hexsha
stringlengths
40
40
size
int64
7
1.05M
ext
stringclasses
13 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
269
max_stars_repo_name
stringlengths
5
109
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
sequencelengths
1
9
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
269
max_issues_repo_name
stringlengths
5
116
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
sequencelengths
1
9
max_issues_count
int64
1
48.5k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
269
max_forks_repo_name
stringlengths
5
116
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
sequencelengths
1
9
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
7
1.05M
avg_line_length
float64
1.21
330k
max_line_length
int64
6
990k
alphanum_fraction
float64
0.01
0.99
author_id
stringlengths
2
40
5081c7d33af9647d83b7b6a0905c91a566c1685a
856
cpp
C++
codeforces/587div3/B.cpp
xenowits/cp
963b3c7df65b5328d5ce5ef894a46691afefb98c
[ "MIT" ]
null
null
null
codeforces/587div3/B.cpp
xenowits/cp
963b3c7df65b5328d5ce5ef894a46691afefb98c
[ "MIT" ]
null
null
null
codeforces/587div3/B.cpp
xenowits/cp
963b3c7df65b5328d5ce5ef894a46691afefb98c
[ "MIT" ]
null
null
null
#include<bits/stdc++.h> using namespace std; #define fori(i,a,b) for (long int i = a; i <= b ; ++i) #define ford(i,a,b) for(long int i = a;i >= b ; --i) #define mk make_pair #define mod 1000000007 #define pb push_back #define vec vector<long long int> #define ll long long #define rnd mt19937_64 rng(chrono::high_resolution_clock::now().time_since_epoch().count()) #define pi pair<long long int,long long int> #define sc second #define fs first int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); ll n,temp; cin >> n; vector<pi> v; fori(i,1,n) { cin >> temp; v.pb(mk(temp,i)); } sort(v.begin(), v.end()); reverse(v.begin(), v.end()); ll ans = 0, hell = 0; fori(i,0,n-1) { ans += (v[i].fs*hell); hell += 1; } cout << ans+n << endl; fori(i,0,n-1) cout << v[i].sc << " "; return 0; }
17.12
91
0.593458
xenowits
5088bd07be39f03921292ee9a9af76c4f3883ed7
1,067
cpp
C++
competitive programming/leetcode/905. Sort Array By Parity.cpp
kashyap99saksham/Code
96658d0920eb79c007701d2a3cc9dbf453d78f96
[ "MIT" ]
16
2020-06-02T19:22:45.000Z
2022-02-05T10:35:28.000Z
competitive programming/leetcode/905. Sort Array By Parity.cpp
codezoned/Code
de91ffc7ef06812a31464fb40358e2436734574c
[ "MIT" ]
null
null
null
competitive programming/leetcode/905. Sort Array By Parity.cpp
codezoned/Code
de91ffc7ef06812a31464fb40358e2436734574c
[ "MIT" ]
2
2020-08-27T17:40:06.000Z
2022-02-05T10:33:52.000Z
Given an array A of non-negative integers, return an array consisting of all the even elements of A, followed by all the odd elements of A. You may return any answer array that satisfies this condition. Example 1: Input: [3,1,2,4] Output: [2,4,3,1] The outputs [4,2,3,1], [2,4,1,3], and [4,2,1,3] would also be accepted. Note: 1 <= A.length <= 5000 0 <= A[i] <= 5000 // Without extra space class Solution { public: vector<int> sortArrayByParity(vector<int>& A) { int n=A.size(); int j=0; for(int i=0;i<n;i++){ if(A[i]%2==0){ swap(A[i], A[j]); j++; } } return A; } }; // Extra space class Solution { public: vector<int> sortArrayByParity(vector<int>& A) { int n=A.size(); vector<int> res(n); int start=0, last=n-1; for(int i=0;i<n;i++){ if(A[i]%2==0){ res[start++]=A[i]; } else { res[last--]=A[i]; } } return res; } };
16.936508
139
0.492971
kashyap99saksham
5089af9edf6629885ea3f89dd4f8105bc13337a7
1,585
hpp
C++
infra/util/Allocator.hpp
oguzcanphilips/embeddedinfralib
f1b083d61a34d123d34ab7cd51267377aa2f7855
[ "Unlicense" ]
54
2019-04-02T14:42:54.000Z
2022-03-20T23:02:19.000Z
infra/util/Allocator.hpp
oguzcanphilips/embeddedinfralib
f1b083d61a34d123d34ab7cd51267377aa2f7855
[ "Unlicense" ]
32
2019-03-26T06:57:29.000Z
2022-03-25T00:04:44.000Z
infra/util/Allocator.hpp
oguzcanphilips/embeddedinfralib
f1b083d61a34d123d34ab7cd51267377aa2f7855
[ "Unlicense" ]
20
2019-03-25T15:49:49.000Z
2022-03-20T23:02:22.000Z
#ifndef INFRA_ALLOCATOR_HPP #define INFRA_ALLOCATOR_HPP #include <memory> namespace infra { class AllocatorBase { protected: AllocatorBase() = default; AllocatorBase(const AllocatorBase& other) = delete; AllocatorBase& operator=(const AllocatorBase& other) = delete; ~AllocatorBase() = default; public: virtual void Deallocate(void* object) = 0; }; class Deallocator { public: Deallocator() = default; explicit Deallocator(AllocatorBase& allocator); void operator()(void* object); private: AllocatorBase* allocator = nullptr; }; template<class T> using UniquePtr = std::unique_ptr<T, Deallocator>; template<class T> UniquePtr<T> MakeUnique(T* object, AllocatorBase& allocator); template<class T, class ConstructionArgs> class Allocator; template<class T, class... ConstructionArgs> class Allocator<T, void(ConstructionArgs...)> : public AllocatorBase { public: virtual UniquePtr<T> Allocate(ConstructionArgs... args) = 0; protected: ~Allocator() = default; }; //// Implementation //// inline Deallocator::Deallocator(AllocatorBase& allocator) : allocator(&allocator) {} inline void Deallocator::operator()(void* object) { allocator->Deallocate(object); } template<class T> UniquePtr<T> MakeUnique(T* object, AllocatorBase& allocator) { return infra::UniquePtr<T>(object, Deallocator(allocator)); } } #endif
22.323944
70
0.634069
oguzcanphilips
509162b1e05af53522a2ceacc5e9f25212b7add7
1,862
hpp
C++
Simple++/MemoryAllocation.hpp
Oriode/Simpleplusplus
2ba44eeab5078d6dab66bdefdf73617696b8cb2e
[ "Apache-2.0" ]
null
null
null
Simple++/MemoryAllocation.hpp
Oriode/Simpleplusplus
2ba44eeab5078d6dab66bdefdf73617696b8cb2e
[ "Apache-2.0" ]
null
null
null
Simple++/MemoryAllocation.hpp
Oriode/Simpleplusplus
2ba44eeab5078d6dab66bdefdf73617696b8cb2e
[ "Apache-2.0" ]
null
null
null
MemoryAllocation::MemoryAllocation( void ) { } MemoryAllocation::MemoryAllocation( unsigned long memoryAddress, unsigned long memorySize, const StringASCII & allocationFileName, unsigned int lineNumber ) { this -> memoryAddress = memoryAddress; this -> memorySize = memorySize; this -> allocationFileName = allocationFileName; this -> allocationLineNumber = lineNumber; this -> bAllocated = true; } MemoryAllocation::~MemoryAllocation( void ) { } void MemoryAllocation::setAllocationFileName( const StringASCII & fileName ) { this -> allocationFileName = fileName; } void MemoryAllocation::setAllocationLineNumber( int lineNumber ) { this -> allocationFileName = lineNumber; } void MemoryAllocation::setDeleteFileName( const StringASCII & fileName ) { this -> deleteFileName = fileName; } void MemoryAllocation::setDeleteLineNumber( int lineNumber ) { this -> deleteLineNumber = lineNumber; } void MemoryAllocation::setMemoryAddress( unsigned long long address ) { this -> memoryAddress = address; } void MemoryAllocation::setMemorySize( unsigned long long size ) { this -> memorySize = size; } const StringASCII & MemoryAllocation::getAllocationFileName() const { return this -> allocationFileName; } int MemoryAllocation::getAllocationLineNumber() const { return this -> allocationLineNumber; } const StringASCII & MemoryAllocation::getDeleteFileName() const { return this -> deleteFileName; } int MemoryAllocation::getDeleteLineNumber() const { return this -> deleteLineNumber; } unsigned long long MemoryAllocation::getMemoryAddress() const { return this -> memoryAddress; } unsigned long long MemoryAllocation::getMemorySize() const { return this -> memorySize; } bool MemoryAllocation::isAllocated() const { return this -> bAllocated; } void MemoryAllocation::setAllocated( bool value ) { this -> bAllocated = value; }
25.861111
158
0.767991
Oriode
5092c1c3cc00fc3ec505ba5fe0f40c04f6f003dd
1,891
hpp
C++
lab_4/matrixline_methods.hpp
DrStarland/bmstu_AA_2020
acbb0c76d5763c06db0230025423e0fbb4382a9f
[ "Apache-2.0" ]
null
null
null
lab_4/matrixline_methods.hpp
DrStarland/bmstu_AA_2020
acbb0c76d5763c06db0230025423e0fbb4382a9f
[ "Apache-2.0" ]
null
null
null
lab_4/matrixline_methods.hpp
DrStarland/bmstu_AA_2020
acbb0c76d5763c06db0230025423e0fbb4382a9f
[ "Apache-2.0" ]
null
null
null
#ifndef MATRIXLINE_METHODS_HPP #define MATRIXLINE_METHODS_HPP #include "matrix.h" template <typename T> Matrix<T>::MatrixLine::MatrixLine(size_t len) : MatrixLine(len, nullptr) {} template <typename T> Matrix<T>::MatrixLine::MatrixLine(MatrixLine &&copy) { this->_move(std::move(copy)); } template <typename T> Matrix<T>::MatrixLine::MatrixLine(const MatrixLine &copy) : MatrixLine(copy.m_len, &copy) {} template <typename T> Matrix<T>::MatrixLine::MatrixLine(size_t n, const MatrixLine* source) { this->m_len = n, this->alloc_ptr(); if (source != nullptr) for (size_t i = 0; i < this->m_len; i++) this->m_ptr[i] = source->m_ptr[i]; } template <typename T> void Matrix<T>::MatrixLine::alloc_ptr() { T* temp = new (std::nothrow) T[m_len]; time_t _time = time(NULL); if (!temp) throw MemoryException(__FILE__, typeid(*this).name(), __LINE__, ctime(&_time)); m_ptr = shared_ptr<T[]> (temp); } template <typename T> typename Matrix<T>::MatrixLine& Matrix<T>::MatrixLine::operator=(MatrixLine&& copy) { this->_move(std::move(copy)); return *this; } template <typename T> T& Matrix<T>::MatrixLine::operator[](size_t ind) { time_t _time = time(NULL); if (this->m_len <= ind) throw IndexException(__FILE__, typeid(*this).name(), __LINE__, ctime(&_time)); return this->m_ptr[ind]; } template <typename T> const T& Matrix<T>::MatrixLine::operator[](size_t ind) const { time_t _time = time(NULL); if (this->m_len <= ind) throw IndexException(__FILE__, typeid(*this).name(), __LINE__, ctime(&_time)); return this->m_ptr[ind]; } template <typename T> void Matrix<T>::MatrixLine::_move(MatrixLine &&copy) { this->m_len = copy.m_len, this->m_ptr = copy.m_ptr; copy.m_ptr = nullptr, copy.m_len = 0; } #endif // MATRIXLINE_METHODS_HPP
32.603448
93
0.649392
DrStarland
50a14eb15659a1a668e106113a140777c86b501d
5,979
cpp
C++
test/android/jni.cpp
10110111/GLFFT
78176d4480bc3675327bf2bcfd80d5dae1820081
[ "MIT" ]
176
2015-08-17T20:47:10.000Z
2022-03-30T09:14:33.000Z
test/android/jni.cpp
10110111/GLFFT
78176d4480bc3675327bf2bcfd80d5dae1820081
[ "MIT" ]
6
2017-09-21T15:55:44.000Z
2020-11-07T03:15:44.000Z
test/android/jni.cpp
10110111/GLFFT
78176d4480bc3675327bf2bcfd80d5dae1820081
[ "MIT" ]
28
2016-02-28T04:37:50.000Z
2022-02-27T12:35:55.000Z
/* Copyright (C) 2015 Hans-Kristian Arntzen <[email protected]> * * Permission is hereby granted, free of charge, * to any person obtaining a copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, * and to permit persons to whom the Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "glfft_gl_interface.hpp" #include "glfft_context.hpp" #include "glfft_cli.hpp" #include <GLES2/gl2ext.h> #include <EGL/egl.h> #include <EGL/eglext.h> #include "net_themaister_glfft_Native.h" #include <memory> #include <vector> using namespace GLFFT; using namespace std; struct AndroidEGLContext : GLContext { EGLContext ctx = EGL_NO_CONTEXT; EGLSurface surf = EGL_NO_SURFACE; EGLDisplay dpy = EGL_NO_SURFACE; EGLConfig conf = 0; ~AndroidEGLContext() { if (dpy) { teardown(); eglMakeCurrent(dpy, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT); if (ctx) eglDestroyContext(dpy, ctx); if (surf) eglDestroySurface(dpy, surf); eglTerminate(dpy); } } }; unique_ptr<Context> GLFFT::create_cli_context() { unique_ptr<AndroidEGLContext> egl(new AndroidEGLContext); static const EGLint attr[] = { EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT, EGL_SURFACE_TYPE, EGL_PBUFFER_BIT, EGL_RED_SIZE, 1, EGL_GREEN_SIZE, 1, EGL_BLUE_SIZE, 1, EGL_ALPHA_SIZE, 0, EGL_DEPTH_SIZE, 0, EGL_STENCIL_SIZE, 0, EGL_NONE, }; static const EGLint context_attr[] = { EGL_CONTEXT_CLIENT_VERSION, 3, EGL_NONE, }; static const EGLint surface_attr[] = { EGL_WIDTH, 64, EGL_HEIGHT, 64, EGL_NONE, }; egl->dpy = eglGetDisplay(EGL_DEFAULT_DISPLAY); if (egl->dpy == EGL_NO_DISPLAY) { egl->log("Failed to create display.\n"); return nullptr; } eglInitialize(egl->dpy, nullptr, nullptr); EGLint num_configs = 0; eglChooseConfig(egl->dpy, attr, &egl->conf, 1, &num_configs); if (num_configs != 1) { egl->log("Failed to get EGL config.\n"); return nullptr; } egl->ctx = eglCreateContext(egl->dpy, egl->conf, EGL_NO_CONTEXT, context_attr); if (egl->ctx == EGL_NO_CONTEXT) { egl->log("Failed to create GLES context.\n"); return nullptr; } egl->surf = eglCreatePbufferSurface(egl->dpy, egl->conf, surface_attr); if (egl->surf == EGL_NO_SURFACE) { egl->log("Failed to create Pbuffer surface.\n"); return nullptr; } if (!eglMakeCurrent(egl->dpy, egl->surf, egl->surf, egl->ctx)) { egl->log("Failed to make EGL context current.\n"); return nullptr; } const char *version = reinterpret_cast<const char*>(glGetString(GL_VERSION)); unsigned major = 0, minor = 0; sscanf(version, "OpenGL ES %u.%u", &major, &minor); unsigned ctx_version = major * 1000 + minor; if (ctx_version < 3001) { egl->log("OpenGL ES 3.1 not supported (got %u.%u context).\n", major, minor); return nullptr; } egl->log("Version: %s\n", version); return unique_ptr<Context>(move(egl)); } void glfft_log(const char *fmt, ...) { va_list va; va_start(va, fmt); __android_log_vprint(ANDROID_LOG_INFO, "GLFFT", fmt, va); va_end(va); #ifdef GLFFT_CLI_ASYNC char buffer[16 * 1024]; va_start(va, fmt); vsnprintf(buffer, sizeof(buffer), fmt, va); GLFFT::get_async_task()->push_message(buffer); #endif } static int start_task(const vector<const char*> &argv) { GLFFT::set_async_task([argv] { return GLFFT::cli_main( GLFFT::get_async_context(), argv.size() - 1, (char**)argv.data()); }); GLFFT::get_async_task()->start(); return 0; } JNIEXPORT jint JNICALL Java_net_themaister_glfft_Native_beginRunTestSuiteTask(JNIEnv *, jclass) { vector<const char*> argv = { "glfft_cli", "test", "--test-all", nullptr, }; return start_task(argv); } JNIEXPORT jint JNICALL Java_net_themaister_glfft_Native_beginBenchTask (JNIEnv *, jclass) { vector<const char*> argv = { "glfft_cli", "bench", "--width", "2048", "--height", "2048", "--fp16", nullptr, }; return start_task(argv); } JNIEXPORT jstring JNICALL Java_net_themaister_glfft_Native_pull (JNIEnv *env, jclass) { string str; auto *task = GLFFT::get_async_task(); bool ret = task->pull(str); return ret ? env->NewStringUTF(str.c_str()) : nullptr; } JNIEXPORT jint JNICALL Java_net_themaister_glfft_Native_getExitCode (JNIEnv *, jclass) { auto *task = GLFFT::get_async_task(); return task->get_exit_code(); } JNIEXPORT jint JNICALL Java_net_themaister_glfft_Native_isComplete (JNIEnv *, jclass) { auto *task = GLFFT::get_async_task(); return task->is_completed(); } JNIEXPORT void JNICALL Java_net_themaister_glfft_Native_endTask (JNIEnv *, jclass) { GLFFT::end_async_task(); }
26.811659
129
0.646596
10110111
50a3fa8ab19998e82f47f1c1c383e3b87fac989a
1,752
hpp
C++
src/ScreenServer.hpp
RobinSinghNanda/Home-assistant-display
6f59104012c0956b54d4b55e190aa89941c2c1af
[ "MIT" ]
2
2020-10-23T19:53:56.000Z
2020-11-06T08:59:48.000Z
src/ScreenServer.hpp
RobinSinghNanda/Home-assistant-display
6f59104012c0956b54d4b55e190aa89941c2c1af
[ "MIT" ]
null
null
null
src/ScreenServer.hpp
RobinSinghNanda/Home-assistant-display
6f59104012c0956b54d4b55e190aa89941c2c1af
[ "MIT" ]
null
null
null
#ifndef __SCREENSERVER_H__ #define __SCREENSERVER_H__ #include "Arduino.h" #include "TFT_eSPI.h" //==================================================================================== // Definitions //==================================================================================== #define PIXEL_TIMEOUT 100 // 100ms Time-out between pixel requests #define START_TIMEOUT 10000 // 10s Maximum time to wait at start transfer #define BITS_PER_PIXEL 16 // 24 for RGB colour format, 16 for 565 colour format // File names must be alpha-numeric characters (0-9, a-z, A-Z) or "/" underscore "_" // other ascii characters are stripped out by client, including / generates // sub-directories #define DEFAULT_FILENAME "tft_screenshots/screenshot" // In case none is specified #define FILE_TYPE "png" // jpg, bmp, png, tif are valid // Filename extension // '#' = add incrementing number, '@' = add timestamp, '%' add millis() timestamp, // '*' = add nothing // '@' and '%' will generate new unique filenames, so beware of cluttering up your // hard drive with lots of images! The PC client sketch is set to limit the number of // saved images to 1000 and will then prompt for a restart. #define FILE_EXT '@' // Number of pixels to send in a burst (minimum of 1), no benefit above 8 // NPIXELS values and render times: // NPIXELS 1 = use readPixel() = >5s and 16 bit pixels only // NPIXELS >1 using rectRead() 2 = 1.75s, 4 = 1.68s, 8 = 1.67s #define NPIXELS 8 // Must be integer division of both TFT width and TFT height bool screenServer(void); bool screenServer(String filename); bool serialScreenServer(String filename); void sendParameters(String filename); #endif // __SCREENSERVER_H__
42.731707
86
0.639269
RobinSinghNanda
50a62b87724180c6555f2d0fdc10c3b01f22255d
2,388
cpp
C++
dia/ParserEditorUndoCommand.cpp
BKEngine/Creator
5cc08fb828866cfa970951a14e41c38ecd471a8d
[ "CNRI-Python" ]
25
2016-11-20T15:33:09.000Z
2022-02-22T09:35:20.000Z
dia/ParserEditorUndoCommand.cpp
BKEngine/Creator
5cc08fb828866cfa970951a14e41c38ecd471a8d
[ "CNRI-Python" ]
3
2017-05-25T23:19:44.000Z
2019-07-10T02:18:58.000Z
dia/ParserEditorUndoCommand.cpp
BKEngine/Creator
5cc08fb828866cfa970951a14e41c38ecd471a8d
[ "CNRI-Python" ]
8
2016-12-23T22:40:04.000Z
2021-08-09T04:43:11.000Z
#include "ParserEditorUndoCommand.h" #include "ParserEditorTreeModel.h" #include "ParserEditorTreeItem.h" InsertRowsCommand::InsertRowsCommand(ParserEditorTreeModel *model, int row, int count, const QModelIndex &parent) : model(model) , row(row) , count(count) , parent(parent) { } void InsertRowsCommand::undo() { model->removeRowsInternal(row, count, parent); } void InsertRowsCommand::redo() { model->insertRowsInternal(row, count, parent); } RemoveRowsCommand::RemoveRowsCommand(ParserEditorTreeModel *model, int row, int count, const QModelIndex &parent) : model(model) , row(row) , count(count) , parent(parent) { items = model->itemsForRows(row, count, parent); for (auto &&item : items) { item = item->duplicate(); } } RemoveRowsCommand::~RemoveRowsCommand() { qDeleteAll(items); } void RemoveRowsCommand::undo() { QList<ParserEditorTreeItem *> items; for (auto item : this->items) { items << item->duplicate(); } model->insertDataInternal(row, items, parent); } void RemoveRowsCommand::redo() { model->removeRowsInternal(row, count, parent); } InsertDataCommand::InsertDataCommand(ParserEditorTreeModel * model, int row, const QList<ParserEditorTreeItem*>& items, const QModelIndex & parent) : model(model) , row(row) , items(items) , parent(parent) { } InsertDataCommand::~InsertDataCommand() { qDeleteAll(items); } void InsertDataCommand::undo() { model->removeRowsInternal(row, items.count(), parent); } void InsertDataCommand::redo() { QList<ParserEditorTreeItem *> items; for (auto item : this->items) { items << item->duplicate(); } model->insertDataInternal(row, items, parent); } ModifyDataCommand::ModifyDataCommand(ParserEditorTreeModel *model, const QModelIndex &index, const QVariant &data) : model(model) , index(index) , data(data) { oldData = model->data(index, Qt::DisplayRole); } void ModifyDataCommand::undo() { model->setDataInternal(index, oldData); } void ModifyDataCommand::redo() { model->setDataInternal(index, data); } ChangeTypeCommand::ChangeTypeCommand(ParserEditorTreeModel *model, const QModelIndex &index, const QVariant &data) : model(model) , index(index) , data(data) { item = model->item(index)->duplicate(); } ChangeTypeCommand::~ChangeTypeCommand() { delete item; } void ChangeTypeCommand::undo() { } void ChangeTypeCommand::redo() { model->setDataInternal(index, data); }
19.258065
147
0.730318
BKEngine
27084f8412eae86805d019686bfd70a04db14971
6,627
hpp
C++
dof-mgr/src/Panzer_IntrepidFieldPattern.hpp
hillyuan/Panzer
13ece3ea4c145c4d7b6339e3ad6332a501932ea8
[ "BSD-3-Clause" ]
1
2022-03-22T03:49:50.000Z
2022-03-22T03:49:50.000Z
dof-mgr/src/Panzer_IntrepidFieldPattern.hpp
hillyuan/Panzer
13ece3ea4c145c4d7b6339e3ad6332a501932ea8
[ "BSD-3-Clause" ]
null
null
null
dof-mgr/src/Panzer_IntrepidFieldPattern.hpp
hillyuan/Panzer
13ece3ea4c145c4d7b6339e3ad6332a501932ea8
[ "BSD-3-Clause" ]
null
null
null
// @HEADER // *********************************************************************** // // Panzer: A partial differential equation assembly // engine for strongly coupled complex multiphysics systems // Copyright (2011) Sandia Corporation // // Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, // the U.S. Government retains certain rights in this software. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // 3. Neither the name of the Corporation nor the names of the // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Questions? Contact Roger P. Pawlowski ([email protected]) and // Eric C. Cyr ([email protected]) // *********************************************************************** // @HEADER #ifndef __Panzer_IntrepidFieldPattern_hpp__ #define __Panzer_IntrepidFieldPattern_hpp__ #include "Panzer_FieldPattern.hpp" // Trilinos includes #include "Kokkos_Core.hpp" #include "Kokkos_DynRankView.hpp" #include "Intrepid2_Basis.hpp" #include "Phalanx_KokkosDeviceTypes.hpp" #include "Teuchos_RCP.hpp" #include <set> namespace panzer { /** This is a derived class that specializes based * on a single intrepid basis function. */ class Intrepid2FieldPattern : public FieldPattern { public: Intrepid2FieldPattern(const Teuchos::RCP< Intrepid2::Basis<PHX::Device,double,double> > &intrepidBasis); virtual int getSubcellCount(int dim) const; virtual const std::vector<int> & getSubcellIndices(int dim, int cellIndex) const; virtual int getDimension() const; virtual shards::CellTopology getCellTopology() const; virtual void getSubcellClosureIndices(int dim,int cellIndex,std::vector<int> & indices) const; // static functions for examining shards objects /** For a given sub cell find the set of sub cells at all dimensions contained * internally. This is inclusive, so that (dim,subCell) will be in the set. * * \param[in] cellTopo Parent cell topology being used. * \param[in] dim Dimension of sub cell * \param[in] subCell Ordinal of sub cell at specified dimension * \param[in,out] closure Set of sub cells associated with specified sub cell. * * \note Sub cell dimension and ordinals are inserted into <code>closure</code>. * Previous information will not be removed. */ static void buildSubcellClosure(const shards::CellTopology & cellTopo,unsigned dim,unsigned subCell, std::set<std::pair<unsigned,unsigned> > & closure); /** Search a cell topology for sub cells containing a specfic set of nodes. * This is a downward search (inclusive) from a user specified dimension. * * \param[in] cellTopo Parent cell topology being used. * \param[in] dim Dimension of sub cell * \param[in] nodes Nodes forming the super set * \param[in,out] subCells Specific sub cells containing the nodes. * * \note Sub cell dimension and ordinals are inserted into <code>subCells</code>. * Previous information will not be removed. */ static void findContainedSubcells(const shards::CellTopology & cellTopo,unsigned dim, const std::vector<unsigned> & nodes, std::set<std::pair<unsigned,unsigned> > & subCells); /** Get the set of nodes making up the user specified sub cells. * * \param[in] cellTopo Parent cell topology being used. * \param[in] dim Dimension of sub cell * \param[in] subCell Ordinal of sub cell at specified dimension * \param[in,out] nodes Nodes associated with sub cell. */ static void getSubcellNodes(const shards::CellTopology & cellTopo,unsigned dim,unsigned subCell, std::vector<unsigned> & nodes); /** \brief Does this field pattern support interpolatory coordinates? * * If this method returns true then <code>getInterpolatoryCoordinates</code> will * succeed, otherwise it will throw. * * \returns True if this pattern supports interpolatory coordinates. */ bool supportsInterpolatoryCoordinates() const; /** Get the local coordinates for this field. This is independent of element * locations. * * \param[in,out] coords Coordinates associated with this field type. */ void getInterpolatoryCoordinates(Kokkos::DynRankView<double,PHX::Device> & coords) const; /** Get the local coordinates for this field. * * \param[in] cellVertices Coordinates associated with this field type. * \param[in,out] coords Coordinates associated with this field type. */ void getInterpolatoryCoordinates(const Kokkos::DynRankView<double,PHX::Device> & cellVertices, Kokkos::DynRankView<double,PHX::Device> & coords) const; /// Returns the underlying Intrepid2::Basis object Teuchos::RCP< Intrepid2::Basis<PHX::Device,double,double> > getIntrepidBasis() const; protected: Teuchos::RCP< Intrepid2::Basis<PHX::Device,double,double> > intrepidBasis_; //mutable std::vector<int> subcellIndices_; mutable std::vector<std::vector<std::vector<int> > > subcellIndicies_; std::vector<int> empty_; }; } #endif
43.598684
108
0.689
hillyuan
270aff09f7b49dba066873ece2b73065be1fbf58
13,021
hpp
C++
include/boost/gil/io/device.hpp
sdebionne/gil-reformated
7065d600d7f84d9ef2ed4df9862c596ff7e8a8c2
[ "BSL-1.0" ]
null
null
null
include/boost/gil/io/device.hpp
sdebionne/gil-reformated
