Datasets:
image
imagewidth (px) 2.16k
9.53k
| unique_id
stringlengths 14
14
| width
int32 2.16k
9.53k
| height
int32 1.92k
9.5k
| image_mode_on_disk
stringclasses 1
value | original_file_format
stringclasses 1
value |
---|---|---|---|---|---|
img_00001_4beb
| 5,300 | 3,574 |
RGB
|
JPEG
|
|
img_00002_6fba
| 6,029 | 4,013 |
RGB
|
JPEG
|
|
img_00003_c3c5
| 6,048 | 8,064 |
RGB
|
JPEG
|
|
img_00004_6ac4
| 4,800 | 6,000 |
RGB
|
JPEG
|
|
img_00005_cdae
| 3,276 | 4,096 |
RGB
|
JPEG
|
|
img_00006_2f96
| 3,657 | 5,485 |
RGB
|
JPEG
|
|
img_00007_aacf
| 2,900 | 4,350 |
RGB
|
JPEG
|
|
img_00008_10a5
| 4,724 | 3,543 |
RGB
|
JPEG
|
|
img_00009_607c
| 3,581 | 5,371 |
RGB
|
JPEG
|
|
img_00010_319a
| 2,560 | 1,920 |
RGB
|
JPEG
|
|
img_00011_fd86
| 5,853 | 3,902 |
RGB
|
JPEG
|
|
img_00012_e04b
| 5,456 | 3,632 |
RGB
|
JPEG
|
|
img_00013_894c
| 3,020 | 4,529 |
RGB
|
JPEG
|
|
img_00014_8f8a
| 4,480 | 6,720 |
RGB
|
JPEG
|
|
img_00015_dc47
| 2,160 | 3,241 |
RGB
|
JPEG
|
|
img_00016_3c20
| 4,112 | 3,088 |
RGB
|
JPEG
|
|
img_00017_1769
| 5,729 | 3,819 |
RGB
|
JPEG
|
|
img_00018_58d1
| 6,000 | 4,000 |
RGB
|
JPEG
|
|
img_00019_e527
| 3,456 | 2,304 |
RGB
|
JPEG
|
|
img_00020_59e5
| 5,661 | 3,774 |
RGB
|
JPEG
|
|
img_00021_264c
| 4,875 | 3,240 |
RGB
|
JPEG
|
|
img_00022_344d
| 2,395 | 3,567 |
RGB
|
JPEG
|
|
img_00023_bfd0
| 4,112 | 3,088 |
RGB
|
JPEG
|
|
img_00024_afdd
| 3,765 | 5,647 |
RGB
|
JPEG
|
|
img_00025_5b3a
| 5,464 | 3,640 |
RGB
|
JPEG
|
|
img_00026_cf48
| 3,727 | 2,383 |
RGB
|
JPEG
|
|
img_00027_586c
| 3,800 | 5,700 |
RGB
|
JPEG
|
|
img_00028_65df
| 5,472 | 3,080 |
RGB
|
JPEG
|
|
img_00029_e9c1
| 4,117 | 6,175 |
RGB
|
JPEG
|
|
img_00030_2e55
| 6,240 | 4,160 |
RGB
|
JPEG
|
|
img_00031_b2a7
| 6,708 | 4,472 |
RGB
|
JPEG
|
|
img_00032_462a
| 4,959 | 6,199 |
RGB
|
JPEG
|
|
img_00033_8e5d
| 4,959 | 6,199 |
RGB
|
JPEG
|
|
img_00034_ffba
| 4,160 | 6,240 |
RGB
|
JPEG
|
|
img_00035_3d11
| 4,210 | 5,262 |
RGB
|
JPEG
|
|
img_00036_591d
| 7,952 | 5,304 |
RGB
|
JPEG
|
|
img_00037_7515
| 8,192 | 5,461 |
RGB
|
JPEG
|
|
img_00038_8ffa
| 5,472 | 6,576 |
RGB
|
JPEG
|
|
img_00039_eb49
| 6,480 | 4,320 |
RGB
|
JPEG
|
|
img_00040_1064
| 6,480 | 4,320 |
RGB
|
JPEG
|
|
img_00041_1504
| 5,889 | 7,314 |
RGB
|
JPEG
|
|
img_00042_573e
| 4,096 | 5,118 |
RGB
|
JPEG
|
|
img_00043_14ad
| 8,192 | 6,140 |
RGB
|
JPEG
|
|
img_00044_1eac
| 8,127 | 5,418 |
RGB
|
JPEG
|
|
img_00045_9a05
| 4,160 | 6,240 |
RGB
|
JPEG
|
|
img_00046_4210
| 5,440 | 8,160 |
RGB
|
JPEG
|
|
img_00047_ea35
| 5,304 | 6,630 |
RGB
|
JPEG
|
|
img_00048_af6b
| 5,496 | 5,536 |
RGB
|
JPEG
|
|
img_00049_e51b
| 6,240 | 4,160 |
RGB
|
JPEG
|
|
img_00050_9750
| 4,912 | 7,360 |
RGB
|
JPEG
|
|
img_00051_c9c9
| 6,240 | 4,160 |
RGB
|
JPEG
|
|
img_00052_5b30
| 4,334 | 2,527 |
RGB
|
JPEG
|
|
img_00053_1758
| 6,732 | 4,454 |
RGB
|
JPEG
|
|
img_00054_8f95
