id
int64
0
458k
file_name
stringlengths
4
119
file_path
stringlengths
14
227
content
stringlengths
24
9.96M
size
int64
24
9.96M
language
stringclasses
1 value
extension
stringclasses
14 values
total_lines
int64
1
219k
avg_line_length
float64
2.52
4.63M
max_line_length
int64
5
9.91M
alphanum_fraction
float64
0
1
repo_name
stringlengths
7
101
repo_stars
int64
100
139k
repo_forks
int64
0
26.4k
repo_open_issues
int64
0
2.27k
repo_license
stringclasses
12 values
repo_extraction_date
stringclasses
433 values
2,287,200
rand_dataset.py
dptech-corp_NAG2G/NAG2G/data/rand_dataset.py
# Copyright (c) DP Techonology, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import numpy as np from scipy.spatial import distance_matrix from functools import lru_cache from torch.utils.data.dataloader import default_collate from unicore.data import data_utils, UnicoreDataset class RandomLabelDataset(UnicoreDataset): def __init__(self, maxv, nrow): super().__init__() self.maxv = maxv self.nrow = nrow @lru_cache(maxsize=16) def __getitem__(self, index): return np.random.randint(self.maxv) def __len__(self): return self.nrow def collater(self, samples): return torch.tensor(samples) class RandomDataset(UnicoreDataset): def __init__(self, ncol, nrow, maxv): super().__init__() self.nrow = nrow self.ncol = ncol self.maxv = maxv @lru_cache(maxsize=16) def __getitem__(self, index): with data_utils.numpy_seed(index): size = np.random.randint(self.ncol // 2 + 1, self.ncol) val = np.random.randint(self.maxv, size=size) return torch.tensor(val).long() def __len__(self): return self.nrow def collater(self, samples): return default_collate(samples)
1,363
Python
.py
38
29.815789
67
0.666413
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,201
graph_features.py
dptech-corp_NAG2G/NAG2G/data/graph_features.py
# Copyright (c) DP Technology. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from functools import lru_cache from unicore.data import BaseWrapperDataset, data_utils from numba import njit from .collator import * @njit def floyd_warshall(M, path): (nrows, ncols) = M.shape assert nrows == ncols n = nrows # set unreachable nodes distance to 510 for i in range(n): for j in range(n): if M[i, j] == 0: M[i, j] = 510 for i in range(n): M[i, i] = 0 # floyed algo for k in range(n): for i in range(n): for j in range(n): cost_ikkj = M[i, k] + M[k, j] if M[i, j] > cost_ikkj: M[i, j] = cost_ikkj path[i, j] = k for i in range(n): for j in range(n): if M[i, j] >= 510: path[i, j] = 510 M[i, j] = 510 return M, path def get_all_edges(path, i, j, max_dist): if max_dist <= 0: return [] k = path[i][j] if k == -1: return [] else: left = get_all_edges(path, i, k, max_dist - 1) if len(left) + 1 >= max_dist: return left + [k] right = get_all_edges(path, k, j, max_dist - len(left) - 1) return left + [k] + right # @njit def gen_edge_input(max_dist, path_copy, edge_feat): (nrows, ncols) = path_copy.shape assert nrows == ncols n = nrows max_dist_copy = max_dist edge_fea_all = -1 * np.ones( [n, n, max_dist_copy, edge_feat.shape[-1]], dtype=np.int32 ) for i in range(n): for j in range(n): if i == j: continue if path_copy[i][j] == 510: continue path = ( [i] + get_all_edges(path_copy, i, j, max_dist=max_dist_copy + 1) + [j] ) num_path = min(len(path) - 1, max_dist_copy) for k in range(num_path): edge_fea_all[i, j, k, :] = edge_feat[path[k], path[k + 1], :] return edge_fea_all def convert_to_single_emb(x, offset: int = 512): feature_num = x.shape[-1] if len(x.shape) > 1 else 1 feature_offset = 1 + np.arange(0, feature_num * offset, offset, dtype=np.int32) x = x + feature_offset return x def convert_to_single_emb_torch(x, offset: int = 512): feature_num = x.size(-1) if len(x.size()) > 1 else 1 feature_offset = 1 + torch.arange(0, feature_num * offset, offset, dtype=torch.long) x = x + feature_offset return x def preprocess_item(item, want_edge_input=True): edge_attr, edge_index, x = ( item["edge_attr"], item["edge_index"], item["node_attr"], ) N = x.shape[0] x = convert_to_single_emb(x) # node adj matrix [N, N] bool adj = np.zeros([N, N], dtype=np.int32) adj[edge_index[0, :], edge_index[1, :]] = 1 degree = adj.sum(axis=-1) # edge feature here if len(edge_attr.shape) == 1: edge_attr = edge_attr[:, None] attn_edge_type = np.zeros([N, N, edge_attr.shape[-1]], dtype=np.int32) attn_edge_type[edge_index[0, :], edge_index[1, :]] = ( convert_to_single_emb(edge_attr) + 1 ) path = np.full([N, N], -1, dtype=np.int32) shortest_path_result, path = floyd_warshall(adj, path) if want_edge_input: max_dist = min(np.amax(shortest_path_result), 6) edge_input = gen_edge_input(max_dist, path, attn_edge_type) spatial_pos = torch.from_numpy((shortest_path_result)).long() attn_bias = torch.zeros([N + 1, N + 1], dtype=torch.float) # with graph token # combine feat = {} feat["x"] = torch.from_numpy(x).long() feat["attn_bias"] = attn_bias feat["attn_edge_type"] = torch.from_numpy(attn_edge_type).long() feat["spatial_pos"] = spatial_pos feat["in_degree"] = torch.from_numpy(degree).long().view(-1) feat["out_degree"] = feat["in_degree"] # for undirected graph if want_edge_input: feat["edge_input"] = torch.from_numpy(edge_input).long() else: feat["edge_input"] = None return feat class GraphFeatures(BaseWrapperDataset): def __init__(self, dataset, pos_dataset, want_edge_input=True, add_len=0): super().__init__(dataset) self.dataset = dataset self.pos_dataset = pos_dataset self.want_edge_input = want_edge_input self.add_len = add_len if self.add_len < 0: self.add_len = 0 @lru_cache(maxsize=16) def __getitem__(self, idx): data = self.dataset[idx] feat = preprocess_item(data, want_edge_input=self.want_edge_input) if self.pos_dataset is not None: pos = self.pos_dataset[idx] feat["pos"] = torch.from_numpy(pos) else: feat["pos"] = torch.zeros([feat["x"].shape[0], 3], dtype=torch.float) return feat def collater(self, items): multi_hop_max_dist = 5 spatial_pos_max = 1024 if self.want_edge_input: items = [ ( item["attn_bias"], item["attn_edge_type"], item["spatial_pos"], item["in_degree"], item["out_degree"], item["x"], item["edge_input"][:, :, :multi_hop_max_dist, :], item["pos"], ) for item in items ] else: items = [ ( item["attn_bias"], item["attn_edge_type"], item["spatial_pos"], item["in_degree"], item["out_degree"], item["x"], None, item["pos"], ) for item in items ] ( attn_biases, attn_edge_types, spatial_poses, in_degrees, out_degrees, xs, edge_inputs, poses, ) = zip(*items) for idx, _ in enumerate(attn_biases): attn_biases[idx][1:, 1:][spatial_poses[idx] >= spatial_pos_max] = float( "-inf" ) max_node_num = max(i.size(0) for i in xs) max_node_num = max_node_num + self.add_len max_node_num = (max_node_num + 1 + 3) // 4 * 4 - 1 x = torch.cat([pad_2d_unsqueeze(i, max_node_num) for i in xs]) if self.want_edge_input: max_dist = max(i.size(-2) for i in edge_inputs) edge_input = torch.cat( [ pad_3d_unsqueeze(i, max_node_num, max_node_num, max_dist) for i in edge_inputs ] ) else: edge_input = None attn_bias = torch.cat( [pad_attn_bias_unsqueeze(i, max_node_num + 1) for i in attn_biases] ) attn_edge_type = torch.cat( [pad_edge_type_unsqueeze(i, max_node_num) for i in attn_edge_types] ) spatial_pos = torch.cat( [pad_spatial_pos_unsqueeze(i, max_node_num) for i in spatial_poses] ) in_degree = torch.cat([pad_1d_unsqueeze(i, max_node_num) for i in in_degrees]) pos = torch.cat([pad_pos_unsqueeze(i, max_node_num) for i in poses]) node_type_edges = [] for idx in range(len(items)): node_atom_type = items[idx][5][:, 0] n_nodes = items[idx][5].shape[0] node_atom_i = node_atom_type.unsqueeze(-1).repeat(1, n_nodes) node_atom_i = pad_spatial_pos_unsqueeze( node_atom_i, max_node_num ).unsqueeze(-1) node_atom_j = node_atom_type.unsqueeze(0).repeat(n_nodes, 1) node_atom_j = pad_spatial_pos_unsqueeze( node_atom_j, max_node_num ).unsqueeze(-1) node_atom_edge = torch.cat([node_atom_i, node_atom_j], dim=-1) node_atom_edge = convert_to_single_emb_torch(node_atom_edge) node_type_edges.append(node_atom_edge.long()) node_type_edge = torch.cat(node_type_edges) if not self.want_edge_input: edge_input = attn_edge_type return dict( attn_bias=attn_bias, attn_edge_type=attn_edge_type, spatial_pos=spatial_pos, in_degree=in_degree, out_degree=in_degree, # for undirected graph x=x, edge_input=edge_input, pos=pos, node_type_edge=node_type_edge, ) class ShortestPathDataset(BaseWrapperDataset): def __init__(self, dataset, has_bos=True, has_eos=True): super().__init__(dataset) self.dataset = dataset self.has_bos = has_bos self.has_eos = has_eos @lru_cache(maxsize=16) def __getitem__(self, idx): data = self.dataset[idx] num_atoms = data["atoms"].shape[0] offset = 0 if self.has_bos: num_atoms += 1 offset = 1 if self.has_eos: num_atoms += 1 adj = np.full( (num_atoms, num_atoms), 510, dtype=np.int, ) edge_index = data["edge_index"] adj[edge_index[0, :] + offset, edge_index[1, :] + offset] = 1 shortest_path_result, _ = floyd_warshall(adj) # shortest_path_result[shortest_path_result > 510] = 510 spatial_pos = torch.from_numpy((shortest_path_result)).long() return spatial_pos class DegreeDataset(BaseWrapperDataset): def __init__(self, dataset, has_bos=True, has_eos=True): super().__init__(dataset) self.dataset = dataset self.has_bos = has_bos self.has_eos = has_eos @lru_cache(maxsize=16) def __getitem__(self, idx): data = self.dataset[idx] num_atoms = data["atoms"].shape[0] offset = 0 if self.has_bos: num_atoms += 1 offset = 1 if self.has_eos: num_atoms += 1 adj = np.full( (num_atoms, num_atoms), 0, dtype=np.int, ) edge_index = data["edge_index"] adj[edge_index[0, :] + offset, edge_index[1, :] + offset] = 1 # +1 for padding degree = np.sum(adj, axis=1) + 1 return torch.from_numpy(degree).long() def collate_1d_features( values, pad_idx, pad_to_multiple=1, ): """Convert a list of 1d tensors into a padded 2d tensor.""" v = values[0] size = max(v.size(0) for v in values) if pad_to_multiple != 1 and size % pad_to_multiple != 0: size = int(((size - 0.1) // pad_to_multiple + 1) * pad_to_multiple) res = values[0].new(len(values), size, v.shape[-1]).fill_(pad_idx) def copy_tensor(src, dst): assert dst.numel() == src.numel() dst.copy_(src) for i, v in enumerate(values): copy_tensor( v, res[i][: len(v), :], ) return res class AtomFeatDataset(BaseWrapperDataset): def __init__( self, dataset, num_features=8, num_vals=16, has_bos=True, has_eos=True ): super().__init__(dataset) self.dataset = dataset self.num_features = num_features self.num_vals = num_vals self.has_bos = has_bos self.has_eos = has_eos @lru_cache(maxsize=16) def __getitem__(self, idx): data = self.dataset[idx] num_atoms = data["atoms"].shape[0] offset = 0 if self.has_bos: num_atoms += 1 offset = 1 if self.has_eos: num_atoms += 1 feat = np.full( (num_atoms, self.num_features), 1, dtype=np.int, ) node_attr = data["node_attr"] # skip first dimension feat[offset : offset + node_attr.shape[0], :] = node_attr[:, 1:] + 2 for i in range(self.num_features): feat[:, i] += i * self.num_vals return torch.from_numpy(feat).long() def collater(self, samples): return collate_1d_features(samples, 0, pad_to_multiple=8) def collate_2d_features( values, pad_idx, pad_to_multiple=1, ): """Convert a list of 1d tensors into a padded 2d tensor.""" v = values[0] size = max(v.size(0) for v in values) if pad_to_multiple != 1 and size % pad_to_multiple != 0: size = int(((size - 0.1) // pad_to_multiple + 1) * pad_to_multiple) res = values[0].new(len(values), size, size, v.shape[-1]).fill_(pad_idx) def copy_tensor(src, dst): assert dst.numel() == src.numel() dst.copy_(src) for i, v in enumerate(values): copy_tensor( v, res[i][: len(v), : len(v), :], ) return res class BondDataset(BaseWrapperDataset): def __init__( self, dataset, num_features=4, num_vals=8, has_bos=True, has_eos=True, ): super().__init__(dataset) self.dataset = dataset self.num_features = num_features self.num_vals = num_vals self.has_bos = has_bos self.has_eos = has_eos @lru_cache(maxsize=16) def __getitem__(self, idx): data = self.dataset[idx] num_atoms = data["atoms"].shape[0] offset = 0 if self.has_bos: num_atoms += 1 offset = 1 if self.has_eos: num_atoms += 1 edge_feat = np.full( (num_atoms, num_atoms, self.num_features), 0, dtype=np.int, ) edge_index = data["edge_index"] edge_attr = data["edge_attr"] # no connected edge_feat[:, :, 0] = 1 # self connected for i in range(num_atoms): edge_feat[i, i, 0] = 2 # bond connected edge_feat[edge_index[0, :] + offset, edge_index[1, :] + offset, 0] = 3 # other bond features edge_feat[edge_index[0, :] + offset, edge_index[1, :] + offset, 1:] = ( edge_attr + 1 ) for i in range(self.num_features): # add offset edge_feat[:, :, i] += self.num_vals * i return torch.from_numpy(edge_feat).long() def collater(self, samples): return collate_2d_features(samples, 0, pad_to_multiple=8)
14,494
Python
.py
411
25.776156
88
0.530871
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,202
empty_smiles_dataset.py
dptech-corp_NAG2G/NAG2G/data/empty_smiles_dataset.py
import logging from rdkit import Chem from rdkit.Chem import AllChem import numpy as np import re import pickle from functools import lru_cache from unicore.data import UnicoreDataset logger = logging.getLogger(__name__) def get_atom(smiles): mol = Chem.MolFromSmiles(smiles) mol = AllChem.AddHs(mol) atoms = [atom.GetSymbol() for atom in mol.GetAtoms()] # after add H return atoms def get_coordinates(smiles, seed=42): mol = Chem.MolFromSmiles(smiles) mol = AllChem.AddHs(mol) try: res = AllChem.EmbedMolecule(mol, randomSeed=seed) if res == 0: AllChem.MMFFOptimizeMolecule(mol) coordinates = mol.GetConformer().GetPositions().astype(np.float32) elif res == -1: mol_tmp = Chem.MolFromSmiles(smiles) AllChem.EmbedMolecule(mol_tmp, maxAttempts=5000, randomSeed=seed) mol_tmp = AllChem.AddHs(mol_tmp, addCoords=True) AllChem.MMFFOptimizeMolecule(mol_tmp) coordinates = mol_tmp.GetConformer().GetPositions().astype(np.float32) except: AllChem.Compute2DCoords(mol) coordinates = mol.GetConformer().GetPositions().astype(np.float32) len(mol.GetAtoms()) == len( coordinates ), "2D coordinates shape is not align with {}".format(smiles) return [coordinates] def smi_tokenizer(smi): """ Tokenize a SMILES molecule or reaction """ pattern = "(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])" regex = re.compile(pattern) tokens = [token for token in regex.findall(smi)] assert smi == "".join(tokens) return tokens class EMPTY_SMILES_Dataset(UnicoreDataset): def __init__(self, init_values, seed=42): self.key = [] self.epoch = 0 self.put_smiles_in(smiles=init_values, seed=seed) def set_epoch(self, epoch, **unused): pass def put_smiles_in(self, smiles, seed=42): self.epoch = (self.epoch + 1) % 100000 dict_ = {"target_id": smiles} dict_["target_atoms"] = get_atom(smiles) dict_["target_coordinates"] = get_coordinates(smiles, seed=seed) dict_["smiles_target_list"] = [smiles] dict_["smiles_target"] = smi_tokenizer(smiles) self.key = [dict_] def __len__(self): return 1 def __getitem__(self, index: int): return self.__getitem_cached__(self.epoch, index) @lru_cache(maxsize=16) def __getitem_cached__(self, epoch: int, index: int): return self.key[index] class EMPTY_SMILES_Dataset_G2G(UnicoreDataset): def __init__(self, name, init_values=None, seed=42): self.name = name self.key = [] self.epoch = 0 self.put_smiles_in(init_values) def set_epoch(self, epoch, **unused): pass def put_smiles_in(self, smiles): if smiles is None: return self.epoch = (self.epoch + 1) % 100000 self.key = smiles def __len__(self): return len(self.key) def __getitem__(self, index: int): return self.__getitem_cached__(self.epoch, index) @lru_cache(maxsize=16) def __getitem_cached__(self, epoch: int, index: int): return {self.name: self.key[index]}
3,278
Python
.py
86
31.313953
119
0.626381
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,203
distance_dataset.py
dptech-corp_NAG2G/NAG2G/data/distance_dataset.py
import numpy as np import torch from scipy.spatial import distance_matrix from functools import lru_cache from unicore.data import BaseWrapperDataset class DistanceDataset(BaseWrapperDataset): def __init__(self, dataset): super().__init__(dataset) self.dataset = dataset @lru_cache(maxsize=16) def __getitem__(self, idx): pos = self.dataset[idx].view(-1, 3).numpy() # add eps to avoid zero distances # dist = (pos.view(-1, 1, 3) - pos.view(1, -1, 3)).norm(dim=-1) + 1e-5 dist = distance_matrix(pos, pos).astype(np.float32) return torch.from_numpy(dist) class EdgeTypeDataset(BaseWrapperDataset): def __init__( self, dataset: torch.utils.data.Dataset, num_types: int ): self.dataset = dataset self.num_types = num_types @lru_cache(maxsize=16) def __getitem__(self, index: int): node_input = self.dataset[index].clone() offset = node_input.view(-1, 1) * \ self.num_types + node_input.view(1, -1) return offset class CrossDistanceDataset(BaseWrapperDataset): def __init__(self, mol_dataset, pocket_dataset): super().__init__(mol_dataset) self.mol_dataset = mol_dataset self.pocket_dataset = pocket_dataset @lru_cache(maxsize=16) def __getitem__(self, idx): mol_pos = self.mol_dataset[idx].view(-1, 3).numpy() pocket_pos = self.pocket_dataset[idx].view(-1, 3).numpy() # add eps to avoid zero distances # dist = (pos.view(-1, 1, 3) - pos.view(1, -1, 3)).norm(dim=-1) + 1e-5 dist = distance_matrix(mol_pos, pocket_pos).astype(np.float32) return torch.from_numpy(dist)
1,721
Python
.py
43
33.046512
79
0.630631
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,204
__init__.py
dptech-corp_NAG2G/NAG2G/data/__init__.py
from .customized_unicore_dataset import CustomizedUnicoreDataset from .mask_points_dataset import MaskPointsDataset, MaskPointsPocketDataset from .distance_dataset import DistanceDataset, EdgeTypeDataset, CrossDistanceDataset from .rand_dataset import RandomDataset, RandomLabelDataset from .key_dataset import KeyDataset from .size_dataset import SizeDataset from .reorder_dataset import ReorderDataset from .pad_dataset import RightPadDatasetCoord, RightPadDatasetCross2D from .list_shuffle_dataset import ListShuffleDataset from .random_smiles_dataset import RandomSmilesDataset, ReorderSmilesDataset from .bart_token_dataset import BartTokenDataset from .empty_smiles_dataset import EMPTY_SMILES_Dataset, EMPTY_SMILES_Dataset_G2G from .graphormer_dataset import ( CsvGraphormerDataset, SmilesDataset, GraphormerDataset, ShuffleGraphormerDataset, SeqGraphormerDataset, ReorderGraphormerDataset, ReorderCoordDataset, SmilesDataset_2, ) from .pad_dataset_3d import RightPadDataset3D from .graph_features import GraphFeatures from .bpe_tokenize_dataset import BpeTokenizeDataset
1,111
Python
.py
25
42.16
84
0.861878
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,205
list_shuffle_dataset.py
dptech-corp_NAG2G/NAG2G/data/list_shuffle_dataset.py
# Copyright (c) DP Techonology, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from functools import lru_cache from unicore.data import BaseWrapperDataset import random import logging logger = logging.getLogger(__name__) class ListShuffleDataset(BaseWrapperDataset): def __init__(self, dataset, prob=1.0): self.dataset = dataset self.prob = prob def __len__(self): return len(self.dataset) @lru_cache(maxsize=16) def __getitem__(self, idx): tmp_list = self.dataset[idx] if self.prob != 0 and random.random() < self.prob: random.shuffle(tmp_list) return tmp_list
748
Python
.py
21
30.714286
65
0.697642
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,206
reorder_dataset.py
dptech-corp_NAG2G/NAG2G/data/reorder_dataset.py
# Copyright (c) DP Techonology, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import lmdb import os import pickle import torch import numpy as np from functools import lru_cache import logging from unicore.data import data_utils, BaseWrapperDataset logger = logging.getLogger(__name__) class ReorderDataset(BaseWrapperDataset): def __init__(self, dataset, seed, molstr, atoms, coordinates, nomalize=True): self.dataset = dataset self.seed = seed self.atoms = atoms self.molstr = molstr self.coordinates = coordinates self.nomalize = nomalize self.set_epoch(None) def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch @lru_cache(maxsize=16) def __cached_item__(self, index: int, epoch: int): # print('???',self.molstr ) if self.molstr == 'smi': molstr = np.array([x for x in self.dataset[index][self.molstr]]) elif self.molstr == 'selfies': molstr = np.array(self.dataset[index][self.molstr]) # else: # atoms = np.array(self.dataset[index][self.atoms]) receptor = self.dataset[index]['receptor'] atoms = np.array(self.dataset[index][self.atoms]) assert len(atoms) > 0, (len(atoms), atoms, self.atoms, molstr) # print('???',len(atoms)) size = len(self.dataset[index][self.coordinates]) with data_utils.numpy_seed(self.seed, epoch, index): sample_idx = np.random.randint(size) coordinates = self.dataset[index][self.coordinates][sample_idx] if len(atoms) > 256: np.random.seed(self.seed) index = np.random.choice(len(atoms), 256, replace=False) atoms = atoms[index] coordinates = coordinates[index] # normalize if self.nomalize: coordinates = coordinates - coordinates.mean(axis=0) #print( self.atoms,len(atoms), self.molstr, len(molstr)) return {self.atoms: atoms, self.molstr: molstr, 'coordinates': coordinates.astype(np.float32), 'receptor': receptor} def __getitem__(self, index: int): return self.__cached_item__(index, self.epoch)
2,311
Python
.py
54
35.518519
124
0.648444
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,207
key_dataset.py
dptech-corp_NAG2G/NAG2G/data/key_dataset.py
# Copyright (c) DP Techonology, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from functools import lru_cache from unicore.data import BaseWrapperDataset import logging logger = logging.getLogger(__name__) class KeyDataset(BaseWrapperDataset): def __init__(self, dataset, key): self.dataset = dataset self.key = key def __len__(self): return len(self.dataset) @lru_cache(maxsize=16) def __getitem__(self, idx): return self.dataset[idx][self.key]
614
Python
.py
18
30.166667
65
0.71912
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,208
size_dataset.py
dptech-corp_NAG2G/NAG2G/data/size_dataset.py
# Copyright (c) DP Techonology, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import numpy as np from functools import lru_cache from unicore.data import BaseWrapperDataset import logging logger = logging.getLogger(__name__) class SizeDataset(BaseWrapperDataset): def __init__(self, dataset, src_key_info, tgt_key_info): self.dataset = dataset self.src_size = np.array([]) self.tgt_size = np.array([]) self.cal_size_data(dataset, src_key_info, tgt_key_info) def __len__(self): return len(self.dataset) @lru_cache(maxsize=16) def __getitem__(self, idx): return self.dataset[idx] def cal_size_data(self, dataset, src_key_info, tgt_key_info): for i in range(len(dataset)): self.src_size = np.append( self.src_size, len(dataset[i][src_key_info])) self.tgt_size = np.append( self.tgt_size, len(dataset[i][tgt_key_info])) if i % 10000 == 0: print('test dataset size: ', i) def get_size_data(self): return self.src_size, self.tgt_size
1,222
Python
.py
31
32.645161
65
0.644426
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,209
beam_search_generator.py
dptech-corp_NAG2G/NAG2G/search_strategies/beam_search_generator.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import sys from typing import Dict, List, Optional import torch import torch.nn as nn from torch import Tensor from unicore import utils from .ngram_repeat_block import NGramRepeatBlock from . import search from .search_utils import ( collate_tokens, strip_pad, extract_hard_alignment, extract_soft_alignment, ) class SequenceGeneratorBeamSearch(nn.Module): def __init__( self, models, tgt_dict, beam_size=1, max_len_a=0, max_len_b=300, max_len=0, min_len=1, normalize_scores=True, len_penalty=1.0, unk_penalty=0.0, temperature=1.0, match_source_len=False, no_repeat_ngram_size=0, search_strategy=None, eos=None, symbols_to_strip_from_output=None, lm_model=None, lm_weight=1.0, tokens_to_suppress=(), ): """Generates translations of a given source sentence. Args: models (List[~fairseq.models.FairseqModel]): ensemble of models, currently support fairseq.models.TransformerModel for scripting beam_size (int, optional): beam width (default: 1) max_len_a/b (int, optional): generate sequences of maximum length ax + b, where x is the source length max_len (int, optional): the maximum length of the generated output (not including end-of-sentence) min_len (int, optional): the minimum length of the generated output (not including end-of-sentence) normalize_scores (bool, optional): normalize scores by the length of the output (default: True) len_penalty (float, optional): length penalty, where <1.0 favors shorter, >1.0 favors longer sentences (default: 1.0) unk_penalty (float, optional): unknown word penalty, where <0 produces more unks, >0 produces fewer (default: 0.0) temperature (float, optional): temperature, where values >1.0 produce more uniform samples and values <1.0 produce sharper samples (default: 1.0) match_source_len (bool, optional): outputs should match the source length (default: False) """ super().__init__() if isinstance(models, EnsembleModel): self.model = models else: self.model = EnsembleModel(models) self.model_0 = models[0] self.tgt_dict = tgt_dict self.pad = tgt_dict.pad() self.unk = tgt_dict.unk() self.eos = tgt_dict.eos() if eos is None else eos self.bos = tgt_dict.bos() self.symbols_to_strip_from_output = ( symbols_to_strip_from_output.union({self.eos}) if symbols_to_strip_from_output is not None else {self.eos} ) self.token_indices_to_suppress: Optional[Tensor] = None token_indices_to_suppress = [] for token_string in tokens_to_suppress: token_index = tgt_dict.index(token_string) assert token_index != self.unk token_indices_to_suppress.append(token_index) if len(token_indices_to_suppress) > 0: self.token_indices_to_suppress = torch.Tensor( token_indices_to_suppress ).long() self.vocab_size = len(tgt_dict) self.beam_size = beam_size # the max beam size is the dictionary size - 1, since we never select pad self.beam_size = min(beam_size, self.vocab_size - 1) self.model.set_decoder_beam_size(self.beam_size) self.max_len_a = max_len_a self.max_len_b = max_len_b self.min_len = min_len self.max_len = max_len or self.model.max_decoder_positions() self.normalize_scores = normalize_scores self.len_penalty = len_penalty self.unk_penalty = unk_penalty self.temperature = temperature self.match_source_len = match_source_len if no_repeat_ngram_size > 0: self.repeat_ngram_blocker = NGramRepeatBlock(no_repeat_ngram_size) else: self.repeat_ngram_blocker = None assert temperature > 0, "--temperature must be greater than 0" self.search = ( search.BeamSearch(tgt_dict) if search_strategy is None else search_strategy ) # We only need to set src_lengths in LengthConstrainedBeamSearch. # As a module attribute, setting it would break in multithread # settings when the model is shared. self.should_set_src_lengths = ( hasattr(self.search, "needs_src_lengths") and self.search.needs_src_lengths ) self.model.eval() self.lm_model = lm_model self.lm_weight = lm_weight if self.lm_model is not None: self.lm_model.eval() def cuda(self): self.model.cuda() return self @torch.no_grad() def forward( self, sample: Dict[str, Dict[str, Tensor]], prefix_tokens: Optional[Tensor] = None, bos_token: Optional[int] = None, ): """Generate a batch of translations. Args: sample (dict): batch prefix_tokens (torch.LongTensor, optional): force decoder to begin with these tokens bos_token (int, optional): beginning of sentence token (default: self.eos) """ return self._generate(sample, prefix_tokens, bos_token=bos_token) @torch.no_grad() def generate( self, models, sample: Dict[str, Dict[str, Tensor]], **kwargs ) -> List[List[Dict[str, Tensor]]]: """Generate translations. Match the api of other fairseq generators. Args: models (List[~fairseq.models.FairseqModel]): ensemble of models sample (dict): batch prefix_tokens (torch.LongTensor, optional): force decoder to begin with these tokens constraints (torch.LongTensor, optional): force decoder to include the list of constraints bos_token (int, optional): beginning of sentence token (default: self.eos) """ return self._generate(sample, **kwargs) def _generate( self, sample: Dict[str, Dict[str, Tensor]], prefix_tokens: Optional[Tensor] = None, constraints: Optional[Tensor] = None, bos_token: Optional[int] = None, ): incremental_states = torch.jit.annotate( List[Dict[str, Dict[str, Optional[Tensor]]]], [ torch.jit.annotate(Dict[str, Dict[str, Optional[Tensor]]], {}) for i in range(self.model.models_size) ], ) net_input = sample["net_input"] src_tokens = self.model_0.get_src_tokens(sample) if "src_lengths" in net_input: src_lengths = net_input["src_lengths"] else: src_lengths = ( (src_tokens.ne(self.eos) & src_tokens.ne(self.pad)).long().sum(dim=1) ) decoder_kwargs = {} encoder_kwargs = {} for k, v in sample["net_input"].items(): if "decoder" in k: decoder_kwargs[k] = v else: encoder_kwargs[k] = v # if "src_tokens" in net_input: # src_tokens = net_input["src_tokens"] # # length of the source text being the character length except EndOfSentence and pad # # if src_lengths exists in net_input (speech_to_text dataset case), then use it # if "src_lengths" in net_input: # src_lengths = net_input["src_lengths"] # else: # src_lengths = ( # (src_tokens.ne(self.eos) & src_tokens.ne(self.pad)) # .long() # .sum(dim=1) # ) # elif "source" in net_input: # src_tokens = net_input["source"] # src_lengths = ( # net_input["padding_mask"].size(-1) - net_input["padding_mask"].sum(-1) # if net_input["padding_mask"] is not None # else torch.tensor(src_tokens.size(-1)).to(src_tokens) # ) # elif "features" in net_input: # src_tokens = net_input["features"] # src_lengths = ( # net_input["padding_mask"].size(-1) - net_input["padding_mask"].sum(-1) # if net_input["padding_mask"] is not None # else torch.tensor(src_tokens.size(-1)).to(src_tokens) # ) # else: # raise Exception( # "expected src_tokens or source in net input. input keys: " # + str(net_input.keys()) # ) # bsz: total number of sentences in beam # Note that src_tokens may have more than 2 dimensions (i.e. audio features) bsz, src_len = src_tokens.size()[:2] beam_size = self.beam_size if constraints is not None and not self.search.supports_constraints: raise NotImplementedError( "Target-side constraints were provided, but search method doesn't support them" ) # Initialize constraints, when active self.search.init_constraints(constraints, beam_size) max_len: int = -1 if self.match_source_len: max_len = src_lengths.max().item() else: max_len = min( int(self.max_len_a * src_len + self.max_len_b), self.max_len - 1, ) assert ( self.min_len <= max_len ), "min_len cannot be larger than max_len, please adjust these!" # compute the encoder output for each beam with torch.autograd.profiler.record_function("EnsembleModel: forward_encoder"): encoder_outs = self.model.forward_encoder(**encoder_kwargs) # placeholder of indices for bsz * beam_size to hold tokens and accumulative scores new_order = torch.arange(bsz).view(-1, 1).repeat(1, beam_size).view(-1) new_order = new_order.to(src_tokens.device).long() encoder_outs = self.model.reorder_encoder_out(encoder_outs, new_order) # ensure encoder_outs is a List. assert encoder_outs is not None # initialize buffers scores = ( torch.zeros(bsz * beam_size, max_len + 1).to(src_tokens).float() ) # +1 for eos; pad is never chosen for scoring tokens = ( torch.zeros(bsz * beam_size, max_len + 2) .to(src_tokens) .long() .fill_(self.pad) ) # +2 for eos and pad tokens[:, 0] = self.bos if bos_token is None else bos_token attn: Optional[Tensor] = None # A list that indicates candidates that should be ignored. # For example, suppose we're sampling and have already finalized 2/5 # samples. Then cands_to_ignore would mark 2 positions as being ignored, # so that we only finalize the remaining 3 samples. cands_to_ignore = ( torch.zeros(bsz, beam_size).to(src_tokens).eq(-1) ) # forward and backward-compatible False mask # list of completed sentences finalized = torch.jit.annotate( List[List[Dict[str, Tensor]]], [torch.jit.annotate(List[Dict[str, Tensor]], []) for i in range(bsz)], ) # contains lists of dictionaries of infomation about the hypothesis being finalized at each step # a boolean array indicating if the sentence at the index is finished or not finished = [False for i in range(bsz)] num_remaining_sent = bsz # number of sentences remaining # number of candidate hypos per step cand_size = 2 * beam_size # 2 x beam size in case half are EOS # offset arrays for converting between different indexing schemes bbsz_offsets = ( (torch.arange(0, bsz) * beam_size) .unsqueeze(1) .type_as(tokens) .to(src_tokens.device) ) cand_offsets = torch.arange(0, cand_size).type_as(tokens).to(src_tokens.device) reorder_state: Optional[Tensor] = None batch_idxs: Optional[Tensor] = None original_batch_idxs: Optional[Tensor] = None if "id" in sample and isinstance(sample["id"], Tensor): original_batch_idxs = sample["id"] else: original_batch_idxs = torch.arange(0, bsz).type_as(tokens) for step in range(max_len + 1): # one extra step for EOS marker # reorder decoder internal states based on the prev choice of beams if reorder_state is not None: if batch_idxs is not None: # update beam indices to take into account removed sentences corr = batch_idxs - torch.arange(batch_idxs.numel()).type_as( batch_idxs ) reorder_state.view(-1, beam_size).add_( corr.unsqueeze(-1) * beam_size ) original_batch_idxs = original_batch_idxs[batch_idxs] self.model.reorder_incremental_state(incremental_states, reorder_state) encoder_outs = self.model.reorder_encoder_out( encoder_outs, reorder_state ) with torch.autograd.profiler.record_function( "EnsembleModel: forward_decoder" ): lprobs, avg_attn_scores = self.model.forward_decoder( tokens[:, : step + 1], encoder_outs, incremental_states, self.temperature, ) if self.lm_model is not None: lm_out = self.lm_model(tokens[:, : step + 1]) probs = self.lm_model.get_normalized_probs( lm_out, log_probs=True, sample=None ) probs = probs[:, -1, :] * self.lm_weight lprobs += probs lprobs[lprobs != lprobs] = torch.tensor(-math.inf).to(lprobs) lprobs[:, self.pad] = -math.inf # never select pad lprobs[:, self.unk] -= self.unk_penalty # apply unk penalty # handle max length constraint if step >= max_len: lprobs[:, : self.eos] = -math.inf lprobs[:, self.eos + 1 :] = -math.inf # handle prefix tokens (possibly with different lengths) if ( prefix_tokens is not None and step < prefix_tokens.size(1) and step < max_len ): lprobs, tokens, scores = self._prefix_tokens( step, lprobs, scores, tokens, prefix_tokens, beam_size ) else: if step < self.min_len: # minimum length constraint (does not apply if using prefix_tokens) lprobs[:, self.eos] = -math.inf if self.token_indices_to_suppress is not None: lprobs[:, self.token_indices_to_suppress] = -math.inf # Record attention scores, only support avg_attn_scores is a Tensor if avg_attn_scores is not None: if attn is None: attn = torch.empty( bsz * beam_size, avg_attn_scores.size(1), max_len + 2 ).to(scores) attn[:, :, step + 1].copy_(avg_attn_scores) scores = scores.type_as(lprobs) eos_bbsz_idx = torch.empty(0).to( tokens ) # indices of hypothesis ending with eos (finished sentences) eos_scores = torch.empty(0).to( scores ) # scores of hypothesis ending with eos (finished sentences) if self.should_set_src_lengths: self.search.set_src_lengths(src_lengths) if self.repeat_ngram_blocker is not None: lprobs = self.repeat_ngram_blocker(tokens, lprobs, bsz, beam_size, step) # Shape: (batch, cand_size) cand_scores, cand_indices, cand_beams = self.search.step( step, lprobs.view(bsz, -1, self.vocab_size), scores.view(bsz, beam_size, -1)[:, :, :step], tokens[:, : step + 1], original_batch_idxs, ) # cand_bbsz_idx contains beam indices for the top candidate # hypotheses, with a range of values: [0, bsz*beam_size), # and dimensions: [bsz, cand_size] cand_bbsz_idx = cand_beams.add(bbsz_offsets) # finalize hypotheses that end in eos # Shape of eos_mask: (batch size, beam size) eos_mask = cand_indices.eq(self.eos) & cand_scores.ne(-math.inf) eos_mask[:, :beam_size][cands_to_ignore] = torch.tensor(0).to(eos_mask) # only consider eos when it's among the top beam_size indices # Now we know what beam item(s) to finish # Shape: 1d list of absolute-numbered eos_bbsz_idx = torch.masked_select( cand_bbsz_idx[:, :beam_size], mask=eos_mask[:, :beam_size] ) finalized_sents: List[int] = [] if eos_bbsz_idx.numel() > 0: eos_scores = torch.masked_select( cand_scores[:, :beam_size], mask=eos_mask[:, :beam_size] ) finalized_sents = self.finalize_hypos( step, eos_bbsz_idx, eos_scores, tokens, scores, finalized, finished, beam_size, attn, src_lengths, max_len, ) num_remaining_sent -= len(finalized_sents) assert num_remaining_sent >= 0 if num_remaining_sent == 0: break if self.search.stop_on_max_len and step >= max_len: break assert step < max_len, f"{step} < {max_len}" # Remove finalized sentences (ones for which {beam_size} # finished hypotheses have been generated) from the batch. if len(finalized_sents) > 0: new_bsz = bsz - len(finalized_sents) # construct batch_idxs which holds indices of batches to keep for the next pass batch_mask = torch.ones( bsz, dtype=torch.bool, device=cand_indices.device ) batch_mask[finalized_sents] = False # TODO replace `nonzero(as_tuple=False)` after TorchScript supports it batch_idxs = torch.arange( bsz, device=cand_indices.device ).masked_select(batch_mask) # Choose the subset of the hypothesized constraints that will continue self.search.prune_sentences(batch_idxs) eos_mask = eos_mask[batch_idxs] cand_beams = cand_beams[batch_idxs] bbsz_offsets.resize_(new_bsz, 1) cand_bbsz_idx = cand_beams.add(bbsz_offsets) cand_scores = cand_scores[batch_idxs] cand_indices = cand_indices[batch_idxs] if prefix_tokens is not None: prefix_tokens = prefix_tokens[batch_idxs] src_lengths = src_lengths[batch_idxs] cands_to_ignore = cands_to_ignore[batch_idxs] scores = scores.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) tokens = tokens.view(bsz, -1)[batch_idxs].view(new_bsz * beam_size, -1) if attn is not None: attn = attn.view(bsz, -1)[batch_idxs].view( new_bsz * beam_size, attn.size(1), -1 ) bsz = new_bsz else: batch_idxs = None # Set active_mask so that values > cand_size indicate eos hypos # and values < cand_size indicate candidate active hypos. # After, the min values per row are the top candidate active hypos # Rewrite the operator since the element wise or is not supported in torchscript. eos_mask[:, :beam_size] = ~((~cands_to_ignore) & (~eos_mask[:, :beam_size])) active_mask = torch.add( eos_mask.type_as(cand_offsets) * cand_size, cand_offsets[: eos_mask.size(1)], ) # get the top beam_size active hypotheses, which are just # the hypos with the smallest values in active_mask. # {active_hypos} indicates which {beam_size} hypotheses # from the list of {2 * beam_size} candidates were # selected. Shapes: (batch size, beam size) new_cands_to_ignore, active_hypos = torch.topk( active_mask, k=beam_size, dim=1, largest=False ) # update cands_to_ignore to ignore any finalized hypos. cands_to_ignore = new_cands_to_ignore.ge(cand_size)[:, :beam_size] # Make sure there is at least one active item for each sentence in the batch. assert (~cands_to_ignore).any(dim=1).all() # update cands_to_ignore to ignore any finalized hypos # {active_bbsz_idx} denotes which beam number is continued for each new hypothesis (a beam # can be selected more than once). active_bbsz_idx = torch.gather(cand_bbsz_idx, dim=1, index=active_hypos) active_scores = torch.gather(cand_scores, dim=1, index=active_hypos) active_bbsz_idx = active_bbsz_idx.view(-1) active_scores = active_scores.view(-1) # copy tokens and scores for active hypotheses # Set the tokens for each beam (can select the same row more than once) tokens[:, : step + 1] = torch.index_select( tokens[:, : step + 1], dim=0, index=active_bbsz_idx ) # Select the next token for each of them tokens.view(bsz, beam_size, -1)[:, :, step + 1] = torch.gather( cand_indices, dim=1, index=active_hypos ) if step > 0: scores[:, :step] = torch.index_select( scores[:, :step], dim=0, index=active_bbsz_idx ) scores.view(bsz, beam_size, -1)[:, :, step] = torch.gather( cand_scores, dim=1, index=active_hypos ) # Update constraints based on which candidates were selected for the next beam self.search.update_constraints(active_hypos) # copy attention for active hypotheses if attn is not None: attn[:, :, : step + 2] = torch.index_select( attn[:, :, : step + 2], dim=0, index=active_bbsz_idx ) # reorder incremental state in decoder reorder_state = active_bbsz_idx # sort by score descending for sent in range(len(finalized)): scores = torch.tensor( [float(elem["score"].item()) for elem in finalized[sent]] ) _, sorted_scores_indices = torch.sort(scores, descending=True) finalized[sent] = [finalized[sent][ssi] for ssi in sorted_scores_indices] finalized[sent] = torch.jit.annotate( List[Dict[str, Tensor]], finalized[sent] ) return finalized def _prefix_tokens( self, step: int, lprobs, scores, tokens, prefix_tokens, beam_size: int ): """Handle prefix tokens""" prefix_toks = prefix_tokens[:, step].unsqueeze(-1).repeat(1, beam_size).view(-1) prefix_lprobs = lprobs.gather(-1, prefix_toks.unsqueeze(-1)) prefix_mask = prefix_toks.ne(self.pad) lprobs[prefix_mask] = torch.tensor(-math.inf).to(lprobs) lprobs[prefix_mask] = lprobs[prefix_mask].scatter( -1, prefix_toks[prefix_mask].unsqueeze(-1), prefix_lprobs[prefix_mask] ) # if prefix includes eos, then we should make sure tokens and # scores are the same across all beams eos_mask = prefix_toks.eq(self.eos) if eos_mask.any(): # validate that the first beam matches the prefix first_beam = tokens[eos_mask].view(-1, beam_size, tokens.size(-1))[ :, 0, 1 : step + 1 ] eos_mask_batch_dim = eos_mask.view(-1, beam_size)[:, 0] target_prefix = prefix_tokens[eos_mask_batch_dim][:, :step] assert (first_beam == target_prefix).all() # copy tokens, scores and lprobs from the first beam to all beams tokens = self.replicate_first_beam(tokens, eos_mask_batch_dim, beam_size) scores = self.replicate_first_beam(scores, eos_mask_batch_dim, beam_size) lprobs = self.replicate_first_beam(lprobs, eos_mask_batch_dim, beam_size) return lprobs, tokens, scores def replicate_first_beam(self, tensor, mask, beam_size: int): tensor = tensor.view(-1, beam_size, tensor.size(-1)) tensor[mask] = tensor[mask][:, :1, :] return tensor.view(-1, tensor.size(-1)) def finalize_hypos( self, step: int, bbsz_idx, eos_scores, tokens, scores, finalized: List[List[Dict[str, Tensor]]], finished: List[bool], beam_size: int, attn: Optional[Tensor], src_lengths, max_len: int, ): """Finalize hypothesis, store finalized information in `finalized`, and change `finished` accordingly. A sentence is finalized when {beam_size} finished items have been collected for it. Returns number of sentences (not beam items) being finalized. These will be removed from the batch and not processed further. Args: bbsz_idx (Tensor): """ assert bbsz_idx.numel() == eos_scores.numel() # clone relevant token and attention tensors. # tokens is (batch * beam, max_len). So the index_select # gets the newly EOS rows, then selects cols 1..{step + 2} tokens_clone = tokens.index_select(0, bbsz_idx)[ :, 1 : step + 2 ] # skip the first index, which is EOS tokens_clone[:, step] = self.eos attn_clone = ( attn.index_select(0, bbsz_idx)[:, :, 1 : step + 2] if attn is not None else None ) # compute scores per token position pos_scores = scores.index_select(0, bbsz_idx)[:, : step + 1] pos_scores[:, step] = eos_scores # convert from cumulative to per-position scores pos_scores[:, 1:] = pos_scores[:, 1:] - pos_scores[:, :-1] # normalize sentence-level scores if self.normalize_scores: eos_scores /= (step + 1) ** self.len_penalty # cum_unfin records which sentences in the batch are finished. # It helps match indexing between (a) the original sentences # in the batch and (b) the current, possibly-reduced set of # sentences. cum_unfin: List[int] = [] prev = 0 for f in finished: if f: prev += 1 else: cum_unfin.append(prev) cum_fin_tensor = torch.tensor(cum_unfin, dtype=torch.int).to(bbsz_idx) unfin_idx = torch.div(bbsz_idx, beam_size, rounding_mode="trunc") sent = unfin_idx + torch.index_select(cum_fin_tensor, 0, unfin_idx) # Create a set of "{sent}{unfin_idx}", where # "unfin_idx" is the index in the current (possibly reduced) # list of sentences, and "sent" is the index in the original, # unreduced batch # For every finished beam item # sentence index in the current (possibly reduced) batch seen = (sent << 32) + unfin_idx unique_seen: List[int] = torch.unique(seen).tolist() if self.match_source_len: condition = step > torch.index_select(src_lengths, 0, unfin_idx) eos_scores = torch.where(condition, torch.tensor(-math.inf), eos_scores) sent_list: List[int] = sent.tolist() for i in range(bbsz_idx.size()[0]): # An input sentence (among those in a batch) is finished when # beam_size hypotheses have been collected for it if len(finalized[sent_list[i]]) < beam_size: if attn_clone is not None: # remove padding tokens from attn scores hypo_attn = attn_clone[i] else: hypo_attn = torch.empty(0) finalized[sent_list[i]].append( { "tokens": tokens_clone[i], "score": eos_scores[i], "attention": hypo_attn, # src_len x tgt_len "alignment": torch.empty(0), "positional_scores": pos_scores[i], } ) newly_finished: List[int] = [] for unique_s in unique_seen: # check termination conditions for this sentence unique_sent: int = unique_s >> 32 unique_unfin_idx: int = unique_s - (unique_sent << 32) if not finished[unique_sent] and self.is_finished( step, unique_unfin_idx, max_len, len(finalized[unique_sent]), beam_size ): finished[unique_sent] = True newly_finished.append(unique_unfin_idx) return newly_finished def is_finished( self, step: int, unfin_idx: int, max_len: int, finalized_sent_len: int, beam_size: int, ): """ Check whether decoding for a sentence is finished, which occurs when the list of finalized sentences has reached the beam size, or when we reach the maximum length. """ assert finalized_sent_len <= beam_size if finalized_sent_len == beam_size or step == max_len: return True return False # TODO(myleott): unused, deprecate after pytorch-translate migration def generate_batched_itr(self, data_itr, beam_size=None, cuda=False, timer=None): """Iterate over a batched dataset and yield individual translations. Args: cuda (bool, optional): use GPU for generation timer (StopwatchMeter, optional): time generations """ for sample in data_itr: s = utils.move_to_cuda(sample) if cuda else sample if "net_input" not in s: continue input = s["net_input"] # model.forward normally channels prev_output_tokens into the decoder # separately, but SequenceGenerator directly calls model.encoder encoder_input = { k: v for k, v in input.items() if k != "prev_output_tokens" } if timer is not None: timer.start() with torch.no_grad(): hypos = self.generate(encoder_input) if timer is not None: timer.stop(sum(len(h[0]["tokens"]) for h in hypos)) for i, id in enumerate(s["id"].data): # remove padding src = strip_pad(input["src_tokens"].data[i, :], self.pad) ref = ( strip_pad(s["target"].data[i, :], self.pad) if s["target"] is not None else None ) yield id, src, ref, hypos[i] class EnsembleModel(nn.Module): """A wrapper around an ensemble of models.""" def __init__(self, models): super().__init__() self.models_size = len(models) # method '__len__' is not supported in ModuleList for torch script self.single_model = models[0] self.models = nn.ModuleList(models) self.has_incremental: bool = False # if all( # hasattr(m, "decoder") and isinstance(m.decoder, FairseqIncrementalDecoder) # for m in models # ): # self.has_incremental = True def forward(self): pass def has_encoder(self): return hasattr(self.single_model, "encoder") def has_incremental_states(self): return self.has_incremental def max_decoder_positions(self): return min( [ m.max_decoder_positions() for m in self.models if hasattr(m, "max_decoder_positions") ] + [sys.maxsize] ) def set_decoder_beam_size(self, beam_size): """Set beam size for efficient beamable enc-dec attention.""" if beam_size > 1: for model in self.models: if hasattr(model, "set_beam_size"): model.set_beam_size(beam_size) @torch.jit.export def forward_encoder(self, **encoder_kwargs): if not self.has_encoder(): return None return [model.forward_encoder(**encoder_kwargs) for model in self.models] @torch.jit.export def forward_decoder( self, tokens, encoder_outs: List[Dict[str, List[Tensor]]], incremental_states: List[Dict[str, Dict[str, Optional[Tensor]]]], temperature: float = 1.0, ): log_probs = [] avg_attn: Optional[Tensor] = None encoder_out: Optional[Dict[str, List[Tensor]]] = None for i, model in enumerate(self.models): if self.has_encoder(): encoder_out = encoder_outs[i] # decode each model if self.has_incremental_states(): decoder_out = model.decoder.forward( tokens, encoder_out=encoder_out, incremental_state=incremental_states[i], ) else: if hasattr(model, "decoder"): decoder_out = model.forward_decoder( decoder_src_tokens=tokens, encoder_cls=encoder_out["encoder_rep"], temperature=temperature, encoder_padding_mask=encoder_out["padding_mask"], ) else: decoder_out = model.forward(tokens) attn: Optional[Tensor] = None decoder_len = len(decoder_out) if decoder_len > 1 and decoder_out[1] is not None: if isinstance(decoder_out[1], Tensor): attn = decoder_out[1] else: attn_holder = decoder_out[1]["attn"] if isinstance(attn_holder, Tensor): attn = attn_holder elif attn_holder is not None: attn = attn_holder[0] if attn is not None: attn = attn[:, -1, :] # decoder_out_tuple = ( # decoder_out[0][:, -1:, :].div_(temperature), # None if decoder_len <= 1 else decoder_out[1], # ) # probs = model.get_normalized_probs( # decoder_out_tuple, log_probs=True, sample=None # ) probs = decoder_out[0] if self.models_size == 1: return probs, attn log_probs.append(probs) if attn is not None: if avg_attn is None: avg_attn = attn else: avg_attn.add_(attn) avg_probs = torch.logsumexp(torch.stack(log_probs, dim=0), dim=0) - math.log( self.models_size ) if avg_attn is not None: avg_attn.div_(self.models_size) return avg_probs, avg_attn @torch.jit.export def reorder_encoder_out( self, encoder_outs: Optional[List[Dict[str, List[Tensor]]]], new_order ): """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ new_outs: List[Dict[str, List[Tensor]]] = [] if not self.has_encoder(): return new_outs for i, model in enumerate(self.models): assert encoder_outs is not None new_outs.append(model.reorder_encoder_out(encoder_outs[i], new_order)) return new_outs @torch.jit.export def reorder_incremental_state( self, incremental_states: List[Dict[str, Dict[str, Optional[Tensor]]]], new_order, ): if not self.has_incremental_states(): return for i, model in enumerate(self.models): model.decoder.reorder_incremental_state_scripting( incremental_states[i], new_order ) class SequenceGeneratorWithAlignment(SequenceGeneratorBeamSearch): def __init__( self, models, tgt_dict, left_pad_target=False, print_alignment="hard", **kwargs ): """Generates translations of a given source sentence. Produces alignments following "Jointly Learning to Align and Translate with Transformer Models" (Garg et al., EMNLP 2019). Args: left_pad_target (bool, optional): Whether or not the hypothesis should be left padded or not when they are teacher forced for generating alignments. """ super().__init__(EnsembleModelWithAlignment(models), tgt_dict, **kwargs) self.left_pad_target = left_pad_target if print_alignment == "hard": self.extract_alignment = extract_hard_alignment elif print_alignment == "soft": self.extract_alignment = extract_soft_alignment @torch.no_grad() def generate(self, models, sample, **kwargs): finalized = super()._generate(sample, **kwargs) src_tokens = sample["net_input"]["src_tokens"] bsz = src_tokens.shape[0] beam_size = self.beam_size ( src_tokens, src_lengths, prev_output_tokens, tgt_tokens, ) = self._prepare_batch_for_alignment(sample, finalized) if any(getattr(m, "full_context_alignment", False) for m in self.model.models): attn = self.model.forward_align(src_tokens, src_lengths, prev_output_tokens) else: attn = [ finalized[i // beam_size][i % beam_size]["attention"].transpose(1, 0) for i in range(bsz * beam_size) ] if src_tokens.device != "cpu": src_tokens = src_tokens.to("cpu") tgt_tokens = tgt_tokens.to("cpu") attn = [i.to("cpu") for i in attn] # Process the attn matrix to extract hard alignments. for i in range(bsz * beam_size): alignment = self.extract_alignment( attn[i], src_tokens[i], tgt_tokens[i], self.pad, self.eos ) finalized[i // beam_size][i % beam_size]["alignment"] = alignment return finalized def _prepare_batch_for_alignment(self, sample, hypothesis): src_tokens = sample["net_input"]["src_tokens"] bsz = src_tokens.shape[0] src_tokens = ( src_tokens[:, None, :] .expand(-1, self.beam_size, -1) .contiguous() .view(bsz * self.beam_size, -1) ) src_lengths = sample["net_input"]["src_lengths"] src_lengths = ( src_lengths[:, None] .expand(-1, self.beam_size) .contiguous() .view(bsz * self.beam_size) ) prev_output_tokens = collate_tokens( [beam["tokens"] for example in hypothesis for beam in example], self.pad, self.eos, self.left_pad_target, move_eos_to_beginning=True, ) tgt_tokens = collate_tokens( [beam["tokens"] for example in hypothesis for beam in example], self.pad, self.eos, self.left_pad_target, move_eos_to_beginning=False, ) return src_tokens, src_lengths, prev_output_tokens, tgt_tokens class EnsembleModelWithAlignment(EnsembleModel): """A wrapper around an ensemble of models.""" def __init__(self, models): super().__init__(models) def forward_align(self, src_tokens, src_lengths, prev_output_tokens): avg_attn = None for model in self.models: decoder_out = model(src_tokens, src_lengths, prev_output_tokens) attn = decoder_out[1]["attn"][0] if avg_attn is None: avg_attn = attn else: avg_attn.add_(attn) if len(self.models) > 1: avg_attn.div_(len(self.models)) return avg_attn
