Dataset Viewer
Auto-converted to Parquet
image
imagewidth (px)
2.16k
9.53k
unique_id
stringlengths
14
14
width
int32
2.16k
9.53k
height
int32
1.92k
9.5k
image_mode_on_disk
stringclasses
1 value
original_file_format
stringclasses
1 value
img_00001_4beb
5,300
3,574
RGB
JPEG
img_00002_6fba
6,029
4,013
RGB
JPEG
img_00003_c3c5
6,048
8,064
RGB
JPEG
img_00004_6ac4
4,800
6,000
RGB
JPEG
img_00005_cdae
3,276
4,096
RGB
JPEG
img_00006_2f96
3,657
5,485
RGB
JPEG
img_00007_aacf
2,900
4,350
RGB
JPEG
img_00008_10a5
4,724
3,543
RGB
JPEG
img_00009_607c
3,581
5,371
RGB
JPEG
img_00010_319a
2,560
1,920
RGB
JPEG
img_00011_fd86
5,853
3,902
RGB
JPEG
img_00012_e04b
5,456
3,632
RGB
JPEG
img_00013_894c
3,020
4,529
RGB
JPEG
img_00014_8f8a
4,480
6,720
RGB
JPEG
img_00015_dc47
2,160
3,241
RGB
JPEG
img_00016_3c20
4,112
3,088
RGB
JPEG
img_00017_1769
5,729
3,819
RGB
JPEG
img_00018_58d1
6,000
4,000
RGB
JPEG
img_00019_e527
3,456
2,304
RGB
JPEG
img_00020_59e5
5,661
3,774
RGB
JPEG
img_00021_264c
4,875
3,240
RGB
JPEG
img_00022_344d
2,395
3,567
RGB
JPEG
img_00023_bfd0
4,112
3,088
RGB
JPEG
img_00024_afdd
3,765
5,647
RGB
JPEG
img_00025_5b3a
5,464
3,640
RGB
JPEG
img_00026_cf48
3,727
2,383
RGB
JPEG
img_00027_586c
3,800
5,700
RGB
JPEG
img_00028_65df
5,472
3,080
RGB
JPEG
img_00029_e9c1
4,117
6,175
RGB
JPEG
img_00030_2e55
6,240
4,160
RGB
JPEG
img_00031_b2a7
6,708
4,472
RGB
JPEG
img_00032_462a
4,959
6,199
RGB
JPEG
img_00033_8e5d
4,959
6,199
RGB
JPEG
img_00034_ffba
4,160
6,240
RGB
JPEG
img_00035_3d11
4,210
5,262
RGB
JPEG
img_00036_591d
7,952
5,304
RGB
JPEG
img_00037_7515
8,192
5,461
RGB
JPEG
img_00038_8ffa
5,472
6,576
RGB
JPEG
img_00039_eb49
6,480
4,320
RGB
JPEG
img_00040_1064
6,480
4,320
RGB
JPEG
img_00041_1504
5,889
7,314
RGB
JPEG
img_00042_573e
4,096
5,118
RGB
JPEG
img_00043_14ad
8,192
6,140
RGB
JPEG
img_00044_1eac
8,127
5,418
RGB
JPEG
img_00045_9a05
4,160
6,240
RGB
JPEG
img_00046_4210
5,440
8,160
RGB
JPEG
img_00047_ea35
5,304
6,630
RGB
JPEG
img_00048_af6b
5,496
5,536
RGB
JPEG
img_00049_e51b
6,240
4,160
RGB
JPEG
img_00050_9750
4,912
7,360
RGB
JPEG
img_00051_c9c9
6,240
4,160
RGB
JPEG
img_00052_5b30
4,334
2,527
RGB
JPEG
img_00053_1758
6,732
4,454
RGB
JPEG
img_00054_8f95
5,333
3,555
RGB
JPEG
img_00055_2bb5
4,928
3,264
RGB
JPEG
img_00056_4c1d
4,457
2,974
RGB
JPEG
img_00057_39c3
4,529
3,397
RGB
JPEG
img_00058_2424
6,000
4,000
RGB
JPEG
img_00059_5cec
4,621
3,070
RGB
JPEG
img_00060_d834
5,184
3,456
RGB
JPEG
img_00061_2af1
4,000
5,000
RGB
JPEG
img_00062_3a25
6,000
4,000
RGB
JPEG
img_00063_a8a6
5,919
3,946
RGB
JPEG
img_00064_8b80
5,184
3,456
RGB
JPEG
img_00065_143c
5,168
3,448
RGB
JPEG
img_00066_92ee
5,184
3,456
RGB
JPEG
img_00067_9222
5,118
3,417
RGB
JPEG
img_00068_36a8
5,184
3,456
RGB
JPEG
img_00069_3981
4,000
6,000
RGB
JPEG
img_00070_b7d4
4,801
3,201
RGB
JPEG
img_00071_81d3
5,184
3,456
RGB
JPEG
img_00072_400a
5,184
3,456
RGB
JPEG
img_00073_c6fe
4,000
6,000
RGB
JPEG
img_00074_619c
4,608
3,456
RGB
JPEG
img_00075_da7f
5,120
3,416
RGB
JPEG
img_00076_71b2
5,184
3,456
RGB
JPEG
img_00077_85f3
5,184
3,456
RGB
JPEG
img_00078_dea3
5,184
3,456
RGB
JPEG
img_00079_664c
5,411
3,532
RGB
JPEG
img_00080_c55f
4,395
2,930
RGB
JPEG
img_00081_38e8
6,000
4,000
RGB
JPEG
img_00082_fd2e
4,427
3,009
RGB
JPEG
img_00083_0239
2,813
4,235
RGB
JPEG
img_00084_f5cd
7,434
4,956
RGB
JPEG
img_00085_2e89
6,000
4,000
RGB
JPEG
img_00086_8672
6,540
4,155
RGB
JPEG
img_00087_083c
6,960
4,640
RGB
JPEG
img_00088_428e
5,184
3,456
RGB
JPEG
img_00089_ac0c
5,472
3,648
RGB
JPEG
img_00090_41e7
5,578
3,140
RGB
JPEG
img_00091_275f
6,144
3,212
RGB
JPEG
img_00092_5896
5,122
3,415
RGB
JPEG
img_00093_92d8
6,000
4,000
RGB
JPEG
img_00094_911f
5,168
3,448
RGB
JPEG
img_00095_a988
6,000
4,000
RGB
JPEG
img_00096_0991
6,960
4,640
RGB
JPEG
img_00097_8260
5,568
3,712
RGB
JPEG
img_00098_3c00
5,168
3,448
RGB
JPEG
img_00099_723e
4,600
3,630
RGB
JPEG
img_00100_8a75
4,928
3,264
RGB
JPEG
End of preview. Expand in Data Studio

