id
int64
0
458k
file_name
stringlengths
4
119
file_path
stringlengths
14
227
content
stringlengths
24
9.96M
size
int64
24
9.96M
language
stringclasses
1 value
extension
stringclasses
14 values
total_lines
int64
1
219k
avg_line_length
float64
2.52
4.63M
max_line_length
int64
5
9.91M
alphanum_fraction
float64
0
1
repo_name
stringlengths
7
101
repo_stars
int64
100
139k
repo_forks
int64
0
26.4k
repo_open_issues
int64
0
2.27k
repo_license
stringclasses
12 values
repo_extraction_date
stringclasses
433 values
2,288,300
attaches.js
Nigel2392_wagtail_editorjs/wagtail_editorjs/static/wagtail_editorjs/js/tools/attaches.js
class CSRFAttachesTool extends window.AttachesTool { constructor({ data, config, api, readOnly }) { config['additionalRequestHeaders'] = { 'X-CSRFToken': document.querySelector('input[name="csrfmiddlewaretoken"]').value }; super({ data, config, api, readOnly }); } } window.CSRFAttachesTool = CSRFAttachesTool;
355
Python
.tac
9
33.555556
92
0.682081
Nigel2392/wagtail_editorjs
8
0
3
GPL-2.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,301
attaches.js
Nigel2392_wagtail_editorjs/wagtail_editorjs/static/wagtail_editorjs/vendor/editorjs/tools/attaches.js
/** * Skipped minification because the original files appears to be already minified. * Original file: /npm/@editorjs/[email protected]/dist/bundle.js * * Do NOT use SRI with dynamically generated files! More information: https://www.jsdelivr.com/using-sri-with-dynamic-files */ !function(e,t){"object"==typeof exports&&"object"==typeof module?module.exports=t():"function"==typeof define&&define.amd?define([],t):"object"==typeof exports?exports.AttachesTool=t():e.AttachesTool=t()}(window,(function(){return function(e){var t={};function n(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return e[r].call(o.exports,o,o.exports,n),o.l=!0,o.exports}return n.m=e,n.c=t,n.d=function(e,t,r){n.o(e,t)||Object.defineProperty(e,t,{enumerable:!0,get:r})},n.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},n.t=function(e,t){if(1&t&&(e=n(e)),8&t)return e;if(4&t&&"object"==typeof e&&e&&e.__esModule)return e;var r=Object.create(null);if(n.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:e}),2&t&&"string"!=typeof e)for(var o in e)n.d(r,o,function(t){return e[t]}.bind(null,o));return r},n.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return n.d(t,"a",t),t},n.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},n.p="/",n(n.s=6)}([function(e,t,n){window,e.exports=function(e){var t={};function n(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return e[r].call(o.exports,o,o.exports,n),o.l=!0,o.exports}return n.m=e,n.c=t,n.d=function(e,t,r){n.o(e,t)||Object.defineProperty(e,t,{enumerable:!0,get:r})},n.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},n.t=function(e,t){if(1&t&&(e=n(e)),8&t)return e;if(4&t&&"object"==typeof e&&e&&e.__esModule)return e;var r=Object.create(null);if(n.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:e}),2&t&&"string"!=typeof e)for(var o in e)n.d(r,o,function(t){return e[t]}.bind(null,o));return r},n.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return n.d(t,"a",t),t},n.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},n.p="",n(n.s=3)}([function(e,t){var n;n=function(){return this}();try{n=n||new Function("return this")()}catch(e){"object"==typeof window&&(n=window)}e.exports=n},function(e,t,n){"use strict";(function(e){var r=n(2),o=setTimeout;function i(){}function a(e){if(!(this instanceof a))throw new TypeError("Promises must be constructed via new");if("function"!=typeof e)throw new TypeError("not a function");this._state=0,this._handled=!1,this._value=void 0,this._deferreds=[],d(e,this)}function s(e,t){for(;3===e._state;)e=e._value;0!==e._state?(e._handled=!0,a._immediateFn((function(){var n=1===e._state?t.onFulfilled:t.onRejected;if(null!==n){var r;try{r=n(e._value)}catch(e){return void l(t.promise,e)}c(t.promise,r)}else(1===e._state?c:l)(t.promise,e._value)}))):e._deferreds.push(t)}function c(e,t){try{if(t===e)throw new TypeError("A promise cannot be resolved with itself.");if(t&&("object"==typeof t||"function"==typeof t)){var n=t.then;if(t instanceof a)return e._state=3,e._value=t,void u(e);if("function"==typeof n)return void d((r=n,o=t,function(){r.apply(o,arguments)}),e)}e._state=1,e._value=t,u(e)}catch(t){l(e,t)}var r,o}function l(e,t){e._state=2,e._value=t,u(e)}function u(e){2===e._state&&0===e._deferreds.length&&a._immediateFn((function(){e._handled||a._unhandledRejectionFn(e._value)}));for(var t=0,n=e._deferreds.length;t<n;t++)s(e,e._deferreds[t]);e._deferreds=null}function f(e,t,n){this.onFulfilled="function"==typeof e?e:null,this.onRejected="function"==typeof t?t:null,this.promise=n}function d(e,t){var n=!1;try{e((function(e){n||(n=!0,c(t,e))}),(function(e){n||(n=!0,l(t,e))}))}catch(e){if(n)return;n=!0,l(t,e)}}a.prototype.catch=function(e){return this.then(null,e)},a.prototype.then=function(e,t){var n=new this.constructor(i);return s(this,new f(e,t,n)),n},a.prototype.finally=r.a,a.all=function(e){return new a((function(t,n){if(!e||void 0===e.length)throw new TypeError("Promise.all accepts an array");var r=Array.prototype.slice.call(e);if(0===r.length)return t([]);var o=r.length;function i(e,a){try{if(a&&("object"==typeof a||"function"==typeof a)){var s=a.then;if("function"==typeof s)return void s.call(a,(function(t){i(e,t)}),n)}r[e]=a,0==--o&&t(r)}catch(e){n(e)}}for(var a=0;a<r.length;a++)i(a,r[a])}))},a.resolve=function(e){return e&&"object"==typeof e&&e.constructor===a?e:new a((function(t){t(e)}))},a.reject=function(e){return new a((function(t,n){n(e)}))},a.race=function(e){return new a((function(t,n){for(var r=0,o=e.length;r<o;r++)e[r].then(t,n)}))},a._immediateFn="function"==typeof e&&function(t){e(t)}||function(e){o(e,0)},a._unhandledRejectionFn=function(e){"undefined"!=typeof console&&console&&console.warn("Possible Unhandled Promise Rejection:",e)},t.a=a}).call(this,n(5).setImmediate)},function(e,t,n){"use strict";t.a=function(e){var t=this.constructor;return this.then((function(n){return t.resolve(e()).then((function(){return n}))}),(function(n){return t.resolve(e()).then((function(){return t.reject(n)}))}))}},function(e,t,n){"use strict";function r(e){return(r="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(e){return typeof e}:function(e){return e&&"function"==typeof Symbol&&e.constructor===Symbol&&e!==Symbol.prototype?"symbol":typeof e})(e)}n(4);var o,i,a,s,c,l,u,f=n(8),d=(i=function(e){return new Promise((function(t,n){e=s(e),(e=c(e)).beforeSend&&e.beforeSend();var r=window.XMLHttpRequest?new window.XMLHttpRequest:new window.ActiveXObject("Microsoft.XMLHTTP");r.open(e.method,e.url),r.setRequestHeader("X-Requested-With","XMLHttpRequest"),Object.keys(e.headers).forEach((function(t){var n=e.headers[t];r.setRequestHeader(t,n)}));var o=e.ratio;r.upload.addEventListener("progress",(function(t){var n=Math.round(t.loaded/t.total*100),r=Math.ceil(n*o/100);e.progress(Math.min(r,100))}),!1),r.addEventListener("progress",(function(t){var n=Math.round(t.loaded/t.total*100),r=Math.ceil(n*(100-o)/100)+o;e.progress(Math.min(r,100))}),!1),r.onreadystatechange=function(){if(4===r.readyState){var e=r.response;try{e=JSON.parse(e)}catch(e){}var o=f.parseHeaders(r.getAllResponseHeaders()),i={body:e,code:r.status,headers:o};u(r.status)?t(i):n(i)}},r.send(e.data)}))},a=function(e){return e.method="POST",i(e)},s=function(){var e=arguments.length>0&&void 0!==arguments[0]?arguments[0]:{};if(e.url&&"string"!=typeof e.url)throw new Error("Url must be a string");if(e.url=e.url||"",e.method&&"string"!=typeof e.method)throw new Error("`method` must be a string or null");if(e.method=e.method?e.method.toUpperCase():"GET",e.headers&&"object"!==r(e.headers))throw new Error("`headers` must be an object or null");if(e.headers=e.headers||{},e.type&&("string"!=typeof e.type||!Object.values(o).includes(e.type)))throw new Error("`type` must be taken from module's «contentType» library");if(e.progress&&"function"!=typeof e.progress)throw new Error("`progress` must be a function or null");if(e.progress=e.progress||function(e){},e.beforeSend=e.beforeSend||function(e){},e.ratio&&"number"!=typeof e.ratio)throw new Error("`ratio` must be a number");if(e.ratio<0||e.ratio>100)throw new Error("`ratio` must be in a 0-100 interval");if(e.ratio=e.ratio||90,e.accept&&"string"!=typeof e.accept)throw new Error("`accept` must be a string with a list of allowed mime-types");if(e.accept=e.accept||"*/*",e.multiple&&"boolean"!=typeof e.multiple)throw new Error("`multiple` must be a true or false");if(e.multiple=e.multiple||!1,e.fieldName&&"string"!=typeof e.fieldName)throw new Error("`fieldName` must be a string");return e.fieldName=e.fieldName||"files",e},c=function(e){switch(e.method){case"GET":var t=l(e.data,o.URLENCODED);delete e.data,e.url=/\?/.test(e.url)?e.url+"&"+t:e.url+"?"+t;break;case"POST":case"PUT":case"DELETE":case"UPDATE":var n=function(){return(arguments.length>0&&void 0!==arguments[0]?arguments[0]:{}).type||o.JSON}(e);(f.isFormData(e.data)||f.isFormElement(e.data))&&(n=o.FORM),e.data=l(e.data,n),n!==d.contentType.FORM&&(e.headers["content-type"]=n)}return e},l=function(){var e=arguments.length>0&&void 0!==arguments[0]?arguments[0]:{};switch(arguments.length>1?arguments[1]:void 0){case o.URLENCODED:return f.urlEncode(e);case o.JSON:return f.jsonEncode(e);case o.FORM:return f.formEncode(e);default:return e}},u=function(e){return e>=200&&e<300},{contentType:o={URLENCODED:"application/x-www-form-urlencoded; charset=utf-8",FORM:"multipart/form-data",JSON:"application/json; charset=utf-8"},request:i,get:function(e){return e.method="GET",i(e)},post:a,transport:function(e){return e=s(e),f.selectFiles(e).then((function(t){for(var n=new FormData,r=0;r<t.length;r++)n.append(e.fieldName,t[r],t[r].name);f.isObject(e.data)&&Object.keys(e.data).forEach((function(t){var r=e.data[t];n.append(t,r)}));var o=e.beforeSend;return e.beforeSend=function(){return o(t)},e.data=n,a(e)}))},selectFiles:function(e){return delete(e=s(e)).beforeSend,f.selectFiles(e)}});e.exports=d},function(e,t,n){"use strict";n.r(t);var r=n(1);window.Promise=window.Promise||r.a},function(e,t,n){(function(e){var r=void 0!==e&&e||"undefined"!=typeof self&&self||window,o=Function.prototype.apply;function i(e,t){this._id=e,this._clearFn=t}t.setTimeout=function(){return new i(o.call(setTimeout,r,arguments),clearTimeout)},t.setInterval=function(){return new i(o.call(setInterval,r,arguments),clearInterval)},t.clearTimeout=t.clearInterval=function(e){e&&e.close()},i.prototype.unref=i.prototype.ref=function(){},i.prototype.close=function(){this._clearFn.call(r,this._id)},t.enroll=function(e,t){clearTimeout(e._idleTimeoutId),e._idleTimeout=t},t.unenroll=function(e){clearTimeout(e._idleTimeoutId),e._idleTimeout=-1},t._unrefActive=t.active=function(e){clearTimeout(e._idleTimeoutId);var t=e._idleTimeout;t>=0&&(e._idleTimeoutId=setTimeout((function(){e._onTimeout&&e._onTimeout()}),t))},n(6),t.setImmediate="undefined"!=typeof self&&self.setImmediate||void 0!==e&&e.setImmediate||this&&this.setImmediate,t.clearImmediate="undefined"!=typeof self&&self.clearImmediate||void 0!==e&&e.clearImmediate||this&&this.clearImmediate}).call(this,n(0))},function(e,t,n){(function(e,t){!function(e,n){"use strict";if(!e.setImmediate){var r,o,i,a,s,c=1,l={},u=!1,f=e.document,d=Object.getPrototypeOf&&Object.getPrototypeOf(e);d=d&&d.setTimeout?d:e,"[object process]"==={}.toString.call(e.process)?r=function(e){t.nextTick((function(){h(e)}))}:function(){if(e.postMessage&&!e.importScripts){var t=!0,n=e.onmessage;return e.onmessage=function(){t=!1},e.postMessage("","*"),e.onmessage=n,t}}()?(a="setImmediate$"+Math.random()+"$",s=function(t){t.source===e&&"string"==typeof t.data&&0===t.data.indexOf(a)&&h(+t.data.slice(a.length))},e.addEventListener?e.addEventListener("message",s,!1):e.attachEvent("onmessage",s),r=function(t){e.postMessage(a+t,"*")}):e.MessageChannel?((i=new MessageChannel).port1.onmessage=function(e){h(e.data)},r=function(e){i.port2.postMessage(e)}):f&&"onreadystatechange"in f.createElement("script")?(o=f.documentElement,r=function(e){var t=f.createElement("script");t.onreadystatechange=function(){h(e),t.onreadystatechange=null,o.removeChild(t),t=null},o.appendChild(t)}):r=function(e){setTimeout(h,0,e)},d.setImmediate=function(e){"function"!=typeof e&&(e=new Function(""+e));for(var t=new Array(arguments.length-1),n=0;n<t.length;n++)t[n]=arguments[n+1];var o={callback:e,args:t};return l[c]=o,r(c),c++},d.clearImmediate=p}function p(e){delete l[e]}function h(e){if(u)setTimeout(h,0,e);else{var t=l[e];if(t){u=!0;try{!function(e){var t=e.callback,n=e.args;switch(n.length){case 0:t();break;case 1:t(n[0]);break;case 2:t(n[0],n[1]);break;case 3:t(n[0],n[1],n[2]);break;default:t.apply(void 0,n)}}(t)}finally{p(e),u=!1}}}}}("undefined"==typeof self?void 0===e?this:e:self)}).call(this,n(0),n(7))},function(e,t){var n,r,o=e.exports={};function i(){throw new Error("setTimeout has not been defined")}function a(){throw new Error("clearTimeout has not been defined")}function s(e){if(n===setTimeout)return setTimeout(e,0);if((n===i||!n)&&setTimeout)return n=setTimeout,setTimeout(e,0);try{return n(e,0)}catch(t){try{return n.call(null,e,0)}catch(t){return n.call(this,e,0)}}}!function(){try{n="function"==typeof setTimeout?setTimeout:i}catch(e){n=i}try{r="function"==typeof clearTimeout?clearTimeout:a}catch(e){r=a}}();var c,l=[],u=!1,f=-1;function d(){u&&c&&(u=!1,c.length?l=c.concat(l):f=-1,l.length&&p())}function p(){if(!u){var e=s(d);u=!0;for(var t=l.length;t;){for(c=l,l=[];++f<t;)c&&c[f].run();f=-1,t=l.length}c=null,u=!1,function(e){if(r===clearTimeout)return clearTimeout(e);if((r===a||!r)&&clearTimeout)return r=clearTimeout,clearTimeout(e);try{r(e)}catch(t){try{return r.call(null,e)}catch(t){return r.call(this,e)}}}(e)}}function h(e,t){this.fun=e,this.array=t}function m(){}o.nextTick=function(e){var t=new Array(arguments.length-1);if(arguments.length>1)for(var n=1;n<arguments.length;n++)t[n-1]=arguments[n];l.push(new h(e,t)),1!==l.length||u||s(p)},h.prototype.run=function(){this.fun.apply(null,this.array)},o.title="browser",o.browser=!0,o.env={},o.argv=[],o.version="",o.versions={},o.on=m,o.addListener=m,o.once=m,o.off=m,o.removeListener=m,o.removeAllListeners=m,o.emit=m,o.prependListener=m,o.prependOnceListener=m,o.listeners=function(e){return[]},o.binding=function(e){throw new Error("process.binding is not supported")},o.cwd=function(){return"/"},o.chdir=function(e){throw new Error("process.chdir is not supported")},o.umask=function(){return 0}},function(e,t,n){function r(e,t){for(var n=0;n<t.length;n++){var r=t[n];r.enumerable=r.enumerable||!1,r.configurable=!0,"value"in r&&(r.writable=!0),Object.defineProperty(e,r.key,r)}}var o=n(9);e.exports=function(){function e(){!function(e,t){if(!(e instanceof t))throw new TypeError("Cannot call a class as a function")}(this,e)}var t,n;return t=e,(n=[{key:"urlEncode",value:function(e){return o(e)}},{key:"jsonEncode",value:function(e){return JSON.stringify(e)}},{key:"formEncode",value:function(e){if(this.isFormData(e))return e;if(this.isFormElement(e))return new FormData(e);if(this.isObject(e)){var t=new FormData;return Object.keys(e).forEach((function(n){var r=e[n];t.append(n,r)})),t}throw new Error("`data` must be an instance of Object, FormData or <FORM> HTMLElement")}},{key:"isObject",value:function(e){return"[object Object]"===Object.prototype.toString.call(e)}},{key:"isFormData",value:function(e){return e instanceof FormData}},{key:"isFormElement",value:function(e){return e instanceof HTMLFormElement}},{key:"selectFiles",value:function(){var e=arguments.length>0&&void 0!==arguments[0]?arguments[0]:{};return new Promise((function(t,n){var r=document.createElement("INPUT");r.type="file",e.multiple&&r.setAttribute("multiple","multiple"),e.accept&&r.setAttribute("accept",e.accept),r.style.display="none",document.body.appendChild(r),r.addEventListener("change",(function(e){var n=e.target.files;t(n),document.body.removeChild(r)}),!1),r.click()}))}},{key:"parseHeaders",value:function(e){var t=e.trim().split(/[\r\n]+/),n={};return t.forEach((function(e){var t=e.split(": "),r=t.shift(),o=t.join(": ");r&&(n[r]=o)})),n}}])&&r(t,n),e}()},function(e,t){var n=function(e){return encodeURIComponent(e).replace(/[!'()*]/g,escape).replace(/%20/g,"+")},r=function(e,t,o,i){return t=t||null,o=o||"&",i=i||null,e?function(e){for(var t=new Array,n=0;n<e.length;n++)e[n]&&t.push(e[n]);return t}(Object.keys(e).map((function(a){var s,c,l=a;if(i&&(l=i+"["+l+"]"),"object"==typeof e[a]&&null!==e[a])s=r(e[a],null,o,l);else{t&&(c=l,l=!isNaN(parseFloat(c))&&isFinite(c)?t+Number(l):l);var u=e[a];u=(u=0===(u=!1===(u=!0===u?"1":u)?"0":u)?"0":u)||"",s=n(l)+"="+n(u)}return s}))).join(o).replace(/[!'()*]/g,""):""};e.exports=r}])},function(e,t,n){var r=n(2);"string"==typeof r&&(r=[[e.i,r,""]]);var o={hmr:!0,transform:void 0,insertInto:void 0};n(4)(r,o);r.locals&&(e.exports=r.locals)},function(e,t,n){(e.exports=n(3)(!1)).push([e.i,".cdx-attaches {\n --color-line: #EFF0F1;\n --color-bg: #fff;\n --color-bg-secondary: #F8F8F8;\n --color-bg-secondary--hover: #f2f2f2;\n --color-text-secondary: #707684;\n}\n\n .cdx-attaches--with-file {\n display: flex;\n align-items: center;\n padding: 10px 12px;\n border: 1px solid var(--color-line);\n border-radius: 7px;\n background: var(--color-bg);\n }\n\n .cdx-attaches--with-file .cdx-attaches__file-info {\n display: grid;\n grid-gap: 4px;\n max-width: calc(100% - 80px);\n margin: auto 0;\n flex-grow: 2;\n }\n\n .cdx-attaches--with-file .cdx-attaches__download-button {\n display: flex;\n align-items: center;\n background: var(--color-bg-secondary);\n padding: 6px;\n border-radius: 6px;\n margin: auto 0 auto auto;\n }\n\n .cdx-attaches--with-file .cdx-attaches__download-button:hover {\n background: var(--color-bg-secondary--hover);\n }\n\n .cdx-attaches--with-file .cdx-attaches__download-button svg {\n width: 20px;\n height: 20px;\n fill: none;\n }\n\n .cdx-attaches--with-file .cdx-attaches__file-icon {\n position: relative;\n }\n\n .cdx-attaches--with-file .cdx-attaches__file-icon-background {\n background-color: #333;\n\n width: 27px;\n height: 30px;\n margin-right: 12px;\n border-radius: 8px;\n display: flex;\n align-items: center;\n justify-content: center;\n }\n\n @supports(-webkit-mask-box-image: url('')){\n\n .cdx-attaches--with-file .cdx-attaches__file-icon-background {\n border-radius: 0;\n -webkit-mask-box-image: url(\"data:image/svg+xml,%3Csvg width='24' height='24' viewBox='0 0 24 24' fill='none' xmlns='http://www.w3.org/2000/svg'%3E%3Cpath d='M0 10.3872C0 1.83334 1.83334 0 10.3872 0H13.6128C22.1667 0 24 1.83334 24 10.3872V13.6128C24 22.1667 22.1667 24 13.6128 24H10.3872C1.83334 24 0 22.1667 0 13.6128V10.3872Z' fill='black'/%3E%3C/svg%3E%0A\") 48% 41% 37.9% 53.3%\n };\n }\n\n .cdx-attaches--with-file .cdx-attaches__file-icon-label {\n position: absolute;\n left: 3px;\n top: 11px;\n background: inherit;\n text-transform: uppercase;\n line-height: 1em;\n color: #fff;\n padding: 1px 2px;\n border-radius: 3px;\n font-size: 10px;\n font-weight: bold;\n /* box-shadow: 0px 4px 6px rgba(0, 0, 0, 0.22); */\n font-family: ui-monospace,SFMono-Regular,SF Mono,Menlo,Consolas,Liberation Mono,monospace;\n letter-spacing: 0.02em;\n }\n\n .cdx-attaches--with-file .cdx-attaches__file-icon svg {\n width: 20px;\n height: 20px;\n }\n\n .cdx-attaches--with-file .cdx-attaches__file-icon path {\n stroke: #fff;\n }\n\n .cdx-attaches--with-file .cdx-attaches__size {\n color: var(--color-text-secondary);\n font-size: 12px;\n line-height: 1em;\n }\n\n .cdx-attaches--with-file .cdx-attaches__size::after {\n content: attr(data-size);\n margin-left: 0.2em;\n }\n\n .cdx-attaches--with-file .cdx-attaches__title {\n white-space: nowrap;\n text-overflow: ellipsis;\n overflow: hidden;\n outline: none;\n max-width: 90%;\n font-size: 14px;\n font-weight: 500;\n line-height: 1em;\n }\n\n .cdx-attaches--with-file .cdx-attaches__title:empty::before {\n content: attr(data-placeholder);\n color: #7b7e89;\n }\n\n .cdx-attaches--loading .cdx-attaches__title,\n .cdx-attaches--loading .cdx-attaches__file-icon,\n .cdx-attaches--loading .cdx-attaches__size,\n .cdx-attaches--loading .cdx-attaches__download-button,\n .cdx-attaches--loading .cdx-attaches__button {\n opacity: 0;\n font-size: 0;\n }\n\n .cdx-attaches__button {\n display: flex;\n align-items: center;\n justify-content: center;\n color: #000;\n border-radius: 7px;\n font-weight: 500;\n }\n\n .cdx-attaches__button svg {\n margin-top: 0;\n }\n",""])},function(e,t){e.exports=function(e){var t=[];return t.toString=function(){return this.map((function(t){var n=function(e,t){var n=e[1]||"",r=e[3];if(!r)return n;if(t&&"function"==typeof btoa){var o=(a=r,"/*# sourceMappingURL=data:application/json;charset=utf-8;base64,"+btoa(unescape(encodeURIComponent(JSON.stringify(a))))+" */"),i=r.sources.map((function(e){return"/*# sourceURL="+r.sourceRoot+e+" */"}));return[n].concat(i).concat([o]).join("\n")}var a;return[n].join("\n")}(t,e);return t[2]?"@media "+t[2]+"{"+n+"}":n})).join("")},t.i=function(e,n){"string"==typeof e&&(e=[[null,e,""]]);for(var r={},o=0;o<this.length;o++){var i=this[o][0];"number"==typeof i&&(r[i]=!0)}for(o=0;o<e.length;o++){var a=e[o];"number"==typeof a[0]&&r[a[0]]||(n&&!a[2]?a[2]=n:n&&(a[2]="("+a[2]+") and ("+n+")"),t.push(a))}},t}},function(e,t,n){var r,o,i={},a=(r=function(){return window&&document&&document.all&&!window.atob},function(){return void 0===o&&(o=r.apply(this,arguments)),o}),s=function(e){return document.querySelector(e)},c=function(e){var t={};return function(e){if("function"==typeof e)return e();if(void 0===t[e]){var n=s.call(this,e);if(window.HTMLIFrameElement&&n instanceof window.HTMLIFrameElement)try{n=n.contentDocument.head}catch(e){n=null}t[e]=n}return t[e]}}(),l=null,u=0,f=[],d=n(5);function p(e,t){for(var n=0;n<e.length;n++){var r=e[n],o=i[r.id];if(o){o.refs++;for(var a=0;a<o.parts.length;a++)o.parts[a](r.parts[a]);for(;a<r.parts.length;a++)o.parts.push(b(r.parts[a],t))}else{var s=[];for(a=0;a<r.parts.length;a++)s.push(b(r.parts[a],t));i[r.id]={id:r.id,refs:1,parts:s}}}}function h(e,t){for(var n=[],r={},o=0;o<e.length;o++){var i=e[o],a=t.base?i[0]+t.base:i[0],s={css:i[1],media:i[2],sourceMap:i[3]};r[a]?r[a].parts.push(s):n.push(r[a]={id:a,parts:[s]})}return n}function m(e,t){var n=c(e.insertInto);if(!n)throw new Error("Couldn't find a style target. This probably means that the value for the 'insertInto' parameter is invalid.");var r=f[f.length-1];if("top"===e.insertAt)r?r.nextSibling?n.insertBefore(t,r.nextSibling):n.appendChild(t):n.insertBefore(t,n.firstChild),f.push(t);else if("bottom"===e.insertAt)n.appendChild(t);else{if("object"!=typeof e.insertAt||!e.insertAt.before)throw new Error("[Style Loader]\n\n Invalid value for parameter 'insertAt' ('options.insertAt') found.\n Must be 'top', 'bottom', or Object.\n (https://github.com/webpack-contrib/style-loader#insertat)\n");var o=c(e.insertInto+" "+e.insertAt.before);n.insertBefore(t,o)}}function v(e){if(null===e.parentNode)return!1;e.parentNode.removeChild(e);var t=f.indexOf(e);t>=0&&f.splice(t,1)}function y(e){var t=document.createElement("style");return void 0===e.attrs.type&&(e.attrs.type="text/css"),g(t,e.attrs),m(e,t),t}function g(e,t){Object.keys(t).forEach((function(n){e.setAttribute(n,t[n])}))}function b(e,t){var n,r,o,i;if(t.transform&&e.css){if(!(i=t.transform(e.css)))return function(){};e.css=i}if(t.singleton){var a=u++;n=l||(l=y(t)),r=_.bind(null,n,a,!1),o=_.bind(null,n,a,!0)}else e.sourceMap&&"function"==typeof URL&&"function"==typeof URL.createObjectURL&&"function"==typeof URL.revokeObjectURL&&"function"==typeof Blob&&"function"==typeof btoa?(n=function(e){var t=document.createElement("link");return void 0===e.attrs.type&&(e.attrs.type="text/css"),e.attrs.rel="stylesheet",g(t,e.attrs),m(e,t),t}(t),r=E.bind(null,n,t),o=function(){v(n),n.href&&URL.revokeObjectURL(n.href)}):(n=y(t),r=S.bind(null,n),o=function(){v(n)});return r(e),function(t){if(t){if(t.css===e.css&&t.media===e.media&&t.sourceMap===e.sourceMap)return;r(e=t)}else o()}}e.exports=function(e,t){if("undefined"!=typeof DEBUG&&DEBUG&&"object"!=typeof document)throw new Error("The style-loader cannot be used in a non-browser environment");(t=t||{}).attrs="object"==typeof t.attrs?t.attrs:{},t.singleton||"boolean"==typeof t.singleton||(t.singleton=a()),t.insertInto||(t.insertInto="head"),t.insertAt||(t.insertAt="bottom");var n=h(e,t);return p(n,t),function(e){for(var r=[],o=0;o<n.length;o++){var a=n[o];(s=i[a.id]).refs--,r.push(s)}e&&p(h(e,t),t);for(o=0;o<r.length;o++){var s;if(0===(s=r[o]).refs){for(var c=0;c<s.parts.length;c++)s.parts[c]();delete i[s.id]}}}};var w,x=(w=[],function(e,t){return w[e]=t,w.filter(Boolean).join("\n")});function _(e,t,n,r){var o=n?"":r.css;if(e.styleSheet)e.styleSheet.cssText=x(t,o);else{var i=document.createTextNode(o),a=e.childNodes;a[t]&&e.removeChild(a[t]),a.length?e.insertBefore(i,a[t]):e.appendChild(i)}}function S(e,t){var n=t.css,r=t.media;if(r&&e.setAttribute("media",r),e.styleSheet)e.styleSheet.cssText=n;else{for(;e.firstChild;)e.removeChild(e.firstChild);e.appendChild(document.createTextNode(n))}}function E(e,t,n){var r=n.css,o=n.sourceMap,i=void 0===t.convertToAbsoluteUrls&&o;(t.convertToAbsoluteUrls||i)&&(r=d(r)),o&&(r+="\n/*# sourceMappingURL=data:application/json;base64,"+btoa(unescape(encodeURIComponent(JSON.stringify(o))))+" */");var a=new Blob([r],{type:"text/css"}),s=e.href;e.href=URL.createObjectURL(a),s&&URL.revokeObjectURL(s)}},function(e,t){e.exports=function(e){var t="undefined"!=typeof window&&window.location;if(!t)throw new Error("fixUrls requires window.location");if(!e||"string"!=typeof e)return e;var n=t.protocol+"//"+t.host,r=n+t.pathname.replace(/\/[^\/]*$/,"/");return e.replace(/url\s*\(((?:[^)(]|\((?:[^)(]+|\([^)(]*\))*\))*)\)/gi,(function(e,t){var o,i=t.trim().replace(/^"(.*)"$/,(function(e,t){return t})).replace(/^'(.*)'$/,(function(e,t){return t}));return/^(#|data:|http:\/\/|https:\/\/|file:\/\/\/|\s*$)/i.test(i)?e:(o=0===i.indexOf("//")?i:0===i.indexOf("/")?n+i:r+i.replace(/^\.\//,""),"url("+JSON.stringify(o)+")")}))}},function(e,t,n){"use strict";n.r(t),n.d(t,"default",(function(){return p}));n(1);var r=n(0),o=n.n(r);function i(e,t){for(var n=0;n<t.length;n++){var r=t[n];r.enumerable=r.enumerable||!1,r.configurable=!0,"value"in r&&(r.writable=!0),Object.defineProperty(e,r.key,r)}}var a=function(){function e(t){var n=t.config,r=t.onUpload,o=t.onError;!function(e,t){if(!(e instanceof t))throw new TypeError("Cannot call a class as a function")}(this,e),this.config=n,this.onUpload=r,this.onError=o}var t,n,r;return t=e,(n=[{key:"uploadSelectedFile",value:function(e){var t=this,n=e.onPreview;(this.config.uploader&&"function"==typeof this.config.uploader.uploadByFile?o.a.selectFiles({accept:this.config.types}).then((function(e){n();var r,o=t.config.uploader.uploadByFile(e[0]);return(r=o)&&"function"==typeof r.then||console.warn("Custom uploader method uploadByFile should return a Promise"),o})):o.a.transport({url:this.config.endpoint,accept:this.config.types,beforeSend:function(){return n()},fieldName:this.config.field,headers:this.config.additionalRequestHeaders||{}}).then((function(e){return e.body}))).then((function(e){t.onUpload(e)})).catch((function(e){var n=e.body,r=n&&n.message?n.message:t.config.errorMessage;t.onError(r)}))}}])&&i(t.prototype,n),r&&i(t,r),e}();function s(e){return function(e){if(Array.isArray(e))return c(e)}(e)||function(e){if("undefined"!=typeof Symbol&&null!=e[Symbol.iterator]||null!=e["@@iterator"])return Array.from(e)}(e)||function(e,t){if(!e)return;if("string"==typeof e)return c(e,t);var n=Object.prototype.toString.call(e).slice(8,-1);"Object"===n&&e.constructor&&(n=e.constructor.name);if("Map"===n||"Set"===n)return Array.from(e);if("Arguments"===n||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(n))return c(e,t)}(e)||function(){throw new TypeError("Invalid attempt to spread non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}()}function c(e,t){(null==t||t>e.length)&&(t=e.length);for(var n=0,r=new Array(t);n<t;n++)r[n]=e[n];return r}function l(e){var t,n=arguments.length>1&&void 0!==arguments[1]?arguments[1]:null,r=arguments.length>2&&void 0!==arguments[2]?arguments[2]:{},o=document.createElement(e);Array.isArray(n)?(t=o.classList).add.apply(t,s(n)):n&&o.classList.add(n);for(var i in r)o[i]=r[i];return o}function u(e){return 0===Object.keys(e).length}const f='<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="none" viewBox="0 0 24 24"><path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M13.3236 8.43554L9.49533 12.1908C9.13119 12.5505 8.93118 13.043 8.9393 13.5598C8.94741 14.0767 9.163 14.5757 9.53862 14.947C9.91424 15.3182 10.4191 15.5314 10.9422 15.5397C11.4653 15.5479 11.9637 15.3504 12.3279 14.9908L16.1562 11.2355C16.8845 10.5161 17.2845 9.53123 17.2682 8.4975C17.252 7.46376 16.8208 6.46583 16.0696 5.72324C15.3184 4.98066 14.3086 4.55425 13.2624 4.53782C12.2162 4.52138 11.2193 4.91627 10.4911 5.63562L6.66277 9.39093C5.57035 10.4699 4.97032 11.9473 4.99467 13.4979C5.01903 15.0485 5.66578 16.5454 6.79264 17.6592C7.9195 18.7731 9.43417 19.4127 11.0034 19.4374C12.5727 19.462 14.068 18.8697 15.1604 17.7907L18.9887 14.0354"/></svg>';function d(e,t){for(var n=0;n<t.length;n++){var r=t[n];r.enumerable=r.enumerable||!1,r.configurable=!0,"value"in r&&(r.writable=!0),Object.defineProperty(e,r.key,r)}}var p=function(){function e(t){var n=this,r=t.data,o=t.config,i=t.api,s=t.readOnly;!function(e,t){if(!(e instanceof t))throw new TypeError("Cannot call a class as a function")}(this,e),this.api=i,this.readOnly=s,this.nodes={wrapper:null,button:null,title:null},this._data={file:{},title:""},this.config={endpoint:o.endpoint||"",field:o.field||"file",types:o.types||"*",buttonText:o.buttonText||"Select file to upload",errorMessage:o.errorMessage||"File upload failed",uploader:o.uploader||void 0,additionalRequestHeaders:o.additionalRequestHeaders||{}},void 0===r||u(r)||(this.data=r),this.uploader=new a({config:this.config,onUpload:function(e){return n.onUpload(e)},onError:function(e){return n.uploadingFailed(e)}}),this.enableFileUpload=this.enableFileUpload.bind(this)}var t,n,r;return t=e,r=[{key:"toolbox",get:function(){return{icon:f,title:"Attachment"}}},{key:"isReadOnlySupported",get:function(){return!0}}],(n=[{key:"CSS",get:function(){return{baseClass:this.api.styles.block,apiButton:this.api.styles.button,loader:this.api.styles.loader,wrapper:"cdx-attaches",wrapperWithFile:"cdx-attaches--with-file",wrapperLoading:"cdx-attaches--loading",button:"cdx-attaches__button",title:"cdx-attaches__title",size:"cdx-attaches__size",downloadButton:"cdx-attaches__download-button",fileInfo:"cdx-attaches__file-info",fileIcon:"cdx-attaches__file-icon",fileIconBackground:"cdx-attaches__file-icon-background",fileIconLabel:"cdx-attaches__file-icon-label"}}},{key:"EXTENSIONS",get:function(){return{doc:"#1483E9",docx:"#1483E9",odt:"#1483E9",pdf:"#DB2F2F",rtf:"#744FDC",tex:"#5a5a5b",txt:"#5a5a5b",pptx:"#E35200",ppt:"#E35200",mp3:"#eab456",mp4:"#f676a6",xls:"#11AE3D",html:"#2988f0",htm:"#2988f0",png:"#AA2284",jpg:"#D13359",jpeg:"#D13359",gif:"#f6af76",zip:"#4f566f",rar:"#4f566f",exe:"#e26f6f",svg:"#bf5252",key:"#00B2FF",sketch:"#FFC700",ai:"#FB601D",psd:"#388ae5",dmg:"#e26f6f",json:"#2988f0",csv:"#11AE3D"}}},{key:"validate",value:function(e){return!u(e.file)}},{key:"save",value:function(e){if(this.pluginHasData()){var t=e.querySelector(".".concat(this.CSS.title));t&&Object.assign(this.data,{title:t.innerHTML})}return this.data}},{key:"render",value:function(){var e=l("div",this.CSS.baseClass);return this.nodes.wrapper=l("div",this.CSS.wrapper),this.pluginHasData()?this.showFileData():this.prepareUploadButton(),e.appendChild(this.nodes.wrapper),e}},{key:"prepareUploadButton",value:function(){this.nodes.button=l("div",[this.CSS.apiButton,this.CSS.button]),this.nodes.button.innerHTML="".concat(f," ").concat(this.config.buttonText),this.readOnly||this.nodes.button.addEventListener("click",this.enableFileUpload),this.nodes.wrapper.appendChild(this.nodes.button)}},{key:"appendCallback",value:function(){this.nodes.button.click()}},{key:"pluginHasData",value:function(){return""!==this.data.title||Object.values(this.data.file).some((function(e){return void 0!==e}))}},{key:"enableFileUpload",value:function(){var e=this;this.uploader.uploadSelectedFile({onPreview:function(){e.nodes.wrapper.classList.add(e.CSS.wrapperLoading,e.CSS.loader)}})}},{key:"onUpload",value:function(e){var t,n,r,o=e;try{o.success&&void 0!==o.file&&!u(o.file)?(this.data={file:o.file,title:o.file.title||""},this.nodes.button.remove(),this.showFileData(),t=this.nodes.title,n=document.createRange(),r=window.getSelection(),n.selectNodeContents(t),n.collapse(!1),r.removeAllRanges(),r.addRange(n),this.removeLoader()):this.uploadingFailed(this.config.errorMessage)}catch(e){console.error("Attaches tool error:",e),this.uploadingFailed(this.config.errorMessage)}this.api.blocks.getBlockByIndex(this.api.blocks.getCurrentBlockIndex()).dispatchChange()}},{key:"appendFileIcon",value:function(e){var t,n=e.extension||(void 0===(t=e.name)?"":t.split(".").pop()),r=this.EXTENSIONS[n],o=l("div",this.CSS.fileIcon),i=l("div",this.CSS.fileIconBackground);if(r&&(i.style.backgroundColor=r),o.appendChild(i),n){var a=n;n.length>4&&(a=n.substring(0,4)+"…");var s=l("div",this.CSS.fileIconLabel,{textContent:a,title:n});r&&(s.style.backgroundColor=r),o.appendChild(s)}else i.innerHTML=f;this.nodes.wrapper.appendChild(o)}},{key:"removeLoader",value:function(){var e=this;setTimeout((function(){return e.nodes.wrapper.classList.remove(e.CSS.wrapperLoading,e.CSS.loader)}),500)}},{key:"showFileData",value:function(){this.nodes.wrapper.classList.add(this.CSS.wrapperWithFile);var e=this.data,t=e.file,n=e.title;this.appendFileIcon(t);var r=l("div",this.CSS.fileInfo);if(this.nodes.title=l("div",this.CSS.title,{contentEditable:!1===this.readOnly}),this.nodes.title.dataset.placeholder=this.api.i18n.t("File title"),this.nodes.title.textContent=n||"",r.appendChild(this.nodes.title),t.size){var o,i,a=l("div",this.CSS.size);Math.log10(+t.size)>=6?(o="MiB",i=t.size/Math.pow(2,20)):(o="KiB",i=t.size/Math.pow(2,10)),a.textContent=i.toFixed(1),a.setAttribute("data-size",o),r.appendChild(a)}if(this.nodes.wrapper.appendChild(r),void 0!==t.url){var s=l("a",this.CSS.downloadButton,{innerHTML:'<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" fill="none" viewBox="0 0 24 24"><path stroke="currentColor" stroke-linecap="round" stroke-width="2" d="M7 10L11.8586 14.8586C11.9367 14.9367 12.0633 14.9367 12.1414 14.8586L17 10"/></svg>',href:t.url,target:"_blank",rel:"nofollow noindex noreferrer"});this.nodes.wrapper.appendChild(s)}}},{key:"uploadingFailed",value:function(e){this.api.notifier.show({message:e,style:"error"}),this.removeLoader()}},{key:"data",get:function(){return this._data},set:function(e){var t=e.file,n=e.title;this._data={file:t,title:n}}}])&&d(t.prototype,n),r&&d(t,r),e}()}]).default}));
34,797
Python
.tac
7
4,968.857143
34,512
0.689568
Nigel2392/wagtail_editorjs
8
0
3
GPL-2.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,302
entity-builder.py
pdxlocations_meshtastic-ha-entity-builder/entity-builder.py
from meshtastic.serial_interface import SerialInterface from meshtastic.tcp_interface import TCPInterface from meshtastic.ble_interface import BLEInterface import argparse import sys ### Add arguments to parse parser = argparse.ArgumentParser( add_help=False, epilog="If no connection arguments are specified, we attempt a serial connection and then a TCP connection to localhost.") helpGroup = parser.add_argument_group("Help") helpGroup.add_argument("-h", "--help", action="help", help="Show this help message and exit.") connOuter = parser.add_argument_group('Connection', 'Optional arguments to specify a device to connect to and how.') conn = connOuter.add_mutually_exclusive_group() conn.add_argument( "--port", help="The port to connect to via serial, e.g. `/dev/ttyUSB0`.", default=None, ) conn.add_argument( "--host", help="The hostname or IP address to connect to using TCP.", default=None, ) conn.add_argument( "--ble", help="The BLE device MAC address or name to connect to.", default=None, ) mqtt = parser.add_argument_group("MQTT", "Arguments to specify the gateway node and root MQTT topics") mqtt.add_argument( "--gateway", help="The ID of the MQTT gateway node, e.g. !12345678. If not provided, will use the ID of the locally connected node.", default=None, ) # it would be nice to have this request settings if the gateway isn't the remote node mqtt.add_argument( "--root-topic", help="The root topic to use in MQTT for the generated files. If not provided, will attempt to get the root path from the local node and use all channels. Wildcard: `+`. Example: to include all channels with the root topic `msh/`, use `msh/2/json/+`. To include just LongFast, use `msh/2/json/LongFast`", default=None, ) includes = parser.add_argument_group("Includes", "Arguments to specify what sensors to generate for each node.") includes.add_argument( "--no-messages", help="Don't include a sensor for messages from the node.", action='store_true', ) includes.add_argument( "--fahrenheit", help="Use Fahrenheit instead of Celsius.", action='store_true', ) includes.add_argument( "--no-temperature", help="Don't include a temperature sensor.", action='store_true', ) includes.add_argument( "--no-humidity", help="Don't include a humidity sensor.", action='store_true', ) includes.add_argument( "--no-pressure", help="Don't include a barometric pressure sensor.", action='store_true', ) includes.add_argument( "--gas-resistance", help="Include a gas resistance sensor.", action='store_true', ) includes.add_argument( "--power-ch1", help="Include current & voltage channel 1 sensor.", action='store_true', ) includes.add_argument( "--power-ch2", help="Include current & voltage channel 2 sensor.", action='store_true', ) includes.add_argument( "--power-ch3", help="Include current & voltage channel 3 sensor.", action='store_true', ) parser.add_argument( "--nodes", help="Only generate sensors for these nodes. If not provided, all nodes in the NodeDB will be included. Example: `\"!XXXXXXXX\", \"!YYYYYYYY\"`.", nargs='*', action='store', ) args = parser.parse_args() ### Create an interface if args.ble: iface = BLEInterface(args.ble) elif args.host: iface = TCPInterface(args.host) else: try: iface = SerialInterface(args.port) except PermissionError as ex: print("You probably need to add yourself to the `dialout` group to use a serial connection.") if iface.devPath is None: iface = TCPInterface("localhost") if args.gateway: gateway_id = args.gateway else: gateway_id = f"!{iface.localNode.nodeNum:08x}" if args.root_topic: root_topic = args.root_topic else: mqttRoot = iface.localNode.moduleConfig.mqtt.root if mqttRoot != "": root_topic = mqttRoot + '/2/json/+' print(f"Using a gateway ID of {gateway_id} and a root topic of {root_topic}") node_list = [] use_node_list = False # only use nodes from the node list. If False, create for all nodes in db. if args.nodes and len(args.nodes) > 0: use_node_list = True node_list = args.nodes print(f"Using node list: {node_list}") fahrenheit = args.fahrenheit include_messages = not args.no_messages include_temperature = not args.no_temperature include_humidity = not args.no_humidity include_pressure = not args.no_pressure include_gas_resistance = args.gas_resistance include_power_ch1 = args.power_ch1 include_power_ch2 = args.power_ch2 include_power_ch3 = args.power_ch3 # initialize the file with the 'sensor' header with open("mqtt.yaml", "w", encoding="utf-8") as file: file.write('sensor:\n') # initialize the file as empty so we have something to append to with open("automations.yaml", "w", encoding="utf-8") as file: file.write('') for node_num, node in iface.nodes.items(): node_short_name = f"{node['user']['shortName']}" node_long_name = f"{node['user']['longName']}" node_id = f"{node['user']['id']}" node_num = f"{node['num']}" hardware_model = f"{node['user']['hwModel']}" automation_config = f""" - id: 'update_location_{node_num}' alias: update {node_id} location trigger: - platform: mqtt topic: "{root_topic}/{gateway_id}" payload: 'on' value_template: >- {{%- if value_json.from == {node_num} and value_json.payload.latitude_i is defined and value_json.payload.longitude_i is defined -%}} on {{%- endif -%}} condition: [] action: - service: device_tracker.see metadata: {{}} data: dev_id: "{int(node_num):08x}" gps: - '{{{{ (trigger.payload | from_json).payload.latitude_i | int * 1e-7 }}}}' - '{{{{ (trigger.payload | from_json).payload.longitude_i | int * 1e-7 }}}}' mode: single """ config = f''' - name: "{node_short_name} Last Heard" unique_id: "{int(node_num):08x}_last_heard" state_topic: "{root_topic}/{gateway_id}" state_class: measurement device_class: timestamp value_template: >- {{% if value_json.from == {node_num} and value_json.timestamp is defined %}} {{{{ as_datetime(value_json.timestamp) }}}} {{% else %}} {{{{ this.state }}}} {{% endif %}} device: name: "{node_long_name}" model: "{hardware_model}" identifiers: - "meshtastic_{node_num}" - name: "{node_short_name} SNR" unique_id: "{int(node_num):08x}_snr" state_topic: "{root_topic}/{gateway_id}" state_class: measurement device_class: signal_strength value_template: >- {{% if value_json.from == {node_num} and value_json.snr is defined %}} {{{{ value_json.snr}}}} {{% else %}} {{{{ this.state }}}} {{% endif %}} icon: "mdi:signal" device: identifiers: "meshtastic_{node_num}" - name: "{node_short_name} RSSI" unique_id: "{int(node_num):08x}_rssi" state_topic: "{root_topic}/{gateway_id}" state_class: measurement device_class: signal_strength value_template: >- {{% if value_json.from == {node_num} and value_json.rssi is defined %}} {{{{ value_json.rssi | int}}}} {{% else %}} {{{{ this.state }}}} {{% endif %}} icon: "mdi:signal-variant" device: identifiers: "meshtastic_{node_num}" - name: "{node_short_name} Hops Away" unique_id: "{int(node_num):08x}_hops_away" state_topic: "{root_topic}/{gateway_id}" state_class: measurement device_class: distance value_template: >- {{% if value_json.from == {node_num} and value_json.hops_away is defined %}} {{{{ value_json.hops_away | int }}}} {{% else %}} {{{{ this.state }}}} {{% endif %}} icon: "mdi:rabbit" device: identifiers: "meshtastic_{node_num}" - name: "{node_short_name} Battery Voltage" unique_id: "{int(node_num):08x}_battery_voltage" state_topic: "{root_topic}/{gateway_id}" state_class: measurement value_template: >- {{% if value_json.from == {node_num} and value_json.payload.voltage is defined and value_json.payload.temperature is not defined %}} {{{{ (value_json.payload.voltage | float) | round(2) }}}} {{% else %}} {{{{ this.state }}}} {{% endif %}} unit_of_measurement: "V" icon: "mdi:lightning-bolt" device: identifiers: "meshtastic_{node_num}" - name: "{node_short_name} Battery Percent" unique_id: "{int(node_num):08x}_battery_percent" state_topic: "{root_topic}/{gateway_id}" state_class: measurement value_template: >- {{% if value_json.from == {node_num} and value_json.payload.battery_level is defined %}} {{{{ (value_json.payload.battery_level | float) | round(2) }}}} {{% else %}} {{{{ this.state }}}} {{% endif %}} device_class: battery unit_of_measurement: "%" icon: "mdi:battery-high" device: identifiers: "meshtastic_{node_num}" - name: "{node_short_name} Uptime" unique_id: "{int(node_num):08x}_uptime" state_topic: "{root_topic}/{gateway_id}" state_class: measurement device_class: duration value_template: >- {{% if value_json.from == {node_num} and value_json.payload.uptime_seconds is defined %}} {{{{ value_json.payload.uptime_seconds | int }}}} {{% else %}} {{{{ this.state }}}} {{% endif %}} unit_of_measurement: "s" device: identifiers: "meshtastic_{node_num}" - name: "{node_short_name} ChUtil" unique_id: "{int(node_num):08x}_chutil" state_topic: "{root_topic}/{gateway_id}" state_class: measurement value_template: >- {{% if value_json.from == {node_num} and value_json.payload.channel_utilization is defined %}} {{{{ (value_json.payload.channel_utilization | float) | round(2) }}}} {{% else %}} {{{{ this.state }}}} {{% endif %}} unit_of_measurement: "%" icon: "mdi:signal-distance-variant" device: identifiers: "meshtastic_{node_num}" - name: "{node_short_name} AirUtilTX" unique_id: "{int(node_num):08x}_airutiltx" state_topic: "{root_topic}/{gateway_id}" state_class: measurement value_template: >- {{% if value_json.from == {node_num} and value_json.payload.air_util_tx is defined %}} {{{{ (value_json.payload.air_util_tx | float) | round(2) }}}} {{% else %}} {{{{ this.state }}}} {{% endif %}} unit_of_measurement: "%" icon: "mdi:percent-box-outline" device: identifiers: "meshtastic_{node_num}" ''' if include_messages: config += f''' - name: "{node_short_name} Messages" unique_id: "{int(node_num):08x}_messages" state_topic: "{root_topic}/{gateway_id}" value_template: >- {{% if value_json.from == {node_num} and value_json.payload.text is defined %}} {{{{ value_json.payload.text }}}} {{% else %}} {{{{ this.state }}}} {{% endif %}} device: identifiers: "meshtastic_{node_num}" icon: "mdi:chat" ''' if include_temperature: if fahrenheit: temp_mod = "* 1.8) +32" temp_unit = "F" else: temp_mod = ")" temp_unit = "C" config += f''' - name: "{node_short_name} Temperature" unique_id: "{int(node_num):08x}_temperature" state_topic: "{root_topic}/{gateway_id}" state_class: measurement value_template: >- {{% if value_json.from == {node_num} and value_json.payload.temperature is defined %}} {{{{ (((value_json.payload.temperature | float) {temp_mod}) | round(2) }}}} {{% else %}} {{{{ this.state }}}} {{% endif %}} unit_of_measurement: "{temp_unit}" icon: "mdi:sun-thermometer" device: identifiers: "meshtastic_{node_num}" ''' if include_humidity: config += f''' - name: "{node_short_name} Humidity" unique_id: "{int(node_num):08x}_humidity" state_topic: "{root_topic}/{gateway_id}" state_class: measurement value_template: >- {{% if value_json.from == {node_num} and value_json.payload.relative_humidity is defined %}} {{{{ (value_json.payload.relative_humidity | float) | round(2) }}}} {{% else %}} {{{{ this.state }}}} {{% endif %}} unit_of_measurement: "%" icon: "mdi:water-percent" device: identifiers: "meshtastic_{node_num}" ''' if include_pressure: config += f''' - name: "{node_short_name} Barometric Pressure" unique_id: "{int(node_num):08x}_pressure" state_topic: "{root_topic}/{gateway_id}" state_class: measurement value_template: >- {{% if value_json.from == {node_num} and value_json.payload.barometric_pressure is defined %}} {{{{ (value_json.payload.barometric_pressure | float) | round(2) }}}} {{% else %}} {{{{ this.state }}}} {{% endif %}} unit_of_measurement: "hPa" icon: "mdi:chevron-double-down" device: identifiers: "meshtastic_{node_num}" ''' if include_gas_resistance: config += f''' - name: "{node_short_name} Gas Resistance" unique_id: "{int(node_num):08x}_gas_resistance" state_topic: "{root_topic}/{gateway_id}" state_class: measurement value_template: >- {{% if value_json.from == {node_num} and value_json.payload.gas_resistance is defined %}} {{{{ (value_json.payload.gas_resistance | float) | round(2) }}}} {{% else %}} {{{{ this.state }}}} {{% endif %}} unit_of_measurement: "MOhms" icon: "mdi:dots-hexagon" device: identifiers: "meshtastic_{node_num}" ''' if include_power_ch1: config += f''' # {node_long_name} - name: "{node_short_name} Voltage Sensor Ch1" unique_id: "{int(node_num):08x}_voltage_sensor_ch1" state_topic: "{root_topic}/{gateway_id}" state_class: measurement value_template: >- {{% if value_json.from == {node_num} and value_json.payload.voltage_ch1 is defined %}} {{{{ (value_json.payload.voltage_ch1 | float) | round(2) }}}} {{% else %}} {{{{ this.state }}}} {{% endif %}} unit_of_measurement: "V" icon: "mdi:lightning-bolt" device: identifiers: "meshtastic_{node_num}" - name: "{node_short_name} Current Sensor Ch1" unique_id: "{int(node_num):08x}_current_sensor_ch1" state_topic: "{root_topic}/{gateway_id}" state_class: measurement value_template: >- {{% if value_json.from == {node_num} and value_json.payload.current_ch1 is defined %}} {{{{ (value_json.payload.current_ch1 | float) | round(2) }}}} {{% else %}} {{{{ this.state }}}} {{% endif %}} unit_of_measurement: "mA" icon: "mdi:waves" device: identifiers: "meshtastic_{node_num}" ''' if include_power_ch2: config += f''' - name: "{node_short_name} Voltage Sensor Ch2" unique_id: "{int(node_num):08x}_voltage_sensor_ch2" state_topic: "{root_topic}/{gateway_id}" state_class: measurement value_template: >- {{% if value_json.from == {node_num} and value_json.payload.voltage_ch2 is defined %}} {{{{ (value_json.payload.voltage_ch2 | float) | round(2) }}}} {{% else %}} {{{{ this.state }}}} {{% endif %}} unit_of_measurement: "V" icon: "mdi:lightning-bolt" device: identifiers: "meshtastic_{node_num}" - name: "{node_short_name} Current Sensor Ch2" unique_id: "{int(node_num):08x}_current_sensor_ch2" state_topic: "{root_topic}/{gateway_id}" state_class: measurement value_template: >- {{% if value_json.from == {node_num} and value_json.payload.current_ch2 is defined %}} {{{{ (value_json.payload.current_ch2 | float) | round(2) }}}} {{% else %}} {{{{ this.state }}}} {{% endif %}} unit_of_measurement: "mA" icon: "mdi:waves" device: identifiers: "meshtastic_{node_num}" ''' if include_power_ch3: config += f''' - name: "{node_short_name} Voltage Sensor Ch3" unique_id: "{int(node_num):08x}_voltage_sensor_ch3" state_topic: "{root_topic}/{gateway_id}" state_class: measurement value_template: >- {{% if value_json.from == {node_num} and value_json.payload.voltage_ch3 is defined %}} {{{{ (value_json.payload.voltage_ch3 | float) | round(2) }}}} {{% else %}} {{{{ this.state }}}} {{% endif %}} unit_of_measurement: "V" icon: "mdi:lightning-bolt" device: identifiers: "meshtastic_{node_num}" - name: "{node_short_name} Current Sensor Ch3" unique_id: "{int(node_num):08x}_current_sensor_ch3" state_topic: "{root_topic}/{gateway_id}" state_class: measurement value_template: >- {{% if value_json.from == {node_num} and value_json.payload.current_ch3 is defined %}} {{{{ (value_json.payload.current_ch3 | float) | round(2) }}}} {{% else %}} {{{{ this.state }}}} {{% endif %}} unit_of_measurement: "mA" icon: "mdi:waves" device: identifiers: "meshtastic_{node_num}" ''' if node_id in node_list or (not use_node_list): with open("mqtt.yaml", "a", encoding="utf-8") as file: file.write(config + '\n') with open("automations.yaml", "a", encoding="utf-8") as file: file.write(automation_config) iface.close()
17,607
Python
.py
490
30.34898
307
0.618082
pdxlocations/meshtastic-ha-entity-builder
8
3
1
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,303
deleteAllRedirects.py
nightscout_trio-docs/utils/deleteAllRedirects.py
import requests import json import time import sys import re PROJECT = 'androidaps' URL = 'https://readthedocs.org/api/v3/projects/' + PROJECT + '/redirects/' TOKEN = len(sys.argv) == 2 and sys.argv[1] HEADERS = {'Authorization': f'token {TOKEN}'} def delItem (url) : delResponse = requests.delete(url, headers=HEADERS) if delResponse.status_code == 204 : print('removed ' + url) elif delResponse.status_code == 429: detail = delResponse.json()['detail'] wait = int(re.search(r'\d+', detail).group()) print('Throttled, wait for ' + str(wait + 1) + ' seconds') time.sleep(wait + 1) delItem(url) else : results = delResponse.json() print(results) def deleteList() : response = requests.get(URL, headers=HEADERS) listResult = response.json() if response.status_code == 200: redirects = listResult['results'] for redirect in redirects : url = redirect['_links']['_self'] delItem(url) return listResult['count'] elif response.status_code == 429: detail = response.json()['detail'] wait = int(re.search(r'\d+', detail).group()) print('Throttled, wait for ' + str(wait + 1) + ' seconds') time.sleep(wait + 1) deleteList() else : print('ERROR code:', response.status_code, listResult) return 0 def main() : while True: count = deleteList() print('Removed, still counting: ' + str(count)) if count == 0 : break print('done') if not TOKEN : print('Please provide a API token as parameter') print('useage: $ python deleteAllRedirects.py <apikey>') else : main()
1,776
Python
.py
52
26.903846
75
0.596963
nightscout/trio-docs
8
11
6
AGPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,304
importRedirects.py
nightscout_trio-docs/utils/importRedirects.py
import requests import json import time import sys import re PROJECT = 'androidaps' URL = 'https://readthedocs.org/api/v3/projects/' + PROJECT + '/redirects/' TOKEN = len(sys.argv) == 2 and sys.argv[1] HEADERS = {'Authorization': f'token {TOKEN}'} FILE = 'redirect.json' def create(redirect, index) : response = requests.post( URL, json=redirect, headers=HEADERS, ) if response.status_code == 201 : print ('create redirect (' + str(index) + ') ' + redirect['from_url']) elif response.status_code == 429: detail = response.json()['detail'] wait = int(re.search(r'\d+', detail).group()) print('Throttled, wait for ' + str(wait + 1) + ' seconds ') time.sleep(wait + 1) create(redirect, index) else : print(response.status_code , response.json()) def main(): try: with open(FILE) as json_file: redirects = json.load(json_file) print('Creating ' + str(len(redirects)) + ' redirects ') for index, redirect in enumerate(redirects): create(redirect, index) print ('done') except IOError: print('File ' + FILE + ' is not accessible, please make sure you run the "generateRedirect" script') if not TOKEN : print('Please provide a API token as parameter') print('useage: $ python importRedirects.py <apikey>') else : main()
1,473
Python
.py
41
28.585366
109
0.600563
nightscout/trio-docs
8
11
6
AGPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,305
generateRedirects.py
nightscout_trio-docs/utils/generateRedirects.py
import os import json FILE = 'redirect.json' dir_path = os.path.dirname(os.path.realpath(__file__)) language_path = os.path.join(dir_path, '..\\', 'docs', 'CROWDIN') + '\\' print('Generate redirect for al .md and .rst files in path ' + language_path) redirects = [] class Object: def toJSON(self): return json.dumps(self, default=lambda o: o.__dict__, sort_keys=True, indent=4) for path, subdirs, files in os.walk(language_path): for filename in files: if filename.endswith(('.md', '.rst')): file = os.path.splitext(os.path.join(path, filename))[0] + '.html' relative_file = file[len(language_path):] original = '\\' + os.path.join('en', 'latest', 'CROWDIN', relative_file) to = '\\' + os.path.join(relative_file[:2], 'latest', relative_file[3:]) r = Object() r.from_url = original.replace('\\', '/') r.to_url = to.replace('\\', '/') r.type = 'exact' redirects.append(r) def obj_dict(obj): return obj.__dict__ json_object = json.dumps(redirects, indent=4, default=obj_dict) with open(FILE, 'w') as outfile: outfile.write(json_object) print('Done, ' + str(len(redirects)) + ' results are stored in ' + FILE)
1,309
Python
.py
29
37.172414
85
0.586371
nightscout/trio-docs
8
11
6
AGPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,306
shared.conf.py
nightscout_trio-docs/docs/shared.conf.py
# -*- coding: utf-8 -*- # # Trio documentation build configuration file # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) #from recommonmark.parser import CommonMarkParser #from recommonmark.transform import AutoStructify import alabaster # -- General configuration ------------------------------------------------ # RTD on_rtd = os.environ.get('READTHEDOCS', None) == 'True' # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.ifconfig', 'sphinx.ext.autodoc', 'sphinx.ext.todo', 'myst_parser', 'sphinx_copybutton', 'sphinx_new_tab_link', # 'alabaster', ] myst_enable_extensions = [ "colon_fence", ] myst_heading_anchors = 3 # Add any paths that contain templates here, relative to this directory. templates_path = ['../../_templates'] # path relative to languages conf.py #source_parsers = { # '.md': CommonMarkParser, #} # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: #source_suffix = ['.md', '.rst', ] # source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Trio' copyright = u'Trio Community' author = u'Trio Community' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = u'0.0.1' # The full version, including alpha/beta/rc tags. release = u'0.0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' html_theme_options = { "collapse_navigation" : False, "navigation_with_keys": True } # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # alabaster # theme_github_user = '' # theme_github_repo = '' #""" #html_theme = 'default' #html_theme_options = { # 'display_github': True, # 'github_user': 'nightscout', # 'github_repo': 'trio-docs', # 'navigation_depth': 6, #} import sphinx_rtd_theme html_theme_path = [sphinx_rtd_theme.get_html_theme_path( )] #""" # Add any paths that contain custom themes here, relative to this directory. html_theme_path = [] # html_theme_path = [alabaster.get_path( )] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None html_logo = '../trio-logo.png' # path relative to languages conf.py # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None html_favicon = '../favicon.ico' # path relative to languages conf.py # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". #html_static_path = ['_static'] html_static_path = ['../../_static'] # path relative to languages conf.py # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # for alabaster # """ #html_sidebars = { } #""" #html_sidebars = { # '**': [ # 'about.html', # 'navigation.html', # 'relations.html', # 'searchbox.html', # 'donate.html', # ] #} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' #html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value #html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. #html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'trio-docs' # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'Trio', u'Trio Documentation', [author], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) #texinfo_documents = [ # (master_doc, 'AndroidAPS', u'AndroidAPS Documentation', # author, 'AndroidAPS', 'One line description of project.', # 'Miscellaneous'), #] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # -- Options for Epub output ---------------------------------------------- # Bibliographic Dublin Core info. epub_title = project epub_author = author epub_publisher = author epub_copyright = copyright # The basename for the epub file. It defaults to the project name. #epub_basename = project # The HTML theme for the epub output. Since the default themes are not # optimized for small screen space, using the same theme for HTML and epub # output is usually not wise. This defaults to 'epub', a theme designed to save # visual space. #epub_theme = 'epub' # The language of the text. It defaults to the language option # or 'en' if the language is not set. #epub_language = '' # The scheme of the identifier. Typical schemes are ISBN or URL. #epub_scheme = '' # The unique identifier of the text. This can be a ISBN number # or the project homepage. #epub_identifier = '' # A unique identification for the text. #epub_uid = '' # A tuple containing the cover image and cover page html template filenames. #epub_cover = () # A sequence of (type, uri, title) tuples for the guide element of content.opf. #epub_guide = () # HTML files that should be inserted before the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_pre_files = [] # HTML files that should be inserted after the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_post_files = [] # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # The depth of the table of contents in toc.ncx. #epub_tocdepth = 3 # Allow duplicate toc entries. #epub_tocdup = True # Choose between 'default' and 'includehidden'. #epub_tocscope = 'default' # Fix unsupported image types using the Pillow. #epub_fix_images = False # Scale large images. #epub_max_image_width = 0 # How to display URL addresses: 'footnote', 'no', or 'inline'. #epub_show_urls = 'inline' # If false, no index is generated. #epub_use_index = True #github_doc_root = 'https://github.com/openaps/AndroidAPSdocs/tree/master/' #hosted_root = 'http://localhost:8000/' #on_rtd = os.environ.get('READTHEDOCS', None) == 'True' #if on_rtd: # rtd_version = os.environ.get('READTHEDOCS_VERSION') # rtd_lang = os.environ.get('READTHEDOCS_LANGUAGE') # rtd_sub = os.environ.get('SUB_DOMAIN') or 'AndroidAPS' # # hosted_root = 'https://%s.readthedocs.org/%s/%s/' % (rtd_sub, rtd_lang, rtd_version) # #def setup(app): # app.add_config_value('recommonmark_config', { # # 'url_resolver': lambda url: github_doc_root + url, # 'url_resolver': lambda url: hosted_root + url + '.html', # 'auto_toc_tree_section': 'Summary', # 'enable_auto_doc_ref': True, # 'enable_eval_rst': True, # }, True) # #app.add_transform(AutoStructify) # Allows preventing copy button from being added to code blocks like so: # ```{code-block} # :class: no-copybutton # the code you want to display goes here # ``` copybutton_selector = "div:not(.no-copybutton) > div.highlight > pre"
12,422
Python
.py
307
39.009772
87
0.71804
nightscout/trio-docs
8
11
6
AGPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,307
conf.py
nightscout_trio-docs/docs/EN/conf.py
import os exec (open("../shared.conf.py").read()) # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # html_logo = '../drawing.png' # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # html_favicon = '../favicon.ico' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['../_static'] # A list of paths that contain extra templates (or templates that overwrite builtin/theme-specific templates). Relative paths # are taken as relative to the configuration directory. templates_path = ['../_templates']
912
Python
.py
18
49.388889
125
0.748031
nightscout/trio-docs
8
11
6
AGPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,308
nfc_helper.py
CardToolz_libnfc_mitm_cffi/nfc_helper.py
#!/usr/bin/python3 import ctypes import binascii from hexdump import * from typing import List, Callable, Generic, TypeVar from enum import Enum from dataclasses import dataclass import dataclasses import json import logging logger = logging.getLogger(__name__) hex2str = lambda x: bytearray.fromhex(x.replace(" ", "")) str2hex = lambda x: x.hex() int32tole = lambda x: x.to_bytes(4, byteorder='little') c_uint8 = ctypes.c_uint8 class ISO14443_PCB_bits(ctypes.LittleEndianStructure): _fields_ = [ ("b1", c_uint8, 1), ("b2", c_uint8, 1), ("b3", c_uint8, 1), ("b4", c_uint8, 1), ("b5", c_uint8, 1), ("b6", c_uint8, 1), ("b7_b8", c_uint8, 2), ] class ISO14443_PCB_IBlock(ctypes.LittleEndianStructure): _fields_ = [ ("block_num", c_uint8, 1), ("b2_const_1", c_uint8, 1), ("hasNAD", c_uint8, 1), ("hasCID", c_uint8, 1), ("chaining", c_uint8, 1), ("b6_const_0", c_uint8, 1), ("blockType", c_uint8, 2), ] class ISO14443_PCB_RBlock(ctypes.LittleEndianStructure): _fields_ = [ ("block_num", c_uint8, 1), ("b2_const_1", c_uint8, 1), ("b3_const_0", c_uint8, 1), ("hasCID", c_uint8, 1), ("ACK_NAK", c_uint8, 1), ("b6_const_1", c_uint8, 1), ("b7_b8_blockType", c_uint8, 2), ] class ISO14443_PCB_SBlock(ctypes.LittleEndianStructure): _fields_ = [ ("b1_const_0", c_uint8, 1), ("b2_const_1", c_uint8, 1), ("b3_const_0", c_uint8, 1), ("b4_hasCID", c_uint8, 1), ("DESELECT_WTX", c_uint8, 2), ("b7_b8_blockType", c_uint8, 2), ] class ISO14443_PCB(ctypes.Union): _fields_ = [("bits", ISO14443_PCB_bits), ("iblock", ISO14443_PCB_IBlock), ("rblock", ISO14443_PCB_RBlock), ("sblock", ISO14443_PCB_SBlock), ("asbyte", c_uint8)] def cstruct_pprint(s): return "{}: {\t{\t\t{}}}".format(s.__class__.__name__, ", ".join(["{}: {}".format(field[0], getattr(s, field[0])) for field in s._fields_])) def print_target(target): ret = '\n' ret += ("\tUID \t: {}\n".format(binascii.hexlify(bytearray(target.nti.nai.abtUid)[:target.nti.nai.szUidLen]))) ret += ("\tATQA\t: {}\n".format(binascii.hexlify(bytearray(target.nti.nai.abtAtqa)))) ret += ("\tSAK \t: {}\n".format(binascii.hexlify(bytearray(target.nti.nai.btSak)[:1]))) ret += ("\tATS \t: {}\n".format(binascii.hexlify(bytearray(target.nti.nai.abtAts)[:target.nti.nai.szAtsLen]))) return ret def print_frame(frame): # frame_data = frame['data'].encode('utf-8') # frame_len = len(frame_data) # result = frame['result'] if frame.data == None: print('frame_data is None') frame_data = bytearray() frame_data = frame.data frame_len = len(frame_data) result = frame.result time = frame.time direction = frame.direction index = frame.index print('{} - {} ({}):\tlen: {} \tret: {}'.format(index, direction, time, frame_len, result)) if frame_len != 0: if not frame.easy_framing: PCB = ISO14443_PCB(asbyte=frame_data[0]) if PCB.bits.b7_b8 == 0b00: print('\tI-Block') print('\t\tPCB: block_num: {}\n\t\tb2_const_1: {}\n\t\thasNAD: {}\n\t\thasCID: {}\n\t\tchaining: {}\n\t\tb6_const_0: {}\n\t\tblockType: {}'.format( PCB.iblock.block_num, PCB.iblock.b2_const_1, PCB.iblock.hasNAD, PCB.iblock.hasCID, PCB.iblock.chaining, PCB.iblock.b6_const_0, PCB.iblock.blockType )) elif PCB.bits.b7_b8 == 0b01: print('\tRFU') print('\t\tPCB: b1: {}\n\t\tb2: {}\n\t\tb3: {}\n\t\tb4: {}\n\t\tb5: {}\n\t\tb6: {}\n\t\tb7_b8: {}'.format( PCB.bits.b1, PCB.bits.b2, PCB.bits.b3, PCB.bits.b4, PCB.bits.b5, PCB.bits.b6, PCB.bits.b7_b8 )) elif PCB.bits.b7_b8 == 0b10: print('\tR-Block') print('\t\tPCB: block_num: {}\n\t\tb2_const_1: {}\n\t\tb3_const_0: {}\n\t\thasCID: {}\n\t\tACK_NAK: {}\n\t\tb6_const_1: {}\n\t\tb7_b8_blockType: {}'.format( PCB.rblock.block_num, PCB.rblock.b2_const_1, PCB.rblock.b3_const_0, PCB.rblock.hasCID, PCB.rblock.ACK_NAK, PCB.rblock.b6_const_1, PCB.rblock.b7_b8_blockType )) elif PCB.bits.b7_b8 == 0b11: print('\tS-Block') print('\t\tPCB: b1_const_0: {}\n\t\tb2_const_1: {}\n\t\tb3_const_0: {}\n\t\tb4_hasCID: {}\n\t\tDESELECT_WTX: {}\n\t\tb7_b8_blockType: {}'.format( PCB.sblock.b1_const_0, PCB.sblock.b2_const_1, PCB.sblock.b3_const_0, PCB.sblock.b4_hasCID, PCB.sblock.DESELECT_WTX, PCB.sblock.b7_b8_blockType )) print(hexdump(frame_data, result='return')) # print ("\tPCB \t:", binascii.hexlify(bytearray(frame[:1]))) # print ("\tCID \t:", binascii.hexlify(bytearray(frame[1:2]))) # print ("\tNAD \t:", binascii.hexlify(bytearray(frame[2:3]))) # print ("\tINF \t:", binascii.hexlify(bytearray(frame[3:-2]))) # print ("\tCRC \t:", binascii.hexlify(bytearray(frame[-2:]))) # print ("\tCRC OK \t:", bool(frame[-1] == 0x00 and frame[-2] == 0x00)) def obj_dict(obj): return obj.__dict__ class BytearrayEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, bytearray) or isinstance(obj, bytes): # bytearray decode to hex string return obj.hex() return json.JSONEncoder.default(self, obj) # class BytearrayDecoder(json.JSONDecoder): class FrameDirection(str, Enum): FromReader = "FromReader" ToReader = "ToReader" FromCard = "FromCard" ToCard = "ToCard" @dataclass class Frame: index: int time : int data: bytearray result: int direction: FrameDirection easy_framing: bool = True def print_data(self): print_frame(self) # print_frame(self, 0) pass def __iter__(self): yield from{ 'index': self.index, 'time': self.time, 'data': self.data, 'result': self.result, 'direction': self.direction, 'easy_framing': self.easy_framing }.items() def __dict__(self) -> dict: return dataclasses.asdict(self) def to_json(self): d = dict(self) print(d) return json.dumps(d, cls=BytearrayEncoder) def __str__(self) -> str: return self.to_json() def __repr__(self) -> str: return self.to_json() class FrameEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, Frame): return obj.to_json() return json.JSONEncoder.default(self, obj) # def frame_from_json(self, json_str): # j = json.loads(json_str) # self.index = j['index'] # self.time = j['time'] # self.data = j['data'] # self.result = j['result'] # self.direction = j['direction'] # return self def frame_from_json(json_str): j = json.loads(json_str) index = j['index'] time = j['time'] data = bytearray.fromhex(j['data']) result = j['result'] direction = j['direction'] easy_framing = j['easy_framing'] return Frame(index, time, data, result, direction, easy_framing) class FrameList: def __init__(self, easy_framing=True): self.frame_list: List[Frame] = [] # self.easy_framing = False self.easy_framing = easy_framing pass def clear(self): self.frame_list.clear() def add_frame(self, frame): self.frame_list.append(frame) def add_frame_by_data(self, index, time, data, result, direction, easy_framing=None): if easy_framing == None: easy_framing = self.easy_framing frame = Frame(index, time, data, result, direction, easy_framing) self.add_frame(frame) def get_frame(self, index): return self.frame_list[index] def get_frame_list(self): return self.frame_list def get_frame_list_len(self): return len(self.frame_list) @dataclass class TargetData: abtUid: bytearray abtAtqa: bytearray btSak: bytearray def __iter__(self): yield from{ 'abtUid': self.abtUid, 'abtAtqa': self.abtAtqa, 'btSak': self.btSak }.items() def __dict__(self) -> dict: return dataclasses.asdict(self) def to_json(self): d = dict(self) print(d) return json.dumps(d, cls=BytearrayEncoder) def __str__(self) -> str: return self.to_json() def __repr__(self) -> str: return self.to_json() class FrameLogger(FrameList): log_fname: str = None def __init__(self, easy_framing=True, log_fname=None): FrameList.__init__(self, easy_framing) self.easy_framing = easy_framing self.log_fname = log_fname def print(self): for frame in self.frame_list: # print(type(frame)) frame.print_data() def to_json(self): return json.dumps([frame.__dict__() for frame in self.frame_list], cls=BytearrayEncoder) def to_json_pretty(self): return json.dumps([frame.__dict__() for frame in self.frame_list], cls=BytearrayEncoder, indent=4) def save_to(self, log_fname): with open(log_fname, 'w') as f: j = self.to_json_pretty() f.write(j) def save(self): if self.log_fname == None: return self.save_to(self.log_fname) def load_from(self, log_fname): self.clear() with open(log_fname, 'r') as f: j = f.read() a = json.loads(j) for frame in a: self.add_frame(frame_from_json(json.dumps(frame))) def load(self): if self.log_fname == None: return self.load_from(self.log_fname) class EmulatedInitiator(FrameLogger): def configure(self, option, value): # for backward compatibility from relay as data source pass def initiator_transceive_bytes(self, data, timeout=0): # for backward compatibility from relay as data source # print("initiator_transceive_bytes: ", data) for req in self.frame_list: if (req.direction == FrameDirection.FromReader) and (req.data[:5] == data[:5]): idx = req.index # print("Found req frame: ", idx, req) for resp in self.frame_list: if resp.direction == FrameDirection.FromCard and resp.index == idx+1: # print("Found resp frame: ", resp) return resp.data, resp.result print("Can't find frame for request: ", data) return b'', 0 def chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i:i + n]
11,427
Python
.py
278
31.44964
180
0.558167
CardToolz/libnfc_mitm_cffi
8
0
1
LGPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,309
log_parser.py
CardToolz_libnfc_mitm_cffi/log_parser.py
#!/usr/bin/python3 # from nfc_ctypes import * # from nfc_wrapper import * from nfc_helper import * # from NFCReplay import * from argparse import ArgumentParser def main(): parser = ArgumentParser() parser.add_argument("-f", "--filename", dest="log_fname", default=0, type=str, help="Input JSON log filename") fl = FrameLogger(easy_framing=True, log_fname=parser.parse_args().log_fname) print ("Log file name: %s" % fl.log_fname) fl.load() print ("Loaded %d frames" % fl.get_frame_list_len()) fl.print() if __name__ == "__main__": main()
572
Python
.py
16
32.625
114
0.67509
CardToolz/libnfc_mitm_cffi
8
0
1
LGPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,310
nfc_wrapper.py
CardToolz_libnfc_mitm_cffi/nfc_wrapper.py
#!/usr/bin/python3 # to trace shared lib calls use "ltrace --library="*libnfc*" python3 ./nfc_wrapper.py" from libnfc_ffi.libnfc_ffi import ffi, libnfc as nfc import nfc_helper from hexdump import * import time from pprint import pprint from inspect import getmembers import logging logger = logging.getLogger(__name__) # def eprint(*args, **kwargs): # print('\033[91m', *args, '\033[0m', file=sys.stderr, **kwargs) # def log(*args, **kwargs): # print(*args, **kwargs) def cdata_dict(cd): if isinstance(cd, ffi.CData): try: return ffi.string(cd) except TypeError: try: return [cdata_dict(x) for x in cd] except TypeError: return {k: cdata_dict(v) for k, v in getmembers(cd)} else: return cd def pprint_cdata(cd, print_hex=False): logger.debug('cdata info: {}, sizeof()={}'.format(cd, ffi.sizeof(cd))) logger.debug(cdata_dict(cd)) if print_hex: c = ffi.buffer(cd) logger.debug(hexdump(c, result='return')) def hexbytes(data): return " ".join(["{:02x}".format(x) for x in data]) sErrorMessages = { # /* Chip-level errors (internal errors, RF errors, etc.) */ nfc.NFC_SUCCESS: "Success", nfc.NFC_EIO: "Input / Output Error", nfc.NFC_EINVARG: "Invalid argument(s)", nfc.NFC_EDEVNOTSUPP: "Not Supported by Device", nfc.NFC_ENOTSUCHDEV: "No Such Device", nfc.NFC_EOVFLOW: "Buffer Overflow", nfc.NFC_ETIMEOUT: "Timeout", nfc.NFC_EOPABORTED: "Operation Aborted", nfc.NFC_ENOTIMPL: "Not (yet) Implemented", nfc.NFC_ETGRELEASED: "Target Released", nfc.NFC_EMFCAUTHFAIL: "Mifare Authentication Failed", nfc.NFC_ERFTRANS: "RF Transmission Error", nfc.NFC_ECHIP: "Device's Internal Chip Error", } cffi_chars_to_str = lambda c: ffi.string(c).decode("utf-8") NFC_DEVICE_LIST_SIZE = 10 NFC_DEVICE_LIST = ffi.new("nfc_connstring[{0}]".format(NFC_DEVICE_LIST_SIZE)) MAX_FRAME_LEN = 264 ctx = ffi.new("nfc_context**") nfc.nfc_init(ctx) c = ctx[0] def get_version_str(): return cffi_chars_to_str(nfc.nfc_version()) def nfc_exit(): nfc.nfc_exit(c) def list_devices(verbose=False): result = [] num_devices = nfc.nfc_list_devices(c, NFC_DEVICE_LIST, NFC_DEVICE_LIST_SIZE) for i in range(num_devices): result.append(NFC_DEVICE_LIST[i]) if verbose: print ('libNFC devices ({}):'.format(num_devices)) for i in range(num_devices): dev = nfc.nfc_open(c, result[i]) devname = cffi_chars_to_str(nfc.nfc_device_get_name(dev)) print('\tNo: {}\t\t{}'.format(i, devname)) # nfc.nfc_close(dev) return result class NfcDevice(object): def __init__(self, devdesc=None, verbosity=0, modtype=nfc.NMT_ISO14443A, baudrate=nfc.NBR_106, timeout=5000): logger.debug("NfcDevice init") self._device = nfc.nfc_open(c, devdesc) self._device_name = cffi_chars_to_str(nfc.nfc_device_get_name(self._device)) self._txbytes = ffi.new("uint8_t[{}]".format(MAX_FRAME_LEN)) self._rxbytes = ffi.new("uint8_t[{}]".format(MAX_FRAME_LEN)) self.verbosity = verbosity self.nm = ffi.new("nfc_modulation*") self.nm.nmt = modtype self.nm.nbr = baudrate self.timeout = timeout self.last_err = nfc.NFC_SUCCESS # time.sleep(0.5) # 50ms removes error "libnfc.driver.pn532_spi Unable to wait for SPI data. (RX)" def get_last_err(self): logger.debug("get_lasst_err: {}, {}".format(self.last_err, sErrorMessages[self.last_err])) return self.last_err def set_modulation(self, modtype, baudrate): logger.debug("set_modulation") self.nm.nmt = modtype self.nm.nbr = baudrate def set_property_bool(self, option, value: bool): logger.debug("set_property_bool") """Configures the NFC device options""" ret = nfc.nfc_device_set_property_bool(self._device, option, value) self.last_err = ret if ret < nfc.NFC_SUCCESS: logger.warning("set_property_bool() setting option {0} to {1}".format(option, value)) return ret def set_property_int(self, option, value: int): logger.debug("set_property_int") """Configures the NFC device options""" ret = nfc.nfc_device_set_property_int(self._device, option, value) self.last_err = ret if ret < nfc.NFC_SUCCESS: logger.warning("set_property_int() setting option {0} to {1}".format(option, value)) return ret class NfcTarget(NfcDevice): def __init__(self, devdesc, targettype=None, timeout=5000, verbosity=0): super().__init__(devdesc, verbosity) ret = self.init(targettype, timeout) logger.debug("Target dev name: {}".format(self._device_name)) self.last_err = ret def init(self, targettype=None, timeout=0): logger.debug("NfcTarget init") if targettype==None: targettype = self.prepare_emulated_target() ret = nfc.nfc_target_init(self._device, targettype, self._rxbytes, MAX_FRAME_LEN, timeout) self.last_err = ret if ret < nfc.NFC_SUCCESS: logger.warning("init() error: {}, {}".format(ret, sErrorMessages[ret])) self._nt = targettype return ret def get_target(self): return self._nt def prepare_emulated_target(self): logger.debug("prepare_emulated_target") abtAtqa = [0x03, 0x04] abtUid = [0x08, 0xba, 0xdf, 0x0d] # abtUid[0] = 0x08 Needed for PN532 emulation abtAts = [0x75, 0x33, 0x92, 0x03] # https://de.wikipedia.org/wiki/Answer_to_Select # ATS = (05) 75 33 92 03 # (TL) T0 TA TB TC # | | | +-- CID supported, NAD supported # | | +----- FWI=9 SFGI=2 => FWT=154ms, SFGT=1.21ms # | +-------- DR=2,4 DS=2,4 => supports 106, 212 & 424bps in both directions # +----------- TA,TB,TC, FSCI=5 => FSC=64 # It seems hazardous to tell we support NAD if the tag doesn't support NAD but I don't know how to disable it # PC/SC pseudo-ATR = 3B 80 80 01 01 if there is no historical bytes nti = ffi.new("nfc_target_info*") nti.nai.abtAtqa = abtAtqa nti.nai.abtUid = abtUid nti.nai.szUidLen = len(abtUid) nti.nai.btSak = 0x20 nti.nai.abtAts = abtAts nti.nai.szAtsLen = len(abtAts) nt = ffi.new("nfc_target*") nt.nm = self.nm[0] nt.nti = nti[0] logger.info("Emulated target:") logger.info(nfc_helper.print_target(nt)) return nt def receive_bytes(self, timeout=None): logger.debug("receive_bytes") if timeout is None: timeout = self.timeout ret = nfc.nfc_target_receive_bytes(self._device, self._rxbytes, MAX_FRAME_LEN, timeout) self.last_err = ret if ret < nfc.NFC_SUCCESS: logger.warning("receive_bytes() error{}: ".format(ret)) data = bytearray(ffi.buffer(self._rxbytes, ret)) logger.info('T<I[%2X]: %s' % (len(data), hexbytes(data))) return data, ret def send_bytes(self, txbytes, timeout=None): logger.debug("send_bytes") if timeout is None: timeout = self.timeout logger.info('T>I[%2X]: %s' % (len(txbytes), hexbytes(txbytes))) tx_len = len(txbytes) self._txbytes[0:tx_len] = txbytes ret = nfc.nfc_target_send_bytes(self._device, self._txbytes, tx_len, timeout) self.last_err = ret if ret < nfc.NFC_SUCCESS: logger.warning("send_bytes() error: {}".format(ret)) return ret def receive_bits(self, *args, **kwargs): raise NotImplementedError("receive_bits() not implemented") def send_bits(self, *args, **kwargs): raise NotImplementedError("send_bits() not implemented") class NfcInitiator(NfcDevice): def __init__(self, devdesc=None, verbosity=0): super().__init__(devdesc, verbosity) ret = self.init() logger.info("Initiator dev name:{}".format(self._device_name)) self.last_err = ret def init(self): logger.debug("NfcInitiator init()") ret = nfc.nfc_initiator_init(self._device) self.last_err = ret if ret < nfc.NFC_SUCCESS: logger.warning("init() error{}: ".format(ret)) # self.set_property_bool(nfc.NP_HANDLE_CRC, False) # self.set_property_bool(nfc.NP_ACCEPT_INVALID_FRAMES, True) # self.set_property_bool(nfc.NP_AUTO_ISO14443_4, False) # self.set_property_bool(nfc.NP_EASY_FRAMING, False) self.set_property_int(nfc.NP_TIMEOUT_COMMAND, 5000) self.set_property_int(nfc.NP_TIMEOUT_COM, 1000) self.set_property_int(nfc.NP_TIMEOUT_ATR, 1000) # self.set_property_bool(nfc.NP_INFINITE_SELECT, False) def list_passive_targets(self): logger.debug("list_passive_targets()") result = [] max_targets_length = 16 nt = ffi.new("nfc_target[{}]".format(max_targets_length)) # time.sleep(0.5) # 50ms removes error "libnfc.driver.pn532_spi Unable to wait for SPI data. (RX)" ret = nfc.nfc_initiator_list_passive_targets(self._device, self.nm[0], nt, max_targets_length) self.last_err = ret if ret < nfc.NFC_SUCCESS: logger.warning("list_passive_targets() error: {}".format(sErrorMessages[ret])) for target_n in range(ret): result.append(nt[target_n]) logger.info("list_passive_targets() num_targets: {}".format(ret)) logger.info(*(nfc_helper.print_target(target) for target in result)) # time.sleep(0.5) # 50ms removes error "libnfc.driver.pn532_spi Unable to wait for SPI data. (RX)" return ret, result def select_passive_target(self, initdata=None): logger.debug("select_passive_target") nt = ffi.new("nfc_target*") if initdata is None: ret = nfc.nfc_initiator_select_passive_target(self._device, self.nm[0], ffi.NULL, 0, nt) else: ret = nfc.nfc_initiator_select_passive_target(self._device, self.nm[0], initdata, len(initdata), nt) self.last_err = ret if ret < nfc.NFC_SUCCESS: logger.warning("select_passive_target() error: {}, {}".format(ret, sErrorMessages[ret])) return ret, nt def deselect_target(self, *args, **kwargs): raise NotImplementedError("deselect_target() not implemented") def select_dep_target(self, *args, **kwargs): raise NotImplementedError("select_dep_target() not implemented") def poll_targets(self, *args, **kwargs): raise NotImplementedError("poll_targets() not implemented") def transceive_bytes(self, txbytes, timeout=None): logger.debug("transceive_bytes()") if timeout is None: timeout = self.timeout logger.info('I>T[%2X]: %s' % (len(txbytes), hexbytes(txbytes))) tx_len = len(txbytes) self._txbytes[0:tx_len] = txbytes rx_len = MAX_FRAME_LEN ret = nfc.nfc_initiator_transceive_bytes(self._device, self._txbytes, tx_len, self._rxbytes, rx_len, timeout) self.last_err = ret data = bytearray(ffi.buffer(self._rxbytes, ret)) logger.info('I<T[%2X]: %s' % (len(data), hexbytes(data))) return data, ret def transceive_bits(self, *args, **kwargs): raise NotImplementedError("transceive_bits() not implemented") if __name__ == "__main__": logging.basicConfig(level=logging.DEBUG) logger.debug("Debug message") logger.info("Info message") logger.warning("Warning message") logger.error("Error message") logger.critical("Critical message") print("logger.level: ", logger.level) print(__name__) print("logger.name: ", logger.name) version = get_version_str() print("libNfc version:", version) dev_list = list_devices(verbose=True) i = NfcInitiator(dev_list[1], verbosity=1) # print(i._device_name) # try: # i.set_property_bool(nfc.NP_HANDLE_PARITY+100, True) # except Exception as e: # print("Exception test:", e) res, nt = i.list_passive_targets() # for k in range(res): # nfc_helper.print_target(nt[k]) # print("list_passive_targets() res: ", res) # pprint_cdata(nt) if res == 0: print("No tags found") exit(0) initdata = nt[0].nti.nai.abtUid[0:nt[0].nti.nai.szUidLen] # print("initdata: ", initdata, len(initdata)) try: res = i.select_passive_target(initdata=initdata) except Exception as e: print("Exception test:", e) res = i.select_passive_target() # res = i.select_passive_target() print("select_passive_target() res: ", res) nt = res # print("nt: ", nt) # print("nt.nti.nai.abtUid: ", nt.nti.nai.abtUid) # print("nt.nti.nai.szUidLen: ", nt.nti.nai.szUidLen) # print("nt.nti.nai.abtAtqa: ", nt.nti.nai.abtAtqa) # print("nt.nti.nai.btSak: ", nt.nti.nai.btSak) # print("nt.nti.nai.abtAts: ", nt.nti.nai.abtAts) # print("nt.nti.nai.szAtsLen: ", nt.nti.nai.szAtsLen) print("select_passive_target: nt: ", nt, type(nt)) # pprint_cdata(nt) # for i in range(nt.nti.nai.szAtsLen): # print("nt.nti.nai.szAtsLen[{}]: {:02x}".format(i, nt.nti.nai.abtAts[i])) # for i in range(nt.nti.nai.szUidLen): # print("nt.nti.nai.szUidLen[{}]: {:02x}".format(i, nt.nti.nai.abtUid[i])) t = NfcTarget(dev_list[0], verbosity=1) data, data_len = t.receive_bytes() # print("receive_bytes() ret: ", data, len) data, data_len = i.transceive_bytes(data) # print("transceive_bytes() ret: ", ret) data_len = t.send_bytes(data)
13,994
Python
.py
309
37.333333
117
0.617171
CardToolz/libnfc_mitm_cffi
8
0
1
LGPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,311
cffi_main.py
CardToolz_libnfc_mitm_cffi/cffi_main.py
#!/usr/bin/python3 from libnfc_ffi.libnfc_ffi import ffi, libnfc as nfc ctx = ffi.new("nfc_context**") print("nfc_init"), nfc.nfc_init(ctx) c = ctx[0] conn_strings = ffi.new("nfc_connstring[10]") d = nfc.nfc_list_devices(c, conn_strings, 10) print("nfc_list_devices", d) device = nfc.nfc_open(c, conn_strings[0]) print("nfc_open", device) nfc.nfc_close(device) print("nfc_close")
386
Python
.py
12
30.666667
52
0.718157
CardToolz/libnfc_mitm_cffi
8
0
1
LGPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,312
pn532mitm.py
CardToolz_libnfc_mitm_cffi/pn532mitm.py
#!/usr/bin/python3 # # pn532mitm.py - NXP PN532 Man-In-The_Middle - log conversations between TAG and external reader # ''' IP = 172.16.0.1 pi:raspberry Initiator must be connected to SPI Target must be connected to UART config file: /etc/nfc/libnfc.conf allow_autoscan = true allow_intrusive_scan = false log_level = 1 device.name = "_PN532_SPI" device.connstring = "pn532_spi:/dev/spidev0.0:1953000" #device.name = "_PN532_I2c" #device.connstring = "pn532_i2c:/dev/i2c-1" device.name = "_PN532_UART" device.connstring = "pn532_uart:/dev/ttyS0" ''' from nfc_wrapper import * from nfc_helper import * from NFCRelay import * from libnfc_ffi.libnfc_ffi import libnfc as nfc from datetime import datetime import argparse, os, sys import random import logging logger = logging.getLogger(__name__) fname_main = os.path.basename(__file__) cwd = os.getcwd() fname_date = datetime.now().strftime('%H_%M_%S_%d_%m_%Y') log_fname_default = "%s_%s_log.json" % (fname_main, fname_date) logs_path = "{}/logs/".format(cwd) if not os.path.exists(logs_path): os.mkdir(logs_path) easy_framing = True # target_dev_num_default = 1 # make it command line params # initiator_dev_num_default = 0 # make it command line params target_dev_num_default = 0 # make it command line params initiator_dev_num_default = 1 # make it command line params def data_hook(direction, data, easy_framing): send_fragmented = False print ("Data hook, send_fragmented: %s" % send_fragmented) return send_fragmented, data def main(): logging.basicConfig(format='%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d:%H:%M:%S', level=logging.INFO) parser = argparse.ArgumentParser(description='LibNFC relay tool') parser.add_argument("-l", "--list-devices", dest="list_devices", action='store_true', help="List devices and exit") parser.add_argument("-o", "--log-filename", dest="log_fname", default=log_fname_default, type=str, help="Output JSON log filename") parser.add_argument("-i", "--initiator", dest="initiator_dev_num", default=initiator_dev_num_default, type=int, help="Reader device number") parser.add_argument("-t", "--target", dest="target_dev_num", default=target_dev_num_default, type=int, help="Emulator device number") parser.add_argument("-n", "--no-easy-framing", dest="no_easy_framing", action='store_true', help="Do not use easy framing. transfer data as frames instead of APDUs") parser.add_argument("-p", "--print-log", dest="print_log", action='store_true', help="Print log to stdout") parser.add_argument("-H", "--hook-data", dest="hook_data", action='store_true', help="Use data hook function for data processing") args = parser.parse_args() log_fname = logs_path + args.log_fname initiator_dev_num = args.initiator_dev_num target_dev_num = args.target_dev_num easy_framing = not args.no_easy_framing print_log = args.print_log list_devs = args.list_devices hook_data = args.hook_data print (" *** LibNFC relay tool ***") print ("tag <---> initiator (relay) <---> target (relay) <---> original reader\n") print ("%s uses LibNFC ver %s" % (fname_main, get_version_str())) if list_devs: devs_list = list_devices(True) if len(devs_list) < 2: print ("Found ", len(devs_list), "... Needed 2.\nExitng...") else: print ("Initiator dev num:", initiator_dev_num_default) print ("Target dev num:", target_dev_num_default) nfc.nfc_exit() sys.exit() r = NFCRelay(initiator_dev_num, target_dev_num, easy_framing=easy_framing, log_fname=log_fname) if r is None: print ("Can't create NFCRelay object with provided device numbers") nfc.nfc_exit() sys.exit() if hook_data: print ("Using data hook") r.set_data_hook(data_hook) r.reader_setup() if r.pndReader is None: print ("Can't open reader") nfc.nfc_exit() sys.exit() print ("****** Waiting for source tag/device ******\n") tag_count = r.reader_get_targets() if tag_count == 0: print ("No tag/device found. Exiting...") nfc.nfc_exit() sys.exit() else: print ("Found ", tag_count, " tag(s)/device(s)") for target in r.passive_targets_list: print ("\tTag info:") print_target(target) print("Selecting 1st target by default") r.select_target() print("Real target:") print_target(r.real_target) # r.emulator_prepare_from_target() # print("Emulated target:") # print_target(r.emulated_target) print ("****** Waiting for reader ******\n") r.emulator_setup() if r.pndTag is None or r.pndTag.get_last_err() < 0: err = r.pndTag.get_last_err() print("Can't open emulator: {}, {}".format(err, sErrorMessages[err])) # nfc_exit() sys.exit() print("Emulated target:") print_target(r.emulated_target) print ("Done, relaying frames now...\n") r.relay_frames() print("Saving log to file: %s" % log_fname) r.fl.save() if print_log: print ("\n!************** Log Out ***************") r.log_print() if __name__ == "__main__": main()
5,330
Python
.py
126
37.087302
173
0.64682
CardToolz/libnfc_mitm_cffi
8
0
1
LGPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,313
pn532replay.py
CardToolz_libnfc_mitm_cffi/pn532replay.py
#!/usr/bin/python3 # # pn532mitm.py - NXP PN532 Man-In-The_Middle - log conversations between TAG and external reader # ''' IP = 172.16.0.1 pi:raspberry Initiator must be connected to SPI Target must be connected to UART config file: /etc/nfc/libnfc.conf allow_autoscan = true allow_intrusive_scan = false log_level = 1 device.name = "_PN532_SPI" device.connstring = "pn532_spi:/dev/spidev0.0:1953000" #device.name = "_PN532_I2c" #device.connstring = "pn532_i2c:/dev/i2c-1" device.name = "_PN532_UART" device.connstring = "pn532_uart:/dev/ttyS0" ''' # from nfc_ctypes import * from nfc_wrapper import * from nfc_helper import * from NFCReplay import * from datetime import datetime import argparse, os, sys import random fname_main = os.path.basename(__file__) cwd = os.getcwd() fname_date = datetime.now().strftime('%H_%M_%S_%d_%m_%Y') log_fname_default = "%s_%s_log.json" % (fname_main, fname_date) logs_path = "{}/logs/".format(cwd) if not os.path.exists(logs_path): os.mkdir(logs_path) easy_framing = True # target_dev_num_default = 1 # make it command line params # initiator_dev_num_default = 0 # make it command line params target_dev_num_default = 0 # make it command line params initiator_dev_num_default = 1 # make it command line params def data_hook(direction, data, easy_framing): send_fragmented = False print ("Data hook, send_fragmented: %s, data len: %d" % (send_fragmented, len(data))) return send_fragmented, data def main(): parser = argparse.ArgumentParser(description='LibNFC relay tool') parser.add_argument("-l", "--list-devices", dest="list_devices", action='store_true', help="List devices and exit") parser.add_argument("-o", "--log-filename", dest="log_fname", default=log_fname_default, type=str, help="Output JSON log filename") parser.add_argument("-i", "--initiator", dest="initiator_dev_num", default=initiator_dev_num_default, type=int, help="Reader device number") parser.add_argument("-t", "--target", dest="target_dev_num", default=target_dev_num_default, type=int, help="Emulator device number") parser.add_argument("-n", "--no-easy-framing", dest="no_easy_framing", action='store_true', help="Do not use easy framing. transfer data as frames instead of APDUs") parser.add_argument("-p", "--print-log", dest="print_log", action='store_true', help="Print log to stdout") parser.add_argument("-H", "--hook-data", dest="hook_data", action='store_true', help="Use data hook function for data processing") args = parser.parse_args() log_fname = logs_path + args.log_fname initiator_dev_num = args.initiator_dev_num target_dev_num = args.target_dev_num easy_framing = not args.no_easy_framing print_log = args.print_log list_devs = args.list_devices hook_data = args.hook_data print (" *** LibNFC re(p)lay tool ***") print ("tag <---> initiator (relay) <---> target (relay) <---> original reader\n") print ("%s uses LibNFC ver %s" % (fname_main, get_version_str())) if list_devs: devs_list = list_devices(True) if len(devs_list) < 2: print ("Found ", len(devs_list), "... Needed 2.\nExitng...") else: print ("Initiator dev num:", initiator_dev_num_default) print ("Target dev num:", target_dev_num_default) nfc_exit() sys.exit() initiator_dev_num = -1 r = NFCRelay(initiator_dev_num, target_dev_num, easy_framing=easy_framing, log_fname=log_fname) if r is None: print ("Can't create NFCRelay object with provided device numbers") nfc_exit() sys.exit() if hook_data: print ("Using data hook") r.set_data_hook(data_hook) log = "./logs/test_card_log.json" ret = r.reader_setup(log_fname=log) if r.pndReader is None: print ("Can't open reader/source file") # nfc_exit() sys.exit() if ret: print ("****** Waiting for source tag/device ******\n") tag_count = r.reader_get_targets() if tag_count == 0: print ("No tag/device found. Exiting...") nfc_exit() sys.exit() else: print ("Found ", tag_count, " tag(s)/device(s)") for target in r.passive_targets_list: print ("\tTag info:") print_target(target) print("Selecting 1st target by default") r.reader_select_target() print("Real target:") print_target(r.real_target) r.emulator_prepare_from_target() else: print("Using log file: %s as a data source" % log) r.emulator_prepare_wo_target() pass print("Emulated target:") print_target(r.emulated_target) print ("****** Waiting for reader ******\n") r.emulator_setup() if r.pndTag is None: print ("Can't open emulator") nfc_exit() sys.exit() print ("Done, relaying frames now...\n") r.relay_frames() print("Saving log to file: %s" % log_fname) r.fl.save() if print_log: print ("\n!************** Log Out ***************") r.log_print() if __name__ == "__main__": main()
5,208
Python
.py
126
35.626984
173
0.637084
CardToolz/libnfc_mitm_cffi
8
0
1
LGPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,314
NFCRelay.py
CardToolz_libnfc_mitm_cffi/NFCRelay.py
# from nfc_ctypes import * from nfc_wrapper import * from nfc_helper import * from libnfc_ffi.libnfc_ffi import libnfc as nfc from time import time, sleep from enum import Enum import logging logger = logging.getLogger(__name__) hex2str = lambda x: bytearray.fromhex(x.replace(" ", "")) apple_frame_sequence = [] # Apple specific frame sequence apple_frame_sequence.append(hex2str('6a 02 c8 01 00 03 00 02 79 00 00 00 00 c2 d8')) apple_frame_sequence.append(hex2str('52')) apple_frame_sequence.append(hex2str('93 20')) apple_frame_sequence.append(hex2str('93 70 00 00 00 00 00 9c d9')) def time_ms(): return int(time() * 1000) def data_hook_default(direction, data, easy_framing): send_fragmented = False return send_fragmented, data class MitmState(Enum): FromReader = 0 ReaderCardHook = 1 TransceiveCard = 2 CardReaderHook = 3 ToReader = 4 FromReaderFragment = 5 class NFCRelay: def __init__(self, initiator_dev_num, target_dev_num, easy_framing=True, log_fname=None): self.data_hook = data_hook_default self.initiator_dev_num = initiator_dev_num self.target_dev_num = target_dev_num self.easy_framing = easy_framing self.pndReader = None # NfcInitiator self.pndTag = None # NfcTarget self.passive_targets_list = None self.real_target = None self.emulated_target = None self.target_modulation = None self.targettype = None self.timeout = 2000 self.fl = FrameLogger(easy_framing=easy_framing, log_fname=log_fname) self.apple_transport = False self.dev_list = list_devices(False) if len(self.dev_list) < 2: assert False, "Not enough devices found" self.initiator_dev = self.dev_list[self.initiator_dev_num] self.target_dev = self.dev_list[self.target_dev_num] def __del__(self): nfc_exit() def set_data_hook(self, data_hook): self.data_hook = data_hook def reader_setup(self): self.pndReader = NfcInitiator(self.initiator_dev, verbosity=0) self.pndReader.set_property_bool(nfc.NP_EASY_FRAMING, self.easy_framing) # self.pndReader.configure(NP_AUTO_ISO14443_4, True) # self.pndReader.configure_int(NP_TIMEOUT_COMMAND, self.timeout) return True def reader_get_targets(self, timeout_ms=0): tags_count = 0 start_time = time_ms() while (start_time + timeout_ms > time_ms()) or (timeout_ms == 0): if self.apple_transport: # TODO: fix apple transport activation. Transceive bits is not working # print ("Apple specific transport(travel) card activation") # self.pndReader.configure(nfc.nfc.NP_HANDLE_CRC, False) for x in range(0, 2): self.pndReader.transceive_bytes(apple_frame_sequence[0]) self.pndReader.transceive_bits(apple_frame_sequence[1], 7) self.pndReader.transceive_bytes(apple_frame_sequence[2]) # # pndReader.initiator_transceive_bytes(str4) # is not necessary tags_count, self.passive_targets_list = self.pndReader.list_passive_targets() print("Passive targets list: {}".format(self.passive_targets_list)) # tags_count = len(self.passive_targets_list) if tags_count > 0: break if (start_time + timeout_ms < time_ms()) and (timeout_ms != 0): print("Timeout", start_time, time_ms()) return tags_count def select_target(self, tag_index=0): if tag_index >= len(self.passive_targets_list): logger.warning("Wrong tag index") return False nt = self.passive_targets_list[tag_index] initdata = nt.nti.nai.abtUid[0:nt.nti.nai.szUidLen] ret, self.real_target = self.pndReader.select_passive_target(initdata=initdata) if ret < nfc.NFC_SUCCESS: logger.info('libnfc error, trying again') ret, self.real_target = self.pndReader.select_passive_target() if ret < nfc.NFC_SUCCESS: raise IOError("NFC Error whilst selecting target") # def emulator_prepare_from_target(self): # target_info = nfc_target_info(self.real_target.nti.nai) # target_modulation = nfc_modulation(self.relay_modtype, self.relay_baud) # self.emulated_target = nfc_target(target_info, target_modulation) # # self.emulated_target = nfc_target() # self.emulated_target.nti.nai.abtAtqa[0] = 0x03 # self.emulated_target.nti.nai.abtAtqa[1] = 0x44 # self.emulated_target.nti.nai.abtUid[0] = 0x08 # Needed for PN532 emulation start # self.emulated_target.nti.nai.szUidLen = 0x04; # Shrink UID to eliminate SEGFAULTs # # self.emulated_target.nti.nai.btSak = 0x20 # # https://de.wikipedia.org/wiki/Answer_to_Select # # ATS = (05) 75 33 92 03 # # (TL) T0 TA TB TC # # | | | +-- CID supported, NAD supported # # | | +----- FWI=9 SFGI=2 => FWT=154ms, SFGT=1.21ms # # | +-------- DR=2,4 DS=2,4 => supports 106, 212 & 424bps in both directions # # +----------- TA,TB,TC, FSCI=5 => FSC=64 # # It seems hazardous to tell we support NAD if the tag doesn't support NAD but I don't know how to disable it # # PC/SC pseudo-ATR = 3B 80 80 01 01 if there is no historical bytes # self.emulated_target.nti.nai.abtAts[0] = 0x75 # self.emulated_target.nti.nai.abtAts[1] = 0x11 # supports 106 baud only if ATS presented on source # self.emulated_target.nti.nai.abtAts[2] = 0x92 # self.emulated_target.nti.nai.abtAts[3] = 0x03 # self.emulated_target.nti.nai.szAtsLen = 0x04 # # self.emulated_target.nti.nai.abtAts[0] = 0x78 # # self.emulated_target.nti.nai.abtAts[1] = 0x77 # # self.emulated_target.nti.nai.abtAts[2] = 0x88 # # self.emulated_target.nti.nai.abtAts[3] = 0x02 # # self.emulated_target.nti.nai.abtAts[4] = 0x80 # # self.emulated_target.nti.nai.szAtsLen = 0x05 # # if self.real_target.nti.nai.szAtsLen < 4: # # self.emulated_target.nti.nai.szAtsLen = 0x04 # # self.emulated_target.nti.nai.szAtsLen = 0x00; # # print("Target type: " + str(self.targettype)) # # if self.targettype == 0x44: # # self.relay_modtype = NMT_ISO14443B # # self.relay_baud = NBR_106 # # elif self.targettype == 0x04: # # self.relay_modtype = NMT_ISO14443A # # self.relay_baud = NBR_106 # # elif self.targettype == 0x02: # # self.relay_modtype = NMT_ISO14443A # # self.relay_baud = NBR_106 # # elif self.targettype == 0x52: # # self.relay_modtype = NMT_ISO14443A # # self.relay_baud = NBR_106 # # self.apple_transport = True # # else: # # print("Unsupported target type") # # return False # return True def emulator_setup(self): self.pndTag = NfcTarget(self.target_dev, self.emulated_target) if self.pndTag.get_last_err(): logger.warning("Failed to create target") return False self.emulated_target = self.pndTag.get_target() self.pndTag.set_property_bool(nfc.NP_EASY_FRAMING, self.easy_framing) # self.pndTag.configure(nfc.NP_AUTO_ISO14443_4, True) # self.pndTag.configure_int(nfc.NP_TIMEOUT_COMMAND, self.timeout) # TODO: Does not work return True def relay_frames(self, timeout_ms=0): if self.pndReader is None or self.pndTag is None: logger.warning("Reader or tag not initialized") return False is_done = False index = 0 state = MitmState.FromReader fragmented = False self.fl.clear() # print("Starting relay") self.pndTag.set_property_bool(nfc.NP_EASY_FRAMING, self.easy_framing) start_time = time_ms() try: while (start_time + timeout_ms > time_ms()) or (timeout_ms == 0) and not is_done: logger.info("State = {}".format(state)) self.pndTag.set_property_bool(nfc.NP_EASY_FRAMING, self.easy_framing) self.pndReader.set_property_bool(nfc.NP_EASY_FRAMING, self.easy_framing) # sleep(0.1) if state == MitmState.FromReader: target_recvd, ret = self.pndTag.receive_bytes(timeout=timeout_ms) self.fl.add_frame_by_data(index=index, time=time(), data=target_recvd, result=ret, direction=FrameDirection.FromReader) if ret <= nfc.NFC_SUCCESS: print ("Receive from reader result: ({}) {}".format(ret, sErrorMessages[ret])) is_done = True continue state = MitmState.ReaderCardHook elif state == MitmState.ReaderCardHook: if self.data_hook is not None: fragmented, target_recvd = self.data_hook(FrameDirection.FromReader, target_recvd, self.easy_framing) state = MitmState.TransceiveCard elif state == MitmState.TransceiveCard: # TODO: implement fragmented transceive self.fl.add_frame_by_data(index=index, time=time(), data=target_recvd, result=ret, direction=FrameDirection.ToCard, easy_framing=self.easy_framing) reader_recvd, ret = self.pndReader.transceive_bytes(target_recvd) index += 1 self.fl.add_frame_by_data(index=index, time=time(), data=reader_recvd, result=ret, direction=FrameDirection.FromCard, easy_framing=self.easy_framing) if ret <= nfc.NFC_SUCCESS: print ("Tag/device transceive result: ({}) {}".format(ret, sErrorMessages[ret])) is_done = True continue state = MitmState.CardReaderHook elif state == MitmState.CardReaderHook: if self.data_hook is not None: fragmented, reader_recvd = self.data_hook(FrameDirection.FromCard, reader_recvd, self.easy_framing) state = MitmState.ToReader elif state == MitmState.ToReader: if fragmented: ret = self.target_send_fragmented(index=index, data=reader_recvd) # state = MitmState.FromReaderFragment state = MitmState.FromReader # print("fragmented send is done") else: ret = self.pndTag.send_bytes(reader_recvd) self.fl.add_frame_by_data(index=index, time=time(), data=reader_recvd, result=ret, direction=FrameDirection.ToReader, easy_framing=self.easy_framing) state = MitmState.FromReader index += 1 # print("ToReader next state: {}".format(state)) if ret <= nfc.NFC_SUCCESS: print ("Send to reader result: ({}) {}".format(ret, sErrorMessages[ret])) is_done = True continue elif state == MitmState.FromReaderFragment: # print("FromReaderFragment") target_recvd, ret = self.target_receive_fragmented(timeout=timeout_ms) self.fl.add_frame_by_data(index=index, time=time(), data=target_recvd, result=ret, direction=FrameDirection.FromReader, easy_framing=self.easy_framing) # print_frame(self.fl.get_frame_list()[-1]) if ret <= nfc.NFC_SUCCESS: print ("Receive from reader result: ({}) {}".format(ret, sErrorMessages[ret])) is_done = True continue # self.pndTag.configure(NP_EASY_FRAMING, self.easy_framing) # sleep(0.05) state = MitmState.ReaderCardHook else: print("Unknown state") is_done = True continue except AssertionError as error: logger.error('???? WTF with the radio frontend ????') logger.error(error) def log_print(self): self.fl.print() def target_receive_fragmented(self, timeout=0): chunks = [] is_last_chunk = False pcb = ISO14443_PCB() pcb.asbyte = 0xA2 print("XUIIII") self.pndTag.set_property_bool(nfc.NP_EASY_FRAMING, False) while not is_last_chunk: recvd, ret = self.pndTag.target_receive_bytes(timeout) # print("Received frame: {}".format(recvd)) if ret <= nfc.NFC_SUCCESS: print ("Receive from reader result: ({}) {}".format(ret, sErrorMessages[ret])) return b'', ret # pcb.asbyte = recvd[0] chunks.append(recvd[1:]) is_last_chunk = pcb.iblock.chaining == 0 if not is_last_chunk: pcb.iblock.block_num = pcb.iblock.block_num ^ 1 self.pndTag.target_send_bytes(bytearray([pcb.asbyte])) # print("Sent frame: {}".format(bytearray([pcb.asbyte]))) # self.pndTag.configure(NP_EASY_FRAMING, self.easy_framing) data = b''.join(chunks) return data, len(data) def target_send_fragmented(self, index, data, fragment_size=200): # if fragment_size > 128: # print("Fragment size can't be more than 0x80") # return False if len(data) > fragment_size: data_chunks = [data[i:i + fragment_size] for i in range(0, len(data), fragment_size)] else: data_chunks = [data] # print("Source data: {}".format(data)) # print("Data chunks: {}".format(data_chunks)) # print("Sending {} fragments".format(len(data_chunks))) self.easy_framing = False self.pndTag.set_property_bool(nfc.NP_EASY_FRAMING, self.easy_framing) pcb = ISO14443_PCB(asbyte=0x12) # 0x12/0x13 for phone testing # block_num = 0 for chunk in data_chunks: is_last_chunk = chunk == data_chunks[-1] pcb.iblock.block_num = pcb.iblock.block_num ^ 1 if is_last_chunk: # last chunk pcb.iblock.chaining = 0 # else: frame = bytearray([pcb.asbyte]) + chunk # print("Sending frame: {}".format(frame)) # self.pndTag.configure(NP_EASY_FRAMING, False) ret = self.pndTag.send_bytes(frame) self.fl.add_frame_by_data(index=index, time=time(), data=frame, result=ret, direction=FrameDirection.ToReader, easy_framing=False) # print_frame(self.fl.get_frame_list()[-1]) if ret <= nfc.NFC_SUCCESS: print ("Send to reader result: ({}) {}".format(ret, sErrorMessages[ret])) return ret # pcb.iblock.block_num = pcb.iblock.block_num ^ 1 # self.pndTag.configure(NP_EASY_FRAMING, False) if not is_last_chunk: # sleep(0.1) recvd, ret = self.pndTag.receive_bytes(timeout=0) self.fl.add_frame_by_data(index=index, time=time(), data=recvd, result=ret, direction=FrameDirection.FromReader, easy_framing=False) # print_frame(self.fl.get_frame_list()[-1]) if ret <= nfc.NFC_SUCCESS: print ("Receive from reader result: ({}) {}".format(ret, sErrorMessages[ret])) return ret else: pass # sleep fo 0.1 sec to avoid "RF transmission error" on PN532 sleep(0.05) return len(data_chunks)
16,067
Python
.py
299
41.866221
173
0.587245
CardToolz/libnfc_mitm_cffi
8
0
1
LGPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,315
libnfc_ffi.py
CardToolz_libnfc_mitm_cffi/libnfc_ffi/libnfc_ffi.py
#!/usr/bin/python3 from cffi import FFI ffi = FFI() def fetch_nfc_functions(hfile): lines = [] with open(hfile) as f: for ln in f: if ln.startswith("NFC_EXPORT"): ln = ln.replace("NFC_EXPORT", "extern") ln = ln.replace("ATTRIBUTE_NONNULL(1)", "") # ln = ln.replace("typedef ", "") lines.append(ln) return "".join(lines) def fetch_nfc_types(hfile): with open(hfile) as f: data = f.read() data = data[data.index("#endif") + len("#endif"): data.index("# pragma pack()")] data = data.replace("NFC_BUFSIZE_CONNSTRING", "1024") # data = data.replace("typedef ", "") return data def fetch_nfc_constants(hfile): lines = [] with open(hfile) as f: for ln in f: if ln.startswith("#define"): lines.append(ln) return "".join(lines) def ffi_print_declarations(ffi): for key in ffi._parser._declarations: print(key, ffi._parser._declarations[key]) cdef_types = fetch_nfc_types("/usr/include/nfc/nfc-types.h") # print (cdef_types) cdef_funcs = fetch_nfc_functions("/usr/include/nfc/nfc.h") cdef_defs = fetch_nfc_constants("/usr/include/nfc/nfc.h") ffi.cdef(cdef_types, packed=True) ffi.cdef(cdef_funcs, packed=True) ffi.cdef(cdef_defs, packed=True) libnfc = ffi.dlopen("libnfc.so") if __name__ == "__main__": print("CFFI binding for libNFC") ver_str = ffi.string(libnfc.nfc_version()).decode("utf-8") print("libNFC version:", ver_str) print("imported types:") ffi_print_declarations(ffi) # some constants tst # print(sErrorMessages[libnfc.NFC_ECHIP]) # print(libnfc.NP_INFINITE_SELECT)
1,722
Python
.py
47
30.297872
89
0.620398
CardToolz/libnfc_mitm_cffi
8
0
1
LGPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,316
GUI.py
AlexSanfilippo_ProceduralMeshGeneration/GUI.py
""" started: April 19th, 2024 update: April 19th, 2024 goals: -[V]render quad on screen -[V]textured quad -[V]control scale and position -[V]transparent textures -[V]texture atlasing -[V]Multiple GUI Elements -static elements.icons -displays, ie, not buttons -want GUI class that holds several GUI elements instantiate GUI class add element to class GUI.draw -draws all elements -separate draw calls for now -so just a loop -[V]buttons -subclass existing gui element class -[V]Check if mouse is inside button -[V]Check if mouse is clicked -[V]button to spawn ships -ie, tie button into application -[V]Change texture on mouse hover (hover events) -send mouse position into draw -allow each element to figure itself out -[V]activate/deactivate button by clicking other buttons """ import gc import math import glm from OpenGL.GL import * import numpy as np from OpenGL.GL.shaders import compileProgram, compileShader from TextureLoader import load_texture vertex_src = """ # version 330 layout(location = 0) in vec2 position; layout(location = 1) in vec2 texture; out vec2 texture_coordinates; void main() { texture_coordinates = texture; gl_Position = vec4(position, 0.f, 1.f); } """ fragment_src = """ #version 330 core in vec2 texture_coordinates; out vec4 fragment_color; uniform sampler2D gui_texture; uniform vec4 color; void main() { //fragment_color = vec4(0.7, 0.1, 0.5, 0.5f); fragment_color = color * texture(gui_texture, texture_coordinates); } """ vertex_src_reference = """ # version 330 layout(location = 0) in vec3 a_position; layout(location = 1) in vec3 a_color; layout(location = 2) in vec2 a_texture; uniform mat4 rotation; out vec3 v_color; out vec2 v_texture; void main() { gl_Position = rotation * vec4(a_position, 1.0); v_color = a_color; v_texture = a_texture; } """ fragment_src_reference = """ # version 330 in vec3 v_color; in vec2 v_texture; out vec4 out_color; uniform sampler2D s_texture; void main() { out_color = texture(s_texture, v_texture); // vec4(v_color, 1.0); } """ #create default shaders and textures # shader_default = compileProgram( # compileShader( # vertex_src, # GL_VERTEX_SHADER # ), # compileShader( # fragment_src, # GL_FRAGMENT_SHADER # ), # ) class GUI: """ Create GUI For application interaction with mouse, or displaying information """ def __init__( self, screen_size=(800, 400) ): self.screen_size = screen_size self.elements = [] self.buttons = [] self.context_id_to_status = {} self.context_id_to_element = {} def add_element( self, shader=None, texture=None, position=(0.0, 0.0), scale=(0.5, 0.5), atlas_size=1, atlas_coordinate=0, context_status=True, context_id='default' ): element = Element( shader=shader, texture=texture, position=position, scale=scale, screen_size=self.screen_size, atlas_size=atlas_size, atlas_coordinate=atlas_coordinate, context_id=context_id, ) self.elements.append(element) self.update_context_maps(element=element, status=context_status) def add_text_element( self, font_texture, shader=None, texture=None, position=(0.0, 0.0), scale=(0.5, 0.5), atlas_size=1, atlas_coordinate=0, context_status=True, context_id='default', text='', font_color=(1.0, 1.0, 1.0, 1.0), font_size=1.0, ): element = Element( shader=shader, texture=texture, position=position, scale=scale, screen_size=self.screen_size, atlas_size=atlas_size, atlas_coordinate=atlas_coordinate, context_id=context_id, ) element.add_text_box( texture=font_texture, text=text, color=font_color, font_size=font_size, ) self.elements.append(element) self.update_context_maps(element=element, status=context_status) def draw(self): #TODO: draw all elements at once! (batch rendering) for element in self.elements + self.buttons: element.draw() def add_button( self, shader=None, texture=None, position=(0.0, 0.0), scale=(0.5, 0.5), atlas_size=1, atlas_coordinate=(0,), click_function=None, context_id='default', context_status=True, color=(1.0, 1.0, 1.0, 1.0), position_mode='center', **click_function_kwargs, ): button = Button( shader=shader, texture=texture, position=position, scale=scale, screen_size=self.screen_size, atlas_size=atlas_size, atlas_coordinate=atlas_coordinate, click_function=click_function, context_id=context_id, color=glm.vec4(color), position_mode=position_mode, click_function_kwargs=click_function_kwargs, ) self.buttons.append(button) self.update_context_maps(element=button, status=context_status) def add_text_button( self, font_texture, shader=None, texture=None, position=(0.0, 0.0), scale=(0.5, 0.5), atlas_size=1, atlas_coordinate=(0,), click_function=None, context_id='default', context_status=True, color=(1.0, 1.0, 1.0, 1.0), position_mode='center', text='', font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), **click_function_kwargs, ): button = Button( shader=shader, texture=texture, position=position, scale=scale, screen_size=self.screen_size, atlas_size=atlas_size, atlas_coordinate=atlas_coordinate, click_function=click_function, context_id=context_id, color=glm.vec4(color), position_mode=position_mode, click_function_kwargs=click_function_kwargs, ) button.add_text_box( texture=font_texture, font_size=font_size, color=font_color, text=text ) self.buttons.append(button) self.update_context_maps(element=button, status=context_status) def button_update(self, position_mouse, left_click, right_click): """ tell buttons to check for input (mouse hover or click) :param position_mouse: :param left_click: :param right_click: :return: No Return """ position_mouse_normalized = glm.vec2( ( position_mouse[0]/self.screen_size[0], position_mouse[1]/self.screen_size[1] ) ) for button in self.buttons: button.update(position_mouse=position_mouse_normalized, left_click=left_click, right_click=right_click) def set_screen_size(self, screen_size): self.screen_size = screen_size def update_context_maps(self, element, status=True): if element.context_id in self.context_id_to_status.keys(): self.context_id_to_status[element.context_id] = status self.context_id_to_element[element.context_id].append(element) else: self.context_id_to_status[element.context_id] = status self.context_id_to_element[element.context_id] = [element] def build_elements_list(self): self.elements = [] self.buttons = [] for context_id, status in self.context_id_to_status.items(): if status: elements = self.context_id_to_element[context_id] for element in elements: if type(element) == Element: self.elements.append(element) else: self.buttons.append(element) def switch_context_status(self, context_id, status): """ turn a context on or off :param context_id: id of the element to turn on/off :param status: which status to switch it to """ self.context_id_to_status[context_id] = status self.build_elements_list() def toggle_context_status(self, context_id): self.switch_context_status( context_id=context_id, status=not(self.context_id_to_status[context_id]), ) class Element: def __init__( self, shader=None, texture=None, position=(0.0, 0.0), scale=(0.5, 0.5), screen_size=(800, 400), atlas_size=1, atlas_coordinate=0, context_id='default', color=glm.vec4(1.0, 1.0, 1.0, 1.0), ): self.color_loc = None self.model_loc = None self.VBO = None self.VAO = None if shader == None: shader_default = compileProgram( compileShader(vertex_src, GL_VERTEX_SHADER), compileShader(fragment_src, GL_FRAGMENT_SHADER) ) self.shader = shader_default else: self.shader = shader if texture == None: gui_textures = glGenTextures(2) load_texture("Textures/debug_diffuse_coordinates.png", gui_textures[0]) self.texture = gui_textures[0] else: self.texture = texture self.position = glm.vec2(position) self.scale = scale self.screen_size = screen_size self.screen_size = screen_size self.atlas_size = atlas_size self.atlas_coordinate = atlas_coordinate self.context_id = context_id self.color = color self.vertices_count = 4 self.vertices = self.generate_vertices() self.buffer_setup() self.text_box = None def generate_vertices(self): text_coords = self.get_texture_coordinates_atlas() #OpenGL Screen Coordinates go from -1,-1 (lower left) to 1,1 (upper right) return np.array( [ # upper left -1.0 * self.scale[0] + self.position[0], 1.0 * self.scale[1] + self.position[1], text_coords[0].x, text_coords[0].y, # lower left -1.0 * self.scale[0] + self.position[0], -1.0 * self.scale[1] + self.position[1], text_coords[1].x, text_coords[1].y, #upper right 1.0 * self.scale[0] + self.position[0], 1.0 * self.scale[1] + self.position[1], text_coords[2].x, text_coords[2].y, #lower right 1.0 * self.scale[0] + self.position[0], -1.0 * self.scale[1] + self.position[1], text_coords[3].x, text_coords[3].y, ], dtype=np.float32 ) def clean_up(self): glDeleteVertexArrays(1, [self.VAO]) glDeleteBuffers(1, [self.VBO]) del self.model_loc del self.color_loc gc.collect() def buffer_setup(self): # quad VAO self.VAO = glGenVertexArrays(1) glBindVertexArray(self.VAO) self.VBO = glGenBuffers(1) glBindBuffer(GL_ARRAY_BUFFER, self.VBO) glBufferData(GL_ARRAY_BUFFER, self.vertices.nbytes, self.vertices, GL_STATIC_DRAW) # quad position vertices (vertex attribute) glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, self.vertices.itemsize * self.vertices_count, ctypes.c_void_p(0)) glEnableVertexAttribArray(0) # quad texture coords glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, self.vertices.itemsize * self.vertices_count, ctypes.c_void_p(8)) glEnableVertexAttribArray(1) self.model_loc = glGetUniformLocation(self.shader, "model") self.color_loc = glGetUniformLocation(self.shader, "color") def replace_vertices(self): """ like buffer_setup function, but does not allocate a new buffer. Just gives new vertex info to the existing buffer. Thus, no clean_up call neccessary. :return: None """ glBindVertexArray(self.VAO) glBindBuffer(GL_ARRAY_BUFFER, self.VBO) glBufferData(GL_ARRAY_BUFFER, self.vertices.nbytes, self.vertices, GL_DYNAMIC_DRAW) glBindVertexArray(0) glBindBuffer(GL_ARRAY_BUFFER, 0) # # quad position vertices (vertex attribute) # glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, self.vertices.itemsize * self.vertices_count, ctypes.c_void_p(0)) # glEnableVertexAttribArray(0) # # quad texture coords # glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, self.vertices.itemsize * self.vertices_count, ctypes.c_void_p(8)) # glEnableVertexAttribArray(1) # # self.model_loc = glGetUniformLocation(self.shader, "model") # self.color_loc = glGetUniformLocation(self.shader, "color") def draw(self): glUseProgram(self.shader) glBindVertexArray(self.VAO) glActiveTexture(GL_TEXTURE0) glBindTexture(GL_TEXTURE_2D, self.texture) # rotate, translate, and scale # model = glm.mat4(1.0) # model = glm.translate(model, self.position) # todo: this rotation smells fishy # model = glm.rotate(model, self.rotation_magnitude.x, self.rotation_axis) # model = glm.scale(model, self.scale) # glUniformMatrix4fv(self.model_loc, 1, GL_FALSE, glm.value_ptr(model)) glUniform4fv(self.color_loc, 1, glm.value_ptr(self.color)) glEnable(GL_BLEND) glDisable(GL_DEPTH_TEST) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) glDrawArrays(GL_TRIANGLE_STRIP, 0, self.vertices_count) glDisable(GL_BLEND) glEnable(GL_DEPTH_TEST) if self.text_box: self.text_box.draw() def update_text(self, text=None, color=None): self.text_box.update_text(text=text, color=color) def get_texture_coordinates_atlas(self): texture_coordinates = [ glm.vec2(0.0, 1.0), glm.vec2(0.0, 0.0), glm.vec2(1.0, 1.0), glm.vec2(1.0, 0.0) ] # texture atlas index into row and column indices column_index = float(self.atlas_coordinate % self.atlas_size) row_index = 1.0 - math.floor(self.atlas_coordinate / self.atlas_size) # row and column indices into lower and upper bounds of texture coords (4 total) # column (x-axis)lower and upper lower_texture_coord_x_axis = 1.0 / self.atlas_size * column_index upper_texture_coord_x_axis = 1.0 / self.atlas_size * (column_index + 1.0) # assuming square textures subtexture_magnitude = upper_texture_coord_x_axis - lower_texture_coord_x_axis lower_texture_coord_y_axis = 1.0 / self.atlas_size * row_index upper_texture_coord_y_axis = 1.0 / self.atlas_size * (row_index + 1.0) # update the current vertices' text coords for text_coord in texture_coordinates: text_coord[0] = \ lower_texture_coord_x_axis \ + text_coord[0] \ * subtexture_magnitude text_coord[1] = \ lower_texture_coord_y_axis \ + text_coord[1] \ * subtexture_magnitude return texture_coordinates def add_text_box(self, texture, text="DEFAULT TEXT", color=(1.0, 1.0, 1.0, 1.0), font_size=1.0, width=1.0, centered=True): self.text_box = TextBox( texture=texture, position=(self.position.x, self.position.y), scale=self.scale, screen_size=self.screen_size, context_id=self.context_id, text=text, font_size=font_size, width=self.scale[0]*2*width, color=glm.vec4(color), centered=centered, ) class Button(Element): """ Clickable GUI Elements """ def __init__( self, shader=None, texture=None, position=(0.0, 0.0), scale=(0.5, 0.5), screen_size=(800, 400), atlas_size=1, atlas_coordinate=(0, 0), click_function=None, context_id='default', color=(1.0, 1.0, 1.0, 1.0), position_mode='center', click_function_kwargs=None, ): """ :param shader: :param texture: :param position: tuple of length 3. :param scale: between 0 and 1, tuple of length 2 :param screen_size: OpenGL Window dimensions :param atlas_size: length of atlas (square atlas only) :param atlas_coordinate: texture atlas coordinate. tuple of 2 items :param click_function: function called upon click :param context_id: context for turning elements on/off :param color: pass vec4 color to shader :param position_mode: position by default is center. options: bottom_left, bottom_right, top_left, top_right :param click_function_kwargs: args to pass to function. """ position = list(position) if position_mode == 'center': pass elif position_mode == 'top_left': position[0] += scale[0] position[1] -= scale[1] elif position_mode == 'top_right': position[0] -= scale[0] position[1] -= scale[1] elif position_mode == 'bottom_left': position[0] += scale[0] position[1] += scale[1] elif position_mode == 'bottom_right': position[0] -= scale[0] position[1] += scale[1] super().__init__( shader=shader, texture=texture, position=position, scale=scale, screen_size=screen_size, atlas_size=atlas_size, atlas_coordinate=atlas_coordinate[0], context_id=context_id, color=color ) self.generate_bounds() self.click_function = click_function self.atlas_coordinate_on = atlas_coordinate[0] self.atlas_coordinate_off = atlas_coordinate[1] self.click_function_kwargs = click_function_kwargs def generate_bounds(self): """ Define vertical and horizontal limits that allow for testing if cursor is inside or outside of the button """ self.bounds = { 'vertical_lower': 1.0 - ((self.scale[1] + self.position[1]) * 0.5 + 0.5), 'vertical_upper': 1.0 - ((-1.0 * self.scale[1] + self.position[1]) * 0.5 + 0.5), 'horizontal_upper': (self.scale[0] + self.position[0]) * 0.5 + 0.5, 'horizontal_lower': (-1.0 * self.scale[0] + self.position[0]) * 0.5 + 0.5, } def check_mouse_hover(self, position_mouse): """ check if the mouse is inside this element :return: Bool """ # position_mouse.x = 0.475 # position_mouse.y = 0.049 if position_mouse.x < self.bounds['horizontal_upper'] \ and position_mouse.x > self.bounds['horizontal_lower'] \ and position_mouse.y > self.bounds['vertical_lower'] \ and position_mouse.y < self.bounds['vertical_upper']: return True else: return False def check_mouse_click(self, left_click): """ Check if the mouse is clicked while inside this element :return: """ return left_click def update(self, position_mouse, left_click=False, right_click=False): """ check for mouse input and react :return: """ if self.check_mouse_hover(position_mouse=position_mouse): self.atlas_coordinate = self.atlas_coordinate_off self.vertices = self.generate_vertices() # self.clean_up() # self.buffer_setup() self.replace_vertices() if self.check_mouse_click(left_click): if self.click_function: if self.click_function_kwargs: self.click_function(*list(self.click_function_kwargs.values())) else: self.click_function() else: print("WARNING: No click function!") else: self.atlas_coordinate = self.atlas_coordinate_on self.vertices = self.generate_vertices() # self.clean_up() # self.buffer_setup() self.replace_vertices() class Character(Element): """ Render a single quad with a given character """ def __init__( self, shader=None, texture=None, position=(0.0, 0.0), scale=(0.5, 0.5), screen_size=(800, 400), context_id='default', text=None, font_size=1.0, width=1.0, color=(1.0, 1.0, 1.0, 1.0), centered=False, ): """ :param shader: :param texture: :param position: :param scale: Not used here, but leftover from Element :param screen_size: Pixel Width, Height of screen :param context_id: For opening/closing GUI contexts :param text: The text to display :param font_size: Functions as multiplier. :param width: Width as fraction of screen [0.0, 1.0] """ if shader == None: shader_default = compileProgram( compileShader(vertex_src, GL_VERTEX_SHADER), compileShader(fragment_src, GL_FRAGMENT_SHADER) ) self.shader = shader_default else: self.shader = shader if texture == None: gui_textures = glGenTextures(2) load_texture("Textures/debug_diffuse_coordinates.png", gui_textures[0]) self.texture = gui_textures[0] else: self.texture = texture self.position = glm.vec2((position[0] - scale[0], position[1] + scale[1])) self.scale = scale self.screen_size = screen_size self.screen_size = screen_size self.context_id = context_id self.text = text self.font_size = font_size self.vertices_count = 4 self.color = glm.vec4(color) self.centered = centered self.characters = self.get_characters() self.width = width self.box_right = self.position.x + width self.vertices = self.generate_vertices() self.buffer_setup() def get_characters(self): file_font = open('C://Users//LENOVO//PycharmProjects//ProceduralMeshGeneration//Fonts//my_font.fnt', 'r') characters = dict() line_count = 0 for line in file_font: line = line[:-1] if line_count < 4: line_count += 1 continue else: line_as_list = line.split() line_type = line_as_list[0] line_values = line_as_list[1:] if line_type == 'kerning': break character_values = dict() for pair in line_values[1:]: pair = pair.split(sep='=') character_values[pair[0]] = int(pair[1]) char_id = line_values[0].split(sep='=')[1] characters[chr(int(char_id))] = character_values return characters def generate_vertices(self): char_info = self.characters[self.text] width = char_info['width']/512 height = char_info['height']/512 text_coords_upper_left = glm.vec2(char_info['x'], 1.0 - char_info['y'])/512 text_coords_upper_right = glm.vec2(text_coords_upper_left.x + width, text_coords_upper_left.y) text_coords_lower_right = glm.vec2(text_coords_upper_left.x + width, text_coords_upper_left.y - height) text_coords_lower_left = glm.vec2(text_coords_upper_left.x, text_coords_upper_left.y - height) text_coords = [text_coords_upper_left, text_coords_lower_left, text_coords_upper_right, text_coords_lower_right] #OpenGL Screen Coordinates go from -1,-1 (lower left) to 1,1 (upper right) return np.array( [ # upper left -1.0 * width * self.font_size + self.position[0], 1.0 * height * self.font_size + self.position[1], text_coords[0].x, text_coords[0].y, # lower left -1.0 * width * self.font_size + self.position[0], -1.0 * height * self.font_size + self.position[1], text_coords[1].x, text_coords[1].y, #upper right 1.0 * width * self.font_size + self.position[0], 1.0 * height * self.font_size + self.position[1], text_coords[2].x, text_coords[2].y, #lower right 1.0 * width * self.font_size + self.position[0], -1.0 * height * self.font_size + self.position[1], text_coords[3].x, text_coords[3].y, ], dtype=np.float32 ) class TextBox(Character): """ Much like Character, except takes a whole string and produces multiple quads -Uses OpenGL screen Coordinates, ie (-1,-1) in South West, (1,1) in North East -so a width of 2.0 would have text box cover whole screen """ def generate_vertices(self): vertices = [] vertices_line = [] self.box_left = self.position[0] box_center_horizontal = (self.box_right + self.box_left) / 2.0 position_initial = self.position.__copy__() text = self.text # for index, char in enumerate(text): index_char = 0 loop_count = 0 history = {} history_word = {} while index_char < len(text): # loop_count += 1 # if loop_count > 100: # break if index_char not in set(history.keys()): history[index_char] = 0 loop_count += 1 char = text[index_char] char_info = self.characters[char] width = (char_info['width'] / 512) height = (char_info['height'] / 512) x_offset = (char_info['xoffset'] / 512) y_offset = (char_info['yoffset'] / 512) x_advance = (char_info['xadvance'] / 512) text_coords_upper_left = glm.vec2(char_info['x'], 1.0 - char_info['y']) / 512 text_coords_upper_right = glm.vec2(text_coords_upper_left.x + width, text_coords_upper_left.y) text_coords_lower_right = glm.vec2(text_coords_upper_left.x + width, text_coords_upper_left.y - height) text_coords_lower_left = glm.vec2(text_coords_upper_left.x, text_coords_upper_left.y - height) text_coords = [text_coords_upper_left, text_coords_lower_left, text_coords_upper_right, text_coords_lower_right] width = (char_info['width'] / 512) * self.font_size height = (char_info['height'] / 512) * self.font_size x_offset = (char_info['xoffset'] / 512) * self.font_size y_offset = (char_info['yoffset'] / 512) * self.font_size x_advance = (char_info['xadvance'] / 512) * self.font_size upper_left = [(self.position[0] + x_offset), (self.position[1] - y_offset), text_coords[0].x, text_coords[0].y, ] lower_left = [(self.position[0] + x_offset), (self.position[1] - y_offset - height), text_coords[1].x, text_coords[1].y, ] upper_right = [(self.position[0] + width + x_offset), (self.position[1] - y_offset), text_coords[2].x, text_coords[2].y, ] lower_right = [(self.position[0] + width + x_offset), (self.position[1] - y_offset - height), text_coords[3].x, text_coords[3].y, ] positions = upper_left + lower_left + upper_right + lower_right + upper_right + lower_left vertices_line += positions self.position[0] += x_advance #Check if need newline and handle if self.position[0] > self.box_right: if char == ' ': self.position[0] = self.box_left self.position[1] -= 0.25 * self.font_size else: #if haven't tried newlining at this index yet index_back_check = index_char char_back_check = char while char_back_check != ' ': char_back_check = text[index_back_check] #remove char's quad vertices_line = vertices_line[:-4*6] #move onto previous char index_back_check -= 1 #go back to beginning of word index_char = index_back_check + 1 index_first_letter = index_char + 1 if index_first_letter in set(history_word.keys()): history_word[index_first_letter] += 1 else: history_word[index_first_letter] = 1 #move cursor down to next line, and to far left side if history_word[index_first_letter] <= 1: self.position[0] = self.box_left self.position[1] -= 0.25 * self.font_size else: #if we've already tried newlining this word, just have to split the word raise Exception(f'A word at index {index_first_letter} in the text is longer than the text box.') # index_char = index_char_original - 1 # self.position[0] = self.box_left # self.position[1] -= 0.25 * self.font_size if self.centered: self.center_text_horizontal(box_center_horizontal, vertices_line) vertices += vertices_line vertices_line.clear() self.vertices_count += 0 index_char += 1 self.position = position_initial if self.centered: self.center_text_horizontal(box_center_horizontal, vertices_line) vertices += vertices_line self.center_text_vertically(vertices, vertices_line) else: vertices += vertices_line return np.array( vertices, dtype=np.float32 ) def center_text_vertically(self, vertices, vertices_line): box_bottom = self.position.y - (self.scale[1] * 2) box_center_vertical = (self.position.y + box_bottom) / 2 text_center_vertical = (vertices[1] + vertices_line[-3]) / 2 shift = box_center_vertical - text_center_vertical for index, value in enumerate(vertices): if index % 4 == 1: vertices[index] += shift def center_text_horizontal(self, box_center_horizontal, vertices_line): text_center_horizontal = (vertices_line[0] + vertices_line[-8]) / 2.0 shift = box_center_horizontal - text_center_horizontal for index, value in enumerate(vertices_line): if index % 4 == 0: vertices_line[index] += shift def update_text(self, text=None, color=None): if text: self.text = text if color: self.color = glm.vec4(color) self.vertices = self.generate_vertices() # self.clean_up() # self.buffer_setup() self.replace_vertices() def draw(self): glUseProgram(self.shader) glBindVertexArray(self.VAO) glActiveTexture(GL_TEXTURE0) glBindTexture(GL_TEXTURE_2D, self.texture) # rotate, translate, and scale # model = glm.mat4(1.0) # model = glm.translate(model, self.position) # todo: this rotation smells fishy # model = glm.rotate(model, self.rotation_magnitude.x, self.rotation_axis) # model = glm.scale(model, self.scale) # glUniformMatrix4fv(self.model_loc, 1, GL_FALSE, glm.value_ptr(model)) glUniform4fv(self.color_loc, 1, glm.value_ptr(self.color)) glEnable(GL_BLEND) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) glDisable(GL_DEPTH_TEST) # glDrawArrays(GL_TRIANGLE_STRIP, 0, self.vertices_count) # glDrawArrays(GL_TRIANGLES, 0, self.vertices_count) glDrawArrays(GL_TRIANGLES, 0, int(len(self.vertices) / 3)) glDisable(GL_BLEND) glEnable(GL_DEPTH_TEST)
33,024
Python
.py
821
29.811206
152
0.575968
AlexSanfilippo/ProceduralMeshGeneration
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,317
SimplePhysics.py
AlexSanfilippo_ProceduralMeshGeneration/SimplePhysics.py
""" Anything physics-related that we are coding ourself (verses using a library like pybullet) """ from glm import vec3, normalize, vec4, dot import logging logger = logging.getLogger(__name__) logging.basicConfig() # logging.root.setLevel(logging.NOTSET) #Ray-plane intersection #given # ray_origin = vec3([10.0, 10.0, 10.0]) # ray_direction = normalize(vec3((0.0, -1.0, 0.0))) # plane = vec4(0.0, 1.0, 0.0, 0.0) # ray_origin = vec3((2.0, 3.0, 4.0)) # ray_direction = vec3((0.577, 0.577, 0.577)) # plane = vec4(1.0, 0.0, 0.0, -7.0) def find_intersection_ray_plane(ray_origin, ray_direction, plane): """ Find the intersection between a ray and plane created with reference to: https://education.siggraph.org/static/HyperGraph/raytrace/rayplane_intersection.htm :param ray_origin: origin of the ray :param ray_direction: NORMALIZED direction of the ray :param plane: defined as vec4(a,b,c,d), where abc are the normal, and d is the distance to (0,0,0) :return: """ point_intersection = vec3(0.0, 0.0, 0.0) ray_direction = normalize(ray_direction) unit_normal = plane.xyz V_d = dot(unit_normal, ray_direction) if V_d == 0: logger.info('Ray is parallel to the plane.') elif V_d > 0: logger.info('Ray is pointing away from the plane.') else: V_0 = -(dot(unit_normal, ray_origin) + plane.w) t = V_0 / V_d if t < 0: logger.info('Ray intersects plane behind origin, ie, no intersection of interest') else: point_intersection = ray_origin + ray_direction * t logger.info(f'{point_intersection=}') return point_intersection # find_intersection_ray_plane(ray_origin=ray_origin, ray_direction=ray_direction, plane=plane)
1,768
Python
.py
43
36.44186
114
0.674052
AlexSanfilippo/ProceduralMeshGeneration
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,318
Skybox.py
AlexSanfilippo_ProceduralMeshGeneration/Skybox.py
""" 17th July 2024 Following LearnOpenGL.com's tutorial on skyboxes and cubemaps """ from OpenGL.GL import * from TextureLoader import load_cube_map import numpy as np import glm from OpenGL.GL.shaders import compileProgram, compileShader vertex_src = """ #version 330 layout (location = 0) in vec3 aPos; out vec3 TexCoords; uniform mat4 projection; uniform mat4 view; void main() { TexCoords = aPos; vec4 pos = projection * view * vec4(aPos, 1.0); gl_Position = pos; } """ fragment_src = """ #version 330 out vec4 FragColor; in vec3 TexCoords; uniform samplerCube skybox; void main() { FragColor = texture(skybox, TexCoords); } """ class Skybox: """ Create a skybox using a cubemap textures: a list of 6 textures paths in the order: right, left, top, bottom, front, back """ def __init__(self, texture_paths, scale=1000): self.vertices = np.array( [ # positions -1.0, 1.0, -1.0, -1.0, -1.0, -1.0, 1.0, -1.0, -1.0, 1.0, -1.0, -1.0, 1.0, 1.0, -1.0, -1.0, 1.0, -1.0, -1.0, -1.0, 1.0, -1.0, -1.0, -1.0, -1.0, 1.0, -1.0, -1.0, 1.0, -1.0, -1.0, 1.0, 1.0, -1.0, -1.0, 1.0, 1.0, -1.0, -1.0, 1.0, -1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0, 1.0, -1.0, -1.0, -1.0, -1.0, 1.0, -1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0, 1.0, -1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, 1.0, -1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0, 1.0, 1.0, -1.0, 1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, 1.0, 1.0, -1.0, -1.0, 1.0, -1.0, -1.0, -1.0, -1.0, 1.0, 1.0, -1.0, 1.0, ], dtype=np.float32 ) * scale self.textures = self.create_cube_map(texture_paths) self.shader = self.create_shader() self.setup_buffers() def create_shader(self): shader = compileProgram( compileShader(vertex_src, GL_VERTEX_SHADER), compileShader(fragment_src, GL_FRAGMENT_SHADER) ) return shader def setup_buffers(self): self.VAO = glGenVertexArrays(1) glBindVertexArray(self.VAO) self.VBO = glGenBuffers(1) glBindBuffer(GL_ARRAY_BUFFER, self.VBO) glBufferData(GL_ARRAY_BUFFER, self.vertices.nbytes, self.vertices, GL_STATIC_DRAW) # position vertices (vertex attribute) glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, self.vertices.itemsize * 3, ctypes.c_void_p(0)) glEnableVertexAttribArray(0) def create_cube_map(self, texture_paths): textures = glGenTextures(1) paths = texture_paths load_cube_map(paths, textures) return textures def draw(self, view, projection): glUseProgram(self.shader) glBindVertexArray(self.VAO) glActiveTexture(GL_TEXTURE0) glBindTexture(GL_TEXTURE_CUBE_MAP, self.textures) proj_loc = glGetUniformLocation(self.shader, "projection") glUniformMatrix4fv(proj_loc, 1, GL_FALSE, projection) #remove translation view_no_transform = view.copy() view = np.array(glm.mat4x4(glm.mat3x3(glm.mat4x4(view_no_transform.transpose()))).to_list()) #view matrix to shader view_loc = glGetUniformLocation(self.shader, "view") glUniformMatrix4fv(view_loc, 1, GL_FALSE, view) glDrawArrays(GL_TRIANGLES, 0, int(len(self.vertices) / 3))
3,963
Python
.py
118
23.881356
103
0.517287
AlexSanfilippo/ProceduralMeshGeneration
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,319
FPSCounter.py
AlexSanfilippo_ProceduralMeshGeneration/FPSCounter.py
import glfw class FPSCounter: """ calculates frames per second and seconds per frame """ def __init__(self, frame_interval=100.0, spf_interval=10.0, mute=True): self.frame_interval = frame_interval self.refresh_time = True self.st = glfw.get_time() self.st_spf = glfw.get_time() self.frame_count = 0 self.seconds_per_frame = 1.0/260.0 self.spf_interval = spf_interval self.mute = mute self.fps = 10000.0 def update(self): if self.refresh_time: self.st = glfw.get_time() self.refresh_time = False self.frame_count += 1 if self.frame_count == self.frame_interval: self.refresh_time = True et = glfw.get_time() self.fps = self.frame_interval / (et - self.st) if not self.mute: print(self.fps, " FPS") self.frame_count = 0 return self.update_spf() def update_spf(self): if self.frame_count % self.spf_interval == 0: et = glfw.get_time() self.seconds_per_frame = (et - self.st_spf) / (self.spf_interval) self.st_spf = glfw.get_time() return self.seconds_per_frame def get_fps(self): return self.fps
1,292
Python
.py
36
26.611111
77
0.5704
AlexSanfilippo/ProceduralMeshGeneration
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,320
ProceduralMesh.py
AlexSanfilippo_ProceduralMeshGeneration/ProceduralMesh.py