41,579
Python
.py
919
33.022851
110
0.560465
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,210
simple_sequence_generator.py
dptech-corp_NAG2G/NAG2G/search_strategies/simple_sequence_generator.py
import math from typing import Dict, List, Optional import sys import torch import torch.nn as nn from torch import Tensor # from . import move_to_cuda, strip_pad import logging import math import sys from typing import Dict, List, Optional import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor # from dpaie import search, utils # from fairseq.data import data_utils # from fairseq.models import FairseqIncrementalDecoder # from dpaie.ngram_repeat_block import NGramRepeatBlock logger = logging.getLogger(__name__) """ Translate algorithms, whitch supprot a batch input. algorithms: - greedy search (when args.beam_size <= 0) - beam search (when args.beam_size > 0. Support to adjust these parameters: beam_size and length_penalty) inputs: - src_tokens: (batch_size, src_len) outputs: - gen_seqs: (batch_size, max_seq_len/tgt_len.max()) (related to the stop rules) """ """ Referenced from facebookresearch/XLM, at https://github.com/facebookresearch/XLM/blob/master/xlm/model/transformer.py """ class BeamHypotheses(object): def __init__(self, n_hyp, length_penalty): """ Initialize n-best list of hypotheses. """ self.length_penalty = length_penalty self.n_hyp = n_hyp self.hyp = [] self.worst_score = 1e9 def __len__(self): """ Number of hypotheses in the list. """ return len(self.hyp) def add(self, hyp, sum_logprobs): """ Add a new hypothesis to the list. """ lp = len(hyp) ** self.length_penalty # deafult length penalty # lp = (5 + len(hyp)) ** self.length_penalty / (5 + 1) ** self.length_penalty # Google GNMT's length penalty score = sum_logprobs / lp # score = sum_logprobs if len(self) < self.n_hyp or score > self.worst_score: self.hyp.append((score, hyp)) if len(self) > self.n_hyp: sorted_scores = sorted( [(s, idx) for idx, (s, _) in enumerate(self.hyp)] ) # delete the worst hyp in beam del self.hyp[sorted_scores[0][1]] # update worst score with the sencond worst hyp self.worst_score = sorted_scores[1][0] else: self.worst_score = min(score, self.worst_score) def is_done(self, best_sum_logprobs, cur_len): """ If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst one in the heap, then we are done with this sentence. """ if len(self) < self.n_hyp: return False else: # return self.worst_score >= best_sum_logprobs # / cur_len ** self.length_penalty return ( self.worst_score >= best_sum_logprobs / cur_len**self.length_penalty ) class SimpleGenerator(nn.Module): def __init__( self, model, dict, output_num_return_sequences_per_batch=5, max_seq_len=512, beam_size=5, temperature=1.0, match_source_len=False, len_penalty=1.0, args=None, eos=None, ): super().__init__() self.model = model self.dict = dict self.output_num_return_sequences_per_batch = beam_size self.max_seq_len = max_seq_len self.beam_size = beam_size self.temperature = temperature self.match_source_len = match_source_len self.pad_idx = self.dict.pad() self.bos_idx = self.dict.bos() self.eos_idx = eos if eos is not None else self.dict.eos() # self.eos_idx2 = 247 self.len_penalty = len_penalty self.args = args @torch.no_grad() def _generate(self, sample, prefix_tokens): self.model.eval() src_tokens = self.model.get_src_tokens(sample) batch_size = src_tokens.size(0) decoder_kwargs = {} encoder_kwargs = {} for k, v in sample["net_input"].items(): if "decoder" in k: decoder_kwargs[k] = v else: encoder_kwargs[k] = v if self.args.use_class_encoder: assert self.args.N_vnode == 2 encoder_kwargs["cls_embedding"] = self.model.decoder_embed_tokens(decoder_kwargs["decoder_src_tokens"][:, 1]) encoder_result = self.model.forward_encoder(**encoder_kwargs) encoder_out = encoder_result["encoder_rep"] padding_mask = encoder_result["padding_mask"] masked_tokens = encoder_result["masked_tokens"] src_padding_mask = padding_mask if src_padding_mask is None: src_padding_mask = torch.zeros( [encoder_out.shape[0], encoder_out.shape[1]] ).to(encoder_out.device) # expand to beam size the source latent representations encoder_out = encoder_out.repeat_interleave( self.beam_size, dim=0 ) # (B x beam_size) x T x C src_padding_mask = src_padding_mask.repeat_interleave( self.beam_size, dim=0 ) # (B x beam_size) x T x C # generated sentences (batch with beam current hypotheses) generated = src_tokens.new(batch_size * self.beam_size, self.max_seq_len).fill_( self.pad_idx ) # upcoming output generated[:, 0].fill_(self.bos_idx) if prefix_tokens is not None: generated[:, 1] = prefix_tokens.expand((prefix_tokens.shape[0], self.beam_size)).reshape(-1) # generated hypotheses generated_hyps = [ BeamHypotheses(self.beam_size * 2, self.len_penalty) for _ in range(batch_size) ] # 为每个输入句子定义维护其beam search序列的类实例 # scores for each sentence in the beam beam_scores = encoder_out.new(batch_size, self.beam_size).fill_( 0 ) # 定义scores向量,保存累加的log_probs beam_scores[:, 1:] = -1e9 # 需要初始化为-inf if prefix_tokens is not None: beam_scores[:, 1] = 0 # current position cur_len = 1 if prefix_tokens is not None: cur_len = 2 # done sentences done = [False] * batch_size # 标记每个输入句子的beam search是否完成 while cur_len < self.max_seq_len: tgt_padding_mask = generated[:, :cur_len].eq(self.pad_idx) scores, avg_attn_scores = self.model.forward_decoder( decoder_src_tokens=generated[:, :cur_len], encoder_cls=encoder_out, temperature=self.temperature, encoder_padding_mask=src_padding_mask, ) # (batch_size * beam_size, n_tgt_words) n_tgt_words = scores.size(-1) # - scores: (batch_size * beam_size, n_tgt_words) # if self.args.N_left > 0: # and self.eos_idx2 in generated[:, :cur_len]: # score_tmp, _ = torch.topk( # scores, self.args.N_left, dim=-1, largest=True, sorted=True # ) # score_tmp = score_tmp[:, -1].unsqueeze(1) # scores[scores < score_tmp] = -100 _scores = scores + beam_scores.view(batch_size * self.beam_size, 1) # (batch_size, beam_size * vocab_size) _scores = _scores.view(batch_size, self.beam_size * n_tgt_words) next_scores, next_words = torch.topk( _scores, 2 * self.beam_size, dim=-1, largest=True, sorted=True ) # - next_scores, next_words: (batch_size, 2 * beam_size) # next batch beam content # list of (batch_size * beam_size) tuple(next hypothesis score, next word, current position in the batch) next_batch_beam = [] # for each sentence for sent_id in range(batch_size): # if we are done with this sentence done[sent_id] = done[sent_id] or generated_hyps[sent_id].is_done( next_scores[sent_id].max().item(), cur_len ) if done[sent_id]: next_batch_beam.extend( [(0, self.pad_idx, 0)] * self.beam_size ) # pad the batch continue # next sentence beam content next_sent_beam = [] # next words for this sentence for idx, value in zip(next_words[sent_id], next_scores[sent_id]): # get beam and word IDs beam_id = idx // n_tgt_words word_id = idx % n_tgt_words # end of sentence, or next word effective_beam_id = sent_id * self.beam_size + beam_id if word_id == self.eos_idx or cur_len + 1 == self.max_seq_len: generated_hyps[sent_id].add( generated[effective_beam_id, :cur_len].clone(), value.item() ) else: next_sent_beam.append((value, word_id, effective_beam_id)) # the beam for next step is full if len(next_sent_beam) == self.beam_size: break # update next beam content if len(next_sent_beam) == 0: next_sent_beam = [ (0, self.pad_idx, 0) ] * self.beam_size # pad the batch next_batch_beam.extend(next_sent_beam) # prepare next batch beam_scores = beam_scores.new([x[0] for x in next_batch_beam]) beam_words = generated.new([x[1] for x in next_batch_beam]) beam_idx = src_tokens.new([x[2] for x in next_batch_beam]) # re-order batch and internal states generated = generated[beam_idx, :] generated[:, cur_len] = beam_words # update current length cur_len = cur_len + 1 if all(done): break # select the best hypotheses tgt_len = src_tokens.new( batch_size * self.output_num_return_sequences_per_batch ) best = [] for i, hypotheses in enumerate(generated_hyps): sorted_hyps = sorted(hypotheses.hyp, key=lambda x: x[0]) for j in range(self.output_num_return_sequences_per_batch): effective_batch_idx = self.output_num_return_sequences_per_batch * i + j best_hyp = sorted_hyps.pop()[1] tgt_len[effective_batch_idx] = len(best_hyp) best.append(best_hyp) # generate target batch gen_seqs = src_tokens.new( batch_size * self.output_num_return_sequences_per_batch, tgt_len.max().item(), ).fill_(self.pad_idx) for i, hypo in enumerate(best): gen_seqs[i, : tgt_len[i]] = hypo tgt_lengths = torch.sum(gen_seqs.ne(self.pad_idx), dim=1) return gen_seqs, tgt_lengths
11,220
Python
.py
259
31.69112
121
0.562512
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,211
sample_generator.py
dptech-corp_NAG2G/NAG2G/search_strategies/sample_generator.py
import math from typing import Dict, List, Optional import sys import torch import torch.nn as nn from torch import Tensor # from . import move_to_cuda, strip_pad import logging import math import sys from typing import Dict, List, Optional import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor # from dpaie import search, utils # from fairseq.data import data_utils # from fairseq.models import FairseqIncrementalDecoder # from dpaie.ngram_repeat_block import NGramRepeatBlock logger = logging.getLogger(__name__) """ Translate algorithms, whitch supprot a batch input. algorithms: - greedy search (when args.beam_size <= 0) - beam search (when args.beam_size > 0. Support to adjust these parameters: beam_size and length_penalty) inputs: - src_tokens: (batch_size, src_len) outputs: - gen_seqs: (batch_size, max_seq_len/tgt_len.max()) (related to the stop rules) """ """ Referenced from facebookresearch/XLM, at https://github.com/facebookresearch/XLM/blob/master/xlm/model/transformer.py """ class BeamHypotheses(object): def __init__(self, n_hyp, length_penalty): """ Initialize n-best list of hypotheses. """ self.length_penalty = length_penalty self.n_hyp = n_hyp self.hyp = [] self.worst_score = 1e9 def __len__(self): """ Number of hypotheses in the list. """ return len(self.hyp) def add(self, hyp, sum_logprobs): """ Add a new hypothesis to the list. """ lp = len(hyp) ** self.length_penalty # deafult length penalty # lp = (5 + len(hyp)) ** self.length_penalty / (5 + 1) ** self.length_penalty # Google GNMT's length penalty score = sum_logprobs / lp # score = sum_logprobs if len(self) < self.n_hyp or score > self.worst_score: self.hyp.append((score, hyp)) if len(self) > self.n_hyp: sorted_scores = sorted( [(s, idx) for idx, (s, _) in enumerate(self.hyp)] ) del self.hyp[sorted_scores[0][1]] # delete the worst hyp in beam self.worst_score = sorted_scores[1][ 0 ] # update worst score with the sencond worst hyp else: self.worst_score = min(score, self.worst_score) def is_done(self, best_sum_logprobs, cur_len): """ If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst one in the heap, then we are done with this sentence. """ if len(self) < self.n_hyp: return False else: return self.worst_score >= best_sum_logprobs # / cur_len ** self.length_penalty # return self.worst_score >= best_sum_logprobs / cur_len ** self.length_penalty class SampleGenerator(nn.Module): def __init__( self, model, dict, output_num_return_sequences_per_batch=10, max_seq_len=180, beam_size=5, temperature=1.0, match_source_len=False, ): super().__init__() self.model = model self.dict = dict self.output_num_return_sequences_per_batch = beam_size self.max_seq_len = max_seq_len self.beam_size = beam_size self.temperature = temperature self.match_source_len = match_source_len self.pad_idx = self.dict.pad() self.bos_idx = self.dict.bos() self.eos_idx = self.dict.eos() def _generate(self, sample): self.model.eval() src_tokens = sample["net_input"]["reverse_src_dataset"] # B x T reverse_tgt_tokens = sample["net_input"]["src_tokens"] # B x T reaction_type = sample["net_input"]["reaction_type"] src_lengths = torch.sum(src_tokens.ne(self.pad_idx), dim=1) batch_size = src_tokens.size(0) src_padding_mask = src_tokens.eq(self.pad_idx) encoder_out, padding_mask = self.model.forward_encoder( src_tokens, reaction_type ) # expand to beam size the source latent representations # encoder_out = encoder_out.repeat_interleave(self.beam_size, dim=0) # (B x beam_size) x T x C # reverse_tgt_tokens = reverse_tgt_tokens.repeat_interleave(self.beam_size, dim=0) # (B x beam_size) x T x C # src_padding_mask = src_padding_mask.repeat_interleave(self.beam_size, dim=0) # (B x beam_size) x T x C # generated sentences (batch with beam current hypotheses) generated = src_tokens.new(batch_size, self.max_seq_len).fill_( self.pad_idx ) # upcoming output generated[:, 0].fill_(self.bos_idx) # generated hypotheses generated_hyps = [ BeamHypotheses(self.beam_size * 2, 1.0) for _ in range(batch_size) ] # 为每个输入句子定义维护其beam search序列的类实例 # scores for each sentence in the beam # beam_scores = encoder_out.new(batch_size).fill_(0).to(src_tokens.device) # 定义scores向量,保存累加的log_probs # beam_scores[:, 1:] = -1e9 # 需要初始化为-inf all_scores, avg_attn_scores = self.model.forward_decoder( reverse_tgt_tokens, encoder_out, self.temperature, padding_mask=src_padding_mask, ) # (batch_size * beam_size, n_tgt_words) # current position cur_len = 1 # done sentences n_tgt_words = all_scores.size(-1) pre_len = all_scores.size(1) # - scores: (batch_size * beam_size, n_tgt_words) done = [False] * batch_size # 标记每个输入句子的beam search是否完成 sample_num = 0 batch_size, seq_len, num_clas = all_scores.shape all_scores = torch.exp(all_scores) all_scores = all_scores.view(-1, num_clas) all_scores_ind = torch.multinomial(all_scores, self.beam_size, replacement=True) all_scores_ind = all_scores_ind.view(batch_size, seq_len, self.beam_size) all_scores = all_scores.view(batch_size, seq_len, num_clas) ### store the score all_probs = torch.take(all_scores, all_scores_ind) ### clean the eos_id gen_seqs = all_scores_ind gen_scores = torch.log(all_probs).sum(1) gen_scores = gen_scores.reshape(-1) gen_lengths = all_probs[0, :, 0] gen_seqs = gen_seqs.transpose(1, 2) gen_seqs = gen_seqs.reshape(-1, seq_len) # print('test gen_seqs0: ', gen_seqs.shape, all_probs.shape) return gen_seqs, gen_lengths, gen_scores # while cur_len < self.max_seq_len and cur_len < pre_len: # scores = all_scores[:,cur_len,:] # _scores = scores + beam_scores.view(batch_size * self.beam_size, 1) # 累加上以前的scores # _scores = _scores.view(batch_size, self.beam_size * n_tgt_words) # (batch_size, beam_size * vocab_size) # next_scores, next_words = torch.topk(_scores, 2 * self.beam_size, dim=-1, largest=True, sorted=True) # # - next_scores, next_words: (batch_size, 2 * beam_size) # # next batch beam content # next_batch_beam = [] # list of (batch_size * beam_size) tuple(next hypothesis score, next word, current position in the batch) # # for each sentence # for sent_id in range(batch_size): # # if we are done with this sentence # done[sent_id] = done[sent_id] or generated_hyps[sent_id].is_done(next_scores[sent_id].max().item(), cur_len) # if done[sent_id]: # next_batch_beam.extend([(0, self.pad_idx, 0)] * self.beam_size) # pad the batch # continue # # next sentence beam content # next_sent_beam = [] # # next words for this sentence # for idx, value in zip(next_words[sent_id], next_scores[sent_id]): # # get beam and word IDs # beam_id = idx // n_tgt_words # word_id = idx % n_tgt_words # # end of sentence, or next word # effective_beam_id = sent_id * self.beam_size + beam_id # if word_id == self.eos_idx or cur_len + 1 == self.max_seq_len: # generated_hyps[sent_id].add(generated[effective_beam_id, :cur_len].clone(), value.item()) # else: # next_sent_beam.append((value, word_id, effective_beam_id)) # # the beam for next step is full # if len(next_sent_beam) == self.beam_size: # break # # update next beam content # if len(next_sent_beam) == 0: # next_sent_beam = [(0, self.pad_idx, 0)] * self.beam_size # pad the batch # next_batch_beam.extend(next_sent_beam) # # prepare next batch # beam_scores = beam_scores.new([x[0] for x in next_batch_beam]) # beam_words = generated.new([x[1] for x in next_batch_beam]) # beam_idx = src_tokens.new([x[2] for x in next_batch_beam]) # # re-order batch and internal states # generated = generated[beam_idx, :] # generated[:, cur_len] = beam_words # # update current length # cur_len = cur_len + 1 # if all(done): # break # # select the best hypotheses # tgt_len = src_tokens.new(batch_size*self.output_num_return_sequences_per_batch) # best = [] # best_score = [] # for i, hypotheses in enumerate(generated_hyps): # sorted_hyps = sorted(hypotheses.hyp, key=lambda x: x[0]) # for j in range(self.output_num_return_sequences_per_batch): # try: # effective_batch_idx = self.output_num_return_sequences_per_batch * i + j # best_cand = sorted_hyps.pop() # best_hyp = best_cand[1] # score = best_cand[0] # tgt_len[effective_batch_idx] = len(best_hyp) # best.append(best_hyp) # best_score.append(score) # except: # tgt_len[effective_batch_idx] = 0 # best.append(torch.tensor([])) # best_score.append(-1000) # # generate target batch # gen_seqs = src_tokens.new(batch_size*self.output_num_return_sequences_per_batch, tgt_len.max().item()).fill_(self.pad_idx) # gen_scores = [-1e5] * len(gen_seqs) # for i, hypo in enumerate(best): # gen_seqs[i, :tgt_len[i]] = hypo # gen_scores[i] = best_score[i] # tgt_lengths = torch.sum(gen_seqs.ne(self.pad_idx), dim=1) # return gen_seqs, tgt_lengths, gen_scores
11,063
Python
.py
233
38.446352
141
0.576966
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,212
search.py
dptech-corp_NAG2G/NAG2G/search_strategies/search.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math from typing import List, Optional import torch import torch.nn as nn from .token_generation_constraints import ( ConstraintState, OrderedConstraintState, UnorderedConstraintState, ) from torch import Tensor class Search(nn.Module): def __init__(self, tgt_dict): super().__init__() self.pad = tgt_dict.pad() self.unk = tgt_dict.unk() self.eos = tgt_dict.eos() self.vocab_size = len(tgt_dict) self.src_lengths = torch.tensor(-1) self.supports_constraints = False self.stop_on_max_len = False def step( self, step, lprobs, scores, prev_output_tokens=None, original_batch_idxs=None ): """Take a single search step. Args: step: the current search step, starting at 0 lprobs: (bsz x input_beam_size x vocab_size) the model's log-probabilities over the vocabulary at the current step scores: (bsz x input_beam_size x step) the historical model scores of each hypothesis up to this point prev_output_tokens: (bsz x step) the previously generated oputput tokens original_batch_idxs: (bsz) the tensor with the batch indices, in the range [0, bsz) this is useful in case there has been applied a re-ordering and we need to know the orignal indices Return: A tuple of (scores, indices, beams) where: scores: (bsz x output_beam_size) the scores of the chosen elements; output_beam_size can be larger than input_beam_size, e.g., we may return 2*input_beam_size to account for EOS indices: (bsz x output_beam_size) the indices of the chosen elements beams: (bsz x output_beam_size) the hypothesis ids of the chosen elements, in the range [0, input_beam_size) """ raise NotImplementedError @torch.jit.export def set_src_lengths(self, src_lengths): self.src_lengths = src_lengths @torch.jit.export def init_constraints(self, batch_constraints: Optional[Tensor], beam_size: int): """Initialize constraint states for constrained decoding (if supported). Args: batch_constraints: (torch.Tensor, optional) the list of constraints, in packed form beam_size: (int) the beam size Returns: *encoder_out* rearranged according to *new_order* """ pass def prune_sentences(self, batch_idxs: Tensor): """ Removes constraint states for completed sentences (if supported). This is called from sequence_generator._generate() when sentences are deleted from the batch. Args: batch_idxs: Indices of *sentences* whose constraint state should be *kept*. """ pass def update_constraints(self, active_hypos: Tensor): """ Updates the constraint states by selecting the beam items that are retained. This is called at each time step of sequence_generator._generate() when the set of 2 * {beam_size} candidate hypotheses are reduced to the beam size. Args: active_hypos: (batch size, beam size) list of integers denoting, for each sentence, which beam candidate items should be kept. """ pass class BeamSearch(Search): def __init__(self, tgt_dict): super().__init__(tgt_dict) self.constraint_states = None @torch.jit.export def step( self, step: int, lprobs, scores: Optional[Tensor], prev_output_tokens: Optional[Tensor] = None, original_batch_idxs: Optional[Tensor] = None, ): bsz, beam_size, vocab_size = lprobs.size() if step == 0: # at the first step all hypotheses are equally likely, so use # only the first beam lprobs = lprobs[:, ::beam_size, :].contiguous() else: # make probs contain cumulative scores for each hypothesis assert scores is not None lprobs = lprobs + scores[:, :, step - 1].unsqueeze(-1) top_prediction = torch.topk( lprobs.view(bsz, -1), k=min( # Take the best 2 x beam_size predictions. We'll choose the first # beam_size of these which don't predict eos to continue with. beam_size * 2, lprobs.view(bsz, -1).size(1) - 1, # -1 so we never select pad ), ) scores_buf = top_prediction[0] indices_buf = top_prediction[1] # Project back into relative indices and beams beams_buf = torch.div(indices_buf, vocab_size, rounding_mode="trunc") indices_buf = indices_buf.fmod(vocab_size) # At this point, beams_buf and indices_buf are single-dim and contain relative indices return scores_buf, indices_buf, beams_buf class PrefixConstrainedBeamSearch(Search): def __init__(self, tgt_dict, prefix_allowed_tokens_fn): super().__init__(tgt_dict) self.prefix_allowed_tokens_fn = prefix_allowed_tokens_fn self.stop_on_max_len = True @torch.jit.export def apply_mask(self, x, prev_output_tokens, original_batch_idxs): beam_size = x.shape[0] // original_batch_idxs.shape[0] original_batch_idxs = ( original_batch_idxs.unsqueeze(-1).repeat((1, beam_size)).flatten().tolist() ) mask = torch.full_like(x, -math.inf) for sent_i, (sent, batch_i) in enumerate( zip(prev_output_tokens, original_batch_idxs) ): mask[sent_i, :, self.prefix_allowed_tokens_fn(batch_i, sent)] = 0 return mask @torch.jit.export def step( self, step: int, lprobs: Tensor, scores: Tensor, prev_output_tokens: Tensor, original_batch_idxs: Tensor, ): bsz, beam_size, vocab_size = lprobs.size() lprobs += self.apply_mask( lprobs.view(bsz * beam_size, 1, vocab_size), prev_output_tokens, original_batch_idxs, ).view(bsz, beam_size, vocab_size) if step == 0: # at the first step all hypotheses are equally likely, so use # only the first beam lprobs = lprobs[:, ::beam_size, :].contiguous() else: # make probs contain cumulative scores for each hypothesis assert scores is not None lprobs = lprobs + scores[:, :, step - 1].unsqueeze(-1) top_prediction = torch.topk( lprobs.view(bsz, -1), k=min( # Take the best beam_size predictions. We'll choose the first # beam_size of these which don't predict eos to continue with. beam_size, lprobs.view(bsz, -1).size(1) - 1, # -1 so we never select pad ), ) scores_buf = top_prediction[0] indices_buf = top_prediction[1] beams_buf = indices_buf // vocab_size indices_buf = indices_buf.fmod(vocab_size) return scores_buf, indices_buf, beams_buf class LexicallyConstrainedBeamSearch(Search): """Implements lexically constrained beam search as described in Fast Lexically Constrained Decoding with Dynamic Beam Allocation for Neural Machine Translation. Post & Vilar, NAACL 2018. https://www.aclweb.org/anthology/N18-1119/ and Improved Lexically Constrained Decoding for Translation and Monolingual Rewriting. Hu et al, NAACL 2019. https://www.aclweb.org/anthology/N19-1090/ This is accomplished by maintaining, for each beam hypothesis, a ConstraintState object (see constraints.py) that tracks which constraints have been generated and using this information to shape the beam for each input sentence. """ def __init__(self, tgt_dict, representation): super().__init__(tgt_dict) self.representation = representation self.vocab_size = len(tgt_dict) self.num_cands = 0 self.supports_constraints = True @torch.jit.export def init_constraints(self, batch_constraints: Optional[Tensor], beam_size: int): self.constraint_states = [] for constraint_tensor in batch_constraints: if self.representation == "ordered": constraint_state = OrderedConstraintState.create(constraint_tensor) elif self.representation == "unordered": constraint_state = UnorderedConstraintState.create(constraint_tensor) self.constraint_states.append([constraint_state for i in range(beam_size)]) @torch.jit.export def prune_sentences(self, batch_idxs: Tensor): self.constraint_states = [ self.constraint_states[i] for i in batch_idxs.tolist() ] @torch.jit.export def update_constraints(self, active_hypos: Tensor): if self.constraint_states: batch_size = active_hypos.size(0) for sentid in range(batch_size): self.constraint_states[sentid] = [ self.constraint_states[sentid][i] for i in active_hypos[sentid] ] @torch.jit.export def step( self, step: int, lprobs: Tensor, scores: Optional[Tensor], prev_output_tokens: Optional[Tensor] = None, original_batch_idxs: Optional[Tensor] = None, ): """ A constrained step builds a large candidates list from the following: - the top 2 * {beam_size} items over the whole beam - for each item in the beam - the top {each_k} (default 1) - all next constraints We then compute the constrained state of each beam item, and assign stripe codes: 0 to the best in each bank, 1 to the 2nd-best, and so on. We then sort by (stripe, score), and truncate the list at 2 * beam size. Args: step: the decoder step lprobs: (batch size, beam size, target vocab) the target-vocab distributions for each item in the beam. Retrun: A tuple of (scores, indices, beams, constraints) where: scores: (batch, output beam size) the scores of the chosen elements indices: (batch, output beam size) the target vocab indices of the chosen elements beams: (batch, output beam size) the 0-indexed hypothesis ids of the chosen elements constraints: (batch, output beam size) the new constraint states """ each_k = 1 device = lprobs.device batch_size, beam_size, vocab_size = lprobs.size() self.num_cands = min( # Just take the k-best. We'll get another k from the 1-best from each # row, plus more from the constraints beam_size * 2, lprobs.view(batch_size, -1).size(1) - 1, # -1 so we never select pad ) # STEP 0: Preliminary. Prevent EOS for unfinished hyps across all batch items constraint_states = self.constraint_states if constraint_states and step > 0: not_finished_indices = [] for sentno, sent_constraints in enumerate(constraint_states): for beamno, state in enumerate(sent_constraints): index = sentno * beam_size + beamno if not state.finished: not_finished_indices.append(index) not_finished_indices = torch.tensor(not_finished_indices) if not_finished_indices.numel() > 0: lprobs.view(batch_size * beam_size, -1)[ not_finished_indices, self.eos ] = -math.inf if step == 0: # at the first step all hypotheses are equally likely, so use # only the first beam entry for each batch item lprobs = lprobs[:, ::beam_size, :].contiguous() else: # make probs contain cumulative scores for each hypothesis assert scores is not None lprobs = lprobs + scores[:, :, step - 1].unsqueeze(-1) top_prediction = torch.topk( lprobs.view(batch_size, -1), self.num_cands, ) scores_buf, indices_buf = top_prediction # Project back into relative indices and beams beams_buf = indices_buf // vocab_size indices_buf = indices_buf.fmod(vocab_size) # Short circuit if there are no constraints in this batch if not constraint_states: return scores_buf, indices_buf, beams_buf # STEP 1: get top-1 from each hypothesis across all sentences in the batch if step > 0: top_scores, top_indices = torch.topk( lprobs.view(batch_size * beam_size, -1), k=each_k, dim=1, ) top_scores = top_scores.view(batch_size, -1) top_indices = top_indices.view(batch_size, -1) scores_buf = torch.cat((scores_buf, top_scores), dim=1) indices_buf = torch.cat((indices_buf, top_indices), dim=1) new_beams = torch.arange(0, beam_size, device=device).repeat(batch_size, 1) beams_buf = torch.cat((beams_buf, new_beams), dim=1) # Now, process sentences in the batch one by one. new_scores_buf = torch.zeros((batch_size, 2 * beam_size), device=device) new_indices_buf = torch.zeros((batch_size, 2 * beam_size), device=device).long() new_beams_buf = torch.zeros((batch_size, 2 * beam_size), device=device).long() for sentno, states in enumerate(constraint_states): scores, indices, beams, new_states = self.step_sentence( step, sentno, lprobs[sentno], constraint_states[sentno], beams_buf[sentno].clone(), indices_buf[sentno].clone(), scores_buf[sentno].clone(), ) new_scores_buf[sentno] = scores new_indices_buf[sentno] = indices new_beams_buf[sentno] = beams self.constraint_states[sentno] = new_states return new_scores_buf, new_indices_buf, new_beams_buf @torch.jit.export def step_sentence( self, step: int, sentno: int, lprobs: Tensor, constraint_states: List[List[ConstraintState]], beams_buf: Tensor, indices_buf: Tensor, scores_buf: Tensor, ): """Does per-sentence processing. Adds all constraints for each hypothesis to the list of candidates; then removes duplicates, sorts, and dynamically stripes across the banks. All tensor inputs are collapsed to those pertaining to a single input sentence. """ device = lprobs.device # STEP 2: Add all constraints for each beam item for beamno, state in enumerate(constraint_states): next_tokens = torch.tensor(list(state.next_tokens()), device=device).long() if next_tokens.numel() != 0: indices_buf = torch.cat((indices_buf, next_tokens)) next_beams = ( torch.tensor(beamno, device=device) .repeat(next_tokens.size(0)) .long() ) beams_buf = torch.cat((beams_buf, next_beams)) next_values = lprobs[beamno].take(next_tokens.view(-1)) scores_buf = torch.cat((scores_buf, next_values)) # At the 0th time step, there is just one beam item if step == 0: break # STEP 3: Compute the "bank" for each candidate. This is the # number of constraints it's generated. We need this so that # we can do round-robin allocation of the beam across these # banks. If C is the number of constraints, we select the best # item in bank C, then the best in bank C-1, etc, followed by # the 2nd-best in bank C, the 2nd-best in bank C-1, etc, and so # on, until the maximum beam size. We accomplish this by # creating a sort key and striping across the banks. # Compute the new states for all candidates cands_size = indices_buf.size(0) constraint_states = [ constraint_states[beams_buf[i]].advance(indices_buf[i]) for i in range(cands_size) ] banks = torch.tensor([state.bank for state in constraint_states], device=device) # STEP 4: Sort num_constraint_tokens = len(state.tokens) # Sort by keys (bank, score) (i.e., sort banks together, and scores # within banks). AFAIK pytorch doesn't support either stable sort or # multi-key sorting, so we have to hack this. MAX_SCORE = -100 sort_key = (num_constraint_tokens - banks) * MAX_SCORE + scores_buf sort_values, sort_indices = sort_key.sort(dim=0, descending=True) scores_buf = scores_buf[sort_indices] indices_buf = indices_buf[sort_indices] beams_buf = beams_buf[sort_indices] banks = banks[sort_indices] # Sort the constraints to follow suit constraint_states = [constraint_states[i] for i in sort_indices] # STEP 5: Remove duplicates. The topk calls (overall and # per-row) plus the per-row generation of constraints will # produce duplicates. Here we remove them. def roll(t): """Rolls a 1d tensor left by 1. [0, 1, 2, 3, 4] becomes [4, 0, 1, 2, 3] """ return torch.cat((t[-1].unsqueeze(0), t[0:-1]), dim=0) # We map candidates (beam, token_id) to a single dimension. # This is then shifted by 1. We can then easily identify # duplicates and create a mask that identifies unique # extensions. uniques_mask = beams_buf * (self.vocab_size + 1) + indices_buf uniques_mask = roll(uniques_mask) != uniques_mask # Use the mask to pare down the data structures scores_buf = torch.masked_select(scores_buf, uniques_mask) indices_buf = torch.masked_select(indices_buf, uniques_mask) beams_buf = torch.masked_select(beams_buf, uniques_mask) banks = torch.masked_select(banks, uniques_mask) i = 1 for mask in uniques_mask[1:]: if not mask: constraint_states.pop(i) i += mask # STEP 6: Assign IDs round-robin across banks, sort, and # truncate. Now that the candidates are sorted by (bank, # score) and uniqed, we dynamically allocate the {beam_size} # beam by striping across the candidates. These stripes will # be used as sort keys to do round-robin selection. This is # accomplished in a single pass with offsets. Sorting by # highest-banks (furthest-along hypotheses) first ensures # progress through the constraints. # # e.g., BANKS: 3 3 3 2 2 2 2 1 1 1 0 0 # OLD STRIPES: 0 1 2 0 1 2 3 0 1 2 0 1 # NEW STRIPES: 0 1+4 2+8 0+1 1+5 2+9 3+11 0+2 1+6 2+10 0+3 1+7 # = 0 5 10 1 6 11 13 2 7 12 3 8 # # Sorting by this then gives the following banks: # # 3 2 1 0 3 2 1 0 3 2 1 2 # # We'll take the top {beam_size} of these. stripe_offsets = [offset * (len(banks) + 1) for offset in range(len(banks) + 1)] stripes = torch.zeros_like(banks) cur_bank_count = -1 cur_bank = banks[0] for i, bank in enumerate(banks): if bank != cur_bank: cur_bank_count = 0 cur_bank = bank else: cur_bank_count += 1 stripes[i] = num_constraint_tokens - bank + stripe_offsets[cur_bank_count] # STEP 7: Sort by the stripes values sort_values, sort_indices = stripes.sort(dim=0) scores_buf = scores_buf[sort_indices] indices_buf = indices_buf[sort_indices] beams_buf = beams_buf[sort_indices] constraint_states = [constraint_states[i] for i in sort_indices] # STEP 8: Truncate to the candidates size! scores_buf = scores_buf[: self.num_cands] indices_buf = indices_buf[: self.num_cands] beams_buf = beams_buf[: self.num_cands] return scores_buf, indices_buf, beams_buf, constraint_states class LengthConstrainedBeamSearch(Search): def __init__(self, tgt_dict, min_len_a, min_len_b, max_len_a, max_len_b): super().__init__(tgt_dict) self.min_len_a = min_len_a self.min_len_b = min_len_b self.max_len_a = max_len_a self.max_len_b = max_len_b self.beam = BeamSearch(tgt_dict) self.needs_src_lengths = True def step( self, step: int, lprobs, scores, prev_output_tokens: Optional[Tensor] = None, original_batch_idxs: Optional[Tensor] = None, ): min_lens = self.min_len_a * self.src_lengths + self.min_len_b max_lens = self.max_len_a * self.src_lengths + self.max_len_b lprobs[step < min_lens, :, self.eos] = -math.inf lprobs[step >= max_lens, :, self.eos] = 0 return self.beam.step(step, lprobs, scores) class DiverseBeamSearch(Search): """Diverse Beam Search. See "Diverse Beam Search: Decoding Diverse Solutions from Neural Sequence Models" for details. We only implement the Hamming Diversity penalty here, which performed best in the original paper. """ def __init__(self, tgt_dict, num_groups, diversity_strength): super().__init__(tgt_dict) self.num_groups = num_groups self.diversity_strength = -diversity_strength self.beam = BeamSearch(tgt_dict) @torch.jit.export def step( self, step: int, lprobs, scores, prev_output_tokens: Optional[Tensor] = None, original_batch_idxs: Optional[Tensor] = None, ): bsz, beam_size, vocab_size = lprobs.size() if beam_size % self.num_groups != 0: raise ValueError( "DiverseBeamSearch requires --beam to be divisible by the number of groups" ) # initialize diversity penalty diversity_buf = torch.zeros(lprobs[:, 0, :].size()).to(lprobs) scores_G, indices_G, beams_G = [], [], [] for g in range(self.num_groups): lprobs_g = lprobs[:, g :: self.num_groups, :] scores_g = scores[:, g :: self.num_groups, :] if step > 0 else None # apply diversity penalty if g > 0: lprobs_g = torch.add( lprobs_g, other=diversity_buf.unsqueeze(1), alpha=self.diversity_strength, ) else: lprobs_g = lprobs_g.contiguous() scores_buf, indices_buf, beams_buf = self.beam.step( step, lprobs_g, scores_g ) beams_buf.mul_(self.num_groups).add_(g) scores_G.append(scores_buf.clone()) indices_G.append(indices_buf.clone()) beams_G.append(beams_buf.clone()) # update diversity penalty diversity_buf.scatter_add_( 1, indices_buf, torch.ones(indices_buf.size()).to(diversity_buf) ) # interleave results from different groups scores_buf = torch.stack(scores_G, dim=2).view(bsz, -1) indices_buf = torch.stack(indices_G, dim=2).view(bsz, -1) beams_buf = torch.stack(beams_G, dim=2).view(bsz, -1) return scores_buf, indices_buf, beams_buf class Sampling(Search): sampling_topk: int sampling_topp: float def __init__(self, tgt_dict, sampling_topk=-1, sampling_topp=-1.0): super().__init__(tgt_dict) self.sampling_topk = sampling_topk self.sampling_topp = sampling_topp def _sample_topp(self, lprobs): """Sample among the smallest set of elements whose cumulative probability mass exceeds p. See `"The Curious Case of Neural Text Degeneration" (Holtzman et al., 2019) <https://arxiv.org/abs/1904.09751>`_. Args: lprobs: (bsz x input_beam_size x vocab_size) the model's log-probabilities over the vocabulary at the current step Return: A tuple of (trimed_probs, truncated_indices) where: trimed_probs: (bsz x input_beam_size x ?) the model's probabilities over the elements selected to sample from. The width of the third dimension is determined by top-P. truncated_indices: (bsz x input_beam_size x ?) the indices of the chosen elements. """ probs = lprobs.exp_() # sort the last dimension (vocab dimension) in descending order sorted_probs, sorted_indices = probs.sort(descending=True) # compute a mask to indicate the words to be included in the top-P set. cumsum_probs = sorted_probs.cumsum(dim=2) mask = cumsum_probs.lt(self.sampling_topp) # note that mask was computed by 'lt'. One more word needs to be included # so that the cumulative probability mass can exceed p. cumsum_mask = mask.cumsum(dim=2) last_included = cumsum_mask[:, :, -1:] last_included.clamp_(0, mask.size()[2] - 1) mask = mask.scatter_(2, last_included, 1) # truncate unnecessary dims. max_dim = last_included.max() truncated_mask = mask[:, :, : max_dim + 1] truncated_probs = sorted_probs[:, :, : max_dim + 1] truncated_indices = sorted_indices[:, :, : max_dim + 1] # trim the words that are not in top-P by setting their probabilities # to 0, so that they would not be sampled later. trim_mask = ~truncated_mask trimed_probs = truncated_probs.masked_fill_(trim_mask, 0) return trimed_probs, truncated_indices @torch.jit.export def step( self, step: int, lprobs, scores, prev_output_tokens: Optional[Tensor] = None, original_batch_idxs: Optional[Tensor] = None, ): bsz, beam_size, vocab_size = lprobs.size() if step == 0: # at the first step all hypotheses are equally likely, so use # only the first beam lprobs = lprobs[:, ::beam_size, :].contiguous() if self.sampling_topp > 0: # only sample from the smallest set of words whose cumulative probability mass exceeds p probs, top_indices = self._sample_topp(lprobs) elif self.sampling_topk > 0: # only sample from top-k candidates lprobs, top_indices = lprobs.topk(self.sampling_topk) probs = lprobs.exp_() else: probs = lprobs.exp_() # dummy data to be consistent with true branch for type check top_indices = torch.empty(0).to(probs) # sample if step == 0: indices_buf = torch.multinomial( probs.view(bsz, -1), beam_size, replacement=True, ).view(bsz, beam_size) else: indices_buf = torch.multinomial( probs.view(bsz * beam_size, -1), 1, replacement=True, ).view(bsz, beam_size) if step == 0: # expand to beam size probs = probs.expand(bsz, beam_size, -1) # gather scores scores_buf = torch.gather(probs, dim=2, index=indices_buf.unsqueeze(-1)) scores_buf = scores_buf.log_().view(bsz, -1) # remap indices if using top-k or top-P sampling if self.sampling_topk > 0 or self.sampling_topp > 0: indices_buf = torch.gather( top_indices.expand(bsz, beam_size, -1), dim=2, index=indices_buf.unsqueeze(-1), ).squeeze(2) if step == 0: beams_buf = indices_buf.new_zeros(bsz, beam_size) else: beams_buf = torch.arange(0, beam_size).to(indices_buf).repeat(bsz, 1) # make scores cumulative scores_buf.add_( torch.gather(scores[:, :, step - 1], dim=1, index=beams_buf) ) return scores_buf, indices_buf, beams_buf class DiverseSiblingsSearch(Search): """ Beam search with diverse siblings. See "A Simple, Fast Diverse Decoding Algorithm for Neural Generation" for details. https://arxiv.org/abs/1611.08562 1/ Calculate hypotheses for each beam 2/ Intra-sibling ordering 3/ Rewrite scores 4/ Choose top K hypotheses if diversity_rate == 0 is equivalent to BeamSearch """ def __init__(self, tgt_dict, diversity_rate): super().__init__(tgt_dict) self.diversity_rate = diversity_rate self.beam = BeamSearch(tgt_dict) def step( self, step: int, lprobs, scores, prev_output_tokens: Optional[Tensor] = None, original_batch_idxs: Optional[Tensor] = None, ): bsz, beam_size, vocab_size = lprobs.size() k = min( # Take the best 2 x beam_size predictions. We'll choose the first # beam_size of these which don't predict eos to continue with. beam_size * 2, lprobs.view(bsz, -1).size(1) - 1, # -1 so we never select pad ) s_list: List[Tensor] i_list: List[Tensor] s_list = [torch.empty(0).to(lprobs) for i in range(beam_size)] i_list = [torch.LongTensor().to(device=lprobs.device) for i in range(beam_size)] sibling_score = torch.arange(1, k + 1).to(lprobs) * self.diversity_rate if step == 0: return self.beam.step(step, lprobs, scores) lprobs.add_(scores[:, :, step - 1].unsqueeze(-1)) # 1/ Calculate hypotheses for each beam for i in range(beam_size): torch.topk(lprobs[:, i, :].view(bsz, -1), k, out=(s_list[i], i_list[i])) i_list[i].fmod_(vocab_size) # 2/ Intra-sibling ordering by default from topk + 3/ Rewrite scores s_list[i].sub_(sibling_score) # 4/ Choose top K hypotheses indices = torch.stack(i_list, dim=1).view(bsz, -1) final_scores = torch.empty(0).to(lprobs) final_indices = torch.LongTensor().to(device=lprobs.device) final_beams = torch.LongTensor().to(device=lprobs.device) (final_scores, final_indices) = torch.topk( torch.stack(s_list, dim=1).view(bsz, -1), k, ) final_beams = final_indices // k for i in range(bsz): final_indices[i] = indices[i][final_indices[i]] return final_scores, final_indices, final_beams
31,343
Python
.py
693
34.793651
100
0.598533
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,213
greedy_generator.py
dptech-corp_NAG2G/NAG2G/search_strategies/greedy_generator.py
import math from typing import Dict, List, Optional import sys import torch import torch.nn as nn from torch import Tensor # from . import move_to_cuda, strip_pad import logging import math import sys from typing import Dict, List, Optional import torch import torch.nn as nn import torch.nn.functional as F from torch import Tensor # from dpaie import search, utils # from fairseq.data import data_utils # from fairseq.models import FairseqIncrementalDecoder # from dpaie.ngram_repeat_block import NGramRepeatBlock logger = logging.getLogger(__name__) ''' Translate algorithms, whitch supprot a batch input. algorithms: - greedy search (when args.beam_size <= 0) - beam search (when args.beam_size > 0. Support to adjust these parameters: beam_size and length_penalty) inputs: - src_tokens: (batch_size, src_len) outputs: - gen_seqs: (batch_size, max_seq_len/tgt_len.max()) (related to the stop rules) ''' """ Referenced from facebookresearch/XLM, at https://github.com/facebookresearch/XLM/blob/master/xlm/model/transformer.py """ class BeamHypotheses(object): def __init__(self, n_hyp, length_penalty): """ Initialize n-best list of hypotheses. """ self.length_penalty = length_penalty self.n_hyp = n_hyp self.hyp = [] self.worst_score = 1e9 def __len__(self): """ Number of hypotheses in the list. """ return len(self.hyp) def add(self, hyp, sum_logprobs): """ Add a new hypothesis to the list. """ lp = len(hyp) ** self.length_penalty # deafult length penalty # lp = (5 + len(hyp)) ** self.length_penalty / (5 + 1) ** self.length_penalty # Google GNMT's length penalty score = sum_logprobs / lp # score = sum_logprobs if len(self) < self.n_hyp or score > self.worst_score: self.hyp.append((score, hyp)) if len(self) > self.n_hyp: sorted_scores = sorted([(s, idx) for idx, (s, _) in enumerate(self.hyp)]) del self.hyp[sorted_scores[0][1]] # delete the worst hyp in beam self.worst_score = sorted_scores[1][0] # update worst score with the sencond worst hyp else: self.worst_score = min(score, self.worst_score) def is_done(self, best_sum_logprobs, cur_len): """ If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst one in the heap, then we are done with this sentence. """ if len(self) < self.n_hyp: return False else: return self.worst_score >= best_sum_logprobs # / cur_len ** self.length_penalty # return self.worst_score >= best_sum_logprobs / cur_len ** self.length_penalty class GreedyGenerator(nn.Module): def __init__( self, model, dict, output_num_return_sequences_per_batch = 10, max_seq_len=180, beam_size=5, temperature=1.0, match_source_len=False, ): super().__init__() self.model = model self.dict = dict self.output_num_return_sequences_per_batch = beam_size self.max_seq_len = max_seq_len self.beam_size = beam_size self.temperature = temperature self.match_source_len = match_source_len self.pad_idx = self.dict.pad() self.bos_idx = self.dict.bos() self.eos_idx = self.dict.eos() def _generate(self, sample): self.model.eval() src_tokens = sample['net_input']['reverse_src_dataset'] # B x T reverse_tgt_tokens = sample['net_input']['src_tokens'] # B x T reaction_type = sample['net_input']['reaction_type'] src_lengths = torch.sum(src_tokens.ne(self.pad_idx), dim=1) batch_size = src_tokens.size(0) src_padding_mask = src_tokens.eq(self.pad_idx) encoder_out, padding_mask = self.model.forward_encoder(src_tokens, reaction_type) # expand to beam size the source latent representations encoder_out = encoder_out.repeat_interleave(self.beam_size, dim=0) # (B x beam_size) x T x C reverse_tgt_tokens = reverse_tgt_tokens.repeat_interleave(self.beam_size, dim=0) # (B x beam_size) x T x C src_padding_mask = src_padding_mask.repeat_interleave(self.beam_size, dim=0) # (B x beam_size) x T x C # generated sentences (batch with beam current hypotheses) generated = src_tokens.new(batch_size * self.beam_size, self.max_seq_len).fill_(self.pad_idx) # upcoming output generated[:, 0].fill_(self.bos_idx) # generated hypotheses generated_hyps = [ BeamHypotheses(self.beam_size *2, 1.0) for _ in range(batch_size) ] # 为每个输入句子定义维护其beam search序列的类实例 # scores for each sentence in the beam beam_scores = encoder_out.new(batch_size, self.beam_size).fill_(0).to(src_tokens.device) # 定义scores向量,保存累加的log_probs beam_scores[:, 1:] = -1e9 # 需要初始化为-inf all_scores, avg_attn_scores = self.model.forward_decoder(reverse_tgt_tokens, encoder_out, self.temperature, padding_mask = src_padding_mask) # (batch_size * beam_size, n_tgt_words) # current position cur_len = 1 # done sentences n_tgt_words = all_scores.size(-1) pre_len = all_scores.size(1) # - scores: (batch_size * beam_size, n_tgt_words) done = [False] * batch_size # 标记每个输入句子的beam search是否完成 while cur_len < self.max_seq_len and cur_len < pre_len: scores = all_scores[:,cur_len,:] _scores = scores + beam_scores.view(batch_size * self.beam_size, 1) # 累加上以前的scores _scores = _scores.view(batch_size, self.beam_size * n_tgt_words) # (batch_size, beam_size * vocab_size) next_scores, next_words = torch.topk(_scores, 2 * self.beam_size, dim=-1, largest=True, sorted=True) # - next_scores, next_words: (batch_size, 2 * beam_size) # next batch beam content next_batch_beam = [] # list of (batch_size * beam_size) tuple(next hypothesis score, next word, current position in the batch) # for each sentence for sent_id in range(batch_size): # if we are done with this sentence done[sent_id] = done[sent_id] or generated_hyps[sent_id].is_done(next_scores[sent_id].max().item(), cur_len) if done[sent_id]: next_batch_beam.extend([(0, self.pad_idx, 0)] * self.beam_size) # pad the batch continue # next sentence beam content next_sent_beam = [] # next words for this sentence for idx, value in zip(next_words[sent_id], next_scores[sent_id]): # get beam and word IDs beam_id = idx // n_tgt_words word_id = idx % n_tgt_words # end of sentence, or next word effective_beam_id = sent_id * self.beam_size + beam_id if word_id == self.eos_idx or cur_len + 1 == self.max_seq_len: generated_hyps[sent_id].add(generated[effective_beam_id, :cur_len].clone(), value.item()) else: next_sent_beam.append((value, word_id, effective_beam_id)) # the beam for next step is full if len(next_sent_beam) == self.beam_size: break # update next beam content if len(next_sent_beam) == 0: next_sent_beam = [(0, self.pad_idx, 0)] * self.beam_size # pad the batch next_batch_beam.extend(next_sent_beam) # prepare next batch beam_scores = beam_scores.new([x[0] for x in next_batch_beam]) beam_words = generated.new([x[1] for x in next_batch_beam]) beam_idx = src_tokens.new([x[2] for x in next_batch_beam]) # re-order batch and internal states generated = generated[beam_idx, :] generated[:, cur_len] = beam_words # update current length cur_len = cur_len + 1 if all(done): break # select the best hypotheses tgt_len = src_tokens.new(batch_size*self.output_num_return_sequences_per_batch) best = [] best_score = [] for i, hypotheses in enumerate(generated_hyps): sorted_hyps = sorted(hypotheses.hyp, key=lambda x: x[0]) for j in range(self.output_num_return_sequences_per_batch): try: effective_batch_idx = self.output_num_return_sequences_per_batch * i + j best_cand = sorted_hyps.pop() best_hyp = best_cand[1] score = best_cand[0] tgt_len[effective_batch_idx] = len(best_hyp) best.append(best_hyp) best_score.append(score) except: tgt_len[effective_batch_idx] = 0 best.append(torch.tensor([])) best_score.append(-1000) # generate target batch gen_seqs = src_tokens.new(batch_size*self.output_num_return_sequences_per_batch, tgt_len.max().item()).fill_(self.pad_idx) gen_scores = [-1e5] * len(gen_seqs) for i, hypo in enumerate(best): gen_seqs[i, :tgt_len[i]] = hypo gen_scores[i] = best_score[i] tgt_lengths = torch.sum(gen_seqs.ne(self.pad_idx), dim=1) return gen_seqs, tgt_lengths, gen_scores
