Datasets:
image
imagewidth (px) 2.04k
11k
| unique_id
stringlengths 14
14
| width
int32 2.04k
11k
| height
int32 2.12k
9.52k
| image_mode_on_disk
stringclasses 1
value | original_file_format
stringclasses 1
value |
---|---|---|---|---|---|
img_00001_fbd6
| 3,375 | 6,000 |
RGB
|
JPEG
|
|
img_00002_0e73
| 4,975 | 3,317 |
RGB
|
JPEG
|
|
img_00003_67ef
| 3,121 | 4,689 |
RGB
|
JPEG
|
|
img_00004_f817
| 4,896 | 3,264 |
RGB
|
JPEG
|
|
img_00005_088e
| 6,016 | 4,016 |
RGB
|
JPEG
|
|
img_00006_29b5
| 6,048 | 4,024 |
RGB
|
JPEG
|
|
img_00007_5a71
| 4,000 | 6,000 |
RGB
|
JPEG
|
|
img_00008_6c33
| 5,923 | 3,949 |
RGB
|
JPEG
|
|
img_00009_63cb
| 6,048 | 8,064 |
RGB
|
JPEG
|
|
img_00010_c013
| 5,836 | 3,891 |
RGB
|
JPEG
|
|
img_00011_486c
| 6,400 | 4,267 |
RGB
|
JPEG
|
|
img_00012_2c02
| 6,720 | 4,480 |
RGB
|
JPEG
|
|
img_00013_4624
| 4,016 | 6,016 |
RGB
|
JPEG
|
|
img_00014_47aa
| 5,450 | 3,637 |
RGB
|
JPEG
|
|
img_00015_9f74
| 5,546 | 3,697 |
RGB
|
JPEG
|
|
img_00016_29da
| 5,976 | 3,984 |
RGB
|
JPEG
|
|
img_00017_94f8
| 5,257 | 3,505 |
RGB
|
JPEG
|
|
img_00018_9735
| 3,879 | 5,819 |
RGB
|
JPEG
|
|
img_00019_85d4
| 8,000 | 4,504 |
RGB
|
JPEG
|
|
img_00020_e26b
| 9,504 | 6,336 |
RGB
|
JPEG
|
|
img_00021_89ed
| 4,331 | 4,768 |
RGB
|
JPEG
|
|
img_00022_66c8
| 4,672 | 7,008 |
RGB
|
JPEG
|
|
img_00023_f425
| 3,861 | 5,677 |
RGB
|
JPEG
|
|
img_00024_a34e
| 4,000 | 6,000 |
RGB
|
JPEG
|
|
img_00025_2f00
| 2,730 | 3,641 |
RGB
|
JPEG
|
|
img_00026_0fc3
| 3,200 | 4,800 |
RGB
|
JPEG
|
|
img_00027_35c9
| 4,032 | 3,024 |
RGB
|
JPEG
|
|
img_00028_d150
| 5,610 | 3,740 |
RGB
|
JPEG
|
|
img_00029_83d3
| 4,016 | 6,016 |
RGB
|
JPEG
|
|
img_00030_ad6e
| 3,000 | 4,831 |
RGB
|
JPEG
|
|
img_00031_2c46
| 4,000 | 6,000 |
RGB
|
JPEG
|
|
img_00032_7973
| 5,616 | 3,744 |
RGB
|
JPEG
|
|
img_00033_a1f3
| 5,716 | 3,216 |
RGB
|
JPEG
|
|
img_00034_cc65
| 6,914 | 4,731 |
RGB
|
JPEG
|
|
img_00035_7ec3
| 6,016 | 4,000 |
RGB
|
JPEG
|
|
img_00036_9016
| 3,264 | 4,896 |
RGB
|
JPEG
|
|
img_00037_282b
| 3,264 | 4,928 |
RGB
|
JPEG
|
|
img_00038_2cd4
| 3,888 | 6,000 |
RGB
|
JPEG
|
|
img_00039_cbd2
| 3,376 | 6,000 |
RGB
|
JPEG
|
|
img_00040_a659
| 5,289 | 7,929 |
RGB
|
JPEG
|
|
img_00041_7da6
| 2,624 | 3,936 |
RGB
|
JPEG
|
|
img_00042_4f23
| 4,032 | 2,268 |
RGB
|
JPEG
|
|
img_00043_c14b
| 6,955 | 4,637 |
RGB
|
JPEG
|
|
img_00044_c09c
| 4,669 | 7,000 |
RGB
|
JPEG
|
|
img_00045_2b77
| 3,952 | 5,928 |
RGB
|
JPEG
|
|
img_00046_3837
| 3,456 | 4,608 |
RGB
|
JPEG
|
|
img_00047_3c6a
| 4,000 | 5,000 |
RGB
|
JPEG
|
|
img_00048_058b
| 2,228 | 3,963 |
RGB
|
JPEG
|
|
img_00049_7d2e
| 6,336 | 9,520 |
RGB
|
JPEG
|
|
img_00050_fb36
| 4,608 | 2,592 |
RGB
|
JPEG
|
|
img_00051_0686