""" 1st December, 2023 Classes for creation of basic proc-gen shapes. Shapes to create will be: -[V]Triangle -[V]Quad -[V]Cube -[V]Dynamic Size on cube using Dimensions [x,y,z] -[V]Proper control over scaling, rotation, and transposition -goal:rotating cube -[V]hard-code normals on cube -[V]refactor -put draw, init, etc. into PrimativeMesh class -new functions to set vertices and indices -these will be overridden in the children -----Stop here for proc jam, continue later -[V]Proper normal vector calculation -grab/rewrite my old code from primatives.h -properly lit rotating cube -[V]N-Sided Polygon -[V]N-sided Prism -[]N-sided pyramid -[]Sphere -[]Ellipsoid -[]Torus -for now, need some basic shapes for procjam 2023. Will start with triangle, quad, and cube -for all meshes, we will assume they have -position, texture coordinate, and normal vector as vertex info -specular and diffuse textures -use indexed drawing (indices and vertices) """ import gc import glfw import glm from OpenGL.GL import * from OpenGL.GL.shaders import compileProgram, compileShader from TextureLoader import load_texture import pyrr import numpy as np import math from math import sin, cos, pi, sqrt, floor, ceil from random import random import random as r vertex_src = """ # version 330 layout(location = 0) in vec3 a_position; layout(location = 1) in vec2 a_texture; layout(location = 2) in vec3 a_normal; uniform mat4 model; uniform mat4 projection; uniform mat4 view; out vec2 tex_coords; //texture coordinates out vec3 normal; out vec3 frag_pos; void main() { tex_coords = a_texture; frag_pos = vec3(model * vec4(a_position, 1.0)); normal = mat3(transpose(inverse(model))) * a_normal; gl_Position = projection * view * vec4(frag_pos, 1.0); } """ fragment_src = """ #version 330 core out vec4 frag_color; struct Material { sampler2D diffuse; sampler2D specular; float shininess; }; struct DirLight { vec3 direction; vec3 ambient; vec3 diffuse; vec3 specular; }; struct PointLight { vec3 position; float constant; float linear; float quadratic; vec3 ambient; vec3 diffuse; vec3 specular; }; struct SpotLight { vec3 position; vec3 direction; float cut_off; float outer_cut_off; float constant; float linear; float quadratic; vec3 ambient; vec3 diffuse; vec3 specular; }; #define NR_POINT_LIGHTS 1 in vec3 frag_pos; in vec3 normal; in vec2 tex_coords; uniform vec3 view_pos; uniform DirLight dir_light; uniform PointLight point_lights[NR_POINT_LIGHTS]; uniform SpotLight spot_light; uniform Material material; // function prototypes vec3 CalcDirLight(DirLight light, vec3 normal, vec3 view_dir); vec3 CalcPointLight(PointLight light, vec3 normal, vec3 frag_pos, vec3 view_dir); vec3 CalcSpotLight(SpotLight light, vec3 normal, vec3 frag_pos, vec3 view_dir); void main() { // properties vec3 norm = normalize(normal); vec3 view_dir = normalize(view_pos - frag_pos); // == ===================================================== // Our lighting is set up in 3 phases: directional, point lights and an optional flashlight // For each phase, a calculate function is defined that calculates the corresponding color // per lamp. In the main() function we take all the calculated colors and sum them up for // this fragment's final color. // == ===================================================== vec3 result; // phase 1: directional lighting result = CalcDirLight(dir_light, norm, view_dir); // phase 2: point lights for(int i = 0; i < NR_POINT_LIGHTS; i++) result += CalcPointLight(point_lights[i], norm, frag_pos, view_dir); // phase 3: spot light //result += CalcSpotLight(spot_light, norm, frag_pos, view_dir); frag_color = vec4(result, 1.0); } // calculates the color when using a directional light. vec3 CalcDirLight(DirLight light, vec3 normal, vec3 view_dir) { vec3 light_dir = normalize(-light.direction); // diffuse shading float diff = max(dot(normal, light_dir), 0.0); // specular shading vec3 reflect_dir = reflect(-light_dir, normal); float spec = pow(max(dot(view_dir, reflect_dir), 0.0), material.shininess); // combine results vec3 ambient = light.ambient * vec3(texture(material.diffuse, tex_coords)); vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, tex_coords)); vec3 specular = light.specular * spec * vec3(texture(material.specular, tex_coords)); return (ambient + diffuse + specular); } // calculates the color when using a point light. vec3 CalcPointLight(PointLight light, vec3 normal, vec3 frag_pos, vec3 view_dir) { vec3 light_dir = normalize(light.position - frag_pos); // diffuse shading float diff = max(dot(normal, light_dir), 0.0); // specular shading vec3 reflect_dir = reflect(-light_dir, normal); float spec = pow(max(dot(view_dir, reflect_dir), 0.0), material.shininess); // attenuation float distance = length(light.position - frag_pos); float attenuation = 1.0 / (light.constant + light.linear * distance + light.quadratic * (distance * distance)); // combine results vec3 ambient = light.ambient * vec3(texture(material.diffuse, tex_coords)); vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, tex_coords)); vec3 specular = light.specular * spec * vec3(texture(material.specular, tex_coords)); ambient *= attenuation; diffuse *= attenuation; specular *= attenuation; return (ambient + diffuse + specular); } // calculates the color when using a spot light. vec3 CalcSpotLight(SpotLight light, vec3 normal, vec3 frag_pos, vec3 view_dir) { vec3 light_dir = normalize(light.position - frag_pos); //view_dir = vec3(0.0, -1.0, 0.0); //tp // diffuse shading float diff = max(dot(normal, light_dir), 0.0); // specular shading vec3 reflect_dir = reflect(-light_dir, normal); float spec = pow(max(dot(view_dir, reflect_dir), 0.0), material.shininess); // attenuation float distance = length(light.position - frag_pos); float attenuation = 1.0 / (light.constant + light.linear * distance + light.quadratic * (distance * distance)); // spotlight intensity float theta = dot(light_dir, normalize(-light.direction)); float epsilon = light.cut_off - light.outer_cut_off; float intensity = clamp((theta - light.outer_cut_off) / epsilon, 0.0, 1.0); // combine results vec3 ambient = light.ambient * vec3(texture(material.diffuse, tex_coords)); vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, tex_coords)); vec3 specular = light.specular * spec * vec3(texture(material.specular, tex_coords)); ambient *= attenuation * intensity; diffuse *= attenuation * intensity; specular *= attenuation * intensity; return (ambient + diffuse + specular); } """ def serialize_faces(func): """ Convert vertices of our model from our abstract Faces format to serialized data (a Numpy array) that OpenGL can draw. :return: numpy array of vertices (position, texture, and normals) """ def inner(*args, **kwargs): faces = func(*args, **kwargs) vertices = [] for face in faces: vertices += face.face_to_list() faces = np.array( vertices, dtype=np.float32 ).flatten() return faces return inner class PrimativeMesh: """ abstract parent of all primative meshes -draws quad by default """ def __init__(self, shader, # material properties diffuse, specular, shininess=32.0, # mesh properties dimensions=(5.0, 5.0), position=(0.0, 0.0, 0.0), rotation_magnitude=(0, 0, 0), rotation_axis=(0.0, 0.0, 1.0), scale=(1.0, 1.0, 1.0), ): self.model_loc = None self.VAO = None self.VBO = None self.shader = shader self.diffuse = diffuse self.specular = specular self.shininess = shininess self.position = glm.vec3(position) self.rotation_magnitude = glm.vec3(rotation_magnitude) self.rotation_axis = glm.vec3(rotation_axis) self.scale = glm.vec3(scale) self.dimensions = dimensions self.vertices = self.generate_vertices() self.buffer_setup() def buffer_setup(self): # quad VAO self.VAO = glGenVertexArrays(1) glBindVertexArray(self.VAO) self.VBO = glGenBuffers(1) glBindBuffer(GL_ARRAY_BUFFER, self.VBO) glBufferData(GL_ARRAY_BUFFER, self.vertices.nbytes, self.vertices, GL_STATIC_DRAW) # quad position vertices (vertex attribute) glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, self.vertices.itemsize * 8, ctypes.c_void_p(0)) glEnableVertexAttribArray(0) # quad texture coords glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, self.vertices.itemsize * 8, ctypes.c_void_p(12)) glEnableVertexAttribArray(1) # quad normals glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, self.vertices.itemsize * 8, ctypes.c_void_p(20)) glEnableVertexAttribArray(2) self.model_loc = glGetUniformLocation(self.shader, "model") def clean_up(self): """ Trying to resolve memory leaks :return: """ glDeleteVertexArrays(1, [self.VAO]) glDeleteBuffers(1, [self.VBO]) def generate_vertices(self): return np.array([ 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 0.0, 1.0, 0.0, 0.0, 0.0, 1.0], dtype=np.float32 ) def draw(self, view): glUseProgram(self.shader) glBindVertexArray(self.VAO) glActiveTexture(GL_TEXTURE0) glBindTexture(GL_TEXTURE_2D, self.diffuse) glActiveTexture(GL_TEXTURE1) glBindTexture(GL_TEXTURE_2D, self.specular) # rotate, translate, and scale model = glm.mat4(1.0) model = glm.translate(model, self.position) # todo: this rotation smells fishy model = glm.rotate(model, self.rotation_magnitude.x, self.rotation_axis) model = glm.scale(model, self.scale) glUniformMatrix4fv(self.model_loc, 1, GL_FALSE, glm.value_ptr(model)) glDrawArrays(GL_TRIANGLES, 0, int(len(self.vertices) / 3)) def set_diffuse(self, diffuse): self.diffuse = diffuse def set_specular(self, specular): self.specular = specular def get_diffuse(self): return self.diffuse def get_specular(self): return self.specular def get_position(self): return self.position def set_position(self, position): self.position = position # self.translation = pyrr.matrix44.create_from_translation(pyrr.Vector3(self.position)) def set_rotation_magnitude(self, magnitude): self.rotation_magnitude = magnitude def rotate_over_time(self, speed=0.5, axis=1): """ my_model.rotate_over_time(speed=0.1) :param speed: how fast to spin :param axis: x,y,z == 0,1,2 :return: None """ self.rotation_magnitude[axis] = speed * glfw.get_time() def extrude_from_other_face(self, other, direction=[0.0, 1.0, 0.0], distance=1.0, flip_base=True, radius=1.0): """ just copy outer vertices, then run outer_Vertices_to_vertices() Very different from (and likely outmoding) Face's method of same name :param other: starting face :param direction: normal vector to extrude in direcion of :param distance: multiply direction by for magnitude of extrude :param flip_base: turn starting face around :param radius: (only if position == world origin) scale face :return: a new face in a list """ face_extruded = Face() face_extruded.outer_vertices = other.outer_vertices.copy() face_extruded.calculate_sides() face_extruded.vertices = self.outer_vertices_to_vertices(face=face_extruded, number_of_sides=face_extruded.sides, reverse_texture_coords=True) face_extruded.normal = face_extruded.calculate_normal() if flip_base: pass return face_extruded def outer_vertices_to_vertices(self, face, number_of_sides, reverse_texture_coords=False): """ Generates the real vertices (with normals, texture coords) of a face :param reverse_texture_coords: reverse order of list of position vertices :param face: the face we want to generate vertices for. must have its outer vertices already :param number_of_sides: eg, 4 for square, 5 for pentagon :return: the vertices to be drawn by opengl """ # texture_coordinates = face.generate_texture_coordinates_polygon() texture_coordinates = face.generate_texture_coordinates_polygon() if reverse_texture_coords: texture_coordinates.reverse() vertices = [] texture_index = 1 for i in range(int(number_of_sides) - 2): triangle_vertices = [Vertex(), Vertex(), Vertex()] triangle_vertices[0].positions = glm.vec3( [ face.outer_vertices[0], face.outer_vertices[1], face.outer_vertices[2] ] ) triangle_vertices[0].texture_coordinates = glm.vec2( [ texture_coordinates[0].x, texture_coordinates[0].y ] ) triangle_vertices[0].normals = glm.vec3([0.0, 1.0, 0.0]) triangle_vertices[1].positions = glm.vec3([ face.outer_vertices[3 * i + 0 + 3 * 1], face.outer_vertices[3 * i + 1 + 3 * 1], face.outer_vertices[3 * i + 2 + 3 * 1] ]) triangle_vertices[1].texture_coordinates = glm.vec2([ texture_coordinates[texture_index].x, texture_coordinates[texture_index].y ]) triangle_vertices[1].normals = glm.vec3([0.0, 1.0, 0.0]) triangle_vertices[2].positions = glm.vec3([ face.outer_vertices[3 * i + 0 + 3 * 2], face.outer_vertices[3 * i + 1 + 3 * 2], face.outer_vertices[3 * i + 2 + 3 * 2] ]) triangle_vertices[2].texture_coordinates = glm.vec2([ texture_coordinates[texture_index + 1].x, texture_coordinates[texture_index + 1].y ]) triangle_vertices[2].normals = glm.vec3([0.0, 1.0, 0.0]) for vertex in triangle_vertices: vertex.normals = calculate_normal([ triangle_vertices[0].positions, triangle_vertices[1].positions, triangle_vertices[2].positions ]) vertices += triangle_vertices texture_index += 1 return vertices def _generate_polygonal_face( self, number_of_sides, radius=1.0, transform_x=1.0, transform_z=1.0, offset=(0.0, -1.0, 0.0) ): face = Face() face.outer_vertices = self.generate_outer_vertices( number_of_sides=number_of_sides, initial_angle=pi / number_of_sides, radius=radius, transform_x=transform_x, transform_z=transform_z, ) face.offset_outer_vertices(offset=glm.vec3(offset)) face.vertices = face.outer_vertices_to_vertices(reverse_texture_coordinates=True) return face def _generate_irregular_polygonal_face( self, number_of_sides, radii=1.0, transform_x=1.0, transform_z=1.0, offset=(0.0, -1.0, 0.0) ): face = Face() face.outer_vertices = self.generate_outer_vertices( number_of_sides=number_of_sides, initial_angle=pi / number_of_sides, radius=radii, transform_x=transform_x, transform_z=transform_z, ) face.offset_outer_vertices(offset=glm.vec3(offset)) face.vertices = face.outer_vertices_to_vertices(reverse_texture_coordinates=True) return face def generate_outer_vertices( self, number_of_sides=4, initial_angle=None, radius=1.0, transform_x=1.0, transform_z=1.0, ): """ generates the vertices of a simple polygon-no repeats used for excuding and stitching, not for drawing """ outer_vertices = [] angle_of_rotation = 2 * pi / number_of_sides if initial_angle == None: initial_angle = pi / number_of_sides if type(radius) is list: for i in range(1, int(number_of_sides) + 1): x_coord = cos(initial_angle + angle_of_rotation * -i) * radius[i - 1] * transform_x z_coord = sin(initial_angle + angle_of_rotation * -i) * radius[i - 1] * transform_z outer_vertices += [x_coord, 0.0, z_coord] else: for i in range(1, int(number_of_sides) + 1): x_coord = cos(initial_angle + angle_of_rotation * -i) * radius * transform_x z_coord = sin(initial_angle + angle_of_rotation * -i) * radius * transform_z outer_vertices += [x_coord, 0.0, z_coord] return outer_vertices def bevel_cut(self, original_face, bevel_depths=[-0.2, -0.4], border_sizes=[0.6, 0.0], depth=2, direction=False): """ Cuts an n-sided hole, offsets a new face, and stitches to create a connected-depression :bevel_depths: how much to push the excude in/out (negative for in) :border_sizes: elm of (0,1), 0 means no border, aka, cut is same size as original polygonal face :return: list of new faces. new normal-facing face (bottom face) is at index [:-(nsides + 1)] TODO: -Refactoring for neatness/clarity -wrong texture coords for irregular convex polygons """ if depth == 0: return [original_face] original_face.calculate_radius() radius = original_face.radius updated_faces = [] test_cut_face = Face() original_outer_vertices = list_to_vec3_list(original_face.outer_vertices) for i in range(depth): # 1. cut a similar polygon from the starting face cut_outer_vertices = [] for point in original_outer_vertices: mean_outer_point = calculate_mean_point(original_outer_vertices) border_direction = glm.normalize(mean_outer_point - point) border_diagonal_length = radius * border_sizes[i] cut_point = point + border_direction * border_diagonal_length cut_outer_vertices.append(cut_point) # 2. build new face uses new outer vertices test_cut_face.outer_vertices = vec3_list_to_list(cut_outer_vertices) test_cut_face.calculate_sides() test_cut_face.calculate_outer_vertices_as_vec3() if direction == False: face_normal = calculate_normal([ test_cut_face.outer_vertices_vec3[0], test_cut_face.outer_vertices_vec3[1], test_cut_face.outer_vertices_vec3[2]] ) else: face_normal = direction test_cut_face.offset_outer_vertices(offset=face_normal * bevel_depths[i]) test_cut_face.vertices = test_cut_face.outer_vertices_to_vertices( reverse_texture_coordinates=True, regular=False, ) if i == depth - 1: updated_faces.append(test_cut_face) # 3. stitch old faces to new face updated_faces += self.stitch_faces(original_face, test_cut_face, test_cut_face.sides) # 4. new face becomes "original" in preperation for next loop original_face.outer_vertices = test_cut_face.outer_vertices original_face.vertices = test_cut_face.vertices original_face.calculate_radius() radius = original_face.radius original_outer_vertices = list_to_vec3_list(test_cut_face.outer_vertices.copy()) return updated_faces def bevel_polygon_corner(self, face, subject_vertex_index=0, bevel_ratio=0.5): """ Takes in a face, transforms outer vertices of polygon by beveling a corner -use case: base polygon before excude :subject_vertex_index: index of outer vertex to bevel :bevel_ratio: domain [0,1]. :return: the modified face """ older_outer_vertices = list_to_vec3_list(face.outer_vertices.copy()) subject_vertex = older_outer_vertices[subject_vertex_index] number_of_sides = len(older_outer_vertices) forward_vertex = older_outer_vertices[get_next_index(number_of_sides, subject_vertex_index)] backward_vertex = older_outer_vertices[get_previous_index(number_of_sides, subject_vertex_index)] forward_new_point = subject_vertex - bevel_ratio * (subject_vertex - forward_vertex) backward_new_point = subject_vertex - bevel_ratio * (subject_vertex - backward_vertex) updated_outer_vertices = older_outer_vertices.copy() del updated_outer_vertices[subject_vertex_index] updated_outer_vertices.insert(subject_vertex_index, forward_new_point) updated_outer_vertices.insert(subject_vertex_index, backward_new_point) face.outer_vertices = vec3_list_to_list(updated_outer_vertices) self.sides += 1 return face def pyrimidize_face(self, original_face, center_point_offset=0.0): """ Changes how an N-sided face is divided into triangles. Using a center point, and two corner points, N triangles are created for the faces. :param original_face: face to transform into N new faces :param center_point_offset: :return: N faces """ # get normal of the face original_face.calculate_outer_vertices_as_vec3() original_face.normal = original_face.calculate_normal() original_normal = original_face.normal # calculate center of original face original_outer_vertices_as_vec3s = original_face.outer_vertices_vec3 center_point = calculate_mean_point(original_outer_vertices_as_vec3s) # adjust center by the normal and center_point_offset center_point += original_normal * center_point_offset # construct the N new triangles outer vertices original_face.calculate_sides() num_sides = original_face.sides original_outer_vertices_as_vec3s = original_face.outer_vertices_vec3 new_triangles_outer_vertices = [] for index, original_outer_vertex in enumerate(original_outer_vertices_as_vec3s): triangle_vertices = [] next_index = index + 1 if index == num_sides - 1: next_index = 0 triangle_vertices += [original_outer_vertices_as_vec3s[next_index], center_point, original_outer_vertex] new_triangles_outer_vertices.append(triangle_vertices) # create N new faces (using outer vertices) triangle_faces = [] for index in range(num_sides): triangle_faces.append(Face()) # -convert vec3 outers into list outers triangle_faces[index].outer_vertices = vec3_list_to_list(new_triangles_outer_vertices[index]) triangle_faces[index].outer_vertices_vec3 = new_triangles_outer_vertices[index] # generate vertices of N new faces. # triangle_faces[index].vertices = triangle_faces[index].outer_vertices triangle_faces[index].vertices = triangle_faces[index].outer_vertices_to_vertices() triangle_faces[index].apply_hardset_triangle_texture_coords() # return the N new quad faces return triangle_faces # make n new triangular faces def divide_face_into_quads(self, original_face, center_point_offset=0.0): """ subdivide a face into quads. each new quad has as its vertices 2 midpoints, 1 corner, and the center of the original face. Only works on quad faces? :param original_face: a face object :param center_point_offset: move center along face normal :return: 4 new faces """ # get normal of the face original_face.calculate_outer_vertices_as_vec3() original_face.normal = original_face.calculate_normal() original_normal = original_face.normal # calculate center of original face original_outer_vertices_as_vec3s = original_face.outer_vertices_vec3 center_point = calculate_mean_point(original_outer_vertices_as_vec3s) # adjust center by the normal and center_point_offset center_point += original_normal * center_point_offset # find the N midpoints (N = number of sides of face polygon) original_face.calculate_sides() num_sides = original_face.sides midpoints = [glm.vec3(0.0, 0.0, 0.0)] * num_sides for index in range(num_sides): overflowing_index = 1 if index == num_sides - 1: overflowing_index = -index midpoints[index] = calculate_mean_point( [original_outer_vertices_as_vec3s[index], original_outer_vertices_as_vec3s[index + overflowing_index] ] ) # construct the N quads outer vertices. all_quads_outer_vertices = [] for index, outer_point in enumerate(original_outer_vertices_as_vec3s): current_quad_outer_vertices = [] if index > 0: backwards_midpoint_index = index - 1 else: backwards_midpoint_index = num_sides - 1 current_quad_outer_vertices.append(outer_point) current_quad_outer_vertices.append(midpoints[index]) current_quad_outer_vertices.append(center_point) current_quad_outer_vertices.append(midpoints[backwards_midpoint_index]) current_quad_outer_vertices = rotate_list(current_list=current_quad_outer_vertices, steps=-index) all_quads_outer_vertices.append(current_quad_outer_vertices) # create N new faces (using outer vertices) quad_faces = [] for index in range(num_sides): quad_faces.append(Face()) # -convert vec3 outers into list outers quad_faces[index].outer_vertices = vec3_list_to_list(all_quads_outer_vertices[index]) quad_faces[index].outer_vertices_vec3 = all_quads_outer_vertices[index] # generate vertices of N new faces. quad_faces[index].vertices = quad_faces[index].outer_vertices_to_vertices() # (option) fix texture coords of N new faces # quad_faces[index].apply_hardset_quad_texture_coords(sides=4) # return the N new quad faces return quad_faces def bezier_cut(self, face, intervals=0, offset=0): """ Constructs a bevel curve from the outer vertices of a quad-face, and uses the curve to cut a hole in the face, creating two new faces :param face: :param iterations: :return: list of faces """ face.calculate_outer_vertices_as_vec3() original_face_normal = face.calculate_normal() from collections import deque d = deque(face.outer_vertices_vec3) d.rotate(2) d.reverse() control_points = list(d) bezier_points = bezier_cubic(points=control_points, intervals=intervals) vertices_border = [] outer_vertices_cut = [] even_odd_index = 0 if intervals % 2 == 0: even_odd_index = 1 # first triangle vertices_border.append(face.outer_vertices_vec3[0]) vertices_border.append(face.outer_vertices_vec3[1]) vertices_border.append(bezier_points[1]) midpoint = len(bezier_points) / 2 midpoint_indices = [math.floor(midpoint), math.ceil(midpoint)] # for index, bezier_point in enumerate(bezier_points[1:midpoint_indices[1]+1]): for index, bezier_point in enumerate(bezier_points[1:midpoint_indices[even_odd_index]]): vertices_border.append(bezier_point) vertices_border.append(bezier_points[index + 2]) vertices_border.append(face.outer_vertices_vec3[0]) # keystone_triangle (even vertices case) vertices_border.append(bezier_points[midpoint_indices[even_odd_index]]) vertices_border.append(face.outer_vertices_vec3[3]) vertices_border.append(face.outer_vertices_vec3[0]) for index, bezier_point in enumerate(bezier_points[midpoint_indices[even_odd_index]:-1]): vertices_border.append(bezier_point) vertices_border.append(bezier_points[index + midpoint_indices[even_odd_index] + 1]) vertices_border.append(face.outer_vertices_vec3[3]) proper_vertices = [] for point in vertices_border: current_vertex = Vertex() current_vertex.positions = point current_vertex.texture_coordinates = calculate_texture_coordinates_from_control_points( point=point, control_points=control_points ) current_vertex.normals = original_face_normal proper_vertices.append(current_vertex) face.vertices = proper_vertices """Now do the cut's vertices""" # cut saved into a new face face_cut = Face() face_cut.outer_vertices = vec3_list_to_list([point - original_face_normal * offset for point in bezier_points]) midpoint_base = calculate_mean_point([bezier_points[0], bezier_points[intervals + 1]]) vertices_cut = [] for index, bezier_point in enumerate(bezier_points[:intervals + 1]): vertices_cut.append(midpoint_base - original_face_normal * offset) vertices_cut.append(bezier_points[index + 1] - original_face_normal * offset) vertices_cut.append(bezier_point - original_face_normal * offset) vertices_cut_proper = [] for point in vertices_cut: current_vertex = Vertex() current_vertex.positions = point current_vertex.texture_coordinates = calculate_texture_coordinates_from_control_points( point=point, control_points=control_points ) current_vertex.normals = original_face_normal vertices_cut_proper.append(current_vertex) face_cut.vertices = vertices_cut_proper faces_inner_arch = [] if offset != 0: face_cut_pre_offset = Face() face_cut_pre_offset.outer_vertices = vec3_list_to_list(bezier_points) return [face, face_cut] + self.stitch_faces(face_cut, face_cut_pre_offset, intervals + 2) return [face, face_cut] def stitch_faces(self, face_a, face_b, number_of_faces): """ takes two (geometrically same) Faces and forms a prism-like mesh by connecting them with quadrilaterals :returns: a list of faces """ faces = [] for side in range(int(number_of_faces)): face = Face() if side == number_of_faces - 1: face.outer_vertices = [ face_b.outer_vertices[side * 3 + 0], face_b.outer_vertices[side * 3 + 1], face_b.outer_vertices[side * 3 + 2], face_a.outer_vertices[side * 3 + 0], face_a.outer_vertices[side * 3 + 1], face_a.outer_vertices[side * 3 + 2], face_a.outer_vertices[0 * 3 + 0], face_a.outer_vertices[0 * 3 + 1], face_a.outer_vertices[0 * 3 + 2], face_b.outer_vertices[0 * 3 + 0], face_b.outer_vertices[0 * 3 + 1], face_b.outer_vertices[0 * 3 + 2], ] else: face.outer_vertices = [ face_b.outer_vertices[side * 3 + 0], face_b.outer_vertices[side * 3 + 1], face_b.outer_vertices[side * 3 + 2], face_a.outer_vertices[side * 3 + 0], face_a.outer_vertices[side * 3 + 1], face_a.outer_vertices[side * 3 + 2], face_a.outer_vertices[side * 3 + 3], face_a.outer_vertices[side * 3 + 4], face_a.outer_vertices[side * 3 + 5], face_b.outer_vertices[side * 3 + 3], face_b.outer_vertices[side * 3 + 4], face_b.outer_vertices[side * 3 + 5], ] # face.vertices = self.outer_vertices_to_vertices(face, 4) face.vertices = face.outer_vertices_to_vertices(reverse_texture_coordinates=True) faces.append(face) return faces def subdivide_hip_roof(self, face, start_point=[0.5, 0.2], end_point=[0.5, 0.8], vertical_offset=0.0): """ divides (quad) face into 2 quads and 2 triangle faces, like the triangular "hip" roof of a house todo:fix texture coords :return: list of faces: two square, two triangular """ original_outer_vertices = face.outer_vertices.copy() operatable_outer_vertices = original_outer_vertices.copy() operatable_outer_vertices_vec3 = list_to_vec3_list(operatable_outer_vertices) # make sure original face has all required attributes face.calculate_outer_vertices_as_vec3() face.normal = face.calculate_normal() original_normal = face.normal original_outer_vertices_as_vec3s = face.outer_vertices_vec3 face.calculate_sides() # calculate the start and end points of the center line center_line_start_point = (operatable_outer_vertices_vec3[1] + start_point[0] * ( operatable_outer_vertices_vec3[0] - operatable_outer_vertices_vec3[1]) + start_point[1] * ( operatable_outer_vertices_vec3[2] - operatable_outer_vertices_vec3[1]) + vertical_offset * face.normal) center_line_end_point = (operatable_outer_vertices_vec3[1] + end_point[0] * ( operatable_outer_vertices_vec3[0] - operatable_outer_vertices_vec3[1]) + end_point[1] * ( operatable_outer_vertices_vec3[2] - operatable_outer_vertices_vec3[1]) + vertical_offset * face.normal) # generate outer vertices of new quad faces roof_faces = [] quad_base_points = [ [0, 3, center_line_start_point, center_line_end_point], [2, 1, center_line_end_point, center_line_start_point] ] for base_points in quad_base_points: current_outer_vertices = [] current_outer_vertices.append(original_outer_vertices_as_vec3s[base_points[0]]) current_outer_vertices.append(base_points[2]) current_outer_vertices.append(base_points[3]) current_outer_vertices.append(original_outer_vertices_as_vec3s[base_points[1]]) new_face = Face() new_face.outer_vertices_vec3 = current_outer_vertices new_face.outer_vertices = vec3_list_to_list(current_outer_vertices) new_face.vertices = new_face.outer_vertices_to_vertices() new_face.apply_hardset_quad_texture_coords() roof_faces.append(new_face) triangle_base_points = [[1, 0, center_line_start_point], [3, 2, center_line_end_point]] for i in range(2): current_outer_vertices = [] current_outer_vertices.append(original_outer_vertices_as_vec3s[triangle_base_points[i][0]]) current_outer_vertices.append(triangle_base_points[i][2]) current_outer_vertices.append(original_outer_vertices_as_vec3s[triangle_base_points[i][1]]) new_face = Face() new_face.outer_vertices_vec3 = current_outer_vertices new_face.outer_vertices = vec3_list_to_list(current_outer_vertices) new_face.vertices = new_face.outer_vertices_to_vertices() # todo:fix these triangle faces outer vertices new_face.apply_hardset_triangle_texture_coords() roof_faces.append(new_face) return roof_faces def subdivide_quad_lengthwise(self, face, subdivisions=2, widthwise=False): """ Takes in a quadrillateral face and divides it into subfaces along the length of the face :return: list of faces todo: the widthwise option rotates and distorts the texture -need a way to do widthwise that does not rely on rotating the list naively """ original_outer_vertices = face.outer_vertices.copy() operatable_outer_vertices = original_outer_vertices.copy() if widthwise: operatable_outer_vertices = rotate_list(current_list=operatable_outer_vertices, steps=3) # todo: rotate back at the end -necc? if subdivisions in (0, 1): return [face] updated_faces = [] # make sure original face has all required attributes face.calculate_outer_vertices_as_vec3() face.normal = face.calculate_normal() original_normal = face.normal original_outer_vertices_as_vec3s = face.outer_vertices_vec3 face.calculate_sides() # find the N-subdivisions points along the length sides operatable_outer_vertices_vec3 = list_to_vec3_list(operatable_outer_vertices) side_top = [operatable_outer_vertices_vec3[0], operatable_outer_vertices_vec3[3]] side_bottom = [operatable_outer_vertices_vec3[1], operatable_outer_vertices_vec3[2]] outer_vertices_top = bezier_linear(points=side_top, intervals=subdivisions) outer_vertices_bottom = bezier_linear(points=side_bottom, intervals=subdivisions) # generate outer vertices of new faces subdivision_faces = [] subdivision_index = 0 while len(subdivision_faces) < subdivisions: subdivision_face = Face() subdivision_outer_vertices = [ outer_vertices_top[subdivision_index], outer_vertices_bottom[subdivision_index], outer_vertices_bottom[subdivision_index + 1], outer_vertices_top[subdivision_index + 1] ] subdivision_outer_vertices = rotate_list(current_list=subdivision_outer_vertices, steps=-1) subdivision_face.outer_vertices_vec3 = subdivision_outer_vertices subdivision_face.outer_vertices = vec3_list_to_list(subdivision_outer_vertices) subdivision_face.vertices = subdivision_face.outer_vertices_to_vertices() subdivision_face.normal = face.normal subdivision_faces.append(subdivision_face) subdivision_index += 1 updated_faces += subdivision_faces return updated_faces class PrimativeMeshEmission(PrimativeMesh): """ Version of primative mesh that redefines draw() method to allow for emission texture. """ def __init__( self, shader, # material properties diffuse, specular, emission, shininess=32.0, # mesh properties dimensions=[5.0, 5.0], position=[0.0, 0.0, 0.0], rotation_magnitude=(0.0, 0.0, 0.0), rotation_axis=(0.0, 0.0, 1.0), scale=(1.0, 1.0, 1.0), ): super().__init__( shader=shader, # material properties diffuse=diffuse, specular=specular, shininess=shininess, # mesh properties dimensions=dimensions, position=position, rotation_magnitude=glm.vec3(rotation_magnitude), rotation_axis=glm.vec3(rotation_axis), scale=glm.vec3(scale), ) self.emission = emission def clean_up(self): """ Trying to resolve memory leaks :return: """ glDeleteVertexArrays(1, [self.VAO]) glDeleteBuffers(1, [self.VBO]) del self.vertices del self.VAO del self.VBO gc.collect() def draw(self, view): glUseProgram(self.shader) glBindVertexArray(self.VAO) glActiveTexture(GL_TEXTURE0) glBindTexture(GL_TEXTURE_2D, self.diffuse) glActiveTexture(GL_TEXTURE1) glBindTexture(GL_TEXTURE_2D, self.specular) glActiveTexture(GL_TEXTURE2) glBindTexture(GL_TEXTURE_2D, self.emission) # rotate, translate, and scale model = glm.mat4(1.0) model = glm.translate(model, glm.vec3(self.position)) model = glm.rotate(model, self.rotation_magnitude.x, glm.vec3([1.0, 0.0, 0.0])) model = glm.rotate(model, self.rotation_magnitude.y, glm.vec3([0.0, 1.0, 0.0])) model = glm.rotate(model, self.rotation_magnitude.z, glm.vec3([0.0, 0.0, 1.0])) model = glm.scale(model, self.scale) glUniformMatrix4fv(self.model_loc, 1, GL_FALSE, glm.value_ptr(model)) glDrawArrays(GL_TRIANGLES, 0, int(len(self.vertices) / 3)) def set_diffuse(self, diffuse): self.diffuse = diffuse def set_specular(self, specular): self.specular = specular def set_emission(self, emission): self.emission = emission class Spaceship(PrimativeMeshEmission): cardinal_directions = { 'down': [1.0, 0.0, 0.0], 'up': [1.0, 0.0, 0.0], 'port': [0.0, 0.0, 1.0], 'starboard': [0.0, 0.0, -1.0], 'forward': [0.0, 1.0, 0.0], 'backward': [0.0, -1.0, 0.0], } def __init__( self, shader, # material properties diffuse, specular, emission, shininess=32.0, # mesh properties dimensions=[5.0, 5.0], position=[0.0, 0.0, 0.0], rotation_magnitude=0, rotation_axis=glm.vec3([0.0, 0.0, 1.0]), scale=glm.vec3([1.0, 1.0, 1.0]), number_of_sides=4, number_of_segments=4, transform_x=1.0, transform_z=1.0, length_of_segment=1.0, radius=1.0, seed=1, ): self.number_of_sides = number_of_sides self.number_of_segments = number_of_segments self.transform_x = transform_x self.transform_z = transform_z self.length_of_segment = length_of_segment self.radius = radius self.seed = seed r.seed(self.seed) super().__init__( shader=shader, # material properties diffuse=diffuse, specular=specular, shininess=shininess, emission=emission, # mesh properties dimensions=dimensions, position=position, rotation_magnitude=rotation_magnitude, rotation_axis=rotation_axis, scale=scale, ) @property def texture_atlas_size(self): return 2 def get_radius_multipliers(self): """ Produces a list of radius multipliers to determine the ships overall shape :return: """ RADIUS_MAX = self.radius * (0.1029 * self.number_of_segments) + self.radius RADIUS_MIN = self.radius * (0.0294 * self.number_of_segments) + 0.5 control_point_count = self.number_of_segments #set control point radii control_points = [] control_points_relative = [] last_point = self.radius for index in range(control_point_count): if index > 0: last_point = control_points[index-1] control_points.append((random() * (RADIUS_MAX - RADIUS_MIN) + RADIUS_MIN)) control_points_relative.append(control_points[index] / last_point) return control_points_relative def export_as_obj(self, filename=None): r.seed(self.seed) faces = self.generate_faces() vertices_obj = [] faces_obj = [] count_vertices_mesh = 0 if not filename: filename = f'spaceship_{self.number_of_sides}_{self.seed}' with open(f'{filename}.obj', 'w') as file: file.write('#OBJ File generated by Spaceship Generator\n#Alexander Sanfilippo 2024\n') file.write(f'g {filename}\n\n') file.write(f'o spaceship\n') for face in faces: faces_current = [] counter = 0 for vertex in face.vertices: count_vertices_mesh += 1 vertices_obj.append(vertex) if counter == 2: face_triangle = [] for i in list(reversed(range(3))): face_triangle.append(count_vertices_mesh - i) faces_current.append(face_triangle) counter = 0 else: counter += 1 for face_current in faces_current: faces_obj.append(face_current) for vertex in vertices_obj: file.write(f'v {vertex.positions.x} {vertex.positions.y} {vertex.positions.z}\n') # file.write('\n') for vertex in vertices_obj: file.write(f'vt {vertex.texture_coordinates.x} {vertex.texture_coordinates.y}\n') # file.write('\n') for vertex in vertices_obj: file.write(f'vn {vertex.normals.x} {vertex.normals.y} {vertex.normals.z}\n') # file.write('\n') # write the faces to the file for face in faces_obj: file.write('f') for vertex in face: file.write(f' {vertex}/{vertex}/{vertex}') file.write('\n') @serialize_faces def generate_vertices(self): return self.generate_faces() def generate_faces(self): """ Where the mesh is generated, vertex by vertex. :return: """ faces = [ self._generate_polygonal_face( number_of_sides=self.number_of_sides, radius=self.radius, transform_x=self.transform_x, transform_z=self.transform_z, ) ] faces[0].update_texture_coords_using_atlas_index( texture_atlas_index=1, texture_atlas_size=self.texture_atlas_size, ) # generate the latter faces via extruding segment_faces = [] radius_multipliers = self.get_radius_multipliers() for i in range(self.number_of_segments): face_extruded = Face() radius_multiplier_current_segment = radius_multipliers[i] face_extruded.extrude_from_other_face( other=faces[i], direction=list(faces[i].calculate_normal()), distance=self.length_of_segment, flip_base=True, scale=radius_multiplier_current_segment ) faces.append(face_extruded) faces_from_stitch = self.stitch_faces( face_a=faces[i], face_b=faces[i + 1], number_of_faces=self.number_of_sides ) segment_faces += faces_from_stitch faces[-1].update_texture_coords_using_atlas_index( texture_atlas_index=3, texture_atlas_size=self.texture_atlas_size, ) faces += self.generate_thrusters(face=faces[-1]) faces += self.add_detail_to_faces(faces_to_alter=segment_faces) faces += self.generate_nose(face=faces[0]) del faces[0] return faces def generate_thrusters(self, face): thruster_faces = self.bevel_cut( original_face=face, bevel_depths=[self.length_of_segment * 0.25, 0.0, self.length_of_segment * -0.5], border_sizes=[-0.25, 0.25, 0.5], depth=3 ) # texturing thruster_backend = thruster_faces.pop(-(self.number_of_sides + 1)) thruster_backend.update_texture_coords_using_atlas_index( texture_atlas_size=self.texture_atlas_size, texture_atlas_index=4, ) for face in thruster_faces: face.update_texture_coords_using_atlas_index( texture_atlas_size=self.texture_atlas_size, texture_atlas_index=2, ) return thruster_faces + [thruster_backend] def generate_nose(self, face): faces_nose = [] face_nose_tip = Face() face_nose_tip.extrude_from_other_face( other=face, direction=list(-face.calculate_normal()), distance=self.length_of_segment * (0.25 + random() * 1.25), scale=random() * .2 + .1, ) faces_from_stitch = self.stitch_faces( face_a=face_nose_tip, face_b=face, number_of_faces=self.number_of_sides ) face_nose_tip.calculate_outer_vertices_as_vec3() face_nose_tip.outer_vertices_vec3.reverse() face_nose_tip.outer_vertices = vec3_list_to_list(face_nose_tip.outer_vertices_vec3) face_nose_tip.vertices = face_nose_tip.outer_vertices_to_vertices( reverse_texture_coordinates=True, ) # texturing # todo:reenable face_nose_tip.update_texture_coords_using_atlas_index( texture_atlas_size=self.texture_atlas_size, texture_atlas_index=1, ) for face in faces_from_stitch: face.update_texture_coords_using_atlas_index( texture_atlas_size=self.texture_atlas_size, texture_atlas_index=2, ) # return new faces faces_nose += [face_nose_tip] + faces_from_stitch return faces_nose def determine_radius( self, i, number_of_segments, radius_multiplier, minimum_radius_multipler, maximum_radius_multipler, growth=1.25, shrinkage=0.5, ): if i < floor(random() * 7): radius_multiplier = min(growth * radius_multiplier, maximum_radius_multipler) else: if radius_multiplier > 1.0: radius_multiplier = 1.0 radius_multiplier = max(shrinkage * radius_multiplier, minimum_radius_multipler) return radius_multiplier def add_detail_to_faces(self, faces_to_alter): """ Goes around faces of segmented cylindar and replaces plain quads with detailed meshes :param faces_to_alter: :return: """ if self.number_of_sides % 3 == 0: symmetry_type = 'triangular' elif self.number_of_sides % 2 == 0 and self.number_of_sides != 10: symmetry_type = 'square' else: symmetry_type = 'irregular' instructions_per_segment = [] for index_segment in range(self.number_of_segments): if symmetry_type == 'square': number_of_pairs = int(self.number_of_sides / 2) instructions_per_pair = [] for i in range(number_of_pairs): instructions_per_pair.append(random()) instructions_per_segment.append(instructions_per_pair) elif symmetry_type == 'triangular': number_of_triplets = int(self.number_of_sides / 3) instructions_per_pair = [] for i in range(number_of_triplets): instructions_per_pair.append(random()) instructions_per_segment.append(instructions_per_pair) else: instructions_per_segment.append((random(),) * self.number_of_sides) faces_altered = [] faces_unaltered = [] for index_segment in range(self.number_of_segments): faces_paired = {} if symmetry_type == 'square': number_of_pairs = int(self.number_of_sides / 2) for index_pair in range(number_of_pairs): if self.number_of_sides == 8: if index_pair == 1 or index_pair == 3: faces_paired[index_pair] = [ faces_to_alter[index_segment * self.number_of_sides + index_pair], faces_to_alter[index_segment * self.number_of_sides + index_pair + number_of_pairs] ] elif index_pair == 0: faces_paired[index_pair] = [ faces_to_alter[index_segment * self.number_of_sides + index_pair], faces_to_alter[index_segment * self.number_of_sides + 6] ] else: faces_paired[index_pair] = [ faces_to_alter[index_segment * self.number_of_sides + 4], faces_to_alter[index_segment * self.number_of_sides + 2] ] else: faces_paired[index_pair] = [ faces_to_alter[index_segment * self.number_of_sides + index_pair], faces_to_alter[index_segment * self.number_of_sides + index_pair + number_of_pairs] ] faces_altered_local, faces_unaltered_local = self.detail_faces_by_instruction( faces_altered=faces_altered, index_segment=index_segment, instructions_per_segment=instructions_per_segment, faces_paired=faces_paired[index_pair], index_instruction=index_pair, ) faces_altered += faces_altered_local faces_unaltered += faces_unaltered_local if symmetry_type == 'triangular': number_of_triplets = int(self.number_of_sides / 3) for index_pair in range(number_of_triplets): faces_paired[index_pair] = [ faces_to_alter[index_segment * self.number_of_sides + index_pair], faces_to_alter[index_segment * self.number_of_sides + index_pair + number_of_triplets], faces_to_alter[index_segment * self.number_of_sides + index_pair + number_of_triplets * 2], ] faces_altered_local, faces_unaltered_local = self.detail_faces_by_instruction( faces_altered=faces_altered, index_segment=index_segment, instructions_per_segment=instructions_per_segment, faces_paired=faces_paired[index_pair], index_instruction=index_pair, ) faces_altered += faces_altered_local faces_unaltered += faces_unaltered_local if symmetry_type == 'irregular': for index_side in range(self.number_of_sides): faces_altered_local, faces_unaltered_local = self.detail_faces_by_instruction( faces_altered=faces_altered, index_segment=index_segment, instructions_per_segment=instructions_per_segment, faces_paired=[faces_to_alter[index_side + index_segment * self.number_of_sides]], index_instruction=index_side, ) faces_altered += faces_altered_local faces_unaltered += faces_unaltered_local # todo: texturing should happen within detail-applying-functions. for face in faces_unaltered: face.update_texture_coords_using_atlas_index( texture_atlas_index=0, texture_atlas_size=self.texture_atlas_size, ) return faces_altered + faces_unaltered def add_detail_recursive_extrude(self, face, bevel_depths, border_sizes): first_extrusion = self.extrude_and_stitch(face=face, scale=1.0, distance=floor(self.length_of_segment * 0.25)) faces_updated = [] for face_current in first_extrusion: faces_one_bevel = self.bevel_cut( original_face=face_current, bevel_depths=bevel_depths[1:2], border_sizes=border_sizes[1:2], depth=1 ) faces_one_bevel[0].update_texture_coords_using_atlas_index( texture_atlas_index=1, texture_atlas_size=self.texture_atlas_size, ) for face in faces_one_bevel: face.update_texture_coords_using_atlas_index( texture_atlas_index=2, texture_atlas_size=self.texture_atlas_size, ) faces_updated += faces_one_bevel return faces_updated def add_detail_intake(self, face): local_faces_altered = self.bevel_cut( original_face=face, depth=1, bevel_depths=[self.length_of_segment * 0.2], border_sizes=[0.0] ) intake_index = 2 intake_faces = [local_faces_altered[intake_index]] intake_faces_altered = [] for face in intake_faces: intake_faces_altered += self.bevel_cut( original_face=face, depth=2, bevel_depths=[0.0, -self.length_of_segment * 0.3], border_sizes=[0.15, 0.5] ) del local_faces_altered[intake_index] for face in local_faces_altered: face.update_texture_coords_using_atlas_index( texture_atlas_index=2, texture_atlas_size=self.texture_atlas_size, ) for face in intake_faces_altered: face.update_texture_coords_using_atlas_index( texture_atlas_index=1, texture_atlas_size=self.texture_atlas_size ) intake_faces_altered[-5].update_texture_coords_using_atlas_index( texture_atlas_index=3, texture_atlas_size=self.texture_atlas_size ) return local_faces_altered + intake_faces_altered def detail_faces_by_instruction( self, faces_altered, index_segment, instructions_per_segment, faces_paired, index_instruction, ): local_faces_altered = [] local_faces_unaltered = [] for face in faces_paired: if instructions_per_segment[index_segment][index_instruction] < 0.25: # pass local_faces_altered += self.add_detail_cubbies(face) elif instructions_per_segment[index_segment][index_instruction] < 0.5: local_faces_altered += self.add_detail_pyrimide(face) elif instructions_per_segment[index_segment][index_instruction] < 0.73: local_faces_altered += self.add_detail_recursive_extrude( face, bevel_depths=[0.4, 0.33], border_sizes=[0.0, 0.5] ) for face in local_faces_altered: if math.isnan(face.outer_vertices[0]): print('outer vertex is nan!') elif instructions_per_segment[index_segment][index_instruction] < 0.75: local_faces_altered += self.add_detail_intake( face, ) elif instructions_per_segment[index_segment][index_instruction] < 0.9: faces_special_bevel = self.bevel_cut( original_face=face, bevel_depths=[0.0, -0.5], border_sizes=[0.25, 0.0], depth=2, ) faces_special_bevel[-5].update_texture_coords_using_atlas_index(texture_atlas_index=3, texture_atlas_size=self.texture_atlas_size) for face in faces_special_bevel[:-5]: face.update_texture_coords_using_atlas_index(texture_atlas_index=2, texture_atlas_size=self.texture_atlas_size) for face in faces_special_bevel[-4:]: face.update_texture_coords_using_atlas_index(texture_atlas_index=2, texture_atlas_size=self.texture_atlas_size) local_faces_altered += faces_special_bevel else: local_faces_unaltered += [face] return local_faces_altered, local_faces_unaltered def add_detail_pyrimide(self, face): current_stitch_faces = [] faces_altered_local = [] current_stitch_faces += self.pyrimidize_face(original_face=face, center_point_offset=2.5) faces_altered_local += current_stitch_faces for face in faces_altered_local: face.update_texture_coords_using_atlas_index( texture_atlas_index=2, texture_atlas_size=self.texture_atlas_size ) return faces_altered_local def add_detail_cubbies(self, face): current_stitch_faces = [] current_stitch_faces += self.subdivide_quad_lengthwise(face=face, subdivisions=2, widthwise=True) faces_altered_local = [] for new_stitch_face in current_stitch_faces: faces_current_cubby = self.bevel_cut( original_face=new_stitch_face, bevel_depths=[-0.33], border_sizes=[0.5], depth=1, ) faces_current_cubby[0].update_texture_coords_using_atlas_index( texture_atlas_index=3, # todo: change to 1 texture_atlas_size=self.texture_atlas_size ) for face in faces_current_cubby[1:]: face.update_texture_coords_using_atlas_index( texture_atlas_index=2, texture_atlas_size=self.texture_atlas_size, ) faces_altered_local += faces_current_cubby return faces_altered_local def extrude_and_stitch(self, face, number_of_faces=4, distance=1, scale=1.0): current_stitch_faces = [] face.calculate_outer_vertices_as_vec3() face_extrude = Face() face_normal = face.calculate_normal() face_extrude.extrude_from_other_face(other=face, direction=face_normal, distance=distance, scale=scale) current_stitch_faces += [face_extrude] current_stitch_faces += self.stitch_faces(face_a=face, face_b=face_extrude, number_of_faces=number_of_faces) return current_stitch_faces class Spaceship3x3(Spaceship): @property def texture_atlas_size(self): return 3 class Polygon(PrimativeMesh): """ Generates an N-sided Polygonal face """ def __init__(self, shader, diffuse, specular, shininess=32.0, dimensions=[5.0, 5.0], position=[0.0, 0.0, 0.0], rotation_magnitude=0, rotation_axis=glm.vec3([0.0, 0.0, 1.0]), scale=glm.vec3([1.0, 1.0, 1.0]), sides=3, transform_x=1.0, transform_z=1.0, ): self.sides = sides self.transform_x = transform_x self.transform_z = transform_z super().__init__( shader=shader, diffuse=diffuse, specular=specular, shininess=shininess, dimensions=dimensions, position=position, rotation_magnitude=rotation_magnitude, rotation_axis=rotation_axis, scale=scale, ) def generate_vertices(self): """ Generates the outer vertices and vertices of the triangle of this model """ face = self._generate_polygonal_face( number_of_sides=self.sides, transform_x=self.transform_x, transform_z=self.transform_z, ) vertices = face.face_to_list() return np.array( vertices, dtype=np.float32 ).flatten() class PolygonIrregular(Polygon): def __init__( self, shader, diffuse, specular, shininess=32.0, dimensions=[5.0, 5.0], position=[0.0, 0.0, 0.0], rotation_magnitude=0, rotation_axis=glm.vec3([0.0, 0.0, 1.0]), scale=glm.vec3([1.0, 1.0, 1.0]), sides=3, transform_x=1.0, transform_z=1.0, radii=1.0, ): self.radii = radii super().__init__( shader=shader, diffuse=diffuse, specular=specular, shininess=shininess, dimensions=dimensions, position=position, rotation_magnitude=rotation_magnitude, rotation_axis=rotation_axis, scale=scale, sides=sides, transform_x=transform_x, transform_z=transform_z, ) def generate_vertices(self): """ Generates the outer vertices and vertices of the triangle of this model """ face = self._generate_irregular_polygonal_face( number_of_sides=self.sides, transform_x=self.transform_x, transform_z=self.transform_z, radii=self.radii, ) vertices = face.face_to_list() return np.array( vertices, dtype=np.float32 ).flatten() class QuadMesh(PrimativeMesh): pass class TriangleMesh(PrimativeMesh): """ simple equilateral triangle. oriented with normal in the Z+ direction, lying upon XY Plane, at origin """ def generate_vertices(self): top_vertex_angle = math.pi / 2.0 return np.array([ self.dimensions[0] * math.cos(top_vertex_angle), self.dimensions[0] * math.sin(top_vertex_angle), 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, self.dimensions[0] * math.cos(top_vertex_angle + 2.0 * math.pi / 3.0), self.dimensions[0] * math.sin(top_vertex_angle + 2.0 * math.pi / 3.0), 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, self.dimensions[0] * math.cos(top_vertex_angle + 4.0 * math.pi / 3.0), self.dimensions[0] * math.sin(top_vertex_angle + 4.0 * math.pi / 3.0), 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, ], dtype=np.float32 ) class CubeMeshStatic(PrimativeMesh): """ Gives us a cube mesh, but does not proc-gen the cube using our face-and-excude system my_cube = primatives.CubeMesh( shader=shader, diffuse=tile_textures[0], specular=tile_textures[1], shininess=32.0, position=[0.0, 0.0, 10.0], dimensions=[1.0, 3.0, 5.0], rotation_axis=[0.5, 1.0, 0.1] ) How to draw: view = active_cam.get_view_matrix() my_cube.draw(view=view) """ def generate_vertices(self): return np.array([ # Z- facing -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 0.0, 0.0, 0.0, -1.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 1.0, 1.0, 0.0, 0.0, -1.0, 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 1.0, 0.0, 0.0, 0.0, -1.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 1.0, 1.0, 0.0, 0.0, -1.0, -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 0.0, 0.0, 0.0, -1.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 1.0, 0.0, 0.0, -1.0, # Z+ facing -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.0, 0.0, 0.0, 0.0, 1.0, 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 0.0, 0.0, 0.0, 1.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 1.0, 0.0, 0.0, 1.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 1.0, 0.0, 0.0, 1.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.0, 1.0, 0.0, 0.0, 1.0, -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.0, 0.0, 0.0, 0.0, 1.0, # X- facing -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 1.0, -1.0, 0.0, 0.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 1.0, -1.0, 0.0, 0.0, -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 0.0, -1.0, 0.0, 0.0, -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 0.0, -1.0, 0.0, 0.0, -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 0.0, -1.0, 0.0, 0.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 1.0, -1.0, 0.0, 0.0, # X+ facing 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 1.0, 1.0, 0.0, 1.0, 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 0.0, 1.0, 0.0, 1.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 1.0, 1.0, 0.0, 1.0, 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 0.0, 1.0, 0.0, 1.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 1.0, 1.0, 0.0, 1.0, 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 0.0, 1.0, 0.0, 1.0, # Y- facing -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 1.0, 0.0, -1.0, 0.0, 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 1.0, 1.0, 0.0, -1.0, 0.0, 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 0.0, 0.0, -1.0, 0.0, 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 0.0, 0.0, -1.0, 0.0, -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.0, 0.0, 0.0, -1.0, 0.0, -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 1.0, 0.0, -1.0, 0.0, # Y+ facing -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 1.0, 0.0, 1.0, 0.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 0.0, 0.0, 1.0, 0.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 1.0, 1.0, 0.0, 1.0, 0.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 0.0, 0.0, 1.0, 0.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 1.0, 0.0, 1.0, 0.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.0, 0.0, 0.0, 1.0, 0.0, ], dtype=np.float32 ) class Skybox(PrimativeMesh): def generate_vertices(self): return np.array([ # Z- facing 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 1.0, 0.0, 0.0, 0.0, -1.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 1.0, 1.0, 0.0, 0.0, -1.0, -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 0.0, 0.0, 0.0, -1.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 1.0, 0.0, 0.0, -1.0, -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 0.0, 0.0, 0.0, -1.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 1.0, 1.0, 0.0, 0.0, -1.0, # Z+ facing 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 1.0, 0.0, 0.0, 1.0, 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 0.0, 0.0, 0.0, 1.0, -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.0, 0.0, 0.0, 0.0, 1.0, -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.0, 0.0, 0.0, 0.0, 1.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.0, 1.0, 0.0, 0.0, 1.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 1.0, 0.0, 0.0, 1.0, # X- facing -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 0.0, -1.0, 0.0, 0.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 1.0, -1.0, 0.0, 0.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 1.0, -1.0, 0.0, 0.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 1.0, -1.0, 0.0, 0.0, -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 0.0, -1.0, 0.0, 0.0, -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 0.0, -1.0, 0.0, 0.0, # X+ facing 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 1.0, 1.0, 0.0, 1.0, 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 0.0, 1.0, 0.0, 1.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 1.0, 1.0, 0.0, 1.0, 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 0.0, 1.0, 0.0, 1.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 1.0, 1.0, 0.0, 1.0, 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 0.0, 1.0, 0.0, 1.0, # Y- facing 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 0.0, 0.0, -1.0, 0.0, 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 1.0, 1.0, 0.0, -1.0, 0.0, -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 1.0, 0.0, -1.0, 0.0, -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 1.0, 0.0, -1.0, 0.0, -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.0, 0.0, 0.0, -1.0, 0.0, 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 0.0, 0.0, -1.0, 0.0, # Y+ facing 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 1.0, 1.0, 0.0, 1.0, 0.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 0.0, 0.0, 1.0, 0.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 1.0, 0.0, 1.0, 0.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.0, 0.0, 0.0, 1.0, 0.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 1.0, 0.0, 1.0, 0.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 1.0, 0.0, 0.0, 1.0, 0.0,], dtype=np.float32 ) class SkyboxEmission(PrimativeMeshEmission): def generate_vertices(self): return np.array([ # Z+ facing 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.75, 0.34, 0.0, 0.0, -1.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.75, 0.66, 0.0, 0.0, -1.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 1.0, 0.66, 0.0, 0.0, -1.0, 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.75, 0.34, 0.0, 0.0, -1.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 1.0, 0.66, 0.0, 0.0, -1.0, -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 1.0, 0.34, 0.0, 0.0, -1.0, # Z- facing 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.5, 0.66, 0.0, 0.0, 1.0, 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.5, 0.34, 0.0, 0.0, 1.0, -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.25, 0.34, 0.0, 0.0, 1.0, -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.25, 0.34, 0.0, 0.0, 1.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.25, 0.66, 0.0, 0.0, 1.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.5, 0.66, 0.0, 0.0, 1.0, # X- facing -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 0.34, -1.0, 0.0, 0.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 0.66, -1.0, 0.0, 0.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.25, 0.66, -1.0, 0.0, 0.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.25, 0.66, -1.0, 0.0, 0.0, -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.25, 0.34, -1.0, 0.0, 0.0, -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.0, 0.34, -1.0, 0.0, 0.0, # X+ facing 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.5, 0.34, 1.0, 0.0, 1.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.5, 0.66, 1.0, 0.0, 1.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.75, 0.66, 1.0, 0.0, 1.0, 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.5, 0.34, 1.0, 0.0, 1.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.75, 0.66, 1.0, 0.0, 1.0, 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.75, 0.34, 1.0, 0.0, 1.0, # Y- facing 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.5, 0.333, 0.0, -1.0, 0.0, #e 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.5, 0.0, 0.0, -1.0, 0.0, #b -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.25, 0.0, 0.0, -1.0, 0.0, #c -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.25, 0.0, 0.0, -1.0, 0.0, #c -1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.25, 0.333, 0.0, -1.0, 0.0, #a 1.0 * self.dimensions[0], -1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.5, 0.333, 0.0, -1.0, 0.0, #e # Y+ facing 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.5, 1.0, 0.0, 1.0, 0.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.5, 0.667, 0.0, 1.0, 0.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.25, 1.0, 0.0, 1.0, 0.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.25, 0.667, 0.0, 1.0, 0.0, -1.0 * self.dimensions[0], 1.0 * self.dimensions[1], -1.0 * self.dimensions[2], 0.25, 1.0, 0.0, 1.0, 0.0, 1.0 * self.dimensions[0], 1.0 * self.dimensions[1], 1.0 * self.dimensions[2], 0.5, 0.667, 0.0, 1.0, 0.0, ], dtype=np.float32 ) class FloorTileMesh(PrimativeMesh): """ generates a basic floor-tile for our little proc-gen roguelike """ def __init__(self, shader, # material properties diffuse, specular, shininess=32.0, # mesh properties dimensions=[5.0, 5.0], position=[0.0, 0.0, 0.0], rotation_magnitude=0, rotation_axis=glm.vec3([0.0, 0.0, 1.0]), scale=glm.vec3([1.0, 1.0, 1.0]), ): self.shader = shader self.diffuse = diffuse self.specular = specular self.shininess = shininess self.position = position self.rotation_magnitude = glm.vec3(rotation_magnitude) self.rotation_axis = glm.vec3(rotation_axis) self.scale = glm.vec3(scale) self.dimensions = dimensions self.texture_horizontal_offset = [0.0, 0.0] self.texture_vertical_offset = [0.0, 0.0] self.vertices = self.generate_vertices() # quad VAO self.VAO = glGenVertexArrays(1) glBindVertexArray(self.VAO) self.VBO = glGenBuffers(1) glBindBuffer(GL_ARRAY_BUFFER, self.VBO) glBufferData(GL_ARRAY_BUFFER, self.vertices.nbytes, self.vertices, GL_STATIC_DRAW) # quad position vertices (vertex attribute) glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, self.vertices.itemsize * 8, ctypes.c_void_p(0)) glEnableVertexAttribArray(0) # quad texture coords glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, self.vertices.itemsize * 8, ctypes.c_void_p(12)) glEnableVertexAttribArray(1) # quad normals glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, self.vertices.itemsize * 8, ctypes.c_void_p(20)) glEnableVertexAttribArray(2) self.model_loc = glGetUniformLocation(self.shader, "model") def generate_vertices(self): # todo: seperate position from texture coord and normal # then zip-up at then end # todo: excude base # todo: stitch two bases together (Get a prism) # todo: make new tile class, based on this one, that will # 1. outline points for a new base ontop of the floor # 2. excude upwards # 3. stitch together to get a wall # todo: organize by surface # a new class that holds vertices of a flat, polygonal surface # cut a hole in the surface, re-stitch the triangles # excude from a hole # bezier curved-holes should be final touch # focus on cutting, excuding, bevel(cut + excude + fill) radius = self.dimensions[0] number_of_sides = 4.0 initial_angle = pi / number_of_sides angle_of_rotation = 2 * pi / number_of_sides vertices = [] faces = [] faces.append(Face()) faces[0].outer_vertices = self.generate_outer_vertices(number_of_sides=number_of_sides, initial_angle=initial_angle) faces[0].offset_outer_vertices(offset=glm.vec3([0.0, -1.0, 0.0])) faces[0].vertices = self.outer_vertices_to_vertices(number_of_sides=number_of_sides, face=faces[0]) faces[0].apply_hardset_quad_texture_coords() # generate the second face via exude faces.append(Face()) faces[1].extrude_from_other_face(other=faces[0], direction=[0.0, 1.0, 0.0], distance=self.dimensions[1]) # generate the 4 vertical faces faces += self.stitch_faces(face_a=faces[0], face_b=faces[1], number_of_faces=number_of_sides) vertices = [] for face in faces: vertices += face.face_to_list() return np.array(vertices, dtype=np.float32 ).flatten() def generate_outer_vertices(self, number_of_sides=4, initial_angle=None): """ generates the vertices of a simple polygon-no repeats used for excuding and stitching, not for drawing """ outer_vertices = [] angle_of_rotation = 2 * pi / number_of_sides if initial_angle == None: initial_angle = pi / number_of_sides for i in range(1, int(number_of_sides) + 1): x_coord = cos(initial_angle + angle_of_rotation * -i) * self.dimensions[0] z_coord = sin(initial_angle + angle_of_rotation * -i) * self.dimensions[0] outer_vertices += [x_coord, 0.0, z_coord] return outer_vertices def outer_vertices_to_vertices(self, face, number_of_sides): """ Generates the real vertices (with normals, texture coords) of a face from the outer vertices :param face: the face we want to generate vertices for. must have its outer vertices already :param number_of_sides: eg, 4 for square, 5 for pentagon :return: the vertices to be drawn by opengl """ vertices = [] for i in range(int(number_of_sides) - 2): triangle_vertices = [Vertex(), Vertex(), Vertex()] triangle_vertices[0].positions = glm.vec3([ face.outer_vertices[0], face.outer_vertices[1], face.outer_vertices[2] ]) triangle_vertices[0].texture_coordinates = glm.vec2([ face.outer_vertices[0] / 2.0 + 0.5, face.outer_vertices[2] / 2.0 + 0.5 ]) triangle_vertices[0].normals = glm.vec3([0.0, 1.0, 0.0]) triangle_vertices[1].positions = glm.vec3([ face.outer_vertices[3 * i + 0 + 3 * 1], face.outer_vertices[3 * i + 1 + 3 * 1], face.outer_vertices[3 * i + 2 + 3 * 1] ]) triangle_vertices[1].texture_coordinates = glm.vec2([ face.outer_vertices[3 * i + 0 + 3 * 1] / 2.0 + 0.5, face.outer_vertices[3 * i + 2 + 3 * 1] / 2.0 + 0.5 ]) triangle_vertices[1].normals = glm.vec3([0.0, 1.0, 0.0]) triangle_vertices[2].positions = glm.vec3([ face.outer_vertices[3 * i + 0 + 3 * 2], face.outer_vertices[3 * i + 1 + 3 * 2], face.outer_vertices[3 * i + 2 + 3 * 2] ]) triangle_vertices[2].texture_coordinates = glm.vec2([ face.outer_vertices[3 * i + 0 + 3 * 2] / 2.0 + 0.5, face.outer_vertices[3 * i + 2 + 3 * 2] / 2.0 + 0.5 ]) triangle_vertices[2].normals = glm.vec3([0.0, 1.0, 0.0]) for vertex in triangle_vertices: vertex.normals = calculate_normal([ triangle_vertices[0].positions, triangle_vertices[1].positions, triangle_vertices[2].positions ]) vertices += triangle_vertices return vertices class Face: """ convert Face into a 1-dimensional numpy array that opengl can draw """ def __init__(self, vertices=[], outer_vertices=[]): self.vertices = vertices self.outer_vertices = outer_vertices # non-repeating vertices, to use for extruding, stitching, etc self.tile_width = 2.0 # TODO: make this a parameter self.texture_horizontal_offset = [0.0, 0.0] self.texture_vertical_offset = [0.0, 0.0] self.normal = glm.vec3([0.0, 1.0, 0.0]) self.outer_vertices_vec3 = None self.radius = 1.0 # todo calculate this from outer_vertices or something self.sides = 0 self.texture_atlas_index = 0 def calculate_sides(self): self.calculate_outer_vertices_as_vec3() self.sides = len(self.outer_vertices_vec3) def offset_vertices_all(self, offset=glm.vec3([0.0, 0.0, 0.0])): """ offset the outer vertices and inner vertices :return: None """ self.offset_outer_vertices(offset=offset) for vertex in self.vertices: vertex.positions += offset def calculate_normal(self, reverse=False): """ uses outer vertices to calculate normal. :return: glm.vec3 representing the normal to this face's plane """ try: triangle = [ self.outer_vertices_vec3[0], self.outer_vertices_vec3[1], self.outer_vertices_vec3[2] ] if reverse: triangle = [ self.outer_vertices_vec3[0], self.outer_vertices_vec3[2], self.outer_vertices_vec3[1] ] normal = calculate_normal( triangle ) except TypeError: self.calculate_outer_vertices_as_vec3() triangle = [ self.outer_vertices_vec3[0], self.outer_vertices_vec3[1], self.outer_vertices_vec3[2] ] if reverse: triangle = [ self.outer_vertices_vec3[0], self.outer_vertices_vec3[2], self.outer_vertices_vec3[1] ] normal = calculate_normal( triangle ) return normal def calculate_outer_vertices_as_vec3(self): """ does not return a value, but assigns to attribute :return: nothing """ self.outer_vertices_vec3 = list_to_vec3_list(self.outer_vertices) def calculate_radius(self): if self.outer_vertices_vec3 == None: self.calculate_outer_vertices_as_vec3() self.radius = glm.distance(calculate_mean_point(self.outer_vertices_vec3), self.outer_vertices_vec3[0]) def set_texture_offsets(self, vertical, horizontal): self.texture_horizontal_offset = horizontal self.texture_vertical_offset = vertical def face_to_list(self): vertices_list = [] for vertex in self.vertices: vertices_list.append(vertex.vertex_to_list()) return vertices_list def extrude_from_other_face( self, other, direction=(0.0, 1.0, 0.0), distance=1.0, flip_base=True, scale=None, ): """ takes in another face, copies points with positional offset. Only effects outer vertices, so call to generate outer vertices is required as next step todo: this should live in primative mesh. needs some refactoring to do so """ offset = glm.vec3(direction) * distance all_vertices = [] for vertex in other.vertices: updated_vertex = Vertex() if scale is None: updated_vertex.positions = glm.vec3(vertex.positions) + offset else: radius_adjusted_vertices = ( glm.vec3(vertex.positions).x * scale, glm.vec3(vertex.positions).y, glm.vec3(vertex.positions).z * scale ) updated_vertex.positions = glm.vec3(radius_adjusted_vertices) + offset updated_vertex.texture_coordinates = glm.vec2(vertex.texture_coordinates) updated_vertex.normals = glm.vec3(vertex.normals) if flip_base: vertex.normals *= -1.0 all_vertices.append(updated_vertex) if flip_base: other.vertices.reverse() self.vertices = all_vertices outer_vertices = [0.0] * len(other.outer_vertices) for vertex_index in range(int(len(other.outer_vertices) / 3)): if scale is None: outer_vertices[vertex_index * 3] = other.outer_vertices[vertex_index * 3] + offset.x outer_vertices[vertex_index * 3 + 1] = other.outer_vertices[vertex_index * 3 + 1] + offset.y outer_vertices[vertex_index * 3 + 2] = other.outer_vertices[vertex_index * 3 + 2] + offset.z else: outer_vertices[vertex_index * 3] = other.outer_vertices[vertex_index * 3] * scale + offset.x outer_vertices[vertex_index * 3 + 1] = other.outer_vertices[vertex_index * 3 + 1] + offset.y outer_vertices[vertex_index * 3 + 2] = other.outer_vertices[vertex_index * 3 + 2] * scale + offset.z self.outer_vertices = outer_vertices.copy() self.calculate_sides() self.vertices = self.outer_vertices_to_vertices(reverse_texture_coordinates=True) def extrude_from_other_face_2(self, other, direction=[0.0, 1.0, 0.0], distance=1.0, flip_base=True, radius=1.0): """ Trying a new extrude process WIP """ offset = glm.vec3(direction) * distance all_vertices = [] other.calculate_outer_vertices_as_vec3() outer_vertices_other = other.outer_vertices_vec3.copy() if flip_base: outer_vertices_other.reverse() self.outer_vertices_vec3 = outer_vertices_other.copy() for vertex in self.outer_vertices_vec3: vertex.x *= radius vertex.z *= radius vertex.x += offset.x vertex.y += offset.y vertex.z += offset.z if flip_base: self.outer_vertices = vec3_list_to_list( rotate_list(self.outer_vertices_vec3, math.ceil(len(self.outer_vertices_vec3) / 2))) else: self.outer_vertices = vec3_list_to_list(self.outer_vertices_vec3) self.vertices = self.outer_vertices_to_vertices() # todo: this should work.... for vertex, other_vertex in zip(self.vertices, other.vertices): vertex.texture_coordinates = glm.vec2(other_vertex.texture_coordinates) def update_texture_coords_using_atlas_index(self, texture_atlas_index, texture_atlas_size): """ uses the texture atlas index to modify the per-vertex texture coordinates of this face :param texture_atlas_index: left->right, top->bottom :param texture_atlas_size: the length of the texture atlas (always square) :return: """ self.texture_atlas_index = texture_atlas_index # texture atlas index into row and column indices column_index = float(texture_atlas_index % texture_atlas_size) row_index = (texture_atlas_size - 1) - math.floor(texture_atlas_index / texture_atlas_size) # row and column indices into lower and upper bounds of texture coords (4 total) # column (x-axis)lower and upper lower_texture_coord_x_axis = 1.0 / texture_atlas_size * column_index upper_texture_coord_x_axis = 1.0 / texture_atlas_size * (column_index + 1.0) # assuming square textures subtexture_magnitude = upper_texture_coord_x_axis - lower_texture_coord_x_axis lower_texture_coord_y_axis = 1.0 / texture_atlas_size * row_index upper_texture_coord_y_axis = 1.0 / texture_atlas_size * (row_index + 1.0) # update the current vertices' text coords for vertex in self.vertices: vertex.texture_coordinates[0] = lower_texture_coord_x_axis + vertex.texture_coordinates[ 0] * subtexture_magnitude vertex.texture_coordinates[1] = lower_texture_coord_y_axis + vertex.texture_coordinates[ 1] * subtexture_magnitude def apply_hardset_quad_texture_coords(self): """ A brute-force fix to getting correct texture coords on the slab in future: a function that takes number of sides, and generates dictionary like below. outer_to_vertices function then reads this dictionary -found better solution in bezier_cut() """ horizontal_offset = self.texture_horizontal_offset vertical_offset = self.texture_vertical_offset quad_texture_coords = { 1: glm.vec2([0.0 + horizontal_offset[0], 0.0 + vertical_offset[0]]), 0: glm.vec2([0.0 + horizontal_offset[0], 1.0 + vertical_offset[1]]), 3: glm.vec2([1.0 + horizontal_offset[1], 1.0 + vertical_offset[1]]), 2: glm.vec2([1.0 + horizontal_offset[1], 0.0 + vertical_offset[0]]), } self.vertices[0].texture_coordinates = glm.vec2(quad_texture_coords[0]) self.vertices[1].texture_coordinates = glm.vec2(quad_texture_coords[1]) self.vertices[2].texture_coordinates = glm.vec2(quad_texture_coords[2]) self.vertices[3].texture_coordinates = glm.vec2(quad_texture_coords[0]) self.vertices[4].texture_coordinates = glm.vec2(quad_texture_coords[2]) self.vertices[5].texture_coordinates = glm.vec2(quad_texture_coords[3]) def apply_hardset_triangle_texture_coords(self): """ another hacky solution of calculating texture coordinates """ self.vertices[0].texture_coordinates = glm.vec2([0.0, 0.0]) self.vertices[1].texture_coordinates = glm.vec2([1.0, 0.0]) self.vertices[2].texture_coordinates = glm.vec2([0.5, 1.0]) def offset_outer_vertices(self, offset=glm.vec3([0.0, 0.0, 0.0])): for i in range(len(self.outer_vertices)): if i % 3 == 0: self.outer_vertices[i] += offset.x if i % 3 == 1: self.outer_vertices[i] += offset.y if i % 3 == 2: self.outer_vertices[i] += offset.z # print(self.outer_vertices) def generate_texture_coordinates_regular_polygon(self, sides, reverse=True): """ A new means of generating texture coordinates for any (regular) polygon. Even works for polygons not on XZ plane at origin :return: a list of glm.vec2() coordinates, one for each point of shape """ angle_delta = -2.0 * pi / sides angle_initial = (pi / sides) - (pi / 2.0) radius = 0.5 if sides == 4: radius = 1.0 / math.sqrt(2.0) angle_initial = (pi / sides) + angle_delta texture_coordinates = [] for index_point in range(sides): coordinate = glm.vec2([0.0, 0.0]) coordinate.x = (cos(angle_initial - angle_delta * index_point) * radius) + 0.5 coordinate.y = (sin(angle_initial - angle_delta * index_point) * radius) + 0.5 texture_coordinates.append(coordinate) if reverse: texture_coordinates.reverse() return texture_coordinates def generate_texture_coordinates_polygon(self, reverse=False): """ Generate texture coordinates for any convex polygon (even irregular) in 3D space. :param reverse: reverse the texture coordinates at the end :return: list of coordinates as vec2 """ texture_coordinates = [] self.calculate_outer_vertices_as_vec3() sides = len(self.outer_vertices_vec3) # 1 get center point of polygon center_point = calculate_mean_point(points=self.outer_vertices_vec3) # get distances from center point to each vertex # also, find the largest distance vertex_distances = [] largest_distance = 0 for point in self.outer_vertices_vec3: distance = glm.distance(point, center_point) vertex_distances.append(distance) if distance > largest_distance: largest_distance = distance # scale the distances by the largest for index, distance in enumerate(vertex_distances): vertex_distances[index] = distance / (largest_distance * 2) # Get the angles between the vertices vertex_angles = [] angle_sum = 0 for index in range(sides - 1): a = self.outer_vertices_vec3[index] b = self.outer_vertices_vec3[index + 1] c = center_point angle = self.calculate_angle(a, b, c) vertex_angles.append(angle) angle_sum += angle vertex_angles.append(2 * pi - angle_sum) is_even = False if sides % 2 == 0: is_even = True # calculate initial angle offset (rotate the whole triangle) if is_even: if (sides / 2) % 2 == 0: angle_initial = pi / 2 + vertex_angles[0] + vertex_angles[1] / 2 if sides == 8: angle_initial = pi + vertex_angles[2] + vertex_angles[1] / 2 elif sides == 12: angle_initial = pi + vertex_angles[2] / 2 + vertex_angles[0] + vertex_angles[1] else: # 6 angle_initial = pi + vertex_angles[0] if sides == 10: angle_initial = pi + vertex_angles[0] + vertex_angles[1] else: angle_initial = pi + ((pi - vertex_angles[-1]) / 2) vertex_distances = rotate_list(vertex_distances, steps=1) # go around the unit circle, angle by angle, and place a point at the distance away for index in range(0, sides): angle_current = sum(vertex_angles[:index + 1]) coordinate = glm.vec2((0.0, 0.0)) coordinate.x = (cos(angle_initial - angle_current) * vertex_distances[index]) + 0.5 coordinate.y = (sin(angle_initial - angle_current) * vertex_distances[index]) + 0.5 texture_coordinates.append(coordinate) if is_even: texture_coordinates = rotate_list(texture_coordinates, steps=sides - 1) else: texture_coordinates = rotate_list(texture_coordinates, steps=sides - 1) if reverse: texture_coordinates.reverse() return texture_coordinates def calculate_angle(self, a, b, c): CA = a - c CB = b - c angle = glm.acos(glm.dot(CA, CB) / (glm.length(CA) * glm.length(CB))) return angle def outer_vertices_to_vertices(self, reverse_texture_coordinates=False, regular=False): """ Generates the real vertices (with normals, texture coords) of a face :param regular: polygon is regular or irregular :param reverse_texture_coordinates: Flips texture coordinates about the textures Y-Axis :param number_of_sides: eg, 4 for square, 5 for pentagon :return: vertices ready to be drawn by opengl """ if not self.sides: self.calculate_sides() number_of_sides = self.sides if not self.outer_vertices_vec3: self.calculate_outer_vertices_as_vec3() if regular: texture_coordinates = self.generate_texture_coordinates_regular_polygon(sides=number_of_sides) else: texture_coordinates = self.generate_texture_coordinates_polygon(reverse=reverse_texture_coordinates) vertices = [] texture_index = 1 for i in range(int(number_of_sides) - 2): triangle_vertices = [Vertex(), Vertex(), Vertex()] triangle_vertices[0].positions = glm.vec3(( self.outer_vertices[0], self.outer_vertices[1], self.outer_vertices[2] )) triangle_vertices[0].texture_coordinates = glm.vec2(( texture_coordinates[0].x, texture_coordinates[0].y )) triangle_vertices[0].normals = glm.vec3([0.0, 1.0, 0.0]) triangle_vertices[1].positions = glm.vec3(( self.outer_vertices[3 * i + 0 + 3 * 1], self.outer_vertices[3 * i + 1 + 3 * 1], self.outer_vertices[3 * i + 2 + 3 * 1] )) triangle_vertices[1].texture_coordinates = glm.vec2(( texture_coordinates[texture_index].x, texture_coordinates[texture_index].y )) triangle_vertices[1].normals = glm.vec3([0.0, 1.0, 0.0]) triangle_vertices[2].positions = glm.vec3(( self.outer_vertices[3 * i + 0 + 3 * 2], self.outer_vertices[3 * i + 1 + 3 * 2], self.outer_vertices[3 * i + 2 + 3 * 2] )) triangle_vertices[2].texture_coordinates = glm.vec2(( texture_coordinates[texture_index + 1].x, texture_coordinates[texture_index + 1].y )) triangle_vertices[2].normals = glm.vec3((0.0, 1.0, 0.0)) for vertex in triangle_vertices: vertex.normals = calculate_normal([ triangle_vertices[0].positions, triangle_vertices[1].positions, triangle_vertices[2].positions ]) vertices += triangle_vertices texture_index += 1 return vertices def flip_winding_order(self): """ flips this winding order of this face, mirroring vertices outer vertices """ self.outer_vertices_vec3.reverse() self.outer_vertices = vec3_list_to_list(self.outer_vertices_vec3) self.outer_vertices_to_vertices() class Vertex(): def __init__(self): self.positions = glm.vec3() self.normals = glm.vec3() self.texture_coordinates = glm.vec2() def vertex_to_list(self): """ convert positions, normals, and texture coords into one big 1-dimensional list """ vertex_as_list = [] for position in self.positions: vertex_as_list.append(position) for texture_coord in self.texture_coordinates: vertex_as_list.append(texture_coord) for normal in self.normals: vertex_as_list.append(normal) return vertex_as_list class WallTileMesh(FloorTileMesh): """ straight walls for wfc world """ def generate_vertices(self): radius = self.dimensions[0] number_of_sides = 4.0 initial_angle = pi / number_of_sides angle_of_rotation = 2 * pi / number_of_sides vertices = [] faces = [] faces.append(Face()) faces[0].outer_vertices = self.generate_outer_vertices(number_of_sides=number_of_sides, initial_angle=initial_angle) faces[0].offset_outer_vertices(offset=glm.vec3([0.0, -1.0, 0.0])) faces[0].vertices = self.outer_vertices_to_vertices(number_of_sides=number_of_sides, face=faces[0]) faces[0].apply_hardset_quad_texture_coords() # generate the second face via exude faces.append(Face()) faces[1].extrude_from_other_face(other=faces[0], direction=[0.0, 1.0, 0.0], distance=self.dimensions[1]) # generate the 4 vertical faces faces += self.stitch_faces(face_a=faces[0], face_b=faces[1], number_of_faces=number_of_sides) # generate the top of the wall x_border = 0.0 z_border = 0.5 y_border = 2.0 y_wall_bottom = self.dimensions[1] top_of_wall = Face() bottom_of_wall = Face() # TODO: refactor this big time top_of_wall.outer_vertices = faces[0].outer_vertices.copy() top_of_wall.outer_vertices[0] -= x_border top_of_wall.outer_vertices[1] += y_border top_of_wall.outer_vertices[2] += z_border top_of_wall.outer_vertices[3] += x_border top_of_wall.outer_vertices[4] += y_border top_of_wall.outer_vertices[5] += z_border top_of_wall.outer_vertices[6] += x_border top_of_wall.outer_vertices[7] += y_border top_of_wall.outer_vertices[8] -= z_border top_of_wall.outer_vertices[9] -= x_border top_of_wall.outer_vertices[10] += y_border top_of_wall.outer_vertices[11] -= z_border top_of_wall.vertices = self.outer_vertices_to_vertices(number_of_sides=4, face=top_of_wall) # top_of_wall.apply_hardset_quad_texture_coords() faces.append(top_of_wall) bottom_of_wall.outer_vertices = faces[0].outer_vertices.copy() bottom_of_wall.outer_vertices[0] -= x_border bottom_of_wall.outer_vertices[1] += y_wall_bottom bottom_of_wall.outer_vertices[2] += z_border bottom_of_wall.outer_vertices[3] += x_border bottom_of_wall.outer_vertices[4] += y_wall_bottom bottom_of_wall.outer_vertices[5] += z_border bottom_of_wall.outer_vertices[6] += x_border bottom_of_wall.outer_vertices[7] += y_wall_bottom bottom_of_wall.outer_vertices[8] -= z_border bottom_of_wall.outer_vertices[9] -= x_border bottom_of_wall.outer_vertices[10] += y_wall_bottom bottom_of_wall.outer_vertices[11] -= z_border bottom_of_wall.vertices = self.outer_vertices_to_vertices(number_of_sides=4, face=bottom_of_wall) # wall vertical quads faces += self.stitch_faces(face_a=bottom_of_wall, face_b=top_of_wall, number_of_faces=number_of_sides) vertices = [] beveled_faces = [] for face in faces: beveled_faces += self.bevel_cut(face, bevel_depths=[0.0, -0.2], border_sizes=[0.6, 0.2]) for face in beveled_faces: vertices += face.face_to_list() # for face in faces: # vertices += face.face_to_list() return np.array(vertices, dtype=np.float32 ).flatten() class DoorwayTileMesh(FloorTileMesh): """ straight walls for wfc world """ def generate_vertices(self): radius = self.dimensions[0] number_of_sides = 4.0 initial_angle = pi / number_of_sides angle_of_rotation = 2 * pi / number_of_sides vertices = [] faces = [] faces.append(Face()) faces[0].outer_vertices = self.generate_outer_vertices(number_of_sides=number_of_sides, initial_angle=initial_angle) faces[0].offset_outer_vertices(offset=glm.vec3([0.0, -1.0, 0.0])) faces[0].vertices = self.outer_vertices_to_vertices(number_of_sides=number_of_sides, face=faces[0]) # generate the second face via exude faces.append(Face()) faces[1].extrude_from_other_face(other=faces[0], direction=[0.0, 1.0, 0.0], distance=self.dimensions[1]) # generate the 4 vertical faces faces += self.stitch_faces(face_a=faces[0], face_b=faces[1], number_of_faces=number_of_sides) # generate the top of the wall x_border = 0.0 z_border = 0.5 y_border = 2.0 y_wall_bottom = self.dimensions[1] top_of_wall = Face() bottom_of_wall = Face() # TODO: refactor this big time top_of_wall.outer_vertices = faces[0].outer_vertices.copy() top_of_wall.outer_vertices[0] -= x_border top_of_wall.outer_vertices[1] += y_border top_of_wall.outer_vertices[2] += z_border top_of_wall.outer_vertices[3] += x_border top_of_wall.outer_vertices[4] += y_border top_of_wall.outer_vertices[5] += z_border top_of_wall.outer_vertices[6] += x_border top_of_wall.outer_vertices[7] += y_border top_of_wall.outer_vertices[8] -= z_border top_of_wall.outer_vertices[9] -= x_border top_of_wall.outer_vertices[10] += y_border top_of_wall.outer_vertices[11] -= z_border top_of_wall.vertices = self.outer_vertices_to_vertices(number_of_sides=4, face=top_of_wall) faces.append(top_of_wall) bottom_of_wall.outer_vertices = faces[0].outer_vertices.copy() bottom_of_wall.outer_vertices[0] -= x_border bottom_of_wall.outer_vertices[1] += y_wall_bottom bottom_of_wall.outer_vertices[2] += z_border bottom_of_wall.outer_vertices[3] += x_border bottom_of_wall.outer_vertices[4] += y_wall_bottom bottom_of_wall.outer_vertices[5] += z_border bottom_of_wall.outer_vertices[6] += x_border bottom_of_wall.outer_vertices[7] += y_wall_bottom bottom_of_wall.outer_vertices[8] -= z_border bottom_of_wall.outer_vertices[9] -= x_border bottom_of_wall.outer_vertices[10] += y_wall_bottom bottom_of_wall.outer_vertices[11] -= z_border bottom_of_wall.vertices = self.outer_vertices_to_vertices(number_of_sides=4, face=bottom_of_wall) # wall vertical faces faces_vertical = [] faces_vertical += self.stitch_faces(face_a=bottom_of_wall, face_b=top_of_wall, number_of_faces=number_of_sides) # ? order of faces? # -need to to get the two z-facing faces (parallel to x-axis) # should be 0 and 2 index doorway_faces = [] doorway_faces += self.subdivide_into_doorway( face_z_negative=faces_vertical[0], face_z_positive=faces_vertical[2], doorway_width=0.4, doorway_height=.8 ) # delete faces from which we cut a door del faces_vertical[0] del faces_vertical[1] # add all faces to list, and numpy-ify so opengl can draw faces += faces_vertical + doorway_faces vertices = [] beveled_faces = [] for face in faces: beveled_faces += self.bevel_cut(face, bevel_depths=[0.0, -0.2], border_sizes=[0.6, 0.2]) for face in beveled_faces: vertices += face.face_to_list() # for face in faces: # vertices += face.face_to_list() return np.array(vertices, dtype=np.float32 ).flatten() def subdivide_into_vertical_thirds(self, face, center_width=0.4, remove_center=False, z_positive=False): """ use: making doors/doorways divides a square face into 3 vertical rectangles. returns 3 new faces :param center_width: width of center rectangle :return subfaces, a list of 3(2 for hole) faces """ subfaces = [] # return center_face = Face() left_face = Face() right_face = Face() center_width_normalized = center_width center_width *= face.tile_width if z_positive: upper_left = glm.vec3(face.outer_vertices[0], face.outer_vertices[1], face.outer_vertices[2]) lower_left = glm.vec3(face.outer_vertices[3], face.outer_vertices[4], face.outer_vertices[5]) lower_right = glm.vec3(face.outer_vertices[6], face.outer_vertices[7], face.outer_vertices[8]) upper_right = glm.vec3(face.outer_vertices[9], face.outer_vertices[10], face.outer_vertices[11]) else: upper_left = glm.vec3(face.outer_vertices[0], face.outer_vertices[1], face.outer_vertices[2]) lower_left = glm.vec3(face.outer_vertices[3], face.outer_vertices[4], face.outer_vertices[5]) lower_right = glm.vec3(face.outer_vertices[6], face.outer_vertices[7], face.outer_vertices[8]) upper_right = glm.vec3(face.outer_vertices[9], face.outer_vertices[10], face.outer_vertices[11]) # center quad's outer vertices midpoint_horizontal = (lower_right.x + lower_left.x) / 2.0 face_plane_z = lower_left.z face_upper_y = upper_left.y face_lower_y = lower_left.y center_lower_left = glm.vec3(midpoint_horizontal - center_width / 2.0, face_lower_y, face_plane_z) center_lower_right = glm.vec3(midpoint_horizontal + center_width / 2.0, face_lower_y, face_plane_z) center_upper_right = glm.vec3(midpoint_horizontal + center_width / 2.0, face_upper_y, face_plane_z) center_upper_left = glm.vec3(midpoint_horizontal - center_width / 2.0, face_upper_y, face_plane_z) if z_positive: center_face.outer_vertices = list(center_upper_left) + list(center_lower_left) + \ list(center_lower_right) + list(center_upper_right) else: center_face.outer_vertices = list(center_upper_right) + list(center_lower_right) + list( center_lower_left) + list( center_upper_left) center_face.vertices = center_face.outer_vertices_to_vertices() border_width = (1.0 - center_width_normalized) / 2 center_face.set_texture_offsets(horizontal=[border_width, -border_width], vertical=[0.0, 0.0]) center_face.apply_hardset_quad_texture_coords() if not remove_center: subfaces.append(center_face) # subfaces += self.subdivide_into_horizontal_halves(center_face, bottom_height=0.9, z_positive=False) # now make the 2 border faces # left if z_positive: left_face.outer_vertices = list(upper_left) + list(lower_left) + \ list(center_lower_left) + list(center_upper_left) left_face.vertices = left_face.outer_vertices_to_vertices() left_face.set_texture_offsets(horizontal=[0, -(border_width + center_width_normalized)], vertical=[0.0, 0.0]) left_face.apply_hardset_quad_texture_coords() else: # right left_face.outer_vertices = list(center_upper_left) + list(center_lower_left) + \ list(lower_right) + list(upper_right) left_face.vertices = left_face.outer_vertices_to_vertices() left_face.set_texture_offsets(horizontal=[border_width + center_width_normalized, 0], vertical=[0.0, 0.0]) left_face.apply_hardset_quad_texture_coords() subfaces.append(left_face) # right if z_positive: right_face.outer_vertices = list(center_upper_right) + list(center_lower_right) + \ list(lower_right) + list(upper_right) right_face.vertices = right_face.outer_vertices_to_vertices() right_face.set_texture_offsets(horizontal=[border_width + center_width_normalized, 0], vertical=[0.0, 0.0]) right_face.apply_hardset_quad_texture_coords() else: # left right_face.outer_vertices = list(upper_left) + list(lower_left) + \ list(center_lower_right) + list(center_upper_right) right_face.vertices = right_face.outer_vertices_to_vertices() right_face.set_texture_offsets(horizontal=[0, -(border_width + center_width_normalized)], vertical=[0.0, 0.0]) right_face.apply_hardset_quad_texture_coords() subfaces.append(right_face) return subfaces def subdivide_into_horizontal_halves(self, face, bottom_height=0.5, z_positive=False): """ use: making doors/doorways divides a square face into 2 quad faces. returns 2 new faces :param bottom_height: height of lower rectangle :return subfaces, a list of 2 faces """ subfaces = [] # return bottom_face = Face() top_face = Face() bottom_height_normalized = bottom_height # bottom_height *= face.tile_width # if z_positive: upper_right = glm.vec3(face.outer_vertices[0], face.outer_vertices[1], face.outer_vertices[2]) lower_right = glm.vec3(face.outer_vertices[3], face.outer_vertices[4], face.outer_vertices[5]) lower_left = glm.vec3(face.outer_vertices[6], face.outer_vertices[7], face.outer_vertices[8]) upper_left = glm.vec3(face.outer_vertices[9], face.outer_vertices[10], face.outer_vertices[11]) bottom_height = bottom_height * (upper_right.y - lower_right.y) # else: # lower_right = glm.vec3(face.outer_vertices[0], face.outer_vertices[1], face.outer_vertices[2]) # upper_right = glm.vec3(face.outer_vertices[3], face.outer_vertices[4], face.outer_vertices[5]) # upper_left = glm.vec3(face.outer_vertices[6], face.outer_vertices[7], face.outer_vertices[8]) # lower_left = glm.vec3(face.outer_vertices[9], face.outer_vertices[10], face.outer_vertices[11]) # middle line points middle_left = lower_left + glm.vec3(0.0, bottom_height, 0.0) middle_right = lower_right + glm.vec3(0.0, bottom_height, 0.0) # bottom quads outer vertices bottom_lower_left = lower_left bottom_lower_right = lower_right bottom_upper_left = middle_left bottom_upper_right = middle_right if z_positive: bottom_face.outer_vertices = list(bottom_upper_left) + list(bottom_lower_left) + \ list(bottom_lower_right) + list(bottom_upper_right) else: bottom_face.outer_vertices = list(bottom_upper_right) + list(bottom_lower_right) + \ list(bottom_lower_left) + list(bottom_upper_left) bottom_face.vertices = bottom_face.outer_vertices_to_vertices() bottom_face.set_texture_offsets(horizontal=face.texture_horizontal_offset, vertical=[0.0, -(1.0 - bottom_height_normalized)]) bottom_face.apply_hardset_quad_texture_coords() subfaces.append(bottom_face) # top quads outer vertices top_lower_left = middle_left top_lower_right = middle_right top_upper_left = upper_left top_upper_right = upper_right if z_positive: top_face.outer_vertices = list(top_upper_left) + list(top_lower_left) + \ list(top_lower_right) + list(top_upper_right) else: top_face.outer_vertices = list(top_upper_right) + list(top_lower_right) + \ list(top_lower_left) + list(top_upper_left) top_face.vertices = top_face.outer_vertices_to_vertices() top_face.set_texture_offsets(horizontal=face.texture_horizontal_offset, vertical=[bottom_height_normalized, 0.0]) top_face.apply_hardset_quad_texture_coords() subfaces.append(top_face) return subfaces def subdivide_into_doorway(self, face_z_positive, face_z_negative, doorway_width=0.5, doorway_height=0.8): """ Takes 2 parallel faces and returns the 9 faces of a doorway TODO: just make it take 2 faces in and return one with the doorway-cut :param face_z_positive: face with normal towards z+ :param face_z_negative: face with normal towards z- :param center_width: width of door :return: """ faces = [] third_faces_z_positive = self.subdivide_into_vertical_thirds( face=face_z_positive, center_width=doorway_width, remove_center=False, z_positive=True ) faces.append(third_faces_z_positive[1]) # left of door faces.append(third_faces_z_positive[2]) # right of door door_faces_z_positive = self.subdivide_into_horizontal_halves( face=third_faces_z_positive[0], bottom_height=doorway_height, z_positive=False ) # subdivide the center face faces.append(door_faces_z_positive[1]) # above door third_faces_z_negative = self.subdivide_into_vertical_thirds( face=face_z_negative, center_width=doorway_width, remove_center=False, z_positive=False ) faces.append(third_faces_z_negative[1]) # left of door faces.append(third_faces_z_negative[2]) # right of door door_faces_z_negative = self.subdivide_into_horizontal_halves( face=third_faces_z_negative[0], bottom_height=doorway_height, z_positive=False ) # subdivide the center face faces.append(door_faces_z_negative[1]) # above door # left side of the inner door hallway door_hole_z_negative = door_faces_z_negative[0].outer_vertices door_hole_z_positive = door_faces_z_positive[0].outer_vertices # get our outer vertices z+ z_positive_upper_left = glm.vec3(door_hole_z_positive[0], door_hole_z_positive[1], door_hole_z_positive[2]) z_positive_lower_left = glm.vec3(door_hole_z_positive[3], door_hole_z_positive[4], door_hole_z_positive[5]) z_positive_lower_right = glm.vec3(door_hole_z_positive[6], door_hole_z_positive[7], door_hole_z_positive[8]) z_positive_upper_right = glm.vec3(door_hole_z_positive[9], door_hole_z_positive[10], door_hole_z_positive[11]) # get our outer vertices z- z_negative_upper_right = glm.vec3(door_hole_z_negative[0], door_hole_z_negative[1], door_hole_z_negative[2]) z_negative_lower_right = glm.vec3(door_hole_z_negative[3], door_hole_z_negative[4], door_hole_z_negative[5]) z_negative_lower_left = glm.vec3(door_hole_z_negative[6], door_hole_z_negative[7], door_hole_z_negative[8]) z_negative_upper_left = glm.vec3(door_hole_z_negative[9], door_hole_z_negative[10], door_hole_z_negative[11]) # construct left side left_hall = Face() left_hall.outer_vertices = list(z_positive_upper_left) + list(z_positive_lower_left) + list( z_negative_lower_left) + list(z_negative_upper_left) left_hall.vertices = left_hall.outer_vertices_to_vertices() left_hall.set_texture_offsets(vertical=[0.0, 0.0], horizontal=[0.0, 0.0]) left_hall.apply_hardset_quad_texture_coords() faces.append(left_hall) # construct left side right_hall = Face() right_hall.outer_vertices = list(z_negative_upper_right) + list(z_negative_lower_right) + \ list(z_positive_lower_right) + list(z_positive_upper_right) right_hall.vertices = right_hall.outer_vertices_to_vertices() right_hall.set_texture_offsets(vertical=[0.0, 0.0], horizontal=[0.0, 0.0]) right_hall.apply_hardset_quad_texture_coords() faces.append(right_hall) # construct ceiling ceiling_hall = Face() ceiling_hall.outer_vertices = list(z_negative_upper_right) + list(z_positive_upper_right) + \ list(z_positive_upper_left) + list(z_negative_upper_left) ceiling_hall.vertices = ceiling_hall.outer_vertices_to_vertices() ceiling_hall.set_texture_offsets(vertical=[0.0, 0.0], horizontal=[0.0, 0.0]) ceiling_hall.apply_hardset_quad_texture_coords() faces.append(ceiling_hall) return faces class Prism(PrimativeMesh): """ generates a prism based on an N-sided regular polygon. """ def __init__(self, shader, # material properties diffuse, specular, shininess=32.0, # mesh properties dimensions=[1.0, 1.0], # radius, height position=[0.0, 0.0, 0.0], rotation_magnitude=0, rotation_axis=glm.vec3([0.0, 0.0, 1.0]), scale=glm.vec3([1.0, 1.0, 1.0]), sides=3 ): self.shader = shader self.diffuse = diffuse self.specular = specular self.shininess = shininess self.position = glm.vec3(position) self.rotation_magnitude = glm.vec3(rotation_magnitude) self.rotation_axis = glm.vec3(rotation_axis) self.scale = glm.vec3(scale) self.dimensions = dimensions self.texture_horizontal_offset = [0.0, 0.0] self.texture_vertical_offset = [0.0, 0.0] self.sides = sides self.vertices = self.generate_vertices() self.setup() def setup(self): # quad VAO self.VAO = glGenVertexArrays(1) glBindVertexArray(self.VAO) self.VBO = glGenBuffers(1) glBindBuffer(GL_ARRAY_BUFFER, self.VBO) glBufferData(GL_ARRAY_BUFFER, self.vertices.nbytes, self.vertices, GL_STATIC_DRAW) # quad position vertices (vertex attribute) glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, self.vertices.itemsize * 8, ctypes.c_void_p(0)) glEnableVertexAttribArray(0) # quad texture coords glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, self.vertices.itemsize * 8, ctypes.c_void_p(12)) glEnableVertexAttribArray(1) # quad normals glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, self.vertices.itemsize * 8, ctypes.c_void_p(20)) glEnableVertexAttribArray(2) self.model_loc = glGetUniformLocation(self.shader, "model") def generate_vertices(self): """ Generates the outer vertices and vertices of the triangle of this model """ radius = self.dimensions[0] height = 0 try: height = self.dimensions[1] except IndexError: height = math.sqrt(radius * radius * 2) number_of_sides = self.sides initial_angle = pi / number_of_sides angle_of_rotation = 2 * pi / number_of_sides faces = [self._generate_polygonal_face(number_of_sides=number_of_sides)] # generate the second face via exude faces.append(Face()) faces[1].extrude_from_other_face(other=faces[0], direction=[0.0, 1.0, 0.0], distance=height) # generate the 4 vertical faces faces += self.stitch_faces(face_a=faces[0], face_b=faces[1], number_of_faces=number_of_sides) vertices = [] for face in faces: vertices += face.face_to_list() return np.array( vertices, dtype=np.float32 ).flatten() class NPrismBezierCut(Prism): def generate_vertices(self): """ Testing our bezier cut by applying it to an N-sided Prisms quad faces """ radius = self.dimensions[0] height = 0 try: height = self.dimensions[1] except IndexError: height = math.sqrt(radius * radius * 2) number_of_sides = self.sides initial_angle = pi / number_of_sides angle_of_rotation = 2 * pi / number_of_sides faces = [Face()] faces[0].outer_vertices = self.generate_outer_vertices(number_of_sides=number_of_sides, initial_angle=initial_angle) # faces[0].offset_outer_vertices(offset=glm.vec3([0.0, -1.0, 0.0])) faces[0].vertices = self.outer_vertices_to_vertices(number_of_sides=number_of_sides, face=faces[0]) # # faces[0].apply_hardset_quad_texture_coords() # # generate the second face via exude faces.append(Face()) faces[1].extrude_from_other_face(other=faces[0], direction=[0.0, 1.0, 0.0], distance=height) # # generate the 4 vertical faces faces += self.stitch_faces(face_a=faces[0], face_b=faces[1], number_of_faces=number_of_sides) # quad_faces = self.divide_face_into_quads(original_face=faces[2], center_point_offset=0.0) quad_faces = self.subdivide_quad_lengthwise(face=faces[2], subdivisions=3, widthwise=True) for face in quad_faces: faces_bevel_cut = self.bevel_cut(original_face=face, bevel_depths=[-0.0, -1.5], border_sizes=[0.1, 0.3], depth=2, direction=glm.vec3(.5, 0.0, -1.0)) faces_from_bezier_cut = self.bezier_cut(face=faces_bevel_cut[-5], intervals=8, offset=0.2) del faces_bevel_cut[-5] for face in faces_from_bezier_cut: faces.insert(3, face) for face in faces_bevel_cut: faces.insert(3, face) del faces[2] hip_faces = self.subdivide_hip_roof(faces[-1], start_point=[0.1, 0.1], end_point=[0.1, 0.9], vertical_offset=1.0) del faces[-1] for face in hip_faces: faces.insert(3, face) vertices = [] index = 0 # faces[-3].update_texture_coords_using_atlas_index(texture_atlas_index=3, texture_atlas_size=2) for face in faces: face.update_texture_coords_using_atlas_index(texture_atlas_index=index % 4, texture_atlas_size=2) vertices += face.face_to_list() index += 1 return np.array(vertices, dtype=np.float32 ).flatten() class SegmentedPrism(Prism): """ Makes potion bottles (segmented cylindar with different radius per segment) """ def __init__(self, shader, # material properties diffuse, specular, shininess=32.0, # mesh properties dimensions=[1.0, 1.0], # radius, height position=[0.0, 0.0, 0.0], rotation_magnitude=0, rotation_axis=glm.vec3([0.0, 0.0, 1.0]), scale=glm.vec3([1.0, 1.0, 1.0]), sides=3, segments=1, outer_vertices_offset=[0.0, -1.0, 0.0], bevel_depths=[-0.2, -0.4], border_sizes=[0.6, 0.0], depth=2 ): self.shader = shader self.diffuse = diffuse self.specular = specular self.shininess = shininess self.position = glm.vec3(position) self.rotation_magnitude = glm.vec3(rotation_magnitude) self.rotation_axis = glm.vec3(rotation_axis) self.scale = glm.vec3(scale) self.dimensions = dimensions self.texture_horizontal_offset = [0.0, 0.0] self.texture_vertical_offset = [0.0, 0.0] self.sides = sides self.segments = segments self.bevel_depths = bevel_depths self.border_sizes = border_sizes self.depth = depth self.outer_vertices_offset = outer_vertices_offset self.vertices = self.generate_vertices() self.setup() def generate_vertices(self): radius = self.dimensions[0] height = self.dimensions[1] segment_height = height / self.segments number_of_sides = self.sides initial_angle = pi / number_of_sides angle_of_rotation = 2 * pi / number_of_sides vertices = [] faces = [] faces.append(Face()) faces[0].outer_vertices = self.generate_outer_vertices(number_of_sides=number_of_sides, initial_angle=initial_angle) faces[0].offset_outer_vertices(offset=glm.vec3(self.outer_vertices_offset)) faces[0].vertices = self.outer_vertices_to_vertices(number_of_sides=number_of_sides, face=faces[0]) # generate the second face via exude base_faces = [faces[0]] radius = 1.0 for index in range(1, self.segments + 1): base_faces.append(Face()) if index < self.segments / 4: radius *= 1.0 + 0.1 * index else: radius *= 0.9 # + .1*index base_faces[index].extrude_from_other_face(other=base_faces[index - 1], direction=[0.0, 1.0, 0.0], distance=segment_height, radius=radius) faces += self.stitch_faces(face_a=base_faces[index - 1], face_b=base_faces[index], number_of_faces=number_of_sides) if index == self.segments: faces.append(base_faces[index]) vertices = [] for face in faces: vertices += face.face_to_list() return np.array(vertices, dtype=np.float32 ).flatten() class SegmentedPrismBevelCutTest(SegmentedPrism): """ testing our bevel cut on an a multi-faced, non-axis-aligned mesh based """ def generate_vertices(self): radius = self.dimensions[0] height = self.dimensions[1] segment_height = height / self.segments number_of_sides = self.sides initial_angle = pi / number_of_sides angle_of_rotation = 2 * pi / number_of_sides vertices = [] faces = [] faces.append(Face()) faces[0].outer_vertices = self.generate_outer_vertices(number_of_sides=number_of_sides, initial_angle=initial_angle) faces[0].offset_outer_vertices(offset=glm.vec3(self.outer_vertices_offset)) faces[0].vertices = self.outer_vertices_to_vertices(number_of_sides=number_of_sides, face=faces[0]) # generate the later N faces via exude base_faces = [faces[0]] radius = 1.0 for index in range(1, self.segments + 1): base_faces.append(Face()) if index < self.segments / 4: radius *= 1.0 + 0.1 * index else: radius *= 0.9 # + .1*index base_faces[index].extrude_from_other_face(other=base_faces[index - 1], direction=[0.0, 1.0, 0.0], distance=segment_height, radius=radius) base_faces[index].radius = radius faces += self.stitch_faces(face_a=base_faces[index - 1], face_b=base_faces[index], number_of_faces=number_of_sides) if index == self.segments: faces.append(base_faces[index]) vertices = [] # apply bevel cut bevel_cut_faces = [] # face_to_bevel_cut = faces.pop(len(faces)-1) # bevel_cut_faces = self.bevel_cut(face_to_bevel_cut) # faces += bevel_cut_faces faces[0].calculate_outer_vertices_as_vec3() faces[0].flip_winding_order() for index, face in enumerate(faces): face_to_cut = faces[index] bevel_cut_faces += self.bevel_cut( face_to_cut, bevel_depths=self.bevel_depths, border_sizes=self.border_sizes, depth=self.depth, ) for face in bevel_cut_faces: vertices += face.face_to_list() return np.array(vertices, dtype=np.float32 ).flatten() class SegmentedPrismBevelPolygonCornerTest(SegmentedPrism): """ using our bevel cut function (bevel_polygon_corner) on a base polygon. Also testing the divide_face_into_quads """ def generate_vertices(self): radius = self.dimensions[0] height = self.dimensions[1] segment_height = height / self.segments initial_angle = pi / self.sides angle_of_rotation = 2 * pi / self.sides vertices = [] faces = [] faces.append(Face()) faces[0].outer_vertices = self.generate_outer_vertices( number_of_sides=self.sides, initial_angle=initial_angle ) faces[0].offset_outer_vertices(offset=glm.vec3(self.outer_vertices_offset)) """NEW beveling on base polygon testing-working""" for i in range(1): faces[0] = self.bevel_polygon_corner(faces[0], subject_vertex_index=0, bevel_ratio=0.25) for i in range(1): faces[0] = self.bevel_polygon_corner(faces[0], subject_vertex_index=3, bevel_ratio=0.25) faces[0].vertices = self.outer_vertices_to_vertices(number_of_sides=self.sides, face=faces[0]) # generate the later N faces via exude base_faces = [faces[0]] radius = 1.0 for index in range(1, self.segments + 1): base_faces.append(Face()) if index < self.segments / 4: radius *= 1.0 + 0.1 * index else: radius *= 0.9 # + .1*index base_faces[index].extrude_from_other_face(other=base_faces[index - 1], direction=[0.0, 1.0, 0.0], distance=segment_height, radius=radius) base_faces[index].radius = radius faces += self.stitch_faces(face_a=base_faces[index - 1], face_b=base_faces[index], number_of_faces=self.sides) if index == self.segments: faces.append(base_faces[index]) """NEW quad subdivide of faces function testing""" faces_post_divide = [] faces[0].calculate_outer_vertices_as_vec3() faces[0].flip_winding_order() for face in faces: # faces_post_divide += self.divide_face_into_quads(face, center_point_offset=0.2) faces_post_divide += self.pyrimidize_face(face, center_point_offset=0.2) faces = faces_post_divide vertices = [] bevel_cut_faces = [] faces[0].calculate_outer_vertices_as_vec3() faces[0].flip_winding_order() for index, face in enumerate(faces): face_to_cut = faces[index] bevel_cut_faces += self.bevel_cut( face_to_cut, bevel_depths=self.bevel_depths, border_sizes=self.border_sizes, depth=self.depth, ) for face in bevel_cut_faces: vertices += face.face_to_list() return np.array(vertices, dtype=np.float32 ).flatten() def calculate_normal(vertices=[]): """ calculates the normal vector :param vertices: a list of 3 glm vec3's :return: a vec3 with the normal to this triangle """ return glm.normalize(glm.cross(vertices[1] - vertices[0], vertices[2] - vertices[0])) def calculate_mean_point(points): """ Calculate the mean point of a polygon :param points: list of points of a polygon as glm.vec3s :return: mean, a glm.vec3 """ sum_point = glm.vec3([0.0, 0.0, 0.0]) for point in points: sum_point += point return sum_point / len(points) def list_to_vec3_list(current_list): """ convert a list of points (serialized fully, as a list) to a list of glm.vec3's :param current_list: :return: """ reformated_list = [] index = 0 while index < len(current_list): reformated_list.append( glm.vec3( current_list[index], current_list[index + 1], current_list[index + 2], ) ) index += 3 return reformated_list def vec3_list_to_list(vec3_list): """ convert a list of points-as-vec3's to a serialized list :return: a list """ serial_list = [] for point in vec3_list: serial_list += list(point) return serial_list def bezier_linear(points=[], intervals=0): """ Linearly interpolate between two points :param points: two points to interpolate between. glm.vec3 :param intervals: number of steps to take between point_0 and point_1 :return: a list of points (including start and end control points) """ bezier_points = points.copy() for step in range(1, intervals + 1): time = step * (1.0 / intervals) new_point = points[0] + time * (points[1] - points[0]) bezier_points.insert(-1, new_point) return bezier_points def bezier_quadratic(points=[], intervals=0): """ Quadratically interpolate between two points :param points: three points to interpolate between. glm.vec3 :param intervals: number of steps to take between point_0 and point_1 :return: a list of points """ bezier_points = [points[0], points[2]] control_points = points.copy() for step in range(1, intervals + 1): time = step * (1.0 / (intervals + 1)) new_point = control_points[1] + pow((1.0 - time), 2) * (control_points[0] - control_points[1]) + pow(time, 2) * \ (control_points[2] - control_points[1]) bezier_points.insert(-1, new_point) return bezier_points def bezier_cubic(points=[], intervals=0): """ cubically interpolate between two points :param points: three points to interpolate between. glm.vec3 :param intervals: number of steps to take between point_0 and point_1 :return: a list of points EXAMPLE bezier_points = [ glm.vec3(0.0, 10.0, 0.0), glm.vec3(0.0, 25.0, 0.0), glm.vec3(45.0, 25.0, 0.0), glm.vec3(45.0, 10.0, 0.0) ] bezier_points = primatives.bezier_cubic(points=bezier_points, intervals=20) IN DRAW LOOP: for point in bezier_points: bezier_model.position = point bezier_model.draw(view=view) """ bezier_points = [points[0], points[3]] control_points = points.copy() fractional_interval = 1.0 / (intervals + 1) for step in range(1, intervals + 1): time = step * (fractional_interval) reverse_time = 1.0 - time new_point = pow(reverse_time, 3) * points[0] + 3.0 * pow(reverse_time, 2) * time * points[1] + \ 3.0 * reverse_time * pow(time, 2) * points[2] + pow(time, 3) * points[3] bezier_points.insert(-1, new_point) return bezier_points def calculate_texture_coordinates_from_control_points(point, control_points): """ given the 4 control points, calculate the proper texture coord. Assumes the 4 control points fall on exact corners of the texture :return: glm.vec2(width, height), each in range [0,1] """ control_points = rotate_list(control_points, 2) height = glm.distance(control_points[0], control_points[1]) width = glm.distance(control_points[1], control_points[2]) height_delta = calculate_triangle_height(points=[control_points[2], point, control_points[1]]) width_delta = calculate_triangle_height(points=[control_points[0], point, control_points[1]]) texture_coordinates = glm.vec2( glm.clamp(1.0 - width_delta / width, 0.0, 1.0), glm.clamp(height_delta / height, 0.0, 1.0) ) return texture_coordinates def calculate_triangle_height(points=[]): """ Given 3 points of a triangle, return the height The points must be given counter-clockwise, with the first and third point forming the base TODO: Refactor :param points: :return: the height of the triangle """ triangle_sides = triangle_points_to_side_lengths(points=points) area = herons_formula(triangle_sides) base = glm.distance(points[0], points[2]) height = 2.0 * area / base return height def triangle_points_to_side_lengths(points): """ Given the 3 points of a triangle, calculate the lengths of the 3 sides :param points: :return: list of sides """ sides = [] sides.append(glm.distance(points[0], points[1])) sides.append(glm.distance(points[1], points[2])) sides.append(glm.distance(points[2], points[0])) return sides def herons_formula(sides): """ Uses Heron's Formula to calculate the area of a triangle given the three sides :param sides: :return: Area of the triangle """ return 0.25 * math.sqrt( 4.0 * sides[0] * sides[0] * sides[1] * sides[1] - pow(sides[0] * sides[0] + sides[1] * sides[1] - \ sides[2] * sides[2], 2)) def rotate_list(current_list, steps): """ rotates a list by n steps. negative steps puts last element first. EXAMPLE fruits = ['a', 'b', 'c'] updated_fruits = rotate(fruits, -1) updated_fruits is now ['c', 'b', 'a'] :param current_list: list to operate on. Original not changed :param steps: number of elements to shift over :return: a new list """ return current_list[steps:] + current_list[:steps] def get_next_index(size, index): if index + 1 > size - 1: return 0 else: return index + 1 def get_previous_index(size, index): if index - 1 < 0: return size - 1 else: return index - 1
150,202
Python
.py
3,084
37.401102
131
0.586866
AlexSanfilippo/ProceduralMeshGeneration
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,321
MeshWorkshop.py
AlexSanfilippo_ProceduralMeshGeneration/MeshWorkshop.py
""" Main script of the spaceship generator. run this to launch the OpenGL window. Contains high-level code pertaining creation and drawing of: Model GUI Skybox As well as OpenGL callback functions """ import glfw from OpenGL.GL import * from OpenGL.GL.shaders import compileProgram, compileShader import pyrr from TextureLoader import load_texture from Camera import Camera, SimulationCamera from math import pi import random as r import glm from PIL import Image, ImageOps import PointLightCube as plc from ProceduralMesh import Spaceship3x3 import FPSCounter from GUI import GUI import Skybox as CubeMapSkybox from tkinter import filedialog import gc DEV_BUILD = True images = [] follow_cam = SimulationCamera(camera_pos=[6.0, 247.0, 242.0]) cam = Camera(camera_pos=[0.0, 20.0, 20.0]) use_follow_cam = False def capture_screenshot(filename='screenshot.jpg'): print(f'saving screenshot as {filename}') fbo_array = glReadPixels(0, 0, WIDTH, HEIGHT, GL_RGB, GL_UNSIGNED_BYTE) screenshot = Image.frombytes("RGB", (WIDTH, HEIGHT), fbo_array) screenshot = ImageOps.flip(screenshot) screenshot.save( filename, ) WIDTH, HEIGHT = 1728, 972 lastX, lastY = WIDTH / 2, HEIGHT / 2 first_mouse = True left, right, forward, backward, make_new_surface = False, False, False, False, False player_left, player_right, player_forward, player_backward = False, False, False, False yaw_counterclockwise, yaw_clockwise = False, False up, down = False, False write_to_gif = False wrote_to_gif = False make_new_ship = False pause = False ship_texture_cycle_id = 0 # the keyboard input callback def key_input_clb(window, key, scancode, action, mode): global left, right, forward, backward, make_new_surface, player_left, player_right, player_forward, \ player_backward, yaw_counterclockwise, yaw_clockwise, write_to_gif, make_new_ship,\ pause, ship_texture_cycle_id, up, down, wrote_to_gif if key == glfw.KEY_ESCAPE and action == glfw.PRESS: glfw.set_window_should_close(window, True) if key == glfw.KEY_W and action == glfw.PRESS: forward = True elif key == glfw.KEY_W and action == glfw.RELEASE: forward = False if key == glfw.KEY_S and action == glfw.PRESS: backward = True elif key == glfw.KEY_S and action == glfw.RELEASE: backward = False if key == glfw.KEY_A and action == glfw.PRESS: left = True elif key == glfw.KEY_A and action == glfw.RELEASE: left = False if key == glfw.KEY_D and action == glfw.PRESS: right = True elif key == glfw.KEY_D and action == glfw.RELEASE: right = False if key == glfw.KEY_Q and action == glfw.PRESS: yaw_clockwise = True elif key == glfw.KEY_Q and action == glfw.RELEASE: yaw_clockwise = False if key == glfw.KEY_E and action == glfw.PRESS: yaw_counterclockwise = True elif key == glfw.KEY_E and action == glfw.RELEASE: yaw_counterclockwise = False if key == glfw.KEY_TAB and action == glfw.PRESS: up = True elif key == glfw.KEY_TAB and action == glfw.RELEASE: up = False if key == glfw.KEY_LEFT_SHIFT and action == glfw.PRESS: down = True elif key == glfw.KEY_LEFT_SHIFT and action == glfw.RELEASE: down = False if key == glfw.KEY_1 and action == glfw.PRESS: glPolygonMode(GL_FRONT_AND_BACK, GL_LINE) if key == glfw.KEY_2 and action == glfw.PRESS: glPolygonMode(GL_FRONT_AND_BACK, GL_FILL) if key == glfw.KEY_9 and action == glfw.PRESS: if DEV_BUILD: write_to_gif = not write_to_gif wrote_to_gif = True if key == glfw.KEY_SPACE and action == glfw.PRESS: generate_next_ship() if key == glfw.KEY_P and action == glfw.PRESS: pause = not pause if key == glfw.KEY_T and action == glfw.PRESS: cycle_ship_texture() if key == glfw.KEY_V and action == glfw.PRESS: switch_camera_mode() if key == glfw.KEY_K and action == glfw.PRESS: if DEV_BUILD: print_camera_position() if key == glfw.KEY_F12 and action == glfw.PRESS: capture_screenshot() def cycle_ship_texture(forward=True): global ship_texture_cycle_id MIN = 0 MAX = 4 if forward: ship_texture_cycle_id = min(ship_texture_cycle_id + 1, MAX) else: ship_texture_cycle_id = max(ship_texture_cycle_id - 1, MIN) if ship_texture_cycle_id == 0: spaceship_parameters['diffuse'] = texture_dictionary['penguin_diffuse'] spaceship_parameters['specular'] = texture_dictionary['penguin_specular'] spaceship_parameters['emission'] = texture_dictionary['penguin_emission'] update_spaceship_texture() elif ship_texture_cycle_id == 1: spaceship_parameters['diffuse'] = texture_dictionary['ship_a_diffuse'] spaceship_parameters['specular'] = texture_dictionary['ship_a_specular'] spaceship_parameters['emission'] = texture_dictionary['ship_a_emission'] update_spaceship_texture() elif ship_texture_cycle_id == 2: spaceship_parameters['diffuse'] = texture_dictionary['whoa_diffuse'] spaceship_parameters['specular'] = texture_dictionary['whoa_specular'] spaceship_parameters['emission'] = texture_dictionary['atlas_debug_emission'] update_spaceship_texture() elif ship_texture_cycle_id == 3: spaceship_parameters['diffuse'] = texture_dictionary['blue_metal_diffuse'] spaceship_parameters['specular'] = texture_dictionary['blue_metal_specular'] spaceship_parameters['emission'] = texture_dictionary['blue_metal_emission'] update_spaceship_texture() elif ship_texture_cycle_id == 4: spaceship_parameters['diffuse'] = texture_dictionary['atlas_debug_diffuse'] spaceship_parameters['specular'] = texture_dictionary['atlas_debug_specular'] spaceship_parameters['emission'] = texture_dictionary['atlas_debug_emission'] update_spaceship_texture() def mouse_button_callback(window, button, action, mods): global make_new_ship left_click = button == glfw.MOUSE_BUTTON_LEFT and action == glfw.PRESS right_click = button == glfw.MOUSE_BUTTON_RIGHT and action == glfw.PRESS if button == left_click: mpos = glfw.get_cursor_pos(window) gui.button_update(position_mouse=glfw.get_cursor_pos(window), left_click=left_click, right_click=right_click) def update_spaceship_texture(): meshes[0].set_diffuse(spaceship_parameters['diffuse']) meshes[0].set_specular(spaceship_parameters['specular']) meshes[0].set_emission(spaceship_parameters['emission']) def do_movement(speed=1.0): """ do the camera movement, call this function in the main loop :param speed: :return: """ if left: active_camera.process_keyboard("LEFT", speed) if right: active_camera.process_keyboard("RIGHT", speed) if forward: active_camera.process_keyboard("FORWARD", speed) if backward: active_camera.process_keyboard("BACKWARD", speed) if yaw_clockwise: follow_cam.process_keyboard("YAW_CLOCKWISE", speed) if yaw_counterclockwise: follow_cam.process_keyboard("YAW_COUNTERCLOCKWISE", speed) if up: active_camera.process_keyboard("UP", speed) if down: active_camera.process_keyboard("DOWN", speed) def mouse_look_clb(window, xpos, ypos): global first_mouse, lastX, lastY if first_mouse: lastX = xpos lastY = ypos first_mouse = False xoffset = xpos - lastX yoffset = lastY - ypos lastX = xpos lastY = ypos cam.process_mouse_movement(xoffset, yoffset) def scroll_callback(window, xoffset, yoffset): follow_cam.process_mouse_scroll(xoffset, yoffset) vertex_src = """ # version 330 layout(location = 0) in vec3 a_position; layout(location = 1) in vec2 a_texture; layout(location = 2) in vec3 a_normal; uniform mat4 model; uniform mat4 projection; uniform mat4 view; out vec2 tex_coords; //texture coordinates out vec3 normal; out vec3 frag_pos; void main() { tex_coords = a_texture; frag_pos = vec3(model * vec4(a_position, 1.0)); normal = mat3(transpose(inverse(model))) * a_normal; gl_Position = projection * view * vec4(frag_pos, 1.0); } """ fragment_src = """ #version 330 core out vec4 frag_color; struct Material { sampler2D diffuse; sampler2D specular; sampler2D emission; float shininess; }; struct DirLight { vec3 direction; vec3 ambient; vec3 diffuse; vec3 specular; }; struct PointLight { vec3 position; float constant; float linear; float quadratic; vec3 ambient; vec3 diffuse; vec3 specular; }; struct SpotLight { vec3 position; vec3 direction; float cut_off; float outer_cut_off; float constant; float linear; float quadratic; vec3 ambient; vec3 diffuse; vec3 specular; }; #define NR_POINT_LIGHTS 2 in vec3 frag_pos; in vec3 normal; in vec2 tex_coords; uniform vec3 view_pos; uniform DirLight dir_light; uniform PointLight point_lights[NR_POINT_LIGHTS]; uniform SpotLight spot_light; uniform Material material; // function prototypes vec3 CalcDirLight(DirLight light, vec3 normal, vec3 view_dir, vec2 tex_coords); vec3 CalcPointLight(PointLight light, vec3 normal, vec3 frag_pos, vec3 view_dir, vec2 tex_coords); vec3 CalcSpotLight(SpotLight light, vec3 normal, vec3 frag_pos, vec3 view_dir); void main() { vec2 tex_coords_alternate = tex_coords; /* float q_coord = 0.1f; if (tex_coords_alternate.x > 0.9f && tex_coords_alternate.y > 0.9f){ tex_coords_alternate = tex_coords_alternate * q_coord; } if (tex_coords_alternate == vec2(0.f, 1.f)){ tex_coords_alternate = tex_coords_alternate * q_coord; } */ // properties vec3 norm = normalize(normal); vec3 view_dir = normalize(view_pos - frag_pos); // == ===================================================== // Our lighting is set up in 3 phases: directional, point lights and an optional flashlight // For each phase, a calculate function is defined that calculates the corresponding color // per lamp. In the main() function we take all the calculated colors and sum them up for // this fragment's final color. // == ===================================================== vec3 result; // phase 1: directional lighting result = CalcDirLight(dir_light, norm, view_dir, tex_coords_alternate); // phase 2: point lights for(int i = 0; i < NR_POINT_LIGHTS; i++) result += CalcPointLight(point_lights[i], norm, frag_pos, view_dir, tex_coords_alternate); // phase 3: spotlight //result += CalcSpotLight(spot_light, norm, frag_pos, view_dir); // emission vec3 emission = texture(material.emission, tex_coords_alternate).rgb; result = result + emission; frag_color = vec4(result, 1.0); } // calculates the color when using a directional light. vec3 CalcDirLight(DirLight light, vec3 normal, vec3 view_dir, vec2 tex_coords) { vec3 light_dir = normalize(-light.direction); // diffuse shading float diff = max(dot(normal, light_dir), 0.0); // specular shading vec3 reflect_dir = reflect(-light_dir, normal); float spec = pow(max(dot(view_dir, reflect_dir), 0.0), material.shininess); // combine results vec3 ambient = light.ambient * vec3(texture(material.diffuse, tex_coords)); vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, tex_coords)); vec3 specular = light.specular * spec * vec3(texture(material.specular, tex_coords)); return (ambient + diffuse + specular); } // calculates the color when using a point light. vec3 CalcPointLight(PointLight light, vec3 normal, vec3 frag_pos, vec3 view_dir, vec2 tex_coords) { vec3 light_dir = normalize(light.position - frag_pos); // diffuse shading float diff = max(dot(normal, light_dir), 0.0); // specular shading vec3 reflect_dir = reflect(-light_dir, normal); float spec = pow(max(dot(view_dir, reflect_dir), 0.0), material.shininess); // attenuation float distance = length(light.position - frag_pos); float attenuation = 1.0 / (light.constant + light.linear * distance + light.quadratic * (distance * distance)); // combine results vec3 ambient = light.ambient * vec3(texture(material.diffuse, tex_coords)); vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, tex_coords)); vec3 specular = light.specular * spec * vec3(texture(material.specular, tex_coords)); ambient *= attenuation; diffuse *= attenuation; specular *= attenuation; return (ambient + diffuse + specular); } // calculates the color when using a spot light. vec3 CalcSpotLight(SpotLight light, vec3 normal, vec3 frag_pos, vec3 view_dir) { vec3 light_dir = normalize(light.position - frag_pos); //view_dir = vec3(0.0, -1.0, 0.0); //tp // diffuse shading float diff = max(dot(normal, light_dir), 0.0); // specular shading vec3 reflect_dir = reflect(-light_dir, normal); float spec = pow(max(dot(view_dir, reflect_dir), 0.0), material.shininess); // attenuation float distance = length(light.position - frag_pos); float attenuation = 1.0 / (light.constant + light.linear * distance + light.quadratic * (distance * distance)); // spotlight intensity float theta = dot(light_dir, normalize(-light.direction)); float epsilon = light.cut_off - light.outer_cut_off; float intensity = clamp((theta - light.outer_cut_off) / epsilon, 0.0, 1.0); // combine results vec3 ambient = light.ambient * vec3(texture(material.diffuse, tex_coords)); vec3 diffuse = light.diffuse * diff * vec3(texture(material.diffuse, tex_coords)); vec3 specular = light.specular * spec * vec3(texture(material.specular, tex_coords)); ambient *= attenuation * intensity; diffuse *= attenuation * intensity; specular *= attenuation * intensity; return (ambient + diffuse + specular); } """ # the window resize callback function def window_resize_clb(window, width, height): glViewport(0, 0, width, height) projection = pyrr.matrix44.create_perspective_projection_matrix(45, width / height, 0.1, 2000) glUniformMatrix4fv(proj_loc, 1, GL_FALSE, projection) gui.set_screen_size(screen_size=(width, height)) # initializing glfw library if not glfw.init(): raise Exception("glfw can not be initialized!") # creating the window window = glfw.create_window(WIDTH, HEIGHT, "Spaceship Generator", None, None) # check if window was created if not window: glfw.terminate() raise Exception("glfw window can not be created!") # set window's position glfw.set_window_pos(window, 40, 40) # set the callback function for window resize glfw.set_window_size_callback(window, window_resize_clb) # set the mouse position callback glfw.set_cursor_pos_callback(window, mouse_look_clb) # set the keyboard input callback glfw.set_key_callback(window, key_input_clb) #set the scroll-wheel input callback glfw.set_scroll_callback(window, scroll_callback) #set the mouse callback glfw.set_mouse_button_callback(window, mouse_button_callback) # capture the mouse cursor # glfw.set_input_mode(window, glfw.CURSOR, glfw.CURSOR_DISABLED) # glfw.set_input_mode(window, glfw.CURSOR, glfw.CURSOR_CAPTURED) # make the context current glfw.make_context_current(window) def switch_camera_mode(): global use_follow_cam, active_camera use_follow_cam = not use_follow_cam if use_follow_cam: glfw.set_input_mode(window, glfw.CURSOR, glfw.CURSOR_NORMAL) #glfw.CURSOR_CAPTURED, active_camera = follow_cam else: glfw.set_input_mode(window, glfw.CURSOR, glfw.CURSOR_DISABLED) active_camera = cam switch_camera_mode() def print_camera_position(): global active_cam print(f'Camera Position: {active_camera.camera_pos}') shader = compileProgram(compileShader(vertex_src, GL_VERTEX_SHADER), compileShader(fragment_src, GL_FRAGMENT_SHADER)) #uncomment to enable backfase culling glEnable(GL_CULL_FACE) #uncomment to see that cull is working by culling front faces rather than back # glCullFace(GL_BACK) # glFrontFace(GL_CW) glUseProgram(shader) # set the texture unit (integer) of each sampler2D glUniform1i(glGetUniformLocation(shader, "material.diffuse"), 0) glUniform1i(glGetUniformLocation(shader, "material.specular"), 1) glUniform1i(glGetUniformLocation(shader, "material.emission"), 2) glClearColor(0, 0.1, 0.1, 1) glEnable(GL_DEPTH_TEST) glEnable(GL_BLEND) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) projection_2 = pyrr.matrix44.create_perspective_projection_matrix(45, WIDTH / HEIGHT, 0.1, 2000) model_loc = glGetUniformLocation(shader, "model") proj_loc = glGetUniformLocation(shader, "projection") view_loc = glGetUniformLocation(shader, "view") view_pos_loc = glGetUniformLocation(shader, "view_pos") # cam pos for specular lighting glUniformMatrix4fv(proj_loc, 1, GL_FALSE, projection_2) """direction light settings""" direction_diffuse = [0.0]*3 direction_ambient = [0.0]*3 direction_specular = [0.0]*3 # create the light cube my_plc = plc.PointLightCube(pos=[0.0, 40.0, 0.0], ambient=[0.1]*3, diffuse=[0.9]*3, specular=[0.9]*3, linear=0.0014, quadratic=.000007) debug_plcs = [my_plc] move_whole_compass_z = -80 debug_plcs.append(plc.PointLightCube( pos=[0.0, 10.0, move_whole_compass_z+5.0], ambient=[0.0]*3, diffuse=[0.0]*3, specular=[0.0]*3 )) debug_plcs.append(plc.PointLightCube( pos=[0.0, 5.0, move_whole_compass_z+10.0], ambient=[0.0, 0.0, 1.0], diffuse=[0.0, 0.0, 1.0], specular=[0.0, 0.0, 1.0], )) debug_plcs.append(plc.PointLightCube( pos=[0.0, 5.0, move_whole_compass_z+0.0], ambient=[1.0, 0.0, 0.0], diffuse=[1.0, 0.0, 0.0], specular=[1.0, 0.0, 0.0], )) debug_plcs.append(plc.PointLightCube( pos=[5.0, 5.0, move_whole_compass_z+5.0], ambient=[0.0, 1.0, 0.0], diffuse=[0.0, 1.0, 0.0], specular=[0.0, 1.0, 0.0], )) debug_plcs.append(plc.PointLightCube( pos=[-5.0, 5.0, move_whole_compass_z+5.0], ambient=[1.0, 1.0, 0.0], diffuse=[1.0, 1.0, 0.0], specular=[1.0, 1.0, 0.0], )) seed = 1946 r.seed(seed) # direction light pass to shader glUniform3fv(glGetUniformLocation(shader, "dir_light.position"), 1, [0, 20, 10]) glUniform3fv(glGetUniformLocation(shader, "dir_light.diffuse"), 1, direction_diffuse) glUniform3fv(glGetUniformLocation(shader, "dir_light.ambient"), 1, direction_ambient) glUniform3fv(glGetUniformLocation(shader, "dir_light.specular"), 1, direction_specular) textures = glGenTextures(25) load_texture("Textures/photo_texture_atlas_diffuse_3x3.png", textures[0]) load_texture("Textures/photo_texture_atlas_specular_3x3.png", textures[1]) load_texture("Textures/photo_texture_atlas_emission.png", textures[2]) load_texture("Textures/debug_quad_red.png", textures[3]) load_texture("Textures/penguin_atlas_specular.png", textures[4]) load_texture("Textures/penguin_atlas_specular.png", textures[5]) load_texture("Textures/debug_texture_atlas.png", textures[6]) load_texture("Textures/blue_gold_alt_diffuse.png", textures[7]) load_texture("Textures/blue_gold_specular.png", textures[8]) load_texture("Textures/no_emission.png", textures[9]) load_texture("Textures/debug_diffuse_coordinates.png", textures[10]) load_texture("Textures/penguin_atlas_emission.png", textures[11]) load_texture("Textures/penguin_atlas_specular.png", textures[12]) load_texture("Textures/whoa_atlas_diffuse_3x3.png", textures[13]) load_texture("Textures/whoa_atlas_specular_3x3.png", textures[14]) load_texture("Textures/penguin_atlas_emission.png", textures[15]) load_texture("Fonts/my_font.png", textures[16]) load_texture("Textures/button_atlas_gradient.png", textures[17]) load_texture("Textures/dark_metal_diffuse.png", textures[18]) load_texture("Textures/dark_metal_specular.png", textures[19]) load_texture("Textures/dark_metal_emission.png", textures[20]) load_texture("Textures/SkyboxLearnOpenGL.png", textures[21]) texture_dictionary = { "pink": textures[3], "penguin_diffuse": textures[0], "penguin_specular": textures[1], "penguin_emission": textures[2], "blue_metal_diffuse": textures[7], "blue_metal_specular": textures[8], "blue_metal_emission": textures[9], "atlas_debug_diffuse": textures[10], "atlas_debug_emission": textures[11], "atlas_debug_specular": textures[12], "whoa_diffuse": textures[13], "whoa_specular": textures[14], "whoa_emission": textures[15], "font_atlas": textures[16], "button_atlas": textures[17], "ship_a_diffuse": textures[18], "ship_a_specular": textures[19], "ship_a_emission": textures[20], "skybox_nebula": textures[21], } debug_ship_orders = [ ['stuck'] ] spaceship_parameters = { 'number_of_sides': 8, 'number_of_segments': 5, 'transform_x': 1.0, 'transform_z': 2.0, 'scale': 3.3, 'diffuse': texture_dictionary['penguin_diffuse'], 'specular': texture_dictionary['penguin_specular'], 'emission': texture_dictionary['penguin_emission'], 'position': [0.0, -50.0, 0.0], 'length_of_segment': 10, } def update_spaceship_parameters(key, value): spaceship_parameters[key] = value def increase_light_brightness(): ambient_current = my_plc.ambient[0] ambient_current = min(ambient_current + 0.1, 1.0) my_plc.ambient = [ambient_current] * 3 def decrease_light_brightness(): ambient_current = my_plc.ambient[0] ambient_current = max(ambient_current - 0.1, 0.0) my_plc.ambient = [ambient_current] * 3 def increase_specular_brightness(): specular_current = my_plc.specular[0] specular_current = min(specular_current + 0.1, 1.0) my_plc.specular = [specular_current] * 3 def decrease_specular_brightness(): specular_current = my_plc.specular[0] specular_current = max(specular_current - 0.1, 0.0) my_plc.specular = [specular_current] * 3 def increase_diffuse_brightness(): diffuse_current = my_plc.diffuse[0] diffuse_current = min(diffuse_current + 0.1, 1.0) my_plc.diffuse = [diffuse_current] * 3 def decrease_diffuse_brightness(): diffuse_current = my_plc.diffuse[0] diffuse_current = max(diffuse_current - 0.1, 0.0) my_plc.diffuse = [diffuse_current] * 3 def increase_ship_sides(display): MAX_SIDES = 10 sides = spaceship_parameters['number_of_sides'] if sides == MAX_SIDES: return sides += 1 update_spaceship_parameters(key='number_of_sides', value=sides) generate_new_ship() display.update_text(text=str(int(display.text_box.text) + 1)) def decrease_ship_sides(display): MIN_SIDES = 3 sides = spaceship_parameters['number_of_sides'] if sides == MIN_SIDES: return sides -= 1 update_spaceship_parameters(key='number_of_sides', value=sides) generate_new_ship() display.update_text(text=str(int(display.text_box.text) - 1)) def increase_ship_segments(display=None): MAX_SEGMENTS = 20 segments = spaceship_parameters['number_of_segments'] if segments == MAX_SEGMENTS: return segments += 1 update_spaceship_parameters(key='number_of_segments', value=segments) generate_new_ship() display.update_text(text=str(int(display.text_box.text) + 1)) def decrease_ship_segments(display=None): MIN_SEGMENTS = 1 segments = spaceship_parameters['number_of_segments'] if segments == MIN_SEGMENTS: return segments -= 1 update_spaceship_parameters(key='number_of_segments', value=segments) generate_new_ship() display.update_text(text=str(int(display.text_box.text) - 1)) def increase_ship_segment_length(display=None): MAX_LENGTH = 60.0 length = spaceship_parameters['length_of_segment'] if length >= MAX_LENGTH: return delta= 0.5 length += delta update_spaceship_parameters(key='length_of_segment', value=length) generate_new_ship() display.update_text(text=str(round(float(display.text_box.text) + delta, 2))) def decrease_ship_segment_length(display=None): MIN_LENGTH = 4.5 length = spaceship_parameters['length_of_segment'] print('length=', length) if length <= MIN_LENGTH: return delta = 0.5 length -= delta update_spaceship_parameters(key='length_of_segment', value=length) generate_new_ship() display.update_text(text=str(round(float(display.text_box.text) - delta, 2))) def increase_ship_x_scaling(display=None): MAX_SCALE = 10.0 x_scale = spaceship_parameters['transform_x'] if x_scale >= MAX_SCALE: return delta = .1 x_scale += delta update_spaceship_parameters(key='transform_x', value=x_scale) generate_new_ship() display.update_text(text=str(round(float(display.text_box.text) + delta, 2))) def decrease_ship_x_scaling(display=None): MIN_SCALE = 0.1 x_scale = spaceship_parameters['transform_x'] if x_scale <= MIN_SCALE: return delta = .1 x_scale -= delta update_spaceship_parameters(key='transform_x', value=x_scale) generate_new_ship() display.update_text(text=str(round(float(display.text_box.text) - delta, 2))) def increase_ship_z_scaling(display=None): MAX_SCALE = 10.0 z_scale = spaceship_parameters['transform_z'] if z_scale >= MAX_SCALE: return delta = .1 z_scale += delta update_spaceship_parameters(key='transform_z', value=z_scale) generate_new_ship() display.update_text(text=str(round(float(display.text_box.text) + delta, 2))) def decrease_ship_z_scaling(display=None): MIN_SCALE = 0.1 z_scale = spaceship_parameters['transform_z'] if z_scale <= MIN_SCALE: return delta = .1 z_scale -= delta update_spaceship_parameters(key='transform_z', value=z_scale) generate_new_ship() display.update_text(text=str(round(float(display.text_box.text) - delta, 2))) ships = [] num_ships = 1 for ship in range(num_ships): spaceship = Spaceship3x3( shader=shader, diffuse=spaceship_parameters['diffuse'], specular=spaceship_parameters['specular'], emission=spaceship_parameters['emission'], dimensions=[5.0, 5.0], position=spaceship_parameters['position'], rotation_magnitude=[0.0, 0.0, -pi*0.5], number_of_sides=spaceship_parameters['number_of_sides'], number_of_segments=spaceship_parameters['number_of_segments'], transform_x=spaceship_parameters['transform_x'], transform_z=spaceship_parameters['transform_z'], length_of_segment=spaceship_parameters['length_of_segment'], radius=3.0, scale=spaceship_parameters['scale'], seed=seed ) ships.append(spaceship) my_fps = FPSCounter.FPSCounter(frame_interval=300.0, mute=True) meshes = [] meshes += ships def increase_seed(): global seed seed += 1 def decrease_seed(): global seed seed -= 1 def generate_next_ship(display=None): global seed increase_seed() generate_new_ship() if display: display.update_text(text='seed: ' + str(seed)) def generate_previous_ship(display=None): global seed decrease_seed() generate_new_ship() if display: display.update_text(text='seed: ' + str(seed)) def generate_new_ship(): global seed global meshes spaceship_next = Spaceship3x3( shader=shader, diffuse=spaceship_parameters['diffuse'], specular=spaceship_parameters['specular'], emission=spaceship_parameters['emission'], dimensions=[5.0, 5.0], position=ships[0].position, rotation_magnitude=ships[0].rotation_magnitude, rotation_axis=glm.vec3((0.0, 0.0, 1.0)), number_of_sides=spaceship_parameters['number_of_sides'], number_of_segments=spaceship_parameters['number_of_segments'], transform_x=spaceship_parameters['transform_x'], transform_z=spaceship_parameters['transform_z'], length_of_segment=spaceship_parameters['length_of_segment'], radius=3.0, scale=spaceship_parameters['scale'], seed=seed ) meshes[0].clean_up() del meshes[0] gc.collect() meshes.append(spaceship_next) """GUI CREATION""" gui = GUI(screen_size=(WIDTH, HEIGHT)) gui.add_text_element( shader=None, position=(0.75, 0.73), scale=(0.20, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=2, context_id='button', context_status=False, font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='Texture', ) gui.add_text_button( shader=None, position=(0.95, 0.73), scale=(0.05, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=cycle_ship_texture, context_id='button', context_status=False, color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='+', ) gui.add_text_button( shader=None, position=(0.5, 0.73), scale=(0.05, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=cycle_ship_texture, forward=False, context_id='button', context_status=False, color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='-', ) gui.add_text_button( shader=None, position=(0.88, 0.95), scale=(0.12, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=gui.toggle_context_status, context_id='context_on', context_status=True, click_function_context_id='button', color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='Options', ) gui.add_text_element( shader=None, position=(-0.25, 0.83), scale=(0.08, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=2, context_id='ship_settings', context_status=False, font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text=str(spaceship_parameters['number_of_sides']), ) #todo refactor this. Need way to access text/element we want to update displayer = gui.elements[-1] gui.add_text_button( shader=None, position=(-0.38, 0.83), scale=(0.05, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=increase_ship_sides, display=displayer, context_id='ship_settings', context_status=False, color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='+', ) gui.add_text_button( shader=None, position=(-0.48, 0.83), scale=(0.05, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=decrease_ship_sides, display=displayer, context_id='ship_settings', context_status=False, color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='-', ) gui.add_text_element( shader=None, # position=(-0.5, -0.0), position=(-0.78, 0.83), #-.28, +0.83 scale=(0.25, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=2, context_id='ship_settings', context_status=False, font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='Sides', ) gui.add_text_element( shader=None, position=(-0.25, 0.73), scale=(0.08, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=2, context_id='ship_settings', context_status=False, font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text=str(spaceship_parameters['number_of_segments']), ) #todo refactor this. Need way to access text/element we want to update displayer = gui.elements[-1] gui.add_text_button( shader=None, position=(-0.48, .73), scale=(0.05, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=decrease_ship_segments, display=displayer, context_id='ship_settings', context_status=False, color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='-', ) gui.add_text_button( shader=None, position=(-0.38, 0.73), scale=(0.05, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=increase_ship_segments, display=displayer, context_id='ship_settings', context_status=False, color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='+', ) gui.add_text_element( shader=None, position=(-0.78, 0.73), scale=(0.25, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=2, context_id='ship_settings', context_status=False, font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='Segments', ) gui.add_text_element( shader=None, position=(-0.25, 0.63), scale=(0.08, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=2, context_id='ship_settings', context_status=False, font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='10.0', ) #todo refactor this. Need way to access text/element we want to update displayer = gui.elements[-1] gui.add_text_element( shader=None, position=(-0.78, 0.63), scale=(0.25, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=2, context_id='ship_settings', context_status=False, font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='Length Scale', ) gui.add_text_button( shader=None, position=(-0.38, 0.63), scale=(0.05, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=increase_ship_segment_length, display=displayer, context_id='ship_settings', context_status=False, color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='+', ) gui.add_text_button( shader=None, position=(-0.48, 0.63), scale=(0.05, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=decrease_ship_segment_length, display=displayer, context_id='ship_settings', context_status=False, color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='-', ) gui.add_text_element( shader=None, position=(-0.78, 0.53), scale=(0.25, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=2, context_id='ship_settings', context_status=False, font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='Height Scale', ) gui.add_text_element( shader=None, position=(-0.25, 0.53), scale=(0.08, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=2, context_id='ship_settings', context_status=False, font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='1.0', ) #todo refactor this. Need way to access text/element we want to update displayer = gui.elements[-1] gui.add_text_button( shader=None, position=(-0.48, 0.53), scale=(0.05, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=decrease_ship_x_scaling, display=displayer, context_id='ship_settings', context_status=False, color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='-', ) gui.add_text_button( shader=None, position=(-0.38, 0.53), scale=(0.05, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=increase_ship_x_scaling, display=displayer, context_id='ship_settings', context_status=False, color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='+', ) gui.add_text_element( shader=None, position=(-0.78, 0.42999999999999994), scale=(0.25, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=2, context_id='ship_settings', context_status=False, font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='Width Scale', ) gui.add_text_element( shader=None, position=(-0.25, 0.42999999999999994), scale=(0.08, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=2, context_id='ship_settings', context_status=False, font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='2.0', ) #todo refactor this. Need way to access text/element we want to update displayer = gui.elements[-1] gui.add_text_button( shader=None, position=(-0.48, 0.42999999999999994), scale=(0.05, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=decrease_ship_z_scaling, display=displayer, context_id='ship_settings', context_status=False, color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='-', ) gui.add_text_button( shader=None, position=(-0.38, 0.42999999999999994), scale=(0.05, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=increase_ship_z_scaling, display=displayer, context_id='ship_settings', context_status=False, color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='+', ) gui.add_text_element( shader=None, position=(-0.90, 0.95), scale=(0.15, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=2, context_id='fps', context_status=True, font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='100', ) #todo refactor this. Need way to access text/element we want to update display_fps = gui.elements[-1] gui.add_text_button( shader=None, position=(-0.55, 0.95), scale=(0.22, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=gui.toggle_context_status, context_id='context_on', context_status=True, click_function_context_id='ship_settings', color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='Ship Settings', ) gui.add_text_element( shader=None, position=(0.75, 0.83), scale=(0.20, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=2, context_id='button', context_status=False, font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='Seed: ' + str(seed), ) #todo refactor this. Need way to access text/element we want to update displayer = gui.elements[-1] gui.add_text_button( shader=None, position=(0.95, 0.83), scale=(0.05, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=generate_next_ship, display=displayer, context_id='button', context_status=False, color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='+', ) gui.add_text_button( shader=None, position=(0.50, 0.83), scale=(0.05, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=generate_previous_ship, display=displayer, context_id='button', context_status=False, color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='-', ) gui.add_text_button( shader=None, position=(-0.185, 0.95), scale=(0.15, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=gui.toggle_context_status, context_id='context_on', context_status=True, click_function_context_id='light', color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='Light', ) gui.add_text_element( shader=None, position=(0.75, 0.52), scale=(0.20, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=2, context_id='light', context_status=False, font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='Ambient', ) displayer = gui.elements[-1] gui.add_text_button( shader=None, position=(0.95, 0.52), scale=(0.05, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=increase_light_brightness, context_id='light', context_status=False, color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='+', ) gui.add_text_button( shader=None, position=(0.50, 0.52), scale=(0.05, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=decrease_light_brightness, context_id='light', context_status=False, color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='-', ) #Specular gui.add_text_element( shader=None, position=(0.75, 0.42), scale=(0.20, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=2, context_id='light', context_status=False, font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='Specular', ) displayer = gui.elements[-1] gui.add_text_button( shader=None, position=(0.95, 0.42), scale=(0.05, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=increase_specular_brightness, context_id='light', context_status=False, color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='+', ) gui.add_text_button( shader=None, position=(0.50, 0.42), scale=(0.05, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=decrease_specular_brightness, context_id='light', context_status=False, color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='-', ) #Diffuse gui.add_text_element( shader=None, position=(0.75, 0.32), scale=(0.20, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=2, context_id='light', context_status=False, font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='Diffuse', ) displayer = gui.elements[-1] gui.add_text_button( shader=None, position=(0.95, 0.32), scale=(0.05, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=increase_diffuse_brightness, context_id='light', context_status=False, color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='+', ) gui.add_text_button( shader=None, position=(0.50, 0.32), scale=(0.05, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=decrease_diffuse_brightness, context_id='light', context_status=False, color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='-', ) def export_ship(): """ Open Window to export the ship model as a wavefront obj file with name of choice """ filename = filedialog.asksaveasfilename() meshes[0].export_as_obj(filename=filename) gui.add_text_button( shader=None, position=(0.11, 0.95), scale=(0.15, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=export_ship, context_id='context_on', context_status=True, color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='Export', ) cubemaps = { 2: [ "Textures/Skyboxes/mountain_lake/right.jpg", "Textures/Skyboxes/mountain_lake/left.jpg", "Textures/Skyboxes/mountain_lake/top.jpg", "Textures/Skyboxes/mountain_lake/bottom.jpg", "Textures/Skyboxes/mountain_lake/front.jpg", "Textures/Skyboxes/mountain_lake/back.jpg", ], 0: [ "Textures/Skyboxes/galaxy/galaxy+X.png", "Textures/Skyboxes/galaxy/galaxy-X.png", "Textures/Skyboxes/galaxy/galaxy+Y.png", "Textures/Skyboxes/galaxy/galaxy-Y.png", "Textures/Skyboxes/galaxy/galaxy+Z.png", "Textures/Skyboxes/galaxy/galaxy-Z.png", ], 1: [ "Textures/Skyboxes/nebula/skybox_left.png", "Textures/Skyboxes/nebula/skybox_right.png", "Textures/Skyboxes/nebula/skybox_up.png", "Textures/Skyboxes/nebula/skybox_down.png", "Textures/Skyboxes/nebula/skybox_front.png", "Textures/Skyboxes/nebula/skybox_back.png", ] } skybox_cube_map = CubeMapSkybox.Skybox( texture_paths=cubemaps[0], scale=8000, ) skybox_index = 0 def change_skybox(): global skybox_cube_map global skybox_index MAX_SKYBOX_INDEX = 2 skybox_index += 1 if skybox_index > MAX_SKYBOX_INDEX: skybox_index = 0 skybox_cube_map = CubeMapSkybox.Skybox( texture_paths=cubemaps[skybox_index], scale=8000, ) gui.add_text_button( shader=None, position=(0.75, 0.63), scale=(0.3, 0.05), texture=texture_dictionary['button_atlas'], atlas_size=2, atlas_coordinate=(2, 1), click_function=change_skybox, context_id='button', context_status=False, color=(1.0, 1.0, 1.0, 1.0), font_texture=texture_dictionary['font_atlas'], font_size=0.35, font_color=(1.0, 1.0, 1.0, 1.0), text='Skybox', ) #must call as final setup of GUI gui.build_elements_list() #decouple fps from camera movement with time delta time_start = 0 time_end = 1/60 time_delta = 1.0 projection = pyrr.matrix44.create_perspective_projection_matrix(45, WIDTH / HEIGHT, 0.1, 20050) glUniformMatrix4fv(proj_loc, 1, GL_FALSE, projection) if not DEV_BUILD: display_fps.update_text(text='v1.0') def write_fbo_to_gif(): global data, image data = glReadPixels(0, 0, WIDTH, HEIGHT, GL_RGB, GL_UNSIGNED_BYTE) image = Image.frombytes("RGB", (WIDTH, HEIGHT), data) image = ImageOps.flip(image) images.append(image) while not glfw.window_should_close(window): glfw.poll_events() time_start = glfw.get_time() do_movement(speed=100 * (time_delta)) glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) fps = my_fps.update() # if DEV_BUILD: # display_fps.update_text(text=str(round(my_fps.get_fps()))) view = active_camera.get_view_matrix() glUniformMatrix4fv(view_loc, 1, GL_FALSE, view) for mesh in meshes: mesh.draw(view=view) #GUI hover events #todo: mouse hover is maybe expensive! Consider spatial partition if use_follow_cam: gui.button_update(position_mouse=glfw.get_cursor_pos(window), left_click=False, right_click=False) skybox_cube_map.draw(view=view, projection=projection) glUseProgram(shader) # pass cam position for specular light glUniform3fv(view_pos_loc, 1, list(active_camera.camera_pos)) point_light_position_loc = glGetUniformLocation(shader, "point_light.position") glUniform1f(glGetUniformLocation(shader, "material.shininess"), 4.0) glUniform3fv(glGetUniformLocation(shader, "point_lights[0].position"), 1, debug_plcs[0].get_pos()) glUniform3fv(glGetUniformLocation(shader, "point_lights[0].diffuse"), 1, debug_plcs[0].get_diffuse()) glUniform3fv(glGetUniformLocation(shader, "point_lights[0].ambient"), 1, debug_plcs[0].get_ambient()) glUniform3fv(glGetUniformLocation(shader, "point_lights[0].specular"), 1, debug_plcs[0].get_specular()) glUniform1f(glGetUniformLocation(shader, "point_lights[0].constant"), debug_plcs[0].get_constant()) glUniform1f(glGetUniformLocation(shader, "point_lights[0].linear"), debug_plcs[0].get_linear()) glUniform1f(glGetUniformLocation(shader, "point_lights[0].quadratic"), debug_plcs[0].get_quadratic()) #second light for mesh viewing glUniform3fv(glGetUniformLocation(shader, "point_lights[1].position"), 1, debug_plcs[1].get_pos()) glUniform3fv(glGetUniformLocation(shader, "point_lights[1].diffuse"), 1, debug_plcs[1].get_diffuse()) glUniform3fv(glGetUniformLocation(shader, "point_lights[1].ambient"), 1, debug_plcs[1].get_ambient()) glUniform3fv(glGetUniformLocation(shader, "point_lights[1].specular"), 1, debug_plcs[1].get_specular()) glUniform1f(glGetUniformLocation(shader, "point_lights[1].constant"), debug_plcs[1].get_constant()) glUniform1f(glGetUniformLocation(shader, "point_lights[1].linear"), debug_plcs[1].get_linear()) glUniform1f(glGetUniformLocation(shader, "point_lights[1].quadratic"), debug_plcs[1].get_quadratic()) # spotlight glUniform3fv(glGetUniformLocation(shader, "spot_light.position"), 1, list(active_camera.camera_pos)) glUniform3fv(glGetUniformLocation(shader, "spot_light.direction"), 1, list(active_camera.camera_front)) glUniform3fv(glGetUniformLocation(shader, "spot_light.diffuse"), 1, [0.0]*3) glUniform3fv(glGetUniformLocation(shader, "spot_light.ambient"), 1, [0.0]*3) glUniform3fv(glGetUniformLocation(shader, "spot_light.specular"), 1, [0.0]*3) glUniform1f(glGetUniformLocation(shader, "spot_light.cut_off"), glm.cos(glm.radians(12.5))) glUniform1f(glGetUniformLocation(shader, "spot_light.outer_cut_off"), glm.cos(glm.radians(45.0))) glUniform1f(glGetUniformLocation(shader, "spot_light.constant"), 1.0) glUniform1f(glGetUniformLocation(shader, "spot_light.linear"), 0.00003) glUniform1f(glGetUniformLocation(shader, "spot_light.quadratic"), 0.00007) if use_follow_cam: gui.draw() glUseProgram(shader) if write_to_gif: write_fbo_to_gif() glfw.swap_buffers(window) time_end = glfw.get_time() time_delta = time_end - time_start if wrote_to_gif: name = f'spaceship_generator.gif' print(f'saving gif as {name}') images[0].save( name, save_all=True, append_images=images[1:], optimize=False, duration=20, loop=0 ) glfw.terminate()
