ROSCOSMOS commited on
Commit
87807c8
·
verified ·
1 Parent(s): 9f6aa57

Upload 9 files

Browse files
README.md CHANGED
@@ -1,3 +1,146 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ pretty_name: "Trains and Trams"
4
+ tags: ["image", "computer-vision", "trains", "trams"]
5
+ task_categories: ["image-classification"]
6
+ language: ["en"]
7
+ configs:
8
+ - config_name: default
9
+ data_files: "train/**/*.arrow"
10
+ features:
11
+ - name: image
12
+ dtype: image
13
+ - name: unique_id
14
+ dtype: string
15
+ - name: width
16
+ dtype: int32
17
+ - name: height
18
+ dtype: int32
19
+ - name: image_mode_on_disk
20
+ dtype: string
21
+ - name: original_file_format
22
+ dtype: string
23
+ - config_name: preview
24
+ data_files: "preview/**/*.arrow"
25
+ features:
26
+ - name: image
27
+ dtype: image
28
+ - name: unique_id
29
+ dtype: string
30
+ - name: width
31
+ dtype: int32
32
+ - name: height
33
+ dtype: int32
34
+ - name: original_file_format
35
+ dtype: string
36
+ - name: image_mode_on_disk
37
+ dtype: string
38
  ---
39
+
40
+ # Trains and Trams
41
+
42
+ High resolution image subset from the Aesthetic-Train-V2 dataset containing a mixture of both Trains and Trams. There is some nuanced misalignment with how CLIP perceives the concepts of trains and trams during coarse searches therefor I have included both.
43
+
44
+ ## Dataset Details
45
+
46
+ * **Curator:** Roscosmos
47
+ * **Version:** 1.0.0
48
+ * **Total Images:** 650
49
+ * **Average Image Size (on disk):** ~5.5 MB compressed
50
+ * **Primary Content:** Trains and Trams
51
+ * **Standardization:** All images are standardized to RGB mode and saved at 95% quality for consistency.
52
+
53
+ ## Dataset Creation & Provenance
54
+
55
+ ### 1. Original Master Dataset
56
+ This dataset is a subset derived from:
57
+ **`zhang0jhon/Aesthetic-Train-V2`**
58
+ * **Link:** https://huggingface.co/datasets/zhang0jhon/Aesthetic-Train-V2
59
+ * **Providence:** Large-scale, high-resolution image dataset, refer to its original dataset card for full details.
60
+ * **Original License:** MIT
61
+
62
+ ### 2. Iterative Curation Methodology
63
+
64
+ CLIP retrieval / manual curation.
65
+
66
+ ## Dataset Structure & Content
67
+
68
+ This dataset offers the following configurations/subsets:
69
+ * **Default (Full `train` data) configuration:** Contains the full, high-resolution image data and associated metadata. This is the recommended configuration for model training and full data analysis. The default split for this configuration is `train`.
70
+ Each example (row) in the dataset contains the following fields:
71
+
72
+ * `image`: The actual image data. In the default (full) configuration, this is full-resolution. In the preview configuration, this is a viewer-compatible version.
73
+ * `unique_id`: A unique identifier assigned to each image.
74
+ * `width`: The width of the image in pixels (from the full-resolution image).
75
+ * `height`: The height of the image in pixels (from the full-resolution image).
76
+
77
+ ## Usage
78
+
79
+ To download and load this dataset from the Hugging Face Hub:
80
+
81
+ ```python
82
+
83
+ from datasets import load_dataset, Dataset, DatasetDict
84
+
85
+ # Login using e.g. `huggingface-cli login` to access this dataset
86
+
87
+ # To load the full, high-resolution dataset (recommended for training):
88
+ # This will load the 'default' configuration's 'train' split.
89
+ ds_main = load_dataset("ROSCOSMOS/Trains_and_Trams", "default")
90
+
91
+ print("Main Dataset (default config) loaded successfully!")
92
+ print(ds_main)
93
+ print(f"Type of loaded object: {type(ds_main)}")
94
+
95
+ if isinstance(ds_main, Dataset):
96
+ print(f"Number of samples: {len(ds_main)}")
97
+ print(f"Features: {ds_main.features}")
98
+ elif isinstance(ds_main, DatasetDict):
99
+ print(f"Available splits: {list(ds_main.keys())}")
100
+ for split_name, dataset_obj in ds_main.items():
101
+ print(f" Split '{split_name}': {len(dataset_obj)} samples")
102
+ print(f" Features of '{split_name}': {dataset_obj.features}")
103
+
104
+ # To load the smaller, viewer-compatible preview data (if available):
105
+ # This will load the 'preview' configuration's default split (often also 'train').
106
+ # Check your dataset card for exact config and split names.
107
+ # try:
108
+ # ds_preview = load_dataset("{push_to_hub_id}", "preview")
109
+ # print("\nPreview Dataset (preview config):")
110
+ # print(ds_preview)
111
+ # print(f"Number of samples in the preview dataset: {len(ds_preview) if isinstance(ds_preview, Dataset) else 'N/A'}")
112
+ # except ValueError as e:
113
+ # print(f"\nPreview config not found or failed to load: {e}")
114
+
115
+ # To access specific splits from a DatasetDict:
116
+ # my_train_data = ds_main['train']
117
+ # my_preview_data = ds_preview['train'] # if preview loads as DatasetDict
118
+
119
+ # The 'image' column will contain PIL Image objects.
120
+
121
+ ```
122
+
123
+ ## Citation
124
+
125
+ ```bibtex
126
+ @inproceedings{zhang2025diffusion4k,
127
+ title={Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models},
128
+ author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
129
+ year={2025},
130
+ booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
131
+ }
132
+ @misc{zhang2025ultrahighresolutionimagesynthesis,
133
+ title={Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation},
134
+ author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
135
+ year={2025},
136
+ note={arXiv:2506.01331},
137
+ }
138
+ ```
139
+
140
+ ## Disclaimer and Bias Considerations
141
+
142
+ Please consider any inherent biases from the original dataset and those potentially introduced by the automated filtering (e.g., CLIP's biases) and manual curation process.
143
+
144
+ ## Contact
145
+
146
+ N/A
train/data-00000-of-00008.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61cc8022d7032bcac3b7bcac819ece6a56b6fb46bbc96a468ce087cd6f31e3c2
3
+ size 455081144
train/data-00001-of-00008.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:898f0c2bb42ddd4c1b613b937fc85cbc009702489f6a9bdc1e30c42e81da155d
3
+ size 445245416
train/data-00002-of-00008.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae6c61b386f8df356ef5541347f0a4a570dc5aa4a08f8955e46a7ec6665a106b
3
+ size 510946416
train/data-00003-of-00008.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ded20f3cd49eb5c24227e95bb74a85508288cbe1f3acfc6a93f0069271f0e1d1
3
+ size 507359560
train/data-00004-of-00008.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:897196e78198bb95f6a6d01d81cb4debc42202ee9dd6a297f21cb72696f51449
3
+ size 478937976
train/data-00005-of-00008.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:002a1f50c34af7b873a0dcc14420bc8c9dcf6e84bcf7748fc0df2003c4537c75
3
+ size 494085720
train/data-00006-of-00008.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55d332f0b3c6fecffe826584aff5f6561bf36084288712ac93fbbff34fc7f44d
3
+ size 498927344
train/data-00007-of-00008.arrow ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8d16d6e9d8a2e8d3d76feb31b342ebfe68b5b499f329787b804212f21308f40
3
+ size 465060248