compute lennard-jones time unit" tauLJ = ((sigma**2) * threeEtaPiSigma) / epsilon return tauLJ # Compute parameters from activities if pe != 0: # A particles are NOT Brownian v = computeVel(pe) Fp = computeActiveForce(v) eps = kT * 0.1 effSig = 1. else: # A particles are Brownian v = 0.0 Fp = 0.0 eps = kT * 0.1 effSig = 1. tauLJ = computeTauLJ(eps) # get LJ time unit cut = (2**(1./6.)) * effSig # the cutoff for the LJ potential dt = 0.000001 * tauLJ # timestep size simLength = runFor * tauBrown # how long to run (in tauBrown) simTauLJ = simLength / tauLJ # how long to run (in tauLJ) totTsteps = int(simLength / dt) # how many tsteps to run numDumps = float(simLength * dumpPerBrownian) # frames in 1 tauB dumpFreq = float(totTsteps / numDumps) # normalized dump frequency dumpFreq = int(dumpFreq) # ensure this is an integer print "Brownian tau in use:", tauBrown print "Lennard-Jones tau in use:", tauLJ print "Timestep in use:", dt print "Epsilon in use:", eps print "Total number of timesteps:", totTsteps print "Total number of output frames:", numDumps print "Dumped snapshots per 1 tauB:", dumpPerBrownian print "Brownian run time:", simLength print "Activity:", pe print "Effective diameter:", effSig # Initialize system hoomd.context.initialize() # We can still use phi_p as input, the radius is assumed to be 0.5 system = hoomd.deprecated.init.create_random(N = partNum, phi_p = phi, name = 'A', min_dist = 0.70, seed = seed1, dimensions = 2) # Assigning groups and lengths to particles all = hoomd.group.all() N = len(all) # Define potential between pairs nl = hoomd.md.nlist.cell() lj = hoomd.md.pair.lj(r_cut=cut, nlist=nl) lj.set_params(mode='shift') lj.pair_coeff.set('A', 'A', epsilon=eps, sigma=effSig) # General integration parameters brownEquil = 100000 hoomd.md.integrate.mode_standard(dt=dt) hoomd.md.integrate.brownian(group=all, kT=kT, seed=seed2) hoomd.run(brownEquil) #set the activity of each type np.random.seed(seed3) # seed for random orientations angle = np.random.rand(partNum) * 2 * np.pi # random particle orientation activity = [] for i in range(0,partNum): x = (np.cos(angle[i])) * pe y = (np.sin(angle[i])) * pe z = 0 tuple = (x, y, z) activity.append(tuple) hoomd.md.force.active(group=all, seed=seed4, f_lst=activity, rotation_diff=D_r, orientation_link=False, orientation_reverse_link=True) # Get filenames for various file types name = "pe" + str(pe) +\ "_ep" + str(eps) +\ "_phi" + str(intPhi) gsdName = name + ".gsd" hoomd.dump.gsd(gsdName, period=dumpFreq, group=all, overwrite=False, phase=-1, dynamic=['attribute', 'property', 'momentum']) hoomd.run(totTsteps)
34.89404
81
0.595749
01392e82cafcdfcd4ba3cf3ecd58e6acad5702e4
323
py
Python
Tests/testSpikeComm.py
paccionesawyer/CS133-HRI-RobotDogStudy
5ea35245419082b57c2427d63e057f8d187545c7
[ "MIT" ]
null
null
null
Tests/testSpikeComm.py
paccionesawyer/CS133-HRI-RobotDogStudy
5ea35245419082b57c2427d63e057f8d187545c7
[ "MIT" ]
null
null
null
Tests/testSpikeComm.py
paccionesawyer/CS133-HRI-RobotDogStudy
5ea35245419082b57c2427d63e057f8d187545c7
[ "MIT" ]
null
null
null
import subprocess import time import RPi.GPIO as GPIO import serial #Connect to Spike ser = serial.Serial( port='/dev/ttyACM0', baudrate=115200, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, bytesize=serial.EIGHTBITS, timeout=1 ) while True: print(ser.readline()) time.sleep(1)
17.944444
33
0.708978
dc62da9675f5be4309fafd0a12f555549cd2c34a
5,640
py
Python
build/pyDcon/VSPaths.py
dconnet/AgilityBook
4804c79079d6109294a6d377fb6ebda70bcb30a1
[ "MIT" ]
1
2020-11-23T20:33:41.000Z
2020-11-23T20:33:41.000Z
build/pyDcon/VSPaths.py
dconnet/AgilityBook
4804c79079d6109294a6d377fb6ebda70bcb30a1
[ "MIT" ]
null
null
null
build/pyDcon/VSPaths.py
dconnet/AgilityBook
4804c79079d6109294a6d377fb6ebda70bcb30a1
[ "MIT" ]
3
2020-05-04T19:42:26.000Z
2022-03-08T09:36:54.000Z
# coding=utf-8 # Above line is for python # # GetCompilerPaths(c) # c: vc9, vc9x64, etc... # returns tuple (vcDir, vcvarsall cmd, platformDir, platform) # baseDir, baseDir+r'\VC\vcvarsall.bat target', vcNNN, x64/x86 # # 2020-11-28 Make target names case insensitive. # 2020-09-13 Changed Win32 target to x86 # 2019-02-28 Add vc142 support # 2018-11-16 Add ARM support # 2017-09-19 Rename vc15 to vc141, fix GetCompilerPaths tuple name # 2017-04-07 Reverted after installing 15063 SDK (didn't happen in VS update) # Fixed GetX64Target to work with vs2017. # 2017-04-06 Added 10.0.14393.0 SDK to VS2017 env (for now). # 2017-01-24 Added platform into return tuple. # 2016-11-22 Added vc141 support, removed vc9, added platformDir to return tuple # 2016-06-10 Made into library # from .GetVSDir import GetVSDir import os import sys def GetTarget(vcBase, bIs64Bit, bIsARM): # 64bit on 64bit b64On64 = False if 'PROCESSOR_ARCHITECTURE' in os.environ and os.environ['PROCESSOR_ARCHITECTURE'] == 'AMD64': # Note: We used to check for the existence of <vcBase>\VC\bin\amd64. # VS2017 moved that directory. Just assume that if we're compiling # for 64bit on 64bit that the user installed that. With current VS, # that's just done - not like older versions where it was a choice. b64On64 = True target = '' if bIs64Bit and bIsARM: if b64On64: target = 'amd64_arm64' else: target = 'x86_arm64' elif bIs64Bit and not bIsARM: if b64On64: target = 'amd64' else: target = 'x86_amd64' elif not bIs64Bit and bIsARM: if b64On64: target = 'amd64_arm' else: target = 'x86_arm' elif not bIs64Bit and not bIsARM: if b64On64: target = 'amd64_x86' else: target = 'x86' return target def GetCompilerPaths(c, verbose = True): baseDir = '' vcvarsall = '' target = '' extraargs = '' platformDir = '' platform = '' comp = c.lower() if comp == 'vc10': baseDir = GetVSDir("10.0") vcvarsall = baseDir + r'\VC\vcvarsall.bat' target = GetTarget(baseDir, False, False) platformDir = 'vc100' platform = 'x86' elif comp == 'vc10x64': baseDir = GetVSDir("10.0") vcvarsall = baseDir + r'\VC\vcvarsall.bat' target = GetTarget(baseDir, True, False) platformDir = 'vc100' platform = 'x64' elif comp == 'vc11': baseDir = GetVSDir("11.0") vcvarsall = baseDir + r'\VC\vcvarsall.bat' target = GetTarget(baseDir, False, False) platformDir = 'vc110' platform = 'x86' elif comp == 'vc11x64': baseDir = GetVSDir("11.0") vcvarsall = baseDir + r'\VC\vcvarsall.bat' target = GetTarget(baseDir, True, False) platformDir = 'vc110' platform = 'x64' elif comp == 'vc12': baseDir = GetVSDir("12.0") vcvarsall = baseDir + r'\VC\vcvarsall.bat' target = GetTarget(baseDir, False, False) platformDir = 'vc120' platform = 'x86' elif comp == 'vc12x64': baseDir = GetVSDir("12.0") vcvarsall = baseDir + r'\VC\vcvarsall.bat' target = GetTarget(baseDir, True, False) platformDir = 'vc120' platform = 'x64' elif comp == 'vc14': baseDir = GetVSDir("14.0") vcvarsall = baseDir + r'\VC\vcvarsall.bat' target = GetTarget(baseDir, False, False) platformDir = 'vc140' platform = 'x86' elif comp == 'vc14x64': baseDir = GetVSDir("14.0") vcvarsall = baseDir + r'\VC\vcvarsall.bat' target = GetTarget(baseDir, True, False) platformDir = 'vc140' platform = 'x64' elif comp == 'vc141': #vcvarsall [arch] #vcvarsall [arch] [version] #vcvarsall [arch] [platform_type] [version] # [arch]: x86 | amd64 | x86_amd64 | x86_arm | x86_arm64 | amd64_x86 | amd64_arm | amd64_arm64 # [platform_type]: {empty} | store | uwp # [version] : full Windows 10 SDK number (e.g. 10.0.10240.0) or "8.1" to use the Windows 8.1 SDK. baseDir = GetVSDir("15.0") vcvarsall = baseDir + r'\VC\Auxiliary\Build\vcvarsall.bat' target = GetTarget(baseDir, False, False) # Can target specific SDKs #extraargs = ' 10.0.14393.0' platformDir = 'vc141' platform = 'x86' elif comp == 'vc141x64': baseDir = GetVSDir("15.0") vcvarsall = baseDir + r'\VC\Auxiliary\Build\vcvarsall.bat' target = GetTarget(baseDir, True, False) platformDir = 'vc141' platform = 'x64' elif comp == 'vc141arm64': baseDir = GetVSDir("15.0") vcvarsall = baseDir + r'\VC\Auxiliary\Build\vcvarsall.bat' target = GetTarget(baseDir, True, True) platformDir = 'vc141' platform = 'ARM64' elif comp == 'vc142': baseDir = GetVSDir("16.0") vcvarsall = baseDir + r'\VC\Auxiliary\Build\vcvarsall.bat' target = GetTarget(baseDir, False, False) platformDir = 'vc142' platform = 'x86' elif comp == 'vc142x64': baseDir = GetVSDir("16.0") vcvarsall = baseDir + r'\VC\Auxiliary\Build\vcvarsall.bat' target = GetTarget(baseDir, True, False) platformDir = 'vc142' platform = 'x64' elif comp == 'vc142arm64': baseDir = GetVSDir("16.0") vcvarsall = baseDir + r'\VC\Auxiliary\Build\vcvarsall.bat' target = GetTarget(baseDir, True, True) platformDir = 'vc142' platform = 'ARM64' else: if verbose: print('ERROR (pyDcon/VSPaths): Unknown target: ' + c) return ('', '', '', '') if len(baseDir) == 0: if verbose: print('ERROR (pyDcon/VSPaths): Unknown target: ' + c) return ('', '', '', '') if not os.access(baseDir, os.F_OK): if verbose: print('ERROR (pyDcon/VSPaths): "' + baseDir + '" does not exist') return ('', '', '', '') if not os.access(vcvarsall, os.F_OK): if verbose: print('ERROR (pyDcon/VSPaths): "' + vcvarsall + '" does not exist') return ('', '', '', '') return (baseDir, '"' + vcvarsall + '" ' + target + extraargs, platformDir, platform) if __name__ == '__main__': sys.exit(0)
27.647059
99
0.665957
fe9a1401a1e8485c9815dcc33f961541158c4c21
10,622
py
Python
metabench/models/statistics/statistics_recorder.py
ComeBertrand/metabench
e5eaa32b94239b8fa475eda940b8086eec178cfe
[ "MIT" ]
null
null
null
metabench/models/statistics/statistics_recorder.py
ComeBertrand/metabench
e5eaa32b94239b8fa475eda940b8086eec178cfe
[ "MIT" ]
15
2018-03-07T21:47:56.000Z
2018-05-12T08:45:20.000Z
metabench/models/statistics/statistics_recorder.py
ComeBertrand/metabench
e5eaa32b94239b8fa475eda940b8086eec178cfe
[ "MIT" ]
null
null
null
""" File: statistics_recorder.py Author: Come Bertrand Email: [email protected] Github: https://github.com/ComeBertrand Description: Statistics computation tools that will be the result of the benchmark computation. """ import numpy as np class StatisticsRecorder(object): """Compilation of statistics on a benchmark of a metaheuristic run. Args: nb_run (int): Number of runs that will be made of a metaheuristic on the same problem. Strictly positive. problem (Problem): The problem on which the statistics will be computed. metaheuristic (Metaheuristic): The metaheuristic on which the statistics will be computed. base_size (int): Base size for the arrays that will hold the data from the iterations of the metaheuristic. Default is 256. Strictly positive. Attributes: nb_run (int): number of runs on which statistics are compiled. problem (Problem): The problem on which the statistics will be computed. metaheuristic (Metaheuristic): The metaheuristic on which the statistics will be computed. nb_iter_per_run (np.array): Array of size 'nb_run' that holds the number of iteration made by the metaheuristic for each run. nb_iter_total (int): Total number of iterations made in all the runs. best_values (nb.array): Array of size 'nb_run' that hold the best fitness of each run. best_value (float): Best fitness in all the runs. worst_value (float): Worst fitness of the best fitnesses computed at each run. mean_value (float): Mean best fitness recorded for each run. std_value (float): Standard deviation on the best fitness of each run. best_time_iter (float): Best time (lower is better) of iteration computation in all the runs. (in s). worst_time_iter (float): Worst time (lower is better) of iteration computation in all the runs. (in s). mean_time_iter (float): Mean time taken by the iteration computation. (in s.) std_time_iter (float): Standard deviation of the time taken by the iterations computation. best_time_tot (float): Best time (lower is better) of computation of a full run. (in s). worst_time_tot (float): Worst time (lower is better) of computation of a full run. (in s). mean_time_tot (float): Mean time taken by the full run computation. (in s). std_time_tot (float): Standard deviation of the time taken by the full run computation. """ def __init__(self, nb_run, problem, metaheuristic, base_size=256): if nb_run <= 0: raise ValueError("The number of runs must be strictly positive") if base_size <= 0: raise ValueError("The base size must be strictly positive") self.problem = problem self.metaheuristic = metaheuristic self._nb_iter = np.zeros(nb_run, np.int) self._nb_iter_tot = 0 self._nb_run = nb_run self._current_size_value = base_size self._current_size_time = base_size # Values records are indexed by runs. self._values = np.zeros((nb_run, base_size), np.float) # Iter time records are all in the same array. self._time = np.zeros(base_size, np.float) self._time_tot = np.zeros(nb_run, np.float) def record_iter_stat(self, num_run, best_solution, time_iteration): """Record a statistic concerning an iteration. Args: num_run (int): Index of the run in which the iteration took place. best_solution (Solution): Best solution computed at the end of the iteration. It has to be evaluated. time_iteration (float): Time in second taken to compute the iteration. """ if best_solution.fitness is None: raise ValueError("Statistics cannot be recorded on solutions that " "have not been evaluated.") if self._nb_iter[num_run] >= self._current_size_value: self._current_size_value *= 2 self._values.resize((self._nb_run, self._current_size_value)) if self._nb_iter_tot >= self._current_size_time: self._current_size_time *= 2 self._time.resize((self._current_size_time,)) self._values[num_run][self._nb_iter[num_run]] = best_solution.fitness self._time[self._nb_iter_tot] = time_iteration self._nb_iter[num_run] += 1 self._nb_iter_tot += 1 def record_time_computation(self, num_run, time_computation): """Record the time taken by a full metaheuristic run. Args: num_run (int): Index of the run in which the iteration took place. time_computation (float): Time in second taken to compute the full run. """ self._time_tot[num_run] = time_computation @property def nb_run(self): return self._nb_run @property def nb_iter_per_run(self): return self._nb_iter @property def nb_iter_total(self): return self._nb_iter_tot def get_run_nb_iterations(self, run_index): return self._nb_iter[run_index] def get_run_values(self, run_index): return self._values[run_index] @property def best_values(self): return np.array([self._values[i][max_iter - 1] for i, max_iter in enumerate(self._nb_iter) if max_iter > 0], np.float) @property def best_value(self): if len(self.best_values): return np.amin(self.best_values) return None @property def worst_value(self): if len(self.best_values): return np.amax(self.best_values) return None @property def mean_value(self): if len(self.best_values): return np.mean(self.best_values) return None @property def std_value(self): if len(self.best_values): return np.std(self.best_values) return None @property def times_iter(self): if self._nb_iter_tot: return self._time[:self._nb_iter_tot] return None @property def best_time_iter(self): if self._nb_iter_tot: return np.amin(self._time[:self._nb_iter_tot]) return None @property def worst_time_iter(self): if self._nb_iter_tot: return np.amax(self._time[:self._nb_iter_tot]) return None @property def mean_time_iter(self): if self._nb_iter_tot: return np.mean(self._time[:self._nb_iter_tot]) return None @property def std_time_iter(self): if self._nb_iter_tot: return np.std(self._time[:self._nb_iter_tot]) return None @property def time_tots(self): if np.any(self._time_tot): return self._time_tot return None @property def best_time_tot(self): if np.any(self._time_tot): return np.amin(self._time_tot) return None @property def worst_time_tot(self): if np.any(self._time_tot): return np.amax(self._time_tot) return None @property def mean_time_tot(self): if np.any(self._time_tot): return np.mean(self._time_tot) return None @property def std_time_tot(self): if np.any(self._time_tot): return np.std(self._time_tot) return None def __str__(self): st_c = "|{0}|{1}|{2}|{3}|\n" line = "".join(["-"]*62) + "\n" stat_str = "" stat_str += line stat_str += ("|{}|\n".format("fitness".center(60))) stat_str += line stat_str += ("|{}|{}|{}|{}|\n".format("worst".center(14), "mean".center(14), "best".center(14), "std".center(15))) stat_str += line stat_str += (st_c.format(str(self.worst_value).center(14), str(self.mean_value).center(14), str(self.best_value).center(14), str(self.std_value).center(15))) stat_str += line stat_str += ("|{}|\n".format("nb_iterations".center(60))) stat_str += line stat_str += ("|{}|{}|{}|{}|\n".format("worst".center(14), "mean".center(14), "best".center(14), "std".center(15))) stat_str += line stat_str += (st_c.format(str(np.amax(self.nb_iter_per_run)).center(14), str(np.mean(self.nb_iter_per_run)).center(14), str(np.amin(self.nb_iter_per_run)).center(14), str(np.std(self.nb_iter_per_run)).center(15))) stat_str += line stat_str += ("|{}|\n".format("time_per_iteration".center(60))) stat_str += line stat_str += ("|{}|{}|{}|{}|\n".format("worst".center(14), "mean".center(14), "best".center(14), "std".center(15))) stat_str += line stat_str += (st_c.format(str(self.worst_time_iter).center(14), str(self.mean_time_iter).center(14), str(self.best_time_iter).center(14), str(self.std_time_iter).center(15))) stat_str += line stat_str += ("|{}|\n".format("time_per_run".center(60))) stat_str += line stat_str += ("|{}|{}|{}|{}|\n".format("worst".center(14), "mean".center(14), "best".center(14), "std".center(15))) stat_str += line stat_str += (st_c.format(str(self.worst_time_tot).center(14), str(self.mean_time_tot).center(14), str(self.best_time_tot).center(14), str(self.std_time_tot).center(15))) stat_str += line return stat_str
36.754325
79
0.564489
634e34defdb37edcd7e9295ff3c2a46e9f84b24b
3,565
py
Python
huaweicloud-sdk-rds/huaweicloudsdkrds/v3/model/revoke_request_body.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
64
2020-06-12T07:05:07.000Z
2022-03-30T03:32:50.000Z
huaweicloud-sdk-rds/huaweicloudsdkrds/v3/model/revoke_request_body.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
11
2020-07-06T07:56:54.000Z
2022-01-11T11:14:40.000Z
huaweicloud-sdk-rds/huaweicloudsdkrds/v3/model/revoke_request_body.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
24
2020-06-08T11:42:13.000Z
2022-03-04T06:44:08.000Z
# coding: utf-8 import re import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class RevokeRequestBody: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'db_name': 'str', 'users': 'list[RevokeRequestBodyUsers]' } attribute_map = { 'db_name': 'db_name', 'users': 'users' } def __init__(self, db_name=None, users=None): """RevokeRequestBody - a model defined in huaweicloud sdk""" self._db_name = None self._users = None self.discriminator = None self.db_name = db_name self.users = users @property def db_name(self): """Gets the db_name of this RevokeRequestBody. 数据库名称。 :return: The db_name of this RevokeRequestBody. :rtype: str """ return self._db_name @db_name.setter def db_name(self, db_name): """Sets the db_name of this RevokeRequestBody. 数据库名称。 :param db_name: The db_name of this RevokeRequestBody. :type: str """ self._db_name = db_name @property def users(self): """Gets the users of this RevokeRequestBody. 解除授权的用户列表。 :return: The users of this RevokeRequestBody. :rtype: list[RevokeRequestBodyUsers] """ return self._users @users.setter def users(self, users): """Sets the users of this RevokeRequestBody. 解除授权的用户列表。 :param users: The users of this RevokeRequestBody. :type: list[RevokeRequestBodyUsers] """ self._users = users def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, RevokeRequestBody): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
25.464286
79
0.547826
4ca345e786ba4dce2b119db64c53eeca4cbcfb1a
43
py
Python
src/kan_alexandria/__version__.py
joaodath/kan_alexandria
b96ec9caf49a9372af715715275238fbaa10cc02
[ "Apache-2.0" ]
null
null
null
src/kan_alexandria/__version__.py
joaodath/kan_alexandria
b96ec9caf49a9372af715715275238fbaa10cc02
[ "Apache-2.0" ]
null
null
null
src/kan_alexandria/__version__.py
joaodath/kan_alexandria
b96ec9caf49a9372af715715275238fbaa10cc02
[ "Apache-2.0" ]
null
null
null
__version__ = '0.0.6' __release__ = 'beta'
14.333333
21
0.674419
359327ff8128820880b0d1cb017ded1bb163e996
812
py
Python
tests/unit/forms/widget_tests.py
ahmetdaglarbas/e-commerce
ff190244ccd422b4e08d7672f50709edcbb6ebba
[ "BSD-3-Clause" ]
1
2015-07-16T15:00:25.000Z
2015-07-16T15:00:25.000Z
tests/unit/forms/widget_tests.py
ahmetdaglarbas/e-commerce
ff190244ccd422b4e08d7672f50709edcbb6ebba
[ "BSD-3-Clause" ]
null
null
null
tests/unit/forms/widget_tests.py
ahmetdaglarbas/e-commerce
ff190244ccd422b4e08d7672f50709edcbb6ebba
[ "BSD-3-Clause" ]
null
null
null
import nose from oscar.forms import widgets def compare_date_format(format, expected): nose.tools.eq_( widgets.datetime_format_to_js_date_format(format), expected) def test_datetime_to_date_format_conversion(): format_testcases = ( ('%Y-%m-%d', 'yyyy-mm-dd'), ('%Y-%m-%d %H:%M', 'yyyy-mm-dd'), ) for format, expected in format_testcases: yield compare_date_format, format, expected def compare_time_format(format, expected): nose.tools.eq_( widgets.datetime_format_to_js_time_format(format), expected) def test_datetime_to_time_format_conversion(): format_testcases = ( ('%Y-%m-%d %H:%M', 'hh:ii'), ('%H:%M', 'hh:ii'), ) for format, expected in format_testcases: yield compare_time_format, format, expected
25.375
68
0.667488
9927985cf14808924d914a44478132539a6a2300
3,872
py
Python
doc/examples/auto_csfle_example.py
blink1073/motor
92b4d51ecb7b3aa87d979ed83524b879ec5515e4
[ "Apache-2.0" ]
null
null
null
doc/examples/auto_csfle_example.py
blink1073/motor
92b4d51ecb7b3aa87d979ed83524b879ec5515e4
[ "Apache-2.0" ]
null
null
null
doc/examples/auto_csfle_example.py
blink1073/motor
92b4d51ecb7b3aa87d979ed83524b879ec5515e4
[ "Apache-2.0" ]
null
null
null
import asyncio import os from bson import json_util from bson.codec_options import CodecOptions from pymongo.encryption import Algorithm from pymongo.encryption_options import AutoEncryptionOpts from motor.motor_asyncio import AsyncIOMotorClient, AsyncIOMotorClientEncryption async def create_json_schema_file(kms_providers, key_vault_namespace, key_vault_client): client_encryption = AsyncIOMotorClientEncryption( kms_providers, key_vault_namespace, key_vault_client, # The CodecOptions class used for encrypting and decrypting. # This should be the same CodecOptions instance you have configured # on MotorClient, Database, or Collection. We will not be calling # encrypt() or decrypt() in this example so we can use any # CodecOptions. CodecOptions(), ) # Create a new data key and json schema for the encryptedField. # https://dochub.mongodb.org/core/client-side-field-level-encryption-automatic-encryption-rules data_key_id = await client_encryption.create_data_key( "local", key_alt_names=["pymongo_encryption_example_1"] ) schema = { "properties": { "encryptedField": { "encrypt": { "keyId": [data_key_id], "bsonType": "string", "algorithm": Algorithm.AEAD_AES_256_CBC_HMAC_SHA_512_Deterministic, } } }, "bsonType": "object", } # Use CANONICAL_JSON_OPTIONS so that other drivers and tools will be # able to parse the MongoDB extended JSON file. json_schema_string = json_util.dumps(schema, json_options=json_util.CANONICAL_JSON_OPTIONS) with open("jsonSchema.json", "w") as file: file.write(json_schema_string) async def main(): # The MongoDB namespace (db.collection) used to store the # encrypted documents in this example. encrypted_namespace = "test.coll" # This must be the same master key that was used to create # the encryption key. local_master_key = os.urandom(96) kms_providers = {"local": {"key": local_master_key}} # The MongoDB namespace (db.collection) used to store # the encryption data keys. key_vault_namespace = "encryption.__pymongoTestKeyVault" key_vault_db_name, key_vault_coll_name = key_vault_namespace.split(".", 1) # The MotorClient used to access the key vault (key_vault_namespace). key_vault_client = AsyncIOMotorClient() key_vault = key_vault_client[key_vault_db_name][key_vault_coll_name] # Ensure that two data keys cannot share the same keyAltName. await key_vault.drop() await key_vault.create_index( "keyAltNames", unique=True, partialFilterExpression={"keyAltNames": {"$exists": True}} ) await create_json_schema_file(kms_providers, key_vault_namespace, key_vault_client) # Load the JSON Schema and construct the local schema_map option. with open("jsonSchema.json", "r") as file: json_schema_string = file.read() json_schema = json_util.loads(json_schema_string) schema_map = {encrypted_namespace: json_schema} auto_encryption_opts = AutoEncryptionOpts( kms_providers, key_vault_namespace, schema_map=schema_map ) client = AsyncIOMotorClient(auto_encryption_opts=auto_encryption_opts) db_name, coll_name = encrypted_namespace.split(".", 1) coll = client[db_name][coll_name] # Clear old data await coll.drop() await coll.insert_one({"encryptedField": "123456789"}) decrypted_doc = await coll.find_one() print("Decrypted document: %s" % (decrypted_doc,)) unencrypted_coll = AsyncIOMotorClient()[db_name][coll_name] encrypted_doc = await unencrypted_coll.find_one() print("Encrypted document: %s" % (encrypted_doc,)) if __name__ == "__main__": asyncio.run(main())
37.960784
99
0.707903
642756ca6c083b4e5cb45a2a0585caf4ec3beaf7
3,084
py
Python
tests/lr_schedulers/test_exponential_scheduler.py
HiromuHota/emmental
eb1e29b3406fc0ac301b2d29e06db5e6774eb9f0
[ "MIT" ]
null
null
null
tests/lr_schedulers/test_exponential_scheduler.py
HiromuHota/emmental
eb1e29b3406fc0ac301b2d29e06db5e6774eb9f0
[ "MIT" ]
null
null
null
tests/lr_schedulers/test_exponential_scheduler.py
HiromuHota/emmental
eb1e29b3406fc0ac301b2d29e06db5e6774eb9f0
[ "MIT" ]
null
null
null
import logging import shutil import torch.nn as nn import emmental from emmental import Meta from emmental.learner import EmmentalLearner logger = logging.getLogger(__name__) def test_exponential_scheduler(caplog): """Unit test of exponential scheduler""" caplog.set_level(logging.INFO) lr_scheduler = "exponential" dirpath = "temp_test_scheduler" model = nn.Linear(1, 1) emmental_learner = EmmentalLearner() Meta.reset() emmental.init(dirpath) # Test step per batch config = { "learner_config": { "n_epochs": 4, "optimizer_config": {"optimizer": "sgd", "lr": 10}, "lr_scheduler_config": { "lr_scheduler": lr_scheduler, "exponential_config": {"gamma": 0.1}, }, } } emmental.Meta.update_config(config) emmental_learner.n_batches_per_epoch = 1 emmental_learner._set_optimizer(model) emmental_learner._set_lr_scheduler(model) assert emmental_learner.optimizer.param_groups[0]["lr"] == 10 emmental_learner.optimizer.step() emmental_learner._update_lr_scheduler(model, 0, {}) assert abs(emmental_learner.optimizer.param_groups[0]["lr"] - 1) < 1e-5 emmental_learner.optimizer.step() emmental_learner._update_lr_scheduler(model, 1, {}) assert abs(emmental_learner.optimizer.param_groups[0]["lr"] - 0.1) < 1e-5 emmental_learner.optimizer.step() emmental_learner._update_lr_scheduler(model, 2, {}) assert abs(emmental_learner.optimizer.param_groups[0]["lr"] - 0.01) < 1e-5 emmental_learner.optimizer.step() emmental_learner._update_lr_scheduler(model, 3, {}) assert abs(emmental_learner.optimizer.param_groups[0]["lr"] - 0.001) < 1e-5 # Test step per epoch config = { "learner_config": { "n_epochs": 4, "optimizer_config": {"optimizer": "sgd", "lr": 10}, "lr_scheduler_config": { "lr_scheduler": lr_scheduler, "lr_scheduler_step_unit": "epoch", "exponential_config": {"gamma": 0.1}, }, } } emmental.Meta.update_config(config) emmental_learner.n_batches_per_epoch = 2 emmental_learner._set_optimizer(model) emmental_learner._set_lr_scheduler(model) assert emmental_learner.optimizer.param_groups[0]["lr"] == 10 emmental_learner.optimizer.step() emmental_learner._update_lr_scheduler(model, 0, {}) assert abs(emmental_learner.optimizer.param_groups[0]["lr"] - 10) < 1e-5 emmental_learner.optimizer.step() emmental_learner._update_lr_scheduler(model, 1, {}) assert abs(emmental_learner.optimizer.param_groups[0]["lr"] - 1) < 1e-5 emmental_learner.optimizer.step() emmental_learner._update_lr_scheduler(model, 2, {}) assert abs(emmental_learner.optimizer.param_groups[0]["lr"] - 1) < 1e-5 emmental_learner.optimizer.step() emmental_learner._update_lr_scheduler(model, 3, {}) assert abs(emmental_learner.optimizer.param_groups[0]["lr"] - 0.1) < 1e-5 shutil.rmtree(dirpath)
32.125
79
0.672503
17e2747b7e13819f59653089033fed40d62e5df1
4,236
py
Python
tyrell/dsl/builder.py
Lukas-Dresel/Trinity
f8c5c8356acb8142aad626ba7c24e4daa9531089
[ "Apache-2.0" ]
22
2019-04-04T14:01:18.000Z
2022-01-07T19:42:15.000Z
tyrell/dsl/builder.py
Lukas-Dresel/Trinity
f8c5c8356acb8142aad626ba7c24e4daa9531089
[ "Apache-2.0" ]
3
2019-01-26T07:14:35.000Z
2019-03-05T16:28:40.000Z
tyrell/dsl/builder.py
Lukas-Dresel/Trinity
f8c5c8356acb8142aad626ba7c24e4daa9531089
[ "Apache-2.0" ]
13
2019-03-27T18:37:19.000Z
2021-09-23T20:54:44.000Z
from typing import Union import sexpdata from .node import * from ..spec import TyrellSpec, Production, EnumType from ..visitor import GenericVisitor class ProductionVisitor(GenericVisitor): _children: List[Node] def __init__(self, children: List[Node]): self._children = children def visit_enum_production(self, prod) -> Node: return AtomNode(prod) def visit_param_production(self, prod) -> Node: return ParamNode(prod) def visit_function_production(self, prod) -> Node: return ApplyNode(prod, self._children) class Builder: '''A factory class to build AST node''' _spec: TyrellSpec def __init__(self, spec: TyrellSpec): self._spec = spec def _make_node(self, prod: Production, children: List[Node] = []) -> Node: return ProductionVisitor(children).visit(prod) def make_node(self, src: Union[int, Production], children: List[Node] = []) -> Node: ''' Create a node with the given production index and children. Raise `KeyError` or `ValueError` if an error occurs ''' if isinstance(src, int): return self._make_node(self._spec.get_production_or_raise(src), children) elif isinstance(src, Production): # Sanity check first prod = self._spec.get_production_or_raise(src.id) if src != prod: raise ValueError( 'DSL Builder found inconsistent production instance') return self._make_node(prod, children) else: raise ValueError( 'make_node() only accepts int or production, but found {}'.format(src)) def make_enum(self, name: str, value: str) -> Node: ''' Convenient method to create an enum node. Raise `KeyError` or `ValueError` if an error occurs ''' ty = self.get_type_or_raise(name) prod = self.get_enum_production_or_raise(ty, value) return self.make_node(prod.id) def make_param(self, index: int) -> Node: ''' Convenient method to create a param node. Raise `KeyError` or `ValueError` if an error occurs ''' prod = self.get_param_production_or_raise(index) return self.make_node(prod.id) def make_apply(self, name: str, args: List[Node]) -> Node: ''' Convenient method to create an apply node. Raise `KeyError` or `ValueError` if an error occurs ''' prod = self.get_function_production_or_raise(name) return self.make_node(prod.id, args) def _from_sexp(self, sexp) -> Node: if not isinstance(sexp, list) or len(sexp) < 2 or not isinstance(sexp[0].value(), str): # None of our nodes serializes to atom msg = 'Cannot parse sexp into dsl.Node: {}'.format(sexp) raise ValueError(msg) sym = sexp[0].value() # First check for param node if sym == '@param': index = int(sexp[1]) return self.make_param(index) # Next, check for atom node ty = self.get_type(sym) if ty is not None and ty.is_enum(): if isinstance(sexp[1], list): # Could be a enum list value = [str(x) for x in sexp[1]] return self.make_enum(ty.name, value) else: value = str(sexp[1]) return self.make_enum(ty.name, value) # Finally, check for apply node args = [self._from_sexp(x) for x in sexp[1:]] return self.make_apply(sym, args) def from_sexp_string(self, sexp_str: str) -> Node: ''' Convenient method to create an AST from an sexp string. Raise `KeyError` or `ValueError` if an error occurs ''' try: sexp = sexpdata.loads(sexp_str) # This library is liberal on its exception raising... except Exception as e: raise ValueError('Sexp parsing error: {}'.format(e)) return self._from_sexp(sexp) # For convenience, expose all methods in TyrellSpec so that the client do not need to keep a reference of it def __getattr__(self, attr): return getattr(self._spec, attr)
35.3
112
0.609065
e05e114bb7117e1f576ed07e643cc281b9408dd5
804
py
Python
pyshop/pyshop/urls.py
Fahad-Hafeez/PyShop
825e55e4da9b9661f91562669c9b2599531fdc3c
[ "Apache-2.0" ]
null
null
null
pyshop/pyshop/urls.py
Fahad-Hafeez/PyShop
825e55e4da9b9661f91562669c9b2599531fdc3c
[ "Apache-2.0" ]
null
null
null
pyshop/pyshop/urls.py
Fahad-Hafeez/PyShop
825e55e4da9b9661f91562669c9b2599531fdc3c
[ "Apache-2.0" ]
null
null
null
"""pyshop URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include urlpatterns = [ path('admin/', admin.site.urls), path('products/', include('products.urls')) ]
36.545455
77
0.706468
2092626a4b4d74dcc28ae9ce862b5fd3fd636b69
6,206
py
Python
data_steward/cdr_cleaner/cleaning_rules/missing_concept_record_suppression.py
lrwb-aou/curation
e80447e56d269dc2c9c8bc79e78218d4b0dc504c
[ "MIT" ]
16
2017-06-30T20:05:05.000Z
2022-03-08T21:03:19.000Z
data_steward/cdr_cleaner/cleaning_rules/missing_concept_record_suppression.py
lrwb-aou/curation
e80447e56d269dc2c9c8bc79e78218d4b0dc504c
[ "MIT" ]
342
2017-06-23T21:37:40.000Z
2022-03-30T16:44:16.000Z
data_steward/cdr_cleaner/cleaning_rules/missing_concept_record_suppression.py
lrwb-aou/curation
e80447e56d269dc2c9c8bc79e78218d4b0dc504c
[ "MIT" ]
33
2017-07-01T00:12:20.000Z
2022-01-26T18:06:53.000Z
""" Remove records that contain concept_ids that do not belong in the vocabulary. Original Issues: DC1601 """ # Python imports import logging # Third party imports from google.cloud.exceptions import GoogleCloudError # Project imports from cdr_cleaner.cleaning_rules.deid.concept_suppression import AbstractBqLookupTableConceptSuppression from constants.cdr_cleaner import clean_cdr as cdr_consts from common import JINJA_ENV, CDM_TABLES from utils import pipeline_logging from resources import get_concept_id_fields LOGGER = logging.getLogger(__name__) SUPPRESSION_RULE_CONCEPT_TABLE = 'missing_vocabulary_concepts' CREATE_OR_REPLACE_CLAUSE = JINJA_ENV.from_string(""" CREATE OR REPLACE TABLE `{{project_id}}.{{sandbox_id}}.{{concept_suppression_lookup_table}}` AS {{query}} """) MISSING_CONCEPTS_QUERY = JINJA_ENV.from_string(""" SELECT DISTINCT t.{{concept_id_field}} concept_id FROM `{{project_id}}.{{dataset_id}}.{{tablename}}` t LEFT JOIN `{{project_id}}.{{dataset_id}}.concept` c ON c.concept_id = t.{{concept_id_field}} WHERE c.concept_id IS NULL AND (t.{{concept_id_field}} IS NOT NULL AND t.{{concept_id_field}} <> 0) """) class MissingConceptRecordSuppression(AbstractBqLookupTableConceptSuppression): def __init__(self, project_id, dataset_id, sandbox_dataset_id, table_namer=''): """ Initialize the class with proper information. Set the issue numbers, description and affected datasets. As other tickets may affect this SQL, append them to the list of Jira Issues. DO NOT REMOVE ORIGINAL JIRA ISSUE NUMBERS! """ desc = "Remove records that contain concept_ids that do not exist in the vocabulary." super().__init__( issue_numbers=['DC1601'], description=desc, affected_datasets=[cdr_consts.COMBINED], affected_tables=CDM_TABLES, project_id=project_id, dataset_id=dataset_id, sandbox_dataset_id=sandbox_dataset_id, concept_suppression_lookup_table=SUPPRESSION_RULE_CONCEPT_TABLE, table_namer=table_namer) def get_missing_concepts(self, client, tables): queries = [] union_distinct = "\nUNION DISTINCT\n" for table in tables: concept_id_fields = get_concept_id_fields(table) concept_id_fields = [ field for field in concept_id_fields if 'source_concept_id' not in field ] for concept_id_field in concept_id_fields: query = MISSING_CONCEPTS_QUERY.render( project_id=self.project_id, dataset_id=self.dataset_id, tablename=table, concept_id_field=concept_id_field) queries.append(query) unioned_queries = union_distinct.join(queries) concept_suppression_lookup_query = CREATE_OR_REPLACE_CLAUSE.render( project_id=self.project_id, sandbox_id=self.sandbox_dataset_id, concept_suppression_lookup_table=self. concept_suppression_lookup_table, query=unioned_queries) query_job = client.query(concept_suppression_lookup_query) result = query_job.result() if hasattr(result, 'errors') and result.errors: LOGGER.error(f"Error running job {result.job_id}: {result.errors}") raise GoogleCloudError( f"Error running job {result.job_id}: {result.errors}") def create_suppression_lookup_table(self, client): """ Build the concept suppression lookup table :param client: Bigquery client :return: """ self.get_missing_concepts(client, self.affected_tables) def setup_validation(self, client, *args, **keyword_args): """ Run required steps for validation setup Method to run to setup validation on cleaning rules that will be updating or deleting the values. For example: if your class updates all the datetime fields you should be implementing the logic to get the initial list of values which adhere to a condition we are looking for. if your class deletes a subset of rows in the tables you should be implementing the logic to get the row counts of the tables prior to applying cleaning rule """ raise NotImplementedError("Please fix me.") def validate_rule(self, client, *args, **keyword_args): """ Validates the cleaning rule which deletes or updates the data from the tables Method to run validation on cleaning rules that will be updating the values. For example: if your class updates all the datetime fields you should be implementing the validation that checks if the date time values that needs to be updated no longer exists in the table. if your class deletes a subset of rows in the tables you should be implementing the validation that checks if the count of final final row counts + deleted rows should equals to initial row counts of the affected tables. Raises RunTimeError if the validation fails. """ raise NotImplementedError("Please fix me.") if __name__ == '__main__': import cdr_cleaner.args_parser as parser import cdr_cleaner.clean_cdr_engine as clean_engine ARGS = parser.parse_args() pipeline_logging.configure(level=logging.DEBUG, add_console_handler=True) if ARGS.list_queries: clean_engine.add_console_logging() query_list = clean_engine.get_query_list( ARGS.project_id, ARGS.dataset_id, ARGS.sandbox_dataset_id, [(MissingConceptRecordSuppression,)]) for query in query_list: LOGGER.info(query) else: clean_engine.add_console_logging(ARGS.console_log) clean_engine.clean_dataset(ARGS.project_id, ARGS.dataset_id, ARGS.sandbox_dataset_id, [(MissingConceptRecordSuppression,)])
37.385542
105
0.672897
839ac3ce9db060bad7f334a21904c8fc05075aff
44,949
py
Python
snkrfinder/model/cvae.py
ergonyc/snkrfinder
d8ddc6f20cf9c1ac2eec460f0e7bab9ab03c6791
[ "Apache-2.0" ]
null
null
null
snkrfinder/model/cvae.py
ergonyc/snkrfinder
d8ddc6f20cf9c1ac2eec460f0e7bab9ab03c6791
[ "Apache-2.0" ]
null
null
null
snkrfinder/model/cvae.py
ergonyc/snkrfinder
d8ddc6f20cf9c1ac2eec460f0e7bab9ab03c6791
[ "Apache-2.0" ]
null
null
null
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/02c_model.cvae.ipynb (unless otherwise specified). __all__ = ['prep_df_for_datablocks', 'get_ae_btfms', 'get_ae_no_aug', 'TensorPoint', 'Tensor2Vect', 'LatentsTensor', 'df_get_x', 'df_get_y', 'LatentsTensorBlock', 'df_ae_x', 'df_ae_y', 'LatentTupleBlock', 'get_ae_DataBlock', 'UpsampleBlock', 'LatentLayer', 'AEEncoder', 'AEDecoder', 'build_AE_encoder', 'build_AE_decoder', 'AE', 'AELoss', 'MyMetric', 'L1LatentReg', 'KLD', 'KLDiv', 'L2MeanMetric', 'L1MeanMetric', 'L2Metric', 'L1Metric', 'L2BMeanMetric', 'L1BMeanMetric', 'KLWeightMetric', 'RawKLDMetric', 'WeightedKLDMetric', 'MuMetric', 'MuSDMetric', 'StdMetric', 'StdSDMetric', 'LogvarMetric', 'LogvarSDMetric', 'default_AE_metrics', 'short_AE_metrics', 'AnnealedLossCallback', 'default_KL_anneal_in', 'bn_splitter', 'resnetVAE_split', 'AE_split', 'get_conv_parts', 'get_pretrained_parts', 'get_encoder_parts', 'VAELinear', 'VAELayer', 'BVAE', 'BVAELoss', 'default_VAE_metrics', 'short_VAE_metrics', 'gaussian_kernel', 'MMD', 'rawMMD', 'MMDVAE', 'MaxMeanDiscrepancy', 'MMDLoss', 'MMDMetric', 'short_MMEVAE_metrics', 'default_MMEVAE_metrics', 'UpsampleResBlock', 'get_resblockencoder_parts', 'ResBlockAEDecoder', 'build_ResBlockAE_decoder', 'ResBlockAE'] # Cell from ..imports import * from ..core import * from ..data import * from .core import * #from snkrfinder.model.transfer import * from fastai.test_utils import show_install, synth_learner, nvidia_smi, nvidia_mem # Cell def prep_df_for_datablocks(df): df = df[["path","train","test","validate","t_t_v","Category"]].copy() # I could remove all the "test" rows... for now i'll choose an alternate strategy: # Drop all the "test" rows for now, and create an "is_valid" column... # should probably drop a ton of columns to jus tkeep the file paths... # just keep what we'll need below df.loc[:,'is_valid'] = df.test | df.validate df.loc[:,'og_idx'] = df.index return df # Cell def get_ae_btfms(stats = 'sneaker'): # could use globals IM_STATS['sneaker'] and IM_STATS['imagenet'] im_stats = ([.5,.5,.5],[.5,.5,.5]) if stats == 'sneaker' else imagenet_stats batch_tfms = Normalize.from_stats(*im_stats) #batch_tfms = Normalize.from_stats([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) rand_tfms = aug_transforms(mult=1.0, do_flip=True, flip_vert=False, max_rotate=5.0, min_zoom=.95, max_zoom=1.0, max_lighting=0.1, max_warp=0.1, p_affine=0.66, p_lighting=0.2, xtra_tfms=None, size=None, mode='bilinear', pad_mode='border', align_corners=True, batch=False, min_scale=1.0) return rand_tfms+[batch_tfms] def get_ae_no_aug(stats = 'sneaker'): im_stats = ([.5,.5,.5],[.5,.5,.5]) if stats == 'sneaker' else imagenet_stats batch_tfms = Normalize.from_stats(*im_stats) return [batch_tfms] # Cell # NO CLUE WHY WE NEED TO HAVE THIS.... copied class TensorPoint(TensorBase): "Basic type for points in an image" _show_args = dict(s=10, marker='.', c='r') @classmethod def create(cls, t, img_size=None)->None: "Convert an array or a list of points `t` to a `Tensor`" return cls(tensor(t).view(-1, 2).float(), img_size=img_size) def show(self, ctx=None, **kwargs): if 'figsize' in kwargs: del kwargs['figsize'] x = self.view(-1,2) ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) return ctx class Tensor2Vect(TensorPoint): pass # TODO: instantiate a show method class LatentsTensor(Tensor2Vect): "Basic type for latents as Tensor inheriting from TensorPoint (vectors)" @classmethod def create(cls, ts, img_size=IMG_SIZE): "create IMG_SIZE attr to register plotting..." if isinstance(ts,tuple): mu,logvar = ts elif ts is None: mu,logvar = None,None else: mu = None logvar = None if mu is None: mu = torch.empty(0) elif not isinstance(mu, Tensor): Tensor(mu) if logvar is None: logvar = torch.empty(0) elif not isinstance(logvar,Tensor): Tensor(logvar) t = torch.cat([mu,logvar],dim=-1) # in case its a batch? return cls(tensor(t).view(-1, 2).float(), img_size=img_size) # def show(self, ctx=None, **kwargs): # if 'figsize' in kwargs: del kwargs['figsize'] # x = self.view(-1,2) # ctx.scatter(x[:, 0], x[:, 1], **{**self._show_args, **kwargs}) # return ctx # mu,logvar = self # if not isinstance(mu, Tensor) or not isinstance(logvar,Tensor): return ctx # title_str = f"mu-> {mu.mean():e}, {mu.std():e} logvar->{logvar.mean():e}, {logvar.std():e}" # if 'figsize' in kwargs: del kwargs['figsize'] # if 'title' in kwargs: kwargs['title']=title_str # if ctx is None: # _,axs = plt.subplots(1,2, figsize=(12,6)) # x=torch.linspace(0,1,mu[0].shape[0]) # axs[0].scatter(x, mu[:], **{**self._show_args, **kwargs}) # axs[1].scatter(x, logvar[:], **{**self._show_args, **kwargs}) # ctx = axs[1] # ctx.scatter(mu[:], logvar[:], **{**self._show_args, **kwargs}) # return ctx # Cell def df_get_x(r): "datablock df helper for VAE Block using `LatentTuple`" return L_ROOT/'data/raw'/r['path'] def df_get_y(r): "datablock df helper for VAE Block using `LatentTuple`" return (df_get_x(r),None,None) # Cell def LatentsTensorBlock(): "Class wrapper for the AE `LatentTensor` Block" return TransformBlock(type_tfms=LatentsTensor.create, batch_tfms=noop) def df_ae_x(r,im_path=L_ROOT/"data/raw"): "Autoencoder LatentsTensorBlock datablock df helper" return im_path/r['path'] # need to make sure that we get the image whihc is "Identical" to the input.. how to test? def df_ae_y(r): "The target is the same as the input for AE"# lambda o: o return df_ae_x(r) #export # could we do a typedispatch to manage the transforms...? # def VAETargetTupleBlock(): # return TransformBlock(type_tfms=VAETargetTuple.create, batch_tfms=IntToFloatTensor) def LatentTupleBlock(): "Class wrapper for the AE `LatentTuple` Block (depricated)" return TransformBlock(type_tfms=LatentTuple.create, batch_tfms=noop) # Cell # def get_ae_DataBlock(aug=True,im_path=L_ROOT/"data/raw",stats = 'sneaker',im_size=IMG_SIZE): "wrapper to get the standard AE datablock with `ImageBlock`,`LatentTensor` target" # use partials or a class wrapper to get around this yucky hack # global image_path # image_path = im_path mytfms = get_ae_btfms(stats=stats) if aug else get_ae_no_aug(stats=stats) block = DataBlock(blocks=(ImageBlock(cls=PILImage), ImageBlock(cls=PILImage), LatentsTensorBlock ), get_x=df_ae_x, get_y=[df_ae_y, noop], #don't need to get the LatentsTensorBlock, just create splitter=ColSplitter('is_valid'), item_tfms= FeatsResize(im_size,method='pad', pad_mode='border'), batch_tfms = mytfms, n_inp = 1) return block # Cell class UpsampleBlock(Module): def __init__(self, up_in_c:int, final_div:bool=True, blur:bool=False, **kwargs): """ Upsampling using PixelShuffle_INCR and ConvLayer - up_in_c : "Upsample input channel" """ self.shuf = PixelShuffle_ICNR(up_in_c, up_in_c//2, blur=blur, **kwargs) ni = up_in_c//2 nf = ni if final_div else ni//2 self.conv1 = ConvLayer(ni, nf, **kwargs) # since we'll apply it by hand... self.conv2 = ConvLayer(nf, nf, **kwargs) def forward(self, up_in:Tensor) -> Tensor: up_out = self.shuf(up_in) return self.conv2(self.conv1(up_out)) # Cell class LatentLayer(Module): """ This layer encodes the latent "bottleneck" and is constructed to work with the specified VAE DataBlock be a replacement for the variational (reparameter trick) layer for otherwise identical architecture """ def __init__(self,in_features,latent_features): """ Compose a linear latent layer such that the mechanics are equivalent to the VAE the "dummy" can be used for a shaddow logvar track a KLD estimate divergence from latent gaussian prior compute the variance across batchs for each latent feature as the dummy_var """ self.latent = nn.Linear(in_features,latent_features) def forward(self,h): z = self.latent(h) #dummy_var = (z.var(dim=1).unsqueeze(-1).expand(z.size()) ) #variance across latent dim for each image dummy_var = (z.var(dim=0).unsqueeze(0).expand(z.size()) ) #latent variance across batch dummy_mu = z return z, dummy_mu, dummy_var.log() #return z, torch.zeros_like(z) # Cell class AEEncoder(Module): def __init__(self,arch_body,enc_dim, hidden_dim=None, im_size=IMG_SIZE): """ arch_body list of layers (e.g. arch.children()[:cut]) enc_dim, hidden_dim. number of linear features to sandwich between the feature encoder and the latent layers """ arch = arch_body + [Flatten()] if hidden_dim: # i.e. is not None arch += [nn.Linear(enc_dim,hidden_dim)] # [LinBnDrop(enc_dim,hidden_dim,bn=True,p=0.0,act=nn.ReLU(),lin_first=True)] self.encoder = nn.Sequential(*arch) store_attr('enc_dim,hidden_dim') def forward(self, x): return self.encoder(x) #### TODO: refactor this to take a "BLOCK" input so we can have either UpsampleBlocks or ResBlockUpsampleBlocks class AEDecoder(Module): def __init__(self, hidden_dim=None, latent_dim=128, im_size=IMG_SIZE,out_range=OUT_RANGE): """ Decoder Module made of `UpsampleBlock`s returning the latent representation back into an "image" latent_dim - dimension of latent representation hidden_dim - optional additional linear layer between the latent and decoder im_size - passed to make sure we are scaling back to the right size out_range - ensures the output is on teh same scale as the _normalized_ input image """ #decoder n_blocks = 5 BASE = im_size//2**5 hidden = im_size*BASE*BASE if hidden_dim is None else hidden_dim z_fc = [nn.Linear(latent_dim,hidden)] # [LinBnDrop(latent_dim,hidden,bn=True,p=0.0,act=nn.ReLU(),lin_first=True)] if hidden_dim: # i.e. is not None z_fc += [nn.Linear(hidden,im_size*BASE*BASE)] # should the hidden layer have activationa and/or batchnorm? #z_fc += [LinBnDrop(hidden,im_size*n_blocks*n_blocks,bn=True,p=0.0,act=nn.ReLU(),lin_first=True)] nfs = [3] + [2**i*BASE for i in range(n_blocks+1)] nfs.reverse() n = len(nfs) modules = [UpsampleBlock(nfs[i]) for i in range(n - 2)] self.decoder = nn.Sequential(*z_fc, ResizeBatch(im_size,BASE,BASE), *modules, ConvLayer(nfs[-2],nfs[-1], ks=1,padding=0, norm_type=None, #act_cls=nn.Sigmoid) ) act_cls=partial(SigmoidRange, *out_range))) store_attr('latent_dim, hidden_dim,im_size,out_range') def forward(self, z): return self.decoder(z) # Cell def build_AE_encoder(arch_body,enc_dim, hidden_dim=None, im_size=IMG_SIZE): "wrapper to sequential-ize AEEncoder class" encoder = AEEncoder(arch_body,enc_dim=enc_dim, hidden_dim=hidden_dim, im_size=im_size) return nn.Sequential(*list(encoder.children())) def build_AE_decoder(hidden_dim=None, latent_dim=128, im_size=IMG_SIZE,out_range=OUT_RANGE): "wrapper to sequential-ize AEDecoder class" decoder = AEDecoder(hidden_dim=hidden_dim, latent_dim=latent_dim, im_size=im_size,out_range=out_range) return nn.Sequential(*list(decoder.children())) # Cell class AE(Module): def __init__(self,enc_parts,hidden_dim=None, latent_dim=128, im_size=IMG_SIZE,out_range=OUT_RANGE): """ inputs: arch, cut,pretrained enc_dim latent_dim hidden_dim """ enc_arch,enc_feats,name = enc_parts BASE = im_size//2**5 enc_dim = enc_feats * BASE**2 # 2**(3*3) * (im_size//32)**2 #(output of resneet) #12800 #encoder self.encoder = build_AE_encoder(enc_arch,enc_dim=enc_dim, hidden_dim=hidden_dim, im_size=im_size) in_dim = enc_dim if hidden_dim is None else hidden_dim # AE Bottleneck self.bn = LatentLayer(in_dim,latent_dim) #decoder self.decoder = build_AE_decoder(hidden_dim=hidden_dim, latent_dim=latent_dim, im_size=im_size,out_range=out_range) store_attr('name,enc_dim, in_dim,hidden_dim,latent_dim,im_size,out_range') # do i need all these? def decode(self, z): return self.decoder(z) def encode(self, x): h = self.encoder(x) return self.bn(h) def forward(self, x): #z, mu, logvar = self.encode(x) # h = self.encoder(x) # z, mu, logvar = self.bn(h) # reparam happens in the VAE layer # x_hat = self.decoder(z) z,mu,logvar = self.encode(x) # z and mu are the same for x_hat = self.decode(z) latents = torch.stack([mu,logvar],dim=-1) return x_hat, latents # assume dims are [batch,latent_dim,concat_dim] # Cell # class L1LatentReg(Module): # """ # add alpha? # """ # def __init__(self, batchmean=False): # """ # reduction 'sum', else 'batchmean' # """ # l_one = self._L1mean if batchmean else self._L1 # store_attr('batchmean,l_one') # def _L1(self, a): # return a.abs().sum() # def _L1mean(self, a): # return a.abs().sum(dim=1).mean() # def forward(self,z): # return self.l_one(z) class AELoss(Module): """ wrapper for loss_func which deals with potential annealed kl_weight does MSE with 'mean' reduction 'batchmean' averages as 'sum' MSE over batches simple L1 regularizer on latent dimension """ def __init__(self, batchmean=False, alpha=1.0,useL1=False): """ reduction 'sum' """ pix_loss = MSELossFlat(reduction='sum') if not useL1 else L1LossFlat(reduction='sum') store_attr('pix_loss,alpha,batchmean') def l_one_reg(self,pix_dim,z): l_one = z.abs().sum() l_one *= (3*pix_dim*pix_dim)/z.size()[1] return l_one def forward(self, preds, *target): """ pred =(x_hat,KLD,kl_weight) #mu,log_var, kl_weight) target is x (original) """ # this handles the annealed kl_weight and passing the mu,logvar around we added... if(len(preds) == 3): x_hat, latents, _ = preds else: #if len(preds) == 2: # we should never get here... unless we delete teh callback x_hat, latents = preds z, _ = latents.split(1,dim=2) bs = latents.size()[0] #note: both mse and l1_reg are summing errors over batches, and pixels or latents pix_err = self.pix_loss(x_hat, target[0]) pix_dim = x_hat.size()[-1] l1_reg = self.l_one_reg(pix_dim,z) total = pix_err + self.alpha*l1_reg total *= (1./bs) if self.batchmean else 1.0 return total # Cell class MyMetric(Metric): "meta-class for simple average over epoch metric quantities" def reset(self): "Clear all targs and preds" self.vals = [] @property def value(self): return np.array(self.vals).mean() class L1LatentReg(MyMetric): "Latent Regularizer with sum reduction and optinal batchmean scaling" def __init__(self,batchmean=False,alpha=1.0): vals = [] store_attr('vals,batchmean,alpha') def accumulate(self, learn): # pix_dim = to_detach(learn.y[0].size()[-1]) latents = to_detach(learn.pred[1]) bs = latents.size()[0] z, _ = latents.split(1,dim=2) #nll = torch.abs(recon_x - x).mean() l_one = z.abs().sum() # l_one *= (3*pix_dim*pix_dim)/z.size()[1] l_one *= (self.alpha/bs) if self.batchmean else self.alpha self.vals.append(l_one) # Cell def KLD(mu,logvar): "KLD helper which sum across latents, but not batches" return -0.5 * torch.sum(1 + logvar - mu*mu - logvar.exp(),1) class KLDiv(Module): """ Module for computing the KL Divergence from a unit normal distribution. 'batchmean' option sums first and averages over batches """ def __init__(self, batchmean=False): """ reduction 'sum', else 'batchmean' """ store_attr('batchmean') def __KLD(self,mu,logvar): "KLD helper which sum across latents, but not batches" return -0.5 * torch.sum(1 + logvar - mu*mu - logvar.exp(),1) def forward(self, mu, logvar): """ pred =(x_hat,KLD,kl_weight) #mu,log_var, kl_weight) target is x (original) """ kld = self.