hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
4b922114fe8857917cc97991185cf8a10ca74b3e
618
py
Python
lconfig.py
litecord/rest-py
1fcc08566dafd435e1df701a5928b0806ce9a294
[ "MIT" ]
null
null
null
lconfig.py
litecord/rest-py
1fcc08566dafd435e1df701a5928b0806ce9a294
[ "MIT" ]
6
2018-02-22T21:03:18.000Z
2018-02-23T21:29:53.000Z
lconfig.py
litecord/rest-py
1fcc08566dafd435e1df701a5928b0806ce9a294
[ "MIT" ]
null
null
null
# configuration for litecord rest # Where to start the webserver server_url = ('0.0.0.0', 8000) ssl = False ssl_certfile = '' ssl_keyfile = '' # Where the gateway is in the world gateway_url = 'ws://localhost:8081/gw' # Where the litebridge connection will happen litebridge_server = 'ws://localhost:10101/' litebridge_password = '123' # Postgres arguments pgargs = { 'user': 'litecord', 'password': '123', 'database': 'litecord', 'host': 'localhost', } # recommended amount is 1000 guilds for each shard # changing this can lead to overall service degradation # on high loads GUILDS_SHARD = 1000
22.071429
55
0.708738
3991e3c3070b3c6658247242dfbc7361cced9cfe
545
py
Python
Ekler/Neural_Network/skNN.py
ardamavi/SesimVar
ed344b4a88e6186127d9488c1787d7232fcd7c38
[ "Apache-2.0" ]
18
2017-04-01T19:50:02.000Z
2021-03-10T06:52:17.000Z
Ekler/Neural_Network/skNN.py
sygops/SesimVar
ed344b4a88e6186127d9488c1787d7232fcd7c38
[ "Apache-2.0" ]
1
2017-04-01T19:47:20.000Z
2017-04-01T19:47:20.000Z
Ekler/Neural_Network/skNN.py
sygops/SesimVar
ed344b4a88e6186127d9488c1787d7232fcd7c38
[ "Apache-2.0" ]
6
2018-02-17T20:58:14.000Z
2021-01-06T23:37:16.000Z
# Arda Mavi from sklearn.neural_network import MLPClassifier def egitim(X,y): # X => Eğitim için örnek giriş verileri. # y => Eğitim için X girişlerinin beklenen çıktıları. # MLPClassifier -> multi-layer perceptron (MLP) clf = MLPClassifier(solver='lbfgs', alpha=1e-5,hidden_layer_sizes=(2), random_state=1) # Eğitim verileri ile eğitim: clf = clf.fit(X, y) return clf def tahmin(clf, X): # clf => Daha önceden eğitilmiş sınflandırıcı. # X => Sinir ağlarındaki giriş değerleri. return clf.predict(X)
27.25
90
0.689908
ba1e02988122dbee1766330fbf0929a094e611f2
3,656
py
Python
GPCR/main_bert.py
nepp1d0/transformerCPI
a84c1e9b23b35ba3f02ad13621a1413f0ae7c62a
[ "Apache-2.0" ]
null
null
null
GPCR/main_bert.py
nepp1d0/transformerCPI
a84c1e9b23b35ba3f02ad13621a1413f0ae7c62a
[ "Apache-2.0" ]
null
null
null
GPCR/main_bert.py
nepp1d0/transformerCPI
a84c1e9b23b35ba3f02ad13621a1413f0ae7c62a
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ @Time:Created on 2019/9/17 8:54 @author: LiFan Chen @Filename: main.py @Software: PyCharm """ import torch import numpy as np import random import os import time import timeit import warnings from model_bert import BERT from model_bert import Trainer def load_tensor(file_name, dtype): return [dtype(d).to(device) for d in np.load(file_name + '.npy', allow_pickle=True)] def shuffle_dataset(dataset, seed): np.random.seed(seed) np.random.shuffle(dataset) return dataset def split_dataset(dataset, ratio): n = int(ratio * len(dataset)) dataset_1, dataset_2 = dataset[:n], dataset[n:] return dataset_1, dataset_2 if __name__ == "__main__": SEED = 1 random.seed(SEED) torch.manual_seed(SEED) # torch.backends.cudnn.deterministic = True DATASET = "GPCR_train" """CPU or GPU""" if torch.cuda.is_available(): device = torch.device('cuda:0') print('The code uses GPU...') else: device = torch.device('cpu') print('The code uses CPU!!!') """Load preprocessed data.""" dir_input = ('tokenizer_directory/' ) smiles = load_tensor(dir_input + 'smiles', torch.FloatTensor) targets = load_tensor(dir_input + 'targets', torch.FloatTensor) labels = load_tensor(dir_input + 'labels', torch.FloatTensor) print(f'Shape of smiles loaded tensors {smiles[0].shape}') print(f'Shape of smiles masks loaded tensors {smiles[1].shape}') """Create a dataset and split it into train/dev/test.""" dataset = list(zip(smiles[0], smiles[1], targets[0], targets[1], labels)) dataset = shuffle_dataset(dataset, 1234) dataset_train, dataset_dev = split_dataset(dataset, 0.8) """ create model ,trainer and tester """ protein_dim = 100 atom_dim = 100 hid_dim = 64 n_layers = 3 n_heads = 8 pf_dim = 256 dropout = 0.1 batch = 64 lr = 1e-4 weight_decay = 1e-4 decay_interval = 5 lr_decay = 1.0 iteration = 300 kernel_size = 7 print("Building BERT model") model = BERT(70 - 5, hidden=hid_dim, n_layers=n_layers, attn_heads=n_heads) # 70 (smiles_vocab_size + targets_vocab_size) - 5 (special_tokens not repeated) # model.load_state_dict(torch.load("output/model/lr=0.001,dropout=0.1,lr_decay=0.5")) model.to(device) trainer = Trainer(model, lr, weight_decay, batch) #tester = Tester(model) """Output files.""" file_AUCs = 'output_bert/result/bertv1' + '.txt' file_model = 'output_bert/model/' + 'bertv1' AUCs = ('Epoch\tTime(sec)\tLoss_train\tAUC_dev\tPRC_dev') if not os.path.exists('output_bert'): os.makedirs('output_bert') if not os.path.exists('output_bert/result'): os.makedirs('output_bert/result') if not os.path.exists('output_bert/model'): os.makedirs('output_bert/model') with open(file_AUCs, 'w') as f: f.write(AUCs + '\n') """Start training.""" print('Training...') print(AUCs) start = timeit.default_timer() max_AUC_dev = 0 for epoch in range(1, iteration+1): if epoch % decay_interval == 0: trainer.optimizer.param_groups[0]['lr'] *= lr_decay loss_train = trainer.train(dataset_train, device) #AUC_dev, PRC_dev = tester.test(dataset_dev) end = timeit.default_timer() time = end - start #tester.save_AUCs(AUCs, file_AUCs) AUCs = [epoch, time, loss_train] print('\t'.join(map(str, AUCs))) '''if AUC_dev > max_AUC_dev: tester.save_model(model, file_model) max_AUC_dev = AUC_dev print('\t'.join(map(str, AUCs)))'''
29.723577
160
0.646061
ccbaa1d4bd9a9a155dc22845efdaeb1b42c9a366
18,841
py
Python
Hangman example test thing 3.py
nicholashall14/Hangman-Game-Python
94a75f95b873001f72b94cb770a9c3bf66cdb70e
[ "MIT" ]
null
null
null
Hangman example test thing 3.py
nicholashall14/Hangman-Game-Python
94a75f95b873001f72b94cb770a9c3bf66cdb70e
[ "MIT" ]
null
null
null
Hangman example test thing 3.py
nicholashall14/Hangman-Game-Python
94a75f95b873001f72b94cb770a9c3bf66cdb70e
[ "MIT" ]
null
null
null
################################################# # Author : Ciel, imwithye # Matric No : U1220539K # Group : FS4 ################################################# import time import random easy = ['PHONE','HAPPY','APPLE','EARTH','GONGYIWEI'] normal = ['PYTHON','PIONEER','SINGAPORE','FATHER','MOTHER','GONGYIWEI'] ################################################# #clear : This function will clear the whole screen with 30 blank lines # #pre-condition : NONE #post-condition : print out 30 blank lines ################################################# def clear(): for i in range(30): print ('\n') ################################################# #hangmanInterface : This function will print a basic interface of Hangman. # The argument index means how many steps left. #pre-condition : index is the number of steps left and should GREATTER or EQUALS to 0! #post-condition : print out a basic interface of Hangman ################################################# def hangmanInterface(index): if index==0: print(' _____ ') print(' | | ') print(' O | ') print(' /|\ | ') print(' / \ | ') print(' | ') print(' ________|_') return if index==1: print(' _____ ') print(' | | ') print(' O | ') print(' /|\ | ') print(' / | ') print(' | ') print(' ________|_') return if index==2: print(' _____ ') print(' | | ') print(' O | ') print(' /|\ | ') print(' | ') print(' | ') print(' ________|_') return if index==3: print(' _____ ') print(' | | ') print(' O | ') print(' /| | ') print(' | ') print(' | ') print(' ________|_') return if index==4: print(' _____ ') print(' | | ') print(' O | ') print(' | | ') print(' | ') print(' | ') print(' ________|_') return if index==5: print(' _____ ') print(' | | ') print(' O | ') print(' | ') print(' | ') print(' | ') print(' ________|_') return if index==6: print(' _____ ') print(' | | ') print(' | ') print(' | ') print(' | ') print(' | ') print(' ________|_') return if index==7: print(' _____ ') print(' | ') print(' | ') print(' | ') print(' | ') print(' | ') print(' ________|_') return if index==8: print(' ') print(' | ') print(' | ') print(' | ') print(' | ') print(' | ') print(' ________|_') return if index==9: print(' ') print(' ') print(' ') print(' ') print(' ') print(' ') print(' ________|_') return ################################################# #startInterface : startInterface in the first user interface #pre-condition : input should be a interger between 1 to 3 #post-condition : this function will give out user's choice of gaming! ################################################# def startInterface(): clear() print('####################') print('# #') print('# Hangman #') print('# #') print('####################') print(' 1.Start #') print(' 2.Copyright #') print(' 3.Exit #') choice = input('Input Selection: ') return choice ################################################# #startInterface2 : startInterface2 is the second interface user will see #pre-condition : input should be a integer between 1 to 3 #post-condition : this function will give out user's choice of degree of difficulty ################################################# def startInterface2(): clear() print('####################') print('# #') print('# Hangman #') print('# #') print('####################') print(' 1.Easy #') print(' 2.Normal #') print(' 3.Expert #') choice = input('Input Selection: ') return choice ################################################# #copyrightInterface : this function shows Copyright #pre-condition : input can be anything #post-condition : bring user back to first user interface ################################################# def copyrightInterface(): clear() print('####################') print('# #') print('# Hangman #') print('# #') print('####################') print('# Author: Ciel, imwithye') print('# School of Computer Engeineering') print('# Nanyang Technological University') print('key in any input to go back') input('') return ################################################# #gameInterface : gameInterface is the main user interface in gaming. #pre-condition : user's guess,miss_attempts should not greater than 6,misses is the history of mistake #post-condition : print out the interface and return # if restart, return ! if call for # help,return character else ################################################# def gameInterface(guess,miss_attempts,misses,hintleft): clear() left = 9-miss_attempts hangmanInterface(left) print('###########################################') print('Word: ',end='') for i in guess: print(i,' ',end='') print() print('# Misses: ',end='') for i in misses: print(i,' ',end='') print() if left != 0: print('# You have ',left,' attempt(s) left') print('# You have ',hintleft,' hint(s) left') print('# input ? to get hint, # to restart and ! to see answer') _in = input('# Guess: ') if len(_in)>1: return '<' else: if _in == '?' or _in == '#' or _in == '!': return _in elif _in.isalpha(): return _in.upper() else: return '<' else: print('# key in any input to Try Again!') _in = input('') return '#' ################################################# #game : game is the process of gaming. return false if game ends #pre-condition : the answer 'word' should be a string. hintMax should not be greater than 3 #post-condition : return false if game ends ################################################# def game(word,hintMax): length = len(word) miss = 0 hintTimes = 0 misses = [] guess = ['_' for i in range(length)] while True: operation = gameInterface(guess,miss,misses,hintMax-hintTimes) if operation == '#': print('Restarting...') time.sleep(3) return True elif operation == '?': if hintTimes<hintMax: operation = hint(word,guess) for i in range(length): if word[i]==operation: guess[i] = operation hintTimes = hintTimes+1 else: print('# Can not get hint any more!Try your best!') print('# Wait for 2 seconds') time.sleep(2) continue elif operation == '<': print('# Please input correctly!') print('# Wait for 2 seconds') time.sleep(2) continue elif operation == '!': clear() hangmanInterface(9-miss) print('###########################################') print('# The answer is',word) print('# wait fewer seconds to back to main menu') time.sleep(3) return False else: flag=0 for i in range(length): if word[i]==operation: guess[i] = operation flag = 1 if flag==0: miss = miss+1 if not operation in misses: misses.append(operation) if not '_' in guess: clear() hangmanInterface(9-miss) print('###########################################') print('# ',end='') for i in guess: print(i,' ',end='') print() print('# Great!') time.sleep(3) return False ################################################# #hint : this function will return a correct character #pre-condition : word should be a string and guess should be a list #post-condition : return back a correct character ################################################# def hint(word,guess): length = len(word) for i in range(length): if guess[i]=='_': hintletter = word[i] return hintletter ################################################# #getWord : getWord function will get a get a word randomly # Admin model can see the whole library and add words #pre-condition : sel is the degree of difficulty and should be less than 3 # if sel is greater then 3, that means Admin model! #post-condition : return a word whose type is string. # Or Admin model to access library! ################################################# def getWord(sel): global easy,normal if sel==3: sel = 2 if sel == 1: length = len(easy) index = random.randrange(0,length) return easy[index] elif sel == 2: length = len(normal) index = random.randrange(0,length) return normal[index] else: while True: clear() print('####################################') print('# Edit Library, input "exit()" to go back to main menu:') print('# 1.Show Library') print('# 2.Add word; Program will automatically select degree of difficulty') print('# 3.RESET to default.') print('####################################') selection = input('Selection: ') if selection == 'exit()': return 'DONE' elif selection == '1': print('_________________Library Files___________________') print('easy:') for i in easy: print(' ',i) print() print('normal and expert:') for i in normal: print(' ',i) print() print('_________________Library Files___________________') print('# key in any input to return') temp = input() elif selection == '2': while True: print('_________________Addition___________________') print('Use end() to end') add = input() if add != 'end()': if add.isalpha(): degree = check(add) if degree == 1: if not add.upper() in easy: easy.append(add.upper()) print('# Add successfully!') else: print('# REPEAT! Words has ready added!') else: if not add.upper() in normal: normal.append(add.upper()) print('# Add successfully!') else: print('# REPEAT! Words has ready added!') else: print('# Please input correctly!') continue else: print('_________________Addition___________________') print('Addition Done') time.sleep(2) break elif selection == '3': while True: print('# Please be sure all data will be set to default!') print('# key in "confirm()" to continue and key in anything else to cancel') temp = input() if temp=='confirm()': easy = ['PHONE','HAPPY','APPLE','EARTH','GONGYIWEI'] normal = ['PYTHON','PIONEER','SINGAPORE','FATHER','MOTHER','GONGYIWEI'] print('# Successfully! wait 2 seconds.') time.sleep(2) break else: print('# Canceled! wait 2 seconds.') time.sleep(2) break else: continue ################################################# #check : Check the whether is easy or normal #pre-condition : addition should be a string only contenting alpha #post-condition : return 1 if it is easy return 2 if it is normal ################################################# def check(addition): sign = 0 result = ['CHECK'] for i in addition: if not i in result: result.append(i) sign = len(result) if sign>6: return 2 else: return 1 ################################################# # mainfunction: Hangman's main function # goal : A command line Hangman game # explain : There are three degrees of difficulties to choose; # esay is a short word with repeat # nomal degree, the word will not be too long # expert will be very difficult. # nomal and expert will use the same library but expert's hint is less # Author : GONG YIWEI # Matric No : U1220539K # Group : FS4 ################################################# clear() print(" __ __ ___ .__ __. _______ .___ ___. ___ .__ __.") print("| | | | / \ | \ | | / _____|| \/ | / \ | \ | |") print("| |__| | / ^ \ | \| | | | __ | \ / | / ^ \ | \| |") print("| __ | / /_\ \ | . ` | | | |_ | | |\/| | / /_\ \ | . ` |") print("| | | | / _____ \ | |\ | | |__| | | | | | / _____ \ | |\ |") print("|__| |__| /__/ \__\ |__| \__| \______| |__| |__| /__/ \__\ |__| \__|") print('#######################################################') print('# key in admin to get in admin model! #') print('# key in whosyourdaddy to get in special model! #') print('# Warnning! admin mode is ONLY for developers! #') print('# any bugs please report to #') print('# http://github.com/imwithye #') print('# email: [email protected] #') print('#######################################################') print() print('# Wait for starting...',end='') print('<====',end='') print('====',end='') print('====',end='') print('====',end='') print('====> 100% DONE!') input('# Press Enter') while True: gameProcess = True sel = startInterface() if sel=='1': while True: sel2 = startInterface2() if not sel2.isdigit(): continue elif len(sel2)>1: continue elif int(sel2)>3 or int(sel2)<0: continue else: word = getWord(int(sel2)) while gameProcess: gameProcess = game(word,4-int(sel2)) break elif sel=='2': copyrightInterface() continue elif sel=='3': break elif sel=='admin': getWord(4) elif sel=='whosyourdaddy': word = 'HANGMAN' temp = game(word,1000) else: continue
40.605603
104
0.359854
89f11fefed8fd135e8461264054ff4357f0133c4
4,242
py
Python
hypha/apply/api/v1/utils.py
maxpearl/hypha
e181ebadfb744aab34617bb766e746368d6f2de0
[ "BSD-3-Clause" ]
20
2021-04-08T16:38:49.000Z
2022-02-09T20:05:57.000Z
hypha/apply/api/v1/utils.py
maxpearl/hypha
e181ebadfb744aab34617bb766e746368d6f2de0
[ "BSD-3-Clause" ]
1,098
2017-12-15T11:23:03.000Z
2020-01-24T07:58:07.000Z
hypha/apply/api/v1/utils.py
maxpearl/hypha
e181ebadfb744aab34617bb766e746368d6f2de0
[ "BSD-3-Clause" ]
17
2020-02-07T14:55:54.000Z
2021-04-04T19:32:38.000Z
from collections import OrderedDict from django import forms from django.contrib.auth import get_user_model from django.db.models import Q from tinymce.widgets import TinyMCE from wagtail.core.models import Page from hypha.apply.categories.models import Option from hypha.apply.funds.models import ApplicationSubmission, Round, ScreeningStatus from hypha.apply.review.fields import ScoredAnswerField, ScoredAnswerWidget from hypha.apply.stream_forms.forms import BlockFieldWrapper from hypha.apply.users.groups import STAFF_GROUP_NAME User = get_user_model() def get_field_kwargs(form_field): if isinstance(form_field, BlockFieldWrapper): return {'text': form_field.block.value.source} kwargs = OrderedDict() kwargs = { 'initial': form_field.initial, 'required': form_field.required, 'label': form_field.label, 'label_suffix': form_field.label_suffix, 'help_text': form_field.help_text, 'help_link': form_field.help_link } if isinstance(form_field, forms.CharField): if hasattr(form_field, 'word_limit'): kwargs['word_limit'] = form_field.word_limit kwargs['max_length'] = form_field.max_length kwargs['min_length'] = form_field.min_length kwargs['empty_value'] = form_field.empty_value if isinstance(form_field, forms.ChoiceField): kwargs['choices'] = form_field.choices if isinstance(form_field, forms.TypedChoiceField): kwargs['empty_value'] = form_field.empty_value if isinstance(form_field, forms.IntegerField): kwargs['max_value'] = form_field.max_value kwargs['min_value'] = form_field.min_value if isinstance(form_field, ScoredAnswerField): fields = [ { 'type': form_field.fields[0].__class__.__name__, 'max_length': form_field.fields[0].max_length, 'min_length': form_field.fields[0].min_length, 'empty_value': form_field.fields[0].empty_value }, { 'type': form_field.fields[1].__class__.__name__, 'choices': form_field.fields[1].choices, }, ] kwargs['fields'] = fields return kwargs def get_field_widget(form_field): if isinstance(form_field, BlockFieldWrapper): return {'type': 'LoadHTML', 'attrs': {}} widget = { 'type': form_field.widget.__class__.__name__, 'attrs': form_field.widget.attrs } if isinstance(form_field.widget, TinyMCE): mce_attrs = form_field.widget.mce_attrs plugins = mce_attrs.get('plugins') if not isinstance(plugins, list): mce_attrs['plugins'] = [plugins] if 'toolbar1' in mce_attrs: mce_attrs['toolbar'] = mce_attrs.pop('toolbar1') widget['mce_attrs'] = mce_attrs if isinstance(form_field.widget, ScoredAnswerWidget): field_widgets = form_field.widget.widgets widgets = [ { 'type': field_widgets[0].__class__.__name__, 'attrs': field_widgets[0].attrs, 'mce_attrs': field_widgets[0].mce_attrs }, { 'type': field_widgets[1].__class__.__name__, 'attrs': field_widgets[1].attrs, } ] widget['widgets'] = widgets return widget def get_round_leads(): return User.objects.filter(submission_lead__isnull=False).distinct() def get_reviewers(): """ All assigned reviewers, staff or admin """ return User.objects.filter(Q(submissions_reviewer__isnull=False) | Q(groups__name=STAFF_GROUP_NAME) | Q(is_superuser=True)).distinct() def get_screening_statuses(): return ScreeningStatus.objects.filter( id__in=ApplicationSubmission.objects.all().values('screening_statuses__id').distinct('screening_statuses__id')) def get_used_rounds(): return Round.objects.filter(submissions__isnull=False).distinct() def get_used_funds(): # Use page to pick up on both Labs and Funds return Page.objects.filter(applicationsubmission__isnull=False).distinct() def get_category_options(): return Option.objects.filter( category__filter_on_dashboard=True )
35.647059
138
0.67091
6d8c2c5848af5f1b26c7e919bf95d2aae504f0df
16,775
py
Python
setup.py
halvisg/dtaidistance
80a23e9998bc3f3ca50213c2fd27d307ef6098e5
[ "Apache-2.0" ]
null
null
null
setup.py
halvisg/dtaidistance
80a23e9998bc3f3ca50213c2fd27d307ef6098e5
[ "Apache-2.0" ]
null
null
null
setup.py
halvisg/dtaidistance
80a23e9998bc3f3ca50213c2fd27d307ef6098e5
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: UTF-8 -*- """ python3 setup.py build_ext --inplace """ from setuptools import setup, Command, find_packages from setuptools.extension import Extension from setuptools.command.test import test as TestCommand from setuptools.command.sdist import sdist as SDistCommand from setuptools.command.build_ext import build_ext as BuildExtCommand from setuptools.command.install import install from setuptools import Distribution from distutils.errors import CCompilerError, DistutilsExecError, DistutilsPlatformError import platform import os import sys import re import subprocess as sp from pathlib import Path try: import numpy except ImportError: numpy = None try: from Cython.Build import cythonize except ImportError: cythonize = None here = Path(__file__).parent dtaidistancec_path = Path('dtaidistance') / 'lib' / 'DTAIDistanceC' / 'DTAIDistanceC' c_args = { # Xpreprocessor is required for the built-in CLANG on macos, but other # installations of LLVM don't seem to be bothered by it (although it's # not required. # GCC should also not be bothered by it but appears to be on some systems. 'unix': ['-Xpreprocessor', '-fopenmp', '-I'+str(dtaidistancec_path)], 'msvc': ['/openmp', '/Ox', '/fp:fast', '/favor:INTEL64', '/Og', '/I'+str(dtaidistancec_path)], 'mingw32': ['-fopenmp', '-O3', '-ffast-math', '-march=native', '-DMS_WIN64', '-I'+str(dtaidistancec_path)], 'llvm': ['-Xpreprocessor', '-fopenmp', # custom key for Homebrew llvm '-I'+str(dtaidistancec_path)], 'gnugcc': ['-Xpreprocessor', '-fopenmp', # custom key for GNU GCC '-I'+str(dtaidistancec_path)] } l_args = { 'unix': ['-Xpreprocessor', '-fopenmp'], # '-lgomp' / '-lomp' 'msvc': [], 'mingw32': ['-fopenmp'], 'llvm': ['-Xpreprocessor', '-fopenmp', '-lomp'], # custom key for Homebrew llvm 'gnugcc': ['-Xpreprocessor', '-fopenmp', '-lgomp'] # custom key for GNU GCC } class PyTest(TestCommand): description = "Run tests" user_options = [('pytest-args=', 'a', "Arguments to pass into py.test")] pytest_args = [] test_args = [] def initialize_options(self): self.pytest_args = ['--ignore=venv'] try: import pytest_benchmark self.pytest_args += ['--benchmark-skip'] except ImportError: print("No benchmark library, ignore benchmarks") self.pytest_args += ['--ignore', str(Path('tests') / 'test_benchmark.py')] def finalize_options(self): pass def run_tests(self): import pytest sys.path.append('.') errno = pytest.main(self.pytest_args) sys.exit(errno) class MyDistribution(Distribution): global_options = Distribution.global_options + [ ('noopenmp', None, 'No compiler/linker flags for OpenMP'), ('forceopenmp', None, 'Force compiler/linker flags with OpenMP'), ('noxpreprocessor', None, 'Assume OpenMP is built-in (remove -Xpreprocessor argument)'), ('forcellvm', None, 'Force compile/linker flags for LLVM'), ('forcegnugcc', None, 'Force compile/linker flags for GNU GCC'), ] def __init__(self, attrs=None): self.noopenmp = 0 self.forceopenmp = 0 self.noxpreprocessor = 0 self.forcellvm = 0 self.forcegnugcc = 0 super().__init__(attrs) class MyInstallCommand(install): pass # def initialize_options(self): # install.initialize_options(self) # def finalize_options(self): # install.finalize_options(self) # def run(self): # install.run(self) def set_custom_envvars_for_homebrew(): """Update environment variables automatically for Homebrew if CC is not set""" # DEPRECATED. OpenMP is now supported through -Xpreprocessor # if platform.system() == 'Darwin' and "CC" not in os.environ: # print("Set custom environment variables for Homebrew Clang because CC is not set") # cppflags = [] # if "CPPFLAGS" in os.environ: # cppflags.append(os.environ["CPPFLAGS"]) # cflags = [] # if "CFLAGS" in os.environ: # cflags.append(os.environ["CFLAGS"]) # ldflags = [] # if "LDFLAGS" in os.environ: # ldflags.append(os.environ["LDFLAGS"]) # if os.path.exists("/usr/local/opt/llvm/bin/clang"): # # We have a recent version of LLVM that probably supports openmp to compile parallel C code (installed using # # `brew install llvm`). # os.environ["CC"] = "/usr/local/opt/llvm/bin/clang" # print("CC={}".format(os.environ["CC"])) # ldflags += ["-L/usr/local/opt/llvm/lib"] # cppflags += ["-I/usr/local/opt/llvm/include"] # cflags += ["-I/usr/local/opt/llvm/include"] # try: # mac_ver = [int(nb) for nb in platform.mac_ver()[0].split(".")] # if mac_ver[0] == 10 and mac_ver[1] >= 14: # # From Mojave on, the header files are part of Xcode.app # incpath = '-I/Applications/Xcode.app/Contents/Developer/Platforms/' + \ # 'MacOSX.platform/Developer/SDKs/MacOSX.sdk/usr/include' # cppflags += [incpath] # cflags += [incpath] # except Exception as exc: # print("Failed to check version") # print(exc) # else: # # The default clang in XCode is compatible with OpenMP when using -Xpreprocessor # pass # # if len(cppflags) > 0: # os.environ["CPPFLAGS"] = " ".join(cppflags) # print("CPPFLAGS={}".format(os.environ["CPPFLAGS"])) # if len(cflags) > 0: # os.environ["CFLAGS"] = " ".join(cflags) # print("CFLAGS={}".format(os.environ["CFLAGS"])) # if len(ldflags) > 0: # os.environ["LDFLAGS"] = " ".join(ldflags) # print("LDFLAGS={}".format(os.environ["LDFLAGS"])) # else: # print("Using the following environment variables:") # print("CC={}".format(os.environ.get("CC", ""))) # print("CPPFLAGS={}".format(os.environ.get("CPPFLAGS", ""))) # print("CFLAGS={}".format(os.environ.get("CPLAGS", ""))) # print("LDFLAGS={}".format(os.environ.get("LDFLAGS", ""))) class MyBuildExtCommand(BuildExtCommand): def build_extensions(self): c = self.compiler.compiler_type # Custom for homebrew print("Compiler type: {}".format(c)) print("--noopenmp: {}".format(self.distribution.noopenmp)) print("--forceopenmp: {}".format(self.distribution.forceopenmp)) print("--noxpreprocessor: {}".format(self.distribution.noxpreprocessor)) print("--forcellvm: {}".format(self.distribution.forcellvm)) print("--forcegnugcc: {}".format(self.distribution.forcegnugcc)) if self.distribution.forcellvm or (c == "unix" and "local/opt/llvm" in self.compiler.compiler[0]): print('Using Homebrew LLVM settings') c = 'llvm' elif self.distribution.forcegnugcc or (c == "unix" and "gnu-gcc" in self.compiler.compiler[0]): print('Using GNU GCC settings') c = 'gnugcc' if self.distribution.noopenmp == 0 and self.distribution.forceopenmp == 0: try: check_result = check_openmp(self.compiler.compiler[0], self.distribution.noxpreprocessor) except Exception as exc: print("WARNING: Cannot check for OpenMP, assuming to be available") print(exc) check_result = True # Assume to be present by default if not check_result: print("WARNING: OpenMP is not available, disabling OpenMP (no parallel computing in C)") self.distribution.noopenmp = 1 # Not removing the dtw_cc_omp extension, this will be compiled but # without any real functionality except is_openmp_supported() if c in c_args: if self.distribution.noopenmp == 1: args = [arg for arg in c_args[c] if arg not in ['-Xpreprocessor', '-fopenmp', '-lomp']] elif self.distribution.noxpreprocessor == 1: args = [arg for arg in c_args[c] if arg not in ['-Xpreprocessor']] else: args = c_args[c] for e in self.extensions: e.extra_compile_args = args else: print("Unknown compiler type: {}".format(c)) if c in l_args: if self.distribution.noopenmp == 1: args = [arg for arg in l_args[c] if arg not in ['-Xpreprocessor', '-fopenmp', '-lomp']] elif self.distribution.noxpreprocessor == 1: args = [arg for arg in l_args[c] if arg not in ['-Xpreprocessor']] else: args = l_args[c] for e in self.extensions: e.extra_link_args = args else: print("Unknown linker type: {}".format(c)) if numpy is None: self.extensions = [arg for arg in self.extensions if "numpy" not in str(arg)] print(f'All extensions:') print(self.extensions) BuildExtCommand.build_extensions(self) def initialize_options(self): set_custom_envvars_for_homebrew() super().initialize_options() # def finalize_options(self): # super().finalize_options() # def run(self): # super().run() class MyBuildExtInPlaceCommand(MyBuildExtCommand): def initialize_options(self): super().initialize_options() self.inplace = True def check_openmp(cc_bin, noxpreprocessor): """Check if OpenMP is available""" print("Checking for OpenMP availability for {}".format(cc_bin)) cc_binname = os.path.basename(cc_bin) args = None kwargs = None if "clang" in cc_binname or "cc" in cc_binname: if noxpreprocessor == 0: args = [[str(cc_bin), "-dM", "-E", "-Xpreprocessor", "-fopenmp", "-"]] else: args = [[str(cc_bin), "-dM", "-E", "-fopenmp", "-"]] kwargs = {"stdout": sp.PIPE, "stderr": sp.PIPE, "input": '', "encoding": 'ascii'} print(" ".join(args[0]) + " # with " + ", ".join(str(k) + "=" + str(v) for k, v in kwargs.items())) if args is not None: try: p = sp.run(*args, **kwargs) print(p.stderr) defs = p.stdout.splitlines() for curdef in defs: if "_OPENMP" in curdef: print(curdef) print("... found OpenMP") return True except Exception: print("... no OpenMP") return False else: print("... do not know how to check for OpenMP (unknown CC), assume to be available") return True return False # Set up extension extensions = [] if cythonize is not None: # - Cython uses the glob package to find files, thus use unix-style paths # - Multiple extensions are created to have a sub-package per type of distance # and per functionality (e.g. with or without OpenMP). # The disadvantage is that the same C-files are reused for multiple extensions extensions.append( Extension( "dtaidistance.dtw_cc", ["dtaidistance/dtw_cc.pyx", "dtaidistance/dtw_cc.pxd", "dtaidistance/lib/DTAIDistanceC/DTAIDistanceC/dd_dtw.c", "dtaidistance/lib/DTAIDistanceC/DTAIDistanceC/dd_ed.c" ], depends=["dtaidistance/lib/DTAIDistanceC/DTAIDistanceC/dd_globals.h", "dtaidistance/lib/DTAIDistanceC/DTAIDistanceC/dd_ed.h"], include_dirs=[str(dtaidistancec_path), "dtaidistance/lib/DTAIDistanceC/DTAIDistanceC"], library_dirs=[str(dtaidistancec_path), "dtaidistance/lib/DTAIDistanceC/DTAIDistanceC"], extra_compile_args=[], extra_link_args=[])) extensions.append( Extension( "dtaidistance.ed_cc", ["dtaidistance/ed_cc.pyx", "dtaidistance/lib/DTAIDistanceC/DTAIDistanceC/dd_ed.c"], depends=["dtaidistance/lib/DTAIDistanceC/DTAIDistanceC/dd_globals.h"], include_dirs=[str(dtaidistancec_path), "dtaidistance/lib/DTAIDistanceC/DTAIDistanceC"], extra_compile_args=[], extra_link_args=[])) extensions.append( Extension( "dtaidistance.dtw_cc_omp", ["dtaidistance/dtw_cc_omp.pyx", "dtaidistance/lib/DTAIDistanceC/DTAIDistanceC/dd_dtw_openmp.c", "dtaidistance/lib/DTAIDistanceC/DTAIDistanceC/dd_dtw.c", "dtaidistance/lib/DTAIDistanceC/DTAIDistanceC/dd_ed.c"], depends=["dtaidistance/lib/DTAIDistanceC/DTAIDistanceC/dd_globals.h", "dtaidistance/lib/DTAIDistanceC/DTAIDistanceC/dd_dtw.h" "dtaidistance/lib/DTAIDistanceC/DTAIDistanceC/dd_ed.h"], include_dirs=[str(dtaidistancec_path), "dtaidistance/lib/DTAIDistanceC/DTAIDistanceC"], extra_compile_args=[], extra_link_args=[])) if numpy is not None: extensions.append( Extension( "dtaidistance.dtw_cc_numpy", ["dtaidistance/util_numpy_cc.pyx"], depends=["dtaidistance/lib/DTAIDistanceC/DTAIDistanceC/dd_globals.h"], include_dirs=[numpy.get_include(), str(dtaidistancec_path), "dtaidistance/lib/DTAIDistanceC/DTAIDistanceC"], extra_compile_args=[], extra_link_args=[])) else: print("WARNING: Numpy was not found, preparing a version without Numpy support.") ext_modules = cythonize(extensions) # compiler_directives={'language_level': "3"}) else: print("WARNING: Cython was not found, preparing a pure Python version.") ext_modules = [] install_requires = ['cython>=0.29.6'] setup_requires = ['setuptools>=18.0', 'cython>=0.29.6'] tests_require = ['pytest', 'pytest-benchmark'] # Check version number init_fn = here / 'dtaidistance' / '__init__.py' with init_fn.open('r', encoding='utf-8') as fd: version = re.search(r'^__version__\s*=\s*[\'"]([^\'"]*)[\'"]', fd.read(), re.MULTILINE).group(1) if not version: raise RuntimeError('Cannot find version information') # Set up readme file readme_path = here / 'README.md' if os.path.exists(readme_path): with readme_path.open('r', encoding='utf-8') as f: long_description = f.read() else: long_description = "" long_description_content_type = "text/markdown" # Create setup setup_kwargs = {} def set_setup_kwargs(**kwargs): global setup_kwargs setup_kwargs = kwargs set_setup_kwargs( name='dtaidistance', version=version, description='Distance measures for time series', long_description=long_description, long_description_content_type=long_description_content_type, author='Wannes Meert', author_email='[email protected]', url='https://dtai.cs.kuleuven.be', project_urls={ 'DTAIDistance documentation': 'http://dtaidistance.readthedocs.io/en/latest/', 'DTAIDistance source': 'https://github.com/wannesm/dtaidistance' }, packages=['dtaidistance', 'dtaidistance.clustering'], python_requires='>=3.5', install_requires=install_requires, setup_requires=setup_requires, tests_require=tests_require, extras_require={ 'vis': ['matplotlib'], 'numpy': ['numpy', 'scipy'], 'all': ['matplotlib', 'numpy', 'scipy'] }, include_package_data=True, package_data={ 'dtaidistance': ['*.pyx', '*.pxd', '*.c', '*.h'], }, distclass=MyDistribution, cmdclass={ 'test': PyTest, 'buildinplace': MyBuildExtInPlaceCommand, 'build_ext': MyBuildExtCommand, 'install': MyInstallCommand }, license='Apache 2.0', classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3' ], keywords='dtw', zip_safe=False ) try: setup(ext_modules=ext_modules, **setup_kwargs) except (CCompilerError, DistutilsExecError, DistutilsPlatformError, IOError, SystemExit) as exc: print("ERROR: The C extension could not be compiled") print(exc) if 'build_ext' in setup_kwargs['cmdclass']: del setup_kwargs['cmdclass']['build_ext'] setup(**setup_kwargs) print("Installed the plain Python version of the package.") print("If you need the C extension, try reinstalling.")
39.940476
124
0.611326
f63d9bdf68321f45affad5b7f59d37803575cd91
794
py
Python
class5/ex2b.py
nkbyrne/pyplus
2fd31eb41c697259f641fd90a371d2cd9ed4a673
[ "Apache-2.0" ]
null
null
null
class5/ex2b.py
nkbyrne/pyplus
2fd31eb41c697259f641fd90a371d2cd9ed4a673
[ "Apache-2.0" ]
null
null
null
class5/ex2b.py
nkbyrne/pyplus
2fd31eb41c697259f641fd90a371d2cd9ed4a673
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python from __future__ import unicode_literals, print_function from jinja2 import FileSystemLoader, StrictUndefined from jinja2.environment import Environment env = Environment(undefined=StrictUndefined) env.loader = FileSystemLoader([".", "./templates/"]) template_file = "ex2b.j2" template = env.get_template(template_file) nxos1 = { "interface": "Ethernet2/1", "ip_address": "10.1.100.1", "netmask": "24", "local_as": "22", "peer_ip": "10.1.100.2", "remote_as": "22", } nxos2 = { "interface": "Ethernet2/1", "ip_address": "10.1.100.2", "netmask": "24", "local_as": "22", "peer_ip": "10.1.100.1", "remote_as": "22", } devices = [nxos1, nxos2] for device in devices: output = template.render(**device) print(output)
22.685714
55
0.653652
6b75449b66afa0bb0cb1820fb349703a2cc771c0
10,107
py
Python
tests/bip/bip32/test_bip32_keys.py
MIPPLTeam/bip_utils
c66446e7ac3879d2cf6308c5b8eb7f7705292660
[ "MIT" ]
149
2020-05-15T08:11:43.000Z
2022-03-29T16:34:42.000Z
tests/bip/bip32/test_bip32_keys.py
MIPPLTeam/bip_utils
c66446e7ac3879d2cf6308c5b8eb7f7705292660
[ "MIT" ]
41
2020-04-03T15:57:56.000Z
2022-03-31T08:25:11.000Z
tests/bip/bip32/test_bip32_keys.py
MIPPLTeam/bip_utils
c66446e7ac3879d2cf6308c5b8eb7f7705292660
[ "MIT" ]
55
2020-04-03T17:05:15.000Z
2022-03-24T12:43:42.000Z
# Copyright (c) 2021 Emanuele Bellocchia # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # Imports from bip_utils import ( Bip32KeyError, Bip32ChainCode, Bip32Depth, Bip32KeyIndex, Bip32FingerPrint, Bip32KeyData, Bip32PublicKey, Bip32PrivateKey ) from bip_utils.bip.bip32.bip32_const import Bip32Const from tests.ecc.test_ecc import * # Public keys for testing TEST_PUB_KEYS = [ { "key": TEST_ED25519_PUB_KEY, "fprint": b"6ff1e466", "key_id": b"6ff1e46644e62d8d44ee2fffb45960d350202c4b", "ext": "xpub661MyMwAqRbcEYS8w7XLSVeEsBXy79zSzH1J8vCdxAZningWLdN3zgtU6M92aGJUuyzo3iKu8Tb6Jq9HnFbbiyiU4QAK6jM2uTxAQH8D2z9", }, { "key": TEST_ED25519_BLAKE2B_PUB_KEY, "fprint": b"23e1ef48", "key_id": b"23e1ef48982188655152d7e651b754e562eb018e", "ext": "xpub661MyMwAqRbcEYS8w7XLSVeEsBXy79zSzH1J8vCdxAZningWLdN3zgtU6MjSvvgvbUpTCdiDZv1NjVCyfZdj97RkKXsQRkzksL4xhRE3px7", }, { "key": TEST_ED25519_MONERO_PUB_KEY, "fprint": b"41a4a2c0", "key_id": b"41a4a2c0cfa0c22ee6b00a6033fff32bd7aa9959", "ext": "Deb7pNXSbX7qSvc2e43XLxrU4Wbif71fzakq2ecQpZSkGDbATEXFMJkjpWRoUgATX3eHcbp5fSCXmS8BQ7Yk4P3L2xCtnnhj5rFET3oeLkqLHL", }, { "key": TEST_NIST256P1_PUB_KEY, "fprint": b"5fa155ff", "key_id": b"5fa155ff09510ec6ca9dd3f8e51b06e327bf4845", "ext": "xpub661MyMwAqRbcEYS8w7XLSVeEsBXy79zSzH1J8vCdxAZningWLdN3zgtU6T6rsRpT4yF4fz2ss6DqTdiKczA3f5aWFpMq4QND6iPeQJENNmM", }, { "key": TEST_SECP256K1_PUB_KEY, "fprint": b"e168bdf4", "key_id": b"e168bdf4a501ed739b5a94731bd13d0044efd7c7", "ext": "xpub661MyMwAqRbcEYS8w7XLSVeEsBXy79zSzH1J8vCdxAZningWLdN3zgtU6RZYJkUia7CG7jyT3sA25TNNT1zXNBYE2YmshUj7TZbuFCYsVZf", }, { "key": TEST_SR25519_PUB_KEY, "fprint": b"7bde84a2", "key_id": b"7bde84a21e328728228f4fc69a24f57d85f7d1a4", "ext": "Deb7pNXSbX7qSvc2e43XLxrU4Wbif71fzakq2ecQpZSkGDbATEXFMJkjpWRoUpFrrfLeLKYGpWEcqZeSUxdBe1GVs4vezvdnpmQYUfu3JPRUhT", }, ] # Private keys for testing TEST_PRIV_KEYS = [ { "key": TEST_ED25519_PRIV_KEY, "ext": "xprv9s21ZrQH143K24Mfq5zL5MhWK9hUhhGbd45hLXo2Pq2oqzMMo63oStZzF9oDwUq8hbmYVXq9jRSi64zDnhjwYo5AMM7tJamccfayBLd1QF4", }, { "key": TEST_ED25519_BLAKE2B_PRIV_KEY, "ext": "xprv9s21ZrQH143K24Mfq5zL5MhWK9hUhhGbd45hLXo2Pq2oqzMMo63oStZzF9oDwUq8hbmYVXq9jRSi64zDnhjwYo5AMM7tJamccfayBLd1QF4", }, { "key": TEST_ED25519_MONERO_PRIV_KEY, "ext": "xprv9s21ZrQH143K24Mfq5zL5MhWK9hUhhGbd45hLXo2Pq2oqzMMo63oStZzF9oDwUq8hbmYVXq9jRSi64zDnhjwYo5AMM7tJamccfayBLd1QF4", }, { "key": TEST_NIST256P1_PRIV_KEY, "ext": "xprv9s21ZrQH143K24Mfq5zL5MhWK9hUhhGbd45hLXo2Pq2oqzMMo63oStZzFAn5ewnjpGej3M4sp2Ko6VjT9cdgsww3GdZwZVYfomqjj5ES3Nq", }, { "key": TEST_SECP256K1_PRIV_KEY, "ext": "xprv9s21ZrQH143K24Mfq5zL5MhWK9hUhhGbd45hLXo2Pq2oqzMMo63oStZzFAkzWAg4o7snpEUubcfTkvFE7LgFLqVV97bWwCfT6M27dRW7hQW", }, ] # Invalid public keys for testing TEST_INVALID_PUB_KEYS = [ {"keys": TEST_VECT_ED25519_PUB_KEY_INVALID, "curve": EllipticCurveTypes.ED25519}, {"keys": TEST_VECT_ED25519_PUB_KEY_INVALID, "curve": EllipticCurveTypes.ED25519_BLAKE2B}, {"keys": TEST_VECT_ED25519_PUB_KEY_INVALID, "curve": EllipticCurveTypes.ED25519_MONERO}, {"keys": TEST_VECT_NIST256P1_PUB_KEY_INVALID, "curve": EllipticCurveTypes.NIST256P1}, {"keys": TEST_VECT_SECP256K1_PUB_KEY_INVALID, "curve": EllipticCurveTypes.SECP256K1}, {"keys": TEST_VECT_SR25519_PUB_KEY_INVALID, "curve": EllipticCurveTypes.SR25519}, ] # Invalid private keys for testing TEST_INVALID_PRIV_KEYS = [ {"keys": TEST_VECT_ED25519_PRIV_KEY_INVALID, "curve": EllipticCurveTypes.ED25519}, {"keys": TEST_VECT_ED25519_PRIV_KEY_INVALID, "curve": EllipticCurveTypes.ED25519_BLAKE2B}, {"keys": TEST_VECT_ED25519_MONERO_PRIV_KEY_INVALID, "curve": EllipticCurveTypes.ED25519_MONERO}, {"keys": TEST_VECT_NIST256P1_PRIV_KEY_INVALID, "curve": EllipticCurveTypes.NIST256P1}, {"keys": TEST_VECT_SECP256K1_PRIV_KEY_INVALID, "curve": EllipticCurveTypes.SECP256K1}, {"keys": TEST_VECT_SR25519_PRIV_KEY_INVALID, "curve": EllipticCurveTypes.SR25519}, ] # Key data for testing TEST_KEY_DATA = Bip32KeyData(Bip32Const.MAIN_NET_KEY_NET_VERSIONS, Bip32Depth(0), Bip32KeyIndex(0), Bip32ChainCode(), Bip32FingerPrint()) # # Tests # class Bip32KeyDataTests(unittest.TestCase): # Test private key def test_priv_key(self): for i, test in enumerate(TEST_PRIV_KEYS): test_pub = TEST_PUB_KEYS[i] # FromBytesOrKeyObject (object) self.__test_priv_key_obj(Bip32PrivateKey.FromBytesOrKeyObject(test["key"], TEST_KEY_DATA, test["key"].CurveType()), test, test_pub) # FromBytesOrKeyObject (bytes) self.__test_priv_key_obj(Bip32PrivateKey.FromBytesOrKeyObject(test["key"].Raw().ToBytes(), TEST_KEY_DATA, test["key"].CurveType()), test, test_pub) # FromBytes (bytes) self.__test_priv_key_obj(Bip32PrivateKey.FromBytes(test["key"].Raw().ToBytes(), TEST_KEY_DATA, test["key"].CurveType()), test, test_pub) # Test public key def test_pub_key(self): for test in TEST_PUB_KEYS: # FromBytesOrKeyObject (object) self.__test_pub_key_obj(Bip32PublicKey.FromBytesOrKeyObject(test["key"], TEST_KEY_DATA, test["key"].CurveType()), test) # FromBytesOrKeyObject (compressed) self.__test_pub_key_obj(Bip32PublicKey.FromBytesOrKeyObject(test["key"].RawCompressed().ToBytes(), TEST_KEY_DATA, test["key"].CurveType()), test) # FromBytesOrKeyObject (uncompressed) self.__test_pub_key_obj(Bip32PublicKey.FromBytesOrKeyObject(test["key"].RawUncompressed().ToBytes(), TEST_KEY_DATA, test["key"].CurveType()), test) # FromBytes (compressed) self.__test_pub_key_obj(Bip32PublicKey.FromBytes(test["key"].RawCompressed().ToBytes(), TEST_KEY_DATA, test["key"].CurveType()), test) # FromBytes (uncompressed) self.__test_pub_key_obj(Bip32PublicKey.FromBytes(test["key"].RawUncompressed().ToBytes(), TEST_KEY_DATA, test["key"].CurveType()), test) # Test invalid keys def test_invalid_keys(self): # Invalid private keys for test in TEST_INVALID_PRIV_KEYS: for key in test["keys"]: self.assertRaises(Bip32KeyError, Bip32PrivateKey.FromBytesOrKeyObject, key, TEST_KEY_DATA, test["curve"]) # Invalid public keys for test in TEST_INVALID_PUB_KEYS: for key in test["keys"]: self.assertRaises(Bip32KeyError, Bip32PublicKey.FromBytesOrKeyObject, key, TEST_KEY_DATA, test["curve"]) # Test private key object def __test_priv_key_obj(self, priv_key_obj, test_priv, test_pub): self.assertEqual(test_priv["key"].CurveType(), priv_key_obj.CurveType()) self.assertTrue(isinstance(priv_key_obj.KeyObject(), type(test_priv["key"]))) self.assertTrue(priv_key_obj.Data() is TEST_KEY_DATA) self.assertEqual(test_priv["key"].Raw().ToBytes(), priv_key_obj.Raw().ToBytes()) self.assertEqual(test_priv["key"].Raw().ToBytes(), bytes(priv_key_obj.Raw())) self.assertEqual(test_priv["key"].Raw().ToHex(), priv_key_obj.Raw().ToHex()) self.assertEqual(test_priv["key"].Raw().ToHex(), str(priv_key_obj.Raw())) self.assertEqual(test_priv["ext"],priv_key_obj.ToExtended()) # Public key associated to the private one self.__test_pub_key_obj(priv_key_obj.PublicKey(), test_pub) # Test public key object def __test_pub_key_obj(self, pub_key_obj, test): self.assertEqual(test["key"].CurveType(), pub_key_obj.CurveType()) self.assertTrue(isinstance(pub_key_obj.KeyObject(), type(test["key"]))) self.assertTrue(pub_key_obj.Data() is TEST_KEY_DATA) self.assertEqual(test["key"].RawCompressed().ToBytes(), pub_key_obj.RawCompressed().ToBytes()) self.assertEqual(test["key"].RawCompressed().ToBytes(), bytes(pub_key_obj.RawCompressed())) self.assertEqual(test["key"].RawCompressed().ToHex(), pub_key_obj.RawCompressed().ToHex()) self.assertEqual(test["key"].RawCompressed().ToHex(), str(pub_key_obj.RawCompressed())) self.assertEqual(test["key"].RawUncompressed().ToBytes(), pub_key_obj.RawUncompressed().ToBytes()) self.assertEqual(test["key"].RawUncompressed().ToBytes(), bytes(pub_key_obj.RawUncompressed())) self.assertEqual(test["key"].RawUncompressed().ToHex(), pub_key_obj.RawUncompressed().ToHex()) self.assertEqual(test["key"].RawUncompressed().ToHex(), str(pub_key_obj.RawUncompressed())) self.assertEqual(binascii.unhexlify(test["fprint"]),pub_key_obj.FingerPrint().ToBytes()) self.assertEqual(binascii.unhexlify(test["key_id"]),pub_key_obj.KeyIdentifier()) self.assertEqual(test["ext"],pub_key_obj.ToExtended())
51.045455
159
0.722173
7ec096710584bedea932b6345cfbd84ff055e1c2
680
py
Python
Mundo 2/ex070 Estatistica em produtos.py
AbelRapha/Python-Exercicios-CeV
17e7055c982c8a1224992602ece50bae8eeee365
[ "MIT" ]
null
null
null
Mundo 2/ex070 Estatistica em produtos.py
AbelRapha/Python-Exercicios-CeV
17e7055c982c8a1224992602ece50bae8eeee365
[ "MIT" ]
null
null
null
Mundo 2/ex070 Estatistica em produtos.py
AbelRapha/Python-Exercicios-CeV
17e7055c982c8a1224992602ece50bae8eeee365
[ "MIT" ]
null
null
null
print("-="*15) print(" MERCADAO ") print("-="*15) decisao =" " dict_produtos = {} while(decisao not in "N"): produto = input("Digite o nome do produto: ").strip() preco = float(input("Digite o preco do produto ")) dict_produtos[produto] = preco decisao = input("Deseja continuar? ").strip().upper() continue print(f"""O valor total da compra foi de R$ {sum(dict_produtos.values())}.\n E tiveram {len([produto for produto in dict_produtos if dict_produtos[produto]>1000])} produtos(s) acima de R$ 1.000,00. \n Sendo que o produto mais barato foi {min(dict_produtos, key = dict_produtos.get)} e custou R$ {min(dict_produtos.values())}.""")
40
128
0.660294
971fa2b66f525b9d0f33bc530e21428d15fde61a
4,784
py
Python
yt/frontends/athena/io.py
FeiLi5/git-github.com-yt-project-yt
0c6cf75351b91e4da80f6a0207ebbcb73dd72a59
[ "BSD-3-Clause-Clear" ]
2
2021-03-02T18:59:49.000Z
2021-03-02T18:59:50.000Z
yt/frontends/athena/io.py
FeiLi5/git-github.com-yt-project-yt
0c6cf75351b91e4da80f6a0207ebbcb73dd72a59
[ "BSD-3-Clause-Clear" ]
4
2018-04-13T23:03:42.000Z
2018-05-08T17:50:43.000Z
yt/frontends/athena/io.py
FeiLi5/git-github.com-yt-project-yt
0c6cf75351b91e4da80f6a0207ebbcb73dd72a59
[ "BSD-3-Clause-Clear" ]
2
2020-05-16T15:29:37.000Z
2020-06-22T10:17:08.000Z
""" The data-file handling functions """ #----------------------------------------------------------------------------- # Copyright (c) 2013, yt Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- from yt.utilities.io_handler import \ BaseIOHandler import numpy as np from yt.funcs import mylog from .data_structures import chk23 float_size = {"float":np.dtype(">f4").itemsize, "double":np.dtype(">f8").itemsize} axis_list = ["_x","_y","_z"] class IOHandlerAthena(BaseIOHandler): _dataset_type = "athena" _offset_string = 'data:offsets=0' _data_string = 'data:datatype=0' _read_table_offset = None def _field_dict(self,fhandle): keys = fhandle['field_types'].keys() val = fhandle['field_types'].keys() return dict(zip(keys,val)) def _read_field_names(self,grid): pass def _read_chunk_data(self,chunk,fields): data = {} if len(chunk.objs) == 0: return data for grid in chunk.objs: if grid.filename is None: continue f = open(grid.filename, "rb") data[grid.id] = {} grid_dims = grid.ActiveDimensions read_dims = grid.read_dims.astype("int64") grid_ncells = np.prod(read_dims) grid0_ncells = np.prod(grid.index.grids[0].read_dims) read_table_offset = get_read_table_offset(f) for field in fields: ftype, offsetr, dtype = grid.index._field_map[field] if grid_ncells != grid0_ncells: offset = offsetr + ((grid_ncells-grid0_ncells) * (offsetr//grid0_ncells)) if grid_ncells == grid0_ncells: offset = offsetr offset = int(offset) # Casting to be certain. file_offset = grid.file_offset[2]*read_dims[0]*read_dims[1]*float_size[dtype] xread = slice(grid.file_offset[0],grid.file_offset[0]+grid_dims[0]) yread = slice(grid.file_offset[1],grid.file_offset[1]+grid_dims[1]) f.seek(read_table_offset+offset+file_offset) if dtype == 'float': dt = '>f4' elif dtype == 'double': dt = '>f8' if ftype == 'scalar': f.seek(read_table_offset+offset+file_offset) v = np.fromfile(f, dtype=dt, count=grid_ncells).reshape(read_dims,order='F') if ftype == 'vector': vec_offset = axis_list.index(field[-1][-2:]) f.seek(read_table_offset+offset+3*file_offset) v = np.fromfile(f, dtype=dt, count=3*grid_ncells) v = v[vec_offset::3].reshape(read_dims,order='F') if grid.ds.field_ordering == 1: data[grid.id][field] = v[xread,yread,:].T.astype("float64") else: data[grid.id][field] = v[xread,yread,:].astype("float64") f.close() return data def _read_data_slice(self, grid, field, axis, coord): sl = [slice(None), slice(None), slice(None)] sl[axis] = slice(coord, coord + 1) if grid.ds.field_ordering == 1: sl.reverse() return self._read_data_set(grid, field)[tuple(sl)] def _read_fluid_selection(self, chunks, selector, fields, size): chunks = list(chunks) if any((ftype != "athena" for ftype, fname in fields)): raise NotImplementedError rv = {} for field in fields: rv[field] = np.empty(size, dtype="float64") ng = sum(len(c.objs) for c in chunks) mylog.debug("Reading %s cells of %s fields in %s grids", size, [f2 for f1, f2 in fields], ng) ind = 0 for chunk in chunks: data = self._read_chunk_data(chunk, fields) for g in chunk.objs: for field in fields: ftype, fname = field ds = data[g.id].pop(field) nd = g.select(selector, ds, rv[field], ind) # caches ind += nd data.pop(g.id) return rv def get_read_table_offset(f): line = f.readline() while True: splitup = line.strip().split() chkc = chk23('CELL_DATA') chkp = chk23('POINT_DATA') if chkc in splitup or chkp in splitup: f.readline() read_table_offset = f.tell() break line = f.readline() return read_table_offset
37.375
93
0.534072
f51a45fe1a8a67667d2a40a89fde26a30975bde6
865
py
Python
2018/day01.py
harendra263/AdventOfCode
86db33409961681dcb05be9bf9197f7464ee7697
[ "MIT" ]
null
null
null
2018/day01.py
harendra263/AdventOfCode
86db33409961681dcb05be9bf9197f7464ee7697
[ "MIT" ]
null
null
null
2018/day01.py
harendra263/AdventOfCode
86db33409961681dcb05be9bf9197f7464ee7697
[ "MIT" ]
null
null
null
from typing import List, Iterator, Set with open('data/day01a.txt') as f: numbers = [int(line.strip()) for line in f] print(sum(numbers)) def all_frequencies(numbers: List[int], start: int = 0) -> Iterator[int]: frequency = start while True: for number in numbers: yield frequency frequency += number def first_repeat_frequency(numbers: List[int], start: int= 0) -> int: seen = set() for frequency in all_frequencies(numbers, start): if frequency in seen: return frequency else: seen.add(frequency) # assert first_repeat_frequency([1,-1])== 0 # assert first_repeat_frequency([3,3,4,-2,-4]) == 10 # assert first_repeat_frequency([-6, +3, +8, +5, -6])== 5 # assert first_repeat_frequency([+7, +7, -2, -7, -4]) == 14 print(first_repeat_frequency(numbers))
20.116279
73
0.625434
74c4ba165f5264b43f651d253da1d1ddbad87714
2,270
py
Python
basicdata/FileTest.py
xuwujing/python-study
a48a81595b28757a7ecd4dcf0416b8d897b46e41
[ "Apache-2.0" ]
1
2020-07-29T01:19:43.000Z
2020-07-29T01:19:43.000Z
basicdata/FileTest.py
xuwujing/python-study
a48a81595b28757a7ecd4dcf0416b8d897b46e41
[ "Apache-2.0" ]
null
null
null
basicdata/FileTest.py
xuwujing/python-study
a48a81595b28757a7ecd4dcf0416b8d897b46e41
[ "Apache-2.0" ]
null
null
null
# 文件读写 # open() 将会返回一个 file 对象,基本语法格式如下: # open(filename, mode) # filename:包含了你要访问的文件名称的字符串值。 # mode:决定了打开文件的模式:只读,写入,追加等。所有可取值见如下的完全列表。这个参数是非强制的,默认文件访问模式为只读(r)。 # 模式 # 描述 # r # 以只读方式打开文件。文件的指针将会放在文件的开头。这是默认模式。 # rb # 以二进制格式打开一个文件用于只读。文件指针将会放在文件的开头。 # r+ # 打开一个文件用于读写。文件指针将会放在文件的开头。 # rb+ # 以二进制格式打开一个文件用于读写。文件指针将会放在文件的开头。 # w # 打开一个文件只用于写入。如果该文件已存在则打开文件,并从开头开始编辑,即原有内容会被删除。如果该文件不存在,创建新文件。 # wb # 以二进制格式打开一个文件只用于写入。如果该文件已存在则打开文件,并从开头开始编辑,即原有内容会被删除。如果该文件不存在,创建新文件。 # w+ # 打开一个文件用于读写。如果该文件已存在则打开文件,并从开头开始编辑,即原有内容会被删除。如果该文件不存在,创建新文件。 # wb+ # 以二进制格式打开一个文件用于读写。如果该文件已存在则打开文件,并从开头开始编辑,即原有内容会被删除。如果该文件不存在,创建新文件。 # a # 打开一个文件用于追加。如果该文件已存在,文件指针将会放在文件的结尾。也就是说,新的内容将会被写入到已有内容之后。如果该文件不存在,创建新文件进行写入。 # ab # 以二进制格式打开一个文件用于追加。如果该文件已存在,文件指针将会放在文件的结尾。也就是说,新的内容将会被写入到已有内容之后。如果该文件不存在,创建新文件进行写入。 # a+ # 打开一个文件用于读写。如果该文件已存在,文件指针将会放在文件的结尾。文件打开时会是追加模式。如果该文件不存在,创建新文件用于读写。 # ab+ # 以二进制格式打开一个文件用于追加。如果该文件已存在,文件指针将会放在文件的结尾。如果该文件不存在,创建新文件用于读写。 # 打开一个文件,并制定格式,然后写入数据 f = open("C:\\test\\test1.txt", "w",encoding="utf-8") num=f.write( "Python 是一个非常好的语言。\n是的,的确非常好!!\n" ) # 写入的字符数 print(num) # 关闭打开的文件 f.close() # 读取文件内容,并进行打印 f2 = open("C:\\test\\test1.txt", "r",encoding="utf-8") # 读取全部 print(f2.read()) f2.close() # 输出结果 # Python 是一个非常好的语言。 # 是的,的确非常好!! # 读取文件内容,并进行打印 f3 = open("C:\\test\\test1.txt", "r",encoding="utf-8") # 读取一行 print(f3.readline()) f3.close() # Python 是一个非常好的语言。 # 读取文件内容,并进行打印 f3 = open("C:\\test\\test1.txt", "r",encoding="utf-8") # 读取所有行 print(f3.readlines()) f3.close() # ['Python 是一个非常好的语言。\n', '是的,的确非常好!!\n'] #迭代读取文件 # 打开一个文件 f4 = open("C:\\test\\test1.txt", "r",encoding="utf-8") # 便利读取所有行 for line in f4: print(line, end='') f4.close() # Python 是一个非常好的语言。 # 是的,的确非常好!! # 吸入一个非字符串的数据 f5 = open("C:\\test\\test1.txt", "w",encoding="utf-8") value = ('www.panchengming.com', 18) s = str(value) f5.write(s) # 关闭打开的文件 f5.close() ## f.seek() # 如果要改变文件当前的位置, 可以使用 f.seek(offset, from_what) 函数。 # from_what 的值, 如果是 0 表示开头, 如果是 1 表示当前位置, 2 表示文件的结尾,例如: # seek(x,0) : 从起始位置即文件首行首字符开始移动 x 个字符 # seek(x,1) : 表示从当前位置往后移动x个字符 # seek(-x,2):表示从文件的结尾往前移动x个字符 f6 = open("C:\\test\\test1.txt", "rb+") f6 .write(b'0123456789abcdef') # 移动到文件的第六个字节 print(f6 .seek(5)) print(f6 .read(1)) # 移动到文件的倒数第三字节 print(f6 .seek(-3, 2)) print(f6 .read(1)) # 5 # b'5' # 25 # b'1'
19.912281
83
0.701762
619af894f1d7a0532a43c088c2d6ae2aff7068b5
12,603
py
Python
main.py
addicx/plantsensor
3089fcb603266bd54d629637ef9ce0c10ffc9e74
[ "MIT" ]
74
2021-08-04T20:15:58.000Z
2022-01-01T11:10:30.000Z
main.py
addicx/plantsensor
3089fcb603266bd54d629637ef9ce0c10ffc9e74
[ "MIT" ]
1
2021-12-29T17:34:42.000Z
2021-12-29T17:34:42.000Z
main.py
addicx/plantsensor
3089fcb603266bd54d629637ef9ce0c10ffc9e74
[ "MIT" ]
4
2021-08-06T18:35:42.000Z
2021-08-13T14:36:45.000Z
from machine import Pin,SPI,ADC #3v3 to humidity1, GP2 to humidity2 GND to humidity 4, (Link DHT22 pins 1&2 with a 4.7K - 10K resistor) import framebuf, onewire, ds18x20, rp2, time, random from src.CSMS import CSMS DC = 8 RST = 12 MOSI = 11 SCK = 10 CS = 9 class OLED_1inch3(framebuf.FrameBuffer): def __init__(self): self.width = 128 self.height = 64 self.cs = Pin(CS,Pin.OUT) self.rst = Pin(RST,Pin.OUT) self.cs(1) self.spi = SPI(1) self.spi = SPI(1,2000_000) self.spi = SPI(1,20000_000,polarity=0, phase=0,sck=Pin(SCK),mosi=Pin(MOSI),miso=None) self.dc = Pin(DC,Pin.OUT) self.dc(1) self.buffer = bytearray(self.height * self.width // 8) super().__init__(self.buffer, self.width, self.height, framebuf.MONO_HMSB) self.init_display() self.white = 0xffff self.black = 0x0000 def write_cmd(self, cmd): self.cs(1) self.dc(0) self.cs(0) self.spi.write(bytearray([cmd])) self.cs(1) def write_data(self, buf): self.cs(1) self.dc(1) self.cs(0) self.spi.write(bytearray([buf])) self.cs(1) def init_display(self): """Initialize dispaly""" self.rst(1) time.sleep(0.001) self.rst(0) time.sleep(0.01) self.rst(1) self.write_cmd(0xAE)#turn off OLED display self.write_cmd(0x00) #set lower column address self.write_cmd(0x10) #set higher column address self.write_cmd(0xB0) #set page address self.write_cmd(0xdc) #et display start line self.write_cmd(0x00) self.write_cmd(0x81) #contract control self.write_cmd(0x6f) #128 self.write_cmd(0x21) # Set Memory addressing mode (0x20/0x21) # self.write_cmd(0xa0) #set segment remap self.write_cmd(0xc0) #Com scan direction self.write_cmd(0xa4) #Disable Entire Display On (0xA4/0xA5) self.write_cmd(0xa6) #normal / reverse self.write_cmd(0xa8) #multiplex ratio self.write_cmd(0x3f) #duty = 1/64 self.write_cmd(0xd3) #set display offset self.write_cmd(0x60) self.write_cmd(0xd5) #set osc division self.write_cmd(0x41) self.write_cmd(0xd9) #set pre-charge period self.write_cmd(0x22) self.write_cmd(0xdb) #set vcomh self.write_cmd(0x35) self.write_cmd(0xad) #set charge pump enable self.write_cmd(0x8a) #Set DC-DC enable (a=0:disable; a=1:enable) self.write_cmd(0XAF) def show(self): self.write_cmd(0xb0) for page in range(0,64): self.column = 63 - page self.write_cmd(0x00 + (self.column & 0x0f)) self.write_cmd(0x10 + (self.column >> 4)) for num in range(0,16): self.write_data(self.buffer[page*16+num]) # Sensors #Onboard Temp sensor_temp = machine.ADC(4) conversion_factor = 3.3 / (65535) reading = sensor_temp.read_u16() * conversion_factor temperature = 27 - (reading - 0.706)/0.001721 #External Temp ds_pin = machine.Pin(16) #GP16 to central pin, 3v3_O to rightmost pin facing the flat side, GND to leftmost pin ds_sensor = ds18x20.DS18X20(onewire.OneWire(ds_pin)) roms = ds_sensor.scan() #Soil Moisture (CSMS) adc0 = machine.ADC(machine.Pin(26)) #CA changed pin to 26 (ADC pins on a Pico are 26, 27 & 28) adc1 = machine.ADC(machine.Pin(27)) #CA changed pin to 26 (ADC pins on a Pico are 26, 27 & 28) adc2 = machine.ADC(machine.Pin(28)) #CA changed pin to 26 (ADC pins on a Pico are 26, 27 & 28) csms0 = CSMS(adc0, min_value=60000, max_value=24854) csms1 = CSMS(adc1, min_value=60000, max_value=24854) csms2 = CSMS(adc2, min_value=60000, max_value=24854) #Humidity dht = "" @rp2.asm_pio(set_init=(rp2.PIO.OUT_LOW,rp2.PIO.OUT_LOW),#Pico pin GP2 to DHT22 pin 2 facing the grid, Pico GND to DHT22 pin 4, Pico 3v3_O to DHT22 pin 1 (Link DHT22 pins 1&2 with a 4.7K - 10K resistor) autopush=True, in_shiftdir=rp2.PIO.SHIFT_LEFT) def dht22(): wrap_target() label("again") pull(block) set(pins, 0) mov(x, osr) label("loop1") jmp(x_dec, "loop1") set(pindirs, 0) wait(1, pin, 0) wait(0, pin, 0) wait(1, pin, 0) wait(0, pin, 0) set(y, 31) label("bits") wait(1, pin, 0) [25] in_(pins, 1) wait(0, pin, 0) jmp(y_dec, "bits") set(y, 7) label("check") wait(1, pin, 0)[25] set(pins,2) set(pins,0) in_(pins, 1) wait(0, pin, 0) jmp(y_dec, "check") push(block) wrap() class DHT22(): def __init__(self, gpio): self.sm = rp2.StateMachine(0, dht22, freq=490196, in_base=Pin(gpio), set_base=Pin(gpio), jmp_pin=Pin(gpio)) self.sm.active(1) def getReading(self): self.sm.put(500) data=0 data = self.sm.get() byte1 = (data >> 24 & 0xFF) byte2 = (data >> 16 & 0xFF) byte3 = (data >> 8 & 0xFF) byte4 = (data & 0xFF) checksum = self.sm.get() & 0xFF self.checksum = (checksum == (byte1+byte2+byte3+byte4) & 0xFF) self.humidity = ((byte1 << 8) | byte2) / 10.0 neg = byte3 & 0x80 byte3 = byte3 & 0x7F self.temperature = (byte3 << 8 | byte4) / 10.0 if neg > 0: self.temperature = -self.temperature # Definitions i = 0 months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"] while True: filename = ("data" + str(random.getrandbits(16)) + ".csv") #log given a random name to minimise risk of overwriting data upon power loss file = open(filename, "w") file.close() #It begins while True: #empty cache and assess memory strain csvdata = [] with open(filename,'r') as file: for line in file: csvdata.append(line.rstrip('\n').rstrip('\r').split(',')) if len(csvdata) > 300: break #set time parameters t_end = time.time() + 60 #time ~between reads - 3600 in final #zfill date parameters if len(str(abs(time.localtime()[4]))) == 1: zmin = ("0" + str(abs(time.localtime()[4]))) else: zmin = str(abs(time.localtime()[4])) if len(str(abs(time.localtime()[3]))) == 1: zhr = ("0" + str(abs(time.localtime()[3]))) else: zhr = str(abs(time.localtime()[3])) if len(str(abs(time.localtime()[2]))) == 1: zday = ("0" + str(abs(time.localtime()[2]))) else: zday = str(abs(time.localtime()[2])) date = (zhr + ":" + zmin + " " + zday + months[abs(time.localtime()[1])] + "'" + str(abs(time.localtime()[0]) % 100)) #iterate lognum i += 1 if len(str(i)) == 1: lognum = ("Log0000" + str(i)) elif len(str(i)) == 2: lognum = ("Log000" + str(i)) elif len(str(i)) == 3: lognum = ("Log00" + str(i)) elif len(str(i)) == 4: lognum = ("Log0" + str(i)) else: lognum = ("Log" + str(i)) # MinMax values sm1set = [x[5] for x in csvdata] sm2set = [x[6] for x in csvdata] sm3set = [x[7] for x in csvdata] csvdata = [] if sm1set ==[]: row3 = "High " + "N/A" + " " + "N/A" + " " + "N/A" row5 = "Low " + "N/A" + " " + "N/A" + " " + "N/A" else: row3 = "High " + max(sm1set) + " " + max(sm2set) + " " + max(sm3set) row5 = "Low " + min(sm1set) + " " + min(sm2set) + " " + min(sm3set) sm1set = [] sm2set = [] sm3set = [] #update sensors ds_sensor.convert_temp() time.sleep_ms(750) #need to wait 750 ms between convert and read for rom in roms: stemp = ds_sensor.read_temp(rom) if len(str(round(stemp))) ==1: zstemp = "0" + str(round(stemp)) else: zstemp = str(round(stemp)) dht = DHT22(2) dht.getReading() sensor_temp = machine.ADC(4) conversion_factor = 3.3 / (65535) reading = sensor_temp.read_u16() * conversion_factor temperature = 27 - (reading - 0.706)/0.001721 soilz1 = csms0.read(25) soilz2 = csms1.read(25) soilz3 = csms2.read(25) if len(str(soilz1)) == 1:#normalises the length of the values soil1 = ("0" + str(soilz1) + "%") elif len(str(soilz1)) == 2: soil1 = (str(soilz1) + "%") else: soil1 = ("Max") if len(str(soilz2)) == 1:#normalises the length of the values soil2 = ("0" + str(soilz2) + "%") elif len(str(soilz2)) == 2: soil2 = (str(soilz2) + "%") else: soil2 = ("Max") if len(str(soilz3)) == 1:#normalises the length of the values soil3 = ("0" + str(soilz3) + "%") elif len(str(soilz1)) == 2: soil3 = (str(soilz3) + "%") else: soil3 = ("Max") if len(str(round(dht.temperature))) ==1: ztemp = "0" + str(round(dht.temperature)) else: ztemp = str(round(dht.temperature)) if len(str(round(dht.humidity))) ==1: zhum = "0" + str(round(dht.humidity)) else: zhum = str(round(dht.humidity)) row0 = (date) row1 = "A " + ztemp + "C " + zhum + "%h S " + zstemp + "C" row2 = " Soil Moisture " row4 = "Now " + str(soil1) + " " + str(soil2) + " " + str(soil3) #write to screen OLED = OLED_1inch3() #Fills the screen with the defined row strings OLED.fill(0x0000) OLED.text(row0,6,1) OLED.text(row1,1,11) OLED.text(row2,1,23) OLED.line(9,31,120,31,OLED.white) OLED.text(row3,1,34) OLED.text(row4,1,44) OLED.text(row5,1,54) OLED.show() #write to log file = open(filename, "a+") file.write(str(lognum) + "," + str(time.time()) + "," + str(dht.temperature) + "," + str(dht.humidity) + "," + str(stemp) + "," + str(soil1) + "," + str(soil2) + "," + str(soil3) + "\n") file.close() #buttons keyA = Pin(15,Pin.IN,Pin.PULL_UP) keyB = Pin(17,Pin.IN,Pin.PULL_UP) import micropython micropython.mem_info()#memory check DEBUG keyA = Pin(15,Pin.IN,Pin.PULL_UP) keyB = Pin(17,Pin.IN,Pin.PULL_UP) with open(filename,'r') as file: for line in file: csvdata.append(line.rstrip('\n').rstrip('\r').split(',')) t_end = time.time() + 60 activeline = len(csvdata) numlines = len(csvdata) while time.time() < t_end: if keyA.value() == 0: OLED.fill(0x0000) OLED.text(str(csvdata[activeline-1][0]),1,1) OLED.line(9,11,120,11,OLED.white) OLED.text("Air Temp: " + str(csvdata[activeline-1][2]) + "C",1,14) OLED.text("Humidity: " + str(csvdata[activeline-1][3]) + "%",1,24) OLED.text("Soil Temp: " + str(csvdata[activeline-1][4]) + "C",1,34) OLED.text("CSMS:" + str(csvdata[activeline-1][5]) + " " + str(csvdata[activeline-1][6]) + " " + str(csvdata[activeline-1][7]),1,44) OLED.text(str(time.time() - t_end),1,54) OLED.show() activeline += 1 if activeline > numlines: csvdata = [] break if keyB.value() == 0: OLED.fill(0x0000) OLED.text(str(csvdata[activeline-1][0]),1,1) OLED.line(9,11,120,11,OLED.white) OLED.text("Air Temp: " + str(csvdata[activeline-1][2]) + "C",1,14) OLED.text("Humidity: " + str(csvdata[activeline-1][3]) + "%",1,24) OLED.text("Soil Temp: " + str(csvdata[activeline-1][4]) + "C",1,34) OLED.text("CSMS:" + str(csvdata[activeline-1][5]) + " " + str(csvdata[activeline-1][6]) + " " + str(csvdata[activeline-1][7]),1,44) OLED.text(str(time.time() - t_end),1,54) OLED.show() activeline -= 1 if activeline < 0: activeline += 1 OLED.show()
35.905983
201
0.523288
643627c436a8b0e9d41420be4b72c3a010bd3b54
488
py
Python
Python/python_study_4/page17/menu_item.py
zharmedia386/Progate-Course-Repo
0dec6bd2d5594b1624251a74f6ebcf8266c449ba
[ "MIT" ]
null
null
null
Python/python_study_4/page17/menu_item.py
zharmedia386/Progate-Course-Repo
0dec6bd2d5594b1624251a74f6ebcf8266c449ba
[ "MIT" ]
null
null
null
Python/python_study_4/page17/menu_item.py
zharmedia386/Progate-Course-Repo
0dec6bd2d5594b1624251a74f6ebcf8266c449ba
[ "MIT" ]
null
null
null
class MenuItem: def __init__(self, name, price): self.name = name self.price = price def info(self): return self.name + ': $' + str(self.price) def get_total_price(self, count): total_price = self.price * count # If count is 3 or higher, multiply it by 0.9 if count >= 3 : total_price *= 0.9 # Round total_price to the nearest whole number and return it return round(total_price)
27.111111
69
0.567623
a6ebeb4dee48c51529f655eecbe38689866b16e1
1,586
py
Python
coreference/data_loader.py
shinoyuki222/torch-light
4799805d9bcae82a9f12a574dcf9fdd838c92ee9
[ "MIT" ]
null
null
null
coreference/data_loader.py
shinoyuki222/torch-light
4799805d9bcae82a9f12a574dcf9fdd838c92ee9
[ "MIT" ]
null
null
null
coreference/data_loader.py
shinoyuki222/torch-light
4799805d9bcae82a9f12a574dcf9fdd838c92ee9
[ "MIT" ]
null
null
null
import random import os import numpy as np import torch import const import utils class DataLoader: def __init__(self, inp_data, word2idx, cuda=True): self.cuda = cuda self.inp_data = inp_data self.word2idx = word2idx self.train_docs = self.load_files("train") self.test_docs = self.load_files("development") self.documents2tensor() def load_files(self, dtype): documents = [] data_path = f"{self.inp_data}/data/{dtype}" for _, _, files in os.walk(data_path): for inf in files: if inf not in const.FILTERFILES and inf.endswith("conll"): documents += utils.load_file(f"{data_path}/{inf}") return documents def documents2tensor(self): for doc in self.train_docs: doc.tokens2tensor(self.cuda, self.word2idx) doc.mentions(self.word2idx) doc.span2tonsor(self.word2idx) for doc in self.test_docs: doc.tokens2tensor(self.cuda, self.word2idx) doc.mentions(self.word2idx) doc.span2tonsor(self.word2idx) if __name__ == "__main__": corpus = torch.load(os.path.join(const.DATAPATH, "corpus.pt")) dl = DataLoader(const.DATAPATH, corpus["word2idx"], cuda=False) # doc = dl.sample_data()[0] # corefs_idxs, mention_idxs, mention_spans, labels, distances, corefs = doc.sample(False, 20) # print(corefs_idxs, mention_idxs) for doc in dl.test_docs: if doc.mention_spans.shape[0] == 0: print(doc.filename.split("/")[-1])
29.37037
97
0.627364
c460d502c1ff96f051be2d605e5ec5fface23ea3
401
py
Python
Chapter04/04_04_determine_file_extension_from_contenttype.py
susumuasaga/Python-Web-Scraping-Cookbook
dcb6241c5ead11070648b9c829b18f4e0d90f464
[ "MIT" ]
1
2019-09-29T13:58:54.000Z
2019-09-29T13:58:54.000Z
Chapter04/04_04_determine_file_extension_from_contenttype.py
MindaugasVaitkus2/Python-Web-Scraping-Cookbook
dcb6241c5ead11070648b9c829b18f4e0d90f464
[ "MIT" ]
null
null
null
Chapter04/04_04_determine_file_extension_from_contenttype.py
MindaugasVaitkus2/Python-Web-Scraping-Cookbook
dcb6241c5ead11070648b9c829b18f4e0d90f464
[ "MIT" ]
null
null
null
""" Demonstrate determining extension from content type returned in response """ import sys from os import path sys.path.append(path.dirname(path.dirname(path.abspath(__file__)))) import const from util.urls import URLUtility util = URLUtility(const.ApodEclipseImage()) print("Filename from content-type: " + util.extension_from_contenttype) print("Filename from url: " + util.extension_from_url)
28.642857
80
0.790524
714ac4e1a87d76c223c640703f0b4bf5513a7f3a
8,968
py
Python
dccd/histo_dl/exchange.py
irvingprog/Download_Crypto_Currencies_Data
b59f3a3eed3df29a1a68915cdf18f65b9023a992
[ "MIT" ]
null
null
null
dccd/histo_dl/exchange.py
irvingprog/Download_Crypto_Currencies_Data
b59f3a3eed3df29a1a68915cdf18f65b9023a992
[ "MIT" ]
null
null
null
dccd/histo_dl/exchange.py
irvingprog/Download_Crypto_Currencies_Data
b59f3a3eed3df29a1a68915cdf18f65b9023a992
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # coding: utf-8 # @Author: ArthurBernard # @Email: [email protected] # @Date: 2019-08-30 09:25:01 # @Last modified by: ArthurBernard # @Last modified time: 2019-09-03 21:56:51 """ Base object to download historical data from REST API. Notes ----- The following object is shapped to download data from crypto-currency exchanges (currently only Binance, GDax, Kraken and Poloniex). """ # Import built-in packages import os import pathlib import time # Import extern packages import pandas as pd # Import local packages from dccd.tools.date_time import date_to_TS, TS_to_date from dccd.tools.date_time import str_to_span, span_to_str __all__ = ['ImportDataCryptoCurrencies'] class ImportDataCryptoCurrencies: """ Base class to import data about crypto-currencies from some exchanges. Parameters ---------- path : str The path where data will be save. crypto : str The abreviation of the crypto-currencie. span : {int, 'weekly', 'daily', 'hourly'} - If str, periodicity of observation. - If int, number of the seconds between each observation, minimal span\ is 60 seconds. platform : str The platform of your choice: 'Kraken', 'Poloniex'. fiat : str A fiat currency or a crypto-currency. form : {'xlsx', 'csv'} Your favorit format. Only 'xlsx' and 'csv' at the moment. Notes ----- Don't use directly this class, use the respective class for each exchange. See Also -------- FromBinance, FromKraken, FromGDax, FromPoloniex Attributes ---------- pair : str Pair symbol, `crypto + fiat`. start, end : int Timestamp to starting and ending download data. span : int Number of seconds between observations. full_path : str Path to save data. form : str Format to save data. Methods ------- import_data save get_data """ def __init__(self, path, crypto, span, platform, fiat='EUR', form='xlsx'): """ Initialize object. """ self.path = path self.crypto = crypto self.span, self.per = self._period(span) self.fiat = fiat self.pair = str(crypto + fiat) self.full_path = self.path + '/' + platform + '/Data/Clean_Data/' self.full_path += str(self.per) + '/' + self.pair self.last_df = pd.DataFrame() self.form = form def _get_last_date(self): """ Find the last observation imported. TODO : to finish """ pathlib.Path(self.full_path).mkdir(parents=True, exist_ok=True) if not os.listdir(self.full_path): return 1325376000 else: last_file = sorted(os.listdir(self.full_path), reverse=True)[0] if last_file.split('.')[-1] == 'xlsx': self.last_df = pd.read_excel( self.full_path + '/' + str(last_file) ) return self.last_df.TS.iloc[-1] else: print('Last saved file is in format not allowing.', 'Start at 1st January 2012.') return 1325376000 def _set_time(self, start, end): """ Set the end and start in timestamp if is not yet. Parameters ---------- start : int Timestamp of the first observation of you want. end : int Timestamp of the last observation of you want. """ if start is 'last': start = self._get_last_date() elif isinstance(start, str): start = date_to_TS(start) else: pass if end is 'now': end = time.time() elif isinstance(end, str): end = date_to_TS(end) else: pass return int((start // self.span) * self.span), \ int((end // self.span) * self.span) def _set_by_period(self, TS): return TS_to_date(TS, form='%' + self.by_period) def _name_file(self, date): return self.per + '_of_' + self.crypto + self.fiat + '_in_' + date def save(self, form='xlsx', by_period='Y'): """ Save data by period (default is year) in the corresponding format and file. TODO : to finish Parameters ---------- form : {'xlsx', 'csv'} Format to save data. by_period : {'Y', 'M', 'D'} - If 'Y' group data by year. - If 'M' group data by month. - If 'D' group data by day. """ df = (self.last_df.append(self.df, sort=True) .drop_duplicates(subset='TS', keep='last') .reset_index(drop=True) .drop('Date', axis=1) .reindex(columns=[ 'TS', 'date', 'time', 'close', 'high', 'low', 'open', 'quoteVolume', 'volume', 'weightedAverage' ])) pathlib.Path(self.full_path).mkdir(parents=True, exist_ok=True) self.by_period = by_period grouped = (df.set_index('TS', drop=False) .groupby(self._set_by_period, axis=0)) # .reset_index() for name, group in grouped: if form is 'xlsx': self._excel_format(name, form, group) elif form is 'csv': group.to_csv( self.full_path + '/' + self._name_file(name) + '.' + form ) else: print('Not allowing fomat') return self def _excel_format(self, name, form, group): """ Save as excel format. """ writer = pd.ExcelWriter( self.full_path + '/' + self._name_file(name) + '.' + form, engine='xlsxwriter' ) df_group = group.reset_index(drop=True) df_group.to_excel( writer, header=True, index=False, sheet_name='Sheet1' ) work_book = writer.book work_sheet = writer.sheets['Sheet1'] fmt = work_book.add_format( {'align': 'center', 'num_format': '#,##0.00'} ) fmt_time = work_book.add_format( {'align': 'center', 'num_format': 'hh:mm:ss'} ) fmt_date = work_book.add_format( {'align': 'center', 'num_format': 'yyyy/mm/dd'} ) fmt_TS = work_book.add_format({'align': 'center'}) work_sheet.set_column('A:A', 11, fmt_TS) work_sheet.set_column('B:B', 10, fmt_date) work_sheet.set_column('C:C', 10, fmt_time) work_sheet.set_column('J:J', 17, fmt) work_sheet.set_column('D:I', 13, fmt) writer.save() return self def _sort_data(self, data): """ Clean and sort the data. TODO : to finish """ df = pd.DataFrame( data, #index=range((self.end - self.start) // self.span + 1), # index=range(self.start, self.end, self.span) ).rename(columns={'date': 'TS'}) TS = pd.DataFrame( list(range(self.start, self.end, self.span)), columns=['TS'] ) df = (df.merge(TS, on='TS', how='outer', sort=False) .sort_values('TS') .reset_index(drop=True) .fillna(method='pad')) df = df.assign(Date=pd.to_datetime(df.TS, unit='s')) df.set_index('Date') self.df = df.assign(date=df.Date.dt.date, time=df.Date.dt.time) return self def import_data(self, start='last', end='now'): """ Download data for specific time interval. Parameters ---------- start : int or str Timestamp of the first observation of you want as int or date format 'yyyy-mm-dd hh:mm:ss' as string. end : int or str /! NOT ALLOWED TO KRAKEN EXCHANGE /! Timestamp of the last observation of you want as int or date format 'yyyy-mm-dd hh:mm:ss' as string. Returns ------- data : pd.DataFrame Data sorted and cleaned in a data frame. """ data = self._import_data(start=start, end=end) return self._sort_data(data) def get_data(self): """ Print the dataframe. Returns ------- Data : pd.DataFrame Current data. """ return self.df def _period(self, span): if type(span) is str: return str_to_span(span), span elif type(span) is int: return span, span_to_str(span) else: print( "Error, span don't have the appropiate format", "as string or integer (seconds)" ) def set_hierarchy(self, liste): """ Set the specific hierarchy of the files where will save your data. TODO : to finish """ self.full_path = self.path for elt in liste: self.full_path += '/' + elt
29.695364
79
0.547614
63866555de4a34269880685c3d02b4ff7c5909b0
6,308
py
Python
huaweicloud-sdk-bss/huaweicloudsdkbss/v2/model/sub_customer_info_v2.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
64
2020-06-12T07:05:07.000Z
2022-03-30T03:32:50.000Z
huaweicloud-sdk-bss/huaweicloudsdkbss/v2/model/sub_customer_info_v2.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
11
2020-07-06T07:56:54.000Z
2022-01-11T11:14:40.000Z
huaweicloud-sdk-bss/huaweicloudsdkbss/v2/model/sub_customer_info_v2.py
huaweicloud/huaweicloud-sdk-python-v3
7a6270390fcbf192b3882bf763e7016e6026ef78
[ "Apache-2.0" ]
24
2020-06-08T11:42:13.000Z
2022-03-04T06:44:08.000Z