52,869
Python
.py
1,509
30.404904
119
0.678685
AlexSanfilippo/ProceduralMeshGeneration
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,322
TextureLoader.py
AlexSanfilippo_ProceduralMeshGeneration/TextureLoader.py
from OpenGL.GL import glBindTexture, glTexParameteri, GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, \ GL_TEXTURE_WRAP_T, GL_REPEAT, GL_TEXTURE_MIN_FILTER, GL_TEXTURE_MAG_FILTER, GL_LINEAR, \ glTexImage2D, GL_RGBA, GL_UNSIGNED_BYTE, GL_NEAREST, GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, \ GL_CLAMP_TO_EDGE, glGenTextures, GL_TEXTURE_CUBE_MAP_POSITIVE_X, GL_RGB from PIL import Image # for use with GLFW def load_texture(path, texture): glBindTexture(GL_TEXTURE_2D, texture) # Set the texture wrapping parameters glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT) # Set texture filtering parameters # glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR) # glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST) # load image image = Image.open(path) image = image.transpose(Image.FLIP_TOP_BOTTOM) img_data = image.convert("RGBA").tobytes() glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, image.width, image.height, 0, GL_RGBA, GL_UNSIGNED_BYTE, img_data) return texture #todo: convert this function (from learnOpenGL) into python def load_cube_map(paths, texture_id): glBindTexture(GL_TEXTURE_CUBE_MAP, texture_id) # int width, height, nrChannels for i, path in enumerate(paths): # unsigned char *data = stbi_load(faces[i].c_str(), &width, &height, &nrChannels, 0) # load_texture(path, textures[0]) image = Image.open(path) # image = image.transpose(Image.FLIP_TOP_BOTTOM) # image = image.transpose(Image.FLIP_LEFT_RIGHT) img_data = image.convert("RGBA").tobytes() glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGBA, image.width, image.height, 0, GL_RGBA, GL_UNSIGNED_BYTE, img_data) # glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data) # stbi_image_free(data) glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR) glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR) glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE) glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE) glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE) return texture_id # for use with pygame def load_texture_pygame(path, texture): import pygame glBindTexture(GL_TEXTURE_2D, texture) # Set the texture wrapping parameters glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT) # Set texture filtering parameters glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR) # load image image = pygame.image.load(path) image = pygame.transform.flip(image, False, True) image_width, image_height = image.get_rect().size img_data = pygame.image.tostring(image, "RGBA") glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, image_width, image_height, 0, GL_RGBA, GL_UNSIGNED_BYTE, img_data) return texture
3,315
Python
.py
59
50.949153
135
0.722736
AlexSanfilippo/ProceduralMeshGeneration
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,323
Camera.py
AlexSanfilippo_ProceduralMeshGeneration/Camera.py
import glfw from pyrr import Vector3, vector, vector3, matrix44 from math import sin, cos, radians, atan2, sqrt import glm as glm from glm import vec3 from SimplePhysics import find_intersection_ray_plane class Camera: def __init__(self, camera_pos=[0.0, 0.0, 1.20], yaw=0, pitch=0): self.camera_pos = Vector3(camera_pos) self.camera_front = Vector3([0.0, 0.0, 1.0]) self.camera_up = Vector3([0.0, 1.0, 0.0]) self.camera_right = Vector3([1.0, 0.0, 0.0]) self.mouse_sensitivity = 0.25 #0.25 default self.yaw = yaw self.pitch = pitch self.update_camera_vectors() def get_view_matrix(self): return matrix44.create_look_at(self.camera_pos, self.camera_pos + self.camera_front, self.camera_up) def process_mouse_movement(self, xoffset, yoffset, constrain_pitch=True): xoffset *= self.mouse_sensitivity yoffset *= self.mouse_sensitivity self.yaw += xoffset self.pitch += yoffset if constrain_pitch: if self.pitch > 90: self.pitch = 90 if self.pitch < -90: self.pitch = -90 self.update_camera_vectors() def update_camera_vectors(self): front = Vector3([0.0, 0.0, 0.0]) front.x = cos(radians(self.yaw)) * cos(radians(self.pitch)) front.y = sin(radians(self.pitch)) front.z = sin(radians(self.yaw)) * cos(radians(self.pitch)) self.camera_front = vector.normalise(front) self.camera_right = vector.normalise(vector3.cross(self.camera_front, Vector3([0, 1, 0]))) self.camera_up = vector.normalise(vector3.cross(self.camera_right, self.camera_front)) # Camera method for the WASD movement def process_keyboard(self, direction, velocity): if direction == "FORWARD": self.camera_pos += self.camera_front * velocity if direction == "BACKWARD": self.camera_pos -= self.camera_front * velocity if direction == "LEFT": self.camera_pos -= self.camera_right * velocity if direction == "RIGHT": self.camera_pos += self.camera_right * velocity if direction == "PITCH_POS": self.pitch += velocity self.update_camera_vectors() if direction == "DOWN": self.camera_pos = list(vec3(self.camera_pos) - vec3(0.0, 1.5, 0.0)) self.update_camera_vectors() if direction == "UP": self.camera_pos = list(vec3(self.camera_pos) + vec3(0.0, 1.5, 0.0)) self.update_camera_vectors() def inherit_from_camera(self, other_camera): self.camera_pos = Vector3(other_camera.camera_pos) front = Vector3(other_camera.target_position) - self.camera_pos self.camera_front = vector.normalise(front) self.camera_right = vector.normalise(vector3.cross(self.camera_front, Vector3([0, 1, 0]))) self.camera_up = vector.normalise(vector3.cross(self.camera_right, self.camera_front)) class FollowCamera(Camera): def __init__(self, camera_pos=[0.0, 0.0, 0.0], yaw=0, pitch=0, target_position=[0.0, 0.0, 0.0]): self.camera_pos = vec3(camera_pos) self.camera_front = vec3([0.0, 0.0, 1.0]) self.camera_up = vec3([0.0, 1.0, 0.0]) self.camera_right = vec3([1.0, 0.0, 0.0]) self.target_position = vec3(target_position) self.offset = self.calculate_offset() self.offset_distance = glm.length(self.offset) self.mouse_sensitivity = 0.25 #0.25 default self.yaw = yaw #was -90 self.pitch = pitch self.update_camera_vectors() self.angle = self.calclate_angle() def set_position(self, updated_position): self.camera_pos = vec3(updated_position) def rotate_camera_over_time(self, speed = 1.0): movement = glfw.get_time() * speed distance_multiplier = 0.70 self.set_position([ cos(movement) * self.offset_distance * distance_multiplier, cos(movement*0.5) * self.offset_distance * distance_multiplier, # self.camera_pos.y, # self.camera_pos.z, sin(movement*.77) * self.offset_distance * distance_multiplier ]) self.look_at_target() self.update_camera_vectors() def calclate_angle(self): ''' finds the angle on the XZ plane between the camera and the target ''' return atan2(self.camera_pos.y - self.target_position.y, self.camera_pos.x - self.target_position.x) def calculate_offset(self): return self.camera_pos - self.target_position def get_view_matrix(self): return matrix44.create_look_at(self.camera_pos, self.camera_pos + self.camera_front, self.camera_up) # return glm.lookAt(vec3(self.camera_pos), self.camera_pos + self.camera_front, vec3(self.camera_up)) def update_position_by_target_position(self, target_position): self.target_position = target_position self.camera_pos = self.target_position + self.offset self.look_at_target() def look_at_target(self): """ change camera pitch and yaw to look at a target object """ return glm.lookAt(vec3(self.camera_pos), self.target_position, vec3(self.camera_up)) #what does lookAt return? how to adjust def update_camera_vectors(self): front = vec3([0.0, 0.0, 0.0]) look_at = self.look_at_target() # front = look_at[2].xyz front = self.target_position - self.camera_pos self.camera_front = glm.normalize(front) self.camera_right = glm.normalize(glm.cross(self.camera_front, vec3([0, 1, 0]))) self.camera_up = glm.normalize(glm.cross(self.camera_right, self.camera_front)) def process_keyboard(self, direction, velocity): if direction == "YAW_CLOCKWISE": pos_from_center = self.camera_pos - self.target_position self.angle += 0.01 distance_from_origin = sqrt(pow(pos_from_center.x,2) + pow(pos_from_center.z,2)) pos_from_center.z = sin(self.angle)*distance_from_origin pos_from_center.x = cos(self.angle)*distance_from_origin self.camera_pos = pos_from_center + self.target_position self.update_camera_vectors() self.offset = self.calculate_offset() if direction == "YAW_COUNTERCLOCKWISE": pos_from_center = self.camera_pos - self.target_position self.angle -= 0.01 distance_from_origin = sqrt(pow(pos_from_center.x, 2) + pow(pos_from_center.z, 2)) pos_from_center.z = sin(self.angle) * distance_from_origin pos_from_center.x = cos(self.angle) * distance_from_origin self.camera_pos = pos_from_center + self.target_position self.update_camera_vectors() self.offset = self.calculate_offset() def inherit_from_camera(self, other_camera): self.camera_pos = vec3(other_camera.camera_pos) self.offset = self.camera_pos - self.target_position self.yaw = other_camera.yaw self.pitch = other_camera.pitch self.angle = self.calclate_angle() self.update_camera_vectors() def process_mouse_scroll(self, xoffset, yoffset): zoom_speed = 10.0 front = glm.normalize(self.target_position - self.camera_pos) updated_camera_pos = glm.vec3(self.camera_pos) updated_camera_pos += front * yoffset * zoom_speed minimum_distance_camera_target = 1.0 if glm.distance(self.target_position, updated_camera_pos) > minimum_distance_camera_target: self.camera_pos = updated_camera_pos self.offset = self.calculate_offset() else: # self.camera_pos = (-front * 2.001) + self.target_position # self.offset = self.calculate_offset() pass def process_mouse_movement(self, xoffset, yoffset, constrain_pitch=True): pass # xoffset *= self.mouse_sensitivity # yoffset *= self.mouse_sensitivity # # self.yaw += xoffset # self.pitch += yoffset # # if constrain_pitch: # if self.pitch > 90: # self.pitch = 90 # if self.pitch < -90: # self.pitch = -90 # # self.update_camera_vectors() class SimulationCamera(FollowCamera): """ Camera mode as seen in games likes banished, cities skylines, etc target to 'follow' (rotate,zoom around) is based on camera position and forward vector """ def calculate_target(self): self.target_position = find_intersection_ray_plane( ray_origin=self.camera_pos, ray_direction=self.camera_front, plane=glm.vec4(0.0, 1.0, 0.0, 0.0) ) def process_keyboard(self, direction, velocity): sim_front = vec3(self.camera_front.x, 0.0, self.camera_front.z) if direction == "FORWARD": self.camera_pos += sim_front * velocity * 2.5 self.calculate_target() if direction == "BACKWARD": self.camera_pos += -sim_front * velocity * 2.5 self.calculate_target() if direction == "LEFT": self.camera_pos += -self.camera_right * velocity * 2.5 self.calculate_target() if direction == "RIGHT": self.camera_pos += self.camera_right * velocity * 2.5 self.calculate_target() if direction == "YAW_CLOCKWISE": pos_from_center = self.camera_pos - self.target_position self.angle += 0.015 * velocity distance_from_origin = sqrt(pow(pos_from_center.x, 2) + pow(pos_from_center.z, 2)) pos_from_center.z = sin(self.angle)*distance_from_origin pos_from_center.x = cos(self.angle)*distance_from_origin self.camera_pos = pos_from_center + self.target_position self.update_camera_vectors() self.offset = self.calculate_offset() if direction == "YAW_COUNTERCLOCKWISE": pos_from_center = self.camera_pos - self.target_position self.angle -= 0.015 * velocity distance_from_origin = sqrt(pow(pos_from_center.x, 2) + pow(pos_from_center.z, 2)) pos_from_center.z = sin(self.angle) * distance_from_origin pos_from_center.x = cos(self.angle) * distance_from_origin self.camera_pos = pos_from_center + self.target_position self.update_camera_vectors() self.offset = self.calculate_offset() if direction == "DOWN": self.camera_pos -= vec3(0.0, 1.5, 0.0) * velocity * 2.0 self.update_camera_vectors() if direction == "UP": self.camera_pos += vec3(0.0, 1.5, 0.0) * velocity * 2.0 self.update_camera_vectors()
10,867
Python
.py
221
39.484163
109
0.618944
AlexSanfilippo/ProceduralMeshGeneration
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,324
PointLightCube.py
AlexSanfilippo_ProceduralMeshGeneration/PointLightCube.py
""" 7th August, 2023 Brief: A class for a cube that emits a point light """ import glfw from OpenGL.GL import * from OpenGL.GL.shaders import compileProgram, compileShader import pyrr import numpy as np #Let's have it contain its own shader vertex_src = """ # version 330 layout(location = 0) in vec3 a_position; uniform mat4 model; uniform mat4 projection; uniform mat4 view; void main() { gl_Position = projection * view * model * vec4(a_position, 1.0); //gl_Position = projection * view * vec4(a_position, 1.0); //gl_Position = vec4(a_position, 1.0); //SAVE FOR GUI LATER } """ fragment_src = """ # version 330 out vec4 out_color; uniform vec3 light_color; void main() { out_color = vec4(light_color,1.f); } """ class PointLightCube: def __init__(self, pos=[0.0, 0.0, 0.0], ambient=[1.0, 1.0, 1.0], diffuse=[1.0, 1.0, 1.0], specular=[1.0, 1.0, 1.0], scale=1.0, constant=1.0, linear=0.014, quadratic=0.00007 ): self.pos = pos self.ambient = ambient self.diffuse = diffuse self.specular = specular self.scale = scale # falloff self.constant = constant self.linear = linear self.quadratic = quadratic self.vertices = np.array([-0.5, -0.5, 0.5, 0.5, -0.5, 0.5, 0.5, 0.5, 0.5, -0.5, 0.5, 0.5, -0.5, -0.5, -0.5, 0.5, -0.5, -0.5, 0.5, 0.5, -0.5, -0.5, 0.5, -0.5, 0.5, -0.5, -0.5, 0.5, 0.5, -0.5, 0.5, 0.5, 0.5, 0.5, -0.5, 0.5, -0.5, 0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, 0.5, -0.5, 0.5, 0.5, -0.5, -0.5, -0.5, 0.5, -0.5, -0.5, 0.5, -0.5, 0.5, -0.5, -0.5, 0.5, 0.5, 0.5, -0.5, -0.5, 0.5, -0.5, -0.5, 0.5, 0.5, 0.5, 0.5, 0.5], dtype=np.float32) * scale self.indices = np.array([0, 1, 2, 2, 3, 0, 4, 5, 6, 6, 7, 4, 8, 9, 10, 10, 11, 8, 12, 13, 14, 14, 15, 12, 16, 17, 18, 18, 19, 16, 20, 21, 22, 22, 23, 20], dtype=np.uint32) # cube VAO self.VAO = glGenVertexArrays(1) glBindVertexArray(self.VAO) self.VBO = glGenBuffers(1) glBindBuffer(GL_ARRAY_BUFFER, self.VBO) glBufferData(GL_ARRAY_BUFFER, self.vertices.nbytes, self.vertices, GL_STATIC_DRAW) # Element Buffer Object self.EBO = glGenBuffers(1) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, self.EBO) glBufferData(GL_ELEMENT_ARRAY_BUFFER, self.indices.nbytes, self.indices, GL_STATIC_DRAW) # cube vertices (vertex attribute) glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, self.vertices.itemsize * 3, ctypes.c_void_p(0)) glEnableVertexAttribArray(0) self.shader = compileProgram(compileShader(vertex_src, GL_VERTEX_SHADER), \ compileShader(fragment_src, GL_FRAGMENT_SHADER)) self.light_color_loc = glGetUniformLocation(self.shader, "light_color") self.model_loc = glGetUniformLocation(self.shader, "model") self.proj_loc = glGetUniformLocation(self.shader, "projection") self.view_loc = glGetUniformLocation(self.shader, "view") self.projection = pyrr.matrix44.create_perspective_projection_matrix(45, 1280 / 720, 0.1, 1000) # glUniformMatrix4fv(self.proj_loc, 1, GL_FALSE, self.projection) self.translation = pyrr.matrix44.create_from_translation(pyrr.Vector3(pos)) self.rotation = pyrr.matrix44.create_from_quaternion([1.0, 1.0, 1.0, 1.0]) def draw(self,view): glBindVertexArray(self.VAO) glUseProgram(self.shader) glUniformMatrix4fv(self.view_loc, 1, GL_FALSE, view) # glUniformMatrix4fv(self.model_loc, 1, GL_FALSE, self.pos) model_mat = pyrr.matrix44.create_identity() model_mat = pyrr.matrix44.multiply(self.rotation, self.translation) #.translation * self.rotation glUniformMatrix4fv(self.model_loc, 1, GL_FALSE, model_mat) glUniformMatrix4fv(self.proj_loc, 1, GL_FALSE, self.projection) glUniform3fv(self.light_color_loc, 1, self.diffuse) glDrawElements(GL_TRIANGLES, len(self.indices), GL_UNSIGNED_INT, None) # glDrawArrays(GL_TRIANGLES, 0, 36); def set_ambient(self, ambient): self.ambient = ambient def set_diffuse(self, diffuse): self.diffuse = diffuse def set_specular(self, specular): self.specular = specular def get_ambient(self): return self.ambient def get_diffuse(self): return self.diffuse def get_specular(self): return self.specular def get_pos(self): return self.pos def get_constant(self): return self.constant def get_linear(self): return self.linear def get_quadratic(self): return self.quadratic def set_pos(self, pos): self.pos = pos self.translation = pyrr.matrix44.create_from_translation(pyrr.Vector3(self.pos)) # rotate the PointLightCube, given a quaternion from bullet def set_orientation(self, orientation): # cube_pos = pyrr.matrix44.create_from_translation(pyrr.Vector3([6, 4, 0])) #opt A # rot_y = pyrr.Matrix44.from_y_rotation(orientation) #opt B # rot_y = pyrr.matrix44.create_from_inverse_of_quaternion(orientation) # opt C rot_y = pyrr.Matrix44.from_quaternion(orientation) #pass to shader self.rotation = rot_y #pyrr.matrix44.multiply(rot_y, self.translation) # TP: make sure we can rotate the object this way def rotate_cube(self): rot_y = pyrr.Matrix44.from_y_rotation(0.8 * glfw.get_time()) self.rotation = rot_y #pyrr.matrix44.multiply(rot_y, self.translation)
6,275
Python
.py
155
30.283871
105
0.571947
AlexSanfilippo/ProceduralMeshGeneration
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,325
setup.py
Mauropieroni_fastPTA/setup.py
from setuptools import setup, find_packages from fastPTA import __author__, __version__, __url__ with open("README.md", "r") as fh: long_description = fh.read() with open("requirements.txt") as f: required_packages = f.read().splitlines() setup( name="fastPTA", description="Code for fast PTA forecasts", keywords="PTAs, GWs", version=__version__, author=__author__, url=__url__, long_description=long_description, long_description_content_type="text/markdown", packages=find_packages(), install_requires=required_packages, package_data={"fastPTA": ["defaults/*"]}, )
625
Python
.py
19
28.894737
52
0.68386
Mauropieroni/fastPTA
8
0
3
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,326
HD_constraints.ipynb
Mauropieroni_fastPTA/examples/HD_constraints.ipynb
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### Start importing all libraries" ] }, { "cell_type": "code", "execution_count": 76, "metadata": {}, "outputs": [], "source": [ "# Global\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "# Local\n", "import examples_utils as eu\n", "import fastPTA.utils as ut\n", "import fastPTA.plotting_functions as pf\n", "from fastPTA.Fisher_code import compute_fisher" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Constants to be used in the analysis" ] }, { "cell_type": "code", "execution_count": 77, "metadata": {}, "outputs": [], "source": [ "# Total observation time in years\n", "T_obs_yrs = 16.03\n", "\n", "# Number of frequencies used in the analysis\n", "n_frequencies = 30\n", "\n", "# Number of pulsars in the analysis\n", "n_pulsars = 25\n", "\n", "# The analysis assumes a power law template, specify here the input parameters\n", "log_amplitude = -7.1995 # log amplitude\n", "tilt = 2.0 # Tilt\n", "\n", "# Parameters for the HD computations:\n", "# Method to compute the HD, either \"Legendre\" or \"Binned\"\n", "HD_basis = \"Legendre\"\n", "\n", "# Maximum order of the Legendre polynomials\n", "HD_order = 5\n", "\n", "# Whether to add some gaussian prior for the HD coefficients to the Fisher matrix\n", "add_HD_prior = True\n", "\n", "# Specify the type of noise to be used in the analysis\n", "which_experiment = eu.EPTAlike\n", "\n", "# Number of points to generate for the Fisher\n", "len_fisher_data = int(1e4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Set the inputs for the Fisher" ] }, { "cell_type": "code", "execution_count": 78, "metadata": {}, "outputs": [], "source": [ "# Assemble the vector with two signal parameters\n", "signal_parameters = np.array([log_amplitude, tilt])\n", "\n", "# Length of the parameter vector\n", "parameter_len = (\n", " len(signal_parameters) + HD_order + 1\n", " if HD_order\n", " else len(signal_parameters)\n", ")\n", "\n", "# Dictionary with the kwargs to generete the pulsar catalogs\n", "generate_catalog_kwargs = {\n", " \"n_pulsars\": n_pulsars,\n", " \"save_catalog\": False,\n", " **which_experiment,\n", "}\n", "\n", "# Dictionary with the kwargs to generate noise and orf tensors\n", "get_tensors_kwargs = {\n", " \"add_curn\": False,\n", " \"HD_order\": HD_order,\n", " \"HD_basis\": HD_basis,\n", " \"regenerate_catalog\": True,\n", "}\n", "\n", "# Dictionary with the kwargs to generate the fisher matrix\n", "fisher_kwargs = {\n", " \"T_obs_yrs\": T_obs_yrs,\n", " \"n_frequencies\": n_frequencies,\n", " \"signal_parameters\": signal_parameters,\n", "}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Compute the Fisher" ] }, { "cell_type": "code", "execution_count": 79, "metadata": {}, "outputs": [], "source": [ "(\n", " frequency,\n", " signal,\n", " HD_functions_IJ,\n", " HD_coeffs,\n", " effective_noise,\n", " SNR,\n", " fisher,\n", ") = compute_fisher(\n", " **fisher_kwargs,\n", " get_tensors_kwargs=get_tensors_kwargs,\n", " generate_catalog_kwargs=generate_catalog_kwargs,\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Generate some data from the Fisher (and reject with prior) " ] }, { "cell_type": "code", "execution_count": 80, "metadata": {}, "outputs": [], "source": [ "# Get the length of the signal parameters\n", "len_signal = len(signal_parameters)\n", "\n", "# Compute the covariance matrix\n", "covariance = ut.compute_inverse(fisher)\n", "\n", "# Generate the Fisher data\n", "fisher_data = np.random.multivariate_normal(\n", " np.append(signal_parameters, HD_coeffs),\n", " covariance,\n", " size=len_fisher_data,\n", ")\n", "\n", "# If add_HD_prior, drop points that are outside the prior\n", "if add_HD_prior:\n", " fisher_data = fisher_data[\n", " np.any(fisher_data[:, len_signal:] > -1, axis=1)\n", " & np.any(fisher_data[:, len_signal:] < 1, axis=1)\n", " ]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plot the results" ] }, { "cell_type": "code", "execution_count": 81, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAGMCAYAAADdmnZaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5cUlEQVR4nO3dd3zj+X3f+dcPAAl2/khO7wNu350t4Iy6VbxgbFmyXELOJLHj5JIMmXLJxYpDZO9xF0e5JBNOilIuuYB75zixHXuWjCXZsiyJGFWrrIbE9r7E9D4EwU6QAL73x5c/sAEcgETH5/l4YLkDgD98ifrG59sMpZRCCCGEEKLC2ArdACGEEEKIQpAQJIQQQoiKJCFICCGEEBVJQpAQQgghKpKEICGEEEJUJAlBQgghhKhIEoKEEEIIUZEkBAkhhBCiIkkIEkIIIURFkhBUgQYGBujs7KSlpSVx6uzsZGBgIOPrDQwM0NHRgWEYGIaRuM7qU3t7O+3t7Xi9XsLhcJ7/WiFyb/VrxXoddHR00NnZKc95SLwPtLS04Pf7C90cIVYoUbH6+/sVoPr7+7d9Pes6Pp8v6eUTExOqv79fmaaZ8jpCJNPV1aVcLlehm5GWdF9Tlcjn8ylADQ8PF7opQiRIJaiCmaa55ud2rudyuQBobW1NeYy+vj7Onz9Pb28vZ8+ezbS54j4GBgYIBoOFbkZG0mlzIBAgGAyWREUl3ddUJTp58mShmyDEBhKCRF653W58Ph9er1fK4lk2NjZW6CZkLJ02j42NMTExIcFCCJF1EoJE3vX09OByuejt7S10U8pKKYbKdNssAUgIkQsSgkRB9Pb2EgwGGRoaKnRTykIwGCQQCBS6GRkpxTYLIcqLhCBREB6PB4Bz584VuCWlLxwO09nZWehmZKQU2yyEKD+OQjdAVCZrIHUmXTjhcJju7m6CwSDBYBClFH6/n0AgkBhb4vP51vxOIBDg3LlztLe3Ew6HGRsbo7e3F7fbveH4wWCQ/v7+NV0v7e3t9PT0JG3LmTNnEscdHx9Pet3VbQ6FQoyOjgIkKmBjY2MEg0EGBweTdvmcPXs2cb41MNjtdhMMBunp6WFgYGDN73Z3d68ZnD48PJzRfbe+vefPn19zX3V3dxMIBAiFQvT39ye9b+53P6bbZtBTq1O1Jd+PRT5k+nz1+Xy0tbWtuZ71nBkcHMTn8yVea+kcP1v3kdfrpa2tDYDx8XFOnDiR+OKzWq5f00LcV4Fnp4kCsqas3m/KejrXGxwcVIAaHBxM+/YBtZWnYF9fX2KqrXV7PT09G47l8/mU2+1ec97ExIRyuVwb2jk4OKhcLpcaGxvbcP31052Hh4eV2+1WExMTG27P4/FsOH99m9cfr6+vL+kU8FTHcrvdSdsEbGj/Zu1Idd9NTEwkrjc6OrrhGNZjnez5kOn9mE6brWnnydqSr8ciXem+plL9bqbP19V/n9vtVh6PJ/Hv/v7+NfdtJsff6n00OjqqXC7XhsdqdHQ08TxLNkU+F69pIdIhIaiCWW/YLpdLeTyelCeXy5WTEGSapgKSflBtxvrw7OvrS5w3MTGx5s11dHQ05Qesz+dTpmkm/j02Npay7dYHsHWciYmJTT+4+/r6VFdX14bzrfYku8y6/fXtX/2BtlqyD6Z0A0U6993q9iYLHtZ9sP75kMn9mEmbU7UlX49FJrYagjJ5vqa6/ze7PzM5/urrZ3ofbbYOmPUekez3sv2aFiJdMiZI4PV6GR4eTnnyer05uV2re2erXQ/t7e2J/zdNc025/fTp03g8njVdAZaTJ08SDocTJX6v14tpmnR1dSW9HdM0E901p0+fxu12Jz0u6AHfQ0NDKQf8JhsHYx17/To4fr8/6Ro6yboVMrXZfXc/qR6vTO7HbMjnY5FrmTxfrS7k48ePr7me9Rgmm2yQyfFXy+Q+slaET9ZFCqTVXZWt17QQ6ZIQJErW+g+B1QKBQMoPR+tD/MKFC4nrpjpWX1/fmjVqhoaGNr1d6zZTDfhO1ibr2KFQKHGe9eHe0dGR+DBf367t2Oxv2KpM7sdsyNdjkQ+ZPF/Xn7/e+Ph4Vo4Pmd1Hfr9/2+NysvWaFiJdMjBaFIRV4dhOVSPVh4D1zT8YDG7YD83i8/kSb7jBYDCtN2+rzemssJ2q+pBJJWR0dJTTp08zMDCQ+DvcbjfPP//8tj9scjHwN937MVu3Bfl7LHLB6/XS39+f8fPVes2sDwXWcdZXbzI9/mqZ3EeBQGDbVcpsvaaFSJeEIFEQVkm/u7t7y8fYbIsO0IEhVWl+vWxuNxEOh7NSSbBm+ACJGTPnzp2jo6MDn8+X1t8WDoeTfrDkKgBk435M1eatHivfVZ1MZfp8NU2Tnp4ezpw5s6br0fr3+iCylddDoWTzNS1EOqQ7TBSENXU3F29o1rfjdD+QrSnn6R43nfEi2/1GaoUei8fjoa+vj9HRUfr6+tIep/XCCy9sqx3JpPr7070f7yedNufzscgVq+2ZPl9Bh4Le3t7EPny9vb2cOHEiEZpX28rxt8LlcuUscObrbxCVR0KQyDvrA379+h/Z1NXVdd/ViK1qlMfjIRwOb/qBuvq6m61tlI0KF+gPyFRjWfr7++/bXusYW7VZJSbVB1Em92MqmbQ5X49FLgwNDa25jzN5vlp6enrw+Xz09fUlfqayleNnyuPxbHob2x1sno+/QVQeCUEir4LBIN3d3fT19WVlllMqzz//PMFgMOWb4tDQUKL0bi3sl6q6MjAwkPgm6vP5Nt3uwefz4fF4svK3pRr7APqb8eoP0WTflIPBYMqBpPdj3TfJvtmnuk8zuR+z0eZ8PhbZdubMmcRigpDZ8xW4bxhYL9Pjb4X1+KeaobXdgJKPv0FUHglBFcz6ZpZuRWGz61kfZJuVw8+ePUtHRwfPPfcc/f39mTQ1aXs2uy3TNBkeHk6scLyateLx6kG858+f54UXXtjwBm79XdYHs8vlYnBwMLHK7WpDQ0OJ1XTXs9qarM2b3a9nz57dcN7AwMCGzWddLhdut3vNbfv9/g0BIJ37DlamJ69evRnWDsa1VhNeLd37MZM2p2prvh+LdNzv94PBIJ2dnRsGNWf6fA2FQni9XgKBAIFAILHicipbOf7qn+n8jdYYNq/Xu6Etfr8/MWstWYDLxWtaiHQYSilV6EaI/LK2LRgZGUkMQj1+/Djd3d1rxuikcz3rOta3M+s6q1lvbB6Ph97e3i1XJ6wl9q32uFwuXC4XXq835bf9cDicqEy0t7djmiYulyvlEv6rr2u1M9m6N9bWENa6JuPj47S1tW3okli/LYDVZmvbAesNPRgMJu47q8IRDodxu92JrpPVY0iStcm6LZfLRXt7Ox6PZ8N2CNm67wzDSPx7/Wy1TO7HzdoMK9tmWPedx+PZ0I2a68cinedrOq+D9UFleHg4aUhN5/kaCATo6OhI2pbNZhDe7/jZuI+s27CObz2PrcfYus3z588D5PQ1LcT9SAgSQogSMjQ0lFjEdH34sPYTs0JZqoUrhRCahCAhhCgRwWCQjo4OJiYmNr3e0NAQXq83sQmpECI5GRMkhBAlwu/3pzXlP1vLFQhR7iQECSFEifB4PIyMjNz3eskGmAshNpIQJIQQJcLlctHf358YMJ7M0NAQPp8v6cw4IcRaMiZICCFKjDUAGliz3tDY2BidnZ0yIFqINEkIEkIIIURFku4wIYQQQlQkCUFCCCGEqEgSgoQQQghRkSQECSGEEKIiSQgSQgghREWSECSEEEKIiiQhSAghhBAVSUKQEEIIISqShCAhhBBCVCQJQUIIIYSoSBKChBBCCFGRJAQJIYQQoiJJCBJCCCFERZIQJIQQQoiKJCFICCGEEBVJQpAQQgghKpKEICGEEEJUJAlBQgghhKhIEoKEEEIIUZEkBAkhhBCiIkkIEkIIIURFkhAkhBBCiIpUdCGot7cXv9+/rWMMDAzQ2dnJ0NAQ4XAYgGAwyNDQEN3d3QQCgSy0VAghhBClzFHoBoAOKH6/H5/PRyAQoLu7e1vHC4fD+P3+DWHKNE0GBwdxu93bOr4QQgghSl/BQ9DAwADDw8N0dnbS399PZ2dnVo7r8/kYGxsjGAzS2tpKR0cHPT09WTm2EEIIIUpfwUNQT09PIpxks5vq5MmTmKaZteMJIYQQorwU3ZggIYQQQoh8kBAkhBBCiIpU8O6wXAsEAoyMjHD8+PG0B0RHIhEikUji3/F4nFAoRFtbG4Zh5KqpQgghhEiDUorp6Wn27duHzbb1ek7ZhiC/308wGMTj8dDT00MgEKCzsxOv14vH49n0d8+cOcMXvvCFPLVUCCGEEFtx9epVDhw4sOXfN5RSKovt2ZZAIEBHRwfDw8P3DSqbGRoaAqCrq2vN+eFwmJaWFkZHRzetCq2vBE1OTnLo0CGuXr1KU1PTltslhBBCiO2bmpri4MGDhMNhmpubt3ycsqwErQ8/FtM06erqoru7m7GxsZS/73Q6cTqdG85vamqSECSEEEIUie0OUam4gdEnTpwgGAwSDAYL3RQhhBBCFFDFhSBr7SDZOkMIIYSobGUXgnp7e2lvby90M4QQQghR5MouBI2MjBAKhVJebm2oKvuHCSGEEJWt7EKQx+NhYmIi5eUXLlzANE1cLlceWyWEEEKIYlOSISgcDuP1ejfsEg9w6tQpBgYGkv5eMBhkaGiI559/PtdNFEIIIUSRK6oQZM3YsrqsUhkYGODs2bN0d3dvuMztdhMOhzl79uyGY3d0dNDX15dyCr0QQgghKkfB1wkaGhrC5/MBejwPwOnTpxPndXd3J3aZt3g8HkzT5OTJk0mP2dfXh9/vp7e3l1AoRDgcxjRNzp8/L2OBhBBCCAEU2YrRxWpqaorm5mYmJydlsUQhhBCiwLL1uVxU3WFCCCGEEPlS8O4wISqRUoqlpSXi8XihmyJEXtjtdhwOx7a3ORAimyQECZFHc3NzTE5OMj09TSwWK3RzhMgrp9OJaZq0tLRIGBJFQUKQEHkyPT3NtWvXqKqqwjRN6uvrsdls8mEgyp5Simg0yuTkJLdv32ZxcZE9e/YUullCSAgSIh/m5ua4du0aTU1N7Nu3T4KPqEiNjY1MTExw69YtamtraW5uLnSTRIWTgdFC5MHk5CRVVVUSgETFa2lpoa6ujqmpqUI3RQgJQULkmlKK6elpmpqaJAAJATQ0NDA3NycTA0TBSQgSIseWlpaIxWLU19cXuilCFIWamhri8TjRaLTQTREVTkKQEDlmfdu12eTlJgSsvBakEiQKTd6VhcgT6QoTQpPXgigWMjssAz1fhacOwcM74OE2eKAFnHIPCiGEECVJPsIz8IOrcGEcossVXJsBB5vg8Z3wyHIwenyXPk8IIYQQxU1CUIaiq7qw4wouT8LVKfjGGMSWt6I9sQ/++jPQ6QKHdDgKIYQQRUlCUBbE1dp/j96ECzdgVx38tWfgrzwFdVWFaZsQQgghkpM6RQ5YoejOHPT/AD7x2/C190CpTX9NCLENXq+Xzs5OWlpaEqfOzk68Xm+hmyaEKFISgnJMAXfn4G99Df7SH8KVyUK3SIjy1N/fz/DwMM899xzhcJjnnnuO4eFh+vv7s3Yb7e3t9Pb2Zu142dTd3U17e3uhmyFESZEQlAdWAejF69D5u/AHr0tVSIhcMU1zzc9sCYfDBINB/H5/Vo+bjoGBAYLB4KbXCQQCBINBwuFwfholRBmQEJRHMQULUfCeh7/xxzAVKXSLhBDpMk2TiYkJxsbG8n7b6dzm2NgYExMTWQ9/QpQzCUEF8u1L8Nnfh7GJQrdECJGuQgWMdKtPEoCEyIyEoAKJKbg2pYPQj68VujVCiGIVDAYJBAKFboYQZUlCUAFZ3WN/+cvwZ1cK3RohRLEJh8N0dnYWuhlClC1ZJ6jA4gqiMfgrX4GBz8KzRwvdIlFISikWFxcL3Yycq66uzvv+UeFwmO7uboLBIKFQiNHRUQCGhoYAPaYmGAwyODi4oVvJ7/fj9XoTg6NVipkNgUCAc+fO0d7eTjgcZmxsjN7eXtxu94brBoNB+vv719xWe3s7PT09gB4Mvbot3d3dtLa2Jq47PDyc+P/Ozs7E33X+/PmktxcOhzlz5kyibePj42tuLxv3kxClRkJQEYgDKg6n/xj+88/Bzz5Q6BaJQllcXOTXf/3XC92MnPviF7+I0+nM622apsnw8DBer5ezZ88mupn6+voS1/F6vXR0dGwYiOzxeDh//jynT59OOUtrYGAAn8+XCA2gA0VHRwf9/f10dXUlzh8aGsLr9TI8PIzL5Vpz/bNnz9LX10dPTw89PT34/X46OzsZHBxcc93VhoeHOXv2bMo1kawQd/78+TXBZWBgIHHs1bPqtno/CVFqpDusSCh0VehvfQ2+Ke8rQuTMqVOnAPD5fGs+2AF6e3tTToM3TTNl11QgEKC3t5fBwcENv+P1ejl9+nTivGAwSHd3N/39/RtCzcDAAF6v977T4ZPxeDxJz7e61JJVbnp6enC73WvaZ9nq/SREKZFKUBFRy//521+D3/tl+OD+QrdI5Ft1dTVf/OIXC92MnKuuri50E5IGGqu7KdO1dk6fPo3H40laqTl58iS9vb0MDQ3R1dWF1+vFNM01laHVTNNc0+21XadPn8btdqesIvX29tLe3k4gEEjajZbN+0mIYiMhqMgo9IDpv/oV+KO/AA9m771QlADDMPLeTVSpkoUCq1ISCoUyOlYgENgwtmb9MS9cuEBXVxeBQIDjx48nvW5fX9+Gqst2DQ0NpWwbrNwP586dSxqCsnk/CVFsJAQVobiCSBR+7cvwJ38RWmsL3SIhyk+2qi3W9PVgMMjAwEDS6/h8vkTwCQaDScNGLljdavcbwGyaZspp+NmsSglRbCQEFamYgtsz8L98BX7/z8su9EIUKytguN3uTSsuq21lzM964XA4a7OzwuGwVHVERZKB0UUspuDVO3D6q7AYK3RrhBDJWN1F6QYbt9udlRD0wgsv3Pc6VtvSGbuTqotOiHImIajIxRX84Ar8H9+WTVeFKFbWWJ/NWDOpPB4P4XB402Byv1lXmQxI9ng8mx7Puqy7uzvtYwpRLiQElQAFnHsDfve1QrdECJHM888/v+mU8aGhocTYGmuBxFRr+gwMDKwZjJys0hQMBlPO9lrP5/NtuvWGz+fD4/GknGIvRDmTEFRC/vF34Eeyz5gQm7KqJKmqJdbYl2RjYLY65dtaYLC7u3tD2AgEAoRCoTWDoc+fP88LL7yQWIXZYgWd9SHI7XavWYPI7/dvCC2pxvS4XC4GBwcTq0CvNjQ0lFj9eb1c3E9CFBtDpVr/XSRMTU3R3NzMgX85ia2mqWDtsBlQXwVf+0twqLlgzRAZWlhY4OLFixw9epSamppCN6dseb1eAoEAIyMjiUHDx48fx+1209/fv2Y7CKuSYgUE0zQTASYYDCZ+1+fzrQkkAwMD9Pb2ptw2IxwOJyo87e3tmKaJy+VKWmVZf13rdpKtH2S13eVy0d7ejsfjWROqrG0zrL/L4/Hg8/nWHMPapqO9vR2A8fFx2traNkzJz8b9dD/ymhDbZX0uT05O0tS09c9lCUFpKJYQBGA34JEd8KWT4JS5fSVB3vDLx/1CkEiPvCbEdmUrBEl3WImJKXjzLvxf3y90S4QQQojSJiGoBCngd16FP3y70C0RorJkc20eIUThSQgqYV4/vDte6FYIUb68Xu+aqeNjY2Oyno4QZURGlZSwWBx6/wT+9C9BjTySQmTd+tlbfr8/6UwqIURpko/OEhZTcCkMX/gunHm20K0RovwMDg7i9/sZGBhgdHQUn8+Xt32/hBC5JyGoxMUV/I/X4aMH4bMPFbo1QpQXt9stoUeIMiZjgsqAAfzDYbg6VeiWCCGEEKVDQlAZUEAkBn/rTyASLXRrhBBCiNIgIahMxBS8fgf+yXcL3RIhhBCiNBTdmKDe3l66u7u3vZlfOBzmzJkzALS1tTE2NkZnZ2fSJenLhUKPD3piF/zKsUK3RgghhChuRRGCrN2XfT4fgUBgzbocWxEOh+no6GBwcHDNoMbe3l4uXLhAf3//dptc1P6Pb8OxXfDk7kK3RAghhCheBe8OGxgYSGwimK1w0t3dTVdX14ZZHT6fj4GBAfx+f1Zup1gZwP/6pzC/VOiWCCGEEMWr4CGop6eHwcFBenp6aG1t3fbxrKpSb29v0stPnjxZ9pWgmNIzxfp/WOiWCCGEEMWr4CEo23w+HwAulyvp5e3t7fj9fsLhcB5blX9xBf/1ZfjRtUK3RAghhChOZReCAoHAphscWuFoZGQkTy0qHJsBv/4NmF0sdEuEEEKI4lN2ISgYDG7arWYFpGAwmKcWFU5cwe1Z+Fc/KnRLhBBCiOJTdiEoFAptWgmyAtJm3WGRSISpqak1p1IVV/DbL8MbdwvdEiGEEKK4FMUU+WxKd6zP+Ph4ysvOnDnDF77whSy1qPBsBvzdP4WvyW7zJWNyUTFfpqt/1zqgudoodDOEEKL8QlA2PPfcc3z+859P/HtqaoqDBw8WsEXbE1NwMQxnfwD/+BOFbo24n8lFxcCbUWKq0C3JDbsBPY85JAgJIQqu7EKQaZppVYPa2tpSXuZ0OnE6nVlsVeHFFfzWy/DpB+DE/kK3RmxmPkrZBiDQf9t8FJqrC90SIUSlK7sxQfdbaygUCgFsOm6oXBkG/Po3ZRFFURl6e3vLfmFUIcT2lF0IcrlciaCTjFUlSrWOUDmLK7g2BV/8caFbIkRuBINBBgYG6OjoYGBgoNDNEUIUubILQW63e9PuMGtq/HY3aC1VCnj+JXj7XqFbIkR25WILHiFEeSu7EHTq1ClAL5qYzIULFyo2AFkM4B+d15UhIcpFtrfgEUKUv5IMQeFwGK/Xm7S/3+124/F4OHfuXNLfHRoaSnxbrFQxBS/dgt95tdAtEUIIIQqnqEKQ1VV1v9ldAwMDnD17lu7u7qSXDw4OMjQ0tKEa1NvbS19fX8VXgiz/9HvSLSaEEKJyFXyK/NDQUGLTU2s/r9OnTyfO6+7upqenZ83veDweTNPk5MmTSY9pmiajo6N4vV5M06StrY2xsTE6Ozvp6urK4V9TWpSCPj98+ZReUFGISub3++nv72dkZGTTL2JjY2MVObFCiHJU8BDU1dWVcTBxu91MTExseh3TNBNBSiQXU/DKbfitl+BvuAvdGiEKx+v1cvbsWTweDz09PQSDQYaGhgDo6+tLrCtmmqYEICHKSMFDUCnZ2xxnzlDMRiCuyqd0cuYH8Kmj0N5S6JYIkX+dnZ34/X5GR0dxu1e+Dfj9fjo7O2lvb99QjRZClAcJQRn4ucdj1DREUQrmlmB6HiYXDKYXDGYiBlMLMLVgML0Aeg5WaVAKvH54oUu6xURlGRgYwO/3Mzg4uCYAwUq3uzXjTAhRfiQEbYFhQH21Pu1qUiilsBn6fICZBbg4buNKyOD6pEEsXtzJIqbgwg3476/CX32q0K0RIj+sWaabdcm3trYmJmwIIcpPUc0OK0U2A+y2lQAE0FADj++N85ljMf7aR6I8+3CUfc1x9FKFxetffB9uThe6FULkx5kzZwiHw/T29qa8TjAYlDFAQpQxCUE5Ylu+Zx02eGCn4heeivGrH4jy+N4YNqM4w1A0Dv/4O4VuhRD54ff7MU0z5ZIZ1hIb67vJhBDlQ0JQHliBqMEJP/VAnF/9QJRH98SLLgzFFHwzCOcvFrolQuReMBjk+PHjKS8/c+YMwKaVIiFEaZMQlEfG8rihumr4xIMx/tKJKA/vjmMUUTeZzYDf/A4sxgrdEiFyq7W1FdM0k14WDocZGhqiv79fusOEKGMSggrACkMNTvjph2OcOh7lUEtxjBmKK7g6pdcOEqKceTyelIOeT58+jdvtpq+vL8+tEkLkk4SgArIGUzfXwmeOxfjssRhmbeGDEMC//THckEHSokSlswVPf38/wWBwwx6EVvfX6OhoztonhCgOMkW+CFhr8+xvVpzqiPLiJRsvX7NRyLWGonE4+0P4dz9TsCZUrFoH2A09Rqsc2Q39N2ZbplvwmKbJxYsXOX36NMPDw4TDYUKhEKdOnZLtdYSoEIZSqkzfarNnamqK5uZmfvN796hpaMrLbV6bMDj/jp25xcKuMTTYBR/YX9AmlLyFhQUuXrzI0aNHqampSet3JhcV89EcN6xAah3QXF3ca2eJ3NrKa0KI1azP5cnJSZqatv65LJWgIrXP1FWh82/buTJRmF5LmwG/MQzDvwpOeabkVXO1QXN1oVshhBDlTcYEFSmboYPHZ47F+MCRaEFmkMUVXJmEgUDeb1oIIYTIOQlBRcwaOO0+qPiFp6LUV+c/CCngP/xEzxgTQgghyomEoBJgGLC7kVVT6fMrFod/5NcbrQohhBDlQkJQibDZoNquu8c+mOfusZiCP7sKf/p+3m5SCCGEyDkJQSXE6h575qDi556I4bDlLwgZwD/7PiyU6YwlIYQQlUdCUAkyDDjQovilp6PUO/MThBR68cR/9+O83JwQQgiRcxKCSpTNgNY6OOmOsqcpP+OEFOALwOt38nJzQgghRE5JCCphNhtUO+AXnozxyO78BCED+PvfkA1WhRBClD4JQSXOtrwZ66cejvFTD+R+wHRMwfsh+L9/ktObEUIIIXJOQlAZsAZMP75X8TOPxbDneMC0Av7jBXjzbk5vRgghhMgpCUFlxDDgcJvic8eiVNlzG4QM4B98U2+0KoQQQpQiCUFlxmbArib4+WNRqnMYhGIK3rwHv/1yzm5CCCGEyCkJQWXIZsDORvjlZ3K/1cbZH+qp80IIIUSpkRBUpmwGNNfALzwVpbYqd0EoGod/8t2cHV4IIYTIGQlBZcxmg0anDkI1jtwEoZiCb4zBty7m5PBCCCFEzjgK3QCRWzYbNNfCzz8Z5cuvOFiKGdm/DQP+92/Bt38NaquyfnghhBAVIhqHK5MwsQDhFKeJBbg9np3bkxBUAWwGtNbDZ56I8tXXHETj2Q1CcQW3ZuDfvwj/6GNZPXTFuj4FoYVCtyI3Wmtgf1OhWyGEKAZ3Z+GlWxC4CRduwGt3ILJuMV6boU+gP2/iCuJZen+UEFQhbAbsboJPPx7ja6/biansBiFrS41ffhQeasvqoSvO9Sn41H/f+EZQLpx2XTWUICRE5ZmMgD8I37mkQ8/NGX2+w4BoilEbVvDJBQlBFcRmwD5T70D/p2/Ys14RMoDnzsNQ98oCjiJzoYXyDUCg/7bQgoQgISrF/BIMB+EP34bvXdZjSe2G/mlJFYByTUJQhbGC0J97VAchRfbSSkzByE34/dfhLx3L2mGFyEggEMDn8xEKhQgEApimSW9vLz09PYVumhAVQyndzfX7r8MfvQsL0bXBJ1ag0LOehKAKZDPgUKvipx6I8b337ZDFIATwhe/BTx+FPQ1ZPawQ9zUwMACAz+dLnOf3++nu7qa/v5/R0VFM0yxQ64Qob0rB63fhq+/q07Xp4gw+q8kU+QplGPD4PsXxw9nvd1mKwW9+J+uHFWJTwWCQcDi8oeLj8Xg4f/48wWCQ7u7uArVOiPJ1dQr+40/gk/8dPvv78HxAByAozuCzmlSCKtyJw4qFpRiv37Bn7ZgxBV8fgx9chY8ezNphhdiUz+fjueeeS3qZ2+3G4/Hg9/sJBoO4XK48t06I8qIUvHgd/t+X9EBnw1gZvFzswWc1qQQJfuqBOEfasrsTqs2AL3wXYrLBqsgTv9/P0aNHCYfDSS93u92AHjMkhNia+SX4g9fhZ34PTv1PvVCuInezt3JNQpBAKeh8JEZbffaexXEF74zD/3wra4cUYlOtra2Ew2GCwWChmyJE2bk2Bf/42+AeAO95eHd5scJSqvokIyFIYBh6ZenPHovSWJO9Z7QB/LPv6xU+hci14eFhxsbGEhWf9axwlOpy0NWkzs5OWlpaMAwj5UmClqgUl8PQ54ef+m343ddgLqrPL/HskyBjggSgu69qHPC5J6MMBRxEotufMaaA6UU482fQ79l+G4W4n83G+gwNDeF2u1Nex+v1cvbsWTweDz09PQSDQYaGhgDo6+ujrU2vAmqapowpEmXvvRD8yz+D8xf150Opdnfdj4QgkWCzQYNTV4T+6NXs7DMWV/AHb8AvPgIfPpCFRgqxBWfPngXg+eefT3p5Z2cnfr+f0dHRNZUiqzLU3t4u6wyJsheJwrk34PmX9P5ddkN/mS31Lq/NSHeYWMNmwI4Gvb2GzcjOM99mwG8Mw3QkK4cTIiOBQACv18vg4GDSrrCBgQH8fn/Syz0eD6ZpMjg4mK/mCpF3SsGfvKe36/k/v6MDEJR3+LFICBIb2AzY16z46YdjZKPnN67gxrQOQkLkW3d3Nz6fj66urg2XhcNhvF4vXV1dSS8HPeBaxgCJchSL6z28PvcH8Le/BjenC92i/JMQJJIyDHhgp+IjruwFoa+PwR+/u/22CZGu7u7uTbfMOHPmDOFwmN7e3pTHkHWFRLlZiMLvvaYHO/+Vr8Abd/X5lbiiiYwJEikZBjx1QLGwFCdwdfuLKRroWQYf2A+767ffPiE24/V6OXHiBH19fSmv4/f7MU0Tjyf5yH1rTaHNZpQJUSqU0nt5/asf6k2MLZXQ7ZVK0VSCrLK0NUOjt7c3MTNjKwYGBujs7GRoaCixeJo126O7u1sWTMvAB4/GeXTP9r8jKPTAO9lSQ+TawMAA7e3tSQPQ6sUUg8Egx48fT3mcM2fOAGxaKRKiFLw7Dn/5y/Dct9YGoEpXFJWgcDhMR0fHhoGJvb29XLhwgf7+/i0d0+/34/f715xvDXKUb3aZ+eRDMZSCt29vLzfHFPzp+3pzvc8+lKXGCbGK9eUpWRdYMBgkEAgkxv+0tram3FA1HA4zNDREf3+/dIeJknRvDnyj8MIbEI7o2V5iraIIQd3d3XR1dW0IJj6fj5aWFjo7O1OWqzfj8/kYGxsjGAzS2tpKR0eHTHPdhk8+FCMah/fvbi8IGegVR09It5jIskAgQCgUSvk69/v9a95LPB4PIyMjSa97+vRp3G73pt1pQhSjN+7Cf3sF/vAt/cWzFPf0ypeCh6BgMIjf78fn8yW9/OTJk/T3928pBJ08eTLltzyxNc8+HGN2EW5Obj0IKfT+M//8+/AffjZ7bROVzdol3uPxJO2+CoVC+P1+JiYmEuf19/dz9OjRDeHI+v3R0dHcN1yILIjGdcXnv76iu77shoSedBQ8BFnhJ1W5ub29nYGBAcLhsASaAjOWF8769OMxhgIGUwtbr63GFHzlHfj0A/okVrTWgNMOkVihW5IbTrv+G7Ots7OTYDDIwMBAyuusf58xTZOLFy9y+vRphoeHCYfDhEIhTp06lXLKvBDFZGZRb2j6ny7IYOetKHgICgQCm4Yb601rZGRkS9UgkV02A6qW9xkbesnB4ja21zDQawcd2wUHmrLXxlK3vwm+/WvlO3ixtUb/jdk2Nja2pd+TxRBFKZqMwG+/DM8HdBCSzLM1BQ9B1nidVKyAtJ3FygKBACMjIxw/fjytAdGRSIRIZGV546mpqS3fdjmy2aCxBn72sRhffc1OXG0tCFndYn/ra/Clk+AomrmKhbe/KTdBQQhR2haierzPfxnRg53LdU+vfCn4x04oFNq0EmQFpNXTWtPl9/sTewZZAyWtPYI2c+bMGZqbmxOngwcPZnzb5c5aVfpTD21vMcWYgldv6xkMQgghkptb0mN+PvZf9abUoQUJQNlQ8EpQuuFmfHw8o+Na3WirZ3a43W4GBwdpaWnZsFHias899xyf//znE/+empqSIJSEYcBDuxXTkRg/ubS9p9K/+RE8exQe2ZGlxgkhRImLxeEbY3pZka+PwWJMDyOQ7JM9BQ9BuZJqUKNpmnR1ddHd3Z1yDIHT6cTpdOayeWWl45BiYSnGq9e3t6r0r38D/vgvSreYEKKyxRV866Ku+Lw/sXamlwSg7Cp4CDJNM61qUFtbW9Zu88SJEwwNDcmeQFn00fY4sxGDsXtbSzAxBW/eg996GXpkHUshRAVaiMKX34b/ZwQuTephB1A5M70cNkVTDTTUKKrtUGWHKrvCYdcTcqx/V9lBLUT5/7Jxm1k4xrZsNiga9JghIKvT461jBQIBCUFZohQ8+0iM6VfgzvTWSzn9P4CPHoTHd2axcUIIUcRuTOtp7v/fy3qmlzXVpBzH/DhsipY6hVkHzTWKplpFc62iuRZqqzZeP67054vFQA/FiMxm584peAhyuVwpV2yFlTFDmYSV3t5e/H7/lqfMpjJ/6VVUcxtGVTW2KieGw6l/VjkxHNUYRuWuSW4Y+sn5mSdi/OHLBpPzW5wxpuDvfA2++atQvf09W4UQomi9dRf+8wh89T1AreziXi7Zp9qu2Nmo2NWo2NmgfzY49ecF6DFPBnrGcSo2g5VUmAMFD0Fut3vT2VrW1PhM1ggaGRlJVJCSsYJVpvuHjX/396iurk5xqaHDUU0DjoYW7PUtOBpbcDTtpLp1H1UtezDsBb+7c8pm6ODy2Sei/OHLDuaXMn/mxhRcCuuFv379Q9lvoxBCFFJcwYvXYWAUvnVJj/cpl4pPfbViT5Nib7PigBnHrNOBx/r7bOs+EuxFMP6z4J/Kp06d4uzZswQCgaSh5MKFCxkvkujxeDbddPXChQuYpplxV1j1rqNU2Q3UUgQVjRBfiqCWrPWEFGopQmwpQmw6yUw2w0aVuZuq1n1Ut+1f/rkPW21TWVWQbDZocMLPH4vy5VccLMYy/9sU8O9fhI8chA/uz34bhRAi35SCbwbhX3xfj/exl8V4H0VbPRxpi/PAzjity3tBxuJrA8768FNMCh6C3G43Ho+Hc+fOJQ1BQ0NDDA8Pbzg/HA5z5syZpJurnjp1ioGBgZS7SA8NDW1phdhdn/6b1DSsXcFOqTgquoRa0qEoPj9NdCZEdGaC2MwES+HbLI5fRy3OszRxk6WJm8yNrSyKY6ttwrn7CM7dR3HuPkr1joMlXzGy2aClHn7uiShffc1BNJ75K8Aw4PPfhPN/GWpK++5IUKqk3+2EyJpKei0sxmA4qNdCe+X2Ss9OaYYfPXZnvxnngKnYbypqqnSlZ/W7fDFUeNJlqCJ4NobDYTo6OhgcHFwThHp7ezFNM2lV5+zZs3i9XkzTXLMh4urLYe06QcFgMLGT/GaVovWmpqZobm7mN793b0MISodSithsmKXx6yyGbrAUusHi+HWiU3fXjvgCjCondUeeos71NDX7HsJwJBkpViLiCq6EDL7+hh21hU5dA/hrT8M//kTWm5ZXi4uLjI2NcejQIerr6wvdHCEKbnZ2litXrtDe3r7JEIPSNjEPv/caPP8ShBd0NaRUu7121Cse3hOnfUeceqf+2FJq87E8ubYwM8UXPr6DyclJmpq2vrx+UXzHNk2T0dHRRKhpa2tjbGyMzs7OlOv9eDweTNPk5MmTSS/v6+vD7/fT29tLKBRKbMB6/vz5jMcCbZdhGDgaWnA0tFB7+InE+fHoIov3rrJ4+xKR2xeJ3L5IfGGG2fd+wux7P8FwVFOz/yFqDz1OzcHHcdQ357Xd22Uz4HCrXlX6W+/ayXR0m0LPlujYB595MBctzI+qqirsdjuzs7MSgoQAFhYWsNlsOBxF8RGUVbdn4T+8CH/whu4WsnJPKQUgh01xsEVxqDXOwRZFYw3E4yuhxzBWBjeXuqKoBBW77VaC0qVUnMjti8yNBZi//Dqx2fCay6t2HKDu0BPUuZ6hqmVPztqRbUrB6zcM/mws8yAE0FgN538Ndpdwfrh58yazs7O0t7eX1RgwIbbi8uXL2Gy2slmJfyoCf/IefPsS+Je3uSy17q4qu+JQi8K1I86RNr02z+rgU2zKqhIkNMOwUbOnnZo97aiPdLEUusH8lTeYv/IGi3cus3TvGpP3rjEZ+DpVLXupa3dT/0AHjsbsLSSZC4YBx/Yr5hbjBK5mPu99bgn+4TD8t18o3W8fzc3NhMNhbty4wb59+yQIiYo1MTHB3Nwc+/btK3RTtu3KpJ7l9cKbeuyPzSit8ON0KFw7FO074+xvVthsa4NPsQagbJJKUBryVQnaTGx+mvmrbzJ38RUWrr0N8VjiMuduF3UPdFDnegZ7TXGXS77zrp23bm3tlXXWA6cez3KD8mh6eppr165RVVVFU1MTdXV12O12CUSi7CmliEajTE5OMj09TUtLC3v2lE41ezWl4DuX4f99Cf7sytotLUpBg1NxuDWOa4din6kSe5EV8wyuZLJVCZIQlIZiCEGrxSNzzF16lbmxURauL6+yBWCzU3f0aZqe+mmq2w4UtI2b2WoQqnHA8K/CodIaGrXG3Nxc4oMgFovd/xeEKCNOpxPTNGlpaSm58L8Yg/MX4bdegp/cKK2BzrVViod362nsOxuXBzZTesFnNQlBeVRsIWi16GyYubEAs++PsDR+PXF+1Y4DND3xSepczxTdlHul4Jtv2QlmuM+Y3YBn9sALXaU1BTMZpRRLS0vE4/H7X1mIMmC323E4HCUXfiYj8Nsv630NwwulU/lpcCrad8Q5uiPO7qaV0ZgldvenJCEoj4o5BK22eO8qU6+cZ+7Sq4nuMntdM42Pf5yGRz+CzVlX4BZqSulvUF951c7tqczTzN89Ab/xkRw0TAghll2bgv/4Exh6S79fFX/VR7GjAQ61xHHtjLOzYWUFlnIJPqtJCMqjUglBltjCLDNv/5CZN75HbG4KAMNRTf3DH6LxiU9Q1bSjwC3UbyiLUfjyKw4m5jJ/hf6Xz8CnH8hBw4QQFe3iBPzXl+F3XtPVk+Ku+iha6+HBnbqrq6l2ZeHCcgw+q0kIyqNSC0EWFYsyOxZg+rVvsxS6sXyuQe2RYzQd+xTVu48WtDQdj8NCFL7yioNwBhuuGujxQX/0F+Ch4p4YJ4QoETen4V/+AL78TnGP9zHQA5qPtunp7PVO3dZSHt+zFRKC8qhUQ5BFKUXkxrtMvfZtFq6+lTi/etdhmp7yUHv4CQyjMINs4nE94DDTipDdgD0NOgjtKI5ePiFECbochrM/hK+9X7yVH7uh2NOsQ0/7TkVtVXGv4ZMPEoLyqNRD0GqLoZtMv/4dZt+7kBg35DB30/SUh/oHOjBsma/js11WEPrSy5lVhOyGnin25VNg1uSwgUKIsjMdgX/7Y/idV3UlpdjCj8OmONSqeGBnnMNtCodNgs9qEoLyqJxCkCU2N8X0G99l+o0/Qy0tAGCvN2l68qepf/hD2KqceW2P1TX2pZcdTC1kFoQ69sLv/hI4i2sSnBCiCEXjek+vf/VDmF0qrm6v2irFkTa9js+hVoVdgk9KEoLyqBxDkCW+OM/Mmz9g6vXvEJ+fBsDmrKfxiU/Q8NjH8rr4YjwO88tBaDqDIGQAP/sA/KdPl/7UeSFE7rx2G35jGN4eL3RLVjTWKI62xXHtiLNn+eOl1NfwyQcJQXlUziHIoqJLzLz7ItOvfovotH6HMBzVNDz6ERqPfQpHvZmXdsQVzEbgS684mI1kFoS6H9OrSpf7rAghRGauTsG/+RF86e3iWOenqWZl8UKzrrynsueK7B0msspwVNH42MdoeOTDzAVfZuoVP0uhG0y/9h1m3vwBTe6fofHxj+e8m8xmQL0TfvGpKF95xcFMmkFIoffvOdgMf+8DOW2iEKJERKLgC8AXf7xyXmECkKK1Dg63xWnfoVdtXj2jS8JP4UgIEmsYNjv1D3RQ1+5m4dpbTL30TSK3LzJ54atMv/49zA98lvoHT+R0NpnNgIZq+OWno3zplcy6xv7Nj2B/I/z5R3PWPCFEkVMKvvIO/Osf6SpQgVrBzgZd8WnfqairXlnDB6S7q1hICBJJGYZB7cHHqDnwKLPvXWDqpW8QnbpH6Lv/g5k3vo/5wV+gZt+DObt9mw1qq1YqQpkMlv78N2F2EX7tqZw1TwhRpAI34Z99H0ZvrgSOfGpw6l3ZH98bp7l23a7sEnyKjoQgsSnDMGh46APUt7uZfuN7TAa+zuK9q9z5k/+b2sNPYH7gc1SZu3Ny2zYb1FXBLz0dzXhBxf/zO3ra/d9w56RpQogic2Ma+n+gK0BW2MhPz5fCrIVDrXHad+rBzatH2srMruImIUikxbA79PT5B08wGfg6M2/9kPnLrzN/5U0aHv0oze6fwV7bmPXbtdmgpgp++Zkof/KandvT6b+j/F/fh0gM/s6JrDdLCFEkFqLwny/AfxnV098V+Rn3U1uleHBXnMf2xmmpWxt8ZIxP6ZAQJDJir22k9aPdND7+cSZe/AoLV95g5s3vM/veT2h68lkan/wUNkd1Vm/TZkCVHX7+yRhfex1uTKYfhM7+ECYX4LmPyRuTEOXmx9fgH3wTrk/np+rjdOh1fB7cFeeAufYW5f2lNEkIEltSZe5m18/0sHDjPcIvfoXFe1eZHP0aM+/8mJYPfo7ao09ndV8ymwHY4LPHYgy/BRfH0w9CvgAsxeH//Lj0yQtRDi6H9T5fX3tfT3nPZQCyGXrl5kd265WbDfTtSegpDxKCxLbU7HuQ3b/4D5gbCxD+yR8Rmwlx7/xv49zTTsuHf5nqHQeydlu25Te7P/dYjG+/A+/eST8I/dbLeiHGf/4pWVBRiFI1Pgf/5sfwB6+vnJebri/F7ibFw7v0zK4aa68ua0p7Lm6yDCilUNFF4pFZ4gtz+mdkjvhSBLUUIR5dRC1F9HVW/SQeAxVHxRWouP5/pZZ/xvW0Ouv/l8+PzM9npc0SgsS2GYZB/QMd1B45xvQr55l65TyRW2Pc+tK/pv6hD9B8/Oeyttiisfw17NlHYrTUxXnxkp1035J+/3W4Nwdf/HPQmN9dQYQQ26AU/NG78E++A5OR3I35cdgUD+2Oc2xfnNb6dTO7KvjLk4pFic2Gic6Gic2Gic2s/H98QQed2HLgsfakzLXY4mJWjiMrRqehElaMzqbozAThn/wxc2OjABj2KhqPfZKmp57FVl2b1dt6747Bt96xE1fpBSGbAbvr4b9+Dh7dmdWmCCFy4O178M+/D9+7kqtbUOxogId2xXhkj6J6eQ/pSunuUvE4sbkw0ekQsZmJ5XAzSWx2+f9nwsQXZjI7qM2OvaYem7MOW3UdRnUNtionhqMao8qJraoaw+HEqKrG5nCCzY5hs4Fh08MojFX/n+x8m42FuVn+5Z93y7YZ+SAhaGsity8RfvErRG4HAbDV1GN+4HPUP/SBrC22qBTcmDT4xpt2ItH0g1CNA/7LZ+ATh7PSDCFEll2b0pucWlPes139cdgUD+5SHNsfo62+fDcqVUoRn58mOj2uT1PLP2dCieCDit/3OIa9Cnu9ib3exNFgLv9/M/aaRh12rNDjrNNhJ8cpUvYOyyMJQVunlGL+8uuEL/wx0fBtAKp3HaH1I11U7zyYlduIK5hbhK+97mB8Ns0gBMSBXzkG//vH9ArVQojCm1uC33kV/u2PYSmW/fBTW6V4Yl+cY/vjZVX1UUoRmwmxeO8aS5N3iIZvszR5h6XwHdTifcbP2Ow4GlqwN7TgqG9JBBxHQ0si+NicdTkPNpmQEJRHEoK2T8VjTL/+XSYDX0ctRQCD+odO0Hz8szjqm7d9/LjS3+S++Zady6H0v87ZDNjbAP/x09Cxd9vNEEJskTXu5ze/A+GFbM/4UuxpUjx1IM6RNn3kUp4pGo8ushS6ydL4dRZDN4hO3mFx/BrxhdkUv2FgbzBxNLatOrVib2zF0diGva4pp1sh5YKEoDySEJQ90dkw4Z/8EXPvL48XclTT9HQnjcc+ue31hZTS3+hGLhtcuJz+gGnrzfDvnoC/fUJ3lQkh8mdsQq/389ItElPQs8FmKB7YqXjyQIydDaXZ5RWbm2Jx/Ppy4LnO4vh1opN31q7OaLHZqWrdS5W5hypzN1XNu3CYu6hq2onhqMp/43NIQlAeSQjKvsidS0z86Ess3rkEgL2hBfMDn6PO9cy2S65KwZWQgf9tO4ux9I9loAdN/9NPwc+0b6sJQog0zC3Bf3gRnn9Jv26z1fVV71Q8sTfO4/viOB1rd2wvVkopYrOTLN67uuYUn59Oen1bTQPVbQeoatunA0/LXqpb95Vd2ElFQlAeSQjKDaXUyvpCs2EAqncfpeVDv4Rz1/ZGLMcVzCzAn77hIDSX+bvfLz4M/+ijsDf7O4EIUfFicfi91+CLP4ZwRL9et0+xt0nx+D69tg8Ud/BRsSiL964SuX2JyJ1LLN6+SGxuMsk1DRzNO6lu209V236q2w5Q3bYPW21TUY3RyTcJQXkkISi34tFFpl/9NlOv+FFRvfZD3QMnMD/w2W2tLxRf3kfoB2M23rhpI5MlzuzLM8j+4UfgLz4hXWRCZMNiDP74Xfj3L8LlZJ/3W2AzFEd3KJ45EGNnY/F2ecXmJoncvqhDz+2LLN67unFNHcNGVctuqnccTJyqWvdhq5KFzdaTEJRHEoLyIzobZvLCnzD73k+A5fFCTz1L45M/ve3xQmN3Db7znp3FNKfRr9bkhB43/I1noLYyKs1CZNV0BIbegv90Ae7OZWfcT5Vd8eieOE8fjFNfXVxdXkopouHbLNx8j8iti0RuXyQ2E9pwPVtNPc7dR6nedUT/3HFQAk+aJATlkYSg/IrcvUz4R18icvsiAPZ6E/MDP09du3vLMxjiCmYj8I037dydyfwYBtBaC7/xYeh6jMTUWiFEckrB63fhS2/BuTdhdjE7A56r7XqK+zMH41QVyRR3pRTRyTss3HiPyM33Wbj5HvH5dQsMGgZVLXtx7j6aCD6Oph0V3aW1HRKC8khCUP4ppZgLvpzYjwygetdhWj70yzh3H9nSMeNxwIALl2y8fM2W9irTFuvb694G+N8+CN2PgaMIy+5CFNJUBIbehP/+KlwM667lbAx4NmsVD++O88Q+HX4KmR0Soefm+0SWT7G5qTXXMexVVO8+Ss0eF9W7j+LcdQRbdU2BWlx+JATlkYSgwolHF5l+7TtMvTy8Ml6ovQPzAz+Po6FlS8dUCkJzcP7t9BdXTGZ/I/zNDj1mqEoqQ6KCKQXvheCFN+B3X4OFaHaqPgaKw22Kx/fGOdSqCtblpZRiaeImkZtjutJza2zjrC27A+euI9TsexDn3gdw7jqCYZfBhLkiISiPJAQVXmxukvCFP2H23Z8ASu9H9tRP0/Tks1vqQ4/H9TfJ164bjF6xs7CFsUKWHXXwv56AX3oETPmiJypENA6v3IY/u6LH+1yZzF7Vp9qheHR3nKcOxKl3Fmawc3wpwsL1d5m/+gYLV98kNrt2JLdhr6J612Gcex+gxgo9FTI9vRhICMojCUHFY/HeVSZ+9CUit8YAsNc16/FCD3RsabxQXMFSFH500c5btwwymUG2ntOuq0K/cgweatvyYYQoStG4DjrfubQcfq7CvTldmcnOFHfd5fXkfr2RqVXxyVe3l9XFNX/1TRauvsnCzbE1s7cMexXOPUdx7nlgudJzWCo9BSQhKI8kBBUXpRTzl15h4sdfWRkvtPMQLR/+ZZy7j27hePqN9s40/Nn7dm5Pb/0rp/VN+Ildeq2hk49Ds0z2ECVoYh5CCzByA166Cd8IQmhe77tnZHlD09Y6hftQjAd2KpTKX9UnHl0kcnMsEXyiU/fWXG5vbKP24GPUHnoc5972bc9SFdkjISiPJAQVJxVd0vuRvfzN5f3IoM71DOYHPoejsTXj41kl9yshgwuXbdzZRhgCXVOy2+BTR3RX2ccPQaMEIlEklILJCLx6Ww9gDi/o0/VpvX3FnVXbUDlsuhKUTTZDcbRN7+K+tzl/XV7R6XHmr77J/JU3idx4DxVbWtUoOzV726k5+Bi1Bx/D0bxLZm8VKQlBeSQhqLjF5qYIj3yN2Xd+TGK80LFP0fS0Z8vjhWw2uHjP4MVLdia2sOL0alZ1yGGDDx2ATx2GD+6Hx3cVz7omonwoBVOLcCUMwTBEojCzCLdnIRLTXVnjczrkzEf17xjo56Jh6NWcc/mh0OBUPLY3zuN749RU5X59HxWPEbkV1NWeK2+yFL615nJ7fXMi9NTse0hmcJUICUF5JCGoNCyOX9PjhW6+D4C9ronmE5+l/sETWxsvtByG3rlt8OJFO7OL23+nto6g0N1kx3bDk7vgowfh6T3QINV2sYnQvJ6FdX0KZpd0eIhE4cYM3J6Bt+/pqs7SuqqNzVgJGtmu6KTDYVMcadPhZ7+Z+1le8cUFFq69xdylV5m/8iZqaWHlQsPAuesoNYd08Klq3SfVnhIkISiPJASVDqUU85dfI/ziVxL9+1U7DtDyoV+mZu/WdkW1tt949bqNV6/bmMtCGLJY38CtStGjO+DYLl0p+shB2FWftZsSRSoah1szuloTXtDVmdA8XArDG3f1IoM3Z+DG9MZwA3qMjs2W3Q1Is2VHg+KxPTEe2q2osueu6mNNYV+4+hbzV98kcisIauXOstU0UHvwUV3xOfAINmdd9hsh8kpCUB5JCCo9KhZl+o3vMRn4RuJbYO3RpzGP/xxV5u4tHTOu9AfNGzcMXr1hZ3ohN98erfEXBvDhA/CLj8CzR/VUfFGaJhfgypTeNT00D2/dhbEJePMuXJ1KHm4cttx3TeWC06Fw7VA8vje3e3mpWJSFm+8zf/l15q+8TmxmYs3ljuZd1B4+Rt2RJ6nedWjLq82L4iQhKI8kBJWu2Pw0kyNfY+adHyWmgdU/eILmjk/jaMh88DToMGQAwXsGr1yzcXt6e1PrN7N63ZUjzbrL7KgJHzsEj+2EOlmWpGjE4nqczaVJ3S319j0ddK5P6yrOanZDh5tsTS0vNJuhu7se3RPnQItKrK6e7apPbGGG+StvMn/lDRauvZWYEAHLU9j3PUDtgceoOfgoVc07s3vjoqhICMojCUGlb3H8OpOjX2P+8uv6DJudxsd+iqanO7HXNmzpmNY33PFZePmqnbG7BrEMt+LIlH358FYw2lELext199mxXfDMHtjfJNt55NLsoh5388ZduDgB16bh3XF9st5MrZmBhRh/ky/11YpDrYqDLXo151x1d0WnQ8xdfpX5S6/p9cFWfWTZapuoPfQ4tYefoGb/QzKFvYKUXQgKh8OcOXMGgLa2NsbGxujs7KSrq6vgx5QQVD4idy4R/slXidx8DwCjyknTsU/ReOyT2Kprt3RM641/fhFevmbjrVs2IttYgXorVk9hrq/SYejYLji+D9pb4GCzBKNMTEfg1TsQnNCB59a0nml1fVrvjWVx2PTjXy4Vnc0pWuvhYEucgy2KA6b+o7O9ro8e33OL+UuvMnf5VZbuXVtzeVXrfmoPP0Ht4cep3nFQurkqVFmFoHA4TEdHB4ODg7jd7sT5vb29mKZJf39/QY8pIWhFXKG/7hrLvUurLzT0v4t9ooVSioXr7xC+8MeJN1ijupamY5+k8fGPb3nQpPVKiisYu2vw1i0bNyZz11V2Pw4DosttqrJBSy00Vut9zvY2wMEmPc5oTwPsa4BDzbqqVF3m+6BZ6+O8H4K7c3BzWu92fmMaphf1LKu7c/q6VkWnFMfmbJfNUOxqVOxuUuxtUuwzFU7HSuDLZsVHqTiLd67o2VyXXiU6dXflQsPAudtF7dEnqTv85JbWABPlp6xCUGdnJ263O2kwaWlpYXBwEI/HU7BjlnoIUmr5Ddx680rxxSkah6UYRGMrb3BK6dkqkSWDWFxPx40tdwMtRg0cdr28vbXqstOhl76vqdLfkh1JPlBz8Sa6FUrFmb/4CpOjX0+sHWJU19L4xCdoeuIT25pBYnWVTc3rWWXv3sl/dWgz1od7shlFrcthaX+j3v7jiAmuFl1Zat1asSyvlmJ6XM61KR1wZpZ0t9XlSR10bs2srI8Da2foVbJqh2LPcujZ16wDkMOeu9eriseI3HyfuYuvMH/5dWJzq/bmstmp2f8wdUeepPbwsS13WZcipVbesw0jvfs9Ft/4O1t5vKyZsPYSKK6VTQgKBoO0t7czNjaGy+XacHlvby/BYJDh4eGCHbPQIcialZTuCyIa110zizFYjML8coCJxmEmYjCzYBCJ6pkqi1F92ewixOLZ/5C2GfrbY101tNQpHDaorVa01ikanNBarwPT6r+VPC6bDzoMzQVfYSqwPgx9nKYnPrmtMLS6OvT+HYN37ti4Hi5cdShT62co2Q39BtlQrS8z0IOzDzdDk1NXkZqdYNbqMD0f1cHYhl7Ab3ZRV6Uc9uWfNt31ZBj6d619qKw38Sq7vn0rqNhs+o16MQ7zS1Bbpfevml/S08tvzergE1nZ8ilxrHIen5Mpu6HY0aBPu5sUe5sVTctrBFqbC+eioqviMRauv8Pc2EvMX3mdeGQucZlR5dRbVBx5itqDj5btooVW0LCtuo9jcViIQmQJJucNFqIwv6jfp1f/27qu1QW7FLNenxsfLAOFzaZfs7bl16pj+TVmfQmqduixXDZDvx4bahTNtYpGJ9Q7FXXV+vWbzt+Qb9kKQQXf/c3n8wEkDSsA7e3tDAwMEA6HMU2zYMdMl5XG10dL64lyv+6iuNLBZTGq/38hClPzBrOLBvOLsBA1iMf1lNqFJR1wFpYXTbPb9HnRHISZrYorg/kl/SE1PpusXfoF11CjqHFAY41iZ6Muvzeueg/M5ZL6hmGjvv0Z6lxP6cpQ4OssTdxiKvANpl/7Lo1PfILGJz6BvSbzRXusx9puwIO7FA/viTEbgbG7Ni6FDG6EjaRvYMVifXCIKYjF9DTv1S6GV95cN3t+W2EeSMwgSmWzy1dfppY/EFJdt3LG7KSiaK2Dvc1x2hpgb1Mcs45EBXf9mJ5sv86sqexzF19m/uKrxCMr+3HYahqWp7Efo2b/w2WxIan1fFxdTYnGYG5RfwmdWoC5RYOpBYOJOZhdNJhegGx/MVLoL7gxWP4PsLT+Wve/TQNFbTU0OvVPp0MPim+s0SGpqUa/V1etq/qrVa87g/x+sc1EwZ9xgUBg0yBiBZmRkZG0u69ycUzQ32IX5/UDG1P6gzmudAUlplYSejQGS3GDaEx/iMRWn5avvxTTXUuRqA4xkaj+vWL+QMwNg+kITEc2/t1Oh8Ks0yFpd5NiT1OcHQ3LXRfx7JdsDcNGnesZao8+xfzFV5fD0E2mXvoG069+i7oHj9P42E9R3bZ/S8e33gTqnfDEvjhPHtBvjBfHDS6P6/FDS7HSffwTQeN+gaOiA0nuGCgaaqC5VtFco2irhx0NcVrr9QdUsg/nXFV84tFFFq69zdzFV5m/8jpqcSU122obqDv6DHWup3HudmEU66djGmLxtdWQpRjcmTa4NWUwMWcwE4HwnP4iWCrV3/UUBnOL3HeR2Cq7or5aV/prq6C2Slf5q+3grNKV/9VBKuXtreoOTMZY/k+2+rAKHoKCwSCtrakHullhJhgMFvSYAH8wUoWtRhZmyZdI1OD2lMFt4P27AHaq7Ir9zbp8f6hVv8FbL5hsjVnQYehpao8+yfylV5kMfJOl0HVm3/4Rs2//COfeB2l66llqDjyy5eX2rff9ump4dLdeWE4puDsD1yZsXAsb3JrM/ZR7UVpshsKs0x8mzbW6C6u1XtG0/K3cCjipAo89h08nvTHpWyxcfYuFG++ioosr7a5tpO7wMR189j6AYSut0ffr78+lGIRmdXX73oxBeN4gNFvaYWe7lmIG4XkIz9//77cZOihZ3eJVDkW1HaodUG1XVDtWejes7myrO9xu6HGo0W3u6WgpeAgKhUIpu62ARJgJh8N5O2YkEiESWZkHOzU1lfZti9xaihlcChlcCsGPLtppqlEcaYtzpE2xp0klZvJko0pkGDbqjj5N7ZGniNwKMvPm95m7+AqRm+9x9+Z7OMzdNDzyEeofPLGlrjKLFYgMA3Y2wI76OO5D+u+4PWVwY1J/s7w5aRRVV6fIDav7oblW0VKnaK4Bs06Po2usWak6WGMFkz3Xcx14QHdzRW6N6R3Zr75FNHx7zeX2hlbqjj5J3ZGnqN51pCQqPsnC48zCctiZNbgzZXB7urLDTjbElcHs4upzMr8v4wvZiS8FD0Hphpvx8fG8HfPMmTN84QtfSPv2ROFMLRi8et3Oq9f1Jo2HWxUHW+O4dixP583CWCLDMKjZ207N3naiM2GmX/8OM2//kGj4NuEff4nJC1+l9ujTND76Eap3H93WZoyruyfsNtjbrMOdbXk9mnvLlaIbk7pKtljC3WeVTX8TNmsVLfUKs1ZPHGir1wFo9exMa6D4+qeVrQDj6zer9mDYcO46srwx6aNUte4v6o1J10/CmFuEezO6sjM+q7uzphYo6S5qcX8FD0HF6LnnnuPzn/984t9TU1McPHiwgC0S6YjGDcbuGYzds/HddxUHWhQP745zdIeelZaNQORoMGn50C/S7P5ZZt8fYeatH7IUus7c+xeYe/8CVS17aXj0I9Q/cDwrmzSuDkW2dZUigOkFuDZhcGdGl+PHZ0t7XFG5qXYoWmoVzbW6mmPW6m6s5tqVgaSbBZ18VHQ2c79qj622idqDj1B78DFq9j9clBuTrh/8HVcwE4Hx5bAzPqu/UOjKhLx2Kk3BQ5BpmmlVbtra2vJ2TKfTidPpTPv2RPFRGFydMLg6YcNuKA62KFw747TvVIl9m7YzhshWXUPjYx+j4dGPsnj3MjNv/ZC5sQBLEzeZ+OH/JPziH1HX7qbh0Y9QvfNw1r4Rrx/I2lgDD+1WPLJHYSwPFpych9vT+hvt3RmD8RmpGOWSgaLeqSs5jdaA5Ho9A2v1EMJYPPkyF4UOOutFp0PMX32ThWtvsXA9RbXn4KPUHnyMqrZ9RbVi8/rp/bOLOuzcmTYIz+kxKxNz0q0sVhQ8BG02gBn0+B4go6nsuTimKF0xZY0jsvH99/UO18f2Le9wvc29jgzDwLnrCM5dR2j50C8y+94IM2//gKWJW8y++yKz775IVdt+PXbogeM5Wftk/eBXs05PW31ol0p8GCws6VJ/aM5gannw4tSCwWykuJZUKFY2Qwed+mo9GLmlTq2M2andfECypVgXoItHF4ncCrJw7a1Nqz01Bx6j9kBxVHvWj4dSSq83dWtSB/97M3oMz2IRLVAqilPBQ5DL5WJkZCTl5VZFZ7OBzvk4pigPSzGDd24bvHPbRkud7i57bG8cp2PtGjZbYXPW0fjEx2l4/KdYvH2R6bd+yNzFl1gav87EDwYJv/gV6h7ooPGRj1K9M7fdq+u7/WqqYL+pZ9Wtr0ZY03hnIivrl0zOw+RySKqULgKboaf4NtcuTzWvUdQ79YKCZu3aEFMqVZ1k9N5cN1m49jYL194hcmsMFVu1gMxysK85+FhRVHvicWDVfR2J6gkD1tidezN67E5cZlKKLSh4CHK73fj9/pSXW9PYM1nPJxfHFOVnYs7gxxftXLhko32nouNwDLN2+2OHDMPAuceFc4+L2Id/idn3fsLMWz8kOnknMc2+esdB6h/+EHVHnsRel59VyFN9QDc4ocGplleBVRtWsp1e0APQZyJ6sTdrFfL5JVhYMhIrk0eiUIyByWHT1ZrGGj1Yvtqu1y+pq9ZrUNU5rXVN1obgxErVJVTVSSU6O8nC9XdYuP42kRvvEZtbO+PVXtdMzYGHC1rtSbZafHhOd+1OzOnurInlLq1ifJ6J0lTwbTMCgQAdHR2Mjo6u2ejU0t3dTTgczmjbjGwf09o248C/nMRWU3p7h4l06cHUT+zVU+6zufaQUorIrTFm3voBcxdfgfjyEq6GgXNPO3Wup6k78lTeAlGmVq/+mmqp/LjSy/7PL+lQFFN6lfNIVC//H13e32gxpsOT1aWh0IHDWmTUtrwOiH15MDuQqARYC6VV2/VibNY6IlV2HWqsdUeqHfryeufGhdms24XSCzPpii9FiNx8Xwefa+8ktoOxGPYqnHvbqTnwKLUHHsFh7s7rTK713YYLS3AjrLtr784YTM7r6k4utvIR5SG+MMW1f9Rc+nuHweabnRqGwfDw8IaqTTgc5syZM3R2diat6GzlmKlICKo8jU7F4/viPLEvjsOW3cUYY/MzzL73E+aCL7F498qqSwyce9upO/o0dUeLNxBlYnXggJVtNbLxebt6VVnrNow0tu4oRyoeZ/He1eVqzztEbl9cCdoAGFTvPEjN/oep2f8wzl1HMBz5W/h19dpdSzG91MPtKRs3p3ToqaRuV5EdZRWCwuEwHR0dDA4Orqnc9Pb2Yppm0iBz9uxZvF4vpmkyMTGRlWOmIiGoclXZFQ/sVDyxL8aOhuzvYRadHmfu4ivMBV9m8e7lVZcYVO86rDeUPPQ4VW3FveaKyC8Vj7E4fp3IzTEit/Rp9WakoBcrrD3wiA49+x7c1oKemVr9OgnPw/WwjVuTy7O0pDtLZEFZhSDQocUKNW1tbYyNjdHZ2UlXV1fS6wcCAZ599llOnjyZ2DB1u8dMRUKQAMUBU/HIHr0QY7JBsdsVnQ7pQHTxZRbvXFpzmb2uiZoDj1Kz/yGcex/EUd+c3RsXRS22MMPinctE7lwicusii3cvr526DhhVNdTsfyhR7XE07chbcLYqPdaCnjfCuspza9JgQWZoiRwouxBUzCQEidVqHIon9sV5fF+cuurtT7NPJjobZuHqm8xfeZOF6+9s+MBzNO+iZu8DOPc9SM3edux1EorKRXwpwuL4NRbvXmXx7hUW714mOnVvw/WM6lqce1zU7GnHuaed6p0H87YnV1ytdDtOLcCVkI2rEwY3wrImlcgPCUF5JCGo8BzLe4KlerImu9yx/M00nqNnuM1QtO9UuA/GaK3PfleZRcWiLCwPco3ceI/F8WsbtlB2NO+iZt+DOPc+IKGohMQXF1gMXWfx3lUW715j6d5VliZvJ90i22HuxrnrMM7dR6nedZSqlt15nbq+OvjcmIT379i4HLIxE5HQI/IvWyGo4FPkhUjGbkBM6SBzuBk6XbCnAQ42QX011DmgyamnNbfUkFjn5+4c3J6Bi2F4PwRv3oPvXtYzkqxjZktcGbx3R58Otige3xvncOvKAoXZ6okw7A5qDzxC7YFH9O1G5li4FSRy8z0WbrzP0vh1opN3mJm8w8xbPwD0eBDn7qM4dx/BufsoVa37Sm7n7nKiVJzodIiliZsshW6yNH6dxfFrSSs8oLs/q3YcxLnzMNW7DuPceagw09aXg300BlcnDK5MGFwetzG7KMEnUw4boGB52aM1G+Hm6ouauD+pBKVBKkG5ZU19tgLKg63w6Qfg5x6AR3ZsP0wsROHbl+C12/Cdy/DGXX1+tkMRgNOheGR3nGP74zTW5K46tFo8MsfCzTEdim6+z1LoxsZKgs1OlbmHqpY9VLXupaplL9Ute7A3thbVtgelTsXjxGYmWJq8w1L4FksTy6fQjQ1dmhZ7fTNVbQdw7jhI9Y6DVO88WNBKntW9G4vD5ZDBe3dsXA4ZMl0dHWSi8ftfr275y5lteTmHIyYcagbTqb+gVdmhqVpfNjYBV6ZgckEff2IBZpI/VQB9TBvL4SlLf1cpku6wPJIQlH1WADGATx2Bjr2wow4+eURXfHIpNA/fuQTfuwIv3YKrk7ot2QxFBorDbbo6dLAlu2sO3U98cYHFu5eJ3L64fLqEWlpI3k5HtQ5GLXuoatm7fNqDvb5ZwlEKKh4jNjdNbDZMdGaC6ORtlsK3WZq4RXTy7trVl1dbFUSr2/ZT1baf6rYD2Gtz/IRPkxV+boQN3r5tI3ivfDfjdax/aiuIrnrt2wyoWa4uV9thVz3sa9RV6Sd2wc46XYmOL68y37y81eSuev3/2/3iFo3rEHprBmaWIDQHd+b0++W9eb3j/Su34f0JuDkNS/GVdldKVUlCUB5JCNo+q/wbV9BaC7/0CBzfC8f36TeOQppfgh9fhz96B350DW7OZDcQNdboMPTonjg1VfmpDq2mVJzYdIjFiZvLVYnln+Fb69aSWWHYq3A078DRtBNH006qmnfiaNqBvd7EXteErao8NxhW0SWic5PEZsPLp0miq/4/NhsmNj+VdMxOgs2u76/mXYlQWd26D0fzzqLqkrTWWbIZEJqF9+/aeOd24cb4GOgZZuvH9tlWdRulq9ahqy21Dh146qt1qDGd+t+7G/SimvVVK9WanfWwtwEONOmqTU2JDBZZiun3rB9ehS+/A6M3dff/agbL1b0y+rSXEJRHEoK2x27Ahw/Ahw7Axw/Bsd35q4psxTv34A/egK++B3dms/ftyra8m/2T++PsN/NbHUpGxWNEp+6tjFOZuMXixE2ik3dBbV5oNxzV2OuasNc2Yatrwl7buPzvxlXnN2KvbSz4B7+Kx1HRCPHFBeKROWLz08TmJonN6HCzOvTEF2bTO6hhw17fjL3epKp5J1XmHhzmbqrM3Tga2zDymXIzZFV8Jubgnds2Lt6zEZ7P/RPRbuhws/q1ZDr1+4FS0Fitw8nhZmipXVlJfDqiP7zbavWHu7FcpdlRp3+vtXa5aoMONa21OtRUKmuM0d1ZCC3o97Ark/DqbXjtDlwKQ2Q5JOViSEC+SAjKIwlBmbFCQ5MT/v4H4dTj0FBd6FZlTin44TX44o/hwo3slpqbahTH9sd4ZLei2pGbafZbpeIxotPjRKfuEZ28y9LkXf3/U3eJzU2lHNuSiuGoxqhyYqtyLv+sSfwbmw3DsC//tGFU6esaNsfaPgW1aulpFdeVgniU+NIiamkh8VMtRYgvRdb8TNk9laq99qpEwLHXmzjqzQ3/ttU2lFR3oVV9nF7QwWfsro3QHORq0UKHTT9cMaWDiXuv7kJ6fCc8ulNXWnbVbdzSROReXMF74/D6Xfjjd+HlWzAZWXlvM0g9C7eYSAjKIwlB6bG+VTy+E/7a0/DZh0qnpHw/Vybhd16F338dpheXByZm4bh2Q+HaqXhyf4xdjfnvKtuK+FKE2NwUsfkp4nPTxOan9L/npnSVJXH+9H0rSnlls2Nz1mF31i8HmuakIcfmrCuL1bmt59LcIrx/Vw9wvjNtkO3gs7q7qqVGB54jJrTWwJO74WOHiifgi+SWYnB9Wg8HGHpTd6kpirtSJCEojyQEbc56oXxwP/z6h+BD+8t376ZIVH978o3Cu6HsvknsqFc8vDvGI3uWq0MlEIg2o1SceGQOtbiwrjqz8m8Vj+vKTjwG8Rjx6BIqGkHFous2HbOBAQarNh6z2bFV1SQqTGurTat/Ll/HXiaJfBPWcyaypIPP2D0bN8IGKsvBx2HogcR1Dh1yntkDJ/aDe0/5bkpbSSYXdKUocBO+9j68mcMZtVslISiPJAQlZ1/e6fvPueAvPgEfPVi+4Wc9pWDkBvzOa/An7+mxC5CdMrLN0LvZt++Ic7RN4axauwGlEKutCT73DC7es3FtIvvBx/oA3FUPnzwMP/sA/NShyh5/UynG5/TQgK+/r9ddm14s/GBrCUF5JCFoLfvyl/G//gycfkbPqqhkoXn40tvw316By5PZ/bZkMxSHWhSH23Qgqq0u/QqR2L7VXV1jdw0ujdu4MWkQV7kJPo3V8LmH4a8+BQ+1ZfUmRImJKz155MINXSn6yQ3dlQYrFcK8tENCUP5ICFphAO0t8P98Rt4M14sr+NZFeP4l+PG1XJSOFTsa4OHdcR7Ymbt9y0TxWT2dfX4Rxu4ZvH9Hb1Kai8HN1kyuZ4/CrxyDjxyQQcwitfE5vczID6/C9y7rxR8t9uUJJdkOGhKC8khCkH4iA/xvH4S/2SFviPfz5l04+0O9KGNuSsaKtnpw7YjTvjNOS93KBCqpEpWHxM7scbg1ZXB1Qp/uzuQu+MSUnrV16gn4tScLv4aXKE3zS3pq/vsTevbZy7f0Fkb35lau41gO2lt9b5QQlEeVHIJshp7u+onD8Bsf1ttYiPRdn4LffU3PKptYyN3006YaxeHWODsbFQdMRb1zbfVAFL/V3ZyT86t2Zp/M7crN1vPjMw/CLzysX+syzkfkwuSCXqfo0qT+eXUKLk7of4/PrX1vtBv6uWmtLbV+eRIJQXlUiSHI+lb4uYfgX/w0NJbnAsF5sxCF//kW/OcLcG0617MsFC11cMCMs69Zsb9FJTaYlUpRcbDe0K21p8JzcC2sZ3LdmjKYX8ptcrVut6UGfvVJqfqIwluIwrUpPa7yxrReJHNmEaYW9f9PRfR6RlPWaWqKd/6BhKC8qKQQZA167n4MfvWY3idHZE8srjdx/Xc/hlfvZG+9oc3prrPdTToU7WvWlSKQQdb5sDrwgB7MfHvK4M60Djx3pg2iedqc1Arfj7RBTwd89kHp2halyfpc3m4Ikqe/AFa+GT69B/7Tp2FvY6FbVJ7sNj3Y9KeP6PU3fv91PZhw/XYC2WUwPgvjs3bevKnPqatW7GlS7GpU7GnSY4pqqvRl8eWKkUzJz1wsrl9L1j55k/Nwb8ZInMZnc1/lScZAL1z6cw/Cn39UD3SulOUshNiMhKAKZ41Raa2Ff92p1/+QN8fcMww9BuMzD+oBhP/tFb0i9WQkPwuSzS0aBO8ZBO8B6AEgddWK1npFa50+7WlSNNWuhKFKD0fW328YG8dZzS/qwDM+Z2N8Bm5P25iYhViWp6xnwnoe7ayDv+GGX3lCurWFWE9CUAWzG3qjwt/4sN7VvVy2uCg1u+rhH34E/t4HdHXof74FP7iqP3TzuY/P3KLB3KLBtYmV8wwUjTVg1inMWkVzLbTWKRqcirpqcKwbQKtWDWBMFhaKhdVGtUlbldIrhEeiOuRMRfT9s7AEsxH9c27JYHKenA5czpRV1f3IQfhfnoKfkoHOQqQkH3sVyFoD5C88Af/wwzoIicJzOnQY/aVH9EyJr4/B/3gdXr9TuOXqFQZTCzC1YHAlyeXVDkWDU1eRahxQW6WoqYLaKn1Zo1P/u8oBVTZdRdpOJWn9CMZ0q5bRuN4faTGqA8zcor4/I1GDyJLenXxu0WB+aeXyxRjkaoPRbLPGltVVwV8+Br/2FBwo7+GLQmSFhKAKYi1a9bmH9Ho/R1sK3SKRSludXqTuV47pNYf+x2vwpXf0bIli2r9nMWoQikJoNv2wYKCocujQV2WDKrtKjKMB/RytsuulGWx6yzDsNqtaoxKVDoB43Eh0Uy3FYCmux+UsLBmJ/4/GyNvA43yznguP7dLh53MP6yAkhEiPzA5LQznMDrMZcKgJ/tPPyYyvUrUUg29f0hu4fmMMIrHiCkQiP6zH3GnXg+xPu/XO7UJUEpkdJtJivWH+/PJ6Pw3VhW6R2KoqO/y5dn1aiMJPrsOX34GvvKO7e/I5fkjkl8HKjLOOvbq7q9Ml4/iE2C55CZUpq8vgowfh730QTuwrdItENtU44OOH9emffEJv4Dr0pl57CFjTZSRK0+oq3wOt0PUoPOuCB1sL2y4hyomEoDLV3gL/9JN6hogob01O+CtP6dPtWXjxGvzWy/Dqbf0hurqKIIrX6tDT5ATPUfjUEfjgAdgtqzkLkRMSgsqI3dADSP/5p/SKz7LeT+XZXa8Hx37uYT2G6NoUfOuSHkv0w6v6Q9Zh091novCsil2TEz52UI/xeWqP/hJTrMsLCFFOJASVCQNwtcB//jl4qK3QrRHFoMquZwD+9Rb468/oKd/fuQTfuwI/vgbvhfT1DHK1071Yz8o1Ch10fvkRvWHp47sk9AhRCBKCSpyBHuz8t4/rVWFlUTSRSvWqgdWgNyF8L6TXIXrlNrx8C4IT+gNagtH2WVP7rapbXRU8vVvf/x87JGN7hCgGEoJKlN3QU2T//of0WBCZJSIy1eTUM406Vk2vHp+Dl2/D5TC8dEvPQLs1u3K5dKVt5LDpdYqswOiw6VXAH90Bj+3Um5W698LeBumiFqLYyEdnibFK5n/+Uej7COyUAZMii9rq9LiU1RaiOhS9eQ/euqcXb3zjLkzMr0zJtxbiLMfCkX15IcdYfO3fV1+lg87DbXCoGQ42w2M7YH+TVGSFKBUSgkqAtST+7nq9gvBfeEJmi4j8qXHAwzv06ZdWnW+Fo/cn4P2Q7k6bjMCVSbg3lzwQ2VLtJ2b1wS1XVO4XpqwZb9ZPln/HmgWnlmfFpVO0MtDbfFibo+6ph90N0Li8plaTE5pr4GATPLlbv/acdthRJ5UdIUqdhKAiZs0cOdKiN9f8+Yd0qV2IYrA6HK2nFNyagRszMLsIoXkdSO7N6fMjUf3cdtiWt7ZQ4DD0z/E53QVXtbxVRp1Dz3Sbj0GzUweQKru+vNq+UnXZ16ivZ9ashCGzRoeZGoeu0DQ7V5YNUECtQ1d0trOfmRCidEkIKkLWeiFP74a/cwJ++qjMHBGlxTBgb6M+CSFEsZIQVCSsb6ZVNr3Gy689CU/vKXSrhBBCiPIlIajArKrPg63wV5+Gzz6kS/ZCCCGEyC0JQQViM/S4iY8dgtPP6J8yyFIIIYTIHwlBeWQNdN5ZB3/5STj5mIyZEEIIIQpFQlAO2Zan8MaUnp3y0YN6T69Ol8zyEkIIIQpNQtA2WIuoxdXaHbrtxsrCaY/sgA8fgGf26Gm9QgghhCgOEoIy4DD0iro76vSCaTvrddfWjlWnnXVwxJQVY4UQQohiJyEoAy/3QnNzoVshhBBCiGyQkSkZkNlbQgghRPmQECSEEEKIiiQhSAghhBAVqSjGBIXDYc6cOQNAW1sbY2NjdHZ20tXVlfGxBgYGGBwcpLe3F4/Hg2maBINBAoEA586d47nnnsPtdmf7TxBCCCFEiSl4CAqHw3R0dDA4OLgmnPT29nLhwgX6+/szPp7f78fv96853zTNDbchhBBCiMpV8BDU3d1NV1fXhnDi8/loaWmhs7MTj8eT0TF9Ph9jY2MEg0FaW1vp6Oigp6cnm80WQgghRIkraAgKBoP4/X58Pl/Sy0+ePEl/f3/GIejkyZOYppmFFgohhBCiXBV0YLQVflwuV9LL29vb8fv9hMPhPLZKCCGEEJWgoCEoEAhsWrGxwtHIyEieWiSEEEKISlHw7rDW1taUl1sBKRgMbun4gUCAkZERjh8/ntGA6EgkQiQSSfx7cnISgKmpqS21QwghhBDZY30eK6Xuc83NFTQEhUKhlF1hQCIgZdod5vf7CQaDeDweenp6CAQCdHZ24vV60xpfdObMGb7whS9sOP/gwYMZtUMIIYQQuTM+Pk7zNvazKmgISjfcjI+Pp31MK1T19fUlznO73QwODtLS0sLo6Oh9q0LPPfccn//859e08/Dhw1y5cmVbd7YoblNTUxw8eJCrV6/S1NRU6OaIHJDHuPzJY1wZJicnOXTo0Ka9Seko+BT5bEu1wKJpmnR1ddHd3c3Y2Nimx3A6nTidzg3nNzc3y4uqAjQ1NcnjXObkMS5/8hhXBptte0ObMwpB25mllWwAtGmaaR2zra1ty7e72okTJxgaGiIYDG7aDSeEEEKI8pd2CPJ6vZw9e3ZbN7Z+ANP9ylihUAhIHqC2wjpOIBCQECSEEEJUuLTrSP39/SiltnVaz+VyJYJOMlaVKN3A0tvbS3t7e7p/UtqcTie/+Zu/mbSLTJQPeZzLnzzG5U8e48qQrcfZUNudX7YNVnUpVRPOnj2L1+tNewpcR0cHwWCQiYmJTY83NjYmlSAhhBCiwhV0scRTp04BunsqmQsXLmS0ZYbH40kZgKzjmaYpAUgIIYQQhQ1Bbrcbj8fDuXPnkl4+NDSE1+vdcH44HMbr9W7YKf7UqVMMDAwkPVYwGGRoaIjnn39++w0XQgghRMkraHcY6EDT0dHB4ODgmvV7ent7MU2T/v7+Db9jdWuZprmh8mMN3l69TlAwGEzsJJ/seEIIIYSoPAVfJ8g0TUZHRxOhpq2tjbGxMTo7O1Ou+ePxeDBNk5MnT264rK+vD7/fT29vL6FQiHA4jGmanD9/PqOtM4QQQghR3gpeCRKi2A0MDNDT01PoZogck8e5ssnjX5kkBKUQDoc5c+YMQFrVKVGe/H4/Xq+X0dHRQjdF5JA8zpVNHv/KVfDusGK02TilCxcuyLiiCuLz+RKzGEX5kse5ssnjX7mkEpREZ2cnbrc7adhpaWlhcHAwo6n7onQZhsHExETaq5b39vbi9XplGYYSs9njHAgE8Pl8hEIhAoEApmnS29srXSfbEAwGE++v1tjNzs7ONRNa8kle5xVMiTXGxsYUoMbGxpJe3tPTozweT55bJQphcHAwo8d6dHRUAWp0dDSHrRLZttnj7PP5lM/nW3Pe8PCwMk1TuVwuNTExkYcWlpfBwUHV19e34Xy3261cLldB2iOv88pV0HWCipHP5wNSb9XR3t6O3+/f1mayojT4fD66u7vTvn6yNa1E8Uv1OAeDQcLh8IaKj8fj4fz58wSDwYyeH0IPNTh37lzSKvvzzz9PMBikt7c3r22S13llkxC0jlXuTsUKRyMjI3lqkSiEcDiM3+9Pu8tjYGBAPhBL0GaPs8/nS/n4Wwu9+v1+gsFgrptZNkZGRlIugmuNv1y/CG4uyetcSAhaJxgMbrq7vRWQ5I2vvL3wwgtpzwS0ngsyPqD0bPY4+/1+jh49mrLqa31op9r2R2zU2tqaWA8ulXTH5WSDvM5LR29vLy0tLRiGkdYp3d4amR22TigU2vRJbgUk6Q4rbz6fL+1ZgNZ18/kNVmTHZo9za2srgUCAYDAoC61midvtTrm/oxUm8znpRF7npaGjowOAnp4e2traOHfuHB6PJxGmfT7fmm5U0zTTD9OFHpRUbADldrtTXm4Niks2sE8URk9PjzJNUwFpne43mHVsbEyZppnWbQ8ODiYG0Q8PD8uAyRwqxOOcaoKEUkp1dXVtOolCZMbj8Ww6MFpe55Wpr69P9ff3rzmvq6tr039nQipBoqTl4hvC0NBQ0i1Z1guHwwSDQVlAMw8K9ThvVhUeGhrC7XZL98g2WdPlXS4Xw8PDSa8jr/PKZPW4rN8LdPWQlUAgsL3X4JbjU5mypr6mYlWC1idTkX+5+obgcrnS+pa3vhoo3xBzo9CPczL9/f3yWG+TNVW+q6tL9fX1qeHh4aTXK/TjL6/z4tLf368GBwfX/Hv9MhaZkErQOpsNigY9ZgjyO3hPbJSrbwiBQIBQKHTfMSB+v5/Ozs6Mji0yV+jHOdXver3eDSvKi8x0dXWtqa50dnbi8/l4/vnnE++vhX785XVefHw+35rtTS5cuLCt1b5ldtg6LpcrEXSSsV6UUgIvLNM0NwxoHBoaWvOG5ff7aW9vz+i4586dS2u67PDwsKwangeFfpyT6e7uxufzSfdIlg0ODjI0NLRmCnqhH395nRcXa/D86iLEdicpSQhax+12b3qnWtMk5YVRfHw+35rH5cKFC/et7K03MDBw38Xazp49y3PPPbelNorty9fjnEx3d7dsmZEjpmnS1dWF3+/fdAaWvM4r15kzZzZ89gaDwU0LF/cjIWgdq6yWau2PCxcuSAAqQtn4huD3+2ltbd20yhcMBjObfimyKl+PczJer5cTJ04UbH+rcmANMk7FekxSDZCW13nlCofDGyqFoB+r1d1jmZIxQetYK8GeO3cuaX/x0NBQyheoKJxsfENYP8MkmUAgwODgIIODgxsus97cT58+nfhmKs+V7MrX47zewMAA7e3tSStA4XBYPizT1NLSApBys1JrtleqYCOv88p15swZYGMvjGma21u7KRujtcvNxMRE0pkDPT09sj5QEZqYmFDAhtklgOrp6Un7OKSxtshmBgcHZdZIDhXqcR4cHEw5+2RsbGzNTBWxufvNvu3p6VFA0vtbXueVDUg6C9Dtdm/rMZVKUBKmaTI6OorX600s8T42NkZnZ6cMhixC2fiGMDQ0hMfjkW/0RawQj7M1iyjVGCC/3y/d4xno6enZtArzwgsvYJpm0vV75HVeuazuyWRjtHp7e+nv79/yYyohKAXTNBM7yovidvbs2aTh1OVyEQgE0uquyHQn6WSsMrlss5Ab+X6crV3iPR5P0g/uUCiE3+9PuQ2E2Ki/v5/e3t7E/bqa9bicP38+6eMor/PK5XK5Ur7Oenp6tjdRYZsVKiEKylr6Pllp2ufzbVp6t1hl9q2WU3t6epTH40ks6W+apvJ4PNJ1mkWFeJxdLtd9t2ZI53bFRoODg6qrq0v19PSorq6uxOsl1WMjr3ORK4ZSSm09QglR+gYGBhgeHk46CFKUD3mcK5s8/iIZmSIvKp7P59vWiqOiNMjjXNnk8RfJSCVIVLRwOMzRo0dlXEeZk8e5ssnjL1KRSpCoaAMDA2ntJC1KmzzOlU0ef5GKhCBR0bIxW0QUP3mcK5s8/iIV6Q4TFSsQCPDss89KibzMyeNc2eTxF5uRSpCoWCMjI7JBYgWQx7myyeMvNiOVICGEEEJUJKkECSGEEKIiSQgSQgghREWSECSEEEKIiiQhSAghhBAVSUKQEELkQTgcTuxALlILBAKFboKoIBKChBAix4LBIF6vF5fLVeimFD2Xy0Vvb2+hmyEqhIQgIbbJ6/UWugmiyHm9Xnw+X1rXDQQCJbe6cTbbbJomvb29EoREXkgIEmKbpItDbKa7uzvtxfqsilFnZ2fJBKFctNntdmOaJkNDQ1k5nhCpyGKJQmxTZ2cnQKKrwzRN+vv7C9kkUSQCgQBnzpxhcHDwvtcNh8OcPn06cV2/38/w8HBRP5dy3eaOjg5GR0ezciwhkpFKkBDb0NnZSSgUAnT4AWhvby9gi0Qx8Xq9aVeB1oclj8dDZ2dnUVdDct1mj8fDwMBAVo4lRDJSCRJiizo6OvB4PEX9TV0UTjAYpLOzk7GxsUI3pWTJfShyTSpBQmxBd3c3p06dkgAkUvL5fHR1dRW6GSXN6mKWafMiVyQECZGhs2fPEg6H6evrK3RTNvD7/RiGse1TR0dHof+Ukuf3+xPjxcTWeTwe/H5/oZshypR0hwmRgUAgwLPPPsvFixcTY4CKTTgc3vYxtvK3DQwMJG57fHyccDicdG2ccDhMd3c3wWCQYDCIUgq/308gEEh0e6yfTh4MBunv71/Trvb2dnp6eja0I5PrhsNhzpw5Q3t7O+FwmPHx8ZTXBR2AreNaf6vb7SYYDG74HcMwmJiY2PS+HBgYYHR0lJGREZ5//nncbjeBQCDx94dCIU6dOlU0FaVCtHdgYIDBwUGGh4ezdkwhEpQQIm1ut1sNDg4WuhlFp7+/X01MTKw5b3h4WAFqeHg46e/09fUlLrfu056eHrX+bWlwcFC5XC41Nja25vyJiQnV39+/5esODw8rt9u9od0+n095PJ4N5yc7Tyn9nFh/7NHRUWWaZtK/e/Xt+3w+pZT+u03TVD6fb82xJiYmFFAUz7lCtTed+1KIrZIQJESahoeHlcvlKnQzihKg+vr6NpzvdruVx+NJ+jtWSFr9exMTE2tC09jYWMoP1f7+fgUkAk8m17U+rNeHJUtfX5/q6upK/Ht0dHTTvyNVwNpMT0/Pmv/f7D4shuddodprPVZC5IKMCRIiTV6vd0ur2FoLyRmGQWdnJ16vN2WXldWF1N3dnRibc/bs2W22PPdcLlfSv+n48eP3XUxy9ZICpmni8XgS//Z6vZimmbJ7xTRNWltbM77u6dOncbvdKbex6O3tZWhoaM2AXL/fn/RvWd1eS6YLaI6MjKRcX8rlchEMBpPev5k8t7Jpq+21bOV5LouSipwodAoTohRYVYZk3SHpsCoR6f7+6OioAtTo6GjGtzUxMbHtU7ZY3SbJWJWgzf5Gl8uVsgKznesCayobqa6zutLhcrmUaZqqp6fnvt09/f39923L6vsZWFN5Ws3tdm9atcr0uaWUfj5ncn9ls72rpfs83+prQYj7cRQkeQlRYoaGhjBNc8uDoYeHhxNbAaTDmg3jdrszup2hoaGsbF3gdru3tFKv3+9ncHCQ9vZ2TNNkZGTkvr+z2X0SDAbTvg/Sva5VUbjfY2Ga5ppK0OjoKKdPn2ZgYCCxgJ/b7U4MEF5tfHw8rePDymOdaiaZ1YZUVatMn1ugB55bA9MDgUBa91u22rvaVp/nQmSLdIcJkYYLFy5sawdwv9+ftNskleHh4Yyub+nq6kLpsX7bOmUagPx+Py0tLYktE/r6+ujp6eH48eP3/V2riyqVTLpBstllEg6HE6uBgw4Bg4ODKKXWbA3R0dGxYVXjtra2tLulrFlPyR7vdEJCps8t0N19brebrq6ujAPIdtu7/ljptn07rz8hUpEQJEQawuHwlt+ErW/GmawZU0przFht7e/v3zA1fbus6efZvK71OKYTUqwQZ03ht3g8Hvr6+hgdHaWvrw+v17vm90zTXBOgNuP3+zFNM+nzy9qSItXWG1t5boG+D0ZHR9Pa02y97bQ32bHu13brcSrWJSlEaZMQJEQa1neNZML6dpzuN17rdrZSCSoEqyKSbG2d9UEg00HeHo+HcDi8aWBZff9mct3NFuCzLrO6FsPhMOfOnUt63f7+/g23m2qgeDKBQCDlYz0wMIDH40k52DvT51Y2bKe9648D9297KBSSACRyRkKQEGk4ceIEwWBwSyvXWmM20rXdcRLWB/J2TpkIBoMpq2SBQGBbs5WsytL6SotlYGAgcduZXNcaE5Mq2Pp8Pjwez5oP6M028nS5XGs+qK0ZUvdjPdbJugS7u7sxTXPDwpGrZfrc2q7ttjfZse7X/kAgcN8uUyG2SkKQEGmwvtl2d3dnHITyNR7Iuq2WlpZtnzLZNqO3tzdpoLBW+oWVYLY6LFnh6H7dRufPn+eFF17YsDO5FTJWHzPd67pcLgYHBxMrV682NDREMBhM2lWUrJI1MDCwYekEKxTdLwhZ91koFFpz3YGBAQKBAKOjo5t2w25lPNB2bLe9q6X7PA8GgyVTFRWlR7bNECJNqz/s3G43p06doqenZ9NSfSAQoKOjI6NgYxhGYnBxqbACj9vtTmxB0dXVhcvl4uzZswwPD9PZ2UlfX19i24yRkZFEMHK5XHi93pT3kbWuDOh1hawP2mTdLplc19piw1qraHx8nLa2tg33vd/vJxwO43a7EzMFrRDncrmSHru7u5vOzs6UW3CAHsszMjLCxMRE4rkVCoVwuVw899xzWX9ubdd22rteus/zzs5Oent7i2brEFFm8jsjX4jSNjo6mlgHxTp1dXXddw2XTI6PrIlSFoaHh++7Dg+brLdzP5k+t7JhO+1dLZPnuWyZIXJJusOEyIC1fs7Y2Bj9/f24XC6Ghobo6OhIOvZlszEbgUCAlpaWNd1r586dwzRNWTelDHg8nk1XTra6lk6cOLGl4+d7PNBW27ud5/nQ0BAnT57MvLFCpElCkBBb4HK56OvrY2xsLNHFk2xhwM3GbIyMjOByuRLTsIPBIAMDAzz//PM5bbvIn97e3pQDqrc7syvf44G22t7tPM99Pl/Kge5CZIOMCRJim8LhMC0tLYyOjuJ2uwmHw5w5c4ZAIIDf78ftduPxeDbssxQOh3nhhRdobW0lFAoxOjqaWMROlI+Ojo6ki092dnbi9/vJ5C043edWLmylvbD157m1+ni6s82E2AoJQUJswdDQUGKg5tDQEGfOnNnSNhOi/Pn9/jUrTFsMw8DlcjE2NlaglmUm3+3t7OxkcHBQ1ggSOSXdYUJsUW9vL16vl+HhYc6fP1/o5ogi5fF4aGtrS3Qn9fb2JmajBYNB2tvbi7rLpxDt9Xq9WV99XIhkpBIkhBB5YK2mLHtgbW5oaAiXyyXdwiIvJAQJIYQQoiJJd5gQQgghKpKEICGEEEJUJAlBQgghhKhIEoKEEEIIUZEkBAkhhBCiIkkIEkIIIURFkhAkhBBCiIokIUgIIYQQFen/BysgFJGAey0aAAAAAElFTkSuQmCC", "text/plain": [ "<Figure size 600x400 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot the results\n", "if get_tensors_kwargs[\"HD_basis\"].lower() == \"legendre\":\n", " pf.plot_HD_Legendre(\n", " 1000,\n", " fisher_data[:, len_signal:],\n", " r\"$\\rm HD \\ reconstruction \\ Legendre$\",\n", " )\n", " plt.ylim(-0.5, 1.5)\n", "\n", "elif get_tensors_kwargs[\"HD_basis\"].lower() == \"binned\":\n", " pf.plot_HD_binned(\n", " fisher_data[:, len_signal:],\n", " HD_coeffs,\n", " r\"$\\rm HD \\ reconstruction \\ binned$\",\n", " )\n", " plt.ylim(-1.0, 1.0)\n", "\n", "else:\n", " raise ValueError(\"Cannot use that\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 2 }
47,823
Python
.py
245
190.771429
41,670
0.908971
Mauropieroni/fastPTA
8
0
3
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,327
strong_signal_limit.ipynb
Mauropieroni_fastPTA/examples/strong_signal_limit.ipynb
{ "cells": [ { "cell_type": "markdown", "id": "f5da63da", "metadata": {}, "source": [ "### Start importing all libraries" ] }, { "cell_type": "code", "execution_count": 1, "id": "e5b92ec3", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)\n" ] } ], "source": [ "# Import global libs\n", "import tqdm\n", "import numpy as np\n", "import jax.numpy as jnp\n", "import matplotlib.pyplot as plt\n", "\n", "# Import local libs\n", "import fastPTA.utils as ut\n", "import fastPTA.get_tensors as gt" ] }, { "cell_type": "markdown", "id": "d623d2e9", "metadata": {}, "source": [ "### Then set some constants to be used below" ] }, { "cell_type": "code", "execution_count": 2, "id": "f40c03dc", "metadata": {}, "outputs": [], "source": [ "# Set the number of pulsars\n", "n_pulsars = 100\n", "\n", "# Number of realizations\n", "n_realizations = 30\n", "\n", "# Spherical harmonics order\n", "l_max = 6\n", "\n", "# Set nside (which sets the number of pixels) for healpy\n", "nside = 12" ] }, { "cell_type": "markdown", "id": "11d95f0e", "metadata": {}, "source": [ "### A function to generate random positions for the pulsars on the sky, and compute the ORF_lm" ] }, { "cell_type": "code", "execution_count": 3, "id": "18573af4", "metadata": {}, "outputs": [], "source": [ "def get_gamma_and_correlations(n_pulsars):\n", " \n", " # Theta and phi\n", " theta = np.arccos(np.random.uniform(-1, 1, n_pulsars))\n", " phi = np.random.uniform(0.0, 2 * np.pi, n_pulsars)\n", "\n", " # Generate the unit vectors\n", " sky_directions = gt.unit_vector(theta, phi)\n", "\n", " # Compute the overlap reduction function for all pulsar pairs\n", " correlations = gt.get_correlations_lm_IJ(sky_directions, l_max, nside)\n", "\n", " # Compute the inverse of the overlap reduction function for (l,m) = (0,0)\n", " gamma_0_inverse = np.linalg.inv(correlations[0])\n", "\n", " return gamma_0_inverse, correlations" ] }, { "cell_type": "markdown", "id": "42c73a18", "metadata": {}, "source": [ "### A function to compute the uncertainties" ] }, { "cell_type": "code", "execution_count": 4, "id": "e70645b1", "metadata": {}, "outputs": [], "source": [ "def get_uncertainties(\n", " n_pulsars, gamma_0_inverse, correlations, autocorrelations\n", "):\n", "\n", " # Use the autocorrelations if needed\n", " if autocorrelations:\n", " to_use = correlations\n", "\n", " else:\n", " to_use = jnp.where(\n", " (1.0 - jnp.eye(n_pulsars))[None, :, :], correlations, 0.0\n", " )\n", "\n", " # Compute the Fisher matrix\n", " fisher_matrix = (4 * jnp.pi) * jnp.einsum(\n", " \"ij,kl,ajk,bli->ab\",\n", " gamma_0_inverse,\n", " gamma_0_inverse,\n", " to_use,\n", " to_use,\n", " )\n", "\n", " # Compute the covariance matrix\n", " covariance = np.linalg.inv(fisher_matrix)\n", "\n", " # Return the error bars with/without correlations\n", " return np.sqrt(np.diag(covariance))" ] }, { "cell_type": "markdown", "id": "e251f922", "metadata": {}, "source": [ "### Get the errors for many realizations of the pulsar catalog" ] }, { "cell_type": "code", "execution_count": 5, "id": "78274b22", "metadata": {}, "outputs": [], "source": [ "try:\n", " data = np.load('generated_data/strong_signal.npz')\n", " auto = data['auto']\n", " no_auto = data['no_auto']\n", "\n", "except FileNotFoundError:\n", " # Initialize the arrays to store the uncertainties\n", " auto = np.zeros(shape=(n_realizations, (l_max + 1) ** 2))\n", " no_auto = np.zeros(shape=(n_realizations, (l_max + 1) ** 2))\n", "\n", " # Loop over the realizations and compute the uncertainties\n", " for i in tqdm.tqdm(range(n_realizations)):\n", " gamma, corr = get_gamma_and_correlations(n_pulsars)\n", " auto[i] = get_uncertainties(n_pulsars, gamma, corr, True)\n", " no_auto[i] = get_uncertainties(n_pulsars, gamma, corr, False)\n", "\n", " np.savez('generated_data/strong_signal.npz', auto=auto, no_auto=no_auto)" ] }, { "cell_type": "markdown", "id": "e2be5333", "metadata": {}, "source": [ "### Plot the results" ] }, { "cell_type": "code", "execution_count": 6, "id": "a061b9e8", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAHBCAYAAABnmw3XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJfklEQVR4nOzdd5xcdb3/8df0ur33ZNN7CAk1kIRe7V5BUVD0WqKICAjXLldB7lVRb6785OoVrmJDRRRBISQBExJCCCWV9Lab7X12+vn9cTLbN9ndbJvs+/l4fD0zZ2bO+c7MYt773e/5fiyGYRiIiIiIiEwQ1rHugIiIiIjIaFIAFhEREZEJRQFYRERERCYUBWARERERmVAUgEVERERkQlEAFhEREZEJRQFYRERERCYUBWARERERmVDsY92BZBGPx6moqCAlJQWLxTLW3RERERGRHgzDoKWlhcLCQqzW/sd5FYAHqKKigpKSkrHuhoiIiIicwpEjRyguLu73cQXgAUpJSQHMDzQ1NXWMeyMiIiIiPTU3N1NSUtKR2/qjADxAiWkPqampCsAiIiIi49ippqvqIjgRERERmVAUgEVERERkQlEAFhEREZEJRQFYRERERCYUBWARERERmVAUgEVERERkQlEAFhEREZEJRQFYRERERCYUBWARERERmVAUgEVERERkQlEAFhEREZEJRQFYRERERCYUBWARERERGRnNzWAYY92LXhSARURERGT4rV+PMW8exg8eGuue9KIALCIiIiLDJxaD73wHY9kyLIcP0/Tdn0AkMta96kYBWERERESGR0UFxuVXwJe/jCUW41d8kPPj64ngGOuedWMf6w6IiIjI+Nd6oIYjF92IYbURPftccq47j/x3noslO2usuzYyWlrA5wOrxgoH7JlniH7oI9gbamnDy0pWsbPsan78uQocjpyx7l03CsAiIiJyStvf81XOPbbavHPkH/Ak8HGo8E2jYca5eJafR9F7z8O1ZD44xtdo34AYBsH1Wzj0wyfxPfckxU3bCVucNPhKCGSXEC8qxTm1lLR5paTMLsFSVgolJZCSMtY9H3vhMPEv3Yv1oe9jB15nAR9z/B8r3pHC92dtJT1r/P2SZDGMcXhp3jjU3NxMWloaTU1NpKamjnV3RERERk3F8zvIu3weNuL8Mus2UgJVzGzfygze7vXckMVNRcHZRM4+j+xrziFjYRmW/DzIywOPZwx6fxKRCG3PvMixVU+S+dKTZLcfHfQhAq50AtmlGJPK8V18Nt6LF8OSJTBcoc8woKYGMjPBPg7HLffuJfjuG3FvexWAH/E5fjv5Hu68pZYZkyO0HarBW5zFnFuWjEp3BprXFIAHSAFYREQmqq1F13FWxdO84LmGzB98DZfPTqDdws7XgzRv3oVn/w5KGt9iUWwzmTT0e5yAI5W2lHwiWflY8vJwlOTjK8/DPSnfDMllZTB7NthsI/dmWltpeeLvVP30SfJf/Sv+SGPnQ/h4wXElh0qW4jx3IdFQjODRWoyqGlxN1aS0VZEVqaSUw5RymAwa+z1NQ8ZkgvOWkLJ8Mf4VS+Dss08+WhwMwp49BF/fRf3Luwi/sQvHgd1k1uzGE22l1ZFO7YLLyLjxKtL+5UooLh6+z2SI4r/6NZFbP4kr1EIdmXza/lNKrj+Lm65pwO02n9N6UAE4qSkAi4jIRLTzv19g1spLiWDnrx/4P2ZeN63P5xkG7D9s49Cm48S27ySrcjvl7dspoJJ8juMmNKDzBV1ptC5cSsq1F+O6/GIzOJ7OlIq2Nti+ncY1W2n85V8p3PEcznhnX6rJYbXrGiomX0juJXOYu9CJ22Pp93CBoIXDx50crHBSfThE8FgNlpoaUusPMq39TZawmens6fW6OBbqsmcSnLeYlBVLsLqdNL+yi/jO3XiP7CKz+SBWBh7JqrLnELnkSvJvvhL7JRfTkTgHwjCgthb274d9+8z5zgUFUFgIRUWQm3vyX0La2mj6yOdI++P/AvAiF/FgyY/52MetzJwcxtLl41MATnIKwCIiMtEYsThvpy1mRttW/px5C+X/+WnsjoGPzgaCFipqHFRUWWmoaCdY2US0th5rUwOO1ka87XVkRGvIo4p8jjONPaTS0u0YIbuXhhnn47riYtKvvxjLeef2PZUiEoG33ya4+S3q1m0juvUtfAe3kd20v9dT91HOGs811M64kLIVU5g914rTOeiPp5f6Zhvb9nnYvyuEsfNtMqu2My3wJot5lTIOn/L1DaSzi5nst02jxjeZtswS4kXFeMpyaX/7MOm7NrG4dS3n8Ao24h2vC9k8VM+8mJT3XUX6DVfBjBkQjcLhw7B/P+Gd+2h+fT+R3ftwHNqHv2Y/7nBLv/2IWWy0+fMJZhUSzy/CWlKIe0oR/mmFGCkpNH32y2RW7yaGle9a76Xx2g9x4zsCfWZwBeAkpwAsIiITzSuf/yXn/OjDNJHKxtt+SemSwmE9vmFAW7uFihonx2qcHDhio/XN/eQe3crC4MtczItkUd/tNRGrk+qyc7Asuxhrio/glm249mwju3YXDqPvtWaPk8c25rLTfw6Ncy5g1iUFzJg+OlNqm1qtbN/v4dBbzbB7N1lVO5gS2IaVOEdd5dSnTiKUU4y1rITccj9TJ8fJyYxht9NtJDWhqsHOpvVRwi+/xqRjG1gRe45ijnV7TqsrC0+4EZsRO2nfjlLEPqbQRBoFVFJIBfkc7xau+3OMQu7LW8UVn5rEzCmxPvsKCsBJTwFYREQmknBTO7XZMyiMHuH3pXcw574bsVj7nxow3I5WO3h1h4fa146Sun8rM5s2cREvUUhlv69pJoVtzGWPfTY1qeUEcidjm1JGwXQ/08qipKcb2EdwevFAtbZbiMXA5zm9/kRj8PpuD3vXHsO/fRMLm9dxMS/iIgxAO272U85+yjlsm0y9p4iWtCIi2QVYCwvILbBRUhAl1RenrslOdYOD2lqDcHUj1NbhbKrG01ZLSns1mZEqCqmggEq2Weez+9LP8K5/cZ1y5oUCcJJTABYRkYnkn9c9wNKn7+WIpYQj3/o5GZMyxrQ/rQELr+/2cmRLFe5dr1NWuwWbEaXKP5XmnMlQWkb2zGymTY6Rmx1PypXYTldtk40Nm+w0v3UI0tPxl6RTWGBQmh8lM80cVR7KssaGAeEo1DbYqap3UJAZJj+n/1HfrhSAk5wCsIiITBQNb9dgmzGVVJr53fz7mHfX1WPdpV4Mw6y4a7P1PVVAxofxGoBV3kRERES62fYv3yKVZrbZFzDl1mVj3Z0+WSz0O09W5FTG4YrKIiIiMlYOPfc2573xMABvX/RxZmV6Ox5zHt2Hra2FuNtD3O3r2BpO19CTaDyGJRzCGg5h2B3Evf7heBsyHsRjuKsO4aIRGJ0R4IFSABYREZEOlbfcQxlR/um9nGk3Lu7Y37bxTWasurXPtWpjWGm3+gja/YTsPkIOH1GHl6jDgzUWwRYJ4oiFsEeDOGJBHPEgzlg7LiPYa+WGY54p1BafhWXeXLxnzyJSPHloE1dldBkGjuqjePbvwL1/B/Y9O/Ee3oUjEuDtKVfBV24Y6x52owAsIiIiALzxXy9xXsWfiGKj+R0fJsvTeSWZ8/FfYMWghmyi2EmhBT9tANiI44+34A+3cGIBgiErat9H0Z59sOcJ+CO0WFM5mnMW7dPm41syG2bNJu7xnd5JRpm1vRVn5SEcxw4S2X/EXJ/Xbsc6czpMn06wbAZxf9pYd3PgDAN7fRXu/Tsxdu7EtmcXmRXb8ISbez21FR+Hav1MH4NunowCsIiIiBCPGdjuuROA57P+hdIrZnQ8Fnj9bc5ueJEoNp752O/JmJ5DIGgl0G4h0hok2tJOrDWIEQhgtAUhEMASDGANBzHsDgynC8PpwuJ2gcuF1e3E4nZidbuweZzYPE4cXgehxgCBLbvw73+T8votLDE2kRJvZlbVOqhaB/80R5uP+GdRX7oQ66RSbD43dp8bh9+F3e/GcLuJuzwYLg9xt5e4y43hOI0pGgN1IhQ6Kw4S3neE2IEjuCoPkl6/n4zQ8b5fs+NvHTdrvSU05M/GmDYd15yphMpnEkvLOq3+WNvbsLU2YmttwtbahLWliXhjC0ZTEzQ3Y205sT/UjmGAgcXcGolDdN43Ou4bZLYcIj1c0+uUIZy8zkI2s4QtLOZY1nyiOfksXhjl8qG/kxGhACwiIiJsuP13LG17hRb8uG96H7YuFd+MX/4KgL+nvp8lK1KAYI9XO0+0oa6SFD3RLHDhLGAWkegHePaAk8pXj2DbsY38itc4K7yJyRxkUut2Ju3YDjsGdvQYVkJWD3GrnY4YbKH37R77SARCiwUDCyRCIomw2HnbHW3DE2/rtw8VFLCLmbxtmUFNyhRs0SBTA29yNluYwn6yA0fI3n8E9v8d/m6+pt6ZT03uHMKTppm/RARDGMEQBINYw0EsoSC2SBBbOIg92o4jGsQZC+COtuGPNWLn5IUwTkcUG9uYy6ssZn/qQuqL5mKdMpnJJTGmFgVZWhDE5TRoPfgm3uIsoHTE+jIUCsAiIiITXHtjiLKf3APAC6W3MG1RZ1gJ7jnMoipzpLLtPR8etT457DBnWpg50/KAPOBSDtU7eP71VkJbd5J68HXS2o7jigVwxQP4acVHW0fz04qbEGBO0fDG2xhAgbPTEsHOXqaym5kc806lMbOcSOEk7OXF5JW4mZQfZGl2GNuJKc3Nbdex4YiHx/eEie7aR8rRnRQ3vMUCYysz2E1m+DiZR4/D0dVD7lMAD3VkdbR6Mqkji2ZbBi2OTALOdCIOHxabBavVwGYFm9XAZjWwdrlts5pTsW02AyMjA+fMKZRNsnB2QZALnYl54bWn/yGOEgVgERGRCW7Dh1ZxaewglZYC8j9xfbeKb6Ff/AYrBs97rmPuJXlj2EvIy4yQd4kLLlkILOzYbxjQHrJSG7RyKGgjELTS1m4jEDAIt4aItISJtgWJhg0iUQvhqIVI1GpuIxYiMQhHrUQjFsJRK5EYxKJgtxs4bQYOexynPY7jxG2H3cBlNwtLOGwxnHYDp9eBvzyX0qIYk3PCzLB3vVgwTF+To1N9MRbPbGXxTOD6EqCEWPwK9h938fxeg8CO/bgP7Ca7bhdW4kTsHqJ2DzGHm7jTTczpwXC5MdwuLC43eNzYPE4sXjeW1BSsaam4Upx4XTF8njheV4zJ7jiznfFhuK6w518BkosCsIiIyARWs7ueRX+7D4BN8z/OjEmd804jx6o4+/AfAai+5qMUjdM1dy0W8LrjeN1xcoj28Qwr4O1j/ymPfKINNC0GhnCO7mxWKC8MUV4IXFwMFAOXDvFofQdvUSEMERGRCe3Nf/l3Mmhkl30Okz7WPWi1/Pz3OIiywbGM+e8oG6Meigw/jQCLiIhMUHv+vp+L3vwvAPYt+xjlmZ1FKGJ1jZz19m/Nxy75BItHcMjMEmzH3tKAta2ZeHuQaFuYWCBENBAiHggSbw9BHxeAYbEQd3kx3B4Mjxe8bqxeD1avB5vfjT3Fg8PvxuozV4SIpmaA7QyOPoaB6+g+3Ad2YgkGiLZHiAbCxNrDxNojxIMhjFAEQiEIh80CJNEQYVcqxhVX4lh+oVlebwKYGO9SREREugm2Rqn68BeZRoRXvMspu+H8bo83/u+f8NLOVtvZzP+XmYM+vhGN0rZ1D6Hj9cQbmqCxCVtLA462RtyBerzBelLC9aRG6/AY7cP1tk4qgp3jzjLqUibRllVCLL8Ye1kh/ql5OEsKMBzOUenHcHLUVOB4czOxV14je98mUkNDvBDt0X9Q+6s8jix5L75/uYZYdv7wdnScUQAWERGZYA6+eJiGaz7E0rZ/EsNK0zs/TIq7M/wZba3Mf/OXALx1wb+yZDC5MBSi+jermbzuF8yO7B/wy4K4qCezYx2HAF5CFg9Bq4ewzUvY5iFs9xB1eIg5vUSdHiwY2ENtOMJtOMNtuKOtuGNteGKteAxzJQg/rSeKdrTiIEpJeB8ldfugDni78/xxLFTaSqj2TqIpvZRQVgE2mwVbPIrNiHRsrUYMWzyCzYia23gUqxHFGo9ixAyIxzHicYjHIRbvuG+Jx8E4sY3HCDn8BDKKieUVYC/Oxzc5B1dJPtG0rJNWvrM1N2B7Ywvhja+RvXcTOYFD3R4P4GEj51FLNkHcBHETs7uJOlwYDhdxpxuL243F48bqcWHzu/Ed2MaVlb8gL1pF9sv/Tezlh9ldfCm2976T+KJzhlyJz9rWgmXndtqqc+GW8VUK2WIYRu+ahtJLc3MzaWlpNDU1kZo61HUORURkXIvH4ehRqKmBoiLIyxv5AgqjbMMXn2DW9z9BBo00k8I/z7uTsk9ehdXeue5vzU9+x8UbHmS3ZSYtD/8S30CuH2trpfaxvzFz06PkxKoAqCeDfbYZNDuyaHNn0e7LJpKSSSwzG0tWFrb8bFxF2Xgn5ZJekkp6jp2UNBv+FAtuN9hsZvZKtIEwDIjFzBYMQkuzQWtznKa6CHWvH6F5yx5ib+/DeewgafX7yW8/wOT4PlJoHcKnOfxCuKhxF9OYUkIwsxDyC3DkZxLfs4+sPZsobdne7flRbGziXF52Lef49IvJuOo8zr8ihZIyK+np4Pebn2Oi9Wfba2H+efsTzF7/CBfH13bsr3KXUbfivdivu5pYaka/r7e1NGLZs4vWN/Zj27ub7KodFIYOAPByxjWcX//06XwsAzbQvKYAPEAKwCIiZ5CmJnj7bWI7dtP4ym6Cb+zGsX83adV7cMU6/xwftrlpzSwlVlSGY9ok/HPLsJeXwaRJUFYGhYUnTxXjSLCujS0XfZ4Ld/4MgDedZ1N3yxfIXzqje8gPhcj+13eTE6/m/xZ9n8VfuPjkB66vo/F/n2TOG4+TajQBcIQSXpzzKRY+dAszlheO62mlhgH1NTEOrj9K7cY9BLftw3pgP666Y8TiFqIWB1HsRC1OIiduRyzOE/scRAwHEYuDmMWO1W41m8OK1WbF5rBhc1ixOa0ntjbsDis2hwWjsQnrkUN4aw+T3XaYotghSjiCbQCLFb/JPDa5l3N8xsWkXr2U89+Zw7wFNjye0/88mpvhiW9uw/rI/+NdLf9HOuZ3GrY42T/9KhzvfQfx/CIc+3cReHMvtr1vk1W1g+zQsT6Pd4BJbM26jPfUPnL6nRtQ/xWAh5UCsIhIkjpyhNCv/0jzy9uJ79yN9+huUtqq+n16GAd1ZJFHFVZO/k9kzGonlFOCZe4cPO+5Gq691gzG48zhP28l9oEbmRzaTRwLfy38V4q++AG8ub3/Pat99K9c9Pw3OEIJx370B9Iy+hl6raig5X9/z/xdv8d9Yk3YXZaZbFq8kgv+64NMXZJ5pg2ejxjDgMZG2PNmgGMbDtP0xn5iew9hrzxMasNhMoMVVLoncXz6xfivWca57yth+hwHLtfI9ukff2pjx1ceZ+nOn7KEV0/5mt1MZ7t9IVX582DefPKuXMiiq/MpLneO2i9BCsDDTAFYRCay9p0HOXrjXdgvOIdJ3/lXLOlpY92lk4tGCf/paWofeIS8157pc1Stknx2M4O9lmnU+spozSwhVlCMd3IeWTlWqqsttByqwzhehbO+ipTW4xTGjzCJg5RhjtY5+lhztqV0Nu73XofjndfABReAwzEa77hv8Tivf/SHzHrsHlyEOWYpYsOye5j54SXYnX0kkliU1E/cQFHkIL+c9e+c/W9X9T7k3n2EH/0N8w4+1VFqd4t1CW8u+xwrfvxuymb7FXyHWSxmzs4Zqx+lAwfgD1/aSP6TP+U9kd/gIsROZvGmdSHHc+cTmzOfnMsXcPYV2Uyd6RiWkeihUgAeZgrAIjKRbSu7lrmHzXK4rdYUDl/5Cab++HacU0rGuGfdGfsPUPntn+H9zc9JD1R27F/LMl51nE9Daqk5YltSROEkN1NKIxTnRXC5Tj3HNBaD43V2DlS4OVjp4nCljeCxemw1x5nc8BrX8DcuYEO3sB10pxFadiWpN16L5ZqrISdnpN56L8FDVey76BbmHHkWgBc81xD9189Qsrj/q/sb/vACFzx5N9XksPM//kJufpeQHAgQve87zDv6bMeuNbbL2Hft57jmB1dQWO4esfci40MwCL//v3aajgdZtCyF+Yvs+Hzja5q8AvAwUwAWkYnq0P++QNnHLiWCnb1MYxY7AXNJqV0LPkDxQ3eRsXzB2HUwHKbhsado/I9HKHv7uY5pC9Xk8HvHhzg071oWX5XDjClRHI6R+ce6odnGS2+k8PprMVK3b2Rp+3NczTNkU9fxnDgWGqYsxvP+6/DOnWLutFjAYsHAgmFA3LAQi1s6t3EwbHZ8k3KwlxRAQQEDGV6r+PmzuD55M1nRatpx89tJX2LuHZfjyzhJSI3HcX3yZsqDO3l80r2cdd97uz1c9+D/sPSth4lj4Wnnu6l6/+d454MXklM4hiPcIj0oAA8zBWARmZDicfZmLmFq02s8kfYxsr/2Gbb9+i0Wbv1flsZe7HjatsLL8X39LiZ/4rKBJcxAgLq/v0r1Uxvh5ZfJO7gRX7iBRk8hrWmFhLOLMAoKsU8qwjulkLQ5RfinFWIpLgKvuSRBePseDnzlf8j92y/ICFd3HPp5y2W8XPRe0i5bwgUXgG+U/xxrGLD7kJsXt/pofmU3U469yFXGMyxi67Acv9WeTrO/gGBGIbHcAqxFBTgnFeKfVkDqzEL2/sefmPG3HwCw3TKXLVd/mbPeNwW74+RD3E1/38h5v/wszaSw6ZvPUlzeOcE0fKiCmV95Hy7CPHzBo9zw1IdIz0qOi/9kYlEAHmYKwCIyEe348q+Y/Z2baCKVtf/6ONMvMv98Ho5a2PKHg+Q//yuuDD7Z8Wf/vf6FtHzyThZ8+1+wuk6MDBoGTVv3c/h3GwmtfZn03Rspa3yjz/mzA9FiS6PVnU1B276OfZXk8xf/jdQvuYJzrskmL9cy1KVLh10gaGHjNj/bNrWRtn09i1peJIMGAE6M/fZqXR9zECGXagqoxHPiYrOB+I3vVlI/exOT56ac+smGAZ/5DLNaN/P7gs8x98Gbuz3cdtfXWXz8aV5yrGDOwb+RWajpDjI+KQAPMwVgEZlo4oEgxzNmUhg+xK8Kv8iCb9+Azd59dNcwYOf6Ovj977iq/tf4CABQYSth/5IP4Dm8m0lVG8mK1fQ6fgUFvOlczLHMeQQmzcKen0O0pgFLXR2O5lq8rTWkhGrIjFSRF6+kiGP4aevsHxZW265g+5R3UHj9ImbNdYzr5bYSqursNLbYsFkNrFYDuw1sVgObzTDXarUaXRpggbomO9W1VhorAoQr64jV1GFvqMPZWoevvY60cDWZUTMkh3Hy9xmf46LPnYU/bWAfSMuGNznnJx8jiIvn7/47U+Z1lkRu3vAW5/7ko8Sw8pcvrOFd3z/FsmgiY0gBeJgpAIvIRPPqDf/J4t/exTGK2P1vj1IwK/2kz6/cH6D2f//CsoOPkUf3ZcZCONlmW8DB1Pk0Fc3GNX8GZYsySct2Yj/FX9LjcWhrt1BVY6W+op3gUTMAOopzWXhJJv6UJEi9I8wwIByFmno7lnicvNz4KT/XrkKfv4uF9Wt4MvNjzPjhZzofiMexffoTTA+8wZ8ybuHqI/+D26epDzJ+DTSv6f81RESkl8DReqb+7tsArJnxSRbNTD/lawrKvRTc9wGONL2Hl362mpQDb9GcOQljxnTyzp1MZomf2c7Bz0uwWiHFZ5Dii8EkJ1BwokmCxQIuBxTnDX5aSfubb7Oofg1RbBg33NjtsdrfruaiwBs0kUre9+5R+JUzhgKwiIj08uYHvs15RiM7rHOY+vFlg1o5wZfmYM4dVwG915CV8Sf+f48D8I+U9zHjvM5St0YgwIxnHwLg6Wlf4AMfnj4W3RMZEePkEoHxa9WqVcyePZslS5aMdVdEREZFzSsHOGvDfwGw9ZxPkpbvG+MeyUgJ7TvCouNPA9Dy7o90+0Wn9r9/T268igOWcs557LO95n+LJDONAJ/CypUrWblyZcecEhGRM92BD36ZcwjzsnMZcz589lh3R05HPI411I61vc1swTYItBFtChBtacf23BqsGLzgvoZ5l+V1vCx05DhL3ngEgA2XfpUPnps9Vu9AZEQoAIuISIe9v32Vc/b9mjgWjl15C3NSzbVgbc0NuB//GfFoDMPtAY8PfB4sHg8WnxeL14vh8RB3+4i7vWZzecACJ/4Hw2LpuG0WgDBvGoaFOBaw2bAO5sqtiSQew9bajK21CUtzI6HaZiL1rcTqm4g3NmNracLe1ogr0IA71Iw72oIn2oo33tJRGORkKq/5KAVdBnhDP/4fPATZ6LiIq3/xgXFV6UtkOCgAi4iIyTBo+8xdADyf8h5mvGtWx0ORH/yY6XufGvEuhHASxEPQ6iFs9RCyeYja3ETsbqIODzG7i7jTDS4X8bQM7IV5+CZl4yzOI5KVj+Ea5vVp43Gs7W3YWpuwtTZCUxPhulaiDc3EG5uh2QyfGHEMXwqk+LGmpWBP9+PM8GFJSSHmSyXmSyXu9RPzpYDVBoaBNdCCvbkeW3MDNDQQqmoiUttIvL4RW1MDztZ6PO11pIRqSYk1DijI9ieKjWZSu7UWUmm3+TmWfzbL3zG547lNm3ZyXuWTxLFQ9elvcF7RKFcSERkFCsAiIgLA1m//jbPq1xLERexfPoDdaf4TEd+xkzl7nyKOhYfsd2IxYvjirXiNNlJoIYUW/LR226bQ0lEcYzBchHERJi3eBHE4Za2MLd3vNtmzaPQVEswoJJ6bh6MoF1dxDtHMPCyxCLb2NmhrJdLcTrQ5QKwlQLytHQIBrIFWrO1tOMJtuELN+MMN+KKN2IkN+n2cTMDmxxkPYjcGv2JDA+nUkk0dWTRZM2lxZtLuSifoySTiSyOemg7+FPD7sKZ4sfm92FO9uP12fB4DnzuG1x3H746R6TCwWGBW1xPE46T9/CEAnk7/IFd9R2v+yplJAVhERIiFoqT8+90A/CPvI0xZOsl8wDCwP2xeEPek54Nc9t8fwHHiX45YHMIRC+GolWDEQnPUat6PWAlHIB6KYrXGsVvBao3jsMSxWMFui2OznCj0YDGwWePYrAaxSIxQS4Rwa5hwa5hIW4RoIEg0ECHeHsRoDxEPhrGEglhCIVwtNaS3VVAQPUwZh0ilhbRoHWlNddD0Fhwcvs+nFR91ZHW0Zlsmrc4Mgq40Qp504hYb9vYW3KEm3OEm/NEmMmjo1hJFPLyx1o7jNpJGNblUk0sNObS4sgl4sgj7M4mlZ2HJSMeRnYYzKxVPjo+0NEj3R0nzRRlgjQsgfKKdWtUT61ge2EILfrL/815cPsUEOTPpJ1tERHj5k79gaWgH9WSSccs7sNrNRYICq9dzdsMm2nET+PC/doRfAJsVPC4Dj2ugI6SJiaTDO8+3LWjlhWoXVUdCtB6sJVpRha26Cl9TBZntxyjlEIVU0I6HFlI6pgC0WVMIOfyEHH6ibr85b9njA68Pi9+LNT0Ve2YqjswUUtNtpPmjpPuiFPhiFJ9iDaVYHFrabBxrtbOjzU5jq42WpjihhgDRplasHjeevBQyM61kp0fISY8w3Rc7RfnmgZdBHop4e5AZf3sIgKenfp733zx7RM8nMpYUgEVEJrjWqjam/t/XAFg75VZmzs43H4hGyP3NjwH4fe5nWXLRyC2HZm+sxdreRji/lMFeceVzx5lR2s6MUuDCTCCTxB/2I1GoqHOxq9aJ2xkn1Rcl1Rej3BvD6RjonNrBB0+bFdJTYqSnxIBQj0e9J7ZtjCfVP/kDc2LHOGQpY/Gjt2nZMzmjKQCLiExwr9zwfS6JV3LIOoniT1yBxWoGn8Zf/pVZoX1UkUvuZ983vCc1DJyH9xJZux7vlpcobXgDgCZHFhVFSzAWLMS1ZAHhkimcYlj0pBx2KMsLUZbXM4RKV8FjNZyz9f8BsGHFv3HD+blj3CORkaUALCIygR1/o4olax8EYOuijzOjyKwEFm9uYeYLPwHgb7Pv5LzJw/DPRTSKe9dWQi9sIGvbWnLaj3Q8FMdCGCdpkTrSDj4LB5+FP0OzLYOjBUuIzFuI77z5RCZNM1dRSGaxKNZQEEskhCUSxhoJYQmHsURCWCMhYsEw0fYIsRMtHo5iz/DjzEvHkpFBNDWLuNc/6JHyk2n/8c/wEWCz/XyufPQmLXsmZzwFYBGRCWznDd9kBa285TiLSTd3XvFfv+rXzDHq2WmdzayVK4Z8fGt7K64tLxNet4HCvS/ijzZ1PBbAw2rLZWwvuQrvu68ib34ex/78Cq5N/2Ra9UtcYGwgNdbA7KP/gKP/gGegxZrK4dwlBOcswp6TQTwSIx6OYoSjGNEIRiSGEYmYcx+iZrNEIhAzV1wwLFbAgnFifWLDYsXAAhYLBlawmOsVG1Y7pKRgSfVjT/PjyvThyvbjSPcT96cS9/j7HJm2hEPYG2qw1FQRqqgjWlkLNTU4GqrwNleREjhOerj6tJY0AwhZXDTZs2lx5xDwnrhoLi0LMjKwF2TjnzeZWH7xgEbPGzbv4YJjTwBw/FNfZ0mx9xSvEEl+CsAiIhPUrj/v5qJdPwXg8GUfpTzdDD7tB49zzo5fALBlxV2cnXry4UBLOIS9sQZbfS3x6hqiVfVQW4Pz8F6Kj23CYUQ6nltNDs/aruXgzKsovOkSrvpgFtcWWztz2sdWACsIBOCl1WH2Pb4Jy/oXmXxsPefH15MWb2bO8dVwfPVwfxyDEsdCizWNNns67c40rEaUjOBx0mN1gzpOAA9B3P22iMVFzGonNdZAHlXkUUUqLbiMELmRY+RGjkELUNX72K2WFA6nzaW5cBaWmdNJW1iOUVoKti7/9BsGKT97CIBn0m7gigcuHfqHIpJEFIBFRE5HLAaBAITDGOEI8WDYbCHzthHq3G+EI1jiMfwXLsBSWDCm3Q60xKj7+N3MJMYG/+WUvXdJx2Oh/3oEF2HWuy5hwU1zAYiE4xz49UY8FfvwNFfjbztOWnsVmeFK0uMNJz3XLmbwnOs6ahdfxZxbz+P6d/lJTz/5X/C9XrjyeidcfxFwEdEovLIhys7/20x8zYsUHt6IO9ZK1OIkZrWbW5uDmNVB3OogZncStzkwbA7idgfYHQBYMLAQx2IYWIz4ifsGJPZh7rfGIjjbm/CEGvFFmkiJNZJBPRk04KUdKwZp8UbSwo29VhgL4OEoxRyjmBpnIY3eAgJpRURyCrGWFOEsL8RTlI071YnXb8Hnt+L1gi/Fis9vIcdnwe8HtxtsNnMQNxqF6mrYdSxGzcFWWt6upP1QNbGKKqiuxl5fg7ulGl+glvzQQeYab+E3Wpjd+DI0vgw7gD9CEDeH/HOoL5hNfOp04q0BLmrbRBte0h/8Ny17JhOGxTCM0/s7zATR3NxMWloaTU1NpKamjnV3RM4YRjDEvis+jREKk33nLWS895LTuuhpOBkG1NbC0aNQeTBEy2t7MLbvwH1gJ+mVOyhs3MGk0G6cRE59sB4qsucTv/xKCm65EtuypeByjcA76O3gljq2feFnzFv/E8riB4lhZd3NP6PgsnkA1L68m4v++0PEsfDUR59kxiVF5uu+8b9cvW9Vv8dtx00FhRyjiOOWAuqchdSnlBK5YBnnf3wuF13qxDvMf1mPRE5UVD7RRurHxjDMczU3GdQcj1F7pJ3mg7UEjjbQXtFAtLoBA7CVFeObWUzOjCyKJzvJL7LhdoN9lDNlNArbt4bZ88e3aPvna3h2v0Fx/RvMi71OCq19vub35Xfznt0PaOUHSXoDzWsKwAOkACwyMt68/t+Y/9f7O+5XuiZx+PJbmfzNW8hdVDwqfTAM2LcPNmyAV14MEnhtF6lHd5BXt4MZ8R3MZgdT2XvKimCJC7nCOIng6PO2gwiz2NltDmjI7qVp4XIyb7wS+3VXwbRpw3qBUzwOm/57C60PrmLpkV/jObGsV4Mlg03zPk7JF96H1W7DiBvEPv1Z5gU28UzWh5j00BcAqNp6jAu//14cRHk++wZacqcQyS7AyC/AVlqEa0ohqZOzySl0kltgw+83Q5/NNqxvQ05DPA7798TY+cedNL3wKo6db1JQ/QZzIq9zxDoJ/7q/MnXp2P5VQmQ4KAAPMwVgkeF35LcbKLzhImzEedr+Di6MriMd8yKpGFY2ZV5N43s/zqKvXkt+iWPYzhsMwpYtsPmFFqqfewPL1teY2rqVRbzGbHbg6Kf+bqs1hWOeqdT5J9GaVUq4sAxbeRmO/CxwOrE6bFgtFnOKpdWCzQoWi8UMglZzhDIUtrJlY4jWdVspPfYyl8Sfo4Dj3c+TXYbj+qtwXX8lXHIJpKUN6X02VYfYeOcT5P7+vzgruLFj/27nPA7Ov57cf7kYd35WR0o98rsNXPGX22jDyytffYr86ekYcYO2T3+RJYEX+WfKVSw5+iSu1NEZrZaRV3XcwBKLkls0fP99iYwlBeBhpgAsMrzC9a1UFS6kJLSPv3rfT8F/3kFdg4Wq37/EzB1/Ykl4Q8dzj5PH6uJbiH/0Vi779DQKBjFQFYuZcydfe66Oo3/ZSvSV18g+upWF8deYxp4+r8Zvd6TSnFlGOLcYS0kR8dJywmVTiOYUYjjdwzasGYpY2PCGj71rjpC2axNLwy+wlH/i6jGptD2ziHDpFCifgmPmFNxzpmCdNgWmTIHMzF7HfXv1Efbd/f9Y/NpPyaEGgDAOXsm8iuilV5F9+UJsnu4hNhKMkvapGymLHeCpqXcw7esfBGDPY+t5x3Ofpx03u//nRRbeuqTX+URExgsF4GGmACwyvDYs/AwXvPETjlqK2X77Tyld1H3h/do3jhD+49MsOPgU2fHqjv3ruJiXpn2MWG4h9vYW7IFm7MEWXMFmnOEW3OEWPJFmPLEWfLFm/EYLeVRRypGeXQCgwZVPS245jvJS4lOmEpwyh0heCYbTNap/v4/HYetuL2s3OIm99gZnNa/lKp5lOntO+roWWzpV/inUZ06hNXcK9v27uaDmzx3TNSqthbwx+V1kvv9S/DNLsNj6nii79wdPcf1r36LKks/RHz6BN8NNW307Rbd/gAKjgqfn3Mk1b3y339eLiIwHCsDDTAFYZPhs+c7fOfvLVwHwm6U/ZsEnz+//ydEooefW4fjH08ys/Sc24kM+b6WzjPqsadgml+KeNZnojNlEswswHM4hH3OkvH3YxbOb0tm/PUhG82GyAofIDx6iJHaQKexjCvsopLLf17/muYCaJdeQ/54LcGad/P+zmivbmH73u8iggb8sfYCpn7wMgANf/RnXHPwJB63l+N7cQM6cvGF9jyIiw00BeJgpAIsMj5rd9URnz6MgXsHT2TdT+t1PY3cO7DJ5e20Flr88he/VlzDiBhGHl6jTQ9TpJeb0EHd5iLu94PaAz4vF48Hq92BL82NMnQqZ2aN/Sf4wisUgFLZQ32KjvtFGa207xtEKnFVH8dYfIbX5KIbDgfuKZWRdOAuba2Dvdd+/PcJ1R/4fux1ziPz059jsNo69coxlPzYvfFv90ce49OcfHuF3JyJy+gaa15L3XwIRSTrxOGxb8VlWxCvYZ5tGzuc/OODwCxDNLoSPforGj36q12MWwHai9XSm/JZvs4HXY+D1RCnOjcJ0K1B8op03pGMe3VrNFUd+DsCR932BIruNeMwg/X/+AwdR1qddzUU/+sCwvQcRkfFAk7lEZNQ8c8tvWVH5a6LY2PeOL5AyKWusuzShGQZYH/l/OImwOe1Siq5ZCMDbv1jP4vZ/EsBDxo+/hdM//qaIiIicDgVgERkVb/29gvP+7zMArCn/GEXvOHuMeyTbn9rHpS1/JoaV6L+a301LTTvnr3sAgBcXfI5ZH9L3JCJnHk2BEJER19piUP+ejzOPena75pF32w1Y7Z2TFdpf3Ub4aBWWFD+2FB/2dD+OdB/WVD+4hm/ZsQnHMIgEQjRXBmipChCobiVU10q0oQWjuYUlh/8AwIayG8meXwZA9Q9+yTnGcQ7YpnDOb+/EYtVnLyJnHgVgERlxf7jqEW4OPEMQF00330ZKVmdhh7pnXmHp45/p97UR7DRb0mmxptFqS6PNnka7I4WY1YFhNUuNGRYrWKwYVrPahGGxgtUCFhtYLRg2O3FfCqSmYkv1Y8/w48ry4c32487xY/H5hjVkh6MWAm1xQs0hwq0Roq1BIm1hoq0h4sEQNpcdV4oDl9+JJ9WBN82BO8UJbhdY+5rFDMTjWAMt2FqaiNQ3EappIVzXQqyhGUtTI9aWJhxtjbgCjbhDTfgjDaTGG3ATOmlf2/CR+tmPAHD45aNcdeR/zNsf/ybLZuQM22ciIjKeKACLyIj66w/38d4NdwDw2qKPk3Hhgo7HWvZUMO/X9wKwzTKXsMVFaryJdBpIpxE7MRxEyTJqyYrVQgx61IgYFjGsNFkyaLGnE3CkE7Z76VggxzA6G2Ax4j3uG9jiYdzxAB7DbD7acBIZUl9COAlavIRtbsI2D3GLDX+kkdRY/ZCXgItgp9GSSYs9nXZXOiF3OlF/KvhTsC+7EE9+FrGYQdbPHsROjPUZ13HB994/pHOJiCQDBWARGTEH9sbI+uLN+GljV+oS0j7xAbMeMBBtC5L5wD2kGU1scZyH8cMf4kuxEQEqorAvaCXcEiLS2EqsuY1Ycxvx5lYsbS1Y21ohGoW4QTweh1gc4gaGYW6Jx08087YlFsHR3oIz2IQ33HgiUDaQTgNe2rERJ9OoIzNSxxBza79iWGnHS7vVS8jqJWx1YzWiuGIBXEbQDM0EO57vIozLCEMU+qrI3EwKtWRTb8mi2Z5JqzOToDuDkDedqD8dUlNxZqXgyfbjz/OSWuAlNcvVMZXBCnj66Ofu/3mJ94Y20IaXnJ98E4dPF76JyJlLAViGl2HADTfAyy/DrFkwe3ZnmzWrz7KtcmaKRuFvl36PlbH1tFpSiH3qs1j9XgCMuEHT177PvPAOqsij6e5vU5DS+ad/hx0c/jj4HVCQAWQMa98MoAmojUJLQ5TWmgChujYi9a1EGlqgPYjFZsFiBZsVsFqwWcFisWCxWbBazRkTNhtYrBZsLjs2nxuHz4nd78bld+JMcWLzus0iG31Mr2hP9MWAUMigrTlKoClKsDlMsCVCqDVCuCVMPBLDmubHmZ2KJ8dPeoaV9JQoXlcc3zDN2misDHDRP80L3zacfRuXvf+s4TmwiMg4pQAsw6umBn73O/P2kSPwj390fzw/v3conj0bsrM7RgblzPDwZ97kE4e/CsC+Sz6Bc+7sjscO/ddTXF39RyLY2XTj95k2M62/w4wohx0yc+xk5qQCw1/gZiDrD1ss4HZbcLsdZOU66Ht8NqGPIeFhUPeD/+N8qtlvn8a5v/uiLnwTkTOeArAMr6NHzW1qKnz0o3DwIBw+bIbh2lo4ftxsL7zQ+7Ver9l8PrMlbvfc5/XSMQQH5jbRet430wVMngxTp8KUKRqFHmGGAc/+OcRFj3wYF2F251+M84b3dHw/h/+xk8s3fweAp8/6KjOumTGw48ZiNO8+TvMb++HAAYjFiVttGB3N3nnf5ui4jc2GgRVC7diC7VjC7dhDAezhduyRAI5oAFckgDMWwBUL4Im1YSVOmz2VdkcqQUcqYXcKUXcKMW8Khs8Hfj+WVD+OVB+OdB/e/BS8helYbP1cwDbQzy4apWVPFS07jhA/cAjP8X2ktB4n5PATdqUQ8aQR9fgxfCmQkoIl1Yc9LQVHuhdnpg9vlg97qndQv0zue/EIV1f+DIDjn/km5eXZp/UeRESSgQKwDK9EAM7NhZtu6v6n38ZG2LvXbAcOwKFDZjCurjZTUyBgttrake1jeroZhBMtEYynTIHCwnEzEp24zmq4utPQAG+8YbbXX4edO6G8HC6/3GzFxUM/diwGGzbAX58IUvW7dVx//Kcs4E2a7JmwcqX5SwhQt7eehb+8Ezsx1ma/j+m3X9Pn8aKBIPVvHKH9rf04Dr1Nbs0Oytu34yMw9E4O+k3BKRZQ6CaCnSprIXXuQpp9BQTT8oll52DLy8VVkk3qpCxcOWnmKhXhCE1vH6dlxxE4eBDv8f3kNb1NaXgvrtO8yi+Ah/2u2VRlzKStaBq2aeWkzZ9EZrG310yMaCROwaMPYiPO+qx3cO797z2tc4uIJAuL0XGps5zMQGtLT3irVsFnPwvnnmveHoi2NjMcBwLQ3m5ug8HObXt7920w2HEFfter8fvdtrd3jjw3NJy8L243zJ0LV15ptvPOA4djUB/BUDQ2wvbtsG1bl/aWQUtDlLxiB6Wl9NnKyszB9q7icfP3i0TQTWwPH+58jpc2SjhCFXk0nphfO306XHGFGYaXL+993J7a2+H552Ht4xXE//o0y1qf5nKe6xZS337fPcTe+T4Agm1RLLfdxsLwK+xyzCX40MO4Us1gXP3aYQLrXsV79G2KGrYxOfJ2nyseBPDwtmMOxzNnY3h9WOJRrLEo1ngMazxibo0o1ngUWzzacdtKnLDdS9TpJeryEXd7iXl84PFh+HxYfF4sfh+2NB/2VD/YrIRrm4nWNhFrbILGJiwtLdjbmnC2N+EMNeONNOONNZMaaySbGuzETvk9h3BSZ80hJ16Fo5/pDG142WefQVXqdNqKp2ObXIrRHsTS2AgtTTham3AEmnCFmvCGm/DFmkiNNZJGI96OmcW9HaOIA9451GbNIFgyDceMyYTf2MmNr91NKz6q//hPyt+98JTvQURkPBtoXlMAHiAF4AG691544AG49lr45jfHujfdGQa0tnaflnHsWGc4rq42hzK7Sk2FSy7pDMSTJw/51GCGxp07O0PuzjcjNL15CO/xfUyheytnPz4CVJLPYUo5RBmHKe12+xBlxFMzKC2zUFICzc1m4A20RCnhCJM5wGQOUM5+JnOAGY79TDYOkBmt7uhbtS2ft2Kz2cksdjCbHcxmt3U25efmcMWVFi6/HJYsMX8PqK+Hvz4VZ8ejm0n759NcGf0ri9ja7b22eHJon3kWofOW03rOJWC3Yxiw/67/5rqqn9NIOju+/EsyZuYDcPDPr3P5E5/sFSBryGGvZx51BXOwzJ1L5qULmHrtLDJL/dgc42OUHiAWNWirC3LslaPUvnaYtl1HiB46iu14Jd6GY6S3HSM3cow8jmPtMiu4BT/7HDOpTptGe+l0HPNmkrtsNuWXlpOa78XuHPh7jEUNIsEYjRVtVG08SM3qN4i9uY2UwzsobtpOaezgSV+/+tx7ufTlb6vgiIgkPQXgYaYAPEA33QS/+hXcfDN87nNj3ZvBCQbNKRyvvQYbN8LWrdDS0v05U6fCVVfBlVdycNJyll7l5/jx3oPOLqOdTOrJoKHbNocaytnfEXJLOTygkcOTacXXEYYdRChn/4COG3d5sIb6HzGsJasjFO93zcZVmMmUg6u52vgbudR0HgcLNdmziM9fSOjsCwjOWIDh6n4h1xs/fpEbXjHXAn7hXx6m4PrFABzbdIRz/usjpNLCFtf5VMxcgXPRPAqvXsCUSybhyXCfERdkxWMG9UcDVGw8TMPOClKm5jHl0nL82e5RCfNth+s4+KetNKx7E3ZsJ6NiO6WtO0gxWnjbNY/C3Wvwl2WNeD9EREaaAvAwUwAeoOXLYd06uOsu+MAHxro3pycWgzffhJdegs2bYfduc35B4mGrgxfjF9JMKpnUdwu6p6q+1VXU5iKUmUc8O49Ydj6R7ALCeSWE80uIpmTgqDuOs6YCR20ljrrj2BtqzNZYg721qd/jxm12opl5RDJzzW1WPpGcwhPHLiaWkokl1I776F5ch/firDiA6/hhHFVHcNRVYTnJGgYBm5+a0rOxnb2Q4JKLiOQVg63vSwp2PHeEax67EQ9B1iy4nfw7bwKgdn8Tk79xC8XGEV71LGXy60+SNV0hbNTE4wS378OSkY6rWBXfROTMoAA8zBSAB2jqVNi3z5ygOmkSZGWZS5xlZZktM7Nz34kLo4ZdMGhOgk1ccFdf39mHnBzzdmLr9Q78uE1NsH69ebXXli3mkm8nYVisRDwpRN1+om5zG/OmQE42sbwiIvnFhPLLiGbnm2vF9lcCt98TGFjaW3FUV+CsOYajtgKwEMktIpxXSiQrH8N1ktK6J2EJtJrB+Mg+HEf2E9xfgdHURLhsGvbzFtM+/1xzJYJT/Mn82N52pn3rJsqMQ2zJuhzP976NxWaltSGM84ufY0FkC/ttU7H9/RnKLp066H6KiIh0pQA8zBSAB8AwwOOB0ABHP32+zkCcCMWJ1vV+enrfSyHE4+Yc3kTQTbQjR7qN1J6yD4lzJUJxWRmcdZYZ4PsJeNV1Ni6+0s3FvMjtV+4ko9BL1J9K3J9G1JdOLDWduNePYXOYfR8nK0uMptY2g/bP38vFoec54iin6Qc/w5aWQjhsUH/7t1jR8hfqyKLyp39h7ifOH+vuiojIGWCgeU3LoMnwqa3tDL9eL3z+81BXZ7b6+s7biee1tZntyJGTH9dm6z6S7PebS6jt32+O9vYlLc0cjZ461Qy29fXmeROtpsa8Ii3Rh65LJCSkp5tBeOFCczt9OtjN/2SefTmN3UzGKC7hczfuovH0ln8948TjsPvrv+Gm0PO046H6zgfwpqVgGLD3a4/x3pa/EMLJ3rse5lyFXxERGWUKwDJ8ugbZggJ4bz9rihqGGToTobi2tvc20RoazLm41dVm68nl6ixy0bVlZZ36iva2ts4w3DUY794Nb71lrk22Zo3ZwAz18+fDWWexf/M1uChgZkkb2/b7cDriOOwGToeByxHHaTdwntg67MaIX1xvGBCJWbBbjREfbDYMaAnYaGi109hip6HZRntdgGhtIzTUY21qIKVqH5+s+x4Ab7z3m6TNLgfgte+v4aZjPwZg07u/y0X3v2dkOysiItIHBWAZPokiGGAWwuiPxWKO4vr95lzhk4lGe4/eNjebVRumToWSEnOEeCgS1eXKyno/FomY65W99pq5iO7rr5tLqG3cCBs38g1+wr042fzyEo6+XEwLbkK4COIm2MftqM1J1OomZnMQtbmIWp1EbW7zts1J1OYibnMStbuI2Z0YNicxuwuLFcIRK+GopcvWQiRqJRyxEI52PgZgtRik+mKk+aOk+6Ok+WKkJ277o6T7Y6T5zPupvhiRqIXWoI22diuBNoNoczvR1naMtgC0tWIJBLC2t2EPtuIItuIL1pIeqSXbqCaPKuZSTS7VOIn0+RG/Ou8W0t51iXn78V3c8Pq9ALy46PNc+PhKLLaJNzVERETGngKwDJ+uI8AnC8CDYbebxxqu4w2Uw2GO9s6fb96PxcyL+7ZupfqFt4hteZ0CjrOU9QM7XuxE6zsn9iuCHQMLBuYQctdtX/vihpVYq81smC2KveN2z+YlQCrNpNJ80iIKA9FqS6XVlU2bN5uQL5PY1Jn4broBgLfWVHP9MytxEGVz4Ts5/4XvYHOPfIERERGRvigAy/DpOgK8bx/8z/+Y82jT0805uV3bqVaAiMfNKQotLebIa0tL5+1gEDIyIC/PnN+bldUxN3fQDMNc3aGqypxiUVVlHvvCC7v30WYz5wBPn85/Hr+D/9iSx1nuncwNvsqHz9/L/NJGrJEwlkgYSzSMJRzGCIcxQmGMSARCJx4Lm49boxGs0RDWaBhrNIwtGsIWC2OPdr+AsL9qYSMpbHUTtPsJOf2EnX6iLh8xt4+4x4eRnoE1KwNHdjpkZhBLzSSalkksJQPD6eo4hoXO/3PZu72dJf+7knSa2OFfwpz1P8WRNojVN0RERIaZArAMn64BOFHqrD9ud/dAHI12D7ttbQM/r9VqhuDESHFeXuft3FxzZYqamu4hN3G7urrvVSs8Hli2zCx6ce653cohP70+DbDwemgWW5nNR/7lLeqzwwPv78kYBsSiWCMhLJEIlmgE6FJlo2PNFgNLt+obJx4z4ljicYjH+tjGIN798bjLTfxEuI25fTQZqdS0eahtclDb6KCuyU6gpoV4bQOW9gCunDLmzYN5k9twOU+9gMzxyjh5/3E3k40DHLVPouAfj+KdNMqj+SIiIj0oAMvw6ToFwmaDd73LnL9bX2+OsiZaPG6O4gaDZhA9GafTnCvs80FKitncbvOYVVXmnOB43Ay4NTWwffvQ+p6ebo4m5+aaawhXVMCzz5otNRUuvdSs/pZ3Ljv2e7BaDOKGheKcEEUnCb8tASt79xg0vnEYy769eOuP0ObJIZBRSCSnCPLz8ef5yE6PkpMeITstgsvpIG53QPdiakSiUNPooLrBSVWDg+bjASyVFdirK/A3HiWj5Qj2eIig1UvI5iNo8xGyeQnbPYQdPiJ2DxGHl4jDS9ThIeZwQ2srjsZa3K1H8LfXkhs/TgGVzKSSfI6Tz3FcdL6/2E4rb/x5ARss53M072zic+YxeWEaZ01vI8Xbfem55lYrrV//LitiL9NkScPy6P+Scf6soX0/IiIiw0jrAA+Q1gEegEQRDDCXLDt+vPsFaoZhXlxWX2+OvHZdgcHhMENoRoa5zcw0b3u95vQGm63vVR2CQXMt4EOHzKXMjh417x87ZobYqioIBMz+5OdDYaF54V1RkXkB3aRJ5jY11eyDxWL2c906eOwxeOopc2WKE1p9eTzSdiPP+t7HP9ou4D0X1/HvnzgEQH2TjYM7Wml76wCOA2+TXbOT6aG3mMYerCepqtaCn4NM6mjHnaU0+oppyygk7vTgrq8grfkIecFDTOYAkzlAOftJp/8qcMMt4EwnZnOS0t57JY6jFPEyF7AnYwnB6fPIPnsSc6eHOfDvv+LW2geJYOfgN37BtK998NQrc4iIiJwGFcIYZgrAp9CzCMbMmeYqCuNBLGZOkxhK+IrF4Jln4Fe/gqefNqdnnLCXKWwpvB4jGqOgfgezom+SS9/V4Wrt+VRnzyJWNhlHcz2emiOkNh8lI3yKEfBTaHLm0JRaTDCnBKO0FFuqHwIBLO0BLIE2rIE2LMEAtlAAeyiALdyOI9KGPdKOIxok5EohnJKFkZWDrSAHd1kejpJ8bEUFWIsLzV8UiorMUXi7HQ4exFi7jrq/biD28mayqrZjN7rPUw7g4U3mcx6bANj2oe8w97EvTchiICIiMroUgIeZAvAp1NR0X6lhxQp44YWx688ICNQH+Uj+33lv5De8g6fwEej1nBhWjrqn0pA/G8u8OeReOpesSxfhnFZmrlnclWGYgXrfPti/n+ie/bTvOkR4jzmS7a47ij0cIJBeSCy/CEd5KZ5Zk7BNL8c2bYo54p6Z2TlyPRjxeGe1vP5G1weipQVeeon6v/yT1hdeIXP/FvzRxo6H37rgE8xdswqLUys+iIjIyFMAHmYKwKewdSssWtR5/4Yb4Ne/Hrv+jICnn4brrjOv2Ys0tfF+51NcFn4aX7aHyVfOoOCqeWSuOAtHXubQV6XoyjDMiwNttuQZPY3F4I03aP7rOkKtUbK++hmsKb6x7pWIiEwQKoUso6tnOeOCgrHpxwh6+mlzm5EBB5t8/NF1I4+Gb+Thf4d3f3IETmixdFt9IinYbLBoEaldfxkSEREZZ5JkWEnGva5LoIF5wdkZxDA6A3BimnNiOvCKFWPTJxERERkaBWAZHmf4CPD27eYiE06nubhFQmkpTJ48dv0SERGRwVMAluHRcwS4sHBs+jFCEqO/JSXmaHBKinl/8eLkm6UgIiIy0SkAy/DoGYDPsBHgRAD2nqjgm1je+KKLxqY/IiIiMnQKwDI8ek6BOINGgBsaYMMG83Zi3m/TiRoUl1wyNn0SERGRoVMAltNnGN1HgFNSOodKzwB//7u5uldxsVlwDsy3nJcHM2aMbd9ERERk8BSA5fTV1nYujQBm2eEzaGLs3/5mbouKzOCblmbeX7Sod20LERERGf8UgOX09Zz/m5s79Mpi40yiEjJ0ZvpEjYuLLx6bPomIiMjpUQCW09dz/m9Oztj0YwRs3mwOcPt8ncufNTaa2+XLx6pXIiIicjoUgOX09RwBzssbm36MgMTqD3PmwL595u1YzKwGN3/+2PVLREREhk4BWE7fGbwEWiIA5+aa838zMsz7CxeeUdf5iYiITCgKwHL6ek6BOEPKIFdUwNat5nTmeNzc53Sa26VLx65fIiIicnoUgOX0naEjwInVH6ZNg7ffNm83NJhbzf8VERFJXgrAcvp6jgAXFY1NP4ZZ1/m/e/eat8Nh8PvNEsgiIiKSnBSA5fT0LIIBZ0QADoXguefM25mZ5jYry9zOm2fW+hAREZHkpAAsp6eurnsRDIejMykmsRdfhLY2M/wmlj1LFL248MIzZpljERGRCUkBWE5Pz+kPmZmdV4olscT837POgtdfN28ngvCyZWPRIxERERkuCsByenpOf8jOBpttbPoyjBLzf+fO7Vz/NxAwR4EvuGDs+iUiIiKnTwFYTs8ZWAVuzx6z2e2da/0m3tacOZCePmZdExERkWGgACyn5wysApcY/Z09u3P1B4/H3J5/Plj1X42IiEhS0z/lcnrOwDWAEwF48WLYssW8rfm/IiIiZw4FYDk9Z1gVuJYWWLfOvD1vHuzfb95ubjanRFx00dj1TURERIaHArCcnjNsCsTzz0MkYg5kt7aa+xJvacaMM2KKs4iIyISnACxDdwYWwUhMf1i0CN54w7yduBDu3HPPiAUuREREJjz7WHdAklhdHQSD3fcVFhIOw7FjZk2MRHM6O2+Pl4vIDAMOH4YdOzrbE0+Yj51/PvzP/5i3m5vNreb/ioiInBkUgGXoes7/BeL5hSxYALt29f8ym613OC4tNefczp1rtnnzIDd3eCquxeNw6FBnyN2+3dzu3Nk5zaGr9HSYNg0OHjTPX1dnbhWARUREzgwKwDJ0Pac/pKVRE/B1hF+7HaLR3i+LxczWdfD4+HF45ZXuz8vO7h6I58411+FNSzNHb9vaoKrKbNXV3bddbx85Yhax6IvdDoWFUFwMJSUwebI5/WHPHvPx/HyorIQpU5J+doeIiIicoAAsQ9czAGdmUlXvACA11ZxPa7WaITgS6dz2bKGQOWVi715z1YXDh81AXFsLa9earavcXHO1hvb2gXfV4egddKdONbc+X++5vb/5jbn1+83tkiVmWBYREZHkp3/SZeh6ToHIyqK6xpyzkJ4Obrc5dcDlOvWhFi/ufr+1Fd5+22z79pnTEQ4dgvp6c2Q3weUyz5WW1tnS0yEjAzIzISvLDMxlZebFbAO9iC2x/m9Li7m9+OKBvU5ERETGPwVgGbo+lkCrqjJvpqWd3vxdv9+cirBoUff9dXVmEPZ6zSkSKSnmyOxwrs5QU2Oew2IxR6IBVqwYvuOLiIjI2FIAlqHrOQLcJQCnp4/MKbOyzDaSEqO/RUVmxi8pgfLykT2niIiIjJ5xsiCVJKWeI8D5+SMegEdDIgCnpJjbxYvNOcQiIiJyZlAAlqHpqwjGGRaAE0ukqfyxiIjImUUBWIamnyIYiQCckTH6XepLJAKNjQN/fnW1uQqF1WquTAFwySUj0jUREREZI5oDLEPTc/QXugXgkZ6nezK1tfDPf8L69ebawm1t5koQc+Z0ris8a1ZnieOuEqO/xcVmEM7NhZkzR7f/IiIiMrIUgGVo+qgCR1FRxxJlf/+7WYHtrLPMi8mGo6Jbf2Ixs7rb+vVm8N29u/dzqqvNtmaNed9qNYtbJIprzJ1rrgn86qvm42lp5nbRooEt4yYiIiLJQwFYhqbnCLDDgZGV3RGAN2wwG0BODixcaIbJs84yV1Swnubkm8ZG2LjRDL0bNkBTU+djFgvMng0XXghLl5prAO/eDdu2mW37drNC3J49ZvvTn8zXeb1maIfOynGa/ysiInLmUQCWoemjClxDm5NIxLxrt5sjq9u3m+vqPvec2cCsErdggRmGFy0ypxgkyia3tJhhtqkJmpu7325uNoNvZSXs2NEZVsFcN/j8883Qe8EFZhGMrnquKVxT0xmI33oLdu7sDL0ulzn9AbT+r4iIyJlIAViGpo8qcFV1nT9Oubnws5+Z18lt3w5bt5rtzTfNIPvSS2YDM3Da7eZc3cGYOrVzlHfevMGVKs7JMcNtIuDGYmYZ5h07zAvnHnjAXMliwYLB9UlERETGPwVgGZqeI8A5OR0XwEHnRXBuN5x9ttnAHOXdvbszEL/+ujnCGwp1vjYlxRwlTpQ27no7Uep44ULIzx++t2OzwbRpZvv5z819Cxf2faGciIiIJDcFYBmaniPAubl9BuCeElMj5syBm24ypzEkDpWWZk5lGMxI7kjYutXcLl06tv0QERGRkaEALIPXVxGMgoJuAbjnHNz+WK3mRWrjRTRqTtMAWL58TLsiIiIiI0SFMGTw+iqCkZ/fsQIEjO06wKdjzx5zLrLXC0uWjHVvREREZCRoBFgGr68iGAUFVK3vvDvQEeChiMehvd1ctSHR2trMfW1t3fcnVnYoLjZHmktLzQvg+luG7bXXzO38+eZcZBERETnzKADL4PUXgIcwBaIvhmEOMldUmOWIEy1xv7q6+xJog+V2Q0lJZyAuLe28nZj/e+GFI1u8Q0RERMaOArAMXj9V4LoG4K9/Hf7jP8DjMQNn123PfS4XNDR0D7ldV4Xoj9VqHsPr7dz6fGbz+ztbPG4ucXbggHnsYLCzCEZ/li0b/MciIiIiyUEBWAavrxHgwsJuATgY7D1NeDCsVsjONssol5SY1eMmTzbLF5eXm9MYvF5zxQibzXz+QEZs29vNZdh27DC3e/bA3r1w8KBZHAPM+csXXjj0vouIiMj4pgAsg9dzBDglBcPn7xaAPR7461/NENzaas7NTbRAwNyXmLsbCEBGhhlwy8vNAhfl5eYcXIdjeLvu8Zjr+y5c2Pux+nrYtcss4jGSc5hFRERkbCkAy+D1UQa5pd3ebcQ3M9NcRqy/i83Go8xMs4yyiIiInNmSKJ7IuNFXFbia7j9KWVnJFX5FRERk4lBEkcExjN5TIHJyuq0BDMm7DrCIiIic+RSAZXDq6/ssgtF1/i+Y82hFRERExiMFYBmcvpZA67EGMCgAi4iIyPilACyD09cSaBoBFhERkSSiACyD0zUAJxbe7WMEOCdn9LokIiIiMhgKwDI4XadAJAJwjyIYAAUFo9clERERkcFQAJbB6ToCHI+b2z4CcF7e6HVJREREZDAmVAB+97vfTUZGBu973/vGuivJq+dFcA4H5Ob2WgZNI8AiIiIyXk2oAPz5z3+exx57bKy7kdx6XgSXkQFOZ7cRYJsNsrNHt1siIiIiAzWhAvDy5ctJSUkZ624kL8PoHYCzsmiP2Glp6dyVng5O56j2TERERGTAxk0AfvHFF7n++uspLCzEYrHw5JNP9nrOqlWrmDRpEm63m3PPPZdXXnll9Ds6kdXXQ3t7933Z2b3m/2ZmmqPAIiIiIuPRuAnAbW1tLFiwgFWrVvX5+G9/+1vuuOMOvv71r/Paa6+xYMECrrzySqq7TD5duHAhc+fO7dUqKipG622c2RKjv4nVHwDy8voMwF2fIiIiIjKe2Me6AwlXX301V199db+Pf//73+cTn/gEH/3oRwF4+OGHefrpp/n5z3/OPffcA8Drr78+bP0JhUKEQqGO+83NzcN27KSVuADOMDr39VEEQ/N/RUREZDwbNyPAJxMOh9myZQuXXXZZxz6r1cpll13Gyy+/PCLnvP/++0lLS+toJSUlI3KepKIqcCIiInIGSIoAXFtbSywWI6/H4rJ5eXkcP358wMe57LLLeP/738/f/vY3iouLTxqe7733XpqamjrakZ7Lf01EXT8D+4k/HhQU9FoCTWsAi4iIyHg2bqZAjIbnn39+wM91uVy4XK4R7E0S6qsMcmEhVa93f5rKIIuIiMh4lhQjwNnZ2dhsNqp6/K29qqqK/Pz8MerVBNQ1AEej5lZV4ERERCTJJEUAdjqdnH322axevbpjXzweZ/Xq1Zx//vlj2LMJpusUiMSFcEVFvQKwficRERGR8WzcTIFobW1l7969HfcPHDjA66+/TmZmJqWlpdxxxx3cfPPNLF68mHPOOYeHHnqItra2jlUhZIT1VQQjJQX8fgVgERERSSrjJgC/+uqrrFixouP+HXfcAcDNN9/ML37xCz7wgQ9QU1PD1772NY4fP87ChQt59tlne10YJyOkryIYmZngcPQKwAUFo9ctERERkcGyGEbXRV2lP83NzaSlpdHU1ERqaupYd2f0vfEGLFwIVivE4+a+RYsIv7yFrtcKer1mVtb1gyIiIjLaBprXkmIOsIwDiekPXX9fysvrtQRaRgY4HKPXLREREZHBUgCWgemrClxubq8AnJVlDhKLiIiIjFeKKjIwXS+As9nMbUFBr/m/WVmj1yURERGRoVAAloHpugRaYo5DH2WQVQRDRERExrvTXgXi4Ycf5uc//zlpaWnMmzevoy1evHg4+ifjRV9V4AoKqDrQ/Wm5uaPXJREREZGhOO0A/N3vfpcXXngBwzDYtm0bb731Fv/4xz/49a9/PRz9k/GivypwG7s/TQFYRERExrvTDsALFiwgLy8Pr9dLeXk573jHO4ajXzKeGEb3KRCRiLntowqcArCIiIiMd6c9B/jLX/4y1157LX/605+oqKgYjj7JeNPQ0LsIht0OubmqAiciIiJJ57QD8Ec+8hFmz57N888/zw033EB5eTnLly8fhq7JuJEY/U2s/gDmgr8uV69l0FSYT0RERMa7054CkZ6ezqpVq7rtO9p1vmiSW7VqFatWrSIWi411V/oXi8E3vwmHDpkh1Wo1t/3dtlrNUm3nnQfLloHHc/Lj9/V9ZmaC3a4RYBEREUk6p10K+fbbb2fhwoXccsstw9Sl8Wlcl0JeuxZWrBjaaz0eWL4crrkGrr4apkzp/ZyHH4ZPf7r7vqVLia19CaezszKy1QotLWY5ZBEREZHRNtC8dtojwAcOHOCpp57iW9/6FkuWLGH+/PnMnz+f66+//nQPLQOVmKJQVASXXmom0lO1tjZ44w2or4dnnjEbwLRpnWF42TJwu3svgWYYkJdHbW1n+AWVQRYREZHkcNoB+M9//jMAra2tbN++nbfeeovnn39eAXg0JeYhTJ0Kt9028NcZBmzfDi++CJs2wa5dsGcP/PCHZvN4zJHlysrO17jd5gVxfRTByMgwr40TERERGc+GHFe2bdvGK6+8wsKFC1m0aBF+v59zzz2XOXPm8JGPfGQ4+yinkkii6emDe53FAnPnmu0zn4GmJnjpJVi/HrZsMUeH//a37q9JJNw+AnBWVmeNDBEREZHxasgB+Cc/+QnhcJjKykq+973vcfbZZ/PpT3+aUCjEpz71KX75y18OZz/lZI4fN7cZGad3nLQ0uO46s3UdHd64Eaqroba2exW4HgE4O/v0Ti8iIiIyGoa8DNp3v/tdpk+fzj//+U8aGxt56qmnmDlzJt/5zncIh8PD2Uc5lUQSzcwcvmMmRoc/8xl47DG49lpzf2I1jIKCXkugqQiGiIiIJIMhjwD7/X7uuusu7rrrLkKhEHv27KGmpobKykos+jv46EqMAGdljdw5amrMbTBobouKqFrX/Sk5OSN3ehEREZHhMugAvGHDBlJTU5k7d27HPpfL1e3+DTfcMDy9k4FJjACPZAJNBODECHBhYa8pECqCISIiIslg0FMgVq5cyaZNm3rt37dvHy0tLeZBraddYE4GKhrtDKcjOQm363wHnw9SU3sFYE2BEBERkWQw6KS6e/fuPksdP//889x4443D0ScZjNpa84I1q3V0pkCAeR6Ho1cALigYudOLiIiIDJdBB+DU1FQaGhp67b/ooovYuHHjsHRKBiEx/zc11SxvPBJaWyEQ6LyflQVWq6ZAiIiISFIadAC+6qqr+M///M/eB7JatfrDWOi6BrDNNjLnSIz+JgJ2bi7xOL1WgdAIsIiIiCSDQQfg++67j3Xr1vHe976Xt956C4BgMMh3v/td5s+fP+wdlFNIjACnp49cFYpE0nW7zW1uLg0N5vTjBK8X/P6ROb2IiIjIcBr0KhAlJSVs3LiRT3/60yxYsACXy0U0GiU1NZW//vWvI9FHOZmhVoEbjMQIsMNhbvtYAzgjo/NhERERkfFsSOsAl5WV8be//Y1Dhw7xxhtv4HA4OPfcc6moqBju/smpdB0BHik9024fZZAzM83r8ERERETGu9OKLGVlZaxYsYIjR45w9dVXs3DhwmHqlgzYSFSB66nnGsB9lEEeyQUoRERERIbTkAPwiy++yM0330xBQQFf+cpXKC4uxjCM4eybDEQiiaakdFZpGy6GAW+/Ddu3m/e7VoHrEYBVBU5ERESSxaCmQBw/fpxf/OIX/OxnP6OyspJ3vvOd/O53v+OKK65g165dPPnkkyPUTelXYgrEf/83/OQnMH8+LF4MS5bAnDlgH+Qsl3AYtmyBF180W9ek295ubouKqHq2+8tUBENERESSxYDT0fXXX8/q1atZsWIF3/jGN3jXu96Fz+freNwyUisQjLFVq1axatUqYok//483iYAaiZjbV18128MPg8cDZ51lhuElS2DatL6XSmtogPXrzcC7cWP3NX9dLjjnHDj3XPjP/zRfn5enNYBFREQkaQ04AD/99NN88IMf5Pbbb2fx4sUj2adxZeXKlaxcuZLm5mbS0tLGujvdRSJmJbiExYvhssvMALx5MzQ1wYYNZgOzWMbZZ5vPmzEDXn8dXnoJ3nzTnO6QkJ0NF10EF19sBme3G3bsMB/LyACnU2WQRUREJGkNOABv2LCBn/3sZ1xyySUUFBTwoQ99iA996ENMmTJlJPsnJ5O4OM1iMQNseTm8731mi8dh714zCL/6Krz2GjQ3w5o1Zutp+nRYtswMvjNn9l7Soa7O3GZmgt3ea2EIBWARERFJFgMOwOeddx7nnXceDz30EL/97W/5+c9/zje/+U2WLFnChz70IebMmTOS/ZS+JOb/Ohzm3N2uV6JZrWaonT4dPvQhs2rFrl1mIN68GfbsgVmzzFHepUshP//k50oE4JwcsFh6jQCf6uUiIiIi48Wg1wH2+Xx87GMf42Mf+xi7d+/mZz/7Gd/5zneoqqo6Y+cBj1uJFJqY15ud3f9z7XaYO9dsH/3o4M+VmGqRl4dh0CsAqwyyiIiIJIvTWgd4xowZPPjggxw9epQ//vGPXHvttcPVLxmIxAhwYv7uSK5FlhgBzs+npaX7ims2m5ZBExERkeQxLLW7bDYb73rXu3jqqaeG43AyUIlh2GjU3J5sBPh0JUaA+6gCl54OTufInVpERERkOKl4bTJLjACPRgDuMgLcVwAe7HLDIiIiImNFATiZdU2iDgeM5DJtiQBcWNgrAGdnmwtRiIiIiCQDBeBklhgBhpFNoYbROQWisLDXEmhZWSNzWhEREZGRoACczLoOxY7k9Ie2NgiFzNtFRSqCISIiIklNATiZjVYAToz+er2QlqYALCIiIklNAThZhcNQX995fzQugMvMBIdDAVhERESSmgJwskpMxE3M+x2NNYCzssBq7RWA8/JG7tQiIiIiw00BOFklLoBLrD+WldVZEGO4JaZAnBjqVRlkERERSWYKwMkqkUITI8APPQTXXgvf/S688krn2sDDITECfGKoVyPAIiIiksxUviBZJUaA43Fz29Jitt//3mwpKXDRRbB8OZx/Png8Qz9XIgAXFBAIQGtr94cLC4d+aBEREZHRpgCcrHqWQQaYPRvmzYN//AMaGuBvfzOb0wnnnQcrVpihOD2972O2tsKxY3D0qLlN3N62zXw8P7/XGsBeL/j9w/7uREREREaMAnCy6loEw2o1R4KXLIFf/AJiMVi9Gv7wB3j6aTPIvvii2axWWLgQLrgAAoHuYbexsf/zORyweHGv6Q8ZGSqDLCIiIslF0SVZdU2iTicEg1BcbN632eCKK8xmGPDqq+a0iL/8BXbtgtdeM1tf0tLMOQ1lZTB5MkyZAuXl5shyeTlVf+3+9IwM83QiIiIiyUIBOFn1HAEGKCnp/TyLxRwZXrIEHnwQ9uyB3/0OXnrJDLvl5WbInToVpk0z1xN2Ovstq9xzBFhlkEVERCTZKACfwqpVq1i1ahWxWGysu9Jd1ySa6FtfAbinadPgy18eltOCimCIiIhI8tEyaKewcuVKduzYwebNm8e6K911HQEOh81tWdmIn1YBWERERJKdAnAyCgahqanzvmGY0yBKS0f81D0D8EgWoBMREREZCQrAyahnGWQwJ+O63aN26gQVwRAREZFkowCcjBLTH6xdvr7cXHOpshGmKRAiIiKS7BSAk1HPFAqQnz8mpy4oGJXTioiIiAwbBeBklBgB7royRVHRiJ82HDYLzHWlACwiIiLJRgE4GXUdhk3MAx7IEminqef8X6tVF8GJiIhI8lEATkZdl0BL1CFOVIEbQT2nP6SnmzUzRERERJKJAnAy6msO8CiMAPc8bUZGZ/4WERERSRYKwMmo6whwJGJuJ00a8dP2VQa5n4rJIiIiIuOWAnAy6plErdZRmQLRcw5wVtaIn1JERERk2CkAJ6OuI8BgJlGvd8RPqzWARURE5EygAJxsAgFoaem+LydnTIpgqAqciIiIJCMF4GSTSKFdJ9+OUREMjQCLiIhIMlIATjZ9rQAxCvN/+zq1ArCIiIgkIwXgZJNIoYbRuW+MAvAoDTyLiIiIDCsF4GTT8wI4GJU1gKNRqK3tvk9zgEVERCQZKQAnm67DsNYTX98oBOC6uu6DzgAFBSN+WhEREZFhpwCcbLqOAMfj5rasbMRP23P6g9cLqakjfloRERGRYacAnGz6KoIxBmWQ09NVBllERESSkwJwsuk5Bzgzc0yKYGRkgM024qcVERERGXYKwMmmZxLNyRmVodiep83OHvFTioiIiIwIBeBk03MEuKCge1GMEaIALCIiImcKBeBk0toKbW3d9xUVjcqpVQZZREREzhQKwKewatUqZs+ezZIlS8a6K31XgRuFC+AAqqu738/JGZXTioiIiAw7BeBTWLlyJTt27GDz5s1j3ZVxVQZZVeBEREQkWSkAJ5O+qsCVlo7KqXsG4NzcUTmtiIiIyLBTAE4mfY0Aj0IRjHi89xQIjQCLiIhIslIATiZ9FcEYhSkQDQ0QjXbfpzLIIiIikqwUgJNJzykQGRng8434afvK3ZoCISIiIslKATiZ9DURdwyKYKSng9M54qcVERERGREjn55k+PRTBCMQgA98AFpaYPp0mDGjczt5Mjgcp3favgLwKORuERERkRGhGJNMeibRE0UwXngB/vpXc9e6dd2fYrdDeXnvYDxjhlnMYiBF5HpeAJeVNSrF50RERERGhAJwsjCM3iPAJy6AO3zYvDt5Mpx7Lhw5AhUVZguF4O23zZYIyQn5+XDOObBkSWfLzOx9apVBFhERkTOJAnCyaG2F9vbu+04E4CNHzLuzZsGdd3Y+HI2aIXj/fjh40AzKR4+a+6qrzTz91FNmSygv7x6KFy3SGsAiIiJyZlEAThZ9FcE4sQZwYgS4Z3liu92sk9FXrYzWVnjrLdi2DXbuhD17oLLSDMv798NvfmM+z2rtfcGbArCIiIgkMwXgZNFXEYwTyTYxApyXN/DD+f1w/vlmS6ivhzfeMEPxrl1mKK6vh2Cw+2t7Bm0RERGRZKIAnCx6jgBbLFBSAnQG4NMtTpGZCStWmC3h2DF4/XX45jfNinAwuKAtIiIiMt4oACeLniPAmZng8xGPmyEVRqY8cVGROVqcCL8jdR4RERGR0aJCGMmi5wjwiSIYVVUQiZhzdUcqmNbXd7+vACwiIiLJTAE4WfQcAT5RBCNxAVxmJng8I3Pqurru9xWARUREJJkpACeLniPAhYVA5/zfrKyRq87WdQTY44G0tJE5j4iIiMhoUABOFj1HgHusATySxSm6BmCVQRYREZFkpwCcLHoG4B4rQIxkAO46BSIzE2y2kTuXiIiIyEhTAE4GfZVB7rEG8Eiuzdt1BDgra+TOIyIiIjIa9MfsZNDcDKFQ9309qsBlZ5tPcbmG55ThMBw4AHv3mhXjElQEQ0RERJKdAnAy6KsMco8pED/4ATzwgLk6WmGh2YqKut/Oyek9fcEwoKLCDLpd2+HDEIv1Pq3KIIuIiEiyUwBOBv0UwQiHO7NxYoC4utpsr7/e+zB2u7l6WmGhOZXh6FHYtw/a2vo+bWoqTJ1qth07zBLJCsAiIiKS7BSAk0HPEeC8PLDbqThkjuBarWalthUr4OabzRHdigqzQlxiW1kJ0ag5YpwYNU5wOGDyZJgyxQy706aZ25wcs+IywL/+a+epRURERJKZAnAy6DkCnJ8PFktHkHW5oL3dDLBz55qtp1gMamo6Q3FtrTkSPHWqOZ34VEubJS6E0wiwiIiIJDsF4GRwiiIYiXm9BQX9H8JmM3Nzfj6cffbgu5AIwCc7h4iIiEgy0DJoyaCfNYATK0AkLlYrKhqZ00ej5kIUoDLIIiIikvwUgJNBzxHgHlXggkFze2JgeNg1Nppbq1VTIERERCT5KQCfwqpVq5g9ezZLliwZu070HAE+sQZwIgAbhjnFYaTCaaISXFra8K0zLCIiIjJWFIBPYeXKlezYsYPNmzePXSdOUQUOOhaGGBENDeY2I2PkziEiIiIyWhSAxzvDMBf27aqPADxS0x+g8wK4zMzOZdFEREREkpUC8HjX2GjWJU7IyACfj0Cgc2oCjOzqDIkArDLIIiIiciZQAB7v+imC0XMJtJFaAQI6A3B29sidQ0RERGS0aEbneHeKIhh2u7kMmtMJ69ZBa2vfra2t+/1g0Cx1nJtrjuzm5poBN3E/0ZzOzjnAqgInIiIiZwIF4PGu5wjwiaHeritAAPzoR4M/dHMzHD168uekpXXOwNAUCBERETkTKACPdz1HgHusAdx1enBKCsyaZW5TU83wmp7e/XZi6/OZ5ZCPHu0sj1xZabbqarNsciQCTU2dx581ayTfqIiIiMjoUAAe73qOAPeoAgfmPOBYDK68En7/++E5bTRqZu/Dh82Q7HCYxxcRERFJdgrA410/ZZC7LoHmckEgAFOnDt9p7XZztsVIXlwnIiIiMha0CsR413MEuEcVOOhcm3c4A7CIiIjImUoBeLzrOQJcWophdA/AoZC5nT599LolIiIikqwUgMe7riPAJ65ea2oylzJLiEbNrQKwiIiIyKkpAI9n8Xj3Msh5eeBw9CqCAeYavhkZo9s9ERERkWSkADye1dd3Du+CWe/YYum2AkRCcbFZtEJERERETk4BeDzrOf+3sBDonP8bi3U+NHnyKPVJREREJMkpAI9nA1gCLTENYsqUUeqTiIiISJJTAB7Pei6B1qMKHJjr9YKWQBMREREZKAXg8WwAI8CJaRDTpo1Sn0RERESSnALweNZzBHjSJKB7GeTENXIzZoxOl0RERESSnQLweNZHEYx4HI4e7b47IwNyckavWyIiIiLJTAF4POs6ApyaCj4fNTUQDnd/WnExOByj2zURERGRZKUAPJ51HQHOzu5WBMNi6Xxo0qTu90VERESkfwrA41lFReftoiKwWDoCsGF0PqQl0EREREQGTgF4vIrFoK6u8/6JFSC6XgCXWANYS6CJiIiIDJwC8HhVV9e91FsfawAnaAk0ERERkYFTAB6veq4A0UcATuRjLYEmIiIiMnAKwONVzzWAS0uB3iPAqamQnz9KfRIRERE5AygAj1c9R4DLyoDeAbioCJzOUeqTiIiIyBlAAXi86iMAR6PdF4YALYEmIiIiMlgKwONV1ykQPh/4fFRUQDze/WlaAk1ERERkcBSAx6uuI8CZmd2KYHSlACwiIiIyOArA41VlZeftHkUwoHPaw/Tpo9stERERkWSnADxedZ3s28cFcIlKcDNnjmKfRERERM4ACsDjVdc5wP2sAOHzQUHBKPZJRERE5AygADwexWLQ2Nh5/0QRjK5lkMGcGeF2j163RERERM4ECsCnsGrVKmbPns2SJUtG76ThMCxf3nm/pAToPQKsJdBEREREBk8B+BRWrlzJjh072Lx58+id1OOBpUs770+aBPQOwOXlo9clERERkTOFAvB4dfBg5+2SEoJBqKnp/pRp00a1RyIiIiJnBAXg8erQIXPr8UBKCkeP9n6KArCIiIjI4CkAj1eJZdAyMsDh6HUBHMCMGaPbJREREZEzgQLweJWY75CT06sIBpgDwycWhxARERGRQVAAHo/icWhuNm8XFQG9L4DTEmgiIiIiQ6MAPB4FApCdbd4+sdRDzwBcWgpWfXsiIiIig6YINR75/TBrlnm7nzWAp0wZ5T6JiIiInCEUgMerxLIPJwJwz4vgpk4d5f6IiIiInCEUgMcjw4Bjx8zb/YwAKwCLiIiIDI0C8HjU2gqFheBywaxZNDd3XhOXoCXQRERERIbGPtYdkD6kpMC+feZIsMXCke3dH3a5Oqoji4iIiMggaQR4PLNYgN7THwoLzXWARURERGTwFICTgJZAExERERk+ilFJoOcKECeWBhYRERGRIdAc4CSgFSBEREZHPB4nHA6PdTdEpB8OhwObzXbax1EATgIKwCIiIy8cDnPgwAHi8fhYd0VETiI9PZ38/HwsJ66VGgoF4CTQMwDPnDk2/RAROVMZhkFlZSU2m42SkhKsutBCZNwxDINAIEB1dTUABQUFQz6WAvA4Zxjd5wDb7TB58tj1R0TkTBSNRgkEAhQWFuL1ese6OyLSD8+JZbCqq6vJzc0d8nQI/Yo7ztXWQijUeb+wEPT/zSIiwysWiwHgdDrHuCciciqJX1IjkciQj6EAPM71nP5QUgLDMPdbRET6cDpzCkVkdAzHf6cKwONczwCs6Q8iIiIip0cBeJzTChAiIiIiw0sBeJzrGYCnTx+bfoiIyJlj+fLl3H777cP2PBk5w/Ud6LvsTgF4nOtZBU4BWEREEh5++GFSUlKIRqMd+1pbW3E4HCxfvrzbc9euXYvFYmHfvn388Y9/5L777ut4bLyFo/HWn2TS32fX8zuf6BSAx7lDhzpvW62aAiEiIp1WrFhBa2srr776ase+l156ifz8fDZt2kQwGOzYv2bNGkpLS5kyZQqZmZmkpKSMRZcnnP4qC452xUF9590pAI9zXQNwfj74fGPXFxGRicIwoK1tbJphDLyfM2bMoKCggLVr13bsW7t2Le985zuZPHkyGzdu7LZ/xYoVQPdRwltuuYV169bxwx/+EIvFgsVi4eDBgx2vi8fj3H333WRmZpKfn883vvGNk/bp2WefZenSpaSnp5OVlcV1113Hvn37Oh6fNGkSDz30ULfXLFy4sOO4J+tPKBTitttuIzc3F7fbzdKlS9m8efPAP7ABiMfjPPjgg0ydOhWXy0VpaSnf/va3Ox4/VR+WL1/OZz/7WW6//Xays7O58sorT7o/Ho9z//33M3nyZDweDwsWLOCJJ57ot38n+3xP9tn1HBkeyPu47bbbTvrdP/HEE8ybNw+Px0NWVhaXXXYZbW1tQ/rcR5sC8DgWi8Hx4533S0vNQhgiIjKyAgHw+8emBQKD6+uKFStYs2ZNx/01a9awfPlyli1b1rG/vb2dTZs2dQTgrn74wx9y/vnn84lPfILKykoqKyspKSnpePzRRx/F5/OxadMmHnzwQb71rW/x3HPP9duftrY27rjjDl599VVWr16N1Wrl3e9+94BLTJ+sP3fffTd/+MMfePTRR3nttdeYOnUqV155JfX19QM69kDce++9PPDAA3z1q19lx44dPP744+Tl5XU8PpA+PProozidTtavX8/DDz980v33338/jz32GA8//DDbt2/nC1/4AjfddBPr1q3rs38n+3xP9V12NdD30d93X1lZyY033sjHPvYxdu7cydq1a3nPe96DMZjf4MaSIQPS1NRkAEZTU9OonfPoUcMwxwLMdsMNo3ZqEZEJpb293dixY4fR3t5uGIZhtLZ2///f0WytrYPr+yOPPGL4fD4jEokYzc3Nht1uN6qrq43HH3/cuPjiiw3DMIzVq1cbgHHo0CHDMAxj2bJlxuc///mOY/S833X/0qVLu+1bsmSJ8aUvfWnA/aupqTEA46233jIMwzDKysqMH/zgB92es2DBAuPrX//6SfvT2tpqOBwO41e/+lXHvnA4bBQWFhoPPvjggPtzMs3NzYbL5TIeeeSRPh8fSB+WLVtmnHXWWb1e29f+YDBoeL1eY8OGDd3233rrrcaNN97Y8bq+vpuEnp/vyb7LxP6Bvo+TffdbtmwxAOPgwYP99m2k9PzvtauB5jWNAI9jPVeAmDZtbPohIjLReL3Q2jo2bbDVPpcvX05bWxubN2/mpZdeYvr06eTk5LBs2bKOecBr166lvLyc0tLSQX8W8+fP73a/oKCA6urqfp+/Z88ebrzxRsrLy0lNTWXSpEkAHO55Vfcg7du3j0gkwoUXXtixz+FwcM4557Bz585ez7/nnns6pgH013bt2tXtNTt37iQUCnHppZeeVh/OPvvsPl/fc//evXsJBAJcfvnl+P3+jvbYY491mzbS1XB8vgN9Hyf77hcsWMCll17KvHnzeP/7388jjzxCQ0PDgPsw1vQH9XGs58+yLoATERkdFkvyXHMxdepUiouLWbNmDQ0NDSxbtgyAwsJCSkpK2LBhA2vWrOGSSy4Z0vEdDke3+xaL5aTTGa6//nrKysp45JFHKCwsJB6PM3fu3I6LvqxWa68/k59OSdv+fPGLX+SWW2456XPKy8u73fd4PMNybl8/Pzw997e2tgLw9NNPU1RU1O0xl8vV5zFO9fkOp5N99zabjeeee44NGzbwj3/8gx//+Md8+ctfZtOmTUxOgqpdGgEex7QGsIiIDMSKFStYu3Yta9eu7bb82cUXX8wzzzzDK6+80uf83wSn00ksFjvtftTV1bF7926+8pWvcOmllzJr1qxeo4I5OTlUVlZ23G9ububAgQOn7M+UKVM65s8mRCIRNm/ezOzZs3v1JScnh5kzZ560OZ3Obq+ZNm0aHo+H1atX9/n+BtuHU5k9ezYul4vDhw8zderUbq2vubsD+XwH8l0O1/uwWCxceOGFfPOb32Tr1q04nU7+9Kc/Dfj1Y0kjwONY1wBssSgAi4hI31asWMHKlSuJRCIdI8AAy5Yt47Of/SzhcPikAXjSpEls2rSJgwcP4vf7yczMxGod/BhZRkYGWVlZ/PSnP6WgoIDDhw9zzz33dHvOJZdcwi9+8Quuv/560tPT+drXvobNZjtlf3w+H5/+9Ke56667yMzMpLS0lAcffJBAIMCtt9466L72xe1286UvfYm7774bp9PJhRdeSE1NDdu3b+fWW28d9j6kpKRw55138oUvfIF4PM7SpUtpampi/fr1pKamcvPNN3d7/kA+34F8l8PxPjZt2sTq1au54ooryM3NZdOmTdTU1DBr1qxBfw5jQQF4HOv6C3FODmj5PhER6cuKFStob29n5syZ3VYsWLZsGS0tLR3LpfXnzjvv5Oabb2b27Nm0t7dz4MCBjrmlg2G1WvnNb37Dbbfdxty5c5kxYwY/+tGPuo1K33vvvRw4cIDrrruOtLQ07rvvvl4jwP3154EHHiAej/PhD3+YlpYWFi9ezN///ncyMjIG3df+fPWrX8Vut/O1r32NiooKCgoK+NSnPtXx+HD34b777iMnJ4f777+f/fv3k56ezqJFi/i3f/u3Xs8dyOc70O/ydN9HamoqL774Ig899BDNzc2UlZXxve99j6uvvnpIn8Nosxg9J+JIn5qbm0lLS6OpqYnU1NRROee8ebBtm3l7yRJ45ZVROa2IyIQTDAY5cOAAkydPxu12j3V3ROQkTvbf60DzmuYAj2NHj3beToL55CIiIiJJQQF4nAqFoLGx875WgBAREREZHgrA49SxY93vKwCLiIiIDA8F4HFKS6CJiIiIjAwF4HGqZwCeMWNs+iEiIiJyplEAHqe6VoHLyIC0tLHri4iIiMiZRAF4nNq7t/N2aSn0qEYoIiIiIkOkADxOdQ3AU6aMXT9EREREzjQKwONU1ykQWgFCREREZPgoAI9T1dWdtxWARURERIaPAvA41NoK7e2d97UEmoiIDKfly5dz++23D9vzZPwbru/yTPmZUAA+hVWrVjF79myWLFkyauf0eOC88zrvawk0ERHpy8MPP0xKSgrRaLRjX2trKw6Hg+XLl3d77tq1a7FYLOzbt48//vGP3HfffR2PjXWoGanzj/X7SnZ9fX49f3aSlQLwKaxcuZIdO3awefPmUTunzQZVVeZtvx8yM0ft1CIikkRWrFhBa2srr776ase+l156ifz8fDZt2kQwGOzYv2bNGkpLS5kyZQqZmZmkpKSMRZdliMLh8KD2j5Qz5WdHAXgcMgyoqDBvFxWB0zm2/RERmXAMA9raxqYZxoC7OWPGDAoKCli7dm3HvrVr1/LOd76TyZMns3Hjxm77V6xYAXQf2bvllltYt24dP/zhD7FYLFgsFg4ePNjxung8zt13301mZib5+fl84xvf6HgsFApx2223kZubi9vtZunSpb0GjCZNmsRDDz3Ubd/ChQs7jtPf+Z999lmWLl1Keno6WVlZXHfddezbt2/Axz7Z+xpIv09XPB7nwQcfZOrUqbhcLkpLS/n2t7/d8fip+rB8+XI++9nPcvvtt5Odnc2VV1550v3xeJz777+fyZMn4/F4WLBgAU888US//TvV59vf59dzVHgg7+O2227r92cI4IknnmDevHl4PB6ysrK47LLLaGtrG9LnPlAKwONQc7M5CgwwefLY9kVEZEIKBMw/wY1FCwQG1dUVK1awZs2ajvtr1qxh+fLlLFu2rGN/e3s7mzZt6gjAXf3whz/k/PPP5xOf+ASVlZVUVlZSUlLS8fijjz6Kz+dj06ZNPPjgg3zrW9/iueeeA+Duu+/mD3/4A48++iivvfYaU6dO5corr6S+vn7A/e/v/G1tbdxxxx28+uqrrF69GqvVyrvf/W7i8fhpHXe4+n0q9957Lw888ABf/epX2bFjB48//jh5eXkdjw+kD48++ihOp5P169fz8MMPn3T//fffz2OPPcbDDz/M9u3b+cIXvsBNN93EunXr+uzfqT7fU/1cDPZ99PczVFlZyY033sjHPvYxdu7cydq1a3nPe96DMYhfBIfEkAFpamoyAKOpqWlUznfTTYYBhrFy5aicTkRkQmtvbzd27NhhtLe3mztaW83/Ex6L1to6qL4/8sgjhs/nMyKRiNHc3GzY7XajurraePzxx42LL77YMAzDWL16tQEYhw4dMgzDMJYtW2Z8/vOf7zhGz/td9y9durTbviVLlhhf+tKXjNbWVsPhcBi/+tWvOh4Lh8NGYWGh8eCDD3bsKysrM37wgx90O8aCBQuMr3/966c8f1c1NTUGYLz11lsDPnZfxx1ov09Hc3Oz4XK5jEceeaTPxwfSh2XLlhlnnXVWr9f2tT8YDBper9fYsGFDt/233nqrceONN3a87mSfcV+fb1+v6bpvoO+jv58hwzCMLVu2GIBx8ODBfvvWU6//XrsYaF7TCPA4lSiEUV4+tv0QEZmQvF5zSZ6xaF7voLq6fPly2tra2Lx5My+99BLTp08nJyeHZcuWdcwDXrt2LeXl5ZSWlg76o5g/f363+wUFBVRXV7Nv3z4ikQgXXnhhx2MOh4NzzjmHnTt3Dvo8Pe3Zs4cbb7yR8vJyUlNTmTRpEgCHuy6UPwSD7fc999zTMQWgv7Zr165ur9m5cyehUIhLL730tPpw9tln9/n6nvv37t1LIBDg8ssvx+/3d7THHnus17SRhOH4fAf6Pvr7GQJYsGABl156KfPmzeP9738/jzzyCA0NDQPuw1DZR/wMMiT795vbadPGth8iIhOSxQI+31j3YkCmTp1KcXExa9asoaGhgWXLlgFQWFhISUkJGzZsYM2aNVxyySVDOr7D4eh232KxDHgaAoDVau315+xIJHLK111//fWUlZXxyCOPUFhYSDweZ+7cud0u+hrqsQfji1/8IrfccstJn1PeY7TK4/EMy7l9/fwM9tzf2toKwNNPP01RUVG3x1wuV5/HGMjnO1xO9jNks9l47rnn2LBhA//4xz/48Y9/zJe//GU2bdrE5BGcB6oR4HGoubmzEMasWWPbFxERGf9WrFjB2rVrWbt2bbflzy6++GKeeeYZXnnllT7n/yY4nU5isdigzjllypSOeagJkUiEzZs3M3v27I59OTk5VFZWdtxvbm7mwIEDJz1/XV0du3fv5itf+QqXXnops2bN6nNU8FTH7ut9DbTfXc8xc+bMkzZnj6vVp02bhsfjYfXq1b0/uCH04VRmz56Ny+Xi8OHDTJ06tVvra97uQD/fU/1cDNf7sFgsXHjhhXzzm99k69atOJ1O/vSnPw349UOhEeBxyOuFLVtg+3ZVgRMRkVNbsWIFK1euJBKJdIwAAyxbtozPfvazhMPhkwbgSZMmsWnTJg4ePIjf7yczMxOr9eRjZD6fj09/+tPcddddZGZmUlpayoMPPkggEODWW2/teN4ll1zCL37xC66//nrS09P52te+hi1xpfdJzp+VlcVPf/pTCgoKOHz4MPfcc0+vPpzq2H0dd6D9Ph1ut5svfelL3H333TidTi688EJqamrYvn07t95667D3ISUlhTvvvJMvfOELxONxli5dSlNTE+vXryc1NZWbb7652/MzMjIG9Pn29fl1NRzvY9OmTaxevZorrriC3NxcNm3aRE1NDbNGeARQAXgcstth0SKziYiInMqKFStob29n5syZ3VYaWLZsGS0tLR3LpfXnzjvv5Oabb2b27Nm0t7dz4MCBjjmhJ/PAAw8Qj8f58Ic/TEtLC4sXL+bvf/87GRkZHc+59957OXDgANdddx1paWncd999vUaA+zr/b37zG2677Tbmzp3LjBkz+NGPftSruMepjt3f+xpIv0/XV7/6Vex2O1/72teoqKigoKCAT33qU4P67AbjvvvuIycnh/vvv5/9+/eTnp7OokWL+Ld/+7dez7VarQP6fPv6/Ho63feRmprKiy++yEMPPURzczNlZWV873vf4+qrrx7S5zBQFqPn5BnpU3NzM2lpaTQ1NZGamjrW3RERkWEUDAY5cOAAkydPxu12j3V3ROQkTvbf60DzmuYAi4iIiMiEogAsIiIiIhOKArCIiIiITCgKwCIiIiIyoSgAi4iInKDrwkXGv+H471QBWEREJrzE2rEjUQVLRIZXIBAAeleYGwytAywiIhOe3W7H6/VSU1ODw+E4ZREIERl9hmEQCASorq4mPT29V0GVwVAAFhGRCc9isVBQUMCBAwc4dOjQWHdHRE4iPT2d/Pz80zqGArCIiAjgdDqZNm2apkGIjGMOh+O0Rn4TFIBFREROsFqtqgQnMgFokpOIiIiITCgKwCIiIiIyoSgAi4iIiMiEojnAA5RYdLm5uXmMeyIiIiIifUnktFMVy1AAHqCWlhYASkpKxrgnIiIiInIyLS0tpKWl9fu4xVDdxwGJx+NUVFSQkpKCxWIZ8fM1NzdTUlLCkSNHSE1NHfbnj6Tx1JeRNpHe60jS55gc9D2JfgZkvDMMg5aWFgoLC09a0EYjwANktVopLi4e9fOmpqYO6v9kBvv8kTSe+jLSJtJ7HUn6HJODvifRz4CMZycb+U3QRXAiIiIiMqEoAIuIiIjIhKIAPE65XC6+/vWv43K5RuT5I2k89WWkTaT3OpL0OSYHfU+inwE5U+giOBERERGZUDQCLCIiIiITigKwiIiIiEwoCsAiIiIiMqEoAIuIiIjIhKIAPA6tWrWKSZMm4Xa7Offcc3nllVf6fe6LL77I9ddfT2FhIRaLhSeffHL0OtrD/fffz5IlS0hJSSE3N5d3vetd7N69e8z6M5J+8pOfMH/+/I7F4M8//3yeeeaZse5WUnvggQewWCzcfvvtY90V6eEb3/gGFoulW5s5c+ZYd0tG2bFjx7jpppvIysrC4/Ewb948Xn311bHulsiQKACPM7/97W+54447+PrXv85rr73GggULuPLKK6muru7z+W1tbSxYsIBVq1aNck97W7duHStXrmTjxo0899xzRCIRrrjiCtra2sa6a8OuuLiYBx54gC1btvDqq69yySWX8M53vpPt27ePddeS0ubNm/l//+//MX/+/LHuivRjzpw5VFZWdrR//vOfY90lGUUNDQ1ceOGFOBwOnnnmGXbs2MH3vvc9MjIyxrprIkOiZdDGmXPPPZclS5bwX//1XwDE43FKSkr43Oc+xz333HPS11osFv70pz/xrne9axR6emo1NTXk5uaybt06Lr744rHuzojLzMzkP/7jP7j11lvHuitJpbW1lUWLFvHf//3f/Pu//zsLFy7koYceGutuSRff+MY3ePLJJ3n99dfHuisyRu655x7Wr1/PSy+9NNZdERkWGgEeR8LhMFu2bOGyyy7r2Ge1Wrnssst4+eWXx7BnQ9PU1ASYwfBMFovF+M1vfkNbWxvnn3/+WHcn6axcuZJrr72228+9jD979uyhsLCQ8vJyPvShD3H48OGx7pKMoqeeeorFixfz/ve/n9zcXM466yweeeSRse6WyJApAI8jtbW1xGIx8vLyuu3//+3ca0iTfx8G8Ov5q5ui9tfprKVsmpomknhAq2kKEiLki8CSjqsMSRLd0kUHIiJwWQgdXii+yUlIlCWSQbM8jBAsSQYagniIisgKY7lJKu1+XvQg7KmsLL1nuz4wcLvv39fr5eX4eq9cuRJv3rwRKdXCOBwOaLVaqNVqxMfHix1nUfT398PPzw9SqRSHDx9Gc3Mz4uLixI61rNy4cQN9fX0wGAxiR6F5pKWlob6+Hvfv30dNTQ3GxsaQkZGByclJsaPREhkdHUVNTQ2io6NhMplQXFyM0tJSGI1GsaMRLYin2AHo73TkyBEMDAz81XuCMTExsFgssFqtaGpqgkajgdlsZgn+SS9fvkRZWRkePHgAb29vsePQPHJzc+d+Xr9+PdLS0qBSqXDz5k2u/LgJh8OBlJQUVFZWAgASExMxMDCA2tpaaDQakdMR/Tp+A+xCgoOD4eHhgfHxcafPx8fHsWrVKpFS/bqSkhK0trais7MTYWFhYsdZNBKJBFFRUUhOTobBYEBCQgIuX74sdqxl4+nTp3j79i2SkpLg6ekJT09PmM1mXLlyBZ6envj8+bPYEek7AgICsHbtWgwPD4sdhZaIQqH46o/7devWcRWGli0WYBcikUiQnJyM9vb2uc8cDgfa29uXxW6pIAgoKSlBc3MzOjo6EBERIXakJeVwODA9PS12jGUjOzsb/f39sFgsc6+UlBTs3r0bFosFHh4eYkek77DZbBgZGYFCoRA7Ci0RtVr91WMth4aGoFKpREpE9Hu4AuFijh49Co1Gg5SUFKSmpuLSpUuw2+04cODAN++32WxO38KMjY3BYrFAJpNBqVQuVWwAX9YeGhsb0dLSAn9//7m95X///Rc+Pj5LmmWxnThxArm5uVAqlZicnERjYyO6urpgMpnEjrZs+Pv7f7Uf7uvri6CgoL92b3y5qqioQF5eHlQqFV6/fo0zZ87Aw8MDO3fuFDsaLRGdTodNmzahsrISO3bswJMnT1BXV4e6ujqxoxEtjEAu5+rVq4JSqRQkEomQmpoq9PT0fPfezs5OAcBXL41Gs3SB/+dbOQAI165dW/Isi+3gwYOCSqUSJBKJIJfLhezsbKGtrU3sWMteZmamUFZWJnYM+j8FBQWCQqEQJBKJEBoaKhQUFAjDw8Nix6IldvfuXSE+Pl6QSqVCbGysUFdXJ3YkogXjc4CJiIiIyK1wB5iIiIiI3AoLMBERERG5FRZgIiIiInIrLMBERERE5FZYgImIiIjIrbAAExEREZFbYQEmIiIiIrfCAkxEREREboUFmIjIhbx69Qr5+fk4ffq02FG+KysrC1qtVuwYREQLxgJMRORCdDodoqOjcevWLbGjEBH9tViAiYhchNVqRVdXF9LT07F69WpRs8zMzCzL2UREP4MFmIjIRXR0dCAjIwNmsxlqtfqPzZ2enkZpaSlCQkLg7e2N9PR09Pb2Ot2TlZWFkpISaLVaBAcHIycnBwBgt9uxb98++Pn5QaFQoLq62umcw+GAwWBAREQEfHx8kJCQgKampp+aTUQkFhZgIiIX8ejRI2zYsAGtra3Ytm3bH5t77Ngx3L59G0ajEX19fYiKikJOTg4mJiac7jMajZBIJOju7kZtbS0AQK/Xw2w2o6WlBW1tbejq6kJfX9/cGYPBgIaGBtTW1uLZs2fQ6XTYs2cPzGbzD2cTEYnlP4IgCGKHICIiYPPmzVCr1TCZTE4l83fY7XYEBgaivr4eu3btAgDMzs4iPDwcWq0Wer0ewJdvaT9+/Oj0e202G4KCgnD9+nVs374dADAxMYGwsDAUFRWhqqoKMpkMDx8+xMaNG+fOHTp0CFNTU2hsbPzubCIiMXmKHYCIiL54/vw53r17h7Nnz37z+vHjx1FVVTXvjMHBQcTGxs69HxkZwezsrNNKhZeXF1JTUzE4OOh0Njk52en9yMgIZmZmkJaWNveZTCZDTEwMAGB4eBhTU1PYsmWL07mZmRkkJibOO5uISEwswERELmJ8fByxsbHIz8//5vXy8nLs379/3hlr1qxZ8O/39fX9pfttNhsA4N69ewgNDXW6JpVKf2s2EdFiYgEmInIRXl5eqK6uxj//fPvfM+RyOeRy+S/NjIyMnNu9ValUAL6sQPT29v7wWb6RkZHw8vLC48ePoVQqAQAfPnzA0NAQMjMzERcXB6lUihcvXiAzM/OXchERiYkFmIjIBRiNRtjtdkilUvT09OD9+/fYunXrb8/19fVFcXEx9Ho9ZDIZlEolLly4gKmpKRQWFs571s/PD4WFhdDr9QgKCkJISAhOnTo1V9D9/f1RUVEBnU4Hh8OB9PR0WK1WdHd3Y8WKFdBoNL+dn4hoMbAAExGJ7NOnT7hz5w6MRiOKiooQHh6OhoaGPzb//PnzcDgc2Lt3LyYnJ5GSkgKTyYTAwMAfnr148SJsNhvy8vLg7++P8vJyWK3Wuevnzp2DXC6HwWDA6OgoAgICkJSUhJMnT/6x/EREfxqfAkFEREREboXPASYiIiIit8ICTERERERuhQWYiIiIiNwKCzARERERuRUWYCIiIiJyKyzARERERORWWICJiIiIyK2wABMRERGRW2EBJiIiIiK3wgJMRERERG6FBZiIiIiI3AoLMBERERG5lf8C4xClGE6okKoAAAAASUVORK5CYII=", "text/plain": [ "<Figure size 800x500 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "<Figure size 640x480 with 0 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Compute the quantiles to be plotted\n", "to_plot = np.quantile(auto, [(1 - 0.95) / 2, 0.5, (1 + 0.95) / 2], axis=0)\n", "to_plot_no_auto = np.quantile(\n", " no_auto, [(1 - 0.95) / 2, 0.5, (1 + 0.95) / 2], axis=0\n", ")\n", "\n", "plt.figure(figsize=(8, 5))\n", "\n", "plt.fill_between(\n", " np.arange(49), to_plot[0, :], to_plot[2, :], color=\"Blue\", alpha=0.2\n", ")\n", "\n", "plt.plot(to_plot[0], color=\"Blue\", label=r\"${\\rm With\\ auto-correlations}$\")\n", "plt.plot(to_plot[1], color=\"Blue\")\n", "plt.plot(to_plot[2], color=\"Blue\")\n", "\n", "plt.fill_between(\n", " np.arange(49),\n", " to_plot_no_auto[0, :],\n", " to_plot_no_auto[2, :],\n", " color=\"Red\",\n", " alpha=0.2,\n", ")\n", "\n", "plt.plot(\n", " to_plot_no_auto[0], color=\"Red\", label=r\"${\\rm Without auto-correlations}$\"\n", ")\n", "plt.plot(to_plot_no_auto[1], color=\"Red\")\n", "plt.plot(to_plot_no_auto[2], color=\"Red\")\n", "\n", "custom_xticks = [0] +[ut.get_n_coefficients_real(i) for i in range(0, l_max )]\n", "custom_xtick_labels = [r\"$0$\", r\"$1$\", r\"$2$\", r\"$3$\", r\"$4$\", r\"$5$\", r\"$6$\"]\n", "plt.xticks(custom_xticks, custom_xtick_labels)\n", "\n", "plt.xlabel(r\"$\\ell - {\\rm order}$\")\n", "plt.ylabel(r\"$\\Delta{c_{\\ell m}}$\")\n", "plt.yscale(\"log\")\n", "plt.legend(loc=\"lower right\")\n", "plt.show()\n", "plt.tight_layout()\n", "plt.savefig(\"plots/strong_signal.pdf\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3.9.12 ('env_GWFast')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" }, "vscode": { "interpreter": { "hash": "37bcb7777d3229dfb79a16124a08c500a91162130c755ccd3fb5278a92e948b4" } } }, "nbformat": 4, "nbformat_minor": 5 }
54,651
Python
.py
281
189.996441
47,150
0.90561
Mauropieroni/fastPTA
8
0
3
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,328
scan_parameter.ipynb
Mauropieroni_fastPTA/examples/scan_parameter.ipynb
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### Start importing all libraries" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)\n" ] } ], "source": [ "# Global\n", "import tqdm\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "# Local\n", "import examples_utils as eu\n", "import fastPTA.utils as ut\n", "import fastPTA.plotting_functions as pf\n", "from fastPTA.Fisher_code import compute_fisher" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Constants to be used in the analysis" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Total observation time in years\n", "T_obs_yrs = 16.03\n", "\n", "# Number of frequencies used in the analysis\n", "n_frequencies = 30\n", "\n", "# Number of pulsars in the analysis\n", "n_pulsars = 25\n", "\n", "# Specify the type of noise to be used in the analysis\n", "which_experiment = eu.EPTAlike" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Set the inputs for the Fisher" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# Dictionary with the kwargs to generete the pulsar catalogs\n", "generate_catalog_kwargs = {\n", " \"n_pulsars\": n_pulsars,\n", " \"save_catalog\": False,\n", " **which_experiment,\n", "}\n", "\n", "# Dictionary with the kwargs to generate noise and orf tensors\n", "get_tensors_kwargs = {\n", " \"add_curn\": False,\n", " \"regenerate_catalog\": True,\n", "}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Prepare the model to scan over" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# Set the label to specify the signal model\n", "signal_label = \"power_law\"\n", "\n", "# Labels for the signal parameters\n", "parameter_labels = [\n", " r\"$\\alpha_{\\rm PL}$\",\n", " r\"$n_{\\rm T}$\",\n", "]\n", "\n", "# The analysis assumes a power law template, specify here the input parameters\n", "log_amplitude = -7.1995 # log amplitude\n", "tilt = 2.0 # Tilt\n", "\n", "# Index to scan over\n", "parameter_index = 0\n", "\n", "# Range of the parameter to scan over\n", "parameter_range = np.linspace(-8, -6, 11)\n", "\n", "# Number of realizations to average over\n", "n_realizations = 10" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Do the scan" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 11/11 [00:03<00:00, 3.21it/s]\n" ] } ], "source": [ "# Assemble the vector with two signal parameters\n", "s_params = np.array([log_amplitude, tilt])\n", "\n", "# Define the array to store the results\n", "results = np.zeros(shape=(len(parameter_range), n_realizations, len(s_params)))\n", "\n", "for i in tqdm.tqdm(range(len(parameter_range))):\n", " for n in range(n_realizations):\n", " # Update the parameter of interest\n", " s_params[parameter_index] = parameter_range[i]\n", "\n", " # Dictionary with the kwargs to generate the fisher matrix\n", " fisher_kwargs = {\n", " \"T_obs_yrs\": T_obs_yrs,\n", " \"n_frequencies\": n_frequencies,\n", " \"signal_label\": signal_label,\n", " \"signal_parameters\": s_params,\n", " }\n", "\n", " # Compute the fisher matrix\n", " (\n", " frequency,\n", " signal,\n", " HD_functions_IJ,\n", " HD_coeffs,\n", " effective_noise,\n", " SNR,\n", " fisher,\n", " ) = compute_fisher(\n", " **fisher_kwargs,\n", " get_tensors_kwargs=get_tensors_kwargs,\n", " generate_catalog_kwargs=generate_catalog_kwargs,\n", " )\n", "\n", " # Compute the covariance matrix\n", " covariance = ut.compute_inverse(fisher)\n", "\n", " # Store the results\n", " results[i, n] = np.sqrt(np.diag(covariance))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plot the results" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAByH0lEQVR4nO3deVhUZf8G8PvMyj7DkvvGIGbuDGBWmqWDtqcJapltCqPZZilk/d7qrfcNMXttswS1TSsVtH0TtMx2NndNZdx3gWHYZ5iZ3x8ISYICnuHAcH+uy0sczpzni2fOzM1zzvM8gtPpdIKIiIiI2jSZ1AUQERER0eVjqCMiIiJyAwx1RERERG6AoY6IiIjIDTDUEREREbkBhjoiIiIiN8BQR0REROQGGOqIiIiI3IBC6gKofg6HA8ePH4evry8EQZC6HCIiImoBTqcTxcXF6NKlC2SypvW9MdS1UsePH0f37t2lLoOIiIgkcOTIEXTr1q1Jz2Goa6V8fX0BVB9UPz8/iashIiKilmCxWNC9e/faHNAUDHWtVM0lVz8/P4Y6IiKidqY5t15xoAQRERGRG2CoIyIiInIDDHVEREREboChjoiIiMgNMNQRERERuQGGOiIiIiI3wFBHRERE5AYY6oiIiIjcAEMdERERkRtgqCMiIiJyA1wmjIjaDIfDgaqqKjgcDqlLISK6gEwmg1KpbNYSX2JgqCOiVq+oqAgWiwVlZWUMdETUqimVSvj6+iIoKAhyubxF22aoI6JWy+l04tSpUygsLISXlxeCgoLg4eEBmUwm2W/CRET1cTqdsNvtKCkpgdlsRnl5Obp3796iwY6hrpVZvHgxFi9eDLvdLnUpRJIrLCxEYWEhOnXqBH9/f6nLISK6JB8fH2g0Ghw+fBhnz55Fx44dW6xtwel0OlusNWo0i8UCjUaDoqIi+Pn5SV0OUYtzOp04cOAAVCoVunXrJnU5RERNcuLECZSWliIkJKRJVxYu5/Ofo1/bmTJrOUKSIhCSFIEya7nU5RA1qKqqCpWVldBoNFKXQkTUZL6+vrDZbLDZbC3WJkMdEbVKNbcgKBS8S4SI2p6ae+lacnAXQx0RtWocEEFEbZEU710MdURETeCstKLQ+DQKjU/DWWmVuhyiRuPtN+6PoY6IiIjIDTDUEREREbkBhjoiIiIiN8BQR0REROQGGOqIiIiI3ABDHREREZEbYKgjIiIicgMMdURERERugKGOiIiIyA0w1BERERG5Aa6U3c44rda6X6s8JayGiFqbnJwcJCYmIiAgAFqtFmazGVFRUYiOjpa6NKJ6LViwAHl5eTCZTEhOToZOp6v92mw2AwBMJhOSkpKg1+ulLdbFGOqIqE1zOp2A1dZy7Z233muLr/2qUrp0kfAFCxYgOTkZ6enp0Ol0tY/7+/vDZDIhPj6+9rGMjAxERERAq9W6rJ72wOl0otxW0SJtldnK6/26JXgqPVzy2k1LS4Ner0d8fDyioqIQExODpKQkpKamIjk5uXY7o9GI0aNHo7CwUPQaWhOGOiJq26w2mB97TpKmi+b+p0Xb077xIqBWuWTfMTExyMjIwIEDBy4IaklJSTAajYiOjq4Ne6mpqTAYDC6ppT0pt1Vg4KIRLd7u1W+NadH2ts/eDC8XXBlavXo1UlNTAQAFBQXIycm5INABQHh4OFJSUpCTk+PWvXW8p46IqJ1LSUlBWloaUlNT6+15i4iIAIDaD0qz2cweOpKc2Wyu06Ock5MDrVZ7QaCr2bY9YE8dEbVtKmV1D1YLcVZaa3voNK/8HwQX9ZzVS6UUfZdmsxlGoxE6na7BnreaD06TyQQASExMhNForH1+QkICMjIyYDKZYDAY6nzQFhQUIDIyss6lW7PZjMTERKSlpcFkMkGv18NgMCAqKqrd9f55Kj2wffbmFmmrzFZe20P3xyPr4aVsuXuqPZUeou9Tq9Vi3rx5AKoDHQDExcXVu216ejoAXNBL5+/vj4CAAOj1egQEBAAA1qxZg4CAAERHR8NsNqOgoAAZGRmIi4tDUlKS6D+HmBjqWpnFixdj8eLFsNvtUpdC1CYIguCyS5KXbFutatlQ5wKJiYkAcNGBEDW9cmazubbHoya41fSMpKSkwGg01t6ofr6oqCisXr0a2dnZtc9JSkpCSEgIjEYjli5d6taXxC5GEASXXJa8FC+lpyTtiq3mtZmRkQGg+rVWn4yMjAt+Yajp6at5XdZISUnBxIkT6wS4mgFErR0vv7Yys2bNwq5du5CZmSl1KUTUDtR8GE6aNOmS2xYUFCAhIaHe3oqaXo76JCcnIycnBwsWLKj3+7yUS5erpieuvp7etLQ0ANX3jZ6voKCgtqfvUvR6/QW/rLRGDHVERO1YTc9bY3rKcnJyai+7NkXNh2HNBy+R2DIyMhp8DdfcYzdx4kQAqDPNSVOCWmBg4OUV2QIY6oiI2rGm9JLp9fpmXSatuRevvV5iJdequZ+uvt5ms9mMjIwMREdH177WExMTYTabERER0aTXZFuYq5GhjoioHav5ILzY6MCGLps2VkJCAnQ6Xau/yZzaptWrVwOo/9JrfbcX1Izebuplf15+JSKiVi0+Ph46nQ4JCQkXfC8jIwNGoxEGgwFxcXG1PW41I17rk5ycjAULFtT+qRlZm5eX59Kfg9qvmuBWX69bTXCr+d6CBQsafO26A45+JSJq5/Ly8pCQkACj0Vin9yIqKqr2fqSkpCSYTCbExMQgICCgwV63mhBH1JIamsqk5heShIQEBAQEICYmxq1fnwx1RER0yUujWq22xQc6pKSkNPhhTVTjn1OS/FN9kxG7K15+JSKiVqm9rAJAJBaGOiIiapU4XydR0zDUtTMnik/Vfv3Z7u8krISI3ElBQQEA8XrX/jlRLBFdGu+pa2c6+3as/frFH/+HnkE9MTx4mIQVEVFbdv46rkD19CV6vf6i9+idv14sUD24omZ0Ys28YiaTqc56sUSulJGRgfT09No579asWQPg7/Vl28qqJ4LT6XRKXQRdyGKxQKPRoKioCH5+fqLtt7SkCIMWj679t4/KG6unLEPfDqGitUEkhoqKChw4cADBwcHw8BB/MXAiIldq7nvY5Xz+8/JrOxbRZTBKrKWYlvo4TlhOXfoJRERE1Gox1LVjr938b/QODMbJktOYnvYEiitLpC6JiIiImomhrh3z8/DF8pjXEeQdiD1n9uGRzxJgs1dJXRYRERE1A0NdO9dN0wVLJyyCp9IDPx/8A//6/mXwNksiIqK2h6GOMKhzP7xxRyJkggyp27/AW78ul7okIiIiaiKGOgIAjOo9Ai9EVU8f8NrPS7Bux1cSV0RUjT3HRNQWSfHexVBHtaaERSPu6vsAAPO+fQm/HuJs7iQdmaz67cnhcEhcCRFR09W8d9W8l7UEhjqqY+7IR3Br3yhUOex4+NO5+OvMfqlLonZKqVRCLpejtLRU6lKIiJqsoqICMpkMCkXLrfPAUEd1yAQZXrn1BUR0G4LiyhJMS30cp4rPSF0WtUOCIMDX1xcWi4WXYImozSkpKYGXlxd76khaaoUaS+5aiOCAHjhRfAqxa59ASSV7S6jlaTQa2Gw2HD9+nMGOiNqMwsJClJWViboiVGNw7Veql7+nFu/GvIEJKx7EzlN/4dHP52Fp9P+gkPElQy3Hy8sL3bp1w9GjR1FeXg4/Pz94eXlBLpdDEASpyyMiquV0OlFVVYWioiIUFxfD398fGo2mRWvgJzQ1qIe2G5ZNWIR7PjHipwO/4rn1Sfjv2Gf4YdpEZdZyDFw0AgCwffZmeKk8Ja6obfH19UXPnj1RVFQEs9mM/Px8qUsiImqQWq1Gx44d4e/v3+JtM9S1MosXL8bixYtht9ulLgUAMLjLALx2x38xc91crN76KbprumDmNQ9KXRa1M15eXvDy8kKnTp1gs9k4IpaIWiW5XA6FQiFZ5wdDXSsza9YszJo1CxaLpcW7bRsSFXoD/mV4Ci9mLMTCnxajq6Yz7uh3k9RlUTskCAJUKpXUZRARtUocKNEeOQGNXdmkp9wfPhnTIqcAABK++Tf+OJztisqIiIiomRjq2hmn1YaXzvTHu8cj4CyvaNJzn77xcdzUZxSsdhtmrJuD/WcPuKhKIiIiaiqGuvbGasPgCi162rxR9dEXcDbh3iSZIMOrt72IsC6DYKksxrS0x3Gm5KwLiyUiIqLGYqhrZwQfL8ztuA0Vgh3O3Xmo+DKjSc/3UHogZcL/0NO/O44WHcf0tbNRZi13UbVERETUWAx17dBf6mL8N2g3AKDim42w5u5o0vMDvKrnsAvw1GLHyd14/ItnUOWockWpRERE1EgMde3Ut74nIbs+EgBQ+t4a2E+cbtLze/l3R/KE/0GtUGNj3ma8lPEqZ/wnIiKSEENdOya/7UYo+uiASitK3vmwyQMn9F0H4X+3vQgBAlbmpmLZnytdVCkRERFdCkNdOybI5fCOuweCvwaOU2dRunxVkwZOAMBNV47GM6OeAADM//F1fL073QWVEhER0aUw1LVzMl8f+MycCigUsG3fg4qvNzR5Hw9G3IP7wycDAOZ8/Tyyjm4RuUoiIiK6FIY6gqJnN3jdOx4AUPHVBli37GzS8wVBwLOjZiMq9AZY7VYY1z4FU/5B0esss5YjJCkCIUkRHHFLRET0Dwx1BABQXxMO9ahrAZwbOHGyaQMn5DI5Ft3+Hwzu3B/miiJMS3scZ0sLXFEqERER1YOhjmp5Rt8KRWgwUFGJkrdXNHnghKfSAykTFqGHtisOm48hbu1slNuatg8iIiJqHoY6qlU9cGLKuYETZ1D63uomD5wI8g7A8ujXofXQYOuJnZj95f/B7rC7qGIiIiKqwVBHdcj8fOAz497qgRNbd6Pim41N3ocusBeSJ7wKlVyF9H0/4r8bF7mgUiIiIjofQx1dQNGrO7ymjAMAVHyZAevWXU3eR0S3IVh4678BAB9kr8J7mR+LWSIRERH9A0Md1Ut9bQTUN1wDACh9dzXsJ880eR+3XhWFhBseAwD8d+MifPdX06dLcQdOq7Xer4mIiMTEUEcN8px4GxS9e1UPnGjGihMAEDt0Ku4Ni4ETTjz51XPIObZN/EKJiIiIoY4aJsjl8DZOgaD1g+PkGZS+v6bJAycEQcC/DE9hVMgIVFZVwrj2SRwsPOKiiomIiNovhjq6KJmfL3xmTAUUcti27ELFtz80eR8KmQKv3/EyBnS6CgXlZjyU+hgKysziF0tERNSOMdTRJSmCu8PrnnEAqgdO2LbvafI+vFSeWDZhEbr6dcahwiOIW/skKjiHHRERkWgY6qhR1NdFQj1yGOB0omTZJ7CfavrAiSt8gvBuzBvwU/si9/g2PPXVc3A4m3Y5l4iIiOrHUEeN5jnxNshDep4bOLECzorKJu+jd1Awlty1ECq5Et/t3Yj5P7zugkqJiIjaH4a6dsZL6YkskwFZJgO8lJ5Neq6gUMDHeG/1wIkTp6sHTjidTa7h6h7hSLrleQDA8syP8EH2qibvg4iIiOpiqKMmkWl84WO8t3rgRO5OVHz7Y7P2c0e/mzDn+lkAgJcyXkX6vubth4iIiKox1FGTKXQ94HX3nQCAii/WN2vgBADMGPYAJg8eDyeceOKLZ7H1+A4xyyQiImpXGOqoWdTDh0J1/dWA04nS5atgP322yfsQBAH/HpOAkbprUVFVielrZ+Ow+agLqiUiInJ/DHXUbF6Tboc8pCec5RXNHjihkCnwxh2J6N/xShSUFWJa6uMoLDeLXywREZGbY6ijZqseODEFgsYXjuOnUPpBWrMGTviovbF0wmvo7NsRpoJDmLFuDiqrmh4QiYiI2jOGulZm8eLF6NevHyIjI6UupVFkGr/qgRNyOWw521H5/aZm7aej7xV4N+YN+Kp9kHV0C+Z+/QLnsCMiImoChrpWZtasWdi1axcyMzOlLqXRFCE94TX5DgBA+Wffw7bjr2btp88VIXh7/CtQyhT4ek86Xtn0Vp3vO63Wer8mIiIihjoSifr6q6EaPvTcwIlPYD+T36z9XNszEok3/wsAkPLHh/goN03MMomIiNwWQx2JxmvyHZAH94CzrAIlb3/YrIETADB+wK14YvgMAMAL6Quwcf9mMcskIiJySwx1JBpBqYDPjHsh+J0bOPHh2mYNnACAR66dhpiBd8DhdOCxL+Zh24ldIldLRETkXhjqSFQyrR98jFOqB05kb0Pl+p+atR9BEPDS2GcwotcwlNsqELt2No5ZTopcLRERkftgqCPRKXr3gtek2wEA5Z9+B9uuvc3aj1KuwJvj5qPvFaE4W5qPWV/NE7NMIiIit8JQRy6huv5qqK6LqB44sbT5Ayd81T5YFv0aOvl0gKnwsMhVEhERuQ+F1AWQexIEAV533wn7sVOwHzyC0iUr4Bv/MAS1qsn76uzXEctjXsfEldNQaisDAIx6Lwb+nlr4efhC6+kHPw8/aD38oDnvj5+HL7QeGmg8fKHx1MBP7QulnC95IiJyTy77hDt48CDMZjMAQKfTwc/Pz1VNUSslKJXwmXEvLC+/CfvRkyj9MA3e0++GIAhN3lffDqH4383Pw/hFAgDgbFkBzpYVNHk/Pirvc2GvOghqPHyhORf8tJ6aOkHw/KDoo/aGTGDHNhERtV6ihLotW7YgIyMD6enpyMrKgtlsvmDUoyAI0Gq1CAgIgMFgQFRUFO666y4xmqdWTOavgXfcFJT8bylsWdtQ2bMbPMZc36x9XdM9ovbr1ROXwCpzoqi8CEUVxSiqqP7bXGGBpcJS97HyIpRYSwEAJdZSlFhLcbyJgy5kggx+al9oPOsGwfN7BmuCotazbo9hc0cAExERNcVlhbqlS5ciKSkJgiBg9OjRiI6Oxvz586HT6QAAGo2mdtuioiIUFBQgJycHJpMJS5YsQWxsLCZOnIiEhAT06tXrsn4Qar2UocHwnHQ7yj/5HOXrvoW8e2corwq9rH1edUUovH00l97wnCpHFSwVJSiqsNT/p7xuEDz/exVVlXA4HTBXFMFcUdTkWpUyZe3Xu8/sQ4RPxEW2JiIiap5mhbq1a9ciMTERUVFRSE9PR3Bw8CWfo9FooNFoaredO3du7b7i4uIQEhKCpKQkXqZ1U+qRw2A/dBTWX7NRuvQT+D7zCORBAS3WvkKmQICXFgFe2iY/t7KqsrbHz1JZHfjM5dU9guZ/hENLRTHMNcGw3AK70w6bw1a7rwc/nY13xr+C4cHDRPzpiIiImhHqZsyYAX9/f2RlZYlSwIQJEzBhwgRkZGQgJiYGSUlJGDJkiCj7ptZDEAR43TMO9uOnYD94FKXvrIBvwkwIqqYPnGhpaoUaHXzU6OAT1KTnOZ1OlFrLcCL/GG5acQ8AoMxWjmlpjyPx5n/hrgG3uaJcIiJqp5p05/eMGTNgNBqRmJgoeiEGgwHff/89Vq1ahS1btoi+f5KeoFTCx3gvBF8f2I+euKwVJ9oCQRDgo/ZGF7+OtY/dEjoaVQ475n79At7+7V23/vmJiKhlNTrU5ebmIikpCWFhYa6sB/Pnz0deXp5L2yDpyAK08I67B5DJYMvcisqMn6UuqUW9HPU0YodOBQC8+tPbeD49CXaHXeKqiIjIHTQ61IWFhdUZ+OBKEyZMaJF2SBrKPjp4xtwKAChf+w1se/ZLXFHLkQkyPH3j43jOMAcCBHyUm4aHP4tHua1C6tKIiKiNE3XirYMHD4q5O3Jj6huvheoaffWKEykfw3626XPOtWX3h0/GW+PmQyVXIWPfJkxdNRMFZWapyyIiojZM1FAXEhKC5cuXi7lLclPVAyfGQ96jK5ylZShdsgJOq1XqslrUTVeOxorJb0Pj4Yfc49sx8aOHcMR8TOqyiIiojRI11DmdThQWFoq5S3JjgkoJn5lTIfh6w37kBMpWrGt3Awciug3BminL0cWvEw4UHEb0yoew/eRuqcsiIqI2iOsetTOCWgX/5PnwT57frHVYxSYL0MI7tnrghPXPLajc8IvUJbW43kHBSLv3PVzVoQ/Olubjno/jsMn0q9RlERFRGyN6qMvPz8eyZcswduxYhIaGYuzYsXjmmWd4vx01SHllCDyjbwFwbuDEX+1v9HNH3yvwyT0puLbnUJTZyhG3djbStn8pdVlERNSGiB7qFixYgLi4OGRmZsLpdCI9PR3z589HSEgIXn31VbGbIzehHnUdVMPCAIejeuBEfvu7jO+r9sHymNcxrv/NqHLYkfDNv/HWr8va3SVpIiJqHpdcfk1PT0dBQQH2798Ph8OBrKws3HXXXZg7dy6GDh3qiiapjRMEAV5T7oK8exc4S0pRumQlnFbbpZ/oZlRyJRbe+iJmDHsAALBo8xL83/cvo8pRJW1hRETU6oke6qKjozF69Og6j+n1eqSmpqKgoAA9e/bEpEmTxG6W3ICgUsJ75lQIPt6wHz6Gso8+bZe9VIIgYO7IR/BCVDwECFi19VM8/OlczmVHREQXJWqo02q10Ol0F/1+amoq/P39sW7dOjGbJjchD/SvXXHC+nsOKn9ovwMGpuonYvH4BVAr1NiwfzPu/WQG8sva32VpIiJqHFFDXUREBHJyci653ZIlS7B69WoxmyY3orwyBJ4TbgYAlKd+Ddtek8QVSWdsnxuxYtLb0HposOXEDsSsfAiHCo+2WPtl1nKEJEUgJCkCZdbyFmuXiIiaTtRQFx8fj/T0dGzduvWS2/r7+4vZNLkZ9ejhUA0dcm7gxEdwFJilLkky4d0GY829y9HVrzMOFR5BzMqHsO3ELqnLIiKiVkbUUGcwGDB37lzo9Xp8+umnF92WoY4uRhAEeE29C/LuneEsLkXJOyvgtLW/gRM1QgJ7IW3qe+jf8UrklxVgyidG/JjX/ub0IyKihok+UCIpKQmjRo1CdHQ0Jk+ejB9++OGCbTZu3Ii8vPY3Fxk1jaBSwXvGVAjeXrAfPgZ72vdA+xs3UauDTxA+vjsFI3oNOzeX3ZNI3fa51GUREVEr4bIpTd555x2sX78eBoMBgYGBGDt2LCZNmoTIyEjExMRg2bJlrmia3Iw8KKB6xQlBgCNrOyZaukldkqR81N5IiV6E8QNuhd1px9PfvoQ3f1naLkcJExFRXS5bJiwuLg4HDhzAnDlzEBwcjMzMTGRnZyM8PBwmkwl+fn6uaprcjPKq3rUDJ57M74O4Ah3sP2eh8pdMWDO3wrptN2x/5aHqwBHYj52E/WwBHJYSOCutcDocElcvPpVciVdueQEzr3kQAPDaz8l4lnPZERG1ewpX7lyj0SApKcmVTVA7oTaMQGXeQShydyHOrIP903SUNfbJSiUEtQqCWgmoVNVfq87/uvpvqJS1X//z31Apax8XVH//GwoFBEFw5Y9eL0EQMOf6Wejs2xEvpC/A6q2f4nTJGbxxRyK8VJ4tXg8REUnPpaGOSCyCIEA+8Ra8efAL9LB54Q7dKMgdTsBqhbPSBqfV+vfXlVbg/EEVNhucNhucJS4pDDgXEv8OgOcFR7UKdgF46mwfHFeWiz7YY0pYNDr4BOHxL57FD3k/Y8oqI5ZOeA1B3gGitkNERK0fQx21GYJKiff8DwIAJtz/Jrx9NA1u63Q4AKsNTuu5wFdphdNqrb4ka7XV+TfObXPh92znguK5f5/3PVTZzzXkBCoq4ayovOgYjrvRAwBQ9f46OB99CIJCvFMvKvQGrJz8DuLWzsa2E7sQs/IhvDfxTfTy7y5aG0RE1PpJFuqWLVuG6dOnS9U8uTlBJgM81BA81C7Zv9NurxsG/xEOYbXVPm4tKcbyXz/AJEt3eO4xoXT5KnhPvxuCXC5aPfqug7BmynI8lPo4DpuPImblQ1g2YREGdxkgWhtERNS6uWygxKWkpqZK1TTRZRPkcgieHpBp/CDvEARF9y5QhPSE8qpQqIb0h2roEKhHDIWHYTjkhmvxVuB+PNVxKyCXw5azA2UfrhV9EIcusBdS712O/h37oqCsEFNWzcAPeT+L2gYREbVekoU6ovbmT68CKO4bV7uubfmqL0SfiuQKnyB8fHcyRgRfg3JbBYxrn8LqrZ+J2gYREbVOzbr8unHjxstq1Gw2Iysr67L2QdQWyQb0gfeDE1H67mpUbvodUKvheddNoo6g9VF7Y+mERXj2u/9i7Y4v8cx3/8HJ4lN47Lo4SUbqEhFRy2hWqFuzZg2WLl0KAM3uaeCHS/0WL16MxYsXw263S10KuYhq6BA4rVaUrViHyvWbIHio4HnraFHbUMoVSLrlOXT264i3fl2GN35ZihOWU3hp7DNQyjk+iojIHTXr3X3JkiXIyspCUlISAgKaPnVCXl4ejEZjc5p2e7NmzcKsWbNgsVig0TQ8upPaNvXwoXBWWFGe+hUqvkiHoFbDwzBc1DYEQcDsETPQ0fcKPL8+Canbv8Dp0rN488758FZ5idoWERFJr9m/shuNRhw4cACjRze9hyEsLAwpKSnNbZrILXgYhsNZWYmKL9JRnvoVBA8V1MOHit7OPUMmoKPPFXjs83nYZPoVUz6ZgWXRixDkHSh6W0REJJ1mD5QwGAxIT08XsxaidsfjllFQj7keAFC28lNY/9ziknZG974eH92djABPLbafrJ7L7kDBYZe0RURE0mh2qAsODobBYGh2w7z8SlR9idTzrpuhHjkMcDpR+t4aWLfucklbQ7oMwJp730UPbVccNh/DxJUPYcvxHS5pi4iIWt5lTWkSGxvb7OdOmDDhcpqmdshL6YkskwFZJgO8lO6zvqkgCPCcfAdUw8IAhwOlKR/BtnufS9oKDuiB1HvfxYBOV6Gg3Iwpnxixcf9ml7RFREQti/PUEbUCgkwGr/uiodQPAKrsKHn7Q1TtP+iStoK8A/Hx3ckYqbsWFVWVMK57Cp9sWeeStoiIqOUw1BG1EoJcDu9pk6Ho3wew2lD85nuoOnTUJW15q7yQfNf/EDPwDjicDvzf9y9j0eYlok+GTERELafRoe7gwYMuLEO6tohaE0GhgM+Me6EIDQYqKlHy+ruwHz/lkraUcgUSb/4XHr22+jaKt35dhqe/fRE2e5VL2iMiItdqdKjz9/fHzJkzXVkLgOrVKjIyMlzeDlFrJahU8HnkAch7dYeztAzFry2D/fRZ17QlCHhihBH/Hfss5IIcadu/RNzaJ1FqLXNJe0RE5DqNDnUajQbx8fGYOHEitmzZ4pJinn76aeTk5GD69Oku2T9RWyF4qOHz2IOQd+sEZ1ExShYtg6PA7LL2Jg8Zj+QJr8JT6YGfDvyKuz+Ow5kS1wRJIiJyjSbdUxccHIw1a9bg5ZdfxqRJk0QJdxaLBa+88goiIyMxZswYzJkz57L3SeQOZN5e8Hl8GmQdg+AoMKP4tWVwWIpd1t6NIcPx0eQlCPDUYuepPYhZOQ0HCzmXHRFRW9GsgRJr1qzB008/jfj4eISGhmLevHnYuHEjLBZLo55/8OBBLFu2DGPGjEF4eDgEQUBmZiZGjRrVnHKI3JbMzxe+T0yHLFALx6mzKHltORylrrs0OrjLAKROfQ89tN1wpOgYpq76+5YLp9XqsnaJiOjyNXuZsLCwMKxfvx4HDhxAcnIy4uPjkZOTA39/f+h0OgBAQEAAtFotzGYzCgoKYDabYTKZoNVqYTAYkJCQ0KxlxojaE1mAFj5PTEfxwmTYj51EyRvvwfeJaRA8PVzSXi//7ki9913Ern0C2078PREyR8YSEbVuzQ51NYKDgzF//vzaf+fm5qKgoAAmkwlmsxn5+fkIDAyEVquFTqeDTqdDcHDw5TZL1K7IOwTBtybYHTyCksUfwOexByGoVC5pL8g7AB9NTsbD6+Zg86E/AAAPfPoEnh71BCK6DXFJm2Iqs5Zj4KIRAIDtszfDS+U+k1UTETXkskPdP4WFhQEAe+CIRCbv0hE+T0xD8aspqNp3ACVLVsJn5n0QlKKfxgAAL5UnXr/lJejfGQMAyD2xA5M+mo5RISPw1PUPo2+HUJe0S0REzcPJh4naEEWPrvB99EFApUTVzr0oXf4JnHa769qTyWu/ju53K+SCHBvzNuO29+7BU1/9C0fMx1zWNhERNQ1DHVEbo+jdCz4P3wco5LDl7kTZh2lwOhwub/e5G5/E99PX4Ja+UXDCic92fouopRPwQvoCnC3Nd3n7RER0cQx1RG2Q8qpQeMdNAWQyWH/PRdknn7fIQIbggJ54885EfHb/CozoNQw2RxVW5KzBjcnjsGjzEhRXlri8BiIiqh9DHVEbpRrcD94PTgQEAdaf/kD5um9bbITqwE5X4f1Jb2HF5HcwuHN/lNnK8davy3Bj8p1Y/udKVFZVtkgdRET0N4Y6ojZMNXQIvO4dDwCoXP8TKr7Z2KLtX9szEmunvo+3xy1ASEAvFJYX4eUfXsOolLuQuu1zVDm4jiwRUUthqCNq49TDh8Iz5jYAQMUX6ajI2Nyi7QuCgLFXjsI301Zh/s3/QiffjjhZfApPf/sSblk+Gd//tZFz3BERtQCGOiI34GEYDo87ogAA5alfo3Lzny1eg0KmQMygO7Exbh2eufEJaD00yCs4iIc/i8eEFQ/g10OZLV4TEVF7wlBH5CY8bhkF9ZiRAICyjz6F9c8tktShVqgxbei9+HHG53jk2unwUnpi64mdmLpqJu5fPQvbT+6WpC4iInfHUEfkJgRBgOddN0E9chjgdKL0vTWwbtkpWT2+ah/MHjEDPxg/w1T9RChlCvx88A+M+2AqHv18Hg4UHJKsNiIid8RQR+RGBEGA5+Q7oBqmBxwOlC79GLZd+yStKcg7EC9ExWN9bBrG9b8ZAgR8sycdY5dNxLPf/Rcni09LWh8RkbtgqCNyM4JMBq/7JkCpHwBU2VHy9oeo2n9Q6rLQQ9sNr972Er568GOMChkBu9OOVVs/xaiU8Uj68Q2Yy4ukLpGIqE0TNdSFhnItSKLWQJDL4T1tMhQDrgRsNhS/+R6qDh2VuiwAQN8OoVgavQirpyxDeNfBqKyqRMofH+KG5Dvxzm/vocxaLnWJRERtkqihLi8vD59++qmYuySiZhIUCvgY74WiTzBQUYmS19+F/fgpqcuqFdFtCFZPWYZl0a/hyit6o7iyBAt/WoxRKePwUW4abHbOcUdE1BSiX359+eWXMXPmTGzc2LKToBLRhQSVEj6zHoC8V3c4S8tQvGgZ7KfPSl1WLUEQcGPIcHz5wEf4320vobumK86U5uO59fMxZlk0vtz1PRxO169rS0TkDkQNdXFxccjMzMQ777wDf39/PP3001i4cCEOHjwoZjNE1ASChxo+jz0IebdOcFqKUbJoGRwFZqnLqkMuk+PO/jdjfWwanjfMRaBXAA6bj+KJL5/Fne/fi02mXzmBMRHRJYga6pYsWVL7dVhYGObPn485c+YgPT0d8+bNw7p168RsjogaSebtBZ/Hp0HWMQiOAjOKFy2Do6hY6rIuoJIrcV/4JPxg/AyzR8yAj8obu07vxUOpj2HKJ0bkHNsmdYlERK1Wi4x+jY2NRWJiIsLCwrBw4ULMmzcPhw5xjiqiliTz84XvE9MhC9TCcfosSl5fDkdpmdRl1ctb5YVHrp2OH4yfY1rkvVDJVfjjSA5iVj4E47qnsPdMntQlEhG1Oi02pYnFYsGGDRuwZMkSJCUlQa/XY968eVi2bFlLlUDU7skCtPCZHQtB4wv7sZMoeeNdOMsrpC6rQQFeWjwz6glsiFuHiYPuhEyQIWPfJtzy7mTM/foFHCs6IXWJRESthstD3ZYtWzBp0iT4+/sjLi4OOp0O6enpyM/PR2JiImJiYvDKK69g4cKFri6FiADIrwiE7xPTIXh7wX7wKEreeh9Oq1Xqsi6qi18nJN78L3z70GqM7XMjnHBi3Y6vYFh6F17KeBX5ZYVSl0hEJDlRQ11kZCSA6l65hQsXIjQ0FOHh4cjOzsb8+fNRWFiI9evXY/To0bXP0Wg0mDt3LubMmYNXXnkFW7ZsEbMkciOCWgX/5PnwT54PQa2Supw2Td6lI3yemAZ4qFG1/yBK3lkJp631TyHSOygYb49/Beumvo9hPSJgtdvwfvYnuDH5TrzxcwpKKkulLpGISDKihrrs7GyEhobC398f8fHxCAsLw/r167F//37MnTsXGo3mos+fO3cuMjIyxCyJiBqg6NEVvo89BKiUqNq1F6XLPoHTbpe6rEYZ3GUAVk5+Bx9MfAv9O/ZFqbUMr/+SghuT78R7WZ/AWtW6ex6JiFxB9MuvTqeztlduzZo1dXrliNojL6UnskwGZJkM8FJ6Sl1OHYqQnvB5+D5AIYdty06UfZAGp6NtzAsnCAKGBw/DZ/d/iDfvnI9e/j1QUG7Gfza8itvev0fq8oiIWpyooU6n0zW6V+6fxowZg9DQUOTn54tZEhFdgvKqUHjHTQFkMlj/yEXZJ5+3qTnhZIIMt/Q14Ltpa/Dfsc+io88VOFH898oZ3/21AXZH2+iBJCK6HKKGuujo6GY/12g0YsKECZg3b56IFRFRY6gG94P3Q5MAQYD1pz9QvvbbNhXsAEApV2DykPHYGPcpnhwxs/bxud+8gDHLYpC67XNY7TYJKyQici3B2QLv3EVFRVizZg0EQYBOp8OoUaNc3WSbZ7FYoNFoUFRUBD8/P6nLocvgrLTC/NhzAADtGy+26kEelT9nomzFWgCAx+0GOG6IxKDF1bdQbJu1Ad4+TeuBl0qZtRwDF40AAPipfWGprJ5ouZNvR8QOnYpJg8fBU+khZYlERPW6nM9/UXvqxo4dW+/jGo0GsbGxiImJgb+/PxYuXMhRrkStkHp4JDwn3gYAqPgyA/ZNf0pc0eVbPz0N8258Ald4B+Jk8Sm8tGEhrn/nNrz927uwVLS+VTXKrOUISYpASFIEyqzlUpdDRG2IqKHuUp1+Go0GYWFhmDNnDke5ErVSHqOHw+OOKACA/YsNGG/pKnFFl8db5YXpQ+/Fphlf4KWx89Bd0xUF5Wa8+tPbGPHObVi4aTHOlhZIXSYR0WUTNdQJgtDobfPyuMwPUWvlccsoqMeOBADMO9sXtxV3lriiy6dWqHHPkAnIiFuLV297EaGBOpRYS/HO7+9h5JLb8WLGQhy3nJS6TCKiZlM094kHDx684LGCggIcOnTooj12JpMJqampMJlMzW2aiFxMEAR4jr8JtpJi4JccvHCmP6pWfAbHvRMg8/WRurzLopApMK7/Lbij303I2PcT3vn9XWw7sQsfZK/CR7mpGN//VhiH3Y/ggJ5Sl0pE1CTNDnXp6enIy8tDRkYGcnJyanvpdDrdRZ/ndDoRHh7Oy69ErZwgCJCPG4NlO9fifnMvYMtuWPIWwWvynVCGD2xSz3xLO3/ZM6fVCqgunB9QJsgwps8NiAodiV8P/Ym3f3sPvx/OQur2L5C2/Uvc3NeAmcMeQL+OV7Zk6UREzdbsUBcbG1v7tclkQlRUFAICAjB//vyLPk+n0yE4OLi5zRJRCxJkAt4OyMMP3qex0nEbnCfOoHTpx1Bm9ofXPeMg0/hKXeJlEwQB1/W6Gtf1uho5x7Zhye/vYcP+zfhmTzq+2ZOOG3TXYeY1DyKi2xCpSyUiuqhmh7rz6XQ6ZGdnY+LEiVxBgsgN7VYXQ2F8EPLN2aj45gfYtuyEZa8JnhNvg2qYvlX32jWFvusgpExYhD2n92HJ7+/j6z3p+NH0C340/YKh3fWYOexBjAge5jY/LxG5F9EGSmi1WsTExDR6+/ruySOi1ktQyOF5exR8n30U8h5d4SwrR9n7qSh56304CoukLk9UfTuE4rU7/ov02LWYNHg8lDIF/jySgwdTH8WdH0zFd39tgMPZNpZTI6L2Q9TRr+dfkr0Uo9EoZtNE5AL1rVur6NYZvk8/DM/xNwEKOap2/IWiF/6Hys1/trlVKC6ll393vHzTs/jB+DkejLgbHgo1dp7ag1mfJeCmZROxbsdXsNmrpC6TiAiASJdf/2njxo0wm80oKGh47qesrCxXNE1ELUCQy+Fx0w1QDu6H0g/SYD9wGGUr18GatQ1eU++CPChA6hJF1dmvI/5v9FOYec1D+CBrFT7MWY28goOY+/ULeG1zMuKuvg/RA2+HB1epICIJiRrqioqKEB4e3qjpSnhPClHbJ+/cAb7xM1C58VeUf/Y9qvbsh+Xfi+A5/iaob7gGgkzUiwGSC/Tyx5PXz0Ts1VPxcW4almd+jGOWE3g+PQlv/roMD0Xeg3uGTICvum1P+0JEbZOo77gxMTGIjo5GXl4eCgsL4XA46v1TUFDAEbBEbkKQyeBhGA6/5x6Hok8wYLWhfPWXKHk1BfZTZ6QuzyV81T4wDnsAP834Ai9ExaOLXyecLc3Hgh/fxPXv3I5Fm5egoMwsdZlE1M6IGup0Oh3mz5+P4OBgaDQNL/yt1Wqh1+vFbJqIJCbvEASf2bHwumccoFahav9BWF56HRXrf4LT4Z6DCjyUHpiqn4iNcZ8h6ZbnoQvoCUtlMd76dRmuX3Ib/rvhfzhZfFrqMomonRA11PXu3bvR265Zs0bMpomoFRBkMqhHDoPf87Oh6BcK2KpQvvYbFCe9A/vxU1KX5zJKuQLRA2/Hd9PW4K0756N/xytRbqvAu1kf48bkO/Hsd//FocKjUpdJRG5O1FDXlJFvFotFzKaJqBWRB/rD57GH4HXfBAieHrAfPALLf95A+dcb4LTbpS7PZeQyOW7ua8Dn96/EuzFvILJbGKx2G1Zt/RSGpXdh9pf/h7/O7Je6TCJyU6KGuujoaCxcuLBR2zZlTrv2ZPHixejXrx8iIyOlLoXosgiCAPV1kfB7fjaUA/sCdjsqvkhHceJbqDpyXOryXEoQBIzUXYtVU5Zi1T1LMVJ3LRxOB77Y9R1ueXcyjGufxJbjO6Quk4jcjKijXwVBQFhYGCZNmoQxY8YgODgYAQEXTm1QUFDQqBGy7dGsWbMwa9YsWCyWi96XSNRWyPw18J51P2yZW1G26gvYj5xA8ctvweOmG+BxyygISpfMrNRqRHYPQ2T3MOw8tQfv/PYevvtrIzL2/4SM/T/hmp6RmDnsQVzbM5IzAhDRZRP13VSv16OoqAhOpxOpqakA6p+6xOl08g2MqB0RBAGqoUOg6BuCsk++gC1nOyq+2Qhr7g543x8NRXAPqUt0uf4d++KtcUnIyz+I5N8/wOe7vsFvhzLx26FMDO7cHw9f8xBG9R4hdZlE1IaJGuoCAgIQFxeHSZMmXXS7/Px8zJw5U8ymiagNkPn5wsc4Bdbs7Sj75HM4TpxGcdI7UBtGwPOOKAgqpdQlulxIYC8suPV5PD48Dkv/XIE12z7H1hM7YVz3FPoEheChyClSl0hEbZSooa5mSpPG4Dx1RO2XKnwgFFfqUL7mK1j/yEVl+k+wbd1V3WvXu5fU5bWIrprOeCEqHo9cOw3vZX2ClTmp2Hs2D09/+2LtNu627BoRuZaoAyVqLrmKvS0RuR+Zjze8H5oE71n3Q9D6wXH6LIoXJqNs1RdwVlRKXV6LCfIOxNyRj2DzzK/w5IiZ0Hr8fS9twrcvosxaLmF1RNSWiBrqmnJjPwcBEBEAqAZdBb/nZ0N1XQTgdKLyh19hefE12Ha3r6k//Dx8Mevaafh++t+/8H77VwZiVj7EOe6IqFEkW5iR99QRUQ2Zlye874uGz+PTIAvUwpFfiJLXlqF05To4yyukLq9FeSk9a78O8PLHnjP7MO6Dqfgx7xcJqyKitqDZ99RZLBb4+fnVeWzLli2Nfn5GRkZzmyYiN6XsFwq/52aj/NPvUPnjb7Bu/hO2HX/Be8r46rnu2pk1U5ZjzlfPYcuJHZie9gSeGGHEw9c8BJkg2e/jRNSKNSvU9e7dGwcPHkRBQUGdYDdq1CgUFRVd8vmc0oSIGiJ4qOF1951Qhg9E2Ydr4TiTj5K33odqmB6eE2+DzNtL6hJbTEefK/DxPSl4acNCfLJlHRZtXoLtJ3dj4a3/hq/aR+ryiKiVaVaoCwsLA4ALeuoCAgIwb948GAyGiz6fU5oQ0aUo++jg99zjKP98PSo3/ALr7zmw7doLr3vGQRU2QOryWoxaocJ/xj6DQZ364fn0JGTs24TxH96HJeNfRe8gziJARH9rVqhraOSqTqfD3LlzG7UPTmlCRJciqFTwirkNqvBBKP0wDY4Tp1G6ZCWs4YPgNfkOyPzaT2/VxMHjcOUVvfHwZwk4UHAYd624H6/c8gLGXjlK6tKIqJUQ9caM9evXu2RbImrfFLoe8Hv2UXjcfCMgk8GWvQ2Wfy+CNXNru5rLbXCXAfj8/hW4ukc4Sq1lePizeLyy6S3YHXapSyOiVqBF77Z95ZVXsHDhQqxbt64lmyUiNyAolfAcNxa+82ZB3q0TnCWlKF32CUrfWQFHkUXq8lpMkHcAPpy0GA9F3AMAWPL7+5iW+jgKy83SFkZEkmvRlbRrLs0WFRVh4cKFmDNnTks2TyQJQa2Cf3LjVlqhS1P06ArfeY+g4rsfUfHND7Bt3QXLPhM8Y26D6ppwCIIAL6UnskzV9/aeP0WIu1DIFHh29JMY2Lkf5n37EjYf/B3jPrgPb49fgP4d298oYSKqJsm4eEEQkJ6eLkXTROQGBIUCnrcZ4Pfso5D37AZnWQXKPkhDyRvvwVFglrq8FnNHv5uwdur76KHtiqNFxxGzcho+2/mN1GURkURED3UbN27E2LFjERoaisDAwAv+yOVy+Pv7IyoqSuymiaidkXftBN+EmfC862ZAoUDVrr0o+vciVP6SKXVpLaZvh1B8dv8KjNRdi8qqSjz11XN4MWMhbPYqqUsjohYm6uXXAwcOwGAwQK/XY/To0QCArKwsREREAKieyiQ3NxdpaWkYMmSImE0TUTslyOXwGDsSysH9UPphGux5h1C++kupy2pRGg8/LJ2wCK//nILFvy3HB9mrsOvUX3jzzkRc4RMkdXlE1EJEDXULFixAenp6baADgKVLlyI2NrbOdkuXLoVWq0WvXr3EbJ6I2jF5pyvgO8eIyh9/Q/mn3wFWGwCg/OsN8Bg70u0nLZbL5Hjy+pkY0OkqzP36eWQezcWdH0zF4nELENZ1oNTlEVELEPXyq0ajqRPoANS7wkRsbCzS0tLEbJqICIJMBo9R18E3YVbtY5Xfb0LRM0ko/2I9HKVlElbXOE6rtd6vG2tMnxvw6X0foHdgME6VnMHdH8fi4y1r29XUL0TtlaihLjAw8ILH9u/fD4vlwukGNBqNmE0TEdWSXxFQ+7WsS0egohIVX288F+7S20S4uxy6wF5YO/V9jO1zI2yOKvzr+0Q8891/UFlVKXVpRORCooa6+tZzjYmJQWJi4gWPm0wmMZsmIqqXb/xMeBunQN6107lwt6FdhDsftTcWj1uAuSMfgUyQYc22zzH541gct5yUujQichHRL79aLBbMmzcPDz/8MABg9OjRSE5OxvLly2u327JlC3JycsRsmoioXoJMBpV+IHz/7zF4G6ec13O3AZZnF6D8y3Q4ysqlLtMlBEHAjGEP4N2YN6D10GDbiV2484Op+P1wltSlEZELiBrqYmNjkZycjKSkpDrz0K1ZswaxsbGQy+UIDQ1FeHg4YmJixGyaiOiiasKd378eh3dcdbhzlleg4qsNsDyT5NbhbkTwMHx2/4fo16EPCsoKcd+qWXg38yPeZ0fkZkSfp27u3LlwOBzYt29f7WMGgwHr16/HqFGj4HQ6MX/+fEyfPl3spomILkmQyaAKb3/hrru2K9bc+y7G9b8Zdqcd/924CLO//D+UWd3vZyVqr1psmTCDwQCDwdBSzRERXVRNuFOG9YctdwfKv9oAx/FTqPhqAyo3/AL16OFQj74OMi/3WWbMU+mBhbe+iEGd++PljYvw5e7vse+sCW+PfwU9/btJXR4RXSZJlgkjImotqsPdoHM9d/ec13OXca7nLsOteu4EQcD94ZOxYvI7CPIOxJ4z+zDug6n4Me+Xy953mbUcIUkRCEmKYA8gkQRaJNQVFRVh6dKlWLZsGTZu3NgSTRIRNclFw92zSSj/yr3C3dDuenx+/wqEdRkIS2Uxpqc9gbd+XQaH0yF1aUTUTKKGurFjx9b7uEajQWxsLGJiYuDv74+FCxdiy5YtYjZNRCSKOuEu9h7IOneAs6wCFV/+He6c5RVSlymKTr4d8NHdybh7yF1wwolFm5dg5qdzUVxZInVpRNQMooa6S42k0mg0CAsLw5w5c5CRkSFm00REohJkMqgiBsHvuScuCHdFz8x3m3CnVqjwn7HPIPGm/4NKrkTGvk0Y/+F92H/2gNSlEVETuXzy4Ybk5eWJ2TQRkUvUCXfT774w3H29QdRw56X0RJbJgCyTAV7KlhukMXHwOKyesgydfDviQMFh3LXifnz/F2+XIWpLmj369eDBgxc8VlBQgEOHDl20x85kMiE1NZUrShC1AYJaBf/k+VKX0SoIMhlUkYOhDB8IW/Z2lH+9AY4Tp1HxRToqMzZDbRgBj1HXQfD0kLrUZhvUuT8+v38FHvtiHv44nI2HP4vHjGEP4MkRMyGXyaUuj4guodmhLj09HXl5ecjIyEBOTk5tL51Op7vo85xOJ8LDw3n5lYjapIuHu5+hNgxv0+EuyDsAH05ajAU/vonlmR9hye/vY8fJ3Xjtjv/C31MrdXlEdBHNDnWxsbG1X5tMJkRFRSEgIADz51/8t3qdTofg4ODmNktE1Cq4c7hTyBR4ZtRsDOh0FeZ9+xJ+PvgHxn1wH94evwD9O/aVujwiaoAokw/rdDpkZ2dj4sSJGD16tBi7JCJqEy4Id19lwHHyjFuEuzv63YQ+QSGY+ekcHDYfQ8zKaXj5pmcxrv8tUpdGRPUQbaCEVqvleq5E1G7VhDu/52fDe9pkyDpdAWdZOSq+SEfRM0ko/2Zjmxwt27dDKD67fwVG6q5FZVUlnvrqObyYsRA2e5XUpRHRP4g6+vX8S7JERO2RIJNBNXTIheHu8/VtNtxpPPywdMIiPHJt9ZrdH2SvwtRVM3Gm5KzElRHR+UQNdTNmzIBcLueqEUTU7l0Q7jqeF+6eXYDyb35oU+FOLpNj9ogZWHLXQviovJF5NBd3fjAVuce2S10aEZ0j+jJhsbGxiIiIEHu3RERtUm24e+G8cFdahorPv2+T4S4q9AZ8et8H6B0YjFMlZ3D3x7H4eMvaS04+T0SuJ2qoCwkJwZIlS+Dn53fJbdmbR0TtyfnhzuuhSZB1DLow3FVUSl1mo+gCe2Ht1PdxU59RsDmq8K/vE/HMd/9BZVXbqJ/IXYka6vR6PdatW9eobZOSksRsmoioTRBkMqivDoPfC09eGO6eSULF+p+kLrFRfNTeeGtcEuaOfAQyQYY12z7HA2selbosonZNlClNaowePRobN27EvHnzEBISgoiICGi1WgQEBNTZrqCggCtKEFG7VhPuVJGDYc3cioqvN8Bx6iwqvvp7Ynan04nGL77Y8gRBwIxhD6B/x7544otnsePU7trvnS3NRw9VNwmrI2p/RA11cnn1MjI191Y0tBas0+ls0jqxRETuqjbcRQyCNXMbKr7KgONMPgCgfM2X8Lr3Lggy0W9/FtWI4GH47P4PMWPdHOw5sw8AcGPKOAzpPACG0JEwhI5E78Bgvu8TuZjgFPHu1t69eyM6OhpRUVEX3a6wsBBGoxH5+fliNe12LBYLNBoNioqKGnWPIhH9zVlphfmx5wAA2jdehKBWSVxR4znKylE0+9+1/1ZdEw6v+ya0+mAHAPmlhRj6Vv3v/z39u8PQeySiQkdC33UQ15IlasDlfP6L2lOn0+kuuUxYjZSUFDGbJiJyC4L8vLAjk8H6WzacVVXwfnBi3e+1Qp7Kv1fN2BD7KX499AfS9/2E3w9n4lDhESzPXInlmSsR4KnFjSEjYAgdiRHBw+o8j4iaT9RQl5qa6pJtiYjaI68HYlD2fipsmVtRaquCd+zdEBSivm27TAefINwTFo17wqJRUlmKzQd+Q8b+Tfgh7xcUlJuxdseXWLvjS6gVagzvNRSG3iMxqvf1CPIOuPTORVZmLcfARSMAANtnb4aXyrPFayASg6jvDhqNpvbrdevWITMzE5MmTcKQIUMAABs2bEBgYCCGDBlSZ1siIrqQakh/CDPUKE35CLYtO1G6ZCW8jVMgKJVSl9YkPmpv3NzXgJv7GmCzVyHr6BZk7NuEjP2bcLToODbs34wN+zdDgICwrgNhCB2JqN4joQvsJXXpRG2K6DdprFu3DgEBAYiOjkZSUhKysrJqvzd69Gjk5eVh2bJlYjdLROSWVIP7wWfW/YBSAdv2PShZ/AGcVqvUZTWbUq7ANT0j8C/DU/jR+Dm+fvATPDF8BgZ0ugpOOJFzbBsW/PgmopZFI2rpBCT9+Aayj26F3WGXunSiVk/UUJebm4v4+HgkJSWhsLAQDofjglnGJ0yYgPDwcE4+TETUSMp+feDz6IOAWoWq3ftR8sZ7bWai4osRBAF9O4Ti0eum4/P7V+DnmV/j31EJGNFrGJQyBUwFh5Dyx4eY+NE0XLP4Zsz79iVs2P8TKmxtZwUOopYk6uXXlJQUZGdn17m0Wt8Q9rCwMCxbtgyjRo0Ss3kiIrelvDIEvo9PQ/Eb76Jq3wEUv7YcPo89CJmX+9z/1dmvI+7Vx+BefQyKK0uwyfQrMvZtwo+mX5BfVoA12z7Hmm2fw0OhxvDgYYjqPRI39h6BQC9/qUsnahVEH/3a2HvlzGazmE0TEbk9RUhP+M6ORcnry2E/cBgli5bB5/GHIPPxlro00fmqfXDbVWNw21VjYLXbkHkkB+n7NiFj3yacKD5VfU/evk2QCTLouw6CoXf1fHjBAT2kLp1IMqKGOn//xv+2lJeXJ2bTRETtgqJXN/g8eS7YHT6Gkv8thc8T0yDz85W6NJdRyZW4rtfVuK7X1XjeMBe7Tv9VG+p2nd6LrKNbkHV0C+b/+Dp6BwZXT3jceyQGd+kPmdD65/e7HBy5S+cTNdTt37//gsfqm9t4y5Yt9T5ORESXpujeBb5PxqF40TLYj51E8asp8J0dC5nW/ScqFwQB/Tv2Rf+OffH4cCOOFZ1Axv5NyNj3E/48ko39+QewP/8Alvz+Pq7wDsSo3tcjKnQkru0ZCbVCLXX5RC4laqibNGkSIiMjkZaWhp49ewK48J66DRs2YOLEiThw4ICYTRMRtSvyLh3hO8eI4kVL4Th5BsULk+H7ZCxkAVqpS2tRXTWdcX/4ZNwfPhmWimL8aPoFGfs2YZPpV5wpzcfqrZ9i9dZP4aX0xIjgYTCEjsSNIcPh76mVunQi0Yka6sLCwhAbG4vg4GBERUVBp9PBZDIhLy8PJpMJOTk5MJlMWL9+PZe+IiK6TPKOQfCdY0TJomVwnMlH8cIl8JkdC/kVgVKXJgk/D1/c0e8m3NHvJljtNvxxOLv2Mu3JktP4fu8P+H7vD5ALckR0G1y7Lm2QV/v8/yL3I/rU5HFxcYiIiEBsbCzS09MBoPbv6OhoZGVlceJhIiKRyIMCqnvs/rcUjtNnq3vsZsdC3ukKqUuTlEquxIjgYRgRPAwvRMVjx6k9tQFvz5l9+ONIDv44koP/blyE3oG62ufZ7FUSVk10eVyy3oxer0d2djaA6rnrtFotgoODXdEUEVG7J/PXwHdO9T12jhOnUfxqMnyfmA55105Sl9YqCIKAgZ2uwsBOV2H2iBk4Yj6GjP0/IWPfJmQeycX+fFPtttcsHouBnfshrMvA6j9dB6GDT5CE1RM1nktC3cGDBxEQEAA/Pz+EhYXVPr5x40bodDr06tXLFc0SEbVbMo0ffJ+KQ8lry2E/egLFr6bA54lpUPToKnVprU53bVc8GHE3Hoy4G+byIny/9wc8891/AACVdmvtaNoaXfw61QY8fZeBuKrjlVDJ29ZSbdQ+iB7qXnnlFSQkJMDf3x/5+fl1vjdq1CgsXboUgiBg+vTpYjdNRAQAENQq+CfPl7qMFifz9ame7uSNd2E/eBQli5bC57GHoAjm3G0N0XpqcPtVY2tD3Rf3f4TdZ/Ziy/HtyD22HXvP5uG45SSOW07i6z3VtxKp5CoM6NQXYV0GIazLAIR1HYROvh2k/DGIAIgc6pYtW4a4uDg4nc56V5IAgNjYWBw4cADr1q3DXXfdJWbzRETtnszbC75PTEfxm+/BnncIxa8th++jD0LRu5fUpbUJwQE90L/TlYgeeDsAoKSyFFtP7KwOece3Y8vx7SgsL0LOsW3IObat9nmdfTue680biLAug9Cv45VQK1RS/RjUToka6vLy8qDRaBAfH3/R7YKDg5Gbmytm00REdI7g6QHfxx5CydsfoOovE4pfXw6fWfdD2be31KW1OT5qb1zXayiu6zUUQPXcqwcLjyD3+DbkHqsOeXvO7MeJ4lM48dcpfPNXBoDqgRr9O/ZFWJeBGHIu7HXx4z2O5FqihrqmTChsMpkuvRERETWL4KGGzyMPouSdFajatRclb70PnxlToRxwpcva9FJ5Ii8hy2X7bw0EQUBwQA8EB/TAXQNuAwCUWsuw/eQu5B7bXhv2CsrNyD3Xu1ejk08HDDl3uTasy0AM6NSXEyKTqEQNdQ1dcq0PlwkjInItQaWEz8P3oTTlI9i27UbJ2x/CO+4eqIb0l7o0t+Kt8sKwHhEY1iMCQHUHx2HzMeQe34Ytx7cj59h27Dm9DydLTuO7vRvx3d6NAAClTIF+Ha9EWJdBGNJlAPRdB6GLX6cmfZYSnU/UUFdYWIhDhw7VribRkHXr1nGZMCKiFiAoFfA2TkHp8tWw5WxHafJHwLTJUEUMkro0tyUIAnr6d0NP/24Y1/8WANVrtO44tRu5x7Yh59wgjPyyAmw9sRNbT+wEqmcBQwefoOrLtV0GQt91EAZ07AsPpYeEPw21JaKGuvj4eBgMBixYsADjx4+/4PsWiwUJCQlYs2YNlwkjImohgkIB7+mTUfaBAtY/clG67BM4bTaorwmXurR2w0vliaHd9RjaXQ+gujfvaNHx2ku0uce2Y/fpv3C65CzW7/0B6/f+AABQyOS4qsOV5wZgVP/ppunC3jyql6ihTqfTITExERMmTIC/vz8iIiKg1WphMplgMplgNpuh1WqRkZHBZcKIiFqQIJfD64EYQKmA9edMlH2QBlTZoR4xVLQ2nJVWmB97DgCgfeNFCGqO/myIIAjoru2K7tquuKPfTQCAclsFdp7ag5xj284FvW04U5qP7Sd3YfvJXfgwezUAIMg7sPpybZeBuKqD6+6RpLZH9HnqoqOjsX//fiQkJCA3N7d2QIRer4fBYMD8+e1v7igiotZAkMngNWU8BIUClT/+hrKV6+CsqoLHjddKXRoB8FR6IKLbEER0GwKgujfvuOUkco5tw5bjO5B7fBt2nfoLZ0vza5c8O9/+swcwqEs/CSqn1sIlK0rodDqkpqa6YtdERHQZBJkMnpPvAJQKVKZvRvmqLwCrDR5jR0pdGv2DIAjoqumMrprOuL3fWABAha0CO0/9VduTl3NsG06XngUATFj5ACYOuhOzR8xAkHeglKWTRFwS6hrj4MGDXC6MiEgCgiDAc8ItEJRKVHyzEeXrvq3usbtlFO/VauU8lB4I7zYY4d0GA6gegDFw0QgAgMPpwKqtn+LL3d8j7ur7MC3yXnhykEW7IpOqYaPRKFXTRETtniAI8LxzDDzuHAMAqPgiHRWfr+fMBG3Y+zFvYVDnfii1lmHR5iUwpNyFtdu/gsPpkLo0aiEu6anbuHEjzGYzCgoKGtwmK8u9J6gkImqOll631vOWURCUSpSnfY2Kb3+A02qDZ8yt7arHzl0mTQ7vNhhrp76Pr3en45VNb+GY5QTiv3kB72d9jHmjZuPanpFSl0guJmqoKyoqQnh4eKNWi2hPbxhERK2ZR9QIQKFA+arPUbnhZ6CqCp6T74Agk+xiDjWTTJDh9n5jMabPDfggezXe/u1d7Dq9F1NXzcSNIcPx9A2Po3dQsNRlkouIesbGxMQgOjoaeXl5KCwshMPhqPdPQUEBgoP5oiIiai08brwGXlMnAIKAyk2/o2zFWjgdvGzXVqkVasRdfR82xn2G+8InQSGT44e8n3HLu5Pxr+8TcbY0X+oSyQVEDXU6nQ7z589HcHAwNBpNg9tptVro9XoxmyYiosukHh4JrwcmAoIA66/ZKHtvDZx2u9Rl0WUI8NLiecNcfDdtDcb0uRF2px0fb1mL0Sl34e3f3kW5rULqEklEooa63r17N3rbNWvWiNk0ERGJQD0sDN6x9wAyGax/bqlefaKqSuqy6DIFB/TEO+NfwSf3pGBgp34osZbi1Z/ehmHpBKzbwcEU7kLUUNeUUVMWi0XMpomISCSq8IHwnnEvoJDDlrMDpUtWwmmzSV0WiWBodz3W3fc+Ft3+H3Tx64STxacw9+sXMO6DqfjtUNsfLNLeiRrqoqOjsXDhwkZtGxMTI2bTREQkItXgfvB5+H5AqYBt+x6ULP4QTqtV6rJIBDJBhjv63YSM2LWIv+FR+Ki8sfPUX7h31QzErZ2N/We5NntbJeroV0EQEBYWhkmTJmHMmDEIDg5GQEDABdsVFBQ0aoQsERFJR9m/D3wefRAliz9A1e59KHnzPfjMegCCh1rq0kgEaoUaxqvvR/TAO/DmL0vxce5abNi/GT/m/YrJQ8bjseviEOR94Wc4tV6CU8SZJgMCAlBUVFTnMmx9U5c4nU4IggA7b8BtkMVigUajQVFREfz8/KQuh4jasar9B1H85ntARSXkuh7wfewhCJ4XrlTgrLTC/NhzAADtGy9CUKtautR25/wVJbbP3gwvlWez92XKP4ikTW/Wrinro/LGjGEP4MGIu+HBlSlazOV8/ovaUxcQEIC4uDhMmjTpotvl5+dj5syZYjZNREQuoujdC76zp6Pk9XdhNx1G8aJl8Hn8Ici8vaQujUSkC+yF5LtexR+Hs/HyD69hx8ndWPjTYnyUm4Y5I2fhjn43QSaIc9eWmGGU/iZqqKuZ0qQxOE8dEVHboejVHT5PxqLkteWwHzqKkv+lwOfx6ZD5+UhdGons6h7h+PS+D/Dlru/xyqa3cKL4FJ766jm8l/UJ5t34OIb1iJC6RGqAqAMlUlNTXbJtW5SSkoKEhASpyyAiEo2iexf4PhUHwc8X9qMnUfy/FDjMnMnAHckEGe7sfzMyYtdi7shH4KPyxo6TuzHlkxkwrn0SefkHpS6R6iFqqLvYhMOXs21bYTKZYDQaYTQaGeiIyC3Ju3SE75w4CP4aOE6cRvGryXAUmKUui1zEQ+mBGcMewEbjZ5iqj4FckCNj/0+4efkkvJCehPyyQqlLpPM0OdQ1dsqS9kin0yE5ORnJycnQ6XRSl0NE5BLyjlfAd44RskB/OE7no3hhMuxnC6Qui1wo0MsfL0Ql4Ntpq2HofT3sTjtW5KRiVPI4JP/+PiqrKqUukdCMUJeYmOiKOoiIqA2RBwVUB7sOQXDkF6L4lSWwnz4rdVnkYiGBvZA84X/46O4l6N+xL0qspViw6S0Ylk7A5zu/5coUEmvyQInCwkKMHTu2SZMH63Q6REREcGoOIiI3IgvQwndOHIoXLYPjxGmUvP6u1CVRCxnWIwKf3f8hvtj1HRZuWozjlpN48qt/4b2sT/DMqCcwtDvXd5dCs0a/6vV6jB49ulHbms1mmEwmvPzyyygqKkJCQgJ69erVnGYvYDQaERMTA4PBcMkaanoYAwMDkZeXh6ioKERHR4tSBxFReyXT+MH3yTiUvL4M9qMnax93Op24cJZSEpuXyhN5CdIs7yUTZBjX/xbc1GcU3sv6BEt+fx/bT+7C3R/HISr0BiTc8CiCA3pKUlt71eTJh3v37o39+/c3q7GaUDdx4kSMGjWqWfswmUzIyMhAcnIycnJykJ6eftFQZzabER4ejtTUVOj1f//mYDQaodVqkZSU1Kw6LiU8PBwGg6HZ++fkw0TUljhKy1Dy2jLYDx8HAMg6BEE9chhU1+g5n107cba0AG/8koJVWz6F3WmHQibH3UMm4LHr4hDgpa2zLeepa9jlfP43+Z665OTkpj6llkajwZIlS7BkyRIcPHiwyc8/f5qQxoalmJgYREdH1wl0QPXPkZKSgoyMjCbXQUREdcm8veAz64HafztOn0V56lcoSngZpe+nourAEYi4gBG1QkHeAXhxzNP45qFVGN17BKocdqzIWYMbk+9E8h8fcDBFCxB1mbDGMpvNMBqNWL16dbP3kZOTg/Dw8Iv21JlMJoSEhCAvL6/e0ahGoxEmkwnp6el19hsbG9voOpYuXXpBYATYU0dE7c/5y4R5Trwd1l8z61ySlffoCvX1V0M1dEirWkKMy5u5xq+HMjH/h9ew89RfAICufp0xZ+Qs3HbVGFTYKtlT14BWs0xYY2m1WuTl5bm8nZpexYamFwkJCUFKSgrMZjO0Wi2A6vsFs7OzXV4bEZE7Uw+PhHrUtbCbDqPyp99hzdoO++FjKFu5DmVpX0M9TA/1yGGQd+kodankItf2jMRn96/A5zu/xcKf3sYxywnM/vL/8F7Wx3hy+MNSl9dsrfnSsSShDmg4aIkpJyenNqxdrIasrKxLDrYgIqKmEQQBipCeUIT0hGfMbbD+mo3Kn/6A40w+Kn/8DZU//gZFaDDU118NZdgACErJPpLIRWSCDOMH3IqbrhyN97I+xpLf38e2E7vwQOojUpfmltz6DDKZTAgICGjw+zWBz2Qyid622WyG2WwWfb9ERG2RzMcbHmOuh9owHFV78lC56XfYtu1G1b4DqNp3AIKvN9TXRUI1YijkQQ2/b1Pb5Kn0wMPXPISJg+7E6z+nYNXWT2vntLv9/XsQGhSC3kHBCA3UoXdQMHQBveCp9JC46ranyaFu2bJlmD59+mU1Om/ePERGRl7WPhqjoKDgoj2CNYFPrPBVM3VKzTQua9asAVB9mTc+Pv6iz62srERl5d83kVosXE+RiNyPIJNB2S8Uyn6hcBQWofLnTFT+/CecZgsqvvsRFd9vgqJ/n+reu4F9IchEXc2SJBbkHYiXxs7DxEF3YtyH9wEADhYewcHCI0jf92PtdgIEdNN0Qe+gYPQODEbvIB16BwYjJLAXfNU+ElXf+jU51KWmpjY71FksFiQmJiItLQ379u1r1j6aorFhLT8/X5T2zp8ipamjhBMTE/Hvf/9blDqIiNoCmb8Gnrcb4HHLjbBt243KTX+gavc+VO34C1U7/oLgr4F6xFCohw+FTOMrdbkkopDA4Nqvl05YhCNFx7D/7AHk5R/AvvwDKCgrxJGiYzhSdAw/5P1c57mdfDsiNDD4XODT1QY/raf7rSnfVE0OdZmZmXj11Veh0TT+P89sNiMzMxNpaWnQarXIypJmosTWbN68eXjyySdr/22xWNC9e3cJKyIiahmCXA5V2ACowgbAfvosKn/6E9Zfs+AsLELFF+mo+GoDlGH9oR45DIo+OggCpzV2J8N6RGCUakSdx/LLCpGXfwD7z5qwL/8A9p89gP35JpwuOYuTxadwsvgUNh/8vc5zgrwD0TswGKFBwQgJrA58oUHBCPQKaDevmWbdU1dzKbExs6EIglC7XVxcHJYsWdKcJptFq9U2qrcuMDDQ9cVcglqthlqtlroMIiJJyTsEwSv6FnjeGQVr9nZU/vQH7HmHYMveDlv2dsg6XlE9LQonNXZrgV7+CPTyv2C5MUtFMfafC3v78w9g37mwd9xyEmdL83G2NB+/H67bcaT10KD3uaAXet6l3E6+Hdwu7DUr1M2fP/+io0r/qWbt16b07onhYoMkgOp77gA06WchIiLXE5TK6mlPhulRdeQ4Kn/6A9Y/cuE4dQblqV+h/LPvoYocBPX1wyDv1c3tPpypfn4evtB3HQR910F1Hi+1liEv/yD255tqe/X2nT2AI+ZjMFcUIevoFmQd3VLnOT4q73P36VVfyg09F/a6ajpDJrTNezmbHOoiIiIwd+5cV9QiOp1Od9FLvTW9eC0xvQoRETWPonsXKKaMh9eEW2D9IxeVP/0O+9GTsP6aDeuv2dWTGo+8GqrI1jWpMbUcb5UXBnXuh0Gd+9V5vMJWgQOFh7Hv7N9hb//ZAzhYeAQl1lJsObEDW07sqPMcD4X63OXbv+/bCw0KRndtVyhkrXvSkCZXFxMT44o6XEKv1190GbCaqUw4Rx0RUesneKir15O9/urqSY03/Q5r9rlJjVesQ1kqJzWmujyUHriqQx9c1aFPncetdhsOFhyuvm8v/0B16Ms/gAMFh1BRVYmdp/Zg56k9dZ6jkivRy78HggN61j5Wai1r25MPN2UJLalNmjQJCxYsQE5OTr1LeWVmZjLQERG1MXUmNZ54kUmNRw6Dckh/TmpMF1DJlehzRQj6XBFS5/EqRxWOmI9h37mRuDWXcfPyD6CiqhJ7z+Zh79m/V8QqrizGFT7S35dfw61f6Xq9HgaDAatXr6431KWlpdVZ95WIiNqWupMa70flpj/a1aTGXLdWXAqZAsEBPc/1xt1Q+7jD6cCxohPYn38Au0/txaub3wYAdPTpIE2hDWizoa7m0umlRrempqYiPDwckyZNqhPsjEYj4uPj2VNHROQGqic17gNlvz7nJjX+E5U/Z144qfHIYVAOuJKTGlOTyAQZumu7oru2K67uHl4b6lrbAJ02FerS0tJqJ/WtGQARGxtb+1hMTAzi4uLqPEer1SI7OxsJCQnQarUIDAxEXl4eoqKiEB0d3bI/ABERuVz1pMZR8LhlVL2TGssCtFCNGAr1dZGc1JjcSpsKddHR0c0KYlqttskrPBARUdtWZ1LjU2dRufkPWH/NhqPAjIrP16Piywwow/pDdU241KUSiaJNhToiIqLmkHcMglf0rfC8c0z1pMabfofddLh2UuMaDrMF8o5BElZK1HwMdURE1G40NKkxKq0AAMtzCyHX9YBKPwDKsAFuObiC3BdDHRERtUs1kxp73joaRQkv1z5uNx1GuekwytO+gbxHVyj1A6DSD4C84xUSVkt0aQx1rczixYuxePFi2O12qUshImoXBE+P2q/9XpwD2669sOXsQNW+A7AfPgb74WOo+Ox7yLt2gjJsAFThAyHr7H7rhlLbx1DXysyaNQuzZs2CxWJp8bVyiYjaO5nWDx43XguPG6+Fw1IC25adsObuQNWePNiPnYT92ElUfJUBWccrqi/R6gdA3r0LA14Teak8kZfQ8DKe1DwMdURERPWQ+flAff3VUF9/NRylZbBt3QVbzg7Ydu+D49QZVHz7Ayq+/QGyoIC/L9H26s6AR5JhqCMiIroEmbcX1NdGQH1tBJzlFbBt3wNrznbYduyF42wBKtf/hMr1P0Hw10AVVt2DpwjpyUmOqUUx1BERETWB4OkB1dAhUA0dAmelFbYdf8GauwO2bbvhLCxC5cZfULnxFwh+vlCF9YcybAAUfYIhyOVSl04iaM2XjhnqiIiImklQq6AKHwhV+EA4bTbYdu2rvkS7dReclmJUbvodlZt+h+DtBeWQflDpB0LRNwSCgh+/JD6+qoiIiEQgKJVQDe4H1eB+cFZVoWpPXnUPXu5OOEvLYP0lC9ZfsiB4ekA5+CoowwZA2a8PBJVS6tLJTTDUERGRKAS1Cv7J86Uuo1UQFAooB1wJ5YAr4bxnHKr2HYAtZwesuTvhtBTD+nsurL/nAmoVlAP7Vo+kHdAXgloldenUhjHUERERuZAgl0PZtzeUfXvDc/IdsJsOw5qzHdacHXAWFsGWtQ22rG2AUgll/z5QhQ+EcmDfOvPnETUGQx0REVELEWQyKHr3gqJ3L3jG3Ab7waPVo2hzdsBxtgC2LTth27ITUMihvCoUSv0AKAf3g8zbS+rSqQ1gqCMiIpKAIAhQBHeHIrg7nHfdDPvRE7Blb4c1dwccJ8/Atn0PbNv3ADIZFH1DqqdKGdIfMj8fqUunVoqhjoiISGKCIFSvRdu9CzzHjYX9+KnqHrzcHbAfPYmqXftQtWsf8PFnUIQGV092HDaAl2ipDoY6IiKiVkbepSM8u3SE520G2E+dhS13B6w5O2A/dBRVe02o2mtC+aovIA/uLnWp1Iow1BEREbVi8o5BkN90AzxuugH2swWw5VavR2vPOwT7gSO121kzt0J1XQSXKWvHGOqIiIjaCHlQAORRI+ARNQKOwiJYs7ahPO1rAEDZirWw7doLr3vGQebjLXGlJAUuSkdERNQGyfw1UF9/9XkPyGDL3g7Li6/BtuMv6QojyTDUERERuQGfJ+Mg69wBzqJilLz5Hko/+hTOSqvUZVELYqhrZRYvXox+/fohMjJS6lKIiKgNUfToAr9nHoV69HUAAOtPf8Dyn9dRZToscWXUUhjqWplZs2Zh165dyMzMlLoUIiJqYwSVEl4Tb4fP7OkQ/DVwnM5H8YJ3UP7Z93BWVUldHrkYB0oQEVG75o5r1ir79obfc0+gfNUXsP6Ri4pvf4Bt5154PzgR8i4dpS6PXIQ9dURERG5I5uUJ74cmwTtuCgRvL9gPH4Plv2+iIuNnOB0OqcsjF2CoIyIicmOq8IHwe/4JKAZcCVRVoTz1K5S8thyOArPUpZHIGOqIiIjcnEzjB59HHoDXlPGASomqv/JQ9O9FqPw9B06nU+rySCQMdURERO2AIAhQX381/P71OOS6HkBFJcreW4PSlI/gKCmVujwSAUMdERFROyLvEATfOUZ43Dm2esLinB2w/Ps12Lbvkbo0ukwMdURERO2MIJfD85Yb4TtvVvWExZZilLz1fvWExRWVUpdHzcRQR0RE1E4penSF37OPQj16OICaCYvfQFXeIYkro+ZgqCMiImrHBKUSXhNvg8+TsdUTFp/JR/ErS1w6YbGz0opC49MoND7NpcxExFBHREREUF4ZAs3zs6EapgecTlR8+wOK578N+/FTUpdGjcRQR0RERAAAwdMD3g9OhLfx3ITFR45XT1icvpkTFrcBDHVERERUh0o/EH7Pz/57wuK0r1GyaBns+YVSl0YXwVBHREREF5BpfP+esFitQtVeEywvvobK37I5YXErxVBHRERE9aozYXFIz+oJi99PRWnySk5Y3Aox1BEREdFFya8IrJ6weNxYQC6HLXcnLP9exAmLWxmGOiIiIrokQSaD583nJizu0hFOS0n1hMUr1nHC4laCoa6VWbx4Mfr164fIyEipSyEiIrqAonsX+D3zCNRRIwBBgPXnP2F56XVU7T8odWntHkNdKzNr1izs2rULmZmZUpdCRERUL0GphFf0rfCZPR2yAC0cZwtQvDAZ5Z9+57IJi+nSGOqIiIioWZRXhsDvuSeguubchMXf/Yji+YthP3ZS6tLaJYXUBRAREVHzCGoV/JPnS1uDpwe8H5gI5aB+KFu5DvYjJ2B5+U14jhsL9ejhEGTsP2op/J8mIiKiy6bSD4Df87OhHNgXqLKjPO0blCxaygmLWxBDHREREYlCpvGF96z74XXvXecmLD7ACYtbEEMdERERiUYQBKhHDL1wwuIlK+EoLpG6PLfGUEdERESiq5mw2HP8TdUTFm/ZCcuLr8G6bbfUpbktDpQgIiIilxBkMnjcdAMU/fug9N3VcBw/hdLFH0B1TbjUpbkl9tQRERGRS10wYfFv2VKX5JYY6oiIiMjlaicsfjIWQoC29vHi15ejYsPPHCUrAsHJ4SitksVigUajQVFREfz8/KQuh4iISDQOswVFCS9f8Li8R1coh/SDKmwAZJ07QBAECaqT1uV8/vOeOiIiImpRgqdH7deed90M2449qNp3EPbDx2A/fAwVX6RD1jEIyiH9oQrrD3nPbpzEuBEY6oiIiEgy6huugcfYkXAUl8C2dTdsW3bCtnsfHKfOovL7Taj8fhMErR9Ug/tBGdYfij46CHK51GW3Sgx1REREJDmZrw/UwyOhHh4JZ0UlbDv+gjV3B2w7/oLTbEHlpt9Ruel3CF6eUA66Csqw/lD2C4WgUkldeqvBUEdEREStiuChhipiEFQRg+C0VaFqz35Yt+yEbesuOItLYf09B9bfcwCVEsr+faAcMgDKQX0h8/J0eW3OSivMjz0HANC+8SIEdesJlQx1RERE1GoJSgWUA/tCObAvnFPGo2r/wepLtFt2wpFvhi13J2y5OwGZDIorQ6AK6w/lkH6QadrfIEOGOiIiImoTBJkMyj46KPvo4Iy5DfYjx2HbshPW3J1wHD+Fqt37ULV7H/DxZ5AH96gOeGH9Ie8QJHXpLYKhjoiIiNocQRCg6NEVih5d4XnHGNhPna0NePYDh2E/cBjlBw6jfN23kHXpeC7gDYC8W2e3nSqFoY6IiIjaPHnHIMjHjqweSVtYBOvWXbBt2Ymqv0xwHD+FiuOnUPH1RsgC/aEcUt2Dpwjp6VZTpTDUERERkVuR+WvgccM18LjhGjhKy2Dbvqf63rude+HIL0Tlhp9RueFnCL4+UA7uB1VYfyiuDIGgbNuxqG1X74YWL16MxYsXw263S10KERFRmyfz9oJ6mB7qYXo4rVbYdu2DLXcHbNt2w1lcAuvPf8L685+AhxrKgX2hGtIfygFXQvBQS116kzHUtTKzZs3CrFmzapcJISIiInEIKhVUQ/pDNaQ/nHY7qvaaYMvdCeuWnXAWFcOWuRW2zK2AQgHlVb2r58Ib3A8yH2+pS28UhjoiIiJqdwS5HMqrQqG8KhSek++A/eBRWHPPTZVy+mz1JdvtewBhHRShvc4tWTYAgreX1KU3iKGOiIiI2jVBJoNC1wMKXQ8477oJjhOnq1ezyN0J+5HjqNp7AFV7D6B8zVeQd+9S+zyn04nWNI6WoY6IiIjoHEEQIO/SEZ5dOsLz1tGwny2Abcu5kbT7D8J+5HjttvajJyDr3Uu6Yv+BoY6IiIioAfKgAMgNw+FhGA6HpQTW7O0oX/V59fe6dpK4urrcZ3IWIiIiIheS+flAfW147b9b2xx3rasaIiIiImoWhjoiIiIiN8BQR0REROQGGOqIiIiI3ABHvxIREVGLEtQq+CfPl7oMt8OeOiIiIiI3wFBHRERE5AYY6oiIiIjcAEMdERERkRtgqCMiIiJyAxz9SkRERNRIrXnkLnvqiIiIiNwAQx0RERGRG2CoIyIiInIDDHVEREREboChjoiIiMgNMNQRERERuQGGOiIiIiI3wFDXyixevBj9+vVDZGSk1KUQERFRGyI4nU6n1EXQhSwWCzQaDYqKiuDn5yd1OURERNQCLufznz11RERERG6AoY6IiIjIDTDUEREREbkBhjoiIiIiN8BQR0REROQGGOqIiIiI3ABDHREREZEbUEhdANWvZvpAi8UicSVERETUUmo+95szjTBDXStVXFwMAOjevbvElRAREVFLKy4uhkajadJzuKJEK+VwOHD8+HH4+vpCEARR922xWNC9e3ccOXKEq1W4CR5T98Lj6X54TN2LK4+n0+lEcXExunTpApmsaXfJsaeulZLJZOjWrZtL2/Dz8+Obi5vhMXUvPJ7uh8fUvbjqeDa1h64GB0oQERERuQGGOiIiIiI3wFDXDqnVajz//PNQq9VSl0Ii4TF1Lzye7ofH1L201uPJgRJEREREboA9dURERERugKGOqI1JS0uTugQSGY8pEYmBoY6oDTGbzYiJiUFKSgrMZrPU5ZAIeEyJSCy8p66dMJvNSEhIAAAUFBQAACIjIxEfH9/s/SUmJgIAAgMDkZeXh6ioKERHR4tTMNUrJycH4eHhjdo2NTW1UccjJSUFqampMBqNMBgM0Gq1MJlMyMnJwerVqzFv3jzo9frLLZ0a4IpjCvAcbS1qzi+tVgsA0Ol0SEpKatY+eI62DmIcU8A15ygnH24HcnJykJycjKSkpNoXIVB9ySc8PBzZ2dlN2p/ZbEZ4eDhSU1PrvJEYjUZkZmY268VNjWMymaDT6aDX6xEQEFDvNgUFBTCZTE368M/IyEBGRkadx7Va7QXHmMTnqmPKc1RaZrMZo0ePhsFgQHp6eu3jJpMJCQkJTToGPEdbB7GPqSvOUfbUtQNRUVF1XoDnS0lJQXZ2NpKTk5u0P71eX++Lzt/fH6mpqTAYDM2ulxqWkJAAo9EInU53Wducb8GCBdBqtcjLy4PJZEJAQADCw8MRFxcnVtl0Ea44pjxHpRceHg6DwXDBMYiKikJWVhYKCwsbvS+eo62DmMfUVecoe+rcXE5OzkU/CCZOnNik3whMJhMyMjIaDIE1++MHhutc7Hjm5OQgJCSk0R/+NSZOnFinF5dalpjHlOeo9BYsWACTyVTve6tWq0VEREST98lzVFpiHlNXnqMcKOHmal48DSkoKGjSG0XNi7ChD5iQkBBkZGTwhm8XMRqNF/1+cnIyf3tvY8Q+pjxHpZeYmNjgMUtNTW3wygm1XmIeU1eeowx1bk6v18NkMiEmJqbe7ycnJ2PSpEmN3l9OTs5FQ2DNizQrK6tJdVLjXOoSHe+VanvEPqY8R6WVlpYGs9ncpPdVat3EPqauPEcZ6tycTqdDXFwc0tLSatN/jZrfBJoyArbmfo6G1LxQTSZTs2umpqu5RHe5l2dycnKQkpKCnJwccQqjZmvuMeU5Kq3Vq1cDQO3N72KfUzxHW57Yx9SV5yhDXTtQM/LVZDIhKioKRqMRCxYsqP1eU1zqcm3NC5WXdlrWxS4NNEZGRkbta6JmP1FRURe9dE+u1dxjynNUWud/0C9YsAAFBQWinFM8R6Uj9jF15TnKgRLtRHx8PLRaLYxGI1JSUmqHwjdVY19k+fn5Td43NU9aWlqTB0acr+a55/fY6vV6pKamwt/fH9nZ2ZwyoYVdzjHlOSqtmg/slJSUes+p4ODgJo9s5DkqLbGPqSvPUfbUtRM1Ew87nU7Ex8fDbDbX9tpR25aYmHhZ93pER0fXO/+ZVqtFdHR0g/djkutc7jEl6ZjNZpjN5novr2m1WhgMhia/7/IclZYrjqmrsKeulbmcSyINdedGRUUhISGh9reIpKQkTJo0qXZpooKCgkb32mm12kbVGBgY2Niy3Zorjuf5amaVd9Vv6ZGRkUhLS6udIJda/zHlOdo0Yh/Pmv//hnptoqKikJaWJtp5y3P0Qq39mLryHGWoa0USEhJq75lorn/OJb1gwQLo9foLXox6vR55eXm1l2MzMjIa1XV8sZs7gb+XION8Sq45nv+UnJzs0jfymuN4qfkO24u2cEx5jjaeK45nQEAAzGZzg/+/NccnKytLlFDHc7SutnBMXXmO8vJrK5KUlASn03lZf/4pOTkZ8+bNa7DN5ORk6PX6Rs+xo9Ppal9w9an57YNvLq45nv+UkZFxWf/XRqMRISEhzX5+e9MWjinP0cZzxfFsbFBrbG8Sz9GmaQvH1JXnKEOdmzOZTJdM+0ajsdEvRr1ef9Fta4Zgc7b6lnGp+Y4uJSsrq1FvLrwJu+Vc7jHlOSqtyMhIAA1/wNecb409p3iOSk/sY+rKc5Shzs3pdLpLznWTl5eH8PDwRu2v5ubthubnyczM5IdFC6k5Bpfqyr8Yg8Fw0fUKMzMzodVq2avTQsQ4pjxHpVUzoKGhaS7y8vIAoNHLSvEclZ7Yx9Sl56iT3Fp8fLwzOjq6we8XFhY6DQaDs7Cw8ILH4+Pjnenp6Rc8x2AwOOPj4+vdH4B6n0PiS09PdwJwxsXFXXLbho5ndna2Mzk5ud7n5OXlOQE4U1NTRamXLk2MY+p08hyVWnR0tFOv19f7PZ1OV++x4Tnauol5TJ1O152jDHXtQHR0tDMuLu6C4Jadne00GAzO7OzsC56TlJTkBODUarUXfK+wsNCp0+kueF5cXFyDL1ISX3JyshNAo/7PL3Y8k5KSnElJSXUey8vLc2q1Wh7PFibWMeU5Kq2a//9/hrHo6GinwWCo9zk8R1s3sY+pq85Rjn5tB1JTU5GRkYHY2Ng6j+t0ugYHSBgMBmi1WkycOPGC72m1WmRnZyMhIQFarRaBgYHIy8tDVFRUvXMpkWtERERAq9XW3u9xMRc7nvHx8cjIyIDRaERBQUHtKK8NGzbwPp0WJtYx5TkqrZr//8TExNo55MxmM2JiYhpcJYTnaOsm9jF11TkqOJ2NGI5FRERERK0aB0oQERERuQGGOiIiIiI3wFBHRERE5AYY6oiIiIjcAEMdERERkRtgqCMiIiJyAwx1RERERG6AoY6IiIjIDTDUEREREbkBhjoiIiIiN8BQR0REROQGGOqIiIiI3ABDHREREZEbYKgjIiIicgMMdURERERugKGOiIiIyA0w1BERERG5AYXUBRARuZucnBwkJiYiICAAWq0WZrMZUVFRiI6Olro0InJjDHVERCJasGABkpOTkZ6eDp1OV/u4v78/TCYT4uPjax/LyMhAREQEtFqtBJUSkbvh5VciIpHExMQgMTER2dnZdQIdACQlJSEhIQEmk6n2sdTUVAY6IhINQx0RkQhSUlKQlpbWYFCLiIgAACQnJwMAzGYzAx0RiYqXX4mILpPZbIbRaIROp4PBYKh3m5qeu5qeusTERBiNxtrnJyQkICMjAyaTCQaDoU5PX0FBASIjI+tcujWbzUhMTERaWhpMJhP0ej0MBgOioqIarIGI3BtDHRHRZUpMTASAiw6EqOmVM5vNMJvNAP4OelqtFsnJyUhJSYHRaERycvIFl2+joqKwevVqZGdn1z4nKSkJISEhMBqNWLp0KfR6vcg/GRG1Jbz8SkR0mTIyMgAAkyZNuuS2BQUFSEhIQFJS0gXfCwgIaPB5ycnJyMnJwYIFC+r9Pi/lEhFDHRHRZarpeWtMT1lOTk7tZdemqOm5S09Pb/Jziah9YKgjIrpMTekl0+v1zbpMWnMvHi+xElFDGOqIiC5TzWXXmh67+jR02bSxEhISoNPp6r1sS0QEMNQREV22+Ph46HQ6JCQkXPC9jIwMGI1GGAwGxMXF1fa41Yx4rU9ycjIWLFhQ+6dmZG1eXp5Lfw4iats4+pWISAR5eXlISEiA0Wisczk2Kiqqdm66pKQkmEwmxMTEICAgoMFet5oQR0TUFAx1REQiudSlUa1W2+IDHVJSUhAXF9eibRKRNHj5lYjIjV3sPj8ici8MdUREbiwzM1PqEoiohTDUERG1EgUFBQDE612LiYkRZT9E1DbwnjoiIomdv44rUD19iV6vv+g9euevFwtUD66omcPObDbXriN7/nqxROTeBKfT6ZS6CCIiIiK6PLz8SkREROQGGOqIiIiI3ABDHREREZEbYKgjIiIicgMMdURERERugKGOiIiIyA0w1BERERG5AYY6IiIiIjfAUEdERETkBhjqiIiIiNzA/wMLamaIFvsWIwAAAABJRU5ErkJggg==", "text/plain": [ "<Figure size 640x480 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cols = list(pf.my_colormap.keys())\n", "for i in range(len(s_params)):\n", " plt.errorbar(\n", " parameter_range,\n", " np.mean(results, axis=1)[:, i],\n", " yerr=np.std(results, axis=1)[:, i],\n", " color=pf.my_colormap[cols[i]],\n", " label=parameter_labels[i],\n", " )\n", "\n", "plt.yscale(\"log\")\n", "\n", "plt.ylabel(r\"$\\rm Uncertainty \\ (1 \\sigma)$\")\n", "plt.xlabel(parameter_labels[parameter_index])\n", "plt.legend(loc=1, ncols=2)\n", "plt.tight_layout()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 2 }