9,969
Python
.py
203
37.334975
190
0.586533
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,214
token_generation_constraints.py
dptech-corp_NAG2G/NAG2G/search_strategies/token_generation_constraints.py
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Implements tracking of constraints for a beam item. A list of constraints is given as a list of one or more token sequences, each of length at least one token. For example, for an input sentence > Die maschinelle Übersetzung ist schwer zu kontrollieren. We could have the constraints: * to influence * hard There are two implementations: * OrderedConstraintState: Tracks progress through an ordered list of multitoken constraints. * UnorderedConstraintState: Tracks progress through an unordered list of multitoken constraints. The difference is that in the first, the constraints are assumed to be in order; the algorithm will permit zero or more tokens between them. In the second, the constraints are not ordered, so many orderings will be explored. The same sequence can be present any number of times, and will appear that many times in the output. """ from collections import Counter from typing import List, Optional, Set, Tuple import torch class ConstraintState: def __init__(self): pass def pack_constraints(batch_constraints: List[List[torch.Tensor]]) -> torch.Tensor: """Takes a list of list of constraints in tensor form (a list of tensor constraints for each sentence) and transforms it into a packed Tensor. For example, here is a batch of size 3 with 3, 0, and 1 constraints: [ [ [3 1 2], [3], [4 5 6 7], ] [], [ [1 8 9 10 1 4 11 12], ] ] Its corresponding packed structure is: [ [ 3 3 1 2 0 3 0 4 5 6 7 0], [ 0 0 0 0 0 0 0 0 0 0 0 0], [ 1 1 8 9 10 1 4 11 12 0 0 0] ] The packed tensor has shape (batch size, maxlen), where maxlen is defined below. Each row contains concatenated constraint tokens for that sentence, with 0 appended after each constraint. The first item in each row is the number of constraints for that sentence. So maxlen is the maximum of (number of constraints) + (sum length of constraints) + 1. across all sentences in the batch. """ # The maximum word length of concatenated constraints for any sentence max_constraints_len = 1 for sentence_constraints in batch_constraints: if len(sentence_constraints): # number of constraints, plus sum of constrain lens, plus a zero after each constraints_len = ( 1 + sum([c.size(0) for c in sentence_constraints]) + len(sentence_constraints) ) max_constraints_len = max(max_constraints_len, constraints_len) batch_size = len(batch_constraints) constraints_tensor = torch.zeros((batch_size, max_constraints_len)).long() for i, sentence_constraints in enumerate(batch_constraints): constraints_tensor[i, 0] = len(sentence_constraints) offset = 1 for j, constraint in enumerate(sentence_constraints): this_len = constraint.size(0) constraints_tensor[i, offset : offset + this_len] = constraint offset += this_len + 1 return constraints_tensor.long() def unpack_constraints(constraint_tensor: torch.Tensor) -> List[torch.Tensor]: """ Transforms *one row* of a packed constraint tensor (e.g., for one sentence in the batch) into a list of constraint tensors. """ constraint_list = [] num_constraints = constraint_tensor[0] constraints = constraint_tensor.tolist() offset = 1 for i in range(num_constraints): where = constraints.index(0, offset) constraint_list.append(constraint_tensor[offset:where]) offset = where + 1 return constraint_list class ConstraintNode: """ Represents a node in a trie managing unordered constraints. """ def __init__(self, token: int = None, parent=None): # The token associate with this node (None for the root) self.token = int(token) if token is not None else None # The parent (None at the root) self.parent = parent # Whether this node is a completed constraint self.terminal = 0 # List of child nodes self.children = {} # The cumulative number of constraints from this point in the # trie forward self.num_constraints = 0 @property def id(self): return self.token def __str__(self): term = self.terminal != 0 return f"[{self.token}].{term}#{self.num_constraints}" def __getitem__(self, key: int): return self.children.get(key, None) def next_tokens(self) -> Set[int]: """The set of child labels.""" return set(self.children.keys()) @staticmethod def create(constraints: List[List[int]]): root = ConstraintNode() for sequence in constraints: root.add_sequence(sequence) return root @staticmethod def print_graph(node: "ConstraintNode"): if len(node.children) == 0: return str(node) else: s = f"({node}" for child in node.children.values(): s += " " + ConstraintNode.print_graph(child) s += ")" return s def token_counts(self) -> Counter: """Returns a counter of the number of times each token is used in a constraint. """ token_counts = Counter() kids = list(self.children.values()) while len(kids) > 0: kid = kids.pop() token_counts[kid.id] += kid.num_constraints kids += list(kid.children.values()) return token_counts def tokens(self) -> Set[int]: """Returns the set of tokens in constraints.""" return set(self.token_counts().keys()) def add_sequence(self, sequence: List[int]): """Adds a constraint, represented as a list of integers, to the trie.""" assert len(sequence) > 0 token = int(sequence[0]) if token not in self.children: self.children[token] = ConstraintNode(token, parent=self) node = self.children[token] if len(sequence) == 1: node.terminal += 1 node.num_constraints += 1 parent = node.parent while parent is not None: parent.num_constraints += 1 parent = parent.parent else: node.add_sequence(sequence[1:]) class UnorderedConstraintState(ConstraintState): """ Records progress through the set of constraints for each item in the beam using a trie. """ def __init__(self, node: ConstraintNode, copy_from: "ConstraintState" = None): self.node = node if copy_from is None: # The root node self.root = node # The set of states in the graph that have been completed self.completed = Counter() # The... self.generated = Counter() # The list of tokens we need to generate self.needed_tokens = self.root.tokens() else: self.completed = Counter(copy_from.completed) self.generated = Counter(copy_from.generated) self.root = copy_from.root # Mark the node as generated if self.node != self.root: self.generated[node] += 1 @staticmethod def create(constraint_tensor: torch.Tensor): constraint_list = unpack_constraints(constraint_tensor) constraint_trie_root = ConstraintNode.create(constraint_list) return UnorderedConstraintState(constraint_trie_root) def __str__(self): gen_str = ",".join([str(node) for node in self.generated]) return f"{self.name}/{self.bank}({gen_str})x{self.num_completed}" def __copy__(self): copied_state = UnorderedConstraintState(self.node, copy_from=self) return copied_state def copy(self): return self.__copy__() @property def name(self): if self.node.id is None: return "ROOT" else: return str(self.node.id) @property def is_root(self): return self.node == self.root @property def bank(self): return sum(self.generated.values()) @property def num_completed(self): """The number of constraints (not constraint tokens) that are completed. In addition to the already-completed states, we need to account for the current state, which might get marked as completed when another token is generated. """ in_final = self.node.terminal and self.completed[self.node] < self.node.terminal return sum(self.completed.values()) + in_final @property def finished(self): return self.root.num_constraints - self.num_completed == 0 @property def token_counts(self): return self.root.token_counts() @property def tokens(self): return self.root.tokens() @property def num_constraint_tokens(self): return sum(self.token_counts.values()) def next_tokens(self) -> Set[int]: """Returns the list of tokens that could come next. These are (a) all tokens extending the root state and, for non-root states, additionally all tokens extending the current state.""" if self.node != self.root: return self.root.next_tokens().union(self.node.next_tokens()) else: return self.root.next_tokens() def advance(self, token: int): """Reads in a token and advances the state. Here's how it works. We can advance to the next state if: - there is a matching child - its path isn't blocked A path is blocked when all constraints that are descendants of that node have already been generated, in the current state. If we are not able to advance from the current state, we "fall off the graph" and return to the root state. There, we again try to advance, checking the same criteria. In any case, when falling off the graph, we need to do some bookkeeping. We: - check whether any constraints were met (all prefixes of current state) - if one is found, mark it as completed - adjust visited nodes accordingly """ token = int(token) next_state = None child = self.node[token] if child is not None and self.generated[child] < child.num_constraints: next_state = UnorderedConstraintState(child, copy_from=self) def rewind(): """If we're mid-trie and an "illegal" token is chosen next, we need to reset our state to the root state. However, along the way, we need to check whether a prefix of the current trie state represents a state we could mark as completed. """ node = self.node while node != self.root: if node.terminal and self.completed[node] < node.terminal: next_state.completed[node] += 1 return next_state.generated[node] -= 1 node = node.parent # Fall off the graph, check the root if next_state is None and token in self.root.next_tokens(): child = self.root[token] # We can only traverse this edge if it's not saturated if self.generated[child] < child.num_constraints: next_state = UnorderedConstraintState(child, copy_from=self) else: next_state = UnorderedConstraintState(self.root, copy_from=self) # Rewind rewind() elif next_state is None: next_state = UnorderedConstraintState(self.root, copy_from=self) # Rewind rewind() return next_state class ConstraintSequence: def __init__(self, sequences: List[List[int]]): """Represents a set of possibly multitoken constraints by concatenating them and internally recording the end points. """ self.sequences = [] self.endpoints = [] self.num_tokens = 0 self.tokens = set() for sequence in sequences: for token in sequence: self.tokens.add(token) self.num_tokens += len(sequence) self.endpoints += [False for x in range(len(sequence) - 1)] + [True] self.sequences += sequence def __getitem__(self, key: int): return self.sequences[key] def __len__(self): return len(self.sequences) def __str__(self): return str(self.sequences) class OrderedConstraintState(ConstraintState): """ Records progress through the set of linear nonbranching constraints with gaps. """ def __init__(self, sequence: ConstraintSequence, state: int = -1): self.sequence = sequence self.state = state @staticmethod def create(constraint_tensor: torch.Tensor): constraint_list = unpack_constraints(constraint_tensor) return OrderedConstraintState(ConstraintSequence(constraint_list), -1) def __str__(self): return f"{self.state}/{self.bank}x{self.num_completed}" def __copy__(self): return OrderedConstraintState(self.sequence, self.state) def copy(self): return self.__copy__() @property def num_completed(self): if self.state == -1: return 0 count = len( list(filter(lambda x: x, self.sequence.endpoints[0 : self.state + 1])) ) return count @property def is_root(self): return self.state == -1 @property def name(self): if self.state == -1: return "ROOT" else: return str(self.sequence[self.state]) @property def bank(self) -> int: return self.state + 1 @property def finished(self): return self.state + 1 == len(self.sequence) @property def token_counts(self): return self.sequence.token_counts() @property def tokens(self): return self.sequence.tokens @property def num_constraint_tokens(self): return sum(self.token_counts.values()) def next_tokens(self) -> Set[int]: """Returns the list of tokens that could come next. These are (a) all tokens extending the root state and, for non-root states, additionally all tokens extending the current state.""" tokens = set() if self.state > 0: tokens.add(self.sequence[0]) if not self.finished: tokens.add(self.sequence[self.state + 1]) return tokens def advance(self, token: int): """Reads in a token and advances the state. Here's how it works. We can advance to the next state if: - there is a matching child - its path isn't blocked A path is blocked when all constraints that are descendants of that node have already been generated, in the current state. If we are not able to advance from the current state, we "fall off the graph" and return to the root state. There, we again try to advance, checking the same criteria. In any case, when falling off the graph, we need to do some bookkeeping. We: - check whether any constraints were met (all prefixes of current state) - if one is found, mark it as completed - adjust visited nodes accordingly """ token = int(token) # print(f"{self} ADVANCE({token}) {self.sequence} -> ", end="") if self.finished: # Accept anything next_state = self.copy() elif self.sequence[self.state + 1] == token: # Advance to the next token next_state = OrderedConstraintState(self.sequence, self.state + 1) elif self.sequence.endpoints[self.state]: # Accept anything between constraints (*) next_state = self.copy() elif token == self.sequence[0]: # Start over having generated the first token next_state = OrderedConstraintState(self.sequence, 0) else: # Start over from the root next_state = OrderedConstraintState(self.sequence, -1) return next_state
16,536
Python
.py
402
32.532338
96
0.629844
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,215
search_utils.py
dptech-corp_NAG2G/NAG2G/search_strategies/search_utils.py
from itertools import accumulate def collate_tokens( values, pad_idx, left_pad=False, pad_to_length=None, pad_to_multiple=1, ): """Convert a list of 1d tensors into a padded 2d tensor.""" size = max(v.size(0) for v in values) size = size if pad_to_length is None else max(size, pad_to_length) if pad_to_multiple != 1 and size % pad_to_multiple != 0: size = int(((size - 0.1) // pad_to_multiple + 1) * pad_to_multiple) res = values[0].new(len(values), size).fill_(pad_idx) def copy_tensor(src, dst): assert dst.numel() == src.numel() dst.copy_(src) for i, v in enumerate(values): copy_tensor(v, res[i][size - len(v) :] if left_pad else res[i][: len(v)]) return res def strip_pad(tensor, pad): return tensor[tensor.ne(pad)] def get_token_to_word_mapping(tokens, exclude_list): n = len(tokens) word_start = [int(token not in exclude_list) for token in tokens] word_idx = list(accumulate(word_start)) token_to_word = {i: word_idx[i] for i in range(n)} return token_to_word def extract_hard_alignment(attn, src_sent, tgt_sent, pad, eos): tgt_valid = ( ((tgt_sent != pad) & (tgt_sent != eos)).nonzero(as_tuple=False).squeeze(dim=-1) ) src_invalid = ( ((src_sent == pad) | (src_sent == eos)).nonzero(as_tuple=False).squeeze(dim=-1) ) src_token_to_word = get_token_to_word_mapping(src_sent, [eos, pad]) tgt_token_to_word = get_token_to_word_mapping(tgt_sent, [eos, pad]) alignment = [] if len(tgt_valid) != 0 and len(src_invalid) < len(src_sent): attn_valid = attn[tgt_valid] attn_valid[:, src_invalid] = float("-inf") _, src_indices = attn_valid.max(dim=1) for tgt_idx, src_idx in zip(tgt_valid, src_indices): alignment.append( ( src_token_to_word[src_idx.item()] - 1, tgt_token_to_word[tgt_idx.item()] - 1, ) ) return alignment def extract_soft_alignment(attn, src_sent, tgt_sent, pad, eos): tgt_valid = ((tgt_sent != pad)).nonzero(as_tuple=False) src_valid = ((src_sent != pad)).nonzero(as_tuple=False).squeeze(dim=-1) alignment = [] if len(tgt_valid) != 0 and len(src_valid) != 0: attn_valid = attn[tgt_valid, src_valid] alignment = [ ["{:.6f}".format(p) for p in src_probs.tolist()] for src_probs in attn_valid ] return alignment
2,483
Python
.py
60
34.45
88
0.601825
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,216
__init__.py
dptech-corp_NAG2G/NAG2G/search_strategies/__init__.py
# from .beam_search_generator import SequenceGeneratorBeamSearch, EnsembleModel, EnsembleModelWithAlignment, SequenceGeneratorWithAlignment from .search import Search, BeamSearch, PrefixConstrainedBeamSearch, LexicallyConstrainedBeamSearch, LengthConstrainedBeamSearch, DiverseBeamSearch, Sampling, DiverseSiblingsSearch from .greedy_generator import GreedyGenerator from .sample_generator import SampleGenerator from .token_generation_constraints import ConstraintState, OrderedConstraintState, UnorderedConstraintState from .simple_sequence_generator import SimpleGenerator from .parse import add_search_strategies_args
621
Python
.py
7
87.857143
180
0.894309
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,217
ngram_repeat_block.py
dptech-corp_NAG2G/NAG2G/search_strategies/ngram_repeat_block.py
# Originally from Microsoft Corporation. # Licensed under the MIT License. """ Wrapper for ngram_repeat_block cuda extension """ import math import warnings from typing import List import torch from torch import nn try: from fairseq import ngram_repeat_block_cuda EXTENSION_BUILT = True except ImportError: EXTENSION_BUILT = False def is_cuda_extension_usable() -> bool: """Check whether ngram_repeat_block_cuda is built properly""" if not EXTENSION_BUILT or not torch.cuda.is_available(): return False bsz = 2 tokens = torch.tensor([[4, 4, 3, 2], [1, 2, 3, 4]], dtype=torch.long, device="cuda") lprobs = torch.rand((8, 12), device="cuda") try: outputs = ngram_repeat_block_cuda.forward(tokens, lprobs, bsz, 3, 4, 3) outputs = outputs + 4 # This line breaks if the extension is built incorrectly. return True except RuntimeError: warnings.warn( "NGramRepeatBlock extension must be rebuilt." 'Run TORCH_CUDA_ARCH_LIST="6.0;6.1;7.0" python setup.py build_ext --inplace' ) return False class NGramRepeatBlock(nn.Module): """Wrapper class for calling ngram_repeat_block cuda extension""" def __init__(self, no_repeat_ngram_size: int, use_extension: bool = True): super().__init__() self.use_extension = is_cuda_extension_usable() if use_extension else False self.no_repeat_ngram_size = no_repeat_ngram_size def reset_parameters(self): pass @torch.jit.unused def call_cuda_extension( self, tokens, lprobs, bsz: int, beam_size: int, step: int, ): return ngram_repeat_block_cuda.forward( tokens, lprobs, bsz, step, beam_size, self.no_repeat_ngram_size ) def forward( self, tokens, lprobs, bsz: int, beam_size: int, step: int, ): """ Args: tokens(Tensor): Input tokens(Bsz*beam, seq_len) lprobs(Tensor): likelihood probability, Expected to be updated in place.(Bsz*beam, vocab_size) bsz(int): batch size step(int): current step beam_size(int): beam size no_repeat_ngram_size(int): Ngram size """ msg = f"expected {bsz *beam_size} got" assert tokens.size(0) == bsz * beam_size, f"{msg} {tokens.size(0)}" assert lprobs.size(0) == bsz * beam_size, f"{msg} {lprobs.size(0)}" if self.use_extension: return self.call_cuda_extension(tokens, lprobs, bsz, beam_size, step) else: return self._no_repeat_ngram( tokens, lprobs, bsz, beam_size, step, ) def _no_repeat_ngram(self, tokens, lprobs, bsz: int, beam_size: int, step: int): """For each hypothesis generate a list of previous ngrams and set associated lprobs to -inf""" banned_tokens = [ torch.jit.annotate(List[int], []) for bbsz_idx in range(bsz * beam_size) ] if step + 2 - self.no_repeat_ngram_size >= 0: cpu_tokens: List[List[int]] = tokens.cpu().tolist() check_start_pos = step + 2 - self.no_repeat_ngram_size for bbsz_idx in range(bsz * beam_size): ngram_to_check = cpu_tokens[bbsz_idx][ -(self.no_repeat_ngram_size - 1) : ] for i in range(check_start_pos): if ( ngram_to_check == cpu_tokens[bbsz_idx][i : i + self.no_repeat_ngram_size - 1] ): banned_tokens[bbsz_idx].append( cpu_tokens[bbsz_idx][i + self.no_repeat_ngram_size - 1] ) for bbsz_idx in range(bsz * beam_size): lprobs[bbsz_idx][ torch.tensor(banned_tokens[bbsz_idx], dtype=torch.int64) ] = torch.tensor(-math.inf).to(lprobs) return lprobs
4,105
Python
.py
106
28.698113
102
0.571249
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,218
parse.py
dptech-corp_NAG2G/NAG2G/search_strategies/parse.py
def add_search_strategies_args(parser, train=False, gen=False): group = parser.add_argument_group("beam search") group.add_argument( "--beam-size", default=10, type=int, metavar="N", help="beam size for inference" ) group.add_argument( "--search_strategies", type=str, default="SequenceGeneratorBeamSearch", help="beam size for inference", ) group.add_argument( "--len-penalty", default=1.0, type=float, metavar="N", help="Length penalty in beam search for inference", ) group.add_argument( "--temperature", default=1.0, type=float, metavar="N", help="Temperature in beam search for inference", ) # for two stage group.add_argument( "--beam-size-second", default=5, type=int, metavar="N", help="beam size for second stage inference" ) group.add_argument( "--beam-head-second", default=3, type=int, metavar="N", help="beam head for second stage inference" ) return group
1,067
Python
.py
33
25.363636
107
0.618587
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,219
unimol_encoder.py
dptech-corp_NAG2G/NAG2G/models/unimol_encoder.py
import torch try: from unimol.models import UniMolModel class CustomizedUniMolModel(UniMolModel): def forward( self, src_tokens, src_distance, src_coord, src_edge_type, encoder_masked_tokens=None, features_only=False, classification_head_name=None, **kwargs ): if classification_head_name is not None: features_only = True padding_mask = src_tokens.eq(self.padding_idx) if not padding_mask.any(): padding_mask = None x = self.embed_tokens(src_tokens) def get_dist_features(dist, et): n_node = dist.size(-1) gbf_feature = self.gbf(dist, et) gbf_result = self.gbf_proj(gbf_feature) graph_attn_bias = gbf_result graph_attn_bias = graph_attn_bias.permute(0, 3, 1, 2).contiguous() graph_attn_bias = graph_attn_bias.view(-1, n_node, n_node) return graph_attn_bias graph_attn_bias = get_dist_features(src_distance, src_edge_type) ( encoder_rep, encoder_pair_rep, delta_encoder_pair_rep, x_norm, delta_encoder_pair_rep_norm, ) = self.encoder(x, padding_mask=padding_mask, attn_mask=graph_attn_bias) encoder_pair_rep[encoder_pair_rep == float("-inf")] = 0 encoder_distance = None encoder_coord = None logits = encoder_rep if not features_only: if self.args.masked_token_loss > 0: logits = self.lm_head(encoder_rep, encoder_masked_tokens) if self.args.masked_coord_loss > 0: coords_emb = src_coord if padding_mask is not None: atom_num = ( torch.sum(1 - padding_mask.type_as(x), dim=1) - 1 ).view(-1, 1, 1, 1) else: atom_num = src_coord.shape[1] - 1 delta_pos = coords_emb.unsqueeze(1) - coords_emb.unsqueeze(2) attn_probs = self.pair2coord_proj(delta_encoder_pair_rep) coord_update = delta_pos / atom_num * attn_probs coord_update = torch.sum(coord_update, dim=2) encoder_coord = coords_emb + coord_update if self.args.masked_dist_loss > 0: encoder_distance = self.dist_head(encoder_pair_rep) if classification_head_name is not None: logits = self.classification_heads[classification_head_name]( encoder_rep ) return ( logits, encoder_distance, encoder_coord, x_norm, delta_encoder_pair_rep_norm, ) except: print("Cannot import unimol")
3,072
Python
.py
72
27.166667
85
0.506024
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,220
NAG2G.py
dptech-corp_NAG2G/NAG2G/models/NAG2G.py
import logging import os import json import torch import torch.nn as nn import torch.nn.functional as F from unicore import utils from unicore.models import BaseUnicoreModel, register_model, register_model_architecture from typing import Callable, Optional, Dict, Tuple, Any, NamedTuple, List import math from NAG2G.modules import ( MaskLMHead, ClassificationHead, ) from unicore.modules import init_bert_params, TransformerEncoder, TransformerDecoder from NAG2G.decoder import TransformerDecoder as NewTransformerDecoder logger = logging.getLogger(__name__) torch._C._jit_set_profiling_mode(False) torch._C._jit_set_profiling_executor(False) torch._C._jit_override_can_fuse_on_cpu(True) torch._C._jit_override_can_fuse_on_gpu(True) class NAG2GFBaseModel(BaseUnicoreModel): @staticmethod def default_encoder_add_args(parser): """Add model-specific arguments to the parser.""" parser.add_argument( "--encoder-layers", type=int, metavar="L", help="num encoder layers" ) parser.add_argument( "--encoder-embed-dim", type=int, metavar="H", help="encoder embedding dimension", ) parser.add_argument( "--encoder-ffn-embed-dim", type=int, metavar="F", help="encoder embedding dimension for FFN", ) parser.add_argument( "--encoder-attention-heads", type=int, metavar="A", help="num encoder attention heads", ) parser.add_argument( "--activation-fn", choices=utils.get_available_activation_fns(), help="activation function to use", ) parser.add_argument( "--pooler-activation-fn", choices=utils.get_available_activation_fns(), help="activation function to use for pooler layer", ) parser.add_argument( "--dropout", type=float, metavar="D", help="dropout probability" ) parser.add_argument( "--attention-dropout", type=float, metavar="D", help="dropout probability for attention weights", ) @staticmethod def default_decoder_add_args(parser): """Add model-specific arguments to the parser.""" parser.add_argument( "--decoder-layers", type=int, metavar="L", help="num decoder layers" ) parser.add_argument( "--decoder-embed-dim", type=int, metavar="H", help="decoder embedding dimension", ) parser.add_argument( "--decoder-ffn-embed-dim", type=int, metavar="H", help="decoder ffn embedding dimension", ) parser.add_argument( "--decoder-attention-heads", type=int, metavar="A", help="num decoder attention heads", ) parser.add_argument( "--emb-dropout", type=float, metavar="D", help="dropout probability for embeddings", ) parser.add_argument( "--activation-dropout", type=float, metavar="D", help="dropout probability after activation in FFN", ) parser.add_argument( "--position-type", default="normal", choices=["sinusoidal", "relative", "normal"], help="noise type in coordinate noise", ) # parser.add_argument( # "--transformer-type", # default="normal", # choices=["simple", "normal"], # help="noise type in coordinate noise", # ) parser.add_argument( "--pooler-dropout", type=float, metavar="D", help="dropout probability in the masked_lm pooler layers", ) parser.add_argument( "--max-seq-len", type=int, help="number of positional embeddings to learn" ) parser.add_argument( "--post-ln", type=bool, help="use post layernorm or pre layernorm" ) parser.add_argument( "--contrastive-global-negative", action="store_true", help="use contrastive learning or not", ) parser.add_argument( "--auto-regressive", action="store_true", help="use auto regressive generative or not", ) parser.add_argument( "--class-embedding", action="store_true", help="use class embedding or not" ) parser.add_argument( "--use-decoder", action="store_true", help="use decoder or not" ) parser.add_argument( "--smoothl1-beta", default=1.0, type=float, help="beta in pair distance smoothl1 loss", ) parser.add_argument( "--rel_pos", action="store_true", help="rel_pos", ) parser.add_argument( "--flag_old", action="store_true", help="flag_old", ) parser.add_argument( "--decoder_type", default="default", choices=[ "default", "new", ], help="model chosen as decoder", ) parser.add_argument( "--reduced_head_dim", type=int, default=4, help="reduced_head_dim" ) parser.add_argument( "--q_reduced_before", action="store_true", help="q_reduced_before", ) parser.add_argument( "--want_emb_k_dynamic_proj", action="store_true", help="want_emb_k_dynamic_proj", ) parser.add_argument( "--want_emb_k_dynamic_dropout", action="store_true", help="want_emb_k_dynamic_dropout", ) @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" NAG2GFBaseModel.default_encoder_add_args(parser) NAG2GFBaseModel.default_decoder_add_args(parser) def __init__(self, args, dictionary, **kwargs): super().__init__() flag_use_base_architecture = ( kwargs.pop("flag_use_base_architecture") if "flag_use_base_architecture" in kwargs else True ) if flag_use_base_architecture: base_architecture(args) self.init(args, dictionary, **kwargs) def init(self, args, dictionary, **kwargs): self.args = args self.padding_idx = dictionary.pad() if self.args.bpe_tokenizer_path == "none": len_dict = len(dictionary) else: with open(os.path.join(self.args.bpe_tokenizer_path, "vocab.json"), "r") as f: len_dict = len(list(json.load(f).keys())) self.embed_tokens = nn.Embedding( len_dict, args.encoder_embed_dim, self.padding_idx ) self.encoder = self.get_encoder(kwargs) self.lm_head = MaskLMHead( embed_dim=args.encoder_embed_dim, output_dim=len_dict, activation_fn=args.activation_fn, weight=None, ) self.auto_regressive = args.auto_regressive self.use_decoder = args.use_decoder # self.embed_positions = self.get_position_embedding('test', args.max_seq_len, args.encoder_embed_dim) self.embed_positions = self.get_position_embedding( args.position_type, args.max_seq_len, args.encoder_embed_dim ) # self.embed_positions = nn.Embedding(args.max_seq_len, args.encoder_embed_dim) self.use_class_embedding = args.class_embedding if self.use_class_embedding: self.class_embedding = nn.Embedding(100, args.encoder_embed_dim) if args.auto_regressive: self.use_decoder = True if self.use_decoder: # self.decoder_embed_positions = self.get_position_embedding('test', args.max_seq_len, args.decoder_embed_dim) # self.decoder_embed_positions = nn.Embedding(args.max_seq_len, args.decoder_embed_dim) self.decoder_embed_positions = self.get_position_embedding( args.position_type, args.max_seq_len, args.decoder_embed_dim ) self.decoder_embed_tokens = self.embed_tokens # FFFFFF # self.decoder_embed_tokens = nn.Embedding(len(dictionary), args.decoder_embed_dim, self.padding_idx) self.decoder = self.get_decoder() self.decoder_lm_head = MaskLMHead( embed_dim=args.decoder_embed_dim, output_dim=len_dict, activation_fn=args.activation_fn, weight=None, ) # self.decoder_lm_head = nn.Linear(args.decoder_embed_dim, len(dictionary)) self.classification_heads = nn.ModuleDict() self.apply(init_bert_params) print("flag_old", self.args.flag_old) @classmethod def build_model(cls, args, task): """Build a new model instance.""" if hasattr(task, "encoder_dictionary"): return cls( args, task.dictionary, encoder_dictionary=task.encoder_dictionary ) return cls(args, task.dictionary) def get_default_encoder(self): encoder = TransformerEncoder( encoder_layers=self.args.encoder_layers, embed_dim=self.args.encoder_embed_dim, ffn_embed_dim=self.args.encoder_ffn_embed_dim, attention_heads=self.args.encoder_attention_heads, emb_dropout=self.args.emb_dropout, dropout=self.args.dropout, attention_dropout=self.args.attention_dropout, activation_dropout=self.args.activation_dropout, max_seq_len=self.args.max_seq_len, activation_fn=self.args.activation_fn, ) return encoder def get_encoder(self, kwargs): encoder = self.get_default_encoder() return encoder def get_decoder(self): if self.args.decoder_type == "default": decoder = TransformerDecoder( decoder_layers=self.args.decoder_layers, embed_dim=self.args.decoder_embed_dim, ffn_embed_dim=self.args.decoder_ffn_embed_dim, attention_heads=self.args.decoder_attention_heads, emb_dropout=self.args.emb_dropout, dropout=self.args.dropout, attention_dropout=self.args.attention_dropout, activation_dropout=self.args.activation_dropout, max_seq_len=self.args.max_seq_len, activation_fn=self.args.activation_fn, auto_regressive=self.args.auto_regressive, post_ln=self.args.post_ln, rel_pos=self.args.rel_pos, ) elif self.args.decoder_type == "new": decoder = NewTransformerDecoder( decoder_layers=self.args.decoder_layers, embed_dim=self.args.decoder_embed_dim, ffn_embed_dim=self.args.decoder_ffn_embed_dim, attention_heads=self.args.decoder_attention_heads, emb_dropout=self.args.emb_dropout, dropout=self.args.dropout, attention_dropout=self.args.attention_dropout, activation_dropout=self.args.activation_dropout, max_seq_len=self.args.max_seq_len, activation_fn=self.args.activation_fn, auto_regressive=self.args.auto_regressive, post_ln=self.args.post_ln, rel_pos=self.args.rel_pos, reduced_head_dim = self.args.reduced_head_dim, q_reduced_before = self.args.q_reduced_before, want_emb_k_dynamic_proj = self.args.want_emb_k_dynamic_proj, want_emb_k_dynamic_dropout = self.args.want_emb_k_dynamic_dropout, ) else: raise return decoder def get_position_embedding(self, position_type, max_seq_len, embed_dim): if position_type == "sinusoidal": pe = torch.zeros(max_seq_len, embed_dim) position = torch.arange(0, max_seq_len).unsqueeze(1) div_term = torch.exp( ( torch.arange(0, embed_dim, 2, dtype=torch.float) * -(math.log(10000.0) / embed_dim) ) ) pe[:, 0::2] = torch.sin(position.float() * div_term) pe[:, 1::2] = torch.cos(position.float() * div_term) pe1 = nn.Embedding(max_seq_len, embed_dim) pe1.weight = nn.Parameter(pe, requires_grad=False) return pe1 elif position_type == "relative": # relative_pe = nn.Embedding(max_seq_len * 2 + 2, embed_dim) pe = torch.zeros(max_seq_len, embed_dim // 2) position = torch.arange(0, max_seq_len).unsqueeze(1) div_term = torch.exp( ( torch.arange(0, (embed_dim // 2), 2, dtype=torch.float) * -(math.log(10000.0) / (embed_dim // 2)) ) ) pe[:, 0::2] = torch.sin(position.float() * div_term) pe[:, 1::2] = torch.cos(position.float() * div_term) pe1 = nn.Embedding(max_seq_len, embed_dim // 2) pe1.weight = nn.Parameter(pe, requires_grad=False) relative = nn.Embedding(max_seq_len, embed_dim // 2) relative_pe = torch.cat((relative, pe1), -1) return relative_pe else: return nn.Embedding(max_seq_len, embed_dim) def forward( self, # src_tokens, # decoder_src_tokens, # relation_type, # masked_tokens=None, features_only=False, classification_head_name=None, **kwargs ): if classification_head_name is not None: features_only = True decoder_kwargs = {} encoder_kwargs = {} for k, v in kwargs.items(): if "decoder" in k: decoder_kwargs[k] = v else: encoder_kwargs[k] = v if self.args.use_class_encoder: assert self.args.N_vnode == 2 encoder_kwargs["cls_embedding"] = self.decoder_embed_tokens(decoder_kwargs["decoder_src_tokens"][:, 1]) encoder_result = self.forward_encoder( # src_tokens=src_tokens, **encoder_kwargs ) masked_tokens = encoder_result.pop("masked_tokens") encoder_rep = encoder_result.pop("encoder_rep") padding_mask = encoder_result.pop("padding_mask") decoder_outprob, vae_kl_loss = self.forward_decoder( encoder_cls=encoder_rep, temperature=None, encoder_padding_mask=padding_mask, want_probs=False, **decoder_kwargs, ) contrast_out = None if not features_only: logits = self.lm_head(encoder_rep, masked_tokens) else: logits = encoder_rep return logits, decoder_outprob, contrast_out, vae_kl_loss def forward_default_encoder(self, encoder, src_tokens, **kwargs): padding_mask = src_tokens.eq(self.padding_idx) masked_tokens = ~padding_mask tmp_padding_mask = padding_mask if not padding_mask.any(): padding_mask = None x = self.embed_tokens(src_tokens) seq_len = src_tokens.size(1) x = x * math.sqrt(x.shape[-1]) # FFFFFF x += self.embed_positions.weight[:seq_len, :] # if self.use_class_embedding: # x[:,0,:] += self.class_embedding(relation_type) if padding_mask is not None: x = x * (1 - padding_mask.unsqueeze(-1).type_as(x)) encoder_rep = encoder(x, padding_mask=padding_mask, attn_mask=None) return encoder_rep, padding_mask, tmp_padding_mask, masked_tokens def forward_encoder( self, src_tokens, # relation_type, # masked_tokens=None, **kwargs ): encoder_rep, padding_mask, _, masked_tokens = self.forward_default_encoder( self.encoder, src_tokens ) return { "encoder_rep": encoder_rep, "padding_mask": padding_mask, "masked_tokens": padding_mask, } def forward_decoder( self, decoder_src_tokens, encoder_cls, temperature, encoder_padding_mask, want_probs=True, **kwargs ): decoder_outprob = None vae_kl_loss = None if self.use_decoder: decoder_padding_mask = decoder_src_tokens.eq(self.padding_idx) if not decoder_padding_mask.any(): decoder_padding_mask = None x_decoder = self.decoder_embed_tokens(decoder_src_tokens) if self.args.flag_old: x_decoder = x_decoder * math.sqrt(x_decoder.shape[-1]) # FFFFFF seq_len = decoder_src_tokens.size(1) x_decoder += self.decoder_embed_positions.weight[:seq_len, :] if self.args.flag_old and decoder_padding_mask is not None: x_decoder = x_decoder * ( 1 - decoder_padding_mask.unsqueeze(-1).type_as(x_decoder) ) attn_mask = ( kwargs["decoder_attn_mask"] if "decoder_attn_mask" in kwargs.keys() else None ) if self.args.decoder_type == "default": new_dict = {"attn_mask": attn_mask} elif self.args.decoder_type == "new": new_dict = {"emb_k_dynamic": attn_mask} decoder_rep = self.decoder( x_decoder, padding_mask=decoder_padding_mask, encoder_padding_mask=encoder_padding_mask, encoder_out=encoder_cls, **new_dict, ) decoder_outprob = self.decoder_lm_head(decoder_rep) if want_probs: probs = self.get_normalized_probs( decoder_outprob, temperature, log_probs=True, sample=None ) probs = probs[:, -1, :] return probs, None return decoder_outprob, vae_kl_loss def get_normalized_probs(self, net_output, temperature, log_probs, sample=None): """Get normalized probabilities (or log probs) from a net's output.""" logits = net_output # [0].float() if log_probs: return F.log_softmax(logits, dim=-1) else: return torch.log(F.softmax(logits / temperature, dim=-1)) def register_classification_head( self, name, num_classes=None, inner_dim=None, **kwargs ): """Register a classification head.""" if name in self.classification_heads: prev_num_classes = self.classification_heads[name].out_proj.out_features prev_inner_dim = self.classification_heads[name].dense.out_features if num_classes != prev_num_classes or inner_dim != prev_inner_dim: logger.warning( 're-registering head "{}" with num_classes {} (prev: {}) ' "and inner_dim {} (prev: {})".format( name, num_classes, prev_num_classes, inner_dim, prev_inner_dim ) ) self.classification_heads[name] = ClassificationHead( input_dim=self.args.encoder_embed_dim, inner_dim=inner_dim or self.args.encoder_embed_dim, num_classes=num_classes, activation_fn=self.args.pooler_activation_fn, pooler_dropout=self.args.pooler_dropout, ) @register_model("NAG2GF") class NAG2GFModel(NAG2GFBaseModel): @staticmethod def add_args(parser): NAG2GFBaseModel.add_args(parser) parser.add_argument( "--encoder-type", default="default", choices=["default", "unimol", "default_and_unimol"], help="model chosen as encoder", ) def get_unimol_encoder(self, kwargs): encoder_dictionary = ( kwargs["encoder_dictionary"] if "encoder_dictionary" in kwargs.keys() else None ) assert encoder_dictionary is not None from .unimol_encoder import CustomizedUniMolModel encoder = CustomizedUniMolModel(self.args, encoder_dictionary) return encoder def get_encoder(self, kwargs): if self.args.encoder_type == "default": encoder = self.get_default_encoder() elif self.args.encoder_type == "unimol": encoder = self.get_unimol_encoder(kwargs) elif self.args.encoder_type == "default_and_unimol": encoder = nn.ModuleList( [self.get_default_encoder(), self.get_unimol_encoder(kwargs)] ) return encoder def forward_unimol_encoder(self, encoder, src_tokens, **kwargs): padding_mask = src_tokens.eq(self.padding_idx) masked_tokens = ~padding_mask if not padding_mask.any(): padding_mask = None tmp_padding_mask = padding_mask encoder_input_dict = { "src_tokens": src_tokens, "encoder_masked_tokens": masked_tokens, "src_distance": kwargs["src_distance"], "src_coord": kwargs["src_coord"], "src_edge_type": kwargs["src_edge_type"], "features_only": True, } encoder_rep, _, _, _, _, = encoder( **encoder_input_dict, ) return encoder_rep, padding_mask, tmp_padding_mask, masked_tokens def forward_encoder( self, src_tokens, # relation_type, # masked_tokens=None, **kwargs ): if self.args.encoder_type == "default": encoder_rep, padding_mask, _, masked_tokens = self.forward_default_encoder( self.encoder, src_tokens ) elif self.args.encoder_type == "unimol": encoder_rep, padding_mask, _, masked_tokens = self.forward_unimol_encoder( self.encoder, src_tokens, **kwargs ) elif self.args.encoder_type == "default_and_unimol": ( default_encoder_rep, default_padding_mask, default_padding_mask_tmp, default_masked_tokens, ) = self.forward_default_encoder( self.encoder[0], src_tokens=kwargs["smiles_src_tokens"] ) ( unimol_encoder_rep, unimol_padding_mask, unimol_padding_mask_tmp, unimol_masked_tokens, ) = self.forward_unimol_encoder(self.encoder[1], src_tokens, **kwargs) encoder_rep = torch.cat([default_encoder_rep, unimol_encoder_rep], 1) masked_tokens = torch.cat([default_masked_tokens, unimol_masked_tokens], 1) if default_padding_mask is None and unimol_padding_mask is None: padding_mask = None else: padding_mask = torch.cat( [default_padding_mask_tmp, unimol_padding_mask_tmp], 1 ) return { "encoder_rep": encoder_rep, "padding_mask": padding_mask, "masked_tokens": masked_tokens, } def get_src_tokens(self, sample): src_tokens = sample["net_input"]["src_tokens"] # B x T return src_tokens @register_model_architecture("NAG2GF", "NAG2GF") def base_architecture(args): encoder_base_architecture(args) decoder_base_architecture(args) def encoder_base_architecture(args): args.encoder_layers = getattr(args, "encoder_layers", 15) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 64) args.dropout = getattr(args, "dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_fn = getattr(args, "activation_fn", "gelu") args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh") def decoder_base_architecture(args): args.emb_dropout = getattr(args, "emb_dropout", 0.1) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.pooler_dropout = getattr(args, "pooler_dropout", 0.0) args.max_seq_len = getattr(args, "max_seq_len", 512) args.post_ln = getattr(args, "post_ln", False) args.contrastive_global_negative = getattr( args, "contrastive_global_negative", False ) args.auto_regressive = getattr(args, "auto_regressive", False) args.use_decoder = getattr(args, "use_decoder", False) args.class_embedding = getattr(args, "class_embedding", False) args.decoder_layers = getattr(args, "decoder_layers", 15) args.decoder_embed_dim = getattr(args, "decoder_embed_dim", 512) args.decoder_ffn_embed_dim = getattr(args, "decoder_ffn_embed_dim", 2048) args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 64) args.decoder_loss = getattr(args, "decoder_loss", 1) args.rel_pos = getattr(args, "rel_pos", False) args.flag_old = getattr(args, "flag_old", False) args.decoder_type = getattr(args, "decoder_type", "default") args.reduced_head_dim = getattr(args, "reduced_head_dim", 4) args.q_reduced_before = getattr(args, "q_reduced_before", False) args.want_emb_k_dynamic_proj = getattr(args, "want_emb_k_dynamic_proj", False) args.want_emb_k_dynamic_dropout = getattr(args, "want_emb_k_dynamic_dropout", True) # args.encoder_type = getattr(args, "encoder_type", "default") @register_model_architecture("NAG2GF", "NAG2GF_base") def NAG2G_base_architecture(args): base_architecture(args) @register_model_architecture("NAG2GF", "NAG2GF_unimol") def NAG2G_unimol_architecture(args): args.encoder_type = "unimol" base_architecture(args) @register_model_architecture("NAG2GF", "NAG2GF_DnU") def NAG2G_default_and_unimol_architecture(args): args.encoder_type = "default_and_unimol" base_architecture(args)
26,512
Python
.py
640
30.490625
122
0.582552
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,221
__init__.py
dptech-corp_NAG2G/NAG2G/models/__init__.py
try: from .unimol_encoder import CustomizedUniMolModel except: print("Cannot import unimol") from .NAG2G import NAG2GFModel from .G2G import G2GModel
157
Python
.py
6
24
53
0.809211
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,222
G2G.py
dptech-corp_NAG2G/NAG2G/models/G2G.py
import logging import torch import torch.nn as nn from unicore.models import register_model, register_model_architecture from unimol import __version__ if __version__ == "1.5.0": from unimol.models.transformer_m import TransformerMModel from unimol.models.transformer_m import ( bert_base_architecture as encoder_base_architecture, ) if __version__ == "2.0.0": from unimol.models.unimolv2 import Unimolv2Model from unimol.models.unimolv2 import base_architecture as encoder_base_architecture from .NAG2G import NAG2GFModel, NAG2GFBaseModel, decoder_base_architecture from unicore import utils from NAG2G.modules import seq2attn logger = logging.getLogger(__name__) torch._C._jit_set_profiling_mode(False) torch._C._jit_set_profiling_executor(False) torch._C._jit_override_can_fuse_on_cpu(True) torch._C._jit_override_can_fuse_on_gpu(True) @register_model("G2G") class G2GModel(NAG2GFModel): @staticmethod def add_args(parser): if __version__ == "1.5.0": TransformerMModel.add_args(parser) parser.add_argument( "--N_vnode", type=int, default=1, metavar="N", help="number of vnode", ) elif __version__ == "2.0.0": Unimolv2Model.add_args(parser) NAG2GFBaseModel.default_decoder_add_args(parser) parser.add_argument( "--encoder-type", default="transformerm", choices=[ "default", "transformerm", "unimol", "default_and_unimol", "unimolv2", ], help="model chosen as encoder", ) def __init__(self, args, dictionary, **kwargs): NAG2G_G2G_architecture(args) super().__init__(args, dictionary, flag_use_base_architecture=False, **kwargs) # self.degree_pe = nn.Embedding(12 + 1, self.args.decoder_attention_heads) if self.args.decoder_type == "default": self.degree_pe = nn.Embedding(100, self.args.decoder_attention_heads) elif self.args.decoder_type == "new": self.degree_pe = nn.Embedding(100, self.args.decoder_attention_heads * self.args.reduced_head_dim) else: raise if self.args.want_decoder_attn and self.args.laplacian_pe_dim > 0: assert self.args.decoder_type == "default" if self.args.not_sumto2: self.laplacian_linear = nn.Sequential( nn.Linear(2 * self.args.laplacian_pe_dim, self.args.laplacian_pe_dim), nn.ReLU(), nn.Linear( self.args.laplacian_pe_dim, self.args.decoder_attention_heads ), ) else: self.laplacian_linear = nn.Linear(2, self.args.decoder_attention_heads) if self.args.want_decoder_attn: self.seq2attn = seq2attn( self.args.laplacian_pe_dim, not self.args.not_sumto2, dictionary=dictionary, want_h_degree=self.args.want_h_degree, idx_type=self.args.idx_type, use_class=self.args.use_class, ) def half(self): super().half() self.encoder = self.encoder.half() return self def half(self): super().half() self.encoder = self.encoder.half() return self def bfloat16(self): super().bfloat16() self.encoder = self.encoder.bfloat16() return self def float(self): super().float() self.encoder = self.encoder.float() return self def get_transformerm_encoder(self, kwargs): encoder = TransformerMModel.build_model(self.args, None) return encoder def get_unimolv2_encoder(self, kwargs): encoder = Unimolv2Model.build_model(self.args, None) return encoder def get_laplacian_attn_mask(self, laplacian_attn_mask): laplacian_attn_mask = self.laplacian_linear(laplacian_attn_mask) return laplacian_attn_mask def get_encoder(self, kwargs): if self.args.encoder_type == "transformerm": encoder = self.get_transformerm_encoder(kwargs) elif self.args.encoder_type == "unimolv2": encoder = self.get_unimolv2_encoder(kwargs) else: encoder = super().get_encoder(kwargs) return encoder def get_attn_mask(self, **kwargs): degree_attn_mask = ( kwargs.pop("decoder_degree_attn_mask") if "decoder_degree_attn_mask" in kwargs else None ) laplacian_attn_mask = ( kwargs.pop("decoder_laplacian_attn_mask") if "decoder_laplacian_attn_mask" in kwargs else None ) attn_mask = None if degree_attn_mask is not None: added_degree_attn_mask = self.degree_pe(degree_attn_mask) added_degree_attn_mask[degree_attn_mask == 0] = 0 added_degree_attn_mask = added_degree_attn_mask.permute(0, 3, 1, 2) added_degree_attn_mask = added_degree_attn_mask.reshape( -1, degree_attn_mask.shape[1], degree_attn_mask.shape[2] ) if attn_mask is None: attn_mask = added_degree_attn_mask else: attn_mask = attn_mask + added_degree_attn_mask if laplacian_attn_mask is not None: laplacian_attn_mask = laplacian_attn_mask.to(attn_mask.dtype) added_laplacian_attn_mask = self.get_laplacian_attn_mask( laplacian_attn_mask ) added_laplacian_attn_mask = added_laplacian_attn_mask.permute( 0, 3, 1, 2 ).reshape(-1, laplacian_attn_mask.shape[1], laplacian_attn_mask.shape[2]) if attn_mask is None: attn_mask = added_laplacian_attn_mask else: attn_mask = attn_mask + added_laplacian_attn_mask return attn_mask def get_degree_attn_mask(self, **kwargs): assert "decoder_degree_attn_mask" in kwargs degree_attn_mask = kwargs["decoder_degree_attn_mask"] added_degree_attn_mask = self.degree_pe(degree_attn_mask) added_degree_attn_mask[degree_attn_mask == 0] = 0 return added_degree_attn_mask def get_pad_mask(self, kwargs): if self.args.encoder_type == "unimolv2": padding_mask = kwargs["batched_data"]["atom_mask"] == 0 n_mol = padding_mask.shape[0] elif self.args.encoder_type == "transformerm": data_x = kwargs["batched_data"]["x"] n_mol, n_atom = data_x.size()[:2] padding_mask = (data_x[:, :, 0]).eq(0) # B x T x 1 else: raise padding_mask_cls = torch.zeros( n_mol, self.args.N_vnode, device=padding_mask.device, dtype=padding_mask.dtype, ) padding_mask = torch.cat((padding_mask_cls, padding_mask), dim=1) return padding_mask def forward_encoder(self, **kwargs): if ( self.args.encoder_type == "transformerm" or self.args.encoder_type == "unimolv2" ): if self.args.add_len == 0: padding_mask = self.get_pad_mask(kwargs) masked_tokens = ~padding_mask else: masked_tokens = None padding_mask = None if self.args.use_reorder: if self.args.encoder_type == "unimolv2": kwargs["perturb"] = self.embed_positions.weight[ : kwargs["batched_data"]["atom_mask"].shape[1], : ] elif self.args.encoder_type == "transformerm": kwargs["perturb"] = self.embed_positions.weight[ : kwargs["batched_data"]["x"].shape[1], : ] output = self.encoder(**kwargs) if self.args.encoder_type == "transformerm": encoder_rep = output[2]["inner_states"][-1].transpose(0, 1) else: _, _, _, _, encoder_rep = output return { "encoder_rep": encoder_rep, "padding_mask": padding_mask, "masked_tokens": masked_tokens, } else: return super().forward_encoder(**kwargs) def reorder_encoder_out(self, encoder_out, new_order): """Dummy re-order function for beamable enc-dec attention""" """ Reorder encoder output according to *new_order*. Args: encoder_out: output from the ``forward()`` method new_order (LongTensor): desired order Returns: *encoder_out* rearranged according to *new_order* """ if len(encoder_out["encoder_rep"]) == 0: new_encoder_rep = None else: new_encoder_rep = encoder_out["encoder_rep"].index_select(0, new_order) if len(encoder_out["padding_mask"]) == 0: new_padding_mask = None else: new_padding_mask = encoder_out["padding_mask"].index_select(0, new_order) if len(encoder_out["masked_tokens"]) == 0: new_masked_tokens = None else: new_masked_tokens = encoder_out["masked_tokens"].index_select(0, new_order) return { "encoder_rep": new_encoder_rep, # T x B x C "padding_mask": new_padding_mask, # B x T x 1 "masked_tokens": new_masked_tokens, # B x T x 1 } def forward_decoder( self, decoder_src_tokens, encoder_cls, temperature, encoder_padding_mask, want_probs=True, **kwargs ): decoder_attn_mask = None if self.args.want_decoder_attn: if self.args.decoder_attn_from_loader: attn_mask_kwargs = kwargs elif self.training or not self.args.infer_step: attn_mask_kwargs = self.seq2attn.forward_train(decoder_src_tokens) else: attn_mask_kwargs = self.seq2attn.forward(decoder_src_tokens) if self.args.decoder_type == "default": decoder_attn_mask = self.get_attn_mask(**attn_mask_kwargs) elif self.args.decoder_type == "new": decoder_attn_mask = self.get_degree_attn_mask(**attn_mask_kwargs) return super().forward_decoder( decoder_src_tokens, encoder_cls, temperature, encoder_padding_mask, want_probs=want_probs, decoder_attn_mask=decoder_attn_mask, **kwargs ) def get_src_tokens(self, sample): if self.args.encoder_type == "transformerm": src_tokens = sample["net_input"]["batched_data"]["x"] elif self.args.encoder_type == "unimolv2": src_tokens = sample["net_input"]["batched_data"]["atom_feat"] return src_tokens @register_model_architecture("G2G", "NAG2G_G2G") def NAG2G_G2G_architecture(args): if __version__ == "1.5.0": assert args.encoder_type == "transformerm" elif __version__ == "2.0.0": assert args.encoder_type == "unimolv2" encoder_base_architecture(args) decoder_base_architecture(args) if __version__ == "2.0.0": assert args.add_len == 0
