Datasets:
QCRI
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:

Add paper link and Github link to LlamaLens dataset card

#2
by nielsr HF staff - opened
Files changed (1) hide show
  1. README.md +13 -77
README.md CHANGED
@@ -1,20 +1,18 @@
1
  ---
 
 
2
  license: cc-by-nc-sa-4.0
 
 
3
  task_categories:
4
  - text-classification
5
- language:
6
- - en
7
  tags:
8
  - Social Media
9
  - News Media
10
  - Sentiment
11
  - Stance
12
  - Emotion
13
- pretty_name: >-
14
- LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media
15
- Content -- English
16
- size_categories:
17
- - 10K<n<100K
18
  dataset_info:
19
  - config_name: QProp
20
  splits:
@@ -293,74 +291,15 @@ configs:
293
 
294
  # LlamaLens: Specialized Multilingual LLM Dataset
295
 
296
- ## Overview
297
- LlamaLens is a specialized multilingual LLM designed for analyzing news and social media content. It focuses on 18 NLP tasks, leveraging 52 datasets across Arabic, English, and Hindi.
298
 
 
 
299
 
300
  <p align="center"> <img src="./capablities_tasks_datasets.png" style="width: 40%;" id="title-icon"> </p>
301
 
302
- ## LlamaLens
303
- This repo includes scripts needed to run our full pipeline, including data preprocessing and sampling, instruction dataset creation, model fine-tuning, inference and evaluation.
304
-
305
- ### Features
306
- - Multilingual support (Arabic, English, Hindi)
307
- - 18 NLP tasks with 52 datasets
308
- - Optimized for news and social media content analysis
309
-
310
- ## 📂 Dataset Overview
311
-
312
- ### English Datasets
313
-
314
- | **Task** | **Dataset** | **# Labels** | **# Train** | **# Test** | **# Dev** |
315
- |---------------------------|------------------------------|--------------|-------------|------------|-----------|
316
- | Checkworthiness | CT24_T1 | 2 | 22,403 | 1,031 | 318 |
317
- | Claim | claim-detection | 2 | 23,224 | 7,267 | 5,815 |
318
- | Cyberbullying | Cyberbullying | 6 | 32,551 | 9,473 | 4,751 |
319
- | Emotion | emotion | 6 | 280,551 | 82,454 | 41,429 |
320
- | Factuality | News_dataset | 2 | 28,147 | 8,616 | 4,376 |
321
- | Factuality | Politifact | 6 | 14,799 | 4,230 | 2,116 |
322
- | News Genre Categorization | CNN_News_Articles_2011-2022 | 6 | 32,193 | 5,682 | 9,663 |
323
- | News Genre Categorization | News_Category_Dataset | 42 | 145,748 | 41,740 | 20,899 |
324
- | News Genre Categorization | SemEval23T3-subtask1 | 3 | 302 | 83 | 130 |
325
- | Summarization | xlsum | -- | 306,493 | 11,535 | 11,535 |
326
- | Offensive Language | Offensive_Hateful_Dataset_New | 2 | 42,000 | 5,252 | 5,254 |
327
- | Offensive Language | offensive_language_dataset | 2 | 29,216 | 3,653 | 3,653 |
328
- | Offensive/Hate-Speech | hate-offensive-speech | 3 | 48,944 | 2,799 | 2,802 |
329
- | Propaganda | QProp | 2 | 35,986 | 10,159 | 5,125 |
330
- | Sarcasm | News-Headlines-Dataset-For-Sarcasm-Detection | 2 | 19,965 | 5,719 | 2,858 |
331
- | Sentiment | NewsMTSC-dataset | 3 | 7,739 | 747 | 320 |
332
- | Subjectivity | clef2024-checkthat-lab | 2 | 825 | 484 | 219 |
333
-
334
-
335
- ## Results
336
-
337
- Below, we present the performance of **L-Lens: LlamaLens** , where *"Eng"* refers to the English-instructed model and *"Native"* refers to the model trained with native language instructions. The results are compared against the SOTA (where available) and the Base: **Llama-Instruct 3.1 baseline**. The **Δ** (Delta) column indicates the difference between LlamaLens and the SOTA performance, calculated as (LlamaLens – SOTA).
338
-
339
-
340
- | **Task** | **Dataset** | **Metric** | **SOTA** | **Base** | **L-Lens-Eng** | **L-Lens-Native** | **Δ (L-Lens (Eng) - SOTA)** |
341
- |:----------------------------------:|:--------------------------------------------:|:----------:|:--------:|:---------------------:|:---------------------:|:--------------------:|:------------------------:|
342
- | Checkworthiness Detection | CT24_checkworthy | f1_pos | 0.753 | 0.404 | 0.942 | 0.942 | 0.189 |
343
- | Claim Detection | claim-detection | Mi-F1 | -- | 0.545 | 0.864 | 0.889 | -- |
344
- | Cyberbullying Detection | Cyberbullying | Acc | 0.907 | 0.175 | 0.836 | 0.855 | -0.071 |
345
- | Emotion Detection | emotion | Ma-F1 | 0.790 | 0.353 | 0.803 | 0.808 | 0.013 |
346
- | Factuality | News_dataset | Acc | 0.920 | 0.654 | 1.000 | 1.000 | 0.080 |
347
- | Factuality | Politifact | W-F1 | 0.490 | 0.121 | 0.287 | 0.311 | -0.203 |
348
- | News Categorization | CNN_News_Articles_2011-2022 | Acc | 0.940 | 0.644 | 0.970 | 0.970 | 0.030 |
349
- | News Categorization | News_Category_Dataset | Ma-F1 | 0.769 | 0.970 | 0.824 | 0.520 | 0.055 |
350
- | News Genre Categorisation | SemEval23T3-subtask1 | Mi-F1 | 0.815 | 0.687 | 0.241 | 0.253 | -0.574 |
351
- | News Summarization | xlsum | R-2 | 0.152 | 0.074 | 0.182 | 0.181 | 0.030 |
352
- | Offensive Language Detection | Offensive_Hateful_Dataset_New | Mi-F1 | -- | 0.692 | 0.814 | 0.813 | -- |
353
- | Offensive Language Detection | offensive_language_dataset | Mi-F1 | 0.994 | 0.646 | 0.899 | 0.893 | -0.095 |
354
- | Offensive Language and Hate Speech | hate-offensive-speech | Acc | 0.945 | 0.602 | 0.931 | 0.935 | -0.014 |
355
- | Propaganda Detection | QProp | Ma-F1 | 0.667 | 0.759 | 0.963 | 0.973 | 0.296 |
356
- | Sarcasm Detection | News-Headlines-Dataset-For-Sarcasm-Detection | Acc | 0.897 | 0.668 | 0.936 | 0.947 | 0.039 |
357
- | Sentiment Classification | NewsMTSC-dataset | Ma-F1 | 0.817 | 0.628 | 0.751 | 0.748 | -0.066 |
358
- | Subjectivity Detection | clef2024-checkthat-lab | Ma-F1 | 0.744 | 0.535 | 0.642 | 0.628 | -0.102 |
359
- |
360
-
361
- ---
362
-
363
-
364
 
