problem
stringlengths 16
4.31k
| answer
stringlengths 29
6.77k
|
---|---|
The sides of an isosceles triangle are $\cos x,$ $\cos x,$ and $\cos 7x,$ and its vertex angle is $2x.$ (All angle measurements are in degrees.) Enter all possible values of $x,$ separated by commas. | Note that angle $x$ must be acute.
If we drop an altitude from the vertex of the isosceles triangle, then we obtain two right triangles, where one of the angles is $x,$ the opposite side is $\frac{\cos 7x}{2},$ and the hypotenuse is $\cos x.$ Hence,
\[\sin x = \frac{\frac{\cos 7x}{2}}{\cos x} = \frac{\cos 7x}{2 \cos x}.\]Then $\cos 7x = 2 \sin x \cos x = \sin 2x.$ We can write this as $\cos 7x = \cos (90^\circ - 2x).$ Then the angles $7x$ and $90^\circ - 2x$ must either add up to a multiple of $180^\circ,$ or differ by a multiple of $90^\circ.$
In the first case,
\[7x + 90^\circ - 2x = 180^\circ k\]for some integer $k.$ Then
\[x = 36^\circ k - 18^\circ.\]The only acute angles of this form are $18^\circ$ and $54^\circ.$ Furthermore, if $x = 18^\circ,$ then $\cos 7x = \cos 126^\circ < 0.$ We check that $x = 54^\circ$ works.
In the second case,
\[7x - (90^\circ - 2x) = 180^\circ k\]for some integer $k.$ Then
\[x = 20^\circ k + 10^\circ.\]The only acute angles of this form are $10^\circ,$ $30^\circ,$ $50^\circ,$ and $70^\circ.$ Again, $\cos 7x < 0$ for $x = 30^\circ$ and $70^\circ.$ We check that $10^\circ$ and $50^\circ$ work.
Thus, the possible values of $x$ are $\boxed{10^\circ, 50^\circ, 54^\circ}.$ |
Find $\cos \frac{5 \pi}{4}.$ | Converting to degrees,
\[\frac{5 \pi}{4} = \frac{180^\circ}{\pi} \cdot \frac{5 \pi}{4} = 225^\circ.\]Then $\cos 225^\circ = -\cos (225^\circ - 180^\circ) = -\cos 45^\circ = \boxed{-\frac{1}{\sqrt{2}}}.$ |
Let
\[\mathbf{A} = \begin{pmatrix} 4 & 1 \\ -9 & -2 \end{pmatrix}.\]Compute $\mathbf{A}^{100}.$ | Note that
\begin{align*}
\mathbf{A}^2 &= \begin{pmatrix} 4 & 1 \\ -9 & -2 \end{pmatrix} \begin{pmatrix} 4 & 1 \\ -9 & -2 \end{pmatrix} \\
&= \begin{pmatrix} 7 & 2 \\ -18 & -5 \end{pmatrix} \\
&= 2 \begin{pmatrix} 4 & 1 \\ -9 & -2 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\
&= 2 \mathbf{A} - \mathbf{I}.
\end{align*}Then $\mathbf{A}^2 - 2 \mathbf{A} + \mathbf{I} = 0,$ so
\[(\mathbf{A} - \mathbf{I})^2 = \mathbf{A}^2 - 2 \mathbf{A} + \mathbf{I} = \mathbf{0}.\]Thus, let
\[\mathbf{B} = \mathbf{A} - \mathbf{I} = \begin{pmatrix} 4 & 1 \\ -9 & -2 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ -9 & -3 \end{pmatrix}.\]Then $\mathbf{B}^2 = \mathbf{0},$ and $\mathbf{A} = \mathbf{B} + \mathbf{I},$ so by the Binomial Theorem,
\begin{align*}
\mathbf{A}^{100} &= (\mathbf{B} + \mathbf{I})^{100} \\
&= \mathbf{B}^{100} + \binom{100}{1} \mathbf{B}^{99} + \binom{100}{2} \mathbf{B}^{98} + \dots + \binom{100}{98} \mathbf{B}^2 + \binom{100}{99} \mathbf{B} + \mathbf{I} \\
&= 100 \mathbf{B} + \mathbf{I} \\
&= 100 \begin{pmatrix} 3 & 1 \\ -9 & -3 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\
&= \boxed{\begin{pmatrix} 301 & 100 \\ -900 & -299 \end{pmatrix}}.
\end{align*}Note: We can expand $(\mathbf{B} + \mathbf{I})^{100}$ using the Binomial Theorem because the matrices $\mathbf{B}$ and $\mathbf{I}$ commute, i.e. $\mathbf{B} \mathbf{I} = \mathbf{I} \mathbf{B}.$ In general, expanding a power of $\mathbf{A} + \mathbf{B}$ is difficult. For example,
\[(\mathbf{A} + \mathbf{B})^2 = \mathbf{A}^2 + \mathbf{A} \mathbf{B} + \mathbf{B} \mathbf{A} + \mathbf{B}^2,\]and without knowing more about $\mathbf{A}$ and $\mathbf{B},$ this cannot be simplified. |
If
\[\frac{\sin^4 \theta}{a} + \frac{\cos^4 \theta}{b} = \frac{1}{a + b},\]then find the value of
\[\frac{\sin^8 \theta}{a^3} + \frac{\cos^8 \theta}{b^3}\]in terms of $a$ and $b.$ | Let $x = \sin^2 \theta$ and $y = \cos^2 \theta,$ so $x + y = 1.$ Also,
\[\frac{x^2}{a} + \frac{y^2}{b} = \frac{1}{a + b}.\]Substituting $y = 1 - x,$ we get
\[\frac{x^2}{a} + \frac{(1 - x)^2}{b} = \frac{1}{a + b}.\]This simplifies to
\[(a^2 + 2ab + b^2) x^2 - (2a^2 + 2ab) x + a^2 = 0,\]which nicely factors as $((a + b) x - a)^2 = 0.$ Hence, $(a + b)x - a = 0,$ so $x = \frac{a}{a + b}.$
Then $y = \frac{b}{a + b},$ so
\begin{align*}
\frac{\sin^8 \theta}{a^3} + \frac{\cos^8 \theta}{b^3} &= \frac{x^4}{a^3} + \frac{y^4}{b^3} \\
&= \frac{a^4/(a + b)^4}{a^3} + \frac{b^4/(a + b)^4}{b^3} \\
&= \frac{a}{(a + b)^4} + \frac{b}{(a + b)^4} \\
&= \frac{a + b}{(a + b)^4} \\
&= \boxed{\frac{1}{(a + b)^3}}.
\end{align*} |
A plane is expressed parametrically by
\[\mathbf{v} = \begin{pmatrix} 1 + s - t \\ 2 - s \\ 3 - 2s + 2t \end{pmatrix}.\]Find the equation of the plane. Enter your answer in the form
\[Ax + By + Cz + D = 0,\]where $A,$ $B,$ $C,$ $D$ are integers such that $A > 0$ and $\gcd(|A|,|B|,|C|,|D|) = 1.$ | We can express the vector as
\[\mathbf{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + s \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} + t \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}.\]Thus, the plane is generated by $\begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix},$ so we can find the normal vector of the plane by taking their cross product:
\[\begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} \times \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ -1 \end{pmatrix}.\]Scaling, we can take $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ as the normal vector. Thus, the equation of the plane is of the form
\[2x + z + D = 0.\]Substituting the coordinates of $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix},$ we find that the equation of the plane is
\[\boxed{2x + z - 5 = 0}.\] |
Find the equation of the plane passing through the point $(0,7,-7)$ and containing the line
\[\frac{x + 1}{-3} = \frac{y - 3}{2} = \frac{z + 2}{1}.\]Enter your answer in the form
\[Ax + By + Cz + D = 0,\]where $A,$ $B,$ $C,$ $D$ are integers such that $A > 0$ and $\gcd(|A|,|B|,|C|,|D|) = 1.$ | From the equation, $\frac{x + 1}{-3} = \frac{y - 3}{2},$
\[2x + 3y - 7 = 0.\]From the equation $\frac{y - 3}{2} = \frac{z + 2}{1},$
\[y - 2z - 7 = 0.\]So, any point on the line given in the problem will satisfy $2x + 3y - 7 = 0$ and $y - 2z - 7 = 0,$ which means it will also satisfy any equation of the form
\[a(2x + 3y - 7) + b(y - 2z - 7) = 0,\]where $a$ and $b$ are constants.
We also want the plane to contain $(0,7,-7).$ Plugging in these values, we get
\[14a + 14b = 0.\]Thus, we can take $a = 1$ and $b = -1.$ This gives us
\[(2x + 3y - 7) - (y - 2z - 7) = 0,\]which simplifies to $2x + 2y + 2z = 0.$ Thus, the equation of the plane is $\boxed{x + y + z = 0}.$ |
Compute $\tan \left (\operatorname{arccot} \frac{4}{7} \right).$ | Consider a right triangle where the adjacent side is 4 and the opposite side is 7.
[asy]
unitsize (0.5 cm);
draw((0,0)--(4,0)--(4,7)--cycle);
label("$4$", (2,0), S);
label("$7$", (4,7/2), E);
label("$\theta$", (0.8,0.5));
[/asy]
Then $\cot \theta = \frac{4}{7},$ so $\theta = \operatorname{arccot} \frac{4}{7}.$ Hence, $\tan \theta = \frac{1}{\cot \theta} = \boxed{\frac{7}{4}}.$ |
Let $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}.$ Find $\mathbf{A}^{20} - 2 \mathbf{A}^{19}.$ | First, we can write $\mathbf{A}^{20} - 2 \mathbf{A}^{19} = \mathbf{A}^{19} (\mathbf{A} - 2 \mathbf{I}).$ We can compute that
\[\mathbf{A} - 2 \mathbf{I} =
\begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}
- 2
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
=
\begin{pmatrix} 0 & 3 \\ 0 & -1 \end{pmatrix}
.\]Then
\[\mathbf{A} (\mathbf{A} - 2 \mathbf{I}) =
\begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}
\begin{pmatrix} 0 & 3 \\ 0 & -1 \end{pmatrix}
=
\begin{pmatrix} 0 & 3 \\ 0 & -1 \end{pmatrix}
= \mathbf{A} - 2 \mathbf{I}.\]Then for any positive integer $n \ge 2,$
\begin{align*}
\mathbf{A}^n (\mathbf{A} - 2 \mathbf{I}) &= \mathbf{A}^{n - 1} \cdot \mathbf{A} (\mathbf{A} - 2 \mathbf{I}) \\
&= \mathbf{A}^{n - 1} (\mathbf{A} - 2 \mathbf{I}) \\
\end{align*}Hence,
\begin{align*}
\mathbf{A}^{20} (\mathbf{A} - 2 \mathbf{I}) &= \mathbf{A}^{19} (\mathbf{A} - 2 \mathbf{I}) \\
&= \mathbf{A}^{18} (\mathbf{A} - 2 \mathbf{I}) \\
&= \dotsb \\
&= \mathbf{A}^2 (\mathbf{A} - 2 \mathbf{I}) \\
&= \mathbf{A} (\mathbf{A} - 2 \mathbf{I}) \\
&= \mathbf{A} - 2 \mathbf{I} \\
&= \boxed{
\begin{pmatrix} 0 & 3 \\ 0 & -1 \end{pmatrix}
}.
\end{align*} |
The solutions to $z^4 = -16i$ can be expressed in the form
\begin{align*}
z_1 &= r_1 (\cos \theta_1 + i \sin \theta_1), \\
z_2 &= r_2 (\cos \theta_2 + i \sin \theta_2), \\
z_3 &= r_3 (\cos \theta_3 + i \sin \theta_3), \\
z_4 &= r_4 (\cos \theta_4 + i \sin \theta_4),
\end{align*}where $r_k > 0$ and $0^\circ \le \theta_k < 360^\circ.$ Find $\theta_1 + \theta_2 + \theta_3 + \theta_4,$ in degrees. | First, we can write $z^4 = -16i = 16 \operatorname{cis} 270^\circ.$ Therefore, the four roots are
\begin{align*}
&2 \operatorname{cis} 67.5^\circ, \\
&2 \operatorname{cis} (67.5^\circ + 90^\circ) = 2 \operatorname{cis} 157.5^\circ, \\
&2 \operatorname{cis} (67.5^\circ + 180^\circ) = 2 \operatorname{cis} 247.5^\circ, \\
&2 \operatorname{cis} (67.5^\circ + 270^\circ) = 2 \operatorname{cis} 337.5^\circ.
\end{align*}Then $\theta_1 + \theta_2 + \theta_3 + \theta_4 = 67.5^\circ + 157.5^\circ + 247.5^\circ + 337.5^\circ = \boxed{810^\circ}.$ |
If $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = 4,$ then find
\[\begin{vmatrix} a & 7a + 3b \\ c & 7c +3d \end{vmatrix}.\] | Since $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = 4,$ $ad - bc = 4.$ Then
\[\begin{vmatrix} a & 7a + 3b \\ c & 7c +3d \end{vmatrix} = a(7c + 3d) - (7a + 3b)c = 3ad - 3bc = 3(ad - bc) = \boxed{12}.\] |
The foot of the perpendicular from the origin to a plane is $(12,-4,3).$ Find the equation of the plane. Enter your answer in the form
\[Ax + By + Cz + D = 0,\]where $A,$ $B,$ $C,$ $D$ are integers such that $A > 0$ and $\gcd(|A|,|B|,|C|,|D|) = 1.$ | We can take $\begin{pmatrix} 12 \\ -4 \\ 3 \end{pmatrix}$ as the normal vector of the plane. Then the equation of the plane is of the form
\[12x - 4y + 3z + D = 0.\]Substituting in the coordinates of $(12,-4,3),$ we find that the equation of the plane is $\boxed{12x - 4y + 3z - 169 = 0}.$ |
There exist vectors $\mathbf{a}$ and $\mathbf{b}$ such that
\[\mathbf{a} + \mathbf{b} = \begin{pmatrix} 6 \\ -3 \\ -6 \end{pmatrix},\]where $\mathbf{a}$ is parallel to $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix},$ and $\mathbf{b}$ is orthogonal to $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$ Find $\mathbf{b}.$ | Since $\mathbf{a}$ is parallel to $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix},$
\[\mathbf{a} = t \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} t \\ t \\ t \end{pmatrix}\]for some scalar $t.$ Then
\[\mathbf{b} = \begin{pmatrix} 6 \\ -3 \\ -6 \end{pmatrix} - \begin{pmatrix} t \\ t \\ t \end{pmatrix} = \begin{pmatrix} 6 - t \\ -3 - t \\ -6 - t \end{pmatrix}.\]We want this to be orthogonal to $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix},$ so
\[\begin{pmatrix} 6 - t \\ -3 - t \\ -6 - t \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 0.\]Then $(6 - t)(1) + (-3 - t)(1) + (-6 - t)(1) = 0.$ Solving, we find $t = -1.$ Then $\mathbf{b} = \boxed{\begin{pmatrix} 7 \\ -2 \\ -5 \end{pmatrix}}.$ |
The matrix for reflecting over a certain line $\ell,$ which passes through the origin, is given by
\[\begin{pmatrix} \frac{7}{25} & -\frac{24}{25} \\ -\frac{24}{25} & -\frac{7}{25} \end{pmatrix}.\]Find the direction vector of line $\ell.$ Enter your answer in the form $\begin{pmatrix} a \\ b \end{pmatrix},$ where $a,$ and $b$ are integers, $a > 0,$ and $\gcd(|a|,|b|) = 1.$ | Since $\begin{pmatrix} a \\ b \end{pmatrix}$ actually lies on $\ell,$ the reflection takes this vector to itself.
[asy]
unitsize(1.5 cm);
pair D = (4,-3), V = (2,1), P = (V + reflect((0,0),D)*(V))/2;
draw((4,-3)/2--(-4,3)/2,dashed);
draw((-2,0)--(2,0));
draw((0,-2)--(0,2));
draw((0,0)--P,Arrow(6));
label("$\ell$", (4,-3)/2, SE);
[/asy]
Then
\[\begin{pmatrix} \frac{7}{25} & -\frac{24}{25} \\ -\frac{24}{25} & -\frac{7}{25} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}.\]This gives us
\[\begin{pmatrix} \frac{7}{25} a - \frac{24}{25} b \\ -\frac{24}{25} a - \frac{7}{25} b \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}.\]Then $\frac{7}{25} a - \frac{24}{25} b = a$ and $-\frac{24}{25} a - \frac{7}{25} b = b.$ Either equation reduces to $b = -\frac{3}{4} a,$ so the vector we seek is $\boxed{\begin{pmatrix} 4 \\ -3 \end{pmatrix}}.$ |
Let $\mathbf{a},$ $\mathbf{b},$ and $\mathbf{c}$ be unit vectors such that $\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{c} = 0,$ and the angle between $\mathbf{b}$ and $\mathbf{c}$ is $\frac{\pi}{4}.$ Then
\[\mathbf{a} = k (\mathbf{b} \times \mathbf{c})\]for some constant $k.$ Enter all the possible values of $k,$ separated by commas. | First, note that since $\mathbf{a}$ is orthogonal to both $\mathbf{b}$ and $\mathbf{c},$ $\mathbf{a}$ is a scalar multiple of their cross product $\mathbf{b} \times \mathbf{c}.$ Furthermore,
\[\|\mathbf{b} \times \mathbf{c}\| = \|\mathbf{b}\| \|\mathbf{c}\| \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}.\]Hence,
\[\|\mathbf{a}\| = \| k (\mathbf{b} \times \mathbf{c}) \| = \frac{|k|}{\sqrt{2}}.\]But $\mathbf{a}$ is a unit vector, so the possible values of $k$ are $\boxed{\sqrt{2}, -\sqrt{2}}.$ |
Find the matrix $\mathbf{M}$ such that
\[\mathbf{M} \begin{pmatrix} 1 & -4 \\ 3 & -2 \end{pmatrix} = \begin{pmatrix} -16 & -6 \\ 7 & 2 \end{pmatrix}.\] | The inverse of $\begin{pmatrix} 1 & -4 \\ 3 & -2 \end{pmatrix}$ is
\[\frac{1}{(1)(-2) - (-4)(3)} \begin{pmatrix} -2 & 4 \\ -3 & 1 \end{pmatrix} = \frac{1}{10} \begin{pmatrix} -2 & 4 \\ -3 & 1 \end{pmatrix}.\]So, multiplying by this inverse on the right, we get
\[\mathbf{M} = \begin{pmatrix} -16 & -6 \\ 7 & 2 \end{pmatrix} \cdot \frac{1}{10} \begin{pmatrix} -2 & 4 \\ -3 & 1 \end{pmatrix} = \boxed{\begin{pmatrix} 5 & -7 \\ -2 & 3 \end{pmatrix}}.\] |
For real numbers $t,$ the point of intersection of the lines $tx - 2y - 3t = 0$ and $x - 2ty + 3 = 0$ is plotted. All the plotted points lie on what kind of curve?