11,513
Python
.py
278
30.266187
110
0.57421
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,223
decay_t2t_schedule.py
dptech-corp_NAG2G/NAG2G/optim/lr_scheduler/decay_t2t_schedule.py
# Copyright (c) DP Techonology, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Optional, List import math from unicore.optim.lr_scheduler import UnicoreLRScheduler, register_lr_scheduler @register_lr_scheduler("tensor2tensor_decay") class Tensor2tensorDecayLRSchedule(UnicoreLRScheduler): """Decay the LR on the tensor2tensor schedule.""" def __init__(self, args, optimizer, total_train_steps): super().__init__(args, optimizer, total_train_steps) if self.args.warmup_ratio > 0: # if warmup_ratio > 0, use external train steps assert total_train_steps is not None self.warmup_updates = int( self.args.warmup_ratio * total_train_steps) self.total_num_update = total_train_steps else: assert args.total_num_update > 0 self.warmup_updates = args.warmup_updates self.total_num_update = args.total_num_update self.lr = args.lr[0] if self.warmup_updates > 0: self.warmup_factor = 1.0 / self.warmup_updates else: self.warmup_factor = 1 self.total_num_update = total_train_steps self.end_learning_rate = args.end_learning_rate self.power = args.power self.optimizer.set_lr(self.warmup_factor * self.lr) @staticmethod def add_args(parser): """Add arguments to the parser for this LR scheduler.""" parser.add_argument('--force-anneal', '--fa', type=int, metavar='N', help='force annealing at specified epoch') parser.add_argument('--warmup-updates', default=0, type=int, metavar='N', help='warmup the learning rate linearly for the first N updates') parser.add_argument('--warmup-ratio', default=-1.0, type=float, metavar='N', help='warmup the learning rate linearly for the first N-percent updates') parser.add_argument('--start-learning-rate', default=2.0, type=float) parser.add_argument('--end-learning-rate', default=0.0, type=float) parser.add_argument('--power', default=1.0, type=float) parser.add_argument('--total-num-update', default=1000000, type=int) def get_next_lr(self, epoch): lrs = self.args.lr if self.args.force_anneal is None or epoch < self.args.force_anneal: # use fixed LR schedule next_lr = lrs[min(epoch, len(lrs) - 1)] else: # annneal based on lr_shrink next_lr = self.optimizer.get_lr() return next_lr def step_begin_epoch(self, epoch): """Update the learning rate at the beginning of the given epoch.""" self.lr = self.get_next_lr(epoch) self.optimizer.set_lr(self.warmup_factor * self.lr) return self.optimizer.get_lr() def step_update(self, num_updates): """Update the learning rate after each update.""" if num_updates == 0: t_num_updates = math.pow(1, -0.5) else: t_num_updates = math.pow(num_updates, -0.5) if t_num_updates < num_updates * math.pow(self.warmup_updates, -1.5): lr = self.args.start_learning_rate * \ (math.pow(self.args.encoder_embed_dim, -0.5) * t_num_updates) else: lr = self.args.start_learning_rate * \ (math.pow(self.args.encoder_embed_dim, -0.5) * num_updates * math.pow(self.warmup_updates, -1.5)) self.optimizer.set_lr(lr) return self.optimizer.get_lr()
3,679
Python
.py
73
40.438356
101
0.624409
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,224
__init__.py
dptech-corp_NAG2G/NAG2G/optim/lr_scheduler/__init__.py
from pathlib import Path import importlib import os # automatically import any Python files in the optim/lr_scheduler/ directory for file in os.listdir(os.path.dirname(__file__)): if file.endswith(".py") and not file.startswith("_"): file_name = file[: file.find(".py")] importlib.import_module("NAG2G.optim.lr_scheduler." + file_name)
357
Python
.py
8
41
76
0.718391
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,225
unimolv2.py
dptech-corp_NAG2G/NAG2G/tasks/unimolv2.py
# Copyright (c) DP Techonology, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from unimol import __version__ if __version__ == "2.0.0": import logging import os import numpy as np from unicore.data import ( LMDBDataset, RightPadDataset, TokenizeDataset, RightPadDataset2D, NestedDictionaryDataset, EpochShuffleDataset, ) from unimol.data import ( KeyDataset, ConformerPCQSampleDataset, Unimolv2Features, ) from NAG2G.data import ( CsvGraphormerDataset, SmilesDataset, GraphormerDataset, ShuffleGraphormerDataset, SeqGraphormerDataset, RightPadDataset3D, ReorderGraphormerDataset, RandomSmilesDataset, ReorderSmilesDataset, ReorderCoordDataset, BpeTokenizeDataset, ) from unicore.tasks import UnicoreTask, register_task from .transformer_m import G2GMTask logger = logging.getLogger(__name__) @register_task("G2G_unimolv2") class G2GUnimolv2Task(G2GMTask): """Task for training transformer auto-encoder models.""" def load_dataset(self, split, **kwargs): """Load a given dataset split. Args: split (str): name of the data scoure (e.g., bppp) """ split_path = os.path.join(self.args.data, split + ".csv") if os.path.exists(split_path): raw_dataset = CsvGraphormerDataset(split_path) else: split_path = os.path.join(self.args.data, split + ".lmdb") raw_dataset = LMDBDataset(split_path) is_train = "train" in split flag_aftsep2 = "aftspe2" in self.args.bpe_tokenizer_path sample_dataset = ConformerPCQSampleDataset( raw_dataset, self.seed, "target_coordinates", None, ) raw_coord_dataset = KeyDataset(sample_dataset, "coordinates") map_coord_dataset = KeyDataset(sample_dataset, "target_map") dataset = KeyDataset(raw_dataset, "rxn_smiles") dataset = SmilesDataset(dataset) reactant_dataset = KeyDataset(dataset, "reactant_smiles") product_dataset = KeyDataset(dataset, "product_smiles") if is_train and self.args.shufflegraph == "randomsmiles": product_dataset = RandomSmilesDataset(product_dataset) if self.args.use_reorder: reactant_dataset = ReorderSmilesDataset(product_dataset, reactant_dataset) else: reactant_dataset = RandomSmilesDataset(reactant_dataset) reactant_smiles_dataset = reactant_dataset product_smiles_dataset = product_dataset if not self.args.no_reactant: reactant_dataset = GraphormerDataset(reactant_dataset) product_dataset = GraphormerDataset(product_dataset) if (not self.args.no_reactant) and self.args.use_reorder: reorder_dataset = ReorderGraphormerDataset( product_dataset, reactant_dataset, align_base="product", ) product_dataset = KeyDataset(reorder_dataset, "product") reactant_dataset = KeyDataset(reorder_dataset, "reactant") raw_coord_dataset = ReorderCoordDataset( raw_coord_dataset, map_coord_dataset, product_dataset ) if self.args.use_class: class_dataset = KeyDataset(raw_dataset, "class") else: class_dataset = None if not self.args.no_reactant: reactant_dataset = SeqGraphormerDataset( reactant_dataset, class_dataset, min_node=self.args.laplacian_pe_dim, want_attn=self.args.decoder_attn_from_loader, want_charge_h=self.args.want_charge_h, # max_seq_len=self.args.max_seq_len, sumto2=not self.args.not_sumto2, use_sep2=self.args.use_sep2 or flag_aftsep2, want_h_degree=self.args.want_h_degree, idx_type=self.args.idx_type, charge_h_last=self.args.charge_h_last, ) seq_reactant_dataset = KeyDataset(reactant_dataset, "seq") seq_reactant_dataset = TokenizeDataset( seq_reactant_dataset, self.dictionary, max_seq_len=self.args.max_seq_len + 1, ) if self.args.bpe_tokenizer_path != "none": seq_reactant_dataset = BpeTokenizeDataset( seq_reactant_dataset, self.args.bpe_tokenizer_path, flag_aftsep2=flag_aftsep2, ) product_dataset = Unimolv2Features( product_dataset, raw_coord_dataset, None, is_train=is_train, label_prob=1, mid_prob=self.args.mid_prob, mid_lower=self.args.mid_lower, mid_upper=self.args.mid_upper, noise=self.args.noise_scale, seed=self.seed + 2, N_vnode=self.args.N_vnode, ) net_input = { "batched_data": product_dataset, } if not self.args.no_reactant: net_input["decoder_src_tokens"] = RightPadDataset( seq_reactant_dataset, pad_idx=self.dictionary.pad(), ) if self.args.decoder_attn_from_loader: reactant_degree_attn_mask_dataset = KeyDataset( reactant_dataset, "degree_attn_mask" ) if self.args.laplacian_pe_dim > 0: reactant_laplacian_attn_mask_dataset = KeyDataset( reactant_dataset, "laplacian_attn_mask" ) net_input["decoder_laplacian_attn_mask"] = RightPadDataset3D( reactant_laplacian_attn_mask_dataset, pad_idx=0, ) net_input["decoder_degree_attn_mask"] = RightPadDataset2D( reactant_degree_attn_mask_dataset, pad_idx=0, ) nest_dataset = NestedDictionaryDataset( { "net_input": net_input, "target": { "reactant_smiles": reactant_smiles_dataset, "product_smiles": product_smiles_dataset, }, }, ) if split in ["train", "train.small"]: nest_dataset = EpochShuffleDataset( nest_dataset, len(nest_dataset), self.seed ) self.datasets[split] = nest_dataset
7,261
Python
.py
169
28.142012
94
0.542704
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,226
transformer_m.py
dptech-corp_NAG2G/NAG2G/tasks/transformer_m.py
# Copyright (c) DP Techonology, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from unimol import __version__ from unicore import distributed_utils from NAG2G.utils import save_config if __version__ == "1.5.0" or __version__ == "2.0.0": import logging import os import torch import numpy as np from unicore.data import ( Dictionary, LMDBDataset, RightPadDataset, TokenizeDataset, RightPadDataset2D, NestedDictionaryDataset, EpochShuffleDataset, ) from unimol.data import ( KeyDataset, ) from NAG2G.data import ( CsvGraphormerDataset, SmilesDataset, GraphormerDataset, ShuffleGraphormerDataset, SeqGraphormerDataset, RightPadDataset3D, ReorderGraphormerDataset, GraphFeatures, RandomSmilesDataset, ReorderSmilesDataset, EMPTY_SMILES_Dataset_G2G, SmilesDataset_2, BpeTokenizeDataset, ) from NAG2G.utils.chemutils import add_chirality from NAG2G.utils.G2G_cal import get_smiles, gen_map from unicore.tasks import UnicoreTask, register_task from unicore import checkpoint_utils logger = logging.getLogger(__name__) @register_task("G2G") class G2GMTask(UnicoreTask): """Task for training transformer auto-encoder models.""" @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument("data", help="downstream data path") parser.add_argument( "--dict-name", default="dict.txt", help="dict name", ) parser.add_argument( "--laplacian_pe_dim", default=30, type=int, help="laplacian_pe_dim", ) parser.add_argument( "--use_reorder", action="store_true", help="use-reorder" ) parser.add_argument( "--decoder_attn_from_loader", action="store_true", help="decoder_attn_from_loader", ) parser.add_argument( "--not_want_edge_input", action="store_true", help="not_want_edge_input", ) parser.add_argument( "--want_charge_h", action="store_true", help="want_charge_h", ) parser.add_argument( "--shufflegraph", default="none", help="shufflegraph", ) parser.add_argument( "--not_sumto2", action="store_true", help="not_sumto2", ) parser.add_argument( "--add_len", default=0, type=int, help="GraphFeatures add_len", ) parser.add_argument( "--N_left", default=0, type=int, help="N_left", ) parser.add_argument( "--infer_save_name", default="smi.txt", help="infer_save_name", ) parser.add_argument( "--use_sep2", action="store_true", help="use_sep2", ) parser.add_argument( "--want_h_degree", action="store_true", help="want_h_degree", ) parser.add_argument( "--use_class", action="store_true", help="use_class", ) parser.add_argument( "--dataset_uspto_full", action="store_true", help="dataset_uspto_full", ) parser.add_argument( "--infer_step", action="store_true", help="infer_step", ) parser.add_argument( "--idx_type", default=0, type=int, help="idx_type", ) parser.add_argument( "--want_decoder_attn", action="store_true", help="want_decoder_attn", ) parser.add_argument( "--init_train_path", default="none", help="init_train_path", ) parser.add_argument( "--bpe_tokenizer_path", default="none", help="bpe_tokenizer_path", ) parser.add_argument( "--charge_h_last", action="store_true", help="charge_h_last", ) parser.add_argument( "--use_class_encoder", action="store_true", help="use_class_encoder", ) parser.add_argument( "--no_reactant", action="store_true", help="no_reactant", ) save_config.add_config_save_args(parser) def __init__(self, args, dictionary): if (distributed_utils.get_data_parallel_rank() == 0) and ( args.infer_step is False ): save_config.save_config(args) super().__init__(args) self.seed = args.seed self.dictionary = dictionary if self.args.bpe_tokenizer_path != "none": self.infer_dictionary = Dictionary.load( os.path.join(args.bpe_tokenizer_path, "dict.txt") ) @classmethod def setup_task(cls, args, **kwargs): dictionary = Dictionary.load(os.path.join(args.data, args.dict_name)) logger.info("dictionary: {} types".format(len(dictionary))) return cls(args, dictionary) def load_empty_dataset(self, **kwargs): split = "test" flag_label_wanted = False dataset = EMPTY_SMILES_Dataset_G2G(name="product_smiles", **kwargs) self.load_dataset_detail( dataset=dataset, split=split, class_dataset=None, flag_label_wanted=flag_label_wanted, **kwargs ) return dataset def load_dataset(self, split, **kwargs): flag_label_wanted = True split_path = os.path.join(self.args.data, split + ".csv") if os.path.exists(split_path): raw_dataset = CsvGraphormerDataset(split_path) else: split_path = os.path.join(self.args.data, split + ".lmdb") raw_dataset = LMDBDataset(split_path) if self.args.use_class: class_dataset = KeyDataset(raw_dataset, "class") else: class_dataset = None if not self.args.dataset_uspto_full: dataset = KeyDataset(raw_dataset, "rxn_smiles") dataset = SmilesDataset(dataset) else: dataset = SmilesDataset_2(raw_dataset) self.load_dataset_detail( dataset=dataset, split=split, class_dataset=class_dataset, flag_label_wanted=flag_label_wanted, **kwargs ) def load_dataset_detail( self, dataset, split, class_dataset=None, flag_label_wanted=True, **kwargs ): """Load a given dataset split. Args: split (str): name of the data scoure (e.g., bppp) """ is_train = "train" in split flag_aftsep2 = "aftsep2" in self.args.bpe_tokenizer_path if flag_label_wanted: reactant_dataset = KeyDataset(dataset, "reactant_smiles") product_dataset = KeyDataset(dataset, "product_smiles") if is_train and self.args.shufflegraph == "randomsmiles": product_dataset = RandomSmilesDataset(product_dataset) if flag_label_wanted: if self.args.use_reorder: reactant_dataset = ReorderSmilesDataset(product_dataset, reactant_dataset) else: reactant_dataset = RandomSmilesDataset(reactant_dataset) if flag_label_wanted: reactant_smiles_dataset = reactant_dataset reactant_dataset = GraphormerDataset(reactant_dataset) product_smiles_dataset = product_dataset product_dataset = GraphormerDataset(product_dataset) if flag_label_wanted and self.args.use_reorder: reorder_dataset = ReorderGraphormerDataset( product_dataset, reactant_dataset, align_base="product", ) product_dataset = KeyDataset(reorder_dataset, "product") reactant_dataset = KeyDataset(reorder_dataset, "reactant") if flag_label_wanted: reactant_dataset = SeqGraphormerDataset( reactant_dataset, class_dataset, min_node=self.args.laplacian_pe_dim, want_attn=self.args.decoder_attn_from_loader, want_charge_h=self.args.want_charge_h, # max_seq_len=self.args.max_seq_len, sumto2=not self.args.not_sumto2, use_sep2=self.args.use_sep2 or flag_aftsep2, want_h_degree=self.args.want_h_degree, idx_type=self.args.idx_type, charge_h_last=self.args.charge_h_last, ) seq_reactant_dataset = KeyDataset(reactant_dataset, "seq") seq_reactant_dataset = TokenizeDataset( seq_reactant_dataset, self.dictionary, max_seq_len=self.args.max_seq_len + 1, ) if self.args.bpe_tokenizer_path != "none": seq_reactant_dataset = BpeTokenizeDataset( seq_reactant_dataset, self.args.bpe_tokenizer_path, flag_aftsep2=flag_aftsep2, ) product_dataset = GraphFeatures( product_dataset, pos_dataset=None, want_edge_input=not self.args.not_want_edge_input, add_len=self.args.add_len, ) net_input = {"batched_data": product_dataset} if flag_label_wanted: net_input["decoder_src_tokens"] = RightPadDataset( seq_reactant_dataset, pad_idx=self.dictionary.pad(), ) if flag_label_wanted and self.args.decoder_attn_from_loader: reactant_degree_attn_mask_dataset = KeyDataset( reactant_dataset, "degree_attn_mask" ) net_input["decoder_degree_attn_mask"] = RightPadDataset2D( reactant_degree_attn_mask_dataset, pad_idx=0, ) if self.args.laplacian_pe_dim > 0: reactant_laplacian_attn_mask_dataset = KeyDataset( reactant_dataset, "laplacian_attn_mask" ) net_input["decoder_laplacian_attn_mask"] = RightPadDataset3D( reactant_laplacian_attn_mask_dataset, pad_idx=0, ) target = {"product_smiles": product_smiles_dataset} if flag_label_wanted: target["reactant_smiles"] = reactant_smiles_dataset nest_dataset = NestedDictionaryDataset( {"net_input": net_input, "target": target}, ) if split in ["train", "train.small"]: nest_dataset = EpochShuffleDataset( nest_dataset, len(nest_dataset), self.seed ) self.datasets[split] = nest_dataset def build_model(self, args): from unicore import models model = models.build_model(args, self) if args.init_train_path != "none": state = checkpoint_utils.load_checkpoint_to_cpu(args.init_train_path) model.load_state_dict(state["model"], strict=False) return model def get_str(self, tokens): if self.args.bpe_tokenizer_path == "none": dictionary = self.dictionary else: dictionary = self.infer_dictionary pad_idx = dictionary.pad() tokens = tokens.tolist() if pad_idx in tokens: pad_idx = tokens.index(dictionary.pad()) token = tokens[1:pad_idx] else: token = tokens[1:] if not hasattr(dictionary, "id2word"): dictionary.id2word = {v: k for k, v in dictionary.indices.items()} strs = " ".join([dictionary.id2word[i] for i in token]) if self.args.bpe_tokenizer_path != "none": strs = strs.replace("?", " ") return strs def fill_first_step_tokens(self, bsz, beam_size, j, pred_dict): max_pred_shape = max( [pred_dict[i][j]["tokens"].shape[0] for i in range(bsz)] ) scores = torch.zeros(bsz * beam_size, max_pred_shape).float() tokens = ( torch.zeros(bsz * beam_size, max_pred_shape + 1) .long() .fill_(self.dictionary.pad()) ) for i in range(bsz): for k in range(beam_size): pred_shape = pred_dict[i][j]["tokens"].shape[0] + 1 tokens[i * beam_size + k, 1:pred_shape] = pred_dict[i][j]["tokens"] scores[i * beam_size + k, : pred_shape - 1] = pred_dict[i][j][ "score" ] return tokens, scores def write_file_res( self, gt_product_smiles, gt_reactant_smiles, tgt_tokens, pred, beam_size, file_check, ): for i in range(len(gt_reactant_smiles)): with open(file_check, "a") as w: w.write(gt_product_smiles[i] + " " + "gt_product" + "\n") w.write(gt_reactant_smiles[i] + " " + "target" + "\n") if tgt_tokens is not None: w.write(self.get_str(tgt_tokens[i]) + " " + "target" + "\n") else: w.write(" " + "target" + "\n") for j in range(beam_size): if ( self.args.search_strategies == "SequenceGeneratorBeamSearch_test" ) or ( self.args.search_strategies == "SequenceGeneratorBeamSearch" ): pred_piece = pred[i][j]["tokens"].cpu().numpy() score = pred[i][j]["score"].cpu().detach().numpy() pred_piece = np.insert(pred_piece, 0, 1) pred_piece = pred_piece[:-1] elif self.args.search_strategies == "SimpleGenerator": pred_piece = pred[j + i * beam_size].cpu().numpy() score = 0 pred_piece = self.get_str(pred_piece) w.write( pred_piece + " " + "predicted" + str(j) + " " + str(score) + "\n" ) def get_one_sample(self, sample, i): new_dict = {} for k, v in sample["net_input"]["batched_data"].items(): new_dict[k] = v[i : i + 1] dict_ = {"net_input": {"batched_data": new_dict}} return dict_ def test_step( self, args, sample, model, loss, step, seed, second_beam_size=0, second_token_size=0, model2=None, ): gt_reactant_smiles = sample["target"]["reactant_smiles"] gt_product_smiles = sample["target"]["product_smiles"] beam_size = model.beam_size file_path = args.results_path if self.args.search_strategies == "SequenceGeneratorBeamSearch_test": prefix_tokens = None if self.args.use_class: prefix_tokens = sample["net_input"]["decoder_src_tokens"][ :, 1 ].unsqueeze(1) else: prefix_tokens = None pred = model(sample=sample, prefix_tokens=prefix_tokens) bsz = self.args.batch_size if len(model2) > 0: list_bs = [] for i in range(bsz): list_beam = [] for j in range(len(model2)): sample_tmp = self.get_one_sample(sample, i) pred_piece = pred[i][j]["tokens"] score = pred[i][j]["score"] pred_k = model2[j]( sample_tmp, prefix_tokens=pred_piece.unsqueeze(0) ) for k in range(len(pred_k[0])): pred_k[0][k]["score"] = score + pred_k[0][k]["score"] list_beam.append(pred_k[0][k]) list_bs.append(list_beam) pred = list_bs vae_kl_loss = None elif self.args.search_strategies == "SequenceGeneratorBeamSearch": if self.args.use_class: prefix_tokens = sample["net_input"]["decoder_src_tokens"][ :, 1 ].unsqueeze(1) else: prefix_tokens = None pred = model(sample=sample, prefix_tokens=prefix_tokens) vae_kl_loss = None elif self.args.search_strategies == "SimpleGenerator": # if self.args.use_class: # prefix_tokens = sample["net_input"]["decoder_src_tokens"][ # :, 1 # ].unsqueeze(1) # else: prefix_tokens = None pred, vae_kl_loss = model._generate(sample, prefix_tokens) else: raise if not os.path.exists(file_path): os.makedirs(file_path) rank = distributed_utils.get_data_parallel_rank() file_check = os.path.join( file_path, self.args.infer_save_name.replace(".txt", "_" + str(rank) + ".txt"), ) try: tgt_tokens = sample["net_input"]["decoder_src_tokens"].cpu().numpy() except: tgt_tokens = None self.write_file_res( gt_product_smiles, gt_reactant_smiles, tgt_tokens, pred, beam_size, file_check, ) if "decoder_src_tokens" in sample["net_input"]: return pred, { "vae_kl_loss": vae_kl_loss, "sample_size": 1, "bsz": sample["net_input"]["batched_data"]["atom_feat"].size(0), "seq_len": sample["net_input"]["decoder_src_tokens"].size(1) * sample["net_input"]["decoder_src_tokens"].size(0), } else: return pred, { "vae_kl_loss": vae_kl_loss, "sample_size": 1, "bsz": 1, "seq_len": 1, } def infer_step(self, sample, model, **kwargs): gt_product_smiles = sample["target"]["product_smiles"] if self.args.search_strategies == "SequenceGeneratorBeamSearch": pred = model(sample) vae_kl_loss = None elif self.args.search_strategies == "SimpleGenerator": pred, vae_kl_loss = model._generate(sample) else: raise beam_size = model.beam_size result_list = [] for i in range(len(gt_product_smiles)): list_ = [] for j in range(beam_size): if self.args.search_strategies == "SequenceGeneratorBeamSearch": pred_piece = pred[i][j]["tokens"].cpu().numpy() score = pred[i][j]["score"].cpu().detach().numpy() pred_piece = np.insert(pred_piece, 0, 1) pred_piece = pred_piece[:-1] elif self.args.search_strategies == "SimpleGenerator": pred_piece = pred[j + i * beam_size].cpu().numpy() score = 0 pred_piece = self.get_str(pred_piece) pred_piece = get_smiles( pred_piece, atom_map=gen_map(gt_product_smiles[i]) ) try: pred_piece = add_chirality(gt_product_smiles[i], pred_piece) except: pass list_.append(pred_piece) result_list.append(list_) return result_list
22,317
Python
.py
538
25.249071
98
0.47254
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,227
__init__.py
dptech-corp_NAG2G/NAG2G/tasks/__init__.py
from pathlib import Path import importlib # automatically import any Python files in the criterions/ directory for file in sorted(Path(__file__).parent.glob("*.py")): if not file.name.startswith("_"): importlib.import_module("NAG2G.tasks." + file.name[:-3])
271
Python
.py
6
42
68
0.723485
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,228
G2G_cal.py
dptech-corp_NAG2G/NAG2G/utils/G2G_cal.py
import sys import numpy as np from tqdm import tqdm from rdkit import Chem from .draw_img import draw_mol from .chemutils import add_chirality from .graph_process import seq2graph from .mol_graph_basic import graph2mol, error, get_InchiKey, judge_InchiKey, same_smi import os from multiprocessing import Pool import time import glob import json def seq2smiles(seq, atom_map=None): tmp = seq2graph(seq) adjacency_matrix = tmp["adj_matrix"] + 1 adjacency_matrix[adjacency_matrix == 4] = 12 adjacency_matrix[adjacency_matrix == 23] = 0 atoms = tmp["atoms"] atoms_charge = tmp["atoms_charge"].tolist() atom_h_number = tmp["atoms_h"].tolist() if atom_map is not None: if len(atom_map) > len(atoms): atom_map = atom_map[: len(atoms)] elif len(atom_map) < len(atoms): atom_map = atom_map + [0 for _ in range(len(atoms) - len(atom_map))] smiles = graph2mol( adjacency_matrix=adjacency_matrix, atoms=atoms, atoms_charge=atoms_charge, atom_h_number=atom_h_number, atoms_map=atom_map, ) return smiles def get_smiles(seq, atom_map=None): seq = [i for i in seq.split(" ") if i != ""] if "[SEP]" in seq: seq = seq[: seq.index("[SEP]")] smiles = seq2smiles(seq, atom_map) return smiles def gen_map(smiles): mol = Chem.MolFromSmiles(smiles) atoms_map = [atom.GetAtomMapNum() for atom in mol.GetAtoms()] return atoms_map def worker(args): i, context, iter_N, N_beam_search = args gt_product = context[iter_N * i].split("gt_product")[0] target1 = context[iter_N * i + 1].split("target")[0] target2 = context[iter_N * i + 2].replace("[SEP]", "").split("target")[0] target2 = get_smiles(target2) dup_key_list = set([None]) gt_reactant_key = get_InchiKey(target1) pred_list = [] unstrict_list = [] strict_list = [] nodup_list = [] pred_nodup_list = [] flag_strict = False flag_unstrict = False for j in range(N_beam_search): assert "predicted" in context[iter_N * i + 3 + j] str2 = context[iter_N * i + 3 + j].split("predicted")[0] pred = get_smiles(str2) if flag_unstrict is False and same_smi(target2, pred): unstrict_list.append(1) flag_unstrict = True else: unstrict_list.append(0) pred = get_smiles(str2, atom_map=gen_map(gt_product)) try: pred = add_chirality(gt_product, pred) except: pass pred_key = get_InchiKey(pred) if pred_key not in dup_key_list: if judge_InchiKey(pred_key, gt_reactant_key): nodup_list.append(1) else: nodup_list.append(0) dup_key_list.add(pred_key) pred_nodup_list.append(pred) if flag_strict is False and same_smi(target1, pred): strict_list.append(1) flag_strict = True else: strict_list.append(0) pred_list.append(pred) nodup_list = nodup_list + [0 for _ in range(N_beam_search - len(nodup_list))] # print(i, "*"*10) # print(target1, error(target1)) # print(i, "*"*10) # for ii in pred_nodup_list: # print(ii, error(ii)) # if np.array(strict_list).sum() == 0: # draw_mol( # [gt_product, target1, None, None, None] + pred_nodup_list, # "img/{}_{}.png".format(i, j), # mols_per_row=5, # img_size=(400, 400), # ) return {"product": gt_product, "target": [target1, target2], "unstrict_list": unstrict_list, "strict_list": strict_list, "pred_list": pred_list, "nodup_list": nodup_list} def get_context_by_one(smi_path): print(smi_path.split("/")[-1]) if not os.path.exists(smi_path): return [] with open(smi_path, "r") as f: context = f.readlines() print("single lines:", len(context)) return context def run(smi_path, save_path, N_beam_search=10, if_full=False): if "{}" in smi_path: context = [] files = glob.glob(smi_path.replace("{}", "*")) for i in files: context += get_context_by_one(i) else: context = get_context_by_one(smi_path) iter_N = N_beam_search + 3 N_mol = int(len(context) / iter_N) if if_full and N_mol != 5007: return print(N_mol) start = time.time() with Pool() as pool: results = pool.map( worker, [ (i, context, iter_N, N_beam_search) for i in tqdm(range(len(context) // iter_N)) ], ) target_list_all = [] unstrict_list_all = [] strict_list_all = [] pred_list_all = [] nodup_list_all = [] if save_path is not None: with open(save_path.replace(save_path.split("/")[-1], "smiles_infer.txt"), 'w') as f: # json.dump(i, f) f.write(json.dumps(results, indent=4)) for i in results: target = i["target"] unstrict_list = i["unstrict_list"] strict_list = i["strict_list"] pred_list = i["pred_list"] nodup_list = i["nodup_list"] target_list_all.append(target) unstrict_list_all.append(unstrict_list) strict_list_all.append(strict_list) pred_list_all.append(pred_list) nodup_list_all.append(nodup_list) if save_path is not None: f = open(save_path, "w") else: f = None print(time.time() - start) unstrict_list_all = np.array(unstrict_list_all) strict_list_all = np.array(strict_list_all) unstrict_list_all = unstrict_list_all.sum(0) strict_list_all = strict_list_all.sum(0) nodup_list_all = np.array(nodup_list_all) nodup_list_all = nodup_list_all.sum(0) print("total", N_mol) print("unstrict", unstrict_list_all) print("unstrict", unstrict_list_all / N_mol) print("strict", strict_list_all) print("strict", strict_list_all / N_mol) print("nodup_list_all", nodup_list_all) print("nodup_list_all", nodup_list_all / N_mol) print("\n") if f is not None: f.write("total " + str(N_mol)) f.write("\nunstrict " + str(unstrict_list_all)) f.write("\nunstrict " + str(unstrict_list_all / N_mol)) f.write("\nstrict " + str(strict_list_all)) f.write("\nstrict " + str(strict_list_all / N_mol)) f.write("\nnodup_list_all " + str(nodup_list_all)) f.write("\nnodup_list_all " + str(nodup_list_all / N_mol)) f.write("\n") try: unstrict_list_tmp = [unstrict_list_all[0]] for i in range(1, len(unstrict_list_all)): unstrict_list_tmp.append(unstrict_list_tmp[i - 1] + unstrict_list_all[i]) unstrict_list_tmp = np.array(unstrict_list_tmp) except: unstrict_list_tmp = 0 strict_list_tmp = [strict_list_all[0]] for i in range(1, len(strict_list_all)): strict_list_tmp.append(strict_list_tmp[i - 1] + strict_list_all[i]) strict_list_tmp = np.array(strict_list_tmp) nodup_list_tmp = [nodup_list_all[0]] for i in range(1, len(nodup_list_all)): nodup_list_tmp.append(nodup_list_tmp[i - 1] + nodup_list_all[i]) nodup_list_tmp = np.array(nodup_list_tmp) print("unstrict", unstrict_list_tmp) print("unstrict", unstrict_list_tmp / N_mol) print("strict", strict_list_tmp) print("strict", strict_list_tmp / N_mol) print("nodup_list_all", nodup_list_tmp) print("nodup_list_all", nodup_list_tmp / N_mol) if f is not None: f.write("unstrict " + str(unstrict_list_tmp)) f.write("\nunstrict " + str(unstrict_list_tmp / N_mol)) f.write("\nstrict " + str(strict_list_tmp)) f.write("\nstrict " + str(strict_list_tmp / N_mol)) f.write("\nnodup_list_all " + str(nodup_list_tmp)) f.write("\nnodup_list_all " + str(nodup_list_tmp / N_mol)) f.close() if __name__ == "__main__": if len(sys.argv) < 2: raise "ERROR" smi_path = sys.argv[1] N_beam_search = 10 if len(sys.argv) >= 3: N_beam_search = int(sys.argv[2]) if "--if_full" in sys.argv: if_full = True else: if_full = False if len(sys.argv) >= 5: score_name = sys.argv[4] else: score_name = "score" save_path = smi_path.replace(smi_path.split("/")[-1], score_name) run(smi_path, save_path, N_beam_search=N_beam_search, if_full=if_full)
8,522
Python
.py
230
29.904348
93
0.590799
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,229
chemutils.py
dptech-corp_NAG2G/NAG2G/utils/chemutils.py
# Modified from https://github.com/wengong-jin/iclr19-graph2graph import rdkit.Chem as Chem from rdchiral.chiral import copy_chirality from rdkit.Chem import SanitizeMol, SanitizeFlags from rdkit.Chem.AllChem import AssignStereochemistry def canonicalize(smiles, add_atom_num=False): try: tmp = Chem.MolFromSmiles(smiles) except Exception as e: print(e) return smiles if tmp is None: print("wrong smiles: %s" % (smiles)) return smiles tmp = Chem.RemoveHs(tmp) [a.ClearProp("molAtomMapNumber") for a in tmp.GetAtoms()] smiles = Chem.MolToSmiles(tmp) if add_atom_num: mol = Chem.MolFromSmiles(smiles) for atom in mol.GetAtoms(): atom.SetAtomMapNum(atom.GetIdx() + 1) smiles = Chem.MolToSmiles(mol) return smiles else: return smiles def get_mol(smiles, sanitize=True): mol = Chem.MolFromSmiles(smiles, sanitize=sanitize) if mol is None: return None Chem.Kekulize(mol) return mol def get_smiles(mol): return Chem.MolToSmiles(mol, kekuleSmiles=True) def sanitize(mol): try: smiles = get_smiles(mol) mol = get_mol(smiles) except Exception: return None return mol def atom_equal(a1, a2): return ( a1.GetSymbol() == a2.GetSymbol() and a1.GetFormalCharge() == a2.GetFormalCharge() ) def copy_bond_dir(product, pre_react): """copy the direction of bonds from the product molecule to the predicted reactant molecules""" bond_dir_map = {} bond_stereo_map = {} for bond in product.GetBonds(): begin_atom = bond.GetBeginAtom().GetAtomMapNum() end_atom = bond.GetEndAtom().GetAtomMapNum() if bond.GetBondDir() != Chem.rdchem.BondDir.NONE: bond_dir_map[(begin_atom, end_atom)] = bond.GetBondDir() if bond.GetStereo() != Chem.rdchem.BondStereo.STEREONONE: bond_stereo_map[(begin_atom, end_atom)] = bond.GetStereo() change_mol = Chem.RWMol(pre_react) for bond in change_mol.GetBonds(): begin_atom = bond.GetBeginAtom() end_atom = bond.GetEndAtom() begin_atom_mapnum = begin_atom.GetAtomMapNum() end_atom_mapnum = end_atom.GetAtomMapNum() if begin_atom_mapnum == 0 or end_atom_mapnum == 0: continue if (end_atom_mapnum, begin_atom_mapnum) in bond_stereo_map: begin_atom_mapnum, end_atom_mapnum = end_atom_mapnum, begin_atom_mapnum if (begin_atom_mapnum, end_atom_mapnum) in bond_stereo_map: bond.SetStereo(bond_stereo_map[(begin_atom_mapnum, end_atom_mapnum)]) if (end_atom_mapnum, begin_atom_mapnum) in bond_dir_map: begin_atom_mapnum, end_atom_mapnum = end_atom_mapnum, begin_atom_mapnum if (begin_atom_mapnum, end_atom_mapnum) in bond_dir_map: bond.SetBondDir(bond_dir_map[(begin_atom_mapnum, end_atom_mapnum)]) return change_mol def add_chirality(product, pred_react): """copy the atom chirality and bond direction from the product molecule to the predicted reactant molecule""" prod_mol = Chem.MolFromSmiles(product) react_mol = Chem.MolFromSmiles(pred_react) react_atom_map = {} for atom in react_mol.GetAtoms(): mapnum = atom.GetAtomMapNum() react_atom_map[mapnum] = atom for atom in prod_mol.GetAtoms(): mapnum = atom.GetAtomMapNum() ratom = react_atom_map[mapnum] copy_chirality(atom, ratom) chiral_react_smiles = Chem.MolToSmiles(react_mol, isomericSmiles=True) react_mol = Chem.MolFromSmiles(chiral_react_smiles) change_react_mol = copy_bond_dir(prod_mol, react_mol) SanitizeMol( change_react_mol, sanitizeOps=SanitizeFlags.SANITIZE_ALL, catchErrors=False ) AssignStereochemistry( change_react_mol, cleanIt=True, force=True, flagPossibleStereoCenters=True ) chiral_react_smiles = Chem.MolToSmiles(change_react_mol, isomericSmiles=True) return chiral_react_smiles def is_sim(smile1, smile2): try: smile1 = canonicalize(smile1) smile2 = canonicalize(smile2) except: return False if smile1 == smile2: return True else: return False if __name__ == "__main__": gt_reactant = "O=C1CCC(=O)N1[Br:11].[CH3:1][Si:2]([CH3:3])([CH3:4])[O:5][C:6](=[O:7])/[CH:8]=[CH:9]/[CH3:10]" gt_product = "[CH3:1][Si:2]([CH3:3])([CH3:4])[O:5][C:6](=[O:7])/[CH:8]=[CH:9]/[CH2:10][Br:11]" from mol_graph_basic import get_canonical_smile, same_smi fake_reactant = get_canonical_smile(gt_reactant, isomericSmiles=False) pred = add_chirality(gt_product, fake_reactant) print(same_smi(gt_reactant, pred)) print(same_smi(gt_reactant, fake_reactant))
4,778
Python
.py
114
35.04386
113
0.669262
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,230
utils.py
dptech-corp_NAG2G/NAG2G/utils/utils.py
import torch import torch.nn.functional as F def softmax(x, dim: int, onnx_trace: bool = False): if onnx_trace: return F.softmax(x.float(), dim=dim) else: return F.softmax(x, dim=dim, dtype=torch.float32) def log_softmax(x, dim: int, onnx_trace: bool = False): if onnx_trace: return F.log_softmax(x.float(), dim=dim) else: return F.log_softmax(x, dim=dim, dtype=torch.float32) def get_perplexity(loss, round=2, base=2): from unicore.logging.meters import safe_round if loss is None: return 0.0 try: return safe_round(base ** loss, round) except OverflowError: return float("inf")
673
Python
.py
20
28
61
0.660494
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,231
mol_graph_basic.py
dptech-corp_NAG2G/NAG2G/utils/mol_graph_basic.py
from rdkit import Chem from rdkit.Chem import AllChem import numpy as np try: from rdkit.Chem import Draw except: print("can not import chem draw") from itertools import product from copy import deepcopy from collections import OrderedDict np.set_printoptions(threshold=np.inf) flag_kekulize = False flag_atoms_chiraltag = "new" flag_use_list = False # 22 type bond_type_list = [ Chem.rdchem.BondType.UNSPECIFIED, Chem.rdchem.BondType.SINGLE, Chem.rdchem.BondType.DOUBLE, Chem.rdchem.BondType.TRIPLE, Chem.rdchem.BondType.QUADRUPLE, Chem.rdchem.BondType.QUINTUPLE, Chem.rdchem.BondType.HEXTUPLE, Chem.rdchem.BondType.ONEANDAHALF, Chem.rdchem.BondType.TWOANDAHALF, Chem.rdchem.BondType.THREEANDAHALF, Chem.rdchem.BondType.FOURANDAHALF, Chem.rdchem.BondType.FIVEANDAHALF, Chem.rdchem.BondType.AROMATIC, Chem.rdchem.BondType.IONIC, Chem.rdchem.BondType.HYDROGEN, Chem.rdchem.BondType.THREECENTER, Chem.rdchem.BondType.DATIVEONE, Chem.rdchem.BondType.DATIVE, Chem.rdchem.BondType.DATIVEL, Chem.rdchem.BondType.DATIVER, Chem.rdchem.BondType.OTHER, Chem.rdchem.BondType.ZERO, ] chiral_type_list_1 = [ Chem.rdchem.ChiralType.CHI_UNSPECIFIED, # chirality that hasn't been specified Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CW, # tetrahedral: clockwise rotation (SMILES @@) Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CCW, # tetrahedral: counter-clockwise rotation (SMILES @) Chem.rdchem.ChiralType.CHI_OTHER, # some unrecognized type of chirality # Chem.rdchem.ChiralType.CHI_TETRAHEDRAL, # tetrahedral, use permutation flag # Chem.rdchem.ChiralType.CHI_ALLENE, # allene, use permutation flag # Chem.rdchem.ChiralType.CHI_SQUAREPLANAR, # square planar, use permutation flag # Chem.rdchem.ChiralType.CHI_TRIGONALBIPYRAMIDAL, # trigonal bipyramidal, use permutation flag # Chem.rdchem.ChiralType.CHI_OCTAHEDRAL, # octahedral, use permutation flag ] chiral_type_list = ["", "S", "R"] bond_stereo_list = [ # stereochemistry of double bonds Chem.rdchem.BondStereo.STEREONONE, # no special style Chem.rdchem.BondStereo.STEREOANY, # intentionally unspecified # -- Put any true specifications about this point so # that we can do comparisons like if(bond->getStereo()>Bond::STEREOANY) Chem.rdchem.BondStereo.STEREOZ, # Z double bond Chem.rdchem.BondStereo.STEREOE, # E double bond Chem.rdchem.BondStereo.STEREOCIS, # cis double bond Chem.rdchem.BondStereo.STEREOTRANS, # trans double bond ] def set_h_number(mol, atom_h_number): for i in range(len(atom_h_number)): for _ in range(atom_h_number[i]): atom_tmp = Chem.Atom("H") molecular_index = mol.AddAtom(atom_tmp) try: mol.AddBond(i, molecular_index, Chem.rdchem.BondType.SINGLE) except: mol.RemoveAtom(molecular_index) def get_adjacency_matrix(smiles, add_h=None): mol = Chem.MolFromSmiles(smiles) if flag_kekulize: Chem.Kekulize(mol, clearAromaticFlags=True) if add_h is True: mol = AllChem.AddHs(mol) elif add_h is False: mol = AllChem.RemoveHs(mol) adjacency_matrix = Chem.rdmolops.GetAdjacencyMatrix(mol) bond_stereo = np.zeros_like(adjacency_matrix) bond_stereo_dict = dict() for bond in mol.GetBonds(): begin_idx, end_idx = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx() bond_type = bond_type_list.index(bond.GetBondType()) adjacency_matrix[begin_idx, end_idx] = bond_type adjacency_matrix[end_idx, begin_idx] = bond_type bond_stereo_value = bond.GetStereo() bond_stereo[begin_idx, end_idx] = bond_stereo_value bond_stereo[end_idx, begin_idx] = bond_stereo_value stereo_atoms = list(bond.GetStereoAtoms()) if len(stereo_atoms) >= 2: bond_stereo_dict[(begin_idx, end_idx)] = stereo_atoms bond_stereo_dict[(end_idx, begin_idx)] = stereo_atoms atoms_map = [atom.GetAtomMapNum() for atom in mol.GetAtoms()] atoms_charge = [atom.GetFormalCharge() for atom in mol.GetAtoms()] atoms = [atom.GetSymbol() for atom in mol.GetAtoms()] atom_h_number = [atom.GetTotalNumHs() for atom in mol.GetAtoms()] if flag_atoms_chiraltag == "old": atoms_chiraltag = [ chiral_type_list_1.index(atom.GetChiralTag()) for atom in mol.GetAtoms() ] else: atoms_chiraltag = [0 for _ in range(mol.GetNumAtoms())] for i, c in Chem.FindMolChiralCenters(mol): atoms_chiraltag[i] = chiral_type_list.index(c) return { "adjacency_matrix": adjacency_matrix, "atoms": atoms, "atoms_map": atoms_map, "atoms_chiraltag": atoms_chiraltag, "atoms_charge": atoms_charge, "bond_stereo": bond_stereo, "bond_stereo_dict": bond_stereo_dict, "atom_h_number": atom_h_number, } def create_molecule_with_atoms(atoms, atoms_map, atoms_charge, atoms_chiraltag): molecule = Chem.RWMol() atom_index = [] for atom_number, atom_symbol in enumerate(atoms): atom_tmp = Chem.Atom(atom_symbol) if atoms_map is not None: atom_tmp.SetAtomMapNum(atoms_map[atom_number]) if atoms_charge is not None: atom_tmp.SetFormalCharge(atoms_charge[atom_number]) if atoms_chiraltag is not None and flag_atoms_chiraltag == "old": atom_tmp.SetChiralTag(chiral_type_list_1[atoms_chiraltag[atom_number]]) molecular_index = molecule.AddAtom(atom_tmp) atom_index.append(molecular_index) return molecule, atom_index def add_bonds_to_molecule(molecule, atom_index, adjacency_matrix, bond_type_list): for index_x, row_vector in enumerate(adjacency_matrix): for index_y, bond in enumerate(row_vector[index_x + 1 :], start=index_x + 1): if bond != 0: molecule.AddBond( atom_index[index_x], atom_index[index_y], bond_type_list[bond] ) def set_bond_stereo(molecule, bond_stereo, bond_stereo_list, bond_stereo_dict): for bond in molecule.GetBonds(): begin_idx, end_idx = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx() stereo_tmp = bond_stereo[begin_idx, end_idx] bond.SetStereo(bond_stereo_list[stereo_tmp]) if (begin_idx, end_idx) in bond_stereo_dict.keys(): stereo_atoms = bond_stereo_dict[(begin_idx, end_idx)] bond.SetStereoAtoms(stereo_atoms[0], stereo_atoms[1]) def update_molecule_property_cache(molecule): try: molecule.UpdatePropertyCache() except: pass def assign_chiral_tags( molecule, atoms_chiraltag, atom_index, chiral_type_list, flag_use_list ): trials = [ Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CCW, Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CW, ] chis = OrderedDict() for i, c in enumerate(atoms_chiraltag): if c > 0: chis.update({atom_index[i]: chiral_type_list[c]}) if chis: if flag_use_list: molecule_list = [] for prod in product(trials, repeat=len(chis)): m = deepcopy(molecule) for atIdx, chiral_tag in zip(chis.keys(), prod): m.GetAtomWithIdx(atIdx).SetChiralTag(chiral_tag) Chem.AssignStereochemistry(m) matches = [chis[atIdx] == c for atIdx, c in Chem.FindMolChiralCenters(m)] if all(matches): if flag_use_list: molecule_list.append(m) else: molecule = m break if flag_use_list: molecule = molecule_list else: Chem.AssignStereochemistry(molecule) if flag_use_list: molecule = [molecule] return molecule def get_molecule_smiles(molecule, flag_kekulize, flag_use_list, add_h): # Chem.AssignAtomChiralTagsFromStructure(molecule) # molecule = AllChem.RemoveHs(molecule) # return molecule if flag_kekulize: smiles = Chem.MolToSmiles(molecule, kekuleSmiles=True) else: # molecule = AllChem.RemoveHs(molecule) if flag_use_list: # smiles = [Chem.MolToSmiles(AllChem.RemoveHs(i)) for i in molecule] if isinstance(molecule, list): # ? molecule = [molecule] if add_h: molecule = [AllChem.AddHs(i) for i in molecule] smiles = [Chem.MolToSmiles(i) for i in molecule] else: # molecule = AllChem.RemoveHs(molecule) if add_h: molecule = AllChem.AddHs(molecule) smiles = Chem.MolToSmiles(molecule) return smiles def graph2mol( adjacency_matrix, atoms, atoms_map=None, atoms_chiraltag=None, atoms_charge=None, bond_stereo=None, bond_stereo_dict=None, atom_h_number=None, add_h=False, ): molecule, atom_index = create_molecule_with_atoms( atoms, atoms_map, atoms_charge, atoms_chiraltag ) add_bonds_to_molecule(molecule, atom_index, adjacency_matrix, bond_type_list) if bond_stereo is not None: set_bond_stereo(molecule, bond_stereo, bond_stereo_list, bond_stereo_dict) if atom_h_number is not None: set_h_number(molecule, atom_h_number) molecule = molecule.GetMol() update_molecule_property_cache(molecule) if atoms_chiraltag is not None and flag_atoms_chiraltag == "new": molecule = assign_chiral_tags( molecule, atoms_chiraltag, atom_index, chiral_type_list, flag_use_list ) smiles = get_molecule_smiles(molecule, flag_kekulize, flag_use_list, add_h) return smiles def get_InchiKey(smi): if not smi: return None try: mol = Chem.MolFromSmiles(smi) except: return None if mol is None: return None try: key = Chem.MolToInchiKey(mol) return key except: return None def judge_InchiKey(key1, key2): if key1 is None or key2 is None: return False return key1 == key2 def same_smi(smi1, smi2): key1 = get_InchiKey(smi1) if key1 is None: return False key2 = get_InchiKey(smi2) if key2 is None: return False return judge_InchiKey(key1, key2) def get_charge_dict(smiles): mol = Chem.MolFromSmiles(smiles) charge_dict = { atom.GetAtomMapNum(): atom.GetFormalCharge() for atom in mol.GetAtoms() if atom.GetAtomMapNum() != 0 } return dict(sorted(charge_dict.items())) def get_dict(path): with open(path, "r") as f: a = [i.strip() for i in f.readlines()] return a def get_canonical_smile(testsmi, isomericSmiles=True): try: mol = Chem.MolFromSmiles(testsmi) return Chem.MolToSmiles(mol, isomericSmiles=isomericSmiles) except: print("Cannot convert {} to canonical smiles") return testsmi def error(testsmi): try: mol = Chem.MolFromSmiles(testsmi) _ = Chem.MolToSmiles(mol) return True except: return False def drop_map(smiles): mol = Chem.MolFromSmiles(smiles) for atom in mol.GetAtoms(): atom.SetAtomMapNum(0) return Chem.MolToSmiles(mol) def setmap2smiles(smiles): mol = Chem.MolFromSmiles(smiles) mol = AllChem.RemoveHs(mol) [atom.SetAtomMapNum(idx + 1) for idx, atom in enumerate(mol.GetAtoms())] return Chem.MolToSmiles(mol) def test(smiles): mol = Chem.MolFromSmiles(smiles) # mol = Chem.RemoveHs(mol) # chis1 = list(Chem.FindMolChiralCenters(mol)) # print([bo.GetStereo() for bo in mol.GetBonds()]) # Draw.MolToFile(mol, "test1.png", (1000, 1000)) if flag_kekulize: Chem.Kekulize(mol, clearAromaticFlags=True) smiles_refined = Chem.MolToSmiles(mol, kekuleSmiles=True) else: if False: [a.SetAtomMapNum(0) for a in mol.GetAtoms()] smiles_refined = Chem.MolToSmiles(mol) else: smiles_refined = smiles kwargs = get_adjacency_matrix(smiles_refined, add_h=None) smiles2 = graph2mol(**kwargs) # chis2 = list(Chem.FindMolChiralCenters(mol)) # print([tuple(bo.GetStereoAtoms()) for bo in mol.GetBonds()]) # Draw.MolToFile(mol, "test2.png", (1000, 1000)) if flag_use_list: same = [same_smi(smiles_refined, i) for i in smiles2] same = True if True in same else False else: same = same_smi(smiles_refined, smiles2) if not same: print("*" * 10) print(smiles) print(smiles_refined) print(smiles2) # print(chis1, chis2) # draw_mol([smiles, smiles_refined, smiles2], "2.png") return same def test2(smiles, lis): mol = Chem.MolFromSmiles(smiles) if flag_kekulize: Chem.Kekulize(mol, clearAromaticFlags=True) atoms = [atom.GetSymbol() for atom in mol.GetAtoms()] for i in atoms: if i not in lis: print(i) return False return True
