Datasets:
QCRI
/

Modalities:
Text
Formats:
json
Languages:
Hindi
ArXiv:
Libraries:
Datasets
pandas
License:
LlamaLens-Hindi / README.md
AliShahroor's picture
Update Delta
61f93bb verified
---
license: cc-by-nc-sa-4.0
task_categories:
- text-classification
language:
- hi
tags:
- Social Media
- News Media
- Sentiment
- Stance
- Emotion
pretty_name: "LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content -- Hindi"
size_categories:
- 10K<n<100K
dataset_info:
- config_name: Sentiment_Analysis
splits:
- name: train
num_examples: 10039
- name: dev
num_examples: 1258
- name: test
num_examples: 1259
- config_name: MC_Hinglish1
splits:
- name: train
num_examples: 5177
- name: dev
num_examples: 2219
- name: test
num_examples: 1000
- config_name: Offensive_Speech_Detection
splits:
- name: train
num_examples: 2172
- name: dev
num_examples: 318
- name: test
num_examples: 636
- config_name: xlsum
splits:
- name: train
num_examples: 70754
- name: dev
num_examples: 8847
- name: test
num_examples: 8847
- config_name: Hindi-Hostility-Detection-CONSTRAINT-2021
splits:
- name: train
num_examples: 5718
- name: dev
num_examples: 811
- name: test
num_examples: 1651
- config_name: hate-speech-detection
splits:
- name: train
num_examples: 3327
- name: dev
num_examples: 476
- name: test
num_examples: 951
- config_name: fake-news
splits:
- name: train
num_examples: 8393
- name: dev
num_examples: 1417
- name: test
num_examples: 2743
- config_name: Natural_Language_Inference
splits:
- name: train
num_examples: 1251
- name: dev
num_examples: 537
- name: test
num_examples: 447
configs:
- config_name: Sentiment_Analysis
data_files:
- split: test
path: Sentiment_Analysis/test.json
- split: dev
path: Sentiment_Analysis/dev.json
- split: train
path: Sentiment_Analysis/train.json
- config_name: MC_Hinglish1
data_files:
- split: test
path: MC_Hinglish1/test.json
- split: dev
path: MC_Hinglish1/dev.json
- split: train
path: MC_Hinglish1/train.json
- config_name: Offensive_Speech_Detection
data_files:
- split: test
path: Offensive_Speech_Detection/test.json
- split: dev
path: Offensive_Speech_Detection/dev.json
- split: train
path: Offensive_Speech_Detection/train.json
- config_name: xlsum
data_files:
- split: test
path: xlsum/test.json
- split: dev
path: xlsum/dev.json
- split: train
path: xlsum/train.json
- config_name: Hindi-Hostility-Detection-CONSTRAINT-2021
data_files:
- split: test
path: Hindi-Hostility-Detection-CONSTRAINT-2021/test.json
- split: dev
path: Hindi-Hostility-Detection-CONSTRAINT-2021/dev.json
- split: train
path: Hindi-Hostility-Detection-CONSTRAINT-2021/train.json
- config_name: hate-speech-detection
data_files:
- split: test
path: hate-speech-detection/test.json
- split: dev
path: hate-speech-detection/dev.json
- split: train
path: hate-speech-detection/train.json
- config_name: fake-news
data_files:
- split: test
path: fake-news/test.json
- split: dev
path: fake-news/dev.json
- split: train
path: fake-news/train.json
- config_name: Natural_Language_Inference
data_files:
- split: test
path: Natural_Language_Inference/test.json
- split: dev
path: Natural_Language_Inference/dev.json
- split: train
path: Natural_Language_Inference/train.json
---
# LlamaLens: Specialized Multilingual LLM Dataset
## Overview
LlamaLens is a specialized multilingual LLM designed for analyzing news and social media content. It focuses on 19 NLP tasks, leveraging 52 datasets across Arabic, English, and Hindi.
<p align="center"> <img src="https://huggingface.co/datasets/QCRI/LlamaLens-Arabic/resolve/main/capablities_tasks_datasets.png" style="width: 40%;" id="title-icon"> </p>
## LlamaLens
This repo includes scripts needed to run our full pipeline, including data preprocessing and sampling, instruction dataset creation, model fine-tuning, inference and evaluation.