(A) Line
(B) Circle
(C) Parabola
(D) Ellipse
(E) Hyperbola
Enter the letter of the correct option. | Solving for $x$ and $y$ in the equations $tx - 2y - 3t = 0$ and $x - 2ty + 3 = 0,$ we find
\[x = \frac{3t^2 + 3}{t^2 - 1}, \quad y = \frac{3t}{t^2 - 1}.\]Then
\[x^2 = \frac{(3t^2 + 3)^2}{(t^2 - 1)^2} = \frac{9t^4 + 18t^2 + 9}{t^4 - 2t^2 + 1},\]and
\[y^2 = \frac{9t^2}{(t^2 - 1)^2} = \frac{9t^2}{t^4 - 2t^2 + 1}.\]Thus,
\begin{align*}
x^2 - 4y^2 &= \frac{9t^2 + 18t^2 + 9}{t^4 - 2t^2 + 1} - \frac{36t^2}{t^4 - 2t^2 + 1} \\
&= \frac{9t^4 - 18t^2 + 9}{t^4 - 2t^2 + 1} \\
&= 9,
\end{align*}so
\[\frac{x^2}{9} - \frac{y^2}{\frac{9}{4}} = 1.\]Thus, all the plotted points lie on a hyperbola. The answer is $\boxed{\text{(E)}}.$ |
Let $\mathbf{R}$ be the matrix for rotating about the origin counter-clockwise by an angle of $58^\circ.$ Find $\det \mathbf{R}.$ | The matrix corresponding to rotating about the origin counter-clockwise by an angle of $\theta$ is given by
\[\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.\]The determinant of this matrix is then
\[\cos^2 \theta - (-\sin \theta)(\sin \theta) = \cos^2 \theta + \sin^2 \theta = \boxed{1}.\](Why does this make sense geometrically?) |
Compute $\arcsin 0.$ Express your answer in radians. | Since $\sin 0 = 0,$ $\arcsin 0 = \boxed{0}.$ |
Compute
\[\cos^2 0^\circ + \cos^2 1^\circ + \cos^2 2^\circ + \dots + \cos^2 90^\circ.\] | Let $S = \cos^2 0^\circ + \cos^2 1^\circ + \cos^2 2^\circ + \dots + \cos^2 90^\circ.$ Then
\begin{align*}
S &= \cos^2 0^\circ + \cos^2 1^\circ + \cos^2 2^\circ + \dots + \cos^2 90^\circ \\
&= \cos^2 90^\circ + \cos^2 89^\circ + \cos^2 88^\circ + \dots + \cos^2 0^\circ \\
&= \sin^2 0^\circ + \sin^2 1^\circ + \sin^2 2^\circ + \dots + \sin^2 90^\circ,
\end{align*}so
\begin{align*}
2S &= (\cos^2 0^\circ + \sin^2 0^\circ) + (\cos^2 1^\circ + \sin^2 1^\circ) + (\cos^2 2^\circ + \sin^2 2^\circ) + \dots + (\cos^2 90^\circ + \sin^2 90^\circ) \\
&= 91,
\end{align*}which means $S = \boxed{\frac{91}{2}}.$ |
Let $\mathbf{p}$ and $\mathbf{q}$ be two three-dimensional unit vectors such that the angle between them is $30^\circ.$ Find the area of the parallelogram whose diagonals correspond to $\mathbf{p} + 2 \mathbf{q}$ and $2 \mathbf{p} + \mathbf{q}.$ | Suppose that vectors $\mathbf{a}$ and $\mathbf{b}$ generate the parallelogram. Then the vectors corresponding to the diagonals are $\mathbf{a} + \mathbf{b}$ and $\mathbf{b} - \mathbf{a}.$
[asy]
unitsize(0.4 cm);
pair A, B, C, D, trans;
A = (0,0);
B = (7,2);
C = (1,3);
D = B + C;
trans = (10,0);
draw(B--D--C);
draw(A--B,Arrow(6));
draw(A--C,Arrow(6));
draw(A--D,Arrow(6));
label("$\mathbf{a}$", (A + B)/2, SE);
label("$\mathbf{b}$", (A + C)/2, W);
label("$\mathbf{a} + \mathbf{b}$", interp(A,D,0.7), NW, UnFill);
draw(shift(trans)*(B--D--C));
draw(shift(trans)*(A--B),Arrow(6));
draw(shift(trans)*(A--C),Arrow(6));
draw(shift(trans)*(B--C),Arrow(6));
label("$\mathbf{a}$", (A + B)/2 + trans, SE);
label("$\mathbf{b}$", (A + C)/2 + trans, W);
label("$\mathbf{b} - \mathbf{a}$", (B + C)/2 + trans, N);
[/asy]
Thus,
\begin{align*}
\mathbf{a} + \mathbf{b} &= \mathbf{p} + 2 \mathbf{q}, \\
\mathbf{b} - \mathbf{a} &= 2 \mathbf{p} + \mathbf{q}.
\end{align*}Solving for $\mathbf{a}$ and $\mathbf{b},$ we find
\begin{align*}
\mathbf{a} &= \frac{\mathbf{q} - \mathbf{p}}{2}, \\
\mathbf{b} &= \frac{3 \mathbf{p} + 3 \mathbf{q}}{2}.
\end{align*}The area of the parallelogram is then given by
\begin{align*}
\|\mathbf{a} \times \mathbf{b}\| &= \left\| \frac{\mathbf{q} - \mathbf{p}}{2} \times \frac{3 \mathbf{p} + 3 \mathbf{q}}{2} \right\| \\
&= \frac{3}{4} \| (\mathbf{q} - \mathbf{p}) \times (\mathbf{p} + \mathbf{q}) \| \\
&= \frac{3}{4} \|\mathbf{q} \times \mathbf{p} + \mathbf{q} \times \mathbf{q} - \mathbf{p} \times \mathbf{p} - \mathbf{p} \times \mathbf{q} \| \\
&= \frac{3}{4} \|-\mathbf{p} \times \mathbf{q} + \mathbf{0} - \mathbf{0} - \mathbf{p} \times \mathbf{q} \| \\
&= \frac{3}{4} \|-2 \mathbf{p} \times \mathbf{q}\| \\
&= \frac{3}{2} \|\mathbf{p} \times \mathbf{q}\|
\end{align*}Since $\mathbf{p}$ and $\mathbf{q}$ are unit vectors, and the angle between them is $30^\circ,$
\[\|\mathbf{p} \times \mathbf{q}\| = \|\mathbf{p}\| \|\mathbf{q}\| \sin 30^\circ = \frac{1}{2}.\]Therefore, the area of the parallelogram is $\frac{3}{2} \cdot \frac{1}{2} = \boxed{\frac{3}{4}}.$ |
Simplify
\[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x}.\] | We can write
\begin{align*}
\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} &= \frac{\sin x + 2 \sin x \cos x}{1 + \cos x + 2 \cos^2 x - 1} \\
&= \frac{\sin x + 2 \sin x \cos x}{\cos x + 2 \cos^2 x} \\
&= \frac{\sin x (1 + 2 \cos x)}{\cos x (1 + 2 \cos x)} \\
&= \frac{\sin x}{\cos x} = \boxed{\tan x}.
\end{align*} |
For real numbers $t \neq 0,$ the point
\[(x,y) = \left( \frac{t + 1}{t}, \frac{t - 1}{t} \right)\]is plotted. All the plotted points lie on what kind of curve?
(A) Line
(B) Circle
(C) Parabola
(D) Ellipse
(E) Hyperbola
Enter the letter of the correct option. | For $x = \frac{t + 1}{t}$ and $y = \frac{t - 1}{t},$
\[x + y = \frac{t + 1}{t} + \frac{t - 1}{t} = \frac{2t}{t} = 2.\]Thus, all the plotted points lie on a line. The answer is $\boxed{\text{(A)}}.$ |
There exists a scalar $c$ so that
\[\mathbf{i} \times (\mathbf{v} \times \mathbf{i}) + \mathbf{j} \times (\mathbf{v} \times \mathbf{j}) + \mathbf{k} \times (\mathbf{v} \times \mathbf{k}) = c \mathbf{v}\]for all vectors $\mathbf{v}.$ Find $c.$ | In general, the vector triple product states that for any vectors $\mathbf{a},$ $\mathbf{b},$ and $\mathbf{c},$
\[\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c}.\]So
\begin{align*}
\mathbf{i} \times (\mathbf{v} \times \mathbf{i}) &= (\mathbf{i} \cdot \mathbf{i}) \mathbf{v} - (\mathbf{i} \cdot \mathbf{v}) \mathbf{i} = \mathbf{v} - (\mathbf{i} \cdot \mathbf{v}) \mathbf{i}, \\
\mathbf{j} \times (\mathbf{v} \times \mathbf{j}) &= (\mathbf{j} \cdot \mathbf{j}) \mathbf{v} - (\mathbf{j} \cdot \mathbf{v}) \mathbf{j} = \mathbf{v} - (\mathbf{j} \cdot \mathbf{v}) \mathbf{j}, \\
\mathbf{k} \times (\mathbf{v} \times \mathbf{k}) &= (\mathbf{k} \cdot \mathbf{k}) \mathbf{v} - (\mathbf{k} \cdot \mathbf{v}) \mathbf{k} = \mathbf{v} - (\mathbf{k} \cdot \mathbf{v}) \mathbf{k}.
\end{align*}Hence,
\begin{align*}
&\mathbf{i} \times (\mathbf{v} \times \mathbf{i}) + \mathbf{j} \times (\mathbf{v} \times \mathbf{j}) + \mathbf{k} \times (\mathbf{v} \times \mathbf{k}) \\
&= 3 \mathbf{v} - ((\mathbf{i} \cdot \mathbf{v}) \mathbf{i} + (\mathbf{j} \cdot \mathbf{v}) \mathbf{j} + (\mathbf{k} \cdot \mathbf{v}) \mathbf{k}) \\
&= 3 \mathbf{v} - \mathbf{v} = 2 \mathbf{v}.
\end{align*}Thus, $c = \boxed{2}.$ |
Simplify
\[\frac{\sin{10^\circ}+\sin{20^\circ}}{\cos{10^\circ}+\cos{20^\circ}}.\]Enter your answer is a trigonometric function evaluated at an integer, such as "sin 7". (The angle should be positive and as small as possible.) | From the product-to-sum identities,
\[\frac{\sin{10^\circ}+\sin{20^\circ}}{\cos{10^\circ}+\cos{20^\circ}} = \frac{2 \sin 15^\circ \cos (-5^\circ)}{2 \cos 15^\circ \cos(-5^\circ)} = \frac{\sin 15^\circ}{\cos 15^\circ} = \boxed{\tan 15^\circ}.\] |
Convert the point $(\rho,\theta,\phi) = \left( 3, \frac{5 \pi}{12}, 0 \right)$ in spherical coordinates to rectangular coordinates. | We have that $\rho = 3,$ $\theta = \frac{5 \pi}{12},$ and $\phi = 0,$ so
\begin{align*}
x &= \rho \sin \phi \cos \theta = 3 \sin 0 \cos \frac{5 \pi}{12} = 0, \\
y &= \rho \sin \phi \sin \theta = 3 \sin 0 \sin \frac{5 \pi}{12} = 0, \\
z &= \rho \cos \phi = 3 \cos 0 = 3.
\end{align*}Therefore, the rectangular coordinates are $\boxed{(0,0,3)}.$ |
Find the reflection of $\begin{pmatrix} 0 \\ 4 \end{pmatrix}$ over the vector $\begin{pmatrix} 1 \\ 3 \end{pmatrix}.$ | Let $\mathbf{r}$ be the reflection of $\begin{pmatrix} 0 \\ 4 \end{pmatrix}$ over the vector $\begin{pmatrix} 1 \\ 3 \end{pmatrix},$ and let $\mathbf{p}$ be the projection of $\begin{pmatrix} 0 \\ 4 \end{pmatrix}$ onto $\begin{pmatrix} 1 \\ 3 \end{pmatrix}.$
[asy]
usepackage("amsmath");
unitsize(1 cm);
pair D, P, R, V;
D = (1,3);
V = (0,4);
R = reflect((0,0),D)*(V);
P = (V + R)/2;
draw((-1,0)--(3,0));
draw((0,-1)--(0,5));
draw((0,0)--D,Arrow(6));
draw((0,0)--V,red,Arrow(6));
draw((0,0)--R,blue,Arrow(6));
draw((0,0)--P,green,Arrow(6));
draw(V--R,dashed);
label("$\begin{pmatrix} 0 \\ 4 \end{pmatrix}$", V, W);
label("$\begin{pmatrix} 1 \\ 3 \end{pmatrix}$", D, W);
label("$\mathbf{r}$", R, NE);
label("$\mathbf{p}$", P, N);
[/asy]
Then
\begin{align*}
\mathbf{p} &= \operatorname{proj}_{\begin{pmatrix} 1 \\ 3 \end{pmatrix}} \begin{pmatrix} 0 \\ 4 \end{pmatrix} \\
&= \frac{\begin{pmatrix} 0 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 3 \end{pmatrix}}{\begin{pmatrix} 1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 3 \end{pmatrix}} \begin{pmatrix} 1 \\ 3 \end{pmatrix} \\
&= \frac{12}{10} \begin{pmatrix} 1 \\ 3 \end{pmatrix} \\
&= \begin{pmatrix} \frac{6}{5} \\ \frac{18}{5} \end{pmatrix}.
\end{align*}Also, $\mathbf{p} = \frac{\begin{pmatrix} 0 \\ 4 \end{pmatrix} + \mathbf{r}}{2},$ so
\[\mathbf{r} = 2 \mathbf{p} - \mathbf{v} = 2 \begin{pmatrix} \frac{6}{5} \\ \frac{18}{5} \end{pmatrix} - \begin{pmatrix} 0 \\ 4 \end{pmatrix} = \boxed{\begin{pmatrix} 12/5 \\ 16/5 \end{pmatrix}}.\] |
Find $x.$
[asy]
unitsize(0.7 cm);
pair A, B, C, D, O;
O = (0,0);
A = 4*dir(160);
B = 5*dir(160 + 180);
C = 8*dir(20);
D = 4*dir(20 + 180);
draw(A--B);
draw(C--D);
draw(A--C);
draw(B--D);
label("$4$", (A + O)/2, SW);
label("$10$", (C + O)/2, SE);
label("$4$", (D + O)/2, NW);
label("$5$", (B + O)/2, NE);
label("$8$", (B + D)/2, S);
label("$x$", (A + C)/2, N);
label("$A$", A, W);
label("$B$", B, E);
label("$C$", C, E);
label("$D$", D, W);
label("$O$", O, N);
[/asy] | Let $\theta = \angle AOC = \angle BOD.$ Then by the Law of Cosines on triangle $BOD,$
\[\cos \theta = \frac{4^2 + 5^2 - 8^2}{2 \cdot 4 \cdot 5} = -\frac{23}{40}.\]Then by the Law of Cosines on triangle $AOC,$
\begin{align*}
x^2 &= 4^2 + 10^2 - 2 \cdot 4 \cdot 10 \cos \theta \\
&= 4^2 + 10^2 - 2 \cdot 4 \cdot 10 \cdot \left( -\frac{23}{40} \right) \\
&= 162,
\end{align*}so $x = \sqrt{162} = \boxed{9 \sqrt{2}}.$ |
In triangle $ABC,$ $M$ is the midpoint of $\overline{BC},$ $AB = 12,$ and $AC = 16.$ Let $E$ be on $\overline{AC},$ and $F$ be on $\overline{AB},$ and let $G$ be the intersection of $\overline{EF}$ and $\overline{AM}.$ If $AE = 2AF,$ then find $\frac{EG}{GF}.$
[asy]
unitsize(0.3 cm);
pair A, B, C, E, F, G, M;
real x = 4;
B = (0,0);
C = (18,0);
A = intersectionpoint(arc(B,12,0,180),arc(C,16,0,180));
M = (B + C)/2;
F = interp(A,B,x/12);
E = interp(A,C,2*x/16);
G = extension(E,F,A,M);
draw(A--B--C--cycle);
draw(E--F);
draw(A--M);
label("$A$", A, N);
label("$B$", B, SW);
label("$C$", C, SE);
label("$E$", E, NE);
label("$F$", F, NW);
label("$G$", G, SW);
label("$M$", M, S);
[/asy] | Let $x = AF,$ so $AE = 2x.$ Then $BF = 12 - x$ and $CE = 16 - 2x.$
[asy]
unitsize(0.3 cm);
pair A, B, C, E, F, G, M;
real x = 4;
B = (0,0);
C = (18,0);
A = intersectionpoint(arc(B,12,0,180),arc(C,16,0,180));
M = (B + C)/2;
F = interp(A,B,x/12);
E = interp(A,C,2*x/16);
G = extension(E,F,A,M);
draw(A--B--C--cycle);
draw(E--F);
draw(A--M);
label("$A$", A, N);
label("$B$", B, SW);
label("$C$", C, SE);
label("$E$", E, NE);
label("$F$", F, NW);
label("$G$", G, SW);
label("$M$", M, S);
label("$x$", (A + F)/2, NW, red);
label("$2x$", (A + E)/2, NE, red);
label("$12 - x$", (B + F)/2, NW, red);
label("$16 - 2x$", (C + E)/2, NE, red);
[/asy]
Let $\mathbf{a}$ denote $\overrightarrow{A},$ etc. Then
\[\mathbf{f} = \frac{x \mathbf{b} + (12 - x) \mathbf{a}}{12},\]so
\[\mathbf{b} = \frac{12 \mathbf{f} - (12 - x) \mathbf{a}}{x}.\]Also,
\[\mathbf{e} = \frac{2x \mathbf{c} + (16 - 2x) \mathbf{a}}{16} = \frac{x \mathbf{c} + (8 - x) \mathbf{a}}{8},\]so
\[\mathbf{c} = \frac{8 \mathbf{e} - (8 - x) \mathbf{a}}{x}.\]Then
\[\mathbf{m} = \frac{\mathbf{b} + \mathbf{c}}{2} = \frac{8 \mathbf{e} + 12 \mathbf{f} - (20 - 2x) \mathbf{a}}{2x} = \frac{4 \mathbf{e} + 6 \mathbf{f} - (10 - x) \mathbf{a}}{x}.\]Hence, $x \mathbf{m} + (10 - x) \mathbf{a} = 4 \mathbf{e} + 6 \mathbf{f},$ so
\[\frac{x}{10} \mathbf{m} + \frac{10 - x}{10} \mathbf{a} = \frac{4}{10} \mathbf{e} + \frac{6}{10} \mathbf{f}.\]Since the coefficients on both sides of the equation add up to 1, the vector on the left side lies on line $AM,$ and the vector on the right side lies on line $EF.$ Therefore, this common vector is $\mathbf{g}.$ Furthermore, $\frac{EG}{GF} = \frac{6}{4} = \boxed{\frac{3}{2}}.$ |
Find all real numbers $k$ for which there exists a nonzero, 2-dimensional vector $\mathbf{v}$ such that
\[\begin{pmatrix} 1 & 8 \\ 2 & 1 \end{pmatrix} \mathbf{v} = k \mathbf{v}.\]Enter all the solutions, separated by commas. | Let $\mathbf{v} = \begin{pmatrix} x \\ y \end{pmatrix}$. Then
\[\begin{pmatrix} 1 & 8 \\ 2 & 1 \end{pmatrix} \mathbf{v} = \begin{pmatrix} 1 & 8 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + 8y \\ 2x + y \end{pmatrix},\]and
\[k \mathbf{v} = k \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} kx \\ ky \end{pmatrix}.\]Thus, we want $k$, $x$, and $y$ to satisfy
\begin{align*}
x + 8y &= kx, \\
2x + y &= ky.
\end{align*}From the first equation, $(k - 1) x = 8y$. If $x = 0$, then this equation implies $y = 0$. But the vector $\mathbf{v}$ is nonzero, so $x$ is nonzero. From the second equation, $2x = (k - 1) y$. Similarly, if $y = 0$, then this equation implies $x = 0$, so $y$ is nonzero. We also see that $k \neq 1$, because if $k = 1$, then $y = 0$, which again implies $x = 0$.