__KLD(mu,logvar) kld = kld.mean() if self.batchmean else kld.sum() return kld # Cell class L2MeanMetric(MyMetric): "Mean square error" def __init__(self): self.vals = [] def accumulate(self, learn): x = to_detach(learn.y[0]) recon_x = to_detach(learn.pred[0]) nll = (recon_x - x).pow(2).mean() #nll = torch.mean((recon_x - x)**2) self.vals.append(nll) class L1MeanMetric(MyMetric): "Mean absolute error" def __init__(self): self.vals = [] def accumulate(self, learn): x = to_detach(learn.y[0]) recon_x = to_detach(learn.pred[0]) #nll = torch.abs(recon_x - x).mean() nll = (recon_x - x).abs().mean() self.vals.append(nll) class L2Metric(MyMetric): "Sum square error" def __init__(self): self.vals = [] def accumulate(self, learn): x = to_detach(learn.y[0]) recon_x = to_detach(learn.pred[0]) nll = (recon_x - x).pow(2).sum() #nll = torch.mean((recon_x - x)**2) self.vals.append(nll) class L1Metric(MyMetric): "Sum absolute error" def __init__(self): self.vals = [] def accumulate(self, learn): x = to_detach(learn.y[0]) recon_x = to_detach(learn.pred[0]) #nll = torch.abs(recon_x - x).mean() nll = (recon_x - x).abs().sum() self.vals.append(nll) class L2BMeanMetric(MyMetric): "Summed square error average across batch " def __init__(self): self.vals = [] def accumulate(self, learn): x = to_detach(learn.y[0]) recon_x = to_detach(learn.pred[0]) nll = (recon_x - x).pow(2).sum(dim=[1,2,3]).mean() #nll = torch.mean((recon_x - x)**2) self.vals.append(nll) class L1BMeanMetric(MyMetric): "Summed abs error average across batch " def __init__(self): self.vals = [] def accumulate(self, learn): x = to_detach(learn.y[0]) recon_x = to_detach(learn.pred[0]) #nll = torch.abs(recon_x - x).mean() nll = (recon_x - x).abs().sum(dim=[1,2,3]).mean() self.vals.append(nll) class KLWeightMetric(MyMetric): "Injected KLD weighting" def __init__(self): self.vals = [] def accumulate(self, learn): #kl = learn.model.kl_weight kl = learn.opt.hypers[0]['kl_weight'] self.vals.append(to_detach(kl)) class RawKLDMetric(MyMetric): "KLD Metric, `batchmean` averages across batches" def __init__(self,batchmean=False): vals = [] _KLD = KLDiv(batchmean=batchmean) store_attr('vals,batchmean,_KLD') def accumulate(self, learn): latents = learn.pred[1] mu, logvar = latents.split(1,dim=2) kld = self._KLD(mu,logvar) self.vals.append(to_detach(kld)) class WeightedKLDMetric(MyMetric): """weighted KLD Metric, `batchmean` averages across batches the "effective" KLD regularization in e.g. a 𝜷-BAE """ def __init__(self,batchmean=False,alpha=1.0): vals = [] _KLD = KLDiv(batchmean=batchmean) store_attr('vals,batchmean,alpha,_KLD') def accumulate(self, learn): latents = learn.pred[1] mu, logvar = latents.split(1,dim=2) kld = self.alpha*self._KLD(mu,logvar) self.vals.append(to_detach(kld)) # latents = to_detach(learn.pred[1]) # mu, logvar = latents.split(1,dim=2) # kld = _KLD(mu,logvar).mean() if self.batchmean else _KLD(mu,logvar).sum() # self.vals.append(self.alpha*kld) class MuMetric(MyMetric): "average latent value (e.g. avg(`mu`)" def __init__(self): self.vals = [] def accumulate(self, learn): latents = to_detach(learn.pred[1]) mu, logvar = latents.split(1,dim=2) self.vals.append(mu.mean()) class MuSDMetric(MyMetric): "standard deviation of latent 𝝁 value (e.g. std(`mu`) )" def __init__(self): self.vals = [] def accumulate(self, learn): latents = to_detach(learn.pred[1]) mu, logvar = latents.split(1,dim=2) self.vals.append(mu.std()) class StdMetric(MyMetric): "average of latent 𝝈 value (e.g. std(exp(.5*`logvar`) )" def __init__(self): self.vals = [] def accumulate(self, learn): latents = learn.pred[1] mu, logvar = latents.split(1,dim=2) std = torch.exp(0.5 * logvar).mean() self.vals.append(to_detach(std)) class StdSDMetric(MyMetric): "standard deviation of latent 𝝈 value (e.g. std(exp(.5*`logvar`) )" def __init__(self): self.vals = [] def accumulate(self, learn): latents = learn.pred[1] mu, logvar = latents.split(1,dim=2) std = torch.exp(0.5 * logvar).std() self.vals.append(to_detach(std)) class LogvarMetric(MyMetric): "average of latent log(𝝈*𝝈) value (e.g. mean(`logvar`))" def __init__(self): self.vals = [] def accumulate(self, learn): latents = to_detach(learn.pred[1]) mu, logvar = latents.split(1,dim=2) self.vals.append(logvar.mean()) class LogvarSDMetric(MyMetric): "standard deviation of latent log(𝝈*𝝈) value (e.g. std(`logvar`)" def __init__(self): self.vals = [] def accumulate(self, learn): latents = to_detach(learn.pred[1]) mu, logvar = latents.split(1,dim=2) self.vals.append(logvar.std()) # Cell def default_AE_metrics(alpha,batchmean,useL1): "long-ish default list of metrics for the AE" first = L2BMeanMetric() if batchmean else L2MeanMetric() second = L1BMeanMetric() if batchmean else L2MeanMetric() if useL1: first,second = second,first metrics = [first, L1LatentReg(batchmean=batchmean,alpha=alpha), MuMetric(), StdMetric(), LogvarMetric(), second, WeightedKLDMetric(batchmean=batchmean,alpha=alpha), MuSDMetric(), LogvarSDMetric(), ] return metrics def short_AE_metrics(alpha,batchmean,useL1): "short default list of metrics for the AE" first = L2BMeanMetric() if batchmean else L2MeanMetric() second = L1BMeanMetric() if batchmean else L2MeanMetric() if useL1: first,second = second,first metrics = [first, L1LatentReg(batchmean=batchmean,alpha=alpha), MuMetric(), ] return metrics # Cell class AnnealedLossCallback(Callback): "injects `kl_weight` for access during loss function calculation" def after_pred(self): kl_weight = self.learn.pred[0].new(1) kl_weight[0] = self.opt.hypers[0]['kl_weight'] if 'kl_weight' in self.opt.hypers[0].keys() else 1.0 self.learn.pred = self.learn.pred + (kl_weight,) def after_batch(self): pred, latents, _ = self.learn.pred self.learn.pred = (pred,latents) def default_KL_anneal_in(): "reasonable default for 'warming up' the KL Div" return combine_scheds([ .7, .3], [SchedCos(0,1), SchedNo(1,1)]) # Cell def bn_splitter(m): "splits all the batchnorm layers out" def _bn_splitter(l, g1, g2): if isinstance(l, nn.BatchNorm2d): g2 += l.parameters() elif hasattr(l, 'weight'): g1 += l.parameters() for ll in l.children(): _bn_splitter(ll, g1, g2) g1,g2 = [],[] _bn_splitter(m[0], g1, g2) g2 += m[1:].parameters() return g1,g2 def resnetVAE_split(m): "simple splitter to freeze the non batch norm pre-trained encoder" to_freeze, dont_freeze = bn_splitter(m.encoder) #return L(to_freeze, dont_freeze + params(m.bn)+params(m.dec[:2]), params(m.dec[2:])) return L(to_freeze, dont_freeze + params(m.bn)+params(m.decoder)) #return L(fz, nofz + params(m.bn)+params(m.dec[:6]), params(m.dec[6:])) def AE_split(m): "generic splitter for my AE classes- BVAE & AE & MMDVAE." to_freeze, dont_freeze = bn_splitter(m.encoder) return L(to_freeze, dont_freeze + params(m.bn)+params(m.decoder)) # Cell #### TODO: refactor this to take a "BLOCK" input so we can have either ConvLayer or ResBlock pieces def get_conv_parts(im_size=IMG_SIZE): """ make a simple convolutional ladder encoder """ n_blocks = 5 BASE = im_size//2**5 nfs = [3]+[(2**i)*BASE for i in range(n_blocks)] n = len(nfs) modules = [ConvLayer(nfs[i],nfs[i+1], ks=5,stride=2,padding=2) for i in range(n - 1)] return modules,nfs[-1],'vanilla' def get_pretrained_parts(arch=resnet18): "this works for mobilnet_v2, resnet, and xresnet" cut = model_meta[arch]['cut'] name = arch.__name__ arch = arch(pretrained=True) enc_arch = list(arch.children())[:cut] enc_feats = 512 return enc_arch, enc_feats, name def get_encoder_parts(enc_type='vanilla',im_size=IMG_SIZE): encoder_parts = get_conv_parts(im_size=im_size) if isinstance(enc_type,str) else get_pretrained_parts(arch=enc_type) return encoder_parts # returns enc_arch,enc_dim,arch.__name__ # Cell class VAELinear(Module): "maps hidden (input) features to two latents (mu and logvar)" def __init__(self,in_features,latent_features): self.mu_linear = nn.Linear(in_features,latent_features) self.logvar_linear = nn.Linear(in_features,latent_features) def forward(self,h): #h = self.fc_in(h) return self.mu_linear(h), self.logvar_linear(h) class VAELayer(Module): """ The VAE : in_features to latent_features through the "Variational" magic: "reparamaterization trick" """ def __init__(self,in_features,latent_features): self.mu_logvar = VAELinear(in_features,latent_features) # def reparam(self,mu,logvar): # should we pass through a deterministic code when not training? if False: return mu # self.training std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) z = mu + eps * std return z def forward(self,h): mu,logvar = self.mu_logvar(h) #logvar = F.softplus(logvar) # force logvar>0 z = self.reparam(mu,logvar) # adds the noise by the reparam trick return z, mu, logvar # Cell ### TODO: refactor the BVAE and AE to a single architecture... with a "sample" function ot class BVAE(AE): """ simple VAE made with an encoder passed in, and some builder function for the Latent (VAE reparam trick) and decoder """ def __init__(self,enc_parts,hidden_dim=None, latent_dim=128, im_size=IMG_SIZE,out_range=OUT_RANGE): """ inputs: enc_arch (pre-cut / pretrained) enc_dim latent_dim hidden_dim im_size,out_range """ enc_arch,enc_feats,name = enc_parts # encoder # arch,cut = xresnet18(pretrained=True),-4 # enc_arch = list(arch.children())[:cut] BASE = im_size//2**5 enc_dim = enc_feats * BASE**2 # 2**(3*3) * (im_size//32)**2 #(output of resneet) #12800 self.encoder = build_AE_encoder(enc_arch,enc_dim=enc_dim, hidden_dim=hidden_dim, im_size=im_size) in_dim = enc_dim if hidden_dim is None else hidden_dim # VAE Bottleneck self.bn = VAELayer(in_dim,latent_dim) #decoder self.decoder = build_AE_decoder(hidden_dim=hidden_dim, latent_dim=latent_dim, im_size=im_size,out_range=out_range) store_attr('name,enc_dim, in_dim,hidden_dim,latent_dim,im_size,out_range') # do i need all these? # def decode(self, z): # return self.decoder(z) # def encode(self, x): # h = self.encoder(x) # z, mu, logvar = self.bn(h) # reparam happens in the VAE layer # return z, mu, logvar # def forward(self, x): # #z, mu, logvar = self.encode(x) # # h = self.encoder(x) # # z, mu, logvar = self.bn(h) # reparam happens in the VAE layer # # x_hat = self.decoder(z) # z,mu,logvar = self.encode(x) # x_hat = self.decode(z) # latents = torch.stack([mu,logvar],dim=-1) # return x_hat, latents # assume dims are [batch,latent_dim,concat_dim] # # AE # def decode(self, z): # return self.decoder(z) # def encode(self, x): # h = self.encoder(x) # return self.bn(h) # def forward(self, x): # """ # pass the "latents" out to keep the learn mechanics consistent... # """ # h = self.encoder(x) # z,logvar = self.bn(h) # x_hat = self.decoder(z) # latents = torch.stack([z,logvar] ,dim=-1) # return x_hat , latents # Cell # called `after_batch` class BVAELoss(Module): """ Measures how well we have created the original image, plus the KL Divergence with the unit normal distribution batchmean option sums first and averages over batches (for smaller total error magnitudes.. cosmentic) """ def __init__(self, batchmean=False, alpha=1.0,useL1=False): """ reduction 'sum', else 'batchmean' """ pix_loss = MSELossFlat(reduction='sum') if not useL1 else L1LossFlat(reduction='sum') _KLD = KLDiv(batchmean=False) # force to full sum store_attr('pix_loss,alpha,batchmean,_KLD') def forward(self, preds, *target): """ pred =(x_hat,KLD,kl_weight) #mu,log_var, kl_weight) target is x (original) """ # this handles the annealed kl_weight and passing the mu,logvar around we added... if(len(preds) == 3): x_hat, latents, kl_weight = preds else: #if len(preds) == 2: # we should never get here... unless we delete the callback x_hat, latents = preds kl_weight = x_hat[0].new(1) kl_weight[0] = 1.0 mu, logvar = latents.split(1,dim=2) #note: both mse and KLD are summing errors over batches, and pixels or latents pix_err = self.pix_loss(x_hat, target[0]) kld_err = self.alpha * self._KLD(mu,logvar).sum() #_KLD doesn't sum over batches by default total = (pix_err + kld_err*kl_weight) if self.batchmean: total *= (1./mu.size()[0]) return total # Cell def default_VAE_metrics(alpha,batchmean,useL1): "long default list of metrics for the VAE" first = L2BMeanMetric() if batchmean else L2Metric() second = L1BMeanMetric() if batchmean else L1Metric() if useL1: first,second = second,first metrics = [first, MuMetric(), StdMetric(), LogvarMetric(), WeightedKLDMetric(batchmean=batchmean,alpha=alpha), KLWeightMetric(), second, MuSDMetric(), StdSDMetric(), LogvarSDMetric(), ] return metrics def short_VAE_metrics(alpha,batchmean,useL1): "short default list of metrics for the AE" first = L2BMeanMetric() if batchmean else L2MeanMetric() second = L1BMeanMetric() if batchmean else L2MeanMetric() if useL1: first,second = second,first metrics = [first, MuMetric(), StdMetric(), LogvarMetric(), WeightedKLDMetric(batchmean=batchmean,alpha=alpha) ] return metrics # Cell def gaussian_kernel(a, b): "helper for computing MMD" dim1_1, dim1_2 = a.shape[0], b.shape[0] depth = a.shape[1] a = a.view(dim1_1, 1, depth) b = b.view(1, dim1_2, depth) a_core = a.expand(dim1_1, dim1_2, depth) b_core = b.expand(dim1_1, dim1_2, depth) numerator = (a_core - b_core).pow(2).mean(2)/depth return torch.exp(-numerator) def MMD(a, b): "Max Mean Discrepancy" return gaussian_kernel(a, a).mean() + gaussian_kernel(b, b).mean() - 2*gaussian_kernel(a, b).mean() def rawMMD(a, b): "_raw_ values from gauss kernals, assuming that and b have the same shape" return gaussian_kernel(a, a) + gaussian_kernel(b, b) - 2*gaussian_kernel(a, b) # the MMDVAE is built on the basic AE archiecure class MMDVAE(AE): pass class MaxMeanDiscrepancy(Module): """ MMD add alpha? """ def __init__(self, batchmean=False): """ reduction 'mean', else 'batchmean' means only over batch """ MMD = self._MMDsum if batchmean else self._MMDmean store_attr('batchmean,MMD') def _gaus_ker(self,a, b): "gaussian kernal" dim1_1, dim1_2 = a.shape[0], b.shape[0] depth = a.shape[1] numerator = 1.0/depth a = a.view(dim1_1, 1, depth) b = b.view(1, dim1_2, depth) a_core = a.expand(dim1_1, dim1_2, depth) b_core = b.expand(dim1_1, dim1_2, depth) a_m_b = a_core - b_core numerator *= (a_m_b*a_m_b).mean(2) #numerator = (a_core - b_core).pow(2).mean(2) /depth return torch.exp(-numerator) def _rawMMD(self, a, b): return self._gaus_ker(a, a) + self._gaus_ker(b, b) - 2*self._gaus_ker(a, b) def _MMDmean(self, a, b): return self._rawMMD( a, b).mean() def _MMDsum(self, a, b): return self._rawMMD( a, b).sum() def forward(self,true_samples, latent): # bs = latents.size()[0] # latent_dim = z.size()[1] # true_samples = torch.randn((bs,latent_dim), requires_grad=False).cuda() mmd = self.MMD(true_samples, latent) return mmd class MMDLoss(Module): """ Measures mean square error of prediction and original image, regularized by MMD. Note: using reuction = 'mean' because it keeps the regularization relatively potent (i.e. pixels>>latents) """ def __init__(self, batchmean=False, alpha=1.0,useL1=False): """ reduction 'sum', else 'batchmean' """ if batchmean: pix_loss = MSELossFlat(reduction='sum') if not useL1 else L1LossFlat(reduction='sum') #mmd = _MMDsum else: pix_loss = MSELossFlat(reduction='mean') if not useL1 else L1LossFlat(reduction='mean') #mmd = _MMD mmd = MaxMeanDiscrepancy(batchmean=batchmean) store_attr('pix_loss,alpha,batchmean,mmd') def forward(self, preds, *target): """ pred =(x_hat,KLD,kl_weight) #mu,log_var, kl_weight) target is x (original) """ # this handles the annealed kl_weight and passing the mu,logvar around we added... if(len(preds) == 3): x_hat, latents, kl_weight = preds else: #if len(preds) == 2: # we should never get here... unless we delete teh callback x_hat, latents = preds kl_weight = x_hat[0].new(1) kl_weight[0] = 1.0 z, _ = latents.split(1,dim=2) #note: both mse and KLD are summing errors over batches, and pixels or latents pix_err = self.pix_loss(x_hat, target[0]) bs = latents.size()[0] latent_dim = z.size()[1] true_samples = torch.randn((bs,latent_dim), requires_grad=False).cuda() mmd_loss = self.mmd(true_samples, z) * self.alpha total = (pix_err + mmd_loss*kl_weight) total *= (1./bs) if self.batchmean else 1.0 return total class MMDMetric(MyMetric): def __init__(self,batchmean=False,alpha=1.0): vals = [] #mmd = _MMDsum if batchmean else _MMD mmd = MaxMeanDiscrepancy(batchmean=batchmean) store_attr('vals,batchmean,alpha,mmd') def accumulate(self, learn): latents = learn.pred[1] z, _ = latents.split(1,dim=2) bs = latents.size()[0] latent_dim = z.size()[1] true_samples = torch.randn((bs,latent_dim), requires_grad=False).cuda() mmd_loss = self.mmd(true_samples, z) mmd_loss *= (self.alpha/bs) if self.batchmean else self.alpha self.vals.append(to_detach(mmd_loss)) # export def short_MMEVAE_metrics(alpha,batchmean,useL1): "short list of metrics for the VAE" first = L2BMeanMetric() if batchmean else L2MeanMetric() second = L1BMeanMetric() if batchmean else L1MeanMetric() if useL1: first,second = second,first metrics = [first, MMDMetric(batchmean=batchmean,alpha=alpha), MuMetric(), MuSDMetric(), ] return metrics def default_MMEVAE_metrics(alpha,batchmean,useL1): "long default list of metrics for the VAE" first = L2BMeanMetric() if batchmean else L2MeanMetric() second = L1BMeanMetric() if batchmean else L1MeanMetric() if useL1: first,second = second,first metrics = [first, MMDMetric(batchmean=batchmean,alpha=alpha), MuMetric(), StdMetric(), second, MuSDMetric(), LogvarMetric(), L1LatentReg(batchmean=batchmean,alpha=alpha), WeightedKLDMetric(batchmean=batchmean,alpha=alpha), LogvarSDMetric()] return metrics # Cell class UpsampleResBlock(Module): def __init__(self, up_in_c:int, final_div:bool=True, blur:bool=False, **kwargs): """ Upsampling using PixelShuffle_INCR and ResBlocks - up_in_c : "Upsample input channel" """ self.shuf = PixelShuffle_ICNR(up_in_c, up_in_c//2, blur=blur, **kwargs) ni = up_in_c//2 nf = ni if final_div else ni//2 self.conv1 = ResBlock(1,ni, nf, **kwargs) # since we'll apply it by hand... self.conv2 = ResBlock(1,nf, nf, **kwargs) def forward(self, up_in:Tensor) -> Tensor: up_out = self.shuf(up_in) return self.conv2(self.conv1(up_out)) def get_resblockencoder_parts(enc_type='vanilla',im_size=IMG_SIZE): """ make a simple (hence 'vanilla') convolutional ladder encoder with ResBlock parts """ n_blocks = 5 BASE = im_size//2**5 nfs = [3]+[(2**i)*BASE for i in range(n_blocks)] n = len(nfs) modules = [ResBlock(1, nfs[i],nfs[i+1], stride=2, act_cls=Mish) for i in range(n - 1)] return modules,nfs[-1],'resblock' # def build_ResBlockAE_decoder(hidden_dim=2048, latent_dim=128, im_size=IMG_SIZE,out_range=OUT_RANGE): # BASE = im_size//2**5 # #store_attr('enc_dim,latent_dim, hidden_dim,im_size') # #decoder # n_blocks = 5 # nfs = [3] + [2**i*n_blocks for i in range(n_blocks+1)] # nfs.reverse() # n = len(nfs) # modules = [UpsampleResBlock(nfs[i]) for i in range(n - 2)] # decoder = nn.Sequential( LinBnDrop(latent_dim,hidden_dim, # bn=True,# batch normalizaiton shouldn't be a problem here # p=0.0,act=nn.ReLU(),lin_first=True), # LinBnDrop(hidden_dim,im_size*n_blocks*n_blocks, # bn=True,# batch normalizaiton shouldn't be a problem here # p=0.0,act=nn.ReLU(),lin_first=True), # ResizeBatch(im_size,n_blocks,n_blocks), # *modules, # ResBlock(1,nfs[-2],nfs[-1], # ks=1,padding=0, norm_type=None, #act_cls=nn.Sigmoid) ) # act_cls=partial(SigmoidRange, *out_range))) # return decoder class ResBlockAEDecoder(Module): def __init__(self, hidden_dim=None, latent_dim=128, im_size=IMG_SIZE,out_range=OUT_RANGE): """ Decoder Module made of ResBlocks returning the latent representation back into an "image" latent_dim - dimension of latent representation hidden_dim - optional additional linear layer between the latent and decoder im_size - passed to make sure we are scaling back to the right size out_range - ensures the output is on teh same scale as the _normalized_ input image """ #decoder n_blocks = 5 BASE = im_size//2**5 hidden = im_size*BASE*BASE if hidden_dim is None else hidden_dim z_fc = [nn.Linear(latent_dim,hidden)] if hidden_dim: # i.e. is not None z_fc += [nn.Linear(hidden,im_size*BASE*BASE)] nfs = [3] + [2**i*BASE for i in range(n_blocks+1)] nfs.reverse() n = len(nfs) modules = [UpsampleResBlock(nfs[i]) for i in range(n - 2)] self.decoder = nn.Sequential(*z_fc, ResizeBatch(im_size,BASE,BASE), *modules, ResBlock(1,nfs[-2],nfs[-1], ks=1,padding=0, norm_type=None, #act_cls=nn.Sigmoid) ) act_cls=partial(SigmoidRange, *out_range))) store_attr('latent_dim, hidden_dim,im_size,out_range') def forward(self, z): z = self.decoder(z) return z def build_ResBlockAE_decoder(hidden_dim=None, latent_dim=128, im_size=IMG_SIZE,out_range=OUT_RANGE): "wrapper to sequential-ize ResBlockAEDecoder class" decoder = ResBlockAEDecoder(hidden_dim=hidden_dim, latent_dim=latent_dim, im_size=im_size,out_range=out_range) return nn.Sequential(*list(decoder.children())) class ResBlockAE(AE): def __init__(self,enc_parts,hidden_dim=None, latent_dim=128, im_size=IMG_SIZE,out_range=OUT_RANGE,isVAE=False): """ inputs: enc_parts - encoder architecture latent_dim - dimension of latent representation hidden_dim - optional additional linear layer between the latent and decoder im_size - passed to make sure we are scaling back to the right size out_range - ensures the output is on teh same scale as the _normalized_ input image isVae - switch for the type of latent representation """ enc_arch,enc_feats,name = enc_parts BASE = im_size//2**5 enc_dim = enc_feats * BASE**2 # 2**(3*3) * (im_size//32)**2 #(output of resneet) #12800 #encoder self.encoder = build_AE_encoder(enc_arch,enc_dim=enc_dim, hidden_dim=hidden_dim, im_size=im_size) in_dim = enc_dim if hidden_dim is None else hidden_dim # AE Bottleneck latent = VAELayer if isVAE else LatentLayer self.bn = latent(in_dim,latent_dim) #decoder self.decoder = build_ResBlockAE_decoder(hidden_dim=hidden_dim, latent_dim=latent_dim, im_size=im_size,out_range=out_range) store_attr('name,enc_dim, in_dim,hidden_dim,latent_dim,im_size,out_range') # do i need all these? # def decode(self, z): # return self.decoder(z) # def encode(self, x): # h = self.encoder(x) # return self.bn(h) # def forward(self, x): # """ # pass the "latents" out to keep the learn mechanics consistent... # """ # h = self.encoder(x) # z,logvar = self.bn(h) # x_reconst = self.decoder(z) # latents = torch.stack([z,logvar] ,dim=-1) # return x_reconst , latents
32.761662
130
0.6078
a2650f14eeff11acfb48e5fc2ae1f58d08729539
14,951
py
Python
google/ads/google_ads/v3/proto/resources/bidding_strategy_pb2.py
andy0937/google-ads-python
cb5da7f4a75076828d1fc3524b08cc167670435a
[ "Apache-2.0" ]
null
null
null
google/ads/google_ads/v3/proto/resources/bidding_strategy_pb2.py
andy0937/google-ads-python
cb5da7f4a75076828d1fc3524b08cc167670435a
[ "Apache-2.0" ]
null
null
null
google/ads/google_ads/v3/proto/resources/bidding_strategy_pb2.py
andy0937/google-ads-python
cb5da7f4a75076828d1fc3524b08cc167670435a
[ "Apache-2.0" ]
1
2020-03-13T00:14:31.000Z
2020-03-13T00:14:31.000Z
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/ads/googleads_v3/proto/resources/bidding_strategy.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.ads.google_ads.v3.proto.common import bidding_pb2 as google_dot_ads_dot_googleads__v3_dot_proto_dot_common_dot_bidding__pb2 from google.ads.google_ads.v3.proto.enums import bidding_strategy_status_pb2 as google_dot_ads_dot_googleads__v3_dot_proto_dot_enums_dot_bidding__strategy__status__pb2 from google.ads.google_ads.v3.proto.enums import bidding_strategy_type_pb2 as google_dot_ads_dot_googleads__v3_dot_proto_dot_enums_dot_bidding__strategy__type__pb2 from google.api import resource_pb2 as google_dot_api_dot_resource__pb2 from google.protobuf import wrappers_pb2 as google_dot_protobuf_dot_wrappers__pb2 from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/ads/googleads_v3/proto/resources/bidding_strategy.proto', package='google.ads.googleads.v3.resources', syntax='proto3', serialized_options=_b('\n%com.google.ads.googleads.v3.resourcesB\024BiddingStrategyProtoP\001ZJgoogle.golang.org/genproto/googleapis/ads/googleads/v3/resources;resources\242\002\003GAA\252\002!Google.Ads.GoogleAds.V3.Resources\312\002!Google\\Ads\\GoogleAds\\V3\\Resources\352\002%Google::Ads::GoogleAds::V3::Resources'), serialized_pb=_b('\n>google/ads/googleads_v3/proto/resources/bidding_strategy.proto\x12!google.ads.googleads.v3.resources\x1a\x32google/ads/googleads_v3/proto/common/bidding.proto\x1a\x41google/ads/googleads_v3/proto/enums/bidding_strategy_status.proto\x1a?google/ads/googleads_v3/proto/enums/bidding_strategy_type.proto\x1a\x19google/api/resource.proto\x1a\x1egoogle/protobuf/wrappers.proto\x1a\x1cgoogle/api/annotations.proto\"\x89\x07\n\x0f\x42iddingStrategy\x12\x15\n\rresource_name\x18\x01 \x01(\t\x12\'\n\x02id\x18\x03 \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12*\n\x04name\x18\x04 \x01(\x0b\x32\x1c.google.protobuf.StringValue\x12^\n\x06status\x18\x0f \x01(\x0e\x32N.google.ads.googleads.v3.enums.BiddingStrategyStatusEnum.BiddingStrategyStatus\x12X\n\x04type\x18\x05 \x01(\x0e\x32J.google.ads.googleads.v3.enums.BiddingStrategyTypeEnum.BiddingStrategyType\x12\x33\n\x0e\x63\x61mpaign_count\x18\r \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12?\n\x1anon_removed_campaign_count\x18\x0e \x01(\x0b\x32\x1b.google.protobuf.Int64Value\x12\x43\n\x0c\x65nhanced_cpc\x18\x07 \x01(\x0b\x32+.google.ads.googleads.v3.common.EnhancedCpcH\x00\x12?\n\ntarget_cpa\x18\t \x01(\x0b\x32).google.ads.googleads.v3.common.TargetCpaH\x00\x12X\n\x17target_impression_share\x18\x30 \x01(\x0b\x32\x35.google.ads.googleads.v3.common.TargetImpressionShareH\x00\x12\x41\n\x0btarget_roas\x18\x0b \x01(\x0b\x32*.google.ads.googleads.v3.common.TargetRoasH\x00\x12\x43\n\x0ctarget_spend\x18\x0c \x01(\x0b\x32+.google.ads.googleads.v3.common.TargetSpendH\x00:h\xea\x41\x65\n(googleads.googleapis.com/BiddingStrategy\x12\x39\x63ustomers/{customer}/biddingStrategies/{bidding_strategy}B\x08\n\x06schemeB\x81\x02\n%com.google.ads.googleads.v3.resourcesB\x14\x42iddingStrategyProtoP\x01ZJgoogle.golang.org/genproto/googleapis/ads/googleads/v3/resources;resources\xa2\x02\x03GAA\xaa\x02!Google.Ads.GoogleAds.V3.Resources\xca\x02!Google\\Ads\\GoogleAds\\V3\\Resources\xea\x02%Google::Ads::GoogleAds::V3::Resourcesb\x06proto3') , dependencies=[google_dot_ads_dot_googleads__v3_dot_proto_dot_common_dot_bidding__pb2.DESCRIPTOR,google_dot_ads_dot_googleads__v3_dot_proto_dot_enums_dot_bidding__strategy__status__pb2.DESCRIPTOR,google_dot_ads_dot_googleads__v3_dot_proto_dot_enums_dot_bidding__strategy__type__pb2.DESCRIPTOR,google_dot_api_dot_resource__pb2.DESCRIPTOR,google_dot_protobuf_dot_wrappers__pb2.DESCRIPTOR,google_dot_api_dot_annotations__pb2.DESCRIPTOR,]) _BIDDINGSTRATEGY = _descriptor.Descriptor( name='BiddingStrategy', full_name='google.ads.googleads.v3.resources.BiddingStrategy', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='resource_name', full_name='google.ads.googleads.v3.resources.BiddingStrategy.resource_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='id', full_name='google.ads.googleads.v3.resources.BiddingStrategy.id', index=1, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='google.ads.googleads.v3.resources.BiddingStrategy.name', index=2, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='status', full_name='google.ads.googleads.v3.resources.BiddingStrategy.status', index=3, number=15, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='type', full_name='google.ads.googleads.v3.resources.BiddingStrategy.type', index=4, number=5, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='campaign_count', full_name='google.ads.googleads.v3.resources.BiddingStrategy.campaign_count', index=5, number=13, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='non_removed_campaign_count', full_name='google.ads.googleads.v3.resources.BiddingStrategy.non_removed_campaign_count', index=6, number=14, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='enhanced_cpc', full_name='google.ads.googleads.v3.resources.BiddingStrategy.enhanced_cpc', index=7, number=7, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='target_cpa', full_name='google.ads.googleads.v3.resources.BiddingStrategy.target_cpa', index=8, number=9, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='target_impression_share', full_name='google.ads.googleads.v3.resources.BiddingStrategy.target_impression_share', index=9, number=48, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='target_roas', full_name='google.ads.googleads.v3.resources.BiddingStrategy.target_roas', index=10, number=11, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='target_spend', full_name='google.ads.googleads.v3.resources.BiddingStrategy.target_spend', index=11, number=12, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=_b('\352Ae\n(googleads.googleapis.com/BiddingStrategy\0229customers/{customer}/biddingStrategies/{bidding_strategy}'), is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='scheme', full_name='google.ads.googleads.v3.resources.BiddingStrategy.scheme', index=0, containing_type=None, fields=[]), ], serialized_start=375, serialized_end=1280, ) _BIDDINGSTRATEGY.fields_by_name['id'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _BIDDINGSTRATEGY.fields_by_name['name'].message_type = google_dot_protobuf_dot_wrappers__pb2._STRINGVALUE _BIDDINGSTRATEGY.fields_by_name['status'].enum_type = google_dot_ads_dot_googleads__v3_dot_proto_dot_enums_dot_bidding__strategy__status__pb2._BIDDINGSTRATEGYSTATUSENUM_BIDDINGSTRATEGYSTATUS _BIDDINGSTRATEGY.fields_by_name['type'].enum_type = google_dot_ads_dot_googleads__v3_dot_proto_dot_enums_dot_bidding__strategy__type__pb2._BIDDINGSTRATEGYTYPEENUM_BIDDINGSTRATEGYTYPE _BIDDINGSTRATEGY.fields_by_name['campaign_count'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _BIDDINGSTRATEGY.fields_by_name['non_removed_campaign_count'].message_type = google_dot_protobuf_dot_wrappers__pb2._INT64VALUE _BIDDINGSTRATEGY.fields_by_name['enhanced_cpc'].message_type = google_dot_ads_dot_googleads__v3_dot_proto_dot_common_dot_bidding__pb2._ENHANCEDCPC _BIDDINGSTRATEGY.fields_by_name['target_cpa'].message_type = google_dot_ads_dot_googleads__v3_dot_proto_dot_common_dot_bidding__pb2._TARGETCPA _BIDDINGSTRATEGY.fields_by_name['target_impression_share'].message_type = google_dot_ads_dot_googleads__v3_dot_proto_dot_common_dot_bidding__pb2._TARGETIMPRESSIONSHARE _BIDDINGSTRATEGY.fields_by_name['target_roas'].message_type = google_dot_ads_dot_googleads__v3_dot_proto_dot_common_dot_bidding__pb2._TARGETROAS _BIDDINGSTRATEGY.fields_by_name['target_spend'].message_type = google_dot_ads_dot_googleads__v3_dot_proto_dot_common_dot_bidding__pb2._TARGETSPEND _BIDDINGSTRATEGY.oneofs_by_name['scheme'].fields.append( _BIDDINGSTRATEGY.fields_by_name['enhanced_cpc']) _BIDDINGSTRATEGY.fields_by_name['enhanced_cpc'].containing_oneof = _BIDDINGSTRATEGY.oneofs_by_name['scheme'] _BIDDINGSTRATEGY.oneofs_by_name['scheme'].fields.append( _BIDDINGSTRATEGY.fields_by_name['target_cpa']) _BIDDINGSTRATEGY.fields_by_name['target_cpa'].containing_oneof = _BIDDINGSTRATEGY.oneofs_by_name['scheme'] _BIDDINGSTRATEGY.oneofs_by_name['scheme'].fields.append( _BIDDINGSTRATEGY.fields_by_name['target_impression_share']) _BIDDINGSTRATEGY.fields_by_name['target_impression_share'].containing_oneof = _BIDDINGSTRATEGY.oneofs_by_name['scheme'] _BIDDINGSTRATEGY.oneofs_by_name['scheme'].fields.append( _BIDDINGSTRATEGY.fields_by_name['target_roas']) _BIDDINGSTRATEGY.fields_by_name['target_roas'].containing_oneof = _BIDDINGSTRATEGY.oneofs_by_name['scheme'] _BIDDINGSTRATEGY.oneofs_by_name['scheme'].fields.append( _BIDDINGSTRATEGY.fields_by_name['target_spend']) _BIDDINGSTRATEGY.fields_by_name['target_spend'].containing_oneof = _BIDDINGSTRATEGY.oneofs_by_name['scheme'] DESCRIPTOR.message_types_by_name['BiddingStrategy'] = _BIDDINGSTRATEGY _sym_db.RegisterFileDescriptor(DESCRIPTOR) BiddingStrategy = _reflection.GeneratedProtocolMessageType('BiddingStrategy', (_message.Message,), dict( DESCRIPTOR = _BIDDINGSTRATEGY, __module__ = 'google.ads.googleads_v3.proto.resources.bidding_strategy_pb2' , __doc__ = """A bidding strategy. Attributes: resource_name: The resource name of the bidding strategy. Bidding strategy resource names have the form: ``customers/{customer_id}/biddi ngStrategies/{bidding_strategy_id}`` id: The ID of the bidding strategy. name: The name of the bidding strategy. All bidding strategies within an account must be named distinctly. The length of this string should be between 1 and 255, inclusive, in UTF-8 bytes, (trimmed). status: The status of the bidding strategy. This field is read-only. type: The type of the bidding strategy. Create a bidding strategy by setting the bidding scheme. This field is read-only. campaign_count: The number of campaigns attached to this bidding strategy. This field is read-only. non_removed_campaign_count: The number of non-removed campaigns attached to this bidding strategy. This field is read-only. scheme: The bidding scheme. Only one can be set. enhanced_cpc: A bidding strategy that raises bids for clicks that seem more likely to lead to a conversion and lowers them for clicks where they seem less likely. target_cpa: A bidding strategy that sets bids to help get as many conversions as possible at the target cost-per-acquisition (CPA) you set. target_impression_share: A bidding strategy that automatically optimizes towards a desired percentage of impressions. target_roas: A bidding strategy that helps you maximize revenue while averaging a specific target Return On Ad Spend (ROAS). target_spend: A bid strategy that sets your bids to help get as many clicks as possible within your budget. """, # @@protoc_insertion_point(class_scope:google.ads.googleads.v3.resources.BiddingStrategy) )) _sym_db.RegisterMessage(BiddingStrategy) DESCRIPTOR._options = None _BIDDINGSTRATEGY._options = None # @@protoc_insertion_point(module_scope)
64.167382
2,003
0.790917
9087ea119282e62a36ef2014624cd3e608c47ce4
2,046
py
Python
datawire/model/forms.py
arc64/datawi.re
adb95e974ee776617530348ead735db7b623273c
[ "MIT" ]
2
2016-04-09T23:36:32.000Z
2016-07-18T23:27:34.000Z
datawire/model/forms.py
arc64/datawi.re
adb95e974ee776617530348ead735db7b623273c
[ "MIT" ]
null
null
null
datawire/model/forms.py
arc64/datawi.re
adb95e974ee776617530348ead735db7b623273c
[ "MIT" ]
1
2018-12-27T22:10:41.000Z
2018-12-27T22:10:41.000Z
import colander from colander import Invalid # noqa PERSON = 'Person' COMPANY = 'Company' ORGANIZATION = 'Organization' OTHER = 'Other' CATEGORIES = [PERSON, COMPANY, ORGANIZATION, OTHER] class Ref(object): def deserialize(self, node, cstruct): if cstruct is colander.null: return colander.null value = self.decode(cstruct) if value is None: raise colander.Invalid(node, 'Missing') return value def cstruct_children(self, node, cstruct): return [] class UserRef(Ref): def decode(self, cstruct): from aleph.model.user import User if isinstance(cstruct, User): return cstruct if isinstance(cstruct, (basestring, int)): return User.by_id(cstruct) if isinstance(cstruct, dict): return self.decode(cstruct.get('id')) return None class CollectionRef(Ref): def decode(self, cstruct): from datawire.model.collection import Collection if isinstance(cstruct, Collection): return cstruct if isinstance(cstruct, (basestring, int)): return Watchlist.by_id(cstruct) if isinstance(cstruct, dict): return self.decode(cstruct.get('id')) return None class UserForm(colander.MappingSchema): email = colander.SchemaNode(colander.String(), validator=colander.Email()) login = colander.SchemaNode(colander.String()) class CollectionForm(colander.MappingSchema): slug = colander.SchemaNode(colander.String()) public = colander.SchemaNode(colander.Boolean()) class EntitySelectors(colander.SequenceSchema): selector = colander.SchemaNode(colander.String()) class EntityForm(colander.MappingSchema): label = colander.SchemaNode(colander.String()) category = colander.SchemaNode(colander.String(), validator=colander.OneOf(CATEGORIES)) selectors = EntitySelectors() collection = colander.SchemaNode(CollectionRef())
27.648649
72
0.655425
aacd4dd3418c279bc6886ab5653e5478d6cfa0c7
10,865
py
Python
PVGeo/filters/voxelize.py
banesullivan/PVGeophysics
1ce6311c4e5b195a4a31e3e0b1eb968f44aa34d2
[ "BSD-3-Clause" ]
1
2017-08-17T17:38:46.000Z
2017-08-17T17:38:46.000Z
PVGeo/filters/voxelize.py
banesullivan/PVGeophysics
1ce6311c4e5b195a4a31e3e0b1eb968f44aa34d2
[ "BSD-3-Clause" ]
null
null
null
PVGeo/filters/voxelize.py
banesullivan/PVGeophysics
1ce6311c4e5b195a4a31e3e0b1eb968f44aa34d2
[ "BSD-3-Clause" ]
1
2018-06-06T05:56:17.000Z
2018-06-06T05:56:17.000Z
"""This module provides a complicated algorithm for making voxels out of regularly gridded points. Considering that this algorithm is rather complex, we are keeping it in its own module until we can simplify it, clean up the code, and make it capable of handling non-uniformly gridded points """ __all__ = [ 'VoxelizePoints', ] __displayname__ = 'Voxelize' import numpy as np import vtk from vtk.numpy_interface import dataset_adapter as dsa from vtk.util import numpy_support as nps from .. import _helpers, interface from ..base import FilterBase from ..version import check_numpy from .xyz import RotationTool ############################################################################### class VoxelizePoints(FilterBase): """This makes a ``vtkUnstructuredGrid`` of scattered points given voxel sizes as input arrays. This assumes that the data is at least 2-Dimensional on the XY Plane. """ __displayname__ = 'Voxelize Points' __category__ = 'filter' def __init__(self, **kwargs): FilterBase.__init__( self, nInputPorts=1, inputType='vtkPointSet', nOutputPorts=1, outputType='vtkUnstructuredGrid', ) self.__dx = kwargs.get('dx', None) self.__dy = kwargs.get('dy', None) self.__dz = kwargs.get('dz', None) self.__estimate_grid = kwargs.get('estimate', True) self.__safe = kwargs.get('safe', 10.0) self.__unique = kwargs.get('unique', True) self.__tolerance = kwargs.get('tolerance', None) self.__angle = kwargs.get('angle', 0.0) def add_field_data(self, grid): """An internal helper to add the recovered information as field data""" # Add angle a = vtk.vtkDoubleArray() a.SetName('Recovered Angle (Deg.)') a.SetNumberOfValues(1) a.SetValue(0, np.rad2deg(self.__angle)) grid.GetFieldData().AddArray(a) # Add cell sizes s = vtk.vtkDoubleArray() s.SetName('Recovered Cell Sizes') s.SetNumberOfComponents(3) s.InsertNextTuple3(self.__dx, self.__dy, self.__dz) grid.GetFieldData().AddArray(s) return grid @staticmethod def add_cell_data(grid, arr, name): """Add a NumPy array as cell data to the given grid input""" c = interface.convert_array(arr, name=name) grid.GetCellData().AddArray(c) return grid def estimate_uniform_spacing(self, x, y, z): """This assumes that the input points make up some sort of uniformly spaced grid on at least an XY plane. """ # TODO: implement ability to rotate around Z axis (think PoroTomo vs UTM) # TODO: implement way to estimate rotation if not (len(x) == len(y) == len(z)): raise AssertionError( 'Must have same number of coordinates for all components.' ) num = len(x) if num == 1: # Only one point.. use safe return x, y, z, self.__safe, self.__safe, self.__safe, 0.0 r = RotationTool() xr, yr, zr, dx, dy, angle = r.estimate_and_rotate(x, y, z) self.__angle = angle uz = np.diff(np.unique(z)) if len(uz) > 0: dz = np.average(uz) else: dz = self.__safe self.__dx = dx self.__dy = dy self.__dz = dz return xr, yr, zr def points_to_grid(self, xo, yo, zo, dx, dy, dz, grid=None): """Convert XYZ points to a ``vtkUnstructuredGrid``.""" if not check_numpy(alert='warn'): return grid if grid is None: grid = vtk.vtkUnstructuredGrid() # TODO: Check dtypes on all arrays. Need to be floats if self.__estimate_grid: x, y, z = self.estimate_uniform_spacing(xo, yo, zo) else: x, y, z = xo, yo, zo dx, dy, dz = self.__dx, self.__dy, self.__dz if isinstance(dx, np.ndarray) and len(dx) != len(x): raise _helpers.PVGeoError( 'X-Cell spacings are not properly defined for all points.' ) if isinstance(dy, np.ndarray) and len(dy) != len(y): raise _helpers.PVGeoError( 'Y-Cell spacings are not properly defined for all points.' ) if isinstance(dz, np.ndarray) and len(dz) != len(z): raise _helpers.PVGeoError( 'Z-Cell spacings are not properly defined for all points.' ) n_cells = len(x) # Generate cell nodes for all points in data set # - Bottom c_n1 = np.stack(((x - dx / 2), (y - dy / 2), (z - dz / 2)), axis=1) c_n2 = np.stack(((x + dx / 2), (y - dy / 2), (z - dz / 2)), axis=1) c_n3 = np.stack(((x - dx / 2), (y + dy / 2), (z - dz / 2)), axis=1) c_n4 = np.stack(((x + dx / 2), (y + dy / 2), (z - dz / 2)), axis=1) # - Top c_n5 = np.stack(((x - dx / 2), (y - dy / 2), (z + dz / 2)), axis=1) c_n6 = np.stack(((x + dx / 2), (y - dy / 2), (z + dz / 2)), axis=1) c_n7 = np.stack(((x - dx / 2), (y + dy / 2), (z + dz / 2)), axis=1) c_n8 = np.stack(((x + dx / 2), (y + dy / 2), (z + dz / 2)), axis=1) # - Concatenate all_nodes = np.concatenate( (c_n1, c_n2, c_n3, c_n4, c_n5, c_n6, c_n7, c_n8), axis=0 ) pts = vtk.vtkPoints() cells = vtk.vtkCellArray() if self.__unique: # Search for unique nodes and use the min cell size as the tolerance if self.__tolerance is None: TOLERANCE = np.min([dx, dy]) / 2.0 else: TOLERANCE = self.__tolerance # Round XY plane by the tolerance txy = np.around(all_nodes[:, 0:2] / TOLERANCE) all_nodes[:, 0:2] = txy unique_nodes, ind_nodes = np.unique(all_nodes, return_inverse=True, axis=0) unique_nodes[:, 0:2] *= TOLERANCE all_nodes = unique_nodes else: ind_nodes = np.arange(0, len(all_nodes), dtype=int) all_nodes[:, 0:2] = RotationTool.rotate(all_nodes[:, 0:2], -self.__angle) if self.__estimate_grid: self.add_field_data(grid) # Add unique nodes as points in output pts.SetData(interface.convert_array(all_nodes)) # Add cell vertices j = np.multiply(np.tile(np.arange(0, 8, 1), n_cells), n_cells) arridx = np.add(j, np.repeat(np.arange(0, n_cells, 1, dtype=int), 8)) ids = ind_nodes[arridx].reshape((n_cells, 8)) cells_mat = np.concatenate( (np.ones((ids.shape[0], 1), dtype=np.int_) * ids.shape[1], ids), axis=1 ).ravel() cells = vtk.vtkCellArray() cells.SetNumberOfCells(n_cells) cells.SetCells( n_cells, nps.numpy_to_vtk(cells_mat, deep=True, array_type=vtk.VTK_ID_TYPE) ) # Set the output grid.SetPoints(pts) grid.SetCells(vtk.VTK_VOXEL, cells) return grid @staticmethod def _copy_arrays(pdi, pdo): """internal helper to copy arrays from point data to cell data in the voxels.""" for i in range(pdi.GetPointData().GetNumberOfArrays()): arr = pdi.GetPointData().GetArray(i) _helpers.add_array(pdo, 1, arr) # adds to CELL data return pdo def RequestData(self, request, inInfo, outInfo): """Used by pipeline to generate output""" # Get input/output of Proxy pdi = self.GetInputData(inInfo, 0, 0) pdo = self.GetOutputData(outInfo, 0) # Perform task wpdi = dsa.WrapDataObject(pdi) pts = wpdi.Points x, y, z = pts[:, 0], pts[:, 1], pts[:, 2] self.points_to_grid(x, y, z, self.__dx, self.__dy, self.__dz, grid=pdo) # Now append data to grid self._copy_arrays(pdi, pdo) return 1 #### Setters and Getters #### def set_safe_size(self, safe): """A voxel size to use if a spacing cannot be determined for an axis""" if self.__safe != safe: self.__safe = safe self.Modified() def set_delta_x(self, dx): """Set the X cells spacing Args: dx (float or np.array(floats)): the spacing(s) for the cells in the X-direction """ self.__dx = dx self.Modified() def set_delta_y(self, dy): """Set the Y cells spacing Args: dy (float or np.array(floats)): the spacing(s) for the cells in the Y-direction """ self.__dy = dy self.Modified() def set_delta_z(self, dz): """Set the Z cells spacing Args: dz (float or np.array(floats)): the spacing(s) for the cells in the Z-direction """ self.__dz = dz self.set_safe_size(np.min(dz)) self.Modified() def set_deltas(self, dx, dy, dz): """Set the cell spacings for each axial direction Args: dx (float or np.array(floats)): the spacing(s) for the cells in the X-direction dy (float or np.array(floats)): the spacing(s) for the cells in the Y-direction dz (float or np.array(floats)): the spacing(s) for the cells in the Z-direction """ self.set_delta_x(dx) self.set_delta_y(dy) self.set_delta_z(dz) def set_estimate_grid(self, flag): """Set a flag on whether or not to estimate the grid spacing/rotation""" if self.__estimate_grid != flag: self.__estimate_grid = flag self.Modified() def set_unique(self, flag): """Set a flag on whether or not to try to elimate non unique elements""" if self.__unique != flag: self.__unique = flag self.Modified() def get_angle(self, degrees=True): """Returns the recovered angle if set to recover the input grid. If the input points are rotated, then this angle will reflect a close approximation of that rotation. Args: degrees (bool): A flag on to return decimal degrees or radians. """ if degrees: return np.rad2deg(self.__angle) return self.__angle def get_recovered_angle(self, degrees=True): """DEPRECATED: use `get_angle`""" return self.get_angle(degrees=degrees) def set_angle(self, angle): """Set the rotation angle manually""" if self.__angle != angle: self.__angle = angle self.Modified() def get_spacing(self): """Get the cell spacings""" return (self.__dx, self.__dy, self.__dz) ###############################################################################
35.048387
88
0.562632
e899e3c50d64f528d791584d14d1c8dc2afe943c
3,608
py
Python
eval/embed_files_with_issues.py
TobiasGleissner/embed_modal
746e3efb6f4c6cf70cc5b67f9c8f2ea3657328ec
[ "BSD-3-Clause" ]
5
2018-06-20T14:52:55.000Z
2022-02-21T15:51:56.000Z
eval/embed_files_with_issues.py
TobiasGleissner/embed_modal
746e3efb6f4c6cf70cc5b67f9c8f2ea3657328ec
[ "BSD-3-Clause" ]
5
2017-12-08T12:27:46.000Z
2018-03-27T06:32:49.000Z
eval/embed_files_with_issues.py
leoprover/embed_modal
746e3efb6f4c6cf70cc5b67f9c8f2ea3657328ec
[ "BSD-3-Clause" ]
1
2018-04-05T20:02:31.000Z
2018-04-05T20:02:31.000Z
from common import embed,accumulate_csv,create_dict_from_problems,iterate_dict,filename_to_path from check_consistency import check_consistency_iteration_callback from starexec_create_configurations import get_transformation_abbreviation import sys from pathlib import Path def main(qmltp_dir,out_dir,csv_file_list): bin_treelimitedrun = "/home/tg/embed_modal/eval/TreeLimitedRun" bin_embed = [] bin_embed.append("java -jar /home/tg/embed_modal/embed/target/embed-1.0-SNAPSHOT-shaded.jar") # dev bin_embed.append("java -jar /home/tg/oldemb/e_before_type/embed/target/embed-1.0-SNAPSHOT-shaded.jar") #_before_type #bin_embed.append("java -jar /home/tg/oldemb/e_after_type/embed/target/embed-1.0-SNAPSHOT-shaded.jar") #_after_type #quantification = "$varying" #system = "$modal_system_S4" #sem = {"system":system,"quantification":quantification,"consequence":"$local","constants":"$rigid"} #params = ["semantic_constant_quantification","semantic_cumulative_quantification","semantic_decreasing_quantification","semantic_modality_axiomatization"] #params_old = ["semantic_monotonic_quantification","semantic_antimonotonic_quantification","semantic_modality_axiomatization"] #params_very_old = [] #problemfile = "/home/tg/embed_modal/eval/datasets/qmltp_thf_standard/GLC/GLC414+1.p" problem_list = accumulate_csv(csv_file_list) problem_dict = create_dict_from_problems(problem_list) filename_to_issue = {} iterate_dict(problem_dict, check_consistency_iteration_callback, filename_to_issue) Path(out_dir).mkdir(exist_ok=True) for filename in filename_to_issue: issue_list = filename_to_issue[filename] for issue_dict in issue_list: quantification = issue_dict['quantification'] system = issue_dict['system'] sem = {"system":system,"quantification":quantification,"consequence":"$local","constants":"$rigid"} params = [] params.append(["semantic_constant_quantification","semantic_cumulative_quantification","semantic_decreasing_quantification","semantic_modality_axiomatization"]) params.append([]) #params.append(["semantic_monotonic_quantification","semantic_antimonotonic_quantification","semantic_modality_axiomatization"]) if quantification != "$varying": continue if system == "$modal_system_K": continue problemfile = filename_to_path(qmltp_dir,filename) print("currently processing",problemfile,system,quantification) with open(problemfile,"r") as fh: problem = fh.read() for i in range(len(bin_embed)): outfile = Path(out_dir) / (filename + "_" + system.replace("$modal_system","") + "_" + quantification.replace("$","") + "_" + str(i) + ".p") if outfile.exists(): print(str(outfile) + " already exists.") continue e = embed(bin_treelimitedrun, bin_embed[i],problem,params[i],sem,120,120) with open(outfile,"w+")as fw: fw.write(e['embedded_problem']) outOriginal = Path(out_dir) / (filename + "_" + system.replace("$modal_system","") + "_" + quantification.replace("$","") + "_" + str(i) + "_original" + ".p") with open(outOriginal,"w+")as fw: fw.write("% " + str(sem)) fw.write(problem) if __name__ == "__main__": main(sys.argv[1],sys.argv[2],sys.argv[3:])
58.193548
178
0.668792
ddc69f5423d8baf1799f81ef5ac2159fc95581fd
548
py
Python
cowrie/commands/__init__.py
johnfoo/cowrie
d74d96a2d5355f0fb790ad8041e97420fb61371d
[ "BSD-3-Clause" ]
3
2018-11-15T07:20:24.000Z
2021-06-10T03:34:56.000Z
cowrie/commands/__init__.py
johnfoo/cowrie
d74d96a2d5355f0fb790ad8041e97420fb61371d
[ "BSD-3-Clause" ]
null
null
null
cowrie/commands/__init__.py
johnfoo/cowrie
d74d96a2d5355f0fb790ad8041e97420fb61371d
[ "BSD-3-Clause" ]
8
2015-12-17T05:41:51.000Z
2019-09-27T05:06:37.000Z
# Copyright (c) 2009 Upi Tamminen <[email protected]> # See the COPYRIGHT file for more information __all__ = [ 'adduser', 'apt', 'base', 'busybox', 'curl', 'dd', 'env', 'ethtool', 'free', 'fs', 'ftpget', 'gcc', 'ifconfig', 'iptables', 'last', 'ls', 'nc', 'netstat', 'nohup', 'ping', 'scp', 'service', 'sleep', 'ssh', 'sudo', 'tar', 'uname', 'ulimit', 'wget', 'which', 'perl', 'uptime', 'python', 'tftp' ]
13.7
54
0.441606
1be3b18524360cf0e3aeb82804d6276040e4a64e
1,023
py
Python
tools/dev/position_control.py
gbalke/bldc-controller
99e4e71d5bdc0c7c7901d886aa7709c66db8b718
[ "MIT" ]
null
null
null
tools/dev/position_control.py
gbalke/bldc-controller
99e4e71d5bdc0c7c7901d886aa7709c66db8b718
[ "MIT" ]
null
null
null
tools/dev/position_control.py
gbalke/bldc-controller
99e4e71d5bdc0c7c7901d886aa7709c66db8b718
[ "MIT" ]
null
null
null
#!/usr/bin/env python import sys import numpy as np from comms import * import serial import time port = sys.argv[1] s = serial.Serial(port=port, baudrate=COMM_DEFAULT_BAUD_RATE, timeout=0.001) print s.BAUDRATES client = BLDCControllerClient(s) client.leaveBootloader(0x01) print("hello") s.flush() time.sleep(0.1) print("hello") client.writeRegisters(0x01, 0x0101, 1, struct.pack('<H', 9346) ) print("hello") client.writeRegisters(0x01, 0x0106, 1, struct.pack('<f', 0) ) print("hello") client.writeRegisters(0x01, 0x0102, 1, struct.pack('<B', 0) ) print("hello") position_setpoint = 5000 next_step = time.time() + 1 while True: duty_cycle = 0.0 angle = struct.unpack('<H', client.readRegisters(0x01, 0x100, 1))[0] duty_cycle = min(max((angle - position_setpoint) * 0.001, -1), 1) client.writeRegisters(0x01, 0x0106, 1, struct.pack('<f', duty_cycle) ) if time.time() > next_step: print("hellO") position_setpoint += 1000 position_setpoint %= 2 ** 14 next_step += 1
25.575
76
0.684262
df2c1601232d98489d178a10df9a0e0462c92af3
20,954
py
Python
tests/acceptance/steps/multi_file_steps.py
aoxiangflysky/onedata
5fe5783f4fb23e90e6567d638a165a0bfcc2f663
[ "Apache-2.0" ]
61
2016-04-19T23:51:37.000Z
2022-01-02T22:28:53.000Z
tests/acceptance/steps/multi_file_steps.py
aoxiangflysky/onedata
5fe5783f4fb23e90e6567d638a165a0bfcc2f663
[ "Apache-2.0" ]
57
2016-08-23T13:36:47.000Z
2022-02-08T14:30:30.000Z
tests/acceptance/steps/multi_file_steps.py
aoxiangflysky/onedata
5fe5783f4fb23e90e6567d638a165a0bfcc2f663
[ "Apache-2.0" ]
7
2016-08-26T06:08:58.000Z
2019-11-16T19:22:28.000Z
"""Module implements common steps for operation on files (both regular files and directories)in multi-client environment. """ __author__ = "Jakub Kudzia" __copyright__ = "Copyright (C) 2015 ACK CYFRONET AGH" __license__ = "This software is released under the MIT license cited in " \ "LICENSE.txt" from tests.utils.acceptance_utils import * from tests.utils.utils import assert_generic, assert_ from tests.utils.client_utils import (ls, mv, chmod, stat, rm, touch, create_file, osrename, setxattr, getxattr, listxattr, removexattr) from tests.utils.docker_utils import run_cmd import os import stat as stat_lib import json, jsondiff import pytest @when(parsers.re('(?P<user>\w+) updates (?P<files>.*) timestamps on' ' (?P<client_node>.*)')) def touch_file(user, files, client_node, context): touch_file_base(user, files, client_node, context) @when(parsers.re('(?P<user>\w+) fails to update (?P<files>.*) timestamps ' 'on (?P<client_node>.*)')) def touch_file_fail(user, files, client_node, context): touch_file_base(user, files, client_node, context, should_fail=True) def touch_file_base(user, files, client_node, context, should_fail=False): user = context.get_user(user) client = user.get_client(client_node) files = list_parser(files) for file in files: file_path = client.absolute_path(file) def condition(): try: touch(client, file_path) except OSError: return True if should_fail else False else: return False if should_fail else True assert_(client.perform, condition) @when(parsers.re('(?P<user>\w+) creates regular files (?P<files>.*) ' 'on (?P<client_node>.*)')) @then(parsers.re('(?P<user>\w+) creates regular files (?P<files>.*) ' 'on (?P<client_node>.*)')) def create_reg_file(user, files, client_node, context): user = context.get_user(user) client = user.get_client(client_node) files = list_parser(files) for file in files: file_path = client.absolute_path(file) def condition(): create_file(client, file_path) assert_(client.perform, condition) @when(parsers.re('(?P<user>\w+) creates children files of (?P<parent_dir>.*) ' 'with names in range \[(?P<lower>.*), (?P<upper>.*)\) on ' '(?P<client_node>.*)'), converters=dict(lower=int, upper=int)) @then(parsers.re('(?P<user>\w+) creates children files of (?P<parent_dir>.*) ' 'with names in range \[(?P<lower>.*), (?P<upper>.*)\) on ' '(?P<client_node>.*)'), converters=dict(lower=int, upper=int)) def create_many(user, lower, upper, parent_dir, client_node, context): for i in range(lower, upper): new_file = os.path.join(parent_dir, str(i)) create_reg_file(user, make_arg_list(new_file), client_node, context) @wt(parsers.re('(?P<user>\w+) can stat (?P<files>.*) in (?P<path>.*)' ' on (?P<client_node>.*)')) def stat_present(user, path, files, client_node, context): client = context.get_client(user, client_node) path = client.absolute_path(path) files = list_parser(files) def condition(): for f in files: stat(client, os.path.join(path, f)) assert_(client.perform, condition) @wt(parsers.re('(?P<user>\w+) can\'t stat (?P<files>.*) in (?P<path>.*) on ' '(?P<client_node>.*)')) def stat_absent(user, path, files, client_node, context): client = context.get_client(user, client_node) path = client.absolute_path(path) files = list_parser(files) def condition(): for f in files: with pytest.raises(OSError, message = 'File {} exists in {}'.format(f, path)): stat(client, os.path.join(path, f)) assert_(client.perform, condition) @when(parsers.re('(?P<directory>.*) is empty for (?P<user>\w+) on (?P<client_node>.*)')) @then(parsers.re('(?P<directory>.*) is empty for (?P<user>\w+) on (?P<client_node>.*)')) def ls_empty(directory, user, client_node, context): client = context.get_client(user, client_node) dir_path = client.absolute_path(directory) def condition(): assert len(ls(client, dir_path)) == 0 assert_(client.perform, condition) @when(parsers.re('(?P<user>\w+) sees (?P<files>.*) in (?P<path>.*) ' 'on (?P<client_node>.*)')) @then(parsers.re('(?P<user>\w+) sees (?P<files>.*) in (?P<path>.*) ' 'on (?P<client_node>.*)')) def ls_present(user, files, path, client_node, context): client = context.get_client(user, client_node) path = client.absolute_path(path) files = list_parser(files) def condition(): listed_files = ls(client, path) for file in files: assert file in listed_files assert_(client.perform, condition) @when(parsers.re('(?P<user>\w+) lists only children of (?P<parent_dir>.*) with names' ' in range \[(?P<lower>.*), (?P<upper>.*)\) on (?P<client_node>.*)'), converters=dict(lower=int,upper=int)) @then(parsers.re('(?P<user>\w+) lists only children of (?P<parent_dir>.*) with names' ' in range \[(?P<lower>.*), (?P<upper>.*)\) on (?P<client_node>.*)'), converters=dict(lower=int,upper=int)) def ls_children(user, parent_dir, lower, upper, client_node, context): client = context.get_client(user, client_node) path = client.absolute_path(parent_dir) files_num = upper - lower def condition(): listed_files = ls(client, path) assert len(listed_files) == files_num for i in range(lower, upper): assert str(i) in listed_files assert_(client.perform, condition) @when(parsers.re('(?P<user>\w+) doesn\'t see (?P<files>.*) in (?P<path>.*) ' 'on (?P<client_node>.*)')) @then(parsers.re('(?P<user>\w+) doesn\'t see (?P<files>.*) in (?P<path>.*) ' 'on (?P<client_node>.*)')) def ls_absent(user, files, path, client_node, context): client = context.get_client(user, client_node) path = client.absolute_path(path) files = list_parser(files) def condition(): listed_files = ls(client, path) for file in files: assert file not in listed_files assert_(client.perform, condition) @when(parsers.re('(?P<user>\w+) moves (?P<file1>.*) to (?P<file2>.*) ' 'using shell command on (?P<client_node>.*)')) @then(parsers.re('(?P<user>\w+) moves (?P<file1>.*) to (?P<file2>.*) ' 'using shell command on (?P<client_node>.*)')) def shell_move(user, file1, file2, client_node, context): shell_move_base(user, file1, file2, client_node, context) @when(parsers.re('(?P<user>\w+) fails to move (?P<file1>.*) to (?P<file2>.*) ' 'using shell command on (?P<client_node>.*)')) @then(parsers.re('(?P<user>\w+) fails to move (?P<file1>.*) to (?P<file2>.*) ' 'using shell command on (?P<client_node>.*)')) def shell_move_fail(user, file1, file2, client_node, context): shell_move_base(user, file1, file2, client_node, context, should_fail=True) def shell_move_base(user, file1, file2, client_node, context, should_fail=False): user = context.get_user(user) client = user.get_client(client_node) src = client.absolute_path(file1) dest = client.absolute_path(file2) def condition(): mv(client, src, dest) cmd = "mv (?P<0>.*) (?P<1>.*)".format(src, dest) run_cmd(user.name, client, cmd, output=True, error=True) assert_generic(client.perform, should_fail, condition) @when(parsers.re('(?P<user>\w+) renames (?P<file1>.*) to (?P<file2>.*)' ' on (?P<client_node>.*)')) @then(parsers.re('(?P<user>\w+) renames (?P<file1>.*) to (?P<file2>.*)' ' on (?P<client_node>.*)')) def rename(user, file1, file2, client_node, context): mv_base(user, file1, file2, client_node, context) @when(parsers.re('(?P<user>\w+) fails to rename (?P<file1>.*) to ' '(?P<file2>.*) on (?P<client_node>.*)')) @then(parsers.re('(?P<user>\w+) fails to rename (?P<file1>.*) to ' '(?P<file2>.*) on (?P<client_node>.*)')) def rename_fail(user, file1, file2, client_node, context): rename_base(user, file1, file2, client_node, context, should_fail=True) def rename_base(user, file1, file2, client_node, context, should_fail=False): user = context.get_user(user) client = user.get_client(client_node) src = client.absolute_path(file1) dest = client.absolute_path(file2) def condition(): osrename(client, src, dest) assert_generic(client.perform, should_fail, condition) def mv_base(user, file1, file2, client_node, context, should_fail=False): user = context.get_user(user) client = user.get_client(client_node) src = client.absolute_path(file1) dest = client.absolute_path(file2) def condition(): mv(client, src, dest) assert_generic(client.perform, should_fail, condition) @when(parsers.re('(?P<user>\w+) deletes files (?P<files>.*) on (?P<client_node>.*)')) @then(parsers.re('(?P<user>\w+) deletes files (?P<files>.*) on (?P<client_node>.*)')) def delete_file(user, files, client_node, context): delete_file_base(user, files, client_node, context) @when(parsers.re('(?P<user>\w+) fails to delete files (?P<files>.*) ' 'on (?P<client_node>.*)')) @then(parsers.re('(?P<user>\w+) fails to delete files (?P<files>.*) ' 'on (?P<client_node>.