|
--- |
|
license: apache-2.0 |
|
task_categories: |
|
- text-to-image |
|
language: |
|
- en |
|
tags: |
|
- text-rendering |
|
- ocr |
|
- synthetic-data |
|
- generative-models |
|
- fine-tuning |
|
size_categories: |
|
- 1M<n<10M |
|
pretty_name: Text Render 2M |
|
--- |
|
|
|
# Text Render 2M Dataset |
|
|
|
A large-scale dataset containing 2 million text rendering image-text pairs for training generative models to improve text rendering performance. |
|
|
|
## Dataset Structure |
|
|
|
- **`image`**: Rendered text image in PNG format |
|
- **`text`**: Corresponding text content |
|
- **`file_name`**: Original filename |
|
- **`folder_id`**: Folder identifier |
|
|
|
## Usage |
|
|
|
This dataset is designed for fine-tuning generative models to improve text rendering capabilities. |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
dataset = load_dataset("PosterCraft/Text-Render-2M") |
|
print(dataset) |
|
|
|
# Access a sample |
|
sample = dataset['train'][0] |
|
print(sample['text']) |
|
sample['image'].show() |
|
``` |
|
|
|
## Applications |
|
|
|
- Fine-tuning text-to-image models for better text rendering |
|
|
|
## License |
|
|
|
Apache License 2.0 |
|
|