# coding: utf-8 import re import six from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class SubCustomerInfoV2: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'id': 'str', 'name': 'str', 'display_name': 'str', 'status': 'int', 'org_id': 'str', 'org_name': 'str' } attribute_map = { 'id': 'id', 'name': 'name', 'display_name': 'display_name', 'status': 'status', 'org_id': 'org_id', 'org_name': 'org_name' } def __init__(self, id=None, name=None, display_name=None, status=None, org_id=None, org_name=None): """SubCustomerInfoV2 - a model defined in huaweicloud sdk""" self._id = None self._name = None self._display_name = None self._status = None self._org_id = None self._org_name = None self.discriminator = None if id is not None: self.id = id if name is not None: self.name = name if display_name is not None: self.display_name = display_name if status is not None: self.status = status if org_id is not None: self.org_id = org_id if org_name is not None: self.org_name = org_name @property def id(self): """Gets the id of this SubCustomerInfoV2. 企业子账号的客户ID。 :return: The id of this SubCustomerInfoV2. :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this SubCustomerInfoV2. 企业子账号的客户ID。 :param id: The id of this SubCustomerInfoV2. :type: str """ self._id = id @property def name(self): """Gets the name of this SubCustomerInfoV2. 企业子账号的用户名。 :return: The name of this SubCustomerInfoV2. :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this SubCustomerInfoV2. 企业子账号的用户名。 :param name: The name of this SubCustomerInfoV2. :type: str """ self._name = name @property def display_name(self): """Gets the display_name of this SubCustomerInfoV2. 企业子账号的显示名称。 不限制特殊字符。 :return: The display_name of this SubCustomerInfoV2. :rtype: str """ return self._display_name @display_name.setter def display_name(self, display_name): """Sets the display_name of this SubCustomerInfoV2. 企业子账号的显示名称。 不限制特殊字符。 :param display_name: The display_name of this SubCustomerInfoV2. :type: str """ self._display_name = display_name @property def status(self): """Gets the status of this SubCustomerInfoV2. 子账号状态: 1:正常2:创建中3:关闭中4:已关闭101:子账号注册中102:子账号待激活 :return: The status of this SubCustomerInfoV2. :rtype: int """ return self._status @status.setter def status(self, status): """Sets the status of this SubCustomerInfoV2. 子账号状态: 1:正常2:创建中3:关闭中4:已关闭101:子账号注册中102:子账号待激活 :param status: The status of this SubCustomerInfoV2. :type: int """ self._status = status @property def org_id(self): """Gets the org_id of this SubCustomerInfoV2. 子账号归属的组织单元ID。 :return: The org_id of this SubCustomerInfoV2. :rtype: str """ return self._org_id @org_id.setter def org_id(self, org_id): """Sets the org_id of this SubCustomerInfoV2. 子账号归属的组织单元ID。 :param org_id: The org_id of this SubCustomerInfoV2. :type: str """ self._org_id = org_id @property def org_name(self): """Gets the org_name of this SubCustomerInfoV2. 子账号归属的组织单元名称。 说明: 当子账号归属的组织是企业组织根节点时,本属性可能为空。 :return: The org_name of this SubCustomerInfoV2. :rtype: str """ return self._org_name @org_name.setter def org_name(self, org_name): """Sets the org_name of this SubCustomerInfoV2. 子账号归属的组织单元名称。 说明: 当子账号归属的组织是企业组织根节点时,本属性可能为空。 :param org_name: The org_name of this SubCustomerInfoV2. :type: str """ self._org_name = org_name def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, SubCustomerInfoV2): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
25.232
103
0.556753
8b3928543d55f1c27ef1c4a2ab952fedf2d0d778
6,918
py
Python
train.py
Jiannan-Liu/nCoVSegNet
7543e68edff011a7f7b694c97cf0f185d441fd6b
[ "MIT" ]
5
2021-08-31T14:28:52.000Z
2022-02-12T04:10:31.000Z
train.py
Jiannan-Liu/nCoVSegNet
7543e68edff011a7f7b694c97cf0f185d441fd6b
[ "MIT" ]
null
null
null
train.py
Jiannan-Liu/nCoVSegNet
7543e68edff011a7f7b694c97cf0f185d441fd6b
[ "MIT" ]
3
2021-08-09T02:53:17.000Z
2022-02-20T09:35:28.000Z
import torch from torch.autograd import Variable import os import argparse from datetime import datetime from utils.dataset import get_loader from utils.utils import clip_gradient, adjust_lr, AvgMeter import torch.nn.functional as F def joint_loss(pred, mask): weit = 1 + 5*torch.abs(F.avg_pool2d(mask, kernel_size=31, stride=1, padding=15) - mask) wbce = F.binary_cross_entropy_with_logits(pred, mask, reduce='none') wbce = (weit*wbce).sum(dim=(2, 3)) / weit.sum(dim=(2, 3)) pred = torch.sigmoid(pred) inter = ((pred * mask)*weit).sum(dim=(2, 3)) union = ((pred + mask)*weit).sum(dim=(2, 3)) wdice = 1 - (2 * inter + 1)/(union + 1) return (wbce + wdice).mean() def train(train_loader, model, optimizer, epoch, train_save): model.train() size_rates = [0.75, 1, 1.25] loss_record1, loss_record2, loss_record3, loss_record4 = AvgMeter(), AvgMeter(), AvgMeter(), AvgMeter() for i, pack in enumerate(train_loader, start=1): for rate in size_rates: optimizer.zero_grad() # ---- data prepare ---- images, gts = pack images = Variable(images).cuda() gts = Variable(gts).cuda() # ---- rescaling the inputs (img/gt) ---- trainsize = int(round(opt.trainsize * rate / 32) * 32) if rate != 1: images = F.upsample(images, size=(trainsize, trainsize), mode='bilinear', align_corners=True) gts = F.upsample(gts, size=(trainsize, trainsize), mode='bilinear', align_corners=True) # ---- forward ---- lateral_map_4, lateral_map_3, lateral_map_2, lateral_map_1 = model(images) loss4 = joint_loss(lateral_map_4, gts) loss3 = joint_loss(lateral_map_3, gts) loss2 = joint_loss(lateral_map_2, gts) loss1 = joint_loss(lateral_map_1, gts) loss = loss1 + loss2 + loss3 + loss4 # ---- backward ---- loss.backward() clip_gradient(optimizer, opt.clip) optimizer.step() # ---- recording loss ---- if rate == 1: loss_record1.update(loss1.data, opt.batchsize) loss_record2.update(loss2.data, opt.batchsize) loss_record3.update(loss3.data, opt.batchsize) loss_record4.update(loss4.data, opt.batchsize) # ---- train logging ---- if i % 20 == 0 or i == total_step: print('{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], [lateral-1: {:.4f}, ' 'lateral-2: {:.4f}, lateral-3: {:0.4f}, lateral-4: {:0.4f}]'. format(datetime.now(), epoch, opt.epoch, i, total_step, loss_record1.show(), loss_record2.show(), loss_record3.show(), loss_record4.show())) # ---- save model_lung_infection ---- save_path = './weight/'.format(train_save) os.makedirs(save_path, exist_ok=True) if (epoch+1) % 10 == 0: torch.save(model.state_dict(), save_path + 'nCoVSegNet-%d.pth' % (epoch+1)) print('[Saving Snapshot:]', save_path + 'nCoVSegNet-%d.pth' % (epoch+1)) if __name__ == '__main__': parser = argparse.ArgumentParser() # hyper-parameters parser.add_argument('--epoch', type=int, default=100, help='epoch number') parser.add_argument('--lr', type=float, default=1e-4, help='learning rate') parser.add_argument('--batchsize', type=int, default=4, help='training batch size') parser.add_argument('--trainsize', type=int, default=352, help='set the size of training sample') parser.add_argument('--clip', type=float, default=0.5, help='gradient clipping margin') parser.add_argument('--decay_rate', type=float, default=0.1, help='decay rate of learning rate') parser.add_argument('--decay_epoch', type=int, default=50, help='every n epochs decay learning rate') parser.add_argument('--is_thop', type=bool, default=True, help='whether calculate FLOPs/Params (Thop)') parser.add_argument('--gpu_device', type=int, default=0, help='choose which GPU device you want to use') parser.add_argument('--num_workers', type=int, default=4, help='number of workers in dataloader. In windows, set num_workers=0') parser.add_argument('--n_classes', type=int, default=1, help='binary segmentation when n_classes=1') parser.add_argument('--backbone', type=str, default='ResNet50', help='change different backbone, choice: VGGNet16, ResNet50, Res2Net50') parser.add_argument('--train_path', type=str, default='/home/ljn/code/nCoVSegNet/data/train') parser.add_argument('--train_save', type=str, default=None, help='Use custom save path') opt = parser.parse_args() # ---- build models ---- torch.cuda.set_device(opt.gpu_device) if opt.backbone == 'Res2Net50': print('Backbone loading: Res2Net50') # from module.Res2Net import Res2Net elif opt.backbone == 'ResNet50': print('Backbone loading: ResNet50') from module.nCoVSegNet import nCoVSegNet elif opt.backbone == 'VGGNet16': print('Backbone loading: VGGNet16') # from module.VGGNet import VGGNet else: raise ValueError('Invalid backbone parameters: {}'.format(opt.backbone)) model = nCoVSegNet(n_class=opt.n_classes).cuda() ## transfer learning # model_path = '/home/ljn/code/nCoVSegNet/code/lidc_weight/nCoVSegNet-100.pth' # model = nCoVSegNet(n_class=opt.n_classes) # state_dict = torch.load(model_path, map_location='cpu') # model.load_state_dict(state_dict, strict=False) # model.cuda() print('Use custom save path') train_save = opt.train_save # ---- calculate FLOPs and Params ---- if opt.is_thop: from utils.utils import CalParams x = torch.randn(1, 3, opt.trainsize, opt.trainsize).cuda() CalParams(model, x) # ---- load training sub-modules ---- params = model.parameters() optimizer = torch.optim.Adam(params, opt.lr) image_root = '{}/image/'.format(opt.train_path) gt_root = '{}/mask/'.format(opt.train_path) train_loader = get_loader(image_root, gt_root, batchsize=opt.batchsize, trainsize=opt.trainsize, num_workers=opt.num_workers) total_step = len(train_loader) # ---- start !! ----- print("#"*20, "\nStart Training (nCoVSegNet-{})\n{}\n----\n".format(opt.backbone, opt), "#"*20) for epoch in range(1, opt.epoch): adjust_lr(optimizer, opt.lr, epoch, opt.decay_rate, opt.decay_epoch) train(train_loader, model, optimizer, epoch, train_save)
43.2375
109
0.603787
37ed19ad54af99b7080486c478a9cb6d9a5768c5
9,937
py
Python
graph.py
kunrii/NodeNet
192579807cb13fc363ea28f787da7d431b39646d
[ "MIT" ]
null
null
null
graph.py
kunrii/NodeNet
192579807cb13fc363ea28f787da7d431b39646d
[ "MIT" ]
null
null
null
graph.py
kunrii/NodeNet
192579807cb13fc363ea28f787da7d431b39646d
[ "MIT" ]
null
null
null
import numpy as _lib_ import node as _node_ class Graph: def __init__(self): self.nodes = set() self.inputNodes = set() self.outputNodes = set() self.links = set() self.learning_rate = 1e-3 ################################################################################################ ##### TRAINING FUNCTIONALITY FOR EPOCH AND ITERATION ################################################################################################ def train(self, dataset, epochs = 20, batch_size = 64, dataset_size_restriction = None): print("\n####################################### TRAINING #######################################\n") if (dataset_size_restriction is not None): assert dataset_size_restriction >= batch_size for n in self.outputNodes: if (n.loss == "CROSS_ENTROPY"): n.accuracy = list() for l in self.links: l.adaptive_moment_estimation_current_count = 1 for i in range(epochs): self.epoch(dataset, i + 1, batch_size, dataset_size_restriction) def epoch(self, dataset, epoch_count, batch_size, dataset_size_restriction): print("--------------------------------------- epoch {} ---------------------------------------".format(epoch_count)) Graph.shuffle(dataset) if (dataset_size_restriction is None): dataset_length = dataset["length"] else: dataset_length = dataset_size_restriction for n in self.outputNodes: if (n.loss == "CROSS_ENTROPY"): n.hit_count = 0 i = 0 while (i < dataset_length): if (i + batch_size < dataset_length): self.trainingIteration(dataset, (i, (i + batch_size)), batch_size) i += batch_size else: self.trainingIteration(dataset, (i, dataset_length), dataset_length - i) break for n in self.outputNodes: if (n.loss == "CROSS_ENTROPY"): n.accuracy.append(n.hit_count / dataset_length * 100) print(n.id + " accuracy {}%".format(str(n.accuracy[-1]))) def trainingIteration(self, dataset, range, batch_size): self.forwardPropagation(dataset, range, batch_size) self.backwardPropagation(batch_size) ################################################################################################ ##### TESTING FUNCTIONALITY ################################################################################################ def test(self, dataset, batch_size = 64): print("\n####################################### TESTING #######################################\n") dataset_length = dataset["length"] print("dataset len " + str(dataset_length)) #should only be in classification nodes for n in self.outputNodes: if (n.loss == "CROSS_ENTROPY"): n.accuracy = list() n.hit_count = 0 i = 0 while (i < dataset_length): if (i + batch_size < dataset_length): self.forwardPropagation(dataset, (i, (i + batch_size)), batch_size) i += batch_size else: self.forwardPropagation(dataset, (i, dataset_length), dataset_length - i) break for n in self.outputNodes: if (n.loss == "CROSS_ENTROPY"): n.accuracy.append(n.hit_count / dataset_length * 100) print(n.id + " accuracy {}%".format(n.accuracy[-1])) ################################################################################################ ##### FORWARD PROPAGATION FUNCTIONALITY ################################################################################################ def forwardPropagation(self, dataset, range, batch_size): #set the neurons to this batch size for n in self.nodes: n.setNeurons(batch_size) n.process_status = "IDLE" #load up inputs into the nodes for n in self.inputNodes: self.loadInputs(n, dataset, range) #load up outputs into the nodes for n in self.outputNodes: self.loadOutputs(n, dataset, range) #forward process the nodes for n in self.nodes: self.forwardProcess(n) def forwardProcess(self, node): if (node.process_status == "PROCESSING"): raise Exception("Neural network graphs cannot have cycles, but one was detected involving node " + node.id + " with obj id " + str(node)) elif (node.process_status == "DONE"): return node.process_status = "PROCESSING" inboundLinks = self.getInboundLinks(node) for l in inboundLinks: if (l.prev_node.process_status == "IDLE"): self.forwardProcess(l.prev_node) l.passToNext() node.setActivatedValue() if (node in self.outputNodes): node.setError() node.process_status = "DONE" def loadInputs(self, n, dataset, range): neuronInputs = dataset["inputs"][n.id] n.neurons_net_in[:,:] = neuronInputs[range[0]:range[1],:] def loadOutputs(self, n, dataset, range): neuronOutputs = dataset["outputs"][n.id] n.observations[:,:] = neuronOutputs[range[0]:range[1],:] ################################################################################################ ##### BACKWARD PROPAGATION FUNCTIONALITY ################################################################################################ def backwardPropagation(self, batch_size, standard_batch_size = None): for n in self.nodes: n.process_status = "IDLE" #backward process the nodes, propagating the deltas for n in self.nodes: self.stack_count = -1 self.backwardProcess(n) #corrections for l in self.links: l.correction(self.learning_rate, batch_size) def backwardProcess(self, node): if (node.process_status == "PROCESSING"): raise Exception("Neural network graphs cannot have cycles, but one was detected involving node " + node.id + " with obj id " + str(node)) elif (node.process_status == "DONE"): return node.process_status = "PROCESSING" outboundLinks = self.getOutboundLinks(node) for l in outboundLinks: if (l.next_node.process_status == "IDLE"): self.backwardProcess(l.next_node) l.passToPrev() node.setDelta(outboundLinks) node.process_status = "DONE" ################################################################################################ ##### MISC FUNCTIONALITY ################################################################################################ #based on https://stackoverflow.com/questions/35646908/numpy-shuffle-multidimensional-array-by-row-only-keep-column-order-unchanged def shuffle(data): permutations = _lib_.arange(data["length"]) _lib_.random.shuffle(permutations) for data_dir_key, data_dir_val in data.items(): if (data_dir_key == "inputs" or data_dir_key == "outputs"): for node_key, node_val in data_dir_val.items(): node_val[:,:] = node_val[permutations] ################################################################################################ ##### NODE MANAGEMENT FUNCTIONALITY ################################################################################################ def addNode(self, n): if (n not in self.nodes): self.nodes.add(n) def removeNode(self, n): if (n in self.nodes): if (n in self.inputNodes): self.inputNodes.remove(n) elif (n in self.outputNodes): self.outputNodes.remove(n) self.nodes.remove(n) def setInputNode(self, n, val): self.setGeneric(n, val, self.inputNodes) def setOutputNode(self, n, val): self.setGeneric(n, val, self.outputNodes) def setGeneric(self, n, val, nodeSet): if (val): if (n in self.nodes and n not in nodeSet): nodeSet.add(n) elif (n not in self.nodes and n not in nodeSet): self.nodes.add(n) nodeSet.add(n) elif (not val): if (n in nodeSet): nodeSet.remove(n) def getOutboundLinks(self, node): oL = set() for l in self.links: if (l.prev_node == node): oL.add(l) return oL def getInboundLinks(self, node): iL = set() for l in self.links: if (l.next_node == node): iL.add(l) return iL def addLink(self, l): if (l not in self.links): self.links.add(l) def removeLink(self, l): if (l in self.links): self.links.remove(l)
28.070621
150
0.447016
e2f672ac6d30c611fad6639605013230c182f377
4,102
py
Python
seata/rm/datasource/ColumnUtils.py
opentrx/seata-python
66fb3382217a43effa3d1bc5ec2b62204d499dba
[ "Apache-2.0" ]
8
2021-09-09T06:28:08.000Z
2022-03-06T04:58:40.000Z
seata/rm/datasource/ColumnUtils.py
opentrx/seata-python
66fb3382217a43effa3d1bc5ec2b62204d499dba
[ "Apache-2.0" ]
null
null
null
seata/rm/datasource/ColumnUtils.py
opentrx/seata-python
66fb3382217a43effa3d1bc5ec2b62204d499dba
[ "Apache-2.0" ]
4
2021-08-23T07:44:27.000Z
2022-02-11T08:42:54.000Z
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # @author jsbxyyx # @since 1.0 from enum import Enum class Escape(Enum): STANDARD = '"' MYSQL = '`' class ColumnUtils(object): DOT = "." @classmethod def del_escape_by_cols_dbtype(cls, cols, db_type): new_cols = cls.del_escape_by_cols_escape(cols, Escape.STANDARD) if cls.is_mysql_series(db_type): new_cols = cls.del_escape_by_cols_escape(cols, Escape.STANDARD) return new_cols @classmethod def del_escape_by_cols_escape(cls, cols, escape): if cols is None or len(cols) == 0: return cols new_cols = [] for col in cols: new_cols.append(cls.del_escape_by_col_escape(col, escape)) return new_cols @classmethod def del_escape_by_col_dbtype(cls, col_name, db_type): new_col_name = cls.del_escape_by_col_escape(col_name, Escape.STANDARD) if cls.is_mysql_series(db_type): new_col_name = cls.del_escape_by_col_escape(new_col_name, Escape.MYSQL) return new_col_name @classmethod def del_escape_by_col_escape(cls, col_name, escape): if col_name is None or len(col_name.strip()) == 0: return col_name if col_name[0] == escape.value and col_name[len(col_name) - 1] == escape.value: # like "scheme"."id" `scheme`.`id` s = escape.value + cls.DOT + escape.value index = col_name.find(s) if index > -1: return col_name[1: index] + cls.DOT + col_name[index + len(s): len(col_name) - 1] return col_name[1:len(col_name) - 1] else: # like "scheme".id `scheme`.id s = escape.value + cls.DOT index = col_name.find(s) if index > -1 and col_name[0] == escape.value: return col_name[1: index] + cls.DOT + col_name[index + len(s):] # like scheme."id" scheme.`id` s = cls.DOT + escape.value index = col_name.find(s) if index > -1 and col_name[len(col_name) - 1] == escape.value: return col_name[0: index] + cls.DOT + col_name[index + len(s):] return col_name @classmethod def add_escape_by_cols_dbtype(cls, cols, db_type): if cols is None or len(cols) == 0: return cols new_cols = [] for col in cols: new_cols.append(cls.add_by_col_dbtype(col, db_type)) return new_cols @classmethod def add_by_col_dbtype(cls, col_name, db_type): if cls.is_mysql_series(db_type): return cls.add_by_col_dbtype_escape(col_name, db_type, Escape.MYSQL) return cls.add_by_col_dbtype_escape(col_name, db_type, Escape.STANDARD) @classmethod def add_by_col_dbtype_escape(cls, col_name, db_type, escape): if col_name is None or col_name == "": return col_name if col_name[0] == escape.value and col_name[len(col_name) - 1] == escape.value: return col_name # TODO check keyword by dbtype if col_name.find(cls.DOT) > -1: # like "scheme".id `scheme`.id s = escape.value + cls.DOT dot_index = col_name.find(s) if dot_index > -1: return col_name[0:dot_index + len(s)] + escape.value + col_name[dot_index + len(s):] + escape.value # like scheme."id" scheme.`id` s = cls.DOT + escape.value dot_index = col_name.find(s) if dot_index > -1: return escape.value + col_name[0: dot_index] + escape.value + col_name[dot_index] s = cls.DOT dot_index = col_name.find(s) if dot_index > -1: return escape.value + col_name[0: dot_index] + escape.value + cls.DOT + \ escape.value + col_name[dot_index + len(s)] + escape.value return escape.value + col_name + escape.value @classmethod def is_mysql_series(cls, db_type): up = db_type.lower() return up == 'mysql' or up == 'h2' or up == 'mariadb'
37.290909
115
0.591663
77411663a515a9268438c85921e22a661c684d07
5,050
py
Python
src/commands/errors.py
L0ad1n6/Banana-Bot
d76dff9d782b1fe614b539bf13d176daecc24c8c
[ "MIT" ]
2
2021-12-26T05:24:37.000Z
2022-02-15T15:28:39.000Z
src/commands/errors.py
L0ad1n6/Banana-Bot
d76dff9d782b1fe614b539bf13d176daecc24c8c
[ "MIT" ]
null
null
null
src/commands/errors.py
L0ad1n6/Banana-Bot
d76dff9d782b1fe614b539bf13d176daecc24c8c
[ "MIT" ]
3
2022-01-15T19:05:49.000Z
2022-01-22T03:27:14.000Z
from discord.ext import commands from discord.ext.commands.errors import * from .music import HZ_BANDS from wavelink.errors import ZeroConnectedNodes import os import sys class InsufficientCredit(commands.CommandError): pass class InsufficientRole(commands.CommandError): pass class UserNotConnected(commands.CommandError): pass class NotConnected(commands.CommandError): pass class AlreadyConnected(commands.CommandError): pass class NotPlaying(commands.CommandError): pass class AlreadyPlaying(commands.CommandError): pass class EmptyQueue(commands.CommandError): pass class NoMoreSongs(commands.CommandError): pass class NoHistory(commands.CommandError): pass class InvalidTime(commands.CommandError): pass class VolumeTooLow(commands.CommandError): pass class VolumeTooHigh(commands.CommandError): pass class NoLyrics(commands.CommandError): pass class InvalidEQPreset(commands.CommandError): pass class NonExistentEQBand(commands.CommandError): pass class EQGainOutOfBounds(commands.CommandError): pass class Error(commands.Cog): def __init__(self, bot): self.bot = bot @commands.Cog.listener() async def on_command_error(self, ctx: commands.Context, error): if isinstance(error, CommandOnCooldown): msg = f"<:yellowx:938093739283451964> Command is on **cooldown**, try again in {round(error.retry_after, 1)} seconds" elif isinstance(error, MissingPermissions): msg = "<:yellowx:938093739283451964> Cannot run command, missing permissions" elif isinstance(error, MissingRequiredArgument): msg = f"<:yellowx:938093739283451964> Missing required argument: **{error.param}**" elif isinstance(error, ConversionError): msg = "<:yellowx:938093739283451964> Invalid argument type, could not convert" elif isinstance(error, CommandNotFound): msg = "<:yellowx:938093739283451964> The command you are trying to use does not exist" elif isinstance(error, InsufficientCredit): msg = "<:yellowx:938093739283451964> You do not have enough Social Credit to perform this action" elif isinstance(error, InsufficientRole): msg = "<:yellowx:938093739283451964> Your top role is not high enough to perform this action" elif isinstance(error, UserNotConnected): msg = "<:yellowx:938093739283451964> You are not connected to a voice channel" elif isinstance(error, NotConnected): msg = "<:yellowx:938093739283451964> I'm not connected to a voice channel" elif isinstance(error, AlreadyConnected): msg = "<:yellowx:938093739283451964> I'm already connected to a voice channel" elif isinstance(error, NotPlaying): msg = "<:yellowx:938093739283451964> Music is not playing" elif isinstance(error, AlreadyPlaying): msg = "<:yellowx:938093739283451964> Music is already playing" elif isinstance(error, EmptyQueue): msg = "<:yellowx:938093739283451964> Queue is empty" elif isinstance(error, NoMoreSongs): msg = "<:yellowx:938093739283451964> No more songs left in queue" elif isinstance(error, NoHistory): msg = "<:yellowx:938093739283451964> No songs have been played yet" elif isinstance(error, InvalidTime): msg = "<:yellowx:938093739283451964> Time formatting is invalid" elif isinstance(error, VolumeTooHigh): msg = "<:yellowx:938093739283451964> You will kill your ears if I set the volume any higher than 150% (capable of 1500%)" elif isinstance(error, VolumeTooLow): msg = "<:yellowx:938093739283451964> Volume must be greater than 0" elif isinstance(error, NoLyrics): msg = "<:yellowx:938093739283451964> No lyrics found for this song" elif isinstance(error, InvalidEQPreset): msg = "<:yellowx:938093739283451964> EQ preset must be one of the following: flat, boost, metal, piano" elif isinstance(error, NonExistentEQBand): msg = f"<:yellowx:938093739283451964> This is a 15 band equalizer, the band number should be between 1 and 15 or one of of the frequencies: {', '.join(str(band) for band in HZ_BANDS)}" elif isinstance(error, EQGainOutOfBounds): msg = "<:yellowx:938093739283451964> EQ Gain for any band should be between -10 db and 10 db. Though possible anything more will kill your ears" elif isinstance(error, ZeroConnectedNodes): msg = "<:yellowx:938093739283451964> Lavalink server is offline, bot will reboot to fix this." print("Restarting...") os.execl(sys.executable, os.path.abspath("src/main.py")) else: msg = "<:yellowx:938093739283451964> Something went wrong, try again or use --report" await ctx.reply(msg, mention_author=False) raise error await ctx.reply(msg, mention_author=False)
39.76378
196
0.693663
c0aef349ff8358f5a205aeae6e888287623c646c
1,919
py
Python
training/checkpointing.py
chapter09/open_lth
53403fdb3fb82b833e336cf36b0292bfed61820a
[ "MIT" ]
null
null
null
training/checkpointing.py
chapter09/open_lth
53403fdb3fb82b833e336cf36b0292bfed61820a
[ "MIT" ]
null
null
null
training/checkpointing.py
chapter09/open_lth
53403fdb3fb82b833e336cf36b0292bfed61820a
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from ..foundations import paths from ..foundations.step import Step from ..platforms.platform import get_platform from ..training.metric_logger import MetricLogger def save_checkpoint_callback(output_location, step, model, optimizer, logger): if get_platform().is_primary_process: get_platform().save_model({ 'ep': step.ep, 'it': step.it, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'logger': str(logger), }, paths.checkpoint(output_location)) get_platform().barrier() def restore_checkpoint(output_location, model, optimizer, iterations_per_epoch): checkpoint_location = paths.checkpoint(output_location) if not get_platform().exists(checkpoint_location): return None, None checkpoint = get_platform().load_model(checkpoint_location, map_location=torch.device('cpu')) # Handle DataParallel. module_in_name = get_platform().is_parallel if module_in_name and not all(k.startswith('module.') for k in checkpoint['model_state_dict']): checkpoint['model_state_dict'] = {'module.' + k: v for k, v in checkpoint['model_state_dict'].items()} elif all(k.startswith('module.') for k in checkpoint['model_state_dict']) and not module_in_name: checkpoint['model_state_dict'] = {k[len('module.'):]: v for k, v in checkpoint['model_state_dict'].items()} model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) step = Step.from_epoch(checkpoint['ep'], checkpoint['it'], iterations_per_epoch) logger = MetricLogger.create_from_string(checkpoint['logger']) return step, logger
42.644444
115
0.722251
52e1eb99295fa488792259b54c47ab5d2ffacdca
3,742
py
Python
clevrer_dev/feature_extraction/generate_features.py
gabrielsluz/SlowFast
bd06eac47fa236b070fd9a3b39518eea08d02947
[ "Apache-2.0" ]
null
null
null
clevrer_dev/feature_extraction/generate_features.py
gabrielsluz/SlowFast
bd06eac47fa236b070fd9a3b39518eea08d02947
[ "Apache-2.0" ]
null
null
null
clevrer_dev/feature_extraction/generate_features.py
gabrielsluz/SlowFast
bd06eac47fa236b070fd9a3b39518eea08d02947
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 import torch from torch.utils.data import DataLoader import sys import os from tqdm import tqdm import h5py from slowfast.datasets.clevrer_video import Clevrer_video from slowfast.models.video_model_builder import SlowFast import slowfast.utils.checkpoint as cu from slowfast.utils.parser import load_config, parse_args import slowfast.utils.logging as logging """ Generates SlowFast features Example: python3 clevrer_dev/feature_extraction/generate_features.py \ --cfg clevrer_dev/feature_extraction/slowfast.yaml \ DATA.PATH_TO_DATA_DIR /datasets/clevrer \ DATA.PATH_PREFIX /datasets/clevrer \ TRAIN.CHECKPOINT_FILE_PATH model_zoo_ck/SLOWFAST_4x16_R50.pkl \ TRAIN.CHECKPOINT_TYPE caffe2 """ #SlowFast feature extraction from almost last layer def forward(self, x, bboxes=None): x = self.s1(x) x = self.s1_fuse(x) x = self.s2(x) x = self.s2_fuse(x) for pathway in range(self.num_pathways): pool = getattr(self, "pathway{}_pool".format(pathway)) x[pathway] = pool(x[pathway]) x = self.s3(x) x = self.s3_fuse(x) x = self.s4(x) x = self.s4_fuse(x) #x = self.s5(x) return x def gen_dataset(cfg, mode, root): #Generates two datasets for a certain split. => Slow and fast features #When using the generated file must indicate in which index the dataset starts to work #torch.Size([50, 1280, 4, 14, 14]) torch.Size([50, 128, 32, 14, 14]) #Train starts in 0 #Val starts in 10000 #Test starts in 15000 dataset = Clevrer_video(cfg, mode) print("Dataset {} len = {}".format(mode, len(dataset))) dataloader = DataLoader(dataset, batch_size=cfg.TRAIN.BATCH_SIZE, shuffle=False, num_workers=cfg.DATA_LOADER.NUM_WORKERS) size = len(dataloader) batch_size = cfg.TRAIN.BATCH_SIZE #h5py slow and fast datasets #Slow slow_path = os.path.join(root, '{}_slow_features.hdf5'.format(mode)) slow_h5 = h5py.File(slow_path, 'w', libver='latest') slow_dset = slow_h5.create_dataset('data', (size * batch_size, 1280, 4, 16, 16), dtype='f4') #Fast fast_path = os.path.join(root, '{}_fast_features.hdf5'.format(mode)) fast_h5 = h5py.File(fast_path, 'w', libver='latest') fast_dset = fast_h5.create_dataset('data', (size * batch_size, 128, 32, 16, 16), dtype='f4') with torch.no_grad(): for i_batch, sampled_batch in tqdm(enumerate(dataloader)): inputs = sampled_batch[0] if cfg.NUM_GPUS: if isinstance(inputs, (list,)): for i in range(len(inputs)): inputs[i] = inputs[i].cuda(non_blocking=True) else: inputs = inputs.cuda(non_blocking=True) out = model(inputs) slow_ft = out[0].detach().cpu().numpy() fast_ft = out[1].detach().cpu().numpy() slow_dset[i_batch * batch_size:(i_batch + 1) * batch_size] = slow_ft fast_dset[i_batch * batch_size:(i_batch + 1) * batch_size] = fast_ft slow_h5.close() fast_h5.close() if __name__ == "__main__": args = parse_args() cfg = load_config(args) logger = logging.get_logger(__name__) logging.setup_logging(cfg.OUTPUT_DIR) use_gpu = cfg.NUM_GPUS > 0 #Set model model = SlowFast(cfg) if use_gpu: cur_device = torch.cuda.current_device() model = model.cuda(device=cur_device) cu.load_test_checkpoint(cfg, model) model.forward = forward.__get__(model, SlowFast) model.eval() #Proccess datasets root = cfg.DATA.PATH_TO_DATA_DIR gen_dataset(cfg, 'train', root) gen_dataset(cfg, 'val', root)
33.410714
90
0.652859
d07e0b72a8cc5b6f32fa03cf3333d6b8fd181655
1,222
py
Python
advent_of_code/solutions/day_01.py
deadpyxel/advent-of-code-2020
0aa42fe49aa06e8822c6c61125425f387c330710
[ "MIT" ]
null
null
null
advent_of_code/solutions/day_01.py
deadpyxel/advent-of-code-2020
0aa42fe49aa06e8822c6c61125425f387c330710
[ "MIT" ]
null
null
null
advent_of_code/solutions/day_01.py
deadpyxel/advent-of-code-2020
0aa42fe49aa06e8822c6c61125425f387c330710
[ "MIT" ]
null
null
null
from itertools import combinations from typing import Collection from typing import List from advent_of_code.adapter import acquire_problem_input from advent_of_code.utils import calc_product from advent_of_code.utils import parse_input_as_integer def _filter_possible_combinations( original_list: List[int], n: int, combination_size: int = 2 ) -> List[Collection[int]]: return [ comb for comb in combinations(original_list, r=combination_size) if sum(comb) == n ] def solve_day01() -> None: problem_input = acquire_problem_input() input_as_integers = parse_input_as_integer(problem_input) # Part 1 - We were asked to find product of a pair from the input # that has a sum of 2020 possible_values = _filter_possible_combinations(input_as_integers, n=2020) for possibility in possible_values: print(f"Possible answer for part1: {calc_product(possibility)}") # Part 2 - We were asked the prompt, but now with a triplet possible_values = _filter_possible_combinations( input_as_integers, n=2020, combination_size=3 ) for possibility in possible_values: print(f"Possible answer for part2: {calc_product(possibility)}")
33.944444
78
0.744681
b74069aea38bb72e0acf0e46d06ac2ae661c9559
2,183
py
Python
Z - Tool Box/LaZagne/Windows/lazagne/softwares/php/composer.py
dfirpaul/Active-Directory-Exploitation-Cheat-Sheet-1
1dcf54522e9d20711ff1114550dc2893ed3e9ed0
[ "MIT" ]
1,290
2020-05-28T21:24:43.000Z
2022-03-31T16:38:43.000Z
Z - Tool Box/LaZagne/Windows/lazagne/softwares/php/composer.py
dfirpaul/Active-Directory-Exploitation-Cheat-Sheet-1
1dcf54522e9d20711ff1114550dc2893ed3e9ed0
[ "MIT" ]
1
2020-07-03T21:14:52.000Z
2020-07-03T21:14:52.000Z
Z - Tool Box/LaZagne/Windows/lazagne/softwares/php/composer.py
dfirpaul/Active-Directory-Exploitation-Cheat-Sheet-1
1dcf54522e9d20711ff1114550dc2893ed3e9ed0
[ "MIT" ]
280
2020-05-29T17:28:38.000Z
2022-03-31T13:54:15.000Z
# -*- coding: utf-8 -*- import json from lazagne.config.module_info import ModuleInfo from lazagne.config.constant import constant import os class Composer(ModuleInfo): def __init__(self): ModuleInfo.__init__(self, 'composer', 'php') def extract_credentials(self, location): """ Extract the credentials from the "auth.json" file. See "https://getcomposer.org/doc/articles/http-basic-authentication.md" for file format. :param location: Full path to the "auth.json" file :return: List of credentials founds """ creds_found = [] with open(location) as f: creds = json.load(f) for cred_type in creds: for domain in creds[cred_type]: values = { "AuthenticationType" : cred_type, "Domain" : domain, } # Extract basic authentication if we are on a "http-basic" section # otherwise extract authentication token if cred_type == "http-basic": values["Login"] = creds[cred_type][domain]["username"] values["Password"] = creds[cred_type][domain]["password"] else: values["Password"] = creds[cred_type][domain] creds_found.append(values) return creds_found def run(self): """ Main function """ # Define the possible full path of the "auth.json" file when is defined at global level # See "https://getcomposer.org/doc/articles/http-basic-authentication.md" # See "https://seld.be/notes/authentication-management-in-composer" location = '' tmp_location = [ os.path.join(constant.profile["COMPOSER_HOME"], u'auth.json'), os.path.join(constant.profile["APPDATA"], u'Composer\\auth.json') ] for tmp in tmp_location: if os.path.isfile(tmp): location = tmp break if location: return self.extract_credentials(location)
35.209677
96
0.554283
9d3709c5ccef6b681b8f43840012677d5a56f769
3,391
py
Python
scripts/nasjonal_speakers.py
RuntimeRacer/Real-Time-Voice-Cloning
c363926774cf3a110b70abef939d907dc8998ca9
[ "MIT" ]
null
null
null
scripts/nasjonal_speakers.py
RuntimeRacer/Real-Time-Voice-Cloning
c363926774cf3a110b70abef939d907dc8998ca9
[ "MIT" ]
1
2022-01-08T09:36:20.000Z
2022-01-08T09:36:20.000Z
scripts/nasjonal_speakers.py
RuntimeRacer/Real-Time-Voice-Cloning
c363926774cf3a110b70abef939d907dc8998ca9
[ "MIT" ]
null
null
null
import os from pathlib import Path import argparse from tqdm import tqdm import random from multiprocess.pool import ThreadPool from shutil import copyfile # should pull this from args parser = argparse.ArgumentParser(description='Process nasjonalbank dataset for a language.') parser.add_argument("datasets_root", type=Path, help=\ "Path to the directory containing your CommonVoice datasets.") parser.add_argument("-o", "--out_dir", type=Path, default=argparse.SUPPRESS, help=\ "Path to the ouput directory for this preprocessing script") parser.add_argument('--lang', help=\ "Language to process", type=str) parser.add_argument('--min', help=\ "Minimum number of files per speaker", type=int, default=12) parser.add_argument('--max', help=\ "Maximum number of files per speaker", type=int, default=40) parser.add_argument("-t", "--threads", type=int, default=8) args = parser.parse_args() # Stats speaker_count = 0 language_count = 0 # Processing for a single language if args.lang != None: # dirs base_dir = Path("{0}/{1}".format(args.datasets_root, args.lang)) else: base_dir = args.datasets_root # build our output dir out_dir = base_dir if out_dir != None: out_dir = args.out_dir # find our audio files print("Searching for all wav files...") source_files = [f for f in base_dir.glob("**/*.wav") if f.is_file()] print(" - Found: {}".format(len(source_files))) # group files based on speaker id r0000000 speaker_hash = {} for file in source_files: client_id = "{0}_{1}".format(file.parts[-3], file.parts[-2]) if client_id not in speaker_hash: speaker_hash[client_id] = [] speaker_hash[client_id].append(file) print("Found {} unique speakers".format(len(speaker_hash))) print("Pruning speakers with less than {} files...".format(args.min)) speakers_to_remove = [] for speaker_id in speaker_hash: if len(speaker_hash[speaker_id]) < args.min: speakers_to_remove.append(speaker_id) print(" - Pruning {} speakers...".format(len(speakers_to_remove))) for id in speakers_to_remove: del speaker_hash[id] print("Reduced speaker pool to {}".format(len(speaker_hash))) # sort the speaker_id/client_id by sorted_speakers = sorted(speaker_hash.keys()) def process_speaker(speaker): # print("Processing: i: {0} - {1}".format(si, speaker)) speaker_paths = speaker_hash[speaker] if len(speaker_paths) > args.max: # shuffle random.shuffle(speaker_paths) speaker_paths = speaker_paths[0:args.max] for source_path in speaker_paths: dest_path = out_dir.joinpath("speakers", speaker) new_name = os.path.basename(source_path) dest_file = dest_path.joinpath(new_name) # print(" - Source: {0} - Dest: {1}".format(str(source_path), str(dest_file))) # break # ensure the dir exists os.makedirs(dest_path, exist_ok=True) # if the file already exists, skip check = Path(dest_file) if check.is_file(): continue # Copy the files copyfile(source_path, dest_file) with ThreadPool(args.threads) as pool: list( tqdm( pool.imap( process_speaker, sorted_speakers ), "Nasjonalbank", len(sorted_speakers), unit="speakers" ) ) print("Done, thanks for playing...")
30.00885
92
0.675022
ef3e963bb884b9c9ea4fe2f960724485185b9342
227
py
Python
skodaconnect/__version__.py
stefanuc111/skodaconnect
106c83825fa009a238cdedebd67d0157fc950e90
[ "Apache-2.0" ]
null
null
null
skodaconnect/__version__.py
stefanuc111/skodaconnect
106c83825fa009a238cdedebd67d0157fc950e90
[ "Apache-2.0" ]
null
null
null
skodaconnect/__version__.py
stefanuc111/skodaconnect
106c83825fa009a238cdedebd67d0157fc950e90
[ "Apache-2.0" ]
null
null
null
""" skodaconnect - A Python 3 library for interacting with Skoda Connect and Smartlink services. For more details and documentation, visit the github page at https://github.com/lendy007/skodaconnect """ __version__ = "1.1.19"
32.428571
101
0.77533
41ca4c1aba343e59ae4ccfad7642bbc132cf901e
3,831
py
Python
solace/views/api.py
Plurk/Solace
752a98e3279f1e7e0dafd6281e90ba24cb733474
[ "BSD-3-Clause" ]
4
2015-10-28T22:23:07.000Z
2021-08-25T15:21:25.000Z
solace/views/api.py
sfermigier/solace
32d0b398643344c797a40a094689300c364de3b0
[ "BSD-3-Clause" ]
null
null
null
solace/views/api.py
sfermigier/solace
32d0b398643344c797a40a094689300c364de3b0
[ "BSD-3-Clause" ]
1
2018-11-25T17:52:22.000Z
2018-11-25T17:52:22.000Z
# -*- coding: utf-8 -*- """ solace.views.api ~~~~~~~~~~~~~~~~ This module implements version 1.0 of the API. If we ever provide a new version, it should be renamed. Because the docstrings of this module are displayed on the API page different rules apply. Format docstrings with creole markup, not with rst! :copyright: (c) 2009 by Plurk Inc., see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ from werkzeug import redirect from werkzeug.exceptions import NotFound from solace.application import url_for from solace.templating import render_template from solace.utils.api import api_method, list_api_methods, XML_NS from solace.models import User, Topic, Post from solace.badges import badge_list, badges_by_id def default_redirect(request): return redirect(url_for('api.help')) def help(request): return render_template('api/help.html', methods=list_api_methods(), xmlns=XML_NS) @api_method() def ping(request, value): """Helper function to simpliy test the API. Answers with the same value. Once API limitations are in place this method will continue to be "free" and as such suitable for connection checking. """ return dict(value=value) @api_method() def list_users(request): """Returns a list of users. You can retrieve up to 50 users at once. Each user has the same format as a call to "get user". ==== Parameters ==== * {{{limit}}} — the number of items to load at once. Defaults to 10, maximum allowed number is 50. * {{{offset}}} — the offset of the returned list. Defaults to 0 """ offset = max(0, request.args.get('offset', type=int) or 0) limit = max(0, min(50, request.args.get('limit', 10, type=int))) q = User.query.order_by(User.username) count = q.count() q = q.limit(limit).offset(offset) return dict(users=q.all(), total_count=count, limit=limit, offset=offset) @api_method() def get_user(request, username=None, user_id=None): """Looks up a user by username or user id and returns it. If the user is looked up by id, a plus symbol has to be prefixed to the ID. """ if username is not None: user = User.query.filter_by(username=username).first() else: user = User.query.get(user_id) if user is None: raise NotFound() return dict(user=user) @api_method() def list_badges(request): """Returns a list of all badges. Each badge in the returned list has the same format as returned by the "get badge" method. """ return dict(badges=badge_list) @api_method() def get_badge(request, identifier): """Returns a single badge.""" badge = badges_by_id.get(identifier) if badge is None: raise NotFound() return dict(badge=badge) @api_method() def list_questions(request): """Lists all questions or all questions in a section.""" q = Topic.query.order_by(Topic.date.desc()) if request.view_lang is not None: q = q.filter_by(locale=request.view_lang) offset = max(0, request.args.get('offset', type=int) or 0) limit = max(0, min(50, request.args.get('limit', 10, type=int))) count = q.count() q = q.limit(limit).offset(offset) return dict(questions=q.all(), total_count=count, limit=limit, offset=offset) @api_method() def get_question(request, question_id): """Returns a single question and the replies.""" t = Topic.query.get(question_id) if t is None: raise NotFound() return dict(question=t, replies=t.replies) @api_method() def get_reply(request, reply_id): """Returns a single reply.""" r = Post.query.get(reply_id) if r is None or r.is_question: raise NotFound() return dict(reply=r)
30.648
74
0.666928
f651322201921e80c761a4927fb2c44106163dc7
6,108
py
Python
src/Products/PageTemplates/expression.py
CMYanko/Zope
bbd2f4ce565740bfc9d9cae00c147f963ba49085
[ "ZPL-2.1" ]
null
null
null
src/Products/PageTemplates/expression.py
CMYanko/Zope
bbd2f4ce565740bfc9d9cae00c147f963ba49085
[ "ZPL-2.1" ]
null
null
null
src/Products/PageTemplates/expression.py
CMYanko/Zope
bbd2f4ce565740bfc9d9cae00c147f963ba49085
[ "ZPL-2.1" ]
null
null
null
"""``chameleon.tales`` expressions.""" from ast import NodeTransformer from ast import parse from chameleon.astutil import Static from chameleon.astutil import Symbol from chameleon.codegen import template from chameleon.tales import NotExpr from chameleon.tales import StringExpr from AccessControl.ZopeGuards import guarded_apply from AccessControl.ZopeGuards import guarded_getattr from AccessControl.ZopeGuards import guarded_getitem from AccessControl.ZopeGuards import guarded_iter from AccessControl.ZopeGuards import protected_inplacevar from OFS.interfaces import ITraversable from RestrictedPython import RestrictingNodeTransformer from RestrictedPython.Utilities import utility_builtins from z3c.pt import expressions from zExceptions import NotFound from zExceptions import Unauthorized from zope.interface import implementer from zope.tales.tales import ExpressionEngine from zope.traversing.adapters import traversePathElement from zope.traversing.interfaces import TraversalError from .Expressions import render from .interfaces import IZopeAwareEngine _marker = object() zope2_exceptions = ( AttributeError, LookupError, NameError, TypeError, ValueError, NotFound, Unauthorized, TraversalError, ) def static(obj): return Static(template("obj", obj=Symbol(obj), mode="eval")) class BoboAwareZopeTraverse: traverse_method = 'restrictedTraverse' __slots__ = () @classmethod def traverse(cls, base, request, path_items): """See ``zope.app.pagetemplate.engine``.""" path_items = list(path_items) path_items.reverse() while path_items: name = path_items.pop() if ITraversable.providedBy(base): base = getattr(base, cls.traverseMethod)(name) else: base = traversePathElement(base, name, path_items, request=request) return base def __call__(self, base, econtext, call, path_items): request = econtext.get('request') if path_items: base = self.traverse(base, request, path_items) if call is False: return base if getattr(base, '__call__', _marker) is not _marker or \ callable(base): base = render(base, econtext) return base class TrustedBoboAwareZopeTraverse(BoboAwareZopeTraverse): traverse_method = 'unrestrictedTraverse' __slots__ = () def __call__(self, base, econtext, call, path_items): request = econtext.get('request') base = self.traverse(base, request, path_items) if call is False: return base if getattr(base, '__call__', _marker) is not _marker or \ isinstance(base, type): return base() return base class PathExpr(expressions.PathExpr): exceptions = zope2_exceptions traverser = Static(template( "cls()", cls=Symbol(BoboAwareZopeTraverse), mode="eval" )) class TrustedPathExpr(PathExpr): traverser = Static(template( "cls()", cls=Symbol(TrustedBoboAwareZopeTraverse), mode="eval" )) class NocallExpr(expressions.NocallExpr, PathExpr): pass class ExistsExpr(expressions.ExistsExpr): exceptions = zope2_exceptions class RestrictionTransform(NodeTransformer): secured = { '_getattr_': guarded_getattr, '_getitem_': guarded_getitem, '_apply_': guarded_apply, '_getiter_': guarded_iter, '_inplacevar_': protected_inplacevar, } def visit_Name(self, node): value = self.secured.get(node.id) if value is not None: return Symbol(value) return node class UntrustedPythonExpr(expressions.PythonExpr): restricted_python_transformer = RestrictingNodeTransformer() page_templates_expression_transformer = RestrictionTransform() # Make copy of parent expression builtins builtins = expressions.PythonExpr.builtins.copy() # Update builtins with Restricted Python utility builtins builtins.update({ name: static(builtin) for (name, builtin) in utility_builtins.items() }) def parse(self, string): encoded = string.encode('utf-8') node = parse(encoded, mode='eval') # Run Node Transformation from RestrictedPython: self.restricted_python_transformer.visit(node) # Run PageTemplate.expression RestrictedPython Transform: self.page_templates_expression_transformer.visit(node) return node # Whether an engine is Zope aware does not depend on the class # but how it is configured - especially, that is uses a Zope aware # `PathExpr` implementation. # Nevertheless, we mark the class as "Zope aware" for simplicity # assuming that users of the class use a proper `PathExpr` @implementer(IZopeAwareEngine) class ChameleonEngine(ExpressionEngine): """Expression engine for ``chameleon.tales``. Only partially implemented: its ``compile`` is currently unusable """ def compile(self, expression): raise NotImplementedError() types = dict( python=UntrustedPythonExpr, string=StringExpr, not_=NotExpr, exists=ExistsExpr, path=PathExpr, provider=expressions.ProviderExpr, nocall=NocallExpr) def createChameleonEngine(types=types, untrusted=True, **overrides): e = ChameleonEngine() def norm(k): return k[:-1] if k.endswith("_") else k e.untrusted = untrusted ts = e.types for k, v in types.items(): k = norm(k) e.registerType(k, v) for k, v in overrides.items(): k = norm(k) if k in ts: del ts[k] e.registerType(k, v) return e def createTrustedChameleonEngine(**overrides): ovr = dict(python=expressions.PythonExpr, path=TrustedPathExpr) ovr.update(overrides) return createChameleonEngine(untrusted=False, **ovr) _engine = createChameleonEngine() def getEngine(): return _engine _trusted_engine = createTrustedChameleonEngine() def getTrustedEngine(): return _trusted_engine
26.102564
77
0.695809
690fadcc0a20e867b674f68a250f6e3713d6497f
5,522
py
Python
Demo/threads/Coroutine.py
ystk/debian-python3.1
6241444a6994140621d1b143a2d6b311b184366a
[ "PSF-2.0" ]
1
2021-12-26T22:20:34.000Z
2021-12-26T22:20:34.000Z
Demo/threads/Coroutine.py
ystk/debian-python3.1
6241444a6994140621d1b143a2d6b311b184366a
[ "PSF-2.0" ]
1
2015-10-29T20:51:31.000Z
2015-10-29T20:51:31.000Z
Demo/threads/Coroutine.py
ystk/debian-python3.1
6241444a6994140621d1b143a2d6b311b184366a
[ "PSF-2.0" ]
2
2018-08-06T04:37:38.000Z
2022-02-27T18:07:12.000Z
# Coroutine implementation using Python threads. # # Combines ideas from Guido's Generator module, and from the coroutine # features of Icon and Simula 67. # # To run a collection of functions as coroutines, you need to create # a Coroutine object to control them: # co = Coroutine() # and then 'create' a subsidiary object for each function in the # collection: # cof1 = co.create(f1 [, arg1, arg2, ...]) # [] means optional, # cof2 = co.create(f2 [, arg1, arg2, ...]) #... not list # cof3 = co.create(f3 [, arg1, arg2, ...]) # etc. The functions need not be distinct; 'create'ing the same # function multiple times gives you independent instances of the # function. # # To start the coroutines running, use co.tran on one of the create'd # functions; e.g., co.tran(cof2). The routine that first executes # co.tran is called the "main coroutine". It's special in several # respects: it existed before you created the Coroutine object; if any of # the create'd coroutines exits (does a return, or suffers an unhandled # exception), EarlyExit error is raised in the main coroutine; and the # co.detach() method transfers control directly to the main coroutine # (you can't use co.tran() for this because the main coroutine doesn't # have a name ...). # # Coroutine objects support these methods: # # handle = .create(func [, arg1, arg2, ...]) # Creates a coroutine for an invocation of func(arg1, arg2, ...), # and returns a handle ("name") for the coroutine so created. The # handle can be used as the target in a subsequent .tran(). # # .tran(target, data=None) # Transfer control to the create'd coroutine "target", optionally # passing it an arbitrary piece of data. To the coroutine A that does # the .tran, .tran acts like an ordinary function call: another # coroutine B can .tran back to it later, and if it does A's .tran # returns the 'data' argument passed to B's tran. E.g., # # in coroutine coA in coroutine coC in coroutine coB # x = co.tran(coC) co.tran(coB) co.tran(coA,12) # print x # 12 # # The data-passing feature is taken from Icon, and greatly cuts # the need to use global variables for inter-coroutine communication. # # .back( data=None ) # The same as .tran(invoker, data=None), where 'invoker' is the # coroutine that most recently .tran'ed control to the coroutine # doing the .back. This is akin to Icon's "&source". # # .detach( data=None ) # The same as .tran(main, data=None), where 'main' is the # (unnameable!) coroutine that started it all. 'main' has all the # rights of any other coroutine: upon receiving control, it can # .tran to an arbitrary coroutine of its choosing, go .back to # the .detach'er, or .kill the whole thing. # # .kill() # Destroy all the coroutines, and return control to the main # coroutine. None of the create'ed coroutines can be resumed after a # .kill(). An EarlyExit exception does a .kill() automatically. It's # a good idea to .kill() coroutines you're done with, since the # current implementation consumes a thread for each coroutine that # may be resumed. import _thread as thread import sync class _CoEvent: def __init__(self, func): self.f = func self.e = sync.event() def __repr__(self): if self.f is None: return 'main coroutine' else: return 'coroutine for func ' + self.f.__name__ def __hash__(self): return id(self) def __cmp__(x,y): return cmp(id(x), id(y)) def resume(self): self.e.post() def wait(self): self.e.wait() self.e.clear() class Killed(Exception): pass class EarlyExit(Exception): pass class Coroutine: def __init__(self): self.active = self.main = _CoEvent(None) self.invokedby = {self.main: None} self.killed = 0 self.value = None self.terminated_by = None def create(self, func, *args): me = _CoEvent(func) self.invokedby[me] = None thread.start_new_thread(self._start, (me,) + args) return me def _start(self, me, *args): me.wait() if not self.killed: try: try: me.f(*args) except Killed: pass finally: if not self.killed: self.terminated_by = me self.kill() def kill(self): if self.killed: raise TypeError('kill() called on dead coroutines') self.killed = 1 for coroutine in self.invokedby.keys(): coroutine.resume() def back(self, data=None): return self.tran( self.invokedby[self.active], data ) def detach(self, data=None): return self.tran( self.main, data ) def tran(self, target, data=None): if target not in self.invokedby: raise TypeError('.tran target %r is not an active coroutine' % (target,)) if self.killed: raise TypeError('.tran target %r is killed' % (target,)) self.value = data me = self.active self.invokedby[target] = me self.active = target target.resume() me.wait() if self.killed: if self.main is not me: raise Killed if self.terminated_by is not None: raise EarlyExit('%r terminated early' % (self.terminated_by,)) return self.value # end of module
34.5125
85
0.628214
a89597857a42c548b374e4b23a9a419b08ce03c5
587
py
Python
netbox/payment/navigation.py
cbipoe3ka/new-netbox-2.9
ce54c710034d58f99dbcefc1ad16c947a8b78dc8
[ "Apache-2.0" ]
null
null
null
netbox/payment/navigation.py
cbipoe3ka/new-netbox-2.9
ce54c710034d58f99dbcefc1ad16c947a8b78dc8
[ "Apache-2.0" ]
null
null
null
netbox/payment/navigation.py
cbipoe3ka/new-netbox-2.9
ce54c710034d58f99dbcefc1ad16c947a8b78dc8
[ "Apache-2.0" ]
null
null
null
from extras.plugins import PluginMenuButton, PluginMenuItem from utilities.choices import ButtonColorChoices menu_items = ( PluginMenuItem( link='plugins:payment:payment_list', link_text='Payments list', permissions=['payment.view_payment'], buttons= ( PluginMenuButton( link='plugins:payment:payment_add', permissions=['payment.add_payment'], title='Add payment', icon_class='fa fa-plus', color=ButtonColorChoices.GREEN, ), ) ), )
26.681818
59
0.586031
166922b5aee4550fea294cb262434e18ab441e2b
3,794
py
Python
uvicore/auth/services.py
uvicore/framework
9c21b85e9e470c6d789899340332a9abd0b26ab1
[ "MIT" ]
11
2021-03-22T22:07:49.000Z
2022-03-08T16:18:33.000Z
uvicore/auth/services.py
uvicore/framework
9c21b85e9e470c6d789899340332a9abd0b26ab1
[ "MIT" ]
12
2021-03-04T05:51:24.000Z
2021-09-22T05:16:18.000Z
uvicore/auth/services.py
uvicore/framework
9c21b85e9e470c6d789899340332a9abd0b26ab1
[ "MIT" ]
2
2021-03-25T14:49:56.000Z
2021-11-17T23:20:29.000Z
import uvicore from uvicore.http.provider import Http from uvicore.database.provider import Db from uvicore.package import ServiceProvider from uvicore.support.dumper import dump, dd # type: ignore @uvicore.provider() class Auth(ServiceProvider, Db, Http): def register(self) -> None: # Register IoC bindings # self.bind( # name='Auth', # object='uvicore.auth.auth._Auth', # aliases=['auth'] # ) # Bind Tables #self.bind('uvicore.auth.database.tables.groups.Groups', 'uvicore.auth.database.tables.groups._Groups', singleton=True) #self.bind('uvicore.auth.database.tables.user_info.UserInfo', 'uvicore.auth.database.tables.user_info._UserInfo', singleton=True) #self.bind('uvicore.auth.database.tables.users.Users', 'uvicore.auth.database.tables.users._Users', singleton=True) # Bind Models #self.bind('uvicore.auth.models.group.Group', 'uvicore.auth.models.group.GroupModel') #self.bind('uvicore.auth.models.user.User', 'uvicore.auth.models.user.UserModel') #self.bind('uvicore.auth.models.user_info.UserInfo', 'uvicore.auth.models.user_info.UserInfoModel') # Register config self.configs([ {'key': self.name, 'module': 'uvicore.auth.config.package.config'} ]) def boot(self) -> None: # Define service provider registration control self.registers(self.package.config.registers) # Define Database Connections self.connections( connections=self.package.config.database.connections, default=self.package.config.database.default ) # Define all tables/models used by this package. # The goal is to load up all SQLAlchemy tables for complete metedata definitions. # If you separate tables vs models use self.tables(['myapp.database.tables.*]) # If you use models only, or models with inline tables then use self.models(['myapp.models.*]) # Optionally define your own models/__init__.py and import myapp.models to load every table. # Order does not matter as they are sorted topologically for ForeignKey dependencies # Using __init__.py now, so just import it #from uvicore.auth import models #dump(self.package) self.models(['uvicore.auth.models']) # Define data seeders # NO - Auth shouldn't do its own seeding. Let the app do it all. # You think? What if a package is an app, then it runs seeders, but if that app is used # inside another package, you can't stop it from seeding. Need to figure out overrideing seeders array better self.seeders(['uvicore.auth.database.seeders.seed']) # Define view and asset paths and configure the templating system self.define_views() # Define Web and API routes and prefixes self.define_routes() def define_views(self) -> None: """Define view and asset paths and configure the templating system""" # Define view paths #self.views(['uvicore.auth.http.views']) # Define public paths self.public(['uvicore.auth.http.public']) # Define asset paths self.assets(['uvicore.auth.http.public.assets']) def define_routes(self) -> None: """Define Web and API routes and prefixes""" # Define web routes # self.web_routes( # module='uvicore.auth.http.routes.web.Web', # prefix=self.package.config.web.prefix, # #name_prefix=None, # ) # Define api routes self.api_routes( module='uvicore.auth.http.routes.api.Api', prefix=self.package.config.api.prefix, #name_prefix='api', )
39.936842
137
0.650501
a53dbf2dee0a55ca6ae0acd9dcea926b37c89ee5
11,270
py
Python
sudoku.py
JaakkoRoponen/sudoku-solver
44355b5ce176f4f2210b5f7a1206c3f5786088c5
[ "MIT" ]
null
null
null
sudoku.py
JaakkoRoponen/sudoku-solver
44355b5ce176f4f2210b5f7a1206c3f5786088c5
[ "MIT" ]
null
null
null
sudoku.py
JaakkoRoponen/sudoku-solver
44355b5ce176f4f2210b5f7a1206c3f5786088c5
[ "MIT" ]
null
null
null
import itertools import random import numpy as np class Sudoku: """Class for creating and solving Sudoku puzzles""" def _get_square(self, row, col): """ Returns coordinates for the square where the row,col coordinate is """ top = int(row / 3) * 3 # (0 or 1 or 2) * 3 left = int(col / 3) * 3 # (0 or 1 or 2) * 3 return { 'top': top, 'left': left, 'bottom': top + 3, # slicing high bound is exclusive 'right': left + 3} def _flip_sqrs_and_rows(self): """ Moves squares to rows and rows to squares. Running twice returns original state. [:,0,0:3]->[:,0,0:3], [:,1,0:3]->[:,0,3:6], [:,2,0:3]->[:,0,6:9], [:,0,3:6]->[:,1,0:3], [:,1,3:6]->[:,1,3:6], [:,2,3:6]->[:,1,6:9], ... [:,6,6:9]->[:,8,0:3], [:,7,6:9]->[:,8,3:6], [:,8,6:9]->[:,8,6:9] """ flipped = np.copy(self.positions) for i, j in np.ndindex(3, 9): flipped[:, int(j/3)+i*3, (j % 3)*3:(j % 3)*3+3] = \ self.positions[:, (j % 3)+i*3, int(j/3)*3:int(j/3)*3+3] self.positions = flipped def _search_locked(self, sqr, possibilities): """ Searches locked positions Searches for squares where all possible positions for a number are on a same row or col. Positions outside the square on the same row / col can be eliminated. """ top = int(sqr / 3) * 3 # row of top left corner of sqr left = sqr % 3 * 3 # col of top left corner of sqr # numbers that have 2 or 3 possible positions in a square numbers = [i for i in range(9) if 2 <= possibilities[i] <= 3] for n in numbers: coords = np.where(self.positions[n, top:top+3, left:left+3]) # put row coords to left column and col coords to right coords = np.transpose(coords) # check if all row or col coords are the same # (all values in the coords columns are the same # as the value on the first row) row, col = np.all(coords == coords[0, :], axis=0) if row: # eliminate positions on the same row outside of sqr outside_of_sqr = [i for i in range(9) if i not in range(left, left + 3)] self.positions[n, top + coords[0, 0], outside_of_sqr] = False elif col: # eliminate positions on the same col outside of sqr outside_of_sqr = [i for i in range(9) if i not in range(top, top + 3)] self.positions[n, outside_of_sqr, left + coords[0, 1]] = False def _search_hidden_and_naked(self, row, col): """ Searches for naked/hidden pairs/triples/quads Hidden: If the number of possible positions for a number matches with another number (on the same row/col/sqr) with the same possible positions and there are e.g. only three possible positions for the three numbers, a hidden triple has been found. It is important to note that not all three numbers must be in all three positions, but there must not be more than three positions for the three numbers all together. Naked: If the number of possible numbers in a position matches with another position (on the same row/col/sqr) with the same possible numbers, and there are e.g. only three possible numbers and three positions, a naked triple has been found. It is important to note that not all three positions must contain all three numbers, but there must not be more than three numbers in the three positions all together. Pair and quads are searched the same way, but there must be two or four allowed positions/numbers for the same numbers/positions. After finding a pair/triple/quad, other numbers in the same position / positions for the same numbers, can be set False. Finally transposes numbers and rows/cols each time to search for hidden/naked alternately. """ # how many possible positions/numbers for the given number/position possibilities = np.sum(self.positions[:, row, col], axis=1) # only search up to quads numbers = np.array([i for i in range(9) if 2 <= possibilities[i] <= 4]) for n in numbers: equal = np.all( # find equal (or subset) rows/cols/sqrs np.logical_xor( # check for change after masking self.positions[numbers, row, col], self.positions[n, row, col] * self.positions[numbers, row, col] ) == 0, axis=1) if np.sum(equal) == possibilities[n]: # pair/triple/quad found self.positions[ [i for i in range(9) if i not in numbers[equal]], row, col] *= np.invert(self.positions[n, row, col]) # search for hidden/naked by transposing numbers and cols/rows if isinstance(row, int): # rows -> transpose numbers and cols self.positions = np.transpose(self.positions, (2, 1, 0)) else: # cols -> transpose numbers and rows self.positions = np.transpose(self.positions, (1, 0, 2)) def _set_number(self, number, row, col): """ Sets number at row,col position Sets positions False for the given number on the same row, col and square, and for all other numbers with the same row,col coordinate (e.g. if 2,3 is 4 then 5 can't be at 2,3). Number must be given in 1-9 """ if number == 0: return False self.puzzle[row, col] = number number -= 1 # from sudoku board numbers (1-9) to 0-based index sqr = self._get_square(row, col) # eliminate positions on same axes and square self.positions[number, row, :] = False self.positions[number, :, col] = False self.positions[number, sqr['top']:sqr['bottom'], sqr['left']:sqr['right']] = False self.positions[:, row, col] = False self.positions[number, row, col] = True # eliminate naked/hidden/locked pairs/triples/quads for x in range(9): # row / col / sqr self._search_hidden_and_naked(x, slice(9)) # rows (hidden) self._search_hidden_and_naked(x, slice(9)) # rows (naked) self._search_hidden_and_naked(slice(9), x) # cols (hidden) self._search_hidden_and_naked(slice(9), x) # cols (naked) self._flip_sqrs_and_rows() self._search_hidden_and_naked(x, slice(9)) # sqrs (hidden) self._search_hidden_and_naked(x, slice(9)) # sqrs (naked) # possible positions available for each number in a square possibilities = np.sum(self.positions[:, x, :], axis=1) self._flip_sqrs_and_rows() self._search_locked(x, possibilities) # sqrs (locked) return True def _init_positions(self): """Sets positions for puzzle cells""" self.positions = np.full((9, 9, 9), True) non_zero_coords = zip(*np.where(self.puzzle != 0)) for row, col in non_zero_coords: self._set_number(self.puzzle[row, col], row, col) def _get_number(self, row, col): """ Gets number at row,col position Checks positions, if row,col has a True value and that it's the only True value on the same row / col / square. Also checks, if only one number is possible based on the board. Returns a number 1-9 or 0 (=empty) """ sqr = self._get_square(row, col) for number in range(9): if self.positions[number, row, col] and \ (np.sum(self.positions[:, row, col]) == 1 or np.sum(self.positions[number, row, :]) == 1 or np.sum(self.positions[number, :, col]) == 1 or np.sum(self.positions[number, sqr['top']:sqr['bottom'], sqr['left']:sqr['right']]) == 1): return number + 1 # from 0-index to board numbers (1-9) return 0 def _solve(self): """ Iterates Sudoku board until all positions are solved or no more numbers are solvable """ numbers_solved = np.count_nonzero(self.puzzle) zero_coords = zip(*np.where(self.puzzle == 0)) for row, col in zero_coords: # get number by deducing it from other numbers and then set it self._set_number(self._get_number(row, col), row, col) if numbers_solved < np.count_nonzero(self.puzzle) < 9 * 9: self._solve() def solve(self, puzzle, solve=True): """Solves the given Sudoku puzzle""" self.puzzle = np.copy(puzzle) # preserve puzzle given in arguments self._init_positions() if solve: self._solve() return self.puzzle def get_random_number(self, puzzle, row, col): """ Gives "Random" number for the given row / col position Returns: 1. the correct number (if only one) 2. one of the possibilities (if many) 3. 0 if no possible numbers """ number = self._get_number(row, col) # 1-9 or 0 if not number: possible_numbers = np.where(self.positions[:, row, col])[0] if possible_numbers.size == 0: # impossible position return 0 number = np.random.choice(possible_numbers) + 1 # 0-8 -> 1-9 return number def create_puzzle(self): """Creates a new sudoku puzzle""" while True: self.puzzle = np.zeros((9, 9), int) self.positions = np.full((9, 9, 9), True) non_deduced_values = [] # create list of board coordinates coords = list(itertools.product(range(9), range(9))) while coords: # pop random coordinate row, col = coords.pop(np.random.randint(len(coords))) # put random number from possible numbers to the coordinate possible_numbers = np.where(self.positions[:, row, col])[0] if possible_numbers.size == 0: # impossible position -> retry break number = np.random.choice(possible_numbers) self._set_number(number+1, row, col) non_deduced_values.append((row, col)) # start solving after setting 8 numbers if len(coords) <= 81 - 8: self._solve() # update coordinates with non-solved positions coords = list(zip(*np.where(self.puzzle == 0))) # try again if puzzle became unsolvable if np.count_nonzero(self.puzzle) == 9 * 9: break # remove deduced values from puzzle deduced = self.puzzle.copy() deduced[tuple(zip(*non_deduced_values))] = 0 self.puzzle -= deduced return self.puzzle
43.015267
79
0.565129
1b579f594f5cf06701a36a04347c2a0975c62ec7
2,534
py
Python
tidal_precession.py
ddeb32/APR_Testing
08cf346e6047f75ad57a7c9b497ea2dd9cb13f59
[ "MIT" ]
null
null
null
tidal_precession.py
ddeb32/APR_Testing
08cf346e6047f75ad57a7c9b497ea2dd9cb13f59
[ "MIT" ]
null
null
null
tidal_precession.py
ddeb32/APR_Testing
08cf346e6047f75ad57a7c9b497ea2dd9cb13f59
[ "MIT" ]
null
null
null
##################################################################### ### Evaluating the tidal component to the precession rate ### ##################################################################### import numpy as np import pandas as pd from numpy import pi from scipy import integrate import scipy.constants as const from scipy import interpolate import math import matplotlib.pyplot as plt from mpmath import * from matplotlib.ticker import AutoMinorLocator import pdfkit as pdf M_sun = 1.98847*10**30 R_sun = 6.957*10**8 G = 6.67430*10**(-11) c = 299792458 #--values taken from physics.nist.gov k = G/c**2.0 fact = 1.476981739 #--to get G/c^2 in M_sun and Kms. exp = math.exp sin = math.sin log = math.log #--takes arguments ( , ) where the second one is the base, by default e. #--------------------------------------------------------------------# def precessionEQ (Pb, Rns, aNS, Mbh, Mns, e, k2): #--the value found will be in SI, angle/s. fact1 = 30*pi/Pb fact2 = (Rns/aNS)**5 fact3 = Mbh/Mns fact4 = (1 + 3/2*(e**2) + 1/8*(e**4)) / ((1-e**2)**5) fact5 = k2 return(fact1 * fact2 * fact3 * fact4 * fact5) def aNSeq (Mbh, Mns, Pb): aR = ( (G*(Mbh+Mns)*(Pb**2)) / (4*(pi**2)) )**(1/3) aNS = ( Mbh/(Mbh+Mns) )*aR return(aR, aNS) #--Main Program--# def main (): print('\n Give the parameter values - ') Pb = float(input('\tPb (Hr):\t')) Rns = float(input('\tRns (km):\t')) Mbh = float(input('\tMbh (M_sun):\t')) Mns = float(input('\tMns (M_sun):\t')) e = float(input('\te:\t')) k2 = float(input('\tk2:\t')) #--Converting to SI--# Mbh, Mns = Mbh*M_sun, Mns*M_sun #--masses in Kg. Rns = Rns*1000.0 #--distances in meter. Pb = Pb*3600.0 #--times in second. aR, aNS = aNSeq(Mbh, Mns, Pb) precession = precessionEQ(Pb, Rns, aNS, Mbh, Mns, e, k2) precession = precession*1.807e+9 #--rad/sec to deg/year. print('We get - ') """print('Pb:\t', Pb, ' hours') print('Rns:\t', Rns/1000, ' km') print('Mbh:\t', Mbh/M_sun, ' M_sun') print('Mns:\t', Mns/M_sun, ' M_sun') print('e:\t', e) print('k2:\t', k2) print('aNS:\t', aNS/1000, ' km')""" print(' omegadot_tidal:\t', precession, ' deg/yr') main() ############################--End of Program--########################## ########################################################################
28.155556
98
0.480268
0bc0a183901e3a618faf1eab6fa1a8dd805e5e09
549
py
Python
foodcartapp/migrations/0048_auto_20201217_1212.py
Sam1808/Add-orders-to-the-online-store
2ca137915689df6012746c9d5e3b6307b53e112b
[ "MIT" ]
null
null
null
foodcartapp/migrations/0048_auto_20201217_1212.py
Sam1808/Add-orders-to-the-online-store
2ca137915689df6012746c9d5e3b6307b53e112b
[ "MIT" ]
null
null
null
foodcartapp/migrations/0048_auto_20201217_1212.py
Sam1808/Add-orders-to-the-online-store
2ca137915689df6012746c9d5e3b6307b53e112b
[ "MIT" ]
null
null
null
# Generated by Django 3.0.7 on 2020-12-17 12:12 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('foodcartapp', '0047_auto_20201216_2004'), ] operations = [ migrations.AlterField( model_name='orderdetails', name='product', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='order_items', to='foodcartapp.Product', verbose_name='бургер'), ), ]
27.45
169
0.666667
bae67ecabe1b047880d24559c3cb7b1aa27dfb89
461
py
Python
EMDetector/train/augment/contrast.py
jabae/detectEM
2d1a5116164d0bed0a8ea767a227d05a8970a448
[ "MIT" ]
1
2021-02-14T06:41:05.000Z
2021-02-14T06:41:05.000Z
EMDetector/train/augment/contrast.py
jabae/detectEM
2d1a5116164d0bed0a8ea767a227d05a8970a448
[ "MIT" ]
null
null
null
EMDetector/train/augment/contrast.py
jabae/detectEM
2d1a5116164d0bed0a8ea767a227d05a8970a448
[ "MIT" ]
null
null
null
import numpy as np def contrast_augment(sample): """Performs contrast/brightness augmentation on img. Args: sample: Dictionary of (np array: <ch,z,x,y>) image and mask """ f_s = 1 f_b = 0.5 a = 1 + (np.random.rand() - 0.5) * f_s b = (np.random.rand() - 0.5) * f_b g = (np.random.rand()*2 - 1) sample["image"] = sample["image"] * a + b sample["image"] = np.clip(sample["image"], 0, 1) sample["image"] = sample["image"]**(2**g) return sample
20.043478
61
0.607375
2d1b761229331ea1c9891c2193efe1b693996f13
4,416
py
Python
supplier/views.py
chinxianjun2016/GreaterWMS
aacd0e15e0114f103eb57002e93670c008cce63b
[ "Apache-2.0" ]
null
null
null
supplier/views.py
chinxianjun2016/GreaterWMS
aacd0e15e0114f103eb57002e93670c008cce63b
[ "Apache-2.0" ]
null
null
null
supplier/views.py
chinxianjun2016/GreaterWMS
aacd0e15e0114f103eb57002e93670c008cce63b
[ "Apache-2.0" ]
null
null
null
from rest_framework import viewsets from .models import ListModel from . import serializers from utils.page import MyPageNumberPagination from rest_framework.filters import OrderingFilter from django_filters.rest_framework import DjangoFilterBackend from rest_framework.response import Response from .filter import Filter from rest_framework.exceptions import APIException class APIViewSet(viewsets.ModelViewSet): """ retrieve: Response a data list(get) list: Response a data list(all) create: Create a data line(post) delete: Delete a data line(delete) partial_update: Partial_update a data(patch:partial_update) update: Update a data(put:update) """ queryset = ListModel.objects.all() serializer_class = serializers.SupplierGetSerializer pagination_class = MyPageNumberPagination filter_backends = [DjangoFilterBackend, OrderingFilter, ] ordering_fields = ['id', "create_time", "update_time", ] filter_class = Filter def get_project(self): try: id = self.kwargs.get('pk') return id except: return None def get_queryset(self): id = self.get_project() if self.request.user: if id is None: return self.queryset.filter(openid=self.request.auth.openid, is_delete=False) else: return self.queryset.filter(openid=self.request.auth.openid, id=id, is_delete=False) else: return self.queryset.none() def get_serializer_class(self): if self.action == 'list': return serializers.SupplierGetSerializer elif self.action == 'retrieve': return serializers.SupplierGetSerializer elif self.action == 'create': return serializers.SupplierPostSerializer elif self.action == 'update': return serializers.SupplierUpdateSerializer elif self.action == 'partial_update': return serializers.SupplierPartialUpdateSerializer elif self.action == 'destroy': return serializers.SupplierGetSerializer else: return self.http_method_not_allowed(request=self.request) def create(self, request, *args, **kwargs): data = request.data data['openid'] = request.auth.openid if self.queryset.filter(openid=data['openid'], supplier_name=data['supplier_name'], is_delete=False).exists(): raise APIException({"detail": "Data exists"}) else: serializer = self.get_serializer(data=data) serializer.is_valid(raise_exception=True) serializer.save() headers = self.get_success_headers(serializer.data) return Response(serializer.data, status=200, headers=headers) def update(self, request, pk): qs = self.get_object() if qs.openid != request.auth.openid: raise APIException({"detail": "Cannot update data which not yours"}) else: data = request.data serializer = self.get_serializer(qs, data=data) serializer.is_valid(raise_exception=True) serializer.save() headers = self.get_success_headers(serializer.data) return Response(serializer.data, status=200, headers=headers) def partial_update(self, request, pk): qs = self.get_object() if qs.openid != request.auth.openid: raise APIException({"detail": "Cannot partial_update data which not yours"}) else: data = request.data serializer = self.get_serializer(qs, data=data, partial=True) serializer.is_valid(raise_exception=True) serializer.save() headers = self.get_success_headers(serializer.data) return Response(serializer.data, status=200, headers=headers) def destroy(self, request, pk): qs = self.get_object() if qs.openid != request.auth.openid: raise APIException({"detail": "Cannot delete data which not yours"}) else: qs.is_delete = True qs.save() serializer = self.get_serializer(qs, many=False) headers = self.get_success_headers(serializer.data) return Response(serializer.data, status=200, headers=headers)
37.74359
118
0.639719
9a64af6060ed3aa8f41e22948952679e479f3b7e
466
py
Python
data/scripts/templates/object/tangible/medicine/crafted/shared_medpack_blinded_a.py
obi-two/GameServer
7d37024e2291a97d49522610cd8f1dbe5666afc2
[ "MIT" ]
20