| 5,743 | 3,836 |
RGB
|
JPEG
|
|
img_00052_2ea3
| 7,589 | 5,062 |
RGB
|
JPEG
|
|
img_00053_757c
| 6,016 | 4,016 |
RGB
|
JPEG
|
|
img_00054_52d2
| 2,818 | 4,928 |
RGB
|
JPEG
|
|
img_00055_8231
| 3,024 | 4,032 |
RGB
|
JPEG
|
|
img_00056_7fd2
| 6,691 | 4,281 |
RGB
|
JPEG
|
|
img_00057_8ef4
| 2,750 | 2,115 |
RGB
|
JPEG
|
|
img_00058_a95d
| 2,043 | 3,047 |
RGB
|
JPEG
|
|
img_00059_ac6a
| 3,835 | 5,755 |
RGB
|
JPEG
|
|
img_00060_2738
| 4,553 | 2,561 |
RGB
|
JPEG
|
|
img_00061_787f
| 3,176 | 4,795 |
RGB
|
JPEG
|
|
img_00062_821c
| 3,389 | 5,083 |
RGB
|
JPEG
|
|
img_00063_a933
| 3,648 | 5,472 |
RGB
|
JPEG
|
|
img_00064_d5e9
| 5,464 | 3,640 |
RGB
|
JPEG
|
|
img_00065_efd7
| 3,665 | 5,498 |
RGB
|
JPEG
|
|
img_00066_45ab
| 6,240 | 3,512 |
RGB
|
JPEG
|
|
img_00067_2e53
| 3,648 | 4,752 |
RGB
|
JPEG
|
|
img_00068_686e
| 3,150 | 4,200 |
RGB
|
JPEG
|
|
img_00069_4a7e
| 5,504 | 7,496 |
RGB
|
JPEG
|
|
img_00070_13dc
| 7,952 | 5,304 |
RGB
|
JPEG
|
|
img_00071_9a0a
| 5,135 | 7,698 |
RGB
|
JPEG
|
|
img_00072_74f2
| 4,160 | 6,240 |
RGB
|
JPEG
|
|
img_00073_8c8f
| 8,192 | 4,684 |
RGB
|
JPEG
|
|
img_00074_fdf0
| 7,360 | 4,912 |
RGB
|
JPEG
|
|
img_00075_758b
| 5,803 | 4,690 |
RGB
|
JPEG
|
|
img_00076_d146
| 6,144 | 8,192 |
RGB
|
JPEG
|
|
img_00077_1054
| 5,304 | 7,072 |
RGB
|
JPEG
|
|
img_00078_d8bc
| 6,240 | 4,160 |
RGB
|
JPEG
|
|
img_00079_a6e8
| 5,288 | 6,630 |
RGB
|
JPEG
|
|
img_00080_8cca
| 7,199 | 4,587 |
RGB
|
JPEG
|
|
img_00081_d9ff
| 7,360 | 4,912 |
RGB
|
JPEG
|
|
img_00082_94f6
| 4,160 | 6,240 |
RGB
|
JPEG
|
|
img_00083_7183
| 7,500 | 5,000 |
RGB
|
JPEG
|
|
img_00084_533d
| 4,160 | 6,240 |
RGB
|
JPEG
|
|
img_00085_5d79
| 6,240 | 4,160 |
RGB
|
JPEG
|
|
img_00086_6f5d
| 4,749 | 7,360 |
RGB
|
JPEG
|
|
img_00087_88e8
| 5,433 | 7,323 |
RGB
|
JPEG
|
|
img_00088_d400
| 5,993 | 5,770 |
RGB
|
JPEG
|
|
img_00089_e51b
| 7,072 | 5,304 |
RGB
|
JPEG
|
|
img_00090_609c
| 7,072 | 5,304 |
RGB
|
JPEG
|
|
img_00091_2e18
| 6,739 | 4,497 |
RGB
|
JPEG
|
|
img_00092_bbd6
| 2,868 | 4,914 |
RGB
|
JPEG
|
|
img_00093_1582
| 5,901 | 3,934 |
RGB
|
JPEG
|
|
img_00094_f345
| 5,340 | 3,004 |
RGB
|
JPEG
|
|
img_00095_3c27
| 7,219 | 4,061 |
RGB
|
JPEG
|
|
img_00096_c08d
| 5,542 | 3,117 |
RGB
|
JPEG
|
|
img_00097_b237
| 6,000 | 4,000 |
RGB
|
JPEG
|
|
img_00098_9fac
| 6,000 | 3,499 |
RGB
|
JPEG
|
|
img_00099_8735
| 5,510 | 3,559 |
RGB
|
JPEG
|
|
img_00100_85b9
| 5,671 | 3,998 |
RGB
|
JPEG
|
Churches
High resolution image subset from the Aesthetic-Train-V2 dataset, a collection of Church buildings including facades, interior shots and landscapes.
Dataset Details
- Curator: Roscosmos
- Version: 1.0.0
- Total Images: 780
- Average Image Size (on disk): ~5.8 MB compressed
- Primary Content: Church buildings
- Standardization: All images are standardized to RGB mode and saved at 95% quality for consistency.
Dataset Creation & Provenance
1. Original Master Dataset
This dataset is a subset derived from:
zhang0jhon/Aesthetic-Train-V2
- Link: https://huggingface.co/datasets/zhang0jhon/Aesthetic-Train-V2
- Providence: Large-scale, high-resolution image dataset, refer to its original dataset card for full details.
- Original License: MIT
2. Iterative Curation Methodology
CLIP retrieval / manual curation.
Dataset Structure & Content
This dataset offers the following configurations/subsets:
Default (Full
train
data) configuration: Contains the full, high-resolution image data and associated metadata. Each example (row) in the dataset contains the following fields:image
: The actual image data. In the default (full) configuration.unique_id
: A unique identifier assigned to each image.width
: The width of the image in pixels (from the full-resolution image).height
: The height of the image in pixels (from the full-resolution image).
Usage
To download and load this dataset from the Hugging Face Hub:
from datasets import load_dataset, Dataset, DatasetDict
# Login using e.g. `huggingface-cli login` to access this dataset
# To load the full, high-resolution dataset (recommended for training):
# This will load the 'default' configuration's 'train' split.
ds_main = load_dataset("ROSCOSMOS/Church_Buildings", "default")
print("Main Dataset (default config) loaded successfully!")
print(ds_main)
print(f"Type of loaded object: {type(ds_main)}")
if isinstance(ds_main, Dataset):
print(f"Number of samples: {len(ds_main)}")
print(f"Features: {ds_main.features}")
elif isinstance(ds_main, DatasetDict):
print(f"Available splits: {list(ds_main.keys())}")
for split_name, dataset_obj in ds_main.items():
print(f" Split '{split_name}': {len(dataset_obj)} samples")
print(f" Features of '{split_name}': {dataset_obj.features}")
Citation
@inproceedings{zhang2025diffusion4k,
title={Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models},
author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
year={2025},
booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
}
@misc{zhang2025ultrahighresolutionimagesynthesis,
title={Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation},
author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
year={2025},
note={arXiv:2506.01331},
}
Disclaimer and Bias Considerations
Please consider any inherent biases from the original dataset and those potentially introduced by the automated filtering (e.g., CLIP's biases) and manual curation process.
Contact
N/A
- Downloads last month
- 106