|
import os |
|
import json |
|
import logging |
|
from torch.cuda import device_count |
|
from vllm import AsyncEngineArgs |
|
from vllm.model_executor.model_loader.tensorizer import TensorizerConfig |
|
|
|
RENAME_ARGS_MAP = { |
|
"MODEL_NAME": "model", |
|
"MODEL_REVISION": "revision", |
|
"TOKENIZER_NAME": "tokenizer", |
|
"MAX_CONTEXT_LEN_TO_CAPTURE": "max_seq_len_to_capture" |
|
} |
|
|
|
DEFAULT_ARGS = { |
|
"disable_log_stats": os.getenv('DISABLE_LOG_STATS', 'False').lower() == 'true', |
|
"disable_log_requests": os.getenv('DISABLE_LOG_REQUESTS', 'False').lower() == 'true', |
|
"gpu_memory_utilization": float(os.getenv('GPU_MEMORY_UTILIZATION', 0.95)), |
|
"pipeline_parallel_size": int(os.getenv('PIPELINE_PARALLEL_SIZE', 1)), |
|
"tensor_parallel_size": int(os.getenv('TENSOR_PARALLEL_SIZE', 1)), |
|
"served_model_name": os.getenv('SERVED_MODEL_NAME', None), |
|
"tokenizer": os.getenv('TOKENIZER', None), |
|
"skip_tokenizer_init": os.getenv('SKIP_TOKENIZER_INIT', 'False').lower() == 'true', |
|
"tokenizer_mode": os.getenv('TOKENIZER_MODE', 'auto'), |
|
"trust_remote_code": os.getenv('TRUST_REMOTE_CODE', 'False').lower() == 'true', |
|
"download_dir": os.getenv('DOWNLOAD_DIR', None), |
|
"load_format": os.getenv('LOAD_FORMAT', 'auto'), |
|
"dtype": os.getenv('DTYPE', 'auto'), |
|
"kv_cache_dtype": os.getenv('KV_CACHE_DTYPE', 'auto'), |
|
"quantization_param_path": os.getenv('QUANTIZATION_PARAM_PATH', None), |
|
"seed": int(os.getenv('SEED', 0)), |
|
"max_model_len": int(os.getenv('MAX_MODEL_LEN', 0)) or None, |
|
"worker_use_ray": os.getenv('WORKER_USE_RAY', 'False').lower() == 'true', |
|
"distributed_executor_backend": os.getenv('DISTRIBUTED_EXECUTOR_BACKEND', None), |
|
"max_parallel_loading_workers": int(os.getenv('MAX_PARALLEL_LOADING_WORKERS', 0)) or None, |
|
"block_size": int(os.getenv('BLOCK_SIZE', 16)), |
|
"enable_prefix_caching": os.getenv('ENABLE_PREFIX_CACHING', 'False').lower() == 'true', |
|
"disable_sliding_window": os.getenv('DISABLE_SLIDING_WINDOW', 'False').lower() == 'true', |
|
"use_v2_block_manager": os.getenv('USE_V2_BLOCK_MANAGER', 'False').lower() == 'true', |
|
"swap_space": int(os.getenv('SWAP_SPACE', 4)), |
|
"cpu_offload_gb": int(os.getenv('CPU_OFFLOAD_GB', 0)), |
|
"max_num_batched_tokens": int(os.getenv('MAX_NUM_BATCHED_TOKENS', 0)) or None, |
|
"max_num_seqs": int(os.getenv('MAX_NUM_SEQS', 256)), |
|
"max_logprobs": int(os.getenv('MAX_LOGPROBS', 20)), |
|
"revision": os.getenv('REVISION', None), |
|
"code_revision": os.getenv('CODE_REVISION', None), |
|
"rope_scaling": os.getenv('ROPE_SCALING', None), |
|
"rope_theta": float(os.getenv('ROPE_THETA', 0)) or None, |
|
"tokenizer_revision": os.getenv('TOKENIZER_REVISION', None), |
|
"quantization": os.getenv('QUANTIZATION', None), |
|
"enforce_eager": os.getenv('ENFORCE_EAGER', 'False').lower() == 'true', |