2015-02-23T15:11:56.000Z
2022-03-18T20:56:48.000Z
data/scripts/templates/object/tangible/medicine/crafted/shared_medpack_blinded_a.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
null
null
null
data/scripts/templates/object/tangible/medicine/crafted/shared_medpack_blinded_a.py
apathyboy/swganh
665128efe9154611dec4cb5efc61d246dd095984
[ "MIT" ]
20
2015-04-04T16:35:59.000Z
2022-03-24T14:54:37.000Z
#### NOTICE: THIS FILE IS AUTOGENERATED #### MODIFICATIONS MAY BE LOST IF DONE IMPROPERLY #### PLEASE SEE THE ONLINE DOCUMENTATION FOR EXAMPLES from swgpy.object import * def create(kernel): result = Tangible() result.template = "object/tangible/medicine/crafted/shared_medpack_blinded_a.iff" result.attribute_template_id = 7 result.stfName("medicine_name","medic_blinded_a") #### BEGIN MODIFICATIONS #### #### END MODIFICATIONS #### return result
27.411765
82
0.738197
923b31bcd10a8d4a66d790edf51fc2941b1c3ad5
2,154
py
Python
src/app.py
amiiiirrrr/Machine_learning_task
2d066d06ea8622b06bd9e4e9f791074a44f80173
[ "Apache-2.0" ]
null
null
null
src/app.py
amiiiirrrr/Machine_learning_task
2d066d06ea8622b06bd9e4e9f791074a44f80173
[ "Apache-2.0" ]
null
null
null
src/app.py
amiiiirrrr/Machine_learning_task
2d066d06ea8622b06bd9e4e9f791074a44f80173
[ "Apache-2.0" ]
null
null
null
""" app.py """ import pika import json from test_model import TestModel __author__ = "Seyed Amir Mousavi" __license__ = "Public Domain" __version__ = "1.0.0" __status__ = "Production" def run(): """ To process requests """ connection = pika.BlockingConnection( pika.ConnectionParameters(host="")) channel = connection.channel() channel.queue_declare(queue="") test_model = TestModel() def on_request(ch, method, props, body): try: data = body.decode("utf-8") # BackEnd Data input_json = json.loads(data) # AI output data if "data" in input_json and input_json['data'] == "checkHealth": ch.basic_publish(exchange='', routing_key=props.reply_to, properties=pika.BasicProperties( correlation_id=props.correlation_id), body=json.dumps({"result": "ok"})) ch.basic_ack(delivery_tag=method.delivery_tag) result = test_model.run_flask(input_json) ch.basic_publish(exchange="", routing_key=props.reply_to, properties=pika.BasicProperties(correlation_id=props.correlation_id), body=json.dumps({"result": result})) ch.basic_ack(delivery_tag=method.delivery_tag) except Exception as e: print(e) ch.basic_publish(exchange="", routing_key=props.reply_to, properties=pika.BasicProperties( correlation_id=props.correlation_id), body=json.dumps({"result": "error"})) ch.basic_ack(delivery_tag=method.delivery_tag) channel.basic_qos(prefetch_count=1) channel.basic_consume(queue="", on_message_callback=on_request) print(" [x] Awaiting RPC requests") channel.start_consuming() if __name__ == "__main__": run()
33.65625
99
0.539926
3bb557f49546b91fd8610b75d10f654ae858771a
4,755
py
Python
python/hopsworks/engine/execution_engine.py
robzor92/hopsworks-api
94a0cfabedc0278e5d5e0eec699317073a65a126
[ "Apache-2.0" ]
null
null
null
python/hopsworks/engine/execution_engine.py
robzor92/hopsworks-api
94a0cfabedc0278e5d5e0eec699317073a65a126
[ "Apache-2.0" ]
9
2022-03-18T08:21:41.000Z
2022-03-28T14:46:31.000Z
python/hopsworks/engine/execution_engine.py
robzor92/hopsworks-api
94a0cfabedc0278e5d5e0eec699317073a65a126
[ "Apache-2.0" ]
3
2022-03-14T08:20:45.000Z
2022-03-16T11:15:04.000Z
# # Copyright 2022 Logical Clocks AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from hopsworks.core import dataset_api, execution_api import os import logging import time import uuid class ExecutionEngine: def __init__(self, project_id=None): self._dataset_api = dataset_api.DatasetApi(project_id) self._execution_api = execution_api.ExecutionsApi(project_id) self._log = logging.getLogger(__name__) def download_logs(self, execution): """Download execution logs to current directory :param execution: execution to download logs for :type execution: Execution :return: downloaded stdout and stderr log path :rtype: str, str """ job_logs_dir = "logs-job-{}-exec-{}_{}".format( execution.job_name, str(execution.id), str(uuid.uuid4())[:16] ) download_log_dir = os.path.join(os.getcwd(), job_logs_dir) if not os.path.exists(download_log_dir): os.mkdir(download_log_dir) out_path = None if execution.stdout_path is not None and self._dataset_api.exists( execution.stdout_path ): out_path = self._dataset_api.download( execution.stdout_path, download_log_dir ) err_path = None if execution.stderr_path is not None and self._dataset_api.exists( execution.stderr_path ): err_path = self._dataset_api.download( execution.stderr_path, download_log_dir ) return out_path, err_path def wait_until_finished(self, job, execution): """Wait until execution reaches terminal state :param execution: job of the execution :type execution: Job :param execution: execution to monitor :type execution: Execution :return: The final Execution object :rtype: str, str """ is_yarn_job = ( job.job_type.lower() == "spark" or job.job_type.lower() == "pyspark" or job.job_type.lower() == "flink" ) updated_execution = self._execution_api._get(job, execution.id) execution_state = None while updated_execution.success is None: updated_execution = self._execution_api._get(job, execution.id) if execution_state != updated_execution.state: if is_yarn_job: self._log.info( "Waiting for execution to finish. Current state: {}. Final status: {}".format( updated_execution.state, updated_execution.final_status ) ) else: self._log.info( "Waiting for execution to finish. Current state: {}".format( updated_execution.state ) ) execution_state = updated_execution.state time.sleep(3) # wait for log files to be aggregated, max 2 minute await_time = 40 log_aggregation_files_exist = False self._log.info("Waiting for log aggregation to finish.") while not log_aggregation_files_exist and await_time >= 0: updated_execution = self._execution_api._get(job, execution.id) log_aggregation_files_exist = self._dataset_api.exists( updated_execution.stdout_path ) and self._dataset_api.exists(updated_execution.stderr_path) await_time -= 1 time.sleep(3) if is_yarn_job and not updated_execution.success: self._log.error( "Execution failed with status: {}. See the logs for more information.".format( updated_execution.final_status ) ) elif not is_yarn_job and not updated_execution.success: self._log.error( "Execution failed with status: {}. See the logs for more information.".format( updated_execution.state ) ) else: self._log.info("Execution finished successfully.") return updated_execution
37.440945
102
0.609043
7f297181c692fc9537ab582c38bc14cccd652d05
3,546
py
Python
tests/data/test_load_wyscout.py
BWyckaert/socceraction
5fd6bd7e29df8d230103d586f8f9449bdb0ca500
[ "MIT" ]
null
null
null
tests/data/test_load_wyscout.py
BWyckaert/socceraction
5fd6bd7e29df8d230103d586f8f9449bdb0ca500
[ "MIT" ]
null
null
null
tests/data/test_load_wyscout.py
BWyckaert/socceraction
5fd6bd7e29df8d230103d586f8f9449bdb0ca500
[ "MIT" ]
null
null
null
import os from socceraction.data import wyscout as wy from socceraction.data.wyscout import ( WyscoutCompetitionSchema, WyscoutEventSchema, WyscoutGameSchema, WyscoutPlayerSchema, WyscoutTeamSchema, ) class TestPublicWyscoutLoader: def setup_method(self) -> None: data_dir = os.path.join( os.path.dirname(__file__), os.pardir, 'datasets', 'wyscout_public', 'raw' ) self.WSL = wy.PublicWyscoutLoader(root=data_dir, download=False) def test_competitions(self) -> None: df_competitions = self.WSL.competitions() assert len(df_competitions) > 0 WyscoutCompetitionSchema.validate(df_competitions) def test_matches(self) -> None: df_matches = self.WSL.games(28, 10078) # World Cup, 2018 assert len(df_matches) == 64 WyscoutGameSchema.validate(df_matches) def test_teams(self) -> None: df_teams = self.WSL.teams(2058007) assert len(df_teams) == 2 WyscoutTeamSchema.validate(df_teams) def test_players(self) -> None: df_players = self.WSL.players(2058007) assert len(df_players) == 26 assert df_players.minutes_played.sum() == 22 * 96 WyscoutPlayerSchema.validate(df_players) def test_minutes_played(self) -> None: # Injury time should be added df_players = self.WSL.players(2058007).set_index("player_id") assert df_players.at[122, "minutes_played"] == 66 assert df_players.at[8249, "minutes_played"] == 96 - 66 # Penalty shoot-outs should no be added df_players = self.WSL.players(2058005).set_index("player_id") assert df_players.minutes_played.sum() / 22 == 127 # COL - JAP: red card in '3 df_players = self.WSL.players(2057997).set_index("player_id") assert df_players.at[26518, "minutes_played"] == 3 # GER - SWE: double yellow card in '82 + 2' injury time df_players = self.WSL.players(2057986).set_index("player_id") assert df_players.at[14716, "minutes_played"] == 84 def test_events(self) -> None: df_events = self.WSL.events(2058007) assert len(df_events) > 0 WyscoutEventSchema.validate(df_events) class TestWyscoutLoader: def setup_method(self) -> None: data_dir = os.path.join(os.path.dirname(__file__), os.pardir, 'datasets', 'wyscout_api') feeds = { 'competitions': 'competitions.json', 'seasons': 'seasons_{competition_id}.json', # "games": "matches_{season_id}.json", 'events': 'events_{game_id}.json', } self.WSL = wy.WyscoutLoader(root=data_dir, getter='local', feeds=feeds) def test_competitions(self) -> None: df_competitions = self.WSL.competitions() assert len(df_competitions) > 0 WyscoutCompetitionSchema.validate(df_competitions) def test_matches(self) -> None: df_matches = self.WSL.games(10, 10174) assert len(df_matches) == 1 WyscoutGameSchema.validate(df_matches) def test_teams(self) -> None: df_teams = self.WSL.teams(2852835) assert len(df_teams) == 2 WyscoutTeamSchema.validate(df_teams) def test_players(self) -> None: df_players = self.WSL.players(2852835) assert len(df_players) == 30 WyscoutPlayerSchema.validate(df_players) def test_events(self) -> None: df_events = self.WSL.events(2852835) assert len(df_events) > 0 WyscoutEventSchema.validate(df_events)
36.556701
96
0.654258
7c7a0346e794b19ed578943f5ccb8ba49e761dc0
3,905
py
Python
ai_flow/runtime/job_runtime_util.py
SteNicholas/ai-flow
2c70547981f1516f0e37bbe6936a1b7cccd31822
[ "Apache-2.0" ]
null
null
null
ai_flow/runtime/job_runtime_util.py
SteNicholas/ai-flow
2c70547981f1516f0e37bbe6936a1b7cccd31822
[ "Apache-2.0" ]
null
null
null
ai_flow/runtime/job_runtime_util.py
SteNicholas/ai-flow
2c70547981f1516f0e37bbe6936a1b7cccd31822
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import time from ai_flow.plugin_interface.scheduler_interface import JobExecutionInfo from ai_flow.context.project_context import ProjectContext from ai_flow.runtime.job_runtime_env import JobRuntimeEnv def prepare_job_runtime_env(workflow_generated_dir, workflow_name, project_context: ProjectContext, job_execution_info: JobExecutionInfo, root_working_dir=None, base_log_folder=None) -> JobRuntimeEnv: """ Prepare the operating environment for the ai flow job(ai_flow.workflow.job.Job) :param workflow_generated_dir: The generated directory of workflow. :param workflow_name: The name of the workflow(ai_flow.workflow.workflow.Workflow). :param project_context: The context of the project which the job belongs. :param job_execution_info: The information of the execution of the job. :param root_working_dir: The working directory of the execution of the job(ai_flow.workflow.job.Job). :param base_log_folder: The base folder of the logs. :return: ai_flow.runtime.job_runtime_env.JobRuntimeEnv object. """ working_dir = os.path.join(root_working_dir, workflow_name, job_execution_info.job_name, str(time.strftime("%Y%m%d%H%M%S", time.localtime()))) job_runtime_env: JobRuntimeEnv = JobRuntimeEnv(working_dir=working_dir, job_execution_info=job_execution_info, project_context=project_context, base_log_folder=base_log_folder) if not os.path.exists(working_dir): os.makedirs(working_dir) job_runtime_env.save_job_execution_info() if not os.path.exists(job_runtime_env.log_dir): os.makedirs(job_runtime_env.log_dir) if not os.path.exists(os.path.dirname(job_runtime_env.workflow_dir)): os.makedirs(os.path.dirname(job_runtime_env.workflow_dir)) if not os.path.exists(job_runtime_env.workflow_dir): os.symlink(project_context.get_workflow_path(workflow_name=workflow_name), job_runtime_env.workflow_dir) if os.path.exists(project_context.get_generated_path()): os.symlink(os.path.join(project_context.get_generated_path(), workflow_generated_dir, job_execution_info.job_name), job_runtime_env.generated_dir) if os.path.exists(project_context.get_resources_path()): os.symlink(project_context.get_resources_path(), job_runtime_env.resource_dir) if os.path.exists(project_context.get_dependencies_path()): os.symlink(project_context.get_dependencies_path(), job_runtime_env.dependencies_dir) os.symlink(project_context.get_project_config_file(), job_runtime_env.project_config_file) return job_runtime_env
55.785714
105
0.680154
a6a60863aa381bd88c89131760c48a129334db8e
7,166
py
Python
analysis/create_plots/detect.py
shibaji7/clustering_superdarn_data
02bc31dd85f66319bb46b632e0e7ac51ed98c432
[ "BSD-3-Clause" ]
1
2020-12-02T20:13:14.000Z
2020-12-02T20:13:14.000Z
analysis/create_plots/detect.py
shibaji7/clustering_superdarn_data
02bc31dd85f66319bb46b632e0e7ac51ed98c432
[ "BSD-3-Clause" ]
null
null
null
analysis/create_plots/detect.py
shibaji7/clustering_superdarn_data
02bc31dd85f66319bb46b632e0e7ac51ed98c432
[ "BSD-3-Clause" ]
null
null
null
import os import sys sys.path.append("./") sys.path.append("../") sys.path.append("create_plots/") import datetime as dt import pandas as pd import numpy as np import matplotlib as mpl from matplotlib.dates import num2date import matplotlib.pyplot as plt from scipy.stats import beta import pickle import pydarn from pysolar.solar import get_altitude import utils import rad_fov ################################################ # Inputs date and radar name ################################################ Rad, Dn = "cvw", dt.datetime(2012,1,2) LFS = "LFS/LFS_clustering_superdarn_data/" gmm = True a_name = "dbscan" rads = [Rad] dates = [Dn] remove_file = False maxGate = None gate = 7 sza_thresh, wid = {"is":85., "gs":105.}, 1. bin_thick = 1. tag = False scale = 1. def get_data_pkl(rad, dn, conn): local_file = "../data/%s_%s_scans.pickle"%(rad, dn.strftime("%Y-%m-%d")) #utils.from_remote_FS(conn, local_file, LFS) with open(local_file, "rb") as f: pkl = pickle.load(f) dates, elvs = [], [] for d, e in zip(pkl["time"], pkl["elv"]): dates.extend(num2date(d)) elvs.extend(e) ox = pd.DataFrame() ox["date"], ox["elevation"] = dates, elvs return ox def get_sza(row, lats, lons): print(num2date(row.time), row.bmnum) lat, lon = lats[int(row["bmnum"]), int(row["slist"])],\ lons[int(row["bmnum"]), int(row["slist"])] dn = num2date(row["time"]) d = dn.replace(tzinfo=dt.timezone.utc) sza = 90.-get_altitude(lat, lon, d) return sza def calculate_total_uncertainity(_is, _gs): def calc_prob(m, l, th, low=True): h, be = np.histogram(m, bins=l, density=True) bc = np.diff(be) idx = be[1:] < th if low else be[1:] > th edges = (be[1:])[be[1:] < th] if low else (be[1:])[be[1:] > th] pr = np.sum(h[idx]*bc[idx]) height = h[idx] #return pr, h, be[1:], bc return pr, height, edges, bc L = len(np.unique(_is.sza)) if len(np.unique(_is.sza)) > len(np.unique(_gs.sza)) else len(np.unique(_gs.sza)) L = int(L/bin_thick) pr_a, h_a, be_a, bc = calc_prob(_is.sza.tolist(), L, sza_thresh["is"], low=True) pr_b, h_b, be_b, _ = calc_prob(_gs.sza.tolist(), L, sza_thresh["gs"], low=False) out = [] for pa, pb, b in zip(h_a, h_b, bc): if pa < pb: out.append(pa*b) else: out.append(pb*b) #prb = np.round(np.sum(out), 3) prb = np.round(pr_a+pr_b, 3) print("Total Uncertainty:", prb) fig = plt.figure(figsize=(4, 4), dpi=100) mpl.rcParams.update({"font.size": 10}) ax = fig.add_subplot(111) ax.hist(_is.sza.tolist(), bins=L, histtype="step", color="red", density=True, alpha=0.5, label="IS") ax.hist(_gs.sza.tolist(), bins=L, histtype="step", color="blue", density=True, alpha=0.5, label="GS") ax.fill_between(be_a, y1=np.zeros(len(be_a)), y2=h_a, color="r", alpha=0.3, step="pre") ax.fill_between(be_b, y1=np.zeros(len(be_b)), y2=h_b, color="b", alpha=0.3, step="pre") #ax.fill_between(be_a, y1=np.zeros(len(be_a)), y2=out, color="violet", alpha=0.3, step="pre") ax.legend(loc=1) ax.axvline(sza_thresh["is"], color="r", ls="--", lw=0.6) ax.axvline(sza_thresh["gs"], color="b", ls="--", lw=0.6) ax.set_xlabel(r"SZA, $\chi$ ($^o$)") ax.set_ylabel("Density of IS, GS") ax.text(0.99, 1.03, r"$\theta$~ %.2f"%prb, ha="right", va="center", transform=ax.transAxes) ax.text(0.01, 1.03, rads[0].upper()+", %s"%dates[0].strftime("%Y-%m-%d"), ha="left", va="center", transform=ax.transAxes) png = "create_plots/images/detection_%s_%s.png"%(Rad, Dn.strftime("%Y%m%d")) ax.set_ylim(0,.1) if tag: png = png.replace(".png", ".missing.png") fig.savefig(png, bbox_inches="tight") return prb def calculate_uq_elv(_is, _gs): L = len(np.unique(_is.elv)) if len(np.unique(_is.elv)) > len(np.unique(_gs.elv)) else len(np.unique(_gs.elv)) L = int(L/5) #pr_a, h_a, be_a, bc = calc_prob(_is.elv.tolist(), L, sza_thresh["is"], low=True) #pr_b, h_b, be_b, _ = calc_prob(_gs.elv.tolist(), L, sza_thresh["gs"], low=False) #out = [] #for pa, pb, b in zip(h_a, h_b, bc): # if pa < pb: out.append(pa*b) # else: out.append(pb*b) #prb = np.round(np.sum(out), 3) #prb = np.round(pr_a+pr_b, 3) #print("Total Uncertainty:", prb) fig = plt.figure(figsize=(4, 7), dpi=100) mpl.rcParams.update({"font.size": 10}) ax = fig.add_subplot(211) ax.set_xlabel(r"AoA, $\alpha$ ($^o$)") ax.set_ylabel("Gate Location (IS)") ax.hist2d(_is.elv.tolist(), _is.slist.tolist(), bins=(20,20), cmap=plt.cm.Greys, norm=mpl.colors.LogNorm())#, histtype="step", color="red", density=True, alpha=0.5, label="IS") ax = fig.add_subplot(212) ax.set_xlabel(r"AoA, $\alpha$ ($^o$)") ax.set_ylabel("Gate Location (GS)") ax.hist2d(_gs.elv.tolist(), _gs.slist.tolist(), bins=(20,20), cmap=plt.cm.Greys, norm=mpl.colors.LogNorm())#, histtype="step", color="blue", density=True, alpha=0.5, label="GS") #ax.fill_between(be_a, y1=np.zeros(len(be_a)), y2=h_a, color="r", alpha=0.3, step="pre") #ax.fill_between(be_b, y1=np.zeros(len(be_b)), y2=h_b, color="b", alpha=0.3, step="pre") #ax.fill_between(be_a, y1=np.zeros(len(be_a)), y2=out, color="violet", alpha=0.3, step="pre") #ax.legend(loc=1) #ax.axvline(sza_thresh["is"], color="r", ls="--", lw=0.6) #ax.axvline(sza_thresh["gs"], color="b", ls="--", lw=0.6) ax.set_xlabel(r"AoA, $\alpha$ ($^o$)") ax.set_ylabel("Gate Location") #ax.text(0.99, 1.03, r"$\theta$~ %.2f"%prb, ha="right", va="center", transform=ax.transAxes) #ax.text(0.01, 1.03, rads[0].upper()+", %s"%dates[0].strftime("%Y-%m-%d"), ha="left", va="center", transform=ax.transAxes) png = "create_plots/images/uq_%s_%s.png"%(Rad, Dn.strftime("%Y%m%d")) #ax.set_ylim(0,.1) if tag: png = png.replace(".png", ".missing.png") fig.savefig(png, bbox_inches="tight") return pubfile = utils.get_pubfile() conn = utils.get_session(key_filename=pubfile) if gmm: fname = "../outputs/figures_for_papers/{rad}.{a_name}.gmm.{dn}.csv" else: fname = "../outputs/figures_for_papers/{rad}.{a_name}.{dn}.csv" if tag: fname = fname.replace(".csv", ".missing.csv") for rad, dn in zip(rads, dates): ox = get_data_pkl(rad, dn, conn) floc = fname.format(rad=rad, a_name=a_name, dn=dn.strftime("%Y%m%d")) if not os.path.exists(floc): utils.fetch_file(conn, floc, LFS) X = pd.read_csv(floc) hdw = pydarn.read_hdw_file(rad) egate = hdw.gates if not maxGate else maxGate rfov = rad_fov.CalcFov(hdw=hdw, ngates=egate) if "sza" not in X.columns: X["sza"] = X.apply(lambda r: get_sza(r, rfov.latFull, rfov.lonFull), axis=1) X.to_csv(floc) X = utils._run_riberio_threshold_on_rad(X) X["elv"] = ox.elevation print(X.head()) conn.close() if remove_file: os.system("rm -rf ../outputs/cluster_tags/*") X.sza = (np.array(X.sza)/wid).astype(int)*wid X = X[X.slist > gate] X = X[["sza", "ribiero_gflg", "elv", "slist"]] _is, _gs = X[X.ribiero_gflg==0], X[X.ribiero_gflg==1] #Pr_ab = calculate_total_uncertainity(_is, _gs) calculate_uq_elv(_is, _gs)
41.421965
181
0.611359
ad29833d6957aa81efada3975b1c470dfc2bd2e6
14,228
py
Python
integration_tests/test_suites/celery-k8s-integration-test-suite/test_integration.py
coderanger/dagster
d3e323f8ed55cd906d6f44f19595348ea1580b2d
[ "Apache-2.0" ]
null
null
null
integration_tests/test_suites/celery-k8s-integration-test-suite/test_integration.py
coderanger/dagster
d3e323f8ed55cd906d6f44f19595348ea1580b2d
[ "Apache-2.0" ]
null
null
null
integration_tests/test_suites/celery-k8s-integration-test-suite/test_integration.py
coderanger/dagster
d3e323f8ed55cd906d6f44f19595348ea1580b2d
[ "Apache-2.0" ]
null
null
null
# pylint doesn't know about pytest fixtures # pylint: disable=unused-argument import datetime import os import time import boto3 import pytest from dagster import DagsterEventType from dagster.core.storage.pipeline_run import PipelineRunStatus from dagster.core.test_utils import create_run_for_test from dagster.utils import merge_dicts from dagster.utils.yaml_utils import merge_yamls from dagster_celery_k8s.launcher import CeleryK8sRunLauncher from dagster_k8s.test import wait_for_job_and_get_raw_logs from dagster_k8s_test_infra.helm import TEST_AWS_CONFIGMAP_NAME from dagster_k8s_test_infra.integration_utils import image_pull_policy from dagster_test.test_project import ( ReOriginatedExternalPipelineForTest, get_test_project_environments_path, get_test_project_external_pipeline, ) IS_BUILDKITE = os.getenv("BUILDKITE") is not None def get_celery_engine_config(dagster_docker_image, job_namespace): return { "execution": { "celery-k8s": { "config": { "job_image": dagster_docker_image, "job_namespace": job_namespace, "image_pull_policy": image_pull_policy(), "env_config_maps": ["dagster-pipeline-env"] + ([TEST_AWS_CONFIGMAP_NAME] if not IS_BUILDKITE else []), } } }, } def test_execute_on_celery_k8s_default( # pylint: disable=redefined-outer-name dagster_docker_image, dagster_instance, helm_namespace ): run_config = merge_dicts( merge_yamls( [ os.path.join(get_test_project_environments_path(), "env.yaml"), os.path.join(get_test_project_environments_path(), "env_s3.yaml"), ] ), get_celery_engine_config( dagster_docker_image=dagster_docker_image, job_namespace=helm_namespace ), ) pipeline_name = "demo_pipeline_celery" run = create_run_for_test( dagster_instance, pipeline_name=pipeline_name, run_config=run_config, mode="default", ) dagster_instance.launch_run( run.run_id, ReOriginatedExternalPipelineForTest(get_test_project_external_pipeline(pipeline_name)), ) result = wait_for_job_and_get_raw_logs( job_name="dagster-run-%s" % run.run_id, namespace=helm_namespace ) assert "PIPELINE_SUCCESS" in result, "no match, result: {}".format(result) def test_execute_subset_on_celery_k8s( # pylint: disable=redefined-outer-name dagster_docker_image, dagster_instance, helm_namespace ): run_config = merge_dicts( merge_yamls( [ os.path.join(get_test_project_environments_path(), "env_subset.yaml"), os.path.join(get_test_project_environments_path(), "env_s3.yaml"), ] ), get_celery_engine_config( dagster_docker_image=dagster_docker_image, job_namespace=helm_namespace ), ) pipeline_name = "demo_pipeline_celery" run = create_run_for_test( dagster_instance, pipeline_name=pipeline_name, run_config=run_config, mode="default", solids_to_execute={"count_letters"}, ) dagster_instance.launch_run( run.run_id, ReOriginatedExternalPipelineForTest(get_test_project_external_pipeline(pipeline_name)), ) result = wait_for_job_and_get_raw_logs( job_name="dagster-run-%s" % run.run_id, namespace=helm_namespace ) assert "PIPELINE_SUCCESS" in result, "no match, result: {}".format(result) def test_execute_on_celery_k8s_retry_pipeline( # pylint: disable=redefined-outer-name dagster_docker_image, dagster_instance, helm_namespace ): run_config = merge_dicts( merge_yamls([os.path.join(get_test_project_environments_path(), "env_s3.yaml")]), get_celery_engine_config( dagster_docker_image=dagster_docker_image, job_namespace=helm_namespace ), ) pipeline_name = "retry_pipeline" run = create_run_for_test( dagster_instance, pipeline_name=pipeline_name, run_config=run_config, mode="default", ) dagster_instance.launch_run( run.run_id, ReOriginatedExternalPipelineForTest(get_test_project_external_pipeline(pipeline_name)), ) result = wait_for_job_and_get_raw_logs( job_name="dagster-run-%s" % run.run_id, namespace=helm_namespace ) assert "PIPELINE_SUCCESS" in result, "no match, result: {}".format(result) stats = dagster_instance.get_run_stats(run.run_id) assert stats.steps_succeeded == 1 assert DagsterEventType.STEP_START in [ event.dagster_event.event_type for event in dagster_instance.all_logs(run.run_id) if event.is_dagster_event ] assert DagsterEventType.STEP_UP_FOR_RETRY in [ event.dagster_event.event_type for event in dagster_instance.all_logs(run.run_id) if event.is_dagster_event ] assert DagsterEventType.STEP_RESTARTED in [ event.dagster_event.event_type for event in dagster_instance.all_logs(run.run_id) if event.is_dagster_event ] assert DagsterEventType.STEP_SUCCESS in [ event.dagster_event.event_type for event in dagster_instance.all_logs(run.run_id) if event.is_dagster_event ] def test_execute_on_celery_k8s_with_resource_requirements( # pylint: disable=redefined-outer-name dagster_docker_image, dagster_instance, helm_namespace ): run_config = merge_dicts( merge_yamls([os.path.join(get_test_project_environments_path(), "env_s3.yaml"),]), get_celery_engine_config( dagster_docker_image=dagster_docker_image, job_namespace=helm_namespace ), ) pipeline_name = "resources_limit_pipeline_celery" run = create_run_for_test( dagster_instance, pipeline_name=pipeline_name, run_config=run_config, mode="default", ) dagster_instance.launch_run( run.run_id, ReOriginatedExternalPipelineForTest(get_test_project_external_pipeline(pipeline_name)), ) result = wait_for_job_and_get_raw_logs( job_name="dagster-run-%s" % run.run_id, namespace=helm_namespace ) assert "PIPELINE_SUCCESS" in result, "no match, result: {}".format(result) def _test_termination(dagster_instance, run_config): pipeline_name = "resource_pipeline" run = create_run_for_test( dagster_instance, pipeline_name=pipeline_name, run_config=run_config, mode="default", ) dagster_instance.launch_run( run.run_id, ReOriginatedExternalPipelineForTest(get_test_project_external_pipeline(pipeline_name)), ) assert isinstance(dagster_instance.run_launcher, CeleryK8sRunLauncher) # Wait for pipeline run to start timeout = datetime.timedelta(0, 120) start_time = datetime.datetime.now() can_terminate = False while datetime.datetime.now() < start_time + timeout: if dagster_instance.run_launcher.can_terminate(run_id=run.run_id): can_terminate = True break time.sleep(5) assert can_terminate # Wait for step to start step_start_found = False start_time = datetime.datetime.now() while datetime.datetime.now() < start_time + timeout: event_records = dagster_instance.all_logs(run.run_id) for event_record in event_records: if ( event_record.dagster_event and event_record.dagster_event.event_type == DagsterEventType.STEP_START ): step_start_found = True break time.sleep(5) assert step_start_found # Terminate run assert dagster_instance.run_launcher.can_terminate(run_id=run.run_id) assert dagster_instance.run_launcher.terminate(run_id=run.run_id) # Check that pipeline run is marked as failed pipeline_run_status_failure = False start_time = datetime.datetime.now() while datetime.datetime.now() < start_time + timeout: pipeline_run = dagster_instance.get_run_by_id(run.run_id) if pipeline_run.status == PipelineRunStatus.FAILURE: pipeline_run_status_failure = True break time.sleep(5) assert pipeline_run_status_failure # Check that terminate cannot be called again assert not dagster_instance.run_launcher.can_terminate(run_id=run.run_id) assert not dagster_instance.run_launcher.terminate(run_id=run.run_id) # Check for step failure and resource tear down expected_events_found = False start_time = datetime.datetime.now() while datetime.datetime.now() < start_time + timeout: step_failures_count = 0 resource_tear_down_count = 0 resource_init_count = 0 termination_request_count = 0 termination_success_count = 0 event_records = dagster_instance.all_logs(run.run_id) for event_record in event_records: if event_record.dagster_event: if event_record.dagster_event.event_type == DagsterEventType.STEP_FAILURE: step_failures_count += 1 elif event_record.dagster_event.event_type == DagsterEventType.ENGINE_EVENT: if ( event_record.dagster_event.message == "[CeleryK8sRunLauncher] Received pipeline termination request." ): termination_request_count += 1 elif ( event_record.dagster_event.message == "[CeleryK8sRunLauncher] Pipeline was terminated successfully." ): termination_success_count += 1 elif event_record.message: if "initializing s3_resource_with_context_manager" in event_record.message: resource_init_count += 1 if "tearing down s3_resource_with_context_manager" in event_record.message: resource_tear_down_count += 1 if ( step_failures_count == 1 and resource_init_count == 1 and resource_tear_down_count == 1 and termination_request_count == 2 and termination_success_count == 1 ): expected_events_found = True break time.sleep(5) assert expected_events_found s3 = boto3.resource("s3", region_name="us-west-1", use_ssl=True, endpoint_url=None).meta.client bucket = "dagster-scratch-80542c2" key = "resource_termination_test/{}".format(run.run_id) assert s3.get_object(Bucket=bucket, Key=key) def test_execute_on_celery_k8s_with_termination( # pylint: disable=redefined-outer-name dagster_docker_image, dagster_instance, helm_namespace ): run_config = merge_dicts( merge_yamls([os.path.join(get_test_project_environments_path(), "env_s3.yaml"),]), get_celery_engine_config( dagster_docker_image=dagster_docker_image, job_namespace=helm_namespace ), ) _test_termination(dagster_instance, run_config) @pytest.fixture(scope="function") def set_dagster_k8s_pipeline_run_namespace_env(helm_namespace): try: old_value = os.getenv("DAGSTER_K8S_PIPELINE_RUN_NAMESPACE") os.environ["DAGSTER_K8S_PIPELINE_RUN_NAMESPACE"] = helm_namespace yield finally: if old_value is not None: os.environ["DAGSTER_K8S_PIPELINE_RUN_NAMESPACE"] = old_value def test_execute_on_celery_k8s_with_env_var_and_termination( # pylint: disable=redefined-outer-name dagster_docker_image, dagster_instance, set_dagster_k8s_pipeline_run_namespace_env ): run_config = merge_dicts( merge_yamls([os.path.join(get_test_project_environments_path(), "env_s3.yaml"),]), get_celery_engine_config( dagster_docker_image=dagster_docker_image, job_namespace={"env": "DAGSTER_K8S_PIPELINE_RUN_NAMESPACE"}, ), ) _test_termination(dagster_instance, run_config) def test_execute_on_celery_k8s_with_hard_failure( # pylint: disable=redefined-outer-name dagster_docker_image, dagster_instance, set_dagster_k8s_pipeline_run_namespace_env ): run_config = merge_dicts( merge_dicts( merge_yamls([os.path.join(get_test_project_environments_path(), "env_s3.yaml"),]), get_celery_engine_config( dagster_docker_image=dagster_docker_image, job_namespace={"env": "DAGSTER_K8S_PIPELINE_RUN_NAMESPACE"}, ), ), {"solids": {"hard_fail_or_0": {"config": {"fail": True}}}}, ) pipeline_name = "hard_failer" run = create_run_for_test( dagster_instance, pipeline_name=pipeline_name, run_config=run_config, mode="default", ) dagster_instance.launch_run( run.run_id, ReOriginatedExternalPipelineForTest(get_test_project_external_pipeline(pipeline_name)), ) assert isinstance(dagster_instance.run_launcher, CeleryK8sRunLauncher) # Check that pipeline run is marked as failed pipeline_run_status_failure = False start_time = datetime.datetime.now() timeout = datetime.timedelta(0, 120) while datetime.datetime.now() < start_time + timeout: pipeline_run = dagster_instance.get_run_by_id(run.run_id) if pipeline_run.status == PipelineRunStatus.FAILURE: pipeline_run_status_failure = True break time.sleep(5) assert pipeline_run_status_failure # Check for step failure for hard_fail_or_0.compute start_time = datetime.datetime.now() step_failure_found = False while datetime.datetime.now() < start_time + timeout: event_records = dagster_instance.all_logs(run.run_id) for event_record in event_records: if event_record.dagster_event: if ( event_record.dagster_event.event_type == DagsterEventType.STEP_FAILURE and event_record.dagster_event.step_key == "hard_fail_or_0" ): step_failure_found = True break time.sleep(5) assert step_failure_found
36.670103
100
0.691032
1a0d9ba96d42971f51efaca127b411dd2c1a5ff9
3,056
py
Python
matcher/utils.py
aehrc/clinicaltrialsearch
03eb78923dd22c10c77257ffb8aeaf60b2f2c62d
[ "MIT" ]
null
null
null
matcher/utils.py
aehrc/clinicaltrialsearch
03eb78923dd22c10c77257ffb8aeaf60b2f2c62d
[ "MIT" ]
null
null
null
matcher/utils.py
aehrc/clinicaltrialsearch
03eb78923dd22c10c77257ffb8aeaf60b2f2c62d
[ "MIT" ]
null
null
null
import xml.etree.ElementTree as etree import re import argparse from typing import Dict, Union, Optional, List, Any from collections import defaultdict SPECIAL_MEDICAL_TERMS = ['covid', 'covid-19', 'coronavirus', 'corona'] def get_queries(query_file: str): """ Reads a Indri formatted query file. :param query_file: An Indri formatted query file. :return A dict of queryId -> queryTxt """ with open(query_file, 'r') as xml_file: tree = etree.parse(xml_file) queries = dict([ (query.findtext('number'), query.findtext('text')) for query in tree.getroot()]) return queries def trec_pm_to_indri(query_file: str) -> Dict[str, str]: """ Takes a file in TREC PM format and converts to Dict[query_id -> query string] """ topic_year:str = re.findall('[0-9]{4}', query_file)[0] if re.findall('[0-9]{4}', query_file) else '' queries: Dict[str, str] = {} with open(query_file, 'r') as xml_file: tree: etree.ElementTree = etree.parse(xml_file) for query in tree.findall('topic'): #type: etree.Element # query: etree.Element = query qId = topic_year + query.attrib['number'] query_text: str = '. '.join([i.text for i in query.iter() if i.text.strip() and i.text.strip() != 'None']) queries[qId] = query_text return queries def get_rankings(ranking_file: str): """ Reads a TREC style ranking file and returns as dict. :param ranking_file: TREC style ranking file. :return Dict of queryId -> [d_0, ..., d_n] """ # rankings: Dict[str, Optional[List[Any]]] = {} rankings = defaultdict(list) with open(ranking_file) as fh: for line in fh: qid, zero, doc, rank, score, runId = line.strip().split() rankings[qid].append((doc, int(rank), float(score), runId)) return rankings def format_trec_results(qid: str, doc: str, rank: int, score: float, run_id='RunId'): """ Produce a TREC formatted str of results. :param qid: Query Id :param doc: Document :param rank: Rank position :param score: Ranking score :param run_id: Name for this run :return String in TREC format """ return '{}\t0\t{}\t{}\t{:.4f}\t{}'.format(qid, doc, rank, float(score), run_id) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Helper utils for matcher.') parser.add_argument('-q', '--query_file', help='Print queries.') parser.add_argument('-t', '--trec_pm', help='Convert TREC PM to Indri format for matcher.') args = parser.parse_args() if args.query_file: for qId, text in get_queries(args.query_file).items(): print('{}: {}'.format(qId, text)) elif args.trec_pm: print('<queries>') for qid, query_txt in trec_pm_to_indri(args.trec_pm).items(): print('<query>') print('<number>{}</number>'.format(qid)) print('<text>{}</text>'.format(query_txt)) print('</query>') print('</queries>')
36.819277
118
0.622382
21acb432c48fc6fb4dd56ea2ef6aa2903b327314
1,746
py
Python
django/aihackingbad/videos/views.py
GauravB159/Recommend
1bfc1826239e1fe2ccdab7d75f3a4320a70290db
[ "MIT" ]
null
null
null
django/aihackingbad/videos/views.py
GauravB159/Recommend
1bfc1826239e1fe2ccdab7d75f3a4320a70290db
[ "MIT" ]
null
null
null
django/aihackingbad/videos/views.py
GauravB159/Recommend
1bfc1826239e1fe2ccdab7d75f3a4320a70290db
[ "MIT" ]
null
null
null
from django.shortcuts import render from django.http import HttpResponse, JsonResponse import uuid, json ,os,time # Create your views here. def index(request): # return HttpResponse('videos') return render(request, 'videos/index.html') def videoGen(category): path = 'data/videos/'+category+'/'; baseUrl='http://127.0.0.1:8000/media/' fileList = os.listdir(path) fileList = [os.path.join(path,i) for i in fileList] videoUrls = sorted(fileList,reverse=True) videoUrls = [baseUrl + s for s in videoUrls] videoUrls = [s[:27] + s[32:] for s in videoUrls] videoUrls = [category]+videoUrls return videoUrls def upload(request): print(request) if(request.method == 'POST'): file = request.FILES['video'] fileName = str(int(time.time()))+'.mp4' filePath = 'data/temp/' with open(filePath + fileName, 'wb+') as destination: for chunk in file.chunks(): destination.write(chunk) category = classify() os.rename('./data/temp/'+fileName,'./data/videos/'+category+'/'+fileName) if(category == 'none'): os.remove('./data/temp/'+fileName) return HttpResponse(json.dumps(['none']),content_type='application/json') return HttpResponse(json.dumps(category),content_type='application/json') else: category=request.GET.get('category','') if(request.GET.get('category') != 'all'): videoUrls=videoGen(category) print(videoUrls) return HttpResponse(json.dumps(videoUrls), content_type='application/json') else: arr=['sports','dance','cookery'] videoUrls=[] for i in arr: videoUrls+=videoGen(i)[1:] print(videoUrls,'...') videoUrls.reverse() print(videoUrls,'.,.,.,.,') return HttpResponse(json.dumps(videoUrls), content_type='application/json') # classify def classify(): return 'sports'
29.1
77
0.700458
76802d81407fc97c7ce3c8cd3d3fd8b34784deec
1,310
py
Python
app/core/test/test_admin.py
Umutbek/crm-food
96a59b2624aef46b9c4fa250812626948edb4d88
[ "MIT" ]
null
null
null
app/core/test/test_admin.py
Umutbek/crm-food
96a59b2624aef46b9c4fa250812626948edb4d88
[ "MIT" ]
null
null
null
app/core/test/test_admin.py
Umutbek/crm-food
96a59b2624aef46b9c4fa250812626948edb4d88
[ "MIT" ]
null
null
null
from django.test import TestCase, Client from django.contrib.auth import get_user_model from django.urls import reverse class AdminSiteTests(TestCase): def setUp(self): self.client = Client() self.admin_user = get_user_model().objects.create_superuser( email='[email protected]', password='test123' ) self.client.force_login(self.admin_user) self.user = get_user_model().objects.create_user( email='[email protected]', password='test123', name='Test user full name' ) def test_users_listed(self): """ Test that users are listed on user page""" url = reverse('admin:core_user_changelist') res = self.client.get(url) self.assertContains(res, self.user.name) self.assertContains(res, self.user.email) def test_user_change_page(self): """Test that the user edit page works""" url = reverse('admin:core_user_change', args=[self.user.id]) res = self.client.get(url) self.assertEqual(res.status_code, 200) def test_create_user_page(self): """Test that the create user page works""" url = reverse('admin:core_user_add') res = self.client.get(url) self.assertEqual(res.status_code, 200)
31.190476
68
0.636641
33938c9651069841dddc01e6634e7715b459ead7
2,688
py
Python
lib/web/exceptions.py
kpark1/dynamo
cb713fac5438b125b6bd05cbe38316fde5868a18
[ "MIT" ]
1
2018-08-02T03:06:27.000Z
2018-08-02T03:06:27.000Z
lib/web/exceptions.py
kpark1/dynamo
cb713fac5438b125b6bd05cbe38316fde5868a18
[ "MIT" ]
16
2017-11-24T21:09:26.000Z
2019-05-14T15:13:57.000Z
lib/web/exceptions.py
kpark1/dynamo
cb713fac5438b125b6bd05cbe38316fde5868a18
[ "MIT" ]
11
2016-08-03T10:37:31.000Z
2018-08-21T14:32:25.000Z
class MissingParameter(Exception): """Raise if request is missing a required parameter.""" def __init__(self, param_name, context = None): self.param_name = param_name self.context = context def __str__(self): msg = 'Missing required parameter "%s"' % self.param_name if self.context is not None: msg += ' in %s' % self.context msg += '.\n' return msg class ExtraParameter(Exception): """Raise if there is an excess parameter.""" def __init__(self, param_name, context = None): """ @param param_name A string of a list @param context """ self.param_name = param_name self.context = context def __str__(self): if type(self.param_name) is list: msg = 'Parameters %s not expected' % str(self.param_name) else: msg = 'Parameter "%s" not expected' % str(self.param_name) if self.context is not None: msg += ' in %s' % self.context msg += '.\n' return msg class IllFormedRequest(Exception): """Raise if a request parameter value does not conform to a format.""" def __init__(self, param_name, value, hint = None, allowed = None): self.param_name = param_name self.value = value self.hint = hint self.allowed = allowed def __str__(self): msg = 'Parameter "%s" has illegal value "%s".' % (self.param_name, self.value) if self.hint is not None: msg += ' ' + self.hint + '.' if self.allowed is not None: msg += ' Allowed values: [%s]' % ['"%s"' % v for v in self.allowed] msg += '\n' return msg class InvalidRequest(Exception): """Raise if the request values are invalid.""" def __str__(self): if len(self.args) != 0: return self.args[0] + '.\n' else: return 'InvalidRequest\n' class AuthorizationError(Exception): """Raise if the user is not authorized for the request.""" def __str__(self): return 'User not authorized to perform the request.\n' class ResponseDenied(Exception): """Raise when there is nothing technically wrong but response is denied (e.g. return string too long)""" def __str__(self): return 'Server denied response due to: %s\n' % str(self) class TryAgain(Exception): """Raise when the request cannot be served temporarily.""" def __str__(self, message = None): if message is None: return 'Server temporarily not available. Please try again in a few moments.' else: return 'Server temporarily not available: ' + message
34.025316
108
0.60119
ded4a5fa8c826c8a05b1dd5e86c5ae42611f5785
1,253
py
Python
gozokia/i_o/input.py
avara1986/gozokia
03da46359c4a97a35b8f94686cccec7fc9b438cd
[ "MIT-0", "MIT" ]
null
null
null
gozokia/i_o/input.py
avara1986/gozokia
03da46359c4a97a35b8f94686cccec7fc9b438cd
[ "MIT-0", "MIT" ]
null
null
null
gozokia/i_o/input.py
avara1986/gozokia
03da46359c4a97a35b8f94686cccec7fc9b438cd
[ "MIT-0", "MIT" ]
null
null
null
import sys from .io_base import InputBase from .io_voice import VoiceRecognizerMixin from gozokia.conf import settings class InputTerminalText(InputBase): def listen(self, *args, **kwargs): super(InputTerminalText, self).listen(*args, **kwargs) """ Normalize reading input between python 2 and 3. 'raw_input' is just 'input' in python3 """ if sys.version_info[0] < 3: input_text = str(raw_input("> ")) else: input_text = input("> ") return input_text class InputValue(InputBase): def listen(self, *args, **kwargs): super(InputValue, self).listen(*args, **kwargs) if 'value' in kwargs: return kwargs.pop('value') return "" class InputTerminalVoice(InputBase, VoiceRecognizerMixin): def __init__(self, *args, **kwargs): super(InputTerminalVoice, self).__init__(*args, **kwargs) self.set_voice_recognizer() def listen(self, *args, **kwargs): language = kwargs.get('language', settings.GOZOKIA_LANGUAGE) super(InputTerminalVoice, self).listen(*args, **kwargs) self.set_voice_recognizer() input_result = self.listen_audio(language) return input_result
29.139535
68
0.64166
6e8482d99a7cf6fbdf23dba1b17bde54c69208ae
817
py
Python
backend/migrations/0026_auto_20190928_2138.py
Raniac/NEURO-LEARN
3c3acc55de8ba741e673063378e6cbaf10b64c7a
[ "Apache-2.0" ]
8
2019-05-29T09:38:30.000Z
2021-01-20T03:36:59.000Z
backend/migrations/0026_auto_20190928_2138.py
Raniac/neurolearn_dev
3c3acc55de8ba741e673063378e6cbaf10b64c7a
[ "Apache-2.0" ]
12
2021-03-09T03:01:16.000Z
2022-03-11T23:59:36.000Z
backend/migrations/0026_auto_20190928_2138.py
Raniac/NEURO-LEARN
3c3acc55de8ba741e673063378e6cbaf10b64c7a
[ "Apache-2.0" ]
1
2020-07-17T12:49:49.000Z
2020-07-17T12:49:49.000Z
# Generated by Django 2.1.7 on 2019-09-28 13:38 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('backend', '0025_auto_20190926_2049'), ] operations = [ migrations.RenameModel( old_name='Data_Demo', new_name='Data_Old', ), migrations.RenameModel( old_name='Projects_Demo', new_name='Projects_Old', ), migrations.RenameModel( old_name='Submissions_Demo', new_name='Submissions_Old', ), migrations.RenameModel( old_name='Submissions_SA_Demo', new_name='Submissions_SA_Old', ), migrations.RenameModel( old_name='User_Demo', new_name='User_Old', ), ]
24.029412
47
0.561812
692c6134783df3fcbd3a1574bfb27054eeba5062
1,082
py
Python
setup.py
Photonios/py-momit-cool
b702f53c3f5d16f02c3d7fd95c0d980f2683271b
[ "MIT" ]
2
2018-09-05T17:17:26.000Z
2019-03-26T18:38:41.000Z
setup.py
Photonios/py-momit-cool
b702f53c3f5d16f02c3d7fd95c0d980f2683271b
[ "MIT" ]
2
2018-09-05T05:41:19.000Z
2020-01-05T14:45:39.000Z
setup.py
Photonios/py-momit-cool
b702f53c3f5d16f02c3d7fd95c0d980f2683271b
[ "MIT" ]
1
2019-03-26T18:38:46.000Z
2019-03-26T18:38:46.000Z
import os from setuptools import setup, find_packages with open(os.path.join(os.path.dirname(__file__), 'README.rst')) as readme: README = readme.read() setup( name='py-momit-cool-remote', version='1.1', packages=find_packages(), include_package_data=True, license='MIT License', description='Library for remotely interfacing with the Momit Cool air conditioning controller.', long_description=README, url='https://github.com/Photonios/py-momit-cool-remote', author='Swen Kooij', author_email='[email protected]', keywords=['momit', 'cool', 'remote', 'control'], entry_points={ 'console_scripts': [ 'momit-cool=momitcool.cli:main' ] }, classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3.5', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', ] )
30.914286
100
0.634011
475df6c915b0228b10ae229a8ea6f0937e5f61a0
67,374
py
Python
taco/full_node/weight_proof.py
grayfallstown/taco-blockchain
6196d73af7a982301a0a1ad5c1bed836b2f95a8d
[ "Apache-2.0" ]
18
2021-07-14T09:56:37.000Z
2022-02-09T04:32:58.000Z
taco/full_node/weight_proof.py
grayfallstown/taco-blockchain
6196d73af7a982301a0a1ad5c1bed836b2f95a8d
[ "Apache-2.0" ]
9
2021-07-14T15:48:28.000Z
2021-10-10T02:32:59.000Z
taco/full_node/weight_proof.py
grayfallstown/taco-blockchain
6196d73af7a982301a0a1ad5c1bed836b2f95a8d
[ "Apache-2.0" ]
10
2021-07-18T03:22:43.000Z
2022-03-15T08:40:06.000Z
import asyncio import dataclasses import logging import math import random from concurrent.futures.process import ProcessPoolExecutor from typing import Dict, List, Optional, Tuple from taco.consensus.block_header_validation import validate_finished_header_block from taco.consensus.block_record import BlockRecord from taco.consensus.blockchain_interface import BlockchainInterface from taco.consensus.constants import ConsensusConstants from taco.consensus.deficit import calculate_deficit from taco.consensus.full_block_to_block_record import header_block_to_sub_block_record from taco.consensus.pot_iterations import ( calculate_ip_iters, calculate_iterations_quality, calculate_sp_iters, is_overflow_block, ) from taco.consensus.vdf_info_computation import get_signage_point_vdf_info from taco.types.blockchain_format.classgroup import ClassgroupElement from taco.types.blockchain_format.sized_bytes import bytes32 from taco.types.blockchain_format.slots import ChallengeChainSubSlot, RewardChainSubSlot from taco.types.blockchain_format.sub_epoch_summary import SubEpochSummary from taco.types.blockchain_format.vdf import VDFInfo from taco.types.end_of_slot_bundle import EndOfSubSlotBundle from taco.types.header_block import HeaderBlock from taco.types.weight_proof import ( SubEpochChallengeSegment, SubEpochData, SubSlotData, WeightProof, SubEpochSegments, RecentChainData, ) from taco.util.block_cache import BlockCache from taco.util.hash import std_hash from taco.util.ints import uint8, uint32, uint64, uint128 from taco.util.streamable import dataclass_from_dict, recurse_jsonify log = logging.getLogger(__name__) class WeightProofHandler: LAMBDA_L = 100 C = 0.5 MAX_SAMPLES = 20 def __init__( self, constants: ConsensusConstants, blockchain: BlockchainInterface, ): self.tip: Optional[bytes32] = None self.proof: Optional[WeightProof] = None self.constants = constants self.blockchain = blockchain self.lock = asyncio.Lock() async def get_proof_of_weight(self, tip: bytes32) -> Optional[WeightProof]: tip_rec = self.blockchain.try_block_record(tip) if tip_rec is None: log.error("unknown tip") return None if tip_rec.height < self.constants.WEIGHT_PROOF_RECENT_BLOCKS: log.debug("chain to short for weight proof") return None async with self.lock: if self.proof is not None: if self.proof.recent_chain_data[-1].header_hash == tip: return self.proof wp = await self._create_proof_of_weight(tip) if wp is None: return None self.proof = wp self.tip = tip return wp def get_sub_epoch_data(self, tip_height: uint32, summary_heights: List[uint32]) -> List[SubEpochData]: sub_epoch_data: List[SubEpochData] = [] for sub_epoch_n, ses_height in enumerate(summary_heights): if ses_height > tip_height: break ses = self.blockchain.get_ses(ses_height) log.debug(f"handle sub epoch summary {sub_epoch_n} at height: {ses_height} ses {ses}") sub_epoch_data.append(_create_sub_epoch_data(ses)) return sub_epoch_data async def _create_proof_of_weight(self, tip: bytes32) -> Optional[WeightProof]: """ Creates a weight proof object """ assert self.blockchain is not None sub_epoch_segments: List[SubEpochChallengeSegment] = [] tip_rec = self.blockchain.try_block_record(tip) if tip_rec is None: log.error("failed not tip in cache") return None log.info(f"create weight proof peak {tip} {tip_rec.height}") recent_chain = await self._get_recent_chain(tip_rec.height) if recent_chain is None: return None summary_heights = self.blockchain.get_ses_heights() prev_ses_block = await self.blockchain.get_block_record_from_db(self.blockchain.height_to_hash(uint32(0))) if prev_ses_block is None: return None sub_epoch_data = self.get_sub_epoch_data(tip_rec.height, summary_heights) # use second to last ses as seed seed = self.get_seed_for_proof(summary_heights, tip_rec.height) rng = random.Random(seed) weight_to_check = _get_weights_for_sampling(rng, tip_rec.weight, recent_chain) sample_n = 0 ses_blocks = await self.blockchain.get_block_records_at(summary_heights) if ses_blocks is None: return None for sub_epoch_n, ses_height in enumerate(summary_heights): if ses_height > tip_rec.height: break # if we have enough sub_epoch samples, dont sample if sample_n >= self.MAX_SAMPLES: log.debug("reached sampled sub epoch cap") break # sample sub epoch # next sub block ses_block = ses_blocks[sub_epoch_n] if ses_block is None or ses_block.sub_epoch_summary_included is None: log.error("error while building proof") return None if _sample_sub_epoch(prev_ses_block.weight, ses_block.weight, weight_to_check): # type: ignore sample_n += 1 segments = await self.blockchain.get_sub_epoch_challenge_segments(ses_block.header_hash) if segments is None: segments = await self.__create_sub_epoch_segments(ses_block, prev_ses_block, uint32(sub_epoch_n)) if segments is None: log.error( f"failed while building segments for sub epoch {sub_epoch_n}, ses height {ses_height} " ) return None await self.blockchain.persist_sub_epoch_challenge_segments(ses_block.header_hash, segments) log.debug(f"sub epoch {sub_epoch_n} has {len(segments)} segments") sub_epoch_segments.extend(segments) prev_ses_block = ses_block log.debug(f"sub_epochs: {len(sub_epoch_data)}") return WeightProof(sub_epoch_data, sub_epoch_segments, recent_chain) def get_seed_for_proof(self, summary_heights: List[uint32], tip_height) -> bytes32: count = 0 ses = None for sub_epoch_n, ses_height in enumerate(reversed(summary_heights)): if ses_height <= tip_height: count += 1 if count == 2: ses = self.blockchain.get_ses(ses_height) break assert ses is not None seed = ses.get_hash() return seed async def _get_recent_chain(self, tip_height: uint32) -> Optional[List[HeaderBlock]]: recent_chain: List[HeaderBlock] = [] ses_heights = self.blockchain.get_ses_heights() min_height = 0 count_ses = 0 for ses_height in reversed(ses_heights): if ses_height <= tip_height: count_ses += 1 if count_ses == 2: min_height = ses_height - 1 break log.debug(f"start {min_height} end {tip_height}") headers = await self.blockchain.get_header_blocks_in_range(min_height, tip_height, tx_filter=False) blocks = await self.blockchain.get_block_records_in_range(min_height, tip_height) ses_count = 0 curr_height = tip_height blocks_n = 0 while ses_count < 2: if curr_height == 0: break # add to needed reward chain recent blocks header_block = headers[self.blockchain.height_to_hash(curr_height)] block_rec = blocks[header_block.header_hash] if header_block is None: log.error("creating recent chain failed") return None recent_chain.insert(0, header_block) if block_rec.sub_epoch_summary_included: ses_count += 1 curr_height = uint32(curr_height - 1) # type: ignore blocks_n += 1 header_block = headers[self.blockchain.height_to_hash(curr_height)] recent_chain.insert(0, header_block) log.info( f"recent chain, " f"start: {recent_chain[0].reward_chain_block.height} " f"end: {recent_chain[-1].reward_chain_block.height} " ) return recent_chain async def create_prev_sub_epoch_segments(self): log.debug("create prev sub_epoch_segments") heights = self.blockchain.get_ses_heights() if len(heights) < 3: return None count = len(heights) - 2 ses_sub_block = self.blockchain.height_to_block_record(heights[-2]) prev_ses_sub_block = self.blockchain.height_to_block_record(heights[-3]) assert prev_ses_sub_block.sub_epoch_summary_included is not None segments = await self.__create_sub_epoch_segments(ses_sub_block, prev_ses_sub_block, uint32(count)) assert segments is not None await self.blockchain.persist_sub_epoch_challenge_segments(ses_sub_block.header_hash, segments) log.debug("sub_epoch_segments done") return None async def create_sub_epoch_segments(self): log.debug("check segments in db") """ Creates a weight proof object """ assert self.blockchain is not None peak_height = self.blockchain.get_peak_height() if peak_height is None: log.error("no peak yet") return None summary_heights = self.blockchain.get_ses_heights() prev_ses_block = await self.blockchain.get_block_record_from_db(self.blockchain.height_to_hash(uint32(0))) if prev_ses_block is None: return None ses_blocks = await self.blockchain.get_block_records_at(summary_heights) if ses_blocks is None: return None for sub_epoch_n, ses_height in enumerate(summary_heights): log.debug(f"check db for sub epoch {sub_epoch_n}") if ses_height > peak_height: break ses_block = ses_blocks[sub_epoch_n] if ses_block is None or ses_block.sub_epoch_summary_included is None: log.error("error while building proof") return None await self.__create_persist_segment(prev_ses_block, ses_block, ses_height, sub_epoch_n) prev_ses_block = ses_block await asyncio.sleep(2) log.debug("done checking segments") return None async def __create_persist_segment(self, prev_ses_block, ses_block, ses_height, sub_epoch_n): segments = await self.blockchain.get_sub_epoch_challenge_segments(ses_block.header_hash) if segments is None: segments = await self.__create_sub_epoch_segments(ses_block, prev_ses_block, uint32(sub_epoch_n)) if segments is None: log.error(f"failed while building segments for sub epoch {sub_epoch_n}, ses height {ses_height} ") return None await self.blockchain.persist_sub_epoch_challenge_segments(ses_block.header_hash, segments) async def __create_sub_epoch_segments( self, ses_block: BlockRecord, se_start: BlockRecord, sub_epoch_n: uint32 ) -> Optional[List[SubEpochChallengeSegment]]: segments: List[SubEpochChallengeSegment] = [] start_height = await self.get_prev_two_slots_height(se_start) blocks = await self.blockchain.get_block_records_in_range( start_height, ses_block.height + self.constants.MAX_SUB_SLOT_BLOCKS ) header_blocks = await self.blockchain.get_header_blocks_in_range( start_height, ses_block.height + self.constants.MAX_SUB_SLOT_BLOCKS, tx_filter=False ) curr: Optional[HeaderBlock] = header_blocks[se_start.header_hash] height = se_start.height assert curr is not None first = True idx = 0 while curr.height < ses_block.height: if blocks[curr.header_hash].is_challenge_block(self.constants): log.debug(f"challenge segment {idx}, starts at {curr.height} ") seg, height = await self._create_challenge_segment(curr, sub_epoch_n, header_blocks, blocks, first) if seg is None: log.error(f"failed creating segment {curr.header_hash} ") return None segments.append(seg) idx += 1 first = False else: height = height + uint32(1) # type: ignore curr = header_blocks[self.blockchain.height_to_hash(height)] if curr is None: return None log.debug(f"next sub epoch starts at {height}") return segments async def get_prev_two_slots_height(self, se_start: BlockRecord) -> uint32: # find prev 2 slots height slot = 0 batch_size = 50 curr_rec = se_start blocks = await self.blockchain.get_block_records_in_range(curr_rec.height - batch_size, curr_rec.height) end = curr_rec.height while slot < 2 and curr_rec.height > 0: if curr_rec.first_in_sub_slot: slot += 1 if end - curr_rec.height == batch_size - 1: blocks = await self.blockchain.get_block_records_in_range(curr_rec.height - batch_size, curr_rec.height) end = curr_rec.height curr_rec = blocks[self.blockchain.height_to_hash(uint32(curr_rec.height - 1))] return curr_rec.height async def _create_challenge_segment( self, header_block: HeaderBlock, sub_epoch_n: uint32, header_blocks: Dict[bytes32, HeaderBlock], blocks: Dict[bytes32, BlockRecord], first_segment_in_sub_epoch: bool, ) -> Tuple[Optional[SubEpochChallengeSegment], uint32]: assert self.blockchain is not None sub_slots: List[SubSlotData] = [] log.debug(f"create challenge segment block {header_block.header_hash} block height {header_block.height} ") # VDFs from sub slots before challenge block first_sub_slots, first_rc_end_of_slot_vdf = await self.__first_sub_slot_vdfs( header_block, header_blocks, blocks, first_segment_in_sub_epoch ) if first_sub_slots is None: log.error("failed building first sub slots") return None, uint32(0) sub_slots.extend(first_sub_slots) ssd = await _challenge_block_vdfs( self.constants, header_block, blocks[header_block.header_hash], blocks, ) sub_slots.append(ssd) # # VDFs from slot after challenge block to end of slot log.debug(f"create slot end vdf for block {header_block.header_hash} height {header_block.height} ") challenge_slot_end_sub_slots, end_height = await self.__slot_end_vdf( uint32(header_block.height + 1), header_blocks, blocks ) if challenge_slot_end_sub_slots is None: log.error("failed building slot end ") return None, uint32(0) sub_slots.extend(challenge_slot_end_sub_slots) if first_segment_in_sub_epoch and sub_epoch_n != 0: return ( SubEpochChallengeSegment(sub_epoch_n, sub_slots, first_rc_end_of_slot_vdf), end_height, ) return SubEpochChallengeSegment(sub_epoch_n, sub_slots, None), end_height # returns a challenge chain vdf from slot start to signage point async def __first_sub_slot_vdfs( self, header_block: HeaderBlock, header_blocks: Dict[bytes32, HeaderBlock], blocks: Dict[bytes32, BlockRecord], first_in_sub_epoch: bool, ) -> Tuple[Optional[List[SubSlotData]], Optional[VDFInfo]]: # combine cc vdfs of all reward blocks from the start of the sub slot to end header_block_sub_rec = blocks[header_block.header_hash] # find slot start curr_sub_rec = header_block_sub_rec first_rc_end_of_slot_vdf = None if first_in_sub_epoch and curr_sub_rec.height > 0: while not curr_sub_rec.sub_epoch_summary_included: curr_sub_rec = blocks[curr_sub_rec.prev_hash] first_rc_end_of_slot_vdf = self.first_rc_end_of_slot_vdf(header_block, blocks, header_blocks) else: if header_block_sub_rec.overflow and header_block_sub_rec.first_in_sub_slot: sub_slots_num = 2 while sub_slots_num > 0 and curr_sub_rec.height > 0: if curr_sub_rec.first_in_sub_slot: assert curr_sub_rec.finished_challenge_slot_hashes is not None sub_slots_num -= len(curr_sub_rec.finished_challenge_slot_hashes) curr_sub_rec = blocks[curr_sub_rec.prev_hash] else: while not curr_sub_rec.first_in_sub_slot and curr_sub_rec.height > 0: curr_sub_rec = blocks[curr_sub_rec.prev_hash] curr = header_blocks[curr_sub_rec.header_hash] sub_slots_data: List[SubSlotData] = [] tmp_sub_slots_data: List[SubSlotData] = [] while curr.height < header_block.height: if curr is None: log.error("failed fetching block") return None, None if curr.first_in_sub_slot: # if not blue boxed if not blue_boxed_end_of_slot(curr.finished_sub_slots[0]): sub_slots_data.extend(tmp_sub_slots_data) for idx, sub_slot in enumerate(curr.finished_sub_slots): curr_icc_info = None if sub_slot.infused_challenge_chain is not None: curr_icc_info = sub_slot.infused_challenge_chain.infused_challenge_chain_end_of_slot_vdf sub_slots_data.append(handle_finished_slots(sub_slot, curr_icc_info)) tmp_sub_slots_data = [] ssd = SubSlotData( None, None, None, None, None, curr.reward_chain_block.signage_point_index, None, None, None, None, curr.reward_chain_block.challenge_chain_ip_vdf, curr.reward_chain_block.infused_challenge_chain_ip_vdf, curr.total_iters, ) tmp_sub_slots_data.append(ssd) curr = header_blocks[self.blockchain.height_to_hash(uint32(curr.height + 1))] if len(tmp_sub_slots_data) > 0: sub_slots_data.extend(tmp_sub_slots_data) for idx, sub_slot in enumerate(header_block.finished_sub_slots): curr_icc_info = None if sub_slot.infused_challenge_chain is not None: curr_icc_info = sub_slot.infused_challenge_chain.infused_challenge_chain_end_of_slot_vdf sub_slots_data.append(handle_finished_slots(sub_slot, curr_icc_info)) return sub_slots_data, first_rc_end_of_slot_vdf def first_rc_end_of_slot_vdf( self, header_block, blocks: Dict[bytes32, BlockRecord], header_blocks: Dict[bytes32, HeaderBlock], ) -> Optional[VDFInfo]: curr = blocks[header_block.header_hash] while curr.height > 0 and not curr.sub_epoch_summary_included: curr = blocks[curr.prev_hash] return header_blocks[curr.header_hash].finished_sub_slots[-1].reward_chain.end_of_slot_vdf async def __slot_end_vdf( self, start_height: uint32, header_blocks: Dict[bytes32, HeaderBlock], blocks: Dict[bytes32, BlockRecord] ) -> Tuple[Optional[List[SubSlotData]], uint32]: # gets all vdfs first sub slot after challenge block to last sub slot log.debug(f"slot end vdf start height {start_height}") curr = header_blocks[self.blockchain.height_to_hash(start_height)] curr_header_hash = curr.header_hash sub_slots_data: List[SubSlotData] = [] tmp_sub_slots_data: List[SubSlotData] = [] while not blocks[curr_header_hash].is_challenge_block(self.constants): if curr.first_in_sub_slot: sub_slots_data.extend(tmp_sub_slots_data) curr_prev_header_hash = curr.prev_header_hash # add collected vdfs for idx, sub_slot in enumerate(curr.finished_sub_slots): prev_rec = blocks[curr_prev_header_hash] eos_vdf_iters = prev_rec.sub_slot_iters if idx == 0: eos_vdf_iters = uint64(prev_rec.sub_slot_iters - prev_rec.ip_iters(self.constants)) sub_slots_data.append(handle_end_of_slot(sub_slot, eos_vdf_iters)) tmp_sub_slots_data = [] tmp_sub_slots_data.append(self.handle_block_vdfs(curr, blocks)) curr = header_blocks[self.blockchain.height_to_hash(uint32(curr.height + 1))] curr_header_hash = curr.header_hash if len(tmp_sub_slots_data) > 0: sub_slots_data.extend(tmp_sub_slots_data) log.debug(f"slot end vdf end height {curr.height} slots {len(sub_slots_data)} ") return sub_slots_data, curr.height def handle_block_vdfs(self, curr: HeaderBlock, blocks: Dict[bytes32, BlockRecord]): cc_sp_proof = None icc_ip_proof = None cc_sp_info = None icc_ip_info = None block_record = blocks[curr.header_hash] if curr.infused_challenge_chain_ip_proof is not None: assert curr.reward_chain_block.infused_challenge_chain_ip_vdf icc_ip_proof = curr.infused_challenge_chain_ip_proof icc_ip_info = curr.reward_chain_block.infused_challenge_chain_ip_vdf if curr.challenge_chain_sp_proof is not None: assert curr.reward_chain_block.challenge_chain_sp_vdf cc_sp_vdf_info = curr.reward_chain_block.challenge_chain_sp_vdf if not curr.challenge_chain_sp_proof.normalized_to_identity: (_, _, _, _, cc_vdf_iters, _,) = get_signage_point_vdf_info( self.constants, curr.finished_sub_slots, block_record.overflow, None if curr.height == 0 else blocks[curr.prev_header_hash], BlockCache(blocks), block_record.sp_total_iters(self.constants), block_record.sp_iters(self.constants), ) cc_sp_vdf_info = VDFInfo( curr.reward_chain_block.challenge_chain_sp_vdf.challenge, cc_vdf_iters, curr.reward_chain_block.challenge_chain_sp_vdf.output, ) cc_sp_proof = curr.challenge_chain_sp_proof cc_sp_info = cc_sp_vdf_info return SubSlotData( None, cc_sp_proof, curr.challenge_chain_ip_proof, icc_ip_proof, cc_sp_info, curr.reward_chain_block.signage_point_index, None, None, None, None, curr.reward_chain_block.challenge_chain_ip_vdf, icc_ip_info, curr.total_iters, ) def validate_weight_proof_single_proc(self, weight_proof: WeightProof) -> Tuple[bool, uint32]: assert self.blockchain is not None assert len(weight_proof.sub_epochs) > 0 if len(weight_proof.sub_epochs) == 0: return False, uint32(0) peak_height = weight_proof.recent_chain_data[-1].reward_chain_block.height log.info(f"validate weight proof peak height {peak_height}") summaries, sub_epoch_weight_list = _validate_sub_epoch_summaries(self.constants, weight_proof) if summaries is None: log.warning("weight proof failed sub epoch data validation") return False, uint32(0) constants, summary_bytes, wp_segment_bytes, wp_recent_chain_bytes = vars_to_bytes( self.constants, summaries, weight_proof ) log.info("validate sub epoch challenge segments") seed = summaries[-2].get_hash() rng = random.Random(seed) if not validate_sub_epoch_sampling(rng, sub_epoch_weight_list, weight_proof): log.error("failed weight proof sub epoch sample validation") return False, uint32(0) if not _validate_sub_epoch_segments(constants, rng, wp_segment_bytes, summary_bytes): return False, uint32(0) log.info("validate weight proof recent blocks") if not _validate_recent_blocks(constants, wp_recent_chain_bytes, summary_bytes): return False, uint32(0) return True, self.get_fork_point(summaries) def get_fork_point_no_validations(self, weight_proof: WeightProof) -> Tuple[bool, uint32]: log.debug("get fork point skip validations") assert self.blockchain is not None assert len(weight_proof.sub_epochs) > 0 if len(weight_proof.sub_epochs) == 0: return False, uint32(0) summaries, sub_epoch_weight_list = _validate_sub_epoch_summaries(self.constants, weight_proof) if summaries is None: log.warning("weight proof failed to validate sub epoch summaries") return False, uint32(0) return True, self.get_fork_point(summaries) async def validate_weight_proof(self, weight_proof: WeightProof) -> Tuple[bool, uint32, List[SubEpochSummary]]: assert self.blockchain is not None assert len(weight_proof.sub_epochs) > 0 if len(weight_proof.sub_epochs) == 0: return False, uint32(0), [] peak_height = weight_proof.recent_chain_data[-1].reward_chain_block.height log.info(f"validate weight proof peak height {peak_height}") summaries, sub_epoch_weight_list = _validate_sub_epoch_summaries(self.constants, weight_proof) if summaries is None: log.error("weight proof failed sub epoch data validation") return False, uint32(0), [] seed = summaries[-2].get_hash() rng = random.Random(seed) if not validate_sub_epoch_sampling(rng, sub_epoch_weight_list, weight_proof): log.error("failed weight proof sub epoch sample validation") return False, uint32(0), [] executor = ProcessPoolExecutor(1) constants, summary_bytes, wp_segment_bytes, wp_recent_chain_bytes = vars_to_bytes( self.constants, summaries, weight_proof ) segment_validation_task = asyncio.get_running_loop().run_in_executor( executor, _validate_sub_epoch_segments, constants, rng, wp_segment_bytes, summary_bytes ) recent_blocks_validation_task = asyncio.get_running_loop().run_in_executor( executor, _validate_recent_blocks, constants, wp_recent_chain_bytes, summary_bytes ) valid_segment_task = segment_validation_task valid_recent_blocks_task = recent_blocks_validation_task valid_recent_blocks = await valid_recent_blocks_task if not valid_recent_blocks: log.error("failed validating weight proof recent blocks") return False, uint32(0), [] valid_segments = await valid_segment_task if not valid_segments: log.error("failed validating weight proof sub epoch segments") return False, uint32(0), [] return True, self.get_fork_point(summaries), summaries def get_fork_point(self, received_summaries: List[SubEpochSummary]) -> uint32: # iterate through sub epoch summaries to find fork point fork_point_index = 0 ses_heights = self.blockchain.get_ses_heights() for idx, summary_height in enumerate(ses_heights): log.debug(f"check summary {idx} height {summary_height}") local_ses = self.blockchain.get_ses(summary_height) if idx == len(received_summaries) - 1: # end of wp summaries, local chain is longer or equal to wp chain break if local_ses is None or local_ses.get_hash() != received_summaries[idx].get_hash(): break fork_point_index = idx if fork_point_index > 2: # Two summeries can have different blocks and still be identical # This gets resolved after one full sub epoch height = ses_heights[fork_point_index - 2] else: height = uint32(0) return height def _get_weights_for_sampling( rng: random.Random, total_weight: uint128, recent_chain: List[HeaderBlock] ) -> Optional[List[uint128]]: weight_to_check = [] last_l_weight = recent_chain[-1].reward_chain_block.weight - recent_chain[0].reward_chain_block.weight delta = last_l_weight / total_weight prob_of_adv_succeeding = 1 - math.log(WeightProofHandler.C, delta) if prob_of_adv_succeeding <= 0: return None queries = -WeightProofHandler.LAMBDA_L * math.log(2, prob_of_adv_succeeding) for i in range(int(queries) + 1): u = rng.random() q = 1 - delta ** u # todo check division and type conversions weight = q * float(total_weight) weight_to_check.append(uint128(int(weight))) weight_to_check.sort() return weight_to_check def _sample_sub_epoch( start_of_epoch_weight: uint128, end_of_epoch_weight: uint128, weight_to_check: List[uint128], ) -> bool: """ weight_to_check: List[uint128] is expected to be sorted """ if weight_to_check is None: return True if weight_to_check[-1] < start_of_epoch_weight: return False if weight_to_check[0] > end_of_epoch_weight: return False choose = False for weight in weight_to_check: if weight > end_of_epoch_weight: return False if start_of_epoch_weight < weight < end_of_epoch_weight: log.debug(f"start weight: {start_of_epoch_weight}") log.debug(f"weight to check {weight}") log.debug(f"end weight: {end_of_epoch_weight}") choose = True break return choose # wp creation methods def _create_sub_epoch_data( sub_epoch_summary: SubEpochSummary, ) -> SubEpochData: reward_chain_hash: bytes32 = sub_epoch_summary.reward_chain_hash # Number of subblocks overflow in previous slot previous_sub_epoch_overflows: uint8 = sub_epoch_summary.num_blocks_overflow # total in sub epoch - expected # New work difficulty and iterations per sub-slot sub_slot_iters: Optional[uint64] = sub_epoch_summary.new_sub_slot_iters new_difficulty: Optional[uint64] = sub_epoch_summary.new_difficulty return SubEpochData(reward_chain_hash, previous_sub_epoch_overflows, sub_slot_iters, new_difficulty) async def _challenge_block_vdfs( constants: ConsensusConstants, header_block: HeaderBlock, block_rec: BlockRecord, sub_blocks: Dict[bytes32, BlockRecord], ): (_, _, _, _, cc_vdf_iters, _,) = get_signage_point_vdf_info( constants, header_block.finished_sub_slots, block_rec.overflow, None if header_block.height == 0 else sub_blocks[header_block.prev_header_hash], BlockCache(sub_blocks), block_rec.sp_total_iters(constants), block_rec.sp_iters(constants), ) cc_sp_info = None if header_block.reward_chain_block.challenge_chain_sp_vdf: cc_sp_info = header_block.reward_chain_block.challenge_chain_sp_vdf assert header_block.challenge_chain_sp_proof if not header_block.challenge_chain_sp_proof.normalized_to_identity: cc_sp_info = VDFInfo( header_block.reward_chain_block.challenge_chain_sp_vdf.challenge, cc_vdf_iters, header_block.reward_chain_block.challenge_chain_sp_vdf.output, ) ssd = SubSlotData( header_block.reward_chain_block.proof_of_space, header_block.challenge_chain_sp_proof, header_block.challenge_chain_ip_proof, None, cc_sp_info, header_block.reward_chain_block.signage_point_index, None, None, None, None, header_block.reward_chain_block.challenge_chain_ip_vdf, header_block.reward_chain_block.infused_challenge_chain_ip_vdf, block_rec.total_iters, ) return ssd def handle_finished_slots(end_of_slot: EndOfSubSlotBundle, icc_end_of_slot_info): return SubSlotData( None, None, None, None, None, None, None if end_of_slot.proofs.challenge_chain_slot_proof is None else end_of_slot.proofs.challenge_chain_slot_proof, None if end_of_slot.proofs.infused_challenge_chain_slot_proof is None else end_of_slot.proofs.infused_challenge_chain_slot_proof, end_of_slot.challenge_chain.challenge_chain_end_of_slot_vdf, icc_end_of_slot_info, None, None, None, ) def handle_end_of_slot( sub_slot: EndOfSubSlotBundle, eos_vdf_iters: uint64, ): assert sub_slot.infused_challenge_chain assert sub_slot.proofs.infused_challenge_chain_slot_proof if sub_slot.proofs.infused_challenge_chain_slot_proof.normalized_to_identity: icc_info = sub_slot.infused_challenge_chain.infused_challenge_chain_end_of_slot_vdf else: icc_info = VDFInfo( sub_slot.infused_challenge_chain.infused_challenge_chain_end_of_slot_vdf.challenge, eos_vdf_iters, sub_slot.infused_challenge_chain.infused_challenge_chain_end_of_slot_vdf.output, ) if sub_slot.proofs.challenge_chain_slot_proof.normalized_to_identity: cc_info = sub_slot.challenge_chain.challenge_chain_end_of_slot_vdf else: cc_info = VDFInfo( sub_slot.challenge_chain.challenge_chain_end_of_slot_vdf.challenge, eos_vdf_iters, sub_slot.challenge_chain.challenge_chain_end_of_slot_vdf.output, ) assert sub_slot.proofs.infused_challenge_chain_slot_proof is not None return SubSlotData( None, None, None, None, None, None, sub_slot.proofs.challenge_chain_slot_proof, sub_slot.proofs.infused_challenge_chain_slot_proof, cc_info, icc_info, None, None, None, ) def compress_segments(full_segment_index, segments: List[SubEpochChallengeSegment]) -> List[SubEpochChallengeSegment]: compressed_segments = [] compressed_segments.append(segments[0]) for idx, segment in enumerate(segments[1:]): if idx != full_segment_index: # remove all redundant values segment = compress_segment(segment) compressed_segments.append(segment) return compressed_segments def compress_segment(segment: SubEpochChallengeSegment) -> SubEpochChallengeSegment: # find challenge slot comp_seg = SubEpochChallengeSegment(segment.sub_epoch_n, [], segment.rc_slot_end_info) for slot in segment.sub_slots: comp_seg.sub_slots.append(slot) if slot.is_challenge(): break return segment # wp validation methods def _validate_sub_epoch_summaries( constants: ConsensusConstants, weight_proof: WeightProof, ) -> Tuple[Optional[List[SubEpochSummary]], Optional[List[uint128]]]: last_ses_hash, last_ses_sub_height = _get_last_ses_hash(constants, weight_proof.recent_chain_data) if last_ses_hash is None: log.warning("could not find last ses block") return None, None summaries, total, sub_epoch_weight_list = _map_sub_epoch_summaries( constants.SUB_EPOCH_BLOCKS, constants.GENESIS_CHALLENGE, weight_proof.sub_epochs, constants.DIFFICULTY_STARTING, ) log.info(f"validating {len(summaries)} sub epochs") # validate weight if not _validate_summaries_weight(constants, total, summaries, weight_proof): log.error("failed validating weight") return None, None last_ses = summaries[-1] log.debug(f"last ses sub height {last_ses_sub_height}") # validate last ses_hash if last_ses.get_hash() != last_ses_hash: log.error(f"failed to validate ses hashes block height {last_ses_sub_height}") return None, None return summaries, sub_epoch_weight_list def _map_sub_epoch_summaries( sub_blocks_for_se: uint32, ses_hash: bytes32, sub_epoch_data: List[SubEpochData], curr_difficulty: uint64, ) -> Tuple[List[SubEpochSummary], uint128, List[uint128]]: total_weight: uint128 = uint128(0) summaries: List[SubEpochSummary] = [] sub_epoch_weight_list: List[uint128] = [] for idx, data in enumerate(sub_epoch_data): ses = SubEpochSummary( ses_hash, data.reward_chain_hash, data.num_blocks_overflow, data.new_difficulty, data.new_sub_slot_iters, ) if idx < len(sub_epoch_data) - 1: delta = 0 if idx > 0: delta = sub_epoch_data[idx].num_blocks_overflow log.debug(f"sub epoch {idx} start weight is {total_weight+curr_difficulty} ") sub_epoch_weight_list.append(uint128(total_weight + curr_difficulty)) total_weight = total_weight + uint128( # type: ignore curr_difficulty * (sub_blocks_for_se + sub_epoch_data[idx + 1].num_blocks_overflow - delta) ) # if new epoch update diff and iters if data.new_difficulty is not None: curr_difficulty = data.new_difficulty # add to dict summaries.append(ses) ses_hash = std_hash(ses) # add last sub epoch weight sub_epoch_weight_list.append(uint128(total_weight + curr_difficulty)) return summaries, total_weight, sub_epoch_weight_list def _validate_summaries_weight(constants: ConsensusConstants, sub_epoch_data_weight, summaries, weight_proof) -> bool: