Datasets:
Size:
10K<n<100K
License:
annotations_creators: | |
- expert-generated | |
language_creators: | |
- expert-generated | |
language: | |
- de | |
- en | |
- es | |
- fr | |
- it | |
license: | |
- cc-by-sa-4.0 | |
multilinguality: | |
- multilingual | |
size_categories: | |
- 10K<n<100K | |
source_datasets: | |
- original | |
task_categories: | |
- text-generation | |
- fill-mask | |
- text-classification | |
task_ids: | |
- dialogue-modeling | |
- language-modeling | |
- masked-language-modeling | |
paperswithcode_id: null | |
pretty_name: MIAM | |
configs: | |
- dihana | |
- ilisten | |
- loria | |
- maptask | |
- vm2 | |
tags: | |
- dialogue-act-classification | |
# Dataset Card for MIAM | |
## Table of Contents | |
- [Dataset Description](#dataset-description) | |
- [Dataset Summary](#dataset-summary) | |
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) | |
- [Languages](#languages) | |
- [Dataset Structure](#dataset-structure) | |
- [Data Instances](#data-instances) | |
- [Data Fields](#data-fields) | |
- [Data Splits](#data-splits) | |
- [Dataset Creation](#dataset-creation) | |
- [Curation Rationale](#curation-rationale) | |
- [Source Data](#source-data) | |
- [Annotations](#annotations) | |
- [Personal and Sensitive Information](#personal-and-sensitive-information) | |
- [Considerations for Using the Data](#considerations-for-using-the-data) | |
- [Social Impact of Dataset](#social-impact-of-dataset) | |
- [Discussion of Biases](#discussion-of-biases) | |
- [Other Known Limitations](#other-known-limitations) | |
- [Additional Information](#additional-information) | |
- [Dataset Curators](#dataset-curators) | |
- [Licensing Information](#licensing-information) | |
- [Citation Information](#citation-information) | |
- [Contributions](#contributions) | |
## Dataset Description | |
- **Homepage:** [N/A] | |
- **Repository:** [N/A] | |
- **Paper:** [N/A] | |
- **Leaderboard:** [N/A] | |
- **Point of Contact:** [N/A] | |
### Dataset Summary | |
Multilingual dIalogAct benchMark is a collection of resources for training, evaluating, and | |
analyzing natural language understanding systems specifically designed for spoken language. Datasets | |
are in English, French, German, Italian and Spanish. They cover a variety of domains including | |
spontaneous speech, scripted scenarios, and joint task completion. All datasets contain dialogue act | |
labels. | |
### Supported Tasks and Leaderboards | |
[More Information Needed] | |
### Languages | |
English, French, German, Italian, Spanish. | |
## Dataset Structure | |
### Data Instances | |
#### Dihana Corpus | |
For the `dihana` configuration one example from the dataset is: | |
``` | |
{ | |
'Speaker': 'U', | |
'Utterance': 'Hola , quería obtener el horario para ir a Valencia', | |
'Dialogue_Act': 9, # 'Pregunta' ('Request') | |
'Dialogue_ID': '0', | |
'File_ID': 'B209_BA5c3', | |
} | |
``` | |
#### iLISTEN Corpus | |
For the `ilisten` configuration one example from the dataset is: | |
``` | |
{ | |
'Speaker': 'T_11_U11', | |
'Utterance': 'ok, grazie per le informazioni', | |
'Dialogue_Act': 6, # 'KIND-ATTITUDE_SMALL-TALK' | |
'Dialogue_ID': '0', | |
} | |
``` | |
#### LORIA Corpus | |
For the `loria` configuration one example from the dataset is: | |
``` | |
{ | |
'Speaker': 'Samir', | |
'Utterance': 'Merci de votre visite, bonne chance, et à la prochaine !', | |
'Dialogue_Act': 21, # 'quit' | |
'Dialogue_ID': '5', | |
'File_ID': 'Dial_20111128_113927', | |
} | |
``` | |
#### HCRC MapTask Corpus | |
For the `maptask` configuration one example from the dataset is: | |