### Features
- Multilingual support (Arabic, English, Hindi)
- 19 NLP tasks with 52 datasets
- Optimized for news and social media content analysis
## 📂 Dataset Overview
### Hindi Datasets
| **Task** | **Dataset** | **# Labels** | **# Train** | **# Test** | **# Dev** |
| -------------------------- | ----------------------------------------- | ------------ | ----------- | ---------- | --------- |
| Cyberbullying | MC-Hinglish1.0 | 7 | 7,400 | 1,000 | 2,119 |
| Factuality | fake-news | 2 | 8,393 | 2,743 | 1,417 |
| Hate Speech | hate-speech-detection | 2 | 3,327 | 951 | 476 |
| Hate Speech | Hindi-Hostility-Detection-CONSTRAINT-2021 | 15 | 5,718 | 1,651 | 811 |
| Natural_Language_Inference | Natural_Language_Inference | 2 | 1,251 | 447 | 537 |
| Summarization | xlsum | -- | 70,754 | 8,847 | 8,847 |
| Offensive Speech | Offensive_Speech_Detection | 3 | 2,172 | 636 | 318 |
| Sentiment | Sentiment_Analysis | 3 | 10,039 | 1,259 | 1,258 |
---
## Results
Below, we present the performance of **LlamaLens** in **Hindi** compared to existing SOTA (if available) and the Llama-Instruct baseline, The “Δ” (Delta) column here is
calculated as **(LLamalens – SOTA)**.
---
| **Task** | **Dataset** | **Metric** | **SOTA** | **Llama-instruct** | **LLamalens** | **Δ** (LLamalens - SOTA) |
|------------------------|------------------------|-----------:|--------:|--------------------:|--------------:|------------------------------:|
| NLI | NLI_dataset | W-F1 | 0.646 | 0.633 | 0.655 | 0.009 |
| News Summarization | xlsum | R-2 | 0.136 | 0.078 | 0.117 | -0.019 |
| Sentiment | Sentiment Analysis | Acc | 0.697 | 0.552 | 0.669 | -0.028 |
| Factuality | fake-news | Mi-F1 | – | 0.759 | 0.713 | – |
| Hate Speech | hate-speech-detection | Mi-F1 | 0.639 | 0.750 | 0.994 | 0.355 |
| Hate Speech | Hindi-Hostility | W-F1 | 0.841 | 0.469 | 0.720 | -0.121 |
| Offensive | Offensive Speech | Mi-F1 | 0.723 | 0.621 | 0.847 | 0.124 |
| Cyberbullying | MC_Hinglish1 | Acc | 0.609 | 0.233 | 0.587 | -0.022 |
## File Format
Each JSONL file in the dataset follows a structured format with the following fields:
- `id`: Unique identifier for each data entry.
- `original_id`: Identifier from the original dataset, if available.
- `input`: The original text that needs to be analyzed.
- `output`: The label assigned to the text after analysis.
- `dataset`: Name of the dataset the entry belongs.
- `task`: The specific task type.
- `lang`: The language of the input text.
- `instructions`: A brief set of instructions describing how the text should be labeled.
- `text`: A formatted structure including instructions and response for the task in a conversation format between the system, user, and assistant, showing the decision process.
**Example entry in JSONL file:**
```
{
"id": "2b1878df-5a4f-4f74-bcd8-e38e1c3c7cf6",
"original_id": null,
"input": "sub गंदा है पर धंधा है ये . .",
"output": "neutral",
"dataset": "Sentiment_Analysis",
"task": "Sentiment",
"lang": "hi",
"instruction": "Identify the sentiment in the text and label it as positive, negative, or neutral. Return only the label without any explanation, justification or additional text."
}
```
## Model
[**LlamaLens on Hugging Face**](https://huggingface.co/QCRI/LlamaLens)
## Replication Scripts
[**LlamaLens GitHub Repository**](https://github.com/firojalam/LlamaLens)
## 📢 Citation
If you use this dataset, please cite our [paper](https://arxiv.org/pdf/2410.15308):
```
@article{kmainasi2024llamalensspecializedmultilingualllm,
title={LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content},
author={Mohamed Bayan Kmainasi and Ali Ezzat Shahroor and Maram Hasanain and Sahinur Rahman Laskar and Naeemul Hassan and Firoj Alam},
year={2024},
journal={arXiv preprint arXiv:2410.15308},
volume={},
number={},
pages={},
url={https://arxiv.org/abs/2410.15308},
eprint={2410.15308},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```