num_over = summaries[-1].num_blocks_overflow ses_end_height = (len(summaries) - 1) * constants.SUB_EPOCH_BLOCKS + num_over - 1 curr = None for block in weight_proof.recent_chain_data: if block.reward_chain_block.height == ses_end_height: curr = block if curr is None: return False return curr.reward_chain_block.weight == sub_epoch_data_weight def _validate_sub_epoch_segments( constants_dict: Dict, rng: random.Random, weight_proof_bytes: bytes, summaries_bytes: List[bytes], ): constants, summaries = bytes_to_vars(constants_dict, summaries_bytes) sub_epoch_segments: SubEpochSegments = SubEpochSegments.from_bytes(weight_proof_bytes) rc_sub_slot_hash = constants.GENESIS_CHALLENGE total_blocks, total_ip_iters = 0, 0 total_slot_iters, total_slots = 0, 0 total_ip_iters = 0 prev_ses: Optional[SubEpochSummary] = None segments_by_sub_epoch = map_segments_by_sub_epoch(sub_epoch_segments.challenge_segments) curr_ssi = constants.SUB_SLOT_ITERS_STARTING for sub_epoch_n, segments in segments_by_sub_epoch.items(): prev_ssi = curr_ssi curr_difficulty, curr_ssi = _get_curr_diff_ssi(constants, sub_epoch_n, summaries) log.debug(f"validate sub epoch {sub_epoch_n}") # recreate RewardChainSubSlot for next ses rc_hash sampled_seg_index = rng.choice(range(len(segments))) if sub_epoch_n > 0: rc_sub_slot = __get_rc_sub_slot(constants, segments[0], summaries, curr_ssi) prev_ses = summaries[sub_epoch_n - 1] rc_sub_slot_hash = rc_sub_slot.get_hash() if not summaries[sub_epoch_n].reward_chain_hash == rc_sub_slot_hash: log.error(f"failed reward_chain_hash validation sub_epoch {sub_epoch_n}") return False for idx, segment in enumerate(segments): valid_segment, ip_iters, slot_iters, slots = _validate_segment( constants, segment, curr_ssi, prev_ssi, curr_difficulty, prev_ses, idx == 0, sampled_seg_index == idx ) if not valid_segment: log.error(f"failed to validate sub_epoch {segment.sub_epoch_n} segment {idx} slots") return False prev_ses = None total_blocks += 1 total_slot_iters += slot_iters total_slots += slots total_ip_iters += ip_iters return True def _validate_segment( constants: ConsensusConstants, segment: SubEpochChallengeSegment, curr_ssi: uint64, prev_ssi: uint64, curr_difficulty: uint64, ses: Optional[SubEpochSummary], first_segment_in_se: bool, sampled: bool, ) -> Tuple[bool, int, int, int]: ip_iters, slot_iters, slots = 0, 0, 0 after_challenge = False for idx, sub_slot_data in enumerate(segment.sub_slots): if sampled and sub_slot_data.is_challenge(): after_challenge = True required_iters = __validate_pospace(constants, segment, idx, curr_difficulty, ses, first_segment_in_se) if required_iters is None: return False, uint64(0), uint64(0), uint64(0) assert sub_slot_data.signage_point_index is not None ip_iters = ip_iters + calculate_ip_iters( # type: ignore constants, curr_ssi, sub_slot_data.signage_point_index, required_iters ) if not _validate_challenge_block_vdfs(constants, idx, segment.sub_slots, curr_ssi): log.error(f"failed to validate challenge slot {idx} vdfs") return False, uint64(0), uint64(0), uint64(0) elif sampled and after_challenge: if not _validate_sub_slot_data(constants, idx, segment.sub_slots, curr_ssi): log.error(f"failed to validate sub slot data {idx} vdfs") return False, uint64(0), uint64(0), uint64(0) slot_iters = slot_iters + curr_ssi # type: ignore slots = slots + uint64(1) # type: ignore return True, ip_iters, slot_iters, slots def _validate_challenge_block_vdfs( constants: ConsensusConstants, sub_slot_idx: int, sub_slots: List[SubSlotData], ssi: uint64, ) -> bool: sub_slot_data = sub_slots[sub_slot_idx] if sub_slot_data.cc_signage_point is not None and sub_slot_data.cc_sp_vdf_info: assert sub_slot_data.signage_point_index sp_input = ClassgroupElement.get_default_element() if not sub_slot_data.cc_signage_point.normalized_to_identity and sub_slot_idx >= 1: is_overflow = is_overflow_block(constants, sub_slot_data.signage_point_index) prev_ssd = sub_slots[sub_slot_idx - 1] sp_input = sub_slot_data_vdf_input( constants, sub_slot_data, sub_slot_idx, sub_slots, is_overflow, prev_ssd.is_end_of_slot(), ssi ) if not sub_slot_data.cc_signage_point.is_valid(constants, sp_input, sub_slot_data.cc_sp_vdf_info): log.error(f"failed to validate challenge chain signage point 2 {sub_slot_data.cc_sp_vdf_info}") return False assert sub_slot_data.cc_infusion_point assert sub_slot_data.cc_ip_vdf_info ip_input = ClassgroupElement.get_default_element() cc_ip_vdf_info = sub_slot_data.cc_ip_vdf_info if not sub_slot_data.cc_infusion_point.normalized_to_identity and sub_slot_idx >= 1: prev_ssd = sub_slots[sub_slot_idx - 1] if prev_ssd.cc_slot_end is None: assert prev_ssd.cc_ip_vdf_info assert prev_ssd.total_iters assert sub_slot_data.total_iters ip_input = prev_ssd.cc_ip_vdf_info.output ip_vdf_iters = uint64(sub_slot_data.total_iters - prev_ssd.total_iters) cc_ip_vdf_info = VDFInfo( sub_slot_data.cc_ip_vdf_info.challenge, ip_vdf_iters, sub_slot_data.cc_ip_vdf_info.output ) if not sub_slot_data.cc_infusion_point.is_valid(constants, ip_input, cc_ip_vdf_info): log.error(f"failed to validate challenge chain infusion point {sub_slot_data.cc_ip_vdf_info}") return False return True def _validate_sub_slot_data( constants: ConsensusConstants, sub_slot_idx: int, sub_slots: List[SubSlotData], ssi: uint64, ) -> bool: sub_slot_data = sub_slots[sub_slot_idx] assert sub_slot_idx > 0 prev_ssd = sub_slots[sub_slot_idx - 1] if sub_slot_data.is_end_of_slot(): if sub_slot_data.icc_slot_end is not None: input = ClassgroupElement.get_default_element() if not sub_slot_data.icc_slot_end.normalized_to_identity and prev_ssd.icc_ip_vdf_info is not None: assert prev_ssd.icc_ip_vdf_info input = prev_ssd.icc_ip_vdf_info.output assert sub_slot_data.icc_slot_end_info if not sub_slot_data.icc_slot_end.is_valid(constants, input, sub_slot_data.icc_slot_end_info, None): log.error(f"failed icc slot end validation {sub_slot_data.icc_slot_end_info} ") return False assert sub_slot_data.cc_slot_end_info assert sub_slot_data.cc_slot_end input = ClassgroupElement.get_default_element() if (not prev_ssd.is_end_of_slot()) and (not sub_slot_data.cc_slot_end.normalized_to_identity): assert prev_ssd.cc_ip_vdf_info input = prev_ssd.cc_ip_vdf_info.output if not sub_slot_data.cc_slot_end.is_valid(constants, input, sub_slot_data.cc_slot_end_info): log.error(f"failed cc slot end validation {sub_slot_data.cc_slot_end_info}") return False else: # find end of slot idx = sub_slot_idx while idx < len(sub_slots) - 1: curr_slot = sub_slots[idx] if curr_slot.is_end_of_slot(): # dont validate intermediate vdfs if slot is blue boxed assert curr_slot.cc_slot_end if curr_slot.cc_slot_end.normalized_to_identity is True: log.debug(f"skip intermediate vdfs slot {sub_slot_idx}") return True else: break idx += 1 if sub_slot_data.icc_infusion_point is not None and sub_slot_data.icc_ip_vdf_info is not None: input = ClassgroupElement.get_default_element() if not prev_ssd.is_challenge() and prev_ssd.icc_ip_vdf_info is not None: input = prev_ssd.icc_ip_vdf_info.output if not sub_slot_data.icc_infusion_point.is_valid(constants, input, sub_slot_data.icc_ip_vdf_info, None): log.error(f"failed icc infusion point vdf validation {sub_slot_data.icc_slot_end_info} ") return False assert sub_slot_data.signage_point_index is not None if sub_slot_data.cc_signage_point: assert sub_slot_data.cc_sp_vdf_info input = ClassgroupElement.get_default_element() if not sub_slot_data.cc_signage_point.normalized_to_identity: is_overflow = is_overflow_block(constants, sub_slot_data.signage_point_index) input = sub_slot_data_vdf_input( constants, sub_slot_data, sub_slot_idx, sub_slots, is_overflow, prev_ssd.is_end_of_slot(), ssi ) if not sub_slot_data.cc_signage_point.is_valid(constants, input, sub_slot_data.cc_sp_vdf_info): log.error(f"failed cc signage point vdf validation {sub_slot_data.cc_sp_vdf_info}") return False input = ClassgroupElement.get_default_element() assert sub_slot_data.cc_ip_vdf_info assert sub_slot_data.cc_infusion_point cc_ip_vdf_info = sub_slot_data.cc_ip_vdf_info if not sub_slot_data.cc_infusion_point.normalized_to_identity and prev_ssd.cc_slot_end is None: assert prev_ssd.cc_ip_vdf_info input = prev_ssd.cc_ip_vdf_info.output assert sub_slot_data.total_iters assert prev_ssd.total_iters ip_vdf_iters = uint64(sub_slot_data.total_iters - prev_ssd.total_iters) cc_ip_vdf_info = VDFInfo( sub_slot_data.cc_ip_vdf_info.challenge, ip_vdf_iters, sub_slot_data.cc_ip_vdf_info.output ) if not sub_slot_data.cc_infusion_point.is_valid(constants, input, cc_ip_vdf_info): log.error(f"failed cc infusion point vdf validation {sub_slot_data.cc_slot_end_info}") return False return True def sub_slot_data_vdf_input( constants: ConsensusConstants, sub_slot_data: SubSlotData, sub_slot_idx: int, sub_slots: List[SubSlotData], is_overflow: bool, new_sub_slot: bool, ssi: uint64, ) -> ClassgroupElement: cc_input = ClassgroupElement.get_default_element() sp_total_iters = get_sp_total_iters(constants, is_overflow, ssi, sub_slot_data) ssd: Optional[SubSlotData] = None if is_overflow and new_sub_slot: if sub_slot_idx >= 2: if sub_slots[sub_slot_idx - 2].cc_slot_end_info is None: for ssd_idx in reversed(range(0, sub_slot_idx - 1)): ssd = sub_slots[ssd_idx] if ssd.cc_slot_end_info is not None: ssd = sub_slots[ssd_idx + 1] break if not (ssd.total_iters > sp_total_iters): break if ssd and ssd.cc_ip_vdf_info is not None: if ssd.total_iters < sp_total_iters: cc_input = ssd.cc_ip_vdf_info.output return cc_input elif not is_overflow and not new_sub_slot: for ssd_idx in reversed(range(0, sub_slot_idx)): ssd = sub_slots[ssd_idx] if ssd.cc_slot_end_info is not None: ssd = sub_slots[ssd_idx + 1] break if not (ssd.total_iters > sp_total_iters): break assert ssd is not None if ssd.cc_ip_vdf_info is not None: if ssd.total_iters < sp_total_iters: cc_input = ssd.cc_ip_vdf_info.output return cc_input elif not new_sub_slot and is_overflow: slots_seen = 0 for ssd_idx in reversed(range(0, sub_slot_idx)): ssd = sub_slots[ssd_idx] if ssd.cc_slot_end_info is not None: slots_seen += 1 if slots_seen == 2: return ClassgroupElement.get_default_element() if ssd.cc_slot_end_info is None and not (ssd.total_iters > sp_total_iters): break assert ssd is not None if ssd.cc_ip_vdf_info is not None: if ssd.total_iters < sp_total_iters: cc_input = ssd.cc_ip_vdf_info.output return cc_input def _validate_recent_blocks(constants_dict: Dict, recent_chain_bytes: bytes, summaries_bytes: List[bytes]) -> bool: constants, summaries = bytes_to_vars(constants_dict, summaries_bytes) recent_chain: RecentChainData = RecentChainData.from_bytes(recent_chain_bytes) sub_blocks = BlockCache({}) first_ses_idx = _get_ses_idx(recent_chain.recent_chain_data) ses_idx = len(summaries) - len(first_ses_idx) ssi: uint64 = constants.SUB_SLOT_ITERS_STARTING diff: Optional[uint64] = constants.DIFFICULTY_STARTING last_blocks_to_validate = 100 # todo remove cap after benchmarks for summary in summaries[:ses_idx]: if summary.new_sub_slot_iters is not None: ssi = summary.new_sub_slot_iters if summary.new_difficulty is not None: diff = summary.new_difficulty ses_blocks, sub_slots, transaction_blocks = 0, 0, 0 challenge, prev_challenge = None, None tip_height = recent_chain.recent_chain_data[-1].height prev_block_record = None deficit = uint8(0) for idx, block in enumerate(recent_chain.recent_chain_data): required_iters = uint64(0) overflow = False ses = False height = block.height for sub_slot in block.finished_sub_slots: prev_challenge = challenge challenge = sub_slot.challenge_chain.get_hash() deficit = sub_slot.reward_chain.deficit if sub_slot.challenge_chain.subepoch_summary_hash is not None: ses = True assert summaries[ses_idx].get_hash() == sub_slot.challenge_chain.subepoch_summary_hash ses_idx += 1 if sub_slot.challenge_chain.new_sub_slot_iters is not None: ssi = sub_slot.challenge_chain.new_sub_slot_iters if sub_slot.challenge_chain.new_difficulty is not None: diff = sub_slot.challenge_chain.new_difficulty if (challenge is not None) and (prev_challenge is not None): overflow = is_overflow_block(constants, block.reward_chain_block.signage_point_index) deficit = get_deficit(constants, deficit, prev_block_record, overflow, len(block.finished_sub_slots)) log.debug(f"wp, validate block {block.height}") if sub_slots > 2 and transaction_blocks > 11 and (tip_height - block.height < last_blocks_to_validate): required_iters, error = validate_finished_header_block( constants, sub_blocks, block, False, diff, ssi, ses_blocks > 2 ) if error is not None: log.error(f"block {block.header_hash} failed validation {error}") return False else: required_iters = _validate_pospace_recent_chain( constants, block, challenge, diff, overflow, prev_challenge ) if required_iters is None: return False curr_block_ses = None if not ses else summaries[ses_idx - 1] block_record = header_block_to_sub_block_record( constants, required_iters, block, ssi, overflow, deficit, height, curr_block_ses ) log.debug(f"add block {block_record.height} to tmp sub blocks") sub_blocks.add_block_record(block_record) if block.first_in_sub_slot: sub_slots += 1 if block.is_transaction_block: transaction_blocks += 1 if ses: ses_blocks += 1 prev_block_record = block_record return True def _validate_pospace_recent_chain( constants: ConsensusConstants, block: HeaderBlock, challenge: bytes32, diff: uint64, overflow: bool, prev_challenge: bytes32, ): if block.reward_chain_block.challenge_chain_sp_vdf is None: # Edge case of first sp (start of slot), where sp_iters == 0 cc_sp_hash: bytes32 = challenge else: cc_sp_hash = block.reward_chain_block.challenge_chain_sp_vdf.output.get_hash() assert cc_sp_hash is not None q_str = block.reward_chain_block.proof_of_space.verify_and_get_quality_string( constants, challenge if not overflow else prev_challenge, cc_sp_hash, ) if q_str is None: log.error(f"could not verify proof of space block {block.height} {overflow}") return None required_iters = calculate_iterations_quality( constants.DIFFICULTY_CONSTANT_FACTOR, q_str, block.reward_chain_block.proof_of_space.size, diff, cc_sp_hash, ) return required_iters def __validate_pospace( constants: ConsensusConstants, segment: SubEpochChallengeSegment, idx: int, curr_diff: uint64, ses: Optional[SubEpochSummary], first_in_sub_epoch: bool, ) -> Optional[uint64]: if first_in_sub_epoch and segment.sub_epoch_n == 0 and idx == 0: cc_sub_slot_hash = constants.GENESIS_CHALLENGE else: cc_sub_slot_hash = __get_cc_sub_slot(segment.sub_slots, idx, ses).get_hash() sub_slot_data: SubSlotData = segment.sub_slots[idx] if sub_slot_data.signage_point_index and is_overflow_block(constants, sub_slot_data.signage_point_index): curr_slot = segment.sub_slots[idx - 1] assert curr_slot.cc_slot_end_info challenge = curr_slot.cc_slot_end_info.challenge else: challenge = cc_sub_slot_hash if sub_slot_data.cc_sp_vdf_info is None: cc_sp_hash = cc_sub_slot_hash else: cc_sp_hash = sub_slot_data.cc_sp_vdf_info.output.get_hash() # validate proof of space assert sub_slot_data.proof_of_space is not None q_str = sub_slot_data.proof_of_space.verify_and_get_quality_string( constants, challenge, cc_sp_hash, ) if q_str is None: log.error("could not verify proof of space") return None return calculate_iterations_quality( constants.DIFFICULTY_CONSTANT_FACTOR, q_str, sub_slot_data.proof_of_space.size, curr_diff, cc_sp_hash, ) def __get_rc_sub_slot( constants: ConsensusConstants, segment: SubEpochChallengeSegment, summaries: List[SubEpochSummary], curr_ssi: uint64, ) -> RewardChainSubSlot: ses = summaries[uint32(segment.sub_epoch_n - 1)] # find first challenge in sub epoch first_idx = None first = None for idx, curr in enumerate(segment.sub_slots): if curr.cc_slot_end is None: first_idx = idx first = curr break assert first_idx idx = first_idx slots = segment.sub_slots # number of slots to look for slots_n = 1 assert first assert first.signage_point_index is not None if is_overflow_block(constants, first.signage_point_index): if idx >= 2 and slots[idx - 2].cc_slot_end is None: slots_n = 2 new_diff = None if ses is None else ses.new_difficulty new_ssi = None if ses is None else ses.new_sub_slot_iters ses_hash = None if ses is None else ses.get_hash() overflow = is_overflow_block(constants, first.signage_point_index) if overflow: if idx >= 2 and slots[idx - 2].cc_slot_end is not None and slots[idx - 1].cc_slot_end is not None: ses_hash = None new_ssi = None new_diff = None sub_slot = slots[idx] while True: if sub_slot.cc_slot_end: slots_n -= 1 if slots_n == 0: break idx -= 1 sub_slot = slots[idx] icc_sub_slot_hash: Optional[bytes32] = None assert sub_slot is not None assert sub_slot.cc_slot_end_info is not None assert segment.rc_slot_end_info is not None if idx != 0: cc_vdf_info = VDFInfo(sub_slot.cc_slot_end_info.challenge, curr_ssi, sub_slot.cc_slot_end_info.output) if sub_slot.icc_slot_end_info is not None: icc_slot_end_info = VDFInfo( sub_slot.icc_slot_end_info.challenge, curr_ssi, sub_slot.icc_slot_end_info.output ) icc_sub_slot_hash = icc_slot_end_info.get_hash() else: cc_vdf_info = sub_slot.cc_slot_end_info if sub_slot.icc_slot_end_info is not None: icc_sub_slot_hash = sub_slot.icc_slot_end_info.get_hash() cc_sub_slot = ChallengeChainSubSlot( cc_vdf_info, icc_sub_slot_hash, ses_hash, new_ssi, new_diff, ) rc_sub_slot = RewardChainSubSlot( segment.rc_slot_end_info, cc_sub_slot.get_hash(), icc_sub_slot_hash, constants.MIN_BLOCKS_PER_CHALLENGE_BLOCK, ) return rc_sub_slot def __get_cc_sub_slot(sub_slots: List[SubSlotData], idx, ses: Optional[SubEpochSummary]) -> ChallengeChainSubSlot: sub_slot: Optional[SubSlotData] = None for i in reversed(range(0, idx)): sub_slot = sub_slots[i] if sub_slot.cc_slot_end_info is not None: break assert sub_slot is not None assert sub_slot.cc_slot_end_info is not None icc_vdf = sub_slot.icc_slot_end_info icc_vdf_hash: Optional[bytes32] = None if icc_vdf is not None: icc_vdf_hash = icc_vdf.get_hash() cc_sub_slot = ChallengeChainSubSlot( sub_slot.cc_slot_end_info, icc_vdf_hash, None if ses is None else ses.get_hash(), None if ses is None else ses.new_sub_slot_iters, None if ses is None else ses.new_difficulty, ) return cc_sub_slot def _get_curr_diff_ssi(constants: ConsensusConstants, idx, summaries): curr_difficulty = constants.DIFFICULTY_STARTING curr_ssi = constants.SUB_SLOT_ITERS_STARTING for ses in reversed(summaries[0:idx]): if ses.new_sub_slot_iters is not None: curr_ssi = ses.new_sub_slot_iters curr_difficulty = ses.new_difficulty break return curr_difficulty, curr_ssi def vars_to_bytes(constants, summaries, weight_proof): constants_dict = recurse_jsonify(dataclasses.asdict(constants)) wp_recent_chain_bytes = bytes(RecentChainData(weight_proof.recent_chain_data)) wp_segment_bytes = bytes(SubEpochSegments(weight_proof.sub_epoch_segments)) summary_bytes = [] for summary in summaries: summary_bytes.append(bytes(summary)) return constants_dict, summary_bytes, wp_segment_bytes, wp_recent_chain_bytes def bytes_to_vars(constants_dict, summaries_bytes): summaries = [] for summary in summaries_bytes: summaries.append(SubEpochSummary.from_bytes(summary)) constants: ConsensusConstants = dataclass_from_dict(ConsensusConstants, constants_dict) return constants, summaries def _get_last_ses_hash( constants: ConsensusConstants, recent_reward_chain: List[HeaderBlock] ) -> Tuple[Optional[bytes32], uint32]: for idx, block in enumerate(reversed(recent_reward_chain)): if (block.reward_chain_block.height % constants.SUB_EPOCH_BLOCKS) == 0: idx = len(recent_reward_chain) - 1 - idx # reverse # find first block after sub slot end while idx < len(recent_reward_chain): curr = recent_reward_chain[idx] if len(curr.finished_sub_slots) > 0: for slot in curr.finished_sub_slots: if slot.challenge_chain.subepoch_summary_hash is not None: return ( slot.challenge_chain.subepoch_summary_hash, curr.reward_chain_block.height, ) idx += 1 return None, uint32(0) def _get_ses_idx(recent_reward_chain: List[HeaderBlock]) -> List[int]: idxs: List[int] = [] for idx, curr in enumerate(recent_reward_chain): if len(curr.finished_sub_slots) > 0: for slot in curr.finished_sub_slots: if slot.challenge_chain.subepoch_summary_hash is not None: idxs.append(idx) return idxs def get_deficit( constants: ConsensusConstants, curr_deficit: uint8, prev_block: BlockRecord, overflow: bool, num_finished_sub_slots: int, ) -> uint8: if prev_block is None: if curr_deficit >= 1 and not (overflow and curr_deficit == constants.MIN_BLOCKS_PER_CHALLENGE_BLOCK): curr_deficit -= 1 return curr_deficit return calculate_deficit(constants, uint32(prev_block.height + 1), prev_block, overflow, num_finished_sub_slots) def get_sp_total_iters(constants: ConsensusConstants, is_overflow: bool, ssi: uint64, sub_slot_data: SubSlotData): assert sub_slot_data.cc_ip_vdf_info is not None assert sub_slot_data.total_iters is not None assert sub_slot_data.signage_point_index is not None sp_iters: uint64 = calculate_sp_iters(constants, ssi, sub_slot_data.signage_point_index) ip_iters: uint64 = sub_slot_data.cc_ip_vdf_info.number_of_iterations sp_sub_slot_total_iters = uint128(sub_slot_data.total_iters - ip_iters) if is_overflow: sp_sub_slot_total_iters = uint128(sp_sub_slot_total_iters - ssi) return sp_sub_slot_total_iters + sp_iters def blue_boxed_end_of_slot(sub_slot: EndOfSubSlotBundle): if sub_slot.proofs.challenge_chain_slot_proof.normalized_to_identity: if sub_slot.proofs.infused_challenge_chain_slot_proof is not None: if sub_slot.proofs.infused_challenge_chain_slot_proof.normalized_to_identity: return True else: return True return False def validate_sub_epoch_sampling(rng, sub_epoch_weight_list, weight_proof): tip = weight_proof.recent_chain_data[-1] weight_to_check = _get_weights_for_sampling(rng, tip.weight, weight_proof.recent_chain_data) sampled_sub_epochs: dict[int, bool] = {} for idx in range(1, len(sub_epoch_weight_list)): if _sample_sub_epoch(sub_epoch_weight_list[idx - 1], sub_epoch_weight_list[idx], weight_to_check): sampled_sub_epochs[idx - 1] = True if len(sampled_sub_epochs) == WeightProofHandler.MAX_SAMPLES: break curr_sub_epoch_n = -1 for sub_epoch_segment in weight_proof.sub_epoch_segments: if curr_sub_epoch_n < sub_epoch_segment.sub_epoch_n: if sub_epoch_segment.sub_epoch_n in sampled_sub_epochs: del sampled_sub_epochs[sub_epoch_segment.sub_epoch_n] curr_sub_epoch_n = sub_epoch_segment.sub_epoch_n if len(sampled_sub_epochs) > 0: return False return True def map_segments_by_sub_epoch(sub_epoch_segments) -> Dict[int, List[SubEpochChallengeSegment]]: segments: Dict[int, List[SubEpochChallengeSegment]] = {} curr_sub_epoch_n = -1 for idx, segment in enumerate(sub_epoch_segments): if curr_sub_epoch_n < segment.sub_epoch_n: curr_sub_epoch_n = segment.sub_epoch_n segments[curr_sub_epoch_n] = [] segments[curr_sub_epoch_n].append(segment) return segments def validate_total_iters( segment: SubEpochChallengeSegment, sub_slot_data_idx, expected_sub_slot_iters: uint64, finished_sub_slots_since_prev: int, prev_b: SubSlotData, prev_sub_slot_data_iters, genesis, ) -> bool: sub_slot_data = segment.sub_slots[sub_slot_data_idx] if genesis: total_iters: uint128 = uint128(expected_sub_slot_iters * finished_sub_slots_since_prev) elif segment.sub_slots[sub_slot_data_idx - 1].is_end_of_slot(): assert prev_b.total_iters assert prev_b.cc_ip_vdf_info total_iters = prev_b.total_iters # Add the rest of the slot of prev_b total_iters = uint128(total_iters + prev_sub_slot_data_iters - prev_b.cc_ip_vdf_info.number_of_iterations) # Add other empty slots total_iters = uint128(total_iters + (expected_sub_slot_iters * (finished_sub_slots_since_prev - 1))) else: # Slot iters is guaranteed to be the same for header_block and prev_b # This takes the beginning of the slot, and adds ip_iters assert prev_b.cc_ip_vdf_info assert prev_b.total_iters total_iters = uint128(prev_b.total_iters - prev_b.cc_ip_vdf_info.number_of_iterations) total_iters = uint128(total_iters + sub_slot_data.cc_ip_vdf_info.number_of_iterations) return total_iters == sub_slot_data.total_iters
42.373585
120
0.67247
15eea01b6d32560e7552a6a3c6876f04ca6a418d
3,893
py
Python
DJANGO/trainingapp/trainingapp/settings.py
NIXON707/Frameworks-7a-2020B
6892f8dd14b4b6f54eaf06ee5365c95006d815db
[ "MIT" ]
null
null
null
DJANGO/trainingapp/trainingapp/settings.py
NIXON707/Frameworks-7a-2020B
6892f8dd14b4b6f54eaf06ee5365c95006d815db
[ "MIT" ]
null
null
null
DJANGO/trainingapp/trainingapp/settings.py
NIXON707/Frameworks-7a-2020B
6892f8dd14b4b6f54eaf06ee5365c95006d815db
[ "MIT" ]
null
null
null
""" Django settings for trainingapp project. Generated by 'django-admin startproject' using Django 3.1.1. For more information on this file, see https://docs.djangoproject.com/en/3.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.1/ref/settings/ """ import pymysql import os pymysql.install_as_MySQLdb() pymysql.version_info = (1, 3, 13, 'final', 0) from pathlib import Path #import dj_database_url from decouple import config # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'r@@%!&$@__8wqb@ulww-)4(*6u2#53ik-gcnv9ygl0v+=l*@qc' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True #DEBUG = False ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = [ 'market.apps.MarketConfig', 'warehouse.apps.WarehouseConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'trainingapp.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'trainingapp.wsgi.application' # Database # https://docs.djangoproject.com/en/3.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE' : 'django.db.backends.postgresql_psycopg2', 'NAME' : 'trainingapp', 'USER' : 'postgres', 'PASSWORD' : 'nixon', 'HOST' : 'localhost', 'PORT' : '5432', } #'default': { # 'ENGINE': 'django.db.backends.sqlite3', # 'NAME': BASE_DIR / 'db.sqlite3', #} # #'default': { # 'ENGINE' : 'django.db.backends.mysql', # 'NAME' : 'trainingapp', # 'USER' : 'root', # 'PASSWORD' : 'password', # 'HOST' : 'localhost', # 'PORT' : '3306', #} } # Password validation # https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.1/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os. path.join(BASE_DIR, 'static'), ]
25.444444
91
0.658618
8d87b1712970beae100a3b5dc1a249e0b3210081
936
py
Python
clean.py
ychnlgy/MailUpdater
4cac2e62a699ade0257418be68c76c450e5c7d5a
[ "MIT" ]
null
null
null
clean.py
ychnlgy/MailUpdater
4cac2e62a699ade0257418be68c76c450e5c7d5a
[ "MIT" ]
null
null
null
clean.py
ychnlgy/MailUpdater
4cac2e62a699ade0257418be68c76c450e5c7d5a
[ "MIT" ]
null
null
null
#!/usr/bin/python3 import os, shutil ROOT = "." PATTERNS = [".pyc", "__pycache__"] BOLD = '\033[1m' ENDC = '\033[0m' TEMPLATE = "%s -- %s" def main(): recurse(ROOT, PATTERNS) def bold(s): return BOLD + s + ENDC def report(d, t, f): t = ["F", "D"][t] temp = TEMPLATE % (t, f) if d: temp = bold(temp) print(temp) def recurse(f, patterns): t = os.path.isdir(f) if t: d = matches(f, patterns) report(d, t, f) if d: shutil.rmtree(f) else: for fname in os.listdir(f): newf = os.path.join(f, fname) recurse(newf, patterns) else: d = matches(f, patterns) if d: os.remove(f) report(d, t, f) def matches(f, patterns): for pattern in patterns: if f.endswith(pattern): return True return False if __name__ == "__main__": main()
17.660377
45
0.497863
0dd47dde3df618b0769da1e05b388749efaf95a8
10,361
py
Python
tests/garage/tf/policies/test_categorical_lstm_policy_with_model_transit.py
arbenton/garage
5c398255fbfae375370483f18216996d82590a88
[ "MIT" ]
null
null
null
tests/garage/tf/policies/test_categorical_lstm_policy_with_model_transit.py
arbenton/garage
5c398255fbfae375370483f18216996d82590a88
[ "MIT" ]
null
null
null
tests/garage/tf/policies/test_categorical_lstm_policy_with_model_transit.py
arbenton/garage
5c398255fbfae375370483f18216996d82590a88
[ "MIT" ]
1
2020-02-05T00:34:07.000Z
2020-02-05T00:34:07.000Z
""" Unit test for Categorical LSTM Policy with Model. This test consists of four different CategoricalLSTMPolicy: P1, P2, P3 and P4. P1 and P2 are from CategoricalLSTMPolicy, which does not use garage.tf.models.LSTMModel while P3 and P4 do use. This test ensures the outputs from all the policies are the same, for the transition from using CategoricalLSTMPolicy to CategoricalLSTMPolicyWithModel. It covers get_action, get_actions, dist_info_sym, kl_sym, log_likelihood_sym, entropy_sym and likelihood_ratio_sym. """ from unittest import mock import numpy as np import tensorflow as tf from garage.tf.envs import TfEnv from garage.tf.misc import tensor_utils from garage.tf.policies import CategoricalLSTMPolicy from garage.tf.policies import CategoricalLSTMPolicyWithModel from tests.fixtures import TfGraphTestCase from tests.fixtures.envs.dummy import DummyDiscreteEnv class TestCategoricalLSTMPolicyWithModelTransit(TfGraphTestCase): def setup_method(self): super().setup_method() env = TfEnv(DummyDiscreteEnv(obs_dim=(1, ), action_dim=1)) self.default_initializer = tf.constant_initializer(1) self.default_hidden_nonlinearity = tf.nn.tanh self.default_recurrent_nonlinearity = tf.nn.sigmoid self.default_output_nonlinearity = None self.time_step = 1 self.policy1 = CategoricalLSTMPolicy( env_spec=env.spec, hidden_dim=4, hidden_nonlinearity=self.default_hidden_nonlinearity, recurrent_nonlinearity=self.default_recurrent_nonlinearity, recurrent_w_x_init=self.default_initializer, recurrent_w_h_init=self.default_initializer, output_nonlinearity=self.default_output_nonlinearity, output_w_init=self.default_initializer, state_include_action=True, name='P1') self.policy2 = CategoricalLSTMPolicy( env_spec=env.spec, hidden_dim=4, hidden_nonlinearity=self.default_hidden_nonlinearity, recurrent_nonlinearity=self.default_recurrent_nonlinearity, recurrent_w_x_init=self.default_initializer, recurrent_w_h_init=self.default_initializer, output_nonlinearity=self.default_output_nonlinearity, output_w_init=tf.constant_initializer(2), state_include_action=True, name='P2') self.sess.run(tf.global_variables_initializer()) self.policy3 = CategoricalLSTMPolicyWithModel( env_spec=env.spec, hidden_dim=4, hidden_nonlinearity=self.default_hidden_nonlinearity, hidden_w_init=self.default_initializer, recurrent_nonlinearity=self.default_recurrent_nonlinearity, recurrent_w_init=self.default_initializer, output_nonlinearity=self.default_output_nonlinearity, output_w_init=self.default_initializer, state_include_action=True, name='P3') self.policy4 = CategoricalLSTMPolicyWithModel( env_spec=env.spec, hidden_dim=4, hidden_nonlinearity=self.default_hidden_nonlinearity, hidden_w_init=self.default_initializer, recurrent_nonlinearity=self.default_recurrent_nonlinearity, recurrent_w_init=self.default_initializer, output_nonlinearity=self.default_output_nonlinearity, output_w_init=tf.constant_initializer(2), state_include_action=True, name='P4') self.policy1.reset() self.policy2.reset() self.policy3.reset() self.policy4.reset() self.obs = [env.reset()] self.obs = np.concatenate([self.obs for _ in range(self.time_step)], axis=0) self.obs_ph = tf.placeholder( tf.float32, shape=(None, None, env.observation_space.flat_dim)) self.action_ph = tf.placeholder( tf.float32, shape=(None, None, env.action_space.flat_dim)) self.dist1_sym = self.policy1.dist_info_sym( obs_var=self.obs_ph, state_info_vars={'prev_action': np.zeros((2, self.time_step, 1))}, name='p1_sym') self.dist2_sym = self.policy2.dist_info_sym( obs_var=self.obs_ph, state_info_vars={'prev_action': np.zeros((2, self.time_step, 1))}, name='p2_sym') self.dist3_sym = self.policy3.dist_info_sym( obs_var=self.obs_ph, state_info_vars={'prev_action': np.zeros((2, self.time_step, 1))}, name='p3_sym') self.dist4_sym = self.policy4.dist_info_sym( obs_var=self.obs_ph, state_info_vars={'prev_action': np.zeros((2, self.time_step, 1))}, name='p4_sym') def test_dist_info_sym_output(self): # batch size = 2 dist1 = self.sess.run( self.dist1_sym, feed_dict={self.obs_ph: [self.obs, self.obs]}) dist2 = self.sess.run( self.dist2_sym, feed_dict={self.obs_ph: [self.obs, self.obs]}) dist3 = self.sess.run( self.dist3_sym, feed_dict={self.obs_ph: [self.obs, self.obs]}) dist4 = self.sess.run( self.dist4_sym, feed_dict={self.obs_ph: [self.obs, self.obs]}) assert np.array_equal(dist1['prob'], dist3['prob']) assert np.array_equal(dist2['prob'], dist4['prob']) @mock.patch('numpy.random.choice') def test_get_action(self, mock_rand): mock_rand.return_value = 0 action1, agent_info1 = self.policy1.get_action(self.obs) action2, agent_info2 = self.policy2.get_action(self.obs) action3, agent_info3 = self.policy3.get_action(self.obs) action4, agent_info4 = self.policy4.get_action(self.obs) assert action1 == action3 assert action2 == action4 assert np.array_equal(agent_info1['prob'], agent_info3['prob']) assert np.array_equal(agent_info2['prob'], agent_info4['prob']) actions1, agent_infos1 = self.policy1.get_actions([self.obs]) actions2, agent_infos2 = self.policy2.get_actions([self.obs]) actions3, agent_infos3 = self.policy3.get_actions([self.obs]) actions4, agent_infos4 = self.policy4.get_actions([self.obs]) assert np.array_equal(actions1, actions3) assert np.array_equal(actions2, actions4) assert np.array_equal(agent_infos1['prob'], agent_infos3['prob']) assert np.array_equal(agent_infos2['prob'], agent_infos4['prob']) def test_kl_sym(self): kl_diff_sym1 = self.policy1.distribution.kl_sym( self.dist1_sym, self.dist2_sym) objective1 = tf.reduce_mean(kl_diff_sym1) kl_func = tensor_utils.compile_function([self.obs_ph], objective1) kl1 = kl_func([self.obs, self.obs]) kl_diff_sym2 = self.policy3.distribution.kl_sym( self.dist3_sym, self.dist4_sym) objective2 = tf.reduce_mean(kl_diff_sym2) kl_func = tensor_utils.compile_function([self.obs_ph], objective2) kl2 = kl_func([self.obs, self.obs]) assert np.array_equal(kl1, kl2) def test_log_likehihood_sym(self): log_prob_sym1 = self.policy1.distribution.log_likelihood_sym( self.action_ph, self.dist1_sym) log_prob_func = tensor_utils.compile_function( [self.obs_ph, self.action_ph], log_prob_sym1) log_prob1 = log_prob_func([self.obs, self.obs], np.ones((2, self.time_step, 1))) log_prob_sym2 = self.policy3.distribution.log_likelihood_sym( self.action_ph, self.dist3_sym) log_prob_func2 = tensor_utils.compile_function( [self.obs_ph, self.action_ph], log_prob_sym2) log_prob2 = log_prob_func2([self.obs, self.obs], np.ones((2, self.time_step, 1))) assert np.array_equal(log_prob1, log_prob2) log_prob_sym1 = self.policy2.distribution.log_likelihood_sym( self.action_ph, self.dist2_sym) log_prob_func = tensor_utils.compile_function( [self.obs_ph, self.action_ph], log_prob_sym1) log_prob1 = log_prob_func([self.obs, self.obs], np.ones((2, self.time_step, 1))) log_prob_sym2 = self.policy4.distribution.log_likelihood_sym( self.action_ph, self.dist4_sym) log_prob_func2 = tensor_utils.compile_function( [self.obs_ph, self.action_ph], log_prob_sym2) log_prob2 = log_prob_func2([self.obs, self.obs], np.ones((2, self.time_step, 1))) assert np.array_equal(log_prob1, log_prob2) def test_policy_entropy_sym(self): entropy_sym1 = self.policy1.distribution.entropy_sym( self.dist1_sym, name='entropy_sym1') entropy_func = tensor_utils.compile_function([self.obs_ph], entropy_sym1) entropy1 = entropy_func([self.obs, self.obs]) entropy_sym2 = self.policy3.distribution.entropy_sym( self.dist3_sym, name='entropy_sym1') entropy_func = tensor_utils.compile_function([self.obs_ph], entropy_sym2) entropy2 = entropy_func([self.obs, self.obs]) assert np.array_equal(entropy1, entropy2) def test_likelihood_ratio_sym(self): likelihood_ratio_sym1 = self.policy1.distribution.likelihood_ratio_sym( self.action_ph, self.dist1_sym, self.dist2_sym, name='li_ratio_sym1') likelihood_ratio_func = tensor_utils.compile_function( [self.action_ph, self.obs_ph], likelihood_ratio_sym1) likelihood_ratio1 = likelihood_ratio_func( np.ones((2, 1, 1)), [self.obs, self.obs]) likelihood_ratio_sym2 = self.policy3.distribution.likelihood_ratio_sym( self.action_ph, self.dist3_sym, self.dist4_sym, name='li_ratio_sym2') likelihood_ratio_func = tensor_utils.compile_function( [self.action_ph, self.obs_ph], likelihood_ratio_sym2) likelihood_ratio2 = likelihood_ratio_func( np.ones((2, 1, 1)), [self.obs, self.obs]) assert np.array_equal(likelihood_ratio1, likelihood_ratio2)
43.533613
79
0.657562
958768b8dd14855315f22560afe6620767e37771
17
py
Python
benchmarks/models/__init__.py
markozeman/TransformerSuperposition
a0638c8cb7a346dc9bd0ac992ce5bf306d44303b
[ "MIT" ]
null
null
null
benchmarks/models/__init__.py
markozeman/TransformerSuperposition
a0638c8cb7a346dc9bd0ac992ce5bf306d44303b
[ "MIT" ]
null
null
null
benchmarks/models/__init__.py
markozeman/TransformerSuperposition
a0638c8cb7a346dc9bd0ac992ce5bf306d44303b
[ "MIT" ]
null
null
null
from . import mlp
17
17
0.764706
ba90e2ebaf9c707b86e448928f2850de34296a6b
1,170
py
Python
osbenchmark/builder/launchers/launcher.py
sharp-pixel/opensearch-benchmark
32b2a68c3672f680fbc90a591f6c15b46701142e
[ "Apache-2.0" ]
26
2021-12-09T06:58:53.000Z
2022-03-29T15:01:37.000Z
osbenchmark/builder/launchers/launcher.py
sharp-pixel/opensearch-benchmark
32b2a68c3672f680fbc90a591f6c15b46701142e
[ "Apache-2.0" ]
63
2021-12-08T20:47:17.000Z
2022-03-31T18:21:31.000Z
osbenchmark/builder/launchers/launcher.py
sharp-pixel/opensearch-benchmark
32b2a68c3672f680fbc90a591f6c15b46701142e
[ "Apache-2.0" ]
5
2021-12-09T10:17:30.000Z
2022-03-03T05:31:12.000Z
from abc import ABC, abstractmethod class Launcher(ABC): """ Launchers are used to start and stop OpenSearch on the nodes in a self-managed cluster. """ def __init__(self, shell_executor): self.shell_executor = shell_executor @abstractmethod def start(self, host, node_configurations): """ Starts the OpenSearch nodes on a given host ;param host: A Host object defining the host on which to start the nodes ;param node_configurations: A list of NodeConfiguration objects detailing the installation data of the nodes on the host ;return nodes: A list of Node objects defining the nodes running on a host """ raise NotImplementedError @abstractmethod def stop(self, host, nodes): """ Stops the OpenSearch nodes on a given host ;param host: A Host object defining the host on which to stop the nodes ;param nodes: A list of Node objects defining the nodes running on a host ;return nodes: A list of Node objects representing OpenSearch nodes that were successfully stopped on the host """ raise NotImplementedError
36.5625
128
0.687179
f6eca5db0b003550ce8068afa299c42f2a0019dc
325
py
Python
librerias_mauro/maths.py
paleomau/MGOL_BOOTCAMP
8c2b018f49fd12a255ea6f323141260d04d4421d
[ "MIT" ]
null
null
null
librerias_mauro/maths.py
paleomau/MGOL_BOOTCAMP
8c2b018f49fd12a255ea6f323141260d04d4421d
[ "MIT" ]
null
null
null
librerias_mauro/maths.py
paleomau/MGOL_BOOTCAMP
8c2b018f49fd12a255ea6f323141260d04d4421d
[ "MIT" ]
null
null
null
''' Esta funcion eleve a la potencia deseada un rango de numeros que hay que definir''' def math_powers (range, power): the_list = [(a ** power) for a in range(range)] print(the_list) math_powers(10,3) # me da error int objetc is not callable. Prefiero dejar la funcion asi y resolver la duda el lunes en tutoria.
46.428571
111
0.72
ae726ac52d8f2253720213951983bdab64a7ae87
29,790
py
Python
Python/libraries/recognizers-date-time/recognizers_date_time/date_time/base_date.py
acblacktea/Recognizers-Text
2170b8e35216f3fd56cce98fb33cde5339c9f088
[ "MIT" ]
1
2019-06-19T10:45:24.000Z
2019-06-19T10:45:24.000Z
Python/libraries/recognizers-date-time/recognizers_date_time/date_time/base_date.py
mcunille/Recognizers-Text
c5375796ab3f00bee4d9ac1cf8873fe2cc29121b
[ "MIT" ]
null
null
null
Python/libraries/recognizers-date-time/recognizers_date_time/date_time/base_date.py
mcunille/Recognizers-Text
c5375796ab3f00bee4d9ac1cf8873fe2cc29121b
[ "MIT" ]
null
null
null
from abc import ABC, abstractmethod from typing import List, Optional, Pattern, Dict from datetime import datetime, timedelta import calendar from datedelta import datedelta import regex from recognizers_text.extractor import ExtractResult from recognizers_text.utilities import RegExpUtility from recognizers_number import BaseNumberExtractor, BaseNumberParser from recognizers_number.number import Constants as NumberConstants from .constants import Constants, TimeTypeConstants from .extractors import DateTimeExtractor from .parsers import DateTimeParser, DateTimeParseResult from .utilities import DateTimeUtilityConfiguration, Token, merge_all_tokens, get_tokens_from_regex, DateUtils, AgoLaterUtil, DateTimeFormatUtil, DateTimeResolutionResult, DayOfWeek, AgoLaterMode class DateExtractorConfiguration(ABC): @property @abstractmethod def date_regex_list(self) -> List[Pattern]: raise NotImplementedError @property @abstractmethod def implicit_date_list(self) -> List[Pattern]: raise NotImplementedError @property @abstractmethod def month_end(self) -> Pattern: raise NotImplementedError @property @abstractmethod def of_month(self) -> Pattern: raise NotImplementedError @property @abstractmethod def date_unit_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def for_the_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def week_day_and_day_of_month_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def relative_month_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def week_day_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def day_of_week(self) -> Dict[str, int]: raise NotImplementedError @property @abstractmethod def ordinal_extractor(self) -> BaseNumberExtractor: raise NotImplementedError @property @abstractmethod def integer_extractor(self) -> BaseNumberExtractor: raise NotImplementedError @property @abstractmethod def number_parser(self) -> BaseNumberParser: raise NotImplementedError @property @abstractmethod def duration_extractor(self) -> DateTimeExtractor: raise NotImplementedError @property @abstractmethod def utility_configuration(self) -> DateTimeUtilityConfiguration: raise NotImplementedError class BaseDateExtractor(DateTimeExtractor): @property def extractor_type_name(self) -> str: return Constants.SYS_DATETIME_DATE def __init__(self, config: DateExtractorConfiguration): self.config = config def extract(self, source: str, reference: datetime = None) -> List[ExtractResult]: if reference is None: reference = datetime.now() tokens = self.basic_regex_match(source) tokens.extend(self.implicit_date(source)) tokens.extend(self.number_with_month(source, reference)) tokens.extend(self.duration_with_before_and_after(source, reference)) result = merge_all_tokens(tokens, source, self.extractor_type_name) return result def basic_regex_match(self, source: str) -> List[Token]: ret: List[Token] = list() for regexp in self.config.date_regex_list: ret.extend(get_tokens_from_regex(regexp, source)) return ret def implicit_date(self, source: str) -> List[Token]: ret: List[Token] = list() for regexp in self.config.implicit_date_list: ret.extend(get_tokens_from_regex(regexp, source)) return ret def number_with_month(self, source: str, reference: datetime) -> List[Token]: ret: List[Token] = list() extract_results = self.config.ordinal_extractor.extract(source) extract_results.extend(self.config.integer_extractor.extract(source)) for result in extract_results: num = int(self.config.number_parser.parse(result).value) if num < 1 or num > 31: continue if result.start >= 0: front_string = source[0:result.start or 0] match = regex.search(self.config.month_end, front_string) if match is not None: ret.append(Token(match.start(), match.end() + result.length)) continue # handling cases like 'for the 25th' matches = regex.finditer(self.config.for_the_regex, source) is_found = False for match_case in matches: if match_case is not None: ordinal_num = RegExpUtility.get_group(match_case, 'DayOfMonth') if ordinal_num == result.text: length = len(RegExpUtility.get_group(match_case, 'end')) ret.append(Token(match_case.start(), match_case.end() - length)) is_found = True if is_found: continue # handling cases like 'Thursday the 21st', which both 'Thursday' and '21st' refer to a same date matches = regex.finditer(self.config.week_day_and_day_of_month_regex, source) for match_case in matches: if match_case is not None: ordinal_num = RegExpUtility.get_group(match_case, 'DayOfMonth') if ordinal_num == result.text: month = reference.month year = reference.year # get week of day for the ordinal number which is regarded as a date of reference month date = DateUtils.safe_create_from_min_value(year, month, num) num_week_day_str: str = calendar.day_name[date.weekday()].lower() # get week day from text directly, compare it with the weekday generated above # to see whether they refer to a same week day extracted_week_day_str = RegExpUtility.get_group(match_case, 'weekday').lower() if (date != DateUtils.min_value and self.config.day_of_week[num_week_day_str] == self.config.day_of_week[extracted_week_day_str]): ret.append( Token(match_case.start(), match_case.end())) is_found = True if is_found: continue # handling cases like '20th of next month' suffix_str: str = source[result.start + result.length:].lower() match = regex.match(self.config.relative_month_regex, suffix_str.strip()) space_len = len(suffix_str) - len(suffix_str.strip()) if match is not None and match.start() == 0: ret.append( Token(result.start, result.start + result.length + space_len + len(match.group()))) # handling cases like 'second Sunday' match = regex.match( self.config.week_day_regex, suffix_str.strip()) if (match is not None and match.start() == 0 and num >= 1 and num <= 5 and result.type == NumberConstants.SYS_NUM_ORDINAL): week_day_str = RegExpUtility.get_group(match, 'weekday') if week_day_str in self.config.day_of_week: ret.append( Token(result.start, result.start + result.length + space_len + len(match.group()))) if result.start + result.length < len(source): after_string = source[result.start + result.length:] match = regex.match(self.config.of_month, after_string) if match is not None: ret.append(Token(result.start, result.start + result.length + len(match.group()))) return ret def duration_with_before_and_after(self, source: str, reference: datetime) -> List[Token]: ret: List[Token] = list() duration_results = self.config.duration_extractor.extract(source, reference) for result in duration_results: match = regex.search(self.config.date_unit_regex, result.text) if match is None: continue ret = AgoLaterUtil.extractor_duration_with_before_and_after(source, result, ret, self.config.utility_configuration) return ret class DateParserConfiguration(ABC): @property @abstractmethod def ordinal_extractor(self) -> BaseNumberExtractor: raise NotImplementedError @property @abstractmethod def integer_extractor(self) -> BaseNumberExtractor: raise NotImplementedError @property @abstractmethod def cardinal_extractor(self) -> BaseNumberExtractor: raise NotImplementedError @property @abstractmethod def duration_extractor(self) -> DateTimeExtractor: raise NotImplementedError @property @abstractmethod def duration_parser(self) -> DateTimeParser: raise NotImplementedError @property @abstractmethod def number_parser(self) -> BaseNumberParser: raise NotImplementedError @property @abstractmethod def month_of_year(self) -> Dict[str, int]: raise NotImplementedError @property @abstractmethod def day_of_month(self) -> Dict[str, int]: raise NotImplementedError @property @abstractmethod def day_of_week(self) -> Dict[str, int]: raise NotImplementedError @property @abstractmethod def unit_map(self) -> Dict[str, str]: raise NotImplementedError @property @abstractmethod def cardinal_map(self) -> Dict[str, int]: raise NotImplementedError @property @abstractmethod def date_regex(self) -> List[Pattern]: raise NotImplementedError @property @abstractmethod def on_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def special_day_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def next_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def unit_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def month_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def week_day_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def last_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def this_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def week_day_of_month_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def for_the_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def week_day_and_day_of_month_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def relative_month_regex(self) -> Pattern: raise NotImplementedError @property @abstractmethod def utility_configuration(self) -> DateTimeUtilityConfiguration: raise NotImplementedError @property @abstractmethod def date_token_prefix(self) -> str: raise NotImplementedError @abstractmethod def get_swift_day(self, source: str) -> int: raise NotImplementedError @abstractmethod def get_swift_month(self, source: str) -> int: raise NotImplementedError @abstractmethod def is_cardinal_last(self, source: str) -> bool: raise NotImplementedError class BaseDateParser(DateTimeParser): @property def parser_type_name(self) -> str: return Constants.SYS_DATETIME_DATE def __init__(self, config: DateParserConfiguration): self.config = config def parse(self, source: ExtractResult, reference: datetime = None) -> Optional[DateTimeParseResult]: if reference is None: reference = datetime.now() result_value: DateTimeParseResult = None if source.type is self.parser_type_name: source_text = source.text.lower() inner_result = self.parse_basic_regex_match(source_text, reference) if not inner_result.success: inner_result = self.parse_implicit_date(source_text, reference) if not inner_result.success: inner_result = self.parse_weekday_of_month(source_text, reference) if not inner_result.success: inner_result = self.parser_duration_with_ago_and_later(source_text, reference) if not inner_result.success: inner_result = self.parse_number_with_month(source_text, reference) if not inner_result.success: inner_result = self.parse_single_number(source_text, reference) if inner_result.success: inner_result.future_resolution: Dict[str, str] = dict() inner_result.future_resolution[TimeTypeConstants.DATE] = DateTimeFormatUtil.format_date(inner_result.future_value) inner_result.past_resolution: Dict[str, str] = dict() inner_result.past_resolution[TimeTypeConstants.DATE] = DateTimeFormatUtil.format_date(inner_result.past_value) result_value = inner_result result = DateTimeParseResult(source) result.value = result_value result.timex_str = result_value.timex if result_value is not None else '' result.resolution_str = '' return result def parse_basic_regex_match(self, source: str, reference: datetime) -> DateTimeParseResult: trimmed_source = source.strip() result = DateTimeResolutionResult() for regexp in self.config.date_regex: offset = 0 match = regex.search(regexp, trimmed_source) if match is None: match = regex.search(regexp, self.config.date_token_prefix + trimmed_source) offset = len(self.config.date_token_prefix) if match and match.start() == offset and len(match.group()) == len(trimmed_source): result = self.match_to_date(match, reference) break return result def match_to_date(self, match, reference: datetime)-> DateTimeResolutionResult: result = DateTimeResolutionResult() year_str = RegExpUtility.get_group(match, 'year') month_str = RegExpUtility.get_group(match, 'month') day_str = RegExpUtility.get_group(match, 'day') month = 0 day = 0 year = 0 if month_str in self.config.month_of_year and day_str in self.config.day_of_month: month = self.config.month_of_year.get(month_str) day = self.config.day_of_month.get(day_str) if year_str: year = int(year_str) if year_str.isnumeric() else 0 if year < 100 and year >= Constants.MinTwoDigitYearPastNum: year += 1900 elif year >= 0 and year < Constants.MaxTwoDigitYearFutureNum: year += 2000 no_year = False if year == 0: year = reference.year result.timex = DateTimeFormatUtil.luis_date(-1, month, day) no_year = True else: result.timex = DateTimeFormatUtil.luis_date(year, month, day) future_date = DateUtils.safe_create_from_min_value(year, month, day) past_date = DateUtils.safe_create_from_min_value(year, month, day) if no_year and future_date < reference: future_date = DateUtils.safe_create_from_min_value(year + 1, month, day) if no_year and past_date >= reference: past_date = DateUtils.safe_create_from_min_value(year - 1, month, day) result.future_value = future_date result.past_value = past_date result.success = True return result def parse_implicit_date(self, source: str, reference: datetime) -> DateTimeParseResult: trimmed_source = source.strip() result = DateTimeResolutionResult() # handle "on 12" match = regex.search(self.config.on_regex, self.config.date_token_prefix + trimmed_source) if match and match.start() == len(self.config.date_token_prefix) and len(match.group()) == len(trimmed_source): day = 0 month = reference.month year = reference.year day_str = match.group('day') day = self.config.day_of_month.get(day_str) result.timex = DateTimeFormatUtil.luis_date(-1, -1, day) try_str = DateTimeFormatUtil.luis_date(year, month, day) try_date = datetime.strptime(try_str, '%Y-%m-%d') future_date: datetime past_date: datetime if try_date: future_date = DateUtils.safe_create_from_min_value(year, month, day) past_date = DateUtils.safe_create_from_min_value(year, month, day) if future_date < reference: future_date += datedelta(months=1) if past_date >= reference: past_date += datedelta(months=-1) else: future_date = DateUtils.safe_create_from_min_value(year, month + 1, day) past_date = DateUtils.safe_create_from_min_value(year, month - 1, day) result.future_value = future_date result.past_value = past_date result.success = True return result # handle "today", "the day before yesterday" match = regex.match(self.config.special_day_regex, trimmed_source) if match and match.start() == 0 and len(match.group()) == len(trimmed_source): swift = self.config.get_swift_day(match.group()) today = DateUtils.safe_create_from_min_value(reference.year, reference.month, reference.day) value = today + timedelta(days=swift) result.timex = DateTimeFormatUtil.luis_date_from_datetime(value) result.future_value = value result.past_value = value result.success = True return result # handle "next Sunday" match = regex.match(self.config.next_regex, trimmed_source) if match and match.start() == 0 and len(match.group()) == len(trimmed_source): weekday_str = match.group('weekday') value = DateUtils.next(reference, self.config.day_of_week.get(weekday_str)) result.timex = DateTimeFormatUtil.luis_date_from_datetime(value) result.future_value = value result.past_value = value result.success = True return result # handle "this Friday" match = regex.match(self.config.this_regex, trimmed_source) if match and match.start() == 0 and len(match.group()) == len(trimmed_source): weekday_str = match.group('weekday') value = DateUtils.this(reference, self.config.day_of_week.get(weekday_str)) result.timex = DateTimeFormatUtil.luis_date_from_datetime(value) result.future_value = value result.past_value = value result.success = True return result # handle "last Friday", "last mon" match = regex.match(self.config.last_regex, trimmed_source) if match and match.start() == 0 and len(match.group()) == len(trimmed_source): weekday_str = match.group('weekday') value = DateUtils.last(reference, self.config.day_of_week.get(weekday_str)) result.timex = DateTimeFormatUtil.luis_date_from_datetime(value) result.future_value = value result.past_value = value result.success = True return result # handle "Friday" match = regex.match(self.config.week_day_regex, trimmed_source) if match and match.start() == 0 and len(match.group()) == len(trimmed_source): weekday_str = match.group('weekday') weekday = self.config.day_of_week.get(weekday_str) value = DateUtils.this(reference, weekday) if weekday < int(DayOfWeek.Monday): weekday = int(DayOfWeek.Sunday) if weekday < reference.isoweekday(): value = DateUtils.next(reference, weekday) result.timex = 'XXXX-WXX-' + str(weekday) future_date = value past_date = value if future_date < reference: future_date += timedelta(weeks=1) if past_date >= reference: past_date -= timedelta(weeks=1) result.future_value = future_date result.past_value = past_date result.success = True return result # handle "for the 27th." match = regex.match(self.config.for_the_regex, trimmed_source) if match: day_str = match.group('DayOfMonth') er = ExtractResult.get_from_text(day_str) day = int(self.config.number_parser.parse(er).value) month = reference.month year = reference.year result.timex = DateTimeFormatUtil.luis_date(-1, -1, day) date = datetime(year, month, day) result.future_value = date result.past_value = date result.success = True return result # handling cases like 'Thursday the 21st', which both 'Thursday' and '21st' refer to a same date match = regex.match(self.config.week_day_and_day_of_month_regex, trimmed_source) if match: day_str = match.group('DayOfMonth') er = ExtractResult.get_from_text(day_str) day = int(self.config.number_parser.parse(er).value) month = reference.month year = reference.year # the validity of the phrase is guaranteed in the Date Extractor result.timex = DateTimeFormatUtil.luis_date(year, month, day) date = datetime(year, month, day) result.future_value = date result.past_value = date result.success = True return result return result def parse_weekday_of_month(self, source: str, reference: datetime) -> DateTimeParseResult: trimmed_source = source.strip() result = DateTimeResolutionResult() match = regex.match(self.config.week_day_of_month_regex, trimmed_source) if not match: return result cardinal_str = RegExpUtility.get_group(match, 'cardinal') weekday_str = RegExpUtility.get_group(match, 'weekday') month_str = RegExpUtility.get_group(match, 'month') no_year = False cardinal = 5 if self.config.is_cardinal_last(cardinal_str) else self.config.cardinal_map.get(cardinal_str) weekday = self.config.day_of_week.get(weekday_str) month = reference.month year = reference.year if not month_str: swift = self.config.get_swift_month(trimmed_source) temp = reference.replace(month=reference.month + swift) month = temp.month year = temp.year else: month = self.config.month_of_year.get(month_str) no_year = True value = self._compute_date(cardinal, weekday, month, year) if value.month != month: cardinal -= 1 value = value.replace(day=value.day - 7) future_date = value past_date = value if no_year and future_date < reference: future_date = self._compute_date(cardinal, weekday, month, year + 1) if future_date.month != month: future_date = future_date.replace(day=future_date.day - 7) if no_year and past_date >= reference: past_date = self._compute_date(cardinal, weekday, month, year - 1) if past_date.month != month: past_date = past_date.replace(day=past_date.date - 7) result.timex = '-'.join(['XXXX', DateTimeFormatUtil.to_str(month, 2), 'WXX', str(weekday), '#' + str(cardinal)]) result.future_value = future_date result.past_value = past_date result.success = True return result def _compute_date(self, cardinal: int, weekday: DayOfWeek, month: int, year: int): first_day = datetime(year, month, 1) first_weekday = DateUtils.this(first_day, weekday) if weekday == 0: weekday = int(DayOfWeek.Sunday) if weekday < first_day.isoweekday(): first_weekday = DateUtils.next(first_day, weekday) first_weekday = first_weekday.replace(day=first_weekday.day + (7 * (cardinal - 1))) return first_weekday def parser_duration_with_ago_and_later(self, source: str, reference: datetime) -> DateTimeParseResult: return AgoLaterUtil.parse_duration_with_ago_and_later( source, reference, self.config.duration_extractor, self.config.duration_parser, self.config.unit_map, self.config.unit_regex, self.config.utility_configuration, AgoLaterMode.DATE) def parse_number_with_month(self, source: str, reference: datetime) -> DateTimeParseResult: trimmed_source = source.strip() ambiguous = True result = DateTimeResolutionResult() ers = self.config.ordinal_extractor.extract(trimmed_source) if not ers: ers = self.config.integer_extractor.extract(trimmed_source) if not ers: return result num = int(self.config.number_parser.parse(ers[0]).value) day = 1 month = 0 match = regex.search(self.config.month_regex, trimmed_source) if match: month = self.config.month_of_year.get(match.group()) day = num else: # handling relative month match = regex.search(self.config.relative_month_regex, trimmed_source) if match: month_str = match.group('order') swift = self.config.get_swift_month(month_str) date = reference.replace(month=reference.month+swift) month = date.month day = num ambiguous = False # handling casesd like 'second Sunday' if not match: match = regex.search(self.config.week_day_regex, trimmed_source) if match: month = reference.month # resolve the date of wanted week day wanted_week_day = self.config.day_of_week.get(match.group('weekday')) first_date = DateUtils.safe_create_from_min_value(reference.year, reference.month, 1) first_weekday = first_date.isoweekday() delta_days = wanted_week_day - first_weekday if wanted_week_day > first_weekday else wanted_week_day - first_weekday + 7 first_wanted_week_day = first_date + timedelta(days=delta_days) day = first_wanted_week_day.day + ((num - 1) * 7) ambiguous = False if not match: return result year = reference.year # for LUIS format value string date = DateUtils.safe_create_from_min_value(year, month, day) future_date = date past_date = date if ambiguous: result.timex = DateTimeFormatUtil.luis_date(-1, month, day) if future_date < reference: future_date = future_date.replace(year=future_date.year+1) if past_date >= reference: past_date = past_date.replace(year=past_date.year+1) else: result.timex = DateTimeFormatUtil.luis_date(year, month, day) result.future_value = future_date result.past_value = past_date result.success = True return result def parse_single_number(self, source: str, reference: datetime) -> DateTimeParseResult: trimmed_source = source.strip() result = DateTimeResolutionResult() ers = self.config.ordinal_extractor.extract(trimmed_source) if not ers or not ers[0].text: ers = self.config.integer_extractor.extract(trimmed_source) if not ers or not ers[0].text: return result day = int(self.config.number_parser.parse(ers[0]).value) month = reference.month year = reference.year result.timex = DateTimeFormatUtil.luis_date(-1, -1, day) past_date = DateUtils.safe_create_from_min_value(year, month, day) future_date = DateUtils.safe_create_from_min_value(year, month, day) if future_date != DateUtils.min_value and future_date < reference: future_date = future_date.replace(month=future_date.month + 1) if past_date != DateUtils.min_value and past_date >= reference: past_date = past_date.replace(month=past_date.month - 1) result.future_value = future_date result.past_value = past_date result.success = True return result
36.418093
195
0.629708
6911d1f6589c7081c29210bafedded78c816581a
5,332
py
Python
cycada/data/data_loader.py
masterfulai/cycada_release
8c47ff6405074dd247aae0859ec1aec60509447e
[ "BSD-2-Clause" ]
null
null
null
cycada/data/data_loader.py
masterfulai/cycada_release
8c47ff6405074dd247aae0859ec1aec60509447e
[ "BSD-2-Clause" ]
null
null
null
cycada/data/data_loader.py
masterfulai/cycada_release
8c47ff6405074dd247aae0859ec1aec60509447e
[ "BSD-2-Clause" ]
null
null
null
from __future__ import print_function import os from os.path import join import numpy as np from PIL import Image import torch import torch.utils.data as data import torch.nn as nn from torchvision import datasets, transforms from ..util import to_tensor_raw def load_data(name, dset, batch=64, rootdir='', num_channels=3, image_size=32, download=True, kwargs={}): is_train = (dset == 'train') if isinstance(name, list) and len(name) == 2: # load adda data print('loading adda data') src_dataset = get_dataset(name[0], join(rootdir, name[0]), dset, image_size, num_channels, download=download) tgt_dataset = get_dataset(name[1], join(rootdir, name[1]), dset, image_size, num_channels, download=download) dataset = AddaDataset(src_dataset, tgt_dataset) else: print('loading source model', name, rootdir, dset, image_size, download) dataset = get_dataset(name, rootdir, dset, image_size, num_channels, download=download) if len(dataset) == 0: return None loader = torch.utils.data.DataLoader(dataset, batch_size=batch, shuffle=is_train, **kwargs) return loader def get_transform_dataset(dataset_name, rootdir, net_transform, downscale): user_paths = os.environ['PYTHONPATH'].split(os.pathsep) transform, target_transform = get_transform2(dataset_name, net_transform, downscale) return get_fcn_dataset(dataset_name, rootdir, transform=transform, target_transform=target_transform) sizes = {'cityscapes': 1024, 'gta5': 1024, 'cyclegta5': 1024} def get_orig_size(dataset_name): "Size of images in the dataset for relative scaling." try: return sizes[dataset_name] except: raise Exception('Unknown dataset size:', dataset_name) def get_transform2(dataset_name, net_transform, downscale): "Returns image and label transform to downscale, crop and prepare for net." orig_size = get_orig_size(dataset_name) transform = [] target_transform = [] if downscale is not None: transform.append(transforms.Resize(orig_size // downscale)) target_transform.append( transforms.Resize(orig_size // downscale, interpolation=Image.NEAREST)) transform.extend([transforms.Resize(orig_size), net_transform]) target_transform.extend([transforms.Resize(orig_size, interpolation=Image.NEAREST), to_tensor_raw]) transform = transforms.Compose(transform) target_transform = transforms.Compose(target_transform) return transform, target_transform def get_transform(params, image_size, num_channels): # Transforms for PIL Images: Gray <-> RGB Gray2RGB = transforms.Lambda(lambda x: x.convert('RGB')) RGB2Gray = transforms.Lambda(lambda x: x.convert('L')) transform = [] # Does size request match original size? if not image_size == params.image_size: print('not appending transform') transform.append(transforms.Resize(image_size)) else: print('not appending transform') # Does number of channels requested match original? if not num_channels == params.num_channels: if num_channels == 1: transform.append(RGB2Gray) elif num_channels == 3: transform.append(Gray2RGB) else: print('NumChannels should be 1 or 3', num_channels) raise Exception transform += [transforms.ToTensor(), transforms.Normalize((params.mean,), (params.std,))] return transforms.Compose(transform) def get_target_transform(params): transform = params.target_transform t_uniform = transforms.Lambda(lambda x: x[:,0] if isinstance(x, (list, np.ndarray)) and len(x) == 2 else x) if transform is None: return t_uniform else: return transforms.Compose([transform, t_uniform]) class AddaDataset(data.Dataset): def __init__(self, src_data, tgt_data): self.src = src_data self.tgt = tgt_data def __getitem__(self, index): ns = len(self.src) nt = len(self.tgt) xs, ys = self.src[index % ns] xt, yt = self.tgt[index % nt] return (xs, ys), (xt, yt) def __len__(self): return min(len(self.src), len(self.tgt)) data_params = {} def register_data_params(name): def decorator(cls): data_params[name] = cls return cls return decorator dataset_obj = {} def register_dataset_obj(name): def decorator(cls): dataset_obj[name] = cls return cls return decorator class DatasetParams(object): "Class variables defined." num_channels = 1 image_size = 16 mean = 0.1307 std = 0.3081 num_cls = 10 target_transform = None def get_dataset(name, rootdir, dset, image_size, num_channels, download=True): is_train = (dset == 'train') params = data_params[name] transform = get_transform(params, image_size, num_channels) target_transform = get_target_transform(params) return dataset_obj[name](rootdir, train=is_train, transform=transform, target_transform=target_transform, download=download) def get_fcn_dataset(name, rootdir, **kwargs): return dataset_obj[name](rootdir, **kwargs)
33.746835
88
0.674794
84f9916e456b71ad319f79a0b277ac8227533160
29,086
py
Python
sympy/__init__.py
Michal-Gagala/sympy
3cc756c2af73b5506102abaeefd1b654e286e2c8
[ "MIT" ]
null
null
null
sympy/__init__.py
Michal-Gagala/sympy
3cc756c2af73b5506102abaeefd1b654e286e2c8
[ "MIT" ]
null
null
null
sympy/__init__.py
Michal-Gagala/sympy
3cc756c2af73b5506102abaeefd1b654e286e2c8
[ "MIT" ]
null
null
null