45,455
Python
.py
251
176.537849
39,174
0.907002
Mauropieroni/fastPTA
8
0
3
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,329
N_scaling_figure.ipynb
Mauropieroni_fastPTA/examples/N_scaling_figure.ipynb
{ "cells": [ { "cell_type": "markdown", "id": "3d2a5638", "metadata": {}, "source": [ "### Start importing all libraries" ] }, { "cell_type": "code", "execution_count": 1, "id": "a061b9e8", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)\n" ] } ], "source": [ "# Global\n", "import os\n", "import tqdm\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "# Local\n", "import examples_utils as eu\n", "import fastPTA.utils as ut\n", "import fastPTA.plotting_functions as pf\n", "from fastPTA.Fisher_code import compute_fisher" ] }, { "cell_type": "markdown", "id": "8c55c5d3", "metadata": {}, "source": [ "### Constants to be used in the analysis" ] }, { "cell_type": "code", "execution_count": 2, "id": "9afe1b2e", "metadata": {}, "outputs": [], "source": [ "# Total observation time in years\n", "T_obs_yrs = 16.03\n", "\n", "# Number of frequencies used in the analysis\n", "n_frequencies = 30\n", "\n", "# The analysis assumes a power law template, specify here the input parameters\n", "log_amplitude = -7.1995 # log amplitude\n", "tilt = 2.0 # Tilt\n", "\n", "# Parameters for the HD computations:\n", "# Method to compute the HD, either \"Legendre\" or \"Binned\"\n", "HD_basis = \"Legendre\"\n", "\n", "# Maximum order of the Legendre polynomials\n", "HD_order = 5\n", "\n", "# Whether to add some gaussian prior for the HD coefficients to the Fisher matrix\n", "add_HD_prior = False\n", "\n", "# Specify the type of noise to be used in the analysis\n", "which_experiment = eu.EPTAlike\n", "\n", "# Whether you want to rerun the analysis\n", "rerun = False\n", "\n", "# Minimum number of pulsars to be used in the analysis\n", "N_min = 30\n", "\n", "# Maximum number of pulsars to be used in the analysis\n", "N_max = 200\n", "\n", "# Number of points in N_pulsars to scan over\n", "N_times = 15\n", "\n", "# Number of realizations to be generated for each number of pulsars\n", "N_realizations = 10\n", "\n", "# Name of the outfile, no need for the extension\n", "# (will be stored in generated_data/)\n", "outname = \"Default\"\n", "\n", "# Labels for the signal parameters\n", "signal_labels = [r\"$\\alpha_{*}$\", r\"$n_{\\rm T}$\"]" ] }, { "cell_type": "markdown", "id": "9130a943", "metadata": {}, "source": [ "### Builds the dictionaries with inputs for the code" ] }, { "cell_type": "code", "execution_count": 3, "id": "e1c85ecb", "metadata": {}, "outputs": [], "source": [ "# Assemble the vector with two signal parameters\n", "signal_parameters = np.array([log_amplitude, tilt])\n", "\n", "# Length of the parameter vector\n", "parameter_len = (\n", " len(signal_parameters) + HD_order + 1\n", " if HD_order\n", " else len(signal_parameters)\n", ")\n", "\n", "# Dictionary with the kwargs to generete the pulsar catalogs\n", "default_pulsars = {\n", " \"n_pulsars\": 30,\n", " \"save_catalog\": False,\n", " **which_experiment,\n", "}\n", "\n", "# Dictionary with the kwargs to generate noise and orf tensors\n", "get_tensors_kwargs = {\n", " \"add_curn\": False,\n", " \"HD_order\": HD_order,\n", " \"HD_basis\": HD_basis,\n", " \"regenerate_catalog\": True,\n", "}\n", "\n", "# Dictionary with the kwargs to generate the fisher matrix\n", "fisher_kwargs = {\n", " \"T_obs_yrs\": T_obs_yrs,\n", " \"n_frequencies\": n_frequencies,\n", " \"signal_parameters\": signal_parameters,\n", "}" ] }, { "cell_type": "markdown", "id": "24800e4c", "metadata": {}, "source": [ "### Check if all the folders are in place and define save_path" ] }, { "cell_type": "code", "execution_count": 4, "id": "5ee5ac36", "metadata": {}, "outputs": [], "source": [ "# If it's not there, create the folder to store the generated data\n", "if not os.path.exists(\"generated_data/\"):\n", " os.mkdir(\"generated_data/\")\n", "\n", "# If it's not there, create the folder to store the plots\n", "if not os.path.exists(\"plots/\"):\n", " os.mkdir(\"plots/\")\n", "\n", "# Build the save path\n", "if outname != \"Default\":\n", " save_path = \"generated_data/\" + outname + \".npz\"\n", "elif HD_order == 0:\n", " save_path = \"generated_data/N_scaling.npz\"\n", "else:\n", " save_path = \"generated_data/N_scaling_HD.npz\"" ] }, { "cell_type": "markdown", "id": "9f847562", "metadata": {}, "source": [ "### Run for all values of N_pulsars" ] }, { "cell_type": "code", "execution_count": 5, "id": "6b9de97a", "metadata": {}, "outputs": [], "source": [ "try:\n", " # Check if the file is there and load the data if not rerun\n", " if rerun:\n", " raise FileNotFoundError(\"Forcing regeneration\")\n", "\n", " data = np.load(save_path)\n", "\n", " N_pulsars = data[\"N_pulsars\"]\n", " SNR_values = data[\"SNR_values\"]\n", " parameters_uncertainties = data[\"parameters_uncertainties\"]\n", "\n", "except FileNotFoundError:\n", "\n", " # Define the vector with the values of N_pulsars to scan over\n", " N_pulsars = np.unique(np.geomspace(N_min, N_max, N_times, dtype=int))\n", "\n", " # Redefine N_times in case repeaded values have been dropped\n", " N_times = len(N_pulsars)\n", "\n", " # Initialize the arrays to store the results\n", " SNR_values = np.zeros(shape=(N_times, N_realizations))\n", " parameters_uncertainties = np.zeros(\n", " shape=(N_times, N_realizations, parameter_len)\n", " )\n", "\n", " # Loop over the values of N_pulsars\n", " for i in range(N_times):\n", " # Set the value of N_pulsars\n", " generate_catalog_kwargs = default_pulsars.copy()\n", " generate_catalog_kwargs[\"n_pulsars\"] = N_pulsars[i]\n", "\n", " # Compute the fisher for all the realizations at a given N_pulsars\n", " print(\"Here starts N = %d\" % (N_pulsars[i]))\n", " for j in tqdm.tqdm(range(N_realizations)):\n", " (\n", " frequency,\n", " signal,\n", " HD_functions_IJ,\n", " HD_coeffs,\n", " effective_noise,\n", " SNR,\n", " fisher,\n", " ) = compute_fisher(\n", " n_frequencies=n_frequencies,\n", " signal_label=\"power_law\",\n", " signal_parameters=signal_parameters,\n", " get_tensors_kwargs=get_tensors_kwargs,\n", " generate_catalog_kwargs=generate_catalog_kwargs,\n", " )\n", "\n", " if HD_order and add_HD_prior:\n", " fisher += np.diag(\n", " np.append(\n", " np.zeros(len(signal_parameters)), np.ones(HD_order + 1)\n", " )\n", " )\n", "\n", " # Get covariance matrix and errors\n", " c_inverse = ut.compute_inverse(fisher)\n", " errors = np.sqrt(np.diag(c_inverse))\n", "\n", " # Store the results\n", " SNR_values[i, j] = SNR\n", " parameters_uncertainties[i, j] = errors\n", "\n", " SNR_mean = np.mean(SNR_values[i], axis=-1)\n", " SNR_std = np.std(SNR_values[i], axis=-1)\n", " print(\"SNR=%.2e +-%.2e \\n\" % (SNR_mean, SNR_std))\n", "\n", " to_save = {\n", " \"N_pulsars\": N_pulsars,\n", " \"SNR_values\": SNR_values,\n", " \"parameters_uncertainties\": parameters_uncertainties,\n", " }\n", "\n", " np.savez(save_path, **to_save)" ] }, { "cell_type": "markdown", "id": "7542705d", "metadata": {}, "source": [ "### Compute means and stds" ] }, { "cell_type": "code", "execution_count": 6, "id": "cc04418c", "metadata": {}, "outputs": [], "source": [ "# Mean and std of the SNR over the realizations\n", "SNR_mean = np.mean(SNR_values, axis=-1)\n", "SNR_std = np.std(SNR_values, axis=-1)\n", "\n", "# Mean and std of the uncertainties over the realizations\n", "uncertainties_means = np.mean(parameters_uncertainties, axis=1)\n", "uncertainties_stds = np.std(parameters_uncertainties, axis=1)" ] }, { "cell_type": "markdown", "id": "65963783", "metadata": {}, "source": [ "### Plot the scaling of SNR with N_pulsars" ] }, { "cell_type": "code", "execution_count": 7, "id": "c67b6dfe", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAHqCAYAAAByRmPvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsnElEQVR4nO3deXxb1Z3//7fk3UnsazshCwSwzFa2EDmhhVIoRIaWBtpSOynQjSUSTObXbxewyHc6M+20M8amM99pO2mRQrrQ0jaRobSFaYsV1hbaOhahtKy1EgjZiS07iXfr/v5wpNiJF9mSLcl+PR+PPGLrXl0dSbZ83/eczzkW0zRNAQAAAMAEWZPdAAAAAADpjVABAAAAIC6ECgAAAABxIVQAAAAAiAuhAgAAAEBcCBUAAAAA4kKoAAAAABAXQgUAAACAuBAqphGv1yu3253sZgAAAGCGyUx2AxCfYDCo2tpaSdLmzZvldDqT3CIAAADMNISKNGez2eTxeCRJW7duTXJrAAAAMBMx/AkAAABAXAgVAAAAAOKSNsOfAoGAPB6PWlpaFAgEZBiGXC5XWtUQuFwuVVVVyeFwjLpfKBRSTU2NJKmkpETNzc2qqKhQZWXlVDQTAAAAGJe0CBVer1eSorUDkuT3+1VVVaXa2lo1NTXJMIwktW50wWBQfr9fHo9HgUBAVVVVo+4fCoVUXl4un88nu90evd3lcqmxsTFalA0AAACkipQf/hQMBhUKhU7okXA4HNqyZYuCweCYJ+rJMniK11jDQFVVlSorK4cECmkgUHm9Xvn9/oS3EwAAAIhHyocKj8cz4hAnu90uh8Mhv9+vYDA4xS0bm9PplM/nk9PpVHFx8Zj7R3o1XC7XsNtXrVpFTwUAAABSTsqHCr/fr9LSUoVCoWG3R67oBwKBcR3X6/WOeMzh1NfXT3pwiQzvstlsw24vKyuT3+8fV7sBAACAyZbyNRXFxcUKBAIKBoMnDAmKR1NTkzwej7Zs2TJmPUZkGFNTU1PCHn84kQL0kUTCxtatW8cs9o5VOBzW7t27NWfOHFksloQcEwAAAKnHNE0dOnRIixYtktWa2L6FlA8VDQ0NCgaDI169j/QejDdweDweuVwulZeXj1roXVdXp5qaGm3ZsmXENiRKMBgcdZhUpI0j9ZiEQqGYezHWr1+v9evXq6enR83NzeNtKgAAANLUzp07dcoppyT0mCkfKqSRhwNJA8OS7Hb7hE74xwoWkUDR1NQ06YFCklpaWkZ9nEjgGBwcItPPhkIhBYNBbd68WdLAUKnq6uoRj7V27VqtXbtWbW1tMgxDO3fuVEFBQWKeCAAAAFJOe3u7Fi9erDlz5iT82GkRKkZSV1cnSdqwYcOEjzFSsJjqQCEp5l6GgwcPRr82DCNavD14yt1YRYY8FRQUECoAAABmgMkY8p7yhdojCQQCcrvdJ6znMBEej0cOh0Pl5eUKhUJJCRQAAABAukrbnoqqqip5PJ6ErTId6bEoLS2VpKQECsMwYuqtKCkpmfzGAAAAADFKy56KqqoquVyuEdevmKjBJ/WxrCuRaGM9ZktLiySl7OrhAAAAmJnSLlS43W4tX7581CLkiR63vr5era2tcjqdKi0tnfIF9Ww2WzQ4DCcSeBiSBQAAgFSSVsOfvF6vysrKhu2hCIVCE76C73K55Pf7o4XakcLnSPH2VJ3E2+12+f3+EbdHQk6i1qgAAAAAEiFteirq6+sladhAEQwGRz0ZH83xgSKitrZWTqdT5eXlU9ZjsXr1akkjrw7e2NhIoAAAAEDKSYueikAgoJaWlhFrKPx+/4ROtkcKFBFT3WNht9vlcDi0adOmYWe0qq+vV0NDw6S2AQAAABivlA8VwWBQVVVVcjgccrlcJ2xvaWmR3+9Xa2vruI47VqCIqK2tVUlJSdzBItLbMdbsTj6fT+Xl5Vq9evWQYOFyuVRdXU1PBQAAAFKOxTRNM9mNGE1ZWdmYw49sNpuam5vHddy6ujo5nc6Y6zC8Xq8cDse4QkV9fX10QbqtW7dG6z6WLVsmaWAWq5HqQ9xutwzDUElJiZqbm1VRUZGw6XMHa29vV2Fhodra2lj8DgAAYBqbzPO+lA8VmFyECgAAgJlhMs/70qZQGwAAAEBqIlQAAAAAiAuhAgAAAEBcCBUAAAAA4kKoAAAAABAXQgUAAACAuBAqAAAAAMSFUAEAAAAgLoQKAAAAAHEhVAAAAACIC6ECAAAAQFwIFQAAAADiQqgAAAAAEBdCBQAAAIC4ECoAAAAAxIVQAQAAACAuhAoAAAAAcSFUAAAAAIgLoQIAAABAXAgVAAAAAOJCqAAAAAAQF0IFAAAAgLgQKgAAAADEhVABAAAAIC6ECgAAAABxIVQAAAAAiAuhAgAAAEBcCBUAAAAA4kKoAAAAABAXQgUAAACAuBAqAAAAAMSFUAEAAAAgLoQKAAAAAHEhVAAAAACIC6ECAAAAQFwIFQAAAADiQqgAAAAAEBdCBQAAAIC4ECoAAAAAxIVQAQAAACAuhAoAAAAAcSFUAAAAAIgLoQIAAABAXAgVAAAAAOJCqAAAAAAQF0IFAAAAgLgQKgAAAADEhVABAAAAIC6ECgAAAABxIVQAAAAAiAuhAgAAAEBcCBUAAAAA4kKoAAAAABAXQgUAAACAuBAqAAAAAMSFUAEAAAAgLoQKAAAAAHEhVAAAAACIC6ECAAAAQFwIFQAAAADiQqgAAAAAEBdCBQAAAIC4ECoAAAAAxIVQAQAAACAuhAoAAAAAcSFUAAAAAIhLZrIbAAAAAEwnbb1htfWGE3a8wiyrCrNSuy+AUAEAAAAk0LMHuvXYnq6EHW/lwlxdtygvYcebDIQKAAAAIIEun5ejJUbWiNt7+k3d98ZhSdLdZ81WdoZl1OOlei+FRKgAAAAAEmqs4Up/Ptgd/fqhtzt03aI82Yuyp6Jpkyb1Yw8AAAAwTQRae7RxR4dM05Qk7e4KyxM8okBrT5JbFh9CBQAAADAF9u/frx+89LbMcFgWy7EhTxZJjyewBiMZGP4EAACAtJCOsyqFw2E99dRT8m7YoBfb+vTBf/PIYh36mKakvV39k9qOyUaoAAAAQFpIx1mVDnd1654HH1XZJ+/WlYttAzeapnRcT8WC3IxJbcdkI1QAAAAgLaT6rErhcFhPPvmkfvGLX+g73/mOnm/p1aO7umX//L9JknLUr/ONXDWFeqP3sWigp2LlwtyEtmWqESoAAACQFsYartTdb0a/XpyfqZwxQkWi7Nu3Tz/84Q+1YcMGNTc3S5JuuOEGZV54mQ71mSrOtqpifo7eX5KjnAyL/nywWxt3dEiSFuZadf2iPC1N89mfCBUAAADAOEV6JTwejx599FHNXlymJZ/5omb9rUkXz81V5rxFOiXPqo8uytV7CjKVYbFoX/dA3URx9rFgdPOp+crOsOjtjr4RH4sVtQEAAIBp6IUXXlBFRYXmL3mvVtT9SKdd/mFJ0kmfuEnLi3P0073d0usDQ7F+uXvk40SGa42GFbUBAACANBcOh7Vlyxa98847uuWWWxQ2Tc06d7lu3vScZpWdJ2mgNuIiI0vXLMhVcbZVFyVwOFOq91JIhAoAAABgWHv37o3WSgSDQRmGodWrV+uRA6aee7dHs8rOU6ZFel9Jtirm5w6ZwSkdgkAiESoAAACAoyK9El6vV48++qj6+vqUlT9bJQtP0Sdv+Kg6OjpUXlSoxpYeXTEvRyvm5864ADEcQgUAAABwVE1Njb7yla9IkvKK5+kjX/6aFjlu0BXzcrW6tFCSVGKauvdCQ3lTNLtUOiBUAAAAYEYKh8Py+/2aO3eu7Ha7JGnVqlW6/6c+rfynOlnOXqZ+WdQvKdhlkWmaslgsslgsykvvteoSjlABAACAGWXv3r36wQ9+oA0bNmj79u264YYb9PDDD+utI316KmOhPvLgUwof3bd0VoaumZ+rJUaWLBZ6JkZCqAAAAMC0F+mV8Hq9+uUvf6m+voF1IQoLC3XqqafKNE09f7BHTa0Dq12fX5Cpaxbk6szZmYSJGBAqAAAAMO1df/31evzxx6PfX/L+9+sTd/2rrrv8Ep1VPFuSVDE/R139pq5ekKuTGd80LpSqAwAAYFoxw2E1/O53OnLkSPS2q6++WoWFhfrHL3xJP3mxWVd+73G9sXiZtrQeu9/cnAzdUjqLQDEBhAoAAABMC3v27NGL3/8v/fxjdl33kQ9r06ZN0W033nKbfvjS28r+3D/r2f4ivdsT1uxMi07Nz5Bpmkls9fTA8CcAAACkrXA4rIaGBnm9Xv3qV78aUitx6NAhSdJv93bpf/f0qPto9XVJtlUV83P0/rk5yrZSL5EIhAoAAACkpY6ODl1wwQUKBoOSpNOvXKn3fv6rmrPoNC3Ky9AHTpklScq2St1h6ZS8DF2zIFflRVnKoPg6oQgVAAAASAvhcFgvvviiysvLJUn5+fk688wz1dLSopu/UqPeD66O7ru3R/IEj8hlk95fkqP5ORk6t4CZnCYLoQIAAABq6w2rrTc89o4xKsyyqjArMeW7u3fvjq4rsXPnTr399ts6+eSTJUn3e7w6NKtYP3inT739Q2sjLJIe39Mle1G2zivMSkhbMDxCBQAAAPTsgW49tqcrYcdbuTBX1y3Km/D9w+GwnnjiiWitRH9/vyTJMAy9/PLLOvnkk1X/Tof+FCpQ+7u9wx7DlLS3q3/CbUDsCBUAAADQ5fNytMQY+Wp+T7+p+944LEm6+6zZys4YfRhRPL0UgUBAN9xwg956663obe+/7AO66fN36ZaVFcrLGwgr+7vCau8zlZdhkUWmOo7LDxZJC3KZHnYqECoAAAAw5nCl7kFDixbnZypnjFAxHv39/dq7d290SFNZWZkOHDigouJi3fTlr+ica6v0lmW2XuozddiarUj/xzULcvWBeTl6z5xM/aWtV57gsXUpLBroqVi5MDdh7cTICBUAAABIit27d+v73/++HnjgAZWUlKipqUlh09Rea76+/tTL2p1dpEP90sv9kmQqP8OivV1hzcsZ6H0om33sVNZelK3bTje1cUeHJGlhrlXXL8rT0qLsJDyzmYdQAQAAgCnT398frZX49a9/Ha2VaGtr0+7du7U3b+5Aj0NGkdQv5WdYdJGRpfKibJ0zJ1OZo6wrscTIljQQKu45pyChvSkYHaECAAAAU2Lz5s2qrq7WW2+9JUtGhhYuvVSXfvoOLbMt1udXLFNeXp5K+k0VZVl0bkGW7DEECaQGQgUAAAAmRX9/v7q7u5Wfny9Jys7NVe+8U7XilrtV5violDuwOF1XrjVafJ2TYdF/XFAoK+tJpJXETB4MAAAAHLVr1y59/etfl81m07333itJevidDj132uVaef8vVbbyJil3lmZlWPT+kmxVLc6XaR4rBCdQpB96KgAAABC3/v5+/e53v5PX69Xjv/mN5p2/THveflu/+MUv9LWvfU1tvaYO95malWHR0qKBGomz52QqgwAxLRAqAAAAEJf/+q//0re/8z/qm3+abCs+qhv/8T7lFc3V0uBz+uzKClksFjnm5+h9JQSJ6YpQAQAAgDG9FOqJfn3va+26bmGulhRl6/VDfXr9pPN0xQNPKNcoie4zO9Oi91V8SHl5A1O6nprPaed0xrsLAACAUQVae7RxR4dM05TFYtGujj55tnfoI11hPb6nS3rPxcqVNCtjYL2I8qJsnUWPxIxCqAAAAMCI+vv79dPX98vMzJPFMjDHj8VqlcJhbQv1aEGuVWfNzpSdIDGjESoAAABwgo6ODtV+e72e3t2usz/zhWigiLJata8rrP9ZashCkJjxCBUAAAAY4tX2Xj29v1+7r/yszsnMGrjRNKVB4cEiaUFuBoECklinAgAAYMZ755139LWvfU0XX3yxent7FWjt0ba2PlkzszSnM6T3F2WcEChMSSsX5iatzUgt9FQAAADMQP39/Xr8t7/TT55r0pHF52rrw49r/8uN+vWvf60PfOh6ZVotumxujk7OK5IknXOwWxt3dEiSFuZadf2iPC0tyk7mU0AKIVQAAADMIPv379e3f7xJf24La8Hl16qo6hIVSZptCeujRq+uvfZa5eZmnjAF7BIjW9JAqLjnnALlZDDsCccQKgAAACZZW29Ybb3hhB2vMMuqwqzxjWLvN0398WCPntgZ1oEPfkqlR2+3dLRreaFV1992g+blZCSsjZhZCBUAAACT7NkD3XpsT1fCjrdyYa6uW5Q35n47d+7Uxo0b1dnZqZp779Xje7p0UDlSuF8lR97VDect1tK5p6bNNLBjhbOefjP69c6OPmWP0ZsykXCG4REqAAAAJtnl83K0xMgacXtPv6n73jgsSbr7rNkxnQyPpK+vT7/8bYN8L76pw/NO02/+/T+UnZmhe+65Rx9akK+OflOXlGSrMGvuxJ5MEo0nnEVez9HEGs4wNkIFAADAJBvrinj3oCvsi/MzJ1SvsHPnO/ruo7/Vy725mv++FSq89n0qlHTtHV/STZcuUX5+vi7PyZlI81PGWOFsvOilSBxCBQAAQBo73BfWcwe69diOPvVd+gmdfPR2a+s+XTE/X9f9v//QrMzpcfLMcKXURagAAABIMzt37tQDDzygiy++WBdd9SE9urtLyi9UuKtDJ3e9q5vLz9QZhWezMB2mDKECAAAgDfT19an+iaf0q9d3acfOXXrh//2brrrqKm35yEd0+dxslc7KVHmRoZyMk8c+GJBghAoAAIAUtv3tnfreb59Tc2aR5i55n+bMX6b3dHcp//U/as1nPiVJuvm0WUluJWY6QgUAAECSvRTqiX5972vtum5RnhbkZui5d7vVsMNURvmHNVeSGQ4rc992XVc6Vx/69a+UaWV4E1IDoQIAACCJAq092rijI/r97s4+eYJHdHFxtv7c0qOMWXPU23pAZ5rt+tz7ztPC5csmpR2sAYF4ECoAAACS6Ne7OyXTlCJF1RarZIa1s6NPdiNL7y/J1rmFhqyTXHTNGhCIB6ECAABgih3uC+vp4F498fo76lp4xomzNFmsOtAd1lfPK5yyNrEGBOJBqAAAAJgiYdPUf795WG8c6pOpPGnRmbJIMk1zSLCwSFqQmzGlbWO4EuLBTw4AAMAkCJumth/p0zMHuvXWW29pw4YNslosMk3JlNS//x21+H0qe/f1EwKFqYHhQ0C6oKcCAACkrbGKi8cr3qv1PWFTr7X36qW2Xv0l1Kv2PlNmOKyHPnyxOg7u12WXXaZVp52pvAyLCq3nKOvDF0iS/nywO1qsvTDXqusX5WlpUXZCnhMwFQgVAAAgbY2nuDgWEy0ufv1Qr57c361X2nvVMyjj9Bxu187n/crIzdeKFSvU2dmp9+RHTr+ODW9aYmRLGggV95xToJwxZlYCUg2hAgAApK2xiot7+s3oTEV3nzU7pmlQY7Gvq1/5GRbNObp/S09Y20K9kqTDe9/RW8/+Rjue+Y16335Dn/v0p/S9p57QmWeeGdOxgXREqAAAAEOk2pCieI7dPWhthcX5mRPuARioj+jXX9p69VKoR3u6wqo8JU9ndu7Vzp07tfSS92vlwly9J8/UJR+6SkuWLNF/felOfexjH1N2NsOYMP0RKgAAwBCpMqQo2frCpl45rj4iwmKG9f2f+7Tpi5+VzWbTG2+8EX2Ob775pgzDSFKrgeQgVAAAgCGSNaQoFfSFTWVaB55Pvyl5g0fUezRL5FhMaefrev5nG/Xy4z71HG6XJJWWlqqlpUVz586VJAIFZiRCBQAAGGKqhhSlin1d/doWGhjW1BOWvnJugSQpJ8OiS0qyZbVY9MYTj+rr/3CL+nt7JEknnXSSbll7p26//XadccYZyWw+kBIIFQAAYNp6KdQT/fre19p13aI8XWRkafuRfm0L9eilUK/2dQ+tH2ntCatt99vKzMzUzaedIkl69qxT9NXeHjkcDjmdTn30ox8dV63EWHUqPYOC2s6Ovph6f9KpBwjTH6ECAABMS4HWnujaD5K0uyssT/CIzi3I1CvtfdHbrZLOnpOp8+dYtb/xGd30le/od7/7nf7xH/9R3/72tyVJH/jAB9Tc3CybzTahtoynTiUytGw06VqngumLUAEAAKalx3Z3nnCbRdK+rrDyMiw6vyBTS4xszQnt1k++/4A+8/3va8+ePdF99+7de+x+FsuEA4U0dp3KeNFLgVRDqAAAANNKT9jUnw72aFfXicONTA0MRfrWRYYyrRZ99rOf1Y9//GOZ5sDwo5NOOkm33nqrbr/9dpWVlSWsTQxXwnRHqAAAANNCS09Yzxzo1nMHunVkUI3CUKYW5GZEZ3hasGCBTNNURUWFnE6nrr/+etaVACaAUAEAANJeX9jUN15pj4aJkmyrzpqTqRcO9sg0TVksFpnhsCxWq07e97p07sWSpC984QtyOp0J7ZUAZiJCBQAASDt9YVN/be/VksIsWSwWZVotel9JtnZ29GvF/BxdWJilt3bs0EvPP6135p+tglNKFdrxpgIb6nTKVe+VrhwIFQsXLkzyMwGmB0IFAABIG+29YT17oFvPHOhWe5+pL581W2fNGSiA/sQpecqwWNTW1qYPf+g6NTQ0RGsl8kpO0j/efqvu2/jtuAquAQyPUAEAAFLe2x19enJ/txpbetR3tFzCyLLo8NFvQqFQdCXrgoIC7dq1S6ZpylFxteS4Sadd/iF9fflJab9QH5CqCBUAACBltfcOrC3x98PH1pUonZWhq07K1YWzpcd//Wut83r1pz/9Sbt27dKsWbNksVjk9Xq1YMECnXxaqT6/LZS8JwDMEIQKAACQUvpNUxmWgR6F2ZkWHeoNyyqpvChLK+bnytz3th745gO6/vvf1759+yQNrCPxzDPP6Nprr5UkXXrppZKk7hFngQKQSIQKAACQEvZ09uvJ/V36W3ufvnZegbKsFlktFn3u9Fkqyrbqndf/pjtuuEtPPPFE9D4LFiyIritRWlqaxNYDMxuhIs15vV41NzertrY22U0BAGDcwqapv7X36cn9XXql/dgQp5dCvVpWnK3e3l7ZZg8UYodmz1ZDQ4MsFouuvvpqOZ1OXf6hj6hDGZIG6i6O1zOop2JnR5+yx6ipYJE6YGIIFWkoGAxGQ8TmzZvldDqT3CIAAManq9/UCwe79eT+bu3vHlj52iLpwsIsXVGSoVe2/Er/1+tVfn6+Hn30UUlSaWmpHnjgAV155ZXRXolf7+7UY3s6YnrM+944POY+Kxfm6rpFeRN6TsBMRqhIQzabTR6PR5K0devWJLcGAIDxa+kJ6+c7OyVJuVbp/XNzVNa5T/UbvVrxgx9EayUyMzN18OBBlZSUSJJuvfXWIce5fF6OlhhZCWsXvRTAxBAqAADApDJNU28c7tPOjn455udKkhblZejyudlalJeh7pdf0H+5a9TQ0BC9z4IFC3TbbbfptttuiwaK4TBcCUgNhAoAADApesKm/tzSo6f2d+udzv6jMzhlqyjbKtM0dfNpsyRJ33391WitxDXXXCOn06mVK1cqKytxPRAAJhehYpK5XC5VVVXJ4XCMul8oFFJNTY0kqaSkRM3NzaqoqFBlZeVUNBMAgIRp7QnrmQPdevZAt44cLZTOtkoXG5l6/LFf60ff+x+tWrVKa9askSTdfPPN2rNnj2699VZmcALSFKFiEgSDQfn9fnk8HgUCAVVVVY26fygUUnl5uXw+n+x2e/R2l8ulxsZGZnYCAKSNl0I9ur/5iMJHvy/JtuoC62G9+HOv7vLer/3790uSWltbo6GisLBQX//615PUYgCJQKhIMK/Xq4aGBlVUVKi2tlYVFRVj3qeqqkqVlZVDAoUkeTweFRUVqaKiYsyeDgAApspLoZ7o1/e+1q4rT8rV5fNyJElnzM5UplU6LT9Ts4Iv6pH//nfVDFpXYuHChdFaCQDTB6EiwZxOZ3SK10AgMOb+g3s1hrNq1SrV1tYSKgAAKSHQ2qONO45N4bq7K6yH3u7Q7EyL7EXZmpVp1dfPK5SRbdXKL9fJ/8QT0VoJl8ulj3zkI9RKANMQ0yUkWSRM2Gy2YbeXlZXJ7/crFApNYasAABjer3Z3Dnv7T17dp4qKCr311lsysgdOL77whS/oK1/5ioLBoH7zm9/oYx/7GIECmKYIFUkWCARkGMaI2yNhg/UoAADJ1NEX1q92d2pPV3jY7W3KlN/v18aNG6O3ORwOff3rX9fpp58+Ra0EkCyEiiQLBoMqLi4ecXskcASDwWG3h0IhejEAAJPub+19enxP18A3pjlkWzjcryO7dugrX/kKtRLADEVNRZK1tLSMOPRJUjRwDA4OkelnQ6GQgsGgNm/eLGlgqFR1dfWoj9fd3a3u7u7o9+3t7XG0HgAwXXX2m9rb1a/SWQOnCuVFWQq0ZmmO+vRMaCBIWK0ZMsNhWa0Zuuuqi7Ss6pLkNhpA0hAqkizWXoaDBw9GvzYMIzrN7EgF3iOpqanR1772tXHdBwAwc3T1m3pyf5ca9nUr0yItfb1BT/sb5PF45CqbLUlq+u6PtL/svcorOUkn52fq+kV5WlqUneSWA0gmhj/NMOvWrVNbW1v0386dO5PdJABACujqN/WbPZ36vy+36Ze7u9TRb2rX9mb9Q/X/1YYNG/TnP/85uu9/uD6j/LnzZbFYdM85BQQKAPRUJJthGDH1VpSUlCTk8XJycpSTk5OQYwEA0l9Xv6mnD3Trib2dOtI/cFvorTcV2HCfmp94RAsXLND/+Zd/0amnnprchgJIaVMWKu677z4VFRXp9ttvn6qHTAujFWlLAzUXkkadIQoAILX1htXWO/zMRBNRmGVVYdb079Df392vX+wamCa27e1mBR4YCBMfuvpq/ecvfqFrr71WmZlcgwQwuin7lLj77rvV1tamb37zm7rrrrum6mFTns1mG3W62EgvxmjF3AAA6dkD3XosMjtRAqxcmKvrFuUl7Hipoids6rXWTr3q/7U6Ojp0yy236KqTcnRKrkXVX/iiPnnllbr9e830TAAYlym99FBYWMgV9+PY7Xb5/f4Rt0emkmVFbQAY3eXzcrTEGHlhtZ5+U/e9cViSdPdZs5WdYRn1eJPRS5HM3pSesKlHXnlHT4ekvoxs/fz/fFmz1adPfepTWr04X5L0h+eeS1jbAMwsEwoVTz75pBoaGlRWVqZVq1apoKAgpvu1t7fL5/MxBGqQ1atXq66uToFAQHa7/YTtjY2NBAoAiMFYJ9jd/cfWVlicn6mcMULFZEhGb8rhzi7d/8yLejX7JGUWFkt50pFdb6n0gqW64VK7uru7WeUaQNzGHSruvPNOeb3e6Pd33HGHGhoadOWVVw7Zb9u2bdq6dauam5sVDAYVCAQUDAbldDrjb/U0Yrfb5XA4tGnTpmFDRX19vRoaGpLQMgBAok1lb0pv2NTv3+3Wptf3y5x3jjIlHdqzU32NT+jmZefoI7/5BbUSABJmXJ8m69atk8fjkc1mk8PhUEtLixoaGuRwOBQMBnXaaaepvb1d5eXl0WE75qBVN+12u773ve8l9hmksMhrMNbsTj6fT+Xl5Vq9evWQYOFyuVRdXU1PBQBME5Pdm9Ld3a1f/OIXOuecc2Q770I9sqtTZv4cdR7Yo/m7X9E9Ky5W6UrqGgEkXsyhoq2tTR6PR36/X1ddddWQbW63W9XV1dq0aZNOP/102Ww23X333dFpUA3DkM1m04oVKxLb+hRUX18fXZAuUoC9Zs2a6G1VVVUn9NYYhqGmpia53W4ZhqGSkhI1NzeroqJClZWVU/sEAABp54033pDngQfU8OrbevmxTfr0pz+tBx98UNctzFNOhkXvvfAs5Wadm+xmApjGYg4V9957r2pra08IFJJUW1urVatWad26dXI6nbr33nsT2sh0UllZOaEgYBjGuFfHBgDMXN3d3XrkkUfk3fh97S04WUtv/ZIuWb1YZneHzj13IEBcvSA3ya0EMFPEHCoCgYBqampG3O50OnXnnXfqzTffTEjDAADAyC7/4JVqm3+Gln7+Pp118mmSpJz+bv3wZ5tUXjL9psIFkNoSVqG1fPlyLV26NFGHAwAAR0VqJT7+8Y8rMztbfzzYo2V1P1Nf/sDsi7OtYV27aJY+MM9QtnXqZ7UCgIRNwl1YWKjly5cn6nAAAMx4r732mr785S/r5JNP1o033qhHH31UkvS/e7rUl1+gOZkWVZ2Sp5olxVoxP5dAASBpYu6pGDyL00gsltE/zNra2rRlyxbdcMMNsT4sAAAzSl93l3Y89ZgqvvSQnnv2GVkyMmRb8VHlvxFQb2+vMiwW3XBKnlp6wrpiXg5BAkBKiDlUjBUYYtHS0qLGxkZCBQAAw3hu50G1v7Ndp1+5Um1l5+jS5X/QORXXK3PuQt20OFdXnDRQK1FelJ3klgLAUDGHisbGRm3cuFFFRUWj7vPII48Muy2ypoXNZht/KwEAmIa6urq0detWXXbZZQq09sh3MENFpWfLYrWq5IzzVHLm+ZKkWRkWZVgTNmIZABIu5lARCoXGXA3bNE3V19ePuM1isai6unp8LQQAIM31m6YO9Zpq7wurrdfU62/v0jONAb344jY1emu1a9cuPbZ/YKVtSyQ8HB0hUJBp0dfPL1TuOBfCA4CpNK7Zn+69994J9zREeioAAJgOTNNUV1hq6w2rvXcgLLT1hhU2h64P8V9vHNIbh/o0tDKxUFpypcpOW6K3f/lDvfnmm9qXc86wj9PRbxIoAKS8mEOF3W7X3XffHdeDORwOeb3euI4BAMBEvBTqiX5972vtum5RnuzD1Cb0hU2195lHg0JY7b2m+kxTV550LCj8z98P67X2XvUOM4dJfoZlSKjIsEimJLO/Xx0t+9Xx7j51HjygubNytOTMUm0MBpWZmamGV9q0qzM85FgWSQtyM+J+7gAw2WIOFS6XK+4HKy4u1rJly+I+DgAA4xFo7dHGHR3R73d3heUJHpHLpmiw8DQf1uuH+nSk/8SkkJ9hGRIqwqYZDRR5GRYVZFpUmGVVQdbA/52dndq3b59OP/10ffq0WWprOahzTl+s+SedpNtvv1233nqrTjnllCGPsXJhnjzBI9HvLRoIIysXsio2gNQXc6hYs2ZN3A9WWFioT3ziE3EfBwCA8fjl7s5hb398T1c0VHSHzWigsEoqzLKoIMuqgiyrCrMsCpumrEfrHG48NV8WSQVZ1iFTur766qvyfserOx98UOeff76eeeYZFWdbVbxgnl54/nktWbJEGRnD9zzYi7J12+lmNPwszLXq+kV5WspMTwDSQMJW1AYATE9tR4cBJUphllWFWVMzk1Hz4T7593Vpb9fw7d/b1R/9uvKUfH1CA2EiP8MSDRDDmZdzLBh0dXXp4Ycflsfj0XPPPRe9fceOHWpra1NhYaGkgWHEY1liZEsaCBX3nFOgHGopAKSJmEPFN7/5Td11112T2RYAQAp69kC3HtvTlbDjrVyYq+sW5SXseKN5/VCvAqHeYbcdX6+wKG/8tQv333+//umf/kktLS2SpIyMDK1cuVJOp1PXXHPNiL0SADDdxBwqPB4PoQIAZqDL5+VoiZE14vaeflP3vXFYknT3WbOVPcbV9cnqpdjX1a+nD3TrPXMydaExMGTosrk5CvWaOinHKt87x4ZATbReobOzU/39/Zo9e7akgWG9LS0tOvXUU6O1EieffHKinlLSjNU71TOo7mRnR19M7/lU9U4BSI6YQ0Vzc7OuueYaVVVVxf2gt99+e9zHAABMjbFOCLsHnWAuzs+c0iE7YdPUy229evpAt15p75MkvdPRHw0VBVlW3XRq/sDXmZYJ1yu88sor2rBhg370ox/pnnvuia65dMMNN+jxxx+fdr0S4+mdigTK0Uxl7xSA5BhXTYXdbteKFSvG9QCBQEBOp1OhUEiGYWjDhg3juj8mx/r167V+/Xr19/ePvTMApJjDfWH94d0ePXOgWwd7Bq6oWyRdUJilK0/KGfY+461X6OzsjNZK/P73v4/e/rvf/S4aKnJycnTttdfG/4RSzFi9U+NFLwUw/cUcKmw2m2pqasZ18DvvvFNer1emacrpdKq2tjZasIbkWrt2rdauXav29nbeEwBpx9N8RG8cHuiZyM+w6LK52bpiXo7m5iSmt2DdunXyeDxqbW2VNFArcd1118npdOrqq69OyGOkMoYrARivcdVUxOqRRx7RmjVr1NraKrvdrg0bNmjp0qUTaiAAYGbrC5sKhHp1XkGmZmUOnOheNjdbnf2mrjwpR8uLs4dM6zoR3d3dysk51sOxc+dOtba26tRTT9WaNWt06623atGiRXE9BgBMZzGHiliGPe3YsUNVVVUKBAIqLCyUx+NJyPoWAICZp7UnrOfe7dZzB7rV3mfqEyfnRVeqXl6crYuLs2UZZdrXWLzyyivyer168MEH9cwzz+iCCy6QJFVXV+vmm2/W1VdfPa1qJQBgsiRsnYp169aprq6OoU4AgAkzTVNvHu7T0we69WJrryLzDxVmWYbUQIy2hsRY+ro69dBPfq0fPLBhSK3Ez3/+82iouPDCC3XhhRdO+DFGwqxKAKaruEMFQ50AAInQb5q697VDervj2AQSZ87O1Afn5WhpUZYy4uyVCIVCev4/1+nNxzfp++0hSQO1Etdff72cTqcqKiriOn4smFUJwHQ14VCxY8cOuVwu+f1+hjoBACaktSesouyBK+0ZFovm51i1t6tf7y3O1gfn5eiU/PiufZmmGR0ilZ+fr7//9mF1t4d06mmnyXm0VmLhwoVxP49YMasSgOlqQp/WDHUCAExU2DT1t/Y+Pb2/S39r79O/nlughUdXs77hlHzdeKqiBdkT9be//U1er1fPPfectm7dKqvVquzsbF3yxW8o1yjWw3fcoLysqa+VYLgSgOlqXKFi8FAnm80mn8837qFO27Zt00UXXTSu+wAA0t+RvrCeP9ijp/d3691Ba0u8fqg3GiqKsyd+wt3Z2SmfzyePx6Pnn38+evuTTz4ph8MhSTrz2lWSJKuVE3sASKSYQ8U111wjv98v0zTjGupUVVWlN998c0L3BQCkn8N9Yf1iV6f+dLBHvUfrkPMzLHr/0bUl5sW5tsT27dv13//933rwwQcVCoUkDdRKfPSjH5XT6dRVV10V5zMAAIwl5lDR0NCg8vJybdiwQYZhaMeOHeN+MJ/Pp2AwOO77AQDSV47Vom2hXvWa0il5GfrgvBy9tyT+tSUi9uzZo29/+9uSpNNPP11r1qzRLbfcMqW1EgAw08UcKgzDkNPpVGNj44QfrKGhYcL3BYDpbKypRsdrKsfuvxTqiX7976+265S8DB3qM/XFs2bLarEoy2rRJxfny8iy6IzZmXGtLfHXv/5VXq9Xs2bNUk1NjSTpkksu0ec//3lde+21qqioYGgTACSBxTRNc+zdpGXLlmnr1q1xP+AZZ5yhv//973EfB4nR3t6uwsJCtbW1qaCgINnNAWasX+/ujHmq0VhM1VSjgdYeeYJHht32f86crXML4p/pqKOjQz6fT16vN1orMWfOHO3evVuzZ8+O+Tjd/aY+vy0kSfr2RcaQdS8AYCaYzPO+mHsqVq9enZAHdLlcCTkOAEwnY0012tNvRtctuPus2TEtijYVfrm7c9jbi7OtOmt2fNPBvvLKK7r//vv14x//OForkZmZGa2VyM/Pj+v4AIDEifkT/+67707IAybqOAAwnYw1XKl70ErLi/MzU+Iq++7Ofu3tGn7IVntvWJlx1kz89Kc/1Xe+8x1JUmlpabRWYsGCBcPuz2rVAJA8ca+oDQCYmRbmWpVtkXqOG0RrkbQgd3wzOr388svyer26/vrroytb33bbbXr11VflcrnkcDjGrJVgtWoASJ5JCRXbtm3Tpk2bFAgEZLPZVF5erttvv30yHgoAMEX2dvXr8T1duunUfOVlWGSxWHTTqfn64Vsd0X0skkwNnJCPpaOjQ5s3b5bX69ULL7wgSXrrrbeioaK0tFQPP/xwzO1jtWoASJ6YQ8U999yjurq66KwdhmHI4XBo3bp1Qxazu/POO+X1emWaphwOhw4ePKj7779ftbW1qq+v15IlSxL+JAAAk6ez39Tjezq1ZV+3wpIKsyyqPGWgnuGSuTnKsEgbdwwEi4W5Vl2/KE9Li7JHPF6kV+LHP/6x2traJA3USnzsYx+Lq+6O4UoAkDwxh4p7771Xq1evVlVVlTwej1asWHHCPnfccYc2bNigFStWyOfzqbCwMLrN7/ersrJSTU1NzDIEAGkgbJr6c0uPHn6nU+19A2OcLijM0uVzc4bst8TIljQQKu45p2DMeo/PfOYz2rZtmyTJZrNpzZo1+tznPjdirQQAIPXFHCra2tp0zz33jDgdbFtbm7xer4qKivTEE0+csN3hcOh73/ue3G63vve97028xQCASfd2R59+9naHgkf6JUkn5Vi1anG+Ligc3/Civ/zlL9q4caO+8Y1vaM6cOZKktWvX6re//a1cLpdWrFjBuhIAMA2Mq6fi3nvvHXH75s2bJUnr1q0bcR+Hw6H77rtvHM0DACTDln3dCh7pV45VunZhnlaclKOsGGdzOnLkSLRW4o9//KMk6dxzz40Obbr99tupswOAaSbmUBEIBKKrlw6noaFBFotFDocjIQ0DAEydftNUV7+pWZkDvQY3nJInq0W6flGeirJj60k4+Obf9IXv/0w//clP1N7eLulYrQT1dAAwvcUcKsZaeNvv90vSkKLt4bS0tMT6kACAKfD6oV5t2tmpk3KsuqNsYIXqwiyrPnv6rJiP0fHuPj1y8xUywwPrRNhsNjmdTn3uc5/T/PnzJ6XdAIDUEXOoKCoqGnHb9u3bFQqFotMAjqStrU2lpaWxtw4AMGlaesKqf6dDTa29kqRQz8DicbHMoPTSSy/p97//vdauXStJyp87X6ddca3sxbm68w6XrrrqKmolAGAGGVeoeOmll4btwq6trZXFYlFVVdWox7j33nt1xx13jL+VAICE6Q2batjXpd/s7VJPeGBticvn5ej6RbmanTlyEDhy5Ig2bdokr9erP/3pT7JYLFq5cqUWnHKqJKmi9of6jr04JVb7BgBMrZhDRW1trRwOh+rr63XaaadFb//mN78ZnfVptMK7bdu2qbW1VVdddVV8LQYATNjuzn6t//thvdszMEzpjNmZ+uTiPC3OH/nPwUsvvSSPx6OHHnooWiuRlZWlj3/84+rp6YnuZ6FnAgBmrJhDRWFhoWpqarR06VItX75chmEoEAioublZNptNDQ0Nw96vvb1dHo9H99xzj3w+X8IaDgAYv7k5VoUlGVkWfeKUfC0vyoouajqc+vr6Ib3QZWVl0VqJk046SZLU3T96zR0AYPqzmGNVYB8nsh5FY2OjJKmiokJr1qw5Yb/t27ertrZWwWBwyO3l5eWjziKFqdXe3q7CwkK1tbWxKCGQwrr7TX1+W0iS9O2LjJiHGHX2m/r9u91acVKOrEfDw86OPs3LyVDuMMfYtm2b2tradMUVV0iSDh06pNNPP10Oh0NOp1NXXnnlCbUSE20bAGBqTeZ5X8w9FRGFhYW6++67x9yvtLRU999//4QaBQCIz/GrYedaLfrAvIGVsI8f6nT48GFt2rRJHo9HjY2NuuCCC/TSSy/JYrFozpw5euedd5SXl5eMpwEASBPjDhWYHtavX6/169erv78/2U0BkGBvHenTz3cOXQ27JOfEeocXX3xRXq9XDz30kA4dOiRpoFbiPe95j44cOaLZswemlyVQAADGQqiYodauXau1a9dGu8EApL9DvWE9urtTf3i3R6Y06mrYd999t775zW9Gvz/jjDPkdDr12c9+NlorAQBArAgVADBNfH/HEb3S3idJurg4WzecfGw17G3btumkk07SokWLJElXXnmlvvWtb+njH/+4XC6XPvjBD464rkRb78D6FSPpGVSovbOjT9lj1FQUZlljWgsDAJA+CBUAkMbCphktwP7oojwd7uvQ6sX5OmN2pg4fPqwHHvx5dHKNe+65JzpRxjXXXKN33nknpl6JZw9067E9XTG15743Do+5z8qFubpuEUOqAGA6IVQAQBqKrIY9LydDHz954AT99FmZ+r/nzNG2bdt0x9F1JQ4fHjjJz8rKin4tSRkZGTEPc7p8Xo6WGFkJazu9FAAw/RAqAEw7Yw3XGa9UGK7zUujYInP/9Nc2dfab6jOlLEuvKubnaHamVaZpqqKiQlu2bInuG6mV+NznPqd58+ZN6LFT4fkDAFIboQLAtDOe4TqxSPZwnUBrjzbu6Ih+f6hvoIZhQa5VH+zbo1kZhiTJYrHo7LPP1rPPPqsbbrghWisx2uJ2AAAkwrgXv8P0wuJ3mI5iKSyOjP2/+6zZKV9Y/JW/tulA93HPxzTV8U5QP/n4cj333HO67LLLJEl79uxRZmbmhHslAADTV0otfgcAqW6sENA9aLaixfmZKbkCdG/YjE4D29ozTECyWJR90snKysrSX/7yl2ioWLhw4VQ2EwAASYQKAEgZYdPUK+192rK/S71h6a6z50iSSjLC2tsjWQZN+WqGw8rvOaJdu3bRKwEASDpCBYAJm44F0cnQ1W/qhYPdemp/t/YdHeZkkakD3f2al5Ohjy6eLe/2DoXD/bJaMyTTlMVq1a1LTtW8ouwktx4AAEIFgDhMt4LoqfZud7+e3N+tP7zbra6j2Syjr0e7n/qVXnzoe/rW1hckZai8OEeXv/GmnrbMl6zSorwMXb8oT0sJFACAFEGoADBhY61fMJGC6JkkeKRfW/Z3D3wT2q/GH3xLLz/yoPo6jyg7O1tNTU269NJLJUmVy8/Ts9tCkqR7zilIyToQAMDMRagAMGHToSB6qvSETf3xYI+yrdL7SnIGbnttqw6+uEt/+sn9eudPT0mmqbPOOktOp1Of/exnNXfu3CS3GgCA2BAqAGASHezu19MHuvX7d3vU0W+qKEtaXpytDItFxYahh//x/crOztaNn/ykXC6XLr/8ctaVAACkHUIFACSYaZp683CfntzfrW2hXkX6a7oO7Naevz6v8Pm3K8MinXvuufrJT36ia665hl4JIIFmajBn6TEkE6ECABLsF7s69bt93dHv92x9Ti899F3t/EOD5syere/9w83Kys+XJN18883JaiYwLQUCAVVWVsrn8yW7KcCMMrOqIgFgErT2hIcsUNf64u/V392lVx/5oXyr369f3/FR5e3foW/ed5+am5uVfzRQAEg8t9utdevWJbsZwIxDTwUATIBpmgoe6ddT+7vU1Nqry+Zm6+bTZkmSWl57ST/+tyqpp0uVlZVybvwetRLAFAgEApIku92e5JYAMw89FQAwDn1hU3882K17XzukutcPqbG1V2FJL+94Jzqe+XOf+5xqvvav2rVrlx566CFdccUVBApgCtTU1Ki2tvaE2+vr61VVVSWLxSKLxaJgMDjsPuXl5bJYLCovL5fX652KJgPTBqECAGK0ZV+X1r3cph/s6NCOjn71d3fp9V89pIdvvkKN//YP0eAwb948felLX6L4GphCwWBQwWBw2F6KSI1FZWWlJMnj8Qy7z5YtW+RwONTU1CSn0znpbQamE0IFAIwi0vtgmqae+fNWtfeZOrJ/txq/+w099JELtG/zev2T6xZt3rw5yS0FZja32z1sL0VEIBCQy+WSw+EYsRciGAzK7XZPVhOBaY1QAQDH6TdNbW3pUd1r7fpre5+kgSkq/7DhP7Xl/96uhyvfq3O79+l3v3xEr7zyir74xS+qpKQkya0GZq5IL4XD4RhxH7/fL4fDIZfLpVAopPr6+hH3ATB+FGoDwFGH+8J69kC3nt7fpbaBLKHfvdOuCwoHAsNddzr12muv6TM/9RIigBRSW1s75oxPBw8elDQwzMkwDNXU1ESHQx2/D4Dxo6cCwIzzUqgn+vW9r7WrYW+nfrTjiKq3teqXuwcCRcfB/Wry1qn7iYei+374wx+mVwKQFAqFVFVVpbKyMhUVFUWv/h/P7XarqqpKLpdrUtuydevWEwLC8Qb/3jqdTgUCgRMKtvndBiaOUAFgRgm09mjjjo7o97u7wqrf1aXnD/ao32LVgVde1FP/cocCd63Sp94zX3d+9lNJbC2QmtasWaPa2lo1NzerqalJwWBQpaWl0ZP0UCikiooKrV69Wj6fb9jC6ESpqakZs5ciEAgMKeCO7D+4BoOhT0B8CBUApqWesKndnf16ua1XT+3vkm9nh77XfFgbtx85YV8zHFZ3e0j/e8f1mvXED7Txnn/UX1/api984QsqLi5OQuuB1OX1elVbWyubzSZJstlsamhokM1mU0VFRbQXw+PxTPp6EZHaiLF6KY4PDIZhnFCwfXzwiIff71d5eTlF35hRqKkAkJb6TVOtPWEd7Anr3e6Bf++fm625ORmSpKf3d+vhXZ0xHctitSp39my99LtfEiKAMYRCoWigGGzLli0qLS2NnkwPt894HkMaOPkfjdfrjenEfbhaCbfbLb/fL6/Xm/DpYyMF4c3NzQk9LpDKCBUAUpJpmjrUZyo3w6Js68D6D39r69UT+7r0bndYLT1hhY+7z6n5GdFQMTfHqlzrwP/WI+3a8ZcmbX26QedUrdGchYtlsR7rqLVIOnlWjoqLC6bo2QHTj2EY2rBhg6qqquIKFIFAQCtWrNCqVavGHDbl8XhiOnEfrlbC4XDIMAzV1tayJgWQAIQKAJPm+ILo6xblyV6UPWSf9t6wth/p04Huwb0O/TrYE1Z3WLqzbJYuMgbu0xU29dqhvuh9My1ScbZVc3OsmpttVVH2saBQaunQWS/8TBu8Xr300kvR22dbwjr3//yHTNMcWF1Xkilp5cLcyXkRgBmkpaVFhmGoqqpK27dvH7On4XiRaV6XLVsmr9c7aqioq6uLqQB8tFqJdevWye12y+12a/Xq1UPu43a7tWzZMpWXl0uSmpqaoj0wg7d7PB4FAgGtWbMm+v1wvF6vbDabQqGQNm3aJJ/PF30saWBa3Obm5midh9/vl8vlksvlkmEY8ng82rJliwzDGPFYQDIRKgBMiuEKoj3BIyqb1aWPnZyns+ZkSZLePNwnb/DEOgdpoAehvdeMfm+blanPnZ6vudlWzc3JUGGWRdajq1gfb4vfr39cu1aSlJOTo1WrVsnpdOr973+/GluOtW1hrlXXL8rT0uPCDoDhGYahUCh0QmAIBoPy+Xzavn27SktLtWLFCjU1NY3r2JHaCMMwxhyaFGsvRSAQUHV19bDbnE6n3G53tE4kwuFwaPXq1WpoaIiGhGAwqPLycrW2tkaHN0Wen91uH/L98erq6mS326PhprGxMbrN5XLJ5/NFazwii/g5HA5VVlaqoaFBDQ0N0SFhox0LSCYKtQFMil/uHr6eoflIv97u6I9+f1KOVafmZ8huZOnq+Tm66dR8ff6M2fq38wr0naWGLp+XE923KNuqS0pydOacLBVlW6OBoq2tTd/97nf1wx/+MLrv9ddfryuuuEL//d//rd27d+vBBx/UZZddJovFoiXGsQBxzzkFBApgHJxOp2pqaobcFlmt2ufzyTCM6IxQkcLt8XI4HLLZbCOukO31escszo7YtGnTiNsMw1BlZaWWLVs27PbBhds2m002m23YRfMkjVqPZbPZ5HK55PV6FQwGh8xW5fP5oo9js9kUCASi20pKSqLhrbq6WoZhjHosIJnoqZih1q9fr/Xr16u/v3/snYFx2tnRp71dx1c8DLBKOnvOsY+exfmZ+qf3jL+WwTRN/fnPf5bH49HPf/5zdXZ26rTTTtNnPvMZWa1WZWdn6+mnn57gMwAwmnXr1kWHHrW0tERngIqw2Wzavn273G63SktLZbPZxt1r4Xa75XK5hh2+VFtbO+bxIveNhBuPxzNsrce6deuiQ5DGUlxcfMLaFrGorKxUS0uLPB6PXC6XnE5ntAfEZrPJ7XarrKxs2J6X5cuXx3wsIJkIFTPU2rVrtXbtWrW3t6uwsDDZzcFRbb1htfUOfzI+EYVZVhVmTU2HZGe/qbyMgZ6Dk/MylGmR+syh+1gkLcrL0OL8iX/0hEIhPfTQQ/J6vfrLX/4Svf3cc8+Vy+VSb2+vcnJyRjkCgHhFxvjHss9ET3idTqdcLld0KFBEZArZseo1Yn1cu90e81SykQA1nNHCht/vl9PplNPpVCgU0ooVK6I9OOXl5dEpef1+/5CeivEca7z1K0CiESqAFPLsgW49tqcrYcdbuTBX1y3KS9jxhrPjSJ9+s7dLwcN9+vcLCpVtHahz+NSp+frhW8dqKhJVEH3XXXdp48aNkqTc3NxorcSll14qywj1FelgrEDZ038soe3s6FN2xujPdSoDJTBZnE5ndJhP5GS+pqZGW7ZsmZLHHxwUgsGgQqFQdNjV8b0zw9U2RIJDZL/IjFOR4VZ+vz86pGnw4wUCgRHDy0jHApKNUAGkkMvn5WiJkTXi9p5+U/e9cViSdPdZs2M6sZwMpmnqzcN9+t89XXr16GxMFkmvtffqwqP1CpfMzVGGRXEVREd6JT74wQ/qvPPOkyTddttteuGFF+RyufSpT31q2qwrMZ5AGfkZGM1UBEpgsg0uovZ4PPL7/Vq2bNmUXpWP1FA0NDQMGXLlcDjk8/mi2ysqKqLtXbZsmXw+n4LBoPx+v0pKShQMBlVfX6+WlhaVl5dH6zk2bdqk+vr6aEDw+Xzy+/2y2+3RehDDMKIF6yMdC0g2i2ma5ti7YbqKDH9qa2tTQQFz9Ke67n5Tn98WkiR9+yJDOWOEikQzTVN/be/Tb/Z0qvnIQD2OVdLFxdn60IJcLczLiLu9pmnqj3/8o7xerzZt2qTOzk7deeed+u53vxvdLimuXolkv47DSeehb8BkqqiokN/vl2maKi8vl8/ni2sdjFjV1dXp4MGDIxaLA+loMs/76KkAELN93WH9z98HrpJnWqT3z83R1fNzogvOxSMUCuknP/mJvF6vXn755ejt5513XnSeeCm+MJHKCAHA8CIrX0cW1ZuKQAFg/AgVAEbUb5oKHu7TmUfXlFiQm6H3FmerIMuiivm5CTsJNk1Ty5Yti858kpubq9WrV8vpdOqSSy6ZtkECwNgi08vW19fHtC5FIvj9/ujQo9EWzwNwDKECwAl6wqb+8G63ntjXrVBPWN84v0AlR3sjbi2dFffxQ6GQfD6fbrnlFmVmZspiseiTn/ykHn300WitRFFRUdyPA2B6cLvd0RmSpoLD4Rj3FLjATEeoABDV2W/qmQPd8u/r0qGj88EWZFq0vzscDRUTZZqmXnhhaK3EwoULtXLlSknSP//zP+vrX/86vRIAThCZQhVA6iJUAFBnv6mGfV16an+3Oo5OXVqSbdU1C3J1aUm2sqxxFEUfatOb/7tZy2/5if46qFbi/PPPHxIgWFsCAID0RajAjMDMOqMLm6a27OtSV1hakGvVhxbk6uLibGXE2WuwY8cO/eRD56m/u1OSlJeXF62VeN/73kevBAAA0wShAjNCOi4qN5kOdPdra0uPPrQgVxaLRbMyrbrhlHzNybToIiNL1gme7Le2tioQCGjFihWSpNNOO03GaWco3N+nf/n8nfrcZz7NfOoAAExDhArMCOmyqNxk29XZr9/u7VJjS49MSbbZmTr76MxOV8yb2PCjgVqJF6K1EhkZGdq9e7cKCgpksVj0ke8+opzCYt25tCgl1oMAAACJR6jAjDDWcKXu/mNrQC7Oz5x2J787jvTpN3u7tC3UG73tvIJM5cfxPFtbW/XjH/9YXq9Xf/vb36K3X3DBBdq5c2d0Bexco2TiDQcAAGmBUAFMY+29YX1/+xG9eqhPkmSRtNTI0ocX5urU/In/+j/yyCO6+eab1dU1MKQsUivhcrn03ve+l1oJAABmGEIFMI3NzrSopScsq6SLi7P1oQW5Wpg3/qlhW1tb1dLSorKyMknSsmXL1NPTowsuuEAul0s333wztRIAAMxghApgmgibpppae/X8wW79Q9lsZVktslos+uzps1SYZdHcca4zYZqmnn/+eXm9Xm3evFlXXnml/vd//1eSdOqpp+pvf/ubzj77bHolAAAAoQJId31hU39q6dFv93Zpf/fAtLkvHOzR5UcLr8tmj+/XfKRaib1796q7uzu6nsQ555yToGeQeGNNIdwzqIZmZ0dfTIX56VqcDwDAVCBUAGnkpVBP9Oua19plm5WpV9p71do7cJKcn2HRVSflqLxo5JmuRvONb3xD//7v/x6tlcjPz9cnP/lJOZ1OXXzxxWnTKzGeKYQjs36NJt2nEAYAYLIRKoA0EWjt0cYdHdHv93SFtadrIGQUZFpUMT9Xl8/LUe44ZnRqaWlRTk6OZs2aJUmaP3++urq6dOGFF0ZrJQoLCxP7RKbAWFMIjxe9FAAAjI5QAaSJx/Z0Dnu7kWXRN84vVJY1tjBhmqb+8Ic/yOv1yufz6Zvf/KbWrl0rSbrxxht14YUXplWvxHAYrgQAwNTiry6QBvZ29Wt35/A1Aof7zJgCRUtLi771rW/p/PPP1wc+8AH9+Mc/VldXl37/+99H95k9ezZTwgIAgHGjpwJIYd39ph7f0yn//m6Zw2y3SFqQO/qsTqZp6tZbb9XPfvYzdXd3SzpWK+FyubR8+fIJt4+CaAAAIBEqgJRkmqZeDPVq886OaBH2qfkZerujP7qPRZKpgSLi4x0+fFizZ88e2M9iUSgUUnd3t5YsWSKXy6WbbropIbUSFEQDAACJUIEEG+vK9XjNxCvX+7r69fOdHXqlfWAV7JJsq1YvztMSI1t/PtgdLdZemGvV9YvytLQoW9JAEPn9738vr9erhx9+WH/9619ls9kkSV/96le1bt06LV++PKFDmyiIBgAAEqECCTaeK9exmIlXrp850K1X2vuUaZGunp+rDy/MVfbRmoklRrakgVBxzzkFysmw6ODBg9F1JV599dXocX75y1/qi1/84sD9liyZlLbOxNAHAABORKhAQo115bqn34wOg7n7rNkxjbGfCbr6zehUsNctytOhPlMrF+Zq/ij1Env37tU/ue9WfX39kFqJG2+8US6XS8uWLZuStgMAABAqpoFgMKja2lqVlZVJkgzDkNPpTEpbxrpy3T2ocHdxfqZyxrGmwnR0oLtfm3Z2qqvf1JfPmi2LxaK8DItuK5017P79/cdqKgoKCvTYY48NqZW4+eabVVBQMFXNBwAAkESoSHvBYFDl5eXavn27DMOQJLndbtXV1am6ujq5jcOIesOmfre3S7/d26Vec2Bu53c6+7U4/8RfSdM09dxzz8nr9eqVV1/VMk+DLBaL8vPz9d3vfldnnnmmli1bxjSwAAAgaQgVaa62tlZOpzMaKCRp3bp1KioqIlSkqL+29ernOzt0oHugoP3sOZm6cXG+FuYNHep08OBBPfjgg/J6vXrttdeit5/+6jbNO3epJOmmm26auoYDAACMYGYMWJ/GNm/eHB32FBEJGH6/PwktwkiO9IV1f/Nhfefvh3WgOywjy6LbS2fpi2fOHhIoXn75Zd18881atGiRvvSlL+m1117TrFmzdPvtt+sPf/yz5r7nouQ9CQAAgGHQU5HGQqGQQqFQdNrQwQzDUCAQkMPhSELLMJzcDIv2dfXLKmnF/BytXJgXLc4ebO/evfrpT38qSVq6dKlcLpduvPFGFRQUqLvf1I+2haa24QAAAGNIu1Dh9Xrl8/miV+NtNptqa2uT26gYuVwuVVVVjXmiHwqFVFNTI0kqKSlRc3OzKioqVFlZOWS/YDA44jGKi4t18ODB+BuNuLxxqFelszKVZbUow2LRLaWzlGGx6OS8DJmmqWeffVYej0elpaX6xje+IUlasWKF7r77bq1atUrl5eXUSgAAgJSXNqEiFAppxYoVcjgcamhoiN4eDAbldrtTNlgEg0H5/X55PB4FAgFVVVWNun8oFFJ5ebl8Pp/sdnv0dpfLpcbGxnE9z1AoNNFmI06tPWHVv9Ohra29+uiiXF27cGCtjVPzM/Xuu+/qv743UCvx+uuvS5Lmzp2rf/mXf1F2drasVqvq6uqS2XwAAIBxSZuaikigOP6k2uVyyev1JqlVo/N6vXK73ZIUcxioqqpSZWXlkEAhSR6PR16vd0idxODi7OO1tLSMv8GIW79pqmFfl/71b23a2tori6TOo9PoPv/887rpppt08skn68tf/rJef/11zZo1S2vWrNFvf/tbZWdnJ7fxAAAAE5QWPRV1dXXRtRiOZxhGyi7y5XQ6o+tFBAKBMfcf3KsxnFWrVqm2tjY6fKq4uFjS8D0SoVBo1NCBxHvjUK9+9naHdncNzOpUOitDN52ar1OPThO7efNm/exnP5N0rFbipptu0pw5c5LWZgAAgERIi56KmpqaERdz8/l8Q4ZDxcrr9Y5reFB9ff2oNQyJEAkTwxVeS1JZWZn8fn+03YZhyDCMEXslKioqJqWdOJF/X5f+843D2t0V1qwMi97btVN/+bc7tWPr89F9nE6n1qxZo61btyoQCMjlchEoAADAtJDyoaK+vl6hUEirV69O6HGbmpq0YsWKmIKF1+vVmjVrEvr4wwkEAqP2LkTCxtatW6O3rVq1Ss3NzUP2i4QfZn6aOhcUZinLYqpw92v63a0Vuu2yJfrZz36q+++/P7rPueeeK6/Xq/Ly8iS2FAAAIPFSPlRs2rRJkqI1BoFAQF6vN6bhRKPxeDxatmyZysvLRw0WdXV1crvd2rJly4g9CIkSDAajQ5qGEwkcg3tM3G636uvrh+zn8XhGHEIVsX79ep177rlavnz5xBs8gzUf7tNv93bJNE09/fTT+uKtn9aPr71A911/qV55catmz54tp9Opu+66K9lNBQAAmHQpX1MxODzU1dXJbrfL6XQqEAiooqJCbrd7wlfkPR6PXC6XysvL1dTUdEIvQV1dnWpqatTU1DTpgUIaKK4e7XGGq6Gw2Wzy+Xxyu91avny5gsGgSkpKRhwuFrF27VqtXbtW7e3tKiwsTEj7Z4JDvWH9Ylen/nCwRxZJZ83O0Jo1a/T3v/9dklReXi6n06kbb7yRoU0AAGDGSPlQ0dLSIsMw5PV6VV1dHb3dbrfL5/OptLRUPp8v4cFiqgOFFPsUsMevP2G320+YLQqJFTZNPXegW/VvH1KPZeDX5pKSbM3NydAXvvAF/eUvf5HT6Yx7aFNbb1htveERt/ccnUlKknZ29Cl7mMXzBivMsqowK+U7JAEAQJpL+VAROdEebliQYRhyOBxyuVwn1BWMx/HBwuv1TnmgQOratutdff+NFnUXzJMsmXr39Ze1IvewPlt+raSBXp9EefZAtx7b0xXTvve9cXjMfVYuzNV1i/LibRYAAMCoUj5UGIahUCg0Yk9ERUWF6uvrFQgE4rpaHwkWpaWlkpSUQBF5rmMpKSmZ/MZMkpdCPdGv732tXdctypO9KPXWZ4jUSng3fl9Zn/1n5RXPU8/hdv3l+/+pZfl9+uD/94+T8riXz8vREiMrYcejlwIAAEyFlA8VxcXFo665EOnB2Lp1a9xDgCIn9YZhjFowPVnGeszI1LHpuv5EoLVHG3d0RL/f3RWWJ3hELpuSHiyODzvLLG1aedVVkqSzD5k6/+qP6qr8Tn37f/59UmslGK4EAADSUcqHCrvdHtP6EONZc2I4kVmUWltbVVNTo9LS0invrbDZbEOmiz1e5Dmm65Csx/Z0Dnv7T97q0GuH+pRhkTIs0rycDF0xLye6/ffvdqsnbCrDYonuE/l6dqZFZ885dmX/7Y4+hc2h+0S+zrJKszOPnbCbpimLxaJAS7c27uiIfr+7K6xfaY6q7v6qitv3yOl0UrMCAAAwipQPFcuXL4+uVTHcFfrI1ft4TvpcLpf8fn+0UDuycnekxmKqTuLtdrv8fv+I29N9/Yl9XcMXIB/pN/XMge7o92WzhoaKX+7qVHufOdxddUpehv753GOhwhs8ogPdwz/OSTlWff38YzNd/evLrdrXY8o0JVkssliGFj2f/9kv6F/OY2YsAACAsaT8OIvKykpJGvFkO1KgvWzZsgkd//hAEVFbWxudzWeyV9KOiCzwN9IaHI2NjWkbKCRpfu7wP24FmRZ9ZGGuPrQgVxXzc7S8eOhQqIuMLJUXZekiI0sXFGbp3IJMnT0nU2fMztTi/Iwh+xZmWVWUZVFBpkWzMizKtUpZloEf9AzLQO/Ek08+qU9+8pN6/Y03JItVFqv1hEAhSftGCCcAAAAYKuV7Kmw2myorK1VTUxMNGIPV19erurp6QnUGIwWKiKnusbDb7XI4HNq0adOwPS/19fVqaGiY1DZMppUL8+QJHol+b5FkSrrp1HwtHaWm4ubTZsX8GHefPXK9g2maeuCBB6JreOT85neyX/xeLf9Xj7ryCobsa5G0IDdjmKMAAADgeCnfUyFJGzZsUCgUktfrHXJ7VVWVbDZb9OR/PMYKFBG1tbVat25d3D0WkfuOVfvh8/mis1kd397q6uq07qmwF2XrttPzo98vzLXqDtusUQNFPMLhsJ588kk988wzkiSLxaIbbrhB8+bN0x133KEXnn5Szzf8Vp89b+GQ+0XCzsqFuZPSLgAAgOnGYprm8IPVU0woFFJNTc2Qk/OqqqoxV44eSV1dnZxOZ8w9HF6vVw6HY1y9FfX19fJ4PJIGZqeK1IVEhmqN1P5QKCS32y3DMFRSUqLm5mZVVFQM21MTr8iK2m1tbSooKBj7DnHq7jf1+W0hSdK3LzKUM8bibROxf/9+/fCHP9SGDRv097//XZdeeqn+8Ic/RLf39vYqK2votK1/PtgdnZlqUa5V1y/Km7SwAwAAkAyTed6XNqECk2O6hIpwOKynnnpKXq9Xv/jFL9Tb2ytJmjNnjj71qU/pW9/61glBYiraBQAAkCom87wv5WsqgFjceuut+tGPfhT9/uKLL5bT6dTq1as1e/bsJLYMAABg+kuLmgpgsHA4rC1btmjfvn3R2z7ykY9ozpw5uvPOO/Xiiy/qT3/6k2677TYCBQAAwBQgVCBt7N+/X3V1dTr77LPlcDj0wAMPRLd97GMf0+7du/Xd735XF110UfIaCQAAMAMx/AkpLTKDk9fr1aOPPhqtlSgoKFA4fGwdiaysrFFrJgAAADB5CBVIWf39/Vq6dKlefvnl6G0XX3yxXC6XVq9erVmzYl+/AgAAAJOHUIGUEQ6H9ac//UmXXHKJJCkjI0N2u11vvfWWPvWpT2nNmjUMbQIAAEhB1FQg6fbt26fa2lqdddZZuvTSS/Xiiy9Gt917773avXu31q9fT6AAAABIUfRUICnMcFj+hgb9cOMGPfroo+rr65M0UCvxxhtvaOnSpZKkBQsWJLOZAAAAiAGhAlOu7e1m/e//V6UNu3ZEb3vf+94np9OpVatWUSsBAACQZggVmHJzFp2qvq5OFRQU6NOf/rTWrFmjJUuWJLtZAAAAmCBCBaacNTNLH/7Wz7XhumUqLmBxOgAAgHRHoTaSYu45SxjmBAAAME0QKgAAAADEhVABAAAAIC6ECgAAAABxoVAbCdXWG1Zbb3jE7T39ZvTrnR19ys6wjHq8wiyrCrPIvgAAAKmMUIGEevZAtx7b0xXTvve9cXjMfVYuzNV1i/LibRYAAAAmEaECCXX5vBwtMbISdjx6KQAAAFIfoQIJxXAlAACAmYezPwAAAABxIVQAAAAAiAuhAgAAAEBcCBUAAAAA4kKoAAAAABAXQgUAAACAuBAqAAAAAMSFUAEAAAAgLoQKAAAAAHEhVAAAAACIC6ECAAAAQFwIFQAAAADiQqgAAAAAEBdCxQy1fv16nXvuuVq+fHmymwIAAIA0R6iYodauXatXXnlFjY2NyW4KAAAA0hyhAgAAAEBcMpPdAGAqtPWG1dYbHnF7T78Z/XpnR5+yMyyjHq8wy6rCLDI5AACARKjADPHsgW49tqcrpn3ve+PwmPusXJir6xblxdssAACAaYFQgRnh8nk5WmJkJex49FIAAAAcQ6jAjMBwJQAAgMnDWRYAAACAuBAqAAAAAMSFUAEAAAAgLoQKAAAAAHEhVAAAAACIC6ECAAAAQFwIFQAAAADiQqgAAAAAEBdCBQAAAIC4ECoAAAAAxIVQAQAAACAuhAoAAAAAcSFUAAAAAIgLoQIAAABAXAgVAAAAAOJCqAAAAAAQF0IFAAAAgLgQKgAAAADEhVABAAAAIC6ECgAAAABxIVQAAAAAiAuhAgAAAEBcCBUAAAAA4kKoAAAAABAXQgUAAACAuBAqAAAAAMSFUAEAAAAgLoQKAAAAAHEhVAAAAACIC6ECAAAAQFwIFQAAAADiQqgAAAAAEBdCBQAAAIC4ECoAAAAAxIVQAQAAACAuhAoAAAAAcclMdgOQGMFgULW1tSorK5MkGYYhp9OZ5FYBAABgJiBUTAPBYFDl5eXavn27DMOQJLndbtXV1am6ujq5jQMAAMC0ZzFN00x2IxAfl8slwzBUW1sbvS0UCqmoqEhjvb3t7e0qLCxUW1ubCgoKJrupAAAASJLJPO+jpmIa2Lx5c3TYU0Skx8Lv9yehRQAAAJhJCBVpLhQKKRQKyWaznbDNMAwFAoEktAoAAAAzSdrXVLhcLrnd7mFPqlORy+VSVVWVHA7HqPuFQiHV1NRIkkpKStTc3KyKigpVVlYO2S8YDI54jOLiYh08eDD+RgMAAACjSOtQEQgE5PV65XK5kt2UUQWDQfn9fnk8HgUCAVVVVY26fygUUnl5uXw+n+x2e/R2l8ulxsbGIbUTYwmFQhNtNgAAABCTtB7+5Ha7k92EMXm93mg7Yw0DVVVVqqysHBIoJMnj8cjr9Q6pk4jUTgynpaVl/A0GAAAAxiltQ4XX6x3zin8qcDqd8vl8cjqdKi4uHnP/SK/GSL0vq1atGhJOIsccrkciFAqNGjoAAACAREjLUBGpI4i3jsLr9Y5reFB9ff2oNQyJ4PF4JI383MrKyuT3+6PtNgxDhmGM2CtRUVExKe0EAAAAItKypsLj8ai2tjbu6VKbmprk8Xi0ZcuWMa/oR4YxNTU1xfWYYwkEAqO2JRI2tm7dGi32XrVqlZqbm4fsFwk/YxWER9axaG9vn2iTAQAAkAYi53uTsUxd2oWK+vr6hBVmezweuVwulZeXq6mpacST+bq6OtXU1GjLli2TPstUMBgcdZhUpI2De0zcbrcqKiqGDIvyeDzRXo/hrF+/XuvXr1dPT48kafHixXG2HAAAAOng0KFDKiwsTOgx0ypUhEIhBYPBE6ZVjcdYwSISKJqamqZk2tqWlpZRH2e4GgqbzSafzye3263ly5crGAyqpKRETqdzxOOsXbtWa9euVTgc1u7duzVnzhxZLJaEPY+xLF++XI2NjVP2eDMNr+9Q0/31SOfnlw5tT7U2JrM97e3tWrx4sXbu3Jnw1XiBmWiqf59N09ShQ4e0aNGihB87rUJFTU3NuKZTjdVIwWKqA4UU+xSwx68/YbfbT5gtKhZWq1WnnHLKuO8Xr4yMDP4gTSJe36Gm++uRzs8vHdqeam1MhfYUFBQkvQ3AdJCM3+dE91BEpE2htt/vn9SiY4/HI4fDofLycoVCoaQEiplk7dq1yW7CtMbrO9R0fz3S+fmlQ9tTrY2p1h4AEzedfp/TpqeioaFhUnopBov0WJSWlkpSUgKFYRgx9VaUlJRMfmMm0XT6JUpFvL5DTffXI52fXzq0PdXamGrtATBx0+n3OS16Kurq6rRu3bopeazBJ/WxrCuRaGM9ZmTqWNafAABMtZycHP3rv/6rcnJykt0UACkm5UNFMBiMrsUw2dxut+rr69Xa2iqn06nS0tJJX5fieDabbdSVsCOBhyFZAICplpOTo69+9atjhgq/3y+32y2Xy6WKigp5vd4paiGAZEn54U+BQEA+n08+n++EbZET/jVr1kSv8Dc0NEzocVwul/x+f7RQOzLUKlK8PVUn8Xa7fdT1N2JdfwKx83q9am5unvThdTMVr+/MwXsNaSBQBAKB6M9BKBSK/i0dbapzAMnh9/vV0NAQnWW1qqpq1BlER5LyoaKysnLEKWTr6+tVVVWlDRs2TGjmo4jjA0VEMoLF6tWrVVdXp0AgMOxzamxsJFAkQDAYjL6/mzdvntAvD0bG6ztz8F7jeB6PZ8iFQMMwor0WbrebnnYghSTyIkDKD3+abCMFioja2lo5nU6Vl5dPyVAou90uh8OhTZs2Dbu9vr5ebrd70tsx3dlstugCgfyBSzxe35mD9xrHG+7v1LJlyyRp1J54AFPP4/Gouro6+n3kIoDX6x33eW9ah4rIk53oyf5YgSKitrZW69atiztYRO471uxOPp9P9fX1CgQCJ7S3urqangoAQMqqrKxUWVlZspsBIAaJvAiQ8sOfhuNyuRQMBrV161ZJAzUVHo9Hdrt9XGN5y8rKVFtbG1MReHV19YSKxevr66PdR8e3V9Kw49YMw1BTU5PcbrcMw1BJSYmam5tVUVGR0NXEAQAzm8vlUlVV1ZgXq0KhkGpqaiRpzL9Jw9VARv7+cVEMSC2JvAiQlqEiUYVeg7t7YjGRscKj1YSMxjCMhDzPweOdW1paFAqFVFFRMe7nnkyT8UdvMqXbuOF0e32Tzev1yufzRS8y2Gy2tClM5r2GNPB3we/3y+PxKBAIqKqqatT9I2OsfT7fkFo/l8ulxsbGmH7+a2trVVtbmzafi5h+AoGAPB6PWlpaFAgEZBiGXC5XWtWBpfxFABPTls/nM6urq0+43W63mzabLQktil1zc7Pp8XhMu91uSjIbGhpG3b+1tdW02WxmU1PTkNudTuewr8Fgdrt9zH1i1dTUZEo6oR2pJl1f32RqbW0d9rk0Nzen9PPjvcZgHo/HrKysND0ej9nQ0BDTz4TD4RjxfTUMY8z7V1ZWmk6nc8JtBuLl8XhMj8cz5LaGhgbTMAzTZrOZra2tyWlYDKbyMzzCZrOZtbW1424roWKaam1tNSsrK4fdFjnxTdUP+an+o5fIEyGHw5HyoSKdX99kGul5OBwO0zCMJLRobLzXGE3kb8Fo72lzc7MpyWxubh52u9PpNB0Ox4j393g8Kfu3BjNDc3PziCfIkd+B0X6GkyndLgIQKqapyA/fSD9YklK+t8I0p+aPXqJOhCJXQlI9VAyWTq9vMtXW1o4YHCorK1P2D9JgvNc4Xiw/E9XV1eZogxpqa2tNScNe6fX5fCeczKXyFWFMT9XV1aP+3EUuBo70uZcq0uEiQFrP/oSRFRcXR4u8RzKRwnOv1zvm7FWD1dfXT/pUvJHak5HG6paVlcnv94+r3eMVeY7xjhfm9U1NNTU1I4679fl8E1p0k/ca6SAy9nwkkZ+VyBjswfdraWkZUr8XCoWYUhZTzu/3q7S0dMTPrUid0PEzbo5lun2G19fXKxQKDannHe9nPaFimrLb7WptbR22IDvyizORWTiampq0YsWKmH7QvF6v1qxZM+7HGK+J/tFLJI/Hk5BiL17f1BP5oF29enVCj8t7jXQQDAZVXFw84vbIz8vgk6VgMKiamhoVFxervr4++i+dJrDA9FFcXBxdKTqRptNneKIuAqTl7E+IT+SDfSIz1ng8HrlcruhqiyP98NbV1ammpkZbtmyZ9D8iE/mjN1goFIrrymt9fb1cLteE7z8Yr2/qiSxEOfhq1tatW7Vs2bJhV72PFe810kFLS8uoP3eRn5fB73t5eblCoZDq6+tP2D9RszcCsWpoaFAwGBzx5zjyeTbez/Pp8hkeuQiwevXqIb+zDQ0N4z63IVTMIJHpZW0224SGa0SM9YsU+QVqamqakqtSE/mjF5luLXL1YvPmzZIGugbHM91u5P6JnGqT1ze1DO4Sr6urk91ul9PpVCAQUEVFhdxu94Tn3ue9RqqLNSQePHgw+nVra+sktQaYmNE+1+rr62W32yf0GTsdPsMTeRGAUDED1NfXq7GxMZrUKyoq4j7mSL9IU/0LJE3sj55hGNGemniunNXU1EzKGgW8vqmjpaVFhmHI6/UOOUm22+3y+XwqLS2Vz+dLeLDgvQaAyVVXVydJ2rBhw4SPke6f4Ym8CEBNxQxQWVmp2tpa+Xy+6AJEVVVVcQ9T8Hg8cjgc0ZSbjF+gZPL7/QkJaCOZ6a9vqogM6RmuS9kwDDkcjriHv/FeI1UZhhHT34rRJgUBUlEgEJDb7T5hUceJ4DN8AD0VM5DP51NRUZFCoVBcw6CkYwm9tLRUkpLyC5SsP3oNDQ2TvpLyTH59U0Xk+Y/UE1FRUaH6+noFAoGE1FjwXiOVjDY+WxroyZMmNpsgkExVVVXyeDwJG77MZzg9FTOSYRiqrKyU3+9PyPR+g3+Ix/oDNBmS8Uevrq5O69atS9jxRjMTX99UEnn+Iz2/yPZEzIjEe41UY7PZou/7cCI/rzPpaizSX1VVlVwuV0JmbRxspn+GEyqmqbGmT4v8AYi3p8Ltdqu+vl6tra1yOp0qLS2d9HmYjzfVf/SCwaAMw5iSE6uZ+Pqmmlh7H+IdTsh7jVRkt9tH/dmO/IxOtKYImGput1vLly9P+EQSfIYz/GnaKioqkjRQgDPcyW+k6yueEyGXyyW/3x8tTIoMBYoUK03ViYfdbh+1xyXRf/QCgYB8Pp98Pt+Ij7VmzZroFYOJBreZ+vqmmuXLl0fXqhjudynyAR7P0Cfea6Sq1atXq66ubsThfY2Njfw8IG14vV6VlZUN20Mx0md8LPgMP2rCa3EjpRmGYdpsthG3O51OU5Lp8XgmdHyn02nabDaztbX1hG3V1dWmYRgJWfI+lmXpI/s0NTUNu72ysnLUZekTyefzjdqWWPH6po7m5mZTkunz+YbdXl1dbUoa9r2KBe81kiWWnwnTNE2Hw2FWV1cPuy2W+wOpwOfzjXjO09zcPOJn/Fj4DD+GUDFNVVdXj/pDbBiGaRjGhE6ERvsFGvz4ifhFSrc/eokIFby+qaeystK02+3DbrPZbCO+NmPhvUYyRT6vxjqZam1tNW022wmfa06nc8I/+8BUampqGvUiqsfjmdBnLJ/hxx1/0o6MpHM6ncP+8FRWVpqGYUzoxDeWX6CI2trauH+R0u2PXm1tbUztHQmvb2qKPP/j/yjFc9WH9xrJ4PP5TIfDYTocDtMwDFOSaRhG9LaRTrxaW1ujPwO1tbWm0+mc8OccMJWam5tNm81mOp3OYf9FzonGi8/wE1lM0zQnZ2AVUkF9fb02bdqk4uJitbS0KBQKyW63a926dRMaO1hXVyen0xnzfb1erxwOx7jGE9bX10cX0dq6dWt0nOOyZcskDczaMNJ4SLfbLcMwVFJSoubmZlVUVCR0teuRuFwuBYPBE9prt9vHNe0sr2/qiqwcHRmTGgqFRnytYsF7DQCTr6ysbMyCaZvNpubm5nEdl8/wExEqAAAAAMSFKWUBAAAAxIVQAQAAACAuhAoAAAAAcSFUAAAAAIgLoQIAAABAXAgVAAAAAOJCqAAAAAAQF0IFAAAAgLgQKgAAAADEhVABAJgSoVBI5eXlKisrk8VikcViUUVFxYj7B4NBlZWVqaioKLp/UVGRvF7vFLYaABALi2maZrIbAQCYWcrLyxUIBCRJzc3NstlsI+5bX1+vqqoqNTQ0yOFwTFUTAQDjQE8FAGBKhUIhLVu2LBoQPB7PqPvbbDY5nU4CBQCkMHoqAABTqr6+XpJkGIYqKipkGIZaW1tH3L+urk4Oh0N2u32qmggAGCd6KgAAUyoyjMnhcMgwDIVCoWjQGE5jYyOBAgBSHKECADClWlpaZBiGJMnpdEoaewgUACC1ESoAAFMmFAqpuLg4+v26deskSX6/X8Fg8IT9g8Ggli9fPmXtAwBMDKECADBl/H7/kGlkDcMYtWDb7/dToA0AaYBQAQCYMsNNC+t2uyVp2PUnGhoaqKcAgDRAqAAATJnB9RQRsRZsAwBSF6ECADAljq+nGGy4gu1gMDjqoniJFAgEVFFRoaKiIvn9/il5TACYTggVAIApcXw9xWAulyu6T6Rge7T9E81ut6uhoUGhUGhKHg8AphtCBQBgSgxXTxFhs9lOKNgebf/JcvzQLABAbAgVAIApMVw9xWCR3orhCrYBAKktM9kNAABMf6PVU0RUVlZGC7br6uqGrafw+/1yu90KBAJqaGhQIBCQJDU3N8swDNXW1kb3DQQCcrvd2rp1qzZs2KDKykqFQiGtWbNGfr9fTqdzyP7Dqa+vV0tLi4qLi9XS0qKmpiZVVVVFe1AGB6Cmpia5XK7obFWD29rc3Kz6+no1NjaqoqJCTqdzzGMDQDohVAAAJl2s9RFOp1N1dXVyu91qaGg4YbvD4dCWLVtUVFQkj8cjn88X3eZyuVRRURG9X6ROwmKxRPcxDEM+ny+mtgSDQTU0NAwpHq+rq4t+7fV61dzcHA0mwWBQZWVlam5ujg7nirS1vr5e1dXVcrvdampqGvPYAJBuGP4EAJh0mzZtiukKfGQIlKQR948MoRq8ryTV1tbK7/efMC3tcEOuYqmdCAQCJ6zyXVlZOeT7wTNF2Ww2GYYR7T0Z7nFqa2vl8XhiOjYApBNCBQBgUkVO9FtaWsbcN3KFP5YF744fTmUYhmw227A9HBPhcDi0detWlZWVye12y+/3DykodzqdampqkjQwvCsSJoZ7nsc/n7GODQDphlABAJgUbrdbRUVF0aFGZWVlKisri+l+q1evntBj2my2E3oAJsowDG3fvl0Oh0P19fWqqKhQWVnZkGln6+vrVV5eHl0VfKS6keEC0FjHBoB0QqgAAEyK2tpatba2yjTN6L/m5uYx7+dwOFRdXT2hx4x1wbxYTt4DgYAMw5DH41Fzc3O0VqKmpkaSorUfPp9PHo8npt6VWI8NAOmGUAEASEvHDzMKhUIKBoOqqqoa876x9GYEg8ETaiYi9RDSQI+Kx+MZEmIibQqFQqOuzD3WsQEg3RAqAABpafDMT5K0Zs0aVVZWnlCXsGzZsiEhInLiPlJvxeDbj59yNhgMDpk5avC+kV6SUCgUnSp2NGMdGwDSicU0TTPZjQAAYDwsFsuQUNHY2KiSkpJhh00Fg0G53e7oCXukV8Dv98vhcMjn8ykQCMjj8cjr9cput8vlckXXjwiFQtFZnEKhUPQx/H6/PB6Pli9fLrvdruLiYhmGIbfbHb3N4/Govr5edrtdDocjGiQihesjHRsA0g2hAgCQdiwWi5qamsZVxwAAmDwMfwIAAAAQF0IFACAtxbLuBQBgahAqAABpw+/3R2d3qq2tldfrTXKLAAASNRUAAAAA4kRPBQAAAIC4ECoAAAAAxIVQAQAAACAuhAoAAAAAcSFUAAAAAIgLoQIAAABAXAgVAAAAAOJCqAAAAAAQF0IFAAAAgLj8/1eRS3jO9eBgAAAAAElFTkSuQmCC", "text/plain": [ "<Figure size 800x500 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(8, 5))\n", "\n", "plt.errorbar(\n", " N_pulsars,\n", " SNR_mean,\n", " yerr=SNR_std,\n", " color=pf.my_colormap[\"cyan\"],\n", " fmt=\"o\",\n", " markersize=4,\n", " linestyle=\"dashed\",\n", " capsize=7,\n", ")\n", "\n", "plt.loglog(\n", " N_pulsars,\n", " np.sqrt(N_pulsars),\n", " linestyle=\"--\",\n", " color=\"black\",\n", ")\n", "\n", "plt.text(1e2, 7, s=r\"$\\propto \\sqrt{N_{\\rm pulsars}}$\", fontsize=15)\n", "plt.xlabel(r\"$N_{\\rm pulsars}$\", fontsize=20)\n", "plt.ylabel(r\"$\\rm SNR$\", fontsize=20)\n", "plt.ylim(4, 2e1)\n", "plt.tight_layout()\n", "plt.savefig(\"plots/SNR_N_scaling.pdf\")" ] }, { "cell_type": "markdown", "id": "3f74d4ce", "metadata": {}, "source": [ "### Plot the scaling of uncertainties on the SGWB shape parameters with N_pulsars" ] }, { "cell_type": "code", "execution_count": 8, "id": "25846831", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAHqCAYAAAByRmPvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACrrElEQVR4nOzdeVxU1fvA8c+wIygjmvvGuKW5AqaV5QbaqgmClmZuMFiW1a8gvy2gLYrargloWqaVgNhiWYKapWYpSJqaKaCZmhsMCKIizO+P2wwgy7AMMODzfr3m1Z07Z849Q4r3mXPO86j0er0eIYQQQgghhKgiq7oegBBCCCGEEKJ+k6BCCCGEEEIIUS0SVAghhBBCCCGqRYIKIYQQQgghRLVIUCGEEEIIIYSoFgkqhBBCCCGEENUiQYUQQgghhBCiWiSoEEIIIYQQQlSLTV0PQNRfBQUFnD59msaNG6NSqep6OEIIIYQQohx6vZ5Lly7Rpk0brKzMO7cgQYWostOnT9O+ffu6HoYQQgghhKiEkydP0q5dO7P2KUGFqLLGjRsDyh/MJk2a1PFohBBCCCFEebKysmjfvr3xHs6cJKgQVWZY8tSkSRMJKoQQQggh6omaWLYuG7WFEEIIIYQQ1SJBhRBCCCGEEKJaJKgQQgghhBBCVIsEFUIIIYQQQohqkaBCCCGEEEIIUS0SVAghhBBCCCGqRVLKCiGEEEIIs9Dr9eTl5VFQUFDXQ7kp2NjYYGNjGbfzljEKIYQQQghRb+Xn53PhwgUuXbpEXl5eXQ/npuLk5ETz5s1p1KhRnY5DggohhBBCCFFl+fn5nDx5kqtXr+Li4oKzszPW1tY1UmBNFNLr9Vy9epX09HROnjyJm5sbdnZ2dTYeCSqEEEIIIUSVXbhwgatXr9KhQwccHR3rejg3FUdHRxo3bkxaWhrnzp2jXbt2dTYW2agthBBCCCGqRK/Xc+nSJVxcXCSgqCPW1ta4uLhw+fJl9Hp9nY1DggohhBBCCFEleXl55OXl4ezsXNdDuak5OjqSn59fp/tZZPmTEEIIIYSoEkOWJ2tra/N1euaM8jCX1q2VRwNm+PnXZdYtCSqEEEIIIUS1mHVTdmQkzJ1rvv5CQyEszHz9WSBL2BQvQYUQ5ZFvS4QQQojapdXC6NFlv56bC4MHK8c7doCpvRzy726tkKBCiPLItyVCCCFE7TL1BVxOTuFxv37g5FTjQxKmSVAhRHnk2xIhhBBCCJMkqBCiPPJtiRBCCCGESZJSVgghhBBCCFEtElQIIYQQQgghqkWWPwkhhBBCiPrjq68KjwcNUhKq+PjU3XjKoNPpmD9/Pp07d0an05GSkkJ4eDhqtbquh1YjJKgQQgghhBA1q+gexBtZW4ODQ8Xafv01TJxY+PzgQfD1hbVrYcyY4m2trIonULl8GfT60vtVqaBRo7KvW0lJSUkEBAQQExODRqMxnnNzcyMjIwOA2NhYvLy8GkyQIcufhBBCCCFEzXJ2Lvvh61u8bYsWZbcNCFACAANDkDBxYsm299xTvN+ePcvud8AAs31UnU7HiBEjmDNnjjGgAHB3dweUYAJgz549DSagAAkqhBBCCCFEfVHebIOFCAkJAWDcuHElXnN1dWXPnj2kpqbi7e1d20OrUbL8SQghhBBC1Kzs7LJfs7Yu/vzcubLbDhqkLHkqGlioVNCrF/zyS/G2Vjd8d37oUPnLn8wkOjqawMDAUl9Tq9XodDpiY2MJDg422zUtgQQVQgghhBCiZlWmjlN5befOLb5cSqVSAoW5c01fw4x7Jsqi0+nQ6XQMKGM5laurKwkJCYSHh9f4WGqbLH8SQgghhBD1g4+PsinboFcviIuDsWPrbkxFGPZIlLdXorzN2X5+fuYfVC2RoEIIIYQQQtQfRbM8/fKLxQQUBuPGjSM+Pr7YOZ1Ox8KFC1Gr1aSnpwNKNiiDqKgoQJnJMDzX6XS1M2AzkaBCCCGEEEIIM4mJiQFg4cKFxMbGEhsbS3R0NMHBwSxfvtz4miG4ANBoNGi1WqBwo3d9ywwleyqEEEIIIYQwo7L2TKjVamPQUZSXlxepqanExMTg7e2Nv79/TQ/R7GSmQgghhBBCiDrk5+eHp6cn7u7uBAYGEhAQIMufhBBCCCGEEBUXExODu7s7qampxtkMWf4khBBCCCFEVZ05ozzKkptbeJycDI6O5ffXurXyqAfqc6pZCSqEEEIIIYTliIxU6k5UxODBptuEhkJYWLWGVFs0Gk1dD6HKJKgQQgghhBCWQ6uF0aPN1189maWo7ySoEEIIIYQQlqMeLVcShWSjthBCCCGEEKJaJKgQQgghhBBCVIsEFUIIIYQQQohqkaBCCCGEEEIIUS0SVAghhBBCCCGqRbI/CSGEEEIIi3Hm0hnOZJdT/K6SWju3pnVjySZV0ySoEEIIIYQQFiMyMZK52ytY/K4CQoeEEjY0zGz9idJJUCGEEEIIISyG1kPL6O5lF7/Lzctl8CqlkvaOqTtwtHUst7/WzjJLURskqBBCCCGEEBajdePylyvlXMsxHvdr1Q8nO6faGJYwQTZqCyGEEEIIIapFggohhBBCCCFEtUhQIYQQQgghhKgWCSqEEEIIIYQQ1SIbtYVlOHNGeZhL69bKQwghhBANyldHvjIeD/poEHOHzsWnh08djqi4hIQEUlNTiY+PJyYmhqSkJBISEgCIj48nJCQELy+vOh6l+UlQIYyioqJISUkhPDy89i8eGQlzzZeTmtBQCAszX39CCCGEqLKiGZtuZG1ljYONQ4Xafn3kaybGTTQ+P3juIL7Rvqz1WcuY7mOKtbVSWRVLN3s57zJ6vb7UflUqFY1sG5n8HBWRlJREcHAwkZGR+Pn5MX78eIKDgwHQaDT4+fmRkZFhlmtZEgkqbnKpqanGICI6OprAwMC6GYhWC6PLzklNbi4MVnJSs2MHOJafk1pmKYQQQgjL4TzfuczX7u96P98++q3xeYvFLbicd7nUtk62TqhQoUcJDgz/LRpoGHi28WRPwB7j855Le3Ii80Sp/fa8pScHnzho+oOYkJCQwLhx4wDlHsvLy8v43ECn01X7OpZIgoqbnEajITIyEoC9e/fW3UBMLVfKKfKtRb9+4CQ5qYUQQoibzeW8y8ZAwhJ5enqiVqtJTU1Fp9MxZ86cYq/v2bMHd3d34/OkpCT8/PwYN24czZo1Iz4+nr179zJnzhwuXrxIUlISarWamJiY2v4olSZBhRBCCCGEqFHZc7LLfM3ayrrY83PPnyuz7aCPBnHw3MFigYUKFb1a9OKX6b8Ua2ulKp6P6NCTh8pd/mQOarUagNjYWDQajfG5QWxsLFqt1vg8NTWVmJgYY6ChVqvZu3evcbkUUKy9JZOgQgghhBBC1KjKVL0ur+3coXPxjfY1PjcshZo7dK7Ja5hrz0RFxMfHl9iMnZSURGpqqnE5lE6nIz09vcTyKFdX12LPPTw8anawZlKvgoqi6//T09PR6XR4e3sXi+YsnVarxc/Pz+Suf51Ox/z58wFo1qwZKSkpeHt7l/iDJ4QQQghxs/Dp4cNan7XGPRS9WvRi7tC5jO0xto5HVlxCQkKJJUvr1q3D3d0djUZDamoqSUlJ+Pv7m+yrIm0sQb0JKmJjY9mzZ49x/b+Bh4cHkZGRpKSk1NHITEtNTSUhIYHIyEjj2rny6HQ6PDw8ik2HgRKQ7Nmzp26yM92kzlw6w5nsclLd5uaCYSvI2WSTG8hbO7emdWPZRC6EEEJUVdEsT79M/6VSsyC1ISkpCaDUmYrx48cDyn1tRb8Uv3EJlaWqF0GFTqdj3bp1pW5SWb58OR4eHmi12hIBhyWIiooiPj4eb29vwsPD8fb2Nvkew4adogEFQGRkJE2bNsXb27tB5je2RJGJkczdbiLVrWGp46eDTfYXOiSUsKFh1R6XEEIIISyTIevTjcFASEgIMTExREVFNciVJ/UiqNi7dy+xsbGEhISU+JbecONtKCpiaQIDA41pWg2Ra3mKzmqUxt/fn/Dw8GJBRVJSEgEBARUe0/Lly0sELKJ0Wg8to7uXneo2NyudwV8ogeKOCfE4NnEtsy0oMxVCCCGEaLjGjRtXatDg5eXVoL8UrhdBhaurK2q1mmbNmpXZpipTQ1FRUfj7+1f4vbGxsca1cDXFEEyUdY3OnTsTFRWFTqczjtvd3Z3ExMQaG9PNrHXj8pcr5TgUZqjo16IPTk1b1MawhBBCCCEsipXpJnXP3d2djIyMUteelbVurSISExMZMWJEhYqQREVFVWo2oKoM+YjLYgg26rSmhBBCCCGEqBHp6el1PYQqqRczFeUJCQlBo9FUafNyZGQkWq0WDw8PEhMTy7yZX7hwIfPnz2fLli01OksByvKnG1OJFWUYY2pqqtmvrdPpKhRgLV26lKVLl5Kfn2/2MQghhBDi5mYqSUpuXq7xOPnfZBxt63+SlKSkJBISEli3bh06nY6FCxeiVquNS+jrg3obVBjSy2o0GuLj46vcj6nAwhBQJCYm1nhAAUp0Wt51DAGHuUq8G1LX6nQ6UlNTiY6OBpRlVmVlJXjyySd58sknycrKwsXFxSzjEEIIIYSACiZJ+c/gVQ0jSYq7uzvu7u71qkzCjepdUGFILZuamopGo6lQNiVTygosajuggIoHCxcvXjTL9dRqtXGWxxKzZwkhhBDi5mIqSUplSZKU2lHvgoobd9R7e3sTGRnJ8uXLq5XH98bAIioqqtYDCiGEEEKIm52pJCnCMtW7oOJGMTExNG3aFJ1OV61lUFAYWLi5uQHUSUChVqsrNFtRXiYsUXusv/mW5GXQ7SLYxQyDea+Bj09dD0sIIYQQolbVi+xP5VGr1YwbN46EhASz1KooelNf3obpmmLqmoaMAPWlumKDFheHw+PT6H0WHK+D1aHD4OsLcXF1PTIhhBBCiFpVL4IKwybishhmE6o7UxESEkJsbCwZGRkEBgbi5uZWI1mWyqPRaMpNJWYIeGRJVh07exZmz0ZP4V8ilV4PKhXMm1eXIxNCCCGEqHX1YvlT06ZNAcjIyCj1G3rDUqDqZETSarUkJCQYN2obNi8b9ljU1k28u7t7uTMuhiCnIVdktFj5+fD667BxI/xXJ0R1Yxu9Ho4cqfWhCSGEEHVJr9fX9RBuapbw868XMxVqtRqNRlPmkp+UlBRACQCq4saAwiA8PJzAwEA8PDxqbcZi/PjxQGFRvxvt2bNHAorakpUFO3cWPre2hpgYY0CBoyMl/gqrVNC9e22NUAghhKhTNjbK99NXr16t45Hc3PLy8gCwtrauszHUi5mKwMBAtFptma9HR0ejVqvx9/evdN9lBRQGtT1j4e7ujpeXF+vWrcPd3b3E67GxsdVe5iXKoNfDX3/Bt98qj59/BhsbuHgRHP8rrDNnDly9CvfdB7/8gsrXl3zAGtCrVMoSqNDQuvwUQgghRK2xsbHBycmJ9PR0GjduXKc3tTcrvV5PZmYm9vb22Nra1tk46kVQER4ejlarxc/Pr8S39H5+fgBs2bKl0puXTQUURa/frFmzagcWhtkOU8u0YmJi8PDwYPz48cUCC61WS3BwsMxUmNvevbBmjRJIHDtW/DU3NzhxAm69VXk+cWLhaz4+XPlkJX8GT6P7RbC7tSfW815TApD9+6FPn9r7DEIIIUQdad68OSdPniQtLQ0XFxccHR2xtrZGpSqxSFiYkV6vJy8vj8zMTLKzs2nbtm2djqdeBBWgpHuNjY3Fz88PV1dX0tPT0el0uLu7k5aWVqVsSJ07dyY8PLxC7w0ODq7SNWJjY41F5fb+t2wmICDAeM7Pz69ECXa1Wk1iYiIhISGo1WqaNWtGSkoK3t7exWp0iCo6fRoaN1YeAD/+CO+9pxzb2sLQofDAA8qjS5dyu8p/6AH6pynH2U9vxenHncr72rWD336Dli1r7GMIIYQQlqBRo0a4ublx7tw5MjIyuHDhQl0P6aZib29P27ZtadKkSZ2OQ6W3hJ0dol7KysrCxcWFzMzMmv+DnJMDzs7KcXY2ODlV/L35+bBnT+Gypn374OOP4fHHldf/+gsWLlSCAS+vwmCjIsPKOIfz+0rgkP30WZz0NjBoEBw9qvx369bCpVNCCCFEA2f49rygoKCuh3JTsLa2rtSSp5q8d6s3MxVCVMrly0qWpm+/hU2b4Pz5wtdUquIZmrp1gxUrzHNdV1fluoMGwe7dMG0afPaZck0hhBCigVOpVNjZ2dX1MEQdkKBCNAx6PVy6BIao+9Il+C+TFqCcHzVKmY247z5o0aLmxtKtG6xfDyNHwhdfKPsxZPO2EEIIIRqwepFSVgi++qrweNAgpWr1lSvw/ffw1FPQuTM8/HBhm5Yt4dFH4fnnYds2uHABoqOVJU81GVAYDBsGy5Ypx2FhSnAhhBBCCNFAyUyFsHxxccWzLv3xB/j6gp0dXLtWeP78ecjNLdzDsHZt7Y7zRjNmKMusFi+GXbtgwoS6HY8QQgghRA2RoEJYvrlzlT0JN+YUuHYN2rYtzNQ0YoTlbYpesADuvLP4LIoQQgghRAMjQYWwfH/9VTKgAGWm4uRJy94EbW0NY8cWPr9+XSmeV5nsVUIIIYQQFk6CCmH5unWDAweKBxYqFfToYdkBxY0yM5UlUNbWyh4Rc1UdPXNGeZhL69bKQwghhBCigiSoEJYvNFTZQ2FgWApV3zIqpaQohfauXIEXXoC33zZPv5GRyhIxcwkNVTaXCyGEEEJUkAQVwvL5+Cibrg2btXv1Um6iiy4rqg/c3WH1avD3h3fege7dQautfr9aLYweXfbrubkweLByvGOH6X0nMkshhBBCiEqSoELUD2PGFB7/8kv93ZPg5wevvQavvAJPPqmkwvXyql6fppYr5eQUHvfrV39/dkIIIYSwWFKnQoja9tJLyqxLfj6MGwd//lnXIxJCCCGEqBYJKoSobSoVrFihpJo1bN4uKKjrUQkhhBBCVJkEFULUBQcH2LAB7r4bVq0CK/mrKIQQQoj6S/ZUCFFXWrSA7dvrV1pcIYQQQohSyNejQtSlogHF7t2wdGndjUUIIYQQoopkpkIIS3D0KAwdCteuQZs29S9drhBCCCFuahJUCItw5tIZzmSXUxU6NxcMWVPPJpustdDauTWtG9ejegtdu8KMGcpMxaRJ8PPPSl0LIYQQQoh6QIIKYREiEyOZu91EVWhDnbhPB5vsL3RIKGFDw6o9rlr17rvKjMXmzfDQQ/Dbb9C2bV2PSgghhBDCJAkqhEXQemgZ3b3sqtC5WekM/sIbgB0T4nFs4lpuf62d69EshYGNDURHwx13wOHDSpXsn36SYnVCCCGEsHgSVAiL0Lpx+cuVchzOGY/7teiDU9MWtTGs2ufiAhs3wu23Q1ISTJ4MMTGSclYIIYQQFk3uVISwNBoNfPkl2Nkpz69dq9PhCCGEEEKYIjMVQliiwYNh1y7o319mKYQQQghh8eRuRQhL5eFRGFDo9XDiRN2ORwghhBCiDBJUCGHprlxR0sx6eEBKSl2PRgghhBCiBAkqRP1yBS5dyq7rUdSu/Hw4cgQuXlRSzWZm1vWIhBBCCCGKkaBC1C+/Qdfb+hAUFERycnJdj6Z2ODnB118rNSsOHwZ/f7h+va5HJYQQQghhJBu1Rf1yArKzc4iMjCQyMpKBAwcSFBSEv78/jRo1qvXhfHXsW+PxoLXDmDviNXx6+Jj/Qm3awDffKBu4N2+GZ56BJUsAqUYuhBBCiLqn0uv1+roehKifsrKycHFxITMzkyZNmtTotXIyzuH8fkvQwybPDXy85gvi4uLIy8sDQK1WExQUxPz582t0HEXFHY7DN9rX+FyFCj161vuvr5nAApRUsz4+ysbtDz6AWbMI+zHMdDXySqiX1ciFEEIIYVJN3rtJUCGqrE6CCiD76bM4NW3B2bNnWbVqFZGRkRw/fpwpU6awatUq43vy8vKwtbWtsTH1XdaXA+cOoKfwr5AKFX1a9iE5KLnGrsuiRRAcDA4OkJbGGSd9uTMVValGLjMVQgghRMNTk/dusvxJ1FstW7bkxRdfJDg4mM2bN9OhQwfja/v27WPUqFFMmzaNwMBANBqN2a57Oe8ya/avKRFQAOjRc+TiEbNdq1TPPw///gujR0OrVrQGqUYuhBBCiDolG7VFvWdlZcW9995Lz549jefWrl3L+fPnCQ8Pp3Pnztx77718+eWXXK/GBufjuuMExwfT7u12aDdqSwQUoMxUdHTpWOVrVIhKBW+9BUOG1Ox1hBBCCCEqSIIK0SAtWLCADRs2MGrUKAB++OEHxo4dS6dOnQgLCyMnJ6dS/a0/tJ7O73dm0a5FZFzJQNNUw9R+U4u1MeypOJp+lHd3v0utrSw8dAgmTlTqWQghhBBC1AEJKkSDZGNjw8MPP8z3339PSkoKISEh3HLLLZw6dYqoqCjs7OzKff/lvMukZqQanw/tNBR7a3u8Nd5888g3/DXrL1aOWcna+1ca29zWvAd3d7ibAn0Bz/7wLH4xfmReqeGaEnl58MAD8NlnMGOGsoFbCCGEEKKWSVAhGjyNRsOCBQs4efIkn3/+OfPnzzdu4L5+/TpDhgxhwYIFnDt3jr8z/+bFhBdp/057HtvwmLGPZo2akTY7jc2PbebBbg9ibWUNwJguDxjb7H50G9unbOeD+z7A1sqW9YfX47nck9///b3mPpytLaxYATY2sHYtvPFGzV1LCCGEEKIMslFb3DTs7e2ZMGFCsXObNm3ip59+4qcTP/G/3/8H3UGvUr7tP3PpDOm56bg6KtmSWjq3NHkNlUrFrNtncXvb2/GL8eNY+jEGfTSIpfcvZVr/aeb/UAAjRsDSpaDVwiuvQLduSoE8IYQQQohaIjMV4qaW55ZH+zfaw1TQ36pXAopUaPtTW2YVzMLqatX+itze9naSApO4v+v9XLl+hZnfziQtI83Moy8iMBCefVY5fvxx+O23mruWEEIIIcQNJKgQN7V8VT4n807iaOOIb0df/M774bTeiVNbT/F/z/0fR48erXLfzRo145tHvuGN4W/w3r3v4dbUzYwjL8WiRcr+iitXlHSzf/9ds9cTQgghhPiPLH8SluHMGeVRluz0wuMD+8G5/AJutG6tPP6j1+vZ8fcO3v/tfW5vczsv3PUCAA/f+jDv3/s+k/pMoqljU5gCWW9m8dlnn7Fz5048PT2NfSxYsAC1Ws3EiRNp3LhxhT6WlcqK/939v2Ln9p3Zx7H0Y/jd5lehPirM2ho+/xzuuguaNwdnZ/P230CduXSm3OKBlSXFA4UQQtyMpKK2qDKzVmUMC4O5c8t8OccWnF9SjrPfAKc8E/2FhkJYGFeuX+HzA5/z/m/vk/xvMgDtm7QnbXaacbN1RWRmZtK2bVtycnJwdnZm4sSJBAUF0bVjmxKVvsvt50om7lHupGak8vTtT7No5CLsrMvPRFVpZ89C06bwX4ar0qqRi0JhP4Yxd3vZf/YqK3RIKGFDw8zWnxBCCGEuNVlRW4IKUWVm/YNpYqYi53ouzpsGA5B93w6cbBzL7e6fxnqW/R1HVFIUFy5fAMDRxpHH+jzGrNtn0btl70oNLzs7mxUrVhAREcGRI4UVswd4uLOnXRLcBtnPm75hv15wnVe2vsKCnQsAGNh2INF+0XRw6VDu+6oj9/tvafTrg8rnkKCiBFMzFbl5uQxepfzZ2zF1B4625f/Zk5kKIYQQlkqCCmGRavIP5o1yruXgPF9ZzpM9JxsnO6dy2z/+5eOs/n01AB1cOjBrwCymu083ZnKqKr1ez48//khERARxcXGFFbqHQfb6it+wb/xrI49teAzdFR2ujq6sGbuG+7reV62xlTJYZfP2e+9xsjE0zwW77j2xnvca+PiY91oNWGX/7AkhhBCWqibv3WSjtqj3rly/wsfJH3P4/GHjuaduf4ohHYcQ5x9HytMpvHDXC9UOKEBJGTts2DDWrVvHyZMnCXvlf9AU6FfYZseOHaxbt45r166V2c+D3R4kKTAJj9YepOemc/9n9/Py1pfJL8iv9hiLDNY4+9PuEjheB6tDh8HXF+LizHcdIYQQQtz0JKgQ9cJXR74yHg/6aBBxh+M4lXWKl7e+TPt32jP1q6m8s/sdYxvPNp78OOVHxvYYi41VzeQjaNWqFc8/OxueBlwKz7/xxhtMmDCBdu3aMWfOHFJTU0t9v1tTN3ZO28kTnk8AkHgmEZVKZd5B/vknesDQq0qvV4KNefPMex0hhBBC3NQk+5OweHGH45gYN9H4/OC5g/hG+2KFFQUUAMrm69tuua1uBlgkDtDr9QwaNIjff/+dM2fOsGDBAsLDwxk1ahRBQUE88MAD2NgU/rWzt7Fn6QNLGdppKMPchmGlsjL2Y5YA46+/KNGLXg9F9oXc9ExlHrueW3icnAwm9vPcmHlMCCGEuBnIngpRZbW1p6JvRF8OnD2AnpJ/VId0HMLTA59mdPfRNTYjUZ6yMivl5eWxceNGIiIi2Lx5s7H9Aw88wMaNG032G7QxiM5NO/P8nc9XL7jo2xf9gQPKDEVRzZrBhQtV77eqTN3AV5Y5buBrKPOYEEIIYWlq8t5NZiqExfvrwl+lBhR21nb8OOXH2h9QBdja2jJ27FjGjh1LSkoKy5cv56OPPmLs2LHGNpmZmfz66694eXlhZVW4EnH78e1EJkYCsOPkDj4e87FSQ6MqQkNR+fqSD1gDepVKCTAef7wan64aIiPLvYGvNHPcwGu1SrHAsmSnwzZv5TghvmI1UoQQQoibjMxUiCqry5kKFSr6tOxDclByjV23IipTA+Lq1asA2NvbA7BkyRKeeuopNBoNgYGBTJ06lRYtWqDX64lKjOLp75/mWv413NRuxPjF4NHGo0pjvLJ6FX8GT6P7RbC79Tasn5wFQUGFDQoKwKqWtleZmqnIzYXBSvpWduwAx7pfaiR1PoQQQjQUMlMhbmqhQ0LxjfY1PlehQo+e0CGhdTiqyjMEEwZXr17FxcWF1NRUXnzxRV555RV8fX0JCgoi8J5ABrQdwLjocaTp0rhz5Z28f+/7BHoEVno5VP5DD9A/TTnOfnpr8ZviU6fgvvvgvfdg2LDqfkTTTAUBOTmFx/36gZOkbxVCCCHqA8n+JCyeTw8f1vqsNT7v1aIXcf5xjO0xtpx3Wb7/+7//4/Tp06xcuZLbb7+dvLw8vvjiC4YOHUrfvn3p1awXiYGJjO4+mmv51wj6NojZ38827yDmzYMDB2DkSFi50rx9CyGEEOKmIUGFqBfGdB9jPP5l+i/1PqAwaNSoEVOnTuXXX38lMTGRgIAAnJyc6NKlC3Z2djR1bMqX47/k+b7PY2tly/1d7zfvAN59FyZMgOvXYfp0CA5WlkMJIYQQQlSCBBVCWAh3d3eioqI4ffo077xTWHMjNTWVxWMX021TN/7e+jfZ2dkAnL50uvoXdXSEzz5TNjwDLFqkFMcrugxJCCGEEMIECSqEsDBNmjShY8eOxud79+7F3t6eg78cRKvV0qZNGyY9NYlbP7iVJ759gqvXr1bvgiqVkkFp7Vqws4Mvv4R77jFv6lchhBBCNGgSVAhh4caPH8+pU6d466236Nq1K5cuXWLtrrVcyrvEsr3L8FzmSVpGWvUv9OijsG0b3HILXLsmm6SFEEIIUWESVAhRDzRr1oznnnuOI0eOsGXLFvw6+2H1uRWqXBV/pP+Be5Q73xz5hpzqLlu680749VfYuBFqME2wEEIIIRqWWkkpm5WVVaN1DIS4WahUKoYPH87w4cP5999/SdiTwJKzS/j11K+M/mI0zQ43o9e5XjwR9AQPP/wwdnZ2lb+Im1vx52+/Dfn58PzzylKpajhz6Qxnsk3UqTBknD2bbLJORWvn1rRuLMXmhBBCiLpmlqBi+fLlZGZmGp8///zzAKxYsYKQkBB0Oh0ajQatVmt8TQhRPa1atWLSQ5Pwz/cnOD6Y9359j4s9LrL9xHa2j99OixYtmD59OhP9q5Ep6/fflWBCr4cjR+DDD5V9F1UUmRjJ3O0mKmpr//vvp4NN9hc6JJSwoWFVHo8QQgghzMMsQYVGoyEkJISFCxcyfPhwAPbt20dgYCDBwcEsWLAAUIKPuLg4fHx8zHFZIQRgZ23Hu/e+y13t7+Ldne8yxHsIH5/4mDNnzjB//nzl719nYGgVOu/TR0k7++yz8NFHkJoK69dD06ZVGqvWQ8vo7qPLfD03K53BX3gDsGNCPI5NXMvtr7WzzFIIIYQQlsAsQcW+ffvYu3dvsXMBAQF4eHgYAwrDucWLF5vjkkKIG/jd5se4nuNQqVTMfWUuX379JXPj5nLw84NwDLijsK1er69YZW6VCp5+Gjp3VupZbNsGgwbBt99Cly6VHmPrxuUvV8pxOGc87teiT/Hq30IIIYSwWGbZqK3X60ucS0pKYvz48RVqK4QwD0OgYGtry+9Nf+dgt4P0eKs7vABoYNDaYcQdjuN///sfPj4+bN68mYKKFLt74AHYuRPat4e//oKBA+Gnn2r2wwghhBCi3jBLUKFWq4s9X79+PSqVCnd39xJtm1Zx2YQQonI6N+2MrZUth7OOgBOggoMXD+Mb7cuSrUvYsGEDo0aNomvXrixcuJDz58+X32GfPkpmqAEDID0d/vijVj6HEEIIISyfWZY/3biMIj4+HsC4v6KojIwMc1xSiNpx5kz5ReCy0wuPD+wH5/L3ANC6tfKoBVP7T2X+jvkcTT9qPKdHjwoVbR9py8iBI1m9ejWpqamEhITwyiuv4Ovry6xZs7jzzjvLHv+PP0JMDDz+eK18DiGEEEJYPrMEFRkZGca0scePHyc6Oppx48aVaLd48WL8/PzMcUkhakdkJMwtJ1uRLfDSf8de3pBnor/QUKV6dS05mXmyxDk9elIupfD+++8zf/581q1bR0REBHv27OHzzz+nRYsWZQcVAI0aFQ8oMjLg9dfhtdeU14QQQghx0zFLUPHCCy8wcuRIVCoV8fHxaDQali9fDiibuNetW0dUVBQqlQqNRkOnTp3McVkhap5WC6PLzlbE9VzY9F/q0x07wKb8ugq1NUth0K15Nw6cPYCe4nuZurp2BcDJyYmHxj/E5CmT+X3f70RGRqLVao3tfv75Z1atWkVQUBADBgwofXP3xImwaRP8/DN89VWtf8abick6H5UkdT6EEEKYi9mK323evJl9+/axYMEC+vfvbzyfnp7OgAEDGDBgAAAuLi7muqQQNc/UcqVrObDpv+N+/cDOqTZGVWGhQ0LxjfY1PlehQo+eN4a/YTwXuDGQ3//9neC7gnn/w/dxsHEwvrZ06VLWrVvHqlWr6N+/P0FBQTz66KM4OzsXXuTFF5W9Fnv2KBu4v/kG+vatlc93s6lQnY9KkDofQgghzEWlN3M6pri4OPbs2cP48ePp168fAFu2bKFZs2bG56JhyMrKwsXFhczMzBqvmJ5zLQfn+cqNbPacbJws5ObdUsdV1Gd7VjHxu2kA9G5+G3OHv8bYHkpBvMwrmXRf0p2zOWcB5Zvr/7vj/9B6anG2c+aXX35h2bJlREdHc/XqVQAaN27MpEmTCAoKok+fPspFjh2DBx9UCuQ5O8PnnyvPKykn4xzO77cEIPvpsxaRUtaSxmRqpiI3L5fBq5SZsx1Td+BoKxXJhRBCFKrJezezBRVxcXHMmDEDnU4HQFRUFDNmzDC+vn79ejIyMoqdE/WbBBWWO66iTN0UX867zEdJH7Fo1yJOZil7MFwdXZk9cDazbp+Fq6MrFy9e5JNPPiEiIoKjR5WN3926dePPP/8sXBKVkQHjxsHWrWBlBW+9BbNnK7UuzDTWumCJYypLffjzKIQQou7U5L2bWVLK7tu3j+DgYMLDw8nIyKCgoKBEPQpfX188PDzYunWrOS4phDCTRraNeGrgUxx7+hgfjf6Irq5dSc9NJ/THUNbsXwNAs2bNeO655zhy5AhbtmzBz8+PWbNmGQOK3NxcXgwP58h770FAABQUKJW4L12qw08mhBBCiNpilqAiKiqKxMREAgICjHsmStvQ2b9/f1JTU81xSSGEmdlZ2zGt/zQOP3mYdePWMcJtBDPcC2cWfzv1GycyTzB8+HCio6N56qmnjK/FxsYSHh7Orb17M+LYMfZNmULehg1QwzNYQgghhLAMZgkqNBpNhTdgG5ZHCSEsk7WVNf63+ZMwOYFGtkqK2AJ9AdO+mkaX97vw+JePc/j84WLv6dy5Mw899BBWVlZs3bYN948/pv199/HSSy9x/PhxiIsD+UJBCNHA+Pn5oVKpbsqHEDcyS1BRmSrZKSkp5rikEKIWZeRm0KZxG/L1+az+fTW3fXgb46LHkXg6EYA777yTr7/+mrS0NF555RVat27N2bNnefPNN3lco0E/YYKSGWrnzjr+JEIIYR5JSUkA6PX6m/IhxI3MElQcO3asxLnS/sAlJyfLH0Qh6qFmjZqx+bHN/DrjVx6+9WH06Fl/eD2eyz25d829JJ1R/nHt0KED8+bN48SJE6xfvx5vb29a3XUXqj594MIFGD6cX59+mlOnTtXxJxJC3EwMAYA5hYSEMGfOHLP3K0R9ZZagYvz48QwYMIATJ04Yz904NbZlyxZGjBjBwoULzXFJIUQduL3t7WwYv4E/Zv7BxN4TsVJZ8UPKD5zPOV+sna2tLT4+PmzevJnVCQmwfTuMHQvXrjHwgw9Y1b49PmPHsnnzZgoKCuro01TMV8e+NR4PWjuMuMNxdTgaIURVBAQEmLU/Q5Di7u5u1n6FqM/MUvyuf//+BAQE4Obmhre3NxqNhtTUVFJSUkhNTSUpKYnU1FQ2b95c46lHhRA177YWt7HGZw1zh87l8z8+Z2TnkcbXViStQO2gZuytY7G2ssbe3h7s7SE2lvMBAdyyciUv6/V88eWXjPnyS9poNGi1WqZOnUojs5XjNI+4w3HGGh8ABy8exjfal/X+6/Hp4VP7AzpzRnmU5Xpu4XFycsUqvEsFdFGPJCUlERAQQGJiYoXfExsby/jx4806jvnz5xMeHl7m9datW0dsbCygLPvWaDQl2syfP5+kpCTc3d3RarUEBgaadYxC1DazFr8z/GXft29fsfPjxo1j+fLlUk27gZE6FZY7rqJqs85C1tUsOr7bEd0VHbc2v5UX73qRR3s/iq21bWGjlSvRa7Worl9ntoMD71+5AoCdnR2ff7oK38MTa2Ws5SnQF2ClsqJvRF8OnD2AnsJfkypU9GnZh+Sg5NofWFgYzC27onaOLTi/pBxnvwFOeSb6Cw1V+hTCgul0OkJCQgDYu3cvSUlJlVpK7e3tTUxMDGq12izjSU1Nxc/Pz2Rg4+fnR2xsrDHl/o10Oh1+fn7Ex8ebZVxCVERN3ruZ9XtBd3d341+yffv2oVarcXNzM+clRA2JiooiJSWlzG9ehKiop25/ig9++4A/L/zJlK+m8OqPrxJ8ZzDT+k9TKjxPm4ZKo4HoaN5cuJC+0dFERERw4MABBnh6wH+Jpf488hedb7Uz241AaQr0BRzXHef3f39n/9n9/H72d34/+zt3d7ibjx/+mL8u/FUsoADQo+fQ+UPGwKNWabUwenTZr2enwzZv5TghHpxdy+9PZilEPaBWq4mMjARg4cKFldofYcg4ac7fIyEhISb/rUxKSkKr1aLT6YiKiiq1fWpqqjFYEqIhqLHFBv3796+proWZpKamGn/RRUdHy9SrqLYm9k2YN2wez9/5PBF7I3j7l7f5O/NvZm2axWs/vcYnD3/CqC6jYOhQGDoUJ2DatGlMmzCBs99+i3ORTHJPPPUMBw4e4pFHHiEoKAhPT89qpTG8XnAdGyvlV16BvoChHw8l+d9kLl0rWaDP2U6ZferWvFuJmQqAvII8eiztwfN3PM9jfR/DwcahyuOqFFPLlTLOwbb/jnv3AQuu/i1EbYiOjsbPz89s/aWmppKamoqXl1e57RISEggODkan05GQkEBsbCzjxo0rtY0QDUWtr2CeOXMmy5Ytq+3LilJoNBrjtz979+6t07GcuXSGM9llrxXPzStcK578b7LyjXc5Wju3pnVj+Ra2rjSxb0LwXcE8dftTrNy3koW7FvJP1j90du1csnFBAUyeTMsNG8ibOIHkzdDtAvxt8wdzrl5l5cqVrFy5End3d4KCgnjkkUdwdnYu89p6vZ7juuPFZh72n91PK+dW/Dz1ZwCsVFacyznHpWuXsLe257YWt9GnZR/6tuxL35Z96d2yNwChQ0LxjfY19q1ChR49jWwb8dfFvwjcGEhL55aM7l7O7IEQos5ERkZWav+FKeHh4RXK+HTx4kVAWf6tVquZP39+iaDC0EaIhqLSQUVWVlaJNVjJyckVfn9CQkJlLyluApGJkczdXvZa8aIGrxpssk3okFDChoZVc1SiuhxtHXny9icJ9Ahk18lddHHtYnxtxtczcLF34f8GPE2bxo2hoADbTz+jD6ACuhVcIw5YcvfdPP/bbyQlJREYGMj//d//sWDBAp544gmu5V/DztrO2Of42PF8f+x7sq5mlRjLv9n/FluytGL0Cpo6NKV78+7GGYwb+fTw4fMWTxJ6aCkn1NA9246wPrPxevRlViSt4Ltj3/FgtweN7eNT4unevDsdXDqY48cnRL2j0+kICAggKSmJ9PR0/P39CQ8PL7H8KCQkhNTUVFxdXY1fbplbampqiQ3S1aHT6di7d2+FxtusWTPjcWBgIAsXLiwxnqJthGgIKhVUdOnShePHj5Oenl4ssBg+fDiZmZkm36/X66UKoyiV1kNr1m97WzvLLIUlsbW2ZUinIcbnqRmprNy3Ej16luxZwlTfKQTvbE6yzQXmDoG/mkG3i3pCt8Osf/5hwj//8M6qd9i//kO62+vY/Ov/8W7ac1yyLeDkniGonJywbtyYy3ecJutqFrZWtvRs0pm+OY3p49iRvs5d6KPuhlV8AjRqBI0aMdjtNjAstyooAJVKeRQVF8eEJ5bij5J/W6+6hkq/EFwG8qzPszx7x7PGprl5uUzaMImLly/ySO9HeOHOF+jTsk/N/3CFsCABAQGEh4cbs0BqtVrc3NxITExEo9EYNyeHh4fXeDrWyMhItFqt2fqbP39+hWYpDBmdDObMmcPChQsJDw83BiQJCQkml1AJUd9UKqgw7JO4cabC1dWVOXPmmPwLcvHiRWbOnFnJISqSkpKIjIwkPT2dpKQk1Gp1vUvBptVq8fPzM/lz0ul0zJ8/H1C+yUhJScHb27vE1GlD0rqxLFe6mbip3fhu4ne88fMb7Ph7B5GJUSx/BAqsQKUHvQoOtADf8fDgX8fZ8VFXdFd0cB9sBOCKsa+LvyTQMkc5fnrAHN4M+pDuzbtjty4WnpkI7Cl9EKtXw2OPKccbNyp1NP4LOIyPtDT0FBb0Uen1SuAxbx74FE8pe/7yeXq16MXWtK2s2b+GNfvXMKrzKILvCmZYp2HyhYpo8Awbkg3fxms0GuLj4/Hw8MDb25vExET8/PyIjIw06wxCWRISEsyWfESn0xEbG1uh/m7cK6FWq/Hy8iIqKsoYVCQlJZltP0VCQgIhISF4eXlJshVRpyoVVMTExJR6XqPR8MILL1Soj6pkg4qKigIoNuWYkJBg/LYjMTGxRjPEVEdqaioJCQlERkaSlJRkcsOYTqfDw8ODmJiYYt90aLVa9uzZI78wRIOgUqm4t8u93NvlXn4+8TNv7niT7499DygBBYDeClQFsLujFborOmytbOnRtBt9HTrQx74jfW3a0YcWrGiziH+OHsUJ2DB7Pp2++pWgoCAebtkS2wkT4PJl5ZGTU3h8+XLhLAUozwsKIDtbeRQd642D1+vhzz9LfKYOLh3YMnkLiacTWbRrETGHYvgh5Qd+SPkBj9YeLLl/CYPaDTLfD1EIC6PT6UoNFrZs2YKbmxseHh6EhITUSkCRlJSEp6enyXYVzQ4VFRVV4UxNpe2VCAkJISEhgaioKLN/Gerl5YVWqyUlJcWs/QpRWWbZqL158+YaaQvKTblOpysR0Xt5ebFlyxY8PDwsNs9zVFQU8fHxeHt7Ex4ejre3t8n3+Pn5MW7cuBLTwpGRkTRt2hRvb2+ZMhUNyt0d72ZTx03Yz7Plmv56sdf0VpDloCI5MJket/Qotn/C4EX/aXz//fdERESQ9u23pG7dytatW2nZsiWzZs3i5ZdfNj2IsWOVonJFA4+cHJg+Hf2JE8oMRVFWVvDTT3DPPSW68mjjwRfjvuDNjDd555d3+GjfRySeSTRmlBLiZqNWq1m+fDl+fn61ElBAxZY+JSUlMWLECPz9/U3uk4iMjKzwTXtpeyW8vLxQq9WEh4fXqxUWQlRGLSdZr7zIyMgy/wK6u7vj5eVFQkICqamptTwy0wIDA4mJiSEwMBBXVxP54imc1SjrF6Fhw1tRSUlJeHh4VPhRmfzeQtSmW1v0RHXDvIAKFT1a3EbfVn1LDSgArK2teeCBB/jmm29IS0vj5ZdfplWrVpw9e7bE74X8/PzSL25vD61aQefO0Ls3DBwIw4fDW2+h0usxvEtvWMKUmwtDhoCfH6SlldqlpqmGD+7/gL+f/ZtPx35Krxa9jK8998NzhP0Yxvmc86Z/MEI0AOnp6ajVavz8/IyzAzVp79695e7ZiI2NJTU1FU9PT+NqiLIsXLiwwnszytsrMWfOHGNtiqJtEhIS8PDwQKvVEhUVRVRUFFqt1vj7q+jrUPjvfnljioqKMqayLbpCIiEhwThjUnTmJSEhgc6dO7Nw4UKioqLw8PAw/n8qqy8hStDXIJ1Op4+KitIvX75cv2XLlir14e7urler1fqMjIxSXw8ODtYD+piYmEr1GxkZWWafpYmJidGnpKRU6hpFJSYm6gF9fHx8mW0Mn6Us4eHheqBS464od3d3fXBwcKXek5mZqQf0mZmZZh9PfZF9NVtPGHrC0Gdfza6bQZw+rdcnJpb5yN4eXzjG7fHlttUnJir91YH1h9Ybx0kYelWYSk8Y+rhDcZXu69q1a/rY2Fj9gQMHjOeSkpL0HTp00L/22mv605X4jLmfrNTva4n+sg36671u0+tXrdLrg4L0eisrvR70ent7vX7OHL0+K6tC/Z3MPKm3mWejJwy94+uO+ic2PqE/dvFYZT9iqbLTzxb+v04/a5Y+haiosv5dTUlJ0Xt5eekzMjL0arVa7+7uXuVrGP4dLE9MTIw+PDy8Qv3Fx8frAX1kZGSZbTQaTaXGV5aMjAw9oFer1aW+z8vLy/g8JSWlWLvIyEh9YGBguc8N/4aHh4cXu9co+m+7RqPRJyYmlniPoZ1hDOHh4fqMjIxy+xL1U03eu5llpmLUqFGlnndxcSEgIAA/Pz+aNm3K4sWLK5V+FpRN4DqdzuwzEYmJiYwYMaJC35hERUUREBBg1uuXxrABvSyGaeO6rikhLExkJHh4lP3wKrLszsu7/LYeHkp/dcCnhw9r719pfN6reU/i/OMY22NspfuytbXF19eXXr0KZwc+/vhj/v77b1555RXat2+Pr68v8fHxFBQUlNtX/kMP0H8mNHoZrvy0FaZMgWXLYN8+ZTbj6lWYPx+6dYPt202OrZVzK9b6rMWjtQe513P5cO+HdFvSjfGx49l7Wv5ui/orMDDQmGTEwFBZOiYmBrVaTWJiIqmpqXh7e1dpxqIitR3WrVtX4cQmXl5eaDSaMvcrRkVFVSpJyrp168p8Ta1WM27cuDL3ehSdWdFoNGg0GmJjY0ttW97qB41GY5z1SE1NLZaxquh+TY1GU2z1QrNmzYz3IMHBwajV6nL7EuJGZtlTob9xvfENXFxc6N+/P/3792fx4sX069evwn3Hx8eXm2vaEGxUNjWdYb2lh4dHuRu9Fy5cyPz589myZUuNrwU15Owui2GMNbHUS6fTVfgX/NKlS1m6dGnZS0kakHpRlE+rhdHlpOO9ngub/qvtsWMH2JQ/xnIrNtewMV0eMB7/8uhWnMxYETo8PJwBAwYQERHBzp07iYuLIy4ujs6dO6PVapk1axaOjiZ+NkX16QMJCfD11/B//wenT0MFfkfYWNngf5s/fj39+PH4jyzctZDvj31P9MFoog9G88nDnzC57+RqfFIh6s6cOXOMy3LS09ONGaAMNBoNaWlphISE4ObmhkajqVBxOkOf0dHRAHh7e6PRaEpkVDT8W1aZf69DQkLQarWlLl0yJIOpyPgMS7G9vb3LzHA1Z86cCtfrcnV1rdK/9+PGjSM9Pd14nxMYGGjcM6LRaAgJCaFz586l7hEZMGBAhfsS4kZmCSoqkyqxKtkJyvvlEBsbi7u7e5Vu+E0FFoaAwpBfu6YZfgGXxRBwmGs9qiF1rWEmyPDLunPnzuWmunvyySd58sknycrKwsXFxSxjsVT1oihf69blBwLXcmDTf8f9+oGdk3mvX084ODgwadIkJk2axIEDB4iMjGT16tWkpKTw7rvv8swzz1S+U5UKxoyBe++FxERo377wtfffV17r2LGMt6oY5jaMYW7D2H92P4t3Leabv77hoW4PGduczDxJK+dW2FrbVn5sQtQBtVpt8qbT0KYyN6eGtqbeEx0dXel1/4GBgWi1WsLDw4sFFbGxscaK2BUdnynu7u4V/hK0vHuC8oKNhIQEAgMDCQwMRKfTFVuV4eHhQXx8PBqNhoSEBJP7LMvqy1Izboq6Vemg4vjx4yXOpaenc+LEiXJnLFJTU4mJiTHrt+wLFy4EYPny5VXuo6zAorYDCqh4sFCR6d+KMGSigIr/QrzZSFG+hql3794sWbKEBQsW8MUXXwDKkimA69ev88ADD/DQQw/x2GOPVeyXpL093Hln4fOffoLZsyEkBJ5/Xvmvc9nZn/q07MPqsavJvpZtzBKl1+vxj/XnVNYpnh30LDPcZ9DYvnFVP7IQN4WYmJgy09+XJzAw0LjEx/BvvmGVQm0pen9kyHxpWHp144zPnj0l6+8Y7iEM7QwZpwzLrRISEoxLmopeLykpqcz7nLL6EqI0lQ4q4uPjSUlJMUa4hlkKUzfeer0eDw+PCk/7mZKUlERISEiJeg5VcWNgERUVVesBhbBMUpSvYXN2dmbGjBnFzn333Xds3ryZzZs3ExISgp/Pw+AItK1Ex82awdCh8OOP8PrrsHIlLFgAEycq6WjLGk+RtLP/Zv/Lcd1x/s3+l+c2P8e8n+Yx03MmTw98mlbOrSrzMYW4KaSmpqJWq6v0LXpISIixeF9kZCQJCQl4enrW+jfyhj0U8fHxxZZdeXl5ERMTY3zd29vbOGZPT0/jl7YJCQk0a9aM1NRUYmNjSU9Px8PDw7ifY926dcTGxhoDhJiYGBISEnB3dzfuB1Gr1casm2X1JURpVHpTGyLKYVg76OrqyoIFC8ptq9FoqlT4riydO3cmJCTErPmetVqtcQmQuQMKQwq4+Pj4MtPNNW3aFFdX1zKXiBn6CA8PN1slzuowLH/KzMwsUWVdWI6cazk4z1duVrPnZONkwcufcjLO4fx+SwCynz5r1j0VFZWZmcmaNWtYtmwZBw8eLHyhNSwJeYspM7Q4OVXgZ6jXw4YNykyFIe3s7bfDe+/BoIoVwbt6/Spr9q9h0a5FHLl4BAA7azsm95lMyOAQurh2KdbeEn5+QtSVhQsXotFoKrWxuihvb28SEhKMX4LGxMTU2heLCxcu5OLFi1LgVtS4mrx3q1b2J8MGq6ZNmzJixIhyH+YMKPz8/IwbhsxJrVYbpw8rUlfC3ExdMz09HTBd+VMIUXUuLi48+eSTHDhwgB07djDBfxxYA2dg1jP/x6FDhyrWkUoFPj5w6JAyS+HsDL/9ptS2uHatQl3Y29gz3X06h548xJfjv+Su9ndxLf8aK/atYN+ZfVX/kEI0QHv27KlyQAEY6zYYivTJSgUhKqfaG7UNxWwq6vjx43Tq1KnK1wsJCWHAgAFm/6Y+JCSE2NhYMjIymD9/Pm5ubrW+/Emj0ZSbLtYQ8MgvOiFqnkql4q677qJfz6580TEWfoeHHR4qtqb4rbfeomXLlowbNw4HB4fSO3JwUPZUPP44vPyykobW7r9CfgUFcOUKNGpU7lisVFaMuXUMY24dw86/d7L699X49PAxvr7uj3U42DiQnXXBeG7Q2mHMHfFasXZCNGRV2UtRlCG9bGxsbJWSylRVQkKCcelRecXzhLB0Zsn+VJkaDlqtlh9++KFK14mKiqJz586lzlBUJxuBIRWcYaO2YfrRsMeitm7i3d3dy91zYthUJb9whKhlTsCdsObpFcZ9ZJmZmbz66qtcvnyZZ555hqlTpxIYGEjXrl1L76NVK1ixovi5Tz6BV1+F8HB45BFldsOEuzrcxV0d7jI+v3r9Ks9tfo7Tl04Xa3fw4mF8o31Z779eAgshKigkJMSYHam2eHl5VShtrRCWzixBhcHWrVvR6XTGZTqlqWrhNsPmpNICitTUVJKSkqo07XljQGFQF4HF+PHjWbhwIUlJSaVuPt+zZ48EFEJYkDlz5hAVFcXJkydZvHgxixcvxsvLi6CgIEaPHm3MKFUqvR6iouCff5QN3B98oOy3uP32So3hWv41JveZzMJdCynQFxby06NHhYp52+dJUCFEBRnSpwohKs8sQUVmZiYeHh4VShdbmZoWBklJSaSnp5f5F72q04VlBRQGtR1YuLu74+Xlxbp160oNKmJjY4ullBNC1B0XFxdefvll5syZw6ZNm4iIiOC7774jISGBhIQE3nzzzfKrz6pUsHUrvP22UpF7924YOBAee0x53rZi6aYa2zdmvtd83tn9DlfzrxZ7TY/euMFbCCGEqElmCSr8/PwYN24cWq0WV1fXMgui6XS6Suc4Tk1NNVbMNFTULCo9PZ2EhAQyMjIq1a+pgMIgPDycZs2aVTuwMARcpmpRxMTE4OHhwfjx44sFFlqtluDgYJmpEMLCWFtb8+CDD/Lggw9y4sQJli9fzscff8xjjz1mbPPLL79w8eJF7rvvPqytrQvf7OgIL70EU6fC//6nLIf69FNYvx6WLYPJFa+s3b15dw6cPYCe4gn9NGrZgyWEEKLmmSWo0Gg0JlPKgrKpu7I1Jby9vUlNTSUqKqrc61dW586dCQ8Pr9A+jODg4Crt14iNjTUWlTMs+woICDCe8/PzKzH7olarSUxMJCQkBLVaTbNmzUhJScHb27taWS2EEDWvY8eOvP7668ybNw+rIvUo5s6dyw8//ECHDh0ICAhg+vTptC5aBb1NG/j4Y3jySXjmGdi1C7p1q9S1Q4eE4hvtW+L868Nfr+KnEUIIISquWnUqDBYvXszzzz9vjvGIekTqVNQPUqeieqo7Jr1eT3BwMCtXrjTuN7OxsWHMmDEEBQUxfPjwYgEIej388kvxCt2rVkHv3mBipvezPauY+N00AHo178m84a8ztsdY4ziqsvxUCCFEw1GT925mmamoTFySlZUlN6BCmNGZS2c4k32mzNdz83KNx8n/JuNo61huf62dpYq4OalUKhYtWsRrr71GbGwsERER7Ny5k/Xr17N+/XrGjRtXPBWmSlU8oDh+HGbOVGpbPP44vPkmtC79/8+YLg8Yj3c/us0YAGXkZvDwuoeZO3QuQzsNrYFPKYQQ4mZnlqBi3LhxFZ6t8PPzq3JKWSFESZGJkczdPrdCbQevGmyyTeiQUMKGhlVzVOJGDg4OTJo0iUmTJnHgwAEiIyNZvXo19913n7FNZmYmBw4c4K677iqcVXBwUArmrVmjLJGKjVX2Xzz7rPJaBbzx8xv8dOInHvjsAb579DuGdBpSA59QCCHEzcwsy5+OHz9OSkoKUVFRjBw5Ejc3t1KrQ6enp6PVajl69Gh1LyksgCx/sgymZioqqy5nKhri8qfyZGdnY2NjYyyct2TJEp566il69epFUFAQkyZNKkx8sXu3st/i11+V5506waJF4OtrrG9R1livXL/C2HVj+f7Y9zSybcSmiZu4p+M9ZvscQggh6geLX/7k7u5OZmYmer3eOI1f2tpdWdMrhPm1bizLleorZ2fnYs91Oh2Ojo788ccfzJo1i+DgYB599FGCgoLwGDRI2cD9+edKhe7jx5X0s3fdVeZyKAMHGwc2jN/AmC/GsDllM/evvZ9NEzdxd8e7a/DTCSGEuJmYZaaiS5cujBs3jvHjx5fb7uLFi8ycOVNmKhoImakQ5nazzVSURqfTsWbNGiIiIjh48KDx/KBBg/jpp5+Ugno5ObBwIdjbK0uh/nMl8kOOhD5Jt4tg170n1vNeA5/Cwne5ebmM+WIM8anxONk68f2k7xncwfSSOCGEEA2Dxc9UVDSlLICbm5s5LimEEA2SWq1m1qxZPPnkk+zcuZOIiAhiYmJo3bp1YYVuJyeOT51Kp06dCt/4xhs4vPwyvQErQH/osLI0av16Y2DhaOvIVxO+YvQXo0lITWD619M5+MRBbKyq909BQ1qCJ4QQomrMMlORmZlZZsG76rQVlk1mKoS5yUxF6S5cuEBWVpaxJs+xY8fo2rUrgwcPJigoCF9fXxzatIEbi4CqVNCnDyQnFzt9Oe8ygd8E8uqQV+nWrHL1MEoT9mNYhZMFVIQkCxBCiJph8TMVlQkSJKAQQojKad68Oc2bNzc+37VrF9bW1uzYsYMdO3Ywe/ZszmRlYXvjG/V6OHKkRH+NbBuxxmdNsXOX8y7TyLZRlcan9dAyuvvoMl/Pzcs1Zh7bMXVHhdIaCyGEqF/MElRUxsyZM1m2bFltX1YIIRqMyZMn4+XlxcqVK4mKiuLkyZMcAuPSp2LatzfZ3w/HfuDxLx/nqwlfMbDdwEqPx1SygJxrOcbjfq36WXQBRiGEEFVT6aCitOJ1yTdMrZcnISGhspcUQghxgzZt2vDyyy8zZ84cNm3axMbQUPomJZEPWAN6QAXo//kHVUoKdO5caj96vZ53dr/D2ZyzjFwzkvjH4rm97e21+EmEEEI0BJUKKrp06cLx48dJT08vFlgMHz6czMxMk++XlLJCCGFe1tbWPPjggzz44IOcfHshF18LoXs22HXrgRUqYs6cYc3s2WhnzuTee+/F2tq62PtVKhXr/ddz/2f389OJnxj56UgSJifg2cazjj6REEKI+qhSQUX//v0BSsxUuLq6MmfOHLy8vMp9vyGlrBDi5mQqS1BuVrrxOPncfhyvlCyiWZRkCSrOdeoUOlwKASD76R85diSVCXfcgf7bb/nm22/p0KEDgYGBTJ8+nVatWhnf52TnxLePfst9a+9jx9878P7Um4THEvBo41FXH0UIIUQ9U6mgwlDY7kYajYYXXnihQn1ISlkhbl6RiZEVzhI0+Atvk20kS1D5+g4axJ9HjhAZGcmaVasI+/tvol5+mbCwMB5++GFeeukl+vXrB4CznTPfPfod9629j50nd+L1qRdbJm/BvbV73X4IIYQQ9YJZNmpv3ry5RtoKIRoWU1mCyM2Fwf8VY9uxAxwlS1B1devWjbfeeosFzs7YzpuHv7U13tevExsbS1BQULG2je0bs2niJu5dey+7Tu4iKjGKiAcj6mjkQggh6pNayf60aNEiVCoVGo0GnyLVXYUQNxdTWYLIyQHD6qiW/cBJsgSZi21wMPz8M07btvFzo0Z85OfHsGHDjK+//PLLnDhxgqCgIL579Ds++O0DXhz8Yh2OWAghRH1SK0GFYWlUZmYmixcv5vnnn6+NywohhDBwcoKNG+HBB7Heto3A9eshMBDuvJOrV6+ybNky0tPTWbNmDb169SIoKIicvjm4uLhQoC/g78y/6aTuVHrfZ84oj7Jczy08Tk4Gm/JnoGjdWnkIIYSoN0qkNK9JKpWK+Pj42rykEEIIg0aNlMBi2DDIzoZRo2DnTuzs7Pj++++ZNm0ajo6O/PHHH8yaNYs2bdowPWA6D696GM8oT/af3V96v5GR4OFR9sOwpA2U4/Laengo/QkhhKhXzDZTsXXrVsLDw0lNTSU9Pb3E6zqdDoDw8HBzXVIIIartpstIZQgsHnoItm4FHx9UaWkMGDCAAQMG8NZbb/Hpp58SERHBoUOHWLl6Ja1ateKizUVGrB7B1slb6d2yd/E+tVoYXc5emex02PbfxvuEeHAu/2cosxRCCFH/qPR6vb66naSlpdG5c2fc3d3x9FRym+/du9d4fPHiRfbt20dsbKwx04io/7KysnBxcSEzM7NEmmEhqiQnB5ydlePs7FrZUxH2Y1iFM1JVRF1mpMrJOIfz+y0ByH76LE5NW5Td+PJlmDABnn1Wmbm4gV6vZ8eOHURERDA7ZDZP/voke0/vxcXWhfvP3c//ZvyPXr16mX9cQgghakxN3ruZZaZi4cKFxMfHM2LECOO55cuXExAQUKzd8uXLUavVdOrUyRyXFULUN6bW3ufesPbeRPYnc6y9v2kzUjVqBF9/XfxcXh7Y2gLKctW7776bu+++G4DNXTfj/ak3iWcS+dzucz4f/jmDuw8mKCgIX19fHBwcavsTCCGEsCBmCSpcXFyKBRRAqRW2AwICZKO2EDezyEiYW8FZgaLr8MsSGgphYdUakmSk+s/BgzBmDHz8cak/+6aOTYl/LJ6BSwdylKPwOOz4ZAc7Ju1g9uzZTJ06lcDAQLp27Vr7YxdCCFHnzBJUNGvWrMS5Y8eOkZWVVWJqxcXFxRyXFELUR6bW3leWrL03nzfegJQUuPde2LQJ/puhKKqpY1N2P7kbr9Ve/HHuD/xn+bN9+Xb++ecfFi9ezDfffMPhw4dRqVR18AGEEELUJbMEFaX9A+Ln58f8+fOZP39+sfOpqanmuKQQoj6SVKGW66OP4Px5SEiA++4rM7BwdXQlYXIC+87sY4RmBNf/d51NmzYRERHByJEjjf8e5ObmsmjRIqZOnYqrs31tfxpRQ0wlNqgsi09sIISoMLMtf8rKymL+/PlkZmby4YcfMmLECPz8/OjSpQvTp08HIDk5maSkJHNcUgghhDk5Oip7LEaPLgwsvvsO7rmnRFNXR1dGaJQlrzY2Ntw2+DbevuNtujXrZmwTExNDaGgoc+fO5d6RXuAKdKmtDyNqSmRiZINJbCCEMC+zBBUBAQEsWrSI8PBwOnfubDwfHR3NyJEjCQwMRKPRkJqaSqTkHxdCWBIL3DxeZwyBxZgxEB8P999fZmBhkJaRxtCPh3K94Do/TvnRGFi0bduWYcOGsW3bNr77frPS2AUWFbxL0JNP06pVq9r4RMLMTCU2yM3LZfAqZU/Ojqk7cLRtIIkNhBAmmSWlbHkSEhIIDw8nLS0NrVZrrK4t6j9JKSsahLCwim8erwgzbB6vKrOlbs3NhYcfhs2bwctL+W8Z+yTO55xnxOoRHDh3gDaN2/Dj4z/StVnhZu0///yTpe+/y5JVkXBFOWdra8vJkydp2bJl1cYnLFbOtRyc5ytpobPnZONk10ATGwhRT9XkvVuNBxWi4ZKgQjQIpmYqKqsOZyrMWg8iN1cJkF5+GUz8/T6fc57hq4fzx7k/aNu4LT9O+ZEuroVrnXIyzuH8Vks4CANPeeLUuAlbtmwxvv7NN99w5513lpr0w5xkP0DNk6BCCMtm8XUqhBCi3qrPy5VqkqMjLFxY/NzJk9C+fYmmtzjdwpbJWxj2yTAOnT/E0I+HlggssAX6wZaV30KRG80zZ87g4+ODtbU148ePJygoiEGDBtVIBinZDyCEEDWnRoOKzMxMoqOjUalUaDQahg8fXpOXE0IIUVPCw2HePPj2Wxg6tMTLLZxasHXyVoZ9MozDFw4z7JNhbJ+yHU1TTYm2Tk7Fg4pevXqRnJzM6tWrWb16NX369CEoKIiJEyea9Zs02Q8ghBA1xyxBxahRo/jhhx9KnHdxcSEgIIDMzExSU1NZvHgxXl5e9OvXzxyXFUIIURvy82HbNrh8GR54oMzAoqVzS7Y+rgQWdtZ2NLE3HRC4u7uTlJTEnj17iIiI4PPPP2f//v088cQTvPDCC3z55Zd4eXmZ5WOYKnSYcy3HeNyvVT9ZuiOEEJVgZY5OTG3LcHFxoX///jz//PMkJCSY45JCCCFqi7U1fPmlUhjv8mUlK9SPP5batJVzK7Y9vo0tk7fQvFHzCnWvUqm4/fbbWblyJadPn+a9996jR48e5Ofn4+HhYWx37NgxLl++bIYPJIQQwtxqrPhdWVJSUsxxSSGEuOmY2micm5VuPE4+tx/HK67l9lepjcYODrBhA4wdC99/rwQW334Lw4aVaNrKuXi62Bd+fMl4PGjtMOaOeA2fHj6lXqZp06Y8/fTTPPXUUxw9epSmTZsaX3vsscc4fPgwkydPRqvVctttt1Vs7EIIIWpcpYOK48ePlziXnp7OiRMnyp2xSE1NJSYmRipqCyFEFVVmo/HgL7xNtqn0RmNDYOHjo1TcNiyFKiWwMJi9aTbL9q8wPj948TC+0b6s919fZmABypdV3boVFtPLyMjg3LlzZGZm8sEHH/DBBx9w9913ExQUhK+vL/b2UrVbCCHqUqWDivj4eFJSUkhISCApKck4S6HRlNyMV5Rer8fDw0OWPwkhRBWZ2mhMbi4MVjYas2OHyUJ9Vdpo7OAAcXGFgcX+/eUGFfGp8cWe69GjQsW87fPKDSpu1LRpU44ePUpCQgIRERF8/fXX/Pzzz/z888/Mnj2b8PBwpk2bVvnPI4QQwiwqHVQEBAQYj1NTU/H29sbV1ZUFCxaU+z6NRoObm1vlRyiEEAIwvdGYnBwwrI5q2Q+camijsSGw+O47JbgoR1pGWolzevQcvnC40pe1srJi5MiRjBw5klOnTvHRRx8RFRXFqVOncHFxMbbLycnBzs4OW1vbSl9DCCFE1VRrT4VGoyExMRF/f39GjBhhrjEJIYSwdA4OxQMKnQ4OHYI77yzWrFvzbhw4ewA9xZfHXsu/xhs/vcFL97xEVbRt25ZXX32V//3vf2zatIl7773X+Nrbb79NREQEM2bMYMaMGbQvpbaGEEII86p29ie1Wo2fn585xiKEEKI+ysyEUaPAywuKVMoGZd9G0YBCRWFij7s63FXtS9vY2PDQQw8Vm5X45ptvOH36NPPmzaNTp06MGTOGTZs2kZ+fX+3rCSGEKJ1ZUsoWXRIlhBDiJuPgALfcouzpePDBYoGFTw8f1t6/0vi8V/OexPnHcWTWEYZ2Gmo8P/fHuQR8HcAJ3YlqD2fHjh2sW7eOYcOGUVBQwNdff839999Ply5deOedd6rdvxBCiJLMklI2KCiI5cuXEx8fL1WzhRDiZmNvD+vXw7hxsHGjElhs3Aj/LYsd0+UBY9NfHt2KU9MWxd6eeSWTxb8sJvtaNp/8/gkB7gH87+7/0bZJ2yoNx87ODn9/f/z9/fnzzz+Jiori448/5vjx4xw4cKBYW71eX6m06DXJVMrgyqpUymAhhKgmswQVoMxWeHp6mqs7IYQQ9Ym9PcTGFg8svvlGWRJlgouDC99P/J5Xf3yVrWlb+XDvh3y07yNmes7kxcEv0tK5ZZWHdeutt/L222/zxhtvEBMTQ79+/YyvJSYmMnHiRLRaLY8//jj2znWblrYyKYMrotIpg4UQohpUelPlsCtg0aJFvPDCCxVqu3XrVpnNaCCysrJwcXEhMzOTJk2a1PVwhBA5OeDsrBxnZ9dc9qfyXL0Kfn5KQOHgABs3kuPeG+f3lcAg++mzJWYqitqWto1Xtr3CzpM7AWhk24hPx35aqfSzFfXEE0+wbNkyAOzt7fH18+Uz+8+gHWT/Lxsnu9r9+ZksbpiXy+BVSsrgHVN34GhrOmVwbc9U5FzLwXm+8mcwe07t/wyFEOWryXs3s8xUuLu7ExcXh4+J1IIA4eHhElQIIURDZW8PMTFKYPHbb9C2ckuYhrkN4+dOP7M5ZTOvbHuF5H+T8WjtUSNDDQ8Pp2/fvkRERJCcnMxnaz5TXmgJy5stZ2bgzFotqmcqZXDOtRzjcb9W/eSGXQhhUcwyUwHKDER8fDydO3fG09MTtVqNq6trsTbp6el4e3tz9OhRc1xS1DGZqRDCwljCTIXB1atw+jS4uXFl9SqOBE+j20Ww694T63mvmaxvAcp+h4PnD9KrRS/juRlfz6CTuhOzB86msX1jswxVr9ezZ88elny4hE/XfgrXoXWb1vx94m9sbMy2Srja6sMsQH0YoxA3M4ufqbC2tgaUX8xAmZveLGlDnBBC1DtnziiPsuTmFh4nJ5usqE3r1sqjJtjbg5sbxMXh8Pg0eqOkG9QfOgy+vsrGbhOBhUqlKhZQHDh7gI/2fQTAu7vfJfiuYJ4c8GS1b1xVKhW33347y/ot49NWn8LvEPJAiDGguH79Or6+vjz88MOMHz+eRo0aVet6QgjREJllpqJLly6MGzcOb2/vcttlZGSg1Wq5ePFidS8pLIDMVAhRy8LCYK75NvISGqr0WZP69kV/4ACqov/UqFTQp48S+FRCfkE+0QejCdsexl8X/wKghVML5gyeQ5BnEA42DtUaalnfsn/11Vc8/PDDALi4uPD444+j1Wrp2bNnta5nrvFZkvowRiFuZjV572aWoGLkyJFs3rzZ7G2FZZOgQohaZmqmorJqcqbCwNERrlwped7evvTzFXC94Dpr969l7va5pOnSAGjTuA3fPvot/Vr1K/uNJn5+Oddzcd6kbITOvm8HTjbKTM/5jAxWfvUVkXFxpJ06ZWx/z6BBBD39ND4+PrWy98Iibtir+DMsU238GRRCGFl8UJGZmYmLi4vZ2wrLJkGFEMKk0mYqAOzsYPt2GDSoyl3n5efxcfLHvPbTa+QV5JHydAqNbMtZmmRipifHFpxfUo6z3wCnvOKvFwDxQATwDWCoz71nz55aSaluEUFFNX+GJdTGbJkQwsjig4qi4uLi2LNnD+PHjzfmA9+yZQvNmjUrlh9c1H8SVAghTIqLA19f8gFrQK9SFQYY1tYwbx7873/VusTV61c5cvEIfVr2AaBAX4DPOh98evgwsfdErK2UfX8mv2XPTsd5m7KMN3tYPE7OrmW2/efsWT7asoV9x47x5ZdfGs+///77tG/fnoceesjsm7wtIqgw488QkJkKIWqZxW/UBiWYmDFjBjqdDoDOnTsbg4gRI0awfv169u7dy4wZM8x1SSGEEJbOx4crn6zkz+BpdL8Idrf2xDrkRdi0CT77TMkSVU32NvbGgAJg/aH1fHXkK7468hVv/vwmYUPD8L/NHytTN7AZ52Dbf8e9+0A59TTaAaH33VfsXGZmJnPmzOHy5cu0adOGGTNmMGPGDNq3b1+NT2dhzPgzFEI0LFbm6GTfvn0EBwcTHh5ORkYGBQUF3DgB4uvri4eHB1u3bjXHJYUQQtQT+Q89QP+Z0OhluPLTVpg0CdauVQrkvfJKYcNLl8xyvfu73s+CEQtwdXTlyMUjPLL+EfpG9CXucFyJf5vMKT8/n6effppbbrmF06dPM2/ePDp16sSYMWPYtGkT+fn5pjsRQoh6yixBRVRUFImJiQQEBBj3S5SWOrZ///6kpqaa45JCCCHquwcfBMMSoatX4e67YfJkyMqqVrdOdk6EDA4hbXYa84bOw8XehT/O/YFvtC8eUR6czzlvhsGX5Orqyvz58/nnn3/44osvGDp0KAUFBXz99dfcf//9vPPOOzVyXSGEsARmCSo0Gk2FN18blkcJIYQQRj/+CAcOwKefQv/+sHt3tbtsYt+EV4a8QtrsNF6++2Wc7ZyxtbaleaPm1R9vOezs7Bg/fjzbtm3j8OHDPPPMM9xyyy088sgjxja//vor27Ztq9GZEyGEqE1mCSqaNm1a4bYpKSnmuKQQQoiGZNQo+Okn6NgRUlNh8GBlE/f169XuuqljU14b/hpps9P4eMzHxpn0zCuZPPT5Q2w/vr3a1yjLrbfeyjvvvMOpU6do27at8fyrr77K8OHD6dGjB++88w7p6ek1NgYhhKgNZgkqjh07VuJcad++JCcny7cyQgghSnfXXfD77/Doo5Cfr6QbHToUjh83S/fNGzWnxy09jM/f+/U9Nv61kaGfDMVrtReL9rxnfG3Q2mHEHY4zy3UBbG1tjccFBQV06dIFZ2dnjhw5wnPPPUfbtm15/PHH2b17t/w7KYSol8wSVIwfP54BAwZw4sQJ47kb91Rs2bKFESNGsHDhQnNcUgghREPk4qJs4l6zBho3hp074YknauRS0/pPY6bnTGytbNmStoW5v7xpfO3gxcP4RvsaA4vjuuOc0J3g3+x/0V3RkZuXS4G+oErXtbKyYunSpZw+fZqIiAj69u3LlStXWL16NXfccQdTpkwp9X1fHfnKeDzoo0FmDXqEEKK6zJJStn///gQEBODm5oa3tzcajYbU1FRSUlJITU0lKSmJ1NRUNm/eLPUMhBBCmDZxItx5pxJQLF1aI5do16QdHz7wISF3heAe6U76lcIlSHr0qFAxb/s8fHr44P2pN8fSS87K21nb0aN5D5KDko3n/GP8Sc1IxcHGAQcbB+xt7I3HLZ1a8vaotwFo3LgxdrfbMb7neIadHsbunbvZu3svDp4OxB2Ow9nOmYHNB5KamkqaQxoT4yYar3Hw3EF8o31Z778enx4+NfLzEUKIyjBbnYrAwEA8PT0JCAggPj4ewPjfcePGsXfvXqmkLYQQouLc3JR6FkUtWqQsk7rzTrNdpqO6I5fzLpc4r0fPkYtHAHCwccDRxpEr16+gp3B50rX8a+QVFC8b/ce5Pzh84XDp13LpaAwqAJbtXcae03uUJ82AByAqPYqo6ChcHV0JdQhl9uzZOD7nCEW+kzOM4Znvn6FXi150de1aatZFIYSoLWYt9+nu7k5iYiKg1K5Qq9W4ubmZ8xJCCCFuVlu3QnCwUon7lVfgpZcKU9JWU7fm3Thw9kCxgEGFiu7NugNwYOYBQNkvmFeQx9XrV7ly/QpXrl8p0deK0SvQXdFx5fqVYu2u5l/F0caxWNsx3cfQq0UvruYXafffexrbN+bMH2ewtbUl1zG31HGfzDpJ9yXdad+kPSeeOWEMLK7lX8PO2s4sPxshhKgIswYVx48fx9XVlSZNmtC/f3/j+a1bt6LRaOjUqZM5LyeEEOJm4uGhLItauxbCwiA+Xtl7YYZ/W0KHhOIb7Wt8rkKFHj2hQ0KLtVOpVNhZ22FnbUdj+8al9nVn+4rPorx0z0sm2zzzzDP0i+zHvwX/QtHJCD00smtEfkE+mqaaYjMV7pHu6NEzqO0gBrVTHj1v6Ym1lXWFxyaEEJVhlo3aAIsWLUKj0ZQ6MzF8+HDi4+NZsWKFuS4nhBDiZuPiogQRRTdx9+0Ln31W7a59eviw9v6Vxue9mvckzj+OsT3GVrvv6mrZsiVL/ZYqAYVhIqUAUMGasWvImpPFZ76f8e+//wJKqtxD5w9x6PwhViavJHBjIH0i+qAOVzNi9QiW/Lakrj6KEKIBM8tMxYoVKwgMDESv15e5pjMgIIC0tDTi4uLw8ZFNZUIIIarIsIl70iTYtUt5vnNntTd0j+nygPH4l0e34tS0RXVHWjlnziiPUvjQibX932DiPmVm41anTsxqOZ6xuR3h9z+4fPIk3X188B44kCBfX/4Z/h2JtmfZnfMXu0/t5rdTv5F9LZutaVvp6NLR2O/1gutM/3o6nq09GdRuEH1b9ZVlU0KIKjFLUJGSkoKLiwvBwcHltnNzc2Pfvn3muKQQQoibmZsbbN8Ob7yhFMkz48btOhMZCXPnlvnyGFvgv9VSe18+jlNeOBAOwDaUyYsffvmFH375hbbAjCFDmLlmDW+MeIP8gnwOnT/E7n92061ZN2OfB84eYPXvq1n9+2oA7K3t8WjjYVw2dXfHu2nl3KpGPq4QomExS1BRmUI9qamp5rikEEKIm52NjVIgb8IE6N698PzRo0rQYaZN3LVGq4XRo8t+PTsdtnkrxwnx4OxqfCkAGH7yJMs3bGDl119zKiODudu381rHjjz00EMsWbKE3u1607tl72JdNmvUjHlD57H71G52/7Ob9Nx0dp3cxa6TuwB4fdjrxn0fGbkZHDx/EI/WHjjaFt9wLoQQZvmNW5k0dikpKea4pBBCCKEoGlCcPw/33AOdO5ttE3etad1aeZQl45wyJQHQuw/csDyrs7s7C8aMYe7Vq2zYsIGIiAi2b9/O9u3badasmbHd9evXsfkv4Org0oFXhrwCKF8QHks/xu5/lABj96ndxTadb03byriYcdhY2dC3ZV/jBvBB7QbRuWlnVCoVXx371th+0NphzB3xmtTREOImYZagIiMjgxMnTtCxY8dy28XFxVVqVkMIIYSolIMH4fLlwk3cy5bBo4/W9ahqlb29PRMmTGDChAkcPnyYP//8E0dHZWZBr9fj4eFBz549CQoK4p577jF+MahSqejarCtdm3Xlsb6Plej30rVLtHJuxb/Z/5J4JpHEM4ks3aPsY2nm2IynBz5N6I+F2bIMVcmlQJ8QNwezZH8KDg7Gy8uLDRs2lPp6VlYWM2fOJCAggIULF5rjkkIIIURJQ4dCcrKyxyIrS9nE/dhjkJlZ1yOrEz169GDs2MIMVnv37mX//v188cUXDB06lJ49e/Lee++RkZFhsq8p/aZw+rnTnHjmBOvGrePZQc9yR7s7sLO242LuRT4/8DmqIjlvi1YlF0I0fCq9maYOYmNj8ff3p2nTpnh6eqJWq0lNTSU1NRWdTodarSYhIaFY/QpRv2VlZeHi4kJmZiZNmjQx/QYhRIN05tIZzmSXnrUIIDcrncFfKHsBdkyIx7GJa5ltAVo7t6Z143KWAVXE9evw5pvKJu78fGUZ1Nq15W7ozsk4h/P7LQHIfvps7Wd/MsFc49u3bx+RkZGsWbOGnJwcABwcHJgwYQLBwcH06NGjUv1dvX6V/Wf3c8+qe7iSX7IYoI2VDZfmXMLBxqFK4xVCmE9N3ruZLagAZRN2SEgI+/btM27Idnd3x8vLiwULFpjrMsJCSFAhhAAI+zGMudvLzlpUWaFDQgkbGmaezn75RZmtSEuDyZPhk0/KbHqzBBUGWVlZfPbZZyxbtoz9+/cDkJCQwIgRI6rUX9+IviWqkhu0b9Ke0CGhPN7vcWys6tkGeiEakHoTVIibiwQVQggwPVNBbi4MHqwc79gBjuVnDjLLTEVRWVlKqtbQUCjnd9XNFlQY6PV6fv31V2JjY1m4cCFWVsrK6NDQUM6dO0dQUBB9+/Y12U/c4bhSq5I3c2zGxdyLAHRr1o33732fUV1GmWXsQojKaVBBxfHjx+lUn7JxiDJJUCGEqJCcHHB2Vo6zs8HJqW7Ho9cr+yzuvVcpoPefmzWoKM2VK1do27Yt6enpAAwaNIigoCD8/f2Nm75L89meVUz8bhoAvZvfxtzhr3Ff1/tYtmcZb+54kwuXL1hMpXIhbkY1ee9mlo3alaHVamv7kkIIIUSh2Fhlf8VjjylLo27STdzlsbe3N+6VtLGxYffu3UyZMoW2bdvy7LPPcuTIkVLfd2NV8rE9xuJg48CzdzxLytMpfHj/hzx868PGNusPrTfWxBBC1G9mXdi4detWdDqd8ZuN0uzdu9eclxRCCCEqZ+xYZTnUvHnw2Wewa5dS06Jn17oemcVQqVQMGzaMYcOGcfbsWVauXElUVBTHjx/n3XffRaVS8fbbb1eqzyb2TZg5YKbxedbVLLQbtVzMvciD3R7kjeFv0KdlH3N/FCFELTHL8qfMzEw8PDwqVC1bpVKRn59f3UsKCyDLn4QQFWJpy58Mim7itrIib/SDHNr1Nd3Swa57T6znvQY+llNfoa6XZ+Xn57N582YiIiIIDw/n1ltvBWDnzp1s3LiRwMBAWqidKjzGC5cvMCdhDquSV5Gvz0eFikd6P8K8ofPo7Nq5Vj6TEDcbi99TMXLkSNzd3dFqtbi6uuLi4lJqO51Oh6enJ8eOHavuJYUFkKBCCFEhlhpUgLKJe9Ys+PRTAPSACtCrVKj0eli/3mICi7oOKsoyfvx4oqOjUalUeA0fRvwtW6ErZD9bsTH+dfEvXtn2CtEHowElBe2M/jMIHRpKK+dWNT18IW4qFr+nQqPRsGDBAtzc3MoMKADUajXu7u7muKQQQghRfU2awOrV0KGDMaAAlIBCpQJ/f+jRA+6+Gx5+GGbMgJAQWLQI/v23sJ/MTLh4UamJcZOZNGkSo0aNQq/XE79lK3wBvAtvhi/m1KlTJt/frVk31o1bR2JgIvd2uZfrBdeJTIzkwuULNT52IYT5mGWmYvHixTz//PPmGI+oR2SmQghRIZY8U2Hg6AhXShZuK9cff8BttynHr70Gr76qBCKurtCsGTRvXvjfV14BNzelbVoa/PNP4euurmBjYzI1r2PsV1x7Yx7dLkJBZzfOvvAEuvuHl9ne7Kl5TUhJSeHDD97l7eVL4LJyrmfPnvzxxx+oVKry31zETyd+YuffO5lz9xzjue+Ofsc9He/B2c7Z3MMW4qZSk/duZtmoXZm4JCsrS25AhRBCWJZu3dAfOKDMUBioVNCtGyxbpsxCXLhQ/L+ti9ywX7qk/FevV167eBH++qvw9f/7v8Lj1ashLKz49dVq7JysuEY608fAof9WDbmfBo/T0DkdQnZBAcoSg4IjaWhmvICPP2zoWfpHMmsRwQro3Lkz80Jf4e3GS+Aw3HXmDsb5+RsDitzcXJYuXcrkyZNp0aLsZVH3dLyHezreY3x+9OJRRn8+mmaNmvHy3S8T6BGIvY19me83WTelkmoiOKsPYxSisswyU5GWlsb69esrNFsxatQofvjhh+peUlgAmakQQlRIfZipiIsDX1/yAWuK7KmIi1OyRVXEtWuQnl56APLEE2BYHvzWWxARobym05Xo5tCPMVzppgGg1VtRtHkrstTL6VUqcnt04c+EL0p9vS5uNG/c99FIfYsxqFi9ejWPP/44tra2+Pr6EhQUxD333GNyFmPH3zuY8uUUUjJSAOik7kTYkDAm9ZmEtZV1ifYWXeH9P/VhjKJhsviN2sePHyclJYWoqChGjhyJm5sbrq6uJdqlp6ej1Wo5evRodS8pLIAEFUIIAM6cUR5lqWRFbVq3Lj4LUEuurF7Fn8HT6H4R7G69Tcn+VNGAoqquXy8ZiHh7FwZea9fCunWwcaMyC3IjOzu4erVmx1gJ5W0m/+6775g7dy6//fab8dytt95KUFAQkydPpmnTpmX2m5efx0f7PmLe9nnGb/h73tKT14e9zsO3PlwsMDE1C5Cbl8vgVcqfxx1Td+BoW8sV3uvJGEXDZPFBhaurK5mZmcWWQZX2zYNer5eUsg2IBBVCCEBZyjPXfN+6EhpacnlQLbDU7EoA9O0LBw6UDCz69oXkZOV4/nxlNmT8eGWvRh2oyM8wKSmJyMhI1q5dS05ODgCNGjXi+PHj3HLLLeX2fznvMkt+W8KCHQvIuJJBE/smHJ99nKaOZQckJcZ4LQfn+crMWfacbJzsLG/mrD6MUdRPFr+nwtXVlcDAQMaPH19uu4sXLzJz5sxy2wghhKhntFoYPdp8/dXBLIXFCw0FX9/C5yqVEmCEhirPc3LgzTeV5WXPPAMPPQSTJ8N99ymzGRbE3d2dyMhIFi1axNq1a1m2bBktWrQoFlD88MMP3HnnnTRu3LjYexvZNiL4rmACPQJZvGsxTR2aGgMKvV7PofOHuK3FbbX6eYQQCrMEFYaUshXhZsh+IYQQomGoo+VKNxUfH2Up1MSJyvNevZTZIcPyLL1eqRC+erUycxEXpzyaNYNHHlFS4fbtW2fDL02TJk2YOXMmQUFBZGVlGc+fOXOGBx98EAcHByZNmkRQUBB9bxi72kHN68NfL3buh5QfuG/tfYy9dSyvD3+dnreUsYNdCFEjzFKnIiYmpkbaCiGEEOI/Y8YUHv/yS/H9Hs7O8OyzsG8f/P47PP88tGql7NFYsgS+/rr2x1tBKpWqWI2rv//+G41GQ3Z2NhEREfTr14877riDTz75hNzc3DL7STydiJXKig1/bqD3st5M+XIKx3XHa+ETCCHATEFFeQXvqtNWCCGEEJXUp49SnO/kSfj+e2WmYtKkwtfj4mDECPjkE2W5lIUZOHAgf/75J1u3bsXf3x8bGxt2797NlClTaNu2Ldu3by/1fS/d8xIHZh5g7K1jKdAX8Mnvn9Dtg248velpzmafreVPIcTNp8JBxeLFi2tyHEIIIYQwJxsbGDUKPvussPAewMcfw9atMGUKtGyp7L1ISLCoauAqlYphw4axbt06Tp48yZtvvknHjh3Jzc2lT58+xnbHjx/n2rVrxuc9b+lJ3Pg4fp3xKyPcRpBXkMcHv33AA589UKmaWkKIyqtwUDF//vyaHIcQQgghasP77ysVwLt2hcuX4dNPlTS2HTvCiy9aVHAB0KpVK+bMmUNKSgq//vprsdSz48ePp3379syZM4e0tDTj+dvb3k7C5AQSHkvg9ra38+LgF41ZKWMPxRrbDfpoEHGH42rvwwjRgFU4payVlRXe3t74+flVuHONRoOnp6ekG22gJKWsEKIhseiUsmD+IoJ6Pfz6q7K5+4svICMDBg6E3bsL22RnF16zIkOsxZ/h+fPn6du3L2f+q5GiUqkYNWoUM2fO5P7778fGRslFY7jNUalUxB2Owze6MIuWChV69Kz3X49PD58aG2tlSUpZUVMsJqWsu7s7I0aMqFBbnU5Hamoqb775JpmZmYSEhNCpU6eqjFEIIYQQ5qZSwaBByuOdd+C774oXJszIgPbtYfhwZYnUgw+Cg0PdjfcGt9xyCydOnGDjxo1ERESwefNmvv/+e77//nvatWtHeHg4jz76aLG6WXN/LF5PRY8ScDy24TESUhPo27IvgR6BJqt8N3SmivNVlhTnuzlUOKjQaDSVXgLVv39/fH19jUGFv78/w4cPr/QghRBCiOoyWcU4K914nHxuP45XXMvtr0HdKNnbl6weHh+vzI58843yUKuVwnqTJ8MddyhBSR2ztbVl7NixjB07lmPHjrF8+XJWrlzJP//8g2ORAOnKlSvY2dnx18W/Su3nct5llu1dhpvaDa2n1nj+la2vYG1lTd+WfenTsg9uTd2wUpklx41Fi0yMZO528xW0DB0SStjQMLP1JyxThZc/bdmypcKzFGXx9/dn4cKFMmPRQMjyJyFEfRL2Y1j9vlEy9/Knijh8WNlz8emn8M8/hec7d4Y1a5RZjqJDtIAlZFevXuXLL7/Ex8cHW1tbAF577TU+/vhjLj9+mbP6s8YZClCWQLV3ac+E2ybgZOfEq0NeBZRlU80WNiPjSoaxrbOdM71b9KZPyz4M7jCYSX0mURPqevmTyQA8L5fBqwYDsGPqDhxtHctsCw0sAK/navLercJBhTnodDq0Wi3r1q2rrUuKGiRBhRCiPjG5pCM3FwYrN0rs2FF8KVApav1GqS6CCoP8fNi+Xdl/ERsLV64oQUarVsrrR49CixZc+SqOI8HT6HYR7Lr3xHrea0rhvjqk1+vp27cvBw4cgB7AeEAPqAr3VMT5xzG2R/GZmrz8PJbuWcrvZ39n/9n9HDx3kKv5V42ve2u82fzYZuPzaV9No12TdsZZjc6unas8q1HXQYUplj4+UTaL2VNRXWq1mpSUlNq8pBBCCAFA68YmgoCcHDDEHC371e5Nu6Wztlb2VgwfDkuXKsX3DAEFgFYLO3bgkJdHb5TUkvpDh8HXF9avr9PAQqVSsXv3btatW0dERAS/rfsNhgDNwC7bjqmaqSUCCgBba1ueGfSM8fn1guv8dfEv9p/dz/6z++ni2sX4WnpuOquSVxV7fyPbRvRu0Zu+Lftyb5d7S72GEA1JrQYVoOzNEEIIIUQ95eQEXl6Fz69cgfPnIS8PKMxVr9LrlX0X8+bV+WxFo0aNmDp1KlOnTmXnrzsZ/ORg2A9X865ybdq1Ym31en2pG7VtrGzoeUtPet7Skwm9JhR7zUplxbuj3lUCjnP7+ePcH1zOu8yvp37l11O/Ym1lbQwqcq7l8Gjco/Rp0Yc+LZVHF9cuWFtZG/v76shXxuNBHw1i7tC5FpWdSojS1HpQIYQQQogGxMEB9u9X/nut+A06ej38+WfdjKsM/fr3g4cAb3inzTsMH1KYQCYxMZEZM2YQFBTEo48+SuPGjSvUp9pBzexBs43P8wvyOZp+1DirMbjDYONrB88f5OsjX/P1ka+N5xxtHOnVohd9WvahbeO2zPtpXmH7cwfxjfa1uLS3QtyownsqVqxYwYwZM6p1sTlz5uDq6soLL7xQrX6EZZA9FUKIBqUu9yxUhKWPr29f9AcOKDMURbVrBydP1s2YSlHefoCgoCAiIyMBaNy4MZMmTUKr1dK3b1+zXf/0pdPEHY7j939/Z/+5/Rw4e4Dc67nG11s7t+bf7H9LbCbv07IPyUHJZhtHdVjCngpJe1s1FrGnIiYmpspBRVZWFvPnzyc2NpajR49WqQ8hhBCiQTtzRnmUJbfwxpPkZJMbyWndWnnUltBQVL6+5APWgF6lUgKMd98tbHPpElTw2/+68MYbb9CtWzciIiI4evQoy5YtY9myZdxxxx0EBQXxyCOPGDNKVVWbxm2Ydfss4/P8gnxSMlKMsxrhO8OLBRSg1NPYf3Y/S39byoReE2jWqFm1xtAQSNpby1PhmQpXV1deeuklXFxcKty5Tqdjz549xMbGolar2bt3L25ublUerLAsMlMhhGhQ6nomICwM5prvJonQUKXPWnRl9Sr+DJ5G94tgd+ttSvYnQ/2LnBzo1Qu8vWHBAnAtvw5ITanIt+x6vZ5t27YRERHBhg0buH79Om3atOHEiRPGSt01pW9EXw6cPVAisDCwtbLloe4P8Xjfx7mvy33YWlcvyKmK+jBTIWlvS2cRKWVdXV3JzMwECkvel9uxSmVsFxgYSERERDWGKSyRBBVCiAalroMKUzMVlVXbMxWYqFMREwP+/srxLbfAW2/BpEm1XkSvsjfE//77LytXrsTFxYUnn3wSgOvXrzNx4kTGjRvHmDFjsLOzM9v44g7H4Rvta3xuSHs7td9U9v27j+R/kwFlc/g/z/5TJzfClhBUmFIfxlgXLGL5E8CCBQtQq9UVbq/RaPD09KzU7IYQQghxU6qDIKBW+fnBTz9BUBAcOqRU5l65EpYtg1tvNdtlKvINtkHyv8kV+gb7f//7X7FzGzduJDo6mujoaFq2bMn06dMJCAgwS3Ffnx4+rPVZy8S4iQD0atGLuUPnGrNH7T+7n9W/r+Zi7sViAcUT3z6Bm9qNSX0m3RTfuAvLU+GZipEjR7J582bTDcVNQ2YqhBANSl3PVDQAFaqofe0avP22kmo2NxdsbSEkRFn6ZVW1YnFF1Ubl9FOnThEZGcmKFSs489/skkql4t577yUoKIj777+/WsukKvst+8nMk3R8tyN69FiprBjZeSSP932cMd3HmAyaamN8daE+jLEuWMRMhZ+fn1kvLIQQQoibkJ0dvPgijB8Ps2bBd98paWfNEFAAaD20jO4+2ix9gTJTcaO2bdsyb948XnnlFb755hsiIiKIj49n06ZNbNq0icTERNzd3c02BlPUDmqWPbCM1ftXs+vkLr4/9j3fH/ueJvZN8O/pz6zbZ9G3lfkyWAlRmgoHFQEBATU5DiGEEELcTNzcYONG2LABBg4sPH/uHOTnV3kpmMnK6WZka2uLj48PPj4+HDt2jKioKA4cOFAsoIiIiKBz586MGDECKzMFTjdqbN8YracWraeWoxePsvr31azev5q/M/9mxb4V3NXhLmNQUVZxPyGqq2b+dAshhBBCmKJSKdW227YtPPfMM8oeiyVLlOCinujSpQsLFy5k06ZNxnM6nY7/+7//Y+TIkXTr1o1FixZx/vz5Gh1H12ZdeW34a6TNTmPb49uY0X8Gvj0KN36/u/tdhnw8hJX7VpJ1NatGxyJuLhJUCCGEEMIyXL4MKSmQlQVPPQWDBkFSUl2PqsquXbvGtGnTaNKkCSkpKQQHB9OuXTsmTpzIzz//XKFsmlVlpbJiaKehLB+9nMb2hbVBPt3/KT+d+InpX0+n1eJWTIybyOaUzeQX1J8ATlgmCSqEEEIIYRkaNYJdu+DDD8HFBfbuhQEDYPZsJdCoZ1q0aMEHH3zA6dOnWbFiBZ6enly7do3PPvuMe+65hw8++KDWx/TVhK94c/ibdG/WndzruXx24DNGrRlFh3c7ELottNbHIxqOmq3gIoQQQghRGdbWMHOmUjTv//4PPvsM3n8fYmPhm2/A1AZoC6z34eTkxPTp05k+fTp79+4lMjKS6Ohoxo0bZ2yzd+9e9Ho9np6e1R1xudq7tGfO3XN4cfCL/HbqN1b/vprP//ic05dOc+jCoWJtM69k4uIgZQFExUhQIYQQ4uZg6mYzt7B+AcnJ4GgiFWdDrytR11q1grVrYcoUeOIJ5f9P166m3xcZadGVyT09PfH09OSDDz7AwcHBeP6ll15i8+bNuLu7M3XGVLgK2JvtsiWoVCoGthvIwHYDeXvU22z8ayPtmrQzvn7kwhF6L+vNg90eVKp3d70PO2vzFfkTDY8EFUIIIW4OlbnZHDzYdBsz32yKMnh7w4EDcOwYNP5vb4BeD598Ao8+qqSoLUqrhdHlpJTNzS38/7tjR8WCxxpQNKDIz8+nVatW2Nvbk5SURNITSWAH9IU/HvqDge4Dy+7IDOxt7PHt6Vvs3A8pP5BXkMeGPzew4c8NNG/UnEd6PcLkvpM5cuGIsd2gjwYxd+hcfHr41OgYheWrcPE7IW4kxe+EEPWKBS6LaWgqVPzOHFatgmnToEcPpSL3kCGVGKQFFDks48/iRZ2Oj7/5hoj1sRw7+Y/xvNbXl4gbqnoXU0N/Fg+cPcDq31ez5sAa/s3+t9Q2KlTo0bPef71FBRZS/K50NXnvJkGFqDIJKoQQQhRVa0HF+vXKkqhz55Tnjz8OixbBLbdUYJAWEFSEhZU7a3bJBpo8CuwFm0MQBUz977VM4CzQregbanjW7HrBdeJT4lm9fzXr/liHnuK3jipU9GnZh+Sg5BobQ2VJUFE6CSqERZKgQgghRFG1FlQAZGTAnDnKsjYAV1dYuBCmTi2/OrclBBUmZs1ystNx3uYNwLE+X9CmZXsc/1su9f7nnzN78WKGDxhAkK8vY4YOxa5Dh1qbNXN43YGr+VdLnLdWWXNk1hE6u3aulXGYIkFF6Wry3k32VAghhBCi/mnaFCIilFmKoCDYvx9mzIBff4WoqLoeXflMLVfKOAfblMNWQ4fhWCQ4S129GpVKxdY9e9i6Zw8tW7Zk+vTpBAQE0KlTp5odN9C9eXcOnD1QYrYiX59P9yXdmdRnEi/f8zJdXLvU+FiEZZE6FUIIIYSov+64AxITYfFiZQZi6lTT76nH3n33XdLS0nj55Zdp1aoVZ8+e5c0330Sj0TBmzBgKCgpq9PqhQ0KLBRQqVAD0b9WffH0+n/z+Cd2XdGfyhsn8dfGvGh2LsCwyUyGEEEKI+s3GRqlpMX06qNWF5yMioH17eOCBOhtaac5cOsOZ7LKXP+VmpRuPk8/tx/GKa/EGdjD2ibE8GPAgP23+iW8++4aft/2Mra0tVkWWfqWnp+PqesN7q8mnhw9rfdYyMW4iAL1a9GLu0LmM7TGW3079xrzt8/j26Ld8uv9T1h5YS2JgIv1a9TPrGIRlkqBCCCGEEA1D0YAiJQWeeQauXgUfH3jvPWjXrqx31qrIxEjmbq9YeuPBX3ibbBP6aigfRX5Efn6+8dzRo0e57bbbGD16NEFBQQwfPrxYwFEdY7qPMR7/Mv0X436F29vezsZHN7L39F7mbZ/Hmewz9G3Z19hWd0WH2kFtljEIyyNBhRBCCCEanlatYPZseOstiIuDzZth3jwlFW0d03poGd3dfLU0Wju3pnXj4ns0vv/+e/Ly8li/fj3r16+nS5cuaLVapkyZQvPmzav7Ecrl2caTrx/5mst5l1GplOVRWVez6PJ+F4a7DeeVe16hd8veNToGUfsk+5OoMsn+JIQQoqhazf5UUQcOKBu5d+1SnnfoAH//rRz36qWkdvWxnPoKgNkyVP3xxx9ERkayevVqsrKyALCzs8PPz4/FixfTqlWrqg2vCpmVYg7G4B/rb3zu28OXV4e8Sp+Wfao0hpoY481AUsoKiyRBhRBC3FwqshfAsFxnx4R4HJuUv56/tG/Ya0RBAaxcqSyHyskpPK9SKdW516+3rMDCzGlvc3Jy+OKLL4iIiGDv3r2o1WpOnz6N438zIAUFBZVaGlXVG/YDZw/w2k+vEXso1rjZ++FbH+bVe16lf+v+lfxUNTPGhk6CCmGRJKgQQoibS9iPYRXeC1ARoUNCCRsaZrb+TLrtNjh0qPg5lQocHGDKFBg4EAYNgq5dy691UdNqsJbG3r17SUlJYfz48QDo9Xo8PT3p168fQUFBDBgwwPTwqnnDfvDcQV776TWiD0ajR4+1ypq/n/2bNo3bVP4D1dAYGyoJKoRFkqBCCCFuLqZmKsyxF6BGOTrClSum2zVtCrffrgQYY8ZAf/N+i25SLRbo27VrF3fddZfxuYeHB0FBQUyYMAFnwxhuHJ6ZbtgPnT/EGz+/gY2VDZ88/InxfFpGGm5N3arUp7nH2NBIUCEskgQVQgghirGEatXl6dtX2WNR9NZHpVL2WYwbB7t3KzUvigYeb78Nzz6rHP/zD3zzjTKj0bs32NrWzDhr8eeo1+vZtWsXERERREdHc+3aNQCaODnx2AMP8Oyjj9K5ffviw7uei/MmJXjMvm8HTjblB4+miv0V6AuwUikzQ0cuHKHnhz0Z1XkUoUNCGdhuYJU+lwQVpZOgQlgkCSqEEEIUY+lBRVwc+PoWPjfsqYiLg7FjlXN5eUp17t27lcdzzxXOVKxerVTwBmXWw9OzcMnUwIHmS1lbRz/HCxcu8MknnxDx5pscS1dqZWwBht84PFtwfum/4b0BTnkmOg4NhbCwCo1heeJyZn47k3y9kh7XEFzc0f6OCn8OkKCiLBJUCIskQYUQQohiLD2oAPjsM5ioFG6jd28l+5MhoDDl22/h/ffht99Apyv5+saNhYX2dDqws4NGjSo/xjr+ORacOsW2b75hw7ZtfBAcbEwL+9ry5eguXeKx+7zof0ypXJ49LB4nZxMF9kzMVNzoWPox3vz5TVb/vtoYXHhrvAkdEspdHe4y8W6FBBWlk6BCWCQJKoQQQhRTH4IKc4yxoAD++kuZyfj1V+W/Bw4oy6MMaVrDwuD116FPn8KZjIpuArfAn2Nubi7t2rUj/b8ZDNwAT8hY8g/qFm1r5JqpGam8+fObfPL7J1wvuE5Th6b889w/NLI1HahJUFG6mrx3q8PUBkIIIYQQ9ZCVFdx6q5Ixatky2LcPsrIKAwqAI0cgP195bdkype2tt0KzZnDvvXDhQtn9f/VV4fGgQcryrDpmZ2fH6tWrefDBB5WZizQgBm7t487LL7/MiRMnzH5NTVMNK0av4OhTRwl0DyTkrhBjQKHX6/n1n1/Nfk1RdTJTIapMZiqEEEIUY4HfsJdQW2PU65WZC8NMxq+/wt69yiZwZ2dleZS1tdJ2zhw4dUoJIC5fhhdeKOzHAmtpHN6fSM9ZnrAPyFbOPffcc7z11lu1NoZv//qWBz9/kHs63sOr97zKcLfhxmVaIDMVZanJezcbs/YmhBBCCCGUYKB9e+UxbpxyzrAJ/OTJwoACIDYWjh2DTz8t2Y9er/Q1b57FBBUd2reHEcBQ+FSzgo/XfE5gYKDx9V27drF161amT59O60rspaiMo+lHsbO246cTP+H1qRd3tb+L0CGheGm8igUXovbITIWoMpmpEEIIUYzMVFTNpk2F2aY2by69jYODUgfEAuRknMP5/ZYAZD99FqemLYq97u/vT0xMDDY2NowZM4agoCCGDx9eqardFXEq6xThO8OJSoziav5VAO5odwevDnmVi5cvMmnDJAB6tejF3KFz8elhGUFZXZKN2sIiSVAhhBCiGEu8Yb+RpY+xrFoaffooNTR27oS771bO1RFTQcW6detYsmQJO3bsMJ7r0qULWq2WKVOm0Lx58+oP4swZ5QGcvnKeRcdWE3FiPVcKrtLBoRV/X/nX2FSFCj161nsuwqf1jQly/1PJDFX1lQQVwiJJUCGEEKIYS79hB8sfY3m1NAoKlKVUHh4QHKwsh7Kp/ZXspoIKgz/++IPIyEhWr15NVlYWAH379iU5Obn6gwgLU9IBF/GvMyy6E9b3gL9dQF9kYkRVAH3OQXJEGf1VopZGfSbZn4QQQgghbgY+PrB2beHzXr0Ki/P9849SdC8xEcaPh+7d4cMPlc3dFqhXr1588MEHnD59mhUrVuDh4cGUKVOMr+fm5vLhhx+SmZlZ+c61WuXnUOTRansib81P5Gwzu2IBBSgBxp9t7Eq8x/jQaqv3YYXMVIiqk5kKIYQQxVjCLECRZTGlys2FwYOV4x07lJv08tTFspjyfo4XLsDSpfDBB3DxonKueXN46ikli5Stbc0Pr4IzFaXJz8/H+r9N6h9//DFTp06lUaNGPPLIIwQFBeHp6Vnt8fWN6MuBswfQU/wW197ani2Tt1S4gF5DJDMVQgghhBAVERmpLA8q62EIKEA5Lq+th4fSnyVp3lxZqvP337BkCXTqpAQa335bJ0uhKsu6SNarJk2acNttt3H58mU++ugjBgwYgKenJytWrCAnJ6fK1wgdElosoFCh7D+5mn+VwasGo/1Gi+6Krsr9i9LJTIWoMpmpEEIIUUx9mKmoLEubqbjR9etKStoWLWD4f5uQdTp47jmYPVvZ+F1JZy6d4Ux22T/D3Kx0Bn/hDcCOCfE4NnEtt7/Wzq1p3bj0n6Fer2fnzp1EREQQExPDtWvXAHBxcSEtLY2mTZtWevwAn+1ZxcTvpgHQu/ltPH9XMNtPbGdl8koAWjq1ZI3PGrw0XlXqv76SjdrCIklQIYQQohhLCCoagur+HBcsUJZCAYwapWzqHjaswhmjwn4MY+72uaYbVlDokFDChoaZbHfhwgU+/vhjIiIi0Gg0bC6SXnf79u0MHDgQBweHCl2zrCVa249vR7tRS2pGKslByfS8pWflP1A9JkGFsEgSVAghhChGggrzqO7P8ffflcAiOlrJGAXg6VmYMapo4b1SmJqpqOy+lPJmKkpTUFBAenq6MfXs6dOn6dChAy4uLkydOhWtVkvXrl3L7aO8fR9Xr19l58mdDHcrTC/74/EfGdxhMDZWlr+ErDokqBAWSYIKIYQQxUhQYR7m+jmmpcFbb8HKlYWF87p3V4IOe/u6H18F/fzzzzz66KP8888/xnMjRowgKCiIMWPGYFvK5vTKbCZPOpPEgOUD6NOyD1EPRjGg7QDzfwgLIRu1hRBCCCFE5bi5KZu5T5xQNne7usKAAcUDimpsiK4td999N2lpaXz99dfcf//9qFQqtmzZgp+fHx06dOCXX36pVv+nsk6hdlCT/G8yA1cM5OlNT/P/7d1/lBt1vf/xV/oDqIV2dlcsRVFI/FpQrJDt8uVe4KA2Qfgq5bRk6VUoB5QmBRQKyuZWrndpRUu29oIHe+2k1yPy42qbwFfPFwRJehCsP7sJlV64giZWflW9h93pL8uvdr5/jMnudnez2U02k+w+H+fknE0ymXlnppnOez6f9+ez7419VYp+8iCpAAAAmMiOP96Z2O3FF6VvfKPv9eeek044QVq50kk86ti0adN08cUX65FHHlE+n9ett96qOXPmaM+ePTr11FOLy73yyis6dOjQqNZ98byL9d/X/7cu//DlsmXr7t/crdM2nKYf/u6HVf4WExtJBQAAwGQwc6Y0Z07f8x/8wOm+9M1vSj6ftGyZ9Mwz7sVXppNPPlm33367XnrpJT311FMDRohasmSJvF6vutbfKY2iseFdM9+l+5fcr8eveFy+Jp9e2feKFm9erKt+eFX1v8AERVIBAAAwGa1eLf3kJ9LChdKhQ9L99ztD0F50kfTTn0p1XnY7ffr0AZPl/fnPf9Yf/vAHvfjii1rztTukOyVtkZ548ikdLhSsjyDoC2rntTu16txVmjZlms5691njFP3EQ1IBAAAwGXk80gUXSOm01N0tXXaZNGWK9NhjUnu79Prrbkc4KieccIJeeeUV3XvvvTr7rDbpsKTnpIsXt+vUU0/VQw89VNZ6Zkyfoa8v/Lr+69r/0ooFK4qvb3txm3b8ecf4BD8BkFRMYvF4XNFo1O0wAACA21pbpc2bpRdekK67Trrllr6hYg8fdloxCiNI1bFjjjlGy5YtU/qxh6UVktqk4449Vr///e/l6TdPx5tvvqmRBkCd9855muJxLpUPvHlAy/7vMi2IL9Atj9+iA2/Wf4F7rU3swXgxSD6fVywWkyRt2bJF4XDY5YgAAEDd8PmkDRsGvvbII069xRe/KN1wgzN7d8HZZzvdqJYsqW2c5ThB0iel3z/4jH6c/qk+9alPFd+64447lEgktGLFCl1xxRWaPXt2yVW9/vbrajuxTbusXfrGL7+hxHMJffuT39ZF/+uiYT8z4nwfozTa+T5qjXkqJrHW1lYFAoFikjFazFMBABiAeSqqo97240MPSTfd5IwedSSPx6m9ePDBukosSs1TYdu2Tj31VL3wwguSpJkzZ+ozn/mMVqxYIb/fX3K9D7/wsK7/8fV6cY+zL5Z+aKnuuvAunXDsCYOWdWtm8lKY/A7jgqQCAFBV9XYx3KjqcT++9ZYzQ/c11wyutfB4pPnzpR07XAltKCNNfmdZlu677z5t3LhRzz33XPH1trY23Xjjjbr88suHXff+N/er84lO3fXru3TYPqzZR8/Wzmt36qTZJw1YbqSWioNvHdS533VmJt929TbNmF7dmcmHMp7XbnR/AgAAQGnTp0uXX+4kFUeyben552sfUwUMw9AXvvAFff7zn9e2bdu0ceNGJZNJbd++XU888UTJpOLYo47V+k+s1+XzL1f4/4V10uyTBiUUkjT3uNJJQP+6jDNOOEMzj6qD5LECJBXjLBKJqL29XYFAoORylmVp7dq1kqSWlhblcjkFg0GFQqFahAkAAGpl927nMZz+BdE7dvQVTA9n7lznUQsf+IC0c+fA4WY9HmnePKeF5a67pM9/XhqhRqFeeDwenXfeeTrvvPN011136Z577lEwGCy+n8lktHLlSq1YsUKhUEhH95uN3D/Xr19d8yvtf3N/8bW/HvirNnZvVMc5HTpm2jE1/S5uI6kYB/l8Xul0WqZpKpvNqr29veTylmWptbVViURiQF++SCSi7du3j7l7EgAAqEOm6RQ3l+Pcc0deprPTmTG7Fjo7pUsv7XteqKno7JTuvlv6l3+R1q93Ro+64Yb66LpVpuOPP1633HLLgNc2btyobdu2adu2bVq5cqWuvvpqhcNhvf/975ckTZsyTcYxRnH5m39ysx7Y+YDue+Y+bfzkRi30LqzlV3AVSUWVxeNxpVIpBYNBxWKxAdnucNrb2xUKhQYVB5mmqaamJgWDwRFbOgAAQIOIRKRFi6q3vlq1UkhOMfYDDzhdoSTp9NOdBGnxYmeUqA9+UHruOenLX3ZaLb78Zef7HtOYd+1Xr16t9773vYrH43r55Ze1bt06rVu3TsFgUCtWrNAll1yiqVOnFpe/9LRL9cSuJ/SHnj8ocF9AV37kSq2/YL3e+Y53uvgtaoNC7XGUzWbV2tqqVCo1bFKQz+fl8/mUy+Xk9XoHvR+JRJTP55VKpQasd/ny5WXHsWnTpiFHM6BQGwBQVfVYYIzqK3WcDx2Svv99p+Ukl3Nee897nJaMoeoxxivEEQq1R+vtt9/Wj3/8Y23cuFGPPfaYbNvWu9/9bu3atUvTpg28R7/3jb26deut2rB9g2zZapnRovUXrNeVH7lywFwZB948oGPXOvtx/6r9NampoFB7AjNNU5KGTCgkyefzKR6Py7IsGYYhSfL7/cpkMrUKEQAARyPXAqA2pk6VrrhCWrpUuuceac0a6eWXpVSqpklFtU2bNk2LFi3SokWLtGvXLm3atElz5swpJhRvv/22Pve5z+myyy7ThRdeqLv/z926Yv4VCj8c1jN/eUZX/egq9b7eq5Vnr3T3i4wjkgqXZbPZYrIwlEKy0d3dTRcoAIC7GrkWALU1fbq0fLkzaV48Ll1wQd97u3ZJ3d1OV6opU1wLcaxOPvlkfe1rXxvw2sMPP6x7771X9957r973vvcpHA7rs5/9rLqXd+uuX92leDauq8+42qWIa4OkwmX5fF7Nzc3Dvl9IOPL5fNW3bVmWLMuq+noBABNUI9cCwB3HHOMUbPd3223S974nnXmmdPvt0kUXOQXfDWz+/Pm6+eab9d3vfld/+tOfdOutt6qzs1OLFy/WihUr9Oy1z+qoaUdJcibfu/aRa/WumX1dss7+ztla/dHVWnJa/UwgOFokFS7r6ekZtuuTpGLCUa2L/8LQtZZlKZ/Pa8uWLZKcblYdHR1V2QYAYIKiuxIqZduS1+vUZDz9tPTJT0r/+I9OcvGxj7kd3Zh5vV6tX79et99+u5LJpDZu3Khf/OIXSiQSSiQSevrpp3XGGWdIkh7Y+YDMjDng88/+9VlduuVSPXjZgw2bWDRem9MEU26y8Nprr1Vle4ZhKBaLyTRN2bat3t5emaZZVkLxxhtvaO/evQMeAAAAZfN4pH/9V+mPf5S+9CWnJeMXv5A+/nEpEJB+8xu3I6zIjBkztGzZMv385z/Xb3/7W1133XVauHBhMaGQpJ5f92jWtIFF0rZseeTRmifX1Dji6iGpQNnWrl2r2bNnFx8nnTR49kgAAIARvfOd0rp1Uj4vXX+9U4Oxdav08MNuR1Y18+fP14YNGwaM4GlZlv75xn/W3oODb8zasvX8a401M3l/JBUuMwyjrNaKlpaW8Q9mBKtWrdKePXuKj5deesntkAAAQCObO1f61rekF16QrrtO+uIX+97bsUP63e9cC61a+g8j+7e//U2f/vSn5en1SIePWE4ezWuZV+PoqoekwmWlirQlp+ZCUskRomrl6KOP1qxZswY8AAAAKnbyydKGDdLs2c5z25ZWrJA+9CHpqquc7lITwIknnqjvfOc7+t7V33Ouwv+eWHjkkS1bned3uhpfJUgqXOb1eouJw1AKrRilirkBAAAmlP37pTlzpMOHnZGi5s1zWjJefdXtyKpi2YJlemDJA8Ur8dPfdboeuuwhLT5tsbuBVYCkwmV+v79k96fCULLMUQEAACaN446TfvQj6de/loJB6a23pG9/W/L5nC5S//M/bkdYsUvmXVL8+5ef+2VDJxQSSYXrli5dKsmZBG8o27dvJ6EAAACT01lnSY8/Lv30p9I550ivvy792785M3SjrpBUuMzv9ysQCGjz5s1Dvp9MJhWNRmscFQAAQB05/3zpZz+THn1Uuvxy6Z/+qe+9TMbpLgVXkVSMo0LXpZFGd0okEkomk4NaKyKRiDo6OmipAAAA8HikCy+U7r9fmvL3S9i//U361KecCfXuvNNpyYArmFG7ypLJpEzTmSWxu7tbkrR8+fLia+3t7QqHwwM+YxiGMpmMotGoDMNQS0uLcrmcgsGgQqFQbb8AAABAo9i1S5o5U8rlpJtvltavl77yFU09aop2fFv6wGvSUYmPSWu+Ki1pzJmqG4XHtm3b7SDQmPbu3avZs2drz549DC8LAMBkceCAdOyxzt/79zsX9W566y1nhKg1a6R+c2gdltMlx/Z45LFt6cEH6yqxOPDmAR271tmP+1ft18yjxn8/jue1G92fAAAA0LimT5euucaZQO+b35SmOR1xChe5Htt2uk6tWeNejJMA3Z8AAADQ+I45RrrhBqmjQ3r77YHv2bb0/PM1DWf3vt3avX/3sO8ffOtg8e8df96hGdNnlFzf3GPnau5xc6sWX7WRVAAAAGDimDdP9s6dTgtFgcfjdNPas6dv1u5xZmZMrX5ydVnLnvvdc0dcpvP8Tt320dsqjGr8kFQAAACgoZRqBTBuWCbvNbfokKSp6ldT8dpreuP007Tr7q/qwP8+c8BnxqMVINIa0aJ5i6q2vrnH1m8rhURSAQAAgAYzUivA4sukf31Smvea9HyLrR+cLoUzkvfl3Xr/kmv09fOkNedLb091lh+PVoC5x9V3d6VqY/QnjBmjPwEAMAnVwehPI9Ur6OBB6dy/dynatk2aMUNT9u3XSV9Zp5YtD0uSDpz5Ie361tf0xikn1X29QrWM57UbSQXGjKQCAIBJqA6SihGVinHzZmnFCsmynNd/8hPpnHNcCbPWxvPaje5PAAAA6LN7t/MYzsG+UYu0Y4c0o/SoRZo713nUi6VLpX/4B+nKK6W//EU688yRP4MRkVQAAACgj2lKq8sbtajYxaiUzk7pttsqCqnq3vteaetWJ6l4xzuc1w4flrq7pbPOcje2BkVSAQAAgD6RiLSoeqMW1VUrRX9Tp0onntj3fP16KRqVvvQl6atflY4+2r3YGhBJBQAAAPrUW3elWnnxRWeSvHXrpFRK+s//lE47ze2oGsaUkRcBAAAAJri775Z++EOppcWpFfH7pX//dyfRwIhIKgAAAABJuuQSaedO6YILpNdfl66/Xrr4Yumvf3U7srpHUgEAAAAUzJ0rPfqodOed0lFHOV2hXn3V7ajqHjUVAAAAQH9TpkgrV0of/7j0zDPSGWf0vWfbksfjVmR1i5YKjNqGDRv0wQ9+UG1tbW6HAgAAMH7mz5euuKLveSbj1Fr89rfuxVSnmFEbY8aM2gAAoC6N16zfH/2o9OSTTreoO+6QbrzRadVoEON57dY4ewEAAABwUyLhFG6/+aZ0883SJz5BvcXfUVMBAAAAlOP446Uf/UiKx6WbbpLSaenDH5b+4z+kxYsHLrt7t/OoljqfP4SkAgAAACiXx+PMOn7++dJnPiM9/bS0ZIn0+ONSMNi3nGlKq1dXb7udndJtt1VvfVVGUgEAAACM1qmnSr/6lfSVrzgjRC1cOPD9SERatGj4zx88KJ17rvP3tm3SjBmlt1fHrRQSSQUAAAAwNkcdJcVi0qFDfQXb+/dL99wjXXtt6UTgwIG+v884o3rF5C6hUBsAAACoxNSpfX/fdJP0hS84c1z86U/uxVRjJBUAAABAtZxzjjOc7VNPSR/5iPT977sdUU2QVAAAAADVctVV0o4d0tlnS3v2OMXcy5Y5f09gJBUAAABANfl80s9+5ozYNGWKdP/9Tt3EBJ6Jm6QCAAAAqLZp05whYJ96Sjr5ZKeAe84ct6MaNyQVAAAAwHg55xynheLRR6UTTuh7/b77+v4++2zpoYdqH1sVkVQAAAAA42nWLGnBgr7nt9ziDDlb8Oyz0qWXNnRiQVIBAAAA1FI8PvC5bTszda9Z4048VUBSAQAAANTSG28Mfs22peefr30sVUJSAQAAANTSvHlOy0R/Ho/zeoMiqQAAAABqqbPTaZko8Hic552d7sVUIZIKAAAAoJaWLJEeeKDv+emnO0Xaixe7F1OFprkdAAAAADDpXHJJ39+//KU0c6Z7sVQBLRUAAAAAKkJSAQAAAKAiJBUAAAAAKkJSAQAAAKAiJBUAAAAAKkJSAQAAAKAiJBUAAAAAKsI8FQAAAEC17d7tPIZz8GDf3zt2SDNmlF7f3LnOo06RVAAAAADVZprS6tXlLXvuuSMv09kp3XZbRSGNJ5IKjNqGDRu0YcMGHTp0yO1QAAAA6lMkIi1aVL311XErhSR5bNu23Q4CjWnv3r2aPXu29uzZo1mzZrkdDgAAmCzK6VpUuPu/bVvDdy2qlvG8dqOlAgAAAI1lknUtagQkFQAAAGgsk6xrUSMgqQAAAEBjmSTdlRoJ81QAAAAAqAhJBQAAAICKkFQAAAAAqAhJBQAAAICKkFQAAAAAqAhJBQAAAICKkFQAAAAAqAhJBQAAAICKkFQAAAAAqAhJBQAAAICKkFQAAAAAqAhJBQAAAICKkFQAAAAAqAhJBQAAAICKTHM7ADQu27YlSXv37nU5EgAAAIykcM1WuIarJpIKjNm+ffskSSeddJLLkQAAAKBc+/bt0+zZs6u6To89HqkKJoXDhw/r1Vdf1XHHHSePx1OTbba1tWn79u012dZkwn7tM5H3RaN+t3qOu95iq7d4AIyslr9b27a1b98+nXjiiZoypbpVELRUYMymTJmi97znPTXd5tSpUzVr1qyabnMyYL/2mcj7olG/Wz3HXW+x1Vs8AEZW699ttVsoCijURkO5/vrr3Q5hQmK/9pnI+6JRv1s9x11vsdVbPABGNlF+t3R/AgAAAFARWioAAAAAVISkAgAAAEBFSCqACsTjcUWjUbfDmHDYrxMbxxcA6kc6nVY0GlUkElEwGFQ8Hh/Tehj9CRilfD6vWCwmSdqyZYvC4bDLEU0M7NeJjeMLAPUnnU4rm80Wz8+WZam1tVWZTEamaY5qXSQVwCh5vd7iD627u9vlaCYO9uvExvEFgPpjmqYSiUTxuWEYxVaLaDQqr9db9rro/gQAAABMQslkclB31AULFkhyWjFGg6QCAAAAmIRCoZB8Pl9V1kX3Jwyrfx/onp4eWZalYDCojo4OlyMrXyQSUXt7uwKBQMnlLMvS2rVrJUktLS3K5XIKBoMKhUK1CHNMzYxuapT96qZ4PK5EIiHDMCQ53X8Kv6d6x/EFMNFks1mZpqmenh5ls1kZhqFIJNJQ9V3jcW7u3/WpoNBFdaTtDGIDQ0gkEnZHR8eg1/1+v+31el2IqHy5XM42TdP2+/22JDuVSpVcvre31/Z6vXYmkxnwejgcHnIf9Of3+0dcZiSZTMaWNGj79abR9qtbent7h4w/l8vV9Xfi+AKYqEzTtE3THPBaKpWyDcOwvV6v3dvb605gZajlubnA6/XasVhs1LHS/QmDWJalzZs3D3lXddOmTcrn84pEIi5ENrL+Q1WWe1e4vb1doVBIfr9/wOumaSoej4+6T+FoNcLQmo24X92ycOFCBQKBQfspEomMeZi+8cbxBTBR5fN5WZY1qEUiEAho69atyufzam9vdym60tw4NxdaQsbUK2XUaQgmvFQqZUsaNqOVVPetFbbd1wJQKqvP5XK2JDuXyw35fjgctgOBwLCfr/SOa+HuiRqgpaKgEfarW2KxmG0YxpDvhUKhkt+5XnB8AUwkHR0dJVsiAoFAyfNZvajFudk0TTscDo85RloqMEhzc7MMw1BLS8uwyxT6iY9GPB6XZVllL59MJpXP50e9ndEoDHE5XC2Dz+dTOp0eVdzlKny3Suso2K/1Y+3atcP2z00kEkqlUqNeJ8cXAMYunU7rlFNOGfZ8VLijn81mR7XeiXZuTiaTsixrwNwUoz2Hk1RgEL/fr97e3iGbvgo/ulEX70jKZDJauHBhWf9I4/G4li9fPuptjFahWGs4hR/meIyrb5pmVQrE2K/1oXBCXrp0aVXXy/EFgLFrbm6WZVlVv6CfSOfmbDarnp6eAdd9lmUxpCzGV2GEorGMYmOaphYsWKDW1taSP8Kuri5Fo1Ft3bp13EdDyufzam5uHvb9wo9zuJORZVljuhubTCarVpfCfq0PmzdvljTwrlc8Hh/13a8jcXwBYOxSqZRyudygGoOCwnlquPeHM1HOzfl8XmvXrlVzc7OSyWTxMZYRKRlSFmUpDC/r9XrH1IWjwDRNRSKR4hTwR2bUXV1dWrt2rTKZTE2GV+3p6Sm5ncKPs/8JozBUW+HOx5YtWyQ5zYrlFDYVPlfNYTfZr+7rnzx0dXXJ7/crHA4rm80qGAwqGo2OqYVP4vgCQCVKna+SyaT8fv+Yzp0T4dxcSIqSyeSg5ft3hSrLmKsxMCkUhpYNhUJ2R0fHiEOZlSscDg8axq1Q5FqtYqlyipok2X6/f8R1VLOo9Mh1FQrjq1GoPZn3q9sMw7ANwxg0bKFtO0P8GYZR8e+H4wsA1ROLxary/y/nZgfdn1BSKBRSLBZTIpFQLBZTLBZTe3t7xV0XTNNUIBAoZsi1zubdkk6nFQwGx239k3W/1oNCl56hmp4Nw1AgEKi4yxvHFwCqI5vNKhqNKpFIjLrr05E4Nzvo/oRRSSQSampqkmVZFXWDkvqaDU855RRJcuXHZxhGWQlSqZGwRiOVSo37rMqTcb/Wg8J3Hq6LUzAYVDKZVDabreg/MI4vAFSuvb1dpmlWrSsy52YKtTFKhmEoFAopnU5XZXKr/j+AUsVF42Wkbfb09Ega2xC6R+rq6tKqVasqXk85JtN+rReF7zzcdyq8X40RkTi+ADB27e3tikQiVRmBsb/Jfm4mqcAgIw29Vsi8K22piEajSiaT6u3tVTgc1imnnDLuYzgfyev1Fn9kQymcHCq925DP52UYRk0usibTfq0n5bY+VNp1kOMLAGMXjUbV1tZW9QEiODfT/QlDaGpqkiT19vYOeRFcaDar5OIoEokonU4XR0sodAkqjKBQq4sRv99fssWlcEIY66g9BdlsVolEQolEYthtLF++vHiXYawJ22Tbr/Wkra2tOFfFUL+bwom+kq5PHF8AGLt4PC6fzzdkC8Vw5+5ycG7+u3Ep/0ZDMwzD9nq9w74fDodtSUOOclOOoUZJKOjo6KjaaAnljJRQWGa4kR9CoVDJKe2rIZFIjNvoEwWTcb/WWi6XsyXZiURiyPc7OjpsSUMen3JwfAFg7BKJxLDXLblcbthz90g4N/chqcAgHR0dJX8AhaEzx3JxVOrH13/71fgRlvMDtG3bDgQCww6vVs7nK1WNpIL9Wh9CodCww/l5vd4xD+PH8QWAsctkMiVvhJqmOaZzJ+fmI9Y/bmtGQwuHw0P+wwuFQrZhGGO6AC7nx1dQjfGdCxfrI9196O3ttb1e76DvFA6HazLOfmGc7PG4SzLUtibLfnVD4Tsf+Z9XJXeHOL4AMHa5XM72er12OBwe8lG4rhktzs2DeWzbtsenYxUaXTKZ1ObNm9Xc3Kyenh5ZliW/369Vq1aNqd9hV1eXwuFw2Z+Nx+MKBAKj6ouYTCaLM0B2d3cX+0guWLBAkjPiw3B9KaPRqAzDUEtLi3K5nILBYFVnvT5SJBJRPp8fFKff7x/VsLPs1/pSmDm60HfVsqxh9085OL4AMHY+n2/Egmmv16tcLjeq9XJuHoykAgAAAEBFGFIWAAAAQEVIKgAAAABUhKQCAAAAQEVIKgAAAABUhKQCAAAAQEVIKgAAAABUhKQCAAAAQEVIKgAAdcGyLLW2tsrn88nj8cjj8SgYDA67fD6fl8/nU1NTU3H5pqYmxePxGkYNAJCY/A4AUIdaW1uVzWYlSblcruQstMlkUu3t7UqlUgoEArUKEQDQDy0VAIC6YlmWFixYUEwQTNMsubzX61U4HCahAAAX0VIBAKgryWRSkmQYhoLBoAzDUG9v77DLd3V1KRAIyO/31ypEAMARaKkAANSVQjemQCAgwzBkWVYx0RjK9u3bSSgAwGUkFQCAutLT0yPDMCRJ4XBY0shdoAAA7iKpAADUDcuy1NzcXHy+atUqSVI6nVY+nx+0fD6fV1tbW83iAwAMjaQCAFA30un0gGFkDcMoWbCdTqcp0AaAOkBSAQCoG0MNCxuNRiVpyPknUqkU9RQAUAdIKgAAdaN/PUVBuQXbAAD3kFQAAOrCkfUU/Q1VsJ3P50tOildN2WxWwWBQTU1NSqfTNdkmADQSkgoAQF04sp6iv0gkUlymULBdavlq8/v9SqVSsiyrJtsDgEZDUgEAqAtD1VMUeL3eQQXbpZYfL0d2zQIAOEgqAAB1Yah6iv4KrRVDFWwDANw1ze0AAAAoVU9REAqFigXbXV1dQ9ZTpNNpRaNRZbNZpVIpZbNZSVIul5NhGIrFYsVls9msotGouru7tWnTJoVCIVmWpeXLlyudTiscDg9YfijJZFI9PT1qbm5WT0+PMpmM2tvbiy0o/ROgTCajSCRSHK2qf6y5XE7JZFLbt29XMBhUOBwecd0AUE9IKgAAriu3PiIcDqurq0vRaFSpVGrQ+4FAQFu3blVTU5NM01QikSi+F4lEFAwGi58r1El4PJ7iMoZhKJFIlBVLPp9XKpUaUDze1dVV/DsejyuXyxUTk3w+L5/Pp1wuV+zOVYg1mUyqo6ND0WhUmUxmxHUDQL2h+xMAwHWbN28u6w58oQuUpGGXL3Sh6r+sJMViMaXT6UHD0g7V5aqc2olsNjtolu9QKDTgef+RorxerwzDKLaeDLWdWCwm0zTLWjcA1BOSCgCAqwoX+j09PSMuW7jDX86Ed0d2pzIMQ16vd8gWjrEIBALq7u6Wz+dTNBpVOp0eUFAeDoeVyWQkOd27CsnEUN/zyO8z0roBoN6QVAAAXBGNRtXU1FTsauTz+eTz+cr63NKlS8e0Ta/XO6gFYKwMw9Af//hHBQIBJZNJBYNB+Xy+AcPOJpNJtba2FmcFH65uZKgEaKR1A0A9IakAALgiFoupt7dXtm0XH7lcbsTPBQIBdXR0jGmb5U6YV87FezablWEYMk1TuVyuWCuxdu1aSSrWfiQSCZmmWVbrSrnrBoB6Q1IBAJiQjuxmZFmW8vm82tvbR/xsOa0Z+Xx+UM1EoR5CclpUTNMckMQUYrIsq+TM3COtGwDqDUkFAGBC6j/ykyQtX75coVBoUF3CggULBiQRhQv34Vor+r9+5JCz+Xx+wMhR/ZcttJJYllUcKraUkdYNAPXEY9u27XYQAABUk8fjGZBUbN++XS0tLUN2m8rn84pGo8UL9kKrQDqdViAQUCKRUDablWmaisfj8vv9ikQixfkjLMsqjuJkWVZxG+l0WqZpqq2tTX6/X83NzTIMQ9FotPiaaZpKJpPy+/0KBALFRKJQuD7cugGg3pBUAAAmHI/Ho0wmM6o6BgDA2NH9CQAAAEBFSCoAABNSOfNeAACqg6QCADBhpNPp4uhOsVhM8Xjc5YgAYHKgpgIAAABARWipAAAAAFARkgoAAAAAFSGpAAAAAFARkgoAAAAAFSGpAAAAAFARkgoAAAAAFSGpAAAAAFARkgoAAAAAFSGpAAAAAFCR/w/NgTvVDwNNxwAAAABJRU5ErkJggg==", "text/plain": [ "<Figure size 800x500 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(8, 5))\n", "for i in range(len(signal_parameters)):\n", " colors = list(pf.my_colormap.keys())\n", " col = colors[np.mod(i, len(colors))]\n", " plt.errorbar(\n", " N_pulsars,\n", " uncertainties_means[:, i],\n", " yerr=uncertainties_stds[:, i],\n", " color=col,\n", " fmt=\"o\",\n", " markersize=4,\n", " linestyle=\"dashed\",\n", " capsize=7,\n", " label=signal_labels[i],\n", " )\n", "\n", "plt.loglog(\n", " N_pulsars,\n", " 1.4 / N_pulsars**0.5,\n", " linestyle=\"--\",\n", " color=\"black\",\n", ")\n", "\n", "plt.text(1e2, 0.2, s=r\"$\\propto 1/\\sqrt{N_{\\rm pulsars}}$\", fontsize=15)\n", "\n", "plt.xticks([], fontsize=20)\n", "plt.xlabel(r\"$N_{\\rm pulsars}$\", fontsize=20)\n", "plt.ylabel(r\"$\\rm Uncertainties$\", fontsize=20)\n", "plt.legend(fontsize=15)\n", "plt.tight_layout()\n", "plt.savefig(\"plots/Error_N_scaling.pdf\")" ] }, { "cell_type": "markdown", "id": "26ca214d", "metadata": {}, "source": [ "### Plot the scaling of uncertainties on the Legendre polynomials coefficients with N_pulsars" ] }, { "cell_type": "code", "execution_count": 