source
stringlengths 1
2.05k
⌀ | target
stringlengths 1
11.7k
|
---|---|
The ACS inages show strong spatial variations in extinction in the iunmediate vicinity of MBS2-F. Scattering and absorption in the ultraviolet compromise the quality of the fit to the liebt profile at very short waveleneths. | The ACS images show strong spatial variations in extinction in the immediate vicinity of M82-F. Scattering and absorption in the ultraviolet compromise the quality of the fit to the light profile at very short wavelengths. |
Combining the NIRSPEC velocity dispersion with the NICALOS radius aud estimated eccentricity. we calculate an If-baud virial mass of Mj;=6.60.9«107 AL. for MS2-F. | Combining the NIRSPEC velocity dispersion with the NICMOS radius and estimated eccentricity, we calculate an $H$ -band virial mass of $M_H =
6.6 \pm 0.9 \times 10^5$ $_{\odot}$ for M82-F. |
The subscript ou the mass is used to emphasize that the virial mass is computed from a velocity dispersion aud size micasured in the ZZ baud. | The subscript on the mass is used to emphasize that the virial mass is computed from a velocity dispersion and size measured in the $H$ band. |
In this manucr we minimize systematic errors by measuring both variables from the helt of the same stars and may seekvariations between different wavebancds. | In this manner we minimize systematic errors by measuring both variables from the light of the same stars and may seekvariations between different wavebands. |
SCQUL found a velocitydispersion of 13.140.7 kin s+ for MS2-F based on cross-correlation analysis using cluster spectra in the 601759 mu rauge (overlapping the ACS FasliW bandpass}. | SG01 found a velocitydispersion of $13.4 \pm 0.7$ km $^{-1}$ for M82-F based on cross-correlation analysis using cluster spectra in the 601–759 nm range (overlapping the ACS F814W bandpass). |
They concluded. that the | They concluded that the |
reflection fractions measured in the high state of Cygnus |] (Gierlinski et al. | reflection fractions measured in the high state of Cygnus X-1 (Gierlinski et al. |
1999). wherein the disk may extend to the marginally stable circular orbit. | 1999), wherein the disk may extend to the marginally stable circular orbit. |
It is not likely that these results can be explained in terms of an anomalous Fe abundance. | It is not likely that these results can be explained in terms of an anomalous Fe abundance. |
Allowing ./ and Aj, (1n pexriv) to vary. the abundance is poorly constrained: Ay,=1.002. and the emissivity drops only slightly to ./=5.0. | Allowing $\beta$ and $A_{Fe}$ (in pexriv) to vary, the abundance is poorly constrained: $A_{Fe} =
1.0^{+0.5}_{-0.7}$, and the emissivity drops only slightly to $\beta=5.0$. |
Fixing the emissivity at ./=3.0 and allowing the Fe abundance to vary yields a significantly worse fit (7=353.1 for 229 d.o.f.) | Fixing the emissivity at $\beta=3.0$ and allowing the Fe abundance to vary yields a significantly worse fit $\chi^{2}=353.1$ for 229 d.o.f.) |
and Fe must be more than 30 times over-abundant. | and Fe must be more than 30 times over-abundant. |
We note that the line strength and reflection fraction in our final fit are not strictly congruent. and that f=0.603 Is below the reflection fraction measured in MCG-6-30-15 (f£=1.5—2.0. Wilms et 22001) using a similar model. | We note that the line strength and reflection fraction in our final fit are not strictly congruent, and that $f=0.6^{+0.3}_{-0.1}$ is below the reflection fraction measured in MCG–6-30-15 $f=1.5-2.0$, Wilms et 2001) using a similar model. |
If we fix the f=1.5 in our final model. 7 increases only slightly (47=324.9 for 230 d.o.f.). | If we fix the $f=1.5$ in our final model, $\chi^{2}$ increases only slightly $\chi^{2}=324.9$ for 230 d.o.f.), |
and the other fit parameters only change within their 10 confidence intervals. | and the other fit parameters only change within their $\sigma$ confidence intervals. |
Thus. more congruent values of f are allowed by the data. | Thus, more congruent values of $f$ are allowed by the data. |
The high \- value associated with our final model could be due to unmodeled narrow spectral features. approximations in the model. and calibration issues. | The high $\chi^{2}$ value associated with our final model could be due to unmodeled narrow spectral features, approximations in the model, and calibration issues. |
We note a feature at approximately 7.0 keV. which may be a narrow edge due to neutral Fe or an Fe XXVI absorption line. | We note a feature at approximately 7.0 keV, which may be a narrow edge due to neutral Fe or an Fe XXVI absorption line. |