Hence, we can write
\[\frac{x}{y} = \frac{8}{k - 1} = \frac{k - 1}{2}.\]Cross-multiplying, we get $(k - 1)^2 = 16$. Then $k - 1 = \pm 4.$ Therefore, $k = \boxed{5}$ or $k = \boxed{-3}$.
To make sure that these values of $k$ work, we should check if the corresponding vector $\mathbf{v}$ exists. For $k = 5$, we can take $\mathbf{v} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$, and for $k = -3$, we can take $\mathbf{v} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$, so both values of $k$ are possible. |
A translation of the plane takes $-3 + 2i$ to $-7 - i.$ Find the complex number that the translation takes $-4 + 5i$ to. | This translation takes $z$ to $z + w,$ where $w$ is a fixed complex number. Thus,
\[-7 - i = (-3 + 2i) + w.\]Hence, $w = -4 - 3i.$ Then the translation takes $-4 + 5i$ to $(-4 + 5i) + (-4 - 3i) = \boxed{-8 + 2i}.$ |
Find the range of the function
\[f(x) = \frac{\sin^3 x + 6 \sin^2 x + \sin x + 2 \cos^2 x - 8}{\sin x - 1},\]as $x$ ranges over all real numbers such that $\sin x \neq 1.$ Enter your answer using interval notation. | Since $\cos^2 x = 1 - \sin^2 x,$ we can write
\begin{align*}
f(x) &= \frac{\sin^3 x + 6 \sin^2 x + \sin x + 2(1 - \sin^2 x) - 8}{\sin x - 1} \\
&= \frac{\sin^3 x + 4 \sin^2 x + \sin x - 6}{\sin x - 1} \\
&= \frac{(\sin x - 1)(\sin x + 2)(\sin x + 3)}{\sin x - 1} \\
&= (\sin x + 2)(\sin x + 3) \\
&= \sin^2 x + 5 \sin x + 6.
\end{align*}Let $y = \sin x.$ Then
\[\sin^2 x + 5 \sin x + 6 = y^2 + 5y + 6 = \left( y + \frac{5}{2} \right)^2 - \frac{1}{4}\]Note that $y = \sin x$ satisfies $-1 \le y \le 1,$ and $\left( y + \frac{5}{2} \right)^2 - \frac{1}{4}$ is increasing on this interval. Therefore,
\[2 \le (\sin x + 2)(\sin x + 3) \le 12.\]However, in the original function $f(x),$ $\sin x$ cannot take on the value of 1, so the range of $f(x)$ is $\boxed{[2,12)}.$ |
Find all angles $\theta,$ $0 \le \theta \le 2 \pi,$ with the following property: For all real numbers $x,$ $0 \le x \le 1,$
\[x^2 \cos \theta - x(1 - x) + (1 - x)^2 \sin \theta > 0.\] | Taking $x = 0,$ we get $\sin \theta > 0.$ Taking $x = 1,$ we get $\cos \theta > 0.$ Hence, $0 < \theta < \frac{\pi}{2}.$
Then we can write
\begin{align*}
&x^2 \cos \theta - x(1 - x) + (1 - x)^2 \sin \theta \\
&= x^2 \cos \theta - 2x (1 - x) \sqrt{\cos \theta \sin \theta} + (1 - x)^2 \sin \theta + 2x (1 - x) \sqrt{\cos \theta \sin \theta} - x(1 - x) \\
&= (x \sqrt{\cos \theta} - (1 - x) \sqrt{\sin \theta})^2 + x(1 - x) (2 \sqrt{\cos \theta \sin \theta} - 1).
\end{align*}Solving $x \sqrt{\cos \theta} = (1 - x) \sqrt{\sin \theta},$ we find
\[x = \frac{\sqrt{\sin \theta}}{\sqrt{\cos \theta} + \sqrt{\sin \theta}},\]which does lie in the interval $[0,1].$ For this value of $x,$ the expression becomes
\[x(1 - x) (2 \sqrt{\cos \theta \sin \theta} - 1),\]which forces $2 \sqrt{\cos \theta \sin \theta} - 1 > 0,$ or $4 \cos \theta \sin \theta > 1.$ Equivalently, $\sin 2 \theta > \frac{1}{2}.$ Since $0 < \theta < \frac{\pi}{2},$ $0 < 2 \theta < \pi,$ and the solution is $\frac{\pi}{6} < 2 \theta < \frac{5 \pi}{6},$ or
\[\frac{\pi}{12} < \theta < \frac{5 \pi}{12}.\]Conversely, if $\frac{\pi}{12} < \theta < \frac{5 \pi}{12},$ then $\cos \theta > 0,$ $\sin \theta > 0,$ and $\sin 2 \theta > \frac{1}{2},$ so
\begin{align*}
&x^2 \cos \theta - x(1 - x) + (1 - x)^2 \sin \theta \\
&= x^2 \cos \theta - 2x (1 - x) \sqrt{\cos \theta \sin \theta} + (1 - x)^2 \sin \theta + 2x (1 - x) \sqrt{\cos \theta \sin \theta} - x(1 - x) \\
&= (x \sqrt{\cos \theta} - (1 - x) \sqrt{\sin \theta})^2 + x(1 - x) (2 \sqrt{\cos \theta \sin \theta} - 1) > 0.
\end{align*}Thus, the solutions $\theta$ are $\theta \in \boxed{\left( \frac{\pi}{12}, \frac{5 \pi}{12} \right)}.$ |
Find the point on the line defined by
\[\begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} -2 \\ 6 \\ -3 \end{pmatrix}\]that is closest to the point $(2,3,4).$ | A point on the line is given by
\[\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} -2 \\ 6 \\ -3 \end{pmatrix} = \begin{pmatrix} 4 - 2t \\ 6t \\ 1 - 3t \end{pmatrix}.\][asy]
unitsize (0.6 cm);
pair A, B, C, D, E, F, H;
A = (2,5);
B = (0,0);
C = (8,0);
D = (A + reflect(B,C)*(A))/2;
draw(A--D);
draw((0,0)--(8,0));
dot("$(2,3,4)$", A, N);
dot("$(4 - 2t, 6t, 1 - 3t)$", D, S);
[/asy]
The vector pointing from $(2,3,4)$ to $(4 - 2t, 6t, 1 - 3t)$ is then
\[\begin{pmatrix} 2 - 2t \\ -3 + 6t \\ -3 - 3t \end{pmatrix}.\]For the point on the line that is closest to $(2,3,4),$ this vector will be orthogonal to the direction vector of the second line, which is $\begin{pmatrix} -2 \\ 6 \\ -3 \end{pmatrix}.$ Thus,
\[\begin{pmatrix} 2 - 2t \\ -3 + 6t \\ -3 - 3t \end{pmatrix} \cdot \begin{pmatrix} -2 \\ 6 \\ -3 \end{pmatrix} = 0.\]This gives us $(2 - 2t)(-2) + (-3 + 6t)(6) + (-3 - 3t)(-3) = 0.$ Solving, we find $t = \frac{13}{49}.$
For this value of $t,$ the point is $\boxed{\left( \frac{170}{49}, \frac{78}{49}, \frac{10}{49} \right)}.$ |
Find the point in the $xz$-plane that is equidistant from the points $(1,-1,0),$ $(2,1,2),$ and $(3,2,-1).$ | Since the point lies in the $xz$-plane, it is of the form $(x,0,z).$ We want this point to be equidistant to the points $(1,-1,0),$ $(2,1,2),$ and $(3,2,-1),$ which gives us the equations
\begin{align*}
(x - 1)^2 + 1^2 + z^2 &= (x - 2)^2 + 1^2 + (z - 2)^2, \\
(x - 1)^2 + 1^2 + z^2 &= (x - 3)^2 + 2^2 + (z + 1)^2.
\end{align*}These equations simplify to $2x + 4z = 7$ and $4x - 2z = 12.$ Solving these equation, we find $x = \frac{31}{10}$ and $z = \frac{1}{5},$ so the point we seek is $\boxed{\left( \frac{31}{10}, 0, \frac{1}{5} \right)}.$ |
The projection of $\begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix}$ onto a certain vector $\mathbf{w}$ is $\begin{pmatrix} 1 \\ -1/2 \\ 1/2 \end{pmatrix}.$ Find the projection of $\begin{pmatrix} 3 \\ 3 \\ -2 \end{pmatrix}$ onto $\mathbf{w}.$ | Since the projection of $\begin{pmatrix} 0 \\ 1 \\ 4 \end{pmatrix}$ onto $\mathbf{w}$ is $\begin{pmatrix} 1 \\ -1/2 \\ 1/2 \end{pmatrix},$ $\mathbf{w}$ must be a scalar multiple of $\begin{pmatrix} 1 \\ -1/2 \\ 1/2 \end{pmatrix}.$ Furthermore, the projection of a vector onto $\mathbf{w}$ is the same as the projection of the same vector onto any nonzero scalar multiple of $\mathbf{w}$ (because this projection depends only on the direction of $\mathbf{w}$).
Thus, the projection of $\begin{pmatrix} 3 \\ 3 \\ -2 \end{pmatrix}$ onto $\mathbf{w}$ is the same as the projection of $\begin{pmatrix} 3 \\ 3 \\ -2 \end{pmatrix}$ onto $2 \begin{pmatrix} 1 \\ -1/2 \\ 1/2 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix},$ which is
\[\frac{\begin{pmatrix} 3 \\ 3 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}}{\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = \frac{1}{6} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = \boxed{\begin{pmatrix} 1/3 \\ -1/6 \\ 1/6 \end{pmatrix}}.\] |
Compute the number of real solutions $(x,y,z,w)$ to the system of equations:
\begin{align*}
x &= z+w+zwx, \\
y &= w+x+wxy, \\
z &= x+y+xyz, \\
w &= y+z+yzw.
\end{align*} | We can re-write the first equation as
\[x = \frac{w+z}{1-wz}.\]which is an indication to consider trigonometric substitution.
Let $x = \tan a,$ $y = \tan b,$ $z = \tan c,$ and $w = \tan d,$ where $-90^{\circ} < a,$ $b,$ $c,$ $d < 90^{\circ}$. Then
\[\tan a = \frac{\tan d + \tan c}{1 - \tan d \tan c} = \tan (c + d).\]Similarly,
\begin{align*}
\tan b &= \tan (d + a), \\
\tan c &= \tan (a + b), \\
\tan d &= \tan (b + c).
\end{align*}Since the tangent function has period $180^\circ,$
\begin{align*}
a &\equiv c + d, \\
b &\equiv d + a, \\
c &\equiv a + b, \\
d &\equiv b + c,
\end{align*}where all the congruences are taken modulo $180^\circ.$ Adding all these congruences, we get $a + b + c + d \equiv 0.$ Then
\[a \equiv c + d \equiv -a - b,\]so $b \equiv -2a.$ Similarly, $c \equiv -2b,$ $d \equiv -2c,$ and $a \equiv -2d.$ Then
\[a \equiv -2d \equiv 4c \equiv -8b \equiv 16a,\]so $15a \equiv 0.$ Hence, $(a,b,c,d) \equiv (t,-2t,4t,-8t),$ where $15t \equiv 0.$ Since $a \equiv c + d,$
\[t \equiv 4t - 8t \equiv -4t,\]so $5t \equiv 0.$ We can check that this condition always leads to a solution, giving us $\boxed{5}$ solutions.
Note: We divided the first equation to get
\[x = \frac{w + z}{1 - wz},\]so we should check that $wz \neq 1$ for all five solutions. If $wz = 1,$ then from the equation $x = z + w + zwx,$
\[z + w = 0.\]Then $wz = -w^2,$ which cannot be equal to 1, contradiction. The same holds for the division in the other equations. |
Let $O$ be the origin, and let $(a,b,c)$ be a fixed point. A plane passes through $(a,b,c)$ and intersects the $x$-axis, $y$-axis, and $z$-axis at $A,$ $B,$ and $C,$ respectively, all distinct from $O.$ Let $(p,q,r)$ be the center of the sphere passing through $A,$ $B,$ $C,$ and $O.$ Find
\[\frac{a}{p} + \frac{b}{q} + \frac{c}{r}.\] | Let $A = (\alpha,0,0),$ $B = (0,\beta,0),$ and $C = (0,0,\gamma).$ Since $(p,q,r)$ is equidistant from $O,$ $A,$ $B,$ and $C,$
\begin{align*}
p^2 + q^2 + r^2 &= (p - \alpha)^2 + q^2 + r^2, \\
p^2 + q^2 + r^2 &= p^2 + (q - \beta)^2 + r^2, \\
p^2 + q^2 + r^2 &= p^2 + q^2 + (r - \gamma)^2.
\end{align*}The first equation simplifies to $2 \alpha p = \alpha^2.$ Since $\alpha \neq 0,$
\[\alpha = 2p.\]Similarly, $\beta = 2q$ and $\gamma = 2r.$
Since $A = (\alpha,0,0),$ $B = (0,\beta,0),$ and $C = (0,0,\gamma),$ the equation of plane $ABC$ is given by
\[\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 1.\]We can also write the equation of the plane as
\[\frac{x}{2p} + \frac{y}{2q} + \frac{z}{2r} = 1.\]Since $(a,b,c)$ lies on this plane,
\[\frac{a}{2p} + \frac{b}{2q} + \frac{c}{2r} = 1,\]so
\[\frac{a}{p} + \frac{b}{q} + \frac{c}{r} = \boxed{2}.\] |
The perpendicular bisectors of the sides of triangle $ABC$ meet its circumcircle at points $A',$ $B',$ and $C',$ as shown. If the perimeter of triangle $ABC$ is 35 and the radius of the circumcircle is 8, then find the area of hexagon $AB'CA'BC'.$
[asy]
unitsize(2 cm);
pair A, B, C, Ap, Bp, Cp, O;
O = (0,0);
A = dir(210);
B = dir(60);
C = dir(330);
Ap = dir(15);
Bp = dir(270);
Cp = dir(135);
draw(Circle(O,1));
draw(A--B--C--cycle);
draw((B + C)/2--Ap);
draw((A + C)/2--Bp);
draw((A + B)/2--Cp);
label("$A$", A, A);
label("$B$", B, B);
label("$C$", C, C);
label("$A'$", Ap, Ap);
label("$B'$", Bp, Bp);
label("$C'$", Cp, Cp);
[/asy] | Note that the perpendicular bisectors meet at $O,$ the circumcenter of triangle $ABC.$
[asy]
unitsize(2 cm);
pair A, B, C, Ap, Bp, Cp, O;
O = (0,0);
A = dir(210);
B = dir(60);
C = dir(330);
Ap = dir(15);
Bp = dir(270);
Cp = dir(135);
draw(Circle(O,1));
draw(A--B--C--cycle);
draw(O--Ap);
draw(O--Bp);
draw(O--Cp);
draw(A--Bp--C--Ap--B--Cp--A--cycle);
draw(A--O);
draw(B--O);
draw(C--O);
label("$A$", A, A);
label("$B$", B, B);
label("$C$", C, C);
label("$A'$", Ap, Ap);
label("$B'$", Bp, Bp);
label("$C'$", Cp, Cp);
label("$O$", O, N, UnFill);
[/asy]
As usual, let $a = BC,$ $b = AC,$ and $c = AB.$ In triangle $OAB',$ taking $\overline{OB'}$ as the base, the height is $\frac{b}{2},$ so
\[[OAB'] = \frac{1}{2} \cdot R \cdot \frac{b}{2} = \frac{bR}{4}.\]Similarly, $[OCB'] = \frac{bR}{4},$ so $[OAB'C] = \frac{bR}{2}.$
Similarly, $[OCA'B] = \frac{aR}{2}$ and $[OBC'A] = \frac{cR}{2},$ so
\[[AB'CA'BC'] = [OCA'B] + [OAB'C] + [OBC'A] = \frac{aR}{2} + \frac{bR}{2} + \frac{cR}{2} = \frac{(a + b + c)R}{2} = \frac{35 \cdot 8}{2} = \boxed{140}.\] |
Find the number of $x$-intercepts on the graph of $y = \sin \frac{1}{x}$ (evaluated in terms of radians) in the interval $(0.0001, 0.001).$ | The intercepts occur where $\sin \frac{1}{x}= 0$, that is, where $x = \frac{1}{k\pi}$ and $k$ is a nonzero integer. Solving
\[0.0001 < \frac{1}{k\pi} < 0.001\]yields
\[\frac{1000}{\pi} < k < \frac{10{,}000}{\pi}.\]Thus the number of $x$ intercepts in $(0.0001, 0.001)$ is
\[\left\lfloor\frac{10{,}000}{\pi}\right\rfloor -\left\lfloor\frac{1000}{\pi}\right\rfloor = 3183 - 318 = \boxed{2865}.\] |
Find the area of the triangle with vertices $(6,5,3),$ $(3,3,1),$ and $(15,11,9).$ | Let $\mathbf{u} = \begin{pmatrix} 6 \\ 5 \\ 3 \end{pmatrix},$ $\mathbf{v} = \begin{pmatrix} 3 \\ 3 \\ 1 \end{pmatrix},$ and $\mathbf{w} = \begin{pmatrix} 15 \\ 11 \\ 9 \end{pmatrix}.$
Then
\[\mathbf{v} - \mathbf{u} = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}\]and
\[\mathbf{w} - \mathbf{u} = \begin{pmatrix} 9 \\ 6 \\ 6 \end{pmatrix} = 3 (\mathbf{v} - \mathbf{u}).\]Since $\mathbf{w} - \mathbf{u}$ is a scalar multiple of $\mathbf{v} - \mathbf{u},$ all three vectors are collinear, so the area of the "triangle" is $\boxed{0}.$ |
The matrix
\[\begin{pmatrix} a & 3 \\ -8 & d \end{pmatrix}\]is its own inverse, for some real numbers $a$ and $d.$ Find the number of possible pairs $(a,d).$ | Since $\begin{pmatrix} a & 3 \\ -8 & d \end{pmatrix}$ is its own inverse,
\[\begin{pmatrix} a & 3 \\ -8 & d \end{pmatrix}^2 = \begin{pmatrix} a & 3 \\ -8 & d \end{pmatrix} \begin{pmatrix} a & 3 \\ -8 & d \end{pmatrix} = \mathbf{I}.\]This gives us
\[\begin{pmatrix} a^2 - 24 & 3a + 3d \\ -8a - 8d & d^2 - 24 \end{pmatrix} = \mathbf{I}.\]Then $a^2 - 24 = 1,$ $3a + 3d = 0,$ $-8a - 8d = 0,$ and $d^2 - 24 = 1.$ Hence, $a + d = 0,$ $a^2 = 25,$ and $d^2 = 25.$ The possible pairs $(a,d)$ are then $(5,-5)$ and $(-5,5),$ giving us $\boxed{2}$ solutions. |
Let $a$ and $b$ be angles such that
\[\cos (a + b) = \cos a + \cos b.\]Find the maximum value of $\cos a.$ | From $\cos (a + b) = \cos a + \cos b,$ $\cos a = \cos (a + b) - \cos b.$ Then from sum-to-product,
\[\cos (a + b) - \cos b = -2 \sin \frac{a + 2b}{2} \sin \frac{a}{2}.\]Let $k = \sin \frac{a + 2b}{2},$ so
\[\cos a = -2k \sin \frac{a}{2}.\]Then
\[\cos^2 a = 4k^2 \sin^2 \frac{a}{2} = 4k^2 \cdot \frac{1}{2} (1 - \cos a) = 2k^2 (1 - \cos a),\]so
\[\frac{\cos^2 a}{1 - \cos a} = 2k^2 \le 2.\]Then $\cos^2 a \le 2 - 2 \cos a,$ so
\[\cos^2 a + 2 \cos a + 1 \le 3.\]This means $(\cos a + 1)^2 \le 3,$ so $\cos a + 1 \le \sqrt{3},$ or $\cos a \le \sqrt{3} - 1.$
Equality occurs if we take $a = \arccos (\sqrt{3} - 1)$ and $b = \frac{3 \pi - a}{2}$ (which will make $k = \sin \frac{a + 2b}{2} = -1$), so the maximum value of $\cos a$ is $\boxed{\sqrt{3} - 1}.$ |
In triangle $ABC,$ $AB = 9,$ $BC = 10,$ and $AC = 11.$ If $D$ and $E$ are chosen on $\overline{AB}$ and $\overline{AC}$ so that $AD = 4$ and $AE = 7,$ then find the area of triangle $ADE.$
[asy]
unitsize (1 cm);
pair A, B, C, D, E;
A = (2,3);
B = (0,0);
C = (6,0);
D = interp(A,B,0.4);
E = interp(A,C,3/5);
draw(A--B--C--cycle);
draw(D--E);
label("$A$", A, N);
label("$B$", B, SW);
label("$C$", C, SE);
label("$D$", D, NW);
label("$E$", E, NE);
[/asy] | By Heron's formula, the area of triangle $ABC$ is $30 \sqrt{2}.$ Then
\[\frac{1}{2} \cdot 10 \cdot 11 \sin A = 30 \sqrt{2},\]so $\sin A = \frac{20 \sqrt{2}}{33}.$ Therefore,
\[[ADE] = \frac{1}{2} \cdot 4 \cdot 7 \cdot \frac{20 \sqrt{2}}{33} = \boxed{\frac{280 \sqrt{2}}{33}}.\] |
In triangle $ABC$, $AB = BC$, and $\overline{BD}$ is an altitude. Point $E$ is on the extension of $\overline{AC}$ such that $BE =
10$. The values of $\tan \angle CBE$, $\tan \angle DBE$, and $\tan \angle ABE$ form a geometric progression, and the values of $\cot \angle DBE$, $\cot \angle CBE$, $\cot \angle DBC$ form an arithmetic progression. What is the area of triangle $ABC$?
