diksha
Runpod model testing
ce587a5
import os
import logging
import json
import asyncio
from dotenv import load_dotenv
from typing import AsyncGenerator
import time
from vllm import AsyncLLMEngine
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
from vllm.entrypoints.openai.protocol import ChatCompletionRequest, CompletionRequest, ErrorResponse
from vllm.entrypoints.openai.serving_engine import BaseModelPath, LoRAModulePath
from utils import DummyRequest, JobInput, BatchSize, create_error_response
from constants import DEFAULT_MAX_CONCURRENCY, DEFAULT_BATCH_SIZE, DEFAULT_BATCH_SIZE_GROWTH_FACTOR, DEFAULT_MIN_BATCH_SIZE
from tokenizer import TokenizerWrapper
from engine_args import get_engine_args
class vLLMEngine:
def __init__(self, engine = None):
load_dotenv() # For local development
self.engine_args = get_engine_args()
logging.info(f"Engine args: {self.engine_args}")
self.tokenizer = TokenizerWrapper(self.engine_args.tokenizer or self.engine_args.model,
self.engine_args.tokenizer_revision,
self.engine_args.trust_remote_code)
self.llm = self._initialize_llm() if engine is None else engine.llm
self.max_concurrency = int(os.getenv("MAX_CONCURRENCY", DEFAULT_MAX_CONCURRENCY))
self.default_batch_size = int(os.getenv("DEFAULT_BATCH_SIZE", DEFAULT_BATCH_SIZE))
self.batch_size_growth_factor = int(os.getenv("BATCH_SIZE_GROWTH_FACTOR", DEFAULT_BATCH_SIZE_GROWTH_FACTOR))
self.min_batch_size = int(os.getenv("MIN_BATCH_SIZE", DEFAULT_MIN_BATCH_SIZE))
def dynamic_batch_size(self, current_batch_size, batch_size_growth_factor):
return min(current_batch_size*batch_size_growth_factor, self.default_batch_size)
async def generate(self, job_input: JobInput):
try:
async for batch in self._generate_vllm(
llm_input=job_input.llm_input,
validated_sampling_params=job_input.sampling_params,
batch_size=job_input.max_batch_size,
stream=job_input.stream,
apply_chat_template=job_input.apply_chat_template,
request_id=job_input.request_id,
batch_size_growth_factor=job_input.batch_size_growth_factor,
min_batch_size=job_input.min_batch_size
):
yield batch
except Exception as e:
yield {"error": create_error_response(str(e)).model_dump()}
async def _generate_vllm(self, llm_input, validated_sampling_params, batch_size, stream, apply_chat_template, request_id, batch_size_growth_factor, min_batch_size: str) -> AsyncGenerator[dict, None]:
if apply_chat_template or isinstance(llm_input, list):
llm_input = self.tokenizer.apply_chat_template(llm_input)
results_generator = self.llm.generate(llm_input, validated_sampling_params, request_id)
n_responses, n_input_tokens, is_first_output = validated_sampling_params.n, 0, True
last_output_texts, token_counters = ["" for _ in range(n_responses)], {"batch": 0, "total": 0}
batch = {
"choices": [{"tokens": []} for _ in range(n_responses)],
}
max_batch_size = batch_size or self.default_batch_size
batch_size_growth_factor, min_batch_size = batch_size_growth_factor or self.batch_size_growth_factor, min_batch_size or self.min_batch_size
batch_size = BatchSize(max_batch_size, min_batch_size, batch_size_growth_factor)
async for request_output in results_generator:
if is_first_output: # Count input tokens only once
n_input_tokens = len(request_output.prompt_token_ids)
is_first_output = False
for output in request_output.outputs:
output_index = output.index
token_counters["total"] += 1
if stream:
new_output = output.text[len(last_output_texts[output_index]):]
batch["choices"][output_index]["tokens"].append(new_output)
token_counters["batch"] += 1
if token_counters["batch"] >= batch_size.current_batch_size:
batch["usage"] = {
"input": n_input_tokens,
"output": token_counters["total"],
}
yield batch
batch = {
"choices": [{"tokens": []} for _ in range(n_responses)],
}
token_counters["batch"] = 0
batch_size.update()
last_output_texts[output_index] = output.text