*)')) def delete_file_fail(user, files, client_node, context): delete_file_base(user, files, client_node, context, should_fail=True) def delete_file_base(user, files, client_node, context, should_fail=False): user = context.get_user(user) client = user.get_client(client_node) files = list_parser(files) for file in files: path = client.absolute_path(file) def condition(): rm(client, path) assert_generic(client.perform, should_fail, condition) @when(parsers.re('(?P<user>\w+) changes (?P<file>.*) mode to (?P<mode>.*) on ' '(?P<client_node>.*)')) @then(parsers.re('(?P<user>\w+) changes (?P<file>.*) mode to (?P<mode>.*) on ' '(?P<client_node>.*)')) def change_mode(user, file, mode, client_node, context): change_mode_base(user, file, mode, client_node, context) @when(parsers.re('(?P<user>\w+) fails to change (?P<file>.*) mode to ' '(?P<mode>.*) on (?P<client_node>.*)')) @then(parsers.re('(?P<user>\w+) fails to change (?P<file>.*) mode to ' '(?P<mode>.*) on (?P<client_node>.*)')) def change_mode_fail(user, file, mode, client_node, context): change_mode_base(user, file, mode, client_node, context, should_fail=True) def change_mode_base(user, file, mode, client_node, context, should_fail=False): user = context.get_user(user) client = user.get_client(client_node) mode = int(mode, 8) file_path = client.absolute_path(file) def condition(): chmod(client, mode, file_path) assert_generic(client.perform, should_fail, condition) @then(parsers.re('file type of (?P<user>\w+)\'s (?P<file>.*) is (?P<file_type>.*) ' 'on (?P<client_node>.*)')) def check_type(user, file, file_type, client_node, context): user = context.get_user(user) client = user.get_client(client_node) file_path = client.absolute_path(file) if file_type == "regular": stat_method = "S_ISREG" elif file_type == "directory": stat_method = "S_ISDIR" def condition(): stat_result = stat(client, file_path) assert getattr(stat_lib, stat_method)(stat_result.st_mode) assert_(client.perform, condition) @then(parsers.re('(?P<user>\w+) checks using shell stat if file type ' 'of (?P<file>.*) is (?P<file_type>.*) on (?P<client_node>.*)')) def shell_check_type(user, file, file_type, client_node, context): user = context.get_user(user) client = user.get_client(client_node) file_path = client.absolute_path(file) def condition(): cmd = "stat --format=%F {}".format(file_path) stat_file_type = run_cmd(user.name, client, cmd, output=True) assert stat_file_type == file_type assert_(client.perform, condition) @when(parsers.re('mode of (?P<user>\w+)\'s (?P<file>.*) is (?P<mode>.*) on ' '(?P<client_node>.*)')) @then(parsers.re('mode of (?P<user>\w+)\'s (?P<file>.*) is (?P<mode>.*) on ' '(?P<client_node>.*)')) def check_mode(user, file, mode, client_node, context): user = context.get_user(user) client = user.get_client(client_node) file_path = client.absolute_path(file) mode = int(mode, 8) def condition(): stat_result = stat(client, file_path) assert stat_lib.S_IMODE(stat_result.st_mode) == mode assert_(client.perform, condition) @when(parsers.re('size of (?P<user>\w+)\'s (?P<file>.*) is (?P<size>.*) bytes ' 'on (?P<client_node>.*)')) @then(parsers.re('size of (?P<user>\w+)\'s (?P<file>.*) is (?P<size>.*) bytes ' 'on (?P<client_node>.*)')) def check_size(user, file, size, client_node, context): user = context.get_user(user) client = user.get_client(client_node) file_path = client.absolute_path(file) size = int(size) def condition(): stat_result = stat(client, file_path) assert stat_result.st_size == size assert_(client.perform, condition) @when(parsers.re('(?P<user>\w+) records (?P<files>.*) ' 'stats on (?P<client_node>.*)')) @then(parsers.re('(?P<user>\w+) records (?P<files>.*) ' 'stats on (?P<client_node>.*)')) def record_stats(user, files, client_node, context): user = context.get_user(user) client = user.get_client(client_node) for file_ in list_parser(files): file_path = client.absolute_path(file_) client.file_stats[file_path] = stat(client, file_path) @then(parsers.re('(?P<time1>.*) time of (?P<user>\w+)\'s (?P<file>.*) is ' '(?P<comparator>.*) to (?P<time2>.*) time on (?P<client_node>.*)')) @then(parsers.re('(?P<time1>.*) time of (?P<user>\w+)\'s (?P<file>.*) is ' '(?P<comparator>.*) than (?P<time2>.*) time on (?P<client_node>.*)')) def check_time(user, time1, time2, comparator, file, client_node, context): user = context.get_user(user) client = user.get_client(client_node) attr1 = time_attr(time1) attr2 = time_attr(time2) file_path = client.absolute_path(file) def condition(): stat_result = stat(client, file_path) t1 = getattr(stat_result, attr1) t2 = getattr(stat_result, attr2) assert compare(t1, t2, comparator) assert_(client.perform, condition) @then(parsers.re('(?P<time1>.*) time of (?P<user>\w+)\'s (?P<file1>.*) is ' '(?P<comparator>.*) to recorded one of (?P<file2>.*)')) @then(parsers.re('(?P<time1>.*) time of (?P<user>\w+)\'s (?P<file1>.*) is ' '(?P<comparator>.*) than recorded one of (?P<file2>.*)')) def cmp_time_to_previous(user, time1, comparator, file1, file2, client_node, context): user = context.get_user(user) client = user.get_client(client_node) attr = time_attr(time1) file_path = client.absolute_path(file1) recorded_stats = client.file_stats[client.absolute_path(file2)] def condition(): stat_result = stat(client, file_path) t1 = getattr(stat_result, attr) t2 = getattr(recorded_stats, attr) assert compare(t1, t2, comparator) assert_(client.perform, condition) @then(parsers.re('(?P<user>\w+) sets extended attribute (?P<name>[.\w]+) ' 'with value (?P<value>.*) on (?P<file>\w+)' 'on (?P<client_node>.*)')) @when(parsers.re('(?P<user>\w+) sets extended attribute (?P<name>[.\w]+) ' 'with value (?P<value>.*) on (?P<file>\w+)' 'on (?P<client_node>.*)')) def set_xattr(user, file, name, value, client_node, context): user = context.get_user(user) client = user.get_client(client_node) file_path = client.absolute_path(file) def condition(): value_bytes = None if isinstance(value, str): value_bytes = value elif isinstance(value, unicode): value_bytes = value.encode('utf-8') else: value_bytes = str(value) setxattr(client, file_path, name, value_bytes) assert_(client.perform, condition) @then(parsers.re('(?P<user>\w+) removes extended attribute (?P<name>[.\w]+) ' 'from (?P<file>\w+) on (?P<client_node>.*)')) @when(parsers.re('(?P<user>\w+) removes extended attribute (?P<name>[.\w]+) ' 'from (?P<file>\w+) on (?P<client_node>.*)')) def remove_xattr(user, file, name, client_node, context): user = context.get_user(user) client = user.get_client(client_node) file_path = client.absolute_path(file) def condition(): removexattr(client, file_path, name) assert_(client.perform, condition) @then(parsers.re('(?P<user>\w+) checks if (?P<file>\w+) has extended ' 'attribute (?P<name>[.\w]+) on (?P<client_node>.*)')) def check_xattr_exists(user, file, name, client_node, context): user = context.get_user(user) client = user.get_client(client_node) file_path = client.absolute_path(file) def condition(): xattrs = listxattr(client, file_path) assert name in xattrs assert_(client.perform, condition) @then(parsers.re('(?P<user>\w+) checks if (?P<file>\w+) does not have extended ' 'attribute (?P<name>[.\w]+) on (?P<client_node>.*)')) def check_xattr_doesnt_exist(user, file, name, client_node, context): user = context.get_user(user) client = user.get_client(client_node) file_path = client.absolute_path(file) def condition(): xattrs = listxattr(client, file_path) assert name not in xattrs assert_(client.perform, condition) @then(parsers.re('(?P<user>\w+) checks if (?P<file>\w+) has extended ' 'attribute (?P<name>[.\w]+) with string value "(?P<value>.*)" ' 'on (?P<client_node>.*)')) def check_string_xattr(user, file, name, value, client_node, context): user = context.get_user(user) client = user.get_client(client_node) file_path = client.absolute_path(file) def condition(): xattr_value = getxattr(client, file_path, name) value_utf = None if isinstance(value, str): value_utf = value elif isinstance(value, unicode): value_utf = value.encode('utf-8') else: value_utf = str(value) assert xattr_value == value_utf assert_(client.perform, condition) @then(parsers.re('(?P<user>\w+) checks if (?P<file>\w+) has extended ' 'attribute (?P<name>[.\w]+) with numeric value (?P<value>.*) ' 'on (?P<client_node>.*)')) def check_numeric_xattr(user, file, name, value, client_node, context): user = context.get_user(user) client = user.get_client(client_node) file_path = client.absolute_path(file) def condition(): xattr_value = getxattr(client, file_path, name) assert float(xattr_value) == float(value) assert_(client.perform, condition) @then(parsers.re('(?P<user>\w+) checks if (?P<file>\w+) has extended ' 'attribute (?P<name>[.\w]+) with JSON value "(?P<value>.*)" ' 'on (?P<client_node>.*)')) def check_json_xattr(user, file, name, value, client_node, context): user = context.get_user(user) client = user.get_client(client_node) file_path = client.absolute_path(file) def condition(): xattr_value = getxattr(client, file_path, name) assert jsondiff.diff(json.loads(xattr_value), json.loads(value)) == {} assert_(client.perform, condition) ################################################################################ def time_attr(parameter): return{ 'access': 'st_atime', 'modification': 'st_mtime', 'status-change': 'st_ctime' }[parameter] def compare(val1, val2, comparator): if comparator == 'equal': return val1 == val2 elif comparator == 'not equal': return val1 != val2 elif comparator == 'greater': return val1 > val2 elif comparator == 'less': return val1 < val2 elif comparator == 'not greater': return val1 <= val2 elif comparator == 'not less': return val1 >= val2 else: raise ValueError("Wrong argument comparator to function compare")
36.441739
88
0.61215
f19c979551f66f87619c440dc266e8d9cef9102a
3,632
py
Python
sprokit/tests/bindings/python/modules/test-pymodules.py
neal-siekierski/kwiver
1c97ad72c8b6237cb4b9618665d042be16825005
[ "BSD-3-Clause" ]
null
null
null
sprokit/tests/bindings/python/modules/test-pymodules.py
neal-siekierski/kwiver
1c97ad72c8b6237cb4b9618665d042be16825005
[ "BSD-3-Clause" ]
null
null
null
sprokit/tests/bindings/python/modules/test-pymodules.py
neal-siekierski/kwiver
1c97ad72c8b6237cb4b9618665d042be16825005
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python #ckwg +28 # Copyright 2012-2013 by Kitware, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither name of Kitware, Inc. nor the names of any contributors may be used # to endorse or promote products derived from this software without specific # prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. def test_import(): try: import vital.modules.modules except: test_error("Failed to import the modules module") def test_load(): from vital.modules import modules from sprokit.pipeline import process_factory modules.load_known_modules() types = process_factory.types() if 'test_python_process' not in types: test_error("Failed to load Python processes") # TEST_PROPERTY(ENVIRONMENT, SPROKIT_NO_PYTHON_MODULES=) def test_masking(): from vital.modules import modules from sprokit.pipeline import process_factory modules.load_known_modules() types = process_factory.types() if 'test_python_process' in types: test_error("Failed to mask out Python processes") # TEST_PROPERTY(ENVIRONMENT, SPROKIT_PYTHON_MODULES=sprokit.test.python.modules) def test_extra_modules(): from vital.modules import modules from sprokit.pipeline import process_factory modules.load_known_modules() types = process_factory.types() if 'extra_test_python_process' not in types: test_error("Failed to load extra Python processes") # TEST_PROPERTY(ENVIRONMENT, PYTHONPATH=@CMAKE_CURRENT_SOURCE_DIR@) def test_pythonpath(): from vital.modules import modules from sprokit.pipeline import process_factory from sprokit.pipeline import scheduler_factory modules.load_known_modules() types = process_factory.types() if 'pythonpath_test_process' not in types: test_error("Failed to load extra Python processes accessible from PYTHONPATH") types = scheduler_factory.types() if 'pythonpath_test_scheduler' not in types: test_error("Failed to load extra Python schedulers accessible from PYTHONPATH") if __name__ == '__main__': import os import sys if not len(sys.argv) == 4: test_error("Expected three arguments") sys.exit(1) testname = sys.argv[1] os.chdir(sys.argv[2]) sys.path.append(sys.argv[3]) from sprokit.test.test import * run_test(testname, find_tests(locals()))
32.141593
87
0.746421
b042aeab3d0561e24508dc8e20978d6f21b6f58b
10,047
py
Python
tests/beem/test_amount.py
abitmore/beem
2026833a836007e45f16395a9ca3b31d02e98f87
[ "MIT" ]
118
2018-03-06T07:26:19.000Z
2022-03-21T20:16:04.000Z
tests/beem/test_amount.py
abitmore/beem
2026833a836007e45f16395a9ca3b31d02e98f87
[ "MIT" ]
248
2018-03-20T18:03:39.000Z
2022-03-28T16:38:09.000Z
tests/beem/test_amount.py
abitmore/beem
2026833a836007e45f16395a9ca3b31d02e98f87
[ "MIT" ]
81
2018-04-27T15:27:52.000Z
2021-10-31T06:14:25.000Z
# -*- coding: utf-8 -*- import unittest from parameterized import parameterized from beem import Steem from beem.amount import Amount from beem.asset import Asset from beem.instance import set_shared_blockchain_instance, SharedInstance from decimal import Decimal from .nodes import get_hive_nodes, get_steem_nodes class Testcases(unittest.TestCase): @classmethod def setUpClass(cls): cls.bts = Steem( node=get_hive_nodes(), nobroadcast=True, num_retries=10 ) set_shared_blockchain_instance(cls.bts) cls.asset = Asset("HBD") cls.symbol = cls.asset["symbol"] cls.precision = cls.asset["precision"] cls.asset2 = Asset("HIVE") def dotest(self, ret, amount, symbol): self.assertEqual(float(ret), float(amount)) self.assertEqual(ret["symbol"], symbol) self.assertIsInstance(ret["asset"], dict) self.assertIsInstance(ret["amount"], Decimal) def test_init(self): stm = self.bts # String init asset = Asset("HBD", blockchain_instance=stm) symbol = asset["symbol"] precision = asset["precision"] amount = Amount("1 {}".format(symbol), blockchain_instance=stm) self.dotest(amount, 1, symbol) # Amount init amount = Amount(amount, blockchain_instance=stm) self.dotest(amount, 1, symbol) # blockchain dict init amount = Amount({ "amount": 1 * 10 ** precision, "asset_id": asset["id"] }, blockchain_instance=stm) self.dotest(amount, 1, symbol) # API dict init amount = Amount({ "amount": 1.3 * 10 ** precision, "asset": asset["id"] }, blockchain_instance=stm) self.dotest(amount, 1.3, symbol) # Asset as symbol amount = Amount(1.3, Asset("HBD"), blockchain_instance=stm) self.dotest(amount, 1.3, symbol) # Asset as symbol amount = Amount(1.3, symbol, blockchain_instance=stm) self.dotest(amount, 1.3, symbol) # keyword inits amount = Amount(amount=1.3, asset=Asset("HBD", blockchain_instance=stm), blockchain_instance=stm) self.dotest(amount, 1.3, symbol) amount = Amount(amount=1.3001, asset=Asset("HBD", blockchain_instance=stm), blockchain_instance=stm) self.dotest(amount, 1.3001, symbol) amount = Amount(amount=1.3001, asset=Asset("HBD", blockchain_instance=stm), fixed_point_arithmetic=True, blockchain_instance=stm) self.dotest(amount, 1.3, symbol) # keyword inits amount = Amount(amount=1.3, asset=dict(Asset("HBD", blockchain_instance=stm)), blockchain_instance=stm) self.dotest(amount, 1.3, symbol) # keyword inits amount = Amount(amount=1.3, asset=symbol, blockchain_instance=stm) self.dotest(amount, 1.3, symbol) amount = Amount(amount=8.190, asset=symbol, blockchain_instance=stm) self.dotest(amount, 8.190, symbol) def test_copy(self): amount = Amount("1", self.symbol) self.dotest(amount.copy(), 1, self.symbol) def test_properties(self): amount = Amount("1", self.symbol) self.assertEqual(amount.amount, 1.0) self.assertEqual(amount.symbol, self.symbol) self.assertIsInstance(amount.asset, Asset) self.assertEqual(amount.asset["symbol"], self.symbol) def test_tuple(self): amount = Amount("1", self.symbol) self.assertEqual( amount.tuple(), (1.0, self.symbol)) def test_json_appbase(self): asset = Asset("HBD", blockchain_instance=self.bts) amount = Amount("1", asset, new_appbase_format=False, blockchain_instance=self.bts) if self.bts.rpc.get_use_appbase(): self.assertEqual( amount.json(), [str(1 * 10 ** asset.precision), asset.precision, asset.asset]) else: self.assertEqual(amount.json(), "1.000 HBD") def test_json_appbase2(self): asset = Asset("HBD", blockchain_instance=self.bts) amount = Amount("1", asset, new_appbase_format=True, blockchain_instance=self.bts) if self.bts.rpc.get_use_appbase(): self.assertEqual( amount.json(), {'amount': str(1 * 10 ** asset.precision), 'nai': asset.asset, 'precision': asset.precision}) else: self.assertEqual(amount.json(), "1.000 HBD") def test_string(self): self.assertEqual( str(Amount("10000", self.symbol)), "10000.000 {}".format(self.symbol)) def test_int(self): self.assertEqual( int(Amount("0.9999", self.symbol)), 999) self.assertEqual( int(Amount(0.151, self.symbol)), 151) self.assertEqual( int(Amount(8.190, self.symbol)), 8190) self.assertEqual( int(Amount(round(0.1509,3), self.symbol)), 151) self.assertEqual( int(Amount(round(0.1509,3), self.asset)), 151) self.assertEqual( int(Amount(int(1), self.symbol)), 1000) self.assertEqual( int(Amount(amount=round(0.1509,3), asset=Asset("HBD"))), 151) def test_dict(self): self.assertEqual(int(Amount({'amount': '150', 'nai': '@@000000021', 'precision': 3})), 150) def test_float(self): self.assertEqual( float(Amount("1", self.symbol)), 1.00000) self.assertEqual( float(Amount(0.151, self.symbol)), 0.151) self.assertEqual( float(Amount(round(0.1509, 3), self.symbol)), 0.151) self.assertEqual( float(Amount(8.190, self.symbol)), 8.190) def test_plus(self): a1 = Amount(1, self.symbol) a2 = Amount(2, self.symbol) self.dotest(a1 + a2, 3, self.symbol) self.dotest(a1 + 2, 3, self.symbol) with self.assertRaises(Exception): a1 + Amount(1, asset=self.asset2) # inline a2 = Amount(2, self.symbol) a2 += a1 self.dotest(a2, 3, self.symbol) a2 += 5 self.dotest(a2, 8, self.symbol) a2 += Decimal(2) self.dotest(a2, 10, self.symbol) with self.assertRaises(Exception): a1 += Amount(1, asset=self.asset2) def test_minus(self): a1 = Amount(1, self.symbol) a2 = Amount(2, self.symbol) self.dotest(a1 - a2, -1, self.symbol) self.dotest(a1 - 5, -4, self.symbol) with self.assertRaises(Exception): a1 - Amount(1, asset=self.asset2) # inline a2 = Amount(2, self.symbol) a2 -= a1 self.dotest(a2, 1, self.symbol) a2 -= 1 self.dotest(a2, 0, self.symbol) self.dotest(a2 - 2, -2, self.symbol) with self.assertRaises(Exception): a1 -= Amount(1, asset=self.asset2) def test_mul(self): a1 = Amount(5, self.symbol) a2 = Amount(2, self.symbol) self.dotest(a1 * a2, 10, self.symbol) self.dotest(a1 * 3, 15, self.symbol) with self.assertRaises(Exception): a1 * Amount(1, asset=self.asset2) # inline a2 = Amount(2, self.symbol) a2 *= 5 self.dotest(a2, 10, self.symbol) a2 = Amount(2, self.symbol) a2 *= a1 self.dotest(a2, 10, self.symbol) with self.assertRaises(Exception): a1 *= Amount(2, asset=self.asset2) def test_div(self): a1 = Amount(15, self.symbol) self.dotest(a1 / 3, 5, self.symbol) self.dotest(a1 // 2, 7, self.symbol) with self.assertRaises(Exception): a1 / Amount(1, asset=self.asset2) # inline a2 = a1.copy() a2 /= 3 self.dotest(a2, 5, self.symbol) a2 = a1.copy() a2 //= 2 self.dotest(a2, 7, self.symbol) with self.assertRaises(Exception): a1 *= Amount(2, asset=self.asset2) def test_mod(self): a1 = Amount(15, self.symbol) a2 = Amount(3, self.symbol) self.dotest(a1 % 3, 0, self.symbol) self.dotest(a1 % a2, 0, self.symbol) self.dotest(a1 % 2, 1, self.symbol) with self.assertRaises(Exception): a1 % Amount(1, asset=self.asset2) # inline a2 = a1.copy() a2 %= 3 self.dotest(a2, 0, self.symbol) with self.assertRaises(Exception): a1 %= Amount(2, asset=self.asset2) def test_pow(self): a1 = Amount(15, self.symbol) a2 = Amount(3, self.symbol) self.dotest(a1 ** 3, 15 ** 3, self.symbol) self.dotest(a1 ** a2, 15 ** 3, self.symbol) self.dotest(a1 ** 2, 15 ** 2, self.symbol) with self.assertRaises(Exception): a1 ** Amount(1, asset=self.asset2) # inline a2 = a1.copy() a2 **= 3 self.dotest(a2, 15 ** 3, self.symbol) with self.assertRaises(Exception): a1 **= Amount(2, asset=self.asset2) def test_ltge(self): a1 = Amount(1, self.symbol) a2 = Amount(2, self.symbol) self.assertTrue(a1 < a2) self.assertTrue(a2 > a1) self.assertTrue(a2 > 1) self.assertTrue(a1 < 5) def test_leeq(self): a1 = Amount(1, self.symbol) a2 = Amount(1, self.symbol) self.assertTrue(a1 <= a2) self.assertTrue(a1 >= a2) self.assertTrue(a1 <= 1) self.assertTrue(a1 >= 1) self.assertTrue(a1 == 1.0001) def test_ne(self): a1 = Amount(1, self.symbol) a2 = Amount(2, self.symbol) self.assertTrue(a1 != a2) self.assertTrue(a1 != 5) a1 = Amount(1, self.symbol) a2 = Amount(1, self.symbol) self.assertTrue(a1 == a2) self.assertTrue(a1 == 1)
34.057627
137
0.564646
16f9893add6e55b3ebbdce92c19e9a3b51fb5287
799
py
Python
0028-implement-strstr/solution.py
radelman/leetcode
379aede2b84050a9452bea0452c4ffc8a156b9de
[ "BSD-2-Clause" ]
null
null
null
0028-implement-strstr/solution.py
radelman/leetcode
379aede2b84050a9452bea0452c4ffc8a156b9de
[ "BSD-2-Clause" ]
null
null
null
0028-implement-strstr/solution.py
radelman/leetcode
379aede2b84050a9452bea0452c4ffc8a156b9de
[ "BSD-2-Clause" ]
null
null
null
class Solution: def strStr(self, haystack: str, needle: str) -> int: if len(needle) == 0: return 0 cumsum = [ord(c) for c in haystack] for i in range(1, len(cumsum)): cumsum[i] = cumsum[i - 1] + cumsum[i] target = sum([ord(c) for c in needle]) for i in range(len(haystack) - len(needle) + 1): first = cumsum[i - 1] if i > 0 else 0 last = cumsum[i + len(needle) - 1] attempt = last - first if attempt == target: if haystack[i : i + len(needle)] == needle: return i return -1 def main() -> None: test_cases = [ ["hello", "ll"], ["aaaaa", "bba"] ] solution = Solution(); for inputs in test_cases: haystack, needle = inputs test = solution.strStr(haystack, needle) print(test) if __name__ == '__main__': main()
19.487805
53
0.579474
4bf667f64bf55711ee869cf9acac3a8e4ffe42cf
6,663
py
Python
tools/tiny-test-fw/IDF/IDFApp.py
ulfalizer/esp-idf-1
6835bfc741bf15e98fb7971293913f770df6081f
[ "Apache-2.0" ]
14
2018-04-23T20:34:38.000Z
2022-02-03T05:06:57.000Z
lib/third_party/mcu_vendor/espressif/esp-idf/tools/tiny-test-fw/IDF/IDFApp.py
dyg540/amazon-freertos
3d61ed00f018ac6ec0df2031556dbb71bf03617d
[ "MIT" ]
19
2018-12-07T03:41:15.000Z
2020-02-05T14:42:04.000Z
lib/third_party/mcu_vendor/espressif/esp-idf/tools/tiny-test-fw/IDF/IDFApp.py
dyg540/amazon-freertos
3d61ed00f018ac6ec0df2031556dbb71bf03617d
[ "MIT" ]
11
2018-08-03T10:15:33.000Z
2020-12-07T03:26:10.000Z
# Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http:#www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ IDF Test Applications """ import subprocess import os import App class IDFApp(App.BaseApp): """ Implements common esp-idf application behavior. idf applications should inherent from this class and overwrite method get_binary_path. """ IDF_DOWNLOAD_CONFIG_FILE = "download.config" def __init__(self, app_path): super(IDFApp, self).__init__(app_path) self.idf_path = self.get_sdk_path() self.binary_path = self.get_binary_path(app_path) assert os.path.exists(self.binary_path) assert self.IDF_DOWNLOAD_CONFIG_FILE in os.listdir(self.binary_path) self.esptool, self.partition_tool = self.get_tools() @classmethod def get_sdk_path(cls): idf_path = os.getenv("IDF_PATH") assert idf_path assert os.path.exists(idf_path) return idf_path @classmethod def get_tools(cls): idf_path = cls.get_sdk_path() # get esptool and partition tool for esp-idf esptool = os.path.join(idf_path, "components", "esptool_py", "esptool", "esptool.py") partition_tool = os.path.join(idf_path, "components", "partition_table", "gen_esp32part.py") assert os.path.exists(esptool) and os.path.exists(partition_tool) return esptool, partition_tool def get_binary_path(self, app_path): """ get binary path according to input app_path. subclass must overwrite this method. :param app_path: path of application :return: abs app binary path """ pass def process_arg(self, arg): """ process args in download.config. convert to abs path for .bin args. strip spaces and CRLFs. """ if ".bin" in arg: ret = os.path.join(self.binary_path, arg) else: ret = arg return ret.strip("\r\n ") def process_app_info(self): """ get app download config and partition info from a specific app path :return: download config, partition info """ with open(os.path.join(self.binary_path, self.IDF_DOWNLOAD_CONFIG_FILE), "r") as f: configs = f.read().split(" ") download_configs = ["--chip", "auto", "--before", "default_reset", "--after", "hard_reset", "write_flash", "-z"] download_configs += [self.process_arg(x) for x in configs] # handle partition table for partition_file in download_configs: if "partition" in partition_file: partition_file = os.path.join(self.binary_path, partition_file) break else: raise ValueError("No partition table found for IDF binary path: {}".format(self.binary_path)) process = subprocess.Popen(["python", self.partition_tool, partition_file], stdout=subprocess.PIPE, stderr=subprocess.PIPE) raw_data = process.stdout.read() if isinstance(raw_data, bytes): raw_data = raw_data.decode() partition_table = dict() for line in raw_data.splitlines(): if line[0] != "#": try: _name, _type, _subtype, _offset, _size, _flags = line.split(",") if _size[-1] == "K": _size = int(_size[:-1]) * 1024 elif _size[-1] == "M": _size = int(_size[:-1]) * 1024 * 1024 else: _size = int(_size) except ValueError: continue partition_table[_name] = { "type": _type, "subtype": _subtype, "offset": _offset, "size": _size, "flags": _flags } return download_configs, partition_table class Example(IDFApp): def get_binary_path(self, app_path): # build folder of example path path = os.path.join(self.idf_path, app_path, "build") if not os.path.exists(path): # search for CI build folders app = os.path.basename(app_path) example_path = os.path.join(self.idf_path, "build_examples", "example_builds") for dirpath, dirnames, files in os.walk(example_path): if dirnames: if dirnames[0] == app: path = os.path.join(example_path, dirpath, dirnames[0], "build") break else: raise OSError("Failed to find example binary") return path class UT(IDFApp): def get_binary_path(self, app_path): """ :param app_path: app path or app config :return: binary path """ if not app_path: app_path = "default" path = os.path.join(self.idf_path, app_path) if not os.path.exists(path): while True: # try to get by config if app_path == "default": # it's default config, we first try to get form build folder of unit-test-app path = os.path.join(self.idf_path, "tools", "unit-test-app", "build") if os.path.exists(path): # found, use bin in build path break # ``make ut-build-all-configs`` or ``make ut-build-CONFIG`` will copy binary to output folder path = os.path.join(self.idf_path, "tools", "unit-test-app", "output", app_path) if os.path.exists(path): break raise OSError("Failed to get unit-test-app binary path") return path class SSC(IDFApp): def get_binary_path(self, app_path): # TODO: to implement SSC get binary path return app_path class AT(IDFApp): def get_binary_path(self, app_path): # TODO: to implement AT get binary path return app_path
36.60989
109
0.575867
0498ab15cdc44c9270e1df2952701af2ce2e520a
1,593
py
Python
detailsScrape/senmoistd/senmoistd26.py
Asyikin98/SkinFerm
72fd1ad6339c96adf5ec154bde566de9eb1472c3
[ "MIT" ]
null
null
null
detailsScrape/senmoistd/senmoistd26.py
Asyikin98/SkinFerm
72fd1ad6339c96adf5ec154bde566de9eb1472c3
[ "MIT" ]
2
2021-02-03T01:55:13.000Z
2021-04-30T12:46:33.000Z
detailsScrape/senmoistd/senmoistd26.py
Asyikin98/SkinFerm
72fd1ad6339c96adf5ec154bde566de9eb1472c3
[ "MIT" ]
null
null
null
import urllib.request import random from bs4 import BeautifulSoup from requests import get import mysql.connector conn = mysql.connector.connect(user="root", passwd="",host="localhost", database="product") cursor = conn.cursor() sql = """INSERT INTO senmoistd (about, rate, top, comment, dari) VALUES (%s, %s, %s, %s, %s)""" def crawl_url(pageUrl, moistsend_arr): url = 'https://www.ulta.com/daily-advance-lotion?productId=xlsImpprod12041661' page = get(url) soup = BeautifulSoup(page.text, 'html.parser') type(soup) #######################################################for product 1############################################################################ moist = soup.find_all('div', class_='ProductDetail__productImage ProductDetail__productImage--withoutSwatches') try: for moistd in moist : about = soup.find("div",{"class":"ProductMainSection"}).get_text().strip() rate = soup.find("div",{"class":"ProductDetail__productContent"}).get_text().strip() top = soup.find("p",{"class":"MixedMenuButton__Text MixedMenuButton__Text--label"}).get_text().strip() comment = soup.find("div",{"class":"Collapsible__contentInner"}).get_text().strip() dari = soup.find("div",{"class":"ProductDetail__ingredients"}).get_text().strip() moistsend_arr.append((about, rate, top, comment, dari)) finally: return moistsend_arr moistsend_arr = crawl_url("", []) print(len(moistsend_arr)) cursor.executemany(sql, moistsend_arr) conn.commit() cursor.close() conn.close()
36.204545
148
0.624608
49a626ea1ecb299d07ce918b79729b1630fc007a
29,432
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_08_01/operations/_service_endpoint_policies_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
8
2021-01-13T23:44:08.000Z
2021-03-17T10:13:36.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_08_01/operations/_service_endpoint_policies_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
null
null
null
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_08_01/operations/_service_endpoint_policies_operations.py
vbarbaresi/azure-sdk-for-python
397ba46c51d001ff89c66b170f5576cf8f49c05f
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class ServiceEndpointPoliciesOperations(object): """ServiceEndpointPoliciesOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2018_08_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def _delete_initial( self, resource_group_name, # type: str service_endpoint_policy_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-08-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceEndpointPolicyName': self._serialize.url("service_endpoint_policy_name", service_endpoint_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies/{serviceEndpointPolicyName}'} # type: ignore def begin_delete( self, resource_group_name, # type: str service_endpoint_policy_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Deletes the specified service endpoint policy. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_endpoint_policy_name: The name of the service endpoint policy. :type service_endpoint_policy_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._delete_initial( resource_group_name=resource_group_name, service_endpoint_policy_name=service_endpoint_policy_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies/{serviceEndpointPolicyName}'} # type: ignore def get( self, resource_group_name, # type: str service_endpoint_policy_name, # type: str expand=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> "models.ServiceEndpointPolicy" """Gets the specified service Endpoint Policies in a specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_endpoint_policy_name: The name of the service endpoint policy. :type service_endpoint_policy_name: str :param expand: Expands referenced resources. :type expand: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ServiceEndpointPolicy, or the result of cls(response) :rtype: ~azure.mgmt.network.v2018_08_01.models.ServiceEndpointPolicy :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ServiceEndpointPolicy"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-08-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceEndpointPolicyName': self._serialize.url("service_endpoint_policy_name", service_endpoint_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') if expand is not None: query_parameters['$expand'] = self._serialize.query("expand", expand, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ServiceEndpointPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies/{serviceEndpointPolicyName}'} # type: ignore def _create_or_update_initial( self, resource_group_name, # type: str service_endpoint_policy_name, # type: str parameters, # type: "models.ServiceEndpointPolicy" **kwargs # type: Any ): # type: (...) -> "models.ServiceEndpointPolicy" cls = kwargs.pop('cls', None) # type: ClsType["models.ServiceEndpointPolicy"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-08-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceEndpointPolicyName': self._serialize.url("service_endpoint_policy_name", service_endpoint_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'ServiceEndpointPolicy') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('ServiceEndpointPolicy', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('ServiceEndpointPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies/{serviceEndpointPolicyName}'} # type: ignore def begin_create_or_update( self, resource_group_name, # type: str service_endpoint_policy_name, # type: str parameters, # type: "models.ServiceEndpointPolicy" **kwargs # type: Any ): # type: (...) -> LROPoller["models.ServiceEndpointPolicy"] """Creates or updates a service Endpoint Policies. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_endpoint_policy_name: The name of the service endpoint policy. :type service_endpoint_policy_name: str :param parameters: Parameters supplied to the create or update service endpoint policy operation. :type parameters: ~azure.mgmt.network.v2018_08_01.models.ServiceEndpointPolicy :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ServiceEndpointPolicy or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2018_08_01.models.ServiceEndpointPolicy] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.ServiceEndpointPolicy"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, service_endpoint_policy_name=service_endpoint_policy_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ServiceEndpointPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies/{serviceEndpointPolicyName}'} # type: ignore def _update_initial( self, resource_group_name, # type: str service_endpoint_policy_name, # type: str parameters, # type: "models.TagsObject" **kwargs # type: Any ): # type: (...) -> "models.ServiceEndpointPolicy" cls = kwargs.pop('cls', None) # type: ClsType["models.ServiceEndpointPolicy"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-08-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceEndpointPolicyName': self._serialize.url("service_endpoint_policy_name", service_endpoint_policy_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'TagsObject') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ServiceEndpointPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies/{serviceEndpointPolicyName}'} # type: ignore def begin_update( self, resource_group_name, # type: str service_endpoint_policy_name, # type: str parameters, # type: "models.TagsObject" **kwargs # type: Any ): # type: (...) -> LROPoller["models.ServiceEndpointPolicy"] """Updates service Endpoint Policies. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param service_endpoint_policy_name: The name of the service endpoint policy. :type service_endpoint_policy_name: str :param parameters: Parameters supplied to update service endpoint policy tags. :type parameters: ~azure.mgmt.network.v2018_08_01.models.TagsObject :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either ServiceEndpointPolicy or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.network.v2018_08_01.models.ServiceEndpointPolicy] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.ServiceEndpointPolicy"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._update_initial( resource_group_name=resource_group_name, service_endpoint_policy_name=service_endpoint_policy_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ServiceEndpointPolicy', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = ARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies/{serviceEndpointPolicyName}'} # type: ignore def list( self, **kwargs # type: Any ): # type: (...) -> Iterable["models.ServiceEndpointPolicyListResult"] """Gets all the service endpoint policies in a subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ServiceEndpointPolicyListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2018_08_01.models.ServiceEndpointPolicyListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ServiceEndpointPolicyListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-08-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('ServiceEndpointPolicyListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/ServiceEndpointPolicies'} # type: ignore def list_by_resource_group( self, resource_group_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["models.ServiceEndpointPolicyListResult"] """Gets all service endpoint Policies in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ServiceEndpointPolicyListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2018_08_01.models.ServiceEndpointPolicyListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ServiceEndpointPolicyListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-08-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_resource_group.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('ServiceEndpointPolicyListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_by_resource_group.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/serviceEndpointPolicies'} # type: ignore
49.217391
214
0.667165
373e5b8337b3d95d6a3b3e235086c1678b41e361
7,875
py
Python
custom_components/acthor/acthor/pymodbus_vendor/pdu.py
jatty/hass-acthor
9d5aaed3f01e9288fef031b47b0808e6e80c22d3
[ "MIT" ]
null
null
null
custom_components/acthor/acthor/pymodbus_vendor/pdu.py
jatty/hass-acthor
9d5aaed3f01e9288fef031b47b0808e6e80c22d3
[ "MIT" ]
null
null
null
custom_components/acthor/acthor/pymodbus_vendor/pdu.py
jatty/hass-acthor
9d5aaed3f01e9288fef031b47b0808e6e80c22d3
[ "MIT" ]
null
null
null
""" Contains base classes for modbus request/response/error packets """ # --------------------------------------------------------------------------- # # Logging # --------------------------------------------------------------------------- # import logging from .compat import byte2int, int2byte, iteritems from .constants import Defaults from .exceptions import NotImplementedException from .interfaces import Singleton from .utilities import rtuFrameSize _logger = logging.getLogger(__name__) # --------------------------------------------------------------------------- # # Base PDU's # --------------------------------------------------------------------------- # class ModbusPDU(object): """ Base class for all Modbus messages .. attribute:: transaction_id This value is used to uniquely identify a request response pair. It can be implemented as a simple counter .. attribute:: protocol_id This is a constant set at 0 to indicate Modbus. It is put here for ease of expansion. .. attribute:: unit_id This is used to route the request to the correct child. In the TCP modbus, it is used for routing (or not used at all. However, for the serial versions, it is used to specify which child to perform the requests against. The value 0x00 represents the broadcast address (also 0xff). .. attribute:: check This is used for LRC/CRC in the serial modbus protocols .. attribute:: skip_encode This is used when the message payload has already been encoded. Generally this will occur when the PayloadBuilder is being used to create a complicated message. By setting this to True, the request will pass the currently encoded message through instead of encoding it again. """ def __init__(self, **kwargs): """ Initializes the base data for a modbus request """ self.transaction_id = kwargs.get('transaction', Defaults.TransactionId) self.protocol_id = kwargs.get('protocol', Defaults.ProtocolId) self.unit_id = kwargs.get('unit', Defaults.UnitId) self.skip_encode = kwargs.get('skip_encode', False) self.check = 0x0000 def encode(self): """ Encodes the message :raises: A not implemented exception """ raise NotImplementedException() def decode(self, data): """ Decodes data part of the message. :param data: is a string object :raises: A not implemented exception """ raise NotImplementedException() @classmethod def calculateRtuFrameSize(cls, buffer): """ Calculates the size of a PDU. :param buffer: A buffer containing the data that have been received. :returns: The number of bytes in the PDU. """ if hasattr(cls, '_rtu_frame_size'): return cls._rtu_frame_size elif hasattr(cls, '_rtu_byte_count_pos'): return rtuFrameSize(buffer, cls._rtu_byte_count_pos) else: raise NotImplementedException( "Cannot determine RTU frame size for %s" % cls.__name__) class ModbusRequest(ModbusPDU): """ Base class for a modbus request PDU """ def __init__(self, **kwargs): """ Proxy to the lower level initializer """ ModbusPDU.__init__(self, **kwargs) def doException(self, exception): """ Builds an error response based on the function :param exception: The exception to return :raises: An exception response """ exc = ExceptionResponse(self.function_code, exception) _logger.error(exc) return exc class ModbusResponse(ModbusPDU): """ Base class for a modbus response PDU .. attribute:: should_respond A flag that indicates if this response returns a result back to the client issuing the request .. attribute:: _rtu_frame_size Indicates the size of the modbus rtu response used for calculating how much to read. """ should_respond = True def __init__(self, **kwargs): """ Proxy to the lower level initializer """ ModbusPDU.__init__(self, **kwargs) def isError(self): """Checks if the error is a success or failure""" return self.function_code > 0x80 # --------------------------------------------------------------------------- # # Exception PDU's # --------------------------------------------------------------------------- # class ModbusExceptions(Singleton): """ An enumeration of the valid modbus exceptions """ IllegalFunction = 0x01 IllegalAddress = 0x02 IllegalValue = 0x03 SlaveFailure = 0x04 Acknowledge = 0x05 SlaveBusy = 0x06 MemoryParityError = 0x08 GatewayPathUnavailable = 0x0A GatewayNoResponse = 0x0B @classmethod def decode(cls, code): """ Given an error code, translate it to a string error name. :param code: The code number to translate """ values = dict((v, k) for k, v in iteritems(cls.__dict__) if not k.startswith('__') and not callable(v)) return values.get(code, None) class ExceptionResponse(ModbusResponse): """ Base class for a modbus exception PDU """ ExceptionOffset = 0x80 _rtu_frame_size = 5 def __init__(self, function_code, exception_code=None, **kwargs): """ Initializes the modbus exception response :param function_code: The function to build an exception response for :param exception_code: The specific modbus exception to return """ ModbusResponse.__init__(self, **kwargs) self.original_code = function_code self.function_code = function_code | self.ExceptionOffset self.exception_code = exception_code def encode(self): """ Encodes a modbus exception response :returns: The encoded exception packet """ return int2byte(self.exception_code) def decode(self, data): """ Decodes a modbus exception response :param data: The packet data to decode """ self.exception_code = byte2int(data[0]) def __str__(self): """ Builds a representation of an exception response :returns: The string representation of an exception response """ message = ModbusExceptions.decode(self.exception_code) parameters = (self.function_code, self.original_code, message) return "Exception Response(%d, %d, %s)" % parameters class IllegalFunctionRequest(ModbusRequest): """ Defines the Modbus slave exception type 'Illegal Function' This exception code is returned if the slave:: - does not implement the function code **or** - is not in a state that allows it to process the function """ ErrorCode = 1 def __init__(self, function_code, **kwargs): """ Initializes a IllegalFunctionRequest :param function_code: The function we are erroring on """ ModbusRequest.__init__(self, **kwargs) self.function_code = function_code def decode(self, data): """ This is here so this failure will run correctly :param data: Not used """ pass def execute(self, context): """ Builds an illegal function request error response :param context: The current context for the message :returns: The error response packet """ return ExceptionResponse(self.function_code, self.ErrorCode) # --------------------------------------------------------------------------- # # Exported symbols # --------------------------------------------------------------------------- # __all__ = [ 'ModbusRequest', 'ModbusResponse', 'ModbusExceptions', 'ExceptionResponse', 'IllegalFunctionRequest', ]
31.5
79
0.605079
281963f3f5c1860a91dd55b88a65955859bf51bc
42,425
py
Python
django/db/models/fields/__init__.py
t11e/django
447f5375d378dba3bac1ded0306fa0d1b8ab55a4
[ "BSD-3-Clause" ]
1
2016-05-08T13:32:33.000Z
2016-05-08T13:32:33.000Z
django/db/models/fields/__init__.py
t11e/django
447f5375d378dba3bac1ded0306fa0d1b8ab55a4
[ "BSD-3-Clause" ]
null
null
null
django/db/models/fields/__init__.py
t11e/django
447f5375d378dba3bac1ded0306fa0d1b8ab55a4
[ "BSD-3-Clause" ]
null
null
null
import datetime import decimal import re import time import math import django.utils.copycompat as copy from django.db import connection from django.db.models.fields.subclassing import LegacyConnection from django.db.models.query_utils import QueryWrapper from django.conf import settings from django import forms from django.core import exceptions, validators from django.utils.datastructures import DictWrapper from django.utils.functional import curry from django.utils.itercompat import tee from django.utils.text import capfirst from django.utils.translation import ugettext_lazy as _ from django.utils.encoding import smart_unicode, force_unicode, smart_str from django.utils import datetime_safe class NOT_PROVIDED: pass # The values to use for "blank" in SelectFields. Will be appended to the start of most "choices" lists. BLANK_CHOICE_DASH = [("", "---------")] BLANK_CHOICE_NONE = [("", "None")] class FieldDoesNotExist(Exception): pass # A guide to Field parameters: # # * name: The name of the field specifed in the model. # * attname: The attribute to use on the model object. This is the same as # "name", except in the case of ForeignKeys, where "_id" is # appended. # * db_column: The db_column specified in the model (or None). # * column: The database column for this field. This is the same as # "attname", except if db_column is specified. # # Code that introspects values, or does other dynamic things, should use # attname. For example, this gets the primary key value of object "obj": # # getattr(obj, opts.pk.attname) class Field(object): """Base class for all field types""" __metaclass__ = LegacyConnection # Designates whether empty strings fundamentally are allowed at the # database level. empty_strings_allowed = True # These track each time a Field instance is created. Used to retain order. # The auto_creation_counter is used for fields that Django implicitly # creates, creation_counter is used for all user-specified fields. creation_counter = 0 auto_creation_counter = -1 default_validators = [] # Default set of validators default_error_messages = { 'invalid_choice': _(u'Value %r is not a valid choice.'), 'null': _(u'This field cannot be null.'), 'blank': _(u'This field cannot be blank.'), } # Generic field type description, usually overriden by subclasses def _description(self): return _(u'Field of type: %(field_type)s') % { 'field_type': self.__class__.__name__ } description = property(_description) def __init__(self, verbose_name=None, name=None, primary_key=False, max_length=None, unique=False, blank=False, null=False, db_index=False, rel=None, default=NOT_PROVIDED, editable=True, serialize=True, unique_for_date=None, unique_for_month=None, unique_for_year=None, choices=None, help_text='', db_column=None, db_tablespace=None, auto_created=False, validators=[], error_messages=None): self.name = name self.verbose_name = verbose_name self.primary_key = primary_key self.max_length, self._unique = max_length, unique self.blank, self.null = blank, null # Oracle treats the empty string ('') as null, so coerce the null # option whenever '' is a possible value. if self.empty_strings_allowed and connection.features.interprets_empty_strings_as_nulls: self.null = True self.rel = rel self.default = default self.editable = editable self.serialize = serialize self.unique_for_date, self.unique_for_month = unique_for_date, unique_for_month self.unique_for_year = unique_for_year self._choices = choices or [] self.help_text = help_text self.db_column = db_column self.db_tablespace = db_tablespace or settings.DEFAULT_INDEX_TABLESPACE self.auto_created = auto_created # Set db_index to True if the field has a relationship and doesn't explicitly set db_index. self.db_index = db_index # Adjust the appropriate creation counter, and save our local copy. if auto_created: self.creation_counter = Field.auto_creation_counter Field.auto_creation_counter -= 1 else: self.creation_counter = Field.creation_counter Field.creation_counter += 1 self.validators = self.default_validators + validators messages = {} for c in reversed(self.__class__.__mro__): messages.update(getattr(c, 'default_error_messages', {})) messages.update(error_messages or {}) self.error_messages = messages def __cmp__(self, other): # This is needed because bisect does not take a comparison function. return cmp(self.creation_counter, other.creation_counter) def __deepcopy__(self, memodict): # We don't have to deepcopy very much here, since most things are not # intended to be altered after initial creation. obj = copy.copy(self) if self.rel: obj.rel = copy.copy(self.rel) memodict[id(self)] = obj return obj def to_python(self, value): """ Converts the input value into the expected Python data type, raising django.core.exceptions.ValidationError if the data can't be converted. Returns the converted value. Subclasses should override this. """ return value def run_validators(self, value): if value in validators.EMPTY_VALUES: return errors = [] for v in self.validators: try: v(value) except exceptions.ValidationError, e: if hasattr(e, 'code') and e.code in self.error_messages: message = self.error_messages[e.code] if e.params: message = message % e.params errors.append(message) else: errors.extend(e.messages) if errors: raise exceptions.ValidationError(errors) def validate(self, value, model_instance): """ Validates value and throws ValidationError. Subclasses should override this to provide validation logic. """ if not self.editable: # Skip validation for non-editable fields. return if self._choices and value: for option_key, option_value in self.choices: if isinstance(option_value, (list, tuple)): # This is an optgroup, so look inside the group for options. for optgroup_key, optgroup_value in option_value: if value == optgroup_key: return elif value == option_key: return raise exceptions.ValidationError(self.error_messages['invalid_choice'] % value) if value is None and not self.null: raise exceptions.ValidationError(self.error_messages['null']) if not self.blank and value in validators.EMPTY_VALUES: raise exceptions.ValidationError(self.error_messages['blank']) def clean(self, value, model_instance): """ Convert the value's type and run validation. Validation errors from to_python and validate are propagated. The correct value is returned if no error is raised. """ value = self.to_python(value) self.validate(value, model_instance) self.run_validators(value) return value def db_type(self, connection): """ Returns the database column data type for this field, for the provided connection. """ # The default implementation of this method looks at the # backend-specific DATA_TYPES dictionary, looking up the field by its # "internal type". # # A Field class can implement the get_internal_type() method to specify # which *preexisting* Django Field class it's most similar to -- i.e., # an XMLField is represented by a TEXT column type, which is the same # as the TextField Django field type, which means XMLField's # get_internal_type() returns 'TextField'. # # But the limitation of the get_internal_type() / data_types approach # is that it cannot handle database column types that aren't already # mapped to one of the built-in Django field types. In this case, you # can implement db_type() instead of get_internal_type() to specify # exactly which wacky database column type you want to use. data = DictWrapper(self.__dict__, connection.ops.quote_name, "qn_") try: return connection.creation.data_types[self.get_internal_type()] % data except KeyError: return None def unique(self): return self._unique or self.primary_key unique = property(unique) def set_attributes_from_name(self, name): self.name = name self.attname, self.column = self.get_attname_column() if self.verbose_name is None and name: self.verbose_name = name.replace('_', ' ') def contribute_to_class(self, cls, name): self.set_attributes_from_name(name) cls._meta.add_field(self) if self.choices: setattr(cls, 'get_%s_display' % self.name, curry(cls._get_FIELD_display, field=self)) def get_attname(self): return self.name def get_attname_column(self): attname = self.get_attname() column = self.db_column or attname return attname, column def get_cache_name(self): return '_%s_cache' % self.name def get_internal_type(self): return self.__class__.__name__ def pre_save(self, model_instance, add): "Returns field's value just before saving." return getattr(model_instance, self.attname) def get_prep_value(self, value): "Perform preliminary non-db specific value checks and conversions." return value def get_db_prep_value(self, value, connection, prepared=False): """Returns field's value prepared for interacting with the database backend. Used by the default implementations of ``get_db_prep_save``and `get_db_prep_lookup``` """ if not prepared: value = self.get_prep_value(value) return value def get_db_prep_save(self, value, connection): "Returns field's value prepared for saving into a database." return self.get_db_prep_value(value, connection=connection, prepared=False) def get_prep_lookup(self, lookup_type, value): "Perform preliminary non-db specific lookup checks and conversions" if hasattr(value, 'prepare'): return value.prepare() if hasattr(value, '_prepare'): return value._prepare() if lookup_type in ( 'regex', 'iregex', 'month', 'day', 'week_day', 'search', 'contains', 'icontains', 'iexact', 'startswith', 'istartswith', 'endswith', 'iendswith', 'isnull' ): return value elif lookup_type in ('exact', 'gt', 'gte', 'lt', 'lte'): return self.get_prep_value(value) elif lookup_type in ('range', 'in'): return [self.get_prep_value(v) for v in value] elif lookup_type == 'year': try: return int(value) except ValueError: raise ValueError("The __year lookup type requires an integer argument") raise TypeError("Field has invalid lookup: %s" % lookup_type) def get_db_prep_lookup(self, lookup_type, value, connection, prepared=False): "Returns field's value prepared for database lookup." if not prepared: value = self.get_prep_lookup(lookup_type, value) if hasattr(value, 'get_compiler'): value = value.get_compiler(connection=connection) if hasattr(value, 'as_sql') or hasattr(value, '_as_sql'): # If the value has a relabel_aliases method, it will need to # be invoked before the final SQL is evaluated if hasattr(value, 'relabel_aliases'): return value if hasattr(value, 'as_sql'): sql, params = value.as_sql() else: sql, params = value._as_sql(connection=connection) return QueryWrapper(('(%s)' % sql), params) if lookup_type in ('regex', 'iregex', 'month', 'day', 'week_day', 'search'): return [value] elif lookup_type in ('exact', 'gt', 'gte', 'lt', 'lte'): return [self.get_db_prep_value(value, connection=connection, prepared=prepared)] elif lookup_type in ('range', 'in'): return [self.get_db_prep_value(v, connection=connection, prepared=prepared) for v in value] elif lookup_type in ('contains', 'icontains'): return ["%%%s%%" % connection.ops.prep_for_like_query(value)] elif lookup_type == 'iexact': return [connection.ops.prep_for_iexact_query(value)] elif lookup_type in ('startswith', 'istartswith'): return ["%s%%" % connection.ops.prep_for_like_query(value)] elif lookup_type in ('endswith', 'iendswith'): return ["%%%s" % connection.ops.prep_for_like_query(value)] elif lookup_type == 'isnull': return [] elif lookup_type == 'year': if self.get_internal_type() == 'DateField': return connection.ops.year_lookup_bounds_for_date_field(value) else: return connection.ops.year_lookup_bounds(value) def has_default(self): "Returns a boolean of whether this field has a default value." return self.default is not NOT_PROVIDED def get_default(self): "Returns the default value for this field." if self.has_default(): if callable(self.default): return self.default() return force_unicode(self.default, strings_only=True) if not self.empty_strings_allowed or (self.null and not connection.features.interprets_empty_strings_as_nulls): return None return "" def get_validator_unique_lookup_type(self): return '%s__exact' % self.name def get_choices(self, include_blank=True, blank_choice=BLANK_CHOICE_DASH): """Returns choices with a default blank choices included, for use as SelectField choices for this field.""" first_choice = include_blank and blank_choice or [] if self.choices: return first_choice + list(self.choices) rel_model = self.rel.to if hasattr(self.rel, 'get_related_field'): lst = [(getattr(x, self.rel.get_related_field().attname), smart_unicode(x)) for x in rel_model._default_manager.complex_filter(self.rel.limit_choices_to)] else: lst = [(x._get_pk_val(), smart_unicode(x)) for x in rel_model._default_manager.complex_filter(self.rel.limit_choices_to)] return first_choice + lst def get_choices_default(self): return self.get_choices() def get_flatchoices(self, include_blank=True, blank_choice=BLANK_CHOICE_DASH): "Returns flattened choices with a default blank choice included." first_choice = include_blank and blank_choice or [] return first_choice + list(self.flatchoices) def _get_val_from_obj(self, obj): if obj is not None: return getattr(obj, self.attname) else: return self.get_default() def value_to_string(self, obj): """ Returns a string value of this field from the passed obj. This is used by the serialization framework. """ return smart_unicode(self._get_val_from_obj(obj)) def bind(self, fieldmapping, original, bound_field_class): return bound_field_class(self, fieldmapping, original) def _get_choices(self): if hasattr(self._choices, 'next'): choices, self._choices = tee(self._choices) return choices else: return self._choices choices = property(_get_choices) def _get_flatchoices(self): """Flattened version of choices tuple.""" flat = [] for choice, value in self.choices: if isinstance(value, (list, tuple)): flat.extend(value) else: flat.append((choice,value)) return flat flatchoices = property(_get_flatchoices) def save_form_data(self, instance, data): setattr(instance, self.name, data) def formfield(self, form_class=forms.CharField, **kwargs): "Returns a django.forms.Field instance for this database Field." defaults = {'required': not self.blank, 'label': capfirst(self.verbose_name), 'help_text': self.help_text} if self.has_default(): if callable(self.default): defaults['initial'] = self.default defaults['show_hidden_initial'] = True else: defaults['initial'] = self.get_default() if self.choices: # Fields with choices get special treatment. include_blank = self.blank or not (self.has_default() or 'initial' in kwargs) defaults['choices'] = self.get_choices(include_blank=include_blank) defaults['coerce'] = self.to_python if self.null: defaults['empty_value'] = None form_class = forms.TypedChoiceField # Many of the subclass-specific formfield arguments (min_value, # max_value) don't apply for choice fields, so be sure to only pass # the values that TypedChoiceField will understand. for k in kwargs.keys(): if k not in ('coerce', 'empty_value', 'choices', 'required', 'widget', 'label', 'initial', 'help_text', 'error_messages', 'show_hidden_initial'): del kwargs[k] defaults.update(kwargs) return form_class(**defaults) def value_from_object(self, obj): "Returns the value of this field in the given model instance." return getattr(obj, self.attname) class AutoField(Field): description = _("Integer") empty_strings_allowed = False default_error_messages = { 'invalid': _(u'This value must be an integer.'), } def __init__(self, *args, **kwargs): assert kwargs.get('primary_key', False) is True, "%ss must have primary_key=True." % self.