|
"max_context_len_to_capture": int(os.getenv('MAX_CONTEXT_LEN_TO_CAPTURE', 0)) or None, |
|
"max_seq_len_to_capture": int(os.getenv('MAX_SEQ_LEN_TO_CAPTURE', 8192)), |
|
"disable_custom_all_reduce": os.getenv('DISABLE_CUSTOM_ALL_REDUCE', 'False').lower() == 'true', |
|
"tokenizer_pool_size": int(os.getenv('TOKENIZER_POOL_SIZE', 0)), |
|
"tokenizer_pool_type": os.getenv('TOKENIZER_POOL_TYPE', 'ray'), |
|
"tokenizer_pool_extra_config": os.getenv('TOKENIZER_POOL_EXTRA_CONFIG', None), |
|
"enable_lora": os.getenv('ENABLE_LORA', 'False').lower() == 'true', |
|
"max_loras": int(os.getenv('MAX_LORAS', 1)), |
|
"max_lora_rank": int(os.getenv('MAX_LORA_RANK', 16)), |
|
"enable_prompt_adapter": os.getenv('ENABLE_PROMPT_ADAPTER', 'False').lower() == 'true', |
|
"max_prompt_adapters": int(os.getenv('MAX_PROMPT_ADAPTERS', 1)), |
|
"max_prompt_adapter_token": int(os.getenv('MAX_PROMPT_ADAPTER_TOKEN', 0)), |
|
"fully_sharded_loras": os.getenv('FULLY_SHARDED_LORAS', 'False').lower() == 'true', |
|
"lora_extra_vocab_size": int(os.getenv('LORA_EXTRA_VOCAB_SIZE', 256)), |
|
"long_lora_scaling_factors": tuple(map(float, os.getenv('LONG_LORA_SCALING_FACTORS', '').split(','))) if os.getenv('LONG_LORA_SCALING_FACTORS') else None, |
|
"lora_dtype": os.getenv('LORA_DTYPE', 'auto'), |
|
"max_cpu_loras": int(os.getenv('MAX_CPU_LORAS', 0)) or None, |
|
"device": os.getenv('DEVICE', 'auto'), |
|
"ray_workers_use_nsight": os.getenv('RAY_WORKERS_USE_NSIGHT', 'False').lower() == 'true', |
|
"num_gpu_blocks_override": int(os.getenv('NUM_GPU_BLOCKS_OVERRIDE', 0)) or None, |
|
"num_lookahead_slots": int(os.getenv('NUM_LOOKAHEAD_SLOTS', 0)), |
|
"model_loader_extra_config": os.getenv('MODEL_LOADER_EXTRA_CONFIG', None), |
|
"ignore_patterns": os.getenv('IGNORE_PATTERNS', None), |
|
"preemption_mode": os.getenv('PREEMPTION_MODE', None), |
|
"scheduler_delay_factor": float(os.getenv('SCHEDULER_DELAY_FACTOR', 0.0)), |
|
"enable_chunked_prefill": os.getenv('ENABLE_CHUNKED_PREFILL', None), |
|
"guided_decoding_backend": os.getenv('GUIDED_DECODING_BACKEND', 'outlines'), |
|
"speculative_model": os.getenv('SPECULATIVE_MODEL', None), |
|
"speculative_draft_tensor_parallel_size": int(os.getenv('SPECULATIVE_DRAFT_TENSOR_PARALLEL_SIZE', 0)) or None, |
|
"num_speculative_tokens": int(os.getenv('NUM_SPECULATIVE_TOKENS', 0)) or None, |
|
"speculative_max_model_len": int(os.getenv('SPECULATIVE_MAX_MODEL_LEN', 0)) or None, |
|
"speculative_disable_by_batch_size": int(os.getenv('SPECULATIVE_DISABLE_BY_BATCH_SIZE', 0)) or None, |
|
"ngram_prompt_lookup_max": int(os.getenv('NGRAM_PROMPT_LOOKUP_MAX', 0)) or None, |
|
"ngram_prompt_lookup_min": int(os.getenv('NGRAM_PROMPT_LOOKUP_MIN', 0)) or None, |
|
"spec_decoding_acceptance_method": os.getenv('SPEC_DECODING_ACCEPTANCE_METHOD', 'rejection_sampler'), |