Alternatively. there may be an Fe / emission line near 7.4 keV due to tonized Fe species. which is superimposed upon the broader smeared edge fit by the reflection models. | Alternatively, there may be an Fe $\beta$ emission line near 7.4 keV due to ionized Fe species, which is superimposed upon the broader smeared edge fit by the reflection models. |
There is also weak evidence for a narrow absorption edge feature near 9.3 keV. consistent with Fe XXVI. | There is also weak evidence for a narrow absorption edge feature near 9.3 keV, consistent with Fe XXVI. |
Modeling these features and the addition of systematic errors below | keV are sufficient to make the fit acceptable. | Modeling these features and the addition of systematic errors below 1 keV are sufficient to make the fit acceptable. |
We have observed à broad Fe Ko line profile in. the XMM-Newton//EPIC-pn spectrum of the Galactic black hole candidate XTE J1650—500 in the very high state. | We have observed a broad Fe $\alpha$ line profile in the /EPIC-pn spectrum of the Galactic black hole candidate XTE $-$ 500 in the very high state. |
A comparison with the broad line profile observed with in Cygnus Χ- is shown in Figure 1. | A comparison with the broad line profile observed with in Cygnus X-1 is shown in Figure 1. |
That such profiles are observed in very different systems. strongly suggests that broad Fe Ko lines in stellar-mass black holes stem from à common process. | That such profiles are observed in very different systems, strongly suggests that broad Fe $\alpha$ lines in stellar-mass black holes stem from a common process. |
Like the broad lines observed in some Seyfert AGNs. these lines are likely produced by irradiation of theinner disk. | Like the broad lines observed in some Seyfert AGNs, these lines are likely produced by irradiation of theinner disk. |
The Fe Ko line we have observed in XTE J1650—500 suggests a Kerr black hole with near-maximal angular momentum («c= 0.998). | The Fe $\alpha$ line we have observed in XTE $-$ 500 suggests a Kerr black hole with near-maximal angular momentum $a=0.998$ ). |
The aceretion disk emissivity profile measured with the Laor line model is inconsistent. with. the energy dissipation expected for standard. disks. | The accretion disk emissivity profile measured with the Laor line model is inconsistent with the energy dissipation expected for standard disks. |
These results are very similar to those reported by Wilms et al. ( | These results are very similar to those reported by Wilms et al. ( |
2001) using the same line and reflection models for the broad Fe Κα line observed in an XMM-Newton//EPIC-pn spectrum of the Seyfert galaxy MCG-6-30-15 (E=6.907.10 keV. W~300-400 eV. ΕΞ15-2. 3~4.3-5.0). | 2001) using the same line and reflection models for the broad Fe $\alpha$ line observed in an /EPIC-pn spectrum of the Seyfert galaxy MCG–6-30-15 $=6.97_{-0.10}$ keV, $\sim300$ –400 eV, $f=1.5-2$ , $\beta\sim4.3$ –5.0). |
Those authors suggest that rotational energy extraction from the spinning black hole (Blandford Znajek 1977) or material in the plunging region (Agol Krolik 2000) may infuse the inner accretion disk with extra energy ντα Magnetic connections. creating the steep emissivity profile indicated by the Fe Ko line. | Those authors suggest that rotational energy extraction from the spinning black hole (Blandford Znajek 1977) or material in the plunging region (Agol Krolik 2000) may infuse the inner accretion disk with extra energy via magnetic connections, creating the steep emissivity profile indicated by the Fe $\alpha$ line. |
It is possible that rotational energy extraction may be at work in XTE J1650—500 as well. | It is possible that rotational energy extraction may be at work in XTE $-$ 500 as well. |
If so. a fundamental general relativistic prediction may be confirmed across a factor of roughly 10° in black hole mass. | If so, a fundamental general relativistic prediction may be confirmed across a factor of roughly $10^{6}$ in black hole mass. |
This observation suggests a connection between the accretion geometry of stellar-mass black holes in the very high state. and that inferred in some Seyfert galaxies. | This observation suggests a connection between the accretion geometry of stellar-mass black holes in the very high state, and that inferred in some Seyfert galaxies. |