13,048
Python
.py
335
31.731343
101
0.661209
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,232
get_curve_plot.py
dptech-corp_NAG2G/NAG2G/utils/get_curve_plot.py
import numpy as np import matplotlib.pyplot as plt import os import sys def get_result(lines): count = 0 want = "" for i in lines: if "strict" in i or "nodup_list_all" in i: count += 1 if count == 10: want = want + i if count == 11: break want = want.replace("\n", " ").replace("\t", " ").replace("[", "").replace("]", "") want = [float(i) for i in want.split() if i != "" and i != "strict"] return want def get(path, save_name="a.png"): dirs = [i for i in os.listdir(path) if "checkpoint_" in i and ".pt" not in i] idx = list(range(1, 11)) x = {} for i in dirs: iters = i.split("_")[-1] if iters == "best" or iters == "last": continue path_new = os.path.join(path, i, "score") if not os.path.exists(path_new): path_new = os.path.join(path, i, "score.txt") if os.path.exists(path_new): with open(path_new, "r") as f: lines = f.readlines() x[int(iters)] = get_result(lines) x = sorted(x.items(), key = lambda kv:(kv[1], kv[0])) plt.title("retro") [print(i) for i in x] all = [i[1] for i in x] x = [i[0] for i in x] for i in range(0, len(x)): if x[i] % 10000 == 0: plt.plot(idx, all[i], label=str(x[i])) plt.xlabel("top K") plt.ylim(0, 1) plt.ylabel("hit percentage") plt.grid() plt.yticks(np.arange(0, 1.0, 0.05)) plt.legend() plt.savefig(save_name) if __name__ == "__main__": if len(sys.argv) < 2: raise "ERROR" path = sys.argv[1] get(path, save_name=path + "/a.png")
1,674
Python
.py
52
25.307692
87
0.522896
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,233
draw_img.py
dptech-corp_NAG2G/NAG2G/utils/draw_img.py
from rdkit import Chem try: from rdkit.Chem import Draw except: print("can not import chem draw") def draw_mol(smis, save_path, mols_per_row=4, img_size=(400, 400)): mols = [] for smi in smis: try: mol = Chem.MolFromSmiles(smi) except: mol = None mols.append(mol) img = Draw.MolsToGridImage( mols, molsPerRow=mols_per_row, subImgSize=img_size, legends=["" for x in mols] ) img.save(save_path)
479
Python
.py
17
22.117647
86
0.619565
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,234
graph_process.py
dptech-corp_NAG2G/NAG2G/utils/graph_process.py
from rdkit import Chem from rdkit.Chem import AllChem import numpy as np import pandas as pd import random import torch import time from tqdm import tqdm from functools import lru_cache, wraps # from scipy.sparse.csgraph import laplacian import scipy.sparse as sparse # allowable multiple choice node and edge features allowable_features = { "possible_atomic_num_list": list(range(1, 119)) + ["misc"], "possible_chirality_list": [ "CHI_UNSPECIFIED", "CHI_TETRAHEDRAL_CW", "CHI_TETRAHEDRAL_CCW", "CHI_TRIGONALBIPYRAMIDAL", "CHI_OCTAHEDRAL", "CHI_SQUAREPLANAR", "CHI_OTHER", "CHI_TETRAHEDRAL", "CHI_ALLENE", ], "possible_degree_list": list(range(99)) + ["misc"], "possible_formal_charge_list": [i - 8 for i in range(17)] + ["misc"], "possible_numH_list": [0, 1, 2, 3, 4, 5, 6, 7, 8, "misc"], "possible_number_radical_e_list": [0, 1, 2, 3, 4, "misc"], "possible_hybridization_list": [ "SP", "SP2", "SP3", "SP3D", "SP3D2", "S", "SP2D", "OTHER", "UNSPECIFIED", "misc", ], "possible_is_aromatic_list": [False, True], "possible_is_in_ring_list": [False, True], "possible_bond_type_list": [ "SINGLE", "DOUBLE", "TRIPLE", "AROMATIC", "UNSPECIFIED", "QUADRUPLE", "QUINTUPLE", "HEXTUPLE", "ONEANDAHALF", "TWOANDAHALF", "THREEANDAHALF", "FOURANDAHALF", "FIVEANDAHALF", "IONIC", "HYDROGEN", "THREECENTER", "DATIVEONE", "DATIVE", "DATIVEL", "DATIVER", "OTHER", "ZERO", "misc", ], "possible_bond_stereo_list": [ "STEREONONE", "STEREOZ", "STEREOE", "STEREOCIS", "STEREOTRANS", "STEREOANY", ], "possible_is_conjugated_list": [False, True], } def fill_adj_matrix(result): num_atoms = result["atoms"].shape[0] adj_matrix = np.full((num_atoms, num_atoms), -1, dtype=result["edge_index"].dtype) adj_matrix[result["edge_index"][0, :], result["edge_index"][1, :]] = result[ "edge_attr" ][:, 0] assert np.array_equal(adj_matrix, adj_matrix.T) return adj_matrix def laplacian_pe_2(A, k, idx_type): n = A.shape[0] assert n> k and k <= 0 degree = A.sum(axis=-1) return None, degree def list_add( degree_attn_list, seq_list, laplacian_attn_list, token, attn_adj_matrix, min_node, update_dict, max_seq_len, h_list, degree_h_attn_list, flag_atom, flag_atom_list, idx_type, ): len_seq_list = len(seq_list) if max_seq_len is not None and len_seq_list >= max_seq_len: if len_seq_list > max_seq_len: raise return seq_list.append(token) if ( attn_adj_matrix is not None and degree_attn_list is not None and laplacian_attn_list is not None ): list_add_pe( degree_attn_list, laplacian_attn_list, attn_adj_matrix, min_node, update_dict, idx_type=idx_type, ) if h_list is not None and degree_h_attn_list is not None: degree_h_attn_list.append(h_list.copy()) if flag_atom is not None and flag_atom_list is not None: flag_atom_list.append(flag_atom.copy()) def list_add_pe( degree_attn_list, laplacian_attn_list, attn_adj_matrix, min_node, update_dict, idx_type, ): if update_dict["is_A_updated"]: result, degree = laplacian_pe_2(attn_adj_matrix, min_node, idx_type=idx_type) update_dict["last_result"], update_dict["last_degree"] = result, degree update_dict["is_A_updated"] = False else: result, degree = update_dict["last_result"], update_dict["last_degree"] # degree_attn_list.append(attn_adj_matrix.sum(axis=-1)) degree_attn_list.append(degree) if min_node > 0: laplacian_attn_list.append(result) def graph2seq_process( result, class_idx, min_node, want_attn=False, want_charge_h=True, max_seq_len=None, sumto2=True, use_sep2=False, want_h_degree=False, idx_type=0, charge_h_last=False ): if charge_h_last: raise update_dict = { "is_A_updated": True, "last_result": None, "last_degree": None, } len_atoms = result["atoms"].shape[0] seq_list = [] attn_adj_matrix = None degree_attn_list = None laplacian_attn_list = None h_list = None degree_h_attn_list = None flag_atom = None flag_atom_list = None if want_attn: N_node = max(len_atoms, min_node + 2) # N_node = max(len_atoms, 250) attn_adj_matrix = np.zeros([N_node, N_node], dtype=np.float32) degree_attn_list = [] laplacian_attn_list = [] flag_atom = np.array([0] * N_node, dtype=int) flag_atom_list = [] if want_h_degree: h_list = np.array([0] * N_node, dtype=int) degree_h_attn_list = [] dict_ = { "degree_attn_list": degree_attn_list, "seq_list": seq_list, "laplacian_attn_list": laplacian_attn_list, "attn_adj_matrix": attn_adj_matrix, "min_node": min_node, "update_dict": update_dict, "max_seq_len": max_seq_len, "h_list": h_list, "degree_h_attn_list": degree_h_attn_list, "flag_atom": flag_atom, "flag_atom_list": flag_atom_list, "idx_type": idx_type, } list_add(token="[CLS]", **dict_) if class_idx is not None: list_add(token="[class{}]".format(class_idx), **dict_) adj_matrix = fill_adj_matrix(result) map_flag = True for i in range(len_atoms): if use_sep2 and map_flag and result["atoms_map"][i] == 0: map_flag = False list_add(token="[SEP2]", **dict_) if flag_atom is not None: flag_atom[i] = 1 list_add(token=result["atoms"][i], **dict_) if want_charge_h: key = allowable_features["possible_formal_charge_list"][ result["node_attr"][i][3] ] assert key != "misc" if key != 0: key = "(charge{})".format(key) list_add(token=key, **dict_) key = allowable_features["possible_numH_list"][result["node_attr"][i][4]] assert key != "misc" if key != 0: if h_list is not None and h_list[i] == 0: h_list[i] = key key = "(H{})".format(key) list_add(token=key, **dict_) if i == 0: continue gap_count = 0 for j in range(i - 1, -1, -1): if adj_matrix[i, j] == -1: gap_count += 1 else: if gap_count != 0: list_add(token="[gap{}]".format(gap_count), **dict_) gap_count = 0 key = allowable_features["possible_bond_type_list"][adj_matrix[i, j]] assert key != "misc" key = "[{}]".format(key) if want_attn: attn_adj_matrix[i, j] = 1 attn_adj_matrix[j, i] = 1 update_dict["is_A_updated"] = True list_add(token=key, **dict_) list_add(token="[SEP]", **dict_) if want_attn: node_in_list = ["[" not in i and "(" not in i for i in seq_list] flag_atom_list = np.stack(flag_atom_list) degree_attn_list = np.stack(degree_attn_list) + flag_atom_list if want_h_degree: degree_h_attn_list = np.stack(degree_h_attn_list) degree_attn_list = degree_attn_list + degree_h_attn_list degree_attn_list = degree_attn_list[:, : sum(node_in_list)] degree_attn_mask = np.zeros([len(seq_list), len(seq_list)]) degree_attn_mask[:, node_in_list] = degree_attn_list if min_node > 0: laplacian_attn_list = np.stack(laplacian_attn_list) laplacian_attn_list[flag_atom_list == 0] = 0 laplacian_attn_list = laplacian_attn_list[:, : sum(node_in_list)] laplacian_attn_mask = np.zeros([len(seq_list), len(seq_list), min_node * 2]) laplacian_attn_mask[:, node_in_list, :] = laplacian_attn_list laplacian_attn_mask = torch.tensor(laplacian_attn_mask, dtype=torch.float) if sumto2: laplacian_attn_mask = laplacian_attn_mask.reshape( len(seq_list), len(seq_list), 2, min_node ).sum(dim=-1) else: laplacian_attn_mask = None return { "seq": seq_list, "degree_attn_mask": torch.tensor(degree_attn_mask).long(), "laplacian_attn_mask": laplacian_attn_mask, } else: return { "seq": seq_list, } def seq2graph( seq_list, min_node=None, result=None, want_attn=False, ): if want_attn: raise atoms = [i for i in seq_list if "[" not in i and "(" not in i] atoms_charge = np.array([0 for _ in atoms]) atoms_h = np.array([0 for _ in atoms]) atoms = np.array(atoms) len_atoms = atoms.shape[0] adj_matrix = (np.ones([len_atoms, len_atoms]) * (-1)).astype(np.int32) i = -1 j = -1 for k in seq_list: if (k in ["[CLS]", "[PAD]", "[UNK]", "[SEP2]"]) or ("class" in k): pass elif k in ["[SEP]"]: break elif "[" not in k and "(" not in k: i += 1 j = i - 1 elif "(charge" in k: key = int(k[7:-1]) if i >= 0 and atoms_charge[i] == 0: atoms_charge[i] = key elif "(H" in k: key = int(k[2:-1]) if i >= 0 and atoms_h[i] == 0: atoms_h[i] = key elif "gap" in k: j -= int(k[4:-1]) else: bond_type_value = allowable_features["possible_bond_type_list"].index( k[1:-1] ) if i >= 0 and j >= 0: adj_matrix[i, j] = bond_type_value adj_matrix[j, i] = bond_type_value j -= 1 if result is not None: assert (result["atoms"] == atoms).all() assert (adj_matrix == fill_adj_matrix(result)).all() atoms_charge_tmp = np.array( [ allowable_features["possible_formal_charge_list"].index(i) for i in atoms_charge ] ) atoms_h_tmp = np.array( [allowable_features["possible_numH_list"].index(i) for i in atoms_h] ) assert (atoms_charge_tmp == result["node_attr"][:, 3]).all() assert (atoms_h_tmp == result["node_attr"][:, 4]).all() return_dict = { "atoms": atoms, "adj_matrix": adj_matrix, "atoms_charge": atoms_charge, "atoms_h": atoms_h, } return return_dict def process_one(smiles): mol = Chem.MolFromSmiles(smiles) atoms = np.array([x.GetSymbol() for x in mol.GetAtoms()]) atoms_map = np.array([x.GetAtomMapNum() for x in mol.GetAtoms()]) node_attr, edge_index, edge_attr = get_graph(mol) return { "atoms": atoms, "atoms_map": atoms_map, "smi": smiles, "node_attr": node_attr, "edge_index": edge_index, "edge_attr": edge_attr, } def safe_index(l, e): """ Return index of element e in list l. If e is not present, return the last index """ try: return l.index(e) except: print(l, e) # raise return len(l) - 1 def atom_to_feature_vector(atom): """ Converts rdkit atom object to feature list of indices :param mol: rdkit atom object :return: list """ atom_feature = [ safe_index(allowable_features["possible_atomic_num_list"], atom.GetAtomicNum()), allowable_features["possible_chirality_list"].index(str(atom.GetChiralTag())), safe_index(allowable_features["possible_degree_list"], atom.GetTotalDegree()), safe_index( allowable_features["possible_formal_charge_list"], atom.GetFormalCharge() ), safe_index(allowable_features["possible_numH_list"], atom.GetTotalNumHs()), safe_index( allowable_features["possible_number_radical_e_list"], atom.GetNumRadicalElectrons(), ), safe_index( allowable_features["possible_hybridization_list"], str(atom.GetHybridization()), ), allowable_features["possible_is_aromatic_list"].index(atom.GetIsAromatic()), allowable_features["possible_is_in_ring_list"].index(atom.IsInRing()), ] return atom_feature def bond_to_feature_vector(bond): """ Converts rdkit bond object to feature list of indices :param mol: rdkit bond object :return: list """ bond_feature = [ safe_index( allowable_features["possible_bond_type_list"], str(bond.GetBondType()) ), allowable_features["possible_bond_stereo_list"].index(str(bond.GetStereo())), allowable_features["possible_is_conjugated_list"].index(bond.GetIsConjugated()), ] return bond_feature def get_graph(mol): """ Converts SMILES string to graph Data object :input: SMILES string (str) :return: graph object """ atom_features_list = [] for atom in mol.GetAtoms(): atom_features_list.append(atom_to_feature_vector(atom)) x = np.array(atom_features_list, dtype=np.int32) # bonds num_bond_features = 3 # bond type, bond stereo, is_conjugated if len(mol.GetBonds()) > 0: # mol has bonds edges_list = [] edge_features_list = [] for bond in mol.GetBonds(): i = bond.GetBeginAtomIdx() j = bond.GetEndAtomIdx() edge_feature = bond_to_feature_vector(bond) # add edges in both directions edges_list.append((i, j)) edge_features_list.append(edge_feature) edges_list.append((j, i)) edge_features_list.append(edge_feature) # data.edge_index: Graph connectivity in COO format with shape [2, num_edges] edge_index = np.array(edges_list, dtype=np.int32).T # data.edge_attr: Edge feature matrix with shape [num_edges, num_edge_features] edge_attr = np.array(edge_features_list, dtype=np.int32) else: # mol has no bonds edge_index = np.empty((2, 0), dtype=np.int32) edge_attr = np.empty((0, num_bond_features), dtype=np.int32) return x, edge_index, edge_attr def shuffle_graph_process(result, list_=None): if list_ is None: list_ = [i for i in range(result["atoms"].shape[0])] random.shuffle(list_) result["atoms"] = result["atoms"][list_] result["atoms_map"] = result["atoms_map"][list_] result["node_attr"] = result["node_attr"][list_] list_reverse = {i: idx for idx, i in enumerate(list_)} for i in range(result["edge_index"].shape[0]): for j in range(result["edge_index"].shape[1]): result["edge_index"][i, j] = list_reverse[result["edge_index"][i, j]] return result
15,340
Python
.py
449
25.824053
88
0.56205
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,235
save_config.py
dptech-corp_NAG2G/NAG2G/utils/save_config.py
import configparser list_ = [ "batch_size", "batch_size_valid", "data", "tensorboard_logdir", "bf16", "num_workers", "required_batch_size_multiple", "valid_subset", "label_prob", "mid_prob", "mid_upper", "mid_lower", "plddt_loss_weight", "pos_loss_weight", "shufflegraph", "infer_save_name", "decoder_attn_from_loader", "infer_step", "config_file", "path", "results_path", "beam_size", "search_strategies", "len_penalty", "temperature", "beam_size_second", "beam_head_second", "nprocs_per_node", "data_buffer_size", "distributed_rank", "distributed_port", "distributed_world_size", "distributed_backend", "distributed_init_method", "distributed_no_spawn", "lr_shrink" ] def add_config_save_args(parser): parser.add_argument( "--config_file", type=str, default="", help="Path to configuration file", ) def save_config(args): save_path = args.config_file if save_path == "": return args_dict = vars(args) args_dict = {k: str(v) for k, v in args_dict.items()} config = configparser.ConfigParser() config.read_dict({"DEFAULT": args_dict}) with open(save_path, "w") as f: config.write(f) def read_config(args): if args.config_file != "": config = configparser.ConfigParser() config.read(args.config_file) for arg in vars(args): if arg in list_: continue value = config["DEFAULT"].get(arg) if arg == "noise_scale": value = 0.0 type_arg = type(getattr(args, arg)) if type_arg == type(None): if arg in [ "log_format", "distributed_init_method", "path", "results_path", ]: type_arg = type("abc") elif arg in [ "fp16_scale_window", "batch_size", "fixed_validation_seed", "batch_size_valid", "max_valid_steps", "force_anneal", ]: type_arg = type(123) elif arg in ["threshold_loss_scale"]: type_arg = type(1.2) else: raise if value is not None and value != "None": # print(arg, type_arg, value) if type_arg == type(True): if value == "True": setattr(args, arg, True) elif value == "False": setattr(args, arg, False) else: setattr(args, arg, type_arg(value)) return args
2,862
Python
.py
98
18.979592
57
0.492017
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,236
new_multihead_attention.py
dptech-corp_NAG2G/NAG2G/decoder/new_multihead_attention.py
from typing import Dict, Optional import torch from torch import Tensor, nn from unicore.modules import softmax_dropout class NewSelfMultiheadAttention(nn.Module): def __init__( self, embed_dim, num_heads, dropout=0.1, bias=True, scaling_factor=1, reduced_head_dim=4, q_reduced_before=False, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert ( self.head_dim * num_heads == self.embed_dim ), "embed_dim must be divisible by num_heads" self.scaling = (self.head_dim * scaling_factor) ** -0.5 self.reduced_head_dim = reduced_head_dim self.q_reduced_before = q_reduced_before if self.q_reduced_before: self.reduced_head_dim_proj = nn.Linear(embed_dim, self.num_heads * self.reduced_head_dim, bias=bias) else: self.reduced_head_dim_proj = nn.Linear(self.head_dim, self.reduced_head_dim, bias=bias) self.in_proj = nn.Linear(embed_dim, embed_dim * 3, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def forward( self, query, k_dynamic_T: Optional[Tensor] = None, key_padding_mask: Optional[Tensor] = None, attn_bias: Optional[Tensor] = None, return_attn: bool = False, ) -> Tensor: bsz, tgt_len, embed_dim = query.size() assert embed_dim == self.embed_dim q, k, v = self.in_proj(query).chunk(3, dim=-1) if k_dynamic_T is not None and self.q_reduced_before: # q_reduced = self.reduced_head_dim_proj(q) q_reduced = self.reduced_head_dim_proj(query) q_reduced = ( q_reduced.view(bsz, tgt_len, self.num_heads, self.reduced_head_dim) .transpose(1, 2) .contiguous() .view(-1, self.reduced_head_dim).unsqueeze(1) ) q = ( q.view(bsz, tgt_len, self.num_heads, self.head_dim) .transpose(1, 2) .contiguous() .view(bsz * self.num_heads, -1, self.head_dim) ) if k_dynamic_T is not None: # [batchsize * h, tgt_len, head_dim] -> [batchsize * h * tgt_len, 1, reduced_head_dim] if not self.q_reduced_before: q_reduced = self.reduced_head_dim_proj(q).view(-1, self.reduced_head_dim).unsqueeze(1) attn_weights_dynamic = torch.bmm(q_reduced, k_dynamic_T).view(-1, tgt_len, tgt_len) q = q * self.scaling if k is not None: k = ( k.view(bsz, -1, self.num_heads, self.head_dim) .transpose(1, 2) .contiguous() .view(bsz * self.num_heads, -1, self.head_dim) ) if v is not None: v = ( v.view(bsz, -1, self.num_heads, self.head_dim) .transpose(1, 2) .contiguous() .view(bsz * self.num_heads, -1, self.head_dim) ) assert k is not None src_len = k.size(1) # This is part of a workaround to get around fork/join parallelism # not supporting Optional types. if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len attn_weights = torch.bmm(q, k.transpose(1, 2)) if k_dynamic_T is not None: attn_weights = attn_weights + attn_weights_dynamic assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if key_padding_mask is not None: # don't attend to padding symbols attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights.masked_fill_( key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf") ) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if not return_attn: attn = softmax_dropout( attn_weights, self.dropout, self.training, bias=attn_bias, ) else: attn_weights += attn_bias attn = softmax_dropout( attn_weights, self.dropout, self.training, inplace=False, ) o = torch.bmm(attn, v) assert list(o.size()) == [bsz * self.num_heads, tgt_len, self.head_dim] o = ( o.view(bsz, self.num_heads, tgt_len, self.head_dim) .transpose(1, 2) .contiguous() .view(bsz, tgt_len, embed_dim) ) o = self.out_proj(o) if not return_attn: return o else: return o, attn_weights, attn
5,017
Python
.py
120
30.5
112
0.552184
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,237
transformer_decoder.py
dptech-corp_NAG2G/NAG2G/decoder/transformer_decoder.py
# Copyright (c) DP Technology. # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from unicore.modules import LayerNorm from unicore.modules.transformer_encoder import relative_position_bucket from . import TransformerDecoderLayer def fill_with_neg_inf(t): return t.fill_(float("-inf")) def bulid_future_mask(seq_len): return torch.triu( fill_with_neg_inf(torch.zeros([seq_len, seq_len])), 1 ) class TransformerDecoder(nn.Module): def __init__( self, decoder_layers: int = 6, embed_dim: int = 768, ffn_embed_dim: int = 3072, attention_heads: int = 8, emb_dropout: float = 0.1, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.0, max_seq_len: int = 256, activation_fn: str = "gelu", rel_pos: bool = True, rel_pos_bins: int = 32, max_rel_pos: int = 128, post_ln: bool = False, auto_regressive: bool = True, reduced_head_dim = 4, q_reduced_before = False, want_emb_k_dynamic_proj = False, want_emb_k_dynamic_dropout = True, ) -> None: super().__init__() self.emb_dropout = emb_dropout self.max_seq_len = max_seq_len self.embed_dim = embed_dim self.attention_heads = attention_heads self.emb_layer_norm = LayerNorm(self.embed_dim) self.auto_regressive = auto_regressive if self.auto_regressive: self._future_mask = bulid_future_mask(self.max_seq_len) else: self._future_mask = None if not post_ln: self.final_layer_norm = LayerNorm(self.embed_dim) else: self.final_layer_norm = None self.reduced_head_dim = reduced_head_dim self.k_dynamic_scaling = self.reduced_head_dim ** -0.5 self.emb_k_dynamic_layer_norm = LayerNorm(self.attention_heads * self.reduced_head_dim) self.want_emb_k_dynamic_dropout = want_emb_k_dynamic_dropout self.want_emb_k_dynamic_proj = want_emb_k_dynamic_proj if self.want_emb_k_dynamic_proj: self.emb_k_dynamic_proj = nn.Linear(self.attention_heads * reduced_head_dim, self.attention_heads * reduced_head_dim, bias=True) self.layers = nn.ModuleList( [ TransformerDecoderLayer( embed_dim=self.embed_dim, ffn_embed_dim=ffn_embed_dim, attention_heads=attention_heads, dropout=dropout, attention_dropout=attention_dropout, activation_dropout=activation_dropout, activation_fn=activation_fn, post_ln=post_ln, reduced_head_dim=self.reduced_head_dim, q_reduced_before=q_reduced_before ) for _ in range(decoder_layers) ] ) self.rel_pos = rel_pos if self.rel_pos: assert rel_pos_bins % 2 == 0 self.rel_pos_bins = rel_pos_bins self.max_rel_pos = max_rel_pos self.relative_attention_bias = nn.Embedding( self.rel_pos_bins, self.attention_heads) seq_len = self.max_seq_len context_position = torch.arange(seq_len, dtype=torch.long)[:, None] memory_position = torch.arange(seq_len, dtype=torch.long)[None, :] relative_position = memory_position - context_position self.rp_bucket = relative_position_bucket( relative_position, num_buckets=self.rel_pos_bins, max_distance=self.max_rel_pos ) self.rp_bucket -= self.rp_bucket.min() def get_rel_pos_bias(self, x): # Assume the input is ordered. If your input token is permuted, you may need to update this accordingly if self.rp_bucket.device != x.device: self.rp_bucket = self.rp_bucket.to(x.device) seq_len = x.size(1) rp_bucket = self.rp_bucket[:seq_len, :seq_len] values = F.embedding(rp_bucket, self.relative_attention_bias.weight) values = values.permute([2, 0, 1]) return values.contiguous() def get_future_mask(self, x, attn_mask): if not self.auto_regressive: return attn_mask if self._future_mask.device != x.device: self._future_mask = self._future_mask.to(x.device) if self._future_mask.dtype != x.dtype: self._future_mask = self._future_mask.type_as(x) if attn_mask is None: ret = self._future_mask[:x.size(1), :x.size(1)] ret = ret.contiguous().unsqueeze(0).repeat( x.size(0)*self.attention_heads, 1, 1) return ret else: assert list(attn_mask.size()) == [x.size( 0) * self.attention_heads, x.size(1), x.size(1)] return attn_mask + self._future_mask[:x.size(1), :x.size(1)] def forward( self, emb, emb_k_dynamic: Optional[torch.Tensor] = None, encoder_out: Optional[torch.Tensor] = None, padding_mask: Optional[torch.Tensor] = None, encoder_padding_mask: Optional[torch.Tensor] = None, attn_mask: Optional[torch.Tensor] = None, encoder_attn_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: seq_len = emb.size(1) x = self.emb_layer_norm(emb) x = F.dropout(x, p=self.emb_dropout, training=self.training) # account for padding while computing the representation if padding_mask is not None: x = x * (1 - padding_mask.unsqueeze(-1).type_as(x)) if emb_k_dynamic is not None: bsz = emb_k_dynamic.shape[0] emb_k_dynamic = self.emb_k_dynamic_layer_norm(emb_k_dynamic) if self.want_emb_k_dynamic_dropout: emb_k_dynamic = F.dropout(emb_k_dynamic, p=self.emb_dropout, training=self.training) if self.want_emb_k_dynamic_proj: emb_k_dynamic = self.emb_k_dynamic_proj(emb_k_dynamic) # [batchsize, n, n, head_dim * reduced_head_dim] -> [batchsize * h * seq_len, seq_len, reduced_head_dim] emb_k_dynamic = ( emb_k_dynamic.view(bsz, seq_len, seq_len, self.attention_heads, self.reduced_head_dim) .permute(0,3,1,2,4) .contiguous() .view(bsz * self.attention_heads * seq_len, seq_len, self.reduced_head_dim) .transpose(1,2) ) * self.k_dynamic_scaling rel_pos_bias = self.get_rel_pos_bias(x).repeat( x.size(0), 1, 1) if self.rel_pos else None if attn_mask is None: attn_mask = rel_pos_bias elif rel_pos_bias is not None: attn_mask += rel_pos_bias if self.auto_regressive: attn_mask = self.get_future_mask(x, attn_mask) if attn_mask is not None and padding_mask is not None: # merge key_padding_mask and attn_mask attn_mask = attn_mask.view(x.size(0), -1, seq_len, seq_len) attn_mask.masked_fill_( padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), float("-inf") ) attn_mask = attn_mask.view(-1, seq_len, seq_len) padding_mask = None for layer in self.layers: x = layer(x, k_dynamic_T=emb_k_dynamic, encoder_out=encoder_out, padding_mask=padding_mask, attn_bias=attn_mask, encoder_padding_mask=encoder_padding_mask, encoder_attn_bias=encoder_attn_mask) if self.final_layer_norm is not None: x = self.final_layer_norm(x) return x
7,986
Python
.py
176
34.454545
140
0.590366
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,238
transformer_decoder_layer.py
dptech-corp_NAG2G/NAG2G/decoder/transformer_decoder_layer.py
# Copyright (c) DP Technology. # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, Optional import torch import torch.nn.functional as F from unicore import utils from torch import nn from unicore.modules import LayerNorm, SelfMultiheadAttention, CrossMultiheadAttention from . import NewSelfMultiheadAttention class TransformerDecoderLayer(nn.Module): """ Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained models. """ def __init__( self, embed_dim: int = 768, ffn_embed_dim: int = 3072, attention_heads: int = 8, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.0, activation_fn: str = "gelu", post_ln = False, reduced_head_dim=4, q_reduced_before=False, ) -> None: super().__init__() # Initialize parameters self.embed_dim = embed_dim self.attention_heads = attention_heads self.attention_dropout = attention_dropout self.dropout = dropout self.activation_dropout = activation_dropout self.activation_fn = utils.get_activation_fn(activation_fn) self.self_attn = NewSelfMultiheadAttention( self.embed_dim, attention_heads, dropout=attention_dropout, reduced_head_dim=reduced_head_dim, q_reduced_before=q_reduced_before ) # layer norm associated with the self attention layer self.self_attn_layer_norm = LayerNorm(self.embed_dim) self.encoder_attn = CrossMultiheadAttention( self.embed_dim, attention_heads, dropout=attention_dropout, ) # layer norm associated with the self attention layer self.encoder_attn_layer_norm = LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, ffn_embed_dim) self.fc2 = nn.Linear(ffn_embed_dim, self.embed_dim) self.final_layer_norm = LayerNorm(self.embed_dim) self.post_ln = post_ln def forward( self, x: torch.Tensor, k_dynamic_T: Optional[torch.Tensor] = None, encoder_out:torch.Tensor=None, attn_bias: Optional[torch.Tensor] = None, padding_mask: Optional[torch.Tensor] = None, encoder_attn_bias: Optional[torch.Tensor] = None, encoder_padding_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ LayerNorm is applied either before or after the self-attention/ffn modules similar to the original Transformer implementation. """ residual = x if not self.post_ln: x = self.self_attn_layer_norm(x) # new added x = self.self_attn( query=x, k_dynamic_T=k_dynamic_T, key_padding_mask=padding_mask, attn_bias=attn_bias, ) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x if self.post_ln: x = self.self_attn_layer_norm(x) if encoder_out is not None: residual = x if not self.post_ln: x = self.encoder_attn_layer_norm(x) x = self.encoder_attn( query=x, key=encoder_out, value=encoder_out, key_padding_mask=encoder_padding_mask, attn_bias=encoder_attn_bias, ) #x = self.dropout_module(x) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x if self.post_ln: x = self.encoder_attn_layer_norm(x) residual = x if not self.post_ln: x = self.final_layer_norm(x) x = self.fc1(x) x = self.activation_fn(x) x = F.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = F.dropout(x, p=self.dropout, training=self.training) x = residual + x if self.post_ln: x = self.final_layer_norm(x) return x
4,261
Python
.py
114
28.026316
86
0.605627
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,239
__init__.py
dptech-corp_NAG2G/NAG2G/decoder/__init__.py
from .new_multihead_attention import NewSelfMultiheadAttention from .transformer_decoder_layer import TransformerDecoderLayer from .transformer_decoder import TransformerDecoder
178
Python
.py
3
58.333333
62
0.902857
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,240
init_method.py
dptech-corp_NAG2G/NAG2G/modules/init_method.py
from torch.nn.init import xavier_uniform_ def init_xavier_params(module): for p in module.parameters(): if p.dim() > 1: xavier_uniform_(p) for p in module.parameters(): if p.dim() > 1: xavier_uniform_(p)
254
Python
.py
8
24.5
41
0.594262
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,241
heads.py
dptech-corp_NAG2G/NAG2G/modules/heads.py
import torch import torch.nn as nn import torch.nn.functional as F from unicore import utils from unicore.modules import LayerNorm import logging logger = logging.getLogger(__name__) class MaskLMHead(nn.Module): """Head for masked language modeling.""" def __init__(self, embed_dim, output_dim, activation_fn, weight=None): super().__init__() self.dense = nn.Linear(embed_dim, embed_dim) self.activation_fn = utils.get_activation_fn(activation_fn) self.layer_norm = LayerNorm(embed_dim) if weight is None: weight = nn.Linear(embed_dim, output_dim, bias=False).weight self.weight = weight self.bias = nn.Parameter(torch.zeros(output_dim)) def forward(self, features, masked_tokens=None, **kwargs): # Only project the masked tokens while training, # saves both memory and computation if masked_tokens is not None: features = features[masked_tokens, :] x = self.dense(features) x = self.activation_fn(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = F.linear(x, self.weight) + self.bias return x class ClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__( self, input_dim, inner_dim, num_classes, activation_fn, pooler_dropout, ): super().__init__() self.dense = nn.Linear(input_dim, inner_dim) self.activation_fn = utils.get_activation_fn(activation_fn) self.dropout = nn.Dropout(p=pooler_dropout) self.out_proj = nn.Linear(inner_dim, num_classes) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = self.activation_fn(x) x = self.dropout(x) x = self.out_proj(x) return x class NonLinearHead(nn.Module): """Head for simple classification tasks.""" def __init__( self, input_dim, out_dim, activation_fn, hidden=None, ): super().__init__() hidden = input_dim if not hidden else hidden self.linear1 = nn.Linear(input_dim, hidden) self.linear2 = nn.Linear(hidden, out_dim) self.activation_fn = utils.get_activation_fn(activation_fn) def forward(self, x): x = self.linear1(x) x = self.activation_fn(x) x = self.linear2(x) return x
2,550
Python
.py
71
28.323944
74
0.617946
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,242
attn_bias_layer.py
dptech-corp_NAG2G/NAG2G/modules/attn_bias_layer.py
import torch import torch.nn as nn from functools import lru_cache import numpy as np import time @lru_cache(maxsize=2) def laplacian_pe_batch(A, k, idx_type=0): assert len(A.shape) == 3 B, n, _ = A.shape assert n > k and k <= 0 degree = A.sum(axis=-1) return None, degree class seq2attn: # (nn.Module): def __init__(self, min_node, sumto2, dictionary=None, want_h_degree=False, idx_type=0, use_class=False): self.min_node = min_node self.sumto2 = sumto2 self.dictionary = dictionary assert dictionary is not None self.get_token_indexs(dictionary) self.want_h_degree = want_h_degree self.idx_type = idx_type self.use_class = use_class def get_token_indexs(self, dictionary): token_categories = { "special": ["[CLS]", "[PAD]", "[UNK]", "[SEP]"], "charge": ["(charge"], "hydrogen": ["(H"], "sep2": ["[SEP2]"], "gap": ["[gap"], "react_class": ["[class"], "bond": ["["], "atom": [""], } for category in token_categories.keys(): setattr(self, category, []) for k, v in dictionary.indices.items(): for category, tokens in token_categories.items(): if any(token in k for token in tokens): getattr(self, category).append(v) break for category in token_categories.keys(): category_list = getattr(self, category) if category_list: assert max(category_list) - min(category_list) + 1 == len(category_list) setattr(self, category, [min(category_list), max(category_list)]) else: raise def new_status_get(self, seq, i_j, attn_adj_matrix, h_degree): k = seq[:, -1].detach().cpu().numpy() flag_atom = np.logical_and(self.atom[0] <= k, k <= self.atom[1]) i_j[flag_atom, 1] = i_j[flag_atom, 0] i_j[flag_atom, 0] = i_j[flag_atom, 0] + 1 flag_gap = np.logical_and(self.gap[0] <= k, k <= self.gap[1]) i_j[flag_gap, 1] -= k[flag_gap] - self.gap[0] + 1 flag_bond = np.logical_and(self.bond[0] <= k, k <= self.bond[1]) flag_bond2 = np.logical_and(i_j[:, 0] >= 0, i_j[:, 1] >= 0) flag_bond = np.logical_and(flag_bond, flag_bond2) attn_adj_matrix[flag_bond, i_j[flag_bond, 0], i_j[flag_bond, 1]] = 1 attn_adj_matrix[flag_bond, i_j[flag_bond, 1], i_j[flag_bond, 0]] = 1 i_j[flag_bond, 1] -= 1 flag_h = np.logical_and(self.hydrogen[0] <= k, k <= self.hydrogen[1]) flag_h2 = np.logical_and( i_j[:, 0] >= 0, h_degree[np.arange(k.shape[0]), i_j[:, 0]] == 0 ) flag_h = np.logical_and(flag_h, flag_h2) h_degree[flag_h, i_j[flag_h, 0]] = k[flag_h] - self.hydrogen[0] def update_status(self, seq, idx, N_node): device = seq.device seq_shape_0 = seq.shape[0] if seq.shape[1] == 1 or (seq.shape[1] == 2 and self.use_class is True): i_j = np.full((seq_shape_0, 2), -1, dtype=np.int32) attn_adj_matrix = np.zeros([seq_shape_0, N_node, N_node]) h_degree = np.zeros([seq_shape_0, N_node]) else: i_j = self.i_j[idx] attn_adj_matrix = self.attn_adj_matrix[idx] h_degree = self.h_degree[idx] if N_node > attn_adj_matrix.shape[1]: attn_adj_matrix = np.pad( attn_adj_matrix, ( (0, 0), (0, N_node - attn_adj_matrix.shape[1]), (0, N_node - attn_adj_matrix.shape[2]), ), mode="constant", ) h_degree = np.pad( h_degree, ((0, 0), (0, N_node - h_degree.shape[1])), mode="constant" ) self.new_status_get(seq, i_j, attn_adj_matrix, h_degree) self.i_j = i_j self.attn_adj_matrix = attn_adj_matrix self.h_degree = h_degree return torch.tensor( attn_adj_matrix, device=device, dtype=torch.float ), torch.tensor(h_degree, device=device, dtype=torch.float) def set_attn_bias(self, seq, idx_list): seq_shape = seq.shape device = seq.device degree_attn_mask = torch.zeros( [seq_shape[0], seq_shape[1], seq_shape[1]], device=device ) laplacian_attn_mask = None if self.min_node > 0: if self.sumto2: laplacian_attn_mask = torch.zeros( [seq_shape[0], seq_shape[1], seq_shape[1], 2], device=device ) else: laplacian_attn_mask = torch.zeros( [seq_shape[0], seq_shape[1], seq_shape[1], 2 * self.min_node], device=device, ) if idx_list is not None: degree_attn_mask[:, :-1, :-1] = self.current_degree_attn_mask[idx_list] if laplacian_attn_mask is not None: laplacian_attn_mask[:, :-1, :-1] = self.current_laplacian_attn_mask[ idx_list ] return degree_attn_mask, laplacian_attn_mask def forward(self, seq): # start = time.time() seq_tmp = seq.cpu().detach().numpy().tolist() idx_list = None if seq.shape[1] > 2 or (seq.shape[1] > 1 and self.use_class is False): idx_list = [ self.current_seq.index(hash(str(seq_tmp[i][:-1]))) for i in range(seq.shape[0]) ] self.current_seq = [hash(str(seq_tmp[i])) for i in range(seq.shape[0])] node_in_list = (seq >= self.atom[0]) & (seq <= self.atom[1]) len_atoms = node_in_list.sum(-1) N_node = max(len_atoms.max().item(), self.min_node + 2) # N_node = max(len_atoms.max().item(), 250) batch_attn_adj_matrix, h_degree = self.update_status(seq, idx_list, N_node) laplacian_attn_list, degree_attn_list = laplacian_pe_batch( batch_attn_adj_matrix, self.min_node, idx_type=self.idx_type ) degree_attn_list = degree_attn_list + 1 if self.want_h_degree: degree_attn_list = degree_attn_list + h_degree if self.min_node > 0 and self.sumto2: laplacian_attn_list = laplacian_attn_list.reshape( laplacian_attn_list.shape[0], laplacian_attn_list.shape[1], 2, self.min_node, ).sum(dim=-1) degree_attn_mask, laplacian_attn_mask = self.set_attn_bias(seq, idx_list) degree_tmp = torch.cat( [degree_attn_list[i, : len_atoms[i]] for i in range(seq.shape[0])], 0 ) degree_attn_mask[:, -1][node_in_list] = degree_tmp flag_pad = seq[:, -1] == self.dictionary.pad() degree_attn_mask[flag_pad, -1] = 0 self.current_degree_attn_mask = degree_attn_mask if self.min_node > 0: laplacian_tmp = torch.cat( [laplacian_attn_list[i, : len_atoms[i]] for i in range(seq.shape[0])], 0 ) laplacian_attn_mask[:, -1][node_in_list] = laplacian_tmp laplacian_attn_mask[flag_pad, -1] = 0 self.current_laplacian_attn_mask = laplacian_attn_mask return { "decoder_degree_attn_mask": degree_attn_mask.long(), "decoder_laplacian_attn_mask": laplacian_attn_mask, } def forward_train(self, seq): for i in range(1, seq.shape[1]): _ = self.forward(seq[:, :i]) result = self.forward(seq) return result
7,731
Python
.py
173
33.219653
108
0.530591
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,243
__init__.py
dptech-corp_NAG2G/NAG2G/modules/__init__.py
from .init_method import init_xavier_params from .heads import MaskLMHead, ClassificationHead, NonLinearHead from .freeze_network import freeze_network from .attn_bias_layer import seq2attn
190
Python
.py
4
46.5
64
0.854839
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,244
NAG2G.py
dptech-corp_NAG2G/NAG2G/losses/NAG2G.py
import math import torch import torch.nn.functional as F from unicore import metrics, utils from unicore.losses import UnicoreLoss, register_loss import torch.nn as nn import torch.distributed as dist def get_loss(logits_decoder, decoder_target, padding_idx): decoder_target = decoder_target[:, 1:] logits_decoder = logits_decoder[:, :-1] decode_tokens = decoder_target.ne(padding_idx) decoder_sample_size = decode_tokens.long().sum() decoder_loss = F.nll_loss( F.log_softmax( logits_decoder[decode_tokens], dim=-1, dtype=torch.float32), decoder_target[decode_tokens].view(-1), ignore_index=padding_idx, reduction='mean', ) decoder_pred = torch.argmax( logits_decoder[decode_tokens], dim=-1) decoder_hit = (decoder_pred == decoder_target[decode_tokens]).long().sum() decoder_cnt = decoder_sample_size acc_sentence_count = [] for i in range(decoder_target.shape[0]): decoder_cnt_per_sen = decode_tokens[i].long().sum() decoder_pred_per_sen = torch.argmax( logits_decoder[i][decode_tokens[i]], dim=-1) decoder_hit_per_sen = (decoder_pred_per_sen == decoder_target[i][decode_tokens[i]]).long().sum() acc_sentence_count.append(decoder_hit_per_sen == decoder_cnt_per_sen) acc_sentence_count = (sum(acc_sentence_count), len(acc_sentence_count)) return decoder_loss, decoder_hit, decoder_cnt, acc_sentence_count @register_loss("NAG2GF") class NAG2GFLoss(UnicoreLoss): def __init__(self, task): super().__init__(task) self.padding_idx = task.dictionary.pad() def forward(self, model, sample, reduce=True): def inner_forward(input_key='net_input', target_key='target'): logits_encoder, logits_decoder, cl_out, vae_kl_loss = model( **sample[input_key], features_only=True) loss = torch.tensor(0.0) logging_output = { "sample_size": 1, "bsz": sample[input_key]['src_tokens'].size(0), "seq_len": sample[input_key]['src_tokens'].size(1) * sample[input_key]['src_tokens'].size(0), } if logits_decoder is not None: decoder_target = sample[input_key]['decoder_src_tokens'] decoder_loss, decoder_hit, decoder_cnt, acc_sentence_count = get_loss( logits_decoder, decoder_target, self.padding_idx) loss = decoder_loss * self.args.decoder_loss logging_output = { "sample_size": 1, "bsz": sample[input_key]['src_tokens'].size(0), "seq_len": sample[input_key]['src_tokens'].size(1) * sample[input_key]['src_tokens'].size(0), "decoder_loss": decoder_loss.data, "decoder_hit": decoder_hit.data, "decoder_cnt": decoder_cnt.data, "acc_sentence_hit": acc_sentence_count[0], "acc_sentence_cnt": acc_sentence_count[1], } logging_output['loss'] = loss.data return loss, 1, logging_output, cl_out loss, sample_size, logging_output, cls_repr = inner_forward() return loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs, split='valid') -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) bsz = sum(log.get("bsz", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) seq_len = sum(log.get("seq_len", 0) for log in logging_outputs) metrics.log_scalar( "loss", loss_sum / sample_size, sample_size, round=5 ) metrics.log_scalar( "seq_len", seq_len / bsz, 1, round=3 ) decoder_loss = sum(log.get('decoder_loss', 0) for log in logging_outputs) if decoder_loss > 0: metrics.log_scalar('decoder_loss', decoder_loss / sample_size, sample_size, round=5) decoder_acc = sum(log.get('decoder_hit', 0) for log in logging_outputs) / \ sum(log.get('decoder_cnt', 1) for log in logging_outputs) if decoder_acc > 0: metrics.log_scalar( 'decoder_acc', decoder_acc, sample_size, round=5) decoder_cnt_t = sum(log.get('decoder_cnt', 1) for log in logging_outputs) decoder_ppl = math.exp(min(decoder_loss / decoder_cnt_t, 100)) if decoder_ppl > 0: metrics.log_scalar( 'decoder_ppl', decoder_ppl, sample_size, round=5) acc_sentence_count = sum(log.get('acc_sentence_hit', 0) for log in logging_outputs) acc_sentence_count = acc_sentence_count / \ sum(log.get('acc_sentence_cnt', 0) for log in logging_outputs) metrics.log_scalar('acc_sentence_percentage', acc_sentence_count, sample_size, round=5) @staticmethod def logging_outputs_can_be_summed(is_train) -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
5,524
Python
.py
109
39.045872
113
0.591481
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,245
__init__.py
dptech-corp_NAG2G/NAG2G/losses/__init__.py
from pathlib import Path import importlib # automatically import any Python files in the criterions/ directory for file in sorted(Path(__file__).parent.glob("*.py")): if not file.name.startswith("_"): importlib.import_module("NAG2G.losses." + file.name[:-3])
272
Python
.py
6
42.166667
68
0.724528
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,246
G2G.py
dptech-corp_NAG2G/NAG2G/losses/G2G.py
import math import torch import torch.nn.functional as F from unicore import metrics, utils from unicore.losses import UnicoreLoss, register_loss import torch.nn as nn import torch.distributed as dist def get_loss(logits_decoder, decoder_target, padding_idx): decoder_target = decoder_target[:, 1:] logits_decoder = logits_decoder[:, :-1] decode_tokens = decoder_target.ne(padding_idx) decoder_sample_size = decode_tokens.long().sum() decoder_loss = F.nll_loss( F.log_softmax( logits_decoder[decode_tokens], dim=-1, dtype=torch.float32), decoder_target[decode_tokens].view(-1), ignore_index=padding_idx, reduction='mean', ) decoder_pred = torch.argmax( logits_decoder[decode_tokens], dim=-1) # print('test decoder_pred: ', decoder_pred) decoder_hit = (decoder_pred == decoder_target[decode_tokens]).long().sum() decoder_cnt = decoder_sample_size acc_sentence_count = [] for i in range(decoder_target.shape[0]): decoder_cnt_per_sen = decode_tokens[i].long().sum() decoder_pred_per_sen = torch.argmax( logits_decoder[i][decode_tokens[i]], dim=-1) decoder_hit_per_sen = (decoder_pred_per_sen == decoder_target[i][decode_tokens[i]]).long().sum() acc_sentence_count.append(decoder_hit_per_sen == decoder_cnt_per_sen) acc_sentence_count = (sum(acc_sentence_count), len(acc_sentence_count)) return decoder_loss, decoder_hit, decoder_cnt, acc_sentence_count @register_loss("G2G") class G2GLoss(UnicoreLoss): def __init__(self, task): super().__init__(task) self.padding_idx = task.dictionary.pad() def forward(self, model, sample, reduce=True): def inner_forward(input_key='net_input', target_key='target'): logits_encoder, logits_decoder, cl_out, vae_kl_loss = model( **sample[input_key], features_only=True) loss = torch.tensor(0.0) logging_output = { "sample_size": 1, "bsz": sample[input_key]['decoder_src_tokens'].size(0), "seq_len": sample[input_key]['decoder_src_tokens'].size(1) * sample[input_key]['decoder_src_tokens'].size(0), } if logits_decoder is not None: decoder_target = sample[input_key]['decoder_src_tokens'] decoder_loss, decoder_hit, decoder_cnt, acc_sentence_count = get_loss( logits_decoder, decoder_target, self.padding_idx) loss = decoder_loss * self.args.decoder_loss logging_output = { "sample_size": 1, "bsz": sample[input_key]['decoder_src_tokens'].size(0), "seq_len": sample[input_key]['decoder_src_tokens'].size(1) * sample[input_key]['decoder_src_tokens'].size(0), "decoder_loss": decoder_loss.data, "decoder_hit": decoder_hit.data, "decoder_cnt": decoder_cnt.data, "acc_sentence_hit": acc_sentence_count[0], "acc_sentence_cnt": acc_sentence_count[1], } logging_output['loss'] = loss.data return loss, 1, logging_output, cl_out loss, sample_size, logging_output, cls_repr = inner_forward() return loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs, split='valid') -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) bsz = sum(log.get("bsz", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) seq_len = sum(log.get("seq_len", 0) for log in logging_outputs) metrics.log_scalar( "loss", loss_sum / sample_size, sample_size, round=5 ) metrics.log_scalar( "seq_len", seq_len / bsz, 1, round=3 ) decoder_loss = sum(log.get('decoder_loss', 0) for log in logging_outputs) if decoder_loss > 0: metrics.log_scalar('decoder_loss', decoder_loss / sample_size, sample_size, round=5) decoder_acc = sum(log.get('decoder_hit', 0) for log in logging_outputs) / \ sum(log.get('decoder_cnt', 1) for log in logging_outputs) if decoder_acc > 0: metrics.log_scalar( 'decoder_acc', decoder_acc, sample_size, round=5) decoder_cnt_t = sum(log.get('decoder_cnt', 1) for log in logging_outputs) decoder_ppl = math.exp(min(decoder_loss / decoder_cnt_t, 100)) if decoder_ppl > 0: metrics.log_scalar( 'decoder_ppl', decoder_ppl, sample_size, round=5) acc_sentence_count = sum(log.get('acc_sentence_hit', 0) for log in logging_outputs) acc_sentence_count = acc_sentence_count / \ sum(log.get('acc_sentence_cnt', 0) for log in logging_outputs) metrics.log_scalar('acc_sentence_percentage', acc_sentence_count, sample_size, round=5) @staticmethod def logging_outputs_can_be_summed(is_train) -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
5,615
Python
.py
110
39.472727
129
0.593989
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,247
preprocess_smi_to_3d.py
dptech-corp_NAG2G/data_preprocess/preprocess_smi_to_3d.py
import numpy as np import warnings import contextlib import timeout_decorator from sklearn.mixture import BayesianGaussianMixture from rdkit import Chem from rdkit.Chem import Descriptors from rdkit.Chem import AllChem from rdkit.Chem import rdMolTransforms from rdkit import RDLogger RDLogger.DisableLog("rdApp.*") warnings.filterwarnings(action="ignore") @contextlib.contextmanager def numpy_seed(seed, *addl_seeds): """Context manager which seeds the NumPy PRNG with the specified seed and restores the state afterward""" if seed is None: yield return if len(addl_seeds) > 0: seed = int(hash((seed, *addl_seeds)) % 1e6) state = np.random.get_state() np.random.seed(seed) try: yield finally: np.random.set_state(state) def get_torsions(m): m = Chem.RemoveHs(m) torsionList = [] torsionSmarts = "[!$(*#*)&!D1]-&!@[!$(*#*)&!D1]" torsionQuery = Chem.MolFromSmarts(torsionSmarts) matches = m.GetSubstructMatches(torsionQuery) for match in matches: idx2 = match[0] idx3 = match[1] bond = m.GetBondBetweenAtoms(idx2, idx3) jAtom = m.GetAtomWithIdx(idx2) kAtom = m.GetAtomWithIdx(idx3) for b1 in jAtom.GetBonds(): if b1.GetIdx() == bond.GetIdx(): continue idx1 = b1.GetOtherAtomIdx(idx2) for b2 in kAtom.GetBonds(): if (b2.GetIdx() == bond.GetIdx()) or (b2.GetIdx() == b1.GetIdx()): continue idx4 = b2.GetOtherAtomIdx(idx3) # skip 3-membered rings if idx4 == idx1: continue # skip torsions that include hydrogens if (m.GetAtomWithIdx(idx1).GetAtomicNum() == 1) or ( m.GetAtomWithIdx(idx4).GetAtomicNum() == 1 ): continue if m.GetAtomWithIdx(idx4).IsInRing(): torsionList.append((idx4, idx3, idx2, idx1)) break else: torsionList.append((idx1, idx2, idx3, idx4)) break break return torsionList def SetDihedral(conf, atom_idx, new_vale): rdMolTransforms.SetDihedralRad( conf, atom_idx[0], atom_idx[1], atom_idx[2], atom_idx[3], new_vale ) def GetDihedral(conf, atom_idx): return rdMolTransforms.GetDihedralRad( conf, atom_idx[0], atom_idx[1], atom_idx[2], atom_idx[3] ) @timeout_decorator.timeout(30) def inner_smi2coords(smi, num_confs=100, seed=42, cluster_size=10): coordinate_list, rotable_bonds_list = [], [] mol = Chem.MolFromSmiles(smi) mol = AllChem.AddHs(mol, addCoords=True) atoms = [atom.GetSymbol() for atom in mol.GetAtoms()] wt = Descriptors.ExactMolWt(mol) # skip for heavy molecules if wt > 2000: return None # at least have two atoms if len(atoms) < 2: return None # allconformers = AllChem.EmbedMultipleConfs(mol, numConfs=num_confs, randomSeed=seed, clearConfs=True, numThreads=1) res = AllChem.EmbedMolecule(mol, randomSeed=seed) if res == 0: rotable_bonds = get_torsions(mol) for i in range(num_confs): np.random.seed(i) values = 3.1415926 * 2 * np.random.rand(len(rotable_bonds)) for idx in range(len(rotable_bonds)): SetDihedral(mol.GetConformer(), rotable_bonds[idx], values[idx]) Chem.rdMolTransforms.CanonicalizeConformer(mol.GetConformer()) try: AllChem.MMFFOptimizeMolecule(mol) coordinate_list.append( mol.GetConformer().GetPositions().astype(np.float32) ) rotable_bonds_value = [ GetDihedral(mol.GetConformer(), rotable_bonds[idx]) for idx in range(len(rotable_bonds)) ] rotable_bonds_list.append(rotable_bonds_value) except: continue elif res == -1: mol_tmp = Chem.MolFromSmiles(smi) AllChem.EmbedMolecule(mol_tmp, maxAttempts=5000, randomSeed=seed) mol_tmp = AllChem.AddHs(mol_tmp, addCoords=True) rotable_bonds = get_torsions(mol_tmp) for i in range(num_confs): np.random.seed(i) values = 3.1415926 * 2 * np.random.rand(len(rotable_bonds)) for idx in range(len(rotable_bonds)): SetDihedral(mol_tmp.GetConformer(), rotable_bonds[idx], values[idx]) Chem.rdMolTransforms.CanonicalizeConformer(mol_tmp.GetConformer()) try: AllChem.MMFFOptimizeMolecule(mol_tmp) coordinate_list.append( mol_tmp.GetConformer().GetPositions().astype(np.float32) ) rotable_bonds_value = [ GetDihedral(mol_tmp.GetConformer(), rotable_bonds[idx]) for idx in range(len(rotable_bonds)) ] rotable_bonds_list.append(rotable_bonds_value) except: continue if num_confs != cluster_size: X = np.array(rotable_bonds_list) clf = BayesianGaussianMixture(n_components=cluster_size, random_state=seed).fit( X ) probs = clf.predict_proba(X) # filter redundant clusters probs = probs[:, probs.mean(axis=0) != 0.0] ids = probs.argmax(axis=0) # padding to cluster_size if len(ids) < cluster_size: ids = ids + [ids[0]] * (cluster_size - len(ids)) cluster_coordinate_list = [coordinate_list[idx] for idx in ids] print(ids) else: cluster_coordinate_list = coordinate_list return {"atoms": atoms, "coordinates": cluster_coordinate_list, "smi": smi} def smi2coords_3D(smi): try: return inner_smi2coords(smi, num_confs=10) except: return None def smi2_2Dcoords(smi): mol = Chem.MolFromSmiles(smi) mol = AllChem.AddHs(mol) AllChem.Compute2DCoords(mol) coordinates = mol.GetConformer().GetPositions().astype(np.float32) len(mol.GetAtoms()) == len( coordinates ), "2D coordinates shape is not align with {}".format(smi) return coordinates def smi2coords_2D(smi): try: mol = Chem.MolFromSmiles(smi) coordinate_list = [smi2_2Dcoords(smi).astype(np.float32)] mol = AllChem.AddHs(mol) atoms = [atom.GetSymbol() for atom in mol.GetAtoms()] # after add H return {"atoms": atoms, "coordinates": coordinate_list, "smi": smi} except: return None