7065d600d7f84d9ef2ed4df9862c596ff7e8a8c2
[ "BSL-1.0" ]
null
null
null
include/boost/gil/io/device.hpp
sdebionne/gil-reformated
7065d600d7f84d9ef2ed4df9862c596ff7e8a8c2
[ "BSL-1.0" ]
null
null
null
// // Copyright 2007-2012 Christian Henning, Andreas Pokorny // // Distributed under the Boost Software License, Version 1.0 // See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt // #ifndef BOOST_GIL_IO_DEVICE_HPP #define BOOST_GIL_IO_DEVICE_HPP #include <boost/gil/detail/mp11.hpp> #include <boost/gil/io/base.hpp> #include <cstdio> #include <memory> #include <type_traits> namespace boost { namespace gil { #if BOOST_WORKAROUND(BOOST_MSVC, >= 1400) #pragma warning(push) #pragma warning(disable : 4512) // assignment operator could not be generated #endif namespace detail { template <typename T> struct buff_item { static const unsigned int size = sizeof(T); }; template <> struct buff_item<void> { static const unsigned int size = 1; }; /*! * Implements the IODevice concept c.f. to \ref IODevice required by Image * libraries like libjpeg and libpng. * * \todo switch to a sane interface as soon as there is * something good in boost. I.E. the IOChains library * would fit very well here. * * This implementation is based on FILE*. */ template <typename FormatTag> class file_stream_device { public: using format_tag_t = FormatTag; public: /// Used to overload the constructor. struct read_tag {}; struct write_tag {}; /// /// Constructor /// file_stream_device(const std::string &file_name, read_tag tag = read_tag()) : file_stream_device(file_name.c_str(), tag) {} /// /// Constructor /// file_stream_device(const char *file_name, read_tag = read_tag()) { FILE *file = nullptr; io_error_if((file = fopen(file_name, "rb")) == nullptr, "file_stream_device: failed to open file for reading"); _file = file_ptr_t(file, file_deleter); } /// /// Constructor /// file_stream_device(const std::string &file_name, write_tag tag) : file_stream_device(file_name.c_str(), tag) {} /// /// Constructor /// file_stream_device(const char *file_name, write_tag) { FILE *file = nullptr; io_error_if((file = fopen(file_name, "wb")) == nullptr, "file_stream_device: failed to open file for writing"); _file = file_ptr_t(file, file_deleter); } /// /// Constructor /// file_stream_device(FILE *file) : _file(file, file_deleter) {} FILE *get() { return _file.get(); } const FILE *get() const { return _file.get(); } int getc_unchecked() { return std::getc(get()); } char getc() { int ch; io_error_if((ch = std::getc(get())) == EOF, "file_stream_device: unexpected EOF"); return (char)ch; } ///@todo: change byte_t* to void* std::size_t read(byte_t *data, std::size_t count) { std::size_t num_elements = fread(data, 1, static_cast<int>(count), get()); ///@todo: add compiler symbol to turn error checking on and off. io_error_if(ferror(get()), "file_stream_device: file read error"); // libjpeg sometimes reads blocks in 4096 bytes even when the file is // smaller than that. return value indicates how much was actually read // returning less than "count" is not an error return num_elements; } /// Reads array template <typename T, int N> void read(T (&buf)[N]) { io_error_if(read(buf, N) < N, "file_stream_device: file read error"); } /// Reads byte uint8_t read_uint8() { byte_t m[1]; read(m); return m[0]; } /// Reads 16 bit little endian integer uint16_t read_uint16() { byte_t m[2]; read(m); return (m[1] << 8) | m[0]; } /// Reads 32 bit little endian integer uint32_t read_uint32() { byte_t m[4]; read(m); return (m[3] << 24) | (m[2] << 16) | (m[1] << 8) | m[0]; } /// Writes number of elements from a buffer template <typename T> std::size_t write(const T *buf, std::size_t count) { std::size_t num_elements = fwrite(buf, buff_item<T>::size, count, get()); // return value indicates how much was actually written // returning less than "count" is not an error return num_elements; } /// Writes array template <typename T, std::size_t N> void write(const T (&buf)[N]) { io_error_if(write(buf, N) < N, "file_stream_device: file write error"); return; } /// Writes byte void write_uint8(uint8_t x) { byte_t m[1] = {x}; write(m); } /// Writes 16 bit little endian integer void write_uint16(uint16_t x) { byte_t m[2]; m[0] = byte_t(x >> 0); m[1] = byte_t(x >> 8); write(m); } /// Writes 32 bit little endian integer void write_uint32(uint32_t x) { byte_t m[4]; m[0] = byte_t(x >> 0); m[1] = byte_t(x >> 8); m[2] = byte_t(x >> 16); m[3] = byte_t(x >> 24); write(m); } void seek(long count, int whence = SEEK_SET) { io_error_if(fseek(get(), count, whence) != 0, "file_stream_device: file seek error"); } long int tell() { long int pos = ftell(get()); io_error_if(pos == -1L, "file_stream_device: file position error"); return pos; } void flush() { fflush(get()); } /// Prints formatted ASCII text void print_line(const std::string &line) { std::size_t num_elements = fwrite(line.c_str(), sizeof(char), line.size(), get()); io_error_if(num_elements < line.size(), "file_stream_device: line print error"); } int error() { return ferror(get()); } private: static void file_deleter(FILE *file) { if (file) { fclose(file); } } private: using file_ptr_t = std::shared_ptr<FILE>; file_ptr_t _file; }; /** * Input stream device */ template <typename FormatTag> class istream_device { public: istream_device(std::istream &in) : _in(in) { // does the file exists? io_error_if(!in, "istream_device: Stream is not valid."); } int getc_unchecked() { return _in.get(); } char getc() { int ch; io_error_if((ch = _in.get()) == EOF, "istream_device: unexpected EOF"); return (char)ch; } std::size_t read(byte_t *data, std::size_t count) { std::streamsize cr = 0; do { _in.peek(); std::streamsize c = _in.readsome(reinterpret_cast<char *>(data), static_cast<std::streamsize>(count)); count -= static_cast<std::size_t>(c); data += c; cr += c; } while (count && _in); return static_cast<std::size_t>(cr); } /// Reads array template <typename T, int N> void read(T (&buf)[N]) { read(buf, N); } /// Reads byte uint8_t read_uint8() { byte_t m[1]; read(m); return m[0]; } /// Reads 16 bit little endian integer uint16_t read_uint16() { byte_t m[2]; read(m); return (m[1] << 8) | m[0]; } /// Reads 32 bit little endian integer uint32_t read_uint32() { byte_t m[4]; read(m); return (m[3] << 24) | (m[2] << 16) | (m[1] << 8) | m[0]; } void seek(long count, int whence = SEEK_SET) { _in.seekg(count, whence == SEEK_SET ? std::ios::beg : (whence == SEEK_CUR ? std::ios::cur : std::ios::end)); } void write(const byte_t *, std::size_t) { io_error("istream_device: Bad io error."); } void flush() {} private: std::istream &_in; }; /** * Output stream device */ template <typename FormatTag> class ostream_device { public: ostream_device(std::ostream &out) : _out(out) {} std::size_t read(byte_t *, std::size_t) { io_error("ostream_device: Bad io error."); return 0; } void seek(long count, int whence) { _out.seekp(count, whence == SEEK_SET ? std::ios::beg : (whence == SEEK_CUR ? std::ios::cur : std::ios::end)); } void write(const byte_t *data, std::size_t count) { _out.write(reinterpret_cast<char const *>(data), static_cast<std::streamsize>(count)); } /// Writes array template <typename T, std::size_t N> void write(const T (&buf)[N]) { write(buf, N); } /// Writes byte void write_uint8(uint8_t x) { byte_t m[1] = {x}; write(m); } /// Writes 16 bit little endian integer void write_uint16(uint16_t x) { byte_t m[2]; m[0] = byte_t(x >> 0); m[1] = byte_t(x >> 8); write(m); } /// Writes 32 bit little endian integer void write_uint32(uint32_t x) { byte_t m[4]; m[0] = byte_t(x >> 0); m[1] = byte_t(x >> 8); m[2] = byte_t(x >> 16); m[3] = byte_t(x >> 24); write(m); } void flush() { _out << std::flush; } /// Prints formatted ASCII text void print_line(const std::string &line) { _out << line; } private: std::ostream &_out; }; /** * Metafunction to detect input devices. * Should be replaced by an external facility in the future. */ template <typename IODevice> struct is_input_device : std::false_type {}; template <typename FormatTag> struct is_input_device<file_stream_device<FormatTag>> : std::true_type {}; template <typename FormatTag> struct is_input_device<istream_device<FormatTag>> : std::true_type {}; template <typename FormatTag, typename T, typename D = void> struct is_adaptable_input_device : std::false_type {}; template <typename FormatTag, typename T> struct is_adaptable_input_device< FormatTag, T, typename std::enable_if< mp11::mp_or<std::is_base_of<std::istream, T>, std::is_same<std::istream, T>>::value>::type> : std::true_type { using device_type = istream_device<FormatTag>; }; template <typename FormatTag> struct is_adaptable_input_device<FormatTag, FILE *, void> : std::true_type { using device_type = file_stream_device<FormatTag>; }; /// /// Metafunction to decide if a given type is an acceptable read device type. /// template <typename FormatTag, typename T, typename D = void> struct is_read_device : std::false_type {}; template <typename FormatTag, typename T> struct is_read_device< FormatTag, T, typename std::enable_if< mp11::mp_or<is_input_device<FormatTag>, is_adaptable_input_device<FormatTag, T>>::value>::type> : std::true_type {}; /** * Metafunction to detect output devices. * Should be replaced by an external facility in the future. */ template <typename IODevice> struct is_output_device : std::false_type {}; template <typename FormatTag> struct is_output_device<file_stream_device<FormatTag>> : std::true_type {}; template <typename FormatTag> struct is_output_device<ostream_device<FormatTag>> : std::true_type {}; template <typename FormatTag, typename IODevice, typename D = void> struct is_adaptable_output_device : std::false_type {}; template <typename FormatTag, typename T> struct is_adaptable_output_device< FormatTag, T, typename std::enable_if< mp11::mp_or<std::is_base_of<std::ostream, T>, std::is_same<std::ostream, T>>::value>::type> : std::true_type { using device_type = ostream_device<FormatTag>; }; template <typename FormatTag> struct is_adaptable_output_device<FormatTag, FILE *, void> : std::true_type { using device_type = file_stream_device<FormatTag>; }; /// /// Metafunction to decide if a given type is an acceptable read device type. /// template <typename FormatTag, typename T, typename D = void> struct is_write_device : std::false_type {}; template <typename FormatTag, typename T> struct is_write_device< FormatTag, T, typename std::enable_if< mp11::mp_or<is_output_device<FormatTag>, is_adaptable_output_device<FormatTag, T>>::value>::type> : std::true_type {}; } // namespace detail template <typename Device, typename FormatTag> class scanline_reader; template <typename Device, typename FormatTag, typename ConversionPolicy> class reader; template <typename Device, typename FormatTag, typename Log = no_log> class writer; template <typename Device, typename FormatTag> class dynamic_image_reader; template <typename Device, typename FormatTag, typename Log = no_log> class dynamic_image_writer; namespace detail { template <typename T> struct is_reader : std::false_type {}; template <typename Device, typename FormatTag, typename ConversionPolicy> struct is_reader<reader<Device, FormatTag, ConversionPolicy>> : std::true_type { }; template <typename T> struct is_dynamic_image_reader : std::false_type {}; template <typename Device, typename FormatTag> struct is_dynamic_image_reader<dynamic_image_reader<Device, FormatTag>> : std::true_type {}; template <typename T> struct is_writer : std::false_type {}; template <typename Device, typename FormatTag> struct is_writer<writer<Device, FormatTag>> : std::true_type {}; template <typename T> struct is_dynamic_image_writer : std::false_type {}; template <typename Device, typename FormatTag> struct is_dynamic_image_writer<dynamic_image_writer<Device, FormatTag>> : std::true_type {}; } // namespace detail #if BOOST_WORKAROUND(BOOST_MSVC, >= 1400) #pragma warning(pop) #endif } // namespace gil } // namespace boost #endif
25.531373
80
0.651179
sdebionne
270e8b3df3b7bd8b52e67cb3eea40f08be838f4c
1,135
hpp
C++
e-Paper/src/WiFiHandler.hpp
PDA-UR/Dumb-e-Paper
99aecce5fbcb64d32b7e47809df393e0e2e7fab4
[ "MIT" ]
2
2019-01-30T13:48:14.000Z
2021-10-30T16:11:03.000Z
e-Paper/src/WiFiHandler.hpp
PDA-UR/Dumb-e-Paper
99aecce5fbcb64d32b7e47809df393e0e2e7fab4
[ "MIT" ]
null
null
null
e-Paper/src/WiFiHandler.hpp
PDA-UR/Dumb-e-Paper
99aecce5fbcb64d32b7e47809df393e0e2e7fab4
[ "MIT" ]
2
2018-02-14T12:45:59.000Z
2021-12-17T20:57:02.000Z
#ifndef __WIFIHANDLER_H_INCLUDED__ #define __WIFIHANDLER_H_INCLUDED__ /** * @defgroup WiFi Handler */ /** @addtogroup WiFi Handler */ /*@{*/ #include "main.hpp" #include <WiFi.h> #include <WiFiMulti.h> /** * @brief Could be anything but must also be changed in python script */ const int PORT = 1516; enum class WiFiStatus { WIFI_SUCCESS, WIFI_ERROR, WIFI_WAIT, SHOW_PICTURE_01, SHOW_PICTURE_02, CLEAR_SCREEN }; class WiFiHandler { public: /** * @brief Start WiFi connection * * @param id ssid to connect * @param password for network * @return true if WiFi could connect */ static bool init(String id, String password); /** * @brief Receive data from WiFi and write to buffer * * @param buffer gets WiFi data * @param le buffer length * @return WiFiStatus */ static WiFiStatus handle(byte *buffer, int le); /** * @brief Sends "OK" to server, to receive new data */ static void requestDataChunk(); private: static const byte O; static const byte K; static char *ip; }; /*@}*/ #endif
17.461538
69
0.629956
PDA-UR
271977f61e3e2b952a3d340389cb5a28802382f2
2,378
cpp
C++
src/graphics/backend/depth_pass.cpp
NotAPenguin0/Andromeda
69ac0e448dbc7d5ba8f5915177f333bd8cd1a1b4
[ "MIT" ]
7
2020-04-28T11:01:55.000Z
2022-02-22T09:59:33.000Z
src/graphics/backend/depth_pass.cpp
NotAPenguin0/Andromeda
69ac0e448dbc7d5ba8f5915177f333bd8cd1a1b4
[ "MIT" ]
2
2021-09-03T12:58:06.000Z
2021-09-20T20:07:33.000Z
src/graphics/backend/depth_pass.cpp
NotAPenguin0/Andromeda
69ac0e448dbc7d5ba8f5915177f333bd8cd1a1b4
[ "MIT" ]
1
2021-09-03T12:56:25.000Z
2021-09-03T12:56:25.000Z
#include <andromeda/graphics/backend/depth_pass.hpp> #include <andromeda/graphics/backend/mesh_draw.hpp> namespace andromeda::gfx::backend { void create_depth_only_pipeline(gfx::Context& ctx, VkSampleCountFlagBits samples, float sample_ratio) { ph::PipelineCreateInfo pci = ph::PipelineBuilder::create(ctx, "depth_only") .add_shader("data/shaders/depth.vert.spv", "main", ph::ShaderStage::Vertex) .add_vertex_input(0) // Note that not all these attributes will be used, but they are specified because the vertex size is deduced from them .add_vertex_attribute(0, 0, VK_FORMAT_R32G32B32_SFLOAT) // iPos .add_vertex_attribute(0, 1, VK_FORMAT_R32G32B32_SFLOAT) // iNormal .add_vertex_attribute(0, 2, VK_FORMAT_R32G32B32_SFLOAT) // iTangent .add_vertex_attribute(0, 3, VK_FORMAT_R32G32_SFLOAT) // iUV .add_dynamic_state(VK_DYNAMIC_STATE_SCISSOR) .add_dynamic_state(VK_DYNAMIC_STATE_VIEWPORT) .set_depth_test(true) .set_depth_write(true) .set_cull_mode(VK_CULL_MODE_BACK_BIT) .set_samples(samples) .set_sample_shading(sample_ratio) .reflect() .get(); ctx.create_named_pipeline(std::move(pci)); } ph::Pass build_depth_pass(gfx::Context& ctx, ph::InFlightContext& ifc, std::string_view target, gfx::SceneDescription const& scene, ph::BufferSlice camera, ph::BufferSlice transforms) { ph::Pass pass = ph::PassBuilder::create("fwd_plus_depth") .add_depth_attachment(target, ph::LoadOp::Clear, {.depth_stencil = {.depth = 1.0f, .stencil = 0}}) .execute([&ctx, &ifc, &scene, camera, transforms](ph::CommandBuffer& cmd) { cmd.bind_pipeline("depth_only"); cmd.auto_viewport_scissor(); VkDescriptorSet set = ph::DescriptorBuilder::create(ctx, cmd.get_bound_pipeline()) .add_uniform_buffer("camera", camera) .add_storage_buffer("transforms", transforms) .get(); cmd.bind_descriptor_set(set); for_each_ready_mesh(scene, [&cmd](auto const& _, gfx::Mesh const& mesh, uint32_t index) { cmd.push_constants(ph::ShaderStage::Vertex, 0, sizeof(uint32_t), &index); // mesh index is also the transform index bind_and_draw(cmd, mesh); }); }) .get(); return pass; } }
48.530612
185
0.671152
NotAPenguin0
271a6bb390cdea7444ec97670599d0ec5b539f6f
344
cpp
C++
hilbert_mapper/src/hilbert_mapper_node.cpp
Jaeyoung-Lim/mav_hilbertmap_planning
96df718a04953df3b39f080a7e33565407ad6be1
[ "BSD-3-Clause" ]
4
2019-01-16T16:18:16.000Z
2019-06-06T14:30:56.000Z
hilbert_mapper/src/hilbert_mapper_node.cpp
Wayne-xixi/mav_hilbertmap_planning
96df718a04953df3b39f080a7e33565407ad6be1
[ "BSD-3-Clause" ]
16
2019-01-24T12:44:28.000Z
2021-01-08T01:44:41.000Z
hilbert_mapper/src/hilbert_mapper_node.cpp
Wayne-xixi/mav_hilbertmap_planning
96df718a04953df3b39f080a7e33565407ad6be1
[ "BSD-3-Clause" ]
2
2020-01-10T09:31:49.000Z
2021-01-02T23:25:53.000Z
// July/2018, ETHZ, Jaeyoung Lim, [email protected] #include "hilbert_mapper/hilbert_mapper.h" //using namespace RAI; int main(int argc, char** argv) { ros::init(argc,argv,"geometric_controller"); ros::NodeHandle nh(""); ros::NodeHandle nh_private("~"); HilbertMapper Hilbertmapper(nh, nh_private); ros::spin(); return 0; }
22.933333
56
0.700581
Jaeyoung-Lim
272ef38e2bdd26b398d8e764eadb4f729ee15768
3,715
cpp
C++
Src/Vessel/Atlantis/Common.cpp
Ybalrid/orbiter
7bed82f845ea8347f238011367e07007b0a24099
[ "MIT" ]
1,040
2021-07-27T12:12:06.000Z
2021-08-02T14:24:49.000Z
Src/Vessel/Atlantis/Common.cpp
Ybalrid/orbiter
7bed82f845ea8347f238011367e07007b0a24099
[ "MIT" ]
20
2021-07-27T12:25:22.000Z
2021-08-02T12:22:19.000Z
Src/Vessel/Atlantis/Common.cpp
Ybalrid/orbiter
7bed82f845ea8347f238011367e07007b0a24099
[ "MIT" ]
71
2021-07-27T14:19:49.000Z
2021-08-02T05:51:52.000Z
// ============================================================== // ORBITER MODULE: Atlantis // Part of the ORBITER SDK // Copyright (C) 2001-2003 Martin Schweiger // All rights reserved // // Common.cpp // Utility functions common to multiple Atlantis-related modules // ============================================================== #include "Atlantis.h" #ifdef _DEBUG // D. Beachy: GROW THE STACK HERE SO WE CAN USE BOUNDSCHECKER FOR DEBUGGING // We need this is because BoundsChecker (for this object) grows the stack more than 1 full page (4K) at once // and then touches data beyond the initial 4K, skipping over the guard page that Windows places below the stack to grow it automatically. // Therefore we will grow the stack manually in one-page increments here. // This is only necessary for BoundsChecker debugging. int GrowStack() { #ifdef UNDEF // This function causes a crash (LoadLibrary fails with code 1001 (stack overflow) on compiling with VS2019, so I am disabling it for now // NOTE: this requires that orbiter.exe has its 'Size of Stack Reserve' PE header parameter set to 4 MB int pageCount = 256; // 256 4K pages = reserve 1 MB of stack DWORD dwStackDelta = 0; // total # of stack bytes used for (int i=0; i < pageCount; i++) { dwStackDelta += 4096; __asm { sub esp, 4092; // 1 page - 4 bytes push 0xFEEDFEED // touch the page } } // now pop the stack we touched __asm { mov eax, [dwStackDelta] // size in bytes add esp, eax } #endif return 0; } // invoke GrowStack early before the next lines are called (otherwise BoundsChecker will crash) int growStack=GrowStack(); #endif int SRB_nt = 6; double SRB_Seq[6] = {-SRB_STABILISATION_TIME, -1, 103, 115, SRB_SEPARATION_TIME, SRB_CUTOUT_TIME}; double SRB_Thrust[6] = { 0, 1, 1, 0.85, 0.05, 0 }; double SRB_Prop[6] = { 1, 0.98768, 0.13365, 0.04250, 0.001848, 0 }; double SRB_ThrSCL[5] = {(SRB_Thrust[1]-SRB_Thrust[0])/(SRB_Seq[1]-SRB_Seq[0]), (SRB_Thrust[2]-SRB_Thrust[1])/(SRB_Seq[2]-SRB_Seq[1]), (SRB_Thrust[3]-SRB_Thrust[2])/(SRB_Seq[3]-SRB_Seq[2]), (SRB_Thrust[4]-SRB_Thrust[3])/(SRB_Seq[4]-SRB_Seq[3]), (SRB_Thrust[5]-SRB_Thrust[4])/(SRB_Seq[5]-SRB_Seq[4])}; double SRB_PrpSCL[5] = {(SRB_Prop[1]-SRB_Prop[0])/(SRB_Seq[1]-SRB_Seq[0]), (SRB_Prop[2]-SRB_Prop[1])/(SRB_Seq[2]-SRB_Seq[1]), (SRB_Prop[3]-SRB_Prop[2])/(SRB_Seq[3]-SRB_Seq[2]), (SRB_Prop[4]-SRB_Prop[3])/(SRB_Seq[4]-SRB_Seq[3]), (SRB_Prop[5]-SRB_Prop[4])/(SRB_Seq[5]-SRB_Seq[4])}; //PARTICLESTREAMSPEC srb_contrail = { // 0, 12.0, 3, 150.0, 0.4, 8.0, 4, 3.0, PARTICLESTREAMSPEC::DIFFUSE, // PARTICLESTREAMSPEC::LVL_PSQRT, 0, 0.5, // PARTICLESTREAMSPEC::ATM_PLOG, 1e-6, 0.1 //}; PARTICLESTREAMSPEC srb_contrail = { 0, 12.0, 3, 200.0, 0.25, 12.0, 11, 10.0, PARTICLESTREAMSPEC::DIFFUSE, PARTICLESTREAMSPEC::LVL_PSQRT, 0, 0.7, PARTICLESTREAMSPEC::ATM_PLOG, 1e-6, 0.1 }; PARTICLESTREAMSPEC srb_exhaust = { 0, 6.0, 40, 250.0, 0.04, 0.4, 20, 6.0, PARTICLESTREAMSPEC::EMISSIVE, PARTICLESTREAMSPEC::LVL_SQRT, 1, 1, PARTICLESTREAMSPEC::ATM_FLAT, 1, 1 }; // time-dependent calculation of SRB thrust and remaining propellant void GetSRB_State (double met, double &thrust_level, double &prop_level) { int i; for (i = SRB_nt-2; i >= 0; i--) if (met > SRB_Seq[i]) break; thrust_level = SRB_ThrSCL[i] * (met-SRB_Seq[i]) + SRB_Thrust[i]; prop_level = SRB_PrpSCL[i] * (met-SRB_Seq[i]) + SRB_Prop[i]; }
40.380435
150
0.61319
Ybalrid
27305309e16b21f4b91241bdb63de3e3ea06e5ee
6,215
cxx
C++
EVE/EveDet/AliEveEMCALSModuleData.cxx
AllaMaevskaya/AliRoot
c53712645bf1c7d5f565b0d3228e3a6b9b09011a
[ "BSD-3-Clause" ]
52
2016-12-11T13:04:01.000Z
2022-03-11T11:49:35.000Z
EVE/EveDet/AliEveEMCALSModuleData.cxx
AllaMaevskaya/AliRoot
c53712645bf1c7d5f565b0d3228e3a6b9b09011a
[ "BSD-3-Clause" ]
1,388
2016-11-01T10:27:36.000Z
2022-03-30T15:26:09.000Z
EVE/EveDet/AliEveEMCALSModuleData.cxx
AllaMaevskaya/AliRoot
c53712645bf1c7d5f565b0d3228e3a6b9b09011a
[ "BSD-3-Clause" ]
275
2016-06-21T20:24:05.000Z
2022-03-31T13:06:19.000Z
/************************************************************************** * Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * * * * Author: The ALICE Off-line Project. * * Contributors are mentioned in the code where appropriate. * * * * Permission to use, copy, modify and distribute this software and its * * documentation strictly for non-commercial purposes is hereby granted * * without fee, provided that the above copyright notice appears in all * * copies and that both the copyright notice and this permission notice * * appear in the supporting documentation. The authors make no claims * * about the suitability of this software for any purpose. It is * * provided "as is" without express or implied warranty. * **************************************************************************/ #include <TGeoBBox.h> #include "AliEMCALGeometry.h" #include "AliEveEMCALSModuleData.h" class TClonesArray; class TGeoNode; //class TGeoMatrix; class TVector2; class AliEveEventManager; /// \cond CLASSIMP ClassImp(AliEveEMCALSModuleData) ; /// \endcond Float_t AliEveEMCALSModuleData::fgSModuleBigBox0 = 0.; Float_t AliEveEMCALSModuleData::fgSModuleBigBox1 = 0.; Float_t AliEveEMCALSModuleData::fgSModuleBigBox2 = 0.; Float_t AliEveEMCALSModuleData::fgSModuleSmallBox0 = 0.; Float_t AliEveEMCALSModuleData::fgSModuleSmallBox1 = 0.; Float_t AliEveEMCALSModuleData::fgSModuleSmallBox2 = 0.; Float_t AliEveEMCALSModuleData::fgSModuleDCalBox0 = 0.; Float_t AliEveEMCALSModuleData::fgSModuleDCalBox1 = 0.; Float_t AliEveEMCALSModuleData::fgSModuleDCalBox2 = 0.; Float_t AliEveEMCALSModuleData::fgSModuleSmallDBox0 = 0.; Float_t AliEveEMCALSModuleData::fgSModuleSmallDBox1 = 0.; Float_t AliEveEMCALSModuleData::fgSModuleSmallDBox2 = 0.; // // Constructor // //______________________________________________________________________________ AliEveEMCALSModuleData::AliEveEMCALSModuleData(Int_t sm,AliEMCALGeometry* geom, TGeoNode* node): //, TGeoHMatrix* m) : TObject(), fGeom(geom), fNode(node), fSmId(sm), fNsm(0), fNDigits(0), fNClusters(0), fNHits(0), fPhiTileSize(0), fEtaTileSize(0), fHitArray(0), fDigitArray(0), fClusterArray(0) // fMatrix(0), // fHMatrix(m) { Init(sm); } /// /// Copy constructor /// //______________________________________________________________________________ AliEveEMCALSModuleData::AliEveEMCALSModuleData(const AliEveEMCALSModuleData &esmdata) : TObject(), fGeom(esmdata.fGeom), fNode(esmdata.fNode), fSmId(esmdata.fSmId), fNsm(esmdata.fNsm), fNDigits(esmdata.fNDigits), fNClusters(esmdata.fNClusters), fNHits(esmdata.fNHits), fPhiTileSize(esmdata.fPhiTileSize), fEtaTileSize(esmdata.fEtaTileSize), fHitArray(esmdata.fHitArray), fDigitArray(esmdata.fDigitArray), fClusterArray(esmdata.fClusterArray) // fMatrix(esmdata.fMatrix), // fHMatrix(esmdata.fHMatrix) { Init(esmdata.fNsm); } /// /// Destructor /// //______________________________________________________________________________ AliEveEMCALSModuleData::~AliEveEMCALSModuleData() { if(!fHitArray.empty()) fHitArray.clear(); if(!fDigitArray.empty()) fDigitArray.clear(); if(!fClusterArray.empty()) fClusterArray.clear(); } /// /// Release the SM data. /// //______________________________________________________________________________ void AliEveEMCALSModuleData::DropData() { fNDigits = 0; fNClusters = 0; fNHits = 0; if(!fHitArray.empty()) fHitArray.clear(); if(!fDigitArray.empty()) fDigitArray.clear(); if(!fClusterArray.empty()) fClusterArray.clear(); return; } /// /// Initialize parameters /// // ______________________________________________________________________________ void AliEveEMCALSModuleData::Init(Int_t sm) { fNsm = fGeom->GetNumberOfSuperModules(); fPhiTileSize = fGeom->GetPhiTileSize(); fEtaTileSize = fGeom->GetPhiTileSize(); //fMatrix = (TGeoMatrix*) fNode->GetDaughter(sm)->GetMatrix(); TGeoBBox * bbox = (TGeoBBox*) fNode->GetDaughter(sm)->GetVolume()->GetShape(); if(sm < 10) { fgSModuleBigBox0 = bbox->GetDX(); fgSModuleBigBox1 = bbox->GetDY(); fgSModuleBigBox2 = bbox->GetDZ(); } else if(sm < 12) { fgSModuleSmallBox0 = bbox->GetDX(); fgSModuleSmallBox1 = bbox->GetDY(); fgSModuleSmallBox2 = bbox->GetDZ(); } else if(sm < 18) { fgSModuleDCalBox0 = bbox->GetDX(); fgSModuleDCalBox1 = bbox->GetDY(); fgSModuleDCalBox2 = bbox->GetDZ(); } else if(sm < 20) { fgSModuleSmallDBox0 = bbox->GetDX(); fgSModuleSmallDBox1 = bbox->GetDY(); fgSModuleSmallDBox2 = bbox->GetDZ(); } } /// /// Add a digit to this SM /// // ______________________________________________________________________________ void AliEveEMCALSModuleData::RegisterDigit(Int_t AbsId, Int_t isupMod, Double_t iamp, Double_t ix, Double_t iy, Double_t iz) { std::vector<Double_t> bufDig(6); bufDig[0] = AbsId; bufDig[1] = isupMod; bufDig[2] = iamp; bufDig[3] = ix; bufDig[4] = iy; bufDig[5] = iz; fDigitArray.push_back(bufDig); fNDigits++; } /// /// Add a hit to this SM /// // ______________________________________________________________________________ void AliEveEMCALSModuleData::RegisterHit(Int_t AbsId, Int_t isupMod, Double_t iamp, Double_t ix, Double_t iy, Double_t iz) { std::vector<Float_t> bufHit(6); bufHit[0] = AbsId; bufHit[1] = isupMod; bufHit[2] = iamp; bufHit[3] = ix; bufHit[4] = iy; bufHit[5] = iz; fHitArray.push_back(bufHit); fNHits++; } /// /// Add a cluster to this SM /// // ______________________________________________________________________________ void AliEveEMCALSModuleData::RegisterCluster(Int_t isupMod, Double_t iamp, Double_t ix, Double_t iy, Double_t iz) { std::vector<Double_t> bufClu(5); bufClu[0] = isupMod; bufClu[1] = iamp; bufClu[2] = ix; bufClu[3] = iy; bufClu[4] = iz; fClusterArray.push_back(bufClu); fNClusters++; }