This is an important step towards understanding the nature of the very high state. and the variety of exotic phenomena observed in this state. | This is an important step towards understanding the nature of the very high state, and the variety of exotic phenomena observed in this state. |
The Blandford-Znajek process is also often invoked as à means of launching jets (Blandford 2001a. 2001b: see also Fender 2001). | The Blandford–Znajek process is also often invoked as a means of launching jets (Blandford 2001a, 2001b; see also Fender 2001). |
That we have found an emissivity which might be explained by magnetic connections to the black hole or to matter in the plunging region in the very high state of XTE J1650—500 (detected at 7.5 mJy at 0.8 GHz with MOST in this state with a spectrum indicative of jets: S. Tingay. priv. | That we have found an emissivity which might be explained by magnetic connections to the black hole or to matter in the plunging region in the very high state of XTE $-$ 500 (detected at 7.5 mJy at 0.8 GHz with MOST in this state with a spectrum indicative of jets; S. Tingay, priv. |
comm.). | comm.), |
suggests that the discrete radio ejections observed in some sources In this state (see Fender 2001) may be driven by rotational energy extraction. | suggests that the discrete radio ejections observed in some sources in this state (see Fender 2001) may be driven by rotational energy extraction. |
Martocchia. Matt. Karas (2002) have shown that a "lamp-post” reflection model may explain the steep disk emissivity implied in fits to the Fe Ko line in MCG-6-30-15. | Martocchia, Matt, Karas (2002) have shown that a ``lamp-post'' reflection model may explain the steep disk emissivity implied in fits to the Fe $\alpha$ line in MCG–6-30-15. |
This model assumes a source of power-law flux which illuminates the aceretion disk from a location directly above the black hole. | This model assumes a source of power-law flux which illuminates the accretion disk from a location directly above the black hole. |
To explain ./~4. this model requires f£—4 — well above the values we measure. | To explain $\beta\sim4$, this model requires $f\sim4$ — well above the values we measure. |
Therefore. the lamp-post model may not adequately describe the accretion geometry of XTE J1650—500. | Therefore, the lamp-post model may not adequately describe the accretion geometry of XTE $-$ 500. |
We wish to thank project. scientist. Fred Jansen for executing our TOO request. | We wish to thank project scientist Fred Jansen for executing our TOO request. |
RW was supported by NASA through Chandra fellowship grants PF9-10010. which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8—39073. | RW was supported by NASA through Chandra fellowship grants PF9-10010, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8–39073. |
This work is based on observations obtained with XMM-Newton... an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). | This work is based on observations obtained with , an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). |
with 97% correctly classified SNe. and ~6556 having Py,>0.9. | with $97\%$ correctly classified SNe, and $\sim65\%$ having $P_{Ia}>0.9$. |
The posterior redshift scatter is marginallv reduced. compared to the constructed prior standard deviation of &=0.1. inclicating that (his precision in redshift is about the limit of what can be achieved with single epoch data in three bands. | The posterior redshift scatter is marginally reduced, compared to the constructed prior standard deviation of $\sigma=0.1$, indicating that this precision in redshift is about the limit of what can be achieved with single epoch data in three bands. |
For σι=920.3. i.e.. very broadly distributed and imprecise redshifts. and probably (he worst case scenario for photometric redshifts. we correctly classify ~76% of the SNe as type la. ancl improve (he scatter in the redshift determination froma =0.3 to an value oL ag~0.17. thus improving the redshift dispersion by almost a factor of 2. | For $\sigma_1=\sigma_2=0.3$, i.e., very broadly distributed and imprecise redshifts, and probably the worst case scenario for photometric redshifts, we correctly classify $\sim76\%$ of the SNe as type Ia, and improve the scatter in the redshift determination from $\sigma=0.3$ to an value of $\sigma\sim0.17$, thus improving the redshift dispersion by almost a factor of 2. |
On the other hand. it ean clearly be seen that the posterior redshift distribution is heavily biased towards lower z. | On the other hand, it can clearly be seen that the posterior redshift distribution is heavily biased towards lower $z$. |
