ROSCOSMOS commited on
Commit
0777ef0
·
verified ·
1 Parent(s): 14c2a16

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +115 -151
README.md CHANGED
@@ -1,151 +1,115 @@
1
- ---
2
- license: mit
3
- pretty_name: "Churches"
4
- tags: ["image", "computer-vision", "buildings", "architecture"]
5
- task_categories: ["image-classification"]
6
- language: ["en"]
7
- configs:
8
- - config_name: default
9
- data_files: "train/**/*.arrow"
10
- features:
11
- - name: image
12
- dtype: image
13
- - name: unique_id
14
- dtype: string
15
- - name: width
16
- dtype: int32
17
- - name: height
18
- dtype: int32
19
- - name: image_mode_on_disk
20
- dtype: string
21
- - name: original_file_format
22
- dtype: string
23
- - config_name: preview
24
- data_files: "preview/**/*.arrow"
25
- features:
26
- - name: image
27
- dtype: image
28
- - name: unique_id
29
- dtype: string
30
- - name: width
31
- dtype: int32
32
- - name: height
33
- dtype: int32
34
- - name: original_file_format
35
- dtype: string
36
- - name: image_mode_on_disk
37
- dtype: string
38
- ---
39
-
40
- # Churches
41
-
42
- High resolution image subset from the Aesthetic-Train-V2 dataset, a collection of facades, interior shots and landscapes.
43
-
44
- ## Dataset Details
45
-
46
- * **Curator:** Roscosmos
47
- * **Version:** 1.0.0
48
- * **Total Images:** 780
49
- * **Average Image Size (on disk):** ~5.8 MB compressed
50
- * **Primary Content:** Church buildings
51
- * **Standardization:** All images are standardized to RGB mode and saved at 95% quality for consistency.
52
-
53
- ## Dataset Creation & Provenance
54
-
55
- ### 1. Original Master Dataset
56
- This dataset is a subset derived from:
57
- **`zhang0jhon/Aesthetic-Train-V2`**
58
- * **Link:** https://huggingface.co/datasets/zhang0jhon/Aesthetic-Train-V2
59
- * **Providence:** Large-scale, high-resolution image dataset, refer to its original dataset card for full details.
60
- * **Original License:** MIT
61
-
62
- ### 2. Iterative Curation Methodology
63
-
64
- CLIP retrieval / manual curation.
65
-
66
- ### Who are the source data producers?
67
- * Original Dataset Creators: Refer to the original dataset card.
68
- * Curator and Refiner: Roscosmos
69
-
70
- ## Dataset Structure & Content
71
-
72
- This dataset offers the following configurations/subsets:
73
- * **Default (Full `train` data) configuration:** Contains the full, high-resolution image data and associated metadata. This is the recommended configuration for model training and full data analysis. The default split for this configuration is `train`.
74
- * **`preview` configuration:** Contains a small, random subset of images from the `train` data. The images in this configuration are downsampled and re-compressed to be **viewer-compatible** on the Hugging Face Hub. The default split for this configuration is `train` (if no other split is specified).
75
- Each example (row) in the dataset contains the following fields:
76
-
77
- * `image`: The actual image data. In the default (full) configuration, this is full-resolution. In the preview configuration, this is a viewer-compatible version.
78
- * `unique_id`: A unique identifier assigned to each image.
79
- * `width`: The width of the image in pixels (from the full-resolution image).
80
- * `height`: The height of the image in pixels (from the full-resolution image).
81
-
82
- ## Usage
83
-
84
- To download and load this dataset from the Hugging Face Hub:
85
-
86
- ```python
87
-
88
- from datasets import load_dataset, Dataset, DatasetDict
89
-
90
- # Login using e.g. `huggingface-cli login` to access this dataset
91
-
92
- # To load the full, high-resolution dataset (recommended for training):
93
- # This will load the 'default' configuration's 'train' split.
94
- ds_main = load_dataset("ROSCOSMOS/Churches", "default")
95
-
96
- print("Main Dataset (default config) loaded successfully!")
97
- print(ds_main)
98
- print(f"Type of loaded object: {type(ds_main)}")
99
-
100
- if isinstance(ds_main, Dataset):
101
- print(f"Number of samples: {len(ds_main)}")
102
- print(f"Features: {ds_main.features}")
103
- elif isinstance(ds_main, DatasetDict):
104
- print(f"Available splits: {list(ds_main.keys())}")
105
- for split_name, dataset_obj in ds_main.items():
106
- print(f" Split '{split_name}': {len(dataset_obj)} samples")
107
- print(f" Features of '{split_name}': {dataset_obj.features}")
108
-
109
- # To load the smaller, viewer-compatible preview data (if available):
110
- # This will load the 'preview' configuration's default split (often also 'train').
111
- # Check your dataset card for exact config and split names.
112
- # try:
113
- # ds_preview = load_dataset("{push_to_hub_id}", "preview")
114
- # print("\nPreview Dataset (preview config):")
115
- # print(ds_preview)
116
- # print(f"Number of samples in the preview dataset: {len(ds_preview) if isinstance(ds_preview, Dataset) else 'N/A'}")
117
- # except ValueError as e:
118
- # print(f"\nPreview config not found or failed to load: {e}")
119
-
120
- # To access specific splits from a DatasetDict:
121
- # my_train_data = ds_main['train']
122
- # my_preview_data = ds_preview['train'] # if preview loads as DatasetDict
123
-
124
- # The 'image' column will contain PIL Image objects.