27.258772
124
0.684312
AllaMaevskaya
27307444b2da9e8959408ee53db2556cc14f1982
578
cpp
C++
codes/HDU/hdu5510.cpp
JeraKrs/ACM
edcd61ec6764b8cd804bf1538dfde53d0ff572b5
[ "Apache-2.0" ]
null
null
null
codes/HDU/hdu5510.cpp
JeraKrs/ACM
edcd61ec6764b8cd804bf1538dfde53d0ff572b5
[ "Apache-2.0" ]
null
null
null
codes/HDU/hdu5510.cpp
JeraKrs/ACM
edcd61ec6764b8cd804bf1538dfde53d0ff572b5
[ "Apache-2.0" ]
null
null
null
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int maxn = 505; const int maxm = 2005; int N, F[maxn]; char str[maxn][maxm]; int main () { int cas; scanf("%d", &cas); for (int kcas = 1; kcas <= cas; kcas++) { scanf("%d", &N); for (int i = 0; i < N; i++) scanf("%s", str[i]); int p = N-1; while (p && strstr(str[p], str[p-1]) != NULL) p--; p++; for (int i = p-2; i >= 0 && p < N; i--) { while (p < N && strstr(str[p], str[i]) == NULL) p++; } if (p == 1) p = -1; printf("Case #%d: %d\n", kcas, p); } return 0; }
18.645161
55
0.50346
JeraKrs
27328566237e55700f7895bf93f686526d64ee99
3,341
cpp
C++
tests/src/QtSettingsUtilsTests.cpp
oclero/qtutils
477d65211a15bffabe11d9f0b526c917893ae8ee
[ "MIT" ]
null
null
null
tests/src/QtSettingsUtilsTests.cpp
oclero/qtutils
477d65211a15bffabe11d9f0b526c917893ae8ee
[ "MIT" ]
null
null
null
tests/src/QtSettingsUtilsTests.cpp
oclero/qtutils
477d65211a15bffabe11d9f0b526c917893ae8ee
[ "MIT" ]
null
null
null
#include "QtSettingsUtilsTests.hpp" #include <QTest> #include <oclero/QtSettingsUtils.hpp> constexpr auto SETTINGS_KEY = "Toto"; using namespace oclero; void QtSettingsUtilsTests::init() { { QSettings qSettings; qSettings.remove(SETTINGS_KEY); } } void QtSettingsUtilsTests::cleanup() { { QSettings qSettings; qSettings.remove(SETTINGS_KEY); } } void QtSettingsUtilsTests::test_tryLoadInexistentSetting_enum() const { QSettings settings; auto const optionalValue = tryLoadSetting<DummyEnum>(settings, SETTINGS_KEY); QVERIFY(!optionalValue.has_value()); } void QtSettingsUtilsTests::test_tryLoadInvalidSetting_enum() const { { QSettings{}.setValue(SETTINGS_KEY, "1"); } QSettings settings; auto const optionalValue = tryLoadSetting<DummyEnum>(settings, SETTINGS_KEY); QVERIFY(!optionalValue.has_value()); } void QtSettingsUtilsTests::test_tryLoadValidSetting_enum() const { { QSettings{}.setValue(SETTINGS_KEY, "DummyValue2"); } QSettings settings; auto const optionalValue = tryLoadSetting<DummyEnum>(settings, SETTINGS_KEY); QVERIFY(optionalValue.has_value() && optionalValue.value() == DummyEnum::DummyValue2); } void QtSettingsUtilsTests::test_tryLoadInexistentSetting_int() const { QSettings settings; auto const optionalValue = tryLoadSetting<int>(settings, SETTINGS_KEY); QVERIFY(!optionalValue.has_value()); } void QtSettingsUtilsTests::test_tryLoadInvalidSetting_int() const { { QSettings{}.setValue(SETTINGS_KEY, "abc"); } QSettings settings; auto const optionalValue = tryLoadSetting<int>(settings, SETTINGS_KEY); QVERIFY(!optionalValue.has_value()); } void QtSettingsUtilsTests::test_tryLoadValidSetting_int() const { { QSettings{}.setValue(SETTINGS_KEY, 42); } QSettings settings; auto const optionalValue = tryLoadSetting<int>(settings, SETTINGS_KEY); QVERIFY(optionalValue.has_value() && optionalValue.value() == 42); } void QtSettingsUtilsTests::test_loadValidSetting() const { { QSettings{}.setValue(SETTINGS_KEY, 42); } QSettings settings; auto const value = loadSetting<int>(settings, SETTINGS_KEY); QVERIFY(value == 42); } void QtSettingsUtilsTests::test_loadInvalidSetting() const { QSettings settings; auto const value = loadSetting<int>(settings, SETTINGS_KEY, 12); QVERIFY(value == 12); } void QtSettingsUtilsTests::test_saveSetting_int() const { { QSettings settings; saveSetting<int>(settings, SETTINGS_KEY, 42); } auto const value = QSettings{}.value(SETTINGS_KEY).toInt(); QVERIFY(value == 42); } void QtSettingsUtilsTests::test_saveSetting_enum() const { { QSettings settings; saveSetting<DummyEnum>(settings, SETTINGS_KEY, DummyEnum::DummyValue2); } // Enum are saved as strings and parsed. auto const value = QSettings{}.value(SETTINGS_KEY).toString(); QVERIFY(value == "DummyValue2"); } void QtSettingsUtilsTests::test_useQStringAsKey() const { auto qStringKey = QString{ SETTINGS_KEY }; { QSettings settings; saveSetting<int>(settings, qStringKey, 42); } auto const value = QSettings{}.value(SETTINGS_KEY).toInt(); QVERIFY(value == 42); QSettings{}.setValue(qStringKey, "DummyValue"); { QSettings settings; auto const valueInSettings = loadSetting<QString>(settings, qStringKey, QString{}); QVERIFY(valueInSettings == "DummyValue"); } }
29.052174
88
0.747082
oclero
2734ad912439e8edf65e2870e1d3906a68a2fbd6
13,656
hpp
C++
src/Memory/AffixAllocator.hpp
epicbrownie/Epic
c54159616b899bb24c6d59325d582e73f2803ab6
[ "MIT" ]
null
null
null
src/Memory/AffixAllocator.hpp
epicbrownie/Epic
c54159616b899bb24c6d59325d582e73f2803ab6
[ "MIT" ]
29
2016-08-01T14:50:12.000Z
2017-12-17T20:28:27.000Z
src/Memory/AffixAllocator.hpp
epicbrownie/Epic
c54159616b899bb24c6d59325d582e73f2803ab6
[ "MIT" ]
null
null
null
////////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2016 Ronnie Brohn (EpicBrownie) // // Distributed under The MIT License (MIT). // (See accompanying file License.txt or copy at // https://opensource.org/licenses/MIT) // // Please report any bugs, typos, or suggestions to // https://github.com/epicbrownie/Epic/issues // ////////////////////////////////////////////////////////////////////////////// #pragma once #include <Epic/Memory/MemoryBlock.hpp> #include <Epic/Memory/detail/AllocatorTraits.hpp> #include <Epic/Memory/detail/AllocatorHelpers.hpp> #include <Epic/Memory/detail/AffixHelpers.hpp> #include <cassert> #include <cstdint> #include <algorithm> #include <type_traits> ////////////////////////////////////////////////////////////////////////////// namespace Epic { template<class Allocator, class Prefix, class Suffix = void> class AffixAllocator; } ////////////////////////////////////////////////////////////////////////////// /// AffixAllocator<A, Prefix, Suffix> template<class A, class Prefix, class Suffix> class Epic::AffixAllocator { static_assert(std::is_default_constructible<A>::value, "The affix allocator must be default-constructible."); public: using Type = Epic::AffixAllocator<A, Prefix, Suffix>; using AllocatorType = A; using PrefixType = Prefix; using SuffixType = Suffix; public: static constexpr size_t Alignment = A::Alignment; private: static constexpr bool HasPrefix = !std::is_same<Prefix, void>::value; static constexpr bool HasSuffix = !std::is_same<Suffix, void>::value; static constexpr size_t UnalignedPrefixSize = detail::AffixSize<Prefix>::value; static constexpr size_t PrefixSize = detail::RoundToAligned(UnalignedPrefixSize, Alignment); static constexpr size_t SuffixSize = detail::AffixSize<Suffix>::value; using AlignmentMemento = uint16_t; private: static constexpr size_t NonAllocSize = (PrefixSize + SuffixSize + sizeof(AlignmentMemento)); public: static constexpr size_t MinAllocSize = A::MinAllocSize; static constexpr size_t MaxAllocSize = A::MaxAllocSize - NonAllocSize; static constexpr bool IsShareable = A::IsShareable; static_assert(!HasPrefix || std::is_default_constructible<Prefix>::value, "The Prefix Type must be default-constructible."); static_assert(!HasSuffix || std::is_default_constructible<Suffix>::value, "The Suffix Type must be default-constructible."); static_assert(A::MaxAllocSize > NonAllocSize && MaxAllocSize > MinAllocSize, "The affix sizes are too large for the backing Allocator."); private: AllocatorType m_Allocator; public: constexpr AffixAllocator() noexcept(std::is_nothrow_default_constructible<A>::value) = default; template<typename = std::enable_if_t<std::is_copy_constructible<A>::value>> constexpr AffixAllocator(const Type& obj) noexcept(std::is_nothrow_copy_constructible<A>::value) : m_Allocator{ obj.m_Allocator } { } template<typename = std::enable_if_t<std::is_move_constructible<A>::value>> constexpr AffixAllocator(Type&& obj) noexcept(std::is_nothrow_move_constructible<A>::value) : m_Allocator{ std::move(obj.m_Allocator) } { } template<typename = std::enable_if_t<std::is_copy_assignable<A>::value>> AffixAllocator& operator = (const Type& obj) noexcept(std::is_nothrow_copy_assignable<A>::value) { m_Allocator = obj.m_Allocator; return *this; } template<typename = std::enable_if_t<std::is_move_assignable<A>::value>> AffixAllocator& operator = (Type&& obj) noexcept(std::is_nothrow_move_assignable<A>::value) { m_Allocator = std::move(obj.m_Allocator); return *this; } private: static constexpr Blk ClientToAffixedBlock(const Blk& blk, const AlignmentMemento& alignment) noexcept { return Blk { reinterpret_cast<unsigned char*>(blk.Ptr) - detail::RoundToAligned(UnalignedPrefixSize, alignment), blk.Size + (detail::RoundToAligned(UnalignedPrefixSize, alignment) + SuffixSize + sizeof(AlignmentMemento)) }; } static constexpr Blk AffixedToClientBlock(const Blk& blk, const AlignmentMemento& alignment) noexcept { return Blk { reinterpret_cast<unsigned char*>(blk.Ptr) + detail::RoundToAligned(UnalignedPrefixSize, alignment), blk.Size - (detail::RoundToAligned(UnalignedPrefixSize, alignment) + SuffixSize + sizeof(AlignmentMemento)) }; } static constexpr void* AffixedToPrefixPtr(const Blk& blk) noexcept { return blk.Ptr; } static constexpr void* AffixedToSuffixPtr(const Blk& blk) noexcept { return static_cast<void*>(reinterpret_cast<unsigned char*>(blk.Ptr) + blk.Size - SuffixSize); } static constexpr AlignmentMemento* AffixedToAlignmentMementoPtr(const Blk& blk) { return reinterpret_cast<AlignmentMemento*>(reinterpret_cast<unsigned char*>(AffixedToSuffixPtr(blk)) - sizeof(AlignmentMemento)); } static constexpr void* ClientToPrefixPtr(const Blk& blk, const AlignmentMemento& alignment) noexcept { return static_cast<void*>(reinterpret_cast<unsigned char*>(blk.Ptr) - detail::RoundToAligned(UnalignedPrefixSize, alignment)); } static constexpr void* ClientToSuffixPtr(const Blk& blk) noexcept { return static_cast<void*>(reinterpret_cast<unsigned char*>(blk.Ptr) + blk.Size + sizeof(AlignmentMemento)); } static constexpr AlignmentMemento* ClientToAlignmentMementoPtr(const Blk& blk) { return reinterpret_cast<AlignmentMemento*>(reinterpret_cast<unsigned char*>(blk.Ptr) + blk.Size); } public: /* Returns whether or not this allocator is responsible for the block Blk. */ inline bool Owns(const Blk& blk) const noexcept { return blk ? m_Allocator.Owns(ClientToAffixedBlock(blk, *ClientToAlignmentMementoPtr(blk))) : false; } public: /* Returns a block of uninitialized memory. The memory will be surrounded by constructed Affix objects. */ template<typename = std::enable_if_t<detail::CanAllocate<A>::value>> Blk Allocate(size_t sz) noexcept { // Verify that the requested size isn't zero. if (sz == 0) return{ nullptr, 0 }; // Verify that the requested size is within our allowed bounds if (sz < MinAllocSize || sz > MaxAllocSize) return{ nullptr, 0 }; // Allocate the block auto blk = m_Allocator.Allocate(sz + NonAllocSize); if (!blk) return{ nullptr, 0 }; // Construct the Prefix and Suffix objects if constexpr (HasPrefix) ::new (AffixedToPrefixPtr(blk)) Prefix(); if constexpr (HasSuffix) ::new (AffixedToSuffixPtr(blk)) Suffix(); // Store alignment memento const auto memento = static_cast<AlignmentMemento>(Alignment); *AffixedToAlignmentMementoPtr(blk) = memento; return AffixedToClientBlock(blk, memento); } /* Returns a block of uninitialized memory (aligned to 'alignment'). The memory will be surrounded by constructed Affix objects. */ template<typename = std::enable_if_t<detail::CanAllocateAligned<A>::value>> Blk AllocateAligned(size_t sz, size_t alignment = Alignment) noexcept { // Verify that the alignment is acceptable if (!detail::IsGoodAlignment(alignment)) return{ nullptr, 0 }; assert(alignment <= std::numeric_limits<AlignmentMemento>::max() && "AffixAllocator::AllocateAligned - Unsupported alignment value"); // Verify that the requested size isn't zero. if (sz == 0) return{ nullptr, 0 }; // Verify that the requested size is within our allowed bounds if (sz < MinAllocSize || sz > MaxAllocSize) return{ nullptr, 0 }; // Allocate the block const size_t szNew = sz + detail::RoundToAligned(UnalignedPrefixSize, alignment) + sizeof(AlignmentMemento) + SuffixSize; auto blk = m_Allocator.AllocateAligned(szNew, alignment); if (!blk) return{ nullptr, 0 }; // Construct the Prefix and Suffix objects if constexpr (HasPrefix) ::new (AffixedToPrefixPtr(blk)) Prefix(); if constexpr (HasSuffix) ::new (AffixedToSuffixPtr(blk)) Suffix(); // Store alignment memento const auto memento = static_cast<AlignmentMemento>(alignment); *AffixedToAlignmentMementoPtr(blk) = memento; return AffixedToClientBlock(blk, memento); } /* Attempts to reallocate the memory of blk to the new size sz. The Affix objects will be moved as necessary. */ template<typename = std::enable_if_t<detail::CanReallocate<A>::value && detail::AffixBuffer<Suffix>::CanStore>> bool Reallocate(Blk& blk, size_t sz) { // If the block isn't valid, delegate to Allocate if (!blk) { if constexpr (detail::CanAllocate<Type>::value) return (bool)(blk = Allocate(sz)); } // If the requested size is zero, delegate to Deallocate if (sz == 0) { if constexpr (detail::CanDeallocate<Type>::value) Deallocate(blk); blk = { nullptr, 0 }; return true; } // Verify that the requested size is within our allowed bounds if (sz < MinAllocSize || sz > MaxAllocSize) return false; // Move the Suffix object to the stack auto pSuffix = GetSuffixObject(blk); detail::AffixBuffer<Suffix> suffix{ pSuffix }; // Reallocate the block Blk affixedBlk = ClientToAffixedBlock(blk, Alignment); if (!m_Allocator.Reallocate(affixedBlk, sz + NonAllocSize)) { suffix.Restore(pSuffix); return false; } // Place the Suffix object and the alignment memento suffix.Restore(AffixedToSuffixPtr(affixedBlk)); *AffixedToAlignmentMementoPtr(affixedBlk) = Alignment; blk = AffixedToClientBlock(affixedBlk, Alignment); return true; } /* Attempts to reallocate the memory of blk to the new size 'sz' (aligned to 'alignment'). It must have been allocated through AllocateAligned(). The Affix objects will be moved as necessary. */ template<typename = std::enable_if_t<detail::CanReallocateAligned<A>::value && detail::AffixBuffer<Suffix>::CanStore>> bool ReallocateAligned(Blk& blk, size_t sz, size_t alignment = Alignment) { // Verify that the alignment is acceptable if (!detail::IsGoodAlignment(alignment)) return false; assert(alignment <= std::numeric_limits<AlignmentMemento>::max() && "AffixAllocator::ReallocateAligned - Unsupported alignment value"); // If the block isn't valid, delegate to AllocateAligned if (!blk) { if constexpr (detail::CanAllocateAligned<Type>::value) return (bool)(blk = AllocateAligned(sz, alignment)); } // If the requested size is zero, delegate to DeallocateAligned if (sz == 0) { if constexpr (detail::CanDeallocateAligned<Type>::value) DeallocateAligned(blk); blk = { nullptr, 0 }; return true; } // Verify that the requested size is within our allowed bounds if (sz < MinAllocSize || sz > MaxAllocSize) return false; // Verify alignment memento const AlignmentMemento memento = *ClientToAlignmentMementoPtr(blk); assert(detail::IsGoodAlignment(memento) && "AffixAllocator::ReallocateAligned - Either this block was not allocated aligned or the heap has been corrupted"); assert(alignment == memento && "AffixAllocator::ReallocateAligned - Once allocated, the alignment of an allocated block cannot be changed"); // Move the Suffix object to the stack auto pSuffix = GetSuffixObject(blk); detail::AffixBuffer<Suffix> suffix{ pSuffix }; // Reallocate the block Blk affixedBlk = ClientToAffixedBlock(blk, memento); size_t szNew = sz + detail::RoundToAligned(UnalignedPrefixSize, alignment) + sizeof(AlignmentMemento) + SuffixSize; if (!m_Allocator.ReallocateAligned(affixedBlk, szNew)) { suffix.Restore(pSuffix); return false; } // Place the Suffix object and the alignment memento suffix.Restore(AffixedToSuffixPtr(affixedBlk)); *AffixedToAlignmentMementoPtr(affixedBlk) = memento; blk = AffixedToClientBlock(affixedBlk, memento); return true; } public: /* Frees the memory for blk. The surrounding Affix objects will also be destroyed. */ template<typename = std::enable_if_t<detail::CanDeallocate<A>::value>> void Deallocate(const Blk& blk) { if (!blk) return; assert(Owns(blk) && "AffixAllocator::Deallocate - " "Attempted to free a block that was not allocated by this allocator"); // Deconstruct the affix objects if (HasPrefix) GetPrefixObject(blk)->~Prefix(); if (HasSuffix) GetSuffixObject(blk)->~Suffix(); // Deallocate the affixed block m_Allocator.Deallocate(ClientToAffixedBlock(blk, static_cast<AlignmentMemento>(Alignment))); } /* Frees the memory for blk. It must have been allocated through AllocateAligned(). The surrounding Affix objects will also be destroyed. */ template<typename = std::enable_if_t<detail::CanDeallocateAligned<A>::value>> void DeallocateAligned(const Blk& blk) { if (!blk) return; assert(Owns(blk) && "AffixAllocator::DeallocateAligned - " "Attempted to free a block that was not allocated by this allocator"); // Verify alignment memento assert(detail::IsGoodAlignment(*ClientToAlignmentMementoPtr(blk)) && "AffixAllocator::DeallocateAligned - " "Either this block was not allocated aligned or the heap has been corrupted"); // Deconstruct the affix objects if (HasPrefix) GetPrefixObject(blk)->~Prefix(); if (HasSuffix) GetSuffixObject(blk)->~Suffix(); // Deallocate the affixed block m_Allocator.DeallocateAligned(ClientToAffixedBlock(blk, *ClientToAlignmentMementoPtr(blk))); } public: static constexpr Prefix* GetPrefixObject(const Blk& blk, size_t alignment = Alignment) noexcept { return HasPrefix ? reinterpret_cast<Prefix*>(ClientToPrefixPtr(blk, static_cast<AlignmentMemento>(alignment))) : nullptr; } static constexpr Suffix* GetSuffixObject(const Blk& blk) noexcept { return HasSuffix ? reinterpret_cast<Suffix*>(ClientToSuffixPtr(blk)) : nullptr; } };
33.80198
131
0.719098
epicbrownie
2738cad2ad0f4fd1993a2d3118846cbfdce350c9
6,275
cpp
C++
src/morda/widgets/label/NinePatch.cpp
Mactor2018/morda
7194f973783b4472b8671fbb52e8c96e8c972b90
[ "MIT" ]
1
2018-10-27T05:07:05.000Z
2018-10-27T05:07:05.000Z
src/morda/widgets/label/NinePatch.cpp
Mactor2018/morda
7194f973783b4472b8671fbb52e8c96e8c972b90
[ "MIT" ]
null
null
null
src/morda/widgets/label/NinePatch.cpp
Mactor2018/morda
7194f973783b4472b8671fbb52e8c96e8c972b90
[ "MIT" ]
null
null
null
#include <utki/util.hpp> #include <utki/types.hpp> #include "../../Morda.hpp" #include "../../util/util.hpp" #include "../proxy/ResizeProxy.hpp" #include "NinePatch.hpp" using namespace morda; namespace{ const char* ninePatchLayout_c = R"qwertyuiop( Row{ layout{dx{fill}} Image{ name{morda_lt} } Image{ layout{dx{0}weight{1}} name{morda_t} } Image{ name{morda_rt} } } Row{ layout{ dx{max} weight{1} } Image{ name{morda_l} layout{dy{fill}} } Pile{ name{morda_content} layout{ weight{1} dy{max} } Image{ name{morda_m} layout{dx{fill}dy{fill}} } } Image{ name{morda_r} layout{dy{fill}} } } Row{ layout{dx{fill}} Image{ name{morda_lb} } Image{ layout{dx{0}weight{1}} name{morda_b} } Image{ name{morda_rb} } } )qwertyuiop"; } NinePatch::NinePatch(const stob::Node* chain) : Widget(chain), BlendingWidget(chain), Column(stob::parse(ninePatchLayout_c).get()) { this->imageMatrix_v[0][0] = this->findByNameAs<Image>("morda_lt"); this->imageMatrix_v[0][1] = this->findByNameAs<Image>("morda_t"); this->imageMatrix_v[0][2] = this->findByNameAs<Image>("morda_rt"); this->imageMatrix_v[1][0] = this->findByNameAs<Image>("morda_l"); this->imageMatrix_v[1][1] = this->findByNameAs<Image>("morda_m"); this->imageMatrix_v[1][2] = this->findByNameAs<Image>("morda_r"); this->imageMatrix_v[2][0] = this->findByNameAs<Image>("morda_lb"); this->imageMatrix_v[2][1] = this->findByNameAs<Image>("morda_b"); this->imageMatrix_v[2][2] = this->findByNameAs<Image>("morda_rb"); this->onBlendingChanged(); this->content_v = this->findByNameAs<Pile>("morda_content"); if(auto n = getProperty(chain, "left")){ this->borders.left() = dimValueFromSTOB(*n);//'min' is by default, but not allowed to specify explicitly, as well as 'max' and 'fill' }else{ this->borders.left() = LayoutParams::min_c; } if(auto n = getProperty(chain, "right")){ this->borders.right() = dimValueFromSTOB(*n); }else{ this->borders.right() = LayoutParams::min_c; } if(auto n = getProperty(chain, "top")){ this->borders.top() = dimValueFromSTOB(*n); }else{ this->borders.top() = LayoutParams::min_c; } if(auto n = getProperty(chain, "bottom")){ this->borders.bottom() = dimValueFromSTOB(*n); }else{ this->borders.bottom() = LayoutParams::min_c; } if(auto n = getProperty(chain, "centerVisible")){ this->setCenterVisible(n->asBool()); } //this should go after setting up border widgets if(const stob::Node* n = getProperty(chain, "image")){ this->setNinePatch(morda::Morda::inst().resMan.load<ResNinePatch>(n->value())); } if(chain){ this->content_v->add(*chain); } } void NinePatch::render(const morda::Matr4r& matrix) const { this->Column::render(matrix); } void NinePatch::setNinePatch(std::shared_ptr<const ResNinePatch> np){ this->image = std::move(np); this->scaledImage.reset(); this->applyImages(); this->clearCache(); } Sidesr NinePatch::getActualBorders() const noexcept{ Sidesr ret; for(auto i = 0; i != ret.size(); ++i){ if(this->borders[i] >= 0){ ret[i] = this->borders[i]; }else if(!this->image){ ret[i] = 0; }else{ ret[i] = this->image->borders()[i]; } } return ret; } void NinePatch::applyImages(){ if(!this->image){ for(auto& i : this->imageMatrix_v){ for(auto& j : i){ j->setImage(nullptr); } } return; } auto& minBorders = this->image->borders(); // TRACE(<< "minBorders = " << minBorders << std::endl) { //non-const call to getLayoutParams requests relayout which is not necessarily needed, so try to avoid it if possible auto& layoutParams = utki::makePtrToConst(this->imageMatrix_v[0][0].get())->getLayoutParams(); if(this->borders.left() == LayoutParams::min_c){ if(layoutParams.dim.x != minBorders.left()){ auto& lp = this->imageMatrix_v[0][0].get()->getLayoutParams(); lp.dim.x = minBorders.left(); } }else{ if(layoutParams.dim.x != this->borders.left()){ auto& lp = this->imageMatrix_v[0][0].get()->getLayoutParams(); lp.dim.x = this->borders.left(); } } if(this->borders.top() == LayoutParams::min_c){ if(layoutParams.dim.y != minBorders.top()){ auto& lp = this->imageMatrix_v[0][0].get()->getLayoutParams(); lp.dim.y = minBorders.top(); } }else{ if(layoutParams.dim.y != this->borders.top()){ auto& lp = this->imageMatrix_v[0][0].get()->getLayoutParams(); lp.dim.y = this->borders.top(); } } // TRACE(<< "layoutParams.dim = " << layoutParams.dim << std::endl) } { //non-const call to getLayoutParams requests relayout which is not necessarily needed, so try to avoid it if possible auto& layoutParams = utki::makePtrToConst(this->imageMatrix_v[2][2].get())->getLayoutParams(); if(this->borders.right() == LayoutParams::min_c){ if(layoutParams.dim.x != minBorders.right()){ auto& lp = this->imageMatrix_v[2][2]->getLayoutParams(); lp.dim.x = minBorders.right(); } }else{ if(layoutParams.dim.x != this->borders.right()){ auto& lp = this->imageMatrix_v[2][2]->getLayoutParams(); lp.dim.x = this->borders.right(); } } if(this->borders.bottom() == LayoutParams::min_c){ if(layoutParams.dim.y != minBorders.bottom()){ auto& lp = this->imageMatrix_v[2][2]->getLayoutParams(); lp.dim.y = minBorders.bottom(); } }else{ if(layoutParams.dim.y != this->borders.bottom()){ auto& lp = this->imageMatrix_v[2][2]->getLayoutParams(); lp.dim.y = this->borders.bottom(); } } // TRACE(<< "lp.dim = " << lp.dim << std::endl) } // TRACE(<< "this->borders = " << this->borders << std::endl) this->scaledImage = this->image->get(this->borders); for(unsigned i = 0; i != 3; ++i){ for(unsigned j = 0; j != 3; ++j){ this->imageMatrix_v[i][j]->setImage(this->scaledImage->images()[i][j]); } } } void NinePatch::setCenterVisible(bool visible){ ASSERT(this->imageMatrix_v[1][1]) this->imageMatrix_v[1][1]->setVisible(visible); } void NinePatch::onBlendingChanged(){ for(unsigned i = 0; i != 3; ++i){ for(unsigned j = 0; j != 3; ++j){ this->imageMatrix_v[i][j]->setBlendingParams(this->blendingParams()); } } }