__class__.__name__ kwargs['blank'] = True Field.__init__(self, *args, **kwargs) def to_python(self, value): if value is None: return value try: return int(value) except (TypeError, ValueError): raise exceptions.ValidationError(self.error_messages['invalid']) def validate(self, value, model_instance): pass def get_prep_value(self, value): if value is None: return None return int(value) def contribute_to_class(self, cls, name): assert not cls._meta.has_auto_field, "A model can't have more than one AutoField." super(AutoField, self).contribute_to_class(cls, name) cls._meta.has_auto_field = True cls._meta.auto_field = self def formfield(self, **kwargs): return None class BooleanField(Field): empty_strings_allowed = False default_error_messages = { 'invalid': _(u'This value must be either True or False.'), } description = _("Boolean (Either True or False)") def __init__(self, *args, **kwargs): kwargs['blank'] = True if 'default' not in kwargs and not kwargs.get('null'): kwargs['default'] = False Field.__init__(self, *args, **kwargs) def get_internal_type(self): return "BooleanField" def to_python(self, value): if value in (True, False): # if value is 1 or 0 than it's equal to True or False, but we want # to return a true bool for semantic reasons. return bool(value) if value in ('t', 'True', '1'): return True if value in ('f', 'False', '0'): return False raise exceptions.ValidationError(self.error_messages['invalid']) def get_prep_lookup(self, lookup_type, value): # Special-case handling for filters coming from a web request (e.g. the # admin interface). Only works for scalar values (not lists). If you're # passing in a list, you might as well make things the right type when # constructing the list. if value in ('1', '0'): value = bool(int(value)) return super(BooleanField, self).get_prep_lookup(lookup_type, value) def get_prep_value(self, value): if value is None: return None return bool(value) def formfield(self, **kwargs): # Unlike most fields, BooleanField figures out include_blank from # self.null instead of self.blank. if self.choices: include_blank = self.null or not (self.has_default() or 'initial' in kwargs) defaults = {'choices': self.get_choices(include_blank=include_blank)} else: defaults = {'form_class': forms.BooleanField} defaults.update(kwargs) return super(BooleanField, self).formfield(**defaults) class CharField(Field): description = _("String (up to %(max_length)s)") def __init__(self, *args, **kwargs): super(CharField, self).__init__(*args, **kwargs) self.validators.append(validators.MaxLengthValidator(self.max_length)) def get_internal_type(self): return "CharField" def to_python(self, value): if isinstance(value, basestring) or value is None: return value return smart_unicode(value) def get_prep_value(self, value): return self.to_python(value) def formfield(self, **kwargs): # Passing max_length to forms.CharField means that the value's length # will be validated twice. This is considered acceptable since we want # the value in the form field (to pass into widget for example). defaults = {'max_length': self.max_length} defaults.update(kwargs) return super(CharField, self).formfield(**defaults) # TODO: Maybe move this into contrib, because it's specialized. class CommaSeparatedIntegerField(CharField): default_validators = [validators.validate_comma_separated_integer_list] description = _("Comma-separated integers") def formfield(self, **kwargs): defaults = { 'error_messages': { 'invalid': _(u'Enter only digits separated by commas.'), } } defaults.update(kwargs) return super(CommaSeparatedIntegerField, self).formfield(**defaults) ansi_date_re = re.compile(r'^\d{4}-\d{1,2}-\d{1,2}$') class DateField(Field): description = _("Date (without time)") empty_strings_allowed = False default_error_messages = { 'invalid': _('Enter a valid date in YYYY-MM-DD format.'), 'invalid_date': _('Invalid date: %s'), } def __init__(self, verbose_name=None, name=None, auto_now=False, auto_now_add=False, **kwargs): self.auto_now, self.auto_now_add = auto_now, auto_now_add #HACKs : auto_now_add/auto_now should be done as a default or a pre_save. if auto_now or auto_now_add: kwargs['editable'] = False kwargs['blank'] = True Field.__init__(self, verbose_name, name, **kwargs) def get_internal_type(self): return "DateField" def to_python(self, value): if value is None: return value if isinstance(value, datetime.datetime): return value.date() if isinstance(value, datetime.date): return value if not ansi_date_re.search(value): raise exceptions.ValidationError(self.error_messages['invalid']) # Now that we have the date string in YYYY-MM-DD format, check to make # sure it's a valid date. # We could use time.strptime here and catch errors, but datetime.date # produces much friendlier error messages. year, month, day = map(int, value.split('-')) try: return datetime.date(year, month, day) except ValueError, e: msg = self.error_messages['invalid_date'] % _(str(e)) raise exceptions.ValidationError(msg) def pre_save(self, model_instance, add): if self.auto_now or (self.auto_now_add and add): value = datetime.datetime.now() setattr(model_instance, self.attname, value) return value else: return super(DateField, self).pre_save(model_instance, add) def contribute_to_class(self, cls, name): super(DateField,self).contribute_to_class(cls, name) if not self.null: setattr(cls, 'get_next_by_%s' % self.name, curry(cls._get_next_or_previous_by_FIELD, field=self, is_next=True)) setattr(cls, 'get_previous_by_%s' % self.name, curry(cls._get_next_or_previous_by_FIELD, field=self, is_next=False)) def get_prep_lookup(self, lookup_type, value): # For "__month", "__day", and "__week_day" lookups, convert the value # to an int so the database backend always sees a consistent type. if lookup_type in ('month', 'day', 'week_day'): return int(value) return super(DateField, self).get_prep_lookup(lookup_type, value) def get_prep_value(self, value): return self.to_python(value) def get_db_prep_value(self, value, connection, prepared=False): # Casts dates into the format expected by the backend if not prepared: value = self.get_prep_value(value) return connection.ops.value_to_db_date(value) def value_to_string(self, obj): val = self._get_val_from_obj(obj) if val is None: data = '' else: data = datetime_safe.new_date(val).strftime("%Y-%m-%d") return data def formfield(self, **kwargs): defaults = {'form_class': forms.DateField} defaults.update(kwargs) return super(DateField, self).formfield(**defaults) class DateTimeField(DateField): default_error_messages = { 'invalid': _(u'Enter a valid date/time in YYYY-MM-DD HH:MM[:ss[.uuuuuu]] format.'), } description = _("Date (with time)") def get_internal_type(self): return "DateTimeField" def to_python(self, value): if value is None: return value if isinstance(value, datetime.datetime): return value if isinstance(value, datetime.date): return datetime.datetime(value.year, value.month, value.day) # Attempt to parse a datetime: value = smart_str(value) # split usecs, because they are not recognized by strptime. if '.' in value: try: value, usecs = value.split('.') usecs = int(usecs) except ValueError: raise exceptions.ValidationError(self.error_messages['invalid']) else: usecs = 0 kwargs = {'microsecond': usecs} try: # Seconds are optional, so try converting seconds first. return datetime.datetime(*time.strptime(value, '%Y-%m-%d %H:%M:%S')[:6], **kwargs) except ValueError: try: # Try without seconds. return datetime.datetime(*time.strptime(value, '%Y-%m-%d %H:%M')[:5], **kwargs) except ValueError: # Try without hour/minutes/seconds. try: return datetime.datetime(*time.strptime(value, '%Y-%m-%d')[:3], **kwargs) except ValueError: raise exceptions.ValidationError(self.error_messages['invalid']) def get_prep_value(self, value): return self.to_python(value) def get_db_prep_value(self, value, connection, prepared=False): # Casts dates into the format expected by the backend if not prepared: value = self.get_prep_value(value) return connection.ops.value_to_db_datetime(value) def value_to_string(self, obj): val = self._get_val_from_obj(obj) if val is None: data = '' else: d = datetime_safe.new_datetime(val) data = d.strftime('%Y-%m-%d %H:%M:%S') return data def formfield(self, **kwargs): defaults = {'form_class': forms.DateTimeField} defaults.update(kwargs) return super(DateTimeField, self).formfield(**defaults) class DecimalField(Field): empty_strings_allowed = False default_error_messages = { 'invalid': _(u'This value must be a decimal number.'), } description = _("Decimal number") def __init__(self, verbose_name=None, name=None, max_digits=None, decimal_places=None, **kwargs): self.max_digits, self.decimal_places = max_digits, decimal_places Field.__init__(self, verbose_name, name, **kwargs) def get_internal_type(self): return "DecimalField" def to_python(self, value): if value is None: return value try: return decimal.Decimal(value) except decimal.InvalidOperation: raise exceptions.ValidationError(self.error_messages['invalid']) def _format(self, value): if isinstance(value, basestring) or value is None: return value else: return self.format_number(value) def format_number(self, value): """ Formats a number into a string with the requisite number of digits and decimal places. """ # Method moved to django.db.backends.util. # # It is preserved because it is used by the oracle backend # (django.db.backends.oracle.query), and also for # backwards-compatibility with any external code which may have used # this method. from django.db.backends import util return util.format_number(value, self.max_digits, self.decimal_places) def get_db_prep_save(self, value, connection): return connection.ops.value_to_db_decimal(self.to_python(value), self.max_digits, self.decimal_places) def get_prep_value(self, value): return self.to_python(value) def formfield(self, **kwargs): defaults = { 'max_digits': self.max_digits, 'decimal_places': self.decimal_places, 'form_class': forms.DecimalField, } defaults.update(kwargs) return super(DecimalField, self).formfield(**defaults) class EmailField(CharField): default_validators = [validators.validate_email] description = _("E-mail address") def __init__(self, *args, **kwargs): kwargs['max_length'] = kwargs.get('max_length', 75) CharField.__init__(self, *args, **kwargs) class FilePathField(Field): description = _("File path") def __init__(self, verbose_name=None, name=None, path='', match=None, recursive=False, **kwargs): self.path, self.match, self.recursive = path, match, recursive kwargs['max_length'] = kwargs.get('max_length', 100) Field.__init__(self, verbose_name, name, **kwargs) def formfield(self, **kwargs): defaults = { 'path': self.path, 'match': self.match, 'recursive': self.recursive, 'form_class': forms.FilePathField, } defaults.update(kwargs) return super(FilePathField, self).formfield(**defaults) def get_internal_type(self): return "FilePathField" class FloatField(Field): empty_strings_allowed = False default_error_messages = { 'invalid': _("This value must be a float."), } description = _("Floating point number") def get_prep_value(self, value): if value is None: return None return float(value) def get_internal_type(self): return "FloatField" def to_python(self, value): if value is None: return value try: return float(value) except (TypeError, ValueError): raise exceptions.ValidationError(self.error_messages['invalid']) def formfield(self, **kwargs): defaults = {'form_class': forms.FloatField} defaults.update(kwargs) return super(FloatField, self).formfield(**defaults) class IntegerField(Field): empty_strings_allowed = False default_error_messages = { 'invalid': _("This value must be an integer."), } description = _("Integer") def get_prep_value(self, value): if value is None: return None return int(value) def get_prep_lookup(self, lookup_type, value): if (lookup_type == 'gte' or lookup_type == 'lt') \ and isinstance(value, float): value = math.ceil(value) return super(IntegerField, self).get_prep_lookup(lookup_type, value) def get_internal_type(self): return "IntegerField" def to_python(self, value): if value is None: return value try: return int(value) except (TypeError, ValueError): raise exceptions.ValidationError(self.error_messages['invalid']) def formfield(self, **kwargs): defaults = {'form_class': forms.IntegerField} defaults.update(kwargs) return super(IntegerField, self).formfield(**defaults) class BigIntegerField(IntegerField): empty_strings_allowed = False description = _("Big (8 byte) integer") MAX_BIGINT = 9223372036854775807 def get_internal_type(self): return "BigIntegerField" def formfield(self, **kwargs): defaults = {'min_value': -BigIntegerField.MAX_BIGINT - 1, 'max_value': BigIntegerField.MAX_BIGINT} defaults.update(kwargs) return super(BigIntegerField, self).formfield(**defaults) class IPAddressField(Field): empty_strings_allowed = False description = _("IP address") def __init__(self, *args, **kwargs): kwargs['max_length'] = 15 Field.__init__(self, *args, **kwargs) def get_internal_type(self): return "IPAddressField" def formfield(self, **kwargs): defaults = {'form_class': forms.IPAddressField} defaults.update(kwargs) return super(IPAddressField, self).formfield(**defaults) class NullBooleanField(Field): empty_strings_allowed = False default_error_messages = { 'invalid': _("This value must be either None, True or False."), } description = _("Boolean (Either True, False or None)") def __init__(self, *args, **kwargs): kwargs['null'] = True kwargs['blank'] = True Field.__init__(self, *args, **kwargs) def get_internal_type(self): return "NullBooleanField" def to_python(self, value): if value is None: return None if value in (True, False): return bool(value) if value in ('None',): return None if value in ('t', 'True', '1'): return True if value in ('f', 'False', '0'): return False raise exceptions.ValidationError(self.error_messages['invalid']) def get_prep_lookup(self, lookup_type, value): # Special-case handling for filters coming from a web request (e.g. the # admin interface). Only works for scalar values (not lists). If you're # passing in a list, you might as well make things the right type when # constructing the list. if value in ('1', '0'): value = bool(int(value)) return super(NullBooleanField, self).get_prep_lookup(lookup_type, value) def get_prep_value(self, value): if value is None: return None return bool(value) def formfield(self, **kwargs): defaults = { 'form_class': forms.NullBooleanField, 'required': not self.blank, 'label': capfirst(self.verbose_name), 'help_text': self.help_text} defaults.update(kwargs) return super(NullBooleanField, self).formfield(**defaults) class PositiveIntegerField(IntegerField): description = _("Integer") def get_internal_type(self): return "PositiveIntegerField" def formfield(self, **kwargs): defaults = {'min_value': 0} defaults.update(kwargs) return super(PositiveIntegerField, self).formfield(**defaults) class PositiveSmallIntegerField(IntegerField): description = _("Integer") def get_internal_type(self): return "PositiveSmallIntegerField" def formfield(self, **kwargs): defaults = {'min_value': 0} defaults.update(kwargs) return super(PositiveSmallIntegerField, self).formfield(**defaults) class SlugField(CharField): description = _("String (up to %(max_length)s)") def __init__(self, *args, **kwargs): kwargs['max_length'] = kwargs.get('max_length', 50) # Set db_index=True unless it's been set manually. if 'db_index' not in kwargs: kwargs['db_index'] = True super(SlugField, self).__init__(*args, **kwargs) def get_internal_type(self): return "SlugField" def formfield(self, **kwargs): defaults = {'form_class': forms.SlugField} defaults.update(kwargs) return super(SlugField, self).formfield(**defaults) class SmallIntegerField(IntegerField): description = _("Integer") def get_internal_type(self): return "SmallIntegerField" class TextField(Field): description = _("Text") def get_internal_type(self): return "TextField" def get_prep_value(self, value): if isinstance(value, basestring) or value is None: return value return smart_unicode(value) def formfield(self, **kwargs): defaults = {'widget': forms.Textarea} defaults.update(kwargs) return super(TextField, self).formfield(**defaults) class TimeField(Field): description = _("Time") empty_strings_allowed = False default_error_messages = { 'invalid': _('Enter a valid time in HH:MM[:ss[.uuuuuu]] format.'), } def __init__(self, verbose_name=None, name=None, auto_now=False, auto_now_add=False, **kwargs): self.auto_now, self.auto_now_add = auto_now, auto_now_add if auto_now or auto_now_add: kwargs['editable'] = False Field.__init__(self, verbose_name, name, **kwargs) def get_internal_type(self): return "TimeField" def to_python(self, value): if value is None: return None if isinstance(value, datetime.time): return value if isinstance(value, datetime.datetime): # Not usually a good idea to pass in a datetime here (it loses # information), but this can be a side-effect of interacting with a # database backend (e.g. Oracle), so we'll be accommodating. return value.time() # Attempt to parse a datetime: value = smart_str(value) # split usecs, because they are not recognized by strptime. if '.' in value: try: value, usecs = value.split('.') usecs = int(usecs) except ValueError: raise exceptions.ValidationError(self.error_messages['invalid']) else: usecs = 0 kwargs = {'microsecond': usecs} try: # Seconds are optional, so try converting seconds first. return datetime.time(*time.strptime(value, '%H:%M:%S')[3:6], **kwargs) except ValueError: try: # Try without seconds. return datetime.time(*time.strptime(value, '%H:%M')[3:5], **kwargs) except ValueError: raise exceptions.ValidationError(self.error_messages['invalid']) def pre_save(self, model_instance, add): if self.auto_now or (self.auto_now_add and add): value = datetime.datetime.now().time() setattr(model_instance, self.attname, value) return value else: return super(TimeField, self).pre_save(model_instance, add) def get_prep_value(self, value): return self.to_python(value) def get_db_prep_value(self, value, connection, prepared=False): # Casts times into the format expected by the backend if not prepared: value = self.get_prep_value(value) return connection.ops.value_to_db_time(value) def value_to_string(self, obj): val = self._get_val_from_obj(obj) if val is None: data = '' else: data = val.strftime("%H:%M:%S") return data def formfield(self, **kwargs): defaults = {'form_class': forms.TimeField} defaults.update(kwargs) return super(TimeField, self).formfield(**defaults) class URLField(CharField): description = _("URL") def __init__(self, verbose_name=None, name=None, verify_exists=True, **kwargs): kwargs['max_length'] = kwargs.get('max_length', 200) CharField.__init__(self, verbose_name, name, **kwargs) self.validators.append(validators.URLValidator(verify_exists=verify_exists)) class XMLField(TextField): description = _("XML text") def __init__(self, verbose_name=None, name=None, schema_path=None, **kwargs): self.schema_path = schema_path Field.__init__(self, verbose_name, name, **kwargs)
38.083483
166
0.629063
4ad676c629fc36ee0274a2fa06940c591bb575a1
1,385
py
Python
chrome/browser/resources/ssl/tls_error_assistant/gen_tls_error_assistant_proto.py
google-ar/chromium
2441c86a5fd975f09a6c30cddb57dfb7fc239699
[ "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
777
2017-08-29T15:15:32.000Z
2022-03-21T05:29:41.000Z
chrome/browser/resources/ssl/tls_error_assistant/gen_tls_error_assistant_proto.py
harrymarkovskiy/WebARonARCore
2441c86a5fd975f09a6c30cddb57dfb7fc239699
[ "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
66
2017-08-30T18:31:18.000Z
2021-08-02T10:59:35.000Z
chrome/browser/resources/ssl/tls_error_assistant/gen_tls_error_assistant_proto.py
harrymarkovskiy/WebARonARCore
2441c86a5fd975f09a6c30cddb57dfb7fc239699
[ "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "BSD-3-Clause" ]
123
2017-08-30T01:19:34.000Z
2022-03-17T22:55:31.000Z
#!/usr/bin/python # Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Convert the ASCII tls_error_assistant.asciipb proto into a binary resource. """ import os import sys # Import the binary proto generator. Walks up to the root of the source tree # which is six directories above, and the finds the protobufs directory from # there. proto_generator_path = os.path.normpath(os.path.join(os.path.abspath(__file__), *[os.path.pardir] * 6 + ['chrome/browser/resources/protobufs'])) sys.path.insert(0, proto_generator_path) from binary_proto_generator import BinaryProtoGenerator class TLSErrorAssistantProtoGenerator(BinaryProtoGenerator): def ImportProtoModule(self): import tls_error_assistant_pb2 globals()['tls_error_assistant_pb2'] = tls_error_assistant_pb2 def EmptyProtoInstance(self): return tls_error_assistant_pb2.TLSErrorAssistantConfig() def ValidatePb(self, opts, pb): assert pb.version_id > 0 assert len(pb.captive_portal_cert) > 0 def ProcessPb(self, opts, pb): binary_pb_str = pb.SerializeToString() outfile = os.path.join(opts.outdir, opts.outbasename) open(outfile, 'wb').write(binary_pb_str) def main(): return TLSErrorAssistantProtoGenerator().Run() if __name__ == '__main__': sys.exit(main())
30.777778
79
0.762455
f9bac9fca57b57f57ff8768b78286267e011e3eb
3,612
py
Python
legistar/old/people.py
datamade/python-legistar-scraper
ac379c6bd0437db85cecf469f34b02baedb1ae7e
[ "BSD-3-Clause" ]
1
2021-12-27T12:07:20.000Z
2021-12-27T12:07:20.000Z
legistar/old/people.py
datamade/python-legistar-scraper
ac379c6bd0437db85cecf469f34b02baedb1ae7e
[ "BSD-3-Clause" ]
null
null
null
legistar/old/people.py
datamade/python-legistar-scraper
ac379c6bd0437db85cecf469f34b02baedb1ae7e
[ "BSD-3-Clause" ]
2
2019-05-01T20:09:29.000Z
2019-05-16T19:35:14.000Z
class MembershipAdapter(Adapter): '''Convert a legistar scraper's membership into a pupa-compliant membership. ''' pupa_model = pupa.scrape.Membership extras_keys = ['appointed_by'] def stringify_date(self, dt): '''Given a datetime string, stringify it to a date, assuming there is no time portion associated with the date. Complain if there is. ''' if not dt: raise self.SkipItem() else: return dt.strftime('%Y-%m-%d') #make_item('start_date') def get_start_date(self): return self.stringify_date(self.data.get('start_date')) #make_item('end_date') def get_end_date(self): return self.stringify_date(self.data.get('end_date')) #make_item('organization_id') def get_org_id(self): return self.data['organization_id'] #make_item('role') def get_org_id(self): '''Role defaults to empty string. ''' return self.data['role'] or '' def get_instance(self, **extra_instance_data): # Get instance data. instance_data = self.get_instance_data() instance_data.update(extra_instance_data) extras = instance_data.pop('extras') # Create the instance. instance = self.pupa_model(**instance_data) instance.extras.update(extras) return instance class MembershipConverter(Converter): adapter = MembershipAdapter def __iter__(self): yield from self.create_memberships() def get_legislature(self): '''Gets previously scrape legislature org. ''' return self.config.org_cache[self.cfg.TOPLEVEL_ORG_MEMBERSHIP_NAME] def get_org(self, org_name): '''Gets or creates the org with name equal to kwargs['name']. Caches the result. ''' created = False orgs = self.config.org_cache # Get the org. org = orgs.get(org_name) if org is not None: # Cache hit. return created, org # Create the org. classification = self.cfg.get_org_classification(org_name) org = pupa.scrape.Organization( name=org_name, classification=classification) for source in self.person.sources: org.add_source(**source) created = True # Cache it. orgs[org_name] = org if org is not None: # Cache hit. return created, org # Add a source to the org. for source in self.person.sources: if 'detail' in source['note']: org.add_source(**source) return created, org def create_membership(self, data): '''Retrieves the matching committee and adds this person as a member of the committee. ''' if 'person_id' not in data: data['person_id'] = self.person._id # Also drop memberships in dropped orgs. if hasattr(self.cfg, 'should_drop_organization'): if 'org' in data: if self.cfg.should_drop_organization(dict(name=data['org'])): return # Get the committee. if 'organization_id' not in data: org_name = data.pop('org') created, org = self.get_org(org_name) if created: yield org # Add the person and org ids. data['organization_id'] = org._id # Convert the membership to pupa object. adapter = self.make_child(self.adapter, data) membership = adapter.get_instance() yield membership
29.606557
85
0.59856
deb864a0273f8422e76021dd44d19bc628b6b567
2,208
py
Python
networkx/algorithms/bipartite/covering.py
KyleBenson/networkx
26ccb4a380ba0e5304d7bbff53eb9859c6e4c93a
[ "BSD-3-Clause" ]
null
null
null
networkx/algorithms/bipartite/covering.py
KyleBenson/networkx
26ccb4a380ba0e5304d7bbff53eb9859c6e4c93a
[ "BSD-3-Clause" ]
null
null
null
networkx/algorithms/bipartite/covering.py
KyleBenson/networkx
26ccb4a380ba0e5304d7bbff53eb9859c6e4c93a
[ "BSD-3-Clause" ]
null
null
null
# Copyright 2016 NetworkX developers. # Copyright (C) 2016 by # Nishant Nikhil <[email protected]> # All rights reserved. # BSD license. """ Functions related to graph covers.""" import networkx as nx from networkx.utils import not_implemented_for, arbitrary_element from networkx.algorithms.bipartite.matching import hopcroft_karp_matching from networkx.algorithms.covering import min_edge_cover as _min_edge_cover __all__ = ['min_edge_cover'] @not_implemented_for('directed') @not_implemented_for('multigraph') def min_edge_cover(G, matching_algorithm=None): """Returns a set of edges which constitutes the minimum edge cover of the graph. The smallest edge cover can be found in polynomial time by finding a maximum matching and extending it greedily so that all nodes are covered. Parameters ---------- G : NetworkX graph An undirected bipartite graph. matching_algorithm : function A function that returns a maximum cardinality matching in a given bipartite graph. The function must take one input, the graph ``G``, and return a dictionary mapping each node to its mate. If not specified, :func:`~networkx.algorithms.bipartite.matching.hopcroft_karp_matching` will be used. Other possibilities include :func:`~networkx.algorithms.bipartite.matching.eppstein_matching`, Returns ------- set A set of the edges in a minimum edge cover of the graph, given as pairs of nodes. It contains both the edges `(u, v)` and `(v, u)` for given nodes `u` and `v` among the edges of minimum edge cover. Notes ----- An edge cover of a graph is a set of edges such that every node of the graph is incident to at least one edge of the set. A minimum edge cover is an edge covering of smallest cardinality. Due to its implementation, the worst-case running time of this algorithm is bounded by the worst-case running time of the function ``matching_algorithm``. """ if matching_algorithm is None: matching_algorithm = hopcroft_karp_matching return _min_edge_cover(G, matching_algorithm=matching_algorithm)
36.196721
78
0.717391
5277d3e155d6597e1092c5598a21434ea5af901c
17,029
py
Python
diffkemp/llvm_ir/kernel_source.py
nikopatrik/diffkemp
460257b2c09b84ab492019f2ae1592b7b0a0b4c0
[ "Apache-2.0" ]
null
null
null
diffkemp/llvm_ir/kernel_source.py
nikopatrik/diffkemp
460257b2c09b84ab492019f2ae1592b7b0a0b4c0
[ "Apache-2.0" ]
null
null
null
diffkemp/llvm_ir/kernel_source.py
nikopatrik/diffkemp
460257b2c09b84ab492019f2ae1592b7b0a0b4c0
[ "Apache-2.0" ]
null
null
null
""" Browsing kernel sources. Functions for searching function definitions, kernel modules, etc. """ from diffkemp.llvm_ir.build_llvm import LlvmKernelBuilder, BuildException from diffkemp.llvm_ir.kernel_module import LlvmKernelModule from diffkemp.llvm_ir.llvm_sysctl_module import LlvmSysctlModule import errno import os import shutil from subprocess import CalledProcessError, check_call, check_output class SourceNotFoundException(Exception): def __init__(self, fun): self.fun = fun def __str__(self): return "Source for {} not found".format(self.fun) class KernelSource: """ Source code of a single kernel. Provides functions to search source files for function definitions, kernel modules, and others. """ def __init__(self, kernel_dir, with_builder=False): self.kernel_dir = os.path.abspath(kernel_dir) self.builder = LlvmKernelBuilder(kernel_dir) if with_builder else None self.modules = dict() def initialize(self): """ Prepare the kernel builder. This is done automatically on in LlvmKernelBuilder constructor but it may be useful to re-initialize the builder after finalize was called. """ if self.builder: self.builder.initialize() def finalize(self): """Restore the kernel builder state.""" if self.builder: self.builder.finalize() def get_sources_with_params(self, directory): """ Get list of .c files in the given directory and all its subdirectories that contain definitions of module parameters (contain call to module_param macro). """ path = os.path.join(self.kernel_dir, directory) result = list() for f in os.listdir(path): file = os.path.join(path, f) if os.path.isfile(file) and file.endswith(".c"): for line in open(file, "r"): if "module_param" in line: result.append(file) break elif os.path.isdir(file): dir_files = self.get_sources_with_params(file) result.extend(dir_files) return result def build_cscope_database(self): """ Build a database for the cscope tool. It will be later used to find source files with symbol definitions. """ # If the database exists, do not rebuild it if "cscope.files" in os.listdir(self.kernel_dir): return # Write all files that need to be scanned into cscope.files with open(os.path.join(self.kernel_dir, "cscope.files"), "w") \ as cscope_file: for root, dirs, files in os.walk(self.kernel_dir): if ("/Documentation/" in root or "/scripts/" in root or "/tmp" in root): continue for f in files: if os.path.islink(os.path.join(root, f)): continue if f.endswith((".c", ".h", ".x", ".s", ".S")): path = os.path.relpath(os.path.join(root, f), self.kernel_dir) cscope_file.write("{}\n".format(path)) # Build cscope database cwd = os.getcwd() os.chdir(self.kernel_dir) check_call(["cscope", "-b", "-q", "-k"]) os.chdir(cwd) def _cscope_run(self, symbol, definition): """ Run cscope search for a symbol. :param symbol: Symbol to search for :param definition: If true, search definitions, otherwise search all usage. :return: List of found cscope entries. """ self.build_cscope_database() try: command = ["cscope", "-d", "-L"] if definition: command.append("-1") else: command.append("-0") command.append(symbol) with open(os.devnull, "w") as devnull: cscope_output = check_output(command, stderr=devnull).decode( 'utf-8') return [l for l in cscope_output.splitlines() if l.split()[0].endswith("c")] except CalledProcessError: return [] def _find_tracepoint_macro_use(self, symbol): """ Find usages of tracepoint macro creating a tracepoint symbol. :param symbol: Symbol generated using the macro. :return: List of found cscope entries. """ macro_argument = symbol[len("__tracepoint_"):] candidates = self._cscope_run("EXPORT_TRACEPOINT_SYMBOL", False) return list(filter(lambda c: c.endswith("(" + macro_argument + ");"), candidates)) def find_srcs_with_symbol_def(self, symbol): """ Use cscope to find a definition of the given symbol. :param symbol: Symbol to find. :return List of source files potentially containing the definition. """ cwd = os.getcwd() os.chdir(self.kernel_dir) try: cscope_defs = self._cscope_run(symbol, True) # It may not be enough to get the definitions from the cscope. # There are multiple possible reasons: # - the symbol is only defined in headers # - there is a bug in cscope - it cannot find definitions # containing function pointers as parameters cscope_uses = self._cscope_run(symbol, False) # Look whether this is one of the special cases when cscope does # not find a correct source because of the exact symbol being # created by the preprocessor if any([symbol.startswith(s) for s in ["param_get_", "param_set_", "param_ops_"]]): # Symbol param_* are created in kernel/params.c using a macro cscope_defs = ["kernel/params.c"] + cscope_defs elif symbol.startswith("__tracepoint_"): # Functions starting with __tracepoint_ are created by a macro # in include/kernel/tracepoint.h; the corresponding usage of # the macro has to be found to get the source file cscope_defs = \ self._find_tracepoint_macro_use(symbol) + cscope_defs elif symbol == "rcu_barrier": cscope_defs = ["kernel/rcutree.c"] + cscope_defs if len(cscope_defs) == 0 and len(cscope_uses) == 0: raise SourceNotFoundException(symbol) except SourceNotFoundException: if symbol == "vfree": cscope_uses = [] cscope_defs = ["mm/vmalloc.c"] else: raise finally: os.chdir(cwd) # We now create a list of files potentially containing the file # definition. The list is sorted by priority: # 1. Files marked by cscope as containing the symbol definition. # 2. Files marked by cscope as using the symbol in <global> scope. # 3. Files marked by cscope as using the symbol in other scope. # Each group is also partially sorted - sources from the drivers/ and # the arch/ directories occur later than the others (using prio_key). # Moreover, each file occurs in the list just once (in place of its # highest priority). seen = set() def prio_key(item): if item.startswith("drivers/"): return "}" + item if item.startswith("arch/x86"): # x86 has priority over other architectures return "}}" + item if item.startswith("arch/"): return "}}}" + item else: return item files = sorted( [f for f in [line.split()[0] for line in cscope_defs] if not (f in seen or seen.add(f))], key=prio_key) files.extend(sorted( [f for (f, scope) in [(line.split()[0], line.split()[1]) for line in cscope_uses] if (scope == "<global>" and not (f in seen or seen.add(f)))], key=prio_key)) files.extend(sorted( [f for (f, scope) in [(line.split()[0], line.split()[1]) for line in cscope_uses] if (scope != "<global>" and not (f in seen or seen.add(f)))], key=prio_key)) return files def find_srcs_using_symbol(self, symbol): """ Use cscope to find sources using a symbol. :param symbol: Symbol to find. :return List of source files containing functions that use the symbol. """ cwd = os.getcwd() os.chdir(self.kernel_dir) try: cscope_out = self._cscope_run(symbol, False) if len(cscope_out) == 0: raise SourceNotFoundException files = set() for line in cscope_out: if line.split()[0].endswith(".h"): continue if line.split()[1] == "<global>": continue files.add(os.path.relpath(line.split()[0], self.kernel_dir)) return files except SourceNotFoundException: raise finally: os.chdir(cwd) def get_module_from_source(self, source_path, created_before=None): """ Create an LLVM module from a source file. Builds the source into LLVM IR if needed. No module is returned if the module is already present but its LLVM IR was generated or its source file modified after the given time constraint. :param source_path: Relative path to the file :param created_before: File creation time constraint. :returns Instance of LlvmKernelModule """ name = source_path[:-2] if source_path.endswith(".c") else source_path llvm_file = os.path.join(self.kernel_dir, "{}.ll".format(name)) source_file = os.path.join(self.kernel_dir, source_path) # If the LLVM IR file exits but was modified after the given timestamp, # do not return the module. if created_before: try: if (os.path.getmtime(source_file) > created_before or os.path.getmtime(llvm_file) > created_before): return None except OSError: pass # If the module has already been created, return it if name in self.modules: return self.modules[name] if self.builder: try: self.builder.build_source_to_llvm(source_file, llvm_file) except BuildException: pass if not os.path.isfile(llvm_file): return None mod = LlvmKernelModule(llvm_file, source_file) self.modules[name] = mod return mod def get_module_for_symbol(self, symbol, created_before=None): """ Looks up files containing definition of a symbol using CScope, then transforms them into LLVM modules and looks whether the symbol is actually defined in the created module. In case there are multiple files containing the definition, the first module containing the function definition is returned. :param symbol: Name of the function to look up. :param created_before: LLVM module creation time constraint. :returns LLVM module containing the specified function. """ mod = None srcs = self.find_srcs_with_symbol_def(symbol) for src in srcs: mod = self.get_module_from_source(src, created_before) if mod: if not (mod.has_function(symbol) or mod.has_global(symbol)): mod = None else: break if not mod: raise SourceNotFoundException(symbol) return mod def get_sysctl_module(self, sysctl): """ Get the LLVM module containing the definition of a sysctl option. :param sysctl: sysctl option to search for :return: Instance of LlvmSysctlModule. """ # The sysctl is composed of entries separated by dots. Entries form # a hierarchy - each entry is a child of its predecessor (i.e. all # entries except the last one point to sysctl tables). We follow # the hierarchy and build the source containing the parent table of # the last entry. entries = sysctl.split(".") if entries[0] in ["kernel", "vm", "fs", "debug", "dev"]: src = "kernel/sysctl.c" table = "sysctl_base_table" elif entries[0] == "net": if entries[1] == "ipv4": if entries[2] == "conf": src = "net/ipv4/devinet.c" table = "devinet_sysctl.1" entries = entries[4:] else: src = "net/ipv4/sysctl_net_ipv4.c" table = "ipv4_table" entries = entries[2:] elif entries[1] == "core": src = "net/core/sysctl_net_core.c" table = "net_core_table" entries = entries[2:] else: raise SourceNotFoundException(sysctl) else: raise SourceNotFoundException(sysctl) for (i, entry) in enumerate(entries): # Build the file normally and then create a corresponding # LlvmSysctlModule with the obtained sysctl table. kernel_mod = self.get_module_from_source(src) sysctl_mod = LlvmSysctlModule(kernel_mod, table) if i == len(entries) - 1: return sysctl_mod table = sysctl_mod.get_child(entry).name src = self.find_srcs_with_symbol_def(table)[0] raise SourceNotFoundException(sysctl) def get_module_for_kernel_mod(self, mod_dir, mod_name): """ Get LLVM module for a kernel module. :param mod_dir: Kernel module directory. :param mod_name: Kernel module name. :return: LlvmKernelModule containing the built LLVM file. """ llvm_file = self.builder.build_kernel_mod_to_llvm(mod_dir, mod_name) return LlvmKernelModule(os.path.join(self.kernel_dir, llvm_file)) @staticmethod def create_dir_with_parents(directory): """ Create a directory with all parent directories. Implements bash `mkdir -p`. :param directory: Path to the directory to create. """ if not os.path.isdir(directory): try: os.makedirs(directory) except OSError as e: if e.errno == errno.EEXIST and os.path.isdir(directory): pass else: raise def copy_source_files(self, modules, target_dir): """ Copy C and LLVM source files of given modules from this kernel into a different directory. Preserves the directory structure. Also copies all headers included by the modules. :param modules: List of modules to copy. :param target_dir: Destination directory (subfolders will be created corresponding to the sources structure). """ for mod in modules: src_dir = os.path.dirname( os.path.relpath(mod.llvm, self.kernel_dir)) target_src_dir = os.path.join(target_dir, src_dir) self.create_dir_with_parents(target_src_dir) # Copy linked sources and headers. for source in mod.get_included_sources(): src_source = source dest_source = os.path.join( target_dir, os.path.relpath(source, self.kernel_dir)) if not os.path.isfile(dest_source): self.create_dir_with_parents(os.path.dirname(dest_source)) shutil.copyfile(src_source, dest_source) mod.move_to_other_root_dir(self.kernel_dir, target_dir) def copy_cscope_files(self, target_dir): """ Copy CScope database into a different directory. Since CScope files contain paths relative to the kernel root, it can be used in the target directory in case it contains the same directory structure as this kernel does. :param target_dir: Target directory. """ shutil.copy(os.path.join(self.kernel_dir, "cscope.files"), target_dir) shutil.copy(os.path.join(self.kernel_dir, "cscope.in.out"), target_dir) shutil.copy(os.path.join(self.kernel_dir, "cscope.out"), target_dir) shutil.copy(os.path.join(self.kernel_dir, "cscope.po.out"), target_dir)
40.353081
79
0.578542
f19701610bea794151a15cf055abfdf35c39f262
4,473
py
Python
packages/sdk/odahuflow/sdk/models/inference_job_status.py
odahu/odahuflow
58c3220a266a61bb893cf79c4b994569e3445097
[ "ECL-2.0", "Apache-2.0" ]
12
2020-10-13T15:39:52.000Z
2021-10-11T17:13:42.000Z
packages/sdk/odahuflow/sdk/models/inference_job_status.py
odahu/odahuflow
58c3220a266a61bb893cf79c4b994569e3445097
[ "ECL-2.0", "Apache-2.0" ]
475
2019-11-18T12:40:47.000Z
2022-03-29T21:17:38.000Z
packages/sdk/odahuflow/sdk/models/inference_job_status.py
odahu/odahuflow
58c3220a266a61bb893cf79c4b994569e3445097
[ "ECL-2.0", "Apache-2.0" ]
4
2020-02-25T11:26:10.000Z
2021-03-10T12:01:00.000Z
# coding: utf-8 from __future__ import absolute_import from datetime import date, datetime # noqa: F401 from typing import List, Dict # noqa: F401 from odahuflow.sdk.models.base_model_ import Model from odahuflow.sdk.models import util class InferenceJobStatus(Model): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ def __init__(self, message: str=None, pod_name: str=None, reason: str=None, state: str=None): # noqa: E501 """InferenceJobStatus - a model defined in Swagger :param message: The message of this InferenceJobStatus. # noqa: E501 :type message: str :param pod_name: The pod_name of this InferenceJobStatus. # noqa: E501 :type pod_name: str :param reason: The reason of this InferenceJobStatus. # noqa: E501 :type reason: str :param state: The state of this InferenceJobStatus. # noqa: E501 :type state: str """ self.swagger_types = { 'message': str, 'pod_name': str, 'reason': str, 'state': str } self.attribute_map = { 'message': 'message', 'pod_name': 'podName', 'reason': 'reason', 'state': 'state' } self._message = message self._pod_name = pod_name self._reason = reason self._state = state @classmethod def from_dict(cls, dikt) -> 'InferenceJobStatus': """Returns the dict as a model :param dikt: A dict. :type: dict :return: The InferenceJobStatus of this InferenceJobStatus. # noqa: E501 :rtype: InferenceJobStatus """ return util.deserialize_model(dikt, cls) @property def message(self) -> str: """Gets the message of this InferenceJobStatus. Message is any message from runtime service about status of InferenceJob # noqa: E501 :return: The message of this InferenceJobStatus. :rtype: str """ return self._message @message.setter def message(self, message: str): """Sets the message of this InferenceJobStatus. Message is any message from runtime service about status of InferenceJob # noqa: E501 :param message: The message of this InferenceJobStatus. :type message: str """ self._message = message @property def pod_name(self) -> str: """Gets the pod_name of this InferenceJobStatus. PodName is a name of Pod in Kubernetes that is running under the hood of InferenceJob # noqa: E501 :return: The pod_name of this InferenceJobStatus. :rtype: str """ return self._pod_name @pod_name.setter def pod_name(self, pod_name: str): """Sets the pod_name of this InferenceJobStatus. PodName is a name of Pod in Kubernetes that is running under the hood of InferenceJob # noqa: E501 :param pod_name: The pod_name of this InferenceJobStatus. :type pod_name: str """ self._pod_name = pod_name @property def reason(self) -> str: """Gets the reason of this InferenceJobStatus. Reason is a reason of some InferenceJob state that was retrieved from runtime service. for example reason of failure # noqa: E501 :return: The reason of this InferenceJobStatus. :rtype: str """ return self._reason @reason.setter def reason(self, reason: str): """Sets the reason of this InferenceJobStatus. Reason is a reason of some InferenceJob state that was retrieved from runtime service. for example reason of failure # noqa: E501 :param reason: The reason of this InferenceJobStatus. :type reason: str """ self._reason = reason @property def state(self) -> str: """Gets the state of this InferenceJobStatus. State describes current state of InferenceJob # noqa: E501 :return: The state of this InferenceJobStatus. :rtype: str """ return self._state @state.setter def state(self, state: str): """Sets the state of this InferenceJobStatus. State describes current state of InferenceJob # noqa: E501 :param state: The state of this InferenceJobStatus. :type state: str """ self._state = state
29.622517
138
0.625531
7caa12f6a9c569942db12519b581ac444f5621d0
21,471
py
Python
angrmanagement/ui/views/disassembly_view.py
novafacing/angr-management
e7c94376736836094e247ca0dec73cede726408b
[ "BSD-2-Clause" ]
null
null
null
angrmanagement/ui/views/disassembly_view.py
novafacing/angr-management
e7c94376736836094e247ca0dec73cede726408b
[ "BSD-2-Clause" ]
null
null
null
angrmanagement/ui/views/disassembly_view.py
novafacing/angr-management
e7c94376736836094e247ca0dec73cede726408b
[ "BSD-2-Clause" ]
null
null
null