``` | |
{ | |
'Speaker': 'f', | |
'Utterance': 'is it underneath the rope bridge or to the left', | |
'Dialogue_Act': 6, # 'query_w' | |
'Dialogue_ID': '0', | |
'File_ID': 'q4ec1', | |
} | |
``` | |
#### VERBMOBIL | |
For the `vm2` configuration one example from the dataset is: | |
``` | |
{ | |
'Utterance': 'ja was sind viereinhalb Stunden Bahngerüttel gegen siebzig Minuten Turbulenzen im Flugzeug', | |
'Utterance': 'Utterance', | |
'Dialogue_Act': 'Dialogue_Act', # 'INFORM' | |
'Speaker': 'A', | |
'Dialogue_ID': '66', | |
} | |
``` | |
### Data Fields | |
For the `dihana` configuration, the different fields are: | |
- `Speaker`: identifier of the speaker as a string. | |
- `Utterance`: Utterance as a string. | |
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of 'Afirmacion' (0) [Feedback_positive], 'Apertura' (1) [Opening], 'Cierre' (2) [Closing], 'Confirmacion' (3) [Acknowledge], 'Espera' (4) [Hold], 'Indefinida' (5) [Undefined], 'Negacion' (6) [Feedback_negative], 'No_entendido' (7) [Request_clarify], 'Nueva_consulta' (8) [New_request], 'Pregunta' (9) [Request] or 'Respuesta' (10) [Reply]. | |
- `Dialogue_ID`: identifier of the dialogue as a string. | |
- `File_ID`: identifier of the source file as a string. | |
For the `ilisten` configuration, the different fields are: | |
- `Speaker`: identifier of the speaker as a string. | |
- `Utterance`: Utterance as a string. | |
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of 'AGREE' (0), 'ANSWER' (1), 'CLOSING' (2), 'ENCOURAGE-SORRY' (3), 'GENERIC-ANSWER' (4), 'INFO-REQUEST' (5), 'KIND-ATTITUDE_SMALL-TALK' (6), 'OFFER-GIVE-INFO' (7), 'OPENING' (8), 'PERSUASION-SUGGEST' (9), 'QUESTION' (10), 'REJECT' (11), 'SOLICITATION-REQ_CLARIFICATION' (12), 'STATEMENT' (13) or 'TALK-ABOUT-SELF' (14). | |
- `Dialogue_ID`: identifier of the dialogue as a string. | |
For the `loria` configuration, the different fields are: | |
- `Speaker`: identifier of the speaker as a string. | |
- `Utterance`: Utterance as a string. | |
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of 'ack' (0), 'ask' (1), 'find_mold' (2), 'find_plans' (3), 'first_step' (4), 'greet' (5), 'help' (6), 'inform' (7), 'inform_engine' (8), 'inform_job' (9), 'inform_material_space' (10), 'informer_conditioner' (11), 'informer_decoration' (12), 'informer_elcomps' (13), 'informer_end_manufacturing' (14), 'kindAtt' (15), 'manufacturing_reqs' (16), 'next_step' (17), 'no' (18), 'other' (19), 'quality_control' (20), 'quit' (21), 'reqRep' (22), 'security_policies' (23), 'staff_enterprise' (24), 'staff_job' (25), 'studies_enterprise' (26), 'studies_job' (27), 'todo_failure' (28), 'todo_irreparable' (29), 'yes' (30) | |
- `Dialogue_ID`: identifier of the dialogue as a string. | |
- `File_ID`: identifier of the source file as a string. | |
For the `maptask` configuration, the different fields are: | |
- `Speaker`: identifier of the speaker as a string. | |
- `Utterance`: Utterance as a string. | |
- `Dialogue_Act`: Dialog act label of the utterance. It can be one of 'acknowledge' (0), 'align' (1), 'check' (2), 'clarify' (3), 'explain' (4), 'instruct' (5), 'query_w' (6), 'query_yn' (7), 'ready' (8), 'reply_n' (9), 'reply_w' (10) or 'reply_y' (11). | |
- `Dialogue_ID`: identifier of the dialogue as a string. | |
- `File_ID`: identifier of the source file as a string. | |
For the `vm2` configuration, the different fields are: | |
- `Utterance`: Utterance as a string. | |