23.501873
135
0.631076
Mactor2018
27398d4050dfe38b74e7be92aaa139b91bd37c3e
988
cpp
C++
src/input/InputConfiguration.cpp
jaspervdj/JVGS
59be35ed61b355b445b82bf32796c0f229e21b60
[ "WTFPL" ]
31
2015-02-02T04:51:10.000Z
2021-02-20T10:04:41.000Z
src/input/InputConfiguration.cpp
jaspervdj/JVGS
59be35ed61b355b445b82bf32796c0f229e21b60
[ "WTFPL" ]
2
2016-08-30T09:26:31.000Z
2016-09-14T20:01:20.000Z
src/input/InputConfiguration.cpp
jaspervdj/JVGS
59be35ed61b355b445b82bf32796c0f229e21b60
[ "WTFPL" ]
7
2015-02-02T05:02:09.000Z
2021-12-24T06:53:01.000Z
#include "InputConfiguration.h" #include "../core/LogManager.h" using namespace jvgs::core; using namespace std; namespace jvgs { namespace input { InputConfiguration::InputConfiguration() { } InputConfiguration::~InputConfiguration() { } InputConfiguration *InputConfiguration::getConfiguration() { static InputConfiguration configuration; return &configuration; } const Key &InputConfiguration::getKey(const string &action) { map<string, Key>::iterator result = keys.find(action); if(result != keys.end()) return result->second; else LogManager::getInstance()->error( "No key defined for action '%s'", action.c_str()); } void InputConfiguration::setKey(const string &action, const Key &key) { keys[action] = key; } } }
23.52381
77
0.554656
jaspervdj
273cc8c66a8ab4bb13e42655a91d801541d9d465
1,609
hpp
C++
src/Core/Window.hpp
llGuy/Ondine
325c2d3ea5bd5ef5456b0181c53ad227571fada3
[ "MIT" ]
1
2022-01-24T18:15:56.000Z
2022-01-24T18:15:56.000Z
src/Core/Window.hpp
llGuy/Ondine
325c2d3ea5bd5ef5456b0181c53ad227571fada3
[ "MIT" ]
null
null
null
src/Core/Window.hpp
llGuy/Ondine
325c2d3ea5bd5ef5456b0181c53ad227571fada3
[ "MIT" ]
null
null
null
#pragma once #include "IO.hpp" #include <string_view> #include <GLFW/glfw3.h> #include <glm/glm.hpp> #include "Event.hpp" #include "Time.hpp" #include "Utils.hpp" namespace Ondine::Core { enum class WindowMode { Fullscreen, Windowed }; using SurfaceCreationProc = void(*)( struct VkInstance_T *instance, struct VkSurfaceKHR_T **surface, void *windowHandle); /* To pass to graphics context */ struct WindowContextInfo { void *handle; Resolution resolution; SurfaceCreationProc surfaceCreateProc; }; class Window { public: Window( WindowMode mode, const std::string_view &title, const Resolution &resolution = {}); WindowContextInfo init(OnEventProc callback); void pollInput(); void toggleFullscreen(); void changeCursorDisplay(bool show); static void initWindowAPI(); private: void keyCallback(int key, int scancode, int action, int mods) const; void mouseButtonCallback(int button, int action, int mods) const; void charCallback(unsigned int codePoint) const; void cursorMoveCallback(float x, float y) const; void resizeCallback(unsigned width, unsigned height); void scrollCallback(float x, float y) const; void closeCallback() const; static void createVulkanSurface( struct VkInstance_T *instance, struct VkSurfaceKHR_T **surface, void *windowHandle); private: GLFWwindow *mHandle; Resolution mResolution; Resolution mPreviousWindowedResolution; OnEventProc mEventCallback; WindowMode mWindowMode; bool mIsFullscreen; bool mResized; glm::ivec2 mPreviousWindowedPosition; const std::string_view mTitle; }; }
22.347222
70
0.747669
llGuy
2744efcee9ee1238eb1db6f9df77044fae3d1a37
156
hpp
C++
game_server/src/server_ui.hpp
CellWarsOfficial/CellWars
40b1e956c871ee686062eba1251a9f9a43d86c2c
[ "Apache-2.0" ]
5
2017-07-20T10:36:23.000Z
2018-01-30T16:18:31.000Z
game_server/src/server_ui.hpp
CellWarsOfficial/CellWars
40b1e956c871ee686062eba1251a9f9a43d86c2c
[ "Apache-2.0" ]
null
null
null
game_server/src/server_ui.hpp
CellWarsOfficial/CellWars
40b1e956c871ee686062eba1251a9f9a43d86c2c
[ "Apache-2.0" ]
null
null
null
#ifndef SERVER_UI_H #define SERVER_UI_H #include <log.hpp> extern Game *game; void signal_interpreter(int s); void init_server_ui(Logger *log); #endif
12
33
0.762821
CellWarsOfficial
2746c88ef909c7345bcb0470a83a4b4fe1616962
69,161
cpp
C++
cdl/CDL_interface.cpp
disi33/libRetroReversing
1c825a1971820dbb73fcc96aa444408f6b65803d
[ "MIT" ]
null
null
null
cdl/CDL_interface.cpp
disi33/libRetroReversing
1c825a1971820dbb73fcc96aa444408f6b65803d
[ "MIT" ]
null
null
null
cdl/CDL_interface.cpp
disi33/libRetroReversing
1c825a1971820dbb73fcc96aa444408f6b65803d
[ "MIT" ]
null
null
null
#include <stdio.h> #include <stdlib.h> #include <string.h> #ifdef _WIN32 #ifndef _WIN32_WINNT #define _WIN32_WINNT 0x0500 #endif #include <windows.h> #else #include <sys/time.h> #endif #include <stdio.h> #include <map> #include <fstream> #include <iostream> #include <sstream> #include "../cdl/CDL_FileWriting.hpp" #include "nlohmann/json.hpp" using json = nlohmann::json; using namespace std; #include "CDL.hpp" extern json fileConfig; extern json reConfig; extern json playthough_function_usage; extern json libRR_console_constants; json libultra_signatures; json linker_map_file; #define USE_CDL 1; extern std::map<uint32_t,string> memory_to_log; extern std::map<uint32_t,char> jumps; extern std::map<uint32_t,string> audio_address; extern std::map<uint32_t,uint8_t> cached_jumps; std::map<uint32_t, uint8_t*> jump_data; extern std::map<uint32_t,uint32_t> rsp_reads; extern std::map<uint32_t,uint32_t> rdram_reads; std::map<uint32_t,bool> offsetHasAssembly; extern "C" { // TODO: move the following includes, they are for N64 // #include "../main/rom.h" // #include "../device/r4300/tlb.h" // #include "../device/r4300/r4300_core.h" // #include "../device/memory/memory.h" // TODO: need to log input and then call input.keyDown(keymod, keysym); // // # Variables // string rom_name = "UNKNOWN_ROM"; // ROM_PARAMS.headername int corrupt_start = 0xb2b77c; int corrupt_end = 0xb2b77c; int difference = corrupt_end-corrupt_start; void find_most_similar_function(uint32_t function_offset, string bytes); bool libRR_finished_boot_rom = false; string last_reversed_address = ""; bool should_reverse_jumps = false; bool should_change_jumps = false; int frame_last_reversed = 0; int time_last_reversed = 0; string libRR_game_name = ""; string ucode_crc = ""; // string next_dma_type = ""; // uint32_t previous_function = 0; std::vector<uint32_t> function_stack = std::vector<uint32_t>(); std::vector<uint32_t> previous_ra; // previous return address std::map<uint32_t, std::map<string, string> > addresses; uint32_t rspboot = 0; #define NUMBER_OF_MANY_READS 40 #define NUMBER_OF_MANY_WRITES 40 // // # Toggles // bool support_n64_prints = false; bool cdl_log_memory = false; bool tag_functions = false; bool log_notes = false; bool log_function_calls = false; bool log_ostasks = false; bool log_rsp = false; void cdl_keyevents(int keysym, int keymod) { #ifndef USE_CDL return; #endif printf("event_sdl_keydown frame:%d key:%d modifier:%d \n", l_CurFrame, keysym, keymod); should_reverse_jumps = false; // S key if (keysym == 115) { printf("Lets save! \n"); main_state_save(0, NULL); } // L Key if (keysym == 108) { printf("Lets load! \n"); main_state_load(NULL); } // Z Key if (keysym == 122) { write_rom_mapping(); cdl_log_memory = !cdl_log_memory; tag_functions = !tag_functions; // should_change_jumps = true; //should_reverse_jumps = true; // show_interface(); } } bool createdCartBackup = false; void backupCart() { // libRR_game_name = alphabetic_only_name((char*)rom_name.c_str(), 21); std::cout << "TODO: backup"; createdCartBackup = true; } void resetCart() { std::cout << "TODO: reset"; } void readLibUltraSignatures() { std::ifstream i("libultra.json"); if (i.good()) { i >> libultra_signatures; } if (libultra_signatures.find("function_signatures") == libultra_signatures.end()) { libultra_signatures["function_signatures"] = R"([])"_json; } } void saveLibUltraSignatures() { std::ofstream o("libultra.json"); o << libultra_signatures.dump(1) << std::endl; } void setTogglesBasedOnConfig() { cdl_log_memory = reConfig["shouldLogMemory"]; tag_functions = reConfig["shouldTagFunctions"]; log_notes = reConfig["shouldLogNotes"]; log_function_calls = reConfig["shouldLogFunctionCalls"]; support_n64_prints = reConfig["shouldSupportN64Prints"]; log_ostasks = reConfig["shouldLogOsTasks"]; log_rsp = reConfig["shouldLogRsp"]; } void readJsonFromFile() { readLibUltraSignatures(); readJsonToObject("symbols.json", linker_map_file); readJsonToObject("./reconfig.json", reConfig); setTogglesBasedOnConfig(); string filename = "./configs/"; filename+=rom_name; filename += ".json"; // read a JSON file if (!reConfig["startFreshEveryTime"]) { cout << "Reading previous game config file \n"; readJsonToObject(filename, fileConfig); } if (fileConfig.find("jumps") == fileConfig.end()) { fileConfig["jumps"] = R"([])"_json; } if (fileConfig.find("tlbs") == fileConfig.end()) { fileConfig["tlbs"] = R"([])"_json; } if (fileConfig.find("dmas") == fileConfig.end()) { fileConfig["dmas"] = R"([])"_json; } if (fileConfig.find("rsp_reads") == fileConfig.end()) { fileConfig["rsp_reads"] = R"([])"_json; } if (fileConfig.find("rdram_reads") == fileConfig.end()) fileConfig["rdram_reads"] = R"([])"_json; if (fileConfig.find("reversed_jumps") == fileConfig.end()) fileConfig["reversed_jumps"] = R"({})"_json; if (fileConfig.find("labels") == fileConfig.end()) fileConfig["labels"] = R"([])"_json; if (fileConfig.find("jump_returns") == fileConfig.end()) fileConfig["jump_returns"] = R"([])"_json; if (fileConfig.find("memory_to_log") == fileConfig.end()) fileConfig["memory_to_log"] = R"([])"_json; memory_to_log = fileConfig["memory_to_log"].get< std::map<uint32_t,string> >(); memory_to_log[0x0E5320] = "rsp.boot"; jumps = fileConfig["jumps"].get< std::map<uint32_t,char> >(); tlbs = fileConfig["tlbs"].get< std::map<uint32_t,cdl_tlb> >(); dmas = fileConfig["dmas"].get< std::map<uint32_t,cdl_dma> >(); rsp_reads = fileConfig["rsp_reads"].get< std::map<uint32_t,uint32_t> >(); rdram_reads = fileConfig["rdram_reads"].get< std::map<uint32_t,uint32_t> >(); labels = fileConfig["labels"].get< std::map<uint32_t,cdl_labels> >(); jump_returns = fileConfig["jump_returns"].get< std::map<uint32_t,cdl_jump_return> >(); } void saveJsonToFile() { string filename = "./configs/"; filename += rom_name; filename += ".json"; std::ofstream o(filename); o << fileConfig.dump(1) << std::endl; } void show_interface() { int answer; std::cout << "1) Reset ROM 2) Change corrupt number "; std::cin >> std::hex >> answer; if (answer == 1) { std::cout << "Resetting ROM"; resetCart(); } else { std::cout << "Unknown command"; } printf("Answer: %d \n", answer); } void corrupt_if_in_range(uint8_t* mem, uint32_t proper_cart_address) { // if (proper_cart_address >= corrupt_start && proper_cart_address <= corrupt_end) { //l_CurFrame == 0x478 && length == 0x04) { //} proper_cart_address == 0xb4015c) { // printf("save_state_before\n"); // main_state_save(0, "before_corruption"); // printBytes(mem, proper_cart_address); // printf("MODIFIED IT!! %#08x\n\n\n", mem[proper_cart_address+1]); // corruptBytes(mem, proper_cart_address, 10); // printBytes(mem, proper_cart_address); // } } void corruptBytes(uint8_t* mem, uint32_t cartAddr, int times) { #ifndef USE_CDL return; #endif if (times>difference) { times=difference/4; } // srand(time(NULL)); //doesn't work on windows printf("Corrupt Start: %d End: %d Difference: %d \n", corrupt_start, corrupt_end, difference); int randomNewValue = rand() % 0xFF; for (int i=0; i<=times; i++) { int randomOffset = rand() % difference; int currentOffset = randomOffset; printf("Offset: %d OldValue: %#08x NewValue: %#08x \n", currentOffset, mem[cartAddr+currentOffset], randomNewValue); mem[cartAddr+currentOffset] = randomNewValue; } } void cdl_log_opcode(uint32_t program_counter, uint8_t* op_address) { // only called in pure_interp mode // jump_data[program_counter] = op_address; // if (!labels[function_stack.back()].generatedSignature) { // printf("Not generated sig yet: %#08x \n", *op_address); // } } int note_count = 0; void add_note(uint32_t pc, uint32_t target, string problem) { if (!log_notes) return; if (labels[function_stack.back()].doNotLog) return; std::stringstream sstream; sstream << std::hex << "pc:0x" << pc << "-> 0x" << target; sstream << problem << " noteNumber:"<<note_count; // cout << sstream.str(); labels[function_stack.back()].notes[pc] = sstream.str(); note_count++; } uint32_t map_assembly_offset_to_rom_offset(uint32_t assembly_offset, uint32_t tlb_mapped_addr) { // or if its in KSEG0/1 if (assembly_offset >= 0x80000000) { uint32_t mapped_offset = assembly_offset & UINT32_C(0x1ffffffc); // std::cout << "todo:" << std::hex << assembly_offset << "\n"; return map_assembly_offset_to_rom_offset(mapped_offset, assembly_offset); } for(auto it = tlbs.begin(); it != tlbs.end(); ++it) { auto t = it->second; if (assembly_offset>=t.start && assembly_offset <=t.end) { uint32_t mapped_offset = t.rom_offset + (assembly_offset-t.start); return map_assembly_offset_to_rom_offset(mapped_offset, assembly_offset); } } for(auto it = dmas.begin(); it != dmas.end(); ++it) { auto& t = it->second; if (assembly_offset>=t.dram_start && assembly_offset <=t.dram_end) { uint32_t mapped_offset = t.rom_start + (assembly_offset-t.dram_start); t.is_assembly = true; t.tbl_mapped_addr = tlb_mapped_addr; // DMA is likely the actual value in rom return mapped_offset; } } // std::cout << "Not in dmas:" << std::hex << assembly_offset << "\n"; // std::cout << "Unmapped: " << std::hex << assembly_offset << "\n"; return assembly_offset; } uint32_t current_function = 0; void log_dma_write(uint8_t* mem, uint32_t proper_cart_address, uint32_t cart_addr, uint32_t length, uint32_t dram_addr) { if (dmas.find(proper_cart_address) != dmas.end() ) return; auto t = cdl_dma(); t.dram_start=dram_addr; t.dram_end = dram_addr+length; t.rom_start = proper_cart_address; t.rom_end = proper_cart_address+length; t.length = length; t.ascii_header = get_header_ascii(mem, proper_cart_address); t.header = mem[proper_cart_address+3]; t.frame = l_CurFrame; // if (function_stack.size() > 0 && labels.find(current_function) != labels.end()) { t.func_addr = print_function_stack_trace(); // labels[current_function].func_name; // } dmas[proper_cart_address] = t; // std::cout << "DMA: Dram:0x" << std::hex << t.dram_start << "->0x" << t.dram_end << " Length:0x" << t.length << " " << t.ascii_header << " Stack:" << function_stack.size() << " " << t.func_addr << " last:"<< function_stack.back() << "\n"; } void cdl_finish_pi_dma(uint32_t a) { // cout <<std::hex<< "Finish PI DMA:" << a << "\n"; } void cdl_finish_si_dma(uint32_t a) { cout <<std::hex<< "Finish SI DMA:" << a << "\n"; } void cdl_finish_ai_dma(uint32_t a) { // cout <<std::hex<< "Finish AI DMA:" << (a & 0xffffff) << "\n"; } void cdl_clear_dma_log() { // next_dma_type = "cleared"; } void cdl_clear_dma_log2() { // next_dma_type = "interesting"; } void cdl_log_cart_reg_access() { // next_dma_type = "bin"; add_tag_to_function("_cartRegAccess", function_stack.back()); } void cdl_log_dma_si_read() { add_tag_to_function("_dmaSiRead", function_stack.back()); } void cdl_log_copy_pif_rdram() { add_tag_to_function("_copyPifRdram", function_stack.back()); } void cdl_log_si_reg_access() { // COntrollers, rumble paks etc add_tag_to_function("_serialInterfaceRegAccess", function_stack.back()); } void cdl_log_mi_reg_access() { // The MI performs the read, modify, and write operations for the individual pixels at either one pixel per clock or one pixel for every two clocks. The MI also has special modes for loading the TMEM, filling rectangles (fast clears), and copying multiple pixels from the TMEM into the framebuffer (sprites). add_tag_to_function("_miRegRead", function_stack.back()); } void cdl_log_mi_reg_write() { // The MI performs the read, modify, and write operations for the individual pixels at either one pixel per clock or one pixel for every two clocks. The MI also has special modes for loading the TMEM, filling rectangles (fast clears), and copying multiple pixels from the TMEM into the framebuffer (sprites). add_tag_to_function("_miRegWrite", function_stack.back()); } void cdl_log_pi_reg_read() { if (function_stack.size() > 0) add_tag_to_function("_piRegRead", function_stack.back()); } void cdl_log_pi_reg_write() { if (function_stack.size() > 0) add_tag_to_function("_piRegWrite", function_stack.back()); } void cdl_log_read_rsp_regs2() { add_tag_to_function("_rspReg2Read", function_stack.back()); } void cdl_log_write_rsp_regs2() { add_tag_to_function("_rspReg2Write", function_stack.back()); } void cdl_log_read_rsp_regs() { if (function_stack.size() > 0) add_tag_to_function("_rspRegRead", function_stack.back()); } void cdl_log_write_rsp_regs() { if (function_stack.size() > 0) add_tag_to_function("_rspRegWrite", function_stack.back()); } void cdl_log_update_sp_status() { if (function_stack.size() > 0) add_tag_to_function("_updatesSPStatus", function_stack.back()); } void cdl_common_log_tag(const char* tag) { if (function_stack.size() > 0) add_tag_to_function(tag, function_stack.back()); } void cdl_log_audio_reg_access() { // TODO speed this up with a check first add_tag_to_function("_audioRegAccess", function_stack.back()); } string print_function_stack_trace() { if (function_stack.size() ==0 || functions.size() ==0 /*|| labels.size() ==0*/ || function_stack.size() > 0xF) { return ""; } std::stringstream sstream; int current_stack_number = 0; for (auto& it : function_stack) { if (strcmp(functions[it].func_name.c_str(),"") == 0) { sstream << "0x" << std::hex << it<< "->"; continue; } if (current_stack_number>0) { sstream << "->"; } sstream << functions[it].func_name; current_stack_number++; } // cout << "Stack:"<< sstream.str() << "\n"; return sstream.str(); } void resetReversing() { // time_last_reversed = time(0); // doesn;t work on windows last_reversed_address=""; } void save_cdl_files() { resetReversing(); find_asm_sections(); find_audio_sections(); find_audio_functions(); save_dram_rw_to_json(); saveJsonToFile(); saveLibUltraSignatures(); } uint32_t cdl_get_alternative_jump(uint32_t current_jump) { if (!should_change_jumps) { return current_jump; } for (auto& it : linker_map_file.items()) { uint32_t new_jump = hex_to_int(it.key()); cout << "it:" << it.value() << " = " << it.key() << " old:" << current_jump << " new:"<< new_jump << "\n"; linker_map_file.erase(it.key()); should_change_jumps = false; return new_jump; } return current_jump; } int reverse_jump(int take_jump, uint32_t jump_target) { // this function doesn't work on windows // time_t now = time(0); // string key = n2hexstr(jump_target); // printf("Reversing jump %#08x %d \n", jump_target, jumps[jump_target]); // take_jump = !take_jump; // time_last_reversed = now; // frame_last_reversed=l_CurFrame; // last_reversed_address = key; // fileConfig["reversed_jumps"][key] = jumps[jump_target]; // write_rom_mapping(); return take_jump; } void cdl_log_jump_cached(int take_jump, uint32_t jump_target, uint8_t* jump_target_memory) { if (cached_jumps.find(jump_target) != cached_jumps.end() ) return; cached_jumps[jump_target] = 1; cout << "Cached:" << std::hex << jump_target << "\n"; } int number_of_functions = 0; bool libRR_full_function_log = false; bool libRR_full_trace_log = true; int last_return_address = 0; uint32_t libRR_call_depth = 0; // Tracks how big our stack trace is in terms of number of function calls // We store the stackpointers in backtrace_stackpointers everytime a function gets called uint16_t libRR_backtrace_stackpointers[0x200]; // 0x200 should be tons of function calls uint32_t libRR_backtrace_size = 0; // Used with backtrace_stackpointers - Tracks how big our stack trace is in terms of number of function calls extern uint32_t libRR_pc_lookahead; string current_trace_log = ""; const int trace_messages_until_flush = 40; int current_trace_count = 0; bool first_trace_write = true; void libRR_log_trace_str(string message) { if (!libRR_full_trace_log) { return; } current_trace_log += message + "\n"; current_trace_count++; if (current_trace_count >= trace_messages_until_flush) { libRR_log_trace_flush(); current_trace_count = 0; current_trace_log=""; } } void libRR_log_trace(const char* message) { libRR_log_trace_str(message); } void libRR_log_trace_flush() { if (!libRR_full_trace_log) { return; } string output_file_path = libRR_export_directory + "trace_log.txt"; if (first_trace_write) { codeDataLogger::writeStringToFile(output_file_path, current_trace_log); first_trace_write = false; } else { codeDataLogger::appendStringToFile(output_file_path, current_trace_log); } } // libRR_log_return_statement // stack_pointer is used to make sure our function stack doesn't exceed the actual stack pointer void libRR_log_return_statement(uint32_t current_pc, uint32_t return_target, uint32_t stack_pointer) { if (libRR_full_trace_log) { libRR_log_trace_str("Return:"+n2hexstr(current_pc)+"->"+n2hexstr(return_target)); } // printf("libRR_log_return_statement pc:%d return:%d stack:%d\n", current_pc, return_target, 65534-stack_pointer); // check the integrety of the call stack if (libRR_call_depth < 0) { printf("Function seems to have returned without changing the stack, PC: %d \n", current_pc); } auto function_returning_from = function_stack.back(); auto presumed_return_address = previous_ra.back(); if (return_target != presumed_return_address) { // printf("ERROR: Presumed return: %d actual return: %d current_pc: %d\n", presumed_return_address, return_target, current_pc); // sometimes code manually pushes the ret value to the stack and returns // if so we don't want to log as a function return // but in the future we might want to consider making the previous jump a function call return; } else { libRR_call_depth--; // Remove from stacks function_stack.pop_back(); previous_ra.pop_back(); } if (!libRR_full_function_log) { return; } current_pc -= libRR_pc_lookahead; string current_function = n2hexstr(function_returning_from); string current_pc_str = n2hexstr(current_pc); // printf("Returning from function: %s current_pc:%s \n", current_function.c_str(), current_pc_str.c_str()); // string function_key = current_function; playthough_function_usage[current_function]["returns"][current_pc_str] = return_target; // Add max return to functions if (functions.find(function_returning_from) != functions.end() ) { uint32_t relative_return_pc = current_pc - function_returning_from; if (relative_return_pc > functions[function_returning_from].return_offset_from_start) { functions[function_returning_from].return_offset_from_start = relative_return_pc; } } // TODO: Calculate Function Signature so we can check for its name int length = current_pc - function_returning_from; string length_str = n2hexstr(length); playthough_function_usage[current_function]["lengths"][length_str] = length; if (length > 0 && length < 200) { if (playthough_function_usage[current_function]["signatures"].contains(length_str)) { } else { printf("Function Signature: About to get length: %d \n", length); playthough_function_usage[current_function]["signatures"][n2hexstr(length)] = libRR_get_data_for_function(function_returning_from, length+1, true, true); } } // string bytes_with_branch_delay = printBytesToStr(jump_data[previous_function_backup], byte_len+4)+"_"+n2hexstr(length+4); // string word_pattern = printWordsToStr(jump_data[previous_function_backup], byte_len+4)+" L"+n2hexstr(length+4,4); // TODO: need to get the moment where the bytes for the function are located // printf("Logged inst: %s \n", name.c_str()); } // libRR_log_full_function_call is expensive as it does extensive logging void libRR_log_full_function_call(uint32_t current_pc, uint32_t jump_target) { // Instead of using function name, we just use the location string function_name = /*game_name + "_func_" +*/ n2hexstr(jump_target); // printf("libRR_log_full_function_call Full function logging on %s \n", print_function_stack_trace().c_str()); // This is playthough specific if (!playthough_function_usage.contains(function_name)) { // printf("Adding new function %s \n", function_name.c_str()); playthough_function_usage[function_name] = json::parse("{}"); playthough_function_usage[function_name]["first_frame_access"] = RRCurrentFrame; playthough_function_usage[function_name]["number_of_frames"]=0; playthough_function_usage[function_name]["last_frame_access"] = 0; playthough_function_usage[function_name]["number_of_calls_per_frame"] = 1; } else if (RRCurrentFrame < playthough_function_usage[function_name]["last_frame_access"]) { // we have already ran this frame before, probably replaying, no need to add more logging return; } if (RRCurrentFrame > playthough_function_usage[function_name]["last_frame_access"]) { playthough_function_usage[function_name]["last_frame_access"] = RRCurrentFrame; playthough_function_usage[function_name]["number_of_frames"]= (int)playthough_function_usage[function_name]["number_of_frames"]+1; playthough_function_usage[function_name]["number_of_calls_per_frame"]=0; } else if (RRCurrentFrame == playthough_function_usage[function_name]["last_frame_access"]) { // we are in the same frame so its called more than once per frame playthough_function_usage[function_name]["number_of_calls_per_frame"]=(int)playthough_function_usage[function_name]["number_of_calls_per_frame"]+1; } // TODO: log read/writes to memory // TODO: calculate return and paramerters // TODO: find out how long the function is } const char* libRR_log_long_jump(uint32_t current_pc, uint32_t jump_target, const char* type) { // cout << "Long Jump from:" << n2hexstr(current_pc) << " to:" << n2hexstr(jump_target) << "\n"; if (libRR_full_trace_log) { libRR_log_trace_str("Long Jump:"+n2hexstr(current_pc)+"->"+n2hexstr(jump_target)+" type:"+type); } string target_bank_number = "0000"; string pc_bank_number = "0000"; target_bank_number = n2hexstr(get_current_bank_number_for_address(jump_target), 4); // now we need the bank number of the function we are calling pc_bank_number = n2hexstr(get_current_bank_number_for_address(current_pc), 4); libRR_long_jumps[target_bank_number][n2hexstr(jump_target)][pc_bank_number+"::"+n2hexstr(current_pc)]=type; return libRR_log_jump_label(jump_target, current_pc); } void libRR_log_interrupt_call(uint32_t current_pc, uint32_t jump_target) { string pc_bank_number = "0000"; pc_bank_number = n2hexstr(get_current_bank_number_for_address(current_pc), 4); // printf("Interrupt call at: %s::%s target:%s \n", pc_bank_number.c_str(), n2hexstr(current_pc).c_str(), n2hexstr(jump_target).c_str()); libRR_long_jumps["0000"][n2hexstr(jump_target)][pc_bank_number+"::"+n2hexstr(current_pc)]=true; } // Restarts are very similar to calls but can only jump to specific targets and only take up 1 byte void libRR_log_rst(uint32_t current_pc, uint32_t jump_target) { // for now just log it as a standard function call libRR_log_function_call(current_pc, jump_target, 0x00); } string function_name = ""; // last function name called const char* libRR_log_function_call(uint32_t current_pc, uint32_t jump_target, uint32_t stack_pointer) { // TODO: find out why uncommeting the following causes a segfault // if (!libRR_full_function_log || !libRR_finished_boot_rom) { // return; // } string bank_number = "0000"; uint32_t calculated_jump_target = jump_target; if (libRR_bank_switching_available) { int bank = get_current_bank_number_for_address(jump_target); bank_number = n2hexstr(bank, 4); // TODO: the following might be gameboy specific if (jump_target >= libRR_bank_size) { // printf("TODO: remove this in gameboy!