[asy]
pair A,B,C,D,E;
A=(0,0);
B=(4,8);
C=(8,0);
E=(10,0);
D=(4,0);
draw(A--B--E--cycle,linewidth(0.7));
draw(C--B--D,linewidth(0.7));
label("$B$",B,N);
label("$A$",A,S);
label("$D$",D,S);
label("$C$",C,S);
label("$E$",E,S);
[/asy] | Let $\angle DBE = \alpha$ and $\angle DBC = \beta$. Then $\angle CBE = \alpha - \beta$ and $\angle ABE = \alpha +
\beta$, so $\tan(\alpha - \beta)\tan(\alpha + \beta) = \tan^2
\alpha$. Thus \[\frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}\cdot \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan\beta} = \tan^2 \alpha.\]It follows that \[
\tan^2 \alpha - \tan^2 \beta = \tan^2 \alpha(1-\tan^2 \alpha\tan^2\beta).
\]Upon simplifying, $\tan^2 \beta(\tan^4 \alpha - 1) = 0$, so $\tan
\alpha = 1$ and $\alpha = \frac{\pi}{4}$.
Let $DC = a$ and $BD =
b$. Then $\cot \angle DBC = \frac{b}{a}$. Because $\angle CBE =
\frac{\pi}{4} - \beta$ and $\angle ABE = \frac{\pi}{4} + \beta$, it follows that \[\cot \angle CBE = \tan \angle ABE = \tan \left( \frac{\pi}{4} + \beta \right) = \frac{1+\frac{a}{b}}{1-\frac{a}{b}} =
\frac{b+a}{b-a}.\]Thus the numbers 1, $\frac{b+a}{b-a}$, and $\frac{b}{a}$ form an arithmetic progression, so $\frac{b}{a} =
\frac{b+3a}{b-a}$. Setting $b=ka$ yields \[k^2 - 2k - 3=0,\]and the only positive solution is $k=3$.
Hence $b=\frac{BE}{\sqrt{2}} = 5 \sqrt{2},\, a = \frac{5\sqrt{2}}{3}$, and the area of triangle $ABC$ is $ab = \boxed{\frac{50}{3}}$. |
Compute $\begin{pmatrix} 2 & 0 \\ 5 & -3 \end{pmatrix} \begin{pmatrix} 8 & -2 \\ 1 & 1 \end{pmatrix}.$ | We have that
\[\begin{pmatrix} 2 & 0 \\ 5 & -3 \end{pmatrix} \begin{pmatrix} 8 & -2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} (2)(8) + (0)(1) & (2)(-2) + (0)(1) \\ (5)(8) + (-3)(1) & (5)(-2) + (-3)(1) \end{pmatrix} = \boxed{\begin{pmatrix} 16 & -4 \\ 37 & -13 \end{pmatrix}}.\] |
The sum $10 e^{2 \pi i/11} + 10 e^{15 \pi i/22}$ is expressed as $re^{i \theta}.$ Enter the ordered pair $(r, \theta).$ | The average of $\frac{2 \pi}{11}$ and $\frac{15 \pi}{22}$ is $\frac{19 \pi}{44}.$ We can then write
\begin{align*}
10 e^{2 \pi i/11} + 10 e^{15 \pi i/22} &= 10 e^{19 \pi i/44} (e^{-\pi i/4} + e^{\pi i/4}) \\
&= 10 e^{19 \pi i/44} \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} + \cos \frac{\pi}{4} - i \sin \frac{\pi}{4} \right) \\
&= 10 \sqrt{2} e^{19 \pi i/44}.
\end{align*}Thus, $(r, \theta) = \boxed{\left( 10 \sqrt{2}, \frac{19 \pi}{44} \right)}.$ |
Compute $\tan\left(\frac{\pi}{7}\right)\tan\left(\frac{2\pi}{7}\right)\tan\left(\frac{3\pi}{7}\right)$. | In general, By DeMoivre's Theorem,
\begin{align*}
\operatorname{cis} n \theta &= (\operatorname{cis} \theta)^n \\
&= (\cos \theta + i \sin \theta)^n \\
&= \cos^n \theta + \binom{n}{1} i \cos^{n - 1} \theta \sin \theta - \binom{n}{2} \cos^{n - 2} \theta \sin^2 \theta - \binom{n}{3} i \cos^{n - 3} \theta \sin^3 \theta + \dotsb.
\end{align*}Matching real and imaginary parts, we get
\begin{align*}
\cos n \theta &= \cos^n \theta - \binom{n}{2} \cos^{n - 2} \theta \sin^2 \theta + \binom{n}{4} \cos^{n - 4} \theta \sin^4 \theta - \dotsb, \\
\sin n \theta &= \binom{n}{1} \cos^{n - 1} \theta \sin \theta - \binom{n}{3} \cos^{n - 3} \theta \sin^3 \theta + \binom{n}{5} \cos^{n - 5} \theta \sin^5 \theta - \dotsb.
\end{align*}Therefore,
\begin{align*}
\tan n \theta &= \frac{\sin n \theta}{\cos n \theta} \\
&= \frac{\dbinom{n}{1} \cos^{n - 1} \theta \sin \theta - \dbinom{n}{3} \cos^{n - 3} \theta \sin^3 \theta + \dbinom{n}{5} \cos^{n - 5} \theta \sin^5 \theta - \dotsb}{\cos^n \theta - \dbinom{n}{2} \cos^{n - 2} \theta \sin^2 \theta + \dbinom{n}{4} \cos^{n - 4} \theta \sin^4 \theta - \dotsb} \\
&= \frac{\dbinom{n}{1} \tan \theta - \dbinom{n}{3} \tan^3 \theta + \dbinom{n}{5} \tan^5 \theta - \dotsb}{1 - \dbinom{n}{2} \tan^2 \theta + \dbinom{n}{4} \tan^4 \theta - \dotsb}.
\end{align*}Taking $n = 7,$ we get
\[\tan 7 \theta = \frac{7 \tan \theta - 35 \tan^3 \theta + 21 \tan^5 \theta - \tan^7 \theta}{1 - 21 \tan^2 \theta + 35 \tan^4 \theta - 7 \tan^6 \theta}.\]Note that for $\theta = \frac{\pi}{7},$ $\frac{2 \pi}{7},$ and $\frac{3 \pi}{7},$ $\tan 7 \theta = 0.$ Thus, $\tan \frac{\pi}{7},$ $\tan \frac{2 \pi}{7},$ and $\tan \frac{3 \pi}{7}$ are the roots of
\[7t - 35t^3 + 21t^5 - t^7 = 0,\]or $t^7 - 21t^5 + 35t^3 - 7t = 0.$ We can take out a factor of $t,$ to get
\[t (t^6 - 21t^4 + 35t^2 - 7) = 0.\]We know that three of the roots are $\tan \frac{\pi}{7},$ $\tan \frac{2 \pi}{7},$ and $\tan \frac{3 \pi}{7}.$ Since the exponents in $t^6 - 21t^4 + 35t^2 - 7$ are all even, the other three roots are $-\tan \frac{\pi}{7},$ $-\tan \frac{2 \pi}{7},$ and $-\tan \frac{3 \pi}{7}.$ Then by Vieta's formulas,
\[\left( \tan \frac{\pi}{7} \right) \left( \tan \frac{2 \pi}{7} \right) \left( \tan \frac{3 \pi}{7} \right) \left( -\tan \frac{\pi}{7} \right) \left( -\tan \frac{2 \pi}{7} \right) \left( -\tan \frac{3 \pi}{7} \right) = -7,\]so
\[\tan^2 \frac{\pi}{7} \tan^2 \frac{2 \pi}{7} \tan^2 \frac{3 \pi}{7} = 7.\]Since all the angles are acute, each tangent is positive. Hence,
\[\tan \frac{\pi}{7} \tan \frac{2 \pi}{7} \tan \frac{3 \pi}{7} = \boxed{\sqrt{7}}.\] |
The dilation, centered at $-1 + 4i,$ with scale factor $-2,$ takes $2i$ to which complex number? | Let $z$ be the image of $2i$ under the dilation.
[asy]
unitsize(0.5 cm);
pair C, P, Q;
C = (-1,4);
P = (0,2);
Q = (-3,8);
draw((-5,0)--(5,0));
draw((0,-1)--(0,10));
draw(P--Q,dashed);
dot("$-1 + 4i$", C, SW);
dot("$2i$", P, E);
dot("$-3 + 8i$", Q, NW);
[/asy]
Since the dilation is centered at $-1 + 4i,$ with scale factor $-2,$
\[z - (-1 + 4i) = (-2)(2i - (-1 + 4i)).\]Solving, we find $z = \boxed{-3 + 8i}.$ |
Find the phase shift of the graph of $y = \sin (3x - \pi).$ | Since the graph of $y = \sin (3x - \pi)$ is the same as the graph of $y = \sin 3x$ shifted $\frac{\pi}{3}$ units to the right, the phase shift is $\boxed{\frac{\pi}{3}}.$
[asy]import TrigMacros;
size(400);
real g(real x)
{
return sin(3*x - pi);
}
real f(real x)
{
return sin(3*x);
}
draw(graph(g,-2*pi,2*pi,n=700,join=operator ..),red);
draw(graph(f,-2*pi,2*pi,n=700,join=operator ..));
trig_axes(-2*pi,2*pi,-2,2,pi/2,1);
layer();
rm_trig_labels(-4,4, 2);
[/asy]
Note that we can also shift the graph of $y = \sin 3x$ $\frac{\pi}{3}$ units to the left, so an answer of $\boxed{-\frac{\pi}{3}}$ is also acceptable. |
Let triangle $ABC$ be a right triangle with right angle at $C.$ Let $D$ and $E$ be points on $\overline{AB}$ with $D$ between $A$ and $E$ such that $\overline{CD}$ and $\overline{CE}$ trisect $\angle C.$ If $\frac{DE}{BE} = \frac{8}{15},$ then find $\tan B.$ | Without loss of generality, set $CB = 1$. Then, by the Angle Bisector Theorem on triangle $DCB$, we have $CD = \frac{8}{15}$.
[asy]
unitsize(0.5 cm);
pair A, B, C, D, E;
A = (0,4*sqrt(3));
B = (11,0);
C = (0,0);
D = extension(C, C + dir(60), A, B);
E = extension(C, C + dir(30), A, B);
draw(A--B--C--cycle);
draw(C--D);
draw(C--E);
label("$A$", A, NW);
label("$B$", B, SE);
label("$C$", C, SW);
label("$D$", D, NE);
label("$E$", E, NE);
label("$1$", (B + C)/2, S);
label("$\frac{8}{15}$", (C + D)/2, NW);
[/asy]
We apply the Law of Cosines to triangle $DCB$ to get
\[BD^2 = 1 + \frac{64}{225} - \frac{8}{15},\]which we can simplify to get $BD = \frac{13}{15}$.
Now, we have
\[\cos B = \frac{1 + \frac{169}{225} - \frac{64}{225}}{\frac{26}{15}} = \frac{11}{13},\]by another application of the Law of Cosines to triangle $DCB$.
In addition, since $B$ is acute, $\sin B = \sqrt{1 - \frac{121}{169}} = \frac{4\sqrt{3}}{13}$, so
\[\tan B = \frac{\sin B}{\cos B} = \boxed{\frac{4 \sqrt{3}}{11}}.\] |
Equilateral triangle $ABC$ has been creased and folded so that vertex $A$ now rests at $A'$ on $\overline{BC}$ as shown. If $BA' = 1$ and $A'C = 2,$ then find the length of crease $\overline{PQ}.$
[asy]
unitsize(1 cm);
pair A, Ap, B, C, P, Q;
A = 3*dir(60);
B = (0,0);
C = (3,0);
Ap = (1,0);
P = 8/5*dir(60);
Q = C + 5/4*dir(120);
draw(B--C--Q--P--cycle);
draw(P--Ap--Q);
draw(P--A--Q,dashed);
label("$A$", A, N);
label("$A'$", Ap, S);
label("$B$", B, SW);
label("$C$", C, SE);
label("$P$", P, NW);
label("$Q$", Q, NE);
[/asy] | The side length of equilateral triangle $ABC$ is 3.
Let $x = BP.$ Then $AP = A'P = 3 - x,$ so by the Law of Cosines on triangle $PBA',$
\[(3 - x)^2 = x^2 + 3^2 - 2 \cdot x \cdot 3 \cdot \cos 60^\circ = x^2 - 3x + 9.\]Solving, we find $x = \frac{8}{5}.$
Let $y = CQ.$ Then $AQ = A'Q = 3 - y,$ so by the Law of Cosines on triangle $QCA',$
\[(3 - y)^2 = y^2 + 2^2 - 2 \cdot y \cdot 2 \cdot \cos 60^\circ = y^2 - 2y + 4.\]Solving, we find $y = \frac{5}{4}.$
Then $AP = \frac{7}{5}$ and $AQ = \frac{7}{4},$ so by the Law of Cosines on triangle $APQ,$
\[PQ^2 = \sqrt{\left( \frac{7}{5} \right)^2 - \frac{7}{5} \cdot \frac{7}{4} + \left( \frac{7}{4} \right)^2} = \boxed{\frac{7 \sqrt{21}}{20}}.\] |
The graph of
\[r = -2 \cos \theta + 6 \sin \theta\]is a circle. Find the area of the circle. | From the equation $r = -2 \cos \theta + 6 \sin \theta,$
\[r^2 = -2r \cos \theta + 6r \sin \theta.\]Then $x^2 + y^2 = -2x + 6y.$ Completing the square in $x$ and $y,$ we get
\[(x + 1)^2 + (y - 3)^2 = 10.\]Thus, the graph is the circle centered at $(-1,3)$ with radius $\sqrt{10}.$ Its area is $\boxed{10 \pi}.$
[asy]
unitsize(0.5 cm);
pair moo (real t) {
real r =-2*cos(t) + 6*sin(t);
return (r*cos(t), r*sin(t));
}
path foo = moo(0);
real t;
for (t = 0; t <= pi + 0.1; t = t + 0.1) {
foo = foo--moo(t);
}
draw(foo,red);
draw((-5,0)--(3,0));
draw((0,-1)--(0,7));
label("$r = -2 \cos \theta + 6 \sin \theta$", (6,5), red);
[/asy] |
Find $\begin{pmatrix} 3 \\ -7 \end{pmatrix} + \begin{pmatrix} -6 \\ 11 \end{pmatrix}.$ | We have that
\[\begin{pmatrix} 3 \\ -7 \end{pmatrix} + \begin{pmatrix} -6 \\ 11 \end{pmatrix} = \begin{pmatrix} 3 + (-6) \\ (-7) + 11 \end{pmatrix} = \boxed{\begin{pmatrix} -3 \\ 4 \end{pmatrix}}.\] |
Let $O$ be the origin. There exists a scalar $k$ so that for any points $A,$ $B,$ $C,$ and $D$ such that
\[3 \overrightarrow{OA} - 2 \overrightarrow{OB} + 5 \overrightarrow{OC} + k \overrightarrow{OD} = \mathbf{0},\]the four points $A,$ $B,$ $C,$ and $D$ are coplanar. Find $k.$ | From the given equation,
\[3 \overrightarrow{OA} - 2 \overrightarrow{OB} = -5 \overrightarrow{OC} - k \overrightarrow{OD}.\]Let $P$ be the point such that
\[\overrightarrow{OP} = 3 \overrightarrow{OA} - 2 \overrightarrow{OB} = -5 \overrightarrow{OC} - k \overrightarrow{OD}.\]Since $3 + (-2) = 1,$ $P$ lies on line $AB.$ If $-5 - k = 1,$ then $P$ would also lie on line $CD,$ which forces $A,$ $B,$ $C,$ and $D$ to be coplanar. Solving $-5 - k = 1,$ we find $k = \boxed{-6}.$ |
Find the dot product of $\begin{pmatrix} 3 \\ -4 \\ -3 \end{pmatrix}$ and $\begin{pmatrix} -5 \\ 2 \\ 1 \end{pmatrix}.$ | The dot product of $\begin{pmatrix} 3 \\ -4 \\ -3 \end{pmatrix}$ and $\begin{pmatrix} -5 \\ 2 \\ 1 \end{pmatrix}$ is
\[(3)(-5) + (-4)(2) + (-3)(1) = \boxed{-26}.\] |
If triangle $ABC$ has sides of length $AB = 6,$ $AC = 5,$ and $BC = 4,$ then calculate
\[\frac{\cos \frac{A - B}{2}}{\sin \frac{C}{2}} - \frac{\sin \frac{A - B}{2}}{\cos \frac{C}{2}}.\] | We can write the expression as
\[\frac{\cos \frac{A - B}{2} \cos \frac{C}{2} - \sin \frac{A - B}{2} \sin \frac{C}{2}}{\sin \frac{C}{2} \cos \frac{C}{2}}.\]The numerator is
\[\cos \left (\frac{A - B}{2} + \frac{C}{2} \right) = \cos \frac{A - B + C}{2} = \cos \frac{(180^\circ - B) - B}{2} = \cos (90^\circ - B) = \sin B,\]and the denominator is $\frac{1}{2} \sin C,$ so by the Law of Sines, the expression is
\[\frac{2 \sin B}{\sin C} = \frac{2AC}{AB} = \frac{10}{6} = \boxed{\frac{5}{3}}.\] |
Solve $\arcsin x + \arcsin (1 - x) = \arccos x.$ | Taking the sine of both sides, we get
\[\sin (\arcsin x + \arcsin (1 - x)) = \sin (\arccos x).\]Then from the angle addition formula,
\[\sin (\arcsin x) \cos (\arcsin (1 - x)) + \cos (\arcsin x) \sin (\arcsin (1 - x)) = \sin (\arccos x),\]or
\[x \sqrt{1 - (1 - x)^2} + \sqrt{1 - x^2} (1 - x) = \sqrt{1 - x^2}.\]Then
\[x \sqrt{1 - (1 - x)^2} = x \sqrt{1 - x^2}.\]Squaring both sides, we get
\[x^2 (1 - (1 - x)^2) = x^2 (1 - x^2).\]This simplifies to $2x^3 - x^2 = x^2 (2x - 1) = 0.$ Thus, $x = 0$ or $x = \frac{1}{2}.$
Checking, we find both solutions work, so the solutions are $\boxed{0, \frac{1}{2}}.$ |
If $\|\mathbf{v}\| = 4,$ then find $\mathbf{v} \cdot \mathbf{v}.$ | We have that $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2 = \boxed{16}.$ |
The distance between two vectors is the magnitude of their difference. Find the value of $t$ for which the vector
\[\bold{v} = \begin{pmatrix} 2 \\ -3 \\ -3 \end{pmatrix} + t \begin{pmatrix} 7 \\ 5 \\ -1 \end{pmatrix}\]is closest to
\[\bold{a} = \begin{pmatrix} 4 \\ 4 \\ 5 \end{pmatrix}.\] | The equation
\[\bold{v} = \begin{pmatrix} 2 \\ -3 \\ -3 \end{pmatrix} + \begin{pmatrix} 7 \\ 5 \\ -1 \end{pmatrix} t = \begin{pmatrix} 2 + 7t \\ -3 + 5t \\ -3 - t \end{pmatrix}\]describes a line, so if $\bold{v}$ is the vector that is closest to $\bold{a}$, then the vector joining $\bold{v}$ and $\bold{a}$ is orthogonal to the direction vector of the line.