9, "id": "3ddf17e9", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxMAAAHqCAYAAAB/WBOoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADO0ElEQVR4nOzdd5xcd33v/9cp02e7VtqiVVkVy5Kt7oaxDa5wIRdDLDuByw0B3CjJhdi0XxJMwr3Y4IQLQeACgXBvcsEFCN22bIxpxlaxbKuvVn13tXV2duqpvz/O1G1qK23R5/l4zGNmzsycOSttOe/5fD/fr+K6rosQQgghhBBCnCJ1sg9ACCGEEEIIMT1JmBBCCCGEEEKcFgkTQgghhBBCiNMiYUIIIYQQQghxWiRMCCGEEEIIIU6LhAkhhBBCCCHEaZEwIYQQQgghhDgtEiaEEEIIIYQQp0Wf7AMQRY7j0NHRQUVFBYqiTPbhCCGEEEKIGcR1XYaGhmhqakJVJ6amIGFiCti4cSMbN27EMAz2798/2YcjhBBCCCFmsCNHjjB37twJ2Zfiuq47IXsSZ2xwcJDq6mqOHDlCZWXlZB+OEEIIIYSYQeLxOC0tLcRiMaqqqiZkn1KZmELyQ5sqKyslTAghhBBCiLNiIofTSwO2EEIIIYQQ4rRImBBCCCGEEEKcFgkTQgghhBBCiNMiYUIIIYQQQghxWiRMCCGEEEIIIU6LhAkhhBBCCCHEaZEwIYQQQgghhDgtEiaEEEIIIYQQp0XChBBCCCGEEOK0SJgQQgghhBBCnBYJE0IIIYQQQojTImFCCCGEEEIIcVokTAghhBBCCCFOi4QJIYQQQgghxGmRMCGEEEIIIYQ4LRImhBBCCCGEEKdFwsQUsHHjRpYvX84ll1wy2Ycy5diOyws7krywI4ntuJN9OEIIIYQQooTiuq6coU0R8XicqqoqBgcHqaysnOzDmRJsx+V3u1IAXHlhGE1VJvmIhBBCCCGmp7NxrimVCSGEEEIIIcRpkTAhhBBCCCGEOC36ZB+AmFwyjEgIIYQQQpwuqUwIIYQQQgghTouECSGEEEIIIcRpkTAhhBBCCCGEOC0SJoQQQgghhBCnRcKEEEIIIYQQ4rRImBBCCCGEEEKcFgkTosB2XGRBdCGEEEIIcbJknQlR8OKeNAAKoKigKqAqinetFm8rCqhqbrsCiqLkHi9/vqIUn1P2+pLbam5filLyerW4XyGEEEIIMXVJmBAjuIDrgFO4V/rIuaPgBZe89i6DWZU6VWEVVRbXE0IIIYSYdBImRMFlS0OoioLjujguOA6F264LjpPb7ua2O7ntudve80a+1nFz4aTkfn5fw19fysV7PK9zwKJzwEJToSaqUVehURvV8ekSLIQQQgghJoOECVGgawqaquDVBCaHWxIsHNfFsl227M8AMLtKYyBhY9rQG7fpjduAQWVYpS6qUVuhEw4oMjxKCCGEEOIckTAhphRFUdA00Lx76FqxNLGkKYCqwFDaoW/Ipj9hk8w4xFPe5UC3SdCnUFuhUVchw6GEEEIIIc42CRNiWlEUhcqwRmVYY+EcyBgO/QmbviGbWNImY7p09Ft09BeHQ9XmhkP5ZTiUEEIIIcSEkjAhprWgX6WpVqWp1odtuwwkbfqHbPoSNqbllg+HCqmFqoUMhxJCCCGEOHMSJsSMoWkKsyp1ZlXquK5LIpMbDjVkk8g4xNPe5WC3ScCneA3cFRrVYW3ChkPZjsvvdqUAuPLCcK4HRQghhBBiZpIwIWYkRVGoCGlUhDQWzIasWQwWsaRNtmQ4lKpCTSQ3O1SFDIcSQgghhDhZEibEeSHgKxkO5bjEEt5QqP4hG8Ny6Rvy+i7AoCKkFqoWkYAqw6GEEEIIIcYgYUKcdzRVoa5Sp26M4VBDae+SHw5Vm1vTojoyccOhhBBCCCFmAgkT4rw22nCofAN3LOENh8ovlpcfDlVboVEX1fD71Mk+fCGEEEKISSVh4jynqQpXr4hM9mFMGQGfSmOtSmN+OFR+dqhhw6H2ARUhtVC1iARlOJQQQgghzj8SJoQYg6Yq1FXo1FXoLHZdkrnhUH3DhkMd6jHx60phKJQQQgghxPlCwoQQJ0FRFKIhjWhIY35+OFSugXsg4VUt8sOh8o72mdRENCpCUrUQQgghxMwkYUKI0xDwqTTWqDTWeMOhBpN2oWphWC4Ah7pNDmGiqVAZ1qgKq1RFNCqCqjRyCyGEEGJGkDAxBWzcuJGNGzdi2/ZkH4o4DZqqUFuhU1uhs9B2+P3uNAA1UY2hlI3lwEDCq2CAiapAZVilKqx54SKkyuJ2QgghhJiWFNd13ck+COGJx+NUVVUxODhIZWXlZB/OlDDdVpQefryqAsmsw2DSYTBpM5iyMYdlRkXxmrmrwl7PRWVYwoUQQgghJt7ZONeUyoQQZ5GiKESDGtGgRnOdD9d1SWVdBlN2Llw4GJZLPOUQTzkc6TVRgGghXKhUhjV0TcKFEEIIIaYeCRNCnEOKohAJKkSC3mrcruuSMVxiKdurXqS8tS3yM0Ud7fNeFw2qVEVyQ6PCGj59YsPFdKsACSGEEGJqkDAhprSZvg6GoiiEAgqhgEpjjbctY3ihIpYLFxnDW6U7kXE41ufNFhUJKFRFtELfhX+Cw4UQQgghxMmQMCHEFBP0qwT9KnOqvftZ02Ew5fVcxJI2acMlmXVJZi06+r1wEfIrVBfChUpAVucWQgghxDkgYUKIKS7gU5ldpTK7yvtxNSy30Mw9mLRJZl3ShkvaKK5zEfQrhWBRHdYI+BRZ60IIIYQQE07ChJjSXMemd/cWAGYtW4eiygrTfl2hvkqnPhcuTCvX0J3ru0hkHDKGS8awOB7zXhPwKYV1LqrCGiG/hAshhBBCnDkJE+e5qX6y7mQzZL72gHf7n76LFpq5/ROny6crzKrUmVXp/Thbtku8pOcikXbImi7dgzbdg968tH69PFwEfJP5FQghhBBiupIwIcQEmgoN47qWX0TPu2/bLvF0ruciZTOU9qaj7Ynb9MTt3GuKr+8asAj6Ffx68TLZVQyZbUoIIYSYmiRMnOfkk/+ZT9MUaqIaNVEvMdiON/Vsvu8innKwShbS299ljNiHTy8PF35dIaAr+H3l21Q5yRdCCCHOKxImxJTmWuaot8Xp01Rv5qfqiBcuHMfruXjtUBaAmqiKaXmN3oblAl5fhmm5JE+wb12jJFyoBHwjQ4jfp0hlQQghhJghJEwIcZ5TVYXKcHGc0/KWYOFk33VdTBsM0xsalc0FDMN0C2Ejf3FdsGyvZyOVdQFnzPfUVMrCRT58FKoeuW2ayqQPsRJCCCHE2CRMCCHGpCgKfh38+viN+a7rYtmUhAsHwywJHyUhxHHBdshNZ+uOu19V8UJH6YrfXQMmkaA3I9VU6OcQQgghzmcSJs5zMoxITARFUfDpXm+F13UzevhwXRfboSxc5MPH8KqH7YDjQsZ0yZjF0LG/ywS871VVgVBAJeRXCPlz1wGVkF/Fp0lVQwghhDjbJEwIIc4ZRVHQNW/GqXBg/OfaTjFcZEyHPce8xvCaiEradMkYXpUjmXFIZgDsstfr6rCgUXJb185dyJCZqIQQQsxkEiaEEFOSpiq5k3+IOmohTCyf5/V0OK4XKNKGQzqbuzYc0oZL1nSxHBhKOwylYXjQ8OlKWTUjnKtmBP3SHC6EEEKcCgkTQohpSVUUwgEvCFBR/pjtFINGKuvk+jO86/zMVKblEk+NbBIP+EqDhkoooBSChirDpoQQQogyEiaEEFNisb2JpKkKkaBCJKiOeMyyi8EinS1WM1JZB9uBrOlVNmLJkUFjtN6MkN+bfUr6M4QQQpyPJEwI/H/+fpRIlFhHO6qmgaKhqKp3UdTCbRQVRdXG2F66TStuyz8HOdkSU4OuKVSENCpC5dvz0+B6w6ZKqhm5IVSOm5+Byh6xT1WBYC5ohANeFSOcCxrqyDwjhBBCzBgSJgRufBCyGeyBPm9kuaJ4F5Ti7cL9sR9XSl9beE5xm6JpoOgomoaiqSiKlrutgZrbpuqoajHMOEYWbfkq3FQS1xl5EifOD+eiclI6DW5VuHw2Ktf1msHzFYyM4ZDKVTYyueluU1mXVNamb6j8+1QrCRNHe00iQZVILnBIwBZCCDHdSZgQmD//Abjjz/d/zg0PLKEQPf/vYQKrLiG4ZAWBiho0f1BOxsQ5oSjeUKaAj8LK4Xmu601dO1o1I2N6U9zmHeoxS/YJ4YBKOKAQCai52141Q76vhRBCTBcSJkQhSGiz5qAoCq6TO/txcxP9uy6um9vmON7z89vc3PPG2Xbax1T62sQQ9qtbSL26hXRVDerS5fhWrCLYsgh/tBp/pDI3nEqIc0tRig3bwzmOSzLrsK09A0B9pVaobpROa9tTMtuUokA4N8NUOKASLqlkSAO4EEKIqUbChKBi+RJUn4/A0otQfP5cVUCFXD+E1/+gFG5720vvKyhlj+UeV1Xc3NAohdzzvXFSuPlzIsU7AVPAey6KNwA9lyPsVILeh7+Ia1oELlpLdtd23MEB7Jd/h/3y78jObkS7YDnakgsJzG7ygkW0Gs1/gkUMhDgHVDU321TO0uYAmqoUqhmprEMq45DM5m7nQ0bWJZm1YVjICJWEjEhJJUM9g+lsZR0MIYQQZ0LChMBXVYkWDOD2HmWKDXYCYNYb1uO6LmpdE8qbbsDoGyC17UWyu1/F7e7E6u7E+u1zmHPno12wArV1CXq0ygsWFdX4wlEv7AgxRZRWM+pKprUtCxlZJ9eH4ZDMOjhOsS+jLGQAoUBJJSMXNM40ZAghhBAnQ8KEILG3HUXTqP6zD6IGgt7wIscpGarkFO67haFPTtn2/PPcsR4re33JfkfZn1v6GsfGyaRQdR23vxO3vxNdUalefRFcexPZzi5SW36PcXAfzpGDOEcOgq5jLlyMsXQF6ryFqD4fvkguXESr0Hz+yf4nF2JU44WMbCFkeEOn8oHDHiNkwCiVjKA3y5SEDCGEEBNFwoTA6BsAQG1egl5RPbkHM4w1FKPzkx9ADQao/4s7cbsP4cZ6cDrbobMdn6pTc9WVuG/5r2QOHya1+XdY3R04+3bj7NsNwRDa4guwl64g29iMoijowXBhOJQeikxos6vr2PTu3gLArGXrvGlyhThDiqIQ9CsE/Sq1w0KGYeXCRaZY0UjmQkZ+KtvhM0wF/cWm76BfgoUQQojTJ2FCTAtOJovaugp91TU48T7sI3twDu/GTQzgHN0LQED3E3zrW3H0CJn2NlJbfo8Tj2G//gr266+gVFajLlmGs3Q5Vl2KVG8HiqbjjxarFqomPxJi+ijOMqVSGy1uz4eM0mFS+aBh2ZAxXDKjhIyX96VHLMwXzN2WXgohhBCjkTMnMe2olXWoK96Au/wK3Fg39pE92Ed2Q2oI9/Aubwy5P0jkXRswbY3M3l2kt7+EG49hb3kRe8uLqLMbUZdciLb4ArK2RXawDwA9FMUfrSZQUYUWCMsUneKMTcbq4qVT2dZEi9Ux13UxLbes4TuZdYinvNnaDMsLIYOpkat/+3VvCFY+XIRKrjVNfk6EEOJ8JWFCTFuKoqDUzEGtmYN+8VW4fR25YLEHsimcQzvQgEhthIo//+8YSYP0rtfI7HwFp7sTp7sT6/e/Qp/Xirp0Ocr8VizASidI9RxF1X2FioUvUuWtDn4CTjZD5msPeLf/6btooXN7EinEeBRFwe9T8JeEjNLZnFYuCJA1vVXAM0Zx3QzLPnHQCA4LGPngoUvQEEKIGU3ChJgRFEVBmdWMOqsZffWbcLqP4BzZg310H2SSOAdfQwcq582ict37MQYSpF7fhrF/F9ah/XBoP2g6/qUr0C5YgdPYjINJJtZDJtYDKPgiFcUmblkwT8xAFSGN6sjI72vTyi3Cl1+ULxc0MoaDWRI04qMEDZ8GoYBKyK+OCBynGzRkOlshhJg6JEyIGUdRVLQ589HmzEdfex1O10Gvx+JYG24qDodexwdUr1iE+4Y3ku3pI/3qZsyOwxi7tsOu7SjBEIGL1qEvuwhn1iwcy8RMxjGTcZLHQfUFCFTkqhbh4oJ5rlVc4bj0thDTmU9X8OkaleGRj1m2WwgX+VXAM7nAYdp4l5QzdtDwF/syQoEzDxpCCCHOLQkTYkZTVA2taRFa0yJcy8TpbPeCRWc77lA/DPUTAIKXrcUJXUemo4v0Ky9hx/rIbP4tbP4tWlUtwTWXoV+4EruiAiudwDGzpPuPk+4/DoqKP1LpNXDLehbiPKNrChUhjYrQyMdKg0bpsKm04fVumDaYaYd4emTQ0HNBIx8uSns1ZLF7IYSYOiRMTKBHHnmE/fv388ADD0z2oYhRKLoPreUCtJYLcM0szrE2L1gcP4Qb60aJdRNSIHTdm7DVENkjR0ltfxl7sJ/k87+A53+BPqeZ8CVvxLd8Nbbfh5EYxLEMjEQMIxEDwP/n78c5uB8rm0aLVslwKDGlnc0G8RMFjeEBIz+UyrBcLBuG0g5DaRi+foZeEib2dmTxaQq6pqCrCrrmva9Wcju/XX4WhRBi4kmYOEPt7e2F8PDYY49xxx13TPIRiZOh+AJoC1agLViBm01hH2vDObwbp+cI9HeiAeGQQuRt/wXTVMkcPEB6xzas48eI//T78NPv4194AeFL3oj/orXYOBiJQczUEGpdPWpdPUPdR0j2d+GvqCZQUVM2HEqI852uKURDGtFRgoZtu6TN4tCpTEngMCwXq6SQ0TNoj9zBGDQ1Hy5AGyWATHQYkd4OIcT5QMLEGWptbeXhhx8GYPPmzZN8NKdOC0Wof/MbCrfPR0ogjN66ElpX4qYThRmh3P5O3L5j6EC0zk/05ndiJk3S7fvI7t2JcWAPxoE98MR3CF64ivClVxNasIje//t1tAWL0JZdjGOZZAZ6yAz0oKiq18BdUSNrWggxDk1TiGoa0eDIx2zHJZlxeOVABoAFs33Yjrfdsr2KhjXstuPkX+s9LwuAe+rHNTyMjAgcClrJ/dLs4LouIGFCCDHzyNnMeU7RfQQ3/M1kH8aUoYSi6EvXoS9dh5OIeTNCHdmDO9gDfUfxAb6WWtyLbsEYTJLeswvzSDuZHVvJ7NiK4g/gGlmcfbuoveZt4A+QHRrAGBrAsUyy8X6y8X682aEqCVTW4I9Wo/n8k/2lCzEtaKpCJFis8DXX+U74ib/juti2N7TKCxojb5/tMPLHvWmCPjW3krlC0FecPjfgmzqLAko1RQhxqiRMCDEGNVqNeuFl6Bde5q26fXg3zpHduIkYSv9RAkBg2TycdWvJ9sVI73oNu/d44fXd//gxQhevJ7T6MqovXI2DQzbuBQvbyGAmBzGTgwDooQiBihr8FTXogVHGfQghTpuqKKi6NyvV6TiTMGJYXuiwHUhmHZLZ0d8jv1bHaIHDryvS7yGEmLKmXZi488472bBhA9dff/24z4vFYnzhC18AoK6ujv3793PDDTdwyy23nIvDFDOMWlmHetGVuCve4K26fXi3tzheegh1sIOQDsG1y7G1Sxh89ikcw8TNZkht/i2pzb8F3ecNhVp9GVUXX4Lr0zGGBsgODWClk4VLsvsomj+Iv6KGQGUNejAiJxFCTLLTDSOln/KvaQ1iWi4ZwyWT6wfJmF4Tuu2UrNXByJmtFAWCPq+KUbj2K4R8sjCgEGLyTYsw0d7ezqZNm3j44YfZunUrGzZsGPf5sViMdevW8fjjj7N27drC9jvvvJOXX35ZZlsSp61s1e2VV3urbh/ejX10L0o2hW5mqbvyEqxMFqobMWIJMvt2YfceJ/PaZjKvbQZVJbBkBaHVl1Gx6lKUuRUYQzGyQwOYyTi2kSHd10m6r9NbhbuixmvgjlSgyNSzQpzVGajOlnBARQuNPOl3Xa+CkTG9RvOM4ZDOhYyM6ZI1XFyX3GxXozeb6xrFikZJZSPk84ZQqTJUSQhxFk35MPHII4/wzDPPcMMNN/DAAw9www03nPA1GzZs4JZbbikLEgAPP/wwNTU13HDDDSesbIipQQ0ECw3iamCUbsxJVL7q9ptxeo5g7X8V++BO9GAAMv3oQQitXoYTuhxzYIhMextmx2Gye14ju+c1Yt//Jv4FSwitvozI6svQ5i7CSAxiDA1gJGK5Bu5uMgPdKKqGP1pNoLIGX6QKVdMm+59ACDGOkwk9iqLg08Gnjz6Fruu6ZM1iFSOdq2xkSlYgt2xI2A6JDAyfRhcg4FPKKhqFfg2fgk+GUAkhztCUDxN33HFHYbrVrVu3nvD5pVWM0dx666088MADZWFi69at3H777Sd9TI8++uiIoCLODkXVRr091Siqt+q2G66i+9//DV9NFTVvfxduzxGUTBIt0YPmg+CyeThrVmEMpckePohxsA3j4D6Mg/sY/NH/xdc0j9CqSwmtvpzokjWYqaHccKgYrm2SjfeRjfeBongL5eWqFqrum+x/AiHEWaAouf4JPxAZ+TvQtotBI2Pm1urI3zdcHBeyphdIBkdZhVxVKKtoBHzFYGE7rjRgCyFOaMqHiVOVDxGtra2jPr5o0SIeeeQRYrEY1dXVAKxdu5YtW7acq0MUM53rYvbH0FZciRatwu3vwu5owznWhjvUj5rqI6hBcOFsnOVLMVMm2WNHye7fi9lxGLPjMPFfPIFWN5vQ6ssIr76cyOKV2NkU2aEYxlA/tpH1KhiJQRKdB9FDUQK5PgvNf+oVHNex6d3t/QzMWrZuSgc3IUSRpilEtPIZrvJc11tlPB8s0iUVjUwuYDgupLIuqezIisaLe9JljeH52afy1z5ZCFAIwQwME1u3bi2EhNHkQ8bmzZtlqNM0MN2nrlUUBaWuEbWuES6+Cifeh9OxH/tYG25/J2o6RkCBwNwa3EXXYRqQ7ewi27Ybu6+bxLM/IfHsT1ArqwmtvJTQ6kupXrICx7ELM0NZmSRWOoGVTpDsPoIWCBVnhgqG5Y+9EOcpRVHw6+DXNSrDIx93nOIQqrThkDVdUlmHvqFisBivMVxTi70aIX9Jr0ZuultVfvcIcV6YcWGivb2d2traMR/PB4329vYJf+9YLEYsFpvw/Yrp40TDstTKOtTKOvRll3oL5HXsx+lowzl+GCWbwA/4G6JE574Ry9HJdveSaduNE4+R/O3TJH/7NEooTOgib8rZquWrcVW1MDOUmRzCzqZJZdOkejtQdX9xBe5xGridbIbM17yJCZx/+u55u4ChEOcTVVUIBRRCAajB+31VOgPVZUtDGJbr9WkYxZXI81WN8uluR1Y2vD6N8mqGzEAlxMwz48JEf3//mEOcgELQmKiT/vwUtLFYjPb2dh577DHAG071iU98YtzXZrNZstnipOPxeHxCjklMD0ooir5oFSxahWtmcboOYB9rw+k8gGJlvAXyZgWJzF6PpQQxegfI7N+LMzRI6uUXSL38AorPT3D5akKrL6Py4vUwN4iRiHlVi8QgjmWUN3DngoU/WiVDmYQQ49I1hYBPHbUx3HGGNYWXzkKV69XI5KoeJEdWNXwaJVPcqmWhQ9bVEGJ6mXFh4mRDQl9f34S8X3V1dWGq2bGavsfyhS98gc997nMTchxielN8AbSWZWgty3BtC6fnKM6xNuyONpRMEh8JfDU+wusvwlbDGLEhMgf2Y/f3kN7+EuntL4GqEVh6EeHVlxJddRlq8yKMZLxQtXBti+xgH9nBfAN3Va6Bu3qyv3whxDSjqgrhgEI4MHqvhpFbU6O0TyNdMgOVaYOZdhhKw/CqRmlTeL6iURhKNWyqW1mxW4jJN+PCxHTy6U9/mo9//OOF+/F4nJaWlkk8IjEVKJqO1rAArWEB+trryhq4GepHd5LolSqhlYuxtZWYQ2kyhw5iHe8gu3s72d3bGfj+N/EvXEpo1WWEV19GdOkCrHSCbNwLFo6ZxUjEMBIxEp2gB0Joq9bjdB7FzqZRpddCCHGaFMWbFSrggypGVkAtuzi9bdoov86coCkcvNXC8yGjdPapVNYh6FPRpTFciHNqxoWJ6urqk6pO1NXVnf2DOYFAIEAgEJjswxATaKLXxRivgZv+TnQnjR6B0PIF2CuWYiRNsseOYR49iNG+B6N9D4M//C6+5vmEVl9OaNWlhBddjGNkyA7lG7hTWNk0vquuA2Cwox06D6D5Aqg+f8m1H9UXyF37z+kCejLblBAzh64pRDWN6Ci/Il03P3yqJGCUDKEqXS18+FS329ozhds+zVux3Kcpxev87cL94nNkYT8hTt+MCxPjNV+D11MBjDvjkxBT1XgN3JprEApDaEkT9pIWzIxLtrML43A75rFDmMcOEf/Z99HrGwitusybdnbBchzbJN3TQeLVl1Fr61CiFeC62EYG28hgjnUsuq8kXBRDRj58qNqM+/UihDjLFMWrOoT8xabwvBFT3RoOacOhe9CrYGgq2Ll84Q2lcgH3pN5XUykPHoXr0bdrqlQ/hMibcX/tW1tb2bx585iP56sW4zVpC3G6zuVUtuM1cGuWgRbMrWUxfw6mqWB095I5uB+rp4uhTf/J0Kb/RK2qIbTyUgIXXIT54+8D0HD/N1GDYWwzi2NmsU0DxzRy971rXBfHMnEsEys9xvGp2rDKRnmFQ9V98sdYiCnmZFbtniyjTXVrOy7dg17PxOUXhFEUsCwvdBiWi2W7mJaLkbu27NLbYFouLl4IsXNN5Sd3LJRUO8YKIqXX3vFLj4eYiWZcmFi7di2bNm0a8/H8lLCyxoSYScZr4FYzSQIBl0BLLdGmGkxbJdsXI3uwHWdwgORvniL5m6cK+xp66ocEFizB19hCYE4Tis9f9l6u6+LaVlm48K6NQvhwbQvXsbGzaezsGGkDZZThU+UVDkU9d0OphBDTz2jhx+9T8PvgZCKR67pYjhdA8iHDLLum/L7t4jjgusXhVmRP/D4AukbZlLj7uwyCPm/2qvzFp8tsVmL6mXFh4rbbbuOLX/wiW7duZe3atSMef/nllyVIiBntRA3cfs3F31hFdM4qTEvFGEh4wSKVACD5q5+RLOxMRa+fg6+xBV9jC3ru2jenCV8oCqNMGQlej0NpuBitwgEuTq76AUNjfy2+AIqqYW17CTfWj9G4EH9VrfRNCCHOmKLkeic0ZaxfZyPYzgkCx7BrK9dHbtle83le14A15nuUBosRl5IAIpUNMRXMuDCxdu1arr/+er7//e+PGiaeeOIJnnnmmUk4srFt3LiRjRs3Ytujz1whxOk6UQO33w/+OVEisy8m291Ltrcfra4Re2gIs7cbN5PG6u7E6u70pp8t7FhFr2/IhYy5ZSFD8flRVA09EILA6H+eXdfFsUYOn8pXOGwjC66Da1tYtvcHV19zKQDxzgNeg7g/iB4MowfDaAHvWoZOCSHONk31TuKDvpN7fr7Xw7RcsqbD64e9UsbcOr0wHMvMVTkMywsb+dvJ8XaM1+sxdthQC9tOdYYrGY4lToXiuu7JDRCcAp544gk2bNjA448/zi233DLm82KxGOvWrePxxx8vCxR33nln2boQU008HqeqqorBwUEqKysn+3DEDFds4N6Pc/wQuOUzo7iui2OY2IaNbTrY6QzWUAKrvw83mxl9p6Uho6kFvWFuLmQ0o/hO8i9v7r1dx8Y2sjiWgTkUY+hXP0OpnYW+cAmuM3rwVjS9EDD0YBg9EEYLhCY1YMhMVEKIvBOdpLtuebAY9WJ6184pnL3lezwCPmX8qofuzWwlYWLmOhvnmlM+TDzxxBOFxeA2b95MLBajurqa9evXA7BhwwbuuOOOEa+LxWJ88pOfpLq6mrq6Ovbv388NN9wwbgiZbBImxGQxB7rp/99/ix4NE73iTZBN4iZiYIwMDYWQkUxhZQzsrOXdHhzENcYYPKzmQkaDFzIKQ6ZmN51UyLCGYnR+8gMAND7wLdRQxJvSNpPCyiSxxuvNUBT0QAg9GCmpYoTO2WxTEiaEEBPNdd2yaXJLQ4Z3cQq3rVMc9KBrXrUjlfVODxtrdC+AaAp6rsqRbz7Xp8jMVhJ+Tt7ZONec8sOcbrnlltMKANXV1ae8IvX5yLRc/uVn3u2Pvs2bc1ucfxTdj9HTh9HTR9Vdb0LPrYrtGhnc5CBuYgA34V07iUGURAwt4Ke0NbssZCRT2KkMdiaLNZTANU2s4x1YxztIb/9j8UVq6XCpkw8Zqu7DH63CH60qvr/jYGVTJSEjhZ1Nedtz98v24QuMqGJ462fIz4AQYmpTFKXQ0B0+wXJVjlNsLjdMl6w1dvXDdUf2dnSO09vhHYt3HD4tf60UrgvbdKXkMWRtjxlmyocJIcTZV/ppedltfxDFH4SaOSNe41pmLmjEvEvSu9YTMfypuDfdCfmQYWAn017ISKawkmnsVBrXsooh45XhIaMRX6M3TEqtOfEik4qq4gtFvcbw/DG6XpN3acCwMqlcv0YWw8xiDA2Ufe1lASOYHyYls0oJIaYnVVUI5ns8xukyd12vimFY3grlO0p6OyyHwjS7Vm4ND8v2hlq5rvfBpGnBya7r4R0XJcGjeFsvmXJ3eDiR1c2nJgkTYkqTysnUpeg+lKpZUDVrxGOuY+Om4sWgUQgcXvjAsccOGckUrm1jHT+GdfxYecgAer/2eQILL8A/fxG++YvxNTSPOXRIURQ0fxDNHyRQWVzQ0rGtEQHDzqZxHRszNYSZKp1dSkELBEsCRgQ9EELVT64HxMlmyHzN69Ny/um7aKGpOYe/EOL8pii5NTN0haC/+Ld2/mz/mMOGbCe3lkduVqv87eJ1LnhYpdu91zoOZB2X7Emu7ZGnl1RA8gGj9PgGEjYhv4rfp6BPgSFY5wMJE0KICaeoGkq0BqI1Ix5zXRfSCZySakbZxcziZA3sVGnISGEn07i2jXnkAOaRA8X38gfwtbTin78I//zF+OcvQp/VMO4aFaqm449U4o8Ux4u6roOdzXg9GCUho3S9jOxgX3Efun9EFUP1BeQPlxDivJGf2Spw8vNrFPo9zJKFBE17lCCSn3I3ty2/unl+GFZmjCrIziPF3j1V8dYdCehe83nA581wlW9Ez1/L7+0zI2FCCHFOKYoC4Qq0cAXQUvaY67pgpMvChZOI4cb7sY4fAcfBjCe8WaXiCcxEAtfIYuzfhbF/V/E9QmH88xYVA8a8RWi19eP+wVAUtRAKSo/HsYyRw6RMb5YpI2FgJGLFfahqYZra/EU5lSlXhBBiCjibK6GX9nuE/Cd+fp7jFlctHx48DMvlWJ/X2xEOKIXGc8eFjOGSMfK/h0fvRh8eMAK6gt+nltyWNT3GI2FiCpB1JoTwKIoCgTBKIAx1TYXtdnKI7nvfhxrwM/tDn4BEP05vB06s26tcxBOYQ7mQkUjiplNk97xGds9rhX2o0cpC5aIQMKpGVk6GH4/mC6D5AgQqis91bBt7WLO3lW/2Tiew0omy/fjf/QGcjqNk4/0Eff6THiIlhBDCoyoKft078R/OdophYk1rCC03va1hecOovMZzp9CAnjWLjwFla3yMJT/LVcCnFgJGvuLhz207X3s6JExMAR/+8If58Ic/XJiuS4hzTQ0EqX/zGwq3pyona6A2LUaLVADgWgZOfxduX4cXLvo6cLPe8ChrKImVr2IkUziJOJkdW8ns2FrYn1ZdVxYufPMXFfY9HlXTUMMV+MLF57qui23kh0mlC8OlXNtCrZ2FWjuLZF8nyb5O9GAYX26YlS9cIdPFCiHEBNNUhZB//OqH6xZnsiqGjnzYcMjm7jtOcXhVKjv2B7+lw6q8a7V8SFXusZkWOCRMCCFQdB/BDX8z2YdxyhTdjzZ7HsyeB+QWuxvqx9fXgdt7zAsXQwNeQ3cihTWUr2CksJNJ7Fgf6Vhf2ere2qw5hXDhXbeiBseZAiV/LPn1LAIhKPlMwIj10vPIF1HnzidwyZXYZnHYVLqvC1DwhaOFcKGHIjJ7lBBCnAOKku+lgIoxfs3nezyypdWNkspG1nIxTAfzFIZV+XQFM1cJWdMapCI0vT9QkjAhhJgxFEVBqaxDrayDhRcD4GZTOH2d6H25ykV/F9gWrmVjJhJY8WSuepH2AkbvcdK9x0lv+V1+p+hzmovhYv4ifHMXoPpPMLl7jqrpOAf34xzcT/2fvAc1FMFIxjGTcYzkII5pFGaQSvUc86a4DVfgi1Thj1RO+greQggx1Z2rHo8IY3/Q4zj5YFFybTojtrlQCBJQmEV9WpMwIYSY0ZRAGK1pEVrTIiA3bW2sB6evAy1XvSDX4+CYlhcshhKYyQzWUBInlcTqOorVdZTUS7/2dqqq+JrmFXsw5i3G1zwP5SRW1VZ1H8GqOoJVdYV1MIrhIo5rWxiJQYzEIElAyc085VUuqtBOMsQIIYQ4d9STHFZl2pDOOmw/mAEom4Z3upIwIYQ4ryiqhlLbgFrbAEvWAuCm4ji5vgutrwN/rLvwcZFjGN4MUsk0VtrAig3ipFOYRw9iHj1I8nebvB3rPvxzF+TChVfF0Buaxz+W3DoYIX+QUM1sr5yeTWEk4xiJOGZqCNe2yMb7ycb7AW/l7mK4qJRmbiGEmCaUQhO5dtYqKZNBwoQo6ByASNAl4IOAznk7K4GYerRIBS1ff/Ks7V8JV6KFK9FalgG51b0HugpN3WpfBwHD+xTJdV2crOFVMDIWViqD2d+Hm8lgHNyHcXBfcb+BIL6m4vS3rm2NfxyK4i2KF4wQrmvEdR3MVBIzOYiRjGOlkzhmlkysh0ysBwAtEC4JF6fezO06Nr27twAwa9k6aQYXQghxSiRMiIInfl9+X1Ug4MuFi9EuevF2MHftz9/WwadLGBHTk6L7UOpbUOu9IJBv7Hb6OgozR2nBfvIDjlx3Hk4mi5nMYJsuVnwIs6cbN5vBOFAMF8c//3FCKy8lvPoygheuQvGNP8m6oqj4IxX4IxVE8KakNVNDhXDhLaaXIp1Nke73mrn1UMRbkC9aJc3cQgghzjoJE6KgMgyGCVkTXLxZCdKGdzkdCuOEEX2MgDLsOUJMBaM2dhtpnL5OL2D0dqD0d6KFctPqNtbgLm3BTmWwTJf0/jasoSRuKknqxV+RevFXKMEQoYvWElp9BcEVa05qSl5V0whUVBOoqAbAscwRzdz5dS5SvR2QCyOFfgtp5hZCCDHB5HRtCpgqi9b9xZu96cpc18W0IGt5wSJ/yeSuDRMywx4bfnFcL5Bkcq87Xf6S79A/7IHWBpfGGmQlSjHpFH8IrbEVrbEVyDV2D/bi5Jq6nb4OdEVBB4LrVno/V4MJjESGbGcXTmKI1Obfkdr8OxSfn+DyNYRWX0Zo5XrU0MmNpS1t5gawjcw4zdxHhjVzV6L5p+6aIkIIIaYHxXVnwqRUM0N+0brBwUEqKyvPyXualsu//My7/dG3eWHiTLm5Je+z5shAUnaxiiHFGBZabGfs/ft1aJkFC2bD/NlQHZFgIaYmNzWE1dFO4if/B39dTaFy4bouVjxBNpbA6OnDHooXX6TpBJddTGj15YRWXYoWPb3fBV4zdxojOZgLF0Pglv9gqb4AvnAF2cFeAOouWIt6EjNSCSGEmJ7OxrmmhIkpZDLDxNf/vzdzwYIKvvXNR2loaDgn7z0ey3bJmpDMwP/Nzca5tAmO9I4cdlUVgQX1XrBomQUB3+SFi7MRzsT0ZieH6Lj3fQA0fvZ/Q7wHp/MATs8RcGzvpD+RItvbT7Z/EDteEiwUlcCS5YTWXE541WVo1bWnfRyu62Clk16lItfM7dUPS99OQwuE0ANBNH8ILRBED4RQfQEZHiWEEDPA2TjXlI+gBAD7d/ya/TugsbER8MaI19bW8p73vIcvfelL+P3jN4pONF3zFonx68WTnZvWeDNMHY/BoR442A2d/TCYhO1J2H7QaxpvrHUL4WJOtTSBi6lDiVajzWmBJWtxLROn5whOZztq10H0igiRhS1YyRTZnn6MvhhWPE527+tk975O7LFv4V+4lPCaywmtvhy9bvapvbeSWwwv7DVzu46NkRzCSMTIDHRDblu+52LYi9H8QTS/Fy60XNjQA0GZ/UkIIc5zEiYEqVRqxDbXdenr6+OrX/0qX/3qVyktYD311FPcdNNN5/IQCxRFoaEGGmrgsqXe8vZHe71gcagHYkk41uddfrcbgn6YX+8yPxcuKkISLMTUoOi+Qs+F67q4iQGczgOoXQfQK44SWTAXO50h29NHtqcfKz6E0b4Ho30PsSf/DV9Lqxcs1lyOb87461mM+v6q18ztj1QUwkT1gguxTcObJcrIYGUz2EYackOm7GwaY2igbD+qz18MGf5gobKhaD4J8kIIcR6QMCEIh8P8048c/vKaJHff9UF+8YtfEC8dalGiv7+ft7zlLYX7fr+fFStWsHHjRq644opzdcgFAZ/CokZY5BVUiCVdDnV74eJIL2QM2HPMuwDUVbiFXovmOvBpcrIjJp+iKCgVtagVtbB0Ha5l4HQfQes6gNZ5gPC8OHY2i9HTT7anDzMWxzzSzuCRdgZ//B/ojS2FioWvef5pn8TrwTC+cEXZNm+VbgMrFzCKQSONa1s4poFjGpjJ8t8Z3pCpYgVDy4cNf/CMQ4asjSGEEFOHhAlREI1G+N73vle2befOnTz77LOF+/fee2/Z44ZhsG3bNt7whjcAEAgEyGQyZ/9gx1AdUaheCKsWgu24dA3kqhbd0BWDviHvsmU/aCrMrSuGi7oKGRIlpgZF96M1LUJrWoSeX+Oi6wC+zgOEeo7iZDNkewe8YDEwiNV5hHjnEeI/fxy9vsFr3l5zOf75i0/4PW0nh8h87QHv9gPfQs9NO1s4FkVB8wfQ/IERr3Uss6yCYWe9kOGY2dyQqSRWOkm2fI/e/ob1Zmj+EKomoUAIIaYbCRNiXMuXL2f58uWF+9/61rd4y1vewt/+7d/S3t6OZZWv6GuaxXlgv/zlL/Pxj3980vovNFWhuc6rQFx5IaQNl8M9xXCRyHhDow71ADsgEoQF9S7zZ8P8eggFJFiIyVe2xsXS9bimgdN9GF/XAUKdB3DiAxh9/V6fRX8Mq6eLoWd+xNAzP0Krri0Ei8CiZRP+Cb6q+1B138hqhuN4VYxcBcPOhQ0rmwG3+JgxNHJ/+QpG6bApVZchU0IIMVVJmBCnbMOGDWzYsKFs23333cfDDz/MNddcU9j2z//8z8DI/gsATdP4kz/5E374wx+es+MO+RUuaIYLmnPHNFRs5D7a680cteOIdwGYU12sWsjaFmKqUHx+tObFaM2LvapFvA9/1wHCnQewuw6T7evD6Okj2zeAHesn8fzPSTz/c9RoJaHVlxNeczmBpStQzuIUsIqqogfD6MEwpfUM13VxLKNQwSgdNuVYZuEycsiUOmx2qXM7IYQQQoixSZgQE+K+++7jvvvuK9v213/913z+859ncHBwxPNt2+b5558v3P+zP/szfvjDH3LhhRfy1a9+lauvvvqsHq+iKMyqhFmVsG6RNxXtsb5iI3dv3Js16ngM/rg3v7aFV7VYIGtbiClCURSUqlmoVbPggktwzSz+7sM4nQewjrVhdBwj29OH0duPk4iT/O3TJH/7tLf69spLCa+9At+81uL+znLvgaIoaL4Ami+AP1pV9phjW2UVjHzIsI0MruNgZZJYmeFDpqB3zzZUXUfVfIVKiaLphdtqyW1F089phUN6O4QQ5wMJE+Ksueeee7jnnnsK93fu3Mkdd9zB1q1bSafT3HbbbYXHfvSjH2EYBtu3by+rbkQiUZaseTv/9favArPO2rHqmuINb8rNtplIu4WqxeEeb22L/V3eBaAq4k6ZtS2EyFN8AbTmJWjNS9DX3UAg3kskHyzadpPt7iXb24ebSZN66dekXvo1is8HqgqOg9V7HDUUQVHVc37sqqajhqP4wtGy7a7rYBtZ7Gy6pDcjjZXJzULnOoUm8JNRCBqazwshug+l5HbZdjn5F0KIE5JF66aAjRs3snHjRmzbZu/evdN+BezT0dzcTEdHx5iPL1l1PTs2P41PV/jYxz6GYRh8+ctfPif9F67r0j3oBYv82hZOyU+Nt7aFt3Becx089jtvuyxaJ6YS18ziHD+M3dFGZucrGMeOku3tx8mWn4QrPh/6nCb8LQvxLbgAf0srvqYW1FEasCdL6Sf+Na0X4ToOjp0fJmXh2sUhU45t4Vgmrm2dYK+jUNRhIePUqh5SmRBCTDWyAvYMN5krYMPUOfm97777ePTRR+nq6sJxHADu+cqr/K8PXYRPV0b8wdY0jebmZj71qU9x9913n/XjM0yXI8PWthjNn14B8+plhigx9biuizvYg93ZTva1l8m07cEcjGMlU+VJOU9R0Ktr8TXNw79gMb6FXsjQKqpGPvccOJ2TdNd1valsCyHDCx5e0Cjezm/HdU75uIZXPRRNL6zhUTV/Gb5QdFKqPkIIkTdtw0Q8Hj9nJ8fTmYSJkUzL5Z9/ZOLz+QrHd6KT81/+8peFRfUSiQTRaHTc55+p0rUtDveCWfIBaH2lN03tsrngn2L/tkKANzVs56c/gF4Rpea2v8TuOoJ59BBmTxdWfAgrkcQ1R/9UXw2H8c1uxDd3Af7WC/EvXIpe33DWP4E/25/4u67rDZ8aVt3IVzjOpOqhBULowUiuQd27lilxhRDnytk415yQnolHH320rMk2P07+m9/8Jp/85CeJxWK0trZy5513lo2hF+Jk+Hy+svuu67Jz507uuusuNm/eTDqdLnu8dHXuiorilJWRSISrrrqKb3/72zQ0NEzY8ZWubZExXL7+C2+7pkJPHDZthxd2wPIWl9ULobZCQoWYWlzLxhwYRF+0msDKq7xtroubHMSJ9WB3HMI4vA+z8yhWXy/WUAI7ncFJpcge3E/24H74bW49Gk3DV1ePr3Eu/vmL8S1agX9eK2ogOGHHe6K1Mc6UoiigaGh+Dc1/4uP2qh4jqxuOaZDu9xqtFE3Hta3CSuLZknkpNH+wLFzowTCq7hvj3c4uGZolhDhVExImWltb+eQnP8kXv/hFrr32WgC2bdvGHXfcwSc+8Qnuv/9+wAsdP/jBD3jXu941EW8rJoBPV/j4Oyb7KE7d8uXLeeGFF8q2/ehHP+Lb3/524b5hlI8FTyaT/PKXv6Sx0VsuW1VVbNue0OPSSkYwvP862NsJ2w94Q6FeOeBdWma5rFoIixpkulkxdSmKghKtRo1Wo89dQuDS6wHvZNMd6sfuOYZxYC/m0QOYxzuxBga8YVK2jdndhdndRWr75sL+tMpKfLMb8DUvwL/wAvxLLkKrrpsRwwAVRUHR/ah6eQ+X69iFMFG7eGXJrFQpb0G/TMqbKjc3a1U23l94rerzl4ULPRiR9TaEEFPShISJbdu2sXnz5rJtt99+O+vWrSsEify2Bx98cCLeUogRbr75Zm6++ebCfb/fz2c/+9kR/Rd5w+8rioKqqsydO5d77rmHj370o2d0PEE/rFuksLbVmxlq+wFo74Ijvd4lEoSVC1wung/RoJwgiOlBUTWUqnrUqnp8i1cXtruWgTPQg3loD8bBfZgdRzB7u7HjcRzDxI7HseNxMm174ddPe/sK+PHV1uNrbMY3bxH+xSvwzV+CeoI1MEo/LZ8un5wrioLq86P5/AQqagrbHcv0wkU+ZGSS2EYWxzQwTANjaKC4D82HHgzjC5UMkfIFJGAIISbVhISJ0doutm7dyhe/+MWTeq4QYznTysnw9S8SiQQf+tCH+MlPfkI4HC5s/z//5/8AXsA4fPgwf/VXf8Vf/dVfAV4oeeMb38izzz57WsegKAoLcutTxFMurx2C1w55i+T9YTf8cQ8sbvSqFXPrpGFbTE+K7kerb0arbya4/trCdjebwjzajtm+C+PIAczjx7D6+7GTKdysgdF5DKPzGGx9yXuBqqJXVeGrn4OveT7+hUvxL7kYtbJ2Rv5sqLoPf7SqbN0Nx7ZywaIYMuxsGtc2MZODmMniGClF1YpDpHIhQ/MHZ+S/lRBiapqQMFFdXV12/8knn0RRFNauXTviuTU1NSO2CXGuRKNRvvvd747YXlFRQSgUGtF/Ad5wqeeee65wv62tjdWrV3PVVVfx8MMPM2/evJN+/8qwwpUXwmVLXdpyQ6CO9cPeDu9SVwGrFrhc2CJrV4hzQw0EqX/zGwq3J5oSCONfdBH+RRcRyW1zXRdnsBejbQfmwb0Yxw5h9hzHGhwE2/GGTA0MkN67G371FABaOIReW4evoRm9oQUtGsFOZ2bkB1SqpuOPVOKPFJsjXcfGyqTLKhhWNo3r2JipIczUUHEHilo2PMq7DqEoMpOUEGLiTUiYGP4JyDPPPANQ6J8oNTAwMGKbEJPt5ptvJpVKFe7/6Ec/4jOf+QxtbW2YpkldXV3hsTvvvLPQfzF//nzA+xmoqanhlls20HrDV0c0jQ+nawrL5nqzPPUMumw/CLuOQN8QPPca/GYnXNjiVSvqKyVUiLNH0X0EN/zNuX1PRUGrrie0/k2E1r+psN2xLKzDezHadmIc2Y/ZeQyrvxcnk8VOpbFTR8kePQr80XuBptL9Dx9Bi1agV9eg1daj1zeiN7Sgz12AVjN7UodBKapG/fJLJ2xfvmGL+rmug53NYGWSmOlkoZqB62ClE1jpROke0IPDZ5IKTZthYkKIqWtCpob90pe+xJ133kllZSUHDx5k7dq13HDDDXz/+98ve96DDz7ILbfcwoIFC870LWekyZgaVpy6K6+8kt///vdjPu4PRvnC9+J89G3wmxd+xY4dO06q/yJruuw84lUr+kvOAZrrYNUCWNIkDdvi/GQN9GG0vY55YDfG0UOY3Z3Y8fgJX6f4fGiRMFpFJXpNHXrdHPQ5TeiN89GbF6CEomd1OJCdHKLj3vcB0PSl76BFKsZ/wQRwXRfbyJQ0entVDNcZfbIJb6raYgVD8wfo37cdkNmchJiJpvQ6EzfeeCOKovDMM8/Q2trK1q1bqaysZNu2bXz/+9/nkUceQVEUHn30UZnNaQwSJqaX0v6LwcHBwnCLBRdcwUcf+B0ffRs0NtTT19dXeI3f72fZsmV8+ctfHrVyB97JwJFe2H4Q2joh/xMaDsDF82HlAqgISagQ56/CSbqiUPPu23H6e7C6O7H6e7BjA9iJIVzTPOF+1GAALVqBVlWNXjvLq2rMaUZvXoA2p+WEjeAnfZycuzAxGtd1cUyjbIiUmU7h2uP/G4Xrm/GFK3JrYUzIQAYhxCSb0mECvFmdANasWVPY9uyzzxKLxQr3q6urue666ybqLWcUCRPT367dbXzvpSqqqmbx0bdBJBzAHOek5pprruH5558f8/GhtMvrh+DVg5DMetsUoLUBVi+UFbbF+elkTtLtVAKr8zDWsYNYx49h9XZhDfRhD8awk0lwTrDCtaqihUNeVaO6Fq1uNvrsRvTGefjmtp5UQ/hUCRNjsU1jxExSjmmM+lxvLYwIeiiCHozgC4WlaiHENDRlF63LW7NmDT/4wQ947LHHuO2221i9ejXXXXcdzz77LHV1daxevXoi327G2LhxIxs3bpzwNQ/Eubd48SKq9hTvG4bBT3/6Uz71qU+xd+/eEcFi/fr1hduBQADDMAr9F3/6p3/K1772Na5Y5ufSpS77u7whUEd6YX+Xd6mJwKqFLstbIOiXUCFEnhaOoi1aTmDR8hGPuY6DHevFPHYQq+MQVncHdl8PVqwPe2gIJ50Gx8FOJLETSYzOTmBH2T4Un44WiaJVVqHXzkKbNcerajQtwNe04Kw0s080rTBVbXVhm21mC8Oc/BXV3loYZulaGMVKa36IlC8XMPSgBAwhzkcTVpn4wQ9+wAc/+MFCFeKRRx7hgx/8YOHxJ598koGBgbJtopxUJqY/03L5l595tz/6Nm9q29Hcf//9fP3rX6etrQ2/31voarxPOVVV5ec//zk33XQTfXGvYXvnETAs73Fdg2XN3ircc6pPPVSc7HELMRWc7U/8HdPA7jrihY3jR7F6urD6e7EHB7ATiZMcQhVEi0ZxjQwoChU3/SmhdW9Eq5jaMxqOtgK2txaGNzTKyiSx0kkca4wKRiBUDBehCHogjKLKLFJCTBVTdpjTtm3b2LBhA5/85Ce59dZbqaqq4tFHH+X2228f8byBgYExx4qf7yYjTGQMh/f/fQcA//oPTQT98kv/TJzJSfldd93FY489RiwWG3W6y0OHDhWmoY1EIiian7fc8j94880fI+sWT6Yaa7xQsbTJmzXqbB+3EOfaZA8fshNxrI4DmMcOYXd3YPUdx+rvwx6Kjz+ESlHQq6vwN7cQWHwhweXr0Brmo+jjz/52LjlGBuM/NwLgf8eHUf2jV1gcyygLF2Y6OUYPRsksUoUKhkxTK8RkmbLDnB555BG2bNlCVVVx0Z3RPmVds2YN3/zmNyVMiJM23cLOmSyy99BDD/HQQw8V7re1tXHnnXfy4osvYhhG2XoW3jS2KZ789n08+e37WHjhlbzhrXez8g230Dngp3MAnn8dLprnsmoBVEUkHIiZo/TkezJOxLVoJdrSVQSWrhrxmOM4OL1dWMfaMY60k3rxV14DtGHipDNYAzGsgRip11+D/3wMPRrFP2cO/gVLCCxbid64AKVq1qQNF3KyGXp+5c1W1/iWD4wZJlTdT6CiOETKdd1CBSMfLqxMErdkAT5iPd6LFQU9EEYPRQpVDC0Qkv4vIaapCQkTra2tZUFiPKXN2EKIsS1evHjMVbf9fj+GURxmcGDX7ziw63f857c+zmU3fIDbbv+fDKVhcxu8vNch0f0af/62FSxp1uUPtpj21ECQlq8/OdmHMSpVVVFnN6HPbsK3dBWDv/xPwKugOPEYmVf/QHbvDowjB7ETCawh75Jq2w+bfokejeCrrcbfPI/AkgvRGxag1DagVEztFcAVRSnpwfCGcpXOIpUPF1Y6mVuAz7ufyS89lVtor3SIlKzkLcT0MCFh4lRWtd6/f/9EvKUQ57VsNlu4/eCDD/KVr3yFjo4OEoPdPPfk/Tz9/f9J+3HYvNekI+ajomEVP90CfT9r5w9PPcyRnb/kzg/+d+65555J/CqEOL/4GlvwNbZQcZN33+rvIbNjK9md28ge3Ic9GMNKJLESSdKHj8Ef/oAWDeOvrsJXV0tgwRK0xnmotY2oNQ0QrpjSJ9uKoqD5A2j+AIHKWiAfMLJl4cJbB2PkQnuKquaGRRWHSGn+QNnXPFqPhxDi3JqQMNHW1jZi22hjvl955ZVRtwshTt8999wzaihY3Ag/+d5GvvClr/OGt9zNJde9j7qGVt7+Fw9gGp9jy2+/z/yll3Fwz4uF1xzc/SK87fJzefhCnLf02nqiV91E9CovXVixPrJ7d5DZtQ1j306v6TuRIp1IkT7aCdt3oEXC+Kor8VdX4ps9B71hHkptA2ptA2pNA0owPMlf1fi8gBFE8wehqg4YttBeuriat+s4mKkhzNRQ8fWqVggXvlz1QggxuSYkTNx2221ccsklPPHEE8yfPx8Y2TPx7LPPcuutt3LgwIGJeEshxEn42Mc+xsc+9jHa2tr40EfeS1ptYf31H6Rl0TouufYvuOTav+A/fg0XzYff/eJhfvDw3fzLp7zXhsNhLr/8ch5++GEWL148qV+HNIiL84FeXYd+6dVELr0aAHtwgGzbTjJ7Xye75zWs7k7sZAo7mSJzrAt27EULh/BVV+KrrsJXXYlWMysXLOZ4IaNmDoovMMlf2fgURUEPhNADIaiaBeQCRjZdPkQqk8J1bMxUHDMVJz1sP0Odh9ADIS+sBIJovoDMJCXEOTAhYWLNmjXcfvvtLFy4kBtuuIHW1lba29vZv38/7e3tbN26lfb2dp5++mmZ8lSISbB48WKe/qV3Nu66Ll0x+PlvOxi053B8UOP4q7Dumj8nWlVHvL+T+EAnQwOdHOvv5Orr30V8oJNoWKers3NyvxAhziNaVQ3hdVcSXnclAPbQINm2nWT37SS793XMjsPYqTR2Kk2m47j3mlCwECx81ZVowYDXb1FavaiuR5niK1orioIeDKMHwwSr6wFwXQc7mxk2RCoFeCMesoO9ZIftR/X5C5WQ/EUPBFF9gSk9REyI6WTCfpvccccdrF+/nttvv51nnnkGoHB9yy23sHnz5pNu0hZCnD2KotBYAx/4k2bSWZfXD3uL4UElq95wy5ivsy2DR592iQRg68svcLBtJ0OxLlQnxXVvvoL3/vk7iQQgHABVlT/SQmiRigltFNcqqgivuYLwmisAsBNDXrho20l27w7MYwex0xnsdIZMpxcu1GAAf01puAiCoqJUzUKtbUSpnYNa24BSWYeiqGU9B1Ot/0DJNWnrwTDgBQzHMunbuw2AUF0jjpktLLDnOg6OaeCYBmYyPnxvuX6OYO465F0Hgqi6X4KGEKdgQj+aWLt2LVu2eI1Q27Zto7q6moULF07kWwghJlAooHDJEli1wOVrP/e2rVsEaQOSGUhkXI73JtADFWi6n6E0DKWhacnVNC25umxf//5r79pxbFwrRUN9BZEARIIQDXrXpffDgZNfB0MIMZIWrSC8+jLCqy8DwEklyLbtIrtvJ5l9OzCPHMDJZMl0dpPp7Aa8xfR81RX4qzvxVR9GDeY+odd0lJo5KNFaArPrMGLDT76nptJhTJH6pkIAcl3Xm5Y2mymEi9ILuT4N28iMttOSoOFVMvK3FU1mxBNiuLNW51yzZs3Z2rU4Sz7/SA9VUY2KsEpFJH8p3q/M3Q8HFfnkeYYp/dv4hmWlPQkKUIntuKSykMh4IePRf/0Pdu45RKiinsqaBipqG6msaaSiag6qpoG/gp5B6DnB+wZ9rhcyhgWN0vuRoHcUQojxqeEooZWXEFp5CQBOOkl2/25vWNS+HRiH9+NkMmS7MmS7vJ9ONRTCV1XhXYaG0EJBKldcAID5mydwGltRG+ajzmpG0abO4nonoigKiu7Dr/tg2KKG3poYBnY2g21ksY107tq7j+tgZ9PY2eFdGV61pljNyPVm5IKGehJDx2T2KTETnfNBk3fffTff+MY3zvXbipPQftQERlvBtJyiUB44wlrhduUo2yoiKgGfIp/mTGOaqlARgoqQd/+B/+89ZY8/99xzfOxjH2DPnr34Q1X8+GfPMm/RcpIZ+Pi9f+cFjZoGKmsaqcwFD90XIGNCxoS+oVHetISv5DfV5jaYO8uloXp6NGJL87iYLGooQuiidYQuWgeAk0mTbS8JF4f246TTZNNpsl25ykUojBbyEZw9C1/WgKF+7L2bQdVR65tR5yxAbZiPUjlrSvxOV1SN+uWXntprFAXNF0AbpTE9P3XtaBUNxzTK1sgYsV9NH9GbkQ8eEhrETHbKYSIej49oon7llVdO+vWbNm061bcU58hH/7yGTBaGUjZDSce7pBziyeL9dNbFdSGedIgnnZPet0+nUOWojKq5MJKrehTue9sqIyrRsCpDYKaRa6+9lu3bt4/62B9+/r9JJkf+4Q1Fa6iqbeJTf/t5brjpHSSy8OSPfsmshvnMW3ghyVwVxLTBtEr2twfYA6oC9VUuTbUULhUh+Z4RYixqMERo+RpCy72RA042g3FgTyFcZA/uw0mncNJg9g8CoNfW4quuwl8VxmcZOMcPwatAMII6ZwFaw3zU2fOn/JS0J6ts6tphXMfBNrO5isawoGGZ3rCqYWtl5Km6rxAs8qxMylv5W9WmRDAT4nSdUphYvHgxBw8epL+/vyxQXHvttQwODp7w9a7ryg/MFLbmwhBB//jT6FmWy1DKYSgfMFJeqPDChp17rHiJJ22s3Mlg/6BN/6B90scTDipEw8XjeWV3hktWhNAkZEwriYT3h9UwDP7qr/6Kxx9/nIGBAdIJ7/LXt99ceO5ln/gvZa/1+XxcuHwlf/u5L3GENwHe+hmdA17QOB7zLtvavedXhMrDxaxKr6oihBhJDQQJLltFcNkqABwjS2b3dvoeesB7gqJg9fdj9feTBhR/AP/s2fgqgvirs5BJ4hza4T21ejbqnPmoDQtQ65qm/GxRp0NR1eIUtsM4tj1qb4ZtZHFtC8cycSyzbM2M2MFduf1q3qxTPm+BPzVXNdH8flRf4KSGTwkxmU7pOzTfBzG8MlFbW8unP/1prr/++nFf39fXx913332Khzjzbdy4kY0bN2LbJ3+iPVl0XaGmUqOm8uRKtq7rkjXcYuDIVT3iJZWPRLJkW8ohkXJwXUhlXFKZ4r/JV/+jn+oKlTeuCXPN+gjNs6fP+F0Bfr+fhx56iIceeqiwzTCMcV9jmiavbt/CrTdfC8A//cjhrWtB16CrN8VgNkxHP3T0Q0/caw7fc8y7gPe8hhqXphpoqoPGGgj5JVwIMRrVHyCw6MLC/Tl//xXMg21kdm4js/MVnOQQ2aNHCtOv6rV1+Otq8EUC+BwHN9aNvedl0HTU+pZCuFAqamf8B4mqpqHmFtIbzrGtQjXDyqZJ93lTbCuajmtbuI49Zo8G5Ps08iHDCxia3wscXtiQIVRicp1SmHj88cdH3d7a2sq99957UvuQ2Z1G+vCHP8yHP/xh4vH4jJs+V1EUggGFYEBldu3JvcZxXJJpL1z0DVrc/60+ACoiKrEhh5++kOCnLyRYPM/Pm9aHuXxlmHBQFiaajvx+f9l913Vz/RcfY/fu3WOGDUVRaJodLdyuqqriHTffwqc/9xUG0iE6+r3qRdaEo73ehX3ea2uj5dWLmujIRTaFEKBFK/Ffdg2Ry67BdWyMw+1kdmwjs3MbxsF9WP19WP3e72fF78c/pxFfZRh/ZRjsAzhdB2A7EIqi5Xot1NnzUAIzY0jUyVI1HTUcxReO4jp2IUzULfEqQrZpYBtZb1pb08hNb5vFNrOFsGFlUpBJjbr/4WGjtLpxumFDGsXFqZiQ2tnTTz99Vp4rzk+qqnj9FBGNuuriL7B/+ps57Dpg8MLmJNv2ZGg7bNB22OC7Pxnk0otCXLM+zIULAzLT1DQ3Wv/FV77yLzzxTFvh/ne+853Cbdd1icVi/Nt3vsm/feebAIRCIZLJJP1D0DEAHX1e9WIgCf0J7/L6Ye/1QR801XoBo7GWadPYLcS5pKgagQVLCCxYQtXbbsVODJHZ9YoXLna9gjM0SPbIoZKqxSz89XX4wn58joN98HXsg697+6qZU+i3UOqazusTVUXVxhw6Bd5JfXnYyOZuGycfNjStECyKQ6mKw6rO539/MTFkIJ6YNnRd4ZIVIS5ZESI2ZPPbbSl+vTnJsW6L325L8dttKeprNa5ZG+GqdWHqa+Tbe6b40Ic/gr2geP/d7343L774YqH/wnXdsuen02kURaGuEo4f3clb1q3A5/OxYuV67vnbf2Le0svp6IeuAW82qfbj3gWksVuIk6FFK4hcchWRS67CdRzMowdI56sW7Xux+nux+nsBUHx+/E3N+Kqi+MM+NI5jDxzH3v1H0Hyos0uGREVrZnSl8FRnnzqpsJGrYji50OHd9qocrm3h2jaWPV7Y0HNhw18cPqXLMGJx8s7q2dbg4CCPPfYYiqLQ2trKtddeezbfTpxHqis03n51BW+7Ksr+IwbPb07xh+0pevptntgU58ln46xYFOBN6yOsXxHC75u5f5wmgk9X+Pg7JvsoTt5o/ReHDx/mzjvv5De/+Q2LFy8ubL/rrrsAr//ilS1/4L+98w2Fx6LRSv7bBz/O7R/5ezr64Vj/+I3djTXQXCeN3UKUUlQV/7xF+Octouqtt+CkEmR2bS+ECyceI3voQHnVYs4cr2oRcXA623E6cz9s4QpvSNSc+ahz5qH4Rz+JFh5F1UpWBR/Jse1CRcMbPmWU3M7iOrY3C5VtwSjT3QL07X0F1edH1X2ounet5e/7/IVtMzkEivFNSJi46aabeOqpp0Zsr6qq4vbbb2dwcJD29nYefPBBrr/+elavXj0RbysEiqKweF6AxfMCvPftVby8I82vN6fYsT/L623eJRxUeMPqMNesi9A6V37hzVTz5s3jF7/4xYjt1157LX/84x9H7b9IJOJ8a+P/5Btf/ixrF8GDDz7IV7/+Hf7rrXfxJxvuoGfId+LG7tzwKGnsFsKjhqOE111JeN2VuK6LefRgrtdiK9n2PcOqFj78zS34a6rxBVU0hrAPvIZ94DVAQaltQJ0z3xsSVds4YkiOa5lkf/hVAALv/CsU+US9jKppqNp4YcMqDJkq7duwjUyhIfxEDeKF99J9xcBREj40XzGEnK0VxKXHY3JNSJgYPsRguKqqKtasWcOaNWt48MEHJUyIsyLgV3njmghvXBOhu9/ihS1JXtiSojdms+nFJJteTNIyR+fq9RHeuCZMVVR+2UwXZ1I5ue+++7jvvvsK97/xjW/wwAMPcPToUWzbLvt9dP/999PX18fGBz7Kxgc+CkAwXMGqS2/iv956F8tWXzuysTtHGruFGElRFPwtC/G3LKTyLe/CSSfJ7H610Mhtx/rJHmwne9B7vlY7i0BjE76KID6/Av2d2P2d2LteBN2fGxKVWzgvUj2ZX9qMoGo6qqaPCBulJ+fVC5fj2nZuelvDaxLP3XZMb8pbcAvT38Low6kAUJSR1Y2S8JHfJmFgepmQMHEqfzD3798/EW8pxLhm1+rcckMV77qukp3tWZ7fnOTl19McOW7x7z8b5Hu/GGTNsiDXrI+w+oKgrF1xHrn77rvHnKI6EBi5Im4mNcQfn3+CPz7/BE1NTRw9epT+IXjy5y9CsBFfxXwGEmM3ds+pPotfjBDTjBqKEF5zBeE1V3hVi47DXrDYsZXs/t3Y/b2kclULdB+Blvn4Z9WiBxQ0N4vTsR+nwzuPUCJVKLVNDL62G3MwTuN/yaBJZWLC6bmF9cbiui6ubeVCRi5olASOfPhwbQtyK4w7ZhZrnEJHfu2NkdUNP2pppUM+sJkSTjlMHDx4cMS2/v5+Dh06NG6For29nccff5z29vZTfUshTpuqKly0OMhFi4Mk0w4vvpri+c1J9h8x2bwzw+adGaqiKletlbUrBBw75o1j6urq4v3vfz8vvPBC2erd73vf+wqN3R9+79VYlrc0d6SijiUXX8OlV9/M5W9+J/FsZERjN8BL+2DVQpdoUP4AiqmpdJjQ2R4ypCgK/ub5+JvnU3njzTjpFJk9r3nrWuzYhj3QS/ZAG9kD3vO1mjoCc+fhr4qiaxYkB3GTg1RdvAwA87l/x66Zg1Jdj1o9G6V6thc45ITzrFIUBSU3xAlGrrOR5zpOsaJhmcXwYea3GdimCa5zGkOrit+rRmIQPRhB9fnl//4cUdwTjVEa5tFHH2X//v1s2rSJrVu3nvR/lOu6rFu3jk2bNs24tRQmSn6dicHBwRELA56vMobD+/++A4B//YemE67QfbKOHjf59eYkv9mWIp5wCtsXz/NzzbowV6w6vbUrztbxisn3wgsvcPnllxfWxhjvd5+m+/iHBx7iLe/4S472QVtn8TFV8VbxXrUQ5tbJUCgxtTjZDMc+9h4Amr/876iB4KQch+u6WF1HvSbuHVvJ7t8FufAOgKbjn7cQ/6w61EwMf90Ys0Dp/pJwkbuurJuRK3TPBK7r4jp2SXWjNHiUVzxOSFHQ/EH0QAjNH0QLhNADQTR/8LweRnU2zjVPOUyUam9v54YbbqC2tpb7779/3Oe2trbKgnUnIGFipLN9cm7ZLq/szvDrLUm27c7g5HKF36ec1toVEibOL8P7L0odOnSIefPmYVou4UiEiy+/mSvf+iEWXnhl4Tl1FbByASxvgYDMOCamgKkSJoZzMmmye18vzBBl93WPeE5g6QpvlqiKKJruQjIGjj1yZ4rqBYrq2ajV9cVr/9T4WsWJeUOrTOxcVcM2siSPe2NMtUAQ28jCOKe33jS4+XARQgt4oeNsNYhPJVMuTADEYjFuvfVWWYxuAkiYGOlcnpwP5taueD63dkVefY3GNetObu0KCRPnN8MwuPfee/nFL37B3r17ATAtF7+v+H3QuGAlb3jL3ay75j0EQt4q3j7N5cIWhVULoL5qZv8hE+JMua6L1d1BZsc20q++THbv6yOfpGr4mufjb56Hb9Ys9GgY1cnixnrAzIy6XyVc6QWLmmIVg1DFjD+5nAmGz+aEonp9GdkMtpHGzmawsmlsI41rjxIwcxRVQ8sFDD3gVTM0f9Bb3E+ZGX/Pp2SYAG/o0+23335Szz148CALFiw407eckSRMjDQZJ+eu67L/qDcM6vevpEhnvR8RRYEViwJcsz7CJWOsXSFhQgxnWi5XXP/f2bX1l6SGitM/BcOVrHvTe3nDW+6iYd6KwvYDu37Hy5u+id88xEPf2Mjy5csn47CFmBbs5BAd974PgMq33YZ57CDZA3txBgdGPFeNVuJfuBT/3Pn46urQQwFIDeLGunFT8dHfwB8sHyJVPRulohZFld/tU8mpTA3rWCa2kQsXubBhZTM4ZnbM14DiLeiXCxd6IJQLHUHUaTZkbsqGiVMx1poUQsLEaCb75DxrOLy8wxsGtaOt+IsmHFS4YlWYN60vX7tiso9XTD2m5fIvP/Nuf/Rt3jS3L7zwAv/jf/wPduzYgaZp7DmcZPsB2Nfp4rre99JQrJuXNv0rf3j6YQa6D1FZWck73/lOvvOd70zeFyPEFDPasCzXdbEHejEO7CV7YC/Ggb0YR9rLey4AFBVf8zwvYLS04qutRdVc3MEe3FgPbrwPXGfkm6oaStWsYSGjHkX3n/B4ZV2Ms2Mi1plwHcdbX2OUoDHq90GOqvtKhkoVh02p+tRsAD8b55oTGqeee+45YrEY/f39Yz5n8+bNE/mWQpxV3toVYd64JkxPv8ULW1P8enOS3pjNs39M8uwfk8ydo3PNOm/tikBg6v3iEFPP1VdfzdatW8u2tcyCTc+/yIMP/5JLr/8A1bNauO6WT/Hmd32CXVt+xu9/8Q2++93vloWJefPm8f73v79sHQ0hzneKoqDX1qPX1hNe5/UouaaBceRALmDswTiwD3ugF/PoQcyjB8nP2aZGovgXLMXfegH+Cy/CV1sLmSHcWA9OrNsbJmUZuAPHsQeOl79vtKasgqHWzEYJjj27kZg4iqpRv/zSM9yHWlhNvHSScNd1vb6MwlApb0E/28gU1tZwLBNzeHVLUUf0ZHhDpoIzrrI1IZWJwcFB1q1bd1LTviqKMqJRUXikMjE9OI7LrvYsz29O8dLrKczch12aCiuXBtm22xuPK5UJAaNXJk7EcVz2HrN4clMbodplhe19xw9w85sXctE8eOALn+Nzn/tc2et0Xae1tZXPf/7zbNiwYUK/DiGmojNpGLdifV7Von0v2YN7MQ7tB8ssf5Ki4Gts8aoXuYsWiUC8txAunIFuyCRGf5NA2AsXNV6TN9FazE3/x3tIKhPTnmNbhXDh9Wfkg0YWGK8BPFAYVlXTetGYK5SfDVN2mNONN97I2rVrufPOO6mtrR1z6tdYLMb69etpa2s707eckSRMTD+pjMMftqf49eYUbUfKp6q7YlWIdctDrFwSJBqWUHG+Op0wUWog4bL9IOw47K28DV5wPbLrWR7/1t9yeO8fR32druuYpveCrq4uuru7Wbly5el+GULMeK5lYhw9hHFgT2GI1GizRimhCIGFS3IVjKUEFixBUVWcwW7cgW6cWI/XhzE0wGgnlK5tYyXT+JetRqvJ9WBU1nqVjWk2/l6MznUdbCM7LGh4Q6fcYTOMVS+4EF+44pwd25QNE3fddRcPPfTQST331ltv5bHHHjvTt5yRJExMb0ePmzz3UoJf/i5Ztl1VYek8P6uXBVmzLMTcOTN/6jlRdKZhonQ/e47B9gNwfLC4PaQl+NWP/je/ePzLJOLFptOamprCkNPVq1ezffv2wmOVlZXceOONfPvb3yYajZ7W8QhxPrAHB7y+i4NeBcM41IZrjlzjQG+YS6CkeuFrnAuOgzuYr2AUQ8ao09XmKJGqYrioqEWt8K4JhOTvxgyQn9LWTKeIH/Fm/KtbuqZs0b2zbcqGiQcffJB77rlnIo7nvCZhYvorbcB+6xujvLYvw9Hj5U1/s6q1XLAIsmJRcNRZocTMMVFholTXgMv2A7D7GNj5tVF0WDEPVi2AJ7/3TRYtWsS1114LQDAYJJsde6aSSy65hJdeeumMj0uImc61Lcxjh3N9F15zt9XTNeJ5SjCEf8GSYsBYsBQtWoGVGKT7vg+jhUPU3PLfIZPEHerHHeqH8WYT8gVRKmsK4aIQOCJV5/UCbOLUTdkG7FPJI/F4XE6Uh9m4cSMbN26UXpIZZsONlbz37dX09Fu8sifDtt0ZduzP0Buz2fRikk0vJvH7FFYsChTCxaxqKXGLE2uoUWiogasvctlxGF49CLEkbGv3Li3LP8jchWA7LpqqEI/H+eQnP8m///u/09vbO+J39pBdzz//p8tH3wZzmxvo7u5G13UWLlzIP/7jP3LbbbdNzhcqxBSjaDr+ea3457XCNW8FwB4aLJ856lAbbiZNdverZHe/WnitPrsJX8tC7FQaO5VGaVqKb9YcIHcelU3hDvXjxPsLAcMdGsBNDoKZwe3rxO7rHHZAKkq0GqWiphAwCoFDFuET58iEVCYOHDjAk08+eVLVCZkadmxSmZj+TjQ1bNZw2NmeZdvuDK/s9oJFqZY5OquXhVizLMiSeX40TaoW093ZqEwM57ouh3q8IVDtXcVR2pEAXLwALp4PFaHy9+3q6uL222/n+ed/zYfuf4k5cy/go2+jbIG94QKBAP/2b/8m4UKIcbi2jdl5BKN9j9fY3b4Xq7tj1Odq1XX4mlrQG1vwlVzUYKhkfybuUKwQMErDBrY16n4BCITLw0W+mhGuOOECbDKF7cw1ZSsTiqKwZs0abrvtNm688UYWLlxIbW3tiOf19/ef1IxPQsxUAb/KmmUh1iwL4bouR45bvLI7zbbdGfYeMjhy3OLI8SF+8ushIiGFlUu9isXKpUEqI1LKFqNTFIUFs2HBbIinXF47BK8dgmQWXtwDf9wLixpcVi/0pqBVFIWGhgZ+8pOflIUdgLe85S386le/GnVYVDabLZv6u6WlhXg8zo033sjDDz886u99Ic43iqbhn7sA/9wFRK++CQA7MYRxcC/Ztl0MPf3DwnPtWB92rA92vlK2D612Vi5YzMPX5AUMvWE+WssFhee4rgvpIZyhftx4sZLhDPVDOuFVOnpS2D1Hyw9Q1XOVDK+aoVbmw0bNSa2VIcRwE1KZqK2tZXBwsKx0PlqjkOu6MjXsOKQyMf2dyaJ1iZTDq3u94VDb92ZIpIqL5CgKLG7xs2ZZkNXLgsxv9E1oM95UX2xvqh/feM5FZWI0tuOyrwO2H4RjfcXtNVGvr2L5PAj6lBMe36OPPsr999/P4cOHsSzrhL/nVVWlvr6eD3zgA3z2s5/F75eTEyHySqeybfyfj2D392B2HsbsOILZ6V2ceGz0FysKWm29FzKaWgphQ29oRvUHyp7qmllviNRQf0nYGMBNDIzbAE6oArWiBqLVOO3eEC3/je9Dqaw5YTVDTA9TtgF78eLF3HLLLScsfff19XH33Xezb9++M33LGUnCxPQ3USe9juPSdsQoDIc61Fk+93ltpcaqZUHWXBDkoiWBMz65nuon61P9+Ka63rjXsL3zCJi58whdg2VzYUULfP+33rZTDTs+nw9r+KrCJYaGhgqzRb3jHe/g3e9+twyREue1k1kXw04MYXYexsqFi3zQcBLxEc8FQFHQZ80pDpVqmuddz2lC8ZWHedd1cJNxr4qRq2Y4+SFT2fTYB66oXrN3tHrkJVwpU9pOI1N2mFNrayv333//ST134cKFE/GWQsxoqqqwdH6ApfMD3HZTFX2xkibutiz9cZtfvZTkVy8l0TW4sDXA2mUhVi8LMqdOfqmLcrMqFa5bBVctd9l1FF45AH1D8Poh75LXOQD1lS5B/+hVh+FK17G48847ee6550gkiot3lU47++Mf/5gf//jH/Nmf/Rng9V+sWbOGhx9+WNa/EKKEFq1AW7IClqwo224PDRaqF2bHkULYcJJDWD1dWD1dZF59ufgCRUWvbyirZOi5kKFGq6GxtWz/bjZdCBdOfxfpPz6PFgmhRyLgOriJXGVjNOFK1Hy4iFR5a2ZEc+HjHAydkh6PyTUhZx2PP/74WXmuEMJTV61z3WVRrrssimF6K3Bv251m254MPf02r+3L8tq+LP/2E2iq1wvDoS5YEECXJm6R4/cprFoIKxe4dPR7oWJfBzi5+vQTv/euAz6ojrhUR7xhUdURCreDvpFBo6Ghgf/8z/8s21YaKjZv3jziWLLZLC+++CKrVq0CymcFNAxj3OFRkzV0TIjJpFVUoVVUEVx6UWGb67o4+ZDRcbgsbLjpJFZ3B1Z3B+ntJYtbqip6fWNxqFSukqHPbkSd1Yw6qxl79gLi3/LWD2v84r+iKQpOwptZygsVg7iJGG4iBrYJqThOKg7dh0ceeDBSCBhqdFh1wx8a+Xwx7UxImBhrxeszfa4Q003Qr/If9889q+/h9ymsuiDIqguC/IXr0tFjFYZD7TmYpaPHoqMnwc9+kyAUULh4qTccavUFQaoqpIlbeGGguQ6a62Aw6fKtTd72aBASGW+l7eMx7zLceEEj5C+e1JdWJdavX4/runznO9/h85//PIcOHRpzeNTOnTtZscL7RFZVVWbNmsVf/uVf8g//8A/SfyGmPTUQpOXrT07Y/hRFQausRqusJnjBxYXtruviDA4Uw0XJcCk3k8I6fgzr+DHS214s7kzT0Wc3esEiN2UtAI6DUlmDFhk5JKYwpW0uWDi5azeZCxpGxltLI5PE7evAGb4DX6A8XESqCxUOghFZqG+aOOfjIe6++26+8Y1vnOu3FWJGUhSF5tk+mmf7ePvVFSTTDq/tyzVx78kQTzq89Fqal17zxsK2zvXlZpMKsqDJh6rKL+rzXbikb/MvrwMUGEzCQMJbuyKWhIEkxBInEzRGCRkRqM4Fjfe97328733vKzzfMAw+85nPFIZLAdxxxx2F247j0N3dzQMPPMADDzwAwJw5czhydNhc+0KIMoqioFXXolXXErxwVWG767rYsf5C07dVEjbcbAar09tWqvMzd6LXz0Gf04xvTjP6nKbcdTNatMI76Q9GYFYzwz+uco1MWbgoBo5ByCTAzOIOHMcdOD7yi9B0lEg+aJQOnapBCVWgqNI7N1WccpgYbdG5V1555aRfv2nTplN9SyHESYqEVC5fGebylWEcx6X9qNfEvW1PhoPHTNqPepcnN8WprlBZlZt6dsl8+cRXeHyawqxKmDVKX55puQymTj9o5INFIWREfPzj//pSWUXjxz/+MXfccQdPP/00Q0NDI/ZTOjXtU9/7B/7m5vsIBAKsWrWKjRs3sn79+gn4VxBiZlIUBb2mDr2mjtDyNYXtruvmZpbKhYujB0m9/BvvQcfGOt6BdbyDDC+X7U+NVuZCRpN33eCFDb1uDoqmofiDKLUNUNsw4lhcyxw5bCofOpJxsC3ceC9uvHeULyTfEO4NmyJUUfa1yMdk59Ypzea0ePFiDh48SH9/f1mgyE8NeyIyNez4ZDYncTYNxG1e2ZPhld1pXtuXJWMUf/Q1DfI/lu+8toLKqEYkpBAKqERCKuGgQjikEg6qBP3KOa9oyGxOZ89E9R+Ylkss5QWL0pARS3pBYzxBX66SEc2HjOLtoF9h8+bNfPjDH2b79u28/e1v5/9973H+5WfwDx+cx2Dv0VH3WVFRwcc//nHuu+++0/p6JoL0dojpqnTWqYbPfhV7oBez6xjW8Q7M4961PTDKSX6epnvN3/lKRkNzobKhhiMnfH/Xsb1Zp0oqGoVLcnD86W39IdS6RtSaOSi1Dd518MTveb6Y9Nmc1qzxUuzwN6+treXTn/40119//bivz08NK4Q492oqNd58SYQ3XxLBtFx2H8jyyu4MW3dnON5XHL/+w+dGfhpcSlEgFFAIB71wEQ6V3C4JHZFxHpOTqpnHpyvUV0L9GBWN4ZWM/O1kBjImdMW8y3BBn0t1dB33ff3FQsjIVz6Wr387L2/65qj9F0NDQzz00EOFMPGe97yHTZs28d73vpf/9b/+l/RfCHGStOo6fHOaCS5bVbbdyWawujtyIeMY5vGOXC9GB65pYHUdxeoaGfbVymp8s5vQG5rLwoZWW4+iegOlFFVDqaiBipoRry8s1lcSMJzBXsy219HCYRQjjdPZjtNZskhyKIpa04Ba24BSM8cLGAFp/p4oE7LOxI033sjTTz894c8930hlQkyWgx0Gn/lqNwBXrQ2TNV1SaYdUxiGVcb3rtIM1QUVFn04uiORCRiGYePcjQZVQUC1UR3w63P+v3sprUpmYWJP96Xk+aAwPGbFc0DiRugqoCkMkYPOH3zzNs0/9iCPtO+g7foC//sjt/MM/fA4YfU0MXdeZP38+n/3sZ3nve997Vr42qUyI6ehk1sMYi+s4XiUjFyzMrmPerFJdx7AH+8d+oe7DN7uxbNhU/rYaCo/7nnZyiI573weqSsOnvoCSjuPkejHceN+or1EiVV6wKA0YvsCoz51JpuyidWJiSJgQk+VkhxEZphcskmmHdMYhmXG963RJ6Mg4pNIltzPFYJLOnvmvm5VLAlx6cYh1F4ZkdqoJMJVPeIcHjXzIiCUgmT3x61UFKkJQEYYfP/l/6e1sZ6D3MAPdhxjoPUys5zCW6e3oT//0T3niiScA+Jd/+ReuuOKKM+6/mMr/tkJMBiedKlYzSqsa3Z1gmWO+Tq2qKTR9++YUqxpazSwUVS2GCaDpS99Bi5T0UJgGbqwbZ6ALpz8XMMZYL0OJ1hSGRqm1c1Cq58y4NSumbZj40pe+hKIotLa28q53vetsv920JWFCTJZz1ZPgOC7prBcukhmHdMbNBZGRwaM0nCTTDsf7yssiigJL5vlZvyLE+uUhGmbJYn3ni9KT9P96CaQMiKcgnoahtHc7kYGT+es2FDvOQPchrrxsJbNrg1SE4C/e804Geg4z0HOI1FA/FRUVXHfddXzrW9+itrb2tI5TwoQQY3MdG7s/V83oKg6ZMo8fw4nHxnyd4vOjz2lCq5tNZvtLADT84zfw1c0e//2MTKFy4Qwcx+nvgtRoK4wrKJW1KDUNqLVzUGsaUKrrp/WK39M2TOQNDg7y6KOPcs8995yrt5xWJEyIyTLVG5xLj+9d11Xwyp4M7UfLP8WaO0dn/fIQ61eEWNjsk/nJZ7CTOUl3HJdEJhcwhgWN/LV5EsP2sulEoYqRDxj/+NlP0NJYRWXIW5tjrAkJJEwIceacVBIzN0zKPH6sEDKsni4Ybb0aVcU/bxGBxcsJLF1BYNGFJxwmBeBmU17A6D9eqGKQSYx8oqKiVNV5wSLf4F01q9DvMdVNegP2mVIUhWeeeUbChBDitL39mgpuuaGKvkGLLTszbN6RZld7lqPHLY4eH+JHvxqitkpj3fIg65eHuLBVVgE/H6mqQmUYKsNA3cjHXdclYxaDRiFkpCGedOjsSaL6KwiEojS0LKehZXnhtX/Y710AHNtmsP8Ysd7DmKk+Vi5fyJWXraQyDCHp8RbijKnhCIEFSwgsWFK23bVtrL5urOMdGEf2E//p970HHAfj4D6Mg/sY2vSfoKj4WhYSXLKiGC5GmVFKCYTRGhZCw8Lie6QTXuVioKsQMsimcWM92LEeOPBa7iA1lKp6b2hUroqhVNSdN2thTFiYeO6553jggQdob28vmwc8LxaLARQWHhJCiDNRV6Vz4xVRbrwiSiLl8MqeDJt3ptm+J0P/oM0zf0jyzB+ShIMKay8MsX55kJVLgwQD5/aX+1Sv+pyvFEUh5PdO+GdXD39UAyqxbJehXEWjsyfJ9578OVnbz5tveEeu4uGCplFTP4+a+nkAZIBnXx35fj/dDPPrXebVe03jUjkT4swomoZvdiO+2Y0Elq4ohIk5f/9VzENtZPftILtvB1ZPF+bh/ZiH9zP07I9BUfDNXUhgyXKCSy8isPhC1HB09PcIRdFCUbSmRUDJTFL9+YDRhTNwPLf4Xhf2QBew3XuxpqNUz0bNVy9q5qBU1M7In/0JCRMHDhzg+uuvZ+3atVx33XUAbN68udC81tfXx7Zt23jiiSdYvXr1RLylEEIURMMqb1wT5o1rwhimy479GTbvyLBlZ5p40uG321L8dlsKnw4XLQ6yfkWItRcGqYpOj7K0mBy6plAT9Vb0nlcf5bLlt5Y93tc3wC23/XeOHo8TqWqgZtY8ambPp6Z+HtX186ipn0846k1teeC4dwEw0jEWNwdZ2hKkZZa3rsZUOcGQoVliutNr6vA3NBO57BoArFgf2X07ye59ney+nV7j95F2zCPtJJ77qRcumhcQWLKcwJIVBJYsL2vgLqUoCoQr0cKVaHO9Sonrut7iewNdOLlw4Q4cB8vE7evA7uugMKJS96PUzEatmo3dthUA/80fRfVN7zLmhISJL37xizzzzDOFIAHw6KOPcvvtt5c979FHH6W6upoFCxZMxNsKIcQIfp/CmmUh1iwL8YF3VrP3sMGWHWle3pGmu9/2VgTfnUFRYOn8YgP3nLrp21AnJkddXS2/2vTTsm3f//73+bu/u5cDBw5QU1vLpx7pAiB55GmO9DgsXH4VgVA1h/vhcK6IP9h3hKDbyztuXEPLLKgIyQm8EBNFr65Dv+QqIpdcBYA9OEB23w4ye3OVi+PHMI8ewDx6gMSvvCTta56fCxa5cBEdu7dAURRvFe5oNVrLMiAXMIb6vQbvfMCIdYNl4PYcxe4prr/hdh+G5sVn7x/gHJiQv55VVVVlQQIYdUXs22+/nQcffFB6JoQQ54SqKixbEGDZggDv/i9VHD1usXlHmpd3pjl4zGTPQYM9Bw3+/WeDtDT4WL/cq1osaJIG7qnMpyt8/B2TfRSju+2227jtttuA8k/5GdjCtz7/dyiqxrwll7L44mtZsvJa5l9wBVV1LUALv/Q+qCSopXjp109y6cUN/OVt1xMKyPeiEBNFq6ohvP6NhNe/EciFi7adXrho24HVeRTz2CHMY4dIPP9zAHxN83KVi4u8cFFRNe57KIqCUlkHlXVo871+K9dxcIf6vCFSfR04uX4LpXr8maemgwkJE3V1I7vb2traiMfjIzrFq6rG/w8QQpx7Qb/Kf9w/d7IP46xSFIWWBh8tDT7eeV0lvTGLLTu8PotdB7Ic6TI50mXyw+eGqKvSchWLIBcslAZuceY+9elP83d/9xkA+vv7ufPOO/m/X/wK6YzJwguvZOXlb+edf/5XHI9Bxg6x8o3/jQzwjV/CsQPbOLDjBazEAe79yLu56spLJ/VrEWIm0apqCK+7kvC6KwGwhwa9YVH7vGFRZsfhwiXx618CoDfOJbB4BcGlXvVCq6w+4fsoquo1aVfV47ZcQDYfJmbAStwTEiZG+wRvw4YNfOELX+ALX/hC2fb29vYRzxVCiHNtVrXOTVdGuelKr4F72+40m3dkeHVvhr5Bm6d+n+Cp3yeIhPIN3CEuXhqQBmpxxmpra3n88cdHfSxrutx08wepbryYxRe/maYFK2leuJrmhasBePG4xQ//6SXe9dZLmFcPg8d3Uz+rhoaGhnP4FQgxtaiBIC1ff3JC9qVVVBFeewXhtVcAYCfiuXDhDYsyjx3C6jyK1XmU5G+eAkCf00xgSUm4qKoZ9z0U3Udww99MyPFOBRM2zCkej/OFL3yBwcFBvv71r3PdddexYcMGFi9ezAc+8AEAXnnlFbZu3ToRbymEEBMmGla5am2Eq9ZGMEyX1/Z5U85u2ZUhkXL4zdYUv9nqNXCvXBJk3YoQa5cFqZQGbjHBAj6F53/2LQAef/xxPv+5u9CjC1i44hqWrLyW+qYlzF18CS/tg5f2gWUs4MDu39P22tdoe+1XJPv38+d/dhtf+tKX8Pund1OnEFOBFq0kvOZywmsuB8BODJFty4eLnZjHDmLl1r9I/vZpAPTZTd6wqKXesCi9epT5qWeQCQkTt99+O1/60pd44IEHWLRoUWH7Y489xo033sgdd9xBa2sr7e3tPPzwwxPxlkIIcVb4fQrrlodYtzyEbbvsPWSweWeazTvS9AzYbNmVYcsur4H7ggX+wkJ5s2ulgVtMrA0bNrBhw4bCfcMw+J8P/DPXvf0vSLl1HO6BBEGWrPT6L8BbZK995wvcdOtn2Pfqs7z9xst56KFvTNaXIMSMo0UrCK++jPDqywBwUgmybbvI5GaLMo8ewOruwOruIPm7TQDo9Q0lDd0r0GtnTeaXMOHO+grYmzZt4oEHHuDAgQPceeed3HvvvWfz7aY1WQFbiNFNhbUaXNflSJfJ5lyfxcGO8hW45zf6vIXyVoSY31hs4J4Kxy4mx9meZtV1XY71pHjgq/+PlFPL/GVvJFpVX/4kJ8Pi5iDzZsGf3LCao+2v4vf7WbFiBRs3buSKK644p8csxEznpJJk9+8iu3cHmX07MI8cANcpe45WNxu7rxuAhn98CF9d/Wi7OivOxrnmWQ8T4uRJmBBi+ujpt9i8M82WnRl2HchS+pt0VnWxgXt+k4/bP9cJSJg435zrE3PXdemNw8uvd/GrF/dT23wxgVD535LB/g7aXn2Ottd+xb7XnmOg+xAAkUiEnTt30tjUImFCiAnkpJNk9+8mu3cH2badGIf3g1MMF7M+8reElq85Z8cjYWKGkzAhxPQUT9q8stvrs3h1XxbDLP5ajYQUkmnv/jf+toGqqAyHOl9M9qf8juNyPAZHeuFwL7R3ZNB9wbLn9HW1F4LFsz/9DtGQj3/5Gdz3l834VZP3vOfd0n8hxARyMmkyu1+l75EvAtD0xW+Pu47FRJt2YWJwcJDHHnsMRVFobW3l2muvPVtvNa1t3LiRjRs3Yts2e/fulTAhxDSWNRxe3Zdly440W3d7Ddx5hRW4l+dW4K6QBm5x7li2S+cAHO7xAsaxPhtFKf8erI1CfwK+8XfXsX/Hr3FLPkHVNI25c+fyyU9+krvvvvtcH74QM4aTzXDsY+8BoPnL/44aCJ7gFRNnyoaJm266iaeeemrMxwcHB2lvb+fZZ5/l+uuvZ/Xq1Wf6ljOSVCaEmFls2+W1tgxf/HbfiMcUBRa1+Fm/PMi65SGa6nVZKE+cU4blcqzPq1oc6YHuYWvNDvZ3sP13j7Pthf/H4X0vlT1Weupw/fXX8/d///dcffXV5+KwhRBnYMqGiRtvvJGnn376pJ4rK2CPTcKEEDNPaQP25z5Uz2v7smzdlab9aHkDd8MsnXXLg6y7MMTS+X5UVYKFOLfShsuhbvj5lpGP9R9vZ+sL32PrC//B8SM7C2Hi1VdfZdWqVWXPjUQiXH311fzrv/6rrH8hxBRzNs41z9qidWPZv3//RLylEEJMOy0NPpbMC/Cu6yrpG7TYuivDlp1pduzP0tVr8bMXEvzshQQVEZU1y7yKxcVLZKE8cW6E/AqLGoqfL759PbR1wf5OqJ3TyvUbPsP1Gz5DbdThpb0uFzTDV77ylRH7SSaT/OIXv6CxsRFVVbFtG/CmtgWk/0KIGeaUw8TBgwdHbOvv7+fQoUOMV+Rob2/n8ccflxWwhRACqKvSueHyKDdcHiWVcXh1b4YtOzNs251mKOnwwpYUL2xJSZ+FmDQL58DSZgXTcmk/DruPwoHj0J9Q+e0u+O0uuP4vvsmHP/NNfvL/HuSRb/xvurq6cEr6LHS9eJrxkY98hEcffRTw+i+am5v51Kc+Jf0XQkxzpzzM6dFHH2X//v1s2rSJrVu3nnRVwnVd1q1bx6ZNm6iqqjqtg53pZJiTEDPPqa4zYdkuew5m2bLTq1r0DNiFxxQFFrf4veFQ0mchzoITzUCVMVz2dcKeo14Td/4EQgFa6mFZMyxuAiub5M4772TNmjWFoc11dXX09/eP+d6rVq3ilVdemfgvSghRMOV6Jtrb27nhhhuora3l/vvvH/e5ra2tLFy48HTf6rwgYUKImedMFq0rLJS3MzN+n8XyEEvnnV6fhSyqJ0qdynS2yYzLnmOw+xh0DRS3ayosmA3L5kLrnOI+du7cyV133cXmzZtJp9Mj9tfQ0EBnp7cmy6WXXsrLL79MJBLhqquu4tvf/rb0XwgxAaZcz0Rraytbtmzh1ltv5brrrpuQAxJCCOFRFIV5jX7mNfpPqc9i5ZIAAQkF4iyLBBXWLoK1iyCWzAWLo9A3BPu7vItPg0WNLsua4YJlF/LCCy+U7eNHP/oRn/nMZ2hra+MTn/hEYfu2bdsAr//il7/8JY2NjYD3M1FTU8PXv/51brvttnP3xQohxnTGDdjV1dVs2LBhIo5FCCHEOE6lz+LiJV6wWLtM+izE2VcdUbhsKVy2FHriLnuOehWLeMoLGLuPQtAHS5pcls2FuXVeMLj55pu5+eabR+xv7dq1bN68uaz/ArxqXX9/P//xH/9RCBNvfOMbOXLkCPfccw8f/ehHz8WXK4QoIStgTyEyzEmImedcDCM6lT6L5tm+c358YvqYyFW7XddbJG/PMe+SyhYfiwbhgmbvMqd6/FkhE4kEH/rQh/jJT37C4OCgt9/OzsKwp9Fe6/f7WbZsGV/+8pdlwVwhSky5YU55d911F48++ijPPPOM/NAKIcQ5pmsKKxYFWbEoyHvfXjWiz2LfYYN9hw2+98s4jbN01pb0WQhxtiiKQlMtNNXCNRe5HO2FXUehrQMSGdiy37tUR+CCZq9iUVcxMhhEo1G++93vjvk+qqqOqGAYhsGrr77Kddddx+9//3uuuOIKAO6//37e/e53M2/evIn9YoU4j01IZeKuu+4C4Itf/KJ8on4GpDIhxMwz2Z/8D++zsItFCyojKiuXBvjttvSkHZ+YWiayMjEWy3Y52O1VK/Z3gVXyPVlf5c0IdUEzVIZP7b1/+tOf8qlPfYq9e/dimsXJCkpPc0qrGPn+iw0bNvDVr35V1r8Q54UpN5tT3pe+9CXuvffek3ruc889J9WLMUiYEGLmmewwUWp4n0UqU/7rf06dxtzZPppm6zTW+2iq12mq9xENT62AMZX+TWeacxEmShmWy/5Or7/iUDc4Jd+STbVesFjaDOHA6MdxouN96qmnuOmmmwBvuFRFRcW4xyMjv8VMN2WHOa1du5Yf/OAHvOtd7zrhcx944AEJE0IIMQnCQZXLV4a5fGW40Gfxx9fSbHoxCcDxPpvjfTZbdpW/rjKqFoJFU71O02zv9qxq7bSmoxUiz68rXNgCF7ZA2nDZ1+EFi6O90NHvXX71Osyb5Q2DWtwIAd/Jf8/lgwR4w6WGhoZG9F+MxjAMAoGAd4zSfyHEuCYkTFx33XU899xzfPrTn2bRokWsX7+e6upqamtry57X398vK2ALIcQUkO+zWNTiL4SJe99XR++ATUePRUePSUe3Rd+gTTzhEE8Y7D5glO3Dp0PjLF8uXBTDRkO9LtUCccpCfoWVC2DlAhhKu+zNrWFxPAaHerzLpu2wcI4XLBbOOfX3GK3/oq2tjQ9+8INoWnHWs8997nOF26X9F3nNzc0cPXr01A9AiBloQsJE/gcwn/DHmpXBdV1ZrVUIcV4J+lX+4/65k30YJ+XC1sCIEJDJOnT2Wl7A6DZzQcOiq9fEtOBwl8nhLnPEvmZVazTmA0ZJ2KiuUOXvwBTm0xU+/o7JPgqoCCmsWwzrFsNAoriGRX8C2jq9i18/vUAx3OLFi3n++efLtt122238+Mc/Zs+ePWX9F3kdHR2F20899RRvfetbqamp4U//9E/52te+Jv0X4rwyIT0Tixcv5pZbbuGGG24Y93kDAwPceeed9PX1nelbzkjSMyGEONdOt//AcVx6BmyvgpELGJ25sBFPOmO+LhRQCsOkmkrCxpxaHf0kx+dLz8T5yXVdeuJeqNhzDIaGLaI9tw6a6yjMIHUqw6FOxv3338/XvvY1Ojs7Wb58Oa+99hoAF198Ma+//vqI56uqSlNTE//4j//I+973vgk9FiFO15RtwL7xxht5+umnJ/y55xsJE0KIc+1snJgPJW2vmtFtlYWN430WY/3FUVWYU6sXejLGawCXMCFc16WjH3YegdcOjf6cWZXQXAtNdd51RWj89SxO1y233MIPfvCDMfsvQqEQqVQKgAcffJB/+7d/4ytf+Yr0X4hJMWUbsB9//PGz8lwhhBDTT0VEoyKisXR+oGy7abkc77PKejI6ekw6eyzSWZfOXovOXuuEDeCzamRF7/Odoig018HsKrcQJt58MXQNeE3bgynojXuX7Qe9x6NBaK5zC5WL+komZAKBJ554onC7ra2NO++8kxdffLEQIC699NLC45/73OdIJBJl/RfhcJgrrriCf/3Xf5X1L8S0NOErYP/gBz/g5Zdf5rbbbmP16tUAPPvss9TV1RXui9FJZUIIca5NhU/5XdclNuSU9WSUNoCP56LFAZbO97NkXoBFLf4pN42tOLvGmho2kfEqFx19cKwfugcZURXzadBYm6te1EJjDfgneGjUcJFIpBAyRnPppZfyxz/+EYDNmzezcuVK6b8QE2rKVibACxEf/OAHicViACxatKgQHq677jqefPJJNm/ezAc/+MGJekshhBBnaCo0iCuKQk2lRk2lxorF5Y+N1gB+rNvk6HELgNfbsrzelgWGAGis11nS4mfJfD+LW/zMneND06Th+3wTDSosbYKlTd5903LpzFUtjvVDZz8YFhzu8S4AClBf5VUu8r0XFaGJ/d5JJr2Z00r7L0pX77777rsLty+77LLCY/n+i7/+67/mnnvumdBjEuJMTUhlYtu2bWzYsIFPfvKT3HrrrVRVVfHoo49y++23j3jewMCAjBMcg1QmhBDixEqrKf/t7VUcPGbSdsSgq9ca8dyAX2HRXD+L53nhYsk8P1UVMkxqpjjdRfYc16Uv7gWLjn441jeyoRugMlTsuWiqhbpKUM+g72Ks4zUMg4997GNs3Lix8NwT9Xf85Cc/4e1vf/tpH4s4P03ZysQjjzzCli1bqKqqKmwb7YdgzZo1fPOb35QwIYQQYkJce2mkMDQrnrTZf8Sg7bBBW+46nXXZ2Z5lZ3u28Jr6Gq0sXMxv8p+VlZ6nwhCyme50p7JVFYX6KqivgtULvW1DabcQLDr6oWcQ4mmIH/VmkAII6NBYW6xeNFRPzCrhfr+/LEgAHDp0iPe///384Q9/GHVo1I033li4rWkajuMQDoe5/PLLefjhh1m8ePGI1whxNkxImGhtbS0LEuPJD4MSQgghJlJlRGPNshBrloUAb/rajh6LtsMG+3Lh4uhxk54Bm56BNH/Y7n0U7dNhQZNXvVgyz7uuq9JkPYzzTEVI4YJmuKDZu2+Y3tCofPWisx+yFhzs9i4AquINjcoPi2quhUhwYr5v5s2bx6ZNm8q2PfXUU9xzzz10dnaW9VLkh0OlUimee+45lixZAngf7NbW1tLb2zshxyTEaCYkTNTU1Jz0c/fv3z8RbymEEEKMS1UV5s7xMXeOjzddEgEglXFoP+oFi325CsZQ0mFf7v4vcq+trlBzwSLA4hY/C+f6pLJwnvH7FObPhvmzvfuO461zka9cHOuHZMZboft4DLbmTm+qIm5hWFRzLdRWTNyUtDfddBM33XRT2TbDMGhpaeHYsWNl/RfgTW4wfG2vUChEXV0dH/nIR/jUpz41Icclzm8TEiba2tpGbButFeOVV14Zcx5mIYQQ4mwLB1UuWhzkosVBwPtb1d1ve8HicJa2IwaHOkxiQ87/3969B7eR3feC/4Jv6sUm9RhJoxcbGo3mEXvUoLy5ttdxRoB9vbcmiR1ATO5u7W5lTSDOeFKJ1wasindtp1LmgHEq5c0qNiA7tRuXU5GAeHOzzvragJzYvr6xTQIzY4/moRm03jMaPYAm9SAJEOj9o9lNQgRIoPEGv58qlASgcc7Bo9n96/M752Dy3Bwmz80B0NbB2LezOy89aue2LvZerCMdHRY8JAAPCYBk1X47M7PajFF6cHFrBpi+p91euaK9rrcbeHgxNWqHUP129fT04PLly8b9dDqNT37yk/iHf/gHpFIpdHd3G8/94he/wNzcHK5du4YTJ07gxIkTAIDu7m4cOnQIzz//PMdhUNmqEkyMjo7i6NGjCIfD2L9/P4CVUfjZs2dx/PhxXLhwoRpVEhERVcxiseChrV14aGsX3n9kAwAtveXCtXReelRyOouLb2Vw8a0Moj/VZuTZtKED1r09eGTv4gDvfT3Y0Mfei/XCYrFgYAMwsAF4bK/22FxGxdvJpeDiegqYzwDyO9ptubMvAQ8NqtgxoC2wV60Vu3t6ehAMBhEMBlc895Of/KTgazKZDM6dO4dnnnnGuOh79+5d/OZv/ibHX9CaqhJMHDlyBGNjYxgeHobD4YAoipBlGYlEArIsIx6PQ5ZlfP/73+csRURE1NR6ui149EAvHj2wtOje7Wlt7IWeHnXhWhp37+fw0utzeOl1rffCYgF2b+8yxl3s29VdrApqU33dFgw/BAw/pN3P5lTcmEbemhf3F+cCeOWqdtMJG1VsHwB2bNEGhu8YADb2VXfV7k984hPG9LM/+MEP8Md//Md47bXXkE6nASBvHMYnP/nJFeMvBgYG8Mwzz+Cv//qvsWnTpqq1i1pbVReti8fjGBsbwwsvvJD3uNPpxKlTp0oepL1ecWpYIqK1NcMsSQsLKi5fzyymR6Xx5pV5vHO7+AJ7H3n/Jjx6oBfWPd0Y4uDudSudUfF//n/a/48eBG7f0RbUuztXePv+Hi2o0IOL7QPA4KbKpqddzd27d40g4fDhw3j99deLbrtp0ybcuaOt75JOp7m4Xouoxblm1VfA1r3wwgsQBAHDw8O1KL4tMZggImpdM3ezxpS0enrUfHrlIXZgUwfEPT2w7u2BdU8PxD3d2LyxOda+aIZArZ0VW2didl7rwbg5owUXN6eB5B2g0AlaV6eWFrVDDzC2aPdrMb3xg+Mvlp8y7t69G9euXQMADA8P4+LFiwC08RcHDx7ExMQEx180oaYPJi5evIihoaEVjfvBD34AURRx4MCBalXVlhhMEBG1j/tzWXz8C28DAH5tZAMuXsvgyjsZPDDhDgBg+1AnrHv04KIHww93o6+3/ifyDCZqq5xF9jJZbWE9PbjQg42FAh1gFmg9Fst7MHYMABt6qx9gXL58GWNjY3juueeMYKG7uxsLCysXjdSNjo7i7//+76veFipf0y5aBwB//ud/Dp/Ph8HBwRXTkD399NM4deoULBYLPv7xj1erSiIioqbV0bF0Ivc//YaAvp4OpDMqLr6Vhnw1jcSVDOSrabx9awE3k1ncTM7ip7/Q1r6wWICHd3RpwcViD8a+nd3oqsHVZ2pO3Z0W7BwEdi6bfT+nqlDuLvVg6IHG/XkgeVe7vX5tafuNfepSD8ZiL4awce1xGKsFPfv27cP3vve9vO2/973vrRh/sdz8/NKikTt37sSNGzc4/qKNVCWY+PrXvw632w1VVYv+QMfGxnDhwgV8+9vfxsc+9rFqVEtERNRSerotOLS/F4f2Lw3uvjebw4VreoCRRuJqBsnpLK6+s4Cr7yzghzFt9eOuTmDfru5l6VE92L29Ky9oofbWYbFgaLO2doW+uB4A3JtT83swpoHUPW0djAtzwIVlM0n1dAHbt6h5vRhbNwNdneZ/R08//TReeumlvMf+6q/+Cl/+8pfx1ltv4Rvf+Ibx+DvvaI1RFAXf/OY38c1vflN7bx0d2LlzJ7773e/iXe96l+m2UP1VJZhIJBIYGBiA1+tddbvh4eEVg7PbQTQaRSQSgaIokGUZLpcLbre70c0iIqIWsLE/f+0LAFDuZJG4shhgXE1DvprB3fs5yFczkK9mEIE2PW1fjwXi4rgLcTFNatsgB3ivNxv7LBjuW5pFCtAGe9+6k9+DcWsGSC9os0pdSy5t22EBhjarRnAxVIWOgueeew7PPffciscPHDiAS5curVh3LJfL4a233spbrfvw4cPo6OjAl770JfzWb/1W5Y2imqhKMFHOsAtZlqtRZdOIRqOIx+Pw+/0AtEjbZrMhFoshEAg0uHVERNSKhM2dsD3eD9vj/QCWFtfTey/kq2lcuJbBXFrFK/I8XpGX0ki2bOwwAgzrXq0HY2BTcwzwXu+6uyz41G/Wp66ebgt2L67ErcvlVCTvLgUXek/GXEYLNG7NALiSX853poAdA0uBxsCGyqarXb7e2OXLl+HxePDjH/8Y9+5pAfLTTz9tPK/PJvXRj37UeKy/vx8jIyP42te+hscff9x0O6h6qhJMlPOjSiQS1aiyaQQCAYRCIeO+IAjw+XzweDzw+XwQRbGBrSMionawfHG9f/dubXG9XE7FtRsLi6lRWoBx+XoGM/dyePH1Obz4+tJ8o9uETmPshbinG8MPc4G99aijw4Jti7M/YXGhPVVVcXcuvwfjhgLMaMN3cOGd/DSp7k5g+4CK7VuWxmGYnU1q3759+O53v1vWa2ZnZ/HjH/8YTzzxRN7F7C984Qv49Kc/zfEXDVCVYCKVSuHSpUvG6tfFfPvb3y6rF6MVhMNh+Hw+o2cCAEZGRgBovRZMdyIiolro6LBg785u7N3ZjQ8e3QhAS225/LY27kJeDDDeurmAW0oWt5RZ/PyXSwO8d2/vWuzB6IF1Tzf27eI6AeuRxWLB5n5gcz9g3ak9tnwA9gceB27fBW5NA7fuAJns4iJ8yfxyBhcX3dMDjO0DwKYKF93Tzxn18RfXrl1DNrtyOqt0Oo0vfvGL+OIXvwhgafzFH/zBH+BP/uRPTNdPpalKMOH1emG32zExMZHXFaWbmZmBz+fDmTNn8rq32oHT6YTVam10M4iIiNDTbcHBfb04uG9pgPf9OX2Ad0brwbiSxi0li2s3FnDtxgJ+HNcGeHd2AnseWlq1O51R0cf4Yt179/BSr4OeJnVzZilN6uaMNptU6p52O//W0mv7uhd7MZYFGFs3A51lThrw4PiLdDqNf/mXfzHuf/Wr+Wnl+viLz33uc/jc5z6Hjo6OgkEIVUfV1pkIh8M4fvw4BgcHMTIyAkEQIMsyZFmGoigQBAHRaBRHjhypqB6PxwOXywW73b7qdoqiYHx8HACwdetWJBIJOBwOOJ3OiuovRTAYhMfjQSKRKCvNietMEBFRPUzfXT7+QuvFmLmXvwBGb48FRw734egT/XjqcB/6G7DuBTVGOethANpsUkaAsfhv8i5Q6AxTG+yNvDSp7RWuiZFZUPFn//fb+Kf/63/FGy98B/fu3c173mKxILe4wMt3vvMdPPPMMwCAvr4+2Gw2BIPBdTP+oukXrZNlGT6fDy+88IIx0FqSJNjtdjz//PMVlRuNRhEIBBCPxxGJRFYNJvRB0KFQCJIkGY97PB4IgpCXklQLVqsVHo9nzdmtHsRggoiIGkFVVdxKZfHaxXl89UxqxfPdXcCvPKIFFrbH+7FpAwMLWt1CVsXtO/kBxs0ZYD5TePuNffkBxo4BQNikTYe7lmLBz49+9CP80R/9ER577DF861vfAgA8+eSTOHfuXNGyjhw5gng8Xt6bbSFNH0zUQjAYRCQSgcPhgCiKcDgcawYTDocDkiQVDBoGBwcRCoXW7Nkwy+VyYWhoyNRMTgwmiIiokZavgP2/ebbhpdfn8fOXZ3H91tLqxh0dwONiL44+2Y+jT/RD2MyZoqg0qqrizmx+gHFjBpi+V3j7rk4tLWr7ALBjMdDYtgXo7c4PMMrpSfnOd76DT37yk7h69WrB1Kf+/n7cv6+l/rndbnzjG9/Ajh074PF48IUvfMHU+24mbRFMXLx4EQcOHDD12ng8DpvNtmowIcsyrFZr0RQjj8cDWZYRiUTyyh0bGyu5HadOncrr8dAFg8GKpoRlMEFERI20PJj4mz/djb6eDqiqiqvvLGDy5Vn8/OVZXL6+dGnZYgEe2deDo0/24z1P9GP7UFWGYtI6o6+JYSy6tzhN7UKRYQ4DG7SgQp+uVtgI/O3iEIpS0rLy6k6n8ZnPfAbf+ta3kEwm8du//dvGLJ2bN2/G3bt3V7ymq6sLoijiq1/9at5Utq2gFueadd/rPR7PimXYq0k/kS82VsFqtSIYDBrjOAAtFSsWi1VUbzgchqIoeYHE8jqIiIhakcWyNGvUx+xbcP3WAibPzWLy5Vm8eSWN85e027f+eRoHHu7Ge57ox9En+/Hwju61CydCkTUxVBXT95atibHYk3F3Dpi+r90S11eW9dJFwLpThbCxtJmkenp68JWvfAVf+cpXVjxntVpXrOwNAAsLCzh//jzcbjfefPNNAMDv//7v4+WXX15X4y90VQ0mfvCDH0BRFCSTyaLbTE1NVbPKFeLx+Kon8HqQMTU1VbVUp3g8jmQymTdGQlEURKPRugz4JiIiqped27rwzK9txjO/thm3pxcw9fIcJs/N4tUL87h4LYOL1zI48/0ZPLyjy+ix2L+7m6tyU1k6LBYMbgIGNwGPPrz0+GxazR+HMQ3cvgPkFvNsfnROu23ZAOzfruLADmDvdqCvu/zf34svvmj8Xx9/ce7cOaTTaQDA5z//eeP5U6dOIZfL4YknnjAe27JlCz7ykY/g61//eluvf1GVYGJ6eho2m62k1a1r/cdElmUMDQ0VfV4PNKq1ErcsyxgfH8fo6CjC4bDxeCQSgcfjqUodREREzWjrQBc+/L5N+PD7NmHmbhaxV+bw83OzePnNOW3q2R/cwT/+4A62D3UaPRYH9/ago8ypQYl0/T0W7NsO7Nu+9NhcWsVfL659t2ertgbGzH3gl5e0m8UC7BpUsX87sH8HsFNA2b/BD3zgA2UPzJ6ZmcHp06dx+vRp/Nmf/Zmx5sXU1JSxJlk7qEow4XK54HQ64fF4MDQ0hIGBgYLbKYpS8w8vmUyuOh2rHmgoilKV+mw2GxRFyQskdGuNnZifn8f8/Lxxf2ZmpiptIiIiqrctmzrx6+/ZiF9/z0bcn8sh/uocJl+exUvn53AzmcU///gu/vnHdyFs7sDRxcDiseFedHYysKDKdC6bXOyjvwqoAK7eAi7dBC7eAFJ3lxba+7fXgd5uYN92Lbg4sAPYsqHy32A2m10x/mL5sOTPfOYzxv+PHj0KAHjve9+Ln/zkJxXX3WhVCSZEUSxp6ldBEAoOXK6mUoOE27dvV6W+VGrlFHqlGh8fN1ZrJCIiahcb+jrw/iMb8P4jGzCXzuEX5+cx+fIs4q/OQrmTQ+Sn9xD56T1s2tAB22N9OPpkP5482IceE6koRA/q6bJA3AmIiyt6z9xXcfGGFlxcvqlNT/vGW9oNAAY3LQUWe7ZprzdVb4HxF9evX8f4+Dh6elauAKmvd9HqqhJMHDx4sORtz5w5U40q28KJEyfwqU99yrg/MzODvXv3NrBFRERE1dXX04H3PNmP9zzZj8yCinOJOUy+PIepV2Zx514OP4zdxw9j99Hfa8FT+iJ5j/ahr4RF8grNPkX0oC0bLHjXAeBdB7RVvK8rWmBx6QbwdkrruUjdBV68oC2q9/DWpeBi+0BlKfo7d+5cMbj7hz/8IT7zmc/gs5/9bEXvq1lUJZgoZ3bZmZmZmk57KghCSb0TW7durVkbStXb24ve3t5GN4OIiKguursseOrRfjz1aD9+77cEvH5RW8di6twckjNZ/NtLs/i3l2bR3QW865AWWEiPcZE8qp6OjqWZo/7do8BcRsWVm0spUTP3gSu3tNt/eRXo7wH271BxYDuwbwewqa/y3rMPfOAD+NnPflaFd9McqhJMOJ1OfPnLX8anP/3pNbd1uVw1nRp2tcHXAIyZpjhlKxERUeN0dlrwuLUPj1v78D8+o0K+msbPF9eyuJHUBnPHXplDZ0cKj1t78Z4n+zHyeD8GuEgeVVFftwWP7AYe2a1dHFfuaT0WF28CV24Cs2ngtavaDQC2bVGxfwdwYDvw8Fagi2N+qhNMWCwWHDlyBKOjo/jQhz6E4eHhgif1yWSyarMoFSOK4qrTz+q9FqsN0iYiIlqP+no68HfP76l7vR0dFhzc14uD+3rxux8ZwJXrGfz8ZW0tiyvvLOCXb8zjl2/M42/+UcGj+7VF8o4+yR4L0nR3WfCp36y8HMuy6WifEoFsTsVbSS24uHQDeGdaW0zv1gwQe1NboXvP1qXgYmhz7WctbUZVCSYkScL09DRUVTVWDSz0YaqqWvMPWZIkRKPRos/rwUy11pggIiKi6rFYLNi3qwf7dvXA6RjA2zczmDyn9VjIVzN47WIar11M45vfmcaB3UsL4+VypadcE5Wis8OCvduAvduA9z8O3J9XcfnmUs/FvTktNeriDeCHADb1LaZE7dCmru3vWR+BRVWCiaGhIbjdboyOjq663e3bt/GJT3yiGlUWNTo6iomJCcTj8YIzR01OTjKQICIiahG7tnfjNz7Yjd/44BbcUhYw+fIsJs/N4vWLaVx8K2Ns99z4dRzc14NH9/fi0IEeHNzbU9IgbqJSbei14PAe4PAe7QL57TuLgcUN4OptbXXuc5e1GwA8JGiBxf4dwK5BLThpR3WdGhYAhoeHq1FlUZIkwW634/Tp0wWDiXA4jEgkUtM2lOvkyZM4efIkstlso5tCRETUtLYJXfjI+zfjI+/fjOk7WfzbL+/jb/9pGgAwO68a6VAA0NEB7N/VjUP7e/HogR4c2t+LoQGOt6DqsFgs2LYF2LYFsB0EMlkV124vpkTd1FKh3lG028/OAz1dwN5tWkrUniHgb/9VK+e5/6ClabUyi1rOVExFTE9PF12orpJtHxQOh+FyuRAKheB0OotupygKbDYbQqFQXkDh8XggCAL8fr+p+mttZmYGAwMDmJ6erumMV0RERO1g+dSwn//Edly8lsH5S/M4fzGN29MrL9BtEzpx6EAPHj3Qi0f392DPQ91cjZtq4u6saswQdXlxIHch/8OvATuE+v0Ga3GuWZVgopbC4bCxkvTU1BQURYEgCMZK2i6XC263e8XrFEWBz+eDIAjYunUrEokEHA7HqkFIozGYICIiKt1q60zcVhbw+qU0Xr+oBReXr2fw4BlPf68Fj+zXei0e3d8D674erlVBVaeqKm5ML421eOs2oA/x+Z33A7u3rpNgotSpX8k8BhNERESlK2fRuvtzOSSuLAYXl9J483Iac+n8U6CODuDAbi016tB+rQdjcAtTo6i67s2pCCyukvDJ/w51Xfm9FueaJY+ZGB8fZzBBRERELWlDXwd+5ZE+/MojfQCAbFbF5esZnL+YxuuXtAAjOZ2FfDUD+WoG//kn2uu2D3Yujbs40Is9O7pMp0ZxxW4CtPETunaYSbbkYCKVSuHDH/4wXC5XyYWLooiRkRFeZSciIqKm0tlpwfDDPRh+uAcfft8mAMAtZWEpuFhMjbqZyuJm6j5+8uJ9AMCGPgse2aelRh060APrXqZGUXmqtS5GsyhrNidJknDs2LGStlUUBbIs40tf+hKmp6fh8/lw4MABM20kIiIiWqHai+xtE7qw7akuvPepDQC01Kg3L6dx/tI8Xl9Mjbo/p+Kl8/N46bw2a1RnB7B/d7cxJe2h/UyNovWl5DETBw8exJtvvmmqEj2YOH78OJ5++mlTZawHHDNBRETUvLJZFZfeXpwx6lIa5y+mkZxZOWvU9qFOLbjYn58axTQnarSGjpnQZ1QyY2BgAF/72tdw/PhxiKLIHooHcJ0JIiKi5tfZaYG4pwfinh78+/dps/TcUrKLgYUWYFy+nsHNZBY3k/fxX15Ylhq1vxfinu41aiBqPXWdGlZRFHg8Hpw+fbpeVbYU9kwQERG1tvtzObxxeSm4ePNKGvPpladaex7qwiP7e3FwjzYlbSUDu4lK1dCeiWoQBAGJRKKeVRIRERHVzYa+Drz7UB/efWhp1ig9NerVC/OYfHkOAHD1nQVcfWcB//LzewCA3h4LxIe7cXBfD6x7e2Hd242tA3U9TSMype6/UlEU610lERERUUMsT4364NGNmHxZGzPx7O8M4vLbC0hcSUO+qq158eqFNF69kAZwFwAwuKUDB/dqM0ZZ92pl9PdynAU1F4a8RERERHVme7wf73tKCwxyORXXbizgzStpJBZvl69nkJrJYfLcHCbPab0ZFgvw8I6uvABj70Pd6OxkehQ1TsnBxNe//nV8/OMfr6iyEydO4OjRoxWVQURERNROOjos2LuzG3t3duPXj24EoC1wd/FaBm9e0cZdyFfSuKVkjfSof53SBnf3dlsw/HC3EVxY9/Zgm9AJSzushkYtoeRgIhQKmQ4mZmZmMD4+jnA4jDfeeMNUGURERETrRV9PBw4P9+LwcK/xWGomq/VcXF0KMGbnVbx2MY3XLqaN7QY25adHWff2YENf6elRnMKWylFyMDE5OYm/+Iu/wMDAQMmFK4qCyclJhMNhCIKAqakpU40kIiIiWu8Gt3Ri5Il+jDzRD0BLj3r71gLevLwUYFx5O4PpuznEXp1D7NU547W7ty+mR+3rwcG9Pdi7sxtdTI+iKih5atihoSFMT08D0OZVXrNgi8XYzu1242tf+1oFzVwfODUsERERVSKdUXHxLW217jcXezFuJleuY9XdBQw/vNRzcXBvD7YPaulR7JloXw2fGvb555+HIAglby+KIkZGRsrqzViPuGgdERERVUNPtwWH9vfi0P6l9Kjpu1ljYLc+yPv+nKottndpKT1qy8YOWPf2YP9uLq5HpSu5Z+JDH/oQvv/979e6PesaeyaIiIio1nI5Fe/cXpo96s0raVx6O4NC1zS3DnRi365u7N/VjX2Lt51bucBeq2poz4TL5apKhURERETUOB0dFuza3o1d27vx30ra7FHpjIrLb2uBxflLafz0F7MAgNvTWdyezuKF15bGX3R3AXt3dmPfzu7FQEMbg7FpA9Oh1qOSeyao9tgzQURERI22fMzEZ39vK96+lcXl6xlceTuDK9czmM8UPnUcGujE/l3aFLf7l/Vi1HodDI7xKF3Dx0wQERER0fpx6EAv3nVo6eQ8l1PxTnIBl9/OaLfr2r83U1kkp7Xbg70Yex5a6sXYt0v7/+aNnY14O1QDDCaIiIiIqCQdHRbs2taNXdu68d/8ytLj9+dyRu/F5esZXNJ7MdIqLlzL4MK1TF45Q1s6sVcfi7EYaOzaVvteDKo+BhNEREREVJENfR04fKAXhw8szSKVy6m4kcwu9l6kjZ6MG8kskjPa7aXX83sxHt6x1Huh92RsYS9GU2MwQURERESGvp4O/N3zeyoup6PDgp3burBzWxfe82S/8fj9uRyuvqOlR+k9GJffzmAureLiWxlcfCu/F0PY3GGMwdi7swf7d3Vj1/YuLrrXJBhMEBEREVHdbOjrWLEWRi6n4mYqa4zB0Hox0njndhbKnRyUO/N46fy8sX1X51Ivxq7tPJ1tJM7m1EQ4mxMRERHRkrn5HK68sxRg6D0Zs/OFT1+fPNgL2+P9OHK4DzuGGGQ8qBbnmgwmmgiDCSIiIqLVqaqKW6ksLi2OwbhwLY3YK3Mrtnt4RxeOHO7DkcP9OLS/h4O7wWCibZ08eRInT55ENpvF+fPnGUwQERERlWj5OhMux2b88s15nL+URi63tM2GPgve/Wgfjhzuw7sO9a3bQd0MJtoceyaIiIiIylNo0bq793P4xRtzePG1Obz4+hzu3l+KLCwW4JF9PXjqcB+kw33Yu7MbFsv66LXgonVERERERGvYtKED7333Brz33RuQy6l480oa8Ve14OLy9QzOX0rj/KU0znxvBlsHOvHUYa3X4glrL3q5gnZZGEwQERERUdvq6LAYs0f9zr8fwC1lAS++NocXXpvDucQ8bk9ncfZn93D2Z/fQ3QU8YdUCi6cO92H7IE+V18JPiIiIiIjWjW1CF+y/ugn2X92EdEbFucScEVzcUrJ48XUtNQr/Cdj7UBeOPNaPpw734ZG9HMRdCIMJIiIiIlqXerotOHK4H0cO9+N/VlVcfWcBL7w2ixdem8P5S2lceWcBV965g3/61zvY2K8P4u7Huw/1YdMGpkMBDCaIiIiIiGCxWLB3Zzf27uzGb3xwC+7cy+IXb8zjhddm8dLrc7g3q+K/vjiL//riLCwW4ND+HmPq2T0Pda2bQdwP4mxOTYSzORERERE1n2xWxRtX0njh1Tm8+NosrryzkPf8NqHTGGfxhLUPPd3NGVhwatg2x2CCiIiIqPndTC0fxD2HzLLYoqfbgiesvZAe04KLrQPNkwjEYKLNMZggIiIiai3z6RzOJebxwmJwkZzO5j2/f1e3MfXswb09SC+oK9bFqBeuM0FERERE1ER6ezogPdYP6bF+qKqKy29n8MLr2gxRb1xO49LbGVx6O4P/9C93sGlDB37lkd5GN7mqGEwQEREREVWBxWLB/t092L+7B7/161swcy+LX5yfQ/zVOfzivLYS97+9NGts//Ibcxh5YkMDW1w5BhNN4OTJkzh58iSy2ezaGxMRERFRS9iysRPvP7IR7z+yEQtZFW9cSmPy3H3855/cAwAceLinwS2sHMdMNBGOmSAiIiJqb3PpXFuNmeBqG0REREREZArTnIiIiIiI6qSvpwN/9/yeRjejatgzQUREREREpjCYICIiIiIiUxhMEBERERGRKQwmiIiIiIjIFAYTRERERERkCoMJIiIiIiIyhcEEERERERGZwmCCiIiIiIhMYTBBRERERESmMJggIiIiIiJTGEwQEREREZEpDCaawMmTJ/H444/j6NGjjW4KEREREVHJLKqqqo1uBGlmZmYwMDCA6elpbNmypdHNISIiIqI2UotzTfZMEBERERGRKQwmiIiIiIjIFAYTRERERERkCoMJIiIiIiIyhcEEERERERGZwmCCiIiIiIhMYTBBRERERESmdDW6AWRONptFJpNpdDOIiKgOOjs70d3d3ehmEBGtwGCixaiqiuvXr2N6ehpcb5CIaP3o7e3Ftm3buKgpETUVBhMtZnp6GoqiYPv27di4cSMsFkujm0RERDWkqioymQymp6dx7do1AGBAQURNg8FEC1FVFTdu3MCWLVuwbdu2RjeHiIjqpL+/H5s3b8bVq1dx69YtBhNE1DQ4ALuFZLNZZLNZHkSIiNYhi8WCgYEBzM/Pc8wcETUNBhMtZGFhAQDQ1VXdDqW5dA7/8bNX8R8/exVz6VxVyyZqJ2oui5uv/Bw3X/k51Fy20c2hdUgfhJ3N8vdHRM2BwUQL4jgJIqL1iX//iajZMJighpNlGT6fDxaLBVarFRMTE5iYmIDH44HL5UI4HC6pnHg8DofDAavVWuMWN5aZ9xkMBhEMBhGPx2vYMqo17ivl4b5CRFR7DCao4URRhN/vh91uh91uh9frhdfrRSAQQCgUgs/nw8TExJrlSJIEn89XhxZXl8/ng8vlKnn7ct9nNBqFoihwu92QZdlME8syMTEBq9WKwcFBeDyemte3nnBfaa99xePxYHBwkPsKEbU0BhPU9DweT8knBENDQzVuTfU5HA6Mjo6W9Zpy3qfP54Pb7QYACIJQVj3lCgaDCAQCiEQiiMVimJqaasmT1lbFfWWlZt1XHA4HBEFAKpXChQsXIMtyWYESEVGz4NSwTeDkyZM4efIkB9QVoR/UFUWp+QG+Eex2e83KjkajEEURgiAgHA7D6XTWrC5AOxkLhUIQRREAcOrUKdhsNvj9/prWSxruK+bVe19xuVx5gYvL5WLgTUQtiT0TTeDZZ5/FK6+8gsnJyUY3pSnFYjFIkmScHE1MTCAcDiMcDq+Z0hEOh2Gz2TA4OIhoNApAyzu3Wq1wOByQZRnRaBQ2mw02mw3xeNwot9CBvVjdhcoIBoNG6kIwGEQ4HIbL5crLxS6W060oilGXx+Mxnb8dCATKvpJrlizLUBQl74RPkiQAMD57qi3uK62xrwAwAgldJBLByMhI3eonIqoalZrG9PS0CkCdnp4u+Pzs7Kz6yiuvqLOzs3mP53I5dXY+a/qm3Mmov+u7ov6u74qq3MlUVNbsfFbN5XKm3r/dblfdbrdxP5VKqX6/X5UkSU2lUqqqqqrT6VQjkYixTSKRUO12u3E/FoupoijmlRuJRFY85vf7C26zvGxRFNVYLGbcX6vuYmV4vV7jfigUUiVJyqu7UJu9Xq+aSCTyytE/g2KvKUTfxUOh0JrbVioSiaiF/qSIoqgGAoGa11+KXC6n5rILpm/ZzLx649zP1BvnfqZmM/MVlZXLLnBfWaf7ynL6dycIQt7nUUyx4wARUSnWOtc0g2lObWA+o+L3/ve3qlLWJ/7sesVl/M2f7kZfj7npC6emphAMBo37+iBTQLsyGY1GEQqFjOdFUUQymUQ0Gi2aAmG325FMJhGPx40r5Xoajm5oaAiyLOeVIYoiZFmGJEkl1V2sjOUkSSppYKd+FVi/eimKIqLRaFmpF/r7jcfjK9rxoFIHf9psthVXVFuKmsOt12JVKer2+RcrLmPbYRtg6TT1Wu4rmlbeV6LRKBwOBwDA6/XWNI2LiKhWGExQUxkZGSl6AJ6amip4oBdFEZFIZNUDsdvtxunTpyFJUtGTqQfLFgQByWSyrLoLlWFm+k39RExRFMiyjGQyabSlVFNTUwCAZDK55klKIBAou43laMXBvs2O+4qmlfcVu90OVVUhyzI8Hg8cDgcikUjVyiciqgcGE22gt9uCv/nT3aZfP5/OGT0SX/3cTvT2VDaUpre7NosqKYpi+rWjo6M4duwY/H7/iiuita7bjHg8jvHxcTgcDhw/fnzNq6WF6OMX6nW1U2/jg4N/ZVlunsHAlg6tN8AkNZc1eiS2HnoKlg5zvQrL21ML3FfKU+995UGiKCIUCmFwcLAug7+JiKqJwUQbsFgsptOKHtTb04G+CoOJWrHb7RgfH1/xuCzLaw6clCQJQ0NDCIfDpq6SV1J3uRRFwbFjx3D27Fkj1UQ/QZNluaSTJVmWMTk5aaRQrKUaqRv6TDjLU0z0wbDNkr5hsVhMpxWtKKujs/Jgoka4rzT3vqK3sWmCbCKiCjCYoJYhSRLsdnte6oV+slrKlTyPx4OxsTGkUqmS6lt+hdVs3Wau0uqzIuknRwCMtI1Scrp1fr8/b0Xk1a54Vit1w+/3w+fzGSekY2NjRh4/1Q/3lebeV5LJJBwOh7EAIQCMjY1BFEX2ShBR66naUG6qmNnZnCo1O581ZnOanc9WtexSJBIJYzYTURRVv9+fNxvLg7xerxoIBNRAIJA3+0ssFlOdTqcKIO/x5fU4nc4Vjy9/nT5zjd4eSZLyZncppe4Hy7Db7WokElnRvlQqVfB1ej1er1eNRCJqJBIx2h4KhdZ8n8v5/X41FArVdTYlv9+viqK4YnaedpDLLhizOeWyC3Wvn/tK++wrejsFQVAFQVCdTueq36WOszkRUSVqMZuTRVVVtRFBDK00MzODgYEBTE9PY8uWLSuen5ubw4ULFzA8PIy+vr6q1TuXzhmzQWkzMTVnmlOlFEXB1NRU06TcUOtRc1ljNqhth21Nm+ZUKe4rzatWxwEiWh/WOtc0oz3PGokWLU+dOHPmDE+OiIrgvkJERGYwmKC25vP5jLn4OT0pUXHcV4iIyAymOTWRRqU5tbN4PG7MId/Si60R1Rj3ldbA4wARVaIWaU6czYnamiRJeTO9EFFh3FeIiMgMpjkREREREZEpDCaIiIiIiMgUBhNERERERGQKgwkiIiIiIjKFwQQREREREZnC2ZwImQUVf/XP2v+f+w9Ad5elsQ0ialLqQgbz/8//AQDo/egfwtLV3eAWERERNRZ7JqjhZFmGz+eDxWKB1WrFxMQEJiYm4PF44HK5EA6HSyonHo/D4XDAarXWuMWNZeZ9BoNBBINBxOPxGraMao37Snm4rxAR1R6DCWo4URTh9/tht9tht9vh9Xrh9XoRCAQQCoXg8/kwMTGxZjmSJMHn89WhxdXl8/ngcrlK3r7c9xmNRqEoCtxuN2RZNtPEsoXDYTgcjrrUtZ5wX2m/fQUAHA4HLBb2CBNRa2KaEzU9j8cDn88Hr9e75rZDQ0N1aFF1ORwOKIpS1mvKeZ8+nw9nz54FAAiCUFY95fL5fAgGgy35PbQD7isrNeu+oguHw0gmk3Wpi4ioFtgzQU1PP6iXexLRKux2O5xOZ03KjkajEEURgiAgHA7DbrfXpB6d3+9HKpVqyave7YD7inn13ld0Pp8PJ06cqEtdRES1wGCCml4sFoMkScaJ0sTEBMLhMMLh8JopHeFwGDabDYODg4hGowC0vHOr1QqHwwFZlhGNRmGz2WCz2RCPx41yC50QF6u7UBnBYBAejweAlocdDofhcrnycrGL5XQrimLU5fF4TOdvBwIBjI6OmnottR7uK621r0xMTEAURUiSVNd6iYiqSqWmMT09rQJQp6enCz4/OzurvvLKK+rs7Gze47lcTk1nzN/uzebUv/hH7XZvtrKy0pmcmsvlTL1/u92uut1u434qlVL9fr8qSZKaSqVUVVVVp9OpRiIRY5tEIqHa7XbjfiwWU0VRzCs3EomseMzv9xfcZnnZoiiqsVjMuL9W3cXK8Hq9xv1QKKRKkpRXd6E2e71eNZFI5JWjfwbFXlOIvouHQqE1t62mQCBQUvvqLZfLqblM2vQtO3tPnT3zZXX2zJfV7Oy9isrKZdLcV9bxvpJKpVQAaiKRUBOJhFrq4bjYcYCIqBRrnWuawTETbWAhC2Nq10p97XuVl6FNL2vutVNTUwgGg8Z9fZApoF2ZjEajCIVCxvOiKCKZTCIajRZNS7Db7Ugmk4jH48YVQFEU87YZGhqCLMt5ZYiiCFmWIUlSSXUXK2M5SZJKGtipXwV2u91GOdFotKwUD/39xuPxFe14kH5VeC02m81oU0vKLhhTu1Yq/f9+teIyej/6h4DJ6WW5r2hadV8ZGxuD2+02PjsiolbFYIKaysjISNED8NTUVMEDvSiKiEQiq+Y4u91unD59GpIkFT2ZerBsQRCMgZGl1l2oDDPTb+onYoqiQJZlJJPJsgdpTk1NAQCSyeSa+d+BQKDsNlJjcV/RtOK+Eo1GEY1GceHChYrLIiJqNAYTTeDkyZM4efIkstmsqdd3dWq9AWZlFpZ6JH7/w+Z7FZa3pxYqGVQ6OjqKY8eOwe/3r7giWuu6zYjH4xgfH4fD4cDx48fXvFpaiKIoxhSitKizS+sNMEldyBg9Ej3PfKLyRes6a/MnmPtKeeq9r0QiESiKgsHBwbzHLRYLnE5nXq8OEVGzYzDRBJ599lk8++yzmJmZwcDAQNmvt1gsFQYAqvG/7q7mXQHbbrdjfHx8xeOyLK85cFKSJAwNDSEcDpuaErOSusulKAqOHTuGs2fPGqkm+gmaLMslnSzJsozJycmS13pYL2lOFovFdFrRirK6upt2BWzuK829r/j9fvj9fuN+PB6HzWaDqqoFtyciamYMJqhlSJIEu92el3qhz9xSSn60x+PB2NgYUqlUSfUtv8Jqtm4zV2llWYaiKHkzvOhpG6XkdOv8fn/eisjhcLhoW5nm1F64r3BfISKqm6oN5aaKmZ3NqVLpzNJsTumMudllKpFIJFS/368KgqCKoqj6/f682Vge5PV61UAgoAYCgbzZX2KxmOp0OlUAeY8vr8fpdK54fPnr9Jlr9PZIkpQ3u0spdT9Yht1uVyORyIr2pVKpgq/T6/F6vWokElEjkYjR9lAotOb7XM7v96uhUEgNBAKrblctgUBAhdbVZdyacVYns3KZtDGbUy6Trnv93FfaZ19ZLhaLcTYnIqqLWszmZFFV9qs2Cz3NaXp6Glu2bFnx/NzcHC5cuIDh4WH09fVVrd7MgmrMBqXNxNScaU6VUhQFU1NTHENApqkLGWM2qN6P/mHTpjlVivtK86rVcYCI1oe1zjXN4KJ11NaWp06cOXOGJ0dERXBfISIiMxhMUFvz+XzGXPxmBpMSrRfcV4iIyAymOTWRRqU5tbN4PG7MId/KsxAR1Rr3ldbA4wARVaIWaU6czYnamiRJeTO9EFFh3FeIiMgMpjkREREREZEpDCaIiIiIiMgUBhNERERERGQKgwkiIiIiIjKFwQQREREREZnCYIKQzan40bl7+NG5e8jmOFMwUTG5+Tlc+YPfxpU/+G3k5uca3RwiIqKGYzBBDSfLMnw+HywWC6xWKyYmJjAxMQGPxwOXy4VwOFxSOfF4HA6HA1artcYtbiwz7zMYDCIYDCIej9ewZVRr3FfKw32FiKgOVGoa09PTKgB1enq64POzs7PqK6+8os7Ozla13oVsTv3hy3fVH758V13I5qpadjnsdrvqdrtXPC6Kour3+0sqIxKJqKIoVrtpNeX1elWn01nWa8p5n5FIxPj8QqFQ2e0rRyqVUp1OpyoIgiqKour1emtaX71l52bVy5/4mHr5Ex9Ts3PV3Q/LwX2ldM26rzidThVA3s1ut6/5ulodB4hofVjrXNMM9kxQ0/N4PPD5fCVtOzQ0VOPWVJ/D4cDo6GhZrynnffp8PmNFY0EQyqqnXGNjY3A4HLhw4QICgQDC4TBcLldN66Ql3FdWatZ9BQC8Xi9UVTVukUik5nUSEVUbV8Cmpqcf1BVFqcsBvt7sdnvNyo5GoxBFEYIgIBwOw+l01qwuWZahKIpxMma32xEIBOBwONr2u2s23FfMq+e+otu6dWvN6yAiqjX2TFDTi8VikCTJODmamJhAOBxGOBzGxMTEqq8Nh8Ow2WwYHBxENBoFoJ30Wq1WOBwOyLKMaDQKm80Gm82GeDxulFvoCm+xuguVEQwG4fF4AGh52PpV+uW52MVyuhVFMeryeDym87cDgUDZV3LNEkURgUAg77GRkREAwNTUVF3asN5xX2mNfYWIqK1ULWGKKmZ2zEQul1MXsuZv85msMWZiPpOtqKyFbE7N5cyNu3gwDzyVSql+v1+VJElNpVKqqmp5xpFIxNgmkUjk5RnHYrEV+dGFcqYfzCvXt1letiiKaiwWM+6vVXexMpaPGwiFQqokSXl1F2qz1+tVE4lEXjn6Z1DsNYXou3it87+LiUQiKoC8tjdSLpdTs3Ozpm+Z6ZQxZiIznaqorOzcLPeVdbyvOJ1O1W63q6IoqoIgFBwDUwjHTBBRJWoxZoJpTm0gpwI/efV+Vcr66euzFZfxvsc2oNNi7rVTU1MIBoPGfbvdDq/XC0C7MhmNRhEKhYznRVFEMplENBotmgJht9uRTCYRj8chSZLxuuWGhoYgy3JeGaIoQpZlSJJUUt3FylhOkiTIsrzm56BfBdZThkRRRDQaLSv1Qn+/8Xh8RTsepF8VXovNZjPaVAq/3w+v19s0KTdqeh7X/vi/r0pZb3/2f6m4jIf/8luw9PaZei33FU0r7ytTU1M4e/YsRFHEsWPH4HK58j43IqJWwGCCmsrIyEjRA/DU1FTBA70oiohEIqvmU7vdbpw+fRqSJBU9mXqwbEEQkEwmy6q7UBlmpt/UTygURYEsy0gmk0ZbSqWnFiWTyTVzzR9MT6oGl8sFSZLg9/urXjZxX9G16r7i9/sxNDRkBNp+v5/ji4ioJTGYaAMdFq03wKxsTjV6JH710X50dpjsVljWnlpQFMX0a0dHR3Hs2DH4/f4VV0RrXbcZ8Xgc4+PjcDgcOH78+JpXSwtRFAV2u72mg1aLcblcEEWx6QIJS08vHv7Lb5l+fW5+zuiR2PX8N9BhsldheXtqgftKeRqxrzzYTv2+3sNDRNQqGEy0AYvFYjqt6EGdHZaKg4lasdvtGB8fX/G4LMtrDpyUJAlDQ0MIh8OmpsSspO5yKYqCY8eO4ezZs8ZJhX6CJstySSdLsixjcnISDoejpDqrmbrhcrngcDjKSoeqF4vFYjqt6EEdvX0VBxO1wn2l+feVB9unDxw3EwwRETUSgwlqGZIkwW6356Ve6AfgUvKjPR4PxsbGkEqlSqpv+RVWs3WbuUqrT7G6/OqknrZRSk63zu/3562IvNp0l9VK3XC5XDh69CiOHz+e996ZtlFf3Feae1+RZRk2mw2nTp2C0+k0VjZ3u93cV4io9VRtKDdVbL2ugJ1IJFS/32+smuz3+1ed/cfr9aqBQEANBAJ5s7/EYjFjVdlCKy8nEomCq+cuf50+c43eHkmS8mZ3KaXuB8uw2+1qJBJZ0b5UKlXwdXo9Xq9XjUQiaiQSMdoeCoXWfJ/L+f1+NRQKqYFAYNXtqiGRSKxY0Ve/LZ+1p5U1egVs7ivtsa+oqjajlSRJKoCyVi7nbE5EVIlazOZkUVVVrWv0QkXNzMxgYGAA09PT2LJly4rn5+bmcOHCBQwPD6Ovr3rpFdmcaswG9b7HNjRtmlOlFEXB1NRUQ8YQUHvIzc8Zs0E9/Jffato0p0pxX2letToOENH6sNa5phlctI7a2vLUiTNnzvDkiKgI7itERGQGgwlqaz6fz5iL38xgUqL1gvsKERGZwWCC2po+80owGCxrESui9Yb7ChERmcExE02kUWMmiIioNfA4QESV4JgJIiIiIiJqGlxnogqi0agxj3oikYDVaoXX621wq4iIiIiIaovBRIXi8TgURckLHqxWKxKJRNUWAiMiIiIiakZMc6pQIBCAz+fLe8xutxuzotQCh7kQEa1P/PtPRM2GPRMVcjgcdauru7sbAHD//n309/fXrV4iImoO9+7dg8ViMY4HRESNxmCiQk6nc8U0imfOnIHf7696XZ2dnRAEATdu3AAAbNiwARZLe65WTUREGlVVsbCwgJmZGczMzEAQBHR2dja6WUREAFowmPB4PHC5XGuuzqooCsbHxwEAW7duRSKRgMPhqNn86eFwGJOTk4jH4wiFQjVbPXbnzp0AYAQURES0PnR2dmLXrl0YGBhodFOIiAwtsc6ELMuIRqMIBAKIx+OIRCKrnqwrigKbzYZQKARJkozHPR4PBEGoSa+BLhwOY3x8HKFQCKIolvXacub+zWazyGQylTSViIhaRFdXFzo7O9kbTUQVqcU6E03fMxEMBhGJROBwOOD3+0sao+ByueB0OvMCCUAbLD04OAiHw1GzngOn04nJyUnYbDZcuHABgiDUpJ7Ozk52cxMRERFRQ7VEz4QuHo/DZrOt2jMhy7IxNWuhngGPxwNZlhGJRPLKHRsbK7kdp06dWhGoLBeNRo3gp5z1JmoRLRIRERERAeu0Z6Jc+toOxVKMrFYrgsEgFEUxeg0kSUIsFjNV3+DgIE6cOJEXNAwNDQHQFrAjIiIiImpXbbfORDweXzW1SA8ypqamKq5LUZS8MnWyLAMAbDZbxXUQERERETWrtgsmZFk2egYK0QMN/YS/EoIgwO12FxybIUkS3G53xXUQERERETWrtktzSiaTq86ipAcaeq9Cpfx+P4LBIGKxGARBgCzLkCSppBmj5ufnMT8/b9yfnp4GoOWzERERERFVk36OWc0h020XTJQaJNy+fbtqdZrtgRgfH8cXv/jFFY/v3bu30iYRERERERV0586dqq1Z03bBRCs5ceIEPvWpTxn3c7kckskktm7dWve5xI8ePYrJycm61rme8fNe3Xr5fNrhfbbSe2jWtja6XTMzM9i7dy+uXLnCmQSJ6qgR+76qqrhz5w52795dtTLbLpgQBKGk3omtW7fWvjFr6O3tRW9vb95jtVqXYi2dnZ08iNQRP+/VrZfPpx3eZyu9h2Zta7O0a8uWLU3RDqL1olH7frV6JHRtNwB7tcHXgDamAmjcSXuzevbZZxvdhHWFn/fq1svn0w7vs5XeQ7O2tVnbRUS11S77ftstWudwODA1NYVUKlXw+XA4DJfLtWoZRERE6wUXTCWiSrRdz4QkSaumOelTwjKQICIi0lJuP//5z69IuyUiKkXbBROjo6MAtF6MQiYnJxlIEBERLert7cUXvvCFNYOJaDQKn88Hj8cDh8OBYDBYpxYSUTNruwHYkiTBbrfj9OnTKxaTA7Q0p0gk0oCWUamCwSASiURJa3VQdfAzX9/4/dNaotEo4vG48RtRFAU2mw2xWAyBQKDBrSMiM6LRKCKRCBRFgSzLcLlcppY7aKlgQk9RWmu2plAoBJvNhtHR0byAwuPxwOv1smeiCcmybBykzpw5w9XD64Cf+frG75/KEQgEEAqFjPuCIBi9FD6fb9XFYomo+VTzAkHTD8AOh8PGm5qamoKiKBAEASMjIwBQNIpSFAU+nw+CIGDr1q1IJBJwOBxwOp11bT+Vz2azwW638yppHfEzX9/4/dNaLBYLvF5v3m9EnxQlEAgwGCVqMS6XK+8CAaD1Uns8HiQSibIuEDR9z4TT6TQVAAiCwK5XIiKiKnA6nbBarY1uBhFVSTgchs/ny7tAoF+oj0ajZV0gaPpggoiIiErn8XjgcrnWTOlVFAXj4+MAsGYP/oNXMAEtWwDg7IhEraiaFwgYTNTZ8jzlZDIJRVHgcDjg9Xob3LLS1eJAVW+tlufbDp95owWDQYRCIWPBSlEUWyath98/rUWWZUSjUQQCAcTjcbhcrlW31/OjQ6HQirGFk5OTJe0bfr8ffr+/Zf6O0voUj8cRCASQTCYRj8chCAI8Hk9LpeY1/QUCleomFAqpXq93xeOSJKmiKDagRaVLJBJqIBBQJUlSAaiRSGTV7VOplCqKohqLxfIed7vdBT+D5SRJWnObSsRiMRXAirY1m3b6zBsplUoVfH+JRKKp3zO/fypVIBBQnU6nGggE1EgkUtLvxW63F/3OBUFY8/VOp1N1u92m20xUD4FAQA0EAnmPRSIRVRAEVRRFNZVKNaZhJajnMUAniqLq9/vLbiuDiTpJpVKq0+ks+Jx+ctusf5jrfaCq9YmN3W5v+mCi3T7zRir23ux2uyoIQgNatDZ+/2SWfjxZ7ftOJBIqADWRSBR83u12q3a7vejrA4FA0x6viHSJRKLoibG+n6z2O2+kVrtAwGCiTvQfQ7EvGkDT906oan0OVLU8sdGvUjR7MLFcq3/mjeT3+4sGDE6ns2kPJMvx+6dylPJ78Xq96mqJCX6/XwVQ8KptKBRacYLWzFd3af3yer2r/jb1C4vF/m42i1a4QNB2K2A3q6GhIWOa2mL0XO5yBIPBNdfdWC4cDhvrddSKPotWsTxaq9WKaDRaVrurQX/fleb38jNvHePj40XzYkOhkKkFLPn9U6vT88aL0X9Hev708tclk8m8MX6KoiAajdaknUSViEajGB4eLvp3Tx8rFI/Hyyq33Y4B4XAYiqLkzYBa7rGCwUSdSJKEVCpVcKC1/kM2MyNGLBbDsWPHSvrig8EgxsbGyq6jXGYPVLVWrbnQ+Zm3Bv0P5OjoaFXL5fdPrU6WZQwNDRV9Xv8tLT8BkmUZ4+PjGBoaQjgcNm6tNJEFrS9DQ0PGys7V1E7HgGpdIOBsTk1A/2NsZmaZQCAAj8djrFpY7Mc0MTGB8fFxnD17tuZ/+M0cqJZTFKXqV1DD4TA8Hk9VyuJn3hpOnz4NIP/q09TUFEZGRvJmrykXv39qdclkctXfpP5bWv6bsNlsUBQF4XB4xfZc04maUSQSgSzLRX/r+t/Dco8H7XIM0C8QjI6O5u3XkUik7PMlBhMNpE8TK4qiqXQL3Vo/bP0HHYvF6nIFycyBSp/OTL+KcObMGQBa11yl0+bqZVZzekx+5s1vedf1xMQEJEmC2+1GPB6Hw+GAz+czPT8+v39qZaUGjrdv3zb+n0qlatQaotpZ7e9iOByGJEmm/ka3wzGgmhcIGEw0QDgcxuTkpBExOxyOisss9sOu9w8aMHegEgTB6Jmp9lWu8fHxmqwnwM+8uSWTSQiCgGAwmHdyLEkSQqEQhoeHEQqFqh5Q8PsnImpuExMTAIBTp06ZLqPVjwHVvEDAMRMN4HQ64ff7EQqFjEV/XC5XxWkGgUAAdrvdiDYb8YNuNtFotCrBWjH8zJuXnrpTqOtXEATY7faKU9/4/VMrEgShpOPNahOGELWqeDwOn8+3YsFGM3gM0LBnogmEQiEMDg5CUZSK0p2ApUh5eHgYABryg26mA1UkEqn5Ksf8zJuT/pkU63lwOBwIh8OIx+NVGUPB759axWq51YDWqweYm2GQqNm5XC4EAoGqpT7zGMCeiaYgCAKcTiei0WhVpthb/qNa66BRC81yoJqYmMCJEydqWoeOn3nz0T+TYu9Zf74aMxzx+6dWIoqi8ZsoRP8tr6crq7Q+uFwueDyeqszsuNx6PwYwmKiTtaYn0/9oV9oz4fP5EA6HkUql4Ha7MTw8XPP5jR/UDAcqWZYhCEJdTp74mTenUnsbKk0v5PdPrUaSpFV/9/rv1+x4IqJm5PP5cPTo0apPMMFjANOc6mZwcBCANuCl0Amu3vVUyYmNx+NBNBo1BgLp6T364KB6nUhIkrRqD0s9DlTxeByhUAihUKho/WNjY0Y0bzaI42fevI4ePWqsNVFon9P/8FaS4sTvn1rR6OgoJiYmiqb4TU5O8rdCbSUYDMJqtRbskSh2jCgFjwGLTK+dTWURBEEVRbHo8263WwWgBgIBU+W73W5VFMWCS8d7vV5VEISqLBlfyrLu+jaxWKzg806nc9Vl3WstFAqt2r5S8TNvbolEQgWghkKhgs97vV4VQMHvrxT8/qkZlfJ7UVVVtdvtqtfrLfhcKa8nahWhUKjouVUikSh6jFgLjwFLGEzUidfrXfVHJQiCKgiCqROb1X7Qy+uvxg+7HQ5U1Qgm+Jm3BqfTqUqSVPA5URSLfl5r4fdPzUr/+7bWCVIqlVJFUVzxd9DtdpveL4iaTSwWW/UibSAQMPU3mseAB8qvWcm0gtvtLvhlOp1OVRAEUye3pfygdX6/v+IfdjscqPx+f0nvoRh+5q1D/0wePJhUcpWG3z81m1AopNrtdtVut6uCIKgAVEEQjMeKnUylUinj9+H3+1W322367yJRs0kkEqooiqrb7S5408+9ysVjwEoWVVXV2iRQUSHhcBinT5/G0NAQkskkFEWBJEk4ceKEqZy9iYkJuN3ukl8bDAZht9vLyuMLh8PGolZTU1NGfuHIyAgAbXaEYnmIPp8PgiBg69atSCQScDgcVV2JuhwejweyLK94D5IklTV9LD/z1qKv9KznjCqKUvTzKwW/fyKi5me1WtccCC2KIhKJRFnl8hiwEoMJIiIiIiIyhVPDEhERERGRKQwmiIiIiIjIFAYTRERERERkCoMJIiIiIiIyhcEEERERERGZwmCCiIiIiIhMYTBBRERERESmMJggIiIiIiJTGEwQEREREZEpDCaIiKgsiqLAZrPBarXCYrHAYrHA4XAU3V6WZVitVgwODhrbDw4OIhgM1rHVRERUCxZVVdVGN4KIiFqTzWZDPB4HACQSCYiiWHTbcDgMl8uFSCQCu91eryYSEVENsWeCiIhMURQFIyMjRmAQCARW3V4URbjdbgYSRERthD0TRERkSjgcBgAIggCHwwFBEJBKpYpuPzExAbvdDkmS6tVEIiKqMfZMEBGRKXq6kt1uhyAIUBTFCDAKmZycZCBBRNRmGEwQEZEpyWQSgiAAANxuN4C1U52IiKi9MJggIqKyKYqCoaEh4/6JEycAANFoFLIsr9helmUcPXq0bu0jIqL6YDBBRERli0ajedPBCoKw6kDsaDTKgddERG2IwQQREZWt0PSuPp8PAAquHxGJRDhegoioDTGYICKisi0fL6ErdSA2ERG1DwYTRERUlgfHSyxXaCC2LMurLmZXTfF4HA6HA4ODg4hGo3Wpk4hoPWMwQUREZXlwvMRyHo/H2EYfiL3a9tUmSRIikQgURalLfURE6x2DCSIiKkuh8RI6URRXDMRebftaeTAFi4iIaoPBBBERlaXQeInl9N6JQgOxiYiovXQ1ugFERNQ6VhsvoXM6ncZA7ImJiYLjJaLRKHw+H+LxOCKRCOLxOAAgkUhAEAT4/X5j23g8Dp/Ph6mpKZw6dQpOpxOKomBsbAzRaBRutztv+0LC4TCSySSGhoaQTCYRi8XgcrmMHpPlgU8sFoPH4zFmn1re1kQigXA4jMnJSTgcDrjd7jXLJiJqZwwmiIioZKWOf3C73ZiYmIDP50MkElnxvN1ux9mzZzE4OIhAIIBQKGQ85/F44HA4jNfp4yAsFouxjSAICIVCJbVFlmVEIpG8QeETExPG/4PBIBKJhBGQyLIMq9WKRCJhpG3pbQ2Hw/B6vfD5fIjFYmuWTUTU7pjmREREJTt9+nRJV9z1VCcARbfXU6WWbwsAfr8f0Wh0xfSyhVKrShkbEY/HV6zK7XQ68+4vn/lJFEUIgmD0lhSqx+/3IxAIlFQ2EVE7YzBBREQl0U/wk8nkmtvqV/RLWajuwbQpQRAgimLBHg0z7HY7pqamYLVa4fP5EI1G8waKu91uxGIxAFoalx5EFHqfD76ftcomImp3DCaIiGhVPp8Pg4ODRkqR1WqF1Wot6XWjo6Om6hRFccUVf7MEQcCFCxdgt9sRDofhcDhgtVrzpo8Nh8Ow2WzGKt7FxoUUCnzWKpuIqJ0xmCAiolX5/X6kUimoqmrcEonEmq+z2+3wer2m6ix1obtSTtrj8TgEQUAgEEAikTDGQoyPjwOAMbYjFAohEAiU1JtSatlERO2OwQQRETXUg+lEiqJAlmW4XK41X1tK74UsyyvGROjjHQCtByUQCOQFL3qbFEVZdSXttcomImp3DCaIiKihls/kBABjY2NwOp0rxh2MjIzkBQ/6CXux3onljz84dawsy3kzQS3fVu8VURTFmPJ1NWuVTUTUziyqqqqNbgQREa1PFoslL5iYnJzE1q1bC6ZHybIMn89nnKjrvQDRaBR2ux2hUAjxeByBQADBYBCSJMHj8RjrPyiKYszKpCiKUUc0GkUgEMDRo0chSRKGhoYgCAJ8Pp/xWCAQQDgchiRJsNvtRgChD0gvVjYRUbtjMEFERA1jsVgQi8XKGqdARETNg2lORERERERkCoMJIiJqqFLWrSAioubEYIKIiOouGo0aszX5/X4Eg8EGt4iIiMzgmAkiIiIiIjKFPRNERERERGQKgwkiIiIiIjKFwQQREREREZnCYIKIiIiIiExhMEFERERERKYwmCAiIiIiIlMYTBARERERkSkMJoiIiIiIyBQGE0REREREZMr/D4SZmsUZVR7/AAAAAElFTkSuQmCC", "text/plain": [ "<Figure size 800x500 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "if HD_order:\n", " if HD_basis == \"Legendre\":\n", " label = r\"$\\rm Polynomial \\ \\ell = \\ $\"\n", " else:\n", " label = r\"$\\rm Bin \\ = \\ $\"\n", " # here plot scaling of SNR with T_obs\n", " plt.figure(figsize=(8, 5))\n", " for i in range(HD_order + 1):\n", " plt.errorbar(\n", " N_pulsars,\n", " uncertainties_means[:, len(signal_parameters) + i],\n", " yerr=uncertainties_stds[:, len(signal_parameters) + i],\n", " label=label + str(i),\n", " color=pf.cmap_HD(0.1 + i / 1.1 / (HD_order + 1)),\n", " )\n", "\n", " plt.loglog(\n", " N_pulsars,\n", " 2 / N_pulsars,\n", " linestyle=\"--\",\n", " color=\"black\",\n", " )\n", "\n", " plt.xlabel(r\"$N_{\\rm pulsars}$\")\n", " plt.ylabel(r\"$\\rm Uncertainties$\")\n", " plt.ylim(1e-3, 4e-1)\n", " plt.legend(fontsize=12, ncols=2)\n", " plt.tight_layout()\n", " plt.savefig(\"plots/SNR_N_scaling_HD.pdf\")" ] }, { "cell_type": "code", "execution_count": null, "id": "49f83d20", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3.9.12 ('env_GWFast')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" }, "vscode": { "interpreter": { "hash": "37bcb7777d3229dfb79a16124a08c500a91162130c755ccd3fb5278a92e948b4" } } }, "nbformat": 4, "nbformat_minor": 5 }
181,178
Python
.py
502
356.310757
70,810
0.93009
Mauropieroni/fastPTA
8
0
3
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,330
sqrt_basis_figure.ipynb
Mauropieroni_fastPTA/examples/sqrt_basis_figure.ipynb
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### Start importing all libraries" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)\n" ] } ], "source": [ "# Import global libs\n", "import numpy as np\n", "from functools import partial\n", "import matplotlib.pyplot as plt\n", "from multiprocessing import Pool, cpu_count\n", "\n", "# Import local libs\n", "import fastPTA.utils as ut" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Then set some constants to be used below" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Confidence level for the Cls\n", "limit_cl = 0.95 \n", "\n", "# Spherical harmonics order sqrt basis\n", "l_max_sqrt = 3 \n", "\n", "# Spherical harmonics order linear basis\n", "l_max_lin = 6 \n", "\n", "# Number of points to be generated\n", "npoints = 10000 \n", "\n", "# Absolute priors for the coefficients\n", "abs_prior = [0, 50] \n", "\n", "# Number of cores to be used for parallel computations\n", "num_cores = cpu_count() " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Load the NANOgrav constraints in the sqrt basis" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "limits_NG_sqrt = np.loadtxt(\"data_paper_2/limits_Cl_powerlaw_sqrt_ng15.dat\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Generate the complex gLM in the sqrt basis from the flat prior" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# Compute the number of complex coefficients to generate\n", "n_coefficients = ut.get_n_coefficients_complex(l_max_sqrt)\n", "\n", "# Generate the gLMs from the priors\n", "LL, MM, _, _, sort_indexes = ut.get_sort_indexes(l_max_sqrt)\n", "\n", "# Generate the absolute value for the gLM prior samples\n", "abs_gLM_grid = np.random.uniform(\n", " low=abs_prior[0],\n", " high=abs_prior[1],\n", " size=(npoints, n_coefficients),\n", ")\n", "\n", "phi_LM_grid = np.random.uniform(\n", " low=0.0,\n", " high=2.0 * np.pi,\n", " size=(npoints, n_coefficients),\n", ")\n", "\n", "# Generate the phases for the gLM prior samples\n", "exp_j_phi_LM_grid = np.exp(1j * phi_LM_grid)\n", "\n", "# Assemble to get the gLM\n", "gLM_complex = exp_j_phi_LM_grid * abs_gLM_grid\n", "\n", "# For M = 0 the coefficients are real\n", "gLM_complex[:, MM == 0.0] = (\n", " gLM_complex[:, MM == 0.0].real\n", " * 2.0\n", " * (np.heaviside(np.pi - phi_LM_grid[:, MM == 0.0], 0.0) - 0.5)\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Convert from the sqrt to the linear basis" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# Compute the linear coefficients from the sqrt coefficients\n", "with Pool(num_cores) as p:\n", " clm_linear_prior = np.array(\n", " p.map(\n", " partial(\n", " ut.sqrt_to_lin_conversion,\n", " l_max_lin=l_max_lin,\n", " real_basis_input=False,\n", " ),\n", " gLM_complex,\n", " chunksize=int(npoints / num_cores),\n", " )\n", " )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Compute the Cls in the linear basis" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "# Normalize such that c00 = sqrt(4.*pi), see NG15 paper\n", "clm_linear_prior = (np.sqrt(4.0 * np.pi) / clm_linear_prior[:, 0])[\n", " :, None\n", "] * clm_linear_prior\n", "\n", "# Compute the Cls from the linear coefficients\n", "CL_linear_prior = ut.get_CL_from_real_clm(clm_linear_prior.T)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plot the results" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAKFCAYAAAAteDQOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABcSAAAXEgFnn9JSAAByFklEQVR4nO3dd3xT1f/H8Xc6QmlaStlQtjIU2aAgyh6CTBFkCogiiogDcSAC4sIfKo6vW1FBwT0QlY2CMgQERZAle5S9Qkea3N8f147QFrpvk7yej0ce9J67PmkovDmce47NMAxDAAAAQAAJsroAAAAAoKARggEAABBwCMEAAAAIOIRgAAAABBxCMAAAAAIOIRgAAAABhxAMAACAgEMIBgAAQMAhBAMAACDgEIIBAAAQcAjBAAAACDiEYAAAAAQcQjAAAAACTojVBSDrPB6PnE6ngoKCZLPZJElBQUEKDg62uDIAAID853a75fF4JEmGYcjj8cjhcCgoKPv9uoRgHxIfH69ixYpZXQYAAECh4XQ6FR4enu3zCME+JCTE/LhOnTql0NBQSfnTE+xyueRwOOR0OlPug8KHz8k38Dn5Bj4n38Dn5Bvy83NK2xPscrlUvHjxlHyUXYRgH5I8BCI8PLxAfvhDQ0P5Q8YH8Dn5Bj4n38Dn5Bv4nHxDfnxOaa/ncrkkpeaj7OLBOAAAAAQcQjAAAAACDiEYAAAAAYcQDAAAgIBDCEY6QUFBmjhxYo7m3EPB4XPyDXxOvoHPyTfwOfkGX/mcbIZhGFYXgaxxuVyy2+1KTEzkqVgAABDQcpuLCndEBwAAAPIBIRgAAAABhxAMAACAgEMIBgAAQMAhBAMAACDgEIIBAAAQcAjBAAAACDiEYAAAAAQcQjAAAAACDiEYAAAAAYcQDAAAgIBDCAYAAEDAIQQDAAAg4IRYXQAAAAXNMAydO3dOJ0+e1Llz5+R2u2UYhtVlAXkuKChIdrtdUVFRio6Olt1ut7qkQsNm8FPvM1wul+x2uxITExUaGmp1OQDgkxITE7V9+3bFx8dbXQpQ4MqWLauYmBjZbDarS8m13OYieoIBAAEjMTFR27ZtU0JCgoKCghQdHa2oqCjZ7Xa/CAXAhdxut+Li4lL+1yM2NlaGYahixYoB/3ueEAwACBgHDhxQQkKC7Ha7atasqSJFilhdEpDvIiMjVaZMGR09elR79+7VkSNHVLx4cUVGRlpdmqV4MA4AEBA8Ho9OnTolSapWrRoBGAGndOnSKlGihCTp5MmTFldjPUIwACAgnDlzRh6PR6GhoXI4HFaXA1giOjpaklL+QRjICMEAgICQkJAgSYqIiAj4sZAIXBEREZLMh8o8Ho/F1ViLEAwACAhut1uSFBwcfMljly5dqt69eysmJkZ2u13R0dGqVauW+vTpo9dee02nT5/O73JhkdatW8tms2n37t1Wl5IiL2tK+/s/+WciUBGCAQBI48knn1Tbtm311VdfKSoqSl27dlXHjh1VtGhRffXVVxo9erS2bNlidZm4iEmTJslms+mDDz6wupRCh/8FScXsEAAA/GfdunWaNGmSQkND9dlnn6lnz55e+w8fPqxZs2apePHiltSHwPTRRx/p/PnziomJsboUv0IIBgDgP1999ZUMw1Dfvn3TBWBJKleunMaOHVvwhSGgVa5c2eoS/BLDIQAA+M/Ro0clmVNJZdfff/+tnj17Kjo6WpGRkbr++uv1008/admyZbLZbBo6dKjX8Rcb57l7927ZbDa1bt3aq/3UqVN69dVX1alTJ1WpUkVFihRRyZIldcMNN2jhwoUZ1pX2Pp988omaNWumyMhIr95swzA0e/ZstW3bVtHR0QoLC9MVV1yhSZMm6fz581n+HqSt+8yZM3rggQdUrVo1hYaG6r777ks5bvPmzRo4cKDKly8vu92umJgY3Xrrrdq6dWum1/7hhx/UoUOHlPpq1aqlRx55JN0sB1WrVtXkyZMlScOGDZPNZkt5LVu2LMvvRZJmzZqlxo0bKzw8XGXKlNGQIUN04MCBdMfl5HM5d+6cnn32WdWvX19RUVGKiIjQZZddpj59+mj+/Plex2b2e2XPnj266667VLNmTYWHh6tEiRKqU6eO7rzzzot+L2EiBAMA8J9KlSpJkr788ksdOXIky+etXbtWzZo107fffquKFSuqa9euiouLU5cuXfT555/nWX2rVq3Svffeq23btqlWrVrq1auXatWqpQULFqhTp056//33Mz332Wef1eDBg2W329W1a1ddddVVksz5kwcOHKgBAwbo999/V4MGDdSlSxc5nU5NnjxZbdq0UVxcXLbqjIuLU6tWrfTBBx+oQYMG6t69e8rUXIsXL1aTJk30ySefqHz58urdu7fKlCmjmTNnqkmTJlq+fHmGtd94441atmyZGjdurJ49e+r8+fOaOnWqrrnmGsXGxqYce/PNN6t+/fqSpBYtWmjIkCEpr3LlymX5PUybNk233nqrIiIi1KNHDzkcDn300Udq1qyZ9u/f73Vsdj8Xt9ut9u3b67HHHtPBgwfVunVr3XjjjSpXrpx++OEHzZ49+5L17du3T40aNdKbb74pSerSpYtatWqlIkWK6J133tHKlSuz/F4DlgGfkZiYaEgyEhMTrS4FAHzOgQMHjLVr1xq7d+/O9JidO3caRYsWNSQZkZGRxpAhQ4x33nnHWL9+vZGUlJThOR6Px7jyyisNScYTTzzhte9///ufIcmQZAwZMsRrX6tWrQxJxq5du9Jdc9euXYYko1WrVl7t//77r7Fy5cp0x69fv94oXry4UaxYMePs2bMZ3icsLMxYtmxZunOff/55Q5LRunVr49ChQyntCQkJxvDhww1JxsMPP5zhe8+sbklG8+bNjZMnT3rtP3funFG2bFlDkvHaa6957XvxxRcNSUbFihWNuLi4lPY1a9YYQUFBRkREhLFq1aqU9vj4eKNPnz6GJKN3795e15o4caIhyZgxY0aW6k4r+fsVEhJizJs3L6U9MTHRGDhwoCHJ6NGjh9c52f1clixZYkgymjZt6vVeDcMwTp8+baxduzbDmtL+XnniiScMScY999yT7r579uwxduzYkel7XLt2rbF27VqfzxO5zUWEYB9CCAaAnMtKCDYMw1i0aJFRqVKllDCX/CpevLhx1113GQcPHvQ6PjnQVK9ePcOgfM011+RZCL6Y8ePHG5KM7777LsP7jBo1Kt05LpfLKFWqlOFwOIzDhw+n23/+/HmjXLlyRnR0tOF2uy9ZQ9oQ/Pvvv6fb//7776cE5Iw0btzYkGTMmjUrpe3WW281JBmPPvpouuNjY2ONokWLGkFBQcbevXtT2vMiBA8YMCDdvmPHjhnh4eGGzWbzut/FZPS5fPrpp4Yk47777stWTWl/r9x1112GJOObb77J0jXSIgSbGA4BAEAa7dq1044dO/TVV19p5MiRatSokUJCQnTq1Cm98cYbatCggdd4y+T/vr/55psznIO4f//+eVqf2+3WggULNGnSJN15550aOnSohg4dqqVLl0qStm/fnuF53bt3T9e2fv16HTt2TNdee63Kli2bbn/RokXVuHFjnTx5MtPrZqR8+fJq0qRJuvbk79XAgQMzPG/QoEFex13qnDJlyqhjx47yeDz69ddfs1xfVvTr1y9dW8mSJdWxY0cZhqEVK1Z47cvO59KgQQMFBQVpxowZeuedd3T8+PFs19e4cWNJ0mOPPabvv/9e8fHx2b5GoGN2CAAALmC329WrVy/16tVLkvng05w5c/TYY4/pyJEjuueee1IeeDp48KAkqUqVKhleq2rVqnlW1/79+9W1a1dt3Lgx02POnj2bYXtGMwwkP2i1cOHCS84fe+zYMdWqVStLdWY2m0Hy9yqz70lye9qHz3JyTl641OeZXJeU/c+lZs2aev755/Xoo49qxIgRGjlypK666iq1a9dOQ4cOVb169S5Z39ChQ7VgwQJ99tln6tatm8LCwtS0aVPdcMMNuu2227I1/jlQ0RMMAMAlFC9eXCNHjkxZfGHp0qXZmjUhuzJbzvb222/Xxo0b1bt3b61evVqnTp2S2+2WYRh66623JJkzPWQkLCws0/tcfvnlXg+QZfQqWbJkluvP6F5ZkZOFHArD4g85+VwefPBB7dy5U6+88opuvPFG7d27Vy+99JIaNGigl19++ZL3DA4O1qeffqr169dr4sSJatq0qVavXq3x48erZs2a+u233/LlvfoTeoIBAMiitm3bSjL/6/vUqVMKDw9X+fLlJZnTVWUks3a73S7JnCrrQvv27UvX5nQ6tXDhQpUtW1affvppuqEX//77b9bfyH8qVqwoSapdu3aBrK5WoUIFSZl/T5J7ptMuClGhQgXt2rVLe/bs0ZVXXpmlc/LCnj17MuyRTa49+b3k5nOpVKmSRo8erdGjRyspKUlz5szRsGHDNG7cON16660pM2pcTMOGDdWwYUNNmjRJZ86c0aRJk/TSSy/pvvvu05o1a7LzlgMOPcEAAPwns17UZDt27JBkBthSpUpJkq6//npJ5rRqGfXgzpkzJ8NrJYfnbdu2pduX0dyyp0+flsfjUfny5dMFLZfLpa+//vqitWekadOmioqK0s8//6wTJ05k+/zsSv5eZTYF2KxZs7yOu9Q5R48e1fz582Wz2dSiRYuU9uR/YCQlJeW41s8++yxd24kTJ7RgwQKv++XV5xISEqJBgwapadOmSkxMzNYY7GTFihXTs88+K5vNpk2bNmX7/EBDCAYA4D8TJkzQQw89pJ07d6bbd+DAAd15552SzIfMkoNW69atVbt2be3cuVNPPfWU1zlvvfVWpvO1tmrVSpL0wgsveA2tWLJkiaZPn57u+DJlyigqKkqbNm3yegjM7Xbr4YcfzjBMX0qRIkU0btw4nT17VjfddFOGvZYHDhzQzJkzs33tjPTt21dly5bVihUr9Pbbb3vte+WVV7R27VrFxMSod+/eKe2jRo1SUFBQyv5kiYmJGj16tOLi4nTTTTelzPEspfbS5mbBiE8//dRr0YqkpCTdf//9cjqd6tq1a8q455x8LkuXLtWiRYvS/aNp165d2rJli2w2W0ovfWZmzpyZYdD98ccfZRiG1/cDmciraSqQ/5giDQByLitTpI0ZMyZliq+aNWsaPXv2NPr162dcd911RmhoqCHJuPzyy439+/d7nbdq1SrD4XAYkoy6desa/fv3N5o2bWrYbDbj7rvvznCKtPPnzxu1atUyJBmVK1c2evfubVxzzTVGUFCQMXbs2AynSHv66acNSUZwcLDRoUMH45ZbbjGqVq1qFC1a1Bg1apQhyZg4caLXORebis0wDMPtdhuDBw82JBl2u9245pprjH79+hk33XSTUadOHcNmsxn169fP0vc4K1O7LVq0KGUu5saNGxv9+/c3GjZsaEgyIiIijF9++SXdOcnvOyQkxGjfvr3Rr1+/lGnsatSokW56twMHDhhhYWFGcHCwccMNNxi33XabMXz4cOOff/655HtIO6WczWYzWrVqZfTr18+oVq2aIcmoUKGCsWfPngzry+rn8tJLLxmSjNKlSxs33HCDMXDgQKNjx45GkSJFDEnG6NGjM6wp7WfYo0cPQ5Jx2WWXGT179jT69+9vNGvWzLDZbEZQUJDx2WefZfoemSLNRAj2IYRgAMi5rITgo0ePGjNnzjQGDRpk1K1b1yhZsqQREhJilChRwmjRooXx/PPPG+fOncvw3D///NPo1q2bERUVZTgcDqN58+bG999/byxdujTDEGwYhrF//36jf//+RnR0tFG0aFGjSZMmxueff37RMPnhhx8aDRs2NMLDw42SJUsaPXr0MDZu3GjMmDEjRyE42bfffmvceOONRpkyZYzQ0FCjTJkyRuPGjY1x48YZ69atu+i5ybI6v/GmTZuM/v37G2XLljVCQ0ON8uXLG4MGDbpoSP3++++Ndu3aGVFRUYbdbjcuv/xyY9y4ccaJEycyPH7+/PlGixYtjIiIiJR/2CxduvSS7yHt92vGjBlGgwYNjLCwMKNkyZLG4MGDjX379mV4XnY+l+3btxuPP/640aJFC6N8+fKG3W43YmJijHbt2hlffvml4fF4Mq0p2c8//2yMGjXKaNCggVGyZEkjLCzMqF69utGvX78M52hOixBsshnGJQZAodBwuVyy2+1KTExUaGio1eUAgE85ePCgDh06pFKlSmU6/VV+WLZsmdq0aaMhQ4YUyMNnwKWsW7dOklSvXj2fzhO5zUWMCQYAAEDAIQQDAAAg4BCCAQAAEHBYLAMAEBCsWlmsdevWl5x/GCgo/F5MRU8wACAgJC9kkJsFFABfl/b3f0hIYPeFEoIBAAGhaNGikqSzZ89muLIbEAjOnDkjSQoLC7Psf0cKC0IwACAgREREKCQkRG63W6dPn7a6HKDAGYah48ePS5Kio6MtrsZ6hGAAQECw2WwqUaKEJGn37t0pPWJAIPB4PNq7d6/Onj0riRAs8WAcACCAxMTEKC4uTmfPntX27dsVFham4sWLKzQ0VEFB9AvBvxiGIY/Ho/Pnz+v06dNyu92SpKpVq6YMDwpkrBjnQ1gxDgByz+PxaPfu3Tp16hRPyiOghIaGKiYmRiVLlrS6lDyR21xETzAAIKAEBQWpevXqSkpK0qlTp+R0OpWUlEQghl8KDg5WaGiooqKiFBEREfAPw6VFCAYABKSQkBCVKlVKpUqVsroUABZgABQAAAACDiEYAAAAAYcQDAAAgIBDCAYAAEDAIQQDAAAg4BCCAQAAEHAIwQAAAAg4hGAAAAAEHEIwAAAAAg4hGF6ciU7ZJttkm2yTM9FpdTkAAAD5ghAMAACAgEMIBgAAQMAhBAMAACDghFhdAKx14bhfp8uZ4dfJHHZHvtcEAACQ32yGYRhWF4GscblcstvtSkxMVGhoaJ5c0zbZlq3jjYn8dgEAANbLbS5iOAQAAAACDsMhAty5R895bTtdTpWdVlaSFDs2Vo5Qhj8AAAD/QwgOcBcb4+sIdTAGGAAA+CWGQwAAACDgEIIBAAAQcAjBAAAACDhMkeZD8mOKNAAAAF/EFGnIF4mJUlKS1VUAAADkD0IwMvTqq9KVV0offkgYBgAA/ofhED4kudvf6XSmdPsHBQUpODg4T+9z/rxUvboUG2tuX3aZNH68NGiQxCgMAABgFbfbLY/HI8nMRQ6Hg+EQgcThcMhut8tut2vKlCl5fv1ffpGOHk3d3rlTuu02qVYt6d13JZcrz28JAABwSVOmTEnJQA5H7tYyoCfYhxRUT7Akbd8uPf20NGuW5HZ776tSRXrsMWnoUMluz/NbAwAAZCgve4IJwT7Eitkhdu6UnnnGHBt8YRiuXFl69FFp2DCpSJECKQcAAEBS7nMRIdiHWDlF2q5dZhj+4APvB+Wio6Xdu6VixQq0HAAAEOCYIg0Folo16Z13zGESI0akPiD3wAMEYAAA4HvoCfYhhWmxjL17pRdekJ58UoqK8t734YfSqVNmWC5a1JLyAACAn2M4RAApTCE4M/Hx5vRqhw5J5cpJ48ZJd94phYdbXRkAAPAnDIdAofLuu2YAlqTDh83hEtWrm73GTqe1tQEAACQjBCNP9e4t3XefFBaW2hYbK40da44rfv556dw5y8oDAACQxHAIn+ILwyGSHT4s/d//SW+8IcXFee8rVUp68EFp1CgpMtKa+gAAgG9jTHAA8aUQnCw2Vpo2TXr9dXM55rQuu0zaulXKh7U+AACAn2NMMAq1smXNHuFdu8yH5NKucDhoEAEYAABYg55gH+KLPcEXOnbMfEhu5kzpr7/MxTbS+v13qUYNqXhxS8oDAAA+guEQAcQfQnAylyt1wY1kCQnS5ZdLZ89KY8aYD9hdGJIBAAAkhkPAR2X0e3XGDGn/fun0aXMRjqpVpQkTpBMnCrw8AADg5wjBKDTcbu/V586ckZ56ygzD48dLx49bVhoAAPAzDIfwIf40HCIzp05Jr7wivfSS+XVaERHmtGoPPiiVLm1FdQAAoLBgTHAACYQQnOz0aenVV6UXX5ROnvTe53BIDz9sDpUAAACBiTHB8EtRUdLjj0u7d0tPPy2VKJG6z+k0H6IDAADIKXqCfUgg9QRf6OxZ6X//MxfeSEgww3HJkt7HJCVJISGWlAcAAAoYPcEICJGR0iOPmOF33rz0ATgxUapb15xa7eBBS0oEAAA+hBAMnxIRIbVsmb79o4+kf/4xH6qrXl0aPdqcbg0AACAjhGD4hRkzUr9OSJBee0267DJzNol9+6yrCwAAFE6EYPiFRYukl1+WKlRIbUtMlF5/3QzDd90l7d1rXX0AAKBwIQTDLxQtKt17r7Rzpzm1WkxM6j6XS3rzTXNJ5jvvNMcVAwCAwEYIhl8JC5PuuccMw6+/LlWqlLrP5ZLeflt64w3r6gMAAIUDU6T5kECeIi2nEhKkDz6QnnnGHA4RHm72BLPiHAAAvo0p0oCLKFLEHAKxfbv0zjvSk0+mD8Aul7kU8/bt1tQIAAAKHj3BPoSe4PzxwQfSsGFSUJA0YIC5Ul2tWlZXBQAALoaeYCAXkpKkp54yv/Z4pFmzpCuvlAYOlLZssbY2AACQfwjBCGg2m/TEE1KNGqltHo/0ySdSnTpS//7S5s3W1QcAAPIHIRgBLThYuvVWM+jOnOk9DMIwpDlzpKuukvr2lf76y7o6AQBA3iIEA5JCQqRBg6S//5Y+/liqXTt1n2FIn38u1asnffihdTUCAIC8QwgG0ggONh+O27RJmj3bHB+cLCxMuuEG62oDAAB5hxAMZCA4WOrXzxwC8dln5pCIkSOlsmW9j0tKkjZutKZGAACQc4Rg4CKCgqQ+fcyg+/TT6ffPmSM1aCB17y6tXVvg5QEAgBwiBANZEBRkrjaXltudOr3a3LlS06bSjTdKa9YUfH0AACB7CMFADh0+nD4Y//CDdM01UufO0qpV+XdvZ6JTtsk22Sbb5Ex05t+NAADwU4RgIIdiYqR166TvvpOaNPHe99NPUvPmUqdO0m+/WVMfAADIHCEYyAWbTerWzRwCMW+edPXV3vsXLJBatJDat5e2brWmRgAAkB4hGMgDNpvUpYs5BOLHH6Vmzbz3r1ghRUZaUxsAAEiPEAzkIZvNnEv4t9+k+fOla6812++4Q6pQwftYwzBfWeFMdHq/XKnjgJ0uZ7r9AADg4myGkdW/hmE1l8slu92uxMREhYaGWl0OssAwpCVLzBXoYmK8982ZI73+ujRxotS2rRmgM2ObfJGdGd13Ij/WAAD/lttcRE8wkI9sNqldu/QB2OORpkyRli83xwtff720cGHWe4YBAEDu0BPsQ+gJ9h+LF5vh90LNm0tPPGHOKpG2Z/jCIQ5Ol1Nlp5nL18WOjZUj1OG132H33gYAwN/QEwz4oHbtUnuB01q50pxjuHlzc87h5H+iOuwO71ea0OsIdaTbDwAALo4QDFjkuuvMIRC//ip17Oi9b/Vqc/W5q682V6Pj/2sAAMhbhGDAYtdea84k8dtv5swSaa1dK/XuLR08aE1tAAD4K0IwUEg0b27OMbxqlTnncLLhw9M/WAcAAHKHB+N8CA/GBZa1a6Wnn5ZeflmqXNl738KF0pkzUq9eUhD/lAUABKDc5iJCsA8hBEMyp1dr0ED66y+pXj1zvuErrrC6KgAAChazQwAB5ptvzAAsSX/+KbVuLW3ebGVFAAD4HkIw4GNq15Zuvjl1+8gRc8W5f/6xriYAAHwNIRjwMVdeKX3+ufTRR6kLasTGSm3aSFu3WlsbAAC+ghAM+KjBg6UZM1KD8OHDZhDets3augAA8AWEYMCHDRkivf9+ahA+dMgMwtu3W1sXAACFHSEY8HFDh0rvvpu6ffCgGYR37LCsJAAACj1CMOAHbrtNeued1O0DB6QffrCuHgAACjtCMOAnbr9deust8+tnnpHuvdfaegAAKMxYLMOHsFgGsmLDBnMxDQAA/BmLZQDwklkAPnu2QMsAAKBQIwQDAeD//s9cYnnPHqsrAQCgcCAEA35u6lRp3Dhp925ziWWCMAAAhGDA74WHp369e7c5fdrevZaVAwBAoUAIBvzc6NHS9Omp27t2mUF43z7LSgIAwHKEYCAAjBkjvfhi6va//5pBeP9+62oCAMBKhGAgQNx/v/TCC6nbO3eaY4QPHLCsJAAALEMIBgLIAw+YM0Uk27nT7BEmCAMAAg0hGAgwY8eaM0Yk277dDMIHD1pXEwAABY0QDASgceOkZ59N3Q4Lk1iEEAAQSEKsLgCANR55RDIMac4cadEiqXRpqysCAKDg2AzDMKwuAlmT2zWygYzExUlFi1pdBQAA2ZPbXMRwCCDAZRSAd+6UYmMLvhYAAAoKIRiAl+3bpVatpLZtpSNHrK4GAID8QQgGkOL48dS5gzdvNoPw0aNWVwUAQN4jBANIUaKENHx46vbff0vt2hGEAQD+hxAMIIXNJk2eLI0fn9r2119S+/bSsWPW1QUAQF4jBAPwYrNJU6ZIjz2W2vbnn2YQPn7curoAAMhLhGAA6dhs0lNPmXMJJ9u40QzCJ05YVxcAAHmFEAwgQzab9Mwz5upyyTZsIAgDAPwDIRhApmw26bnnpIceSm374w+pc2fJ7bauLgAAcosQDOCibDZp6lTpwQfN7eBg6YEHzF8BAPBVIVYXAKDws9mk//s/KShIatpU6tPH6ooAAMgdm2EYhtVFIGtyu0Y2AACAv8htLmI4BIBc8XjMXuIzZ6yuBACArCMEA8gxj0caMcKcQaJTJ4IwAMB3EIIB5Njs2dJ775lfr1ol3XCDdPastTUBAJAVhGAAOda/vzRyZOr2ypXm9GkEYQBAYUcIBpBjQUHS//5nDolI9uuvUpcu0rlz1tUFAMClEIIB5EpQkPTGG9Ltt6e2rVhBEAYAFG6EYAC5FhQkvfWWNHx4atvy5dKNN0pOp3V1AQCQGUIwgDwRFCS9/bY0bFhq2y+/SF27EoQBAIUPIRhAngkKkt59Vxo6NLVt2TLp2WetqggAgIwRggHkqeQgfOut5vYNN0iPP25tTQAAXCjE6gIA+J/gYOn996WGDc0p1MLCrK4IAABvNsMwDKuLQNbkdo1sAAAAf5HbXMRwCAAFasUK6eabpfh4qysBAAQyhkMAKDC//GLOH+x0mq+vv2aoBADAGvQEAygwH36YOl3aTz9JN90kJSRYWxMAIDARggEUmLfekvr0Sd3+8Uepd2+CMACg4BGCARSYkBDp44/NMcHJ5s0ztwnCAICCRAgGUKBCQ6VPPjF7gJN9/73ZQ5yYaF1dAIDAQggGUOBCQ6XZs6VevVLb5s6V+vYlCAMACgYhGIAlQkOlOXOknj1T2779VrrlFsnlsqwsAECAIAQDsIzdLn36qdS9e2rb4sXStm3W1QQACAyEYACWstulzz+XunWTIiOl+fOlOnWsrgoA4O9YNtmHsGwy/FlCgrR9u3TVVVZXAgDwBSybDMAvFCmScQCOi5OSkgq+HgCAfyMEAyi0zp83xwsPHkwQBgDkrRCrCwCAjCQH4MWLzW2bTfroI3PBDQAAcoueYACFUlCQFBycuj17tjRkiOR2W1cTAMB/EIIBFEphYdI330gdOqS2ffKJNHQoQRgAkHuEYACFVtGi5gIa7dunts2aJQ0bRhAGAOQOIRhAoZYchNu2TW2bOVMaPpwgDADIOUIwgEIvPFyaO1dq0ya17cMPpTvukDwe6+oCAPguQjAAn5AchFu3Tm2bMYMgDADIGUIwAJ/hcEjffy+1bJnaVqSIdfUAAHwXyyb7EJZNBkznzkldukj16kmvvmrOIQwACCy5zUWEYB9CCAZSxcWZ06gRgAEgMOU2FzEcAoBPKlo04wC8Zo3EP+0BAJdCCAbgNz7+WGreXLrnHoIwAODiCMEA/ML330u33mrOFPH669K99xKEAQCZIwQD8AvXXy81aZK6/dpr0pgxBGEAQMYIwQD8QlSUNH++1LRpaturr0r3308QBgCkRwgG4DeKF5cWLPDuEX75ZemBBwjCAABvhGAAfiU5CDdunNo2fbo0dixBGACQihAMwO9ER0sLF0qNGqW2vfiiNG4cQRgAYCIEA/BLyUG4YcPUtmnTpOees64mAEDhQQgG4LdKlJAWLZIaNDC3K1eWbrnF0pIAAIUEIRiAX0sOwt27S8uWSdWrW10RAKAwsBkGI+R8RW7XyAYAAPAXuc1F9AQXoP3792v06NFq3ry5wsPDZbPZtHv3bqvLAgJWbKy5qEZ+dQU4E52yTbbJNtkmZ6Izf24CAMgRQnAB2rFjhz777DNFR0fr+uuvt7ocIKAdPiy1aSONHi1Nnmx1NQCAgkYILkAtW7ZUbGysfvjhB/Xp08fqcoCAds890pYt5teTJxOEASDQEIILUFAQ326gsHj9denKK1O3J02SpkyxrBwAQAHzm1R2+PBhzZw5U/fee6+aN2+uokWLymazqXXr1lk6f+nSperatatKly6tokWLqnbt2powYYKcTsbxAf6oTBlpyRLpiitS2554Qnr66Zxf05no9H65Uv/8cLqc6fYDAKwTYnUBeWXOnDm6//77c3Tuq6++qjFjxsgwDFWsWFGVKlXS5s2b9dRTT+nLL7/UihUrVKJEiTyuGIDVypY1g3CbNtI//5htjz8uBQVJjz6a/etFPBuR+b2mlU3XZkxkch4AsIrf9AQXK1ZM7du316OPPqqvvvpKEyZMyNJ569at03333SdJeuutt7R3716tX79e//77rxo3bqwtW7bojjvuSHfeokWLZLPZLvnKak80AGuUK2cG4Zo1U9see0yaOtW6mgAA+c9veoJvu+023XbbbSnbBw4cyNJ5U6ZMkcfj0a233qoRI0aktFeoUEGzZ89W7dq19dVXX+nPP/9UvXr1UvZfe+212pL8VM1FhIeHZ+NdALBC+fLS0qVS69bS9u1m2yOPmD3CDz2U9euce/Sc17bT5UzpAY4dGytHqCOPKgYA5JbfhOCcOHfunH766SdJ8grAyWrUqKG2bdtq0aJF+vzzz71CcHh4uGrXrl1gtQLIXxUqmEG4TZvUIDxunNS2rdS4cdau4bBnHnIdoY6L7gcAFCy/GQ6RE3/88YcSEhJUpEgRXX311Rkekzyf76pVqwqyNAAWiIkxg/Dll5vbL72U9QAMAPAtAd0TvG3bNklS5cqVM11u77LLLpMkbd26NU/u+cUXX0gyxyJL0o8//qjSpUurdOnSatWqVZ7cA0DOJQfhhQulYcOsrgYAkF8COgSfOHFCki4680PyvpMnT+bJPS9cJOPuu++WJLVq1UrLli3L0jVcLleG7UFBQQoODs5VfQCkihUJwABQWLjdbnk8nnTtmeWhrAro4RDx8fGSJLvdnukxRYoUkSTFxcXlyT0Nw8jwldUALEkOh0N2uz3dawoz/QP56sknpVdfzfrxDrtDxkRDxkSD8cAAkENTpkzJMPc4HLn7czWge4LDwsIkSYmJiZkek5CQIEkqWrRogdSUFU6nM8PhG6xIB+SfSZNSl1YOCpJGjbK0HAAIGBMmTND48ePTtbtcrlwF4YAOwdHR0ZJSh0VkJHlf8rGFQWhoaKZjmAHkvVOnpA8+SN2+5x7JZpP+G80EAMhHwcHB+TLcM6C7Dmv+Nzv+3r17Mx1XsnPnTq9jAQSe4sXNh+UqV05tGzVKevNNy0oCAORSQIfghg0bym63KyEhQWvWrMnwmOXLl0uSmjdvXpClAShkqlUzg3ClSqltd90lvfWWdTUBAHIuoENwZGSkOnXqJEl6++230+3fvn27lixZIkm6+eabC7Q2AIVP9epmEK5YMbVt5EjpnXesqwkAkDMBHYIlc7C1zWbTzJkz9fbbb8swDEnSoUOH1L9/f3k8HvXs2VP169e3uFIAhcFll0nLlpnzCScbMUJ6913LSgIA5IDNSE59Pm7fvn1q2LBhynZ8fLycTqdCQkIUFRWV0j5u3DiNGzfO69zp06frgQcekGEYqlSpkkqVKqXNmzcrISFBtWrV0ooVK1SqVKkCey+ZcblcstvtSkxM5ME4wGI7dkitWkkHD6a2vfeedNtt1tUEAIEkt7nIb3qC3W63jh8/nvJyOp2SpKSkJK/28+fPpzv3vvvu08KFC9W5c2c5nU5t3rxZVapU0WOPPaa1a9cWigAMoHC5/HKzR7h8+dS2N9+UkpIsKwkAkA1+0xMcCOgJBgqfrVulNm3MccILFpgzSQAA8l9uc1FAzxMMALlVq5b0889S6dIEYADwJYRgAMilGjUybnc6pVyu6gkAyCd+MyYYAAqTzZulmjWlTz6xuhIAQEboCQaAPLZpk9S2rXT0qDR4sLnEcv/+VlcFAEiLnmAAyEcejzRwoDl12v79VlcDAEhGCAaAPHbVVdLixVLy7IqGIc2YYY4dfvhh6eRJa+sDABCCASBf1K0rLVki1a6d2hYfLz3/vLnq3LRp5jYAwBqEYADIJ3XrSn/9Jb31llSuXGr7yZPSQw+ZD859+ql19QFAICMEA0A+CgmRRowwl1l+6ikpMjJ13759ZjsAoOCxYpwPYcU4wPcdO2aG4ddfN8cMb9/OXMIAkBO5zUX0BPsgl8uV8nK73VaXAyAbSpWSpk83l1ueOTN9AI6Lk0aONMMxAMCb2+32ykG5QQj2QQ6HQ3a7XXa7XVOmTLG6HAA5UK2a1K5d+vZXXzXHEF95pTRqlBQbW/C1AUBhNWXKlJQM5Mjlf6MxHMKHJHf7O53OlG7/oKAgBQcHW1wZgLxw8qRUvbp06lRqm8MhjR0rPfig93hiAAhEbrdbHo9HkpmLHA4HwyECSWhoaMqLAAz4j6go6X//k6pWTW1zOqXJk6XLLzf35fJ//wDApwUHB3vloNwgBANAIREUJA0YIP3zjzluuGTJ1H1Hjkj33GMOk/jsM3MBDgBAzhGCAaCQKVJEGjNG2rlTGj9eKlo0dd+OHdItt0jXXCNt22ZdjQDg6wjBAFBIRUWZ06nt2GHONZx29NPOnVLZstbVBgC+jhAMAIVchQrmjBGbNkk9e5ptjz9uhmQAQM4U2OwQu3fv1tatW3Xy5ElJUnR0tGrVqqWqaZ8AwUWxWAYASVq1SmrY0Bw2kdY775jjiR97zHs8MQD4o9zmonwPwR9//LGmTJmi7du368Jb2Ww21ahRQ0888YQGDBiQn2X4BUIwgMycPWvOIHHkiNlD/Oij0r33eo8nBgB/UqhXjPvf//6noUOHql27dlq8eLEOHjyouLg4xcXF6dChQ1qyZInat2+vYcOG6fXXX8/PUgDAr73+uhmAJen0aemRR6QaNaT335dYWBIA0svXnuDq1atr1KhRevDBBy963LRp0/S///1Pu3btyq9S/AI9wQAyc/689Mor0nPPmSE4rSuvNNu7dpVsNmvqA4C8Vqh7gg8fPqxGjRpd8rhGjRoplrVBASDHwsPN3t+dO6UHHpDs9tR9mzdL3btLrVqZ44kBAPkcghs3bqyXXnpJCQkJmR6TkJCg6dOnq0mTJvlZCgAEhJIlpRdekLZulQYP9u75Xb5cat5cGjbMuvoAoLAIyc+Lv/rqq+rYsaOqVKmiLl26qHbt2ipevLgk6fTp0/rnn3/0ww8/yOPxaOHChflZCgAElKpVpY8+kh580Owh/umn1H2XXWZZWQBQaOT77BDHjh3TG2+8oQULFmjbtm1eU6TVrFlTnTp10siRI1WqVKn8LMMvMCYYQE4tWSKNGycdOGAuvuFweO83jMAdL+xMdCri2QhJ0rlHz8lhd1ziDACFQaGYIu2bb75RaGiorr76apUuXTq3l0MmCMEAcsPjkXbvlqpX926Pj5datJCGDJFGjvQeTxwICMGAb7L8wbht27apb9++Gjx4sI4dO5bbywEA8klQUPoALEmvvSatXy+NGSPVri3Nnm0GZgDwZ7kOwW+++abcbremTp2qK6644pLH//vvv5o7d64OHDiQ21sDAHIpKcmcWi3Zrl3SgAFS06bSokXW1QUA+S3XIXjx4sUqXry4brvttiwdX6VKFT3++OOqUqWKtm3bltvbAwByISREWrNGuusuKTg4tX39eqlDB6lTJ+mPP6yrLz84E53eL5czdZ/LmW4/AP+U6zHBkZGRatmypebNm5flcz7//HPdcsstevLJJ/X444/n5vYBhTHBAPLTtm3S+PHSF1+k3zdwoDRlilStWsHXlddsk7P3BKAxMV+fHweQQ5aPCfZ4PIqKisrWOb169VJERISWLFmS29sDAPJIzZrS55+bC2q0bOm97+OPzfHC339vTW0AkNdyPU9w2bJltXfv3uzdNCREV199tTZv3pzb2wMA8tg110jLlkk//GDOMbxpk9keESFdd52lpeWJc4+e89p2upwqO62sJCl2bKwcocwOAQSCXPcE16tXT+vWrdORI0eydV7ZsmV14sSJ3N4eAJAPbDbpxhulDRukGTOkihXNoRL/rXeUIinJfPkSh93h/UoTeh2hjnT7AfinXIfgm2++WQkJCXryySezdV5cXJxCQvJ1wToAQC4FB0tDh5rjhUeNSr//nXekunWlb74xF9wAAF+R6xDcr18/XXnllXrjjTc0bdq0LJ3j8Xi0evVqValSJbe3D0gulyvl5Xa7rS4HQAAoWlQqUsS77dw5afJk6Z9/pF69zKESv/5qTX0AAoPb7fbKQbmR6xAcEhKiDz/8UBEREXr44YfVo0ePS44RfvHFF3Xo0CG1b98+t7cPSA6HQ3a7XXa7XVOmTLG6HAABavFiKe1IuN9+M4Nwz57Sli2WlQXAj02ZMiUlAzkuXP89m/Jk2WRJWrVqlbp166bjx48rNDRU3bt3V/fu3dW4cWOVL19ekrR161a99957ev/99xUWFqa//vpL1TNavggZSp4KxOl0pkwFEhQUpOC0k3sCQAH66y/p0UelC2fJDAqSbrtNmjRJiomxpDQAfsjtdsvz35KWLpdLDocjx1Ok5VkIlqSjR49q9OjR+vzzz2UYhmy29HMxGoah0NBQzZw5U3379s2rWwcE5gkGUFj9/LM0bpy58EZaRYtK990nPfywlM3ZNAHgonKbi/I0BCfbtm2b3nnnHS1cuFCbNm1KSeyRkZHq2LGjxo8frwYNGuT1bf0eIRhAYWYY0pdfSo89Jm3f7r2valWzjeehAeSVQhmC0/J4PDp+/LhsNptKliyZYe8wsoYQDMAXuFzSu++aD83FxpptkydLTzxhbV0A/IvlIbh69erq3r27unbtqtatWzPtWT4iBAPwJefOSS++KM2cKf3xh7nYRlpHjkhlylhTGwDfZ3kIrlmzpnbs2CGbzabIyEjdcMMN6t69uzp37qzo6OjcXBoXIAQD8EVJSemHQcTHS7VqmUs1P/ec1LixNbUB8F2Wh2DJnPXh22+/1dy5c7Vq1Sp5PB4FBwfr2muvVffu3dWtWzfVqFEjt7cJeIRgAP7ihReksWNTt/v3l556SmLCIABZVShCcFrHjx/XvHnz9N1332nhwoU6e/asbDabatSooR49eqhr16667rrrGBucA4RgAP6iTx/piy+820JDpZEjpQkTpNKlrakLgO8odCE4LZfLpSVLlmju3Ln6/vvvtXfvXtlsNpUoUUJdunRR9+7d1alTJ0VcOFAMGSIEA/AXhiHNn29Onfbnn977IiOlhx6SHnhAyuVc+AD8WKEOwRf6888/9e233+r777/X2rVrZRiG7Ha7Xn31Vd1xxx0FVYbPIgQD8Dcej/Txx9Ljj0sXLjZarpw0caI0fLjZSwwAaflUCE7r8OHDmjt3rubOnauWLVtqbNrBYcgQIRiAv4qPl15/XXr6aenECe99zzxjrkoHAGn5bAhG9hGCAfi7U6ekqVOl6dPNYBwdLe3caf4KAGnlNhcF5UNNXuLi4rR///6UVeMAAMhM8eLSs8+aq8sNH24+JHdhAHa5pC1bLCkPgB/J9xBcq1YtXX311SpWrJg6deqkDz74QHFxcV7HPP/889q4cWN+lwIA8BEVK5qrzt1/f/p9778vXXWVdNtt0v79BV8bAP+Q7yG4UqVKuuOOO/Trr7/qjjvu0LJly3TFFVfoueee0/nz5yVJt9xyi+666678LgUA4OOcTmnSJPOBuhkzpBo1zBkmTp60ujIAvibfQ/Cnn36q/fv36/rrr9eECRMUFBSkoUOH6ocfftCVV16pjz/+WIsWLdKJC5+EAADgAnv3SlFRqdvx8dLzz0uXXSZNm2ZuA0BWFNiDcS6XS7/++quWL1+utWvXau/evTpy5IhsNpsOHTqkL7/8Uj179iyIUnwWD8YBgLkM8/vvmz3Chw5576tUSZoyRRo0SAoOtqQ8AAWkUMwO8c033yg0NFRXX321SudgmZ9Zs2bpq6++0ldffZXbUvwaIRgAUjmd5iwSU6dKZ89676tbV3ruOalzZ4kFSgH/ZHkI3rZtm6666ipFRETo119/1RVXXJGj6yQmJsput+emFL9HCAaA9I4dk556ypxn2OVKbY+IkHbvlkqWtKw0APnI8inS3nzzTbndbk2dOjVLAfjff//V3LlzdeDAAa92AjAAICdKlTJ7hP/5RxowILV97FgCMIDM5bonuH79+tq/f7+OHDmi4CwMwHK73WrUqJH+/vtvbd68WTVr1szN7QMKPcEAcGnr15tDJN59V4qM9N63erVUtapUtqwlpQHIQ5b3BP/7779q1qxZlgKwJAUHB+vxxx+Xx+PRZ599ltvbAwDgpVEj6dNP0wfg+Hjpllukyy+XJk9OP44YQGDJdQj2eDyKSjtfTRb06tVLERERWrJkSW5vDwBAlrzxhrRnj3TunDmzxOWXpx9HDCBw5DoEly1bVnv37s3WOSEhIbr66qv1zz//5Pb2AABkSbFi3mOEjxyRRo2SrrxS+vxzqWAmDAVQWOQ6BNerV0/r1q3TkSNHsnVe2bJlWSADAFBghg+Xdu6Uxo+XihZNbd+xQ+rbV7r+eunoUevqA1Cwch2Cb775ZiUkJOjJJ5/M1nlxcXEKCQnJ7e0DksvlSnm53W6rywEAnxEVZU6ntmOHNGKE94Iav/4qtW1r9hADKJzcbrdXDsqNXIfgfv366corr9Qbb7yhadOmZekcj8ej1atXq0qVKrm9fUByOByy2+2y2+2aMmWK1eUAgM+pUEF66y1p0yYp7WKlmzZJ7doRhIHCasqUKSkZyOFw5OpauQ7BISEh+vDDDxUREaGHH35YPXr0uOQY4RdffFGHDh1S+/btc3v7gOR0OpWYmKjExERNmDDB6nIAwGfVri199ZU5RCLZnj1SNh91AVBAJkyYkJKBnE5nrq6VJ8smS9KqVavUrVs3HT9+XKGhoerevbu6d++uxo0bq3z58pKkrVu36r333tP777+vsLAw/fXXX6pevXpe3D4gME8wAOQPw5AmTJBeeUVasEBq1szqigBciuXLJqd19OhRjR49Wp9//rkMw5AtgwXbDcNQaGioZs6cqb59++bVrQMCIRgA8o9hSPv2SZUrW10JgKwoVCE42bZt2/TOO+9o4cKF2rRpkzwejyQpMjJSHTt21Pjx49WgQYO8vq3fIwQDQME7f15yOqXSpa2uBEBahTIEp+XxeHT8+HHZbDaVLFkyw95hZA0hGAAK1vnzUvfu0qFD0pIlLLcMFCa5zUX5PkdZUFCQSvPPZwCAj3G5zAC8eLG53bYtQRjwJ7meHQIAAH8UGipdd13q9ubNUps20uHD1tUEIO8QggEAyMSkSdLEianbW7YQhAF/QQgGAOAiLgzC//xDEAb8ASEYAIBLmDTJfCVLDsKHDllVEYDcIgQDAJAFEydKkyenbhOEAd9GCAYAIIueeMI7CG/dagbhkyetqwlAzhCCAQDIhieekJ58MnW7XTupeHHLygGQQ/k+TzAAAP5mwgTz10OHpNdek1gHCvA9+b5iHPIOK8YBQOFiGARgwCq5zUUMhwAAIIcyCsBffSUdPFjwtQDIHkIwAAB5ZNYs6eabpdatpQMHrK4GwMUQggEAyAN//y0NGWIOkdi+3Zw1giAMFF6EYAAA8kCdOtJTT6VuE4SBwo0QDABAHnn0UemZZ1K3t283h0bs329ZSQAyQQgGACAPPfqo9Oyzqds7dhCEgcKIEAwAQB575BHpuedSt3fuJAgDhQ0hGACAfPDwwxkH4X37LCsJQBqEYAAA8snDD0tTp6Zu79wpDR1qWTkA0iAEAwCQj8aNk55/3vy6cmXp3XetrQeAKcTqAgAA8HcPPSRFRkodO0rVqlldDQBJshmGYVhdBLImt2tkAwAA+Ivc5iKGQwAAYJHYWKlrV2nvXqsrAQIPIRgAAAvExporys2bZ84asWeP1RUBgYUQDACABX78Udqyxfx61y6CMFDQCME+yOVypbzcbrfV5QAAcmDoUOnFF1O3d+8mCAOX4na7vXJQbhCCfZDD4ZDdbpfdbteUKVOsLgcAkEP33y+99FLqdnIQ3r3booKAQm7KlCkpGcjhcOTqWswO4UOSn4J0Op0pT0EGBQUpODjY4soAALkxfboZiJNVqSItWyZVrWpRQUAh5Xa75fF4JJm5yOFwMDtEIAkNDU15EYABwPfdd58ZhJPt2UOPMJCR4OBgrxyUG4RgAAAKgTFjCMJAQSIEAwBQSIwZI738cur2nj3S4sXW1QP4M0IwAACFyL33Sq+8Yn798svS8OHW1gP4Kx6M8yEsmwwAgWPjRql+faurAAovlk0GAMAPZRaAT5wo2DoAf0UIBgDAR0yaJDVoIO3caXUlgO8jBAMA4AMmTzZf+/aZs0YQhIHcIQQDAOADSpdO/Xr/foIwkFuEYAAAfMDdd0uvv566nRyEd+ywrCTApxGCAQDwEXfdJb3xRup2IAVhZ6JTtsk22Sbb5Ex0Wl0O/AAhGAAAHzJypHcQPnAgcIIwkJcIwQAA+JiRI6U330zdTg7C27dbVhLgcwjBAAD4oDvvlN56K3U7OQjzsByQNSFWFwAAAHJmxAjz1zvvNH+tUEEqUcK6evLSheN+nS5nhl8nc9gd+V4T/AvLJvsQlk0GAGTknXfM1/z5UnS01dXkDdtkW7aONyYSZwINyyYDABDg7rhD+u03/wnAQEFgOAQAAH4gJIO/0f/+22yvVavg68mtc4+e89p2upwqO62sJCl2bKwcoQx/QO4QggEA8EN//y21aWOG4KVLfS8IX2yMryPUwRhg5BrDIQAA8DNnz0rt20tHj0qHDplheOtWq6sCChdCMAAAfiYyUnr6acn237Nlhw6Z06f984+lZQGFCiEYAAA/dNtt0rvvpgbhw4fNHmGCMGBiijQfwhRpAIDsmjFDGj5cSv7bvlw5c4xw7drW1gXkFlOkAQCATA0bJr3/vnePcOvW0pYtlpYFWI4QDACAnxs61DsIx8aaQyMIwghkhGAAAALA0KHm0Ii0QbhTJyk+3tKyAMswTzAAAAFiyBDz12HDzPmDX3tNCguztibAKoRgAAACyJAhUlCQFBUlde9udTWAdZgdwocwOwQAAICJ2SEAAECuJSVJo0ebyy0DgYAQDABAgEtKModJvPaaOWvEpk1WVwTkP0IwAAABbuVKac4c8+ujR6W2bQnC8H+EYAAAAtz110sffWQ+MCcRhBEYCMEAAEADB6YPwgyNgD8jBPsgl8uV8nK73VaXAwDwEwMHSjNnpgbhY8fMIPzXX9bWBSRzu91eOSg3CME+yOFwyG63y263a8qUKVaXAwDwIwMGpA/CbdtKf/5pbV2AJE2ZMiUlAzkcjlxdi3mCfUjyfHhOpzNlPrygoCAFBwdbXBkAwN/Mni0NGiR5POZ2qVLS4sVSvXrW1oXA5na75fnvN6XL5ZLD4WCe4EASGhqa8iIAAwDyQ//+0scfe/cIv/KKtTUBwcHBXjkoN1g2GQAAZKhfP/PXgQOlHj2k11+3th4gLxGCAQBApvr1kypUkJo1k+x2q6sB8g7DIQAAwEW1bJlxAI6PL/hagLxCCAYAANm2cKFUo4a0caPVlQA5QwgGAADZsnCh1L27tH+/OX3ahg1WVwRkHyEYAABky6lTUvI6BSdOSO3aSX/8YWlJQLYRggEAQLb06WPOI5w8SydBGL6IEAwAALKtTx9pzpzUIHzyJEEYvoUQDAAAcuTmm6VPP00fhNevt7YuICsIwQAAIMd69zaDcMh/Kw+cPCm1b08QRuFHCAYAALmSURBu105at87auoCLIQQDAIBcu+km6bPPUoOwzWa+gMKKEAwAAPJEr15mEC5TRlq0SGrUyOqKgMzZDMMwrC4CWeNyuWS325WYmKjQ0FCrywEAIENOp+RwWF0F/F1ucxE9wQAAIE9lFIDPnpX+/LPgawEyQwgGAAD56uxZqUsXqWVL6fffra4GMBGCAQBAvjEMqWdPacUK6fRpqUMHgjAKB0IwAADINzabdO+9UvKQzeQgvGaNtXUBhGAAAJCvevSQvviCIIzChRAMAADyXffu0pdfpgbhM2fMILx6tbV1IXARggEAQIHo1i19EO7YkSAMaxCCAQBAgenWTfrqq/RBeNUqa+tC4CEEAwCAAtW1qxmE7XZzOzkI795taVkIMIRgAABQ4C4MwnfeKVWpYm1NCCwsm+xDWDYZAOBvfvhBWr5ceuYZczo1IKtym4sIwT6EEAwAAGDKbS5iOAQAACh0ZsyQfvvN6irgzwjBAACgUHn3Xem226ROnaRff7W6GvgrQjAAACg0Dh40l1mWpHPnpBtuIAgjfxCCAQBAoVGhgvT111KRIuZ2chBescLauuB/CMEAAKBQ6dRJ+vZbgjDyFyEYAAAUOhcGYafTDMLLl1tbF/wHIRgAABRKnTpJ330nhYWZ206n1KGDNG2a5HZbWxt8HyEYAAAUWh07mj3CyUE4IUF66CGpTRvp1ClLS4OPIwQDAIBCrWNH6ccfpfLlU9vCw6WoKOtqgu8jBAMAgEKvdWvpr7+kfv2k4sWl995jmWXkDssm+xCWTQYAQNq3T6pUKX37unVS48YFXw+swbLJAAAgoGQUgOfPl5o0MXuKjx8v+JrgewjBAADAp508aS6zLEmffirVrWuOIQYuhhAMAAB8mtMpXXZZ6vahQ1KXLtKIEdLZs9bVhcKNEAwAAHxaxYrS0qXS//2fZLentr/zjlS/PgtsIGOEYAAA4POCg6WxY82H4xo2TG3ftUtq1cqcWzg+3rr6UPgQgn2Qy+VKeblZMgcAgBRXXSWtWiVNmGAGY0kyDHOVuSZNpPXrra0PueN2u71yUG4Qgn2Qw+GQ3W6X3W7XlClTrC4HAIBCxW6XnnxS+u03qVat1Pa//5ZeecW6upB7U6ZMSclADocjV9dinmAfkjwfntPpTJkPLygoSMHJ/9QFAABezp+XHntMevllc+zwX3+Zi23AN7ndbnk8HklmLnI4HDmeJ5gQ7ENYLAMAgJxZskQKCjJXnkvLMMxXEP837nNYLAMAAOAS2rZNH4AlaeZMqX17ac+eAi8JFiMEAwCAgLRvnzR6tDm9Wt260owZZq8wAgMhGAAABKSZM6UzZ8yvz541V53r2VOKjbW0LBQQQjAAAAhIjz5qBuGoqNS2774zp1n78kvr6kLBIAQDAICAZLNJgwZJmzZJHTqkth87Jt18szR4sHTqlGXlIZ8RggEAQECrWFGaP196/XUpPDy1fdYss1d4wQLrakP+IQQDAICAZ7NJd90lbdggNW+e2n7ggNSpk/T115aVhnxCCAYAAPhPjRrS8uXSs89KyVPP1qkjde5sbV3Ie4RgAACANIKDpUcekdaulZo0MR+eCwuzuirkNVaM8yGsGAcAQMEyDHOoxIVmzZLq1TNfsAYrxgEAAOSTjALwpk3S8OFmL/Fzz0lud8HXhdwjBAMAAGSRxyMNGSIlJkoulznX8PXXS9u3W10ZsosQDAAAkEVBQWbvb0xMatvKlVKDBuYUawwy9R2EYAAAgGzo0EH66y9zoY1k589Lo0aZ06nt329dbcg6QjAAAEA2RUebs0Z8+aVUqlRq+8KF5gIbs2bRK1zYEYIBAABy6KabzAflundPbTt92lxy+eabpbNnrasNF0cIBgAAyIWyZaVvvpFmzJAiI1Pbjx71XoYZhQshGAAAIJdsNmnoUHOscJs2ksMhffCBufAGCidCMAAAQB6pUkVatEhatUqqXj39/n//LfiakDFCMAAAQB4KCjIfjrvQ8uVSzZrSmDHmbBKwFiEYAAAgn509ay6y4XZLr7wiNWokrVljdVWBjRAMAACQz44c8X5IbutW6dprpSeeMFefQ8EjBAMAAOSzyy6T1q6VHnrIfIhOMnuFp0yRmjUzp1lDwSIEAwAAFICwMOn556Wff5aqVUtt/+MPqXFj6f/+zwzGKBiEYAAAgAJ0/fXSxo3SiBGpbYmJ0rhxUuvWzCBRUAjBAAAABSwyUnrrLemHH6Ty5VPbV6yQJkywrq5AQggGAACwSOfO5njg/v3N7dKlpenTLS0pYIRYXQAAAEAgK1FC+uQTqWdPcwaJ0qWtrigw0BMMAABQCPTtK3Xtmr7966+lfv2k48cLviZ/RggGAAAopI4cke68U/r0U3MVuh9+sLoi/0EIBgAAKKRee006etT8+vBh6cYbzVklzp61ti5/QAgGAAAopCZOlKZNk4oUSW175x2pfn3pl1+sq8sfEIIBAAAKqeBg6cEHpXXrpEaNUtt37TLnFB47VoqPt6w8n0YIBgAAKOTq1JFWrZKeeMIMxpJkGNILL5irza1bZ219vogQDAAA4ANCQ6XJk6WVK6XatVPbN2+WmjXjobnsIgQDAAD4kKZNpfXrpfvuS22rXFlq2dKyknwSIRgAAMDHFC0qvfSStGSJVK2a9OGHUkSE1VX5FpthGIbVRSBrXC6X7Ha7EhMTFRoaanU5AACgEHC5zKESF5o7V6pbV6patcBLKhC5zUX0BAMAAPiwjPLfzp1S//5SvXrS+++bD9HBGyEYAADAj3g80pAhktNpLqoxfLjUo4e52AZSEYIBAAD8iM0m3X23VLx4atvcueayy198YVlZhQ4hGAAAwI/YbNKAAdKmTVLHjqntx49LffpIgwZJJ09aV19hQQgGAADwQzEx0k8/Sa+/LoWHp7Z//LH5wNyCBdbVVhgQggEAAPyUzSbddZe0caN07bWp7QcOSJ06mcMm4uKsq89KhGAAAAA/d/nl0i+/SM89J9ntqe2rV0shIdbVZSVCMAAAQAAIDpYeflj6/Xdz6rQiRaSZMzOeYi0QsFiGD2GxDAAAkBcSE6U1a6Trrku/79gxqVSpgq8pu1gsAwAAANlit2ccgNeulapUkZ55RkpKyv51nYlO2SbbZJtskzPRmftC8xEhGAAAAIqLk269VTp/Xho/Xrr+emnbNquryj+EYAAAAGj3bnOFuWSrVkkNGkivvWauQudvCMEAAADQFVdIf/1l9gYni4uTRo82p1Pbt8+62vIDIRgAAACSzKWWP/xQ+uorqXTp1PZFi8wFNmbOlNJOqeBMdHq/XKnjgJ0uZ7r9hQmzQ/gQZocAAAAF5cgRacQI6dtvvdt79ZLeessMybbJtmxd05iYd7GT2SEAAACQ58qUkb7+WvrgA6lYsdT2r7+WxoyxrKw8Q0+wD6EnGAAAWGHvXum226TFi80hE5s2STExSjfEwelyquy0spKk2LGxcoQ6vPY77N7buZHbXBSgC+X5NpfLlfJ1UFCQgoODLawGAAD4u8qVpQULpP/9z+whjokx2y8Wah2hjjwNvZLkdrvl+W+qirR5KCcYDuGDHA6H7Ha77Ha7pkyZYnU5AAAgAAQFmTNF3HJL+n3z55tDJM6fz98apkyZkpKBHI7cBWyGQ/iQ5G5/p9OZ0u1PTzAAALDSyZPSVVdJBw9KNWp4tL1Vc6niGp179Fy+9wQ7HA6GQwSS0NBQxgQDAIBC4fnnzQAsSdu3B0k7fpNGNM6XewUHB+dZ5x/DIQAAAJBjkyZJ48ZJtv9mS+vZI1ieNzbkeS9wXmM4hA/J6VOQhmGIjxkovGw2m2y27M21CQCFzYoVZhj+5hvz4bn8ltvZIQjBPiQ7H7bb7dbx48d19uxZJSYmFlCFAHLKbrcrMjJSJUuWZJw/AJ9lGKk9wvmNKdKQjtvt1t69exUfH291KQCyKDExUcePH5fT6VTlypUJwgB8ki/9pxYh2A8dP35c8fHxCg4OVtmyZeVwOBQUxPBvoLDyeDxyOp2KjY1VfHy8jh8/rjIF8X+JABDACMF+6OzZs5KksmXLKioqyuJqAFxKUFBQys/qwYMHdfbsWUIwAOQzugf9jGEYKWOAczuJNICClfwzm5iYyMOsAJDPCMF+Ju1fnAyBAHxL2p9ZQjAA5C9SEgAAAAIOIRgAAAABhxAMAACAgEMIhk9LXmmrePHiOnXqVIbHPPfcc7LZbJo0adJFr9WlSxfZbDZFRkbq/PnzmR63bNmylPu2bt060+NuuOEG2Ww2LVu2LMP9SUlJevvtt9W+fXuVLVtWRYoUUfny5dW1a1fNmTMnS2NCt27dqvvvv1/169dXdHS0QkNDVapUKV133XV6/PHHtXnz5kteozCqWrVqhiuo2Ww2Va1a1bL7AwD8ByEYfuH06dN68cUXc3x+bGysFixYIEk6d+6cvvnmmyyd9/PPP2vJkiXZvt/evXvVsGFD3XnnnVqxYoXq1q2r3r17q0aNGpo/f7769++vNm3a6OTJkxmebxiGJkyYoDp16mj69Ok6evSoWrRoob59+6pp06batm2bnn76aV111VWaOnVqtutDert3777kP3wAAL6DEAyfZ7PZFBYWppdffjnT0Hgps2fPltvtVvny5SVJM2fOvOQ5RYsWlSRNnDgxW/c6ffq0WrVqpU2bNummm27S/v37tWjRIn3yySf65ZdftHPnTrVs2VI///yzOnfurKSkpHTXePjhh/XUU0+pVKlS+vbbb3Xw4EF9//33+vjjj/Xjjz8qNjZWixYtUosWLbR9+/Zs1VeYbdmyRYsXL873+yxevFhbtmzJ9/sAAKxDCEa2OBOdsk22yTbZJmei0+pyJJnTSo0YMUJnzpzRtGnTcnSN5ND75ptvKiIiQgsXLtThw4cvek7z5s1Vv359rVixQgsXLszyvR5++GHt3r1b7dq102effaZSpUp57a9cubJ+/PFHXXnllVq9erVeeOEFr/0rV67UtGnT5HA49PPPP6t79+7p7mGz2dSuXTv98ssvGjVqVJZrK+xq166tyy67LN/vc9lll6l27dr5fh8AgHUIwfALjzzyiIoWLapXX31Vx48fz9a5W7Zs0fr161WhQgV17dpVN910k9xut2bPnn3R89KOM85qb/Dx48f14YcfSpJefvllBQcHZ3hceHh4yjCGl19+WW63O2XfCy+8IMMwNGbMGNWqVeuSNTZs2NCr7YMPPkipfdu2berXr5/Kli2roKCglGEgO3bs0KRJk9S8eXOVK1dOdrtdFStW1K233qpt27Z5Xe/IkSMKCQlRhQoV5PF4Mqxj7ty5stlsuummmy5a76VkNCY4eYz20KFDdeTIEQ0fPlzlypWTw+HQddddp99++y3l2DfffFP16tVT0aJFValSJU2aNCnDmi8cEzxp0iRVq1ZNkjkEJnlMePJ9k+3Zs0d33XWXatasqfDwcJUoUUJ16tTRnXfeqa1bt+bqvQMA8hYhGH6hfPnyGjlypM6ePav/+7//y9a5yb3A/fv3V1BQkAYNGiRJmjVr1iXP7dmzpxo1aqSVK1fqp59+uuTxS5YsUXx8vOrXr686depc9NjOnTsrOjpahw4d0oYNGyRJbrc7pde5f//+l7zfxWzdulVNmzbVmjVr1KZNG3Xo0EGhoaGSpHfffVdPPvmknE6nmjZtqu7du6tYsWKaOXOmmjZtqj///DPlOmXKlFGHDh106NAhLV26NMN7ffzxx5KU8r3NDydPnlTz5s21ePFitW7dWnXr1tWvv/6qDh066O+//9aYMWP0wAMPqFKlSmrfvr1Onz6tyZMna8KECZe8doMGDdS7d29J5nLkQ4YMSXldd911kqR9+/apUaNGevPNNyWZD1q2atVKRYoU0TvvvKOVK1fm23sHAOSAAZ+RmJhoSDISExMzPcbtdhubN282Nm/ebLjd7jyv4VzCOUOTZGiSjHMJ5/L8+tklyQgODjYMwzAOHz5shIeHGw6Hwzhy5EjKMc8++6whyZg4cWK68z0ej1G5cmVDkvHHH38YhmF+D8uXL29IMv7+++905yxdutSQZLRr184wDMP47rvvDEnG1Vdf7XVcp06dDEnG0qVLU9rGjx9vSDKGDx+epffXpk0bQ5Lx7rvvGoZhGNu3bzckGUWKFMnx5ztjxgxDkiHJuOeee4ykpKR0x6xcudL4999/07W///77hiSjTZs2Xu0zZ840JBm33XZbunPOnDljFC1a1IiKijLi4+OzVGOVKlWMjP54kmRUqVLFqy3585BkDBo0yOvnY+LEiYYk48orrzQqVKhg7NixI2Xf33//bdjtdiM8PNw4e/bsJe+/a9cuQ5LRqlWrDGt+4oknUr6nF9qzZ4/XvTOT3z+/AOBPspKLLoaeYFyUM9Hp/XKljgN2upzp9lupbNmyuuuuu+R0OrM8I8LPP/+svXv3qk6dOmrQoIEkc4xxci9rVh6Q69atm5o0aaI1a9bo+++/v+ixyUM1SpcunaX6ypQpI0k6duyY1/nR0dEZLou9cuVKDR06NN0rI6VLl9bUqVMzHJLRrFmzlP/+T2vYsGFq0aKFli1bptOnT6e09+rVSw6HQ19++aUSEhK8zvn6668VFxenm2++WUWKFMnS+86JYsWK6ZVXXknpzZak+++/XzabTZs3b9aTTz7pNZ74yiuv1I033qjz589r7dq1ub7/0aNHJUnt27dPt69y5coFMpYZAJB1IVYXgMIt4tmITPeVnVY2XZsx8dJz2+anhx9+WG+++abeeOMNPfTQQypbNn2NaSUPeRg8eLBX++DBg/Xiiy/q448/1jPPPHPJOWMnT56sG2+8UZMmTVLXrl1z9yZyYefOnSljjtP64IMP0rW1b99e4eHhmV7r3Llzmjt3rjZs2KATJ07I5XJJkg4dOiTDMLRz5041atRIkuRwONSjRw998sknmjdvntfY34IYCiFJTZo0UXR0tFdbVFSUSpQooePHj6tjx47pzqlevbok8z3lVuPGjSVJjz32mIKDg9W+fXuFhYXl+roAgPxBTzD8SunSpTVq1CidP39ezz333EWPjY+P1xdffCGbzaYBAwZ47WvQoIHq1Kmjffv26eeff77kfbt06aKrr75a69at07fffpvpcSVLlpSU2mt4KUeOHJGklBkkks8/efJkhg90DRo0SIZhpLwu1vNauXLlTPctWbJE1atX14ABA/T888/r3Xff1YcffqgPP/xQ//77ryTp7NmzXucMHDhQUmrolcz5lxcvXqyKFSuqZcuWWXnLORYTE5Nhe0RERKb7k/dd2HudE0OHDlXfvn21efNmdevWTdHR0WrZsqWeeeaZS840AgAoeIRgXNS5R895vWLHxqbsix0bm25/YfDQQw8pIiJCb7755kV7+L777judPn1aoaGh6t+/v6677jqvV/IQhKwMiZDM3mDJnEnAyGS1t/r160tSlv773ePxaOPGjZKUMlSjWrVqioyMVEJCQq5Xg8usl/LcuXPq27evjh07pieeeEKbN2+W0+mUx+ORYRgpQ0UufI8dO3ZU6dKlNW/evJShEnPmzJHb7U556DA/Xer6+X3/4OBgffrpp1q/fr0mTpyopk2bavXq1Ro/frxq1qzpNUsFAMB6hGBclMPu8H6FOlL3hTrS7S8MSpUqpdGjRys+Pl7PPvtspsclh9vExET9+uuv6V6xsWbg/+KLLxQfH3/J+95www1q3ry5NmzYoK+//jrDY9q2basiRYpo48aNlwyxP/30k06cOKHy5cunhODg4OCU/9afM2fOJWvKieXLl+v48ePq3bu3Jk+erCuuuELh4eEpQ0KSe4IvFBISoltuuUUJCQn68ssvJRXcUIjCpGHDhpo0aZJ++eUXHT16VPfff7/Onj2r++67z+rSAABpEILhlx588EFFRkbq7bff1oEDB9LtP3bsmObPny+73a4TJ054DSFI+2rdurXOnDlz0SEOaV2qN7hkyZIaMmSIJOm+++7LdF7duLg4jRs3TpI0ZswYr4fXHnzwQUnS9OnT82Xu2eRV9ypWrJhu344dO7R+/fpMz00eEvHJJ59o+/bt+v3333XVVVepXr16eV5nQbPb7ZKU4Qp+mSlWrJieffZZ2Ww2bdq0Kb9KAwDkACEYfqlkyZK69957lZCQoPfeey/d/jlz5sjlcqlTp07pHqZKK/m//rMyZ7AkdejQQdddd53++usvLV++PMNjpk6dqqpVq2rhwoW65ZZb0i3usW/fPnXp0kV///23rr76aj3wwANe+5s3b66xY8fK6XSqVatWmQb0NWvWeC2ykVU1a9aUJH311VdeY5dPnTql4cOHpzwgl5FmzZrpsssu09KlS1NW70sOxr6uVKlSCg0N1c6dOzP8vs6cOTPDoPvjjz/KMAxVqlSpIMoEAGQRIRh+68EHH1SxYsUUFxeXbl/aBTIu5uabb1ZoaKh++umnLD/MltwbnNF9Jal48eL6+eefVadOHX3xxReqWLGiOnTooAEDBqh169aqXr26li1bppYtW+qnn37ymvIr2fPPP6/x48fr6NGj6tmzp8qXL69u3bpp4MCB6tSpky6//HJdc801crvd6R76u5QmTZqoQ4cO2rt3r2rWrKlevXqpV69eqlatmg4ePKgePXpc9PyBAwfK4/Ho7bffzvChQ19lt9t1ww036PDhw6pfv75uvfVW3X777ZoxY4Yk6csvv1TdunV1+eWXq1evXhowYICaN2+um266SUFBQXrqqacsfgcAgLQIwcgWh90hY6IhY6JRaMYAZyY6OjrDcZjbtm3TmjVrFB4eru7du1/0GiVKlFDHjh2VlJSU5TG4bdu2veRMCJUrV9Yff/yht956S9dee602bNigL774Qv/88486duyoTz75RMuWLcu0l9pms+mpp55KWQmtdOnSWr58uT777DOtW7dOZcqU0bhx47Rp0yav2Rqy6ttvv9X48eNVunRp/fjjj1q3bp369eunVatWqXjx4hc9N23P7/XXX3/RWSh8zbvvvqvBgwfr+PHj+uSTT/Tee++lzB7ywAMPaNSoUYqMjNTy5cv19ddf68iRI7rlllu0evVq9enTx+LqAQBp2YzMHmNHoeNyuWS325WYmJhh76BkziiQPE60Vq1a+f5EPIC8w88vAGRdVnLRxfAnLAAAAAIOIRgAAAABhxAMAACAgEMIBgAAQMAhBAMAACDgEIIBAAAQcAjBAAAACDiEYAAAAAQcQjAAAAACDiEYAAAAAYcQDAAAgIBDCAYAAEDAIQQDAAAg4BCCAQAAEHAIwfALJ06c0KRJk9SkSRNFR0eraNGiqlatmoYMGaKVK1fm6b0mTZokm82mDz74IE+vWxBat24tm82m3bt3W10KAACWIgTD5y1evFiXX365Jk+erN27d+v6669Xjx49VKxYMX300Ue69tprdd9998nj8VhdKgAAKCRCrC4AyI3ff/9dXbp0kcvl0pNPPqlHHnlEoaGhKftXrFih/v376+WXX1ZwcLBeeOEFC6u13kcffaTz588rJibG6lIAALAUPcHwWYZhaMiQIUpMTNTEiRM1YcIErwAsSdddd50WLFigsLAwvfTSS1q1apVF1RYOlStXVu3atdN9nwAACDSEYPisH3/8UVu2bFGFChX02GOPZXrcFVdcoVGjRskwDL344ote+9KOkf3mm2/UrFkzORwOlShRQv3799f+/fuzVMtVV10lm82mrVu3Zrh/3759Cg4OVrVq1WQYxiWvl7auWbNmqXHjxgoPD1eZMmU0ZMgQHThwIN05accqr1mzRl27dlXJkiVls9m0YcOGdNe90ObNmzVw4ECVL19edrtdMTExuvXWWzN8T8uWLZPNZtPQoUN1+PBh3X777apYsaJCQkI0ffr0S74/AACsRgiGz5o3b54kqU+fPpfs2Rw4cKAkacGCBRmODX799dd18803q2jRourSpYsiIiI0Z84ctW3bVnFxcZes5c4775Qkvfvuuxnuf//99+XxeHT77bfLZrNd8nrJpk2bpltvvVURERHq0aOHHA6HPvroIzVr1izTgP7LL7/ouuuu0+7du9WxY0e1bNlSQUEX/1FfvHixmjRpok8++UTly5dX7969VaZMGc2cOVNNmjTR8uXLMzzv6NGjatq0qebNm6fmzZurc+fOCg8Pz/L7AwDAMgZ8RmJioiHJSExMzPQYt9ttbN682di8ebPhdrszPS4uzjBOnsz6y+NJf41Tp7J+vtOZzTebBS1atDAkGTNnzrzksS6Xy7Db7YYkY8eOHSntrVq1MiQZ4eHhxm+//ZbS7nQ6jWuvvdaQZLz33nte15o4caIhyZgxY0ZK26lTp4zw8HCjdOnSRkJCgtfxbrfbqFy5shEcHGwcOHAgS+8tua6QkBBj3rx5Ke2JiYnGwIEDDUlGjx49MqxLkjF16tSLXnfXrl0pbefOnTPKli1rSDJee+01r+NffPFFQ5JRsWJFIy4uLqV96dKlKffq1auX1z7kXFZ/fgEAWctFF0NPcIB67jkpOjrrr9On01+jSpWsn3/33Xn/Ho4fPy5JKl269CWPDQkJUXR0tCTp2LFj6fbff//9at68ecp2eHi4HnjgAUlmz+qlREVFqV+/fjp69Ki+/fZbr30LFizQ3r17deONN6pChQqXvFZaffv2VZcuXVK2Q0ND9fLLLys8PFzfffed9u3bl+6cunXr6qGHHsryPT777DPFxsaqefPmGjVqlNe++++/X40bN9b+/fv15Zdfpju3SJEievXVVxUWFpaNdwUAgPUIwYCkjh07pmurWbOmJOnQoUNZusbIkSMlSe+8845Xe/L2iBEjsl1Xv3790rWVLFlSHTt2lGEYWrFiRbr9Xbt2zdaQi+ShDslDRi40aNAgr+PSatSoETNNAAB8EiEYPqtkyZKSzHGpl5KUlKSTJ09KkkqVKpVuf8WKFdO1RUZGSpISEhKyVE/Tpk3VqFEjLVq0SLt27ZIkxcbGau7cuapYsaJuuOGGLF0nrSpVqmTYXrVqVUnSwYMH0+2rXLlytu6RfI3ka2Z2r4wexsvuvQAAKCwIwQHqkUekkyez/oqKSn+NPXuyfv7rr+f9e6hfv74kae3atZc8dtOmTUpMTFRUVJSqVauWbv+lHhzLqpEjR8owDL333nuSpA8//FAul0u33XabgoOD8+Qel5LXQxMu1qvMMAgAgK8iBAeosDCpePGsvzLKQVFRWT8/PyYMSB4r+8UXX8jlcl302E8++USSOewhrwJvRgYMGKBixYppxowZSkpK0rvvvqugoCANHz48R9fbs2fPRduzO8Y4I8nXyOxeydOpMewBAOBPCMHwWZ07d1bt2rV14MABPffcc5ket3XrVr322muy2WwpD7vlF4fDoUGDBungwYMaN26ctm/frk6dOuV42MBnn32Wru3EiRNasGCBbDabWrRokduSdf3110uSZs+eneH+WbNmeR0HAIA/IATDZwUFBemjjz6S3W7XxIkT9cwzzygpKcnrmN9++00dOnRQXFyc7rvvPjVr1izf60p+QO6ll16SJN1xxx05vtann36q+fPnp2wnJSXp/vvvl9PpVNeuXfNkTG7fvn1VtmxZrVixQm+//bbXvldeeUVr165VTEyMevfunet7AQBQWIRYXQCQG8kLNfTt21fjx4/XSy+9pGuvvVZFixbVP//8o40bN0qSRo8erWnTphVITXXr1tW1116r3377TeXKlVO3bt1yfK0RI0aoc+fOatmypcqXL6/Vq1dr165dqlChgl577bU8qdfhcOjjjz9Wt27ddOedd+rtt99WzZo19c8//+iPP/5QRESEZs+ezfhfAIBfoScYPq99+/bavn27nnjiCVWqVEnLli3TN998o5MnT2rw4MH67bff9Morr+TrWOALtW3bVpI0bNgwhYTk/N+aY8eO1fvvv6/Tp0/rm2++0ZkzZzR48GCtXr06T2dmaNeunX7//feUpaK/+OILHT58WIMGDdLatWsZCgEA8Ds2wzAMq4tA1rhcLtntdiUmJma6TLDH49HWrVslSbVq1SrQ4AeTYRi64oortG3bNu3YsUPVq1fP9jVat26tn3/+Wbt27cp06jL4H35+ASDrspKLLoY/YYE89sUXX2jr1q3q0qVLjgIwAADIf4wJBvLI7bffrlOnTun7779XcHCwJk+ebHVJAAAgE4RgII+89957CgkJUY0aNfTkk0+qcePGVpcEAAAyQQgG8kheDq9ftmxZnl0LAACkx5hgAAAABBxCMAAAAAIOIRgAAAABhxDsZ2w2W8rXHo/HwkoAZFfan9m0P8sAgLxHCPYzNptNdrtdkuR0Oi2uBkB2JP/M2u12QjAA5DNmh/BDkZGROn78uGJjYyVJDoeDlaeAQszj8cjpdKb8zEZGRlpcEQD4P0KwHypZsqScTqfi4+N18OBBq8sBkA1hYWEqWbKk1WUAgN8jBPuh4OBgVa5cWcePH9fZs2eVmJhodUkALsFutysyMlIlS5ZUcHCw1eUAgN+zGXk5wz/ylcvlkt1uV2JiokJDQ7N8nmEYebqQA4C8ZbPZGAMMANmU01yUjJ7gAMBfsAAAAN54WgrpuN1uTZo0SW632+pScBF8Tr6Bz8k38Dn5Bj4n3+ArnxPDIXxIbrv9C9t9kDt8Tr6Bz8k38Dn5Bj4n3+AreYWeYAAAAAQcQjAAAAACDiEYAAAAAYcQDAAAgIDDFGk+JPkZxvPnz6cMAA8KCsrzifVdLpfXryic+Jx8A5+Tb+Bz8g18Tr4hPz8nt9stj8fjdf2czvHA7BA+5Pz583I4HFaXAQAAUGg4nU6Fh4dn+zxCsA/xeDxyOp0KCgpKWfwiP3qCAQAACqO0PcGGYcjj8cjhcCgoKPsjfAnBAAAACDg8GAcAAICAQwgGAABAwCEEAwAAIOAQggEAABBwCMEAAAAIOIRgAAAABBxCMHT48GHNnDlT9957r5o3b66iRYvKZrOpdevWVpeG/xiGod9++02PPPKIrrvuOpUsWVKhoaEqXbq0OnbsqI8//jjHK+Ygb33++ecaMWKEmjRpogoVKqhIkSKKjIxUo0aNNGHCBB0/ftzqEpGJH374QTabTTabTVWrVrW6HEiaNGlSymeS2evNN9+0ukyk8cMPP+imm25K+fOvXLlyatGihR5//HElJSVZXZ4Xlk2G5syZo/vvv9/qMnARS5YsUfv27VO2q1evrmrVqmnXrl1auHChFi5cqNmzZ+vLL79UkSJFLKwUTz/9tDZu3KgiRYqofPnyqlevno4cOaI//vhDf/zxh95++20tWLBA9evXt7pUpHHu3DndddddVpeBTJQpU0Y1atTIcF/58uULuBpkJCkpScOGDdOsWbMkSZUqVVL9+vV1/PhxrV27NqUjJyIiwuJKUxGCoWLFiql9+/Zq2rSpmjZtqj/++ENTpkyxuiykYRiGqlWrpvvuu0/9+vVTmTJlUvbNnDlTd9xxh+bNm6cnnnhCU6dOtbBSjBo1SrVq1VLz5s0VGhqa0v7XX39pwIAB2rRpkwYMGKC///7bwipxoccee0x79+5Vjx499O2331pdDi7QuXNnffDBB1aXgYu46667NGvWLDVt2lRvvfWWGjZsmLLv/PnzWrRoUeHrpDGAC7z66quGJKNVq1ZWl4L/nD592khMTMx0/9NPP21IMkqUKGG43e4CrAzZsXr1akOSIcnYvHmz1eXgPytXrjSCgoKMHj16GDNmzDAkGVWqVLG6LBiGMXHiREOSMWTIEKtLwUUsWbLEkGRUrVrVOHPmjNXlZBljggEfUKxYMa9exQt17txZknTixAkdPXq0oMpCNl1xxRUpX58/f97CSpDM5XLpjjvuUHh4uF577TWrywF80gsvvCBJevDBBxUZGWlxNVnHcAjAD8TFxaV8XbRoUQsrwcWsWLFCkhQREaFatWpZXA0k6dlnn9WmTZv00ksvqWLFilaXg0xs3LhRAwYM0OHDhxUZGal69eqpX79+qlOnjtWlBbz4+HgtWLBAktS+fXtt3rxZb7/9tjZv3qwiRYqoYcOGGj58uKpUqWJxpekRggE/MHv2bElS/fr1VaxYMYurQVoej0eHDx/WggUL9PDDD0uSnnvuuUL1cEig2rJli5555hk1atRIo0ePtrocXMSGDRu0YcOGlO3vvvtOTz/9tMaMGaNp06YpODjYuuIC3MaNG+VyuSRJy5cv1z333KPExMSU/d9//72ef/55zZgxQ/3797eqzAwxHALwcevWrUuZIuiRRx6xuBokmz59umw2m4KDgxUTE6Nhw4apatWq+vHHHzVq1Cirywt4hmHojjvukMvl0ltvvUWIKqQqVKigJ598UqtXr9bRo0cVHx+vP//8UyNHjpRhGJo+fboeffRRq8sMaIcOHUr5etSoUWrYsKHWrFmjhIQEbd++XX379lVCQoKGDBmiP/74w8JK0yMEAz4sNjZWN910k5KSktSrVy/169fP6pLwn5iYGLVo0ULXXHONypcvL5vNpg0bNuijjz7SqVOnrC4v4L3xxhv69ddfdc8996hJkyZWl4NMjBgxQhMmTNDVV1+tUqVKqUiRIqpbt67eeOONlJlwXnrpJe3evdvaQgPYuXPnUr4ODw/Xjz/+qKZNm8put+vyyy/X7Nmz1aBBA7lcLj399NMWVpoeIRjwUadPn1bnzp21d+9eNW7cmOmDCpk+ffpoxYoVWrVqlQ4ePKgNGzbommuu0ezZs9WmTRu53W6rSwxYBw4c0KOPPqqYmBg99dRTVpeDHHrwwQdVoUIFJSUl6bvvvrO6nIAVFhaW8vXQoUMVHR3ttT8oKChlLYIFCxbI4/EUaH0XQwgGfNC5c+d0ww036I8//lCdOnU0f/58xgIXcvXq1dO8efNUqlQpbdiwQXPmzLG6pIA1evRonTlzRq+88opPPckOb8HBwbrmmmskSdu3b7e4msCVNvSmnQEnreT2s2fPFqpVMwnBgI85f/68brzxRq1atUo1atTQokWLVLJkSavLQhZERkaqVatWksyx3LDG+vXrJUl33323ypUr5/UaM2aMJGnfvn0pbb/99puV5eIi7Ha7JBW65XgDSe3atVO+Tv48LpS2t7gw9QQzOwTgQ+Lj49W9e3f98ssvqlKlihYvXqxy5cpZXRayIfkva/7Stl5sbGym+zweT8r+tE+6o3DZtGmTJDG9nYViYmJUpUoV7dmzR//++2+Gx+zcuVOSGYYLU6cNPcGAj3C5XOrdu7cWL16smJgYLVmyRJUqVbK6LGTDiRMntGzZMknyWlIUBWv37t0yDCPD14wZMyRJVapUSWlr3bq1tQUjQ/PmzUtZfrxjx44WVxPYbrnlFknSxx9/nOE/8N9//31JUqtWrRQSUnj6XwnBgA9wu90aMGCAfvjhB5UrV05LlixR9erVrS4LF/j555/11FNPZfik+vr169WpUyedPn1aMTEx6tOnT8EXCPiQv//+W3feeac2btzo1e7xeDR79mwNGDBAktS1a1c1bdrUihLxn7FjxyoqKkq7du3SPffco/j4eEnmVISvvPKK5s6dK5vNVuim8bQZhmFYXQSstW/fPq9eqfj4eDmdToWEhCgqKiqlfdy4cRo3bpwVJQa8tH/gV61aVTExMZke++qrr9LLaJFvvvlGvXr1kiSVK1dOMTExCg4O1r59+1Lm0oyJidH333+vBg0aWFgpMvPBBx9o2LBhqlKlCtNuWWzDhg0pf5aVKFFCVapUUUhIiHbs2KGTJ09Kkq6//np99913Kl68uIWVQpIWLVqk7t27Ky4uTlFRUapZs6b279+vQ4cOyWaz6fnnn9fYsWOtLtNL4emThmXcbneGT2smJSV5tZ8/f74gy0IaCQkJKV/v3r37on85nz59ugAqQkauvfZavfjii1q2bJn+/vtvbdu2TfHx8YqOjlabNm3UrVs33X777cxIAGRB1apV9dRTT2nlypXasmWLduzYofj4eJUoUUKdO3fWgAED1L9/fxY6KSTat2+vjRs36plnntGiRYu0YcMGRUVFqXv37nrggQdSHgouTOgJBgAAQMBhTDAAAAACDiEYAAAAAYcQDAAAgIBDCAYAAEDAIQQDAAAg4BCCAQAAEHAIwQAAAAg4hGAAAAAEHEIwAAAAAg4hGAAAAAGHEAwAAICAQwgGAABAwCEEAwCy7YUXXlDFihVVrVo1HT161OpyACDbCMEAgGz59ttvNXbsWA0aNEi7d+/W8uXLrS4JALKNEAwAyJbp06eradOm6tOnjyTJ4XBYXBEAZB8hGACQZUeOHNEvv/yiwYMH688//5QkVatWzeKqACD7CMEAgCybP3++PB6PunTpol9++UVlypRRzZo1rS4LALKNEAwAyLKlS5cqJiZG1apV04IFC9S+fXurSwKAHCEEAwCy7Ndff9XVV1+tX375RQcPHtTAgQOtLgkAcsRmGIZhdREAgMLv5MmTKlGihCZPnqzNmzdr+fLl2rt3r4KDg60uDQCyjZ5gAECWbNq0SZI5G8RXX32le++9lwAMwGcRggEAWbJz505J0pdffqmIiAjdfffdFlcEADlHCAYAZMnJkyclSatWrdLYsWMVGRlpcUUAkHOEYABAliQ/QlK5cmU98MADFlcDALlDCAYAZEl4eLgkaerUqQoLC7O4GgDIHUIwAOCS3G633n77bUlS+fLlJUmnT5/Wxo0b5fF4rCwNAHKEEAwAuKQXXnhBW7duValSpfTiiy/qyJEj6tatm6ZPn66gIP4qAeB7+JMLAHBRp06d0urVq/X666/rs88+0+bNm3X55ZerQYMGKb3DAOBrWCwDAAAAAYeeYAAAAAQcQjAAAAACDiEYAAAAAYcQDAAAgIBDCAYAAEDAIQQDAAAg4BCCAQAAEHAIwQAAAAg4hGAAAAAEHEIwAAAAAg4hGAAAAAGHEAwAAICAQwgGAABAwCEEAwAAIOAQggEAABBwCMEAAAAIOIRgAAAABBxCMAAAAALO/wNl4SNp8rvGrgAAAABJRU5ErkJggg==", "text/plain": [ "<Figure size 720x660 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize=(0.4 * 12.0, 0.4 * 11.0), dpi=150, edgecolor=\"white\")\n", "\n", "ax = fig.add_subplot(1, 1, 1)\n", "ax.tick_params(\n", " axis=\"both\", which=\"both\", labelsize=11, direction=\"in\", width=0.5\n", ")\n", "ax.xaxis.set_ticks_position(\"both\")\n", "ax.yaxis.set_ticks_position(\"both\")\n", "for axis in [\"top\", \"bottom\", \"left\", \"right\"]:\n", " ax.spines[axis].set_linewidth(0.5)\n", "\n", "ax.semilogy(\n", " *limits_NG_sqrt.T,\n", " label=r\"NANOGrav limits\",\n", " color=\"green\",\n", " marker=\"+\",\n", " lw=0,\n", ")\n", "\n", "ax.semilogy(\n", " np.arange(1, l_max_lin + 1),\n", " np.quantile(\n", " CL_linear_prior[1:] / CL_linear_prior[0, :],\n", " limit_cl,\n", " axis=-1,\n", " ),\n", " \"blue\",\n", " ls=\"--\",\n", " label=r\"Only prior\",\n", ")\n", "\n", "# ax.set_title(r\"NANOGrav positions\")\n", "plt.legend(loc=\"lower left\", fontsize=10, handlelength=1.5)\n", "\n", "ax.text(\n", " 4,\n", " 2.6e-1,\n", " r\"Square root basis\",\n", " horizontalalignment=\"left\",\n", " fontsize=10,\n", " verticalalignment=\"top\",\n", " bbox=dict(\n", " boxstyle=\"round\",\n", " facecolor=\"white\",\n", " alpha=1,\n", " linewidth=1,\n", " edgecolor=\"0.8\",\n", " ),\n", " linespacing=1.4,\n", ")\n", "\n", "# set x axis label\n", "ax.set_xlabel(r\"$\\ell$\")\n", "ax.set_ylabel(r\"$C_\\ell / C_0$\")\n", "plt.ylim(2e-2, 3e-1)\n", "\n", "plt.tight_layout()\n", "plt.savefig(\"sqrt_prior_limits.pdf\")\n", "plt.show(block=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 2 }
46,406
Python
.py
292
154.482877
39,162
0.896322
Mauropieroni/fastPTA
8
0
3
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,331
MCMC_Fisher.ipynb
Mauropieroni_fastPTA/examples/MCMC_Fisher.ipynb
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### Start importing all libraries" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "# Global\n", "import numpy as np\n", "\n", "# Local\n", "import examples_utils as eu\n", "import fastPTA.utils as ut\n", "import fastPTA.plotting_functions as pf\n", "from fastPTA.Fisher_code import compute_fisher\n", "from fastPTA.MCMC_code import run_MCMC" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Constants to be used in the analysis" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "# Total observation time in years\n", "T_obs_yrs = 16.03\n", "\n", "# Number of frequencies used in the analysis\n", "n_frequencies = 30\n", "\n", "# Number of pulsars in the analysis\n", "n_pulsars = 25\n", "\n", "# Specify the type of noise to be used in the analysis\n", "which_experiment = eu.EPTAlike\n", "\n", "# Set the label to specify the signal model\n", "signal_label = \"power_law\"\n", "\n", "# The analysis assumes a power law template, specify here the input parameters\n", "log_amplitude = -7.1995 # log amplitude\n", "tilt = 2.0 # Tilt\n", "\n", "# Specify the true signal parameters\n", "signal_parameters = np.array([log_amplitude, tilt])\n", "\n", "# Specify the labels for the signal parameters\n", "parameter_labels = [r\"$\\alpha_{\\rm PL}$\", r\"$n_{\\rm T}$\"]\n", "\n", "# Specify the priors for the signal parameters (should be a 2D array with the columns running over the parameters)\n", "priors = []\n", "\n", "# Number of points to generate for the Fisher\n", "len_fisher_data = int(1e4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Some inputs for the MCMC" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "# Whether the MCMC should be rerun\n", "rerun_MCMC = True\n", "\n", "# Whether the MCMC data should be regenerated\n", "regenerate_MCMC_data = True\n", "\n", "# Whether to generate a data realization or take data at face value\n", "realization = False\n", "\n", "# Number of burnin steps for the MCMC\n", "burnin_steps_default = 300\n", "\n", "# Maximum number of iterations to get R close to 1\n", "i_max_default = 100\n", "\n", "# Accepted value for the Gellman-Rubin convergence criterion\n", "R_convergence_default = 1e-1\n", "\n", "# Criterion to be used for the convergence of the MCMC chains\n", "R_criterion_default = \"mean_squared\"\n", "\n", "# Number of MCMC steps in each iteration\n", "MCMC_iteration_steps_default = 500\n", "\n", "# Path to the MCCM_data\n", "path_to_MCMC_data = \"generated_data/MCMC_data.npz\"\n", "\n", "# Path to the MCMC chains\n", "path_to_MCMC_chains = \"generated_chains/MCMC_chains.npz\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Set the inputs for the Fisher and MCMC analysis" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "# Dictionary with the kwargs to generete the pulsar catalogs\n", "generate_catalog_kwargs = {\n", " \"n_pulsars\": n_pulsars,\n", " \"save_catalog\": False,\n", " **which_experiment,\n", "}\n", "\n", "# Dictionary with the kwargs to generate noise and orf tensors\n", "get_tensors_kwargs = {\n", " \"add_curn\": False,\n", " \"regenerate_catalog\": True,\n", "}\n", "\n", "# Dictionary with the kwargs for the Fisher matrix\n", "fisher_kwargs = {\n", " \"T_obs_yrs\": T_obs_yrs,\n", " \"n_frequencies\": n_frequencies,\n", " \"signal_label\": signal_label,\n", " \"signal_parameters\": signal_parameters,\n", "}\n", "\n", "# Dictionary with the kwargs for the MCMC\n", "MCMC_kwargs = {\n", " \"regenerate_MCMC_data\": regenerate_MCMC_data,\n", " \"realization\": realization,\n", " \"path_to_MCMC_data\": path_to_MCMC_data,\n", " \"path_to_MCMC_chains\": path_to_MCMC_chains,\n", " \"i_max\": i_max_default,\n", " \"R_convergence\": R_convergence_default,\n", " \"R_criterion\": R_criterion_default,\n", " \"burnin_steps\": burnin_steps_default,\n", " \"MCMC_iteration_steps\": MCMC_iteration_steps_default,\n", "}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Prepare the model to scan over" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Fisher errors [0.23784615 0.31128867]\n" ] } ], "source": [ "if \"regenerate_catalog\" in get_tensors_kwargs.keys():\n", " if get_tensors_kwargs[\"regenerate_catalog\"]:\n", " rerun_MCMC = True\n", "\n", "(\n", " frequency,\n", " signal,\n", " HD_functions_IJ,\n", " HD_coeffs,\n", " effective_noise,\n", " SNR,\n", " fisher,\n", ") = compute_fisher(\n", " **fisher_kwargs,\n", " get_tensors_kwargs=get_tensors_kwargs,\n", " generate_catalog_kwargs=generate_catalog_kwargs,\n", ")\n", "\n", "covariance = ut.compute_inverse(fisher)\n", "fisher_data = np.random.multivariate_normal(\n", " signal_parameters, covariance, size=len_fisher_data\n", ")\n", "errors = np.sqrt(np.diag(covariance))\n", "print(\"Fisher errors\", errors)\n", "\n", "fisher_ranges = np.vstack(\n", " (signal_parameters - 5 * errors, signal_parameters + 5 * errors)\n", ")\n", "\n", "get_tensors_kwargs[\"regenerate_catalog\"] = False" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Entered\n", "\n", "Regenerating MCMC data\n", "- Will generate a data realization\n", "\n", "Initial run\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ " 0%| | 0/300 [00:00<?, ?it/s]" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 300/300 [00:02<00:00, 133.60it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Burn-in dropped, here starts the proper run\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 500/500 [00:03<00:00, 142.63it/s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "At this step R = 1.1598\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 500/500 [00:03<00:00, 140.62it/s]" ] }, { "name": "stdout", "output_type": "stream", "text": [ "At this step R = 1.0676\n", "This took 9.3 seconds \n", "\n", "Storing as generated_chains/MCMC_chains.npz\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "try:\n", " if rerun_MCMC:\n", " raise FileNotFoundError(\"Flag forces MCMC chains regeneration\")\n", "\n", " MCMC_results = np.load(path_to_MCMC_chains)\n", " MCMC_data = MCMC_results[\"samples\"]\n", " pdfs = MCMC_results[\"pdfs\"]\n", "\n", "except FileNotFoundError:\n", "\n", " print(\"Entered\")\n", "\n", " if not np.any(priors):\n", " priors = np.array(fisher_ranges)\n", " print(priors)\n", "\n", " MCMC_data, pdfs = run_MCMC(\n", " priors,\n", " **fisher_kwargs,\n", " **MCMC_kwargs,\n", " get_tensors_kwargs=get_tensors_kwargs,\n", " )" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4MAAALYCAYAAADGqSd6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADGzUlEQVR4nOzdeXxU1f3/8fedSWayzWSyQwhLEjYRBRJQcUMQtG7VKmAX7WYF/Wr77aJS1C62btD2Z5evWrDVWrVVwdpWxYXFDVQUAoiALAl7yJ7JTPZZ7u+PIQORLQkJWeb1fDzyMDNzzr2fO5ox75xzzzFM0zQFAAAAAIgolu4uAAAAAABw6hEGAQAAACACEQYBAAAAIAIRBgEAAAAgAhEGAQAAACACEQYBAAAAIAIRBgEAAAAgAhEGAQAAACACRXV3Aei9gsGgiouL5XA4ZBhGd5cDADgK0zTl9XqVmZkpi4W/AQMADiEMosOKi4s1cODA7i4DANAGe/fuVVZWVneXAQDoQQiD6DCHwyEp9AuG0+ns5mqAk1deXq6hQ4dKknbs2KG0tLRurgg4eR6PRwMHDgx/ZgMA0IIwiA5rmRrqdDoJg+gTGhsbw987HA7+u0afwnR+AMAXcfMAAAAAAEQgwiAAAAAARCDCIAAAAABEIMIgAAAAAEQgwiAAAAAARCDCIAAAAABEIMIgAAAAAEQgwiAAAAAARCDCIAAAAABEIMIgAAAAAEQgwiAAAAAARCDCIAAAAABEIMIgAAAAAEQgwiAAAAAARCDCIAAAAABEIMIgAAAAAEQgwiAAAAAARCDCIAAAAABEIMIgAAAAAEQgwiAAAAAARCDCIAAAAABEIMIgAAAAAESgqO4uAABONc8Df1LQ4z3i+Zq62kPf/+r3ssUnHNHG4nTIec/3u7Q+AACAU4EwCCDiBD1emW7PEc+b9XWHvq/xyvQFj+zbpZUBAACcOoRBAJHLMGQkOg49jD40c95IdMg4bGTQrPFKpnlKywOAtjBNUz6fT8Egf64Cejur1aqoqCgZhnFKzkcYBBCxjESHXPPuDj9uLiuTHn1IkpT48x/KlZ4efs0958GjjiYCQHepr69XTU2NvF6vAoFAd5cDoJPY7Xa5XC4lJSV1eSgkDALo1a5++kZV1Fa2q0/Q5ZGcplIUq1d194k7AEAP4/V6tW/fPkVHR8vlcik+Pl4Wi+WUjSYA6Hymacrv96umpkalpaVqbm5Wv379uvSchEEAvVpFbaVKasva18ly8CvIL00Aep/6+nrt27dPTqdTmZmZBECgj3E4HKqurlZJSYliY2OVmJjYZeciDALoEyyGRenxqW1qW+YtIwcC6LVqamoUHR1NEAT6sKSkJHk8Hnk8HsIgAJxIenyqVt22pE1tJz50vsqMxi6uCAA6n2ma8nq9crlcBEGgj0tISFBFRYWCwaAslq7ZHp5N5wEAAHoJn8+nQCCg+Pj47i4FQBeLiYlRMBiU3+/vsnMQBgEAAHqJlu0jumqUAEDP0fJz3pXbxvBJAgAA0MswRRTo+07FzzlhEAAAAAAiEGEQAAAAACIQYRAAAAAAIhBbSwAAAPRh1bN/2t0ldJmkBQ93dwlAr0YYBBCxKoxGnffo5eHHvkZf+Psrn/mGomOiw4+DLo/kNJWiWL2qu09pnQCAU2vOnDlauHBhm9rOmjVL8+bN67RztywaYppmpx2zKxUUFGjOnDlas2aNJCknJ0dr167t5qrQVoRBABEraEgltWWHHjcHwt+X11fI4rceamw5+BVkBT8A6OvcbrfcbrekULhpT7+kpCRJ0tq1a5WXl9cV5fUYy5Yt07Rp0yRJU6dOlSQVFRV1Z0loJ8IggIiTEoyRgqZkMWRxOsPP+xp92nXw+7S41FYjg2XeMnIgAESYqVOnaunSpd1dRo81Y8YMuVwu7dy5Uy6Xq7vLQQcQBgFEnGc9U2S6PTJcTrnmHpryWVZWpow7MiRJr974nNLT08OvTXzofJUZjae8VgBA7+FyucLhsT0jir1RQUGB3G63Zs2a1WlBsKCgQC+88IImTJig6dOnd8oxcXysJgoAAAB0kqlTp2rq1Kl9fqSs5R7BzrzOoqIizZ8/n9HYU4iRQQC9WtBbKxlS0OORe86Dbepj1ni7uCoAAICejzAIoHczg5IhKWjKdHu6uxoAAIBeg2miAPoMw+Vs15fF6ejukgEAfYxhGOHtIQ63cOFC5efnKykpSYZhKDc3V7Nnz9ayZcuOeazFixcrPz8/3H7OnDnHbFtUVKQZM2YoNzdXhmEoPz//mMfOzc1Vbm6upNAKqLNnz1Zubm6bttNYvHixDMPQ7NmzJUnz588PX/Ph/Vuea1mV9YvnNwxDBQUFkkJbeRiGoRkzZkgKvVct/Q3DaLVCaXuO297rbc972FcwMgigb7AYcs07Bfv/Bc02T0dtYXE65Lzn+11UEACgp5szZ47mz58vl8ul8ePHSwrdc7dw4UIVFRWFt2U43OzZs7Vw4ULl5eUpJycnfD9dUVGRFi1a1Krt4sWLw0EqJydHU6dODW/7sGDBAs2aNatV+5ZwVVRUpPz8/HCwSk5OPuG15OTkaNasWVqzZo0KCgrC55MUvrb2mjBhwjGP2da6jqct19ve97CvIAwCQDu1dzpqsIvqAAB0rWXLlh11lK/FXXfd1aYN51tGoL64BUNRUdEx9+V78cUXVVhYGF6VdOHChZo9e7YWL14st9sdPo7b7Q6HmKVLl7ba7y8/P1+zZ8/WzJkzj7rQS35+viRp0aJFbV69My8vTwsWLAjXM3XqVC1YsKBNfY9l+vTpmj59eqce82iOdb0n8x72doRBAGgL4+Cseoshw+U8ftuDzBqvZJpdWBQAoCu5XK6jjtq1mDBhwgmP0bKBfU5OzhFhIicn55hbUMydO7fVa7NmzdKcOXPkdrtVVVUVPtbNN98sSVqwYEGrWnNycjR37lzNmTNHL7744jFHtiJtj8CjXe/Jvoe9GWEQANrA4kiQautlcbbem/B43HMeZFEbAOjFxo8ff8SUzPZyuVzhaZ7Tpk0Lj3ydKIAdLYQmJyeHw2WLlnvaCgsLNX/+/FbtCwsLJUlr16496jnmzp0bUUHwWNd7Mu9hb0cYBAAAALrQokWLdPHFF2vZsmXh4JGTk6N58+Ydc3pmWzatPzwYfjHEHO5YU1GPN+rZFx3tek/2PeztWE0UAAAA6EJ5eXnauXOn5s2bp7y8PEmHVq483gqhbZWTkyPTNI/5daxN3NsSOPuS411vR9/D3o4wCAAAAHQxl8ulu+66S2vXrpVpmuHpp8cbjWrLMV0uV68btaqqquoxx+2t72FnIQwCAAAAp9j06dPD0xa/uC9ee7QcozNGGE+Vo+0ReLiOhsUTHfdYeuN72FkIgwAAAEAXmjZt2hGbl7vdbq1Zs0bSyU3XfOKJJ+RyuTR//vwjNlF3u92aM2dOmzaT72wtC7W0XGOLls3qj6Zl37/Dw3FBQUGrUbuOHPdEeup7eCoQBgEAAIAuUlBQEN68PCkpSfn5+crPz1dSUpLcbrdmzZp1Uit6ulwuLVq0SC6XS7Nnz1ZSUpKmTZum3NxcJSUlaf78+R0eMTsZLRvQz5gxI/yVlJSkZcuWHfN6D9/fLzc3V7m5ucrPz9fixYtP6rgn0lPfw1OBMAgAAAB0kby8PBUWFuquu+5ScnJyeKP5ls3bO2Nz9alTp2rnzp2aNWuWcnJywqOQ06dP19q1a3XXXXed9Dnaa8GCBcrLy5Pb7dayZctUVFSkefPmqbCwUDNnzlReXt4R4c3lcmnevHlyuVzhvRQXLFjQan+/jhy3LXrie3gqGKbJjsjoGI/Ho8TERNXU1MjpbNsm3EBnm/jQ+SqzNCo9GKMP5648qWOVlZUpIyNDklRaWqr09PTwa+c9erlKasvULyFdq25b0qbjtewzaLiccs1r296EQGfjs7pvaWxs1M6dO5Wdna2YmJjuLgdAFzoVP++MDAIAAABABCIMAgAAAEAEIgwCAAAAQAQiDAIAAABABCIMAgAAAEAEIgwCAAAAQAQiDAIAAABABCIMAgAAAEAEIgwCAAAAQAQiDAIAAABABCIMAgAAAEAEIgwCAAAAQAQiDAIAAABABCIMAgAAAEAEIgwCAAAAQAQiDAIAAABABIrq7gIAQJKufvpGVdRWtrtfhdHYBdUAAAD0fYRBAD1CRW2lSmrL2t/R6PxaAAAAIgFhEECPYjEsSo9PbXP7oMcjBU2lKKYLqwKA3it33vjuLqHLFM5Z0yXHnTNnjubPny9JysnJUWFhYZv6LV68WDNmzAg/Nk3zhH3cbrcWLlyoF154QUVFRXK73XK5XMrJydH111+v6dOnKycnp1fV1xYFBQWaM2eO1qxZE76OtWvXtvs4ODmEQQA9Snp8qlbdtqTN7d1zHpTp9shwObuwKgBApCoqKlJBQYHy8vJO2HbBggXtOvbChQs1e/bs8OOcnBwlJyeHz1lQUKAFCxYcN+z19PqOZtmyZZo2bZokaerUqZJC14FTjwVkAAAAgKNwuVyS2hai3G63li1bFu5zInPmzAkHrVmzZqm6ulqFhYUqLCyUaZoqLCzUrFmzwmGpN9Z3LDNmzJDL5VJ1dbWWLl2qpUuXtjtQonMQBgEAAICjaAk6L7744gnbtrSZOXPmCdsuXrw4PM1zwYIFWrBgwREhLScnJ/xab63vaAoKCuR2uzVz5sw2B9O2HHPOnDlavHhxpxwvkhAGAQAAgKNITk7W1KlTw6Nqx9MSig6/J+9o3G63br75ZknSXXfdpVmzZvXZ+o6m5R7BzgqCUmiK6fz587V06dJOO2akIAwCAAAAx9ASno43Anb4fXsnWkxl4cKFcrvdkqS5c+f2+frQsxEGAQAAgGNomVZ5vCmILa9df/31JzxeS2i76667OmV0rKfXh56NMAgAAAAcg8vlCt+bd6zA1RKgpk+fftxjud3u8KqZLatp9vX6WixevFiGYYQXpZk/f74Mw5BhGFq4cGG4XctzLaOTh8vNzZVhGCooKJAUWuTGMIzw6OjChQvD/Q3DaLVCaXuOe/jzubm5kkLvzezZs5Wbm9uqXik08jpjxozwcfLz8084bbenIAwCAAAAx9ESYF544YUjXisoKFBRUVGbpmAeHk46sjdfb62v5XizZs0Kb4HR8njWrFkaP75je2FOmDDhmMecNWuWkpOTT6rmoqKi8Fd2drYWLlyooqKiVsddvHixcnNzw0F86tSpKigo0LRp044IjT0R+wwCAAAAx9EyorZ48eLwpustWgJYW6ZgVlVVhb/vzLDV0+uTpLy8PC1YsCC8d+HUqVPbvRLpF02fPl3Tp0/v1GMeTX5+viRp0aJFrUZX3W53eFRy6dKlrfZMzM/P1+zZszt11dSuwMggAAAAcAItIeCL2zi0jAi1ZdXNw0eUOnuT9Z5eX2+3c+fOI6bZtqy6umDBglb7Lebk5IQX32nLth/diTAIAAAAnEDLVMxFixaFn2uZgjl16tQ2jf4cPtrW2WGrp9fXm82dO/eo71/LfYGFhYWaP39+q6/CwkJJ0tq1a09lqe3GNFEAAADgBFoC1bJly8JTMVumYJ5o774WLpdLOTk5KioqajWtMBLq682O9j643e7wYjTz588/Zt+eHqoZGQQAAADaoGUbh5apfy0LhLRnY/aWqYZdsbhIT6+vtzre/ZM5OTkyTfOYX0uXLj2FlbYfYRAAAABog8OnYhYUFMjtdp9wu4YvarmXzO12H3dEqS/Wd7IOX+Cmu4/rcrnkcrl6/MjfiRAGAQAAgDbIy8sLT8VsmYLZEsDayuVyhVe8nDNnznE3i+9r9Z2so+0ReLiOhsUTHfdYWqaPzpkzp0P9ewLCIAAAANBGLVMuFy5c2GrD9/Yeo+U4M2bMOOYI3OLFi5WUlNSusNLT6zuRloVa1qxZ0+r544XallVQD980vmXxnJM57ok88cQTcrlcmj9//hHTat1ut+bMmdPjp9sSBgEAAIA2agkPbrc7fI9eRyxYsEDz5s2TFBpZMgxD+fn5mjZtmvLz82UYRpsXfulN9Z1Iywb0M2bMCH8lJSVp2bJlx1wR9fD9/XJzc5Wbm6v8/PxWo5odOe6JuFwuLVq0SC6XS7Nnz1ZSUpKmTZum3NxcJSUlaf78+Z0alLsCYRAAAABoo5ycHN1111266667Tnp64F133aXCwkLNmjVLLpdLBQUFWrZsmQoKCpSTk6N58+apurq6XWGlp9d3IgsWLFBeXp7cbreWLVumoqIizZs3T4WFhZo5c2Z4KuzhXC6X5s2bJ5fLpaqqqvBU18MXzunIcdti6tSp2rlzp2bNmqWcnJzwdhPTp0/X2rVrddddd53M29HlDNM0ze4uAr2Tx+NRYmKiampq5HQ6u7sc9HITH75QZUa90oMxet19eZv7mTVeyTRluJxyzbv7pGooKytTRkaGJKm0tFTp6enh18579HKV1JapX0K6Vt22pE3Hc895UKbbIxmGjERHu+uxOB1y3vP9dvcDDsdndd/S2NionTt3Kjs7WzExMd1dDoAudCp+3tlnEEDPYAYlQ1LQDAWovsTs2DUFu6AUAACAFoRBAD2O4Wr/6IXF2f6Rt65mcTo6FOhaRjsBAAC6EmEQQM9iMU56umdP0dEpnuHppQAAAF2IBWQAAAAAIAIRBgEAAAAgAhEGAQAAACACEQYBAAAAIAIRBgEAAAAgAhEGAQAAACACEQYBAAAAIAIRBgEAAHoZ0zS7uwQAXexU/Jyz6TwAtENZXYXOe/TydvVJTUjRf771TBdVBCCSWCyhv+MHg8FurgRAV2v5OW/5ue8KhEEAaIegGVRJbVl3lwEgQkVHR8tqtaqurk7x8fHdXQ6ALtTY2CiLxaKoqK6LbIRBAGiD1ISUdvcpq6tQ0OSv9wA6j2EYcjgc8ng8SktLk2EY3V0SgC5SW1uruLg4RgYBoLt1ZJrneY9ezigigE6XmJgot9ut4uJiZWZmEgiBPqi6ulr19fXKzMzs0vMQBgEAAHqRuLg4ZWVlad++fWpoaJDT6VRcXJysVivBEOjFTNOU3+9XTU2NvF6vkpKSlJiY2KXnJAwCAAD0Mg6HQ4MHD1ZNTY3cbrcqKyu7uyQAncRutysjI0NJSUldfi7CIAAAQC8UFxenuLg49evXTz6fjxVGgT7AarUqKirqlI3yEwYBAAB6McMwZLPZursMAL0Qm84DAAAAQAQiDAIAAABABCIMAgAAAEAEIgwCAAAAQAQiDAIAAABABCIMAgAAAEAEIgwCAAAAQAQiDAIAAABABCIMAgAAAEAEIgwCAAAAQAQiDAIAAABABCIMAgAAAEAEiuruAgD0PVc/faMqaivb1afCaOyiagAAAHA0hEEAna6itlIltWXt62R0TS0AAAA4OsIggC5jMSxKj09tU9ugxyMFTaUopourAgAAgEQYBNCF0uNTteq2JW1q657zoEy3R4bL2cVVAQAAQGIBGQAAAACISIRBAAAAAIhAhEEAAAAAiECEQQAAAACIQIRBAAAAAIhAhEEAAAAAiECEQQAAAACIQIRBAAAAAIhAhEEAAAAAiECEQQAAAACIQIRBAAAAAIhAhEEAAAAAiECEQQAAAACIQIRBAAAAAIhAhEEAAAAAiECEQQAAAACIQIRBAAAAAIhAhEEAAAAAiECEQQAAAACIQIRBAAAAAIhAhEEAAAAAiECEQQAAAACIQIRBAAAAAIhAhEEAAAAAiECEQQAAAACIQIRBAAAAAIhAUd1dAICe7eqnb1RFbWW7+pTVVXRRNQAAAOgshEEAx1VRW6mS2rLuLgMAAACdjDAIoE0shkXp8ant6pOakNJF1QAAAOBkEQYBtEl6fKpW3baku8uIKGaNV+45D7arj8XpkPOe73dRRQAAoC8hDAJAT2WaMt2ednUJdlEpAACg7yEMAuh0ngf+pKDH264+Zk372vdlFqej3aHOrPFKptkl9QAAgL6JMAig0wU93naPaOGQjkzzdM95kPccAAC0C2EQQNcxDBmJjnZ1sTjb1x4AAAAdQxgE0GWMRIdc8+7u7jIAAABwFJbuLgAAAAAAcOoRBgEAAAAgAhEGAQAAACACEQYBAAAAIAIRBgEAAAAgAhEGAQAAACACEQYBAAAAIAIRBgEAAAAgAhEGAQAAACACEQYBAAAAIAIRBgEAAAAgAhEGAQAAACACRXV3AQBOnaufvlEVtZXt6lNWV9FF1QAAAKA7EQaBCFJRW6mS2rLuLgMAAAA9AGEQiEAWw6L0+NR29UlNSOmiagAAANAdCINABEqPT9Wq25Z0dxkAAADoRiwgAwAAAAARiDAIAAAAABGIMAgAAAAAEYgwCAAAAAARiDAIAAAAABGIMAgAAAAAEYgwCAAAAAARiDAIAAAAABGIMAgAAAAAEYgwCAAAAAARiDAIAAAAABGIMAgAAAAAEYgwCAAAAAARiDAIAAAAABGIMAgAAAAAESiquwsAgL6urK5C5z16ebv7pSak6D/feqYLKgIAACAMAkCXC5pBldSWdXcZAAAArRAGAaCLpCakdKhfWV2Fgmawk6sBAABojTAIAF2ko1M8z3v0ckYSAQBAl2MBGQAAAACIQIRBAAAAAIhAhEEAAAAAiECEQQAAAACIQIRBAAAAAIhAhEEAAAAAiECEQQAAAACIQIRBAAAAAIhAhEEAAAAAiECEQQAAAACIQIRBAAAAAIhAhEEAAAAAiEBR3V0AgJ7N88CfFPR429XHrGlfewAAAJx6hEGgl7r66RtVUVvZrj5ldRXtPk/Q45Xp9rS7HwAAAHo2wiDQS1XUVqqktuzUndAwZCQ62tXF4mxfewAAAJw6hEGgl7MYFqXHp7arT2pCSrvPYyQ65Jp3d7v7AQAAoGciDAK9XHp8qlbdtqS7y0APYdZ45Z7zYLv6WJwOOe/5fhdVBAAAeirCIAD0JabZ7ns8g11UCgAA6NkIgwDQB1icjnaHOrPGK5lml9QDAAB6PsIgAPQBHZnm6Z7zICvFAgAQwdh0HgAAAAAiEGEQAAAAACIQYRAAAAAAIhBhEAAAAAAiEGEQAAAAACIQYRAAAAAAIhBhEAAAAAAiEGEQAAAAACIQYRAAAAAAIhBhEAAAAAAiEGEQAAAAACIQYRAAAAAAIhBhEAAAAAAiEGEQAAAAACIQYRAAAAAAIlBUdxcARLqrn75RFbWV7e5XVlfRBdUAAAAgUhAGgW5WUVupktqy7i4DAAAAEYYwCPQQFsOi9PjUdvdLTUjpgmoAAADQ1xEGgR4iPT5Vq25b0t1lAAAAIEKwgAwAAAAARCDCIAAAAABEIMIgAAAAAEQgwiAAAAAARCDCIAAAAABEIMIgAAAAAEQgwiAAAAAARCD2GQSAHqqsrkLnPXp5u/qkJqToP996posqAgAAfQlhEAB6qKAZVEltWXeXAQAA+ijCIAD0MKkJKe3uU1ZXoaAZ7IJqAABAX0UYBIAepiPTPM979HJGEQEAQLuwgAwAAAAARCBGBgEgwpk1XrnnPNiuPhanQ857vt9FFQEAgFOBMAh0oqufvlEVtZXt6lNWV9FF1QBtZJoy3Z52deHuRAAAej/CINCJKmoruW8LvYbF6Wh3qDNrvJJpdkk9AADg1CIMAl3AYliUHp/arj4dWUESOBkdmebpnvNgu0cRAQBAz0QYBLpAenyqVt22pLvLOILngT8p6PG2q49Z0772AAAA6B0Ig0AECXq8jOoAAABAEmEQiEyGISPR0a4uFmf72gMAAKBnIwwCEchIdMg17+7uLgMAAADdiE3nAQAAACACEQYBAAAAIAIxTRQ4BjaQBwAAQF9GGASOgQ3kAQAA0JcRBoETYAN5AAAA9EWEQeAEeuoG8gAAAMDJYAEZAAAAAIhAhEEAAAAAiECEQQAAAACIQNwzCPRSngf+pKDH264+Zk372gMAAKDvIgwCvVTQ45Xp9nR3GQAAAOilCINAb2cYMhId7epicbavPfBFZo1X7jkPtquPxemQ857vd1FFAACgvQiDQC9nJDrkmnd3d5eBSGOa7R6ZDnZRKQAAoGMIgwCANrM4He0OdWaNVzLNLqkHAAB0HGEQANBmHZnm6Z7zIPe3AgDQA7G1BAAAAABEIMIgAAAAAEQgwiAAAAAARCDCIAAAAABEIBaQQUS4+ukbVVFb2a4+ZXUVXVQNAAAA0P0Ig+hVOhLqJKmktqwLqgEAAAB6L8IgepWK2sqTDnb9EtLb1T41IeWkzgcgxKzxyj3nwXb3szgdHdrSAgAAHB9hEL2SxbAoPT613f1SE1L0n2890wUVATgh0+zQfoPt3eQeAAC0DWEQvVJ6fKpW3baku8sAepyyugqd9+jl7erT1X8ksTgdHQp0Zo1XMs1OrwcAAIQQBoFu5nngTwp6vO3uZ9a0vw/6vqAZ7HH3yHZ0iqd7zoMdGkkEAABtQxhEt2GFz5Cgx8svvDhpHbm3tayuQkGTSZgAAEQqwiC6TWcsBtPTdGSULzzCZxgyEh3tPqfF2f4+6Hs6Ms3zvEcvV0ltWY+cWgoAALoeYRDdriOLwZyKFT47FOxOYoTPSHTINe/uDvcHOqonTi09XEdWIWUFUgAATowwiA4zDy7s4PF0LAD5G3wKNgaUHIzSP4vHt7v/nnU/79B52+pk78lr7yifxRYlSwffS3QOr9fb6vuYmJhurKbrJVod8lt97epTUV8VCo9NpTr7t9O6qLKQYIxXSu/gAjKNkn7xXKfW052+nnWxbrp+Tof6tnxGmyzGAwD4AsPk/w7ooH379mngwIHdXQYAoA327t2rrKys7i4DANCDEAbRYcFgUMXFxXI4HDIMo119PR6PBg4cqL1798rpdHZRhZGB97Lz8F52Lt7PznMy76VpmvJ6vcrMzJTFYumiCgEAvRHTRNFhFovlpP/K7HQ6+SWxk/Bedh7ey87F+9l5OvpeJiYmdkE1AIDejj8RAgAAAEAEIgwCAAAAQAQiDKJb2O12/eIXv5Ddbu/uUno93svOw3vZuXg/Ow/vJQCgK7CADAAAAABEIEYGAQAAACACEQYBAAAAIAIRBgEAAAAgAhEGAQAAACACEQYBAAAAIAIRBgEAAAAgAkV1dwHovYLBoIqLi+VwOGQYRneXAwA4CtM05fV6lZmZKYvl5P4GzOc+APR87fncJwyiw4qLizVw4MDuLgMA0AZ79+5VVlbWSR2Dz30A6D3a8rlPGESHORwOSaH/0JxOZzdXA5y88vJyDR06VJK0Y8cOpaWldXNFwMnzeDwaOHBg+DP7ZPC5j76Ez3z0Ve353CcMosNapgg5nU5+KUCf0NjYGP7e4XDw3zX6lM6Y1snnPvoSPvPR17Xlc58FZAAAAAAgAhEGAQAAACACEQYBAAAAIAIRBgEAAAAgAhEGAQAAACACEQYBAAAAIAIRBgEAAAAgAhEGAQAAACACEQYBAAAAIAIRBgEAAAAgAhEGAQAAACACEQYBAAAAIAIRBgEAAAAgAhEGAQAAACACEQYBAAAAIAIRBgEAAAAgAhEGAQAAACACEQYBAAAAIAIRBgEAAAAgAhEGAQAAACACEQYBAAAAIAIRBgEAAAAgAhEGAQAAACACRXV3AQAAAEBX8jzwJwU93lbP1dTVHvr+V7+XLT7hqH0tToec93y/S+sDugthEAAAAH1a0OOV6fa0es6srzv0fY1Xpi949L5dWhnQvQiDAAAAiAyGISPREfo2+tDdUkaiQ8YXRgbNGq9kmqe0POBUIwwCAAAgIhiJDrnm3S1Jai4rkx59SJKU+PMfypWe3qqte86DR4wmAn0NC8gAAAAAQAQiDAIAAABABCIMAgAAAEAEIgwCAAAAQAQiDAIAAABABGI1UQAAAJxyVz99oypqKzvUNzUhRf/51jOdXBEQeQiDAAAAOOUqaitVUlt2Ss51g3OFKp0NksWQ5dGVkiRfoy/8+pXPfEPRMdGt+gRdHslpKkWxelV3n5I6gVONMAgAAIBuYzEsSo9PbVPbMm+5goapoMcj95wH23yOSmeDyqKaQg9qGyVJweZA+PXy+gpZ/NYvFHbwK2i0+TxAb0MYBAAAQLdJj0/VqtuWtKntxIfOV5nRKAXN9m0I7wz9w2JK6Y7Q5vK+Rp92HXw5LS71iJHBMm9ZKAcGzXYFT0myOB1y3vP9dvUBugNhsI8wTVNbt27Viy++KNM0lZiYqJtvvlnx8fHdXRoAAECnM1zOtje2hEb3UhUXDp5lZWXKuCNDkvTqjc8pPT29VZdw8JTaFzwlBdvVGug+hME+IBgM6qtf/aqqqqq0Zs0aNTc3q7GxUU8//bTuv/9+XXbZZbJYWDgWAAD0ERZDrnltv4/P8uhKqbZRFkdC289hWMLnamvwNGu8kmm2/RxANyMM9nLBYFC33367xowZox/96EeyWq0qKSnRI488omeeeUY//OEPlZGRofHjx3d3qQAAAL2GxZEg1dbL4nTKNbdtwdM958F2jyIC3Ynhol7MNE395je/0aRJk3TPPfcoLi5OdrtdgwcP1n333ae5c+dq//79mjNnTneXCgAAAKCHIQz2YsFgUJmZmbr++uvDjyWF7xn8zne+o2uuuUZvv/22Pvnkk+4sFQAAAEAPwzTRXmz79u3au3dv+HHLfYGGYcg0TaWkpOjXv/61nn/+eW3fvl0TJkzorlIBAAA6TYXRqPMevbzN7cvqKrqwGqD3Igz2YpmZmbJarUd9zTAM+f1+5ebmaty4cWpsPLgalmnKMDq2X05TU5OamprCjz0e5sQDAIBTL2jolG1YD/RlhMFeyjRNORwOpaen66mnnlJxcbF+8IMfyOFwhNtERYX+9WZnZ+vAgQNHHCMYDLZrldGHHnpI991338kXDwAA0AEpwRgpaEoWQxZnO7aWOCg1IaULqgJ6L8JgL9Uyupeenq7vfe97Ki0t1dChQ8P3D0qHwl5qaqpqampa9XO73Xr//fd1xRVXtDkQzp07Vz/+8Y/Djz0ejwYOHNhZlwQAAHBcz3qmyHR7ZLjavsIngGMjDPZyV1xxhZ588kkVFRXpK1/5SqvXWkLe5MmTtXXrVkmHAmLLqGFTU5NiY2PbdC673S673d6J1QMAAADoLoTBXqzl/r/LLrvsuO1iY2MVCAQkHQqDCQkJ+vjjj7Vw4UK98sorp6JcAAAAAD0IW0v0YidaCMY0TUmS1WpVQkKCpEP3EW7fvl0FBQV67bXXVFhY2LWFAgAAAOhxCIN9WEtYzMzMlPOwm6w3b96se++9V6+//rqWL1+u3Nzc7ioRAAAAQDdhmmgP1t7VPo/FbreHp4l++umnuv/++7V48WItW7ZMkydPPunjAwAAAOh9GBnswVqCYDAYPKnjWK1WJSUlaefOnfr1r38dDoJTpkzpjDIBAAAA9EKMDPYgwWBQr7zyil577TV5PB6NHj1a3/3ud5WZmXlSo4RDhgzR888/r+XLl+ull14iCAIAAAAgDPYUwWBQt99+uzIyMlRaWqrCwkK9+OKLWrJkiV566SX179+/w8eOiorSP/7xD23fvl1Lly4lCAIAAAAgDPYEwWBQ8+bN08SJE3XjjTdKCq0EetVVV2nJkiV65JFHNH/+fAUCAVmt1nYdu2X7idraWq1YsUIXXXRRF1wBAAAAgN6GMNgDPPnkkzr99NP15S9/WZLU3Nwsm82mV199Veeee67ee+89STphEGwJfl98bBiGPvnkE2VmZnbdRQAAAADoVVhApgdoaGjQJZdcIik0Smiz2eT3+yVJV199taqqqiSFQmKLoy0q0xIEq6ur1dDQIMMw5PP5JIkgCAAAAKAVwmA3q6mpkdvtVkxMjBobG8OLxLRsDj9hwgSdffbZkqTa2lo1NTWpoaGh1WIyLZvLS9Jbb72la665RhdeeKFqa2sVHR19Cq8GAAAAQG9BGOxmiYmJ8vv9ysvL0x133KGamhpJh0b+ysrKFBMTowULFuiSSy5R//79NX78eD3yyCPauHGjJLWaGhodHa3Nmzdr7dq1qq2tPfUXBAAAAKBXIAx2o5YRva997Wuqr6/X8uXLwyGwZeTvs88+05gxY3T++efrd7/7na677jp5PB7deeeduvPOO7V69epWxxwxYoT+8pe/aO3aterXr9+pvSAAAAAAvQYLyHSjlhG9ESNG6PXXX5dhGEpKSgq//u9//1uJiYm6/fbbw89NmjRJL774ov785z9r6dKlGjNmjM4+++zwPoSZmZm6+uqrT/m1AAAAAOhdCIM9gGEYys7OlqRWm8sPGTJE11xzTfh5KTRiOHPmTLlcLhUXF+vRRx/VHXfcobS0tG6pHQAAAEDvxDTRHubwhWHGjh0rKTSd1GKxyGKxhKeWXnLJJbrmmmtUX1/fagEZAAAAAGgLwmAvcPgCMYZhhEcJr7rqKiUmJrZ6HQAAAADagjDYi3xxb8HY2Fh9+ctfVmpqajdVBAAAAKC3Igz2cI2NjXrkkUfU1NQki8Uin88ni8Wimpoa/e53v9MPfvADRgYBAAAAtBthsIe799579ZOf/EQ/+tGPJIX2EWxqatIDDzygO+64Q/n5+d1cIQAAAIDeiNVEe7hvfetbWrRokdLT07V69Wp5vV7997//1be//W2NGzeuu8sDAAAA0EsRBnu4M844Q2+//ba2b9+ujRs3avz48br33nuVnp7e3aUBAAAA6MUIg71ATk6OcnJyursMAAAAAH0I9wwCAAAAQAQiDAIAAABABCIMAgAAAEAEIgwCAAAAQAQiDAIAAABABCIMAgAAAEAEIgwCAAAAQAQiDAIAAABABCIMAgAAAEAEIgwCAAAAQAQiDAIAAABABCIMAgAAAEAEIgwCAAAAQASK6u4CAAAA0Ltd/fSNqqitbFefsrqKLqoGQFsRBgEAAHBSKmorVVJb1t1lAGgnwiAAAAA6hcWwKD0+tV19UhNSuqgaACdCGAQAAECnSI9P1arblnR3GQDaiAVkAAAAACACMTIIAH1MsK5egf0lChSXyqyukTWrv6KG58iS6Oju0gAgzPPAnxT0eNvVx6xpX3sAx0cYBIBeymxqVuBA2cHgFwp/geJSmW7PUdtbMtIUNSJH0cOyQ+HQ5TzFFQPAIUGP95ifVwBODcIgAPQCgcpqBYr2hALfwVG/YPmxl3E3Eh2ypKXIkhCnwIEyBUsrFCwtV3NpuZrfWy1JsqSnKGp4jqJH5Cp63OkyoqNP1eUAwCGGIaOdMxcsTmY6AJ2BMAgAPYwZDCp4oEz+Hbvk37FLvu07ZVbXHLWtERcbCn1pybKkp8ialiJLarIMu631MRsaFdh7QP49+xTYUxwKh2WVai6rVPPKT2Tpn674716vqEEDTsUlAkCYkeiQa97d3V0GEJEIgwDQzUy/X4Hd+8Phz1+4W2ZdfetGhiFLvzRZM1IPhr+DATA+rk3nMGJjFDU8W1HDs0PnbGxSYG+x/HuK5f9sq4IHyuR96FHFXDVVMZdOkmG1dvZlAgCAHoYwCACnmBkIyL+1SP4dO+Xfvkv+nXsln691o+goWTP7yTqwv6wDM2UdkCHDZjv6ATvAiLErali2ooZlKzgxT02vvyP/1kI1/uct+TZ+roRbvymLM6HTzgcAkcSs8co958F29bE4HXLe8/0uqgg4OsIgAJwips+n5g/WqvGt9xSsqGr1mhEbcyj4ZfWXpV/aKRuds8TFKubaL8n/2VY1vvWeAkV71PDvNxT/zemn5PwA0OeYZrsXxwl2USnA8RAGAaCLmQ2NanpvtRqXrZR5cBl1IzZG1tzBoQCYlSlLapIMw+i2Gg3DUPQZI2UkOtXw7L/U/NE6xV5zKYs0AEA7WJyOdoc6s8YrmWaX1AOcCGEQALpI0FurpuWr1Pj2B1JjkyTJcDpkO3usoseO6pGrd1oH9pclM0PB4lI1vfuRYq+a1t0lAUCv0ZFpnu45D7LFBroNYRAAOlmwyq3Gpe+p6b2PJb9fkmRJSZJtYp6iTh/eoxdnMQxDtrPGqvHfb6rpnY8Uc+lFMmw9L7QCAICTRxgEgE4SKClT4xvvqnn1OikYmihk6Z8u27n5ihqe063TQNsjamSujESHzBqvmlevk/2Cs7q7JAAA0AUIgwBwkvy79qnxjbflW7cp/Jx1cJZs5+bLOiSr14TAFobFItuEMWpatlKNy1fKdt54GRZLd5cFAAA6GWEQADooWFevhhdeCY0EHhQ1PCcUAjMzurGykxc9ZpSa3v9YwQNl8m/apugzRnZ3SQAAoJMRBgGgnUyfX00rP1bjaytkemslw1DU6OGynZMva1ryyR+/qVnBKreCVdUKVroPfu+W2dws29l5so07vROu4vgMu03RY0fJt3q9Gld8QBgEAKAPIgwCQBuZgYCaP1irhteWy6yukRRaGCbmyotlHdCv3ccy3Z6DYa86HPiClW6ZdfXH7Nf0+tsKHiiT/ZILZUR17UI01ow0+aRQ4AUAAH0OYRAATsAMBtW8ep0aX10e3izecMTLdu740BYRbVwd1PQH5N++U76NnytQtCe8yMxRxdhlcSTIcCaE/2m6PfJ9ukW+9ZsUKK9U7HWXyZIQ3xmXeFT+7bskSdGnD++ycwAAgO5DGOwjTNNUY2OjYmNju7sUoM8wg0H51m5Uw6vLFCwplyQZcbGhEJh3uoyoE3+Emqap4IGyUIjbvF3NjQ2qiGpSXZRfOUGXopyOI0KfxZFw9O0cBmbKkuxS08pPFNxfovonX1DstZfJmtW/sy89FFwLd0mSoseO6vTjAwCA7kcY7COeffZZrVixQr/5zW+Umpra3eUAvV7zZ5/Lu7JAgf0loSdi7bKdky9b/hlHDWqmaaq6yaOyhiqVNlTqQPUBHdi9XaUVe1Xm96jc2qSyjCa5rb5wn362JM3MOE/XpecpzZbYprqsA/op5vLJanr3I5k1XtU/8y/ZvzRJtnGjO+W6WwR275OafTISHbIOzurUYwMAgJ6BMNhHTJ06Vd/97ncVDAb129/+Vmlpad1dEtDrmKYZ/r7+qUWKj4uX7DbZzh4n24QxMuy2Vu1L6yv13PYlen3vKh2or5Av6D/yoLaDX4eJtkTLarGopLlaf9z7qh7d97ouTjpDMzMu0DmJw2Uxjr+Ng8WRoJhLL1LzR2sV2FOsptffUfBAeafeR+jfVhSqdcwotpUAAKCPIgz2AYFAQElJSRo/fryee+45eTwe/eUvf1FKSkp3lwb0GsHaOtX9bfGhJ6KjZDt3vGxnj5URG9Oq7aeV2/X0tlf0+p5VCpiBVq8l+21KDdiU7o9RSqxLif0GyDk4W0nOVKXEJSk5LkkOe4J8QZ8+2PWJ3ty2QlvKtumtqvV6q2q9Bseka2bGefpK2jlyRSccs14jOkq288+Sf9M2+TZs7tT7CE3TlH/bTkmSbWzXr1wKAAC6B2GwD7BarbJarfrf//1fSdLtt9+um2++WU888QSBEGgD39ZC1T35gvzFB8LPxX3netkHHZoe6Q8GtGz/av1t63+1ruLz8PNjlaGvlaZrVJNTqX67DJdT9WNzVTcmR4Fk5zHPabPadFHueboo9zztqt6rt7au0NtFK7W7sUy/2f2yfr/3VX0peayuz7hA4xw5R9243jAMRY8eIUtSYqfeRxgsLg2taBpjV9SInA4fBwAA9GyEwT7ANE0ZhqFAIKDU1FQtWLBA3/nOdzo9EDY1NampqSn82OPxdMpxge5iBgJq/O9SNb7xjiTJSDp0354lLjQa6Gmu1eKiZXp222vaXx9aRCbKYtXk2BH65g6nTmtIkBllUf0ZOaoem6vmQRmS5cjgdjxDkgZq1jnf0o351+v9nR/qja3LVVS1W69UfKJXKj7R8LhMXZ9xga5KnaCEqCMXiers+wjDU0TPGNmmRXIAAEDvxP/l+4CWEYMJEyaovLxcl156qUzT1E033XREIAwGg7J08P6fhx56SPfdd1+n1Q10p0B5per+8rwCu/ZKCt0bF5c3UvrTA5KkvXWlWrj7ZS3auUyN/tAfQZx2h67IOFtf3xSt/jtCC8E05maq+sqzjzsK2Fax0TG6ZPhkTRt2kXZU7tQbW5fr/Z0faVt9sX698wX9Zu+/dX/213V56vgj+nbmfYThKaJjWEUUAIC+jFUB+pD4+Hht2bJFknTVVVfpr3/9q5YvX66bb75ZlZWVMk2zw0FQkubOnauamprw1969ezurdOCUMU1TTR+skedXvw8FwRi7Yr7yJcVcMUVNh/14fO3duXpm+2tq9DdpkCtLt4+7UYujZ+on70j9y30KJMSocvqFqrhxaqcEwcMZhqFhqTn6/nk368kZf9T3zrpBWYmZavQ36a4df9MblQVH73fwPsLogyHOt36T6p97WWZ9Q5vPHaioVrCyWrJYFD16RKdcDwAA6JkYGewjTNNUcnKy7Ha7AoGA7Ha7rrnmGknSTTfdpO9973v6+9//LofDoZ/+9KfKyMjQj370o3adw263y263d0H1wKkRKK9U/XMvy79lhyTJOjBTMVdPU12MRU9tfkl//fTlcFtTpiZkjdXV2VN03lafHP/ZKsMflGlIdeNHqObiPJmxtmOd6pgsdY2K2b5f0SVVqpswQv6U4wfJBHu8rjztUl0+cpoe/eCvWr7jPd2z8zmdmzhSzqi4I9qH7yNMdqnp/dUK7i+R77Otsp01tk31+Qo2SpKiTht6xMI5AACgbyEM9hGGYSg2NlZxcXE6cOCAsrKyFBUVpWuuuUamaermm2/WTTfdpJycHJWUlOiBBx7o7pKBU8YMBNT41ntqfHWZ5A9IUVbZLjhLnjHZenz7v/XsjiWq9zUo2HxoZdCHL/ipztnvV8I/N8vSHNoyomlQumouGa/mge3YusU0FX2gSjHb9ilm+z7Z9lfIOLiDRfy6HaqcOUlNuZknPIzFsOh/Jt6k7RVF2uPep3+UvKtbsi47dvv+6TJsNpn+BlnSkttWalOzfJ+GZhfETD2/TX0AAEDvRRjsI1oWkfH7/dq5c6eyskKrIEZFRWnGjBlyOp26+uqrlZ6ertWrV8tqDd1D1NjYqJgY/vqPvstftEf1z/4rvHm8dchAVUw6XU8dWK7Frz2s5kDo3r+BiQN0yaBJukfrJUljnlstpyU08tecmaKai8eFQtsXVvWsba5TUeUuxUbHKjHGqcQYh2ICFtmLihW7bb9itu+T1dt6mmZzv1A4s5VUKfXZZXJ/aYLqzhp5xLG/yGqx6LozrtIj7z+uvx94Wzf2n6x469F/fk1vbWh6qMWQNevEYVOSfJ9tlZp9smSkKeq0YW3qAwAAei/CYB/RsojMeeedp88++0yS5PP5FB0dLUlatWqVRowYocLCQv3oRz/S448/Lkm65557dM8992jAgAHdUzjQRczGJjW8/Iaa3vlQkmTExmj3+UP1lL9Ar618WkEzKEkakTZU142+SuOzxqhh5YZwf0ujT74h6aqZMlaNIweFg5ppmtpdvVdr92/Q2n0btKVsm0yZrc4dG7QqKRCtpIBNSXE2JcXZ5XQkKz49Q/EDsuRISlOa3aUz3t2thE+LlLTkY0WXueW+/GzJevz7es8fcrb+uf4llXjLtLj0A30rc8pR2wUOhFY+tQ4cICP6xB/1pmnKtzY0RdR+0TlH3coCAAD0LYTBPqRlgZiVK1fqwgsvVFxc6H6i+++/X/v27dO7776rN998U7NmzdIVV1yhsrIyPfvsswRB9DmB4lLV/vlZBUtDgeizUYn6W+JOvVP4arjNuMwzdN0ZV+n0jJGyNDYr6aWVqvt4U/j1qqvOUdP5YyWLRQ2+Bm04sElr921Qwf4NqqyvbnW+/oE4Bc2Aqi0+NVuCarAE1GAJqDi68VCj4H6pZKNUcuipSdnnas60iUpbtkEJa7YpuqJGlTMvUjD+2KP1VotV146+Uo99+KSeKl6mr/W7QDZL9BHtgiVlofbZA9v2nu0pVrCiSoqOkn1ifpv6AACA3o0w2IcYhqHMzEyNHTu2VRDcvn27/vrXvyoqKkrTp0/Xhx9+qD/+8Y9avny5zjnnnG6uGuhcTR8VqP7Zf8n0+fRhSp2ezirXWm+h1CgZMjRx8ARdd8ZVyk0ZIkmyFx1Q0ssrFeWpV+1h+wMWDYxR0ZY3tXb/Bn1WsiU8kiiF9hk8LWaALi5zaHKVSwP8sQpaDFVmJmhvVoJ29Y9SRUxAdc31h33Vqfaw70u95Xp35weq7FetX8yYrsH/WSP7rlKlP/GaKr4+Rf70pGNe4+Tc8/XChpdVVl+tl8s/0vUZF7R63QwGFTgYhKOys9r0vrUsHGM7J4+FYwAAiBCEwR4oEAjIYrHIMIx27QvYct9gdXW1PvzwQ7377rvavn27nnzyyfA9gqZpasOGDVqxYoUuuuiiLrwK4NQyfT7Vv/iqmt9brRqLT/dn79Tbxh7Je3CT+NwL9JXRVyjT2S/UwRdQ4rK1cnwUWjDFl+LUpnOGS38PvXzPsvtlsR3any85Nkkj0nKVb/TXZZtMZewIjfo1xUZp88QB2j88VYGD7eMkDTpBvdsrivSP9S/ps5It+nHDk7rvGzdr1MvrFVVdq/S/vK6q6y5Q44ijj+pFW6N1zelX6K+fPKu/7l+q69LPVZRxqNZglVvy+aUYuywZJ17sJlhbJ//W0Ebz9osmnrA9AADoGwiDPZDH41F8fLxsNlu79gVsucfnqquu0q9+9St5vV797W9/k9Vqld/vl8Vi0c9//nPNmzdPZ511VleVD5xygfJK1S38hwJ79mu93a17B21TScCjKEuULh85TVeP+pJS4g+tqBldUqXkl95XdJlbklSen60nMw9o0fpHw20shkVDU7I1PC1Xw1OHakhjjEZ8tFdpe2okSf5oi3aO6a9dY/spEN2+Td0laVhqjmad9U39veAF7a3Zr5+sfkQ/n/59nbV0p+y7SpXyzxWqmZqv2vNOP+rCMpcMv0iLPv2P9jVVaknFGn057ezwa8EDoSmiUYOzZLThM8S3bpMUDCpq6BBFZfVv97UAAIDeiTDYQwSDQT322GNavHixVq5cqfT0dF122WW6++67NXjwYEVFtf1fVUJCgq699lpNmTJFFotFwWAw3P9nP/uZYmNju+oygFOuecNm1f31eQWamvRU2l4tdGxXMGAq09lPP7nwtvB0UElSMKiEDzYrccU6GYGg/PF2/feCRC3c/y9VbKpsNRX0f8+erbS0VMV4mzTso33K3FYpQ1LQYmjvqDQV5g9Qc9yR9+q1R39nhmaf/W09U/CCSmvLdefbD2vulB/o4k8TlbBmm1xL1yq6zK3qqyZKXwic9ii7rhr1JT23bpEW7n9LV6ZOkMUIBb9AycHFY9pwv6AZCITCoCT7JKaNAwAQSdo+7IQuEwwGdfXVV+vzzz/XOeeco3nz5iktLU1PPfWUZs6cqeXLl0sKTfFsi4SEBE2dOjUcBA8fXSQIoq8wAwHVv/S66h77u8r9Xt025DP92bFNQZm6KOc8/e7KX7UKglZ3rdL+9pZcS9fKCAS1eYRDs0YX6sFt/1BFXaVcsYn6ysgrwu3jfNKID/bown98qgEHg+CBocla+dUztOWCIScdBFu4Yp26+awblZM8RP6gX/e/84heHN6g6svPlmkxFL+hUGl/e1OWL2xPIUmXj5yquOg4FTWUaHnVp6H3xe9XsLxSkhQ15MT3C/q37ZRZWyfDmaDovNGdck0AAKB3YGSwmwWDQf3sZz/TFVdcoVtuuSX8/IwZM7Rw4UL94Q9/0AMPPKBJkyYpJiYmfF9gW7VnminQWwS9tapb+A/5thVqSUKJfpdRKI/ZqJgou2af821Nzj1sw3TTVNyGIrmWrJalyaet8Q16Yrhb79Ysl1luympYNSnnXF2QfY7qa+rC3Sa+tEmZUaE/nlQOcGrrOVnypCd0yfXERMfom/nX6z+blmhd8UY99tFTSpt6l865YapSXnxX9n3lSv3ncpXNurJVv3hbnK4YOVWLNv5Xfz+wQtNSxipQXCqZpoxEh4ykxOOe1wwE1PzhWkmS/fyzZLRjBgIARIqyugqd9+jl7eqTmpCi/3zrmS6qCOg8/J+/m61cuVJ5eXm67rrrJIXCoSQNGjRI3//+91VXV6c//OEP+u1vf6t77733mEHwaCExEAiEF44B+gr/7n2qffwZHfCU6sH+W/VBbLlkSjnJg/WTC2/TgMRD97xZ6hqV9MqHit2yR+vtbj05pFgfWIql0G1/GpU+XF8aMVXJcS7JNNV/W2W4b3RzUJ6MOG07J0sVAxNPuCH8yYo6uGWEP+jXxpItWle8UeMmfF11+cPlWPWZzGP8LJ/Rf5QWbfyvqv11oSmf60NTPqNHDTvhH46alq9SsKRcirEzRRQAjiFoBlVSW9bdZQBdgjDYzSoqKjRs2DBJOmJKZ0ZGhm6//XY98cQTWr169XGP0/JL38aNG1VeXq4pU6YQBNHnNH1UoNpnFuvl2D36w6Adqjf8irJE6foxX9FXRl+uKMuhjzR7YbGSXnpPHwf366nMXVoX45YU2l5idL+RujD7XPV3ZkiSoht8Gv3uLlk27Qv333hRtprzBnd5CDycYRjKSR6ijSVbtLt6r4xmv+LWbZck1Z5z2lH71DbXS5JcUXHyf14o01snIz5OtnPHH/dcvk3b5FsTmloaf9NXZXE5O/FKAKD3S01IaXefsrqKVvefAz0dYbAb+f1+7dy5U4MGhRah/+KUzmAwqNzcXP30pz/Viy++qKamJtnt9mMeb+/evbrtttu0cuVKPf/885o5c2aX1g+cKmYgoIaXlqjw3aX6ddoWrY0Nbfo+Im2obj/3exroGnBYY1MJqzZp1/sr9MOUz7XV7pUUWh00b8CZOn/IOUo9bGXR1N1ujX5np2LqfSo9bJ/B8myXEk9hEGzRz5EuSdrj3qu4DYWy1jfJn5SghpFH36yirik0tdVh2OXbGNomwz7lXBl22zHPESirVOOSFZKkmMunyHbm0YMmAESyjkzzPO/RyxlFRK9CGOxGUVFRuvDCC5WWlqbKykqlpLT+C1RLOMzKylJJSYkCgcBxj2ez2cLHGD2ahSDQNwTrG+RZ8KyePbBCj2UVqskSlN1q0zfyZuiKkZfIetgfUYxmnxz/Xql/Fr+tv/bfqaAhRVuidNagfJ03+Cw5YxzhthZfQCM+3KvBm0L/0/YmxWpN3sDwPoNH4w8G5Gn0qqaxRjWNXrkba1TT4JEv6NPZA/Nbh9IOSk8I7QtY3VAj30frJEm154ySrEe//7e2ORQGE2qapUBQlgH9FDV6xDGPbzY2qeFfSySfX1GjhinmqqknXTMAAOidCIPdrH///vrJT36iRYsW6Y477tADDzyg6OjWqxROnjxZQ4YMOWLkcOfOnUpNTZXDEfoFNyMjQ3/+85/16KOPKjMz85RdA9BVAuWV2vt/C3S33tHqlCpJ0hn9Rum2c28Kj6C1sFZ71fz8q/qRZZU2JIVuChzbf3RoxU1bXKu2zvI6nbmsUAnu0Mbxu87I0LZzBspbUxNus6Z4g5rLfHI3elRz8Ku2qVbHWtN3Q/EmXTFyms4elN+uRZ6+yB5lU1KsS9UNbu2uPaDUmH6qGzf0mO1bwqDD0yxJirnkwuPeW9z46nKZVTWyJLsUf9NX27QPIQAA6JsIg90sKytLc+fO1b///W95vd6j7ifYv39/maYpt9utfv36hZ/ft2+f3G63xo0bp+bmZtlsNmVkZJzK8oEu49u+U58s/IPuTFyjkuhG2S02fffsb+iSYZOPCDv2wmKtfeV5PezcqFqrX3ZLtL58+uUak3l664MGTeWsO6Cha/bLEjTVGB+tjZNzVJHl1I7KnXr906Xhpst3vieL7cj7bi2GRfHRsYq1xSk+OlZxtjjVNNZoX80Bvfr5W9pTs1/XjLpMtqhjT9M8kX6OdFU3uLXDVqsRZw6XaT/2Nha1jbWSJGcgWtFjR8naP/2YbZs/Wif/tiLJalH87G/IkhDf4RoBAEDvRxjsAcaOHavi4uIjpolKUlNTk0zTVGpq6hEjgy6XS8uXL9e4ceNks9nave0E0FM1fbhW//jXHzQvZYt8hqnM+HTNufiHGpz0hU3UTVPWlev06IYX9GpSsSRpkKO/po/9SmiF0MPEehp15vIiJZWEwlNJTpI2TcrWjoYDWvrJf7Wreq+CzYemYmcm9FNiYqLiomMVb4tTXHSs4qLjZI+yHfFzZpqmtlUUal3xRn16YJNKvWX62thrlRrf/sUHJGmw4dIWSTvsdao9+/j38zWWlEiSnLLJNmniMdv5d+1T8zsfSpLivnq1ooaceEN6AADQt3V6GJw7d66KioqUk5OjlJQUTZ8+XUOGDOns0/Q5LUHwi4GuZcGYQYMGyefzterj9/v14x//WDt27ND//d//EQTR65nBoNwvv6ZfFTyh/6aGwt3ZA8bpBxfeovgvTPU0mv0qffk/ut/zlvY46mVIumjIubpo2AWyWg4b0TNNDdhaodNW7laULyh/tEWbLxiitf38WrrpJW2rKAwdT4ZyXEO0S+slSeP7j1WCq237ChqGoRFpQ5UU69IHuz9WaW25/rTqCV0/5isalXHs+/eOZUypVW9I2pboU9AZd8x2lvpGNVSUS3YpeeQoWeJjj9ou6K1V47/flExTtol5sl1wVrtrAgAAfU+nh8EFCxZoxYoVGjt2bGcfOiIcK9ClpaXJNA/drbRp0ybNmzdPknT99defktqArmQ2NWvbX5/QjysW63OnVxYZ+vrY6br2zCtlMVqPihtVNXrzpQVaEP2ZAjZTydZ4fWXcNcpOGdyqXXSDT6e/u0v9doZWH63q79CKiS69VvK+Nn60JdwuN3mITs8YqWB9QCtO4hrSE1J16fAp+mD3xyqvq9Q/1r+kC4aco6nDLmq10M3xxHqaNGKfpCypyHAraAaPuP4WzhXrVWuG7hVMGj7yqG3MQEAN/3pDZn2DrFn9Fff1a/jDEQAAkNQFYXDq1KntCoIej0dOJ/tbHUsgEJDFYpHD4QjfT7hlyxbdd999Wrx4sZYtW6YLLrigm6sETk6wtk5v/vHXukfvqsbuk9Maq59M+YHGZB65Kq5361b98d3H9Yk9tEH8OOdQXT7+KsVGtx4Vcx3wauxbOxRT71PQYuiDPKf+HrNdBes/DbcZ7MrS6H6nyWEPjQDW1tee9LXERsdocu752lD8mbZWFOr9XR+p2Fuib+Zd33rE8hiGbDigAc2xspkWNQWaVeotD++HeLjofeWKX7NNnqzQjIFEu+OINqZpqmnp+wruL5HsNsXfcoMMW8fvZQQAAH1Lp4fB5OTkEzc6zEMPPaSHHnqos8voM1o2jne5XHI6ndq+fbt+8YtfhIPglClTurlC4OT4vF79vz/9r56wfCrTkIY5BuquS36stITUI9qu+/BN/X7LC6qx+2Q3rfrysIt1Zs6Rq3em7arW2Ld2yBowVZhs6g9DS/RhxdLwSqCZzn46s98ouWITu+SaLIZF4wacqZT4ZH2w+xMVVu6Su6FGKfHH/3zMKKzS4M/K1GCYksUimUE1+BuPaBdVXqPUf6zQWnul9kU3SJIGxKcd0a551Rr5Cj6TFNpY3prWsXsYAQBA39TpYTApKald7d1ud2eX0Cf169dPb731lp577jm99NJLBEH0CZVVJfrBwln6yBq6P/CyQefrOxd+RzZr69GrJn+z/v7m43qtYo1klYaaLl01cYZSEo8MQAM+L9fp7+yUx2jWI0P2aYllp8yKUAzMSEjXGf1Gdnhhl/bq7zg0opdgP/79h4mltTpzeej+xX+MbFBzk1/9HRnKTmq92by1ulapf39Lvvo63T94myTpa0O/pH5xrcOzf+ceNb+3WpIU+9WrZRsz6qSvBwAA9C2dHgYXLVqkmpqaVve3Hc+LL76oxx9/vLPL6HPKysr0xBNPaM2aNQRB9AkFuwp0+ws/UqlRJ7tp0W1nfl0X5l16RLsSb5nmvzZPRU2hzeG/YozU2ClXyRp95HYL2esOaMRHe7Umpkp3Z25RlUKjZukJaTojY+RRRxu7Ur0vdP7YqBjZj7PVRKynSXmvb5M1YKpssEuvxmyWmqRpwy5qNepp8dQr7ek3FeWp16MDirXPUquM2BT95MwbWx0v6K1V439C22TYzp+gmMnHXmUUAABErk4Pg1VVVfrzn//c5vYsZNA28fHxWrNmjZYvX67Jkyd3dzlAh5mmqb9/8k89+Pbv5VdQg/zxmnPB7Row/Mj7A9fsXa//t+KPqpdPyX6bbo8/X7ZJZ0tf/NwwTY34cK8GbijW40k79aRrp0xJTnuC8rPGKiPhyBHEU6GuuV6SlBhz7Puio5r8yluyTfYGvzypcXpzolN7Py6WxTA0Zeih+4EtdY1K+/tbiqqu1eZUv56L2S6Z0i/Gz5bDdmi/QDMQUOPLb4YWjBnYX3HXf7nrLhAAAPRqnR4GZ86c2a4weMkll3R2CX3SaaedprfeeosgiF7N21Sru5f8Wku2LZckTanP0P986QeKym49FTJoBvXC+pf14qf/linpjMZE3dJvqqrPGn5EEDQCQY1+d5esO/ZpduZGbYipkSTlJA9WXuaZirK2/WMurjF4chf4BS0jg4mxRw+DRtDUmKWFclQ3qDEuWmsvG66P974jSTprYP6hexoDQaW88I6iy2vU6IzRrwZ+qmBNUF8aeK4uHtB6m4imdz9SYN+B0IIxs74hw3bsDesBAEBk6/Qw2N6Rvry8vM4uoU8aN25cd5cAnJTPy7brtpfv0i73XllNQz9wD9e0L9+k5uz+rdp5m2r1+/f+rLXFGyRJM2qydPmIi7V/zIAjjmnxBTR2aaE+K9+mX2dtltfql8Ww6OyB+RqclNWu+jIr/Tp3VYMePvg4xRNQk6sjV3pIffPBMBhz5EqfMk2d9v5upe2tkT/KooLLh6s21qL1xaEFXy4ZfugPP643PpZ9d6mC9mg9eV6UdmzdowRbvH6WP6vVIf3bdsr30TpJUvy3Z8qafmqnxQIAgN6lS6aJtse0adM6uwQAPYhpmlq88b/6+ZsPqznoU4bfrgcrxynz2mvUlNM6CBZV7tK8t/+o0rpy2YMW/bRypAaddb72Dz8y1EQ1+TV6yRY96Vunxf32SZKS45J07qAJSrDHH9H+OAUqblmRrOvKtbypKfy07dn12n2aQxUuq1z9kpR12qDjHOTowiODMUeuWjr401IN2lwmU9KnU3PlSYvXpuLP1OBvVFp8isb0D02bjVu7XQkfb5VpSJ9dMUrPbvyTJOnusd9VaowrfLyg26OGV5dJkuwXnydb3pHTbgEAAA7X6WGwoKCgXe0vvvjizi4BQA9R39ygXyydp3999qok6dz6FP3Smyf/1y9TU1br+/hW7Hhfj37wVwXMgAb4YvVw+RjVTx6nA0OOXKHYXtus1NfX6If2NdoRF9obcGTaMJ3Rb1SbN3eXpGi/qX7/2aFb//L0Ea/NfX+p9P6hx9/8f7PaHQjrfUe/ZzBtV7VGfrBHkrR14kCVZYeucc2+9ZKkqcMmyWqxyLa3TEmvfSRJqrlojH5f+oaaA806J/0MXZt9aBEp0x9Qw8tvSI1NsmYPUuy1l7WrTgAAEJna/ltTG1VUVGjChAn617/+pfXr13f24QH0EjsqduraZ76lf332qiymdFtVrn7beJ6av3u1mg8Lgr6AT3/+6G/646qFCpgBnVefoifLJspz6XiVHyUIxlbXq/yNN3VLwnvaYa9VrMWmSdnnamzm6HYFQVdtUF9/t15mUUWb2rsPtG/Wg3T0aaLxVQ0as6xQhqS9p6Vp15h+kqTyukrtqt4jQ4YuHjpJFk+9Ul54R0YgqPrTBunVrFp9emCTbNZo/XrC/7Sakt+0bKWCB8qkWLsSZn1dRlSn/50PAAD0QZ3+G0N1dbVqampUVVWloqIieTweOZ3HXkkPvV95ebkaG4/cGBuR643tK/Tgu79XU6BJSX6b7j4wXCMThmjrjIkKyi9VVEqSquqr9ejHT6qoepcMU7qhcpCmNwzRR9MGqzYmKFW5Wx03qtStJRve0Mr4cskv9bcl68z+Z8oejFGtu7bN9Q0p9euMz6r1REKJXs4pklacuM+ITV41jPEqYG3jfdGmqdq6WgXNoIwGqabKraimgE579XNVe5pVnZGg9acnyqwOLXizaueHCjYHNKbf6TK8fpn/fEVVpZXypSaq4oLT9K8PHlGwOaAbh1+tmKZolTWFQqxva6GaVoZGD+O//mX5/M1SWVmb3wv0fV6vt7tLAAD0UF3y5+PExEQlJiYqOztbHo+nK06BHmTo0KHdXQJ6sF2SZujj0INHjt/211qvX0vSE20/9odtSXKd4DdL3pSWvNmhvndr/dFf+N2RT+3Sev1Hz7V+8vcPhL+9R+t1j35+9OM9+38dqg8AAESmTp8meriamho9+OCDuvXWW7Vr166uPBUAAAAAoB06bWSw5f7AsWPHhp9LTEzUww+HFmr/zW9+o/z8fE2ZMuUovdGb7dixQw7HUZbOR8QorNqpO9+4T/u9B2S32vXj+jG6aLdNvmSHKm6YJjM2tNedaZp6e+f7enbDYpkyNdySpge35SrOiFbB5cPlTY074tifV+zQks/fkM8wldOUoDMH5ynoOLLdMZmm9nqL9XnFdjUEQtOZzaCpiZ4U/axspJYUbdedHyw94WGuvvkKDZ5yRpvO9+H+NSpvqFRKbLJuHXSVzlq+W/Z6vxod0Vo3bagaEmMkSQ2+Jj23cbEqG6o0IC5Dv90zWslVTQrE2VQ1fZKa+yXpsY+f1Jri9Roc319Pnv9L2S3Rav5orXyrQ1tvRE/MU9y1l8lox/2SiCxer5cZHACAozrpMLhu3TpNnTpVbrc7/Ny0adM0Y8YMzZgxI3y/4J133qlbb72VMNgHpaWlcV9oBHtz6wr9+LWfqdHfpP7J/fSQZYrO3F2pYFK0yr53hZLTQtsq+AI+LVj9tJZtf1eGzaKJjuF6ZEOWomMs+nRKjizDU3X4BgymaWrVrtV6o2iFZLfowvpU5Q+boNKMmDbXVuIt0/riz+RurJGsksVqDb/2cUyN7nV+rnMP2Np0LDMpTgmuhBO221T6uSoDbkXZo/U/uVfoyhXlipZd3gEufXblCNkSbLJJ8gf9WrTmFVUHapTmSNaC/WOU2WjIn+lSxY1T5UxN1DuFq1RQsVHRdpt+P/kuDXT1U9Mb78i3cYcUF6+Yq6Yq5oqL272/KyJLTEzbf2YAAJHlpMPgnDlzNGPGDOXn58vtduutt94Kf82aNUszZszQ9ddfr3HjxrV7D0IAPVfQDOoPKxfq/z74iyTpjH6j9EvHpRr85kaZhlQ1/UL5DwbBqvpqzXvnj9pavkOGDF058Hzd/UGMomVq1xkZKh7Reh/BQDCoV7e8qU/2rZMMaWZNls4YeKY2ZdjbWJupdfs/1fbKouO22xBTo/XJNR24+qMrrS3XxpItkqRv9rtIX15WIas/qOp+CSq4bLh8MVHh+hZvfEW7qvfKbkTrj3tGK7POUHO/JFXcMFVBR5zKayu0cHVoy4vbR1+v0x2D1fjS6/Jv3ykZhuK+fo3sF57dabUDAIDIc9JhMCcnR3/+85/Dj++8805J0uLFi7VgwQK9+OKLevHFF2UYhmbNmnWypwPQA3gavfrRK/fqnaJVkqQrT7tUs9Mmq9/fl4devzhPjcOzJElby3fo4bf/oOoGt2xWm244/Wp96+0GRfsaVZXp0NaJA1sdu8nfpOc3vKztFUUyTOnHlcM1LC1X72S3LQgGggF9uGeN9tUUt6l9U6r1xI0kufoduc3F4Rp9jfpw9yeSpPMThut/PrDIYgZVNihR6y8ZqmD0ofO8U7hSn5VskVUWPVJypkbUxapxSD9Vfm2yzBibgmZQf1y1UPW+Bo1NGaGbc7+shhdfVWD3finKqvibvy7b2NPbVDcAAMCxnHQYPNb0pOnTp2v69OmqqanRsmXL5HK52GAe6AO2lRfqlpfv0O7qvbJZo3XrxO9qavJYpS98VUbQVP0Z2fKeP1qStHT7O3r8w6cUNINKT0jVjaOv1ZdWlCm+plENCTatnzZUpvXQvW41jR49s/ZFldSWyR606IGy0Rrk6K+XR7ctCDb7m/X+ro9UXlfZ5uuJGZygzFtHyFfVpEENsVr739DI3sX/c5niE0LTQl39ko674XzQNPXhnjVq9DdpQJRLD28cIIsp7R+eos8uym51jfvcxXq7cKUk6d7ykTqrLkn1owar6toLpIOB8dXNb2pjyRbZo2yal3+bfItfV2DPfskWrYQffFfRw7LbfH0AAADHctJhMDEx8YSvX3fddSd7GgA9wBtbl+snr/5cjf4mpcWn6KeTf6ihCQOU8tfXZa1vUnNmiqquPld+M6AnVz+nJVuXSZJGpQ/XzJGX69y3diuppFY+m1UFlw1Tc1x0+NjFnhI9U/CivE21cgVt+mPxWKXbXfrHhFiZlhPfE1fXXK/3dn6gmsb276kWMzhBMYMTVNHol/4beu70C8a06R5BSdpc+rlKa8sVbVr0+52nKca0ateZGfr83EHSYX8wa/Y3a9HG/8iUqUtrM3SVN1O1E0bIfflZ0sEFYPZU79MzBYskSXNHf1vpS9aGg6Djh99TVO7gdl8fALTH1U/fqIratv9RTZLK6iq6qBoAXemkw+Ds2bN166236vHHH++MegD0QIFgQI+8/2c9/tFTkkL3B94x6TYl2hxKWvSubKXVCiTEqPKrk+X21+k3y/+kTaVbJUkXD71QkwdN1PjXtyu52CufzapPrhohb2p8+Phby3fouXWLFTSDygom6PF9Y5RoidNzE2PVHH3iIOhu8OjdnavU4Gs8qes02hA6v6jUW67PSj+XJN1bfpqyffHaenaWdo7r3yoIStKb21aosr5a6X675lSMVM3ksfJOOjPczhfw65GVf5Yv6NOkjHH68poGBfYcCAXBH92sqJxjj04CQGepqK1USW1Zd5cB4BQ46TCYnZ2t6dOnEwiBPqqm0aMf/vdevbfzA0nSl0ddpm/lXy+rLHK9/rHiNu+WabWo8vrJ2uov08NL/6CKukpFW6N1/ZnXaFRyrsa9sV2p+z3yR1u09orh8qQfGnFbvWetXtkS2sx9hJGiBbvPUKyitGhijGriT7xdQllthVYUvn/E8+fXpereitP0b8d+LUgqktkFC242HHaf4NWeTF1e11+fTRqifaPSj2i7vWyHVu8tkCT9onyUApedr7qzRrZq8/yGf2ln1W45bAm6d99QBfcekOy20IggQRDAKWYxLEqPTz1xw8OkJqR0UTUAusJJh8Fdu3Zpzpw5WrdunRYtWqRZs2Zp6tSpbCEB9AHFnhLd8PytB+8PtOm2c2/SpJxzJUmuVz9Swieh0b/qL0/Uh5YDevC1RxQwA0qNS9Y3xk1XWkKqzli6Q2l7a+SPsmjt5SPk7ndoT8q3C1dq+Y73JEljYgZpweahipJFb4yL0b7UE3881TR6jhoEpdDCM6kBu77nzpHdtOoPKdtPeLwhiQO1S+tP2E6S/AG/VhetVmOgScOaEvRj90itu2SoynKSj2jrcVfqvwX/lQzpes9ADb38GtWdmdOqzSd71+nlz16VJP28Lk9Je6tDQfBH31NUNkEQwKmXHp+qVbct6e4yAHShk96leNasWUpOTg5vHfHwww9r2rRpslqtOuuss/S73/0uvCE9gN5jX02xvvaPWdpdvVdp8al6+PKfh4Ng3LrtSvhka2gLiWvP14fpjXpwRSgIDk/N1exzvq20hFSl7apW/x1VCloMFVw2XNWZh4LgxpLN4SB4RsZp+vWBEYqSRQU50fpsSPRRa/oif9B/9BdMKWCY4YdxwROvGOqKcer01JEnbCeFguCaz1eppLFK8UGrfl09VpsuH3XUINhYWqqnP/i7qo1GZTfH62sX36SGLwTBD3Z/onnv/EFB09SXGwdp8l4bQRAAAHS5Tt9aYt26dVq6dKmWLl2q5cuXa82aNeEVR2fPnq3HHnvsZE8JoIvtce/TN/55i4o9JervyNCvL71bqfGhoBN9oEpJr66WJHkuGqtPMnz69dLfKmAGdFr6cH11zFdktVhl8QV02srdkqRdY/qpKssZPn6xp0SLPv2PJGlE2lBdGjVUmdUN8lmkD0e2bRN4SUqJS9YZ/UZpY8nm1i8Y0i391+pLtf202e7R+hj3cY8zMHGAzho4Tk3ephOftMmnzzZ/oF2WUBB8sPk87bt2ghodR1nxdMce/WXrYpVGNWpgIF73XXynlJPbqsm7Rav0h5ULFTSDuqSuv+4uHSpLeooSbvuWrP2OnG4KAOibzBqv3HMebHc/i9Mh5z3f74KKEAlOOgzm5uZqxYoV4Wmh48aN07hx43TXXXdJkgoKCvTCCy9o2bJl+uSTT072dAC62K7qvfrGP29RibdUmc5+uv/Su5UcF9pjz2hoUsoLb8vwB9QwbIA+GmHXL5fOkz8YGhG8fsw1slpCo3C5BQcU521WQ4JNhfmZ4eN7m2r17LpFCpqm+jsyNKb/aI3/qEGStGlwtBrs7ZuwMCp9uOqb61VYtavV85VRzXrOteeE/fMHjNHQlGwZhqEmHT8MplQ2aVXRh/rcVq34oFU/dV2i2rPHHrnaqWkqvmC75h94VSXRjRpoOvSrK38mZ3r/Vs2Wbn9Hj33wpEyZusrbX/eWj5J9xFDFz/6GLPFxbbp+AEAfYZoy3Z52dwt2QSmIHCcdBu+880699NJLmjlzpnJzczV37lw5nYdGAPLy8pSXl3eypwFwCuys2q1v/PMWldaWKysxU7+6ZK6S41yhF4Omkv+1UlHVtfK7EvT6OQ7NW/qwAmZAOclD9LWx1yrKEvpIia9uUPb6A5KkLecNUuDg/nm1TXV66pN/yNPolcOeoImDxyvVG9TQkoBMSWtz2z4q2MIwDOVnjVGDr0HF3tI294u3xeu8wRPCQfe4TFNjtjVqcfVqrY+tVlzQqluGfkXGsOEyv9DU4g8q7Z3P9IvGZToQ3agsS6J+efUvleRsvQjDq1ve0l8+fkaSNL0mS3dVjlDspImKvf4qGdYTT2sFAPQNFqejQ4HOrPFK5hf/LwS0z0mHQUm67rrrdN1116mmpqZVEATQe2yvKNKNz9+q8rpKDXIN0K8umStX7KF9RB3vf6rYbftkRln1j/Nj9KdVj8qUqZFpw3T9mGsUbT14n59p6rSVu2UJmioblKiy7FDYqmuu11Nr/qGyugrFRsfowuyJslltGr8jtB3Ejv5RqnZ07DZmi2HRxMFnaUXh+6pucJ+wfVZips4amCeb9cT3JsY3BjVlbZ0esa7V2thq2U2rvpX/VSWlH7nfn722WZlvbdCdtvdVHN2ozOgk3Xf1L5QS33p1vdc/XxYOgje4B+l/q4cr7mtXK+aiiW27YADoYTwP/ElBT/v2eTVr2r8vbF/U0Sme7jkPdmgkEThcp4TBFifagB5Az7R23wZ9d9EPVNtcp8FJA/WrS36qxJhDf9ix79gv59vrZcrUY2f59NTm5yVJeQPO1NWjLpfVcijE9SusUuo+jwJWQ1suGCwZhuqbG/S3Nf9UaW25YqJiNDn3fDnsCYprDGrUXp8k6ZNhbVs05liirVGalD1RS3e8q7rm+mO2y8s8U8NSc8L3Mh9PTolfFxXU6Z7kdVoTW61oWfSts7+uAUkDj2ibWFKr/ks/1f8mrQ4FwZgU/frKnyslvvWiMuuLN+qJg0Hwu9VDdGvDKDl++E1FjxzazisGgJ4j6PESTIBeqFPDIIDeZ/mO93T7v+eoOeDTiLShumfKj+WMObTqp9Vdq+SX3pdpmpp3WpleKtkoSboge6IuGXZRq1BlbQ5o5KrQfXpFeZlqcMaowdeov639pw54SxVlidKU3PPltIeOP67Ip6igVJxkUXHyyU+NjImO0aTsc7Vk67IjXou3xencwWcppS3TQiWdv7lR55f59eOMDfoktlpWWfSds27QoKSsI9oO+LxcKSu36NZ+a7U/ukH949P0q8vuPSII7q85oN+s+KOCZlBXevvrNvs5cvz427Kmt28fLwDosQxDRqLjxO0OY3G2rz2AzkMYBCLY4k//q7lv3K+gGdT4rLG6c9LtskcdtiqmP6CUF99RsL5Bvxi8Q281hYLeZSOm6rwhZx1xvGGf7FNMvU91iXbtHNtfjb5GPb32eRV7ShRlidK0YZPCQTPab2psUbMk6ZNhNqkNI3Vt4Yxx6OKhF4a3rZCkAc7+OntgnmxRbb8nccSuJv04e5M+jquSxbDouxO+cUQQtPoCGvnBHkVv3avZmaEg2C8hXb/+0j3h1Vdb1DbU6qFXH1JdoFFnNibq52lflvPmG2SJiz25CwaAHsRIdMg17+7uLgNAGxEGgQhkmqb+/NHf9Nv3HpUkTcm9QP9z7nfDC8C0cL3+sfzFpborc5M+spbLYhi6dvRVGps5+ohjOirqNWhjaAGXzRcMUYN8errgBe2rKVaUxaqpQy9sNfX09D0+xfokd7yhHZmd+1GUFp+iC4aco40lm5WdPFjDU3NPOC3U5jM1Yfuh1UR/nrVFG+O84SA4+AtTQ53ldRqztFDeWvehIOhI1/2XHhkEA40N+v3iX2tfsFr9fDH6w/CblXz9TBmWk97qFQAAoMMIg0CEMU1T9y//f/rb2n9Kkq474yrdMG7GEWEpbn2hggWbdFv/ddoU41GUJUpfH3udhqflHu2gGvX+LllM6UBuskoy4/T3Nf/UXvd+WQ2rLh56YavFaAzT1PgdoVHBNUNtMjtpVPBwAxL7a0Bi/xO2i/abyits1vjtzaqt8YWf3xDrVpQRre9O+IaGHB4Eg6ayNxzQsI/3q8xo0OwBBdofFQqCh+/H2MJS7dXTL/1Oa6KLFRu06rEJd2jQpdd01mUCAAB0GGEQiDD/7/3Hw0Hwpgk36KpRlx7ZKBBUwtI1+kn6Z9oU45E9yq5v539VA10DjnrMxNI6JZXUyh9l0efnDtI7Rau0271PVsOii4deoKRYV6v2CQ2mXHWh5bDTaoKyBkwFrJ0fCI/HGjB15i6fztnarPimUC0Fic3h1y2y6LsTvt4qCMZ4m3Tm8iIlH/Dqc5tHP8j6VFVqVEZCKAimfWHV0Ojte/Xk0j/r5fjQ9NrfnvsTjZl0TddfHAAAQBsQBoEI8ty6xXrswyclSf8z8bu6ZPjko7azFx3QAttGfRhXqSiLVTdN+IYynf2OedyU/aEV5CoGJmq/Uav3ij6UJE08xj5+3jiLVp1m03lbmjVml09pNQG9clasvHFdP23SME2N2uPXuZ83KbE+FAKr4qU/ZZfqlZpPw+2+dsZ1GpI0KPTANNV/e6VGvb9b0c0BveOo1N3pn6rZDGiQK0s/m3pH6yAYNBX77jr9v83/0JsJpTJM6b4LfqgvnTezy68PAACgrQiDQIRYuv0d/XLpPEnSV8d85ZhBUJJWr31LT7t2S5KuHX3lcYOgJCUXh8JgZaZDSz5fKlOm+jnSNcB57GmaH460q8Rl1RVrGpRZHdSNb9fr1Qkx2pPeRR9LpqmhB/w6f3OzUr2h7X29MYaWDPfrGX2mktpyBc1D2/5mHbzmqCa/Tn9vl/rvqJIkPTWgVI/ZP5NpmhqbeYbumvR9xdkOLQJj1Dcp7qW39cvaN7QqoVJWWfT/rrxPV46+rGuuCwAAoIMIg0AEKNj/qX7wn7kKmqamDbtI14/5yjHb7i4p1MMN70gW6eL0PJ3Z//TjHtsIBJVUUitJej+hQtu2F8qQobzMM0+4aMvOflF6ZnK8vry6QRk1QU1f1aCVo2z6eHjnrS4qSQPL/bpwU5P6V4fCXkO09NEwm15M2qe1JZ8paAZlyNDkIRfoKa0P90ve59EZK4oUW9csn2HqvtOK9UbjFknStGEXafY532q16E50caXsLy7VnTGrtC7OLbsRpceu+50uyj2v064FAACgsxAGgT6uqHKXvrvoB2oO+DQ+a6xuOefbxwxp3qZaPbTi92q0BDXBl6ZJY6ad8Piu0jpZ/UF5Yg29tC+0ncPItKGt9io8npp4i/45KU5T1zdq9B6/LtzcrP7VQb2eH6Pm6JMLhP2qAzp/U5OGlAckSc1Wae1Qm1YM9mnVgY9VdqBCkjQ4aaC+cvoVim6y6KmDfYd+vF/5O+skSRWJVt2ZvU0bPTslSd/Mv15fOf2KVu9j3NrtMt94V7elFWir3au4qBg9df3/aXzW2JO6BgAAgK5CGAT6sLLaCn1n0Q/kbarVsNQc3XHhbbJajr65eyAY0G/ffVQlPrcG+GJ1c7+pKjtG28O1TBF9sv8BVTe4FRsVo1EZI9tVp99q6I28GBUn+zTl0yYNO+BX6tt1+s/ZsapIbPtm9FF+UwMrAhpc5ld2WUApB6eDBgxpQ3a0PhwerfW1O7WhcJOCZlAWw6LLRlyssweNl8UwVNPkDh9r0KYyKS5e609L0M9tH6rYUyqrYdWPL7xV5w05+9BJfX4lvbZa3k8/0//0L9AeW70S7Q4987XHdXo73wcAAIBTiTAI9FHeplrdtOgH2ldTrP6ODN178U8UEx1z1LZBM6jHPnxSGw58ppigRb8tGaP9kzLbdJ7k/R4diGrQ89osSRqbeYairR34aDEMfZptU5nLqi+vblBSnalvvFuvt8bFaMvA6KP3MU2leoLKLg1oSJlfAyoDijp025+ChrQlK0qrTrNrX1SdPt6zWhX1oXv/spMH6yunXx5e4Ca6wafcT4rDfZtjrPrvlGT9oeQN1Xg9iomy65fT5mhk+rBwG3vRASW98qH2eUt024B1Ko1qVKazn/5+/aPKTh7c/vcAAADgFCIM9jHBYFAWNrKOeM0Bn27/9xxtLtumxBiHfj71zlYbvh8uaAb1+IdPafmO92RI+lXZaCWnZ6rQYT/heSz+0P2CP03dLr+CSotP1aBjbD/RViVJVj0zOU6Xr2lUdllAV6xpVGZVQG+fYVfQYiiuKahBZQFll/o1uCyghIPbQrTwxBramRGlXelW7UmLUkO0tK18hzYc2CRTpiyGRVeedonGZ42TxTAU3eBT9oYSDdpYqmqPN3ycf0526KW9L8sX8GmAs7/uvfgn6u/MCF13faMS31yj+PWF+tzm0fcHrFe1pVk5yYP19PWPnnDBHQAAgJ6AMNgHBINBPfDAA8rPz9err76qhx9+WE7n0X/xR9/nbarV7f+eo5W7Vismyq6fXXxHOMR8kWmaWrj671q6/R0ZMnSPd6ym1Kdo49kpR23/Ra6SWn1sr9CKhDJJUv6AEy8a0xYNdov+dW6szt3SrIlbmzWuyKfMyoBMQ+rnDrZq67NKe1OtBwNglKoTjPDiMzWNHn28o0CV9dWSpNyUbF1z+uVKik1sFQKj/KFjelIOrQr6z8LXZNgsOj1jpH46+X/lsCdIpqnYjTvlev1jWeub9ElslX6SuVH1pk+nZ4zUUzP/pJSjbKUBAADQExEGe7lgMKh7771Xo0aN0rhx43Tttddq+/bteu2112Sz2bq7PJxiBzylumnx/2pr+Q7FRNn108n/q6GpOUdta5qmnlj9d72xdbkk6YZBU3XNO6YCURaV5CS36Xyu3ZW6O2WrJGl4aq5csYmdcyGSTMPQqlF2HUiy6vK1odVGW5QmWrQrPUq7MqwqTra22rDeNE1V1VVpR9Uu7araI1OmrIZFV436kvIHjJGtya8hH+3V4M9KFeULHbMmNU47JgzQ9gRT+sPB48jU5JzzdNu5NynaGi1rtVdJr3ykmMLQVNKl/ev0s7gN8psBnT0oXwuu/V0oMAIAAPQShMFezDRN/eAHP9A555yjG264Qc3NzZoxY4YGDx5MEIxAu6v36Rv/nK0D3lIlxSbqnot/oqEp2cds//yGf2nJ1mWSQnsJztwcJ6lKpdlJCtjatmjL1uLPtctZL0lKinXJNM1OGRk8XFH/0PYTp+31qSbOot3pVtXHHDkV2hfwa7d7r3ZU7JS7sSb8/PDUXF19+mVKtDk0cHO5hq3eK1tTaHXRmtQ47Rg/QOVDXCqvq9Titf8J97t65GX67vk3yJAUt3abXG98IkuzX4EoQ38+s0F/c38k0zR16fDJeuSq+2WPOvG0WgAAgJ6EMNiLVVRUyOFw6IYbblAwGJTNZtNTTz2lqKjQv9ZAICCrte0rMaL32lm1Rzf88xaV1JZpgLO/fjHtLqUnpB6z/apdq/XChn9Lkq4edZnyMs9Q8lvrJEl7Tk9v83mzrC4lBqJVY/Vp9d61KqzcqTGZo5UW37Zppm1VE2/RRyOPHrbcDR4VVu5UYdWu8KbxhgyNyTxd47PGarBroBLL63T6e5uVWB7aKsKbHKvtZ2WpbIhLfjOg9wpX6p2iVfI3+cLHvea0y2Wtb1LSfz9Q7Od7JUllQ1z6WcZmrS0PLZbzjXHT9Yupdx5zhVYAAICejDDYiy1ZskTr1oV+gTcMQ6ZpKioqKryITGcHwaamJjU1NYUfezyeTj0+OqaocpdueP5WldaWa2DiAP3q0p8qKdZ1zPaFlbv0yPuPS5LOG3K2Jgwcp1hPk+yNfgUthjxp8W0+t21Erv69Mqi/J+7Ws649qqiv0vId7ynT2U9n9jtdrtiuuXc1EAxob02xdlTuVEVdZfj5lLhknTVwnMZlnqk4W6yiG/0a9t5uDdxcJkOSz2bVjgkDtGd0hkyLoV3Ve/SfTa+r/OAxzsgYpV0HN523Fx1QxnubZfU2yLRatPrcDN3nXqLy8krZrNH69aV3a/oZV3XJ9QEAAJwKhMFeLDU1VUlJocUqmpqaFBMT2jbAYrFo165dWrNmjXbv3q3c3FxNmTLlpBeVeeihh3TfffeddN3oPIWVu/SNf85WeV2lBrkG6FeXzD3ufXvVDW49uOIR+YMBDUvN0aXDJ0uSEstqJUnelDgFo9q+Gu3eUWmyNgd068c2zfQM1GPpu/Vq7B4Ve0pU7CnRkKRBOqPfaYq3xZ3chR5U21SnwsqdKqrerSZ/c/j5UekjdNagPOUkD5HFMBRb06gB6/dp0KYy2Rr9kqT9w1O0deJANcfZ1OBr0Jtb3taafetD1x/j1M1n3aiRCUP1iv4hSUpZ9J6scfFqTnPqmQkWPbHtH/IHAxqcNFCPXTO/1RYTAAAAvRFhsBfz+Xx644035PV65XA4JEkffvihvF6vNm3aJJvNpueff1579uxRdHS05s+fr2uvvTYcGttr7ty5+vGPfxx+7PF4NHDgwE65FrTf9ooiffW5m+VurNHgpIH61SU/Peb2EZLkC/j08Nt/UGV9lVLjkzXzzGtkMULBL7EsNH3Snd72UUFJkmFo17j+qu7v0JhlO/SLA8P1TVuWfpNbrI+bdmlX9R7trt6r4Wm5GpU+vF331ZmmqUZ/k6ob3HI31Ki8rlIHvKXh1512h8ZnjdX4rLFyxjhkbQ6o3+cVGrC1QskHDm0R4U2K1eYLB6s60ynTNPXZgc167fOlqm0OXfO0YRfpW/lfVYI9Xt6CLa1qKBufrYcdG/Xe5x9Jki4dPlnzLv8FC8UA6DWufvpGVdRWnrjhYcrqKrqoGgA9DWGwFxs/frwSExP13HPP6eabb5bVapXH49GFF16oSy65RJL0ve99T2+99Zbmz5+v733ve9q4caPuu+++Di0wY7fbZbezSEZPsLV8h772j5tV0+hVdvJg3TdtjpwxjmO2N01Tj334pLaW75DNatMN42Yq9rAN6FvCYE17w+BBNf0S9MGM0Tr93V3KLpQe2zJUKwdl608phSqs2aOt5Tu0o6JIozJGakRqrqK+sCl90AzK0+iVu7FG7oYaVTfUyN1Y02r0r8XQlGydNTBPI9KGyWoYSi72asDnhcooqg5vEWFKqhiYqOIRqSrJSZJptai6oUavbH5D2yoKJUlZiZm6deJ3dXr6cNl3lsj5zvuybykKn2fjlafpT9VLtHf3flkMi3560Q/03Qnf6PQFcgCgK1XUVqqktqy7ywDQQxEGe7GsrCzl5OToySef1C233KLm5mZt3rxZEydOVExMjEzTlN1u15VXXqmsrCz99Kc/1WOPPaaLL75YU6dO7e7y0UGfl23X1/4xS54mr3KSB+u+S356wpGq/2x+XW8XrpQhQ18fe51S4w9tHWEETTkPLqxSk9HxES+/PUobpuWqMsup01bu1vl7rMqvGKUXzh6jl6o+1gFvqTaWbNb2ikKdlj5ckuQ+GPpqGr3hxV++KC0+Rf0c6ernyNDojJFKiU8OTQNdU6wB2yoU6z0UGGtdMdo/IlXFw1PVlBD6g0cgGNRHu1Zr6fZ35Q/6ZTEsmnnm1bpu9JVK2FUu5yuvy763XJJkWg9Nkb2n8O/yWf1KT0jVn65+WOOzxnb4vQGA7mYxLEqPP/bCYkeTmtC5i4EB6HkIg71Uy0qh9913n6ZMmaLbbrtNjz76qCZNmhS+N7BlBMMwDI0bN06/+MUvdMstt+imm27Spk2blJDAVLfeZnPpVn39n7PlbarV0JRs/XLaHCXYjz+at3bfBj295nlJ0uUjp2poauvtJuKrGxTlD8ofbVGdq2NTiMMMQ/tGpcudkaAxSwvlqG7Qt97269y8S/Tv0TVaWvieqhvcWle88Yiu9ii7+iWkqZ8jQ/0c6ervzFB6Qpps1mhJCk0DLarSgM+3tJoG6rNZdWBosvaPSFNNRnx4w3lJKvaU6N+blqjYUyJJOj1jhG495zsaWmbK+eRS2faHpkKZURbV5g/XvmFp0tN/lCQ1BZp0Xs45+v1V9yu1k1dHBYBTLT0+VatuW9LdZQDoYQiDvVTLSqHDhw/XxRdfrMcff1zV1dW66qqrdOaZZ8pqtR4xne3ss8/WHXfcoTlz5mjnzp0644wzuqN0dNBnJZ/rhudvkbepVsNSc/SLaXcpwXb8ILivpljz3vmDTJnKHzBW5wwaf0QbV2lo8Zia9IRWQepk1KbE6cPrRum0VXs0cEu5hhcc0M3FCcqb8m2trNmsDcWblGCPD4U+R4b6OTKUFJsY+m/WNGVr8MlR1aCEXZVKqGqQo6pejqoGWQ+bBlo50Kn9I9JUmp3UatGboBnUjoqdWrNvnbaUbZcpUzarTTefdaOuCAyR6/kC2Q5UhdpGW1U3foTc556mFWUFevaj/xc+zrfHflX3XnEH20YAAIA+izDYy2VkZOj+++/XunXr9Pzzz6uyslJXXnmlHA5Hq30GTdOU1WrVN7/5TT3wwAMqKioiDPYinx7YrBuev0V1zfUakTZUP5965wlX6KxtqtODKx5Rc8Cnwa4sXTXq0qPe73ay9wseSzDaqk0XZatygFOj392ppJJaXfjSFiVPztU554RCaVSTPxT2djYooWp3KABWNYRXAP2iusQY7R+Zqv2HTQNt4W7wqGD/Bq3dv0E1jYe2PblgyDm6LXGSBi0vkq3k3VBttijVTRgpz8TT9GH1Zj234n7trdmvYHMg3O/Ws79DEAQAAH0aYbCXM01T48eP14svvqjJkydr6dKlmjt3rv7v//5PVqs1HAgNw1BDQ4NiY2OVnZ2tIUOGdHfpaKONJVv0jX/eonpfvUamDdPPp96pOFvscfuYpqnfvfeoij0lSoxx6mtjr1PUMYJNh1cSbaOSYSmqyYjXmKWFcpXVKe+N7XKnxyumrlkxdb6j9jENqd4ZI29yrGqTY+VNiVNtcmxoGusXAu0BT6lWFL6vzw+OAkpSgi1eF+Wer8vjR2vcO7sVXbZWkhS0R6v2rJGqnThKhU2l+vP7v9HW8h2SJIc9Qd/Ku14/1v90yfsAAADQ0xAGe7mWzeYnTZqkd999V9OnT9djjz2m5uZmLVy4MDwy2NzcrNjYUIBITU3V4MGDu7NstNH2iiLd+PytqvfV67T04fr51DsUG338IChJH+1Zo3XFGxVlseqGcTOOe19hy9TLKN/RF3DpDA3OGK2+5jQNX71P2RtK5DoYQCWpIcF2MPSFAp83OVZ1SbEn3O+wvLZCy3e8p89KPw8/N7rfaZo27CJdaM9Vysotitu8QZIUjIlW7dmj5D3nNDXaDL2w4WX9e9MSBc2g7FE23TThBs06+5tqqKknDAIAgIhBGOwDWgLhBRdcoCVLluiXv/yl/vKXv+jAgQO6++67NW7cOMXExKipqUm33367br/9drlcru4uGyew171f33rhttA9gik5bQ6Ctc11emL1M5Kk84eco/7OjOO23z8iVcM/3qfBG0tUPDyl0+4b/CLTatHWcwdp/4hUJZbVqc4Vo9rkWPnt7fsYqqp36+3C97W++LPwSOAF2RN1/ZhrlF1nl/PdDYr9/I1w+9r8YaqZli8z1q4NBzbp8Q+fVIk3tMz6ZSMu1s8uvkMZjjRJUoPqO+lqAQAAej7CYB/REgjz8/P1+OOPa+nSpXr44Yd13XXXKTo6Wl/72tdUWlqq73//+8rLy+vucnECpd5yffOF/1FpbbkGubL0szYGQUl6es3zqmqoVmpcsiblnHvC9ntHpSl37X4lltfLVVIrd/9j71fYGWpT4lSbcvz7HY/G0+jVu0Wr9Mm+9eFtKM4amKevj5uuYXUxcr766f9v787joqj/P4C/dlnuQwQED1A5PFNR1MSUDI+ysrS8La08wFKzwyTTysy8yvz2KzOP+Jak5lVqlpZo6dcTz1TURPEAUVA5drnZnc/vD5oRFBVwYXfZ1/Px8BHM7CzvfTc7M+/5fObzgePZZADF3UzzHmoM7aNtoPepDV1BNr7bsxzbz+0CANR18cZHj0ehZ5NuxvtgRERERBaGxaAZEELg3LlzCAwMhFp9765x9yIPDuLr64tXXnkFL774Ivbv34/z58/D398fgYGB8PX1NVbYVEUy8jLx0upxuJx5BXVdvTH9PhPKl3T8ajy2JfwFAOjX6inY/jstw70UOdoipakX/E5fR+O/r+FYFReDFWGQDDh38wL+TjmJ+NR/YBDFA7wE12uFF9oNQKt8V7htPg6Hc1cAAEKlQm5rf+gebQ19HXcIIbD7wj4si/sBWflaqKDCC+0GYFK3cfedm5GIiIiopmMxaAZ+/vlnrFq1CjNmzECLFi2M8p6SJMHW1hZhYWEICwszyntS1dMVZOOVNa8j4WYiPJ1q46PH34WHk3u5ti3QF2Dh3mgAQCe/EDSu3bDcf/dSGx/4nb4On4sZcNQWIM/NvjLhG4UQAkmZV/D31ZM4ce00covylHUtvJvihXYDEFLgAbff/oZD4tXibdQq5LYJgC6sNfRetSCEwPkbiVh17CccvlL83GATzwB80nsq2vsGm+RzEREREZkbFoNm4Pjx41i/fj2uXr2KpUuXGqUgfJAWRjKN/KJ8RKx/CyeunYKbvSum94qCj0udcm+/8uh6pGanwc3BFb2ahlfob2d7OOGGnxu8krRo/WcijvUKQqHT/VsVjSkt+zr+vhqP41dPISMvU1ley8ENYf6heNS/M1rpnOC25QQcLsYB+LcIbBsEbVgrGDzckFOYi51nYrEt4S9cSL8EANCoNRj/yChEdHoJ9hq7sv40ERERkVViMWhiSUlJyM/Px88//4w33ngDY8aMqXBBKIRQuojKP0uSxILQghQaijBuQxTiko7AydYRH/aaDD/3BuXe/uz189h0qnjQlL4tn4SDpuItewkdfeF+9Qw8UnR4ZN1JHHs8CJl1q7bLqDZfh+NX4/H31Xhc1aUqy23VGnT1D8WjjTujvaoenC5fh+OmBNhfLh74RdiokdMuCLquraF3d8aZ6wn4Y/cq7LkYh0JDIYDiIvDJZj0w/pHRCPLyr9LPQURERGSJWAya2JkzZ2AwGNCjRw+sXLkSAwcOxOjRo7Fs2bJyF4RyIfjrr79i3759GDx4MCeUtyAGyYBJmz/AX4l7YGdjh6k93kagZ+Nyb19k0OOrvcsgIBBc7yE0qxNUqTiyfFywr/9DaPd7Alwy8/HwxjP4J9QPl9r4GHWE0byiPMSn/oO/r8YrrXcAoFap0L5+MLrXboOw3Dqodfkm7P8XD3X+UeU1wkaNnPZNoOvaGhn2Ev46/z/8sfMvJGelKK9p4hWAwcHPod9DT6K2o7vR4iYiIiKqaVgMmpBer8eBAwfQp08fuLi4oHPnzli3bh0GDBhQ4YIQADZt2oSlS5fi1KlTWLNmDTQa/u81d0IIvP/HHPx6Zhs0ahu8Gz4RD/k0q9B7/HTyF1zOTIaDxh5PNe/1QPHkeDhiX/+H0GrnBdQ7l44Wey/DPTUbJx/zh8Gu7EnryyOvKA+n0xJw8tppnLuZCEkIZd1DtfzRyzYIPdM94B2nhbogBcCt4k6y06CwoQ8KGvtA16YxjudexrZj32Hf5UPQS3oAgL3GDs+0eAKDg59Du/qtlRskRERERHR3rBZMSKPRYNKkSXBwcFCWhYaGVqogNBgMaNOmDVq3bo3JkyezELQQc/76P6z++2eoVSq8FfYaQhq0qdD2SZlXsPrvDQCAZ1v2hrNdxadsuJ3BzgZ/9wxERl0XNN+bhHrn0+F2IxenuzZEen23+04GL9NLBpy8dhonrp1Cwo1EZToIAPC39cLjRX546qobGiTaAhAAbgIoniC+4N/ir6BxXRTV9UCOIR+//7MDf2z/TpkjEAAe8mmOIcH98EzL3hwdlIiIiKiCWDGYWMlCUFaZgtDGxgavvvoqIiIiYGtbvQN/UOX8eX43lsUVTw7/WudReKTxwxV+j1/PbIMkJDRwq4fWdVsaLziVCpdb10VWHRe0/eMcnLPy0eHXszDYqJBZ1xU3G7jhpq8btHWcIdS3WuE0BXpoMrJxNPlv/J5xDDekHGVdUIELeuZ4o2eODxoXOSvLDY72KGzkjYLGdVHQ2AdFPrWBf593LTQUYsuZ37HuxCboCrIBAE62jniu1dMY1KYfWtVtbrzPTERERGRlWAyaqcoUhGq1moPGWAi9pMecP78AADzb8slKT37ewbcttv6zHSnaa7iqS0V9t7rGDBNZdV2wd+BDaHogGXUuZ8IhpwieV7TwvKIF4oAiOxtk+rjAtkAP6HLwi90l/FDrEm5qigdx8dTb4XldAzyeXRf+Rc4wuDhAX88NObVdUFjfC4WNfVDkXRtQl+7WaZAk7Ezcg1XH1uN6TnGLYaBHY0SEvoSnmvWEk52jUT8nERERkTViMWjG7lUQGgwG2NhU/hkuMq01xzfi3M0LcLV3waDgvpV+nw6+bdGlcSfsuXgAG+J/Q2Snl2Fj5BsCRY62iH/MHxACzpn58LyihUdycUFoW2iAw5UbWO2WhFXeSciyKQIA+AgnDHUMweM+HWFTxwN6Dzdc8XCFsL93q7UQAoeSjyHmyBpczkwGANR18cbErhF4vnUfaNQ8ZBEREREZC6+szFxZBWHTpk1hY2MDrVaLjRs3YvDgwbCz4/xplkJXkI3//G8xAGBw8HNwsXO+zxb3Nubh4TiUdBQp2mvYdykOXf1DjRHmnVQq5NR2RE5tR1x6yBtJGck4mXgUh9PPoEAUD+RSz8Ub/ds8i24BXWBro0FhBd7+TNpZfH94NU6nnQUAONs5YfwjozEiZBAcbO/sTk1ERGSu0nJuoMvCpyq0jZeLJza+FFNFERGVjcWgBQgNDcXatWuVaSd+/PFHuLi4YMyYMZgyZQoLQQuz5MBy3MxNR323uujdrPsDv5+7Yy1EdHoJX+5dithzO9HSpxk8nGobIdI7ZeRl4ljKSRxLOYGbuRnK8obuvhjY5lk80qhThVsmL2ck44ejaxGXdAQAYGdji1c6DENk6Euo5eBm1PiJiIiqgyQkXMtOu/8LiUyMxaCFkKedGDx4MPr06YOcnBz88MMPaN++valDowpI0V5TBo0Z0X6w0bo9dg8Kw1+Je3Di2ilsPLUFL7cfarTpFQr0BTiZegZHr5zAxYzLynKNWoMw/1CEB3ZFq7otoFZVrAi8nnMTPx77CX+e/x8kIaBWqTCgdV+83mUM6rn5GCV2IiKi6uTl4lnhbdJybpQacZuoOrEYtBCSJCE0NBTvvvsuxo0bh+3btyM0tIq6A1KVyC/Kx/gNUSg0FKGldzN08jNeIa9SqfBa55EYvyEK529exNGUExWepqIkSUhIvHkJR1OOIz71DPSSQVnXpt5DCA/sitCGHeBYie6bmXlZ2BD/G349vQ1FUvEzhk80Dcfbj45DoGfjSsdMRERkapXp5tll4VNsRSSTYTFoAYQQUKvVyMvLw8aNGxEbG4vw8HBTh0UVIITAe1s/wd9X4+Fq74IJXcYYfWL0em4+eKHdACw/shq/ntmGpl6BcLEv//OIBknCjZwb+PtqPI5dPQltvk5ZV9+tLsIDw/BYwCOo4+JVqfiSMq9g46kt2Hl+r1IEdvILwTvdJqBdg9aVek8iIiIiqjwWgxZApVIhPz8fo0aNwvTp09kiaIEWH/geG09tgY3KBpO7TaiybpDPPtQb/7u4HxfSL+G3M9swKLgfAKDIUARtvg7aAh2y8nX//qyFNv/f3wt0yC7IgYBQ3svFzlnpBtrEK7BSxasQAieuncKG+N9w5MpxZXm7+q0x7pFReCygi9GLYiIiIiIqHxaDFqKwsBCzZs1C48aNTR0KVdC2hL/w2c6FAIAxnYajdT0jTg5/G41ag3GPjMI7mz/E8WunkJp9HbqCbOQW5ZV7+3b1WyM8KAwdfdvC1ubeU0HcjV7SY/eFA9h4agsupF8CAKigQq+mj2F0xxfR3je4Uu9LRERERMbDYtBCuLm5wc2NIytamsy8LLyxaSoEBJ5q1hO9m/Wo8r8Z5OmPvg89iQ3xvyE1+7qy3F5jB08nj3//1Yanc/HPXk4e//5cG24OrhUeCOZ2B5OOYllcjPK37WzsMDi4L17uMAyNa/s90HsTERERkfGwGCSqQhczkpCvL0AtB1eMfPiFavu7w0MGoVmdINhr7OHhVBteTh5wtnOq0i6Zadk3sCwuRpkiwsvZEyNCBmFYu/6o7eheZX+XiMga9P1+OG5k36zwdmk5N6ogGiKqKVgMElUheUJ5SQijTSNRHjZqG3Ru1LFa/laRQY9Np7Zg9d8bUGgohI3KBiM7DsOELmPgbOdULTEQEdV0N7JvcsRJIjI6FoNEVUgezTO3MA9CiBo1WEqBvhB7Lh7ATyc3IzkrBQDwsF8IPuoVhaZ1Ak0cHRFRzaRWqeHtXPFRnSsz/x0R1XwsBomqkNwyZhAGFBqKYK+xM3FED+5K1lX8fnYHdpz7H7ILcwAAnk4emBI+Ef0eeqpGFbxERObG29kLe8b9ZuowiKiGYDFIVIVKdpPMK8qz2GJQL+kRl3QUW//ZjuNX45XlDdzqYUjb5/Biu4Fwc3A1YYREREREVFEsBomqkFqlhoudM7ILc5BXlA93x1qmDqlCrufcxLazf2Fbwl/IyMsEUDxFxGOBXfBCuwF41L8zbNQ2pg2SiIiIiCqFxSBRFXO2c/q3GCzfXH+mJgkJx1JOYus/23Eo+SgkUTwRvaeTBwYF98XQ4OfRoFY9E0dJRERERA+KxSBRFXOxc0Yqrpd74ndTMEgGXMpMxrErJ/D72T+RWmLEuk4N22NY2/54vGk47Co5CT0RERFVDZGlQ2bUrApto3ZzhdvUCVUUEVkSFoNEVUwZUdSMisHswhycvX4eZ9IScOZ6As5eP498fb6y3tXeBc+36oNhbfsjyMvfhJESEVF1037yJSStrkLbiKyKvZ6MSAiITG2FNpGqKBSyPCwGiaqY879zDerys00Wg0Ey4GTqGey/dBDxqWeQlJkCAVHqNS52zmjXoA2ebt4TfVo8AUdbBxNFS0REpiRpdRUuLqj6qd1cK1zUiSwdIMT9X0hWg8UgURWr41w8t9PiA99BV6DDMy17V8ugK3IBuPdiHPZfPois/NJ3bRvV9kNIgzYIadAG7RsEI8jTn4PBEBHRLSoVVLUqNlK02o0jS1eXynTzzIyaxUKfSmExSFTF3uk2HtdzbmLvpTh8d/hH7LkYh7CAzvB0qg1PJw94OtVGbSd3aNQV/zoKIaAt0OGaLg3XdKn//rf4X3JWCnQFt1ojazvWwuNNu+OxgC4IadAGXs4exvyYRERUw6hqucJ97numDoOIqhCLQaIqVs/NB8sHL8S6E5swI3Y+Em4mIuFmYqnXqKCCu6MbPP4tDj2dasPT2QOeTh7wcKqNWg5uyMzLRKruOq6WKPpSs9OQV5R/l798qwB8qlkPdGrYAbY2/MoTERERUTFeGRJVA5VKhYFt+uJR/0cQc3QNLmck/1vMXUeqLg1Fkh4ZeVnIyMvC+ZsXKvbeUMHH1RuN3BugobsvGtb2hV+tBmhU2w8tvJuyACQiIiKiMvEqkaga+bjWwaRHx5VaJgkJ6bmZSktfya6eqf/+90ZuOrycPNCwtm9xwefui0b//uxbqx7sNfYm+kREREREZKlYDBKZmFqlhpezB7ycPdAKzU0dDhERERFZCbWpAyAiIiIiIqLqx2KQiIiIiIjICrEYJCIiIiIiskIsBomIiIiIiKwQi0EiIiIiIiIrxGKQiIiIiIjICrEYJCIiIiIiskIsBomIiIiIiKwQi0EiIiIiIiIrxGKQiIiIiIjICrEYJCIiIiIiskIsBomIiIiIiKwQi0EiIiIiIiIrxGKQiIiIiIjICrEYrGEMBgMkSTJ1GEREREREZOY0pg6AjMvGxsbUIRARERERkQVgMVgDSJKExYsXIykpCXFxcWjSpAm6deuGIUOGmDo0IiIiIiIyUywGLZwkSZg8eTLatGmDsWPHYtCgQUhJScHEiROh0WgwYMAAU4dIREREJfT9fjhuZN+s0DZpOTeqKBoismYsBi2YJEmYM2cOQkJCMGzYMABAw4YN0bZtWxgMBmzduhXPPvssbG1toVKpTBwtERERAcCN7Ju4lp1m6jCIiFgMWrI///wTAQEBSndQSZKgVhePCdSoUSPodDrY2dmZMkQiIiK6C7VKDW9nrwpt4+XiWUXREJE1YjFowZKTkxEQEAAAEEIohSAABAUFoUWLFtDr9VCr1VCr1RBCsIWQiIjITHg7e2HPuN9MHQYRWTFOLWHBDAYDGjRoAAAoKipSlsm/t2jRAhqNBmlpacjLy8OVK1ce6O8VFBRAq9WW+kdERERERJaJxaAFc3R0xOzZs6HVapXuoNnZ2UhMTER0dDQWLlyIsWPHIiwsDM2bN0dwcDBGjhyJuLi4Sv292bNno1atWso/Pz8/Y34cIiIiIiKqRuwmasEGDRqEU6dOoUuXLggJCUFhYSEOHTqE1NRUZGdnAwC2b98OT09PdOzYEbVq1cLhw4cxa9YsjB49Gn369KnQ35syZQreeust5XetVsuCkIiIiIjIQrEYtGA2NjYYOnQosrKyEBMTAxcXFzg6OqJFixZo0KABIiMj4evri8aNG8PZ2RkAkJ+fj19++QW7d+9G7969odGUfxewt7eHvb19VX0cIiIiIiKqRiwGLVzLli3xf//3f5g4cSJq164Nd3d37NmzB3q9HuHh4QBuPUdYWFgIBwcHPPbYY/juu+9w6NAhhIaGmjJ8IiIiIkLxXJJdFj5V4e28XDyx8aWYKoiIrAGLwRoiMDBQ+XnPnj147LHHlN9tbGwAAHZ2dhBCoE6dOujRo0eFWgWJiIiIqOpIQuL8k1TtWA3UIPI8g5cvX4YkSWW+Rp5eIjU1lc/7EREREZlYZeeOTMu5AUmUfb1HVF4sBmsQeZ5BPz8/nDx5Eo888gj0er3SAigXizqdDnl5eXBxcTFluERERERWr7JdPLssfKrSLYkiS4fMqFkV2kbt5gq3qRMq9ffIfLEYNENy0VZRcquft7c3du/ejYiICKUQLCoqgq2tLbRaLd566y289tpryqAyRERERGRFhIDIrNh80WyDrJlYDJohvV6vzBsIFA8AIz/3dy8qlQoAMGrUKHzxxRd4/vnnERMTA2dnZ0iSBJ1OpxSCISEhVRY/ERERmQftJ19C0uoqtI3IqtjryXKo3VwrXNSJLB0gRJXEQ6bHYtBMSJKElStX4syZM4iPj0erVq3Qvn179OvXr1yFoEwuHI8fP47evXvj+eefR0FBAXx8fBAQEIDIyEgWgkRERFZC0uoq3AJENVdlunlmRs3iPlSDsRg0A0IIfPfdd/D29kafPn3QpUsXLFiwAN9//z2io6Mxf/58+Pv7Q6PRKF1B78bGxkZ5TnDr1q2Ij4+HVqtF3bp14evrC1tb22r8ZERERGQWVCqoarlWaBO1W8VeT0SWh8WgiQkhMH/+fISEhKB79+7K8uDgYKxZswaffPIJ+vXrh+nTp6NPnz5wdHS8b0Go0WiUFsKHHnqoOj4GERERmTFVLVe4z33P1GEQkZmp+CglZFQpKSlwcXFRCkF5Soj69esjMjISMTExKCoqwsSJE7Fs2TLodDqoVCqI2/pu3/67jY2NMtk8ERERERHR7VgMmpAQAnv37sVPP/2kLCs5iqijoyOeeOIJrFmzBl5eXpg2bRqWLFmC3NzcO1oG5d9PnDiBHTt2AECFnjUkIiIiIiLrwmLQhFQqFUJCQqBSqZCZmQngzhY+lUqFtm3bIiYmBo0aNcLcuXOxYcMGFBYW3vF+SUlJGDduHHr27Ik1a9ZUx0cgIiIiIiILxWLQxGxtbXHw4EFER0cDQJldQIHiZwhXrFgBT09PfPDBBzh8+DCA4mkoZHZ2dvD09AQAtGrVqhqiJyIiIiIiS8Vi0MQaNmyId999F5MmTVJa8+5WELZu3RpfffUVCgoKMH36dABQJpUHAB8fH3zzzTdITk5Gy5YtqyV+IiIiIiKyTCwGzcALL7yAZs2aYcyYMfj9998B3L0gDAsLw4wZM7B79258/vnnynL5tT4+Pqhfv371BE5ERERERBaLxaAZaNCgAVatWoWcnByMHz8eO3fuBFB2QWhnZ4enn34a/fr1w/79+5Xl95pqgoiIiIiI6HYsBs1E27ZtsXPnTpw/fx6jR4++Z0Ho7e2Nt956C7t370ZKSoopwiUiIiIiIgvHYtCMdOnSBdu3b8f58+cxZMgQbN26FcCdBWFhYSHatGmDsLAwODo6mipcIiIiIiKyYCwGzUx4eDh27dqF1NRUjBgxAuvXrwdwqxuowWCAnZ0dNBoNgoKC4OTkZMpwiYiIiIjIQrEYNENdu3ZFXFwcHBwcMHDgQCxatEiZV9DGxgZ5eXn48ssvMWTIENjb25s4WiIiIiIiskSa+7+ETKFDhw7466+/MGPGDEyYMAHbt29Ho0aNMGjQIPz000+IiIhAYGCgqcMkIiIiIiILxZZBMxYQEID//ve/OHDgAHr06IHs7GycP38eI0aMYCFIREREREQPhC2DZk6lUqF9+/Zo3769qUMhIiIiIqIahC2DREREREREVojFIBERERERkRViMUhERERERGSF+MwgEREREYC+3w/HjeybldrWy8UTG1+KMXJERERVi8UgEREREYAb2TdxLTutUttey05Dl4VPleu1aTk3Kvz+2k++hKTVVXg7kVXxbYjKIrJ0yIyaVaFt1G6ucJs6oYoiImNgMUhERERUglqlhrezV7leW7J4rGwhWR6SVgeRqa2y9ye6LyEqvA9KVRQKGQ+LQSIiIqISvJ29sGfcb+V67YN2La0wlQqqWq4V3kztVvFtiIDifaeiRZ3I0gFCVEk8ZFwsBomIiIgqqbqfE1TVcoX73Peq9W+SdatMN8/MqFlsybYQHE2UiIiIiIjICrFlkIiIiGqUynbdrMzALkSmlpZzo9yDF8k4+i3JWAwSERFRjfIgo4ISWRpJSBXe3ysy+q2MBWTNxGKQiIiIaqSKjApaUqUGdiGqZpXZT6tr9FtZZaajADglRXViMUhEREQ1UkVGBSWyNJVppatMF+q0nBuQRCUniajEdBQAp6SoTiwGiYiIiKpRZSaQ5+TxZAyVKSC7LHyqwq2IlZmOAuCUFKbAYpCIiIioGnECearpKtvFk1NSVD8Wg0RERESmUIkJ5Dl5PBEZE4tBIiIiIhPgBPJEZGosBomIiMhsVXbAi+rC5/+IjK8yo5ByBNLKYTFIlSb+fcBXq2XfbqoZdDpdqZ8dHBxMGA2RccjHaGGEQRmMcdz/dvVcrEzeXu7X31AXVPpvFeam4/IbH1R6+/J4kMJOVZAPNc+hJsNjfvno84og5RtwrSAVnT7rVaV/S3LQAd6VPFblA/hwhVHjMaVhvj0wanBUpbatyHFfJYxxdiCrlJycDD8/P1OHQURE5ZCUlARfX98Heg8e94mILEd5jvssBqnSJElCSkoKXF1doVKpKv0+Wq0Wfn5+SEpKgpubmxEjtC7M44NjDo2DeTQOY+VRCAGdTof69etDrVY/UEzGOu6bG+6zxsecGh9zanw1NacVOe6zmyhVmlqtfuC7zCW5ubnVqC+iqTCPD445NA7m0TiMkcdatWoZJRZjH/fNDfdZ42NOjY85Nb6amNPyHvcf7BYhERERERERWSQWg0RERERERFaIxSCZnL29PT788EPY29ubOhSLxjw+OObQOJhH42Aeqw9zbXzMqfExp8bHnHIAGSIiIiIiIqvElkEiIiIiIiIrxGKQiIiIiIjICrEYJCIiIiIiskIsBomIiIiIiKwQi0EiIiIiIiIrxGKQiIiI6F8GgwGSJJk6DCKiasGpJYisgCRJUKvVKCoqgkajgUqlMnVIFknOo8FggFqtZh7JLMj7JZG54j5qPEII5Ofnw9HR0dSh1BhCCPzzzz9Ys2YNhBCoVasWxowZA2dnZ1OHVi1YDJJZE0Lg+vXr8Pb2NnUoFkkIAZVKBb1eD41Gg4yMDNSuXdvUYVmc2y9kMjMz4ezsDFtbWxNGZbkkScLChQvRtGlTnDp1Cm+++aapQ7JoRUVF3BcfkCRJWLx4MZKSkhAXF4cmTZqgW7duGDJkiKlDs1iSJOGTTz5B+/btsXnzZsyZMwdubm6mDsvixcTEYMeOHfj000/h5eVl6nAsniRJGDJkCNLT03Ho0CEUFhYiPz8fwcHBmDlzJp588skafyOjZn86snixsbHo27cvjh49aupQLI5cCKanp2Pq1Kn48MMP0aNHD4wePZoX3xUghIBarcb169cxc+ZMdO/eHd7e3vD390dERAQuXboE3lMrP0mS8P7778PLywteXl54++238d5775k6LIsjSRJWrlyJadOmYfDgwZg+fTo2bdpk6rAskiRJmDx5MpydnTF27Fh89tlneOaZZ/D+++9j3bp1pg7PIkmShGnTpsHf3x/t2rVDdHQ0+vfvj8LCQlOHZvF69uyJH374AW+//TauX79u6nAsmiRJGD9+PIKDg7Fp0yakpqbi9OnTeP3113H58mW88cYbOHLkiKnDrHJsGSSzFxQUBFdXV/z3v/9F27ZtTR2ORZALwczMTEycOBE9e/bEgAEDkJGRgcLCQowaNQodO3bEnDlzTB2qWZPzeOPGDfTo0QNdunSBs7MzvLy8EBMTg1OnTqF9+/aYP38+Hn30UVOHa/aEEHjttdfQpUsXvPjiizh79iyGDh2Kp556Ch9//LGpw7MYQgh899138PLygqenJ9LT0/HFF1/gzJkz6NixIxYsWICGDRuyG3M5SJKEOXPmoHHjxhg2bFipdb/88gu2bt2KBQsWwNbWlvksJyEEJkyYgNDQULz44ovKOadRo0aYOXOmqcOzaAaDAUVFRQgPD8fBgwfxzDPPYNmyZfD09DR1aBZHCIF58+ahcePGGDx4cKl1WVlZWLp0KT744AN07twZ27dvN1GU1UQQmSm9Xi+EEOLll18W3t7ewt/fXxw5csTEUVmOjIwMMX78eLFq1ao71v3zzz9i5MiRIjMzU0iSZILoLEdGRoYYPXq0+Prrr0stv3jxopgyZYpwdnYW3bp1E4WFhSaK0HKcPHlSzJgxo9SylJQU5WeDwVDdIVkcSZLEZ599JrZv315qeVJSkpg/f77w8PAQrVq1Eps3b+Z3uxxiY2NLHSNL7oN///23GD58uCnCsmhpaWni3XffFULcymdRUZGyXj63U+WtWrVKrFq1Snh6eornnntO3Lhxw9QhWRy9Xi+WL1+u/C7vq/Jx88aNG2Lo0KFCpVKJuLg4k8RYXdhNlMyW3Ee7f//+WL58OerXr48BAwbg2LFjpg3MQiQnJ+Phhx9WnnkpOTqeh4cHcnJyoNPpeLf7Pvbu3YsnnngCr776KoDiPEqShEaNGuH111/HqFGjsGvXLnz22WcmjtT8bd68GSkpKQAAvV4PIQTq1aunrK/pz2UYQ3JyMpydndG9e3cAt77Xvr6+ePXVVxETE4Pc3FxERETg+++/56iY95GcnIwGDRoAuNUlXBYUFIQWLVpAr9creRTsTHVfv/32m/Joh0qlghACGo1GyaGNjY0pw7No8v5nMBhQu3ZtLF68GLGxsRgzZgxu3rxp4ugsS0JCApKSkpTf5e++vM96enoqPVYSEhJMEmN14ZmXzJZcpLi5uSErKwvffPMNXF1d0b9/fxaE5VDyWTZ59Ev5Zy8vL4SHh8Pd3d2EEVqG/Px8NGvWDMCtgWTkXNatWxfjx4+Hg4MD9u/fb8owLYJarUatWrUAFBeDJW9EXL16FYcOHSp1IUmlCSGwd+9ebNiwQVlWsnhxdHRE7969sXbtWri7u+ONN97At99+ywLmHgwGg1IMFhUVKcvk31u0aAGNRoO0tDTk5eXhypUrJovVUnh5eSkDlRUUFCjfc7VajYsXL2LdunWYP38+NmzYAK1Wa8pQLY6cy44dO8LFxQX9+/dHdHQ0tm/ffkdByBtB91a/fv273piQB94LDAxEu3btkJ+fD6Dm3gxiMUhmLygoCAaDAa1atcL3338Pd3f3O1oIedC7kxACrq6upZYZDAbY2NggPz8f7u7usLGxwblz55CYmIgDBw7w4f4ShBAoKirChQsXlLzc3nIlhECTJk0QFRVV6nVUmnwC1el02LFjBwDAwcEBALBv3z7s3r0bs2fPxrp16/DCCy8gPDwcffr0wbFjx2rsybcyVCoVQkJCABQ/0yKEuCM/arUaISEh+OGHH+Dr64v3338fmzZtYh7vwtHREbNnz4ZWq4WdnR0AIDs7G4mJiYiOjsbChQsxduxYhIWFoXnz5ggODsbIkSMRFxdn4sjNV1FREbZu3QqdTlfqe/7HH3/g559/RmpqKn788UdERkaiZcuWWLlypXKxTeXj7OyM06dPAwCeeeYZfPvtt6UKwttbuak0+frI29sb//3vf/HJJ59Ap9OVeo1GowEA+Pv74+rVq3e8R4267qzeXqlElbNs2TIhRHGf7mPHjomQkBAREBAgjh49Wup1GRkZ1R+cmTp9+rQYOnSoOHDggLLsypUr4tixY2LWrFkiJCRE9OrVS3h4eAgnJyehVqvFww8/LKKjo/lMRwkHDhwQly5dEunp6Xesk58t+Pbbb4WPj4/Izc2t7vAsyv79+4WPj4/4/fffhSRJIjc3V/z888+isLBQyd3Zs2fF559/Lry9vUVgYKD48ccf+exbCRcuXBDu7u7iiy++UJbdLT/Hjh0TTZs2FU2aNOHz1neh1+vFtGnTRKtWrcSIESPEkCFDRFBQkHB1dRUqlUr55+XlJZ588kkxZMgQ0aZNG9G3b1/xyy+/mDp8s5SUlCQaNWokFi1apJxLtm7dWur4mJ+fLzZt2iS6du0qHB0dxbvvvisKCgpMFbJFkY+dy5cvV/JbVFQk1q5dK9zc3ES/fv2EVqsVQggRFRUlPv/8c1OGa9Y2b94s6tatK1Qqlfjxxx9LrZOfIYyMjBTvvPNOqXUZGRli06ZNNeY5d942ILMmSZLybNGlS5egVqsRHByM6OhouLu7o3///oiPjwcATJ06FR988IGJIzYPkiShefPmCA8PR//+/fHwww+ja9euaNq0Kdq1a4epU6ciPj4e+/btQ0BAAAYPHowPPvgAvr6+2Lx5Mz777LOaddfrAcjDznt6emLKlClKVzLgVped7t27o2HDhnfciU1KSmIeS/D394ckSdiwYYMy2q1Wq4VKpYK9vb3S0jp27FgsWrQIRUVFmDlzJrvm/UuSJDRu3BiTJ0/GG2+8gfXr1wO49YzL7YKDg/HVV18hJycHU6dOre5wLYKNjQ2GDh2K8PBwbNq0Cbt374ZKpUKLFi3Qr18/bNmyBSdOnMDFixfx22+/YdWqVThw4ABeeOEF7N69G3q93tQfwez4+voiICAA0dHRsLGxQWFhIU6dOoWioiIIISBJEuzt7dGnTx/83//9H8LCwvD1119j165dpg7dIqhUKjg6OsLJyUlpsdJoNOjXrx+WLVuGP//8E6NGjcK7776La9eu4fXXXzdxxObr6aefRnR0NL788ks899xzpdbJ5/Pw8HC4uLgAuNUaKLcaFhQUVGO0Vci0tShR+cTFxYlTp06VWnb48GHRvn170aRJExEZGSlefvlltmjd5tq1a+K7774TrVu3Fu3atRPh4eFi2LBh4pVXXhH//POPSExMvGObv/76S0ycOFGkpaWZIGLzFB0dLTQajRg7dmyZrTB5eXmiQ4cO4tq1a6WW79y5U5w8ebK6wjRr8h3UL774QqhUKvHTTz+JwsLCu47SlpeXJ3744Qfh5OQkBgwYUJ2hmr19+/aJpk2bCnd3d7Ft2zZleVn7Zn5+vli2bJlwdHQUCxYsqMYoLc+5c+fEzZs3hcFgELt27RI7duxQ1snnFrn1Ki0tTTz11FNi3759JonVXMl52rVrl9BoNOK1114TQhSfr+9mz549onXr1qJhw4ZCp9NVS5yWTP6e//jjj2LXrl13rN+6dauwt7cXfn5+pUZrzsvLq7YYLUF5e5xs3LhRfPDBB0KI0qPiTps2TfTp06dKYqtubBkki6DT6ZQBOsS/d8BDQkKwbt06ZGVlYdWqVXjttdeUh4Fzc3ORlZVlsnjNhY+PD1566SXs3r0bcXFx2LFjByZNmoTw8HA0bdpUaakBoDzv1q1bNxQVFeGPP/4wZehmQd7XXnnlFZw4cQKLFi26Y/RV+c6gl5fXHS2DtWvXrvnzE5WTnJuwsDD4+fmhf//++PTTT5XBOm7n4OCAp59+Gm+88QaOHj2K1NRUPvf2r9DQUERFRUGr1WLcuHH43//+B6DsFkK5BaZv3744cOCAKcK1GIGBgfDw8IBarcaePXvg6OiorJPPLXZ2dhBCoE6dOujRo4fSQkDF5Dw1bdoUPXr0wKJFizBs2DD8888/Si+f23Xq1AmTJk1CYWEhLly4UN0hWxz5HNSlSxfk5OQAQKkeK3v27EGzZs2Qnp6ON998ExkZGcjIyMBbb73FXhYl3G8kdXlftbGxUVoG5e97QkICjhw5gl9//RXnz5+v2kCrAYtBsghhYWHKpKolu90tX74cTZo0QYMGDTB8+HAcO3YMV69exYQJE3D9+nVThVulKtrtUAgBNzc35SAWHx+POnXqKOvli3T5IgcAOnfuXOMvcsqTR5VKpbyuefPmAO4cTcze3h4ODg5o2LBhqRMyUDxi5htvvIGJEycaKWrLJ3dTBoAZM2Zg1apVyrrbc+vu7o4xY8YgNzdX6U5q7eQcjRw5EjNnzkRCQgJGjx59z4LQx8cHb775Jnbu3FnmQAh0i/x9v3z58l2PEXJ+U1NT4efnV22xWRIfHx/MnDkTderUwY8//ojvvvsOeXl5UKlUpW4ACSFgY2ODESNGwM3NDYmJiSaM2nKIfweI2b17N3Jzc2FrawsAmDlzJpKTk7Fz5058++232LJlC55++ml07NgRI0aMUEbOpfuTzzf169eHm5ubsvzUqVOYNm0atmzZgu3btyMwMNBUIRoNi0Eye0IIFBYWIi4uDhcvXlTuPM6cORMXL15EbGwsVqxYAY1Gg969e6Nt27YYOXIkgoKCTBy58clTRKSnp2PLli3KsnuRD2jyBczJkydLza1Tkvya7OxstGvXzlhhm52K5PH21r67FSReXl6lLsLj4+Mxb948AMCAAQOMEbbFky+uIyIi8PHHH6OwsBBffvkl1q5dC+DOQqawsBDe3t7w8/Mr1UpjzUreoJgyZQqmTJmChIQEDBkyBNu2bVNec3se27Zti7CwMObxPuTvu5+fH06ePAkApZ4LlKeX0el0yMvLU1oMqDQhBDp06IA1a9YAALZt24YpU6YAKG5pkY+3KpUKeXl5AIqfKW7cuLFJ4rU0KpUK9evXR9u2beHk5AQAys2hJUuWKKOuv/LKK9i/fz+WLl2K0NBQE0ddvYz1vL69vb2yvx4/fhzTp0/H2rVrERsbi/DwcKP8DVNjMUjVymAw3Ld4uZ1KpYKzszO6deum3NWSD3qLFy+Gg4MD2rVrh4iICKSlpWH16tXo0qVLVYRvUvK0EKmpqWjevHmpE2t5yEVM586dce3aNQClu5bIFzk5OTk4duyYMh9cTfOgeSzr/SRJgqurq9Kaevr0acyYMQOrV69GbGwswsLCjBa/ubtXV061Wq2coKdOnYpZs2YBAAYPHowff/wRwK39tKCgAHZ2drC1tUXr1q3h5eVVxZGbl/vlUT6OfvLJJ/j4449x9epVDB8+XJmDUM6jwWCAnZ0dNBoNgoKClAvHmq6yF4Jy3r29vbFv3z4At7qGFRUVQa1WQ6vV4s0338TLL78MZ2dn4wRcw8g3JLp164adO3eiTp06+PrrrxEREQHg1vG2sLBQuUHh5eWFRo0amSxmUzAYDMo+V5F9Vt4mIyMD+/btw5w5c5CQkIDo6GhlfxVC4O+//8aOHTtqTNFSEfKNnQctCm1sbFC7dm1cuHABH3/8MdatW4fY2Fh0797dGGGah+p4MJHobioyZPyvv/4qfvrpJzF9+nQxYsSIUoPFFBYWimeeeUb8+eefVRCl6cmf9dq1a8Lf31/4+PiIPn36iKysrAq/17Zt20RYWJjIyclRlsmDe2RlZYnRo0ff82F/S2bMPN5u0aJFIicnR5w9e1YMGjRIqFQqsX379gd+X3NmMBjEmjVrxI4dO8Qff/xR7u1KfneXLFkiAgMDhUqlEvPmzROXLl1S1uXl5YlXXnmlxg/SYYw8Lly4UDRo0ECoVCqxZMkSUVhYqKzLzc0V//nPf8Tx48eNGrc5u32agsoMLta6dWvx3HPPiezsbCFE8WA8Wq1WjBo1qsYeI41NPscfOnRI9OnTR6hUKtGnTx+xd+9eZUCT/Px8MXr06Br/PS9Lenr6A02pcfXqVfHqq6+KF198sdQ0EwaDQUyZMqXU1FI1ncFgEBs2bBBjxowRgwcPFh9//LG4cuWKsq6y8vPzxfTp08WoUaNq7HldJQSfyKeqJUkSlixZgsuXLyMuLg5NmjRBt27dMGTIkAq9T3Z2NubOnYukpCR8++23SlcTGxsbfPXVV+jUqRM6duxYRZ/CdEq2ZIWGhiIjIwMzZszA9evX0a9fP7Rv377C7xkZGYktW7Zgy5Yt8PLyUnI5ZcoUTJgwoUZ2Ea2KPJYkT5ewYsWKmnnn8DaSJGHq1KnKJOgvvfQSVq5ciX79+pV7e/nO7d69e7F69WosWrQIAQEBaNiwIfr3748DBw5g/Pjxyt+oiYyZxz/++AMxMTFYtWoVnn/+eTRu3BgDBw7E+vXrMWbMmBrxbMu9SJKElStX4syZM4iPj0erVq3Qvn37cudSJh8rAKB3794QQqCgoAA+Pj4ICAjA888/XyPPNVVFCAGVSoXk5GRs27YNc+bMgU6ng62tLYYOHYrU1FRMmDChRn/PS5IkCV9//TXWrVuH3bt3w9vbG08++STee+89NGrUqELP62dnZ2P//v3o3r270vNCPh7k5eVZTbdwSZIwfvx4+Pj44MiRIzh//jxOnTqF0NBQrF+/HvXq1av0exsMBrRs2RIJCQnYtm0bevToYcTIzQOLQapSkiQhKioKrVu3xmOPPYb09HSkpKRg4sSJmD17doWepZIkCceOHUPbtm3vOOjJJ5ua5vYCJisrCx9//DHGjRuHxMREJCQk4Iknnij3+5XM2dSpU3Hw4EHk5OTA3d0dXbt2xRNPPFEjT8jGzmNZlixZgujoaMTFxVlFITh+/Hh07twZw4cPx+bNm/Hyyy/j7bffVrrdlsft39v4+HgcPnwYBw8eRFhYGEJCQmrks78yY+Xx9mPhwYMHcfDgQRw9ehSPPfYY2rVrh4ceeqiqPoZZEELgv//9L7y9veHl5YWMjAwsWLAAZ86cQdu2bTF//nz4+/tDo9GU63yh1+tLDbql1WpRt25d+Pr6KoN11HRCCJw7dw6BgYF3PDv9IIqKirB//36cP38e/v7+CAwMhK+vr9He35xJkoS+ffuiUaNGcHFxQZ06dbB8+XKcOHEC7dq1w6xZs/DEE09U6pqm5HHAmkiShLlz58LX1xfDhw8HULzvPvPMM/jtt98wadIkzJs3r9RNnvISQkAIAT8/P6xYsQKPPfZYFXwCM1D9jZFkLQwGg5g1a5ZYsWLFHes2bdokXnvtNVFQUFCp5vsHafK3NJcuXRKNGzcW7u7uYuHChUpXkGPHjol3331XCFGxfJTsLpWSkiJSU1PvmB+vJjJ2Hm8XExMjVCpVqbnJaqodO3aITz/9tNSyI0eOPNB7WtN3WmbMPMrd8awxj5IkiU8//fSO7ltXrlwRCxYsEF5eXqJly5ZizZo1Ijc3V9nmfqx93tr169eLAQMG3DHH74Owxv1TZjAYxHvvvScWLVpUavmlS5fE1KlThYuLiwgLC1O6z1bkMRprtnTpUrFx40bl95Ldbjt37iw6depUrve5Pd8lf5e7m9ZU1ncLgarNn3/+CX9/fwwbNgxA6Yd4GzVqBJ1OBzs7u/veyRJlNF7X9LtfmZmZGD16NCIjI9G1a1dotVp88skniIyMVO5sBQcHo1mzZgDKlw85jyXvjNWpUwfe3t7w8fGpgk9helWZx9t/z8/Px++//24VD+pv27at1EAvAJSuxWU9rF/Wd/j2ZWq12urmETRmHuX3KWtqiZouJSUFLi4uSmu8nLv69esjMjISMTExKCoqwsSJE7Fs2TLodLoy83T77yVHvbRGx48fV7oYnz592ijvWdPP3feye/duhISEYOzYsQCK91NJktCwYUNMmDABo0ePxu7du/HZZ58BuPvI1WV9v615P83Ly8Pjjz8OoDindnZ2ygjAffv2RXp6OoBbcynLr7udnO+MjAxlGhR5kL369etX6WcwNev9VlKVS05OVkb/FP/OiSMLCgpCixYtoNfrlS/l3S5g5C9ocnKy1cxB5O7ujrp162Lp0qW4ceMGZsyYoRQwcp70ej0SEhLwzz//lOvir2Qe5Yl9KzuCpqWojjzKv48ePRq9evWqug9jRlJTU5VRFG+/uMvMzERSUhLOnj2rzGl3+/QmJZeV/F7XxK7e91IVeVSpVFaVRyEE9u7di59++klZVjKXjo6OeOKJJ7BmzRp4eXlh2rRpWLJkCXJzc+/Ik/z7iRMnsGPHDgA1/xh5N0lJScjPz8fPP/+MK1euVKogLLmfyj8ba7h/S3Tjxg00adIEwK0unfK+6uPjg/Hjx8PJyQkHDhy45/twP70lKysLmZmZcHBwQH5+vpJPuYt3x44d0alTJwDFz1cWFBQgLy+v1DGi5H76xx9/oF+/fnj00UeRnZ1tNV3CWQxSlTEYDEoxKN9dke9eFRUVoUWLFtBoNEhLS0NeXh6uXLlSavuSJ41Dhw5h0KBBaN26tTL3U003depUvPrqq+jRowciIiJgY2MDSZKUO9oajQahoaHKsvI4fPgwBg0ahFatWuHkyZNWcdFYHXm0FvL3NysrC8ePHwcA5WR56NAhHDp0CGPHjlUGRAkJCcHHH3+szGt5e36t8XsNMI/GpFKpEBISApVKhczMTAB33lhUqVRo27YtYmJi0KhRI8ydOxcbNmwo1VIgS0pKwrhx49CzZ09ljjxrdObMGRgMBvTo0QMrV67ExYsXMXr06AoVhPJ++uuvv+L999/HiRMnrLZlUK/X48KFC8o+d3seJElCYGAg3n33XVy6dEnpKXA33E+L1apVC3q9HiEhIZg0aRKysrIA3Lp+TEtLg4ODAxYvXozHH38c9erVQ4cOHbBgwQKcOHECQOnjqa2tLU6dOoXDhw8jOzu7+j+QiVjnt5KqhaOjI2bPng2tVgs7OzsAxXdmEhMTER0djYULF2Ls2LEICwtD8+bNERwcjJEjR+LXX38FULrbmJOTE3Jzc61qkl9HR0cMGTIEPXr0UC4U5ROIfPBydnbGnDlzlG4Q98M8Mo8PQr77/Mwzz2Dz5s04deoUACA9PR3nzp1DmzZtsHDhQixfvhxr165Fnz598NFHHyEiIkK5g10S88g8GoOtrS0OHjyI6OhoAHfvKhscHIwVK1bA09MTH3zwAQ4fPgyg9KTydnZ28PT0BAC0atWqGqI3P3q9HgcOHECfPn3g4uKCzp07Y926dbh06VKFC0IA2LRpE2bNmoUPP/ywVK6tiUajwaOPPoo6derg5s2bd6yXz0m+vr64du3afbt9cj+9ddNn6NChyM3Nxfbt25UiUM7nyZMnERwcjK5du2L+/Pno378/tFot3nnnHbzzzjt3tMI2a9YMy5Ytw+HDh1G3bt3q/UCmVA3PJZKV0uv1Ytq0aaJVq1ZixIgRYsiQISIoKEi4uroKlUql/PPy8hJPPvmkGDJkiGjTpo3o27ev+Prrr0u9V15envj777/FmTNnTPRpTOejjz4SW7duLXNdTk6OeOedd0RCQoIQonh+oXthHplHY9izZ4+ws7MTy5YtE0IIce7cOfHrr78KIUoPunHt2jUxc+ZMYWdnJ/r3719qbkshmEfm0Xjmzp0rVCqVWL16tbLsbgNwxMbGCl9fX/H444+Xuf7atWs1fsCI+5EHMSlp3759okGDBuKRRx4p96Ayer1efPXVV6JNmzZWOY9gSUlJScoctO+8806puUBlFy9eFB07drwj/4mJiUKr1ZZaxv20mCRJIjExUVy4cKHU8p9//lnMmzfvjtevXr1ahIeHC7VaLSZPniyEsO6BjYQoHjKVqMrEx8eLCRMmCHd3d+Hr6yuaNGkiHn74YfHcc8+JrVu3ipMnTyoT+gpRfAJas2aNiIqKEvn5+UII6x1Rq+TnvtdonyNHjhTh4eHK73c7qDGPzKMxDR8+XHh4eIiUlBRx9uxZcejQoTJfd/36dTFt2jShUqnE559/rixnHosxj8aRnJwsmjdvLtzc3Erd9CkrPwUFBSI6Olo4OTmJ+fPn3/O1VFplCkKDwVBm4WONjh49Kuzs7MTYsWPvum926NBBXL16tdTyXbt2KSMNP8gk9TVdyfP20aNHSy0vue73338XzZo1E87OziItLa06QzRLLAapWpw7d07cvHlTGAwGsWvXrlLD78t3wOUDXFpamnjqqaes/i6iEPe+OJHX5eXlicaNG4s333xTWWftd7luxzwaj5yvjRs3CpVKJRo2bChWr14tkpKS7rpNYmKieO6550RoaKjIycmx+iH7hWAeq8LRo0eFjY2NCAoKEn/99ZeyvKzvf2pqqhg2bJgYOHBgdYZYI1SmIKRbbty4Ueby/Px8kZeXJ3r37i1SU1NLrTt+/LhYsGCB8jtvXJRfyVyV/DkqKkqoVKo7cm2N+MwgVYvAwEB4eHhArVZjz549cHR0VNbJz8/Y2dlBCIE6deqgR48eymhQ1uxeA5qoVCpIkgRbW1s8//zzWL9+PZYsWQKguL+8NY/adjvm0XjkXD777LOIiIhAUlIS3n77bWzYsAFA2UOc+/v7Y/jw4bh+/Trs7OysduS7kphH42vbti127tyJ8+fPY/To0di5cyeAsp8h9Pb2xltvvYXdu3cjJSXFFOFarNDQ0Ls+Q2jNUxyUl/ys3+37pL29PRwcHNCwYUNl0D2ZXq/HW2+9hfHjxwOwvpGXH0TJXMnne6D4me1atWoxl+AAMlSN5C/g5cuX73qBLR8cU1NT4efnV22xWSq1Wg0bGxuMGTMGer0eM2bMwPr165V1t59sqGzMY8XI399vvvkGTz/9NK5cuYJPPvkEiYmJd8zNJueuXbt2cHNzQ25urkliNkfMo/F16dIF27dvx/nz5zFkyBBs3boVwJ0FYWFhIdq0aYOwsLBSNyepfMoqCA0GA2xsbKDVahETE1PmaK10y92KkDp16pTaV+Pj4zF37lwAwODBg6sltpro9utOR0dHPPvss/Dy8jJRROaDxSBVG3l0Jz8/P2X485Iji8nz7uh0OqsdFa8yhBBo3rw5li9fjrS0NEyfPl2Zc4t3vMqPeSw/tVqtFCq//PIL+vbti9TUVDz66KO4cOHCHfM4AsUn3rCwMLi6uposbnPDPFaN8PBw7Nq1C6mpqRgxYoRyY0f+HhsMBtjZ2UGj0SAoKAhOTk6mDNdihYaGYu3atUpBmJKSgoyMDIwcORItW7ZURhGn8jEYDBBCwNXVVekZdfr0aXz00UdYs2YNYmNjERYWZuIoLUt+fj4WLFiAgoICqNVqFBUVQa1WIysrC/Pnz8frr7/O8zvA0USp+sh9tZctWyZefvnlUuvkh8uzsrLEqFGjxOHDh6s9PksmSZIwGAziP//5j7C3txddu3YV8fHxpg7L4jCPFVNy1NVXX31V2NraCh8fH7Fz506RlZWlrMvJyRHDhw8XBw4cMEWYZo95rBoHDx4Ufn5+QqVSia+//rrUwBu5ubniiy++EMePHzdhhDXDvn37RMOGDUWbNm1EYGAgn/d/QN98843IyckRZ8+eFQMHDhQqlUps377d1GFZpLfffluoVCrx6quvKsvy8/PFO++8owzIQ0KohGD/J6oecssfALRp0wZBQUGIiYmBs7MzCgoKUFhYiDfffBOvvfYaQkJCTByt+RJC3PVOVkpKCmbNmoWvv/4aCQkJCAwMrOboLAfzaByFhYVKC8CKFSuwbNky7Nq1C2FhYXj44Yfx6KOPYsOGDfxe3wfzWDUSExMxY8YM/PDDD+jXrx8aNWqEQYMG4aeffkJERAS/2w9IPq8vWrQI48aNw/bt2xEeHm7qsCzaxo0bIYTAihUrsH79esTGxqJ79+6mDssinThxAn369MErr7yCJ598EjqdDps2bcLLL7/M42gJLAapypR1sa3X65XuD71794YQAgUFBfDx8UFAQACef/55dOzY0RThmq17FS1lyc3NhU6ng4+PTxVGZXmYR+MoK4/ys0KyVatW4dSpUzhw4AD69u2L8PBwtGzZsrpDNWvMY/URQuDIkSOIi4vDsWPH0K1bNwQHB+Ohhx4ydWgWTd6H8/Ly8Nxzz2Hy5MksWoxg6dKlWLp0KQ4dOsRC0AgSExORkJCApKQkdOjQAfXr14e3t7epwzIrLAapSpS80HnzzTfh5uaGjz76CEDpgjA+Ph5arRZ169aFr68vbG1tTRazOSqZx7feeguurq5KHqn8mEfjuNf3uqLFtjVjHqmmyM/Px8iRI/H6668jNDTU1OHUCCtXrsSLL77IVlaqNhy7n4yu5MXMO++8o9zhkmk0GqVrCe/M3l3JPEZFRWHx4sWl8kjlwzwax/2+12UVMCxs7sQ8Uk1SWFiIWbNmoXHjxqYOpcZo0aIF/vjjDxaCVG3YMkhGVfKiZdKkSViyZAmOHDmCoKCgUi2CdG+3XzAuXrwYhw8fRpMmTZjHCmAejYPfa+NgHomIyNywGCSjudeFzu3PwtDd3auAYR7Lj3k0Dn6vjYN5JCIic8TbkGQUvNAxDubROJhH42AejYN5JCIic8VJ5+mB8ULHOJhH42AejYN5NA7mkYiIzBmLQXogvNAxDubROJhH42AejYN5JCIic8dikCqNFzrGwTwaB/NoHMyjcTCPRERkCVgMUqXwQsc4mEfjYB6Ng3k0DuaRiIgsBYtBqjBe6BgH82gczKNxMI/GwTwSEZEl4WiiVGHyhc4bb7yB77//nhc6lcQ8GgfzaBzMo3Ewj0REZEnYMkiVsnr1asTExCAuLo4XOg+AeTQO5tE4mEfjYB6JiMhScNJ5qpQrV67AxsYGdevWhV6vh0bDRubKYB6Ng3k0DubROJhHIiKyFCwG6YFIkgS1mg3MD4p5NA7m0TiYR+NgHomIyNyxGCQiIiIiIrJCvGVJRERERERkhVgMEhERERERWSEWg0RERERERFaIxSAREREREZEVYjFIRERERERkhVgMEhERERERWSEWg0RERERERFaIxSAREREREZEVYjFIRERERERkhVgMEhERERERWSEWg0RERERERFaIxSAREREREZEVYjFIRERERERkhVgMEhERERERWSEWg0RERERERFaIxSAREREREZEVYjFIRERERERkhVgMEhERERERWSEWg0RERERERFaIxSAREREREZEVYjFIRERERERkhVgMEhERERERWSEWg0RERERERFaIxSAREREREZEVYjFIRERERERkhVgMEhERERERWSEWg0RERERERFaIxSAREREREZEVYjFIRERERERkhVgMEhERERERWSEWg0RERERERFaIxSAREREREZEVYjFIRERERERkhVgMEhERERERWSGNqQMgIjKmI0eOYPbs2fDw8IC7uzsyMzPRq1cvDBgwwNShERFRFZs3bx7Onz+PxMRELF68GAEBAcrPmZmZAIDExETMnTsXISEhpg2WyAyohBDC1EEQERnDvHnzsHjxYmzbtg0BAQHK8tq1a2PKlCmYPHmysiw2NhYdOnSAu7u7CSIlIiJjW7duHdzd3dGzZ0/06tUL6enpmDt3LtauXYvFixcrr4uMjMSaNWuQkZFhwmiJzAO7iRJRjTBw4EDMnj0bhw8fLlUIAsDcuXMRFRWFxMREZdnatWtZCBIR1SCrV69Gz549AQDp6ek4cuTIHYUgALRv3x6ZmZk4cuSIKcIkMissBonI4i1ZsgTr1q27a4HXoUMHAFAuCDIzM1kIEhHVIJmZmaVuBB45cgTu7u53FILya4moGJ8ZJCKLlpmZicjISAQEBCh3hG8nXyDILYOzZ89GZGSksn1UVBRiY2ORmJiInj17lrqgSE9PR8eOHUt1Mc3MzMTs2bOxbt06JCYmIiQkROmWdLcYiIio6ri7u2PKlCkAoLT4RURElPnabdu2AcAdzwzWrl0bHh4eCAkJgYeHBwBgzZo18PDwwIABA5CZmYn09HTExsYiIiICc+fOraqPQ1RtWAwSkUWbPXs2ANxzgBi5FTAzM1O5IywXfPKd4yVLliAyMlIZcKCkXr16YfXq1Th8+LCyzdy5cxEYGIjIyEgsXbqUAxEQEZmYfKyPjY0FUHzsLktsbOwdN+7klkX5OC9bsmQJBg0aVKrwkwcqI6oJ2E2UiCyafNIfPHjwfV+bnp6OqKioMu/myneBy7J48WIcOXIE8+bNK3M9u5wSEZkPueWvrJ4a69atA1D8nHlJ6enpSsvi/YSEhNxx05DIUrEYJCKLJrf0ladl7siRI0r30IqQT/ryBQYREZmv2NjYu54T5GcIBw0aBAClppuoSIHn6en5YEESmQkWg0Rk0SrSKhcSElKp7pzys4bsCkpEZN7k5wXL6i2SmZmJ2NhYDBgwQDl3zJ49G5mZmejQoUOFjvGcu5ZqChaDRGTR5BP+vUaHu1v3zvKKiopCQEAABwsgIjJzq1evBlB2F9GyHiuQR5euaHd/dhOlmoLFIBFZtMmTJyMgIABRUVF3rIuNjUVkZCR69uyJiIgIpYVPHkG0LIsXL8a8efOUf/JIpefPn6/Sz0FERA9OLvjKauWTCz553bx58+56LiCyFhxNlIgs3vnz5xEVFYXIyMhSd3d79eqlPB8yd+5cJCYmYuDAgfDw8LhrK59c/BERkWW625QS8o3BqKgoeHh4YODAgTzek9VjMUhENcL9unC6u7tX+wAwS5YsuetFCRERGd/tU0PcrqxJ6ImsGbuJEhFVkXs9x0hERERkaiwGiYiqyMGDB00dAhEREdFdsRgkIkLxhMOA8Vrzbp/QmIiIiMjc8JlBIrJqmZmZmD17NtatWwegeBqJkJCQez6DKI9GKo9aFxkZqYxOJ89jlZiYiMmTJ1f9ByAiIqOKjY3Ftm3blDkL16xZA6D42fMpU6ZUeBoKInOmEkIIUwdBRERERERE1YvdRImIiIiIiKwQi0EiIiIiIiIrxGKQiIiIiIjICrEYJCIiIiIiskIsBomIiIiIiKwQi0EiIiIiIiIrxGKQiIiIiIjICrEYJCIiIiIiskIsBomIiIiIiKwQi0EiIiIiIiIr9P/kekeCcsEtOgAAAABJRU5ErkJggg==", "text/plain": [ "<Figure size 1000x800 with 4 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# This part should be moved out of this function\n", "datasets = [fisher_data, MCMC_data]\n", "weights = [\n", " np.ones(len_fisher_data),\n", " np.ones(MCMC_data.shape[0]), # type: ignore\n", "]\n", "smooth = [1.0, 1.0]\n", "ranges = np.array(fisher_ranges.T)\n", "\n", "pf.plot_corner(\n", " datasets,\n", " colors=[pf.my_colormap[\"red\"], pf.my_colormap[\"green\"]],\n", " truths=signal_parameters,\n", " chain_labels=[\"Fisher future\", \"MCMC future\"],\n", " weights=weights,\n", " smooth=smooth,\n", " labels=parameter_labels,\n", " range=ranges,\n", " truth_color=\"black\",\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 2 }
78,037
Python
.py
387
196.692506
68,078
0.912966
Mauropieroni/fastPTA
8
0
3
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,332
linear_basis_figure.ipynb
Mauropieroni_fastPTA/examples/linear_basis_figure.ipynb
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### Start importing all libraries" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)\n" ] } ], "source": [ "# Import global libs\n", "import os\n", "import time\n", "import tqdm\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from multiprocessing import Pool, cpu_count\n", "\n", "# Import local libs\n", "import examples_utils as eu\n", "import fastPTA.utils as ut\n", "from fastPTA.Fisher_code import compute_fisher" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Check if all the required folders are in place" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# If it's not there, create the folder to store the generated data\n", "if not os.path.exists(\"generated_data/\"):\n", " os.mkdir(\"generated_data/\")\n", "\n", "# If it's not there, create the folder to store the plots\n", "if not os.path.exists(\"plots/\"):\n", " os.mkdir(\"plots/\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Constants to generate the Fisher results" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# Total observation time in years\n", "T_obs_yrs = 16.03\n", "\n", "# Number of frequencies used in the analysis\n", "n_frequencies = 30\n", "\n", "# Number of pulsars used in the analysis\n", "n_pulsars = 68\n", "\n", "# Maximum value of l used in the analysis\n", "l_max = 6 \n", "\n", "# The analysis assumes a power law template, specify here the input parameters\n", "log_amplitude = -7.1995 # log amplitude\n", "tilt = 2.0 # Tilt\n", "\n", "# Number of catalog realizations to be generated\n", "N_realizations = 30\n", "\n", "# Whether you want to regenerate the fishers\n", "regenerate_fishers = False\n", "\n", "# Name of the outfile, no need for the extension\n", "# (will be stored in generated_data/)\n", "outname = \"NGlike\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Constants for the plots" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# Confidence level for the Cls\n", "limit_cl = 0.95\n", "\n", "# Number of samples used for each realization\n", "n_points = int(1e4)\n", "\n", "# Number of catalog realizations used in the analysis.\n", "# If larger than N_realizations taxes that as max\n", "N_realizations_in_plot = 32\n", "\n", "# Number of cores to be used for parallel computations\n", "num_cores = cpu_count()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Build the injection " ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# All multipoles here are set to zero\n", "signal_lm = (\n", " 1e-30 / np.sqrt(4 * np.pi) * np.ones(ut.get_n_coefficients_real(l_max))\n", ")\n", "\n", "# The monopole is set to 1 (with the right normalization)\n", "signal_lm[0] = 1.0 / np.sqrt(4 * np.pi)\n", "\n", "# The two parameters characterizing the signal in frequency\n", "signal_parameters = np.array([log_amplitude, tilt])\n", "\n", "# Len of the parameters used in the analysis\n", "shape_params = len(signal_parameters)\n", "\n", "# The monopole is not included in the fisher analysis since it's degenerate\n", "means = np.concatenate((signal_parameters, signal_lm[1:]))\n", "\n", "# The number of parameters used in the fisher analysis\n", "n_params = len(means)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Define the inputs for compute_fisher" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# Dictionary with the kwargs to generete the pulsar catalogs\n", "generate_catalog_kwargs = {\n", " \"n_pulsars\": n_pulsars,\n", " \"save_catalog\": False,\n", " \"use_ng_positions\" : True,\n", " **eu.EPTAlike,\n", "}\n", "\n", "# Dictionary with the kwargs to generate noise and orf tensors \n", "get_tensors_kwargs = {\n", " \"path_to_pulsar_catalog\": \"pulsar_configurations/EPTA68.txt\",\n", " \"add_curn\": False,\n", " \"regenerate_catalog\": True,\n", " \"anisotropies\": True,\n", " \"l_max\": l_max,\n", "}\n", "\n", "# Dictionary with the kwargs to generate the fisher matrix\n", "fisher_kwargs = {\n", " \"T_obs_yrs\": T_obs_yrs,\n", " \"n_frequencies\": n_frequencies,\n", " \"signal_parameters\": signal_parameters,\n", " \"signal_lm\": signal_lm,\n", "}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Try to load the fisher data, if not there generate" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "try:\n", " if regenerate_fishers:\n", " raise FileNotFoundError(\"Flag forces regeneration\")\n", "\n", " fisher = np.load(\"generated_data/\" + outname + \".npz\")[\"all_fishers\"]\n", "\n", "except FileNotFoundError:\n", " fisher = np.zeros((N_realizations, n_params, n_params))\n", "\n", " for index in tqdm.tqdm(range(N_realizations)):\n", " res = compute_fisher(\n", " **fisher_kwargs,\n", " get_tensors_kwargs=get_tensors_kwargs,\n", " generate_catalog_kwargs=generate_catalog_kwargs\n", " )[-1]\n", "\n", " # Delete the monopole since it's degenerate\n", " fisher[index] = np.delete(np.delete(res, 2, axis=-1), 2, axis=-2)\n", "\n", " np.savez(\"generated_data/\" + outname + \".npz\", all_fishers=fisher)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Try to load the limits, if not there generate" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "try:\n", " Cl_limits = np.loadtxt(\"generated_data/Cl_limits_\" + outname + \".dat\")\n", " Cl_limits_prior = np.loadtxt(\n", " \"generated_data/Cl_limits_prior_\" + outname + \".dat\"\n", " )\n", "\n", " if len(Cl_limits) != N_realizations:\n", " raise FileNotFoundError(\"Flag forces regeneration\")\n", "\n", "except FileNotFoundError:\n", " cov = ut.compute_inverse(fisher)\n", "\n", " for j in range(min(N_realizations_in_plot, N_realizations)):\n", " arg_grid = [\n", " [means, cov[j]]\n", " for j in range(min(N_realizations_in_plot, N_realizations))\n", " ]\n", "\n", " def get_Cl_wrapper(parameters):\n", " return ut.get_Cl_limits(\n", " *parameters,\n", " shape_params,\n", " n_points=n_points,\n", " limit_cl=limit_cl,\n", " max_iter=100,\n", " prior=5.0 / (4.0 * np.pi)\n", " )\n", "\n", " start = time.time()\n", " with Pool(num_cores) as p:\n", " res = np.array(p.map(get_Cl_wrapper, arg_grid, chunksize=1))\n", " end = time.time()\n", " print(\"Time to compute Cl limts:\", end - start)\n", "\n", " Cl_limits = res[:, 0]\n", " Cl_limits_prior = res[:, 1]\n", "\n", " Cl_limits_prior = Cl_limits_prior[np.isfinite(Cl_limits_prior[:, 0])]\n", " np.savetxt(\"generated_data/Cl_limits_\" + outname + \".dat\", Cl_limits)\n", " np.savetxt(\n", " \"generated_data/Cl_limits_prior_\" + outname + \".dat\", Cl_limits_prior\n", " )\n", "\n", "# Normalize with C0\n", "Cl_limits *= 4 * np.pi \n", "Cl_limits_prior *= 4 * np.pi " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Compute mean and quantiles among the realizations" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "# Compute the mean and the errors on the Cls without prior \n", "mean_Cl_limits = np.mean(Cl_limits, axis=0)\n", "err_low_Cl_limits = mean_Cl_limits - np.quantile(Cl_limits, 0.025, axis=0)\n", "err_high_Cl_limits = np.quantile(Cl_limits, 0.975, axis=0) - mean_Cl_limits\n", "\n", "# Compute the mean and the errors on the Cls with the prior \n", "mean_Cl_limits_prior = np.mean(Cl_limits_prior, axis=0)\n", "err_low_Cl_limits_prior = mean_Cl_limits_prior - np.quantile(\n", " Cl_limits_prior, 0.025, axis=0\n", ")\n", "err_high_Cl_limits_prior = (\n", " np.quantile(Cl_limits_prior, 0.975, axis=0) - mean_Cl_limits_prior\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Compute the limits due to the prior only" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Just prior:\n", "C_l / C_0 = [1.27683451 1.11983646 1.0424372 1.00530637 0.9666254 0.94391062]\n" ] } ], "source": [ "data_prior = np.random.uniform(\n", " -5.0 / (4.0 * np.pi), 5.0 / (4.0 * np.pi), (n_points, len(means[1:]))\n", ")\n", "\n", "Cl_prior_values = ut.get_CL_from_real_clm(data_prior.T)[1:]\n", "\n", "Cl_prior = np.quantile(Cl_prior_values, limit_cl, axis=-1)\n", "\n", "Cl_prior *= 4 * np.pi\n", "\n", "print(\"Just prior:\")\n", "print(\"C_l / C_0 =\", Cl_prior)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Load the NANOgrav constraints" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "limits_NG = np.loadtxt(\"data_paper_2/limits_Cl_powerlaw_lin_ng15.dat\")[:, 1]" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAKACAYAAAB+AquVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABcSAAAXEgFnn9JSAACU50lEQVR4nOzde3xT9f0/8FeaNlAKNC1XQbmcqnhXUvCuiCR4+aoTTYpzbjqVRucU57S1c36B8d1qqm7CbqY4/brtN1cSxza27yYNos57m6hzXlAaFBUEaZsChdI0Pb8/Duc0p0napE1ykvT1fDzykHzOSc4njW1f/eT9+Xx0oiiKICIiIiLKUXlad4CIiIiIKJUYeImIiIgopzHwEhEREVFOY+AlIiIiopzGwEtEREREOY2Bl4iIiIhyGgMvEREREeU0Bl4iIiIiymkMvERERESU0xh4iYiIiCinMfASERERUU5j4CUiIiKinMbAS0REREQ5LV/rDlCf3t5edHZ2Ii8vDzqdDgCQl5cHvV6vcc+IiIiI0i8UCqG3txcAIIoient7UVRUhLy8xMZsGXgzSFdXF8aPH691N4iIiIgyVmdnJ8aMGZPQYxh4M0h+vvR2BAIBFBQUAEjNCG8wGERRURE6OzuV61Bm4nuVHfg+ZQ++V9mB71P2SPV7FT7CGwwGYTQalbyUCAbeDCKXMYwZMyYt3+AFBQX8QZIl+F5lB75P2YPvVXbg+5Q9UvVehT9nMBgE0JeXEsFJa0RERESU0xh4iYiIiCinMfASERERUU5j4CUiIiKinMbAOwLl5eVhxYoVCa9hR+nH9yo78H3KHnyvsgPfp+yRLe+VThRFUetOkCQYDMJgMKC7u5uzUomIiIjCDCcnZXYcJyIiIiIaJgZeIiIiIsppDLxERERElNMYeImIiIgopzHwEhEREVFOY+AlIiIiopzGwEtEREREOY2Bl4iIiIhyGgMvEREREeU0Bl4iIiIiymkMvERERESU0/K17gClV1dXFzo7O3H48GGtu0JElBY6nQ6FhYUYO3Ys8vP5a49oJOJ3/gjQ1dUFv9+PQ4cOad0VIiJN6XQ6GI1GCIKgdVeIKI10oiiKWneCJMFgEAaDAZ2dnSgoKAAA5OXlQa/XD/k5u7q68N5770W05+XlQafTDfl5iYiyhSiK6O3tVbXl5+fj9NNP16hHRBSvUCikfP8Gg0EUFRWhu7tbyUnxYuDNIHLgDbdixQqsXLlySM/X09ODd955B4A0qjF58mSUlJRgzJgxDLtENKL09vZi3759aGtrQ3t7OwCgoKAAp512msY9I6KBrFy5EqtWrVK1MfBmuWSP8G7btg0dHR3Q6XQ49thjMX78+GR2l4go64iiiJ07d+LLL78EAJx88skYPXq0xr0ioliSNcLLVRoyUEFBgXIbTjnDvn37AAClpaUMu0REkD7tmjZtmjJ57dNPP9W4R0Q0EL1er8pFQ8XAm8PkwXuj0ahtR4iIMohOp0NJSQkAoLOzU+PeEFE6MPCOAIWFhVp3gYgoo8hlDKzqIxoZGHhzVE9Pj/LvvLz0vs02mw0+ny+t1ySizBbtZ0IgEIDf79egNxhWuRgRZR8G3hEg2ooMPp8PNpsN5eXl0Ol0KCsri/pYi8WCkpIS5Ry73T7gtQKBANxuN5xO54DnpeL6dXV1sNlssNvtsNvtsNlsqKurG7Af4dxuNywWCywWC2w2W8TjbTZb3M81Uvj9fpSUlKC+vj4tj8skgUAAZWVlKCsrU/0/E62tvLwcZWVlCf3/mG18Ph/KysoQCASiHl+0aBF0Oh3Ky8uVr0d5eTlKS0vT21EiGplEyhjd3d0iALG7u3vYzxUMBsXm5maxublZDAaDMc/zer2iyWQSAYhWqzXqOe3t7aLJZIrrug6HQwQgGo3GuM5PxvVbWlpEk8kkOhyOqP0RBEH0er0DPt5sNotmszniPK/XK1qtVtFsNsf9NRhJGhsbRQBiZWVl1ONVVVVDelw2cDgcotVqFdvb21XtRqNRFAQh4nyr1So6nc409S492tvbRavVKlZWVirfx/2/HjJBEESj0SgCEAVBEKuqqmKemw579+5VfkYSUXYYTk5i4M0gWgTelpYW0el0ilarVQQgulyuqOfFG0zkX34AxMbGxkHPH+71W1paRABRw67M5XKJAKKG3vb2dtFoNMYM2+HnMPBGFyu0tLS0DPj/jZZhJxmi/T8j//8Y7XW7XK64vieylfzHbqz3daDvMS0w8BJln+HkJJY0EABg3bp1MBqNWLZsWcyPJAfj9/shCIJSdjBYWUMyrm+z2WA0GlFVVRXzHKvVCpPJFLUkwWazIRAIYN26dTEfbzQa4XA44u7TSBNrFRC32z2kx2UDv98Pi8US0e7xeAAg6jG/34958+alvG9ERBSJgZcASOHD5XIhEAgMuVbV7XbDbrfDZDJBEIRBA89wr+92u+Hz+VBRUTHouUuXLoXf71fVjLrdbng8Hlit1kHDVzzXoD4+nw/V1dVadyNl/H4/KisrI9obGxsBAGazOeKYyWTK6pBPRJTNGHhJYTabUVlZCY/HM6TJRE1NTRAEAYA0qgoMPso3nOs3NDQAAMrLywc912QyAQBcLlfE4+fPnz/o4/uP8no8HpSXl6OkpAR1dXVwu92orq5GeXm5atZ5fX096urqUFdXh+rqalRXVysj2PX19cqkPfl5ZDabTZmoN9jXMLwv1dXVqK+vV03ci/W1DAQCsNvtSv/sdrsyQinz+Xyoq6tTvQ756+33+5Xrhv+R4na7UVtbq/RNnrglv45Yj4u3Xz6fT3m83W6H3+9Xzo01UXGg1zEU0QKt/HoFQYgabGM9ZiSRv/7V1dWDruaSyPdHvN+PRDSCpaDEgoZIyxrecIIgiADElpYWpW2wGt6WlhZVHa1cyzhY3d5wri9PkolV9xvO6/VGTKZL5PGxGI1GsbKyUnS5XMprll+Py+USjUZjxOvoXwssP0d/idYMG41G0Wg0qupE29vbRUEQIp7f6/WKgiCo+iaKomg2m5X3sb29XTSbzRHX6T8hy2QyRX2fo113sMfF06/w57darar3T36fwx8f7+sYroHqdzOBPMFMnlQ32P/3A9XFxzofA9Twms1m1TH56zVYXbP8PvcX7ftjoO/H/ljDS5R9WMNLSSWPgiZS2uB0OpVRXQAQBCHhsobhXF8rpaWlSlmEIAhob2+P+lG3TB7VCh91qqysjBiF9fv9gy4B158gCDCbzaqRRHlkur6+XjVKarPZlD6HczgcqK6uhs/nQ3NzM5qbmyNqqvv3a6jLSkV7XDz9kgmCoHztZfJIfvhrjfd1DNdA9buDkWuCYy3Plwzl5eWYP38+Nm/erHzaMFDZSVNTU1Kv39jYqBr5lv9/Hex9sNvtcLvdqvfP5/OhpqYm4txEvx+JaORg4KUIJpMJVVVVysfA8ZA/QpQ/vu7/EXcqri+Hora2tkGfUw6Y4UFqsMeHlwaE38LDqtFoVEKWfF9mtVrR3t4OQRAQCATg8XiUGs9w8i/u8NDrdDqH9Is6WoiUA7D8h4QcuKOVcsivpaGhAWazGaWlpSgpKYHFYkFdXR38fv+AEwSHI95+hYs1CSw8HKXrdQxUvzsYQRBSOjFSLiOoqqqCyWRCZWUlvF6vUnLSn8/nS8v6uIIgwO/3D1h2IH8fhH9/NDQ0qP7QkQ30/UhEIxsDL0XlcDggCAKqq6sHrYGTJyi5XC7Vzev1AkhstYZEri+PpEULkf3Jo1VLly5V2uR/x3p8ZWUlnE6nUge7fv16OJ3OiNHHgYKBXI8qrz4RLcwZjUZYrdaUBR75l778dZT/O1AYkEdSvV4vqqqq4Pf7UV1dHdfmI0OVSL8SlY7XMVD9rtaampoi/oAyGo3K92h5ebnytZVDcDInHVoslgFrpgdamcVoNKKyslKpCw8EApgwYULM87mRBRFFw8BLMckjgoN9RNvQ0BB1FQN5tMXj8QxpqbPBrl9ZWQmTyRTXCHJ9fT0EQVCN6lmtVpjN5oiPS/uTR+z6B13ZQMtyzZ49GzabDS6XK+pH9TJ55Njn8ykjy8kivzb52vJ/B3rN8sgbIP3x0dLSAlEU4XQ6UV9fP6TgOViAirdfiUr264h1jUAgMOjobvjEufAJjLK2tjbVxDq73a46R56QVV9fr0xQjMdAXzeXy4WlS5cqE8RsNlvUP+yGI1pJCdD36Ur4qGw08tdKfu0DffqRiX9wEJH2GHhHuIHChclkgsPhGPQjR7/fH/OXjDyKun79+pRcXw7Fg205HAgEVCs0hD9eXv83lqHO8rbZbKioqFCFoPDyifBaXrPZDEEQUFtbC6/XO+SwEa08Q64tlb9G8vJY0Ua25XPlWuP+gaqyshJWqxXNzc2D9iXR4BFvvxI13NcRj3jqdy0Wi1JOUFVVhZqamohRTzk0V1VVoaqqChaLBYsWLVKu0draCqvVisrKyogwPJDBPj2oqqqCKIpob29He3t70leUqKysREtLS0S7x+OJ61pyvW9tbS1aW1sZaokoYQy8I5zf74/6i0gm1/zFUl9fH9foaKyyhuFeXxAEpRYxWuitq6uD0+lEY2Nj1OeRP9aVJw1FG/Grrq6O+Qs2EAgkNHotP38gEIgI0tXV1XC73UOa9CTzeDyq5w0EAqraTdnmzZuxfv36iNcrnyu/b7W1tRGvL9pIZrSvgdlsHjRQ9n9cvP0C4qvdlg32OgKBAHQ63ZCXKpP//44V3nw+X0S4MxqNEARBVacut8msVqvy2NLSUmXU1+12o7S0NOl1yMMJkq2trQCivy9y/Xs4+XVH+0M0GrvdDp/PpypL6i/R70ciGjnyte4AaUOuu5VHpjweD2pqaqJOBHG5XBEjRD6fD8uWLVOCSVlZGbxer+oXphzg5PPlES6HwzHs64czmUxoaWlBXV0dLBaLajKaIAgDBmqgLzTLE+8A6Rd/IBBAc3Mzampq4HA4ItbhdTqd8Pv9WL9+Pdra2rB06VJV/71eL2pra1FXV6eUCFRWVqK1tRU2mw12u111vlwzHO1rEC+z2awqIWlqaoLT6YwIYiaTCV6vFw6HQ1Xj63A4lHPl2snw0dHW1lZUV1dDEAT4fD7U1tYqodZmsyk75gHSqKI8gVEQBGVy3kCPi6df8uN9Ph+MRiNsNhtqamrg9/uV4FlbW4umpiZlBH+g1yG/VnlyYSAQiCv4yfXlgUBA+T6Qd/6bP3++Kow2NzdHfU6j0Tjo/59GoxF+vx9msxmNjY3K1xWQ6s+1Xt9X7kv4KLwgCLBYLErpgVyPL4fetrY2lJaWYvv27XGHbLkEKdofrvF8PxLRyKYTRVHUuhMkCQaDMBgM6O7uRkFBwbCeq6enB++88w4A4PTTT0d+Pv+2SZS8VXK2KC8vx7x584Y0SZAkbrcbZrM56R+Zy5tl9P9xW15ejqVLlyqrkixatAjt7e2qc3Q6HRobG1FaWqqaFFdfXw+n06lMPMt1cglQskJsa2srPvnkEwDxbV5DRNobTk5iSQNRDNkUdik5mpqaUlIfajKZIiZYyrXp4ROw+pe61NfXK2sryytMyCorK3N6RQKfz6cqg4i1FBkRUTw47EeUIwKBQEJ1raQ22HJXw+X1elXL7LW0tKjKgORNQuTSgEAggNbW1ohJfHV1dUopRC6P5jc0NChLAfp8vri2ACciioUlDRkkVSUNp5122rCfjzKXXL/odrthNBphNpuVdYwpfnV1dSnbVIMSJ0+4LCsrU+qwk4klDUTZZzg5iYE3gyQz8AJQavtOPvlkjB49etjPR0SUK/bs2YPPPvsMAAMvUbZgDS8N6MCBA1p3gYgoo8g/F/Py+GuQaCTgd3oO0+v1ABAx65uIaCQLhULK0n25PPGPiPow8OawyZMnAwD27duHXbt2adwbIiLt9fb2KltMA8D06dM17hERpQNXachAwWBQ+XdeXp4yUpuoadOmYc+ePQiFQti5cycCgQBKSkpQVFSEvLw86HS6ZHWZiChjiaKInp4e7Nu3D+3t7crPWKPRyDXKiTJcKBRCb28vAHU+ShQnrWUQuRg73IoVK7By5cphPe/bb7+NUCg0rOcgIsolRqMRZWVlWneDiAaxcuVKrFq1StXGVRqynBx4Ozs7lTdyOCO84dra2vD5558P668jIqJsN2bMGMyePZsr1xBlif4jvEVFRQy82S7Zy5IRERER5QouS0ZEREREFAMDLxERERHlNAZeIiIiIsppDLxERERElNMYeImIiIgopzHwEhEREVFOY+AlIiIiopzGwEtEREREOY2Bl4iIiIhyGgMvEREREeU0Bl4iIiIiymkMvERERESU0xh4iYiIiCinMfASERERUU5j4CUiIiKinMbAS0REREQ5jYGXiIiIiHIaAy8RERER5TQGXiIiIiLKaQy8RERERJTTGHiJiIiIKKcx8BIRERFRTmPgJSIiIqKcxsBLRERERDmNgZeIiIiIchoDLxERERHltHytO0BEREREWairC3joob77998PjB6tXX8GoBNFUdS6EyQJBoMwGAzo7u5GQUGB1t0hIiIiii0QAEpK+u63twNGY8ouN5ycxJIGIiIiIsppDLxERERElNMYeImIiIgopzHwEhEREVFO4yoNGSgYDCr/zsvLg16v17A3RERERNoIhULo7e0FoM5HieIIbwYqKiqCwWCAwWDA6tWrte4OERERkSZWr16tZKKioqIhPw+XJcsg8nIbnZ2dynIbHOElIiKijJSGZcn6j/AWFRUNaVkyljRkoIKCAq7DS0RERCOeXq9PysAfSxqIiIiIKKcx8BIRERFRTmPgJSIiIqKcxsBLRERERDmNgZeIiIiIchoDLxERERHlNAZeIiIiIsppDLxERERElNMYeImIiIgopzHwEhEREVFOY+AlIiIiopzGwEtEREREOY2Bl4iIiIhyGgMvEREREeU0Bl4iIiIiymkMvERERESU0xh4iYiIiCinMfASERERUU5j4CUiIiKinMbAS0REREQ5jYGXiIiIiHIaAy8RERER5TQGXiIiIiLKaQy8RERERJTTGHiJiIiIKKcx8BIRERFRTmPgJSIiIqKcxsBLRERERDmNgZeIiIiIchoDLxERERHltHytO0BERESk6OoCHnqo7/799wOjR2vXH8oJOlEURa07QZJgMAiDwYDu7m4UFBRo3R0iIqL0CwSAkpK+++3tgNGoVW9oIGl+r4aTk1jSQERERESJa2kZ+H4GYeAlIiIiosQ89RRw1lnqtrPOktozEAMvEREREcXv44+BZcuAUEjdHgpJ7R9/rE2/BsDAS0RERETxW706MuzKQiHgySfT2584MPASERER0cB6e4GNG4ELLwR+97uBz/3kk7R0KRFcloyIiIiIojt8GPjDH4CHHwY++CC+x8yaldIuDQUDLxERERGpdXQATifw2GPArl3xP06vB26+OWXdGiqWNBARERGR5IsvgKoq4JhjgOpqddjV6YAlS4BXX5XqdPV69WP1euCJJ4Djjktvn+PAEV4iIiKike6994BHHgH+3/8DgkH1sVGjgBtvBL7/feD446W2c84BTjsNmDev77w33gDKy9PX5wQw8BIRERGNRKII/OtfUn3u3/4WedxoBO64A7jzTmDKlMjjZWUD388gDLxEREREI0koBPzlL0BdnTQq298xxwD33APccgswblz6+5cCDLxEREREI8GhQ8BvfyuVLmzbFnn8tNOA++4Dli4FCgrS378UYuAlIiIiymVtbcCvfw2sXQvs2RN5/OKLpYlqixdLE9NyEAMvERERUS769FPgZz+TVk7o7FQfy8sDbDZpRDdDJ5olEwMvERERUS55+21pIlpDQ+QWwIWFUm3u974HCIIm3dMCAy8RERFRthNFYPNmKehu2hR5fMIEabWFO+4AJk5Mf/80xsBLRERElK16egC3W1px4a23Io8LgrR+7k03AWPGpL17mYKBNwMFwxZ8zsvLg77/TiZEREQ0snV2Srud/fSnwCefRB4vL5cmol1zDZCfvXEvFAqht7cXgDofJYpbC2egoqIiGAwGGAwGrF69WuvuEBERUab46itgxQpgxgzgrrsiw+6llwLPPw80NQEVFVkddgFg9erVSiYqKioa8vPoRFEUk9gvGoZgMAiDwYDOzk4UHFn/jiO8REQ0ogQCQElJ3/32dmnHr5Fu2zZpNPepp4CuLvWx/Hzg618H7r1XWks3XdLwXvUf4S0qKkJ3d7eSk+KV3bE/RxUUFCT8RhIREVEOamqSJqI9+yxwJPgpxo4Fli0D7r5bGvHNQXq9PikDfwy8RERERJlEFIF//lOaiPbCC5HHp0wBli8HbrtNPcJKMTHwEhEREWWC7m7gj3+URnT/85/I48cfL5UtfPObwOjR6e9fFmPgJSIiItLSvn3AunXAY48Bn38eefycc6QVF666StohjRLGwEtERESkhV27gLVrgV//GujoiDx+1VVS0D3vvPT3Lccw8BIRERGl04cfAo88Avzud1IZQ7iCAqlk4d57gRNP1KZ/OYiBl4iIiCgdXnlFqs/9y18ij40fD9x+u7S27rRp6e9bjmPgJSIiIkqV3l5g40ZpxYVXX408Pn068L3vScuLjR+f/v6NEAy8RERERMnW1QX8/vdS6cLWrZHHTz4ZuO8+acMIgyH9/RthGHiJiIiIkiUQAB5/HFizBvjyy8jjCxZIQfeyy7jiQhox8BIREREN12efScuK1dcDBw6oj+l0wDXXSEH3rLM06d5Ix8BLRERENFTvvitNRHvmGaCnR31s1Cjg298G7rkHOO44bfpHABh4iYiIiBIjitKWvw8/DPzjH5HHS0qA735Xuk2enPbuUSQGXiIiIqJ4hELAn/4krbjQ3Bx5fOZMaTT35puBsWPT3z+KiYGXiIiIaCCHDgH/+7/Ao48CLS2Rx884Q9oRzWYD8hmtMhHfFSIiIqJoWluBX/4S+PnPgb17I4+bzVLQNZuliWmUsRh4iYiIiMJt3w789KfAk08CBw+qj+n1QEWFtOLC3Lna9I8SxsBLREREBABerzQRzeWSdkgLN2YMcOut0q5os2Zp0j0aOgZeIiIiGrlEEWhslCaibd4ceXzSJODOO4HvfAeYMCH9/aOkYOAlIiKikScYBNavl0Z033kn8nhZGXDvvcCNNwKFhenvHyUVAy8RERGNHAcOAL/5jVSju2NH5PH586WJaEuWSPW6lBMYeImIiCj37d4trbbwq18B7e2Rxy+/XAq6F17IFRdyEAMvERER5a6PPpLWz336aeDwYfWx/HzgG9+QShdOOUWb/lFaMPASERFR7nnjDWki2oYN0sS0cGPHAnY7sHw5cMwx2vQvF4weDaxYob6foXSi2P//AtJKMBiEwWBAd3c3CgoKtO4OERFR+gUCQElJ3/32dsBojO+xvb3A//2fFHT/9a/I41OnAnffLYXdeJ+TMsZwchJHeImIiCi7HT4M/OEPwCOPAO+/H3n8hBOkjSK+8Q1g1Kj09480x8BLRERE2amjA6ivBx57DNi5M/L4eedJE9GuuALIy0t79yhzMPASERFRdvniC2DNGsDpBPbtUx/T6YCvfU0a0T33XG36RxmHgZeIiIiyw/vvS2ULv/+9tHFEOIMB+Na3gO9/XyphIArDwEtERESZo6VFfX/bNuDQIWki2t/+Fnl+cbG07e+ddwJHHZWePlLWYeAlIiKizPDUU8CyZeq2+fOjn3v00cD3viedP25c6vtGWY2Bl4iIiLT38cdSeA2FBj7vlFOkiWjXXQdwCU+KEwMvERERae83vxk47M6YIU1Su+QSbv1LCWPgJSIiIm21tgIu18DnnHsucOml6ekP5RwuSkdERETaCIWAxx8Hjj8e8PsHPnfWrLR0iXITR3iJiIgo/V57DfjudwGfb/Bz9Xrg5ptT3yfKWRzhJSIiovTZs0cKr+eeqw67Y8cCFRVSuA2n1wNPPAEcd1x6+0k5hYGXiIiIUq+nB1i7VipfeOop9bEbbgA++ghoaADeeEN97I03gJtuSls3KTexpIGIiIhS66WXpPKFd99Vt592GvCLXwAXXNDXVlamPqf/faIh4AgvERERpcauXdLo7YIF6rBbXCyN9nq96rBLlCIc4SUiIqLkCgalQLtyJXDggPrYzTcDtbXA5MmadI1GJgZeIiIiSp7Nm4E77wQ++EDdbjIBv/wlcPbZ2vSLRjSWNBAREdHwffaZtMqC2awOu6Wl0lq7b77JsEua4QgvERERDd3hw8BPfwr8z/8ABw/2tet0QGUl8OMfAxMmaNc/IjDwEhER0VD985/AXXcBH3+sbj/rLKl8obxcm34R9cOSBiIiIkrM9u3A1VcDl12mDruTJgFPPgm8+irDLmUUBl4iIiKKz6FDwKpVwEknAX/5S197Xp40Ue2jj4Bvf1u6T5RBWNJAREQjQ1cX8NBDfffvvx8YPVq7/mQTUQQ2bgTuvlsa3Q13wQXS5hGnnaZJ14jioRNFUdS6EyQJBoMwGAzo7u5GQUGB1t0hIsotgQBQUtJ3v70dMBq16k32+PhjYPly4B//ULdPnQo88ghw/fXSBLVk4ftEMQwnJ/EzByIiIorU2Qk88ABwyinqsJufD3z/+8DWrcA3vpHcsEuUIixpICIioj6iCDz7LHDPPdLauuEuvhj4+c+lGl6iLMLAS0RERJIPPpCWGfN41O1HHy2ttWu1ckSXshJLGoiIiEa6/fuB++6TJp6Fh92CAqCmBvjwQ8BmY9ilrMUR3hGmsxN48EHghBOAE0+U/jtpkta9IiIiTYgi8MwzwL33Art2qY9deimwZg1w/PHa9I0oiRh4R5itW4Gf/UzdNmGCOgDL/505E9DrteknERGl2LvvAt/9LvDSS+r2WbOAxx4DrrqKI7qUMxh4R5gPP4xsa20FXnlFuoUbPVr6w75/ED7+eKCwMD39JSKiJAsEgBUrpK1/Q6G+9lGjpLWJq6v5Q55yDgPvCDNzJnDLLdK8hA8+kJY3jKWrC/j3v6VbOJ1OGgDoH4RPPFEaLSYiogzU2wv89rdSoN2zR33sqqukj/8EQZu+EaUYN57IIOneeEIUga++kkZ9P/hA/d9PPx3ac06cGBmE5fII7jRJRJoayRsa+HxS+cJrr6nby8qAtWuByy/Xpl/RjOT3iQY0nJzEwJtBMmmntc5OaUv0/kH4o4+A7u7En6+wMHZ5BHf2JKK0GIlBqq0N+OEPgccfl0Y5ZIWFUvs992TeD+GR+D5RXBh4c0QmBd5YenqATz6JDMIffCD9jEqUTgfMnh29PKK0NNm9J6IRbSQFqVAIePJJaUmx1lb1MasVePRRYMYMbfo2mJH0PlFCGHhzRDYE3lhEUSoJi1YesWPH0J5z0qToQfiYY1geQURDMFKC1JtvAnfcATQ3q9tPOEEqX7BYtOlXvEbK+0QJY+DNEdkceAdy4EDs8ohgMPHnGzMGmDMnsk74+OOlScZERFHlepD66itpRPc3v1G3jx0rrcpw112AwaBN3xKR6+8TDRkDb47I1cAbS08PsH179PKIjo7Eny8vL3Z5RPjPTiIaoXI1SPX0AE6nVJPbv7bs+uuBujpg+nRNujYkufo+0bAx8OaIkRZ4YxFFYPfu6EH488+H9pyTJ0cPwkcfzfIIohEjF4PUK69I5QvvvKNuP+UU4Be/ABYs0KZfw5GL7xMlBQNvjmDgHdz+/dJucf2D8McfS4MciRozpq8kIjwIH3ssyyOIck4uBaldu6T1dH/3O3X7+PHA6tXAd74D5GfpUvu59D5RUjHw5ggG3qELBmOXR+zbl/jz6fXS+uvRwjB/7hJlqVwIUsGgNHK7YoU0AhDuppuAhx4CpkzRpGtJkwvvE6UEA2+OYOBNPlEEvvwyehD+4ouhPeeUKbHLI7jtPFEGy/YgtWULcOedwHvvqdvnzpVC8LnnatOvZMv294lShoE3RzDwptf+/VL47R+Et20bWnlEUVHs8ohsmBhNlPOyNUh9/jlw771AQ4O6vaQE+MlPgGXLpI+lckW2vk+Ucgy8OYKBNzMEg0BLS/Q1hft/ghgPvV7avbN/ED7hBKC4OPn9J6IYsi1IdXcDP/uZVJPb2dnXrtNJIffHP5b2c8812fY+Udow8OYIBt7MJorAzp3Rg/DOnUN7zqOOij4qPH06yyOIki6bgtSmTVL5wkcfqdvPPFMqX5g/X5t+pUM2vU+UVgy8OYKBN3t1dEirR/QPwtu2STt8Jmrs2L4gPGuWtKxa/1tpaW59ikmUctkQpD75BLjnHmDDBnX7xInShLRvfzv311LMhveJNMHAmyMYeHNPd3fs8ogDB4b33Hl50u/AKVOiB+L+t7Fjk/OaiLJWJgepri7g4Yelmtyurr72vDxpibEf/Wjk7KCTye8TaYqBN0cw8I4coiitEhEtCO/alZprjhkTXzCePBmYNCl7l/AkiilTg9Tf/gYsXw74/er2886TyhfOOEOTbmkmU98n0txwchJ/pRFpQKeTljE7+mjAbFYfCwT6yiO2bpUC8J49fbfdu6WR40QdPCh9WvrJJ/GdP2HC4MFYHl0eP541x0QJa2mRgu7f/65unzJFGu294QZ+YxElCUd4MwhHeCkeoihtphEegqPddu+W/tvamvo+GQzxBWN59Ji72JEmMmXk8OBBoLYWqKtT//Wq10sBeMUK6a/IkSpT3ifKOBzhzQButxuNjY0oKytDa2sr5s+fD6vVqnW3KAfpdNJyZsXFwHHHDX5+Tw+wd+/AoTj8/qFDifepu1taKvTzz+M7v7h48GAs30pKcn+ODo0QoihNRvve94AdO9THFi4Efv5z4OSTtekbUY5j4E0Cv9+P2tpaeL1epa28vBxGoxHm/p9XE6VZfj4wdap0i0dn5+DBWL599RXQ25t4nzo6pNvHHw9+rl4vjQoPFozl25gxifeHKOW2bgXuuktabizc9OnAo48CFRUsXyBKIQbeJLDb7Vi6dGlEm8PhYOClrFNUBMyeLd0G09sLtLXFF4737JFKMRIVCknbQ3/5Zfz9jycYT54s1Slzch6l1IEDwP/8D/DTn0q72sgKCqTlx374Qy6hQpQG/FGfBB6PB3a7XdUmCAI8Ho9GPSJKD3lptIkTgZNOGvz8ri5pVHigUBx+C88H8ersBLZvl26D0emk0Bvv0m7jxnEQjuIkitJWwPfeKy3JEm7xYmDtWmDOHG36RjQCMfAOk//IMjLGfgX1paWlynFBENLdLaKMNHo0cMwx0m0woiiVPcQTjnfvlua1JEoUpfrmvXuB996Lr/+xwvDEidJAXVFR33/73zgXdYT4z3+kXdJeeEHdPmMG8NhjwNVX8y8nojQbsYE3EAigtrYWfr8fLpcr5nlutxsNDQ0QBAGBQABGoxEOhyOh6xBR4nQ6aWK20RjfQFh3d+zJef3LLXbvBg4fTrxPXV3SXKP+843iZTCoA3CsYBytfbA27rqXATo6gFWrpNHb8C0WR40CqqqA++9nkTmRRkZc4LVYLDAajRAEAXV1dQPW2FZXV8Pn86GxsVFpq6+vR1lZGVpaWga8TltbW9L6TESDMxiAadOk22BEUSqtHCwYy7e9e6XHDFd3t3Qbymj0YEaNGnpYHiyAc5WMQYgi8LvfSaF29271sSuukEZ1y8o06RoRSUb0Orw6nQ5ms1kVaGV+vx9lZWXwer0wmUyqY2VlZbBarcpIr06ng8vlUi1D5na7YbPZkMiXl+vwEmWmUEhaz3iw9Y47O6XbgQN9/w4f6MtWhYXJDdFyW2FhmsN0KtZ3fftt4LvfBV55Rd0uCMCaNVLgpcRwHV6KgevwpoDT6QSAiLALAGazGfX19UrgNZvNSi2vrK2tLepjiSj76PV9tbqJEEVpRLd/CI4WjAdrj9Y2lCXhhuLQIem2d2/yn3vMmOSXd8hhOqVlsu3twIMPAr/+tfqNKCwEfvADabLa6NEp7AARJYKBNwa32x0xEU1WVlaGQCCgTEhzOBxYtmwZqqqqlHOcTifWrVuXpt4SUSbS6aRSg1GjgCPzWJNGFKWa4uEE5liBu7MzOSUc8Th4ULp99VVyn1eniwzFU0YB4Z/n3XMPoJ8gheX+t3Hjorcb8nuBJ58Eamoi/wK45hpp+bGZM5P7Yoho2Bh4YxhodQU5CPt8PgiCAJPJhJqaGthsNsyfPx8tLS2oqanhCC8RpYxOJw0mFhZKK0QkkyhKI7pDDcwDnXvwYHL7OtBrOHBAusn6zzV88imgI4HnnIcm/Ep3B+aLTar2HWPm4DenrcW20Ysx9ifxh2f5NmoUF20gSjUG3ijiXVkhfGKa1WpN2lbCwRiLj+bl5UHPqdhElGI6nVRqMGaMtMtdMvX29oXp4ZZ09G8byrbY8ZiAvfgJfoBb8QTywoa+D6AIP8J/47GDdyP4ugF4fWjPr9fHF4zjDdBjx6ahpIMohUKhEHqj1GzFykfxYOAdQKySBlmqlhwrKiqK2r5ixQqsXLkyJdckIkqHvLy+EoNEa6IH09srjSDHCsfdewCE7RF0153A3p6+keD+t859ISztqMfKngdQCvXSGs/gOtyHh/EFjh52v0Ohvu22kyUvL3nhWT4vbZMMR48GVqxQ36cRZfXq1Vi1alVSn5OBdwjkoDtYIB6qzs7OqLMP87g2EBFRTOEhL6oAVIH3Rz8CYIxx7quvAnfcAbS+rWo+fNzJ+OT7v8C0Ey6C8wCwf3/swCzfop2T6tKO3l5pK++hbOcdi1wXnawALU80jPjVNno0wMGdEe3BBx/EAw88ENEeDAZjDgoOhoE3CjnIxhrBbW1tBdC3m1qyFRQUcFkyIiIt7N4NVFcDTz+tbh8/Hli1CqPuuANzCgow3E2BQ6G+0ehYoTje8Bx+S6VoddHJMGZM9FBcVCRl31Gj+v4b/u9obYn8O58JKGPp9fqkl3Dy7Y7BaDTG3DxCDsLcMpiIKEf09AC//CXw3/8dOSz6rW8BDgcwdWrSLqfXS6Oc48Yl7SmV+uihjjrHOifVK3bIK3Xs2ZPa6/SXl5ec4JyMfzN8px6/xDGYzWa43e6ox9ra2mA0GrkKAxFRLnjxRWnziP/8R91+xhnAL34BnHeeJt1KVHh9dLLIK3YkIziH30/XGtIDkf9ASNVkx0To9fEH5FSH71ydG8/AG0NNTQ3cbjd8Pl9EsPV4PKioqNCoZ0RENCT9t4R/7TVpS+BnnlG3G43Aj38M2O25+9s/TuErdiRrkqEoAocPxxecDx/uu3V1Df3fhw8np++pIpe4pGvZvoHk5w8tLNtswCWXaN372EZ84I1VtmAymVBVVYVly5bB6/Uq7fX19SgtLVV2YiMioizw1FPAsmXqtssvV9/X6YBbbgF+8pPkr8dGCp1OCkmjRyd/DelY5F0PhxucE/l3rOPd3el5zUPV0yPdOjsTe9xJJzHwZhS73Y62tjb4fD4A0uYR5eXlEAQBFosFlZWVyrkOhwP19fWw2WwQBEGp3Q0PwERElOE+/lgKu6FQ7HPmzZNqeM88M339orQJ3/Vw/Hht+9Lbm/7wHevfw1jWNsKoUcl7rlTQiWK6NpCkwQSDQRgMBnR3d3OVBiKiZLn/fmnSWSyXXQb87W9pWmSWKHP09iavbOSqq4Czzkptf4eTk0bcCC8REY0gXV3A3/8+8DnFxQy7NCLl5fVtUZ7r+B1ORES56W9/A04+OXL1hf5mzUpLd4hIOwy8RESUW7ZtA664ArjySsDvH/hcvR64+eb09IuINMPAm4GCwaByCw00yYKIiPp0dgI//KE0qhtexqDXA4sXRy4xptcDTzwBHHdcevtJRHELhUKqXDRUDLwZqKioCAaDAQaDAatXr9a6O0REmU0UAbcbOPFEaf3c8HWfFi4E3nkHeO454I031I974w3gppvS2lUiSszq1auVTFQ0jF1VuEpDBpFnH3Z2diqzD/Py8pK+nzQRUc54/33grruAzZvV7UcfDTz6qLQavk4ntQUCQElJ3znt7dImE0SUsUKhEHqPbM0XDAZRVFTEVRpyRUFBAZclIyIayL59wKpVwNq10ir5soIC4N57gR/8ABg7Vrv+EVFS6PX6pAz8MfASEVH2EEXg978HqqqAL79UH7vsMuCxx4Djj9eka0SUuRh4iYgoO7z9NvDd7wKvvKJunz0bWLNGWplBLl8gIgqT9sD7ySefKFv0nnHGGem+PBERZZu2NuDBB4HHH5e2hpKNHi2VLtx778hYOZ+IhiwtqzQ8//zzWLx4MfR6PcrKylBeXo7y8nLo9XrMnz8f77zzTjq6QURE2SQUAtatk0oUfvUrddhdsgT44AMpCDPsEtEgUj7C++yzz6K2thZ2ux3V1dUoLS0FALS1tSEQCKC1tRW33HILfvCDH+Caa65JdXeIiCgbvPGGVL7Q3KxunzNHmqi2eLE2/SKirJTywNvc3Izm/j+w+qmsrMTtt9/OwEtENNLt2QPU1ABPPqluLyoCVqwAli8HDAZt+kZEWSvlgXfChAlxnVdWVpbinhARUcbq6QF+/WupRKGjQ33s+uuBujpg+nRt+kZEWS/lgbelpSWu85qamlLcEyIiykgvvSSVL7z7rrr91FOBn/8cWLBAm34RUc5IeeA1m82YP38+li5dCkEQYAzb1SYQCMDv96OhoQE1NTWp7goREWWSL76Q1tP9wx/U7cXFwOrVwO23A/lcPZOIhm/YP0nefvvtAZcXu/baazF37lzcdttt8Hg8EcctFgvq6+sxd+7c4XaFiIiyQXe3tEHEj34EdHaqj918M1BbC0yerEnXiCg3DTvwNjY2ory8HBaLBRaLBYsWLYoIwIIgYNOmTQCA7du3K+2zZ88e7uWJiCibbNoE3HUXsHWrun3ePOAXvwDOOkubfhFRwnp6evDyyy8r988//3zkZ+inMsPu1X333Qej0Qi73Y5NmzZBEASUlJTA5XJh1qxZEecz5A4uGAwq/87Ly0vKHtJERJr69FPgnnuAP/1J3T5hgjSie8stQF5aloYnoiTp6enBiy++qNw/++yzkx54Q6EQeo+swR2ejxKVlJ8ujY2NcDqd6O3txbZt29DU1BQRdu+//348//zzybhczisqKoLBYIDBYMDq1au17g4RDaSrC1i5su/W1aVxhzLMoUNS6cIJJ6jDbl4e8J3vAB99BCxbxrBLRFGtXr1ayURFRUVDfh6dKIricDryyCOPYPbs2bj22msHPffZZ5+Fx+PBr3/96+FcMmcFg0EYDAZ0dnaioKAAAEd4iTJeIACUlPTdb28HwibnjliiCGzcCNx9NxBWygYAOPdcqXwh3XM3+F4RDcua19dgyYlLMKN4BgBg586dWLdunXJ82bJlmDZtGnZ07MCGDzZg+dnLh33N/iO8RUVF6O7uVnJSvIYdeC+55BI899xzcZ/f0dGB+++/n6E3CjnwDuWNJCKNMERF+vhjaYOIf/xD3T51qrSe7g03ADpd+vvF94poyNa8vgZ3P3c3hBIBW27cglZ/KzZu3IjwGKnT6XCe+TxUNlfC3+7HY5c8lpTQKxtOThr2Z0iJ5uXi4mI89NBDeOSRR4Z7aSIiyiSdncAPfgCccoo67ObnA9//vjRR7Zvf1CbsEtGwLDlxCQSjgC/bv8Q3130Tf93414gMKIoiXmp8CYH2AIQSAUtOXKJRbyMNu7JYN4QfXMXFxSguLsYnn3wSdWIbERFlEVEEXC4p1H7+ufrYxRdLm0ecdJI2fSOiuIRCIezfvx/79u1T/Tf839/e/22EEAI6Yz9PHvKwcPRC/PTGnyqlD5lg2IFXFEXs27cP48ePT+hxy5Ytw+23387SBiKibPbee8CddwJbtqjbjzkG+OlPgWuv5YguJSSblrrKBqIo4vDhw6ogGy3MdvZfE3sYrppxVUaFXSAJgVfeOOLee+9N+LF+v3+4lyciIi10dACrVgFr1wKhUF+7wQDcdx9QUwMMY0Y1jVzpWOoqV/T29uLAgQODhtnhLOcVjU6nG7CkddqkaUm9XjIM+/+gyspKCIIAu92OcePGJaNPRESUqXp7gd//XtoSePdu9bHLLwfWrAGOPVabvhHlkMOHD0ctMQj/b2dnZ8JzqQYzZswYjBs3DuPHj8e4ceOUf8v3x48fj87OTvzqV7+Kem2dTpeRu+cOO/AWFxfj1ltvhclkgs/nY+glIspVb70FfPe7wKuvqtsFQQq6V1yhTb+Iskhvby86OzsHrJfdt28furu7k3pdvV6vCrDRwuy4cePiGk0vLCzEeebz8FLjS8gLW/9Ap9PhqquuwoQJE5La92RIymcEDocDbrcb5eXlcLlcOP300wd9zPPPPw8jl4MhIsp8bW3AD38IPP64NEFNVlgorcpw773A6NHa9Y8oQwSDwYjSgv5h9sCBA8q6sskyevToiBDbP8yOGTNmSAsNRLOjYwcqmytxCIdgh11p/2vRX3HT7JuSco1kS1pRTGNjI8rLy2EymWC321FVVRVzBYbt27fDbrfD4XAk6/JERJRsoRDwxBPAAw8Ara3qY9deCzz6KDBzpjZ9I0ojURRx8ODBQcNsV5J3WtTpdFFHZPv/N51r9+/o2IGFTy+Ev92POcVzgI6+Y+8deA8Ln16ILTduyb1JazJBEOD1emGxWPD444/D6XTCZDLBbDZj/vz5EAQBfr8fTU1NqK+vx7x583DNNdck6/JERJRMr70mlS/4fOr2E06QJqpZLNr0iyjJenp6IiZ5RQu0ofDJmUlgMBgiygn6h9mioiLkZdC22+FhVygRsHHpRvzh8T8ox2cWz8TW9q0ZGXqTOu1REAS0tLSguroaDz/8MLxeL3z9fliKogir1araio6IiDLE7t3A/fcD//u/6vaxY4EVK4C77pJWYiBKkba2toj706YlPutfFEV0dXUNOOlr//79OHjwYLK6DkAalS0qKoo6Ehv+31GjRiX1uqnWP+xuuXELJo+arDpn49c34tKGS+Fv92dc6B321sKxdHR0oKGhAW63G36/H0ajEfPmzYPNZsOiRYtSccmsx62FibJQrmxX29MD/PKXwH//N7Bvn/rYDTcADgcwhNCRUXLlvcoxa15fgyUnLsGM4hl46623om5Xe+WVV2KCMAEbPtiA5WcvRygUiliOK9oobU9PT1L7WlBQMGCIHT9+PMaOHZtRo7LJ0n9r4RnFM6Kumbyzc6cSjDNpa+GUBV5KHAMvURbKhRD1wgvS5hH/+Y+6/bTTgF/8ArjgAk26lXS58F7lmPAQ9eer/owNv90Qc5mtXfm7IPaImG6YDrE7+dGlqKho0OW4Ro0albSJX9ko/I+Tgezo2KH8cZJMDLw5goGXKAtlc4j6/HNpk4g//lHdbjQCq1cDt90G5NKC/9n8XuWoHR07cNlTl6G7oxsWvQVTQlOSfg29Xh8xEhttOS69Xp/0a1NyDScnDesn2eLFi9He3g673Y5bb711OE9FYcJ3RMnLy+M3IREl1+HDwGOPSaE2fDtRnQ64+WbgJz8BJk+O+XCioTp06BB27dqFnTt3KreKjgrp4BDmhBUWFg66HFdhYeGIHpXNdqFQSFnGbTg7xg0r8G7atAlvvfUWnE4nqqqqYLFYYLfbcfHFFw/naUe8orDtOFesWIGVK1dq1xkiyi3PPSdNPPvoI3X7/PlS+cKZZ2rTL8o5hw8fVsLtrl278MUXX6C9vX3Izzf16Kk498xzVQGXn4bmvtWrV2PVqlXDfp6kljRs3rwZTqcTmzdvRmVlJex2e8y1eCmSPFTf2dmpfBNzhJcow2XLx+TbtwP33AP8+c/q9okTgYceAr79bSAHJ9qoZMt7lYWCwSC+/PJL1cjt3r174358UVERxpWMw67Pd0GHyNFYnU6HO+64IyN38KLU6j/CW1RUlP6Shv4WLVqERYsWoaOjA+vXr4fVaoVOp4PdbkdFRQXGjx+fzMvlrIKCAv7VSkTJcegQUFcnhdrwRfHz8oDvfAf40Y/UIZBoED09PdizZw+++OILZfR2z549MSeb9VdYWIhp06apbuPGjYNOp8PmVzdn1Xa1lHp6vT4pA38pn7S2fft2OJ1OuN1ulJWVwW63c8OJGDhpjSgLZeqooSgCf/0rcPfdwCefqI+df75UvhDHNvA5JVPfqwwWCoXw1VdfqUZud+/eHffWuKNGjcJRRx2lCrdGozFmTe2Ojh0477HzcCv65gVdcd0VKJ9TnpTXQ9kta1ZpCC95qKiogN1uxxlnnJGuy2c8Bl6iLJSJIeqjj4Dly4F//lPdPnUq8MgjwPXXSxPURpievXvxss2m3D/f5UL+xIka9iiz9Pb2orW1FTt37sQXX3yBXbt24csvv4x7LduCggIcddRROOqoozB9+nRMmzYNpaWlcU8Ykzc22Nm+E/fjfqX9meJnsOnbmzJmAwPSjmarNCRKLnkAgHXr1qGqqgrbt2+H3W5HZWUlSx6IiIbjwAHgxz8GHn0UCJ/NnJ8vjfQ++CAwgn/O9oRCePGii5T7Z4dC6f0lmEFEUURbW5tq5HbXrl1xz4LX6/WYOnWqauR24sSJQ95wIXwXrznFc4COvmOfdnyacbt2UfbR7Ht92bJlWLZsGTo6OlBfXw+TycSSByKioRBFoKEBuPde4Isv1MfMZmDtWuDEE7XpG2lOFEV0dHSowu3OnTtx+PDhuB6fl5eHKVOmqEoTJk+enLQJ1f23rN24dCP+8PgflOMzi2dia/tWhl4aFs3/uC0uLsZ9992H++67Dz6fD/X19RAEgaUORETx+M9/gO9+F3jxRXX7MccAP/sZcM01I7J8YSTbv3+/akLZzp07cfDgwbgeq9PpMGnSJNXI7ZQpU5Cfog1I+ofdLTduweRR6jWgN359Iy5tuBT+dj9DLw2Z5oE3nMlkwuOPP651N4iIMl8gAKxcKU0+C4Wt2G8wAFVVQE0NMGaMVr2jNOns7IwYuT1w4EDcj58wYYIq3E6dOhUGgyGFPVbb8MEGVdidUTwDXeGriQA4pvgYbLlxixKMU7FlLeW+jAq8REQ0iN5e4Le/BaqrgT171MeuuEIa1T32WG36RikVbZeyjo6OwR94RElJCaZNm6ZMKps6dSpGjx6dwh4PTg6uS05cMuCo7YziGdhy4xaGXRoyBl4iomzh9UrlC6+/rm4vKwPWrAH+67+06Rcl3XB3KRs/frxq5Paoo47CmAwd8Y83wM4onsGwS0OW8sBbU1ODCRMmQBRFlJSU4NZbb404509/+hMnqhERxdLaCjzwAFBfL01QkxUWAj/8obSDmsYjdTR0ydilbPr06apJZWPHjk1hj4myT8oDryiKuPfeewFIm1Dcf//9uO2221RbDs+dOxdPPPFE1DBMRDRihULAunVS2G1rUx+zWqXlx2Zw8k7cRo0a+H4apHKXMiKKLeWBd+nSpZg/fz5uu+023HLLLXjooYdw//33Y/Hixbj44osBALNnz0YgEEh1V4iIsserr0rlC2+9pW4/8UTg5z8HjqxpTgnoPwqe4lHxdO9Slivy8/OxYMEC1X2i4Ur5/0Vz585FQ0MDbrvtNlRWVsJms8FsNsPlckGn02HhwoUAgG3btqW6K0REme/LL4H77weeflrdPm6ctCrDnXcC3Ikx42i9S1kuyc/Px0VhG4QQJUNa/mwSBAGbNm2C3+9HXV0dHnroIfj9fjidTpSUlEAQBDgcjnR0hYgoMwWDwC9/CaxYAezbpz72zW8CDgdw1FHa9C1LrXl9zaCz/wFpLdhEZv9n2i5lRDS4YQfet99+O+5NIgRBUNbZ7ejoQGtrK+rq6uBwOFBcXDzcrhARZactW6SR2/feU7effrq0zu7552vTryy25vU1uPu5u7H2zbUDblQQvvEBELliQKbvUkZE8Rl24G1sbER5eTksFgssFgsWLVoUVwAuLi5GcXExHn/8cTz//PNKPS8R0Yjx2WfSdsDr16vbjUbgxz8G7HaAwWhIlpy4BGvfXKvanSu/U/0r771P30PFcxXKxgdLTlyCffv2qUZtM3mXMiKKn06Md2roANatWwe73Q5AGsUtKSmBy+VSrcRAgwsGgzAYDOju7kYBa/SIskMgAJSU9N1vb5cC60AOHwZ++lPgf/4HCA9TOh1w661S2J00KRW9HVHCR28tYyw4/9D5qtUQetGLN/AGCkcX4sppV6J9T3vCu5SFLweW7l3KiEaa4eSkpATeiooKWCwWLFu2LOY5/VdmoEjyG9nZ2am8kXl5efzoiyiTJRp4//EPYPly4OOP1e1nnimVL8yfn4pejlg7Onbgqievwtf2fQ15GHqNrLxLWfhGDqM0WNaMaKQJhULKyibBYBBFRUXaBN5HHnkEs2fPxrXXXjvouc8++yw8Hg9+/etfD+eSOUsOvOFWrFiBlStXatMhIhpcvIHX7we+9z3gr39Vt0+aBDz0EHDTTQAnLSVVb28vduzYgb//4+/Yuyf+jRz671I2bdo0FBYWprCnRBTLypUrsWrVKlWbJoH3kksuwXPPPRf3+R0dHbj//vsZeqPgCC9RFhos8B48KK2w4HBIpQyyvDzgjjuAVavUj6dh6e7uRktLC7Zu3YqPPvoIhw4dGvQx48aNg8lk4i5lRBkoWSO8w66kTzQvFxcX46GHHsIjjzyi7MBGagUFBazhJcp2ogj8+c/SqO6nn6qPXXCBVL5w2mmadC3X7N+/Hx999BG2bt0Kv9+PUCiU0ONPO+00rvtKlKH0en1SBv6GHXiHsii2vELDJ598woltRJR7tm4F7roL2LRJ3T5tGvDww8DXvy5NUKMhEUURe/fuxYcffoitW7fiiy++iHluXl4eJk6ZiN27dkOHyK+5TqfD3LlzU9ldIsoASRnh3bdvH8aPH5/Q45YtW4bbb7+dpQ1ElN1aWtT3ly8HnnlG2khClp8P3HMP8MMfSjumUcJ6e3vx2WefYevWrdi6dSva2tpinjtq1Cgcf/zxmDNnDkZNGoVL/ngJxmM8rsJVqolrvejFa4Wv4ab8mzABE9LxMohII8Ou4X344Yeh0+mGVJ6QaP1vruOyZERZ5qmngGXLgIE+QrdYgLVrgRNOSF+/ckR3dzf8fr9SjzvQerjFxcWYM2cO5syZg5kzZ0Kv16uWJRNKBKy/ZD3+9se/KY/ZOHYjvAe8EEqEATenIKLMMJycNOwR3srKSgiCALvdjnEcuSCikeLjjwcOu0cdJW0VfPXVLF9IwIEDB1T1uD09PTHPnTp1KubMmYMTTjgBU6ZMUZXY9Q+7W27cgsmjJuNv6Au8z9zwDC5tuFS1OQVDL1FuGnbgLS4uxq233gqTyQSfz8fQS0Qjw29+M/DI7vXXA0uWpK8/WSy8Hvfzzz+PeV5eXh5mzZqljOQOtCX9hg82qMLujOIZ6OrqUp1zTPEx2HLjFiUYb/hgQ8TWwkSUG5Ky36HD4YDb7UZ5eTlcLhdOP/30QR/z/PPPwzjYbkRERJno8GFgw4aBzxlgItVI19vbi88//1ypx21tbY157qhRo3Dcccdhzpw5OPbYYzF69Oi4riEH1yUnLhlw1HZG8QxsuXELwy5RjkvaBt+NjY0oLy+HyWSC3W5HVVVVzBUYtm/fDrvdDofDkazLExGlx0cfAdddJ/13IFyBRiUYDMLv9+PDDz8ctB53/PjxyijurFmzhrwkUbwBdkbxDIZdohyXtMArCAK8Xi8sFgsef/xxOJ1OmEwmmM1mzJ8/H4IgwO/3o6mpCfX19Zg3bx6uueaaZF2eiCj1fvc74Pbbgc7Ogc/T64Gbb05PnzJYZ2enUo/b0tIyYD3ulClTlHrcqVOnDmnJSyKiWJIWeAEp9La0tKC6uhoPP/wwvF4vfD6f6hxRFGG1WrFu3bpkXpqIKHUOHJB2Rfvtb9XtCxdCfOkl6MJqeUW9HronngCOOy7NncwMra2tSj3uZ599FvO8vLw8zJw5UxnJZYkbEaVSUgOvzOFw4Ac/+AEaGhrgdrvh9/thNBoxb9482Gw2LFq0KBWXJSJKvrfeApYulVZlkBmN0qS1a65B92uvoamqCsWBADqMRsyvq8Ooc87RrLvpJoqiqh537969Mc81GAyqetzCwsI09pSIRrKUBF5AWr2hsrISlZWVqboEEVHqiCLw858D990HdHf3tZ97LvCHPwAzZ0qnCQI2m83K4XmCkO6epl0wGMT27duVetzOAUo8xo0bp6rHzc9P2a8dIqKY+JOHiKi/1lbg298GNm7sa9PpgB/8AFi5Uto5bYQ5ePCgqh43GL6TXD+TJ09W6nGPOuoo1uMSkeZG3k9tIqKBvPQS8I1vAOHrwU6dCvz+98AIK8dqa2tT1ePG2phTp9Op6nFLSkrS3FMiooEx8BIRAdImEj/+MbBqFdDb29d+6aXA008Dkydr17c0EUURX3zxhVKP+9VXX8U812Aw4Nhjj8WcOXNw3HHHsR6XiDIaAy8R0RdfSKO6L77Y15afD9TWAvfcA+Tlade3FOvp6VHV4x44cCDmuWPHjlVGcWfPns16XCLKGvxpRUQj29/+Btx0k1S3KxME4JlngDPP1KxbqXTw4EF8/PHH2Lp1K7Zt2zZgPe6kSZOUetxp06axHpeIshIDLxGNTIcPA/ffDzz2mLp96VLA6QSKizXpVqq0t7cr9bg7duwYsB53xowZykhuaWlpmntKRJR8DLxENPJ8/LG0PXD4xjiFhdIyZDffLK3IkOVEUcTOnTuVetw9e/bEPLegoEBVjztmzJg09pSIKPUYeIloZPn976XtgcNrVU89FfjjH4GTTtKuX0nQ09ODTz75RKnH3b9/f8xzi4qKlFFcQRBGRD1ufn4+FixYoLpPRCMDv9uJaGQ4cAD47nelFRfC3X478Oij0ghvFjp06JCqHrc7fJOMfiZOnKjU406fPn3E1ePm5+fjoosu0robRKQBBt4MFD6BJC8vD3q9XsPeEOWAt9+WanM/+qivrbhY2h742ms169ZQBQIBZRT3k08+GbAe95hjjlFGcidMmJDmnhIRDU8oFELvkaUiB5pgOxgG3gxUVFSk/HvFihVYuXKldp0hymaiCPzyl8D3v6/eHvicc6TtgWfNSvgp17y+BktOXIIZxTMGPG9Hxw5s+GADlp+9POFr9CeKInbt2qXU4+7evTvmufn5+ap63PCfJ0RE2Wb16tVYtWrVsJ+HgTcDdXZ2oqCgAIA0wktEQ9DaCtxyC/CXv/S16XTSygyrVgFHvscSseb1Nbj7ubux9s212HLjlpihd0fHDix8eiH87X4AGFLoDYVCqnrcffv2xTy3qKgIxx9/vFKPWzCE10ZElIkefPBBPPDAAwCkEd6h/hHPwJuBCgoK+AuLaDj+9S/g+uvV2wNPmSJNWDObh/y0S05cgrVvroW/3Y+FTy/Elhu3YDJGqc75vONzXNJQAX+7H0KJgCUnLon7+bu6ulT1uIcPH4557oQJE1T1uPzjmIhykV6vT0ppp06MVfxFaRcMBmEwGNDd3c3ASzQUoRDwk58AK1eqtwe+5BJpstqUKcO+RPjorVAi4LlL1+P/PfM35fjfDP8Pzd0fQygRBhwFlnV0dCjr43766adKrVo04fW4EydOHPZrISLKJsPJSQy8GYSBl2gYdu6Utgd+4YW+tvx8KQB///tJ3R44PPTOMxyHK7q/oRz71aGHMHbatJhhVxRFfPnll0o97pdffhnzOvn5+SgrK8OcOXNw/PHHsx6XiEa04eQkljQQUfb7+9+l7YH37u1rmzVLWlv3rLOSfrkZxTOw5cYtWPj0QuzY+RlQGH7sGDx7o0cVdkOhED799FOlHrejoyPmc48ZM0apxy0rK+Mfv0REScDAS0TZq7sbqKkBfvpTdXtFBVBfn9LtgeXQe0nduap25+J1mFE8A4cPH1bqcT/++OMB63FLS0uVetyjjz6a9bhEREnGkoYMwpIGogRs2yZtD+z19rUVFgJr10qrM6RhU4XNr27GS5teQp5OHVAnTZqE1tbWAetxjz76aCXksh6XiGhwLGkgopHlD38A7Hb19sAnnww0NEj/TYN3P3kXLzVGhl0A+OqrryLa9Hq9qh537Nix6egmERGBgZeIsklnJ3DnncBTT6nbb7tNKmtI0/bAOzp24Ed//BFOwSkDnldYWKiqxzUYDGnpHxERqTHwElF2eOcdaXvgrVv72oqLgSeeAKzWtHVjR8cOVPymAgsOLxjwvF35u3D/svsxq2RWejpGREQxcWYEEWU2eXvgs85Sh92zzwbefjutYfc/n/4HK365ApftvwxjMGbAc7f1bMOi3y3Cjo4daeodERHFwsBLRJmrrQ245hrgu98F5FUO5O2BX3pJWnosDQ4ePIh//vOfePbpZzErOPg1dTod9o7fC3+7Hxs+2JD6DhIR0YC4SkMG4SoNRGFeflnaHvizz/rapkwBfvc7wGJJSxd6enrw5ptv4qWXXopYVmzatGmYNWsWXnvtNYT/GNXpdLjqqqtQOrsUGz7YgOVnL09LX4mIch13WssRDLxEkLYHrq0FVqxQbw+8eDHw298mZXvgwYiiiPfeew+bN29GIBBQHSsuLsaiRYtwyimnQKfTYefWrVj3xz8qx5dddx2mzZmT8j4SEY00XJaMiHLDzp3ADTcAW7b0teXnAz/+MXDvvUndHjiWTz/9FI2Njfjiiy9U7aNGjcIFF1yAs846C/n5fT86S41G1Xn97xMRkfYYeIkoM/zjH8C3vhW5PfAzz0gT1FKstbUVHo8HH374oao9Ly8P8+bNw4IFCzBmzMAT1YiIKDMx8BKRtrq7gR/8AHj0UXW7zSZtD5ziEdODBw/ixRdfRHNzc8TOaCeccALMZjMmTJiQ0j4QEVFqMfASkXZaWqTtgZub+9pGjwbWrAGWLUvp9sA9PT14/fXX8fLLL0dMSJs+fToWL16MGTNmpOz6RESUPgy8RKSNZ56Rtgfev7+v7eSTgT/+EThl4B3MhkMURbz77rt4/vnn0dHRoTpmNBqxaNEinHzyydClMGwTEVF6MfASZaquLuChh/ru33+/NPqZ7To7gbvuAp58Ut1eWQn87GdACutkP/nkE2zatAm7du1StY8ePRoXXHABzjzzTNWENCIiyg38yU6Uqbq6gFWr+u7ffXf2B95//1vaHjh8Ytj48dL2wDZbyi67d+9eeDwebA3fqQ3ShLT58+fjwgsv5IQ0IqIcxsBLRKknisCvfw3cc0/fjmmAtF3wM88As2en5LKdnZ144YUX4PV60X/J8ZNOOgmLFi1CaWlpSq5NRESZg4GXiFKrvR245RZgQ78tdqurgdWrgRRsshIMBpUJad3d3apjRx99NBYvXoxjjjkm6dclIqLMxMBLRKnzyivS9sA7dvS1TZ4sbQ+8eHHSLyeKIv7973/j+eefx759+1THSkpKYDabceKJJ3JCGhHRCMPAS0TJFwoBDgfw3/8t/VtmsUjbA0+dmvRLbt++HZs2bcKXX36pah89ejQWLFiAefPmcUIaEdEIxZ/+RJRcu3ZJ2wM//3xfm14vbQ98331J3x74q6++QmNjIz7++GNVu16vx5lnnokLLrgAhYWFSb0mERFlFwbeDBQMBpV/5+XlQa/Xa9gbogT84x/AjTcCX33V1zZzpjQx7ZxzknqpAwcO4IUXXoDP54uYkHbyySdj0aJFKCkpSeo1iYgovUKhkLILZng+SlRyh1ooKYqKimAwGGAwGLB69Wqtu0M0uO5uafT28svVYddqBd5+O6lhNxgM4qWXXsLPf/7ziNUXjjnmGNxyyy2wWq0Mu0REOWD16tVKJioqKhry83CENwN1dnai4MjM9bwkf/xLlHR+v7Q9cFNTX1sKtgfu7e1VJqTtD9+dDUBpaSnMZjNOOOGE9E9IGzVq4PtERDRkDz74IB544AEA0oDHUEMvA28GKigoUAIvUUZraJBCbXgAPekkqT2J2wP7/X5s2rQJu3fvVrUXFhYqE9I0K/3pvxlItm8OQkSUQfR6fVJ+vjPwElHiDh4Eli+XdkgLt2wZ8NhjSdseeM+ePWhsbMS2bdtU7Xq9HmeddRYuuOACjGbAJCKiQTDwElFi3n1X2h74gw/62saPB+rrpfYk2L9/P7Zs2YK33347YkLaqaeeiosvvhhGozEp1yIiotzHwEtE8RFFwOkEvvc9oKurr/3MM6VVGARh2Jfo7u7Gq6++ildffTViNu7MmTNhsVgwffr0YV+HiIhGFgZeIhpce7tUrvDss+r2++4D/ud/AINhWE/f29uLt99+G1u2bMGBAwdUxyZMmACz2Yw5c+ZwhzQiIhoSBl4iGthrrwFf/zrw6ad9bZMmSdsDX3LJsJ9+27ZtaGxsxJ49e1TtY8aMwYIFC1BeXs61qImIaFgYeIkyVE9PD16+6CLl/vk9Pen9hu3tlbYHfvBB9fbAixZJYfeoo4b19Lt370ZjYyNaWlpU7fn5+Tj77LNx3nnncUIaERElBQMvUYbqCYXwYljgPTsUSt837JdfAt/8JuDx9LXp9cDq1UB19bC2B963b58yIa2/0047DRdffDGKi4uH/PxERET9MfASkdpzzwHf+hYQXmIwcybwhz8A55475Kc9fPiwMiGtp6dHdWzWrFlYvHgxjhrmqDEREVE0DLxEJOnuBn74Q+Dhh9Xt114LrFsHDHGr3t7eXrz11lvYsmULOjs7VccmTpwIi8WC4447jhPSiIgoZRh4iUjaHvjrXwfefLOvbdQoaRMJu31I2wOLoqhMSPvqq69Ux4qKinDRRRfBZDJx+2wiIko5Bl6iDLHm9TVYcuISzCieMeB5Ozp2YMMHG7D87OXJuXBDA1BZCezb19d24olS+6mnDukpv/zyS2zatAnbt29Xtefn5+Occ87Beeedh1GjRg2n1xkjPz8fCxYsUN0nIqLMwp/MRBlgzetrcPdzd2Ptm2ux5cYtMUPvjo4dWPj0Qvjb/QAwvNAba3vgW2+VRnaLihJ+yn379uH555/HO++8E3HsjDPOwMKFCzF+/Pghdjgz5efn46KwyYVERJR5GHiJMsCSE5dg7Ztr4W/3Y+HTC7Hlxi2YDPUI6Ocdn+OShgr42/0QSgQsOXHJ0C/4n/9I2wC//35f27hx0vbA112X8NMdPnwYr7zyCl577bWICWmzZ8/G4sWLMXXq1KH3l4iIaBh0Yv+N6kkzwWAQBoMB3d3dKCgo0Lo7lGbho7dCiYDnLl2P//fM35TjfzP8PzR3fwyhRBhwFHhAoiiF2rvvVm8PPH8+8Mc/Jrw9cG9vL7xeL1544QUcPHhQdWzSpEmwWCw49thjOSGNiIiGbTg5iYE3gzDwUnjonWc4Dld0f0M59qtDD2HstGlDD7uBgLQ9sNutbr/3XuDHP05oe2BRFPHRRx/B4/Fg7969qmNFRUVYuHAh5s6dywlpRESUNMPJSSxpIMogM4pnYMuNW7Dw6YXYsfMzoDD82DF49kbP0MLu669LpQr9twd++mngsssSeqqdO3eisbERn3zyiaq9oKBAmZBmSCA8ExERpRoDL1GGkUPvOY6TVO3PXPtM4mG3t1daV/eBB9TbA198MfD73ye0PXBHRweef/55/Pvf/444NnfuXCxcuBDjxo1LrH9ERERpwMBLlKu+/FLaMa2xsa9Nrwd+9CNpe2C9Pq6n6erqwssvv4zXX38dofDQDKCsrAwWiwVTpkxJZs+JiIiSioGXKMPIdbw9vepw+fVnv45nvxNnScOmTcA3v6neHnjGDGl74PPOi6sfoVAIXq8XL774YsSEtMmTJysT0oiIiDIdAy9RBlFNWis+DugOP/aZsmRZzNAbDAIPPgg4HOr2JUuA3/wmru2BRVHE1q1b4fF40Nraqjo2duxYXHzxxTj99NM5IY2IiLIGAy9Rhui/LNkzlz6jWpZsRvExaG7/OHbo3b5d2h74jTf62kaNAn72M+C22+LaHviLL75AY2MjPg2f3AZpQtp5552Hc845hxPSiIgo6zDwEmWA/mF3y41bMLlLvfHEM9c+g0v+WaHanEIJvS6XtENa+PbAJ5wgbQ982mmDXj8QCGDz5s34z3/+o2rX6XSYO3cuLrroIk5IIyKirMXAS5QBNnywQRV2ZxTPQFfXbtU5RxcfrSxZ5m/3Y8MHG7D8tGXA974nbSYR7uabgbVrB90euKurC//617/wxhtvRExIO+6442A2mzF58uSkvEYiIiKtMPASZYDlZy8HIG0xPNCkNHnJsg0fbMDycWbgzDOB997rO2HcOMDplEobBhAKhdDc3IwXX3wRhw4dUh2bMmUKFi9eDCHBXdeIiIgyFQMvUYaQQ+9gZow/Bsv/XQgsn6feHnjePGl74LKymI8VRREffvghPB4P2traVMfGjRuHiy++GKeddhonpBERUU5h4CXKJoEAUFkp1eyG+/73gZ/8ZMDtgT///HNs2rQJn332mardYDAoE9K4pTUREeUiBl6iLKHz+YDvfAcI39J34kTgt78dcHvg9vZ2bN68Ge+Flz5AmpBmMplw0UUXYezYsSnqNRERkfYYeIkylM7vx6LGRhgDARQdOADD6tWR2wP/7nfAtGlRH3/o0CG89NJLePPNN9Hb26s6dvzxx8NsNmPSpEmpfAlEREQZgYGXKBM99RQMy5bh/H4rJwCQtgRetQq4//6o2wP39PSgqakJL730ErrCa3wBHHXUUbBYLJg9e3aqek5ERJRxGHiJMs3HHwPLlkEXLewCwO9/D1x3XUSzKIp4//33sXnzZrS3t6uOjR8/HosWLcKpp54KXRwbUBAREeUSBl6iTPOb36hLF/p7552IwPvZZ59h06ZN+Pzzz1XtBoMBF1xwAc466yxOSCMiohGLgZco04RPShvkeFtbGzZv3oz3339fdYpOp8O8efOwYMECFA2y+QQREVGuY+AlyjT91seNMGsWDh48iJdeeglNTU0RE9LmzJkDs9mMiRMnprCTRERE2YOBNwMFg0Hl33l5edBHmZhEOerdd4EXXoh5uMdgwJvnnIOX1q7F4cOHVcemTZuGxYsXY+bMmSnuJBERUXqEQiFlYCc8HyVKJ4qimKxO0fAEg0EY+m0csGLFCqxcuVKbDlF6HTwIzJ8PHClP2FtairdNJgSMRhQHAhjb2Yk3L78cgX71vcXFxVi0aBFOOeUUTkgjIqKcsnLlSqxatUrV1t3dnfC8FAbeDCIH3s7OTuWN5AjvCHL77cDjjwMA3jrjDGy8+moM9M05atQoZUJafj4/rCEiotzTf4S3qKhoSIGXvyUzUEFBAWfUjzR/+pMSdltLS7Hxa1+LGXZ1Oh3mz5+PBQsWYMyYMenrIxERUZrp9fqkDPwx8BJp7bPPgFtvVe6+ddllEAcoTZg7dy4uG2ArYSIiIlLL07oDRCNaKAR84xuAvFFEURECixYN+JDu7u40dIyIiCh3cISXSEs//jHwr3/13f/VrxAcpJyluLg4xZ0iIiLKLRzhJdLKyy8D4TNPr78eX116Kfx+f8yH6HQ6zJ07Nw2dIyIiyh0MvERaaG+XShnkTSNmz0b32rVwud3o6emJ+hCdToerrroKEyZMSGNHiYiIsh8DL1G6iSKwbBmwY4d0Pz8f4h/+gL+/9BK++uor5bTFF1ygetitS5fijDPOSGNHiYiIcgMDL1G6PfEE8OyzffdXr8ZbBgP+/e9/K03nnnsu5p58suphpUZjmjpIRESUWxh4idLpgw+A5cv77i9ahC+/9S383//9n9I0Y8YMXHzxxRp0joiIKDcx8BKlS1cXcN11wKFD0v2JE9H1xBNY73YjdGS74DFjxuDaa6/l7npERERJxMBLlC5VVUBY2YL45JP465tvol1egxfAtddei/Hjx2vROyIiopzFwEuUDhs3Aj//ed/9u+7CG5Mm4YMPPlCaFixYAEEQNOgcERFRbmPgJUq1nTuBb3+77/7pp+Pzu+5CY2Oj0iQIAi688EINOkdERJT7GHiJUikUAm64AWhtle4XFuLg//4vXH/9K3qPrME7btw4XHPNNcjL47cjERFRKvA3LFEq1dUBW7Yod8U1a7Dhvfewb98+ANJmElarFUVFRVr1kIiIKOcx8BKlyuuvAw8+2HffZsPLc+Zg27ZtSpPZbMaMGTM06BwREdHIwcBLlAodHcD110slDQAwcya2P/ggtrzwgnLKnDlzcM4552jTPyIiohGEgTfHrXl9DXZ07Bj0vB0dO7Dm9TVp6NEIIIrA7bcD27dL9/PycODJJ/Hsc89BFEUAgNFoxNe+9jXodDoNO0pERDQyMPDmsDWvr8Hdz92NhU8vHDD07ujYgYVPL8Tdz93N0JsMv/0t8Mwzyt3eFSvw7GefobOzEwCg1+ths9lQWFioVQ+JiIhGFAbeHLbkxCUQSgT42/0xQ68cdv3tfgglApacuESDnuaQjz4C7rij7/6FF2LLuefik08+UZouueQSTJs2Lf19IyIiGqEYeHPYjOIZ2HLjlpiht3/Y3XLjFswo5gSqITt8GPj614EjI7koKcHHtbV4+ZVXlFNOOeUUzJs3T6MOEhERjUwMvDkuVuhl2E2BBx4AfD7lbsevf40NL7+s3J8wYQKuuOIK1u0SERGlWb7WHaDUk0OvHHCPXXssACDYG2TYTZZ//hN49FHlbuj22+Havx+HDh0CAOTn56OiogKjRo3SqodEREQjFkd4Rwg59BbkFSDYG0SwN4iCvAKG3WTYvRu48ca++yefjMbLL8cXX3yhNF1xxRWYPHmyBp0jIiIiBl6i4ejtlcLunj3S/dGj8f6jj+INr1c5Ze7cuTj99NM16iAREREx8I4Qcs2uPLIrj/QOtmQZDeJnPwOee06521ZXh7++9ZZyf8qUKbjsssu06BkREREdwcA7AvSfoLbtrm3Ydte2QZcso0F4vUBNjXI3uGQJ1hcU4PDhwwAAg8EAm82GgoICrXpIREREYODNebFWYxhsyTIaxP79wHXXAcGgdH/6dPzj61/H7t27lVO+9rWvYcKECRp1kIiIiGQMvDlssKXHGHqH4c47gW3bpH/rdHjn0Ufx1vvvK4fPPPNMnHTSSRp1joiIiMIx8OawDR9sGHSd3f6hd8MHGzToaZb5wx+Ap59W7u554AH8vaVFuT99+nQsXrxYi54RERFRFFyHN4ctP3s5AGmL4YGWHpND74YPNiiPoRj8fuC225S73eefD9eUKQi2tgIACgsLYbPZoNfrteohERER9cPAm+PiDbAzimcw7A4mGJS2Dt6/HwAgFhfjb8uWYe/27copS5YsQXFxsVY9JCIioihY0kAUr//+b+DNN5W7XocD74aF3fPPPx/HHXecFj0jIiKiAXCElygemzcDDodyd+dtt+GfX32l3J85cyYWLlyY3Gv234aY2xITJZUoihBFUetuEI04Op0OOp0urddk4CUazFdfAd/8JnDkF2PXKafANWcOQh0dAICioiJce+21yMtL8gcmo0cPfJ+IEhYKhdDa2or9+/eju7tb6+4QjVgGgwHjxo3DhAkT0jLvhYGXaCCiCHz728CuXdJdgwF/+e53EfjySwDSX6nXXnstxo0bl/RL5+fnY8GCBar7RDR0oVAIO3bsQFdXl9ZdIRrxuru70drais7OTsyYMSPloZe/QYkG8otfAH//u3L3tR/9CB8eCbsAcNFFF2H27NkpuXR+fj4uuuiilDw30UjU2tqKrq4u6PV6TJkyBUVFRcn/ZIaIBtXb24vOzk7s3r0bXV1daG1txeTJk1N6TQZeoljeeQe4917l7o6lS+E5sm0wABx77LG44IILtOgZEQ3B/iMrrEyZMoWrqRBpKC8vT/ke3LlzJ/bv35/ywMs/bYmi6eyUtg4+UuPXOWsW3PPmKRNcxo8fjyVLlqS96J6IhkYURaVmt6ioSOPeEBHQ973Y3d2d8gmkDLxE0Xzve8CHHwIAevPysOHuu7G/sxOA9Jep1WrFmDFjtOwhESUg/JcpyxiIMkP49yIDL1G6uVzAunXK3X/V1KAlEFDuWywWHHPMMRp0jIiIiIaCgZco3KefAsuWKXf9l12GFwoKlPsnnngizjrrLC16RkREREPEwEsk6+kBvvEN4Mj6uvunTsWfwpYFKykpwVVXXcW6XSIakWw2G3w+n9bdIBoSBl4i2erVwCuvAJDqdt13343OI+t16vV6VFRUYDQ3fyCiDObz+WCz2VBeXg6dToeysrKo51ksFpSUlCjn2O32AZ83EAjA7XbD6XSm/fp1dXWw2Wyw2+2w2+2w2Wyoq6sbsB/h3G43LBYLLBYLbDZbxONtNlvcz5VOPp8P5eXlKCkpieij3+9HSUkJ6uvrk37dVD63lhh4iQDgpZeA//kf5e7mu+7CjrDF6S+77DJMnTpVi54RUQZa8/oa7OjYMeh5Ozp2YM3ra9LQI4nJZILL5cK6detgMpng9/ujBrrGxkZs374dJpMJLS0tgwZZOfysX78+bdf3+/0oLy8HALhcLjidTjidTrhcLgBAWVnZgCPOfr8fFosFTqcTDocDjY2NcLlccLlcMJvNsNlssFgs8Pv9A74mrZhMJni9XgiCEHHM7/cjEAjA6/Um/bqDPXd1dXXSr5kODLxEbW1SKUNvLwBg64IFeNVoVA6fdtppMJlMGnWOiDLNmtfX4O7n7sbCpxcOGHp3dOzAwqcX4u7n7k5r6AUAo9EIu90Oq9UKt9sNt9sd9Zx58+bF9XxNTU2orKxEIBCAx+NJ+fX9fj/KysqwdOlSVFVVRRyvqqqCw+FAeXl51NAbCARQXl4Oo9GIxsbGiJ/hJpMJ69atQ3Nz86CvRWulpaURbWazGe3t7YP+oTIUAz23HIazEQMvjWyiCNx6K/D55wCAwIQJ+PPixcrhSZMm4b/+679Yt0tEiiUnLoFQIsDf7o8ZeuWw62/3QygRsOTEJRr0FFi3bh2MRiOWLVs25KDi9/shCIJSdpBIyBrq9W02G4xGY9SwK7NarTCZTFFHkG02GwKBANaFrbjTn9FohMPhiLtPmcYYNjCTrueO9odLtmDgpZHN6QQ2bAAA9Oj1cC1fjq5gEABQUFAAm80Gg8GgZQ+JKMPMKJ6BLTduiRl6+4fdLTduwYziGZr01Wg0wuVyIRAIDLlW1e12w263w2QyQRCEhELPUK7vdrvh8/lQUVEx6LlLly6F3+9X1Zu63W54PB5YrdZBQ2E81yCJz+fL2nIGgIGXRrL33pM2mDhi0623YueRsgYAuPLKKzFp0iQtekZEGS5W6M2ksCszm82orKyEx+MZ0kSkpqYmpY7UarUCSGykL9HrNzQ0AIBSvzsQuVRBrusNf/z8+fMHfXz/UV6Px6NMFKurq4Pb7UZ1dTXKy8tVtb719fWoq6tDXV0dqqurUV1drYxg19fXK5P25OeR2Ww2ZaLeUEdL5drm/pPZwie52e12+P1+pY8Wi0Xph8fjUbWHl6jEem63243a2lrl8fLkv/DX4PP5UFdXp/raxPMepo1IGaO7u1sEIHZ2dord3d1id3e32NPTo3W3ctPBg6J4yimiKBU1iO+ec464cuVK5bZx40ate0hESRQKhcT3339ffP/998VQKJS05/008KkorBFErIRY8KMCseBHBSJWQhTWCOKngU+Tdp1EtbS0iE6nU9UmCIIIQGxpaVHaKisrB30eh8Ohug9AtFqtKbu+yWQSAYgul2vAa4iiKHq9XhGAaDQah/T4WIxGo1hZWSm6XC7lNcuvx+VyiUajMeJ1mEymqM/RX//zBmM2m6N+vU0mU9R2QRBEq9Wqev3y18npdIqNjY1Ku9PpVH3t4nnuaK+pvb1dNJvNUc8fSDzflz09PUom6uzsFAGI3d3dAz5vNBzhzUBFRUUwGAwwGAxYvXq11t3JTffeC/znPwCAvRMmYONllymHjjrqKFx66aVa9YyIsog80luQV4BgbxDB3iAK8goyYmS3P3kUNJHSBqfTqYzqAoAgCAmXNQzn+lopLS1VyiIEQUB7ezsqKytjni+vURw+ClxZWRkxou33+wddAi6RPkYjCILSd1n4SLjZbFba582bh0AgEDHxL9Zzx9Lc3Izm5uaIOu1kvNbVq1crmaioqGjIz8PAm4E6OzvR3d2N7u5uPPjgg1p3J/f85S/Ar34FAAgWFMD1ne+g+0gpw6hRo2Cz2ZCfn69lD4mIks5kMqGqqkr56Dke8kf68kfY/T/mTsX15fKJtra2QZ9TDpjhS3cN9vj6+nplTd/wW3hYNRqNqpUdwmuBrVYr2tvbIQiCsmpFY2NjxHVqamqU68mcTueAwTlZYq1+kaoVh8xmM0pLS1FSUqKUT/j9/gEnHcbrwQcfVDJRZ2fnkJ+HgTcDFRQUKDe9Xq91d3LL558DN9+s3P2/G27AnrCv8dVXX42SkhItekZEWUiu2ZVHduWR3sGWLNOKw+GAIAiorq4edP1ZeZKSvHatfJPXZx3KkljxXN9isQBA1BDZX1NTEwBp8ppM/nesx1dWVsLpdMJms6G+vh7r16+H0+mMWO92oFHOQCAAu92urD4RrV7YaDTCarVm1EoQEyZMSNlze71eVFVVwe/3o7q6Oq4NTeKh1+tVuWioGHhp5AiFgBtukNbdBfDWWWfh7ZkzlcNnn302TjjhBK16R0RZpv8EtW13bcO2u7YNumSZ1uTSAjlYxtLQ0BB1FQN59NPj8QxpqbPBrl9ZWQmTyRTXCHJ9fT0EQVCNJFqtVpjNZrjd7gH7J3+0H21jB2Dgpblmz54Nm80Gl8ullD1EI48c+3w+ZWQ5l8irNsh/vDgcDrS0tEAURTidTtTX12fMdtQMvDRyPPQQ8OKLAIDdU6bg/y6/XDl0zDHHqOqaiIgGEms1hsGWLEuXgYKeyWSCw+GA3+8fcJTX7/fHDH3yKGqsndeGe305FA+25XAgEFCt0BD+eHn931iGusOazWZDRUWF6ndGePlEeC2v2WyGIAiora2NuWtaNon1/4Mc6MNVVlbCarVmzOYeDLw0Mrz6KrBiBQDg8KhRWH/LLegRRQBAYWEhrFYry0eIKC6DLT2WCaHX7/ejpaUl5vGqqqoB6znr6+vjGh2NVdYw3OsLggCv1wuPxxM19NbV1cHpdEbdRQ2QgpnX61W2F442ylhdXR0zwAUCgYRGr+XnDwQCEUG6uroabrd70BH1oYjWx3hqn+N5TLTnNpvNMQNsbW1txGMCgUDmDCYlvK4DpYy8LNlQltugAbS3i+LMmaIIiL2A6LrxRtUSZB9//LHWPSSiFEvmsmSPvfZYXEuPhS9Z9thrjw3rmvHyer2i2WwWAYgARJPJFHN5rpaWloglprxer7KsFwBREASxvb1ddU5VVZWyxBgA0Ww2i1VVVUm5fjQOh0M0m81iZWWlWFlZKVqtVuV68XC5XKLZbFaW9zKbzaLRaBQdDkdEHxobG0Wr1aosddZ/eS/5NVqtVtHhcIgul0t0OBxie3u78nUJX8ZNluhSZOHXMRqNSl9aWlqitre3tyvt4X33er3K6w9vF0XpfZTfa0EQxKqqqpjPHc5qtSrvgXyssbFRrKqqEh0Oh3KrqqpSLYEWTaLfl8PJSTpRPDLMRZoLBoMwGAzo7u4eVmE2hRFF4LrrgCMfu7151ln4R9gSZBdeeCEWLlyoVe+IKE16e3uxdetWAMCcOXOQlze8DzjXvL4GS05cMujSYzs6dmDDBxuw/Ozlw7oeJY+8VTJpL9Hvy+HkJK69RLntqaeUsPvF9Ol4Lizszp49GwsWLNCqZ0SUxeINsDOKZzDsZhiG3ZGJNbyUuz78ELjzTgDAocJCuL75TcgbB48dOxbXXHPNsEd5iIiIKPPxtz3lpsOHga9/HTh4EKJOhz9XVKBj9GgAgE6ng9VqxdixYzXuJBEREaUDAy/lpvvvB95+GwDwyrnn4qPZs5VDF198MWaGrb9LREREuY2Bl3LP3/8OPPYYAODTmTPxfNiSKMcffzzOO+88jTpGREREWmDgpdyyaxdw000AgANFRXBfdx1EnQ4AUFxcjKuvvhq6I/eJiIhoZGDgpdzR2wt861vA3r3o1enwJ5sNBwoLAQB5eXmw2WwoPHKfiIiIRg4GXsodjzwCeDwAgBcvugjbZ81SDl1yySWYPn26Rh0jIiIiLTHwUm54803ggQcAANvKyvDShRcqh0466STMnz9fq54RERGRxhh4Kfvt2wdcfz3Q04N948djg9UKHKnTLS0txVVXXcW6XSIiohGMgZey3x13AC0tCOXlwW2z4eCROt38/HxUVFRg1KhRGneQiIiItMTAS9ntd78Dfv97AMBmsxmfHXOMcujyyy/HlClTtOoZERERZQgGXspe27YB3/kOAODDE07Aa+eeqxw644wzMHfuXK16RkRERBmEgZeyU3e3tHXwgQNoLynBn5csUQ5NnjwZl19+uYadIyIiokzCwEvZ6Yc/BJqb0ZOfj/UVFTh8pE7XYDDAZrOhoKBA4w4SERFRpmDgpeyzaRPw8MMAgH9ecgm+POoo5dCVV16JiRMnatUzIqKMUldXB5vNBrvdDrvdDpvNhrq6uqQ8t8/nQ3l5OUpKSmCz2ZLynKnk9/tRUlKC+vp6rbtCGmDgpeyyZ4+0mxqAd089Fd6w9XXnz5+PU045RaueERFlDL/fj/LycgCAy+WC0+mE0+mEy+UCAJSVlcHn8w3rGiaTCV6vF4IgDLu/6eD3+xEIBOD1erXuCmkgX+sOEMWttxe46SZg9258NXEiNl55pXJo2rRpWLx4sXZ9IyLKEH6/H2VlZXA4HKiqqoo4XlVVBUEQUF5eDq/XC5PJNKzrlZaWDuvx6WI2m9He3g6j0ah1V0gDHOGl7LF2LfCPf6C7oACuigoEDQYAwOjRo2Gz2ZCfz7/fiIhsNhuMRmPUsCuzWq0wmUxZUYqQTAy7IxcDL2UHnw+oqoII4O9XXIGvJk9WDl199dX8IUZEBMDtdsPn86GiomLQc5cuXQq/38+aVhoRGHgp8x04IC1BFgzCZzLh36efrhw699xzMWfOHA07R0S5QBSBQCAzbqI49NfR0NAAAEr97kDkUga5rjd8Eprdboff70ddXZ0y8S3eyW719fUoLy+HTqdDSUmJ6nE2mw06nQ5lZWVwu90xn8Pj8Sh9qa6uRn19vWriXf+QHn5+XV0d3G43qqurUV5eDr/fr9Q0x5pgFwgEYLfblddrt9vh8Xjifn7KAiJljO7ubhGA2N3drXVXMsvNN4siIO6cOlVc/cMfiitXrhRXrlwpPvnkk2IoFNK6d0SUBUKhkPj++++L77//ftSfG+3toihFTe1v7e1Df50mk0kEILpcrkHP9Xq9IgDRaDSq2gVBEK1Wq+o55HNbWloinsdsNotWqzWiXX6eaH2Ml9FoFI1Go9jY2Ki0tbe3i4IgiJWVlVHPr6ysFF0ul9jS0iICEJ1Op+ra/fvk9XpFQRAiXpvZbBYdDkdCz0+JGez7sr/h5CQWPVJm++MfgSefRNeoUXBVVCB0pE53zJgxuPbaa5GXxw8piIiSSRAEeDweZeQX6BsN9ng8qKysjOt57HY7qqurEQgElLIzn8+HmpqahPoiCALMZrPSZjQa4XA4YLPZYLPZVMdKS0vh8XjgdDoBIGKSWrQJdjabDVarNWK1CYfDgfLycpjNZuX1D/b8lLmYFihzbd8O2O0QAfz1a19De9gPqmuvvRbjx4/Xrm9ERBlIDm1tbW2Dnit/FB9tWbF58+ZFfUwgEIi7L3IwDi8/aGhogNVqjfs5gOghVQ654aEckMJw+KoTg4VRn88Hv9+P+WFLXMrk55HLRIby/JQ5OMJLmSkYBK6/Hti3D2+cfTY+OOkk5dBFF12UNes+ElF2KC4G2tu17oWkuHjoj7VYLHC73WhsbBx0JLapqQmANHktFYxGIyorK1FbW4uqqioEAgFMmDAhac8NIGr9bCLLpMmPHyi49l+vOFuWYSM1Bl7KTKtWAa+/js+PPhqNFovSXFZWhgsvvFDDjhFRLtLpgFwYrKusrITT6RxwQpisvr4egiAMuHzZcMkTztxuN/x+f9zlEIORR5qjDX4kMuoqP36gkev+1+CobnZiSQNlni1bgJ/8BAcLC+Gy2dCr1wMAxo0bhyVLlkCn02ncQSKizCV/zG+322OeU1dXh0AgEFESkGxy/W1tbS1aW1uHFBajlWfIKygM9BrjYTKZYDQa0djYGPMaI22t4lzFwEuZZe9e4IYbIALYcM012Hfksz2dTger1YqioiJt+0dElOEEQYDX64XH44kaCOvq6uB0OtHY2Bh1l7V46n8TYbfb4fP5hlw64fF4VKULgUAA1dXVqKqqiuh/IBAYtM64//HNmzdj/fr1EaUL8jXCJ8XF8/yUmVjSQJlDFIFbbgF27sS/LrgA2447TjlkNpsxY8YMDTtHRJQ9TCYTWlpaUFdXB4vFoprMJggCWlpaIh7j8/lQW1sLn88Ho9EIm82Gmpoa+P1+ZVWC2tpaNDU1weVyKec3NzcDkEZCHQ5HRAmA1WpVrXSQKLPZDI/HowTNpqYmOJ1OVRCVV07w+/1Yv3492trasHTpUmWCXLS+rlu3TpmE5vV64XA4VLXBDodDucZgz0+ZTyeKw1nimpIpGAzCYDCgu7sbBQUFWncn/X75S+C738X2WbPwu299C+KRJcfmzJmDpUuXspSBiIast7cXW7duBSD9TOGShukjr4QwlHBYXl6OefPmKYGbckui35fDyUn8jqfM8O67wPe/j/1jx+JZq1UJu0ajEVdffTXDLhFRlvD5fKpSiqEsRUaUbAy8pL2DB4HrrkNvMIhnrVZ0jh0LANDr9bDZbBg9erTGHSQiong1NDRg/fr1AKTwG22N23gFAoGk1xTTyMTAS9q75x7g/fex5aKL8OmsWUrzpZdeimnTpmnXLyIiSlhNTQ0qKipQV1eH5ubmIY3uejwe2Gw2+P1+1b+JhoqT1khbf/oT4HTi4+OOw8th6+uecsopKC8v17BjREQ0FEajcdg1t2azWTUpjWi4OMJL2tmxA7jlFnQUF2PDkiVK88SJE3HllVeybpeIiIiSgoGXtBEKATfcgND+/XDZbDg0ZgwAID8/HzabDQaDQeMOEhERUa5g4CVt/PjHwL/+hUaLBV8cfbTSfMUVV2Dy5MkadoyIiIhyDQMvpd/LLwOrVuH9k07CG2efrTTPnTsXp59+uoYdIyIiolzEwEvp1d4OXH89Wo1G/OVrX1Oap06dissuu0zDjhEREVGuYuCl9BFFYNkyBHftgquiAt2jRgEADAYDbDbbyNxdjoiIiFKOy5JR+jzxBPDss/jHlVdi99SpSvPXvvY1lJaWatgxIqJh6uoCHnqo7/799wPcNIcoYzDwUnq8/z6wfDneOf10vBW2vu5ZZ52Fk046ScOOERElQVcXsGpV3/2772bgJcogLGmg1OvqAq67DnvGjcPfrrhCaZ4+fTosFouGHSMiIqKRgIGXUq+qCt1bt2J9RQV6jtTpFhYWwmazQa/Xa9w5IiIiynUMvJRaGzdC/PnPsfHKK9E6caLSvGTJEhQXF2vYMSKi3OPz+WCz2VBWVoaSkhKUlJTAZrMpN4vFojoWCASUx/r9fpSUlKC+vj6h65WXl6OkpAR2uz0Fr4goOVjDS6nzxRfAt7+N5nnz8J9TT1Wazz//fBx33HEadoyIKDeZTCa4XC54PB5YLBaYzWa4XK6I8zweD2w2G/x+P0wmEwAp8AYCAXi93oSu5/V6UVZWhra2tqS9DqJkY+Cl1AiFgG9+EzsNBjx36aVK86xZs7Bw4UINO0ZElPsEQQAAGI3GqMfNZjMcDocq8JrNZrS3t8d8TDzXI8pULGkYYXp6evDCCy8ot56entRcqK4Oh157Da6KCoTypb+rioqKcM011yAvj//bEVGOaWkZ+H4GqqiogN/vV7UNJewSZQMmjxGmp6cHL774onJLSeB9/XWIDz6Iv1x9NQIlJQAAnU4Hq9WKcePGJf96RERaeuop4Kyz1G1nnSW1Zxi5bAFguKWRhSUNlFwdHcD11+O1s87C1hNOUJoXLlyIWbNmadcvIqKBiKL08ytRLS3AsmVSGVe4UEhqP+00oKwssecsLgZ0usT7EgePxwOz2ayE3aqqKgBSEJZrevvX/fp8Png8HhiNRiUsNzQ0RK319fv9cLvdAICmpibMnz9fuUb/8xwOB8rKytDa2opAIACn06n0sbq6Gn6/HzU1NRAEAU1NTfB4PHC5XCyfoCFh4B1puroi7ydrcXRRBG67DTt6euAxm5XmY489Fueff35yrkFElAodHcCRT6SSJhQC5s1L/HHt7UAKRl/lkGkO+/ksEwQBXq8X5WEbAwFAIBBAdXU1GhsbVe1yOO1/rsfjUQKuvIKD1WpVhVSfz4dFixbB6/Uq7XV1dSgvL4fX64XZbIbX60VJSQlaWlogCALsdjvq6urg8XhQWVk57K8FjTwsaRhpDh8e+P5wPP00Ov/6V7htNohH6nTHjx+PJUuWQJei0QoiIopNXo1BvvWv2e2v/zbvzc3NaG5uVi1fBiDqEmTNzc2qMCpPhvN4PKrzbDYbKioqVCG4qqoKPp9PGR2W++LxeJTA3N7ezrBLQ8YRXkqOjz5C75134k/XXov948cDAPLy8mCz2TBmzBiNO0dENDL1L09IdK1cs9mM0tJSlJSUwGw2w2KxwGq1Ri1TmBdjNDs8LPt8Pvj9/oiRZEAKyE1NTbBarQCkGuPwUMyaYxoOBl4avsOHgeuuw7/Ky+EPq1WzWCw4+uijNewYEVGcioulUoJEtbRIE9T61/ACgF4PvPHG0Gp4U2Qo27l7vV7U1tbC7Xajuroa1dXVqKysjFrWMBh5hNnr9UZscGG32yNCc/8RZ6KhYuCl4fvBD+Dv6MALV12lNJ144ok4q/+sZSKiTKXTDa1utrwcWLcucuKaXg888YR0PIPIo6fx8vv9KC0thcPhgMPhAADU19fDbrfDbrcrZQvxkkds5ZHiwXBUl5KFNbw0PP/8J/atW4dnr71WmVVcWlqKq666inW7RDQyfPvb0khuuDfeAG66SZPuJJPP54sYia2srITVakVzc3PCz2cymWA0GtHQ0BD1eP96X6JkYeClofvyS/TedBOetVpxsKgIAKDX62Gz2TA6WSs/EBFlg/5lC4mWMSSZXDfbf7JZIo+V1dbWRrQFAgHVag+JbCu8efNmeDyeiHBbXV2tqtkNBAJD6j9RNCxpoKHp7QVuvBGbTz0VO2bOVJovu+wyTJ06VcOOERGNXD6fD7W1tUqtbHNzM2w2GwCgpqYmZgmC/Dh51NZms2HdunUwGo2orKxUjfK2trYq4VR+nM/ng9FohM1mQ01NDfx+v1LjW1tbi6amJmXynMlkgtfrhcPhgMvlUtbitdvtEAQBHo8HTqcTfr8f69evR1tbG5YuXZpwOQZROJ0oiqLWnSBJMBiEwWBAd3c3CgoKUnKNrt274Xj8ceV+9W23YfSUKYk/0aOPYuu6dfjj17+uNJ122mm4+uqrWcpARBmnt7cXW7duBQDMmTMn+VucBwLqdXxTtJYuUS5J9PtyODmJJQ2UuOZmtD/0EP589dVK06RJk/Bf//VfDLtERESUcRh4KTH796PnG9+Ae8kSdBUWAgAKCgpgs9lgMBg07hwRERFRJNbwUmLuvBObjj0WO6dPV5quvPJKTJo0ScNOERFpbPRoYMUK9X0iyhgMvBS///f/8J/mZjQdmQABAOXl5Tj11FM17BQRUQYYPRpYuVLrXhBRDCxpoPj4/dj7gx9gY9jmEkdNnYpLL71Uw04RERERDY6BlwYXDCL4jW/A9V//he5RowAAowoKYKuoQH4+PyQgIiKizMbAS4P77//G/02Zgj1hy5ddfc01KAlfgoeIiIgoQzHw0sA2b8Zbzz2Ht+fOVZrOOeccnHDCCRp2ioiIiCh+DLwU21dfYffy5fi/yy9Xmo6ZNg2LFi3SsFNEREREiWHgpehEEYdvuQXrL74YPUd2MxljMMC6dCn0er3GnSMiIiKKH2ccUVTi2rX46+jRaJswQWm7pqIC48eP17BXRESZqaenBy+//LJy//zzz+ekXqIMwhHeJAkEAvD5fLBYLPB4PFp3Z3jeeQdNDQ14/+STlaYLL7wQZWVlGnaKiChz9fT04MUXX1RuPT09WneJiMIw8CaB3+9HbW0t2tra4PF4EAgEtO7S0HV24ovvfAfPmc1K0+yjj8aCBQs07BQRERHR0PHzliQQBAEOh0PrbiTFoe99D64zz0TvkTrdsQYDrlm6FHl5/NuIiIiIshNTDCnE9euxobMTHUYjAEAnirBefz3Gjh2rbceIiIiIhoGBlySffopX6uvx8fHHK00XX3wxZs6cqWGniIgoET6fDzabDWVlZSgpKUFJSQlsNptys1gsqmPhJXh+vx8lJSWor69P6Hrl5eUoKSmB3W5PwStKn1x8/UN5Tbkq60saAoEAamtr4ff74XK5Yp7ndrvR0NAAQRAQCARgNBpzpgxh2Hp68Okdd+D5885Tmo6fPh3nXXCBhp0iIqJEmUwmuFwueDweWCwWmM3mqL8bPR4PbDYb/H4/TCYTACkcBQIBeL3ehK7n9XpRVlaGtra2pL0OLQz2+qurqyNyQ6a//qG8p7kqawOvxWKB0WiEIAioq6uDOWySVX/V1dXw+XxobGxU2urr61FWVoaWlhalLRAIxL2pgsPhGPCa2eTA6tVwn3ACxCN1usX5+bj6G9+ATqfTuGdERNmhf9hpa2vDtGnTNOqNNLcEAIxHStT6M5vNcDgcqsBrNpvR3t4e8zHxXC+bDfT65eAYS6a+/uG8p7kmawNveHitq6uLeZ7f70ddXV3EXzeVlZVwOByqv9iMRuOI+ytIfOUV/OnTT3Fg9mwAQJ4ownbTTSgsLNS4Z0RE2eGtt97Cxo0bVW1PPPEErrzySswN25Y901RUVER81D3Sg1Gs1+92u9PbkSQa6e+pLOdreJ1OJwAof8GGM5vNI7quZfTBg3jtf/8X24+EXQC45OKLMX36dA17RUSUfqIooqurK+Hbzp07sXHjRoiiGPF8GzduxM6dOxN+zv7PlUzhI5UMQvHx+Xyorq7Wuhs0TFk7whsvt9sd85u6rKwMgUAAfr8/Yz+OSBlRxJlvvomXwtbXPfmoozCfdbtENAIdPnw46fM6RFHEunXrEn5cdXU1Ro8endS+yDweD8xms/J7saqqCoAUhOWa3v51vz6fDx6PB0ajUQnLDQ0NUT8R9fv9ymhoU1MT5s+fr1yj/3kOhwNlZWVobW1FIBBQBqg8Hg+qq6vh9/tRU1MDQRDQ1NQEj8cDl8sV8/d1fX29UqYhLxfa1tYGp9MJn88HQRDgdDphNpths9mUfCCXKEZ7/fL8H7lfNpsNALB06VJYrdYhv/5owl93ZWUlysrKlK9xW1sbLBYLKisro54f7esEIOZ7CkhlnNXV1cqmUi0tLbDZbEq55lDfh0yV84F3oDArf8PL3whDFT5xDgBqa2vR1NSkTBhIVDAYjNqel5cH/ZH1cYeq/d13MXP7dog6HV497zzgSJ3uBJ0OV954I+t2iYhylBwyo/1eEgQBXq8X5eXlqnY5FIWXEQJ9n572P9fj8SgBT17BwGq1qn7H+nw+LFq0CF6vV2mvq6tDeXk5vF4vzGYzvF4vSkpK0NLSAkEQYLfbUVdXB4/Howp94SorK1FRUaGsmCAHUrlNDrsA4HK5YLFY4HQ6lT5Ee/1WqxVWqxVlZWUwm81RX3eirz+W8NddX18Pl8ulvNZAIKB8feQ+xPN1ivaa5L7ZbDY0Njaq+maxWODz+VBVVTXk9yEZQqEQent7I9pj5aN45HTgjXfHs+HOrEz2ig9FRUVR21esWIGVK1cO+Xnf+vnPsXHvXohhJQwAkNfbC9ttt2HUqFFDfm4iIso84aOSfr9fGZiJpbS0VHW/ubkZzc3NyupGsmhLcDU3N6uCsVxK2D8c2Ww2VFRUqIJWVVUVqqur4Xa7laBaWloKj8ejBLx4Jl8ZjUZYrVY0NDQowdNoNMJoNMLlcqnCvslkigii/V9/IuJ9/YMRBAGCIKj6KucMeXm58GODfZ2ivSabzRY1iDscDpSXl8NsNiv9H8r7MFyrV6/GqlWrkvqcOR14ZYO9MZm2FXBnZycKCgoi2oez21mr1yuF3SjPIQLI37kTOOqoIT8/EVE2GzVq1JDqNNva2vDEE09ErbvV6XS49dZbEw5RyRx86P9RdqJrxZrNZpSWlqKkpARmsxkWiwVWqzXqx/Tz5s2L+hzhv2N9Ph/8fn/UUUeTyYSmpiYl8MorMcniDVlLly5VPsoXBAFutxuVlZWoq6tTlU1YLJa4ni9e8bz+eEX7fyZ8dLp/GE7k6yS/B/Pnz484JofchoYG5d9DfR+G48EHH8QDDzwQ0R4MBmMOCg4m5yetDSRTC/cLCgqi3oZTzvDWhg1Rwy4AiHl5eOvPfx7ycxMRZTudTofRo0cnfJs2bRquvPLKiHIwnU6Hq666CtOmTUv4OVNZWjaUkOf1elFVVQW/36/UfA51kwV5hNnr9aK+vl51s9vtWLp0qer8oYy4Wq1WGI1GJdw2NTXB4XDAaDQq9bWNjY1Zt7SonFWijdIn8nWSHz9Q9vH5fEN+/mTQ6/Uxs9BQ5XTgld/MWH9dtba2Akj/G6mFwMGDAx7vGOQ4ERFFN3fuXNx6662qtltvvRVnnHGGNh0aQLz1pDI5HDkcDrS0tEAURTidTtTX10eEonjI15YnYPW/9V9RaagDUhUVFXC73QgEApgwYYLSNlANbiK0WLVBzjLR3r9Evk7y4xNZVzjTBgaHIqcDLyC9SbFqdAf6nyfXGMeMGfB48SDHiYgotv4DJ7kykOLz+SKW76ysrITVakVzc3PCz2cymWA0GpWVD/rzeDxD6md/drsdfr8fy5YtU0ok7HY7PB4P6urqEh6hTnfgi5Zb5K/NcLcwlt+D/hMRw68h133nkpwPvGazOeZfMW1tbTAajVHX6M01c5csgS7KjEcA0PX2Yu7VV6e3Q0RElDLy772h1I/2f0xtbW1EWyAQUJUEJDL5e/PmzfB4PBHhtrq6WjUAFQgEhjzHRp6QFr5Sk9zW0NAw4EBXtGuazeYBA36ytxX2eDyq0gV5tYyqqqqIzBLP16n/8c2bN2P9+vURo/TyNcLf2+G8D5kk5yet1dTUwO12w+fzRfxP4vF4UFFRoVHP0mtCeTmufPXViIlrut5eXDVpEiZEmUBARETZxefzqZbJbG5uVkbrampqYg7wyI+TQ53NZsO6detgNBpRWVmpGuVtbW1Vwqn8OJ/PB6PRCJvNhpqaGvj9fqV8QF6qU548ZzKZ4PV64XA44HK5lLV47XY7BEFQVgTw+/1Yv3492traYq57OxD5+cLFKkUY6PUDUK2QIAgCampqVI9L5PXHw2w2w+PxKEGzqalJtawagEG/TgO9pvD3ILw2OHzZumS9D5lCJ6ZyS5c00el0ypsXTXV1NTwej+q4vEB1S0tLuro5qGAwCIPBgO7u7mEVZg9kl8eD537/e4T0euhDIVxyww04KssK94mIEtXb24utW7cCAObMmTOsVW+i6erqUi1PmcrNIyi3lZeXY968eUmrN85kiX5fDicnZe0Ir91uR1tbmzIcLy/wLAhCxG4kDocD9fX1yl9m8l9MsQJyLis59VR8GrYOb8mpp2rYGyIiIqLUy9rAm+hfPvIMUCIiomTLz8/HgrCt2vPzs/bXK2ksEAgkvSaYsjjwEhERZYr8/HxcdNFFWneDslh4zWxbWxtsNhscDseIWEkqHRh4iYiIiDRmNpuzbjOMbJLzy5IRERER0cjGEd4MFAwGlX/n5eUNa0thIiIiomwVCoXQe2QfgfB8lCiO8GagoqIiGAwGGAwGrF69WuvuEBFlPZ1Op/y7N8YmPESUXuHfi+Hfo+FWr16tZKKioqIhX4uBNwN1dnaiu7sb3d3dePDBB7XuDhFR1tPpdDAYDACkn7FEpD35e9FgMMQMvA8++KCSiYbzvcuShgxUUFCQso0niIhGqnHjxqG1tRW7d+8GIH2aluwNKIhocL29vejs7FS+F8eNGxfzXL1en5TSTgZeIiIaESZMmIDOzk50dXVh586dWneHiACMHj0aEyZMSPl1GHiJiGhE0Ov1mDFjBlpbW7F//350d3dr3SWiEctgMGDcuHGYMGFCWibnM/ASEdGIodfrMXnyZEyePBmiKEIURa27RDTi6HS6mDW7qcLAS0REI5IWv3SJSBus1iciIiKinMbAS5TBQqEQVq5ciVAopHVXaAB8n7IH36vswPcpe2TLe6UTWcCUMYLBIAwGA7q7u1O2LFnX7t1wPP64cr/6ttswesqUlFyLhi8d/0/Q8PF9yh58r7ID36fskc73ajjX4ggvEREREeU0Bl4iIiIiymkMvERERESU0xh4iYiIiCincR3eDCLPHzx48KBSjJ2Xl5fUHUiCwaBqJmUwGIQ+GEza81NyBY+8N0G+RxmN71P24HuVHfg+ZY9Uv1ehUAi9vb2qawxlvQWu0pBBDh48iKKiIq27QURERJSxOjs7MWbMmIQew8CbQXp7e9HZ2Ym8vDxl959kj/ASERERZYvwEV5RFNHb24uioiLk5SVWlcvAS0REREQ5jZPWiIiIiCinMfASERERUU5j4CUiIiKinMbAS0REREQ5jYGXiIiINFdfX4/6+nr4/X4AQCAQgM/nQ3V1tdJGNFTceGIECQQCqK2thd/vh8vl0ro7FIP8w13+AW82m1FTUwOj0ahtxyiquro6tLS0AAD8fj8EQUB1dTUEQdC4ZzSQ6upqlJWVobKyUuuu0BEulwsejyeivaqqit9PGcrn86G2thYAUFpaCqPRCIfDoXGvouOyZCOAxWKB0WiEIAioq6uD2WxGY2Oj1t2iKCwWCxwOB0wmEwApQFksFrS1tWH79u0MvRnGbrdHhNvy8nL4/X54vV7+ks5QPp8P5eXlcDgcqKqq0ro7dITFYgEg/dyTf2fV1NQoPw8ps7jdbtTW1sLlcik/6zweD3w+X2Z+X4k0ogAQzWaz1t2gKBwOh9jY2BjR3tjYyPctA8nvS2Vlpard6XRGbafMYTabRQCiw+HQuisUhj/jsof886+9vV1pa29vFwGIJpNJu44NgDW8RBmisbERNpsNPp9P1W42mwEg6kd9pL3+tYWlpaVR2ykzVFdXo7q6WutuEGU1u92OqqqqiE8dBUFQfmdlGtbwEmWItrY2BAIB+P3+iI/wjEajcowfk2cGs9kMr9cb8V41NTUBAGw2mxbdogG43W7Mnz+f30NEw1BXVwe/34+lS5eq2o1GozKfIRMx8BJliM2bN8Pj8cBqtUYcCwQCAMBf1Bmmf9gNBAKor6+H1WrlZKgMEwgE0NTUBIfDwdH3DOb3++F0OpX7gUBAdZ+019DQAADKBF1ZIBCAw+HI2LkmDLxEGcJoNEYNu263GwCiHqPMIK+s4fP5sG7dOr5XGai6uprBKQu43W7VLH95NQ2v15uxQWqkkcvu1q9fr1pByO12Y/bs2Rk7YZc1vEQZTl4FYN26dVp3hWJwOBxwuVxwOBxYtmwZ6urqtO4Shamvr4fdbte6GzQIp9MZMbu/pqYGfr9fWfqKMkv4HyHyH/qZ+r3GwEuUwex2O9ra2tDY2MjRjSxgtVrhcDg4MSqD+P1+BAIBLm2VBaKNCoYvqUmZJdrktHnz5sHj8WRk2RADL1GGcrvd8Hg82L59e0Z+PETRVVRUAOib2EHa4lq72UOeqxALv58ygzz4EusPFAARqw1lAgZeogzk8XjgdDpZt5bBPB5P1FHc8PcrE3/ojyTyH40Wi0V1k1fQcDqdsFgsHI3PABaLBSUlJfyeyQLz5s0DMPgfKJmGk9aIMozP54PT6YzYDa++vh5ms/n/t3dHt4njQRyAZ6UrwKIE0oFJCdABhAoCHeASIujANSwdQAnIHcSpIMgdsA8n+4RgV7rsnWz++31PUfwykoX5eRiPdXsHYrFYRNM0v3w9rZuVfs3n87sPELYhuN0lSv/O53NkWXb3M9Mec+0bhtls1o0t3NtUE3G7wWYIdHhhQNqVPN+/f785djgcXPAHZDQaRZ7n3QhDq+1QZVk22AXsMDTL5fLu0/1VVUXTNNb8DUh7Lk6n082x0+k02MaMDu8f6Hw+910CdzRNE5PJJMbjcfdO+Yh/ztej/XyUup/dmLQ/j987xjC0s6Cfn589V0Jrs9nEYrGI7XbbhaWmaeL19TWm0+nVqjL6lWVZlGUZRVHEy8tL15VvHywc6rXv2+VyufRdBP+v9kn/qqq6C32e512wcuc8DJPJ5Jfza/P5fLAXkj9VXdex3W6vbkqyLLv60mY49vt9lGUZp9OpO1fPz88xm82MNgxEURTRNE335snFYuE7aqDaz1MbeEej0aBfPCHwAgCQNDO8AAAkTeAFACBpAi8AAEkTeAEASJrACwBA0gReAACSJvACAJA0gRcAgKQJvAAAJE3gBQAgaQIvAABJE3gBAEjaX30XAMCw7Xa7eH9/j4iIsix7rgbg39PhBeCn2rBblmU8PT31XQ7Al+jwAnBXXdfx9vYWHx8fERHx+fnZc0UAX6PDC8Bd6/U6Xl5eIsuyiIhomqbXegC+SocXgBt1XcfxeOxmd+u6NtIAPCyBF4AbZVnGeDyO8XgcERHb7dYDa8DDMtIAwI39fh/z+TwiIqqqislk0nNFAF8n8AJwpaqqqOs6ZrNZRPzd7V2tVj1XBfB1Ai8AV47HY0RETKfTWK/Xsd1ue64I4PcIvABceX9/jzzPoyiKWK/X3ZYGgEcl8AJwpa7rbqQhz/O+ywH4bQIvAFfquo7VahXT6bTvUgD+EwIvAJ2iKOJ8Ptu5CyTFHl4AIiJit9vFcrm8e6x9y5p5XuAR6fACEBERm80m8jyP5XIZh8Oh+39VVVEUhbALPKxvl8vl0ncRAAxLURTd309PT/bwAg9N4AUAIGlGGgAASJrACwBA0gReAACSJvACAJA0gRcAgKQJvAAAJE3gBQAgaQIvAABJE3gBAEiawAsAQNIEXgAAkibwAgCQNIEXAICkCbwAACRN4AUAIGkCLwAASRN4AQBImsALAEDSfgDTcKoaYlaB6AAAAABJRU5ErkJggg==", "text/plain": [ "<Figure size 720x660 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.rc(\"text\", usetex=True)\n", "plt.rc(\"font\", family=\"serif\", size=11)\n", "plt.rcParams[\"text.latex.preamble\"] = (\n", " r\"\\usepackage{amsmath} \\usepackage{amssymb}\"\n", ")\n", "fig = plt.figure(figsize=(0.4 * 12.0, 0.4 * 11.0), dpi=150, edgecolor=\"white\")\n", "ax = fig.add_subplot(1, 1, 1)\n", "ax.tick_params(\n", " axis=\"both\", which=\"both\", labelsize=11, direction=\"in\", width=0.5\n", ")\n", "ax.xaxis.set_ticks_position(\"both\")\n", "ax.yaxis.set_ticks_position(\"both\")\n", "\n", "\n", "ax.semilogy(\n", " np.arange(1, l_max + 1),\n", " limits_NG,\n", " label=r\"NANOGrav limits\",\n", " color=\"green\",\n", " marker=\"x\",\n", " lw=0,\n", ")\n", "\n", "ax.semilogy(\n", " np.arange(1, l_max + 1),\n", " Cl_prior,\n", " \"blue\",\n", " label=r\"Only prior\",\n", ")\n", "\n", "ax.errorbar(\n", " np.arange(1, l_max + 1),\n", " mean_Cl_limits,\n", " yerr=(err_low_Cl_limits, err_high_Cl_limits),\n", " color=\"red\",\n", " label=r\"Fisher\",\n", " marker=\".\",\n", ")\n", "\n", "ax.errorbar(\n", " np.arange(1, l_max + 1),\n", " mean_Cl_limits_prior,\n", " yerr=(err_low_Cl_limits_prior, err_high_Cl_limits_prior),\n", " color=\"grey\",\n", " label=r\"Fisher with prior\",\n", " marker=\".\",\n", ")\n", "\n", "\n", "plt.legend(loc=\"lower right\", fontsize=10, handlelength=1.5)\n", "props = dict(\n", " boxstyle=\"round\",\n", " facecolor=\"white\",\n", " alpha=1,\n", " linewidth=1,\n", " edgecolor=\"0.8\",\n", ")\n", "\n", "for axis in [\"top\", \"bottom\", \"left\", \"right\"]:\n", " ax.spines[axis].set_linewidth(0.5)\n", "\n", " ax.text(\n", " 1,\n", " 4.8e0,\n", " r\"NANOGrav positions, $T_\\mathrm{obs} \\sim 15 \\, \\mathrm{yr}$\",\n", " horizontalalignment=\"left\",\n", " fontsize=10,\n", " verticalalignment=\"top\",\n", " bbox=props,\n", " linespacing=1.4,\n", " )\n", "\n", " # set x axis label\n", " ax.set_xlabel(r\"$\\ell$\")\n", " ax.set_ylabel(r\"$C_\\ell / C_0$\")\n", " plt.ylim(0.8e-1, 6e0)\n", "\n", " plt.tight_layout()\n", " plt.savefig(\"Cl_sens_lim_ng_like.pdf\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 2 }
64,891
Python
.py
496
126.290323
51,046
0.873267
Mauropieroni/fastPTA
8
0
3
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,333
examples_utils.py
Mauropieroni_fastPTA/examples/examples_utils.py
# Global import os # Local import fastPTA.utils as ut # Creates some folders you need to store data/plots for k in [ "pulsar_configurations", "generated_data", "generated_chains", "plots", ]: if not os.path.exists(k): os.makedirs(k) path_to_file = os.path.dirname(__file__) path_to_pulsar_parameters = os.path.join(path_to_file, "pulsar_configurations/") # Default parameters for the pulsars EPTAlike = ut.load_yaml( path_to_pulsar_parameters + "EPTAlike_pulsar_parameters.yaml" ) # Default parameters for the pulsars mockSKA10 = ut.load_yaml( path_to_pulsar_parameters + "mockSKA10_pulsar_parameters.yaml" ) # Default parameters for the pulsars EPTAlike_noiseless = ut.load_yaml( path_to_pulsar_parameters + "EPTAlike_pulsar_parameters_noiseless.yaml" )
804
Python
.py
27
26.962963
80
0.746094
Mauropieroni/fastPTA
8
0
3
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,334
T_scaling_figure.ipynb
Mauropieroni_fastPTA/examples/T_scaling_figure.ipynb
{ "cells": [ { "cell_type": "markdown", "id": "3d2a5638", "metadata": {}, "source": [ "### Start importing all libraries" ] }, { "cell_type": "code", "execution_count": 1, "id": "a061b9e8", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)\n" ] } ], "source": [ "# Global\n", "import os\n", "import tqdm\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "# Local\n", "import examples_utils as eu\n", "import fastPTA.utils as ut\n", "import fastPTA.plotting_functions as pf\n", "from fastPTA.Fisher_code import compute_fisher" ] }, { "cell_type": "markdown", "id": "8c55c5d3", "metadata": {}, "source": [ "### Constants to be used in the analysis" ] }, { "cell_type": "code", "execution_count": 2, "id": "9afe1b2e", "metadata": {}, "outputs": [], "source": [ "# Number of frequencies used in the analysis\n", "n_frequencies = 30\n", "\n", "# Number of pulsars in the analysis\n", "n_pulsars = 50\n", "\n", "# The analysis assumes a power law template, specify here the input parameters\n", "log_amplitude = -7.1995 # log amplitude\n", "tilt = 2.0 # Tilt\n", "\n", "# Parameters for the HD computations:\n", "# Method to compute the HD, either \"Legendre\" or \"Binned\"\n", "HD_basis = \"Legendre\"\n", "\n", "# Maximum order of the Legendre polynomials\n", "HD_order = 0\n", "\n", "# Whether to add some gaussian prior for the HD coefficients to the Fisher matrix\n", "add_HD_prior = False\n", "\n", "# Specify the type of noise to be used in the analysis\n", "which_experiment = eu.EPTAlike\n", "\n", "# Whether you want to rerun the analysis\n", "rerun = False\n", "\n", "# Minimum number of years to be used in the analysis\n", "T_min_yrs = .1\n", "\n", "# Maximum number of years to be used in the analysis\n", "T_max_yrs = 200\n", "\n", "# Number of points in T to scan over\n", "T_times = 15\n", "\n", "# Number of realizations to be generated for each value of T\n", "N_realizations = 10\n", "\n", "# Name of the outfile, no need for the extension\n", "# (will be stored in generated_data/)\n", "outname = \"Default\"\n", "\n", "# Labels for the signal parameters\n", "signal_labels = [r\"$\\alpha_{*}$\", r\"$n_{\\rm T}$\"]" ] }, { "cell_type": "markdown", "id": "9130a943", "metadata": {}, "source": [ "### Builds the dictionaries with inputs for the code" ] }, { "cell_type": "code", "execution_count": 3, "id": "e1c85ecb", "metadata": {}, "outputs": [], "source": [ "# Assemble the vector with two signal parameters\n", "signal_parameters = np.array([log_amplitude, tilt])\n", "\n", "# Length of the parameter vector\n", "parameter_len = (\n", " len(signal_parameters) + HD_order + 1\n", " if HD_order\n", " else len(signal_parameters)\n", ")\n", "\n", "# Dictionary with the kwargs to generete the pulsar catalogs\n", "default_pulsars = {\n", " \"n_pulsars\": n_pulsars,\n", " \"save_catalog\": False,\n", " **which_experiment,\n", "}\n", "\n", "# Dictionary with the kwargs to generate noise and orf tensors\n", "get_tensors_kwargs = {\n", " \"add_curn\": False,\n", " \"HD_order\": HD_order,\n", " \"HD_basis\": HD_basis,\n", " \"regenerate_catalog\": True,\n", "}\n", "\n", "# Dictionary with the kwargs to generate the fisher matrix\n", "fisher_kwargs = {\n", " \"T_obs_yrs\": 1.,\n", " \"n_frequencies\": n_frequencies,\n", " \"signal_parameters\": signal_parameters,\n", "}" ] }, { "cell_type": "markdown", "id": "24800e4c", "metadata": {}, "source": [ "### Check if all the folders are in place and define save_path" ] }, { "cell_type": "code", "execution_count": 4, "id": "5ee5ac36", "metadata": {}, "outputs": [], "source": [ "# If it's not there, create the folder to store the generated data\n", "if not os.path.exists(\"generated_data/\"):\n", " os.mkdir(\"generated_data/\")\n", "\n", "# If it's not there, create the folder to store the plots\n", "if not os.path.exists(\"plots/\"):\n", " os.mkdir(\"plots/\")\n", "\n", "# Build the save path\n", "if outname != \"Default\":\n", " save_path = \"generated_data/\" + outname + \".npz\"\n", "elif HD_order == 0:\n", " save_path = \"generated_data/T_scaling.npz\"\n", "else:\n", " save_path = \"generated_data/T_scaling_HD.npz\"" ] }, { "cell_type": "markdown", "id": "9f847562", "metadata": {}, "source": [ "### Run for all values of T_obs" ] }, { "cell_type": "code", "execution_count": 5, "id": "6b9de97a", "metadata": {}, "outputs": [], "source": [ "try:\n", " # Check if the file is there and load the data if not rerun\n", " if rerun:\n", " raise FileNotFoundError(\"Forcing regeneration\")\n", "\n", " data = np.load(save_path)\n", "\n", " T_obs_values = data[\"T_obs_values\"]\n", " SNR_values = data[\"SNR_values\"]\n", " parameters_uncertainties = data[\"parameters_uncertainties\"]\n", "\n", "except FileNotFoundError:\n", "\n", " # Define the vector with the values of T_obs to scan over\n", " T_obs_values = np.geomspace(T_min_yrs, T_max_yrs, T_times)\n", "\n", " # Initialize the arrays to store the results\n", " SNR_values = np.zeros(shape=(T_times, N_realizations))\n", " parameters_uncertainties = np.zeros(\n", " shape=(T_times, N_realizations, parameter_len)\n", " )\n", "\n", " # Loop over the values of T_obs\n", " for i in range(T_times):\n", " # Set the value of T_obs\n", " generate_catalog_kwargs = default_pulsars.copy()\n", " generate_catalog_kwargs[\"T_span_dict\"] = {\n", " \"which_distribution\": \"gaussian\",\n", " \"mean\": np.log10(T_obs_values[i]),\n", " \"std\": 0.0125,\n", " }\n", "\n", " # Compute the fisher for all the realizations at a given T_obs\n", " print(\"Here starts T = %.2f yrs\" % (T_obs_values[i]))\n", " for j in tqdm.tqdm(range(N_realizations)):\n", " (\n", " frequency,\n", " signal,\n", " HD_functions_IJ,\n", " HD_coeffs,\n", " effective_noise,\n", " SNR,\n", " fisher,\n", " ) = compute_fisher(\n", " T_obs_yrs=T_obs_values[i],\n", " n_frequencies=n_frequencies + int(T_obs_values[i]),\n", " signal_label=\"power_law\",\n", " signal_parameters=signal_parameters,\n", " get_tensors_kwargs=get_tensors_kwargs,\n", " generate_catalog_kwargs=generate_catalog_kwargs,\n", " )\n", "\n", " if HD_order and add_HD_prior:\n", " fisher += np.diag(\n", " np.append(\n", " np.zeros(len(signal_parameters)), np.ones(HD_order + 1)\n", " )\n", " )\n", "\n", " # Get covariance matrix and errors\n", " c_inverse = ut.compute_inverse(fisher)\n", " errors = np.sqrt(np.diag(c_inverse))\n", "\n", " # Store the results\n", " SNR_values[i, j] = SNR\n", " parameters_uncertainties[i, j] = errors\n", "\n", " SNR_mean = np.mean(SNR_values[i], axis=-1)\n", " SNR_std = np.std(SNR_values[i], axis=-1)\n", " print(\"SNR=%.2e +-%.2e \\n\" % (SNR_mean, SNR_std))\n", "\n", " to_save = {\n", " \"T_obs_values\": T_obs_values,\n", " \"SNR_values\": SNR_values,\n", " \"parameters_uncertainties\": parameters_uncertainties,\n", " }\n", "\n", " np.savez(save_path, **to_save)" ] }, { "cell_type": "markdown", "id": "7542705d", "metadata": {}, "source": [ "### Compute means and stds" ] }, { "cell_type": "code", "execution_count": 6, "id": "cc04418c", "metadata": {}, "outputs": [], "source": [ "# Mean and std of the SNR over the realizations\n", "SNR_mean = np.mean(SNR_values, axis=-1)\n", "SNR_std = np.std(SNR_values, axis=-1)\n", "\n", "# Mean and std of the uncertainties over the realizations\n", "uncertainties_means = np.mean(parameters_uncertainties, axis=1)\n", "uncertainties_stds = np.std(parameters_uncertainties, axis=1)" ] }, { "cell_type": "markdown", "id": "65963783", "metadata": {}, "source": [ "### Plot the scaling of SNR with T_obs" ] }, { "cell_type": "code", "execution_count": 7, "id": "c67b6dfe", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHpCAYAAAAf5apCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+eUlEQVR4nO3deXhTVf4/8HeSZumetrRQ9qYtiopIA4gbX8VWRxZFpwX3vS3qqKMjFHR0ZnQUizo/R3Gwxd1RgRZXUMcWFxwFpjQCbkiblL0UaJvu2e/vj5BLQ9M1aZO079fz9LHNXXLicxPuO+ecz5EIgiCAiIiIiIjIC1J/N4CIiIiIiIIfgwUREREREXmNwYKIiIiIiLzGYEFERERERF5jsCAiIiIiIq+F+LsBg0FpaSlKSkpgNBphMBiQlZWFnJwcfzeLiIiIiGjAMFh4qbS0FDqdDvn5+QAAo9EIrVaL8vJyFBQU+Ll1REREREQDQ8J1LLyTlZWFoqIit8cKCwuRm5sLvV4PjUbjp5YREREREQ0czrHwUnFxMfLy8twemzp1KgBnbwYRERER0VDAYOGlzMxMJCcn+7sZRERERER+NaTmWOTm5iIrKwvp6eld7mc0GrF8+XIAQFxcHPR6PTIyMpCZmdlh31OHQQHA9u3bAaDb5yEiIiIiGiwGfbAwGAwoLS1FQUEBdDodsrKyutzfNfm6qKgIaWlp4uO5ubkoKysTJ2l3JT8/H/n5+ZxfQURERERDxqCevF1YWIiSkhJkZGRAo9EgIyMDJSUlXfYkZGRkIC0tzWOAiImJQVFRUZfHZ2VlITY2lhWhiIiIiGhIGdTBoj2dTgetVttlsDAYDEhOTu60mlNubi4MBgNKSko8Hl9YWMgys0REREQ0JHHydjuuQNDZEKbk5GSUlpbCaDR22FZcXAyj0egWKjztR0REREQ0GDFYtKPT6aBWqzvd7gocrsnZ7Y+rq6vDkiVLxMeMRiPLzRIRERHRkDHoJ2/3hsFgQGxsbKfbXaHDYDC4HbN8+XIsXLgQxcXF4uMlJSXIzc3tt7YSEREREQUSBot26urquqzk5Aod7Yc4abVaGI1Gt1Dh0t1cC7PZDLPZLP7tcDhQV1eHuLg4SCSSXraeiIiIiMi3BEFAU1MTRo4cCam068FODBbt9HRORG1trfh7fX19n59v+fLl+Nvf/tbn44mIiIiIBsKBAwcwevToLvdhsPCjZcuW4cEHHxT/bmhowNixY3HgwAFERUX5sWVERBSMVq1ahaVLlwIAZs2ahbfeeguRkZF+bhURBbPGxkaMGTOmR58lDBbtqNXqHvVaxMXF+eT5lEollEplh8ejoqIYLIiIqMfsdjseeOABvPjiiwCAnJwcrFy5EnK53M8tI6LBoifD9Bks2ulq4jbgnIMBoMvKUURERAOpubkZ1113HTZs2AAAWLFiBR566CHO1SOiAcdys+1oNBoxPHji6s3oaoI3ERHRQLrllluwYcMGqFQqFBUVYfHixQwVROQXDBbtpKWldTkUylVmtrOVu4mIiAba3//+d0yYMAFfffUVMjMz/d0cIhrCGCzaWbhwIQDngneelJWVMVQQEZHf1dTUiL9PnDgRv/zyC2bMmOHHFhERMVi4SUtLQ3p6OtauXetxe3FxMfLy8ga4VURERCcVFBQgKSkJX375pfiYTCbzY4uIiJyGTLBwDWPqrupTUVERiouLO/Ra5ObmYsmSJeyxICIiv3A4HFiyZAkWLVqEtrY2fPDBB/5uEhGRG4kgCIK/G9FfiouLxdWvt2/fDqPRCLVajalTpwIAsrKykJOT0+E4o9GIvLw8qNVqxMXFQa/XIyMjo9/HrjY2NiI6OhoNDQ0sN0tERKK2tjbcdNNNWL9+PQDgb3/7Gx599FFO0iaifteb+9NBHSyCDYMFERGd6ujRo7jyyiuxbds2KBQKvPrqq7jxxhv93SwiGiJ6c3/KdSyIiIgC1NGjRzFjxgxUVVUhJiYGH374IWbOnOnvZhHRAGtpaUF4eLi/m9EtBgsiIqIAFR8fjwsvvBBSqRQbN27Eaaed5u8mEVE/OnbsGL7++mtUVFSgoqIClZWVqKiowNGjR9Ha2gqVSuXvJnaJQ6ECCIdCERERANjtdrHSk9lsRlNTE4YNG+bnVhGRt1paWsSw4PrvggULcPnllwMASkpKcNlll7kdM/6SudBmL0HChDMxIlSGuYmhSItRDFibORSKiIgoCAmCgL/85S/46aefUFRUBJlMBqVSCaVS6e+mEVEPtba2wmq1Ijo6GgDw888/45577kFFRQUOHz7cYf/Y4YmYeNGlAICIscmYMv1cJCWnYHxKKmKnXID9Y7UABNghwaE2BwoMLfj9KDtOj5J7fP5ouRTRcv8UfmWPRQBhjwUR0dBlNptx++2349133wUAbNy4EbNnz/Zzq4jIE6vVit9++03sdWj/c+jQIfzlL3/BX//6VwCAXq9HSkqKeGxsbCxSU1ORmpqKlJQUqM65CIbRU3zWtrmJKswbGeqz87HHgoiIKIjU1tbi6quvxrfffouQkBC8/PLLDBVEfmYymWAwGMTAMHHiRMyZMwcAsHfvXkyaNKnTYw8cOCD+Pm7cOLz99ttimIiNjXXbt8HqQI3Jji+PmlFrcaDW7ECLvevv/WUSYOnpkR63+au3AmCwICIi8qvKykrMnj0bFRUViIqKwvr167kYK9EAEQRBXA/GaDRi2bJlYpA4cOAA2g/suemmm8RgMX78eMTFxSEpKUnseXAFh9TUVMTFxYnnbxOkmDH/WtSY7Piq1Y6aumbUmO1IDg/BzeOdlZ7kUmCn0QpHu7aFyySwOARYPWSMOEVgrnHNYEFEROQnW7ZswZVXXonjx49j7Nix+PTTT3HmmWf6u1lEg4rFYkFVVVWHSksVFRW49NJL8corrwAAQkNDUVhYCIfj5O19ZGSkGBYuuugi8XG5XI7jx4+Lf1sdAo6ZHbAJAuLCnLfXdkHAkl0NaLZ57n1QSe0AgM3HzNhQbeqwvatei6NmB578tcnjNl8PheoNBgsiIiI/kUgkaG5uxtSpU/HJJ59gxIgR/m4SUVCyWq1ieFAqlWKvn9lsRkREBGw2m8fjdu/eLf6uVCqxfPlyJCQkiGEiPj6+wwr3vzVZccTkHL5UY7LjiMmBWosDAoDkcBmWnO6chyCTSKCSStAMAbEKKYYrpRiukmGEyvVfZ+W3mfFKTFZ7nogNALsbrfj2uAW1FgfiFFJcNEzR6cRtwL9DoTh5O4Bw8jYR0dDz7bffIi0tLSgWvyIKBIIgYOXKldizZ4/YA7F3717Y7c4egJkzZ+Kbb74R9x87dizq6urEsDBm5hVwnHMJTKpIxCskmD8mwq18q8ku4KjZjhqTA0dMdkglwJzEkz0AS3cZUe9hfJJKCmgiQnB/6sm5D8fNdkTJpVBIJR32DxacvE1ERBSArFYrHnzwQdx+++2YMsVZBab98Aqioc5ms2Hv3r1uw5UqKysRHx+PN998E4Czp+/pp5/uULo1LCwMKSkpSD7tdOxvPdlDsXFLOaLUakgkEuxutGL9oZPDjmqsQIGhBadHmGFyCKi1ONB0ytClyBCJW7A4I0qORpvQoQciKkTSoXdjmFLms/83wYDBgoiIaAAYjUZkZmZi06ZN+Oijj7Bnz56AX0WXqD/Y7Xbs27cPdXV1mDp1qvj4RRddhK1bt3octjR69Gi3v++44w5YLBa3idOJiYmQSCT45HDbKfMPQoAjzV22aXez56FSADAqVAaHIEB6IjS4JlxTRwwWRERE/Wzfvn2YPXs2fvnlF4SHh2PVqlUMFTQkbN68GT/99JNb74PBYIDVasW4ceOwd+9et/1tNhtUKhVSUlI6VFpq7/HHH3f72+IQUG1yYGSoDOeo5UhQSvHNMTMMLXb0ZMy/FMAFcQpEyyWIlkuhlJ3seRgZKhNDBXWNwYKIiKgflZWVYd68eaipqcHIkSOxYcMGcRgUUTBzOBw4cOCAW6WlxsZGrF69Wtxn6dKl2LJlS4djlUolIiMjYbfbIZM5hwutXr0a4eHhGDVqFKRSzxOQ2+wCjpjsONxmxxGTHdUmB6rb7Ki1OCs5vThFjR1Gq8cqS12+FgDf1lo8bpubqMKYMN4y9wT/LxEREfWTDz/8ENdffz3a2tpw9tlnY+PGjR2GdBAFMofDgZqaGiQmJoqP5eXl4ZNPPoHBYIDZbHbbXyqV4qWXXoJC4ZwMPWvWLMTHx7v1PqSkpGD06NFioHA5/fTTxd+bbY4T4cGBC4YpIDvRY7Bmfyu21nkOAOEyCYxWh1hlqcHqgATOORKuuQ+nzrFw+f0oVaeVlvxZZSnYMFgQERH1A0EQ8Oqrr6KtrQ2/+93vsG7dOkRGel4pl8jfjhw5gl9//bXDOg96vR42mw1tbW0ICXHeNh46dAi//vorAOd6DhqNxi04uKozAcDf//73bp/7YKsNe5ptqG5z9kAcMdndJlBPiAwRS7MmhsoQLZdghEqGRJUMiSopEkOdv7cPEJ2FgbFhIRimlGFjtQlHTHaMUMkwN1GFKe2qQlHfsdxsAGG5WSKiwaWpqQkvvvgilixZIt6UEfmDIAg4fPiw21yHp556Suw1uO6667BmzRqPx4aEhKCyshLjxo0D4BzeV19f7yzdOmYMdjU5sKG6DTUmB4arpJibGOpWvtUhCKizOMRhS9UmO+aNDEXsidWjNxxuwycehi7FKaRIVElxzegwjAqViefifIeB1Zv7UwaLAMJgQUQU3Jqbm/HWW2/hrrvu6lB2kqi/uW7pXNfee++9h+LiYjFItLW1ue1vMBiQlJQEAHjiiSfw1ltvuU2Wdv1EJ45Gi+C5B6CzoUUzhylQa3HguNm5eNypi0/fkxyOs9XO8PFLoxXfHDOf6IWQIvHE4nHtJ1CT/3AdCyIiogF26NAhzJ07Fzt27EBLSwsWL17s7ybRICQIAmpqasSeh/ZDlyorK/HLL79g7NixAICffvoJ77//vnisTCbD+PHjxcDQvhft0UcfxaOPPurxOT853IYN1S29aufm457nQQDAhIgQJKhOzq84I0qOM7pYSZqCB4MFERGRl3bu3Ik5c+bg0KFDSEhIwMyZM/3dJApigiDg6NGjYli46qqrEBMTA8AZAJ588slOj62srBSDxbx585CQkCAGifHjx0Mu7/0NvGsy9FGTHdvqLKg2OXsiuhryIpM4ey3ilFLEK2VQyyXiEKZouZQTogcpBgsiIiIvfPbZZ1iwYAGam5sxceJEbNy4URxeQtQT27dvx0cffeTWA9HY2Chu//rrr/F///d/AICkpCRIJBKMGzfObbiSa/K0RqMRj5sxYwZmzJjRq7ZYHAIOtNqxr9WG/a12TI6WQxPhvF20CsCuhpMLyYXLJLAKAk5UenUTp5Di/GHKXj03BT8GCyIioj5atWoV/vCHP8DhcGDWrFlYv3491Gq1v5tFAUIQBNTW1naotFRRUYGXXnoJ5557LgBAp9N1qJ4kkUgwduzYDkOWrr/+etx4441QKn1z095qc2BbnQX7Wu3Y12JDtcm9J0IuAQ622T2uC9Fi77zP4qjZccrq1yfNTVRh3shQb5tOAYjBgoiIqA9+++033HvvvXA4HLj11ltRUFAg1u6noaWurg4VFRVISkpCQkICAKC4uBjZ2dkwGo0ej/nll1/EYDF9+nTk5ua6lWzVaDQeV2cPDe3bDbnFIeDgiZ6IKLkU2hNVmxwA1hxwn9QdFSLBuPAQjA2TYWKkcz7EZHXnQ6h2N1rx7XELai0OxCmkuGiYotM1IQCuCzGYMVgQERH1wWmnnYaVK1eitrYWDz/8MKtADQFHjhzBl19+6dbzUFFRgfr6egDAm2++iZtvvhkAoFarxVAxevRot+FKqampYqgAgHPOOQcvv/yyz9rpEASxB2Jfqx37W50rVbtGLE2MDBGDRUSIFOfFKRCrkGJcmAxjw0Kglks6XM9dhYGxYSG4bAR7IIjBgoiIqMdqamrQ0tIijmNftGiRn1tEvmQ0GjsMW7rppptw2WWXAXBO0r/hhhs8Hjtq1ChYrVbx7xkzZmDXrl1ITk5GWFhYv7XZ6hBwsM2OVpuAM6OdvQQSAC9UNKP1lKFKkSESjAuT4bRI996EW8eH91v7aGhhsCAiIuqBX375BXPmzIFcLseWLVsQFxfn7yZRHzQ2NsLhcIhzYXbt2oXc3FxUVlbi+PHjHfZPTk4Wg8Xpp5+OmTNnuvU8pKamIjk5GeHh7jfnERERmDRpUp/aqKu3eFxwzhUi9rfrjXD1RAxTSPHkpGgAzvkZZ0aFoM0uYGxYCMaFyzCuk54IIl9isCAiIurGl19+iWuuuQYNDQ1ISUlBQ0MDg0UAM5vN+Pnnnzv0PlRWVuLo0aN4/PHHxTUbQkNDsXXrVvHYESNGuA1bmjVrlrht3Lhx+Oabb7xuX4PVgQarh1JK6Ljg3KE2BwoMLfj9KDu21Fpw2NTxuHCZBCNUUtgcAkKkzuBwpybC63YS9RaDBRERURfeeOMNZGdnw2az4YILLsCHH36IYcOG+btZQ15zc7PbwnCTJk3C3LlzAQBVVVXQarWdHltdXS3+Pn78eKxbt07seYiMjOz3tm8+ZvZYZakrnla3drk4XoErR/XfcCuinmKwICIi8kAQBDz22GNiGdDrrrsOr732msdKPdQ/HA4HpFLnpOG6ujosXrxY7H04cuSI27633nqrGCw0Gg1GjBgBjUbTYdJ0SkoKoqKixOPkcjmysrIG5PWY7AKqTXacHR2CBKUzCPz3uBl7mu3dHisDcMPYUMgk6DCcaWSozPNBRAOMwYKIiMiDJ598UgwVjzzyCB5//HHxJpd8p7W1FZWVlR2GLFVUVGD27NlYvXo1ACAsLAyvv/46BOHkhORhw4aJoeHiiy8WH1coFG69EgPNIQg4ZnbgUJsdh9rsOHjiv8fMzmFMF8cr8PUxS6/OaQfw1v42j9vmJqowJoy3dOR/vAqJiIg8yMnJwdtvv428vDzcfvvt/m5OUGtra4Ner0dFRQXCwsJw+eWXi49HRES4hYX29uzZI/6uUqnw7LPPus2BiImJGZD2d6XF5gwQo0NlCAtxBs/Pjpjw8WHPQ5eiQiQ4LVKOC06sSm1xCJAC4tyIU+dYuPx+lKrTtSG4LgQFCgYLIiKiE+rr68Wb1YSEBPz4449c9K6XBEHAc88957bOw8GDB8Xtl1xyiRgsQkNDkZiYiLa2NrcqS+2HLrX34IMPDuhrac/mEFBjduBgq82tJ8JodYaie5LDcbbaea0kqmSQS5xDlEad+Bl94r+R3YSAsWEhGKaUYWO1CUdMdoxQyTA3UYUpMbwOKfAxWBAREQH473//i/nz5+OZZ57BbbfdBgAMFacwm80wGAwdFogbOXIk3n77bQDO8f/PPvssampq3I5Vq9VITU3F2Wef7fb47t27B2TCdE8JgoAGq7Os6wiVFMOUzvkL5fUWvLa31eMxcQoprO06XSar5XhhihrSPpZ2TYtRII1BgoIQgwUREQ15a9aswS233AKLxYJXXnkFt9xyy5CdT2GxWGAwGGA0GjFjxgzx8WnTpqG8vNzjsKWxY8e6/b1o0SLY7Xa3Xoi4uDiPayh4Gyq6Kt0KOIcWfXvcglqLA3EKKS4aphCHFNkcAo6aHThqtuOoyYGjZgeOmR3iwnJZo0ORPtwZLEaFyqCSAqPDQtx6IUaGyhAqc39dMq4VQUMUgwUREQ1ZgiBg+fLleOSRRwAA8+fPxzvvvDNkQsWmTZvw448/uvU+7N+/Hw6HA0lJSTAYDOK+crkcgiAgIiLCLTCkpqZiwoQJbuf961//OmCvoTelW4+aHc75C12UbgWcK1ePUEkhl54MCKNCZXj+HDUXmCPqAoMFERENSRaLBYsWLcLrr78OAPjTn/6E/Px8yGSDo3Sn1WrF3r173SottbS04LXXXhP3efjhh/G///2vw7Hh4eGIjY11K/f65ptvIioqCgkJCQF1cz0zXonJ6pOTmq0OAVUtdhw32/F9rQVmD50ZCUopsjXhsDgE/KuyBQkqKRKUUiQoZUgKD8GEyBC3UAF0LPFKRB0xWBAR0ZBjs9kwe/ZsbNq0CVKpFCtXrsRdd93l72b1ms1mw+HDh92GIv3xj3/Exo0bUVVVBbvdfX2EkJAQFBQUQC533ohnZGRgzJgxHSZOjxgxosON9KkTqf3JVc612mTH4TY7hillmB7rnJPQbHNgxW/NXR5fZ3Fg7InyrP84R93fzSUaMhgsiIhoyAkJCcHMmTOxbds2rF27FrNnz/Z3k7p04MAB/PLLL25rPFRUVKCqqgoSiQRtbW1iT0tNTQ0qKysBOKsuta+wlJqaCrvdLgYL1zodgc4uCPj8iAnVbXZUmxw4YrLD1m6qhyZchhGqk8PXxofJEB4iwd4WG1o8rD0Xq5Bif6vN43NFy6Us30rURxKhs+LRNOAaGxsRHR2NhoYGt1VBiYjINwRBEL+JFwQBe/fuRVJSkp9bBdjtduzfv18MDnq9Hs8884w4DGnhwoVYt26dx2NVKhUqKiowevRoAEB5eTmampqQkpKCkSNHBsV8Ebsg4KjJ2QPh6oWIkkuxcIxzdWpBEPDgzgZxUjUAyCVAYqgMdkHAobbOJ2/31txEFeaNDPXZ+YiCXW/uT9ljQUREQ8IHH3yA559/Hp9++inCw8MhkUgGNFQ4HA5IJBIx2Lz55psoLi5GRUUFDAYDrFar2/7333+/OMTpzDPPxBlnnOFxrYdRo0a5hQetVjtgr6m3HILgVoL1zb0t2NtiQ43ZAfspX3MmKKVYOMb5u0QiQfpwJUIkEiSqpEgMlSFOIYVUIvGqKpQn7K0g6jsGCyIiGtQEQcA//vEPLF68GIIg4IUXXsCyZcv65bkcDgcOHjzoNmHa9bvBYIBer8eoUaMAONdv2LBhg3isQqFAcnKyGBzaTyJ/7LHH8Nhjj/VLm0/lixt1m0NAncWB4xYHmqzO36tNdoRIJPjzGSe/8TzUZsdhk/O5lFLnwnKJoTIkqpzlXNubk+i5F6G7oUtjw0Jw2Qj2QBANBAYLIiIatGw2G+677z6sWrUKAHD33Xdj8eLFXp3T4XDg0KFDYmhYsGAB1Go1AGDZsmVYsWJFp8dWVFSIwWL+/PkYO3asGCRGjx4dEBWp+qN8q4tM4hz25Frn4coTQ45Ghsqglkv6vKAcEQUGBgsiIhqUmpqasHDhQnz22WfiatAPPPBAr8uGbt26Fe+//74YJPR6Pdra2sTtEydOxEUXXQQASE5Ohlwuh0ajcZs07fq9ffWmc889F+eee65vXqwPnVq+tb1CfQuOWTr2ZrjKtwLAB4fa8EujDUopMEwpxUiVDOPDQ5Coci4m175v4azozockEVHwYbAgIqJB5+DBg5g7dy527tyJ0NBQvPPOO7j66qvd9hEEAdXV1R2GLFVWVmL16tWYPn06AGDHjh145pln3I4NCQlBUlISUlJSxApLAHDLLbfg9ttvR0hI8P7z6mloUXm9Bf89bvYYKgD38q03jA2DTCKBWi7h2g9EQ0zwfvIRERF1wmq1orq6GvHx8XjjjTcQERGBmpoaDB8+HADw3nvvITs7Gy0tLR6P//XXX8VgMWPGDNx7771uvQ/jxo1zCxQuSqWy/17UAKmz2PFroxXDVTIoTiwS92ujFb80ei7PCngq3yqg6cSfLN9KNHSw3GwAYblZIqK+O3ToEL744gux12Hnzp04dOiQGB7efvtt3HjjjQCAL774ApdffjmkUinGjx/vNlwpNTUVU6dORUJCgj9fzoBqtTnwc6MNuxqs+KHeAqsP7wxYvpUouLHcLBERDSqCIODYsWMdqi3dfvvtuPzyywEATz31FP71r391OFYqlWLcuHFwOE4O47ngggvw22+/Yfz48VAoFAP2OgJJs82BLbUW7DJaUdlsQ/tBTiopcEmCEmkxHf/fsHwrEXWGwYKIiAKCIAg4fvw4ZDIZYmNjAQA6nQ45OTmoqKhAY2Njh2POPPNMpKenY/HixfjXv/4FqVSK6667DlqtVuyBSEpK6jBEKTw8HBMmTBiQ1xUo7IKAZpsg3uib7AKKD56chJ6okmJStBxnR8uhiQgRKzediuVbiagzDBZERDSgTCYTduzY4TZh2vXT0NCAv//973jkkUcAAGFhYSgvLwfgXCRtzJgxbnMdZsyYgczMTHz44YcAgL///e9YunQpJw2f0Gxz4KcGK3Y1WPFzgxUTIuW4JyUCADBMKcOFwxQYFSrDpGg54pX+L3VLRMGNwYKIiHyuvr7eLTBotVrMmzcPAKDX63Heeed1euyxY8fE3zUaDT744AOkpqYiOTkZKpVK3HbkyBHMmzcP27dvh1KpxBtvvIFrr722/15UkDjcZseuBit2GS0wtNjRfrrEoTa72+rXN40L908jiWhQYrAgIqI+sdlsYlnVY8eO4cEHHxSDRF1dndu+t99+uxgskpOTMWbMGCQnJ7tNmHaFh9DQk8NsFAoF5s+f3+G5f/75Z8yePRv79+9HXFwcPvroI1xwwQX992IDWPsF5wDgvf2t2NN8skLT6FAZzo6W42y1HOPCZFyEjoj6DYMFERF1qqGhocOEadfvV199NQoLCwE45yz8+9//djt25MiRYnC49NJLxcdVKhX279/vVbtef/117N+/H6mpqdi4cSNSU1O9Ol+wabA68GODFT82WLG70Yq/nxWNyBNzJ9Ji5FDKJJgULcekaDliFZw8TUQDg8GCiGiIa2xsFENDVFQUrrjiCgBAc3Mz1Gp1p8dVVFSIv4eFheGf//wnRo4cKc5/CA/vv2E2Tz/9NJRKJR588EHExcX12/MECkEQcKDNjp1GZ5jY12p32/5rkw3TY50VnC5JUOGSoVMpl4gCCNexCCBcx4KI+pvD4cDy5cvdeh+OHj0qbk9PT0dJSYn4d2JiIgRBcJsw3f73iIiIAWv3G2+8gZtuusnjwnSBrMHqQIPV84rVQM/Kt/7YYMXHh01uj40Pk+FstbNXYkyojBPWiahfcB0LIqIhqLm5GZWVlR2GLI0dO1YcpiSVSvHPf/7TbYI0ACQkJCAlJQVTpkxxe9xgMLjNefAHk8mE2267DWvWrMHWrVvF4VfBYvMxMzZUm7rfEcBRswPrD5mAQ53vf3Z0CG4cF871IYgo4DBYEBEFkdbWVlRWVqKpqcltsvKkSZPw008/eTxGo9G4/X3vvfdCIpGIvQ8pKSmIjo72eKy/Q8Xx48dx1VVX4fvvv0dISAjOP/98v7anL2bGKzFZ7bmXZbWhBUfNnnszxoXJcOO4MPFv1yTtaLmUoYKIAhKDBRFRgPrss8/w448/uvU+HDp0CACQmpqKPXv2iPu65jPExcV1GLJ06kJwjz766MC9CC/s2bMHs2fPhl6vR3R0NN5//33MmjXL383qtc6CgEMQOg0VUgC3jg/HyFCuLUFEwYPBgojID9ra2mAwGNxCg9lsxhtvvCHu89hjj2H79u0djo2JiUFCQgIEQRDH1b/33ntQq9WIiYkZqJfQr7799lvMnz8fdXV1GD9+PD799FNMnDjR383qs2abs4rTwVY7ssY4eyGkEgmUUuDUbCEBMDJUxlBBREGHwYKIqJ+YTCYcOnQIycnJ4mN33303NmzYgIMHD+LU2hkKhQKvvvoqZDLnDeUVV1yBCRMmdJgw7akKUlJSUv++mAHU3NyMa665BnV1dZg+fTo+/vhjDB8+3N/N6rUak7OKk85owd52C9WdHhUi9mDMSlDisyNmt+MEAOfGyrG/1QZPOBSKiAIVgwURkZcMBgN+/vlnt5WmKyoqcODAASgUCrS2tkIqdd4I1tbW4sCBAwCA6Ohot2FLKSkpsNvtYrB4/PHH/faa/CkiIgJvv/023njjDbz22msICwvr/qAAUlZnwYbqNhwxeR7mtLKypdtzdDWBe26iCvNG+nfuCxGRJyw3G0BYbpYoMFksFlRVVYmBwWAw4J///KcYFjIzM7F+/XqPx0ZGRmLPnj0YMWIEAOCHH35AW1sbUlNTMWzYMJYIPcFisUCv1wfdcCezXcCvTVaMDpVhmNIZCLfXWbC6qgVSAKdFhmBCZAjGhMl81svAHgsiGkgsN0tE1EtWqxUhISHijf4rr7yCoqIiVFRUYN++fXA43L99Xrp0KUaNGgUAmDx5MvR6vThcqf1PfHy8W3g4tZwrAfX19fj973+PXbt2YcuWLQG/irZr1esdRueq11YBuHKkCnMSnb0IZ0bLcWdSOM6KliNUxuBIREMHgwURDRk2mw179+51G67kWvNh7969OHDgABITEwE4KxJ98cUX4rHh4eFucx1cw5UAZ5WlYKm0FGiqqqowe/Zs7N69GxEREThw4EBABguTXcBXR03Y2WB1my8BAHEKKZTSkwEiVCbBtBOrYBMRDSUMFkQ0qNhsNuzbt08MDDfeeCPUajUAIC8vD//4xz86PbaiokIMFpmZmTjttNPEIDFixAgOW/Kxbdu2Yd68eTh27BhGjRqFjRs3YvLkyf5uFgDnmhH1Foc4vClEAnx+xATXtInxYTJMVssxWa3ASJWU1wYRERgsiCjI/fe//8X69evFHoiqqipYrVZxe1pamrioWkpKClQqlVvPQ/tqSyNHjhSPmz59OqZPnz7gr2eoWL9+PW688UaYTCZMmTIFn3zyiTi0zF9MdgE/N1qx02jFjw1WhIdI8MSZUZBIJAiRSjA7MRShMgnOjpZDreAcByKiUzFYEFFAstvtOHDggNjz0P7n7bffxrRp0wAAO3bswPPPP+92rEqlQnJyMlJTU6FUKsXH77jjDuTm5oqTrsk/PvnkE2RlZUEQBMyZMwdr1qxBREREj49vsDrQYPVccam3Gq0OHGyzY0+TDb812WBrN8ZJAqDRJiBa7uyNuHyEyifPSUQ0WDFYEJHfOBwOHDx4EBUVFTjrrLPEtQreeustZGdnw2KxeDxu9+7dYrC44IIL8Kc//cmt92HUqFEew4NCwXHvgSA9PR0zZsyAVqvF888/7zZfpSc2HzNjQ7XnUqzeSlBKnUOcouXQRIRAxiFOREQ9xmBBRANi//79+Pzzz916HvR6Pcxm5+Jg77zzDq6//noAwLBhw2CxWCCXy8Weh/bDl9pXVpoyZQorLQWBlpYWhIaGQiqVIjQ0FJs2bUJoaN/WYpgZr8RktbzT7T8ZrfjoRPCIV0hxYbwCoTIJ9jTZsKfJhvmjVBgT5vznT99sw5ZaC9JiFJgcLccIzpcgIuozBgsi8prD4cDhw4fdqixVVFRg0aJFuPzyywEAO3fuRG5ubodj5XI5NBqN22P/93//B4PBgLFjx/b622wKPAcOHMDcuXMxd+5cPPnkkwDQ51ABdL2Og67eIoYKADhmceCDUxaaqzE5cMEw5z9/Y8NCcEkChzgREfkCgwUR9YggCKiuroZCocCwYcMAAGVlZbjjjjtQWVmJtra2DsdotVoxWJx55pmYM2eOW89DSkoKxo4di5AQ94+i8PBwJCUl9f+Lon73ww8/YO7cuTh8+DCOHj2KBx98EHFxcf32fBuqO16HACAFcP4wZ6/E6VGd93YQDRY6nQ5arbbPx3P9ZOoLBgsictPa2ory8vIOaz1UVlaipaUFTz31FJYtWwbAGQB+/PFHAIBMJkNSUpLbsKX/+7//E8+r0WiwYcMGv7wm8o8NGzbg2muvRUtLC84880xs3LixX0JFm13AEZMdSeEhqDF5ntQtlQA3jQv3+XMTBaq8vDyUl5cjLS3N302hIYTBgmiIEQQBR48edQsN5557Lq688koAgF6vx8yZMz0eK5VKUV9fL/6dnJyMTz/9FKmpqRg3bhzkcn4TTE4rV67E/fffD4fDgfT0dBQXFyM6Otqnz7G/1YbNx8z4X50FSqkET58djeEqKQ61uYcLCYARKg6po6FDp9MBAEMFDTgGC6JBSBAEWCwWsdRqTU0N7rvvPjFINDU1ue2fnZ0tBovk5GRoNBpx0nT7n/Hjx7tVVlIqlbjiiisG7oVRUMjLy8OKFSsAOEv8rlq1ymeh0+IQUFZnweZjZuxttYuPxygkqLM4MDcxFAWGFvFxCQABwNxEzqOgoWP58uXIy8vzdzNoCGKwIApSgiDg+PHjbj0P7X+/7rrr8PLLLwNwDllat26deKxEIsG4cePEIUuzZs0St4WFhUGv1w/466HB4+yzz4ZEIsGTTz6JpUuX+qzKUnm9BW/va0Wb3Tn2Wwrg9KgQaGPkGBMqQ5tdwDClFFclqsQJ3MMUUsyMVyBOKcX+VpvH83Y1GZwo2BgMBhgMBqSnp4t/a7VaxMbGIi0tDbGxsQCA0tJSABAfq6urE48tKioSjyfqDQYLogAmCAJqa2vF0BATE4O5c+cCAJqampCQkNDpsZWVleLvEREReOmllzB69GikpqZCo9G4LRxH5C1BEMQAccMNN2DKlCk444wzvDqn1SHAZBcQeeKmP0EpRZtdQJhMgla7AAeAXxpt+KXRc2AAnFWh1h8yAYc6X/dibqIK80b2vUoVUSDJz89Hfn6++HdxcTFycnLcHgOcXzBlZmaiqKjI7XGtVtuhUh9RTzFYEAUQu92OJ554wm3itNFoFLdfdtllYrCIiorC8OHDoVAo3KosuX4/9R+Gu+++eyBfCg0hP/30E+6++26sXbsWiYmJAOBVqDhmtmPzMTO+r7XgrCg5bktyTroeExaCxadFIk4hQZPNdxVr2FtBg4XRaMT27dtRUFAgPqbX693+Bk7OwcjIyOhwjvT0dAYL6jMGC6IBYjQa3QKD6yc5ORnvvvsuAGdlpZUrV6K2ttbtWFdPw/Tp090e379/P1eTJr/64osvkJWVhcbGRjzwwANYs2ZNn85jFwTsMlqx+bjZrQfC0GKDXRDEFbBTIpz/bMXwsifqIC8vT6zaBziHQWVlZXXYzzUMytNwp/4sB02DH4MFkQ81NDSgoqICLS0tbqVWJ0yYgIqKCo/H1NXVuf394IMPQiaTiT0PycnJCAsL83gsQwX50yuvvIJFixbBbrfjoosuwksvvdSn83x91ITPjphgtDp7ISQAzogKwcx4JSZFy8VQQUSdMxqNKC0tdeudMBqNHsNDSUkJ1Gq1x54JVpIibzBYEPXRRx99hB9//NFtwvSxY8cAAKeddhp2794t7qtWqwEAiYmJbsOVUlNTMWHCBLfzPvzwwwP2Goj6wuFw4M9//jOWL18OwDmn4tVXX+3xvB3HiYW3pCcCQ6tdgNEqIDJEgguGKXHhMAXilSwPS8HFaDQiOzsbOp0OdXV1WLBgAfLz88XPf5e8vDwYDAbExsZ2GKLkDU+VoDoLCaWlpcjJyfG4jZO2yRsMFkQeNDU1daiyZLPZ8Pbbb4v7PP744+I41faGDx+OUaNGuU1mLS4uRkxMDCIjIwfsNRD1B5PJhFtvvRVr164FADz22GP461//2qPKT41WB747bsa3xy34/ehQaE+MZ7pwmBLxShmmqOUIkbJ3goJTdnY28vPzodFoYDAYkJubi6SkJJSXl0Oj0cBoNCIrKwv5+fm97hUoLi6GWq3u8qa/uLi4RxX9uppfQeQtBgsaspqbm3Hw4EGcfvrp4mN33nknNm7ciCNHjnTYX6lU4s0334RU6pzoOW/ePEyaNMmt9yElJcVjeBg7dmz/vRCiAWQymfDjjz9CLpfjlVdewc0339zl/oIgYE+zcyG7H4xWnKgUi621FjFYRMmlmBbLYX0UvAoLC8VQAQAajQYlJSXQarXIyMhAeXk5srKyUFBQ0OuJ0StWrMDy5cuh0WhQXl7e6T65ubk9Ol9X8yuIvMVgQYPenj17xCFL7XshqqurERoaiubmZjEsNDQ0iKFi2LBhHRaIs9vt4r5//etf/fWSiPxGrVZj48aN2Lt3Ly6++OJO93MIAr48asbmY2bUmE+uhJ0ULsPMYUpMZZCgQcRoNHoMDJs2bUJSUhK0Wi3y8vJ6HSp0Oh1ycnJQW1uLFStWQKfTeeztKCgo6PH6QyUlJdBoNB2GaBH5gkQQBN/V7COvNDY2Ijo6Gg0NDYiKivJ3c4JGa2sr9Hq9GBz27t2Ll156SRyacc011+CDDz7weGxcXBx+/fVXxMfHAwB27twJq9WKlJQUfujSkNFgdaDB6uh0+9ZvN0O/ZzduuMPzmOxTuRacW7G7EfoWO5RS4NxYBS6KV2JsGL/PosFnxYoVWLJkicdtxcXFyMrKQklJSZ97CYxGI2JiYjyuO1FYWAij0djp859KIpEgJyfHp/M7aHDrzf0pP+EpKJhMJiiVSjEsrFq1CkVFRaioqMDBgwc77P/oo4+K9fTT0tJw+PDhDus8pKSkICYmxu24yZMn9/+LIQowm4+ZsaHa8wJyFZ+uwzeP3wuH3Ybv5KMwatrMbs/nWnDuisRQ1FkcmB6rQKiMcydoaKqrq4NarUZWVhaqqqr69KWVWq1GTk4OCgsLYTAY3Ho+8vPzOx0idSrXMCjOr6D+wmDhAwaDAfn5+UhOTgZw8gOAesdkMsFgMLhNmHb9fvDgQRw5ckRcaVqv1+Orr74Sj1Wr1W6BQSY7WVHmz3/+M/785z8P+OshChYz45WYrJa7PSYIAv65/O/46snHAQBJs+Zh+KRpWDwhAooTIeGIyQ5dvRU/N1phOdHhcWmCEjPjndWhJkW7n5NosFKr1TAajR1Cg8FgQFFREaqqqpCUlIRLL720xyHgVHl5eeJcDldvQ3FxMTIzM3scVkpKSgBwfgX1Hw6F8pLBYIBWq3X7FiIvLw9xcXE97pZ0GQpDocxmMwwGgxga7rjjDkRHRwMAHnjgATz//POdHvvdd9/h/PPPBwCUlZVh9+7dYpCIi4vrUVUaIuqe2WxGdna2WAXtvudXo+2CayCRSJCokuL0yBDsbbWjqsUuHjNcKcXMeCXOi1MgPIQrWdPQk5eXh/z8fPFvnU6HvLw8FBUVQa1Wi/cLU6dOFR/rrYyMDJSWlqK+vh5qtRparRabNm3q8bm0Wi2MRmOP52MQAb27P2Ww8FJubi7UarXbh4lrLGRv/9cOxmDx1VdfoaioSAwS+/fvh8Nxciz3li1bMGPGDADASy+9hGXLlnWYMO0avjRs2DCGB6J+VldXh2uuuQbffPMNZDIZnnz3IxiSz/e4r0wCTFHLMTNeiQkRIXx/0pBmNBrFdSTq6uqg0Wjc7g3a77Nu3bouqzx1prS0FBkZGWIFqpKSkm7nShQWFqK8vBwGg0EcCuUaVdGXCeU09DBYDKCYmBjk5+d3GPokkUh6PVErmIKF1WpFVVVVhyFLlZWVWLduHbRaLQDghRdewP333+92bEREhBgYHn74YZxzzjkAAJvNBplMxpsTIj967bXXcMcddyAyMhJFRUX4btQMt6pOLlEhEjx6RhSi5OydIBpIWq1WnGdRVFTEYED9jpO3B4jRaOy0xJxarYZOpwvqcYxWqxV79+5FRUUFtFothg8fDgB49dVXkZubC7vd7vG43377TQwWF110kVsvREpKCoYPH+4xPISE8HIk8rfbbrsNBw8exCVX/R6VUeNRU2fxuF+rXWCoIPKDZcuWISsrCxqNhqGCAs6QupPLzc1FVlZWtzf7RqMRy5cvB+AsR6rX65GRkYHMzEy3/QwGQ6fniI2NRW1trfeNHiBVVVXYsGGDWw9EVVWVGB7WrFmDhQsXAnCuLG232xEWFuZWZcn1M2nSJPG8U6ZMwZQpU/zymoioZzZs2IALL7wQarUa9VYBSbf8Ce8et8DRSaiQABihknncRkT9KzMzE2lpaR2GWREFgkEfLFxjCgsKCqDT6ZCVldXl/kajEVqtFkVFRW6L0OTm5qKsrKxXb2Sj0djXZg+4Xbt24b777uvweGhoaIcqS7NmzcKhQ4eQmJjIYUtEQUwQBKxYsQJLly5Fxpx5uHXlu/iuzgrbiQGyZ0aF4LTIELx/6GQpWgkAAc6SskTkH32tLEXU3wZ1sCgsLERJSYk40akndZuzsrLEbwPaKygoQExMDDIyMsQej66qMNTV1XnV9oF21llnYf78+R0mTI8cOVJcadolLCwMYWFhfmopEfmC1WrFPffcg9WrVwMATp8wAT802GATgAkRIbhqVChSIpz/RMTIpXh1bysAIFElxZUjQzElhitnExGRu0EdLHJycsRJ1Tqdrtv92/dueLJgwQLk5+eLwSI2NhaA554JT/WsA1lycnKnq1MT0eDS2NiIhTfdgoNhwyGVyfD//vEP3HfffdDVWxAqk+D0SPcKT5PVCgDOYLH09CgoudgdERF5MKiDRW+5AkVnk6GSk5NRWFgohgbXT2e9E1zZkogCjX7fAfzh5fcw/I//wNgoNf5w+y249uJzsb/VhmFKZ+/kgTb3wgwW+8nigQdabeICeZ2JlksRzYndRERDDoNFOzqdrsteBlfg2L59u9hrsWDBgg4LzbgmdQdzRSgiGlwsDgHfHDXhvSobxmZmAwBiYMFF507F5mNmbKg2dXMGp2f2NHe7z9xEFeaNDPWqvUREFHwYLNoxGAzi8CZPXKGjfTWovLw8cQ6HS0FBQbcL1gDO1W3NZrP4d2NjYx9aTUTUOYcgYPMxMz49YkKDVYA8Ug3zscNYoInB71ITIZVIMCpUhslquc+ek70VRERDE4NFO66VMjvjaU6Fa4GavLw8TJs2DQaDAXFxcR0WzPNk+fLl+Nvf/uZ1u4mIOiMB8NWhRjQ45IhVSDE3UYVzp0xESLuiDBy6REREvsBg0U5Py8Oeuj5FWlpahypSPbFs2TI8+OCD4t+NjY0YM2ZMr89DROTiEARsr7diUrQcCjjw4IMP4oOtO/HY8y/hlilnQC7lxGsiIuofDBZ+pFQqoVQq/d0MIhoEBEHAD0YrPj7chmqTA5cPk+HN+27Cxx9/DABo2/4l5Oed6edWEhHRYMZg0Y5are5Rr0VcXFz/N4aIglaD1YEGq8Nn5+tqqJIgCPip0YaPDrWJ1ZxUEgGrV76Azz/+GEqlEm+//Xa3i4MSERF5i8Gina4mbgMnF70LpvUpiGjg9abKUk90VmVpd6MVHx5uQ1WLM1AopcDZaMRT181G1W+/ID4+Hh999BHOO+88n7WFiIioMwwW7Wg0Gmzfvr3T7a7ejK4meBMRzYxXdlllyWIXxLKtiydE9GhdCE+21FpQ1WKHXAJckqBEcvNBzJw+FU1NTTjttNPw6aef8vOKiIgGDINFO2lpaSgtLe10O9enIKKe6K7KkrndgnNjwkJ6vJL13hYbwkMkiFfKAABzR6oQFiLB70aoEC2XwuFIwezZs3HkyBG8//773fbCEhER+RLrC7azcOFCAM6F8jwpKytjqCCiAXeozY5V+mYs392Ejw61iY/HK2XIGqWCymEFAEilUrzxxhv4z3/+w1BBREQDjj0W7aSlpSE9PR1r1671WD62uLgYJSUlfmgZEQ1FR0x2bDjchu31VghwrkkRIpXAIQiQSiRoa2vDzTffDKlUivfeew9SqRQqlcrfzSYioiFqyAQL1zCm7qo+FRUVQavVYuHChW7hIjc3F0uWLGGPBRH1u2NmOzZWm7C11gLXoCltjBzzEkORGOocBnX06FFcddVV2Lp1K+RyOXbs2NGn9XSIiIh8ZVAHi+LiYhQUFACAOCk7OztbfCwrK6vDCtlqtRrl5eXIy8uDWq1GXFwc9Ho9MjIykJmZObAvgIiGpLI6C7bUWgAAk6PlmDdShTFhJz+ud+/ejdmzZ6OqqgoxMTH44IMPGCqIiMjvJIIgCN3vRgOhsbER0dHRaGhoQFRUlL+bQ0T9xGwXcN8OIwDghXPUMDsENNkEjDrRG2GyC3hrXwsyhquQFO7+/c/XX3+Nq6++GkajERqNBp9++ilOO+20gX4JREQ0RPTm/nRQ91gQEQWinUaL+PvDPzbA5BCQqJLhkYmRkEgkUMkkyNFEdDhuzZo1uPnmm2G1WnHeeefho48+Qnx8/EA2nYiIqFOsCkVENIB09Ra8urdV/LvZLsAmOHspmmxddyCPHj0aEokEWVlZ2LRpE0MFEREFFPZYEBENoOKDrR4fV8qAqC7WvgCACy+8EFu3bsXkyZMhlfJ7ISIiCiz8l4mIaID80mhFrcVzr8QRk6PDY3V1dZg3bx527dolPjZlyhSGCiIiCkjssSAiGiCnR4ZAIQUsp2QICYARKpnbY3q9HrNnz8aePXtQVVWFXbt2MVAQEVFA479SRET9ZG+LDSsrm2GyO3sppBIJbh0X5raPBIAAYG7iyYXtvv/+e8yYMQN79uzBmDFjsGbNGoYKIiIKePyXiojIx9rsAt7b34qndzfhxwYrPq1uE7dpY5W4Y/zJcJGokmKRJhxTYhQAgHXr1mHWrFk4fvw4tFottm3bhrPOOmvAXwMREVFvcSgUEZGPCIIAndGKtQda0WB19lKcG6tA+nCV236T1QoAzkncS0+PglImgSAIyM/Px7JlywAAV155Jd59912Eh4cP6GsgIiLqKwYLIiIfOG624739rfip0QYASFBKcf3YMEyMkvfoeLvdjk2bNgEA7r//fjz33HOQyWTdHEVERBQ4GCyIiHzgk8Mm/NRoQ4gEuHyECleMUEEulfT4+JCQEBQXF+Ojjz7CzTff3I8tJSIi6h+cY0FE1EcO4WTp2GtGh2JytByPnhGFK0eG9ihUNB85iOeeWQHhxHmio6MZKoiIKGixx4KIqJdabA58cKgNbXYB2ZoIAEC0XIq7UyJ6fI5jv+7A53+8Du/W1iBWHY1Fixb1V3OJiIgGBIMFEVEPCYKA/9VZUHSwDU02Zy/DFa02jA7r3Ufphk8+xifZ18NmasVZkyZhzpw5/dFcIiKiAcVgQUTUAzUm5+TsX5uck7MTVc7J2b0JFYIg4IUXXsADDzwAQRAw5vxL8eWG9YiPie6vZhMREQ0YBgsioi5YHQK+qDHh02oTbAIQIgHmJKpw2XAVQnoxOdtms+GBBx7AypUrAQATr7kVFyxZgaioqP5qOhER0YBisCAi6oJdAL49ZoZNACZGhuD6sWFIUPW+DOz//vc/vPTSSwCA5fkrYJh1BySSngcTIiKiQMdgQUR0ihabA6EyCaQSCVQyCW4cF45Wu4BpMfI+h4Hzzz8fL774IoYPH455V/8e9+0w+rbRREREfsZgQUR0giAI+L7WgvUH23D1qFBcFK8EAJwV3bNF7k61a9cuREVFYfz48QCAe+65BwBgtgtdHEVERBScuI4FERGA6jY7ntvTjLf2taLF7qz+JAh9DwCff/45LrjgAsyePRtGo9F3DSUiIgpQ7LEgoiHN4hDwWbUJ/6kxwS4ACikwNzEU6cOVfR72VFBQgHvuuQd2ux0jRozwKqAQEREFCwYLIgpoDVYHGqwOn50vWi5FtNzZWVvZbMMbe1twzOw8/6RoOa4dE4phyt5PzgYAh8OBvLw8PPvsswCAW265BYWFhVAoFL5pPBERUQBjsCCigLb5mBkbqk0+O9/cRBXmjQwFAMgkwHGzA2q5BAvHhGGKuu+Ts1tbW3HzzTdj/fr1AIAnnngCjzzyCCs/ERHRkMFgQUQBbWa8EpPVnU+ettgFPLOnGQCweEIEFLLOb+QFQUCz7eTfSeEhyNaE44woOUK7OK4n/vjHP2L9+vVQKBR4afWruCzzWhxos3faZpcDrbYu2wy497IQEREFKgYLIgpo3d1Ut6+wNCYsBMpObtIPtdnx7/2t2N9qx6NnRGHEibUotDG+Gab0t7/9Ddu3b8c///lPGJOn4slfm3p0nCsUdaV9LwsREVGgYrAgokHNbBewoboNpTVmOAAopc4KUCP6sMjdqfbv34+xY8cCABITE1FeXg6JRIIGq6PLXpbeYm8FEREFAwYLIhq0fmyw4r39rai1OCdnn6OW49oxYYhReH+j/uabbyI7Oxuvv/46brjhBgAQ51Nw6BIREQ1F/JePiAal16tasLKyGbUWB2IVUtydHI67kiO8DhWCIOCxxx7DrbfeCqvVii+++MJHLSYiIgpu7LEgoqC202gRf396dyPmjQxFWowCiaEySAFcOlyJuYmhUHk5ORsAzGYzbr/9drz77rsAgIcffhhPPPGE1+clIiIaDBgsiCho6eoteHVvq/j3YZMDBYYW5GqAjOFKTIqWY1So93MpAKC2thZXX301vv32W4SEhKCgoAC33367T85NREQ0GDBYEFHQ2lDd1uExCYCN1SakxSh8Fiqam5tx/vnnY8+ePYiKisL69euRnp7uk3MTERENFpxjQURBq8bUcUVuAcARk+f1I/oqIiICmZmZGDt2LL7//nuGCiIiIg8YLIgoaMV6mIgtAXxSShYArFar+PsTTzwBnU6HM8880yfnJiIiGmwYLIgoKDVaHWhttzge4AwVApwLynlDEAQ89dRTuPjii9HW5hxuJZVKERcX59V5iYiIBjMGCyIKOlaHgJf1zWi2CYgKOVntKVElxSJNOKZ4sZq21WpFdnY2HnnkEXz//fcoLi72RZOJiIgGPQYLIgo6rXYBbXYBoTIJ7k2JEB9fenqUV6HCaDTiiiuuwKuvvgqpVIqVK1fipptu8kWTiYiIBj1WhSKioBMtl2LJ6VGoMdkx3EfzKfbt24fZs2fjl19+QXh4ONauXYs5c+b45NxERERDAYMFEQWNJqsDkXJnR2uoTILx4SEwnzLPoi90Oh1mz56NmpoajBw5Ehs2bMCUKVO8Pi8REdFQwqFQRBQU9rfa8MhPDfjPERMEwfsw0V5UVBRsNhsmT56Mbdu2MVQQERH1AXssiCjgNVgd+FdlM8wOYHeTFRnDlZB0f1iPpaSkYNOmTdBoNIiMjPThmYmIiIYO9lgQUUCzOAT8q7IZ9VYBI1RSZCeFQyrxLlbYbDbcd999+Pzzz8XHJk+ezFBBRETkBQYLIgpYgiDgrb0t2NtqR7hMgj+kRCAsxLuPraamJlx11VV48cUXce2116Kurs5HrSUiIhraOBSKiALWxmoTyuqtkAJYlByOeKV3FaAOHTqEuXPnYseOHQgNDcXrr7+O2NhY3zSWiIhoiGOwIKKAtL/Vhk+qTQCAG8aFYUKk3Kvz7dy5E3PmzMGhQ4eQkJCATz75BNOnT/dFU4mIiAgMFkQUoMaGheC6MaGoNtkxNkyG/a02j/tZ2pWbPdBqg0LWcf7Fl59/hj/ccj1amptx2ukT8flnn2L8+PH91XQiIqIhicGCiALWxQkqfHK4DU/+2tSj/Z/Z0+zx8W/f/QAtzc0YOW0m/vLmGowfn+jLZhIREREYLIgogJjtAt4/1IYrR6oQfmKS9sx4JSarvRsGZX31Jbw57QzcnHs34sNVvmgqERERnUIi+HqlKeqzxsZGREdHo6GhAVFRUf5uDtGAcggCCg0t+MFoRXK4DItPi4Skj2VlW1tb8cILL+Chhx5CSAi/PyEiIuqr3tyf8l9cIgoIHx824QejFSES4JrRYX0OFUeOHMGVV16JsrIyHDlyBM8//7xvG0pEREQeMVgQkd9trTXjsyPOClA3jgtDSkTfPpp+/vlnzJkzB/v27UNcXBwyMzN92UwiIiLqAhfIIyK/0jfb8Pa+VgDA5cOVOC9O2afzbNq0CRdccAH27duH1NRUbNmyBRdeeKEvm0pERERdYLAgIr+pNduxSt8MmwCco5Zj/qjQPp3n9ddfx+9+9zs0NDTgwgsvxJYtW5Camurj1hIREVFXGCyIyG8sDkAhlWB0qAy3jQ+HtA/zKqqrq/GHP/wBNpsN1113HUpKShAXF9cPrSUiIqKucI4FEflNYqgMS0+PhF0AVB4WtuvRORITsWbNGvzvf//D3/72N0il/L6EiIjIHwas3OwzzzyDmJgY3HnnnQPxdEGJ5WZpqDhutmOYUtb3448fx6FDhzB58mQftoqIiIhO1Zv70wH7am/x4sXIysrCs88+O1BPSUQB6LvjZjz2cyO+O27u0/EVFRU477zzcNlll6GqqsrHrSMiIqK+GtAxA9HR0VCr1QP5lEQUQPY0WfHO/lbYBaDW4uj18d9++y1mzJiByspKhIWFwWQy9UMriYiIqC/6FCy+/PJLLFu2DK+88goaGxt7fFxjYyOKior68pREFOSOme14Wd8CuwBoY+SYm6jq1fHvvvsu0tPTUVdXh+nTp2Pr1q2YOHFiP7WWiIiIeqvXk7fvuusuFBYWin8vWrQIJSUluOSSS9z227FjB7Zv3w69Xg+DwQCdTgeDwYCcnBzvW01EQaXNLuClyma02AWMC5Ph1l5UgBIEAU8++SQeffRRAMA111yDt99+G2FhYf3ZZCIiIuqlXgWLZcuWoaCgABqNRvzmsKSkBOnp6TAYDBg3bhwaGxuh1WphMBgAOG8KXNLS0rBq1SrfvgIiCmh2QUChoRnVJgfUcgnuTo6AQtrzClCrVq0SQ8VDDz2E/Px8Vn4iIiIKQD2uCtXQ0ICkpCQUFxdj1qxZbtvy8vKwd+9erF27FrGxsWLwcNWSV6vV0Gg0uPTSS33/CgYRVoWiwWhLrRlv7G2FXAIsOT0SY8N611Ha0tKC9PR03Hzzzbjrrrv6qZVERETkSW/uT3scLJYtWwaNRoPs7GyP2xcsWIDk5GQIgoCnn366960mBgsalARBwIZqE0aFypAWo+jRMTU1NUhISIDkxHApu90Omazv5WmJiIiob/ql3KxOp+s0VABATk4OiouLGSqIyI1EIsG8kaE9DhXbtm3D2WefjSeeeEJ8jKGCiIgo8PlsoPK0adMwZcoUX52OiIJYjcmOt/a2wGzv3fqb77//Pi6++GIcPXoUH374IcvJEhERBRGfBYvo6GhMmzbNV6cjoiDVYnPgpcpmfFdrwbqDrT06RhAEPPfcc8jMzITJZMLs2bPxzTffQKXqXUlaIiIi8p8eB4ueTMWQdFM+sqGhAe+//35Pn5KIgoyzAlQLaswOxMgluGpkaLfH2Gw23H333XjooYcgCALuuecefPTRR4iMjByAFhMREZGv9DhYdBcaeqKurg5lZWVen4eIAo8gCFizvxW7m2xQSoF7UiIQJe/6I0YQBGRmZuLll1+GRCLBP/7xD7z44osICen1EjtERETkZz3+17usrAyvvvoqYmJiutynsx4J15oXGo2m960kooD39TEzNh+3QALgjqRwjOlBWVmJRIL58+ejpKQE77zzDubPn9/v7SQiIqL+0eNys1KptNteC0EQOt3HtW3JkiVYvnx571s6BLDcLAWrnxuseLGyGQKAa0aF4vIRXc+NOLV87OHDhzFy5Mh+biURERH1Vm/uT3s13uDpp5/uc4+Dq8eCiAYflUyCiBAJJkXLcdlwZZf7btiwAQ8//DBKS0uRkJAAAAwVREREg0CPg0VaWhoWL17s1ZOlp6ejsLDQq3MQUeBJjgjBwxOjEBki6bJnc+XKlbj//vvhcDiQn5+P5557bgBbSURERP2px5O3c3NzvX6y2NhYTJ061evzEJH/2RwCjpjs4t+xCinkUs+hwm6344EHHsC9994Lh8OB22+/nYtpEhERDTI9nmNB/Y9zLChYCIKAt/e1Ynu9BXckhWOyuvNVtVtaWnDjjTfiww8/BAA89dRTWLp0qU8qzREREVH/6rc5FkQU/BqsDjRYHV6dY2utBd/VOitAmbpYXbumpgZz587F9u3boVQq8cYbb+Daa6/16rmJiIgoMPU4WDz77LN46KGH+rMtRDQANh8zY0O1ySfnEgAcNXceUuRyORobGxEXF4ePPvoIF1xwgU+el4iIiAJPj4dCpaamoqKior/bM6RxKBQNhO56LCx2Ac/saQYALJ4QAYXs5JClGpMdb+1rhcUBTFHLccUIJdQKGaK7WAhPr9dDEASkpKT47kUQERHRgOiXoVB6vR6XX345srKyvG7gnXfe6fU5iKhvouXSLoOAud3QpjFhIVCeCBaNVgdW6VtgcQCnRYYgWxMOmYd5Eq+++irsdjtycnIAAMnJyT5+BURERBSIejXHIi0tDZdeemmvnkCn0yEnJwdGoxFqtRqrV6/u1fFEFBhKakyosziQoJQi10OocDgc+POf/4zly5dDJpNh2rRpmDJlip9aS0RERAOtx8FCo9H0esXsu+66C4WFhRAEATk5OcjPz0d0dHSvG0lE/jd/VCgA4IJhSoSHuPd4mEwm3HrrrVi7di0A4JFHHsE555wz0E0kIiIiP+pxsCgoKOjxSd9//31kZ2ejvr4eaWlpWL16Nb+5JApyMokEvx8d1uHxY8eOYf78+fj+++8hl8uxevVq3HLLLX5oIREREflTjxfI68kQqL1792LatGnIysqCIAgoKCjA9u3bGSqIgtQuowXv7GuBvZMaD7/99hvOO+88fP/991Cr1fjPf/7DUEFERDRE9ThYdGfZsmVITk5GeXk5srOzUVVVhezsbF+dnogGyE6jRfz9lb2t2Hzcgs3HzB73/fTTT6HX65GUlITvv/8el1xyyUA1k4iIiAKM1wvkcdgT0eChq7fg1b2tHR6PDPG8SvYf//hH2O123HzzzUhISOjv5hEREVEA63OPxd69e8Xysxz2RDQ4bKhu6/CYBMBnR5w9FoIg4OWXX0ZTU5Nzm0SChx56iKGCiIiI+tZjsWzZMqxYsYLVnk4oLS1FSUkJjEYjDAYDsrKyxBr+RMGkxtRx4TwBwBGTHRaLBTk5OXjzzTfx8ccfY8OGDZBKfTaakoiIiIJcr4JF+2FPGo0GRUVFve6h2LFjx6AqQ1laWgqdTof8/HwAgNFohFarRXl5ea8qaREFglCZBE0294naEgDxcuDyyy/H119/DZlMhquuuoqhgoiIiNz0+M7ANeypvr4eBQUFqKys7NOwJ1+s3B1ICgoKsGTJEvFvtVqNvLw8FBYWwmAw+LFlRL134TCl298SOHssSlcsxddff43IyEhs3LgRubm5fmkfERERBa4e91iUlJRAq9Vi9erVUKvV2Lt3b6+frKioaNDdbBcXFyMvL0/ssQCAqVOnAnD2ZnBIFAWT+aNCoZZL8N4B51yLaIcJnz/5J+z66D2MHj0aGzduxNlnn+3nVhIREVEg6nGwUKvVyMnJQVlZWZ+frKSkpM/HBqrMzEwkJyf7uxlEfVZnccAuCIhXygAA58Up8d6BNjhsVhTfcBEMej2mTJmCDRs2YOTIkX5uLREREQWqHgcLjUbj9boU2dnZSElJ8eocubm5yMrKQnp6epf7GY1GLF++HAAQFxcHvV6PjIwMZGZmevX8pyoqKurw2Pbt2wGg2zYS+ZvJLuClymbUWxy4NzUCSeEnPxKkIXK8u2Ydnn/uGaxevRoRERF+bCkREREFuh4Hi4ULF/rkCfsyNttgMKC0tBQFBQXQ6XTdztNwTaAuKipCWlqa23OXlZW5DVvqD/n5+cjPz4dGo+nX5yHyhkMQ8GpVCw622REVIkG0XAqr1Yrt5T8A8lQAwDlTpuC9997zc0uJiIgoGPR48vbixYt98oS9PU9hYSHy8vIAoMeBICsrC5mZmW6hAnBOtC4sLERpaWmv2tAbrt6U9hO6iQLR+4fasKvBihAJcHdKBEJMzZg3bx7SL/k/1PzY9yGPRERENDR5vfJ2f8vJyREnQOt0um73b9+74cmCBQuQn5/vNkxJp9P1apjX6tWrO4QWwBmCYmNjWWaWAt5/j5tRUuNc9O7W8eEIqavGhXPm4Mcff0RYWBjMDfV+biEREREFm34JFjt27MDatWuh0+mg0Wig1Wpx55139sdTdeC6qe9sGFJycjIKCwthNBqhVqsBAGlpaSgvL/fqeYuLi2E0Gt1CRfvnIAoUvzVZ8c6+VgDA3EQVZHt/wrlz56K6uhojRozA+x99gjdkLEhAREREvdPjoVBLly6FVCqFTCaDTCZDXFwcFi5ciB07drjtd9ddd0Gr1SI/Px+CIKC2thYvv/wyUlNTsXPnTl+3vwOdTtflzbwrcLgmWPvqOevq6tyGPxmNxn4dckXUV18cMcEBYFqMHNBtwsyZM1FdXY2zzjoL27ZtQ5pW6+8mEhERURDqcY/F008/jYULFyIrKwsFBQW49NJLO+yzaNEirF69GpdeeimKiooQHR0tbistLUVmZibKy8sRFRXlm9Z7YDAYEBsb2+l2V+jw1XoaBoMBy5cvx8KFC1FcXCw+XlJSwkXEKCDlJkfgP0dMiDTocOlVV8HhcCAjI0N8z5rtQvcnISIiIjpFj4NFQ0MDli5disrKyk63FxYWIiYmBl988UWH7enp6Vi1ahXy8vKwatWqvre4G3V1dV1WY3KFDqPR6JPn02q1MBqNbqHCpbu5FmazGWazWfy7sbHRJ20iOpUgCJBIJAAAhVSCeSNDYR8+A1dddRXi4uLwr3/9C3K53M+tJCIiomDWqx6Lp59+utPt69atAwAsW7as033S09PxzDPP9KJ5vdfTwFBbW+uT56uv7/sk1+XLl+Nvf/ubT9pB1BlBEPDu/laEh0hxabQdCrkcSqUSMpkMa9asgVwuF0MH+YdrOKXRaERZWRmSk5PFohVERETBosdzLHQ6HaZMmdLp9pKSEkgkEi4K1wvLli1DQ0OD+HPgwAF/N4kGoa+OmbH5uAWfHWnDnFsXITs7G4LgHO6kUCgYKgKAa2hpZmYmcnNzkZub67PhmkRERAOlxz0WrhuRzrgmKp9zzjld7ldXV9fTp+wTtVrdo16LuLi4fm1HTyiVSiiVSn83gwaxnxqsWHegDQCw+83n8e36d/DrsGHYv38/xo0b5+fWkcvq1asxdepUACd7XbuaK0ZERBSIehwsYmJiOt1WVVUFo9GIjIyMLs/R0NCApKSknreuD7r7x9gVbFgGlga7w212rDY0QwBg+GwdNr/4BCZMmIBPP/2UoaKfGAwGaLVaxMbGIi0tTfw8cn3x4nqsrq4OBoMBBoMBRUVFyMzMFM/hKnTBzygiIgo2vQoWO3fuxOTJkztsy8/Ph0QiQVZWVpfnePrpp7Fo0aLet7IXNBpNl6VkXd8GdjXBmyjYNVkdeKmyGSYHUK37Hl/+7V7MnDkTH3zwAb8J70fFxcXIyclBfn6+2+MSiQSZmZkoKipye1yr1YqfRQaDAcXFxSgrK+uwHxERUTDo8RyL/Px83Hnnndi3b5/b488++ywKCwuhVqu7XARvx44dqK+vx6xZs/re2h5IS0vrciiUa9wy54LQYOUQBLxsaMFxiwONB6vwxeKbccN11+KLL75AbGwsGqwO7G+1dfpzoNUmnutAF/u5fhqsDj++2sCi1+s7hAqdTgcAHnt009PTxWCh0WiwZMkSaDQalqomIqKg1OMei+joaCxfvhxTpkzBtGnToFarodPpoNfrodFoUFJS4vG4xsZGFBQUYOnSpQPyLdzChQuxYsUK6HQ6pKWlddheVlbGUEGDmlQiwUXDFDjY2Ib3H7oJyx64D4899pg4SXvzMTM2VJt6dK5n9jR3u8/cRBXmjQz1qs2DgcFg8Nhr6xoG5elzx9Ncr2XLliEmJgZarZaVoYiIKKj0OFgAzn8Yq6qqUFhYiLKyMkyZMgVLlixBdnZ2h32rqqqQn58v9hBceumlePnll1FWVobly5f7pvUepKWlIT09HWvXrvUYLIqLizsNQUTBzrVexYw4Jaao4/HHLzZ0mNc0M16JyWrfrVkRLe9xx+egZjQaPYaHkpISqNVqj8Mv09LSoNPpcOmll6KqqgpqtVr80ev1A9FsIiIin+lVsACcPReLFy/udr+kpCS8/PLLfWpUZ1whpbuqT0VFRdBqtVi4cKFbuMjNzcWSJUvYY0GD0hc/G/DYvbl4/aUXMHHiRChlEo/FEqLlUoYBOD9HsrOzxTUkFixYgPz8/A6TpvPy8mAwGBAbG9vlopeevsgAnD0WnfU8pKenQ6fTYerUqeLzGo3GHhXDICIiCjQSobs6sn5WXFws/mO+fft2GI1GqNVqsTRjVlaWx3+0jUYj8vLyoFarERcXB71ej4yMDLfqK4GmsbER0dHRaGhoQFRUlL+bQ0Hkg2//hw2SUTA11KH29SfxefEafzcp4GVlZSE/Px8ajQYGgwG5ubnYvn07ysvLodFoYDQaxX06Cw3d0el00Gq1HSo/naq4uFisWFdSUoKFCxcG9GcVERENHb25Pw34YDGUMFhQX7zy3jp8HXMWwuMT0fRrOf5x2WSMSIj3d7MCWmFhodvEaRetVguj0Yjy8nJkZWWhoKDAqwpyK1asQF5eHurr61k+loiIglJv7k85HoIoSAmCgL888Xd8ahuG8PhE2I8fxsr55zNU9IDRaPQYGDZt2oS6ujpotVpkZWV5XZa6pKQEGo2GoYKIiIYEBguiIGSxWHDLLbfie8VoxJ8xBRJzK56cOQGxEWH+blpQU6vVWL16NQwGg0/WuiktLeWcLiIiGjIYLIiCkCAIaDnjfGjSr4LE4cCfJiVgeKjvKj0NZXV1dVCr1cjKyuq2UERXXGVmOQmbiIiGCgYLoiAkkStwxmznmgm3aCKQGslQ0RtqtdpjaDAYDCgqKkJVVRUAZ5nsvnKVtWaPBRERDRUMFkRBYsuWLXjiiScAAAqpBA+fGYNbxoXhvDiln1sWfHJycjqsp6PT6ZCbm4uioiKo1WqUl5fDYDAgIyOjTz0XpaWlnF9BRERDSq/XsSCigVdUVISbbroJFpsdqampuPbaaxEqk+D8YQwVfbVs2TLk5uYCcA5/0mg0botnajQaVFVVIS8vD0lJSdBoNCgvL+/ynIWFhWIg0el0ACA+R15enk/mbRAREQUqlpsNICw3S6cSBAErVqzA0qVLIQ+PxI1rNyPzbA2uGB0JiUTi7+YRERHRIMdys0SDgNVqRW5uLpYuXQqJVIo73imBfMQ4fF3vQKud3wcQERFRYOFQKKIA1NDQgAULFuCLL76AVCpF3gebUTtqAuQS4O7kCISH8DsBIiIiCiy8OyEKQN999x2++OILhIWF4Z9fbEHtqDMAALclhWN8OL8PICIiosDDOxSiADR79mz861//wqjpM/EZRgIArhypgjZG4eeWEREREXnGHguiALFx40YcOHBA/PuGO3PxlWwUHACmxyowe4TKf40jIiIi6gaDBVEAeOGFFzBv3jzMnTsXTU1NAIDIEAnmJKqQHC7DzePCWAWKiIiIAhqHQhH5kd1uxwMPPIAXX3wRADBjxgyoVM6eCYlEgvThKsxKUELKUEFEREQBjj0WRH7S3NyM+fPni6FixYoVWLVqFf5bb0dbu3KyDBVEREQUDNhjQeQHhw8fxty5c/HDDz9ApVLh7bffRmZmJkprTCg62IbNx8x4eGIU5FKGCiIiIgoODBZEfpCbm4sffvgB8fHx+PjjjzFjxgz82GBF8cE2AMD5w5QMFURERBRUGCyI/GDVqlVoa2tDYWEhNBoNDrXZ8YqhGQKAC4cpkJ6g9HcTiYiIiHqFwYLISw1WBxqsjm73+2XXTpxx9mTnH7Ej8NrHnwMAfm204PW9rTA5gHFhMsweoWIFKCIiIgo6DBZEXtp8zIwN1aZOtwsOB/638nHsfOsFpD/9GjTp8zvdd1+rHd/XWjBvZGg/tJSIiIio/zBYEHlpZrwSk9Vyj9tMbW24/85bsfPD9wEAk9sO4b6JkeL2eosD/97XCotDwK3jwxGnlCJazmJtREREFHwYLIi8FC33HAaOHj2KBVdeiW3btkEqV+D/Hn0BTz6cA6Xs5DCnsWHA+PAQHDc7kBzBtyMREREFL97JEPWDX3/9FXPmzEFVVRViYmJwYf7bSEw7X9zeZhcQeiJgdBZMiIiIiIIJ72aIfKy6uhrnn38+qqqqoNFo8M1/v3cLFXtbbHj4xwZsqzX7sZVEREREvsVgQeRjiYmJuPPOO3H++edj69atmHDaaeI2o8WBVfpmtNoF/K/OAkEQujgTERERUfDgUCgiHxAEAa2trQgPDwcA5Ofnw2KxQKVS4X/teiYe/7URNgEYqZLiTk0Ey8oSERHRoMEeCyIvmc1m3HzzzbjiiitgNjtDhFQqhUqlgq7eglf3tor72k50UFwcrxTnWBARERENBgwWRF6oq6vDZZddhn//+9/4/vvv8d1337lt31Dd5vG4zcctA9E8IiIiogHDYEHUR3q9Hueddx42b96MqKgofPbZZ5g1a5bbPjUmzytyHzHZB6KJRERERAOGwYKoD77//nvMmDEDe/bswdixY/Hdd98hIyOjw37DVR3fYhIAI1SyAWglERER0cBhsCDqpY8//hizZs3C8ePHodVqsXXrVpx11lnidocg4MujJjTbHJibGOp2rASAAGBuompgG01ERETUzxgsiHopNTUVoaGhuOqqq/DNN98gMTFR3NZkdWBlZTPWHmjDG3tbMUUtxx3jw8TtiSopFmnCMSVG4Y+mExEREfUblpsl6gFBEMTSsBMnTsTWrVuRkpICmezkkKaKJiteqWqB0SpALgHOUcsBAJPVCgDOylBLT4+CktWgiIiIaBBijwVRN4xGI+bMmYNNmzaJj5122mliqHAIAj6tbsNze5phtAoYoZJi2cQoXDhMyXUqiIiIaMhgjwVRF/bt24fZs2fjl19+wa5du6DX66FUKsXtzTYHXq1qwS+NNgDAubEKXD82DCr2ShAREdEQw2BB1Int27dj7ty5qKmpQWJiIj7++GO3UAE4u/xqTA7IJcB1Y8NwfpyCvRREREQ0JDFYEHnw0Ucf4brrrkNbWxsmTZqEjRs3YsyYMQCcQ58kACQSCcJCpFiUHA6ZRIJRoSwhS0REREMX51gQtSMIAp5//nlcffXVaGtrw+9+9zv897//FUNFo9WBFyqa3VbOHhsWwlBBREREQx57LIhO8cMPP0AQBOTm5mLlypUICXG+TX5rsuIVQwsabQL2t9pxbqyCcymIiIiITmCwIGpHIpFg9erV+N3vfodrr70WEokEDkHAxmoTNlabIAAYqZIiWxPBUEFERETUDodC0ZB36NAh5OXlwW63AwAUCgWuu+46SCQSNFgdeL6iGRtOhIoL4hRYNjEKIzn0iYiIiMgNeyxoSNu5cyfmzJmDQ4cOQalU4vHHHxe3mewCnvq1EUarAKUUuH5sGGbEKbs4GxEREdHQxWBBQ9Znn32GBQsWoLm5GRMnTsRtt93mtl0lk2BmvBLb6yzITY7ACBV7KYiIiIg6w2BBQ9KqVavwhz/8AQ6HA5dccgnWr1+PmJgYNFgdsDgExCudIeKKESpkDFdBIeV8CiIiIqKuMFjQkOJwOLBkyRI899xzAIBbb70VBQUFUCgU+KXRiteqWhAll2Lp6ZFQSCWQSiRQdJMpGqwONFgdnW632AXx9wOtNii6mfQdLZciWs7pT0RERBRcGCxoSNmzZw9eeuklAMATTzyBRx55BA4AHx5qw+dHnBO0o+VAs01AbHeJ4oTNx8zYUG3q0b7P7Gnudp+5iSrMGxnao/MRERERBQoGCwo43fUA9Fb7HoDTTz8d77zzDkwmE66//noYLQ68UtWCimYbAGDmMAWyxoT1aujTzHglJqvlPm0vERERUbBhsKCA05segJ6Y3LwX50UBU6ZMAQBcc801AICfG6x4fW8LmmzOqk83jQvHtFhFr8/PoUtEREREDBYUgLrrAbDYBXFI0eIJEV3OWfju66+w6PoshIeFYdu2bRgzZgwAQBAEfHrEhCabgNGhMuRowjGcVZ+IiIiI+ozBggJOdz0A5naToceEhUDZSbB44403kJ2dDZvNhklnnYXQ0JPzFiQSCe5ICseXR024amQo5Kz6REREROQVjt+gQUcQBDz66KO47bbbYLPZcO2116K0tBRH5NHYWN0m7herkCJzdBhDBREREZEPsMeCBhWz2Yzbb78d7777LgDg4Ycfxl8ffxyfVJvxnxpnqNCEh2BilO8mWxMRERERgwUNMo8//jjeffddhISEoKCgAPNvvBX/r6IZ+hY7AODieCVSInjZExEREfka77BoUFm6dCm+++47PProo0iYOhN//6URLXYBKilw8/hwaGN6X/WJiIiIiLrHORYU9Pbs2QNBcE7ojoyMxFdffYW2iedjZWUzWuwCxobJ8OczohgqiIiIiPoRgwUFtXVr12DSpEnIz88XH5NIJGLp2EvilVhyWiTilSwlS0RERNSfOBSKgpIgCNjx+v9D4b/+DgAoKytDk8WOSIUzQEyLVWC4SoqxYbzEiYiIiAYCeywo6FgsFnzz+L0oOxEq/vinP2Hh/3sLj//ahAarQ9yPoYKIiIho4PDOi4KK0WjETY+twKTrFuHCpc8izG5GREwMNh2zAAB2Gq2YGa/0cyuJiIiIhh4GCwoaVqsV8x/4M077wxMQHA5IpFJYoMJRswMKKXBHUjjOUXOCNhEREZE/cCgUBQ25XI7Jt/9JDBXtxSqkDBVEREREfsRgQQHPZDKJv9vC1R1CBQAcNzs6PEZEREREA4fBggKWIAh47rnncM4556C2thYAMFzV8ZKVABihYjlZIiIiIn9isKCAZLPZcM899+Chhx7Cb7/9hn//+98AgLmJoW77SQAIAOYmqga+kUREREQkYrCggNPU1IQrr7wSq1atgkQiwXPPPYffZ9+Db46ZkRajwB3jw8R9E1VSLNKEYwpX1SYiIiLyK1aFooBy8OBBzJ07Fzt37kRoaCjeeecdXDLnKjy9uxH1VgEAMCNWAaAVALD09CgoZRI/tpiIiIiIAAYLCiA///wzLrvsMhw+fBgJCQn45JNPcLZ2Gp79rQn1VgHDlVJMjZH7u5lERERE5AGHQlHASEhIgEqlwhlnnIFt27ZBO20aXqlqwYE2OyJDJLg3NQLhIbxkiYiIiAIReywoYMTHx+OLL75AXFwcoqOj8d6BNvzYYIVcAtyTEoF4JSs/EREREQUqfv1LfmO32/GnP/0Jr732mvhYcnIy1Go1So+a8c0xMyQAbk8KR1I4MzARERFRIOPdGvlFa2srbrzxRnzwwQeQy+W49NJLMW7cOLd9JAB+PzoUaaz4RERERBTwGCxowB05cgRXXnklysrKoFAo8MYbb3QIFRnDVTgtMgRjQjn8iYiIiCgYMFjQgPr5558xZ84c7Nu3D3Fxcfjwww9x4YUXAgDqLA6EyiQIPVE+dmwYL08iIiKiYME5FjRgNm3ahAsuuAD79u1DamoqtmzZIoaKFpsDz+9pwordjaizOPzcUiIiIiLqLQYLGjBbtmxBQ0MDLrzwQmzZsgWpqakAAKtDwMv6FtSYHWizC7woiYiIiIIQx5rQgHnkkUcwfPhw3HTTTVCpVAAAQRDw732t2NNsg0oK3JsaCbWC0YKIiIgo2PAOjvqNyWTCY489hpaWFgCARCJBdna2GCoAYEO1CVvrLJACyE2OwChO1iYiIiIKSuyxoH5x/PhxXHXVVfj+++/x66+/oqioqMM+W2rN2FBtAgDcMC4MZ0TJB7qZREREROQjDBbkc3v27MHs2bOh1+sRHR2Nu+66q8M+VoeADYedoeJ3I1S4cJhyoJtJRERERD7EYEE+9e2332L+/Pmoq6vD+PHj8emnn2LixIkd9pNLJXjotEhsPmbGvJEqD2ciIiIiomDCORbkM++88w7S09NRV1eH6dOnY+vWrR1ChSAI4u8xCimuGhUKqUQy0E0lIiIiIh9jsCCfaGpqwp/+9CdYLBZcc801+OqrrzB8+HC3fSwOAc/uaUZZncVPrSQiIiKi/sKhUOQTkZGR+Pjjj/HBBx/gySefhFTqnlkdgoBXq1pQ2WzDEZMdZ0XLxRW2iYiIiCj4MVhQn9XX1+PHH3/EzJkzAQDTp0/H9OnTPe5bfLANO4xWhEiAu5IjGCqIiIiIBhkOheoHGRkZ/m5Cv6uqqsL555+PK664AuXl5V3u++VREzYdNQMAbh0fjpQI5lkiIiKiwYbBwsdWrFiB0tJSfzejX23btg3nnnsudu/ejZiYGISEdB4UdhotWHegDQBw9ahQTItVDFQziYiIiGgAMVj4kMFgQFlZmb+b0a/Wr1+Piy++GMeOHcOUKVOwbds2TJ482eO+NSY7XqlqgQDgwmEKXD6ca1UQERERDVYMFj5UXFyMhQsX+rsZ/UIQBDz77LPIysqCyWTCnDlzsHnzZowaNarTY+KVUlwcr8QZUSG4fmwYJCwrS0RERDRoMVj4SHFxMTIzM/3djH6zbt06LF68GIIg4J577sGHH36IiIiILo+RSiT4/egw/CElAjKGCiIiIqJBLehm0ebm5iIrKwvp6eld7mc0GrF8+XIAQFxcHPR6PTIyMvrl5t9oNKKurg4ajQY6nc7n5w8Ev//97zFv3jzMmjUL999/f6e9D3ZBQEmNGZcmKCGXOvdhqCAiIiIa/IIiWBgMBpSWlqKgoAA6nQ5ZWVld7m80GqHValFUVIS0tDTx8dzcXJSVlSE/P9+n7SssLMSSJUt8es5AUF1djWHDhkEulyMkJAQffvhhh/Up2hMEAe/sa8V3tRZUNFnxh5QIDn8iIiIiGiICfihUYWEh8vLyAKDHgSArKwuZmZluoQIACgoKUFhY6NOqTaWlpd32ngSjH374AVOnTsVdd90FQRAAoMtQAQCfHTHhu1oLJAAuTlAxVBARERENIQHfY5GTk4OcnBwA6NEwo/a9G54sWLAA+fn5bmFAp9MhOzu7x21avXq1GFp0Ot2g663YsGEDrr32WrS0tGDr1q1oaGiAWq3u8pj/1Vnw0WETAODaMaGYFC0fgJYSERERUaAI+GDRW65AodFoPG5PTk5GYWEhjEajeLOclpbW7SJvnhQWFkKv14s9KsDJ8JOXl4e4uLigCx0rV67E/fffD4fDgfT0dBQXFyM6OrrLYyqarHhzbwsAIGO4EhcnqAaiqUREREQUQAZdsNDpdF1+u+4KHNu3b/d6CJOrJ6U911ArX8/j6G92ux0PPfQQnn/+eQDAHXfcgVWrVkEu77rn4YjJjlX6FtgEYIpajmtGhQ5Aa4mIiIgo0Ay6YGEwGBAbG9vpdlfoMBgM/fL8RqOxx/uazWaYzWbx78bGxn5oUc/cdtttePvttwEATz31FJYuXdqjORLNNgECgKRwGW5PCoeU8yqIiIiIhqSAn7zdW3V1dV32WLhCR28CQE8YDAbk5eWJQ7GysrJQWFjY5THLly9HdHS0+DNmzBiftqk3brjhBoSHh2PNmjVYtmxZjydep0SEIO/0SNydHAGFlKGCiIiIaKgadD0WPQ0MtbW1Pn1ejUaD/Pz8Xg2BWrZsGR588EHx78bGRr+Fi8svvxx79+7FsGHDut3XIQioszgwTCkDAIxQyfq7eUREREQU4AZdsAgmSqUSSqXS380Q9SRUAMCHh9rwzTEzFiVHYGIUqz8RERER0SAMFmq1uke9FnFxcf3fmEFo8zEz/lPjnBfSYHX4uTVEREREFCgGXbDoauI24JyDAaDbdRmoo58arHhvfysAYF6iCjPi+qe3pcHq6DK0WOyC+PuBVhsUsq7ndkTLpYiWD7rpREREREQBZdAFC41Gg+3bt3e63dWb0dk6F+TZgVYbCg3NcAA4L06BOYn9t1bF5mNmbKg29WjfZ/Y0d7vP3EQV5o1kGVwiIiKi/jTogkVaWhpKS0s73e4qM+vtGhZDSb3FgZWVzTA7gNMiQ3Dj2LAeV43qi5nxSkxW+27uBnsriIiIiPrfoAsWCxcuxIoVK6DT6ZCWltZhe1lZ2ZALFd0NLerO50dMMFoFDFNIMTdRhRa7gOh+LC3LoUtEREREwWfQBYu0tDSkp6dj7dq1HoNFcXExSkpK/NAy/+nN0KKuHLc48NyeZg4tIiIiIqIOgipYuIYxdVf1qaioCFqtFgsXLnQLF7m5uViyZMmQ67HobmiRxS6IcxUWT4iAQiaBIAidDndibwIRERERnSrgg0VxcbG4mrVrUnZ2drbbCtc5OTlux6jVapSXlyMvLw9qtRpxcXHQ6/XIyMhAZmbmwL6AANDd0CJzuypLY8JCoJRJ8J8jJhitDmSNDoW0H+dTEBEREdHgIBEEQeh+NxoIjY2NiI6ORkNDA6Kiogbsec12AfftMAIAXjhHjZ8arSg0tAAA7koOxzlqxYC1hYiIiIgCR2/uTzmmhdxUtdjwWpUzVFwSr8TkaK6sTURERETdY7AgN4WGFtgE4OxoORaMCe3XsrJERERENHgwWBB2Gi3i7y12Z1nZO5LCObeCiIiIiHqMwWKI09Vb8OreVrfHjlsc+KXR6qcWEREREVEwYrAY4jZUt3V4TAJgow/WvSAiIiKioYPBYoirMXVckVsAcMRkH/jGEBEREVHQYrAY4oarOl4CEgAjVLKBbwwRERERBS0GiyFubmKo298SOHss5iaq/NIeIiIiIgpODBZDXFqMAneMDxP/TlRJsUgTjikxXBSPiIiIiHouxN8NIP+brFYAcFaGWnp6FJQylpklIiIiot5hjwUREREREXmNwYKIiIiIiLzGYEFERERERF5jsCAiIiIiIq8xWBARERERkdcYLIiIiIiIyGssNzsENFgdaLA6Ot1usQvi7wdabVB0U242Wi5FtJyZlIiIiIhOYrAYAjYfM2NDtalH+z6zp7nbfeYmqjBvZGi3+xERERHR0MFgMQTMjFdislrus/Oxt4KIiIiITsVgMQRw6BIRERER9TfebRIRERERkdcYLIiIiIiIyGsMFkRERERE5DUGCyIiIiIi8hqDBREREREReY3BgoiIiIiIvMZgQUREREREXmOwICIiIiIirzFYEBERERGR1xgsiIiIiIjIawwWRERERETkNQYLIiIiIiLyGoMFERERERF5jcGCiIiIiIi8xmBBREREREReY7AgIiIiIiKvMVgQEREREZHXGCyIiIiIiMhrDBZEREREROQ1BgsiIiIiIvIagwUREREREXmNwYKIiIiIiLzGYEFERERERF5jsCAiIiIiIq8xWBARERERkdcYLIiIiIiIyGsMFkRERERE5DUGCyIiIiIi8hqDBREREREReY3BgoiIiIiIvMZgQUREREREXmOwICIiIiIirzFYEBERERGR1xgsiIiIiIjIawwWRERERETkNQYLIiIiIiLyGoMFERERERF5LcTfDaCTBEEAADQ2Nvq5JUREREREJ+9LXfepXWGwCCBNTU0AgDFjxvi5JUREREREJzU1NSE6OrrLfSRCT+IHDQiHw4HDhw8jMjIS06dPR1lZWY+OmzZtWrf7drdPY2MjxowZgwMHDiAqKqpX7Q4WPfn/FOxt8NX5+3qevhzXm2N4rfcMr/WBOU9vj/X1td7dfkPhWgcG//UejNd6b4/hZ3vP+OtaFwQBTU1NGDlyJKTSrmdRsMcigEilUowePRoAIJPJevzG6Mm+PT1fVFTUoH1D9ub/abC2wVfn7+t5+nIcr3Xf47U+MOfp7bG+vtZ7ut9gvtaBwX+9B+O13ttj+NneM/681rvrqXDh5O0Adc899/h0396cb7AKhP8H/d0GX52/r+fpy3G81n0vEP4fDPZrvS/H+vpa70sbBqNA+H/Qn20Ixmu9t8fws71nguH/AYdCEQBnF2J0dDQaGhoGbdInAnit09DBa52GEl7vgYE9FgQAUCqV+Mtf/gKlUunvphD1K17rNFTwWqehhNd7YGCPBREREREReY2Tt8nnCgsLodfrkZ+f7++mEPWZwWBAfn4+kpOTAQBqtRo5OTl+bhVR/+FnNw12paWlKCkpgdFohMFgQFZWFj/XfYzBgnzCdRMGAOvWreMblYKawWCAVqtFVVUV1Go1ACAvLw8rVqzAkiVL/Ns4Ih/iZzcNFaWlpdDpdOL1bjQaodVqUV5ejoKCAj+3bvDgUCjyOa1Wi/T0dH7rRUErNzcXarXa7Ro2Go2IiYnp0cqjRMGIn900mGVlZaGoqMjtscLCQuTm5kKv10Oj0fipZYMLJ28TEZ1i3bp14hAoF1fPRWlpqR9aRERE3iguLkZeXp7bY1OnTgXAz3VfYrAgImrHaDTCaDR6/PZKrVZDp9P5oVVEROSNzMzMDl8Yke9xjkWQys3NRVZWFtLT07vcz2g0Yvny5QCAuLg46PV6ZGRkIDMzcyCaSdTvfP1eMBgMnZ4jNjYWtbW13jeaqA/4uU9DRX9c66cOgwKA7du3A0C3z0M9x2ARRAwGA0pLS1FQUACdToesrKwu93dNTCoqKkJaWpr4eG5uLsrKyjiOloKWP98LRqOxr80m6jV+7tNQ4Y9rPT8/H/n5+Zxf4UMcChUkCgsLxbGBPf2HISsrC5mZmW5vOAAoKChAYWEhxxRSUOrv94JrLoUndXV1vW8wUR/xc5+GCn9c664eEVb68y32WASJnJwcsQxgT8Z4t0/+nixYsAD5+flu3X86nQ7Z2dk9btPq1as7vKGJ+lt/vxdiY2MBeO6ZMBqNXQYPIl8aiM99okAw0Nd6YWEhYmNjWWa2HzBYDFKuN0tn3XvJyckoLCx0u1FKS0tDeXn5QDWRaED09r3g+umsdyIjI6Pf2krkjb587hMFI2+u9eLiYhiNRrdQwfeE73Ao1CCl0+m6fJO43oyuiUtEg1Vf3gsLFiyAXq932881qZvf9lKg4uc+DRV9vdZ1Oh3q6urchj8ZjUYOEfQhBotBymAwiEM6PHG9IbuqgNNXrnKdRIGgL++FvLw8FBcXu+1XUFDAbnMKaN5+7vOzm4JFX651g8GA5cuXIzY2FsXFxeJPXl4eJ2/7EIdCDVJ1dXVdvlG6GkfeF66Sb0ajEQaDAevWrQPg7I7kxCjyp768FzQaDYqKipCXl4dp06bBYDAgLi5OHANMFIj6cq3zs5uCUV+uda1WC6PR2OFLIwD80siHGCwGqZ4GBl/V5Fer1WIlB75BKZD09b2QlpbG4gQUVPpyrfOzm4JRX671+vr6fmoNtcehUERERERE5DUGi0FKrVb3KNHHxcX1f2OI/IjvBRoqeK3TUMFrPXAxWAxSXU1qAk4u9MXyajTY8b1AQwWvdRoqeK0HLgaLQUqj0XS5SrAr6bMSAg12fC/QUMFrnYYKXuuBi8FikEpLS+uym5A1+Wmo4HuBhgpe6zRU8FoPXAwWg9TChQsBOBeD8aSsrIxvOBoS+F6goYLXOg0VvNYDF4PFIJWWlob09HSsXbvW43bXojBEgx3fCzRU8FqnoYLXeuBisAhCri6+7ioiFBUVobi4uEOiz83NxZIlS5jmKejxvUBDBa91Gip4rQc3iSAIgr8bQd0rLi4WFy/avn07jEYj1Go1pk6dCgDIysryuCqw0WhEXl4e1Go14uLioNfrkZGRgczMzAFtP5Gv8L1AQwWvdRoqeK0PHgwWRERERETkNQ6FIiIiIiIirzFYEBERERGR1xgsiIiIiIjIawwWRERERETkNQYLIiIiIiLyGoMFERERERF5jcGCiIiIiIi8xmBBREREREReY7AgIiIiIiKvMVgQEREREZHXGCyIiGjIMBqNkEgk4k9hYWG/Pl9ubq74XDExMf36XERE/iYRBEHwdyOIiIgGgtFohFarhV6vH/DnjomJQX19/YA/LxHRQAnxdwOIiCh4FRYWIj8/X/xbrVaLvxuNRrd91Wp1h8cA+OUmn4iIfI/BgoiI+swVKgoKCpCenu62LTc3F4WFhUhPT0dJSYnbNp1Oh+zsbBgMhgFrKxER9S8GCyIi6hNXKOisx2H79u0AnAHjVGlpacjPz3fr7SAiouDGydtERNQnBQUFKCoq6nS7TqcDgA49GS4ajQYajaZf2kZERAOPwYKIiPrEYDAgLS3N47bS0lIAzvDQft5Fe66J1ERENDgwWBARUa8ZDAZMmzat0+2uORWd9Va4zjF16lSft42IiPyDcyyIiKjXYmNjsWTJkk63u3osMjIyOt0nPT29094MIiIKPuyxICKiXusuEHQ3v6In5xgoeXl5SE5OFhey8zQ8q/1Cd8nJyTAajcjIyBCPA5xhasWKFcjNzfU4YZ2IaLBjsCAiIp9y9Vao1eqACQ9dyc/Ph16vFyeTl5eXd9inoKAAaWlpKCoqgl6vh1qtRklJCTIzMwE4X7PRaBR7cfp7RW8iokDEYEFERD7Vk/kVgSg3NxcGg8HjIn4AMHXqVDFIuLiGerUPGfn5+R3W7SAiGgoYLIiIyKd6Mr+ip+fJyMiARCIRh1b1p5ycHACeext0Oh2ysrI6PTY5OVn8Xa1WB12oIiLyBQYLIiLyqZ7Mr+iJ9PT0LtfJ8DW1Wo3MzEwUFBR02LZ27douXw+rWxERMVgQEZEPtZ9f4YvF7wZ6joZrONSpPSRxcXFdHhcMc0mIiPobgwUREflMsM6vcElPT4dGo8Hy5cvFxwoLCzvMrThVbGxsfzeNiCjgcR0LIiLymd7Or9DpdFi7dq04R6F9ZaX26urqxLkPrsnVp+5XXFyMuro6xMbGoq6uDuXl5cjKyup1yMnNzUVeXh6MRiPUajX0er04/4KIiDrHYEFERD7Tm/kVpaWlHSooFRcXIysrq8PcioKCArfHVqxYgYyMDPFYg8GAkpISt/kRK1as6NNryMnJQV5eHtatW4f09PQuVxgnIqKTOBSKiIh8whUqejq/wtUz0F5mZiZKS0tRXFzcYd/2lixZgtLSUrGHRKfTwWAwdDhXX7iqOuXn56O4uLjP5yEiGmoYLIiIyCdcvQU9qZDkCgKe9k1PT8fatWvdHvM0h8G1YJ3rmO3btyM5ORl5eXkoLS2FRqPp81yPvLw8GAwG1NbWdrmfa1hWXV1dn56HiGgwYbAgIqI+KS0thVarhVarRUxMjDgHorS0FMnJydBqtZ3Otdi+fTuAzqspndr74ElsbKy4n1qtRlVVFdLT01FcXIyMjAwkJyd3uthdd9LT06FWqzv0lLgYjUZkZGQgOzsbgHNOSUZGhtiDQkQ0FHGOBRER9Ul6ejrKy8v7dKxrqJRrgnRn27tSV1cn9njodDqkpaWJvSYGgwG5ublYvnw58vPz+9TGnJycTtuhVqu5ujYR0SnYY0FERAPO1SPg6Rt+14rb7XkaatR+NWyDweB2Lo1Gg4KCgj6v2G00Gt1W0yYiou4xWBARkV+sXr3abb0IwLlmxNSpUzuUdz21dyAvLw+ZmZlucyhO7ZkwGAw9Lnt7qsLCQpaYJSLqJQ6FIiIiv8jMzIRGo0FeXp7bfIhTQ8SSJUuwbNkyt3Us4uLiOgSJrKwsrFixQhxa1dmaGKcqLi5GQUEBhzYREXlJIgiC4O9GEBERDQSj0QitVgu9Xi8+lpeXh+LiYvGxFStW9CiQ9FZMTAzq6+t9fl4iokDBHgsiIhrSli1bBuDkgnp9LVFLRDTUsceCiIiGDKPRiJiYGPHv/Pz8fumdcMnNzRWHcKnVavZYENGgxmBBREREREReY1UoIiIiIiLyGoMFERERERF5jcGCiIiIiIi8xmBBREREREReY7AgIiIiIiKvMVgQEREREZHXGCyIiIiIiMhrDBZEREREROS1/w/3VkECdlDf0wAAAABJRU5ErkJggg==", "text/plain": [ "<Figure size 800x500 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(8, 5))\n", "\n", "plt.errorbar(\n", " T_obs_values,\n", " SNR_mean,\n", " yerr=SNR_std,\n", " color=pf.my_colormap[\"cyan\"],\n", " fmt=\"o\",\n", " markersize=4,\n", " linestyle=\"dashed\",\n", " capsize=7,\n", ")\n", "\n", "# plot x**3\n", "plt.loglog(T_obs_values, 0.1 * T_obs_values**3, linestyle=\"--\", color=\"black\")\n", "plt.text(1, 5e-3, s=r\"$\\propto T^3$\", fontsize=15)\n", "\n", "# plot x**(1/2)\n", "plt.loglog(T_obs_values, 4 * T_obs_values**0.5, linestyle=\"--\", color=\"black\")\n", "plt.text(30, 1.5, s=r\"$\\propto \\sqrt{T}$\", fontsize=15)\n", "\n", "plt.xlabel(r\"$T_{\\rm obs} \\rm [yr]$\")\n", "plt.ylabel(r\"$\\rm SNR$\")\n", "plt.ylim(5e-6, 1e2)\n", "plt.tight_layout()\n", "plt.savefig(\"plots/SNR_T_scaling.pdf\")" ] }, { "cell_type": "markdown", "id": "3f74d4ce", "metadata": {}, "source": [ "### Plot the scaling of uncertainties on the SGWB shape parameters with T_obs" ] }, { "cell_type": "code", "execution_count": 