125
-
126
- ```
127
-
128
- ## Citation
129
-
130
- ```bibtex
131
- @inproceedings{zhang2025diffusion4k,
132
- title={Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models},
133
- author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
134
- year={2025},
135
- booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
136
- }
137
- @misc{zhang2025ultrahighresolutionimagesynthesis,
138
- title={Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation},
139
- author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
140
- year={2025},
141
- note={arXiv:2506.01331},
142
- }
143
- ```
144
-
145
- ## Disclaimer and Bias Considerations
146
-
147
- Please consider any inherent biases from the original dataset and those potentially introduced by the automated filtering (e.g., CLIP's biases) and manual curation process.
148
-
149
- ## Contact
150
-
151
- N/A
 
1
+ ---
2
+ license: mit
3
+ pretty_name: "Churches"
4
+ tags: ["image", "computer-vision", "buildings", "architecture"]
5
+ task_categories: ["image-classification"]
6
+ language: ["en"]
7
+ configs:
8
+ - config_name: default
9
+ data_files: "train/**/*.arrow"
10
+ features:
11
+ - name: image
12
+ dtype: image
13
+ - name: unique_id
14
+ dtype: string
15
+ - name: width
16
+ dtype: int32
17
+ - name: height
18
+ dtype: int32
19
+ - name: image_mode_on_disk
20
+ dtype: string
21
+ - name: original_file_format
22
+ dtype: string
23
+ ---
24
+
25
+ # Churches
26
+
27
+ High resolution image subset from the Aesthetic-Train-V2 dataset, a collection of facades, interior shots and landscapes.
28
+
29
+ ## Dataset Details
30
+
31
+ * **Curator:** Roscosmos
32
+ * **Version:** 1.0.0
33
+ * **Total Images:** 780
34
+ * **Average Image Size (on disk):** ~5.8 MB compressed
35
+ * **Primary Content:** Church buildings
36
+ * **Standardization:** All images are standardized to RGB mode and saved at 95% quality for consistency.
37
+
38
+ ## Dataset Creation & Provenance
39
+
40
+ ### 1. Original Master Dataset
41
+ This dataset is a subset derived from:
42
+ **`zhang0jhon/Aesthetic-Train-V2`**
43
+ * **Link:** https://huggingface.co/datasets/zhang0jhon/Aesthetic-Train-V2
44
+ * **Providence:** Large-scale, high-resolution image dataset, refer to its original dataset card for full details.
45
+ * **Original License:** MIT
46
+
47
+ ### 2. Iterative Curation Methodology
48
+
49
+ CLIP retrieval / manual curation.
50
+
51
+ ## Dataset Structure & Content
52
+
53
+ This dataset offers the following configurations/subsets:
54
+ * **Default (Full `train` data) configuration:** Contains the full, high-resolution image data and associated metadata. This is the recommended configuration for model training and full data analysis. The default split for this configuration is `train`.
55
+
56
+ Each example (row) in the dataset contains the following fields:
57
+
58
+ * `image`: The actual image data. In the default (full) configuration.
59
+ * `unique_id`: A unique identifier assigned to each image.
60
+ * `width`: The width of the image in pixels (from the full-resolution image).
61
+ * `height`: The height of the image in pixels (from the full-resolution image).
62
+
63
+ ## Usage
64
+
65
+ To download and load this dataset from the Hugging Face Hub:
66
+
67
+ ```python
68
+
69
+ from datasets import load_dataset, Dataset, DatasetDict
70
+
71
+ # Login using e.g. `huggingface-cli login` to access this dataset
72
+
73
+ # To load the full, high-resolution dataset (recommended for training):
74
+ # This will load the 'default' configuration's 'train' split.
75
+ ds_main = load_dataset("ROSCOSMOS/Churches", "default")
76
+
77
+ print("Main Dataset (default config) loaded successfully!")
78
+ print(ds_main)
79
+ print(f"Type of loaded object: {type(ds_main)}")
80
+
81
+ if isinstance(ds_main, Dataset):
82
+ print(f"Number of samples: {len(ds_main)}")
83
+ print(f"Features: {ds_main.features}")
84
+ elif isinstance(ds_main, DatasetDict):
85
+ print(f"Available splits: {list(ds_main.keys())}")
86
+ for split_name, dataset_obj in ds_main.items():
87
+ print(f" Split '{split_name}': {len(dataset_obj)} samples")
88
+ print(f" Features of '{split_name}': {dataset_obj.features}")
89
+
90
+ ```
91
+
92
+ ## Citation
93
+
94
+ ```bibtex
95
+ @inproceedings{zhang2025diffusion4k,
96
+ title={Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models},
97
+ author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
98
+ year={2025},
99
+ booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
100
+ }
101
+ @misc{zhang2025ultrahighresolutionimagesynthesis,
102
+ title={Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation},
103
+ author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
104
+ year={2025},
105
+ note={arXiv:2506.01331},
106
+ }
107
+ ```
108
+
109
+ ## Disclaimer and Bias Considerations
110
+
111
+ Please consider any inherent biases from the original dataset and those potentially introduced by the automated filtering (e.g., CLIP's biases) and manual curation process.
112
+
113
+ ## Contact
114
+
115
+ N/A