This is a consequence of the [act Chat. the lower the redshilt. (he more freedom the minimization has in the other parameters. | This is a consequence of the fact that, the lower the redshift, the more freedom the minimization has in the other parameters. |
At lower z the SN template is inherently brighter and can be ‘aged and extinguished! in order to fit the observed magnitudes. while al higher 2 1 must be closer to peak ancl less extinguished. | At lower $z$ the SN template is inherently brighter and can be `aged' and extinguished in order to fit the observed magnitudes, while at higher $z$ it must be closer to peak and less extinguished. |
The most extreme scenario is (he absence of anv prior on (he redshift. | The most extreme scenario is the absence of any prior on the redshift. |
This is probably relevant only to the few objects Chat have no measured host due to its faintness. | This is probably relevant only to the few objects that have no measured host due to its faintness. |
In (his case. we drop to only ~605€ correct classifications. only slightly better than random assignment ol SN type. | In this case, we drop to only $\sim60\%$ correct classifications, only slightly better than random assignment of SN type. |
Not surprisingly. parameter space is wide enough to accommodate both tvpes. when no information on the host redshift exists. and the SN light/color curve is so scantily sampled. | Not surprisingly, parameter space is wide enough to accommodate both types, when no information on the host redshift exists, and the SN light/color curve is so scantily sampled. |
We can (hus conclude Chat single epoch photometry in three bands. combined with a reasonably well determined host galaxy vredshift. is sufficient to recognize SNe Ia. with only a lew alse negatives. and high confidence levels. | We can thus conclude that single epoch photometry in three bands, combined with a reasonably well determined host galaxy redshift, is sufficient to recognize SNe Ia, with only a few false negatives, and high confidence levels. |
In order to measure the performance of the SN-ABC in correctly classifving CC-SNe. we repeal the procedure described in §??.. applving (he same "pseudo photometric recdshilts” to the much smaller sample of five type II-P. SNe. presented in Nugentetal.(2006). | In order to measure the performance of the SN-ABC in correctly classifying CC-SNe, we repeat the procedure described in \ref{SNLS-Ia}, applying the same “pseudo photometric redshifts” to the much smaller sample of five type II-P SNe, presented in \citet{NUGENT_IIP06}. |
.. We extract 25 ‘objects’ with same-day photometry [rom among (three of these SNe. which are al redshifts of 0.13 to 0.21. | We extract 25 `objects' with same-day photometry from among three of these SNe, which are at redshifts of 0.13 to 0.21. |
As shown in Figure 2.. when using the precise spectral redshifts. we achieve a perfect suecess rate with not a single object misclassified. | As shown in Figure \ref{SNLSIIP}, when using the precise spectral redshifts, we achieve a perfect success rate with not a single object misclassified. |
When using broader. more realistic. we reach success rates between 8556 [σι=65 0.03) and 75% (σι=oo 0.1). | When using broader, more realistic, z-pdfs, we reach success rates between $85\%$ $\sigma_1=\sigma_2=0.03$ ) and $75\%$ $\sigma_1=\sigma_2=0.1$ ). |
since (he redshifts of (hese SNe are signilicantlv lower (han those of the SNLS Ia sample. we exaniüne cases with comparatively smaller values of σι and σο (hat are more reasonable [or | Since the redshifts of these SNe are significantly lower than those of the SNLS Ia sample, we examine cases with comparatively smaller values of $\sigma_1$ and $\sigma_2$ that are more reasonable for |
For calculations. we asstune eg=5/3 and à=1/3 for Alfvénnic turbulence above the evro scale. | For calculations, we assume $c_{3}=5/3$ and $a=1/3$ for Alfvénnic turbulence above the gyro scale. |
Using the paraincters for the ISM 3n Table 1. we calculate the erain velocity arisine from the chaotic acceleration by low frequency Alfvén waves in Figure 10 for the CNMD aud WIM. | Using the parameters for the ISM in Table 1, we calculate the grain velocity arising from the chaotic acceleration by low frequency Alfvénn waves in Figure \ref{f4} for the CNM and WIM. |
We show that the chaotic acceleration by low frequency Alfvén waves is subdominant to the fast aud Alfvénuic lyclrockyuamc drag. | We show that the chaotic acceleration by low frequency Alfvénn waves is subdominant to the fast and Alfvénnic hydrodynamic drag. |
Obviously, it is inuch less important than evroresonance and TTD by fast modes. | Obviously, it is much less important than gyroresonance and TTD by fast modes. |
The possible reason is that the low frequency Alfvén waves cascade faster to small scale than the fast modes. | The possible reason is that the low frequency Alfvénn waves cascade faster to small scale than the fast modes. |
The acceleration of dust erains by incompressible AMID turbulence was first studied by Lazarian Yau (2002). | The acceleration of dust grains by incompressible MHD turbulence was first studied by Lazarian Yan (2002). |
Yan Lazarian (2003) studied erain acceleration in compressible ΑΠΟ turbulence. and discovered a new acceleration mechanism based ou evroresouaut interactions of eras with waves. | Yan Lazarian (2003) studied grain acceleration in compressible MHD turbulence, and discovered a new acceleration mechanism based on gyroresonant interactions of grains with waves. |
This acceleration niechanisni increases erain velocities iu perpendicular direction to the mean magnetic field. | This acceleration mechanism increases grain velocities in perpendicular direction to the mean magnetic field. |
YLDOL computed erain velocities arising from gvroresonance by fast MIID modes using quasi-lincar theory (QLT). aud compared the obtained results with different imechanisims. for various ΕΛΙΤ phases. | YLD04 computed grain velocities arising from gyroresonance by fast MHD modes using quasi-linear theory (QLT), and compared the obtained results with different mechanisms, for various ISM phases. |
They. found that the evroresouauce is the most efficicut mechamisin for eraiu acceleration in he ISM. | They found that the gyroresonance is the most efficient mechanism for grain acceleration in the ISM. |
The effect of large scale compression on erain acceleration is shown by Yan (2009) to be less important han the evroresouauce in the ISM conditions. uuless the eraius nove with super-Alfvénuic velocities. | The effect of large scale compression on grain acceleration is shown by Yan (2009) to be less important than the gyroresonance in the ISM conditions, unless the grains move with super-Alfvénnic velocities. |
For very sinall grams (e.g polveyelie aromatic wdrocarbous and nanoparticles). Ivlev et al. ( | For very small grains (e.g., polycyclic aromatic hydrocarbons and nanoparticles), Ivlev et al. ( |
2010) sketched a new mechanisnmi of erain acceleration due o electrostatic interactions of erains with fluctuating charge aud provided rough estimates of erai velocities in the ISM. | 2010) sketched a new mechanism of grain acceleration due to electrostatic interactions of grains with fluctuating charge and provided rough estimates of grain velocities in the ISM. |
Woang Lazarian (2011) quantified this nechanisin using Moute Carlo simulations of charec ductuatious. | Hoang Lazarian (2011) quantified this mechanism using Monte Carlo simulations of charge fluctuations. |
They found that charge fluctuations cau accelerate erains to several times their thermal velocities. | They found that charge fluctuations can accelerate grains to several times their thermal velocities. |
We have revisited the treatment of evroresonauce acceleration for charged grains due to MOTD turbulence by accounting for the fluctuations of erain guidiug center from a regular trajectory along the mecan magnetic field (i.c. NLT huit). | We have revisited the treatment of gyroresonance acceleration for charged grains due to MHD turbulence by accounting for the fluctuations of grain guiding center from a regular trajectory along the mean magnetic field (i.e. NLT limit). |
The fluctuations of the eniding center result in the broadening of resonance conditions a Delta function is replaced by a Gaussian fiction. | The fluctuations of the guiding center result in the broadening of resonance conditions– a Delta function is replaced by a Gaussian function. |
Such broadeuiug of resonance condition. allows some fraction of wave energy spent through the TTD acceleration. | Such broadening of resonance condition allows some fraction of wave energy spent through the TTD acceleration. |
As a result. erain velocities due to evroresonance acceleration are in general decreased by ~1554 in the NLT iuit. | As a result, grain velocities due to gyroresonance acceleration are in general decreased by $\sim 15\%$ in the NLT limit. |