\n"); calculated_jump_target = jump_target + ((bank-1) * libRR_bank_size); } // END TODO } string jump_target_str = n2hexstr(jump_target); function_name = "_"+bank_number+"_func_"+jump_target_str; libRR_called_functions[bank_number][n2hexstr(jump_target)] = function_name; libRR_log_trace_str("Function call: 0x"+jump_target_str); // Start Stacktrace handling libRR_call_depth++; // End Stacktrace handling last_return_address = current_pc; function_stack.push_back(jump_target); previous_ra.push_back(current_pc); if (libRR_full_function_log) { libRR_log_full_function_call(current_pc, jump_target); } if (functions.find(jump_target) != functions.end() ) { // We have already logged this function, so ignore for now return function_name.c_str(); } // We have never logged this function so lets create it auto t = cdl_labels(); t.func_offset = n2hexstr(calculated_jump_target); // if (functions.find(previous_function_backup) != functions.end()) { // t.caller_offset = functions[previous_function_backup].func_name+" (ra:"+n2hexstr(ra)+")"; // } else { // t.caller_offset = n2hexstr(previous_function_backup); // } t.func_name = function_name; // /*libRR_game_name+*/"_"+bank_number+"_func_"+jump_target_str; //t.func_stack = function_stack.size(); //t.export_path = ""; //t.bank_number = bank_number; //t.bank_offset = jump_target; // t.stack_trace = print_function_stack_trace(); t.doNotLog = false; t.many_memory_reads = false; t.many_memory_writes = false; // t.additional["callers"][print_function_stack_trace()] = RRCurrentFrame; printf("Logged new function: %s target:%d number_of_functions:%d \n", t.func_name.c_str(), jump_target, number_of_functions); functions[jump_target] = t; number_of_functions++; return function_name.c_str(); } // This will be replace be libRR_log_function_call void log_function_call(uint32_t function_that_is_being_called) { if (!log_function_calls) return; uint32_t function_that_is_calling = function_stack.back(); if (labels.find(function_that_is_calling) == labels.end()) return; if (labels[function_that_is_calling].isRenamed || labels[function_that_is_calling].doNotLog) return; labels[function_that_is_calling].function_calls[function_that_is_being_called] = labels[function_that_is_being_called].func_name; } void cdl_log_jump_always(int take_jump, uint32_t jump_target, uint8_t* jump_target_memory, uint32_t ra, uint32_t pc) { add_note(ra-8, pc, "Call (jal)"); previous_ra.push_back(ra); uint32_t previous_function_backup = function_stack.back(); function_stack.push_back(jump_target); current_function = jump_target; if (jumps[jump_target] >3) return; jumps[jump_target] = 0x04; if (labels.find(jump_target) != labels.end() ) return; log_function_call(jump_target); auto t = cdl_labels(); string jump_target_str = n2hexstr(jump_target); t.func_offset = jump_target_str; if (labels.find(previous_function_backup) != labels.end()) { t.caller_offset = labels[previous_function_backup].func_name+" (ra:"+n2hexstr(ra)+")"; } else { t.caller_offset = n2hexstr(previous_function_backup); } t.func_name = libRR_game_name+"_func_"+jump_target_str; t.func_stack = function_stack.size(); t.stack_trace = print_function_stack_trace(); t.doNotLog = false; t.many_memory_reads = false; t.many_memory_writes = false; labels[jump_target] = t; jump_data[jump_target] = jump_target_memory; } void cdl_log_jump_return(int take_jump, uint32_t jump_target, uint32_t pc, uint32_t ra, int64_t* registers, struct r4300_core* r4300) { uint32_t previous_function_backup = -1; if (!libRR_full_function_log || !libRR_finished_boot_rom) { return; } // if (previous_function_backup > ra) { // // cout << std::hex << " Odd the prev function start should never be before return address ra:" << ra << " previous_function_backup:" << previous_function_backup << "\n"; // return; // } if (function_stack.size()>0) { previous_function_backup = function_stack.back(); } else { add_note(pc, jump_target, "function_stack <0"); // probably jumping from exception? // cout << "Missed push back?" << std::hex << jump_target << " ra" << ra << " pc:"<< pc<< "\n"; // return; } if (jump_target == previous_ra.back()) { add_note(pc, jump_target, "successful return"); } else { string problem = "Expected $ra to be 0x"; problem += n2hexstr(previous_ra.back()); problem += " but was:"; problem += n2hexstr(jump_target); add_note(pc, jump_target, problem); // return; } function_stack.pop_back(); current_function = function_stack.back(); previous_ra.pop_back(); console_log_jump_return(take_jump, jump_target, pc, ra, registers, r4300); if (jumps[jump_target] >3) return; jumps[jump_target] = 0x04; if (jump_returns.find(previous_function_backup) != jump_returns.end()) { return; } auto t = cdl_jump_return(); string jump_target_str = n2hexstr(jump_target); t.return_offset = pc; t.func_offset = previous_function_backup; t.caller_offset = jump_target; jump_returns[previous_function_backup] = t; uint64_t length = pc-previous_function_backup; // labels[previous_function_backup].return_offset_from_start = length; if (length<2) { return; } if (jump_data.find(previous_function_backup) != jump_data.end()) { uint64_t byte_len = length; if (byte_len > 0xFFFF) { byte_len = 0xFFFF; } // string bytes = printBytesToStr(jump_data[previous_function_backup], byte_len)+"_"+n2hexstr(length); string bytes_with_branch_delay = printBytesToStr(jump_data[previous_function_backup], byte_len+4)+"_"+n2hexstr(length+4); string word_pattern = printWordsToStr(jump_data[previous_function_backup], byte_len+4)+" L"+n2hexstr(length+4,4); labels[previous_function_backup].function_bytes = bytes_with_branch_delay; labels[previous_function_backup].doNotLog = true; labels[previous_function_backup].generatedSignature = true; // labels[previous_function_backup].function_bytes_endian = Swap4Bytes(bytes); // now check to see if its in the mario map // if (/*strcmp(game_name.c_str(),"SUPERMARIO") == 0 &&*/ linker_map_file.find( n2hexstr(previous_function_backup) ) != linker_map_file.end()) { // string offset = n2hexstr(previous_function_backup); // string func_name = linker_map_file[offset]; // cout << game_name << "It is in the map file!" << n2hexstr(previous_function_backup) << " as:" << linker_map_file[n2hexstr(previous_function_backup)] << "\n"; // function_signatures[bytes] = func_name; // if (strcmp(func_name.c_str(),"gcc2_compiled.")==0) return; // we don't want gcc2_compiled labels // libultra_signatures["function_signatures"][bytes_with_branch_delay] = func_name; // labels[previous_function_backup].func_name = libultra_signatures["function_signatures"][bytes_with_branch_delay]; // return; // } // if it is a libultra function then lets name it if (libultra_signatures["library_signatures"].find(word_pattern) != libultra_signatures["library_signatures"].end()) { std::cout << "In library_signatures:" << word_pattern << " name:"<< libultra_signatures["library_signatures"][word_pattern] << "\n"; labels[previous_function_backup].func_name = libultra_signatures["library_signatures"][word_pattern]; labels[previous_function_backup].isRenamed = true; // return since we have already named this functions, don't need its signature to be saved return; } if (libultra_signatures["game_signatures"].find(word_pattern) != libultra_signatures["game_signatures"].end()) { // std::cout << "In game_signatures:" << word_pattern << " name:"<< libultra_signatures["game_signatures"][word_pattern] << "\n"; labels[previous_function_backup].func_name = libultra_signatures["game_signatures"][word_pattern]; // return since we have already named this functions, don't need its signature to be saved return; } // if it is a libultra function then lets name it if (libultra_signatures["function_signatures"].find(bytes_with_branch_delay) != libultra_signatures["function_signatures"].end()) { std::cout << "In old libultra:" << bytes_with_branch_delay << " name:"<< libultra_signatures["function_signatures"][bytes_with_branch_delay] << "\n"; labels[previous_function_backup].func_name = libultra_signatures["function_signatures"][bytes_with_branch_delay]; if (labels[previous_function_backup].func_name.find("_func_") != std::string::npos) { // this is a non renamed function as it was auto generated find_most_similar_function(previous_function_backup, word_pattern); libultra_signatures["game_signatures"][word_pattern] = labels[previous_function_backup].func_name; } else { libultra_signatures["library_signatures"][word_pattern] = labels[previous_function_backup].func_name; labels[previous_function_backup].isRenamed = true; } libultra_signatures["function_signatures"].erase(bytes_with_branch_delay); // return since we have already named this functions, don't need its signature to be saved return; } // if it is an OLD libultra function then lets name it (without branch delay) // if (libultra_signatures["function_signatures"].find(bytes) != libultra_signatures["function_signatures"].end()) { // std::cout << "In OLDEST libultra:" << bytes << " name:"<< libultra_signatures["function_signatures"][bytes] << "\n"; // labels[previous_function_backup].func_name = libultra_signatures["function_signatures"][bytes]; // labels[previous_function_backup].isRenamed = true; // libultra_signatures["function_signatures"][bytes_with_branch_delay] = labels[previous_function_backup].func_name; // // delete the old non-branch delay version // libultra_signatures["function_signatures"].erase(bytes); // // return since we have already named this functions, don't need its signature to be saved // return; // } find_most_similar_function(previous_function_backup, word_pattern); // cout << "word_pattern:" << word_pattern << "\n"; if (function_signatures.find(word_pattern) == function_signatures.end()) { // save this new function to both libultra and trace json function_signatures[word_pattern] = labels[previous_function_backup].func_name; libultra_signatures["game_signatures"][word_pattern] = labels[previous_function_backup].func_name; } else { //function_signatures.erase(bytes); // function_signatures[word_pattern] = "Multiple functions"; std::cout << "Multiple Functions for :" << *jump_data[previous_function_backup] << " len:" << length << " pc:0x"<< pc << " - 0x" << previous_function_backup << "\n"; } } } void find_most_similar_function(uint32_t function_offset, string bytes) { string named_function_with_highest_distance = ""; // string auto_generated_function_with_highest_distance = ""; double highest_distance = 0; // double highest_auto_distance = 0; for(auto it = libultra_signatures["library_signatures"].begin(); it != libultra_signatures["library_signatures"].end(); ++it) { double distance = jaro_winkler_distance(bytes.c_str(), it.key().c_str()); if (distance >= highest_distance) { string function_name = it.value(); // if (!is_auto_generated_function_name(function_name)) { if (distance == highest_distance) { named_function_with_highest_distance += "_or_"; named_function_with_highest_distance += function_name; } else { highest_distance = distance; named_function_with_highest_distance = function_name; } // } else { // highest_auto_distance = distance; // auto_generated_function_with_highest_distance=function_name; // } } // cout << "IT:" << it.value() << " distance:" << jaro_winkler_distance(bytes_with_branch_delay.c_str(), it.key().c_str()) << "\n"; } uint32_t highest_distance_percent = highest_distance*100; // cout << "generated function_with_highest_distance to "<< std::hex << function_offset << " is:"<<auto_generated_function_with_highest_distance<<" with "<< std::dec << highest_auto_distance <<"%\n"; if (highest_distance_percent>=95) { cout << "function will be renamed "<< std::hex << function_offset << " is:"<<named_function_with_highest_distance<<" with "<< std::dec << highest_distance_percent <<"%\n"; labels[function_offset].func_name = named_function_with_highest_distance; labels[function_offset].isRenamed = true; } else if (highest_distance_percent>=90) { cout << "function_with_highest_distance to "<< std::hex << function_offset << " is:"<<named_function_with_highest_distance<<" with "<< std::dec << highest_distance_percent <<"%\n"; labels[function_offset].func_name += "_predict_"+named_function_with_highest_distance+"_"; labels[function_offset].func_name += (to_string(highest_distance_percent)); labels[function_offset].func_name += "percent"; } } // loop through and erse multiple functions void erase_multiple_func_signatures() { // function_signatures // Multiple functions } bool is_auto_generated_function_name(string func_name) { if (func_name.find("_func_") != std::string::npos) { // this is a non renamed function as it was auto generated return true; } return false; } unsigned int find_first_non_executed_jump() { for(map<unsigned int, char>::iterator it = jumps.begin(); it != jumps.end(); ++it) { if ((it->second+0) <3) { return it->first; } } return -1; } int cdl_log_jump(int take_jump, uint32_t jump_target, uint8_t* jump_target_memory, uint32_t pc, uint32_t ra) { add_note(pc, jump_target, "jump"); // if (previous_ra.size() > 0 && ra != previous_ra.back()) { // cdl_log_jump_always(take_jump, jump_target, jump_target_memory, ra, pc); // //previous_ra.push_back(ra); // return take_jump; // } // if (should_reverse_jumps) // { // time_t now = time(0); // if (jumps[jump_target] < 3) { // // should_reverse_jumps=false; // if ( now-time_last_reversed > 2) { // l_CurFrame-frame_last_reversed >(10*5) || // take_jump = reverse_jump(take_jump, jump_target); // } // } else if (now-time_last_reversed > 15) { // printf("Stuck fixing %d\n", find_first_non_executed_jump()); // take_jump=!take_jump; // main_state_load(NULL); // // we are stuck so lets load // } // } if (take_jump) { jumps[jump_target] |= 1UL << 0; } else { jumps[jump_target] |= 1UL << 1; } return take_jump; } void save_table_mapping(int entry, uint32_t phys, uint32_t start,uint32_t end, bool isOdd) { //printf("tlb_map:%d ODD Start:%#08x End:%#08x Phys:%#08x \n",entry, e->start_odd, e->end_odd, e->phys_odd); uint32_t length = end-start; auto t = cdl_tlb(); t.start=start; t.end = end; t.rom_offset = phys; tlbs[phys]=t; string key = ""; key+="[0x"; key+=n2hexstr(phys); key+=", 0x"; key+=n2hexstr(phys+length); key+="] Virtual: 0x"; key+=n2hexstr(start); key+=" to 0x"; key+=n2hexstr(end); if (isOdd) key+=" Odd"; else key+=" Even"; string value = "Entry:"; value += to_string(entry); // value += " Frame:0x"; value += n2hexstr(l_CurFrame); bool isInJson = fileConfig["tlb"].find(key) != fileConfig["tlb"].end(); if (isInJson) { string original = fileConfig["tlb"][key]; bool isSameValue = (strcmp(original.c_str(), value.c_str()) == 0); if (isSameValue) return; // printf("isSameValue:%d \noriginal:%s \nnew:%s\n", isSameValue, original.c_str(), value.c_str()); return; // don't replace the original value as it is useful to match frame numbers to the mappings } fileConfig["tlb"][key] = value; printf("TLB %s\n", value.c_str()); } void cdl_log_dram_read(uint32_t address) { } void cdl_log_dram_write(uint32_t address, uint32_t value, uint32_t mask) { } void cdl_log_rsp_mem(uint32_t address, uint32_t* mem,int isBootRom) { if (isBootRom) return; rsp_reads[address] = (uint32_t)*mem; } void cdl_log_rdram(uint32_t address, uint32_t* mem,int isBootRom) { //printf("RDRAM %#08x \n", address); if (isBootRom) return; rdram_reads[address] = (uint32_t)*mem; } void cdl_log_mm_cart_rom(uint32_t address,int isBootRom) { printf("Cart ROM %#08x \n", address); } void cdl_log_mm_cart_rom_pif(uint32_t address,int isBootRom) { printf("PIF? %#08x \n", address); } void cdl_log_pif_ram(uint32_t address, uint32_t* value) { #ifndef USE_CDL return; #endif printf("Game was reset? \n"); if (!createdCartBackup) { backupCart(); readJsonFromFile(); function_stack.push_back(0); } if (should_reverse_jumps) { // should_reverse_jumps = false; fileConfig["bad_jumps"][last_reversed_address] = "reset"; main_state_load(NULL); write_rom_mapping(); } } void cdl_log_opcode_error() { printf("Very bad opcode, caused crash! \n"); fileConfig["bad_jumps"][last_reversed_address] = "crash"; main_state_load(NULL); } void find_asm_sections() { printf("finding asm in sections \n"); for(map<unsigned int, char>::iterator it = jumps.begin(); it != jumps.end(); ++it) { string jump_target_str = n2hexstr(it->first); fileConfig["jumps_rom"][jump_target_str] = n2hexstr(map_assembly_offset_to_rom_offset(it->first,0)); } } void find_audio_sections() { printf("finding audio sections \n"); for(map<uint32_t, cdl_dma>::iterator it = dmas.begin(); it != dmas.end(); ++it) { uint32_t address = it->second.dram_start; if (audio_address.find(address) == audio_address.end() ) continue; dmas[address].guess_type = "audio"; it->second.guess_type="audio"; } } void add_tag_to_function(string tag, uint32_t labelAddr) { if (!tag_functions || labels[labelAddr].isRenamed) return; if (labels[labelAddr].func_name.find(tag) != std::string::npos) return; labels[labelAddr].func_name += tag; } void find_audio_functions() { printf("finding audio functions \n"); for(map<uint32_t, cdl_labels>::iterator it = labels.begin(); it != labels.end(); ++it) { cdl_labels label = it->second; if (label.isRenamed) { continue; // only do it for new functions } if (label.many_memory_reads) { add_tag_to_function("_manyMemoryReads", it->first); } if (label.many_memory_writes) { add_tag_to_function("_manyMemoryWrites", it->first); } for(map<string, string>::iterator it2 = label.read_addresses.begin(); it2 != label.read_addresses.end(); ++it2) { uint32_t address = hex_to_int(it2->first); if (audio_address.find(address) != audio_address.end() ) { cout << "Function IS audio:"<< label.func_name << "\n"; } if (address>0x10000000 && address <= 0x107fffff) { cout << "Function accesses cart rom:"<< label.func_name << "\n"; } } for(map<string, string>::iterator it2 = label.write_addresses.begin(); it2 != label.write_addresses.end(); ++it2) { uint32_t address = hex_to_int(it2->first); if (audio_address.find(address) != audio_address.end() ) { cout << "Function IS audio:"<< label.func_name << "\n"; } if (address>0x10000000 && address <= 0x107fffff) { cout << "Function IS cart rom:"<< label.func_name << "\n"; } } } } bool isAddressCartROM(uint32_t address) { return (address>0x10000000 && address <= 0x107fffff); } void cdl_log_audio_sample(uint32_t saved_ai_dram, uint32_t saved_ai_length) { if (audio_samples.find(saved_ai_dram) != audio_samples.end() ) return; auto t = cdl_dram_cart_map(); t.dram_offset = n2hexstr(saved_ai_dram); t.rom_offset = n2hexstr(saved_ai_length); audio_samples[saved_ai_dram] = t; // printf("audio_plugin_push_samples AI_DRAM_ADDR_REG:%#08x length:%#08x\n", saved_ai_dram, saved_ai_length); } void cdl_log_cart_rom_dma_write(uint32_t dram_addr, uint32_t cart_addr, uint32_t length) { if (cart_rom_dma_writes.find(cart_addr) != cart_rom_dma_writes.end() ) return; auto t = cdl_dram_cart_map(); t.dram_offset = n2hexstr(dram_addr); t.rom_offset = n2hexstr(cart_addr); cart_rom_dma_writes[cart_addr] = t; printf("cart_rom_dma_write: dram_addr:%#008x cart_addr:%#008x length:%#008x\n", dram_addr, cart_addr, length); } void cdl_log_dma_sp_write(uint32_t spmemaddr, uint32_t dramaddr, uint32_t length, unsigned char *dram) { if (dma_sp_writes.find(dramaddr) != dma_sp_writes.end() ) return; auto t = cdl_dram_cart_map(); t.dram_offset = n2hexstr(dramaddr); t.rom_offset = n2hexstr(spmemaddr); dma_sp_writes[dramaddr] = t; // FrameBuffer RSP info printWords(dram, dramaddr, length); printf("FB: dma_sp_write SPMemAddr:%#08x Dramaddr:%#08x length:%#08x \n", spmemaddr, dramaddr, length); } inline void cdl_log_memory_common(const uint32_t lsaddr, uint32_t pc) { // if (addresses.find(lsaddr) != addresses.end() ) // return; // addresses[lsaddr] = currentMap; } void cdl_log_mem_read(const uint32_t lsaddr, uint32_t pc) { if (!cdl_log_memory) return; if (memory_to_log.find(lsaddr) != memory_to_log.end() ) { cout << "Logging Mem Read for 0x"<< std::hex << lsaddr << " At PC:" << pc <<"\n"; } if (labels[current_function].isRenamed || labels[current_function].doNotLog) { // only do it for new functions return; } if (labels[current_function].read_addresses.size() > NUMBER_OF_MANY_READS) { labels[current_function].many_memory_reads = true; return; } // auto currentMap = addresses[lsaddr]; // currentMap[n2hexstr(lsaddr)]=labels[current_function].func_name+"("+n2hexstr(current_function)+"+"+n2hexstr(pc-current_function)+")"; auto offset = pc-current_function; labels[current_function].read_addresses[n2hexstr(lsaddr)] = "func+0x"+n2hexstr(offset)+" pc=0x"+n2hexstr(pc); } void cdl_log_mem_write(const uint32_t lsaddr, uint32_t pc) { if (!cdl_log_memory) return; if (memory_to_log.find(lsaddr) != memory_to_log.end() ) { cout << "Logging Mem Write to 0x"<< std::hex << lsaddr << " At PC:" << pc <<"\n"; } if (labels[current_function].isRenamed || labels[current_function].doNotLog) { // only do it for new functions return; } if (labels[current_function].write_addresses.size() > NUMBER_OF_MANY_WRITES) { labels[current_function].many_memory_writes = true; return; } // auto currentMap = addresses[lsaddr]; // currentMap[n2hexstr(lsaddr)]=labels[current_function].func_name+"("+n2hexstr(current_function)+"+"+n2hexstr(pc-current_function)+")"; auto offset = pc-current_function; labels[current_function].write_addresses[n2hexstr(lsaddr)] = "+0x"+n2hexstr(offset)+" pc=0x"+n2hexstr(pc); } void cdl_hit_memory_log_point(uint32_t address) { if (address>0x10000000 && address <= 0x107fffff) { cout << "Cart Memory access!" << std::hex << address << " in:" << labels[current_function].func_name << "\n"; } } void cdl_log_masked_write(uint32_t* address, uint32_t dst2) { if (!cdl_log_memory) return; // cout << "masked write:"<<std::hex<<dst<<" : "<<dst2<<"\n"; // if (memory_to_log.find(address) != memory_to_log.end() ) // { // cout << "Logging Mem Write to 0x"<< std::hex << address << " At PC:" <<"\n"; // } } void cdl_log_get_mem_handler(uint32_t address) { if (!cdl_log_memory) return; cdl_hit_memory_log_point(address); if (memory_to_log.find(address) != memory_to_log.end() ) { cout << "Logging Mem cdl_log_get_mem_handler access 0x"<< std::hex << address <<"\n"; cdl_hit_memory_log_point(address); } } void cdl_log_mem_read32(uint32_t address) { if (!cdl_log_memory) return; cdl_hit_memory_log_point(address); if (memory_to_log.find(address) != memory_to_log.end() ) { cout << "Logging Mem cdl_log_mem_read32 access 0x"<< std::hex << address <<"\n"; cdl_hit_memory_log_point(address); } } void cdl_log_mem_write32(uint32_t address) { if (!cdl_log_memory) return; cdl_hit_memory_log_point(address); if (memory_to_log.find(address) != memory_to_log.end() ) { cout << "Logging Mem cdl_log_mem_write32 access 0x"<< std::hex << address <<"\n"; cdl_hit_memory_log_point(address); } } string mapping_names[] = { "M64P_MEM_NOTHING", "M64P_MEM_NOTHING", "M64P_MEM_RDRAM", "M64P_MEM_RDRAMREG", "M64P_MEM_RSPMEM", "M64P_MEM_RSPREG", "M64P_MEM_RSP", "M64P_MEM_DP", "M64P_MEM_DPS", "M64P_MEM_VI", "M64P_MEM_AI", "M64P_MEM_PI", "M64P_MEM_RI", "M64P_MEM_SI", "M64P_MEM_FLASHRAMSTAT", "M64P_MEM_ROM", "M64P_MEM_PIF", "M64P_MEM_MI" }; #define OSTASK_GFX 1 #define OSTASK_AUDIO 2 void cdl_log_ostask(uint32_t type, uint32_t flags, uint32_t bootcode, uint32_t bootSize, uint32_t ucode, uint32_t ucodeSize, uint32_t ucodeData, uint32_t ucodeDataSize) { if (!log_ostasks) return; if (rspboot == 0) { rspboot = map_assembly_offset_to_rom_offset(bootcode,0); auto bootDma = cdl_dma(); bootDma.dram_start=rspboot; bootDma.dram_end = rspboot+bootSize; bootDma.rom_start = rspboot; bootDma.rom_end = rspboot+bootSize; bootDma.length = bootSize; bootDma.frame = l_CurFrame; bootDma.func_addr = print_function_stack_trace(); bootDma.known_name = "rsp.boot"; dmas[rspboot] = bootDma; } uint32_t ucodeRom = map_assembly_offset_to_rom_offset(ucode,0); if (dmas.find(ucodeRom) != dmas.end() ) return; printf("OSTask type:%#08x flags:%#08x bootcode:%#08x ucode:%#08x ucodeSize:%#08x ucodeData:%#08x ucodeDataSize:%#08x \n", type, flags, bootcode, ucode, ucodeSize, ucodeData, ucodeDataSize); uint32_t ucodeDataRom = map_assembly_offset_to_rom_offset(ucodeData,0); auto data = cdl_dma(); data.dram_start=ucodeData; data.dram_end = ucodeData+ucodeDataSize; data.rom_start = ucodeDataRom; data.rom_end = ucodeDataRom+ucodeDataSize; data.length = ucodeDataSize; data.frame = l_CurFrame; data.func_addr = print_function_stack_trace(); data.is_assembly = false; auto t = cdl_dma(); t.dram_start=ucode; t.dram_end = ucode+ucodeSize; t.rom_start = ucodeRom; t.rom_end = ucodeRom+ucodeSize; t.length = ucodeSize; t.frame = l_CurFrame; t.func_addr = print_function_stack_trace(); t.is_assembly = false; if (type == OSTASK_AUDIO) { t.guess_type = "rsp.audio"; t.ascii_header = "rsp.audio"; t.known_name = "rsp.audio"; data.ascii_header = "rsp.audio.data"; data.known_name = "rsp.audio.data"; } else if (type == OSTASK_GFX) { t.guess_type = "rsp.graphics"; t.ascii_header = "rsp.graphics"; t.known_name = "rsp.graphics"; data.ascii_header = "rsp.graphics.data"; data.known_name = "rsp.graphics.data"; } else { printf("other type:%#08x ucode:%#08x \n",type, ucodeRom); } dmas[ucodeRom] = t; dmas[ucodeDataRom] = data; } #define CDL_ALIST 0 #define CDL_UCODE_CRC 2 void cdl_log_rsp(uint32_t log_type, uint32_t address, const char * extra_data) { if (!log_rsp) return; if (log_type == CDL_ALIST) { if (audio_address.find(address) != audio_address.end() ) return; audio_address[address] = n2hexstr(address)+extra_data; // cout << "Alist address:" << std::hex << address << " " << extra_data << "\n"; return; } if (log_type == CDL_UCODE_CRC) { ucode_crc = n2hexstr(address); return; } cout << "Log rsp\n"; } void cdl_log_dpc_reg_write(uint32_t address, uint32_t value, uint32_t mask) { cdl_common_log_tag("writeDPCRegs"); } } // end extern C // C++ uint32_t libRR_offset_to_look_for = 0x8149; bool libRR_enable_look = false; json libRR_disassembly = {}; json libRR_memory_reads = {}; json libRR_consecutive_rom_reads = {}; json libRR_called_functions = {}; json libRR_long_jumps = {}; int32_t previous_consecutive_rom_read = 0; // previous read address to check if this read is part of the chain int16_t previous_consecutive_rom_bank = 0; // previous read address to check if this read is part of the chain int32_t current_consecutive_rom_start = 0; // start address of the current chain bool replace(std::string& str, const std::string from, const std::string to) { size_t start_pos = str.find(from); if(start_pos == std::string::npos) return false; str.replace(start_pos, from.length(), to); return true; } extern "C" void libRR_log_dma(int32_t offset) { if (offset> 0x7fff) { return; } cout << "DMA: " << n2hexstr(offset) << "\n"; } static string label_name = ""; extern "C" const char* libRR_log_jump_label_with_name(uint32_t offset, uint32_t current_pc, const char* label_name) { if (!libRR_full_function_log || !libRR_finished_boot_rom) { return ""; } string offset_str = n2hexstr(offset); int bank = get_current_bank_number_for_address(offset); string current_bank_str = n2hexstr(bank, 4); if (offset >libRR_slot_2_max_addr) { // if its greater than the max bank value then its probably in ram return ""; } // debugging code start if (libRR_enable_look && (offset == libRR_offset_to_look_for || current_pc == libRR_offset_to_look_for)) { printf("Found long jump label with name offset: %d\n", libRR_offset_to_look_for); } // debugging code end // string label_name = "LAB_" + current_bank_str + "_" + n2hexstr(offset); if (!libRR_disassembly[current_bank_str][offset_str].contains("label_name")) { libRR_disassembly[current_bank_str][offset_str]["label_name"] = label_name; } libRR_disassembly[current_bank_str][offset_str]["meta"]["label_callers"][current_bank_str + "_" + n2hexstr(current_pc)] = true; return label_name; } extern "C" const char* libRR_log_jump_label(uint32_t offset, uint32_t current_pc) { if (!libRR_full_function_log || !libRR_finished_boot_rom) { return "_not_logging"; } string offset_str = n2hexstr(offset); int bank = get_current_bank_number_for_address(offset); string current_bank_str = n2hexstr(bank, 4); if (offset >libRR_slot_2_max_addr) { // if its greater than the max bank value then its probably in ram return "max_bank_value"; } // debugging code start if (libRR_enable_look && (offset == libRR_offset_to_look_for || current_pc == libRR_offset_to_look_for)) { printf("Found long jump label offset: %d\n", libRR_offset_to_look_for); } // debugging code end label_name = "LAB_" + current_bank_str + "_" + n2hexstr(offset); // return libRR_log_jump_label_with_name(offset, current_pc, label_name.c_str()); if (!libRR_disassembly[current_bank_str][offset_str].contains("label_name")) { libRR_disassembly[current_bank_str][offset_str]["label_name"] = label_name; } libRR_disassembly[current_bank_str][offset_str]["meta"]["label_callers"][current_bank_str + "_" + n2hexstr(current_pc)] = true; return label_name.c_str(); } extern "C" void libRR_log_memory_read(int8_t bank, int32_t offset, const char* type, uint8_t byte_size, char* bytes) { libRR_log_rom_read(bank, offset, type, byte_size, bytes); } extern "C" void libRR_log_rom_read(int16_t bank, int32_t offset, const char* type, uint8_t byte_size, char* bytes) { string bank_str = n2hexstr(bank, 4); string previous_bank_str = n2hexstr(previous_consecutive_rom_bank, 4); string offset_str = n2hexstr(offset); string current_consecutive_rom_start_str = n2hexstr(current_consecutive_rom_start); if (libRR_full_trace_log) { libRR_log_trace_str("Rom Read bank:"+bank_str+":"+n2hexstr(offset)+" = "+n2hexstr(bytes[0], 2)); } // Check to see if the last read address is the same or 1 away // Check for the same is because sometimes data is checked by reading the first byte if (previous_consecutive_rom_bank == bank && previous_consecutive_rom_read == offset) { // do nothing if its the same byte read twice previous_consecutive_rom_bank = bank; libRR_consecutive_rom_reads[previous_bank_str][current_consecutive_rom_start_str]["length"] = 1; return; } if (previous_consecutive_rom_bank == bank && previous_consecutive_rom_read == (offset-1)) { if (libRR_consecutive_rom_reads[previous_bank_str][current_consecutive_rom_start_str].is_null()) { // check to see if the current read is null and if so create it libRR_consecutive_rom_reads[previous_bank_str][current_consecutive_rom_start_str]["length"] = 1+ byte_size; } else { libRR_consecutive_rom_reads[previous_bank_str][current_consecutive_rom_start_str]["length"] = ((uint32_t) libRR_consecutive_rom_reads[previous_bank_str][current_consecutive_rom_start_str]["length"]) +byte_size; } for (int i=0; i<byte_size; i++) { libRR_consecutive_rom_reads[previous_bank_str][current_consecutive_rom_start_str]["value"][n2hexstr(offset+i)] = n2hexstr(bytes[i]); } } else { // cout << "previous consecutive length from:" << (int)previous_consecutive_rom_bank << "::" << n2hexstr(current_consecutive_rom_start) << " -> " << n2hexstr(previous_consecutive_rom_read) << " len:" << libRR_consecutive_rom_reads[previous_bank_str][current_consecutive_rom_start_str]["length"] << "\n"; current_consecutive_rom_start = offset; current_consecutive_rom_start_str = n2hexstr(current_consecutive_rom_start); // initialise new consecutive run libRR_consecutive_rom_reads[bank_str][current_consecutive_rom_start_str]["length"] = 1; for (int i=0; i<byte_size; i++) { libRR_consecutive_rom_reads[bank_str][current_consecutive_rom_start_str]["value"][n2hexstr(offset+i)] = n2hexstr(bytes[i]); } } previous_consecutive_rom_read = offset+(byte_size-1); // add byte_size to take into account 2 byte reads previous_consecutive_rom_bank = bank; string value_str = ""; if (byte_size == 2) { value_str = n2hexstr(two_bytes_to_16bit_value(bytes[1], bytes[0])); } else { value_str = n2hexstr(bytes[0]); } // printf("Access data: %d::%s type: %s size: %d value: %s\n", bank, n2hexstr(offset).c_str(), type, byte_size, value_str.c_str()); } extern "C" void libRR_log_instruction_2int(uint32_t current_pc, const char* c_name, uint32_t instruction_bytes, int number_of_bytes, uint32_t operand, uint32_t operand2) { if (!libRR_full_function_log || !libRR_finished_boot_rom) { return; } std::string name(c_name); replace(name, "%int%", libRR_constant_replace(operand)); replace(name, "%int2%", libRR_constant_replace(operand2)); libRR_log_instruction(current_pc, name, instruction_bytes, number_of_bytes); } // Takes a single int argument and replaces it in the string extern "C" void libRR_log_instruction_1int(uint32_t current_pc, const char* c_name, uint32_t instruction_bytes, int number_of_bytes, uint32_t operand) { return libRR_log_instruction_2int(current_pc, c_name, instruction_bytes, number_of_bytes, operand, 0); } extern "C" void libRR_log_instruction_1string(uint32_t current_pc, const char* c_name, uint32_t instruction_bytes, int number_of_bytes, const char* c_register_name) { if (!libRR_full_function_log || !libRR_finished_boot_rom) { return; } std::string name(c_name); std::string register_name(c_register_name); replace(name, "%str%",register_name); libRR_log_instruction_1int(current_pc, name.c_str(), instruction_bytes, number_of_bytes, 0x00); } extern "C" void libRR_log_instruction_1int_registername(uint32_t current_pc, const char* c_name, uint32_t instruction_bytes, int number_of_bytes, uint32_t operand, const char* c_register_name) { if (!libRR_full_function_log || !libRR_finished_boot_rom) { return; } std::string name(c_name); std::string register_name(c_register_name); replace(name, "%r%",register_name); libRR_log_instruction_1int(current_pc, name.c_str(), instruction_bytes, number_of_bytes, operand); } extern "C" void libRR_log_instruction_z80_s_d(uint32_t current_pc, const char* c_name, uint32_t instruction_bytes, int number_of_bytes, const char* source, const char* destination) { if (!libRR_full_function_log || !libRR_finished_boot_rom) { return; } std::string name(c_name); replace(name, "%s%", source); replace(name, "%d%", destination); libRR_log_instruction(current_pc, name, instruction_bytes, number_of_bytes); } // // Z80 End // // current_pc - current program counter // instruction bytes as integer used for hex // arguments - number of arguments - currently not really used for anything // m - used for register number, replaces Rm with R1/R2 etc void libRR_log_instruction(uint32_t current_pc, string name, uint32_t instruction_bytes, int number_of_bytes, unsigned m, unsigned n, unsigned imm, unsigned d, unsigned ea) { if (!libRR_full_function_log || !libRR_finished_boot_rom) { return; } replace(name, "%EA", "0x"+n2hexstr(ea)); libRR_log_instruction(current_pc, name, instruction_bytes, number_of_bytes, m, n, imm, d); } void libRR_log_instruction(uint32_t current_pc, string name, uint32_t instruction_bytes, int number_of_bytes, unsigned m, unsigned n, unsigned imm, unsigned d) { if (!libRR_full_function_log || !libRR_finished_boot_rom) { return; } replace(name, "#imm", "#"+to_string(imm)); replace(name, "disp", ""+to_string(d)); if (name.find("SysRegs") != std::string::npos) { replace(name, "SysRegs[#0]", "MACH"); replace(name, "SysRegs[#1]", "MACL"); replace(name, "SysRegs[#2]", "PR"); } libRR_log_instruction(current_pc, name, instruction_bytes, number_of_bytes, m, n); } void libRR_log_instruction(uint32_t current_pc, string name, uint32_t instruction_bytes, int number_of_bytes, unsigned m, unsigned n) { if (!libRR_full_function_log || !libRR_finished_boot_rom) { return; } replace(name, "Rm", "R"+to_string(m)); replace(name, "Rn", "R"+to_string(n)); libRR_log_instruction(current_pc, name, instruction_bytes, number_of_bytes); } extern "C" void libRR_log_instruction(uint32_t current_pc, const char* name, uint32_t instruction_bytes, int number_of_bytes) { if (!libRR_full_function_log || !libRR_finished_boot_rom) { return; } // printf("libRR_log_instruction pc:%d name: %s bytes: %d\n", current_pc, name, instruction_bytes); std::string str(name); libRR_log_instruction(current_pc, str, instruction_bytes, number_of_bytes); } // C version of the c++ template extern "C" const char* n2hexstr_c(int number, size_t hex_len) { return n2hexstr(number, hex_len).c_str(); } string libRR_constant_replace(uint32_t da8) { string addr_str = n2hexstr(da8); if (libRR_console_constants["addresses"].contains(addr_str)) { return libRR_console_constants["addresses"][addr_str]; } return "$"+n2hexstr(da8); } int32_t previous_pc = 0; // used for debugging bool has_read_first_ever_instruction = false; void libRR_log_instruction(uint32_t current_pc, string name, uint32_t instruction_bytes, int number_of_bytes) { if (!libRR_full_function_log || !libRR_finished_boot_rom) { return; } if (!has_read_first_ever_instruction) { // special handling for the entry point, we wanr to force a label here to it gets written to output libRR_log_jump_label_with_name(current_pc, current_pc, "entry"); has_read_first_ever_instruction = true; libRR_isDelaySlot = false; } int bank = get_current_bank_number_for_address(current_pc); string current_bank_str = n2hexstr(bank, 4); // trace log each instruction if (libRR_full_trace_log) { libRR_log_trace_str(name + "; pc:"+current_bank_str+":"+n2hexstr(current_pc)); } // Code used for debugging why an address was reached if (libRR_enable_look && current_pc == libRR_offset_to_look_for) { printf("Reached %s: previous addr: %s name:%s bank:%d \n ", n2hexstr(libRR_offset_to_look_for).c_str(), n2hexstr(previous_pc).c_str(), name.c_str(), bank); } // end debugging code if (strcmp(libRR_console,"Saturn")==0) { printf("isSaturn\n"); // For saturn we remove 2 from the program counter, but this will vary per console current_pc -= 4; // was -2 } // string current_function = n2hexstr(function_stack.back()); string current_pc_str = n2hexstr(current_pc); // printf("libRR_log_instruction %s \n", current_function.c_str()); if (strcmp(libRR_console,"Saturn")==0) { if (libRR_isDelaySlot) { current_pc_str = n2hexstr(libRR_delay_slot_pc - 2); //subtract 2 as pc is ahead // printf("Delay Slot %s \n", current_pc_str.c_str()); libRR_isDelaySlot = false; } } // TODO: Hex bytes should change based on number_of_bytes string hexBytes = n2hexstr((uint32_t)instruction_bytes, number_of_bytes*2); // if we are below the max addr of bank 0 (e.g 0x4000 for GB) then we are always in bank 0 // if (current_pc <libRR_slot_0_max_addr) { // current_bank_str="0000"; // } // libRR_disassembly[current_bank_str][current_pc_str][name]["frame"]=RRCurrentFrame; libRR_disassembly[current_bank_str][current_pc_str][name]["bytes"]=hexBytes; libRR_disassembly[current_bank_str][current_pc_str][name]["bytes_length"]=number_of_bytes; previous_pc = current_pc; }
40.186519
312
0.672836
disi33
274859fcc3c14d6621bb5912b64e71495ce6c751
518
cpp
C++
C++/402.remove-k-digits.cpp
WilliamZhaoz/github
2aa0eb17e272249fc225cf2e9861c4c44bd0e265
[ "MIT" ]
1
2018-03-06T05:07:22.000Z
2018-03-06T05:07:22.000Z
C++/402.remove-k-digits.cpp
WilliamZhaoz/github
2aa0eb17e272249fc225cf2e9861c4c44bd0e265
[ "MIT" ]
1
2021-12-24T16:41:02.000Z
2021-12-24T16:41:02.000Z
C++/402.remove-k-digits.cpp
WilliamZhaoz/github
2aa0eb17e272249fc225cf2e9861c4c44bd0e265
[ "MIT" ]
null
null
null
class Solution { public: string removeKdigits(string num, int k) { int n = num.size(); int leave = n - k; string res = ""; for (int i = 0; i < num.size(); i++) { while (k && res.back() > num[i]) { k--; res.pop_back(); } res += num[i]; } res.resize(leave); while (!res.empty() && res[0] == '0') { res.erase(res.begin()); } return res.empty() ? "0" : res; } };
25.9
47
0.3861
WilliamZhaoz
27491f61d7399b5fc86b9abe57f70c2615370f62
1,688
cpp
C++
vs2017/ui/mainwindow/workbench/AppStoreList.cpp
cheechang/cppcc
0292e9a9b27e0579970c83b4f6a75dcdae1558bf
[ "MIT" ]
null
null
null
vs2017/ui/mainwindow/workbench/AppStoreList.cpp
cheechang/cppcc
0292e9a9b27e0579970c83b4f6a75dcdae1558bf
[ "MIT" ]
null
null
null
vs2017/ui/mainwindow/workbench/AppStoreList.cpp
cheechang/cppcc
0292e9a9b27e0579970c83b4f6a75dcdae1558bf
[ "MIT" ]
null
null
null
#include "AppStoreList.h" #include <QListWidgetItem> #include "AppStoreListItem.h" namespace ui{ AppStoreList::AppStoreList(QWidget *parent) : QListWidget(parent) { m_pAppMgr = APPMGRCONTROL; CONNECT_SERVICE(GetApplication(std::vector<data::AppInfo>)); if (m_pAppMgr != CNull) { m_pAppMgr->getAllApplication(CBind (&AppStoreList::signalSerGetApplication, this, CPlaceholders _1)); } this->setSelectionMode(SelectionMode::NoSelection); this->setObjectName("appStoreList"); } AppStoreList::~AppStoreList() { } void AppStoreList::onSerGetApplication(std::vector<data::AppInfo> vec) { for (int i = 0; i < vec.size(); i++) { QListWidgetItem* pItem = new QListWidgetItem(this); AppStoreListItem* pListItem = new AppStoreListItem(this); connect(pListItem, SIGNAL(installApp(int64, QString, QString, QString)), this, SLOT(onInstallApp(int64, QString, QString, QString))); connect(pListItem, SIGNAL(uninstallApp(int64)), this, SLOT(onUninstallApp(int64))); pListItem->setAppID(vec[i].appID); pListItem->setName(QString::fromUtf8(vec[i].name.data())); pListItem->setAvatar(QString::fromUtf8(vec[i].icon.data())); pListItem->setIntroduce(QString::fromUtf8(vec[i].introduction.data())); pListItem->setUrl(QString::fromUtf8(vec[i].url.data())); pListItem->setButtonStatus(vec[i].isInstalled); this->setItemWidget(pItem, pListItem); } //this->update(); } void AppStoreList::onInstallApp(int64 iAppID, QString strName, QString strIcon, QString strUrl) { emit installApp(iAppID, strName, strIcon, strUrl); } void AppStoreList::onUninstallApp(int64 iAppID) { emit uninstallApp(iAppID); } }
25.969231
75
0.716232
cheechang
274b82dafccc64c402de9bd66315b1e8e8c56fd1
16,654
cpp
C++
regex_to_min_dfa.cpp
avinal/C_ode
f056da37c8c56a4a62a06351c2ea3773d16d1b11
[ "MIT" ]
1
2020-08-23T20:21:35.000Z
2020-08-23T20:21:35.000Z
regex_to_min_dfa.cpp
avinal/C_ode
f056da37c8c56a4a62a06351c2ea3773d16d1b11
[ "MIT" ]
null
null
null
regex_to_min_dfa.cpp
avinal/C_ode
f056da37c8c56a4a62a06351c2ea3773d16d1b11
[ "MIT" ]
2
2019-03-18T10:22:13.000Z
2021-01-03T10:12:28.000Z
#include <iostream> #include <vector> #include <stack> #include <set> #include <queue> #include <map> #include<string> using namespace std; struct nst { vector<int> a[2], e; bool f = 0; }; vector<nst> nfa; struct dst { int a[2] = {-1, -1}; bool f = 0; }; vector<dst> dfa; stack<int> st; int nfa_size, dfa_size; string dispregex; struct nst init_nfa_state; struct dst init_dfa_state; void custom_clear() { for (int i = 0; i < 100; i++) cout << endl; } /***************************** regex to nfa ****************************/ string insert_concat(string regexp) { string ret = ""; char c, c2; for (unsigned int i = 0; i < regexp.size(); i++) { c = regexp[i]; if (i + 1 < regexp.size()) { c2 = regexp[i + 1]; ret += c; if (c != '(' && c2 != ')' && c != '+' && c2 != '+' && c2 != '*') { ret += '.'; } } } ret += regexp[regexp.size() - 1]; return ret; } void character(int i) { nfa.push_back(init_nfa_state); nfa.push_back(init_nfa_state); nfa[nfa_size].a[i].push_back(nfa_size + 1); st.push(nfa_size); nfa_size++; st.push(nfa_size); nfa_size++; } void union_() { nfa.push_back(init_nfa_state); nfa.push_back(init_nfa_state); int d = st.top(); st.pop(); int c = st.top(); st.pop(); int b = st.top(); st.pop(); int a = st.top(); st.pop(); nfa[nfa_size].e.push_back(a); nfa[nfa_size].e.push_back(c); nfa[b].e.push_back(nfa_size + 1); nfa[d].e.push_back(nfa_size + 1); st.push(nfa_size); nfa_size++; st.push(nfa_size); nfa_size++; } void concatenation() { int d = st.top(); st.pop(); int c = st.top(); st.pop(); int b = st.top(); st.pop(); int a = st.top(); st.pop(); nfa[b].e.push_back(c); st.push(a); st.push(d); } void kleene_star() { nfa.push_back(init_nfa_state); nfa.push_back(init_nfa_state); int b = st.top(); st.pop(); int a = st.top(); st.pop(); nfa[nfa_size].e.push_back(a); nfa[nfa_size].e.push_back(nfa_size + 1); nfa[b].e.push_back(a); nfa[b].e.push_back(nfa_size + 1); st.push(nfa_size); nfa_size++; st.push(nfa_size); nfa_size++; } void postfix_to_nfa(string postfix) { for (unsigned int i = 0; i < postfix.size(); i++) { switch (postfix[i]) { case 'a': case 'b': character(postfix[i] - 'a'); break; case '*': kleene_star(); break; case '.': concatenation(); break; case '+': union_(); } } } void display_nfa() { cout << endl << endl; cout << "Phase 1: regex to nfa conversion using thompson's construction algorithm\n"; cout << "------------------------------------------------------------------------\n"; cout << "State\t|\ta\t|\tb\t|\teps\t|accepting state|" << endl; cout << "------------------------------------------------------------------------\n"; for (unsigned int i = 0; i < nfa.size(); i++) { cout << i << "\t|\t"; for (unsigned int j = 0; j < nfa[i].a[0].size(); j++) cout << nfa[i].a[0][j] << ' '; cout << "\t|\t"; for (unsigned int j = 0; j < nfa[i].a[1].size(); j++) cout << nfa[i].a[1][j] << ' '; cout << "\t|\t"; for (unsigned int j = 0; j < nfa[i].e.size(); j++) cout << nfa[i].e[j] << ' '; cout << "\t|\t"; if (nfa[i].f) cout << "Yes"; else cout << "No"; cout << "\t|\n"; } cout << "------------------------------------------------------------------------\n"; } int priority(char c) { switch (c) { case '*': return 3; case '.': return 2; case '+': return 1; default: return 0; } } string regexp_to_postfix(string regexp) { string postfix = ""; stack<char> op; char c; for (unsigned int i = 0; i < regexp.size(); i++) { switch (regexp[i]) { case 'a': case 'b': postfix += regexp[i]; break; case '(': op.push(regexp[i]); break; case ')': while (op.top() != '(') { postfix += op.top(); op.pop(); } op.pop(); break; default: while (!op.empty()) { c = op.top(); if (priority(c) >= priority(regexp[i])) { postfix += op.top(); op.pop(); } else break; } op.push(regexp[i]); } //cout<<regexp[i]<<' '<<postfix<<endl; } while (!op.empty()) { postfix += op.top(); op.pop(); } return postfix; } /***************************** nfa to dfa ****************************/ void print_dfa() { cout << endl; cout << "NFA TO DFA CONVERSION" << endl; cout << "---------------------------------------------------------" << endl; cout << "STATE\t|\t" << "a" << "\t|\t" << "b" << "\t|\t" << "FINAL" << "\t|" << endl; cout << "---------------------------------------------------------" << endl; for (int i = 0; i < dfa.size(); i++) { cout << i << "\t|\t" << dfa[i].a[0] << "\t|\t" << dfa[i].a[1] << "\t|\t" << dfa[i].f << "\t|" << endl; } cout << "---------------------------------------------------------" << endl; } void epsilon_closure(int state, set<int> &si) { for (unsigned int i = 0; i < nfa[state].e.size(); i++) { if (si.count(nfa[state].e[i]) == 0) { si.insert(nfa[state].e[i]); epsilon_closure(nfa[state].e[i], si); } } } set<int> state_change(int c, set<int> &si) { set<int> temp; if (c == 1) { for (std::set<int>::iterator it = si.begin(); it != si.end(); ++it) { for (unsigned int j = 0; j < nfa[*it].a[0].size(); j++) { temp.insert(nfa[*it].a[0][j]); } } } else { for (std::set<int>::iterator it = si.begin(); it != si.end(); ++it) { for (unsigned int j = 0; j < nfa[*it].a[1].size(); j++) { temp.insert(nfa[*it].a[1][j]); } } } return temp; } void nfa_to_dfa(set<int> &si, queue<set<int>> &que, int start_state) { map<set<int>, int> mp; mp[si] = -1; set<int> temp1; set<int> temp2; int ct = 0; si.clear(); si.insert(0); epsilon_closure(start_state, si); if (mp.count(si) == 0) { mp[si] = ct++; que.push(si); } int p = 0; bool f1 = false; while (que.size() != 0) { dfa.push_back(init_dfa_state); si.empty(); si = que.front(); f1 = false; for (set<int>::iterator it = si.begin(); it != si.end(); ++it) { if (nfa[*it].f == true) f1 = true; } dfa[p].f = f1; temp1 = state_change(1, si); si = temp1; for (set<int>::iterator it = si.begin(); it != si.end(); ++it) { epsilon_closure(*it, si); } if (mp.count(si) == 0) { mp[si] = ct++; que.push(si); dfa[p].a[0] = ct - 1; } else { dfa[p].a[0] = mp.find(si)->second; } temp1.clear(); si = que.front(); temp2 = state_change(2, si); si = temp2; for (set<int>::iterator it = si.begin(); it != si.end(); ++it) { epsilon_closure(*it, si); } if (mp.count(si) == 0) { mp[si] = ct++; que.push(si); dfa[p].a[1] = ct - 1; } else { dfa[p].a[1] = mp.find(si)->second; } temp2.clear(); que.pop(); p++; } for (int i = 0; i < p; i++) { if (dfa[i].a[0] == -1) dfa[i].a[0] = p; if (dfa[i].a[1] == -1) dfa[i].a[1] = p; } dfa.push_back(init_dfa_state); dfa[p].a[0] = p; dfa[p].a[1] = p; //cout<<p<<endl; } /***************************** min dfa ****************************/ /// Function to minimize DFA pair<int, vector<tuple<int, int, bool>>> minimize_dfa(vector<dst> dfa) { //cout<<dfa.size()<<endl; vector<int> grp(dfa.size()); /// Group number for states vector<vector<int>> part(2, vector<int>()); /// Partition for groups /// Initializing the groups part[0].push_back(0); for (int i = 1; i < (int)grp.size(); i++) { if (dfa[i].f == dfa[0].f) { grp[i] = 0; part[0].push_back(i); } else { grp[i] = 1; part[1].push_back(i); } } if (!part[1].size()) part.erase(part.end()); /// Loop until no new partition is created bool chk = true; /// Check if any new partition is created int strt = 0; /// Starting State while (chk) { chk = false; /*for(int i=0; i<part.size(); i++) { cout<<i<<":"; for(int j=0; j<part[i].size(); j++) { cout<<part[i][j]<<" "; } cout<<endl; } cout<<endl;*/ /// Iterate over partitions and alphabets for (int i = 0; i < part.size(); i++) { for (int j = 0; j < 2; j++) { vector<pair<int, int>> trans(part[i].size()); /// Transitions for the states of partitions /// Iterate over states of partitions and find transition groups for (int k = 0; k < part[i].size(); k++) { if (dfa[part[i][k]].a[j] >= 0) trans[k] = make_pair(grp[dfa[part[i][k]].a[j]], part[i][k]); else trans[k] = make_pair(-1, part[i][k]); } sort(trans.begin(), trans.end()); /// Break partition in case of different transitions if (trans[0].first != trans[trans.size() - 1].first) { chk = true; int k, m = part.size() - 1; part[i].clear(); part[i].push_back(trans[0].second); for (k = 1; k < trans.size() && (trans[k].first == trans[k - 1].first); k++) { part[i].push_back(trans[k].second); } while (k < trans.size()) { if (trans[k].first != trans[k - 1].first) { part.push_back(vector<int>()); m++; } grp[trans[k].second] = m; part[m].push_back(trans[k].second); k++; } } } } } for (int i = 0; i < part.size(); i++) { for (int j = 0; j < part[i].size(); j++) { if (part[i][j] == 0) strt = i; } } vector<tuple<int, int, bool>> ret(part.size()); //cout<<part.size()<<endl; //sort(part.begin(), part.end()); for (int i = 0; i < (int)part.size(); i++) { //cout<<grp[part[i][0]]<<endl; get<0>(ret[i]) = (dfa[part[i][0]].a[0] >= 0) ? grp[dfa[part[i][0]].a[0]] : -1; get<1>(ret[i]) = (dfa[part[i][0]].a[1] >= 0) ? grp[dfa[part[i][0]].a[1]] : -1; get<2>(ret[i]) = dfa[part[i][0]].f; } return make_pair(strt, ret); } void print_menu() { cout << "\n---------------------------------------\n"; cout << "Input Regex: " << dispregex << endl << endl; cout << "1. NFA\n"; cout << "2. Intermediate DFA\n"; cout << "3. Minimized DFA\n"; cout << "4. Simulation\n"; cout << "Press any other key to exit...