| 5,333 | 3,555 |
RGB
|
JPEG
|
|
img_00055_2bb5
| 4,928 | 3,264 |
RGB
|
JPEG
|
|
img_00056_4c1d
| 4,457 | 2,974 |
RGB
|
JPEG
|
|
img_00057_39c3
| 4,529 | 3,397 |
RGB
|
JPEG
|
|
img_00058_2424
| 6,000 | 4,000 |
RGB
|
JPEG
|
|
img_00059_5cec
| 4,621 | 3,070 |
RGB
|
JPEG
|
|
img_00060_d834
| 5,184 | 3,456 |
RGB
|
JPEG
|
|
img_00061_2af1
| 4,000 | 5,000 |
RGB
|
JPEG
|
|
img_00062_3a25
| 6,000 | 4,000 |
RGB
|
JPEG
|
|
img_00063_a8a6
| 5,919 | 3,946 |
RGB
|
JPEG
|
|
img_00064_8b80
| 5,184 | 3,456 |
RGB
|
JPEG
|
|
img_00065_143c
| 5,168 | 3,448 |
RGB
|
JPEG
|
|
img_00066_92ee
| 5,184 | 3,456 |
RGB
|
JPEG
|
|
img_00067_9222
| 5,118 | 3,417 |
RGB
|
JPEG
|
|
img_00068_36a8
| 5,184 | 3,456 |
RGB
|
JPEG
|
|
img_00069_3981
| 4,000 | 6,000 |
RGB
|
JPEG
|
|
img_00070_b7d4
| 4,801 | 3,201 |
RGB
|
JPEG
|
|
img_00071_81d3
| 5,184 | 3,456 |
RGB
|
JPEG
|
|
img_00072_400a
| 5,184 | 3,456 |
RGB
|
JPEG
|
|
img_00073_c6fe
| 4,000 | 6,000 |
RGB
|
JPEG
|
|
img_00074_619c
| 4,608 | 3,456 |
RGB
|
JPEG
|
|
img_00075_da7f
| 5,120 | 3,416 |
RGB
|
JPEG
|
|
img_00076_71b2
| 5,184 | 3,456 |
RGB
|
JPEG
|
|
img_00077_85f3
| 5,184 | 3,456 |
RGB
|
JPEG
|
|
img_00078_dea3
| 5,184 | 3,456 |
RGB
|
JPEG
|
|
img_00079_664c
| 5,411 | 3,532 |
RGB
|
JPEG
|
|
img_00080_c55f
| 4,395 | 2,930 |
RGB
|
JPEG
|
|
img_00081_38e8
| 6,000 | 4,000 |
RGB
|
JPEG
|
|
img_00082_fd2e
| 4,427 | 3,009 |
RGB
|
JPEG
|
|
img_00083_0239
| 2,813 | 4,235 |
RGB
|
JPEG
|
|
img_00084_f5cd
| 7,434 | 4,956 |
RGB
|
JPEG
|
|
img_00085_2e89
| 6,000 | 4,000 |
RGB
|
JPEG
|
|
img_00086_8672
| 6,540 | 4,155 |
RGB
|
JPEG
|
|
img_00087_083c
| 6,960 | 4,640 |
RGB
|
JPEG
|
|
img_00088_428e
| 5,184 | 3,456 |
RGB
|
JPEG
|
|
img_00089_ac0c
| 5,472 | 3,648 |
RGB
|
JPEG
|
|
img_00090_41e7
| 5,578 | 3,140 |
RGB
|
JPEG
|
|
img_00091_275f
| 6,144 | 3,212 |
RGB
|
JPEG
|
|
img_00092_5896
| 5,122 | 3,415 |
RGB
|
JPEG
|
|
img_00093_92d8
| 6,000 | 4,000 |
RGB
|
JPEG
|
|
img_00094_911f
| 5,168 | 3,448 |
RGB
|
JPEG
|
|
img_00095_a988
| 6,000 | 4,000 |
RGB
|
JPEG
|
|
img_00096_0991
| 6,960 | 4,640 |
RGB
|
JPEG
|
|
img_00097_8260
| 5,568 | 3,712 |
RGB
|
JPEG
|
|
img_00098_3c00
| 5,168 | 3,448 |
RGB
|
JPEG
|
|
img_00099_723e
| 4,600 | 3,630 |
RGB
|
JPEG
|
|
img_00100_8a75
| 4,928 | 3,264 |
RGB
|
JPEG
|
Trains and Trams
High resolution image subset from the Aesthetic-Train-V2 dataset containing a mixture of both Trains and Trams. There is some nuanced misalignment with how CLIP perceives the concepts of trains and trams during coarse searches therefor I have included both.
Dataset Details
- Curator: Roscosmos
- Version: 1.0.0
- Total Images: 650
- Average Image Size (on disk): ~5.5 MB compressed
- Primary Content: Trains and Trams
- Standardization: All images are standardized to RGB mode and saved at 95% quality for consistency.