365
  ## File Format
366
 
@@ -389,14 +328,11 @@ Each JSONL file in the dataset follows a structured format with the following fi
389
  "lang": "en",
390
  "instructions": "Identify if the given text expresses an emotion and specify whether it is joy, love, fear, anger, sadness, or surprise. Return only the label without any explanation, justification, or additional text."
391
  }
392
-
393
-
394
  ```
395
- ## Model
396
- [**LlamaLens on Hugging Face**](https://huggingface.co/QCRI/LlamaLens)
397
 
398
- ## Replication Scripts
399
- [**LlamaLens GitHub Repository**](https://github.com/firojalam/LlamaLens)
 
400
 
401
 
402
  ## 📢 Citation
 
1
  ---
2
+ language:
3
+ - en
4
  license: cc-by-nc-sa-4.0
5
+ size_categories:
6
+ - 10K<n<100K
7
  task_categories:
8
  - text-classification
9
+ pretty_name: 'LlamaLens English Dataset'
 
10
  tags:
11
  - Social Media
12
  - News Media
13
  - Sentiment
14
  - Stance
15
  - Emotion
 
 
 
 
 
16
  dataset_info:
17
  - config_name: QProp
18
  splits:
 
291
 
292
  # LlamaLens: Specialized Multilingual LLM Dataset
293
 
294
+ This dataset supports the research presented in the paper [LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content](https://huggingface.co/papers/2410.15308).
 
295
 
296
+ ## Overview
297
+ LlamaLens is a specialized multilingual LLM designed for analyzing news and social media content. It focuses on 18 NLP tasks, leveraging 52 datasets across Arabic, English, and Hindi. This repository contains the English-language portion of the data.
298
 
299
  <p align="center"> <img src="./capablities_tasks_datasets.png" style="width: 40%;" id="title-icon"> </p>
300
 
301
+ ## Dataset Details
302
+ This dataset comprises various sub-datasets focusing on different text classification tasks related to news and social media analysis. A detailed breakdown of the datasets and their statistics is provided in the metadata section above.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303
 
304
  ## File Format
305
 
 
328
  "lang": "en",
329
  "instructions": "Identify if the given text expresses an emotion and specify whether it is joy, love, fear, anger, sadness, or surprise. Return only the label without any explanation, justification, or additional text."
330
  }
 
 
331
  ```
 
 
332
 
333
+ ## Model & Code
334
+ - **LlamaLens Model on Hugging Face:** [https://huggingface.co/QCRI/LlamaLens](https://huggingface.co/QCRI/LlamaLens)
335
+ - **LlamaLens GitHub Repository:** [https://github.com/firojalam/LlamaLens](https://github.com/firojalam/LlamaLens)
336
 
337
 
338
  ## 📢 Citation