\n\n"; } void print(vector<tuple<int, int, bool>> min_dfa) { cout << "---------------------------------------------------------" << endl; cout << "State\t|\tA\t|\tB\t|\tFinal\t|" << endl; cout << "---------------------------------------------------------" << endl; for (int i = 0; i < (int)min_dfa.size(); i++) { cout << i << "\t|\t"; cout << get<0>(min_dfa[i]) << "\t|\t"; cout << get<1>(min_dfa[i]) << "\t|\t"; if (get<2>(min_dfa[i])) cout << "Yes\t|"; else cout << "No\t|"; cout << endl; } cout << "---------------------------------------------------------" << endl; } void simulate(int start_st, vector<tuple<int, int, bool>> min_dfa) { print_menu(); cout << "Enter string : "; string input; cin.ignore(); getline(cin, input); int curr_state, next_state; curr_state = start_st; custom_clear(); cout << "-----------------------------------------" << endl; cout << "Input\t|\tCurrent\t|\tNext\t|" << endl; cout << "-----------------------------------------" << endl; for (unsigned i = 0; i < input.size(); i++) { if (input[i] == 'a') next_state = get<0>(min_dfa[curr_state]); else next_state = get<1>(min_dfa[curr_state]); cout << input[i] << "\t|\t" << curr_state << "\t|\t" << next_state << "\t|\n"; curr_state = next_state; } cout << "-----------------------------------------" << endl; cout << endl << "Verdict: "; if (curr_state >= 0 && get<2>(min_dfa[curr_state])) cout << "Accepted"; else cout << "Rejected"; cout << endl; } int main() { custom_clear(); string regexp, postfix; cout << "Enter Regular Expression: "; cin >> regexp; dispregex = regexp; regexp = insert_concat(regexp); postfix = regexp_to_postfix(regexp); cout << "Postfix Expression: " << postfix << endl; postfix_to_nfa(postfix); int final_state = st.top(); st.pop(); int start_state = st.top(); st.pop(); //cout<<start_state<<' '<<final_state<<endl; nfa[final_state].f = 1; set<int> si; queue<set<int>> que; nfa_to_dfa(si, que, start_state); cout << endl << endl; pair<int, vector<tuple<int, int, bool>>> min_dfa_tmp = minimize_dfa(dfa); vector<tuple<int, int, bool>> min_dfa = min_dfa_tmp.second; int start_st = min_dfa_tmp.first; getchar(); custom_clear(); while (1) { print_menu(); char choice; choice = getchar(); custom_clear(); switch (choice) { case '1': display_nfa(); getchar(); break; case '2': print_dfa(); getchar(); break; case '3': print(min_dfa); getchar(); break; case '4': simulate(start_st, min_dfa); break; default: exit(EXIT_SUCCESS); } } cout << endl << endl; cout << "Enter string : "; string input; cin.ignore(); getline(cin, input); int curr_state, next_state; while (input != "") { //cout<<input<<endl; curr_state = start_st; for (unsigned i = 0; i < input.size(); i++) { if (curr_state >= 0) { if (input[i] == 'a') next_state = get<0>(min_dfa[curr_state]); else next_state = get<1>(min_dfa[curr_state]); if (next_state >= 0) { cout << input[i] << " : State " << curr_state << " -> State " << next_state << endl; } else cout << input[i] << " : State " << curr_state << " -> Trap State" << endl; } else cout << input[i] << " : Trapped" << endl; curr_state = next_state; } if (curr_state >= 0 && get<2>(min_dfa[curr_state])) cout << "accepted"; else cout << "rejected"; cout << endl << endl; cout << "Enter string : "; getline(cin, input); } return 0; }
25.119155
110
0.402066
avinal
27525b161306b860b02f28e342178932470bbecf
21,657
cpp
C++
source/add-ons/Quantize/Quantize.cpp
thaflo/Becasso
9a1411913ee46f4dfa5116def50ebc41495dad28
[ "MIT" ]
2
2020-10-05T14:18:09.000Z
2021-08-05T02:56:43.000Z
source/add-ons/Quantize/Quantize.cpp
thaflo/Becasso
9a1411913ee46f4dfa5116def50ebc41495dad28
[ "MIT" ]
26
2017-01-10T19:54:10.000Z
2020-12-17T07:28:57.000Z
source/add-ons/Quantize/Quantize.cpp
thaflo/Becasso
9a1411913ee46f4dfa5116def50ebc41495dad28
[ "MIT" ]
5
2017-12-14T18:46:08.000Z
2020-12-13T18:22:34.000Z
// © 2000-2001 Sum Software #define BUILDING_ADDON #include "BecassoAddOn.h" #include "AddOnSupport.h" #include "Slider.h" #include <string.h> #include <CheckBox.h> #include <RadioButton.h> #include <Box.h> #define bzero(p,n) memset (p, 0, n) int16 *gLut = 0; #define FOREGROUND 0 #define BACKGROUND 1 #define R_BITS 5 #define G_BITS 6 #define B_BITS 5 #define R_PREC (1<<R_BITS) #define G_PREC (1<<G_BITS) #define B_PREC (1<<B_BITS) #define ELEM(array,r,g,b) (array[b*R_PREC*G_PREC+r*G_PREC+g]) // This is because on MWCC, the huge array needed for the lut can't be // created on the stack. Hence this workaround. //#define FLOAT_WEIGHTS 1 // Strangely, the new weights give worst results. // With the integer weights, results are almost identical with the old floats, // and probably a lot faster. #if defined (FLOAT_WEIGHTS) # define R_WEIGHT 0.2125 # define G_WEIGHT 0.7154 # define B_WEIGHT 0.0721 #elif defined (OLD_WEIGHTS) # define R_WEIGHT 0.299 # define G_WEIGHT 0.587 # define B_WEIGHT 0.114 #else # define R_WEIGHT 2 # define G_WEIGHT 3 # define B_WEIGHT 1 #endif #define R_SHIFT 3 #define G_SHIFT 2 #define B_SHIFT 3 /* log2(histogram cells in update box) for each axis; this can be adjusted */ #define BOX_R_LOG (R_BITS - 3) #define BOX_G_LOG (G_BITS - 3) #define BOX_B_LOG (B_BITS - 3) #define BOX_R_ELEMS (1 << BOX_R_LOG) /* # of hist cells in update box */ #define BOX_G_ELEMS (1 << BOX_G_LOG) #define BOX_B_ELEMS (1 << BOX_B_LOG) #define BOX_R_SHIFT (R_SHIFT + BOX_R_LOG) #define BOX_G_SHIFT (G_SHIFT + BOX_G_LOG) #define BOX_B_SHIFT (B_SHIFT + BOX_B_LOG) class QView : public BView { public: QView (BRect rect) : BView (rect, "Quantize_view", B_FOLLOW_ALL, B_WILL_DRAW) { fNumColors = 256; fDitherCB = NULL; fPalette = FOREGROUND; ResizeTo (188, 118); Slider *nSlid = new Slider (BRect (8, 8, 180, 24), 50, "# Colors", 1, 256, 1, new BMessage ('numC')); AddChild (nSlid); nSlid->SetValue (256); fDitherCB = new BCheckBox (BRect (8, 30, 180, 46), "dither", "Floyd-Steinberg Dithering", new BMessage ('fsDt')); fDitherCB->SetValue (false); AddChild (fDitherCB); BBox *palB = new BBox (BRect (8, 54, 180, 110), "palette"); palB->SetLabel ("Use Colors From"); AddChild (palB); BRadioButton *fgF = new BRadioButton (BRect (4, 14, 170, 30), "fg", "Foreground Palette", new BMessage ('palF')); BRadioButton *fgB = new BRadioButton (BRect (4, 32, 170, 48), "bg", "Background Palette", new BMessage ('palB')); palB->AddChild (fgF); palB->AddChild (fgB); fgF->SetValue (true); } virtual ~QView () {} virtual void MessageReceived (BMessage *msg); int numColors () { return fNumColors; } bool dither () { return (fDitherCB ? fDitherCB->Value() : false); } int palette () { return fPalette; } BCheckBox *fDitherCB; private: int fNumColors; int fPalette; }; QView *view = NULL; void QView::MessageReceived (BMessage *msg) { switch (msg->what) { case 'numC': fNumColors = int (msg->FindFloat ("value")); break; case 'fsDt': // We query the button itself... break; case 'palF': fPalette = FOREGROUND; break; case 'palB': fPalette = BACKGROUND; break; default: BView::MessageReceived (msg); return; } for (int32 i = 0; i < R_PREC; i++) for (int32 j = 0; j < G_PREC; j++) for (int32 k = 0; k < B_PREC; k++) ELEM (gLut, i, j, k) = -1; // We build the LUT on the fly addon_preview(); } status_t addon_init (uint32 index, becasso_addon_info *info) { strcpy (info->name, "Quantize"); strcpy (info->author, "Sander Stoks"); strcpy (info->copyright, "© 2000-2001 ∑ Sum Software"); strcpy (info->description, "Quantizes the colors to a given palette"); info->type = BECASSO_FILTER; info->index = index; info->version = 0; info->release = 7; info->becasso_version = 2; info->becasso_release = 0; info->does_preview = PREVIEW_FULLSCALE; info->flags = LAYER_ONLY; return B_OK; } status_t addon_close (void) { delete [] gLut; gLut = 0; return B_OK; } status_t addon_exit (void) { return B_OK; } void fill_lut (int16 *lut, rgb_color palette[], int max_colors, int r, int g, int b); int find_nearby_colors (rgb_color palette[], int numcolors, uint8 color_list[], int min_r, int min_g, int min_b); void find_best_colors (rgb_color palette[], int numcolors, int minr, int ming, int minb, uint8 colorlist[], uint8 bestcolors[]); int find_nearby_colors (rgb_color palette[], int numcolors, uint8 color_list[], int minr, int ming, int minb) { int maxr, maxg, maxb; int cr, cg, cb; int i, x, ncolors; float minmaxdist, min_dist, max_dist, tdist; float mindist[256]; // 256 = the maximum palette size, actually. maxr = minr + ((1 << BOX_R_SHIFT) - (1 << R_SHIFT)); cr = (minr + maxr)/2; maxg = ming + ((1 << BOX_G_SHIFT) - (1 << G_SHIFT)); cg = (ming + maxg)/2; maxb = minb + ((1 << BOX_B_SHIFT) - (1 << B_SHIFT)); cb = (minb + maxb)/2; /* For each color in colormap, find: * 1. its minimum squared-distance to any point in the update box * (zero if color is within update box); * 2. its maximum squared-distance to any point in the update box. * Both of these can be found by considering only the corners of the box. * We save the minimum distance for each color in mindist[]; * only the smallest maximum distance is of interest. */ minmaxdist = 0x7FFFFFFFL; for (i = 0; i < numcolors; i++) { /* We compute the squared-r-distance term, then add in the other two. */ x = palette[i].red; if (x < minr) { tdist = (x - minr)*R_WEIGHT; min_dist = tdist*tdist; tdist = (x - maxr)*R_WEIGHT; max_dist = tdist*tdist; } else if (x > maxr) { tdist = (x - maxr)*R_WEIGHT; min_dist = tdist*tdist; tdist = (x - minr)*R_WEIGHT; max_dist = tdist*tdist; } else // within cell range so no contribution to min_dist { min_dist = 0; if (x <= cr) { tdist = (x - maxr)*R_WEIGHT; max_dist = tdist*tdist; } else { tdist = (x - minr)*R_WEIGHT; max_dist = tdist*tdist; } } x = palette[i].green; if (x < ming) { tdist = (x - ming)*G_WEIGHT; min_dist += tdist*tdist; tdist = (x - maxg)*G_WEIGHT; max_dist += tdist*tdist; } else if (x > maxg) { tdist = (x - maxg)*G_WEIGHT; min_dist += tdist*tdist; tdist = (x - ming)*G_WEIGHT; max_dist += tdist*tdist; } else { if (x <= cg) { tdist = (x - maxg)*G_WEIGHT; max_dist += tdist*tdist; } else { tdist = (x - ming)*G_WEIGHT; max_dist += tdist*tdist; } } x = palette[i].blue; if (x < minb) { tdist = (x - minb)*B_WEIGHT; min_dist += tdist*tdist; tdist = (x - maxb)*B_WEIGHT; max_dist += tdist*tdist; } else if (x > maxb) { tdist = (x - maxb)*B_WEIGHT; min_dist += tdist*tdist; tdist = (x - minb)*B_WEIGHT; max_dist += tdist*tdist; } else { if (x <= cb) { tdist = (x - maxb)*B_WEIGHT; max_dist += tdist*tdist; } else { tdist = (x - minb)*B_WEIGHT; max_dist += tdist*tdist; } } mindist[i] = min_dist; /* save away the results */ if (max_dist < minmaxdist) minmaxdist = max_dist; } /* Now we know that no cell in the update box is more than minmaxdist * away from some colormap entry. Therefore, only colors that are * within minmaxdist of some part of the box need be considered. */ ncolors = 0; for (i = 0; i < numcolors; i++) { if (mindist[i] <= minmaxdist) color_list[ncolors++] = i; } return ncolors; } void find_best_colors (rgb_color palette[], int numcolors, int minr, int ming, int minb, uint8 colorlist[], uint8 bestcolors[]) { int ir, ig, ib; int i, icolor; register float *bptr; // pointer into bestdist[] array uint8 *cptr; // pointer into bestcolor[] array float dist0, dist1; // initial distance values register float dist2; // current distance in inner loop float xx0, xx1; // distance increments register float xx2; float inc0, inc1, inc2; // initial values for increments // This array holds the distance to the nearest-so-far color for each cell float bestdist[BOX_R_ELEMS*BOX_G_ELEMS*BOX_B_ELEMS]; /* Initialize best-distance for each cell of the update box */ bptr = bestdist - 1; for (i = BOX_R_ELEMS*BOX_G_ELEMS*BOX_B_ELEMS - 1; i >= 0; i--) *(++bptr) = 0x7FFFFFFFL; /* For each color selected by find_nearby_colors, * compute its distance to the center of each cell in the box. * If that's less than best-so-far, update best distance and color number. */ /* Nominal steps between cell centers ("x" in Thomas article) */ #define STEP_R ((1 << R_SHIFT)*R_WEIGHT) #define STEP_G ((1 << G_SHIFT)*G_WEIGHT) #define STEP_B ((1 << B_SHIFT)*B_WEIGHT) for (i = 0; i < numcolors; i++) { icolor = colorlist[i]; /* Compute (square of) distance from minr/g/b to this color */ inc0 = (minr - palette[icolor].red)*R_WEIGHT; dist0 = inc0*inc0; inc1 = (ming - palette[icolor].green)*G_WEIGHT; dist0 += inc1*inc1; inc2 = (minb - palette[icolor].blue)*B_WEIGHT; dist0 += inc2*inc2; /* Form the initial difference increments */ inc0 = inc0*(2*STEP_R) + STEP_R*STEP_R; inc1 = inc1*(2*STEP_G) + STEP_G*STEP_G; inc2 = inc2*(2*STEP_B) + STEP_B*STEP_B; /* Now loop over all cells in box, updating distance per Thomas method */ bptr = bestdist; cptr = bestcolors; xx0 = inc0; for (ir = BOX_R_ELEMS - 1; ir >= 0; ir--) { dist1 = dist0; xx1 = inc1; for (ig = BOX_G_ELEMS - 1; ig >= 0; ig--) { dist2 = dist1; xx2 = inc2; for (ib = BOX_B_ELEMS - 1; ib >= 0; ib--) { if (dist2 < *bptr) { *bptr = dist2; *cptr = icolor; } dist2 += xx2; xx2 += 2*STEP_B*STEP_B; bptr++; cptr++; } dist1 += xx1; xx1 += 2*STEP_G*STEP_G; } dist0 += xx0; xx0 += 2*STEP_R*STEP_R; } } } void fill_lut (int16 *lut, rgb_color palette[], int max_colors, int r, int g, int b) { int minr, ming, minb; /* lower left corner of update box */ int ir, ig, ib; register uint8 *cptr; /* pointer into bestcolor[] array */ /* This array lists the candidate colormap indexes. */ uint8 colorlist[256]; int numcolors; /* number of candidate colors */ /* This array holds the actually closest colormap index for each cell. */ uint8 bestcolor[BOX_R_ELEMS*BOX_G_ELEMS*BOX_B_ELEMS]; /* Convert cell coordinates to update box ID */ r >>= BOX_R_LOG; g >>= BOX_G_LOG; b >>= BOX_B_LOG; /* Compute true coordinates of update box's origin corner. * Actually we compute the coordinates of the center of the corner * histogram cell, which are the lower bounds of the volume we care about. */ minr = (r << BOX_R_SHIFT) + ((1 << R_SHIFT) >> 1); ming = (g << BOX_G_SHIFT) + ((1 << G_SHIFT) >> 1); minb = (b << BOX_B_SHIFT) + ((1 << B_SHIFT) >> 1); /* Determine which colormap entries are close enough to be candidates * for the nearest entry to some cell in the update box. */ numcolors = find_nearby_colors (palette, max_colors, colorlist, minr, ming, minb); /* Determine the actually nearest colors. */ find_best_colors (palette, numcolors, minr, ming, minb, colorlist, bestcolor); /* Save the best color numbers (plus 1) in the main cache array */ r <<= BOX_R_LOG; /* convert ID back to base cell indexes */ g <<= BOX_G_LOG; b <<= BOX_B_LOG; cptr = bestcolor - 1; for (ir = 0; ir < BOX_R_ELEMS; ir++) for (ig = 0; ig < BOX_G_ELEMS; ig++) for (ib = 0; ib < BOX_B_ELEMS; ib++) ELEM (lut, (r + ir), (g + ig), (b + ib)) = *(++cptr); } status_t addon_make_config (BView **vw, BRect rect) { view = new QView (rect); *vw = view; gLut = new int16 [R_PREC*G_PREC*B_PREC]; for (int32 i = 0; i < R_PREC; i++) for (int32 j = 0; j < G_PREC; j++) for (int32 k = 0; k < B_PREC; k++) ELEM (gLut, i, j, k) = -1; // We build the LUT on the fly return B_OK; } status_t process (Layer *inLayer, Selection *inSelection, Layer **outLayer, Selection **outSelection, int32 mode, BRect * /* frame */, bool final, BPoint /* point */, uint32 /* buttons */) { int error = ADDON_OK; BRect bounds = inLayer->Bounds(); // printf ("Bounds: "); // bounds.PrintToStream(); // printf ("Frame: "); // frame->PrintToStream(); if (*outLayer == NULL && mode== M_DRAW) *outLayer = new Layer (*inLayer); if (mode == M_SELECT) { if (inSelection) *outSelection = new Selection (*inSelection); else // No Selection to Quantize return (0); } if (*outLayer) (*outLayer)->Lock(); if (*outSelection) (*outSelection)->Lock(); uint32 h = bounds.IntegerHeight() + 1; uint32 w = bounds.IntegerWidth() + 1; grey_pixel *mapbits = NULL; uint32 mbpr = 0; uint32 mdiff = 0; if (inSelection) { mapbits = (grey_pixel *) inSelection->Bits() - 1; mbpr = inSelection->BytesPerRow(); mdiff = mbpr - w; } if (final) addon_start(); float delta = 100.0/h; // For the Status Bar. switch (mode) { case M_DRAW: { bgra_pixel *sbits = (bgra_pixel *) inLayer->Bits() - 1; bgra_pixel *dbits = (bgra_pixel *) (*outLayer)->Bits() - 1; rgb_color *palette; if (view->palette() == BACKGROUND) palette = lowpalette(); else palette = highpalette(); int numcolors = view->numColors(); if (!view->dither()) // Simple quantizer { for (uint32 y = 0; y < h; y++) { if (final) { addon_update_statusbar (delta); if (addon_stop()) { error = ADDON_ABORT; break; } } for (uint32 x = 0; x < w; x++) { bgra_pixel pixel = *(++sbits); if (!inSelection || *(++mapbits)) { uint8 r = RED (pixel); uint8 g = GREEN (pixel); uint8 b = BLUE (pixel); // uint16 appr = ((r << 8) & 0xF700)|((g << 3) & 0x07E0)|((b >> 3) & 0x001F); int rs = r >> R_SHIFT; int gs = g >> G_SHIFT; int bs = b >> B_SHIFT; if (ELEM (gLut, rs, gs, bs) < 0) // Not filled in yet { fill_lut (gLut, palette, numcolors, r >> R_SHIFT, g >> G_SHIFT, b >> B_SHIFT); } *(++dbits) = rgb2bgra (palette[ELEM (gLut, rs, gs, bs)]); } else *(++dbits) = *(++sbits); } mapbits += mdiff; } } else // FS Dither { // Foley & Van Dam, pp 572. // Own note: Probably the errors in the different color channels should be weighted // according to visual sensibility. But this version is primarily meant to // be quick. uint32 width = bounds.IntegerWidth() + 1; uint32 slpr = inLayer->BytesPerRow()/4; bgra_pixel *src = sbits; //(bgra_pixel *) inLayer->Bits() + int (bounds.top)*slpr + int (bounds.left) - 1; int32 sdif = slpr - width; uint32 dbpr = (*outLayer)->BytesPerRow()/4; bgra_pixel *dest = dbits; //(bgra_pixel *) (*outLayer)->Bits() + int (bounds.top)*dbpr + int (bounds.left) - 1; int32 ddif = dbpr - width; int *nera = new int[width]; int *nega = new int[width]; int *neba = new int[width]; int *cera = new int[width]; int *cega = new int[width]; int *ceba = new int[width]; bzero (nera, width*sizeof(int)); bzero (nega, width*sizeof(int)); bzero (neba, width*sizeof(int)); bzero (cera, width*sizeof(int)); bzero (cega, width*sizeof(int)); bzero (ceba, width*sizeof(int)); int r, g, b, er, eg, eb, per, peg, peb; uint8 apix; uint32 x, y; rgb_color a; for (y = uint32 (bounds.top); y < uint32 (bounds.bottom); y++) { // printf ("%ld", y); fflush (stdout); if (final) { addon_update_statusbar (delta); if (addon_stop()) { error = ADDON_ABORT; break; } } x = 0; // Special case: First pixel in a row bgra_pixel s = *(++src); r = clip8 (RED (s) + cera[0]); g = clip8 (GREEN (s) + cega[0]); b = clip8 (BLUE (s) + ceba[0]); cera[0] = 0; cega[0] = 0; ceba[0] = 0; // Find the nearest match in the palette and write it out int rs = r >> R_SHIFT; int gs = g >> G_SHIFT; int bs = b >> B_SHIFT; if (ELEM (gLut, rs, gs, bs) < 0) // Not filled in yet fill_lut (gLut, palette, numcolors, rs, gs, bs); apix = ELEM (gLut, rs, gs, bs); // And the corresponding RGB color a = palette[apix]; if (!inSelection || *(++mapbits)) *(++dest) = rgb2bgra (a); else *(++dest) = s; // Calculate the error terms er = r - a.red; eg = g - a.green; eb = b - a.blue; per = 7*er/16; peg = 7*eg/16; peb = 7*eb/16; // Put all the remaining error in the pixels down and down-right // (since there is no pixel down-left...) nera[x] += er/2; nega[x] += eg/2; neba[x] += eb/2; nera[x + 1] += er/16; nega[x + 1] += eg/16; neba[x + 1] += eb/16; for (x = 1; x < width - 1; x++) { // printf (","); fflush (stdout); // Get one source pixel s = *(++src); // Get color components and add errors from previous pixel r = clip8 (RED (s) + per + cera[x]); g = clip8 (GREEN (s) + peg + cega[x]); b = clip8 (BLUE (s) + peb + ceba[x]); cera[x] = 0; cega[x] = 0; ceba[x] = 0; // Find the nearest match in the palette and write it out int rs = r >> R_SHIFT; int gs = g >> G_SHIFT; int bs = b >> B_SHIFT; if (ELEM (gLut, rs, gs, bs) < 0) // Not filled in yet fill_lut (gLut, palette, numcolors, rs, gs, bs); apix = ELEM (gLut, rs, gs, bs); // And the corresponding RGB color a = palette[apix]; // printf ("%c.", 8); fflush (stdout); if (!inSelection || *(++mapbits)) *(++dest) = rgb2bgra (a); else *(++dest) = s; // printf ("%c:", 8); fflush (stdout); // Calculate the error terms er = r - a.red; eg = g - a.green; eb = b - a.blue; per = 7*er/16; peg = 7*eg/16; peb = 7*eb/16; nera[x - 1] += 3*er/16; nega[x - 1] += 3*eg/16; neba[x - 1] += 3*eb/16; nera[x] += 5*er/16; nega[x] += 5*eg/16; neba[x] += 5*eb/16; nera[x + 1] += er/16; nega[x + 1] += eg/16; neba[x + 1] += eb/16; } // Special case: Last pixel // printf ("Writing last pixel - "); fflush (stdout); s = *(++src); // printf ("1"); fflush (stdout); // Get color components and add errors from previous pixel r = clip8 (RED (s) + per + cera[x]); g = clip8 (GREEN (s) + peg + cega[x]); b = clip8 (BLUE (s) + peb + ceba[x]); cera[x] = 0; cega[x] = 0; ceba[x] = 0; // Find the nearest match in the palette and write it out rs = r >> R_SHIFT; gs = g >> G_SHIFT; bs = b >> B_SHIFT; if (ELEM (gLut, rs, gs, bs) < 0) // Not filled in yet fill_lut (gLut, palette, numcolors, rs, gs, bs); apix = ELEM (gLut, rs, gs, bs); // printf ("@"); fflush (stdout); // And the corresponding RGB color a = palette[apix]; // printf ("2"); fflush (stdout); if (!inSelection || *(++mapbits)) *(++dest) = rgb2bgra (a); else *(++dest) = s; // printf ("Still alive.\n"); // Calculate the error terms er = r - a.red; eg = g - a.green; eb = b - a.blue; // Put all the error in the pixels down and down-left nera[x - 1] += er/2; nega[x - 1] += eg/2; neba[x - 1] += eb/2; nera[x] += er/2; nega[x] += eg/2; neba[x] += eb/2; // Switch the scratch data int *tmp; tmp = cera; cera = nera; nera = tmp; tmp = cega; cega = nega; nega = tmp; tmp = ceba; ceba = neba; neba = tmp; dest += ddif; src += sdif; mapbits += mdiff; } // Special case: Last line // All the error goes into the right pixel. er = 0; eg = 0; eb = 0; // printf ("Entering last line...\n"); for (x = 0; x < width - 1; x++) { // Get one source pixel bgra_pixel s = *(++src); // Get color components and add errors from previous pixel r = clip8 (RED (s) + er + cera[x]); g = clip8 (GREEN (s) + eg + cega[x]); b = clip8 (BLUE (s) + eb + ceba[x]); // Find the nearest match in the palette and write it out int rs = r >> R_SHIFT; int gs = g >> G_SHIFT; int bs = b >> B_SHIFT; if (ELEM (gLut, rs, gs, bs) < 0) // Not filled in yet fill_lut (gLut, palette, numcolors, rs, gs, bs); apix = ELEM (gLut, rs, gs, bs); // And the corresponding RGB color a = palette[apix]; if (!inSelection || *(++mapbits)) *(++dest) = rgb2bgra (a); else *(++dest) = s; // Calculate the error terms er = r - a.red; eg = g - a.green; eb = b - a.blue; } // Last but not least, the bottom right pixel. bgra_pixel s = *(++src); r = clip8 (RED (s) + er + cera[x]); g = clip8 (GREEN (s) + eg + cega[x]); b = clip8 (BLUE (s) + eb + ceba[x]); int rs = r >> R_SHIFT; int gs = g >> G_SHIFT; int bs = b >> B_SHIFT; if (ELEM (gLut, rs, gs, bs) < 0) // Not filled in yet fill_lut (gLut, palette, numcolors, rs, gs, bs); apix = ELEM (gLut, rs, gs, bs); if (!inSelection || *(++mapbits)) *(++dest) = rgb2bgra (palette[apix]); else *(++dest) = s; delete [] nera; delete [] nega; delete [] neba; delete [] cera; delete [] cega; delete [] ceba; } delete [] palette; break; } case M_SELECT: { break; } default: fprintf (stderr, "Quantize: Unknown mode\n"); error = ADDON_UNKNOWN; } if (*outSelection) (*outSelection)->Unlock(); if (*outLayer) (*outLayer)->Unlock(); if (final) addon_done(); return (error); }