import logging from typing import Union, Optional, TYPE_CHECKING from PySide2.QtWidgets import QHBoxLayout, QVBoxLayout, QMenu, QApplication, QMessageBox from PySide2.QtCore import Qt, QSize from ...data.instance import ObjectContainer from ...utils import locate_function from ...data.function_graph import FunctionGraph from ...logic.disassembly import JumpHistory, InfoDock from ..widgets import QDisassemblyGraph, QDisasmStatusBar, QLinearDisassembly, QFeatureMap, QLinearDisassemblyView from ..dialogs.dependson import DependsOn from ..dialogs.jumpto import JumpTo from ..dialogs.rename_label import RenameLabel from ..dialogs.set_comment import SetComment from ..dialogs.new_state import NewState from ..dialogs.xref import XRef from ..menus.disasm_insn_context_menu import DisasmInsnContextMenu from ..menus.disasm_label_context_menu import DisasmLabelContextMenu from .view import BaseView if TYPE_CHECKING: from angr.knowledge_plugins import Function _l = logging.getLogger(__name__) class DisassemblyView(BaseView): def __init__(self, workspace, *args, **kwargs): super(DisassemblyView, self).__init__('disassembly', workspace, *args, **kwargs) self.caption = 'Disassembly' self._show_address = True self._show_variable = True # whether we want to show identifier or not self._show_variable_ident = False # whether we want to show exception edges and all nodes that are only reachable through exception edges self._show_exception_edges = True self._linear_viewer = None # type: Optional[QLinearDisassembly] self._flow_graph = None # type: Optional[QDisassemblyGraph] self._statusbar = None self._jump_history = JumpHistory() self.infodock = InfoDock(self) self._variable_recovery_flavor = 'fast' self.variable_manager = None # type: Optional[VariableManager] self._current_function = ObjectContainer(None, 'The currently selected function') self._insn_menu = None # type: Optional[DisasmInsnContextMenu] self._label_menu = None # type: Optional[DisasmLabelContextMenu] self._insn_addr_on_context_menu = None self._init_widgets() self._init_menus() self._register_events() def reload(self): old_infodock = self.infodock.copy() self.infodock.initialize() self._feature_map.refresh() # Reload the current graph to make sure it gets the latest information, such as variables. self.current_graph.reload(old_infodock=old_infodock) def refresh(self): self.current_graph.refresh() self._feature_map.refresh() def save_image_to(self, path): if self._flow_graph is not None: self._flow_graph.save_image_to(path) def setFocus(self): self._flow_graph.setFocus() # # Properties # @property def disasm(self): return self._flow_graph.disasm @property def smart_highlighting(self): if self._flow_graph is None: return False if self.infodock is None: return False return self.infodock.smart_highlighting @property def show_address(self): return self._show_address @property def show_variable(self): return self._show_variable @property def show_variable_identifier(self): return self._show_variable_ident @property def show_exception_edges(self): return self._show_exception_edges @property def variable_recovery_flavor(self): return self._variable_recovery_flavor @variable_recovery_flavor.setter def variable_recovery_flavor(self, v): if v in ('fast', 'accurate'): if v != self._variable_recovery_flavor: self._variable_recovery_flavor = v # TODO: Rerun the variable recovery analysis and update the current view @property def current_graph(self) -> Union[QLinearDisassemblyView,QDisassemblyGraph]: """ Return the current disassembly control, either linear viewer or flow graph. :return: Linear viewer or flow graph. """ if self._linear_viewer.isVisible(): return self._linear_viewer else: return self._flow_graph @property def current_function(self) -> ObjectContainer: return self._current_function # # Callbacks # # All callbacks are proxies to self.workspace.instance. These properties *in this class* may be removed in the near # future. @property def insn_backcolor_callback(self): return self.workspace.instance.insn_backcolor_callback @insn_backcolor_callback.setter def insn_backcolor_callback(self, v): self.workspace.instance.insn_backcolor_callback = v @property def label_rename_callback(self): return self.workspace.instance.label_rename_callback @label_rename_callback.setter def label_rename_callback(self, v): self.workspace.instance.label_rename_callback = v @property def set_comment_callback(self): return self.workspace.instance.set_comment_callback @set_comment_callback.setter def set_comment_callback(self, v): self.workspace.instance.set_comment_callback = v # # Events # def keyPressEvent(self, event): key = event.key() if key == Qt.Key_Escape: # jump back # we put it here because the escape key is used to close other dialogs, and we do not want to catch the # key-release event of the escape key in such cases. self.jump_back() return super().keyPressEvent(event) def keyReleaseEvent(self, event): key = event.key() if key == Qt.Key_G: # jump to window self.popup_jumpto_dialog() return elif key == Qt.Key_Left and QApplication.keyboardModifiers() & Qt.ALT != 0: # jump back self.jump_back() return elif key == Qt.Key_Right and QApplication.keyboardModifiers() & Qt.ALT != 0: # jump forward self.jump_forward() return elif key == Qt.Key_A: # switch between highlight mode self.toggle_smart_highlighting(not self.infodock.smart_highlighting) return elif key == Qt.Key_Tab: # decompile self.decompile_current_function() return elif key == Qt.Key_Semicolon: # add comment self.popup_comment_dialog() return elif key == Qt.Key_Space: # switch to linear view self.toggle_disasm_view() event.accept() return super().keyReleaseEvent(event) def redraw_current_graph(self, **kwargs): """ Redraw the graph currently in display. :return: None """ self.current_graph.redraw() def on_screen_changed(self): self.current_graph.refresh() # # UI # def instruction_context_menu(self, insn, pos): self._insn_addr_on_context_menu = insn.addr # pass in the instruction address self._insn_menu.insn_addr = insn.addr # pop up the menu self._insn_menu.qmenu(extra_entries=list(self.workspace.plugins.build_context_menu_insn(insn))).exec_(pos) self._insn_addr_on_context_menu = None def label_context_menu(self, addr: int, pos): self._label_addr_on_context_menu = addr self._label_menu.addr = addr self._label_menu.qmenu().exec_(pos) self._label_addr_on_context_menu = None def popup_jumpto_dialog(self): JumpTo(self, parent=self).exec_() def popup_rename_label_dialog(self): label_addr = self._address_in_selection() if label_addr is None: return dialog = RenameLabel(self, label_addr, parent=self) dialog.exec_() def popup_comment_dialog(self): comment_addr = self._address_in_selection() if comment_addr is None: return dialog = SetComment(self.workspace, comment_addr, parent=self) dialog.exec_() def popup_newstate_dialog(self, async_=True): addr = self._address_in_selection() if addr is None: return dialog = NewState(self.workspace.instance, addr=addr, create_simgr=True, parent=self) if async_: dialog.show() else: dialog.exec_() def popup_dependson_dialog(self, addr: Optional[int]=None, use_operand=False, func: bool=False, async_=True): if use_operand: r = self._flow_graph.get_selected_operand_info() if r is not None: _, addr, operand = r else: QMessageBox(self, "No operand" "Please select an operand first.", buttons=QMessageBox.Ok, icon=QMessageBox.Critical ) return else: if addr is None: raise ValueError("No address is provided.") # this is a programming error operand = None if func: # attempt to pass in a function try: the_func = self.workspace.instance.kb.functions.get_by_addr(addr) except KeyError: the_func = None else: the_func = None dependson = DependsOn(addr, operand, func=the_func, parent=self) dependson.exec_() if dependson.location is not None: if dependson.arg is not None: # track function argument self.workspace._main_window.run_dependency_analysis( func_addr=addr, func_arg_idx=dependson.arg, ) def parse_operand_and_popup_xref_dialog(self, ins_addr, operand, async_=True): if operand is not None: if operand.variable is not None: # Display cross references to this variable self.popup_xref_dialog(addr=ins_addr, variable=operand.variable, async_=async_) elif operand.is_constant: # Display cross references to an address self.popup_xref_dialog(addr=ins_addr, dst_addr=operand.constant_value, async_=async_) elif operand.is_constant_memory: # Display cross references to an address self.popup_xref_dialog(addr=ins_addr, dst_addr=operand.constant_memory_value, async_=async_) def popup_xref_dialog(self, addr=None, variable=None, dst_addr=None, async_=True): if variable is not None: dialog = XRef(addr=addr, variable_manager=self.variable_manager, variable=variable, instance=self.workspace.instance, parent=self) else: dialog = XRef(addr=addr, xrefs_manager=self.workspace.instance.project.kb.xrefs, dst_addr=dst_addr, instance=self.workspace.instance, parent=self) if async_: dialog.show() else: dialog.exec_() # # Public methods # def toggle_disasm_view(self): if self._flow_graph.isHidden(): # Show flow graph self.display_disasm_graph() else: # Show linear viewer self.display_linear_viewer() def display_disasm_graph(self): self._linear_viewer.hide() self._flow_graph.show() if self.infodock.selected_insns: # display the currently selected instruction self._jump_to(next(iter(self.infodock.selected_insns))) elif self._current_function.am_obj is not None: self._flow_graph.show_instruction(self._current_function.addr) self._flow_graph.setFocus() def display_linear_viewer(self): self._flow_graph.hide() self._linear_viewer.show() if self.infodock.selected_insns: # display the currently selected instruction self._linear_viewer.show_instruction(next(iter(self.infodock.selected_insns))) elif self._current_function.am_obj is not None: self._linear_viewer.show_instruction(self._current_function.addr) self._linear_viewer.setFocus() def display_function(self, function): self._jump_history.jump_to(function.addr) self._display_function(function) def decompile_current_function(self): if self._current_function.am_obj is not None: try: curr_ins = next(iter(self.infodock.selected_insns)) except StopIteration: curr_ins = None self.workspace.decompile_function(self._current_function.am_obj, curr_ins=curr_ins) def toggle_smart_highlighting(self, enabled): """ Toggle between the smart highlighting mode and the text-based highlighting mode. :param bool enabled: Enable smart highlighting. :return: None """ self.infodock.smart_highlighting = enabled self._flow_graph.refresh() self._linear_viewer.refresh() def toggle_show_address(self, show_address): """ Toggle whether addresses are shown on disassembly graph. :param bool show_address: Whether the address should be shown or not. :return: None """ self._show_address = show_address self.current_graph.refresh() def toggle_show_variable(self, show_variable): """ Toggle whether variables are shown on disassembly graph. :param bool show_variable: Whether the variable should be shown or not. :return: None """ self._show_variable = show_variable self.current_graph.refresh() def toggle_show_variable_identifier(self, show_ident): """ Toggle whether variable identifiers are shown on disassembly graph. :param bool show_ident: Whether variable identifiers should be shown or not. :return: None """ self._show_variable_ident = show_ident self.current_graph.refresh() def toggle_show_exception_edges(self, show_exception_edges): """ Toggle whether exception edges and the nodes that are only reachable through exception edges should be shown or not. :param bool show_exception_edges: Whether exception edges should be shown or not. :return: None """ if show_exception_edges != self._show_exception_edges: self._show_exception_edges = show_exception_edges # reset the function graph if self._flow_graph.function_graph is not None: self._flow_graph.function_graph.exception_edges = show_exception_edges self._flow_graph.function_graph.clear_cache() self._flow_graph.reload() def jump_to(self, addr, src_ins_addr=None): # Record the current instruction address first if src_ins_addr is not None: self._jump_history.record_address(src_ins_addr) self._jump_history.jump_to(addr) self._jump_to(addr) return True def jump_back(self): addr = self._jump_history.backtrack() if addr is not None: self._jump_to(addr) def jump_forward(self): addr = self._jump_history.forwardstep() if addr is not None: self._jump_to(addr) def select_label(self, label_addr): self.infodock.select_label(label_addr) def rename_label(self, addr, new_name): if self._flow_graph.disasm is not None: is_renaming = False kb = self._flow_graph.disasm.kb if new_name == '': if addr in kb.labels: del kb.labels[addr] else: if addr in kb.labels: is_renaming = True kb.labels[addr] = new_name # callback first if self.workspace.instance.label_rename_callback: self.workspace.instance.label_rename_callback(addr=addr, new_name=new_name) # redraw the current block self._flow_graph.update_label(addr, is_renaming=is_renaming) def avoid_addr_in_exec(self, addr): self.workspace.view_manager.first_view_in_category('symexec').avoid_addr_in_exec(addr) def sizeHint(self): return QSize(800, 800) def run_induction_variable_analysis(self): if self._flow_graph.induction_variable_analysis: self._flow_graph.induction_variable_analysis = None else: ana = self.workspace.instance.project.analyses.AffineRelationAnalysis(self._flow_graph._function_graph.function) self._flow_graph.induction_variable_analysis = ana self._flow_graph.refresh() # # Initialization # def _init_widgets(self): self._linear_viewer = QLinearDisassembly(self.workspace, self, parent=self) self._flow_graph = QDisassemblyGraph(self.workspace, self, parent=self) self._feature_map = QFeatureMap(self, parent=self) self._statusbar = QDisasmStatusBar(self, parent=self) vlayout = QVBoxLayout() vlayout.addWidget(self._feature_map) vlayout.addWidget(self._flow_graph) vlayout.addWidget(self._linear_viewer) vlayout.addWidget(self._statusbar) vlayout.setContentsMargins(0, 0, 0, 0) self._feature_map.setMaximumHeight(25) vlayout.setStretchFactor(self._feature_map, 0) vlayout.setStretchFactor(self._flow_graph, 1) vlayout.setStretchFactor(self._linear_viewer, 1) vlayout.setStretchFactor(self._statusbar, 0) hlayout = QHBoxLayout() hlayout.addLayout(vlayout) self.setLayout(hlayout) self.display_disasm_graph() # self.display_linear_viewer() self.workspace.plugins.instrument_disassembly_view(self) def _init_menus(self): self._insn_menu = DisasmInsnContextMenu(self) self._label_menu = DisasmLabelContextMenu(self) def _register_events(self): # redraw the current graph if instruction/operand selection changes self.infodock.selected_insns.am_subscribe(self.redraw_current_graph) self.infodock.selected_operands.am_subscribe(self.redraw_current_graph) self.infodock.selected_blocks.am_subscribe(self.redraw_current_graph) self.infodock.hovered_block.am_subscribe(self.redraw_current_graph) self.infodock.hovered_edge.am_subscribe(self.redraw_current_graph) self.infodock.selected_labels.am_subscribe(self.redraw_current_graph) self._feature_map.addr.am_subscribe(lambda: self._jump_to(self._feature_map.addr.am_obj)) self.workspace.current_screen.am_subscribe(self.on_screen_changed) # # Private methods # def _display_function(self, the_func): self._current_function.am_obj = the_func self._current_function.am_event() # set status bar self._statusbar.function = the_func # variable recovery variable_manager = self.workspace.instance.project.kb.variables self.variable_manager = variable_manager self.infodock.variable_manager = variable_manager # clear existing selected instructions and operands self.infodock.clear_selection() if self._flow_graph.isVisible(): if self._flow_graph.function_graph is None or self._flow_graph.function_graph.function is not the_func: # set function graph of a new function self._flow_graph.function_graph = FunctionGraph(function=the_func, exception_edges=self.show_exception_edges, ) elif self._linear_viewer.isVisible(): self._linear_viewer.navigate_to_addr(the_func.addr) self.workspace.view_manager.first_view_in_category('console').push_namespace({ 'func': the_func, 'function_': the_func, }) def _jump_to(self, addr): function = locate_function(self.workspace.instance, addr) if function is not None: self._display_function(function) instr_addr = function.addr_to_instruction_addr(addr) if instr_addr is None: instr_addr = addr self.infodock.select_instruction(instr_addr, unique=True) return True # it does not belong to any function - we need to switch to linear view mode if self.current_graph is not self._linear_viewer: self.display_linear_viewer() self._linear_viewer.navigate_to_addr(addr) return True # # Utils # def _address_in_selection(self): if self._insn_addr_on_context_menu is not None: return self._insn_addr_on_context_menu elif len(self.infodock.selected_insns) == 1: return next(iter(self.infodock.selected_insns)) else: return None
33.600939
124
0.645662
c61795106f044b30258d1de96e78591da9525122
653
py
Python
Atividade 01/sem-07-T1-Q3.py
daianasousa/Atividade-Remota-Semana-07
1c4a28bf052057e921730ba79dfb0cdaa74576e0
[ "MIT" ]
null
null
null
Atividade 01/sem-07-T1-Q3.py
daianasousa/Atividade-Remota-Semana-07
1c4a28bf052057e921730ba79dfb0cdaa74576e0
[ "MIT" ]
null
null
null
Atividade 01/sem-07-T1-Q3.py
daianasousa/Atividade-Remota-Semana-07
1c4a28bf052057e921730ba79dfb0cdaa74576e0
[ "MIT" ]
null
null
null
def main(): tempo = 1 taxa_A = (2 / 100) taxa_B = (3 / 100) p_1 = int(input('Digite a população do país: ')) p_2 = int(input('Digite a população do país: ')) if p_1 > p_2: pais_A = p_1 pais_B = p_2 elif p_2 > p_1: pais_A = p_2 pais_B = p_1 populacao_A = (pais_A + (pais_A * taxa_A)) opulacao_B = (pais_B + (pais_B * taxa_B)) while True: if pais_A > pais_B: pais_A += (pais_A * taxa_A) pais_B += (pais_B * taxa_B) tempo += 1 elif pais_A < pais_B: print(tempo) break if __name__=='__main__': main()
22.517241
52
0.502297
7ea2180d0894f3578696d3a48a79fc300c7fbbe5
49,918
py
Python
nums/numpy/api.py
yangkevin2/nums
fbd8f680b8e4b292d18bd5fa1b49e3cd216f9d0f
[ "Apache-2.0" ]
null
null
null
nums/numpy/api.py
yangkevin2/nums
fbd8f680b8e4b292d18bd5fa1b49e3cd216f9d0f
[ "Apache-2.0" ]
null
null
null
nums/numpy/api.py
yangkevin2/nums
fbd8f680b8e4b292d18bd5fa1b49e3cd216f9d0f
[ "Apache-2.0" ]
1
2021-06-22T21:11:25.000Z
2021-06-22T21:11:25.000Z
# coding=utf-8 # Copyright (C) 2020 NumS Development Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings import numpy as np import scipy.stats from nums.core.application_manager import instance as _instance from nums.core.array.blockarray import BlockArray from nums.numpy import numpy_utils # pylint: disable = redefined-builtin, too-many-lines def _not_implemented(func): # From project JAX: https://github.com/google/jax/blob/master/jax/numpy/lax_numpy.py def wrapped(*args, **kwargs): # pylint: disable=unused-argument msg = "NumPy function {} not yet implemented." raise NotImplementedError(msg.format(func)) return wrapped # TODO (mwe): Convert this to invoke the NumPy op on a worker instead of the driver. def _default_to_numpy(func): def wrapped(*args, **kwargs): warnings.warn("Operation " + func.__name__ + " not implemented, falling back to NumPy. " + "If this is too slow or failing, please open an issue on GitHub.", RuntimeWarning) new_args = [arg.get() if isinstance(arg, BlockArray) else arg for arg in args] new_kwargs = {k: v.get() if isinstance(v, BlockArray) else v for k, v in zip(kwargs.keys(), kwargs.values())} res = np.__getattribute__(func.__name__)(*new_args, **new_kwargs) if isinstance(res, tuple): nps_res = tuple(array(x) for x in res) else: nps_res = array(res) return nps_res return wrapped ############################################ # Constants ############################################ # Distributed memory access of these values will be optimized downstream. pi = np.pi e = np.e euler_gamma = np.euler_gamma inf = infty = Inf = Infinity = PINF = np.inf NINF = np.NINF PZERO = np.PZERO NZERO = np.NZERO nan = NAN = NaN = np.nan ############################################ # Data Types ############################################ bool_ = np.bool_ uint = np.uint uint8 = np.uint8 uint16 = np.uint16 uint32 = np.uint32 uint64 = np.uint64 int8 = np.int8 int16 = np.int16 int32 = np.int32 int64 = np.int64 float16 = np.float16 float32 = np.float32 float64 = np.float64 float128 = np.float128 complex64 = np.complex64 complex128 = np.complex128 ############################################ # Creation and I/O Ops ############################################ def loadtxt(fname, dtype=float, comments='# ', delimiter=' ', converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0, encoding='bytes', max_rows=None) -> BlockArray: app = _instance() num_rows = app.cm.num_cores_total() try: ba: BlockArray = app.loadtxt( fname, dtype=dtype, comments=comments, delimiter=delimiter, converters=converters, skiprows=skiprows, usecols=usecols, unpack=unpack, ndmin=ndmin, encoding=encoding, max_rows=max_rows, num_workers=num_rows) shape = ba.shape block_shape = app.compute_block_shape(shape, dtype) return ba.reshape(block_shape=block_shape) except Exception as _: warnings.warn("Failed to load text data in parallel; using np.loadtxt locally.") np_arr = np.loadtxt(fname, dtype=dtype, comments=comments, delimiter=delimiter, converters=converters, skiprows=skiprows, usecols=usecols, unpack=unpack, ndmin=ndmin, encoding=encoding, max_rows=max_rows) shape = np_arr.shape block_shape = app.compute_block_shape(shape, dtype) return app.array(np_arr, block_shape=block_shape) def array(object, dtype=None, copy=True, order="K", ndmin=0, subok=False) -> BlockArray: if order is not None and order != "K": raise NotImplementedError("Only order='K' is supported.") if ndmin != 0: raise NotImplementedError("Only ndmin=0 is currently supported.") if subok: raise ValueError("subok must be False.") if isinstance(object, BlockArray): if copy: object = object.copy() if dtype is not None: if dtype is not object.dtype: object = object.astype(dtype) return object result = np.array(object, dtype=dtype, copy=copy, order=order, ndmin=ndmin, subok=subok) dtype = np.__getattribute__(str(result.dtype)) shape = result.shape app = _instance() block_shape = app.compute_block_shape(shape, dtype) return app.array(result, block_shape) def empty(shape, dtype=float): app = _instance() if isinstance(shape, int): shape = (shape,) block_shape = app.compute_block_shape(shape, dtype) return app.empty(shape=shape, block_shape=block_shape, dtype=dtype) def zeros(shape, dtype=float): app = _instance() if isinstance(shape, int): shape = (shape,) block_shape = app.get_block_shape(shape, dtype) return app.zeros(shape=shape, block_shape=block_shape, dtype=dtype) def ones(shape, dtype=float): app = _instance() if isinstance(shape, int): shape = (shape,) block_shape = app.get_block_shape(shape, dtype) return app.ones(shape=shape, block_shape=block_shape, dtype=dtype) def empty_like(prototype: BlockArray, dtype=None, order='K', shape=None): if shape is None: shape = prototype.shape if dtype is None: dtype = prototype.dtype if order is not None and order != "K": raise NotImplementedError("Only order='K' is supported.") return empty(shape, dtype) def zeros_like(prototype, dtype=None, order='K', shape=None): if shape is None: shape = prototype.shape if dtype is None: dtype = prototype.dtype if order is not None and order != "K": raise NotImplementedError("Only order='K' is supported.") return zeros(shape, dtype) def ones_like(prototype, dtype=None, order='K', shape=None): if shape is None: shape = prototype.shape if dtype is None: dtype = prototype.dtype if order is not None and order != "K": raise NotImplementedError("Only order='K' is supported.") return ones(shape, dtype) def concatenate(arrays, axis=0, out=None): if out is not None: raise NotImplementedError("out is currently not supported for concatenate.") # Pick the mode along specified axis. axis_block_size = scipy.stats.mode(list(map( lambda arr: arr.block_shape[axis], arrays ))).mode.item() return _instance().concatenate(arrays, axis=axis, axis_block_size=axis_block_size) def split(ary: BlockArray, indices_or_sections, axis=0): if not isinstance(indices_or_sections, int): raise NotImplementedError("Split currently supports integers only.") dim_total = ary.shape[axis] # Splits into N equal arrays, and raise if this is not possible. if dim_total % indices_or_sections != 0: raise ValueError("ary axis %s cannot be split into %s equal arrays." % ( axis, indices_or_sections)) dim_partial = dim_total // indices_or_sections results = [] ss_op = [slice(None, None, 1) for _ in ary.shape] for i in range(0, dim_total, dim_partial): start = i stop = i + dim_partial ss_op[axis] = slice(start, stop, 1) ary_part = ary[tuple(ss_op)] results.append(ary_part) return tuple(results) def identity(n: int, dtype=float) -> BlockArray: return eye(n, n, dtype=dtype) def eye(N, M=None, k=0, dtype=float): app = _instance() if k != 0: raise NotImplementedError("Only k==0 is currently supported.") if M is None: M = N shape = (N, M) block_shape = app.get_block_shape(shape, dtype) return app.eye(shape, block_shape, dtype) def diag(v: BlockArray, k=0) -> BlockArray: app = _instance() if k != 0: raise NotImplementedError("Only k==0 is currently supported.") return app.diag(v) def trace(a: BlockArray, offset=0, axis1=0, axis2=1, dtype=None, out=None): if offset != 0: raise NotImplementedError("offset != 0 is currently not supported.") if out is not None: raise NotImplementedError("out is currently not supported.") if axis1 != 0 or axis2 != 1: raise NotImplementedError(" axis1 != 0 or axis2 != 1 is currently not supported.") return sum(diag(a, offset), dtype=dtype, out=out) def atleast_1d(*arys): return _instance().atleast_1d(*arys) def atleast_2d(*arys): return _instance().atleast_2d(*arys) def atleast_3d(*arys): return _instance().atleast_3d(*arys) ############################################ # Manipulation Ops ############################################ def arange(start=None, stop=None, step=1, dtype=None) -> BlockArray: if start is None: raise TypeError("Missing required argument start") if stop is None: stop = start start = 0 if step != 1: raise NotImplementedError("Only step size of 1 is currently supported.") if dtype is None: dtype = np.__getattribute__(str(np.result_type(start, stop))) shape = (int(np.ceil(stop - start)),) app = _instance() block_shape = app.get_block_shape(shape, dtype) return app.arange(start, shape, block_shape, step, dtype) def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0): shape = (num,) dtype = np.float64 if dtype is None else dtype app = _instance() block_shape = app.get_block_shape(shape, dtype) return app.linspace(start, stop, shape, block_shape, endpoint, retstep, dtype, axis) def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, axis=0): app = _instance() ba: BlockArray = linspace(start, stop, num, endpoint, dtype=None, axis=axis) ba = power(app.scalar(base), ba) if dtype is not None and dtype != ba.dtype: ba = ba.astype(dtype) return ba ############################################ # Linear Algebra Ops ############################################ def tensordot(x1: BlockArray, x2: BlockArray, axes=2) -> BlockArray: return _instance().tensordot(arr_1=x1, arr_2=x2, axes=axes) def matmul(x1: BlockArray, x2: BlockArray) -> BlockArray: return _instance().matmul(arr_1=x1, arr_2=x2) def inner(a: BlockArray, b: BlockArray): assert len(a.shape) == len(b.shape) == 1, "Only single-axis inputs supported." return a.T @ b def outer(a: BlockArray, b: BlockArray): assert len(a.shape) == len(b.shape) == 1, "Only single-axis inputs supported." return a.reshape((a.shape[0], 1)) @ b.reshape((1, b.shape[0])) ############################################ # Shape Ops ############################################ def shape(a: BlockArray): return a.shape def size(a: BlockArray): return a.size def ndim(a: BlockArray): return a.ndim def reshape(a: BlockArray, shape): block_shape = _instance().compute_block_shape(shape, a.dtype) return a.reshape(shape, block_shape=block_shape) def expand_dims(a: BlockArray, axis): return a.expand_dims(axis) def squeeze(a: BlockArray, axis=None): assert axis is None, "axis not supported." return a.squeeze() def swapaxes(a: BlockArray, axis1: int, axis2: int): return a.swapaxes(axis1, axis2) def transpose(a: BlockArray, axes=None): assert axes is None, "axes not supported." return a.T ############################################ # Misc ############################################ def copy(a: BlockArray, order='K', subok=False): assert order == 'K' and not subok, "Only default args supported." return a.copy() ############################################ # Reduction Ops ############################################ def min(a: BlockArray, axis=None, out=None, keepdims=False, initial=None, where=None) -> BlockArray: if initial is not None: raise NotImplementedError("'initial' is currently not supported.") if where is not None: raise NotImplementedError("'where' is currently not supported.") if out is not None: raise NotImplementedError("'out' is currently not supported.") return _instance().min(a, axis=axis, keepdims=keepdims) amin = min def max(a: BlockArray, axis=None, out=None, keepdims=False, initial=None, where=None) -> BlockArray: if initial is not None: raise NotImplementedError("'initial' is currently not supported.") if where is not None: raise NotImplementedError("'where' is currently not supported.") if out is not None: raise NotImplementedError("'out' is currently not supported.") return _instance().max(a, axis=axis, keepdims=keepdims) amax = max def argmin(a: BlockArray, axis=None, out=None): if out is not None: raise NotImplementedError("'out' is currently not supported.") return _instance().argop("argmin", a, axis=axis) def argmax(a: BlockArray, axis=None, out=None): if len(a.shape) > 1: raise NotImplementedError("argmax currently only supports one-dimensional arrays.") if out is not None: raise NotImplementedError("'out' is currently not supported.") return _instance().argop("argmax", a, axis=axis) def sum(a: BlockArray, axis=None, dtype=None, out=None, keepdims=False, initial=None, where=None) -> BlockArray: if initial is not None: raise NotImplementedError("'initial' is currently not supported.") if where is not None: raise NotImplementedError("'where' is currently not supported.") if out is not None: raise NotImplementedError("'out' is currently not supported.") return _instance().sum(a, axis=axis, keepdims=keepdims, dtype=dtype) def mean(a: BlockArray, axis=None, dtype=None, out=None, keepdims=False): if out is not None: raise NotImplementedError("'out' is currently not supported.") return _instance().mean(a, axis=axis, keepdims=keepdims, dtype=dtype) def var(a: BlockArray, axis=None, dtype=None, out=None, ddof=0, keepdims=False): if out is not None: raise NotImplementedError("'out' is currently not supported.") return _instance().var(a, axis=axis, ddof=ddof, keepdims=keepdims, dtype=dtype) def std(a: BlockArray, axis=None, dtype=None, out=None, ddof=0, keepdims=False): if out is not None: raise NotImplementedError("'out' is currently not supported.") return _instance().std(a, axis=axis, ddof=ddof, keepdims=keepdims, dtype=dtype) def where(condition: BlockArray, x: BlockArray = None, y: BlockArray = None): return _instance().where(condition, x, y) def all(a: BlockArray, axis=None, out=None, keepdims=False): if out is not None: raise NotImplementedError("'out' is currently not supported.") return _instance().reduce("all", a, axis=axis, keepdims=keepdims) def alltrue(a: BlockArray, axis=None, out=None, dtype=None, keepdims=False): if out is not None: raise NotImplementedError("'out' is currently not supported.") return _instance().reduce("alltrue", a, axis=axis, keepdims=keepdims, dtype=dtype) def any(a: BlockArray, axis=None, out=None, keepdims=False): if out is not None: raise NotImplementedError("'out' is currently not supported.") return _instance().reduce("any", a, axis=axis, keepdims=keepdims) ############################################ # NaN Ops ############################################ def nanmax(a: BlockArray, axis=None, out=None, keepdims=False): if out is not None: raise NotImplementedError("'out' is currently not supported.") return _instance().reduce("nanmax", a, axis=axis, keepdims=keepdims) def nanmin(a: BlockArray, axis=None, out=None, keepdims=False): if out is not None: raise NotImplementedError("'out' is currently not supported.") return _instance().reduce("nanmin", a, axis=axis, keepdims=keepdims) def nansum(a: BlockArray, axis=None, dtype=None, out=None, keepdims=False): if out is not None: raise NotImplementedError("'out' is currently not supported.") return _instance().reduce("nansum", a, axis=axis, dtype=dtype, keepdims=keepdims) def nanmean(a: BlockArray, axis=None, dtype=None, out=None, keepdims=False): if out is not None: raise NotImplementedError("'out' is currently not supported.") return _instance().nanmean(a, axis=axis, dtype=dtype, keepdims=keepdims) def nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False): if out is not None: raise NotImplementedError("'out' is currently not supported.") return _instance().nanvar(a, axis=axis, dtype=dtype, ddof=ddof, keepdims=keepdims) def nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False): if out is not None: raise NotImplementedError("'out' is currently not supported.") return _instance().nanstd(a, axis=axis, dtype=dtype, ddof=ddof, keepdims=keepdims) ############################################ # Utility Ops ############################################ def array_equal(a: BlockArray, b: BlockArray, equal_nan=False) -> BlockArray: if equal_nan is not False: raise NotImplementedError("equal_nan=True not supported.") return _instance().array_equal(a, b) def array_equiv(a: BlockArray, b: BlockArray) -> BlockArray: return _instance().array_equiv(a, b) def allclose(a: BlockArray, b: BlockArray, rtol=1.e-5, atol=1.e-8, equal_nan=False) -> BlockArray: if equal_nan is not False: raise NotImplementedError("equal_nan=True not supported.") return _instance().allclose(a, b, rtol, atol) ############################################ # Generated Ops (Unary, Binary) ############################################ def abs(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="abs", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def absolute(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="absolute", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def arccos(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="arccos", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def arccosh(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="arccosh", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def arcsin(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="arcsin", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def arcsinh(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="arcsinh", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def arctan(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="arctan", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def arctanh(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="arctanh", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def bitwise_not(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="bitwise_not", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def cbrt(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="cbrt", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def ceil(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="ceil", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def conj(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="conj", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def conjugate(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="conjugate", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def cos(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="cos", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def cosh(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="cosh", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def deg2rad(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="deg2rad", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def degrees(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="degrees", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def exp(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="exp", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def exp2(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="exp2", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def expm1(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="expm1", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def fabs(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="fabs", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def floor(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="floor", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def invert(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="invert", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def isfinite(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="isfinite", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def isinf(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="isinf", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def isnan(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="isnan", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def log(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="log", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def log10(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="log10", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def log1p(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="log1p", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def log2(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="log2", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def logical_not(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="logical_not", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def negative(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="negative", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def positive(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="positive", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def rad2deg(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="rad2deg", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def radians(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="radians", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def reciprocal(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="reciprocal", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def rint(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="rint", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def sign(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="sign", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def signbit(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="signbit", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def sin(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="sin", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def sinh(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="sinh", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def spacing(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="spacing", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def sqrt(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="sqrt", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def square(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="square", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def tan(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="tan", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def tanh(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="tanh", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def trunc(x: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_uop(op_name="trunc", arr=x, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def add(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="add", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def arctan2(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="arctan2", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def bitwise_and(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="bitwise_and", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def bitwise_or(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="bitwise_or", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def bitwise_xor(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="bitwise_xor", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def copysign(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="copysign", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def divide(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="divide", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def equal(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="equal", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def float_power(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="float_power", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def floor_divide(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="floor_divide", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def fmax(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="fmax", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def fmin(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="fmin", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def fmod(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="fmod", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def gcd(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="gcd", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def greater(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="greater", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def greater_equal(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="greater_equal", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def heaviside(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="heaviside", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def hypot(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="hypot", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def lcm(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="lcm", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def ldexp(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="ldexp", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def left_shift(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="left_shift", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def less(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="less", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def less_equal(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="less_equal", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def logaddexp(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="logaddexp", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def logaddexp2(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="logaddexp2", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def logical_and(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="logical_and", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def logical_or(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="logical_or", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def logical_xor(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="logical_xor", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def maximum(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="maximum", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def minimum(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="minimum", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def mod(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="mod", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def multiply(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="multiply", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def nextafter(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="nextafter", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def not_equal(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="not_equal", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def power(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="power", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def remainder(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="remainder", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def right_shift(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="right_shift", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def subtract(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="subtract", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs)) def true_divide(x1: BlockArray, x2: BlockArray, out: BlockArray = None, where=True, **kwargs) -> BlockArray: return _instance().map_bop(op_name="true_divide", arr_1=x1, arr_2=x2, out=out, where=where, kwargs=numpy_utils.ufunc_kwargs(kwargs))
37.673962
98
0.516026
68c02fdc8fa5307347e604d9debceb6bae7717fc
4,172
py
Python
api/serializers.py
chop-dbhi/biorepo-portal
7db13c40b2b9d62af43a28e4af08c2472b98fc96
[ "BSD-2-Clause" ]
6
2016-10-26T19:51:11.000Z
2021-03-18T16:05:55.000Z
api/serializers.py
chop-dbhi/biorepo-portal
7db13c40b2b9d62af43a28e4af08c2472b98fc96
[ "BSD-2-Clause" ]
207
2015-09-24T17:41:37.000Z
2021-05-18T18:14:08.000Z
api/serializers.py
chop-dbhi/biorepo-portal
7db13c40b2b9d62af43a28e4af08c2472b98fc96
[ "BSD-2-Clause" ]
8
2016-04-27T19:04:50.000Z
2020-08-24T02:33:05.000Z
from django.contrib.auth.models import User, Group from rest_framework import serializers from api.models.protocols import Organization, DataSource, Protocol,\ ProtocolDataSource, ProtocolDataSourceLink, ProtocolUser,\ ProtocolUserCredentials class UserSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = User fields = ('url', 'username', 'email', 'groups', 'first_name', 'last_name') class GroupSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Group fields = ('url',) class OrganizationSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Organization fields = ('id', 'name', 'subject_id_label') class DataSourceSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = DataSource fields = ('id', 'name', 'url', 'desc_help', 'description', 'ehb_service_es_id') class ProtocolSerializer(serializers.HyperlinkedModelSerializer): protocol_data_sources = serializers.HyperlinkedIdentityField(view_name='protocol-datasources-list') subjects = serializers.HyperlinkedIdentityField(view_name='protocol-subject-list') organizations = serializers.HyperlinkedIdentityField(view_name='protocol-organization-list') class Meta: model = Protocol fields = ('id', 'name', 'users', 'data_sources', 'protocol_data_sources', 'subjects', 'organizations') class ProtocolDataSourceSerializer(serializers.HyperlinkedModelSerializer): subjects = serializers.HyperlinkedIdentityField(view_name='pds-subject-list') class Meta: model = ProtocolDataSource fields = ('id', 'protocol', 'data_source', 'path', 'driver', 'driver_configuration', 'display_label', 'max_records_per_subject', 'subjects') class ProtocolDataSourceLinkSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = ProtocolDataSourceLink class ProtocolUserSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = ProtocolUser class ProtocolUserCredentialsSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = ProtocolUserCredentials class eHBOrganizationSerializer(serializers.Serializer): """ This serializer corresponds to the definition of an eHB Organization see: https://github.com/chop-dbhi/ehb-service/blob/master/ehb_service/apps/core/models/identities.py and its requested representation: see: https://github.com/chop-dbhi/ehb-client/blob/master/ehb_client/requests/organization_request_handler.py """ id = serializers.IntegerField() name = serializers.CharField(max_length=255) subject_id_label = serializers.CharField(max_length=50) created = serializers.DateTimeField() modified = serializers.DateTimeField() class eHBSubjectSerializer(serializers.Serializer): """ This serializer corresponds to the definition of an eHB subject see: https://github.com/chop-dbhi/ehb-service/blob/master/ehb_service/apps/core/models/identities.py and its requested representation: see: https://github.com/chop-dbhi/ehb-client/blob/master/ehb_client/requests/subject_request_handler.py """ id = serializers.IntegerField() first_name = serializers.CharField(max_length=50) last_name = serializers.CharField(max_length=70) # organization_id is PK for org in ehb-service organization_id = serializers.IntegerField() organization_subject_id = serializers.CharField(max_length=120) organization_id_label = serializers.CharField(max_length=120) dob = serializers.DateField() modified = serializers.DateTimeField() created = serializers.DateTimeField() class eHBExternalRecordSerializer(serializers.Serializer): record_id = serializers.CharField(max_length=120) subject_id = serializers.IntegerField() external_system_id = serializers.IntegerField() modified = serializers.DateTimeField() created = serializers.DateTimeField() path = serializers.CharField(max_length=120) id = serializers.IntegerField() label_id = serializers.IntegerField()
35.65812
110
0.751198
3514fb375cf588ce1ca3d1f580a08c93313caa5c
568
py
Python
ABC/abc201-abc250/abc226/c/main.py
KATO-Hiro/AtCoder
cbbdb18e95110b604728a54aed83a6ed6b993fde
[ "CC0-1.0" ]
2
2020-06-12T09:54:23.000Z
2021-05-04T01:34:07.000Z
ABC/abc201-abc250/abc226/c/main.py
KATO-Hiro/AtCoder
cbbdb18e95110b604728a54aed83a6ed6b993fde
[ "CC0-1.0" ]
961
2020-06-23T07:26:22.000Z
2022-03-31T21:34:52.000Z
ABC/abc201-abc250/abc226/c/main.py
KATO-Hiro/AtCoder
cbbdb18e95110b604728a54aed83a6ed6b993fde
[ "CC0-1.0" ]
null
null
null
# -*- coding: utf-8 -*- def main(): import sys input = sys.stdin.readline sys.setrecursionlimit(10 ** 7) n = int(input()) b = [list(map(int, input().split())) for _ in range(n)] ans = list() master = [False] * n def dfs(m, ans): if not master[m]: master[m] = True ans.append(b[m][0]) for aij in b[m][2:]: if master[aij - 1]: continue dfs(aij - 1, ans) dfs(n - 1, ans) print(sum(ans)) if __name__ == "__main__": main()
17.75
59
0.454225
88542708b09974d1b002314fbfe441303f0fca8a
3,512
py
Python
ucsmsdk/mometa/bios/BiosVfEnhancedIntelSpeedStepTech.py
anoop1984/python_sdk
c4a226bad5e10ad233eda62bc8f6d66a5a82b651
[ "Apache-2.0" ]
null
null
null
ucsmsdk/mometa/bios/BiosVfEnhancedIntelSpeedStepTech.py
anoop1984/python_sdk
c4a226bad5e10ad233eda62bc8f6d66a5a82b651
[ "Apache-2.0" ]
null
null
null
ucsmsdk/mometa/bios/BiosVfEnhancedIntelSpeedStepTech.py
anoop1984/python_sdk
c4a226bad5e10ad233eda62bc8f6d66a5a82b651
[ "Apache-2.0" ]
null
null
null
"""This module contains the general information for BiosVfEnhancedIntelSpeedStepTech ManagedObject.""" import sys, os from ...ucsmo import ManagedObject from ...ucscoremeta import UcsVersion, MoPropertyMeta, MoMeta from ...ucsmeta import VersionMeta class BiosVfEnhancedIntelSpeedStepTechConsts(): SUPPORTED_BY_DEFAULT_NO = "no" SUPPORTED_BY_DEFAULT_YES = "yes" VP_ENHANCED_INTEL_SPEED_STEP_TECH_DISABLED = "disabled" VP_ENHANCED_INTEL_SPEED_STEP_TECH_ENABLED = "enabled" VP_ENHANCED_INTEL_SPEED_STEP_TECH_PLATFORM_DEFAULT = "platform-default" VP_ENHANCED_INTEL_SPEED_STEP_TECH_PLATFORM_RECOMMENDED = "platform-recommended" class BiosVfEnhancedIntelSpeedStepTech(ManagedObject): """This is BiosVfEnhancedIntelSpeedStepTech class.""" consts = BiosVfEnhancedIntelSpeedStepTechConsts() naming_props = set([]) mo_meta = MoMeta("BiosVfEnhancedIntelSpeedStepTech", "biosVfEnhancedIntelSpeedStepTech", "Enhanced-Intel-SpeedStep-Tech", VersionMeta.Version111j, "InputOutput", 0x3f, [], ["admin", "ls-compute", "ls-config", "ls-server", "ls-server-policy", "pn-policy"], [u'biosSettings', u'biosVProfile'], [], ["Get", "Set"]) prop_meta = { "child_action": MoPropertyMeta("child_action", "childAction", "string", VersionMeta.Version111j, MoPropertyMeta.INTERNAL, 0x2, None, None, r"""((deleteAll|ignore|deleteNonPresent),){0,2}(deleteAll|ignore|deleteNonPresent){0,1}""", [], []), "dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version111j, MoPropertyMeta.READ_ONLY, 0x4, 0, 256, None, [], []), "prop_acl": MoPropertyMeta("prop_acl", "propAcl", "ulong", VersionMeta.Version302a, MoPropertyMeta.READ_ONLY, None, None, None, None, [], []), "rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version111j, MoPropertyMeta.READ_ONLY, 0x8, 0, 256, None, [], []), "sacl": MoPropertyMeta("sacl", "sacl", "string", VersionMeta.Version302a, MoPropertyMeta.READ_ONLY, None, None, None, r"""((none|del|mod|addchild|cascade),){0,4}(none|del|mod|addchild|cascade){0,1}""", [], []), "status": MoPropertyMeta("status", "status", "string", VersionMeta.Version111j, MoPropertyMeta.READ_WRITE, 0x10, None, None, r"""((removed|created|modified|deleted),){0,3}(removed|created|modified|deleted){0,1}""", [], []), "supported_by_default": MoPropertyMeta("supported_by_default", "supportedByDefault", "string", VersionMeta.Version302a, MoPropertyMeta.READ_ONLY, None, None, None, None, ["no", "yes"], []), "vp_enhanced_intel_speed_step_tech": MoPropertyMeta("vp_enhanced_intel_speed_step_tech", "vpEnhancedIntelSpeedStepTech", "string", VersionMeta.Version111j, MoPropertyMeta.READ_WRITE, 0x20, None, None, None, ["disabled", "enabled", "platform-default", "platform-recommended"], []), } prop_map = { "childAction": "child_action", "dn": "dn", "propAcl": "prop_acl", "rn": "rn", "sacl": "sacl", "status": "status", "supportedByDefault": "supported_by_default", "vpEnhancedIntelSpeedStepTech": "vp_enhanced_intel_speed_step_tech", } def __init__(self, parent_mo_or_dn, **kwargs): self._dirty_mask = 0 self.child_action = None self.prop_acl = None self.sacl = None self.status = None self.supported_by_default = None self.vp_enhanced_intel_speed_step_tech = None ManagedObject.__init__(self, "BiosVfEnhancedIntelSpeedStepTech", parent_mo_or_dn, **kwargs)
59.525424
315
0.703588
44599aa1324bcae8bde4e518d5e63e291abebfc0
1,372
py
Python
python/dune/xt/common/test.py
ftschindler-work/dune-xt-common
1748530e13dbf683b5bf14289bf3e134485755a8
[ "BSD-2-Clause" ]
2
2016-01-05T14:54:52.000Z
2020-02-08T04:09:13.000Z
python/dune/xt/common/test.py
ftschindler-work/dune-xt-common
1748530e13dbf683b5bf14289bf3e134485755a8
[ "BSD-2-Clause" ]
119
2016-01-06T16:32:14.000Z
2020-03-25T08:28:53.000Z
python/dune/xt/common/test.py
ftschindler-work/dune-xt-common
1748530e13dbf683b5bf14289bf3e134485755a8
[ "BSD-2-Clause" ]
5
2016-04-13T08:03:45.000Z
2020-03-13T10:59:17.000Z
# ~~~ # This file is part of the dune-xt-common project: # https://github.com/dune-community/dune-xt-common # Copyright 2009-2018 dune-xt-common developers and contributors. All rights reserved. # License: Dual licensed as BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause) # or GPL-2.0+ (http://opensource.org/licenses/gpl-license) # with "runtime exception" (http://www.dune-project.org/license.html) # Authors: # René Fritze (2018) # ~~~ from pkg_resources import resource_filename, resource_stream import pkgutil import logging import pprint from loguru import logger def load_all_submodule(module): ignore_playground = True fails = [] for _, module_name, _ in pkgutil.walk_packages(module.__path__, module.__name__ + '.', lambda n: fails.append((n, ''))): if ignore_playground and 'playground' in module_name: continue try: __import__(module_name, level=0) except (TypeError, ImportError) as t: fails.append((module_name, t)) if len(fails) > 0: logging.getLogger(module.__name__).fatal('Failed imports: {}'.format(pprint.pformat(fails))) raise ImportError(module.__name__) def runmodule(filename): import pytest import sys sys.exit(pytest.main(sys.argv[1:] + [filename]))
35.179487
100
0.663994
1dd6b5a8029d41c238008fc78b5ee7889301e2b9
17,428
py
Python
disfv1.py
ndf-zz/disfv1
dc47ab93ced580989e65fc0e9d1be4808c932070
[ "MIT" ]
5
2019-09-18T08:57:24.000Z
2020-09-29T05:16:32.000Z
disfv1.py
ndf-zz/disfv1
dc47ab93ced580989e65fc0e9d1be4808c932070
[ "MIT" ]
2
2020-12-16T18:33:27.000Z
2022-01-21T21:31:52.000Z
disfv1.py
ndf-zz/disfv1
dc47ab93ced580989e65fc0e9d1be4808c932070
[ "MIT" ]
1
2019-11-26T09:40:07.000Z
2019-11-26T09:40:07.000Z
# # disfv1: FV-1 Disassembler # Copyright (C) 2019-2021 Nathan Fraser # # A disassembler for the Spin Semiconductor FV-1 DSP. # Python2 > 2.6 support from __future__ import division from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import # Imports import argparse import sys import struct from decimal import Decimal # Constants VERSION = '1.0.6' PROGLEN = 128 # Bit Masks M1 = 0x01 M2 = 0x03 M5 = 0x1f M6 = 0x3f M8 = 0xff M9 = 0x1ff M11 = 0x7ff M14 = 0x3fff M15 = 0x7fff M16 = 0xffff M24 = 0xffffff M27 = 0x7ffffff M32 = 0xffffffff def quiet(msg): pass def warning(msg): print(msg, file=sys.stderr) def error(msg): print(msg, file=sys.stderr) # Machine instruction table op_tbl = { # opcode: [mnemonic, (arglen,left shift), ...] 0x00: ['RDA', (M15,5),(M11,21)], 0x01: ['RMPA', (M11,21)], 0x02: ['WRA', (M15,5),(M11,21)], 0x03: ['WRAP', (M15,5),(M11,21)], 0x04: ['RDAX', (M6,5),(M16,16)], 0x05: ['RDFX', (M6,5),(M16,16)], # and LDAX 0x06: ['WRAX', (M6,5),(M16,16)], 0x07: ['WRHX', (M6,5),(M16,16)], 0x08: ['WRLX', (M6,5),(M16,16)], 0x09: ['MAXX', (M6,5),(M16,16)], # and ABSA 0x0A: ['MULX', (M6,5)], 0x0B: ['LOG', (M16,16),(M11,5)], 0x0C: ['EXP', (M16,16),(M11,5)], 0x0D: ['SOF', (M16,16),(M11,5)], 0x0E: ['AND', (M24,8)], # and CLR 0x0F: ['OR', (M24,8)], 0x10: ['XOR', (M24,8)], # and NOT 0x11: ['SKP', (M5,27),(M6,21)], # and NOP 0x12: ['WLDX', (M32,0)], # WLDS/WLDR 0x13: ['JAM', (M2,6)], 0x14: ['CHO', (M2,30),(M2,21),(M6,24),(M16,5)], 'WLDS': ['WLDS', (M1,29),(M9,20),(M15,5)], 'WLDR': ['WLDR', (M2,29),(M16,13),(M2,5)], } class fv1deparse(object): def __init__(self, source=None, relative=False, nopraw=False, wfunc=None): self.program = [] self.listing = '' self.dowarn = wfunc self.relskip = relative self.nopraw = nopraw self.source = source self.jmptbl = { # jump table for skips } self.rampamp = { 0x0: '4096', 0x1: '2048', 0x2: '1024', 0x3: '512', } self.chotype = { 0x0: 'rda', 0x1: 'rda', # override invalid chotype 0x2: 'sof', 0x3: 'rdal', } self.chosel = { 0x0: 'SIN0', 0x1: 'SIN1', 0x2: 'RMP0', 0x3: 'RMP1', } self.choflags = { 0x00: 'SIN', 0x01: 'COS', 0x02: 'REG', 0x04: 'COMPC', 0x08: 'COMPA', 0x10: 'RPTR2', 0x20: 'NA', } self.skipflags = { 0x10: 'RUN', 0x08: 'ZRC', 0x04: 'ZRO', 0x02: 'GEZ', 0x01: 'NEG', } self.regs = { 0x00: 'SIN0_RATE', 0x01: 'SIN0_RANGE', 0x02: 'SIN1_RATE', 0x03: 'SIN1_RANGE', 0x04: 'RMP0_RATE', 0x05: 'RMP0_RANGE', 0x06: 'RMP1_RATE', 0x07: 'RMP1_RANGE', 0x10: 'POT0', 0x11: 'POT1', 0x12: 'POT2', 0x14: 'ADCL', 0x15: 'ADCR', 0x16: 'DACL', 0x17: 'DACR', 0x18: 'ADDR_PTR', 0x20: 'REG0', 0x21: 'REG1', 0x22: 'REG2', 0x23: 'REG3', 0x24: 'REG4', 0x25: 'REG5', 0x26: 'REG6', 0x27: 'REG7', 0x28: 'REG8', 0x29: 'REG9', 0x2a: 'REG10', 0x2b: 'REG11', 0x2c: 'REG12', 0x2d: 'REG13', 0x2e: 'REG14', 0x2f: 'REG15', 0x30: 'REG16', 0x31: 'REG17', 0x32: 'REG18', 0x33: 'REG19', 0x34: 'REG20', 0x35: 'REG21', 0x36: 'REG22', 0x37: 'REG23', 0x38: 'REG24', 0x39: 'REG25', 0x3a: 'REG26', 0x3b: 'REG27', 0x3c: 'REG28', 0x3d: 'REG29', 0x3e: 'REG30', 0x3f: 'REG31', } def __reg__(self, reg): """Convert a register argument to text.""" ret = '{0:#04x}'.format(reg) if reg in self.regs: ret = self.regs[reg] return ret def __s1_14__(self, val): """Convert and return a S1.14 real as text.""" return str(Decimal(((val&((1<<15)-1))-(val&(1<<15)))/(1<<14))) def __s1_9__(self, val): """Convert and return a S1.9 real as text.""" return str(Decimal(((val&((1<<10)-1))-(val&(1<<10)))/(1<<9))) def __s4_6__(self, val): """Convert and return a S4.6 real as text.""" return str(Decimal(((val&((1<<10)-1))-(val&(1<<10)))/(1<<6))) def __s_10__(self, val): """Convert and return a S.10 real as text.""" return str(Decimal(((val&((1<<10)-1))-(val&(1<<10)))/(1<<10))) def __i_15__(self, val): """Convert and return a signed integer as text.""" return str(Decimal((val&((1<<15)-1))-(val&(1<<15)))) def __s_15__(self, val): """Convert and return a S.15 real as text.""" return str(Decimal(((val&((1<<15)-1))-(val&(1<<15)))/(1<<15))) def __s_23__(self, val): """Convert and return a S.23 real as text.""" return str(((val&((1<<23)-1))-(val&(1<<23)))/(1<<23)) def __regmult__(self, inst, address): """Extract a register/multiplier instruction: op REG,k""" reg = inst['args'][0] mult = inst['args'][1] if inst['mnemonic'] == 'rdfx' and mult == 0: inst['mnemonic'] = 'ldax' inst['argstring'] = self.__reg__(reg) inst['comment'] = 'reg:{0:#04x}'.format(reg) elif inst['mnemonic'] == 'maxx' and mult == 0 and reg == 0: inst['mnemonic'] = 'absa' inst['comment'] = 'maxx 0,0' else: inst['comment'] = 'reg:{0:#04x} k:{1:#06x}'.format(reg, mult) inst['argstring'] = ','.join([ self.__reg__(reg), self.__s1_14__(mult) ]) def __cho__(self, inst, address): """Extract a CHO instruction.""" typeval = inst['args'][0] typestr = str(typeval) if typeval in self.chotype: typestr = self.chotype[typeval] sel = inst['args'][1] selstr = str(sel) if sel in self.chosel: selstr = self.chosel[sel] flags = inst['args'][2] flagv = [] if flags == 0x00: flagv.append('SIN') for flag in sorted(self.choflags): if flags&flag: flagv.append(self.choflags[flag]) flagstr = '|'.join(flagv) d = inst['args'][3] dstr = None if typestr == 'rdal': inst['argstring'] = ','.join(['rdal',selstr,flagstr]) inst['comment'] = 't:{0:#03x} n:{1:#03x} c:{2:#04x}'.format( typeval, sel, flags) elif typestr == 'rda': dstr = str(d) inst['argstring'] = ','.join(['rda',selstr,flagstr,dstr]) inst['comment'] = 't:{0:#03x} n:{1:#03x} c:{2:#04x} addr:{3:#06x}'.format( typeval, sel, flags, d) elif typestr == 'sof': dstr = self.__s_15__(d) inst['argstring'] = ','.join(['sof',selstr,flagstr,dstr]) inst['comment'] = 't:{0:#03x} n:{1:#03x} c:{2:#04x} d:{3:#06x}'.format( typeval, sel, flags, d) else: dstr = str(d) inst['argstring'] = ','.join([typestr,selstr,flagstr,dstr]) inst['comment'] = 't:{0:#03x} n:{1:#03x} c:{2:#04x} addr:{3:#06x}'.format( typeval, sel, flags, d) def __jam__(self, inst, address): """Extract a JAM instruction.""" lfo = inst['args'][0]|0x2 lfostr = self.chosel[lfo] inst['comment'] = 'lfo:{0:#03x}'.format(lfo) inst['argstring'] = lfostr def __delayop__(self, inst, address): """Extract a delay/multiplier instruction: op delay,k""" offset = inst['args'][0] mult = inst['args'][1] inst['comment'] = 'del:{0:#06x} k:{1:#05x}'.format(offset, mult) inst['argstring'] = ','.join([ str(offset), self.__s1_9__(mult) ]) def __mulx__(self, inst, address): """Extract a mulx instruction.""" reg = inst['args'][0] inst['comment'] = 'reg:{0:#04x}'.format(reg) inst['argstring'] = self.__reg__(reg) def __rmpa__(self, inst, address): """Extract a rmpa instruction.""" mult = inst['args'][0] inst['comment'] = 'k:{0:#05x}'.format(mult) inst['argstring'] = self.__s1_9__(mult) def __scaleoft__(self, inst, address): """Extract a scale/offset instruction: op k,const""" mult = inst['args'][0] offset = inst['args'][1] inst['comment'] = 'k:{0:#06x} const:{1:#05x}'.format(mult,offset) ostr = self.__s_10__(offset) inst['argstring'] = ','.join([ self.__s1_14__(mult), ostr ]) def __bitop__(self, inst, address): """Extract a bitwise accumulator operation: op mask""" mask = inst['args'][0] if inst['mnemonic'] == 'and' and mask == 0: inst['mnemonic'] = 'clr' inst['comment'] = 'and 0' elif inst['mnemonic'] == 'xor' and mask == 0xffffff: inst['mnemonic'] = 'not' inst['comment'] = 'xor 0xffffff' else: inst['comment'] = 'val:'.format(mask) + self.__s_23__(mask) inst['argstring'] = '{0:#08x}'.format(mask) def __wldx__(self, inst, address): """Extract wldr and wlds instructions.""" if inst['command'] & 0x40000000: # WLDR ni = self.__decode__(inst['command'], override='WLDR') inst['args'] = ni['args'] inst['mnemonic'] = 'wldr' lfo = inst['args'][0]&0x1 freq = inst['args'][1] amp = inst['args'][2] ampstr = '{0:01x}'.format(amp) if amp in self.rampamp: ampstr = self.rampamp[amp] inst['argstring'] = ','.join(['RMP'+str(lfo), self.__i_15__(freq), ampstr ]) inst['comment'] = 'lfo:{0:#03x} f:{1:#06x} a:{2:#03x}'.format( lfo, freq, amp) else: # WLDS ni = self.__decode__(inst['command'], override='WLDS') inst['args'] = ni['args'] inst['mnemonic'] = 'wlds' lfo = inst['args'][0]&0x1 freq = inst['args'][1] amp = inst['args'][2] inst['argstring'] = ','.join(['SIN'+str(lfo), str(freq), str(amp) ]) inst['comment'] = 'lfo:{0:#03x} f:{1:#05x} a:{2:#06x}'.format( lfo, freq, amp) def __skp__(self, inst, address): """Extract a skp operation.""" flags = inst['args'][0] offset = inst['args'][1] targetstr = '{0:d}'.format(offset) if not self.relskip: taddr = address+offset+1 targetstr = 'addr{0:02x}'.format(taddr) self.jmptbl[taddr] = targetstr inst['target'] = targetstr inst['comment'] = 'flags:{0:#04x} offset:{1:#04x}'.format( flags, offset) flagv = [] if flags == 0: flagv.append('0') else: for flag in self.skipflags: if flags&flag: flagv.append(self.skipflags[flag]) inst['argstring'] = ','.join([ '|'.join(flagv), targetstr ]) def __raw__(self, inst, address): """Extract a raw data instruction.""" val = inst['args'][0] if self.nopraw: inst['mnemonic'] = 'nop' else: inst['argstring'] = '{0:#010x}'.format(val) inst['comment'] = repr(struct.pack('>I',val)) def __fixinst__(self, inst, address): """Examine instruction and extract an assembly equivalent.""" if inst['mnemonic'] == 'skp': if inst['args'][0] == 0 and inst['args'][1] == 0: inst['mnemonic'] = 'nop' inst['comment'] = 'skp 0,0' else: self.__skp__(inst, address) elif inst['mnemonic'] in ['rdax', 'wrax', 'maxx', 'rdfx', 'wrlx', 'wrhx',]: self.__regmult__(inst, address) elif inst['mnemonic'] in ['mulx',]: self.__mulx__(inst, address) elif inst['mnemonic'] in ['rda', 'wra', 'wrap',]: self.__delayop__(inst, address) elif inst['mnemonic'] in ['log', 'exp', 'sof']: self.__scaleoft__(inst, address) elif inst['mnemonic'] in ['rmpa',]: self.__rmpa__(inst, address) elif inst['mnemonic'] in ['jam',]: self.__jam__(inst, address) elif inst['mnemonic'] in ['cho',]: self.__cho__(inst, address) elif inst['mnemonic'] in ['wldx',]: self.__wldx__(inst, address) elif inst['mnemonic'] in ['and', 'or', 'xor',]: self.__bitop__(inst, address) elif inst['mnemonic'] == 'raw': self.__raw__(inst, address) else: self.dowarn('info: Unknown mnemonic: ' + repr(inst['mnemonic']) + ' raw:{0:#010x} at address:{1:#04x}'.format( inst['command'], address)) if address in self.jmptbl: inst['label'] = self.jmptbl[address] def __decode__(self, command, override=None): """Decode raw command into opcode and arguments.""" opcode = command&M5 ret = {'opcode':opcode, 'mnemonic':None, 'args':[], 'command':command, 'label':None, 'comment':None, 'argstring':None, 'target':None, } if override is not None: opcode = override if opcode in op_tbl: inst = op_tbl[opcode] ret['mnemonic'] = inst[0].lower() for arg in inst[1:]: ret['args'].append((command>>arg[1])&arg[0]) else: ret['mnemonic'] = 'raw' ret['args'].append(command) return ret def deparse(self): """Disassemble input.""" plen = len(self.source) oft = 0 while oft+3 < plen: rawinst = struct.unpack_from('>I', self.source, oft)[0] self.program.append(self.__decode__(rawinst)) oft += 4 cnt = 0 for i in self.program: self.__fixinst__(i, cnt) cnt += 1 cnt = len(self.program)-1 while cnt > 0: if self.program[cnt]['mnemonic'] in ['nop', 'skp']: del(self.program[cnt]) else: break cnt -= 1 for l in self.program: label = '' if l['label'] is not None: label = l['label']+':' mnemonic = l['mnemonic'] argstring = '' if l['argstring'] is not None: argstring = l['argstring'] comment = '' if l['comment'] is not None: comment = '; ' + l['comment'] self.listing += '\t'.join([ label, mnemonic, argstring.ljust(23), comment ]) + '\n' for j in sorted(self.jmptbl): if j >= len(self.program): self.listing += self.jmptbl[j] + ':\n' self.dowarn('info: Read {} instructions.'.format(len(self.program))) def main(): parser = argparse.ArgumentParser( description='Disassemble a single FV-1 DSP program.') parser.add_argument('infile', type=argparse.FileType('rb'), help='binary program file', default=sys.stdin) parser.add_argument('outfile', nargs='?', help='assembly program output file', default=sys.stdout) parser.add_argument('-v', '--version', action='version', help='print version', version='%(prog)s ' + VERSION) parser.add_argument('-q', '--quiet', action='store_true', help='suppress warnings') parser.add_argument('-r', '--relative', action='store_true', help='use relative skip targets') parser.add_argument('-s', '--suppressraw', action='store_true', help="convert invalid/raw statements into nop") parser.add_argument('-p', help='program number', type=int, choices=list(range(0,8))) args = parser.parse_args() dowarn = warning if args.quiet: dowarn = quiet dowarn('FV-1 Disassembler v' + VERSION) dowarn('info: Reading input from ' + args.infile.name) inbuf = args.infile.read(8*4*PROGLEN) oft = 0 if args.p is not None: oft = args.p * (PROGLEN*4) dowarn('info: Reading from program {0} at offset {1:#06x}'.format( args.p, oft)) fp = fv1deparse(inbuf[oft:oft+(PROGLEN*4)], relative=args.relative, nopraw=args.suppressraw, wfunc=dowarn) fp.deparse() ofile = None if args.outfile is sys.stdout: ofile = args.outfile else: try: ofile = open(args.outfile, 'w') except Exception as e: error('error: writing output: ' + str(e)) sys.exit(-1) ofile.write(fp.listing) ofile.close() if __name__ == '__main__': main()
33.070209