TTD acceleration is believed to be important when the parallel component of erain velocity along the iuaenuetie field exceeds the Alfvéuu speed V4. | TTD acceleration is believed to be important when the parallel component of grain velocity along the magnetic field exceeds the Alfvénn speed $V_{\A}$. |
Although evroresonance acceleration by fast modes can accelerate erains to ο>Vay. thei resulting velocity mostly perpendicular to the magnetic field. ie. µ=0. makes TTD uufavored because the resonance coudition ó(uke is not satisfied. | Although gyroresonance acceleration by fast modes can accelerate grains to $v\ge V_{\A}$, their resulting velocity mostly perpendicular to the magnetic field, i.e. $\mu=0$, makes TTD unfavored because the resonance condition $\delta (\omega-k_{\|}v_{\|})$ is not satisfied. |
IDudeed. we found that TTD is efficient for jp2Va/e and negligible for µ«VWafe in the QLT limit. | Indeed, we found that TTD is efficient for $\mu>V_{\A}/v$ and negligible for $\mu<V_{\A}/v$ in the QLT limit. |
This feature is cousistent with the result for acceleration of cosnüc ravs in Sclilickeiser Aller (199s). | This feature is consistent with the result for acceleration of cosmic rays in Schlickeiser Miller (1998). |
The situation changes when the fluctuatious of the euidiue center are taken iuto account in the NLT. | The situation changes when the fluctuations of the guiding center are taken into account in the NLT. |
For this case. the resonance condition is broadened bevoud the à function. and cau be described by a Caussian fection. | For this case, the resonance condition is broadened beyond the $\delta$ function, and can be described by a Gaussian function. |
As a result. TTD acceleration becomes iniportant for pocνο, inchiding 90° pitch angle. | As a result, TTD acceleration becomes important for $\mu <V_{\A}/v$, including $90^{\circ}$ pitch angle. |
Tn addition to acceleration. TTD also induces the erain pitch angele scattering. which is dominant over the scattering bv evroresonance. | In addition to acceleration, TTD also induces the grain pitch angle scattering, which is dominant over the scattering by gyroresonance. |
Since the efficiency. of the TTD scattering is uncertain. we considered in the paper two lmiting cases of inefiicicut and cfiicieut scattering in which the scattering is less aud more cficieut than the acceleration. | Since the efficiency of the TTD scattering is uncertain, we considered in the paper two limiting cases of inefficient and efficient scattering in which the scattering is less and more efficient than the acceleration. |
The pitch angle is equal to 90° in the former. and isotropic in the latter. | The pitch angle is equal to $90^{\circ}$ in the former, and isotropic in the latter. |
When the scattering is more effcicut than the acceleration. we showed that for the WNAL aud WIM. the TTD acceleration can increase substantially the erai velocity compared to results arising from gvroresonance. | When the scattering is more efficient than the acceleration, we showed that for the WNM and WIM, the TTD acceleration can increase substantially the grain velocity compared to results arising from gyroresonance. |
Particularly. for evans huger than 5«10 αμ in the WIAL TTD acceleration is an order of maguitude ereater | Particularly, for grains larger than $5\times 10^{-6}$ cm in the WIM, TTD acceleration is an order of magnitude greater |
hundred parsees is suggestive of pseudobulges that have been identified photometrically in disk galaxies (Kormendy&Ken-&Drory2010:Weinzirletal.2009) and the "central light excesses” identified in bulgeless disks (Bokeretal.2003).. including the late-type-disk M33 (Kent1987;Minnitietal. 1993). | hundred parsecs is suggestive of pseudobulges that have been identified photometrically in disk galaxies \citep{Kormendy:04,Fisher:08,Fisher:09,Fisher:10,Weinzirl:09} and the “central light excesses” identified in bulgeless disks \citep{Boker:03}, including the late-type-disk M33 \citep{Kent:87,Minniti:93}. |
. The effective radii of the pseudobulge components identified in the recent surveys by Fisher et aand Weinzirl et sseem to be compatible with our more optimistic models that ignore prompt dissolution. and are on average larger than the radii within which we detect surface density excess in the pessimistic models with 90% prompt dissolution. | The effective radii of the pseudobulge components identified in the recent surveys by Fisher et and Weinzirl et seem to be compatible with our more optimistic models that ignore prompt dissolution, and are on average larger than the radii within which we detect surface density excess in the pessimistic models with $90\%$ prompt dissolution. |