""" SymPy is a Python library for symbolic mathematics. It aims to become a full-featured computer algebra system (CAS) while keeping the code as simple as possible in order to be comprehensible and easily extensible. SymPy is written entirely in Python. It depends on mpmath, and other external libraries may be optionally for things like plotting support. See the webpage for more information and documentation: https://sympy.org """ import sys if sys.version_info < (3, 7): raise ImportError("Python version 3.7 or above is required for SymPy.") del sys try: import mpmath except ImportError: raise ImportError("SymPy now depends on mpmath as an external library. " "See https://docs.sympy.org/latest/install.html#mpmath for more information.") del mpmath from sympy.release import __version__ if 'dev' in __version__: def enable_warnings(): import warnings warnings.filterwarnings('default', '.*', DeprecationWarning, module='sympy.*') del warnings enable_warnings() del enable_warnings def __sympy_debug(): # helper function so we don't import os globally import os debug_str = os.getenv('SYMPY_DEBUG', 'False') if debug_str in ('True', 'False'): return eval(debug_str) else: raise RuntimeError("unrecognized value for SYMPY_DEBUG: %s" % debug_str) SYMPY_DEBUG = __sympy_debug() # type: bool from .core import (sympify, SympifyError, cacheit, Basic, Atom, preorder_traversal, S, Expr, AtomicExpr, UnevaluatedExpr, Symbol, Wild, Dummy, symbols, var, Number, Float, Rational, Integer, NumberSymbol, RealNumber, igcd, ilcm, seterr, E, I, nan, oo, pi, zoo, AlgebraicNumber, comp, mod_inverse, Pow, integer_nthroot, integer_log, Mul, prod, Add, Mod, Rel, Eq, Ne, Lt, Le, Gt, Ge, Equality, GreaterThan, LessThan, Unequality, StrictGreaterThan, StrictLessThan, vectorize, Lambda, WildFunction, Derivative, diff, FunctionClass, Function, Subs, expand, PoleError, count_ops, expand_mul, expand_log, expand_func, expand_trig, expand_complex, expand_multinomial, nfloat, expand_power_base, expand_power_exp, arity, PrecisionExhausted, N, evalf, Tuple, Dict, gcd_terms, factor_terms, factor_nc, evaluate, Catalan, EulerGamma, GoldenRatio, TribonacciConstant, bottom_up, use, postorder_traversal, default_sort_key, ordered) from .logic import (to_cnf, to_dnf, to_nnf, And, Or, Not, Xor, Nand, Nor, Implies, Equivalent, ITE, POSform, SOPform, simplify_logic, bool_map, true, false, satisfiable) from .assumptions import (AppliedPredicate, Predicate, AssumptionsContext, assuming, Q, ask, register_handler, remove_handler, refine) from .polys import (Poly, PurePoly, poly_from_expr, parallel_poly_from_expr, degree, total_degree, degree_list, LC, LM, LT, pdiv, prem, pquo, pexquo, div, rem, quo, exquo, half_gcdex, gcdex, invert, subresultants, resultant, discriminant, cofactors, gcd_list, gcd, lcm_list, lcm, terms_gcd, trunc, monic, content, primitive, compose, decompose, sturm, gff_list, gff, sqf_norm, sqf_part, sqf_list, sqf, factor_list, factor, intervals, refine_root, count_roots, real_roots, nroots, ground_roots, nth_power_roots_poly, cancel, reduced, groebner, is_zero_dimensional, GroebnerBasis, poly, symmetrize, horner, interpolate, rational_interpolate, viete, together, BasePolynomialError, ExactQuotientFailed, PolynomialDivisionFailed, OperationNotSupported, HeuristicGCDFailed, HomomorphismFailed, IsomorphismFailed, ExtraneousFactors, EvaluationFailed, RefinementFailed, CoercionFailed, NotInvertible, NotReversible, NotAlgebraic, DomainError, PolynomialError, UnificationFailed, GeneratorsError, GeneratorsNeeded, ComputationFailed, UnivariatePolynomialError, MultivariatePolynomialError, PolificationFailed, OptionError, FlagError, minpoly, minimal_polynomial, primitive_element, field_isomorphism, to_number_field, isolate, round_two, prime_decomp, prime_valuation, itermonomials, Monomial, lex, grlex, grevlex, ilex, igrlex, igrevlex, CRootOf, rootof, RootOf, ComplexRootOf, RootSum, roots, Domain, FiniteField, IntegerRing, RationalField, RealField, ComplexField, PythonFiniteField, GMPYFiniteField, PythonIntegerRing, GMPYIntegerRing, PythonRational, GMPYRationalField, AlgebraicField, PolynomialRing, FractionField, ExpressionDomain, FF_python, FF_gmpy, ZZ_python, ZZ_gmpy, QQ_python, QQ_gmpy, GF, FF, ZZ, QQ, ZZ_I, QQ_I, RR, CC, EX, EXRAW, construct_domain, swinnerton_dyer_poly, cyclotomic_poly, symmetric_poly, random_poly, interpolating_poly, jacobi_poly, chebyshevt_poly, chebyshevu_poly, hermite_poly, legendre_poly, laguerre_poly, apart, apart_list, assemble_partfrac_list, Options, ring, xring, vring, sring, field, xfield, vfield, sfield) from .series import (Order, O, limit, Limit, gruntz, series, approximants, residue, EmptySequence, SeqPer, SeqFormula, sequence, SeqAdd, SeqMul, fourier_series, fps, difference_delta, limit_seq) from .functions import (factorial, factorial2, rf, ff, binomial, RisingFactorial, FallingFactorial, subfactorial, carmichael, fibonacci, lucas, motzkin, tribonacci, harmonic, bernoulli, bell, euler, catalan, genocchi, partition, sqrt, root, Min, Max, Id, real_root, Rem, cbrt, re, im, sign, Abs, conjugate, arg, polar_lift, periodic_argument, unbranched_argument, principal_branch, transpose, adjoint, polarify, unpolarify, sin, cos, tan, sec, csc, cot, sinc, asin, acos, atan, asec, acsc, acot, atan2, exp_polar, exp, ln, log, LambertW, sinh, cosh, tanh, coth, sech, csch, asinh, acosh, atanh, acoth, asech, acsch, floor, ceiling, frac, Piecewise, piecewise_fold, erf, erfc, erfi, erf2, erfinv, erfcinv, erf2inv, Ei, expint, E1, li, Li, Si, Ci, Shi, Chi, fresnels, fresnelc, gamma, lowergamma, uppergamma, polygamma, loggamma, digamma, trigamma, multigamma, dirichlet_eta, zeta, lerchphi, polylog, stieltjes, Eijk, LeviCivita, KroneckerDelta, SingularityFunction, DiracDelta, Heaviside, bspline_basis, bspline_basis_set, interpolating_spline, besselj, bessely, besseli, besselk, hankel1, hankel2, jn, yn, jn_zeros, hn1, hn2, airyai, airybi, airyaiprime, airybiprime, marcumq, hyper, meijerg, appellf1, legendre, assoc_legendre, hermite, chebyshevt, chebyshevu, chebyshevu_root, chebyshevt_root, laguerre, assoc_laguerre, gegenbauer, jacobi, jacobi_normalized, Ynm, Ynm_c, Znm, elliptic_k, elliptic_f, elliptic_e, elliptic_pi, beta, mathieus, mathieuc, mathieusprime, mathieucprime, riemann_xi, betainc, betainc_regularized) from .ntheory import (nextprime, prevprime, prime, primepi, primerange, randprime, Sieve, sieve, primorial, cycle_length, composite, compositepi, isprime, divisors, proper_divisors, factorint, multiplicity, perfect_power, pollard_pm1, pollard_rho, primefactors, totient, trailing, divisor_count, proper_divisor_count, divisor_sigma, factorrat, reduced_totient, primenu, primeomega, mersenne_prime_exponent, is_perfect, is_mersenne_prime, is_abundant, is_deficient, is_amicable, abundance, npartitions, is_primitive_root, is_quad_residue, legendre_symbol, jacobi_symbol, n_order, sqrt_mod, quadratic_residues, primitive_root, nthroot_mod, is_nthpow_residue, sqrt_mod_iter, mobius, discrete_log, quadratic_congruence, binomial_coefficients, binomial_coefficients_list, multinomial_coefficients, continued_fraction_periodic, continued_fraction_iterator, continued_fraction_reduce, continued_fraction_convergents, continued_fraction, egyptian_fraction) from .concrete import product, Product, summation, Sum from .discrete import (fft, ifft, ntt, intt, fwht, ifwht, mobius_transform, inverse_mobius_transform, convolution, covering_product, intersecting_product) from .simplify import (simplify, hypersimp, hypersimilar, logcombine, separatevars, posify, besselsimp, kroneckersimp, signsimp, nsimplify, FU, fu, sqrtdenest, cse, epath, EPath, hyperexpand, collect, rcollect, radsimp, collect_const, fraction, numer, denom, trigsimp, exptrigsimp, powsimp, powdenest, combsimp, gammasimp, ratsimp, ratsimpmodprime) from .sets import (Set, Interval, Union, EmptySet, FiniteSet, ProductSet, Intersection, DisjointUnion, imageset, Complement, SymmetricDifference, ImageSet, Range, ComplexRegion, Complexes, Reals, Contains, ConditionSet, Ordinal, OmegaPower, ord0, PowerSet, Naturals, Naturals0, UniversalSet, Integers, Rationals) from .solvers import (solve, solve_linear_system, solve_linear_system_LU, solve_undetermined_coeffs, nsolve, solve_linear, checksol, det_quick, inv_quick, check_assumptions, failing_assumptions, diophantine, rsolve, rsolve_poly, rsolve_ratio, rsolve_hyper, checkodesol, classify_ode, dsolve, homogeneous_order, solve_poly_system, solve_triangulated, pde_separate, pde_separate_add, pde_separate_mul, pdsolve, classify_pde, checkpdesol, ode_order, reduce_inequalities, reduce_abs_inequality, reduce_abs_inequalities, solve_poly_inequality, solve_rational_inequalities, solve_univariate_inequality, decompogen, solveset, linsolve, linear_eq_to_matrix, nonlinsolve, substitution) from .matrices import (ShapeError, NonSquareMatrixError, GramSchmidt, casoratian, diag, eye, hessian, jordan_cell, list2numpy, matrix2numpy, matrix_multiply_elementwise, ones, randMatrix, rot_axis1, rot_axis2, rot_axis3, symarray, wronskian, zeros, MutableDenseMatrix, DeferredVector, MatrixBase, Matrix, MutableMatrix, MutableSparseMatrix, banded, ImmutableDenseMatrix, ImmutableSparseMatrix, ImmutableMatrix, SparseMatrix, MatrixSlice, BlockDiagMatrix, BlockMatrix, FunctionMatrix, Identity, Inverse, MatAdd, MatMul, MatPow, MatrixExpr, MatrixSymbol, Trace, Transpose, ZeroMatrix, OneMatrix, blockcut, block_collapse, matrix_symbols, Adjoint, hadamard_product, HadamardProduct, HadamardPower, Determinant, det, diagonalize_vector, DiagMatrix, DiagonalMatrix, DiagonalOf, trace, DotProduct, kronecker_product, KroneckerProduct, PermutationMatrix, MatrixPermute, Permanent, per) from .geometry import (Point, Point2D, Point3D, Line, Ray, Segment, Line2D, Segment2D, Ray2D, Line3D, Segment3D, Ray3D, Plane, Ellipse, Circle, Polygon, RegularPolygon, Triangle, rad, deg, are_similar, centroid, convex_hull, idiff, intersection, closest_points, farthest_points, GeometryError, Curve, Parabola) from .utilities import (flatten, group, take, subsets, variations, numbered_symbols, cartes, capture, dict_merge, prefixes, postfixes, sift, topological_sort, unflatten, has_dups, has_variety, reshape, rotations, filldedent, lambdify, source, threaded, xthreaded, public, memoize_property, timed) from .integrals import (integrate, Integral, line_integrate, mellin_transform, inverse_mellin_transform, MellinTransform, InverseMellinTransform, laplace_transform, inverse_laplace_transform, LaplaceTransform, InverseLaplaceTransform, fourier_transform, inverse_fourier_transform, FourierTransform, InverseFourierTransform, sine_transform, inverse_sine_transform, SineTransform, InverseSineTransform, cosine_transform, inverse_cosine_transform, CosineTransform, InverseCosineTransform, hankel_transform, inverse_hankel_transform, HankelTransform, InverseHankelTransform, singularityintegrate) from .tensor import (IndexedBase, Idx, Indexed, get_contraction_structure, get_indices, shape, MutableDenseNDimArray, ImmutableDenseNDimArray, MutableSparseNDimArray, ImmutableSparseNDimArray, NDimArray, tensorproduct, tensorcontraction, tensordiagonal, derive_by_array, permutedims, Array, DenseNDimArray, SparseNDimArray) from .parsing import parse_expr from .calculus import (euler_equations, singularities, is_increasing, is_strictly_increasing, is_decreasing, is_strictly_decreasing, is_monotonic, finite_diff_weights, apply_finite_diff, differentiate_finite, periodicity, not_empty_in, AccumBounds, is_convex, stationary_points, minimum, maximum) from .algebras import Quaternion from .printing import (pager_print, pretty, pretty_print, pprint, pprint_use_unicode, pprint_try_use_unicode, latex, print_latex, multiline_latex, mathml, print_mathml, python, print_python, pycode, ccode, print_ccode, glsl_code, print_glsl, cxxcode, fcode, print_fcode, rcode, print_rcode, jscode, print_jscode, julia_code, mathematica_code, octave_code, rust_code, print_gtk, preview, srepr, print_tree, StrPrinter, sstr, sstrrepr, TableForm, dotprint, maple_code, print_maple_code) from .testing import test, doctest # This module causes conflicts with other modules: # from .stats import * # Adds about .04-.05 seconds of import time # from combinatorics import * # This module is slow to import: #from physics import units from .plotting import plot, textplot, plot_backends, plot_implicit, plot_parametric from .interactive import init_session, init_printing, interactive_traversal evalf._create_evalf_table() __all__ = [ # sympy.core 'sympify', 'SympifyError', 'cacheit', 'Basic', 'Atom', 'preorder_traversal', 'S', 'Expr', 'AtomicExpr', 'UnevaluatedExpr', 'Symbol', 'Wild', 'Dummy', 'symbols', 'var', 'Number', 'Float', 'Rational', 'Integer', 'NumberSymbol', 'RealNumber', 'igcd', 'ilcm', 'seterr', 'E', 'I', 'nan', 'oo', 'pi', 'zoo', 'AlgebraicNumber', 'comp', 'mod_inverse', 'Pow', 'integer_nthroot', 'integer_log', 'Mul', 'prod', 'Add', 'Mod', 'Rel', 'Eq', 'Ne', 'Lt', 'Le', 'Gt', 'Ge', 'Equality', 'GreaterThan', 'LessThan', 'Unequality', 'StrictGreaterThan', 'StrictLessThan', 'vectorize', 'Lambda', 'WildFunction', 'Derivative', 'diff', 'FunctionClass', 'Function', 'Subs', 'expand', 'PoleError', 'count_ops', 'expand_mul', 'expand_log', 'expand_func', 'expand_trig', 'expand_complex', 'expand_multinomial', 'nfloat', 'expand_power_base', 'expand_power_exp', 'arity', 'PrecisionExhausted', 'N', 'evalf', 'Tuple', 'Dict', 'gcd_terms', 'factor_terms', 'factor_nc', 'evaluate', 'Catalan', 'EulerGamma', 'GoldenRatio', 'TribonacciConstant', 'bottom_up', 'use', 'postorder_traversal', 'default_sort_key', 'ordered', # sympy.logic 'to_cnf', 'to_dnf', 'to_nnf', 'And', 'Or', 'Not', 'Xor', 'Nand', 'Nor', 'Implies', 'Equivalent', 'ITE', 'POSform', 'SOPform', 'simplify_logic', 'bool_map', 'true', 'false', 'satisfiable', # sympy.assumptions 'AppliedPredicate', 'Predicate', 'AssumptionsContext', 'assuming', 'Q', 'ask', 'register_handler', 'remove_handler', 'refine', # sympy.polys 'Poly', 'PurePoly', 'poly_from_expr', 'parallel_poly_from_expr', 'degree', 'total_degree', 'degree_list', 'LC', 'LM', 'LT', 'pdiv', 'prem', 'pquo', 'pexquo', 'div', 'rem', 'quo', 'exquo', 'half_gcdex', 'gcdex', 'invert', 'subresultants', 'resultant', 'discriminant', 'cofactors', 'gcd_list', 'gcd', 'lcm_list', 'lcm', 'terms_gcd', 'trunc', 'monic', 'content', 'primitive', 'compose', 'decompose', 'sturm', 'gff_list', 'gff', 'sqf_norm', 'sqf_part', 'sqf_list', 'sqf', 'factor_list', 'factor', 'intervals', 'refine_root', 'count_roots', 'real_roots', 'nroots', 'ground_roots', 'nth_power_roots_poly', 'cancel', 'reduced', 'groebner', 'is_zero_dimensional', 'GroebnerBasis', 'poly', 'symmetrize', 'horner', 'interpolate', 'rational_interpolate', 'viete', 'together', 'BasePolynomialError', 'ExactQuotientFailed', 'PolynomialDivisionFailed', 'OperationNotSupported', 'HeuristicGCDFailed', 'HomomorphismFailed', 'IsomorphismFailed', 'ExtraneousFactors', 'EvaluationFailed', 'RefinementFailed', 'CoercionFailed', 'NotInvertible', 'NotReversible', 'NotAlgebraic', 'DomainError', 'PolynomialError', 'UnificationFailed', 'GeneratorsError', 'GeneratorsNeeded', 'ComputationFailed', 'UnivariatePolynomialError', 'MultivariatePolynomialError', 'PolificationFailed', 'OptionError', 'FlagError', 'minpoly', 'minimal_polynomial', 'primitive_element', 'field_isomorphism', 'to_number_field', 'isolate', 'round_two', 'prime_decomp', 'prime_valuation', 'itermonomials', 'Monomial', 'lex', 'grlex', 'grevlex', 'ilex', 'igrlex', 'igrevlex', 'CRootOf', 'rootof', 'RootOf', 'ComplexRootOf', 'RootSum', 'roots', 'Domain', 'FiniteField', 'IntegerRing', 'RationalField', 'RealField', 'ComplexField', 'PythonFiniteField', 'GMPYFiniteField', 'PythonIntegerRing', 'GMPYIntegerRing', 'PythonRational', 'GMPYRationalField', 'AlgebraicField', 'PolynomialRing', 'FractionField', 'ExpressionDomain', 'FF_python', 'FF_gmpy', 'ZZ_python', 'ZZ_gmpy', 'QQ_python', 'QQ_gmpy', 'GF', 'FF', 'ZZ', 'QQ', 'ZZ_I', 'QQ_I', 'RR', 'CC', 'EX', 'EXRAW', 'construct_domain', 'swinnerton_dyer_poly', 'cyclotomic_poly', 'symmetric_poly', 'random_poly', 'interpolating_poly', 'jacobi_poly', 'chebyshevt_poly', 'chebyshevu_poly', 'hermite_poly', 'legendre_poly', 'laguerre_poly', 'apart', 'apart_list', 'assemble_partfrac_list', 'Options', 'ring', 'xring', 'vring', 'sring', 'field', 'xfield', 'vfield', 'sfield', # sympy.series 'Order', 'O', 'limit', 'Limit', 'gruntz', 'series', 'approximants', 'residue', 'EmptySequence', 'SeqPer', 'SeqFormula', 'sequence', 'SeqAdd', 'SeqMul', 'fourier_series', 'fps', 'difference_delta', 'limit_seq', # sympy.functions 'factorial', 'factorial2', 'rf', 'ff', 'binomial', 'RisingFactorial', 'FallingFactorial', 'subfactorial', 'carmichael', 'fibonacci', 'lucas', 'motzkin', 'tribonacci', 'harmonic', 'bernoulli', 'bell', 'euler', 'catalan', 'genocchi', 'partition', 'sqrt', 'root', 'Min', 'Max', 'Id', 'real_root', 'Rem', 'cbrt', 're', 'im', 'sign', 'Abs', 'conjugate', 'arg', 'polar_lift', 'periodic_argument', 'unbranched_argument', 'principal_branch', 'transpose', 'adjoint', 'polarify', 'unpolarify', 'sin', 'cos', 'tan', 'sec', 'csc', 'cot', 'sinc', 'asin', 'acos', 'atan', 'asec', 'acsc', 'acot', 'atan2', 'exp_polar', 'exp', 'ln', 'log', 'LambertW', 'sinh', 'cosh', 'tanh', 'coth', 'sech', 'csch', 'asinh', 'acosh', 'atanh', 'acoth', 'asech', 'acsch', 'floor', 'ceiling', 'frac', 'Piecewise', 'piecewise_fold', 'erf', 'erfc', 'erfi', 'erf2', 'erfinv', 'erfcinv', 'erf2inv', 'Ei', 'expint', 'E1', 'li', 'Li', 'Si', 'Ci', 'Shi', 'Chi', 'fresnels', 'fresnelc', 'gamma', 'lowergamma', 'uppergamma', 'polygamma', 'loggamma', 'digamma', 'trigamma', 'multigamma', 'dirichlet_eta', 'zeta', 'lerchphi', 'polylog', 'stieltjes', 'Eijk', 'LeviCivita', 'KroneckerDelta', 'SingularityFunction', 'DiracDelta', 'Heaviside', 'bspline_basis', 'bspline_basis_set', 'interpolating_spline', 'besselj', 'bessely', 'besseli', 'besselk', 'hankel1', 'hankel2', 'jn', 'yn', 'jn_zeros', 'hn1', 'hn2', 'airyai', 'airybi', 'airyaiprime', 'airybiprime', 'marcumq', 'hyper', 'meijerg', 'appellf1', 'legendre', 'assoc_legendre', 'hermite', 'chebyshevt', 'chebyshevu', 'chebyshevu_root', 'chebyshevt_root', 'laguerre', 'assoc_laguerre', 'gegenbauer', 'jacobi', 'jacobi_normalized', 'Ynm', 'Ynm_c', 'Znm', 'elliptic_k', 'elliptic_f', 'elliptic_e', 'elliptic_pi', 'beta', 'mathieus', 'mathieuc', 'mathieusprime', 'mathieucprime', 'riemann_xi','betainc', 'betainc_regularized', # sympy.ntheory 'nextprime', 'prevprime', 'prime', 'primepi', 'primerange', 'randprime', 'Sieve', 'sieve', 'primorial', 'cycle_length', 'composite', 'compositepi', 'isprime', 'divisors', 'proper_divisors', 'factorint', 'multiplicity', 'perfect_power', 'pollard_pm1', 'pollard_rho', 'primefactors', 'totient', 'trailing', 'divisor_count', 'proper_divisor_count', 'divisor_sigma', 'factorrat', 'reduced_totient', 'primenu', 'primeomega', 'mersenne_prime_exponent', 'is_perfect', 'is_mersenne_prime', 'is_abundant', 'is_deficient', 'is_amicable', 'abundance', 'npartitions', 'is_primitive_root', 'is_quad_residue', 'legendre_symbol', 'jacobi_symbol', 'n_order', 'sqrt_mod', 'quadratic_residues', 'primitive_root', 'nthroot_mod', 'is_nthpow_residue', 'sqrt_mod_iter', 'mobius', 'discrete_log', 'quadratic_congruence', 'binomial_coefficients', 'binomial_coefficients_list', 'multinomial_coefficients', 'continued_fraction_periodic', 'continued_fraction_iterator', 'continued_fraction_reduce', 'continued_fraction_convergents', 'continued_fraction', 'egyptian_fraction', # sympy.concrete 'product', 'Product', 'summation', 'Sum', # sympy.discrete 'fft', 'ifft', 'ntt', 'intt', 'fwht', 'ifwht', 'mobius_transform', 'inverse_mobius_transform', 'convolution', 'covering_product', 'intersecting_product', # sympy.simplify 'simplify', 'hypersimp', 'hypersimilar', 'logcombine', 'separatevars', 'posify', 'besselsimp', 'kroneckersimp', 'signsimp', 'nsimplify', 'FU', 'fu', 'sqrtdenest', 'cse', 'epath', 'EPath', 'hyperexpand', 'collect', 'rcollect', 'radsimp', 'collect_const', 'fraction', 'numer', 'denom', 'trigsimp', 'exptrigsimp', 'powsimp', 'powdenest', 'combsimp', 'gammasimp', 'ratsimp', 'ratsimpmodprime', # sympy.sets 'Set', 'Interval', 'Union', 'EmptySet', 'FiniteSet', 'ProductSet', 'Intersection', 'imageset', 'DisjointUnion', 'Complement', 'SymmetricDifference', 'ImageSet', 'Range', 'ComplexRegion', 'Reals', 'Contains', 'ConditionSet', 'Ordinal', 'OmegaPower', 'ord0', 'PowerSet', 'Naturals', 'Naturals0', 'UniversalSet', 'Integers', 'Rationals', 'Complexes', # sympy.solvers 'solve', 'solve_linear_system', 'solve_linear_system_LU', 'solve_undetermined_coeffs', 'nsolve', 'solve_linear', 'checksol', 'det_quick', 'inv_quick', 'check_assumptions', 'failing_assumptions', 'diophantine', 'rsolve', 'rsolve_poly', 'rsolve_ratio', 'rsolve_hyper', 'checkodesol', 'classify_ode', 'dsolve', 'homogeneous_order', 'solve_poly_system', 'solve_triangulated', 'pde_separate', 'pde_separate_add', 'pde_separate_mul', 'pdsolve', 'classify_pde', 'checkpdesol', 'ode_order', 'reduce_inequalities', 'reduce_abs_inequality', 'reduce_abs_inequalities', 'solve_poly_inequality', 'solve_rational_inequalities', 'solve_univariate_inequality', 'decompogen', 'solveset', 'linsolve', 'linear_eq_to_matrix', 'nonlinsolve', 'substitution', # sympy.matrices 'ShapeError', 'NonSquareMatrixError', 'GramSchmidt', 'casoratian', 'diag', 'eye', 'hessian', 'jordan_cell', 'list2numpy', 'matrix2numpy', 'matrix_multiply_elementwise', 'ones', 'randMatrix', 'rot_axis1', 'rot_axis2', 'rot_axis3', 'symarray', 'wronskian', 'zeros', 'MutableDenseMatrix', 'DeferredVector', 'MatrixBase', 'Matrix', 'MutableMatrix', 'MutableSparseMatrix', 'banded', 'ImmutableDenseMatrix', 'ImmutableSparseMatrix', 'ImmutableMatrix', 'SparseMatrix', 'MatrixSlice', 'BlockDiagMatrix', 'BlockMatrix', 'FunctionMatrix', 'Identity', 'Inverse', 'MatAdd', 'MatMul', 'MatPow', 'MatrixExpr', 'MatrixSymbol', 'Trace', 'Transpose', 'ZeroMatrix', 'OneMatrix', 'blockcut', 'block_collapse', 'matrix_symbols', 'Adjoint', 'hadamard_product', 'HadamardProduct', 'HadamardPower', 'Determinant', 'det', 'diagonalize_vector', 'DiagMatrix', 'DiagonalMatrix', 'DiagonalOf', 'trace', 'DotProduct', 'kronecker_product', 'KroneckerProduct', 'PermutationMatrix', 'MatrixPermute', 'Permanent', 'per', # sympy.geometry 'Point', 'Point2D', 'Point3D', 'Line', 'Ray', 'Segment', 'Line2D', 'Segment2D', 'Ray2D', 'Line3D', 'Segment3D', 'Ray3D', 'Plane', 'Ellipse', 'Circle', 'Polygon', 'RegularPolygon', 'Triangle', 'rad', 'deg', 'are_similar', 'centroid', 'convex_hull', 'idiff', 'intersection', 'closest_points', 'farthest_points', 'GeometryError', 'Curve', 'Parabola', # sympy.utilities 'flatten', 'group', 'take', 'subsets', 'variations', 'numbered_symbols', 'cartes', 'capture', 'dict_merge', 'prefixes', 'postfixes', 'sift', 'topological_sort', 'unflatten', 'has_dups', 'has_variety', 'reshape', 'rotations', 'filldedent', 'lambdify', 'source', 'threaded', 'xthreaded', 'public', 'memoize_property', 'timed', # sympy.integrals 'integrate', 'Integral', 'line_integrate', 'mellin_transform', 'inverse_mellin_transform', 'MellinTransform', 'InverseMellinTransform', 'laplace_transform', 'inverse_laplace_transform', 'LaplaceTransform', 'InverseLaplaceTransform', 'fourier_transform', 'inverse_fourier_transform', 'FourierTransform', 'InverseFourierTransform', 'sine_transform', 'inverse_sine_transform', 'SineTransform', 'InverseSineTransform', 'cosine_transform', 'inverse_cosine_transform', 'CosineTransform', 'InverseCosineTransform', 'hankel_transform', 'inverse_hankel_transform', 'HankelTransform', 'InverseHankelTransform', 'singularityintegrate', # sympy.tensor 'IndexedBase', 'Idx', 'Indexed', 'get_contraction_structure', 'get_indices', 'shape', 'MutableDenseNDimArray', 'ImmutableDenseNDimArray', 'MutableSparseNDimArray', 'ImmutableSparseNDimArray', 'NDimArray', 'tensorproduct', 'tensorcontraction', 'tensordiagonal', 'derive_by_array', 'permutedims', 'Array', 'DenseNDimArray', 'SparseNDimArray', # sympy.parsing 'parse_expr', # sympy.calculus 'euler_equations', 'singularities', 'is_increasing', 'is_strictly_increasing', 'is_decreasing', 'is_strictly_decreasing', 'is_monotonic', 'finite_diff_weights', 'apply_finite_diff', 'differentiate_finite', 'periodicity', 'not_empty_in', 'AccumBounds', 'is_convex', 'stationary_points', 'minimum', 'maximum', # sympy.algebras 'Quaternion', # sympy.printing 'pager_print', 'pretty', 'pretty_print', 'pprint', 'pprint_use_unicode', 'pprint_try_use_unicode', 'latex', 'print_latex', 'multiline_latex', 'mathml', 'print_mathml', 'python', 'print_python', 'pycode', 'ccode', 'print_ccode', 'glsl_code', 'print_glsl', 'cxxcode', 'fcode', 'print_fcode', 'rcode', 'print_rcode', 'jscode', 'print_jscode', 'julia_code', 'mathematica_code', 'octave_code', 'rust_code', 'print_gtk', 'preview', 'srepr', 'print_tree', 'StrPrinter', 'sstr', 'sstrrepr', 'TableForm', 'dotprint', 'maple_code', 'print_maple_code', # sympy.plotting 'plot', 'textplot', 'plot_backends', 'plot_implicit', 'plot_parametric', # sympy.interactive 'init_session', 'init_printing', 'interactive_traversal', # sympy.testing 'test', 'doctest', ] #===========================================================================# # # # XXX: The names below were importable before SymPy 1.6 using # # # # from sympy import * # # # # This happened implicitly because there was no __all__ defined in this # # __init__.py file. Not every package is imported. The list matches what # # would have been imported before. It is possible that these packages will # # not be imported by a star-import from sympy in future. # # # #===========================================================================# __all__.extend(( 'algebras', 'assumptions', 'calculus', 'concrete', 'discrete', 'external', 'functions', 'geometry', 'interactive', 'multipledispatch', 'ntheory', 'parsing', 'plotting', 'polys', 'printing', 'release', 'strategies', 'tensor', 'utilities', ))
54.879245
91
0.675789
f36915faba08a1ee5f120c5b1f0aa369c0ba0a0f
62
py
Python
.history/postImages/index_20201005142231.py
Lambda-School-Labs/Labs27-C-Bridges-To-Prosperity-BE
9a8289d8550115362c46dea3ed8570b789c09a10
[ "MIT" ]
2
2020-10-21T22:14:15.000Z
2020-10-21T22:14:16.000Z
.history/postImages/index_20201005142231.py
Lambda-School-Labs/Labs27-C-Bridges-To-Prosperity-BE
9a8289d8550115362c46dea3ed8570b789c09a10
[ "MIT" ]
null
null
null
.history/postImages/index_20201005142231.py
Lambda-School-Labs/Labs27-C-Bridges-To-Prosperity-BE
9a8289d8550115362c46dea3ed8570b789c09a10
[ "MIT" ]
null
null
null
import pandas as pd df = pd.read_excel("bridgeData2.xlsx")
12.4
38
0.725806
0ffad7247f063b37292363f378b5bcb87dc48c33
1,352
py
Python
src/target.py
agoswam/Simulator
3507b697aab134022cfab61b6231979795bb9115
[ "MIT" ]
2
2018-04-01T23:26:31.000Z
2020-04-24T17:12:00.000Z
src/target.py
agoswam/Simulator
3507b697aab134022cfab61b6231979795bb9115
[ "MIT" ]
null
null
null
src/target.py
agoswam/Simulator
3507b697aab134022cfab61b6231979795bb9115
[ "MIT" ]
2
2022-02-18T12:13:12.000Z
2022-03-13T13:07:19.000Z
#!/usr/bin/env python # --------------------------------------------------------------------------------------\n # Author: Angshuman Goswami, Graduate Student, Clemson University # Date Create: 20/5/2016, Last Modified: 20/5/2016 \n # --------------------------------------------------------------------------------------\n import rospy import time import os import math from rospy import init_node, Subscriber, Publisher, get_param from rospy import Rate, is_shutdown, ROSInterruptException, spin, on_shutdown from rospy_tutorials.msg import Floats from rospy.numpy_msg import numpy_msg from numpy import pi from geometry_msgs.msg import Vector3 Target_X = 22 Target_Y = 0.1 def target(): # initialize node global Target_X, Target_X rospy.init_node('target', anonymous=True) state_pub = rospy.Publisher('target', Vector3, queue_size = 10) target_XY = Vector3(Target_X, Target_Y,0) # set node rate loop_rate = 20 dt = 1.0 / loop_rate rate = rospy.Rate(loop_rate) t0 = time.time() while not rospy.is_shutdown(): state_pub.publish(target_XY) rate.sleep() if __name__=='__main__': try: target() except rospy.ROSInterruptException: pass
26.509804
90
0.553994
59fedc7421e9567d2bddf07c2afe51b2c3399aac
10,215
py
Python
venv/Lib/site-packages/sklearn/linear_model/tests/test_theil_sen.py
Jos33y/student-performance-knn
4e965434f52dd6a1380904aa257df1edfaebb3c4
[ "MIT" ]
2
2021-05-02T07:59:56.000Z
2021-12-14T19:53:13.000Z
venv/Lib/site-packages/sklearn/linear_model/tests/test_theil_sen.py
Jos33y/student-performance-knn
4e965434f52dd6a1380904aa257df1edfaebb3c4
[ "MIT" ]
7
2021-06-08T21:46:24.000Z
2022-03-12T00:35:31.000Z
my_env/Lib/site-packages/sklearn/linear_model/tests/test_theil_sen.py
obulrdy6881/Drowsinss
61cb9281d7dd22aee282b517e2fbf500f0ff9935
[ "MIT" ]
1
2021-05-02T07:59:59.000Z
2021-05-02T07:59:59.000Z
""" Testing for Theil-Sen module (sklearn.linear_model.theil_sen) """ # Author: Florian Wilhelm <[email protected]> # License: BSD 3 clause import os import sys from contextlib import contextmanager import numpy as np from numpy.testing import assert_array_equal, assert_array_less from numpy.testing import assert_array_almost_equal, assert_warns from scipy.linalg import norm from scipy.optimize import fmin_bfgs from sklearn.exceptions import ConvergenceWarning from sklearn.linear_model import LinearRegression, TheilSenRegressor from sklearn.linear_model._theil_sen import _spatial_median, _breakdown_point from sklearn.linear_model._theil_sen import _modified_weiszfeld_step from sklearn.utils._testing import assert_almost_equal, assert_raises @contextmanager def no_stdout_stderr(): old_stdout = sys.stdout old_stderr = sys.stderr with open(os.devnull, 'w') as devnull: sys.stdout = devnull sys.stderr = devnull yield devnull.flush() sys.stdout = old_stdout sys.stderr = old_stderr def gen_toy_problem_1d(intercept=True): random_state = np.random.RandomState(0) # Linear model y = 3*x + N(2, 0.1**2) w = 3. if intercept: c = 2. n_samples = 50 else: c = 0.1 n_samples = 100 x = random_state.normal(size=n_samples) noise = 0.1 * random_state.normal(size=n_samples) y = w * x + c + noise # Add some outliers if intercept: x[42], y[42] = (-2, 4) x[43], y[43] = (-2.5, 8) x[33], y[33] = (2.5, 1) x[49], y[49] = (2.1, 2) else: x[42], y[42] = (-2, 4) x[43], y[43] = (-2.5, 8) x[53], y[53] = (2.5, 1) x[60], y[60] = (2.1, 2) x[72], y[72] = (1.8, -7) return x[:, np.newaxis], y, w, c def gen_toy_problem_2d(): random_state = np.random.RandomState(0) n_samples = 100 # Linear model y = 5*x_1 + 10*x_2 + N(1, 0.1**2) X = random_state.normal(size=(n_samples, 2)) w = np.array([5., 10.]) c = 1. noise = 0.1 * random_state.normal(size=n_samples) y = np.dot(X, w) + c + noise # Add some outliers n_outliers = n_samples // 10 ix = random_state.randint(0, n_samples, size=n_outliers) y[ix] = 50 * random_state.normal(size=n_outliers) return X, y, w, c def gen_toy_problem_4d(): random_state = np.random.RandomState(0) n_samples = 10000 # Linear model y = 5*x_1 + 10*x_2 + 42*x_3 + 7*x_4 + N(1, 0.1**2) X = random_state.normal(size=(n_samples, 4)) w = np.array([5., 10., 42., 7.]) c = 1. noise = 0.1 * random_state.normal(size=n_samples) y = np.dot(X, w) + c + noise # Add some outliers n_outliers = n_samples // 10 ix = random_state.randint(0, n_samples, size=n_outliers) y[ix] = 50 * random_state.normal(size=n_outliers) return X, y, w, c def test_modweiszfeld_step_1d(): X = np.array([1., 2., 3.]).reshape(3, 1) # Check startvalue is element of X and solution median = 2. new_y = _modified_weiszfeld_step(X, median) assert_array_almost_equal(new_y, median) # Check startvalue is not the solution y = 2.5 new_y = _modified_weiszfeld_step(X, y) assert_array_less(median, new_y) assert_array_less(new_y, y) # Check startvalue is not the solution but element of X y = 3. new_y = _modified_weiszfeld_step(X, y) assert_array_less(median, new_y) assert_array_less(new_y, y) # Check that a single vector is identity X = np.array([1., 2., 3.]).reshape(1, 3) y = X[0, ] new_y = _modified_weiszfeld_step(X, y) assert_array_equal(y, new_y) def test_modweiszfeld_step_2d(): X = np.array([0., 0., 1., 1., 0., 1.]).reshape(3, 2) y = np.array([0.5, 0.5]) # Check first two iterations new_y = _modified_weiszfeld_step(X, y) assert_array_almost_equal(new_y, np.array([1 / 3, 2 / 3])) new_y = _modified_weiszfeld_step(X, new_y) assert_array_almost_equal(new_y, np.array([0.2792408, 0.7207592])) # Check fix point y = np.array([0.21132505, 0.78867497]) new_y = _modified_weiszfeld_step(X, y) assert_array_almost_equal(new_y, y) def test_spatial_median_1d(): X = np.array([1., 2., 3.]).reshape(3, 1) true_median = 2. _, median = _spatial_median(X) assert_array_almost_equal(median, true_median) # Test larger problem and for exact solution in 1d case random_state = np.random.RandomState(0) X = random_state.randint(100, size=(1000, 1)) true_median = np.median(X.ravel()) _, median = _spatial_median(X) assert_array_equal(median, true_median) def test_spatial_median_2d(): X = np.array([0., 0., 1., 1., 0., 1.]).reshape(3, 2) _, median = _spatial_median(X, max_iter=100, tol=1.e-6) def cost_func(y): dists = np.array([norm(x - y) for x in X]) return np.sum(dists) # Check if median is solution of the Fermat-Weber location problem fermat_weber = fmin_bfgs(cost_func, median, disp=False) assert_array_almost_equal(median, fermat_weber) # Check when maximum iteration is exceeded a warning is emitted assert_warns(ConvergenceWarning, _spatial_median, X, max_iter=30, tol=0.) def test_theil_sen_1d(): X, y, w, c = gen_toy_problem_1d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert np.abs(lstq.coef_ - w) > 0.9 # Check that Theil-Sen works theil_sen = TheilSenRegressor(random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_theil_sen_1d_no_intercept(): X, y, w, c = gen_toy_problem_1d(intercept=False) # Check that Least Squares fails lstq = LinearRegression(fit_intercept=False).fit(X, y) assert np.abs(lstq.coef_ - w - c) > 0.5 # Check that Theil-Sen works theil_sen = TheilSenRegressor(fit_intercept=False, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w + c, 1) assert_almost_equal(theil_sen.intercept_, 0.) def test_theil_sen_2d(): X, y, w, c = gen_toy_problem_2d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert norm(lstq.coef_ - w) > 1.0 # Check that Theil-Sen works theil_sen = TheilSenRegressor(max_subpopulation=1e3, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_calc_breakdown_point(): bp = _breakdown_point(1e10, 2) assert np.abs(bp - 1 + 1 / (np.sqrt(2))) < 1.e-6 def test_checksubparams_negative_subpopulation(): X, y, w, c = gen_toy_problem_1d() theil_sen = TheilSenRegressor(max_subpopulation=-1, random_state=0) assert_raises(ValueError, theil_sen.fit, X, y) def test_checksubparams_too_few_subsamples(): X, y, w, c = gen_toy_problem_1d() theil_sen = TheilSenRegressor(n_subsamples=1, random_state=0) assert_raises(ValueError, theil_sen.fit, X, y) def test_checksubparams_too_many_subsamples(): X, y, w, c = gen_toy_problem_1d() theil_sen = TheilSenRegressor(n_subsamples=101, random_state=0) assert_raises(ValueError, theil_sen.fit, X, y) def test_checksubparams_n_subsamples_if_less_samples_than_features(): random_state = np.random.RandomState(0) n_samples, n_features = 10, 20 X = random_state.normal(size=(n_samples, n_features)) y = random_state.normal(size=n_samples) theil_sen = TheilSenRegressor(n_subsamples=9, random_state=0) assert_raises(ValueError, theil_sen.fit, X, y) def test_subpopulation(): X, y, w, c = gen_toy_problem_4d() theil_sen = TheilSenRegressor(max_subpopulation=250, random_state=0).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_subsamples(): X, y, w, c = gen_toy_problem_4d() theil_sen = TheilSenRegressor(n_subsamples=X.shape[0], random_state=0).fit(X, y) lstq = LinearRegression().fit(X, y) # Check for exact the same results as Least Squares assert_array_almost_equal(theil_sen.coef_, lstq.coef_, 9) def test_verbosity(): X, y, w, c = gen_toy_problem_1d() # Check that Theil-Sen can be verbose with no_stdout_stderr(): TheilSenRegressor(verbose=True, random_state=0).fit(X, y) TheilSenRegressor(verbose=True, max_subpopulation=10, random_state=0).fit(X, y) def test_theil_sen_parallel(): X, y, w, c = gen_toy_problem_2d() # Check that Least Squares fails lstq = LinearRegression().fit(X, y) assert norm(lstq.coef_ - w) > 1.0 # Check that Theil-Sen works theil_sen = TheilSenRegressor(n_jobs=2, random_state=0, max_subpopulation=2e3).fit(X, y) assert_array_almost_equal(theil_sen.coef_, w, 1) assert_array_almost_equal(theil_sen.intercept_, c, 1) def test_less_samples_than_features(): random_state = np.random.RandomState(0) n_samples, n_features = 10, 20 X = random_state.normal(size=(n_samples, n_features)) y = random_state.normal(size=n_samples) # Check that Theil-Sen falls back to Least Squares if fit_intercept=False theil_sen = TheilSenRegressor(fit_intercept=False, random_state=0).fit(X, y) lstq = LinearRegression(fit_intercept=False).fit(X, y) assert_array_almost_equal(theil_sen.coef_, lstq.coef_, 12) # Check fit_intercept=True case. This will not be equal to the Least # Squares solution since the intercept is calculated differently. theil_sen = TheilSenRegressor(fit_intercept=True, random_state=0).fit(X, y) y_pred = theil_sen.predict(X) assert_array_almost_equal(y_pred, y, 12)
36.223404
80
0.648556
3bafd4ac8dce53a61bc5f969df68d84407e7f6df
22,480
py
Python
scipy/optimize/_linprog.py
gitter-badger/scipy
0d10fea581d5044bbecc8b4fbe8c11fc102f6592
[ "BSD-3-Clause" ]
1
2019-07-14T23:22:16.000Z
2019-07-14T23:22:16.000Z
scipy/optimize/_linprog.py
gitter-badger/scipy
0d10fea581d5044bbecc8b4fbe8c11fc102f6592
[ "BSD-3-Clause" ]
1
2021-06-25T15:36:38.000Z
2021-06-25T15:36:38.000Z
scipy/optimize/_linprog.py
gitter-badger/scipy
0d10fea581d5044bbecc8b4fbe8c11fc102f6592
[ "BSD-3-Clause" ]
1
2019-07-21T15:59:29.000Z
2019-07-21T15:59:29.000Z
""" A top-level linear programming interface. Currently this interface solves linear programming problems via the Simplex and Interior-Point methods. .. versionadded:: 0.15.0 Functions --------- .. autosummary:: :toctree: generated/ linprog linprog_verbose_callback linprog_terse_callback """ from __future__ import division, print_function, absolute_import import numpy as np from .optimize import OptimizeResult, OptimizeWarning from warnings import warn from ._linprog_ip import _linprog_ip from ._linprog_simplex import _linprog_simplex from ._linprog_rs import _linprog_rs from ._linprog_util import ( _parse_linprog, _presolve, _get_Abc, _postprocess ) __all__ = ['linprog', 'linprog_verbose_callback', 'linprog_terse_callback'] __docformat__ = "restructuredtext en" def linprog_verbose_callback(res): """ A sample callback function demonstrating the linprog callback interface. This callback produces detailed output to sys.stdout before each iteration and after the final iteration of the simplex algorithm. Parameters ---------- res : A `scipy.optimize.OptimizeResult` consisting of the following fields: x : 1D array The independent variable vector which optimizes the linear programming problem. fun : float Value of the objective function. success : bool True if the algorithm succeeded in finding an optimal solution. slack : 1D array The values of the slack variables. Each slack variable corresponds to an inequality constraint. If the slack is zero, then the corresponding constraint is active. con : 1D array The (nominally zero) residuals of the equality constraints, that is, ``b - A_eq @ x`` phase : int The phase of the optimization being executed. In phase 1 a basic feasible solution is sought and the T has an additional row representing an alternate objective function. status : int An integer representing the exit status of the optimization:: 0 : Optimization terminated successfully 1 : Iteration limit reached 2 : Problem appears to be infeasible 3 : Problem appears to be unbounded 4 : Serious numerical difficulties encountered nit : int The number of iterations performed. message : str A string descriptor of the exit status of the optimization. """ x = res['x'] fun = res['fun'] phase = res['phase'] status = res['status'] nit = res['nit'] message = res['message'] complete = res['complete'] saved_printoptions = np.get_printoptions() np.set_printoptions(linewidth=500, formatter={'float': lambda x: "{0: 12.4f}".format(x)}) if status: print('--------- Simplex Early Exit -------\n'.format(nit)) print('The simplex method exited early with status {0:d}'.format(status)) print(message) elif complete: print('--------- Simplex Complete --------\n') print('Iterations required: {}'.format(nit)) else: print('--------- Iteration {0:d} ---------\n'.format(nit)) if nit > 0: if phase == 1: print('Current Pseudo-Objective Value:') else: print('Current Objective Value:') print('f = ', fun) print() print('Current Solution Vector:') print('x = ', x) print() np.set_printoptions(**saved_printoptions) def linprog_terse_callback(res): """ A sample callback function demonstrating the linprog callback interface. This callback produces brief output to sys.stdout before each iteration and after the final iteration of the simplex algorithm. Parameters ---------- res : A `scipy.optimize.OptimizeResult` consisting of the following fields: x : 1D array The independent variable vector which optimizes the linear programming problem. fun : float Value of the objective function. success : bool True if the algorithm succeeded in finding an optimal solution. slack : 1D array The values of the slack variables. Each slack variable corresponds to an inequality constraint. If the slack is zero, then the corresponding constraint is active. con : 1D array The (nominally zero) residuals of the equality constraints, that is, ``b - A_eq @ x``. phase : int The phase of the optimization being executed. In phase 1 a basic feasible solution is sought and the T has an additional row representing an alternate objective function. status : int An integer representing the exit status of the optimization:: 0 : Optimization terminated successfully 1 : Iteration limit reached 2 : Problem appears to be infeasible 3 : Problem appears to be unbounded 4 : Serious numerical difficulties encountered nit : int The number of iterations performed. message : str A string descriptor of the exit status of the optimization. """ nit = res['nit'] x = res['x'] if nit == 0: print("Iter: X:") print("{0: <5d} ".format(nit), end="") print(x) def linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='interior-point', callback=None, options=None, x0=None): r""" Linear programming: minimize a linear objective function subject to linear equality and inequality constraints. Linear programming solves problems of the following form: .. math:: \min_x \ & c^T x \\ \mbox{such that} \ & A_{ub} x \leq b_{ub},\\ & A_{eq} x = b_{eq},\\ & l \leq x \leq u , where :math:`x` is a vector of decision variables; :math:`c`, :math:`b_{ub}`, :math:`b_{eq}`, :math:`l`, and :math:`u` are vectors; and :math:`A_{ub}` and :math:`A_{eq}` are matrices. Informally, that's: minimize:: c @ x such that:: A_ub @ x <= b_ub A_eq @ x == b_eq lb <= x <= ub Note that by default ``lb = 0`` and ``ub = None`` unless specified with ``bounds``. Parameters ---------- c : 1D array The coefficients of the linear objective function to be minimized. A_ub : 2D array, optional The inequality constraint matrix. Each row of ``A_ub`` specifies the coefficients of a linear inequality constraint on ``x``. b_ub : 1D array, optional The inequality constraint vector. Each element represents an upper bound on the corresponding value of ``A_ub @ x``. A_eq : 2D array, optional The equality constraint matrix. Each row of ``A_eq`` specifies the coefficients of a linear equality constraint on ``x``. b_eq : 1D array, optional The equality constraint vector. Each element of ``A_eq @ x`` must equal the corresponding element of ``b_eq``. bounds : sequence, optional A sequence of ``(min, max)`` pairs for each element in ``x``, defining the minimum and maximum values of that decision variable. Use ``None`` to indicate that there is no bound. By default, bounds are ``(0, None)`` (all decision variables are non-negative). If a single tuple ``(min, max)`` is provided, then ``min`` and ``max`` will serve as bounds for all decision variables. method : {'interior-point', 'revised simplex', 'simplex'}, optional The algorithm used to solve the standard form problem. :ref:`'interior-point' <optimize.linprog-interior-point>` (default), :ref:`'revised simplex' <optimize.linprog-revised_simplex>`, and :ref:`'simplex' <optimize.linprog-simplex>` (legacy) are supported. callback : callable, optional If a callback function is provided, it will be called at least once per iteration of the algorithm. The callback function must accept a single `scipy.optimize.OptimizeResult` consisting of the following fields: x : 1D array The current solution vector. fun : float The current value of the objective function ``c @ x``. success : bool ``True`` when the algorithm has completed successfully. slack : 1D array The (nominally positive) values of the slack, ``b_ub - A_ub @ x``. con : 1D array The (nominally zero) residuals of the equality constraints, ``b_eq - A_eq @ x``. phase : int The phase of the algorithm being executed. status : int An integer representing the status of the algorithm. ``0`` : Optimization proceeding nominally. ``1`` : Iteration limit reached. ``2`` : Problem appears to be infeasible. ``3`` : Problem appears to be unbounded. ``4`` : Numerical difficulties encountered. nit : int The current iteration number. message : str A string descriptor of the algorithm status. options : dict, optional A dictionary of solver options. All methods accept the following options: maxiter : int Maximum number of iterations to perform. disp : bool Set to ``True`` to print convergence messages. For method-specific options, see :func:`show_options('linprog') <show_options>`. x0 : 1D array, optional Guess values of the decision variables, which will be refined by the optimization algorithm. This argument is currently used only by the 'revised simplex' method, and can only be used if `x0` represents a basic feasible solution. Returns ------- res : OptimizeResult A :class:`scipy.optimize.OptimizeResult` consisting of the fields: x : 1D array The values of the decision variables that minimizes the objective function while satisfying the constraints. fun : float The optimal value of the objective function ``c @ x``. slack : 1D array The (nominally positive) values of the slack variables, ``b_ub - A_ub @ x``. con : 1D array The (nominally zero) residuals of the equality constraints, ``b_eq - A_eq @ x``. success : bool ``True`` when the algorithm succeeds in finding an optimal solution. status : int An integer representing the exit status of the algorithm. ``0`` : Optimization terminated successfully. ``1`` : Iteration limit reached. ``2`` : Problem appears to be infeasible. ``3`` : Problem appears to be unbounded. ``4`` : Numerical difficulties encountered. nit : int The total number of iterations performed in all phases. message : str A string descriptor of the exit status of the algorithm. See Also -------- show_options : Additional options accepted by the solvers. Notes ----- This section describes the available solvers that can be selected by the 'method' parameter. :ref:`'interior-point' <optimize.linprog-interior-point>` is the default as it is typically the fastest and most robust method. :ref:`'revised simplex' <optimize.linprog-revised_simplex>` is more accurate for the problems it solves. :ref:`'simplex' <optimize.linprog-simplex>` is the legacy method and is included for backwards compatibility and educational purposes. Method *interior-point* uses the primal-dual path following algorithm as outlined in [4]_. This algorithm supports sparse constraint matrices and is typically faster than the simplex methods, especially for large, sparse problems. Note, however, that the solution returned may be slightly less accurate than those of the simplex methods and will not, in general, correspond with a vertex of the polytope defined by the constraints. .. versionadded:: 1.0.0 Method *revised simplex* uses the revised simplex method as decribed in [9]_, except that a factorization [11]_ of the basis matrix, rather than its inverse, is efficiently maintained and used to solve the linear systems at each iteration of the algorithm. .. versionadded:: 1.3.0 Method *simplex* uses a traditional, full-tableau implementation of Dantzig's simplex algorithm [1]_, [2]_ (*not* the Nelder-Mead simplex). This algorithm is included for backwards compatibility and educational purposes. .. versionadded:: 0.15.0 Before applying any method, a presolve procedure based on [8]_ attempts to identify trivial infeasibilities, trivial unboundedness, and potential problem simplifications. Specifically, it checks for: - rows of zeros in ``A_eq`` or ``A_ub``, representing trivial constraints; - columns of zeros in ``A_eq`` `and` ``A_ub``, representing unconstrained variables; - column singletons in ``A_eq``, representing fixed variables; and - column singletons in ``A_ub``, representing simple bounds. If presolve reveals that the problem is unbounded (e.g. an unconstrained and unbounded variable has negative cost) or infeasible (e.g. a row of zeros in ``A_eq`` corresponds with a nonzero in ``b_eq``), the solver terminates with the appropriate status code. Note that presolve terminates as soon as any sign of unboundedness is detected; consequently, a problem may be reported as unbounded when in reality the problem is infeasible (but infeasibility has not been detected yet). Therefore, if it is important to know whether the problem is actually infeasible, solve the problem again with option ``presolve=False``. If neither infeasibility nor unboundedness are detected in a single pass of the presolve, bounds are tightened where possible and fixed variables are removed from the problem. Then, linearly dependent rows of the ``A_eq`` matrix are removed, (unless they represent an infeasibility) to avoid numerical difficulties in the primary solve routine. Note that rows that are nearly linearly dependent (within a prescribed tolerance) may also be removed, which can change the optimal solution in rare cases. If this is a concern, eliminate redundancy from your problem formulation and run with option ``rr=False`` or ``presolve=False``. Several potential improvements can be made here: additional presolve checks outlined in [8]_ should be implemented, the presolve routine should be run multiple times (until no further simplifications can be made), and more of the efficiency improvements from [5]_ should be implemented in the redundancy removal routines. After presolve, the problem is transformed to standard form by converting the (tightened) simple bounds to upper bound constraints, introducing non-negative slack variables for inequality constraints, and expressing unbounded variables as the difference between two non-negative variables. The selected algorithm solves the standard form problem, and a postprocessing routine converts this to a solution to the original problem. References ---------- .. [1] Dantzig, George B., Linear programming and extensions. Rand Corporation Research Study Princeton Univ. Press, Princeton, NJ, 1963 .. [2] Hillier, S.H. and Lieberman, G.J. (1995), "Introduction to Mathematical Programming", McGraw-Hill, Chapter 4. .. [3] Bland, Robert G. New finite pivoting rules for the simplex method. Mathematics of Operations Research (2), 1977: pp. 103-107. .. [4] Andersen, Erling D., and Knud D. Andersen. "The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm." High performance optimization. Springer US, 2000. 197-232. .. [5] Andersen, Erling D. "Finding all linearly dependent rows in large-scale linear programming." Optimization Methods and Software 6.3 (1995): 219-227. .. [6] Freund, Robert M. "Primal-Dual Interior-Point Methods for Linear Programming based on Newton's Method." Unpublished Course Notes, March 2004. Available 2/25/2017 at https://ocw.mit.edu/courses/sloan-school-of-management/15-084j-nonlinear-programming-spring-2004/lecture-notes/lec14_int_pt_mthd.pdf .. [7] Fourer, Robert. "Solving Linear Programs by Interior-Point Methods." Unpublished Course Notes, August 26, 2005. Available 2/25/2017 at http://www.4er.org/CourseNotes/Book%20B/B-III.pdf .. [8] Andersen, Erling D., and Knud D. Andersen. "Presolving in linear programming." Mathematical Programming 71.2 (1995): 221-245. .. [9] Bertsimas, Dimitris, and J. Tsitsiklis. "Introduction to linear programming." Athena Scientific 1 (1997): 997. .. [10] Andersen, Erling D., et al. Implementation of interior point methods for large scale linear programming. HEC/Universite de Geneve, 1996. .. [11] Bartels, Richard H. "A stabilization of the simplex method." Journal in Numerische Mathematik 16.5 (1971): 414-434. Examples -------- Consider the following problem: .. math:: \min_{x_0, x_1} \ -x_0 + 4x_1 & \\ \mbox{such that} \ -3x_0 + x_1 & \leq 6,\\ -x_0 - 2x_1 & \geq -4,\\ x_1 & \geq -3. The problem is not presented in the form accepted by `linprog`. This is easily remedied by converting the "greater than" inequality constraint to a "less than" inequality constraint by multiplying both sides by a factor of :math:`-1`. Note also that the last constraint is really the simple bound :math:`-3 \leq x_1 \leq \infty`. Finally, since there are no bounds on :math:`x_0`, we must explicitly specify the bounds :math:`-\infty \leq x_0 \leq \infty`, as the default is for variables to be non-negative. After collecting coeffecients into arrays and tuples, the input for this problem is: >>> c = [-1, 4] >>> A = [[-3, 1], [1, 2]] >>> b = [6, 4] >>> x0_bounds = (None, None) >>> x1_bounds = (-3, None) >>> from scipy.optimize import linprog >>> res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds]) Note that the default method for `linprog` is 'interior-point', which is approximate by nature. >>> print(res) con: array([], dtype=float64) fun: -21.99999984082494 # may vary message: 'Optimization terminated successfully.' nit: 6 # may vary slack: array([3.89999997e+01, 8.46872439e-08] # may vary status: 0 success: True x: array([ 9.99999989, -2.99999999]) # may vary If you need greater accuracy, try 'revised simplex'. >>> res = linprog(c, A_ub=A, b_ub=b, bounds=[x0_bounds, x1_bounds], method='revised simplex') >>> print(res) con: array([], dtype=float64) fun: -22.0 # may vary message: 'Optimization terminated successfully.' nit: 1 # may vary slack: array([39., 0.]) # may vary status: 0 success: True x: array([10., -3.]) # may vary """ meth = method.lower() if x0 is not None and meth != "revised simplex": warning_message = "x0 is used only when method is 'revised simplex'. " warn(warning_message, OptimizeWarning) c, A_ub, b_ub, A_eq, b_eq, bounds, solver_options, x0 = _parse_linprog( c, A_ub, b_ub, A_eq, b_eq, bounds, options, x0) tol = solver_options.get('tol', 1e-9) iteration = 0 complete = False # will become True if solved in presolve undo = [] # Keep the original arrays to calculate slack/residuals for original # problem. c_o, A_ub_o, b_ub_o, A_eq_o, b_eq_o = c.copy( ), A_ub.copy(), b_ub.copy(), A_eq.copy(), b_eq.copy() # Solve trivial problem, eliminate variables, tighten bounds, etc... c0 = 0 # we might get a constant term in the objective if solver_options.pop('presolve', True): rr = solver_options.pop('rr', True) (c, c0, A_ub, b_ub, A_eq, b_eq, bounds, x, x0, undo, complete, status, message) = _presolve(c, A_ub, b_ub, A_eq, b_eq, bounds, x0, rr, tol) if not complete: A, b, c, c0, x0 = _get_Abc(c, c0, A_ub, b_ub, A_eq, b_eq, bounds, x0, undo) T_o = (c_o, A_ub_o, b_ub_o, A_eq_o, b_eq_o, bounds, undo) if meth == 'simplex': x, status, message, iteration = _linprog_simplex( c, c0=c0, A=A, b=b, callback=callback, _T_o=T_o, **solver_options) elif meth == 'interior-point': x, status, message, iteration = _linprog_ip( c, c0=c0, A=A, b=b, callback=callback, _T_o=T_o, **solver_options) elif meth == 'revised simplex': x, status, message, iteration = _linprog_rs( c, c0=c0, A=A, b=b, x0=x0, callback=callback, _T_o=T_o, **solver_options) else: raise ValueError('Unknown solver %s' % method) # Eliminate artificial variables, re-introduce presolved variables, etc... # need modified bounds here to translate variables appropriately disp = solver_options.get('disp', False) x, fun, slack, con, status, message = _postprocess( x, c_o, A_ub_o, b_ub_o, A_eq_o, b_eq_o, bounds, complete, undo, status, message, tol, iteration, disp) sol = { 'x': x, 'fun': fun, 'slack': slack, 'con': con, 'status': status, 'message': message, 'nit': iteration, 'success': status == 0} return OptimizeResult(sol)
40.650995
143
0.634342
b4dedc3acd601780663bee854729475c458d315c
818
py
Python
presto/migrations/0056_auto_20180816_0948.py
pwgbots/presto
49622bdfb6c597c3451d9f5c589d9a1797143d4f
[ "MIT" ]
null
null
null
presto/migrations/0056_auto_20180816_0948.py
pwgbots/presto
49622bdfb6c597c3451d9f5c589d9a1797143d4f
[ "MIT" ]
8
2020-07-28T07:59:09.000Z
2022-03-11T23:43:01.000Z
presto/migrations/0056_auto_20180816_0948.py
pwgbots/presto
49622bdfb6c597c3451d9f5c589d9a1797143d4f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2018-08-16 07:48 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('presto', '0055_auto_20180815_2208'), ] operations = [ migrations.AddField( model_name='queuepicture', name='mail_body', field=models.TextField(blank=True, default=''), ), migrations.AddField( model_name='queuepicture', name='mail_subject', field=models.CharField(blank=True, default='', max_length=256), ), migrations.AddField( model_name='queuepicture', name='suppressed', field=models.BooleanField(default=False), ), ]
26.387097
75
0.589242
3cf10124766b687e8713c783e217653c4f0301ba
7,564
py
Python
test/tensorflow_test.py
delding/ray
8532ba4272556aa24b5e0c7d275c7b383815c022
[ "Apache-2.0" ]
null
null
null
test/tensorflow_test.py
delding/ray
8532ba4272556aa24b5e0c7d275c7b383815c022
[ "Apache-2.0" ]
null
null
null
test/tensorflow_test.py
delding/ray
8532ba4272556aa24b5e0c7d275c7b383815c022
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function from numpy.testing import assert_almost_equal import tensorflow as tf import unittest import ray def make_linear_network(w_name=None, b_name=None): # Define the inputs. x_data = tf.placeholder(tf.float32, shape=[100]) y_data = tf.placeholder(tf.float32, shape=[100]) # Define the weights and computation. w = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name=w_name) b = tf.Variable(tf.zeros([1]), name=b_name) y = w * x_data + b # Return the loss and weight initializer. return (tf.reduce_mean(tf.square(y - y_data)), tf.global_variables_initializer(), x_data, y_data) class NetActor(object): def __init__(self): # Uses a separate graph for each network. with tf.Graph().as_default(): # Create the network. loss, init, _, _ = make_linear_network() sess = tf.Session() # Additional code for setting and getting the weights. variables = ray.experimental.TensorFlowVariables(loss, sess) # Return all of the data needed to use the network. self.values = [variables, init, sess] sess.run(init) def set_and_get_weights(self, weights): self.values[0].set_weights(weights) return self.values[0].get_weights() def get_weights(self): return self.values[0].get_weights() class TrainActor(object): def __init__(self): # Almost the same as above, but now returns the placeholders and gradient. with tf.Graph().as_default(): loss, init, x_data, y_data = make_linear_network() sess = tf.Session() variables = ray.experimental.TensorFlowVariables(loss, sess) optimizer = tf.train.GradientDescentOptimizer(0.9) grads = optimizer.compute_gradients(loss) train = optimizer.apply_gradients(grads) self.values = [loss, variables, init, sess, grads, train, [x_data, y_data]] sess.run(init) def training_step(self, weights): _, variables, _, sess, grads, _, placeholders = self.values variables.set_weights(weights) return sess.run([grad[0] for grad in grads], feed_dict=dict(zip(placeholders, [[1] * 100, [2] * 100]))) def get_weights(self): return self.values[1].get_weights() class TensorFlowTest(unittest.TestCase): def testTensorFlowVariables(self): ray.init(num_workers=2) sess = tf.Session() loss, init, _, _ = make_linear_network() sess.run(init) variables = ray.experimental.TensorFlowVariables(loss, sess) weights = variables.get_weights() for (name, val) in weights.items(): weights[name] += 1.0 variables.set_weights(weights) self.assertEqual(weights, variables.get_weights()) loss2, init2, _, _ = make_linear_network("w", "b") sess.run(init2) variables2 = ray.experimental.TensorFlowVariables(loss2, sess) weights2 = variables2.get_weights() for (name, val) in weights2.items(): weights2[name] += 2.0 variables2.set_weights(weights2) self.assertEqual(weights2, variables2.get_weights()) flat_weights = variables2.get_flat() + 2.0 variables2.set_flat(flat_weights) assert_almost_equal(flat_weights, variables2.get_flat()) variables3 = ray.experimental.TensorFlowVariables(loss2) self.assertEqual(variables3.sess, None) sess = tf.Session() variables3.set_session(sess) self.assertEqual(variables3.sess, sess) ray.worker.cleanup() # Test that the variable names for the two different nets are not # modified by TensorFlow to be unique (i.e. they should already # be unique because of the variable prefix). def testVariableNameCollision(self): ray.init(num_workers=2) net1 = NetActor() net2 = NetActor() # This is checking that the variable names of the two nets are the same, # i.e. that the names in the weight dictionaries are the same net1.values[0].set_weights(net2.values[0].get_weights()) ray.worker.cleanup() # Test that different networks on the same worker are independent and # we can get/set their weights without any interaction. def testNetworksIndependent(self): # Note we use only one worker to ensure that all of the remote functions # run on the same worker. ray.init(num_workers=1) net1 = NetActor() net2 = NetActor() # Make sure the two networks have different weights. TODO(rkn): Note that # equality comparisons of numpy arrays normally does not work. This only # works because at the moment they have size 1. weights1 = net1.get_weights() weights2 = net2.get_weights() self.assertNotEqual(weights1, weights2) # Set the weights and get the weights, and make sure they are unchanged. new_weights1 = net1.set_and_get_weights(weights1) new_weights2 = net2.set_and_get_weights(weights2) self.assertEqual(weights1, new_weights1) self.assertEqual(weights2, new_weights2) # Swap the weights. new_weights1 = net2.set_and_get_weights(weights1) new_weights2 = net1.set_and_get_weights(weights2) self.assertEqual(weights1, new_weights1) self.assertEqual(weights2, new_weights2) ray.worker.cleanup() # This test creates an additional network on the driver so that the # tensorflow variables on the driver and the worker differ. def testNetworkDriverWorkerIndependent(self): ray.init(num_workers=1) # Create a network on the driver locally. sess1 = tf.Session() loss1, init1, _, _ = make_linear_network() ray.experimental.TensorFlowVariables(loss1, sess1) sess1.run(init1) net2 = ray.actor(NetActor)() weights2 = ray.get(net2.get_weights()) new_weights2 = ray.get(net2.set_and_get_weights(net2.get_weights())) self.assertEqual(weights2, new_weights2) ray.worker.cleanup() def testVariablesControlDependencies(self): ray.init(num_workers=1) # Creates a network and appends a momentum optimizer. sess = tf.Session() loss, init, _, _ = make_linear_network() minimizer = tf.train.MomentumOptimizer(0.9, 0.9).minimize(loss) net_vars = ray.experimental.TensorFlowVariables(minimizer, sess) sess.run(init) # Tests if all variables are properly retrieved, 2 variables and 2 momentum # variables. self.assertEqual(len(net_vars.variables.items()), 4) ray.worker.cleanup() def testRemoteTrainingStep(self): ray.init(num_workers=1) net = ray.actor(TrainActor)() ray.get(net.training_step(net.get_weights())) ray.worker.cleanup() def testRemoteTrainingLoss(self): ray.init(num_workers=2) net = ray.actor(TrainActor)() loss, variables, _, sess, grads, train, placeholders = TrainActor().values before_acc = sess.run(loss, feed_dict=dict(zip(placeholders, [[2] * 100, [4] * 100]))) for _ in range(3): gradients_list = ray.get([net.training_step(variables.get_weights()) for _ in range(2)]) mean_grads = [sum([gradients[i] for gradients in gradients_list]) / len(gradients_list) for i in range(len(gradients_list[0]))] feed_dict = {grad[0]: mean_grad for (grad, mean_grad) in zip(grads, mean_grads)} sess.run(train, feed_dict=feed_dict) after_acc = sess.run(loss, feed_dict=dict(zip(placeholders, [[2] * 100, [4] * 100]))) self.assertTrue(before_acc < after_acc) ray.worker.cleanup() if __name__ == "__main__": unittest.main(verbosity=2)
33.469027
79
0.691433
df932a1d318345b8235882775e0cd92939917f5c
1,968
py
Python
lib/tests/test_runner.py
xuzhiying9510/ncflow
3f6f4a5b2c13ac8f6375b097b35f6c55b18d212e
[ "Artistic-1.0-cl8" ]
10
2021-02-09T19:25:46.000Z
2022-03-29T13:49:23.000Z
lib/tests/test_runner.py
xuzhiying9510/ncflow
3f6f4a5b2c13ac8f6375b097b35f6c55b18d212e
[ "Artistic-1.0-cl8" ]
null
null
null
lib/tests/test_runner.py
xuzhiying9510/ncflow
3f6f4a5b2c13ac8f6375b097b35f6c55b18d212e
[ "Artistic-1.0-cl8" ]
5
2020-12-23T15:24:40.000Z
2022-01-06T09:42:38.000Z
#! /usr/bin/env python from .toy_problem_test import ToyProblemTest from .reconciliation_problem_test import ReconciliationProblemTest from .reconciliation_problem_2_test import ReconciliationProblem2Test from .recon3_test import Recon3Test from .optgapc1_test import OptGapC1Test from .optgapc2_test import OptGapC2Test from .optgapc3_test import OptGapC3Test from .optgap4_test import OptGap4Test from .single_edge_b import SingleEdgeBTest from .feasibility_test import FeasibilityTest from .flow_path_construction_test import FlowPathConstructionTest from .we_need_to_fix_this_test import WeNeedToFixThisTest from .abstract_test import bcolors import argparse ALL_TESTS = [ToyProblemTest(), ReconciliationProblemTest(), ReconciliationProblem2Test(), Recon3Test(), OptGapC1Test(), OptGapC2Test(), OptGapC3Test(), FeasibilityTest(), OptGap4Test(), FlowPathConstructionTest(), WeNeedToFixThisTest(), SingleEdgeBTest()] TEST_NAME_DICT = {test.name: test for test in ALL_TESTS} def run_tests(tests_to_run): tests_that_failed = [] for test in tests_to_run: print('\n\n---{} TEST---\n\n'.format(test.name.upper())) test.run() if test.has_error: tests_that_failed.append(test) for test in tests_that_failed: print() print(bcolors.ERROR + '\n\n---{} TEST failed---\n\n'.format(test.name.upper()) + bcolors.ENDC) if len(tests_that_failed) == 0: print(bcolors.OKGREEN + 'All tests passed!' + bcolors.ENDC) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--tests', nargs='+', required=False) args = parser.parse_args() if args.tests is not None: tests_to_run = [TEST_NAME_DICT[name] for name in args.tests] else: tests_to_run = ALL_TESTS print('RUNNING THE FOLLOWING TESTS: {}'.format( [test.name for test in tests_to_run])) run_tests(tests_to_run)
33.931034
102
0.723069
d1a50a3f9e7436229e04040cd893d47631ec5b01
5,033
py
Python
src/lib/detectors/base_detector.py
hieubkvn123/CenterNet
438c1e8d0424122ece353bb20e64ff51f9444b6f
[ "MIT" ]
null
null
null
src/lib/detectors/base_detector.py
hieubkvn123/CenterNet
438c1e8d0424122ece353bb20e64ff51f9444b6f
[ "MIT" ]
null
null
null
src/lib/detectors/base_detector.py
hieubkvn123/CenterNet
438c1e8d0424122ece353bb20e64ff51f9444b6f
[ "MIT" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function import cv2 import numpy as np import time import torch from models.model import create_model, load_model from utils.image import get_affine_transform from utils.debugger import Debugger class BaseDetector(object): def __init__(self, opt): if opt.gpus[0] >= 0: opt.device = torch.device('cuda') else: opt.device = torch.device('cpu') print('Creating model...') self.model = create_model(opt.arch, opt.heads, opt.head_conv) self.model = load_model(self.model, opt.load_model) self.model = self.model.to(opt.device) self.model.eval() self.mean = np.array(opt.mean, dtype=np.float32).reshape(1, 1, 3) self.std = np.array(opt.std, dtype=np.float32).reshape(1, 1, 3) self.max_per_image = 100 self.num_classes = opt.num_classes self.scales = opt.test_scales self.opt = opt self.pause = True def pre_process(self, image, scale, meta=None): height, width = image.shape[0:2] new_height = int(height * scale) new_width = int(width * scale) if self.opt.fix_res: inp_height, inp_width = self.opt.input_h, self.opt.input_w c = np.array([new_width / 2., new_height / 2.], dtype=np.float32) s = max(height, width) * 1.0 else: inp_height = (new_height | self.opt.pad) + 1 inp_width = (new_width | self.opt.pad) + 1 c = np.array([new_width // 2, new_height // 2], dtype=np.float32) s = np.array([inp_width, inp_height], dtype=np.float32) trans_input = get_affine_transform(c, s, 0, [inp_width, inp_height]) resized_image = cv2.resize(image, (new_width, new_height)) inp_image = cv2.warpAffine( resized_image, trans_input, (inp_width, inp_height), flags=cv2.INTER_LINEAR) inp_image = ((inp_image / 255. - self.mean) / self.std).astype(np.float32) images = inp_image.transpose(2, 0, 1).reshape(1, 3, inp_height, inp_width) if self.opt.flip_test: images = np.concatenate((images, images[:, :, :, ::-1]), axis=0) images = torch.from_numpy(images) meta = {'c': c, 's': s, 'out_height': inp_height // self.opt.down_ratio, 'out_width': inp_width // self.opt.down_ratio} return images, meta def process(self, images, return_time=False): raise NotImplementedError def post_process(self, dets, meta, scale=1): raise NotImplementedError def merge_outputs(self, detections): raise NotImplementedError def debug(self, debugger, images, dets, output, scale=1): raise NotImplementedError def show_results(self, debugger, image, results): raise NotImplementedError def run(self, image_or_path_or_tensor, meta=None): load_time, pre_time, net_time, dec_time, post_time = 0, 0, 0, 0, 0 merge_time, tot_time = 0, 0 debugger = Debugger(dataset=self.opt.dataset, ipynb=(self.opt.debug==3), theme=self.opt.debugger_theme) start_time = time.time() pre_processed = False if isinstance(image_or_path_or_tensor, np.ndarray): image = image_or_path_or_tensor elif type(image_or_path_or_tensor) == type (''): image = cv2.imread(image_or_path_or_tensor) else: image = image_or_path_or_tensor['image'][0].numpy() pre_processed_images = image_or_path_or_tensor pre_processed = True loaded_time = time.time() load_time += (loaded_time - start_time) detections = [] for scale in self.scales: scale_start_time = time.time() if not pre_processed: images, meta = self.pre_process(image, scale, meta) else: # import pdb; pdb.set_trace() images = pre_processed_images['images'][scale][0] meta = pre_processed_images['meta'][scale] meta = {k: v.numpy()[0] for k, v in meta.items()} images = images.to(self.opt.device) torch.cuda.synchronize() pre_process_time = time.time() pre_time += pre_process_time - scale_start_time output, dets, forward_time = self.process(images, return_time=True) torch.cuda.synchronize() net_time += forward_time - pre_process_time decode_time = time.time() dec_time += decode_time - forward_time if self.opt.debug >= 2: self.debug(debugger, images, dets, output, scale) dets = self.post_process(dets, meta, scale) torch.cuda.synchronize() post_process_time = time.time() post_time += post_process_time - decode_time detections.append(dets) results = self.merge_outputs(detections) torch.cuda.synchronize() end_time = time.time() merge_time += end_time - post_process_time tot_time += end_time - start_time if self.opt.debug >= 1: self.show_results(debugger, image, results) return {'results': results, 'tot': tot_time, 'load': load_time, 'pre': pre_time, 'net': net_time, 'dec': dec_time, 'post': post_time, 'merge': merge_time}
34.951389
78
0.66362
9f5208b51e8e6a67eae1cac19789cc03133b7f42
20,406
py
Python
sdk/python/pulumi_azure_native/datalakeanalytics/get_account.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/datalakeanalytics/get_account.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/datalakeanalytics/get_account.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs __all__ = [ 'GetAccountResult', 'AwaitableGetAccountResult', 'get_account', ] @pulumi.output_type class GetAccountResult: """ A Data Lake Analytics account object, containing all information associated with the named Data Lake Analytics account. """ def __init__(__self__, account_id=None, compute_policies=None, creation_time=None, current_tier=None, data_lake_store_accounts=None, debug_data_access_level=None, default_data_lake_store_account=None, endpoint=None, firewall_allow_azure_ips=None, firewall_rules=None, firewall_state=None, hive_metastores=None, id=None, last_modified_time=None, location=None, max_degree_of_parallelism=None, max_degree_of_parallelism_per_job=None, max_job_count=None, min_priority_per_job=None, name=None, new_tier=None, provisioning_state=None, public_data_lake_store_accounts=None, query_store_retention=None, state=None, storage_accounts=None, system_max_degree_of_parallelism=None, system_max_job_count=None, tags=None, type=None, virtual_network_rules=None): if account_id and not isinstance(account_id, str): raise TypeError("Expected argument 'account_id' to be a str") pulumi.set(__self__, "account_id", account_id) if compute_policies and not isinstance(compute_policies, list): raise TypeError("Expected argument 'compute_policies' to be a list") pulumi.set(__self__, "compute_policies", compute_policies) if creation_time and not isinstance(creation_time, str): raise TypeError("Expected argument 'creation_time' to be a str") pulumi.set(__self__, "creation_time", creation_time) if current_tier and not isinstance(current_tier, str): raise TypeError("Expected argument 'current_tier' to be a str") pulumi.set(__self__, "current_tier", current_tier) if data_lake_store_accounts and not isinstance(data_lake_store_accounts, list): raise TypeError("Expected argument 'data_lake_store_accounts' to be a list") pulumi.set(__self__, "data_lake_store_accounts", data_lake_store_accounts) if debug_data_access_level and not isinstance(debug_data_access_level, str): raise TypeError("Expected argument 'debug_data_access_level' to be a str") pulumi.set(__self__, "debug_data_access_level", debug_data_access_level) if default_data_lake_store_account and not isinstance(default_data_lake_store_account, str): raise TypeError("Expected argument 'default_data_lake_store_account' to be a str") pulumi.set(__self__, "default_data_lake_store_account", default_data_lake_store_account) if endpoint and not isinstance(endpoint, str): raise TypeError("Expected argument 'endpoint' to be a str") pulumi.set(__self__, "endpoint", endpoint) if firewall_allow_azure_ips and not isinstance(firewall_allow_azure_ips, str): raise TypeError("Expected argument 'firewall_allow_azure_ips' to be a str") pulumi.set(__self__, "firewall_allow_azure_ips", firewall_allow_azure_ips) if firewall_rules and not isinstance(firewall_rules, list): raise TypeError("Expected argument 'firewall_rules' to be a list") pulumi.set(__self__, "firewall_rules", firewall_rules) if firewall_state and not isinstance(firewall_state, str): raise TypeError("Expected argument 'firewall_state' to be a str") pulumi.set(__self__, "firewall_state", firewall_state) if hive_metastores and not isinstance(hive_metastores, list): raise TypeError("Expected argument 'hive_metastores' to be a list") pulumi.set(__self__, "hive_metastores", hive_metastores) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if last_modified_time and not isinstance(last_modified_time, str): raise TypeError("Expected argument 'last_modified_time' to be a str") pulumi.set(__self__, "last_modified_time", last_modified_time) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if max_degree_of_parallelism and not isinstance(max_degree_of_parallelism, int): raise TypeError("Expected argument 'max_degree_of_parallelism' to be a int") pulumi.set(__self__, "max_degree_of_parallelism", max_degree_of_parallelism) if max_degree_of_parallelism_per_job and not isinstance(max_degree_of_parallelism_per_job, int): raise TypeError("Expected argument 'max_degree_of_parallelism_per_job' to be a int") pulumi.set(__self__, "max_degree_of_parallelism_per_job", max_degree_of_parallelism_per_job) if max_job_count and not isinstance(max_job_count, int): raise TypeError("Expected argument 'max_job_count' to be a int") pulumi.set(__self__, "max_job_count", max_job_count) if min_priority_per_job and not isinstance(min_priority_per_job, int): raise TypeError("Expected argument 'min_priority_per_job' to be a int") pulumi.set(__self__, "min_priority_per_job", min_priority_per_job) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if new_tier and not isinstance(new_tier, str): raise TypeError("Expected argument 'new_tier' to be a str") pulumi.set(__self__, "new_tier", new_tier) if provisioning_state and not isinstance(provisioning_state, str): raise TypeError("Expected argument 'provisioning_state' to be a str") pulumi.set(__self__, "provisioning_state", provisioning_state) if public_data_lake_store_accounts and not isinstance(public_data_lake_store_accounts, list): raise TypeError("Expected argument 'public_data_lake_store_accounts' to be a list") pulumi.set(__self__, "public_data_lake_store_accounts", public_data_lake_store_accounts) if query_store_retention and not isinstance(query_store_retention, int): raise TypeError("Expected argument 'query_store_retention' to be a int") pulumi.set(__self__, "query_store_retention", query_store_retention) if state and not isinstance(state, str): raise TypeError("Expected argument 'state' to be a str") pulumi.set(__self__, "state", state) if storage_accounts and not isinstance(storage_accounts, list): raise TypeError("Expected argument 'storage_accounts' to be a list") pulumi.set(__self__, "storage_accounts", storage_accounts) if system_max_degree_of_parallelism and not isinstance(system_max_degree_of_parallelism, int): raise TypeError("Expected argument 'system_max_degree_of_parallelism' to be a int") pulumi.set(__self__, "system_max_degree_of_parallelism", system_max_degree_of_parallelism) if system_max_job_count and not isinstance(system_max_job_count, int): raise TypeError("Expected argument 'system_max_job_count' to be a int") pulumi.set(__self__, "system_max_job_count", system_max_job_count) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) if virtual_network_rules and not isinstance(virtual_network_rules, list): raise TypeError("Expected argument 'virtual_network_rules' to be a list") pulumi.set(__self__, "virtual_network_rules", virtual_network_rules) @property @pulumi.getter(name="accountId") def account_id(self) -> str: """ The unique identifier associated with this Data Lake Analytics account. """ return pulumi.get(self, "account_id") @property @pulumi.getter(name="computePolicies") def compute_policies(self) -> Sequence['outputs.ComputePolicyResponse']: """ The list of compute policies associated with this account. """ return pulumi.get(self, "compute_policies") @property @pulumi.getter(name="creationTime") def creation_time(self) -> str: """ The account creation time. """ return pulumi.get(self, "creation_time") @property @pulumi.getter(name="currentTier") def current_tier(self) -> str: """ The commitment tier in use for the current month. """ return pulumi.get(self, "current_tier") @property @pulumi.getter(name="dataLakeStoreAccounts") def data_lake_store_accounts(self) -> Sequence['outputs.DataLakeStoreAccountInformationResponse']: """ The list of Data Lake Store accounts associated with this account. """ return pulumi.get(self, "data_lake_store_accounts") @property @pulumi.getter(name="debugDataAccessLevel") def debug_data_access_level(self) -> str: """ The current state of the DebugDataAccessLevel for this account. """ return pulumi.get(self, "debug_data_access_level") @property @pulumi.getter(name="defaultDataLakeStoreAccount") def default_data_lake_store_account(self) -> str: """ The default Data Lake Store account associated with this account. """ return pulumi.get(self, "default_data_lake_store_account") @property @pulumi.getter def endpoint(self) -> str: """ The full CName endpoint for this account. """ return pulumi.get(self, "endpoint") @property @pulumi.getter(name="firewallAllowAzureIps") def firewall_allow_azure_ips(self) -> Optional[str]: """ The current state of allowing or disallowing IPs originating within Azure through the firewall. If the firewall is disabled, this is not enforced. """ return pulumi.get(self, "firewall_allow_azure_ips") @property @pulumi.getter(name="firewallRules") def firewall_rules(self) -> Sequence['outputs.FirewallRuleResponse']: """ The list of firewall rules associated with this account. """ return pulumi.get(self, "firewall_rules") @property @pulumi.getter(name="firewallState") def firewall_state(self) -> Optional[str]: """ The current state of the IP address firewall for this account. """ return pulumi.get(self, "firewall_state") @property @pulumi.getter(name="hiveMetastores") def hive_metastores(self) -> Sequence['outputs.HiveMetastoreResponse']: """ The list of hiveMetastores associated with this account. """ return pulumi.get(self, "hive_metastores") @property @pulumi.getter def id(self) -> str: """ The resource identifier. """ return pulumi.get(self, "id") @property @pulumi.getter(name="lastModifiedTime") def last_modified_time(self) -> str: """ The account last modified time. """ return pulumi.get(self, "last_modified_time") @property @pulumi.getter def location(self) -> str: """ The resource location. """ return pulumi.get(self, "location") @property @pulumi.getter(name="maxDegreeOfParallelism") def max_degree_of_parallelism(self) -> Optional[int]: """ The maximum supported degree of parallelism for this account. """ return pulumi.get(self, "max_degree_of_parallelism") @property @pulumi.getter(name="maxDegreeOfParallelismPerJob") def max_degree_of_parallelism_per_job(self) -> Optional[int]: """ The maximum supported degree of parallelism per job for this account. """ return pulumi.get(self, "max_degree_of_parallelism_per_job") @property @pulumi.getter(name="maxJobCount") def max_job_count(self) -> Optional[int]: """ The maximum supported jobs running under the account at the same time. """ return pulumi.get(self, "max_job_count") @property @pulumi.getter(name="minPriorityPerJob") def min_priority_per_job(self) -> int: """ The minimum supported priority per job for this account. """ return pulumi.get(self, "min_priority_per_job") @property @pulumi.getter def name(self) -> str: """ The resource name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="newTier") def new_tier(self) -> Optional[str]: """ The commitment tier for the next month. """ return pulumi.get(self, "new_tier") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ The provisioning status of the Data Lake Analytics account. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="publicDataLakeStoreAccounts") def public_data_lake_store_accounts(self) -> Optional[Sequence['outputs.DataLakeStoreAccountInformationResponse']]: """ The list of Data Lake Store accounts associated with this account. """ return pulumi.get(self, "public_data_lake_store_accounts") @property @pulumi.getter(name="queryStoreRetention") def query_store_retention(self) -> Optional[int]: """ The number of days that job metadata is retained. """ return pulumi.get(self, "query_store_retention") @property @pulumi.getter def state(self) -> str: """ The state of the Data Lake Analytics account. """ return pulumi.get(self, "state") @property @pulumi.getter(name="storageAccounts") def storage_accounts(self) -> Sequence['outputs.StorageAccountInformationResponse']: """ The list of Azure Blob Storage accounts associated with this account. """ return pulumi.get(self, "storage_accounts") @property @pulumi.getter(name="systemMaxDegreeOfParallelism") def system_max_degree_of_parallelism(self) -> int: """ The system defined maximum supported degree of parallelism for this account, which restricts the maximum value of parallelism the user can set for the account. """ return pulumi.get(self, "system_max_degree_of_parallelism") @property @pulumi.getter(name="systemMaxJobCount") def system_max_job_count(self) -> int: """ The system defined maximum supported jobs running under the account at the same time, which restricts the maximum number of running jobs the user can set for the account. """ return pulumi.get(self, "system_max_job_count") @property @pulumi.getter def tags(self) -> Mapping[str, str]: """ The resource tags. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ The resource type. """ return pulumi.get(self, "type") @property @pulumi.getter(name="virtualNetworkRules") def virtual_network_rules(self) -> Sequence['outputs.VirtualNetworkRuleResponse']: """ The list of virtualNetwork rules associated with this account. """ return pulumi.get(self, "virtual_network_rules") class AwaitableGetAccountResult(GetAccountResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetAccountResult( account_id=self.account_id, compute_policies=self.compute_policies, creation_time=self.creation_time, current_tier=self.current_tier, data_lake_store_accounts=self.data_lake_store_accounts, debug_data_access_level=self.debug_data_access_level, default_data_lake_store_account=self.default_data_lake_store_account, endpoint=self.endpoint, firewall_allow_azure_ips=self.firewall_allow_azure_ips, firewall_rules=self.firewall_rules, firewall_state=self.firewall_state, hive_metastores=self.hive_metastores, id=self.id, last_modified_time=self.last_modified_time, location=self.location, max_degree_of_parallelism=self.max_degree_of_parallelism, max_degree_of_parallelism_per_job=self.max_degree_of_parallelism_per_job, max_job_count=self.max_job_count, min_priority_per_job=self.min_priority_per_job, name=self.name, new_tier=self.new_tier, provisioning_state=self.provisioning_state, public_data_lake_store_accounts=self.public_data_lake_store_accounts, query_store_retention=self.query_store_retention, state=self.state, storage_accounts=self.storage_accounts, system_max_degree_of_parallelism=self.system_max_degree_of_parallelism, system_max_job_count=self.system_max_job_count, tags=self.tags, type=self.type, virtual_network_rules=self.virtual_network_rules) def get_account(account_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetAccountResult: """ A Data Lake Analytics account object, containing all information associated with the named Data Lake Analytics account. API Version: 2016-11-01. :param str account_name: The name of the Data Lake Analytics account. :param str resource_group_name: The name of the Azure resource group. """ __args__ = dict() __args__['accountName'] = account_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:datalakeanalytics:getAccount', __args__, opts=opts, typ=GetAccountResult).value return AwaitableGetAccountResult( account_id=__ret__.account_id, compute_policies=__ret__.compute_policies, creation_time=__ret__.creation_time, current_tier=__ret__.current_tier, data_lake_store_accounts=__ret__.data_lake_store_accounts, debug_data_access_level=__ret__.debug_data_access_level, default_data_lake_store_account=__ret__.default_data_lake_store_account, endpoint=__ret__.endpoint, firewall_allow_azure_ips=__ret__.firewall_allow_azure_ips, firewall_rules=__ret__.firewall_rules, firewall_state=__ret__.firewall_state, hive_metastores=__ret__.hive_metastores, id=__ret__.id, last_modified_time=__ret__.last_modified_time, location=__ret__.location, max_degree_of_parallelism=__ret__.max_degree_of_parallelism, max_degree_of_parallelism_per_job=__ret__.max_degree_of_parallelism_per_job, max_job_count=__ret__.max_job_count, min_priority_per_job=__ret__.min_priority_per_job, name=__ret__.name, new_tier=__ret__.new_tier, provisioning_state=__ret__.provisioning_state, public_data_lake_store_accounts=__ret__.public_data_lake_store_accounts, query_store_retention=__ret__.query_store_retention, state=__ret__.state, storage_accounts=__ret__.storage_accounts, system_max_degree_of_parallelism=__ret__.system_max_degree_of_parallelism, system_max_job_count=__ret__.system_max_job_count, tags=__ret__.tags, type=__ret__.type, virtual_network_rules=__ret__.virtual_network_rules)