86
0.493115
4aeb507dcab73eaa19fed6706746abc134ecc9ff
610
gyp
Python
v8_4_5/build/all.gyp
wenfeifei/miniblink49
2ed562ff70130485148d94b0e5f4c343da0c2ba4
[ "Apache-2.0" ]
5,964
2016-09-27T03:46:29.000Z
2022-03-31T16:25:27.000Z
v8_4_5/build/all.gyp
w4454962/miniblink49
b294b6eacb3333659bf7b94d670d96edeeba14c0
[ "Apache-2.0" ]
479
2016-02-10T00:21:41.000Z
2020-11-26T09:40:03.000Z
v8_4_5/build/all.gyp
w4454962/miniblink49
b294b6eacb3333659bf7b94d670d96edeeba14c0
[ "Apache-2.0" ]
1,006
2016-09-27T05:17:27.000Z
2022-03-30T02:46:51.000Z
# Copyright 2011 the V8 project authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'targets': [ { 'target_name': 'All', 'type': 'none', 'dependencies': [ '../samples/samples.gyp:*', '../src/d8.gyp:d8', '../test/cctest/cctest.gyp:*', '../test/unittests/unittests.gyp:*', ], 'conditions': [ ['component!="shared_library"', { 'dependencies': [ '../tools/parser-shell.gyp:parser-shell', ], }], ] } ] }
23.461538
72
0.513115
e6810bfd1f4e481c1f92b1f7b34392a590d1852b
412
py
Python
regular_expression.py
keerthana1502/python_practice
8c0499e014826af78f9a88730551ace3fa79686d
[ "bzip2-1.0.6" ]
null
null
null
regular_expression.py
keerthana1502/python_practice
8c0499e014826af78f9a88730551ace3fa79686d
[ "bzip2-1.0.6" ]
null
null
null
regular_expression.py
keerthana1502/python_practice
8c0499e014826af78f9a88730551ace3fa79686d
[ "bzip2-1.0.6" ]
null
null
null
import re a="hello world" x=re.findall("he..o",a) print(x) y=re.findall("[a-z]",a) print(y) z=re.findall("^h",a) print(z) b=re.findall("d$",a) print(b) c=re.findall("h.*o",a) print(c) d=re.findall("h.+o",a) print(d) e=re.findall("h.?",a) print(e) f=re.findall("h.{3}o",a) print(f) g=re.findall("hello/world",a) print(g) h=re.findall("\Ah",a) print(h) i=re.findall("\Bd",a) print(i) j=re.findall("\Bl",a) print(j)
15.846154
29
0.616505
b27838f3e4db1a0f021ac12e661a8d9c98f15091
621
py
Python
setup.py
demonCoder95/Gerrit-to-Github-Issues
268be3f5a2865c67caa9778b80f242f15792e55c
[ "Apache-2.0" ]
2
2020-02-26T21:00:44.000Z
2020-04-17T20:16:57.000Z
setup.py
demonCoder95/Gerrit-to-Github-Issues
268be3f5a2865c67caa9778b80f242f15792e55c
[ "Apache-2.0" ]
7
2020-05-04T19:31:16.000Z
2021-03-24T19:09:50.000Z
setup.py
airshipit/gerrit-to-github-bot
3c62ac1eefe07343c7525733b4096307d1a3ebcd
[ "Apache-2.0" ]
2
2020-04-18T13:29:06.000Z
2020-04-30T00:04:19.000Z
# Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import setuptools setuptools.setup(setup_requires=['pbr>=2.0.0'], pbr=True)
41.4
74
0.763285
6d254bf4731044195ff76da6dcb415af1902a773
13,524
py
Python
tests/test_data/test_datasets/test_s3dis_dataset.py
Guangyun-Xu/mmdetection3d
75c5c6cd590386bd1539a686c5fd2cc45c5480d5
[ "Apache-2.0" ]
2,216
2020-07-09T19:10:11.000Z
2022-03-31T12:39:26.000Z
tests/test_data/test_datasets/test_s3dis_dataset.py
Guangyun-Xu/mmdetection3d
75c5c6cd590386bd1539a686c5fd2cc45c5480d5
[ "Apache-2.0" ]
1,174
2020-07-10T07:02:28.000Z
2022-03-31T12:38:56.000Z
tests/test_data/test_datasets/test_s3dis_dataset.py
Guangyun-Xu/mmdetection3d
75c5c6cd590386bd1539a686c5fd2cc45c5480d5
[ "Apache-2.0" ]
681
2020-07-09T19:40:06.000Z
2022-03-31T11:02:24.000Z
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import pytest import torch from mmdet3d.datasets import S3DISDataset, S3DISSegDataset def test_getitem(): np.random.seed(0) root_path = './tests/data/s3dis/' ann_file = './tests/data/s3dis/s3dis_infos.pkl' class_names = ('table', 'chair', 'sofa', 'bookcase', 'board') pipeline = [ dict( type='LoadPointsFromFile', coord_type='DEPTH', shift_height=False, load_dim=6, use_dim=[0, 1, 2, 3, 4, 5]), dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), dict(type='PointSample', num_points=40000), dict(type='DefaultFormatBundle3D', class_names=class_names), dict( type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) ] s3dis_dataset = S3DISDataset( data_root=root_path, ann_file=ann_file, pipeline=pipeline) data = s3dis_dataset[0] points = data['points']._data gt_bboxes_3d = data['gt_bboxes_3d']._data gt_labels_3d = data['gt_labels_3d']._data expected_gt_bboxes_3d = torch.tensor( [[2.3080, 2.4175, 0.2010, 0.8820, 0.8690, 0.6970, 0.0000], [2.4730, 0.7090, 0.2010, 0.9080, 0.9620, 0.7030, 0.0000], [5.3235, 0.4910, 0.0740, 0.8410, 0.9020, 0.8790, 0.0000]]) expected_gt_labels = np.array([1, 1, 3, 1, 2, 0, 0, 0, 3]) assert tuple(points.shape) == (40000, 6) assert torch.allclose(gt_bboxes_3d[:3].tensor, expected_gt_bboxes_3d, 1e-2) assert np.all(gt_labels_3d.numpy() == expected_gt_labels) def test_evaluate(): if not torch.cuda.is_available(): pytest.skip() from mmdet3d.core.bbox.structures import DepthInstance3DBoxes root_path = './tests/data/s3dis' ann_file = './tests/data/s3dis/s3dis_infos.pkl' s3dis_dataset = S3DISDataset(root_path, ann_file) results = [] pred_boxes = dict() pred_boxes['boxes_3d'] = DepthInstance3DBoxes( torch.tensor([[2.3080, 2.4175, 0.2010, 0.8820, 0.8690, 0.6970, 0.0000], [2.4730, 0.7090, 0.2010, 0.9080, 0.9620, 0.7030, 0.0000], [5.3235, 0.4910, 0.0740, 0.8410, 0.9020, 0.8790, 0.0000]])) pred_boxes['labels_3d'] = torch.tensor([1, 1, 3]) pred_boxes['scores_3d'] = torch.tensor([0.5, 1.0, 1.0]) results.append(pred_boxes) ret_dict = s3dis_dataset.evaluate(results) assert abs(ret_dict['chair_AP_0.25'] - 0.666) < 0.01 assert abs(ret_dict['chair_AP_0.50'] - 0.666) < 0.01 assert abs(ret_dict['bookcase_AP_0.25'] - 0.5) < 0.01 assert abs(ret_dict['bookcase_AP_0.50'] - 0.5) < 0.01 def test_seg_getitem(): np.random.seed(0) root_path = './tests/data/s3dis/' ann_file = './tests/data/s3dis/s3dis_infos.pkl' class_names = ('ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', 'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter') palette = [[0, 255, 0], [0, 0, 255], [0, 255, 255], [255, 255, 0], [255, 0, 255], [100, 100, 255], [200, 200, 100], [170, 120, 200], [255, 0, 0], [200, 100, 100], [10, 200, 100], [200, 200, 200], [50, 50, 50]] scene_idxs = [0 for _ in range(20)] pipelines = [ dict( type='LoadPointsFromFile', coord_type='DEPTH', shift_height=False, use_color=True, load_dim=6, use_dim=[0, 1, 2, 3, 4, 5]), dict( type='LoadAnnotations3D', with_bbox_3d=False, with_label_3d=False, with_mask_3d=False, with_seg_3d=True), dict( type='PointSegClassMapping', valid_cat_ids=tuple(range(len(class_names))), max_cat_id=13), dict( type='IndoorPatchPointSample', num_points=5, block_size=1.0, ignore_index=len(class_names), use_normalized_coord=True, enlarge_size=0.2, min_unique_num=None), dict(type='NormalizePointsColor', color_mean=None), dict(type='DefaultFormatBundle3D', class_names=class_names), dict( type='Collect3D', keys=['points', 'pts_semantic_mask'], meta_keys=['file_name', 'sample_idx']) ] s3dis_dataset = S3DISSegDataset( data_root=root_path, ann_files=ann_file, pipeline=pipelines, classes=None, palette=None, modality=None, test_mode=False, ignore_index=None, scene_idxs=scene_idxs) data = s3dis_dataset[0] points = data['points']._data pts_semantic_mask = data['pts_semantic_mask']._data file_name = data['img_metas']._data['file_name'] sample_idx = data['img_metas']._data['sample_idx'] assert file_name == './tests/data/s3dis/points/Area_1_office_2.bin' assert sample_idx == 'Area_1_office_2' expected_points = torch.tensor([[ 0.0000, 0.0000, 3.1720, 0.4706, 0.4431, 0.3725, 0.4624, 0.7502, 0.9543 ], [ 0.2880, -0.5900, 0.0650, 0.3451, 0.3373, 0.3490, 0.5119, 0.5518, 0.0196 ], [ 0.1570, 0.6000, 3.1700, 0.4941, 0.4667, 0.3569, 0.4893, 0.9519, 0.9537 ], [ -0.1320, 0.3950, 0.2720, 0.3216, 0.2863, 0.2275, 0.4397, 0.8830, 0.0818 ], [ -0.4860, -0.0640, 3.1710, 0.3843, 0.3725, 0.3059, 0.3789, 0.7286, 0.9540 ]]) expected_pts_semantic_mask = np.array([0, 1, 0, 8, 0]) original_classes = s3dis_dataset.CLASSES original_palette = s3dis_dataset.PALETTE assert s3dis_dataset.CLASSES == class_names assert s3dis_dataset.ignore_index == 13 assert torch.allclose(points, expected_points, 1e-2) assert np.all(pts_semantic_mask.numpy() == expected_pts_semantic_mask) assert original_classes == class_names assert original_palette == palette assert s3dis_dataset.scene_idxs.dtype == np.int32 assert np.all(s3dis_dataset.scene_idxs == np.array(scene_idxs)) # test dataset with selected classes s3dis_dataset = S3DISSegDataset( data_root=root_path, ann_files=ann_file, pipeline=None, classes=['beam', 'window'], scene_idxs=scene_idxs) label_map = {i: 13 for i in range(14)} label_map.update({3: 0, 5: 1}) assert s3dis_dataset.CLASSES != original_classes assert s3dis_dataset.CLASSES == ['beam', 'window'] assert s3dis_dataset.PALETTE == [palette[3], palette[5]] assert s3dis_dataset.VALID_CLASS_IDS == [3, 5] assert s3dis_dataset.label_map == label_map assert s3dis_dataset.label2cat == {0: 'beam', 1: 'window'} # test load classes from file import tempfile tmp_file = tempfile.NamedTemporaryFile() with open(tmp_file.name, 'w') as f: f.write('beam\nwindow\n') s3dis_dataset = S3DISSegDataset( data_root=root_path, ann_files=ann_file, pipeline=None, classes=tmp_file.name, scene_idxs=scene_idxs) assert s3dis_dataset.CLASSES != original_classes assert s3dis_dataset.CLASSES == ['beam', 'window'] assert s3dis_dataset.PALETTE == [palette[3], palette[5]] assert s3dis_dataset.VALID_CLASS_IDS == [3, 5] assert s3dis_dataset.label_map == label_map assert s3dis_dataset.label2cat == {0: 'beam', 1: 'window'} # test scene_idxs in dataset # we should input scene_idxs in train mode with pytest.raises(NotImplementedError): s3dis_dataset = S3DISSegDataset( data_root=root_path, ann_files=ann_file, pipeline=None, scene_idxs=None) # test mode s3dis_dataset = S3DISSegDataset( data_root=root_path, ann_files=ann_file, pipeline=None, test_mode=True, scene_idxs=scene_idxs) assert np.all(s3dis_dataset.scene_idxs == np.array([0])) def test_seg_evaluate(): if not torch.cuda.is_available(): pytest.skip() root_path = './tests/data/s3dis' ann_file = './tests/data/s3dis/s3dis_infos.pkl' s3dis_dataset = S3DISSegDataset( data_root=root_path, ann_files=ann_file, test_mode=True) results = [] pred_sem_mask = dict( semantic_mask=torch.tensor([ 2, 3, 1, 2, 2, 6, 1, 0, 1, 1, 9, 12, 3, 0, 2, 0, 2, 0, 8, 3, 1, 2, 0, 2, 1, 7, 2, 10, 2, 0, 0, 0, 2, 3, 2, 2, 2, 2, 2, 3, 0, 0, 4, 6, 7, 2, 1, 2, 0, 1, 7, 0, 2, 2, 2, 0, 2, 2, 1, 12, 0, 2, 2, 2, 2, 7, 2, 2, 0, 2, 6, 2, 12, 6, 3, 12, 2, 1, 6, 1, 2, 6, 8, 2, 10, 1, 11, 0, 6, 9, 4, 3, 0, 0, 12, 1, 1, 5, 3, 2 ]).long()) results.append(pred_sem_mask) ret_dict = s3dis_dataset.evaluate(results) assert abs(ret_dict['miou'] - 0.7625) < 0.01 assert abs(ret_dict['acc'] - 0.9) < 0.01 assert abs(ret_dict['acc_cls'] - 0.9074) < 0.01 def test_seg_show(): import mmcv import tempfile from os import path as osp tmp_dir = tempfile.TemporaryDirectory() temp_dir = tmp_dir.name root_path = './tests/data/s3dis' ann_file = './tests/data/s3dis/s3dis_infos.pkl' s3dis_dataset = S3DISSegDataset( data_root=root_path, ann_files=ann_file, scene_idxs=[0]) result = dict( semantic_mask=torch.tensor([ 2, 2, 1, 2, 2, 5, 1, 0, 1, 1, 9, 12, 3, 0, 2, 0, 2, 0, 8, 2, 0, 2, 0, 2, 1, 7, 2, 10, 2, 0, 0, 0, 2, 2, 2, 2, 2, 1, 2, 2, 0, 0, 4, 6, 7, 2, 1, 2, 0, 1, 7, 0, 2, 2, 2, 0, 2, 2, 1, 12, 0, 2, 2, 2, 2, 7, 2, 2, 0, 2, 6, 2, 12, 6, 2, 12, 2, 1, 6, 1, 2, 6, 8, 2, 10, 1, 10, 0, 6, 9, 4, 3, 0, 0, 12, 1, 1, 5, 2, 2 ]).long()) results = [result] s3dis_dataset.show(results, temp_dir, show=False) pts_file_path = osp.join(temp_dir, 'Area_1_office_2', 'Area_1_office_2_points.obj') gt_file_path = osp.join(temp_dir, 'Area_1_office_2', 'Area_1_office_2_gt.obj') pred_file_path = osp.join(temp_dir, 'Area_1_office_2', 'Area_1_office_2_pred.obj') mmcv.check_file_exist(pts_file_path) mmcv.check_file_exist(gt_file_path) mmcv.check_file_exist(pred_file_path) tmp_dir.cleanup() # test show with pipeline tmp_dir = tempfile.TemporaryDirectory() temp_dir = tmp_dir.name class_names = ('ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', 'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter') eval_pipeline = [ dict( type='LoadPointsFromFile', coord_type='DEPTH', shift_height=False, use_color=True, load_dim=6, use_dim=[0, 1, 2, 3, 4, 5]), dict( type='LoadAnnotations3D', with_bbox_3d=False, with_label_3d=False, with_mask_3d=False, with_seg_3d=True), dict( type='PointSegClassMapping', valid_cat_ids=tuple(range(len(class_names))), max_cat_id=13), dict( type='DefaultFormatBundle3D', with_label=False, class_names=class_names), dict(type='Collect3D', keys=['points', 'pts_semantic_mask']) ] s3dis_dataset.show(results, temp_dir, show=False, pipeline=eval_pipeline) pts_file_path = osp.join(temp_dir, 'Area_1_office_2', 'Area_1_office_2_points.obj') gt_file_path = osp.join(temp_dir, 'Area_1_office_2', 'Area_1_office_2_gt.obj') pred_file_path = osp.join(temp_dir, 'Area_1_office_2', 'Area_1_office_2_pred.obj') mmcv.check_file_exist(pts_file_path) mmcv.check_file_exist(gt_file_path) mmcv.check_file_exist(pred_file_path) tmp_dir.cleanup() def test_multi_areas(): # S3DIS dataset has 6 areas, we often train on several of them # need to verify the concat function of S3DISSegDataset root_path = './tests/data/s3dis' ann_file = './tests/data/s3dis/s3dis_infos.pkl' class_names = ('ceiling', 'floor', 'wall', 'beam', 'column', 'window', 'door', 'table', 'chair', 'sofa', 'bookcase', 'board', 'clutter') palette = [[0, 255, 0], [0, 0, 255], [0, 255, 255], [255, 255, 0], [255, 0, 255], [100, 100, 255], [200, 200, 100], [170, 120, 200], [255, 0, 0], [200, 100, 100], [10, 200, 100], [200, 200, 200], [50, 50, 50]] scene_idxs = [0 for _ in range(20)] # repeat repeat_num = 3 s3dis_dataset = S3DISSegDataset( data_root=root_path, ann_files=[ann_file for _ in range(repeat_num)], scene_idxs=scene_idxs) assert s3dis_dataset.CLASSES == class_names assert s3dis_dataset.PALETTE == palette assert len(s3dis_dataset.data_infos) == repeat_num assert np.all(s3dis_dataset.scene_idxs == np.concatenate( [np.array(scene_idxs) + i for i in range(repeat_num)])) # different scene_idxs input s3dis_dataset = S3DISSegDataset( data_root=root_path, ann_files=[ann_file for _ in range(repeat_num)], scene_idxs=[[0, 0, 1, 2, 2], [0, 1, 2, 3, 3, 4], [0, 1, 1, 2, 2, 2]]) assert np.all(s3dis_dataset.scene_idxs == np.array( [0, 0, 1, 2, 2, 3, 4, 5, 6, 6, 7, 8, 9, 9, 10, 10, 10]))
38.862069
79
0.58533
e109d7bbbe3073feedfbac6428381a98f90aad94
1,742
py
Python
app/user/serializers.py
tejasvadgama5/recipe-app-api
670ec021fb75f99f490079baa105b7c4e58050ab
[ "MIT" ]
null
null
null
app/user/serializers.py
tejasvadgama5/recipe-app-api
670ec021fb75f99f490079baa105b7c4e58050ab
[ "MIT" ]
null
null
null
app/user/serializers.py
tejasvadgama5/recipe-app-api
670ec021fb75f99f490079baa105b7c4e58050ab
[ "MIT" ]
1
2021-11-12T12:39:36.000Z
2021-11-12T12:39:36.000Z
from django.contrib.auth import get_user_model, authenticate from django.utils.translation import ugettext_lazy as _ from rest_framework import serializers class UserSerializer(serializers.ModelSerializer): """Serializer for users objects""" class Meta: model = get_user_model() fields = ('email', 'password', 'name') extra_kwargs = {'password': {'write_only': True, 'min_length': 5}} def create(self, validated_data): """Create a new user with encrypted password and return it""" return get_user_model().objects.create_user(**validated_data) def update(self, instance, validated_data): """Update a new user, setting the password correctly and return it""" password = validated_data.pop('password', None) user = super().update(instance, validated_data=validated_data) if password: user.set_password(password) user.save() return user class AuthTokenSerializer(serializers.Serializer): """Serializer for user authentication objects""" email = serializers.CharField() password = serializers.CharField( style={'input_type': 'password'}, trim_whitespace=False ) def validate(self, attrs): """Validate and authenticate the user""" email = attrs.get('email') password = attrs.get('password') user = authenticate( request=self.context.get('request'), username=email, password=password ) if not user: msg = _('Unable to authenticate with provided credentials') raise serializers.ValidationError(msg, code='authentication') attrs['user'] = user return attrs
31.672727
78
0.64868
099d274b7f1d96166eca8ad57af371f0e3951dcc
3,168
py
Python
tests/misc/test_SetValueTransformer.py
bissoligiulia/tubular
878fa0d484ab1e8688e40680f51b2dcaa15abe2e
[ "BSD-3-Clause" ]
32
2021-04-26T13:04:26.000Z
2022-03-18T16:22:13.000Z
tests/misc/test_SetValueTransformer.py
bissoligiulia/tubular
878fa0d484ab1e8688e40680f51b2dcaa15abe2e
[ "BSD-3-Clause" ]
15
2021-05-08T09:46:48.000Z
2021-11-23T11:40:15.000Z
tests/misc/test_SetValueTransformer.py
bissoligiulia/tubular
878fa0d484ab1e8688e40680f51b2dcaa15abe2e
[ "BSD-3-Clause" ]
6
2021-05-05T08:48:00.000Z
2021-08-17T12:31:32.000Z
import pytest import test_aide as ta import tests.test_data as d import tubular from tubular.misc import SetValueTransformer class TestInit: """Tests for the SetValueTransformer.__init__ method.""" def test_arguments(self): """Test that init has expected arguments.""" ta.functions.test_function_arguments( func=SetValueTransformer.__init__, expected_arguments=["self", "columns", "value"], expected_default_values=None, ) def test_inheritance(self): """Test SetValueTransformer inherits from BaseTransformer.""" x = SetValueTransformer(columns=["a"], value=1) assert isinstance( x, tubular.base.BaseTransformer ), "SetValueTransformer is not instance of tubular.base.BaseTransformer" def test_super_init_call(self, mocker): """Test that BaseTransformer.init us called as expected.""" expected_call_args = { 0: { "args": (), "kwargs": {"columns": ["a", "b"], "verbose": False, "copy": False}, } } with ta.functions.assert_function_call( mocker, tubular.base.BaseTransformer, "__init__", expected_call_args ): SetValueTransformer(columns=["a", "b"], value=1, verbose=False, copy=False) def test_value_attribute_set(self): """Test that the value passed in the value arg is set as an attribute of the same name.""" x = SetValueTransformer(columns=["a", "b"], value=1) assert x.value == 1, "unexpected value set to value atttribute" class TestTransform: """Tests for the SetValueTransformer.transform method.""" def expected_df_1(): """Expected output of test_value_set_in_transform.""" df = d.create_df_2() df["a"] = "a" df["b"] = "a" return df def test_arguments(self): """Test that transform has expected arguments.""" ta.functions.test_function_arguments( func=SetValueTransformer.transform, expected_arguments=["self", "X"], expected_default_values=None, ) def test_super_transform_called(self, mocker): """Test that BaseTransformer.transform called.""" df = d.create_df_7() x = SetValueTransformer(columns=["a", "b"], value=1) expected_call_args = {0: {"args": (d.create_df_7(),), "kwargs": {}}} with ta.functions.assert_function_call( mocker, tubular.base.BaseTransformer, "transform", expected_call_args ): x.transform(df) @pytest.mark.parametrize( "df, expected", ta.pandas.adjusted_dataframe_params(d.create_df_2(), expected_df_1()), ) def test_value_set_in_transform(self, df, expected): """Test that transform sets the value as expected.""" x = SetValueTransformer(columns=["a", "b"], value="a") df_transformed = x.transform(df) ta.equality.assert_equal_dispatch( actual=df_transformed, expected=expected, msg="incorrect value after SetValueTransformer transform", )
29.607477
98
0.621212
56cd75421b190a5055e27abb7a8c56321a12ad87
576
py
Python
elections/migrations/0053_presidentcandidate_is_active.py
zinaukarenku/zkr-platform
8daf7d1206c482f1f8e0bcd54d4fde783e568774
[ "Apache-2.0" ]
2
2018-11-16T21:45:17.000Z
2019-02-03T19:55:46.000Z
elections/migrations/0053_presidentcandidate_is_active.py
zinaukarenku/zkr-platform
8daf7d1206c482f1f8e0bcd54d4fde783e568774
[ "Apache-2.0" ]
13
2018-08-17T19:12:11.000Z
2022-03-11T23:27:41.000Z
elections/migrations/0053_presidentcandidate_is_active.py
zinaukarenku/zkr-platform
8daf7d1206c482f1f8e0bcd54d4fde783e568774
[ "Apache-2.0" ]
null
null
null
# Generated by Django 2.1.7 on 2019-05-21 00:21 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('elections', '0052_europarliamentcandidateconviction_country'), ] operations = [ migrations.AddField( model_name='presidentcandidate', name='is_active', field=models.BooleanField(db_index=True, default=True, help_text='Indikuoja ar kandidatas į prezidentus matomas prezidenų sąraše bei galima užduoti naują klausimą.', verbose_name='Aktyvus'), ), ]
30.315789
202
0.685764
b4d50258a9f6148346a7ebfb5135e91cdad12ede
9,125
py
Python
misc/doc/sources/conf.py
pyghassen/jasmin
d6bf0b40bb72e406bcb0dd3a56064a28efd7c6b3
[ "Apache-2.0" ]
null
null
null
misc/doc/sources/conf.py
pyghassen/jasmin
d6bf0b40bb72e406bcb0dd3a56064a28efd7c6b3
[ "Apache-2.0" ]
null
null
null
misc/doc/sources/conf.py
pyghassen/jasmin
d6bf0b40bb72e406bcb0dd3a56064a28efd7c6b3
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.pngmath', 'sphinx.ext.mathjax', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode'] todo_include_todos=True # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Jasmin SMS Gateway' copyright = u'2015, Jasmin' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = "0.6" # The full version, including alpha/beta/rc tags. release = "0.6.0-beta" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {'collapsiblesidebar': True} html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['_themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". html_title = 'Jasmin SMS Gateway' # A shorter title for the navigation bar. Default is the same as html_title. html_short_title = 'Jasmin SMS Gateway documentation' # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = '_static/jasmin-small.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = 'favicon.ico' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'jasmindoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'jasmin.tex', u'Jasmin Documentation', u'Fourat ZOUARI', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'jasmin', u'Jasmin Documentation', [u'Fourat ZOUARI'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'jasmin', u'Jasmin Documentation', u'Fourat ZOUARI', 'jasmin', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # -- Options for Epub output --------------------------------------------------- # Bibliographic Dublin Core info. epub_title = u'jasmin sms gateway' epub_author = u'Fourat ZOUARI' epub_publisher = u'Fourat ZOUARI' epub_copyright = u'2015, Fourat ZOUARI' # The language of the text. It defaults to the language option # or en if the language is not set. #epub_language = '' # The scheme of the identifier. Typical schemes are ISBN or URL. #epub_scheme = '' # The unique identifier of the text. This can be a ISBN number # or the project homepage. #epub_identifier = '' # A unique identification for the text. #epub_uid = '' # A tuple containing the cover image and cover page html template filenames. #epub_cover = () # HTML files that should be inserted before the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_pre_files = [] # HTML files shat should be inserted after the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_post_files = [] # A list of files that should not be packed into the epub file. #epub_exclude_files = [] # The depth of the table of contents in toc.ncx. #epub_tocdepth = 3 # Allow duplicate toc entries. #epub_tocdup = True # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'http://docs.python.org/': None} # Jasmin vars author = u'Fourat ZOUARI'
32.130282
215
0.71463
7164a761484071cad13378d533dabd21bf1ef622
11,248
py
Python
spark_fhir_schemas/r4/complex_types/chargeitemdefinition_propertygroup.py
imranq2/SparkFhirSchemas
24debae6980fb520fe55aa199bdfd43c0092eb9c
[ "Apache-2.0" ]
2
2020-10-31T23:25:01.000Z
2021-06-09T14:12:42.000Z
spark_fhir_schemas/r4/complex_types/chargeitemdefinition_propertygroup.py
imranq2/SparkFhirSchemas
24debae6980fb520fe55aa199bdfd43c0092eb9c
[ "Apache-2.0" ]
null
null
null
spark_fhir_schemas/r4/complex_types/chargeitemdefinition_propertygroup.py
imranq2/SparkFhirSchemas
24debae6980fb520fe55aa199bdfd43c0092eb9c
[ "Apache-2.0" ]
null
null
null
from typing import Union, List, Optional from pyspark.sql.types import StructType, StructField, StringType, ArrayType, DataType # This file is auto-generated by generate_schema so do not edit it manually # noinspection PyPep8Naming class ChargeItemDefinition_PropertyGroupSchema: """ The ChargeItemDefinition resource provides the properties that apply to the (billing) codes necessary to calculate costs and prices. The properties may differ largely depending on type and realm, therefore this resource gives only a rough structure and requires profiling for each type of billing code system. """ # noinspection PyDefaultArgument @staticmethod def get_schema( max_nesting_depth: Optional[int] = 6, nesting_depth: int = 0, nesting_list: List[str] = [], max_recursion_limit: Optional[int] = 2, include_extension: Optional[bool] = False, extension_fields: Optional[List[str]] = [ "valueBoolean", "valueCode", "valueDate", "valueDateTime", "valueDecimal", "valueId", "valueInteger", "valuePositiveInt", "valueString", "valueTime", "valueUnsignedInt", "valueUri", "valueUrl", ], extension_depth: int = 0, max_extension_depth: Optional[int] = 2, include_modifierExtension: Optional[bool] = False, ) -> Union[StructType, DataType]: """ The ChargeItemDefinition resource provides the properties that apply to the (billing) codes necessary to calculate costs and prices. The properties may differ largely depending on type and realm, therefore this resource gives only a rough structure and requires profiling for each type of billing code system. id: Unique id for the element within a resource (for internal references). This may be any string value that does not contain spaces. extension: May be used to represent additional information that is not part of the basic definition of the element. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. modifierExtension: May be used to represent additional information that is not part of the basic definition of the element and that modifies the understanding of the element in which it is contained and/or the understanding of the containing element's descendants. Usually modifier elements provide negation or qualification. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. Applications processing a resource are required to check for modifier extensions. Modifier extensions SHALL NOT change the meaning of any elements on Resource or DomainResource (including cannot change the meaning of modifierExtension itself). applicability: Expressions that describe applicability criteria for the priceComponent. priceComponent: The price for a ChargeItem may be calculated as a base price with surcharges/deductions that apply in certain conditions. A ChargeItemDefinition resource that defines the prices, factors and conditions that apply to a billing code is currently under development. The priceComponent element can be used to offer transparency to the recipient of the Invoice of how the prices have been calculated. """ from spark_fhir_schemas.r4.complex_types.extension import ExtensionSchema from spark_fhir_schemas.r4.complex_types.chargeitemdefinition_applicability import ( ChargeItemDefinition_ApplicabilitySchema, ) from spark_fhir_schemas.r4.complex_types.chargeitemdefinition_pricecomponent import ( ChargeItemDefinition_PriceComponentSchema, ) if ( max_recursion_limit and nesting_list.count("ChargeItemDefinition_PropertyGroup") >= max_recursion_limit ) or (max_nesting_depth and nesting_depth >= max_nesting_depth): return StructType([StructField("id", StringType(), True)]) # add my name to recursion list for later my_nesting_list: List[str] = nesting_list + [ "ChargeItemDefinition_PropertyGroup" ] schema = StructType( [ # Unique id for the element within a resource (for internal references). This # may be any string value that does not contain spaces. StructField("id", StringType(), True), # May be used to represent additional information that is not part of the basic # definition of the element. To make the use of extensions safe and manageable, # there is a strict set of governance applied to the definition and use of # extensions. Though any implementer can define an extension, there is a set of # requirements that SHALL be met as part of the definition of the extension. StructField( "extension", ArrayType( ExtensionSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, ) ), True, ), # May be used to represent additional information that is not part of the basic # definition of the element and that modifies the understanding of the element # in which it is contained and/or the understanding of the containing element's # descendants. Usually modifier elements provide negation or qualification. To # make the use of extensions safe and manageable, there is a strict set of # governance applied to the definition and use of extensions. Though any # implementer can define an extension, there is a set of requirements that SHALL # be met as part of the definition of the extension. Applications processing a # resource are required to check for modifier extensions. # # Modifier extensions SHALL NOT change the meaning of any elements on Resource # or DomainResource (including cannot change the meaning of modifierExtension # itself). StructField( "modifierExtension", ArrayType( ExtensionSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, ) ), True, ), # Expressions that describe applicability criteria for the priceComponent. StructField( "applicability", ArrayType( ChargeItemDefinition_ApplicabilitySchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, ) ), True, ), # The price for a ChargeItem may be calculated as a base price with # surcharges/deductions that apply in certain conditions. A ChargeItemDefinition # resource that defines the prices, factors and conditions that apply to a # billing code is currently under development. The priceComponent element can be # used to offer transparency to the recipient of the Invoice of how the prices # have been calculated. StructField( "priceComponent", ArrayType( ChargeItemDefinition_PriceComponentSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, ) ), True, ), ] ) if not include_extension: schema.fields = [ c if c.name != "extension" else StructField("extension", StringType(), True) for c in schema.fields ] if not include_modifierExtension: schema.fields = [ c if c.name != "modifierExtension" else StructField("modifierExtension", StringType(), True) for c in schema.fields ] return schema
51.59633
104
0.595484
c9d696262109491d489db9e26bc567a8c8e1475f
734
py
Python
examples/script_matplotlib.py
kwagstyl/matplotlib_surface_plotting
5949e0a221eb63f53672b9a9dd297920f4de51a0
[ "MIT" ]
21
2020-03-23T11:56:16.000Z
2022-03-18T04:37:04.000Z
examples/script_matplotlib.py
kwagstyl/matplotlib_surface_plotting
5949e0a221eb63f53672b9a9dd297920f4de51a0
[ "MIT" ]
null
null
null
examples/script_matplotlib.py
kwagstyl/matplotlib_surface_plotting
5949e0a221eb63f53672b9a9dd297920f4de51a0
[ "MIT" ]
3
2020-03-24T16:23:55.000Z
2021-03-10T13:02:47.000Z
import os, sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from matplotlib_surface_plotting import plot_surf import nibabel as nb import numpy as np vertices, faces=nb.freesurfer.io.read_geometry('../data/lh.inflated') overlay = nb.freesurfer.io.read_morph_data('../data/lh.thickness') #optional masking of medial wall cortex=nb.freesurfer.io.read_label('../data/lh.cortex.label') mask=np.ones_like(overlay).astype(bool) mask[cortex]=0 overlay[mask]=np.min(overlay) plot_surf( vertices, faces, overlay, rotate=[90,270], filename='demo_plot.png', vmax = np.max(overlay[cortex]),vmin=np.min(overlay[cortex]),mask=mask, pvals=np.ones_like(overlay), cmap_label='thickness \n(mm)')
36.7
80
0.750681
f129f490c0b6e782db1e0d0da7cabb13b617e567
3,041
py
Python
tools/wafadmin/3rdparty/go.py
rohankumardubey/node
d49d53fd499f7cf68fdfcc7d0c9d401e4e4407fb
[ "MIT" ]
3
2015-11-08T08:52:16.000Z
2022-03-19T07:35:26.000Z
tools/wafadmin/3rdparty/go.py
rohankumardubey/node
d49d53fd499f7cf68fdfcc7d0c9d401e4e4407fb
[ "MIT" ]
null
null
null
tools/wafadmin/3rdparty/go.py
rohankumardubey/node
d49d53fd499f7cf68fdfcc7d0c9d401e4e4407fb
[ "MIT" ]
null
null
null
#!/usr/bin/env python # encoding: utf-8 # go.py - Waf tool for the Go programming language # By: Tom Wambold <[email protected]> import platform import Task import Utils from TaskGen import feature, extension, after Task.simple_task_type('gocompile', '${GOC} ${GOCFLAGS} -o ${TGT} ${SRC}', shell=False) Task.simple_task_type('gopack', '${GOP} grc ${TGT} ${SRC}', shell=False) Task.simple_task_type('golink', '${GOL} ${GOLFLAGS} -o ${TGT} ${SRC}', shell=False) def detect(conf): def set_def(var, val): if not conf.env[var]: conf.env[var] = val set_def('GO_PLATFORM', platform.machine()) if conf.env.GO_PLATFORM == 'x86_64': set_def('GO_COMPILER', '6g') set_def('GO_LINKER', '6l') set_def('GO_EXTENSION', '.6') elif conf.env.GO_PLATFORM == 'i386': set_def('GO_COMPILER', '8g') set_def('GO_LINKER', '8l') set_def('GO_EXTENSION', '.8') if not (conf.env.GO_COMPILER or conf.env.GO_LINKER or conf.env.GO_EXTENSION): raise conf.fatal('Unsupported platform ' + platform.machine()) set_def('GO_PACK', 'gopack') set_def('GO_PACK_EXTENSION', '.a') conf.find_program(conf.env.GO_COMPILER, var='GOC', mandatory=True) conf.find_program(conf.env.GO_LINKER, var='GOL', mandatory=True) conf.find_program(conf.env.GO_PACK, var='GOP', mandatory=True) @extension('.go') def compile_go(self, node): try: self.go_nodes.append(node) except AttributeError: self.go_nodes = [node] @feature('go') @after('apply_core') def apply_compile_go(self): try: nodes = self.go_nodes except AttributeError: self.go_compile_task = None else: self.go_compile_task = self.create_task('gocompile', nodes, [self.path.find_or_declare(self.target + self.env.GO_EXTENSION)]) @feature('gopackage', 'goprogram') @after('apply_compile_go') def apply_goinc(self): if not getattr(self, 'go_compile_task', None): return names = self.to_list(getattr(self, 'uselib_local', [])) for name in names: obj = self.name_to_obj(name) if not obj: raise Utils.WafError('object %r was not found in uselib_local ' '(required by %r)' % (lib_name, self.name)) obj.post() self.go_compile_task.set_run_after(obj.go_package_task) self.go_compile_task.deps_nodes.extend(obj.go_package_task.outputs) self.env.append_unique('GOCFLAGS', '-I' + obj.path.abspath(obj.env)) self.env.append_unique('GOLFLAGS', '-L' + obj.path.abspath(obj.env)) @feature('gopackage') @after('apply_goinc') def apply_gopackage(self): self.go_package_task = self.create_task('gopack', self.go_compile_task.outputs[0], self.path.find_or_declare(self.target + self.env.GO_PACK_EXTENSION)) self.go_package_task.set_run_after(self.go_compile_task) self.go_package_task.deps_nodes.extend(self.go_compile_task.outputs) @feature('goprogram') @after('apply_goinc') def apply_golink(self): self.go_link_task = self.create_task('golink', self.go_compile_task.outputs[0], self.path.find_or_declare(self.target)) self.go_link_task.set_run_after(self.go_compile_task) self.go_link_task.deps_nodes.extend(self.go_compile_task.outputs)
31.030612
86
0.730352
920ccf45e6b42ac11c66d6fc58806bcefda15104
219
py
Python
Chap04/04_02.py
elishahyousaf/linkedin-exercise-files
d79692fd4594d5b6f70253f78e7c4822e7659a00
[ "MIT" ]
null
null
null
Chap04/04_02.py
elishahyousaf/linkedin-exercise-files
d79692fd4594d5b6f70253f78e7c4822e7659a00
[ "MIT" ]
null
null
null
Chap04/04_02.py
elishahyousaf/linkedin-exercise-files
d79692fd4594d5b6f70253f78e7c4822e7659a00
[ "MIT" ]
5
2021-01-15T04:13:50.000Z
2021-02-06T02:52:42.000Z
print("Hi!") name = input("What's your name? ") print("It's nice to meet you,", name) answer = input("Are you enjoying the course? ") if answer == "Yes": print("That's good to hear!") print("Final statement")
15.642857
47
0.630137
b3908c1c5d44d8061adc96e75d3b2ff298ab0b00
9,939
py
Python
auth0/v3/test/management/test_users.py
Sytten/auth0-python
59c1942acbd9723adaf587ac4bc94c9583fe38a0
[ "MIT" ]
null
null
null
auth0/v3/test/management/test_users.py
Sytten/auth0-python
59c1942acbd9723adaf587ac4bc94c9583fe38a0
[ "MIT" ]
null
null
null
auth0/v3/test/management/test_users.py
Sytten/auth0-python
59c1942acbd9723adaf587ac4bc94c9583fe38a0
[ "MIT" ]
null
null
null
import unittest import mock from ...management.users import Users class TestUsers(unittest.TestCase): @mock.patch('auth0.v3.management.users.RestClient') def test_list(self, mock_rc): mock_instance = mock_rc.return_value u = Users(domain='domain', token='jwttoken') u.list() args, kwargs = mock_instance.get.call_args self.assertEqual('https://domain/api/v2/users', args[0]) self.assertEqual(kwargs['params'], { 'per_page': 25, 'page': 0, 'include_totals': 'true', 'sort': None, 'connection': None, 'fields': None, 'include_fields': 'true', 'q': None, 'search_engine': None }) u.list(page=1, per_page=50, sort='s', connection='con', q='q', search_engine='se', include_totals=False, fields=['a', 'b'], include_fields=False) args, kwargs = mock_instance.get.call_args self.assertEqual('https://domain/api/v2/users', args[0]) self.assertEqual(kwargs['params'], { 'per_page': 50, 'page': 1, 'include_totals': 'false', 'sort': 's', 'connection': 'con', 'fields': 'a,b', 'include_fields': 'false', 'q': 'q', 'search_engine': 'se' }) @mock.patch('auth0.v3.management.users.RestClient') def test_create(self, mock_rc): mock_instance = mock_rc.return_value u = Users(domain='domain', token='jwttoken') u.create({'a': 'b', 'c': 'd'}) args, kwargs = mock_instance.post.call_args self.assertEqual('https://domain/api/v2/users', args[0]) self.assertEqual(kwargs['data'], {'a': 'b', 'c': 'd'}) @mock.patch('auth0.v3.management.users.RestClient') def test_delete_all_users(self, mock_rc): mock_instance = mock_rc.return_value u = Users(domain='domain', token='jwttoken') u.delete_all_users() mock_instance.delete.assert_called_with( 'https://domain/api/v2/users' ) @mock.patch('auth0.v3.management.users.RestClient') def test_get(self, mock_rc): mock_instance = mock_rc.return_value u = Users(domain='domain', token='jwttoken') u.get('an-id') args, kwargs = mock_instance.get.call_args self.assertEqual('https://domain/api/v2/users/an-id', args[0]) self.assertEqual(kwargs['params'], {'fields': None, 'include_fields': 'true'}) u.get('an-id', fields=['a', 'b'], include_fields=False) args, kwargs = mock_instance.get.call_args self.assertEqual('https://domain/api/v2/users/an-id', args[0]) self.assertEqual(kwargs['params'], {'fields': 'a,b', 'include_fields': 'false'}) @mock.patch('auth0.v3.management.users.RestClient') def test_delete(self, mock_rc): mock_instance = mock_rc.return_value u = Users(domain='domain', token='jwttoken') u.delete('an-id') mock_instance.delete.assert_called_with( 'https://domain/api/v2/users/an-id' ) @mock.patch('auth0.v3.management.users.RestClient') def test_update(self, mock_rc): mock_instance = mock_rc.return_value u = Users(domain='domain', token='jwttoken') u.update('an-id', {'a': 'b', 'c': 'd'}) args, kwargs = mock_instance.patch.call_args self.assertEqual('https://domain/api/v2/users/an-id', args[0]) self.assertEqual(kwargs['data'], {'a': 'b', 'c': 'd'}) @mock.patch('auth0.v3.management.users.RestClient') def test_list_roles(self, mock_rc): mock_instance = mock_rc.return_value u = Users(domain='domain', token='jwttoken') u.list_roles('an-id') args, kwargs = mock_instance.get.call_args self.assertEqual('https://domain/api/v2/users/an-id/roles', args[0]) self.assertEqual(kwargs['params'], { 'per_page': 25, 'page': 0, 'include_totals': 'true' }) u.list_roles(id='an-id', page=1, per_page=50, include_totals=False) args, kwargs = mock_instance.get.call_args self.assertEqual('https://domain/api/v2/users/an-id/roles', args[0]) self.assertEqual(kwargs['params'], { 'per_page': 50, 'page': 1, 'include_totals': 'false' }) @mock.patch('auth0.v3.management.users.RestClient') def test_remove_roles(self, mock_rc): mock_instance = mock_rc.return_value u = Users(domain='domain', token='jwttoken') u.remove_roles('an-id', ['a', 'b']) args, kwargs = mock_instance.delete.call_args self.assertEqual('https://domain/api/v2/users/an-id/roles', args[0]) self.assertEqual(kwargs['data'], {'roles': ['a', 'b']}) @mock.patch('auth0.v3.management.users.RestClient') def test_add_roles(self, mock_rc): mock_instance = mock_rc.return_value u = Users(domain='domain', token='jwttoken') u.add_roles('an-id', ['a', 'b']) args, kwargs = mock_instance.post.call_args self.assertEqual('https://domain/api/v2/users/an-id/roles', args[0]) self.assertEqual(kwargs['data'], {'roles': ['a', 'b']}) @mock.patch('auth0.v3.management.users.RestClient') def test_list_permissions(self, mock_rc): mock_instance = mock_rc.return_value u = Users(domain='domain', token='jwttoken') u.list_permissions('an-id') args, kwargs = mock_instance.get.call_args self.assertEqual('https://domain/api/v2/users/an-id/permissions', args[0]) self.assertEqual(kwargs['params'], { 'per_page': 25, 'page': 0, 'include_totals': 'true' }) u.list_permissions(id='an-id', page=1, per_page=50, include_totals=False) args, kwargs = mock_instance.get.call_args self.assertEqual('https://domain/api/v2/users/an-id/permissions', args[0]) self.assertEqual(kwargs['params'], { 'per_page': 50, 'page': 1, 'include_totals': 'false' }) @mock.patch('auth0.v3.management.users.RestClient') def test_remove_permissions(self, mock_rc): mock_instance = mock_rc.return_value u = Users(domain='domain', token='jwttoken') u.remove_permissions('an-id', ['a', 'b']) args, kwargs = mock_instance.delete.call_args self.assertEqual('https://domain/api/v2/users/an-id/permissions', args[0]) self.assertEqual(kwargs['data'], {'permissions': ['a', 'b']}) @mock.patch('auth0.v3.management.users.RestClient') def test_add_permissions(self, mock_rc): mock_instance = mock_rc.return_value u = Users(domain='domain', token='jwttoken') u.add_permissions('an-id', ['a', 'b']) args, kwargs = mock_instance.post.call_args self.assertEqual('https://domain/api/v2/users/an-id/permissions', args[0]) self.assertEqual(kwargs['data'], {'permissions': ['a', 'b']}) @mock.patch('auth0.v3.management.users.RestClient') def test_delete_multifactor(self, mock_rc): mock_instance = mock_rc.return_value u = Users(domain='domain', token='jwttoken') u.delete_multifactor('an-id', 'provider') mock_instance.delete.assert_called_with( 'https://domain/api/v2/users/an-id/multifactor/provider' ) @mock.patch('auth0.v3.management.users.RestClient') def test_unlink_user_account(self, mock_rc): mock_instance = mock_rc.return_value u = Users(domain='domain', token='jwttoken') u.unlink_user_account('an-id', 'provider', 'user-id') mock_instance.delete.assert_called_with( 'https://domain/api/v2/users/an-id/identities/provider/user-id' ) @mock.patch('auth0.v3.management.users.RestClient') def test_link_user_account(self, mock_rc): mock_instance = mock_rc.return_value u = Users(domain='domain', token='jwttoken') u.link_user_account('user-id', {'a': 'b', 'c': 'd'}) args, kwargs = mock_instance.post.call_args self.assertEqual('https://domain/api/v2/users/user-id/identities', args[0]) self.assertEqual(kwargs['data'], {'a': 'b', 'c': 'd'}) @mock.patch('auth0.v3.management.users.RestClient') def test_regenerate_recovery_code(self, mock_rc): mock_instance = mock_rc.return_value u = Users(domain='domain', token='jwttoken') u.regenerate_recovery_code('user-id') mock_instance.post.assert_called_with( 'https://domain/api/v2/users/user-id/recovery-code-regeneration' ) @mock.patch('auth0.v3.management.users.RestClient') def test_get_guardian_enrollments(self, mock_rc): mock_instance = mock_rc.return_value u = Users(domain='domain', token='jwttoken') u.get_guardian_enrollments('user-id') mock_instance.get.assert_called_with( 'https://domain/api/v2/users/user-id/enrollments' ) @mock.patch('auth0.v3.management.users.RestClient') def test_get_log_events(self, mock_rc): mock_instance = mock_rc.return_value u = Users(domain='domain', token='jwttoken') u.get_log_events('used_id') args, kwargs = mock_instance.get.call_args self.assertEqual('https://domain/api/v2/users/used_id/logs', args[0]) self.assertEqual(kwargs['params']['page'], 0) self.assertEqual(kwargs['params']['per_page'], 50) self.assertIsNone(kwargs['params']['sort']) self.assertEqual(kwargs['params']['include_totals'], 'false')
34.272414
82
0.596941
2f7139db9f37f4086a35725290d154a4e7af5353
1,278
py
Python
tests/platforms/windows/msi/test_run.py
junefish/python-briefcase
93f5c22304b3914b3c20b82e01d0a5914119faef
[ "BSD-3-Clause" ]
917
2019-03-30T15:45:39.000Z
2022-03-31T05:32:02.000Z
tests/platforms/windows/msi/test_run.py
junefish/python-briefcase
93f5c22304b3914b3c20b82e01d0a5914119faef
[ "BSD-3-Clause" ]
429
2019-04-07T19:03:20.000Z
2022-03-31T23:47:42.000Z
tests/platforms/windows/msi/test_run.py
junefish/python-briefcase
93f5c22304b3914b3c20b82e01d0a5914119faef
[ "BSD-3-Clause" ]
166
2019-04-02T01:56:55.000Z
2022-03-28T19:10:02.000Z
import os from unittest import mock import pytest from briefcase.exceptions import BriefcaseCommandError from briefcase.platforms.windows.msi import WindowsMSIRunCommand def test_run_app(first_app_config, tmp_path): "A windows MSI can be started" command = WindowsMSIRunCommand(base_path=tmp_path) command.subprocess = mock.MagicMock() command.run_app(first_app_config) command.subprocess.run.assert_called_with( [ os.fsdecode(tmp_path / 'windows' / 'msi' / 'First App' / 'src' / 'python' / 'pythonw.exe'), "-m", "first_app" ], check=True ) def test_run_app_failed(first_app_config, tmp_path): "If there's a problem started the app, an exception is raised" command = WindowsMSIRunCommand(base_path=tmp_path) command.subprocess = mock.MagicMock() command.subprocess.run.side_effect = BriefcaseCommandError('problem') with pytest.raises(BriefcaseCommandError): command.run_app(first_app_config) # The run command was still invoked, though command.subprocess.run.assert_called_with( [ os.fsdecode(tmp_path / 'windows' / 'msi' / 'First App' / 'src' / 'python' / 'pythonw.exe'), "-m", "first_app" ], check=True )
29.72093
103
0.679186
72d91f5bd001e18848e19e82dbf9abdc17a98ba9
6,438
py
Python
pwrball info compile.py
mnewls/LSTM-Practice
4666b59a43cf0b4fd1db760413afc98fcb45ef85
[ "MIT" ]
null
null
null
pwrball info compile.py
mnewls/LSTM-Practice
4666b59a43cf0b4fd1db760413afc98fcb45ef85
[ "MIT" ]
null
null
null
pwrball info compile.py
mnewls/LSTM-Practice
4666b59a43cf0b4fd1db760413afc98fcb45ef85
[ "MIT" ]
null
null
null
from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.common.exceptions import TimeoutException, NoSuchElementException from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.action_chains import ActionChains # open each - grab date, job title, location - these will be different cols in the excel. # from openpyxl import Workbook import html5lib from selenium.webdriver.support.ui import Select # to find links from bs4 import BeautifulSoup import urllib.request import time # to sleep wb = Workbook() ws = wb.active ws.title = "Jobs" ws['B1'] = "Day" ws['C1'] = "Month" ws['D1'] = "Year" ws['E1'] = "WB1" ws['F1'] = "WB2" ws['G1'] = "WB3" ws['H1'] = "WB4" ws['I1'] = "WB5" ws['J1'] = "PB" ws['K1'] = "prize" def get_page_info(driver): count = 2 for url_year in range(1992, 2021, 1): url_str = r'https://www.lotto.net/powerball/numbers/' + str(url_year) #print(url_str) driver.get(url_str) time.sleep(2) #print(driver.find_element_by_xpath("//*[@id='content']/div[1]/div[1]/div[1]/text()").getText()) page_source = driver.page_source soup = BeautifulSoup(page_source, "html5lib") list_dates = [] is_odd = 1 list_days = [] list_year = [] list_month = [] for date in soup.findAll("div", {"class": "date"}): date_str = date.text[14:len(date.text) - 5] #if is_odd % 2 != 0: #date_str = date_str[1:len(date_str)] month = date_str[0:4] #print(month) if "Jan" in month: month_num = 1 elif "Feb" in month: month_num = 2 elif "Mar" in month: month_num = 3 elif "Apr" in month: month_num = 4 elif 'May' in month: month_num = 5 elif 'Jun' in month: month_num = 6 elif 'Jul' in month: month_num = 7 elif 'Aug' in month: month_num = 8 elif 'Sep' in month: month_num = 9 elif 'Oct' in month: month_num = 10 elif 'Nov' in month: month_num = 11 else: month_num = 12 print(month_num) list_month.append(month_num) #print(month_num) #print(date_str) date_nums = [] date_cleaned = date_str.replace('t', '') date_cleaned = date_cleaned.replace('h', '') date_cleaned = date_cleaned.replace('r', '') date_cleaned = date_cleaned.replace('s', '') date_cleaned = date_cleaned.replace('n', '') date_cleaned = date_cleaned.replace('d', '') for word in date_cleaned.split(): if word.isdigit(): date_nums.append(int(word)) list_days.append(date_nums[0]) list_year.append(date_nums[1]) is_odd+=1 #date_str = date_str.replace('t', '') #date_str = date_str.replace('h', '') list_dates.append(date_str) list_len = len(list_dates) #print(len(list_month)) #print(list_days) #print(len(list_days)) #print(list_year) #print(len(list_year)) #list_jackpots = soup.findAll("div", {"class": "jackpot"}) list_jackpots = [] for jackpot in soup.findAll("div", {"class": "jackpot"}): jackpot_str = jackpot.text[31:len(jackpot.text) - 21] jackpot_str = jackpot_str.replace('t', '') jackpot_str = jackpot_str.replace('n', '') jackpot_str = jackpot_str.replace('\'', '') list_jackpots.append(jackpot_str) #print(list_jackpots) #print(list_jackpots) #list_nums = soup.findAll("li", {"class": "ball ball"}) ball_num_list = [] for ball in soup.findAll("li", {"class": "ball ball"}): ball_num = ball.text ball_num_list.append(ball_num) pwr_ball_num_list = [] for pwr_ball in soup.findAll("li", {"class": "ball powerball"}): pwr_ball_num = pwr_ball.text[0:len(pwr_ball.text)-9] pwr_ball_num_list.append(pwr_ball_num) #print(len(pwr_ball_num_list)) WB1_list = ball_num_list[0:len(ball_num_list):5] WB2_list = ball_num_list[1:len(ball_num_list):5] WB3_list = ball_num_list[2:len(ball_num_list):5] WB4_list = ball_num_list[3:len(ball_num_list):5] WB5_list = ball_num_list[4:len(ball_num_list):5] #print(PB_list) #print(list_len) #print(WB1_list) #print(ball_num_list) #for i in num_draws for i in range(list_len): day_place = 'B' + str(count) month_place = 'C' + str(count) year_place = 'D' + str(count) WB1_place = 'E' + str(count) WB2_place = 'F' + str(count) WB3_place = 'G' + str(count) WB4_place = 'H' + str(count) WB5_place = 'I' + str(count) PB_place = 'J' + str(count) jackpot_place = 'K' + str(count) ws[day_place] = list_days[i] ws[month_place] = list_month[i] ws[year_place] = list_year[i] ws[WB1_place] = WB1_list[i] ws[WB2_place] = WB2_list[i] ws[WB3_place] = WB3_list[i] ws[WB4_place] = WB4_list[i] ws[WB5_place] = WB5_list[i] ws[PB_place] = pwr_ball_num_list[i] ws[jackpot_place] = list_jackpots[i] count += 1 def get_info(): options = webdriver.ChromeOptions() options.add_argument("--start-maximized") driver = webdriver.Chrome(executable_path=r'C:\Users\Michael\Desktop\Automate Application\chromedriver.exe', chrome_options=options) get_page_info(driver) wb.save('test_workbook.xlsx') get_info()
27.991304
137
0.536036
6d3cba4796d4fc31908258729a6464beedfec6d1
481
py
Python
Views.py
SarankumarJ/serversideprocessing
3cde30613b361c88b71f91779c5001d8ad34a585
[ "BSD-3-Clause" ]
null
null
null
Views.py
SarankumarJ/serversideprocessing
3cde30613b361c88b71f91779c5001d8ad34a585
[ "BSD-3-Clause" ]
null
null
null
Views.py
SarankumarJ/serversideprocessing
3cde30613b361c88b71f91779c5001d8ad34a585
[ "BSD-3-Clause" ]
null
null
null
from django.shortcuts import render # Create your views here. def areacalculation(request): context = {} context["area"] = "0" context["l"] = "0" context["b"] = "0" if request.method == 'POST': l= request.POST.get('length','0') b= request.POST.get('breadth','0') area = int(l) * int(b) context["area"] = area context["l"] = l context["b"] = b return render(request,'myapp/area.html',context)
28.294118
52
0.540541
39a15f889dc5784e1e360b19b3027bf53c22ff90
1,603
py
Python
interlink/management/commands/subscribe_members.py
czue/nadine
61fbfcac4d0c3159aa73500e47f4fa23c0aa9ef0
[ "Apache-2.0" ]
1
2019-08-15T00:10:38.000Z
2019-08-15T00:10:38.000Z
interlink/management/commands/subscribe_members.py
czue/nadine
61fbfcac4d0c3159aa73500e47f4fa23c0aa9ef0
[ "Apache-2.0" ]
null
null
null
interlink/management/commands/subscribe_members.py
czue/nadine
61fbfcac4d0c3159aa73500e47f4fa23c0aa9ef0
[ "Apache-2.0" ]
null
null
null
import os import sys import time import urllib.request, urllib.parse, urllib.error import logging import datetime logger = logging.getLogger() from django.core.management.base import BaseCommand, CommandError from django.contrib.auth.models import User from interlink.models import MailingList class Command(BaseCommand): help = "Subscribes every user with an active membership to a mailing list." args = "[mailing-list-id]" requires_system_checks = True def print_usage(self): print('./manage.py subscribe_members <mailing-list-id>') def handle(self, *args, **options): if len(args) != 1: self.print_usage() return ml_id = args[0] if not MailingList.objects.filter(pk=ml_id).exists(): logger.error('Did not find find mailing list with id %s' % mk_id) return mailing_list = MailingList.objects.get(pk=ml_id) for user in User.helper.active_members(): mailing_list.subscribers.add(user) # Copyright 2018 Office Nomads LLC (http://officenomads.name/) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