We caution against direct. comparison because in the present work. m an attempt to emphasize sensitivity to the variation of the ICMF truncation mass scale M44," we have held the parameters of our dark halo and initial baryonic disk (or spheroid) fixed at values that seem to correspond to galaxies that are somewhat smaller than the typical pseudobulge hosts. | We caution against direct comparison because in the present work, in an attempt to emphasize sensitivity to the variation of the ICMF truncation mass scale $M_{\rm max}$, we have held the parameters of our dark halo and initial baryonic disk (or spheroid) fixed at values that seem to correspond to galaxies that are somewhat smaller than the typical pseudobulge hosts. |
We can only conclude that a pseudobulge-like central stellar surface density increase is generic and that cluster migration is one potential contributor to pseudobulge assembly in disk galaxies. while other processes. such as angular momentum transport by stellar and gaseous bars. certainly also contribute. in line with the observation that pseudobulge hosts generally have nuclear bars. rings. or nuclear spirals (e.g..Kormendy&Kennicutt2004:Fisher&Drory 2008). | We can only conclude that a pseudobulge-like central stellar surface density increase is generic and that cluster migration is one potential contributor to pseudobulge assembly in disk galaxies, while other processes, such as angular momentum transport by stellar and gaseous bars, certainly also contribute, in line with the observation that pseudobulge hosts generally have nuclear bars, rings, or nuclear spirals \citep[e.g.,][]{Kormendy:04,Fisher:08}. |
The most massive clusters that we have considered are still substantially less massive than the giant ~105—10?M. clumps that are observed to be present and are theoretically expected to be forming in globally gravitationally unstable. rapidly-star-forming massive disks at high redshift (e.g..therein ).. | The most massive clusters that we have considered are still substantially less massive than the giant $\sim10^8-10^9\,M_\odot$ clumps that are observed to be present and are theoretically expected to be forming in globally gravitationally unstable, rapidly-star-forming massive disks at high redshift \citep[e.g.,][and
references
therein]{Noguchi:99,Bournaud:07,Elmegreen:08b,Dekel:09b,Tacconi:10}. |
The super star clusters forming in these giant clumps should be more immune to dissolution in the tidal field of the galaxy and could reach the galactic central region intact. | The super star clusters forming in these giant clumps should be more immune to dissolution in the tidal field of the galaxy and could reach the galactic central region intact. |
We speculate that there could be a eritical characteristic ICMF mass scale above which clusters migrate intact and merge to produce a classical bulge (see.e.g..Immelietal.2004:Elmegreenetal.2008:Ceverino 2010).. and below which they suffer substantial mass loss en route to the galactic center and thus give rise to a pseudobulge. | We speculate that there could be a critical characteristic ICMF mass scale above which clusters migrate intact and merge to produce a classical bulge \citep[see,
e.g.,][]{Immeli:04,Elmegreen:08b,Ceverino:10}, and below which they suffer substantial mass loss en route to the galactic center and thus give rise to a pseudobulge. |
The apparent agreement of NSC-mass-to-galactic-stellar- ratios in spheroidals (~2«107: Cótéetal.2006;Fer-rareseetal.2006b;Wehner&Harris 2006) and massive-black-hole-to-galactie stellar mass ratios in ellipticals and bulges (~[1—2]«102: e.g.. Kormendy&Richstone1995;2005:Hiring&Rix 2004) has prompted speculation that the same process may be responsible for the formation of NSCs and black holes. | The apparent agreement of NSC-mass-to-galactic-stellar-mass ratios in spheroidals $\sim2\times10^{-3}$; \citealt{Cote:06,Ferrarese:06b,Wehner:06}) ) and massive-black-hole-to-galactic stellar mass ratios in ellipticals and bulges $\sim[1-2]\times10^{-3}$; e.g., \citealt{Kormendy:95,Wandel:99,Kormendy:01,Merritt:01a,McLure:02,Marconi:03,Haring:04}) ) has prompted speculation that the same process may be responsible for the formation of NSCs and black holes. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.