[asy]
unitsize (0.6 cm);
pair A, B, C, D, E, F, H;
A = (2,5);
B = (0,0);
C = (8,0);
D = (A + reflect(B,C)*(A))/2;
draw(A--D);
draw((0,0)--(8,0));
dot("$\mathbf{a}$", A, N);
dot("$\mathbf{v}$", D, S);
[/asy]
This gives us the equation
\[\left( \begin{pmatrix} 2 + 7t \\ -3 + 5t \\ -3 - t \end{pmatrix} - \begin{pmatrix} 4 \\ 4 \\ 5 \end{pmatrix} \right) \cdot \begin{pmatrix} 7 \\ 5 \\ -1 \end{pmatrix} = 0.\]Then
\[\begin{pmatrix} -2 + 7t \\ -7 + 5t \\ -8 - t \end{pmatrix} \cdot \begin{pmatrix} 7 \\ 5 \\ -1 \end{pmatrix} = 0,\]so $(-2 + 7t) \cdot 7 + (-7 + 5t) \cdot 5 + (-8 - t) \cdot (-1) = 0$. Solving for $t$, we find $t = \boxed{\frac{41}{75}}.$ |
Find the smallest positive integer $k$ such that $
z^{10} + z^9 + z^6+z^5+z^4+z+1
$ divides $z^k-1$. | First, we factor the given polynomial. The polynomial has almost all the powers of $z$ from 1 to $z^6,$ which we can fill in by adding and subtracting $z^2$ and $z^3.$ This allows us to factor as follows:
\begin{align*}
z^{10} + z^9 + z^6 + z^5 + z^4 + z + 1 &= (z^{10} - z^3) + (z^9 - z^2) + (z^6 + z^5 + z^4 + z^3 + z^2 + z + 1) \\
&= z^3 (z^7 - 1) + z^2 (z^7 - 1) + (z^6 + z^5 + z^4 + z^3 + z^2 + z + 1) \\
&= z^3 (z - 1)(z^6 + z^5 + z^4 + z^3 + z^2 + z + 1) \\
&\quad + z^2 (z - 1)(z^6 + z^5 + z^4 + z^3 + z^2 + z + 1) \\
&\quad + (z^6 + z^5 + z^4 + z^3 + z^2 + z + 1) \\
&= (z^4 - z^2 + 1)(z^6 + z^5 + z^4 + z^3 + z^2 + z + 1).
\end{align*}Viewing $z^4 - z^2 + 1 = 0$ as a quadratic in $z^2,$ we can solve to get
\[z^2 = \frac{1 \pm i \sqrt{3}}{2},\]or $\operatorname{cis} \frac{\pi}{3}$ and $\operatorname{cis} \frac{5 \pi}{3}.$ Therefore, the roots of $z^4 - z^2 + 1 = 0$ are
\[\operatorname{cis} \frac{\pi}{6}, \ \operatorname{cis} \frac{7 \pi}{6}, \ \operatorname{cis} \frac{5 \pi}{6}, \ \operatorname{cis} \frac{11 \pi}{6}.\]We write these as
\[\operatorname{cis} \frac{2 \pi}{12}, \ \operatorname{cis} \frac{14 \pi}{12}, \ \operatorname{cis} \frac{10 \pi}{12}, \ \operatorname{cis} \frac{22 \pi}{12}.\]If $z^6 + z^5 + z^4 + z^3 + z^2 + z + 1 = 0,$ then
\[(z - 1)(z^6 + z^5 + z^4 + z^3 + z^2 + z + 1) = 0,\]which simplifies to $z^7 = 1.$ Thus, the roots of $z^6 + z^5 + z^4 + z^3 + z^2 + z + 1 = 0$ are of the form
\[\operatorname{cis} \frac{2 \pi j}{7},\]where $1 \le j \le 6.$
The roots of $z^k - 1 = 0$ are of the form
\[\operatorname{cis} \frac{2 \pi j}{k}.\]Thus, we need $k$ to be a multiple of both 12 and 7. The smallest such $k$ is $\boxed{84}.$ |
The solid $S$ consists of the set of all points $(x,y,z)$ such that $|x| + |y| \le 1,$ $|x| + |z| \le 1,$ and $|y| + |z| \le 1.$ Find the volume of $S.$ | By symmetry, we can focus on the octant where $x,$ $y,$ $z$ are all positive. In this octant, the condition $|x| + |y| = 1$ becomes $x + y = 1,$ which is the equation of a plane. Hence, the set of points in this octant such that $|x| + |y| \le 1$ is the set of points bound by the plane $x + y = 1,$ $x = 0,$ and $y = 0.$
[asy]
import three;
size(180);
currentprojection = perspective(6,3,2);
draw(surface((1,0,0)--(0,1,0)--(0,1,1)--(1,0,1)--cycle),paleyellow,nolight);
draw(surface((0,0,0)--(1,0,0)--(1,0,1)--(0,0,1)--cycle),paleyellow,nolight);
draw(surface((0,0,0)--(0,1,0)--(0,1,1)--(0,0,1)--cycle),paleyellow,nolight);
draw((1,0,0)--(1,0,1));
draw((0,1,0)--(0,1,1));
draw((1,0,0)--(0,1,0));
draw((0,0,1)--(1,0,1)--(0,1,1)--cycle);
draw((0,0,0)--(1,0,0),dashed);
draw((0,0,0)--(0,1,0),dashed);
draw((0,0,0)--(0,0,1),dashed);
draw((1,0,0)--(1.2,0,0),Arrow3(6));
draw((0,1,0)--(0,1.2,0),Arrow3(6));
draw((0,0,1)--(0,0,1.2),Arrow3(6));
label("$x$", (1.3,0,0));
label("$y$", (0,1.3,0));
label("$z$", (0,0,1.3));
[/asy]
The conditions $|x| + |z| \le 1$ and $|y| + |z| \le 1$ lead to similar regions. Taking their intersection, we obtain the following solid.
[asy]
import three;
size(180);
currentprojection = perspective(6,3,2);
draw(surface((1,0,0)--(0,1,0)--(1/2,1/2,1/2)--cycle),gray(0.5),nolight);
draw(surface((1,0,0)--(0,0,1)--(1/2,1/2,1/2)--cycle),gray(0.9),nolight);
draw(surface((0,1,0)--(0,0,1)--(1/2,1/2,1/2)--cycle),gray(0.7),nolight);
draw((1,0,0)--(0,1,0)--(0,0,1)--cycle);
draw((1,0,0)--(1/2,1/2,1/2));
draw((0,1,0)--(1/2,1/2,1/2));
draw((0,0,1)--(1/2,1/2,1/2));
draw((0,0,0)--(1,0,0),dashed);
draw((0,0,0)--(0,1,0),dashed);
draw((0,0,0)--(0,0,1),dashed);
draw((1,0,0)--(1.2,0,0),Arrow3(6));
draw((0,1,0)--(0,1.2,0),Arrow3(6));
draw((0,0,1)--(0,0,1.2),Arrow3(6));
label("$x$", (1.3,0,0));
label("$y$", (0,1.3,0));
label("$z$", (0,0,1.3));
[/asy]
This solid is bound by the planes $x = 0,$ $y = 0,$ $z = 0,$ $x + y = 1,$ $x + z = 1,$ and $y + z = 1.$ The planes $x + y = 1,$ $x + z = 1,$ and $y + z = 1$ intersect at $\left( \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right).$ Thus, we can compute the volume of this solid by dissecting it into three congruent pyramids. One pyramid has vertices $(0,0,0),$ $(1,0,0),$ $(0,1,0),$ and $\left( \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right).$ The volume of this pyramid is
\[\frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{12}.\][asy]
import three;
size(180);
currentprojection = perspective(6,3,2);
draw(surface((1,0,0)--(0,1,0)--(1/2,1/2,1/2)--cycle),gray(0.7),nolight);
draw((1,0,0)--(0,1,0)--(0,0,1)--cycle);
draw((1,0,0)--(1/2,1/2,1/2));
draw((0,1,0)--(1/2,1/2,1/2));
draw((0,0,1)--(1/2,1/2,1/2));
draw((0,0,0)--(1,0,0),dashed);
draw((0,0,0)--(0,1,0),dashed);
draw((0,0,0)--(0,0,1),dashed);
draw((0,0,0)--(1/2,1/2,1/2),dashed);
draw((1,0,0)--(1.2,0,0),Arrow3(6));
draw((0,1,0)--(0,1.2,0),Arrow3(6));
draw((0,0,1)--(0,0,1.2),Arrow3(6));
label("$x$", (1.3,0,0));
label("$y$", (0,1.3,0));
label("$z$", (0,0,1.3));
[/asy]
Hence, the volume of this solid is $\frac{3}{12} = \frac{1}{4}.$ This is the portion of the solid only in one octant, so the volume of the whole solid $S$ is $\frac{8}{4} = \boxed{2}.$
[asy]
import three;
size(200);
currentprojection = perspective(6,3,2);
draw(surface((1,0,0)--(1/2,1/2,1/2)--(0,1,0)--(1/2,1/2,-1/2)--cycle),gray(0.5),nolight);
draw(surface((1,0,0)--(1/2,1/2,1/2)--(0,0,1)--(1/2,-1/2,1/2)--cycle),gray(0.9),nolight);
draw(surface((0,1,0)--(1/2,1/2,1/2)--(0,0,1)--(-1/2,1/2,1/2)--cycle),gray(0.7),nolight);
draw(surface((1,0,0)--(1/2,1/2,-1/2)--(0,0,-1)--(1/2,-1/2,-1/2)--cycle),gray(0.3),nolight);
draw(surface((1,0,0)--(1/2,-1/2,1/2)--(0,-1,0)--(1/2,-1/2,-1/2)--cycle),gray(0.4),nolight);
draw(surface((1,0,0)--(1/2,-1/2,1/2)--(0,-1,0)--(1/2,-1/2,-1/2)--cycle),gray(0.5),nolight);
draw(surface((0,1,0)--(1/2,1/2,-1/2)--(0,0,-1)--(-1/2,1/2,-1/2)--cycle),gray(0.4),nolight);
draw((1,0,0)--(1/2,1/2,1/2)--(0,1,0));
draw((1,0,0)--(1/2,1/2,-1/2)--(0,1,0));
draw((1,0,0)--(1/2,-1/2,1/2)--(0,-1,0));
draw((1,0,0)--(1/2,-1/2,-1/2)--(0,-1,0));
draw((0,0,1)--(1/2,1/2,1/2));
draw((0,0,1)--(1/2,-1/2,1/2));
draw((0,0,1)--(-1/2,1/2,1/2)--(0,1,0));
draw((1/2,-1/2,-1/2)--(0,0,-1)--(1/2,1/2,-1/2));
draw((1,0,0)--(1.4,0,0),Arrow3(6));
draw((0,1,0)--(0,1.2,0),Arrow3(6));
draw((0,0,1)--(0,0,1.2),Arrow3(6));
label("$x$", (1.5,0,0));
label("$y$", (0,1.3,0));
label("$z$", (0,0,1.3));
[/asy] |
Find the inverse of the matrix
\[\begin{pmatrix} 6 & -4 \\ -3 & 2 \end{pmatrix}.\]If the inverse does not exist, then enter the zero matrix. | Since the determinant is $(6)(2) - (-4)(-3) = 0,$ the inverse does not exist, so the answer is the zero matrix $\boxed{\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}}.$ |
Let $P$ be the plane passing through the origin with normal vector $\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}.$ Find the matrix $\mathbf{R}$ such that for any vector $\mathbf{v},$ $\mathbf{R} \mathbf{v}$ is the reflection of $\mathbf{v}$ through plane $P.$ | Let $\mathbf{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix},$ and let $\mathbf{p}$ be the projection of $\mathbf{p}$ onto plane $P.$ Then $\mathbf{v} - \mathbf{p}$ is the projection of $\mathbf{v}$ onto the normal vector $\mathbf{n} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}.$
[asy]
import three;
size(160);
currentprojection = perspective(6,3,2);
triple I = (1,0,0), J = (0,1,0), K = (0,0,1);
triple O = (0,-0.5,0), V = (0,1.5,1), P = (0,1.5,0);
draw(surface((2*I + 2*J)--(2*I - 2*J)--(-2*I - 2*J)--(-2*I + 2*J)--cycle),paleyellow,nolight);
draw((2*I + 2*J)--(2*I - 2*J)--(-2*I - 2*J)--(-2*I + 2*J)--cycle);
draw((P + 0.1*(O - P))--(P + 0.1*(O - P) + 0.2*(V - P))--(P + 0.2*(V - P)));
draw(O--P,green,Arrow3(6));
draw(O--V,red,Arrow3(6));
draw(P--V,blue,Arrow3(6));
draw((1,-0.8,0)--(1,-0.8,0.2)--(1,-1,0.2));
draw((1,-1,0)--(1,-1,2),magenta,Arrow3(6));
label("$\mathbf{v}$", V, N, fontsize(10));
label("$\mathbf{p}$", P, S, fontsize(10));
label("$\mathbf{n}$", (1,-1,1), dir(180), fontsize(10));
label("$\mathbf{v} - \mathbf{p}$", (V + P)/2, E, fontsize(10));
[/asy]
Thus,
\[\mathbf{v} - \mathbf{p} = \frac{\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}}{\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = \frac{x + y - z}{3} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} = \renewcommand{\arraystretch}{1.5} \begin{pmatrix} \frac{x + y - z}{3} \\ \frac{x + y - z}{3} \\ -\frac{x + y - z}{3} \end{pmatrix} \renewcommand{\arraystretch}{1}.\]Then
\[\mathbf{p} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} - \renewcommand{\arraystretch}{1.5} \begin{pmatrix} \frac{x + y - z}{3} \\ \frac{x + y - z}{3} \\ -\frac{x + y - z}{3} \end{pmatrix} \renewcommand{\arraystretch}{1} = \renewcommand{\arraystretch}{1.5} \begin{pmatrix} \frac{2x - y + z}{3} \\ \frac{-x + 2y + z}{3} \\ \frac{x + y + 2z}{3} \end{pmatrix} \renewcommand{\arraystretch}{1}.\]Now, let $\mathbf{r}$ be the reflection of $\mathbf{v}$ through plane $P.$
[asy]
import three;
size(160);
currentprojection = perspective(6,3,2);
triple I = (1,0,0), J = (0,1,0), K = (0,0,1);
triple O = (0,-0.5,0), V = (0,1.5,1), P = (0,1.5,0), R = (0,1.5,-1);
draw(surface((2*I + 2*J)--(2*I - 2*J)--(-2*I - 2*J)--(-2*I + 2*J)--cycle),paleyellow,nolight);
draw((2*I + 2*J)--(2*I - 2*J)--(-2*I - 2*J)--(-2*I + 2*J)--cycle);
draw((P + 0.1*(O - P))--(P + 0.1*(O - P) + 0.2*(V - P))--(P + 0.2*(V - P)));
draw(O--P,green,Arrow3(6));
draw(O--V,red,Arrow3(6));
draw(P--V,blue,Arrow3(6));
draw((1,-0.8,0)--(1,-0.8,0.2)--(1,-1,0.2));
draw((1,-1,0)--(1,-1,2),magenta,Arrow3(6));
draw(O--R,dashed,Arrow3(6));
draw(R--P,dashed);
label("$\mathbf{v}$", V, N, fontsize(10));
label("$\mathbf{p}$", P, E, fontsize(10));
label("$\mathbf{n}$", (1,-1,1), dir(180), fontsize(10));
label("$\mathbf{v} - \mathbf{p}$", (V + P)/2, E, fontsize(10));
label("$\mathbf{r}$", R, S);
[/asy]
Then $\mathbf{p}$ is the midpoint of $\mathbf{v}$ and $\mathbf{r},$ so
\[\mathbf{p} = \frac{\mathbf{v} + \mathbf{r}}{2}.\]We can solve for $\mathbf{r},$ to find $\mathbf{r} = 2 \mathbf{p} - \mathbf{v}.$ Then
\[\mathbf{r} = 2 \renewcommand{\arraystretch}{1.5} \begin{pmatrix} \frac{2x - y + z}{3} \\ \frac{-x + 2y + z}{3} \\ \frac{x + y + 2z}{3} \end{pmatrix} \renewcommand{\arraystretch}{1} - \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \renewcommand{\arraystretch}{1.5} \begin{pmatrix} \frac{x - 2y + 2z}{3} \\ \frac{-2x + y + 2z}{3} \\ \frac{2x + 2y + z}{3} \end{pmatrix} \renewcommand{\arraystretch}{1} = \renewcommand{\arraystretch}{1.5} \begin{pmatrix} \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{pmatrix} \renewcommand{\arraystretch}{1} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.\]Hence,
\[\mathbf{R} = \boxed{\begin{pmatrix} \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{pmatrix}}.\] |
For a constant $c,$ in spherical coordinates $(\rho,\theta,\phi),$ find the shape described by the equation
\[\theta = c.\](A) Line
(B) Circle
(C) Plane
(D) Sphere
(E) Cylinder
(F) Cone
Enter the letter of the correct option. | In spherical coordinates, $\theta$ denotes the angle a point makes with the positive $x$-axis. Thus, for a fixed angle $\theta = c,$ all the points lie on a plane. The answer is $\boxed{\text{(C)}}.$ Note that we can obtain all points in this plane by taking $\rho$ negative.