6,673
Python
.py
169
29.828402
121
0.604536
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,248
basic.py
dptech-corp_NAG2G/data_preprocess/basic.py
import pandas as pd from rdkit import Chem from rdkit.Chem import AllChem def get_canonical_smile(testsmi, isomericSmiles=True): if testsmi == "": return testsmi try: mol = Chem.MolFromSmiles(testsmi) canonical_smi = Chem.MolToSmiles(mol, isomericSmiles=isomericSmiles) except: canonical_smi = testsmi return canonical_smi def get_target_order(smiles_target, check=False, add_h=True): mol = Chem.MolFromSmiles(smiles_target) if add_h: mol = AllChem.AddHs(mol) atoms = [atom.GetAtomMapNum() for atom in mol.GetAtoms()] assert (not check) or (0 not in atoms) return atoms def get_atoms(smi, add_h=True): mol = Chem.MolFromSmiles(smi) if add_h: mol = AllChem.AddHs(mol) atoms = [atom.GetSymbol() for atom in mol.GetAtoms()] # after add H if not add_h: atoms = [i for i in atoms if i != "H"] return atoms def csv_file_read(path, usecols=None): head_row = pd.read_csv(path, nrows=0) print(list(head_row)) head_row_list = list(head_row) if usecols is None: usecols = head_row_list csv_result = pd.read_csv(path, usecols=usecols) row_list = csv_result.values.tolist() return row_list def rm_h_coordinates_map(target_atoms, target_coordinates, target_map): assert ( len(target_atoms) == len(target_map) and len(target_atoms) == target_coordinates.shape[1] ) target_atoms_tmp = [i for i in target_atoms if i != "H"] idx = [i != "H" for i in target_atoms] target_coordinates_tmp = target_coordinates[:, idx] target_map_tmp = [ target_map[i] for i in range(len(target_atoms)) if target_atoms[i] != "H" ] assert len(target_atoms_tmp) == len(target_map_tmp) and len(target_atoms_tmp) == ( target_coordinates_tmp.shape[1] ) return target_atoms_tmp, target_coordinates_tmp, target_map_tmp def renumber_atom_maps(smi): if smi == "": return smi mol = Chem.MolFromSmiles(smi) if mol is None: raise ValueError("Invalid SMILES string") atom_map_nums = [atom.GetAtomMapNum() for atom in mol.GetAtoms()] if any( num == 0 for atom, num in zip(mol.GetAtoms(), atom_map_nums) if atom.GetAtomicNum() > 1 ): current_map_num = 1 for atom in mol.GetAtoms(): if atom.GetAtomicNum() > 1: # Heavy atom atom.SetAtomMapNum(current_map_num) current_map_num += 1 else: # H atom atom.SetAtomMapNum(0) return Chem.MolToSmiles(mol)
2,585
Python
.py
71
29.929577
86
0.640144
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,249
lmdb_preprocess.py
dptech-corp_NAG2G/data_preprocess/lmdb_preprocess.py
# Copyright (c) DP Technology. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import lmdb import os import sys import pickle import logging from tqdm import tqdm import numpy as np from preprocess_smi_to_3d import smi2coords_3D, smi2coords_2D from basic import ( csv_file_read, get_target_order, rm_h_coordinates_map, get_atoms, get_canonical_smile, renumber_atom_maps, ) logger = logging.getLogger(__name__) def make_lmdb(path_smi, outputfilename): assert ".csv" in path_smi try: os.remove(outputfilename) except: pass dataset_smi = csv_file_read(path_smi) env_new = lmdb.open( outputfilename, subdir=False, readonly=False, lock=False, readahead=False, meminit=False, max_readers=1, map_size=int(100e9), ) txn_write = env_new.begin(write=True) ii = 0 for i in tqdm(range(len(dataset_smi))): result = dataset_smi[i] raw_string = result[2] target = raw_string.split(">")[-1] target = get_canonical_smile(target) reactant = raw_string.split(">")[0] reactant = get_canonical_smile(reactant) reactant = renumber_atom_maps(reactant) target = renumber_atom_maps(target) raw_string = f"{reactant}>>{target}" result = {} result["rxn_smiles"] = raw_string result["target_map"] = get_target_order(target, check=False, add_h=True) result["target_atoms"] = get_atoms(target, add_h=True) tmp_result_3d = smi2coords_3D(target) not_exist_3d = tmp_result_3d is None or len(tmp_result_3d["coordinates"]) == 0 if not not_exist_3d: assert result["target_atoms"] == tmp_result_3d["atoms"] result["target_coordinates"] = tmp_result_3d["coordinates"].copy() tmp_result_2d = smi2coords_2D(target) not_exist_2d = tmp_result_2d is None or len(tmp_result_2d["coordinates"]) == 0 if not_exist_2d and not_exist_3d: print("No 2D or 3D coordinates") continue elif not not_exist_2d: if not not_exist_3d: assert tmp_result_2d["atoms"] == result["target_atoms"] result["target_coordinates"] = tmp_result_2d["coordinates"].copy() else: assert tmp_result_2d["atoms"] == result["target_atoms"] assert ( result["target_coordinates"][0].shape == tmp_result_2d["coordinates"][0].shape ) result["target_coordinates"] += tmp_result_2d["coordinates"].copy() result["target_coordinates"] = np.array(result["target_coordinates"]) if result["target_coordinates"].shape[0] > 0: target_atoms_tmp, target_coordinates_tmp, target_map_tmp = ( rm_h_coordinates_map( result["target_atoms"], result["target_coordinates"], result["target_map"], ) ) result["target_atoms"] = target_atoms_tmp result["target_coordinates"] = target_coordinates_tmp result["target_map"] = target_map_tmp if len(result["target_coordinates"]) > 0: inner_output = pickle.dumps(result, protocol=-1) txn_write.put(f"{ii}".encode("ascii"), inner_output) ii += 1 txn_write.commit() env_new.close() print("count", ii) if __name__ == "__main__": path_smi = sys.argv[1] outputfilename = sys.argv[2] make_lmdb( path_smi=path_smi, outputfilename=outputfilename, )
3,728
Python
.py
100
28.54
86
0.595633
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,250
inference.py
dptech-corp_NAG2G/unimol_plus/inference.py
#!/usr/bin/env python3 -u # Copyright (c) DP Techonology, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import sys import pickle import torch import lmdb import gzip import numpy as np from unicore import checkpoint_utils, distributed_utils, options, utils from unicore.logging import progress_bar from unicore import tasks logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) logger = logging.getLogger("unimol.inference") def predicted_lddt(plddt_logits: torch.Tensor) -> torch.Tensor: """Computes per-residue pLDDT from logits. Args: logits: [num_res, num_bins] output from the PredictedLDDTHead. Returns: plddt: [num_res] per-residue pLDDT. """ num_bins = plddt_logits.shape[-1] bin_probs = torch.nn.functional.softmax(plddt_logits.float(), dim=-1) bin_width = 1.0 / num_bins bounds = torch.arange( start=0.5 * bin_width, end=1.0, step=bin_width, device=plddt_logits.device ) plddt = torch.sum( bin_probs * bounds.view(*((1,) * len(bin_probs.shape[:-1])), *bounds.shape), dim=-1, ) return plddt def masked_mean(mask, value, dim, eps=1e-10, keepdim=False): mask = mask.expand(*value.shape) return torch.sum(mask * value, dim=dim, keepdim=keepdim) / ( eps + torch.sum(mask, dim=dim, keepdim=keepdim) ) def main(args): assert ( args.batch_size is not None ), "Must specify batch size either with --batch-size" use_fp16 = args.fp16 use_cuda = torch.cuda.is_available() and not args.cpu if use_cuda: torch.cuda.set_device(args.device_id) if args.distributed_world_size > 1: data_parallel_world_size = distributed_utils.get_data_parallel_world_size() data_parallel_rank = distributed_utils.get_data_parallel_rank() else: data_parallel_world_size = 1 data_parallel_rank = 0 # Load model logger.info("loading model(s) from {}".format(args.path)) state = checkpoint_utils.load_checkpoint_to_cpu(args.path) task = tasks.setup_task(args) model = task.build_model(args) model.load_state_dict(state["ema"]["params"], strict=True) # Move models to GPU # if use_fp16: # model.half() if use_cuda: model.cuda() model.eval() # Print args logger.info(args) # Build loss loss = task.build_loss(args) loss.eval() if data_parallel_world_size > 1: tmp = distributed_utils.all_gather_list( [torch.tensor(0)], max_size=10000, group=distributed_utils.get_data_parallel_group(), ) for subset in args.valid_subset.split(","): try: task.load_dataset(subset, combine=False, epoch=1, force_valid=True) dataset = task.dataset(subset) except KeyError: raise Exception("Cannot find dataset: " + subset) # Initialize data iterator itr = task.get_batch_iterator( dataset=dataset, batch_size=args.batch_size, ignore_invalid_inputs=True, required_batch_size_multiple=args.required_batch_size_multiple, seed=args.seed, num_shards=data_parallel_world_size, shard_id=data_parallel_rank, num_workers=args.num_workers, data_buffer_size=args.data_buffer_size, ).next_epoch_itr(shuffle=False) progress = progress_bar.progress_bar( itr, log_format=args.log_format, log_interval=args.log_interval, prefix=f"valid on '{subset}' subset", default_log_format=("tqdm" if not args.no_progress_bar else "simple"), ) outputs = [] for i, sample in enumerate(progress): sample = utils.move_to_cuda(sample) if use_cuda else sample if len(sample) == 0: continue with torch.no_grad(): (_, pos_pred, _, plddt_logits) = model(**sample)[:4] id = sample["batched_data"]["id"] assert len(id) == len(pos_pred) id = id.cpu().numpy() pos_pred = pos_pred.cpu().numpy() atom_mask = sample["batched_data"]["atom_mask"].float() plddt = ( masked_mean(atom_mask, predicted_lddt(plddt_logits), dim=-1) .cpu() .numpy() ) outputs.append((id, pos_pred, plddt)) progress.log({}, step=i) pickle.dump( outputs, open( os.path.join( args.results_path, subset + "_{}.pkl".format(data_parallel_rank) ), "wb", ), ) print("Finished {} subset, rank {}".format(subset, data_parallel_rank)) if data_parallel_world_size > 1: tmp = distributed_utils.all_gather_list( [torch.tensor(0)], max_size=10000, group=distributed_utils.get_data_parallel_group(), ) return None def cli_main(): parser = options.get_validation_parser() options.add_model_args(parser) args = options.parse_args_and_arch(parser) distributed_utils.call_main(args, main) if __name__ == "__main__": cli_main()
5,540
Python
.py
151
28.490066
84
0.60492
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,251
setup.py
dptech-corp_NAG2G/unimol_plus/setup.py
"""Install script for setuptools.""" from setuptools import find_packages from setuptools import setup setup( name="unimol", version="2.0.0", description="", author="DP Technology", author_email="[email protected]", license="The MIT License", url="https://github.com/dptech-corp/Uni-Mol", packages=find_packages( exclude=["scripts", "tests", "example_data", "docker", "figure"] ), install_requires=[ "numpy", "pandas", ], classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Operating System :: POSIX :: Linux", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: 3.10", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], )
995
Python
.py
30
27.166667
72
0.620976
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,252
__init__.py
dptech-corp_NAG2G/unimol_plus/unimol/__init__.py
__version__ = "2.0.0" import importlib import unimol.tasks import unimol.data import unimol.models import unimol.losses
128
Python
.py
6
19
21
0.824561
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,253
data_utils.py
dptech-corp_NAG2G/unimol_plus/unimol/data/data_utils.py
# Copyright (c) DP Technology. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import contextlib def str_hash(text: str): hash = 0 for ch in text: hash = (hash * 281 ^ ord(ch) * 997) & 0xFFFFFFFF return hash @contextlib.contextmanager def numpy_seed(seed, *addl_seeds, key=None): """Context manager which seeds the NumPy PRNG with the specified seed and restores the state afterward""" if seed is None: yield return def check_seed(s): assert type(s) == int or type(s) == np.int32 or type(s) == np.int64 check_seed(seed) if len(addl_seeds) > 0: for s in addl_seeds: check_seed(s) seed = int(hash((seed, *addl_seeds)) % 1e8) if key is not None: seed = int(hash((seed, str_hash(key))) % 1e8) state = np.random.get_state() np.random.seed(seed) try: yield finally: np.random.set_state(state)
1,037
Python
.py
32
26.5625
77
0.636273
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,254
conformer_sample_dataset.py
dptech-corp_NAG2G/unimol_plus/unimol/data/conformer_sample_dataset.py
# Copyright (c) DP Technology. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np from functools import lru_cache from unicore.data import BaseWrapperDataset, data_utils from copy import deepcopy from tqdm import tqdm class ConformerPCQSampleDataset(BaseWrapperDataset): def __init__( self, dataset, seed, coordinates, target_coordinates, ): self.dataset = dataset self.seed = seed self.coordinates = coordinates self.target_coordinates = target_coordinates self.set_epoch(None) def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch @lru_cache(maxsize=16) def __cached_item__(self, index: int, epoch: int): data = deepcopy(self.dataset[index]) size = len(data[self.coordinates]) with data_utils.numpy_seed(self.seed, epoch, index): sample_idx = np.random.randint(size) coordinates = data[self.coordinates][sample_idx] if self.target_coordinates is not None: if isinstance(data[self.target_coordinates], list): target_coordinates = data[self.target_coordinates][-1] else: target_coordinates = data[self.target_coordinates] del data[self.target_coordinates] data["target_coordinates"] = target_coordinates del data[self.coordinates] data["coordinates"] = coordinates return data def __getitem__(self, index: int): return self.__cached_item__(index, self.epoch) class ConformerPCQTTASampleDataset(BaseWrapperDataset): def __init__( self, dataset, seed, coordinates, target_coordinates, ): self.dataset = dataset self.seed = seed self.coordinates = coordinates self.target_coordinates = target_coordinates self._init_idx() self.set_epoch(None) def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch def _init_idx(self): self.idx2key = [] for i in tqdm(range(len(self.dataset))): size = len(self.dataset[i][self.coordinates]) self.idx2key.extend([(i, j) for j in range(size)]) self.cnt = len(self.idx2key) def __len__(self): return self.cnt @lru_cache(maxsize=16) def __cached_item__(self, index: int, epoch: int): key_idx, conf_idx = self.idx2key[index] data = self.dataset[key_idx] coordinates = data[self.coordinates][conf_idx] if self.target_coordinates is not None: if isinstance(data[self.target_coordinates], list): target_coordinates = data[self.target_coordinates][-1] else: target_coordinates = data[self.target_coordinates] ret_data = deepcopy(data) del ret_data[self.coordinates] ret_data["coordinates"] = coordinates if self.target_coordinates is not None: del ret_data[self.target_coordinates] ret_data["target_coordinates"] = target_coordinates return ret_data def __getitem__(self, index: int): return self.__cached_item__(index, self.epoch)
3,352
Python
.py
87
30.034483
70
0.633733
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,255
molecule_dataset.py
dptech-corp_NAG2G/unimol_plus/unimol/data/molecule_dataset.py
# Copyright (c) DP Technology. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from unicore.data import BaseWrapperDataset from . import data_utils from numba import njit from functools import lru_cache from scipy.spatial.transform import Rotation def get_graph_features(item, N_vnode=1): atom_feat_sizes = [128] + [16 for _ in range(8)] edge_feat_sizes = [16, 16, 16] edge_attr, edge_index, x = ( item["edge_attr"], item["edge_index"], item["node_attr"], ) N = x.shape[0] atom_feat = convert_to_single_emb(x, atom_feat_sizes) # node adj matrix [N, N] bool adj = np.zeros([N, N], dtype=np.int32) adj[edge_index[0, :], edge_index[1, :]] = 1 degree = adj.sum(axis=-1) # edge feature here if len(edge_attr.shape) == 1: edge_attr = edge_attr[:, None] edge_feat = np.zeros([N, N, edge_attr.shape[-1]], dtype=np.int32) edge_feat[edge_index[0, :], edge_index[1, :]] = ( convert_to_single_emb(edge_attr, edge_feat_sizes) + 1 ) shortest_path_result = floyd_warshall(adj) spatial_pos = torch.from_numpy((shortest_path_result)).long() # plus 1 for padding # combine feat = {} feat["atom_feat"] = torch.from_numpy(atom_feat).long() feat["atom_mask"] = torch.ones(N).long() feat["edge_feat"] = torch.from_numpy(edge_feat).long() + 1 feat["shortest_path"] = spatial_pos + 1 feat["degree"] = torch.from_numpy(degree).long().view(-1) + 1 # pair-type atoms = feat["atom_feat"][..., 0] pair_type = torch.cat( [ atoms.view(-1, 1, 1).expand(-1, N, -1), atoms.view(1, -1, 1).expand(N, -1, -1), ], dim=-1, ) feat["pair_type"] = convert_to_single_emb(pair_type, [128, 128]) feat["attn_bias"] = torch.zeros((N + N_vnode, N + N_vnode), dtype=torch.float32) return feat def kabsch_rotation(P, Q): C = P.transpose(-1, -2) @ Q V, _, W = np.linalg.svd(C) d = (np.linalg.det(V) * np.linalg.det(W)) < 0.0 if d: V[:, -1] = -V[:, -1] U = V @ W return U def get_optimal_transform(src_atoms, tgt_atoms): src_center = src_atoms.mean(-2)[None, :] tgt_center = tgt_atoms.mean(-2)[None, :] r = kabsch_rotation(src_atoms - src_center, tgt_atoms - tgt_center) x = tgt_center - src_center @ r return r, x class Unimolv2Features(BaseWrapperDataset): def __init__( self, dataset, src_pos_dataset, tgt_pos_dataset, is_train, label_prob, mid_prob, mid_lower, mid_upper, noise, seed, N_vnode=1 ): super().__init__(dataset) self.dataset = dataset self.src_pos_dataset = src_pos_dataset self.tgt_pos_dataset = tgt_pos_dataset self.seed = seed self.is_train = is_train self.label_prob = label_prob self.mid_prob = mid_prob self.mid_lower = mid_lower self.mid_upper = mid_upper self.noise = noise self.N_vnode = N_vnode def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.src_pos_dataset.set_epoch(epoch) if self.tgt_pos_dataset is not None: self.tgt_pos_dataset.set_epoch(epoch) self.epoch = epoch def __getitem__(self, idx: int): return self.__getitem_cached__(self.epoch, idx) @lru_cache(maxsize=16) def __getitem_cached__(self, epoch: int, idx: int): with data_utils.numpy_seed(self.seed, epoch, idx): data = self.dataset[idx] feat = get_graph_features(data, N_vnode=self.N_vnode) pos = self.src_pos_dataset[idx] pos_target = ( self.tgt_pos_dataset[idx] if self.tgt_pos_dataset is not None else pos ) if self.is_train: random_rotate = Rotation.random().as_matrix() pos_target = pos_target @ random_rotate pos_target = torch.from_numpy(pos_target).float() use_label = False use_mid = False if self.is_train: p = np.random.rand() if p < self.label_prob: use_label = True elif p < self.label_prob + self.mid_prob: use_mid = True if use_label: feat["pos"] = ( pos_target + self.noise * torch.from_numpy(np.random.randn(*pos_target.shape)).float() ) elif use_mid: q = np.random.uniform(self.mid_lower, self.mid_upper) pos = torch.from_numpy(pos).float() R, T = get_optimal_transform(pos, pos_target) pos = pos @ R + T feat["pos"] = ( q * pos + (1 - q) * pos_target + self.noise * torch.from_numpy(np.random.randn(*pos_target.shape)).float() ) else: feat["pos"] = torch.from_numpy(pos).float() def zero_center(pos): return pos - pos.mean(0, keepdim=True) feat["pos"] = zero_center(feat["pos"]) feat["pos_target"] = zero_center(pos_target) R, T = get_optimal_transform(feat["pos"], feat["pos_target"]) feat["pos"] = feat["pos"] @ R + T feat["target"] = data["target"] if "target" in data.keys() and data["target"] is not None else 0.0 if "id" in data.keys(): feat["id"] = data["id"] return feat def collater(self, items): multi_hop_max_dist = 5 target = np.stack([x["target"] for x in items]) if "id" in items[0].keys(): id = np.stack([int(x["id"]) for x in items]).astype(np.int64) pad_fns = { "atom_feat": pad_1d_feat, "atom_mask": pad_1d, "edge_feat": pad_2d_feat, "shortest_path": pad_2d, "degree": pad_1d, "pos": pad_1d_feat, "pos_target": pad_1d_feat, "pair_type": pad_2d_feat, "attn_bias": pad_attn_bias, } max_node_num = max([item["atom_mask"].shape[0] for item in items]) max_node_num = (max_node_num + 1 + 3) // 4 * 4 - 1 batched_data = {} for key in items[0].keys(): samples = [item[key] for item in items] if key in pad_fns: if key == "attn_bias": batched_data[key] = pad_fns[key](samples, max_node_num, self.N_vnode) else: batched_data[key] = pad_fns[key](samples, max_node_num) batched_data["target"] = torch.from_numpy(target).float() if "id" in batched_data.keys(): batched_data["id"] = torch.from_numpy(id).long() return batched_data @njit def floyd_warshall(M): (nrows, ncols) = M.shape assert nrows == ncols n = nrows # set unreachable nodes distance to 510 for i in range(n): for j in range(n): if M[i, j] == 0: M[i, j] = 510 for i in range(n): M[i, i] = 0 # floyed algo for k in range(n): for i in range(n): for j in range(n): cost_ikkj = M[i, k] + M[k, j] if M[i, j] > cost_ikkj: M[i, j] = cost_ikkj for i in range(n): for j in range(n): if M[i, j] >= 510: M[i, j] = 510 return M def convert_to_single_emb(x, sizes): assert x.shape[-1] == len(sizes) offset = 1 for i in range(len(sizes)): assert (x[..., i] < sizes[i]).all() x[..., i] = x[..., i] + offset offset += sizes[i] return x def pad_1d(samples, pad_len, pad_value=0): batch_size = len(samples) tensor = torch.full([batch_size, pad_len], pad_value, dtype=samples[0].dtype) for i in range(batch_size): tensor[i, : samples[i].shape[0]] = samples[i] return tensor def pad_1d_feat(samples, pad_len, pad_value=0): batch_size = len(samples) assert len(samples[0].shape) == 2 feat_size = samples[0].shape[-1] tensor = torch.full( [batch_size, pad_len, feat_size], pad_value, dtype=samples[0].dtype ) for i in range(batch_size): tensor[i, : samples[i].shape[0]] = samples[i] return tensor def pad_2d(samples, pad_len, pad_value=0): batch_size = len(samples) tensor = torch.full( [batch_size, pad_len, pad_len], pad_value, dtype=samples[0].dtype ) for i in range(batch_size): tensor[i, : samples[i].shape[0], : samples[i].shape[1]] = samples[i] return tensor def pad_2d_feat(samples, pad_len, pad_value=0): batch_size = len(samples) assert len(samples[0].shape) == 3 feat_size = samples[0].shape[-1] tensor = torch.full( [batch_size, pad_len, pad_len, feat_size], pad_value, dtype=samples[0].dtype ) for i in range(batch_size): tensor[i, : samples[i].shape[0], : samples[i].shape[1]] = samples[i] return tensor def pad_attn_bias(samples, pad_len, N_vnode=1): batch_size = len(samples) pad_len = pad_len + N_vnode tensor = torch.full( [batch_size, pad_len, pad_len], float("-inf"), dtype=samples[0].dtype ) for i in range(batch_size): tensor[i, : samples[i].shape[0], : samples[i].shape[1]] = samples[i] tensor[i, samples[i].shape[0] :, : samples[i].shape[1]] = 0 return tensor
9,658
Python
.py
257
28.645914
110
0.548387
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,256
coord_noise_dataset.py
dptech-corp_NAG2G/unimol_plus/unimol/data/coord_noise_dataset.py
# Copyright (c) DP Technology. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from functools import lru_cache import numpy as np import torch from unicore.data import BaseWrapperDataset from . import data_utils def kabsch_rotation(P, Q): C = P.transpose(-1, -2) @ Q V, _, W = np.linalg.svd(C) d = (np.linalg.det(V) * np.linalg.det(W)) < 0.0 if d: V[:, -1] = -V[:, -1] U = V @ W return U def get_optimal_transform(src_atoms, tgt_atoms): src_center = src_atoms.mean(-2)[None, :] tgt_center = tgt_atoms.mean(-2)[None, :] r = kabsch_rotation(src_atoms - src_center, tgt_atoms - tgt_center) x = tgt_center - src_center @ r return r, x class CoordNoiseDataset(BaseWrapperDataset): def __init__( self, dataset: torch.utils.data.Dataset, tgt_dataset: torch.utils.data.Dataset, coord_gen_prob: float, coord_noise_prob: float, src_noise: float = 1.0, tgt_noise: float = 1.0, seed: int = 1, ): assert 0.0 <= coord_noise_prob <= 1.0 self.dataset = dataset self.tgt_dataset = tgt_dataset self.coord_gen_prob = coord_gen_prob self.coord_noise_prob = coord_noise_prob self.seed = seed self.src_noise = src_noise self.tgt_noise = tgt_noise self.epoch = None def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.dataset.set_epoch(epoch) self.epoch = epoch def __getitem__(self, index: int): return self.__getitem_cached__(self.epoch, index) @lru_cache(maxsize=16) def __getitem_cached__(self, epoch: int, index: int): src_coord = self.dataset[index] tgt_coord = self.tgt_dataset[index] num_atoms = src_coord.shape[0] with data_utils.numpy_seed(self.seed, epoch, index): if np.random.rand() < self.coord_gen_prob: src_coord = np.copy(src_coord) noise = self.src_noise else: src_coord = np.copy(tgt_coord) noise = self.tgt_noise if np.random.rand() < self.coord_noise_prob: src_coord = src_coord + np.random.randn(num_atoms, 3) * noise R, T = get_optimal_transform(src_coord, tgt_coord) src_coord = src_coord @ R + T return {"coordinates": src_coord.astype(np.float32)}
2,471
Python
.py
65
30.430769
77
0.606516
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,257
__init__.py
dptech-corp_NAG2G/unimol_plus/unimol/data/__init__.py
from .key_dataset import KeyDataset from .conformer_sample_dataset import ( ConformerPCQSampleDataset, ConformerPCQTTASampleDataset, ) from .coord_noise_dataset import CoordNoiseDataset from .lmdb_dataset import ( LMDBPCQDataset, ) from .molecule_dataset import ( Unimolv2Features, ) from .data_utils import numpy_seed __all__ = []
349
Python
.py
14
22.714286
50
0.796407
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,258
key_dataset.py
dptech-corp_NAG2G/unimol_plus/unimol/data/key_dataset.py
# Copyright (c) DP Technology. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from functools import lru_cache from unicore.data import BaseWrapperDataset class KeyDataset(BaseWrapperDataset): def __init__(self, dataset, key): self.dataset = dataset self.key = key self.epoch = None def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch def __len__(self): return len(self.dataset) @lru_cache(maxsize=16) def __cached_item__(self, idx: int, epoch: int): return self.dataset[idx][self.key] def __getitem__(self, idx): return self.__cached_item__(idx, self.epoch)
760
Python
.py
20
32.25
65
0.671214
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,259
lmdb_dataset.py
dptech-corp_NAG2G/unimol_plus/unimol/data/lmdb_dataset.py
# Copyright (c) DP Technology. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from xmlrpc.client import gzip_encode import lmdb import os import numpy as np import gzip import collections import pickle from functools import lru_cache import logging from . import data_utils logger = logging.getLogger(__name__) class LMDBPCQDataset: def __init__(self, db_path): self.db_path = db_path assert os.path.isfile(self.db_path), "{} not found".format(self.db_path) env = self.connect_db(self.db_path) with env.begin() as txn: self._keys = list(txn.cursor().iternext(values=False)) def connect_db(self, lmdb_path, save_to_self=False): env = lmdb.open( lmdb_path, subdir=False, readonly=True, lock=False, readahead=False, meminit=False, max_readers=256, ) if not save_to_self: return env else: self.env = env def __len__(self): return len(self._keys) @lru_cache(maxsize=16) def __getitem__(self, idx): if not hasattr(self, "env"): self.connect_db(self.db_path, save_to_self=True) key = self._keys[idx] datapoint_pickled = self.env.begin().get(key) data = pickle.loads(gzip.decompress(datapoint_pickled)) data["id"] = int.from_bytes(key, "big") # data["id"] = int(np.frombuffer(key, dtype=np.int64)) return data
1,567
Python
.py
47
26.212766
80
0.623016
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,260
unimolv2.py
dptech-corp_NAG2G/unimol_plus/unimol/models/unimolv2.py
import logging import numpy as np import torch import torch.nn as nn from unicore import utils from unimol.data import numpy_seed from unicore.models import ( BaseUnicoreModel, register_model, register_model_architecture, ) from unicore.modules import ( LayerNorm, ) from .layers import ( AtomFeature, EdgeFeature, SE3InvariantKernel, MovementPredictionHead, EnergyHead, PredictedLDDTHead, Linear, Embedding, ) from .unimolv2_encoder import UniMolv2Encoder logger = logging.getLogger(__name__) def init_params(module): def normal_(data): data.copy_(data.cpu().normal_(mean=0.0, std=0.02).to(data.device)) if isinstance(module, nn.Linear) or isinstance(module, Linear): normal_(module.weight.data) if module.bias is not None: module.bias.data.zero_() if isinstance(module, nn.Embedding) or isinstance(module, Embedding): normal_(module.weight.data) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() @register_model("unimolv2") class Unimolv2Model(BaseUnicoreModel): """ Class for training a Masked Language Model. It also supports an additional sentence level prediction if the sent-loss argument is set. """ @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # Arguments related to dropout parser.add_argument( "--num-3d-bias-kernel", type=int, default=128, metavar="D", help="number of kernel in 3D attention bias", ) parser.add_argument( "--droppath-prob", type=float, metavar="D", help="stochastic path probability", default=0.0, ) parser.add_argument( "--dropout", type=float, metavar="D", help="dropout probability" ) parser.add_argument( "--attention-dropout", type=float, metavar="D", help="dropout probability for" " attention weights", ) parser.add_argument( "--act-dropout", type=float, metavar="D", help="dropout probability after" " activation in FFN", ) # Arguments related to hidden states and self-attention parser.add_argument( "--encoder-ffn-embed-dim", type=int, metavar="N", help="encoder embedding dimension for FFN", ) parser.add_argument( "--pair-embed-dim", type=int, metavar="N", help="encoder embedding dimension for FFN", ) parser.add_argument( "--encoder-layers", type=int, metavar="N", help="num encoder layers" ) parser.add_argument( "--encoder-attention-heads", type=int, metavar="N", help="num encoder attention heads", ) # Arguments related to input and output embeddings parser.add_argument( "--encoder-embed-dim", type=int, metavar="N", help="encoder embedding dimension", ) # misc params parser.add_argument( "--activation-fn", choices=utils.get_available_activation_fns(), help="activation function to use", ) parser.add_argument( "--encoder-normalize-before", action="store_true", help="apply layernorm before each encoder block", ) parser.add_argument( "--num-block", type=int, metavar="N", help="number of recycle", ) parser.add_argument( "--noise-scale", default=0.2, type=float, help="coordinate noise for masked atoms", ) parser.add_argument( "--label-prob", default=0.4, type=float, help="the probability of using label conformer as input", ) parser.add_argument( "--mid-prob", default=0.2, type=float, help="the probability of using label conformer as input", ) parser.add_argument( "--mid-upper", default=0.6, type=float, help="the probability of using label conformer as input", ) parser.add_argument( "--mid-lower", default=0.4, type=float, help="the probability of using label conformer as input", ) parser.add_argument( "--plddt-loss-weight", default=0.01, type=float, help="loss weight for plddt", ) parser.add_argument( "--pos-loss-weight", default=0.2, type=float, help="loss weight for pos", ) parser.add_argument( "--pos-step-size", type=float, help="step size for pos update", ) parser.add_argument( "--gaussian-std-width", type=float, ) parser.add_argument( "--gaussian-mean-start", type=float, ) parser.add_argument( "--gaussian-mean-stop", type=float, ) parser.add_argument( "--pretrain", action="store_true", help="3d pretrain or not" ) parser.add_argument( "--N_vnode", type=int, default=1, metavar="N", help="number of vnode", ) def __init__(self, args): super().__init__() base_architecture(args) self.args = args self.molecule_encoder = UniMolv2Encoder( num_encoder_layers=args.encoder_layers, embedding_dim=args.encoder_embed_dim, pair_dim=args.pair_embed_dim, ffn_embedding_dim=args.encoder_ffn_embed_dim, num_attention_heads=args.encoder_attention_heads, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.act_dropout, activation_fn=args.activation_fn, droppath_prob=args.droppath_prob, ) num_atom = 512 num_degree = 128 num_edge = 64 num_pair = 512 num_spatial = 512 embedding_dim = args.encoder_embed_dim num_attention_heads = args.encoder_attention_heads num_3d_bias_kernel = args.num_3d_bias_kernel self.atom_feature = AtomFeature( num_atom=num_atom, num_degree=num_degree, hidden_dim=embedding_dim, N_vnode=args.N_vnode ) self.edge_feature = EdgeFeature( pair_dim=args.pair_embed_dim, num_edge=num_edge, num_spatial=num_spatial, N_vnode=args.N_vnode ) self.se3_invariant_kernel = SE3InvariantKernel( pair_dim=args.pair_embed_dim, num_pair=num_pair, num_kernel=num_3d_bias_kernel, std_width=args.gaussian_std_width, start=args.gaussian_mean_start, stop=args.gaussian_mean_stop, ) if not self.args.pretrain: self.energy_head = EnergyHead(args.encoder_embed_dim, 1) else: self.energy_head = None self.movement_pred_head = MovementPredictionHead( args.encoder_embed_dim, args.pair_embed_dim, args.encoder_attention_heads ) self.lddt_head = PredictedLDDTHead( 50, args.encoder_embed_dim, args.encoder_embed_dim // 2 ) self.movement_pred_head.zero_init() self._num_updates = 0 self.dtype = torch.float32 def half(self): super().half() self.se3_invariant_kernel = self.se3_invariant_kernel.float() self.atom_feature = self.atom_feature.float() self.edge_feature = self.edge_feature.float() if self.energy_head is not None: self.energy_head = self.energy_head.float() self.dtype = torch.half return self def bfloat16(self): super().bfloat16() self.se3_invariant_kernel = self.se3_invariant_kernel.float() self.atom_feature = self.atom_feature.float() self.edge_feature = self.edge_feature.float() if self.energy_head is not None: self.energy_head = self.energy_head.float() self.dtype = torch.bfloat16 return self def float(self): super().float() self.dtype = torch.float32 return self def forward(self, batched_data, perturb=None, cls_embedding=None): data_x = batched_data["atom_feat"] atom_mask = batched_data["atom_mask"] pair_type = batched_data["pair_type"] pos = batched_data["pos"] if self.args.pretrain: with numpy_seed(self.args.seed, self._num_updates, key="recycle"): if self.training: num_block = np.random.randint(1, self.args.num_block + 1) else: num_block = self.args.num_block else: num_block = self.args.num_block n_mol, n_atom = data_x.shape[:2] x = self.atom_feature(batched_data) dtype = self.dtype x = x.type(dtype) if cls_embedding is not None: x[:, 0, :] = cls_embedding if perturb is not None: x[:, self.args.N_vnode:, :] += perturb.type(dtype) attn_mask = batched_data["attn_bias"].clone() attn_bias = torch.zeros_like(attn_mask) attn_mask = attn_mask.unsqueeze(1).repeat( 1, self.args.encoder_attention_heads, 1, 1 ) attn_bias = attn_bias.unsqueeze(-1).repeat(1, 1, 1, self.args.pair_embed_dim) attn_bias = self.edge_feature(batched_data, attn_bias) attn_mask = attn_mask.type(self.dtype) atom_mask_cls = torch.cat( [ torch.ones(n_mol, self.args.N_vnode, device=atom_mask.device, dtype=atom_mask.dtype), atom_mask, ], dim=1, ).type(self.dtype) pair_mask = atom_mask_cls.unsqueeze(-1) * atom_mask_cls.unsqueeze(-2) def one_block(x, pos, return_x=False): delta_pos = pos.unsqueeze(1) - pos.unsqueeze(2) dist = delta_pos.norm(dim=-1) attn_bias_3d = self.se3_invariant_kernel(dist.detach(), pair_type) new_attn_bias = attn_bias.clone() new_attn_bias[:, self.args.N_vnode:, self.args.N_vnode:, :] = new_attn_bias[:, self.args.N_vnode:, self.args.N_vnode:, :] + attn_bias_3d new_attn_bias = new_attn_bias.type(dtype) x, pair = self.molecule_encoder( x, new_attn_bias, atom_mask=atom_mask_cls, pair_mask=pair_mask, attn_mask=attn_mask, ) node_output = self.movement_pred_head( x[:, self.args.N_vnode:, :], pair[:, self.args.N_vnode:, self.args.N_vnode:, :], attn_mask[:, :, self.args.N_vnode:, self.args.N_vnode:], delta_pos.detach(), ) node_output = node_output * self.args.pos_step_size if return_x: return x, pos + node_output else: return pos + node_output if self.args.pretrain: with torch.no_grad(): for _ in range(num_block - 1): pos = one_block(x, pos) pos = one_block(x, pos) pred_y = None else: for _ in range(num_block - 1): pos = one_block(x, pos) x, pos = one_block(x, pos, return_x=True) pred_y = self.energy_head(x[:, 0, :]).view(-1) pred_dist = (pos.unsqueeze(1) - pos.unsqueeze(2)).norm(dim=-1) plddt = self.lddt_head(x[:, self.args.N_vnode:, :]) return ( pred_y, pos, pred_dist, plddt, x ) @classmethod def build_model(cls, args, task): return cls(args) def set_num_updates(self, num_updates): """State from trainer to pass along to model at every update.""" self._num_updates = num_updates @register_model_architecture("unimolv2", "unimolv2_base") def base_architecture(args): args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) args.pair_embed_dim = getattr(args, "pair_embed_dim", 128) args.encoder_layers = getattr(args, "encoder_layers", 12) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 48) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 768) args.activation_fn = getattr(args, "activation_fn", "gelu") args.droppath_prob = getattr(args, "droppath_prob", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.act_dropout = getattr(args, "act_dropout", 0.1) args.dropout = getattr(args, "dropout", 0.0) args.num_3d_bias_kernel = getattr(args, "num_3d_bias_kernel", 128) args.num_block = getattr(args, "num_block", 4) args.pretrain = getattr(args, "pretrain", False) args.pos_step_size = getattr(args, "pos_step_size", 0.01) args.gaussian_std_width = getattr(args, "gaussian_std_width", 1.0) args.gaussian_mean_start = getattr(args, "gaussian_mean_start", 0.0) args.gaussian_mean_stop = getattr(args, "gaussian_mean_stop", 9.0) args.N_vnode = getattr(args, "N_vnode", 1)
13,766
Python
.py
378
26.145503
148
0.564827
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,261
layers.py
dptech-corp_NAG2G/unimol_plus/unimol/models/layers.py
import math import torch import torch.nn as nn import torch.nn.functional as F from unicore import utils from unicore.modules import softmax_dropout, SelfMultiheadAttention, LayerNorm from unicore.utils import ( permute_final_dims, ) from torch import Tensor from typing import Callable, Optional class Dropout(nn.Module): def __init__(self, p): super().__init__() self.p = p def forward(self, x, inplace: bool = False): if self.p > 0 and self.training: return F.dropout(x, p=self.p, training=True, inplace=inplace) else: return x class Linear(nn.Linear): def __init__( self, d_in: int, d_out: int, bias: bool = True, init: str = "default", ): super(Linear, self).__init__(d_in, d_out, bias=bias) self.use_bias = bias if self.use_bias: with torch.no_grad(): self.bias.fill_(0) if init == "default": self._trunc_normal_init(1.0) elif init == "relu": self._trunc_normal_init(2.0) elif init == "glorot": self._glorot_uniform_init() elif init == "gating": self._zero_init(self.use_bias) elif init == "normal": self._normal_init() elif init == "final": self._zero_init(False) else: raise ValueError("Invalid init method.") def _trunc_normal_init(self, scale=1.0): # Constant from scipy.stats.truncnorm.std(a=-2, b=2, loc=0., scale=1.) TRUNCATED_NORMAL_STDDEV_FACTOR = 0.87962566103423978 _, fan_in = self.weight.shape scale = scale / max(1, fan_in) std = (scale**0.5) / TRUNCATED_NORMAL_STDDEV_FACTOR nn.init.trunc_normal_(self.weight, mean=0.0, std=std) def _glorot_uniform_init(self): nn.init.xavier_uniform_(self.weight, gain=1) def _zero_init(self, use_bias=True): with torch.no_grad(): self.weight.fill_(0.0) if use_bias: with torch.no_grad(): self.bias.fill_(1.0) def _normal_init(self): torch.nn.init.kaiming_normal_(self.weight, nonlinearity="linear") class Embedding(nn.Embedding): def __init__( self, num_embeddings: int, embedding_dim: int, padding_idx: int = None, ): super(Embedding, self).__init__( num_embeddings, embedding_dim, padding_idx=padding_idx ) self._normal_init() if padding_idx is not None: self.weight.data[self.padding_idx].zero_() def _normal_init(self, std=0.02): nn.init.normal_(self.weight, mean=0.0, std=std) class Transition(nn.Module): def __init__(self, d_in, n, dropout=0.0): super(Transition, self).__init__() self.d_in = d_in self.n = n self.linear_1 = Linear(self.d_in, self.n * self.d_in, init="relu") self.act = nn.GELU() self.linear_2 = Linear(self.n * self.d_in, d_in, init="final") self.dropout = dropout def _transition(self, x): x = self.linear_1(x) x = self.act(x) x = F.dropout(x, p=self.dropout, training=self.training) x = self.linear_2(x) return x def forward( self, x: torch.Tensor, ) -> torch.Tensor: x = self._transition(x=x) return x class Attention(nn.Module): def __init__( self, q_dim: int, k_dim: int, v_dim: int, pair_dim: int, head_dim: int, num_heads: int, gating: bool = False, dropout: float = 0.0, ): super(Attention, self).__init__() self.num_heads = num_heads total_dim = head_dim * self.num_heads self.gating = gating self.linear_q = Linear(q_dim, total_dim, bias=False, init="glorot") self.linear_k = Linear(k_dim, total_dim, bias=False, init="glorot") self.linear_v = Linear(v_dim, total_dim, bias=False, init="glorot") self.linear_o = Linear(total_dim, q_dim, init="final") self.linear_g = None if self.gating: self.linear_g = Linear(q_dim, total_dim, init="gating") # precompute the 1/sqrt(head_dim) self.norm = head_dim**-0.5 self.dropout = dropout self.linear_bias = Linear(pair_dim, num_heads) def forward( self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, pair: torch.Tensor, mask: torch.Tensor = None, ) -> torch.Tensor: g = None if self.linear_g is not None: # gating, use raw query input g = self.linear_g(q) q = self.linear_q(q) q *= self.norm k = self.linear_k(k) v = self.linear_v(v) q = q.view(q.shape[:-1] + (self.num_heads, -1)).transpose(-2, -3).contiguous() k = k.view(k.shape[:-1] + (self.num_heads, -1)).transpose(-2, -3).contiguous() v = v.view(v.shape[:-1] + (self.num_heads, -1)).transpose(-2, -3) attn = torch.matmul(q, k.transpose(-1, -2)) del q, k bias = self.linear_bias(pair).permute(0, 3, 1, 2).contiguous() attn = softmax_dropout(attn, self.dropout, self.training, mask=mask, bias=bias) o = torch.matmul(attn, v) del attn, v o = o.transpose(-2, -3).contiguous() o = o.view(*o.shape[:-2], -1) if g is not None: o = torch.sigmoid(g) * o # merge heads o = self.linear_o(o) return o class OuterProduct(nn.Module): def __init__(self, d_atom, d_pair, d_hid=16, eps=1e-3): super(OuterProduct, self).__init__() self.d_atom = d_atom self.d_pair = d_pair self.d_hid = d_hid self.eps = eps self.linear_1 = nn.Linear(d_atom, d_hid) self.linear_2 = nn.Linear(d_atom, d_hid) self.linear_out = nn.Linear(d_hid**2, d_pair) self.act = nn.GELU() def _opm(self, a, b): outer = torch.einsum("...bc,...de->...bdce", a, b) outer = outer.reshape(outer.shape[:-2] + (-1,)) outer = self.linear_out(outer) return outer def forward( self, m: torch.Tensor, mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: mask = mask.unsqueeze(-1) mask = mask * (mask.size(-2) ** -0.5) a = self.linear_1(m) b = self.linear_2(m) a = a * mask b = b * mask z = self._opm(a, b) norm = torch.einsum("...bc,...dc->...bdc", mask, mask) z /= self.eps + norm return z class AtomFeature(nn.Module): """ Compute atom features for each atom in the molecule. """ def __init__( self, num_atom, num_degree, hidden_dim, N_vnode=1, ): super(AtomFeature, self).__init__() self.atom_encoder = Embedding(num_atom, hidden_dim, padding_idx=0) self.degree_encoder = Embedding(num_degree, hidden_dim, padding_idx=0) self.N_vnode = N_vnode self.vnode_encoder = Embedding(self.N_vnode, hidden_dim) def forward(self, batched_data): x, degree = ( batched_data["atom_feat"], batched_data["degree"], ) n_graph, n_node = x.size()[:2] node_feature = self.atom_encoder(x).sum(dim=-2) # [n_graph, n_node, n_hidden] dtype = node_feature.dtype degree_feature = self.degree_encoder(degree) node_feature = node_feature + degree_feature graph_token_feature = self.vnode_encoder.weight.unsqueeze(0).repeat( n_graph, 1, 1 ) graph_node_feature = torch.cat([graph_token_feature, node_feature], dim=1) return graph_node_feature.type(dtype) class EdgeFeature(nn.Module): """ Compute attention bias for each head. """ def __init__( self, pair_dim, num_edge, num_spatial, N_vnode=1, ): super(EdgeFeature, self).__init__() self.pair_dim = pair_dim self.N_vnode = N_vnode self.edge_encoder = Embedding(num_edge, pair_dim, padding_idx=0) self.shorest_path_encoder = Embedding(num_spatial, pair_dim, padding_idx=0) self.vnode_virtual_distance = Embedding(self.N_vnode, pair_dim) def forward(self, batched_data, graph_attn_bias): shortest_path = batched_data["shortest_path"] edge_input = batched_data["edge_feat"] n_graph = graph_attn_bias.shape[0] n_node = graph_attn_bias.shape[-1] - self.N_vnode graph_attn_bias[:, self.N_vnode:, self.N_vnode:, :] = self.shorest_path_encoder(shortest_path) # reset spatial pos here t = self.vnode_virtual_distance.weight.view(1, self.N_vnode, self.pair_dim) graph_attn_bias[:, self.N_vnode:, :self.N_vnode, :] = t t = self.vnode_virtual_distance.weight.view(self.N_vnode, 1, self.pair_dim) graph_attn_bias[:, :self.N_vnode, :, :] = t edge_input = self.edge_encoder(edge_input).mean(-2) graph_attn_bias[:, self.N_vnode:, self.N_vnode:, :] = graph_attn_bias[:, self.N_vnode:, self.N_vnode:, :] + edge_input return graph_attn_bias class SE3InvariantKernel(nn.Module): """ Compute 3D attention bias according to the position information for each head. """ def __init__( self, pair_dim, num_pair, num_kernel, std_width=1.0, start=0.0, stop=9.0, ): super(SE3InvariantKernel, self).__init__() self.num_kernel = num_kernel self.gaussian = GaussianKernel( self.num_kernel, num_pair, std_width=std_width, start=start, stop=stop, ) self.out_proj = NonLinear(self.num_kernel, pair_dim) def forward(self, dist, node_type_edge): edge_feature = self.gaussian( dist, node_type_edge.long(), ) edge_feature = self.out_proj(edge_feature) return edge_feature @torch.jit.script def gaussian(x, mean, std:float): pi = 3.14159 a = (2 * pi) ** 0.5 return torch.exp(-0.5 * (((x - mean) / std) ** 2)) / (a * std) class GaussianKernel(nn.Module): def __init__(self, K=128, num_pair=512, std_width=1.0, start=0.0, stop=9.0): super().__init__() self.K = K std_width = std_width start = start stop = stop mean = torch.linspace(start, stop, K) self.std = (std_width * (mean[1] - mean[0])).item() self.register_buffer("mean", mean) self.mul = Embedding(num_pair, 1, padding_idx=0) self.bias = Embedding(num_pair, 1, padding_idx=0) nn.init.constant_(self.bias.weight, 0) nn.init.constant_(self.mul.weight, 1.0) def forward(self, x, atom_pair): mul = self.mul(atom_pair).abs().sum(dim=-2) bias = self.bias(atom_pair).sum(dim=-2) x = mul * x.unsqueeze(-1) + bias x = x.expand(-1, -1, -1, self.K) mean = self.mean.float().view(-1) return gaussian(x.float(), mean, self.std) class NonLinear(nn.Module): def __init__(self, input, output_size, hidden=None): super(NonLinear, self).__init__() if hidden is None: hidden = input self.layer1 = Linear(input, hidden, init="relu") self.layer2 = Linear(hidden, output_size, init="final") def forward(self, x): x = self.layer1(x) x = F.gelu(x) x = self.layer2(x) return x def zero_init(self): nn.init.zeros_(self.layer2.weight) nn.init.zeros_(self.layer2.bias) class EnergyHead(nn.Module): def __init__( self, input_dim, output_dim, ): super().__init__() self.layer_norm = LayerNorm(input_dim) self.linear_in = Linear(input_dim, input_dim, init="relu") self.linear_out = Linear(input_dim, output_dim, bias=True, init="final") def forward(self, x): x = x.type(self.linear_in.weight.dtype) x = F.gelu(self.layer_norm(self.linear_in(x))) x = self.linear_out(x) return x class PredictedLDDTHead(nn.Module): def __init__(self, num_bins, d_in, d_hid): super(PredictedLDDTHead, self).__init__() self.num_bins = num_bins self.d_in = d_in self.d_hid = d_hid self.layer_norm = LayerNorm(self.d_hid) self.linear_1 = Linear(self.d_in, self.d_hid, init="relu") self.linear_2 = Linear(self.d_hid, self.d_hid, init="relu") self.act = nn.GELU() self.linear_3 = Linear(self.d_hid, self.num_bins, init="final") def forward(self, s): s = self.linear_1(s) s = self.act(self.layer_norm(s)) s = self.linear_2(s) s = self.act(s) s = self.linear_3(s) return s class MovementPredictionHead(nn.Module): def __init__( self, embed_dim: int, pair_dim: int, num_head: int, ): super().__init__() self.layer_norm = LayerNorm(embed_dim) self.embed_dim = embed_dim self.q_proj = Linear(embed_dim, embed_dim, bias=False, init="glorot") self.k_proj = Linear(embed_dim, embed_dim, bias=False, init="glorot") self.v_proj = Linear(embed_dim, embed_dim, bias=False, init="glorot") self.num_head = num_head self.scaling = (embed_dim // num_head) ** -0.5 self.force_proj1 = Linear(embed_dim, 1, init="final") self.force_proj2 = Linear(embed_dim, 1, init="final") self.force_proj3 = Linear(embed_dim, 1, init="final") self.linear_bias = Linear(pair_dim, num_head) self.dropout = 0.1 def zero_init(self): nn.init.zeros_(self.force_proj1.weight) nn.init.zeros_(self.force_proj1.bias) nn.init.zeros_(self.force_proj2.weight) nn.init.zeros_(self.force_proj2.bias) nn.init.zeros_(self.force_proj3.weight) nn.init.zeros_(self.force_proj3.bias) def forward( self, query: Tensor, pair: Tensor, attn_mask: Tensor, delta_pos: Tensor, ) -> Tensor: bsz, n_node, _ = query.size() query = self.layer_norm(query) q = ( self.q_proj(query).view(bsz, n_node, self.num_head, -1).transpose(1, 2) * self.scaling ) k = self.k_proj(query).view(bsz, n_node, self.num_head, -1).transpose(1, 2) v = self.v_proj(query).view(bsz, n_node, self.num_head, -1).transpose(1, 2) attn = q @ k.transpose(-1, -2) # [bsz, head, n, n] bias = self.linear_bias(pair).permute(0, 3, 1, 2).contiguous() attn_probs = softmax_dropout( attn, self.dropout, self.training, mask=attn_mask.contiguous(), bias=bias.contiguous(), ).view(bsz, self.num_head, n_node, n_node) rot_attn_probs = attn_probs.unsqueeze(-1) * delta_pos.unsqueeze(1).type_as( attn_probs ) # [bsz, head, n, n, 3] rot_attn_probs = rot_attn_probs.permute(0, 1, 4, 2, 3) x = rot_attn_probs @ v.unsqueeze(2) # [bsz, head , 3, n, d] x = x.permute(0, 3, 2, 1, 4).contiguous().view(bsz, n_node, 3, -1) f1 = self.force_proj1(x[:, :, 0, :]).view(bsz, n_node, 1) f2 = self.force_proj2(x[:, :, 1, :]).view(bsz, n_node, 1) f3 = self.force_proj3(x[:, :, 2, :]).view(bsz, n_node, 1) cur_force = torch.cat([f1, f2, f3], dim=-1).float() return cur_force class DropPath(torch.nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, prob=None): super(DropPath, self).__init__() self.drop_prob = prob def forward(self, x): if self.drop_prob == 0.0 or not self.training: return x keep_prob = 1 - self.drop_prob shape = (x.shape[0],) + (1,) * ( x.ndim - 1 ) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device) random_tensor.floor_() # binarize output = x.div(keep_prob) * random_tensor return output def extra_repr(self) -> str: return f"prob={self.drop_prob}" class TriangleMultiplication(nn.Module): def __init__(self, d_pair, d_hid): super(TriangleMultiplication, self).__init__() self.linear_ab_p = Linear(d_pair, d_hid * 2) self.linear_ab_g = Linear(d_pair, d_hid * 2, init="gating") self.linear_g = Linear(d_pair, d_pair, init="gating") self.linear_z = Linear(d_hid, d_pair, init="final") self.layer_norm_out = LayerNorm(d_hid) def forward( self, z: torch.Tensor, mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: mask = mask.unsqueeze(-1) mask = mask * (mask.shape[-2] ** -0.5) g = self.linear_g(z) if self.training: ab = self.linear_ab_p(z) * mask * torch.sigmoid(self.linear_ab_g(z)) else: ab = self.linear_ab_p(z) ab *= mask ab *= torch.sigmoid(self.linear_ab_g(z)) a, b = torch.chunk(ab, 2, dim=-1) del z, ab a1 = permute_final_dims(a, (2, 0, 1)) b1 = b.transpose(-1, -3) x = torch.matmul(a1, b1) del a1, b1 b2 = permute_final_dims(b, (2, 0, 1)) a2 = a.transpose(-1, -3) x = x + torch.matmul(a2, b2) del a, b, a2, b2 x = permute_final_dims(x, (1, 2, 0)) x = self.layer_norm_out(x) x = self.linear_z(x) return g * x class TransformerEncoderLayer(nn.Module): """ Implements a Transformer-M Encoder Layer. """ def __init__( self, embedding_dim: int = 768, pair_dim: int = 64, ffn_embedding_dim: int = 3072, num_attention_heads: int = 8, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, activation_fn: str = "relu", droppath_prob: float = 0.0, ) -> None: super().__init__() # Initialize parameters self.embedding_dim = embedding_dim self.num_attention_heads = num_attention_heads self.attention_dropout = attention_dropout if droppath_prob > 0.0: self.dropout_module = DropPath(droppath_prob) else: self.dropout_module = Dropout(dropout) # Initialize blocks self.activation_fn = utils.get_activation_fn(activation_fn) head_dim = self.embedding_dim // self.num_attention_heads self.self_attn = Attention( self.embedding_dim, self.embedding_dim, self.embedding_dim, pair_dim=pair_dim, head_dim=head_dim, num_heads=self.num_attention_heads, gating=False, dropout=attention_dropout, ) # layer norm associated with the self attention layer self.self_attn_layer_norm = LayerNorm(self.embedding_dim) self.ffn = Transition( self.embedding_dim, ffn_embedding_dim // self.embedding_dim, dropout=activation_dropout, ) # layer norm associated with the position wise feed-forward NN self.final_layer_norm = LayerNorm(self.embedding_dim) self.opm = OuterProduct(self.embedding_dim, pair_dim, d_hid=32) self.pair_layer_norm_opm = LayerNorm(pair_dim) self.pair_layer_norm_ffn = LayerNorm(pair_dim) self.pair_ffn = Transition( pair_dim, 1, dropout=activation_dropout, ) self.pair_dropout = 0.25 self.pair_layer_norm_trimul = LayerNorm(pair_dim) self.pair_tri_mul = TriangleMultiplication(pair_dim, 32) def shared_dropout(self, x, shared_dim, dropout): shape = list(x.shape) shape[shared_dim] = 1 with torch.no_grad(): mask = x.new_ones(shape) return F.dropout(mask, p=dropout, training=self.training) * x def forward( self, x: torch.Tensor, pair: torch.Tensor, atom_mask: torch.Tensor, pair_mask: torch.Tensor, self_attn_mask: Optional[torch.Tensor] = None, ): """ LayerNorm is applied either before or after the self-attention/ffn modules similar to the original Transformer implementation. """ residual = x x = self.self_attn( x, x, x, pair=pair, mask=self_attn_mask, ) x = self.dropout_module(x) x = residual + x x = self.self_attn_layer_norm(x) residual = x x = self.ffn(x) x = self.dropout_module(x) x = residual + x x = self.final_layer_norm(x) # outer product pair = pair + self.dropout_module(self.opm(x, atom_mask)) pair = self.pair_layer_norm_opm(pair) # trimul pair_update = self.shared_dropout( self.pair_tri_mul(pair, pair_mask), -3, self.pair_dropout ) pair = pair + pair_update pair = self.pair_layer_norm_trimul(pair) # ffn pair = pair + self.dropout_module(self.pair_ffn(pair)) pair = self.pair_layer_norm_ffn(pair) return x, pair