42.184211
580
0.724267
7f3ad456e16357d2a4a4b416c79731505a94744f
2,938
py
Python
libtbx/test_utils/python3_regression.py
hbrunie/cctbx_project
2d8cb383d50fe20cdbbe4bebae8ed35fabce61e5
[ "BSD-3-Clause-LBNL" ]
null
null
null
libtbx/test_utils/python3_regression.py
hbrunie/cctbx_project
2d8cb383d50fe20cdbbe4bebae8ed35fabce61e5
[ "BSD-3-Clause-LBNL" ]
null
null
null
libtbx/test_utils/python3_regression.py
hbrunie/cctbx_project
2d8cb383d50fe20cdbbe4bebae8ed35fabce61e5
[ "BSD-3-Clause-LBNL" ]
null
null
null
from __future__ import absolute_import, division, print_function import os def find_new_python3_incompatible_code(module_under_test): ''' Check source code to see if any files violate Python 3 syntax that previously did not. Example call: def test_find_python3_violations(): import xia2 import pytest import libtbx.test_utils.python3_regression as py3test result = py3test.find_new_python3_incompatible_code(xia2) if result is None: pytest.skip('No python3 interpreter available') elif result: pytest.fail(result) Known violations are kept in file .known-python3-violations in the module directory. :param module_under_test: The imported module that should be tested. This is the module object, not a string containing the name of the module. :return: False if the module contains no unexpected python 3 incompatible code. Returns None if the test can't be run. This will typically be due to a missing dependency such as the python 3 interpreter or a required library. If unexpected python 3 incompatible code is found a string containing a short summary is returned. ''' # File containing list of excluded files allowed_broken_files_list = '.known-python3-violations' # Mask all *PYTHON* variables from environment - Python3 will not like cctbx python settings environ_override = { k: '' for k in list(os.environ) if 'PYTHON' in k } module_path = module_under_test.__path__[0] try: import procrunner result = procrunner.run(['python3', '-m', 'compileall', '-x', '\.git', '-q', module_path], environment_override=environ_override, print_stdout=False) except ImportError: return None except OSError as e: if e.errno == 2: return None raise if result['stderr']: return 'Python3 compilation exited with unexpected STDERR output' if not result['exitcode']: # No compilation errors return False errors = [x.replace(module_path + os.path.sep, '').strip() for x in result['stdout'].split('***')] errors = filter(lambda x: "'" in x, errors) broken_files = { error.split("'")[1]: error for error in errors } exclusion_file = os.path.join(module_path, allowed_broken_files_list) with open(exclusion_file + '.log', 'w') as fh: fh.write("\n".join(sorted(broken_files))) if os.path.exists(exclusion_file): with open(exclusion_file, 'r') as fh: excluded_files = fh.read().splitlines() broken_files = { filename: broken_files[filename] for filename in broken_files if filename not in excluded_files } if not broken_files: # No syntax violations in new files return False for filename in sorted(broken_files): print(broken_files[filename], end="\n\n") return "{} file[s] contain newly introduced Python3 syntax errors".format(len(broken_files))
39.173333
153
0.698775
d5e6ac9339df56186b115d94268a6d726afa1197
214
py
Python
src/myproject/wsgi.py
MrRightHand97/hoc_git2
867cb10b35860ed6b18cc4e2f00dda8e78ea84be
[ "MIT" ]
null
null
null
src/myproject/wsgi.py
MrRightHand97/hoc_git2
867cb10b35860ed6b18cc4e2f00dda8e78ea84be
[ "MIT" ]
null
null
null
src/myproject/wsgi.py
MrRightHand97/hoc_git2
867cb10b35860ed6b18cc4e2f00dda8e78ea84be
[ "MIT" ]
null
null
null
""" WSGI config for myproject project. """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'myproject.settings') application = get_wsgi_application()
17.833333
69
0.794393
87962c3cc759c94f26d54d518030ea81020dd96a
6,893
py
Python
Scripts/txt2ctf.py
Wootai/CNTK
5eca042341c8152594e67652a44c3b733a2acaa0
[ "RSA-MD" ]
5
2017-08-28T08:27:18.000Z
2021-04-20T21:12:52.000Z
Scripts/txt2ctf.py
zhuyawen/CNTK
0ee09cf771bda9d4912790e0fed7322e89d86d87
[ "RSA-MD" ]
null
null
null
Scripts/txt2ctf.py
zhuyawen/CNTK
0ee09cf771bda9d4912790e0fed7322e89d86d87
[ "RSA-MD" ]
3
2019-08-23T11:42:14.000Z
2022-01-06T08:41:32.000Z
#!/usr/bin/env python # This script takes a list of dictionary files and a plain text utf-8 file and converts this text input file to CNTK text format. # # The input text file must contain N streams per line (N TAB-separated "columns") and should be accompanied by N dictionary files. # The input text file must be in the following form: # text1 TAB text2 TAB ... TAB textN # ..... # where each line represents one sequence across all N input streams. # Each text consists of one or more space-separated word tokens (samples). # # Dictionary files are text files that are required to be specified for all streams, # so the #dictionaries = #columns in the input file. # A dictionary contains a single token per line. The zero-based line number becomes the numeric index # of the token in the output CNTK text format file. # Example usage (i.e. for PennTreebank files): # 1) # sed -e 's/^<\/s> //' -e 's/ <\/s>$//' < en.txt > en.txt1 # sed -e 's/^<\/s> //' -e 's/ <\/s>$//' < fr.txt > fr.txt1 # paste en.txt1 fr.txt1 | txt2ctf.py --map en.dict fr.dict > en-fr.ctf # # 2) (assuming that the current dir is [cntk root]/Examples/SequenceToSequence/CMUDict/Data/) # sed -e 's/<s\/>/<\/s>\t<s>/' < cmudict-0.7b.train-dev-1-21.txt `#this will replace every '<s/>' with '</s>[tab]<s>'` |\ # python ../../../../Scripts/txt2ctf.py --map cmudict-0.7b.mapping cmudict-0.7b.mapping > cmudict-0.7b.train-dev-1-21.ctf # import sys import argparse import re def convert(dictionaryStreams, inputs, output, unk, annotated): # create in memory dictionaries dictionaries = [{ line.rstrip('\r\n').strip():index for index, line in enumerate(dic) } for dic in dictionaryStreams] # convert inputs for input in inputs: sequenceId = 0 for index, line in enumerate(input): line = line.rstrip('\r\n') columns = line.split("\t") if len(columns) != len(dictionaries): raise Exception("Number of dictionaries {0} does not correspond to the number of streams in line {1}:'{2}'" .format(len(dictionaries), index, line)) _convertSequence(dictionaries, columns, sequenceId, output, unk, annotated) sequenceId += 1 def _convertSequence(dictionaries, streams, sequenceId, output, unk, annotated): tokensPerStream = [[t for t in s.strip(' ').split(' ') if t != ""] for s in streams] maxLen = max(len(tokens) for tokens in tokensPerStream) # writing to the output file for sampleIndex in range(maxLen): output.write(str(sequenceId)) for streamIndex in range(len(tokensPerStream)): if len(tokensPerStream[streamIndex]) <= sampleIndex: output.write("\t") continue token = tokensPerStream[streamIndex][sampleIndex] if unk is not None and token not in dictionaries[streamIndex]: # try unk symbol if specified token = unk if token not in dictionaries[streamIndex]: raise Exception("Token '{0}' cannot be found in the dictionary for stream {1}".format(token, streamIndex)) value = dictionaries[streamIndex][token] output.write("\t|S" + str(streamIndex) + " "+ str(value) + ":1") if annotated: output.write(" |# " + re.sub(r'(\|(?!#))|(\|$)', r'|#', token)) output.write("\n") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Transforms text file given dictionaries into CNTK text format.") parser.add_argument('--map', help='List of dictionaries, given in the same order as streams in the input files', nargs="+", required=True) parser.add_argument('--annotated', help='Whether to annotate indices with tokens. Default is false', choices=["True", "False"], default="False", required=False) parser.add_argument('--output', help='Name of the output file, stdout if not given', default="", required=False) parser.add_argument('--input', help='Name of the inputs files, stdin if not given', default="", nargs="*", required=False) parser.add_argument('--unk', help='Name fallback symbol for tokens not in dictionary (same for all columns)', default=None, required=False) args = parser.parse_args() # creating inputs inputs = [sys.stdin] if len(args.input) != 0: inputs = [open(i, encoding="utf-8") for i in args.input] # creating output output = sys.stdout if args.output != "": output = open(args.output, "w") convert([open(d, encoding="utf-8") for d in args.map], inputs, output, args.unk, args.annotated == "True") ##################################################################################################### # Tests ##################################################################################################### try: import StringIO stringio = StringIO.StringIO except ImportError: from io import StringIO stringio = StringIO try: import pytest except ImportError: pass def test_simpleSanityCheck(): dictionary1 = stringio("hello\nmy\nworld\nof\nnothing\n") dictionary2 = stringio("let\nme\nbe\nclear\nabout\nit\n") input = stringio("hello my\tclear about\nworld of\tit let clear\n") output = stringio() convert([dictionary1, dictionary2], [input], output, None, False) expectedOutput = stringio() expectedOutput.write("0\t|S0 0:1\t|S1 3:1\n") expectedOutput.write("0\t|S0 1:1\t|S1 4:1\n") expectedOutput.write("1\t|S0 2:1\t|S1 5:1\n") expectedOutput.write("1\t|S0 3:1\t|S1 0:1\n") expectedOutput.write("1\t\t|S1 3:1\n") assert expectedOutput.getvalue() == output.getvalue() def test_thatPipeSymbolIsEscaped(): dictionary1 = stringio("|hello\nm|y\nworl|d\nof\nnothing|\n") dictionary2 = stringio("let|\nm|e\nb|#e\nclear\n||about\ni||#t\n") input = stringio("|hello m|y\tclear ||about\nworl|d of\ti||#t let| clear\n") output = stringio() convert([dictionary1, dictionary2], [input], output, None, True) expectedOutput = stringio() expectedOutput.write("0\t|S0 0:1 |# |#hello\t|S1 3:1 |# clear\n") expectedOutput.write("0\t|S0 1:1 |# m|#y\t|S1 4:1 |# |#|#about\n") expectedOutput.write("1\t|S0 2:1 |# worl|#d\t|S1 5:1 |# i|#|#t\n") expectedOutput.write("1\t|S0 3:1 |# of\t|S1 0:1 |# let|#\n") expectedOutput.write("1\t\t|S1 3:1 |# clear\n") for x in zip(output.getvalue().split('\n'), expectedOutput.getvalue().split('\n')): assert x[0] == x[1] def test_nonExistingWord(): dictionary1 = stringio("hello\nmy\nworld\nof\nnothing\n") input = stringio("hello my\nworld of nonexistent\n") output = stringio() with pytest.raises(Exception) as info: convert([dictionary1], [input], output, None, False) assert str(info.value) == "Token 'nonexistent' cannot be found in the dictionary for stream 0"
45.953333
143
0.631365
8ca4a2f361a8ce7b3083a6a3d4de23bda7e0abf0
20,495
py
Python
src/k8s-extension/azext_k8s_extension/vendored_sdks/v2021_03_01/aio/operations/_source_control_configurations_operations.py
haroonf/azure-cli-extensions
61c044d34c224372f186934fa7c9313f1cd3a525
[ "MIT" ]
1
2022-02-01T18:50:12.000Z
2022-02-01T18:50:12.000Z
src/k8s-extension/azext_k8s_extension/vendored_sdks/v2021_03_01/aio/operations/_source_control_configurations_operations.py
haroonf/azure-cli-extensions
61c044d34c224372f186934fa7c9313f1cd3a525
[ "MIT" ]
9
2022-03-25T19:35:49.000Z
2022-03-31T06:09:47.000Z
src/k8s-extension/azext_k8s_extension/vendored_sdks/v2021_03_01/aio/operations/_source_control_configurations_operations.py
haroonf/azure-cli-extensions
61c044d34c224372f186934fa7c9313f1cd3a525
[ "MIT" ]
1
2022-03-10T22:13:02.000Z
2022-03-10T22:13:02.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.tracing.decorator_async import distributed_trace_async from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models from ..._vendor import _convert_request from ...operations._source_control_configurations_operations import build_create_or_update_request, build_delete_request_initial, build_get_request, build_list_request T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class SourceControlConfigurationsOperations: """SourceControlConfigurationsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.kubernetesconfiguration.v2021_03_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace_async async def get( self, resource_group_name: str, cluster_rp: Union[str, "_models.Enum0"], cluster_resource_name: Union[str, "_models.Enum1"], cluster_name: str, source_control_configuration_name: str, **kwargs: Any ) -> "_models.SourceControlConfiguration": """Gets details of the Source Control Configuration. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param cluster_rp: The Kubernetes cluster RP - either Microsoft.ContainerService (for AKS clusters) or Microsoft.Kubernetes (for OnPrem K8S clusters). :type cluster_rp: str or ~azure.mgmt.kubernetesconfiguration.v2021_03_01.models.Enum0 :param cluster_resource_name: The Kubernetes cluster resource name - either managedClusters (for AKS clusters) or connectedClusters (for OnPrem K8S clusters). :type cluster_resource_name: str or ~azure.mgmt.kubernetesconfiguration.v2021_03_01.models.Enum1 :param cluster_name: The name of the kubernetes cluster. :type cluster_name: str :param source_control_configuration_name: Name of the Source Control Configuration. :type source_control_configuration_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: SourceControlConfiguration, or the result of cls(response) :rtype: ~azure.mgmt.kubernetesconfiguration.v2021_03_01.models.SourceControlConfiguration :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.SourceControlConfiguration"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_get_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, cluster_rp=cluster_rp, cluster_resource_name=cluster_resource_name, cluster_name=cluster_name, source_control_configuration_name=source_control_configuration_name, template_url=self.get.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('SourceControlConfiguration', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{clusterRp}/{clusterResourceName}/{clusterName}/providers/Microsoft.KubernetesConfiguration/sourceControlConfigurations/{sourceControlConfigurationName}'} # type: ignore @distributed_trace_async async def create_or_update( self, resource_group_name: str, cluster_rp: Union[str, "_models.Enum0"], cluster_resource_name: Union[str, "_models.Enum1"], cluster_name: str, source_control_configuration_name: str, source_control_configuration: "_models.SourceControlConfiguration", **kwargs: Any ) -> "_models.SourceControlConfiguration": """Create a new Kubernetes Source Control Configuration. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param cluster_rp: The Kubernetes cluster RP - either Microsoft.ContainerService (for AKS clusters) or Microsoft.Kubernetes (for OnPrem K8S clusters). :type cluster_rp: str or ~azure.mgmt.kubernetesconfiguration.v2021_03_01.models.Enum0 :param cluster_resource_name: The Kubernetes cluster resource name - either managedClusters (for AKS clusters) or connectedClusters (for OnPrem K8S clusters). :type cluster_resource_name: str or ~azure.mgmt.kubernetesconfiguration.v2021_03_01.models.Enum1 :param cluster_name: The name of the kubernetes cluster. :type cluster_name: str :param source_control_configuration_name: Name of the Source Control Configuration. :type source_control_configuration_name: str :param source_control_configuration: Properties necessary to Create KubernetesConfiguration. :type source_control_configuration: ~azure.mgmt.kubernetesconfiguration.v2021_03_01.models.SourceControlConfiguration :keyword callable cls: A custom type or function that will be passed the direct response :return: SourceControlConfiguration, or the result of cls(response) :rtype: ~azure.mgmt.kubernetesconfiguration.v2021_03_01.models.SourceControlConfiguration :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.SourceControlConfiguration"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] _json = self._serialize.body(source_control_configuration, 'SourceControlConfiguration') request = build_create_or_update_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, cluster_rp=cluster_rp, cluster_resource_name=cluster_resource_name, cluster_name=cluster_name, source_control_configuration_name=source_control_configuration_name, content_type=content_type, json=_json, template_url=self.create_or_update.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('SourceControlConfiguration', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('SourceControlConfiguration', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{clusterRp}/{clusterResourceName}/{clusterName}/providers/Microsoft.KubernetesConfiguration/sourceControlConfigurations/{sourceControlConfigurationName}'} # type: ignore async def _delete_initial( self, resource_group_name: str, cluster_rp: Union[str, "_models.Enum0"], cluster_resource_name: Union[str, "_models.Enum1"], cluster_name: str, source_control_configuration_name: str, **kwargs: Any ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_delete_request_initial( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, cluster_rp=cluster_rp, cluster_resource_name=cluster_resource_name, cluster_name=cluster_name, source_control_configuration_name=source_control_configuration_name, template_url=self._delete_initial.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{clusterRp}/{clusterResourceName}/{clusterName}/providers/Microsoft.KubernetesConfiguration/sourceControlConfigurations/{sourceControlConfigurationName}'} # type: ignore @distributed_trace_async async def begin_delete( self, resource_group_name: str, cluster_rp: Union[str, "_models.Enum0"], cluster_resource_name: Union[str, "_models.Enum1"], cluster_name: str, source_control_configuration_name: str, **kwargs: Any ) -> AsyncLROPoller[None]: """This will delete the YAML file used to set up the Source control configuration, thus stopping future sync from the source repo. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param cluster_rp: The Kubernetes cluster RP - either Microsoft.ContainerService (for AKS clusters) or Microsoft.Kubernetes (for OnPrem K8S clusters). :type cluster_rp: str or ~azure.mgmt.kubernetesconfiguration.v2021_03_01.models.Enum0 :param cluster_resource_name: The Kubernetes cluster resource name - either managedClusters (for AKS clusters) or connectedClusters (for OnPrem K8S clusters). :type cluster_resource_name: str or ~azure.mgmt.kubernetesconfiguration.v2021_03_01.models.Enum1 :param cluster_name: The name of the kubernetes cluster. :type cluster_name: str :param source_control_configuration_name: Name of the Source Control Configuration. :type source_control_configuration_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises: ~azure.core.exceptions.HttpResponseError """ polling = kwargs.pop('polling', True) # type: Union[bool, azure.core.polling.AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, cluster_rp=cluster_rp, cluster_resource_name=cluster_resource_name, cluster_name=cluster_name, source_control_configuration_name=source_control_configuration_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{clusterRp}/{clusterResourceName}/{clusterName}/providers/Microsoft.KubernetesConfiguration/sourceControlConfigurations/{sourceControlConfigurationName}'} # type: ignore @distributed_trace def list( self, resource_group_name: str, cluster_rp: Union[str, "_models.Enum0"], cluster_resource_name: Union[str, "_models.Enum1"], cluster_name: str, **kwargs: Any ) -> AsyncIterable["_models.SourceControlConfigurationList"]: """List all Source Control Configurations. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param cluster_rp: The Kubernetes cluster RP - either Microsoft.ContainerService (for AKS clusters) or Microsoft.Kubernetes (for OnPrem K8S clusters). :type cluster_rp: str or ~azure.mgmt.kubernetesconfiguration.v2021_03_01.models.Enum0 :param cluster_resource_name: The Kubernetes cluster resource name - either managedClusters (for AKS clusters) or connectedClusters (for OnPrem K8S clusters). :type cluster_resource_name: str or ~azure.mgmt.kubernetesconfiguration.v2021_03_01.models.Enum1 :param cluster_name: The name of the kubernetes cluster. :type cluster_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either SourceControlConfigurationList or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.kubernetesconfiguration.v2021_03_01.models.SourceControlConfigurationList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.SourceControlConfigurationList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) def prepare_request(next_link=None): if not next_link: request = build_list_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, cluster_rp=cluster_rp, cluster_resource_name=cluster_resource_name, cluster_name=cluster_name, template_url=self.list.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: request = build_list_request( subscription_id=self._config.subscription_id, resource_group_name=resource_group_name, cluster_rp=cluster_rp, cluster_resource_name=cluster_resource_name, cluster_name=cluster_name, template_url=next_link, ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("SourceControlConfigurationList", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{clusterRp}/{clusterResourceName}/{clusterName}/providers/Microsoft.KubernetesConfiguration/sourceControlConfigurations'} # type: ignore
50.730198
288
0.697926
76114227dea45e2774c5ea58d11547cf90d1f39c
2,443
py
Python
toolkit/tamr_aligner/system/misc.py
shamy1997/HIT-SCIR-CoNLL2019
48a0a0429bae18968efaffbe6e5c97344e1d8ff1
[ "Apache-2.0" ]
24
2019-10-07T12:38:00.000Z
2021-09-28T06:44:56.000Z
toolkit/tamr_aligner/system/misc.py
shamy1997/HIT-SCIR-CoNLL2019
48a0a0429bae18968efaffbe6e5c97344e1d8ff1
[ "Apache-2.0" ]
13
2020-01-14T13:26:37.000Z
2020-09-21T11:35:11.000Z
toolkit/tamr_aligner/system/misc.py
shamy1997/HIT-SCIR-CoNLL2019
48a0a0429bae18968efaffbe6e5c97344e1d8ff1
[ "Apache-2.0" ]
10
2019-10-09T07:14:05.000Z
2020-12-11T19:02:13.000Z
#!/usr/bin/env python from __future__ import print_function from __future__ import unicode_literals import sys from datetime import datetime _DATE_FORMATS = { '%y0000': (True, False, False), '%y%m00': (True, True, False), '%y%m%d': (True, True, True), '%Y0000': (True, False, False), '%Y%m00': (True, True, False), '%d %B %Y': (True, True, True), '%d %B': (True, True, False), '%d %Y': (True, False, True), '%Y%m%d': (True, True, True), '%Y-%m-%d': (True, True, True), '%m/%d': (False, True, True), '%m/%d/%Y': (True, True, True), '%m - %d - %Y': (True, True, True), '%B %Y': (True, True, False), '%B , %Y': (True, True, False), '%B %d %Y': (True, True, True), '%B %d , %Y': (True, True, True), '%B %d': (False, True, True), '%B %dst': (False, True, True), '%B %dnd': (False, True, True), '%B %drd': (False, True, True), '%B %dth': (False, True, True), '%B': (False, True, False), '%Y': (True, False, False), '%y': (True, False, False), } def parse_date(expression): results = [] for format_ in _DATE_FORMATS: try: result = datetime.strptime(expression, format_) results.append((result, _DATE_FORMATS[format_])) except: continue results = list(filter(lambda result: 1900 <= result[0].year < 2100, results)) if len(results) > 1: return results[0] elif len(results) == 1: return results[0] else: return None, (False, False, False) def parse_all_dates(expression): results = [] for format_ in _DATE_FORMATS: try: result = datetime.strptime(expression, format_) results.append((result, _DATE_FORMATS[format_])) except: continue results = list(filter(lambda r: 1900 <= r[0].year < 2100, results)) return results def test(): for line in open(sys.argv[1], 'r'): expression, fields = line.strip().split('|||') expression = expression.strip() result = parse_date(expression) slots = result[1] for field in fields: if field == 'year': assert slots[0] if field == 'month': assert slots[1] if field == 'day': assert slots[2] print('{0} ||| {1} ||| {2}'.format(expression, slots, fields), file=sys.stderr) if __name__ == "__main__": test()
29.792683
87
0.535407
58a31a0a5d2f788e2a08726a79686f629c7b6eca
8,925
py
Python
plugins/hdfs_assetstore/server/assetstore.py
data-exp-lab/girder
25e5847eaefec75f02c83f8d46aa55dcc59acb01
[ "Apache-2.0" ]
1
2019-11-14T18:13:26.000Z
2019-11-14T18:13:26.000Z
plugins/hdfs_assetstore/server/assetstore.py
data-exp-lab/girder
25e5847eaefec75f02c83f8d46aa55dcc59acb01
[ "Apache-2.0" ]
3
2018-11-15T19:52:40.000Z
2022-02-14T21:56:22.000Z
plugins/hdfs_assetstore/server/assetstore.py
data-exp-lab/girder
25e5847eaefec75f02c83f8d46aa55dcc59acb01
[ "Apache-2.0" ]
3
2018-05-21T19:45:19.000Z
2019-04-08T19:53:07.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################### # Copyright Kitware Inc. # # Licensed under the Apache License, Version 2.0 ( the "License" ); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### import os import posixpath import pwd import requests from snakebite.client import Client as HdfsClient import uuid from girder import logger from girder.api.rest import setResponseHeader from girder.exceptions import ValidationException from girder.utility.abstract_assetstore_adapter import AbstractAssetstoreAdapter class HdfsAssetstoreAdapter(AbstractAssetstoreAdapter): def __init__(self, assetstore): super(HdfsAssetstoreAdapter, self).__init__(assetstore) self.client = self._getClient(self.assetstore) @staticmethod def _getHdfsUser(assetstore): """ If the given assetstore has an effective user specified, this returns it. Otherwise returns the current user. """ return assetstore['hdfs'].get('user') or pwd.getpwuid(os.getuid())[0] @staticmethod def _getClient(assetstore): return HdfsClient( host=assetstore['hdfs']['host'], port=assetstore['hdfs']['port'], use_trash=False, effective_user=HdfsAssetstoreAdapter._getHdfsUser(assetstore) ) def _absPath(self, doc): """ Return the absolute path in HDFS for a given file or upload. :param doc: The file or upload document. """ return posixpath.join( self.assetstore['hdfs']['path'], doc['hdfs']['path']) @staticmethod def validateInfo(doc): """ Ensures we have the necessary information to connect to HDFS instance, and uses snakebite to actually connect to it. """ info = doc.get('hdfs', {}) for field in ('host', 'port', 'path', 'webHdfsPort', 'user'): if field not in info: raise ValidationException('Missing %s field.' % field) if not info['webHdfsPort']: info['webHdfsPort'] = 50070 try: info['webHdfsPort'] = int(info['webHdfsPort']) info['port'] = int(info['port']) except ValueError: raise ValidationException('Port values must be numeric.', field='port') try: client = HdfsAssetstoreAdapter._getClient(doc) client.serverdefaults() except Exception: raise ValidationException('Could not connect to HDFS at %s:%d.' % (info['host'], info['port'])) # TODO test connection to webHDFS? Not now since it's not required if not posixpath.isabs(info['path']): raise ValidationException('Path must be absolute.', field='path') if not client.test(info['path'], exists=True, directory=True): res = client.mkdir([info['path']], create_parent=True).next() if not res['result']: raise ValidationException(res['error'], field='path') return doc def capacityInfo(self): try: info = self.client.df() return { 'free': info['capacity'] - info['used'], 'total': info['capacity'] } except Exception: return { 'free': None, 'total': None } def downloadFile(self, file, offset=0, headers=True, endByte=None, contentDisposition=None, extraParameters=None, **kwargs): if endByte is None or endByte > file['size']: endByte = file['size'] if headers: setResponseHeader('Accept-Ranges', 'bytes') self.setContentHeaders(file, offset, endByte, contentDisposition) if file['hdfs'].get('imported'): path = file['hdfs']['path'] else: path = self._absPath(file) def stream(): position = 0 fileStream = self.client.cat([path]).next() shouldBreak = False for chunk in fileStream: chunkLen = len(chunk) if position < offset: if position + chunkLen > offset: if position + chunkLen > endByte: chunkLen = endByte - position shouldBreak = True yield chunk[offset - position:chunkLen] else: if position + chunkLen > endByte: chunkLen = endByte - position shouldBreak = True yield chunk[:chunkLen] position += chunkLen if shouldBreak: break return stream def deleteFile(self, file): """ Only deletes the file if it is managed (i.e. not an imported file). """ if not file['hdfs'].get('imported'): res = self.client.delete([self._absPath(file)]).next() if not res['result']: raise Exception('Failed to delete HDFS file %s: %s' % ( res['path'], res.get('error'))) def initUpload(self, upload): uid = uuid.uuid4().hex relPath = posixpath.join(uid[0:2], uid[2:4], uid) upload['hdfs'] = { 'path': relPath } absPath = self._absPath(upload) parentDir = posixpath.dirname(absPath) if not self.client.test(parentDir, exists=True, directory=True): res = self.client.mkdir([posixpath.dirname(absPath)], create_parent=True).next() if not res['result']: raise Exception(res['error']) if self.client.test(absPath, exists=True): raise Exception('File already exists: %s.' % absPath) res = self.client.touchz([absPath]).next() if not res['result']: raise Exception(res['error']) return upload def uploadChunk(self, upload, chunk): # For now, we use webhdfs when writing files since the process of # implementing the append operation ourselves with protobuf is too # expensive. If snakebite adds support for append in future releases, # we should use that instead. url = ('http://%s:%d/webhdfs/v1%s?op=APPEND&namenoderpcaddress=%s:%d' '&user.name=%s') url %= ( self.assetstore['hdfs']['host'], self.assetstore['hdfs']['webHdfsPort'], self._absPath(upload), self.assetstore['hdfs']['host'], self.assetstore['hdfs']['port'], self._getHdfsUser(self.assetstore) ) resp = requests.post(url, allow_redirects=False) try: resp.raise_for_status() except Exception: logger.exception('HDFS response: ' + resp.text) raise Exception('Error appending to HDFS, see log for details.') if resp.status_code != 307: raise Exception('Expected 307 redirection to data node, instead ' 'got %d: %s' % (resp.status_code, resp.text)) resp = requests.post(resp.headers['Location'], data=chunk) chunk.close() try: resp.raise_for_status() except Exception: logger.exception('HDFS response: ' + resp.text) raise Exception('Error appending to HDFS, see log for details.') upload['received'] = self.requestOffset(upload) try: resp.raise_for_status() except Exception: logger.exception('HDFS response: ' + resp.text) raise Exception('Error appending to HDFS, see log for details.') return upload def finalizeUpload(self, upload, file): file['hdfs'] = upload['hdfs'] return file def cancelUpload(self, upload): absPath = self._absPath(upload) if self.client.test(absPath, exists=True): res = self.client.delete([absPath]).next() if not res['result']: raise Exception('Failed to delete HDFS file %s: %s' % ( res['path'], res.get('error'))) def requestOffset(self, upload): return self.client.stat([self._absPath(upload)])['length']
35.7
80
0.561345
b3e9af9a599f13497d4bf86bac6c14f6fd6413ad
6,691
py
Python
sabnzbd/articlecache.py
pcjacobse/sabnzbd
494e72a9963a1810e69f4e0f69df7c9dfb9256b0
[ "0BSD", "PSF-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause" ]
null
null
null
sabnzbd/articlecache.py
pcjacobse/sabnzbd
494e72a9963a1810e69f4e0f69df7c9dfb9256b0
[ "0BSD", "PSF-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause" ]
null
null
null
sabnzbd/articlecache.py
pcjacobse/sabnzbd
494e72a9963a1810e69f4e0f69df7c9dfb9256b0
[ "0BSD", "PSF-2.0", "BSD-2-Clause", "MIT", "BSD-3-Clause" ]
null
null
null
#!/usr/bin/python -OO # Copyright 2008-2017 The SABnzbd-Team <[email protected]> # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. """ sabnzbd.articlecache - Article cache handling """ import sys import logging import threading import sabnzbd from sabnzbd.decorators import synchronized from sabnzbd.constants import GIGI, ANFO, Status ARTICLE_LOCK = threading.Lock() class ArticleCache(object): do = None def __init__(self): self.__cache_limit_org = 0 self.__cache_limit = 0 self.__cache_size = 0 self.__article_list = [] # List of buffered articles self.__article_table = {} # Dict of buffered articles ArticleCache.do = self @synchronized(ARTICLE_LOCK) def cache_info(self): return ANFO(len(self.__article_list), abs(self.__cache_size), self.__cache_limit_org) @synchronized(ARTICLE_LOCK) def new_limit(self, limit): """ Called when cache limit changes """ self.__cache_limit_org = limit if limit < 0: self.__cache_limit = GIGI else: self.__cache_limit = min(limit, GIGI) @synchronized(ARTICLE_LOCK) def reserve_space(self, data): """ Is there space left in the set limit? """ data_size = sys.getsizeof(data)*64 self.__cache_size += data_size if self.__cache_size + data_size > self.__cache_limit: return False else: return True @synchronized(ARTICLE_LOCK) def free_reserve_space(self, data): """ Remove previously reserved space """ data_size = sys.getsizeof(data)*64 self.__cache_size -= data_size return self.__cache_size + data_size < self.__cache_limit @synchronized(ARTICLE_LOCK) def save_article(self, article, data): nzf = article.nzf nzo = nzf.nzo if nzo.is_gone(): # Do not discard this article because the # file might still be processed at this moment!! if sabnzbd.LOG_ALL: logging.debug("%s is discarded", article) return saved_articles = article.nzf.nzo.saved_articles if article not in saved_articles: saved_articles.append(article) if self.__cache_limit: if self.__cache_limit < 0: self.__add_to_cache(article, data) else: data_size = len(data) while (self.__cache_size > (self.__cache_limit - data_size)) \ and self.__article_list: # Flush oldest article in cache old_article = self.__article_list.pop(0) old_data = self.__article_table.pop(old_article) self.__cache_size -= len(old_data) # No need to flush if this is a refreshment article if old_article != article: self.__flush_article(old_article, old_data) # Does our article fit into our limit now? if (self.__cache_size + data_size) <= self.__cache_limit: self.__add_to_cache(article, data) else: self.__flush_article(article, data) else: self.__flush_article(article, data) @synchronized(ARTICLE_LOCK) def load_article(self, article): data = None nzo = article.nzf.nzo if article in self.__article_list: data = self.__article_table.pop(article) self.__article_list.remove(article) self.__cache_size -= len(data) if sabnzbd.LOG_ALL: logging.debug("Loaded %s from cache", article) elif article.art_id: data = sabnzbd.load_data(article.art_id, nzo.workpath, remove=True, do_pickle=False, silent=True) if article in nzo.saved_articles: nzo.remove_saved_article(article) return data @synchronized(ARTICLE_LOCK) def flush_articles(self): self.__cache_size = 0 while self.__article_list: article = self.__article_list.pop(0) data = self.__article_table.pop(article) self.__flush_article(article, data) @synchronized(ARTICLE_LOCK) def purge_articles(self, articles): if sabnzbd.LOG_ALL: logging.debug("Purgable articles -> %s", articles) for article in articles: if article in self.__article_list: self.__article_list.remove(article) data = self.__article_table.pop(article) self.__cache_size -= len(data) if article.art_id: sabnzbd.remove_data(article.art_id, article.nzf.nzo.workpath) def __flush_article(self, article, data): nzf = article.nzf nzo = nzf.nzo if nzo.is_gone(): # Do not discard this article because the # file might still be processed at this moment!! if sabnzbd.LOG_ALL: logging.debug("%s is discarded", article) return art_id = article.get_art_id() if art_id: if sabnzbd.LOG_ALL: logging.debug("Flushing %s to disk", article) # Save data, but don't complain when destination folder is missing # because this flush may come after completion of the NZO. sabnzbd.save_data(data, art_id, nzo.workpath, do_pickle=False, silent=True) else: logging.warning("Flushing %s failed -> no art_id", article) def __add_to_cache(self, article, data): if article in self.__article_table: self.__cache_size -= len(self.__article_table[article]) else: self.__article_list.append(article) self.__article_table[article] = data self.__cache_size += len(data) if sabnzbd.LOG_ALL: logging.debug("Added %s to cache", article) # Create the instance ArticleCache()
34.312821
93
0.619937
78d3cd75fbc148d0f5f79dc0122ac646f29d5cf1
2,898
py
Python
lasing.py
Marshblocker/lasing
6b664a568c12e2494c35aa4a13e981ffc55dd542
[ "MIT" ]
null
null
null
lasing.py
Marshblocker/lasing
6b664a568c12e2494c35aa4a13e981ffc55dd542
[ "MIT" ]
null
null
null
lasing.py
Marshblocker/lasing
6b664a568c12e2494c35aa4a13e981ffc55dd542
[ "MIT" ]
null
null
null
from os import system from time import sleep from typing import NewType, TypedDict import random GRID_CHAR = '*' BOARD_WIDTH = 80 BOARD_HEIGHT = 40 class Walker(TypedDict): pos: list[int] free: bool Traversed = bool BoardType = NewType("BoardType", list[list[Traversed]]) WalkersType = NewType("WalkersType", list[Walker]) def populate_board(board: BoardType, n: int) -> WalkersType: walkers = WalkersType([{"pos": [0, 0], "free": True} for _ in range(n)]) for i in range(n): while True: r: int = random.randint(0, BOARD_HEIGHT - 1) c: int = random.randint(0, BOARD_WIDTH - 1) if not board[r][c]: walkers[i]["pos"] = [r, c] board[r][c] = True break return walkers def check_and_update_board(direction: int, old_pos: list[int], board: BoardType) -> tuple[bool, list[int]]: occupied: bool = True r, c = old_pos match direction: case 0: # UP r += 1 case 1: # RIGHT c += 1 case 2: # DOWN r -= 1 case 3: # LEFT c -= 1 if 0 < r < BOARD_HEIGHT and 0 < c < BOARD_WIDTH: occupied = board[r][c] if not occupied: board[r][c] = True return (occupied, [r, c]) def clear_screen() -> None: system('cls') def print_board(board: BoardType, clear: bool = True) -> None: board_str = "\n".join(["".join([GRID_CHAR if e else " " for e in row]) for row in board]) print(board_str) if clear: sleep(0.001) clear_screen() def main(): n = int(input("n: ")) board = BoardType([[False for _ in range(BOARD_WIDTH)] for _ in range(BOARD_HEIGHT)]) walkers: WalkersType = populate_board(board, n) stuck_walkers_count = 0 while stuck_walkers_count != n: print_board(board) for i in range(len(walkers)): available_directions: list[int] = [0, 1, 2, 3] if walkers[i]["free"]: while len(available_directions): direction: int = random.choice(available_directions) occupied, new_pos = \ check_and_update_board(direction, walkers[i]["pos"], board) if occupied: available_directions.remove(direction) else: walkers[i]["pos"] = new_pos break if not len(available_directions): walkers[i]["free"] = False stuck_walkers_count += 1 print_board(board, clear=False) if __name__ == "__main__": main()
27.6
77
0.503796
3092ec169a646e317504bfb1438b815c6dc1ccaf
9,761
py
Python
fanficfare/adapters/adapter_siyecouk.py
chocolatechipcats/FanFicFare
3874878e9548a250ceb672d88f579f02994f56cc
[ "Apache-2.0" ]
null
null
null
fanficfare/adapters/adapter_siyecouk.py
chocolatechipcats/FanFicFare
3874878e9548a250ceb672d88f579f02994f56cc
[ "Apache-2.0" ]
null
null
null
fanficfare/adapters/adapter_siyecouk.py
chocolatechipcats/FanFicFare
3874878e9548a250ceb672d88f579f02994f56cc
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2011 Fanficdownloader team, 2020 FanFicFare team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Software: eFiction from __future__ import absolute_import import logging logger = logging.getLogger(__name__) import re from ..htmlcleanup import stripHTML from .. import exceptions as exceptions # py2 vs py3 transition from .base_adapter import BaseSiteAdapter, makeDate # This function is called by the downloader in all adapter_*.py files # in this dir to register the adapter class. So it needs to be # updated to reflect the class below it. That, plus getSiteDomain() # take care of 'Registering'. def getClass(): return SiyeCoUkAdapter # XXX # Class name has to be unique. Our convention is camel case the # sitename with Adapter at the end. www is skipped. class SiyeCoUkAdapter(BaseSiteAdapter): # XXX def __init__(self, config, url): BaseSiteAdapter.__init__(self, config, url) # get storyId from url--url validation guarantees query is only sid=1234 self.story.setMetadata('storyId',self.parsedUrl.query.split('=',)[1]) # normalized story URL. self._setURL('https://' + self.getSiteDomain() + '/siye/viewstory.php?sid='+self.story.getMetadata('storyId')) # Each adapter needs to have a unique site abbreviation. self.story.setMetadata('siteabbrev','siye') # XXX # The date format will vary from site to site. # http://docs.python.org/library/datetime.html#strftime-strptime-behavior self.dateformat = "%Y.%m.%d" # XXX @staticmethod # must be @staticmethod, don't remove it. def getSiteDomain(): # The site domain. Does have www here, if it uses it. return 'www.siye.co.uk' # XXX @classmethod def getAcceptDomains(cls): return ['www.siye.co.uk','siye.co.uk'] @classmethod def getSiteExampleURLs(cls): return "https://"+cls.getSiteDomain()+"/siye/viewstory.php?sid=1234" def getSiteURLPattern(self): return r"https?://(www\.)?siye\.co\.uk/(siye/)?"+re.escape("viewstory.php?sid=")+r"\d+$" ## Getting the chapter list and the meta data, plus 'is adult' checking. def extractChapterUrlsAndMetadata(self): # index=1 makes sure we see the story chapter index. Some # sites skip that for one-chapter stories. # Except it doesn't this time. :-/ url = self.url #+'&index=1'+addurl logger.debug("URL: "+url) data = self.get_request(url) soup = self.make_soup(data) # print data # Find authorid and URL from... author url. a = soup.find('a', href=re.compile(r"viewuser.php\?uid=\d+")) if a is None: raise exceptions.StoryDoesNotExist(self.url) self.story.setMetadata('authorId',a['href'].split('=')[1]) self.story.setMetadata('authorUrl','https://'+self.host+'/siye/'+a['href']) self.story.setMetadata('author',a.string) # need(or easier) to pull other metadata from the author's list page. authsoup = self.make_soup(self.get_request(self.story.getMetadata('authorUrl'))) # remove author profile incase they've put the story URL in their bio. profile = authsoup.find('div',{'id':'profile'}) if profile: # in case it changes. profile.extract() ## Title titlea = authsoup.find('a', href=re.compile(r'viewstory.php\?sid='+self.story.getMetadata('storyId')+"$")) self.story.setMetadata('title',stripHTML(titlea)) # Find the chapters (from soup, not authsoup): for chapter in soup.findAll('a', href=re.compile(r'viewstory.php\?sid='+self.story.getMetadata('storyId')+r"&chapter=\d+$")): # just in case there's tags, like <i> in chapter titles. self.add_chapter(chapter,'https://'+self.host+'/siye/'+chapter['href']) if self.num_chapters() < 1: self.add_chapter(self.story.getMetadata('title'),url) # The stuff we can get from the chapter list/one-shot page are # in the first table with 95% width. metatable = soup.find('table',{'width':'95%'}) # Categories cat_as = metatable.findAll('a', href=re.compile(r'categories.php')) for cat_a in cat_as: self.story.addToList('category',stripHTML(cat_a)) for label in metatable.find_all('b'): # html5lib doesn't give me \n for <br> anymore. # I expect there's a better way, but this is what came to # mind today. -JM part = stripHTML(label) nxtbr = label.find_next_sibling('br') nxtsib = label.next_sibling value = "" while nxtsib != nxtbr: value += stripHTML(nxtsib) nxtsib = nxtsib.next_sibling # logger.debug("label:%s value:%s"%(part,value)) if part.startswith("Characters:"): for item in value.split(', '): if item == "Harry/Ginny": self.story.addToList('characters',"Harry Potter") self.story.addToList('characters',"Ginny Weasley") elif item not in ("None","All"): self.story.addToList('characters',item) if part.startswith("Genres:"): self.story.extendList('genre',value.split(', ')) if part.startswith("Warnings:"): if value != "None": self.story.extendList('warnings',value.split(', ')) if part.startswith("Rating:"): self.story.setMetadata('rating',value) if part.startswith("Summary:"): # summary can include extra br and b tags go until Hitcount summary = "" nxt = label.next_sibling while nxt and "Hitcount:" not in stripHTML(nxt): summary += "%s"%nxt # logger.debug(summary) nxt = nxt.next_sibling if summary.strip().endswith("<br/>"): summary = summary.strip()[0:-len("<br/>")] self.setDescription(url,summary) # Stuff from author block: # SIYE formats stories in the author list differently when # their part of a series. Look for non-series... divdesc = titlea.parent.parent.find('div',{'class':'desc'}) if not divdesc: # ... now look for series. divdesc = titlea.parent.parent.findNextSibling('tr').find('div',{'class':'desc'}) moremeta = stripHTML(divdesc) # logger.debug("moremeta:%s"%moremeta) # html5lib doesn't give me \n for <br> anymore. for part in moremeta.replace(' - ','\n').replace("Completed","\nCompleted").split('\n'): # logger.debug("part:%s"%part) try: (name,value) = part.split(': ') except: # not going to worry about fancier processing for the bits # that don't match. continue name=name.strip() value=value.strip() if name == 'Published': self.story.setMetadata('datePublished', makeDate(value, self.dateformat)) if name == 'Updated': self.story.setMetadata('dateUpdated', makeDate(value, self.dateformat)) if name == 'Completed': if value == 'Yes': self.story.setMetadata('status', 'Completed') else: self.story.setMetadata('status', 'In-Progress') if name == 'Words': self.story.setMetadata('numWords', value) try: # Find Series name from series URL. a = titlea.findPrevious('a', href=re.compile(r"series.php\?seriesid=\d+")) series_name = a.string series_url = 'https://'+self.host+'/'+a['href'] seriessoup = self.make_soup(self.get_request(series_url)) storyas = seriessoup.findAll('a', href=re.compile(r'^viewstory.php\?sid=\d+$')) i=1 for a in storyas: if a['href'] == ('viewstory.php?sid='+self.story.getMetadata('storyId')): self.setSeries(series_name, i) self.story.setMetadata('seriesUrl',series_url) break i+=1 except: # I find it hard to care if the series parsing fails pass # grab the text for an individual chapter. def getChapterText(self, url): logger.debug('Getting chapter text from: %s' % url) # soup = self.make_soup(self.get_request(url)) # BeautifulSoup objects to <p> inside <span>, which # technically isn't allowed. soup = self.make_soup(self.get_request(url)) # not the most unique thing in the world, but it appears to be # the best we can do here. story = soup.find('span', {'style' : 'font-size: 100%;'}) if None == story: raise exceptions.FailedToDownload("Error downloading Chapter: %s! Missing required element!" % url) story.name='div' return self.utf8FromSoup(url,story)
40.334711
133
0.594304
a57a8fbed9930e7770c694430f28667ab642602c
10,255
py
Python
challenge.py
Melody-Lii/Movies-ETL
cf2568ac3dac8d82286d9dfab5a01a3c059ec24e
[ "MIT" ]
null
null
null
challenge.py
Melody-Lii/Movies-ETL
cf2568ac3dac8d82286d9dfab5a01a3c059ec24e
[ "MIT" ]
null
null
null
challenge.py
Melody-Lii/Movies-ETL
cf2568ac3dac8d82286d9dfab5a01a3c059ec24e
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # In[13]: import json import pandas as pd import numpy as np import time import re from sqlalchemy import create_engine import psycopg2 from config import db_password def clean_movie(movie): movie = dict(movie) #create a non-destructive copy alt_titles = {} # combine alternate titles into one list for key in ['Also known as','Arabic','Cantonese','Chinese','French', 'Hangul','Hebrew','Hepburn','Japanese','Literally', 'Mandarin','McCune-Reischauer','Original title','Polish', 'Revised Romanization','Romanized','Russian', 'Simplified','Traditional','Yiddish']: if key in movie: alt_titles[key] = movie[key] movie.pop(key) if len(alt_titles) > 0: movie['alt_titles'] = alt_titles # merge column names def change_column_name(old_name, new_name): if old_name in movie: movie[new_name] = movie.pop(old_name) change_column_name('Adaptation by', 'Writer(s)') change_column_name('Country of origin', 'Country') change_column_name('Directed by', 'Director') change_column_name('Distributed by', 'Distributor') change_column_name('Edited by', 'Editor(s)') change_column_name('Length', 'Running time') change_column_name('Original release', 'Release date') change_column_name('Music by', 'Composer(s)') change_column_name('Produced by', 'Producer(s)') change_column_name('Producer', 'Producer(s)') change_column_name('Productioncompanies ', 'Production company(s)') change_column_name('Productioncompany ', 'Production company(s)') change_column_name('Released', 'Release Date') change_column_name('Release Date', 'Release date') change_column_name('Screen story by', 'Writer(s)') change_column_name('Screenplay by', 'Writer(s)') change_column_name('Story by', 'Writer(s)') change_column_name('Theme music composer', 'Composer(s)') change_column_name('Written by', 'Writer(s)') return movie def extract_transform_load(wiki_file, kaggle_file, ratings_file): with open(wiki_file, mode='r') as file: wiki_movies_raw = json.load(file) kaggle_metadata = pd.read_csv(kaggle_file) ratings = pd.read_csv(ratings_file) wiki_movies = [movie for movie in wiki_movies_raw if ('Director' in movie or 'Directed by' in movie) and 'imdb_link' in movie] clean_movies = [clean_movie(movie) for movie in wiki_movies] wiki_movies_df = pd.DataFrame(clean_movies) # Assuming wikipedia data still contains IMDB id try: wiki_movies_df['imdb_id'] = wiki_movies_df['imdb_link'].str.extract(r'(tt\d{7})') wiki_movies_df.drop_duplicates(subset='imdb_id', inplace=True) except Exception as e: print(e) wiki_columns_to_keep = [column for column in wiki_movies_df.columns if wiki_movies_df[column].isnull().sum() < len(wiki_movies_df) * 0.9] wiki_movies_df = wiki_movies_df[wiki_columns_to_keep] box_office = wiki_movies_df['Box office'].dropna() box_office = box_office.apply(lambda x: ' '.join(x) if type(x) == list else x) form_one = r'\$\d+\.?\d*\s*[mb]illion' form_two = r'\$\d{1,3}(?:,\d{3})+' def parse_dollars(s): # if s is not a string, return NaN if type(s) != str: return np.nan # if input is of the form $###.# million if re.match(r'\$\s*\d+\.?\d*\s*milli?on', s, flags=re.IGNORECASE): # remove dollar sign and " million" s = re.sub(r'\$|\s|[a-zA-Z]','', s) # convert to float and multiply by a million value = float(s) * 10**6 # return value return value # if input is of the form $###.# billion elif re.match(r'\$\s*\d+\.?\d*\s*billi?on', s, flags=re.IGNORECASE): # remove dollar sign and " billion" s = re.sub(r'\$|\s|[a-zA-Z]','', s) # convert to float and multiply by a billion value = float(s) * 10**9 # return value return value # if input is of the form $###,###,### elif re.match(r'\$\s*\d{1,3}(?:[,\.]\d{3})+(?!\s[mb]illion)', s, flags=re.IGNORECASE): # remove dollar sign and commas s = re.sub('\$|,','', s) # convert to float value = float(s) # return value return value # otherwise, return NaN else: return np.nan wiki_movies_df['box_office'] = box_office.str.extract(f'({form_one}|{form_two})', flags=re.IGNORECASE)[0].apply(parse_dollars) wiki_movies_df.drop('Box office', axis=1, inplace=True) budget = wiki_movies_df['Budget'].dropna() budget = budget.map(lambda x: ' '.join(x) if type(x) == list else x) budget = budget.str.replace(r'\$.*[-—–](?![a-z])', '$', regex=True) wiki_movies_df['budget'] = budget.str.extract(f'({form_one}|{form_two})', flags=re.IGNORECASE)[0].apply(parse_dollars) wiki_movies_df.drop('Budget', axis=1, inplace=True) release_date = wiki_movies_df['Release date'].dropna().apply(lambda x: ' '.join(x) if type(x) == list else x) date_form_one = r'(?:January|February|March|April|May|June|July|August|September|October|November|December)\s[123]\d,\s\d{4}' date_form_two = r'\d{4}.[01]\d.[123]\d' date_form_three = r'(?:January|February|March|April|May|June|July|August|September|October|November|December)\s\d{4}' date_form_four = r'\d{4}' wiki_movies_df['release_date'] = pd.to_datetime(release_date.str.extract(f'({date_form_one}|{date_form_two}|{date_form_three}|{date_form_four})')[0], infer_datetime_format=True) running_time = wiki_movies_df['Running time'].dropna().apply(lambda x: ' '.join(x) if type(x) == list else x) running_time_extract = running_time.str.extract(r'(\d+)\s*ho?u?r?s?\s*(\d*)|(\d+)\s*m') running_time_extract = running_time_extract.apply(lambda col: pd.to_numeric(col, errors='coerce')).fillna(0) wiki_movies_df['running_time'] = running_time_extract.apply(lambda row: row[0]*60 + row[1] if row[2] == 0 else row[2], axis=1) running_time[running_time.str.contains(r'^\d*\s*m', flags=re.IGNORECASE) != True] kaggle_metadata = kaggle_metadata[kaggle_metadata['adult'] == 'False'].drop('adult',axis='columns') kaggle_metadata['video'] = kaggle_metadata['video'] == 'True' kaggle_metadata['budget'] = kaggle_metadata['budget'].astype(int) kaggle_metadata['id'] = pd.to_numeric(kaggle_metadata['id'], errors='raise') kaggle_metadata['popularity'] = pd.to_numeric(kaggle_metadata['popularity'], errors='raise') kaggle_metadata['release_date'] = pd.to_datetime(kaggle_metadata['release_date']) movies_df = pd.merge(wiki_movies_df, kaggle_metadata, on='imdb_id', suffixes=['_wiki','_kaggle']) movies_df.drop(columns=['title_wiki','release_date_wiki','Language','Production company(s)'], inplace=True) def fill_missing_kaggle_data(df, kaggle_column, wiki_column): df[kaggle_column] = df.apply( lambda row: row[wiki_column] if row[kaggle_column] == 0 else row[kaggle_column] , axis=1) df.drop(columns=wiki_column, inplace=True) fill_missing_kaggle_data(movies_df, 'runtime', 'running_time') fill_missing_kaggle_data(movies_df, 'budget_kaggle', 'budget_wiki') fill_missing_kaggle_data(movies_df, 'revenue', 'box_office') movies_df = movies_df.loc[:, ['imdb_id','id','title_kaggle','original_title','tagline','belongs_to_collection','url','imdb_link', 'runtime','budget_kaggle','revenue','release_date_kaggle','popularity','vote_average','vote_count', 'genres','original_language','overview','spoken_languages','Country', 'production_companies','production_countries','Distributor', 'Producer(s)','Director','Starring','Cinematography','Editor(s)','Writer(s)','Composer(s)','Based on' ]] movies_df.rename({'id':'kaggle_id', 'title_kaggle':'title', 'url':'wikipedia_url', 'budget_kaggle':'budget', 'release_date_kaggle':'release_date', 'Country':'country', 'Distributor':'distributor', 'Producer(s)':'producers', 'Director':'director', 'Starring':'starring', 'Cinematography':'cinematography', 'Editor(s)':'editors', 'Writer(s)':'writers', 'Composer(s)':'composers', 'Based on':'based_on' }, axis='columns', inplace=True) rating_counts = ratings.groupby(['movieId','rating'], as_index=False).count().rename({'userId':'count'}, axis=1).pivot(index='movieId',columns='rating', values='count') rating_counts.columns = ['rating_' + str(col) for col in rating_counts.columns] movies_with_ratings_df = pd.merge(movies_df, rating_counts, left_on='kaggle_id', right_index=True, how='left') movies_with_ratings_df[rating_counts.columns] = movies_with_ratings_df[rating_counts.columns].fillna(0) db_string = f"postgres://postgres:{db_password}@localhost:5433/movie_data" engine = create_engine(db_string) movies_df.to_sql(name='movies', con=engine, if_exists = 'append') rows_imported = 0 # get the start_time from time.time() start_time = time.time() for data in pd.read_csv(f'{file_dir}/ratings.csv', chunksize=1000000): print(f'importing rows {rows_imported} to {rows_imported + len(data)}...', end='') data.to_sql(name='ratings', con=engine, if_exists='append') rows_imported += len(data) # add elapsed time to final print out print(f'Done. {time.time() - start_time} total seconds elapsed') file_dir = "./Resources" wiki_file = f'{file_dir}/wikipedia.movies.json' kaggle_file = f'{file_dir}/movies_metadata.csv' ratings_file = f'{file_dir}/ratings.csv' extract_transform_load(wiki_file, kaggle_file, ratings_file) # In[ ]:
42.028689
181
0.633642
1847a8c4ef679740afba8ec8ca86b5d21d5f3e94
808
py
Python
haystack_test/config/urls.py
salmanwahed/haystack-test-project
2fa0b4c0151456637099e81d3394dde800df79e9
[ "Apache-2.0" ]
null
null
null
haystack_test/config/urls.py
salmanwahed/haystack-test-project
2fa0b4c0151456637099e81d3394dde800df79e9
[ "Apache-2.0" ]
null
null
null
haystack_test/config/urls.py
salmanwahed/haystack-test-project
2fa0b4c0151456637099e81d3394dde800df79e9
[ "Apache-2.0" ]
null
null
null
"""haystack_test URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.8/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Add an import: from blog import urls as blog_urls 2. Add a URL to urlpatterns: url(r'^blog/', include(blog_urls)) """ from django.conf.urls import include, url from django.contrib import admin urlpatterns = [ url(r'^admin/', include(admin.site.urls)), url(r'^$', include('noticeboard.urls')), ]
35.130435
77
0.700495
2aaa1595540aaf1082de4ecf1dbc51c11518ce65
1,306
py
Python
examples/gaussian_mixture.py
gmourier/MLAlgorithms
b6d1489cef7ebaa5603cec8564e0e3543419669b
[ "MIT" ]
null
null
null
examples/gaussian_mixture.py
gmourier/MLAlgorithms
b6d1489cef7ebaa5603cec8564e0e3543419669b
[ "MIT" ]
null
null
null
examples/gaussian_mixture.py
gmourier/MLAlgorithms
b6d1489cef7ebaa5603cec8564e0e3543419669b
[ "MIT" ]
1
2022-02-15T21:30:18.000Z