[asy]
import three;
import solids;
size(200);
currentprojection = perspective(6,3,2);
currentlight = (1,0,1);
real theta = 150;
draw((0,0,0)--(-2,0,0));
draw((0,0,0)--(0,-2,0));
draw(surface((Cos(theta),Sin(theta),1)--(Cos(theta),Sin(theta),-1)--(Cos(theta + 180),Sin(theta + 180),-1)--(Cos(theta + 180),Sin(theta + 180),1)--cycle), gray(0.7),nolight);
draw((0,0,0)--(2,0,0));
draw((0,0,0)--(0,2,0));
draw((0,0,-1.5)--(0,0,1.5));
draw((1.5*Cos(theta),1.5*Sin(theta),0)--(1.5*Cos(theta + 180),1.5*Sin(theta + 180),0));
draw((0.5,0,0)..(0.5*Cos(theta/2),0.5*Sin(theta/2),0)..(0.5*Cos(theta),0.5*Sin(theta),0),red,Arrow3(6));
draw((0,0,0)--(0,-1,0),dashed);
draw((0,0,0)--(-2,0,0),dashed);
label("$\theta$", (0.7,0.6,0), white);
label("$x$", (2,0,0), SW);
label("$y$", (0,2,0), E);
label("$z$", (0,0,1.5), N);
label("$\theta = c$", (Cos(theta),Sin(theta),-1), SE);
[/asy] |
Compute the least positive value of $t$ such that
\[\arcsin (\sin \alpha), \ \arcsin (\sin 2 \alpha), \ \arcsin (\sin 7 \alpha), \ \arcsin (\sin t \alpha)\]is a geometric progression for some $\alpha$ with $0 < \alpha < \frac{\pi}{2}.$ | Let $r$ be the common ratio. Since $0 < \alpha < \frac{\pi}{2},$ both $\arcsin (\sin \alpha)$ and $\arcsin (\sin 2 \alpha)$ are positive, so $r$ is positive. The positive portions of the graphs of $y = \arcsin (\sin x),$ $y = \arcsin (2 \sin x),$ and $y = \arcsin (7 \sin x)$ are shown below. (Note that each graph is piece-wise linear.)
[asy]
unitsize(4 cm);
draw((0,0)--(pi/2,pi/2),red);
draw((0,0)--(pi/4,pi/2)--(pi/2,0),green);
draw((0,0)--(pi/14,pi/2)--(pi/7,0),blue);
draw((2*pi/7,0)--(5/14*pi,pi/2)--(3*pi/7,0),blue);
draw((0,0)--(pi/2,0));
draw((0,0)--(0,pi/2));
draw((1.8,1.2)--(2.2,1.2),red);
draw((1.8,1.0)--(2.2,1.0),green);
draw((1.8,0.8)--(2.2,0.8),blue);
label("$0$", (0,0), S);
label("$\frac{\pi}{2}$", (pi/2,0), S);
label("$\frac{\pi}{7}$", (pi/7,0), S);
label("$\frac{2 \pi}{7}$", (2*pi/7,0), S);
label("$\frac{3 \pi}{7}$", (3*pi/7,0), S);
label("$0$", (0,0), W);
label("$\frac{\pi}{2}$", (0,pi/2), W);
label("$y = \arcsin (\sin x)$", (2.2,1.2), E);
label("$y = \arcsin (\sin 2x)$", (2.2,1.0), E);
label("$y = \arcsin (\sin 7x)$", (2.2,0.8), E);
[/asy]
Note that $\arcsin (\sin x) = x.$ If $0 < x \le \frac{\pi}{4},$ then
\[\arcsin (\sin 2x) = 2x,\]and if $\frac{\pi}{4} \le x < \frac{\pi}{2},$ then
\[\arcsin (\sin 2x) = \pi - 2x.\]If $0 < x \le \frac{\pi}{14},$ then
\[\arcsin (\sin 7x) = 7x.\]The first three terms become $x,$ $2x,$ $7x,$ which cannot form a geometric progression.
If $\frac{\pi}{14} \le x \le \frac{\pi}{7},$ then
\[\arcsin (\sin 7x) = \pi - 7x.\]The first three terms become $x,$ $2x,$ $\pi - 7x.$ If these form a geometric progression, then
\[(2x)^2 = x(\pi - 7x).\]Solving, we find $x = \frac{\pi}{11}.$ The common ratio $r$ is then 2, and the fourth term is
\[2^3 \cdot \frac{\pi}{11} = \frac{8 \pi}{11}.\]But this is greater than $\frac{\pi}{2},$ so this case is not possible.
If $\frac{2 \pi}{7} \le x \le \frac{5 \pi}{14},$ then
\[\arcsin (\sin 7x) = 7 \left( x - \frac{2 \pi}{7} \right) = 7x - 2 \pi.\]The first three terms become $x,$ $\pi - 2x,$ $7x - 2 \pi.$ If these form a geometric progression, then
\[(\pi - 2x)^2 = x(7x - 2 \pi).\]This simplifies to $3x^2 + 2 \pi x - \pi^2 = 0,$ which factors as $(3x - \pi)(x + \pi) = 0.$ Hence, $x = \frac{\pi}{3}.$ The common ratio $r$ is then 1, and the smallest $t$ such that $\arcsin \left( \sin \left( t \cdot \frac{\pi}{3} \right) \right) = \frac{\pi}{3}$ is 1.
Finally, if $\frac{5 \pi}{14} \le x \le \frac{3 \pi}{7},$ then
\[\arcsin (\sin 7x) = -7 \left( x - \frac{3 \pi}{7} \right) = -7x + 3 \pi.\]The first three terms become $x,$ $\pi - 2x,$ $-7x + 3 \pi.$ If these form a geometric progression, then
\[(\pi - 2x)^2 = x (-7x + 3 \pi).\]This simplifies to $11x^2 - 7 \pi x + \pi^2 = 0.$ By the quadratic formula,
\[x = \frac{(7 \pm \sqrt{5}) \pi}{22}.\]For $x = \frac{(7 - \sqrt{5}) \pi}{22},$ both the second and third term are greater than $\frac{\pi}{2}.$ For $x = \frac{(7 + \sqrt{5}) \pi}{22},$ the common ratio $r$ is
\[\frac{\pi - 2x}{x} = \frac{\pi}{x} - 2 = \frac{3 - \sqrt{5}}{2},\]so the fourth term is
\[x \cdot r^3 = x \cdot \left( \frac{3 - \sqrt{5}}{2} \right)^3 = (9 - 4 \sqrt{5}) x.\]The smallest $t$ such that $\arcsin (\sin tx) = (9 - 4 \sqrt{5}) x$ is $t = \boxed{9 - 4 \sqrt{5}},$ and this is the smallest possible value of $t.$ |
Find the area of the triangle with vertices $(-1,4),$ $(7,0),$ and $(11,5).$ | Let $A = (-1,4),$ $B = (7,0),$ and $C = (11,5).$ Let $\mathbf{v} = \overrightarrow{CA} = \begin{pmatrix} -1 - 11 \\ 4 - 5 \end{pmatrix} = \begin{pmatrix} -12 \\ -1 \end{pmatrix}$ and $\mathbf{w} = \overrightarrow{CB} = \begin{pmatrix} 7 - 11 \\ 0 - 5 \end{pmatrix} = \begin{pmatrix} -4 \\ -5 \end{pmatrix}.$ The area of triangle $ABC$ is half the area of the parallelogram determined by $\mathbf{v}$ and $\mathbf{w}.$
[asy]
unitsize(0.4 cm);
pair A, B, C;
A = (-1,4);
B = (7,0);
C = (11,5);
draw(A--B);
draw(C--A,Arrow(6));
draw(C--B,Arrow(6));
draw(A--(A + B - C)--B,dashed);
label("$\mathbf{v}$", (A + C)/2, N);
label("$\mathbf{w}$", (B + C)/2, SE);
dot("$A$", A, NW);
dot("$B$", B, SE);
dot("$C$", C, NE);
[/asy]
The area of the parallelogram determined by $\mathbf{v}$ and $\mathbf{w}$ is
\[|(-12)(-5) - (-4)(-1)| = 56,\]so the area of triangle $ABC$ is $56/2 = \boxed{28}.$ |
Let $\mathbf{M} = \begin{pmatrix} 2 & 7 \\ -3 & -1 \end{pmatrix}.$ There exist scalars $p$ and $q$ such that
\[\mathbf{M}^2 = p \mathbf{M} + q \mathbf{I}.\]Enter the ordered pair $(p,q).$ | Since $\mathbf{M}^2 = \begin{pmatrix} 2 & 7 \\ -3 & -1 \end{pmatrix} \begin{pmatrix} 2 & 7 \\ -3 & -1 \end{pmatrix} = \begin{pmatrix} -17 & 7 \\ -3 & -20 \end{pmatrix},$ we seek $p$ and $q$ such that
\[\begin{pmatrix} -17 & 7 \\ -3 & -20 \end{pmatrix} = p \begin{pmatrix} 2 & 7 \\ -3 & -1 \end{pmatrix} + q \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.\]Thus, we want $p$ and $q$ to satisfy $2p + q = -17,$ $7p = 7,$ $-3p = -3,$ and $-p + q = -20.$ Solving, we find $(p,q) = \boxed{(1,-19)}.$ |
Compute $\tan 60^\circ$. | Let $P$ be the point on the unit circle that is $60^\circ$ counterclockwise from $(1,0)$, and let $D$ be the foot of the altitude from $P$ to the $x$-axis, as shown below.
[asy]
pair A,C,P,O,D;
draw((0,-1.2)--(0,1.2),p=black+1.2bp,Arrows(0.15cm));
draw((-1.2,0)--(1.2,0),p=black+1.2bp,Arrows(0.15cm));
A = (1,0);
O= (0,0);
label("$x$",(1.2,0),SE);
label("$y$",(0,1.2),NE);
P = rotate(60)*A;
D = foot(P,A,-A);
draw(O--P--D);
draw(rightanglemark(O,D,P,2));
draw(Circle(O,1));
label("$O$",O,SE);
label("$P$",P,NE);
//label("$A$",A,SE);
label("$D$",D,S);
[/asy]
Triangle $POD$ is a 30-60-90 triangle, so $DO = \frac{1}{2}$ and $DP = \frac{\sqrt{3}}{2}$. Therefore, the coordinates of $P$ are $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$, so $\tan 60^\circ =\frac{\sin 60^\circ}{\cos 60^\circ} = \frac{\sqrt{3}/2}{1/2} = \boxed{\sqrt{3}}$. |
Let $x = \cos \frac{2 \pi}{7} + i \sin \frac{2 \pi}{7}.$ Compute the value of
\[(2x + x^2)(2x^2 + x^4)(2x^3 + x^6)(2x^4 + x^8)(2x^5 + x^{10})(2x^6 + x^{12}).\] | Note that $x^7 = \cos 2 \pi + i \sin 2 \pi = 1,$ so $x^7 - 1 = 0,$ which factors as
\[(x - 1)(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1) = 0.\]Since $x \neq 1,$
\[x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 = 0.\]Then
\begin{align*}
(2x + x^2)(2x^6 + x^{12}) &= 4x^7 + 2x^8 + 2x^{13} + x^{14} = 4 + 2x + 2x^6 + 1 = 5 + 2x + 2x^6, \\
(2x^2 + x^4)(2x^5 + x^{10}) &= 4x^7 + 2x^9 + 2x^{12} + x^{14} = 4 + 2x^2 + 2x^5 + 1 = 5 + 2x^2 + 2x^5, \\
(2x^3 + x^6)(2x^4 + x^8) &= 4x^7 + 2x^{10} + 2x^{11} + x^{14} = 4 + 2x^3 + 2x^4 + 1 = 5 + 2x^3 + 2x^4.
\end{align*}Let $\alpha = x + x^6,$ $\beta = x^2 + x^5,$ and $\gamma = x^3 + x^4,$ so we want to compute
\[(5 + 2 \alpha)(5 + 2 \beta)(5 + 2 \gamma).\]Then
\[\alpha + \beta + \gamma = x + x^6 + x^2 + x^5 + x^3 + x^4 = -1.\]Also,
\begin{align*}
\alpha \beta + \alpha \gamma + \beta \gamma &= (x + x^6)(x^2 + x^5) + (x + x^6)(x^3 + x^4) + (x^2 + x^5)(x^3 + x^4) \\
&= x^3 + x^6 + x^8 + x^{11} + x^4 + x^5 + x^9 + x^{10} + x^5 + x^6 + x^8 + x^9 \\
&= x^3 + x^6 + x + x^4 + x^4 + x^5 + x^2 + x^3 + x^5 + x^6 + x + x^2 \\
&= 2x + 2x^2 + 2x^3 + 2x^4 + 2x^5 + 2x^6 \\
&= -2
\end{align*}and
\begin{align*}
\alpha \beta \gamma &= (x + x^6)(x^2 + x^5)(x^3 + x^4) \\
&= (x^3 + x^6 + x^8 + x^{11})(x^3 + x^4) \\
&= (x^3 + x^6 + x + x^4)(x^3 + x^4) \\
&= x^6 + x^9 + x^4 + x^7 + x^7 + x^{10} + x^5 + x^8 \\
&= x^6 + x^2 + x^4 + 1 + 1 + x^3 + x^5 + x \\
&= 1.
\end{align*}Therefore,
\begin{align*}
(5 + 2 \alpha)(5 + 2 \beta)(5 + 2 \gamma) &= 125 + 50 (\alpha + \beta + \gamma) + 20 (\alpha \beta + \alpha \gamma + \beta \gamma) + 8 \alpha \beta \gamma \\
&= 125 + 50(-1) + 20(-2) + 8(1) \\
&= \boxed{43}.
\end{align*} |
There exist constants $a$ and $b$ so that
\[\cos^3 \theta = a \cos 3 \theta + b \cos \theta\]for all angles $\theta.$ Enter the ordered pair $(a,b).$ | From the triple angle formulas, $\cos 3 \theta = 4 \cos^3 \theta - 3 \cos \theta.$ Hence,
\[\cos^3 \theta = \frac{1}{4} \cos 3 \theta + \frac{3}{4} \cos \theta,\]so $(a,b) = \boxed{\left( \frac{1}{4}, \frac{3}{4} \right)}.$ |
The matrix $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 5 & d \end{pmatrix}$ satisfies
\[\mathbf{A}^{-1} = k \mathbf{A}\]for some constant $k.$ Enter the ordered pair $(d,k).$ | For $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 5 & d \end{pmatrix},$
\[\mathbf{A}^{-1} = \frac{1}{2d - 15} \begin{pmatrix} d & -3 \\ -5 & 2 \end{pmatrix}\]Comparing entries to $k \mathbf{A},$ we get
\begin{align*}
\frac{d}{2d - 15} &= 2k, \\
\frac{-3}{2d - 15} &= 3k, \\
\frac{-5}{2d - 15} &= 5k, \\
\frac{2}{2d - 15} &= dk.
\end{align*}If $k = 0,$ then $\mathbf{A}^{-1} = \mathbf{0},$ which is not possible, so $k \neq 0.$ Thus, we can divide the equations $\frac{d}{2d - 15} = 2k$ and $\frac{-3}{2d - 15} = 3k$ to get
\[\frac{d}{-3} = \frac{2}{3}.\]Then $d = -2.$ Substituting into the first equation, we get
\[2k = \frac{-2}{2(-2) - 15} = \frac{2}{19},\]so $k = \frac{1}{19}.$ Thus, $(d,k) = \boxed{\left( -2, \frac{1}{19} \right)}.$ |
Convert the point $(0, -3 \sqrt{3}, 3)$ in rectangular coordinates to spherical coordinates. Enter your answer in the form $(\rho,\theta,\phi),$ where $\rho > 0,$ $0 \le \theta < 2 \pi,$ and $0 \le \phi \le \pi.$ | We have that $\rho = \sqrt{0^2 + (-3 \sqrt{3})^2 + 3^2} = 6.$ We want $\phi$ to satisfy
\[3 = 6 \cos \phi,\]so $\phi = \frac{\pi}{3}.$
We want $\theta$ to satisfy
\begin{align*}
0 &= 6 \sin \frac{\pi}{3} \cos \theta, \\
-3 \sqrt{3} &= 6 \sin \frac{\pi}{3} \sin \theta.
\end{align*}Thus, $\theta = \frac{3 \pi}{2},$ so the spherical coordinates are $\boxed{\left( 6, \frac{3 \pi}{2}, \frac{\pi}{3} \right)}.$ |
If $\tan x = 2,$ then find $\tan \left( x + \frac{\pi}{4} \right).$ | From the angle addition formula,
\begin{align*}
\tan \left( x + \frac{\pi}{4} \right) &= \frac{\tan x + \tan \frac{\pi}{4}}{1 - \tan x \tan \frac{\pi}{4}} \\
&= \frac{1 + 2}{1 - 2 \cdot 1} \\
&= \boxed{-3}.