Dataset Creation & Provenance
1. Original Master Dataset
This dataset is a subset derived from:
zhang0jhon/Aesthetic-Train-V2
- Link: https://huggingface.co/datasets/zhang0jhon/Aesthetic-Train-V2
- Providence: Large-scale, high-resolution image dataset, refer to its original dataset card for full details.
- Original License: MIT
2. Iterative Curation Methodology
CLIP retrieval / manual curation.
Dataset Structure & Content
This dataset offers the following configurations/subsets:
Default (Full
train
data) configuration: Contains the full, high-resolution image data and associated metadata. This is the recommended configuration for model training and full data analysis. The default split for this configuration istrain
. Each example (row) in the dataset contains the following fields:image
: The actual image data. In the default (full) configuration, this is full-resolution. In the preview configuration, this is a viewer-compatible version.unique_id
: A unique identifier assigned to each image.width
: The width of the image in pixels (from the full-resolution image).height
: The height of the image in pixels (from the full-resolution image).
Usage
To download and load this dataset from the Hugging Face Hub:
from datasets import load_dataset, Dataset, DatasetDict
# Login using e.g. `huggingface-cli login` to access this dataset
# To load the full, high-resolution dataset (recommended for training):
# This will load the 'default' configuration's 'train' split.
ds_main = load_dataset("ROSCOSMOS/Trains_and_Trams", "default")
print("Main Dataset (default config) loaded successfully!")
print(ds_main)
print(f"Type of loaded object: {type(ds_main)}")
if isinstance(ds_main, Dataset):
print(f"Number of samples: {len(ds_main)}")
print(f"Features: {ds_main.features}")
elif isinstance(ds_main, DatasetDict):
print(f"Available splits: {list(ds_main.keys())}")
for split_name, dataset_obj in ds_main.items():
print(f" Split '{split_name}': {len(dataset_obj)} samples")
print(f" Features of '{split_name}': {dataset_obj.features}")
# The 'image' column will contain PIL Image objects.
Citation
@inproceedings{zhang2025diffusion4k,
title={Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models},
author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
year={2025},
booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
}
@misc{zhang2025ultrahighresolutionimagesynthesis,
title={Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation},
author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
year={2025},
note={arXiv:2506.01331},
}
Disclaimer and Bias Considerations
Please consider any inherent biases from the original dataset and those potentially introduced by the automated filtering (e.g., CLIP's biases) and manual curation process.
Contact
N/A
- Downloads last month
- 82