|
"typical_acceptance_sampler_posterior_threshold": float(os.getenv('TYPICAL_ACCEPTANCE_SAMPLER_POSTERIOR_THRESHOLD', 0)) or None, |
|
"typical_acceptance_sampler_posterior_alpha": float(os.getenv('TYPICAL_ACCEPTANCE_SAMPLER_POSTERIOR_ALPHA', 0)) or None, |
|
"qlora_adapter_name_or_path": os.getenv('QLORA_ADAPTER_NAME_OR_PATH', None), |
|
"disable_logprobs_during_spec_decoding": os.getenv('DISABLE_LOGPROBS_DURING_SPEC_DECODING', None), |
|
"otlp_traces_endpoint": os.getenv('OTLP_TRACES_ENDPOINT', None), |
|
"use_v2_block_manager": os.getenv('USE_V2_BLOCK_MANAGER', 'true') |
|
} |
|
|
|
def match_vllm_args(args): |
|
"""Rename args to match vllm by: |
|
1. Renaming keys to lower case |
|
2. Renaming keys to match vllm |
|
3. Filtering args to match vllm's AsyncEngineArgs |
|
|
|
Args: |
|
args (dict): Dictionary of args |
|
|
|
Returns: |
|
dict: Dictionary of args with renamed keys |
|
""" |
|
renamed_args = {RENAME_ARGS_MAP.get(k, k): v for k, v in args.items()} |
|
matched_args = {k: v for k, v in renamed_args.items() if k in AsyncEngineArgs.__dataclass_fields__} |
|
return {k: v for k, v in matched_args.items() if v not in [None, ""]} |
|
def get_local_args(): |
|
""" |
|
Retrieve local arguments from a JSON file. |
|
|
|
Returns: |
|
dict: Local arguments. |
|
""" |
|
if not os.path.exists("/local_model_args.json"): |
|
return {} |
|
|
|
with open("/local_model_args.json", "r") as f: |
|
local_args = json.load(f) |
|
|
|
if local_args.get("MODEL_NAME") is None: |
|
raise ValueError("Model name not found in /local_model_args.json. There was a problem when baking the model in.") |
|
|
|
logging.info(f"Using baked in model with args: {local_args}") |
|
os.environ["TRANSFORMERS_OFFLINE"] = "1" |
|
os.environ["HF_HUB_OFFLINE"] = "1" |
|
|
|
return local_args |
|
def get_engine_args(): |
|
|
|
args = DEFAULT_ARGS |
|
|
|
|
|
args.update(os.environ) |
|
|
|
|
|
args.update(get_local_args()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
args = match_vllm_args(args) |
|
|
|
|
|
num_gpus = device_count() |
|
if num_gpus > 1: |
|
args["tensor_parallel_size"] = num_gpus |
|
args["max_parallel_loading_workers"] = None |
|
if os.getenv("MAX_PARALLEL_LOADING_WORKERS"): |
|
logging.warning("Overriding MAX_PARALLEL_LOADING_WORKERS with None because more than 1 GPU is available.") |
|
|
|
|
|
if args.get("kv_cache_dtype") == "fp8_e5m2": |
|
args["kv_cache_dtype"] = "fp8" |
|
logging.warning("Using fp8_e5m2 is deprecated. Please use fp8 instead.") |
|
if os.getenv("MAX_CONTEXT_LEN_TO_CAPTURE"): |
|
args["max_seq_len_to_capture"] = int(os.getenv("MAX_CONTEXT_LEN_TO_CAPTURE")) |
|
logging.warning("Using MAX_CONTEXT_LEN_TO_CAPTURE is deprecated. Please use MAX_SEQ_LEN_TO_CAPTURE instead.") |
|
|
|
|
|
|
|
|
|
|
|
return AsyncEngineArgs(**args) |
|
|