21,560
Python
.py
577
28.542461
126
0.56734
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,262
__init__.py
dptech-corp_NAG2G/unimol_plus/unimol/models/__init__.py
from pathlib import Path import importlib # automatically import any Python files in the criterions/ directory for file in sorted(Path(__file__).parent.glob("*.py")): if not file.name.startswith("_"): importlib.import_module("unimol.models." + file.name[:-3])
272
Python
.py
6
42.333333
68
0.725564
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,263
unimolv2_encoder.py
dptech-corp_NAG2G/unimol_plus/unimol/models/unimolv2_encoder.py
import imp from typing import Optional, Tuple import numpy as np import torch import torch.nn as nn from unicore.modules import LayerNorm from .layers import ( TransformerEncoderLayer, Dropout, ) class UniMolv2Encoder(nn.Module): def __init__( self, num_encoder_layers: int = 6, embedding_dim: int = 768, pair_dim: int = 64, ffn_embedding_dim: int = 3072, num_attention_heads: int = 8, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.1, activation_fn: str = "gelu", droppath_prob: float = 0.0, ) -> None: super().__init__() self.embedding_dim = embedding_dim self.num_head = num_attention_heads self.layer_norm = LayerNorm(embedding_dim) self.pair_layer_norm = LayerNorm(pair_dim) self.layers = nn.ModuleList([]) if droppath_prob > 0: droppath_probs = [ x.item() for x in torch.linspace(0, droppath_prob, num_encoder_layers) ] else: droppath_probs = None self.layers.extend( [ TransformerEncoderLayer( embedding_dim=embedding_dim, pair_dim=pair_dim, ffn_embedding_dim=ffn_embedding_dim, num_attention_heads=num_attention_heads, dropout=dropout, attention_dropout=attention_dropout, activation_dropout=activation_dropout, activation_fn=activation_fn, droppath_prob=droppath_probs[i] if droppath_probs is not None else 0, ) for i in range(num_encoder_layers) ] ) def forward( self, x, pair, atom_mask, pair_mask, attn_mask=None, ) -> Tuple[torch.Tensor, torch.Tensor]: x = self.layer_norm(x) pair = self.pair_layer_norm(pair) for layer in self.layers: x, pair = layer( x, pair, atom_mask=atom_mask, pair_mask=pair_mask, self_attn_mask=attn_mask, ) return x, pair
2,326
Python
.py
73
20.876712
86
0.530303
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,264
unimolv2.py
dptech-corp_NAG2G/unimol_plus/unimol/tasks/unimolv2.py
# Copyright (c) DP Techonology, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import os import numpy as np from unicore.data import ( NestedDictionaryDataset, EpochShuffleDataset, ) from unimol.data import ( KeyDataset, LMDBPCQDataset, ConformerPCQSampleDataset, ConformerPCQTTASampleDataset, Unimolv2Features, ) from unicore.tasks import UnicoreTask, register_task logger = logging.getLogger(__name__) @register_task("unimolv2") class Unimolv2Task(UnicoreTask): """Task for training transformer auto-encoder models.""" @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument("data", help="downstream data path") def __init__(self, args): super().__init__(args) self.seed = args.seed @classmethod def setup_task(cls, args, **kwargs): return cls(args) def load_dataset(self, split, force_valid=False, **kwargs): """Load a given dataset split. Args: split (str): name of the data scoure (e.g., bppp) """ split_path = os.path.join(self.args.data, split + ".lmdb") dataset = LMDBPCQDataset(split_path) is_train = (split == "train") and not force_valid if is_train: sample_dataset = ConformerPCQSampleDataset( dataset, self.seed, "input_pos", "label_pos", ) else: sample_dataset = ConformerPCQTTASampleDataset( dataset, self.seed, "input_pos", "label_pos", ) raw_coord_dataset = KeyDataset(sample_dataset, "coordinates") tgt_coord_dataset = KeyDataset(sample_dataset, "target_coordinates") graph_features = Unimolv2Features( sample_dataset, raw_coord_dataset, tgt_coord_dataset if split in ["train", "valid_our"] else None, is_train=is_train, label_prob=self.args.label_prob, mid_prob=self.args.mid_prob, mid_lower=self.args.mid_lower, mid_upper=self.args.mid_upper, noise=self.args.noise_scale, seed=self.seed + 2, ) nest_dataset = NestedDictionaryDataset( { "batched_data": graph_features, }, ) if is_train: nest_dataset = EpochShuffleDataset( nest_dataset, len(nest_dataset), self.seed ) self.datasets[split] = nest_dataset def build_model(self, args): from unicore import models model = models.build_model(args, self) return model
2,851
Python
.py
83
25.493976
76
0.604499
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,265
__init__.py
dptech-corp_NAG2G/unimol_plus/unimol/tasks/__init__.py
from pathlib import Path import importlib # automatically import any Python files in the criterions/ directory for file in sorted(Path(__file__).parent.glob("*.py")): if not file.name.startswith("_"): importlib.import_module("unimol.tasks." + file.name[:-3])
272
Python
.py
6
42.166667
68
0.724528
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,266
unimolv2.py
dptech-corp_NAG2G/unimol_plus/unimol/losses/unimolv2.py
from dataclasses import dataclass import math import torch import torch.nn.functional as F import numpy as np import pandas as pd from unicore import metrics from unicore.losses import UnicoreLoss, register_loss from scipy.spatial.transform import Rotation as R from typing import List, Callable, Any, Dict import os @register_loss("unimolv2") class Unimolv2Loss(UnicoreLoss): """ Implementation for the loss used in masked graph model (MGM) training. """ def __init__(self, task): super().__init__(task) self.args = task.args def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ with torch.no_grad(): sample_size = sample["batched_data"]["atom_feat"].shape[0] natoms = sample["batched_data"]["atom_feat"].shape[1] # add gaussian noise ( graph_output, pos_pred, dist_pred, plddt_logits, ) = model(**sample) targets = sample["batched_data"]["target"].float().view(-1) per_data_loss = None if graph_output is not None: per_data_loss = torch.nn.L1Loss(reduction="none")( graph_output.float(), targets ) loss = per_data_loss.sum() else: loss = torch.tensor(0.0, device=targets.device) atom_mask = sample["batched_data"]["atom_mask"].float() pos_mask = atom_mask.unsqueeze(-1) pos_target = sample["batched_data"]["pos_target"].float() * pos_mask def get_pos_loss(pos_pred): pos_pred = pos_pred.float() * pos_mask center_loss = pos_pred.mean(dim=-2).square().sum() pos_loss = torch.nn.L1Loss(reduction="none")( pos_pred, pos_target, ).sum(dim=(-1, -2)) pos_cnt = pos_mask.squeeze(-1).sum(dim=-1) + 1e-10 pos_loss = (pos_loss / pos_cnt).sum() return pos_loss, center_loss (pos_loss, center_loss) = get_pos_loss(pos_pred) pair_mask = atom_mask.unsqueeze(-1) * atom_mask.unsqueeze(-2).float() dist_target = (pos_target.unsqueeze(-2) - pos_target.unsqueeze(-3)).norm(dim=-1) dist_target = dist_target * pair_mask dist_cnt = pair_mask.sum(dim=(-1, -2)) + 1e-10 def get_dist_loss(dist_pred, return_sum=True): dist_pred = dist_pred.float() * pair_mask dist_loss = torch.nn.L1Loss(reduction="none")( dist_pred, dist_target, ).sum(dim=(-1, -2)) if return_sum: return (dist_loss / dist_cnt).sum() else: return dist_loss / dist_cnt dist_loss = get_dist_loss(dist_pred) plddt_logits = plddt_logits.float() cutoff = 15.0 num_bins = 50 eps = 1e-10 lddt = self.compute_lddt( dist_pred.float(), dist_target, pair_mask, cutoff=cutoff, eps=eps, ).detach() bin_index = torch.floor(lddt * num_bins).long() bin_index = torch.clamp(bin_index, max=(num_bins - 1)) lddt_ca_one_hot = torch.nn.functional.one_hot(bin_index, num_classes=num_bins) errors = self.softmax_cross_entropy(plddt_logits, lddt_ca_one_hot) plddt_loss = self.masked_mean(atom_mask, errors, dim=-1, eps=eps).sum() ca_lddt = self.masked_mean(atom_mask, lddt, dim=-1, eps=eps) plddt = self.masked_mean( atom_mask, self.predicted_lddt(plddt_logits), dim=-1, eps=eps ) total_loss = ( loss + dist_loss + self.args.pos_loss_weight * (pos_loss + center_loss) + self.args.plddt_loss_weight * plddt_loss ) logging_output = { "loss": loss.data, "dist_loss": dist_loss.data, "pos_loss": pos_loss.data, "center_loss": center_loss.data, "total_loss": total_loss.data, "plddt_loss": plddt_loss.data, "ca_lddt_metric": ca_lddt.sum().data, "plddt_metric": plddt.sum().data, "sample_size": sample_size, "nsentences": sample_size, "ntokens": natoms, "bsz": sample_size, "n_atoms": natoms * sample_size, } if not torch.is_grad_enabled(): logging_output["id"] = sample["batched_data"]["id"].cpu().numpy() if per_data_loss is None: per_data_loss = 1.0 - ca_lddt logging_output["per_data"] = per_data_loss.detach().cpu().numpy() logging_output["plddt"] = plddt.detach().cpu().numpy() logging_output["ca_lddt"] = ca_lddt.detach().cpu().numpy() logging_output["is_pretrain"] = 1.0 if graph_output is None else 0.0 logging_output["total_loss"] = total_loss.data return total_loss, sample_size, logging_output @staticmethod def reduce_metrics(logging_outputs, split="valid") -> None: """Aggregate logging outputs from data parallel training.""" is_pretrain = sum(log.get("is_pretrain", 0) for log in logging_outputs) > 0 if split != "train": prefix = "" if not is_pretrain else "pretrain_" id = np.concatenate([log["id"] for log in logging_outputs]) per_data = np.concatenate([log["per_data"] for log in logging_outputs]) plddt = np.concatenate([log["plddt"] for log in logging_outputs]) ca_lddt = np.concatenate([log["ca_lddt"] for log in logging_outputs]) df = pd.DataFrame( { "id": id, "loss": per_data, "plddt": plddt, "ca_lddt": ca_lddt, } ) df_grouped = df.groupby(["id"]) df_min = df_grouped.agg("min") df_mean = df_grouped.agg("mean") df_median = df_grouped.agg("median") df_plddt = ( df.sort_values(by=["id", "plddt"], ascending=[True, False]) .groupby("id", as_index=False) .head(1) ) df_ca_lddt = ( df.sort_values(by=["id", "ca_lddt"], ascending=[True, False]) .groupby("id", as_index=False) .head(1) ) assert len(df_min["loss"]) == len(df_plddt["loss"]) metrics.log_scalar( prefix + "loss_by_plddt", df_plddt["loss"].mean(), 1, round=6 ) metrics.log_scalar( prefix + "loss_by_ca_lddt", df_ca_lddt["loss"].mean(), 1, round=6 ) metrics.log_scalar( prefix + "loss_by_min", df_min["loss"].mean(), 1, round=6 ) metrics.log_scalar(prefix + "loss_cnt", len(df_min["loss"]), 1, round=6) metrics.log_scalar( prefix + "loss_by_mean", df_mean["loss"].mean(), 1, round=6 ) metrics.log_scalar( prefix + "loss_by_median", df_median["loss"].mean(), 1, round=6 ) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) n_atoms = sum(log.get("n_atoms", 0) for log in logging_outputs) for key in logging_outputs[0].keys(): if "loss" in key or "metric" in key: total_loss_sum = sum(log.get(key, 0) for log in logging_outputs) metrics.log_scalar( key, total_loss_sum / sample_size, sample_size, round=6 ) metrics.log_scalar("n_atoms", n_atoms / sample_size, sample_size, round=6) @staticmethod def logging_outputs_can_be_summed(is_train) -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return is_train def compute_lddt( self, dmat_pred, dmat_true, pair_mask: torch.Tensor, cutoff: float = 15.0, eps: float = 1e-10, ) -> torch.Tensor: n = pair_mask.shape[-1] dists_to_score = ( (dmat_true < cutoff) * pair_mask * (1.0 - torch.eye(n, device=pair_mask.device)) ) dist_l1 = torch.abs(dmat_true - dmat_pred) score = ( (dist_l1 < 0.05).type(dist_l1.dtype) + (dist_l1 < 0.1).type(dist_l1.dtype) + (dist_l1 < 0.2).type(dist_l1.dtype) + (dist_l1 < 0.4).type(dist_l1.dtype) ) score = score * 0.25 norm = 1.0 / (eps + torch.sum(dists_to_score, dim=-1)) score = norm * (eps + torch.sum(dists_to_score * score, dim=-1)) return score def masked_mean(self, mask, value, dim, eps=1e-10, keepdim=False): mask = mask.expand(*value.shape) return torch.sum(mask * value, dim=dim, keepdim=keepdim) / ( eps + torch.sum(mask, dim=dim, keepdim=keepdim) ) def softmax_cross_entropy(self, logits, labels): loss = -1 * torch.sum( labels * torch.nn.functional.log_softmax(logits.float(), dim=-1), dim=-1, ) return loss def predicted_lddt(self, plddt_logits: torch.Tensor) -> torch.Tensor: """Computes per-residue pLDDT from logits. Args: logits: [num_res, num_bins] output from the PredictedLDDTHead. Returns: plddt: [num_res] per-residue pLDDT. """ num_bins = plddt_logits.shape[-1] bin_probs = torch.nn.functional.softmax(plddt_logits.float(), dim=-1) bin_width = 1.0 / num_bins bounds = torch.arange( start=0.5 * bin_width, end=1.0, step=bin_width, device=plddt_logits.device ) plddt = torch.sum( bin_probs * bounds.view(*((1,) * len(bin_probs.shape[:-1])), *bounds.shape), dim=-1, ) return plddt
10,294
Python
.py
245
31.012245
88
0.546298
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,267
__init__.py
dptech-corp_NAG2G/unimol_plus/unimol/losses/__init__.py
from pathlib import Path import importlib # automatically import any Python files in the criterions/ directory for file in sorted(Path(__file__).parent.glob("*.py")): if not file.name.startswith("_"): importlib.import_module("unimol.losses." + file.name[:-3])
273
Python
.py
6
42.333333
68
0.725564
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,268
check_train_smi.py
dptech-corp_NAG2G/unimol_plus/examples/pcqm4m/check_train_smi.py
import gzip import os, sys import pickle from tqdm import tqdm from multiprocessing import Pool import lmdb from rdkit import Chem from rdkit.Chem import AllChem from rdkit.Chem.rdMolAlign import GetBestAlignmentTransform import numpy as np lines = gzip.open("data.csv.gz", "r").readlines() target = [] smiles = [] for i in range(1, len(lines)): try: s = lines[i].decode().split(",") smiles.append(s[1]) target.append(float(s[2])) except: target.append(None) del lines label_env = lmdb.open( "label_3D.lmdb", subdir=False, readonly=False, lock=False, readahead=False, meminit=False, max_readers=1, map_size=int(100e9), ) with label_env.begin() as txn: train_keys = list(txn.cursor().iternext(values=False)) def get_by_key(env, key): data = env.begin().get(key) if data is None: return data else: try: return pickle.loads(gzip.decompress(data)) except: return None def process_one(key): index = int.from_bytes(key, "big") label_str = get_by_key(label_env, key) label_mol = Chem.MolFromMolBlock(label_str) label_mol = Chem.RemoveHs(label_mol) ori_smi = Chem.MolToSmiles(Chem.SmilesToMol(smiles[index])) label_smi = Chem.MolToSmiles(label_mol) if ori_smi != label_smi: print("smi mismatch", ori_smi, label_smi) return 1 else: return 0 i = 0 erorr_cnt = 0 with Pool(96) as pool: for ret in tqdm(pool.imap(process_one, train_keys), total=len(train_keys)): erorr_cnt += ret # use `int.from_bytes(key, "big")` to decode from bytes i += 1 print(erorr_cnt, i)
1,686
Python
.py
62
22.403226
79
0.659416
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,269
gen_label3d_lmdb.py
dptech-corp_NAG2G/unimol_plus/examples/pcqm4m/gen_label3d_lmdb.py
import gzip import os, sys import pickle from tqdm import tqdm from multiprocessing import Pool import lmdb from rdkit import Chem import torch split = torch.load("split_dict.pt") train_index = split["train"] os.system("rm -f label_3D.lmdb") env_new = lmdb.open( "label_3D.lmdb", subdir=False, readonly=False, lock=False, readahead=False, meminit=False, max_readers=1, map_size=int(100e9), ) txn_write = env_new.begin(write=True) i = 0 with open("pcqm4m-v2-train.sdf", "r") as input: cur_content = "" for line in input: cur_content += line if line == "$$$$\n": ret = gzip.compress(pickle.dumps(cur_content)) a = txn_write.put(int(train_index[i]).to_bytes(4, byteorder="big"), ret) i += 1 cur_content = "" if i % 10000 == 0: txn_write.commit() txn_write = env_new.begin(write=True) print("processed {} molecules".format(i)) txn_write.commit() env_new.close()
1,028
Python
.py
38
21.578947
84
0.61687
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,270
get_mul3d_lmdb.py
dptech-corp_NAG2G/unimol_plus/examples/pcqm4m/get_mul3d_lmdb.py
import gzip import os, sys import pickle from tqdm import tqdm from multiprocessing import Pool import lmdb # '2022.09.3' from rdkit import Chem from rdkit.Chem import AllChem from rdkit.Chem.rdMolAlign import GetBestAlignmentTransform import numpy as np import torch split_key = sys.argv[1] split = torch.load("split_dict.pt") valid_index = split[split_key] lines = gzip.open("data.csv.gz", "r").readlines() target = [] smiles = [] for i in range(1, len(lines)): try: s = lines[i].decode().split(",") smiles.append(s[1]) target.append(float(s[2])) except: target.append(None) del lines if split_key == "train": label_env = lmdb.open( "label_3D.lmdb", subdir=False, readonly=False, lock=False, readahead=False, meminit=False, max_readers=1, map_size=int(100e9), ) with label_env.begin() as txn: train_keys = list(txn.cursor().iternext(values=False)) else: train_keys = valid_index def get_info(src_mol, perm=None): atoms = np.array([x.GetSymbol() for x in src_mol.GetAtoms()]) pos = src_mol.GetConformer().GetPositions() if perm is not None: new_atoms = [] new_pos = np.zeros_like(pos) for i in range(len(atoms)): j = perm[i] new_atoms.append(atoms[j]) new_pos[i, :] = pos[j, :] return np.array(new_atoms), new_pos else: return atoms, pos def align_to(src_mol, ref_mol): t = GetBestAlignmentTransform(src_mol, ref_mol) perm = {x[1]: x[0] for x in t[2]} R = t[1][:3, :3].T T = t[1][:3, 3].T ref_atoms, ref_pos = get_info(ref_mol) src_atoms, src_pos = get_info(src_mol, perm) assert np.all(ref_atoms == src_atoms) src_pos = src_pos @ R + T def cal_rmsd(true_atom_pos, pred_atom_pos, eps: float = 1e-6): sd = np.square(true_atom_pos - pred_atom_pos).sum(axis=-1) msd = np.mean(sd) return np.sqrt(msd + eps) cur_rmsd = cal_rmsd(src_pos, ref_pos) assert np.abs(cur_rmsd - t[0]) < 1e-2 return ref_atoms, src_pos, ref_pos def rdkit_mmff(mol): try: AllChem.MMFFOptimizeMolecule(mol) new_mol = rdkit_remove_hs(mol) pos = new_mol.GetConformer().GetPositions() return new_mol except: return rdkit_remove_hs(mol) def read_smiles(smile): try: mol = Chem.MolFromSmiles(smile) except: print("warning: cannot sanitize smiles: ", smile) mol = Chem.MolFromSmiles(smile, sanitize=False) mol = Chem.AddHs(mol) return mol def read_mol_block(mol_block, removeHs=True): try: mol = Chem.MolFromMolBlock(mol_block, removeHs=removeHs) except: print("warning: cannot sanitize : ", mol_block) mol = Chem.MolFromMolBlock(mol_block, sanitize=False, removeHs=removeHs) return mol def rdkit_remove_hs(mol): try: return Chem.RemoveHs(mol) except: return Chem.RemoveHs(mol, sanitize=False) def rdkit_2d_gen(smile): m = read_smiles(smile) AllChem.Compute2DCoords(m) m = rdkit_mmff(m) pos = m.GetConformer().GetPositions() return m def rdkit_3d_gen(smile, seed): mol = read_smiles(smile) AllChem.EmbedMolecule(mol, randomSeed=seed, maxAttempts=1000) mol = rdkit_mmff(mol) pos = mol.GetConformer().GetPositions() return mol def mols_gen(smiles, index, seed=-1, num_confs=8, num_obabel_confs=0, label_mol=None): si = 0 ref_mol = None for i in range(5): try: ref_mol = rdkit_3d_gen(smiles, seed + i) if label_mol is not None: _, label_pos, _ = align_to(label_mol, ref_mol) ref_rdkit = True ref_2d = False break except: ref_mol = None si = i if ref_mol is None: try: ref_mol = rdkit_2d_gen(smiles) if label_mol is not None: _, label_pos, _ = align_to(label_mol, ref_mol) ref_rdkit = False ref_2d = True except: return None, None, None, None, False atoms, init_pos = get_info(ref_mol) init_pos_list = [init_pos] if label_mol is None: label_pos = init_pos if ref_2d: return ref_mol, atoms, init_pos_list, label_pos, False max_try = num_confs * 10 for i in range(max_try): try: cur_mol = rdkit_3d_gen(smiles, seed + i + 1 + si) _, cur_pos, _ = align_to(cur_mol, ref_mol) init_pos_list.append(cur_pos) except: pass if len(init_pos_list) >= num_confs: break return ref_mol, atoms, init_pos_list, label_pos, True def get_by_key(env, key): data = env.begin().get(key) if data is None: return data else: try: return pickle.loads(gzip.decompress(data)) except: return None # allowable multiple choice node and edge features allowable_features = { "possible_atomic_num_list": list(range(1, 119)) + ["misc"], "possible_chirality_list": [ "CHI_UNSPECIFIED", "CHI_TETRAHEDRAL_CW", "CHI_TETRAHEDRAL_CCW", "CHI_TRIGONALBIPYRAMIDAL", "CHI_OCTAHEDRAL", "CHI_SQUAREPLANAR", "CHI_OTHER", ], "possible_degree_list": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, "misc"], "possible_formal_charge_list": [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, "misc"], "possible_numH_list": [0, 1, 2, 3, 4, 5, 6, 7, 8, "misc"], "possible_number_radical_e_list": [0, 1, 2, 3, 4, "misc"], "possible_hybridization_list": ["SP", "SP2", "SP3", "SP3D", "SP3D2", "misc"], "possible_is_aromatic_list": [False, True], "possible_is_in_ring_list": [False, True], "possible_bond_type_list": ["SINGLE", "DOUBLE", "TRIPLE", "AROMATIC", "misc"], "possible_bond_stereo_list": [ "STEREONONE", "STEREOZ", "STEREOE", "STEREOCIS", "STEREOTRANS", "STEREOANY", ], "possible_is_conjugated_list": [False, True], } def safe_index(l, e): """ Return index of element e in list l. If e is not present, return the last index """ try: return l.index(e) except: return len(l) - 1 def atom_to_feature_vector(atom): """ Converts rdkit atom object to feature list of indices :param mol: rdkit atom object :return: list """ atom_feature = [ safe_index(allowable_features["possible_atomic_num_list"], atom.GetAtomicNum()), allowable_features["possible_chirality_list"].index(str(atom.GetChiralTag())), safe_index(allowable_features["possible_degree_list"], atom.GetTotalDegree()), safe_index( allowable_features["possible_formal_charge_list"], atom.GetFormalCharge() ), safe_index(allowable_features["possible_numH_list"], atom.GetTotalNumHs()), safe_index( allowable_features["possible_number_radical_e_list"], atom.GetNumRadicalElectrons(), ), safe_index( allowable_features["possible_hybridization_list"], str(atom.GetHybridization()), ), allowable_features["possible_is_aromatic_list"].index(atom.GetIsAromatic()), allowable_features["possible_is_in_ring_list"].index(atom.IsInRing()), ] return atom_feature def bond_to_feature_vector(bond): """ Converts rdkit bond object to feature list of indices :param mol: rdkit bond object :return: list """ bond_feature = [ safe_index( allowable_features["possible_bond_type_list"], str(bond.GetBondType()) ), allowable_features["possible_bond_stereo_list"].index(str(bond.GetStereo())), allowable_features["possible_is_conjugated_list"].index(bond.GetIsConjugated()), ] return bond_feature def get_graph(mol): """ Converts SMILES string to graph Data object :input: SMILES string (str) :return: graph object """ atom_features_list = [] for atom in mol.GetAtoms(): atom_features_list.append(atom_to_feature_vector(atom)) x = np.array(atom_features_list, dtype=np.int32) # bonds num_bond_features = 3 # bond type, bond stereo, is_conjugated if len(mol.GetBonds()) > 0: # mol has bonds edges_list = [] edge_features_list = [] for bond in mol.GetBonds(): i = bond.GetBeginAtomIdx() j = bond.GetEndAtomIdx() edge_feature = bond_to_feature_vector(bond) # add edges in both directions edges_list.append((i, j)) edge_features_list.append(edge_feature) edges_list.append((j, i)) edge_features_list.append(edge_feature) # data.edge_index: Graph connectivity in COO format with shape [2, num_edges] edge_index = np.array(edges_list, dtype=np.int32).T # data.edge_attr: Edge feature matrix with shape [num_edges, num_edge_features] edge_attr = np.array(edge_features_list, dtype=np.int32) else: # mol has no bonds edge_index = np.empty((2, 0), dtype=np.int32) edge_attr = np.empty((0, num_bond_features), dtype=np.int32) return x, edge_index, edge_attr def process_one(key): if split_key == "train": index = int.from_bytes(key, "big") label_str = get_by_key(label_env, key) label_mol = read_mol_block(label_str) else: index = int(key) key = index.to_bytes(4, byteorder="big") label_mol = None ori_smi = smiles[index] seed = int(index % 1000 + 1) ref_mol, atoms, init_pos_list, label_pos, is_3d = mols_gen( ori_smi, index, seed=seed, label_mol=label_mol ) if label_pos is None or len(atoms) <= 0: print(index, ori_smi) return key, None, False node_attr, edge_index, edge_attr = get_graph(ref_mol) return ( key, gzip.compress( pickle.dumps( { "atoms": atoms, "input_pos": init_pos_list, "label_pos": label_pos, "target": target[index], "smi": ori_smi, "node_attr": node_attr, "edge_index": edge_index, "edge_attr": edge_attr, } ) ), is_3d, ) os.system(f"rm -f {split_key}.lmdb") env_new = lmdb.open( f"{split_key}.lmdb", subdir=False, readonly=False, lock=False, readahead=False, meminit=False, max_readers=1, map_size=int(100e9), ) txn_write = env_new.begin(write=True) i = 0 error_cnt = 0 is_3d_cnt = 0 with Pool(112) as pool: for ret in tqdm( pool.imap_unordered(process_one, train_keys), total=len(train_keys) ): key, val, is_3d = ret if val is not None: txn_write.put(key, val) else: error_cnt += 1 if is_3d: is_3d_cnt += 1 # use `int.from_bytes(key, "big")` to decode from bytes i += 1 if i % 10000 == 0: txn_write.commit() txn_write = env_new.begin(write=True) txn_write.commit() env_new.close() print(error_cnt, is_3d_cnt)
11,291
Python
.py
339
25.961652
88
0.5942
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,271
preprocess_slurm.py
dptech-corp_NAG2G/unimol_plus/examples/molecules/preprocess_slurm.py
import os import sys import json import glob import pickle import pandas as pd import numpy as np from rdkit import Chem from tqdm import tqdm from rdkit.Chem import Descriptors from rdkit.Chem import AllChem from rdkit import RDLogger RDLogger.DisableLog('rdApp.*') import warnings import contextlib warnings.filterwarnings(action='ignore') from multiprocessing import Pool import timeout_decorator from sklearn.mixture import BayesianGaussianMixture from rdkit.Chem import rdMolTransforms import copy @contextlib.contextmanager def numpy_seed(seed, *addl_seeds): """Context manager which seeds the NumPy PRNG with the specified seed and restores the state afterward""" if seed is None: yield return if len(addl_seeds) > 0: seed = int(hash((seed, *addl_seeds)) % 1e6) state = np.random.get_state() np.random.seed(seed) try: yield finally: np.random.set_state(state) def get_torsions(m): m = Chem.RemoveHs(m) torsionList = [] torsionSmarts = '[!$(*#*)&!D1]-&!@[!$(*#*)&!D1]' torsionQuery = Chem.MolFromSmarts(torsionSmarts) matches = m.GetSubstructMatches(torsionQuery) for match in matches: idx2 = match[0] idx3 = match[1] bond = m.GetBondBetweenAtoms(idx2, idx3) jAtom = m.GetAtomWithIdx(idx2) kAtom = m.GetAtomWithIdx(idx3) for b1 in jAtom.GetBonds(): if (b1.GetIdx() == bond.GetIdx()): continue idx1 = b1.GetOtherAtomIdx(idx2) for b2 in kAtom.GetBonds(): if ((b2.GetIdx() == bond.GetIdx()) or (b2.GetIdx() == b1.GetIdx())): continue idx4 = b2.GetOtherAtomIdx(idx3) # skip 3-membered rings if (idx4 == idx1): continue # skip torsions that include hydrogens if ((m.GetAtomWithIdx(idx1).GetAtomicNum() == 1) or (m.GetAtomWithIdx(idx4).GetAtomicNum() == 1)): continue if m.GetAtomWithIdx(idx4).IsInRing(): torsionList.append((idx4, idx3, idx2, idx1)) break else: torsionList.append((idx1, idx2, idx3, idx4)) break break return torsionList def SetDihedral(conf, atom_idx, new_vale): rdMolTransforms.SetDihedralRad(conf, atom_idx[0], atom_idx[1], atom_idx[2], atom_idx[3], new_vale) def GetDihedral(conf, atom_idx): return rdMolTransforms.GetDihedralRad(conf, atom_idx[0], atom_idx[1], atom_idx[2], atom_idx[3]) @timeout_decorator.timeout(20) def inner_smi2coords(smi, num_confs=100, seed=42, cluster_size=10): coordinate_list, rotable_bonds_list = [], [] mol = Chem.MolFromSmiles(smi) AllChem.AddHs(mol, addCoords=True) atoms = [atom.GetSymbol() for atom in mol.GetAtoms()] wt = Descriptors.ExactMolWt(mol) # skip for heavy molecules if wt > 1000: return None # at least have two atoms if len(atoms) < 2: return None # allconformers = AllChem.EmbedMultipleConfs(mol, numConfs=num_confs, randomSeed=seed, clearConfs=True, numThreads=1) AllChem.EmbedMolecule(mol, randomSeed=seed) rotable_bonds = get_torsions(mol) for i in range(num_confs): np.random.seed(i) values = 3.1415926 * 2 * np.random.rand(len(rotable_bonds)) for idx in range(len(rotable_bonds)): SetDihedral(mol.GetConformer(), rotable_bonds[idx], values[idx]) Chem.rdMolTransforms.CanonicalizeConformer(mol.GetConformer()) try: AllChem.MMFFOptimizeMolecule(mol) coordinate_list.append(mol.GetConformer().GetPositions().astype(np.float32)) rotable_bonds_value = [GetDihedral(mol.GetConformer(), rotable_bonds[idx]) for idx in range(len(rotable_bonds))] rotable_bonds_list.append(rotable_bonds_value) assert len(atoms) == len(coordinate_list[-1]) except: continue X = np.array(rotable_bonds_list) clf = BayesianGaussianMixture(n_components=cluster_size, random_state=seed).fit(X) probs = clf.predict_proba(X) # filter redundant clusters probs = probs[:,probs.mean(axis=0)!=0.0] ids = probs.argmax(axis=0) # padding to cluster_size if len(ids) < cluster_size: ids = ids + [ids[0]] * (cluster_size - len(ids)) cluster_coordinate_list = [coordinate_list[idx] for idx in ids] return pickle.dumps({'atoms': atoms, 'coordinates': cluster_coordinate_list, 'id': smi}, protocol=-1) def smi2coords(smi): try: return inner_smi2coords(smi) except: return None def partion_csv(sep=100000): smi_list = pd.read_csv('./clean_smi.csv.gz', names=['smi'])['smi'].tolist() with numpy_seed(42): np.random.shuffle(smi_list) for i in range(0, len(smi_list), sep): print(i, i+sep) with open('./partions/smi_list_{}.txt'.format(i//sep), 'w') as f: f.write('\n'.join(smi_list[i:i+sep])) return def write_partition(outpath='.', pid=0, nthreads=16): with open('./partions/smi_list_{}.txt'.format(pid), 'r') as f: smi_list = f.read().split('\n')[:100] outputfilename = os.path.join(outpath, 'smi_{}.pkl'.format(pid)) try: os.remove(outputfilename) except: pass results = [] with Pool(nthreads) as pool: for inner_output in tqdm(pool.imap(smi2coords, smi_list), total=len(smi_list)): if inner_output is not None: results.append(inner_output) with open(outputfilename, 'wb') as f: pickle.dump(results, f) if __name__ == '__main__': write_partition(outpath='./results', pid=int(sys.argv[1]), nthreads=16)
5,827
Python
.py
148
31.648649
124
0.6339
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,272
preprocess.py
dptech-corp_NAG2G/unimol_plus/examples/molecules/preprocess.py
import os import sys import json import glob import pickle import lmdb import pandas as pd import numpy as np from rdkit import Chem from tqdm import tqdm from rdkit.Chem import Descriptors from rdkit.Chem import AllChem from rdkit import RDLogger RDLogger.DisableLog('rdApp.*') import warnings import contextlib warnings.filterwarnings(action='ignore') from multiprocessing import Pool import timeout_decorator from scipy.spatial.transform import Rotation from sklearn.mixture import BayesianGaussianMixture from rdkit.Chem import rdMolTransforms import copy @contextlib.contextmanager def numpy_seed(seed, *addl_seeds): """Context manager which seeds the NumPy PRNG with the specified seed and restores the state afterward""" if seed is None: yield return if len(addl_seeds) > 0: seed = int(hash((seed, *addl_seeds)) % 1e6) state = np.random.get_state() np.random.seed(seed) try: yield finally: np.random.set_state(state) def get_torsions(m): m = Chem.RemoveHs(m) torsionList = [] torsionSmarts = '[!$(*#*)&!D1]-&!@[!$(*#*)&!D1]' torsionQuery = Chem.MolFromSmarts(torsionSmarts) matches = m.GetSubstructMatches(torsionQuery) for match in matches: idx2 = match[0] idx3 = match[1] bond = m.GetBondBetweenAtoms(idx2, idx3) jAtom = m.GetAtomWithIdx(idx2) kAtom = m.GetAtomWithIdx(idx3) for b1 in jAtom.GetBonds(): if (b1.GetIdx() == bond.GetIdx()): continue idx1 = b1.GetOtherAtomIdx(idx2) for b2 in kAtom.GetBonds(): if ((b2.GetIdx() == bond.GetIdx()) or (b2.GetIdx() == b1.GetIdx())): continue idx4 = b2.GetOtherAtomIdx(idx3) # skip 3-membered rings if (idx4 == idx1): continue # skip torsions that include hydrogens if ((m.GetAtomWithIdx(idx1).GetAtomicNum() == 1) or (m.GetAtomWithIdx(idx4).GetAtomicNum() == 1)): continue if m.GetAtomWithIdx(idx4).IsInRing(): torsionList.append((idx4, idx3, idx2, idx1)) break else: torsionList.append((idx1, idx2, idx3, idx4)) break break return torsionList def SetDihedral(conf, atom_idx, new_vale): rdMolTransforms.SetDihedralRad(conf, atom_idx[0], atom_idx[1], atom_idx[2], atom_idx[3], new_vale) def GetDihedral(conf, atom_idx): return rdMolTransforms.GetDihedralRad(conf, atom_idx[0], atom_idx[1], atom_idx[2], atom_idx[3]) @timeout_decorator.timeout(20) def inner_smi2coords(smi, num_confs=100, seed=42, cluster_size=10): coordinate_list, rotable_bonds_list = [], [] mol = Chem.MolFromSmiles(smi) AllChem.AddHs(mol, addCoords=True) atoms = [atom.GetSymbol() for atom in mol.GetAtoms()] wt = Descriptors.ExactMolWt(mol) # skip for heavy molecules if wt > 1000: return None # at least have two atoms if len(atoms) < 2: return None # allconformers = AllChem.EmbedMultipleConfs(mol, numConfs=num_confs, randomSeed=seed, clearConfs=True, numThreads=1) AllChem.EmbedMolecule(mol, randomSeed=seed) rotable_bonds = get_torsions(mol) for i in range(num_confs): np.random.seed(i) values = 3.1415926 * 2 * np.random.rand(len(rotable_bonds)) for idx in range(len(rotable_bonds)): SetDihedral(mol.GetConformer(), rotable_bonds[idx], values[idx]) Chem.rdMolTransforms.CanonicalizeConformer(mol.GetConformer()) try: AllChem.MMFFOptimizeMolecule(mol) coordinate_list.append(mol.GetConformer().GetPositions().astype(np.float32)) rotable_bonds_value = [GetDihedral(mol.GetConformer(), rotable_bonds[idx]) for idx in range(len(rotable_bonds))] rotable_bonds_list.append(rotable_bonds_value) except: continue X = np.array(rotable_bonds_list) clf = BayesianGaussianMixture(n_components=cluster_size, random_state=seed).fit(X) probs = clf.predict_proba(X) # filter redundant clusters probs = probs[:,probs.mean(axis=0)!=0.0] ids = probs.argmax(axis=0) # padding to cluster_size if len(ids) < cluster_size: ids = ids + [ids[0]] * (cluster_size - len(ids)) cluster_coordinate_list = [coordinate_list[idx] for idx in ids] print(ids) return pickle.dumps({'atoms': atoms, 'coordinates': cluster_coordinate_list, 'id': smi}, protocol=-1) def smi2coords(smi): try: return inner_smi2coords(smi) except: return None def get_train_val(smi_list, val_size=100000): with numpy_seed(42): val_smi = np.random.choice(smi_list, replace=False, size=val_size) np.random.shuffle(val_smi) train_smi = list(set(smi_list) - set(val_smi)) np.random.shuffle(train_smi) return train_smi, val_smi def write_lmdb(outpath='.', nthreads=16): small_size = 10000 smi_list = pd.read_csv('./clean_smi.csv.gz', names=['smi'], nrows=100000)['smi'].tolist() print('original size: ', len(smi_list)) train_smi, val_smi = get_train_val(smi_list, val_size=100000) print('train size: {}; val size: {}'.format(len(train_smi), len(val_smi))) task_list = [('valid.lmdb', val_smi), \ ('train.small.lmdb', train_smi[:small_size]), \ ('train.lmdb', train_smi), \ ] for name, smi_list in task_list: outputfilename = os.path.join(outpath, name) try: os.remove(outputfilename) except: pass env_new = lmdb.open( outputfilename, subdir=False, readonly=False, lock=False, readahead=False, meminit=False, max_readers=1, map_size=int(100e9), ) txn_write = env_new.begin(write=True) with Pool(nthreads) as pool: i = 0 for inner_output in tqdm(pool.imap(smi2coords, smi_list), total=len(smi_list)): if inner_output is not None: txn_write.put(f'{i}'.encode("ascii"), inner_output) i += 1 if i % 10000 == 0: txn_write.commit() txn_write = env_new.begin(write=True) print('{} process {} lines'.format(name, i)) txn_write.commit() env_new.close() if __name__ == '__main__': # write_lmdb(outpath='.', node_idx=int(sys.argv[1]), nthreads=int(sys.argv[2])) smi = 'CC(=O)c1ccc2c(c1)N(c3ccccc3S2)CCCN4CCN(CC4)CCO' inner_smi2coords(smi, num_confs=1000, seed=42, cluster_size=10) # write_lmdb(outpath='./', nthreads=60)
6,891
Python
.py
175
30.851429
124
0.615362
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,273
preprocess.py
dptech-corp_NAG2G/unimol_plus/examples/mol_conformers/preprocess.py
import os import sys import json import glob import pickle import lmdb import pandas as pd import numpy as np from rdkit import Chem from tqdm import tqdm from rdkit.Chem import Descriptors from rdkit.Chem import AllChem from rdkit import RDLogger RDLogger.DisableLog('rdApp.*') import warnings import contextlib warnings.filterwarnings(action='ignore') from multiprocessing import Pool import timeout_decorator from scipy.spatial.transform import Rotation from sklearn.mixture import BayesianGaussianMixture from rdkit.Chem import rdMolTransforms import copy @contextlib.contextmanager def numpy_seed(seed, *addl_seeds): """Context manager which seeds the NumPy PRNG with the specified seed and restores the state afterward""" if seed is None: yield return if len(addl_seeds) > 0: seed = int(hash((seed, *addl_seeds)) % 1e6) state = np.random.get_state() np.random.seed(seed) try: yield finally: np.random.set_state(state) def get_torsions(m): m = Chem.RemoveHs(m) torsionList = [] torsionSmarts = '[!$(*#*)&!D1]-&!@[!$(*#*)&!D1]' torsionQuery = Chem.MolFromSmarts(torsionSmarts) matches = m.GetSubstructMatches(torsionQuery) for match in matches: idx2 = match[0] idx3 = match[1] bond = m.GetBondBetweenAtoms(idx2, idx3) jAtom = m.GetAtomWithIdx(idx2) kAtom = m.GetAtomWithIdx(idx3) for b1 in jAtom.GetBonds(): if (b1.GetIdx() == bond.GetIdx()): continue idx1 = b1.GetOtherAtomIdx(idx2) for b2 in kAtom.GetBonds(): if ((b2.GetIdx() == bond.GetIdx()) or (b2.GetIdx() == b1.GetIdx())): continue idx4 = b2.GetOtherAtomIdx(idx3) # skip 3-membered rings if (idx4 == idx1): continue # skip torsions that include hydrogens if ((m.GetAtomWithIdx(idx1).GetAtomicNum() == 1) or (m.GetAtomWithIdx(idx4).GetAtomicNum() == 1)): continue if m.GetAtomWithIdx(idx4).IsInRing(): torsionList.append((idx4, idx3, idx2, idx1)) break else: torsionList.append((idx1, idx2, idx3, idx4)) break break return torsionList def SetDihedral(conf, atom_idx, new_vale): rdMolTransforms.SetDihedralRad(conf, atom_idx[0], atom_idx[1], atom_idx[2], atom_idx[3], new_vale) def GetDihedral(conf, atom_idx): return rdMolTransforms.GetDihedralRad(conf, atom_idx[0], atom_idx[1], atom_idx[2], atom_idx[3]) @timeout_decorator.timeout(20) def inner_smi2coords(smi, num_confs=100, seed=42): coordinate_list, target_coordinate_list = [], [] can_smi = Chem.CanonSmiles(smi) mol = Chem.MolFromSmiles(can_smi) AllChem.AddHs(mol, addCoords=True) atoms = [atom.GetSymbol() for atom in mol.GetAtoms()] wt = Descriptors.ExactMolWt(mol) # skip for heavy molecules if wt > 1000: return None # at least have two atoms if len(atoms) < 2: return None # allconformers = AllChem.EmbedMultipleConfs(mol, numConfs=num_confs, randomSeed=seed, clearConfs=True, numThreads=1) AllChem.EmbedMolecule(mol, randomSeed=seed) rotable_bonds = get_torsions(mol) for i in range(num_confs): np.random.seed(i) values = 3.1415926 * 2 * np.random.rand(len(rotable_bonds)) for idx in range(len(rotable_bonds)): SetDihedral(mol.GetConformer(), rotable_bonds[idx], values[idx]) Chem.rdMolTransforms.CanonicalizeConformer(mol.GetConformer()) try: coordinate_list.append(mol.GetConformer().GetPositions().astype(np.float32)) AllChem.MMFFOptimizeMolecule(mol) target_coordinate_list.append(mol.GetConformer().GetPositions().astype(np.float32)) except: continue return pickle.dumps({'atoms': atoms, 'coordinates': coordinate_list, 'target_coordinates': target_coordinate_list, 'can_smi': can_smi, 'id': smi, }, protocol=-1) def smi2coords(smi): try: return inner_smi2coords(smi) except: return None def get_train_val(smi_list, val_size=100000): with numpy_seed(42): val_smi = np.random.choice(smi_list, replace=False, size=val_size) np.random.shuffle(val_smi) train_smi = list(set(smi_list) - set(val_smi)) np.random.shuffle(train_smi) return train_smi, val_smi def write_lmdb(outpath='.', nthreads=16, nrows=1000000): small_size = 10000 val_size = min(10000, int(nrows*0.01)) smi_list = pd.read_csv('../molecules/clean_smi.csv.gz', names=['smi'], nrows=nrows)['smi'].tolist() print('original size: ', len(smi_list)) train_smi, val_smi = get_train_val(smi_list, val_size=val_size) print('train size: {}; val size: {}'.format(len(train_smi), len(val_smi))) task_list = [('valid.lmdb', val_smi), \ ('train.small.lmdb', train_smi[:small_size]), \ ('train.lmdb', train_smi), \ ] for name, smi_list in task_list: outputfilename = os.path.join(outpath, name) try: os.remove(outputfilename) except: pass env_new = lmdb.open( outputfilename, subdir=False, readonly=False, lock=False, readahead=False, meminit=False, max_readers=1, map_size=int(100e9), ) txn_write = env_new.begin(write=True) with Pool(nthreads) as pool: i = 0 for inner_output in tqdm(pool.imap(smi2coords, smi_list), total=len(smi_list)): if inner_output is not None: txn_write.put(f'{i}'.encode("ascii"), inner_output) i += 1 if i % 10000 == 0: txn_write.commit() txn_write = env_new.begin(write=True) print('{} process {} lines'.format(name, i)) txn_write.commit() env_new.close() def write_v2(lmdb_inpath, lmdb_outpath): env = lmdb.open( lmdb_inpath, subdir=False, readonly=True, lock=False, readahead=False, meminit=False, max_readers=256, ) txn = env.begin() _keys = list(txn.cursor().iternext(values=False)) env_new = lmdb.open( lmdb_outpath, subdir=False, readonly=False, lock=False, readahead=False, meminit=False, max_readers=1, map_size=int(100e9), ) txn_write = env_new.begin(write=True) i = 0 for idx in tqdm(range(len(_keys))): datapoint_pickled = txn.get(f'{idx}'.encode("ascii")) data = pickle.loads(datapoint_pickled) if len(data['coordinates']) > 0: if len(data['coordinates']) == len(data['target_coordinates']): txn_write.put(f'{i}'.encode("ascii"), pickle.dumps(data, protocol=-1)) i += 1 else: print('miss shape size: ', data['id']) else: print('miss size: ', data['id']) if i % 10000 == 0: txn_write.commit() txn_write = env_new.begin(write=True) txn_write.commit() env_new.close() env.close() def check(lmdb_path): env = lmdb.open( lmdb_path, subdir=False, readonly=True, lock=False, readahead=False, meminit=False, max_readers=256, ) txn = env.begin() _keys = list(txn.cursor().iternext(values=False)) cnt = 0 for idx in tqdm(range(len(_keys))): datapoint_pickled = txn.get(f'{idx}'.encode("ascii")) data = pickle.loads(datapoint_pickled) # assert len(data["coordinates"]) == len(data["target_coordinates"]), print(data['id'], len(data["coordinates"]), len(data["target_coordinates"])) if len(data['coordinates']) != len(data['target_coordinates']): cnt += 1 print(cnt) env.close() if __name__ == '__main__': # smi = 'CC(=O)c1ccc2c(c1)N(c3ccccc3S2)CCCN4CCN(CC4)CCO' # inner_smi2coords(smi, num_confs=1000, seed=42, cluster_size=10) # write_lmdb(outpath='./', nthreads=60, nrows=1000000) write_v2(lmdb_inpath='./train.lmdb', lmdb_outpath='./train.v2.lmdb') write_v2(lmdb_inpath='./valid.lmdb', lmdb_outpath='./valid.v2.lmdb') write_v2(lmdb_inpath='./train.small.lmdb', lmdb_outpath='./train.small.v2.lmdb') # check('./train.lmdb')
8,758
Python
.py
234
28.628205
154
0.595199
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,274
replace_pos_pred.py
dptech-corp_NAG2G/unimol_plus/scripts/replace_pos_pred.py
import logging import os import sys import pickle import torch import lmdb import gzip import numpy as np from unicore import checkpoint_utils, distributed_utils, options, utils from unicore.logging import progress_bar from unicore import tasks from multiprocessing import Pool from tqdm import tqdm input_data = sys.argv[1] output_data = sys.argv[2] subset = sys.argv[3] top = int(sys.argv[4]) def load(num_pickles=8, top=-1): pred_pos_dict = {} for i in range(num_pickles): pickle_path = os.path.join(output_data, subset + "_{}.pkl".format(i)) pickle_data = pickle.load(open(pickle_path, "rb")) for x in pickle_data: id, pos_pred, plddt = x for j in range(len(id)): cur_id = int(id[j]) if cur_id not in pred_pos_dict: pred_pos_dict[cur_id] = [] pred_pos_dict[cur_id].append([pos_pred[j], plddt[j]]) if top > 0: top_pred_pos_dict = {} for key in pred_pos_dict: cur_list = pred_pos_dict[key] cur_list.sort(key=lambda x: x[1], reverse=True) top_pred_pos_dict[key] = [x[0] for x in cur_list[:top]] return top_pred_pos_dict else: top_pred_pos_dict = {} for key in pred_pos_dict: cur_list = pred_pos_dict[key] top_pred_pos_dict[key] = [x[0] for x in cur_list] return top_pred_pos_dict pred_pos_dict = load(top=top) split_path = os.path.join(input_data, subset + ".lmdb") input_env = lmdb.open( split_path, subdir=False, readonly=True, lock=False, readahead=False, meminit=False, max_readers=256, ) with input_env.begin() as txn: keys = list(txn.cursor().iternext(values=False)) os.system("mkdir -p {}".format(output_data)) save_path = os.path.join(output_data, subset + ".lmdb") os.system("rm -f {}".format(save_path)) output_env = lmdb.open( save_path, subdir=False, readonly=False, lock=False, readahead=False, meminit=False, max_readers=1, map_size=int(100e9), ) txn_write = output_env.begin(write=True) print("start to write lmdb") def process(key): datapoint_pickled = input_env.begin().get(key) data = pickle.loads(gzip.decompress(datapoint_pickled)) cur_id = int.from_bytes(key, "big") # int(np.frombuffer(key, dtype=np.int64)) old_pos = data["input_pos"] num_atoms = old_pos[0].shape[0] new_pos = [x[:num_atoms, :] for x in pred_pos_dict[cur_id]] # assert len(old_pos) == len(new_pos) data["input_pos"] = new_pos val = gzip.compress(pickle.dumps(data)) return key, val i = 0 with Pool(64) as pool: for ret in tqdm(pool.imap_unordered(process, keys), total=len(keys)): key, val = ret txn_write.put(key, val) if (i + 1) % 10000 == 0: txn_write.commit() txn_write = output_env.begin(write=True) i += 1 txn_write.commit() output_env.close() print("Done inference! ")