44.554585
751
0.693276
86f6642f596353769ef97edecbd241ea64b055e4
7,211
py
Python
trax/rl_trainer.py
yakovkeselman/trax
615432bbc58ffb5bdf83a771e8f8b470995456db
[ "Apache-2.0" ]
1
2020-05-30T15:19:39.000Z
2020-05-30T15:19:39.000Z
trax/rl_trainer.py
ZachT1711/trax
a0a3dd8d49e53fc48bb24cc08c10a8a53517e7bc
[ "Apache-2.0" ]
null
null
null
trax/rl_trainer.py
ZachT1711/trax
a0a3dd8d49e53fc48bb24cc08c10a8a53517e7bc
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2020 The Trax Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Trainer for RL environments. For now we only support PPO as RL algorithm. Sample invocation: TRAIN_BATCH_SIZE=32 python trax/rl_trainer.py \ --config_file=trax/rl/configs/ppo_acrobot.gin \ --train_batch_size=${TRAIN_BATCH_SIZE} \ --output_dir=${HOME}/ppo_acrobot \ --alsologtostderr """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import multiprocessing import os from absl import app from absl import flags from absl import logging import faulthandler import gin import jax from jax.config import config from tensor2tensor import envs # pylint: disable=unused-import from tensor2tensor.envs import env_problem_utils from trax import math from trax import rl # pylint: disable=unused-import from trax import trainer_flags # pylint: disable=unused-import from trax.rl import envs as rl_envs # pylint: disable=unused-import from trax.rl import task as rl_task from trax.rl import trainers as rl_trainers from trax.rl import training as light_trainers from trax.tf_numpy import numpy as tf_np FLAGS = flags.FLAGS # Not just 'train' to avoid a conflict with trax.train in GIN files. @gin.configurable(blacklist=[ 'output_dir', 'train_batch_size', 'eval_batch_size', 'trajectory_dump_dir' ]) def train_rl( output_dir, train_batch_size, eval_batch_size, env_name='Acrobot-v1', max_timestep=None, clip_rewards=False, rendered_env=False, resize=False, resize_dims=(105, 80), trainer_class=rl_trainers.PPO, n_epochs=10000, trajectory_dump_dir=None, num_actions=None, light_rl=False, light_rl_trainer=light_trainers.RLTrainer, ): """Train the RL agent. Args: output_dir: Output directory. train_batch_size: Number of parallel environments to use for training. eval_batch_size: Number of parallel environments to use for evaluation. env_name: Name of the environment. max_timestep: Int or None, the maximum number of timesteps in a trajectory. The environment is wrapped in a TimeLimit wrapper. clip_rewards: Whether to clip and discretize the rewards. rendered_env: Whether the environment has visual input. If so, a RenderedEnvProblem will be used. resize: whether to do resize or not resize_dims: Pair (height, width), dimensions to resize the visual observations to. trainer_class: RLTrainer class to use. n_epochs: Number epochs to run the training for. trajectory_dump_dir: Directory to dump trajectories to. num_actions: None unless one wants to use the discretization wrapper. Then num_actions specifies the number of discrete actions. light_rl: whether to use the light RL setting (experimental). light_rl_trainer: whichh light RL trainer to use (experimental). """ tf_np.set_allow_float64(FLAGS.tf_allow_float64) if light_rl: task = rl_task.RLTask() env_name = task.env_name if FLAGS.jax_debug_nans: config.update('jax_debug_nans', True) if FLAGS.use_tpu: config.update('jax_platform_name', 'tpu') else: config.update('jax_platform_name', '') if light_rl: trainer = light_rl_trainer(task=task, output_dir=output_dir) def light_training_loop(): """Run the trainer for n_epochs and call close on it.""" try: logging.info('Starting RL training for %d epochs.', n_epochs) trainer.run(n_epochs, n_epochs_is_total_epochs=True) logging.info('Completed RL training for %d epochs.', n_epochs) trainer.close() logging.info('Trainer is now closed.') except Exception as e: raise e finally: logging.info('Encountered an exception, still calling trainer.close()') trainer.close() logging.info('Trainer is now closed.') if FLAGS.jax_debug_nans or FLAGS.disable_jit: math.disable_jit() with jax.disable_jit(): light_training_loop() else: light_training_loop() return # TODO(pkozakowski): Find a better way to determine this. train_env_kwargs = {} eval_env_kwargs = {} if 'OnlineTuneEnv' in env_name: envs_output_dir = FLAGS.envs_output_dir or os.path.join(output_dir, 'envs') train_env_output_dir = os.path.join(envs_output_dir, 'train') eval_env_output_dir = os.path.join(envs_output_dir, 'eval') train_env_kwargs = {'output_dir': train_env_output_dir} eval_env_kwargs = {'output_dir': eval_env_output_dir} parallelism = multiprocessing.cpu_count() if FLAGS.parallelize_envs else 1 logging.info('Num discretized actions %s', num_actions) logging.info('Resize %d', resize) train_env = env_problem_utils.make_env( batch_size=train_batch_size, env_problem_name=env_name, rendered_env=rendered_env, resize=resize, resize_dims=resize_dims, max_timestep=max_timestep, clip_rewards=clip_rewards, parallelism=parallelism, use_tpu=FLAGS.use_tpu, num_actions=num_actions, **train_env_kwargs) assert train_env eval_env = env_problem_utils.make_env( batch_size=eval_batch_size, env_problem_name=env_name, rendered_env=rendered_env, resize=resize, resize_dims=resize_dims, max_timestep=max_timestep, clip_rewards=clip_rewards, parallelism=parallelism, use_tpu=FLAGS.use_tpu, num_actions=num_actions, **eval_env_kwargs) assert eval_env def run_training_loop(): """Runs the training loop.""" logging.info('Starting the training loop.') trainer = trainer_class( output_dir=output_dir, train_env=train_env, eval_env=eval_env, trajectory_dump_dir=trajectory_dump_dir, async_mode=FLAGS.async_mode, ) trainer.training_loop(n_epochs=n_epochs) if FLAGS.jax_debug_nans or FLAGS.disable_jit: math.disable_jit() with jax.disable_jit(): run_training_loop() else: run_training_loop() def main(argv): del argv logging.info('Starting RL training.') gin_configs = FLAGS.config or [] gin.parse_config_files_and_bindings(FLAGS.config_file, gin_configs) logging.info('Gin cofig:') logging.info(gin_configs) train_rl( output_dir=FLAGS.output_dir, train_batch_size=FLAGS.train_batch_size, eval_batch_size=FLAGS.eval_batch_size, trajectory_dump_dir=(FLAGS.trajectory_dump_dir or None), ) # TODO(afrozm): This is for debugging. logging.info('Dumping stack traces of all stacks.') faulthandler.dump_traceback(all_threads=True) logging.info('Training is done, should exit.') if __name__ == '__main__': app.run(main)
30.816239
79
0.731383
663e40c4d11b49d3253c606f44057700f25209a0
6,419
py
Python
apps/core/backends/auth.py
sparcs-kaist/sparcssso
9aeedc02652dadacb44c6a4ba06901f6d2372223
[ "MIT" ]
18
2015-07-06T06:20:14.000Z
2022-03-20T23:45:40.000Z
apps/core/backends/auth.py
sparcs-kaist/sparcssso
9aeedc02652dadacb44c6a4ba06901f6d2372223
[ "MIT" ]
170
2015-07-07T08:42:03.000Z
2022-03-24T17:31:17.000Z
apps/core/backends/auth.py
sparcs-kaist/sparcssso
9aeedc02652dadacb44c6a4ba06901f6d2372223
[ "MIT" ]
11
2015-07-07T20:42:19.000Z
2022-01-12T22:39:59.000Z
import json import logging import re import uuid from urllib.parse import parse_qsl, urlencode import ldap3 import oauth2 as oauth import requests from django.conf import settings from django.contrib.auth.backends import ModelBackend from django.contrib.auth.models import User from apps.core.models import UserProfile logger = logging.getLogger('sso.auth') # log any inactive user access def check_active_user(request, user): if user and not user.is_active: logger.warning('login.reject', { 'r': request, 'uid': user.username, 'hide': True, }) return user.is_active if user else True # login backends that uses email and password class EmailLoginBackend(ModelBackend): def authenticate(self, request=None, email=None, password=None): user = User.objects.filter(email=email).first() if not check_active_user(request, user): return username = user.username if user else f'unknown:{email}' return super().authenticate( request=request, username=username, password=password, ) # login backends that uses LDAP id and password class LDAPLoginBackend(ModelBackend): def authenticate(self, request=None, ldap_id=None, ldap_pw=None): user = User.objects.filter(profile__sparcs_id=ldap_id).first() if not check_active_user(request, user): return # prevent LDAP injection attack # the regex is taken from NAME_REGEX in adduser if not re.match(r'^[a-z][-a-z0-9]*$', ldap_id): return ldap_server = ldap3.Server( 'ldap://sparcs.org', use_ssl=True, get_info=ldap3.ALL, ) ldap_connection = ldap3.Connection( ldap_server, user=f'uid={ldap_id},ou=People,dc=sparcs,dc=org', password=ldap_pw, ) if not ldap_connection.bind(): return return user # login backends that uses user object itself class PasswordlessLoginBackend(ModelBackend): def authenticate(self, request=None, user=None): if not check_active_user(request, user): return # deny password-less staff login if user and user.is_staff: logger.error('login.error', { 'r': request, 'uid': user.username, }) return None return user # Facebook Init & Auth def auth_fb_init(callback_url): args = { 'client_id': settings.FACEBOOK_APP_ID, 'auth_type': 'rerequest', 'scope': 'email', 'redirect_uri': callback_url, } return f'https://www.facebook.com/dialog/oauth?{urlencode(args)}' def auth_fb_callback(code, callback_url): # get access token args = { 'client_id': settings.FACEBOOK_APP_ID, 'client_secret': settings.FACEBOOK_APP_SECRET, 'redirect_uri': callback_url, 'code': code, } token_info = requests.get( 'https://graph.facebook.com/v10.0/oauth/access_token?', params=args, verify=True).json() if 'access_token' not in token_info: return None, None # get grant info access_token = token_info['access_token'] args = { 'access_token': access_token, } grant_info = requests.get('https://graph.facebook.com/v10.0/me/permissions', params=args, verify=True).json() for data in grant_info['data']: if data['status'] == 'declined': return None, None # get facebook profile args = { 'fields': 'email,first_name,last_name', 'access_token': access_token, } fb_info = requests.get('https://graph.facebook.com/v10.0/me', params=args, verify=True).json() info = { 'userid': fb_info['id'], 'email': fb_info.get('email'), 'first_name': fb_info.get('first_name'), 'last_name': fb_info.get('last_name'), } fb_profile = UserProfile.objects.filter(facebook_id=info['userid'], test_only=False).first() return fb_profile, info # Twitter Init & Auth tw_consumer = oauth.Consumer(settings.TWITTER_APP_ID, settings.TWITTER_APP_SECRET) tw_client = oauth.Client(tw_consumer) def auth_tw_init(callback_url): body = f'oauth_callback={callback_url}' resp, content = tw_client.request( 'https://twitter.com/oauth/request_token', 'POST', body) tokens = dict(parse_qsl(content.decode('utf-8'))) oauth_token = tokens['oauth_token'] url = f'https://twitter.com/oauth/authenticate?oauth_token={oauth_token}' return url, tokens def auth_tw_callback(tokens, verifier): token = oauth.Token(tokens['oauth_token'], tokens['oauth_token_secret']) token.set_verifier(verifier) client = oauth.Client(tw_consumer, token) resp, content = client.request( 'https://twitter.com/oauth/access_token', 'POST') tw_info = dict(parse_qsl(content.decode('utf-8'))) # access denied if 'user_id' not in tw_info: return None, None info = { 'userid': tw_info['user_id'], 'first_name': tw_info['screen_name'], 'gender': '*H', } tw_profile = UserProfile.objects.filter(twitter_id=info['userid'], test_only=False).first() return tw_profile, info # KAIST Auth def auth_kaist_init(callback_url): state = str(uuid.uuid4()) args = { 'client_id': 'SPARCS', 'state': state, 'redirect_url': callback_url, } return f'https://iam2.kaist.ac.kr/api/sso/commonLogin?{urlencode(args)}', state def auth_kaist_callback(token, iam_info_raw): iam_info = json.loads(iam_info_raw)['dataMap'] state = iam_info['state'] if state != token: return None, None, False k_info = iam_info['USER_INFO'] info = { 'userid': k_info['kaist_uid'], 'email': k_info.get('mail'), 'first_name': k_info.get('givenname'), 'last_name': k_info.get('sn'), 'gender': f'*{k_info.get("ku_sex")}', 'birthday': k_info.get('ku_born_date').replace('/', '-'), 'kaist_info': k_info, } kaist_profile = UserProfile.objects.filter(kaist_id=info['userid'], test_only=False).first() return kaist_profile, info, True
29.995327
83
0.618476
aa96ac5f62cb897c38639d4e68f348c7fcf1d769
1,249
py
Python
tracker/models.py
RacherinTest/pricetracker
4b9fc5c12301ae35fba7a78b18cf6bfd5b21a481
[ "Apache-2.0" ]
3
2020-10-03T14:37:40.000Z
2021-03-28T17:21:44.000Z
tracker/models.py
RacherinTest/pricetracker
4b9fc5c12301ae35fba7a78b18cf6bfd5b21a481
[ "Apache-2.0" ]
8
2021-02-08T20:41:55.000Z
2021-09-22T18:36:38.000Z
tracker/models.py
RacherinTest/pricetracker
4b9fc5c12301ae35fba7a78b18cf6bfd5b21a481
[ "Apache-2.0" ]
1
2020-10-03T14:37:41.000Z
2020-10-03T14:37:41.000Z
from django.db import models from django.contrib.auth.models import AbstractUser, User from django.utils.crypto import get_random_string from pricetracker.settings import AUTH_USER_MODEL # Create your models here. class MyUser(AbstractUser): telegram_id = models.CharField(max_length=200) telegram_status = models.BooleanField(default=False) telegram_auth_string = models.CharField(max_length=20) user_product_count = models.CharField(max_length=5) id = models.AutoField(primary_key=True) def __str__(self): return self.username class Product(models.Model): user = models.ForeignKey(AUTH_USER_MODEL, on_delete=models.CASCADE) title = models.CharField(max_length=200) status = models.BooleanField(default=True) store = models.CharField(max_length=50) requested_price = models.TextField(default=10) last_price = models.IntegerField(null=True, blank=True) discount_price = models.CharField(max_length=100, null=True, blank=True) product_url = models.CharField(max_length=600) alert = models.BooleanField(default=True) alert_price = models.TextField(max_length=10) created_date = models.DateTimeField(auto_now_add=True) def __str__(self): return self.title
34.694444
76
0.763811
72d2e7b85ee578fda758a101760900da45965cac
3,123
py
Python
mtp_api/apps/core/tests/test_admin.py
ministryofjustice/mtp-api
b1c34c29e4aa9f48598cb060abe1368ae7686e0b
[ "MIT" ]
5
2016-01-05T12:21:35.000Z
2020-10-28T17:06:02.000Z
mtp_api/apps/core/tests/test_admin.py
ministryofjustice/mtp-api
b1c34c29e4aa9f48598cb060abe1368ae7686e0b
[ "MIT" ]
209
2015-06-12T09:39:41.000Z
2022-03-21T16:01:19.000Z
mtp_api/apps/core/tests/test_admin.py
ministryofjustice/mtp-api
b1c34c29e4aa9f48598cb060abe1368ae7686e0b
[ "MIT" ]
1
2021-04-11T06:19:23.000Z
2021-04-11T06:19:23.000Z
from unittest import mock from django.contrib.auth import get_user_model from django.core.management import call_command from django.urls import reverse from django.test import TestCase from mtp_common.test_utils import silence_logger class RecreateTestDataViewTestCase(TestCase): @property def url(self): return reverse('admin:recreate_test_data') def make_superuser(self, log_into_client=False): superuser = get_user_model().objects.create( username='superuser', is_staff=True, is_superuser=True, ) superuser.set_password('superuser') superuser.save() if log_into_client: self.assertTrue(self.client.login( username='superuser', password='superuser', )) return superuser def test_anonymous_access_denied(self): response = self.client.get(self.url) self.assertEqual(response.status_code, 302) def test_unauthorised_access_denied(self): call_command('load_test_data', verbosity=0) self.assertTrue(self.client.login( username='test-prison-1', password='test-prison-1', )) response = self.client.get(self.url) self.assertEqual(response.status_code, 302) def test_superadmin_access_allowed(self): self.make_superuser(log_into_client=True) response = self.client.get(self.url) self.assertEqual(response.status_code, 200) self.assertContains(response, '<h1>Recreate test data</h1>', html=True) def test_data_management_command_runs(self): from core.management.commands.load_test_data import Command self.make_superuser(log_into_client=True) with mock.patch.object(Command, 'handle') as method: method.return_value = '' with silence_logger(): response = self.client.post(self.url, data={ 'scenario': 'random', 'number_of_transactions': '50', 'number_of_disbursements': '50', 'number_of_payments': '50', 'number_of_prisoners': '50', 'days_of_history': '7', }) self.assertEqual(response.status_code, 200) self.assertEqual(method.call_count, 1) expected_options_subset = { 'no_protect_superusers': False, 'protect_usernames': ['transaction-uploader'], 'protect_credits': False, 'no_color': True, 'credits': 'random', 'prisons': ['sample'], 'number_of_transactions': 50, 'number_of_payments': 50, 'number_of_prisoners': 50, 'days_of_history': 7 } options = method.call_args[1] options_subset = { k: v for k, v in options.items() if k in expected_options_subset.keys() } self.assertDictEqual(options_subset, expected_options_subset)
36.741176
79
0.5943
dba0946cd4f8f0080c5a74ac81c9f5a350bd5084
1,045
py
Python
Labs/lab5/l5e2.py
felixchiasson/ITI1520
4208904bf7576433313524ebd1c1bdb9f49277f2
[ "MIT" ]
null
null
null
Labs/lab5/l5e2.py
felixchiasson/ITI1520
4208904bf7576433313524ebd1c1bdb9f49277f2
[ "MIT" ]
null
null
null
Labs/lab5/l5e2.py
felixchiasson/ITI1520
4208904bf7576433313524ebd1c1bdb9f49277f2
[ "MIT" ]
null
null
null
#! /usr/bin/env python3 ############################################################################### # File Name : l5e2.py # Created By : Félix Chiasson (7138723) # Creation Date : [2015-10-13 11:44] # Last Modified : [2015-10-13 12:45] # Description : Retourne la moyenne, min et max des notes. ############################################################################### def notes(l): # Calcul la moyenne somme = 0 c = 0 maximum = l[0] minimum = l[0] while c < len(l): somme = l[c] + somme c = c + 1 for val in l: if val > maximum: maximum = val for i in l: if val < minimum: minimum = val avg = somme / len(l) resultats = [avg, minimum, maximum] return resultats inp = input("Veuillez entrer vos notes: ") liste = list(eval(inp)) results = notes(liste) print("La moyenne est",results[0],"le minimum est",results[1],"le maximum est", results[2])
30.735294
79
0.44689
69f1e438400cfe7d94491a057c076b49baf9e256
3,814
py
Python
utils/augmentation.py
flytocc/RAPiD
92e6a44b8a0107def055e93c971d78fd548562f8
[ "MIT" ]
142
2020-05-26T03:07:00.000Z
2022-03-31T08:12:43.000Z
utils/augmentation.py
flytocc/RAPiD
92e6a44b8a0107def055e93c971d78fd548562f8
[ "MIT" ]
36
2020-06-03T08:07:37.000Z
2022-03-25T04:12:14.000Z
utils/augmentation.py
flytocc/RAPiD
92e6a44b8a0107def055e93c971d78fd548562f8
[ "MIT" ]
46
2020-05-26T03:08:17.000Z
2022-03-11T02:47:05.000Z
import random import numpy as np import scipy.ndimage import torch import torchvision.transforms.functional as tvf import torch.nn.functional as tnf def hflip(image, labels): ''' left-right flip Args: image: PIL.Image labels: tensor, shape(N,5), absolute x,y,w,h, angle in degree ''' image = tvf.hflip(image) labels[:,0] = image.width - labels[:,0] # x,y,w,h,(angle) labels[:,4] = -labels[:,4] return image, labels def vflip(image, labels): ''' up-down flip Args: image: PIL.Image labels: tensor, shape(N,5), absolute x,y,w,h, angle in degree ''' image = tvf.vflip(image) labels[:,1] = image.height - labels[:,1] # x,y,w,h,(angle) labels[:,4] = -labels[:,4] return image, labels def rotate(image, degrees, labels, expand=False): ''' image: PIL.Image labels: tensor, shape(N,5), absolute x,y,w,h, angle in degree ''' img_w, img_h = image.width, image.height image = tvf.rotate(image, angle=-degrees, expand=expand) new_w, new_h = image.width, image.height # image coordinate to cartesian coordinate x = labels[:,0] - 0.5*img_w y = -(labels[:,1] - 0.5*img_h) # cartesian to polar r = (x.pow(2) + y.pow(2)).sqrt() theta = torch.empty_like(r) theta[x>=0] = torch.atan(y[x>=0]/x[x>=0]) theta[x<0] = torch.atan(y[x<0]/x[x<0]) + np.pi theta[torch.isnan(theta)] = 0 # modify theta theta -= (degrees*np.pi/180) # polar to cartesian x = r * torch.cos(theta) y = r * torch.sin(theta) labels[:,0] = x + 0.5*new_w labels[:,1] = -y + 0.5*new_h labels[:,4] += degrees labels[:,4] = torch.remainder(labels[:,4], 180) labels[:,4][labels[:,4]>=90] -= 180 return image, labels def add_gaussian(imgs, max_var=0.1): ''' imgs: tensor, (batch),C,H,W max_var: variance is uniformly ditributed between 0~max_var ''' var = torch.rand(1) * max_var imgs = imgs + torch.randn_like(imgs) * var return imgs def add_saltpepper(imgs, max_p=0.06): ''' imgs: tensor, (batch),C,H,W p: probibility to add salt and pepper ''' c,h,w = imgs.shape[-3:] p = torch.rand(1) * max_p total = int(c*h*w * p) idxC = torch.randint(0,c,size=(total,)) idxH = torch.randint(0,h,size=(total,)) idxW = torch.randint(0,w,size=(total,)) value = torch.randint(0,2,size=(total,),dtype=torch.float) imgs[...,idxC,idxH,idxW] = value return imgs def random_avg_filter(img): assert img.dim() == 3 img = img.unsqueeze(0) ks = random.choice([3,5]) pad_size = ks // 2 img = tnf.avg_pool2d(img, kernel_size=ks, stride=1, padding=pad_size) return img.squeeze(0) def max_filter(img): assert img.dim() == 3 img = img.unsqueeze(0) img = tnf.max_pool2d(img, kernel_size=3, stride=1, padding=1) return img.squeeze(0) def get_gaussian_kernels(): gaussian_kernels = [] for ks in [3,5]: delta = np.zeros((ks,ks)) delta[ks//2,ks//2] = 1 kernel = scipy.ndimage.gaussian_filter(delta, sigma=3) kernel = torch.from_numpy(kernel).float().view(1,1,ks,ks) gaussian_kernels.append(kernel) return gaussian_kernels gaussian_kernels = get_gaussian_kernels() def random_gaussian_filter(img): assert img.dim() == 3 img = img.unsqueeze(1) kernel = random.choice(gaussian_kernels) assert torch.isclose(kernel.sum(), torch.Tensor([1])) pad_size = kernel.shape[2] // 2 img = tnf.conv2d(img, weight=kernel, stride=1, padding=pad_size) return img.squeeze(1) if __name__ == "__main__": from PIL import Image img_path = 'C:/Projects/MW18Mar/train_no19/Mar10_000291.jpg' img = Image.open(img_path) img.show() new_img = tvf.rotate(img, -45) new_img.show()
26.486111
73
0.61484
2df4edc1521bc842558c4436eaa33a2e1d052fd4
184
py
Python
keras-onnx/onnx_keras/__init__.py
jwj04ok/ONNX_Convertor
067a17e16dfc8aa80e36f44c4523959daf7359f5
[ "MIT" ]
33
2020-06-09T21:05:35.000Z
2022-02-24T01:48:45.000Z
keras-onnx/onnx_keras/__init__.py
jwj04ok/ONNX_Convertor
067a17e16dfc8aa80e36f44c4523959daf7359f5
[ "MIT" ]
17
2020-07-14T19:44:09.000Z
2022-02-10T10:03:01.000Z
keras-onnx/onnx_keras/__init__.py
jwj04ok/ONNX_Convertor
067a17e16dfc8aa80e36f44c4523959daf7359f5
[ "MIT" ]
16
2020-06-17T22:56:11.000Z
2021-12-21T05:44:32.000Z
# This is an empty file for the subdirectory from . import frontend from .helper import set_compatibility from .helper import set_custom_layer from .helper import set_duplicate_weights
36.8
44
0.842391
47b062d3d099046df08948eb5a978abf1fb29284
2,104
py
Python
LSTMModel/PrepareDataset.py
Mozartuss/DEAP_EmotionRecognition_V2
39bd50f327d465114ee0f798ac7bcee13b457b17
[ "Apache-2.0" ]
5
2022-01-25T19:46:19.000Z
2022-01-28T18:07:53.000Z
LSTMModel/PrepareDataset.py
Mozartuss/DEAP_EmotionRecognition_V2
39bd50f327d465114ee0f798ac7bcee13b457b17
[ "Apache-2.0" ]
null
null
null
LSTMModel/PrepareDataset.py
Mozartuss/DEAP_EmotionRecognition_V2
39bd50f327d465114ee0f798ac7bcee13b457b17
[ "Apache-2.0" ]
1
2022-02-23T09:52:11.000Z
2022-02-23T09:52:11.000Z
from pathlib import Path import numpy as np from sklearn.preprocessing import normalize, StandardScaler from tensorflow.keras.utils import to_categorical from Utils.Constants import FINAL_DATASET_PATH, FINAL_DATASET_PATH_PCA, FINAL_DATASET_PATH_MRMR, FINAL_DATASET_PATH_PSO, \ FINAL_DATASET_PATH_GWO, FINAL_DATASET_PATH_CS def prepare_dataset(label_type: str = "Arousal", pca: bool = False, mrmr: bool = False, pso: bool = False, gwo: bool = False, cs: bool = False): if pca: data_path = FINAL_DATASET_PATH_PCA elif mrmr: data_path = FINAL_DATASET_PATH_MRMR elif pso: data_path = FINAL_DATASET_PATH_PSO elif gwo: data_path = FINAL_DATASET_PATH_GWO elif cs: data_path = FINAL_DATASET_PATH_CS else: data_path = FINAL_DATASET_PATH x_train = np.load(str(Path(data_path, "data_training.npy"))) y_train = np.load(str(Path(data_path, "label_training.npy"))) x_train = normalize(x_train) y_train_arousal = np.ravel(y_train[:, [0]]) y_train_valence = np.ravel(y_train[:, [1]]) y_train_arousal = to_categorical(y_train_arousal) y_train_valence = to_categorical(y_train_valence) x_train = np.array(x_train[:]) x_test = np.load(str(Path(data_path, "data_testing.npy"))) y_test = np.load(str(Path(data_path, "label_testing.npy"))) x_test = normalize(x_test) y_test_arousal = np.ravel(y_test[:, [0]]) y_test_valence = np.ravel(y_test[:, [1]]) y_test_arousal = to_categorical(y_test_arousal) y_test_valence = to_categorical(y_test_valence) x_test = np.array(x_test[:]) scaler = StandardScaler() x_train = scaler.fit_transform(x_train) x_test = scaler.fit_transform(x_test) x_train = x_train.reshape(x_train.shape[0], x_train.shape[1], 1) x_test = x_test.reshape(x_test.shape[0], x_test.shape[1], 1) if label_type.lower() == "arousal": return x_train, y_train_arousal, x_test, y_test_arousal else: return x_train, y_train_valence, x_test, y_test_valence if __name__ == '__main__': prepare_dataset()
34.491803
122
0.705798
5a37912dceacf56d07b3e8bacd322a8ad053c95b
411
py
Python
examples/download.py
alexcapstick/minder_utils
3bb9380b7796b5dd5b995ce1839ea6a94321021d
[ "MIT" ]
null
null
null
examples/download.py
alexcapstick/minder_utils
3bb9380b7796b5dd5b995ce1839ea6a94321021d
[ "MIT" ]
null
null
null
examples/download.py
alexcapstick/minder_utils
3bb9380b7796b5dd5b995ce1839ea6a94321021d
[ "MIT" ]
1
2022-03-16T11:10:43.000Z
2022-03-16T11:10:43.000Z
''' This script introduces how to download the data ''' import os os.chdir('..') from minder_utils.download import Downloader Downloader().export(since='2021-10-10', until='2021-10-12', reload=True, save_path='./data/activity/', categories=['raw_activity_pir']) Downloader().refresh(until='2021-12-10', save_path='./data/activity/', categories=['raw_activity_pir'])
25.6875
82
0.659367
a43ec0a8d461b0643e27ed88ad4fab502bf081ad
68,124
py
Python
lib/lib/mle_classes.py
jkaessens/gwas-assoc
1053c94222701f108362e33c99155cfc148f4ca2
[ "MIT" ]
null
null
null
lib/lib/mle_classes.py
jkaessens/gwas-assoc
1053c94222701f108362e33c99155cfc148f4ca2
[ "MIT" ]
null
null
null
lib/lib/mle_classes.py
jkaessens/gwas-assoc
1053c94222701f108362e33c99155cfc148f4ca2
[ "MIT" ]
null
null
null
import os import os.path import sys import re import gzip import decimal ## -- several mlinfo and mldose files can be put into an object of Mlinfo -- # ## -- or Mldose -- # class Mlinfo: """ class Mlinfo implements tasks on Mlinfo files from MACH software """ def __init__(self, mlinfo_file_cases, write_file=None, rsq=0.0, post_prob=0.0): """ init with cases """ self._mlinfo_files_cases = [] # names of mlinfo files from cases self._mlinfo_files_controls = [] # names of mlinfo files from controls self._mlinfo_files = [] # names of mlinfo files from cases and controls self._mlinfo_files_cases.append(mlinfo_file_cases) self._mlinfo_files.append(mlinfo_file_cases) self._write_file = write_file # name of output file self._write_file_filtered_snps = None self._rsq = float(rsq) # chosen rsquare threshold after imputation self._post_prob = float(post_prob) # chosen post_prob threshold after imputation self._map_snps = [] def map_snps(self, file_number=0): """ map mlinfo file into memory """ mlinfo_files_numof = len(self._mlinfo_files) if mlinfo_files_numof <= file_number: return try: fh = gzip.open(self._mlinfo_files[file_number], "rb") except IOError, e: print e sys.exit(1) comment_pattern = re.compile("^#.*$") header_pattern = re.compile("^SNP.*$") # skip comment lines that start with "#" and header line line = fh.readline() while comment_pattern.search(line): line = fh.readline() if not header_pattern.search(line): print >> sys.stderr, "error: no header in mlinfo file." sys.exit(1) line = fh.readline() #skip header while line: self._map_snps.append(re.split("\s+",line)[0]) line = fh.readline() fh.close() def snps_get(self): """ get mapped snps from mlinfo file in order they appeared in file """ return self._map_snps def snps_get_hash(self): """ get mapped snps from mlinfo file im hash """ snp_hash = {} for snp in self._map_snps: snp_hash[snp] = 1 return snp_hash def free_snps(self): """ free mapped snps from mlinfo file """ self._map_snps = [] def rsq_set(self, rsq): """ set rsq for filtering """ self._rsq = float(rsq) def post_prob_set(self, post_prob): """ set rsq for filtering """ self._post_prob = float(post_prob) def write_file_set(self, write_file): """ set name of output file """ self._write_file = write_file def write_file_set_filtered_SNPs(self, write_file_filtered_snps): """ set name of output file for filtered SNPs """ self._write_file_filtered_snps = write_file_filtered_snps def mlinfo_file_add_controls(self, mlinfo_file_controls): """ add another mlinfo file from controls to mlinfo file list """ self._mlinfo_files_controls.append(mlinfo_file_controls) self._mlinfo_files.append(mlinfo_file_controls) def mlinfo_file_add_cases(self, mlinfo_file_cases): """ add another mlinfo file from cases to mlinfo file list """ self._mlinfo_files_cases.append(mlinfo_file_cases) self._mlinfo_files.append(mlinfo_file_cases) def check_same_snps_same_order_same_alleles(self): """ check for same snps and same snp order and for same minor alleles in all mlinfo file """ files_numof = len(self._mlinfo_files) if files_numof < 1: return # first mlinfo file rs_previous = [] # rs numbers a1_previous = [] # allele 1 a2_previous = [] # allele 2 try: fh = gzip.open(self._mlinfo_files[0], "rb") except IOError, e: print e sys.exit(1) line = fh.readline() while line: rs_previous.append(re.split("\s+",line)[0]) a1_previous.append(re.split("\s+",line)[1]) a2_previous.append(re.split("\s+",line)[2]) line = fh.readline() fh.close() # next mlinfo files for i in xrange(1,files_numof): rs_next = [] a1_next = [] a2_next = [] try: fh = gzip.open(self._mlinfo_files[i], "rb") except IOError, e: print e sys.exit(1) line = fh.readline() while line: rs_next.append(re.split("\s+",line)[0]) a1_next.append(re.split("\s+",line)[1]) a2_next.append(re.split("\s+",line)[2]) line = fh.readline() fh.close() if rs_previous != rs_next or a1_previous != a1_previous \ or a2_previous != a2_previous: print >> sys.stderr, "error: mlinfo files differ." sys.exit(1) rs_previous = rs_next a1_previous = a1_next a2_previous = a2_next def paste_mlinfo_files(self): """ paste all mlinfo files into one file """ files_numof = len(self._mlinfo_files) if files_numof < 1: return fh = [] # list of mlinfo filehandles for i in xrange(files_numof): fh.append(gzip.open(self._mlinfo_files[i], "rb")) out = gzip.open(self._write_file, "w") line = fh[0].readline().replace("\n","") while line: out.writelines(line + " ") for i in xrange(1,files_numof-1): line = fh[i].readline().replace("\n","") out.writelines(line + " ") line = fh[files_numof-1].readline().replace("\n","") out.writelines(line) out.writelines("\n") line = fh[0].readline().replace("\n","") for i in xrange(files_numof): fh[i].close() out.close() def select_filtered_snps_rsq_postprob(self, file_number=0): """ filter snps by rsq and average posterior probability for cases mlinfo file """ mlinfo_files_numof = len(self._mlinfo_files) if mlinfo_files_numof <= file_number: return try: fh = gzip.open(self._mlinfo_files[file_number], "rb") out = gzip.open(self._write_file, "w") except IOError, e: print e sys.exit(1) #### skip comment lines that start with "#" and header line #### write comment lines ###comment_pattern = re.compile("^#.*$") ###while comment_pattern.search(line): ### out.writelines(line) ### line = fh.readline() #### filter snps for r2 and postprob ###out.writelines("# filtered Rsq >=%s\n" %(str(self._rsq))) ###out.writelines("# filtered Quality >=%s\n" %(str(self._post_prob))) # read from header how many mlinfo have been merge # and which columns to check for r2 and postprob # write header header_pattern = re.compile("^SNP.*$") line = fh.readline() if not header_pattern.search(line): print >> sys.stderr, "error: no header in merged mlinfo file." sys.exit(1) mlinfo_files_numof = len(re.findall('SNP', line)) post_prob_columns = [] r2_columns = [] for i in xrange(1,len(re.findall("SNP", line))+1): post_prob_columns.append(i*7-2) r2_columns.append(i*7-1) assert(mlinfo_files_numof == len(r2_columns)) assert(len(post_prob_columns) == len(r2_columns)) out.writelines(line) # write to out file line = fh.readline() while line: list = re.split("\s+",line) keep_snp = True for i in xrange(mlinfo_files_numof): if float(list[post_prob_columns[i]]) < self._post_prob: keep_snp = False break elif float(list[r2_columns[i]]) < self._rsq: keep_snp = False break if keep_snp: out.writelines(line) line = fh.readline() fh.close() out.close() def snp_list_first_allele_get(self, new_snp_list=[]): """ get list of first alleles from new_snp_list """ # copy list new_snp_list_first_allele = new_snp_list[:] for i in xrange(len(new_snp_list)): # check allele order a1 = "" #if cmp(new_snp_list[i][4],new_snp_list[i][5]) == 0: # print >> sys.stderr, "error: monoallelic snps not allowed, rs=" +\ # str(new_snp_list[i][1]) # sys.exit(1) #elif cmp(new_snp_list[i][4],new_snp_list[i][5]) > 0: if cmp(new_snp_list[i][4],new_snp_list[i][5]) > 0: # switch alleles a1 = new_snp_list[i][5] new_snp_list_first_allele[i] = a1 else: # do not switch alleles a1 = new_snp_list[i][4] new_snp_list_first_allele[i] = a1 return new_snp_list_first_allele def write_new_mlinfo(self, freq1_only_typed_snps=[], new_snp_list=[]): """ write new mlinfo file from new_snp_list """ try: out = gzip.open(self._write_file, "w") except IOError, e: print e sys.exit(1) assert(len(new_snp_list) == len(freq1_only_typed_snps)) header_line = "SNP\tAl1\tAl2\tFreq1\tMAF\tQuality\tRsq\n" out.writelines(header_line) for i in xrange(len(new_snp_list)): # check allele order a1 = "" a2 = "" if cmp(new_snp_list[i][4],new_snp_list[i][5]) == 0: print >> sys.stderr, "error: monoallelic snps not allowed, rs=" +\ str(new_snp_list[i][1]) sys.exit(1) elif cmp(new_snp_list[i][4],new_snp_list[i][5]) > 0: # switch alleles a1 = new_snp_list[i][5] a2 = new_snp_list[i][4] else: # do not switch alleles a1 = new_snp_list[i][4] a2 = new_snp_list[i][5] freq1 = float('%.4f' %freq1_only_typed_snps[i]) if freq1_only_typed_snps[i] > 0.5: maf = 1.0 - freq1 else: maf = freq1_only_typed_snps[i] out.writelines(new_snp_list[i][1] + "\t" + a1 + "\t" + a2 +\ "\t%.4f\t%.4f\t1.0\t1.0\n" %(freq1, maf)) out.close() def snps_al1_get(self, file_number=0): """ return list: (snp, allele1) """ snps_allele1_list = [] mlinfo_files_numof = len(self._mlinfo_files) if mlinfo_files_numof <= file_number: return try: fh = gzip.open(self._mlinfo_files[file_number], "rb") except IOError, e: print e sys.exit(1) comment_pattern = re.compile("^#.*$") header_pattern = re.compile("^SNP.*$") # skip comment lines that start with "#" and header line line = fh.readline() while comment_pattern.search(line): line = fh.readline() # scan header line if not header_pattern.search(line): print >> sys.stderr, "error: no header in mlinfo file." sys.exit(1) line = fh.readline() #skip header # scan whole mlinfo file line by line while line: list = re.split("\s+",line) snp = list[0] al1 = list[1] snps_allele1_list.append( (snp, al1) ) line = fh.readline() fh.close() return snps_allele1_list class Mldose: """ class Mldose implements tasks on Mldose files from MACH software """ def __init__(self, mldose_file_cases, write_file=None, write_file_ids=None): """ init with mldose file from cases""" self._mldose_files_cases = [] # names of mldose files from cases self._mldose_files_controls = [] # names of mldose files from controls self._mldose_files = [] # names of mldose files from cases and controls self._mldose_files_cases.append(mldose_file_cases) self._mldose_files.append(mldose_file_cases) self._write_file = write_file # name of output file self._write_file_ids = write_file_ids # name of output file for ids self._samples_controls = [] # control sample list self._samples_cases = [] # cases sample list def write_file_set(self, write_file): """ set name of output file """ self._write_file = write_file def write_file_set_ids(self, write_file_ids): """ set name of output file """ self._write_file_ids = write_file_ids def mldose_file_add_cases(self, mldose_file_cases): """ add another mldose file from cases to mldose file list """ self._mldose_files_cases.append(mldose_file_cases) self._mldose_files.append(mldose_file_cases) def mldose_file_add_controls(self, mldose_file_controls): """ add another mldose file from controls to mldose file list """ self._mldose_files_controls.append(mldose_file_controls) self._mldose_files.append(mldose_file_controls) def mldose_files_cases_get(self): """ get name of cases mldose file """ return self._mldose_files_cases def mldose_files_get(self): """ get name of mldose file """ return self._mldose_files def ids_all_get(self, file_number=0): """ select all ids from mldose file and return ids as list """ mldose_files_numof = len(self._mldose_files) if mldose_files_numof <= file_number: return try: fh = gzip.open(self._mldose_files[file_number], "rb") except IOError, e: print e sys.exit(1) ids_list = [] line = fh.readline() while line: id = re.split("\s+",line)[0] ids_list.append(id) line = fh.readline() fh.close() return ids_list def select_cases_from_mldose(self, cases=[], file_number=0): """ select cases from mldose file(s) and write to output file """ mldose_files_cases_numof = len(self._mldose_files_cases) if mldose_files_cases_numof <= file_number: return try: fh = gzip.open(self._mldose_files_cases[file_number], "rb") out = gzip.open(self._write_file, "w") if self._write_file_ids: out2 = gzip.open(self._write_file_ids, "w") except IOError, e: print e sys.exit(1) line = fh.readline() while line: id = re.split("\s+",line)[0] try: index = cases.index(id) except ValueError: # skip sample in mldose file line = fh.readline() continue out.writelines(line) if self._write_file_ids: out2.writelines(id + "\n") del cases[index] line = fh.readline() fh.close() out.close() if self._write_file_ids: out2.close() def select_cases_from_mldose_and_append(self, cases=[], file_number=0): """ select cases from mldose file(s) and write to output file file_number starts with 0 """ mldose_files_cases_numof = len(self._mldose_files_cases) if mldose_files_cases_numof <= file_number: return try: fh = gzip.open(self._mldose_files_cases[file_number], "rb") out = gzip.open(self._write_file, "a") if self._write_file_ids: out2 = gzip.open(self._write_file_ids, "a") except IOError, e: print e sys.exit(1) line = fh.readline() while line: id = re.split("\s+",line)[0] try: index = cases.index(id) except ValueError: # skip sample in mldose file line = fh.readline() continue out.writelines(line) if self._write_file_ids: out2.writelines(id + "\n") del cases[index] line = fh.readline() fh.close() out.close() if self._write_file_ids: out2.close() def select_controls_from_mldose(self, controls=[], file_number=0): """ select controls from mldose file(s) and write to output file """ mldose_files_controls_numof = len(self._mldose_files_controls) if mldose_files_controls_numof <= file_number: return try: fh = gzip.open(self._mldose_files_controls[file_number], "rb") out = gzip.open(self._write_file, "w") if self._write_file_ids: out2 = gzip.open(self._write_file_ids, "w") except IOError, e: print e sys.exit(1) line = fh.readline() while line: id = re.split("\s+",line)[0] try: index = controls.index(id) except ValueError: # skip sample in mldose file line = fh.readline() continue out.writelines(line) if self._write_file_ids: out2.writelines(id + "\n") del controls[index] line = fh.readline() fh.close() out.close() if self._write_file_ids: out2.close() def select_controls_from_mldose_and_append(self, controls=[], file_number=0): """ select controls from mldose file(s) and write to output file file_number starts with 0 """ mldose_files_controls_numof = len(self._mldose_files_controls) if mldose_files_controls_numof <= file_number: return try: fh = gzip.open(self._mldose_files_controls[file_number], "rb") out = gzip.open(self._write_file, "a") if self._write_file_ids: out2 = gzip.open(self._write_file_ids, "a") except IOError, e: print e sys.exit(1) line = fh.readline() while line: id = re.split("\s+",line)[0] try: index = controls.index(id) except ValueError: # skip sample in mldose file line = fh.readline() continue out.writelines(line) if self._write_file_ids: out2.writelines(id + "\n") del controls[index] line = fh.readline() fh.close() out.close() if self._write_file_ids: out2.close() def select_ids_cases_controls_from_mldose(self, cases_controls=[], file_number=0): """ select cases from mldose file(s) and write to output file """ mldose_files_cases_numof = len(self._mldose_files_cases) if mldose_files_cases_numof <= file_number: return try: fh = gzip.open(self._mldose_files_cases[file_number], "rb") out2 = gzip.open(self._write_file_ids, "w") except IOError, e: print e sys.exit(1) line = fh.readline() while line: id = re.split("\s+",line)[0] try: index = cases_controls.index(id) except ValueError: # skip sample in mldose file line = fh.readline() continue if self._write_file_ids: out2.writelines(id + "\n") del cases_controls[index] line = fh.readline() fh.close() out2.close() def select_freq1_from_mldose(self, file_number=0): """ select freq1 in order of mldose file and return note that control ids are utilized for extracting cases select freq1 from controls only in order of mldose file and return """ mldose_files_numof = len(self._mldose_files) if mldose_files_numof <= file_number: return try: fh = gzip.open(self._mldose_files[file_number], "rb") except IOError, e: print e sys.exit(1) freq1_snps = [] sample_counter = 0 # first line, generate list line = fh.readline().replace("\n","") dosages = re.split("\s+",line)[2:] # if last element is empty then remove it if dosages[-1] == "": dosages.pop() dosages_numof = len(dosages) for i in xrange(dosages_numof): # generate list of dosages freq1_snps.append(float(dosages[i])) sample_counter = sample_counter + 1 line = fh.readline().replace("\n","") # sum all dosages for allele 1 while line: dosages = re.split("\s+",line)[2:] # if last element is empty then remove it if dosages[-1] == "": dosages.pop() if len(dosages) != dosages_numof: print >> sys.stderr, "error: different num of columns in mldose file." sys.exit(1) for i in xrange(dosages_numof): freq1_snps[i] = freq1_snps[i] + float(dosages[i]) sample_counter = sample_counter + 1 line = fh.readline().replace("\n","") fh.close() # calc freq1 for allele 1 for i in xrange(dosages_numof): freq1_snps[i] = freq1_snps[i] / (2*float(sample_counter)) return freq1_snps def select_freq1_from_mldose_all_cases_controls(self, ids_controls_list, file_number=0): """ select freq1 in order of mldose file and return note that control ids are utilized for extracting cases select freq1 from controls only in order of mldose file and return """ mldose_files_numof = len(self._mldose_files) if mldose_files_numof <= file_number: return try: fh = gzip.open(self._mldose_files[file_number], "rb") except IOError, e: print e sys.exit(1) ids_controls_hash = {} for id in ids_controls_list: ids_controls_hash[id] = True freq1_snps_all = [] freq1_snps_cases = [] freq1_snps_controls = [] sample_counter_all = 0 sample_counter_ca = 0 sample_counter_co = 0 dosages_numof = 0 line = fh.readline().replace("\n","") # sum all dosages for allele 1 while line: list = re.split("\s+",line) id = list[0] dosages = list[2:] # if last element is empty then remove it if dosages[-1] == "": dosages.pop() # find first case if sample_counter_all == 0: # count only if case if not ids_controls_hash.has_key(id): dosages_numof = len(dosages) for i in xrange(dosages_numof): # generate list of dosages freq1_snps_cases.append(float(dosages[i])) freq1_snps_controls.append(float(0.0)) freq1_snps_all.append(float(dosages[i])) sample_counter_ca = sample_counter_ca + 1 # count only if control elif ids_controls_hash.has_key(id): dosages_numof = len(dosages) for i in xrange(dosages_numof): # generate list of dosages freq1_snps_cases.append(float(0.0)) freq1_snps_controls.append(float(dosages[i])) freq1_snps_all.append(float(dosages[i])) sample_counter_co = sample_counter_co + 1 # error: neither case nor control else: print >> sys.stderr, "error: sample id neither case nor control." sys.exit(1) sample_counter_all = sample_counter_all + 1 line = fh.readline().replace("\n","") # parse next cases/controls else: if len(dosages) != dosages_numof: print >> sys.stderr, "error: different num of columns in mldose file." sys.exit(1) # count only if case if not ids_controls_hash.has_key(id): for i in xrange(dosages_numof): freq1_snps_cases[i] = freq1_snps_cases[i] + float(dosages[i]) # count all samples freq1_snps_all[i] = freq1_snps_all[i] + float(dosages[i]) sample_counter_ca = sample_counter_ca + 1 sample_counter_all = sample_counter_all + 1 # count only if controls elif ids_controls_hash.has_key(id): for i in xrange(dosages_numof): freq1_snps_controls[i] = freq1_snps_controls[i] + float(dosages[i]) # count all samples freq1_snps_all[i] = freq1_snps_all[i] + float(dosages[i]) sample_counter_co = sample_counter_co + 1 sample_counter_all = sample_counter_all + 1 # error: neither case nor control else: print >> sys.stderr, "error: sample id neither case nor control." sys.exit(1) line = fh.readline().replace("\n","") fh.close() # calc freq1 for allele 1 for i in xrange(dosages_numof): freq1_snps_cases[i] = freq1_snps_cases[i] / (2*float(sample_counter_ca)) freq1_snps_controls[i] = freq1_snps_controls[i] / (2*float(sample_counter_co)) freq1_snps_all[i] = freq1_snps_all[i] / (2*float(sample_counter_all)) return freq1_snps_all, freq1_snps_cases, freq1_snps_controls def compare(a,b): """ compare decimals """ if float(a) < float(b): return -1 elif a == b: return 0 else: return 1 def col_ten(t): """ sort 10th column """ return t[9] class Mlids: """ class Mlids implements tasks on Mlids files from MACH software """ def __init__(self, mlids_file_cases, write_file=None): """ init with cases """ self._mlids_files_cases = [] # names of mlids files from cases self._mlids_files_controls = [] # names of mlids files from controls self._mlids_files = [] # names of mlids files from cases and controls self._mlids_files_cases.append(mlids_file_cases) self._mlids_files.append(mlids_file_cases) self._write_file = write_file # name of output file self._write_file_filtered_snps = None self._map_indivs = [] # sample names def map_indivs(self, file_number=0): """ map mlids file into memory """ mlids_files_numof = len(self._mlids_files) if mlids_files_numof <= file_number: return try: fh = gzip.open(self._mlids_files[file_number], "rb") except IOError, e: print e sys.exit(1) # skip comment lines that start with "#" and header line comment_pattern = re.compile("^#.*$") line = fh.readline() while comment_pattern.search(line): line = fh.readline() while line: self._map_indivs.append(re.split("\s+",line)[0]) line = fh.readline() fh.close() def indivs_numof_get(self): """ get number of mapped indivs from mlids file """ return len(self._map_indivs) def free_indivs(self): """ free mapped indivs from mlids file """ self._map_indivs = [] class Mach2dat: """ class Mach2dat implements tasks on results files from MACH2DAT software """ def __init__(self, mach2dat_file, write_file=None, mlinfo_filter=None): """ init """ self._mach2dat_files = [] # names of mach2dat files self._mach2dat_files.append(mach2dat_file) self._write_file = write_file # name of output file self._mlinfo_filter = mlinfo_filter # name of mlinfo file of filtered snps self._map_snps_header = [] self._map_snps = {} def write_file_set(self, write_file): """ set name of output file """ self._write_file = write_file def mlinfo_filter_set(self, mlinfo_filter): """ set name of mlinfo file of filtered snps """ self._mlinfo_filter = mlinfo_filter def map_snps(self, file_number=0): """ map mach2dat file into memory """ mach2dat_files_numof = len(self._mach2dat_files) if mach2dat_files_numof <= file_number: return try: fh = file(self._mach2dat_files[file_number], "r") except IOError, e: print e sys.exit(1) header_pattern = re.compile("^TRAIT.*$") # skip lines until header line line = fh.readline() while not header_pattern.search(line): line = fh.readline() # write new header header_columns = re.split("\s+",line)[0:3] + re.split("\s+",line)[5:12] self._map_snps_header = header_columns[:] # read all snps line = fh.readline().replace("\n","") while line: list = re.split("\s+",line) # delete empty elements if list[-1] == "": del list[-1] # workaround because of MACH2DAT bug: # If affy ids in output, then col2 and 3 are accidently merged (one # less column) # no workaround if len(list) == 12: if list[5] != "NA": self._map_snps[list[1]] = (list[0], list[1], list[2],\ decimal.Decimal(list[5]),\ decimal.Decimal(list[6]),\ decimal.Decimal(list[7]),\ decimal.Decimal(list[8]),\ decimal.Decimal(list[9]),\ decimal.Decimal(list[10]),\ decimal.Decimal(list[11])) # workaround, col 2 and col 3 merged and has to be splitted elif len(list) == 11: if list[4] != "NA" and list[5] != "NA": split_list = list[1].split(",") marker = split_list[0][:-1] alleles = split_list[0][-1:] + "," + split_list[1] self._map_snps[marker] = (list[0], marker, alleles,\ decimal.Decimal(list[4]),\ decimal.Decimal(list[5]),\ decimal.Decimal(list[6]),\ decimal.Decimal(list[7]),\ decimal.Decimal(list[8]),\ decimal.Decimal(list[9]),\ decimal.Decimal(list[10])) line = fh.readline().replace("\n","") fh.close() def free_snps(self): """ free mapping of snps """ self._map_snps_header = [] self._map_snps = {} def write_snps_filtered_sorted(self, snps_rs_al1_al1freq, maf_threshold, file_number=0): """ write snps filtered by mlinfo_filter file and snps sorted by p-value with additionally al1 and al1_freq and al1_freq for cases and controls separately """ if self._mlinfo_filter == None: print >> sys.stderr, "error: no mlinfo_filter file specified." sys.exit(1) try: fh = file(self._write_file, "w") except IOError, e: print e sys.exit(1) mlinfo = Mlinfo(mlinfo_file_cases=self._mlinfo_filter) mlinfo.map_snps() snps_filtered = mlinfo.snps_get() mlinfo.free_snps() ; del mlinfo mach2dat_filtered = [] for snp in snps_filtered: if self._map_snps.has_key(snp): mach2dat_filtered.append(self._map_snps[snp]) # sort by pvalues mach2dat_filtered.sort(cmp=compare, key=col_ten) # sort 10th column # print new header for i in xrange(len(self._map_snps_header)): if i == 0: fh.writelines("%s" %(self._map_snps_header[i])) else: fh.writelines(" %s" %(self._map_snps_header[i])) fh.writelines(" AL1 FREQ1 MAF FREQ1_CA FREQ1_CO\n") # print the rest for line in mach2dat_filtered: # round 4 decimals al1_freq = decimal.Decimal(str(round(snps_rs_al1_al1freq[line[1]][1], 4))) al1_freq_ca = decimal.Decimal(str(round(snps_rs_al1_al1freq[line[1]][2], 4))) al1_freq_co = decimal.Decimal(str(round(snps_rs_al1_al1freq[line[1]][3], 4))) # determine MAF for SNP maf = decimal.Decimal(str(0.0)) if al1_freq >= decimal.Decimal(str(0.5)): maf = 1 - al1_freq else: maf = al1_freq # filter for maf frequency if ( al1_freq >= decimal.Decimal(str(maf_threshold)) and \ al1_freq <= decimal.Decimal(str(1-maf_threshold)) ): for i in xrange(len(line)): if i == 0: fh.writelines("%s" %(line[i])) else: fh.writelines(" %s" %(line[i])) al1 = snps_rs_al1_al1freq[line[1]][0] fh.writelines( " %s %s %s %s %s\n" %(al1, al1_freq, maf, \ al1_freq_ca, al1_freq_co) ) fh.close() def write_snps_sorted(self, snps_rs_al1_al1freq, maf_threshold, file_number=0): """ write snps filtered by mlinfo_filter file and snps sorted by p-value with additionally al1 and al1_freq""" try: fh = file(self._write_file, "w") except IOError, e: print e sys.exit(1) mach2dat = [] keys = self._map_snps.iterkeys() for snp in keys: mach2dat.append(self._map_snps[snp]) # sort by pvalues mach2dat.sort(cmp=compare, key=col_ten) # sort 10th column # print new header for i in xrange(len(self._map_snps_header)): if i == 0: fh.writelines("%s" %(self._map_snps_header[i])) else: fh.writelines(" %s" %(self._map_snps_header[i])) fh.writelines(" AL1 FREQ1 MAF FREQ1_CA FREQ1_CO\n") # print the rest for line in mach2dat: # round 4 decimals al1_freq = decimal.Decimal(str(round(snps_rs_al1_al1freq[line[1]][1], 4))) al1_freq_ca = decimal.Decimal(str(round(snps_rs_al1_al1freq[line[1]][2], 4))) al1_freq_co = decimal.Decimal(str(round(snps_rs_al1_al1freq[line[1]][3], 4))) # determine MAF for SNP maf = decimal.Decimal(str(0.0)) if al1_freq >= decimal.Decimal(str(0.5)): maf = 1 - al1_freq else: maf = al1_freq # filter for maf frequency if (al1_freq >= decimal.Decimal(str(maf_threshold)) and \ al1_freq <= decimal.Decimal(str(1-maf_threshold)) ): for i in xrange(len(line)): if i == 0: fh.writelines("%s" %(line[i])) else: fh.writelines(" %s" %(line[i])) al1 = snps_rs_al1_al1freq[line[1]][0] fh.writelines( " %s %s %s %s %s\n" %(al1, al1_freq, maf, \ al1_freq_ca, al1_freq_co) ) fh.close() class Mach2dat_merge: """ class Mach2dat_merge implements tasks on filtered/sorted results files from MACH2DAT software """ def __init__(self, write_file=None, write_file_assoc=None): """ init """ self._mach2dat_files = [] # names of mach2dat files self._write_file = write_file # name of output file self._write_file_assoc = write_file_assoc # name of assoc output file self._write_file_combined_short = None # name of combined short output file self._map_snps_header = [] self._map_snps = [] # list of dictionaries self._map_snps_lists = [] # list of lists def write_file_set(self, write_file): """ set name of output file """ self._write_file = write_file def write_file_assoc_set(self, write_file_assoc): """ set name of output assoc file """ self._write_file_assoc = write_file_assoc def write_file_combined_short_set(self, write_file_combined_short): """ set name of combined short output file """ self._write_file_combined_short = write_file_combined_short def mach2dat_file_add(self, mach2dat_file): """ add another mach2dat file from cases to mach2dat file list """ self._mach2dat_files.append(mach2dat_file) def map_snps_filter_snps(self, snp_filter_dict, file_number=0): """ map mach2dat file into memory and filter by using snp_filter_dict """ mach2dat_files_numof = len(self._mach2dat_files) if mach2dat_files_numof <= file_number: return try: fh = file(self._mach2dat_files[file_number], "r") except IOError, e: print e sys.exit(1) header_pattern = re.compile("^TRAIT.*$") # skip lines until header line line = fh.readline().replace("\n","") while not header_pattern.search(line): line = fh.readline().replace("\n","") # write new header self._map_snps_header.append(re.split("\s+",line)[:]) # read all snps line = fh.readline() map_snps = {} while line: list = re.split("\s+",line) if list[3] != "NA" and (not snp_filter_dict.has_key(list[1])): map_snps[list[1]] = (list[0], list[1], list[2],\ decimal.Decimal(list[3]),\ decimal.Decimal(list[4]),\ decimal.Decimal(list[5]),\ decimal.Decimal(list[6]),\ decimal.Decimal(list[7]),\ decimal.Decimal(list[8]),\ decimal.Decimal(list[9]),\ list[10],\ decimal.Decimal(list[11]),\ decimal.Decimal(list[12]),\ decimal.Decimal(list[13]),\ decimal.Decimal(list[14])) line = fh.readline() self._map_snps.append(map_snps.copy()) fh.close() def map_snps(self, file_number=0): """ map mach2dat file into memory """ mach2dat_files_numof = len(self._mach2dat_files) if mach2dat_files_numof <= file_number: return try: fh = file(self._mach2dat_files[file_number], "r") except IOError, e: print e sys.exit(1) header_pattern = re.compile("^TRAIT.*$") # skip lines until header line line = fh.readline().replace("\n","") while not header_pattern.search(line): line = fh.readline().replace("\n","") # write new header self._map_snps_header.append(re.split("\s+",line)[:]) # read all snps line = fh.readline() map_snps = {} while line: list = re.split("\s+",line) if list[3] != "NA": map_snps[list[1]] = (list[0], list[1], list[2],\ decimal.Decimal(list[3]),\ decimal.Decimal(list[4]),\ decimal.Decimal(list[5]),\ decimal.Decimal(list[6]),\ decimal.Decimal(list[7]),\ decimal.Decimal(list[8]),\ decimal.Decimal(list[9]),\ list[10],\ decimal.Decimal(list[11]),\ decimal.Decimal(list[12]),\ decimal.Decimal(list[13]),\ decimal.Decimal(list[14])) line = fh.readline() self._map_snps.append(map_snps.copy()) fh.close() def map_snps_list(self, file_number=0): """ map mach2dat file into memory but into list instead of hash """ mach2dat_files_numof = len(self._mach2dat_files) if mach2dat_files_numof <= file_number: return try: fh = file(self._mach2dat_files[file_number], "r") except IOError, e: print e sys.exit(1) header_pattern = re.compile("^TRAIT.*$") # skip lines until header line line = fh.readline().replace("\n","") while not header_pattern.search(line): line = fh.readline().replace("\n","") # write new header self._map_snps_header.append(re.split("\s+",line)[:]) # read all snps line = fh.readline() map_snps = [] while line: list = re.split("\s+",line) if list[3] != "NA": map_snps.append( (list[0], list[1], list[2],\ decimal.Decimal(list[3]),\ decimal.Decimal(list[4]),\ decimal.Decimal(list[5]),\ decimal.Decimal(list[6]),\ decimal.Decimal(list[7]),\ decimal.Decimal(list[8]),\ decimal.Decimal(list[9]),\ list[10],\ decimal.Decimal(list[11]),\ decimal.Decimal(list[12]),\ decimal.Decimal(list[13]),\ decimal.Decimal(list[14])) ) line = fh.readline() # clone list self._map_snps_lists.append(map_snps[:]) fh.close() def free_snps(self): """ free mapping of snps """ self._map_snps_header = [] self._map_snps = [] self._map_snps_lists = [] def write_mach2dat_merged_sorted(self, file_number=0): """ write all snps to merged file, sorted """ try: fh = file(self._write_file, "w") fh2 = file(self._write_file_assoc, "w") except IOError, e: print e sys.exit(1) mach2dat = [] for j in xrange(len(self._map_snps)): keys = self._map_snps[j].iterkeys() for snp in keys: mach2dat.append(self._map_snps[j][snp]) # sort by pvalues mach2dat.sort(cmp=compare, key=col_ten) # sort 10th column # print new header from first mach2dat result file for i in xrange(len(self._map_snps_header[0])): if i == 0: fh.writelines("%s" %(self._map_snps_header[0][i])) else: fh.writelines(" %s" %(self._map_snps_header[0][i])) fh.writelines("\n") # print new header for new assoc file with pvalues from MACH2DAT fh2.writelines(" SNP P\n") # print the rest for line in mach2dat: for i in xrange(len(line)): if i == 0: fh.writelines("%s" %(line[i])) else: fh.writelines(" %s" %(line[i])) fh.writelines("\n") fh2.writelines(" %s %s\n" %(line[1], line[9])) fh.close() fh2.close() def write_mach2dat_merged_sorted_no_assoc_file(self, file_number=0): """ write all snps to merged file, sorted, do not write assoc file """ try: fh = file(self._write_file, "w") except IOError, e: print e sys.exit(1) mach2dat = [] for j in xrange(len(self._map_snps)): keys = self._map_snps[j].iterkeys() for snp in keys: mach2dat.append(self._map_snps[j][snp]) # sort by pvalues mach2dat.sort(cmp=compare, key=col_ten) # sort 10th column # print new header from first mach2dat result file for i in xrange(len(self._map_snps_header[0])): if i == 0: fh.writelines("%s" %(self._map_snps_header[0][i])) else: fh.writelines(" %s" %(self._map_snps_header[0][i])) fh.writelines("\n") # print the rest for line in mach2dat: for i in xrange(len(line)): if i == 0: fh.writelines("%s" %(line[i])) else: fh.writelines(" %s" %(line[i])) fh.writelines("\n") fh.close() def write_mach2dat_typed_imputed_info(self, typed_snps, file_number=0): """ write all snps with imputed or typed info """ try: fh = file(self._write_file, "w") except IOError, e: print e sys.exit(1) mach2dat = [] for j in xrange(len(self._map_snps)): keys = self._map_snps[j].iterkeys() for snp in keys: mach2dat.append(self._map_snps[j][snp]) # sort by pvalues mach2dat.sort(cmp=compare, key=col_ten) # sort 10th column # print new header from first mach2dat result file for i in xrange(len(self._map_snps_header[0])): if i == 0: fh.writelines("%s" %(self._map_snps_header[0][i])) else: fh.writelines(" %s" %(self._map_snps_header[0][i])) fh.writelines("\n") # print the rest in order how it was mapped for line in mach2dat: for i in xrange(len(line)): if i == 0: fh.writelines("%s" %(line[i])) elif i == 1: if typed_snps.has_key(line[i]): fh.writelines(" %s_typed" %(line[i])) else: fh.writelines(" %s_imputed" %(line[i])) else: fh.writelines(" %s" %(line[i])) fh.writelines("\n") fh.close() def typed_imputed_info2pos(self, ref_file, pos_write_file): """ add chr and pos to typed imputed info """ try: fh = file(self._write_file, "r") fh_ref = file(ref_file, "r") fh_pos = file(pos_write_file, "w") except IOError, e: print e sys.exit(1) dict_SNPs = {} # store SNPs with line comment_pattern = re.compile("^#.*$") blankline_pattern = re.compile("^\s*$") # typed imputed info file # print header line = fh.readline().replace("\n", "") fh_pos.writelines("CHR POS " + line + "\n") line = fh.readline().replace("\n", "") while line: # skip comment lines that start with "#" if(comment_pattern.search(line)): line = fh.readline().replace("\n", "") continue # skip blank lines if(blankline_pattern.search(line)): line = fh.readline().replace("\n", "") continue list = re.split("\s+",line) snp = list[1].split("_")[0] dict_SNPs[snp] = line line = fh.readline().replace("\n", "") fh.close() # hapmap reference bim file sep = " " line = fh_ref.readline().replace("\n", "") while line: # skip comment lines that start with "#" if(comment_pattern.search(line)): line = fh_ref.readline().replace("\n", "") continue # skip blank lines if(blankline_pattern.search(line)): line = fh_ref.readline().replace("\n", "") continue list = re.split("\s+",line) snp = list[1] if dict_SNPs.has_key(snp): fh_pos.writelines(list[0] +sep+\ list[3] +sep+\ dict_SNPs[snp] +"\n") line = fh_ref.readline().replace("\n", "") fh_ref.close() fh_pos.close() def get_rs_pvalue_type_hash(self, file_number=0): """ get rs, pvalue, type in hash """ rs_pvalue_type_hash = {} mach2dat = [] for j in xrange(len(self._map_snps)): keys = self._map_snps[j].iterkeys() for snp in keys: mach2dat.append(self._map_snps[j][snp]) #for snp in mach2dat: #rs, type = mach2dat[snp][1].split("_") #rs_pvalue_type_hash[rs] = (mach2dat[snp][9], type) for i in xrange(len(mach2dat)): rs, type = mach2dat[i][1].split("_") rs_pvalue_type_hash[rs] = (mach2dat[i][9], type) return rs_pvalue_type_hash def get_best_pvalue(self, file_number=0): """ get best_pvalue as Decimal.decimal object """ best_pvalue = 1.0 mach2dat = [] for j in xrange(len(self._map_snps)): keys = self._map_snps[j].iterkeys() for snp in keys: mach2dat.append(self._map_snps[j][snp]) for i in xrange(len(mach2dat)): if i == 0: best_pvalue = mach2dat[i][9] elif mach2dat[i][9] < best_pvalue: best_pvalue = mach2dat[i][9] return best_pvalue def write_metal_format_from_map_snps_list(self,\ numof_cases_controls, hapmap_rs_hash, file_number=0): """ write metal format """ try: fh = file(self._write_file, "w") except IOError, e: print e sys.exit(1) mach2dat = [] for j in xrange(len(self._map_snps_lists)): for snp_line in self._map_snps_lists[j]: mach2dat.append(snp_line) # print new header from first mach2dat result file fh.writelines("TRAIT MARKER CHR POS AL1 AL2 FREQ1 MAF SAMPLE_SIZE EFFECT1 OR STDERR LRCHISQ LRPVAL\n") # print the rest in order how it was mapped for tuple in mach2dat: trait = tuple[0] snp = tuple[1] chr = str(hapmap_rs_hash[snp][0]) pos = str(hapmap_rs_hash[snp][2]) a1, a2 = tuple[2].split(",") freq1 = tuple[11] maf = tuple[12] sample_size = str(numof_cases_controls) effect1 = tuple[3] odds_ratio = tuple[4] stderr = tuple[5] lrchisq = tuple[8] lrpval = tuple[9] assert(a1 == tuple[10]) fh.writelines( "%s %s %s %s %s %s %s %s %s %s %s %s %s %s\n" \ %(trait, snp, chr, pos, a1, a2, freq1, maf, \ sample_size, effect1, odds_ratio, stderr, \ lrchisq, lrpval) ) fh.close() def write_mach2dat_typed_imputed_info_combined_without_map(self, disease_name,\ disease_name_comparison_list,\ rs_tophits_hash, file_number_disease=0): """ write combined outfile without mapping files into memory, that means files were not mapped previous to this function call only print combined output for rs_tophits_hash DO NOT MAP snps previously into memory """ # check if valid file_number_disease mach2dat_files_numof = len(self._mach2dat_files) if mach2dat_files_numof <= file_number_disease: return # ----------------------------------------------------------- # # -- (1) read rs_tophits snps from MACH2dat merged outfile -- # # ----------------------------------------------------------- # try: fh = file(self._mach2dat_files[file_number_disease], "r") except IOError, e: print e sys.exit(1) header_pattern = re.compile("^TRAIT.*$") # skip lines until header line line = fh.readline().replace("\n","") while not header_pattern.search(line): line = fh.readline().replace("\n","") # store header self._map_snps_header.append(re.split("\s+",line)[:]) # read all snps line = fh.readline() map_snps_rs_tophits_disease = [] while line: list = re.split("\s+",line) rs = list[1].split("_")[0] if rs_tophits_hash.has_key(rs) and list[3] != "NA": map_snps_rs_tophits_disease.append( (list[0], list[1], list[2],\ list[3],\ list[4],\ list[5],\ list[6],\ list[7],\ list[8],\ list[9],\ list[10],\ list[11],\ list[12],\ list[13],\ list[14]) ) line = fh.readline() fh.close() # ------------------------------------------------------------------ # # -- (2) read rs_tophits snps (if available) from MACH2DAT merged -- # # -- outfile(s) for comparison -- # # ------------------------------------------------------------------ # map_snps_rs_tophits_compare_list = [] # list of hashes for each # comparison file # for all comparison file(s) (without disease file) for i in xrange(mach2dat_files_numof): # skip disease file if i == file_number_disease: continue # try to open disease file for comparison try: fh = file(self._mach2dat_files[i], "r") except IOError, e: print e sys.exit(1) header_pattern = re.compile("^TRAIT.*$") # skip lines until header line line = fh.readline().replace("\n","") while not header_pattern.search(line): line = fh.readline().replace("\n","") # store additional header self._map_snps_header.append(re.split("\s+",line)[:]) # read all snps line = fh.readline() map_snps_rs_tophits_hash = {} while line: list = re.split("\s+",line) rs = list[1].split("_")[0] if rs_tophits_hash.has_key(rs) and list[3] != "NA": map_snps_rs_tophits_hash[rs] = ( list[0], list[1], list[2],\ list[3],\ list[4],\ list[5],\ list[6],\ list[7],\ list[8],\ list[9],\ list[10],\ list[11],\ list[12],\ list[13],\ list[14] ) line = fh.readline() # copy hash map_snps_rs_tophits_compare_list.append(map_snps_rs_tophits_hash.copy()) fh.close() # ---------------------------- # # -- print comparison table -- # # ---------------------------- # try: fh = file(self._write_file, "w") fh2 = file(self._write_file_combined_short, "w") except IOError, e: print e sys.exit(1) short_columns_disease = [1,2,4,9,10,11,13,14] # count from 0 short_columns_compare_disease = [4,9,10,11,13,14] # -- print new header -- # # print columns from disease mach2dat result file for i in xrange(len(self._map_snps_header[0])): # short version if i in short_columns_disease: if i == short_columns_disease[0]: fh2.writelines("%s_%s" %(self._map_snps_header[0][i],\ disease_name)) else: fh2.writelines("\t%s_%s" %(self._map_snps_header[0][i],\ disease_name)) # long version if i == 0: fh.writelines("%s_%s" %(self._map_snps_header[0][i], disease_name)) else: fh.writelines("\t%s_%s" %(self._map_snps_header[0][i], disease_name)) # print additional columns from additional comparison file(s) # for each comparison file for j in xrange(1, len(self._map_snps_header)): for i in xrange(len(self._map_snps_header[j])): # short version if i in short_columns_compare_disease: fh2.writelines("\t%s_%s" %(self._map_snps_header[j][i],\ disease_name_comparison_list[j-1])) # long version fh.writelines("\t%s_%s" %(self._map_snps_header[j][i],\ disease_name_comparison_list[j-1])) fh.writelines("\n") fh2.writelines("\n") # -- print rs_tophits lines -- # for line in map_snps_rs_tophits_disease: # rs of line rs = line[1].split("_")[0] # print columns from disease file for j in xrange(len(line)): # short version if j in short_columns_disease: if j == short_columns_disease[0]: fh2.writelines(line[j]) else: fh2.writelines("\t" + line[j]) # long version if j == 0: fh.writelines(line[j]) else: fh.writelines("\t" + line[j]) # print columns for each comparison file for map_snps_rs_tophits_hash in map_snps_rs_tophits_compare_list: # if snp is also in comparison file if map_snps_rs_tophits_hash.has_key(rs): assert(len(line) == len(map_snps_rs_tophits_hash[rs])) for j in xrange(len(map_snps_rs_tophits_hash[rs])): # short version if j in short_columns_compare_disease: fh2.writelines("\t%s" %((map_snps_rs_tophits_hash[rs][j]))) # long version fh.writelines("\t%s" %((map_snps_rs_tophits_hash[rs][j]))) # if snp is not in comparison file else: for j in xrange(len(line)): # short version if j in short_columns_compare_disease: fh2.writelines("\t---") # long version fh.writelines("\t---") fh.writelines("\n") fh2.writelines("\n") fh.close() fh2.close() def write_mach2dat_typed_imputed_info_combined_without_map_columns_grouped(self, disease_name,\ disease_name_comparison_list,\ rs_tophits_hash, file_number_disease=0): """ write combined outfile without mapping files into memory, that means files were not mapped previous to this function call only print combined output for rs_tophits_hash DO NOT MAP snps previously into memory """ # check if valid file_number_disease mach2dat_files_numof = len(self._mach2dat_files) if mach2dat_files_numof <= file_number_disease: return # ----------------------------------------------------------- # # -- (1) read rs_tophits snps from MACH2dat merged outfile -- # # ----------------------------------------------------------- # try: fh = file(self._mach2dat_files[file_number_disease], "r") except IOError, e: print e sys.exit(1) header_pattern = re.compile("^TRAIT.*$") # skip lines until header line line = fh.readline().replace("\n","") while not header_pattern.search(line): line = fh.readline().replace("\n","") # store header self._map_snps_header.append(re.split("\s+",line)[:]) # read all snps line = fh.readline() map_snps_rs_tophits_disease = [] while line: list = re.split("\s+",line) rs = list[1].split("_")[0] if rs_tophits_hash.has_key(rs) and list[3] != "NA": map_snps_rs_tophits_disease.append( (list[0], list[1], list[2],\ list[3],\ list[4],\ list[5],\ list[6],\ list[7],\ list[8],\ list[9],\ list[10],\ list[11],\ list[12],\ list[13],\ list[14]) ) line = fh.readline() fh.close() # ------------------------------------------------------------------ # # -- (2) read rs_tophits snps (if available) from MACH2DAT merged -- # # -- outfile(s) for comparison -- # # ------------------------------------------------------------------ # map_snps_rs_tophits_compare_list = [] # list of hashes for each # comparison file # for all comparison file(s) (without disease file) for i in xrange(mach2dat_files_numof): # skip disease file if i == file_number_disease: continue # try to open disease file for comparison try: fh = file(self._mach2dat_files[i], "r") except IOError, e: print e sys.exit(1) header_pattern = re.compile("^TRAIT.*$") # skip lines until header line line = fh.readline().replace("\n","") while not header_pattern.search(line): line = fh.readline().replace("\n","") # store additional header self._map_snps_header.append(re.split("\s+",line)[:]) # read all snps line = fh.readline() map_snps_rs_tophits_hash = {} while line: list = re.split("\s+",line) rs = list[1].split("_")[0] if rs_tophits_hash.has_key(rs) and list[3] != "NA": map_snps_rs_tophits_hash[rs] = ( list[0], list[1], list[2],\ list[3],\ list[4],\ list[5],\ list[6],\ list[7],\ list[8],\ list[9],\ list[10],\ list[11],\ list[12],\ list[13],\ list[14] ) line = fh.readline() # copy hash map_snps_rs_tophits_compare_list.append(map_snps_rs_tophits_hash.copy()) fh.close() # ---------------------------- # # -- print comparison table -- # # ---------------------------- # try: fh = file(self._write_file, "w") fh2 = file(self._write_file_combined_short, "w") except IOError, e: print e sys.exit(1) long_columns = range(len(self._map_snps_header[0])) # count from 0 short_columns = [1,2,4,9,10,11,13,14] # count from 0 short_columns_compare = [4,9,10,11,13,14] # count from 0 for i in long_columns: # -- print new header -- # # print columns from disease mach2dat result file # short version if i in short_columns: if i == short_columns[0]: fh2.writelines("%s_%s" %(self._map_snps_header[0][i],\ disease_name)) else: fh2.writelines("\t%s_%s" %(self._map_snps_header[0][i],\ disease_name)) # long version if i == 0: fh.writelines("%s_%s" %(self._map_snps_header[0][i], disease_name)) else: fh.writelines("\t%s_%s" %(self._map_snps_header[0][i], disease_name)) # print additional columns from additional comparison file(s) # for each comparison file for j in xrange(1, len(self._map_snps_header)): # short version if i in short_columns_compare: fh2.writelines("\t%s_%s" %(self._map_snps_header[j][i],\ disease_name_comparison_list[j-1])) # long version fh.writelines("\t%s_%s" %(self._map_snps_header[j][i],\ disease_name_comparison_list[j-1])) fh.writelines("\n") fh2.writelines("\n") # -- print rs_tophits lines -- # for line in map_snps_rs_tophits_disease: # rs of line rs = line[1].split("_")[0] for i in long_columns: # short version if i in short_columns: if i == short_columns[0]: fh2.writelines(line[i]) else: fh2.writelines("\t" + line[i]) # long version if i == 0: fh.writelines(line[i]) else: fh.writelines("\t" + line[i]) # print columns for each comparison file for map_snps_rs_tophits_hash in map_snps_rs_tophits_compare_list: # if snp is also in comparison file if map_snps_rs_tophits_hash.has_key(rs): assert(len(line) == len(map_snps_rs_tophits_hash[rs])) # short version if i in short_columns_compare: fh2.writelines("\t%s" %((map_snps_rs_tophits_hash[rs][i]))) # long version fh.writelines("\t%s" %((map_snps_rs_tophits_hash[rs][i]))) # if snp is not in comparison file else: # short version if i in short_columns_compare: fh2.writelines("\t---") # long version fh.writelines("\t---") fh.writelines("\n") fh2.writelines("\n") fh.close() fh2.close()
35.685699
110
0.508529
c60bb420ee439965704054f35a930536ccc79dd5
1,752
py
Python
prs2/middleware.py
ropable/prs
0654ca7fce5a6639f5df67905dd2e5c09a1c1f17
[ "Apache-2.0" ]
1
2016-08-21T06:45:50.000Z
2016-08-21T06:45:50.000Z
prs2/middleware.py
dbca-wa/prs
0654ca7fce5a6639f5df67905dd2e5c09a1c1f17
[ "Apache-2.0" ]
12
2019-02-11T00:01:01.000Z
2022-02-01T02:07:49.000Z
prs2/middleware.py
ropable/prs
0654ca7fce5a6639f5df67905dd2e5c09a1c1f17
[ "Apache-2.0" ]
4
2018-08-09T06:56:43.000Z