8, "id": "25846831", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHqCAYAAACZcdjsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACwAUlEQVR4nOzdeVzU1f7H8deAuIGC4IZpCeZuLqClZrmB2qYloGXbrxTItO69VpItV83KsLq2J6jZpiUg7aWCpmZpCkiZWSmDZokrDAiisszvj4lRZIdhk/fz8ZhH8/1+z/ecM5rw/cw553MMZrPZjIiIiIiISBXY1XYHRERERESk/lNgISIiIiIiVabAQkREREREqkyBhYiIiIiIVJkCCxERERERqTIFFiIiIiIiUmUKLEREREREpMoUWIiIiIiISJU1qu0OyHn5+fkcPnyYFi1aYDAYars7IiIiItLAmc1mTp06RYcOHbCzK31MQoFFHXL48GE6depU290QERERESnk0KFDdOzYsdQyCizqkBYtWgCWv7iWLVvWcm9EREREpKHLyMigU6dO1ufU0iiwqEMKpj+1bNlSgYWIiIiI1BnlmaavxdsiIiIiIlJlCixERERERKTKFFiIiIiIiEiVKbAQEREREZEqU2AhIiIiIiJVpsBCRERERESqTOlmRURERKTW5ObmkpubW9vdaBDs7OxwcHAoV+rYylBgISIiIiI17vTp05w4cYKsrKza7kqD4uDgQIsWLWjdujX29vY2rVuBhYiIiIjUqHPnznHo0CEcHBxwd3enSZMm1fYtuliYzWby8vLIzMzEZDKRnZ1Np06dbBpcKLAQERERkRp17Ngx7O3tueKKK2z+rbmUzsnJCWdnZ/78809OnDhBu3btbFa3Fm+LiIiISI0xm82cPn0aZ2dnBRW1pFmzZrRs2ZJTp05hNpttVq8CCxERERGpMTk5OeTl5dGsWbPa7kqD1qJFC3JycsjJybFZnZoKJSIiIiI1Jj8/H8B2oxUpKZaXrbi7W16XuII//4K/D1tQYCEiIiIiNc5mi7XDwmD+fNvUBTB3LsybZ7v66qjqWCyvwEJERERE6q/gYBg/vuTr2dkwbJjl/datUNYUrAYwWlFdFFiIiIiISP1V1tSlC/fJ6N8fHB2rvUsNlRZvi4iIiIhIlSmwEBERERGRKlNgISIiIiIiVabAQkREREREqkyLt0VERETk0vXZZ+ffDx5sSU07cWLt9acUJpOJhQsX0qVLF0wmE0lJSYSGhuLi4lLbXSsXBRYiIiIiUrdcmMnpYvb20LRp+cp+/jnceef54z17wM8PVq6ECRMKl7WzK5yK9vRpMJuLr9dggObNS263EhISEggMDCQyMhJPT0/rOQ8PD9LS0gCIiorCx8enzgYamgolIiIiInWLk1PJLz+/wmXbti25bGCgJQgoUBAo3Hln0bLXX1+43l69Sq530CCbflyTycTo0aOZM2eONagA8PLyAiwBBcDOnTvrbFABCixERERE5FJV2qhDHRISEgKAv79/kWuurq7s3LkTo9GIr69vTXetQjQVSkRERETqlszMkq/Z2xc+Pnas5LKDB1umP10YXBgM0KcPbNtWuKzdRd+3//pr6VOhbCgiIoKgoKBir7m4uGAymYiKimL27Nk2bdfWFFiIiIiISN1Skd2xSys7f37hqVMGgyVYmD+/7DZsvIaiJCaTCZPJxKASple5uroSGxtLaGhojfSnKjQVSkREREQuTRMnWhZqF+jTB6Kj4bbbaq9PFylYM1Ha2onSFmwHBATYvlOVpMBCRERERC5dF2Z/2ratTgUVBfz9/YmJiSl0zmQysWjRIlxcXEhNTQUsWaIKhIeHA5YRjYJjk8lUMx0ugQILEREREZFaFBkZCcCiRYuIiooiKiqKiIgIZs+ezdKlS63XCgIMAE9PT4KDg4Hzi79rO2OU1liIiIiIiNSyktZQuLi4WAOPC/n4+GA0GomMjMTX15dJkyZVdxfLpMCiAUhJSiTl4B6b1ed+RW/cu/S3WX0iIiIiUjEBAQHMmTOHpKQkgoKCCAwMZOnSpbU6aqHAogEI++DfzDdstll9c7cMZ968TTarT0REREQqpmAUY+HChSWOatQ0BRY24O3tzZw5c/Dx8QHOL6apK7mGg+9+hfGljFhkZ2cwLO5BALYOfItmzVqWWp/7Fb1t2j8RERGRSktJsbxKkp19/n1iIjRrVnp97u6WVz1Rl9LQGszmerAdYR1nuGiTlKCgIMLCwipcT0ZGBs7OzqSnp9OyZekP97aUlXYMp9faAZD58FEcW7WtsbZFRESkYTlz5gzJycl4eHjQtGnTqlc4b55lXwpbmTvXUuclrrx/DxV5PtWIhQ0EBQXh7e0NWBbSeHp61nKPRERERBqI4GAYP9529dWj0Yq6RoGFDXTp0qXEbdhFREREpBrVs6lLlzLtY2EjJpOJ2NjYQhuXiIiIiIg0FA0qsAgODiY2NrbMciaTiZCQEEJCQli0aBHBwcFERUWVWD4mJobY2FgGDhwIgK+vb70KML74+Bm6noAmuTDkmcuJXlE3Fp2LiIiISP1xyU+FMhqNxMbGEhYWRkJCAgEBAaWWN5lMeHt7ExkZiZeXl/V8cHAwO3fuLHblfVhYmHVdhZeXF8HBwQQEBJCUlGTbD1MNolfM5o5jb2JwBbMd/NLyLH5/vsiaFTDxvkW13T0RERERqScu6RGL8PBw6xbn5U3FFRAQgL+/f6GgAizBQ3h4eLEjHhcv1vby8rIGNHXd/J9fx5BvCSrA8l9DPjzz8+u12zERERERqVcu6cAiKCiIyMhIgoKCcHV1LbN8QTAQHBxc7PVJkyYVCVBCQkKKTHsqaMtoNFay5zXnD6cz1qCigNkOfnc6UzsdEhEREZF66ZKfClURBXtPlJQutkuXLoSHh2MymazbpS9atIguXboUGuFITU0ttZ66pFtmU3a3vCi4MEOXzMa11icRERGR8ko5lUJKZikb5FWQu5M77i2UZaoyFFhcICEhwRowFKcgUIiLi7Push0aGlok1WxsbCwuLi7WMnXZ3L4P4ffni+enQ5kBA6TZ5/Dnz99xed/raruLIiIiIiUKiw9j/mbbbZA3d/hc5o2YZ7P6GhIFFhcwGo2lTpkqCDounOLk5eVFVFQU/v7+gGXxd2hoKEuXLq3WvtrKxPsW8dHbp5n765scdIHOpx044ZDH4Rb5XPvhSNbfvZ6eV42q7W6KiIiIFCvYO5jx3UveIC87J5thK4YBsPW+rTRzaFZqfe5OGq2oLAUWF0hNTS11+lJB0GEymaznfHx8iI2NtS4SNxqNhIWFlWu04uzZs5w9e9Z6nJGRUcmeV80tt/+XO157E0wQ/9+/SD15iDFvDeE35xxujfLn197Hsbezr5W+iYiIiJTGvUXpU5eyzmVZ3/dv3x/Hxo410a0GSYHFBS4MGEpz8uTJQsc+Pj6Vmva0cOFC5s+33dBdlfwBfAyLXd7gyf/O57sHdjDpwwm8MO1jBRUiIiIiUqZLOitUXTdnzhzS09Otr0OHDtVeZ5KAfHh63gL8/PxwaOfBhvkHuPryIZbr+fmknqjF/omIiIhInabA4gIuLi7lGrVwc3OzSXtNmjShZcuWhV61ZhxwMzRu3JhPPvmEQYMGsWfPHsu13Fx2Bt+M5yseLN32Ru31UURERETqLAUWFyhrr4uCNLKlZY6qtwzAQIj5+nM6derEvn37uOaaa1i5ciUcOEDkkY2kO+QRtP4hXti0ALPZXNs9FhEREZE6RIHFBTw9Pa3BQ3EKRjPqw/4UleXtNYCEhAR8fX05ffo0d911F9tPnCD0yU3M2e4AwJzN/+WxtbMUXIiIiEid99nvn1nfD14+mOi90bXYm+LFxsYSHh5OQEAAYNkCYdGiRSxatAhfX19iY2NruYflo8XbF/Dy8ir1L64gzWx92J+iKlq3bs0333zDvHnzOHHiBIMHDwbg+cdjcPuvD4+OyuXlHa9w8kwqSycsp5Gd/jcSERER27kwk9PF7O3sadqoabnKfv7759wZfaf1eM+xPfhF+LFy4komdJ9QqKydwa5QKtrTOadL/BLVYDDQ3KF5mZ+jvBISEpg9ezZhYWEEBAQwefJkZs+eDVi+0A4ICCAtLc1m7VUXPRFeYPLkySxatIiEhIRCO2kX2Llz5yUfVBSwt7dnwYLCU55O9O6Nz03PsSLiCabdlMe7P79P6pk0VgdEFPoHLiIiIlIVTgudSrx2Y9cb+WrKV9bjti+15XTO6WLLOjo4YsCAGcvzTMF/Lww2CgzsMJCdgTutx73e7MXB9IPF1turTS/2PLin7A9SDrGxsdb90IxGIz4+PtbjAuXNXFrbFFhcwMvLCx8fH1avXl1sYBEVFUVMTEwt9Kz2GAwGAPLy8rjjjjvYuHEjEVOmEBW5itv98skxpWJvUDpaERERqXtO55y2BhN11cCBA3FxccFoNGIymZgzZ06h6zt37iz0XJqQkEBAQAD+/v64ubkRExNDXFwcc+bM4eTJkyQkJODi4kJkZGRNf5SGE1gUTGMqK+KLjIzE29ubyZMnF/pLDA4OZvbs2Q1mxOJiubm5dOrUifz8fPw//JAXvb1Z282fq29/GAd7h9runoiIiFxCMudklnjt4v21jj16rMSyg5cPZs+xPYWCCwMG+rTtw7ap2wqVtTMUXnr864xfS50KZSsFSYGioqLw9PQskiQoKiqK4OBg67HRaCQyMtL6nOri4kJcXJx16hRQqHxNuqQDi6ioKMLCwgCIi4sDIDAw0HouICCAoKCgQve4uLgQHx9PSEgILi4uuLm5kZSUhK+vb5FhqfoiJSmRlIMlD9dlZ5/f8TvxhzU0a1Z82tsZd46iQys7Xnz9fR6Lj6fLfBPR/W6kb9++mNPSeG73m9zV9y46u3S29UcQERGRBqQiu2OXVnb+iPn4RfhZjwumRc0fMb/MNmy5hqI8YmJiinyBnZCQgNFotD6DmkwmUlNTizyTXpzZ1Nvbu3o7WwKDWal96oyMjAycnZ1JT0+36Z4W8+aNYL5hs83qC/zbi/XrT3Lw4EGaNWvGynnzSP72eR4ZnM5lLS5j3V3r6N22t83aExERkUvHmTNnSE5OxsPDg6ZNq3+N5qrdq6xrKq5qexXzR8zntp63VXu7FWUwGIiMjCwUNISEhBAbG0t8fDxGo5GEhAR8fHwKjWqEh4cTGhpKUlKS9ZzJZCpze4Ty/j1U5Pn0kh6xEIvgu19hfCkjFhXlfkVvFi7sxF133cXatWvZvWgRU8+ls9wTfuVvrltxHV/f+TWDOw62WZsiIiIilXFh9qdtU7dVaDSkpiQkJABFM48mJCQwefJkwDIT58LpTqWprT3XFFg0AO5d+uPepb/N6/3qq6947rnnmDBhApdFRLDlf89x053wY8c0Rr8/mk8mf8KYLmNs3q6IiIjIpaQgG9TFAUFISAiRkZGEh4fXiyn5Ciyk0uzs7Hj66actB1ddhVtWFrFvvYLfZFjf5TQ3r7qZDyd+yKTek2q3oyIiIiJ1mL+/f7GBg4+PT71KHKSdt8U2DAYS7rqLj3Lt+GIVBOyBnPwc7oq+iz/T/6zt3omIiIhINVNgITbTq3dvdv7f/xGRBx9FwR0/NWbxyP9xufPltd01ERERkUtWampqbXcB0FQosaGmTZsSvnw5KwYPJnT6dL755Bw//rSYa9cMo3///hzPOo5bc7cieaJFREREKivlVAopmSklXs/Oyba+TzySSDOHZqXW5+7kjnsLd5v1r7okJCQQGxvL6tWrMZlMLFq0CBcXlyJbKdQkpZutQ6or3WxtSEhIwM/PjwMHDtC0aVMWL/ovL/MOQzoOYfn45dpUT0REpIGydbrZeZvmMX/zfBv0zGLu8LnMGzHPZvXVVUo3K/WGl5cX8fHx3H333Vz59de0XjqPZP889qfux3TGxGr/1WV+YyAiIiJSlmDvYMZ3H2+z+tyd6v5oRV2lwEKqjaurK19ER5N61VW03r2PT5u0JGDCWb744wvGfjiWL+74AuemzrXdTREREanH3FvUj6lLDYEmu0u1smvShNY7dsCAAdwcl8HaT5xwyLHnuz+/Y/i7wzmSeaS2uygiIiIiNqDAQqqfiwusXw+9ejE84SSfLM/DLhN+OvoTw94ZxgHTgdruoYiIiIhUkQILqRmtW0NsLPldunDTEfjmHbBLgyOHj3A282xt905EREREqkiBhdQcd3fsNm6Eyy9nTCrc8549WUuyGHfdOBISEmq7dyIiIlKDlJi0dlXHn78CC6lZl18OGzbAG2/wr2/j8HTz5MCBAwwdOpR/v/tv1u5fW9s9FBERkWpkb28PQE5OTi33pGE7e9YyY6RRI9vlctI+FnXIpbSPRXmlpaUROGUKP6Rs5+jEDOwMdrw67lUGdxxsszbqy0Y3IiIiDYXRaMTBwYGOHTtiMBhquzsNTl5eHgcPHqRRo0ZcfvnlpZbVPhZSb7SytycyM5OMFj2Z3qMTH+2NYMbXM+Ac0Ng2bTSUjW5ERETqi9atW/P333/z119/4ezsjIODgwKMamY2m8nLyyM7O5v09HTy8/Nxd7ftF68KLKR27d+PYdcunLOy+LCVG25BD/JG/FvQGMa1Gsez/s8W+UGTnZPNsBXDANh639YyN9rTRjciIiJ1S8E33ydOnODvv/+u5d40LPb29jRv3py2bdvSuLGNvsX9h6ZC1SENcSoUAJs2wQ03wJkz5E8KoJtjHElXJAMwyDyI75/6HodGDtbiWeeycFroBEDmnEwcGzvWRq9FRETEBnJycsjLy6vtbjQIdnZ2FR4d0lQoqV9GjIDoaJgwAbuISH6/+25GZXRkS4vv2GnYyaB7BrHh9Q24ubnVdk9FRETExhwcHHBwcCi7oNR5GrGoQxrsiEWB6GiYNAny8iAggAd7mwnf8Ql5X+dxefv2RC1axKDevcnKzcbpG8tUqMwbtuLYqPSpULi7W14iIiIiUiEVeT5VYFGHNPjAAmDlSrjrLuvhz4AfsB9o7AA77OHKPHB60nI98zlwLCtb3dy5MG9e9fRXRERE5BKmqVBSf915J5w8aRlh6NKFvkDcqVPcPe9pdg9K4u72zfnkqmfhh9st5WNjwMm19Do1WiHFSEhIIDU1FZPJxM6dO+nSpQtBQUG13S0REZF6SyMWdYhGLEpw5AhJjbO4bsV1pGSm0KZZa45nngA76NO6F/NHL2Biz4m13UupIQkJCXh5eVW5nlatWhEZGYmPjw9Go5EuXbqQlJSEp6enDXopIiJyaajI86l23pa67dtvoWtXuny8jq33b6WdYzuOZ1uCCgyw5+Re/CL8iN4bXds9lRoSGBhok3qWLl3KwIEDATCZTAC4upYx+iUiIiIl0lQoqds2bYLMTJgxA8/mK3Bt5srRrKPwT5Y0M2Yww/xN8zVqUc8kJCQQGBhIfHx8ue+Jiopi8uTJ1mOj0Yi3tzeurq54eXlZA4PY2FgA67nU1FSMRiNGo9E6SuHv72+tJzY2Fn9/f1xcXGzz4URERBogBRZSt82bByYTvPYaTJ1K8lz7omUM8MuRXzhx4gStW7eu6R5KBZhMJkJCQgCIi4sjISGhQveHhYURGRlpPY6KiiIoKIjQ0NBC5QwGA/7+/oXKAnh7exea6mQ0GomKimLnzp1FyoqIiEjFaCqU1G0GA7zyCkybBvn5dDuSg4GLNnXJh/xj+Xh5ebFjx45a6aaUj4uLC2FhYYSFhRUaeSiPgulKF44qJCUlFQkqCoIVX1/fInX4+PgUCiw8PT2ZPXs2np6eBAcHV6g/IiIiUpgCC6n7DAZYsgSmTGHuJsv0J0P+P5fMgB24/+HOoUOHCJoZRH5+fm32VqpJREQEAQEB1mOj0VjouEDBNCgfH58i10raZHHOnDmEh4cTHh5uo96KiIg0PAospH6wt4f33mNii6tZsxr6HoOmOdD3KER/DPvvW8TYwLEcuO0An/z2SW33VqpBWFhYoXSwJpOp2OAhJiYGFxeXYrM7FWSTSkhIoFWrVoVGQVxcXEhKSqqezouIiDQACiyk/mjUCLKzuW0vJC6B7Ocs/73tdwPNX3oJt3FupJ9Lxz/Snyc2PMGKd1ewf//+2u51vWUymQgICKBLly60atWK4OBg64P4hUJCQggICKjWqURGo7FIoFBSytnY2FgmTZpU7LULA5GBAwdap1WZTCZMJlOx06dERESkfLR4W+qXffsuXmEBZjP8/jvv3RpHe8f2/G/7/1i4dSHshxazW/DB0g+YMGFCbfS2XgsMDCQ0NBRPT0+MRiPBwcF4eHgQHx+Pp6enNfAIDQ21yb4SpQkLCytX4FLa+ooLeXl5ERwcbJ36FBMTY80WJSIiIpWjDfLqEG2QVw79+mHevRvDxf/beniA0QjAqt2rmPrZVM7knYFU4GN4/P7HWbBgAY0aKZYuj/Dw8CILncGSVclkMhEfH09AQABhYWGV3lBu0aJFhISEUJ4fQd7e3uVKS1tQZ1pamlLHioiI2IA2yJNL19y5GMxm8v45tD6SHjwIUVEATLlqCtumbaOzc2dwBabBC8teYOzYsRw7dqzm+1wPmUymYgOGDRs2kJqaire3NwEBATWyS3VCQoJ1I7uyxMTE4OnpqaBCRESkFiiwkPpl4kTOvPcOu9tBdiPI790Lhg2D/HyYPBlWrgSgf/v+xAXFMdpjNNe4XUPz7OZs3LgRLy8vtm/fXssfov5ycXFh6dKlxa55qC7lnQYFlvUVms4kIiJSOxRYSL2Td8tNDJgOzZ+CM999a9md+777LMHF3XfD8uUAuDV3Y+1da9n40EZ27thJjx49+PvY32zZuaV2P0A9l5qaiouLCwEBAcUu5ra1uLi4cq3hKEgzqwXYIiIitUOBhdR/9vawbBlMn25ZyD1tGrz1FgCN7BrR3KE5vXr14scff8RrvhdL8pfw05GfarnTdZuLi0uxQYPRaCQyMpLk5GQARo8eXa39iIqKKvdGejExMUDx+1eIiIhI9VNgIZcGOzt4802YNcsSaLRrV6RItl02ac3TSDYlM2T5EJb/uJxbb72VP/74oxY6XLcFBQWxcOHCQucSEhIIDg4mMjISFxcX4uPjMRqN+Pr6Vmrk4uTJk2WWWb16Nf7+/uWqLzY2VusrREREapFS5Milw2CAl16Ce+6Bfv2KXG7n1I64oDjuWHMH65PWM23tNDgNGwZt4L0V7zFx4sRa6HTdNWfOHOvahtTUVDw9Pa2jAgCenp4kJycTEhKCh4cHnp6e5crcVFBnREQEYJm65OnpSUBAQKHRhoK9JUpbyxEeHm4NcApSzRbUHxISUmPrQERERETpZusUpZstn6y0Yzi9ZhmRyHz4KI6t2pZc+M8/4eOP4bHHLIEHkJefx1Mbn+KF71+wlEkCouCxmY/x/PPPKyVtHVGwx8SFu22LiIhIzVK6WRGA7GwYPRpCQuA//7GsvwDs7exZ6LOQCP8IHB0coQswBV588UV8fX05evRo7fZbAIiMjCxxB20RERGpexRYyKWrWTPLmguAV1+1LO7Oz7deDugdwPZp2+nZuifPXPcMTk5ObNq0iQEDBpCYmFg7fRbAskjcxcVF6yVERETqEc35kDon5VQKKZkpJV7Pzki1vk889jPNzriWXNmt1+DJ/3CZ8QiEhVlGMZYvh3+mO/Vp24fd03djb2dPwDUBTJw4kbQmabTv0N5mn0cqriLZoERERKRu0BqLOkRrLCzmbZrH/M3zbVbf3OFzmZfS3bLHRV4eTJoEH34IDg5Fyu44sIORK0cyuNNgPvb7mDaObTh79ixNmjSxWX+kbAEBAURGRtZ2N0RERBq8ijyfasRC6pxg72DGdx9fcoHsbMtu2wBbt1qmPJXC3ckdWrhD06aW3bkjIqBTJ0sGqYuczDmJwWBgY/JGBi4dyH3N7iPytUjWrFlDjx49qvKxpAIUVIiIiNQ/GrGoQzRiUU5ZWeDkZHmfmQmOjuW/95tv4IknYO3aYve6ANhzbA+3rb6Nfan7MOQaMH9uxsnoxIoVK8q9p4KIiIjIpUBZoURKcsMNEBdXOKjIyytUpHfb3uwI3MFNXW/C3MgMEyFzWCYBkwN49NFHycnJqeFOi4iIiNR9GrGoQzRi8Y+UFMurJBWcCoW7u+VVnBUr4J134Msvwdm50KV8cz7zNs1jwZYFlhNfATvhuuuuIyIigvbttcBbRERELm0VeT5VYFGHKLD4x7x5MN92i7eZO9dS58XS06FLFzh5EgYOhHXrwLVohqlPf/uU9356jymNpjD1vqmcOnWKDh06sHfv3ob99yQiIiKXPAUW9ZQCi3+UNWJRUaWNWCQmgq8vnDgBfftCTAy0LXkn7z/++IPb/G+j7219+Wj+R7bro4iIiEgdpKxQUr+VFgjYWv/+sHmzZYfun3+G4cNhwwbo0KHY4t26dWPYgmGEJ4bT5ps2vDzmZY4dOUbLli1p0aJFzfRZREREpA7S4m2RXr1gyxZLCtrffoPrr4eDB4stajab6eBsCTpe3/E6o94bxQ0BN3D11Vezd+/emuy1iIiISJ2iqVB1iKZC1bIDB2DUKEhOhkWL4LHHSiz6+e+fc1f0XZw6dwq7TDvyV+XTzNSM//7vv4wZP6ZK3XB3cse9RQ2N2IiIiIiUQmss6ikFFnXAX3/BqlWWoMJgKLXobyd+47bVt/Hbid8gD/gCSAQGA76AfeW6MHf4XOaNmFe5m0VERERsSIFFPaXAog7KzrZMiyph1+2MsxlMipzEuqR1OOQ7kPNyDmRB/6v780LYC7Rp14bsnGyGrbCkx91631aaOZS9U7hGLERERKQu0OJtEVs4exZuuw127ID16y0paS/SsklLvr7za57d8ixe7l7kDsjl3nvvJXFHIq8/9TpffvklWeeyrOX7t++PY+MK7BQuIiIiUk8osBApyZkzlr0u0tIsWaO++QaGDi1SzM5gx3+H/9dy0A3i4uKY9Ngkpj45tYY7LCIiIlJ7lBVKpCTOzpaRiuuvh4wMGDMGvv22zNsat2nMoaGHuH3d7SxPWG45+Qtwpnq7KyIiIlKbFFiIlKZFC8tIha8vZGXBjTfC2rWl3tKqWSuuu+I6zuWdY9oX0xj6+lBoAzSC/m/2J3pvdM30XURERKQGKbAQKUvz5vD553DLLZbpUePHW45L0LJJS9ZMWsOzI58F4OfMn6Et0Aj2m/bjF+Gn4EJEREQuOQosRMqjaVOIigJ/f2jWrMSduQvYGex48von6ezS2XKiIHOtHZAPwauCOXfuXHX2WERERKRGKbAQKa/GjeGjj2D79mIzRBXnyKkjRU/awQnzCUaMGMFff/1l406KiIiI1A4FFiIV0agR9Ox5/njHDli2rMTi3Vp3w0DhjfYMGLBLs2Pbtm1s3ry5unoqIiIiUqOUblaksg4dgrFjwWSyLOz+17+KFJk7fC5+EX7WYwMGzJh5w/8N0jqlceedd9Zgh0VERESqj0YsRCqrY0cICrK8//e/4YUXihSZ2HMiKyeutB73aduHNZPWkHQuiQ3uGziTa8lBe/z4cR544AHS09NrouciIiIiNmcwm83m2u6EWFRky3SpI8xmeOwxePlly3FgIAQHg+H89Kes3GycvhkGQOYNWzl69iT9t0zhVG4W49sNJ2pgKLf951G+2rqVKzt1Ivrdd7lq1Kja+DQiIiIihVTk+VSBRR2iwKKemjcP5s8v8XKWAzg9aXmf+Rw45sCmzjDuLjjbCO76CWZ+CpPM8CfQrFEjwles4K677qqBzouIiIiUrCLPp5oKJVJVwcEQHw+PPnr+3BNPWM7Fx0NszPnzsTEQH8+INfFEDV1MI4M9H/aDD1ZMIi4mhjGDB5Odm8vdd9/NjBkzOHv2bM1/HhEREZFK0OJtkapyd7e8vLyga1eIjISnnrLsdwGQdgy+/afsVX2hVVsAbsaL9zq25a7ou3jzQAQunbry9datPPPMMzzzzDO89dZbxMfHEx0dTYcy9s0QERERqW0asRCxpaAgWLfufFBhNkNeXonFp1w1hTdvfBOA5797nj0n9jB//ny++uorXFxcOHnyJI6OjjXRcxEREZEq0YiFiK3Z/ROvm80wZw5NN8Ty05/QNRUaR46EZxbAxInW4tMHTSfjbAadXTrTt11fAG688UYSEhLIzs7G2dn5n+rMmM1m7Oz0fYCIiIjUPTWyeDsjI0OLkctBi7cvMb//Dn36QG4uZsAAmA0GDGYzrFlTKLi4WF5+HvZ29oXOvfHGG6xfv573338fFxeXau26iIiICNRCVqilS5cWyr//6D+LWJctW0ZISAgmkwlPT0+Cg4Ot16QoBRb1U8qpFFIyU4q91nvwLTT+83ChvbfNBgPZPbvyW+xHxd5jNpuZ+vlUQn1CGXvlWABSU1Pp3Lkzp06dwtPTk+joaPr162frjyIiIiJSSI0HFhs2bCAkJIRFixYx6p/8+7t27cLb25vZs2fzwj8bhy1duhQ3NzcmlvJNbUOmwKJ+mrdpHvM3F59u9vSz0Cy36PnsRtD8qeLru+aya/jx7x9p1qgZMXfHcO3l1wIQHx+Pn58fBw8epGnTpixZsoR7773XVh9DREREpIgaDyxeeumlIiMRAwcOxGAwsHPnzjLL1nexsbEkJCQAkJSURJcuXZg9e3aF61FgUT+VNmLRY/TtNPttv2X60z/KGrFwa+bG9K+m883+b3Bu4sym/9tE//b9ATh58iR33XUXa9euBSA4OJhXX32VJk2a2PZDiYiIiFCx51ObLN4uLjZJSEhg0aJF5SpbnyUkJGAymQoFEl26dCEpKYmwsLBa7JnUFPcW7ri3cC/+4rMvgJ9foVMGs5nmIU/i5e5VYp1Rk6IY9+E4vvvzO8Z+OJbv7vuObm7dcHNz46uvvmLBggXMnz+fsLAwfv75Z7Zs2UKjRsrFICIiIrXHJullLl5IumbNGgwGA15eRR+cWrVqZYsm64ywsDBCQkIKnfPx8SE8PLyWeiR1ysSJsHLl+WMnJ5g1C+65p9Tbmjs054s7vmBA+wEcyzqGz/s+HEo/BICdnR1z587l66+/xtXVldtuu01BhYiIiNQ6mzyNGAyGQscxMZadhgvWW1woLS3NFk3WGb6+vrXdBanrJkw4/z4lxRJclINzU2fW3bWO61Zcx+8nfyf4y2C+vvNr6/Vx48axZ88e2rVrZz137NgxWrdurZS0IiIiUuNs8vSRlpZGRkYGAAcOHCAiIgJ/f/8i5V566SUCAgJs0WSd4e/vX2TKU0REBKGhobXUI6nTLgzCjxyBf4LwkrRxbEPM3THc2PVGlo1fVuR6+/btrYF9ZmYmI0aMYPz48ZdcAC8iIiJ1n01GLB577DHGjBmDwWAgJiYGT09Pli5dCliyQ61evZrw8HAMBgOenp507tzZFs1WWHBwMAEBAfj4+JRazmQysXDhQgDc3NxISkrC19e32GCpQFRUFDt37iQhIYHIyMgy25AGLikJhg2DU6dg507o2bPEop2cO/HVlK8KnTObzUVGCuPi4khOTmbv3r14e3uzZs0aBgwYUC3dFxEREbmYTTfI27VrF0Chh5kNGzZgMpmsxy4uLowePdpWTZbJaDQSGxtLWFgYCQkJxMTElPrQbzKZ8Pb2JjIystAakeDgYFxcXMociYiKimLhwoVERkbi6elZob4qK9QlKivr/PSnzExwdIS8PPD1hW+/hV69YMcOy/lyWLV7FR//8jFRk6JobN+40LVdu3bh5+dHcnIyTZo04a233uL++++39ScSERGRBqIiz6c2nYg9YMAAkpOTmTNnDomJiQCMHj0aFxcXunTpgp+fX40GFeHh4daF1eWdmhQQEIC/v3+RhedhYWGEh4cTGxtb6v3+/v74+Pjg7e1dKKASKcTeHlatgvbt4ddfYfp0KEeMfzzrOMFfBvPFH19w9yd3k5efV+j6gAEDiI+P56abbuLs2bNMnTqVwMBAzpw5U12fRERERASwYWARHR2Nq6sr/v7+hIaGEhcXZ702evRokpKSWLas6Bzx6hQUFERkZCRBQUG4urqWWb5gdCM4OLjY65MmTSpXgOLr64vJZFJmKCld+/bw8cdgZwcffADLl5d5SxvHNkQFROFg50DEngge+PKBIimcW7Vqxeeff86CBQswGAwsW7aMWbNmVdenEBEREQFsFFjs2rWL2bNnExoaSlpaGvn5+UUedvz8/PD29mbjxo22aLJaFCzCLmkKU5cuXYiNjS00EtGqVasi+3UUBDFJSUnV01G5dAwfDs8+a3k/cyb8M9JXmrFXjmWV3yrsDHYs27WMkNiQIv/e7OzseOqpp1i7di19+vTh6aefrobOi4iIiJxnk8Xb4eHhxMfH4+zsbD138cJSsEzTWLZsWbFpaOuChISEIntyXKgg4IiLi8PHx8caYFwciBiNRgC8vb2rpZ9Sx6SkWF4lyc4+/z4xEZo1K3zd1xe++gq+/x4eeggiIsC9hA33/uHfy5+ltyxl6udTefGHF2nVtBVzrptTpNyYMWP46aefCqWfXbduHb6+vkpJKyIiIjZlk8DC09OzUFBRmrq87sBoNJY6Zaog6CgIHFxcXAgKCip2PYaXlxdBQUHV1lepQ8LCYP788pUdNqz061u3WuqbN6/Mqu4fcD+mMyYeWf8IT2x8gsEdBzPSY2SRchcGEBEREUyePJlx48bx4Ycf4ubmVr5+i4iIiJTBJoFFRXbTrsvTg1JTU0vN5FQQdFwYHIWGhlpHbFxcXDAajXh5eZVrLcbZs2c5e/as9bhgLxCpZ4KDYfx429VXxmjFhWYNmYXpjIkzuWcY0XlEmeVzc3Np1qwZa9eutaak1ciaiIiI2IJNAov9+/cXOVdcFtvExMRiz9cV5R1NOXnyZKHjyo5MLFy4kPnl/aZb6i539woFA2Uym+F//4OhQ2Hw4DKLzx9h+X+ouOmHF5syZQq9e/fGz8+PpKQkrr32Wt544w2mTZtW5W6LiIhIw2aTSdaTJ09m0KBBHDx40Hru4oecDRs2MHr06CILnRuyOXPmkJ6ebn0dOnSotrskdcErr8Ajj8DkyXBREFscg8Fg/fd2JvcMt0fdzrfJ35ZYvl+/fsTFxTF+/HjOnj1LYGAgU6dOJfvCtSAiIiIiFWSTwGLAgAEEBgbi4eHB2LFjmT59OpGRkcyZM4fJkyfTtWtXxowZQ0RERJ3e+M3FxaVcoxa2mpfepEkTWrZsWeglwtSpcOWV8OefcM89kJ9f7ltDt4ayes9qxn88np1/7yyxnIuLC5988gnPP/88dnZ2vPPOO2zevNkWvRcREZEGymZpYYKCgoiLi+PEiROEhYURExNDaGgokZGRDBgwgNTU1BrdHK8yytrrIjU1FaDUzFEiVdayJURFQdOm8PXXUIFRvpBhIYzyGEXmuUzGrRzHnmN7SixrZ2fHnDlzWL9+PQsWLGDcuHG26L2IiIg0UDbNN+nl5UV8fDz5+fnEx8eTlJREfn4+ERER5c4aVZs8PT2twUNxSkovK2Jz/frBG29Y3j/5JJRzNKFpo6Z8OvlTrr7salKzUxnz4RiS05JLvWf06NE89dRT1uO///6b559/nry8vFLuEhERESms2hLZDxgwAA8Pj+qqvlp4eXmVOhWqIM2sj49PDfVIGrT77z8/Fer22+Ho0XLd1qJJC76e8jW92/Tm8KnD+HzgQ8qpUvbZuEBeXh6TJk3iySef5MYbb+TEiRNV+QQiIiLSgNT4DlnTp0+v6SbLbfLkyYBlo7zi7Ny5U0GF1ByDAd56C3r3hhMnLBvolZNbczfW370ez1aeGNOMTIyYWK6MbPb29kyfPp1mzZqxfv16vL292bmz5LUaIiIiIgUqnG42IyOjyCLjxMTEct8fGxtb0SZrjJeXFz4+PqxevbrIpncAUVFRxMTE1ELPpMFydLSst0hLgyFDKnRrhxYdiLk7hvEfjWfx2MXlSkcLcNddd9G/f38mTpzIvn37GDZsGK+99hpBQUHlrkNEREQaHoO5AhtLXHnllRw4cIDU1NRCwYWrqyvp6ell3m82mzEYDLUydzsqKoqAgAAiIyPx9/cvsZzJZMLb25vIyMhCwUVwcDAuLi7l2viusjIyMnB2diY9PV0ZoqRkZrNlNKOc8s352BkqPjiZnp7OfffdxyeffALAPffcw9tvv03z5s0rXJeIiIjUTxV5Pq3QiMWAAQMAilTq6urKnDlzypwmdPLkyRqdChUVFUVYWBgAcXFxAAQGBlrPBQQEFNnczsXFhfj4eEJCQnBxccHNzY2kpCR8fX1LDUhEasTu3TB9Onz0EXTqVK5bLgwqElISeHPHm4TdEkYju9L/+Ts7O7NmzRpefPFF5syZQ0JCQp3e4FJERERqV4VGLEoyZswY1q9fb/OyDY1GLKRUZjMMHw7ffWeZFrV5Mzg4lPv2rHNZeL7mybGsY9zT7x5WTFhR7pGMb7/9lssuu4xu3bpVtvciIiJSD1Xk+dQmgYXYhgILKZPRCF5ekJ4Os2bByy9X6PbPf/+ciasnkmfOY3LvyTw29LFKrZt49413yTyVyfTZ0+no3BH3Fu4VrkNERETqPgUW9ZQCCymXTz+F226zvI+OPv++nCaunsgnv31S+fZPAm8AZsADHv3fo7x464uVr09ERETqrDoTWKSnpxMREYHBYMDT05NRo0ZVV1OXBAUWUm6PPmoZrXB2hvh46NKl3LemnErh1R9fJfR7SyKCWYNncWffO63Xs3OyGbZiGABb79tKM4dmRepY+8laFjy6gDPZZ3C/zJ1P1nzCNddcU8UPJSIiInVNjQcWY8eOZd26dSVeT09Px2g0smHDBnx8fOjfv39Vm7wkKbCQcsvJgREj4IcfYMAAy3+bNq1QFc9teY6nvrXsuP3p5E+Z0GMCYFmL4bTQCYDMOZk4NnYs9v49e/YwceJE/vjjDxwcHHjllVeYPn26UtKKiIhcQiryfGqTDfLKik2cnZ0ZMGAAjz76aJ3ex0Kk3nBwgNWrwc0NWrWCrKwKV/HEdU/wyJBHGNNlDD6eFd/4sXfv3uzcuZOJEyeSk5PDjBkzCAwMrHA9IiIicmmo8AZ5xanIN5RJSUm2aFJEOna0jFR06QL29hW+3WAw8KLvi+Tk59DYvnGlutCyZUuioqL43//+R0hICAMHDqxUPSIiIlL/VTiwOHDgQJFzqampHDx4sNSRC6PRSGRkJEajsaJNikhJLk7/euoUtGhR7tsNBoM1qDCbzTz/3fMM7ji4Ql0wGAw88sgj3HjjjfTo0cN6PjMzEycnpwrVJSIiIvVXhQOLmJgYkpKSiI2NJSEhwTpa4enpWep9ZrMZb29vTYUSqQ5nzsB//gNbtsCOHeBY/LqI0ixLWMZT3z5Fc4fzO2sPXj6Y+SPmM7HnxDLv79mzp/V9WloaAwcOJCAggGeffZZGjWwyOCoiIiJ1WJUWbxuNRnx9fXF1deWFF14otaynpyceHh6VbapB0OJtqbRjx6B/f0hJgbvvhvfegwouoj6dcxrvMG9+O/mb9ZwBA2bMrJm0plzBRYEVK1Zw//33AzBy5Eg+/vhj2rZtW6H+iIiISO2r0axQJpOJSZMmaTdtG1BgIVWyZQuMGgV5ebB0KUybVuEq+rzVhz3H9xQ6Z8BA33Z9SXwgsUJ1RUREcP/995OVlcVll11GZGQkQ4YMqXCfREREpPbUaFYoFxcXAgICyl2+uDUaImID118Pzz1neT9zJiQmVriKpNSiyRXMmPn95O8VrmvSpEns3LmTHj168Pfff3P99dfz+uuvl5lFTkREROonm6SbrUiKyeDgYFs0KSLFeewxuPlmOHsWAgIgPb1Ct3dr3Q0DRadQdXPrVkzpsvXs2ZMdO3YwadIkcnNzefjhh3n55ZcrVZeIiIjUbTZdUblx40ZMJhOpqakllomLi7NlkyJyITs7y/qKAQNg/34IDISIiHLfPnf4XPwi/Iqcnzd8XqW71KJFCz7++GOGDBnCG2+8wX333VfpukRERKTussnO2+np6Xh7e5crlazBYCAvL6+qTV6StMZCbGbHDhg/3rLW4pZbKnTrqt2ruDP6TgB6te7Fs6Oe5baet9mkW2fOnKHpBTuEx8fH4+3tbZO6RURExPZqfOftgIAA/P39SUpKIi0tjfz8/GJfqampygwlUhOuvhqSkyscVABM6D7B+n5H4A5rUHHi9Aki90RWqVsXBhXvvPMOAwcO5LHHHiM3N7dK9YqIiEjts8lUKE9PzzLTzYJlobeXl5ctmhSRsjRrdv79n39a9rZwc6tUVanZqQxdPpT9qfuxt7OvUOrZkhSMcL700kvs2LGD1atX0759+yrXKyIiIrXDJiMWV155ZbnLRlRgvreI2MDGjZY1F3ffDfn5laqiVdNWjPYYjRkzU9ZMYeufW6vcrWeffZbIyEicnJzYsmULXl5ebN1a9XpFRESkdtgksKjIMo2MjAxbNCki5eXmBqdPwzffQGhopaowGAy8ceMbjO8+nrN5Zxn/0Xj2Ht9b5a75+/sTFxdHr169SElJYeTIkbzyyitKSSsiIlIP2SSw8Pf356WXXipX2YrseSEiNtCvH7zxhuX9U0/Bpk2Vqsbezp6P/D5icMfBpJ1JY9zKcRw+dbjK3evevTs//vgjt99+O7m5ucyaNYtdu3ZVuV4RERGpWTZZY2EwGBgwYACTJ09mzJgxeHh44OrqWqRcampquTJHiYiN3X8/fPedJRXt7bdbNs+rxHqG5g7N+eKOLxi6fCj7Uvdx48ob2XLfFlo2qVoWMycnJ1atWsWQIUM4deqU1mKJiIjUQzZJN+vq6kp6enqh6QsGQ9FNtsxms9LNlkLpZqVaZWXBNdfAnj0wYgTExoK9fdFi57JwWugEQOacTBwbOxYpY0wzMmT5EFo2aUnM3TF0dulcLV02Go0kJCTg7+9fLfWLiIhI6SryfGqTEQtXV1eCgoKYPHlyqeVOnjzJ9OnTbdGkiFSUoyNERcHAgZbpUG++CQ8/XKmqPFt5EnN3DO5O7rRxbGPbfv4jOzsbPz8/EhMT+c9//kNoaCgODg7V0paIiIhUXY2mmwW0j4VIberRw7Jp3saNll25q6Bvu76Fjv84+Qfd3LpVqc4LOTg4MHbsWBITE1m8eDE7d+4kIiICd3d3m7UhIiIitmOznbednZ1tXrah0VQoqREpKZZXCbJys3H6ZhgAmTdsxbFRsxLLAuDuzjtHviHoiyBev+F1pg+y7ajkp59+yr333ktGRgbt2rUjIiKC66+/3qZtiIiISPFqfCpURQIFBRUitSwsDObPL/m6A/DkP++HDYOcMuqbO5e/R9qTZ85j5jcz6dCiAxN6TCjjpvK79dZb2blzJ35+fvzyyy+MGjWK0NBQZs2aVexaLhEREakdNhmxqIjp06fz9ttv12ST9YZGLKRGXDhiMWcOrF8Pd94Js2YBkJWZitO3vgBkjozB0alohrdC3N0xt29P8JfBLE1YStNGTdl4z0aGdBpi025nZWURHBzMypUrGThwIN9//z2NGze2aRsiIiJSWLWOWGRkZBSpNDExsdz3x8bGVrRJEbGhFCdI+WeZgvPtY+myfj2sXEnSqP6k3zCK7Av2sExsB83KiHHdncDdYOCtm94iJTOFL//4kps/upkf7v+B7q2726zfjo6OfPDBB1x33XWMGzdOQYWIiEgdU6ERiyuvvJIDBw6QmppaKLgoSDdbFqWbLZ1GLKQmzNs0j/mbz0+FWrQeHvsBTE3AOxiMZQxQXGzu8LnMGzEPsKSqHfX+KHb8vYPOLp3ZNnUb7Z0qvl9GRTz33HNceeWVZWalExERkYqrthGLAQMGABSp1NXVlTlz5uDj41Pq/Uo3K1L7gr2DGd99/PkT9+WQ6R+My86f2L2xO79HvIV59GjLta1boVnpi7fdnc5naXJs7MgXd3zBte9cy/7U/byX+B4hw0Kq42MA8N133/HUU08BsG3bNl588UWlpBUREaklNlljMWbMGNavX2/zsg2NRiyk1vz1FwwYACdOwNSpsHy55XxmpmX/iwpKSk3ik98+4ZEhj1TrAuu8vDyefvppFi5cCMDQoUOJiIjgsssuq7Y2RUREGpKKPJ/W+OJtKZkCC6lV69fDuHHQqBHk/JMKqk8fSwapiROrVHVufi72BvtqCzI+//xz7rnnHtLT02nbti0ff/wxI0eOrJa2REREGpKKPJ/a1USHXnzxRV566SWio6NrojkRqYwxYyyjFTkX5Jfdswf8/KAK/3azzmVx68e38t9v/2uDThZv/PjxxMXF0bdvX44dO4aPjw+vvPJKtbUnIiIiRdVIYPHYY4/x6KOPMnr0aF566aWaaFJEKmPHDrhwVMFsthw/80ylq1yXtI6v9n3Fs989S1hcmA06Wbwrr7ySbdu2cc8995Cfn4+bm1u1tSUiIiJF1UhgUcBgMBATE1OTTYpIRfzxhyWYuJDZDL//XukqJ/acyNzhcwF48OsH+fz3z6vSw1I1b96cd999ly1btnD33Xdbz+fm5lZbmyIiImJhs8Bi48aNjB07lq5du+Lm5lbkZW9vT6tWrfD19bVVkyJia926FR6xAMtx96rtRzF3+FymDphKvjmf26NuZ/tf26tUX2kMBgPXXXed9fjYsWP06dOHVatWVVubIiIiUokN8oqTnJyMj48PXl5ejP4nTWVcXBwDBw4ELGlmd+3aRVRUFP3797dFkyJSHebOtaypuJDZDE8/XaVqDQYDb9/0NodPHeab/d9wy0e38P3939PNrVuV6i2P1157jd9//50777yTbdu28fLLL2tzPRERkWpgk8Bi0aJFxMTEWIMKgKVLlxIYGFio3NKlS3FxcaFz5862aFZEbG3iRFi5Eu6803JsZwf5+ZZ0tFXkYO9AREAEI98bSdzhOAIiA9gVvAs7Q/XOyJw/fz4Gg4Fnn32WN954g/j4eCIiIujYsWO1tisiItLQ2OQ3urOzc6GgAih2J+7AwECioqJs0aSIVJcJE86/X7zY8t8nn4Q//6xy1U6NnfhqylcM7TSU5eOXV3tQAWBvb8+CBQv48ssvcXFxYdu2bXh5ebFx48Zqb1tERKQhsclv9eKyr+zfv5+MjIwi552dnW3RpIjUhPvug2uvhawsmDmz6MLuSmjr2Jat921lYIeBNuhg+d10003Ex8fTv39/jh8/jq+vL5988kmN9kFERORSZpPAorhNrwICAqy74V7IaDTaokkRqQl2dhAeDg4O8MUXEBtrk2ov/Jmx4+8dPLb+MWpir05PT09++OEH7rvvPrp06cKoUaOqvU0REZGGwiZrLJydncnIyGDhwoWkp6fz1ltvMXr0aAICArjyyiuZOnUqAImJiSQkJNiiSRGpKb16wbPPQsuWcNGUx6o6efokPu/7cOrcKRwbOzJvxDyb1l+cZs2asXz5ckwmk3UE1Ww2c/DgQa3/EhERqQKbjFgEBgYSFhZGaGhooX0qIiIiCAwMxN7enq5du+Lt7U1AQIAtmhSRmjR7NjzwgGUEw4bcmrvxou+LAMzfPJ9lCctsWn9JDAYDrVq1sh6//vrr9OrViw8++KBG2hcREbkU2ewp4bHHHiM/P599+/ZZz/n4+LB+/XpGjRqF2WzmhRdeYNq0abZqUkRqQ1YW7N9vs+qCBwbz5HVPAvDAlw/w1R9f2azu8jCbzcTGxpKdnc0999zDgw8+yNmzZ2u0DyIiIpcCg7kmJjZLuWRkZODs7Ex6ejotW7as7e5IQ5WVBU5OlveZmeDoeP7arl1w223QogXEx4ON9oMwm83c99l9vPfTezR3aM6mezcx6LJBNqm7PPLy8liwYAHPPPMMZrOZq6++msjISC6//PIa64OIiEhdVJHn0+rP9Sgil47LL7cEHr/8Ai+9ZLNqDQYDS29ZytguYzmdc5qbVt1Eclqyzeovi729PfPmzeOrr76iVatW7NixAy8vL2JttFhdRESkIajWEYv09HQiIiIwGAx4enoqA0sZNGIhdUJpIxZg2UDvrrugSRPYvRu6drVZ06fOnmLEeyPo2LIjH/l9RHOH5jaru7ySk5Px9/cnISGBxo0bk5SUpM30RESkwarI86lNAouxY8eybt26Eq+np6djNBrZsGEDPj4+9O/fv6pNXpIUWEidUFZgYTbDuHGwfj2MGmVJQVtMyunKSs1OpWWTljSys0nSuko5c+YMM2fOpEePHjz66KO11g8REZHaVuNTocqKTZydnRkwYACPPvqophaI1HcGA7z9NjRrBhs3wvvv27R612au1qDCbDaz8ueV5Obn2rSNsjRt2pRly5bxyCOPWM/99ttvJCYm1mg/RERE6pNq2yCvJElJSbZoUkRqk6cnzJ1ref/II3D8eLU089A3D3HXJ3fx4FcP1sgGehcr+Nl26tQpbrvtNoYMGcK7775b4/0QERGpDyo81+DAgQNFzqWmpnLw4MFSf/EbjUYiIyO187ZIbUtJsbxKkp19/n1iomVkojgjRljWV3TtCvn5tuyhlY+nD2/Hvc3ShKXY29kT6BVY5Trdndxxb+FeoXvy8vLw9PTkt99+47777mPbtm28+uqrNG3atMr9ERERuVRUeI3F0qVLSUpKIjY2loSEhHKPVpjNZry9vYmNjbXudiuFaY2F1Ih582D+fNvVN3eupc5qctOqm/h639c2q2/u8LmV2uE7Pz+f5557jrlz52I2mxk4cCBRUVFcccUVNuubiIhIXVNji7eNRiO+vr64urrywgsvlFrW09MTDw+PyjbVICiwkBpR1ohFRbm7W15gGbmw8e7cKadSeHLjk6xIXIG9wZ7FYxdz7eXXWq9n52QzbMUwALbet5VmDiWMsBR0txIjFhdat24dU6ZMITU1FVdXV1atWsXYsWMrXZ+IiEhdVqNZoUwmE5MmTWL9+vVVqUZQYCH12LFj8J//wBVXwPPP27x6s9nMvZ/eywc/f4CjgyOb/m8TAzsMBCDrXBZOCy1ZrDLnZOLY2LG0qmzi4MGD+Pv7ExcXx8iRI9mwYUOF1pqJiIjUFzWaFcrFxYWAgICqViMi9dm2bbBqFbz4omVvCxszGAwsG78MH08fzuadZd/JfTZvoyKuuOIKtm7dyuzZs1m1apWCChEREap5gzypGI1YSL02cSJ88gkMHgzff2/zKVEAGWcz2JWyi+Gdh1vP1caIRUkWLlzI2LFj8fLyqrU+iIiI2FKN72PxwAMPYG9vz8aNG21RnYjUR6+/Di1awPbtsGRJtTTRsknLQkHFsaxjnM45XS1tVVR0dDRPPPEEQ4cO5Z133qnt7oiIiNQ4m32lGBgYyMCBA21VnYjUN5dddn59xZw5cPhwtTb3x8k/GLxsMPd9dl+1tlNeI0eO5Oabb+bs2bNMnTqVwMBAzpw5U9vdEhERqTE2CSy6dOnCkiVLyjV9R6MaIpew6dPhmmsgIwMefrhamzqedZzDpw7z1b6vrOcGLx9M9N7oam23JK1ateKzzz7jueeew87OjmXLlnHttdeSnJxcK/0RERGpaTYJLLy8vIiOLt8v89DQUFs0KSJ1kb09hIdDo0aWBd3HjlVbU9defi0PX1M4eNlzbA9+EX61FlzY2dnxxBNPsG7dOlq3bk1CQgLe3t6sXbu2VvojIiJSk2wSWIwePRoXFxfmzJnDsmXLSExM5MCBA2RkZBR6HThwQDtvi1zq+vaFNWtg715o27Zam1qXtK7QsRkzBgw8s/mZam23LD4+PiQkJHD11VeTlpbG6dN1Yx2IiIhIdWpki0rs7e0BS655oMTUi2azWWkZRRqC8eNrpJk/TvxR5JwZM3tP7K2R9kvTqVMntmzZwjfffMOtt95qPa+fgyIicqmySWDh4eGBv78/vr6+pZZLS0sjODjYFk2KSH1gNsN770Hv3jBokM2r79a6G7uP7sZM4azZPVr3sHlbldGkSZNCQcVff/3Fbbfdxttvv61kFyIicsmxSWDh6enJCy+8UK6y4eHhtmhSROqDF16AJ56Afv1g505wcLBp9XOHz8Uvws96bMCAGTPzhs8D4HTOad7c8SYzr55JM4dmNm27MkJCQoiLi+Paa6/l9ddfJzAwUKMXIiJyybDJGovIyMhqKSsi9dy0aeDqCj/9BK+8YvPqJ/acyMqJK63Hfdr2IXpSNLf1vA2A5797ntmxs7nq7atYu7/2F1C/9dZb3HrrrZw7d47g4GDuv/9+srOza7tbIiIiNmGTwMLZ2dn6Pjo6mjlz5pCYmGg9t2HDBuvxhWVF5BLXpg28/LLl/dy5UA2pVyd0n2B9v23qNmtQAeDl7kWHFh1ISkvihpU3EBAZwN8Zf9u8D+Xl7OxMdHQ0L7zwAnZ2drz77rsMHTpUSS1EROSSYLMN8qKjo3F1dcXf35/Q0FDi4uKs10aPHk1SUhLLli2zVXMiUl/cey+MHAnZ2ZZ9Lszmsu+xkYk9J/LbjN/4z+D/YG+wJ+rXKHq82YP/bfsfufm5NdaPCxkMBkJCQoiJiaFNmzYkJibi7e1d6GemiIhIfWSTwGLXrl3Mnj2b0NBQ0tLSyM/Pt2aIKuDn54e3t7c2yBNpaAwGWLIEmjSBdevgo49qtPkWTVrwv7H/Iz4oniEdh5B5LpNH1j/CY+sfq9F+XGzUqFEkJCQwePBgOnXqRM+ePWu1PyIiIlVlk8AiPDyc+Ph4AgMDrVOdiluQOGDAAA35izRE3brBU09Z3s+aBWfO1HgX+rXvx9b7t7L0lqV0atmJfw/+d4334WIdO3Zk8+bNrF27FkdHRwDy8/NJS0ur5Z6JiIhUnE0CC09Pz3KvnTCZTLZoUkTqm9mzISAAoqOhadNa6YKdwY5pXtNIejiJK1yusJ6ftW4W7+x6h3xzfo33qXHjxnTo0MF6/MILL9CvXz927NhR430RERGpCpsEFq1atSp32aSkJFs0KSL1TePGEBEBQ4fWdk9wsD+f9nbboW0s3r6YqZ9P5foV17P76O5a69eZM2f48MMPOXToEMOGDePtt98uMq1URESkrrJJYLF///4i54r7ZZiYmKhfkiJikZQEZ8/Wdi8Y2GEgL/q+iKODI98f+p4BYQN4dP2jZJ7LrPG+NG3alO3btzNx4kRycnJ48MEHuffeezl9+nSN90VERKSibBJYTJ48mUGDBnHw4EHruYvXWGzYsIHRo0ezaNEiWzQpIvXZW29Bnz6wcGFt9wQHewceHfooe2fsZWLPieSZ83h528v0fLMna35dU+NfhrRs2ZKoqCgWLVqEnZ0dH3zwAUOGDCn2CxwREZG6xGC20W/N8PBwHnjgAXx9ffH09MRoNOLl5YXRaCQhIQGj0cj69esZPXq0LZq7JGVkZODs7Ex6ejotW7as7e6IVJ/ISJg0ybIT908/QRUyImWdy8JpoRMAmXMycWzsWKWufb3va2Z+PZNkUzLtHNux/+H9ODV2qlKdlbVp0yYmT57MsWPHaNu2LUaj0brIW0REpCZU5PnUZoEFQEJCAoGBgezatavQeX9/f5YuXXrJb44XHh5OUlISoaGhlbpfgYU0GGYzjB8PX34J110HmzaBXeUGUG0dWABk52Tz/HfP06dtHyb3mfxPl83k5OfQ2L5xleuviMOHDzNp0iTuvvtugoODa7RtERGRWgssLrRr1y5cXFzw8PCojurrDKPRaA0kIiIiCAoKUmAhUh5//gm9ekFWFoSHQ2BgpaqpjsCiOCt/XsmCLQt488Y3Ge1ZsyOvubm52NvbW6eY/vrrr7Ru3Zq2bdvWaD9ERKThqcjzqc123gY4cOAAGRkZgGXPioKgYuPGjRw4cMCWTdUZnp6ehIWFERYWhqenZ213R6T+uPxyePZZy/vZs+HIkdrtTynMZjMvbXuJ30/+js8HPkxZM4UjmTXX30aNGlmDirS0NG6++Wa8vb3Zvn17jfVBRESkLDYLLF588UU8PT2LHaEYNWoUMTExLFu2zFbNicil4KGHwNsbTCb4979ruzclMhgMbLp3EzMHzcTOYMdHv3xE9ze688aON8jLz6vRvqSmptKkSRP++usvrr/+et58801l2xMRkTqhkS0qWbZsGUFBQZjN5mJ33AYIDAwkOTmZ6OhoJk6caItmRaS+s7eHpUth2DDo3duy9qKEnyG1zbmpM6/f+Dr/1///eOCrB4g7HMdD3zzEisQVLLtlGQPcB1jLppxKISUzxWZtuzu5497CHYAuXbqwY8cO7r//fqKiopg5cybbtm0jLCxMC7tFRKRW2SSwSEpKwtnZmdmzZ5dazsPDo8jC7poUHBxMQEAAPj4+pZYzmUws/CcNppubG0lJSfj6+uLv718T3RRpWAYMgEOHwNW1tntSLt4dvNk+dTvh8eHM2TCHhJSEIntehMWHMX/zfJu1OXf4XOaNmGc9btGiBRERESxevJjZs2ezcuVKfvrpJ9asWUO3bt1s1q6IiEhF2CSwqMgwvNFotEWTFWovNjaWsLAwEhISCAgIKLW8yWTC29ubyMhIvLy8rOeDg4PZuXNnpRdmi0gpLgwqLhq1KOvb/+ycbOv7xCOJNHNoVmpTF377X1n2dvZMHzSdiT0n8sUfX3DdFddZr/16/FeCvIIY3318qX0etmIYAFvv21quPl/MYDAwa9YsBg0axKRJk/jll1948skniYyMrOSnEhERqRqbBBYlTX8qTlJSki2aLJfw8HBiYmLw9fUlNDQUX1/fMu8JCAjA39+/UFABEBYWRqtWrfD19S1zxENEKunHH+HBBy3To/75N1iRb/8LHtZLc/G3/1XRzqkd07ymWY+T05IZGD6Qazpew1s3vkXPNsXvz5F1Lsv6vn/7/lXKZHXdddeRkJDAo48+ymuvvVbpekRERKrKJoFFWloaBw8e5Iorrii1XHR0dI0uMgwKCiIoKAiw7LFRlgtHN4ozadIkQkNDFViIVJdXXoGEBAgKgu3boVEjgr2DS/32v6KK+/bfVhJSLD9nNh3YRL8l/Xh06KM8df1TNHdoXm1tAri7u7Ny5cpC5xYvXsyUKVNo165dtbYtIiJSwCaBxezZs/Hx8WHRokXcdtttRa5nZGQQEhJCREQEycnJtmiyWhQEFCWlje3SpQvh4eGYTCZcXFxqsGciDcTixbB2LcTHwxtvwL//jXuLqk9dqil+vfzwcvfi4bUP8+UfX7Jw60JW7V7F6ze8zi3db6mxfrzzzjvMmjWLl156icjISIYOHVpjbYuISMNlk3Sznp6eLFy4ED8/P9zc3Bg7diyTJ09m0KBBuLm50apVKyIiIoiNja3TG78lJCSUGjAUBBxxcXE11CORBqZ9e1i0yPL+qacsm+jVMx6tPPj89s/5ZPIndGrZiYPpBxn/8XgmRU6qsRHbIUOG0LNnTw4fPszw4cN57bXXlJJWRESqnc32sfD392f//v2MGjWKpKQkIiMjiY+Px8PDg8cee4yTJ08yYMCAsiuqRUajEddSMtMUBB0lLUA3mUyYTKZq6JlIAzJ1qiX9bFYWzJhhWcxdzxgMBm7tcSt7Z+xl9tDZNLJrRI/WPazr0T77/TNr2cHLBxO9N9qm7ffs2ZMdO3YwefJkcnNz+de//sWUKVPIzMws+2YREZFKsslUqAKenp71OiNJampqqbtnFwQdFwYPBalpTSYTRqORiIgIwDJtqqz0u2fPnuXs2bPW44Jdy0UaNDs7CA+Hfv3gyy9hzRqop6meHRs7Euobyr3978XDxbJ5aPTeaO6MvtNaZs+xPfhF+LFm0hom9rTdHj9OTk589NFHDBkyhEcffZSPP/6Yn3/+mejoaLp3726zdkRERArYbMSivA4cOFDTTZZbeUcbTp48aX3v4uJCaGgoYWFhmM1m0tLSCAsLKzOoAFi4cCHOzs7WV6dOnSrbdZFLS8+e8PjjlvdRUbXbFxvo1aaXNaXsvE3zCl0zY8aAgWc2P2Pzdg0GA//617/49ttvcXd3Z+/evXX6Z7CIiNRvNR5YBAcH13STddacOXNIT0+3vg4dOlTbXRKpO554AlauhFWrarsnNvXHyT+KnDNj5veTv1dbm8OGDSMhIYH333+fsWPHVls7IiLSsNl0KtTGjRsxmUykpqaWWKYuL3x2cXEp16iFm5ubTdpr0qQJTZo0sUldIpecpk1hypTa7oXNdW/dnd1Hd2Om8NoRRwdHss5lVWlPi9K0b9+eu+66y3qclJTErFmzCAsLo3379tXSpoiINCw2CSzS09Px9vYu167aFdlMr6aVtnAbsAZMSjUrUsNOnYLXXoPHHoPGjWu7N1Uyd/hc/CL8ipw/mX2Sfkv6sfHejVzufHm19+P+++9ny5Yt7Nixg4iICK677rqybxIRESmFTaZCFexWnZSURFpaGvn5+cW+UlNT8fDwsEWT1cLT07PU0ZaC0YzSFniLiI2ZzTBihCX9bEEq2npsYs+JrJx4fjO7q9pexX+v/y8dW3akvVN7LmtxWY30Izw8nN69e3PkyBFGjhzJ4sWLlZJWRESqxGb7WLzwwgt4eHjg7OxcYjkXFxe8vLxs0WS18PLyKnUqVMGIjHbeFqlBBgM88ojl/bPPwh9F1yjUNxO6T7C+3zZ1G/NHzueX6b/wkd9H2NvZA5Cdk0384fhq60P37t358ccfueOOO8jLy2PWrFlMnjyZU6dOVVubIiJyabNJYHHllVeWu2xBOta6aPLkyYBlo7zi7Ny5U0GFSG244w4YMwbOnoUHHqiXe1uUxbmpM52cz2eGe3Ljk1y97Gqe3PAkZ3PPlnJn5Tk6OrJy5Upef/11GjVqRGRkJFdffbUSSYiISKXYZI1FRYbPMzIy6uzu215eXvj4+LB69epiR1aioqKIiYmphZ6JNGApKZbXjBmweTN8+y3Mnw/jx1euPnd3y6sOyzfnc/z0cfLN+Ty/9Xm++OML3r/tffq372/ztgwGAzNnzsTb25uAgABatGhB27Ztbd6OiIhc+gxmG0yqTU5OZs2aNTz66KNllh07dizr1q2rapMVFhUVRUBAAJGRkfiXstmWyWTC29ubyMjIQsFFcHCwdc+K6pKRkYGzszPp6el1NvgSqXHz5lkCCVuZO9dSZy3KOpeF00InADLnZJaYCWrNr2uY/tV0jp8+TiO7Rvz3+v/y+LDHcbB3qJZ+HTt2jHPnztGxY0cA8vLyyM/Px8GhetoTEZG6ryLPpzYJLA4cOEBSUhLh4eGMGTMGDw+PYjMspaamEhwczL59+6raZLlERUURFhYGWNLcmkwmXFxcGDhwIGBZdB4UFFTkPpPJREhICC4uLri5uZGUlISvr2+pAYktKLAQKUbBiAVATg7cfTfs2we33WZZ0J2dDcOGWa5v3QrNmpVeXx0YsShvYAFwLOsYD371IGv2rgHA292bj/w+oqtb12rv5xNPPMGWLVuIiIigQ4cO1d6eiIjUPTUeWLi6upKenl5oSlRxaWXNZjMGg4G8vLyqNnlJUmAhUg47dsDixZZX+/aQlQVOlod0MjPBsXr2gbCligQWYPnZ+fEvHzPj6xnkm/P55cFf6NiyY7X28fjx43Tt2pX09HTatWvH6tWrGT58eLW2KSIidU9Fnk9tssbC1dWVoKAg6+Lnkpw8eZLp06fbokkRaaiuvho++qi2e1GjDAYDd1x1ByM6j2DP8T2FgopjWcdo62j7NRFt2rRh586d+Pn5sXv3bkaPHs3ChQt59NFH6/R+RCIiUntsElgUpJstj7q8j4WI1EM1NLWyLnBv4Y57i/PTuL7e9zX+Ef4sHL2Qh655CDuDTRL9WXXt2pXt27fzwAMP8MEHHzB79my2b9/OihUrNKoqIiJF2OS3UGRkZLWUFREp0dmzMGkSDBpU2z2pNav3rCY7N5t/r/s3o94bhTHNaPM2mjdvznvvvcfbb7+Ng4MD0dHRjBgxgvz8fJu3JSIi9ZtNAovSNsWrSlkRkRI1aQJ5eZCbe/7c4MEQHV17faph7054l7dvehtHB0c2H9xM37f7siRuic130DYYDDzwwAN89913dOrUiUceeQQ7O9uOjoiISP1X7t8ML730UnX2Q0Sk4saNK3y8Zw/4+TWY4MJgMPDAwAf4efrPDL9iOFk5WUz/ajpjPxzLoXTbb3J3zTXXsHfvXu68807ruX379nHu3DmbtyUiIvVPuQOLhQsXVmc/REQq7o03Ch+bzWAwwDPP1E5/aolnK0823ruRV8a+QtNGTYkxxrDz8M5qacvxgqxbR48eZcSIEYwYMYK///67WtoTEZH6o9yLt9PS0hg7diwBAQHlrtzT05OBAwdqkZ+IVI8//ih6zmyG336r+b7UMjuDHf8a/C9u6HoDkXsimdhzovVaXn4e9nb2Nm/zjz/+ICsri23btuHl5cXHH3/MyJEjbd6OiIjUDxXKCuXl5cXo0aPLVdZkMmE0Gnn++edJT08nJCSEzp07V6aPIiLF69YNdu+2BBMX6t79/PuCUYwalHIqhZTMlBKvZ+dkW98nHkmkmUPpm/q5OxXOBlWabm7dePL6J63HRzOPcv271zNv+Dxu73O7TVPFXnfddcTHx+Pn58dPP/2Ej48Pzz//PLNnz1ZKWhGRBqjcG+RdeeWV7N+/v1KNFAQWkyZNYtSoUZWqoyHQBnkiFRQdbVlTUcBgsAQS0dGWnbnPnQNvb7jpJnjoIbjsshrp1rxN85i/eb7N6ps7fC7zRsyr1L2zY2bz4g8vAuDX04+3bnrL5vtenD59mgcffJD33nsPgFtvvZV3331XyTpERC4B1bLz9oYNG8o9WlGSSZMmsWjRIo1clECBhUglrFoFBYuJr7oK5s+3BBUAERFQsHGngwPcfjs88gj061etXSprxKKiKjJicbGcvBwWbl3Igi0LyM3PpU3zNiy5eUmhqVK2YDabCQ8P5+GHH+bcuXM8/PDDvPrqqzZtQ0REal61BBa2YDKZCA4OZvXq1TXVZL2iwEKkErKywMnJ8j4zEy5YXExeHnz5Jbz8Mnz33fnzo0fDo4/C2LE1Pk2qtuxK2cW9n97L7mO7AZhy1RRev+F1XJu52rSdnTt38uSTTxIVFaWfYyIil4CKPJ/WaCJyFxcXkpKSarJJEWnI7O1hwgTYsgV+/NGyoZ6dHWzYADfcYFmf0UAMcB/AzsCdPDHsCewMdqzavYqF39k+29+gQYNYv3699ZeP2WzmnXfe4ezZszZvS0RE6pYKLd62BU9Pz5puUkQErr4aVq+GAwfg1VchORn69j1//csvYcgQcHOrtS5WtyaNmvDc6OcY33088zbP47/D/wtU79StV199lf/85z+Eh4cTGRlJp06dbNaOiIjULTUeWIiI1KrOnWHx4sKZpI4etSwCt7eH//s/+M9/oGvX2uphtbum4zV8c+c31uMlcUt4Zovt9v64cLF5t27dcHFx4ccff7SmpK3qej0REambyh1YLFu2jGnTplWpsTlz5jBo0KAq1SEiYhMXrq04cgR694Zdu+Dtt2HJEhg/3rLQe9iwS34dhktTF+t7v55+/Hvwv2nu0Nx6Ljsnm2ErhgGw9b6t5UqPW+DGG28kISEBPz8/du3axZgxY1iwYAGPP/44dnY1OhtXRESqWbkXb48dO5Z169ZVqpGMjAwWLlxIVFQU+/btq1QdDYEWb4tUQmmLtyvCbIZvv7Us9P766/PnBw2C5cstGacuUVnnsgiJDeHNnW8C4OHiwYoJKxjeebj1utNCy59x5pxMHBtX/M84OzubmTNn8s477wBwyy238P777+Pi4mKbDyEiItWiWrJCubq68uSTT1YoL7nJZGLnzp1ERUXh4uJCXFwcHh4e5b6/oVFgIVIJtgosLrR3L/zvf/DBB5bjP/+EthXY+yElxfKyFXd3y6uabTBu4P7P7+fP9D8B+Nc1/+L50c9jNpurHFgUWLZsGTNnziQ3N5fNmzdz7bXX2qTvIiJSPaotsEhPTwcsWT7KYjAYrOWCgoJYsmRJeZpp0BRYiFRCdQQWBY4etWSTGj/+/Llbb7Xs+P3ww9CxY/H3zZtn2U/DVubOtdRZAzLOZvDIukdYtmsZAOO7j2dy78ncGW3ZK6RP2z7MHzG/SvtgxMXF8fPPP3P//ffbpM8iIlJ9qi2wmDNnToWGrT09PRk4cKB2Xy0nBRYilVCdgcXFEhNhwADL+0aNLJvvPfLI+XMFyhqxyM62rN0A2LoVmpW+ZqGmRiwu9M2+b3jgqweYMXAGIRtCrOcNGDBjZs2kNTbbZO/XX38lLCyMRYsW0aRJE5vUKSIitlEtgcWYMWNYv369TTooxVNgIVIJNRlY5OfDV19Z1mFs3nz+/MiRlgDjhhss+2SUpSb7XAU5eTkMXDqQ3Ud3Y+b8rwoDBvq260viA4lVbiM3N5d+/frx66+/MmjQIKKiorj88surXK+IiNhGtWyQFxAQUOWOiYjUa3Z2cMstsGkT7NwJd9xhSVH77bdw883w6ae13UObcrB34I8TfxQKKgDMmNl7Yq9N2mjUqBEvv/wyrq6u7Ny5Ey8vL32JJVIHJSQkYDAYKv2ShqHcgUVgYGB19kNEpH4ZOBBWrQKjEWbNgl69LEFHge3b4cSJ2uufjXRr3Q0DRR8KzuWd48GvHuR41vEqtzFu3Dji4+Px9vbm5MmTjBs3jmeffZb8/Pwq1y0ithESEkJ8fDxms7lSL2kYyj0VSqqfpkKJFKO+rFfIzz8/DSo3F6680rL4+957LRvude9+vmw9mQoFEL03Gr8IP+txwRqLAs5NnJk7fC4zrp5BY/vGVWrrzJkzPPzwwyxduhSAm266iY8++ogWLVpUqV6RhiwhIQEvL68q1xESEkJMTIyNeiX1SbVMhRIRqRVhYeDtXfKrIKgAy/vSynp7W+qrDheurUhJgdat4cwZS3s9elgyS23ebNkv47PPzpcdPBiio6unTzYwsedEVk5caT3u07YP0ZOi2XTvJvq370/62XSe+vYpm4xcNG3alPDwcN555x2aNm1KZmYmzcoKFEWkVLaYcbJw4UJCQkLKLigNnkYs6hCNWIgUo57uCYHZDFu2WBZ6f/HF+fOenpbpUwUMBkvZNWtgom2yLNlaSRvk5eXnsSJxBdk52Tx0zUPW8n9l/EXHliWk4i2nXbt24e7uTvv27QHIz8/XTt3SoCUkJBAYGEh8fHy574mKisJoNDJ79uxKt2s0GgkICLC2azQa8fb2xtXVFS8vL1xdXQGIjY0FsJ5LTU3FaDRiNBqJjIzEx8en0n2Q2lUtWaGk+imwELlE/f47LF4M771nGcUoCCYKGAzQt68lnW0dVJGdtzcf2Mzo90czfeB05o2Yh1tzN5v04eGHHyY7O5vXX3+dpk2b2qROkbrOZDJZRwri4uJISEio0HoFX19fIiMjq7TDfXBwMAEBAdbAYNGiRZw8eZLQ0NBC5QwGA/7+/kRGRhY67+3tTWRkJJ6enpXug9QuTYUSEalLuneHJUssO3g3alQ4qADL8S+/wPffW9Zq1GNr968lz5zHGzvfoOvrXXntx9fIycupUp2//vorb775JsuWLWPYsGEcOHDANp0VqeNcXFwICwsjLCyMyZMnV+hek8lkraOyTCYTcXFxhUYbkpKSigQVCQkJgCWQuZiPj4+CigZEgYWISE1p08aSPaq41It5eZY1IpddBtOnQ0wM5FTtgbw2LPRZyMZ7NtK3XV/SzqTxr7X/ot+Sfqzdv7bSdfbq1YtvvvkGNzc3a/aotWsrX59IQxAREVHlrQJCQkKYM2eO9bhgWtTFCqZBFTfdyc3NNqOWUj8osBARqUlz5xadBgVw/fXg7AxHjlhGN8aMgVGjaqePVTTSYyQJQQmE3RxGm+Zt2HtiLzesvIHAzyu/iHTMmDHEx8czaNAgUlNTufHGG5k/f75S0oqUICwsjKCgoErfbzKZiI2Nxd/fv9C54oKHmJgYXFxcih2ZqGpGKqlfFFiIiNSkiRNh5fksS/TpY8kKtXkzHDsG33wDgYGW0Y3Ro8+Xy8qCO++E1avh1Kma73cF2dvZE+QdxL6H9vHIkEdwsHNgpMfIKtV5xRVX8N133/HAAw9gNpuZN28eU6ZMsVGPRarGZDIREBBAly5daNWqFcHBwdbpSBcKCQkhICCA4ODgauuL0Wis8vSj4jJBlRQkxMbGMmnSpGKvadF2w9KotjsgItLgTJhw/v22bef3sWjcGMaNs7zeftuy0LvAunWWDflWrYImTSwjGhMnWjblq+JUg5RTKaRklpx5Kzsn2/o+8UgizRxKTwHr7uSOewtL5i3nps68NOYlZl49kyucr7CW+fiXjzl5+iTBA4NpZFf+X0VNmjTh7bffZsiQITzwwAMVnncuUl0CAwMJDQ3F09MTo9FIcHAwHh4exMfH4+npaQ08QkNDq/1b/LCwsFIDl6ioKFxcXEp96I+KiiIpKanMtkpbXyENj7JC1SHKCiXSQFRmg7w//oB33rGkpd2///x5e3sYORJefBH6969Ud+Ztmsf8zfMrdW9x5g6fy7wR80q8fursKbq+3pWjWUfp1aYXi8cuZkyXMRVu5+jRo7Rr1856fPjwYTp06FCZLotUSXh4eLGLlL29vTGZTMTHxxMQEEBYWFilRxIWLVpESEhIubJCeXt7l5iWdtGiRSxcuBBPT89SywDlSlNb0K+0tLQqLRSXuqsiz6casRARqQ+6dYMXXoCFC2HPHsv0qTVr4OefITYWLtydes8eaN4cPDzKVXVwp1sZf11Xm3XVvVPvUq83c2jGf4f/l/9++19+Pf4rYz8cy83dbublMS/Tza1budu5MKg4dOgQXl5ejB8/njfeeEMb60mNMplMxQYMGzZswMPDA29vb0JCQmokO1JCQgIDBw4s8VpQUBAnT55k0aJFJe7KHRYWVq7RCrCsr/D09FRQIRZmqTPS09PNgDk9Pb22uyIi1Skz02y2LOG2vK+KffvM5qVLC5+bMMFS94ABZvOzz5rNv/5aeh1z557vjy1ec+eWq+upp1PN//7m3+ZGzzQyMw9zo2camf+z9j/mtOy0Cv8xfPDBB2Y7OzszYB4wYIA5KSmpwnWIVFZoaGiJ1yIjI82AOSYmpsptlOexLSgoyBwfH19qmbS0NDNg9vf3L3ItLCys1M9zMcAcFBRU7vJS/1Tk+VQjFiIi9dmVV1peBcxmS5paOzvYtcvyeuop6NHDsibDzw8u/oYyOBjGjy+5jexsSypcgK1boazRgHLubN6qWSsWj1tM8MBgHln/CF/v+5rF2xczufdkrul4TbnqKHDXXXfh7u7OHXfcwa5du/D29ubDDz/kpptuqlA9IraWmpqKi4sLAQEBJCcnV/s3+3FxcYSFhZVaxsXFhaCgIMLDw4ss9A4NDS337t4FaWa1vkIKKLAQEbmUGAzw1Vdw/Dh8/rllylRMDPz2Gzz/vCX71Nat58ubzZZAoLRgICvr/Pv+/cu3JqQCerTuwVdTvmLt/rX8cOiHQkHFAdMBOrt0Llc9o0ePJiEhAX9/f3788Uduvvlmnn76aebOnYu9vb1N+yxyIRcXF0wmU5GgwWg0EhkZSXJyMh4eHowePbrcD+2VERUVVe6EBiEhIYSHhxMaGmoNRKKiovD39y938BMTEwMo85Ocp3SzIiKXojZtYOrU80HGqlXg729JWVvg5Em4/HLLhnyxsbW+Id+4K8fxzMhnrMfJacn0eKMHEz6ewP7U/aXceV7Hjh3ZsmULM2bMAGDBggW88sor1dFdEaugoCAWLlxY6FxCQgLBwcFERkbi4uJCfHw8RqMRX1/fYtPQluXkyZNlllm9enWhfSdK4+npiY+PD+Hh4db+LFy4sNCGeGWJjY3V+gopRCMWIiKXOmdnuOMOy+tCX34Jf/1l2ZBvyRJo1coyJWriREs626ZNLeU+++z8PYMHw/z5ljLVbMvBLeTm5/L575/zzb5v+Nc1/+Kp65/Cualzqfc1btyYN954gyFDhvDmm28yffr0au+ryJw5c6wpXlNTU/H09LR+ow+WB/nk5GRCQkLw8PAoNSvThQrqjIiIACzTjjw9PQkICCg0UmAymUpcRF6SkJAQYmNjCQ8Px9PTk4EDB5YZJISHh1uDpIJUswV9rKkF6lJ3Kd1sHaJ0syINRGXSzVaHc+fg228t06U+/dSyQV8BJyfL+VOnLOsyChgMlulTa9bUSHCx9/heZq2fxdr9awFo07wNz416jvsH3I+9XdnTm/Lz87Gzs7O+/+abb7jxxhsxFOx4LnKJCA8PB6jwbtve3t7WdRaRkZEKDKSIijyfKrCoQxRYiDQQdSWwuFBeHnz/vSWYiI62jGSkpFhGLnbvtgQTBQwG6NsXEhNrrHtf7/uaWetm8fvJ3wHo264vy8cvx85Q/hm9y15ZxtuL3ubmSTfz+POP06y5ZRH6hRv6idRXvr6+1mlXFREVFUVAQAD+/v5ERkZWT+ekXlNgUU8psBBpIOpiYHEhs9my2LtnT0sGqAt3AC/QuDGcPVuj3crJy+GtnW/x+IbHOZNbTJ/K8j0QC5iBdsBkwLXsDf1E6jqj0UhISEilAwNvb2+NVkiJFFjUU7UZWJw7d4709HRat26tKQIi1a2uBxYX6tev6IhFgeuug6Agy1SpGtyQbs+xPZjOmmjWyNLmriO7+O7gd0wdMBXHxo5k52QzbIUlPe7W+7bSzOF833Z+v5Mnpj9B6olUnFo6seC1BUyeOFkjFlKvLVq0CE9Pz3Iv3BapCAUW9VRtBhY//PAD1157LU5OTnTu3Nm6sMzDw8O6a+hll11Wo30SqbdSUiyvklRmX4hy7g1hc9HRxa+xKPgvwC23WFLb1oJ8cz6Dlg4iISWBdo7teH708zS2a8zdn94NQJ+2fZg/Yj4Te55fD/L3338TEBDAtm3bAHjiiSd45plnlJJW6q2AgABNY5Jqo8CinqrNwGLNmjWlftPx+uuvM3PmTAB++eUXnn32WWvQUfC6/PLLady4cU11WaTumjfPkjnJVubOtdRZW1atOp+m9qqrLJ9t0CBYsQKWLYMXXjifceroUVi7FgICoHnzau+a2Wzmyz++5JH1j7AvdV+R6wYMmDGzZtKaQsHFuXPneOyxx3jttddo3LgxCQkJ9O7du9r7KyJS3yiwqKdqe43FmTNnOHjwIMnJyUVeL7zwgjWt3UcffcSUKVOK3G9nZ8dll13G4sWL8fvnG87jx4/z+++/4+Hhgbu7uzU7i8glrawRi4qqzRELKH3qVl6eZeSi0T/Zy0ND4fHHLSlu77rLMlWqb99q7+K5vHO8/uPrzI6dTb45v9A1Awb6tutL4gOJRe77+OOPyc7O5r777qv2PoqI1EcKLOqp2g4syuu3337j66+/xmg0WgOPAwcOkJ2dDcAXX3zBzTffDFh+ad/xzzeZTZo0sU6zKnjdeuutdO3atdY+i4iUQ0XWhCxfDs89B8nJ589dc40lwJg8udrXkzR9tiln84ouKm/aqCmnnzhd5hqyhIQEtm/fzvTp07XeTEQEBRb1Vn0JLIpjNps5evQoycnJ9OjRg1atWgGwcuVKnnrqKQ4dOkReXl6R+z7//HNuueUWAD777DPmzp1bZH2Hh4cHnTt3pnkNTKsQkWJUdLF5fj5s2ABLl8Inn0BuruV8mzZw6BA0aVJtXe23pB+7j+7GzPlfbQUjFhO6T+DHv38k0CuQ8d3H42DvUOjejIwM+vXrx4EDB7jrrrtYsmQJjnV5Yb2ISA1QYFFP1efAoiw5OTn89ddfhUY5kpOTWbBgAV26dAHghRdeYM6cOSXW8fXXX3PDDTcAsHv3bnbs2GENPDp16kSjRtpIXqRaVCWL1dGj8N57liDjmmvgww/PX1uzxrJPRosWNutq9N5o/CLOLzYvWGMRNSmKf6/9N39l/AVAW8e2/F+//2Oa1zS6ullGTc1mM//73/8ICQkhLy+Pq666ijVr1mhUVUQaNAUW9dSlHFiUx99//01iYmKhwKMgEMnIyODnn3/mqquuAooGIfb29lx++eXWQCMkJMT6MHDu3DkcHBw0rUGksmyRHtdstuziXfCzbfduy9oLR0fLwu+gIBg40JJtqopW7V7FndGWxeZXtb2K+SPmc1vP29ifup/lCctZkbiCo1lHreVHdB7BQ1c/ZF3cvXnzZiZPnszRo0dp2bIl77//PhMmTKhyv0RE6iMFFvVUQw8sSmI2m0lLS6Nly5bWUYlVq1bxwQcfYDQaOXDgAOfOnSt0z08//UTffxaMLlq0iHnz5tG5c+ciU6w8PDzo2bMnTapxaoZIvVcd+258+y08+KBlI74C/ftDYKAlA5Wzc6WrzjqXhdNCS38z52Ti2Lhwf3Pycvjyjy9ZmrCUtfvXYsZMkFcQYbeEWcscPnyYSZMm8f333wMQEhLCc889p5S0ItLgKLCopxRYVE5+fj4pKSmFRjpmzZqF0z8PQtOnT2fJkiUl3p+YmEi/fv0Ay5qPrVu3Fgo8rrjiCpo2bVojn0WkTqquDf3MZss+HuHhEBl5fifvZs1g82ZLStvKdLeMwOJCf6b/yYpdK5jQYwL92/cHYPtf25m1bhb397ufxJWJvPnKm9xwww18+eWXymwnIg2OAot6SoFF9Th37hx//vlnkRS6BdOskpKSrH/eDz74IG+//XaROjp06ICnpycrV67k8ssvByxTt/Lz8+nQoYO+xZT6rS5s6JeaCh98YAkyjh+Hv/6Cgn1xdu6EK6+Ef5JCpCQlknJwT8ndzTvLsB+mWro7dDnN7EsfkXS/ojfuXfpbj6d9Po3lu5YD0LJJS4Y4DeFx38cZ0X1ExT6TiMglQIFFPaXAovZ99tlnbNy4sVAAkpWVZb2elpaGi4sLADNmzOCtt97CwcGBK664osgUq1tuuUWZrKR+qEsb+pnNlqCiUyfLcX4+eHpaFoEHBEBQEPNinmS+3Rbbddc8nHnzNlmPj2Qe4d3Ed1masBRjmtF63tvdm2le04hbGke/Pv2YOXOm1m6JyCVPgUU9pcCi7jGbzZw4cYLk5GT+/PPPQruTT506lffff5/cglSaF7kwCAkNDeWHH34oFHgUrPdQOkupdXV5Q7+//4YbbrAs9v5HThcPjo4ZyknfYeQ5F5NR6uxZmGoZsWD58jLT2148YlEg35zPt8nfsjRhKZ/89gnn8s7RtnFbjj15DMxwxx13sHTpUv0bFpFLmgKLekqBRf2Tl5fH33//XSSN7rFjx1i3bp213E033cTXX39dbB1t2rQhKSmJFv+k3Pzhhx/IysrCw8ODyy+/nMYF00FEGiqzGXbssKSs/egjOH3acr5xY3jtNQgOLly+GtaEnDh9gvd/eh9HB0eyt2bz2GOPkZufi2OwI/++4d/M8pmFazPXKrcjIlLXKLCopxRYXLq2bt3K7t27C63tSE5OJi0tDWdnZ9LS0qxTKm6++Wa++uorAOzs7OjYsWOhkY4nnnhCe3ZIw5WRAatWWdZi7NoF338PQ4darh0+DA4OEBNjySwF0KePZZrXxIk27cbWrVu5ZfYtmMaaAHAwODCpzyQCvQK5/orrNUVKRC4ZCizqKQUWDY/JZOLIkSP06NHDem7GjBl8++23JCcnc+bMmULlW7Zsiclksj60BAQEsHv37iLrOwperVq10gOOXLp++smyF0bB/+MPPmgJOPLyzpcxGCwjHmvW2Dy4+P3g79w852b2O++H9ufPd3PrxrQB07h/wP24NXezaZsiIjVNgUU9pcBCLmQ2mzl69GihEY6cnBzmX7DItk+fPuzZU3x2HCcnJzIyMqyBxTvvvMPp06etQUfnzp21uFwuHWYz+PrChg1FrxkM0KsX/PKLzZvNycnh8TmPs3j1YsY9MY4taVvIyrEkfPjpgZ/o266vzdsUEalJCizqKQUWUlEHDx4kKSmpSArd5ORk2rVrx08//WQte9VVV/HLRQ9W7du3x8PDg6uuuoqwsPObgx0/fpxWrVppypXUP02awEUbZgKW4CI///xxbi7Y8P/v33//ne7du3Pq7Ck+/uVjvkv+jvf93wcg5VQKT2x8guaNmjO++3jaOLapUlvuTu64t7DR4ngRkTJU5PlUTw0i9dgVV1zBFVdcUey1nJycQscTJkzgyiuvtAYeGRkZHDlyhCNHjpCZmVmo7OjRo/n111+5/PLLi0yv6tq1K4MquXGZSLXr0cOSQeri78xatz7/PjsbOnaEq6+GMWMsr169zk+pqoTu3bsD0KJJC0Y6j+SJ6U/w6t+v8vDDD/PK9ld4N/FdAN6Ke6vSbRSYO3wu80bMq3I9IiK2psBC5BLl4OBQ6PjZZ5+1vjebzaSlpVmDjIt3E05JSSEvL896/UK9e/cuNPLx0EMPAVjT5xa8NOomtWLuXPDzO39csMbiwo0vv//esiHf2rWWF0CHDueDDF/fwoFIBb3//vucOHGCf//732zbto2nX3wax8aOfPLbJyQeSbSWa+vYllu63UKrpq14adtLAHRp1YUHBj7AKI9RJdbv7qTRChGpmzQVqg7RVCipK/Lz80lJSSl2ilXXrl1ZtmwZYAlQnJ2dOXXqVJE6XF1d8fHxYfXq1dZz33//Pa1bt6Zz5840KWNvAZFKW7XqfFaoq66yZIW67bbz181my3qL9estGaQ2b4YLEyW8/DLMmmV5f+aMJTipwP+vZrOZ119/nUceeYTc3Fx69uxJdHQ0PXr0YO/xvSxLWMZ7P73HyeyTRe41YMCMmTWT1jCxp20Xm4uIVIbWWNRTCiykvsnLy2PZsmWF9vAwGo2cPGl5YLrpppv48ssvAcvDlouLi3VBeYcOHQptFujl5cX48eNr8+PIpaKi+1icOQNbt54PND74wJKmFuDdd2HGDBg+/PyIRs+e5Zo29f333zNp0iQOHz6Mk5MT77zzDgEBAQCczT3Lp799yrQvppF1Lgsz538VGzDQq00vfnnQ9ovNRUQqSoFFPaXAQi4Vp06dIjk5GYPBwFVXXQXA6dOnueaaa0hOTiYrK6vIPTfeeKN1/w4Ab29v3Nzcik2j27p1a6XRlZLZcoO84GBLCtsLXXbZ+SlT48eXWv/Ro0e5/fbb2bRpEwBr1qxh4gVpb5s924wzeWeKvff+/vfz0DUP0b99/8r3X0SkihRY1FMKLKQhMJvNnDhxoshu5X379mXmzJkApKWl4epa8i7Gt956K5988on1+O233y60kaCjDXZalnrMloHFhdOm1q+HLVvOT5syGODYsfPrMQ4dgrZti0ybys3N5cknn2TLli1s2rSp0DTAfkv6sfvo7kIjFhe77vLrePiah7m1x600stPSSBGpWQos6ikFFiIWZ8+eZfv27UWCj+TkZA4fPsyDDz7Im2++CVg2GWzVqlWh+9u0aWMNMsaNG8f//d//Wa/l5OQUWdgu9UxKiuVVkuxsGDbM8n7rVmjWrPT63N0tr/LIzj4/berwYVi58vy1kSNhxw4YMeL8tKkePeDIEUhJ4ey5czRp3BiwBBs/79vHAZcU/OIes1ZRsMbi+R4z+CljH1EpG8gzWzb8G99uOJ9d/b+K9VdEpIoUWNRTCixEynbmzBnOnDmDi4sLYMlg9dBDD1mDEJPJVKj89OnTeestS4rP9PR0XF1dC41uXLjOo1u3brRpU7U9BqQGzJtnWZBtK3PnWuqsitxc6NIF/vyz8PmOHTnd2pmUg3tIb3r+9OsZ8EEWPNwC3PrBUz6W81eehOA4GHXAcnysOUT1guheMGsb3LgP3INm0ezxp0lOS2aA+4Cq9VtEpAwKLOopBRYiVWcymQqNcPTr1w8fH8tT208//UT//v1LvPeBBx7g7X/Skp46dYrHH3+8SABy8eiI1IKyRiwqylYjAKVMm/qiG4yf8k+5fBiyEuKT4BxwW0eYew66pcIfbjB/OHzSq+Rm5nrNooVbBx6NeZRhlw/j4ast06Qc7DUSJyK2p8CinlJgIVK9zGYzR44cKTK9quD10EMPMeufNKMlBSHOzs54eHjwwAMPEBwcDMC5c+fYv38/nTt3pnnz5jX5kaQu+2faVOaX0RzveQVpE8YA0PjQYfpccwvnHBzYnZODN5AP2AFmgwGD2Yxx2YuYbix+Lwt3J3cWb1/M4u2Lyc3PBeCyFpfx4KAHCfQKrPLO3iIiF1JgUU8psBCpOw4ePEh4eHihfTyOHTtmvf7CCy8QEhICwO7du+nbty8A7du3LzLFaujQofTo0aNWPofUQd9+C7ffbln4XRyDAfr2hcTEUqs5fOowS+KWEBYfxrEsS11N7JtwT797CLs5TJnTRMQmFFjUUwosROq2rKwsDhw4QHJyMt27d6dr164AfPvtt9x6661kZGQUe9/ChQt5/PHHAfjjjz+YPn26Nei4MAhp27atHgYbivx82L0bBg60rM+4WNOmlhGPcjibe5aIPRG8+uOrxKfEc3uf2/nI7yPr9bz8POzt7G3VcxFpYCryfKq8dSIi5eTo6Ejv3r3p3bt3ofMjR47EZDKRlpZWbCarfv36Wcv+/vvvbNy4sdj6mzdvzuLFiwkKCgLg+PHjfP/999bAQ184XELs7KBfP+jVyxJgXPgdn8EA3btb3i9fDklJMHWqZXF4MZo0asLd/e7mrr53sf2v7Tg3dbZe++3Eb/h+4MsD3g8Q5B2kaVIiUq00YlGHaMRC5NL3999/s2HDhiLBx19//YXZbOajjz7i9ttvB+CLL74otBu5q6troRGO22+/HS8vr9r6KGIL0dHg53f+2GCwBBnR0fzQti3977iD5ocOWa6NGgWBgXDrrZYRjXJ4bP1jvLTtJQAa2zfmjj538NDVD+HdwdvGH0RELlWaClVLwsPDSUpKIjQ0tFL3K7AQabjOnTvHn3/+SZs2bXB2tnzj/M033zB37lySk5M5ceJEkXtWrVrFHXfcYS0bGBhYZH1HwfsOHTpgb6/pMHXSqlVw552W91ddBfPnc3ToULz692fosWMsuvJKOu/bh6Hg17WrK9x9N0ybBn36lFp1wTSp13e8zs7DO63nh3YaysNXP4xfLz9tuicipVJgUYOMRqM1kIiIiCAoKEiBhYjY3KlTp4qMckyfPt26KPyNN97goYceKvH+Dz/8kDv/eXjdvXs3X3/9daEgxM3NTes7qkslNvQ7nZ3N9IULef+rrwAIHjKEV7t3p8k338DRo5ayt98OH31UQqVF/fjXj7y24zUi9kSQm5+LWzM3Dv3nEM0cythAUEQaNAUWtcTb2xsfHx8FFiJS49LT0/ntt9+KTaN78OBBtmzZwpAhQwB48803mTlzZqH7nZycrEHGf//7X7y9LVNlsrKyAMv6EqmkSm7oZwbCgH9h2e+iKxAN9JkyxbI/xsyZlt2+AfbuhcWLLaMYgwZZplSVIOVUCmHxYTg1duLRoY8CkG/OJyQmhMl9JjOww8AK91VELl0KLGqJAgsRqYvy8vIArFOh1q5dy4cffmgNPFIu+jb9+++/Z+jQoQC89dZbzJgxgzZt2hQ7xerqq6/Wz6uyVHFDvx2//IL/7NkcOnqU5k2bsvSll5gyY0bhQrNmWQILsKSqnTbNMr3K1bVcbazbv45xK8cBMKTjEB6+5mH8evpp0z0RUVYoERE57+K1FePGjWPcuHHW4+zsbA4ePGgNNHr27Gm9dvjwYcCSoer48ePs2LGjUF1bt27l2muvBeDzzz/nk08+KZJGt3379tjZ2VXXx6v7qriz99VeXiTceCNTpkwhJiaG6G+/5Y4HHyw8dc3fH44fh6go+PlnePhheOwxy/lp02D48FJHMTq27MidV91JxJ4Itv21jW1/bcPdyZ3pA6cT5B1EO6d2le6/iDQc9W7EIjg4mICAAHx8fEotZzKZWLhwIQBubm4kJSXh6+uLv79/tfVNIxYicilKT08vNo2u0Whk48aNuP/z0Dx79mxefPHFIvc3bdqUzp07ExUVZU3Vm5ycTFpaGh4eHrRq1apGP099lZeXx6uvvsq0adNK/h2RlgYrV8LSpZYAA8DNDf7+G5o0KbONI5lHeOmHl3g38V1OZp8EwMHOgY/8PsKjlUel+u3u5I57i8oHViJSuy65EQuj0UhsbCxhYWEkJCQQEBBQanmTyYS3tzeRkZGFUjEGBwezc+fOSj/4i4g0RM7OzgwYMIABAwaUWu6WW26hZcuWhQKPQ4cOcebMGX777TdcXFysZZcsWcKiRYus9V84wuHh4cGUKVNwLec0nobC3t6eWbNmWY/NZjMzZszA39+fUaNGWU62amVZezFjBsTFwbJl0L79+aAiPx8efBAmTIAxY+Ci0az2Tu1xauxkDSoAcvJz8I+s/Jdyc4fPZd6IeZW+X0Tqjzo/YhEeHk5MTAy+vr54enri6+tLTExMqSMWvr6+eHl5FRtAtGrVisjIyDJHPCpDIxYiIoXl5ORw6NAhkpOTGTlypHVK1JNPPsmyZcs4duxYsfcdOnSIjh07AhAaGspnn31W7G7lHTt2pFGjevEdmc299957/N///R92dnY899xzzJ49u+wpZxs3wujRlvedOsH998N998EVV1iLpJxKISXz/JqQjLMZtGxi+Z30zb5veOrbp4pUu8hnEaM9RxfbpEYsROq3S3bxdkJCAt7e3qUGFkajkS5dupCUlISnp2eR68HBwRiNRmJiYgrVGxgYWO5+LF26tNhNqRRYiIhUTFZWFgcOHCiSxSoyMtL6kDx58mQiIiKKvb9Ro0YcPHiQDh06ALBp0yZSUlKsgUfbtm0v2TS62dnZzJgxgxUrVgAwfvx43nvvvUIjQ0UYjfD66/D++5CaajlnMFhGL6ZNg/HjoXHjEm/v9no39qXuK3Le3mDPaM/RBHsHM7HnxKp8LBGpYy65qVAVERYWBlBsUAHQpUsXwsPDMZlM1h++Xl5exMfH11QXRUTkH46OjvTu3du69qI4c+fOxd/fv8j6joMHD2I2m2nX7vzC4iVLlrB69WrrcfPmzencubN1pGPhwoXW1Lm5ubn1erSjWbNmLF++nCFDhjBz5kw+//xzBg0axJo1a+jbt2/xN3l6WrJHvfACfPqpZS3Ghg2wbp3l9d135/fUKMah9EPFns8z57E+aT0Tuk+wnvvpyE88+PWDDGg/wPJyH0DvNr1p0qjstR4iUj/V35+oJUhISCj125qCgCMuLq5apkOJiIht9erVi169ehU5n5+fz7FjxwplverduzfXXXcdycnJ/P3335w+fZpff/2VX3/9lUaNGrG4ICUrcM8997B+/foi6zsKXldeeWWdz2ZlMBgIDAxkwIAB+Pv7s3//fgYPHsx7771X+nrEJk1g8mTLy2iEd96Bbdvg2mvPp8f9+GNwdAQfH2hm2USvW/NO7D61HzPnJzsYMHClY0ce8byb0Wcug4QEAOL+/JQfDv3AD4d+sJZtZNeIXm16MaD9AGZePVN7ZohcYi65wMJoNJa64K8g6DAajTZv22QyYTKZbF6viIgUZWdnR/v27Qude/rpp3n66acBOHv2LH/++ad1lCMtLa1QEGI0Gjl58iQnT54kLi6uUD329vacOXPGGlgsWbKEI0eOFAo8OnToUCSVb20ZOHAg8fHx3HnnnWzYsMGaqatcPD3h2WethylhL3Ek7H9cdRQamSFv/jxSm8GJ5nB3N3hsDBjywWxX8F8zQdGHGHTgeTKAhH/quaw5LOgAf43yZp+nM7tSdpF2Jo2fj/7Mz0d/ZspVU6xtrt2/lmUJyxjQfgD92/dngPsA3J3cL9lpbCKXqksusEhNTS1xGhRgDTpsFQAUpLU1mUwYjUbrPOAuXbowe/bsUu89e/YsZ8+etR5nZGTYpE8iIgJNmjSha9eudO3atdjrMTExxe5UbjQasbOzKzRN6r333mP79u2F7ndwcKBz58507dqVL7/80voQnJycTIsWLXBzc6vRB2M3Nze++uordu7cyeDBg63nc3JycHAo/0Z3Yd7w8n3w8I8wNQE8TdDmtOXVOBc802D+cPjDDbqdhHmb4IO+8NjY4uub6zWcJbe8jNls5lDGIXal7CLxSCLe7t7WMpsPbGbN3jWs2bvGeq6tY1tLkPHP6EbHlh0r+kciIjXsklu8bTAYSl0zUVDH7Nmzaz3t7Lx585g/f36R81q8LSJSt7z55pv89NNP1sDjzz//JDc3FwAPD49Co+BDhw5l27ZtODk5FTu96qabbqqxfu/Zs4ebb76ZpUuXlnv6b6GsUPn5tNi6E7dVn+Ky9lvszuUUKW82GDjbuSO/f76CPFeXIhvxlScr1K6UXWxI3kDikUR2HdnFbyd+I9+cb72e9HASnq0sXxp++POHbP9ru3XdhmtTV1LPpJbrs5WHsliJFNagF2/XJ3PmzCmUkzwjI4NOnTrVYo9ERKQ4M2bMKHScm5vL33//TXJyMtnZ2YWunTlzBoDMzEx2797N7t27rdeuuOKKQoFFcHAwGRkZRQKQyy+/vEKjDCVZsGABBw4cYMyYMSxYsIA5c+aUuW7EvcVFD9aT/7+9Ow+Purz3Pv6ekI19skBCEiALO4qShaVPW1GT09ZjUSEBnh5alQopek5bj4/JsUXBhWMTa08PetomtIpFRSBgrUerJaVuKEsWW2UnE0gIS5FkSASyz/PHMEOGSUKWCZOZ+byua65k5rfMPXPdv8l8c9/395sMC5fDF19YK4hfCqhsDBYLweWV3HB9KgwbZp1alZBw+Xb77TC083ZOH2UNEmwuNF3g8398TunJUvae2Uuc8XJxvjcOvkHBvgL7fT+Dn0MQ0luquyHSc14XWBiNxi5NcwoLC+v7xlxFUFAQQV2ohCoiIv2Lv78/Y8eOZWyb+g82JSUlXLx4kWPHjjlNswoPD3fY98033+TkyZNO5/Dz82P27Nl89NFH9sfeffdd+yhIZGRklxaWr1u3jiFDhvC73/2OFStWsGvXLl566aWeVTsPD4cpU+Czz6DtZAeDwVpor7kZamvh00+tN5sPP4RL6YDZuBFefNEacLQNQOLjrQvFLxkUMIgZ0TOYET3DqRl333A3Y4ePpfRUqX3dhk2AXwAfLvmQAD9rUPbUB0/x+oHXLzcVAxYsPJP2DLfE3dLuyxw1RKMVIj3ldYHF1Sq1Vl/K291pnm8REZFeGDhwIJMmTWLSpEmd7vc///M/mEwmh/UdR48epb6+3ikV7pIlSzhx4gQAwcHBxMbG2kc4pk+fzn333ed0/uDgYH77298ye/ZsHnjgAd58802Sk5PZsmULN954Y/df2MqVMH/+5fsGgzXI2LQJvvlNKC+3ZpkqK7PeTCZou8aluNia1rY9ERHwzjtga9fhw3DmjDXwGDnSPsXq9gm3c/uE2wFr9fGKw0WUHv6A0tqD1DadZ+bpyyM9fzr0lsNT2LJZPfvBz7ihbhBpI2bhZBRXHWERkfZ5XWARHx/vlN2jLdtoRmcLvEVERK6Fu+66y+mx1tZWTp8+zYULFxwemzRpEgEBAVRWVlJfX8+BAwc4cOAAAF//+tcdAovrr7+egIAAh+lVubm55OTkYDKZmD17Nh988AEpKSnOjbKlm21PbCysXg0//an1fkICZGZaK3fv3299LCrKevva12yNv3z8974HEyc6Bh9lZVBTA6dPw4gRl/f93e/AthZy8GDnKVaLFmEICWHsq28x9vHHudN+4Kv235ofBdpJ3HWq4SzL336AI2suP7ZpKoyqg8R7H2Hwqv9s//WLSKe8LrBITEyksLCww+22BXaqYSEiIv2Rn5+fU7pYPz8//vKXvwDWLE+VlZUOU6zars9raGhg7969WCwWSktLnc4fEhLCDTfcwPTp1jUNubm5hIeH2wOQmBdewP/JJ7vW2CNH4OGHO99n5UpYtcr6+3XXWW9XqqmxBhhtX3dwMIweDcePw/nz1ilYbdarcPvtEBJiDWxqa+HjjyEm5vItOpophx7ks9bTWNrMGjNYYLghmDuT06H4QQBaLa3c984c6prP42fIYfKv/khKdAopUdbbtIhpKuwn0gVelxXKtk9xcTGJiYlO2zMyMjCbzWzbtq2vm9tt3Vl1LyIi0p6WlhYOHDjgMMWq7e3OO+/k+eefZ9iwYTQ0NDBw4EDafhXw9/dnTEQEcdHRfGP2bB7+3vfs276oqSHMaOxeGt1RoxwDhu5qaICjRx1HOI4eha1bwc+Pk3UnCf6Xuwl50/nv+tbJMH/hlXU3YMOHEUxY/7Z9v7qGOla9v4p9Z/bxj/P/cDrPbeNv463vXJ5Wtf/MfiaETWCAX/+oYyLSl3w6K1RiYiKpqals3Lix3cCioKCgXwYVIiIirjBgwACmTp3K1KlTnbZZLBYaGxvtiUPq6+uZMmUKhw4dYuTIkZw5c4bGxkZMVVWYqqqImjgRLv0tbWxsJGLgQIKDg52yWMXHxzN16lTGjRvn+hcUFGSdPjVxYrub84rzeCNqGzfcYa2xkVADCdXWn/P2w5aN8MRNcDAMJp6Fle/BXQdOc3xiEqWj4NNIKI2Eo6PgH0b499n/zk2xN1F0oog9J/awp2oPiZGXv0+c/vI0U341hcEBg0kclUhyVLJ1ZCM6hYSQBBX1E5/mUYGFbRrT1bI+bd68maSkJBYuXOgQXGRmZpKVlaVpUCIi4pMMBoNDNsLAwEAGDRpEU1MTJ06c4LHHHmPJkiUcO3YMk8nEmDFj7PtWVVVhsVi4cOECe/fuZe/evQ7nXrx4MevXrwes07UWL17ssMA8Li6OsWPHujwbYmZSJnMnznV6vBIYcvMC7jpgYt7+yyMytt9i6qy3bx+6fExTqJEvfvgjRoWOsZ7zxAks4eE0+l0+vqymjCGBQ/iy8Us+rPiQDys+tG8LCQ7h8TmP828z/836XBaLAg3xKf1+KlRBQQF5eXkAFBUVYTabMRqNJCcnA9apTcuWLXM6zmw2k52djdFoJCwsjLKyMtLS0khPT7+m7e8OTYUSEZFrraGhgR/96Ef2v7W33XYb69evbzfLYkNDAxUVFe1OscrIyODhS+stysrK2h29MBgMREVFkZmZyaOPPgpYa4J8/PHHxMfHExUV1aU0ul22dWv7WaxeeQXGjLGmxS0ttf78/HOYMMFxHcfMmdZtU6fC9OnWjFXTp9Ny3VQONp1kT9Ue66jGiT18eupTGlsaefGOF7nnxnsA+LjyY9I3pTuMaqREpRA2yP0p70W6qjvfT/t9YOFLFFiIiIi7rFu3juXLl1NfX09sbCxbt261L/DurjNnzvDyyy87BR+2TFcrVqzgyUsLxMvLy+2ZGgMDAxk7dqzDKMdNN93ErFntpIW16SyLFVhT2NqyWI0bZ13sfUs7NSyamuDsWWsAMWqUNQCJju743DffDNu32+82fnGazxoqGRsSS/gga72S/9753/z43R87HRpnjCMlOoWsr2SRFJXktH3r/q08/v7jHPriEBPCJ7DyppXMmzyv49co0ocUWHgoBRYiIuJOn376KfPnz8dkMhEREUF5eTkDBw50ybktFgtnzpyhvLycESNG2IOJ0tJS0tPTqaiooPmKqt4AP/3pT3nqqacAOHbsGHPnznVc37FzJ3EbNhALDHY6ugfaZrGyWKwLxW2jGrafx4/DnXfC669f3i88HPz9rYHJpdGNC9dPonRwLXtOFtvXaxyuPmx/qt/O/S3TI63B2wfHPqDQVEiAXwB/OPgHezG/rhb1c6iWLuJCCiw8lAILERFxt5qaGu6++26+//3vc8cdd1yz521ubqaqqspeKNA2yrFo0SJuv91aEG/79u3ceuutHZ7jyeXLWXGpnsdZs5mt27cTFx1NXFQUYyIjCQgI6PBYu65ksfriC6irg7g46/2TJ60pbtvW7LAZPBjuuw9++UsAai7W8OCb/8pL+1913reHVt60klVzVrnsfCJtKbDwUAosRESkP7hy0fGOHTuIiooizvZF2k2qq6vZuXNnu2s8zGYza9eutRcKfO+997j55pvtx/r5+TF69Gj7SMfixYu55dKUqJaWFgwGQ+/Wd1y4YF2fYRvZKC2Fv/8d6uvh//0/eOYZ6341NVhGjsAcHU5NXCQ18VHUxEXyyahmSpsr+cOp9+0VwtvyNwxg3Y2rADj45TGaLM3ED4pm0IBgpsbN5Mbr03redpFOKLDwUAosRESkv6moqCAxMZHW1lZeeeUVvvWtb7m7Se0ym834+/szZMgQAD755BOefPJJysvLOXr0KPX19Q775+fns3TpUgDef/99vvnNbzplsYqPjycuLo7x48fbz9stzc1w6BAMGmStWm59Mpgzp93djw6Hry6BE0NxKOqHBYY1QG1w+08z3RLJA3OfYlbMLCaPmIyfwYUL4MXnKbDwUAosRESkv6msrCQ9PZ3du3djMBh49NFHeeyxxxgwwHOKw7W2tnL69GmHaVbz5s2z1/pYt24d9957b4fH5+Xl2TNQ7t27lxdffNEhAImNje36WhSLhdM7/syX7/2ZgWXHGHTkGAPLjhF08gwAm2YMZuFt552K+m16azDX35PFhXFjefroej6u/jsnGs44nT5qaBTHHzxuH3G62HSRgQGuWScjvkmBhYdSYCEiIv1RQ0MDDz74IL/+9a8B+MY3vsErr7xCWJh3pE1tamqisrKy3SlWJpOJl19+mbQ061Sjl156iXvuucfpHJGRkcTHx/Pkk0/ap1idO3cOs9lMTEzM1QMxsxn+9jf4xjfYGt/QTlG/S/sFB0NyMsyaxan/+212Daph5/Gd7Kzaye6q3cyInsFf7/6r/bSTnp9Ei6WFWTGzmBU9i1kxs5gWMY2AAV1YbyKCAguPpcBCRET6s/Xr15OZmcnFixcZM2YMW7ZssdeV8hW7du3itddecwg+6urq7Nvfffdd/umf/gmA3//+99x99934+/szZsyYy6Mc4eHEDR3KzcnJRIaHOz7BokVw5Ig101RbgwZBQACcO3f5sV/9ylprY9QoqKig+eOPOJs0mYhZqRAYyLn6c4TkhDit2Qj2DyZpVBLzJ8/nwdkPuvT9Ee/Tne+nHlV5W0RERNznu9/9LjfccAPz58/nyJEj5OXl+VxgMXPmTGbOnGm/b7FYqK6utgcZSUmX61KYzWYCAwNpbGzEZDJhMpkczvUOEHnp97eA3wB3APdhrRBuaPOTSzVAHNx/v/XnypVw/jz+P/85EQBBQZCUxPBZszg74wV2xwaw8+IRdlbtZNfxXdTU17CjcgeTwifZT9XU0sR3X/8uyVHJzIqZReKoRAYFDOrVeyW+RyMW/YhGLERExBOYzWZWr17N448/zqBB+vLZmZaWFk6cOOE4xWrfPsqPHGHdqlXEx8QA8ER+PisvVT+/C3gMmAgcBH4xaBA/eP55vnLDDQAcrqigvKqKuOhoxo4aReCYMfCXv8Brr8HOndZCf1cqL4fYWFotrRw+9Am76g4QP3IiXx3zVQBKTpaQlH85KPL382daxDT79Kk5sXMYPXx0H75T0l9pKpSHUmAhIiKeqLW1laysLO6//3574Tvpns8++4wdO3Y4rfE4eylIOHDgABMnTgTgySef5LHHHgPAYDAQHR19eZpVbCw/SE0lsrwcPvnEejtzxlrUz5ZCeN48eOstSEqCWbNg9myOT4vl1S/+ys7jO/nk+Cec+vKUQ/seSHmAJdOXAHCu/hwHvjjAlJFTGBo4lO3l28kvzufYuWOMHT6WZUnLOizmByro52kUWHgoBRYiIuKJnnnmGbKysjAajaxfv95e0E56r7a2lqNHjzJ58mR7gb81a9aQn59PeXk5F9qZIrVv3z4mT54MQG5uLi+tXUvMpdS5cXFxZP7qVxgrKpyfLCYG5szB8tJLVNYdZ+dx69Spzfs2U1lb6bLXpIJ+nkWBhYdSYCEiIp7o+PHjZGRksHPnTgBWrFjBqlWrPColrSeyWCycOXPGqVr5mjVr7Olvv//97/PCCy84HZsAzAbWLFpEyMGD1mJ+LS2cjI2laM0aexAy+P77+XJIEP+YFs/5pGk0RUfy9uG3+U3Rb6iqq2q3XQYMjA8dz4b0DVTVVnHmwhniQ+IZFmT9bqMRC8+iwMJDKbAQERFP1djYyEMPPcTzzz8PQFpaGq+++irhV2Y9kmvq5MmTHDx40CHwsAUip0+f5vz589Yg5MsveWbhQt55+222Xzp2CGAG2oaHjeEhnJ88jupxY6mcHktazX/RbGlxet5AQwCffPVFflvxB359rACAsIDhxA2K5rqI60kZ93Umh09mZsxMLRLv5xRYeCgFFiIi4uleeeUVli1bxoULFxg9ejRbt271ucxRnuLixYsOhf3y8/N599137cFHg9nMXVhHNmYBNxrAv823xpeBB+6HunDHSuGGVhjaALVdqMu39/69TBkxBYB3j7zL/i/2Mzl8MlNGTCFmWIy90J+4jwILD6XAQkREvMHnn3/OvHnzqKioYMeOHQ4pWMVzmM1mysvLKflkO4cO/J1F37yJwYfKGbz3MEcK/sTvzLXcOBkeWohTpfCCTX6kDr6O+rHRfFht5i8DWjBPDMES3opl5EBqBzdiqjXx2fLPCBwQCMC9b9zLuk/X2Z9/SOAQe5AxZcQUlicvZ2jQUDe9G75LgYWHUmAhIiLe4ty5c+zevdtesRqsawL0H2jv0NrayqlTp4iMi+MPCY0dVwq/5CfA05d+jwEeAsoHDqQ2Joa8Dz8kMCKC/OJ8NpduxlRrouJ8Bc2tzfbjDRg4/5PzDAywDoP854f/yd4ze5kSPoXJI6zBR0JIgiqK9wEFFh5KgYWIiHir4uJili9fzquvvsq4cePc3RzpjpMnrbf2tFcp3GCA6Gi4+24wmThVVMTbcXFsMxgor6pi0rFjrGtTrRyAyEiYMoU/HDnC6ooKigZA+IRwQieFEhwTTFBIEMtjl3PPPfdgMBj42otf46OKjxxOEeAXwPiw8UwZMYUN8zfg72etA91qacXPcHmu1tb9W3n8/cc59MUhJoRPYOVNK5k3eZ5L3ipvpMDCQymwEBERb2SxWJg9eza7du1i+PDh/P73v2fu3LnubpZ01apV8PjjrjtfZiaNAQE0lJYScOQIwadPO2z+XlAQ6xsaAJgDrAT2AccGDSLnf/8Xpkzhz3Wf8tPnV3C88TjNIc3UBtbSSCMAEYMieOtf3rKPjt3/1v2cqDtBfEg8Bgy8d+w9DBiwYLH/fCbtmQ5rb/h6FisFFh5KgYWIiHirqqoqFixYwMcffwzAI488whNPPIG/v7+bWyZX1dmIBcD27bB2LRw9CrGxsHQp3NJxgTxGjbLebOrqYP9+2LcP9u3D8oMfcHbYMMrLywlYs4YbX37Z+RyhoRRduMC/1tezC8AAfsOgdQQQAJwAHuzBa22Hr9fdUGDhoRRYiIiIN2tsbOThhx9mzZo1ANxyyy1s2LCBkSNHurll0m+ZTLBjB+zdaw88MJnsU6/eXLWKYouF8vJypn/0EfeUl7PXYqFy2CDGp9/EudEjKI8exMN5r1DjVwffAvycnybA4M+LN67kR5//nLNN5wAI9gsiIiiE8aHjSYr9CjdG3sii6xZdwxffPyiw8FAKLERExBe89tpr3HfffZw/f56YmBh27NjBmDFj3N0s8RQXL8KBA9YgY948sKXMXb4cfvObdg+p9YOvhsGxdKgb0U563EaoDb70QB3QTvKp64dfzzsL3iEqKgqA1N+nEuwfTEJIAuNCx5EQav0Za4y1Z7ryBgosPJQCCxER8RV79+5l/vz5JCQk8Oabb+Ln186/kUW6o6EBDh2i5q9vU1+0i+Cjxwk+VkVw1WkMLS387Y089v3XT/jOnLPO6XFfD+Cr426lPmok9//qFQoNLTQagdBLtxDADNPrp1NSUkJjSyMDVw+k1dLq1Aw/gx93TLyDrQu32h/70+E/ETU0ioTQBIYEDrk274eLKLDwUAosRETEl9TV1dHc3ExISAhgLdjW2trK4MGD3dwy8WhXrglpaoLjxyEuDmbPZmsX0uMWPfcch2trKT9xgqiiIgafPMnfLlwgeOpUVrz0Ek1RkbxX8QG3Lb6N5qHNjgFIIBgrjCwxLuHZZ5+lqaWJgasH0nKpQnnE4IjLIxwh45gVM4u0hDQ64u4sVgosPJQCCxER8VUWi4V7772X4uJitmzZwoQJE9zdJPFUrs5iNX48HD7s+FhQEK1xcRxsbeWZ6dM5UFFBeXk5dadOcX4I4Ad33XoXW7du5R/n/8G3X/02u8t2QzvVyKcHTufHN/yY66ZfR3NrM0veWMKooaMYPWw0dY11FOwrcGsWKwUWHkqBhYiI+KqTJ0+SmJjIqVOnGDZsGOvWreOuu+5yd7PEE3WWxWr7dnj4YWutDYvl8s9nnuk4k9WuXdbAwnYzmayjIABDh8K5c9bzAC23346hsJDzkZE0jhlD2KxZMH48tRERzFy8mANNddZRjbYjHBVAPeCideGuzmKlwMJDKbAQERFfdvLkSRYsWMBHH1kLn2VlZbF69WqlpBXX2roVnngCDh6EiRNh5UroThDb3AyVldYgo6YGFi68vG3aNPjss/aPGzyYmooKyo8epby8nIEFBdScOkVR3TmG/J/p3JV9P+ebLrB9/3ZWPbHKGnQk024Wq8ABgXzy/U/afRqNWAigwEJERKSpqYn/+I//4Be/+AUAc+bM4bXXXiMiIsLNLRPpguZmOHbMcYTj8GFrdfLhw6Go6PK+118Pn39uv9sSHERDdAQXIsLZ6+fHa+PG8oeQ/+X00AanLFaT/MJ5+Wu/bLcJo8ZOZVTCjS57SQosPJQCCxEREavNmzezZMkSvvzyS6ZNm0ZpaakyR4lna22Ftn04Kwv+/neqd7/PcHM9A9p8I/9sJEy7H559Bx76Jk5ZrGyPt2el5SZWrXrPZc3uzvdTjS2KiIhIv5ORkcF1113HggUL+PnPf66gQjzflX04NxeAhrJP+fuRvxF46gxBVacIqjrNsKBAir92CzeuvpfYc01OWazuKAtgzuoX232aUWOn9vEL6ZhGLPoRjViIiIg4amlpYcCAAfb7u3fvZsqUKQwZ4lm1AEQ61Nli80WLrNOo2n5dNxismao2bGj/mFGjrDcX0YiFiIiIeIW2QcWRI0dIS0sjJiaGLVu2MGnSJDe2TMRF8vK6lx7XYoFDhyApqf3tK1daU+66gQILERER8QjV1dUMHjyYffv2kZKSwrp165g/f767myXSO5mZMHdux9u3b4e1a+HoUYiNhaVLO06NCy4dreguTYXqRzQVSkREpHOnTp1i0aJFvP/++wA89NBD/OxnP1NKWpE+0p3vp1oJJSIiIh4jMjKSwsJCHn74YQCeffZZbr31Vk6dOuXmlomIAgsRERHxKP7+/uTm5rJlyxaGDh3KBx98wHPPPefuZon4PAUWIiIi4pHmzZvHnj17uPfee1m5cqW7myPi8xRYiIiIiMeaOHEiL7zwAoGBgQA0Nzfz1FNPUVdX5+aWifgeBRYiIiLiNVasWMGjjz7KjBkz2L9/v7ubI+JTFFiIiIiI15g7dy5RUVEcOHCAlJQUNm3a5O4mifgMBRYiIiLiNb7yla9QWlrKzTffzPnz51m4cCEPPvggTU1N7m6aiNdTYCEiIiJeZeTIkfz5z38mOzsbgF/+8pfcfPPNnDhxws0tE/FuCixERETE6/j7+/Ozn/2M119/nWHDhlFaWkpNTY27myXi1VSmUkRERLzWnXfeSVFREYcOHWLq1Knubo6IV9OIhYiIiHi18ePH88///M/2+x999BGLFi2itrbWja0S8T4KLERERMRnNDU1sXjxYjZu3EhKSgp79+51d5NEvIYCCxEREfEZAQEBbNy4kZiYGA4dOsSMGTPYsGGDu5sl4hUUWIiIiIhPmTlzJiUlJaSmpnLhwgW+853v8MMf/pDGxkZ3N03EoymwEBEREZ8zYsQI3nnnHX7yk58A8NxzzzFnzhytuxDpBQUWIiIi4pMGDBjA6tWreeONNxg+fDijR49m6NCh7m6WiMdSulkRERHxaXPnzqW4uJiRI0diMBgAqK+vJygoyH5fRK5OIxYiIiLi8xISEuyjFRaLhcWLFzNv3jzOnTvn5paJeA6NWPQjFosFQPM7RURE3Ojzzz/nj3/8I01NTSQmJvLyyy+ruJ74LNv3Utv31M4YLF3ZS66J48ePM3r0aHc3Q0RERETEQWVlJTExMZ3uo8CiH2ltbeXEiRMMHTqUGTNmsGfPni4dl5KSctV9r7ZPbW0to0ePprKykmHDhnWr3Z6iK++Tp7fBVefv6Xl6clx3jlFf7xr19Wtznu4e6+q+frX9fKGvg/f3d0/s6909Rp/tXeOuvm6xWKirqyMqKgo/v85XUWgqVD/i5+dnjwQHDBjQ5QujK/t29XzDhg3z2guyO++pp7bBVefv6Xl6cpz6uuupr1+b83T3WFf39a7u5819Hby/v3tiX+/uMfps7xp39vXhw4d3aT8t3u6nHnjgAZfu253zeav+8B70dRtcdf6enqcnx6mvu15/eA+8va/35FhX9/WetMEb9Yf3oC/b4Il9vbvH6LO9azzhPdBUKAGsQ4jDhw/n3LlzXhvpi4D6uvgO9XXxJerv/YNGLASAoKAgVq5cSVBQkLubItKn1NfFV6iviy9Rf+8fNGIhLpefn09ZWRk5OTnubopIj5lMJnJyckhISADAaDSybNkyN7dKpO/os1u8XWFhIdu2bcNsNmMymcjIyNDnuotp8ba4hO1LGMCmTZt0oYpHM5lMJCUlUV5ejtFoBCA7O5vc3FyysrLc2zgRF9Jnt/iKwsJCSkpK7P3dbDaTlJREcXExeXl5bm6d99CIhbhcUlISqamp+q+XeKzMzEyMRqNDHzabzYSEhHSpQJCIJ9Jnt3izjIwMNm/e7PBYfn4+mZmZlJWVER8f76aWeRetsRARucKmTZvsU6BsbCMXhYWFbmiRiIj0RkFBAdnZ2Q6PJScnA/pcdyUFFiIibZjNZsxmc7v/vTIajZSUlLihVSIi0hvp6elO/zAS19MaCw+VmZlJRkYGqampne5nNpt5+umnAQgLC6OsrIy0tDTS09OvRTNF+pyrrwWTydThOUJDQzl79mzvGy3SA/rcF1/RF339ymlQAEVFRQBXfR7pOgUWHsRkMlFYWEheXh4lJSVkZGR0ur9tYdLmzZtJTEy0P56ZmcmePXs0j1Y8ljuvBbPZ3NNmi3SbPvfFV7ijr+fk5JCTk6P1FS6kqVAeIj8/3z43sKt/GDIyMkhPT3e44ADy8vLIz8/XnELxSH19LdjWUrSnurq6+w0W6SF97ouvcEdft42IKNOfa2nEwkMsW7bMngawK3O820b+7VmwYAE5OTkOw38lJSUsXbq0y21au3at0wUt0tf6+loIDQ0F2h+ZMJvNnQYeIq50LT73RfqDa93X8/PzCQ0NVZrZPqDAwkvZLpaOhvcSEhLIz893+KKUmJhIcXHxtWqiyDXR3WvBdutodCItLa3P2irSGz353BfxRL3p6wUFBZjNZoegQteE62gqlJcqKSnp9CKxXYy2hUsi3qon18KCBQsoKytz2M+2qFv/7ZX+Sp/74it62tdLSkqorq52mP5kNps1RdCFFFh4KZPJZJ/S0R7bBdlZBpyesqXrFOkPenItZGdnU1BQ4LBfXl6ehs2lX+vt574+u8VT9KSvm0wmnn76aUJDQykoKLDfsrOztXjbhTQVyktVV1d3eqF0No+8J2wp38xmMyaTiU2bNgHW4UgtjBJ36sm1EB8fz+bNm8nOziYlJQWTyURYWJh9DrBIf9STvq7PbvFEPenrSUlJmM1mp38aAfqnkQspsPBSXQ0YXJWT32g02jM56AKV/qSn10JiYqKSE4hH6Ulf12e3eKKe9PWampo+ao20palQIiIiIiLSawosvJTRaOxSRB8WFtb3jRFxI10L4ivU18VXqK/3XwosvFRni5rgcqEvpVcTb6drQXyF+rr4CvX1/kuBhZeKj4/vtEqwLdJXJgTxdroWxFeor4uvUF/vvxRYeKnExMROhwmVk198ha4F8RXq6+Ir1Nf7LwUWXmrhwoWAtRhMe/bs2aMLTnyCrgXxFerr4ivU1/svBRZeKjExkdTUVDZu3NjudltRGBFvp2tBfIX6uvgK9fX+S4GFB7IN8V0tI8LmzZspKChwiugzMzPJyspSNC8eT9eC+Ar1dfEV6uuezWCxWCzuboRcXUFBgb14UVFREWazGaPRSHJyMgAZGRntVgU2m81kZ2djNBoJCwujrKyMtLQ00tPTr2n7RVxF14L4CvV18RXq695DgYWIiIiIiPSapkKJiIiIiEivKbAQEREREZFeU2AhIiIiIiK9psBCRERERER6TYGFiIiIiIj0mgILERERERHpNQUWIiIiIiLSawosRERERESk1xRYiIiIiIhIrymwEBERERGRXlNgISIiPsNsNmMwGOy3/Pz8Pn2+zMxM+3OFhIT06XOJiLibwWKxWNzdCBERkWvBbDaTlJREWVnZNX/ukJAQampqrvnziohcK/7uboCIiHiu/Px8cnJy7PeNRqP9d7PZ7LCv0Wh0egxwy5d8ERFxPQUWIiLSY7agIi8vj9TUVIdtmZmZ5Ofnk5qayrZt2xy2lZSUsHTpUkwm0zVrq4iI9C0FFiIi0iO2oKCjEYeioiLAGmBcKTExkZycHIfRDhER8WxavC0iIj2Sl5fH5s2bO9xeUlIC4DSSYRMfH098fHyftE1ERK49BRYiItIjJpOJxMTEdrcVFhYC1uCh7bqLtmwLqUVExDsosBARkW4zmUykpKR0uN22pqKj0QrbOZKTk13eNhERcQ+tsRARkW4LDQ0lKyurw+22EYu0tLQO90lNTe1wNENERDyPRixERKTbrhYQXG19RVfOca1kZ2eTkJBgL2TX3vSstoXuEhISMJvNpKWl2Y8DazCVm5tLZmZmuwvWRUS8nQILERFxKdtohdFo7DfBQ2dycnIoKyuzLyYvLi522icvL4/ExEQ2b95MWVkZRqORbdu2kZ6eDlhfs9lsto/i9HVFbxGR/kiBhYiIuFRX1lf0R5mZmZhMpnaL+AEkJyfbAwkb21SvtkFGTk6OU90OERFfoMBCRERcqivrK7p6nrS0NAwGg31qVV9atmwZ0P5oQ0lJCRkZGR0em5CQYP/daDR6XFAlIuIKCixERMSlurK+oitSU1M7rZPhakajkfT0dPLy8py2bdy4sdPXo+xWIiIKLERExIXarq9wRfG7a71GwzYd6soRkrCwsE6P84S1JCIifU2BhYiIuIynrq+wSU1NJT4+nqefftr+WH5+vtPaiiuFhob2ddNERPo91bEQERGX6e76ipKSEjZu3Ghfo9A2s1Jb1dXV9rUPtsXVV+5XUFBAdXU1oaGhVFdXU1xcTEZGRreDnMzMTLKzszGbzRiNRsrKyuzrL0REpGMKLERExGW6s76isLDQKYNSQUEBGRkZTmsr8vLyHB7Lzc0lLS3NfqzJZGLbtm0O6yNyc3N79BqWLVtGdnY2mzZtIjU1tdMK4yIicpmmQomIiEvYgoqurq+wjQy0lZ6eTmFhIQUFBU77tpWVlUVhYaF9hKSkpASTyeR0rp6wZXXKycmhoKCgx+cREfE1CixERMQlbKMFXcmQZAsE2ts3NTWVjRs3OjzW3hoGW8E62zFFRUUkJCSQnZ1NYWEh8fHxPV7rkZ2djclk4uzZs53uZ5uWVV1d3aPnERHxJgosRESkRwoLC0lKSiIpKYmQkBD7GojCwkISEhJISkrqcK1FUVER0HE2pStHH9oTGhpq389oNFJeXk5qaioFBQWkpaWRkJDQYbG7q0lNTcVoNDqNlNiYzWbS0tJYunQpYF1TkpaWZh9BERHxRVpjISIiPZKamkpxcXGPjrVNlbItkO5oe2eqq6vtIx4lJSUkJibaR01MJhOZmZk8/fTT5OTk9KiNy5Yt67AdRqNR1bVFRK6gEQsREbnmbCMC7f2H31Zxu632phq1rYZtMpkczhUfH09eXl6PK3abzWaHatoiInJ1CixERMQt1q5d61AvAqw1I5KTk53Su145OpCdnU16errDGoorRyZMJlOX095eKT8/XylmRUS6SVOhRETELdLT04mPjyc7O9thPcSVQURWVhaPPPKIQx2LsLAwp0AiIyOD3Nxc+9SqjmpiXKmgoIC8vDxNbRIR6SWDxWKxuLsRIiIi14LZbCYpKYmysjL7Y9nZ2RQUFNgfy83N7VJA0l0hISHU1NS4/LwiIv2FRixERMSnPfLII8Dlgno9TVErIuLrNGIhIiI+w2w2ExISYr+fk5PTJ6MTNpmZmfYpXEajUSMWIuLVFFiIiIiIiEivKSuUiIiIiIj0mgILERERERHpNQUWIiIiIiLSawosRERERESk1xRYiIiIiIhIrymwEBERERGRXlNgISIiIiIivabAQkREREREek2BhYiIiIiI9Nr/B8OnaJKoqrRxAAAAAElFTkSuQmCC", "text/plain": [ "<Figure size 800x500 with 1 Axes>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(8, 5))\n", "for i in range(len(signal_parameters)):\n", " colors = list(pf.my_colormap.keys())\n", " col = colors[np.mod(i, len(colors))]\n", " plt.errorbar(\n", " T_obs_values,\n", " uncertainties_means[:, i],\n", " yerr=uncertainties_stds[:, i],\n", " color=col,\n", " fmt=\"o\",\n", " markersize=4,\n", " linestyle=\"dashed\",\n", " capsize=7,\n", " label=signal_labels[i],\n", " )\n", "\n", "plt.loglog(\n", " T_obs_values,\n", " 100 / T_obs_values**3,\n", " linestyle=\"--\",\n", " color=\"black\",\n", ")\n", "\n", "plt.text(0.5, 1e4, s=r\"$\\propto 1/T^3$\", fontsize=15)\n", "\n", "plt.loglog(\n", " T_obs_values,\n", " 0.25 / T_obs_values ** (1 / 2),\n", " linestyle=\"--\",\n", " color=\"black\",\n", ")\n", "\n", "plt.text(30, 1, s=r\"$\\propto 1/\\sqrt{T}$\", fontsize=15)\n", "\n", "plt.xlabel(r\"$T_{\\rm obs} \\rm [yr]$\")\n", "plt.ylabel(r\"$\\rm Uncertainties$\")\n", "plt.ylim(5e-3, 1e6)\n", "plt.legend(fontsize=15)\n", "plt.tight_layout()\n", "plt.savefig(\"plots/Error_T_scaling.pdf\")" ] }, { "cell_type": "code", "execution_count": null, "id": "49f83d20", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3.9.12 ('env_GWFast')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" }, "vscode": { "interpreter": { "hash": "37bcb7777d3229dfb79a16124a08c500a91162130c755ccd3fb5278a92e948b4" } } }, "nbformat": 4, "nbformat_minor": 5 }
116,712
Python
.py
456
251.368421
60,294
0.917449
Mauropieroni/fastPTA
8
0
3
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,335
signals.py
Mauropieroni_fastPTA/fastPTA/signals.py
# Global import jax import jax.numpy as jnp # Local import fastPTA.utils as ut jax.config.update("jax_enable_x64", True) # If you want to use your GPU change here jax.config.update("jax_default_device", jax.devices("cpu")[0]) # Current SMBBH SGWB log_amplitude best-fit SMBBH_log_amplitude = -7.1995 SMBBH_tilt = 2 # Current SMBBH SGWB parameters SMBBH_parameters = jnp.array([SMBBH_log_amplitude, SMBBH_tilt]) # A value for a flat spectrum CGW_flat_parameters = jnp.array([-7.0]) # Some values for a LN spectrum LN_log_amplitude = -6.45167492 LN_log_width = -0.91240383 LN_log_pivot = -7.50455732 CGW_LN_parameters = jnp.array([LN_log_amplitude, LN_log_width, LN_log_pivot]) # Some values for a BPL spectrum BPL_log_amplitude = -5.8 BPL_log_width = -7.3 BPL_tilt_1 = 3 BPL_tilt_2 = 1.5 CGW_BPL_parameters = jnp.array( [BPL_log_amplitude, BPL_log_width, BPL_tilt_1, BPL_tilt_2] ) def flat(frequency, parameters): """ Generate a flat spectrum. Parameters: ----------- frequency : numpy.ndarray or jax.numpy.ndarray Array containing frequency bins. parameters : numpy.ndarray or jax.numpy.ndarray Array containing parameters for the flat spectrum. Returns: -------- numpy.ndarray or jax.numpy.ndarray Array containing the computed flat spectrum. """ return 10 ** parameters[0] * frequency**0 def dflat(index, frequency, parameters): """ Derivative of the flat spectrum. Parameters: ----------- index : int Index of the parameter to differentiate. frequency : numpy.ndarray or jax.numpy.ndarray Array containing frequency bins. parameters : numpy.ndarray or jax.numpy.ndarray Array containing parameters for the flat spectrum. Returns: -------- numpy.ndarray or jax.numpy.ndarray Array containing the computed derivative of the flat spectrum with respect to the specified parameter. """ if index == 0: return flat(frequency, parameters) * jnp.log(10) else: raise ValueError("Cannot use that for this signal") def power_law(frequency, parameters, pivot=ut.f_yr): """ Generate a power law spectrum. Parameters: ----------- frequency : numpy.ndarray or jax.numpy.ndarray Array containing frequency bins. parameters : numpy.ndarray or jax.numpy.ndarray Array containing parameters for the power law spectrum. Returns: -------- numpy.ndarray or jax.numpy.ndarray Array containing the computed power law spectrum. """ # unpack parameters log_amplitude, tilt = parameters return 10**log_amplitude * (frequency / pivot) ** tilt def dpower_law(index, frequency, parameters, pivot=ut.f_yr): """ Derivative of the power law spectrum. Parameters: ----------- index : int Index of the parameter to differentiate. frequency : numpy.ndarray or jax.numpy.ndarray Array containing frequency bins. parameters : numpy.ndarray or jax.numpy.ndarray Array containing parameters for the power law spectrum. Returns: -------- numpy.ndarray or jax.numpy.ndarray Array containing the computed derivative of the power law spectrum with respect to the specified parameter. """ # unpack parameters log_amplitude, tilt = parameters model = power_law(frequency, parameters) if index == 0: dlog_model = jnp.log(10) elif index == 1: dlog_model = jnp.log(frequency / pivot) else: raise ValueError("Cannot use that for this signal") return model * dlog_model def lognormal(frequency, parameters): """ Generate a lognormal spectrum. Parameters: ----------- frequency : numpy.ndarray or jax.numpy.ndarray Array containing frequency bins. parameters : numpy.ndarray or jax.numpy.ndarray Array containing parameters for the lognormal spectrum. Returns: -------- numpy.ndarray or jax.numpy.ndarray Array containing the computed lognormal spectrum. """ # unpack parameters log_amplitude, log_width, log_pivot = parameters return 10**log_amplitude * jnp.exp( -0.5 * (jnp.log(frequency / (10**log_pivot)) / 10**log_width) ** 2 ) def dlognormal(index, frequency, parameters): """ Derivative of the lognormal spectrum. Parameters: ----------- index : int Index of the parameter to differentiate. frequency : numpy.ndarray or jax.numpy.ndarray Array containing frequency bins. parameters : numpy.ndarray or jax.numpy.ndarray Array containing parameters for the lognormal spectrum. Returns: -------- numpy.ndarray or jax.numpy.ndarray Array containing the computed derivative of the lognormal spectrum with respect to the specified parameter. """ # unpack parameters log_amplitude, log_width, log_pivot = parameters model = lognormal(frequency, parameters) if index == 0: dlog_model = jnp.log(10) elif index == 1: dlog_model = ( jnp.log(10) / 10 ** (2 * log_width) * (jnp.log(frequency / 10**log_pivot)) ** 2 ) elif index == 2: dlog_model = ( jnp.log(10) / 10 ** (2 * log_width) * (jnp.log(frequency / 10**log_pivot)) ) else: raise ValueError("Cannot use that for this signal") return model * dlog_model def SMBH_and_lognormal(frequency, parameters): """ Generate a spectrum combining the SMBH and lognormal models. Parameters: ----------- frequency : numpy.ndarray or jax.numpy.ndarray Array containing frequency bins. parameters : numpy.ndarray or jax.numpy.ndarray Array containing parameters for the SMBH and lognormal spectra. Returns: -------- numpy.ndarray or jax.numpy.ndarray Array containing the computed SMBH and lognormal spectra. """ return power_law(frequency, parameters[:2]) + lognormal( frequency, parameters[2:] ) def dSMBH_and_lognormal(index, frequency, parameters): """ Derivative of the SMBH + lognormal spectrum. Parameters: ----------- index : int Index of the parameter to differentiate. frequency : numpy.ndarray or jax.numpy.ndarray Array containing frequency bins. parameters : numpy.ndarray or jax.numpy.ndarray Array containing parameters for the SMBH + lognormal spectra. Returns: -------- numpy.ndarray or jax.numpy.ndarray Array containing the computed derivative of the SMBH + lognormal spectra with respect to the specified parameter. """ if index < 2: return dpower_law(index, frequency, parameters[:2]) else: return dlognormal(index - 2, frequency, parameters[2:]) def broken_power_law(frequency, parameters, smoothing=1.5): """ Generate a broken power law spectrum. Parameters: ----------- frequency : numpy.ndarray or jax.numpy.ndarray Array containing frequency bins. parameters : numpy.ndarray or jax.numpy.ndarray Array containing parameters for the broken power law spectrum. smoothing: float, optional Some parameter controlling how smooth the transition is in the BPL Returns: -------- numpy.ndarray or jax.numpy.ndarray Array containing the computed broken power law spectrum. """ # unpack parameters alpha, gamma, a, b = parameters x = frequency / 10**gamma return ( 10**alpha * (jnp.abs(a) + jnp.abs(b)) ** smoothing / ( jnp.abs(b) * x ** (-a / smoothing) + jnp.abs(a) * x ** (b / smoothing) ) ** smoothing ) def dbroken_power_law(index, frequency, parameters, smoothing=1.5): """ Derivative of the BPL spectrum. Parameters: ----------- index : int Index of the parameter to differentiate. frequency : numpy.ndarray or jax.numpy.ndarray Array containing frequency bins. parameters : numpy.ndarray or jax.numpy.ndarray Array containing parameters for the BPL spectrum. Returns: -------- numpy.ndarray or jax.numpy.ndarray Array containing the computed derivative of the BPL spectrum with respect to the specified parameter. """ # unpack parameters alpha, gamma, a, b = parameters model = broken_power_law(frequency, parameters) if index != 0: x = frequency / 10**gamma if index == 0: dlog_model = jnp.log(10) elif index == 1: dlog_model = ( jnp.log(10) * a * b * (-1 + x ** ((a + b) / smoothing)) / (b + a * x ** ((a + b) / smoothing)) ) elif index == 2: dlog_model = ( -((b * smoothing) / (a + b)) + (b * (smoothing + a * jnp.log(x))) / (b + a * x ** ((a + b) / smoothing)) ) / a elif index == 3: dlog_model = ( -a * ( smoothing - x ** ((a + b) / smoothing) * (smoothing + (a + b) * jnp.log(x)) ) / ((a + b) * (b + a * x ** ((a + b) / smoothing))) ) elif index == 4: dlog_model = ( jnp.log(a + b) + (a * b * (-1 + x ** ((a + b) / smoothing)) * jnp.log(x)) / (smoothing * (b + a * x ** ((a + b) / smoothing))) - jnp.log(b / (x) ** (a / smoothing) + a * (x) ** (b / smoothing)) ) else: raise ValueError("Cannot use that for this signal") return model * dlog_model def SMBH_and_broken_power_law(frequency, parameters): """ Generate a spectrum combining the SMBH and BPL models. Parameters: ----------- frequency : numpy.ndarray or jax.numpy.ndarray Array containing frequency bins. parameters : numpy.ndarray or jax.numpy.ndarray Array containing parameters for the lognormal spectrum. Returns: -------- numpy.ndarray or jax.numpy.ndarray Array containing the computed lognormal spectrum. """ return power_law(frequency, parameters[:2]) + broken_power_law( frequency, parameters[2:] ) def dSMBH_and_broken_power_law(index, frequency, parameters): """ Derivative of the SMBH + BPL spectrum. Parameters: ----------- index : int Index of the parameter to differentiate. frequency : numpy.ndarray or jax.numpy.ndarray Array containing frequency bins. parameters : numpy.ndarray or jax.numpy.ndarray Array containing parameters for the SMBH + BPL spectra. Returns: -------- numpy.ndarray or jax.numpy.ndarray Array containing the computed derivative of the SMBH + BPL spectra with respect to the specified parameter. """ if index < 2: return dpower_law(index, frequency, parameters[:2]) else: return dbroken_power_law(index - 2, frequency, parameters[2:]) def SMBH_and_flat(frequency, parameters): """ Generate a spectrum combining the SMBH and flat models. Parameters: ----------- frequency : numpy.ndarray or jax.numpy.ndarray Array containing frequency bins. parameters : numpy.ndarray or jax.numpy.ndarray Array containing parameters for the SMBH and lognormal spectra. Returns: -------- numpy.ndarray or jax.numpy.ndarray Array containing the computed SMBH and lognormal spectra. """ return power_law(frequency, parameters[:2]) + flat( frequency, parameters[2:] ) def dSMBH_and_flat(index, frequency, parameters): """ Derivative of the SMBH + flat spectrum. Parameters: ----------- index : int Index of the parameter to differentiate. frequency : numpy.ndarray or jax.numpy.ndarray Array containing frequency bins. parameters : numpy.ndarray or jax.numpy.ndarray Array containing parameters for the SMBH + flat spectra. Returns: -------- numpy.ndarray or jax.numpy.ndarray Array containing the computed derivative of the SMBH + flat spectra with respect to the specified parameter. """ if index < 2: return dpower_law(index, frequency, parameters[:2]) else: return dflat(index - 2, frequency, parameters[2:]) def get_model(signal_label): """ Retrieve signal and derivative models based on the specified label. Parameters: ----------- signal_label : str Label indicating the type of signal model. Returns: -------- dict Dictionary containing the signal model and its derivative model. Notes: ------ Supported signal labels are: - "power_law": Power law signal model. - "lognormal": Log-normal signal model. - "power_law_flat": Signal model combining SMBH and flat spectrum. - "power_law_lognormal": Signal model combining SMBH and log-normal spectrum. - "power_law_broken_power_law": Signal model combining SMBH and broken power law spectrum. """ if signal_label == "power_law": signal = {"signal_model": power_law, "dsignal_model": dpower_law} elif signal_label == "flat": signal = {"signal_model": flat, "dsignal_model": dflat} elif signal_label == "lognormal": signal = {"signal_model": lognormal, "dsignal_model": dlognormal} elif signal_label == "power_law_flat": signal = { "signal_model": SMBH_and_flat, "dsignal_model": dSMBH_and_flat, } elif signal_label == "power_law_lognormal": signal = { "signal_model": SMBH_and_lognormal, "dsignal_model": dSMBH_and_lognormal, } elif signal_label == "power_law_broken_power_law": signal = { "signal_model": SMBH_and_broken_power_law, "dsignal_model": dSMBH_and_broken_power_law, } else: raise ValueError("Cannot use", signal_label) return signal
14,264
Python
.py
413
27.784504
79
0.631709
Mauropieroni/fastPTA
8
0
3
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,336
MCMC_code.py
Mauropieroni_fastPTA/fastPTA/MCMC_code.py
# Global import time import numpy as np import emcee import jax import jax.numpy as jnp # Local import fastPTA.utils as ut from fastPTA.signals import SMBBH_parameters, get_model from fastPTA.get_tensors import get_tensors jax.config.update("jax_enable_x64", True) jax.config.update("jax_default_device", jax.devices(ut.which_device)[0]) # Setting some constants i_max_default = 100 R_convergence_default = 1e-1 R_criterion_default = "mean_squared" burnin_steps_default = 300 MCMC_iteration_steps_default = 500 def generate_gaussian(mean, sigma): """ This function generates complex data by sampling real and imaginary parts independently from a Gaussian distribution with the specified mean and standard deviation. Parameters: ----------- mean : numpy.ndarray or jax.numpy.ndarray Mean of the Gaussian distribution. sigma : numpy.ndarray or jax.numpy.ndarray Standard deviation of the Gaussian distribution. Returns: -------- data : numpy.ndarray or jax.numpy.ndarray Complex data sampled from a Gaussian distribution. """ # Generate the real part real = np.random.normal(loc=mean, scale=sigma) # Then the imaginary part imaginary = np.random.normal(loc=mean, scale=sigma) # Return the sum return (real + 1j * imaginary) / np.sqrt(2) def generate_MCMC_data( realization, frequency, signal_std, strain_omega, response_IJ, HD_functions_IJ, HD_coeffs, save_MCMC_data=True, path_to_MCMC_data="generated_data/MCMC_data.npz", ): """ Generates (and might save) data for Markov Chain Monte Carlo (MCMC) analysis based on the provided parameters. If `realization` is True, it generates a realization of the data. Otherwise, it uses the expectation value. Data contain both signal and noise. If `save_MCMC_data` is True, the generated data is saved to a specified path. Parameters: ----------- realization : bool Whether to generate a realization of the data. frequency : numpy.ndarray Array containing the frequency bins. signal_std : numpy.ndarray Array containing the standard deviation of the signal. strain_omega : numpy.ndarray Array containing the strain noise. response_IJ : numpy.ndarray Array containing the response function. HD_functions_IJ : numpy.ndarray Array containing the HD functions. HD_coeffs : numpy.ndarray Array containing the HD coefficients. save_MCMC_data : bool, optional Whether to save the generated data Default is True path_to_MCMC_data : str, optional Path to save the generated data Default is "generated_data/MCMC_data.npz" Returns: -------- Tuple containing: - frequency: numpy.ndarray Array containing frequency bins. - data: numpy.ndarray Array containing the generated data. - response_IJ: numpy.ndarray Array containing response function. - strain_omega: numpy.ndarray Array containing strain noise. """ if realization: # Use this part if you want data to be realized print("- Will generate a data realization\n") # Sqrt of pulsar-pulsar noise term noise_std = np.diagonal(np.sqrt(strain_omega), axis1=-2, axis2=-1) # Generate gaussian data with the right std for the noise noise_data = generate_gaussian(0, noise_std) # Combine to get nn take the real part only since the likelihood is # real and is multiplied by a 2 to keep track of that noise_part = np.real( noise_data[:, :, None] * np.conj(noise_data[:, None, :]) ) # Since we work with variables of f only (already integrated over theta # and phi), each signal component should be generated independently signal_std = signal_std[:, None, None] * np.ones_like( np.real(noise_part) ) # Generate gaussian data with the right std for the signal signal_data = generate_gaussian(0, signal_std) # The response projects the signal in the different pulsar combinations # as for the noise, take the real part only signal_part = response_IJ * np.real( signal_data * np.conjugate(signal_data) ) else: # Use this part if you don't want data to be realized print("- Data will use the expectation value\n") noise_part = strain_omega signal_part = response_IJ * (signal_std**2)[:, None, None] # Combine signal and noise data = signal_part + noise_part # Save the data if save_MCMC_data: np.savez( path_to_MCMC_data, frequency=frequency, data=data, response_IJ=response_IJ, strain_omega=strain_omega, ) return frequency, data, response_IJ, strain_omega def get_MCMC_data( regenerate_MCMC_data, T_obs_yrs=10.33, n_frequencies=30, signal_label="power_law", signal_parameters=SMBBH_parameters, realization=True, save_MCMC_data=True, path_to_MCMC_data="generated_data/MCMC_data.npz", get_tensors_kwargs={}, generate_catalog_kwargs={}, ): """ Loads or regenerate data for Markov Chain Monte Carlo (MCMC) analysis. If `regenerate_MCMC_data` is True or the MCMC data file is not found, the data is regenerated. Otherwise, it is loaded from the specified path. Data contain both signal and noise. If the data are generated, if `realization` is True, it generates a realization of the data. If `save_MCMC_data` is True, the generated data is saved to a specified path. Additional keyword arguments for get_tensors and generate_pulsars_catalog can be provided via get_tensors_kwargs and generate_catalog_kwargs. Parameters: ----------- regenerate_MCMC_data : bool Whether to regenerate the MCMC data. T_obs_yrs : float, optional Observation time in years Default is 10.33. n_frequencies : int, optional Number of frequency bins Default is 30. signal_label : str, optional Label indicating the type of signal model to use Default is "power_law". signal_parameters : dict, optional Dictionary containing parameters for the signal model Default is SMBBH_parameters. realization : bool, optional Whether to generate a realization of the data Default is True. save_MCMC_data : bool, optional Whether to save the generated data Default is True. path_to_MCMC_data : str, optional Path to save or load the generated data Default is "generated_data/MCMC_data.npz". get_tensors_kwargs : dict, optional Additional keyword arguments for get_tensors Default is {}. generate_catalog_kwargs : dict, optional Additional keyword arguments for generate_catalog_kwargs Default is {}. Returns: -------- Tuple containing: - frequency: numpy.ndarray Array containing frequency bins. - data: numpy.ndarray Array containing the generated data. - response_IJ: numpy.ndarray Array containing response function. - strain_omega: numpy.ndarray Array containing strain noise. """ try: if regenerate_MCMC_data: raise FileNotFoundError("Flag forces MCMC data regeneration") data = np.load(path_to_MCMC_data) frequency = data["frequency"] MCMC_data = data["data"] response_IJ = data["response_IJ"] strain_omega = data["strain_omega"] except FileNotFoundError: print("\nRegenerating MCMC data") # Setting the frequency vector from the observation time T_tot = T_obs_yrs * ut.yr fmin = 1 / T_tot frequency = fmin * (1 + np.arange(n_frequencies)) # Get the functions for the signal and its derivatives model = get_model(signal_label) signal_model = model["signal_model"] # Computing (sqrt of the) signal signal_std = np.sqrt(signal_model(frequency, signal_parameters)) # Gets all the ingredients to compute the fisher strain_omega, response_IJ, HD_functions_IJ, HD_coeffs = get_tensors( frequency, **get_tensors_kwargs, **generate_catalog_kwargs ) # Generate MCMC data frequency, MCMC_data, response_IJ, strain_omega = generate_MCMC_data( realization, frequency, signal_std, strain_omega, response_IJ, HD_functions_IJ, HD_coeffs, save_MCMC_data=save_MCMC_data, path_to_MCMC_data=path_to_MCMC_data, ) return frequency, MCMC_data, response_IJ, strain_omega def flat_prior(parameter, min_val, max_val): """ Calculate the logarithm of a flat prior probability density function. Parameters: ----------- parameter : float or jax.numpy.ndarray Parameter value(s) for which the prior probability is calculated. min_val : float Minimum allowed value for the parameter. max_val : float Maximum allowed value for the parameter. Returns: -------- float or jax.numpy.ndarray Logarithm of the prior probability density function. """ if not (parameter >= min_val and parameter <= max_val): return -jnp.inf else: return 0.0 def gaussian_prior(parameter, mean_val, std_val): """ Calculate the logarithm of a Gaussian prior probability density function. Parameters: ----------- parameter : float or jax.numpy.ndarray Parameter value(s) for which the prior probability is calculated. mean_val : float Mean value of the Gaussian distribution. std_val : float Standard deviation of the Gaussian distribution. Returns: -------- float or jax.numpy.ndarray Logarithm of the prior probability density function. """ return -0.5 * jnp.sum( jnp.log(2 * jnp.pi * std_val**2) + ((parameter - mean_val) / std_val) ** 2 ) def log_prior(parameters, prior_parameters, which_prior="flat"): """ Calculate the logarithm of the prior probability density function. Only flat and gaussian priors are supported at the moment Parameters: ----------- parameters : jax.numpy.ndarray Array of parameter values for which the prior probability is calculated. prior_parameters : numpy.ndarray Array containing prior parameters, where each row represents the parameters for a single prior. For flat prior: [min_val, max_val] For Gaussian prior: [mean_val, std_val] which_prior : str, optional Type of prior distribution to use Default is "flat" Returns: -------- float Logarithm of the prior probability density function. """ log_p = 0.0 for i in range(len(parameters)): if which_prior == "flat": log_p += flat_prior(parameters[i], *prior_parameters[:, i]) elif which_prior == "gaussian": log_p += gaussian_prior(parameters[i], *prior_parameters[:, i]) return log_p @jax.jit def log_likelihood( frequency, signal_value, response_IJ, strain_omega, data, ): """ Compute the logarithm of the likelihood assujming a Whittle likelihood. Parameters: ----------- frequency : numpy.ndarray Array containing frequency bins. signal_value : numpy.ndarray Array containing the signal evaluated in all frequency bins. response_IJ : numpy.ndarray Array containing response function. strain_omega : numpy.ndarray Array containing strain noise. data : numpy.ndarray Array containing the observed data. Returns: -------- float Logarithm of the likelihood. """ # Covariance of the data covariance = response_IJ * signal_value[:, None, None] + strain_omega # Inverse of the covariance c_inverse = ut.compute_inverse(covariance) # Log determinant sign, logdet = jnp.linalg.slogdet(covariance) # data term data_term = jnp.einsum("ijk,ikj->i", c_inverse, data) # return the likelihood return -jnp.sum(logdet + data_term) def log_posterior( signal_parameters, frequency, signal_model, response_IJ, strain_omega, data, prior_parameters, which_prior="flat", ): """ Compute the logarithm of the posterior probability summing log likelihood and prior. Parameters: ----------- signal_parameters : numpy.ndarray Array containing parameters of the signal model. frequency : numpy.ndarray Array containing frequency bins. signal_model : callable Function representing the signal model. response_IJ : numpy.ndarray Array containing response function. strain_omega : numpy.ndarray Array containing strain noise. data : numpy.ndarray Array containing the observed data. prior_parameters : numpy.ndarray Array containing prior parameters. which_prior : str, optional Type of prior distribution to use (default is "flat"). Returns: -------- float Logarithm of the posterior probability. """ lp = log_prior(signal_parameters, prior_parameters) if not jnp.isfinite(lp): return -jnp.inf signal_value = signal_model(frequency, signal_parameters) log_lik = log_likelihood( frequency, signal_value, response_IJ, strain_omega, data ) return lp + log_lik @jax.jit def log_likelihood_lm( frequency, signal_lm, signal_value, response_IJ, strain_omega, data, ): """ Compute the logarithm of the likelihood assujming a Whittle likelihood. Parameters: ----------- frequency : numpy.ndarray Array containing frequency bins. signal_value : numpy.ndarray Array containing the signal evaluated in all frequency bins. response_IJ : numpy.ndarray Array containing response function. strain_omega : numpy.ndarray Array containing strain noise. data : numpy.ndarray Array containing the observed data. Returns: -------- float Logarithm of the likelihood. """ signal_lm_f = signal_lm[:, None] * signal_value[None, :] # Assemble the signal tensor signal_tensor = jnp.sum(response_IJ * signal_lm_f[..., None, None], axis=0) # Covariance of the data covariance = signal_tensor + strain_omega # Inverse of the covariance c_inverse = ut.compute_inverse(covariance) # Log determinant sign, logdet = jnp.linalg.slogdet(covariance) # data term data_term = jnp.abs(jnp.einsum("ijk,ikj->i", c_inverse, data)) # return the likelihood return -jnp.sum(logdet + data_term) def log_posterior_lm( signal_parameters, frequency, signal_model, response_IJ, strain_omega, data, prior_parameters, which_prior="flat", ): """ Compute the logarithm of the posterior probability summing log likelihood and prior. Parameters: ----------- signal_parameters : numpy.ndarray Array containing parameters of the signal model. frequency : numpy.ndarray Array containing frequency bins. signal_model : callable Function representing the signal model. response_IJ : numpy.ndarray Array containing response function. strain_omega : numpy.ndarray Array containing strain noise. data : numpy.ndarray Array containing the observed data. prior_parameters : numpy.ndarray Array containing prior parameters. which_prior : str, optional Type of prior distribution to use (default is "flat"). Returns: -------- float Logarithm of the posterior probability. """ lp = log_prior(signal_parameters, prior_parameters) if not jnp.isfinite(lp): return -jnp.inf signal_value = signal_model(frequency, signal_parameters[:2]) log_lik = log_likelihood_lm( frequency, signal_parameters[2:], signal_value, response_IJ, strain_omega, data, ) return lp + log_lik def run_MCMC( priors, T_obs_yrs=10.33, n_frequencies=30, signal_label="power_law", signal_parameters=SMBBH_parameters, initial=[], which_prior="flat", regenerate_MCMC_data=False, realization=True, save_MCMC_data=True, path_to_MCMC_data="generated_data/MCMC_data.npz", i_max=i_max_default, R_convergence=R_convergence_default, R_criterion=R_criterion_default, burnin_steps=burnin_steps_default, MCMC_iteration_steps=MCMC_iteration_steps_default, path_to_MCMC_chains="generated_chains/MCMC_chains.npz", get_tensors_kwargs={}, generate_catalog_kwargs={}, ): """ Run Markov Chain Monte Carlo (MCMC) to estimate the posterior distribution of the parameters given the observed data. The initial points are generated randomly within the priors. After a burn-in phase, the Gelman-Rubin statistic is used as a convergence diagnostic. Several MCMC iterations are run until the chains reach convergence. MCMC samples and log posterior probabilities are stored in the specified path. Parameters: ----------- priors : numpy.ndarray Array containing prior parameters. Each row represents the parameters for a single prior distribution. T_obs_yrs : float, optional Total observation time in years Default is 10.33 n_frequencies : int, optional Number of frequency bins Default is 30 signal_label : str, optional Label indicating the type of signal model to use Default is "power_law" signal_parameters : numpy.ndarray, optional Array containing signal model parameters Default is SMBBH_parameters initial : list or numpy.ndarray, optional Initial parameter values for the MCMC walkers Default is empty which_prior : str, optional Type of prior distribution to use Default is "flat" regenerate_MCMC_data : bool, optional Flag indicating whether to regenerate MCMC data Default is False realization : bool, optional Flag indicating whether to generate a data realization Default is True save_MCMC_data : bool, optional Flag indicating whether to save MCMC data Default is True path_to_MCMC_data : str, optional Path to save MCMC data Default is "generated_data/MCMC_data.npz" i_max : int, optional Maximum number of iterations for convergence Default is i_max_default R_convergence : float, optional Convergence threshold for the Gelman-Rubin statistic Default is R_convergence_default R_criterion : str, optional Criterion to calculate the Gelman-Rubin statistic Default is R_criterion_default burnin_steps : int, optional Number of burn-in steps for the MCMC sampler Default is burnin_steps_default MCMC_iteration_steps : int, optional Number of MCMC iteration steps Default is MCMC_iteration_steps_default path_to_MCMC_chains : str, optional Path to save MCMC chains Default is "generated_chains/MCMC_chains.npz" get_tensors_kwargs : dict, optional Additional keyword arguments for getting tensors Default is an empty dictionary generate_catalog_kwargs : dict, optional Additional keyword arguments for generating the catalog Default is an empty dictionary Returns: -------- Tuple containing: - samples: numpy.ndarray Array containing MCMC samples. - pdfs: numpy.ndarray Array containing log posterior probabilities for MCMC samples. """ if "anisotropies" in get_tensors_kwargs.keys(): anisotropies = get_tensors_kwargs["anisotropies"] else: anisotropies = False # This is not used now # if "lm_order" in get_tensors_kwargs.keys(): # lm_order = get_tensors_kwargs["lm_order"] # else: # lm_order = False # Get the data frequency, MCMC_data, response_IJ, strain_omega = get_MCMC_data( regenerate_MCMC_data, T_obs_yrs=T_obs_yrs, n_frequencies=n_frequencies, signal_label=signal_label, signal_parameters=signal_parameters[:2], realization=realization, save_MCMC_data=save_MCMC_data, path_to_MCMC_data=path_to_MCMC_data, get_tensors_kwargs=get_tensors_kwargs, generate_catalog_kwargs=generate_catalog_kwargs, ) nwalkers = max(2 * len(priors.T), 5) # Generate the initial points if not provided if not initial and which_prior.lower() == "flat": initial = np.random.uniform( priors[0, :], priors[1, :], size=(nwalkers, len(priors.T)) ) elif not initial and which_prior.lower() == "gaussian": initial = np.random.uniform( priors[0, :], priors[1, :], size=(nwalkers, len(priors.T)) ) elif initial: pass else: raise ValueError("Cannot use that prior") nwalkers, ndims = initial.shape # Args for the posterior args = [ jnp.array(frequency), get_model(signal_label)["signal_model"], jnp.array(response_IJ), jnp.array(strain_omega), jnp.array(MCMC_data), priors, ] # Kwargs for the posterior kwargs = {"which_prior": which_prior} posterior_to_use = log_posterior_lm if anisotropies else log_posterior # Set the sampler sampler = emcee.EnsembleSampler( nwalkers, ndims, posterior_to_use, args=args, kwargs=kwargs ) start = time.perf_counter() print("Initial run") state = sampler.run_mcmc(initial, burnin_steps, progress=True) sampler.reset() print("Burn-in dropped, here starts the proper run") R = 1e100 i = 0 # Run until convergence or until reached maximum number of iterations while np.abs(R - 1) > R_convergence and i < i_max: # Run this iteration state = sampler.run_mcmc(state, MCMC_iteration_steps, progress=True) # Get Gelman-Rubin at this step R_array = ut.get_R(sampler.get_chain()) if R_criterion.lower() == "mean_squared": R = np.sqrt(np.mean(R_array**2)) elif R_criterion.lower() == "max": R = np.max(R_array) else: raise ValueError("Cannot use R_criterion =", R_criterion) # state = None print("At this step R = %.4f" % (R)) i += 1 # Samples and pdfs samples = np.array(sampler.get_chain(flat=True)) pdfs = sampler.lnprobability print("This took {0:.1f} seconds \n".format(time.perf_counter() - start)) print("Storing as", path_to_MCMC_chains) np.savez(path_to_MCMC_chains, samples=samples, pdfs=pdfs) # type: ignore return samples, pdfs
23,238
Python
.py
648
29.182099
80
0.666221
Mauropieroni/fastPTA
8
0
3
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,337
Fisher_code.py
Mauropieroni_fastPTA/fastPTA/Fisher_code.py
# Global import jax import jax.numpy as jnp # Local import fastPTA.utils as ut from fastPTA.signals import SMBBH_parameters, get_model from fastPTA.get_tensors import get_tensors # Set some global parameters for jax jax.config.update("jax_enable_x64", True) jax.config.update("jax_default_device", jax.devices(ut.which_device)[0]) # Default value for signal_lm default_signal_lm = jnp.array([1.0 / jnp.sqrt(4 * jnp.pi)]) @jax.jit def get_SNR_integrand(signal_tensor, c_inverse): """ Compute the integrand for the Signal-to-Noise Ratio (SNR) (for some set of frequency bins). Parameters: ----------- signal_tensor : numpy.ndarray or jax.numpy.ndarray 3D array containing signal data, assumed to have shape (F, N, N), where F is the number of frequency bins and N is the number of pulsars. c_inverse : numpy.ndarray or jax.numpy.ndarray 3D array representing the inverse covariance matrix, assumed to have shape (F, N, N), where F is the number of frequency bins and N is the number of pulsars. Returns: -------- numpy.ndarray or jax.numpy.ndarray Array containing the integrand of Signal-to-Noise Ratio (SNR) (for each frequency bin). """ # Builnding the C matrix c_bar_SNR = jnp.einsum("ijk,ikl->ijl", c_inverse, signal_tensor) # Contracting the 2 matrixes return jnp.einsum("ijk,ikj->i", c_bar_SNR, c_bar_SNR) @jax.jit def get_fisher_integrand(dsignal_tensor, c_inverse): """ Compute the integrand used to compute the Fisher Information Matrix (for some set of frequency bins). Parameters: ----------- dsignal_tensor : numpy.ndarray or jax.numpy.ndarray 4D array containing the derivative of the signal data with respect to the model parameters. This function assumes dsignal_tensor to have shape (P, F, N, N), where P is the number of parameters, F is the number of frequency bins, and N is the number of pulsars. c_inverse : numpy.ndarray or jax.numpy.ndarray 3D array representing the inverse covariance matrix, assumed to have shape (F, N, N), where F is the number of frequency bins and N is the number of pulsars. Returns: -------- numpy.ndarray or jax.numpy.ndarray 3D array containing the integrand to compute the Fisher Information Matrix for each combination of parameters. It has shape (N, N, F), where N is the number of pulsars and F is the number of frequency bins. """ # Building the C matrix for the fisher c_bar = jnp.einsum("ijk,aikl->aijl", c_inverse, dsignal_tensor) # Contracting the 2 matrixes return jnp.einsum("aijk,bikj->abi", c_bar, c_bar) @jax.jit def get_integrands( signal, dsignal, response_IJ, noise_tensor, HD_functions_IJ, ): """ Compute integrands for Signal-to-Noise Ratio (SNR) and Fisher Information Matrix given some signal data, derivatives and other quantities that characterize the pulsar configuration used for the analysis Parameters: ----------- signal : numpy.ndarray or jax.numpy.ndarray Array containing signal data. dsignal : numpy.ndarray or jax.numpy.ndarray 2D array containing derivative of the signal data with respect to the signal parameters. This function assumes dsignal to have shape (P, F) where P is the number of parameters, F is the number of frequency bins response_IJ : numpy.ndarray or jax.numpy.ndarray 3D array containing the response for all frequencies and pulsar pairs. Assumed to have shape (F, N, N), where F is the number of frequency bins and N is the number of pulsars. noise_tensor : numpy.ndarray or jax.numpy.ndarray 3D array containing the noise for all frequencies and pulsar pairs. Assumed to have shape (F, N, N), where F is the number of frequency bins and N is the number of pulsars. HD_functions_IJ : numpy.ndarray or jax.numpy.ndarray 4D array with the Legendre or binned projection of the Hellings and Downs correlations. The shape is (HD_order + 1, F, N, N), where HD_order is the maximum order of Legendre polynomials / bins, F is the number of frequencies,and N is the number of pulsars. Returns: -------- Tuple containing: - SNR_integrand: numpy.ndarray or jax.numpy.ndarray the integrand for the Signal-to-Noise Ratio (SNR) computation. - effective_noise: numpy.ndarray or jax.numpy.ndarray the effective noise as a function of frequency. - fisher_integrand: numpy.ndarray or jax.numpy.ndarray 3D array containing the integrand to compute the Fisher Information Matrix for each combination of parameters. It has shape (N, N, F), where N is the number of pulsars and F is the number of frequency bins. """ # Assemble the signal tensor signal_tensor = response_IJ * signal[:, None, None] # Build the covariance covariance = signal_tensor + noise_tensor # Invert the covariance c_inverse = ut.compute_inverse(covariance) # This is the SNR integrand SNR_integrand = get_SNR_integrand(signal_tensor, c_inverse) # Build the effective noise effective_noise = jnp.sqrt(signal**2 / SNR_integrand) # Assemble the tensor with signal derivativesz dsignal_tensor = dsignal[..., None, None] * response_IJ[None, ...] # Append HD functions dsignal_tensor = jnp.concatenate( ( dsignal_tensor, signal[..., None, None] * HD_functions_IJ, ), axis=0, ) # Get the fisher integrand fisher_integrand = get_fisher_integrand(dsignal_tensor, c_inverse) return SNR_integrand, effective_noise, fisher_integrand @jax.jit def get_signal_dsignal_tensors_lm_spherical_harmonics_basis( signal_lm, signal, dsignal, response_IJ ): """ Compute the signal and its derivatives in the spherical harmonics basis Parameters: ----------- signal_lm: numpy.ndarray or jax.numpy.ndarray Array containing the lm coefficients. signal : numpy.ndarray or jax.numpy.ndarray Array containing the signal evaluated at all frequencies. dsignal : numpy.ndarray or jax.numpy.ndarray 2D array containing derivative of the signal data with respect to the signal parameters. This function assumes dsignal to have shape (P, F) where P is the number of parameters, F is the number of frequency bins response_IJ : numpy.ndarray or jax.numpy.ndarray 4D array containing response tensor for all the pulsars pairs. It has shape (lm, F, N, N), where lm is the number of coefficients for the anisotropy decomposition (spherical harmonics or sqrt basis), F is the number of frequencies, N is the number of pulsars. Returns: -------- Tuple containing: - signal_tensor: numpy.ndarray or jax.numpy.ndarray the signal tensor in the spherical harmonics basis. - dsignal_tensor_frequency_shape: numpy.ndarray or jax.numpy.ndarray the derivative of the signal tensor with respect to the signal parameters in frequency space. """ # Assemble the signal tensor, signal_lm are the lm coefficients of the # signal and signal is the signal in frequency space (with len = F) signal_lm_f = signal_lm[:, None] * signal[None, :] # Assemble the signal tensor, the response_IJ tensor has shape # (lm, N, pulsars, pulsars) signal_tensor = jnp.sum(response_IJ * signal_lm_f[..., None, None], axis=0) # Derivatives of signal_lm_f in parameters dsignal is the derivative of the # signal in frequency space shape (P, N) dsignal_lm_f = signal_lm[None, :, None] * dsignal[:, None, :] # Assemble the tensor with signal derivatives with respect to the signal # parameters, we thus sum over the lm coefficients dsignal_tensor_frequency_shape = jnp.sum( response_IJ[None, ...] * dsignal_lm_f[..., None, None], axis=1 ) # Just build a kronecher delta in (P, lm) space delta = jnp.eye(len(signal_lm_f)) # Derivatives of signal_lm_f with respect to the lm coefficients dsignal_lm_f_anisotropies = delta[..., None] * signal[None, None, ...] # Assemble the tensor with signal derivatives with respect to the lm # coefficients by contracting dsignal_lm_f3 with the response dsignal_tensor_anisotropies = jnp.einsum( "ijkl,aij->ajkl", response_IJ, dsignal_lm_f_anisotropies ) return ( signal_tensor, dsignal_tensor_frequency_shape, dsignal_tensor_anisotropies, ) @jax.jit def get_signal_dsignal_tensors_lm_sqrt_basis( signal_lm, signal, dsignal, response_IJ ): """ Compute the signal and its derivatives in the sqrt basis Parameters: ----------- signal_lm: numpy.ndarray or jax.numpy.ndarray Array containing the lm coefficients. signal : numpy.ndarray or jax.numpy.ndarray Array containing the signal evaluated at all frequencies. dsignal : numpy.ndarray or jax.numpy.ndarray 2D array containing derivative of the signal data with respect to the signal parameters. This function assumes dsignal to have shape (P, F) where P is the number of parameters, F is the number of frequency bins response_IJ : numpy.ndarray or jax.numpy.ndarray 4D array containing response tensor for all the pulsars pairs. It has shape (lm, N, pulsars, pulsars), where lm is the number of coefficients for the anisotropy decomposition (spherical harmonics or sqrt basis), N is the number of frequencies, and pulsars is the number of pulsars. Returns: -------- Tuple containing: - signal_tensor: numpy.ndarray or jax.numpy.ndarray the signal tensor in the sqrt basis. - dsignal_tensor_frequency_shape: numpy.ndarray or jax.numpy.ndarray the derivative of the signal tensor with respect to the signal parameters in frequency space. - dsignal_tensor_anisotropies: numpy.ndarray or jax.numpy.ndarray the derivative of the signal tensor with respect to the lm coefficients """ # Assemble the signal tensor, signal_lm are the lm coefficients of the # signal and signal is the signal in frequency space (with len = F) # response_IJ tensor has shape (lm, lm, F, N, N) signal_tensor = signal[:, None, None] * jnp.einsum( "abcde,a,b->cde", response_IJ, signal_lm, signal_lm ) # Assemble the tensor with signal derivatives with respect to the signal # parameters, we thus sum over the lm coefficients and multiply by dsignal # with axes introduced for pulsars dsignal_tensor_frequency_shape = ( dsignal[..., None, None] * jnp.einsum("abcde,a,b->cde", response_IJ, signal_lm, signal_lm)[ None, ... ] ) # Assemble the tensor with signal derivatives with respect to the lm # coefficients. Note that signal_lm enters quadratically in signal_tensor dsignal_tensor_anisotropies = ( 2.0 * signal[None, :, None, None] * jnp.einsum("abcde,b->acde", response_IJ, signal_lm) ) return ( signal_tensor, dsignal_tensor_frequency_shape, dsignal_tensor_anisotropies, ) lm_basis_list = [ get_signal_dsignal_tensors_lm_spherical_harmonics_basis, # get_signal_dsignal_tensors_lm_sqrt_basis, ] lm_basis_map = { "spherical_harmonics_basis": 0, # "sqrt_basis": 1, } @jax.jit def get_signal_dsignal_tensors_lm( lm_basis_idx, signal_lm, signal, dsignal, response_IJ ): """ Compute the signal and its derivatives in the spherical harmonics basis Parameters: ----------- lm_basis_idx: int Index indicating the basis to use for the anisotropy decomposition signal_lm: numpy.ndarray or jax.numpy.ndarray Array containing the lm coefficients. signal : numpy.ndarray or jax.numpy.ndarray Array containing the signal evaluated at all frequencies. dsignal : numpy.ndarray or jax.numpy.ndarray 2D array containing derivative of the signal data with respect to the signal parameters. This function assumes dsignal to have shape (P, F) where P is the number of parameters, F is the number of frequency bins response_IJ : numpy.ndarray or jax.numpy.ndarray 4D array containing response tensor for all the pulsars pairs. It has shape (lm, F, N, N), where lm is the number of coefficients for the anisotropy decomposition (spherical harmonics or sqrt basis), F is the number of frequencies, N is the number of pulsars. Returns: -------- Tuple containing: - signal_tensor: numpy.ndarray or jax.numpy.ndarray the signal tensor in the chosen basis. - dsignal_tensor_frequency_shape: numpy.ndarray or jax.numpy.ndarray the derivative of the signal tensor with respect to the signal parameters in frequency space. - dsignal_tensor_anisotropies: numpy.ndarray or jax.numpy.ndarray the derivative of the signal tensor with respect to the lm coefficients """ return jax.lax.switch( lm_basis_idx, lm_basis_list, signal_lm, signal, dsignal, response_IJ ) @jax.jit def get_integrands_lm( signal_lm, signal, dsignal, response_IJ, noise_tensor, HD_functions_IJ, lm_basis_idx, ): """ Compute integrands for Signal-to-Noise Ratio (SNR) and Fisher Information Matrix given some signal data, derivatives and other quantities that characterize the pulsar configuration used for the analysis Parameters: ----------- signal_lm: numpy.ndarray or jax.numpy.ndarray Array containing the lm coefficients. signal : numpy.ndarray or jax.numpy.ndarray Array containing signal data. dsignal : numpy.ndarray or jax.numpy.ndarray 2D array containing derivative of the signal data with respect to the signal parameters. This function assumes dsignal to have shape (P, N) where P is the number of parameters, N is the number of frequency bins response_IJ : numpy.ndarray or jax.numpy.ndarray 4D array containing the response for all frequencies and pulsar pairs. Assumed to have shape (lm, N, M, M), where lm are the spherical harmonics coefficients N is the number of frequency bins and M is the number of pulsars. noise_tensor : numpy.ndarray or jax.numpy.ndarray 3D array containing the noise for all frequencies and pulsar pairs. Assumed to have shape (N, M, M), where N is the number of frequency bins and M is the number of pulsars. HD_functions_IJ : numpy.ndarray or jax.numpy.ndarray 4D array with the Legendre or binned projection of the Hellings and Downs correlations. The shape is (HD_order + 1, F, N, N), where HD_order is the maximum order of Legendre polynomials / bins, F is the number of frequencies,and N is the number of pulsars. lm_basis_idx: int Index indicating the basis to use for the anisotropy decomposition Returns: -------- Tuple containing: - SNR_integrand: numpy.ndarray or jax.numpy.ndarray the integrand for the Signal-to-Noise Ratio (SNR) computation. - effective_noise: numpy.ndarray or jax.numpy.ndarray the effective noise as a function of frequency. - fisher_integrand: numpy.ndarray or jax.numpy.ndarray 3D array wite the integrand for the Fisher Information Matrix computation. """ ( signal_tensor, dsignal_tensor_frequency_shape, dsignal_tensor_anisotropies, ) = get_signal_dsignal_tensors_lm( lm_basis_idx, signal_lm, signal, dsignal, response_IJ ) # Build the covariance covariance = signal_tensor + noise_tensor # Invert the covariance c_inverse = ut.compute_inverse(covariance) # This is the SNR integrand SNR_integrand = get_SNR_integrand(signal_tensor, c_inverse) # Build the effective noise effective_noise = jnp.sqrt(signal**2 / SNR_integrand) # Assemble the HD coefficients part, we multiply the monopole, which is # given by signal and the HD functions dsignal_tensor_HD = signal[:, None, None] * HD_functions_IJ # Concatenate the three tensors along the parameter axis dsignal_tensor = jnp.concatenate( ( dsignal_tensor_frequency_shape, dsignal_tensor_HD, dsignal_tensor_anisotropies, ), axis=0, ) # Get the fisher integrand fisher_integrand = get_fisher_integrand(dsignal_tensor, c_inverse) # Return all the relevant quantities return SNR_integrand, effective_noise, fisher_integrand def compute_fisher( T_obs_yrs=10.33, n_frequencies=30, signal_label="power_law", signal_parameters=SMBBH_parameters, signal_lm=default_signal_lm, get_tensors_kwargs={}, generate_catalog_kwargs={}, ): """ Compute Fisher Information and related quantities. Keyword arguments for get_tensors and generate_pulsars_catalog can be provided via get_tensors_kwargs and generate_catalog_kwargs. Parameters: ----------- T_obs_yrs : float, optional Observation time in years default is 10.33 n_frequencies : int, optional Number of frequency bins default is 30 signal_label : str, optional Label indicating the type of signal model to use default is "power_law". signal_parameters : dict, optional Dictionary containing parameters for the signal model default is SMBBH_parameters. get_tensors_kwargs : dict Additional keyword arguments for the get_tensors function. generate_catalog_kwargs : dict Additional keyword arguments for the generate_catalog function. Returns: -------- Tuple containing: - frequency: numpy.ndarray or jax.numpy.ndarray frequency bins. - signal: numpy.ndarray or jax.numpy.ndarray the computed signal. - HD_functions_IJ : numpy.ndarray or jax.numpy.ndarray 4D array with the Legendre or binned projection of the Hellings and Downs correlations. The shape is (HD_order + 1, F, N, N), where HD_order is the maximum order of Legendre polynomials / bins, F is the number of frequencies,and N is the number of pulsars. - HD_coefficients : numpy.ndarray or jax.numpy.ndarray Legendre coefficients for Hellings and Downs correlations values up to the given HD_order. - effective_noise: numpy.ndarray or jax.numpy.ndarray effective noise. - SNR: float Signal-to-Noise Ratio (SNR) value. - fisher: numpy.ndarray or jax.numpy.ndarray 2D array with the Fisher Information Matrix. """ if "anisotropies" in get_tensors_kwargs.keys(): anisotropies = get_tensors_kwargs["anisotropies"] if "lm_basis" in get_tensors_kwargs.keys(): lm_basis = get_tensors_kwargs["lm_basis"] else: lm_basis = "spherical_harmonics_basis" else: anisotropies = False lm_basis = "spherical_harmonics_basis" lm_basis_idx = lm_basis_map[lm_basis] # Setting the frequency vector from the observation time frequency = (1.0 + jnp.arange(n_frequencies)) / (T_obs_yrs * ut.yr) # Get the functions for the signal and its derivatives model = get_model(signal_label) signal_model = model["signal_model"] dsignal_model = model["dsignal_model"] # Computing the signal signal = signal_model(frequency, signal_parameters) # Building the signal derivatives dsignal = jnp.array( [ dsignal_model(i, frequency, signal_parameters) for i in range(0, len(signal_parameters)) ] ) # Gets all the ingredients to compute the fisher strain_omega, response_IJ, HD_functions_IJ, HD_coefficients = get_tensors( frequency, **get_tensors_kwargs, **generate_catalog_kwargs ) if anisotropies: # Computes the fisher SNR_integrand, effective_noise, fisher_integrand = get_integrands_lm( signal_lm, signal, dsignal, response_IJ, strain_omega, HD_functions_IJ, lm_basis_idx, ) else: # Computes the fisher SNR_integrand, effective_noise, fisher_integrand = get_integrands( signal, dsignal, response_IJ, strain_omega, HD_functions_IJ, ) # Compute SNR and Fisher integrals SNR = jnp.sqrt(jnp.sum(SNR_integrand, axis=-1)) fisher = jnp.sum(fisher_integrand, axis=-1) return ( frequency, signal, HD_functions_IJ, HD_coefficients, effective_noise, SNR, fisher, )
21,058
Python
.py
490
36.381633
80
0.687814
Mauropieroni/fastPTA
8
0
3
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,338
get_tensors.py
Mauropieroni_fastPTA/fastPTA/get_tensors.py
# Global import numpy as np import healpy as hp import pandas as pd import jax import jax.numpy as jnp from scipy.special import legendre from scipy.integrate import simpson # Local import fastPTA.utils as ut from fastPTA.generate_new_pulsar_configuration import generate_pulsars_catalog jax.config.update("jax_enable_x64", True) jax.config.update("jax_default_device", jax.devices(ut.which_device)[0]) # Just some constants log_A_curn_default = -13.94 log_gamma_curn_default = 2.71 integration_points = 10000 @jax.jit def unit_vector(theta, phi): """ Compute the unit vector in 3D Cartesian coordinates given spherical coordinates. Theta is the polar angle (co-latitude) and phi is the azimuthal angle (longitude). The input angles theta and phi should be given in radians. Parameters: ----------- theta : numpy.ndarray or jax.numpy.ndarray Array of angles in radians representing the polar angle (co-latitude). phi : numpy.ndarray or jax.numpy.ndarray Array of angles in radians representing the azimuthal angle (longitude). Returns: -------- unit_vec : numpy.ndarray or jax.numpy.ndarray 2D array of unit vectors in 3D Cartesian coordinates corresponding to the given spherical coordinates. The shape will be (N, 3), where N is the number of unit vectors. """ # Compute the x component of the unit vector x_term = jnp.sin(theta) * jnp.cos(phi) # Compute the y component of the unit vector y_term = jnp.sin(theta) * jnp.sin(phi) # Compute the z component of the unit vector z_term = jnp.cos(theta) # Assemble the unit vector and return it with the right shape return jnp.array([x_term, y_term, z_term]).T @jax.jit def dot_product(theta_1, phi_1, theta_2, phi_2): """ Compute the dot product of two unit vectors given their spherical coordinates. Theta is the polar angle (co-latitude) and phi is the azimuthal angle (longitude). The input angles theta and phi should be given in radians. Parameters: ----------- theta_1 : numpy.ndarray or jax.numpy.ndarray Array of angles in radians representing the polar angle (co-latitude) of the first vector. phi_1 : numpy.ndarray or jax.numpy.ndarray Array of angles in radians representing the azimuthal angle (longitude) of the first vector. theta_2 : numpy.ndarray or jax.numpy.ndarray Array of angles in radians representing the polar angle (co-latitude) of the second vector. phi_2 : numpy.ndarray or jax.numpy.ndarray Array of angles in radians representing the azimuthal angle (longitude) of the second vector. Returns: -------- dot_product : numpy.ndarray or jax.numpy.ndarray Array of dot products computed for the given unit vectors. """ # Sum of the product of x and y components term1 = jnp.sin(theta_1) * jnp.sin(theta_2) * jnp.cos(phi_1 - phi_2) # The product of the z components term2 = jnp.cos(theta_1) * jnp.cos(theta_2) return term1 + term2 @jax.jit def HD_correlations(zeta_IJ): """ Compute the Hellings and Downs correlations for two line of sights with angular separations zeta_IJ (in radiants). Parameters: ----------- zeta_IJ : numpy.ndarray or jax.numpy.ndarray 2D array of angular separations zeta_IJ. The angular separations should be given in radians, and the array should have shape (N, N), where N is the number of pulsars. Returns: -------- HD correlations : numpy.ndarray or jax.numpy.ndarray 2D array of correlations computed for the angular separations zeta_IJ. The array has shape (N, N), where N is the number of pulsars. """ # Compute the difference between 1 and p_I dot p_j and divide by 2 diff_IJ = 0.5 * (1.0 - zeta_IJ) # This function does not include the Kronecker-Delta term for pulsar # self-correlations return jnp.where( diff_IJ > 0.0, 0.5 + 1.5 * diff_IJ * (jnp.log(diff_IJ) - 1 / 6), 0.5 ) # Some default values to compute the HD curve x = jnp.linspace(-1.0, 1.0, integration_points) HD_value = HD_correlations(x) @jax.jit def get_WN(WN_parameters, dt): """ Compute the white noise amplitude for a catalog of pulsars given the the white noise amplitudes and sampling rates (see Eq. 5 of 2404.02864). The time step dt should be provided in seconds. Parameters: ----------- WN_parameters : numpy.ndarray or jax.numpy.ndarray White noise parameters for the pulsar. dt : numpy.ndarray or jax.numpy.ndarray Time steps for the pulsar. Returns: -------- WN_amplitude : numpy.ndarray or jax.numpy.ndarray Array of white noise amplitudes. """ return 1e-100 + jnp.array(1e-12 * 2 * WN_parameters**2 * dt) @jax.jit def get_pl_colored_noise(frequencies, log10_ampl, gamma): """ Compute power-law colored noise for given frequencies and parameters. Parameters: ----------- frequencies : numpy.ndarray or jax.numpy.ndarray Array of frequencies (in Hz) at which to compute the colored noise. log10_ampl : numpy.ndarray or jax.numpy.ndarray Array of base-10 logarithm of amplitudes. gamma : numpy.ndarray or jax.numpy.ndarray Array of power-law indices. Returns: -------- colored_noise : numpy.ndarray or jax.numpy.ndarray Array of power-law colored noise computed for the given frequencies. """ amplitude_prefactor = (10**log10_ampl) ** 2 / 12.0 / jnp.pi**2 / ut.f_yr**3 frequency_dependent_term = (ut.f_yr / frequencies)[None, :] ** gamma[ :, None ] return amplitude_prefactor[:, None] * frequency_dependent_term @jax.jit def get_noise_omega(frequencies, noise): """ Takes pulsar noises and convert them in Omega units. Parameters: ----------- frequencies : numpy.ndarray or jax.numpy.ndarray Array of frequencies. noise : numpy.ndarray or jax.numpy.ndarray Array representing the noise. Returns: -------- noise_omega : numpy.ndarray or jax.numpy.ndarray Noise converted to Omega units. The shape will be (F, N, N), where F is the number of frequencies and N is the number of pulsars. """ # Factor to convert to strain convert_to_strain_factor = 12 * jnp.pi**2 * frequencies**2 # Factor to convert to omega units convert_to_omega_factor = ( ut.strain_to_Omega(frequencies) * convert_to_strain_factor ) # Convert the noise to omega units return convert_to_omega_factor[:, None, None] * ( (noise.T)[..., None] * jnp.eye(len(noise))[None, ...] ) @jax.jit def get_pulsar_noises( frequencies, WN_par, log10_A_red, gamma_red, log10_A_dm, gamma_dm, log10_A_sv, gamma_sv, dt, ): """ Compute noise components for given parameters and frequencies. The components included are (see Eq. 4 of 2404.02864): - White noise (WN) with parameter WN_par. - Red noise (RN) with (log10)amplitudes log10_A_red and power-law indices gamma_red. - Dispersion measure noise (DM) with amplitudes log10_A_dm and power-law indices gamma_dm. - Scattering variation noise (SV) with amplitudes log10_A_sv and power-law indices gamma_sv. Parameters: ----------- frequencies : numpy.ndarray or jax.numpy.ndarray Array of frequencies (in Hz). WN_par : float Array of white noise parameter. log10_A_red : numpy.ndarray or jax.numpy.ndarray Array of base-10 logarithm of amplitudes for red noise. gamma_red : numpy.ndarray or jax.numpy.ndarray Array of power-law indices for red noise. log10_A_dm : numpy.ndarray or jax.numpy.ndarray Array of base-10 logarithm of amplitudes for dispersion measure noise. gamma_dm : numpy.ndarray or jax.numpy.ndarray Array of power-law indices for dispersion measure noise. log10_A_sv : numpy.ndarray or jax.numpy.ndarray Array of base-10 logarithm of amplitudes for scattering variation noise. gamma_sv : numpy.ndarray or jax.numpy.ndarray Array of power-law indices for scattering variation noise. dt : float Array of time steps in seconds. Returns: -------- noise : numpy.ndarray or jax.numpy.ndarray 3D array of noise components computed for the given parameters and frequencies. The shape will be (F, N, N), where F is the number of frequencies and N is the number of pulsars. """ # white noise coverted from microsecond to second WN = get_WN(WN_par, dt) # red noise powerlaw for A expressed in strain amplitude RN = get_pl_colored_noise(frequencies, log10_A_red, gamma_red) # dispersion measure noise powerlaw for A # expressed in strain amplitude (evaluated at 1.4 GHz channel) DM = get_pl_colored_noise(frequencies, log10_A_dm, gamma_dm) # scattering variation noise powerlaw for A # expressed in strain amplitude (evaluated at 1.4 GHz channel) SV = get_pl_colored_noise(frequencies, log10_A_sv, gamma_sv) return WN[:, None] + RN + DM + SV @jax.jit def transmission_function(frequencies, T_obs): """ Compute the transmission function (see Eq. 3 of 2404.02864), which represents the attenuation of signals, for some frequencies given the observation time. Parameters: ----------- frequencies : numpy.ndarray or jax.numpy.ndarray Array of frequencies (in Hz). T_obs : float Observation time (in seconds). Returns: -------- transmission : numpy.ndarray or jax.numpy.ndarray Array of transmission values computed for the given frequencies and observation time. """ return 1 / (1 + 1 / (frequencies * T_obs) ** 6) @jax.jit def get_time_tensor(frequencies, pta_span_yrs, Tspan_yr): """ Computes the time tensor (i.e., the part of the response depending on the observation times) for given frequencies and observation times. Parameters: ----------- frequencies : numpy.ndarray or jax.numpy.ndarray Array of frequencies. pta_span_yrs : float Average span of the PTA data in years. Tspan_yr : float Time span for individual pulsars in years. Returns: -------- time_tensor : numpy.ndarray or jax.numpy.ndarray 3D array representing the time tensor computed for the given frequencies, PTA span, and individual pulsar spans. It has shape (F, N, N), where F is the number of frequencies and N is the number of pulsars. """ # Do a mesh of the observation times time_1, time_2 = jnp.meshgrid(Tspan_yr, Tspan_yr) # pick the minimium time in each pair time_IJ = jnp.min(jnp.array([time_1, time_2]), axis=0) # Compute the transmission function for all times and frequencies transmission = transmission_function( frequencies[:, None], (Tspan_yr * ut.yr)[None, :] ) # Build the tensor product of the two transimission function transmission_tensor = transmission[:, :, None] * transmission[:, None, :] # Return the tensor product weighted by the total observation time return jnp.sqrt((time_IJ / pta_span_yrs)[None, ...] * transmission_tensor) @jax.jit def gamma_pulsar_pair_analytical( theta_1, phi_1, theta_2, phi_2, theta_k, phi_k ): """ Compute the analytical expression for the gamma function (see Eq. 13 of 2407.14460). Parameters: ----------- theta_1 : numpy.ndarray or jax.numpy.ndarray Array of polar angles (co-latitudes) for the first pulsar. phi_1 : numpy.ndarray or jax.numpy.ndarray Array of azimuthal angles (longitudes) for the first pulsar. theta_2 : numpy.ndarray or jax.numpy.ndarray Array of polar angles (co-latitudes) for the second pulsar. phi_2 : numpy.ndarray or jax.numpy.ndarray Array of azimuthal angles (longitudes) for the second pulsar. theta_k : numpy.ndarray or jax.numpy.ndarray Array of polar angles (co-latitudes) for the pixel vectors. phi_k : numpy.ndarray or jax.numpy.ndarray Array of azimuthal angles (longitudes) for the pixel vectors. Returns: -------- gamma : numpy.ndarray or jax.numpy.ndarray Array of gamma values computed for the given pulsar pairs and pixel vectors. """ # Compute p_dot_k p_dot_k = dot_product(theta_k, phi_k, theta_1, phi_1) # Compute q_dot_k q_dot_k = dot_product(theta_k, phi_k, theta_2, phi_2) # Compute p_dot_q p_dot_q = dot_product(theta_1, phi_1, theta_2, phi_2) # This is the second term second_term = -(1.0 - p_dot_k) * (1.0 - q_dot_k) # This is the numerator of the first term numerator = 2.0 * (p_dot_q - p_dot_k * q_dot_k) ** 2.0 # This is the denominator of the first term denominator = (1.0 + p_dot_k) * (1.0 + q_dot_k) # Where the denominator is non zero, just numerator / denominator, # where it's zero a bit more care is needed, if pI != pJ is zero first_term = jnp.where(denominator != 0.0, numerator / denominator, 0.0) conditions = ( (denominator == 0.0) & (phi_1 - phi_2 == 0.0) & (theta_1 - theta_2 == 0.0) ) # Correct first term where the denominator is zero and pI = pJ first_term = jnp.where( conditions, -2.0 * second_term, first_term # type: ignore ) # Sum all the terms up return first_term + second_term @jax.jit def gamma_analytical(theta, phi, theta_k, phi_k): """ Compute the analytical expression for the gamma function (see Eq. 13 of 2407.14460). Parameters: ----------- theta : numpy.ndarray or jax.numpy.ndarray Array of polar angles (co-latitudes) for the pulsars. phi : numpy.ndarray or jax.numpy.ndarray Array of azimuthal angles (longitudes) for the pulsars. theta_k : numpy.ndarray or jax.numpy.ndarray Array of polar angles (co-latitudes) for the pixel vectors. phi_k : numpy.ndarray or jax.numpy.ndarray Array of azimuthal angles (longitudes) for the pixel vectors. Returns: -------- gamma : numpy.ndarray or jax.numpy.ndarray 3D array of gamma values computed for all pulsar pairs and for all pixels. The shape will be (N, N, pp), where N is the number of pulsars and pp is the number of pixels. """ return gamma_pulsar_pair_analytical( theta[:, None, None], phi[:, None, None], theta[None, :, None], phi[None, :, None], theta_k[None, None, :], phi_k[None, None, :], ) @jax.jit def gamma(p_I, hat_k): """ Compute the gamma function (see Eq. 13 of 2407.14460). Parameters: ----------- p_I : numpy.ndarray or jax.numpy.ndarray 2D array of unit vectors representing the pulsar directions. Assumed to have shape (N, 3), N is the number of pulsars. hat_k : numpy.ndarray or jax.numpy.ndarray Array of unit vectors representing the pixel directions. Assumed to have shape (pp, 3), pp is the number of pixels. Returns: -------- gamma : numpy.ndarray or jax.numpy.ndarray 3D array of gamma values computed for all pulsar pairs and pixels The shape will be (N, N, pp) where N is the number of pulsars and pp is the number of pixels. """ # This is the dot product of the unit vectors pointing towards the pulsars pIpJ = jnp.einsum("iv,jv->ij", p_I, p_I) # This is the dot product of p_I and hat_k pIdotk = jnp.einsum("iv,jv->ij", p_I, hat_k) # Create the sum and difference vectors to use later sum = 1 + pIdotk diff = 1 - pIdotk # Compute the second term second_term = -diff[:, None, :] * diff[None, ...] # This is the pIdotk * pJdotk term in the numerator of the first term pk_qk = pIdotk[:, None, :] * pIdotk[None, ...] # Get the numerator of the first term numerator = 2 * (pIpJ[..., None] - pk_qk) ** 2 # Get the denominator of the first term denominator = sum[:, None, :] * sum[None, ...] # Where the denominator is non zero, just numerator / denominator first_term = jnp.where(denominator != 0.0, numerator / denominator, 0.0) # Correct first term where the denominator is zero and pI = pJ first_term = jnp.where( ((denominator == 0.0) & (jnp.bool_(jnp.floor(pk_qk)))), -2.0 * second_term, first_term, ) # Sum the two terms and return return first_term + second_term def projection_spherial_harmonics_basis(quantity, l_max): """ Compute the spherical harmonics projection of a the correlation matrix given quantity. TBD: This function should use the fact that quantity is symmetric in the pulsar pulsar indexes to reduce computations and increase efficiency. Parameters: ----------- quantity : numpy.ndarray 3D array to be projected on spherical harmonics. Should have shape (N, N, P), where N is the number of pulsars and P is the number of pixels, which should be compatible with healpy (see https://healpy.readthedocs.io/en/latest/). l_max : int Maximum ell value. Returns: -------- real_alm : numpy.ndarray 3D array of real spherical harmonics coefficients. It has shape (lm, N, N), where N is the number of pulsars and lm = (l_max + 1)**2 is the number of spherical harmonics coefficients. """ # Get the shape of the quantity to project on spherical harmonics shape = list(quantity.shape) # Reshape quantity so that it can be passed to hp.map2alm qquantity = np.reshape(quantity, (int(shape[0] ** 2), shape[-1])) # Get all the alms real_alm = np.apply_along_axis( ut.spherical_harmonics_projection, 1, qquantity, l_max ) # Reshape to get the same shape as before return np.reshape(real_alm, (shape[0], shape[0], real_alm.shape[-1])).T def get_correlations_lm_IJ_spherical_harmonics_basis(p_I, l_max, gamma_pq): """ Compute the correlations in spherical harmonics basis for a given pulsar catalog. The correlations are computed up to a maximum ell value l_max and for a given nside. Parameters: ----------- p_I : numpy.ndarray or jax.numpy.ndarray 2D array of unit vectors representing the pulsar directions. Assumed to have shape (N, 3), N is the number of pulsars. l_max : int Maximum ell value. gamma_pq : numpy.ndarray or jax.numpy.ndarray 3D array of gamma values computed for all pulsar pairs and pixels. The shape should be (N, N, pp), where N is the number of pulsars and pp is the number of pixels Returns: -------- correlations_lm : numpy.ndarray 3D array of correlations computed in spherical harmonics basis. It has shape (lm, N, N), where N is the number of pulsars and lm = (l_max + 1)**2 is the number of spherical harmonics coefficients. """ # Project gamma onto spherical harmonics correlations_lm = projection_spherial_harmonics_basis(gamma_pq, l_max) # Multiply by 1 + delta_{IJ} and return return correlations_lm * (1 + np.eye(len(p_I)))[None, ...] def get_correlations_lm_IJ_sqrt_basis(p_I, l_max, theta_k, phi_k, gamma_pq): """ Compute the correlations in sqrt basis for a given pulsar catalog. The correlations are computed up to a maximum ell value l_max and for a given nside. Parameters: ----------- p_I : numpy.ndarray or jax.numpy.ndarray 2D array of unit vectors representing the pulsar directions. Assumed to have shape (N, 3), N is the number of pulsars. l_max : int Maximum ell value. theta_k : numpy.ndarray or jax.numpy.ndarray Array of polar angles (co-latitudes) for the pixel vectors. phi_k : numpy.ndarray or jax.numpy.ndarray Array of azimuthal angles (longitudes) for the pixel vectors. gamma_pq : numpy.ndarray or jax.numpy.ndarray 3D array of gamma values computed for all pulsar pairs and pixels. The shape should be (N, N, pp), where N is the number of pulsars and pp is the number of pixels Returns: -------- correlations_lm : numpy.ndarray 4D array of correlations computed in sqrt basis. It has shape (lm, lm, N, N), where N is the number of pulsars and lm = (l_max + 1)**2 is the number of spherical harmonics coefficients. """ # Get the number of pixels npix = hp.nside2npix(theta_k) # spherical harmonis with shape (lm, pp) spherical_harmonics = ut.get_spherical_harmonics(l_max, theta_k, phi_k) # Quadratic spherical_harmonics basis with shape (lm, lm, pp) quadratic = spherical_harmonics[:, None] * spherical_harmonics[None, :] # Project gamma onto the sqrt basis correlations_lm = ( np.einsum("ijp,nmp->ijnm", quadratic, gamma_pq) * (4 * jnp.pi) / npix ) return correlations_lm * (1 + np.eye(len(p_I)))[None, ...] def get_correlations_lm_IJ( p_I, l_max, nside, lm_basis="spherical_harmonics_basis" ): """ Compute the response tensor for given angular separations and time tensors. Parameters: ----------- p_I : numpy.ndarray or jax.numpy.ndarray 2D array of unit vectors representing the pulsar directions. Assumed to have shape (N, 3), N is the number of pulsars. l_max : int Maximum ell value. nside : int Resolution parameter for the HEALPix grid. lm_basis : str Basis to compute the correlations. Can be either "spherical_harmonics_basis" or "sqrt_basis". Returns: -------- correlations_lm_IJ : numpy.ndarray 3D array of correlations computed in the given basis. It has shape (lm, N, N), where lm is the number of coefficients for the anisotropy decomposition (spherical harmonics or sqrt basis) and N is the number of pulsars. """ # Given nside get a pixelization of the sky npix = hp.nside2npix(nside) theta_k, phi_k = hp.pix2ang(nside, jnp.arange(npix)) theta_k = jnp.array(theta_k) phi_k = jnp.array(phi_k) # Get the k vector (i.e., the sky direction) for all the pixels hat_k = unit_vector(theta_k, phi_k) # Compute gamma in all the pixels, the shape is (N, N, pp) gamma_pq = 3.0 / 8.0 * gamma(p_I, hat_k) # Compute the correlations on lm basis if lm_basis.lower() == "spherical_harmonics_basis": correlations_lm_IJ = get_correlations_lm_IJ_spherical_harmonics_basis( p_I, l_max, gamma_pq ) elif lm_basis.lower() == "sqrt_basis": correlations_lm_IJ = get_correlations_lm_IJ_sqrt_basis( p_I, l_max, theta_k, phi_k, gamma_pq ) # return the correlations return correlations_lm_IJ def get_response_IJ_lm( p_I, time_tensor_IJ, l_max, nside, lm_basis="spherical_harmonics_basis" ): """ Compute the response tensor for given angular separations and time tensors. Parameters: ----------- p_I : numpy.ndarray or jax.numpy.ndarray 2D array of unit vectors representing the pulsar directions. Assumed to have shape (N, 3), N is the number of pulsars. time_tensor_IJ : numpy.ndarray or jax.numpy.ndarray 3D array containing the attenuations due to the observation time for all the pulsars and for all frequencies. Should have shape (F, N, N), where F is the number of frequencies and N is the number of pulsars. l_max : int Maximum ell value. nside : int Resolution parameter for the HEALPix grid. lm_basis : str Basis to compute the correlations. Can be either "spherical_harmonics_basis" or "sqrt_basis". Returns: -------- response_IJ : numpy.ndarray or jax.numpy.ndarray 4D array containing response tensor for all the pulsars pairs. It has shape (lm, F, N, N), where lm is the number of coefficients for the anisotropy decomposition (spherical harmonics or sqrt basis), F is the number of frequencies, N is the number of pulsars. """ # Compute the correlations on lm basis correlations_lm_IJ = get_correlations_lm_IJ( p_I, l_max, nside, lm_basis=lm_basis ) # combine the Hellings and Downs part and the time part return time_tensor_IJ[None, ...] * correlations_lm_IJ[:, None, ...] @jax.jit def get_chi_tensor_IJ(zeta_IJ): """ Computes the chi_IJ tensor as expressed in eq. 15 of https://arxiv.org/pdf/2404.02864.pdf for given angular separations. Parameters: ----------- zeta_IJ : numpy.ndarray or jax.numpy.ndarray 2D array of angular separations zeta_IJ. The angular separations should be given in radians, and the array should have shape (N, N), where N is the number of pulsars. Returns: -------- chi_IJ : numpy.ndarray or jax.numpy.ndarray 2D array representing the chi_IJ tensor for all the pulsars pairs. It has shape (N, N), where N is the number of pulsars. """ # Compute HD and add the self correlation term return HD_correlations(zeta_IJ) + 0.5 * jnp.eye(len(zeta_IJ)) @jax.jit def get_response_IJ(zeta_IJ, time_tensor_IJ): """ Compute the response tensor for given angular separations and time tensors. Parameters: ----------- zeta_IJ : numpy.ndarray or jax.numpy.ndarray 2D array of angular separations zeta_IJ. The angular separations should be given in radians, and the array should have shape (N, N), where N is the number of pulsars. time_tensor_IJ : numpy.ndarray or jax.numpy.ndarray 3D array representing the time tensor containing the attenuations due to the observation time for all the pulsars and for all frequencies. It should have shape (F, N, N), where F is the number of frequencies and N is the number of pulsars. Returns: -------- response_IJ : numpy.ndarray or jax.numpy.ndarray 3D array containing the response tensor for all the pulsars pairs. It has shape (F, N, N), where F is the number of frequencies and N is the number of pulsars. """ # Compute the chi_IJ tensor for the angular separations chi_tensor_IJ = get_chi_tensor_IJ(zeta_IJ) # combine the Hellings and Downs part and the time part return time_tensor_IJ * chi_tensor_IJ[None, ...] def get_HD_Legendre_coefficients(HD_order): """ Compute Legendre coefficients for Hellings and Downs correlations for polynomials up to some HD_order Parameters: ----------- HD_order : int Maximum order of Legendre coefficients to compute. Returns: -------- coefficients : numpy.ndarray or jax.numpy.ndarray Array of Legendre coefficients computed up to the given HD_order. """ # Some l dependent normalization factor l_coeffs = (2 * jnp.arange(HD_order + 1) + 1) / 2 return jnp.array( [ # Project onto Legendre polynomials simpson(legendre(i)(x) * HD_value, x=x) * l_coeffs[i] for i in range(HD_order + 1) ] ) def get_polynomials_IJ(zeta_IJ, HD_order): """ Compute Legendre polynomials for given angular separations and HD_order. Parameters: ----------- zeta_IJ : numpy.ndarray or jax.numpy.ndarray 2D array of angular separations zeta_IJ. The angular separations should be given in radians, and the array should have shape (N, N), where N is the number of pulsars. HD_order : int Maximum HD_order of Legendre polynomials. Returns: -------- polynomials_IJ : numpy.ndarray or jax.numpy.ndarray Array of Legendre polynomials computed for the given angular separations and HD_order. """ # Create an array to store the Legendre polynomials polynomials_IJ = [] # Compute the Legendre polynomials for all the angular separations for i in range(HD_order + 1): polynomials_IJ.append(legendre(i)(zeta_IJ)) return jnp.array(polynomials_IJ) @jax.jit def Legendre_projection(time_tensor_IJ, polynomials_IJ): """ Projects the pulsar angular information onto Legendre polynomials Parameters: ----------- time_tensor_IJ : numpy.ndarray or jax.numpy.ndarray Time tensor containing the attenuations due to the observation time for all the pulsars and for all frequencies. The shape is (F, N, N), where F is the number of frequencies and N is the number of pulsars. polynomials_IJ : numpy.ndarray or jax.numpy.ndarray Array of Legendre polynomials. The shape is (HD_order + 1, N, N), where HD_order is the maximum order of Legendre polynomials and N is the number of pulsars. Returns: -------- projection : numpy.ndarray or jax.numpy.ndarray 4D array with the Legendre projection of the Hellings and Downs correlations. The shape is (HD_order + 1, F, N, N), where HD_order is the maximum order of Legendre polynomials, F is the number of frequencies, and N is the number of pulsars. """ return time_tensor_IJ[None, ...] * polynomials_IJ[:, None, ...] def HD_projection_Legendre(zeta_IJ, time_tensor_IJ, HD_order): """ Projects Hellings and Downs correlations onto Legendre polynomials. Parameters: ----------- zeta_IJ : numpy.ndarray or jax.numpy.ndarray 2D array of angular separations zeta_IJ. The angular separations should be given in radians, and the array should have shape (N, N), where N is the number of pulsars. time_tensor_IJ : numpy.ndarray or jax.numpy.ndarray Time tensor containing the attenuations due to the observation time for all the pulsars and for all frequencies. The shape is (F, N, N), where F is the number of frequencies and N is the number of pulsars. HD_order : int Maximum HD_order of Legendre polynomials. Returns: -------- Tuple containing: - HD_functions : numpy.ndarray or jax.numpy.ndarray 4D array with the Legendre projection of the Hellings and Downs correlations. The shape is (HD_order + 1, F, N, N), where HD_order is the maximum order of Legendre polynomials, F is the number of frequencies, and N is the number of pulsars. - HD_coefficients : numpy.ndarray or jax.numpy.ndarray Legendre coefficients for Hellings and Downs correlations up to the given HD_order. """ # Gets the Legendre coefficients for HD HD_coefficients = get_HD_Legendre_coefficients(HD_order) # Gets the values of the HD polynomials for all angular separations polynomials_IJ = get_polynomials_IJ(zeta_IJ, HD_order) # Projects the pulsar catalog onto Legendre polynomials HD_functions = Legendre_projection(time_tensor_IJ, polynomials_IJ) return HD_functions, HD_coefficients @jax.jit def binned_projection(zeta_IJ, time_tensor_IJ, masks): """ Compute binned projection of the Hellings and Downs correlations. Parameters: ----------- zeta_IJ : numpy.ndarray or jax.numpy.ndarray 2D array of angular separations zeta_IJ. The angular separations should be given in radians, and the array should have shape (N, N), where N is the number of pulsars. time_tensor_IJ : numpy.ndarray or jax.numpy.ndarray Time tensor containing the attenuations due to the observation time for all the pulsars and for all frequencies. The shape is (F, N, N), where F is the number of frequencies and N is the number of pulsars. masks : numpy.ndarray or jax.numpy.ndarray Array of masks representing binned intervals for Hellings and Downs correlations. Returns: -------- binned_projection : numpy.ndarray or jax.numpy.ndarray 4D array with the binned projection of the Hellings and Downs correlations. The shape is (HD_order + 1, F, N, N), where HD_order is number of bins, F is the number of frequencies, and N is the number of pulsars. """ return ( time_tensor_IJ - jnp.eye(len(zeta_IJ))[None, ...] * time_tensor_IJ ) * masks[:, None, ...] def HD_projection_binned(zeta_IJ, time_tensor_IJ, HD_order): """ Projects Hellings and Downs correlations onto binned intervals. NB!! For consistency with the Legendre version it uses HD_order +1 bins! Parameters: ----------- zeta_IJ : numpy.ndarray or jax.numpy.ndarray 2D array of angular separations zeta_IJ. The angular separations should be given in radians, and the array should have shape (N, N), where N is the number of pulsars. time_tensor_IJ : numpy.ndarray or jax.numpy.ndarray Time tensor containing the attenuations due to the observation time for all the pulsars and for all frequencies. The shape is (F, N, N), where F is the number of frequencies and N is the number of pulsars. HD_order : int Number of bins used in the analysis. Returns: -------- Tuple containing: - HD_functions : numpy.ndarray or jax.numpy.ndarray 4D array with the binned projection of the Hellings and Downs correlations. The shape is (HD_order + 1, F, N, N), where HD_order is number of bins, F is the number of frequencies, and N is the number of pulsars. - HD_coefficients : numpy.ndarray or jax.numpy.ndarray Coefficients of the binned Hellings and Downs correlations """ # Ensure Hellings and Downs correlations values are within bounds xi_vals = jnp.arccos(jnp.clip(zeta_IJ, -1.0, 1.0)) # Compute bin edges for binning the Hellings and Downs correlations values bin_edges = jnp.linspace(0.0, jnp.pi, HD_order + 2) # Compute mean values for each bin mean_x = 0.5 * (jnp.cos(bin_edges[:-1]) + np.cos(bin_edges[1:])) # Compute Hellings and Downs correlations coefficients for binned intervals HD_coefficients = HD_correlations(mean_x) # Create masks for each bin masks = np.zeros(shape=(HD_order + 1, len(zeta_IJ), len(zeta_IJ))) for i in range(len(masks)): masks[i][(xi_vals > bin_edges[i]) & (xi_vals < bin_edges[i + 1])] = 1.0 # And converts to jax array masks = jnp.array(masks) # Project Hellings and Downs correlations functions onto binned intervals HD_functions_IJ = binned_projection(zeta_IJ, time_tensor_IJ, masks) return HD_functions_IJ, HD_coefficients def get_tensors( frequencies, path_to_pulsar_catalog=ut.path_to_default_pulsar_catalog, pta_span_yrs=10.33, add_curn=False, HD_order=0, HD_basis="legendre", anisotropies=False, lm_basis="spherical_harmonics_basis", l_max=0, nside=16, regenerate_catalog=False, **generate_catalog_kwargs ): """ Generate all tensors (noise, response and Hellings and Downs) needed for gravitational wave data analysis. The noise tensors is returned in omega units. The Hellings and Downs correlations are projected onto Legendre polynomials or binned intervals based on the chosen HD_basis Parameters: ----------- frequencies : numpy.ndarray or jax.numpy.ndarray Array of frequencies. path_to_pulsar_catalog : str, optional Path to the pulsars data file. Default is path_to_default_pulsar_catalog. pta_span_yrs : float, optional Average span of the PTA data in years. Default is 10.33 years. add_curn : bool, optional Whether to add common (spatially) uncorrelated red noise (CURN). Default is False. HD_order : int, optional Maximum order of Legendre polynomials/ number of bins for the Hellings and Downs correlations projection. Default is 0. HD_basis : str, optional Basis for Hellings and Downs correlations projection. Options are "legendre" or "binned". Default is "legendre". anisotropies : bool, optional Whether to include anisotropies in the response tensor. Default is False. lm_basis : str, optional Basis for the anisotropy decomposition. Options are "spherical_harmonics_basis" or "sqrt_basis". Default is "spherical_harmonics_basis". l_max : int, optional Maximum ell value for the anisotropy decomposition. Default is 0. nside : int, optional Resolution parameter for the HEALPix grid. Default is 16. regenerate_catalog : bool, optional Whether to regenerate the pulsars data file. Default is False. **generate_catalog_kwargs : dict, optional Additional keyword arguments for the generate_pulsars_catalog function. Returns: -------- Tuple containing: - strain_omega : numpy.ndarray or jax.numpy.ndarray Noise converted to Omega units. The shape will be (F, N, N), where F is the number of frequencies and N is the number of pulsars. - response_IJ : numpy.ndarray or jax.numpy.ndarray Array containing the response tensor for all the pulsars pairs. If anisotropies is False, it has shape (F, N, N), where F is the number of frequencies and N is the number of pulsars. If anisotropies is True, it has shape (lm, F, N, N), where lm is the number of coefficients for the anisotropy decomposition (spherical harmonics or sqrt basis). - HD_functions_IJ : numpy.ndarray or jax.numpy.ndarray 4D array with the Legendre or binned projection of the Hellings and Downs correlations. The shape is (HD_order + 1, F, N, N), where HD_order is the maximum order of Legendre polynomials / bins, F is the number of frequencies,and N is the number of pulsars. - HD_coefficients : numpy.ndarray or jax.numpy.ndarray Legendre coefficients for Hellings and Downs correlations values up to the given HD_order. """ # Load or regenerate pulsar catalog try: if regenerate_catalog: raise FileNotFoundError pulsars_DF = pd.read_csv(path_to_pulsar_catalog, sep=" ") except FileNotFoundError: generate_catalog_kwargs["outname"] = path_to_pulsar_catalog pulsars_DF = generate_pulsars_catalog(**generate_catalog_kwargs) # unpack all parameters WN_par = jnp.array(pulsars_DF["wn"].values) log10_A_red = jnp.array(pulsars_DF["log10_A_red"].values) gamma_red = jnp.array(pulsars_DF["g_red"].values) log10_A_dm = jnp.array(pulsars_DF["log10_A_dm"].values) gamma_dm = jnp.array(pulsars_DF["g_dm"].values) log10_A_sv = jnp.array(pulsars_DF["log10_A_sv"].values) gamma_sv = jnp.array(pulsars_DF["g_sv"].values) Tspan_yr = jnp.array(pulsars_DF["Tspan"].values) dt = jnp.array(pulsars_DF["dt"].values) theta = jnp.array(pulsars_DF["theta"].values) phi = jnp.array(pulsars_DF["phi"].values) pi_vec = unit_vector(theta, phi) # get noises for all pulsars noise = get_pulsar_noises( frequencies, WN_par, log10_A_red, gamma_red, log10_A_dm, gamma_dm, log10_A_sv, gamma_sv, dt, ) # add curn if present if add_curn: log10_A_curn = jnp.repeat(log_A_curn_default, len(WN_par)) gamma_curn = jnp.repeat(log_gamma_curn_default, len(WN_par)) curn = get_pl_colored_noise(frequencies, log10_A_curn, gamma_curn) noise += curn # convert the noise in strain and then omega units strain_omega = get_noise_omega(frequencies, noise) # get the time tensor time_tensor_IJ = get_time_tensor(frequencies, pta_span_yrs, Tspan_yr) # compute angular separations zeta_IJ = jnp.einsum("ik, jk->ij", pi_vec, pi_vec) if not anisotropies: # compute the response response_IJ = get_response_IJ(zeta_IJ, time_tensor_IJ) else: response_IJ = get_response_IJ_lm( pi_vec, time_tensor_IJ, l_max, nside, lm_basis=lm_basis ) # and if needed the HD part if HD_order > 0 and HD_basis.lower() == "legendre": HD_functions_IJ, HD_coefficients = HD_projection_Legendre( zeta_IJ, time_tensor_IJ, HD_order ) elif HD_order > 0 and HD_basis.lower() == "binned": HD_functions_IJ, HD_coefficients = HD_projection_binned( zeta_IJ, time_tensor_IJ, HD_order ) else: HD_functions_IJ = jnp.zeros( shape=(0, len(frequencies), len(WN_par), len(WN_par)) ) HD_coefficients = jnp.zeros(shape=(0,)) return strain_omega, response_IJ, HD_functions_IJ, HD_coefficients
40,944
Python
.py
948
36.905063
148
0.672704
Mauropieroni/fastPTA
8
0
3
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,339
utils.py
Mauropieroni_fastPTA/fastPTA/utils.py