Trains and Trams

High resolution image subset from the Aesthetic-Train-V2 dataset containing a mixture of both Trains and Trams. There is some nuanced misalignment with how CLIP perceives the concepts of trains and trams during coarse searches therefor I have included both.

Dataset Details

  • Curator: Roscosmos
  • Version: 1.0.0
  • Total Images: 650
  • Average Image Size (on disk): ~5.5 MB compressed
  • Primary Content: Trains and Trams
  • Standardization: All images are standardized to RGB mode and saved at 95% quality for consistency.

Dataset Creation & Provenance

1. Original Master Dataset

This dataset is a subset derived from: zhang0jhon/Aesthetic-Train-V2

2. Iterative Curation Methodology

CLIP retrieval / manual curation.

Dataset Structure & Content

This dataset offers the following configurations/subsets:

  • Default (Full train data) configuration: Contains the full, high-resolution image data and associated metadata. This is the recommended configuration for model training and full data analysis. The default split for this configuration is train. Each example (row) in the dataset contains the following fields:

  • image: The actual image data. In the default (full) configuration, this is full-resolution. In the preview configuration, this is a viewer-compatible version.

  • unique_id: A unique identifier assigned to each image.

  • width: The width of the image in pixels (from the full-resolution image).

  • height: The height of the image in pixels (from the full-resolution image).

Usage

To download and load this dataset from the Hugging Face Hub:


from datasets import load_dataset, Dataset, DatasetDict

# Login using e.g. `huggingface-cli login` to access this dataset

# To load the full, high-resolution dataset (recommended for training):
# This will load the 'default' configuration's 'train' split.
ds_main = load_dataset("ROSCOSMOS/Trains_and_Trams", "default")

print("Main Dataset (default config) loaded successfully!")
print(ds_main)
print(f"Type of loaded object: {type(ds_main)}")

if isinstance(ds_main, Dataset):
    print(f"Number of samples: {len(ds_main)}")
    print(f"Features: {ds_main.features}")
elif isinstance(ds_main, DatasetDict):
    print(f"Available splits: {list(ds_main.keys())}")
    for split_name, dataset_obj in ds_main.items():
        print(f"  Split '{split_name}': {len(dataset_obj)} samples")
        print(f"  Features of '{split_name}': {dataset_obj.features}")

# The 'image' column will contain PIL Image objects.

Citation

@inproceedings{zhang2025diffusion4k,
    title={Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models},
    author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
    year={2025},
    booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
}
@misc{zhang2025ultrahighresolutionimagesynthesis,
    title={Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation},
    author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
    year={2025},
    note={arXiv:2506.01331},
}

Disclaimer and Bias Considerations

Please consider any inherent biases from the original dataset and those potentially introduced by the automated filtering (e.g., CLIP's biases) and manual curation process.

Contact

N/A

Downloads last month
82