\end{align*} |
Find the curve defined by the equation
\[r = \frac{1}{1 - \cos \theta}.\](A) Line
(B) Circle
(C) Parabola
(D) Ellipse
(E) Hyperbola
Enter the letter of the correct option. | From $r = \frac{1}{1 - \cos \theta},$
\[r - r \cos \theta = 1.\]Then $r = 1 + r \cos \theta = x + 1,$ so
\[r^2 = (x + 1)^2 = x^2 + 2x + 1.\]Hence, $x^2 + y^2 = x^2 + 2x + 1,$ so
\[y^2 = 2x + 1.\]This represents the graph of a parabola, so the answer is $\boxed{\text{(C)}}.$
[asy]
unitsize(0.5 cm);
pair moo (real t) {
real r = 1/(1 - Cos(t));
return (r*Cos(t), r*Sin(t));
}
path foo = moo(1);
real t;
for (t = 1; t <= 359; t = t + 0.1) {
foo = foo--moo(t);
}
draw(foo,red);
draw((-4,0)--(4,0));
draw((0,-4)--(0,4));
limits((-4,-4),(4,4),Crop);
label("$r = \frac{1}{1 - \cos \theta}$", (6.5,1.5), red);
[/asy] |
If the six solutions of $x^6=-64$ are written in the form $a+bi$, where $a$ and $b$ are real, find the product of those solutions with $a>0.$ | We write $-64 = 2^6 \operatorname{cis} 180^\circ,$ so $x^6 = 2^6 \operatorname{cis} 180^\circ.$ The solutions are of the form
\[x = 2 \operatorname{cis} (30^\circ + 60^\circ k),\]where $0 \le k \le 5.$
[asy]
unitsize(1 cm);
int i;
draw(Circle((0,0),2));
draw((-2.2,0)--(2.2,0));
draw((0,-2.2)--(0,2.2));
dot("$30^\circ$", 2*dir(30), dir(30));
dot("$90^\circ$", 2*dir(90), NE);
dot("$150^\circ$", 2*dir(150), dir(150));
dot("$210^\circ$", 2*dir(210), dir(210));
dot("$270^\circ$", 2*dir(270), SW);
dot("$330^\circ$", 2*dir(330), dir(330));
[/asy]
The solutions where the real part is positive are then $2 \operatorname{cis} 30^\circ$ and $2 \operatorname{cis} 330^\circ,$ and their product is $2 \operatorname{cis} 30^\circ \cdot 2 \operatorname{cis} 330^\circ = 4 \operatorname{cis} 360^\circ = \boxed{4}.$ |
Given that $x+\sin y=2008$ and $x+2008 \cos y=2007$, where $0 \leq y \leq \frac{\pi}{2}$, find the value of $x+y$. | Subtracting the two equations gives $\sin y - 2008 \cos y = 1$. But since $0 \leq y \leq \frac{\pi}{2}$, the maximum of $\sin y$ is 1 and the minimum of $\cos y$ is 0, so we must have $\sin y = 1$, so $y = \frac{\pi}{2}$ and $x = 2007,$ so $x+y = \boxed{2007 + \frac\pi 2}$. |
Find the maximum value of
\[\sin \frac{\theta}{2} \cdot (1 + \cos \theta)\]for $0 < \theta < \pi.$ | From the double angle formula,
\[\sin \frac{\theta}{2} \cdot (1 + \cos \theta) = \sin \frac{\theta}{2} \left( 2 \cos^2 \frac{\theta}{2} \right) = 2 \sin \frac{\theta}{2} \left( 1 - \sin^2 \frac{\theta}{2} \right).\]Let $x = \sin \frac{\theta}{2}.$ We want to maximize
\[y = 2x (1 - x^2).\]Note that
\[y^2 = 4x^2 (1 - x^2)(1 - x^2).\]By AM-GM,
\[2x^2 (1 - x^2)(1 - x^2) \le \left( \frac{2x^2 + (1 - x^2) + (1 - x^2)}{3} \right)^3 = \frac{8}{27},\]so
\[y^2 = 2 \cdot 2x^2 (1 - x^2)(1 - x^2) \le \frac{16}{27}.\]Then $y \le \sqrt{\frac{16}{27}} = \frac{4 \sqrt{3}}{9}.$
Equality occurs when $2x^2 = 1 - x^2,$ or $x = \frac{1}{3},$ which means $\theta = 2 \arcsin \frac{1}{\sqrt{3}}.$ Hence, the maximum value is $\boxed{\frac{4 \sqrt{3}}{9}}.$ |
Let $P$ be a point in coordinate space, where all the coordinates of $P$ are positive. The line between the origin and $P$ is drawn. The angle between this line and the $x$-, $y$-, and $z$-axis are $\alpha,$ $\beta,$ and $\gamma,$ respectively. If $\cos \alpha = \frac{1}{3}$ and $\cos \beta = \frac{1}{5},$ then determine $\cos \gamma.$
[asy]
import three;
size(180);
currentprojection = perspective(6,3,2);
triple I = (1,0,0), J = (0,1,0), K = (0,0,1), O = (0,0,0);
triple V = (3,2,2), P;
P = (2.5*I + 2.5*V/abs(V))/2;
draw(1.1*I..1.5*P/abs(P)..1.5*V/abs(V));
label("$\alpha$", 1.5*P/abs(P), NW);
P = (2.5*J + 2.5*V/abs(V))/2;
draw(1.5*J..1.5*P/abs(P)..1.5*V/abs(V));
label("$\beta$", 1.5*P/abs(P), NE);
P = (2.5*K + 2.5*V/abs(V))/2;
draw(1.5*K..1.5*P/abs(P)..1.5*V/abs(V));
label("$\gamma$", 1.5*P/abs(P), E);
draw(O--5.5*V/abs(V));
draw(O--3*I, Arrow3(6));
draw(O--3*J, Arrow3(6));
draw(O--3*K, Arrow3(6));
label("$x$", 3.2*I);
label("$y$", 3.2*J);
label("$z$", 3.2*K);
dot("$P$", 5.5*V/abs(V), NE);
[/asy] | Let $O$ be the origin, and let $P = (x,y,z).$ Let $X$ be the foot of the perpendicular from $P$ to the $x$-axis. Then $\angle POX = \alpha,$ $OP = \sqrt{x^2 + y^2 + z^2},$ and $OX = x,$ so
\[\cos \alpha = \frac{x}{\sqrt{x^2 + y^2 + z^2}}.\][asy]
unitsize(1 cm);
draw((0,0)--(3,0)--(3,2)--cycle);
label("$P = (x,y,z)$", (3,2), NE);
label("$x$", (3,1), E, red);
label("$\sqrt{x^2 + y^2 + z^2}$", (3/2,1), NW, red);
label("$\alpha$", (0.9,0.3));
label("$O$", (0,0), SW);
label("$X$", (3,0), SE);
[/asy]
Similarly, $\cos \beta = \frac{y}{\sqrt{x^2 + y^2 + z^2}}$ and $\cos \gamma = \frac{z}{\sqrt{x^2 + y^2 + z^2}}.$ Hence,
\[\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1.\]Since $\cos \alpha = \frac{1}{3}$ and $\cos \beta = \frac{1}{5},$
\[\cos^2 \gamma = 1 - \cos^2 \alpha - \cos^2 \beta = \frac{191}{225}.\]Since $\gamma$ is acute, $\cos \gamma = \boxed{\frac{\sqrt{191}}{15}}.$ |
Let $z = \cos \frac{4 \pi}{7} + i \sin \frac{4 \pi}{7}.$ Compute
\[\frac{z}{1 + z^2} + \frac{z^2}{1 + z^4} + \frac{z^3}{1 + z^6}.\] | Note $z^7 - 1 = \cos 4 \pi + i \sin 4 \pi - 1 = 0,$ so
\[(z - 1)(z^6 + z^5 + z^4 + z^3 + z^2 + z + 1) = 0.\]Since $z \neq 1,$ $z^6 + z^5 + z^4 + z^3 + z^2 + z + 1 = 0.$
Then
\begin{align*}
\frac{z}{1 + z^2} + \frac{z^2}{1 + z^4} + \frac{z^3}{1 + z^6} &= \frac{z}{1 + z^2} + \frac{z^2}{1 + z^4} + \frac{z^3}{(1 + z^2)(1 - z^2 + z^4)} \\
&= \frac{z (1 + z^4)(1 - z^2 + z^4)}{(1 + z^4)(1 + z^6)} + \frac{z^2 (1 + z^6)}{(1 + z^4)(1 + z^6)} + \frac{(1 + z^4) z^3}{(1 + z^4)(1 + z^6)} \\
&= \frac{z^9 + z^8 + 2z^5 + z^2 + z}{(1 + z^4)(1 + z^6)} \\
&= \frac{z^2 + z + 2z^5 + z^2 + z}{1 + z^4 + z^6 + z^{10}} \\
&= \frac{2z^5 + 2z^2 + 2z}{z^6 + z^4 + z^3 + 1} \\
&= \frac{2(z^5 + z^2 + z)}{z^6 + z^4 + z^3 + 1}.
\end{align*}Since $z^7 + z^6 + z^5 + z^4 + z^3 + z^2 + z + 1 = 0,$ $z^5 + z^2 + z = -(z^6 + z^4 + z^3 + 1).$ Therefore, the given expression is equal to $\boxed{-2}.$ |
For a positive constant $c,$ in spherical coordinates $(\rho,\theta,\phi),$ find the shape described by the equation
\[\rho = c.\](A) Line
(B) Circle
(C) Plane
(D) Sphere
(E) Cylinder
(F) Cone
Enter the letter of the correct option. | In spherical coordinates, $\rho$ is the distance from a point to the origin. So if this distance is fixed, then we obtain a sphere. The answer is $\boxed{\text{(D)}}.$
[asy]
import three;
import solids;
size(180);
currentprojection = perspective(6,3,2);
currentlight = (1,0,1);
draw((-1,0,0)--(-2,0,0));
draw((0,-1,0)--(0,-2,0));
draw((0,0,-1)--(0,0,-2));
draw((1,0,0)--(2,0,0));
draw((0,1,0)--(0,2,0));
draw((0,0,1)--(0,0,2));
draw(surface(sphere(1)),gray(0.8));
label("$\rho = c$", (1,1.2,-0.6));
[/asy] |
If $\sin x = 3 \cos x,$ then what is $\sin x \cos x$? | We know that $\sin^2 x + \cos^2 x = 1.$ Substituting $\sin x = 3 \cos x,$ we get
\[9 \cos^2 x + \cos^2 x = 1,\]so $10 \cos^2 x = 1,$ or $\cos^2 x = \frac{1}{10}.$ Then
\[\sin x \cos x = (3 \cos x)(\cos x) = 3 \cos^2 x = \boxed{\frac{3}{10}}.\] |
If
\[\sin x + \cos x + \tan x + \cot x + \sec x + \csc x = 7,\]then find $\sin 2x.$ | Expressing everything in terms of $\sin x$ and $\cos x,$ we get
\[\sin x + \cos x + \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} + \frac{1}{\sin x} + \frac{1}{\cos x} = 7.\]Then
\[\sin x + \cos x + \frac{\sin^2 x + \cos^2 x}{\sin x \cos x} + \frac{\sin x + \cos x}{\sin x \cos x} = 7,\]which becomes
\[\sin x + \cos x + \frac{\sin x + \cos x}{\sin x \cos x} = 7 - \frac{1}{\sin x \cos x}.\]We can factor the left-hand side, and replace $\sin x \cos x$ with $\frac{1}{2} \sin 2x$:
\[(\sin x + \cos x) \left( 1 + \frac{2}{\sin 2x} \right) = 7 - \frac{2}{\sin 2x}.\]Hence,
\[(\sin x + \cos x)(\sin 2x + 2) = 7 \sin 2x - 2.\]Squaring both sides, we get
\[(\sin^2 x + 2 \sin x \cos + \cos^2 x)(\sin^2 2x + 4 \sin 2x + 4) = 49 \sin^2 x - 28 \sin x + 4.\]We can write this as
\[(\sin 2x + 1)(\sin^2 2x + 4 \sin 2x + 4) = 49 \sin^2 x - 28 \sin x + 4.\]This simplifies to
\[\sin^3 2x - 44 \sin^2 2x + 36 \sin 2x = 0,\]so $\sin 2x (\sin^2 2x - 44 \sin 2x + 36) = 0.$
If $\sin 2x = 2 \sin x \cos x = 0,$ then the expression in the problem becomes undefined. Otherwise,
\[\sin^2 2x - 44 \sin 2x + 36 = 0.\]By the quadratic formula,
\[\sin 2x = 22 \pm 8 \sqrt{7}.\]Since $22 + 8 \sqrt{7} > 1,$ we must have $\sin 2x = \boxed{22 - 8 \sqrt{7}}.$ |
In triangle $ABC,$ $D$ is on $\overline{AB}$ such that $AD:DB = 3:2,$ and $E$ is on $\overline{BC}$ such that $BE:EC = 3:2.$ If lines $DE$ and $AC$ intersect at $F,$ then find $\frac{DE}{EF}.$ | Let $\mathbf{a}$ denote $\overrightarrow{A},$ etc. Then from the given information
\[\mathbf{d} = \frac{2}{5} \mathbf{a} + \frac{3}{5} \mathbf{b}\]and
\[\mathbf{e} = \frac{2}{5} \mathbf{b} + \frac{3}{5} \mathbf{c}.\][asy]
unitsize(0.6 cm);
pair A, B, C, D, E, F;
A = (2,5);
B = (0,0);
C = (6,0);
D = interp(A,B,3/5);
E = interp(B,C,3/5);
F = extension(D,E,A,C);
draw(D--F--A--B--C);
label("$A$", A, N);
label("$B$", B, SW);
label("$C$", C, NE);
label("$D$", D, NW);
label("$E$", E, SW);
label("$F$", F, SE);
[/asy]
Isolating $\mathbf{b}$ in each equation, we obtain
\[\mathbf{b} = \frac{5 \mathbf{d} - 2 \mathbf{a}}{3} = \frac{5 \mathbf{e} - 3 \mathbf{c}}{2}.\]Then $10 \mathbf{d} - 4 \mathbf{a} = 15 \mathbf{e} - 9 \mathbf{c},$ or $9 \mathbf{c} - 4 \mathbf{a} = 15 \mathbf{e} - 10 \mathbf{d},$ so
\[\frac{9}{5} \mathbf{c} - \frac{4}{5} \mathbf{a} = \frac{15}{5} \mathbf{e} - \frac{10}{5} \mathbf{d}.\]Since the coefficients on both sides of the equation add up to 1, the vector on the left side lies on line $AC,$ and the vector on the right side lies on line $DE.$ Therefore, this common vector is $\mathbf{f}.$
Hence,
\[\mathbf{f} = \frac{15}{5} \mathbf{e} - \frac{10}{5} \mathbf{d} = 3 \mathbf{e} - 2 \mathbf{d}.\]Re-arranging, we get
\[\mathbf{e} = \frac{2}{3} \mathbf{d} + \frac{1}{3} \mathbf{f}.\]Therefore, $\frac{DE}{EF} = \boxed{\frac{1}{2}}.$ |
Let $A$ and $B$ be the endpoints of a semicircular arc of radius $2$. The arc is divided into seven congruent arcs by six equally spaced points $C_1$, $C_2$, $\dots$, $C_6$. All chords of the form $\overline {AC_i}$ or $\overline {BC_i}$ are drawn. Find the product of the lengths of these twelve chords. | Let $\omega = e^{2 \pi i/14}.$ We can identify $A$ with $2,$ $B$ with $-2,$ and $C_k$ with the complex number $2 \omega^k.$
[asy]
unitsize (3 cm);
int i;
pair A, B;
pair[] C;
A = (1,0);
B = (-1,0);
C[1] = dir(1*180/7);
C[2] = dir(2*180/7);
C[3] = dir(3*180/7);
C[4] = dir(4*180/7);
C[5] = dir(5*180/7);
C[6] = dir(6*180/7);
draw(A--B);
draw(arc((0,0),1,0,180));
for (i = 1; i <= 6; ++i) {
draw(A--C[i]--B);
dot("$C_" + string(i) + "$", C[i], C[i]);
}
dot("$A$", A, E);
dot("$B$", B, W);
[/asy]
Then $AC_k = |2 - 2 \omega^k| = 2 |1 - \omega^k|$ and
\[BC_k = |-2 - 2 \omega_k| = 2 |1 + \omega^k|.\]Since $\omega^7 = -1,$ we can also write this as
\[BC_k = 2 |1 - \omega^{k + 7}|.\]Therefore,
\[AC_1 \cdot AC_2 \dotsm AC_6 = 2^6 |(1 - \omega)(1 - \omega^2) \dotsm (1 - \omega^6)|\]and
\[BC_1 \cdot BC_2 \dotsm BC_6 = 2^6 |(1 - \omega^8)(1 - \omega^9) \dotsm (1 - \omega^{13})|.\]Note that 1, $\omega,$ $\omega^2,$ $\dots,$ $\omega^{13}$ are all roots of $z^{14} - 1 = 0.$ Thus
\[z^{14} - 1 = (z - 1)(z - \omega)(z - \omega^2) \dotsm (z - \omega^{13}).\]One factor on the right is $z - 1,$ and another factor on the right is $z - \omega^7 = z + 1.$ Thus,
\[z^{14} - 1 = (z - 1)(z + 1) \cdot (z - \omega)(z - \omega^2) \dotsm (z - \omega^6)(z - \omega^8)(z - \omega^9) \dotsm (z - \omega^{13}).\]Since $z^{14} - 1 = (z^2 - 1)(z^{12} + z^{10} + z^8 + \dots + 1),$ we can write
\[z^{12} + z^{10} + z^8 + \dots + 1 = (z - \omega)(z - \omega^2) \dotsm (z - \omega^6)(z - \omega^8)(z - \omega^9) \dotsm (z - \omega^{13}).\]Setting $z = 1,$ we get
\[7 = (1 - \omega)(1 - \omega^2) \dotsm (1 - \omega^6)(1 - \omega^8)(1 - \omega^9) \dotsm (1 - \omega^{13}).\]Therefore,
\begin{align*}
&AC_1 \cdot AC_2 \dotsm AC_6 \cdot BC_1 \cdot BC_2 \dotsm BC_6 \\
&= 2^6 |(1 - \omega)(1 - \omega^2) \dotsm (1 - \omega^6)| \cdot 2^6 |(1 - \omega^8)(1 - \omega^9) \dotsm (1 - \omega^{13})| \\
&= 2^{12} |(1 - \omega)(1 - \omega^2) \dotsm (1 - \omega^6)(1 - \omega^8)(1 - \omega^9) \dotsm (1 - \omega^{13})| \\
&= 7 \cdot 2^{12} \\
&= \boxed{28672}.
\end{align*} |
Let $a$ and $b$ be acute angles such that
\begin{align*}
3 \sin^2 a + 2 \sin^2 b &= 1, \\
3 \sin 2a - 2 \sin 2b &= 0.
\end{align*}Find $a + 2b,$ as measured in radians. | From the first equation, using the double angle formula,
\[3 \sin^2 a = 1 - 2 \sin^2 b = \cos 2b.\]From the second equation, again using the double angle formula,
\[\sin 2b = \frac{3}{2} \sin 2a = 3 \cos a \sin a.\]Since $\cos^2 2b + \sin^2 2b = 1,$
\[9 \sin^4 a + 9 \cos^2 a \sin^2 a = 1.\]Then $9 \sin^2 a (\sin^2 a + \cos^2 a) = 1,$ so $\sin^2 a = \frac{1}{9}.$ Since $a$ is acute, $\sin a = \frac{1}{3}.$
Then
\begin{align*}
\sin (a + 2b) &= \sin a \cos 2b + \cos a \sin 2b \\
&= (\sin a)(3 \sin^2 a) + (\cos a)(3 \cos a \sin a) \\
&= 3 \sin^3 a + 3 \cos^2 a \sin a \\
&= 3 \sin a (\sin^2 a + \cos^2 a) \\
&= 1.
\end{align*}Since $a$ and $b$ are acute, $0 < a + 2b < \frac{3 \pi}{2}.$ Therefore, $a + 2b = \boxed{\frac{\pi}{2}}.$ |
Compute $(\cos 185^\circ + i \sin 185^\circ)^{54}.$ | By DeMoivre's Theorem,
\begin{align*}
(\cos 185^\circ + i \sin 185^\circ)^{54} &= \cos 9990^\circ + i \sin 9990^\circ \\
&= \cos 270^\circ + i \sin 270^\circ \\
&= \boxed{-i}.
\end{align*} |
Find $\sec 135^\circ.$ | We have that
\[\sec 135^\circ = \frac{1}{\cos 135^\circ}.\]Then $\cos 135^\circ = -\cos (135^\circ - 180^\circ) = -\cos (-45^\circ) = -\cos 45^\circ = -\frac{1}{\sqrt{2}},$ so
\[\frac{1}{\cos 135^\circ} = \boxed{-\sqrt{2}}.\] |
Convert the point $\left( 2 \sqrt{3}, \frac{2 \pi}{3} \right)$ in polar coordinates to rectangular coordinates. | In rectangular coordinates, $\left( 2 \sqrt{3}, \frac{2 \pi}{3} \right)$ becomes
\[\left( 2 \sqrt{3} \cos \frac{2 \pi}{3}, 2 \sqrt{3} \sin \frac{2 \pi}{3} \right) = \boxed{(-\sqrt{3}, 3)}.\] |
Lines $l_1^{}$ and $l_2^{}$ both pass through the origin and make first-quadrant angles of $\frac{\pi}{70}$ and $\frac{\pi}{54}$ radians, respectively, with the positive $x$-axis. For any line $l$, the transformation $R(l)$ produces another line as follows: $l$ is reflected in $l_1$, and the resulting line is reflected in $l_2$. Let $R^{(1)}(l)=R(l)$ and $R^{(n)}(l)=R\left(R^{(n-1)}(l)\right)$. Given that $l$ is the line $y=\frac{19}{92}x$, find the smallest positive integer $m$ for which $R^{(m)}(l)=l$. | More generally, suppose we have a line $l$ that is reflect across line $l_1$ to obtain line $l'.$
[asy]
unitsize(3 cm);
draw(-0.2*dir(35)--dir(35));
draw(-0.2*dir(60)--dir(60));
draw(-0.2*dir(10)--dir(10));
draw((-0.2,0)--(1,0));
draw((0,-0.2)--(0,1));
label("$l$", dir(60), NE);
label("$l_1$", dir(35), NE);
label("$l'$", dir(10), E);
[/asy]
Also, suppose line $l$ makes angle $\theta$ with the $x$-axis, and line $l_1$ makes angle $\alpha$ with the $x$-axis. Then line $l'$ makes angle $2 \alpha - \theta$ with the $x$-axis. (This should make sense, because line $l_1$ is "half-way" between lines $l$ and $l',$ so the angle of line $l_1$ is the average of the angles of line $l$ and $l'$.)