2019-11-13T08:05:46.000Z
from django.conf import settings from django.http import HttpResponse, HttpResponseServerError import logging LOGGER = logging.getLogger("healthcheck") class HealthCheckMiddleware(object): def __init__(self, get_response): self.get_response = get_response def __call__(self, request): if request.method == "GET": if request.path == "/readiness": return self.readiness(request) elif request.path == "/liveness": return self.liveness(request) return self.get_response(request) def liveness(self, request): """Returns that the server is alive. """ return HttpResponse("OK") def readiness(self, request): """Connect to each database and do a generic standard SQL query that doesn't write any data and doesn't depend on any tables being present. """ try: from django.db import connections for name in connections: cursor = connections[name].cursor() cursor.execute("SELECT 1;") row = cursor.fetchone() if row is None: return HttpResponseServerError("db: invalid response") except Exception as e: LOGGER.exception(e) return HttpResponseServerError("db: cannot connect to database.") return HttpResponse("OK") class PrsMiddleware(object): def __init__(self, get_response): self.get_response = get_response def __call__(self, request): response = self.get_response(request) # Reference: http://www.gnuterrypratchett.com/ response['X-Clacks-Overhead'] = 'GNU Terry Pratchett' return response
30.736842
77
0.619863
30036277781490055c42f7ee2cf4328a736114ba
3,692
py
Python
test/functional/mining_getblocktemplate_longpoll.py
yvettep321/bitcoin
33707a2a8828c68e3c0586bdadea52c84873d386
[ "MIT" ]
7
2020-11-09T15:10:26.000Z
2022-03-04T21:55:39.000Z
test/functional/mining_getblocktemplate_longpoll.py
yvettep321/bitcoin
33707a2a8828c68e3c0586bdadea52c84873d386
[ "MIT" ]
2
2021-03-29T01:09:59.000Z
2021-07-02T04:34:25.000Z
test/functional/mining_getblocktemplate_longpoll.py
yvettep321/bitcoin
33707a2a8828c68e3c0586bdadea52c84873d386
[ "MIT" ]
2
2021-09-05T22:45:02.000Z
2021-09-08T16:16:40.000Z
#!/usr/bin/env python3 # Copyright (c) 2014-2020 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test longpolling with getblocktemplate.""" from decimal import Decimal import random import threading from test_framework.blocktools import COINBASE_MATURITY from test_framework.test_framework import BitcoinTestFramework from test_framework.util import get_rpc_proxy from test_framework.wallet import MiniWallet class LongpollThread(threading.Thread): def __init__(self, node): threading.Thread.__init__(self) # query current longpollid template = node.getblocktemplate({'rules': ['segwit']}) self.longpollid = template['longpollid'] # create a new connection to the node, we can't use the same # connection from two threads self.node = get_rpc_proxy(node.url, 1, timeout=600, coveragedir=node.coverage_dir) def run(self): self.node.getblocktemplate({'longpollid': self.longpollid, 'rules': ['segwit']}) class GetBlockTemplateLPTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 2 self.supports_cli = False def run_test(self): self.log.info("Warning: this test will take about 70 seconds in the best case. Be patient.") self.log.info("Test that longpollid doesn't change between successive getblocktemplate() invocations if nothing else happens") self.nodes[0].generate(10) template = self.nodes[0].getblocktemplate({'rules': ['segwit']}) longpollid = template['longpollid'] template2 = self.nodes[0].getblocktemplate({'rules': ['segwit']}) assert template2['longpollid'] == longpollid self.log.info("Test that longpoll waits if we do nothing") thr = LongpollThread(self.nodes[0]) thr.start() # check that thread still lives thr.join(5) # wait 5 seconds or until thread exits assert thr.is_alive() miniwallets = [MiniWallet(node) for node in self.nodes] self.log.info("Test that longpoll will terminate if another node generates a block") self.generate(miniwallets[1], 1) # generate a block on another node # check that thread will exit now that new transaction entered mempool thr.join(5) # wait 5 seconds or until thread exits assert not thr.is_alive() self.log.info("Test that longpoll will terminate if we generate a block ourselves") thr = LongpollThread(self.nodes[0]) thr.start() self.generate(miniwallets[0], 1) # generate a block on own node thr.join(5) # wait 5 seconds or until thread exits assert not thr.is_alive() # Add enough mature utxos to the wallets, so that all txs spend confirmed coins self.nodes[0].generate(COINBASE_MATURITY) self.sync_blocks() self.log.info("Test that introducing a new transaction into the mempool will terminate the longpoll") thr = LongpollThread(self.nodes[0]) thr.start() # generate a random transaction and submit it min_relay_fee = self.nodes[0].getnetworkinfo()["relayfee"] fee_rate = min_relay_fee + Decimal('0.00000010') * random.randint(0,20) miniwallets[0].send_self_transfer(from_node=random.choice(self.nodes), fee_rate=fee_rate) # after one minute, every 10 seconds the mempool is probed, so in 80 seconds it should have returned thr.join(60 + 20) assert not thr.is_alive() if __name__ == '__main__': GetBlockTemplateLPTest().main()
44.481928
134
0.685536
b3c31a12c8c7dd11900921555205a2cb2b093ea7
405
py
Python
accounts/migrations/0002_customuser_phone_number.py
abdallah-alabed/DjangoX
f8d8f4d3f60699bf3b6fd29cca59a6644a591a42
[ "MIT" ]
null
null
null
accounts/migrations/0002_customuser_phone_number.py
abdallah-alabed/DjangoX
f8d8f4d3f60699bf3b6fd29cca59a6644a591a42
[ "MIT" ]
null
null
null
accounts/migrations/0002_customuser_phone_number.py
abdallah-alabed/DjangoX
f8d8f4d3f60699bf3b6fd29cca59a6644a591a42
[ "MIT" ]
null
null
null
# Generated by Django 4.0 on 2021-12-08 12:08 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accounts', '0001_initial'), ] operations = [ migrations.AddField( model_name='customuser', name='phone_number', field=models.CharField(blank=True, max_length=15, null=True), ), ]
21.315789
73
0.604938
69ab5c11be2ea7dbd3119a2d416c95f288b41681
2,203
py
Python
docs/conf.py
meakio/python-proc
0302fe62fa7990e4a8f8020fca83e7566a35e315
[ "MIT" ]
null
null
null
docs/conf.py
meakio/python-proc
0302fe62fa7990e4a8f8020fca83e7566a35e315
[ "MIT" ]
null
null
null
docs/conf.py
meakio/python-proc
0302fe62fa7990e4a8f8020fca83e7566a35e315
[ "MIT" ]
null
null
null
""" Documentation build configuration file for the `proc` package. """ # Author: Peter Odding <[email protected]> # Last Change: June 21, 2018 # URL: https://proc.readthedocs.io import os import sys # Add the 'proc' source distribution's root directory to the module search path. sys.path.insert(0, os.path.abspath('..')) # -- General configuration ----------------------------------------------------- # Sphinx extension module names. extensions = [ 'sphinx.ext.doctest', 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'humanfriendly.sphinx', 'property_manager.sphinx', ] # Paths that contain templates, relative to this directory. templates_path = ['templates'] # The suffix of source filenames. source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = 'proc' copyright = '2018, Peter Odding' # Find the package version and make it the release. from proc import __version__ as proc_version # The short X.Y version (replacement for |version|). version = '.'.join(proc_version.split('.')[:2]) # The full version, including alpha/beta/rc tags (replacement for |release|). release = proc_version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. language = 'en' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['build'] # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = True # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # References to external documentation. intersphinx_mapping = dict( python2=('https://docs.python.org/2', None), python3=('https://docs.python.org/3', None), executor=('https://executor.readthedocs.io/en/latest', None), propertymanager=('https://property-manager.readthedocs.io/en/latest', None), ) # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'nature'
29.373333
80
0.695869
ac7a36fd698d79fb6a541fd13c8007927aef9250
56
py
Python
src/ThaiPersonalCardExtract/ThaiGovernmentLottery/__init__.py
ggafiled/ThaiPersonalCardExtract
7747086ff4d28ad9ec04f8ca7d68ac6e6f393cd4
[ "Apache-2.0" ]
12
2021-08-11T08:48:48.000Z
2022-02-10T03:06:34.000Z
src/ThaiPersonalCardExtract/ThaiGovernmentLottery/__init__.py
ggafiled/ThaiPersonalCardExtract
7747086ff4d28ad9ec04f8ca7d68ac6e6f393cd4
[ "Apache-2.0" ]
2
2021-08-21T16:14:39.000Z
2022-02-17T15:31:07.000Z
src/ThaiPersonalCardExtract/ThaiGovernmentLottery/__init__.py
ggafiled/ThaiPersonalCardExtract
7747086ff4d28ad9ec04f8ca7d68ac6e6f393cd4
[ "Apache-2.0" ]
7
2021-08-11T09:32:02.000Z
2022-03-26T13:56:46.000Z
from .ThaiGovernmentLottery import ThaiGovernmentLottery
56
56
0.928571
a64f3b9bb298a2099c68d2a32b4f6ee7111d6548
795
bzl
Python
google/cloud/bigtable/examples/bigtable_examples_unit_tests.bzl
joezqren/google-cloud-cpp
325d312b0a21569f3c57515aec7d91f3540d3b48
[ "Apache-2.0" ]
299
2019-01-31T12:17:56.000Z
2022-03-30T15:46:15.000Z
google/cloud/bigtable/examples/bigtable_examples_unit_tests.bzl
joezqren/google-cloud-cpp
325d312b0a21569f3c57515aec7d91f3540d3b48
[ "Apache-2.0" ]
6,560
2019-01-29T03:15:15.000Z
2022-03-31T23:58:48.000Z
google/cloud/bigtable/examples/bigtable_examples_unit_tests.bzl
joezqren/google-cloud-cpp
325d312b0a21569f3c57515aec7d91f3540d3b48
[ "Apache-2.0" ]
253
2019-02-07T01:18:13.000Z
2022-03-30T17:21:10.000Z
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # DO NOT EDIT -- GENERATED BY CMake -- Change the CMakeLists.txt file if needed """Automatically generated unit tests list - DO NOT EDIT.""" bigtable_examples_unit_tests = [ "bigtable_examples_common_test.cc", ]
36.136364
79
0.755975
f19feea1875d1b945c8c45fbd873163cd146cbda
16,187
py
Python
mne/tests/test_bem.py
enricovara/mne-python
f6f2aa7a97c3ae7ae5276202805d2f45de7b64cc
[ "BSD-3-Clause" ]
1
2021-03-13T04:41:45.000Z
2021-03-13T04:41:45.000Z
mne/tests/test_bem.py
enricovara/mne-python
f6f2aa7a97c3ae7ae5276202805d2f45de7b64cc
[ "BSD-3-Clause" ]
28
2020-05-07T00:58:34.000Z
2020-08-29T23:02:17.000Z
mne/tests/test_bem.py
hichamjanati/mne-python
b8f5e5ce0da8acfeb7298c8eb1d26a75d5526eac
[ "BSD-3-Clause" ]
1
2020-07-29T15:48:58.000Z
2020-07-29T15:48:58.000Z
# Authors: Marijn van Vliet <[email protected]> # # License: BSD 3 clause from copy import deepcopy from os import makedirs import os.path as op import re from shutil import copy import numpy as np import pytest from numpy.testing import assert_equal, assert_allclose from mne import (make_bem_model, read_bem_surfaces, write_bem_surfaces, make_bem_solution, read_bem_solution, write_bem_solution, make_sphere_model, Transform, Info, write_surface) from mne.preprocessing.maxfilter import fit_sphere_to_headshape from mne.io.constants import FIFF from mne.transforms import translation from mne.datasets import testing from mne.utils import (run_tests_if_main, catch_logging, requires_h5py) from mne.bem import (_ico_downsample, _get_ico_map, _order_surfaces, _assert_complete_surface, _assert_inside, _check_surface_size, _bem_find_surface) from mne.surface import read_surface from mne.io import read_info fname_raw = op.join(op.dirname(__file__), '..', 'io', 'tests', 'data', 'test_raw.fif') subjects_dir = op.join(testing.data_path(download=False), 'subjects') fname_bem_3 = op.join(subjects_dir, 'sample', 'bem', 'sample-320-320-320-bem.fif') fname_bem_1 = op.join(subjects_dir, 'sample', 'bem', 'sample-320-bem.fif') fname_bem_sol_3 = op.join(subjects_dir, 'sample', 'bem', 'sample-320-320-320-bem-sol.fif') fname_bem_sol_1 = op.join(subjects_dir, 'sample', 'bem', 'sample-320-bem-sol.fif') def _compare_bem_surfaces(surfs_1, surfs_2): """Compare BEM surfaces.""" names = ['id', 'nn', 'rr', 'coord_frame', 'tris', 'sigma', 'ntri', 'np'] ignores = ['tri_cent', 'tri_nn', 'tri_area', 'neighbor_tri'] for s0, s1 in zip(surfs_1, surfs_2): assert_equal(set(names), set(s0.keys()) - set(ignores)) assert_equal(set(names), set(s1.keys()) - set(ignores)) for name in names: assert_allclose(s0[name], s1[name], rtol=1e-3, atol=1e-6, err_msg='Mismatch: "%s"' % name) def _compare_bem_solutions(sol_a, sol_b): """Compare BEM solutions.""" # compare the surfaces we used _compare_bem_surfaces(sol_a['surfs'], sol_b['surfs']) # compare the actual solutions names = ['bem_method', 'field_mult', 'gamma', 'is_sphere', 'nsol', 'sigma', 'source_mult', 'solution'] assert_equal(set(sol_a.keys()), set(sol_b.keys())) assert_equal(set(names + ['surfs']), set(sol_b.keys())) for key in names: assert_allclose(sol_a[key], sol_b[key], rtol=1e-3, atol=1e-5, err_msg='Mismatch: %s' % key) @testing.requires_testing_data @requires_h5py @pytest.mark.parametrize('ext', ('fif', 'h5')) def test_io_bem(tmpdir, ext): """Test reading and writing of bem surfaces and solutions.""" import h5py temp_bem = op.join(str(tmpdir), f'temp-bem.{ext}') # model with pytest.raises(ValueError, match='BEM data not found'): read_bem_surfaces(fname_raw) with pytest.raises(ValueError, match='surface with id 10'): read_bem_surfaces(fname_bem_3, s_id=10) surf = read_bem_surfaces(fname_bem_3, patch_stats=True) surf = read_bem_surfaces(fname_bem_3, patch_stats=False) write_bem_surfaces(temp_bem, surf[0]) with pytest.raises(IOError, match='exists'): write_bem_surfaces(temp_bem, surf[0]) write_bem_surfaces(temp_bem, surf[0], overwrite=True) if ext == 'h5': with h5py.File(temp_bem, 'r'): # make sure it's valid pass surf_read = read_bem_surfaces(temp_bem, patch_stats=False) _compare_bem_surfaces(surf, surf_read) # solution with pytest.raises(RuntimeError, match='No BEM solution found'): read_bem_solution(fname_bem_3) temp_sol = op.join(str(tmpdir), f'temp-sol.{ext}') sol = read_bem_solution(fname_bem_sol_3) assert 'BEM' in repr(sol) write_bem_solution(temp_sol, sol) sol_read = read_bem_solution(temp_sol) _compare_bem_solutions(sol, sol_read) sol = read_bem_solution(fname_bem_sol_1) with pytest.raises(RuntimeError, match='BEM model does not have'): _bem_find_surface(sol, 3) def test_make_sphere_model(): """Test making a sphere model.""" info = read_info(fname_raw) pytest.raises(ValueError, make_sphere_model, 'foo', 'auto', info) pytest.raises(ValueError, make_sphere_model, 'auto', 'auto', None) pytest.raises(ValueError, make_sphere_model, 'auto', 'auto', info, relative_radii=(), sigmas=()) with pytest.raises(ValueError, match='relative_radii.*must match.*sigmas'): make_sphere_model('auto', 'auto', info, relative_radii=(1,)) # here we just make sure it works -- the functionality is actually # tested more extensively e.g. in the forward and dipole code with catch_logging() as log: bem = make_sphere_model('auto', 'auto', info, verbose=True) log = log.getvalue() assert ' RV = ' in log for line in log.split('\n'): if ' RV = ' in line: val = float(line.split()[-2]) assert val < 0.01 # actually decent fitting break assert '3 layers' in repr(bem) assert 'Sphere ' in repr(bem) assert ' mm' in repr(bem) bem = make_sphere_model('auto', None, info) assert 'no layers' in repr(bem) assert 'Sphere ' in repr(bem) with pytest.raises(ValueError, match='at least 2 sigmas.*head_radius'): make_sphere_model(sigmas=(0.33,), relative_radii=(1.0,)) @testing.requires_testing_data @pytest.mark.parametrize('kwargs, fname', [ [dict(), fname_bem_3], [dict(conductivity=[0.3]), fname_bem_1], ]) def test_make_bem_model(tmpdir, kwargs, fname): """Test BEM model creation from Python with I/O.""" fname_temp = tmpdir.join('temp-bem.fif') with catch_logging() as log: model = make_bem_model('sample', ico=2, subjects_dir=subjects_dir, verbose=True, **kwargs) log = log.getvalue() if len(kwargs.get('conductivity', (0, 0, 0))) == 1: assert 'distance' not in log else: assert re.search(r'urfaces is approximately *3\.4 mm', log) is not None assert re.search(r'inner skull CM is *0\.65 *-9\.62 *43\.85 mm', log) is not None model_c = read_bem_surfaces(fname) _compare_bem_surfaces(model, model_c) write_bem_surfaces(fname_temp, model) model_read = read_bem_surfaces(fname_temp) _compare_bem_surfaces(model, model_c) _compare_bem_surfaces(model_read, model_c) # bad conductivity with pytest.raises(ValueError, match='conductivity must be'): make_bem_model('sample', 4, [0.3, 0.006], subjects_dir=subjects_dir) @testing.requires_testing_data def test_bem_model_topology(tmpdir): """Test BEM model topological checks.""" # bad topology (not enough neighboring tris) makedirs(tmpdir.join('foo', 'bem')) for fname in ('inner_skull', 'outer_skull', 'outer_skin'): fname += '.surf' copy(op.join(subjects_dir, 'sample', 'bem', fname), str(tmpdir.join('foo', 'bem', fname))) outer_fname = tmpdir.join('foo', 'bem', 'outer_skull.surf') rr, tris = read_surface(outer_fname) tris = tris[:-1] write_surface(outer_fname, rr, tris[:-1], overwrite=True) with pytest.raises(RuntimeError, match='Surface outer skull is not compl'): make_bem_model('foo', None, subjects_dir=tmpdir) # Now get past this error to reach gh-6127 (not enough neighbor tris) rr_bad = np.concatenate([rr, np.mean(rr, axis=0, keepdims=True)], axis=0) write_surface(outer_fname, rr_bad, tris, overwrite=True) with pytest.raises(RuntimeError, match='Surface outer skull.*triangles'): make_bem_model('foo', None, subjects_dir=tmpdir) @pytest.mark.slowtest @testing.requires_testing_data @pytest.mark.parametrize('cond, fname', [ [(0.3,), fname_bem_sol_1], [(0.3, 0.006, 0.3), fname_bem_sol_3], ]) def test_bem_solution(tmpdir, cond, fname): """Test making a BEM solution from Python with I/O.""" # test degenerate conditions surf = read_bem_surfaces(fname_bem_1)[0] pytest.raises(RuntimeError, _ico_downsample, surf, 10) # bad dec grade s_bad = dict(tris=surf['tris'][1:], ntri=surf['ntri'] - 1, rr=surf['rr']) pytest.raises(RuntimeError, _ico_downsample, s_bad, 1) # not isomorphic s_bad = dict(tris=surf['tris'].copy(), ntri=surf['ntri'], rr=surf['rr']) # bad triangulation s_bad['tris'][0] = [0, 0, 0] pytest.raises(RuntimeError, _ico_downsample, s_bad, 1) s_bad['id'] = 1 pytest.raises(RuntimeError, _assert_complete_surface, s_bad) s_bad = dict(tris=surf['tris'], ntri=surf['ntri'], rr=surf['rr'].copy()) s_bad['rr'][0] = 0. pytest.raises(RuntimeError, _get_ico_map, surf, s_bad) surfs = read_bem_surfaces(fname_bem_3) pytest.raises(RuntimeError, _assert_inside, surfs[0], surfs[1]) # outside surfs[0]['id'] = 100 # bad surfs pytest.raises(RuntimeError, _order_surfaces, surfs) surfs[1]['rr'] /= 1000. pytest.raises(RuntimeError, _check_surface_size, surfs[1]) # actually test functionality fname_temp = op.join(str(tmpdir), 'temp-bem-sol.fif') # use a model and solution made in Python for model_type in ('python', 'c'): if model_type == 'python': model = make_bem_model('sample', conductivity=cond, ico=2, subjects_dir=subjects_dir) else: model = fname_bem_1 if len(cond) == 1 else fname_bem_3 solution = make_bem_solution(model, verbose=True) solution_c = read_bem_solution(fname) _compare_bem_solutions(solution, solution_c) write_bem_solution(fname_temp, solution) solution_read = read_bem_solution(fname_temp) _compare_bem_solutions(solution, solution_c) _compare_bem_solutions(solution_read, solution_c) def test_fit_sphere_to_headshape(): """Test fitting a sphere to digitization points.""" # Create points of various kinds rad = 0.09 big_rad = 0.12 center = np.array([0.0005, -0.01, 0.04]) dev_trans = np.array([0., -0.005, -0.01]) dev_center = center - dev_trans dig = [ # Left auricular {'coord_frame': FIFF.FIFFV_COORD_HEAD, 'ident': FIFF.FIFFV_POINT_LPA, 'kind': FIFF.FIFFV_POINT_CARDINAL, 'r': np.array([-1.0, 0.0, 0.0])}, # Nasion {'coord_frame': FIFF.FIFFV_COORD_HEAD, 'ident': FIFF.FIFFV_POINT_NASION, 'kind': FIFF.FIFFV_POINT_CARDINAL, 'r': np.array([0.0, 1.0, 0.0])}, # Right auricular {'coord_frame': FIFF.FIFFV_COORD_HEAD, 'ident': FIFF.FIFFV_POINT_RPA, 'kind': FIFF.FIFFV_POINT_CARDINAL, 'r': np.array([1.0, 0.0, 0.0])}, # Top of the head (extra point) {'coord_frame': FIFF.FIFFV_COORD_HEAD, 'kind': FIFF.FIFFV_POINT_EXTRA, 'ident': 0, 'r': np.array([0.0, 0.0, 1.0])}, # EEG points # Fz {'coord_frame': FIFF.FIFFV_COORD_HEAD, 'kind': FIFF.FIFFV_POINT_EEG, 'ident': 0, 'r': np.array([0, .72, .69])}, # F3 {'coord_frame': FIFF.FIFFV_COORD_HEAD, 'kind': FIFF.FIFFV_POINT_EEG, 'ident': 1, 'r': np.array([-.55, .67, .50])}, # F4 {'coord_frame': FIFF.FIFFV_COORD_HEAD, 'kind': FIFF.FIFFV_POINT_EEG, 'ident': 2, 'r': np.array([.55, .67, .50])}, # Cz {'coord_frame': FIFF.FIFFV_COORD_HEAD, 'kind': FIFF.FIFFV_POINT_EEG, 'ident': 3, 'r': np.array([0.0, 0.0, 1.0])}, # Pz {'coord_frame': FIFF.FIFFV_COORD_HEAD, 'kind': FIFF.FIFFV_POINT_EEG, 'ident': 4, 'r': np.array([0, -.72, .69])}, ] for d in dig: d['r'] *= rad d['r'] += center # Device to head transformation (rotate .2 rad over X-axis) dev_head_t = Transform('meg', 'head', translation(*(dev_trans))) info = Info(dig=dig, dev_head_t=dev_head_t) # Degenerate conditions pytest.raises(ValueError, fit_sphere_to_headshape, info, dig_kinds=(FIFF.FIFFV_POINT_HPI,)) pytest.raises(ValueError, fit_sphere_to_headshape, info, dig_kinds='foo', units='m') info['dig'][0]['coord_frame'] = FIFF.FIFFV_COORD_DEVICE pytest.raises(RuntimeError, fit_sphere_to_headshape, info, units='m') info['dig'][0]['coord_frame'] = FIFF.FIFFV_COORD_HEAD # # Test with 4 points that match a perfect sphere dig_kinds = (FIFF.FIFFV_POINT_CARDINAL, FIFF.FIFFV_POINT_EXTRA) with pytest.warns(RuntimeWarning, match='Only .* head digitization'): r, oh, od = fit_sphere_to_headshape(info, dig_kinds=dig_kinds, units='m') kwargs = dict(rtol=1e-3, atol=1e-5) assert_allclose(r, rad, **kwargs) assert_allclose(oh, center, **kwargs) assert_allclose(od, dev_center, **kwargs) # Test with all points dig_kinds = ('cardinal', FIFF.FIFFV_POINT_EXTRA, 'eeg') kwargs = dict(rtol=1e-3, atol=1e-3) with pytest.warns(RuntimeWarning, match='Only .* head digitization'): r, oh, od = fit_sphere_to_headshape(info, dig_kinds=dig_kinds, units='m') assert_allclose(r, rad, **kwargs) assert_allclose(oh, center, **kwargs) assert_allclose(od, dev_center, **kwargs) # Test with some noisy EEG points only. dig_kinds = 'eeg' with pytest.warns(RuntimeWarning, match='Only .* head digitization'): r, oh, od = fit_sphere_to_headshape(info, dig_kinds=dig_kinds, units='m') kwargs = dict(rtol=1e-3, atol=1e-2) assert_allclose(r, rad, **kwargs) assert_allclose(oh, center, **kwargs) assert_allclose(od, center, **kwargs) # Test big size dig_kinds = ('cardinal', 'extra') info_big = deepcopy(info) for d in info_big['dig']: d['r'] -= center d['r'] *= big_rad / rad d['r'] += center with pytest.warns(RuntimeWarning, match='Estimated head size'): r, oh, od = fit_sphere_to_headshape(info_big, dig_kinds=dig_kinds, units='mm') assert_allclose(oh, center * 1000, atol=1e-3) assert_allclose(r, big_rad * 1000, atol=1e-3) del info_big # Test offcenter dig_kinds = ('cardinal', 'extra') info_shift = deepcopy(info) shift_center = np.array([0., -0.03, 0.]) for d in info_shift['dig']: d['r'] -= center d['r'] += shift_center with pytest.warns(RuntimeWarning, match='from head frame origin'): r, oh, od = fit_sphere_to_headshape( info_shift, dig_kinds=dig_kinds, units='m') assert_allclose(oh, shift_center, atol=1e-6) assert_allclose(r, rad, atol=1e-6) # Test "auto" mode (default) # Should try "extra", fail, and go on to EEG with pytest.warns(RuntimeWarning, match='Only .* head digitization'): r, oh, od = fit_sphere_to_headshape(info, units='m') kwargs = dict(rtol=1e-3, atol=1e-3) assert_allclose(r, rad, **kwargs) assert_allclose(oh, center, **kwargs) assert_allclose(od, dev_center, **kwargs) with pytest.warns(RuntimeWarning, match='Only .* head digitization'): r2, oh2, od2 = fit_sphere_to_headshape(info, units='m') assert_allclose(r, r2, atol=1e-7) assert_allclose(oh, oh2, atol=1e-7) assert_allclose(od, od2, atol=1e-7) # this one should pass, 1 EXTRA point and 3 EEG (but the fit is terrible) info = Info(dig=dig[:7], dev_head_t=dev_head_t) with pytest.warns(RuntimeWarning, match='Only .* head digitization'): r, oh, od = fit_sphere_to_headshape(info, units='m') # this one should fail, 1 EXTRA point and 3 EEG (but the fit is terrible) info = Info(dig=dig[:6], dev_head_t=dev_head_t) pytest.raises(ValueError, fit_sphere_to_headshape, info, units='m') pytest.raises(TypeError, fit_sphere_to_headshape, 1, units='m') run_tests_if_main()
41.398977
79
0.641317
7606af1b9446ca05e1481ccb188e83c054d738db
111,783
py
Python
statsmodels/regression/linear_model.py
anntzer/statsmodels
1ccd5cdba4f9949c5c27ac4d44718893e17d7184
[ "BSD-3-Clause" ]
2
2020-04-13T15:45:38.000Z
2020-06-01T14:41:04.000Z
statsmodels/regression/linear_model.py
giuliobeseghi/statsmodels
1ccd5cdba4f9949c5c27ac4d44718893e17d7184
[ "BSD-3-Clause" ]
null
null
null
statsmodels/regression/linear_model.py
giuliobeseghi/statsmodels
1ccd5cdba4f9949c5c27ac4d44718893e17d7184
[ "BSD-3-Clause" ]
1
2020-04-13T17:21:27.000Z
2020-04-13T17:21:27.000Z
# TODO: Determine which tests are valid for GLSAR, and under what conditions # TODO: Fix issue with constant and GLS # TODO: GLS: add options Iterative GLS, for iterative fgls if sigma is None # TODO: GLS: default if sigma is none should be two-step GLS # TODO: Check nesting when performing model based tests, lr, wald, lm """ This module implements standard regression models: Generalized Least Squares (GLS) Ordinary Least Squares (OLS) Weighted Least Squares (WLS) Generalized Least Squares with autoregressive error terms GLSAR(p) Models are specified with an endogenous response variable and an exogenous design matrix and are fit using their `fit` method. Subclasses that have more complicated covariance matrices should write over the 'whiten' method as the fit method prewhitens the response by calling 'whiten'. General reference for regression models: D. C. Montgomery and E.A. Peck. "Introduction to Linear Regression Analysis." 2nd. Ed., Wiley, 1992. Econometrics references for regression models: R. Davidson and J.G. MacKinnon. "Econometric Theory and Methods," Oxford, 2004. W. Green. "Econometric Analysis," 5th ed., Pearson, 2003. """ from statsmodels.compat.python import lrange, lzip from statsmodels.compat.pandas import Appender import numpy as np from scipy.linalg import toeplitz from scipy import stats from scipy import optimize from statsmodels.tools.tools import pinv_extended from statsmodels.tools.decorators import (cache_readonly, cache_writable) import statsmodels.base.model as base import statsmodels.base.wrapper as wrap from statsmodels.emplike.elregress import _ELRegOpts import warnings from statsmodels.tools.sm_exceptions import InvalidTestWarning # need import in module instead of lazily to copy `__doc__` from statsmodels.regression._prediction import PredictionResults from . import _prediction as pred __docformat__ = 'restructuredtext en' __all__ = ['GLS', 'WLS', 'OLS', 'GLSAR', 'PredictionResults', 'RegressionResultsWrapper'] _fit_regularized_doc =\ r""" Return a regularized fit to a linear regression model. Parameters ---------- method : str Either 'elastic_net' or 'sqrt_lasso'. alpha : scalar or array_like The penalty weight. If a scalar, the same penalty weight applies to all variables in the model. If a vector, it must have the same length as `params`, and contains a penalty weight for each coefficient. L1_wt : scalar The fraction of the penalty given to the L1 penalty term. Must be between 0 and 1 (inclusive). If 0, the fit is a ridge fit, if 1 it is a lasso fit. start_params : array_like Starting values for ``params``. profile_scale : bool If True the penalized fit is computed using the profile (concentrated) log-likelihood for the Gaussian model. Otherwise the fit uses the residual sum of squares. refit : bool If True, the model is refit using only the variables that have non-zero coefficients in the regularized fit. The refitted model is not regularized. **kwargs Additional keyword arguments that contain information used when constructing a model using the formula interface. Returns ------- statsmodels.base.elastic_net.RegularizedResults The regularized results. Notes ----- The elastic net uses a combination of L1 and L2 penalties. The implementation closely follows the glmnet package in R. The function that is minimized is: .. math:: 0.5*RSS/n + alpha*((1-L1\_wt)*|params|_2^2/2 + L1\_wt*|params|_1) where RSS is the usual regression sum of squares, n is the sample size, and :math:`|*|_1` and :math:`|*|_2` are the L1 and L2 norms. For WLS and GLS, the RSS is calculated using the whitened endog and exog data. Post-estimation results are based on the same data used to select variables, hence may be subject to overfitting biases. The elastic_net method uses the following keyword arguments: maxiter : int Maximum number of iterations cnvrg_tol : float Convergence threshold for line searches zero_tol : float Coefficients below this threshold are treated as zero. The square root lasso approach is a variation of the Lasso that is largely self-tuning (the optimal tuning parameter does not depend on the standard deviation of the regression errors). If the errors are Gaussian, the tuning parameter can be taken to be alpha = 1.1 * np.sqrt(n) * norm.ppf(1 - 0.05 / (2 * p)) where n is the sample size and p is the number of predictors. The square root lasso uses the following keyword arguments: zero_tol : float Coefficients below this threshold are treated as zero. The cvxopt module is required to estimate model using the square root lasso. References ---------- .. [*] Friedman, Hastie, Tibshirani (2008). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software 33(1), 1-22 Feb 2010. .. [*] A Belloni, V Chernozhukov, L Wang (2011). Square-root Lasso: pivotal recovery of sparse signals via conic programming. Biometrika 98(4), 791-806. https://arxiv.org/pdf/1009.5689.pdf """ def _get_sigma(sigma, nobs): """ Returns sigma (matrix, nobs by nobs) for GLS and the inverse of its Cholesky decomposition. Handles dimensions and checks integrity. If sigma is None, returns None, None. Otherwise returns sigma, cholsigmainv. """ if sigma is None: return None, None sigma = np.asarray(sigma).squeeze() if sigma.ndim == 0: sigma = np.repeat(sigma, nobs) if sigma.ndim == 1: if sigma.shape != (nobs,): raise ValueError("Sigma must be a scalar, 1d of length %s or a 2d " "array of shape %s x %s" % (nobs, nobs, nobs)) cholsigmainv = 1/np.sqrt(sigma) else: if sigma.shape != (nobs, nobs): raise ValueError("Sigma must be a scalar, 1d of length %s or a 2d " "array of shape %s x %s" % (nobs, nobs, nobs)) cholsigmainv = np.linalg.cholesky(np.linalg.inv(sigma)).T return sigma, cholsigmainv class RegressionModel(base.LikelihoodModel): """ Base class for linear regression models. Should not be directly called. Intended for subclassing. """ def __init__(self, endog, exog, **kwargs): super(RegressionModel, self).__init__(endog, exog, **kwargs) self._data_attr.extend(['pinv_wexog', 'wendog', 'wexog', 'weights']) def initialize(self): """Initialize model components.""" self.wexog = self.whiten(self.exog) self.wendog = self.whiten(self.endog) # overwrite nobs from class Model: self.nobs = float(self.wexog.shape[0]) self._df_model = None self._df_resid = None self.rank = None @property def df_model(self): """ The model degree of freedom. The dof is defined as the rank of the regressor matrix minus 1 if a constant is included. """ if self._df_model is None: if self.rank is None: self.rank = np.linalg.matrix_rank(self.exog) self._df_model = float(self.rank - self.k_constant) return self._df_model @df_model.setter def df_model(self, value): self._df_model = value @property def df_resid(self): """ The residual degree of freedom. The dof is defined as the number of observations minus the rank of the regressor matrix. """ if self._df_resid is None: if self.rank is None: self.rank = np.linalg.matrix_rank(self.exog) self._df_resid = self.nobs - self.rank return self._df_resid @df_resid.setter def df_resid(self, value): self._df_resid = value def whiten(self, x): """ Whiten method that must be overwritten by individual models. Parameters ---------- x : array_like Data to be whitened. """ raise NotImplementedError("Subclasses must implement.") def fit(self, method="pinv", cov_type='nonrobust', cov_kwds=None, use_t=None, **kwargs): """ Full fit of the model. The results include an estimate of covariance matrix, (whitened) residuals and an estimate of scale. Parameters ---------- method : str, optional Can be "pinv", "qr". "pinv" uses the Moore-Penrose pseudoinverse to solve the least squares problem. "qr" uses the QR factorization. cov_type : str, optional See `regression.linear_model.RegressionResults` for a description of the available covariance estimators. cov_kwds : list or None, optional See `linear_model.RegressionResults.get_robustcov_results` for a description required keywords for alternative covariance estimators. use_t : bool, optional Flag indicating to use the Student's t distribution when computing p-values. Default behavior depends on cov_type. See `linear_model.RegressionResults.get_robustcov_results` for implementation details. **kwargs Additional keyword arguments that contain information used when constructing a model using the formula interface. Returns ------- RegressionResults The model estimation results. See Also -------- RegressionResults The results container. RegressionResults.get_robustcov_results A method to change the covariance estimator used when fitting the model. Notes ----- The fit method uses the pseudoinverse of the design/exogenous variables to solve the least squares minimization. """ if method == "pinv": if not (hasattr(self, 'pinv_wexog') and hasattr(self, 'normalized_cov_params') and hasattr(self, 'rank')): self.pinv_wexog, singular_values = pinv_extended(self.wexog) self.normalized_cov_params = np.dot( self.pinv_wexog, np.transpose(self.pinv_wexog)) # Cache these singular values for use later. self.wexog_singular_values = singular_values self.rank = np.linalg.matrix_rank(np.diag(singular_values)) beta = np.dot(self.pinv_wexog, self.wendog) elif method == "qr": if not (hasattr(self, 'exog_Q') and hasattr(self, 'exog_R') and hasattr(self, 'normalized_cov_params') and hasattr(self, 'rank')): Q, R = np.linalg.qr(self.wexog) self.exog_Q, self.exog_R = Q, R self.normalized_cov_params = np.linalg.inv(np.dot(R.T, R)) # Cache singular values from R. self.wexog_singular_values = np.linalg.svd(R, 0, 0) self.rank = np.linalg.matrix_rank(R) else: Q, R = self.exog_Q, self.exog_R # used in ANOVA self.effects = effects = np.dot(Q.T, self.wendog) beta = np.linalg.solve(R, effects) else: raise ValueError('method has to be "pinv" or "qr"') if self._df_model is None: self._df_model = float(self.rank - self.k_constant) if self._df_resid is None: self.df_resid = self.nobs - self.rank if isinstance(self, OLS): lfit = OLSResults( self, beta, normalized_cov_params=self.normalized_cov_params, cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t) else: lfit = RegressionResults( self, beta, normalized_cov_params=self.normalized_cov_params, cov_type=cov_type, cov_kwds=cov_kwds, use_t=use_t, **kwargs) return RegressionResultsWrapper(lfit) def predict(self, params, exog=None): """ Return linear predicted values from a design matrix. Parameters ---------- params : array_like Parameters of a linear model. exog : array_like, optional Design / exogenous data. Model exog is used if None. Returns ------- array_like An array of fitted values. Notes ----- If the model has not yet been fit, params is not optional. """ # JP: this does not look correct for GLMAR # SS: it needs its own predict method if exog is None: exog = self.exog return np.dot(exog, params) def get_distribution(self, params, scale, exog=None, dist_class=None): """ Construct a random number generator for the predictive distribution. Parameters ---------- params : array_like The model parameters (regression coefficients). scale : scalar The variance parameter. exog : array_like The predictor variable matrix. dist_class : class A random number generator class. Must take 'loc' and 'scale' as arguments and return a random number generator implementing an ``rvs`` method for simulating random values. Defaults to normal. Returns ------- gen Frozen random number generator object with mean and variance determined by the fitted linear model. Use the ``rvs`` method to generate random values. Notes ----- Due to the behavior of ``scipy.stats.distributions objects``, the returned random number generator must be called with ``gen.rvs(n)`` where ``n`` is the number of observations in the data set used to fit the model. If any other value is used for ``n``, misleading results will be produced. """ fit = self.predict(params, exog) if dist_class is None: from scipy.stats.distributions import norm dist_class = norm gen = dist_class(loc=fit, scale=np.sqrt(scale)) return gen class GLS(RegressionModel): __doc__ = r""" Generalized Least Squares %(params)s sigma : scalar or array The array or scalar `sigma` is the weighting matrix of the covariance. The default is None for no scaling. If `sigma` is a scalar, it is assumed that `sigma` is an n x n diagonal matrix with the given scalar, `sigma` as the value of each diagonal element. If `sigma` is an n-length vector, then `sigma` is assumed to be a diagonal matrix with the given `sigma` on the diagonal. This should be the same as WLS. %(extra_params)s Attributes ---------- pinv_wexog : ndarray `pinv_wexog` is the p x n Moore-Penrose pseudoinverse of `wexog`. cholsimgainv : ndarray The transpose of the Cholesky decomposition of the pseudoinverse. df_model : float p - 1, where p is the number of regressors including the intercept. of freedom. df_resid : float Number of observations n less the number of parameters p. llf : float The value of the likelihood function of the fitted model. nobs : float The number of observations n. normalized_cov_params : ndarray p x p array :math:`(X^{T}\Sigma^{-1}X)^{-1}` results : RegressionResults instance A property that returns the RegressionResults class if fit. sigma : ndarray `sigma` is the n x n covariance structure of the error terms. wexog : ndarray Design matrix whitened by `cholsigmainv` wendog : ndarray Response variable whitened by `cholsigmainv` See Also -------- WLS : Fit a linear model using Weighted Least Squares. OLS : Fit a linear model using Ordinary Least Squares. Notes ----- If sigma is a function of the data making one of the regressors a constant, then the current postestimation statistics will not be correct. Examples -------- >>> import statsmodels.api as sm >>> data = sm.datasets.longley.load(as_pandas=False) >>> data.exog = sm.add_constant(data.exog) >>> ols_resid = sm.OLS(data.endog, data.exog).fit().resid >>> res_fit = sm.OLS(ols_resid[1:], ols_resid[:-1]).fit() >>> rho = res_fit.params `rho` is a consistent estimator of the correlation of the residuals from an OLS fit of the longley data. It is assumed that this is the true rho of the AR process data. >>> from scipy.linalg import toeplitz >>> order = toeplitz(np.arange(16)) >>> sigma = rho**order `sigma` is an n x n matrix of the autocorrelation structure of the data. >>> gls_model = sm.GLS(data.endog, data.exog, sigma=sigma) >>> gls_results = gls_model.fit() >>> print(gls_results.summary()) """ % {'params': base._model_params_doc, 'extra_params': base._missing_param_doc + base._extra_param_doc} def __init__(self, endog, exog, sigma=None, missing='none', hasconst=None, **kwargs): # TODO: add options igls, for iterative fgls if sigma is None # TODO: default if sigma is none should be two-step GLS sigma, cholsigmainv = _get_sigma(sigma, len(endog)) super(GLS, self).__init__(endog, exog, missing=missing, hasconst=hasconst, sigma=sigma, cholsigmainv=cholsigmainv, **kwargs) # store attribute names for data arrays self._data_attr.extend(['sigma', 'cholsigmainv']) def whiten(self, x): """ GLS whiten method. Parameters ---------- x : array_like Data to be whitened. Returns ------- ndarray The value np.dot(cholsigmainv,X). See Also -------- GLS : Fit a linear model using Generalized Least Squares. """ x = np.asarray(x) if self.sigma is None or self.sigma.shape == (): return x elif self.sigma.ndim == 1: if x.ndim == 1: return x * self.cholsigmainv else: return x * self.cholsigmainv[:, None] else: return np.dot(self.cholsigmainv, x) def loglike(self, params): r""" Compute the value of the Gaussian log-likelihood function at params. Given the whitened design matrix, the log-likelihood is evaluated at the parameter vector `params` for the dependent variable `endog`. Parameters ---------- params : array_like The model parameters. Returns ------- float The value of the log-likelihood function for a GLS Model. Notes ----- The log-likelihood function for the normal distribution is .. math:: -\frac{n}{2}\log\left(\left(Y-\hat{Y}\right)^{\prime} \left(Y-\hat{Y}\right)\right) -\frac{n}{2}\left(1+\log\left(\frac{2\pi}{n}\right)\right) -\frac{1}{2}\log\left(\left|\Sigma\right|\right) Y and Y-hat are whitened. """ # TODO: combine this with OLS/WLS loglike and add _det_sigma argument nobs2 = self.nobs / 2.0 SSR = np.sum((self.wendog - np.dot(self.wexog, params))**2, axis=0) llf = -np.log(SSR) * nobs2 # concentrated likelihood llf -= (1+np.log(np.pi/nobs2))*nobs2 # with likelihood constant if np.any(self.sigma): # FIXME: robust-enough check? unneeded if _det_sigma gets defined if self.sigma.ndim == 2: det = np.linalg.slogdet(self.sigma) llf -= .5*det[1] else: llf -= 0.5*np.sum(np.log(self.sigma)) # with error covariance matrix return llf def hessian_factor(self, params, scale=None, observed=True): """ Compute weights for calculating Hessian. Parameters ---------- params : ndarray The parameter at which Hessian is evaluated. scale : None or float If scale is None, then the default scale will be calculated. Default scale is defined by `self.scaletype` and set in fit. If scale is not None, then it is used as a fixed scale. observed : bool If True, then the observed Hessian is returned. If false then the expected information matrix is returned. Returns ------- ndarray A 1d weight vector used in the calculation of the Hessian. The hessian is obtained by `(exog.T * hessian_factor).dot(exog)`. """ if self.sigma is None or self.sigma.shape == (): return np.ones(self.exog.shape[0]) elif self.sigma.ndim == 1: return self.cholsigmainv else: return np.diag(self.cholsigmainv) @Appender(_fit_regularized_doc) def fit_regularized(self, method="elastic_net", alpha=0., L1_wt=1., start_params=None, profile_scale=False, refit=False, **kwargs): if not np.isscalar(alpha): alpha = np.asarray(alpha) # Need to adjust since RSS/n term in elastic net uses nominal # n in denominator if self.sigma is not None: alpha = alpha * np.sum(1 / np.diag(self.sigma)) / len(self.endog) rslt = OLS(self.wendog, self.wexog).fit_regularized( method=method, alpha=alpha, L1_wt=L1_wt, start_params=start_params, profile_scale=profile_scale, refit=refit, **kwargs) from statsmodels.base.elastic_net import ( RegularizedResults, RegularizedResultsWrapper) rrslt = RegularizedResults(self, rslt.params) return RegularizedResultsWrapper(rrslt) class WLS(RegressionModel): __doc__ = """ Weighted Least Squares The weights are presumed to be (proportional to) the inverse of the variance of the observations. That is, if the variables are to be transformed by 1/sqrt(W) you must supply weights = 1/W. %(params)s weights : array_like, optional A 1d array of weights. If you supply 1/W then the variables are pre- multiplied by 1/sqrt(W). If no weights are supplied the default value is 1 and WLS results are the same as OLS. %(extra_params)s Attributes ---------- weights : ndarray The stored weights supplied as an argument. See Also -------- GLS : Fit a linear model using Generalized Least Squares. OLS : Fit a linear model using Ordinary Least Squares. Notes ----- If the weights are a function of the data, then the post estimation statistics such as fvalue and mse_model might not be correct, as the package does not yet support no-constant regression. Examples -------- >>> import statsmodels.api as sm >>> Y = [1,3,4,5,2,3,4] >>> X = range(1,8) >>> X = sm.add_constant(X) >>> wls_model = sm.WLS(Y,X, weights=list(range(1,8))) >>> results = wls_model.fit() >>> results.params array([ 2.91666667, 0.0952381 ]) >>> results.tvalues array([ 2.0652652 , 0.35684428]) >>> print(results.t_test([1, 0])) <T test: effect=array([ 2.91666667]), sd=array([[ 1.41224801]]), t=array([[ 2.0652652]]), p=array([[ 0.04690139]]), df_denom=5> >>> print(results.f_test([0, 1])) <F test: F=array([[ 0.12733784]]), p=[[ 0.73577409]], df_denom=5, df_num=1> """ % {'params': base._model_params_doc, 'extra_params': base._missing_param_doc + base._extra_param_doc} def __init__(self, endog, exog, weights=1., missing='none', hasconst=None, **kwargs): weights = np.array(weights) if weights.shape == (): if (missing == 'drop' and 'missing_idx' in kwargs and kwargs['missing_idx'] is not None): # patsy may have truncated endog weights = np.repeat(weights, len(kwargs['missing_idx'])) else: weights = np.repeat(weights, len(endog)) # handle case that endog might be of len == 1 if len(weights) == 1: weights = np.array([weights.squeeze()]) else: weights = weights.squeeze() super(WLS, self).__init__(endog, exog, missing=missing, weights=weights, hasconst=hasconst, **kwargs) nobs = self.exog.shape[0] weights = self.weights # Experimental normalization of weights weights = weights / np.sum(weights) * nobs if weights.size != nobs and weights.shape[0] != nobs: raise ValueError('Weights must be scalar or same length as design') def whiten(self, x): """ Whitener for WLS model, multiplies each column by sqrt(self.weights). Parameters ---------- x : array_like Data to be whitened. Returns ------- array_like The whitened values sqrt(weights)*X. """ x = np.asarray(x) if x.ndim == 1: return x * np.sqrt(self.weights) elif x.ndim == 2: return np.sqrt(self.weights)[:, None] * x def loglike(self, params): r""" Compute the value of the gaussian log-likelihood function at params. Given the whitened design matrix, the log-likelihood is evaluated at the parameter vector `params` for the dependent variable `Y`. Parameters ---------- params : array_like The parameter estimates. Returns ------- float The value of the log-likelihood function for a WLS Model. Notes -------- .. math:: -\frac{n}{2}\log SSR -\frac{n}{2}\left(1+\log\left(\frac{2\pi}{n}\right)\right) -\frac{1}{2}\log\left(\left|W\right|\right) where :math:`W` is a diagonal weight matrix matrix and :math:`SSR=\left(Y-\hat{Y}\right)^\prime W \left(Y-\hat{Y}\right)` is the sum of the squared weighted residuals. """ nobs2 = self.nobs / 2.0 SSR = np.sum((self.wendog - np.dot(self.wexog, params))**2, axis=0) llf = -np.log(SSR) * nobs2 # concentrated likelihood llf -= (1+np.log(np.pi/nobs2))*nobs2 # with constant llf += 0.5 * np.sum(np.log(self.weights)) return llf def hessian_factor(self, params, scale=None, observed=True): """ Compute the weights for calculating the Hessian. Parameters ---------- params : ndarray The parameter at which Hessian is evaluated. scale : None or float If scale is None, then the default scale will be calculated. Default scale is defined by `self.scaletype` and set in fit. If scale is not None, then it is used as a fixed scale. observed : bool If True, then the observed Hessian is returned. If false then the expected information matrix is returned. Returns ------- ndarray A 1d weight vector used in the calculation of the Hessian. The hessian is obtained by `(exog.T * hessian_factor).dot(exog)`. """ return self.weights @Appender(_fit_regularized_doc) def fit_regularized(self, method="elastic_net", alpha=0., L1_wt=1., start_params=None, profile_scale=False, refit=False, **kwargs): # Docstring attached below if not np.isscalar(alpha): alpha = np.asarray(alpha) # Need to adjust since RSS/n in elastic net uses nominal n in # denominator alpha = alpha * np.sum(self.weights) / len(self.weights) rslt = OLS(self.wendog, self.wexog).fit_regularized( method=method, alpha=alpha, L1_wt=L1_wt, start_params=start_params, profile_scale=profile_scale, refit=refit, **kwargs) from statsmodels.base.elastic_net import ( RegularizedResults, RegularizedResultsWrapper) rrslt = RegularizedResults(self, rslt.params) return RegularizedResultsWrapper(rrslt) class OLS(WLS): __doc__ = """ Ordinary Least Squares %(params)s %(extra_params)s Attributes ---------- weights : scalar Has an attribute weights = array(1.0) due to inheritance from WLS. See Also -------- WLS : Fit a linear model using Weighted Least Squares. GLS : Fit a linear model using Generalized Least Squares. Notes ----- No constant is added by the model unless you are using formulas. Examples -------- >>> import statsmodels.api as sm >>> Y = [1,3,4,5,2,3,4] >>> X = range(1,8) >>> X = sm.add_constant(X) >>> model = sm.OLS(Y,X) >>> results = model.fit() >>> results.params array([ 2.14285714, 0.25 ]) >>> results.tvalues array([ 1.87867287, 0.98019606]) >>> print(results.t_test([1, 0])) <T test: effect=array([ 2.14285714]), sd=array([[ 1.14062282]]), t=array([[ 1.87867287]]), p=array([[ 0.05953974]]), df_denom=5> >>> print(results.f_test(np.identity(2))) <F test: F=array([[ 19.46078431]]), p=[[ 0.00437251]], df_denom=5, df_num=2> """ % {'params': base._model_params_doc, 'extra_params': base._missing_param_doc + base._extra_param_doc} # TODO: change example to use datasets. This was the point of datasets! def __init__(self, endog, exog=None, missing='none', hasconst=None, **kwargs): super(OLS, self).__init__(endog, exog, missing=missing, hasconst=hasconst, **kwargs) if "weights" in self._init_keys: self._init_keys.remove("weights") def loglike(self, params, scale=None): """ The likelihood function for the OLS model. Parameters ---------- params : array_like The coefficients with which to estimate the log-likelihood. scale : float or None If None, return the profile (concentrated) log likelihood (profiled over the scale parameter), else return the log-likelihood using the given scale value. Returns ------- float The likelihood function evaluated at params. """ nobs2 = self.nobs / 2.0 nobs = float(self.nobs) resid = self.endog - np.dot(self.exog, params) if hasattr(self, 'offset'): resid -= self.offset ssr = np.sum(resid**2) if scale is None: # profile log likelihood llf = -nobs2*np.log(2*np.pi) - nobs2*np.log(ssr / nobs) - nobs2 else: # log-likelihood llf = -nobs2 * np.log(2 * np.pi * scale) - ssr / (2*scale) return llf def whiten(self, x): """ OLS model whitener does nothing. Parameters ---------- x : array_like Data to be whitened. Returns ------- array_like The input array unmodified. See Also -------- OLS : Fit a linear model using Ordinary Least Squares. """ return x def score(self, params, scale=None): """ Evaluate the score function at a given point. The score corresponds to the profile (concentrated) log-likelihood in which the scale parameter has been profiled out. Parameters ---------- params : array_like The parameter vector at which the score function is computed. scale : float or None If None, return the profile (concentrated) log likelihood (profiled over the scale parameter), else return the log-likelihood using the given scale value. Returns ------- ndarray The score vector. """ if not hasattr(self, "_wexog_xprod"): self._setup_score_hess() xtxb = np.dot(self._wexog_xprod, params) sdr = -self._wexog_x_wendog + xtxb if scale is None: ssr = self._wendog_xprod - 2 * np.dot(self._wexog_x_wendog.T, params) ssr += np.dot(params, xtxb) return -self.nobs * sdr / ssr else: return -sdr / scale def _setup_score_hess(self): y = self.wendog if hasattr(self, 'offset'): y = y - self.offset self._wendog_xprod = np.sum(y * y) self._wexog_xprod = np.dot(self.wexog.T, self.wexog) self._wexog_x_wendog = np.dot(self.wexog.T, y) def hessian(self, params, scale=None): """ Evaluate the Hessian function at a given point. Parameters ---------- params : array_like The parameter vector at which the Hessian is computed. scale : float or None If None, return the profile (concentrated) log likelihood (profiled over the scale parameter), else return the log-likelihood using the given scale value. Returns ------- ndarray The Hessian matrix. """ if not hasattr(self, "_wexog_xprod"): self._setup_score_hess() xtxb = np.dot(self._wexog_xprod, params) if scale is None: ssr = self._wendog_xprod - 2 * np.dot(self._wexog_x_wendog.T, params) ssr += np.dot(params, xtxb) ssrp = -2*self._wexog_x_wendog + 2*xtxb hm = self._wexog_xprod / ssr - np.outer(ssrp, ssrp) / ssr**2 return -self.nobs * hm / 2 else: return -self._wexog_xprod / scale def hessian_factor(self, params, scale=None, observed=True): """ Calculate the weights for the Hessian. Parameters ---------- params : ndarray The parameter at which Hessian is evaluated. scale : None or float If scale is None, then the default scale will be calculated. Default scale is defined by `self.scaletype` and set in fit. If scale is not None, then it is used as a fixed scale. observed : bool If True, then the observed Hessian is returned. If false then the expected information matrix is returned. Returns ------- ndarray A 1d weight vector used in the calculation of the Hessian. The hessian is obtained by `(exog.T * hessian_factor).dot(exog)`. """ return np.ones(self.exog.shape[0]) @Appender(_fit_regularized_doc) def fit_regularized(self, method="elastic_net", alpha=0., L1_wt=1., start_params=None, profile_scale=False, refit=False, **kwargs): # In the future we could add support for other penalties, e.g. SCAD. if method not in ("elastic_net", "sqrt_lasso"): msg = "Unknown method '%s' for fit_regularized" % method raise ValueError(msg) # Set default parameters. defaults = {"maxiter": 50, "cnvrg_tol": 1e-10, "zero_tol": 1e-8} defaults.update(kwargs) if method == "sqrt_lasso": from statsmodels.base.elastic_net import ( RegularizedResults, RegularizedResultsWrapper ) params = self._sqrt_lasso(alpha, refit, defaults["zero_tol"]) results = RegularizedResults(self, params) return RegularizedResultsWrapper(results) from statsmodels.base.elastic_net import fit_elasticnet if L1_wt == 0: return self._fit_ridge(alpha) # If a scale parameter is passed in, the non-profile # likelihood (residual sum of squares divided by -2) is used, # otherwise the profile likelihood is used. if profile_scale: loglike_kwds = {} score_kwds = {} hess_kwds = {} else: loglike_kwds = {"scale": 1} score_kwds = {"scale": 1} hess_kwds = {"scale": 1} return fit_elasticnet(self, method=method, alpha=alpha, L1_wt=L1_wt, start_params=start_params, loglike_kwds=loglike_kwds, score_kwds=score_kwds, hess_kwds=hess_kwds, refit=refit, check_step=False, **defaults) def _sqrt_lasso(self, alpha, refit, zero_tol): try: import cvxopt except ImportError: msg = 'sqrt_lasso fitting requires the cvxopt module' raise ValueError(msg) n = len(self.endog) p = self.exog.shape[1] h0 = cvxopt.matrix(0., (2*p+1, 1)) h1 = cvxopt.matrix(0., (n+1, 1)) h1[1:, 0] = cvxopt.matrix(self.endog, (n, 1)) G0 = cvxopt.spmatrix([], [], [], (2*p+1, 2*p+1)) for i in range(1, 2*p+1): G0[i, i] = -1 G1 = cvxopt.matrix(0., (n+1, 2*p+1)) G1[0, 0] = -1 G1[1:, 1:p+1] = self.exog G1[1:, p+1:] = -self.exog c = cvxopt.matrix(alpha / n, (2*p + 1, 1)) c[0] = 1 / np.sqrt(n) from cvxopt import solvers solvers.options["show_progress"] = False rslt = solvers.socp(c, Gl=G0, hl=h0, Gq=[G1], hq=[h1]) x = np.asarray(rslt['x']).flat bp = x[1:p+1] bn = x[p+1:] params = bp - bn if not refit: return params ii = np.flatnonzero(np.abs(params) > zero_tol) rfr = OLS(self.endog, self.exog[:, ii]).fit() params *= 0 params[ii] = rfr.params return params def _fit_ridge(self, alpha): """ Fit a linear model using ridge regression. Parameters ---------- alpha : scalar or array_like The penalty weight. If a scalar, the same penalty weight applies to all variables in the model. If a vector, it must have the same length as `params`, and contains a penalty weight for each coefficient. Notes ----- Equivalent to fit_regularized with L1_wt = 0 (but implemented more efficiently). """ u, s, vt = np.linalg.svd(self.exog, 0) v = vt.T q = np.dot(u.T, self.endog) * s s2 = s * s if np.isscalar(alpha): sd = s2 + alpha * self.nobs params = q / sd params = np.dot(v, params) else: alpha = np.asarray(alpha) vtav = self.nobs * np.dot(vt, alpha[:, None] * v) d = np.diag(vtav) + s2 np.fill_diagonal(vtav, d) r = np.linalg.solve(vtav, q) params = np.dot(v, r) from statsmodels.base.elastic_net import RegularizedResults return RegularizedResults(self, params) class GLSAR(GLS): __doc__ = """ Generalized Least Squares with AR covariance structure %(params)s rho : int The order of the autoregressive covariance. %(extra_params)s Notes ----- GLSAR is considered to be experimental. The linear autoregressive process of order p--AR(p)--is defined as: TODO Examples -------- >>> import statsmodels.api as sm >>> X = range(1,8) >>> X = sm.add_constant(X) >>> Y = [1,3,4,5,8,10,9] >>> model = sm.GLSAR(Y, X, rho=2) >>> for i in range(6): ... results = model.fit() ... print("AR coefficients: {0}".format(model.rho)) ... rho, sigma = sm.regression.yule_walker(results.resid, ... order=model.order) ... model = sm.GLSAR(Y, X, rho) ... AR coefficients: [ 0. 0.] AR coefficients: [-0.52571491 -0.84496178] AR coefficients: [-0.6104153 -0.86656458] AR coefficients: [-0.60439494 -0.857867 ] AR coefficients: [-0.6048218 -0.85846157] AR coefficients: [-0.60479146 -0.85841922] >>> results.params array([-0.66661205, 1.60850853]) >>> results.tvalues array([ -2.10304127, 21.8047269 ]) >>> print(results.t_test([1, 0])) <T test: effect=array([-0.66661205]), sd=array([[ 0.31697526]]), t=array([[-2.10304127]]), p=array([[ 0.06309969]]), df_denom=3> >>> print(results.f_test(np.identity(2))) <F test: F=array([[ 1815.23061844]]), p=[[ 0.00002372]], df_denom=3, df_num=2> Or, equivalently >>> model2 = sm.GLSAR(Y, X, rho=2) >>> res = model2.iterative_fit(maxiter=6) >>> model2.rho array([-0.60479146, -0.85841922]) """ % {'params': base._model_params_doc, 'extra_params': base._missing_param_doc + base._extra_param_doc} # TODO: Complete docstring def __init__(self, endog, exog=None, rho=1, missing='none', hasconst=None, **kwargs): # this looks strange, interpreting rho as order if it is int if isinstance(rho, np.int): self.order = rho self.rho = np.zeros(self.order, np.float64) else: self.rho = np.squeeze(np.asarray(rho)) if len(self.rho.shape) not in [0, 1]: raise ValueError("AR parameters must be a scalar or a vector") if self.rho.shape == (): self.rho.shape = (1,) self.order = self.rho.shape[0] if exog is None: # JP this looks wrong, should be a regression on constant # results for rho estimate now identical to yule-walker on y # super(AR, self).__init__(endog, add_constant(endog)) super(GLSAR, self).__init__(endog, np.ones((endog.shape[0], 1)), missing=missing, hasconst=None, **kwargs) else: super(GLSAR, self).__init__(endog, exog, missing=missing, **kwargs) def iterative_fit(self, maxiter=3, rtol=1e-4, **kwargs): """ Perform an iterative two-stage procedure to estimate a GLS model. The model is assumed to have AR(p) errors, AR(p) parameters and regression coefficients are estimated iteratively. Parameters ---------- maxiter : int, optional The number of iterations. rtol : float, optional Relative tolerance between estimated coefficients to stop the estimation. Stops if max(abs(last - current) / abs(last)) < rtol. **kwargs Additional keyword arguments passed to `fit`. Returns ------- RegressionResults The results computed using an iterative fit. """ # TODO: update this after going through example. converged = False i = -1 # need to initialize for maxiter < 1 (skip loop) history = {'params': [], 'rho': [self.rho]} for i in range(maxiter - 1): if hasattr(self, 'pinv_wexog'): del self.pinv_wexog self.initialize() results = self.fit() history['params'].append(results.params) if i == 0: last = results.params else: diff = np.max(np.abs(last - results.params) / np.abs(last)) if diff < rtol: converged = True break last = results.params self.rho, _ = yule_walker(results.resid, order=self.order, df=None) history['rho'].append(self.rho) # why not another call to self.initialize # Use kwarg to insert history if not converged and maxiter > 0: # maxiter <= 0 just does OLS if hasattr(self, 'pinv_wexog'): del self.pinv_wexog self.initialize() # if converged then this is a duplicate fit, because we did not # update rho results = self.fit(history=history, **kwargs) results.iter = i + 1 # add last fit to history, not if duplicate fit if not converged: results.history['params'].append(results.params) results.iter += 1 results.converged = converged return results def whiten(self, x): """ Whiten a series of columns according to an AR(p) covariance structure. Whitening using this method drops the initial p observations. Parameters ---------- x : array_like The data to be whitened. Returns ------- ndarray The whitened data. """ # TODO: notation for AR process x = np.asarray(x, np.float64) _x = x.copy() # the following loops over the first axis, works for 1d and nd for i in range(self.order): _x[(i + 1):] = _x[(i + 1):] - self.rho[i] * x[0:-(i + 1)] return _x[self.order:] def yule_walker(x, order=1, method="unbiased", df=None, inv=False, demean=True): """ Estimate AR(p) parameters from a sequence using the Yule-Walker equations. Unbiased or maximum-likelihood estimator (mle) Parameters ---------- x : array_like A 1d array. order : int, optional The order of the autoregressive process. Default is 1. method : str, optional Method can be 'unbiased' or 'mle' and this determines denominator in estimate of autocorrelation function (ACF) at lag k. If 'mle', the denominator is n=X.shape[0], if 'unbiased' the denominator is n-k. The default is unbiased. df : int, optional Specifies the degrees of freedom. If `df` is supplied, then it is assumed the X has `df` degrees of freedom rather than `n`. Default is None. inv : bool If inv is True the inverse of R is also returned. Default is False. demean : bool True, the mean is subtracted from `X` before estimation. Returns ------- rho : ndarray AR(p) coefficients computed using the Yule-Walker method. sigma : float The estimate of the residual standard deviation. See Also -------- burg : Burg's AR estimator. Notes ----- See https://en.wikipedia.org/wiki/Autoregressive_moving_average_model for further details. Examples -------- >>> import statsmodels.api as sm >>> from statsmodels.datasets.sunspots import load >>> data = load(as_pandas=False) >>> rho, sigma = sm.regression.yule_walker(data.endog, order=4, ... method="mle") >>> rho array([ 1.28310031, -0.45240924, -0.20770299, 0.04794365]) >>> sigma 16.808022730464351 """ # TODO: define R better, look back at notes and technical notes on YW. # First link here is useful # http://www-stat.wharton.upenn.edu/~steele/Courses/956/ResourceDetails/YuleWalkerAndMore.htm method = str(method).lower() if method not in ["unbiased", "mle"]: raise ValueError("ACF estimation method must be 'unbiased' or 'MLE'") x = np.array(x, dtype=np.float64) if demean: x -= x.mean() n = df or x.shape[0] # this handles df_resid ie., n - p adj_needed = method == "unbiased" if x.ndim > 1 and x.shape[1] != 1: raise ValueError("expecting a vector to estimate AR parameters") r = np.zeros(order+1, np.float64) r[0] = (x ** 2).sum() / n for k in range(1, order+1): r[k] = (x[0:-k] * x[k:]).sum() / (n - k * adj_needed) R = toeplitz(r[:-1]) rho = np.linalg.solve(R, r[1:]) sigmasq = r[0] - (r[1:]*rho).sum() if inv: return rho, np.sqrt(sigmasq), np.linalg.inv(R) else: return rho, np.sqrt(sigmasq) def burg(endog, order=1, demean=True): """ Compute Burg's AP(p) parameter estimator. Parameters ---------- endog : array_like The endogenous variable. order : int, optional Order of the AR. Default is 1. demean : bool, optional Flag indicating to subtract the mean from endog before estimation. Returns ------- rho : ndarray The AR(p) coefficients computed using Burg's algorithm. sigma2 : float The estimate of the residual variance. See Also -------- yule_walker : Estimate AR parameters using the Yule-Walker method. Notes ----- AR model estimated includes a constant that is estimated using the sample mean (see [1]_). This value is not reported. References ---------- .. [1] Brockwell, P.J. and Davis, R.A., 2016. Introduction to time series and forecasting. Springer. Examples -------- >>> import statsmodels.api as sm >>> from statsmodels.datasets.sunspots import load >>> data = load(as_pandas=True) >>> rho, sigma2 = sm.regression.linear_model.burg(data.endog, order=4) >>> rho array([ 1.30934186, -0.48086633, -0.20185982, 0.05501941]) >>> sigma2 271.2467306963966 """ # Avoid circular imports from statsmodels.tsa.stattools import levinson_durbin_pacf, pacf_burg endog = np.squeeze(np.asarray(endog)) if endog.ndim != 1: raise ValueError('endog must be 1-d or squeezable to 1-d.') order = int(order) if order < 1: raise ValueError('order must be an integer larger than 1') if demean: endog = endog - endog.mean() pacf, sigma = pacf_burg(endog, order, demean=demean) ar, _ = levinson_durbin_pacf(pacf) return ar, sigma[-1] class RegressionResults(base.LikelihoodModelResults): r""" This class summarizes the fit of a linear regression model. It handles the output of contrasts, estimates of covariance, etc. Parameters ---------- model : RegressionModel The regression model instance. params : ndarray The estimated parameters. normalized_cov_params : ndarray The normalized covariance parameters. scale : float The estimated scale of the residuals. cov_type : str The covariance estimator used in the results. cov_kwds : dict Additional keywords used in the covariance specification. use_t : bool Flag indicating to use the Student's t in inference. **kwargs Additional keyword arguments used to initialize the results. Attributes ---------- pinv_wexog See model class docstring for implementation details. cov_type Parameter covariance estimator used for standard errors and t-stats. df_model Model degrees of freedom. The number of regressors `p`. Does not include the constant if one is present. df_resid Residual degrees of freedom. `n - p - 1`, if a constant is present. `n - p` if a constant is not included. het_scale adjusted squared residuals for heteroscedasticity robust standard errors. Is only available after `HC#_se` or `cov_HC#` is called. See HC#_se for more information. history Estimation history for iterative estimators. model A pointer to the model instance that called fit() or results. params The linear coefficients that minimize the least squares criterion. This is usually called Beta for the classical linear model. """ _cache = {} # needs to be a class attribute for scale setter? def __init__(self, model, params, normalized_cov_params=None, scale=1., cov_type='nonrobust', cov_kwds=None, use_t=None, **kwargs): super(RegressionResults, self).__init__( model, params, normalized_cov_params, scale) self._cache = {} if hasattr(model, 'wexog_singular_values'): self._wexog_singular_values = model.wexog_singular_values else: self._wexog_singular_values = None self.df_model = model.df_model self.df_resid = model.df_resid if cov_type == 'nonrobust': self.cov_type = 'nonrobust' self.cov_kwds = { 'description': 'Standard Errors assume that the ' + 'covariance matrix of the errors is correctly ' + 'specified.'