2,985
Python
.py
93
26.612903
82
0.630775
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,275
replace_keys.py
dptech-corp_NAG2G/unimol_plus/scripts/replace_keys.py
import logging import os import sys import pickle import torch import lmdb import gzip import numpy as np from unicore import checkpoint_utils, distributed_utils, options, utils from unicore.logging import progress_bar from unicore import tasks input_data = sys.argv[1] output_data = sys.argv[2] subset = sys.argv[3] split_path = os.path.join(input_data, subset + ".lmdb") input_env = lmdb.open( split_path, subdir=False, readonly=True, lock=False, readahead=False, meminit=False, max_readers=256, ) with input_env.begin() as txn: keys = list(txn.cursor().iternext(values=False)) os.system("mkdir -p {}".format(output_data)) save_path = os.path.join(output_data, subset + ".lmdb") os.system("rm -f {}".format(save_path)) output_env = lmdb.open( save_path, subdir=False, readonly=False, lock=False, readahead=False, meminit=False, max_readers=1, map_size=int(100e9), ) txn_write = output_env.begin(write=True) print("start to write lmdb") for i, key in enumerate(keys): val = input_env.begin().get(key) cur_id = int(np.frombuffer(key, dtype=np.int64)) new_key = cur_id.to_bytes(4, "big") txn_write.put(new_key, val) if (i + 1) % 10000 == 0: txn_write.commit() txn_write = output_env.begin(write=True) print("Done {} datapoints".format(i + 1)) txn_write.commit() output_env.close() print("Done! ")
1,408
Python
.py
53
23.45283
71
0.696521
dptech-corp/NAG2G
8
4
2
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,276
__init__.py
nkchocoai_ComfyUI-PromptUtilities/__init__.py
import configparser import os from .py.node.const import * from .py.node.format import * from .py.node.preset import * from .py.node.weight import * from .py.node.replace import * from .py.node.random import * from .py.server import * from .py.preset import PresetManager NODE_CLASS_MAPPINGS = { "PromptUtilitiesFormatString": PromptUtilitiesFormatString, "PromptUtilitiesJoinStringList": PromptUtilitiesJoinStringList, "PromptUtilitiesLoadPreset": PromptUtilitiesLoadPreset, "PromptUtilitiesLoadPresetAdvanced": PromptUtilitiesLoadPresetAdvanced, "PromptUtilitiesRandomPreset": PromptUtilitiesRandomPreset, "PromptUtilitiesRandomPresetAdvanced": PromptUtilitiesRandomPresetAdvanced, "PromptUtilitiesConstString": PromptUtilitiesConstString, "PromptUtilitiesConstStringMultiLine": PromptUtilitiesConstStringMultiLine, "PromptUtilitiesPromptWeight": PromptUtilitiesPromptWeight, "PromptUtilitiesRoundPromptWeight": PromptUtilitiesRoundPromptWeight, "PromptUtilitiesReplaceOrInsertTag": PromptUtilitiesReplaceOrInsertTag, "PromptUtilitiesSampleTags": PromptUtilitiesSampleTags, "PromptUtilitiesSampleTagsWithWeight": PromptUtilitiesSampleTagsWithWeight, } NODE_DISPLAY_NAME_MAPPINGS = { "PromptUtilitiesFormatString": "Format String", "PromptUtilitiesJoinStringList": "Join String List", "PromptUtilitiesLoadPreset": "Load Preset", "PromptUtilitiesLoadPresetAdvanced": "Load Preset (Advanced)", "PromptUtilitiesRandomPreset": "Random Preset", "PromptUtilitiesRandomPresetAdvanced": "Random Preset (Advanced)", "PromptUtilitiesConstString": "Const String", "PromptUtilitiesConstStringMultiLine": "Const String (multi line)", "PromptUtilitiesPromptWeight": "Prompt Weight", "PromptUtilitiesRoundPromptWeight": "Round Prompt Weight", "PromptUtilitiesReplaceOrInsertTag": "Replace or Insert Tag", "PromptUtilitiesSampleTags": "Sample Tags", "PromptUtilitiesSampleTagsWithWeight": "Sample Tags With Weight", } WEB_DIRECTORY = "./js" __all__ = ["NODE_CLASS_MAPPINGS", "NODE_DISPLAY_NAME_MAPPINGS", "WEB_DIRECTORY"] # output csv presets as wildcards. config = configparser.ConfigParser() config.read(os.path.join(os.path.dirname(__file__), "config.ini")) if config.has_section("default"): default_config = config["default"] output_dir = default_config.get("output_csv_presets_as_wildcards") if output_dir: output_dir = os.path.abspath(output_dir) print("output presets as wildcard.", output_dir) PresetManager.output_as_wildcard(output_dir)
2,578
Python
.py
52
45.769231
80
0.793651
nkchocoai/ComfyUI-PromptUtilities
8
4
3
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,277
preset.py
nkchocoai_ComfyUI-PromptUtilities/py/preset.py
import csv import json import os import yaml import numpy as np import folder_paths class PresetManagerBase: _presets = None custom_nodes_dir = folder_paths.get_folder_paths("custom_nodes")[0] file_extensions = [] @classmethod def get_presets_dir(cls): return os.path.join( cls.custom_nodes_dir, "ComfyUI-PromptUtilities", cls.presets_dir ) @classmethod def get_presets(cls): if cls._presets is None: cls.load_presets() return cls._presets @classmethod def get_preset(cls, key): presets = cls.get_presets() return presets[key] @classmethod def get_presets_by_filename(cls, filename): presets = cls.get_presets() presets_by_name = [ v for k, v in presets.items() if k.split(" : ")[0] == filename ] return presets_by_name @classmethod def get_preset_filename_list(cls): files, _ = folder_paths.recursive_search( cls.get_presets_dir(), excluded_dir_names=[".git"] ) return folder_paths.filter_files_extensions(files, cls.file_extensions) @classmethod def load_presets(cls): cls._presets = dict() preset_filename_list = cls.get_preset_filename_list() for preset_filename in preset_filename_list: with open( os.path.join(cls.get_presets_dir(), preset_filename), "r", encoding="utf-8", ) as f: cls.load_file(f, preset_filename) class PresetManager(PresetManagerBase): presets_dir = "presets" file_extensions = [".csv", ".yml"] @classmethod def load_file(cls, f, preset_filename): ext = os.path.splitext(preset_filename)[1] if ext == ".csv": reader = csv.DictReader(f) for row in reader: cls._presets[f"{preset_filename[:-4]} : {row['name']}"] = row["prompt"] elif ext == ".yml": data = yaml.safe_load(f) if isinstance(data, list): for row in data: cls._presets[f"{preset_filename[:-4]} : {row.split(',')[0]}"] = row elif isinstance(data, dict): for k, v in data.items(): if isinstance(v, dict): for k2, v2 in v.items(): cls._presets[f"{preset_filename[:-4]} : {k}.{k2}"] = v2 elif isinstance(v, list): for row in v: cls._presets[ f"{preset_filename[:-4]} : {k}.{row.split(',')[0]}" ] = row else: cls._presets[f"{preset_filename[:-4]} : {k}"] = v @classmethod def random_preset(cls, filename, seed): random_gen = np.random.default_rng(seed) presets = cls.get_presets_by_filename(filename[:-4]) preset = random_gen.choice(presets) return preset @classmethod def output_as_wildcard(cls, output_dir): preset_filename_list = cls.get_preset_filename_list() for preset_filename in preset_filename_list: ext = os.path.splitext(preset_filename)[1] if ext == ".csv": preset_file_path = os.path.join(cls.get_presets_dir(), preset_filename) with open(preset_file_path, "r", encoding="utf-8") as f_in: reader = csv.DictReader(f_in) output_file_path = os.path.join( output_dir, preset_filename[:-4] + ".txt" ) os.makedirs(os.path.dirname(output_file_path), exist_ok=True) with open(output_file_path, "w", encoding="utf-8") as f_out: print("write:", output_file_path) f_out.write("\n".join([row["prompt"] for row in reader])) elif ext == ".yml": preset_file_path = os.path.join(cls.get_presets_dir(), preset_filename) with open(preset_file_path, "r", encoding="utf-8") as f_in: data = yaml.safe_load(f_in) output_file_path = os.path.join( output_dir, preset_filename[:-4] + ".txt" ) with open(output_file_path, "w", encoding="utf-8") as f_out: if isinstance(data, list): items = data elif isinstance(data, dict): items = [] for v in data.values(): if isinstance(v, dict): for v2 in v.values(): items.append(v2) elif isinstance(v, list): for row in v: items.append(row) else: items.append(v) print("write:", output_file_path) f_out.write("\n".join([item for item in items])) class PresetManagerAdvanced(PresetManagerBase): presets_dir = "advanced_presets" file_extensions = [".json"] @classmethod def load_file(cls, f, preset_filename): data = json.load(f) for k, v in data.items(): cls._presets[f"{preset_filename[:-5]} : {k}"] = v @classmethod def parse_preset(cls, preset): positive_prompt = preset.get("positive_prompt", "") negative_prompt = preset.get("negative_prompt", "") lora = preset.get("lora", None) lora_name, strength_model, sterngth_clip = cls.load_lora(lora) loras = preset.get("loras", None) if loras is None and lora is not None: lora_stack = [(lora_name, strength_model, sterngth_clip)] else: lora_stack = cls.load_loras(loras) return ( positive_prompt, negative_prompt, lora_name, strength_model, sterngth_clip, lora_stack, ) @classmethod def load_lora(cls, lora): if lora is None: return "None", 0, 0 lora_name = lora.get("lora_name", "None") if "weight" in lora: strength_model = lora.get("weight", 0) sterngth_clip = lora.get("weight", 0) else: strength_model = lora.get("strength_model", 0) sterngth_clip = lora.get("strength_clip", 0) return lora_name, strength_model, sterngth_clip @classmethod def load_loras(cls, loras): lora_stack = [] if loras is None: return lora_stack for lora in loras: lora_name, strength_model, sterngth_clip = cls.load_lora(lora) lora_stack.append((lora_name, strength_model, sterngth_clip)) return lora_stack @classmethod def random_preset(cls, filename, seed): random_gen = np.random.default_rng(seed) presets = cls.get_presets_by_filename(filename[:-5]) preset = random_gen.choice(presets) return preset
7,260
Python
.py
174
28.534483
87
0.520771
nkchocoai/ComfyUI-PromptUtilities
8
4
3
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,278
server.py
nkchocoai_ComfyUI-PromptUtilities/py/server.py
import json from aiohttp import web import server from .preset import PresetManager, PresetManagerAdvanced @server.PromptServer.instance.routes.post("/prompt_utilities/refresh") async def refresh_preset_manager(request): PresetManager.load_presets() PresetManagerAdvanced.load_presets() return web.Response(status=200) def on_prompt(json_data): prompt = json_data["prompt"] for k, v in prompt.items(): if "class_type" in v and ( v["class_type"] in ["PromptUtilitiesRandomPreset", "PromptUtilitiesRandomPresetAdvanced"] ): inputs = v["inputs"] input_seed = int(inputs["seed"]) input_filename = inputs["filename"] if v["class_type"] == "PromptUtilitiesRandomPreset": inputs["choice_preset"] = PresetManager.random_preset( input_filename, input_seed ) elif v["class_type"] == "PromptUtilitiesRandomPresetAdvanced": preset = PresetManagerAdvanced.random_preset(input_filename, input_seed) inputs["choice_preset"] = json.dumps(preset) server.PromptServer.instance.send_sync( "prompt-utilities-feedback", { "node_id": k, "widget_name": "choice_preset", "type": "STRING", "value": inputs["choice_preset"], }, ) return json_data server.PromptServer.instance.add_on_prompt_handler(on_prompt)
1,554
Python
.py
37
30.972973
88
0.603586
nkchocoai/ComfyUI-PromptUtilities
8
4
3
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,279
weight.py
nkchocoai_ComfyUI-PromptUtilities/py/node/weight.py
import re from .base import BaseNode class PromptUtilitiesPromptWeight(BaseNode): @classmethod def INPUT_TYPES(s): return { "required": { "prompt1": ("STRING", {"default": "", "multiline": False}), "weight1": ( "FLOAT", {"default": 1.0, "min": -100, "max": 100, "step": 0.1}, ), }, "optional": { "prompt2": ("STRING", {"default": "", "multiline": False}), "weight2": ( "FLOAT", {"default": 1.0, "min": -100, "max": 100, "step": 0.1}, ), "prompt3": ("STRING", {"default": "", "multiline": False}), "weight3": ( "FLOAT", {"default": 1.0, "min": -100, "max": 100, "step": 0.1}, ), "prompt4": ("STRING", {"default": "", "multiline": False}), "weight4": ( "FLOAT", {"default": 1.0, "min": -100, "max": 100, "step": 0.1}, ), "prompt_weight": ( "STRING", {"default": "", "multiline": False}, ), }, } RETURN_TYPES = ("STRING",) RETURN_NAMES = ("prompt",) FUNCTION = "gen_prompt_weight" def gen_prompt_weight(self, **kwargs): prompts = [] if kwargs.get("prompt_weight", ""): prompts.append(kwargs["prompt_weight"]) for i in range(4): prompt = kwargs[f"prompt{i+1}"] weight = kwargs[f"weight{i+1}"] if prompt == "" or weight == 0.0: continue if weight == 1.0: prompts.append(prompt) else: prompts.append(f"({prompt}:{weight})") return (", ".join(prompts),) class PromptUtilitiesRoundPromptWeight(BaseNode): @classmethod def INPUT_TYPES(s): return { "required": { "prompt": ("STRING", {"default": "", "multiline": False}), "n": ("INT", {"default": 3, "min": 0, "max": 100}), }, } RETURN_TYPES = ("STRING",) RETURN_NAMES = ("prompt",) FUNCTION = "round_prompt_weight" def round_prompt_weight(self, prompt, n): def round_match(match): number = float(match.group(1)) rounded = round(number, n) return f"{rounded:.10f}".rstrip("0").rstrip(".") pattern = r"([-+]?\d*\.\d+)" return (re.sub(pattern, round_match, prompt),)
2,639
Python
.py
71
24.422535
75
0.435395
nkchocoai/ComfyUI-PromptUtilities
8
4
3
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,280
const.py
nkchocoai_ComfyUI-PromptUtilities/py/node/const.py
from .base import BaseNode class PromptUtilitiesConstStringBase(BaseNode): RETURN_TYPES = ("STRING",) FUNCTION = "get_string" def get_string(self, string): return (string,) class PromptUtilitiesConstString(PromptUtilitiesConstStringBase): @classmethod def INPUT_TYPES(cls): return { "required": { "string": ("STRING", {"default": "", "multiline": False}) } } class PromptUtilitiesConstStringMultiLine(PromptUtilitiesConstStringBase): @classmethod def INPUT_TYPES(cls): return { "required": { "string": ("STRING", {"default": "", "multiline": True}) } }
706
Python
.py
22
24.136364
74
0.605302
nkchocoai/ComfyUI-PromptUtilities
8
4
3
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,281
format.py
nkchocoai_ComfyUI-PromptUtilities/py/node/format.py
from .base import BaseNode class PromptUtilitiesFormatString(BaseNode): @classmethod def INPUT_TYPES(s): input_types = { "required": { "prompt": ("STRING", {"default": "[1], [2]", "display": "prompt"}), }, "optional": { "arg1": ("STRING", {"forceInput": True}), }, } return input_types RETURN_TYPES = ("STRING",) FUNCTION = "format" def format(self, prompt, **kwargs): result = prompt for i in range(1, len(kwargs) + 1): result = result.replace(f"[{i}]", kwargs[f"arg{i}"]) return (result,) class PromptUtilitiesJoinStringList(BaseNode): @classmethod def INPUT_TYPES(s): input_types = { "required": { "separator": ("STRING", {"default": ", ", "display": "separator"}), }, "optional": { "arg1": ("STRING", {"forceInput": True}), }, } return input_types RETURN_TYPES = ("STRING",) FUNCTION = "join" def join(self, separator, **kwargs): # join without empty strings. result = separator.join([s for s in kwargs.values() if s]) return (result,)
1,258
Python
.py
38
23.736842
83
0.514876
nkchocoai/ComfyUI-PromptUtilities
8
4
3
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,282
preset.py
nkchocoai_ComfyUI-PromptUtilities/py/node/preset.py
import json import numpy as np from .base import BaseNode from ..preset import PresetManager, PresetManagerAdvanced import folder_paths class PromptUtilitiesLoadPreset(BaseNode): @classmethod def INPUT_TYPES(s): return { "required": { "preset": (list(PresetManager.get_presets().keys()), ), } } RETURN_TYPES = ("STRING",) FUNCTION = "load_preset" def load_preset(self, preset): prompt = PresetManager.get_preset(preset) return (prompt,) class PromptUtilitiesLoadPresetAdvanced(BaseNode): @classmethod def INPUT_TYPES(s): return { "required": { "preset": (list(PresetManagerAdvanced.get_presets().keys()), ), } } RETURN_TYPES = ("STRING","STRING",folder_paths.get_filename_list("loras"),"FLOAT","FLOAT","LORA_STACK",) RETURN_NAMES = ("positive prompt","negative prompt","lora name","strength model","strength clip","lora stack",) FUNCTION = "load_preset" def load_preset(self, preset): preset_ = PresetManagerAdvanced.get_preset(preset) positive_prompt, negative_prompt, lora_name, strength_model, sterngth_clip, lora_stack = \ PresetManagerAdvanced.parse_preset(preset_) return (positive_prompt, negative_prompt, lora_name, strength_model, sterngth_clip, lora_stack) class PromptUtilitiesRandomPreset(BaseNode): @classmethod def INPUT_TYPES(s): return { "required": { "filename": (list(PresetManager.get_preset_filename_list()), ), "choice_preset": ("STRING", {"multiline": True, "dynamicPrompts": False}), "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}) } } RETURN_TYPES = ("STRING",) FUNCTION = "random_preset" def random_preset(self, **kwargs): choice_preset = kwargs['choice_preset'] return (choice_preset,) class PromptUtilitiesRandomPresetAdvanced(BaseNode): @classmethod def INPUT_TYPES(s): return { "required": { "filename": (list(PresetManagerAdvanced.get_preset_filename_list()), ), "choice_preset": ("STRING", {"multiline": True, "dynamicPrompts": False}), "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}) } } RETURN_TYPES = ("STRING","STRING",folder_paths.get_filename_list("loras"),"FLOAT","FLOAT","LORA_STACK",) RETURN_NAMES = ("positive prompt","negative prompt","lora name","strength model","strength clip","lora stack",) FUNCTION = "random_preset" def random_preset(self, **kwargs): choice_preset = kwargs['choice_preset'] positive_prompt, negative_prompt, lora_name, strength_model, sterngth_clip, lora_stack = \ PresetManagerAdvanced.parse_preset(json.loads(choice_preset)) return (positive_prompt, negative_prompt, lora_name, strength_model, sterngth_clip, lora_stack)
3,092
Python
.py
67
36.761194
115
0.633526
nkchocoai/ComfyUI-PromptUtilities
8
4
3
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,283
replace.py
nkchocoai_ComfyUI-PromptUtilities/py/node/replace.py
from .base import BaseNode import re from comfy.sd1_clip import token_weights class PromptUtilitiesReplaceOrInsertTag(BaseNode): @classmethod def INPUT_TYPES(s): return { "required": { "text": ( "STRING", {"multiline": True, "default": "", "forceInput": True}, ), "pattern": ("STRING", {"default": "", "multiline": False}), "value": ("STRING", {"default": "", "multiline": False}), "mode": (["replace", "insert"],), "inherit_weight": ("BOOLEAN", {"default": False}), }, } RETURN_TYPES = ("STRING",) FUNCTION = "replace_tag" def replace_tag(self, text, pattern, value, mode, inherit_weight): text = text.replace("\(", "{[{[") text = text.replace("\)", "}]}]") weights = token_weights(text, 1.0) tags = [] for t, weight in weights: for tag in t.split(","): tag = tag.strip() if tag: tags.append((tag, weight)) tags2 = [] for i, v in enumerate(tags): if re.match(pattern, v[0]): w = 1.0 if inherit_weight: w = v[1] if mode == "insert": tags2.append(v) tags2.append((value, w)) else: tags2.append(v) result = [] for tag, weight in tags2: if weight == 1.0: result.append(tag) else: result.append(f"({tag}:{weight})") s = ", ".join(result) s = s.replace("{[{[", "\(") s = s.replace("}]}]", "\)") return (s,)
1,772
Python
.py
51
22.568627
75
0.439067
nkchocoai/ComfyUI-PromptUtilities
8
4
3
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,284
random.py
nkchocoai_ComfyUI-PromptUtilities/py/node/random.py
from .base import BaseNode import numpy as np class PromptUtilitiesSampleTags(BaseNode): @classmethod def INPUT_TYPES(s): return { "required": { "tags": ("STRING", {"default": "", "multiline": True}), "tags_delimiter": (("new line", ","),), "seed": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFFFFFFFFFFFF}), "max_k": ("INT", {"default": 1, "min": 1, "max": 0xFFFFFFFFFFFFFFFF}), "min_k": ("INT", {"default": 1, "min": 0, "max": 0xFFFFFFFFFFFFFFFF}), } } RETURN_TYPES = ("STRING",) FUNCTION = "sample_tags" def sample_tags(self, tags, tags_delimiter, seed, max_k, min_k): sampled_tags = self._sample_tags(tags, tags_delimiter, seed, max_k, min_k) return (", ".join(sampled_tags),) def _sample_tags(self, tags_s, tags_delimiter, seed, max_k, min_k): assert max_k >= min_k, "max_k must be greater than or equal to min_k." if tags_delimiter == "new line": tags = [tag.strip() for tag in tags_s.split("\n")] elif tags_delimiter == ",": tags = [tag.strip() for tag in tags_s.split(",")] random_gen = np.random.default_rng(seed) k = random_gen.integers(min_k, max_k + 1) random_gen.shuffle(tags) return tags[:k] class PromptUtilitiesSampleTagsWithWeight(PromptUtilitiesSampleTags): @classmethod def INPUT_TYPES(s): return { "required": { "tags": ("STRING", {"default": "", "multiline": True}), "tags_delimiter": (("new line", ","),), "seed": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFFFFFFFFFFFF}), "max_k": ("INT", {"default": 1, "min": 1, "max": 0xFFFFFFFFFFFFFFFF}), "min_k": ("INT", {"default": 1, "min": 0, "max": 0xFFFFFFFFFFFFFFFF}), "max_w": ( "FLOAT", {"default": 1.0, "min": -100, "max": 100, "step": 0.01}, ), "min_w": ( "FLOAT", {"default": 0.8, "min": -100, "max": 100, "step": 0.01}, ), "step_w": ( "FLOAT", {"default": 0.1, "min": -100, "max": 100, "step": 0.01}, ), } } RETURN_TYPES = ("STRING",) FUNCTION = "sample_tags" def sample_tags( self, tags, tags_delimiter, seed, max_k, min_k, max_w, min_w, step_w ): sampled_tags = self._sample_tags(tags, tags_delimiter, seed, max_k, min_k) random_gen = np.random.default_rng(seed) weights = random_gen.choice( np.arange(min_w, max_w, step_w), size=len(sampled_tags), ) sampled_tags = [f"({t}:{round(w, 2)})" for t, w in zip(sampled_tags, weights)] return (", ".join(sampled_tags),)
2,937
Python
.py
66
33.015152
86
0.496327
nkchocoai/ComfyUI-PromptUtilities
8
4
3
GPL-3.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,285
manage.py
Aftendo_Afternote/manage.py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'ugoflip.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
663
Python
.py
18
30.944444
73
0.677067
Aftendo/Afternote
8
2
1
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,286
urls.py
Aftendo_Afternote/flip/urls.py
from django.urls import path from . import views urlpatterns = [ path('auth', views.auth, name='auth'), path('<str:country>/<str:file>.txt', views.content, name="eula"), path('<str:country>/confirm/<str:file>.txt', views.content, name="garbage"), path('flipnote/<str:file>.ppm', views.ppmloader, name="ppmloader"), path('flipnote/<str:file>.info', views.info, name="info"), path('flipnote/<str:file>.dl', views.dl, name="info"), path('flipnote/<str:file>.htm', views.flipnote_info, name="info"), path('flipnote/<str:file>.star', views.star, name="star"), path('eula_list.tsv', views.eula_list, name="propaganda"), path('index.ugo', views.index, name="index"), path('newest.ugo', views.newest_list, name="newest"), path('hot.ugo', views.popular_list, name="hot"), path('liked.ugo', views.liked_list, name="liked"), path('channels.ugo', views.categories, name="categories"), path('channels/search.ugo', views.others, name="others"), path('channels/<str:internal_id>.ugo', views.channels, name="channels"), path('channel/<str:internal_id>.ugo', views.channel, name="channel"), path('channel/<str:internal_id>.post', views.post_flip, name="post_flip"), path('signin.htm', views.signin, name="signin"), path('signin/step1.kbd', views.signin_step1, name="step1"), path('signin/step2.kbd', views.signin_step2, name="step2"), path('error_get.htm', views.error_get, name="error_get"), path('static/<str:dir>/<str:file>', views.static, name="static") ]
1,536
Python
.py
27
52.444444
80
0.669761
Aftendo/Afternote
8
2
1
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,287
apps.py
Aftendo_Afternote/flip/apps.py
from django.apps import AppConfig class FlipConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'flip'
140
Python
.py
4
31.5
56
0.768657
Aftendo/Afternote
8
2
1
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,288
views.py
Aftendo_Afternote/flip/views.py
from django.shortcuts import render from django.http import HttpResponse from django.views.decorators.csrf import csrf_exempt from django.core.exceptions import ObjectDoesNotExist from util.ugo import UgoMenu from util.ppm import PPMParser import os.path, io, random, string, datetime from django.contrib.auth import authenticate from db.models import * @csrf_exempt def auth(request, reg): resp = HttpResponse(content_type="text/plain; charset=utf-16le") if "X-DSi-SID" in request.headers and "X-DSi-MAC" in request.headers and "X-DSi-ID" in request.headers: resp.headers['X-DSi-SID'] = 'nobitches?' resp.headers['X-DSi-New-Notices'] = 0 resp.headers['X-DSi-Unread-Notices'] = 0 try: session = Session.objects.get(token=request.headers['X-DSi-SID']) session.fsid = request.headers['X-DSi-ID'] session.mac = request.headers['X-DSi-MAC'] session.save() except: resp.headers['X-DSi-Dialog-Type'] = 1 resp.write("Invalid Session. Please reboot the app.") return resp try: user = User.objects.get(fsid=request.headers['X-DSi-ID'], mac=request.headers['X-DSi-MAC']) sessions = Session.objects.filter(user=user).delete() if user.ban: resp.headers['X-DSi-Dialog-Type'] = 1 resp.write("Yo mama so stupid,\nthat you got banned off Afternote") return resp session.user = user session.save() except ObjectDoesNotExist: pass else: token = ''.join(random.SystemRandom().choice(string.ascii_uppercase + string.digits) for _ in range(16)) Session.objects.create(token=token) resp.headers['X-DSi-Auth-Challenge'] = 'aftendoo' resp.headers['X-DSi-SID'] = token resp.headers['X-DSi-New-Notices'] = 0 resp.headers['X-DSi-Unread-Notices'] = 0 #resp.headers['X-DSi-Dialog-Type'] = 1 return resp @csrf_exempt def content(request, reg, country, file): if os.path.exists("./cfg/"+file+".txt"): with open("./cfg/"+file+".txt", "r+") as file: return HttpResponse(file.read(), content_type='text/plain; charset=utf-16le') else: return HttpResponse("WARNING: cfg/"+file+".txt does not exists.", content_type='text/plain; charset=utf-16le') @csrf_exempt def eula_list(request, reg): return HttpResponse("RQBuAGcAbABpAHMAaAA= en", content_type='text/plain; charset=utf-16le') @csrf_exempt def index(request, reg): try: session = Session.objects.get(token=request.headers['X-DSi-SID']) except: return HttpResponse(status=403) ugo = UgoMenu() ugo.set_type("0") if session.user != None: ugo.add_item({"label": "Browse Flipnotes", "url": request.build_absolute_uri('/')+"ds/v2-eu/hot.uls", "icon": "100"}) ugo.add_item({"label": "Channels", "url": request.build_absolute_uri('/')+"ds/v2-eu/channels.uls", "icon": "101"}) else: ugo.add_item({"label": "Sign In", "url": request.build_absolute_uri('/')+"ds/v2-eu/signin.htm", "icon": "104"}) return HttpResponse(ugo.get_ugo()) @csrf_exempt def categories(request, reg): categories = Category.objects.all()[:8] ugo = UgoMenu() ugo.set_type("0") for category in categories: ugo.add_item({"label": category.name, "url": request.build_absolute_uri('/')+"ds/v2-eu/channels/"+category.internal_id+".uls"}) return HttpResponse(ugo.get_ugo()) @csrf_exempt def channels(request, reg, internal_id): try: category = Category.objects.get(internal_id=internal_id) except: return HttpResponse(status=403) channels = Channel.objects.filter(category=category) ugo = UgoMenu() ugo.set_meta("uppertitle", category.name) ugo.set_type("1") for channel in channels: ugo.add_item({"label": channel.name, "url": request.build_absolute_uri('/')+"ds/v2-eu/channel/"+channel.internal_id+".uls"}) return HttpResponse(ugo.get_ugo()) @csrf_exempt def others(request, reg): categories = Category.objects.all()[8:] ugo = UgoMenu() ugo.set_meta("uppertitle", "Other channels") ugo.set_type("1") for category in categories: ugo.add_item({"label": category.name, "url": request.build_absolute_uri('/')+"ds/v2-eu/channels/"+category.internal_id+".uls"}) return HttpResponse(ugo.get_ugo()) @csrf_exempt def channel(request, reg, internal_id): try: channel = Channel.objects.get(internal_id=internal_id) except: return HttpResponse(status=403) if not request.GET.get("page"): page = 0 else: page = int(request.GET.get("page")) flip_count = Flipnote.objects.filter(channel=channel).count() flips = Flipnote.objects.filter(channel=channel).order_by("-id")[page*50:50] ugo = UgoMenu() ugo.set_type("2") ugo.set_meta("uppertitle", channel.name) ugo.set_meta("uppersubleft", "Flipnotes") ugo.set_meta("uppersubright", str(flip_count)) if not channel.locked: ugo.add_button({"label": "Post here", "url": request.build_absolute_uri('/')+"ds/v2-eu/channel/"+channel.internal_id+".post"}) if page != 0: ugo.add_item({"label": "Previous", "url": request.build_absolute_uri('/')+"ds/v2-eu/channel/"+channel.internal_id+".uls?page="+str(page-1)}) for flip in flips: if os.path.exists("./files/ppm/"+flip.real_filename+".ppm"): with open("./files/ppm/"+flip.real_filename+".ppm", "rb+") as file: parser = PPMParser() if parser.load(file): ugo.add_item({"url": request.build_absolute_uri('/')+"ds/v2-eu/flipnote/"+parser.current_filename+".ppm", "file": "./files/ppm/"+parser.current_filename+".ppm", "lock": str(flip.is_locked), "counter": str(flip.star+flip.green_star+flip.red_star+flip.blue_star+flip.purple_star), "icon": "3"}, False) else: continue else: continue if flip_count > (page+1)*50: ugo.add_item({"label": "Next", "url": request.build_absolute_uri('/')+"ds/v2-eu/channel/"+channel.internal_id+".uls?page="+str(page+1)}) return HttpResponse(ugo.get_ugo()) @csrf_exempt def newest_list(request, reg): return flip_list(request, True) @csrf_exempt def popular_list(request, reg): return flip_list(request, None) @csrf_exempt def liked_list(request, reg): return flip_list(request, False) """ type argument: None is Popular Flipnotes, False is Most Liked, and True is New Flipnotes """ @csrf_exempt def flip_list(request, type=None): if not request.GET.get("page"): page = 0 else: page = int(request.GET.get("page")) flip_count = Flipnote.objects.all().count() ugo = UgoMenu() ugo.set_type("2") if type==None: ugo.set_meta("uppertitle", "Popular Flipnotes") ugo.set_meta("uppersubbottom", "The most popular recent flipnotes.") flips = Flipnote.objects.all().order_by("-views")[page*50:50] selected_newest = "0" selected_popular = "1" selected_liked = "0" elif type==False: ugo.set_meta("uppertitle", "Liked Flipnotes") ugo.set_meta("uppersubbottom", "The most liked recent flipnotes.") flips = Flipnote.objects.all().order_by("-total")[page*50:50] selected_newest = "0" selected_popular = "0" selected_liked = "1" elif type==True: ugo.set_meta("uppertitle", "New Flipnotes") ugo.set_meta("uppersubbottom", "The most recent flipnotes.") flips = Flipnote.objects.all().order_by("-id")[page*50:50] selected_newest = "1" selected_popular = "0" selected_liked = "0" ugo.set_meta("uppersubleft", "Flipnotes") ugo.set_meta("uppersubright", str(flip_count)) ugo.add_dropdown({"label": "New Flipnotes", "url": request.build_absolute_uri('/')+"ds/v2-eu/newest.uls", "selected": selected_newest}) ugo.add_dropdown({"label": "Most Popular", "url": request.build_absolute_uri('/')+"ds/v2-eu/hot.uls", "selected": selected_popular}) ugo.add_dropdown({"label": "Most Liked", "url": request.build_absolute_uri('/')+"ds/v2-eu/liked.uls", "selected": selected_liked}) if page != 0: ugo.add_item({"label": "Previous", "url": request.build_absolute_uri('/')+"ds/v2-eu/hot.uls?page="+str(page-1)}) for flip in flips: if not flip.channel.show_in_frontpage: continue if type==None or type==False: now = datetime.date.today() time_between = now - flip.date if int(time_between.days) > 7: continue if os.path.exists("./files/ppm/"+flip.real_filename+".ppm"): with open("./files/ppm/"+flip.real_filename+".ppm", "rb+") as file: parser = PPMParser() if parser.load(file): ugo.add_item({"url": request.build_absolute_uri('/')+"ds/v2-eu/flipnote/"+parser.current_filename+".ppm", "file": "./files/ppm/"+parser.current_filename+".ppm", "counter": str(flip.star+flip.green_star+flip.red_star+flip.blue_star+flip.purple_star), "icon": "3"}, False) else: continue else: continue if flip_count > (page+1)*50: ugo.add_item({"label": "Next", "url": request.build_absolute_uri('/')+"ds/v2-eu/hot.uls?page="+str(page+1)}) return HttpResponse(ugo.get_ugo()) @csrf_exempt def info(request, reg, file): try: session = Session.objects.get(token=request.headers['X-DSi-SID']) except: return HttpResponse(status=403) try: flip = Flipnote.objects.get(real_filename=file) except ObjectDoesNotExist: return HttpResponse(status=404) if session.user != flip.made_by: flip.views += 1 flip.save() return HttpResponse("0\n0\n", content_type="text/plain; charset=utf-16le") @csrf_exempt def dl(request, reg, file): try: session = Session.objects.get(token=request.headers['X-DSi-SID']) except: return HttpResponse(status=403) try: flip = Flipnote.objects.get(real_filename=file) except ObjectDoesNotExist: return HttpResponse(status=404) if session.user != flip.made_by: flip.saved += 1 flip.save() return HttpResponse("nice", content_type="text/plain; charset=utf-16le") @csrf_exempt def star(request, reg, file): try: session = Session.objects.get(token=request.headers['X-DSi-SID']) except: return HttpResponse(status=403) try: flip = Flipnote.objects.get(real_filename=file) except ObjectDoesNotExist: return HttpResponse(status=404) if "X-Hatena-Star-Count" not in request.headers: return HttpResponse(status=403) star = int(request.headers["X-Hatena-Star-Count"]) if star < 1 or star > 65535: return HttpResponse(status=403) try: star_log = StarLog.objects.get(user=session.user, flipnote=flip) except ObjectDoesNotExist: star_log = StarLog.objects.create(user=session.user, flipnote=flip) star_log = StarLog.objects.get(user=session.user, flipnote=flip) if request.GET.get("starcolor"): user = User.objects.get(id=session.user.id) star_type = request.GET.get("starcolor") if star_type == "green": if star > session.user.green_star: return HttpResponse(status=403) user.green_star -= star star_log.green_star += star flip.green_star += star elif star_type == "red": if star > session.user.red_star: return HttpResponse(status=403) user.red_star -= star star_log.red_star += star flip.red_star += star elif star_type == "blue": if star > session.user.blue_star: return HttpResponse(status=403) user.blue_star -= star star_log.blue_star += star flip.blue_star += star elif star_type == "purple": if star > session.user.purple_star: return HttpResponse(status=403) user.purple_star -= star star_log.purple_star += star flip.purple_star += star else: return HttpResponse(status=403) flip.total += star user.save() star_log.save() flip.save() return HttpResponse("nice star you got here, can I have it?", content_type="text/plain; charset=utf-16le") else: if star_log.star >= 10: return HttpResponse("nice", content_type="text/plain; charset=utf-16le") else: if star_log.star + star > 10: flip.star += (10 - star_log.star) flip.total += (10 - star_log.star) flip.save() star_log.star = 10 star_log.save() return HttpResponse("hi potential reverse engineer", content_type="text/plain; charset=utf-16le") star_log.star += star star_log.save() flip.star += star flip.total += star flip.save() return HttpResponse("nice", content_type="text/plain; charset=utf-16le") @csrf_exempt def flipnote_info(request, reg, file): try: session = Session.objects.get(token=request.headers['X-DSi-SID']) except: return HttpResponse(status=403) try: flip = Flipnote.objects.get(real_filename=file) except ObjectDoesNotExist: return HttpResponse(status=404) return render(request, "details.html", {"BASE_URI": request.build_absolute_uri('/'),"flipnote": flip, "ppmUri": request.build_absolute_uri('/')+"ds/v2-eu/flipnote/"+file+".ppm", "session": session}, content_type="text/html; charset=utf-8") @csrf_exempt def signin(request, reg): try: session = Session.objects.get(token=request.headers['X-DSi-SID']) except: return HttpResponse(status=403) if request.GET.get("finish"): return render(request, "signin/finish.html") elif not request.GET.get("step2"): return render(request, "signin/step1.html", {"BASE_URI": request.build_absolute_uri('/')}) else: return render(request, "signin/step2.html", {"BASE_URI": request.build_absolute_uri('/')}) @csrf_exempt def signin_step1(request, reg): try: session = Session.objects.get(token=request.headers['X-Dsi-Sid']) except: return HttpResponse(status=403) resp = HttpResponse() if request.method == 'POST': if request.headers['X-Email-Addr'] != "": try: user = User.objects.get(username=request.headers['X-Email-Addr']) session.temp = user.username session.save() resp.headers['X-DSi-Forwarder'] = request.build_absolute_uri('/')+"ds/v2-eu/signin.htm?step2=true" except ObjectDoesNotExist: resp.headers['X-DSi-Forwarder'] = request.build_absolute_uri('/')+"ds/v2-eu/error_get.htm?error=Invalid+username" else: resp.headers['X-DSi-Forwarder'] = request.build_absolute_uri('/')+"ds/v2-eu/error_get.htm?error=Empty+username+please+try+again" else: resp.headers['X-DSi-Forwarder'] = request.build_absolute_uri('/')+"ds/v2-eu/error_get.htm?error=An+error+has+occured." return resp @csrf_exempt def signin_step2(request, reg): try: session = Session.objects.get(token=request.headers['X-Dsi-Sid']) except: return HttpResponse(status=403) resp = HttpResponse() if request.method == 'POST': if request.headers['X-Email-Addr'] != "": user = authenticate(username=session.temp, password=request.headers['X-Email-Addr']) if user != None: try: test = User.objects.get(fsid=session.fsid) test.fsid = None test.save() except ObjectDoesNotExist: pass try: test = User.objects.get(mac=session.mac) test.mac = None test.save() except ObjectDoesNotExist: pass user = User.objects.get(username=session.temp) user.fsid = session.fsid user.mac = session.mac user.save() resp.headers['X-DSi-Forwarder'] = request.build_absolute_uri('/')+"ds/v2-eu/signin.htm?finish=true" else: resp.headers['X-DSi-Forwarder'] = request.build_absolute_uri('/')+"ds/v2-eu/error_get.htm?error=Invalid+password+please+try+again" else: resp.headers['X-DSi-Forwarder'] = request.build_absolute_uri('/')+"ds/v2-eu/error_get.htm?error=Empty+password+please+try+again" else: resp.headers['X-DSi-Forwarder'] = request.build_absolute_uri('/')+"ds/v2-eu/error_get.htm?error=An+error+has+occured." return resp @csrf_exempt def error_get(request, reg): return render(request, "error.html", {"errMsg": request.GET.get("error")}) @csrf_exempt def ppmloader(request, reg, file): if os.path.exists("./files/ppm/"+file+".ppm"): with open("./files/ppm/"+file+".ppm", "rb+") as file: return HttpResponse(file.read(), content_type="text/plain; charset=utf-16le") else: resp = HttpResponse() resp.status_code = 404 return resp @csrf_exempt def post_flip(request, reg, internal_id): try: session = Session.objects.get(token=request.headers['X-DSi-SID']) except: return HttpResponse(status=403) try: channel = Channel.objects.get(internal_id=internal_id) except: return HttpResponse(status=403) if channel.locked: return HttpResponse(status=403) if request.method == 'POST': if request.body != "": parser = PPMParser() if parser.load(io.BytesIO(request.body)): try: Flipnote.objects.get(real_filename=parser.current_filename) return HttpResponse() except ObjectDoesNotExist: pass with open("./files/ppm/"+parser.current_filename+".ppm", "wb") as file: file.write(request.body) file.close() if parser.lock < 0 or parser.lock > 1: return HttpResponse(status=403) Flipnote.objects.create(real_filename=parser.current_filename, is_locked=parser.lock, made_by=session.user, channel=channel) return HttpResponse() else: return HttpResponse(status=403) else: return HttpResponse(status=400) else: return HttpResponse(status=405) @csrf_exempt def static(request, reg, dir, file): if os.path.exists("./ds-static/"+dir+"/"+file): with open("./ds-static/"+dir+"/"+file, "rb+") as file: return HttpResponse(file.read(), content_type="text/css; charset=utf-8") else: resp = HttpResponse() resp.status_code = 404 return resp
19,233
Python
.py
435
35.537931
319
0.618078
Aftendo/Afternote
8
2
1
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,289
models.py
Aftendo_Afternote/db/models.py
from django.db import models from django.contrib.auth.models import AbstractUser # Create your models here. class User(AbstractUser): fsid = models.CharField(max_length=16, null=True, unique=True, blank=True) mac = models.CharField(max_length=12, null=True, unique=True, blank=True) ban = models.BooleanField(default=False, null=False) green_star = models.IntegerField(blank=False, null=False, default=0) red_star = models.IntegerField(blank=False, null=False, default=0) blue_star = models.IntegerField(blank=False, null=False, default=0) purple_star = models.IntegerField(blank=False, null=False, default=0) def __str__(self): return self.username class Session(models.Model): id = models.IntegerField(primary_key=True, blank=True) token = models.CharField(max_length=16, null=False, unique=True) user = models.ForeignKey(User, null=True, on_delete=models.CASCADE) temp = models.CharField(max_length=400, null=False, default="") fsid = models.CharField(max_length=16, null=False) mac = models.CharField(max_length=12, null=False) def __str__(self): return "Session "+self.token class Category(models.Model): id = models.IntegerField(primary_key=True, blank=True) internal_id = models.CharField(max_length=16, null=False) name = models.CharField(max_length=32, null=False) def __str__(self): return self.name class Channel(models.Model): id = models.IntegerField(primary_key=True, blank=True) internal_id = models.CharField(max_length=16, null=False) name = models.CharField(max_length=32, null=False) category = models.ForeignKey(Category, null=False, on_delete=models.CASCADE) show_in_frontpage = models.BooleanField(null=False, default=True) locked = models.BooleanField(null=False, default=False) def __str__(self): return self.name class Flipnote(models.Model): id = models.IntegerField(primary_key=True, blank=True) real_filename = models.CharField(max_length=24, null=False, unique=True) views = models.IntegerField(null=False, default=0) saved = models.IntegerField(null=False, default=0) is_locked = models.IntegerField(null=False, default=0) made_by = models.ForeignKey(User, null=False, on_delete=models.CASCADE) channel = models.ForeignKey(Channel, null=False, on_delete=models.CASCADE) star = models.IntegerField(blank=False, null=False, default=0) green_star = models.IntegerField(blank=False, null=False, default=0) red_star = models.IntegerField(blank=False, null=False, default=0) blue_star = models.IntegerField(blank=False, null=False, default=0) purple_star = models.IntegerField(blank=False, null=False, default=0) total = models.IntegerField(blank=False, null=False, default=0) date = models.DateField(auto_now_add=True, null=False) def __str__(self): return self.real_filename class StarLog(models.Model): id = models.IntegerField(primary_key=True, blank=True) user = models.ForeignKey(User, null=True, on_delete=models.CASCADE) flipnote = models.ForeignKey(Flipnote, null=True, on_delete=models.CASCADE) star = models.IntegerField(blank=False, null=False, default=0) green_star = models.IntegerField(blank=False, null=False, default=0) red_star = models.IntegerField(blank=False, null=False, default=0) blue_star = models.IntegerField(blank=False, null=False, default=0) purple_star = models.IntegerField(blank=False, null=False, default=0) def __str__(self): return "Star log of "+self.user.username+" for flipnote "+self.flipnote.real_filename
3,629
Python
.py
65
50.861538
93
0.734384
Aftendo/Afternote
8
2
1
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,290
apps.py
Aftendo_Afternote/db/apps.py
from django.apps import AppConfig class DbConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'db'
136
Python
.py
4
30.5
56
0.761538
Aftendo/Afternote
8
2
1
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,291
admin.py
Aftendo_Afternote/db/admin.py
from django.contrib import admin from .models import * # Register your models here. admin.site.register(Flipnote) admin.site.register(User) admin.site.register(Session) admin.site.register(Category) admin.site.register(Channel) admin.site.register(StarLog)
258
Python
.py
9
27.555556
32
0.842742
Aftendo/Afternote
8
2
1
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,292
0012_flipnote_channel.py
Aftendo_Afternote/db/migrations/0012_flipnote_channel.py
# Generated by Django 4.1.7 on 2024-01-14 18:53 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('db', '0011_channel_category'), ] operations = [ migrations.AddField( model_name='flipnote', name='channel', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to='db.channel'), preserve_default=False, ), ]
508
Python
.py
15
26.666667
109
0.645492
Aftendo/Afternote
8
2
1
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,293
0013_user_blue_star_user_green_star_user_purple_star_and_more.py
Aftendo_Afternote/db/migrations/0013_user_blue_star_user_green_star_user_purple_star_and_more.py
# Generated by Django 4.1.7 on 2024-01-15 00:42 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('db', '0012_flipnote_channel'), ] operations = [ migrations.AddField( model_name='user', name='blue_star', field=models.IntegerField(default=0), ), migrations.AddField( model_name='user', name='green_star', field=models.IntegerField(default=0), ), migrations.AddField( model_name='user', name='purple_star', field=models.IntegerField(default=0), ), migrations.AddField( model_name='user', name='red_star', field=models.IntegerField(default=0), ), ]
832
Python
.py
28
20.25
49
0.553191
Aftendo/Afternote
8
2
1
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,294
0002_session.py
Aftendo_Afternote/db/migrations/0002_session.py
# Generated by Django 4.1.7 on 2024-01-14 11:14 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('db', '0001_initial'), ] operations = [ migrations.CreateModel( name='Session', fields=[ ('id', models.IntegerField(blank=True, primary_key=True, serialize=False)), ('session_id', models.CharField(max_length=16)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
666
Python
.py
18
28.833333
118
0.625194
Aftendo/Afternote
8
2
1
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,295
0011_channel_category.py
Aftendo_Afternote/db/migrations/0011_channel_category.py
# Generated by Django 4.1.7 on 2024-01-14 18:32 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('db', '0010_category_channel'), ] operations = [ migrations.AddField( model_name='channel', name='category', field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to='db.category'), preserve_default=False, ), ]
509
Python
.py
15
26.733333
110
0.646217
Aftendo/Afternote
8
2
1
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,296
0006_session_temp_alter_session_token.py
Aftendo_Afternote/db/migrations/0006_session_temp_alter_session_token.py
# Generated by Django 4.1.7 on 2024-01-14 12:59 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('db', '0005_rename_session_id_session_token'), ] operations = [ migrations.AddField( model_name='session', name='temp', field=models.CharField(default='', max_length=400), ), migrations.AlterField( model_name='session', name='token', field=models.CharField(max_length=16, unique=True), ), ]
570
Python
.py
18
23.277778
63
0.590494
Aftendo/Afternote
8
2
1
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,297
0018_channel_locked_channel_show_in_frontpage.py
Aftendo_Afternote/db/migrations/0018_channel_locked_channel_show_in_frontpage.py
# Generated by Django 4.1.7 on 2024-01-15 23:18 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('db', '0017_flipnote_date'), ] operations = [ migrations.AddField( model_name='channel', name='locked', field=models.BooleanField(default=False), ), migrations.AddField( model_name='channel', name='show_in_frontpage', field=models.BooleanField(default=True), ), ]
543
Python
.py
18
21.777778
53
0.590385
Aftendo/Afternote
8
2
1
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,298
0001_initial.py
Aftendo_Afternote/db/migrations/0001_initial.py
# Generated by Django 4.1.7 on 2024-01-14 03:06 import django.contrib.auth.models import django.contrib.auth.validators from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0012_alter_user_first_name_max_length'), ] operations = [ migrations.CreateModel( name='Flipnote', fields=[ ('id', models.IntegerField(blank=True, primary_key=True, serialize=False)), ('real_filename', models.CharField(max_length=24, unique=True)), ('views', models.IntegerField(default=0)), ('saved', models.IntegerField(default=0)), ('is_locked', models.IntegerField(default=0)), ], ), migrations.CreateModel( name='User', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('username', models.CharField(error_messages={'unique': 'A user with that username already exists.'}, help_text='Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.', max_length=150, unique=True, validators=[django.contrib.auth.validators.UnicodeUsernameValidator()], verbose_name='username')), ('first_name', models.CharField(blank=True, max_length=150, verbose_name='first name')), ('last_name', models.CharField(blank=True, max_length=150, verbose_name='last name')), ('email', models.EmailField(blank=True, max_length=254, verbose_name='email address')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('fsid', models.CharField(max_length=16, unique=True)), ('mac', models.CharField(max_length=12, unique=True)), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.group', verbose_name='groups')), ('user_permissions', models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.permission', verbose_name='user permissions')), ], options={ 'verbose_name': 'user', 'verbose_name_plural': 'users', 'abstract': False, }, managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), ]
3,478
Python
.py
50
57.16
329
0.635009
Aftendo/Afternote
8
2
1
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)
2,287,299
0005_rename_session_id_session_token.py
Aftendo_Afternote/db/migrations/0005_rename_session_id_session_token.py
# Generated by Django 4.1.7 on 2024-01-14 11:57 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('db', '0004_user_ban'), ] operations = [ migrations.RenameField( model_name='session', old_name='session_id', new_name='token', ), ]
352
Python
.py
13
19.846154
47
0.583832
Aftendo/Afternote
8
2
1
GPL-2.0
9/5/2024, 10:48:09 PM (Europe/Amsterdam)