So, if $l$ makes an angle of $\theta$ with the $x$-axis, then its reflection $l'$ across line $l_1$ makes an angle of
\[2 \cdot \frac{\pi}{70} - \theta = \frac{\pi}{35} - \theta\]with the $x$-axis.
Then the reflection of $l'$ across line $l_2$ makes an angle of
\[2 \cdot \frac{\pi}{54} - \left( \frac{\pi}{35} - \theta \right) = \theta + \frac{8 \pi}{945}\]with the $x$-axis.
Therefore, the line $R^{(n)}(l)$ makes an angle of
\[\theta + \frac{8 \pi}{945} \cdot n\]with the $x$-axis. For this line to coincide with the original line $l,$
\[\frac{8 \pi}{945} \cdot n\]must be an integer multiple of $2 \pi.$ The smallest such positive integer for which this happens is $n = \boxed{945}.$ |
Given vectors $\mathbf{a}$ and $\mathbf{b},$ let $\mathbf{p}$ be a vector such that
\[\|\mathbf{p} - \mathbf{b}\| = 2 \|\mathbf{p} - \mathbf{a}\|.\]Among all such vectors $\mathbf{p},$ there exists constants $t$ and $u$ such that $\mathbf{p}$ is at a fixed distance from $t \mathbf{a} + u \mathbf{b}.$ Enter the ordered pair $(t,u).$ | From $\|\mathbf{p} - \mathbf{b}\| = 2 \|\mathbf{p} - \mathbf{a}\|,$
\[\|\mathbf{p} - \mathbf{b}\|^2 = 4 \|\mathbf{p} - \mathbf{a}\|^2.\]This expands as
\[\|\mathbf{p}\|^2 - 2 \mathbf{b} \cdot \mathbf{p} + \|\mathbf{b}\|^2 = 4 \|\mathbf{p}\|^2 - 8 \mathbf{a} \cdot \mathbf{p} + 4 \|\mathbf{a}\|^2,\]which simplifies to $3 \|\mathbf{p}\|^2 = 8 \mathbf{a} \cdot \mathbf{p} - 2 \mathbf{b} \cdot \mathbf{p} - 4 \|\mathbf{a}\|^2 + \|\mathbf{b}\|^2.$ Hence,
\[\|\mathbf{p}\|^2 = \frac{8}{3} \mathbf{a} \cdot \mathbf{p} - \frac{2}{3} \mathbf{b} \cdot \mathbf{p} - \frac{4}{3} \|\mathbf{a}\|^2 + \frac{1}{3} \|\mathbf{b}\|^2.\]We want $\|\mathbf{p} - (t \mathbf{a} + u \mathbf{b})\|$ to be constant, which means $\|\mathbf{p} - t \mathbf{a} - u \mathbf{b}\|^2$ is constant. This expands as
\begin{align*}
\|\mathbf{p} - t \mathbf{a} - u \mathbf{b}\|^2 &= \|\mathbf{p}\|^2 + t^2 \|\mathbf{a}\|^2 + u^2 \|\mathbf{b}\|^2 - 2t \mathbf{a} \cdot \mathbf{p} - 2u \mathbf{b} \cdot \mathbf{p} + 2tu \mathbf{a} \cdot \mathbf{b} \\
&= \frac{8}{3} \mathbf{a} \cdot \mathbf{p} - \frac{2}{3} \mathbf{b} \cdot \mathbf{p} - \frac{4}{3} \|\mathbf{a}\|^2 + \frac{1}{3} \|\mathbf{b}\|^2 \\
&\quad + t^2 \|\mathbf{a}\|^2 + u^2 \|\mathbf{b}\|^2 - 2t \mathbf{a} \cdot \mathbf{p} - 2u \mathbf{b} \cdot \mathbf{p} + 2tu \mathbf{a} \cdot \mathbf{b} \\
&= \left( \frac{8}{3} - 2t \right) \mathbf{a} \cdot \mathbf{p} - \left( \frac{2}{3} + 2u \right) \mathbf{b} \cdot \mathbf{p} \\
&\quad + \left( t^2 - \frac{4}{3} \right) \|\mathbf{a}\|^2 + \left( u^2 + \frac{1}{3} \right) \|\mathbf{b}\|^2 + 2tu \mathbf{a} \cdot \mathbf{b}.
\end{align*}The only non-constant terms in this expression are $\left( \frac{8}{3} - 2t \right) \mathbf{a} \cdot \mathbf{p}$ and $\left( \frac{2}{3} + 2u \right) \mathbf{b} \cdot \mathbf{p}.$ We can them make them equal 0 by setting $2t = \frac{8}{3}$ and $2u = -\frac{2}{3}.$ These lead to $t = \frac{4}{3}$ and $u = -\frac{1}{3},$ so $(t,u) = \boxed{\left( \frac{4}{3}, -\frac{1}{3} \right)}.$ |
The vertices of a cube have coordinates $(0,0,0),$ $(0,0,4),$ $(0,4,0),$ $(0,4,4),$ $(4,0,0),$ $(4,0,4),$ $(4,4,0),$ and $(4,4,4).$ A plane cuts the edges of this cube at the points $P = (0,2,0),$ $Q = (1,0,0),$ $R = (1,4,4),$ and two other points. Find the distance between these two points. | Let $\mathbf{p} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix},$ $\mathbf{q} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},$ and $\mathbf{r} = \begin{pmatrix} 1 \\ 4 \\ 4 \end{pmatrix}.$ Then the normal vector to the plane passing through $P,$ $Q,$ and $R$ is
\[(\mathbf{p} - \mathbf{q}) \times (\mathbf{p} - \mathbf{r}) = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} \times \begin{pmatrix} -1 \\ -2 \\ -4 \end{pmatrix} = \begin{pmatrix} -8 \\ -4 \\ 4 \end{pmatrix}.\]We can scale this vector, and take $\begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$ as the normal vector. Thus, the equation of the plane is of the form $2x + y - z = d.$ Substituting any of the points, we find the equation of this plane is
\[2x + y - z = 2.\]Plotting this plane, we find it intersects the edge joining $(0,0,4)$ and $(4,0,4),$ say at $S,$ and the edge joining $(0,4,0)$ and $(0,4,4),$ say at $T.$
[asy]
import three;
// calculate intersection of line and plane
// p = point on line
// d = direction of line
// q = point in plane
// n = normal to plane
triple lineintersectplan(triple p, triple d, triple q, triple n)
{
return (p + dot(n,q - p)/dot(n,d)*d);
}
size(250);
currentprojection = perspective(6,3,3);
triple A = (0,0,0), B = (0,0,4), C = (0,4,0), D = (0,4,4), E = (4,0,0), F = (4,0,4), G = (4,4,0), H = (4,4,4);
triple P = (0,2,0), Q = (1,0,0), R = (1,4,4), S = lineintersectplan(B, F - B, P, cross(P - Q, P - R)), T = lineintersectplan(C, D - C, P, cross(P - Q, P - R));
draw(C--G--E--F--B--D--cycle);
draw(F--H);
draw(D--H);
draw(G--H);
draw(A--B,dashed);
draw(A--C,dashed);
draw(A--E,dashed);
draw(T--P--Q--S,dashed);
draw(S--R--T);
label("$(0,0,0)$", A, NE);
label("$(0,0,4)$", B, N);
label("$(0,4,0)$", C, dir(0));
label("$(0,4,4)$", D, NE);
label("$(4,0,0)$", E, W);
label("$(4,0,4)$", F, W);
label("$(4,4,0)$", G, dir(270));
label("$(4,4,4)$", H, SW);
dot("$P$", P, dir(270));
dot("$Q$", Q, dir(270));
dot("$R$", R, N);
dot("$S$", S, NW);
dot("$T$", T, dir(0));
[/asy]
The equation of the edge passing through $(0,0,4)$ and $(4,0,4)$ is given by $y = 0$ and $z = 4.$ Substituting into $2x + y - z = 2,$ we get
\[2x - 4 = 2,\]so $x = 3.$ Hence, $S = (3,0,4).$
The equation of the edge passing through $(0,0,4)$ and $(4,0,4)$ is given by $x = 0$ and $y = 4.$ Substituting into $2x + y - z = 2,$ we get
\[4 - z = 2,\]so $z = 2.$ Hence, $T = (0,4,2).$
Then $ST = \sqrt{3^2 + 4^2 + 2^2} = \boxed{\sqrt{29}}.$ |
Find the cross product of $\begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 5 \\ -1 \\ 7 \end{pmatrix}.$ | The cross product of $\begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 5 \\ -1 \\ 7 \end{pmatrix}$ is
\[\begin{pmatrix} (0)(7) - (-1)(3) \\ (3)(5) - (7)(2) \\ (2)(-1) - (5)(0) \end{pmatrix} = \boxed{\begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}}.\] |
If
\[\begin{pmatrix} 1 & 2 & a \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & 18 & 2007 \\ 0 & 1 & 36 \\ 0 & 0 & 1 \end{pmatrix},\]then find $a + n.$ | Let $\mathbf{A} = \begin{pmatrix} 1 & 2 & a \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}.$ Then we can write $\mathbf{A} = \mathbf{I} + \mathbf{B},$ where
\[\mathbf{B} = \begin{pmatrix} 0 & 2 & a \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix}.\]Note that
\[\mathbf{B}^2 = \begin{pmatrix} 0 & 2 & a \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 & a \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 8 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}\]and
\[\mathbf{B}^3 = \mathbf{B} \mathbf{B}^2 = \begin{pmatrix} 0 & 2 & a \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 8 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathbf{0}.\]Then by the Binomial Theorem,
\begin{align*}
\mathbf{A}^n &= (\mathbf{I} + \mathbf{B})^n \\
&= \mathbf{I}^n + \binom{n}{1} \mathbf{I}^{n - 1} \mathbf{B} + \binom{n}{2} \mathbf{I}^{n - 2} \mathbf{B}^2 + \binom{n}{3} \mathbf{I}^{n - 3} \mathbf{B}^3 + \dots + \mathbf{B}^n \\
&= \mathbf{I} + n \mathbf{B} + \frac{n(n - 1)}{2} \mathbf{B}^2 \\
&= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + n \begin{pmatrix} 0 & 2 & a \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix} + \frac{n(n - 1)}{2} \begin{pmatrix} 0 & 0 & 8 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\
&= \begin{pmatrix} 1 & 2n & an + 4n(n - 1) \\ 0 & 1 & 4n \\ 0 & 0 & 1 \end{pmatrix}.
\end{align*}Hence, $2n = 18,$ $an + 4n(n - 1) = 2007,$ and $4n = 36.$ Solving, we find $a = 191$ and $n = 9,$ so $a + n = \boxed{200}.$
Note: We can expand $(\mathbf{I} + \mathbf{B})^{2016}$ using the Binomial Theorem because the matrices $\mathbf{B}$ and $\mathbf{I}$ commute, i.e. $\mathbf{B} \mathbf{I} = \mathbf{I} \mathbf{B}.$ In general, expanding a power of $\mathbf{A} + \mathbf{B}$ is difficult. For example,
\[(\mathbf{A} + \mathbf{B})^2 = \mathbf{A}^2 + \mathbf{A} \mathbf{B} + \mathbf{B} \mathbf{A} + \mathbf{B}^2,\]and without knowing more about $\mathbf{A}$ and $\mathbf{B},$ this cannot be simplified. |
Simplify $\cot 10 + \tan 5.$
Enter your answer as a trigonometric function evaluated at an integer, such as "sin 7". | We can write
\[\cot 10 + \tan 5 = \frac{\cos 10}{\sin 10} + \frac{\sin 5}{\cos 5} = \frac{\cos 10 \cos 5 + \sin 5 \sin 10}{\sin 10 \cos 5}.\]From the angle subtraction formula, the numerator is equal to $\cos (10 - 5) = \cos 5,$ so
\[\frac{\cos 10 \cos 5 + \sin 5 \sin 10}{\sin 10 \cos 5} = \frac{\cos 5}{\sin 10 \cos 5} = \boxed{\csc 10}.\] |
In a polar coordinate system, the midpoint of the line segment whose endpoints are $\left( 8, \frac{5 \pi}{12} \right)$ and $\left( 8, -\frac{3 \pi}{12} \right)$ is the point $(r, \theta).$ Enter $(r, \theta),$ where $r > 0$ and $0 \le \theta < 2 \pi.$ | Let $A = \left( 8, \frac{5 \pi}{12} \right)$ and $B = \left( 8, -\frac{3 \pi}{12}\right).$ Note that both $A$ and $B$ lie on the circle with radius 8. Also, $\angle AOB = \frac{2 \pi}{3},$ where $O$ is the origin.
[asy]
unitsize (0.3 cm);
pair A, B, M, O;
A = 8*dir(75);
B = 8*dir(-45);
O = (0,0);
M = (A + B)/2;
draw(Circle(O,8));
draw(A--B);
draw((-9,0)--(9,0));
draw((0,-9)--(0,9));
draw(A--O--B);
draw(O--M);
label("$A$", A, A/8);
label("$B$", B, B/8);
label("$O$", O, SW);
label("$M$", M, E);
[/asy]
Let $M$ be the midpoint of $\overline{AB}.$ Then $\angle AOM = \frac{\pi}{3}$ and $\angle AMO = \frac{\pi}{2},$ so $OM = \frac{AO}{2} = 4.$ Also, $\overline{OM}$ makes an angle of $\frac{5 \pi}{12} - \frac{\pi}{3} = \frac{\pi}{12}$ with the positive $x$-axis, so the polar coordinates of $M$ are $\boxed{\left( 4, \frac{\pi}{12} \right)}.$ |
Let $x$ and $y$ be distinct real numbers such that
\[
\begin{vmatrix} 1 & 4 & 9 \\ 3 & x & y \\ 3 & y & x \end{vmatrix}
= 0.\]Find $x + y.$ | Expanding the determinant, we obtain
\begin{align*}
\begin{vmatrix} 1 & 4 & 9 \\ 3 & x & y \\ 3 & y & x \end{vmatrix} &= \begin{vmatrix} x & y \\ y & x \end{vmatrix} - 4 \begin{vmatrix} 3 & y \\ 3 & x \end{vmatrix} + 9 \begin{vmatrix} 3 & x \\ 3 & y \end{vmatrix} \\
&= (x^2 - y^2) - 4(3x - 3y) + 9(3y - 3x) \\
&= x^2 - y^2 - 39x + 39y \\
&= (x - y)(x + y) - 39(x - y) \\
&= (x - y)(x + y - 39).
\end{align*}Since this is 0, either $x - y = 0$ or $x + y - 39 = 0.$ But $x$ and $y$ are distinct, so $x + y = \boxed{39}.$ |
A $180^\circ$ rotation around the origin in the counter-clockwise direction is applied to $-6 - 3i.$ What is the resulting complex number? | A $180^\circ$ rotation in the counter-clockwise direction corresponds to multiplication by $\operatorname{cis} 180^\circ = -1.$
[asy]
unitsize(0.5 cm);
pair A = (-6,-3), B = (6,3);
draw((-8,0)--(8,0));
draw((0,-4)--(0,4));
draw((0,0)--A,dashed);
draw((0,0)--B,dashed);
dot("$-6 - 3i$", A, SW);
dot("$6 + 3i$", B, NE);
[/asy]
Hence, the image of $-6 - 3i$ is $(-1)(-6 - 3i) = \boxed{6 + 3i}.$ |
The following line is parameterized, so that its direction vector is of the form $\begin{pmatrix} a \\ -1 \end{pmatrix}.$ Find $a.$
[asy]
unitsize(0.4 cm);
pair A, B, L, R;
int i, n;
for (i = -8; i <= 8; ++i) {
draw((i,-8)--(i,8),gray(0.7));
draw((-8,i)--(8,i),gray(0.7));
}
draw((-8,0)--(8,0),Arrows(6));
draw((0,-8)--(0,8),Arrows(6));
A = (-2,5);
B = (1,0);
L = extension(A, B, (0,8), (1,8));
R = extension(A, B, (0,-8), (1,-8));
draw(L--R, red);
label("$x$", (8,0), E);
label("$y$", (0,8), N);
[/asy] | The line passes through $\begin{pmatrix} -2 \\ 5 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \end{pmatrix},$ so its direction vector is proportional to
\[\begin{pmatrix} 1 \\ 0 \end{pmatrix} - \begin{pmatrix} -2 \\ 5 \end{pmatrix} = \begin{pmatrix} 3 \\ -5 \end{pmatrix}.\]To get a $y$-coordinate of $-1,$ we can multiply this vector by the scalar $\frac{1}{5}.$ This gives us
\[\frac{1}{5} \begin{pmatrix} 3 \\ -5 \end{pmatrix} = \begin{pmatrix} 3/5 \\ -1 \end{pmatrix}.\]Therefore, $a = \boxed{\frac{3}{5}}.$ |
Compute
\[\begin{pmatrix} 1 & 1 & -2 \\ 0 & 4 & -3 \\ -1 & 4 & 3 \end{pmatrix} \begin{pmatrix} 2 & -2 & 0 \\ 1 & 0 & -3 \\ 4 & 0 & 0 \end{pmatrix}.\] | We have that
\[\begin{pmatrix} 1 & 1 & -2 \\ 0 & 4 & -3 \\ -1 & 4 & 3 \end{pmatrix} \begin{pmatrix} 2 & -2 & 0 \\ 1 & 0 & -3 \\ 4 & 0 & 0 \end{pmatrix} = \boxed{\begin{pmatrix} -5 & -2 & -3 \\ -8 & 0 & -12 \\ 14 & 2 & -12 \end{pmatrix}}.\] |
Let $\mathbf{A} = \begin{pmatrix} a & 1 \\ -2 & d \end{pmatrix}$ for some real numbers $a$ and $d.$ If
\[\mathbf{A} + \mathbf{A}^{-1} = \mathbf{0},\]then find $\det \mathbf{A}.$ | From the formula for the inverse,
\[\mathbf{A}^{-1} = \frac{1}{ad + 2} \begin{pmatrix} d & -1 \\ 2 & a \end{pmatrix} = \begin{pmatrix} \frac{d}{ad + 2} & -\frac{1}{ad + 2} \\ \frac{2}{ad + 2} & \frac{a}{ad + 2} \end{pmatrix},\]so we want
\[\begin{pmatrix} a & 1 \\ -2 & d \end{pmatrix} + \begin{pmatrix} \frac{d}{ad + 2} & -\frac{1}{ad + 2} \\ \frac{2}{ad + 2} & \frac{a}{ad + 2} \end{pmatrix} = \mathbf{0}.\]Hence,
\begin{align*}
a + \frac{d}{ad + 2} &= 0, \\
1 - \frac{1}{ad + 2} &= 0, \\
-2 + \frac{2}{ad + 2} &= 0, \\
d + \frac{a}{ad + 2} & =0.
\end{align*}From the equation $1 - \frac{1}{ad + 2} = 0,$ $ad + 2 = 1,$ so $ad = -1.$ Then
\[\det \mathbf{A} = \det \begin{pmatrix} a & 1 \\ -2 & d \end{pmatrix} = ad + 2 = \boxed{1}.\]Note that $a = 1$ and $d = -1$ satisfy the given conditions. |
End of preview. Expand
in Dataset Viewer.
No dataset card yet
- Downloads last month
- 7