- `Dialogue_Act`: Dialogue act label of the utterance. It can be one of 'ACCEPT' (0), 'BACKCHANNEL' (1), 'BYE' (2), 'CLARIFY' (3), 'CLOSE' (4), 'COMMIT' (5), 'CONFIRM' (6), 'DEFER' (7), 'DELIBERATE' (8), 'DEVIATE_SCENARIO' (9), 'EXCLUDE' (10), 'EXPLAINED_REJECT' (11), 'FEEDBACK' (12), 'FEEDBACK_NEGATIVE' (13), 'FEEDBACK_POSITIVE' (14), 'GIVE_REASON' (15), 'GREET' (16), 'INFORM' (17), 'INIT' (18), 'INTRODUCE' (19), 'NOT_CLASSIFIABLE' (20), 'OFFER' (21), 'POLITENESS_FORMULA' (22), 'REJECT' (23), 'REQUEST' (24), 'REQUEST_CLARIFY' (25), 'REQUEST_COMMENT' (26), 'REQUEST_COMMIT' (27), 'REQUEST_SUGGEST' (28), 'SUGGEST' (29), 'THANK' (30). | |
- `Speaker`: Speaker as a string. | |
- `Dialogue_ID`: identifier of the dialogue as a string. | |
### Data Splits | |
| Dataset name | Train | Valid | Test | | |
| ------------ | ----- | ----- | ---- | | |
| dihana | 19063 | 2123 | 2361 | | |
| ilisten | 1986 | 230 | 971 | | |
| loria | 8465 | 942 | 1047 | | |
| maptask | 25382 | 5221 | 5335 | | |
| vm2 | 25060 | 2860 | 2855 | | |
## Dataset Creation | |
### Curation Rationale | |
[More Information Needed] | |
### Source Data | |
#### Initial Data Collection and Normalization | |
[More Information Needed] | |
#### Who are the source language producers? | |
[More Information Needed] | |
### Annotations | |
#### Annotation process | |
[More Information Needed] | |
#### Who are the annotators? | |
[More Information Needed] | |
### Personal and Sensitive Information | |
[More Information Needed] | |
## Considerations for Using the Data | |
### Social Impact of Dataset | |
[More Information Needed] | |
### Discussion of Biases | |
[More Information Needed] | |
### Other Known Limitations | |
[More Information Needed] | |
## Additional Information | |
### Dataset Curators | |
Anonymous. | |
### Licensing Information | |
This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Unported License](https://creativecommons.org/licenses/by-sa/4.0/). | |
### Citation Information | |
``` | |
@inproceedings{colombo-etal-2021-code, | |
title = "Code-switched inspired losses for spoken dialog representations", | |
author = "Colombo, Pierre and | |
Chapuis, Emile and | |
Labeau, Matthieu and | |
Clavel, Chlo{\'e}", | |
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", | |
month = nov, | |
year = "2021", | |
address = "Online and Punta Cana, Dominican Republic", | |
publisher = "Association for Computational Linguistics", | |
url = "https://aclanthology.org/2021.emnlp-main.656", | |
doi = "10.18653/v1/2021.emnlp-main.656", | |
pages = "8320--8337", | |
abstract = "Spoken dialogue systems need to be able to handle both multiple languages and multilinguality inside a conversation (\textit{e.g} in case of code-switching). In this work, we introduce new pretraining losses tailored to learn generic multilingual spoken dialogue representations. The goal of these losses is to expose the model to code-switched language. In order to scale up training, we automatically build a pretraining corpus composed of multilingual conversations in five different languages (French, Italian, English, German and Spanish) from OpenSubtitles, a huge multilingual corpus composed of 24.3G tokens. We test the generic representations on MIAM, a new benchmark composed of five dialogue act corpora on the same aforementioned languages as well as on two novel multilingual tasks (\textit{i.e} multilingual mask utterance retrieval and multilingual inconsistency identification). Our experiments show that our new losses achieve a better performance in both monolingual and multilingual settings.", | |
} | |
``` | |
### Contributions | |
Thanks to [@eusip](https://github.com/eusip) and [@PierreColombo](https://github.com/PierreColombo) for adding this dataset. |