} if use_t is None: use_t = True # TODO: class default self.use_t = use_t else: if cov_kwds is None: cov_kwds = {} if 'use_t' in cov_kwds: # TODO: we want to get rid of 'use_t' in cov_kwds use_t_2 = cov_kwds.pop('use_t') if use_t is None: use_t = use_t_2 # TODO: warn or not? self.get_robustcov_results(cov_type=cov_type, use_self=True, use_t=use_t, **cov_kwds) for key in kwargs: setattr(self, key, kwargs[key]) def conf_int(self, alpha=.05, cols=None): """ Compute the confidence interval of the fitted parameters. Parameters ---------- alpha : float, optional The `alpha` level for the confidence interval. The default `alpha` = .05 returns a 95% confidence interval. cols : array_like, optional Columns to included in returned confidence intervals. Returns ------- array_like The confidence intervals. Notes ----- The confidence interval is based on Student's t-distribution. """ # keep method for docstring for now ci = super(RegressionResults, self).conf_int(alpha=alpha, cols=cols) return ci @cache_readonly def nobs(self): """Number of observations n.""" return float(self.model.wexog.shape[0]) @cache_readonly def fittedvalues(self): """The predicted values for the original (unwhitened) design.""" return self.model.predict(self.params, self.model.exog) @cache_readonly def wresid(self): """ The residuals of the transformed/whitened regressand and regressor(s). """ return self.model.wendog - self.model.predict( self.params, self.model.wexog) @cache_readonly def resid(self): """The residuals of the model.""" return self.model.endog - self.model.predict( self.params, self.model.exog) # TODO: fix writable example @cache_writable() def scale(self): """ A scale factor for the covariance matrix. The Default value is ssr/(n-p). Note that the square root of `scale` is often called the standard error of the regression. """ wresid = self.wresid return np.dot(wresid, wresid) / self.df_resid @cache_readonly def ssr(self): """Sum of squared (whitened) residuals.""" wresid = self.wresid return np.dot(wresid, wresid) @cache_readonly def centered_tss(self): """The total (weighted) sum of squares centered about the mean.""" model = self.model weights = getattr(model, 'weights', None) sigma = getattr(model, 'sigma', None) if weights is not None: mean = np.average(model.endog, weights=weights) return np.sum(weights * (model.endog - mean)**2) elif sigma is not None: # Exactly matches WLS when sigma is diagonal iota = np.ones_like(model.endog) iota = model.whiten(iota) mean = model.wendog.dot(iota) / iota.dot(iota) err = model.endog - mean err = model.whiten(err) return np.sum(err**2) else: centered_endog = model.wendog - model.wendog.mean() return np.dot(centered_endog, centered_endog) @cache_readonly def uncentered_tss(self): """ Uncentered sum of squares. The sum of the squared values of the (whitened) endogenous response variable. """ wendog = self.model.wendog return np.dot(wendog, wendog) @cache_readonly def ess(self): """ The explained sum of squares. If a constant is present, the centered total sum of squares minus the sum of squared residuals. If there is no constant, the uncentered total sum of squares is used. """ if self.k_constant: return self.centered_tss - self.ssr else: return self.uncentered_tss - self.ssr @cache_readonly def rsquared(self): """ R-squared of the model. This is defined here as 1 - `ssr`/`centered_tss` if the constant is included in the model and 1 - `ssr`/`uncentered_tss` if the constant is omitted. """ if self.k_constant: return 1 - self.ssr/self.centered_tss else: return 1 - self.ssr/self.uncentered_tss @cache_readonly def rsquared_adj(self): """ Adjusted R-squared. This is defined here as 1 - (`nobs`-1)/`df_resid` * (1-`rsquared`) if a constant is included and 1 - `nobs`/`df_resid` * (1-`rsquared`) if no constant is included. """ return 1 - (np.divide(self.nobs - self.k_constant, self.df_resid) * (1 - self.rsquared)) @cache_readonly def mse_model(self): """ Mean squared error the model. The explained sum of squares divided by the model degrees of freedom. """ if np.all(self.df_model == 0.0): return np.full_like(self.ess, np.nan) return self.ess/self.df_model @cache_readonly def mse_resid(self): """ Mean squared error of the residuals. The sum of squared residuals divided by the residual degrees of freedom. """ if np.all(self.df_resid == 0.0): return np.full_like(self.ssr, np.nan) return self.ssr/self.df_resid @cache_readonly def mse_total(self): """ Total mean squared error. The uncentered total sum of squares divided by the number of observations. """ if np.all(self.df_resid + self.df_model == 0.0): return np.full_like(self.centered_tss, np.nan) if self.k_constant: return self.centered_tss / (self.df_resid + self.df_model) else: return self.uncentered_tss / (self.df_resid + self.df_model) @cache_readonly def fvalue(self): """ F-statistic of the fully specified model. Calculated as the mean squared error of the model divided by the mean squared error of the residuals if the nonrobust covariance is used. Otherwise computed using a Wald-like quadratic form that tests whether all coefficients (excluding the constant) are zero. """ if hasattr(self, 'cov_type') and self.cov_type != 'nonrobust': # with heteroscedasticity or correlation robustness k_params = self.normalized_cov_params.shape[0] mat = np.eye(k_params) const_idx = self.model.data.const_idx # TODO: What if model includes implicit constant, e.g. all # dummies but no constant regressor? # TODO: Restats as LM test by projecting orthogonalizing # to constant? if self.model.data.k_constant == 1: # if constant is implicit, return nan see #2444 if const_idx is None: return np.nan idx = lrange(k_params) idx.pop(const_idx) mat = mat[idx] # remove constant if mat.size == 0: # see #3642 return np.nan ft = self.f_test(mat) # using backdoor to set another attribute that we already have self._cache['f_pvalue'] = ft.pvalue return ft.fvalue else: # for standard homoscedastic case return self.mse_model/self.mse_resid @cache_readonly def f_pvalue(self): """The p-value of the F-statistic.""" # Special case for df_model 0 if self.df_model == 0: return np.full_like(self.fvalue, np.nan) return stats.f.sf(self.fvalue, self.df_model, self.df_resid) @cache_readonly def bse(self): """The standard errors of the parameter estimates.""" return np.sqrt(np.diag(self.cov_params())) @cache_readonly def aic(self): r""" Akaike's information criteria. For a model with a constant :math:`-2llf + 2(df\_model + 1)`. For a model without a constant :math:`-2llf + 2(df\_model)`. """ return -2 * self.llf + 2 * (self.df_model + self.k_constant) @cache_readonly def bic(self): r""" Bayes' information criteria. For a model with a constant :math:`-2llf + \log(n)(df\_model+1)`. For a model without a constant :math:`-2llf + \log(n)(df\_model)`. """ return (-2 * self.llf + np.log(self.nobs) * (self.df_model + self.k_constant)) @cache_readonly def eigenvals(self): """ Return eigenvalues sorted in decreasing order. """ if self._wexog_singular_values is not None: eigvals = self._wexog_singular_values ** 2 else: eigvals = np.linalg.linalg.eigvalsh(np.dot(self.model.wexog.T, self.model.wexog)) return np.sort(eigvals)[::-1] @cache_readonly def condition_number(self): """ Return condition number of exogenous matrix. Calculated as ratio of largest to smallest eigenvalue. """ eigvals = self.eigenvals return np.sqrt(eigvals[0]/eigvals[-1]) # TODO: make these properties reset bse def _HCCM(self, scale): H = np.dot(self.model.pinv_wexog, scale[:, None] * self.model.pinv_wexog.T) return H @cache_readonly def cov_HC0(self): """ Heteroscedasticity robust covariance matrix. See HC0_se. """ self.het_scale = self.wresid**2 cov_HC0 = self._HCCM(self.het_scale) return cov_HC0 @cache_readonly def cov_HC1(self): """ Heteroscedasticity robust covariance matrix. See HC1_se. """ self.het_scale = self.nobs/(self.df_resid)*(self.wresid**2) cov_HC1 = self._HCCM(self.het_scale) return cov_HC1 @cache_readonly def cov_HC2(self): """ Heteroscedasticity robust covariance matrix. See HC2_se. """ # probably could be optimized wexog = self.model.wexog h = np.diag(wexog @ self.normalized_cov_params @ wexog.T) self.het_scale = self.wresid**2/(1-h) cov_HC2 = self._HCCM(self.het_scale) return cov_HC2 @cache_readonly def cov_HC3(self): """ Heteroscedasticity robust covariance matrix. See HC3_se. """ wexog = self.model.wexog h = np.diag(wexog @ self.normalized_cov_params @ wexog.T) self.het_scale = (self.wresid / (1 - h))**2 cov_HC3 = self._HCCM(self.het_scale) return cov_HC3 @cache_readonly def HC0_se(self): """ White's (1980) heteroskedasticity robust standard errors. Notes ----- Defined as sqrt(diag(X.T X)^(-1)X.T diag(e_i^(2)) X(X.T X)^(-1) where e_i = resid[i]. When HC0_se or cov_HC0 is called the RegressionResults instance will then have another attribute `het_scale`, which is in this case is just resid**2. """ return np.sqrt(np.diag(self.cov_HC0)) @cache_readonly def HC1_se(self): """ MacKinnon and White's (1985) heteroskedasticity robust standard errors. Notes ----- Defined as sqrt(diag(n/(n-p)*HC_0). When HC1_se or cov_HC1 is called the RegressionResults instance will then have another attribute `het_scale`, which is in this case is n/(n-p)*resid**2. """ return np.sqrt(np.diag(self.cov_HC1)) @cache_readonly def HC2_se(self): """ MacKinnon and White's (1985) heteroskedasticity robust standard errors. Notes ----- Defined as (X.T X)^(-1)X.T diag(e_i^(2)/(1-h_ii)) X(X.T X)^(-1) where h_ii = x_i(X.T X)^(-1)x_i.T When HC2_se or cov_HC2 is called the RegressionResults instance will then have another attribute `het_scale`, which is in this case is resid^(2)/(1-h_ii). """ return np.sqrt(np.diag(self.cov_HC2)) @cache_readonly def HC3_se(self): """ MacKinnon and White's (1985) heteroskedasticity robust standard errors. Notes ----- Defined as (X.T X)^(-1)X.T diag(e_i^(2)/(1-h_ii)^(2)) X(X.T X)^(-1) where h_ii = x_i(X.T X)^(-1)x_i.T. When HC3_se or cov_HC3 is called the RegressionResults instance will then have another attribute `het_scale`, which is in this case is resid^(2)/(1-h_ii)^(2). """ return np.sqrt(np.diag(self.cov_HC3)) @cache_readonly def resid_pearson(self): """ Residuals, normalized to have unit variance. Returns ------- array_like The array `wresid` normalized by the sqrt of the scale to have unit variance. """ if not hasattr(self, 'resid'): raise ValueError('Method requires residuals.') eps = np.finfo(self.wresid.dtype).eps if np.sqrt(self.scale) < 10 * eps * self.model.endog.mean(): # do not divide if scale is zero close to numerical precision from warnings import warn warn("All residuals are 0, cannot compute normed residuals.", RuntimeWarning) return self.wresid else: return self.wresid / np.sqrt(self.scale) def _is_nested(self, restricted): """ Parameters ---------- restricted : Result instance The restricted model is assumed to be nested in the current model. The result instance of the restricted model is required to have two attributes, residual sum of squares, `ssr`, residual degrees of freedom, `df_resid`. Returns ------- nested : bool True if nested, otherwise false Notes ----- A most nests another model if the regressors in the smaller model are spanned by the regressors in the larger model and the regressand is identical. """ if self.model.nobs != restricted.model.nobs: return False full_rank = self.model.rank restricted_rank = restricted.model.rank if full_rank <= restricted_rank: return False restricted_exog = restricted.model.wexog full_wresid = self.wresid scores = restricted_exog * full_wresid[:, None] score_l2 = np.sqrt(np.mean(scores.mean(0) ** 2)) # TODO: Could be improved, and may fail depending on scale of # regressors return np.allclose(score_l2, 0) def compare_lm_test(self, restricted, demean=True, use_lr=False): """ Use Lagrange Multiplier test to test a set of linear restrictions. Parameters ---------- restricted : Result instance The restricted model is assumed to be nested in the current model. The result instance of the restricted model is required to have two attributes, residual sum of squares, `ssr`, residual degrees of freedom, `df_resid`. demean : bool Flag indicating whether the demean the scores based on the residuals from the restricted model. If True, the covariance of the scores are used and the LM test is identical to the large sample version of the LR test. use_lr : bool A flag indicating whether to estimate the covariance of the model scores using the unrestricted model. Setting the to True improves the power of the test. Returns ------- lm_value : float The test statistic which has a chi2 distributed. p_value : float The p-value of the test statistic. df_diff : int The degrees of freedom of the restriction, i.e. difference in df between models. Notes ----- The LM test examines whether the scores from the restricted model are 0. If the null is true, and the restrictions are valid, then the parameters of the restricted model should be close to the minimum of the sum of squared errors, and so the scores should be close to zero, on average. """ import statsmodels.stats.sandwich_covariance as sw from numpy.linalg import inv if not self._is_nested(restricted): raise ValueError("Restricted model is not nested by full model.") wresid = restricted.wresid wexog = self.model.wexog scores = wexog * wresid[:, None] n = self.nobs df_full = self.df_resid df_restr = restricted.df_resid df_diff = (df_restr - df_full) s = scores.mean(axis=0) if use_lr: scores = wexog * self.wresid[:, None] demean = False if demean: scores = scores - scores.mean(0)[None, :] # Form matters here. If homoskedastics can be sigma^2 (X'X)^-1 # If Heteroskedastic then the form below is fine # If HAC then need to use HAC # If Cluster, should use cluster cov_type = getattr(self, 'cov_type', 'nonrobust') if cov_type == 'nonrobust': sigma2 = np.mean(wresid**2) xpx = np.dot(wexog.T, wexog) / n s_inv = inv(sigma2 * xpx) elif cov_type in ('HC0', 'HC1', 'HC2', 'HC3'): s_inv = inv(np.dot(scores.T, scores) / n) elif cov_type == 'HAC': maxlags = self.cov_kwds['maxlags'] s_inv = inv(sw.S_hac_simple(scores, maxlags) / n) elif cov_type == 'cluster': # cluster robust standard errors groups = self.cov_kwds['groups'] # TODO: Might need demean option in S_crosssection by group? s_inv = inv(sw.S_crosssection(scores, groups)) else: raise ValueError('Only nonrobust, HC, HAC and cluster are ' + 'currently connected') lm_value = n * (s @ s_inv @ s.T) p_value = stats.chi2.sf(lm_value, df_diff) return lm_value, p_value, df_diff def compare_f_test(self, restricted): """ Use F test to test whether restricted model is correct. Parameters ---------- restricted : Result instance The restricted model is assumed to be nested in the current model. The result instance of the restricted model is required to have two attributes, residual sum of squares, `ssr`, residual degrees of freedom, `df_resid`. Returns ------- f_value : float The test statistic which has an F distribution. p_value : float The p-value of the test statistic. df_diff : int The degrees of freedom of the restriction, i.e. difference in df between models. Notes ----- See mailing list discussion October 17, This test compares the residual sum of squares of the two models. This is not a valid test, if there is unspecified heteroscedasticity or correlation. This method will issue a warning if this is detected but still return the results under the assumption of homoscedasticity and no autocorrelation (sphericity). """ has_robust1 = getattr(self, 'cov_type', 'nonrobust') != 'nonrobust' has_robust2 = (getattr(restricted, 'cov_type', 'nonrobust') != 'nonrobust') if has_robust1 or has_robust2: warnings.warn('F test for comparison is likely invalid with ' + 'robust covariance, proceeding anyway', InvalidTestWarning) ssr_full = self.ssr ssr_restr = restricted.ssr df_full = self.df_resid df_restr = restricted.df_resid df_diff = (df_restr - df_full) f_value = (ssr_restr - ssr_full) / df_diff / ssr_full * df_full p_value = stats.f.sf(f_value, df_diff, df_full) return f_value, p_value, df_diff def compare_lr_test(self, restricted, large_sample=False): """ Likelihood ratio test to test whether restricted model is correct. Parameters ---------- restricted : Result instance The restricted model is assumed to be nested in the current model. The result instance of the restricted model is required to have two attributes, residual sum of squares, `ssr`, residual degrees of freedom, `df_resid`. large_sample : bool Flag indicating whether to use a heteroskedasticity robust version of the LR test, which is a modified LM test. Returns ------- lr_stat : float The likelihood ratio which is chisquare distributed with df_diff degrees of freedom. p_value : float The p-value of the test statistic. df_diff : int The degrees of freedom of the restriction, i.e. difference in df between models. Notes ----- The exact likelihood ratio is valid for homoskedastic data, and is defined as .. math:: D=-2\\log\\left(\\frac{\\mathcal{L}_{null}} {\\mathcal{L}_{alternative}}\\right) where :math:`\\mathcal{L}` is the likelihood of the model. With :math:`D` distributed as chisquare with df equal to difference in number of parameters or equivalently difference in residual degrees of freedom. The large sample version of the likelihood ratio is defined as .. math:: D=n s^{\\prime}S^{-1}s where :math:`s=n^{-1}\\sum_{i=1}^{n} s_{i}` .. math:: s_{i} = x_{i,alternative} \\epsilon_{i,null} is the average score of the model evaluated using the residuals from null model and the regressors from the alternative model and :math:`S` is the covariance of the scores, :math:`s_{i}`. The covariance of the scores is estimated using the same estimator as in the alternative model. This test compares the loglikelihood of the two models. This may not be a valid test, if there is unspecified heteroscedasticity or correlation. This method will issue a warning if this is detected but still return the results without taking unspecified heteroscedasticity or correlation into account. This test compares the loglikelihood of the two models. This may not be a valid test, if there is unspecified heteroscedasticity or correlation. This method will issue a warning if this is detected but still return the results without taking unspecified heteroscedasticity or correlation into account. is the average score of the model evaluated using the residuals from null model and the regressors from the alternative model and :math:`S` is the covariance of the scores, :math:`s_{i}`. The covariance of the scores is estimated using the same estimator as in the alternative model. """ # TODO: put into separate function, needs tests # See mailing list discussion October 17, if large_sample: return self.compare_lm_test(restricted, use_lr=True) has_robust1 = (getattr(self, 'cov_type', 'nonrobust') != 'nonrobust') has_robust2 = ( getattr(restricted, 'cov_type', 'nonrobust') != 'nonrobust') if has_robust1 or has_robust2: warnings.warn('Likelihood Ratio test is likely invalid with ' + 'robust covariance, proceeding anyway', InvalidTestWarning) llf_full = self.llf llf_restr = restricted.llf df_full = self.df_resid df_restr = restricted.df_resid lrdf = (df_restr - df_full) lrstat = -2*(llf_restr - llf_full) lr_pvalue = stats.chi2.sf(lrstat, lrdf) return lrstat, lr_pvalue, lrdf def get_robustcov_results(self, cov_type='HC1', use_t=None, **kwargs): """ Create new results instance with robust covariance as default. Parameters ---------- cov_type : str The type of robust sandwich estimator to use. See Notes below. use_t : bool If true, then the t distribution is used for inference. If false, then the normal distribution is used. If `use_t` is None, then an appropriate default is used, which is `True` if the cov_type is nonrobust, and `False` in all other cases. **kwargs Required or optional arguments for robust covariance calculation. See Notes below. Returns ------- RegressionResults This method creates a new results instance with the requested robust covariance as the default covariance of the parameters. Inferential statistics like p-values and hypothesis tests will be based on this covariance matrix. Notes ----- The following covariance types and required or optional arguments are currently available: - 'fixed scale' and optional keyword argument 'scale' which uses a predefined scale estimate with default equal to one. - 'HC0', 'HC1', 'HC2', 'HC3' and no keyword arguments: heteroscedasticity robust covariance - 'HAC' and keywords - `maxlag` integer (required) : number of lags to use - `kernel` callable or str (optional) : kernel currently available kernels are ['bartlett', 'uniform'], default is Bartlett - `use_correction` bool (optional) : If true, use small sample correction - 'cluster' and required keyword `groups`, integer group indicator - `groups` array_like, integer (required) : index of clusters or groups - `use_correction` bool (optional) : If True the sandwich covariance is calculated with a small sample correction. If False the sandwich covariance is calculated without small sample correction. - `df_correction` bool (optional) If True (default), then the degrees of freedom for the inferential statistics and hypothesis tests, such as pvalues, f_pvalue, conf_int, and t_test and f_test, are based on the number of groups minus one instead of the total number of observations minus the number of explanatory variables. `df_resid` of the results instance is adjusted. If False, then `df_resid` of the results instance is not adjusted. - 'hac-groupsum' Driscoll and Kraay, heteroscedasticity and autocorrelation robust standard errors in panel data keywords - `time` array_like (required) : index of time periods - `maxlag` integer (required) : number of lags to use - `kernel` callable or str (optional). The available kernels are ['bartlett', 'uniform']. The default is Bartlett. - `use_correction` False or string in ['hac', 'cluster'] (optional). If False the the sandwich covariance is calculated without small sample correction. If `use_correction = 'cluster'` (default), then the same small sample correction as in the case of `covtype='cluster'` is used. - `df_correction` bool (optional) The adjustment to df_resid, see cov_type 'cluster' above # TODO: we need more options here - 'hac-panel' heteroscedasticity and autocorrelation robust standard errors in panel data. The data needs to be sorted in this case, the time series for each panel unit or cluster need to be stacked. The membership to a timeseries of an individual or group can be either specified by group indicators or by increasing time periods. keywords - either `groups` or `time` : array_like (required) `groups` : indicator for groups `time` : index of time periods - `maxlag` integer (required) : number of lags to use - `kernel` callable or str (optional) currently available kernels are ['bartlett', 'uniform'], default is Bartlett - `use_correction` False or string in ['hac', 'cluster'] (optional) If False the sandwich covariance is calculated without small sample correction. - `df_correction` bool (optional) adjustment to df_resid, see cov_type 'cluster' above # TODO: we need more options here Reminder: `use_correction` in "hac-groupsum" and "hac-panel" is not bool, needs to be in [False, 'hac', 'cluster'] TODO: Currently there is no check for extra or misspelled keywords, except in the case of cov_type `HCx` """ import statsmodels.stats.sandwich_covariance as sw from statsmodels.base.covtype import normalize_cov_type, descriptions cov_type = normalize_cov_type(cov_type) if 'kernel' in kwargs: kwargs['weights_func'] = kwargs.pop('kernel') if 'weights_func' in kwargs and not callable(kwargs['weights_func']): kwargs['weights_func'] = sw.kernel_dict[kwargs['weights_func']] # TODO: make separate function that returns a robust cov plus info use_self = kwargs.pop('use_self', False) if use_self: res = self else: res = self.__class__( self.model, self.params, normalized_cov_params=self.normalized_cov_params, scale=self.scale) res.cov_type = cov_type # use_t might already be defined by the class, and already set if use_t is None: use_t = self.use_t res.cov_kwds = {'use_t': use_t} # store for information res.use_t = use_t adjust_df = False if cov_type in ['cluster', 'hac-panel', 'hac-groupsum']: df_correction = kwargs.get('df_correction', None) # TODO: check also use_correction, do I need all combinations? if df_correction is not False: # i.e. in [None, True]: # user did not explicitely set it to False adjust_df = True res.cov_kwds['adjust_df'] = adjust_df # verify and set kwargs, and calculate cov # TODO: this should be outsourced in a function so we can reuse it in # other models # TODO: make it DRYer repeated code for checking kwargs if cov_type in ['fixed scale', 'fixed_scale']: res.cov_kwds['description'] = descriptions['fixed_scale'] res.cov_kwds['scale'] = scale = kwargs.get('scale', 1.) res.cov_params_default = scale * res.normalized_cov_params elif cov_type.upper() in ('HC0', 'HC1', 'HC2', 'HC3'): if kwargs: raise ValueError('heteroscedasticity robust covariance ' 'does not use keywords') res.cov_kwds['description'] = descriptions[cov_type.upper()] res.cov_params_default = getattr(self, 'cov_' + cov_type.upper()) elif cov_type.lower() == 'hac': # TODO: check if required, default in cov_hac_simple maxlags = kwargs['maxlags'] res.cov_kwds['maxlags'] = maxlags weights_func = kwargs.get('weights_func', sw.weights_bartlett) res.cov_kwds['weights_func'] = weights_func use_correction = kwargs.get('use_correction', False) res.cov_kwds['use_correction'] = use_correction res.cov_kwds['description'] = descriptions['HAC'].format( maxlags=maxlags, correction=['without', 'with'][use_correction]) res.cov_params_default = sw.cov_hac_simple( self, nlags=maxlags, weights_func=weights_func, use_correction=use_correction) elif cov_type.lower() == 'cluster': # cluster robust standard errors, one- or two-way groups = kwargs['groups'] if not hasattr(groups, 'shape'): groups = np.asarray(groups).T if groups.ndim >= 2: groups = groups.squeeze() res.cov_kwds['groups'] = groups use_correction = kwargs.get('use_correction', True) res.cov_kwds['use_correction'] = use_correction if groups.ndim == 1: if adjust_df: # need to find number of groups # duplicate work self.n_groups = n_groups = len(np.unique(groups)) res.cov_params_default = sw.cov_cluster( self, groups, use_correction=use_correction) elif groups.ndim == 2: if hasattr(groups, 'values'): groups = groups.values if adjust_df: # need to find number of groups # duplicate work n_groups0 = len(np.unique(groups[:, 0])) n_groups1 = len(np.unique(groups[:, 1])) self.n_groups = (n_groups0, n_groups1) n_groups = min(n_groups0, n_groups1) # use for adjust_df # Note: sw.cov_cluster_2groups has 3 returns res.cov_params_default = sw.cov_cluster_2groups( self, groups, use_correction=use_correction)[0] else: raise ValueError('only two groups are supported') res.cov_kwds['description'] = descriptions['cluster'] elif cov_type.lower() == 'hac-panel': # cluster robust standard errors res.cov_kwds['time'] = time = kwargs.get('time', None) res.cov_kwds['groups'] = groups = kwargs.get('groups', None) # TODO: nlags is currently required # nlags = kwargs.get('nlags', True) # res.cov_kwds['nlags'] = nlags # TODO: `nlags` or `maxlags` res.cov_kwds['maxlags'] = maxlags = kwargs['maxlags'] use_correction = kwargs.get('use_correction', 'hac') res.cov_kwds['use_correction'] = use_correction weights_func = kwargs.get('weights_func', sw.weights_bartlett) res.cov_kwds['weights_func'] = weights_func if groups is not None: groups = np.asarray(groups) tt = (np.nonzero(groups[:-1] != groups[1:])[0] + 1).tolist() nobs_ = len(groups) elif time is not None: time = np.asarray(time) # TODO: clumsy time index in cov_nw_panel tt = (np.nonzero(time[1:] < time[:-1])[0] + 1).tolist() nobs_ = len(time) else: raise ValueError('either time or groups needs to be given') groupidx = lzip([0] + tt, tt + [nobs_]) self.n_groups = n_groups = len(groupidx) res.cov_params_default = sw.cov_nw_panel(self, maxlags, groupidx, weights_func=weights_func, use_correction=use_correction) res.cov_kwds['description'] = descriptions['HAC-Panel'] elif cov_type.lower() == 'hac-groupsum': # Driscoll-Kraay standard errors res.cov_kwds['time'] = time = kwargs['time'] # TODO: nlags is currently required # nlags = kwargs.get('nlags', True) # res.cov_kwds['nlags'] = nlags # TODO: `nlags` or `maxlags` res.cov_kwds['maxlags'] = maxlags = kwargs['maxlags'] use_correction = kwargs.get('use_correction', 'cluster') res.cov_kwds['use_correction'] = use_correction weights_func = kwargs.get('weights_func', sw.weights_bartlett) res.cov_kwds['weights_func'] = weights_func if adjust_df: # need to find number of groups tt = (np.nonzero(time[1:] < time[:-1])[0] + 1) self.n_groups = n_groups = len(tt) + 1 res.cov_params_default = sw.cov_nw_groupsum( self, maxlags, time, weights_func=weights_func, use_correction=use_correction) res.cov_kwds['description'] = descriptions['HAC-Groupsum'] else: raise ValueError('cov_type not recognized. See docstring for ' + 'available options and spelling') if adjust_df: # Note: df_resid is used for scale and others, add new attribute res.df_resid_inference = n_groups - 1 return res @Appender(pred.get_prediction.__doc__) def get_prediction(self, exog=None, transform=True, weights=None, row_labels=None, **kwargs): return pred.get_prediction( self, exog=exog, transform=transform, weights=weights, row_labels=row_labels, **kwargs) def summary(self, yname=None, xname=None, title=None, alpha=.05): """ Summarize the Regression Results. Parameters ---------- yname : str, optional Name of endogenous (response) variable. The Default is `y`. xname : list[str], optional Names for the exogenous variables. Default is `var_##` for ## in the number of regressors. Must match the number of parameters in the model. title : str, optional Title for the top table. If not None, then this replaces the default title. alpha : float The significance level for the confidence intervals. Returns ------- Summary Instance holding the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary : A class that holds summary results. """ from statsmodels.stats.stattools import ( jarque_bera, omni_normtest, durbin_watson) jb, jbpv, skew, kurtosis = jarque_bera(self.wresid) omni, omnipv = omni_normtest(self.wresid) eigvals = self.eigenvals condno = self.condition_number # TODO: Avoid adding attributes in non-__init__ self.diagn = dict(jb=jb, jbpv=jbpv, skew=skew, kurtosis=kurtosis, omni=omni, omnipv=omnipv, condno=condno, mineigval=eigvals[-1]) # TODO not used yet # diagn_left_header = ['Models stats'] # diagn_right_header = ['Residual stats'] # TODO: requiring list/iterable is a bit annoying # need more control over formatting # TODO: default do not work if it's not identically spelled top_left = [('Dep. Variable:', None), ('Model:', None), ('Method:', ['Least Squares']), ('Date:', None), ('Time:', None), ('No. Observations:', None), ('Df Residuals:', None), ('Df Model:', None), ] if hasattr(self, 'cov_type'): top_left.append(('Covariance Type:', [self.cov_type])) rsquared_type = '' if self.k_constant else ' (uncentered)' top_right = [('R-squared' + rsquared_type + ':', ["%#8.3f" % self.rsquared]), ('Adj. R-squared' + rsquared_type + ':', ["%#8.3f" % self.rsquared_adj]), ('F-statistic:', ["%#8.4g" % self.fvalue]), ('Prob (F-statistic):', ["%#6.3g" % self.f_pvalue]), ('Log-Likelihood:', None), ('AIC:', ["%#8.4g" % self.aic]), ('BIC:', ["%#8.4g" % self.bic]) ] diagn_left = [('Omnibus:', ["%#6.3f" % omni]), ('Prob(Omnibus):', ["%#6.3f" % omnipv]), ('Skew:', ["%#6.3f" % skew]), ('Kurtosis:', ["%#6.3f" % kurtosis]) ] diagn_right = [('Durbin-Watson:', ["%#8.3f" % durbin_watson(self.wresid)] ), ('Jarque-Bera (JB):', ["%#8.3f" % jb]), ('Prob(JB):', ["%#8.3g" % jbpv]), ('Cond. No.', ["%#8.3g" % condno]) ] if title is None: title = self.model.__class__.__name__ + ' ' + "Regression Results" # create summary table instance from statsmodels.iolib.summary import Summary smry = Summary() smry.add_table_2cols(self, gleft=top_left, gright=top_right, yname=yname, xname=xname, title=title) smry.add_table_params(self, yname=yname, xname=xname, alpha=alpha, use_t=self.use_t) smry.add_table_2cols(self, gleft=diagn_left, gright=diagn_right, yname=yname, xname=xname, title="") # add warnings/notes, added to text format only etext = [] if hasattr(self, 'cov_type'): etext.append(self.cov_kwds['description']) if self.model.exog.shape[0] < self.model.exog.shape[1]: wstr = "The input rank is higher than the number of observations." etext.append(wstr) if eigvals[-1] < 1e-10: wstr = "The smallest eigenvalue is %6.3g. This might indicate " wstr += "that there are\n" wstr += "strong multicollinearity problems or that the design " wstr += "matrix is singular." wstr = wstr % eigvals[-1] etext.append(wstr) elif condno > 1000: # TODO: what is recommended? wstr = "The condition number is large, %6.3g. This might " wstr += "indicate that there are\n" wstr += "strong multicollinearity or other numerical " wstr += "problems." wstr = wstr % condno etext.append(wstr) if etext: etext = ["[{0}] {1}".format(i + 1, text) for i, text in enumerate(etext)] etext.insert(0, "Warnings:") smry.add_extra_txt(etext) return smry def summary2(self, yname=None, xname=None, title=None, alpha=.05, float_format="%.4f"): """ Experimental summary function to summarize the regression results. Parameters ---------- yname : str The name of the dependent variable (optional). xname : list[str], optional Names for the exogenous variables. Default is `var_##` for ## in the number of regressors. Must match the number of parameters in the model. title : str, optional Title for the top table. If not None, then this replaces the default title. alpha : float The significance level for the confidence intervals. float_format : str The format for floats in parameters summary. Returns ------- Summary Instance holding the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary2.Summary A class that holds summary results. """ # Diagnostics from statsmodels.stats.stattools import (jarque_bera, omni_normtest, durbin_watson) from collections import OrderedDict jb, jbpv, skew, kurtosis = jarque_bera(self.wresid) omni, omnipv = omni_normtest(self.wresid) dw = durbin_watson(self.wresid) eigvals = self.eigenvals condno = self.condition_number eigvals = np.sort(eigvals) # in increasing order diagnostic = OrderedDict([ ('Omnibus:', "%.3f" % omni), ('Prob(Omnibus):', "%.3f" % omnipv), ('Skew:', "%.3f" % skew), ('Kurtosis:', "%.3f" % kurtosis), ('Durbin-Watson:', "%.3f" % dw), ('Jarque-Bera (JB):', "%.3f" % jb), ('Prob(JB):', "%.3f" % jbpv), ('Condition No.:', "%.0f" % condno) ]) # Summary from statsmodels.iolib import summary2 smry = summary2.Summary() smry.add_base(results=self, alpha=alpha, float_format=float_format, xname=xname, yname=yname, title=title) smry.add_dict(diagnostic) # Warnings if eigvals[-1] < 1e-10: warn = "The smallest eigenvalue is %6.3g. This might indicate that\ there are strong multicollinearity problems or that the design\ matrix is singular." % eigvals[-1] smry.add_text(warn) if condno > 1000: warn = "* The condition number is large (%.g). This might indicate \ strong multicollinearity or other numerical problems." % condno smry.add_text(warn) return smry class OLSResults(RegressionResults): """ Results class for for an OLS model. Parameters ---------- model : RegressionModel The regression model instance. params : ndarray The estimated parameters. normalized_cov_params : ndarray The normalized covariance parameters. scale : float The estimated scale of the residuals. cov_type : str The covariance estimator used in the results. cov_kwds : dict Additional keywords used in the covariance specification. use_t : bool Flag indicating to use the Student's t in inference. **kwargs Additional keyword arguments used to initialize the results. See Also -------- RegressionResults Results store for WLS and GLW models. Notes ----- Most of the methods and attributes are inherited from RegressionResults. The special methods that are only available for OLS are: - get_influence - outlier_test - el_test - conf_int_el """ def get_influence(self): """ Calculate influence and outlier measures. Returns ------- OLSInfluence The instance containing methods to calculate the main influence and outlier measures for the OLS regression. See Also -------- statsmodels.stats.outliers_influence.OLSInfluence A class that exposes methods to examine observation influence. """ from statsmodels.stats.outliers_influence import OLSInfluence return OLSInfluence(self) def outlier_test(self, method='bonf', alpha=.05, labels=None, order=False, cutoff=None): """ Test observations for outliers according to method. Parameters ---------- method : str The method to use in the outlier test. Must be one of: - `bonferroni` : one-step correction - `sidak` : one-step correction - `holm-sidak` : - `holm` : - `simes-hochberg` : - `hommel` : - `fdr_bh` : Benjamini/Hochberg - `fdr_by` : Benjamini/Yekutieli See `statsmodels.stats.multitest.multipletests` for details. alpha : float The familywise error rate (FWER). labels : None or array_like If `labels` is not None, then it will be used as index to the returned pandas DataFrame. See also Returns below. order : bool Whether or not to order the results by the absolute value of the studentized residuals. If labels are provided they will also be sorted. cutoff : None or float in [0, 1] If cutoff is not None, then the return only includes observations with multiple testing corrected p-values strictly below the cutoff. The returned array or dataframe can be empty if t. Returns ------- array_like Returns either an ndarray or a DataFrame if labels is not None. Will attempt to get labels from model_results if available. The columns are the Studentized residuals, the unadjusted p-value, and the corrected p-value according to method. Notes ----- The unadjusted p-value is stats.t.sf(abs(resid), df) where df = df_resid - 1. """ from statsmodels.stats.outliers_influence import outlier_test return outlier_test(self, method, alpha, labels=labels, order=order, cutoff=cutoff) def el_test(self, b0_vals, param_nums, return_weights=0, ret_params=0, method='nm', stochastic_exog=1): """ Test single or joint hypotheses using Empirical Likelihood. Parameters ---------- b0_vals : 1darray The hypothesized value of the parameter to be tested. param_nums : 1darray The parameter number to be tested. return_weights : bool If true, returns the weights that optimize the likelihood ratio at b0_vals. The default is False. ret_params : bool If true, returns the parameter vector that maximizes the likelihood ratio at b0_vals. Also returns the weights. The default is False. method : str Can either be 'nm' for Nelder-Mead or 'powell' for Powell. The optimization method that optimizes over nuisance parameters. The default is 'nm'. stochastic_exog : bool When True, the exogenous variables are assumed to be stochastic. When the regressors are nonstochastic, moment conditions are placed on the exogenous variables. Confidence intervals for stochastic regressors are at least as large as non-stochastic regressors. The default is True. Returns ------- tuple The p-value and -2 times the log-likelihood ratio for the hypothesized values. Examples -------- >>> import statsmodels.api as sm >>> data = sm.datasets.stackloss.load(as_pandas=False) >>> endog = data.endog >>> exog = sm.add_constant(data.exog) >>> model = sm.OLS(endog, exog) >>> fitted = model.fit() >>> fitted.params >>> array([-39.91967442, 0.7156402 , 1.29528612, -0.15212252]) >>> fitted.rsquared >>> 0.91357690446068196 >>> # Test that the slope on the first variable is 0 >>> fitted.el_test([0], [1]) >>> (27.248146353888796, 1.7894660442330235e-07) """ params = np.copy(self.params) opt_fun_inst = _ELRegOpts() # to store weights if len(param_nums) == len(params): llr = opt_fun_inst._opt_nuis_regress( [], param_nums=param_nums, endog=self.model.endog, exog=self.model.exog, nobs=self.model.nobs, nvar=self.model.exog.shape[1], params=params, b0_vals=b0_vals, stochastic_exog=stochastic_exog) pval = 1 - stats.chi2.cdf(llr, len(param_nums)) if return_weights: return llr, pval, opt_fun_inst.new_weights else: return llr, pval x0 = np.delete(params, param_nums) args = (param_nums, self.model.endog, self.model.exog, self.model.nobs, self.model.exog.shape[1], params, b0_vals, stochastic_exog) if method == 'nm': llr = optimize.fmin(opt_fun_inst._opt_nuis_regress, x0, maxfun=10000, maxiter=10000, full_output=1, disp=0, args=args)[1] if method == 'powell': llr = optimize.fmin_powell(opt_fun_inst._opt_nuis_regress, x0, full_output=1, disp=0, args=args)[1] pval = 1 - stats.chi2.cdf(llr, len(param_nums)) if ret_params: return llr, pval, opt_fun_inst.new_weights, opt_fun_inst.new_params elif return_weights: return llr, pval, opt_fun_inst.new_weights else: return llr, pval def conf_int_el(self, param_num, sig=.05, upper_bound=None, lower_bound=None, method='nm', stochastic_exog=True): """ Compute the confidence interval using Empirical Likelihood. Parameters ---------- param_num : float The parameter for which the confidence interval is desired. sig : float The significance level. Default is 0.05. upper_bound : float The maximum value the upper limit can be. Default is the 99.9% confidence value under OLS assumptions. lower_bound : float The minimum value the lower limit can be. Default is the 99.9% confidence value under OLS assumptions. method : str Can either be 'nm' for Nelder-Mead or 'powell' for Powell. The optimization method that optimizes over nuisance parameters. The default is 'nm'. stochastic_exog : bool When True, the exogenous variables are assumed to be stochastic. When the regressors are nonstochastic, moment conditions are placed on the exogenous variables. Confidence intervals for stochastic regressors are at least as large as non-stochastic regressors. The default is True. Returns ------- lowerl : float The lower bound of the confidence interval. upperl : float The upper bound of the confidence interval. See Also -------- el_test : Test parameters using Empirical Likelihood. Notes ----- This function uses brentq to find the value of beta where test_beta([beta], param_num)[1] is equal to the critical value. The function returns the results of each iteration of brentq at each value of beta. The current function value of the last printed optimization should be the critical value at the desired significance level. For alpha=.05, the value is 3.841459. To ensure optimization terminated successfully, it is suggested to do el_test([lower_limit], [param_num]). If the optimization does not terminate successfully, consider switching optimization algorithms. If optimization is still not successful, try changing the values of start_int_params. If the current function value repeatedly jumps from a number between 0 and the critical value and a very large number (>50), the starting parameters of the interior minimization need to be changed. """ r0 = stats.chi2.ppf(1 - sig, 1) if upper_bound is None: upper_bound = self.conf_int(.01)[param_num][1] if lower_bound is None: lower_bound = self.conf_int(.01)[param_num][0] def f(b0): return self.el_test(np.array([b0]), np.array([param_num]), method=method, stochastic_exog=stochastic_exog)[0] - r0 lowerl = optimize.brenth(f, lower_bound, self.params[param_num]) upperl = optimize.brenth(f, self.params[param_num], upper_bound) # ^ Seems to be faster than brentq in most cases return (lowerl, upperl) class RegressionResultsWrapper(wrap.ResultsWrapper): _attrs = { 'chisq': 'columns', 'sresid': 'rows', 'weights': 'rows', 'wresid': 'rows', 'bcov_unscaled': 'cov', 'bcov_scaled': 'cov', 'HC0_se': 'columns', 'HC1_se': 'columns', 'HC2_se': 'columns', 'HC3_se': 'columns', 'norm_resid': 'rows', } _wrap_attrs = wrap.union_dicts(base.LikelihoodResultsWrapper._attrs, _attrs) _methods = {} _wrap_methods = wrap.union_dicts( base.LikelihoodResultsWrapper._wrap_methods, _methods) wrap.populate_wrapper(RegressionResultsWrapper, RegressionResults)
36.566241
132
0.578961
bf2e86812c9255316519b6a977da47f13ec5dd4c
2,103
py
Python
Components.py
oransimhony/pygame_components
b4d0f2fa1d0de3d37d45a8cb73e29559c2f2149b
[ "MIT" ]
null
null
null
Components.py
oransimhony/pygame_components
b4d0f2fa1d0de3d37d45a8cb73e29559c2f2149b
[ "MIT" ]
null
null
null
Components.py
oransimhony/pygame_components
b4d0f2fa1d0de3d37d45a8cb73e29559c2f2149b
[ "MIT" ]
null
null
null
import pygame class Button: def __init__(self, screen, x, y, w, h, color, hover_color=None, label="", label_color=(0, 0, 0), on_click=None): self.screen = screen self.x = x self.y = y self.w = w self.h = h self.color = color self.hover_color = hover_color if hover_color else color self.label = label self.label_color = label_color if self.label.strip() != "": self.text = Text(self.screen, self.x + self.w / 2, self.y + self.h / 2, label_color, text=self.label) else: self.text = False self.on_click = on_click def render(self): if self.hover(): pygame.draw.rect(self.screen, self.hover_color, (self.x, self.y, self.w, self.h)) else: pygame.draw.rect(self.screen, self.color, (self.x, self.y, self.w, self.h)) if self.text: self.text.render() def hover(self): mouseX, mouseY = pygame.mouse.get_pos() if self.x <= mouseX <= self.x + self.w: if self.y <= mouseY <= self.y + self.h: return True return False def clicked(self): if self.hover() and pygame.mouse.get_pressed()[0]: if self.on_click: self.on_click() class Text: def __init__(self, screen, x, y, color=(0, 0, 0), font=None, text="", size=22, antialias=False, center=True): pygame.font.init() if font: self.font = font else: self.font = pygame.font.SysFont('Arial', size) self.x = x self.y = y self.color = color self.text = text self.antialias = antialias self.screen = screen self.center = center def render(self): text_surface = self.font.render(self.text, self.antialias, self.color) text_rect = text_surface.get_rect() if self.center: text_rect.center = (self.x, self.y) else: text_rect.x = self.x text_rect.y = self.y self.screen.blit(text_surface, text_rect)
32.353846
116
0.551593
c87d2ee6ae703d50c916dbedc7fcc03936880f71
11,839
py
Python
tensorflow/python/saved_model/model_utils/export_test.py
abhaikollara/tensorflow
4f96df3659696990cb34d0ad07dc67843c4225a9
[ "Apache-2.0" ]
848
2019-12-03T00:16:17.000Z
2022-03-31T22:53:17.000Z
tensorflow/python/saved_model/model_utils/export_test.py
abhaikollara/tensorflow
4f96df3659696990cb34d0ad07dc67843c4225a9
[ "Apache-2.0" ]
656
2019-12-03T00:48:46.000Z
2022-03-31T18:41:54.000Z
tensorflow/python/saved_model/model_utils/export_test.py
abhaikollara/tensorflow
4f96df3659696990cb34d0ad07dc67843c4225a9
[ "Apache-2.0" ]
506
2019-12-03T00:46:26.000Z
2022-03-30T10:34:56.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for export utils.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tempfile import time from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.platform import test from tensorflow.python.saved_model import signature_constants from tensorflow.python.saved_model import signature_def_utils from tensorflow.python.saved_model.model_utils import export_output from tensorflow.python.saved_model.model_utils import export_utils from tensorflow.python.saved_model.model_utils.mode_keys import KerasModeKeys class ExportTest(test_util.TensorFlowTestCase): @test_util.deprecated_graph_mode_only def test_build_all_signature_defs_without_receiver_alternatives(self): receiver_tensor = array_ops.placeholder(dtypes.string) output_1 = constant_op.constant([1.]) output_2 = constant_op.constant(["2"]) output_3 = constant_op.constant(["3"]) export_outputs = { signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: export_output.RegressionOutput(value=output_1), "head-2": export_output.ClassificationOutput(classes=output_2), "head-3": export_output.PredictOutput(outputs={ "some_output_3": output_3 }), } signature_defs = export_utils.build_all_signature_defs( receiver_tensor, export_outputs) expected_signature_defs = { "serving_default": signature_def_utils.regression_signature_def(receiver_tensor, output_1), "head-2": signature_def_utils.classification_signature_def(receiver_tensor, output_2, None), "head-3": signature_def_utils.predict_signature_def({ "input": receiver_tensor }, {"some_output_3": output_3}) } self.assertDictEqual(expected_signature_defs, signature_defs) @test_util.deprecated_graph_mode_only def test_build_all_signature_defs_with_dict_alternatives(self): receiver_tensor = array_ops.placeholder(dtypes.string) receiver_tensors_alternative_1 = { "foo": array_ops.placeholder(dtypes.int64), "bar": array_ops.sparse_placeholder(dtypes.float32)} receiver_tensors_alternatives = {"other": receiver_tensors_alternative_1} output_1 = constant_op.constant([1.]) output_2 = constant_op.constant(["2"]) output_3 = constant_op.constant(["3"]) export_outputs = { signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: export_output.RegressionOutput(value=output_1), "head-2": export_output.ClassificationOutput(classes=output_2), "head-3": export_output.PredictOutput(outputs={ "some_output_3": output_3 }), } signature_defs = export_utils.build_all_signature_defs( receiver_tensor, export_outputs, receiver_tensors_alternatives) expected_signature_defs = { "serving_default": signature_def_utils.regression_signature_def( receiver_tensor, output_1), "head-2": signature_def_utils.classification_signature_def( receiver_tensor, output_2, None), "head-3": signature_def_utils.predict_signature_def( {"input": receiver_tensor}, {"some_output_3": output_3}), "other:head-3": signature_def_utils.predict_signature_def( receiver_tensors_alternative_1, {"some_output_3": output_3}) # Note that the alternatives 'other:serving_default' and # 'other:head-2' are invalid, because regession and classification # signatures must take a single string input. Here we verify that # these invalid signatures are not included in the export_utils. } self.assertDictEqual(expected_signature_defs, signature_defs) @test_util.deprecated_graph_mode_only def test_build_all_signature_defs_with_single_alternatives(self): receiver_tensor = array_ops.placeholder(dtypes.string) receiver_tensors_alternative_1 = array_ops.placeholder(dtypes.int64) receiver_tensors_alternative_2 = array_ops.sparse_placeholder( dtypes.float32) # Note we are passing single Tensors as values of # receiver_tensors_alternatives, where normally that is a dict. # In this case a dict will be created using the default receiver tensor # name "input". receiver_tensors_alternatives = {"other1": receiver_tensors_alternative_1, "other2": receiver_tensors_alternative_2} output_1 = constant_op.constant([1.]) output_2 = constant_op.constant(["2"]) output_3 = constant_op.constant(["3"]) export_outputs = { signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: export_output.RegressionOutput(value=output_1), "head-2": export_output.ClassificationOutput(classes=output_2), "head-3": export_output.PredictOutput(outputs={ "some_output_3": output_3 }), } signature_defs = export_utils.build_all_signature_defs( receiver_tensor, export_outputs, receiver_tensors_alternatives) expected_signature_defs = { "serving_default": signature_def_utils.regression_signature_def( receiver_tensor, output_1), "head-2": signature_def_utils.classification_signature_def( receiver_tensor, output_2, None), "head-3": signature_def_utils.predict_signature_def( {"input": receiver_tensor}, {"some_output_3": output_3}), "other1:head-3": signature_def_utils.predict_signature_def( {"input": receiver_tensors_alternative_1}, {"some_output_3": output_3}), "other2:head-3": signature_def_utils.predict_signature_def( {"input": receiver_tensors_alternative_2}, {"some_output_3": output_3}) # Note that the alternatives 'other:serving_default' and 'other:head-2' # are invalid, because regession and classification signatures must take # a single string input. Here we verify that these invalid signatures # are not included in the export_utils. } self.assertDictEqual(expected_signature_defs, signature_defs) def test_build_all_signature_defs_export_outputs_required(self): receiver_tensor = constant_op.constant(["11"]) with self.assertRaises(ValueError) as e: export_utils.build_all_signature_defs(receiver_tensor, None) self.assertTrue(str(e.exception).startswith( "export_outputs must be a dict")) def test_get_timestamped_export_dir(self): export_dir_base = tempfile.mkdtemp() + "export/" export_dir_1 = export_utils.get_timestamped_export_dir( export_dir_base) time.sleep(2) export_dir_2 = export_utils.get_timestamped_export_dir( export_dir_base) time.sleep(2) export_dir_3 = export_utils.get_timestamped_export_dir( export_dir_base) # Export directories should be named using a timestamp that is seconds # since epoch. Such a timestamp is 10 digits long. time_1 = os.path.basename(export_dir_1) self.assertEqual(10, len(time_1)) time_2 = os.path.basename(export_dir_2) self.assertEqual(10, len(time_2)) time_3 = os.path.basename(export_dir_3) self.assertEqual(10, len(time_3)) self.assertTrue(int(time_1) < int(time_2)) self.assertTrue(int(time_2) < int(time_3)) @test_util.deprecated_graph_mode_only def test_build_all_signature_defs_serving_only(self): receiver_tensor = {"input": array_ops.placeholder(dtypes.string)} output_1 = constant_op.constant([1.]) export_outputs = { signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: export_output.PredictOutput(outputs=output_1), "train": export_output.TrainOutput(loss=output_1), } signature_defs = export_utils.build_all_signature_defs( receiver_tensor, export_outputs) expected_signature_defs = { "serving_default": signature_def_utils.predict_signature_def( receiver_tensor, {"output": output_1}) } self.assertDictEqual(expected_signature_defs, signature_defs) signature_defs = export_utils.build_all_signature_defs( receiver_tensor, export_outputs, serving_only=False) expected_signature_defs.update({ "train": signature_def_utils.supervised_train_signature_def( receiver_tensor, loss={"loss": output_1}) }) self.assertDictEqual(expected_signature_defs, signature_defs) @test_util.deprecated_graph_mode_only def test_export_outputs_for_mode(self): predictions = {"predictions": constant_op.constant([1.])} loss = {"loss": constant_op.constant([2.])} metrics = { "metrics": (constant_op.constant([3.]), constant_op.constant([4.]))} expected_metrics = { "metrics/value": metrics["metrics"][0], "metrics/update_op": metrics["metrics"][1] } def _build_export_output(mode): return export_utils.export_outputs_for_mode( mode, None, predictions, loss, metrics) ret = _build_export_output(KerasModeKeys.TRAIN) self.assertIn(signature_constants.DEFAULT_TRAIN_SIGNATURE_DEF_KEY, ret) export_out = ret[signature_constants.DEFAULT_TRAIN_SIGNATURE_DEF_KEY] self.assertIsInstance(export_out, export_output.TrainOutput) self.assertEqual(export_out.predictions, predictions) self.assertEqual(export_out.loss, loss) self.assertEqual(export_out.metrics, expected_metrics) ret = _build_export_output(KerasModeKeys.TEST) self.assertIn(signature_constants.DEFAULT_EVAL_SIGNATURE_DEF_KEY, ret) export_out = ret[signature_constants.DEFAULT_EVAL_SIGNATURE_DEF_KEY] self.assertIsInstance(export_out, export_output.EvalOutput) self.assertEqual(export_out.predictions, predictions) self.assertEqual(export_out.loss, loss) self.assertEqual(export_out.metrics, expected_metrics) ret = _build_export_output(KerasModeKeys.PREDICT) self.assertIn(signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY, ret) export_out = ret[signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] self.assertIsInstance(export_out, export_output.PredictOutput) self.assertEqual(export_out.outputs, predictions) classes = constant_op.constant(["class5"]) ret = export_utils.export_outputs_for_mode( KerasModeKeys.PREDICT, {"classify": export_output.ClassificationOutput( classes=classes)}) self.assertIn("classify", ret) export_out = ret["classify"] self.assertIsInstance(export_out, export_output.ClassificationOutput) self.assertEqual(export_out.classes, classes) if __name__ == "__main__": test.main()
40.965398
80
0.710195
6a4bf349ce18d0ff1a0aeec2f724f4290e2da17d
3,822
py
Python
Ru_splitter.py
mithfin/Sentence-Splitter-for-Russian
e4abe23a124f9f5f77490a3328be3632e52b2c0a
[ "Apache-2.0" ]
9
2017-03-24T22:30:40.000Z
2021-08-19T23:16:57.000Z
Ru_splitter.py
mithfin/Sentence-Splitter-for-Russian
e4abe23a124f9f5f77490a3328be3632e52b2c0a
[ "Apache-2.0" ]
null
null
null
Ru_splitter.py
mithfin/Sentence-Splitter-for-Russian
e4abe23a124f9f5f77490a3328be3632e52b2c0a
[ "Apache-2.0" ]
2
2018-10-07T03:47:28.000Z
2019-04-16T17:03:40.000Z
# -*- coding: utf-8 -*- from __future__ import print_function import collections import re import numpy as np import pandas as pd from keras.models import model_from_json class Splitter: def __init__(self): self.model = model_from_json(open('./Models/keras_model.json').read()) self.model.load_weights('./Models/keras_weights.h5') self.model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) self.radius = self.model.get_config()[0]['config']['batch_input_shape'][1] / 2 self.length = 2 * self.radius self.padding = [] for i in range(self.radius): self.padding.append('^') header = ['Char'] for i in range(64): header.append('X' + str(i+1)) embeddings = pd.read_csv('./Models/char_embeddings.csv', names=header) embeddings_dictionary = {} for i in xrange(len(embeddings)): vec = [] for j in xrange (64): vec += [embeddings['X' + str(j+1)][i]] embeddings_dictionary[unicode(embeddings['Char'][i], 'utf8')] = vec embeddings_dictionary[' '] = embeddings_dictionary['_'] embeddings_dictionary['\n '] = embeddings_dictionary['.'] class Embeddings_Reader(dict): def __missing__(self, key): return embeddings_dictionary[u'UNK'] self.embeddings_lookup = Embeddings_Reader(embeddings_dictionary) @staticmethod def formatting (res): res = re.sub(u'\xa0', u' ', res) res = re.sub(u'[\n \r\t]*[\n\r][\n \r\t]*', u'\n', res) res = re.sub(u'[ \t]+', u' ', res) res = re.sub(u'\n+', u'\n', res) return res @staticmethod def stop_split(text): dot_list = map(lambda x: x + '.', text.split('.')) if dot_list[-1] == '.': dot_list = dot_list[:-1] excl_list = reduce(lambda x, y: x + map(lambda z: z + '!', y.split('!')[:-1]) + [y.split('!')[-1]], dot_list, []) quest_list = reduce(lambda x, y: x + map(lambda z: z + '?', y.split('?')[:-1]) + [y.split('?')[-1]], excl_list, []) return quest_list @staticmethod def add_newline(l, stop_type): if stop_type == 0: return l + '\n' else: return l @staticmethod def remove_spaces (sent): if type(sent) == str: sent = unicode(sent, 'utf-8') sent = re.sub(u'^ +', u'', sent) return sent.encode('utf-8') def split(self, input_text): input_text = unicode(input_text, 'utf8') dw_input_text = self.formatting(input_text) dw_input_list = self.stop_split(dw_input_text) padded_list = self.padding + dw_input_list + self.padding embedded_vectors = collections.deque([]) for linenum in xrange(self.radius, len(padded_list) - self.radius): left = ''.join(padded_list[linenum - self.radius: linenum + 1])[:-1] right = ''.join(padded_list[linenum + 1: linenum + self.radius + 1]) features = list(left)[-self.radius:] + list(right)[:self.radius] feature_vector = map(lambda x: self.embeddings_lookup[x], features) embedded_vectors.append(feature_vector) X_text = np.array(embedded_vectors, dtype='float32') predictions = self.model.predict(X_text) classes = map (lambda x: 0 if x < 0.5 else 1, predictions) final_lines = map(self.add_newline, dw_input_list, classes) final_text = reduce(lambda x, y: x + y, final_lines) final_text = '\n'.join(map(self.remove_spaces, final_text.splitlines())) split_text = final_text.split('\n') return split_text
35.719626
119
0.568289
2acb63fc123870bc66462797178e583dc18fe8d5
176
py
Python
tests/conftest.py
kevinheavey/borsh-py
e49dee71716ec217e8c9966aaa621c61669f7c15
[ "MIT" ]
11
2021-10-04T19:47:22.000Z
2022-03-27T05:27:17.000Z
tests/conftest.py
kevinheavey/borsh-py
e49dee71716ec217e8c9966aaa621c61669f7c15
[ "MIT" ]
8
2021-09-30T13:57:43.000Z
2022-03-14T11:20:53.000Z
tests/conftest.py
kevinheavey/borsh-py
e49dee71716ec217e8c9966aaa621c61669f7c15
[ "MIT" ]
4
2021-11-13T10:46:37.000Z
2022-03-27T05:27:20.000Z
import logging def pytest_configure(config): """Flake8 is very verbose by default. Silence it.""" # noqa: DAR101 logging.getLogger("flake8").setLevel(logging.ERROR)
25.142857
72
0.721591
0a4a8a621ed1fb8a47f6046407125abf84c55ec6
8,972
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_06_01/operations/_default_security_rules_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
2,728
2015-01-09T10:19:32.000Z
2022-03-31T14:50:33.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_06_01/operations/_default_security_rules_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
17,773
2015-01-05T15:57:17.000Z
2022-03-31T23:50:25.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_06_01/operations/_default_security_rules_operations.py
rsdoherty/azure-sdk-for-python
6bba5326677468e6660845a703686327178bb7b1
[ "MIT" ]
1,916
2015-01-19T05:05:41.000Z
2022-03-31T19:36:44.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class DefaultSecurityRulesOperations(object): """DefaultSecurityRulesOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2018_06_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, resource_group_name, # type: str network_security_group_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["_models.SecurityRuleListResult"] """Gets all default security rules in a network security group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_security_group_name: The name of the network security group. :type network_security_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either SecurityRuleListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2018_06_01.models.SecurityRuleListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.SecurityRuleListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-06-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkSecurityGroupName': self._serialize.url("network_security_group_name", network_security_group_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('SecurityRuleListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkSecurityGroups/{networkSecurityGroupName}/defaultSecurityRules'} # type: ignore def get( self, resource_group_name, # type: str network_security_group_name, # type: str default_security_rule_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.SecurityRule" """Get the specified default network security rule. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_security_group_name: The name of the network security group. :type network_security_group_name: str :param default_security_rule_name: The name of the default security rule. :type default_security_rule_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: SecurityRule, or the result of cls(response) :rtype: ~azure.mgmt.network.v2018_06_01.models.SecurityRule :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.SecurityRule"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2018-06-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkSecurityGroupName': self._serialize.url("network_security_group_name", network_security_group_name, 'str'), 'defaultSecurityRuleName': self._serialize.url("default_security_rule_name", default_security_rule_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('SecurityRule', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkSecurityGroups/{networkSecurityGroupName}/defaultSecurityRules/{defaultSecurityRuleName}'} # type: ignore
48.497297
236
0.672314
1d19ba241cc0de3c1e19d0d1ea860cd18bb43bb1
645
py
Python
rentals/migrations/0003_auto_20180308_1706.py
dpakach/RentalService
2fe2c899b7f149ed3f0fc475100beaa0bc76619e
[ "MIT" ]
null
null
null
rentals/migrations/0003_auto_20180308_1706.py
dpakach/RentalService
2fe2c899b7f149ed3f0fc475100beaa0bc76619e
[ "MIT" ]
1
2018-11-06T03:17:14.000Z
2018-11-06T03:17:14.000Z
rentals/migrations/0003_auto_20180308_1706.py
dpakach/RentalService
2fe2c899b7f149ed3f0fc475100beaa0bc76619e
[ "MIT" ]
1
2020-02-04T10:44:11.000Z
2020-02-04T10:44:11.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.8 on 2018-03-08 17:06 from __future__ import unicode_literals import django.core.validators from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("rentals", "0002_auto_20180306_0823")] operations = [ migrations.AlterField( model_name="comment", name="stars", field=models.IntegerField( validators=[ django.core.validators.MaxValueValidator(5), django.core.validators.MinValueValidator(1), ] ), ) ]
25.8
64
0.590698
d06ee9b8d2dc8019e6201c629cf80bda7956b65a
11,539
py
Python
ehb_datasources/tests/unit_tests/test_nautilus_driver.py
chop-dbhi/ehb-datasources
ff26dafa0a0919abbe53277e85e019c6df3f8f88
[ "BSD-2-Clause" ]
2
2019-09-13T20:27:39.000Z
2020-03-05T02:24:47.000Z
ehb_datasources/tests/unit_tests/test_nautilus_driver.py
chop-dbhi/ehb-datasources
ff26dafa0a0919abbe53277e85e019c6df3f8f88
[ "BSD-2-Clause" ]
46
2015-09-25T14:34:34.000Z
2020-10-05T22:04:36.000Z
ehb_datasources/tests/unit_tests/test_nautilus_driver.py
chop-dbhi/ehb-datasources
ff26dafa0a0919abbe53277e85e019c6df3f8f88
[ "BSD-2-Clause" ]
5
2016-04-25T15:01:39.000Z
2016-08-29T20:40:31.000Z
import pytest import json from ehb_datasources.drivers.nautilus.driver import ehbDriver from ehb_datasources.drivers.exceptions import RecordCreationError, \ IgnoreEhbExceptions @pytest.fixture() def driver(): return ehbDriver( url='http://example.com/api/', user='foo', password='bar', secure=False ) def test_initialization(driver): assert driver.host == 'example.com' assert driver.path == '/api/' def test_encode_nau_creds(driver): assert driver.encode_nau_creds() == 'Basic Zm9vOmJhcg==' def test_update(driver, mocker): # Mocks MockNautilusResponse = mocker.MagicMock( status=200 ) MockNautilusResponse.read = mocker.MagicMock(return_value=b'[\n {\n "name": "7316-118", \n "status": "200", \n "type": "SDG"\n }\n]') kwargs = {'fldvals': {'EXTERNAL_REFERENCE': '2J25I1QYGRU1DCTA:7316-118:100', 'STATUS': 'V'}, 'name': '7316-118', 'nau_sub_path': 'sdg'} driver.PUT = mocker.MagicMock(return_value=MockNautilusResponse) # Test response = driver.update(kwargs) driver.PUT.assert_called_with( '/api/', {'Content-Type': 'application/json', 'NAUTILUS-CREDS': 'Basic Zm9vOmJhcg==', 'Accept': 'application/json'}, '[{"null": null, "fldvals": {}}]' ) assert response == b'[\n {\n "name": "7316-118", \n "status": "200", \n "type": "SDG"\n }\n]' def test_update_fix_path(driver, mocker): # Mocks MockNautilusResponse = mocker.MagicMock( status=200 ) MockNautilusResponse.read = mocker.MagicMock(return_value=b'[\n {\n "name": "7316-118", \n "status": "200", \n "type": "SDG"\n }\n]') kwargs = {'fldvals': {'EXTERNAL_REFERENCE': '2J25I1QYGRU1DCTA:7316-118:100', 'STATUS': 'V'}, 'name': '7316-118', 'nau_sub_path': 'sdg'} driver.path = '/api' driver.PUT = mocker.MagicMock(return_value=MockNautilusResponse) # Test response = driver.update(kwargs) driver.PUT.assert_called_with( '/api/', {'Content-Type': 'application/json', 'NAUTILUS-CREDS': 'Basic Zm9vOmJhcg==', 'Accept': 'application/json'}, '[{"null": null, "fldvals": {}}]' ) assert response == b'[\n {\n "name": "7316-118", \n "status": "200", \n "type": "SDG"\n }\n]' def test_get_sample_data(driver, mocker, nautilus_get_sample_payload): # Mocks MockNautilusResponse = mocker.MagicMock( status=200 ) MockNautilusResponse.read = mocker.MagicMock(return_value=nautilus_get_sample_payload) driver.GET = mocker.MagicMock(return_value=MockNautilusResponse) # Test response = driver.get_sample_data(record_id='TESTID') assert 'SDG' in response.keys() assert isinstance(response, dict) def test_get(driver): assert not driver.get() def test_delete(driver): assert not driver.delete() def test_create(driver): assert not driver.create('foo', 'bar') def test_meta(driver): assert not driver.meta() def test_configure(driver): assert not driver.configure() def test_process_form(driver): assert not driver.processForm(None, 'foo') def test_record_new_record_form_required(driver): assert driver.new_record_form_required() def test_get_sample_data_error(driver, mocker, nautilus_get_sample_payload): MockNautilusResponse = mocker.MagicMock( status=200 ) MockNautilusResponse.read = mocker.MagicMock(return_value=b'{"error": 6}') driver.GET = mocker.MagicMock(return_value=MockNautilusResponse) response = driver.get_sample_data(record_id='TESTID') assert 'error' in response.keys() assert isinstance(response, dict) def test_extract_aliquots(driver, mocker, nautilus_get_sample_payload): # TODO: Needs more mock responses as Nautilus response _will_ vary project # to project MockNautilusResponse = mocker.MagicMock( status=200 ) MockNautilusResponse.read = mocker.MagicMock(return_value=nautilus_get_sample_payload) driver.GET = mocker.MagicMock(return_value=MockNautilusResponse) response = driver.get_sample_data(record_id='TESTID') aliquots = driver.extract_aliquots(response) assert len(aliquots) == 4 assert len(aliquots[0].keys()) == 89 def test_format_aliquots(driver, mocker, nautilus_get_sample_payload): # TODO: Needs more mock responses as Nautilus response _will_ vary project # to project MockNautilusResponse = mocker.MagicMock( status=200 ) MockNautilusResponse.read = mocker.MagicMock(return_value=nautilus_get_sample_payload) driver.GET = mocker.MagicMock(return_value=MockNautilusResponse) response = driver.get_sample_data(record_id='TESTID') aliquots = driver.extract_aliquots(response) formatted_aliquots = driver.format_aliquots(aliquots) assert len(formatted_aliquots) == 4 assert aliquots[0].keys() == formatted_aliquots[0].keys() assert aliquots[0]['label'] == 'Blood' assert aliquots[0]['STATUS'] == '<p class="text-warning"><em>Disposed</em></p>' assert aliquots[1]['STATUS'] == '<p class="text-success"><em>Available</em></p>' assert aliquots[1]['U_RECEIVED_DATE_TIME'] is None assert aliquots[1]['U_COLLECT_DATE_TIME'] == 'Unknown' assert aliquots[2]['STATUS'] == '<p class="text-warning"><em>Unreceived</em></p>' assert aliquots[3]['STATUS'] == '<p class="text-danger"><em>Cancelled</em></p>' assert len(formatted_aliquots[0].keys()) == 91 def test_srsf(driver, mocker, nautilus_get_sample_payload): # Mocks MockNautilusResponse = mocker.MagicMock( status=200 ) MockNautilusResponse.read = mocker.MagicMock(return_value=nautilus_get_sample_payload) driver.GET = mocker.MagicMock(return_value=MockNautilusResponse) form = driver.subRecordSelectionForm(form_url='/test/', record_id='foo') assert '<td>Blood<small class="text-muted"> <small style="font-size:1em"> -- Collected On: 1901-01-01 14:30:19 -- Received On: 2015-03-11 14:35:07</small><span class="label label-primary pull-right muted">7316-118-BLD [108880]</span></td><td align="center"><p class="text-warning"><em>Disposed</em></p></td>' in form assert '<td>Blood<small class="text-muted"> <small style="font-size:1em"> -- Collected On: Unknown -- Received On: None</small><span class="label label-primary pull-right muted">7316-118-BLD [108881]</span></td><td align="center"><p class="text-success"><em>Available</em></p></td>' in form assert '<td><span class="label label-primary pull-right muted">7316-118-BLD [108882]</span></td><td align="center"><p class="text-warning"><em>Unreceived</em></p></td>' in form assert '<td>Blood Flash Frozen<span class="label label-primary pull-right muted">7316-118-BLD [108881]</span></td><td align="center"><p class="text-danger"><em>Cancelled</em></p></td>' in form def test_srf(driver): assert not driver.subRecordForm(None) def test_create_new_record_form_get(driver, mocker): request = mocker.MagicMock( method='GET' ) form = driver.create_new_record_form(request) assert form == '<table class="table table-bordered table-striped table-condensed"><tr><th>Description</th><th>Field</th></tr><tbody><tr><td>*Enter or Scan Subject ID</td><td><input type="text" onkeypress="return disableEnter(event);" name="SDG_NAME"/></td></tr></tbody></table>' def test_create_new_record_form_post(driver, mocker): request = mocker.MagicMock( method='POST', _post={'SDG_NAME': '7316-118', 'csrfmiddlewaretoken': 'foo', 'label_id': '1'} ) form = driver.create_new_record_form(request) assert form == '<table class="table table-bordered table-striped table-condensed"><tr><th>Description</th><th>Field</th></tr><tbody><tr><td>*Enter or Scan Subject ID</td><td><input type="text" onkeypress="return disableEnter(event);" name="SDG_NAME" value="7316-118"/></td></tr></tbody></table>' def test_process_new_record_form(driver, mocker): request = mocker.MagicMock( method='POST', _post={'SDG_NAME': '7316-118', 'csrfmiddlewaretoken': 'foo', 'label_id': '1'} ) driver.update = mocker.MagicMock(return_value=b'[{"status": "200"}]') validator_func = mocker.MagicMock(return_value=0) with pytest.raises(IgnoreEhbExceptions) as excinfo: driver.process_new_record_form(request, 'TESTPREFIX', validator_func) assert excinfo.typename == 'IgnoreEhbExceptions' def test_process_new_record_form_record_exists_on_ds(driver, mocker): request = mocker.MagicMock( method='POST', _post={'SDG_NAME': '7316-118', 'csrfmiddlewaretoken': 'foo', 'label_id': '1'} ) driver.update = mocker.MagicMock(return_value=b'[{"status": "400"}]') validator_func = mocker.MagicMock(return_value=1) with pytest.raises(RecordCreationError) as excinfo: driver.process_new_record_form(request, 'TESTPREFIX', validator_func) assert excinfo.typename == 'RecordCreationError' def test_process_new_record_form_assigned_to_other(driver, mocker): request = mocker.MagicMock( method='POST', _post={'SDG_NAME': '7316-118', 'csrfmiddlewaretoken': 'foo', 'label_id': '1'} ) driver.update = mocker.MagicMock(return_value=b'[{"status": "200"}]') validator_func = mocker.MagicMock(return_value=-1) with pytest.raises(RecordCreationError) as excinfo: driver.process_new_record_form(request, 'TESTPREFIX', validator_func) assert excinfo.typename == 'RecordCreationError' def test_process_new_record_form_no_sdg(driver, mocker): request = mocker.MagicMock( method='POST', _post={'csrfmiddlewaretoken': 'foo', 'label_id': '1'} ) driver.update = mocker.MagicMock(return_value=b'[{"status": "200"}]') validator_func = mocker.MagicMock(return_value=0) with pytest.raises(RecordCreationError) as excinfo: driver.process_new_record_form(request, 'TESTPREFIX', validator_func) assert excinfo.typename == 'RecordCreationError' # creating parameratized unit tests for testing error message received from lims examples = (('expected_error_message', 'status_error_num', 'test_comment'), [ # keeping comments blank because 'error message' in this case is sufficient. # Keeping here for best practices in the future. ('Username not provided.', "2", ''), ('Password not provided.', "3", ''), ('Request type not provided.', "4", ''), ('Request body not provided.', "5", ''), ('Malformed Request.', "6", ''), ('Unsupported request type.', "7", ''), ('Form data is not valid.', "8", ''), ('NAU socket service not found.', "100", ''), ('NAU invalid authorization header.', "101", '') ]) @pytest.mark.parametrize(*examples) def test_process_new_record_lims(driver, mocker, expected_error_message, status_error_num, test_comment): request = mocker.MagicMock( method='POST', _post={'SDG_NAME': '7316-118', 'csrfmiddlewaretoken': 'foo', 'label_id': '1'} ) payload = [ { "status": status_error_num, } ] # using .encode() because fn in driver is expecting bytes driver.update = mocker.MagicMock(return_value=json.dumps(payload).encode()) validator_func = mocker.MagicMock(return_value=0) with pytest.raises(RecordCreationError) as excinfo: driver.process_new_record_form(request, 'TESTPREFIX', validator_func) assert excinfo.typename == 'RecordCreationError' assert excinfo.value.cause == expected_error_message
41.65704
320
0.685675
a8da001e887065069b4a1289c2a5f95d84b3ea09
4,110
py
Python
ssd/nn/multibox_loss.py
Guillem96/ssd-pytorch
ffbb64d60c6e72c8126c2943f46b0e17298c8f81
[ "MIT" ]
2
2020-10-24T09:57:42.000Z
2021-11-11T01:20:08.000Z
ssd/nn/multibox_loss.py
Guillem96/ssd-pytorch
ffbb64d60c6e72c8126c2943f46b0e17298c8f81
[ "MIT" ]
null
null
null
ssd/nn/multibox_loss.py
Guillem96/ssd-pytorch
ffbb64d60c6e72c8126c2943f46b0e17298c8f81
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import torch import torch.nn as nn import torch.nn.functional as F from ..boxes import match class MultiBoxLoss(nn.Module): """SSD Weighted Loss Function Compute Targets: 1) Produce Confidence Target Indices by matching ground truth boxes with (default) 'priorboxes' that have jaccard index > threshold parameter (default threshold: 0.5). 2) Produce localization target by 'encoding' variance into offsets of ground truth boxes and their matched 'priorboxes'. 3) Hard negative mining to filter the excessive number of negative examples that comes with using a large number of default bounding boxes. (default negative:positive ratio 3:1) Objective Loss: L(x,c,l,g) = (Lconf(x, c) + αLloc(x,l,g)) / N Where, Lconf is the CrossEntropy Loss and Lloc is the SmoothL1 Loss weighted by α which is set to 1 by cross val. Args: c: class confidences, l: predicted boxes, g: ground truth boxes N: number of matched default boxes See: https://arxiv.org/pdf/1512.02325.pdf for more details. """ def __init__(self, overlap_thresh, neg_pos): super(MultiBoxLoss, self).__init__() self.threshold = overlap_thresh self.negpos_ratio = neg_pos self.variance = [0.1, 0.2] def forward(self, predictions, targets): """Multibox Loss Args: predictions (tuple): A tuple containing loc preds, conf preds, and prior boxes from SSD net. conf shape: torch.size(batch_size,num_priors,num_classes) loc shape: torch.size(batch_size,num_priors,4) priors shape: torch.size(num_priors,4) targets (tensor): Ground truth boxes and labels for a batch, shape: [batch_size,num_objs,5] (last idx is the label). """ loc_data, conf_data, priors = predictions device = loc_data.device bs = loc_data.size(0) priors = priors[:loc_data.size(1), :].to(device) num_priors = priors.size(0) num_classes = conf_data.size(-1) # match priors (default boxes) and ground truth boxes loc_t = torch.zeros(bs, num_priors, 4, device=device) conf_t = torch.zeros(bs, num_priors, device=device).long() for idx in range(bs): match(threshold=self.threshold, truths=targets[idx][:, :-1], priors=priors, variances=self.variance, labels=targets[idx][:, -1], loc_t=loc_t, conf_t=conf_t, idx=idx) pos = conf_t > 0 num_pos = pos.sum(dim=1, keepdim=True) # Localization Loss (Smooth L1) # Shape: [batch, num_priors, 4] loc_p = loc_data[pos].view(-1, 4) loc_t = loc_t[pos].view(-1, 4) loss_l = F.smooth_l1_loss(loc_p, loc_t, reduction='sum') # Compute classification loss loss_c = F.cross_entropy(conf_data.view(-1, num_classes), conf_t.view(-1), reduction='none') loss_c = loss_c.view(bs, num_priors) # Filter out the negative samples and reduce the loss by sum loss_c_pos = loss_c[pos].sum() # Hard negative mining, filter out the positive samples and pick the # top negative losses num_neg = torch.clamp(self.negpos_ratio * num_pos, max=pos.size(1) - 1) loss_c_neg = loss_c * ~pos loss_c_neg, _ = loss_c_neg.sort(1, descending=True) neg_mask = torch.zeros_like(loss_c_neg) neg_mask[torch.arange(bs), num_neg.view(-1)] = 1. neg_mask = 1 - neg_mask.cumsum(-1) loss_c_neg = (loss_c_neg * neg_mask).sum() # Finally we normalize the losses by the number of positives N = num_pos.sum() loss_l = loss_l / N loss_c = (loss_c_pos + loss_c_neg) / N return loss_l, loss_c
38.773585
84
0.589294
9eb8332d352feed0c89bfddcb910b39224af99d4
2,159
py
Python
augraphy/augmentations/lowinkline.py
kwcckw/augraphy
b0e8cc4192eaf827e36fb67ae1b7b9c762f9578b
[ "MIT" ]
36
2021-06-25T02:17:57.000Z
2022-03-29T02:36:09.000Z
augraphy/augmentations/lowinkline.py
shaheryar1/augraphy
5dd52fdd3b497312606c6d3afa4003f94a8cbcc4
[ "MIT" ]
136
2021-06-25T07:39:46.000Z
2022-03-31T13:00:30.000Z
augraphy/augmentations/lowinkline.py
shaheryar1/augraphy
5dd52fdd3b497312606c6d3afa4003f94a8cbcc4
[ "MIT" ]
24
2021-06-27T21:15:11.000Z
2022-03-08T03:28:17.000Z
################################################################################ # File: lowinkline.py # import random import numpy as np from augraphy.base.augmentation import Augmentation class LowInkLine(Augmentation): """Generates streaking behavior common to printers running out of ink. :param use_consistent_lines: Whether or not to vary the width and alpha of generated low ink lines. :type use_consistent_lines: bool, optional :param p: The probability this Augmentation will be applied. :type p: float, optional """ def __init__( self, use_consistent_lines=True, p=1, ): """Constructor method""" super().__init__(p=p) self.use_consistent_lines = use_consistent_lines inconsistent_transparency_line = lambda x: random.randint(0, 255) self.inconsistent_transparency_line = np.vectorize( inconsistent_transparency_line, ) apply_line = lambda x, y: x if x > y else y self.apply_line = np.vectorize(apply_line) # Constructs a string representation of this Augmentation. def __repr__(self): return f"LowInkLine(use_consistent_lines={self.use_consistent_lines}, p={self.p})" # Takes an image, a vertical position, and an opacity value, # then adds a line at that position in the image with the given # opacity. def add_transparency_line(self, mask, y, alpha=None): """Adds a line with some opacity at a vertical position in the image. :param mask: The image to apply the line to. :type mask: numpy.array :param y: The vertical position to apply the line at. :type y: int :param alpha: The desired opacity of the line. :type alpha: int, optional """ if alpha is None: alpha = random.randint(16, 224) if self.use_consistent_lines: low_ink_line = np.full(mask[y, :].shape, alpha, dtype="uint8") else: low_ink_line = self.inconsistent_transparency_line(mask[y, :]) mask[y, :] = self.apply_line(mask[y, :], low_ink_line) return mask
33.215385
90
0.628069
f2c1132b58e0998db2f0def99459f75d96b04916
2,267
py
Python
mindarmour/defenses/natural_adversarial_defense.py
zengchen1024/mindarmour
eed59453cf048da92fe15f57dbe3ca7de8b7adcb
[ "Apache-2.0" ]
null
null
null
mindarmour/defenses/natural_adversarial_defense.py
zengchen1024/mindarmour
eed59453cf048da92fe15f57dbe3ca7de8b7adcb
[ "Apache-2.0" ]
null
null
null
mindarmour/defenses/natural_adversarial_defense.py
zengchen1024/mindarmour
eed59453cf048da92fe15f57dbe3ca7de8b7adcb
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Natural Adversarial Defense. """ from mindarmour.defenses.adversarial_defense import \ AdversarialDefenseWithAttacks from mindarmour.attacks.gradient_method import FastGradientSignMethod class NaturalAdversarialDefense(AdversarialDefenseWithAttacks): """ Adversarial training based on FGSM. Reference: `A. Kurakin, et al., "Adversarial machine learning at scale," in ICLR, 2017. <https://arxiv.org/abs/1611.01236>`_ Args: network (Cell): A MindSpore network to be defensed. loss_fn (Functions): Loss function. Default: None. optimizer (Cell): Optimizer used to train the network. Default: None. bounds (tuple): Upper and lower bounds of data. In form of (clip_min, clip_max). Default: (0.0, 1.0). replace_ratio (float): Ratio of replacing original samples with adversarial samples. Default: 0.5. eps (float): Step size of the attack method(FGSM). Default: 0.1. Examples: >>> net = Net() >>> adv_defense = NaturalAdversarialDefense(net) >>> adv_defense.defense(inputs, labels) """ def __init__(self, network, loss_fn=None, optimizer=None, bounds=(0.0, 1.0), replace_ratio=0.5, eps=0.1): attack = FastGradientSignMethod(network, eps=eps, alpha=None, bounds=bounds) super(NaturalAdversarialDefense, self).__init__( network, [attack], loss_fn=loss_fn, optimizer=optimizer, bounds=bounds, replace_ratio=replace_ratio)
39.77193
79
0.651081
226ddb4a0bf7913211f1cc9a09ca633a11848f7d
9,119
py
Python
docs/conf.py
Azima1985/recommender_package
84234b1394d797faa4e21090f99e58e639b27ebd
[ "MIT" ]
null
null
null
docs/conf.py
Azima1985/recommender_package
84234b1394d797faa4e21090f99e58e639b27ebd
[ "MIT" ]
null
null
null
docs/conf.py
Azima1985/recommender_package
84234b1394d797faa4e21090f99e58e639b27ebd
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys import inspect import shutil __location__ = os.path.join(os.getcwd(), os.path.dirname( inspect.getfile(inspect.currentframe()))) # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.join(__location__, '../src')) # -- Run sphinx-apidoc ------------------------------------------------------ # This hack is necessary since RTD does not issue `sphinx-apidoc` before running # `sphinx-build -b html . _build/html`. See Issue: # https://github.com/rtfd/readthedocs.org/issues/1139 # DON'T FORGET: Check the box "Install your project inside a virtualenv using # setup.py install" in the RTD Advanced Settings. # Additionally it helps us to avoid running apidoc manually try: # for Sphinx >= 1.7 from sphinx.ext import apidoc except ImportError: from sphinx import apidoc output_dir = os.path.join(__location__, "api") module_dir = os.path.join(__location__, "../src/my_project") try: shutil.rmtree(output_dir) except FileNotFoundError: pass try: import sphinx from distutils.version import LooseVersion cmd_line_template = "sphinx-apidoc -f -o {outputdir} {moduledir}" cmd_line = cmd_line_template.format(outputdir=output_dir, moduledir=module_dir) args = cmd_line.split(" ") if LooseVersion(sphinx.__version__) >= LooseVersion('1.7'): args = args[1:] apidoc.main(args) except Exception as e: print("Running `sphinx-apidoc` failed!\n{}".format(e)) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.autosummary', 'sphinx.ext.viewcode', 'sphinx.ext.coverage', 'sphinx.ext.doctest', 'sphinx.ext.ifconfig', 'sphinx.ext.mathjax', 'sphinx.ext.napoleon'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'my_project' copyright = u'2018, Azima1985' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '' # Is set by calling `setup.py docs` # The full version, including alpha/beta/rc tags. release = '' # Is set by calling `setup.py docs` # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". try: from my_project import __version__ as version except ImportError: pass else: release = version # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = "" # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'my_project-doc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'user_guide.tex', u'my_project Documentation', u'Azima1985', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = "" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- External mapping ------------------------------------------------------------ python_version = '.'.join(map(str, sys.version_info[0:2])) intersphinx_mapping = { 'sphinx': ('http://www.sphinx-doc.org/en/stable', None), 'python': ('https://docs.python.org/' + python_version, None), 'matplotlib': ('https://matplotlib.org', None), 'numpy': ('https://docs.scipy.org/doc/numpy', None), 'sklearn': ('http://scikit-learn.org/stable', None), 'pandas': ('http://pandas.pydata.org/pandas-docs/stable', None), 'scipy': ('https://docs.scipy.org/doc/scipy/reference', None), }
33.774074
85
0.704244