if not stream:
for output_index, output in enumerate(last_output_texts):
batch["choices"][output_index]["tokens"] = [output]
token_counters["batch"] += 1
if token_counters["batch"] > 0:
batch["usage"] = {"input": n_input_tokens, "output": token_counters["total"]}
yield batch
def _initialize_llm(self):
try:
start = time.time()
engine = AsyncLLMEngine.from_engine_args(self.engine_args)
end = time.time()
logging.info(f"Initialized vLLM engine in {end - start:.2f}s")
return engine
except Exception as e:
logging.error("Error initializing vLLM engine: %s", e)
raise e
class OpenAIvLLMEngine(vLLMEngine):
def __init__(self, vllm_engine):
super().__init__(vllm_engine)
self.served_model_name = os.getenv("OPENAI_SERVED_MODEL_NAME_OVERRIDE") or self.engine_args.model
self.response_role = os.getenv("OPENAI_RESPONSE_ROLE") or "assistant"
asyncio.run(self._initialize_engines())
self.raw_openai_output = bool(int(os.getenv("RAW_OPENAI_OUTPUT", 1)))
async def _initialize_engines(self):
self.model_config = await self.llm.get_model_config()
self.base_model_paths = [
BaseModelPath(name=self.engine_args.model, model_path=self.engine_args.model)
]
lora_modules = os.getenv('LORA_MODULES', None)
if lora_modules is not None:
try:
lora_modules = json.loads(lora_modules)
lora_modules = [LoRAModulePath(**lora_modules)]
except:
lora_modules = None
self.chat_engine = OpenAIServingChat(
engine_client=self.llm,
model_config=self.model_config,
base_model_paths=self.base_model_paths,
response_role=self.response_role,
chat_template=self.tokenizer.tokenizer.chat_template,
lora_modules=lora_modules,
prompt_adapters=None,
request_logger=None
)
self.completion_engine = OpenAIServingCompletion(
engine_client=self.llm,
model_config=self.model_config,
base_model_paths=self.base_model_paths,
lora_modules=lora_modules,
prompt_adapters=None,
request_logger=None
)
async def generate(self, openai_request: JobInput):
if openai_request.openai_route == "/v1/models":
yield await self._handle_model_request()
elif openai_request.openai_route in ["/v1/chat/completions", "/v1/completions"]:
async for response in self._handle_chat_or_completion_request(openai_request):
yield response
else:
yield create_error_response("Invalid route").model_dump()
async def _handle_model_request(self):
models = await self.chat_engine.show_available_models()
return models.model_dump()
async def _handle_chat_or_completion_request(self, openai_request: JobInput):
if openai_request.openai_route == "/v1/chat/completions":
request_class = ChatCompletionRequest
generator_function = self.chat_engine.create_chat_completion
elif openai_request.openai_route == "/v1/completions":
request_class = CompletionRequest
generator_function = self.completion_engine.create_completion
try:
request = request_class(
**openai_request.openai_input
)
except Exception as e:
yield create_error_response(str(e)).model_dump()
return
dummy_request = DummyRequest()
response_generator = await generator_function(request, raw_request=dummy_request)
if not openai_request.openai_input.get("stream") or isinstance(response_generator, ErrorResponse):
yield response_generator.model_dump()
else:
batch = []
batch_token_counter = 0
batch_size = BatchSize(self.default_batch_size, self.min_batch_size, self.batch_size_growth_factor)
async for chunk_str in response_generator:
if "data" in chunk_str:
if self.raw_openai_output:
data = chunk_str
elif "[DONE]" in chunk_str:
continue
else:
data = json.loads(chunk_str.removeprefix("data: ").rstrip("\n\n")) if not self.raw_openai_output else chunk_str
batch.append(data)
batch_token_counter += 1
if batch_token_counter >= batch_size.current_batch_size:
if self.raw_openai_output:
batch = "".join(batch)
yield batch
batch = []
batch_token_counter = 0
batch_size.update()
if batch:
if self.raw_openai_output:
batch = "".join(batch)
yield batch