2022-02-15T21:30:18.000Z
import random import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from mla.kmeans import KMeans from mla.gaussian_mixture import GaussianMixture random.seed(1) np.random.seed(6) def make_clusters(skew=True, *arg, **kwargs): X, y = datasets.make_blobs(*arg, **kwargs) if skew: nrow = X.shape[1] for i in np.unique(y): X[y == i] = X[y == i].dot(np.random.random((nrow, nrow)) - 0.5) return X, y def KMeans_and_GMM(K): COLOR = 'bgrcmyk' X, y = make_clusters(skew=True, n_samples=1500, centers=K) _, axes = plt.subplots(1, 3) # Ground Truth axes[0].scatter(X[:, 0], X[:, 1], c=[COLOR[int(assignment)] for assignment in y]) axes[0].set_title("Ground Truth") # KMeans kmeans = KMeans(K=K, init='++') kmeans.fit(X) y_kmeans = kmeans.predict() c_kmeans = np.array(kmeans.centroids) axes[1].scatter(X[:, 0], X[:, 1], c=[COLOR[int(assignment)] for assignment in y_kmeans]) axes[1].scatter(c_kmeans[:, 0], c_kmeans[:, 1], c=COLOR[:K], marker="o", s=500) axes[1].set_title("KMeans") # Gaussian Mixture gmm = GaussianMixture(K=K, init='kmeans') gmm.fit(X) axes[2].set_title("Gaussian Mixture") gmm.plot(ax=axes[2]) if __name__ == "__main__": KMeans_and_GMM(4)
26.653061
92
0.6317
42419702eee24bfa046a2a4461b152965a1f24ea
2,220
py
Python
tools/aicity20/vis_result.py
Johere/AICity2020-VOC-ReID
21268535595c8c90b87cd1ee89ddbcb341a86d76
[ "MIT" ]
100
2020-04-25T03:58:01.000Z
2022-03-30T18:24:17.000Z
tools/aicity20/vis_result.py
hanleiyu/prcv
df5ad9469b38b8176121357fe5de2b1cf30aae1c
[ "MIT" ]
30
2020-04-27T07:15:00.000Z
2022-01-03T19:49:49.000Z
tools/aicity20/vis_result.py
hanleiyu/prcv
df5ad9469b38b8176121357fe5de2b1cf30aae1c
[ "MIT" ]
25
2020-04-25T22:53:30.000Z
2022-03-28T00:46:51.000Z
import numpy as np import cv2 import os import sys sys.path.append('.') from lib.data.datasets.aicity20_trainval import AICity20Trainval def visualize_submit(dataset, out_dir, submit_txt_path, topk=5): query_dir = dataset.query_dir gallery_dir = dataset.gallery_dir vis_size = (256, 256) if not os.path.exists(out_dir): os.makedirs(out_dir) results = [] with open(submit_txt_path, 'r') as f: lines = f.readlines() for line in lines: line = line.strip() results.append(line.split(' ')) query_pids = [pid for _, pid, _ in dataset.query] img_to_pid = {} for img_path, pid, _ in dataset.gallery: name = os.path.basename(img_path) img_to_pid[name] = pid for i, result in enumerate(results): is_False = False # query_path = os.path.join(query_dir, str(i+1).zfill(6)+'.jpg') query_path = os.path.join(query_dir, os.path.basename(dataset.query[i][0])) gallery_paths = [] for name in result: # gallery_paths.append(os.path.join(gallery_dir, index.zfill(6)+'.jpg')) gallery_paths.append(os.path.join(gallery_dir, name)) imgs = [] imgs.append(cv2.resize(cv2.imread(query_path), vis_size)) for n in range(topk): img = cv2.resize(cv2.imread(gallery_paths[n]), vis_size) if query_pids[i] != img_to_pid[result[n]]: img = cv2.rectangle(img, (0, 0), vis_size, (0, 0, 255), 2) is_False = True imgs.append(img) canvas = np.concatenate(imgs, axis=1) #if is_False: cv2.imwrite(os.path.join(out_dir, os.path.basename(query_path)), canvas) if __name__ == '__main__': # dataset_dir = '/home/xiangyuzhu/data/ReID/AIC20_ReID' dataset = AICity20Trainval(root='/home/zxy/data/ReID/vehicle') # # dataset_dir = '/home/zxy/data/ReID/vehicle/AIC20_ReID_Cropped' # query_dir = os.path.join(dataset_dir, 'image_query') # gallery_dir = os.path.join(dataset_dir, 'image_test') out_dir = 'vis/' submit_txt_path = './output/aicity20/experiments/circle-sim-aug/result_voc.txt' visualize_submit(dataset, out_dir, submit_txt_path)
35.238095
84
0.636937
55fe123b03c8b885e313e01741da048dccfd9e5f
700
py
Python
migrations/versions/0a63dc36c3b2_add_column_pass_secure_for_storing_.py
carolwanjohi/watchlist
ae15964bb272b834b57e6856bcdd4f9b8ce1d2a6
[ "MIT" ]
null
null
null
migrations/versions/0a63dc36c3b2_add_column_pass_secure_for_storing_.py
carolwanjohi/watchlist
ae15964bb272b834b57e6856bcdd4f9b8ce1d2a6
[ "MIT" ]
null
null
null
migrations/versions/0a63dc36c3b2_add_column_pass_secure_for_storing_.py
carolwanjohi/watchlist
ae15964bb272b834b57e6856bcdd4f9b8ce1d2a6
[ "MIT" ]
null
null
null
"""Add column pass_secure for storing passwords Revision ID: 0a63dc36c3b2 Revises: e34c84c48c61 Create Date: 2017-10-23 16:38:02.302281 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '0a63dc36c3b2' down_revision = 'e34c84c48c61' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('users', sa.Column('pass_secure', sa.String(length=255), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('users', 'pass_secure') # ### end Alembic commands ###
24.137931
90
0.704286
706897bd914e8bfd349f17d449f8fbbec7a79000
5,964
py
Python
graph_embedding/dmon/utilities/graph.py
DionysisChristopoulos/google-research
7f59ef421beef32ca16c2a7215be74f7eba01a0f
[ "Apache-2.0" ]
23,901
2018-10-04T19:48:53.000Z
2022-03-31T21:27:42.000Z
graph_embedding/dmon/utilities/graph.py
DionysisChristopoulos/google-research
7f59ef421beef32ca16c2a7215be74f7eba01a0f
[ "Apache-2.0" ]
891
2018-11-10T06:16:13.000Z
2022-03-31T10:42:34.000Z
graph_embedding/dmon/utilities/graph.py
admariner/google-research
7cee4b22b925581d912e8d993625c180da2a5a4f
[ "Apache-2.0" ]
6,047
2018-10-12T06:31:02.000Z
2022-03-31T13:59:28.000Z
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Graph construction utility functions. Functions for graph manipulation and creation. TODO(tsitsulin): add headers, tests, and improve style. """ import pickle import sys import networkx as nx import numpy as np import scipy.sparse from scipy.sparse import csr_matrix from scipy.sparse import lil_matrix from scipy.sparse.base import spmatrix from sklearn.neighbors import kneighbors_graph import tensorflow as tf def construct_knn_graph(data, k = 15, symmetrize = True): graph = kneighbors_graph(data, k) if symmetrize: graph = graph + graph.T graph.data = np.ones(graph.data.shape) return graph def normalize_graph(graph, # pylint: disable=missing-function-docstring normalized, add_self_loops = True): if add_self_loops: # Bröther may i have some self-lööps graph = graph + scipy.sparse.identity(graph.shape[0]) degree = np.squeeze(np.asarray(graph.sum(axis=1))) if normalized: with np.errstate(divide='ignore'): degree = 1. / np.sqrt(degree) degree[degree == np.inf] = 0 degree = scipy.sparse.diags(degree) return degree @ graph @ degree else: with np.errstate(divide='ignore'): degree = 1. / degree degree[degree == np.inf] = 0 degree = scipy.sparse.diags(degree) return degree @ graph def scipy_to_tf(matrix): matrix = matrix.tocoo() return tf.sparse.SparseTensor( np.vstack([matrix.row, matrix.col]).T, matrix.data.astype(np.float32), matrix.shape) def load_npz_to_sparse_graph(file_name): # pylint: disable=missing-function-docstring with np.load(open(file_name, 'rb'), allow_pickle=True) as loader: loader = dict(loader) adj_matrix = csr_matrix( (loader['adj_data'], loader['adj_indices'], loader['adj_indptr']), shape=loader['adj_shape']) if 'attr_data' in loader: # Attributes are stored as a sparse CSR matrix attr_matrix = csr_matrix( (loader['attr_data'], loader['attr_indices'], loader['attr_indptr']), shape=loader['attr_shape']).todense() elif 'attr_matrix' in loader: # Attributes are stored as a (dense) np.ndarray attr_matrix = loader['attr_matrix'] else: raise Exception('No attributes in the data file', file_name) if 'labels_data' in loader: # Labels are stored as a CSR matrix labels = csr_matrix((loader['labels_data'], loader['labels_indices'], loader['labels_indptr']), shape=loader['labels_shape']) label_mask = labels.nonzero()[0] labels = labels.nonzero()[1] elif 'labels' in loader: # Labels are stored as a numpy array labels = loader['labels'] label_mask = np.ones(labels.shape, dtype=np.bool) else: raise Exception('No labels in the data file', file_name) return adj_matrix, attr_matrix, labels, label_mask def _parse_index_file(filename): index = [] for line in open(filename): index.append(int(line.strip())) return index def _sample_mask(idx, l): """Create mask.""" mask = np.zeros(l) mask[idx] = 1 return np.array(mask, dtype=np.bool) def load_kipf_data(path_str, dataset_str): # pylint: disable=missing-function-docstring names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph'] objects = [] for i in range(len(names)): with open('{}/ind.{}.{}'.format(path_str, dataset_str, names[i]), 'rb') as f: if sys.version_info > (3, 0): objects.append(pickle.load(f, encoding='latin1')) else: objects.append(pickle.load(f)) x, y, tx, ty, allx, ally, graph = tuple(objects) # pylint: disable=unbalanced-tuple-unpacking test_idx_reorder = _parse_index_file('{}/ind.{}.test.index'.format( path_str, dataset_str)) test_idx_range = np.sort(test_idx_reorder) if dataset_str == 'citeseer': # Fix citeseer dataset (there are some isolated nodes in the graph) # Find isolated nodes, add them as zero-vecs into the right position test_idx_range_full = range( min(test_idx_reorder), max(test_idx_reorder) + 1) tx_extended = lil_matrix((len(test_idx_range_full), x.shape[1])) tx_extended[test_idx_range - min(test_idx_range), :] = tx tx = tx_extended ty_extended = np.zeros((len(test_idx_range_full), y.shape[1])) ty_extended[test_idx_range - min(test_idx_range), :] = ty ty = ty_extended features = scipy.sparse.vstack((allx, tx)).tolil() features[test_idx_reorder, :] = features[test_idx_range, :] adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph)) labels = np.vstack((ally, ty)) labels[test_idx_reorder, :] = labels[test_idx_range, :] idx_test = test_idx_range.tolist() idx_train = range(len(y)) idx_val = range(len(y), len(y) + 500) train_mask = _sample_mask(idx_train, labels.shape[0]) val_mask = _sample_mask(idx_val, labels.shape[0]) test_mask = _sample_mask(idx_test, labels.shape[0]) y_train = np.zeros(labels.shape) y_val = np.zeros(labels.shape) y_test = np.zeros(labels.shape) y_train[train_mask, :] = labels[train_mask, :] y_val[val_mask, :] = labels[val_mask, :] y_test[test_mask, :] = labels[test_mask, :] labels = (y_train + y_val + y_test).nonzero()[1] label_mask = (y_train + y_val + y_test).nonzero()[0] return adj, features.todense(), labels, label_mask
34.08
96
0.682596
dfef23651c8de08e952a3336cf1ce12511d4911d
15,110
py
Python
pyscf/prop/polarizability/uhf.py
pavanell/pyscf
c0d19e499685e95dbf4c879539ad3a3ceb6934e2
[ "Apache-2.0" ]
2
2019-05-28T05:25:56.000Z
2019-11-09T02:16:43.000Z
pyscf/prop/polarizability/uhf.py
pavanell/pyscf
c0d19e499685e95dbf4c879539ad3a3ceb6934e2
[ "Apache-2.0" ]
2
2019-09-16T17:58:31.000Z
2019-09-22T17:26:01.000Z
pyscf/prop/polarizability/uhf.py
pavanell/pyscf
c0d19e499685e95dbf4c879539ad3a3ceb6934e2
[ "Apache-2.0" ]
2
2020-06-01T05:31:38.000Z
2022-02-08T02:38:33.000Z
#!/usr/bin/env python # Copyright 2014-2019 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Qiming Sun <[email protected]> # ''' Non-relativistic static and dynamic polarizability and hyper-polarizability tensor (In testing) ''' import time from functools import reduce import numpy from pyscf import lib from pyscf.lib import logger from pyscf.scf import ucphf from pyscf.soscf.newton_ah import _gen_uhf_response from pyscf.prop.polarizability import rhf as rhf_polarizability def dipole(mf): return mf.dip_moment(mf.mol, mf.make_rdm1()) # Note: polarizability and relevant properties are demanding on basis sets. # ORCA recommends to use Sadlej basis for these properties. def polarizability(polobj, with_cphf=True): from pyscf.prop.nmr import uhf as uhf_nmr log = logger.new_logger(polobj) mf = polobj._scf mol = mf.mol mo_energy = mf.mo_energy mo_coeff = mf.mo_coeff mo_occ = mf.mo_occ occidxa = mo_occ[0] > 0 occidxb = mo_occ[1] > 0 mo0a, mo0b = mo_coeff orboa = mo0a[:, occidxa] orbva = mo0a[:,~occidxa] orbob = mo0b[:, occidxb] orbvb = mo0b[:,~occidxb] charges = mol.atom_charges() coords = mol.atom_coords() charge_center = numpy.einsum('i,ix->x', charges, coords) / charges.sum() with mol.with_common_orig(charge_center): int_r = mol.intor_symmetric('int1e_r', comp=3) h1a = lib.einsum('xpq,pi,qj->xij', int_r, mo0a.conj(), orboa) h1b = lib.einsum('xpq,pi,qj->xij', int_r, mo0b.conj(), orbob) s1a = numpy.zeros_like(h1a) s1b = numpy.zeros_like(h1b) vind = polobj.gen_vind(mf, mo_coeff, mo_occ) if with_cphf: mo1 = ucphf.solve(vind, mo_energy, mo_occ, (h1a,h1b), (s1a,s1b), polobj.max_cycle_cphf, polobj.conv_tol, verbose=log)[0] else: mo1 = uhf_nmr._solve_mo1_uncoupled(mo_energy, mo_occ, (h1a,h1b), (s1a,s1b))[0] e2 = numpy.einsum('xpi,ypi->xy', h1a, mo1[0]) e2+= numpy.einsum('xpi,ypi->xy', h1b, mo1[1]) e2 = -(e2 + e2.T) if mf.verbose >= logger.INFO: xx, yy, zz = e2.diagonal() log.note('Isotropic polarizability %.12g', (xx+yy+zz)/3) log.note('Polarizability anisotropy %.12g', (.5 * ((xx-yy)**2 + (yy-zz)**2 + (zz-xx)**2))**.5) log.debug('Static polarizability tensor\n%s', e2) return e2 def hyper_polarizability(polobj, with_cphf=True): from pyscf.prop.nmr import uhf as uhf_nmr log = logger.new_logger(polobj) mf = polobj._scf mol = mf.mol mo_energy = mf.mo_energy mo_coeff = mf.mo_coeff mo_occ = mf.mo_occ occidxa = mo_occ[0] > 0 occidxb = mo_occ[1] > 0 mo0a, mo0b = mo_coeff orboa = mo0a[:, occidxa] orbva = mo0a[:,~occidxa] orbob = mo0b[:, occidxb] orbvb = mo0b[:,~occidxb] charges = mol.atom_charges() coords = mol.atom_coords() charge_center = numpy.einsum('i,ix->x', charges, coords) / charges.sum() with mol.with_common_orig(charge_center): int_r = mol.intor_symmetric('int1e_r', comp=3) h1a = lib.einsum('xpq,pi,qj->xij', int_r, mo0a.conj(), orboa) h1b = lib.einsum('xpq,pi,qj->xij', int_r, mo0b.conj(), orbob) s1a = numpy.zeros_like(h1a) s1b = numpy.zeros_like(h1b) vind = polobj.gen_vind(mf, mo_coeff, mo_occ) if with_cphf: mo1, e1 = ucphf.solve(vind, mo_energy, mo_occ, (h1a,h1b), (s1a,s1b), polobj.max_cycle_cphf, polobj.conv_tol, verbose=log) else: mo1, e1 = uhf_nmr._solve_mo1_uncoupled(mo_energy, mo_occ, (h1a,h1b), (s1a,s1b)) mo1a = lib.einsum('xqi,pq->xpi', mo1[0], mo0a) mo1b = lib.einsum('xqi,pq->xpi', mo1[1], mo0b) dm1a = lib.einsum('xpi,qi->xpq', mo1a, orboa) dm1b = lib.einsum('xpi,qi->xpq', mo1b, orbob) dm1a = dm1a + dm1a.transpose(0,2,1) dm1b = dm1b + dm1b.transpose(0,2,1) vresp = _gen_uhf_response(mf, hermi=1) h1ao = int_r + vresp(numpy.stack((dm1a, dm1b))) s0 = mf.get_ovlp() e3 = lib.einsum('xpq,ypi,zqi->xyz', h1ao[0], mo1a, mo1a) e3 += lib.einsum('xpq,ypi,zqi->xyz', h1ao[1], mo1b, mo1b) e3 -= lib.einsum('pq,xpi,yqj,zij->xyz', s0, mo1a, mo1a, e1[0]) e3 -= lib.einsum('pq,xpi,yqj,zij->xyz', s0, mo1b, mo1b, e1[1]) e3 = (e3 + e3.transpose(1,2,0) + e3.transpose(2,0,1) + e3.transpose(0,2,1) + e3.transpose(1,0,2) + e3.transpose(2,1,0)) e3 = -e3 log.debug('Static hyper polarizability tensor\n%s', e3) return e3 # Solve the frequency-dependent CPHF problem # [A-wI, B ] [X] + [h1] = [0] # [B , A+wI] [Y] [h1] [0] def ucphf_with_freq(mf, mo_energy, mo_occ, h1, freq=0, max_cycle=20, tol=1e-9, hermi=False, verbose=logger.WARN): log = logger.new_logger(verbose=verbose) t0 = (time.clock(), time.time()) occidxa = mo_occ[0] > 0 occidxb = mo_occ[1] > 0 viridxa = ~occidxa viridxb = ~occidxb mo_ea, mo_eb = mo_energy # e_ai - freq may produce very small elements which can cause numerical # issue in krylov solver LEVEL_SHIF = 0.1 e_ai_a = lib.direct_sum('a-i->ai', mo_ea[viridxa], mo_ea[occidxa]).ravel() e_ai_b = lib.direct_sum('a-i->ai', mo_eb[viridxb], mo_eb[occidxb]).ravel() diag = (e_ai_a - freq, e_ai_b - freq, e_ai_a + freq, e_ai_b + freq) diag[0][diag[0] < LEVEL_SHIF] += LEVEL_SHIF diag[1][diag[1] < LEVEL_SHIF] += LEVEL_SHIF diag[2][diag[2] < LEVEL_SHIF] += LEVEL_SHIF diag[3][diag[3] < LEVEL_SHIF] += LEVEL_SHIF mo0a, mo0b = mf.mo_coeff nao, nmoa = mo0a.shape nmob = mo0b.shape orbva = mo0a[:,viridxa] orbvb = mo0b[:,viridxb] orboa = mo0a[:,occidxa] orbob = mo0b[:,occidxb] nvira = orbva.shape[1] nvirb = orbvb.shape[1] nocca = orboa.shape[1] noccb = orbob.shape[1] h1a = h1[0].reshape(-1,nvira*nocca) h1b = h1[1].reshape(-1,nvirb*noccb) ncomp = h1a.shape[0] mo1base = numpy.hstack((-h1a/diag[0], -h1b/diag[1], -h1a/diag[2], -h1b/diag[3])) offsets = numpy.cumsum((nocca*nvira, noccb*nvirb, nocca*nvira)) vresp = _gen_uhf_response(mf, hermi=0) def vind(xys): nz = len(xys) dm1a = numpy.empty((nz,nao,nao)) dm1b = numpy.empty((nz,nao,nao)) for i in range(nz): xa, xb, ya, yb = numpy.split(xys[i], offsets) dmx = reduce(numpy.dot, (orbva, xa.reshape(nvira,nocca) , orboa.T)) dmy = reduce(numpy.dot, (orboa, ya.reshape(nvira,nocca).T, orbva.T)) dm1a[i] = dmx + dmy # AX + BY dmx = reduce(numpy.dot, (orbvb, xb.reshape(nvirb,noccb) , orbob.T)) dmy = reduce(numpy.dot, (orbob, yb.reshape(nvirb,noccb).T, orbvb.T)) dm1b[i] = dmx + dmy # AX + BY v1ao = vresp(numpy.stack((dm1a,dm1b))) v1voa = lib.einsum('xpq,pi,qj->xij', v1ao[0], orbva, orboa).reshape(nz,-1) v1vob = lib.einsum('xpq,pi,qj->xij', v1ao[1], orbvb, orbob).reshape(nz,-1) v1ova = lib.einsum('xpq,pi,qj->xji', v1ao[0], orboa, orbva).reshape(nz,-1) v1ovb = lib.einsum('xpq,pi,qj->xji', v1ao[1], orbob, orbvb).reshape(nz,-1) for i in range(nz): xa, xb, ya, yb = numpy.split(xys[i], offsets) v1voa[i] += (e_ai_a - freq - diag[0]) * xa v1voa[i] /= diag[0] v1vob[i] += (e_ai_b - freq - diag[1]) * xb v1vob[i] /= diag[1] v1ova[i] += (e_ai_a + freq - diag[2]) * ya v1ova[i] /= diag[2] v1ovb[i] += (e_ai_b + freq - diag[3]) * yb v1ovb[i] /= diag[3] v = numpy.hstack((v1voa, v1vob, v1ova, v1ovb)) return v # FIXME: krylov solver is not accurate enough for many freqs. Using tight # tol and lindep could offer small help. A better linear equation solver # is needed. mo1 = lib.krylov(vind, mo1base, tol=tol, max_cycle=max_cycle, hermi=hermi, lindep=1e-18, verbose=log) log.timer('krylov solver in CPHF', *t0) dm1a = numpy.empty((ncomp,nao,nao)) dm1b = numpy.empty((ncomp,nao,nao)) for i in range(ncomp): xa, xb, ya, yb = numpy.split(mo1[i], offsets) dmx = reduce(numpy.dot, (orbva, xa.reshape(nvira,nocca) *2, orboa.T)) dmy = reduce(numpy.dot, (orboa, ya.reshape(nvira,nocca).T*2, orbva.T)) dm1a[i] = dmx + dmy dmx = reduce(numpy.dot, (orbvb, xb.reshape(nvirb,noccb) *2, orbob.T)) dmy = reduce(numpy.dot, (orbob, yb.reshape(nvirb,noccb).T*2, orbvb.T)) dm1b[i] = dmx + dmy v1ao = vresp(numpy.stack((dm1a,dm1b))) mo_e1_a = lib.einsum('xpq,pi,qj->xij', v1ao[0], orboa, orboa) mo_e1_b = lib.einsum('xpq,pi,qj->xij', v1ao[1], orbob, orbob) mo_e1 = (mo_e1_a, mo_e1_b) xa, xb, ya, yb = numpy.split(mo1, offsets, axis=1) mo1 = (xa.reshape(ncomp,nvira,nocca), xb.reshape(ncomp,nvirb,noccb), ya.reshape(ncomp,nvira,nocca), yb.reshape(ncomp,nvirb,noccb)) return mo1, mo_e1 def polarizability_with_freq(polobj, freq=None): from pyscf.prop.nmr import rhf as rhf_nmr log = logger.new_logger(polobj) mf = polobj._scf mol = mf.mol mo_energy = mf.mo_energy mo_coeff = mf.mo_coeff mo_occ = mf.mo_occ occidxa = mo_occ[0] > 0 occidxb = mo_occ[1] > 0 mo0a, mo0b = mo_coeff orboa = mo0a[:, occidxa] orbva = mo0a[:,~occidxa] orbob = mo0b[:, occidxb] orbvb = mo0b[:,~occidxb] charges = mol.atom_charges() coords = mol.atom_coords() charge_center = numpy.einsum('i,ix->x', charges, coords) / charges.sum() with mol.with_common_orig(charge_center): int_r = mol.intor_symmetric('int1e_r', comp=3) h1a = lib.einsum('xpq,pi,qj->xij', int_r, orbva.conj(), orboa) h1b = lib.einsum('xpq,pi,qj->xij', int_r, orbvb.conj(), orbob) mo1 = ucphf_with_freq(mf, mo_energy, mo_occ, (h1a,h1b), freq, polobj.max_cycle_cphf, polobj.conv_tol, verbose=log)[0] # *-1 from the definition of dipole moment. e2 = -numpy.einsum('xpi,ypi->xy', h1a, mo1[0]) e2 -= numpy.einsum('xpi,ypi->xy', h1b, mo1[1]) e2 -= numpy.einsum('xpi,ypi->xy', h1a, mo1[2]) e2 -= numpy.einsum('xpi,ypi->xy', h1b, mo1[3]) log.debug('Polarizability tensor with freq %s', freq) log.debug('%s', e2) return e2 class Polarizability(lib.StreamObject): def __init__(self, mf): mol = mf.mol self.mol = mol self.verbose = mol.verbose self.stdout = mol.stdout self._scf = mf self.cphf = True self.max_cycle_cphf = 20 self.conv_tol = 1e-9 self._keys = set(self.__dict__.keys()) def gen_vind(self, mf, mo_coeff, mo_occ): '''Induced potential''' vresp = _gen_uhf_response(mf, hermi=1) occidxa = mo_occ[0] > 0 occidxb = mo_occ[1] > 0 mo0a, mo0b = mo_coeff orboa = mo0a[:, occidxa] orbob = mo0b[:, occidxb] nocca = orboa.shape[1] noccb = orbob.shape[1] nmoa = mo0a.shape[1] nmob = mo0b.shape[1] def vind(mo1): mo1 = mo1.reshape(-1,nmoa*nocca+nmob*noccb) mo1a = mo1[:,:nmoa*nocca].reshape(-1,nmoa,nocca) mo1b = mo1[:,nmoa*nocca:].reshape(-1,nmob,noccb) dm1a = lib.einsum('xai,pa,qi->xpq', mo1a, mo0a, orboa.conj()) dm1b = lib.einsum('xai,pa,qi->xpq', mo1b, mo0b, orbob.conj()) dm1a = dm1a + dm1a.transpose(0,2,1).conj() dm1b = dm1b + dm1b.transpose(0,2,1).conj() v1ao = vresp(numpy.stack((dm1a,dm1b))) v1a = lib.einsum('xpq,pi,qj->xij', v1ao[0], mo0a.conj(), orboa) v1b = lib.einsum('xpq,pi,qj->xij', v1ao[1], mo0b.conj(), orbob) v1mo = numpy.hstack((v1a.reshape(-1,nmoa*nocca), v1b.reshape(-1,nmob*noccb))) return v1mo.ravel() return vind polarizability = polarizability polarizability_with_freq = polarizability_with_freq hyper_polarizability = hyper_polarizability from pyscf import scf scf.uhf.UHF.Polarizability = lib.class_as_method(Polarizability) if __name__ == '__main__': from pyscf import gto from pyscf import scf mol = gto.Mole() # Disagreement between analytical results and finite difference found for # linear molecule #mol.atom = '''h , 0. 0. 0. # F , 0. 0. .917''' mol.atom='''O 0. 0. 0. H 0. -0.757 0.587 H 0. 0.757 0.587''' mol.spin = 2 mol.basis = '631g' mol.build() mf = scf.UHF(mol).run(conv_tol=1e-14) polar = mf.Polarizability().polarizability() hpol = mf.Polarizability().hyper_polarizability() print(polar) mf.verbose = 0 charges = mol.atom_charges() coords = mol.atom_coords() charge_center = numpy.einsum('i,ix->x', charges, coords) / charges.sum() with mol.with_common_orig(charge_center): ao_dip = mol.intor_symmetric('int1e_r', comp=3) h1 = mf.get_hcore() def apply_E(E): mf.get_hcore = lambda *args, **kwargs: h1 + numpy.einsum('x,xij->ij', E, ao_dip) mf.run(conv_tol=1e-14) return mf.dip_moment(mol, mf.make_rdm1(), unit='AU', verbose=0) e1 = apply_E([ 0.0001, 0, 0]) e2 = apply_E([-0.0001, 0, 0]) print((e1 - e2) / 0.0002) e1 = apply_E([0, 0.0001, 0]) e2 = apply_E([0,-0.0001, 0]) print((e1 - e2) / 0.0002) e1 = apply_E([0, 0, 0.0001]) e2 = apply_E([0, 0,-0.0001]) print((e1 - e2) / 0.0002) # Small discrepancy found between analytical derivatives and finite # differences print(hpol) def apply_E(E): mf.get_hcore = lambda *args, **kwargs: h1 + numpy.einsum('x,xij->ij', E, ao_dip) mf.run(conv_tol=1e-14) return Polarizability(mf).polarizability() e1 = apply_E([ 0.0001, 0, 0]) e2 = apply_E([-0.0001, 0, 0]) print((e1 - e2) / 0.0002) e1 = apply_E([0, 0.0001, 0]) e2 = apply_E([0,-0.0001, 0]) print((e1 - e2) / 0.0002) e1 = apply_E([0, 0, 0.0001]) e2 = apply_E([0, 0,-0.0001]) print((e1 - e2) / 0.0002) print(Polarizability(mf).polarizability()) print(Polarizability(mf).polarizability_with_freq(freq= 0.)) print(Polarizability(mf).polarizability_with_freq(freq= 0.1)) print(Polarizability(mf).polarizability_with_freq(freq=-0.1))
36.674757
88
0.59325
3e410612bdd682001e01183ffbb9915e5bcb609c
4,357
py
Python
functions/notify_slack.py
kabisa/terraform-aws-notify-slack
560695f55f0a0e4d61934eca2ee9cd371b50f124
[ "Apache-2.0" ]
null
null
null
functions/notify_slack.py
kabisa/terraform-aws-notify-slack
560695f55f0a0e4d61934eca2ee9cd371b50f124
[ "Apache-2.0" ]
null
null
null
functions/notify_slack.py
kabisa/terraform-aws-notify-slack
560695f55f0a0e4d61934eca2ee9cd371b50f124
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function import os, boto3, json, base64 import urllib.request, urllib.parse import logging # Decrypt encrypted URL with KMS def decrypt(encrypted_url): region = os.environ['AWS_REGION'] try: kms = boto3.client('kms', region_name=region) plaintext = kms.decrypt(CiphertextBlob=base64.b64decode(encrypted_url))['Plaintext'] return plaintext.decode() except Exception: logging.exception("Failed to decrypt URL with KMS") # Send a message to a slack channel def notify_slack(subject, message, region): slack_url = os.environ['SLACK_WEBHOOK_URL'] if not slack_url.startswith("http"): slack_url = decrypt(slack_url) slack_channels = os.environ['SLACK_CHANNELS'].replace(' ', '').split(",") slack_username = os.environ['SLACK_USERNAME'] slack_emoji = os.environ['SLACK_EMOJI'] for slack_channel in slack_channels: payload = { "channel": slack_channel, "username": slack_username, "icon_emoji": slack_emoji, "attachments": [] } if type(message) is str: try: message = json.loads(message); except json.JSONDecodeError as err: logging.exception(f'JSON decode error: {err}') payload = format_message(payload, subject, message, region); data = urllib.parse.urlencode({"payload": json.dumps(payload)}).encode("utf-8") req = urllib.request.Request(slack_url) urllib.request.urlopen(req, data) def lambda_handler(event, context): subject = event['Records'][0]['Sns']['Subject'] message = event['Records'][0]['Sns']['Message'] region = event['Records'][0]['Sns']['TopicArn'].split(":")[3] notify_slack(subject, message, region) return message def format_message(payload, subject, message, region): if "AlarmName" in message: #cloudwatch notification return cloudwatch_notification(payload, message, region); else: return json_to_table_notification(payload, subject, message); def cloudwatch_notification(payload, message, region): states = {'OK': 'good', 'INSUFFICIENT_DATA': 'warning', 'ALARM': 'danger'} attachments = { "color": states[message['NewStateValue']], "fallback": "Alarm {} triggered".format(message['AlarmName']), "footer": "AWS SNS Notification", "footer_icon": "https://www.kabisa.nl/favicon-f61d5679.png", "fields": [ { "title": "Alarm Name", "value": message['AlarmName'], "short": True }, { "title": "Alarm Description", "value": message['AlarmDescription'], "short": False}, { "title": "Alarm reason", "value": message['NewStateReason'], "short": False}, { "title": "Old State", "value": message['OldStateValue'], "short": True }, { "title": "Current State", "value": message['NewStateValue'], "short": True }, { "title": "Link to Alarm", "value": "https://console.aws.amazon.com/cloudwatch/home?region=" + region + "#alarm:alarmFilter=ANY;name=" + urllib.parse.quote_plus(message['AlarmName']), "short": False } ] } payload['text'] = attachments["fallback"]; payload['attachments'].append(attachments); return payload; def json_to_table_notification(payload, subject, message): fields = []; for key, value in message.items(): if isinstance(value, str) and len(value) > 30: fields.append({"title":key, "value": value, "short": False}); else: fields.append({"title":key, "value": value, "short": True}); attachments = { "fallback": "A new message", "fields": fields, "footer": "AWS SNS Notification", "footer_icon": "https://www.kabisa.nl/favicon-f61d5679.png" } payload['text'] = subject; payload['attachments'].append(attachments); return payload; #notify_slack({"AlarmName":"Example","AlarmDescription":"Example alarm description.","AWSAccountId":"000000000000","NewStateValue":"ALARM","NewStateReason":"Threshold Crossed","StateChangeTime":"2017-01-12T16:30:42.236+0000","Region":"EU - Ireland","OldStateValue":"OK"}, "eu-west-1")
37.560345
284
0.616479
9e699202db58b6fd48063e0da33a56d017f3cd4b
3,759
py
Python
google/ads/googleads/v4/services/services/hotel_performance_view_service/transports/base.py
batardo/google-ads-python
a39748521847e85138fca593f3be2681352ad024
[ "Apache-2.0" ]
null
null
null
google/ads/googleads/v4/services/services/hotel_performance_view_service/transports/base.py
batardo/google-ads-python
a39748521847e85138fca593f3be2681352ad024
[ "Apache-2.0" ]
null
null
null
google/ads/googleads/v4/services/services/hotel_performance_view_service/transports/base.py
batardo/google-ads-python
a39748521847e85138fca593f3be2681352ad024
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import abc import typing import pkg_resources from google import auth from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.auth import credentials # type: ignore from google.ads.googleads.v4.resources.types import hotel_performance_view from google.ads.googleads.v4.services.types import ( hotel_performance_view_service, ) try: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=pkg_resources.get_distribution( "google-ads-googleads", ).version, ) except pkg_resources.DistributionNotFound: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo() class HotelPerformanceViewServiceTransport(metaclass=abc.ABCMeta): """Abstract transport class for HotelPerformanceViewService.""" AUTH_SCOPES = ("https://www.googleapis.com/auth/adwords",) def __init__( self, *, host: str = "googleads.googleapis.com", credentials: credentials.Credentials = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. """ # Save the hostname. Default to port 443 (HTTPS) if none is specified. if ":" not in host: host += ":443" self._host = host # If no credentials are provided, then determine the appropriate # defaults. if credentials is None: credentials, _ = auth.default(scopes=self.AUTH_SCOPES) # Save the credentials. self._credentials = credentials # Lifted into its own function so it can be stubbed out during tests. self._prep_wrapped_messages(client_info) def _prep_wrapped_messages(self, client_info): # Precomputed wrapped methods self._wrapped_methods = { self.get_hotel_performance_view: gapic_v1.method.wrap_method( self.get_hotel_performance_view, default_timeout=None, client_info=client_info, ), } @property def get_hotel_performance_view( self, ) -> typing.Callable[ [hotel_performance_view_service.GetHotelPerformanceViewRequest], hotel_performance_view.HotelPerformanceView, ]: raise NotImplementedError __all__ = ("HotelPerformanceViewServiceTransport",)
35.130841
78
0.681564
f6f0978e29133d31324834ede837c8aa68771d8f
1,184
py
Python
textless/data/collater_utils.py
an918tw/textlesslib
d9fcccefbd76b5d6dc6f1df0b8c743e730038f1f
[ "MIT" ]
198
2022-02-14T21:48:11.000Z
2022-03-31T22:49:30.000Z
textless/data/collater_utils.py
an918tw/textlesslib
d9fcccefbd76b5d6dc6f1df0b8c743e730038f1f
[ "MIT" ]
2
2022-03-07T16:52:30.000Z
2022-03-17T01:12:47.000Z
textless/data/collater_utils.py
an918tw/textlesslib
d9fcccefbd76b5d6dc6f1df0b8c743e730038f1f
[ "MIT" ]
9
2022-02-16T09:43:04.000Z
2022-03-31T23:55:43.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch def collate_tensors(stream, pad): """ >>> tensors = [torch.tensor(x) for x in [[1,2,3], [1]]] >>> pad = 0 >>> collate_tensors(tensors, pad) tensor([[1, 2, 3], [1, 0, 0]]) """ assert len(stream) > 0 length = max(v.size(0) for v in stream) n_samples = len(stream) collated = stream[0].new_full((n_samples, length), pad) for i, v in enumerate(stream): collated[i, : v.size(0)] = v return collated def wrap_bos_eos(units, durations, f0, dense, bos, eos): assert units.size(0) == durations.size(0) == dense.size(0) if f0 is not None: assert units.size(0) == f0.size(0) units = torch.cat([bos, units, eos]) z = torch.zeros_like(durations[0:1]) durations = torch.cat([z, durations, z]) if f0 is not None: z = torch.zeros_like(f0[0:1]) f0 = torch.cat([z, f0, z]) z = torch.zeros_like(dense[0:1, :]) dense = torch.cat([z, dense, z]) return units, durations, f0, dense
25.73913
65
0.599662
74a16987f6f7e48405d780e1b5cd78b0d1176988
5,174
py
Python
lib/matplotlib/testing/jpl_units/StrConverter.py
pierre-haessig/matplotlib
0d945044ca3fbf98cad55912584ef80911f330c6
[ "MIT", "PSF-2.0", "BSD-3-Clause" ]
35
2015-10-23T08:15:36.000Z
2022-02-03T10:17:15.000Z
lib/matplotlib/testing/jpl_units/StrConverter.py
pierre-haessig/matplotlib
0d945044ca3fbf98cad55912584ef80911f330c6
[ "MIT", "PSF-2.0", "BSD-3-Clause" ]
3
2015-09-17T16:27:45.000Z
2018-07-31T05:59:33.000Z
lib/matplotlib/testing/jpl_units/StrConverter.py
pierre-haessig/matplotlib
0d945044ca3fbf98cad55912584ef80911f330c6
[ "MIT", "PSF-2.0", "BSD-3-Clause" ]
25
2016-01-18T12:19:11.000Z
2021-12-11T15:45:17.000Z
#=========================================================================== # # StrConverter # #=========================================================================== """StrConverter module containing class StrConverter.""" #=========================================================================== # Place all imports after here. # from __future__ import print_function import matplotlib.units as units from matplotlib.cbook import iterable # Place all imports before here. #=========================================================================== __all__ = [ 'StrConverter' ] #=========================================================================== class StrConverter( units.ConversionInterface ): """: A matplotlib converter class. Provides matplotlib conversion functionality for string data values. Valid units for string are: - 'indexed' : Values are indexed as they are specified for plotting. - 'sorted' : Values are sorted alphanumerically. - 'inverted' : Values are inverted so that the first value is on top. - 'sorted-inverted' : A combination of 'sorted' and 'inverted' """ #------------------------------------------------------------------------ @staticmethod def axisinfo( unit, axis ): """: Returns information on how to handle an axis that has string data. = INPUT VARIABLES - axis The axis using this converter. - unit The units to use for a axis with string data. = RETURN VALUE - Returns a matplotlib AxisInfo data structure that contains minor/major formatters, major/minor locators, and default label information. """ return None #------------------------------------------------------------------------ @staticmethod def convert( value, unit, axis ): """: Convert value using unit to a float. If value is a sequence, return the converted sequence. = INPUT VARIABLES - axis The axis using this converter. - value The value or list of values that need to be converted. - unit The units to use for a axis with Epoch data. = RETURN VALUE - Returns the value parameter converted to floats. """ if ( units.ConversionInterface.is_numlike( value ) ): return value if ( value == [] ): return [] # we delay loading to make matplotlib happy ax = axis.axes if axis is ax.get_xaxis(): isXAxis = True else: isXAxis = False axis.get_major_ticks() ticks = axis.get_ticklocs() labels = axis.get_ticklabels() labels = [ l.get_text() for l in labels if l.get_text() ] if ( not labels ): ticks = [] labels = [] if ( not iterable( value ) ): value = [ value ] newValues = [] for v in value: if ( (v not in labels) and (v not in newValues) ): newValues.append( v ) for v in newValues: if ( labels ): labels.append( v ) else: labels = [ v ] #DISABLED: This is disabled because matplotlib bar plots do not #DISABLED: recalculate the unit conversion of the data values #DISABLED: this is due to design and is not really a bug. #DISABLED: If this gets changed, then we can activate the following #DISABLED: block of code. Note that this works for line plots. #DISABLED if ( unit ): #DISABLED if ( unit.find( "sorted" ) > -1 ): #DISABLED labels.sort() #DISABLED if ( unit.find( "inverted" ) > -1 ): #DISABLED labels = labels[ ::-1 ] # add padding (so they do not appear on the axes themselves) labels = [ '' ] + labels + [ '' ] ticks = range( len(labels) ) ticks[0] = 0.5 ticks[-1] = ticks[-1] - 0.5 axis.set_ticks( ticks ) axis.set_ticklabels( labels ) # we have to do the following lines to make ax.autoscale_view work loc = axis.get_major_locator() loc.set_bounds( ticks[0], ticks[-1] ) if ( isXAxis ): ax.set_xlim( ticks[0], ticks[-1] ) else: ax.set_ylim( ticks[0], ticks[-1] ) result = [] for v in value: # If v is not in labels then something went wrong with adding new # labels to the list of old labels. errmsg = "This is due to a logic error in the StrConverter class. " errmsg += "Please report this error and its message in bugzilla." assert ( v in labels ), errmsg result.append( ticks[ labels.index(v) ] ) ax.viewLim.ignore(-1) return result #------------------------------------------------------------------------ @staticmethod def default_units( value, axis ): """: Return the default unit for value, or None. = INPUT VARIABLES - axis The axis using this converter. - value The value or list of values that need units. = RETURN VALUE - Returns the default units to use for value. Return the default unit for value, or None. """ # The default behavior for string indexing. return "indexed"
32.136646
79
0.536336
225758df209fdc21d3d7b5373f0662b169f6ecec
3,111
py
Python
data_utils.py
BloomBabe/Underwater-Enhancing
6154cd11c402fdc3f353dee9dc7c4166a1f36751
[ "MIT" ]
2
2021-02-18T04:10:31.000Z
2021-03-04T05:27:58.000Z
data_utils.py
BloomBabe/Underwater-Enhancing
6154cd11c402fdc3f353dee9dc7c4166a1f36751
[ "MIT" ]
null
null
null
data_utils.py
BloomBabe/Underwater-Enhancing
6154cd11c402fdc3f353dee9dc7c4166a1f36751
[ "MIT" ]
1
2021-03-04T05:27:59.000Z
2021-03-04T05:27:59.000Z
import numpy as np import torch import random from skimage import io, transform import torch.nn.functional as F from torchvision import transforms torch.manual_seed(17) random.seed(42) class Resize(object): """Rescale the image in a sample to a given size. Args: output_size (tuple or int): Desired output size. If tuple, output is matched to output_size. If int, smaller of image edges is matched to output_size keeping aspect ratio the same. """ def __init__(self, output_size): assert isinstance(output_size, (int, tuple)) self.output_size = output_size def _resize(self, image): h, w = image.size()[1:3] if isinstance(self.output_size, int): if h > w: new_h, new_w = self.output_size * h / w, self.output_size else: new_h, new_w = self.output_size, self.output_size * w / h else: new_h, new_w = self.output_size new_h, new_w = int(new_h), int(new_w) img = F.interpolate(image.unsqueeze(0), (new_h, new_w)) return img.squeeze(0) def __call__(self, sample): raw_image, ref_image = sample['raw_image'], sample['ref_image'] new_raw_image = self._resize(raw_image) new_ref_image = self._resize(ref_image) return {'raw_image': new_raw_image, 'ref_image': new_ref_image} class ToTensor(object): """Convert ndarrays in sample to Tensors.""" def _transpose(self, image, channels=(2, 0, 1)): return image.transpose(channels) def __call__(self, sample): raw_image, ref_image = sample['raw_image'], sample['ref_image'] # swap color axis because # numpy image: H x W x C # torch image: C X H X W new_raw_image = self._transpose(raw_image) new_ref_image = self._transpose(ref_image) return {'raw_image': torch.from_numpy(new_raw_image).float(), 'ref_image': torch.from_numpy(new_ref_image).float()} class Normalize(object): """Normalize a tensor image with mean and standard deviation.""" def __init__(self, mean, std): self.mean = mean self.std = std def _normalize(self, image): return transforms.Normalize(self.mean, self.std)(image) def __call__(self, sample): raw_image, ref_image = sample['raw_image'], sample['ref_image'] norm_raw_image = self._normalize(raw_image) norm_ref_image = self._normalize(ref_image) return {'raw_image': norm_raw_image, 'ref_image': norm_ref_image} class RandomRotation(object): """Rotate the image by angle.""" def _rotate(self, image, angle): return transforms.functional.rotate(image, angle) def __call__(self, sample): raw_image, ref_image = sample['raw_image'], sample['ref_image'] angle = random.randint(0, 360) rotate_raw_image = self._rotate(raw_image, angle) rotate_ref_image = self._rotate(ref_image, angle) return {'raw_image': rotate_raw_image, 'ref_image': rotate_ref_image}
33.815217
77
0.643202
3c89e384fcde93261eb1c4457aea9ecd50c9324b
6,771
py
Python
create-toc.py
the-codeslinger/music-management-scripts
a35d568e5fc550d5444db59448844980a44e1cbc
[ "Apache-2.0" ]
1
2019-07-06T08:07:28.000Z
2019-07-06T08:07:28.000Z
create-toc.py
the-codeslinger/music-management-scripts
a35d568e5fc550d5444db59448844980a44e1cbc
[ "Apache-2.0" ]
null
null
null
create-toc.py
the-codeslinger/music-management-scripts
a35d568e5fc550d5444db59448844980a44e1cbc
[ "Apache-2.0" ]
null
null
null
# Scan directories for audio files with a given extension and read the # meta data from the file"s name to create a table of contents JSON # file from that information. This file can later be used by # conversion tools/scripts. # # Usage example: # python3 create-toc.py \ # -s Music \ # -d "#" \ # -f "artist,album,year,genre,track,title" \ # -r \ # -t wav # # See `python3 create-toc.py --help` for details. import os import json import codecs import argparse from pathvalidate import sanitize_filename ARTIST_TAG_NAME = "artist" ALBUM_TAG_NAME = "album" GENRE_TAG_NAME = "genre" YEAR_TAG_NAME = "year" TRACK_TAG_NAME = "track" TITLE_TAG_NAME = "title" TRACK_LIST_NAME = "tracks" FILENAME_TAG_NAME = "filename" LONG_FILENAME_TAG_NAME = "long" SHORT_FILENAME_TAG_NAME = "short" FORWARD_SLASH_STRING = "/" FORWARD_SLASH_CODE = "&47;" COLON_STRING = ":" COLON_CODE = "&58;" QUESTION_MARK_STRING = "?" QUESTION_MARK_CODE = "&63;" BACKSLASH_STRING = "\\" BACKSLASH_CODE = "&92;" HASH_STRING = "#" HASH_CODE = "&35;" TOC_FILENAME = "ToC.json" def is_hidden(name): return name[0] == "." def get_artist(file_tags): return file_tags[ARTIST_TAG_NAME] if ARTIST_TAG_NAME in file_tags else "" def get_album(file_tags): return file_tags[ALBUM_TAG_NAME] if ALBUM_TAG_NAME in file_tags else "" def get_genre(file_tags): return file_tags[GENRE_TAG_NAME] if GENRE_TAG_NAME in file_tags else "" def get_year(file_tags): return file_tags[YEAR_TAG_NAME] if YEAR_TAG_NAME in file_tags else "" def get_track(file_tags): return file_tags[TRACK_TAG_NAME].zfill(2) if TRACK_TAG_NAME in file_tags else "" def get_title(file_tags): return file_tags[TITLE_TAG_NAME] if TITLE_TAG_NAME in file_tags else "" def replace_specials(value): return value \ .replace(FORWARD_SLASH_CODE, FORWARD_SLASH_STRING) \ .replace(COLON_CODE, COLON_STRING) \ .replace(QUESTION_MARK_CODE, QUESTION_MARK_STRING) \ .replace(BACKSLASH_CODE, BACKSLASH_STRING) \ .replace(HASH_CODE, HASH_STRING) def simple_filename(file_tags, type): track = get_track(file_tags) title = get_title(file_tags) filename = "" if track and title: filename = track + " - " + title + "." + type elif track and not title: filename = track + "." + type elif not track and title: filename = title + "." + type # Sanitize_filename removes my coded special characters. filename = filename \ .replace("\"", "") \ .replace(",", "") \ .replace("!", "") \ .replace(FORWARD_SLASH_STRING, "") \ .replace(COLON_STRING, "") \ .replace(QUESTION_MARK_STRING, "") \ .replace(BACKSLASH_STRING, "") \ .replace(HASH_STRING, "") return sanitize_filename(filename) def assert_and_fill_metadata(record_metadata, tag_name, tag_value): if not record_metadata[tag_name]: record_metadata[tag_name] = tag_value else: assert record_metadata[tag_name] == tag_value, f"File contains different {tag_name}" def fill_record_metadata(record_metadata, file_tags): assert_and_fill_metadata(record_metadata, ARTIST_TAG_NAME, get_artist(file_tags)) assert_and_fill_metadata(record_metadata, ALBUM_TAG_NAME, get_album(file_tags)) assert_and_fill_metadata(record_metadata, GENRE_TAG_NAME, get_genre(file_tags)) assert_and_fill_metadata(record_metadata, YEAR_TAG_NAME, get_year(file_tags)) def remove_redundant_tags(file_tags): file_tags.pop(ARTIST_TAG_NAME, None) file_tags.pop(ALBUM_TAG_NAME, None) file_tags.pop(GENRE_TAG_NAME, None) file_tags.pop(YEAR_TAG_NAME, None) def read_tags(filename, config): format_list = config["format"] tag_list = filename.split(config["delim"]) assert len(tag_list) <= len(format_list), f"Number tags in file {filename} larger than expected according to format" file_tags = {} for index, value in enumerate(tag_list): tag_name = format_list[index] file_tags[tag_name] = replace_specials(value) return file_tags def write_toc_file(dir, record_metadata): with codecs.open(os.path.join(dir, TOC_FILENAME), "w", encoding="UTF-8") as json_file: json.dump(record_metadata, json_file, indent=2, ensure_ascii=False) def rename_files(dir, record_metadata): for track_info in record_metadata[TRACK_LIST_NAME]: long_name = track_info[FILENAME_TAG_NAME][LONG_FILENAME_TAG_NAME] short_name = track_info[FILENAME_TAG_NAME][SHORT_FILENAME_TAG_NAME] os.rename(os.path.join(dir, long_name), os.path.join(dir, short_name)) def read_dir(subdir, config): print(subdir) if os.path.exists(os.path.join(subdir, TOC_FILENAME)): print(f"Folder {subdir} already contains ToC") return with os.scandir(subdir) as iter: record_metadata = { ARTIST_TAG_NAME: "", ALBUM_TAG_NAME: "", GENRE_TAG_NAME: "", YEAR_TAG_NAME: "", TRACK_LIST_NAME: [] } for entry in iter: type = config["type"] if entry.is_file() and entry.name.endswith("." + type): file = entry.name file_no_ext = file[:-1 * (1 + len(type))] file_tags = read_tags(file_no_ext, config) file_tags[FILENAME_TAG_NAME] = { LONG_FILENAME_TAG_NAME: entry.name, SHORT_FILENAME_TAG_NAME: simple_filename(file_tags, type) } fill_record_metadata(record_metadata, file_tags) remove_redundant_tags(file_tags) record_metadata[TRACK_LIST_NAME].append(file_tags) if record_metadata[TRACK_LIST_NAME]: write_toc_file(subdir, record_metadata) rename_files(subdir, record_metadata) def read_recursive(config): for subdir, _, _ in os.walk(config["source"]): read_dir(subdir, config) def read_config(config_path): with codecs.open(config_path, "r", encoding="UTF-8") as f: return json.load(f) def make_abs_config_path(config): config_path = config if not os.path.isabs(config): config_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), config) return config_path def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "-c", "--config", help="""Optional configuration file. Defaults to {script-dir}/etc/create-toc.json""", default="etc/create-toc.json") return parser.parse_args() args = parse_args() config = read_config(make_abs_config_path(args.config)) if config["recurse"] is True: read_recursive(config) else: read_dir(config["source"], config)
32.552885
120
0.678482
1084e40fa035a9f1746cd3192dd7b12b238dae76
5,035
py
Python
alert_service_sdk/model/inspection/val_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
5
2019-07-31T04:11:05.000Z
2021-01-07T03:23:20.000Z
alert_service_sdk/model/inspection/val_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
null
null
null
alert_service_sdk/model/inspection/val_pb2.py
easyopsapis/easyops-api-python
adf6e3bad33fa6266b5fa0a449dd4ac42f8447d0
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: val.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from alert_service_sdk.model.inspection import condition_pb2 as alert__service__sdk_dot_model_dot_inspection_dot_condition__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='val.proto', package='inspection', syntax='proto3', serialized_options=_b('ZDgo.easyops.local/contracts/protorepo-models/easyops/model/inspection'), serialized_pb=_b('\n\tval.proto\x12\ninspection\x1a\x32\x61lert_service_sdk/model/inspection/condition.proto\"\x98\x01\n\rInspectionVal\x12\n\n\x02id\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x0c\n\x04memo\x18\x03 \x01(\t\x12\x0c\n\x04type\x18\x04 \x01(\t\x12\x0c\n\x04unit\x18\x05 \x01(\t\x12\x0e\n\x06weight\x18\x06 \x01(\x05\x12\x33\n\nconditions\x18\x07 \x03(\x0b\x32\x1f.inspection.InspectionConditionBFZDgo.easyops.local/contracts/protorepo-models/easyops/model/inspectionb\x06proto3') , dependencies=[alert__service__sdk_dot_model_dot_inspection_dot_condition__pb2.DESCRIPTOR,]) _INSPECTIONVAL = _descriptor.Descriptor( name='InspectionVal', full_name='inspection.InspectionVal', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id', full_name='inspection.InspectionVal.id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='name', full_name='inspection.InspectionVal.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='memo', full_name='inspection.InspectionVal.memo', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='type', full_name='inspection.InspectionVal.type', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='unit', full_name='inspection.InspectionVal.unit', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='weight', full_name='inspection.InspectionVal.weight', index=5, number=6, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='conditions', full_name='inspection.InspectionVal.conditions', index=6, number=7, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=78, serialized_end=230, ) _INSPECTIONVAL.fields_by_name['conditions'].message_type = alert__service__sdk_dot_model_dot_inspection_dot_condition__pb2._INSPECTIONCONDITION DESCRIPTOR.message_types_by_name['InspectionVal'] = _INSPECTIONVAL _sym_db.RegisterFileDescriptor(DESCRIPTOR) InspectionVal = _reflection.GeneratedProtocolMessageType('InspectionVal', (_message.Message,), { 'DESCRIPTOR' : _INSPECTIONVAL, '__module__' : 'val_pb2' # @@protoc_insertion_point(class_scope:inspection.InspectionVal) }) _sym_db.RegisterMessage(InspectionVal) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
43.034188
505
0.753923
56474489db784a9641bcbf3b40ee07c8c756e390
550
py
Python
cnlp_annotator/task_center/task_center_webapi/manage.py
szj2ys/cnlp_annotator
1837d952a73ffe97b0e5c3523d51896e92572ce1
[ "Apache-2.0" ]
915
2018-07-25T07:30:27.000Z
2022-03-25T14:09:17.000Z
cnlp_annotator/task_center/task_center_webapi/manage.py
szj2ys/cnlp_annotator
1837d952a73ffe97b0e5c3523d51896e92572ce1
[ "Apache-2.0" ]
20
2018-10-12T15:48:56.000Z
2021-09-27T09:12:01.000Z
cnlp_annotator/task_center/task_center_webapi/manage.py
szj2ys/cnlp_annotator
1837d952a73ffe97b0e5c3523d51896e92572ce1
[ "Apache-2.0" ]
204
2018-07-30T06:52:29.000Z
2022-03-03T15:18:39.000Z
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "task_center_webapi.settings") try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
34.375
82
0.692727
177a19b9c71cf4c467d6c933abacbd9faf1d7259
4,086
py
Python
polydomino/app.py
PsiACE/polydomino
ade7cdb303cb4073d8c075659a5494392d31f8b4
[ "MIT" ]
null
null
null
polydomino/app.py
PsiACE/polydomino
ade7cdb303cb4073d8c075659a5494392d31f8b4
[ "MIT" ]
null
null
null
polydomino/app.py
PsiACE/polydomino
ade7cdb303cb4073d8c075659a5494392d31f8b4
[ "MIT" ]
null
null
null
import os import sys import time from datetime import timedelta import cv2 from dotenv import find_dotenv, load_dotenv from flask import Flask, jsonify, render_template, request from werkzeug.utils import secure_filename from colordescriptor import ColorDescriptor from searcher import Searcher load_dotenv(find_dotenv()) INDEX_PATH = os.environ.get("INDEX_PATH") FEATURES = os.environ.get("FEATURES") SEARCHER = os.environ.get("SEARCHER") # 设置允许的文件格式 ALLOWED_EXTENSIONS = set(["png", "jpg", "JPG", "PNG", "bmp"]) def allowed_file(filename): return "." in filename and filename.rsplit(".", 1)[1] in ALLOWED_EXTENSIONS # create flask instance app = Flask(__name__) app.jinja_env.filters["zip"] = zip INDEX = os.path.join(os.path.dirname(__file__), INDEX_PATH) # main route @app.route("/") def index(): return render_template("index.html") @app.route("/demo") def demo(): return render_template("demo.html") @app.route("/query", methods=["GET", "POST"]) def query(): if request.method == "POST": f = request.files["file"] if not (f and allowed_file(f.filename)): return jsonify({"error": 1001, "msg": "请检查上传的图片类型,仅限于png、PNG、jpg、JPG、bmp"}) basepath = os.path.dirname(__file__) # 当前文件所在路径 # 注意:没有的文件夹一定要先创建,不然会提示没有该路径 upload_path = os.path.join( basepath, "static/queries", secure_filename(f.filename) ) # upload_path = os.path.join(basepath, 'static/images','test.jpg') #注意:没有的文件夹一定要先创建,不然会提示没有该路径 f.save(upload_path) import cv2 # 使用Opencv转换一下图片格式和名称 img = cv2.imread(upload_path) cv2.imwrite(os.path.join(basepath, "static/queries", "test.jpg"), img) RESULTS_ARRAY = [] SCORE_ARRAY = [] cd = ColorDescriptor((8, 12, 3)) features = get_features(cd, FEATURES, img) searcher = Searcher(INDEX) results = searcher.search(features, SEARCHER) # loop over the results, displaying the score and image name for (score, resultID) in results: RESULTS_ARRAY.append(resultID) SCORE_ARRAY.append(score) return render_template( "query_ok.html", results=(RESULTS_ARRAY[:5]), scores=(SCORE_ARRAY[:5]), name=f.filename, ) return render_template("query.html") # search route @app.route("/search", methods=["POST"]) def search(): if request.method == "POST": RESULTS_ARRAY = [] # get url image_url = request.form.get("img") try: # initialize the image descriptor cd = ColorDescriptor((8, 12, 3)) import cv2 image_url = "polydomino/" + image_url[1:] query = cv2.imread(image_url) features = get_features(cd, FEATURES, query) # perform the search searcher = Searcher(INDEX) results = searcher.search(features, SEARCHER) # loop over the results, displaying the score and image name for (score, resultID) in results: RESULTS_ARRAY.append({"image": str(resultID), "score": str(score)}) # return success return jsonify(results=(RESULTS_ARRAY[:5])) except: # return error jsonify({"sorry": "Sorry, no results! Please try again."}), 500 def get_features(cd, method, query): if method == "color-moments": return cd.color_moments(query) elif method == "hsv-describe": return cd.hsv_describe(query) elif method == "gray-matrix": return cd.gray_matrix(query) elif method == "humoments": return cd.humoments(query) elif method == "ahash": return cd.ahash(query) elif method == "phash": return cd.phash(query) elif method == "mse": return cd.mse(query) elif method == "dhash": return cd.dhash(query) elif method == "hog": return cd.hog(query) else: return # run! if __name__ == "__main__": app.run("127.0.0.1", debug=True)
26.36129
103
0.615027
ddb8fec7f1bc312c6beebb7a5ed95a8e6fabcb44
3,126
py
Python
app/routes/flush.py
petechd/eq-questionnaire-runner
1c5b182a7f8bc878cfdd767ae080410fa679abd6
[ "MIT" ]
null
null
null
app/routes/flush.py
petechd/eq-questionnaire-runner
1c5b182a7f8bc878cfdd767ae080410fa679abd6
[ "MIT" ]
null
null
null
app/routes/flush.py
petechd/eq-questionnaire-runner
1c5b182a7f8bc878cfdd767ae080410fa679abd6
[ "MIT" ]
null
null
null
from flask import Blueprint, Response, current_app, request, session from sdc.crypto.decrypter import decrypt from sdc.crypto.encrypter import encrypt from structlog import get_logger from app.authentication.user import User from app.globals import get_answer_store, get_metadata, get_questionnaire_store from app.keys import KEY_PURPOSE_AUTHENTICATION, KEY_PURPOSE_SUBMISSION from app.questionnaire.router import Router from app.submitter.converter import convert_answers from app.submitter.submission_failed import SubmissionFailedException from app.utilities.json import json_dumps from app.utilities.schema import load_schema_from_metadata flush_blueprint = Blueprint("flush", __name__) logger = get_logger() @flush_blueprint.route("/flush", methods=["POST"]) def flush_data(): if session: session.clear() encrypted_token = request.args.get("token") if not encrypted_token or encrypted_token is None: return Response(status=403) decrypted_token = decrypt( token=encrypted_token, key_store=current_app.eq["key_store"], key_purpose=KEY_PURPOSE_AUTHENTICATION, leeway=current_app.config["EQ_JWT_LEEWAY_IN_SECONDS"], ) roles = decrypted_token.get("roles") if roles and "flusher" in roles: user = _get_user(decrypted_token["response_id"]) metadata = get_metadata(user) if "tx_id" in metadata: logger.bind(tx_id=metadata["tx_id"]) if _submit_data(user): return Response(status=200) return Response(status=404) return Response(status=403) def _submit_data(user): answer_store = get_answer_store(user) if answer_store: questionnaire_store = get_questionnaire_store(user.user_id, user.user_ik) answer_store = questionnaire_store.answer_store metadata = questionnaire_store.metadata progress_store = questionnaire_store.progress_store list_store = questionnaire_store.list_store schema = load_schema_from_metadata(metadata) router = Router(schema, answer_store, list_store, progress_store, metadata) full_routing_path = router.full_routing_path() message = json_dumps( convert_answers( schema, questionnaire_store, full_routing_path, flushed=True ) ) encrypted_message = encrypt( message, current_app.eq["key_store"], KEY_PURPOSE_SUBMISSION ) sent = current_app.eq["submitter"].send_message( encrypted_message, tx_id=metadata.get("tx_id"), case_id=metadata["case_id"], ) if not sent: raise SubmissionFailedException() get_questionnaire_store(user.user_id, user.user_ik).delete() logger.info("successfully flushed answers") return True logger.info("no answers found to flush") return False def _get_user(response_id): id_generator = current_app.eq["id_generator"] user_id = id_generator.generate_id(response_id) user_ik = id_generator.generate_ik(response_id) return User(user_id, user_ik)
32.226804
83
0.712412
c952e3e103322bf46aa65d8578978aed5398af2f
104
py
Python
invent-your-own-computer-games-with-python/hello.py
learning-game-development/learning-python-game-development
326b72eadab0bfb14f70f295b492f76d139dde33
[ "Unlicense" ]
null
null
null
invent-your-own-computer-games-with-python/hello.py
learning-game-development/learning-python-game-development
326b72eadab0bfb14f70f295b492f76d139dde33
[ "Unlicense" ]
null
null
null
invent-your-own-computer-games-with-python/hello.py
learning-game-development/learning-python-game-development
326b72eadab0bfb14f70f295b492f76d139dde33
[ "Unlicense" ]
null
null
null
print("Hello world!") print("What is your name?") name = input() print("It is good to meet you,", name)
20.8
38
0.663462