# Global import os import yaml import numpy as np import healpy as hp from wigners import clebsch_gordan import jax import jax.numpy as jnp from scipy.special import sph_harm jax.config.update("jax_enable_x64", True) # If you want to use your GPU change here which_device = "cpu" jax.config.update("jax_default_device", jax.devices(which_device)[0]) # H0/h = 100 km/s/Mpc expressed in meters Hubble_over_h = 3.24e-18 # Hour hour = 3600 # Day day = 24 * hour # Year in seconds yr = 365.25 * day # Frequency associated with 1yr f_yr = 1 / yr # Set the path to the default pulsar parameters path_to_defaults = os.path.join(os.path.dirname(__file__), "defaults/") # Set the path to the default pulsar parameters path_to_default_pulsar_parameters = os.path.join( path_to_defaults, "default_pulsar_parameters.yaml" ) # Set the path to the default pulsar catalog path_to_default_pulsar_catalog = os.path.join( path_to_defaults, "default_catalog.txt" ) # Set the path to the default pulsar catalog path_to_default_NANOGrav_positions = os.path.join( os.path.dirname(__file__), "defaults/NANOGrav_positions.txt" ) # Set the path to the default pulsar catalog path_to_default_NANOGrav_positions = os.path.join( os.path.dirname(__file__), "defaults/NANOGrav_positions.txt" ) def characteristic_strain_to_Omega(frequency): """ Computes the dimensionless gravitational wave energy density parameter Omega_gw given the characteristic strain at certain frequencies. Parameters: ----------- frequency : numpy.ndarray or jax.numpy.ndarray Frequency (in Hz) at which the characteristic strain is measured. Returns: -------- Omega_gw : numpy.ndarray or jax.numpy.ndarray Dimensionless gravitational wave energy density parameter at the given frequencies. Notes: ------ Hubble_over_h : float Constant representing the Hubble parameter divided by the Hubble constant. """ return 2 * jnp.pi**2 * frequency**2 / 3 / Hubble_over_h**2 def strain_to_Omega(frequency): """ Computes the dimensionless gravitational wave energy density parameter Omega_gw given the strain at certain frequencies. Parameters: ----------- frequency : numpy.ndarray or jax.numpy.ndarray Frequency (in Hz) at which the characteristic strain is measured. Returns: -------- Omega_gw : numpy.ndarray or jax.numpy.ndarray Dimensionless gravitational wave energy density parameter at the given frequencies. Notes: ------ Hubble_over_h : float Constant representing the Hubble parameter divided by the Hubble constant. """ return 2 * jnp.pi**2 * frequency**3 / 3 / Hubble_over_h**2 # To go from CP delays to characteristic Strain def hc_from_CP(CP, frequency, T_obs_s): """ Computes the characteristic strain given the Common Process (CP) delays. Parameters: ----------- CP : numpy.ndarray or jax.numpy.ndarray Amplitude of the Common Process (in seconds^3) frequency : numpy.ndarray or jax.numpy.ndarray Frequency (in Hz) at which the characteristic strain is measured. T_obs_s : float Observation time (in seconds) Returns: -------- hc : numpy.ndarray or jax.numpy.ndarray Characteristic strain at the given frequencies. Notes: ------ Hubble_over_h : float Constant representing the Hubble parameter divided by the Hubble constant. """ return 2 * jnp.sqrt(3) * CP * frequency**1.5 * jnp.pi * jnp.sqrt(T_obs_s) def load_yaml(path_to_file): """ Loads some inputs from a YAML file (located at the specified path) and returns the parsed data as a dictionary. Parameters: ----------- path_to_file : str Path to the YAML file to load. Returns: -------- data : dict YAML data loaded from the file. Notes: ------ """ with open(path_to_file, "r+") as stream: raw = "".join(stream.readlines()) return yaml.load(raw, Loader=yaml.SafeLoader) default_pulsar_parameters = load_yaml(path_to_default_pulsar_parameters) def get_l_max_real(real_spherical_harmonics): """ Given the real spherical harmonics coefficients, this function returns the maximum ell value. Parameters: ----------- real_spherical_harmonics : numpy.ndarray Array of real spherical harmonics coefficients. If dimension is > 1, lm must be the first index Returns: -------- l_max : int Maximum ell value. """ return int(np.sqrt(len(real_spherical_harmonics)) - 1) def get_l_max_complex(complex_spherical_harmonics): """ Given the complex spherical harmonics coefficients, this function returns the maximum ell value. Parameters: ----------- complex_spherical_harmonics : numpy.ndarray Array of complex spherical harmonics coefficients. If dimension is > 1, lm must be the first index Returns: -------- l_max : int Maximum ell value. """ return int(np.sqrt(1.0 + 8.0 * len(complex_spherical_harmonics)) / 2 - 1.5) def get_n_coefficients_complex(l_max): """ Given the maximum ell value, this function returns the number of spherical harmonics coefficients for the complex representation. Parameters: ----------- l_max : int Maximum ell value. Returns: -------- n_coefficients : int Number of spherical harmonics coefficients. """ return int((l_max + 1) * (l_max + 2) / 2) def get_n_coefficients_real(l_max): """ Given the maximum ell value, this function returns the number of spherical harmonics coefficients for the real representation. Parameters: ----------- l_max : int Maximum ell value. Returns: -------- n_coefficients : int Number of spherical harmonics coefficients. """ return int((l_max + 1) ** 2) def get_sort_indexes(l_max): """ Given the maximum ell value, this function returns the indexes to sort the indexes of the spherical harmonics coefficients when going from real to complex representation and viceversa. The complex representation is assumed to be sorted as in map2alm of healpy (see https://healpy.readthedocs.io/en/latest/) i.e. according to (m, l). The ouput allows to sort the real representation according to (l, m). Parameters: ----------- l_max : int Maximum ell value. Returns: -------- l_grid : numpy.ndarray Array of l values. m_grid : numpy.ndarray Array of m values. ll : numpy.ndarray Array of l values corresponding to the sorted indexes. mm : numpy.ndarray Array of m values corresponding to the sorted indexes. sort_indexes : numpy.ndarray Array of indexes to sort the spherical harmonics coefficients. """ # Create arrays for l and m l_values = np.arange(l_max + 1) m_values = np.arange(l_max + 1) # Create a grid of all possible (l, m) pairs l_grid, m_grid = np.meshgrid(l_values, m_values, indexing="xy") # Flatten the grid l_flat = l_grid.flatten() m_flat = m_grid.flatten() # Select only the m values that are allowed for a given ell\ l_grid = l_flat[np.abs(m_flat) <= l_flat] m_grid = m_flat[np.abs(m_flat) <= l_flat] # Create a vector with all the m<0 and then all the m>=0 mm = np.append(-np.flip(m_grid[m_grid > 0]), m_grid) # Create a vector with all the ls corresponding to mm ll = np.append(np.flip(l_grid[m_grid > 0]), l_grid) # Return the sorted indexes return l_grid, m_grid, ll, mm, np.lexsort((mm, ll)) def spherical_harmonics_projection(quantity, l_max): """ Compute the spherical harmonics projection of a given quantity. Quantity should be an array in pixel space, and compatible with healpy (see https://healpy.readthedocs.io/en/latest/). The spherical harmonics coefficients are sorted as described in the get_sort_indexes function in utils. Parameters: ----------- quantity : numpy.ndarray Array of quantities to project on spherical harmonics. l_max : int Maximum ell value. Returns: -------- real_alm : numpy.ndarray Array of real spherical harmonics coefficients, with len lm = (l_max + 1)**2 is the number of spherical harmonics coefficients. """ # Get the complex alm coefficients. # These are sorted with the m values and are only for m>=0 alm = hp.map2alm(quantity, lmax=l_max) # Create arrays the m_values and the indexes to sort inds = get_sort_indexes(l_max) # Unpack m_grid and sorted_indexes m_grid = inds[1] sorted_indexes = inds[-1] # Compute the sign for the m > 0 values sign = (-1.0) ** m_grid[m_grid > 0] # The m != 0 values are multiplied by sqrt(2) and then take real/imag part positive_alm = np.sqrt(2.0) * alm[m_grid > 0] # Build the real alm selecting imaginary and real part and sort in the two # blocks in ascending order negative_m = np.flip(sign * positive_alm.imag) positive_m = sign * positive_alm.real # Concatenate the negative, zero and positive m values real_alm = np.concatenate((negative_m, alm[m_grid == 0.0].real, positive_m)) # Sort with the indexes return real_alm[sorted_indexes] def complex_to_real_conversion(spherical_harmonics): """ Converts the complex spherical harmonics (or the coefficients) to real spherical harmonics (or the coefficients). Parameters: ----------- spherical_harmonics : numpy.ndarray 2D (or 1D) array of complex spherical harmonics coefficients. If 2D, the shape is (lm, pp), where lm runs over l,m (with m > 0), and pp is the number of theta and phi values. If 1D, the shape is (lm,). Returns: -------- all_spherical_harmonics : numpy.ndarray 2D (or 1D) array of real spherical harmonics coefficients. If 2D, the shape is (lm, pp), where lm runs over l,m (with -l <= m <= l), and pp is the number of theta and phi values. If 1D, the shape is (lm,). """ # Get the right value of l_max from the input complex coefficients l_max = get_l_max_complex(spherical_harmonics) # Create arrays the m_values and the indexes to sort _, m_grid, _, _, sort_indexes = get_sort_indexes(l_max) # Pick only m = 0 zero_m = spherical_harmonics[m_grid == 0.0].real # Compute the sign for the m > 0 values sign = (-1.0) ** m_grid[m_grid > 0] # The m != 0 values are multiplied by sqrt(2) and then take real/imag part positive_spherical = np.sqrt(2.0) * spherical_harmonics[m_grid > 0.0] # Build the m > 0 values positive_m = np.einsum("i,i...->i...", sign, positive_spherical.real) # Build the m < 0 values negative_m = np.einsum("i,i...->i...", sign, positive_spherical.imag) # Concatenate the negative, zero and positive m values all_spherical_harmonics = np.concatenate( (np.flip(negative_m, axis=0), zero_m, positive_m), axis=0 ) # Return spherical harmonics (coefficients) sorted by l and m return all_spherical_harmonics[sort_indexes] def real_to_complex_conversion(real_spherical_harmonics): """ Converts the real spherical harmonics (or the coefficients) back to complex spherical harmonics (or the coefficients). Parameters: ----------- real_spherical_harmonics : numpy.ndarray 1D array of real spherical harmonics coefficients. The shape is (lm,), where lm runs over l,m (with -l <= m <= l). l_max : int Maximum ell value. Returns: -------- complex_spherical_harmonics : numpy.ndarray 1D array of complex spherical harmonics coefficients. The shape is (lm,), where lm runs over l,m (with m >= 0). """ # Get the right value of l_max from the input real coefficients l_max = get_l_max_real(real_spherical_harmonics) # Get sort indexes _, _, _, mm, sort_indexes = get_sort_indexes(l_max) # Reorder the input real coefficients to the original order ordered_real_spherical_harmonics = np.zeros_like(real_spherical_harmonics) ordered_real_spherical_harmonics[sort_indexes] = real_spherical_harmonics # Split the ordered real coefficients into negative, zero, and positive m values zero_m = ordered_real_spherical_harmonics[mm == 0] positive_m = ordered_real_spherical_harmonics[mm > 0] negative_m = ordered_real_spherical_harmonics[mm < 0] # Compute the corresponding m values for positive and negative m m_positive = mm[mm > 0] # Reconstruct the complex coefficients complex_positive_m = (positive_m + 1j * negative_m[::-1]) / ( np.sqrt(2.0) * (-1.0) ** m_positive ) # Combine zero and positive m values to form the full complex coefficients complex_spherical_harmonics = np.concatenate( (zero_m, complex_positive_m), axis=0 ) return complex_spherical_harmonics def get_real_spherical_harmonics(l_max, theta, phi): """ Compute the real spherical harmonics for a given maximum ell value and for a given set of theta and phi values. Parameters: ----------- l_max : int Maximum ell value. theta : numpy.ndarray or jax.numpy.ndarray Array of polar angles (co-latitudes). phi : numpy.ndarray or jax.numpy.ndarray Array of azimuthal angles (longitudes). Returns: -------- all_spherical_harmonics : numpy.ndarray 2D array of spherical harmonics computed for the given maximum ell value, and theta and phi values. The shape will be (lm, pp), where pp is the number of theta and phi values, and lm = (l_max + 1)**2 is the number of spherical harmonics coefficients. """ # Create arrays the m_values and the indexes to sort inds = get_sort_indexes(l_max) # Unpack m_grid and sorted_indexes l_grid = inds[0] m_grid = inds[1] # Compute all the spherical harmonics spherical_harmonics = sph_harm( m_grid[:, None], l_grid[:, None], phi[None, :], theta[None, :] ) # Return sorted return complex_to_real_conversion(spherical_harmonics) def get_CL_from_real_clm(clm_real): """ Compute the angular power spectrum from the spherical harmonics coefficients. Parameters: ----------- clm_real : numpy.ndarray Array of spherical harmonics coefficients, if dimension > 1 the first axis must run over the coefficients. Returns: -------- CL : numpy.ndarray Array of angular power spectrum. """ # Get the shape of the input coefficients clm_shape = clm_real.shape # Get the maximum ell value l_max = get_l_max_real(clm_real) # Compute the angular power spectrum CL = np.zeros(tuple([l_max + 1] + list(clm_shape[1:]))) # A counter for the coefficients used up to that value of ell i = 0 for ell in range(0, l_max + 1): # Average the square of the coefficients for all ms at fixed ell CL[ell] = np.mean(clm_real[i : i + 2 * ell + 1] ** 2, axis=0) # Update the counter i += 2 * ell + 1 return CL def get_Cl_limits( means, cov, shape_params, n_points=int(1e4), limit_cl=0.95, max_iter=100, prior=5.0 / (4.0 * np.pi), ): """ Compute the upper limit on the angular power spectrum from the means and covariance matrix of the spherical harmonics coefficients. Parameters: ----------- means : numpy.ndarray Array of means for the spherical harmonics coefficients. cov : numpy.ndarray Array of covariance matrix for the spherical harmonics coefficients. shape_params : int Number of parameters for the SGWB shape. n_points : int, optional Number of points to generate. limit_cl : float, optional Quantile to compute the upper limit. max_iter : int, optional Maximum number of iterations to generate points. prior : float, optional Prior value to restrict the points. Returns: -------- Cl_limits : numpy.ndarray Array of upper limits on the angular power spectrum from the covariance Cl_limits_prior : numpy.ndarray Array of upper limits on the angular power spectrum including the prior """ # Generate gaussian data from the covariance matrix data = np.random.multivariate_normal( means, cov, n_points, check_valid="ignore", tol=1e-4 ) # Select only the points that are within the prior data_prior = data[np.max(np.abs(data[:, shape_params:]), axis=-1) <= prior] # Initialize the counter and the length of the data i_add = 0 len_restricted = len(data_prior) # Use a while loop to generate enough points while len_restricted < n_points and i_add < max_iter: # Generate more points add_data = np.random.multivariate_normal( means, cov, 10 * n_points, check_valid="ignore", tol=1e-4 ) # Select only the points that are within the prior and append data_prior = np.append( data_prior, add_data[ np.max(np.abs(add_data[:, shape_params:]), axis=-1) <= prior ], axis=0, ) # Update the counter and the length of the data len_restricted = len(data_prior) i_add += 1 # Compute the angular power spectra without and with the prior correlations_lm = get_CL_from_real_clm(data.T[shape_params - 1 :])[1:] correlations_lm_prior = get_CL_from_real_clm( data_prior.T[shape_params - 1 :] )[1:] # Compute the upper limits without the prior Cl_limits = np.quantile(correlations_lm, limit_cl, axis=-1) # And with the prior if there are enough points if len_restricted == 0: Cl_limits_prior = np.nan * Cl_limits else: Cl_limits_prior = np.quantile(correlations_lm_prior, limit_cl, axis=-1) return Cl_limits, Cl_limits_prior def sqrt_to_lin_conversion(gLM_grid, l_max_lin=-1, real_basis_input=False): """ Convert the sqrt basis to the linear basis. Parameters: ----------- gLM_grid : numpy.ndarray Array of sqrt basis coefficients. l_max_lin : int Maximum ell value for the linear basis. real_basis_input : bool If True, the input is in the real basis. Default is False. Returns: -------- clm_real : numpy.ndarray Array of real coefficients in the linear basis. """ # If gLM are in the real basis convert the complex basis if real_basis_input: gLM_complex = real_to_complex_conversion(gLM_grid) else: gLM_complex = gLM_grid # Get the maximum ell value for the sqrt basis l_max_sqrt = get_l_max_complex(gLM_complex) # Get the grid of all possible L values for the sqrt basis L_grid_all = np.arange(l_max_sqrt + 1) # If the maximum ell value for the linear basis is not provided, set it if l_max_lin < 0: l_max_lin = 2 * l_max_sqrt # Get the number of coefficients for the linear basis n_coefficients = get_n_coefficients_complex(l_max_lin) # Initialize the array for the linear basis clm_complex = np.zeros(n_coefficients, dtype=np.cdouble) # Get the indexes for the linear and sqrt basis l_lin, m_lin, _, _, _ = get_sort_indexes(l_max_lin) l_sqrt, m_sqrt, _, _, _ = get_sort_indexes(l_max_sqrt) # Compute the sign for the gLM with m < 0 gLnegM_complex = (-1) ** np.abs(m_sqrt) * np.conj(gLM_complex) for ind_linear in range(len(m_lin)): # Get the values of ell and m m = m_lin[ind_linear] ell = l_lin[ind_linear] for L1 in L_grid_all: # Build a mask using the conditions from the selection rules mask_L2 = (np.abs(L1 - L_grid_all) <= ell) * ( L_grid_all >= ell - L1 ) # Run over the L2 allowed by the mask for L2 in L_grid_all[mask_L2]: # Compute the Clebsch-Gordan coefficient for all ms = 0 cg0 = clebsch_gordan(L1, 0, L2, 0, ell, 0) # If the coefficient is not zero compute the prefactor if cg0 != 0.0: prefac = np.sqrt( (2.0 * L1 + 1.0) * (2.0 * L2 + 1.0) / (4.0 * np.pi * (2.0 * ell + 1.0)) ) # These are all the values of M1 to use M1_grid_all = np.arange(-L1, L1 + 1) # Enforce m +M1 + M2 = 0 M2_grid_all = m - M1_grid_all # Check that the values of M2 are consistent with L2 mask_M = np.abs(M2_grid_all) <= L2 # Apply the mask M1_grid = M1_grid_all[mask_M] M2_grid = M2_grid_all[mask_M] for iM in range(len(M1_grid)): # Get the values of M1 and M2 M1 = M1_grid[iM] M2 = M2_grid[iM] # Compute the Clebsch-Gordan coefficient for ms neq 0 cg1 = clebsch_gordan(L1, M1, L2, M2, ell, m) # Mask to get the corresponding value of gLM_complex b1_mask = (l_sqrt == L1) & (m_sqrt == np.abs(M1)) b2_mask = (l_sqrt == L2) & (m_sqrt == np.abs(M2)) # Get the values of gLM_complex for the given L and M b1 = ( gLM_complex[b1_mask] if M1 >= 0 else gLnegM_complex[b1_mask] ) b2 = ( gLM_complex[b2_mask] if M2 >= 0 else gLnegM_complex[b2_mask] ) # Multiply everything and sum to the right index clm_complex[ind_linear] += prefac * cg0 * cg1 * b1 * b2 return complex_to_real_conversion(clm_complex) @jax.jit def compute_inverse(matrix): """ A function to compute the inverse of a matrix. Applies rescaling to maintain numerical stability, especially for near-singular matrices. Parameters: ----------- matrix : numpy.ndarray or jax.numpy.ndarray Input matrix to compute the inverse of. The shape is assumed to be (..., N, N) and the inverse is computed on the last 2 indexes Returns: -------- c_inverse : numpy.ndarray or jax.numpy.ndarray Inverse of the input matrix. Notes: ------ Assumes the input matrix is a square matrix on the last 2 axes. """ # Defines the matrix for the rescaling using the elements on the diagonal rescaling_vec = jnp.sqrt(jnp.diagonal(matrix, axis1=-2, axis2=-1)) rescaling = rescaling_vec[..., :, None] * rescaling_vec[..., None, :] return jnp.linalg.inv(matrix / rescaling) / rescaling def get_R(samples): """ Computes the Gelman-Rubin (GR) statistic for convergence assessment. The GR statistic is a convergence diagnostic used to assess whether multiple Markov chains have converged to the same distribution. Values close to 1 indicate convergence. For details see https://en.wikipedia.org/wiki/Gelman-Rubin_statistic Parameters: ----------- samples : numpy.ndarray Array containing MCMC samples with dimensions (N_steps, N_chains, N_parameters). Returns: -------- R : numpy.ndarray Array containing the Gelman-Rubin statistics indicating convergence for the different parameters. Values close to 1 indicate convergence. """ # Get the shapes N_steps, N_chains, N_parameters = samples.shape # Chain means chain_mean = np.mean(samples, axis=0) # Global mean global_mean = np.mean(chain_mean, axis=0) # Variance between the chain means variance_of_means = ( N_steps / (N_chains - 1) * np.sum((chain_mean - global_mean[None, :]) ** 2, axis=0) ) # Variance of the individual chain across all chains intra_chain_variance = np.std(samples, axis=0, ddof=1) ** 2 # And its averaged value over the chains mean_intra_chain_variance = np.mean(intra_chain_variance, axis=0) # First term term_1 = (N_steps - 1) / N_steps # Second term term_2 = variance_of_means / mean_intra_chain_variance / N_steps # This is the R (as a vector running on the paramters) return term_1 + term_2
24,880
Python
.py
621
33.028986
84
0.639474
Mauropieroni/fastPTA
8
0
3
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,340
__init__.py
Mauropieroni_fastPTA/fastPTA/__init__.py
__author__ = "Mauro Pieroni" __version__ = "0.1" __year__ = "2024" __url__ = "https://github.com/Mauropieroni/fastPTA"
119
Python
.py
4
28.75
51
0.617391
Mauropieroni/fastPTA
8
0
3
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,341
plotting_functions.py
Mauropieroni_fastPTA/fastPTA/plotting_functions.py
# Global import corner import matplotlib import matplotlib.patches import matplotlib.pyplot as plt import numpy as np from scipy.special import legendre from fastPTA import get_tensors as gt # Setting plotting parameters matplotlib.rcParams["text.usetex"] = True plt.rc("xtick", labelsize=20) plt.rc("ytick", labelsize=20) plt.rcParams.update( {"axes.labelsize": 20, "legend.fontsize": 20, "axes.titlesize": 22} ) # Some other useful things cmap_HD = matplotlib.colormaps["coolwarm"] # type: ignore cmap1_grid = matplotlib.colormaps["hot"] # type: ignore cmap2_grid = matplotlib.colormaps["PiYG"] # type: ignore my_colormap = { "red": "#EE6677", "green": "#228833", "blue": "#4477AA", "yellow": "#CCBB44", "purple": "#AA3377", "cyan": "#66CCEE", "gray": "#BBBBBB", } def plot_HD_Legendre(x_points, data_HD_coeffs, plot_suplabel): x = np.linspace(-1, 1, x_points) p_sum = np.zeros(shape=(x_points, len(data_HD_coeffs))) for i in range(data_HD_coeffs.shape[-1]): pol_i = data_HD_coeffs[None, :, i] * (legendre(i)(x))[:, None] p_sum += pol_i res = np.quantile(p_sum, [0.025, 0.16, 0.5, 0.84, 0.975], axis=-1) plt.figure(figsize=(6, 4)) plt.plot(np.arccos(x), res[2, :], color="dimgrey", label=r"$\rm Injection$") plt.fill_between( np.arccos(x), y1=res[1, :], y2=res[-2, :], color="lightskyblue", label=r"$1 \sigma$", zorder=-1, ) plt.fill_between( np.arccos(x), y1=res[0, :], y2=res[-1, :], color="dodgerblue", label=r"$2 \sigma$", zorder=-2, ) plt.xlabel(r"$\zeta_{IJ} \equiv \arccos(\hat{p}_I \cdot \hat{p}_J)$") plt.xticks( np.pi / 4 * np.arange(5), labels=[r"$0$", r"$\pi/4$", r"$\pi/2$", r"$3 \pi / 4$", r"$\pi$"], ) plt.xlim(0, np.pi) plt.ylim(-0.4, 0.75) plt.legend(fontsize=20, loc=9) plt.suptitle(plot_suplabel, fontsize=20) plt.tight_layout() def plot_HD_binned(data_HD_coeffs, HD_coeffs, plot_suplabel): plt.figure(figsize=(6, 4)) bin_edges = np.linspace(0, np.pi, len(HD_coeffs) + 1) bin_val = 0.5 * (bin_edges[1:] + bin_edges[:-1]) plt.violinplot( data_HD_coeffs, widths=0.2, positions=bin_val, showextrema=True, quantiles=[[0.16, 0.5, 0.84] for xx in range(len(HD_coeffs))], ) plt.scatter(bin_val, HD_coeffs, color="dimgrey", label=r"$\rm Injection$") plt.plot( np.arccos(gt.x), gt.HD_value, color="red", linestyle="--", label="HD curve", ) plt.xlabel(r"$\zeta_{IJ} \equiv \arccos(\hat{p}_I \cdot \hat{p}_J)$") plt.xticks( np.pi / 4 * np.arange(5), labels=[r"$0$", r"$\pi/4$", r"$\pi/2$", r"$3 \pi / 4$", r"$\pi$"], ) plt.xlim(0, np.pi) plt.legend(fontsize=20, loc=9) plt.suptitle(plot_suplabel, fontsize=20) plt.tight_layout() def plot_corner( samples, colors=False, smooth=False, weights=False, fig=False, chain_labels=False, show_titles=False, plot_density=True, plot_datapoints=False, fill_contours=True, bins=25, title_kwargs={"fontsize": 20, "pad": 12}, hist_kwargs={"density": True, "linewidth": 2}, **kwargs, ): if not colors: vals = list(my_colormap.values()) colors = [] for i in range(len(samples)): colors = [ vals[np.mod(i, len(samples))] for i in range(len(samples)) ] if not smooth: smooth = np.zeros(len(samples)) if not weights: weights = [None for i in range(len(samples))] if not fig: fig = plt.figure(figsize=(10, 8)) if not chain_labels: chain_labels = [None for i in range(len(samples))] for i in range(len(samples)): hist_kwargs["color"] = colors[i] # type: ignore if samples[i].shape[-1] > 1: fig = corner.corner( samples[i], color=colors[i], # type: ignore smooth=smooth[i], # type: ignore weights=weights[i], # type: ignore fig=fig, show_titles=show_titles, plot_density=plot_density, plot_datapoints=plot_datapoints, fill_contours=fill_contours, bins=bins, title_kwargs=title_kwargs, hist_kwargs=hist_kwargs, **kwargs, ) else: plt.hist( samples[i], color=colors[i], # type: ignore weights=weights[i], # type: ignore bins=bins, histtype="step", label=chain_labels[i], # type: ignore density=True, ) if "truths" in kwargs.keys(): truths = kwargs["truths"] if "truth_color" in kwargs.keys(): truth_color = kwargs["truth_color"] else: truth_color = "black" plt.axvline(truths, color=truth_color) custom_lines = [] if samples[0].shape[-1] > 1: for i in range(len(chain_labels)): # type: ignore custom_lines.append( matplotlib.patches.Patch( facecolor=colors[i], label=chain_labels[i] # type: ignore ) ) plt.legend( handles=custom_lines, bbox_to_anchor=(0.0, 1.0, 1.0, 1.0), loc=0 ) else: plt.legend(loc=0)
5,573
Python
.py
170
24.594118
80
0.548183
Mauropieroni/fastPTA
8
0
3
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,342
generate_new_pulsar_configuration.py
Mauropieroni_fastPTA/fastPTA/generate_new_pulsar_configuration.py
# Global import numpy as np import pandas as pd # Local from fastPTA.utils import ( default_pulsar_parameters, path_to_default_NANOGrav_positions, ) def generate_parameter(n_pulsars, parameter_dict): """ Generate the parameters for a given number of pulsars based on specified info in parameter_dict. Supported distribution types are 'gaussian' and 'uniform'. Parameters: ----------- n_pulsars : int Number of pulsars for which parameters will be generated. parameter_dict : dict Dictionary containing parameters for generating data. It should have the following keys: - "which_distribution": str, the specific distribution to use. - "mean": float, mean value for Gaussian distribution. - "std": float, standard deviation for Gaussian distribution. - "min": float, minimum value for uniform distribution. - "max": float, maximum value for uniform distribution. Returns: -------- data : numpy.ndarray or jax.numpy.ndarray Generated parameters for the catalog of pulsars. """ if parameter_dict["which_distribution"] == "gaussian": data = np.random.normal( parameter_dict["mean"], parameter_dict["std"], n_pulsars ) elif parameter_dict["which_distribution"] == "uniform": data = np.random.uniform( parameter_dict["min"], parameter_dict["max"], n_pulsars ) else: raise ValueError( "Cannot use that pdf", parameter_dict["which_distribution"] ) return data def generate_noise_parameter( n_pulsars, noise_parameters, noise_probabilities, do_filter=False, ): """ Generate noise parameters for a given number of pulsars based on specified distributions. Each noise parameter is generated independently from a uniform distribution defined by its min and max values. If do_filter is True, noise parameters are filtered based on noise_probabilities. Parameters: ----------- n_pulsars : int Number of pulsars for which noise parameters needs to be generated. noise_parameters : list of dict List of dictionaries containing parameters for generating noise data. Each dictionary should have keys: - "min": float, minimum value for noise parameter. - "max": float, maximum value for noise parameter. noise_probabilities : numpy.ndarray or jax.numpy.ndarray Array of probabilities corresponding to each noise parameter. do_filter : bool, optional Flag indicating whether to apply filtering to noise parameters, default is False. Returns: -------- noise_vals : numpy.ndarray or jax.numpy.ndarray Generated noise parameters for the pulsars. """ # Unpack minimal and maximal values mins = np.array([n["min"] for n in noise_parameters]) maxs = np.array([n["max"] for n in noise_parameters]) # Generate the noise parameters noise_vals = np.random.uniform(mins, maxs, size=(n_pulsars, len(mins))) if do_filter: # Generate acceptance probabilities acceptance_prob = np.random.uniform(0, 1, size=(n_pulsars, len(mins))) noise_prob_filter = np.zeros(shape=(n_pulsars, len(mins))) noise_prob_filter[acceptance_prob < noise_probabilities[None, :]] = 1 # Accepts/rejects depending on the acceptance probabilities for i in range(len(noise_prob_filter)): if np.all( noise_prob_filter[i] == np.zeros(len(noise_prob_filter[i])) ): val = np.random.uniform(0, 1) for i in range(len(mins)): if val < noise_probabilities[0]: noise_prob_filter[i, 0] = 1.0 break noise_prob_filter = np.log10(noise_prob_filter + 1e-30) noise_vals += noise_prob_filter return noise_vals def generate_pulsars_catalog( n_pulsars=30, dt_dict=default_pulsar_parameters["dt_dict"], T_span_dict=default_pulsar_parameters["T_span_dict"], wn_dict=default_pulsar_parameters["wn_dict"], dm_noise_log_10_A_dict=default_pulsar_parameters["dm_noise_log_10_A_dict"], red_noise_log_10_A_dict=default_pulsar_parameters[ "red_noise_log_10_A_dict" ], sv_noise_log_10_A_dict=default_pulsar_parameters["sv_noise_log_10_A_dict"], dm_noise_g_dict=default_pulsar_parameters["dm_noise_g_dict"], red_noise_g_dict=default_pulsar_parameters["red_noise_g_dict"], sv_noise_g_dict=default_pulsar_parameters["sv_noise_g_dict"], noise_probabilities_dict=default_pulsar_parameters[ "noise_probabilities_dict" ], save_catalog=False, outname="pulsar_configurations/new_pulsars_catalog.txt", use_ng_positions=False, ): """ Generate a catalog of pulsars with specified parameters (mostly timing and noise characteristics). The generated catalog is returned as a pandas DataFrame. If save_catalog is True, the generated catalog is saved to the specified output file. Parameters: ----------- n_pulsars : int, optional Number of pulsars to generate in the catalog, default is 30. dt_dict : dict, optional Dictionary containing parameters for generating pulsar dt. T_span_dict : dict, optional Dictionary containing parameters for generating pulsar T_span. wn_dict : dict, optional Dictionary containing parameters for generating pulsar white noise. dm_noise_log_10_A_dict : dict, optional Dictionary containing parameters for generating log10_A.for DM noise red_noise_log_10_A_dict : dict, optional Dictionary containing parameters for generating log10_A.for red noise sv_noise_log_10_A_dict : dict, optional Dictionary containing parameters for generating log10_A for sv noise dm_noise_g_dict : dict, optional Dictionary containing parameters for generating the tilt for DM noise. red_noise_g_dict : dict, optional Dictionary containing parameters for generating the tilt for red noise. sv_noise_g_dict : dict, optional Dictionary containing parameters for generating the tilt for sv noise. noise_probabilities_dict : dict, optional Dictionary containing noise probabilities. save_catalog : bool, optional Flag indicating whether to save the generated catalog to a file, default is False. outname : str, optional Name of the output file to save the generated catalog, default is "pulsar_configurations/test_pulsars.txt". use_ng_positions : bool, optional Flag indicating whether to use NANOGrav positions for pulsars, default is False. Returns: -------- DataFrame Generated catalog of pulsars with specified parameters. """ noise_probabilities = np.array(list(noise_probabilities_dict.values())) normed = noise_probabilities / np.sum(noise_probabilities) catalog = {} if use_ng_positions: data_ng = np.loadtxt( path_to_default_NANOGrav_positions, skiprows=1, dtype=np.str_ ) n_pulsars = len(data_ng) catalog["names"] = data_ng[:, 0] catalog["phi"] = data_ng[:, 1].astype(float) catalog["theta"] = data_ng[:, 2].astype(float) else: catalog["names"] = [ "pulsar_" + str(ell) for ell in (1 + np.arange(n_pulsars)) ] catalog["phi"] = np.random.uniform(0.0, 2 * np.pi, n_pulsars) catalog["theta"] = np.arccos(np.random.uniform(-1, 1, n_pulsars)) catalog["dt"] = 10 ** generate_parameter(n_pulsars, dt_dict) catalog["Tspan"] = 10 ** generate_parameter(n_pulsars, T_span_dict) catalog["wn"] = 10 ** generate_parameter(n_pulsars, wn_dict) catalog["log10_A_dm"], catalog["log10_A_red"], catalog["log10_A_sv"] = ( generate_noise_parameter( n_pulsars, [ dm_noise_log_10_A_dict, red_noise_log_10_A_dict, sv_noise_log_10_A_dict, ], normed, do_filter=True, ).T ) catalog["g_dm"], catalog["g_red"], catalog["g_sv"] = ( generate_noise_parameter( n_pulsars, [ dm_noise_g_dict, red_noise_g_dict, sv_noise_g_dict, ], normed, do_filter=False, ).T ) DF = pd.DataFrame(catalog) if save_catalog: DF.to_csv(outname, sep=" ", index=False) return DF
8,644
Python
.py
207
33.917874
79
0.650994
Mauropieroni/fastPTA
8
0
3
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,343
test_catalog_generator.py
Mauropieroni_fastPTA/tests/test_catalog_generator.py
# Global import unittest import numpy as np from scipy.stats import kstest from scipy import stats as scipy_stats # Local import utils as tu from fastPTA.generate_new_pulsar_configuration import generate_pulsars_catalog @tu.not_a_test def test_generation(parameter, n_pulsars, pulsar_dictionary): test_dictionary = {**tu.test_distributions} for k, v in pulsar_dictionary.items(): if k != "noise_probabilities_dict": test_dictionary[k] = v test_catalog = generate_pulsars_catalog( n_pulsars=n_pulsars, save_catalog=False, **pulsar_dictionary ) x = test_catalog[tu.parameters_to_test[parameter]] x = x[x > -40] if parameter in ["dt", "T_span", "wn"]: x = np.log10(x) elif parameter in ["theta"]: x = np.cos(x) dist = test_dictionary[parameter + "_dict"] # This is a Kolmogorov–Smirnov test to check whether the pulsars in the catalog are distributed as expected if dist["which_distribution"] == "uniform" and len(x) > 3: _stats, p = kstest( x, scipy_stats.uniform( dist["min"], scale=dist["max"] - dist["min"] ).cdf, ) elif dist["which_distribution"] == "gaussian" and len(x) > 3: _stats, p = kstest( x, scipy_stats.norm(dist["mean"], scale=dist["std"]).cdf ) elif len(x) <= 3: p = 1.0 else: raise ValueError("Cannot use distribution", dist["which_distribution"]) return p class TestCatalogGenerator(unittest.TestCase): def test_generation_EPTA(self): """ Test the generation of pulsar catalogs with EPTA-like noise parameters """ for p in tu.parameters_to_test.keys(): self.assertTrue(test_generation(p, 30, tu.EPTAlike_test) > 1e-4) # type: ignore def test_generation_EPTA_noiseless(self): """ Test the generation of a noiseless pulsar catalogs """ for p in tu.parameters_to_test.keys(): self.assertTrue( test_generation(p, 50, tu.EPTAlike_noiseless_test) > 1e-4 # type: ignore ) def test_generation_SKAlike(self): """ Test the generation of pulsar catalogs with EPTA-like noise parameters """ for p in tu.parameters_to_test.keys(): self.assertTrue(test_generation(p, 500, tu.mockSKA10_test) > 1e-4) # type: ignore def test_generation_ng_positions(self): """ Test the generation of pulsar catalogs with NANOgrav positions """ test_catalog = generate_pulsars_catalog( n_pulsars=30, save_catalog=False, use_ng_positions=True ) data_ng = np.loadtxt(tu.NANOGrav_positions, skiprows=1, dtype=np.str_) self.assertEqual( np.sum(np.abs(test_catalog["phi"] - data_ng[:, 1].astype(float))), 0.0, ) self.assertEqual( np.sum(np.abs(test_catalog["theta"] - data_ng[:, 2].astype(float))), 0.0, ) if __name__ == "__main__": unittest.main(verbosity=2)
3,110
Python
.py
80
30.7625
113
0.614948
Mauropieroni/fastPTA
8
0
3
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,344
test_utils.py
Mauropieroni_fastPTA/tests/test_utils.py
# Global import unittest import numpy as np import healpy as hp from scipy.special import sph_harm # Local import utils as tu from fastPTA import utils as ut nside = 64 npix = hp.nside2npix(nside) theta, phi = hp.pix2ang(nside, np.arange(npix)) class TestGetTensors(unittest.TestCase): def test_get_sort_indexes(self): """ Test the function to get the (l,m) pairs sorted correctly """ data = np.loadtxt(tu.lm_indexes) inds = ut.get_sort_indexes(5) self.assertTrue(np.allclose(inds[2][inds[-1]], data[:, 0])) self.assertTrue(np.allclose(inds[3][inds[-1]], data[:, 1])) def test_complex_to_real(self): """ Test the function to go from complex to real spherical harmonics coefficients assuming complex are sorted according to the healpy scheme """ l_max = 2 n_coefficients = ut.get_n_coefficients_complex(l_max) complex_vals = np.random.normal( 0.0, 1.0, n_coefficients ) + 1j * np.random.normal(0.0, 1.0, n_coefficients) test_real_vals = np.array( [ complex_vals[0].real, -np.sqrt(2) * complex_vals[3].imag, complex_vals[1].real, -np.sqrt(2) * complex_vals[3].real, np.sqrt(2) * complex_vals[5].imag, -np.sqrt(2) * complex_vals[4].imag, complex_vals[2].real, -np.sqrt(2) * complex_vals[4].real, np.sqrt(2) * complex_vals[5].real, ] ) real_vals = ut.complex_to_real_conversion(complex_vals) self.assertTrue(np.allclose(real_vals, test_real_vals)) def test_complex_to_real_to_complex(self): """ Check that starting from complex coefficients the operations commute """ l_max = 2 n_coefficients = ut.get_n_coefficients_complex(l_max) m_grid = np.array([0, 0, 0, 1, 1, 2], dtype=int) complex_vals = np.random.normal( 0.0, 1.0, n_coefficients ) + 1j * np.random.normal(0.0, 1.0, n_coefficients) complex_vals[m_grid == 0] = complex_vals[m_grid == 0].real real_vals = ut.complex_to_real_conversion(complex_vals) test_complex_vals = ut.real_to_complex_conversion(real_vals) self.assertTrue(np.allclose(complex_vals, test_complex_vals)) def test_get_real_spherical_harmonics(self, l_max=5): """ Test the function to get the spherical harmonics """ sp_harm = ut.get_real_spherical_harmonics(l_max, theta, phi) c = 0 for ell in range(l_max + 1): for m in range(-ell, ell + 1): sp = sph_harm(np.abs(m), ell, phi, theta) if m == 0: sp = sp.real elif m > 0: sp = np.sqrt(2.0) * (-1.0) ** m * sp.real elif m < 0: sp = np.sqrt(2.0) * (-1.0) ** m * sp.imag else: raise ValueError("Nope") # Checks that (with the correct normalization) the scalar # product is 1 withing 3 decimal places self.assertAlmostEqual( np.abs(np.mean(4 * np.pi * sp_harm[c] * sp) - 1.0), 0.0, places=3, ) c += 1 def test_spherical_harmonics_multipoles(self, l_max=3): """ Test the spherical harmonics projection function """ inds = ut.get_sort_indexes(l_max) ll = inds[2][inds[-1]] mm = inds[3][inds[-1]] for ind in range(len(ll)): YY = np.array(sph_harm(np.abs(mm[ind]), ll[ind], phi, theta)) if mm[ind] < 0: # The m < 0 is the complex conjugate of the m > 0 so need a -1 YY = -np.sqrt(2.0) * (-1.0) ** mm[ind] * YY.imag elif mm[ind] > 0: # For the m > 0 we just need the real part of Y YY = np.sqrt(2.0) * (-1.0) ** mm[ind] * YY.real else: # For the m = 0 we just need the real part of Y YY = YY.real res_YY = ut.spherical_harmonics_projection(YY, l_max) self.assertAlmostEqual(np.abs(res_YY[ind] - 1.0), 0.0, places=4) if __name__ == "__main__": unittest.main(verbosity=2)
4,410
Python
.py
105
30.714286
144
0.538101
Mauropieroni/fastPTA
8
0
3
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,345
utils.py
Mauropieroni_fastPTA/tests/utils.py
import os import numpy as np from fastPTA.utils import load_yaml test_data_path = os.path.join(os.path.dirname(__file__), "test_data/") # Default parameters for the pulsars EPTAlike_test = load_yaml(test_data_path + "/EPTAlike_pulsar_parameters.yaml") EPTAlike_noiseless_test = load_yaml( test_data_path + "/EPTAlike_pulsar_parameters_noiseless.yaml" ) mockSKA10_test = load_yaml(test_data_path + "/mockSKA10_pulsar_parameters.yaml") NANOGrav_positions = test_data_path + "/NANOGrav_positions.txt" # Paths to the test data lm_indexes = test_data_path + "lm_indexes.txt" test_catalog_path = test_data_path + "test_catalog.txt" test_catalog_path2 = test_data_path + "test_catalog2.txt" test_catalog_path3 = test_data_path + "test_catalog3.txt" get_tensors_data_path = test_data_path + "get_tensors.npz" get_correlations_lm_IJ_data_path = test_data_path + "get_correlations_lm_IJ.npz" get_tensors_Binned_data_path = test_data_path + "get_tensors_Binned.npz" get_tensors_Legendre_data_path = test_data_path + "get_tensors_Legendre.npz" Fisher_data_path = test_data_path + "Fisher_data.npz" Fisher_data_path2 = test_data_path + "Fisher_data2.npz" parameters_to_test = { "phi": "phi", "theta": "theta", "dt": "dt", "T_span": "Tspan", "wn": "wn", "dm_noise_log_10_A": "log10_A_dm", "red_noise_log_10_A": "log10_A_red", "sv_noise_log_10_A": "log10_A_sv", "dm_noise_g": "g_dm", "red_noise_g": "g_red", "sv_noise_g": "g_sv", } test_distributions = { "phi_dict": {"which_distribution": "uniform", "min": 0, "max": 2 * np.pi}, "theta_dict": {"which_distribution": "uniform", "min": -1, "max": 1}, } get_tensor_labels = [ "strain_omega", "response_IJ", "HD_functions_IJ", "HD_coefficients", ] def not_a_test(object): object.__test__ = False return object test_frequency = np.arange(1e-10, 1e-6, 1e-8)
1,881
Python
.py
49
35.489796
80
0.683892
Mauropieroni/fastPTA
8
0
3
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,346
test_get_tensors.py
Mauropieroni_fastPTA/tests/test_get_tensors.py
# Global import unittest import numpy as np import healpy as hp from scipy.special import sph_harm import jax import jax.numpy as jnp # Local import utils as tu from fastPTA import utils as ut from fastPTA import get_tensors as gt jax.config.update("jax_enable_x64", True) jax.config.update("jax_default_device", jax.devices(ut.which_device)[0]) nside = 64 npix = hp.nside2npix(nside) theta, phi = hp.pix2ang(nside, jnp.arange(npix)) theta = jnp.array(theta) phi = jnp.array(phi) @tu.not_a_test def get_tensors_and_shapes( path_to_pulsar_catalog, n_pulsars, HD_basis, HD_order ): """ A utility function that returns the results of the get_tensors function and the expected shapes of the results. """ res = gt.get_tensors( tu.test_frequency, path_to_pulsar_catalog=path_to_pulsar_catalog, save_catalog=True, n_pulsars=n_pulsars, regenerate_catalog=True, HD_basis=HD_basis, HD_order=HD_order, **tu.EPTAlike_test ) HD_shape = HD_order + 1 if HD_order else HD_order test_shapes = [ (len(tu.test_frequency), n_pulsars, n_pulsars), (len(tu.test_frequency), n_pulsars, n_pulsars), (HD_shape, len(tu.test_frequency), n_pulsars, n_pulsars), (HD_shape,), ] return res, test_shapes @tu.not_a_test def get_tensors_data( path_to_pulsar_catalog, HD_basis, HD_order, data_path, anisotropies=False ): """ A utility function that returns the results of the get_tensors function and the expected results. """ get_tensor_results = gt.get_tensors( tu.test_frequency, path_to_pulsar_catalog=path_to_pulsar_catalog, HD_basis=HD_basis, HD_order=HD_order, anisotropies=anisotropies, ) return get_tensor_results, np.load(data_path) class TestGetTensors(unittest.TestCase): def test_gamma(self): """ Test the gamma function """ npoints = 10 pulsars = 15 theta, phi = hp.pix2ang( nside, np.linspace(0, npix - 1, npoints, dtype=int) ) theta_p, phi_p = hp.pix2ang( nside, np.array(np.random.uniform(0, npix - 1, pulsars), dtype=int) ) analytical = gt.gamma_analytical( theta_p, phi_p, theta, phi, ) p_I = gt.unit_vector(theta_p, phi_p) hat_k = gt.unit_vector(theta, phi) gamma = gt.gamma(p_I, hat_k) self.assertAlmostEqual( float(jnp.sum(np.abs(gamma - analytical))), 0.0, places=7, ) def test_spherical_harmonics_multipoles_2(self): """ Test the spherical harmonics projection function for pulsars pulsar matrix """ Y00 = np.array([[sph_harm(0.0, 0.0, phi, theta).real]]) Y1m1 = np.array([[np.sqrt(2.0) * sph_harm(-1.0, 1.0, phi, theta).imag]]) Y10 = np.array([[sph_harm(0.0, 1.0, phi, theta).real]]) Y1p1 = np.array([[-np.sqrt(2.0) * sph_harm(1.0, 1.0, phi, theta).real]]) Y2m2 = np.array([[np.sqrt(2.0) * sph_harm(-2.0, 2.0, phi, theta).imag]]) Y2m1 = np.array([[np.sqrt(2.0) * sph_harm(-1.0, 2.0, phi, theta).imag]]) Y20 = np.array([[sph_harm(0.0, 2.0, phi, theta).real]]) Y2p1 = np.array([[-np.sqrt(2.0) * sph_harm(1.0, 2.0, phi, theta).real]]) Y2p2 = np.array([[np.sqrt(2.0) * sph_harm(2.0, 2.0, phi, theta).real]]) Y3m3 = np.array([[np.sqrt(2.0) * sph_harm(-3.0, 3.0, phi, theta).imag]]) Y3p3 = np.array([[-np.sqrt(2.0) * sph_harm(3.0, 3.0, phi, theta).real]]) res_Y00 = gt.projection_spherial_harmonics_basis(Y00, 1) res_Y1m1 = gt.projection_spherial_harmonics_basis(Y1m1, 1) res_Y10 = gt.projection_spherial_harmonics_basis(Y10, 1) res_Y1p1 = gt.projection_spherial_harmonics_basis(Y1p1, 1) res_Y2m2 = gt.projection_spherial_harmonics_basis(Y2m2, 2) res_Y2m1 = gt.projection_spherial_harmonics_basis(Y2m1, 2) res_Y20 = gt.projection_spherial_harmonics_basis(Y20, 2) res_Y2p1 = gt.projection_spherial_harmonics_basis(Y2p1, 2) res_Y2p2 = gt.projection_spherial_harmonics_basis(Y2p2, 2) res_Y3m3 = gt.projection_spherial_harmonics_basis(Y3m3, 3) res_Y3p3 = gt.projection_spherial_harmonics_basis(Y3p3, 3) self.assertAlmostEqual(jnp.abs(res_Y00[0] - 1.0), 0.0, places=4) self.assertAlmostEqual(jnp.abs(res_Y1m1[1] - 1.0), 0.0, places=4) self.assertAlmostEqual(jnp.abs(res_Y10[2] - 1.0), 0.0, places=4) self.assertAlmostEqual(jnp.abs(res_Y1p1[3] - 1.0), 0.0, places=4) self.assertAlmostEqual(jnp.abs(res_Y2m2[4] - 1.0), 0.0, places=4) self.assertAlmostEqual(jnp.abs(res_Y2m1[5] - 1.0), 0.0, places=4) self.assertAlmostEqual(jnp.abs(res_Y20[6] - 1.0), 0.0, places=4) self.assertAlmostEqual(jnp.abs(res_Y2p1[7] - 1.0), 0.0, places=4) self.assertAlmostEqual(jnp.abs(res_Y2p2[8] - 1.0), 0.0, places=4) self.assertAlmostEqual(jnp.abs(res_Y3m3[9] - 1.0), 0.0, places=4) self.assertAlmostEqual(jnp.abs(res_Y3p3[15] - 1.0), 0.0, places=4) def test_get_correlations_lm_IJ(self): """ Test the get_correlations_lm_IJ function """ l_max = 6 nside = 32 npixels = 35 npix = hp.nside2npix(nside) pixels = np.linspace(0, npix - 1, npixels, dtype=int) p_I = jnp.array(hp.pix2vec(nside, pixels)) GammalmIJ = gt.get_correlations_lm_IJ(p_I.T, l_max, nside) data = np.load(tu.get_correlations_lm_IJ_data_path)["data"] self.assertAlmostEqual( float(jnp.sum(jnp.abs(data - GammalmIJ))), 0.0, places=5 ) def test_get_tensors_generation(self): """ Test the get_tensors function """ npulsars = 30 HD_order = 0 result, test_shapes = get_tensors_and_shapes( tu.test_catalog_path2, npulsars, "legendre", HD_order ) for i in range(len(tu.get_tensor_labels)): self.assertTupleEqual(result[i].shape, test_shapes[i]) def test_get_tensors_generation_Legendre(self): """ Test the get_tensors function assuming you want the Legendre projection """ npulsars = 50 HD_basis = "legendre" HD_order = 6 result, test_shapes = get_tensors_and_shapes( tu.test_catalog_path2, npulsars, HD_basis, HD_order ) for i in range(len(tu.get_tensor_labels)): self.assertTupleEqual(result[i].shape, test_shapes[i]) def test_get_tensors_generation_Binned(self): """ Test the get_tensors function assuming you want the Binned projection """ npulsars = 30 HD_basis = "legendre" HD_order = 10 result, test_shapes = get_tensors_and_shapes( tu.test_catalog_path2, npulsars, HD_basis, HD_order ) for i in range(len(tu.get_tensor_labels)): self.assertTupleEqual(result[i].shape, test_shapes[i]) def test_get_tensors_results(self): """ Test the get_tensors function results """ HD_basis = "legendre" HD_order = 0 results, loaded_data = get_tensors_data( tu.test_catalog_path, HD_basis, HD_order, tu.get_tensors_data_path, ) for i in range(len(tu.get_tensor_labels)): to_assert = jnp.sum( jnp.abs(results[i] - loaded_data[tu.get_tensor_labels[i]]) ) self.assertAlmostEqual(float(to_assert), 0.0) def test_Legendre_projection(self): """ Test the results of the Legendre projection of the get_tensors function (going to large HD_order the projection gives chi_IJ) """ HD_order = 30 n_pulsars = 70 vec = np.random.uniform(-1.0, 1.0, n_pulsars) matrix = vec[:, None] * vec[None, :] for i in range(n_pulsars): matrix[i, i] = 1.0 chi_IJ = gt.get_chi_tensor_IJ(matrix) - 0.5 * np.eye(n_pulsars) HD_coefficients = gt.get_HD_Legendre_coefficients(HD_order) polynomials = gt.get_polynomials_IJ(matrix, HD_order) HD_val = HD_coefficients[:, None, None] * polynomials diff = 1.0 - np.sum(HD_val, axis=0) / chi_IJ self.assertAlmostEqual(float(jnp.mean(jnp.abs(diff))), 0.0, places=3) def test_get_tensors_Binned_results(self): """ Test the results of the Binned projection of the get_tensors function """ HD_basis = "binned" HD_order = 6 results, loaded_data = get_tensors_data( tu.test_catalog_path, HD_basis, HD_order, tu.get_tensors_Binned_data_path, ) for i in range(len(tu.get_tensor_labels)): to_assert = jnp.sum( jnp.abs(results[i] - loaded_data[tu.get_tensor_labels[i]]) ) self.assertAlmostEqual(float(to_assert), 0.0) def test_get_tensors_Legendre_results(self): """ Another test of the Legendre projection of the get_tensors function """ HD_basis = "legendre" HD_order = 6 results, loaded_data = get_tensors_data( tu.test_catalog_path, HD_basis, HD_order, tu.get_tensors_Legendre_data_path, ) for i in range(len(tu.get_tensor_labels)): to_assert = jnp.sum( jnp.abs(results[i] - loaded_data[tu.get_tensor_labels[i]]) ) self.assertAlmostEqual(float(to_assert), 0.0) def test_get_tensors_anisotropies(self): """ Test the results of the get_tensors function with anisotropies, check that the monopole is correct """ HD_basis = "legendre" HD_order = 6 results, loaded_data = get_tensors_data( tu.test_catalog_path, HD_basis, HD_order, tu.get_tensors_Legendre_data_path, anisotropies=True, ) to_assert = jnp.mean( jnp.abs( results[1][0] / np.sqrt(4 * np.pi) - loaded_data["response_IJ"] ) ) self.assertAlmostEqual(float(to_assert), 0.0, places=3) if __name__ == "__main__": unittest.main(verbosity=2)
10,455
Python
.py
260
31.311538
133
0.596894
Mauropieroni/fastPTA
8
0
3
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,347
test_compute_Fisher.py
Mauropieroni_fastPTA/tests/test_compute_Fisher.py
# Global import unittest import numpy as np import jax import jax.numpy as jnp # Local import utils as tu import fastPTA.utils as ut from fastPTA import Fisher_code as Fc jax.config.update("jax_enable_x64", True) jax.config.update("jax_default_device", jax.devices(ut.which_device)[0]) n_frequencies = 35 data = np.load(tu.Fisher_data_path) class TestFisher(unittest.TestCase): def test_compute_SNR_integrand(self): """ Test the function that computes the integrand of the SNR """ # Generate 3 random matrixes 5 x 5 data = np.random.uniform(0.0, 1.0, size=(3, 5, 5)) # Symmetrize data += np.moveaxis(data, -1, -2) inverse = np.linalg.inv(data) result = Fc.get_SNR_integrand(data, inverse) to_assert = jnp.sum(jnp.abs(result - 5 * np.ones(3))) self.assertAlmostEqual(float(to_assert), 0.0, places=10) def test_get_fisher_integrand(self): """ Test the function that computes the integrand of the Fisher matrix """ # Generate 3 random matrixes 5 x 5 data = np.random.uniform(0.0, 1.0, size=(2, 5, 5)) # Symmetrize data += np.moveaxis(data, -1, -2) inverse = np.linalg.inv(data) data = np.array([data, data, data]) result = Fc.get_fisher_integrand(data, inverse) to_assert = jnp.sum(jnp.abs(result - 5 * np.ones(shape=(3, 3, 2)))) self.assertAlmostEqual(float(to_assert), 0.0, places=10) def test_compute_fisher(self): """ Test the function that computes the Fisher matrix """ get_tensors_kwargs = { "path_to_pulsar_catalog": tu.test_catalog_path, "verbose": True, } res = Fc.compute_fisher( n_frequencies=n_frequencies, get_tensors_kwargs=get_tensors_kwargs ) self.assertAlmostEqual( float(jnp.sum(jnp.abs(res[0] - data["frequency"]))), 0.0, places=7 ) self.assertAlmostEqual( float(jnp.sum(jnp.abs(res[1] - data["signal"]))), 0.0, places=7 ) self.assertAlmostEqual( float(jnp.sum(jnp.abs(res[4] - data["effective_noise"]))), 0.0 ) self.assertAlmostEqual( float(jnp.sum(jnp.abs(res[5] - data["snr"]))), 0.0, places=7 ) self.assertAlmostEqual( float(jnp.sum(jnp.abs(res[6] - data["fisher"]))), 0.0, places=7 ) def test_compute_fisher_legendre(self): """ Test the function that computes the Fisher matrix with HD projected onto Legendre polynomials """ get_tensors_kwargs = { "path_to_pulsar_catalog": tu.test_catalog_path, "HD_basis": "legendre", "HD_order": 6, "verbose": True, } HD_legendre = Fc.compute_fisher(get_tensors_kwargs=get_tensors_kwargs) self.assertAlmostEqual( float( jnp.sum(jnp.abs(HD_legendre[6] - data["fisher_HD_legendre"])) ), 0.0, places=8, ) def test_compute_fisher_binned(self): """ Test the function that computes the Fisher matrix with HD projected onto the binned basis """ get_tensors_kwargs = { "path_to_pulsar_catalog": tu.test_catalog_path, "HD_basis": "binned", "HD_order": 10, "verbose": True, } HD_binned = Fc.compute_fisher(get_tensors_kwargs=get_tensors_kwargs) self.assertAlmostEqual( float(jnp.sum(jnp.abs(HD_binned[6] - data["fisher_HD_binned"]))), 0.0, places=7, ) def test_compute_fisher_anisotropic(self): """ TO ADD !!! """ if __name__ == "__main__": unittest.main(verbosity=2)
3,851
Python
.py
105
27.733333
101
0.583423
Mauropieroni/fastPTA
8
0
3
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,348
gen_widget_doc.py
zimolab_PyGUIAdapter/tools/gen_widget_doc.py
from __future__ import annotations import dataclasses import inspect import os.path from typing import Type, Tuple, List, Literal import jinja2 from markdown_table_generator import generate_markdown, table_from_string_list import pyguiadapter.utils.messagebox from pyguiadapter import widgets, utils from pyguiadapter.adapter import GUIAdapter, uoutput, udialog from pyguiadapter.exceptions import ParameterError from pyguiadapter.extend_types import file_t from pyguiadapter.paramwidget import BaseParameterWidget from pyguiadapter.widgets.common import CommonParameterWidgetConfig from pyguiadapter.windows.fnexec import FnExecuteWindowConfig # warnings.filterwarnings("error") CONFIG_CLASS_TABLE_HEADER_CN = ("配置项名称", "类型", "默认值", "说明") def _all_widget_classes() -> List[str]: all_imported = dir(widgets) ret = [] for name in all_imported: obj = getattr(widgets, name, None) if not obj: continue if inspect.isclass(obj) and issubclass(obj, BaseParameterWidget): ret.append(obj.__name__) return ret def _get_default_value(field: dataclasses.Field) -> str: if field.default is not dataclasses.MISSING: return str(field.default) if field.default_factory is not dataclasses.MISSING: return str(field.default_factory) return "" def dataclass2table( clazz: Type, header: Tuple[str, str, str, str] | None = None, exclude_props: List[str] | None = None, ): assert dataclasses.is_dataclass(clazz) if exclude_props is None: exclude_props = [] if not header: header = CONFIG_CLASS_TABLE_HEADER_CN header = header assert isinstance(header, tuple) and len(header) >= 4 props = [list(header)] fields = dataclasses.fields(clazz) for field in fields: if field.name in exclude_props: continue prop_name = f"`{field.name}`" prop_type = "`{}`".format(str(field.type).replace("|", "\|")) prop_default = _get_default_value(field) prop_desc = "" props.append([prop_name, prop_type, f"`{prop_default}`", prop_desc]) table = table_from_string_list(props) return generate_markdown(table) def generate_widget_class_doc( widget_type: str, widget_category: Literal["basic", "extend"] = "basic", template_file: file_t = "", output_file: file_t = "", headers: Tuple[str, str, str, str] = CONFIG_CLASS_TABLE_HEADER_CN, exclude_props: List = None, ): """ ## Document Generator This tool is mainly used for generating the document page of the selected widget class. User must provide a document template file of jinja2. """ if exclude_props is None: exclude_props = [] if not widget_type: raise ParameterError("widget_type", "widget_type cannot be empty") if not widget_category: raise ParameterError("widget_category", "widget_category cannot be empty") if not template_file: raise ParameterError("template_file", "template_file cannot be empty") if not output_file: raise ParameterError("output_file", "output_file cannot be empty") if os.path.isfile(output_file): uoutput.warning(f"Output file {output_file} already exists! Overwrite?") ret = udialog.show_question_messagebox( f"Output file {output_file} already exists! Do you want to overwrite it?" ) if ret != pyguiadapter.utils.messagebox.StandardButton.Yes: uoutput.warning(" |") uoutput.warning(" - User cancelled") uoutput.info("==Generating Finished!==") return uoutput.info(" |") uoutput.info(" - Overwrite Approved") widget_class = getattr(widgets, widget_type, None) if not ( inspect.isclass(widget_class) and issubclass(widget_class, BaseParameterWidget) ): raise ValueError(f"cannot find widget class for {widget_type}") widget_class_name = widget_class.__name__ uoutput.info(f"Generating config doc for {widget_class_name}...") uoutput.info(f"Widget Class: {widget_class_name}") widget_class_filename = utils.get_object_filename(widget_class) if widget_class_filename: widget_class_filename = os.path.basename(widget_class_filename) uoutput.info(" |") uoutput.info(f" -Filename: {widget_class_filename}") else: widget_class_filename = "<unknown.py>" uoutput.warning(" |") uoutput.warning(f" -Filename: {widget_class_filename}") widget_config_class = widget_class.ConfigClass widget_config_class_name = widget_config_class.__name__ uoutput.info(f"Config Class: {widget_config_class_name}") widget_config_class_filename = utils.get_object_filename(widget_config_class) if widget_config_class_filename: widget_config_class_filename = os.path.basename(widget_config_class_filename) uoutput.info(" |") uoutput.info(f" -Filename: {widget_config_class_filename}") else: widget_config_class_filename = "<unknown.py>" uoutput.warning(f" |") uoutput.warning(f" -Filename: {widget_config_class_filename}") widget_config_props_table = dataclass2table( widget_config_class, headers, exclude_props ) widget_config_class_source = utils.get_object_sourcecode(widget_config_class) if widget_config_class_source: widget_config_class_source = ( "@dataclasses.dataclass(frozen=True)\n" + widget_config_class_source ) else: widget_config_class_source = "UNKNOWN" try: template_content = utils.read_text_file(template_file) except Exception as e: uoutput.critical("Error:") uoutput.critical(f" {e}") uoutput.info("==Generating Finished!==") raise e else: uoutput.info("Template File Loaded") uoutput.info(" |") uoutput.info(f" - {os.path.normpath(template_file)}") template = jinja2.Template(template_content) try: output_content = template.render( widget_class_name=widget_class_name, widget_category=widget_category, widget_class_filename=widget_class_filename, widget_config_class_name=widget_config_class_name, widget_config_class_filename=widget_config_class_filename, widget_config_class_source=widget_config_class_source, widget_config_props_table=widget_config_props_table, ) utils.write_text_file(output_file, output_content) except Exception as e: uoutput.critical("Error:") uoutput.critical(f" {e}") uoutput.info("==Generating Finished!==") raise e else: uoutput.info("Document File Generated") uoutput.info(" |") uoutput.info(f" - {os.path.normpath(output_file)}") uoutput.info("==Generating Finished!==") udialog.show_info_messagebox( f"Document file for widget '{widget_class_name}' generated successfully!", "Success", ) if __name__ == "__main__": ########################## parameter configs ################################################ common_props = ( field.name for field in dataclasses.fields(CommonParameterWidgetConfig) ) all_props = list(common_props) default_exclude_props = [prop for prop in all_props if prop != "default_value"] exclude_props_conf = widgets.MultiChoiceBoxConfig( default_value=default_exclude_props, choices=all_props ) headers_conf = widgets.TupleEditConfig( default_value=CONFIG_CLASS_TABLE_HEADER_CN, ) template_file_conf = widgets.FileSelectConfig( filters="Jinja2 files(*.j2);;Markdown files(*.md);;Text files(*.txt);;All files(*.*)", ) output_file_conf = widgets.FileSelectConfig( filters="Markdown files(*.md);;Text files(*.txt);;All files(*.*)", save_file=True, ) widget_type_conf = widgets.ChoiceBoxConfig(choices=_all_widget_classes()) ########################## parameter configs ################################################ ########################## window configs ################################################ win_conf = FnExecuteWindowConfig( show_function_result=False, print_function_result=False ) ########################## window configs ################################################ adapter = GUIAdapter() adapter.add( generate_widget_class_doc, widget_configs={ "widget_type": widget_type_conf, "template_file": template_file_conf, "output_file": output_file_conf, "headers": headers_conf, "exclude_props": exclude_props_conf, }, window_config=win_conf, ) adapter.run()
8,854
Python
.py
208
35.413462
97
0.645304
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,349
make_table.py
zimolab_PyGUIAdapter/tools/make_table.py
from tools.gen_widget_doc import dataclass2table from pyguiadapter.windows.fnselect import FnSelectWindowConfig from pyguiadapter.windows import DocumentBrowserConfig if __name__ == "__main__": # print(dataclass2table(FnSelectWindowConfig)) print(dataclass2table(DocumentBrowserConfig))
297
Python
.py
6
46.833333
62
0.83045
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,350
multiple_function_example.py
zimolab_PyGUIAdapter/examples/multiple_function_example.py
from pyguiadapter.adapter import GUIAdapter def function_1(arg: int): """ description of function_1 """ pass def function_2(arg: int): """ description of function_2 """ pass def function_3(arg: int): """ description of function_3 """ pass if __name__ == "__main__": adapter = GUIAdapter() adapter.add(function_1) adapter.add(function_2) adapter.add(function_3) adapter.run()
451
Python
.py
22
16.045455
43
0.629454
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,351
anchors_in_document.py
zimolab_PyGUIAdapter/examples/anchors_in_document.py
import os from pyguiadapter.adapter import GUIAdapter from pyguiadapter.utils import read_text_file from pyguiadapter.windows import DocumentBrowserConfig from pyguiadapter.windows.fnexec import FnExecuteWindowConfig DOCUMENT_PATH = os.path.join(os.path.dirname(__file__), "anchors_in_document.md") def anchors_in_document( a: str, b: str, c: str, d: str, e: str, f: str, g: str, h: str, i: str, j: str, k: str, l: str, m: str, n: str, o: str, p: str, ): """ This is an example demonstrating how to use parameter anchors and group anchors in the document of function. Args: a: description of parameter a. b: description of parameter b. c: description of parameter c. d: description of parameter d. e: description of parameter e. f: description of parameter f. g: description of parameter g. h: description of parameter h. i: description of parameter i. j: description of parameter j. k: description of parameter k. l: description of parameter l. m: description of parameter m. n: description of parameter n. o: description of parameter o. p: description of parameter p. """ pass if __name__ == "__main__": widget_configs = { # parameters in Group-A "a": {"group": "Group-A"}, "b": {"group": "Group-A"}, "c": {"group": "Group-A"}, "d": {"group": "Group-A"}, # parameters in Group-B "e": {"group": "Group-B"}, "f": {"group": "Group-B"}, "g": {"group": "Group-B"}, "h": {"group": "Group-B"}, # parameters in Group-C "i": {"group": "Group-C"}, "j": {"group": "Group-C"}, "k": {"group": "Group-C"}, "l": {"group": "Group-C"}, # parameters in default group "m": {"group": None}, "n": {"group": None}, "o": {"group": None}, "p": {"group": None}, } document = read_text_file(DOCUMENT_PATH) adapter = GUIAdapter() adapter.add( anchors_in_document, document=document, document_format="markdown", widget_configs=widget_configs, window_config=FnExecuteWindowConfig( document_browser_config=DocumentBrowserConfig( parameter_anchor=True, group_anchor=True ) ), ) adapter.run()
2,460
Python
.py
82
22.939024
112
0.574082
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,352
qt_material_example.py
zimolab_PyGUIAdapter/examples/qt_material_example.py
from datetime import datetime from qtpy.QtWidgets import QApplication from pyguiadapter.adapter import GUIAdapter from pyguiadapter.extend_types import text_t, json_obj_t def app_style_example( arg1: str, arg2: int, arg3: float, arg4: bool, arg5: text_t, arg6: datetime, arg7: json_obj_t, ): """ This example requires [Qt-Material](https://github.com/UN-GCPDS/qt-material). Please install it before you run the example. <br /> e.g. using `pip`: > `pip install qt-material` @param arg1: arg1 description @param arg2: arg2 description @param arg3: arg3 description @param arg4: arg4 description @param arg5: arg5 description @param arg6: arg6 description @param arg7: arg7 description @return: @params [arg6] calendar_popup = true @end """ pass if __name__ == "__main__": import qt_material def on_app_start(app: QApplication): # this will be called after the instantiation of QApplication. print("app started") qt_material.apply_stylesheet(app, theme="light_teal.xml") adapter = GUIAdapter(on_app_start=on_app_start) adapter.add(app_style_example) adapter.run()
1,228
Python
.py
42
24.261905
81
0.684885
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,353
show_select_win_anyway.py
zimolab_PyGUIAdapter/examples/show_select_win_anyway.py
from pyguiadapter.adapter import GUIAdapter def show_select_win_anyway(): """ This example shows how to show function select window(FnSelectWindow) even if only one function was added. """ pass if __name__ == "__main__": adapter = GUIAdapter() adapter.add(show_select_win_anyway) adapter.run(show_select_window=True)
349
Python
.py
10
30.7
110
0.713433
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,354
tiny_window_example.py
zimolab_PyGUIAdapter/examples/tiny_window_example.py
from typing import Optional from pyguiadapter.adapter import GUIAdapter from pyguiadapter.exceptions import ParameterError from pyguiadapter.windows.fnexec import FnExecuteWindowConfig def equation_solver(a: float, b: float, c: float) -> Optional[tuple]: """ Solving Equations: ax^2 + bx + c = 0 (a,b,c ∈ R, a ≠ 0) @param a: a ∈ R, a ≠ 0 @param b: b ∈ R @param c: c ∈ R @return: """ if a == 0: raise ParameterError(parameter_name="a", message="a cannot be zero!") delta = b**2 - 4 * a * c if delta < 0: return None x1 = (-b + delta**0.5) / (2 * a) if delta == 0: return x1, x1 x2 = (-b - delta**0.5) / (2 * a) return x1, x2 if __name__ == "__main__": window_config = FnExecuteWindowConfig( title="Equation Solver", icon="mdi6.function-variant", execute_button_text="Solve", size=(350, 450), document_dock_visible=False, output_dock_visible=False, clear_button_visible=False, clear_checkbox_visible=False, show_function_result=True, function_result_message="real roots: {}", default_parameter_group_name="Equation Parameters", print_function_error=False, print_function_result=False, ) adapter = GUIAdapter() adapter.add(equation_solver, window_config=window_config) adapter.run()
1,402
Python
.py
41
27.780488
77
0.624721
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,355
toast_example.py
zimolab_PyGUIAdapter/examples/toast_example.py
from pyguiadapter.action import Action from pyguiadapter.adapter import GUIAdapter, utoast from pyguiadapter.extend_types import text_t from pyguiadapter.toast import ToastConfig from pyguiadapter.toolbar import ToolBar from pyguiadapter.windows.fnexec import FnExecuteWindow def show_toast(win: FnExecuteWindow, action: Action): win.show_toast("Paused!", duration=3000, clear=True) def clear_toasts(win: FnExecuteWindow, action: Action): win.clear_toasts() action_toast = Action( text="Toast", icon="mdi.message-text-clock", tooltip="Show toast message", on_triggered=show_toast, ) action_clear_toasts = Action( text="Clear toasts", icon="ei.remove-circle", tooltip="Clear all toasts", on_triggered=clear_toasts, ) def toast_example( message: text_t = "Hello world!", duration: int = 3000, clear: bool = False, fade_out: int = 0, ): if not message: return fade_out = max(fade_out, 0) utoast.show_toast(message, duration, ToastConfig(fade_out=fade_out), clear) if __name__ == "__main__": adapter = GUIAdapter() adapter.add( toast_example, window_toolbar=ToolBar(actions=[action_toast, action_clear_toasts]), ) adapter.run()
1,243
Python
.py
39
27.820513
79
0.719195
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,356
menu_example_1.py
zimolab_PyGUIAdapter/examples/menu_example_1.py
import json from pyguiadapter.action import Action, Separator from pyguiadapter.adapter import GUIAdapter from pyguiadapter.menu import Menu from pyguiadapter.utils import filedialog, inputdialog, messagebox from pyguiadapter.window import SimpleWindowEventListener from pyguiadapter.windows.fnexec import FnExecuteWindow def menu_example(): pass ###################Action Callbacks######################### def on_action_open(window: FnExecuteWindow, _: Action): print("on_action_open()") ret = filedialog.get_open_file( parent=window, title="Open File", start_dir="./", filters="JSON files(*.json);;All files(*.*)", ) if ret: messagebox.show_info_message(window, f"File will be opened: {ret}") def on_action_save(window: FnExecuteWindow, _: Action): print("on_action_save()") ret = filedialog.get_save_file( parent=window, title="Save File", start_dir="./", filters="JSON files(*.json);;All files(*.*)", ) if ret: messagebox.show_info_message(window, f"File will be saved to: {ret}") def on_action_settings(window: FnExecuteWindow, _: Action): default_settings = { "opt1": 1, "opt2": "2", "opt3": True, } new_settings = inputdialog.input_json_object( parent=window, title="Settings", icon="fa.cog", size=(600, 400), ok_button_text="Save", cancel_button_text="Cancel", initial_text=json.dumps(default_settings, indent=4, ensure_ascii=False), auto_indent=True, indent_size=4, auto_parentheses=True, line_wrap_mode=inputdialog.LineWrapMode.WidgetWidth, line_wrap_width=88, ) if isinstance(new_settings, dict): messagebox.show_info_message(window, f"new settings: {new_settings}") def on_action_confirm_quit(window: FnExecuteWindow, action: Action, checked: bool): print("on_action_confirm_close(): ", checked) def on_action_close(window: FnExecuteWindow, _: Action): print("on_action_close()") window.close() def on_action_about(window: FnExecuteWindow, _: Action): print("on_action_about()") about_text = """ <h1>PyGUIAdapter V2</h1> <p>PyGUIAdapter is a GUI lib for those who want make GUI application without writing GUI code!</p> <p> You can access the source code <a href="https://github.com/zimolab/PyGUIAdapter">here</a>! </p> """ messagebox.show_text_content( window, text_content=about_text, text_format="html", title="About PyGUIAdapter", icon="fa.info-circle", ) def on_action_license(window: FnExecuteWindow, _: Action): print("on_action_license()") license_file = "../../LICENSE" messagebox.show_text_file( window, text_file=license_file, text_format="plaintext", title="License", icon="fa.copyright", ) ###################~Action Callbacks######################### if __name__ == "__main__": ###################Actions############################# action_open = Action( text="Open", icon="fa.folder-open", on_triggered=on_action_open, shortcut="Ctrl+O", ) action_save = Action( text="Save", icon="fa.save", on_triggered=on_action_save, shortcut="Ctrl+S", ) action_settings = Action( text="Settings", icon="fa.cog", on_triggered=on_action_settings, shortcut="Ctrl+,", ) action_quit = Action( text="Quit", icon="fa.power-off", on_triggered=on_action_close, shortcut="Ctrl+Q", ) action_confirm_quit = Action( text="Confirm Quit", icon="fa.question-circle", checkable=True, checked=False, on_toggled=on_action_confirm_quit, ) action_about = Action( text="About", icon="fa.info-circle", on_triggered=on_action_about, ) action_license = Action( text="License", icon="fa.copyright", on_triggered=on_action_license, ) ###################~Actions############################# ####################Menus############################# submenu_help = Menu( title="Help", actions=[action_about, action_license], ) menu_file = Menu( title="File", actions=[ action_open, action_save, Separator(), submenu_help, Separator(), action_quit, ], ) menu_settings = Menu( title="Settings", actions=[action_settings, Separator(), action_confirm_quit], ) menus = [menu_file, menu_settings] ###################~Menus############################# ################Window Event Listener################### def on_window_create(window: FnExecuteWindow): print("on_window_create()") # make action_confirm_quit checked after the select window is created window.set_action_state(action_confirm_quit, True) def on_window_close(window: FnExecuteWindow) -> bool: # get the state of action_confirm_quit # if it is checked, show a question message box to ask if the user really wants to close the window # if it is not checked, return True to close the window directly. state = window.get_action_state(action_confirm_quit) if state: # access the ret = messagebox.show_question_message( window, message="Do you really want to close the window?", title="Quit", buttons=messagebox.Yes | messagebox.No, ) return ret == messagebox.Yes return True window_listener = SimpleWindowEventListener( on_create=on_window_create, on_close=on_window_close ) #################Window Event Listener################## adapter = GUIAdapter() adapter.add(menu_example, window_menus=menus, window_listener=window_listener) adapter.run()
6,106
Python
.py
177
27.180791
107
0.585692
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,357
global_style_example.py
zimolab_PyGUIAdapter/examples/global_style_example.py
import os.path from datetime import datetime from pyguiadapter import utils from pyguiadapter.adapter import GUIAdapter from pyguiadapter.extend_types import text_t def app_style_example( arg1: str, arg2: int, arg3: float, arg4: bool, arg5: text_t, arg6: datetime ): """ This example shows how to apply a global stylesheet to the application. First, read the stylesheet from a qss file. In this example, [Ubuntu.qss](https://github.com/GTRONICK/QSS/blob/master/Ubuntu.qss) will be used. This qss file is from GTRONICK's [QSS](https://github.com/GTRONICK/QSS) repo. Then, pass the qss content to the GUIAdapter constructor's **global_style** argument. """ pass if __name__ == "__main__": QSS_FILE = os.path.join(os.path.dirname(__file__), "Ubuntu.qss") global_stylesheet = utils.read_text_file(QSS_FILE) adapter = GUIAdapter(global_stylesheet=global_stylesheet) adapter.add(app_style_example) adapter.run()
968
Python
.py
21
42.142857
133
0.733191
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,358
menu_example.py
zimolab_PyGUIAdapter/examples/menu_example.py
import json from pyguiadapter.action import Action, Separator from pyguiadapter.adapter import GUIAdapter from pyguiadapter.menu import Menu from pyguiadapter.utils import filedialog, inputdialog, messagebox from pyguiadapter.window import SimpleWindowEventListener from pyguiadapter.windows.fnselect import FnSelectWindow def menu_example(): pass ############Action Callbacks########## def on_action_open(window: FnSelectWindow, _: Action): print("on_action_open()") ret = filedialog.get_open_file( parent=window, title="Open File", start_dir="./", filters="JSON files(*.json);;All files(*.*)", ) if ret: messagebox.show_info_message(window, f"File will be opened: {ret}") def on_action_save(window: FnSelectWindow, _: Action): print("on_action_save()") ret = filedialog.get_save_file( parent=window, title="Save File", start_dir="./", filters="JSON files(*.json);;All files(*.*)", ) if ret: messagebox.show_info_message(window, f"File will be saved to: {ret}") def on_action_settings(window: FnSelectWindow, _: Action): default_settings = { "opt1": 1, "opt2": "2", "opt3": True, } new_settings = inputdialog.input_json_object( parent=window, title="Settings", icon="fa.cog", size=(600, 400), ok_button_text="Save", cancel_button_text="Cancel", initial_text=json.dumps(default_settings, indent=4, ensure_ascii=False), auto_indent=True, indent_size=4, auto_parentheses=True, line_wrap_mode=inputdialog.LineWrapMode.WidgetWidth, line_wrap_width=88, ) if isinstance(new_settings, dict): messagebox.show_info_message(window, f"new settings: {new_settings}") def on_action_confirm_quit(window: FnSelectWindow, action: Action, checked: bool): print("on_action_confirm_close(): ", checked) def on_action_close(window: FnSelectWindow, _: Action): print("on_action_close()") window.close() def on_action_about(window: FnSelectWindow, _: Action): print("on_action_about()") ############################### if __name__ == "__main__": action_open = Action( text="Open", icon="fa.folder-open", on_triggered=on_action_open, shortcut="Ctrl+O", ) action_save = Action( text="Save", icon="fa.save", on_triggered=on_action_save, shortcut="Ctrl+S", ) action_settings = Action( text="Settings", icon="fa.cog", on_triggered=on_action_settings, shortcut="Ctrl+,", ) action_quit = Action( text="Quit", icon="fa.power-off", on_triggered=on_action_close, shortcut="Ctrl+Q", ) action_confirm_quit = Action( text="Confirm Quit", checkable=True, checked=False, on_toggled=on_action_confirm_quit, ) def on_window_create(window: FnSelectWindow): print("on_window_create()") # make action_confirm_quit checked after the select window is created window.set_action_state(action_confirm_quit, True) def on_window_close(window: FnSelectWindow) -> bool: # get the state of action_confirm_quit # if it is checked, show a question message box to ask if the user really wants to close the window # if it is not checked, return True to close the window directly. state = window.get_action_state(action_confirm_quit) if state: # access the ret = messagebox.show_question_message( window, message="Do you really want to close the window?", title="Quit", buttons=messagebox.Yes | messagebox.No, ) return ret == messagebox.Yes return True window_listener = SimpleWindowEventListener( on_create=on_window_create, on_close=on_window_close ) menus = [ Menu( title="File", actions=[ action_open, action_save, Separator(), action_confirm_quit, action_quit, ], ), Menu(title="Help", actions=[action_settings]), ] adapter = GUIAdapter() adapter.add(menu_example, window_menus=menus, window_listener=window_listener) adapter.run()
4,454
Python
.py
129
26.751938
107
0.612468
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,359
hello_world.py
zimolab_PyGUIAdapter/examples/hello_world.py
from typing import Literal from pyguiadapter.adapter import GUIAdapter from pyguiadapter.adapter.uoutput import uprint def temperature_converter( temperature: float, from_unit: Literal["°C", "°F"] = "°F", to_unit: Literal["°C", "°F"] = "°C", ) -> float: """ Convert temperature from one unit to another. --- *This is a simple demo of [`PyGUIAdapter`](https://github.com/zimolab/PyGUIAdapter).* Args: temperature (flot): current value of temperature from_unit (str): current unit of temperature to_unit (str): target unit of temperature Returns: the converted value of temperature """ if from_unit == "°C" and to_unit == "°F": converted = temperature * 9 / 5 + 32 elif from_unit == "°F" and to_unit == "°C": converted = (temperature - 32) * 5 / 9 else: converted = temperature uprint(f"{temperature}{from_unit} = {converted}{to_unit}") return converted if __name__ == "__main__": adapter = GUIAdapter() adapter.add(temperature_converter) adapter.run()
1,097
Python
.py
31
29.709677
89
0.639657
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,360
qdarktheme_example.py
zimolab_PyGUIAdapter/examples/qdarktheme_example.py
""" This example requires PyQtDarkTheme. Please install it before you run this example. """ from datetime import datetime from pyguiadapter.adapter import GUIAdapter from pyguiadapter.extend_types import text_t def app_style_example( arg1: str, arg2: int, arg3: float, arg4: bool, arg5: text_t, arg6: datetime ): """ This example requires [PyQtDarkTheme](https://github.com/5yutan5/PyQtDarkTheme). Please install it before you run the example. <br /> e.g. using `pip`: > `pip install pyqtdarktheme` @param arg1: arg1 description @param arg2: arg2 description @param arg3: arg3 description @param arg4: arg4 description @param arg5: arg5 description @param arg6: arg6 description @return: """ pass if __name__ == "__main__": import qdarktheme def on_app_start(app): # this will be called after the instantiation of QApplication. print("app started") qdarktheme.setup_theme("dark") adapter = GUIAdapter(on_app_start=on_app_start) adapter.add(app_style_example) adapter.run()
1,093
Python
.py
33
28.484848
84
0.705153
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,361
fn_select_window_menu_example.py
zimolab_PyGUIAdapter/examples/fn_select_window_menu_example.py
from pyguiadapter.action import Action, Separator from pyguiadapter.adapter import GUIAdapter from pyguiadapter.menu import Menu from pyguiadapter.utils import messagebox from pyguiadapter.windows.fnselect import FnSelectWindow def on_action_test(window: FnSelectWindow, action: Action): messagebox.show_info_message( window, message=f"Action Triggered!(Action: {action.text})" ) def on_action_close(window: FnSelectWindow, _: Action): ret = messagebox.show_question_message( window, message="Are you sure to close the application?", buttons=messagebox.Yes | messagebox.No, ) if ret == messagebox.Yes: window.close() action_test = Action( text="Test", icon="fa.folder-open", on_triggered=on_action_test, shortcut="Ctrl+O" ) action_close = Action( text="Close", icon="fa.close", on_triggered=on_action_close, shortcut="Ctrl+Q" ) menu_file = Menu( title="File", actions=[action_test, Separator(), action_close], ) def foo(): pass if __name__ == "__main__": adapter = GUIAdapter() adapter.add(foo) adapter.run(show_select_window=True, select_window_menus=[menu_file])
1,169
Python
.py
33
31.272727
86
0.719751
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,362
window_event_example.py
zimolab_PyGUIAdapter/examples/window_event_example.py
from pyguiadapter.adapter import GUIAdapter from pyguiadapter.window import BaseWindowEventListener from pyguiadapter.windows.fnexec import FnExecuteWindow from pyguiadapter.utils import messagebox def event_example_1(): pass class ExampleEventListener(BaseWindowEventListener): def on_create(self, window: FnExecuteWindow): print("on_create") super().on_create(window) def on_close(self, window: FnExecuteWindow) -> bool: print("on_close") ret = messagebox.show_question_message( window, title="Confirm Quit", message="Are you sure to quit?", buttons=messagebox.Yes | messagebox.No, ) if ret == messagebox.Yes: return True return False def on_destroy(self, window: FnExecuteWindow): print("on_destroy") super().on_destroy(window) def on_hide(self, window: FnExecuteWindow): print("on_hide") super().on_hide(window) def on_show(self, window: FnExecuteWindow): print("on_show") super().on_show(window) if __name__ == "__main__": event_listener = ExampleEventListener() adapter = GUIAdapter() adapter.add(event_example_1, window_listener=event_listener) adapter.run()
1,281
Python
.py
35
29.457143
64
0.669636
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,363
toolbar_example.py
zimolab_PyGUIAdapter/examples/toolbar_example.py
import json from pyguiadapter.action import Action, Separator from pyguiadapter.adapter import GUIAdapter from pyguiadapter.toolbar import ( ToolBar, RightToolBarArea, LeftToolBarArea, ToolButtonTextUnderIcon, TopToolBarArea, ) from pyguiadapter.utils import filedialog, inputdialog, messagebox from pyguiadapter.window import SimpleWindowEventListener from pyguiadapter.windows.fnexec import FnExecuteWindow def toolbar_example(): pass ###################Action Callbacks######################### def on_action_open(window: FnExecuteWindow, _: Action): print("on_action_open()") ret = filedialog.get_open_file( parent=window, title="Open File", start_dir="./", filters="JSON files(*.json);;All files(*.*)", ) if ret: messagebox.show_info_message(window, f"File will be opened: {ret}") def on_action_save(window: FnExecuteWindow, _: Action): print("on_action_save()") ret = filedialog.get_save_file( parent=window, title="Save File", start_dir="./", filters="JSON files(*.json);;All files(*.*)", ) if ret: messagebox.show_info_message(window, f"File will be saved to: {ret}") def on_action_settings(window: FnExecuteWindow, _: Action): default_settings = { "opt1": 1, "opt2": "2", "opt3": True, } new_settings = inputdialog.input_json_object( parent=window, title="Settings", icon="fa.cog", size=(600, 400), ok_button_text="Save", cancel_button_text="Cancel", initial_text=json.dumps(default_settings, indent=4, ensure_ascii=False), auto_indent=True, indent_size=4, auto_parentheses=True, line_wrap_mode=inputdialog.LineWrapMode.WidgetWidth, line_wrap_width=88, ) if isinstance(new_settings, dict): messagebox.show_info_message(window, f"new settings: {new_settings}") def on_action_confirm_quit(window: FnExecuteWindow, _: Action, checked: bool): print("on_action_confirm_close(): ", checked) def on_action_close(window: FnExecuteWindow, _: Action): print("on_action_close()") window.close() ###################~Action Callbacks######################### if __name__ == "__main__": ###################Actions############################# action_open = Action( text="Open", icon="fa.folder-open", on_triggered=on_action_open, shortcut="Ctrl+O", ) action_save = Action( text="Save", icon="fa.save", on_triggered=on_action_save, shortcut="Ctrl+S", ) action_settings = Action( text="Settings", icon="fa.cog", on_triggered=on_action_settings, shortcut="Ctrl+,", ) action_quit = Action( text="Quit", icon="fa.power-off", on_triggered=on_action_close, shortcut="Ctrl+Q", ) action_confirm_quit = Action( text="Confirm Quit", icon="fa.question-circle", checkable=True, checked=False, on_toggled=on_action_confirm_quit, ) ###################~Actions############################# ####################ToolBar############################# toolbar = ToolBar( actions=[ action_open, action_save, action_settings, Separator(), action_confirm_quit, action_quit, ], moveable=True, floatable=True, initial_area=RightToolBarArea, allowed_areas=RightToolBarArea | LeftToolBarArea | TopToolBarArea, button_style=ToolButtonTextUnderIcon, ) ###################~ToolBar############################# ################Window Event Listener################### def on_window_create(window: FnExecuteWindow): print("on_window_create()") # make action_confirm_quit checked after the select window is created window.set_action_state(action_confirm_quit, True) def on_window_close(window: FnExecuteWindow) -> bool: # get the state of action_confirm_quit # if it is checked, show a question message box to ask if the user really wants to close the window # if it is not checked, return True to close the window directly. state = window.get_action_state(action_confirm_quit) if state: # access the ret = messagebox.show_question_message( window, message="Do you really want to close the window?", title="Quit", buttons=messagebox.Yes | messagebox.No, ) return ret == messagebox.Yes return True window_listener = SimpleWindowEventListener( on_create=on_window_create, on_close=on_window_close ) #################Window Event Listener################## adapter = GUIAdapter() adapter.add( toolbar_example, window_toolbar=toolbar, window_listener=window_listener ) adapter.run()
5,060
Python
.py
144
27.75
107
0.588103
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,364
fn_execute_window_event_example.py
zimolab_PyGUIAdapter/examples/fn_execute_window_event_example.py
from pyguiadapter.adapter import GUIAdapter from pyguiadapter.window import SimpleWindowEventListener from pyguiadapter.windows.fnexec import FnExecuteWindow from pyguiadapter.utils import messagebox def on_window_create(window: FnExecuteWindow): print("on_create") def on_window_show(window: FnExecuteWindow): print("on_show") def on_window_hide(window: FnExecuteWindow): print("on_hide") def on_window_close(window: FnExecuteWindow) -> bool: print("on_close") ret = messagebox.show_question_message( window, title="Confirm Quit", message="Are you sure to quit?", buttons=messagebox.Yes | messagebox.No, ) if ret == messagebox.Yes: return True return False def on_window_destroy(window: FnExecuteWindow): print("on_destroy") def event_example_2(): pass if __name__ == "__main__": event_listener = SimpleWindowEventListener( on_create=on_window_create, on_show=on_window_show, on_hide=on_window_hide, on_close=on_window_close, on_destroy=on_window_destroy, ) adapter = GUIAdapter() adapter.add(event_example_2, window_listener=event_listener) adapter.run()
1,211
Python
.py
36
28.361111
64
0.710594
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,365
utoast_example.py
zimolab_PyGUIAdapter/examples/utoast_example.py
from typing import Literal from pyguiadapter.adapter import GUIAdapter, utoast from pyguiadapter.exceptions import ParameterError from pyguiadapter.extend_types import text_t, color_hex_t, int_slider_t from pyguiadapter.toast import ToastConfig, AlignLeft, AlignRight, AlignCenter def utoast_example( message: text_t, duration: int = 3000, opacity: float = 0.9, fade_out: int = 500, text_align: Literal["left", "right", "center"] = "center", text_padding: int = 50, background_color: color_hex_t = "#323232", text_color: color_hex_t = "#FFFFFF", font_size: int = 26, font_family: str = "Consolas", position_x: int_slider_t = 50, position_y: int_slider_t = 50, ): """ Show a toast message on the screen. Args: message: The message to be displayed. duration: The duration of the toast message in milliseconds. opacity: The opacity of the toast message. fade_out: The duration of the fade out animation in milliseconds. text_align: The alignment of the text inside the toast message. text_padding: The padding of the text inside the toast message. background_color: The background color of the toast message. text_color: The text color of the toast message. font_size: The font size of the text inside the toast message. font_family: The font family of the text inside the toast message. position_x: The x position (by percentage) of the toast message on the screen. position_y: The y position (by percentage) of the toast message on the screen. @params [opacity] min_value = 0.0 max_value = 1.0 step = 0.01 [position_x] min_value = 0 max_value = 100 prefix = "x: " suffix = "%" [position_y] min_value = 0 max_value = 100 prefix = "y: " suffix = "%" [background_color] alpha_channel = false [text_color] alpha_channel = false @end """ if not message or message.strip() == "": raise ParameterError( parameter_name="message", message="Message cannot be empty." ) if text_align == "left": align = AlignLeft elif text_align == "right": align = AlignRight else: align = AlignCenter position_x = float(position_x) / 100.0 position_y = float(position_y) / 100.0 toast_config = ToastConfig( opacity=opacity, background_color=background_color, text_color=text_color, text_padding=text_padding, text_alignment=align, font_size=font_size, font_family=font_family, position=(position_x, position_y), fade_out=fade_out, ) utoast.show_toast(message, duration, toast_config) if __name__ == "__main__": adapter = GUIAdapter() adapter.add(utoast_example) adapter.run()
2,877
Python
.py
83
28.506024
86
0.654788
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,366
equation_solver_5.py
zimolab_PyGUIAdapter/examples/equation_solver_5.py
from typing import Optional from pyguiadapter.action import Action from pyguiadapter.adapter import GUIAdapter from pyguiadapter.adapter.uoutput import uprint from pyguiadapter.exceptions import ParameterError from pyguiadapter.menu import Menu from pyguiadapter.utils import messagebox from pyguiadapter.widgets import FloatSpinBoxConfig from pyguiadapter.windows.fnexec import FnExecuteWindowConfig, FnExecuteWindow def equation_solver_5( a: float = 1.0, b: float = 0.0, c: float = 0.0 ) -> Optional[tuple]: """A simple equation solver for equations like: **ax^2 + bx + c = 0** (a, b, c ∈ **R** and a ≠ 0) @param a: a ∈ R and a ≠ 0 @param b: b ∈ R @param c: c ∈ R @return: """ if a == 0: raise ParameterError(parameter_name="a", message="a cannot be zero!") uprint(f"Equation:") uprint(f" {a}x² + {b}x + {c} = 0") delta = b**2 - 4 * a * c if delta < 0: return None x1 = (-b + delta**0.5) / (2 * a) if delta == 0: return x1, x1 x2 = (-b - delta**0.5) / (2 * a) return x1, x2 if __name__ == "__main__": window_config = FnExecuteWindowConfig( title="Equation Solver", icon="mdi6.function-variant", execute_button_text="Solve", size=(350, 450), document_dock_visible=False, show_function_result=True, function_result_message="roots: {}", default_parameter_group_name="Equation Parameters", # 隐藏`OutputDock`窗口 output_dock_visible=False, # 因为隐藏了`OutputDock`窗口,所以无需将函数调用结果及函数异常信息打印到输出浏览器中 print_function_error=False, print_function_result=False, # 隐藏清除按钮和清楚选框 clear_button_visible=False, clear_checkbox_visible=False, ) def on_action_about(wind: FnExecuteWindow, action: Action): messagebox.show_text_file( wind, text_file="./about.html", text_format="html", title="About", ) action_about = Action(text="About", on_triggered=on_action_about) menu_help = Menu(title="Help", actions=[action_about]) adapter = GUIAdapter() adapter.add( equation_solver_5, window_menus=[menu_help], window_config=window_config, widget_configs={ "a": FloatSpinBoxConfig( default_value=1.0, decimals=5, step=0.00005, ), "b": FloatSpinBoxConfig(decimals=5, step=0.00005), "c": FloatSpinBoxConfig(decimals=5, step=0.00005), }, ) adapter.run()
2,693
Python
.py
75
27.186667
78
0.615631
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,367
qdarkstyle_example.py
zimolab_PyGUIAdapter/examples/qdarkstyle_example.py
from datetime import datetime from qtpy.QtWidgets import QApplication from pyguiadapter.adapter import GUIAdapter from pyguiadapter.extend_types import text_t def app_style_example( arg1: str, arg2: int, arg3: float, arg4: bool, arg5: text_t, arg6: datetime ): """ This example requires [QDarkStyleSheet](https://github.com/ColinDuquesnoy/QDarkStyleSheet). Please install it before you run the example. <br /> e.g. using `pip`: > `pip install qdarkstyle` @param arg1: arg1 description @param arg2: arg2 description @param arg3: arg3 description @param arg4: arg4 description @param arg5: arg5 description @param arg6: arg6 description @return: @params [arg6] calendar_popup = true @end """ pass if __name__ == "__main__": import qdarkstyle def on_app_start(app: QApplication): # this will be called after the instantiation of QApplication. print("app started") app.setStyleSheet(qdarkstyle.load_stylesheet()) adapter = GUIAdapter(on_app_start=on_app_start) adapter.add(app_style_example) adapter.run()
1,141
Python
.py
35
27.628571
95
0.705775
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,368
equation_solver_4.py
zimolab_PyGUIAdapter/examples/equation_solver_4.py
from typing import Optional from pyguiadapter.adapter import GUIAdapter from pyguiadapter.adapter.uoutput import uprint from pyguiadapter.exceptions import ParameterError from pyguiadapter.widgets import FloatSpinBoxConfig from pyguiadapter.windows.fnexec import FnExecuteWindowConfig def equation_solver_4( a: float = 1.0, b: float = 0.0, c: float = 0.0 ) -> Optional[tuple]: """A simple equation solver for equations like: **ax^2 + bx + c = 0** (a, b, c ∈ **R** and a ≠ 0) @param a: a ∈ R and a ≠ 0 @param b: b ∈ R @param c: c ∈ R @return: """ if a == 0: raise ParameterError(parameter_name="a", message="a cannot be zero!") uprint(f"Equation:") uprint(f" {a}x² + {b}x + {c} = 0") delta = b**2 - 4 * a * c if delta < 0: return None x1 = (-b + delta**0.5) / (2 * a) if delta == 0: return x1, x1 x2 = (-b - delta**0.5) / (2 * a) return x1, x2 if __name__ == "__main__": window_config = FnExecuteWindowConfig( title="Equation Solver", icon="mdi6.function-variant", execute_button_text="Solve", size=(350, 550), document_dock_visible=False, output_dock_initial_size=(None, 100), show_function_result=True, function_result_message="roots: {}", default_parameter_group_name="Equation Parameters", ) adapter = GUIAdapter() adapter.add( equation_solver_4, window_config=window_config, widget_configs={ "a": FloatSpinBoxConfig( default_value=1.0, decimals=5, step=0.00005, ), "b": FloatSpinBoxConfig(decimals=5, step=0.00005), "c": FloatSpinBoxConfig(decimals=5, step=0.00005), }, ) adapter.run()
1,828
Python
.py
55
26.109091
77
0.593607
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,369
custom_icon_and_name_example.py
zimolab_PyGUIAdapter/examples/custom_icon_and_name_example.py
from pyguiadapter.adapter import GUIAdapter def function_1(arg: int): """ description of function_1 """ pass def function_2(arg: int): """ description of function_2 """ pass def function_3(arg: int): """ description of function_3 """ pass if __name__ == "__main__": adapter = GUIAdapter() adapter.add(function_1, display_name="Barcode Generator", icon="ei.barcode") adapter.add(function_2, display_name="QRCode Generator", icon="ei.qrcode") adapter.add(function_3, display_name="Generator Service", icon="mdi.web") adapter.run()
605
Python
.py
22
23.045455
80
0.66087
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,370
fn_select_window_event_example.py
zimolab_PyGUIAdapter/examples/fn_select_window_event_example.py
from pyguiadapter.adapter import GUIAdapter from pyguiadapter.utils import messagebox from pyguiadapter.window import SimpleWindowEventListener from pyguiadapter.windows.fnselect import FnSelectWindow def on_window_create(window: FnSelectWindow): print("on_create") def on_window_show(window: FnSelectWindow): print("on_show") def on_window_hide(window: FnSelectWindow): print("on_hide") def on_window_close(window: FnSelectWindow) -> bool: print("on_close") ret = messagebox.show_question_message( window, title="Confirm Quit", message="Are you sure to quit?", buttons=messagebox.Yes | messagebox.No, ) if ret == messagebox.Yes: return True return False def on_window_destroy(window: FnSelectWindow): print("on_destroy") def event_example_3(): pass if __name__ == "__main__": event_listener = SimpleWindowEventListener( on_create=on_window_create, on_show=on_window_show, on_hide=on_window_hide, on_close=on_window_close, on_destroy=on_window_destroy, ) adapter = GUIAdapter() adapter.add(event_example_3) adapter.run(show_select_window=True, select_window_listener=event_listener)
1,237
Python
.py
36
29.083333
79
0.713564
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,371
exception_example.py
zimolab_PyGUIAdapter/examples/exception_example.py
from pyguiadapter.adapter import GUIAdapter def foo(a: int, b: int) -> float: return float(a) / b if __name__ == "__main__": adapter = GUIAdapter() adapter.add(foo) adapter.run()
199
Python
.py
7
24.571429
43
0.643617
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,372
fn_select_window_toolbar_example.py
zimolab_PyGUIAdapter/examples/fn_select_window_toolbar_example.py
from pyguiadapter.action import Action from pyguiadapter.adapter import GUIAdapter from pyguiadapter.toolbar import ToolBar, ToolButtonTextUnderIcon from pyguiadapter.utils import messagebox from pyguiadapter.windows.fnselect import FnSelectWindow def on_action_test(window: FnSelectWindow, action: Action): messagebox.show_info_message( window, message=f"Action Triggered!(Action: {action.text})" ) def on_action_close(window: FnSelectWindow, _: Action): ret = messagebox.show_question_message( window, message="Are you sure to close the application?", buttons=messagebox.Yes | messagebox.No, ) if ret == messagebox.Yes: window.close() action_test = Action( text="Test", icon="fa.folder-open", on_triggered=on_action_test, shortcut="Ctrl+O" ) action_close = Action( text="Close", icon="fa.close", on_triggered=on_action_close, shortcut="Ctrl+Q" ) toolbar = ToolBar( actions=[action_test, action_close], floatable=True, button_style=ToolButtonTextUnderIcon, ) def foo(): pass if __name__ == "__main__": adapter = GUIAdapter() adapter.add(foo) adapter.run(show_select_window=True, select_window_toolbar=toolbar)
1,218
Python
.py
34
31.676471
86
0.734015
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,373
save_load_parameters_example.py
zimolab_PyGUIAdapter/examples/save_load_parameters_example.py
import enum import json from typing import Any, Dict from pyguiadapter.action import Action from pyguiadapter.adapter import GUIAdapter from pyguiadapter.adapter.uoutput import uprint from pyguiadapter.exceptions import ParameterError from pyguiadapter.extend_types import color_t, json_obj_t from pyguiadapter.menu import Menu from pyguiadapter.utils import PyLiteralType, messagebox, filedialog, io from pyguiadapter.windows.fnexec import FnExecuteWindow def on_action_save_params(window: FnExecuteWindow, _: Action): # check if the function is executing if window.is_function_executing(): messagebox.show_warning_message(window, "Function is executing") return # get current parameter values from widgets # some values may be invalid so do not forget to catch errors try: params: Dict[str, Any] = window.get_parameter_values() except ParameterError as e: # if the error is a ParameterError, we can let the window handle it window.process_parameter_error(e) return except Exception as e: # if the error is not a ParameterError, we need handle it by ourselves properly # here we just show the exception message with a message box messagebox.show_exception_messagebox( window, e, message="Unable to get the parameters: {}" ) return # now we get current parameter values, we can save them to a location like a file in disk. # So the next topic is how to serialize them properly? It is not a simple problem especially considering that we # need to load them back later. # If the all the parameters are basic or simple types, json is a good choice. However, considering the current case # we are working on, we have to deal with some complex types, like: # arg5: list # arg6: dict # arg7: tuple # arg8: set # arg10: json_obj_t # arg11: WeekDay # arg12: PyLiteralType # In order to save them in json files and read them back accurately, a lot of efforts need to be made in # serialization and deserialization logic. # As a demo, we decide not to do this job so precisely here. In a real life project, please be careful. # let user select a file to save the parameters save_path = filedialog.get_save_file( window, title="Save Parameters", start_dir="./", filters="JSON files(*.json)" ) if not save_path: return # process arg8 which is a set # set is not serializable by default, so we have to convert it to a list first if "arg8" in params: arg8 = params["arg8"] params["arg8"] = list(arg8) # process arg11 which is an enum of type WeekDay if "arg11" in params: arg11 = params["arg11"] params["arg11"] = arg11.value try: # process arg12 which is a PyLiteralType if "arg12" in params: arg12 = params["arg12"] params["arg12"] = json.dumps(arg12, ensure_ascii=False) serialized_params = json.dumps(params, ensure_ascii=False) except Exception as e: messagebox.show_exception_messagebox( window, e, message="Unable to serialize the parameters: " ) return try: io.write_text_file(save_path, serialized_params) except Exception as e: messagebox.show_exception_messagebox( window, e, message="Unable to save the parameters: " ) return messagebox.show_info_message(window, "Parameters have been saved!") def on_action_load_params(window: FnExecuteWindow, _: Action): # check if the function is executing if window.is_function_executing(): messagebox.show_warning_message(window, "Function is executing") return load_path = filedialog.get_open_file( window, title="Load Parameters", start_dir="./", filters="JSON files(*.json)" ) if not load_path: return try: content = io.read_text_file(load_path) params = json.loads(content) except Exception as e: messagebox.show_exception_messagebox( window, e, message="Unable to load the parameters: " ) return if not isinstance(params, dict): messagebox.show_critical_message(window, message="Invalid parameters format!") return # some parameters require special processing to be converted back try: # arg7: tuple if "arg7" in params: arg7 = params["arg7"] params["arg7"] = tuple(arg7) # arg8: set if "arg8" in params: arg8 = params["arg8"] params["arg8"] = set(arg8) # arg9: color_t (which is actually a tuple of 3 or 4 elements in this demo) if "arg9" in params: arg9 = params["arg9"] params["arg9"] = tuple(arg9) # arg11: WeekDay (a Enum class) if "arg11" in params: arg11 = params["arg11"] params["arg11"] = WeekDay(arg11) except Exception as e: messagebox.show_exception_messagebox( window, e, message="Invalid parameters format: " ) return try: window.set_parameter_values(params) except ParameterError as e: window.process_parameter_error(e) return except Exception as e: messagebox.show_exception_messagebox( window, e, message="Unable to set the parameters: " ) return else: messagebox.show_info_message(window, "Parameters have been loaded!") class WeekDay(enum.Enum): Monday = 1 Tuesday = 2 Wednesday = 3 Thursday = 4 Friday = 5 Saturday = 6 Sunday = 7 def load_save_example( arg1: int, arg2: str, arg3: bool, arg4: float, arg5: list, arg6: dict, arg7: tuple, arg8: set, arg9: color_t, arg10: json_obj_t, arg11: WeekDay, ar12: PyLiteralType, ): uprint("arg1=", arg1) uprint("arg2=", arg2) uprint("arg3=", arg3) uprint("arg4=", arg4) uprint("arg5=", arg5) uprint("arg6=", arg6) uprint("arg7=", arg7) uprint("arg8=", arg8) uprint("arg9=", arg9) uprint("arg10=", arg10) uprint("arg11=", arg11) uprint("ar12=", ar12) if __name__ == "__main__": action_save_params = Action( text="Save Parameters", icon="fa.save", shortcut="Ctrl+S", on_triggered=on_action_save_params, ) action_load_params = Action( text="Load Parameters", icon="fa.folder-open", shortcut="Ctrl+L", on_triggered=on_action_load_params, ) file_menu = Menu( title="File", actions=[action_save_params, action_load_params], ) adapter = GUIAdapter() adapter.add(load_save_example, window_menus=[file_menu]) adapter.run()
6,833
Python
.py
190
29.157895
119
0.648853
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,374
uinput_builtin_dialog_example.py
zimolab_PyGUIAdapter/examples/uinput_builtin_dialog_example.py
from pyguiadapter.adapter import GUIAdapter from pyguiadapter.adapter import uinput from pyguiadapter.adapter.uoutput import uprint from pyguiadapter.extend_types import choices_t # noinspection SpellCheckingInspection def uinput_example(inputs: choices_t): """ Example of getting user inputs inside the function @param inputs: choose what you want to get from user @return: @params [inputs] choices = ["int", "str", "text", "float", "item", "color", "dir", "file", "save_file", "files", "json object", "python literal"] columns = 2 @end """ if "int" in inputs: value = uinput.get_int(title="Input Integer", label="Enter an integer:") uprint("User inputs: ", value) if "str" in inputs: value = uinput.get_string(title="Input Text", label="Enter a string:") uprint("User inputs: ", value) if "text" in inputs: value = uinput.get_text(title="Input Text", label="Enter a string:") uprint("User inputs: ", value) if "float" in inputs: value = uinput.get_float(title="Input Float", label="Enter a float:") uprint("User inputs: ", value) if "item" in inputs: value = uinput.get_selected_item( items=["Item 1", "Item 2", "Item 3", "Item 4"], title="Select Item", label="Select an item:", ) uprint("User inputs: ", value) if "color" in inputs: value = uinput.get_color(title="Select Color", alpha_channel=True) uprint("User inputs: ", value) if "dir" in inputs: value = uinput.get_existing_directory(title="Select Directory") uprint("User inputs: ", value) if "file" in inputs: value = uinput.get_open_file(title="Select File") uprint("User inputs: ", value) if "save_file" in inputs: value = uinput.get_save_file(title="Select File") uprint("User inputs: ", value) if "files" in inputs: value = uinput.get_open_files(title="Select Files") uprint("User inputs: ", value) if "json object" in inputs: value = uinput.get_json_object(title="Input Json Object") uprint("User inputs: ", value, f" {type(value)}") if "python literal" in inputs: value = uinput.get_py_literal(title="Input Python Literal") uprint("User inputs: ", value, f" {type(value)}") if __name__ == "__main__": adapter = GUIAdapter() adapter.add(uinput_example) adapter.run()
2,474
Python
.py
60
34.533333
132
0.630814
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,375
more_widgets_example.py
zimolab_PyGUIAdapter/examples/more_widgets_example.py
import enum from datetime import datetime, date, time from typing import List, Tuple, Literal from pyguiadapter.adapter import GUIAdapter from pyguiadapter.adapter.uoutput import uprint from pyguiadapter.extend_types import ( int_t, int_dial_t, int_slider_t, float_t, file_t, directory_t, files_t, color_t, string_list_t, plain_dict_t, json_obj_t, text_t, key_sequence_t, choices_t, choice_t, ) class WeekDays(enum.Enum): Monday = 1 Tuesday = 2 Wednesday = 3 Thursday = 4 Friday = 5 Saturday = 6 Sunday = 7 def more_widgets_example( arg1: int, arg2: float, arg3: str, arg4: bool, arg5: List[int], arg6: Tuple, arg7: dict, arg9: set, arg10: int_t, arg11: int_dial_t, arg12: int_slider_t, arg13: float_t, arg14: file_t, arg15: directory_t, arg16: files_t, arg17: Literal["a", "b", "c"], arg18: color_t, arg19: string_list_t, arg20: plain_dict_t, arg21: json_obj_t, arg22: text_t, arg23: datetime, arg24: date, arg25: time, arg26: key_sequence_t, arg27: choices_t, arg28: choice_t, arg29: WeekDays, ): """ @params [arg27] choices = ["a", "b", "c", "d", "e", "f"] columns = 2 [arg28] choices = ["a", "b", "c", "d", "e", "f"] editable = true @end """ uprint("arg1=", arg1) uprint("arg2=", arg2) uprint("arg3=", arg3) uprint("arg4=", arg4) uprint("arg5=", arg5) uprint("arg6=", arg6) uprint("arg7=", arg7) uprint("arg9=", arg9) uprint("arg10=", arg10) uprint("arg11=", arg11) uprint("arg12=", arg12) uprint("arg13=", arg13) uprint("arg14=", arg14) uprint("arg15=", arg15) uprint("arg16=", arg16) uprint("arg17=", arg17) uprint("arg18=", arg18) uprint("arg19=", arg19) uprint("arg20=", arg20) uprint("arg21=", arg21) uprint("arg22=", arg22) uprint("arg23=", arg23) uprint("arg24=", arg24) uprint("arg25=", arg25) uprint("arg26=", arg26) uprint("arg27=", arg27) uprint("arg28=", arg28) uprint("arg29=", arg29) if __name__ == "__main__": adapter = GUIAdapter() adapter.add(more_widgets_example) adapter.run()
2,275
Python
.py
102
17.627451
47
0.593432
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,376
global_style_example_2.py
zimolab_PyGUIAdapter/examples/global_style_example_2.py
import os.path from datetime import datetime from pyguiadapter import utils from pyguiadapter.adapter import GUIAdapter from pyguiadapter.extend_types import text_t def app_style_example( arg1: str, arg2: int, arg3: float, arg4: bool, arg5: text_t, arg6: datetime ): """ This example shows how to apply a global stylesheet to the application. First, read the stylesheet from a qss file. In this example, [Ubuntu.qss](https://github.com/GTRONICK/QSS/blob/master/Ubuntu.qss) will be used. This qss file is from GTRONICK's [QSS](https://github.com/GTRONICK/QSS) repo. Then, pass the qss content to the GUIAdapter constructor's **global_style** argument. """ pass if __name__ == "__main__": QSS_FILE = os.path.join(os.path.dirname(__file__), "Ubuntu.qss") def load_stylesheet() -> str: """ This function will be called after the QApplication instance being created """ return utils.read_text_file(QSS_FILE) adapter = GUIAdapter(global_stylesheet=load_stylesheet) adapter.add(app_style_example) adapter.run()
1,099
Python
.py
25
39.16
133
0.714017
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,377
equation_solver_3.py
zimolab_PyGUIAdapter/examples/equation_solver_3.py
from typing import Optional from pyguiadapter.adapter import GUIAdapter from pyguiadapter.adapter.uoutput import uprint from pyguiadapter.exceptions import ParameterError from pyguiadapter.windows.fnexec import FnExecuteWindowConfig def equation_solver_3( a: float = 1.0, b: float = 0.0, c: float = 0.0 ) -> Optional[tuple]: """A simple equation solver for equations like: **ax^2 + bx + c = 0** (a, b, c ∈ **R** and a ≠ 0) @param a: a ∈ R and a ≠ 0 @param b: b ∈ R @param c: c ∈ R @return: @params [a] decimals = 5 step = 0.00005 [b] decimals = 5 step = 0.00005 [c] decimals = 5 step = 0.00005 @end """ if a == 0: raise ParameterError(parameter_name="a", message="a cannot be zero!") uprint(f"Equation:") uprint(f" {a}x² + {b}x + {c} = 0") delta = b**2 - 4 * a * c if delta < 0: return None x1 = (-b + delta**0.5) / (2 * a) if delta == 0: return x1, x1 x2 = (-b - delta**0.5) / (2 * a) return x1, x2 if __name__ == "__main__": window_config = FnExecuteWindowConfig( title="Equation Solver", icon="mdi6.function-variant", execute_button_text="Solve", size=(350, 550), document_dock_visible=False, output_dock_initial_size=(None, 100), show_function_result=True, function_result_message="roots: {}", default_parameter_group_name="Equation Parameters", ) adapter = GUIAdapter() adapter.add(equation_solver_3, window_config=window_config) adapter.run()
1,603
Python
.py
53
24.471698
77
0.603934
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,378
menu_toolbar_example.py
zimolab_PyGUIAdapter/examples/menu_toolbar_example.py
from pyguiadapter.action import Action, Separator from pyguiadapter.adapter import GUIAdapter from pyguiadapter.menu import Menu from pyguiadapter.toolbar import ToolBar from pyguiadapter.windows.fnexec import FnExecuteWindow from pyguiadapter.utils import messagebox, filedialog def on_action_about(window: FnExecuteWindow, _: Action): messagebox.show_info_message( parent=window, message="This is an example of toolbar and menu with custom actions.", title="About", ) def on_action_close(window: FnExecuteWindow, _: Action): ret = messagebox.show_question_message( window, "Are you sure you want to quit?", buttons=messagebox.Yes | messagebox.No ) if ret == messagebox.Yes: window.close() def on_action_open(window: FnExecuteWindow, _: Action): ret = filedialog.get_open_file( window, title="Open File", start_dir="./", filters="JSON files(*.json);;Python files(*.py);;All files(*.*)", ) if not ret: return messagebox.show_info_message(window, f"File will be opened: {ret}") def on_action_save(window: FnExecuteWindow, _: Action): ret = filedialog.get_save_file( window, title="Save File", start_dir="./", filters="JSON files(*.json);;All files(*.*)", ) if not ret: return messagebox.show_info_message(window, f"File will be saved: {ret}") def on_action_auto_theme(window: FnExecuteWindow, _: Action, checked: bool): if checked: messagebox.show_info_message(window, "Auto theme is selected.") def on_action_light_theme(window: FnExecuteWindow, _: Action, checked: bool): if checked: messagebox.show_info_message(window, "Light theme is selected.") def on_action_dark_theme(window: FnExecuteWindow, _: Action, checked: bool): if checked: messagebox.show_info_message(window, "Dark theme is selected.") action_about = Action( text="About", icon="fa.info-circle", on_triggered=on_action_about, ) action_open = Action( text="Open", icon="fa.folder-open", shortcut="Ctrl+O", on_triggered=on_action_open, ) action_save = Action( text="Save", icon="fa.save", shortcut="Ctrl+S", on_triggered=on_action_save, ) action_close = Action( text="Quit", icon="fa.close", shortcut="Ctrl+Q", on_triggered=on_action_close, ) action_auto_them = Action( text="Auto", checkable=True, checked=True, on_toggled=on_action_auto_theme, ) action_light_theme = Action( text="Light", checkable=True, on_toggled=on_action_light_theme, ) action_dark_theme = Action( text="Dark", checkable=True, on_toggled=on_action_dark_theme, ) submenu_theme = Menu( title="Theme", actions=[action_auto_them, action_light_theme, action_dark_theme], exclusive=True, ) menu_file = Menu( title="File", actions=[ action_open, action_save, Separator(), action_close, Separator(), submenu_theme, ], ) menu_help = Menu( title="Help", actions=[action_about], ) def menu_toolbar_example(arg1: int, arg2: str, arg3: bool): """ This example shows how to add and config toolbar and menus to the window. @param arg1: @param arg2: @param arg3: @return: """ pass if __name__ == "__main__": adapter = GUIAdapter() adapter.add( menu_toolbar_example, window_menus=[menu_file, menu_help], window_toolbar=ToolBar( actions=[action_open, action_save, Separator(), action_close] ), ) adapter.run()
3,637
Python
.py
125
24.04
88
0.663128
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,379
clipboard_example.py
zimolab_PyGUIAdapter/examples/clipboard_example.py
from pyguiadapter.adapter import GUIAdapter from pyguiadapter.adapter import uclipboard from pyguiadapter.adapter.uoutput import uprint from pyguiadapter.extend_types import text_t def clipboard_example(text: text_t): uprint("selection support:", uclipboard.supports_selection()) uprint("owns selection:", uclipboard.owns_selection()) uprint("owns clipboard:", uclipboard.owns_clipboard()) uprint("selection text:") uprint(uclipboard.get_selection_text()) uprint("clipboard text:") uprint(uclipboard.get_text()) uprint("set clipboard text...") uclipboard.set_text(text) uprint("clipboard text:") uprint(uclipboard.get_text()) uprint("======================") if __name__ == "__main__": adapter = GUIAdapter() adapter.add(clipboard_example) adapter.run()
818
Python
.py
21
34.904762
65
0.713745
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,380
style_override_example.py
zimolab_PyGUIAdapter/examples/style_override_example.py
""" This example requires PyQtDarkTheme. Please install it before you run this example. """ from datetime import datetime from pyguiadapter.adapter import GUIAdapter from pyguiadapter.extend_types import text_t from pyguiadapter.windows.fnexec import FnExecuteWindowConfig, OutputBrowserConfig def app_style_example( arg1: str, arg2: int, arg3: float, arg4: bool, arg5: text_t, arg6: datetime ): """ This example requires [PyQtDarkTheme](https://github.com/5yutan5/PyQtDarkTheme). Please install it before you run the example. <br /> e.g. using `pip`: > `pip install pyqtdarktheme` <br /> The style of output browser will be overridden with **OutputBrowserConfig.stylesheet** @param arg1: arg1 description @param arg2: arg2 description @param arg3: arg3 description @param arg4: arg4 description @param arg5: arg5 description @param arg6: arg6 description @return: """ pass if __name__ == "__main__": import qdarktheme def on_app_start(app): # this will be called after the instantiation of QApplication. print("app started") qdarktheme.setup_theme("dark") adapter = GUIAdapter(on_app_start=on_app_start) adapter.add( app_style_example, window_config=FnExecuteWindowConfig( output_browser_config=OutputBrowserConfig( stylesheet=""" background-color: "#380C2A"; color: "#FFFFFF"; font-family: "Consolas"; font-size: 12pt; """ ) ), ) adapter.run()
1,623
Python
.py
48
27.041667
90
0.660051
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,381
parameter_anchor_example.py
zimolab_PyGUIAdapter/examples/parameter_anchor_example.py
from datetime import datetime, date, time from pyguiadapter.adapter import GUIAdapter from pyguiadapter.extend_types import string_list_t from pyguiadapter.widgets import IntSpinBoxConfig from pyguiadapter.windows import DocumentBrowserConfig from pyguiadapter.windows.fnexec import FnExecuteWindowConfig def parameter_anchor_example( a: int, b: float, c: bool, d: str, e: datetime, f: date, h: time, i: list, j: tuple, k: dict, l: string_list_t, ): """ This example show how to use parameter anchor. <br> <h3>Parameter Anchors</h3> <a href="#param=a">click to jump to parameter a.</a> <br> <a href="#param=b">click to jump to parameter b.</a> <br> <a href="#param=c">click to jump to parameter c.</a> <br> <a href="#param=d">click to jump to parameter d.</a> <br> <a href="#param=e">click to jump to parameter e.</a> <br> <a href="#param=f">click to jump to parameter f.</a> <br> <a href="#param=h">click to jump to parameter h.</a> <br> <a href="#param=i">click to jump to parameter i.</a> <br> <a href="#param=j">click to jump to parameter j.</a> <br> <a href="#param=k">click to jump to parameter k.</a> <br> <a href="#param=l">click to jump to parameter l.</a> <h3>Group Anchors</h3> <a href="#group=">click to jump to default group</a> <br> <a href="#group=Group A">click to jump to group Group A.</a> <br> <a href="#group=Group B">click to jump to group Group B.</a> <br> <a href="#group=Group C">click to jump to group Group C.</a> Args: a: description of a. b: description of b. c: description of c. d: description of d. e: description of e. f: description of f. l: description of l. k: description of k. j: description of j. i: description of i. h: description of h. Returns: """ pass if __name__ == "__main__": a_conf = IntSpinBoxConfig(group="Group A") b_conf = IntSpinBoxConfig(group="Group B") c_conf = IntSpinBoxConfig(group="Group C") adapter = GUIAdapter() adapter.add( parameter_anchor_example, document_format="html", widget_configs={"a": a_conf, "b": b_conf, "c": c_conf}, window_config=FnExecuteWindowConfig( document_browser_config=DocumentBrowserConfig( parameter_anchor=True, group_anchor=True ) ), ) adapter.run()
2,533
Python
.py
83
24.771084
64
0.617021
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,382
fn_execute_window_event_example_2.py
zimolab_PyGUIAdapter/examples/fn_execute_window_event_example_2.py
from pyguiadapter.adapter import GUIAdapter from pyguiadapter.utils import messagebox from pyguiadapter.windows.fnexec import ( FnExecuteWindow, SimpleFnExecuteWindowEventListener, ) def on_execute_start(window: FnExecuteWindow): print("on_execute_start()") def on_execute_result(window: FnExecuteWindow, result) -> bool: print(f"on_execute_result(): {result}") messagebox.show_info_message(window, message=f"Result: {result}", title="Result") return False def on_execute_error(window: FnExecuteWindow, error) -> bool: print(f"on_execute_error(): {error}") messagebox.show_exception_messagebox(window, error) return False def on_execute_finish(window: FnExecuteWindow): print("on_execute_finish()") def event_example_3(a: int = 1, b: int = 1): return a / b if __name__ == "__main__": event_listener = SimpleFnExecuteWindowEventListener( on_execute_start=on_execute_start, on_execute_result=on_execute_result, on_execute_error=on_execute_error, on_execute_finish=on_execute_finish, ) adapter = GUIAdapter() adapter.add(event_example_3, window_listener=event_listener) adapter.run()
1,189
Python
.py
30
35.033333
85
0.728858
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,383
function_groups_example.py
zimolab_PyGUIAdapter/examples/function_groups_example.py
from pyguiadapter.adapter import GUIAdapter def mp4_encoder(): """ MP4 Encoder """ pass def mp3_encoder(): """ MP3 Encoder """ pass def avi_encoder(): """ AVI Encoder """ pass def ogg_encoder(): """ OGG Encoder """ pass def avi_decoder(): """ AVI Decoder """ pass def ogg_decoder(): """ OGG Decoder """ pass def mp3_decoder(): """ MP3 Decoder """ pass def mp4_decoder(): """ MP4 Decoder """ pass def universal_settings(): """ Universal Settings """ pass if __name__ == "__main__": adapter = GUIAdapter() adapter.add(universal_settings) adapter.add(mp4_encoder, group="Encoders") adapter.add(mp3_encoder, group="Encoders") adapter.add(avi_encoder, group="Encoders") adapter.add(ogg_encoder, group="Encoders") adapter.add(avi_decoder, group="Decoders") adapter.add(ogg_decoder, group="Decoders") adapter.add(mp3_decoder, group="Decoders") adapter.add(mp4_decoder, group="Decoders") adapter.run()
1,102
Python
.py
58
14.413793
46
0.609375
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,384
hide_docks_example.py
zimolab_PyGUIAdapter/examples/hide_docks_example.py
from pyguiadapter.adapter import GUIAdapter, udialog from pyguiadapter.exceptions import ParameterError from pyguiadapter.windows.fnexec import FnExecuteWindowConfig def hide_docks_example(a: int, b: str, c: bool): if a < 0: raise ParameterError("a", "a must >= 0") if b == "": raise ValueError("invalid value of b") udialog.show_info_messagebox(f"Receive: {a}, {b}, {c}") if __name__ == "__main__": adapter = GUIAdapter() adapter.add( hide_docks_example, window_config=FnExecuteWindowConfig( size=(300, 400), document_dock_visible=False, output_dock_visible=False, clear_button_visible=False, clear_checkbox_visible=False, execute_button_text="Start", default_parameter_group_name="Parameters", ), ) adapter.run()
871
Python
.py
24
28.791667
61
0.635824
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,385
menu_example_2.py
zimolab_PyGUIAdapter/examples/menu_example_2.py
import json from pyguiadapter.action import Action, Separator from pyguiadapter.adapter import GUIAdapter from pyguiadapter.menu import Menu from pyguiadapter.toolbar import ToolBar from pyguiadapter.utils import filedialog, inputdialog, messagebox from pyguiadapter.window import SimpleWindowEventListener from pyguiadapter.windows.fnexec import FnExecuteWindow def menu_example(): pass ###################Action Callbacks######################### def on_action_open(window: FnExecuteWindow, _: Action): print("on_action_open()") ret = filedialog.get_open_file( parent=window, title="Open File", start_dir="./", filters="JSON files(*.json);;All files(*.*)", ) if ret: messagebox.show_info_message(window, f"File will be opened: {ret}") def on_action_save(window: FnExecuteWindow, _: Action): print("on_action_save()") ret = filedialog.get_save_file( parent=window, title="Save File", start_dir="./", filters="JSON files(*.json);;All files(*.*)", ) if ret: messagebox.show_info_message(window, f"File will be saved to: {ret}") def on_action_settings(window: FnExecuteWindow, _: Action): default_settings = { "opt1": 1, "opt2": "2", "opt3": True, } new_settings = inputdialog.input_json_object( parent=window, title="Settings", icon="fa.cog", size=(600, 400), ok_button_text="Save", cancel_button_text="Cancel", initial_text=json.dumps(default_settings, indent=4, ensure_ascii=False), auto_indent=True, indent_size=4, auto_parentheses=True, line_wrap_mode=inputdialog.LineWrapMode.WidgetWidth, line_wrap_width=88, ) if isinstance(new_settings, dict): messagebox.show_info_message(window, f"new settings: {new_settings}") def on_action_confirm_quit(window: FnExecuteWindow, _: Action, checked: bool): print("on_action_confirm_close(): ", checked) def on_action_close(window: FnExecuteWindow, _: Action): print("on_action_close()") window.close() def on_action_about(window: FnExecuteWindow, _: Action): print("on_action_about()") about_text = """ <h1>PyGUIAdapter V2</h1> <p>PyGUIAdapter is a GUI lib for those who want make GUI application without writing GUI code!</p> <p> You can access the source code <a href="https://github.com/zimolab/PyGUIAdapter">here</a>! </p> """ messagebox.show_text_content( window, text_content=about_text, text_format="html", title="About PyGUIAdapter", icon="fa.info-circle", ) def on_action_license(window: FnExecuteWindow, _: Action): print("on_action_license()") license_file = "../../LICENSE" messagebox.show_text_file( window, text_file=license_file, text_format="plaintext", title="License", icon="fa.copyright", ) ###################~Action Callbacks######################### if __name__ == "__main__": ###################Actions############################# action_open = Action( text="Open", icon="fa.folder-open", on_triggered=on_action_open, shortcut="Ctrl+O", ) action_save = Action( text="Save", icon="fa.save", on_triggered=on_action_save, shortcut="Ctrl+S", ) action_settings = Action( text="Settings", icon="fa.cog", on_triggered=on_action_settings, shortcut="Ctrl+,", ) action_quit = Action( text="Quit", icon="fa.power-off", on_triggered=on_action_close, shortcut="Ctrl+Q", ) action_confirm_quit = Action( text="Confirm Quit", icon="fa.question-circle", checkable=True, checked=False, on_toggled=on_action_confirm_quit, ) action_about = Action( text="About", icon="fa.info-circle", on_triggered=on_action_about, ) action_license = Action( text="License", icon="fa.copyright", on_triggered=on_action_license, ) ###################~Actions############################# ####################Menus############################# submenu_help = Menu( title="Help", actions=[action_about, action_license], ) menu_file = Menu( title="File", actions=[ action_open, action_save, Separator(), submenu_help, Separator(), action_quit, ], ) menu_settings = Menu( title="Settings", actions=[action_settings, Separator(), action_confirm_quit], ) menus = [menu_file, menu_settings] ###################~Menus############################# ################Window Event Listener################### def on_window_create(window: FnExecuteWindow): print("on_window_create()") # make action_confirm_quit checked after the select window is created window.set_action_state(action_confirm_quit, True) def on_window_close(window: FnExecuteWindow) -> bool: # get the state of action_confirm_quit # if it is checked, show a question message box to ask if the user really wants to close the window # if it is not checked, return True to close the window directly. state = window.get_action_state(action_confirm_quit) if state: # access the ret = messagebox.show_question_message( window, message="Do you really want to close the window?", title="Quit", buttons=messagebox.Yes | messagebox.No, ) return ret == messagebox.Yes return True window_listener = SimpleWindowEventListener( on_create=on_window_create, on_close=on_window_close ) #################Window Event Listener################## adapter = GUIAdapter() adapter.add( menu_example, window_menus=menus, window_toolbar=ToolBar( actions=[ action_open, action_save, Separator(), action_settings, Separator(), action_about, action_license, ] ), window_listener=window_listener, ) adapter.run()
6,463
Python
.py
193
25.761658
107
0.575
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,386
equation_solver.py
zimolab_PyGUIAdapter/examples/equation_solver.py
from typing import Optional from pyguiadapter.adapter import GUIAdapter from pyguiadapter.adapter.uoutput import uprint from pyguiadapter.exceptions import ParameterError def equation_solver(a: float = 1.0, b: float = 0.0, c: float = 0.0) -> Optional[tuple]: """A simple equation solver for equations like: **ax^2 + bx + c = 0** (a, b, c ∈ **R** and a ≠ 0) @param a: a ∈ R and a ≠ 0 @param b: b ∈ R @param c: c ∈ R @return: """ if a == 0: raise ParameterError(parameter_name="a", message="a cannot be zero!") uprint(f"Equation:") uprint(f" {a}x² + {b}x + {c} = 0") delta = b**2 - 4 * a * c if delta < 0: return None x1 = (-b + delta**0.5) / (2 * a) if delta == 0: return x1, x1 x2 = (-b - delta**0.5) / (2 * a) return x1, x2 if __name__ == "__main__": adapter = GUIAdapter() adapter.add(equation_solver) adapter.run()
939
Python
.py
28
28.25
87
0.583614
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,387
udialog_std_messagebox_example.py
zimolab_PyGUIAdapter/examples/udialog_std_messagebox_example.py
from pyguiadapter.adapter import GUIAdapter from pyguiadapter.adapter import udialog from pyguiadapter.adapter.uoutput import uprint from pyguiadapter.extend_types import text_t from pyguiadapter.utils import messagebox def dialog_example( info_message: text_t, warning_message: text_t, error_message: text_t, question_message: text_t, ): if info_message: udialog.show_info_messagebox( text=info_message, title="Information", buttons=messagebox.Ok | messagebox.No, default_button=messagebox.Ok, ) if warning_message: udialog.show_warning_messagebox( text=warning_message, title="Warning", buttons=messagebox.Ok | messagebox.No, default_button=messagebox.Ok, ) if error_message: udialog.show_critical_messagebox( text=error_message, title="Error", buttons=messagebox.Ok | messagebox.No, default_button=messagebox.Ok, ) if question_message: answer = udialog.show_question_messagebox( text=question_message, title="Question", buttons=messagebox.Yes | messagebox.No, default_button=messagebox.No, ) if answer == messagebox.Yes: uprint("Your Choice: Yes") udialog.show_info_messagebox("You Choose Yes!", title="Answer") else: uprint("Your Choice: No") udialog.show_info_messagebox("You Choose No!", title="Answer") if __name__ == "__main__": adapter = GUIAdapter() adapter.add(dialog_example) adapter.run()
1,673
Python
.py
49
25.571429
75
0.629561
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,388
output_logger_example.py
zimolab_PyGUIAdapter/examples/output_logger_example.py
from pyguiadapter.adapter import GUIAdapter from pyguiadapter.adapter.uoutput import Logger, LoggerConfig logger = Logger( config=LoggerConfig( info_color="green", debug_color="blue", warning_color="yellow", critical_color="red", fatal_color="magenta", ) ) def output_log_msg( info_msg: str = "info message", debug_msg: str = "debug message", warning_msg: str = "warning message", critical_msg: str = "critical message", fatal_msg: str = "fatal message", ): logger.info(info_msg) logger.debug(debug_msg) logger.warning(warning_msg) logger.critical(critical_msg) logger.fatal(fatal_msg) if __name__ == "__main__": adapter = GUIAdapter() adapter.add(output_log_msg) adapter.run()
784
Python
.py
27
24.111111
61
0.668442
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,389
uoutput_example.py
zimolab_PyGUIAdapter/examples/uoutput_example.py
from pyguiadapter.adapter import GUIAdapter, uoutput def output_log_msg( info_msg: str = "info message", debug_msg: str = "debug message", warning_msg: str = "warning message", critical_msg: str = "critical message", fatal_msg: str = "fatal message", ): uoutput.info(info_msg) uoutput.debug(debug_msg) uoutput.warning(warning_msg) uoutput.critical(critical_msg) uoutput.fatal(fatal_msg) if __name__ == "__main__": adapter = GUIAdapter() adapter.add(output_log_msg, document_format="html") adapter.run()
559
Python
.py
17
28.588235
55
0.685874
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,390
cancel_function_example.py
zimolab_PyGUIAdapter/examples/cancel_function_example.py
import time from pyguiadapter.adapter import GUIAdapter from pyguiadapter.adapter.ucontext import is_function_cancelled from pyguiadapter.adapter.uoutput import uprint from pyguiadapter.windows.fnexec import FnExecuteWindowConfig def cancel_function_example(target: int = 10, delay_per_iter: float = 0.5): """ @params [target] min_value = 1 [delay_per_iter] min_value = 0.001 step = 0.5 decimals = 3 @end """ for i in range(target): if is_function_cancelled(): break uprint("process: ", i) time.sleep(delay_per_iter) uprint("done!") if __name__ == "__main__": adapter = GUIAdapter() adapter.add( cancel_function_example, cancelable=True, window_config=FnExecuteWindowConfig(disable_widgets_on_execute=True), ) adapter.run()
855
Python
.py
30
23.133333
77
0.672372
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,391
html_docstring_document_example.py
zimolab_PyGUIAdapter/examples/html_docstring_document_example.py
from pyguiadapter.adapter import GUIAdapter def function_2(arg1: int, arg2: str, arg3: bool): """ <h3>Description</h3> <p> This is the document of the <b>function_3</b>. And by default this document will automatically appear in the <strong>document area</strong>. </p> <p> The format of the document is <b>Markdown</b> by default. The <b>plaintext</b> and <b>html</b> formats are also supported. </p> <hr> <h3>Arguments</h3> <p>This function needs 3 arguments:</p> <ul> <li><b>arg1</b>: Balabala....</li> <li><b>arg2</b>: Balabala....</li> <li><b>arg3</b>: Balabala....</li> </ul> """ pass if __name__ == "__main__": adapter = GUIAdapter() adapter.add(function_2, document_format="html") adapter.run()
799
Python
.py
26
26
98
0.611979
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,392
dock_property_example.py
zimolab_PyGUIAdapter/examples/dock_property_example.py
from pyguiadapter.adapter import GUIAdapter from pyguiadapter.windows.fnexec import RightDockWidgetArea, FnExecuteWindowConfig def dock_area_example_1(): """ This example shows how to change the dock area and initial size of the output and document docks. @return: """ pass if __name__ == "__main__": adapter = GUIAdapter() adapter.add( dock_area_example_1, window_config=FnExecuteWindowConfig( document_dock_initial_size=(614, 538), output_dock_initial_area=RightDockWidgetArea, output_dock_initial_size=(None, 230), ), ) adapter.run()
637
Python
.py
19
27.263158
101
0.675896
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,393
confirm_quit_example.py
zimolab_PyGUIAdapter/examples/confirm_quit_example.py
from pyguiadapter.adapter import GUIAdapter from pyguiadapter.utils import messagebox from pyguiadapter.window import SimpleWindowEventListener from pyguiadapter.windows.fnexec import FnExecuteWindow def foo(arg1: int, arg2: str, arg3: bool): pass def on_close(window: FnExecuteWindow) -> bool: ret = messagebox.show_question_message( window, message="Are you sure you want to quit?" ) if ret == messagebox.Yes: # when `on_close()` returns True, the window will be closed return True else: messagebox.show_info_message(window, message="Quit cancelled by user!") # when `on_close()` returns False, the window will not be closed # in other words, the close event will be ignored return False if __name__ == "__main__": # create a window listener that listens for the `on_close` event event_listener = SimpleWindowEventListener(on_close=on_close) adapter = GUIAdapter() # add the `foo` function to the adapter with the `window_listener` argument set to the event_listener adapter.add(foo, window_listener=event_listener) adapter.run()
1,139
Python
.py
25
40.28
105
0.722674
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,394
simple_load_save_example.py
zimolab_PyGUIAdapter/examples/simple_load_save_example.py
import json from typing import Dict, Any from pyguiadapter.action import Action from pyguiadapter.adapter import GUIAdapter from pyguiadapter.adapter.uoutput import uprint from pyguiadapter.exceptions import ParameterError from pyguiadapter.extend_types import color_t from pyguiadapter.menu import Menu from pyguiadapter.utils import messagebox, filedialog from pyguiadapter.windows.fnexec import FnExecuteWindow def simple_load_save_example( arg1: int, arg2: float, arg3: bool, arg4: str, arg5: color_t, ): """ This example shows how to save current parameter values to a json file and load a parameter values from a json file. @param arg1: @param arg2: @param arg3: @param arg4: @param arg5: @return: """ uprint("arg1=", arg1) uprint("arg2=", arg2) uprint("arg3=", arg3) uprint("arg4=", arg4) uprint("arg5=", arg5) def on_save_params(window: FnExecuteWindow, _: Action): # Step 1: obtain current parameter values from widgets # # if the current input in the widgets of some parameter is invalid, the get_parameter_values() method may raise a # exception. A good practice is to catch the exception and handle it properly: # - for ParameterError, the FnExecuteWindow has a builtin logic to deal with it, so just call the # process_parameter_error() method and let the window do the job. # # - for other exceptions, we need handle it by ourselves. Here we choose to show the exception message with a # message box to the user. try: params: Dict[str, Any] = window.get_parameter_values() except ParameterError as e: window.process_parameter_error(e) return except Exception as e: messagebox.show_exception_messagebox( window, e, message="Unable to get the parameters: " ) return # Step2: serialize the parameter values and save them to a json file # # In this example, because we don't use any complex types, we can use simply json.dump() to do the serialization. # However, If your function contains parameters of complex types, such as list, tuple, set, dict, enum, then # serialization and deserialization must be considered very carefully. # save_file = filedialog.get_save_file( window, "Save Parameters", filters="JSON files(*.json)" ) if not save_file: return try: with open(save_file, "w") as f: json.dump(params, f) except Exception as e: messagebox.show_exception_messagebox( window, e, message="Unable to save the parameters: " ) else: messagebox.show_info_message(window, "Parameters have been saved!") def on_load_params(window: FnExecuteWindow, _: Action): # Step 1: load the parameter values from a json file file = filedialog.get_open_file( window, "Load Parameters", filters="JSON files(*.json)" ) if not file: return try: with open(file, "r") as f: params: Dict[str, Any] = json.load(f) except Exception as e: messagebox.show_exception_messagebox( window, e, message="Unable to load the parameters: " ) return if not isinstance(params, dict): messagebox.show_critical_message(window, message="Invalid parameters format!") return # Step2: set the parameter values to the widgets try: window.set_parameter_values(params) except ParameterError as e: window.process_parameter_error(e) return except Exception as e: messagebox.show_exception_messagebox( window, e, message="Unable to set the parameters: " ) else: messagebox.show_info_message(window, "Parameters have been loaded!") if __name__ == "__main__": action_save_params = Action( text="Save Parameters", icon="fa.save", shortcut="Ctrl+S", on_triggered=on_save_params, ) action_load_params = Action( text="Load Parameters", icon="fa.folder-open", shortcut="Ctrl+L", on_triggered=on_load_params, ) menu = Menu( title="File", actions=[action_save_params, action_load_params], ) adapter = GUIAdapter() adapter.add(simple_load_save_example, window_menus=[menu]) adapter.run()
4,378
Python
.py
121
29.958678
120
0.672011
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,395
fn_select_window_config_example.py
zimolab_PyGUIAdapter/examples/fn_select_window_config_example.py
from pyguiadapter.adapter import GUIAdapter from pyguiadapter.windows import DocumentBrowserConfig from pyguiadapter.windows.fnselect import FnSelectWindowConfig def fn1(): """ This example shows how config the **function select window** """ pass def fn2(): """ This example shows how config the **function select window** """ pass def fn3(): """ This example shows how config the **function select window** """ pass def fn4(): """ This example shows how config the **function select window** """ pass if __name__ == "__main__": select_window_config = FnSelectWindowConfig( title="My Tool Kit", icon="fa5s.tools", default_fn_group_name="Group 1", default_fn_group_icon="fa.desktop", fn_group_icons={ "Group 2": "fa.mobile", "Group 3": "fa.cloud", }, size=(600, 400), icon_size=32, icon_mode=True, select_button_text="Go!", document_browser_width=400, document_browser_config=DocumentBrowserConfig(), always_on_top=True, ) adapter = GUIAdapter() adapter.add(fn1) adapter.add(fn2) adapter.add(fn3, group="Group 2") adapter.add(fn4, group="Group 3") adapter.run(select_window_config=select_window_config)
1,338
Python
.py
47
22.446809
64
0.633307
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,396
udialog_custom_messagebox_example.py
zimolab_PyGUIAdapter/examples/udialog_custom_messagebox_example.py
from datetime import date, datetime from typing import Any from uuid import uuid1 from qtpy.QtWidgets import QWidget, QVBoxLayout, QLabel, QDialogButtonBox from pyguiadapter.adapter import GUIAdapter, BaseCustomDialog from pyguiadapter.adapter import udialog from pyguiadapter.adapter.uoutput import uprint from pyguiadapter.exceptions import ParameterError class UserInfoDialog(BaseCustomDialog): def __init__( self, parent: QWidget, username: str, nickname: str, user_id: str, birthdate: date, join_time: datetime, **kwargs, ): super().__init__(parent, **kwargs) self.setWindowTitle("Confirm") self._confirmed = False self._user_info = { "username": username, "nickname": nickname, "user_id": user_id, "birthdate": birthdate, "join_time": join_time, } self._button_box = QDialogButtonBox(self) self._button_box.setStandardButtons( QDialogButtonBox.Ok | QDialogButtonBox.Cancel ) self._button_box.accepted.connect(self._on_accepted) self._button_box.rejected.connect(self._on_rejected) layout = QVBoxLayout() username_label = QLabel(self) username_label.setText(f"username: {username}") layout.addWidget(username_label) nickname_label = QLabel(self) nickname_label.setText(f"nickname: {nickname}") layout.addWidget(nickname_label) user_id_label = QLabel(self) user_id_label.setText(f"user_id: {user_id}") layout.addWidget(user_id_label) birthdate_label = QLabel(self) birthdate_label.setText(f"birthdate: {birthdate}") layout.addWidget(birthdate_label) join_time_label = QLabel(self) join_time_label.setText(f"join_time: {join_time}") layout.addWidget(join_time_label) layout.addWidget(self._button_box) self.setLayout(layout) def get_result(self) -> Any: if self._confirmed: return self._user_info return None def _on_accepted(self) -> None: self._confirmed = True self.accept() def _on_rejected(self) -> None: self._confirmed = False self.reject() def add_user_example( username: str, nickname: str, user_id: str, birth_date: date, join_time: datetime, ): if not username: raise ParameterError("username", "username is empty") if not user_id: udialog.show_warning_messagebox( "user_id is empty, a random one will be generated!" ) user_id = uuid1().hex result = udialog.show_custom_dialog( UserInfoDialog, username=username, nickname=nickname, user_id=user_id, birthdate=birth_date, join_time=join_time, ) if result is not None: udialog.show_info_messagebox(f"user added!") uprint(result) return udialog.show_info_messagebox(f"user not added!") if __name__ == "__main__": adapter = GUIAdapter() adapter.add(add_user_example) adapter.run()
3,170
Python
.py
94
26.031915
73
0.636809
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,397
process_integers.py
zimolab_PyGUIAdapter/examples/process_integers.py
from typing import List, Literal from pyguiadapter.adapter import GUIAdapter def process_integers( integers: List[int], operation: Literal["sum", "max"] = "max" ) -> int: """ Process some integers. @param integers: integers for the accumulator @param operation: sum the integers (default: find the max) """ func = max if operation == "max" else sum return func(integers) if __name__ == "__main__": adapter = GUIAdapter() adapter.add(process_integers) adapter.run()
514
Python
.py
16
28.0625
65
0.68357
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,398
print_image_example.py
zimolab_PyGUIAdapter/examples/print_image_example.py
from pyguiadapter.adapter import GUIAdapter from pyguiadapter.adapter.uoutput import print_image from pyguiadapter.extend_types import file_t def print_image_example( image_path: file_t, image_type: str = "jpeg", width: int = None, height: int = None, embed_base64: bool = True, centered: bool = True, ): print_image( image_path, image_type, width=width, height=height, embed_base64=embed_base64, centered=centered, ) if __name__ == "__main__": adapter = GUIAdapter() adapter.add(print_image_example) adapter.run()
611
Python
.py
23
21.391304
52
0.659247
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)
2,288,399
dock_operation_example.py
zimolab_PyGUIAdapter/examples/dock_operation_example.py
from pyguiadapter.action import Action, Separator from pyguiadapter.adapter import GUIAdapter from pyguiadapter.menu import Menu from pyguiadapter.windows.fnexec import ( FnExecuteWindow, BottomDockWidgetArea, ) def dock_operation_example() -> None: pass def on_toggle_document_dock(win: FnExecuteWindow, action: Action): win.set_document_dock_property(visible=not win.is_document_dock_visible()) def on_toggle_output_dock(win: FnExecuteWindow, action: Action): win.set_output_dock_property(visible=not win.is_output_dock_visible()) def on_tabify_docks(win: FnExecuteWindow, action: Action): win.tabify_docks() def on_move_output_area(win: FnExecuteWindow, action: Action): if win.is_output_dock_floating(): win.set_output_dock_property(floating=False) win.set_output_dock_property(area=BottomDockWidgetArea) def on_float_output_dock(win: FnExecuteWindow, action: Action): win.set_output_dock_property(floating=True) def main(): action_document_dock = Action( text="Toggle Document Dock", on_triggered=on_toggle_document_dock, ) action_output_dock = Action( text="Toggle Output Dock", on_triggered=on_toggle_output_dock, ) action_tabify_docks = Action( text="Tabify Docks", on_triggered=on_tabify_docks, ) action_move_output_area = Action( text="Move Output Area", on_triggered=on_move_output_area, ) action_float_output_dock = Action( text="Float Output Dock", on_triggered=on_float_output_dock, ) menu_views = Menu( title="Views", actions=[ action_document_dock, action_output_dock, Separator(), action_tabify_docks, action_move_output_area, action_float_output_dock, ], ) ########## adapter = GUIAdapter() adapter.add(dock_operation_example, window_menus=[menu_views]) adapter.run() if __name__ == "__main__": main()
2,024
Python
.py
59
28.152542
78
0.678297
zimolab/PyGUIAdapter
8
0
0
GPL-3.0
9/5/2024, 10:48:26 PM (Europe/Amsterdam)