26.540441
128
0.586323
thaflo
27529bcb836fad9ead65325abb59bf5376582755
5,373
cpp
C++
55479c656d65636fdb050000/code/RobotAI.cpp
MechEmpire/Mechempire-meches
aa95b15f061f4179c9061595e73c7127587cc4df
[ "Apache-2.0" ]
1
2020-07-29T05:50:16.000Z
2020-07-29T05:50:16.000Z
55479ffa6d65636fdb0d0000/code/RobotAI.cpp
MechEmpire/Mechempire-meches
aa95b15f061f4179c9061595e73c7127587cc4df
[ "Apache-2.0" ]
null
null
null
55479ffa6d65636fdb0d0000/code/RobotAI.cpp
MechEmpire/Mechempire-meches
aa95b15f061f4179c9061595e73c7127587cc4df
[ "Apache-2.0" ]
null
null
null
#include "RobotAI.h" #include<math.h> #include<iostream> using namespace std; RobotAI::RobotAI() { } RobotAI::~RobotAI() { } //----------------------------------------------------- //1.必须完成的战斗核心 //----------------------------------------------------- struct node { double x,y,dis; }; double max_num(double a,double b) { return a>b?a:b; } void RobotAI::Update(RobotAI_Order& order,const RobotAI_BattlefieldInformation& info,int myID) { int enery; if(myID==1) enery=0; else enery=1; int x=info.robotInformation[myID].circle.x; int y=info.robotInformation[myID].circle.y; int x1=info.robotInformation[enery].circle.x; int y1=info.robotInformation[enery].circle.y; int x2=300; int y2=250; int x3=1066; int y3=430; int d=120; int dis; int ddx; int ddy; if(myID==1) { dis=(int)sqrt((x3-x1)*(x3-x1)+(y3-y1)*(y3-y1)); ddx=(120*(x3-x1))/dis+x3; ddy=(120*(y3-y1))/dis+y3; } else { dis=(int)sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)); ddx=x2-dis*(x1-x2)/120; ddy=y2-dis*(y1-y2)/120; } int dx=(x1-x); int dy=(y1-y); double k=Random0_1(); double kk,kk1; if(myID==1) { kk=(y1-430)/max_num(0.01,(x1-1066)); kk1=(430-y)/(max_num(0.01,(1066-x))); } else { kk=(y1-250)/max_num(0.01,(x1-300)); kk1=(250-y)/(max_num(0.01,(300-x))); } //1234 左右上下 if(k<0.5) { if(ddx>x) order.run=2; else order.run=1; } else { if(ddy>y) order.run=4; else order.run=3; } if(myID==1) { if(info.robotInformation[myID].circle.x>1066+d) order.run=1; if(info.robotInformation[myID].circle.x<1066-d) order.run=2; if(info.robotInformation[myID].circle.y>430+d) order.run=3; if(info.robotInformation[myID].circle.y<430-d) order.run=4; } if(myID==0) { if(info.robotInformation[myID].circle.x>300+d) order.run=1; if(info.robotInformation[myID].circle.x<300-d) order.run=2; if(info.robotInformation[myID].circle.y>250+d) order.run=3; if(info.robotInformation[myID].circle.y<250-d) order.run=4; } double kiss=Random0_1(); if(info.robotInformation[myID].remainingAmmo==0) { for(int i=0;i<2;i++) { if(info.arsenal[i].respawning_time==0) { if(kiss<0.5) { if(info.arsenal[i].circle.x+30>info.robotInformation[myID].circle.x) { order.run=2; break; } if(info.arsenal[i].circle.x+30<info.robotInformation[myID].circle.x) { order.run=1; break; } } else { if(info.arsenal[i].circle.y+30>info.robotInformation[myID].circle.y) { order.run=4; break; } if(info.arsenal[i].circle.y+30<info.robotInformation[myID].circle.y) { order.run=3; break; } } } } } double ck; Beam shoot; double ck1=info.robotInformation[myID].weaponRotation; shoot.x=x; shoot.y=y; shoot.rotation=ck1; Circle kis; if(myID==1) { kis.x=1066; kis.y=430; kis.r=100; if(HitTestBeamCircle(shoot,kis)) order.wturn=1; } else { kis.x=300; kis.y=250; kis.r=80; if(HitTestBeamCircle(shoot,kis)) order.wturn=1; } if(myID==0) order.fire=2; else order.fire=1; } void RobotAI::ChooseArmor(weapontypename& weapon,enginetypename& engine,bool a) { //挑选装备函数 //功能:在战斗开始时为你的机甲选择合适的武器炮塔和引擎载具 //参数:weapon ... 代表你选择的武器,在函数体中给它赋值 // engine ... 代表你选择的引擎,在函数体中给它赋值 //tip: 括号里的参数是枚举类型 weapontypename 或 enginetypename // 开发文档中有详细说明,你也可以在RobotAIstruct.h中直接找到它们的代码 //tip: 最后一个bool是没用的。。那是一个退化的器官 weapon = WT_MissileLauncher; engine = ET_Spider; } //----------------------------------------------------- //2.个性信息 //----------------------------------------------------- string RobotAI::GetName() { //返回你的机甲的名字 return "bird_raincoatV0.19"; } string RobotAI::GetAuthor() { //返回机甲制作人或团队的名字 return "qscqesze"; } //返回一个(-255,255)之间的机甲武器炮塔的颜色偏移值(红、绿、蓝) //你可以在flash客户端的参数预览中预览颜色搭配的效果 int RobotAI::GetWeaponRed() { //返回一个-255-255之间的整数,代表武器红色的偏移值 return 255; } int RobotAI::GetWeaponGreen() { //返回一个-255-255之间的整数,代表武器绿色的偏移值 return -69; } int RobotAI::GetWeaponBlue() { //返回一个-255-255之间的整数,代表武器蓝色的偏移值 return 31; } //返回一个(-255,255)之间的机甲引擎载具的颜色偏移值(红、绿、蓝) //你可以在flash客户端的参数预览中预览颜色搭配的效果 int RobotAI::GetEngineRed() { //返回一个-255-255之间的数,代表载具红色的偏移值 return -255; } int RobotAI::GetEngineGreen() { //返回一个-255-255之间的整数,代表载具绿色的偏移值 return -106; } int RobotAI::GetEngineBlue() { //返回一个-255-255之间的整数,代表载具蓝色的偏移值 return -4; } //----------------------------------------------------- //3.用不用随你的触发函数 //----------------------------------------------------- void RobotAI::onBattleStart(const RobotAI_BattlefieldInformation& info,int myID) { //一场战斗开始时被调用,可能可以用来初始化 //参数:info ... 战场信息 // myID ... 自己机甲在info中robot数组对应的下标 } void RobotAI::onBattleEnd(const RobotAI_BattlefieldInformation& info,int myID) { //一场战斗结束时被调用,可能可以用来析构你动态分配的内存空间(如果你用了的话) //参数:info ... 战场信息 // myID ... 自己机甲在info中robot数组对应的下标 } void RobotAI::onSomeoneFire(int fireID) { //有机甲开火时被调用 //参数:fireID ... 开火的机甲下标 } void RobotAI::onHit(int launcherID,bullettypename btn) { //被子弹击中时被调用 //参数:btn ... 击中你的子弹种类(枚举类型) } //TODO:这里可以实现你自己的函数
17.166134
95
0.577703
MechEmpire
27535f079eb414837f11b815cca167a6b7fe7654
10,997
cpp
C++
webkit/WebCore/dom/Text.cpp
s1rcheese/nintendo-3ds-internetbrowser-sourcecode
3dd05f035e0a5fc9723300623e9b9b359be64e11
[ "Unlicense" ]
15
2016-01-05T12:43:41.000Z
2022-03-15T10:34:47.000Z
webkit/WebCore/dom/Text.cpp
s1rcheese/nintendo-3ds-internetbrowser-sourcecode
3dd05f035e0a5fc9723300623e9b9b359be64e11
[ "Unlicense" ]
null
null
null
webkit/WebCore/dom/Text.cpp
s1rcheese/nintendo-3ds-internetbrowser-sourcecode
3dd05f035e0a5fc9723300623e9b9b359be64e11
[ "Unlicense" ]
2
2020-11-30T18:36:01.000Z
2021-02-05T23:20:24.000Z
/* * Copyright (C) 1999 Lars Knoll ([email protected]) * (C) 1999 Antti Koivisto ([email protected]) * Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include "config.h" #include "Text.h" #include "CString.h" #include "ExceptionCode.h" #include "RenderText.h" #include "TextBreakIterator.h" #if ENABLE(SVG) #include "RenderSVGInlineText.h" #include "SVGNames.h" #endif #if ENABLE(WML) #include "WMLDocument.h" #include "WMLVariables.h" #endif using namespace std; namespace WebCore { Text::Text(Document* document, const String& data) : CharacterData(document, data, CreateText) { } PassRefPtr<Text> Text::create(Document* document, const String& data) { return adoptRef(new Text(document, data)); } PassRefPtr<Text> Text::splitText(unsigned offset, ExceptionCode& ec) { ec = 0; // INDEX_SIZE_ERR: Raised if the specified offset is negative or greater than // the number of 16-bit units in data. if (offset > length()) { ec = INDEX_SIZE_ERR; return 0; } RefPtr<StringImpl> oldStr = dataImpl(); RefPtr<Text> newText = virtualCreate(oldStr->substring(offset)); setDataImpl(oldStr->substring(0, offset)); dispatchModifiedEvent(oldStr.get()); if (parentNode()) parentNode()->insertBefore(newText.get(), nextSibling(), ec); if (ec) return 0; if (parentNode()) document()->textNodeSplit(this); if (renderer()) toRenderText(renderer())->setText(dataImpl()); return newText.release(); } static const Text* earliestLogicallyAdjacentTextNode(const Text* t) { const Node* n = t; while ((n = n->previousSibling())) { Node::NodeType type = n->nodeType(); if (type == Node::TEXT_NODE || type == Node::CDATA_SECTION_NODE) { t = static_cast<const Text*>(n); continue; } // We would need to visit EntityReference child text nodes if they existed ASSERT(type != Node::ENTITY_REFERENCE_NODE || !n->hasChildNodes()); break; } return t; } static const Text* latestLogicallyAdjacentTextNode(const Text* t) { const Node* n = t; while ((n = n->nextSibling())) { Node::NodeType type = n->nodeType(); if (type == Node::TEXT_NODE || type == Node::CDATA_SECTION_NODE) { t = static_cast<const Text*>(n); continue; } // We would need to visit EntityReference child text nodes if they existed ASSERT(type != Node::ENTITY_REFERENCE_NODE || !n->hasChildNodes()); break; } return t; } String Text::wholeText() const { const Text* startText = earliestLogicallyAdjacentTextNode(this); const Text* endText = latestLogicallyAdjacentTextNode(this); Node* onePastEndText = endText->nextSibling(); unsigned resultLength = 0; for (const Node* n = startText; n != onePastEndText; n = n->nextSibling()) { if (!n->isTextNode()) continue; const Text* t = static_cast<const Text*>(n); const String& data = t->data(); #if 1 // added at webkit.org trunk r68705 if (std::numeric_limits<unsigned>::max() - data.length() < resultLength) CRASH(); #endif resultLength += data.length(); } UChar* resultData; String result = String::createUninitialized(resultLength, resultData); UChar* p = resultData; for (const Node* n = startText; n != onePastEndText; n = n->nextSibling()) { if (!n->isTextNode()) continue; const Text* t = static_cast<const Text*>(n); const String& data = t->data(); unsigned dataLength = data.length(); memcpy(p, data.characters(), dataLength * sizeof(UChar)); p += dataLength; } ASSERT(p == resultData + resultLength); return result; } PassRefPtr<Text> Text::replaceWholeText(const String& newText, ExceptionCode&) { // Remove all adjacent text nodes, and replace the contents of this one. // Protect startText and endText against mutation event handlers removing the last ref RefPtr<Text> startText = const_cast<Text*>(earliestLogicallyAdjacentTextNode(this)); RefPtr<Text> endText = const_cast<Text*>(latestLogicallyAdjacentTextNode(this)); RefPtr<Text> protectedThis(this); // Mutation event handlers could cause our last ref to go away Node* parent = parentNode(); // Protect against mutation handlers moving this node during traversal ExceptionCode ignored = 0; for (RefPtr<Node> n = startText; n && n != this && n->isTextNode() && n->parentNode() == parent;) { RefPtr<Node> nodeToRemove(n.release()); n = nodeToRemove->nextSibling(); parent->removeChild(nodeToRemove.get(), ignored); } if (this != endText) { Node* onePastEndText = endText->nextSibling(); for (RefPtr<Node> n = nextSibling(); n && n != onePastEndText && n->isTextNode() && n->parentNode() == parent;) { RefPtr<Node> nodeToRemove(n.release()); n = nodeToRemove->nextSibling(); parent->removeChild(nodeToRemove.get(), ignored); } } if (newText.isEmpty()) { if (parent && parentNode() == parent) parent->removeChild(this, ignored); return 0; } setData(newText, ignored); return protectedThis.release(); } String Text::nodeName() const { return textAtom.string(); } Node::NodeType Text::nodeType() const { return TEXT_NODE; } PassRefPtr<Node> Text::cloneNode(bool /*deep*/) { return create(document(), data()); } bool Text::rendererIsNeeded(RenderStyle *style) { if (!CharacterData::rendererIsNeeded(style)) return false; bool onlyWS = containsOnlyWhitespace(); if (!onlyWS) return true; RenderObject *par = parentNode()->renderer(); if (par->isTable() || par->isTableRow() || par->isTableSection() || par->isTableCol() || par->isFrameSet()) return false; if (style->preserveNewline()) // pre/pre-wrap/pre-line always make renderers. return true; RenderObject *prev = previousRenderer(); if (prev && prev->isBR()) // <span><br/> <br/></span> return false; if (par->isRenderInline()) { // <span><div/> <div/></span> if (prev && !prev->isInline()) return false; } else { if (par->isRenderBlock() && !par->childrenInline() && (!prev || !prev->isInline())) return false; RenderObject *first = par->firstChild(); while (first && first->isFloatingOrPositioned()) first = first->nextSibling(); RenderObject *next = nextRenderer(); if (!first || next == first) // Whitespace at the start of a block just goes away. Don't even // make a render object for this text. return false; } return true; } RenderObject* Text::createRenderer(RenderArena* arena, RenderStyle*) { #if ENABLE(SVG) if (parentNode()->isSVGElement() #if ENABLE(SVG_FOREIGN_OBJECT) && !parentNode()->hasTagName(SVGNames::foreignObjectTag) #endif ) return new (arena) RenderSVGInlineText(this, dataImpl()); #endif return new (arena) RenderText(this, dataImpl()); } void Text::attach() { #if ENABLE(WML) if (document()->isWMLDocument() && !containsOnlyWhitespace()) { String text = data(); ASSERT(!text.isEmpty()); text = substituteVariableReferences(text, document()); ExceptionCode code = 0; setData(text, code); ASSERT(!code); } #endif createRendererIfNeeded(); CharacterData::attach(); } void Text::recalcStyle(StyleChange change) { if (change != NoChange && parentNode()) { if (renderer()) renderer()->setStyle(parentNode()->renderer()->style()); } if (needsStyleRecalc()) { if (renderer()) { if (renderer()->isText()) toRenderText(renderer())->setText(dataImpl()); } else { if (attached()) detach(); attach(); } } setNeedsStyleRecalc(NoStyleChange); } bool Text::childTypeAllowed(NodeType) { return false; } PassRefPtr<Text> Text::virtualCreate(const String& data) { return create(document(), data); } PassRefPtr<Text> Text::createWithLengthLimit(Document* document, const String& data, unsigned& charsLeft, unsigned maxChars) { unsigned dataLength = data.length(); if (charsLeft == dataLength && charsLeft <= maxChars) { charsLeft = 0; return create(document, data); } unsigned start = dataLength - charsLeft; unsigned end = start + min(charsLeft, maxChars); // Check we are not on an unbreakable boundary. // Some text break iterator implementations work best if the passed buffer is as small as possible, // see <https://bugs.webkit.org/show_bug.cgi?id=29092>. // We need at least two characters look-ahead to account for UTF-16 surrogates. if (end < dataLength) { TextBreakIterator* it = characterBreakIterator(data.characters() + start, (end + 2 > dataLength) ? dataLength - start : end - start + 2); if (!isTextBreak(it, end - start)) end = textBreakPreceding(it, end - start) + start; } // If we have maxChars of unbreakable characters the above could lead to // an infinite loop. // FIXME: It would be better to just have the old value of end before calling // textBreakPreceding rather than this, because this exceeds the length limit. if (end <= start) end = dataLength; charsLeft = dataLength - end; return create(document, data.substring(start, end - start)); } #ifndef NDEBUG void Text::formatForDebugger(char *buffer, unsigned length) const { String result; String s; s = nodeName(); if (s.length() > 0) { result += s; } s = data(); if (s.length() > 0) { if (result.length() > 0) result += "; "; result += "value="; result += s; } strncpy(buffer, result.utf8().data(), length - 1); } #endif } // namespace WebCore
29.964578
145
0.626807
s1rcheese
2753944f40611ce3b32bdff335d878da63ecb12b
2,770
cpp
C++
Source/Planet/Map/PlanetMapTile.cpp
unconed/NFSpace
bbd544afb32a10bc4ee497e1d58cefe4bbbe7953
[ "BSD-3-Clause" ]
91
2015-01-19T11:03:56.000Z
2022-03-12T15:54:06.000Z
Source/Planet/Map/PlanetMapTile.cpp
unconed/NFSpace
bbd544afb32a10bc4ee497e1d58cefe4bbbe7953
[ "BSD-3-Clause" ]
null
null
null
Source/Planet/Map/PlanetMapTile.cpp
unconed/NFSpace
bbd544afb32a10bc4ee497e1d58cefe4bbbe7953
[ "BSD-3-Clause" ]
9
2015-03-16T03:36:50.000Z
2021-06-17T09:47:26.000Z
/* * PlanetMapTile.cpp * NFSpace * * Created by Steven Wittens on 26/11/09. * Copyright 2009 __MyCompanyName__. All rights reserved. * */ #include "PlanetMapTile.h" #include "Utility.h" namespace NFSpace { PlanetMapTile::PlanetMapTile(QuadTreeNode* node, TexturePtr heightTexture, Image heightImage, TexturePtr normalTexture, int size) { mNode = node; mHeightTexture = heightTexture; mHeightImage = heightImage; mNormalTexture = normalTexture; mSize = size; mReferences = 0; PlanetStats::totalTiles++; prepareMaterial(); } PlanetMapTile::~PlanetMapTile() { OGRE_FREE(mHeightImage.getData(), MEMCATEGORY_GENERAL); if (mMaterialCreated) { MaterialManager::getSingleton().remove(mMaterial->getName()); } TextureManager::getSingleton().remove(mHeightTexture->getName()); TextureManager::getSingleton().remove(mNormalTexture->getName()); PlanetStats::totalTiles--; } String PlanetMapTile::getMaterial() { if (!mMaterialCreated) prepareMaterial(); return mMaterial->getName();//"Planet/Surface";//mMaterial->getName(); } Image* PlanetMapTile::getHeightMap() { return &mHeightImage; } void PlanetMapTile::prepareMaterial() { mMaterialCreated = TRUE; // Get original planet/surface material and clone it. MaterialPtr planetSurface = MaterialManager::getSingleton().getByName("Planet/Surface"); mMaterial = planetSurface->clone("Planet/Surface/" + getUniqueId("")); // Prepare texture substitution list. AliasTextureNamePairList aliasList; aliasList.insert(AliasTextureNamePairList::value_type("heightMap", mHeightTexture->getName())); aliasList.insert(AliasTextureNamePairList::value_type("normalMap", mNormalTexture->getName())); mMaterial->applyTextureAliases(aliasList); // Clear out pass caches between scene managers. updateSceneManagersAfterMaterialsChange(); } const QuadTreeNode* PlanetMapTile::getNode() { return mNode; } size_t PlanetMapTile::getGPUMemoryUsage() { return 1.3125 * ( mHeightTexture->getWidth() * mHeightTexture->getHeight() * Ogre::PixelUtil::getNumElemBytes(mHeightTexture->getFormat()) + mNormalTexture->getWidth() * mNormalTexture->getHeight() * Ogre::PixelUtil::getNumElemBytes(mNormalTexture->getFormat())); } void PlanetMapTile::addReference() { mReferences++; } void PlanetMapTile::removeReference() { mReferences--; } int PlanetMapTile::getReferences() { return mReferences; } }
31.123596
135
0.651264
unconed
2755d2ac1baa5df3c2f5c744333f2853a896e547
1,579
cpp
C++
Graphs/dijkstra.cpp
adiletabs/Algos
fa2bb9edddb517f52b79fc712f70d6f8a0786e33
[ "MIT" ]
3
2020-01-29T18:26:37.000Z
2021-01-19T06:26:34.000Z
Graphs/dijkstra.cpp
adiletabs/Algos
fa2bb9edddb517f52b79fc712f70d6f8a0786e33
[ "MIT" ]
null
null
null
Graphs/dijkstra.cpp
adiletabs/Algos
fa2bb9edddb517f52b79fc712f70d6f8a0786e33
[ "MIT" ]
2
2019-03-06T03:40:42.000Z
2019-09-23T03:48:21.000Z
#include <bits/stdc++.h> using namespace std; const int N = 2020, inf = INT_MAX; vector<pair<int, int> > g[N]; int dist[N], par[N], n, m; bool used[N]; vector<int> path; void init(int s) { for (int i = 0; i < N; i++) dist[i] = inf; dist[s] = 0; } void dijkstra(int s) { init(s); for (int i = 0; i < n; i++) { int v = -1; for (int j = 0; j < n; j++) if (!used[j] && (v == -1 || dist[j] < dist[v])) v = j; used[v] = true; for (pair<int, int> p: g[v]) { int to = p.first, len = p.second; if (dist[v] + len < dist[to]) { dist[to] = dist[v] + len; par[to] = v; } } } } void fast_dijkstra(int s) { init(s); set<pair<int, int> > best_vertices; best_vertices.insert(make_pair(dist[s], s)); while (!best_vertices.empty()) { int v = best_vertices.begin()->second; best_vertices.erase(best_vertices.begin()); for (pair<int, int> p: g[v]) { int to = p.first, len = p.second; if (dist[v] + len < dist[to]) { best_vertices.erase(make_pair(dist[to], to)); dist[to] = dist[v] + len; par[to] = v; best_vertices.insert(make_pair(dist[to], to)); } } } } void get_best_path(int start, int target) { fast_dijkstra(start); for (int v = target; v != start; v = par[v]) path.push_back(v); path.push_back(start); reverse(path.begin(), path.end()); } int main() { cin >> n >> m; while (m--) { int v, u, weight; g[v].push_back(make_pair(u, weight)); g[u].push_back(make_pair(v, weight)); } int start; cin >> start; fast_dijkstra(start); for (int i = 1; i <= n; i++) cout << dist[i] << ' '; }
20.24359
50
0.559215
adiletabs
2756ebb0e82a9b58972a2a24859faf61057b140e
5,107
hpp
C++
src/threepp/renderers/gl/GLClipping.hpp
maidamai0/threepp
9b50e2c0f2a7bb3ebfd3ffeef61dbefcd54c7071
[ "MIT" ]
null
null
null
src/threepp/renderers/gl/GLClipping.hpp
maidamai0/threepp
9b50e2c0f2a7bb3ebfd3ffeef61dbefcd54c7071
[ "MIT" ]
null
null
null
src/threepp/renderers/gl/GLClipping.hpp
maidamai0/threepp
9b50e2c0f2a7bb3ebfd3ffeef61dbefcd54c7071
[ "MIT" ]
null
null
null
// https://github.com/mrdoob/three.js/blob/r129/src/renderers/webgl/WebGLClipping.js #ifndef THREEPP_GLCLIPPING_HPP #define THREEPP_GLCLIPPING_HPP #include "GLProperties.hpp" #include "threepp/cameras/Camera.hpp" #include "threepp/math/Plane.hpp" #include "threepp/core/Uniform.hpp" namespace threepp::gl { struct GLClipping { std::optional<std::vector<float>> globalState; int numGlobalPlanes = 0; bool localClippingEnabled = false; bool renderingShadows = false; Plane plane; Matrix3 viewNormalMatrix; Uniform uniform; int numPlanes = 0; int numIntersection = 0; explicit GLClipping(GLProperties &properties) : properties(properties) { uniform.needsUpdate = false; } bool init( const std::vector<Plane> &planes, bool enableLocalClipping, const std::shared_ptr<Camera> &camera) { bool enabled = !planes.empty() || enableLocalClipping || // enable state of previous frame - the clipping code has to // run another frame in order to reset the state: numGlobalPlanes != 0 || localClippingEnabled; localClippingEnabled = enableLocalClipping; globalState = projectPlanes(planes, camera, 0); numGlobalPlanes = (int) planes.size(); return enabled; } void beginShadows() { renderingShadows = true; projectPlanes(); } void endShadows() { renderingShadows = false; resetGlobalState(); } void setState(const std::shared_ptr<Material> &material, const std::shared_ptr<Camera> &camera, bool useCache) { auto &planes = material->clippingPlanes; auto clipIntersection = material->clipIntersection; auto clipShadows = material->clipShadows; auto &materialProperties = properties.materialProperties.get(material->uuid); if (!localClippingEnabled || planes.empty() || renderingShadows && !clipShadows) { // there's no local clipping if (renderingShadows) { // there's no global clipping projectPlanes(); } else { resetGlobalState(); } } else { const auto nGlobal = renderingShadows ? 0 : numGlobalPlanes, lGlobal = nGlobal * 4; auto &dstArray = materialProperties.clippingState; uniform.setValue(dstArray);// ensure unique state dstArray = projectPlanes(planes, camera, lGlobal, useCache); for (int i = 0; i != lGlobal; ++i) { dstArray[i] = globalState.value()[i]; } materialProperties.clippingState = dstArray; this->numIntersection = clipIntersection ? this->numPlanes : 0; this->numPlanes += nGlobal; } } void resetGlobalState() { if (!uniform.hasValue() || uniform.value<std::vector<float>>() != globalState) { uniform.setValue(*globalState); uniform.needsUpdate = numGlobalPlanes > 0; } numPlanes = numGlobalPlanes; numIntersection = 0; } void projectPlanes() { numPlanes = 0; numIntersection = 0; } std::vector<float> projectPlanes( const std::vector<Plane> &planes, const std::shared_ptr<Camera> &camera, int dstOffset, bool skipTransform = false) { int nPlanes = (int) planes.size(); std::vector<float> dstArray; if (nPlanes != 0) { if (uniform.hasValue()) { dstArray = uniform.value<std::vector<float>>(); } if (!skipTransform || dstArray.empty()) { const auto flatSize = dstOffset + nPlanes * 4; const auto &viewMatrix = camera->matrixWorldInverse; viewNormalMatrix.getNormalMatrix(viewMatrix); if (dstArray.size() < flatSize) { dstArray.resize(flatSize); } for (int i = 0, i4 = dstOffset; i != nPlanes; ++i, i4 += 4) { plane.copy(planes[i]).applyMatrix4(viewMatrix, viewNormalMatrix); plane.normal.toArray(dstArray, i4); dstArray[i4 + 3] = plane.constant; } } uniform.setValue(dstArray); uniform.needsUpdate = true; } numPlanes = nPlanes; numIntersection = 0; return dstArray; } private: GLProperties &properties; }; }// namespace threepp::gl #endif//THREEPP_GLCLIPPING_HPP
27.907104
120
0.527511
maidamai0
2758945d92d2bba295767c04dccf123ca71c6a50
960
cpp
C++
src/console/commands/environment/terrain/environmentTerrainValleys.cpp
fantasiorona/LGen
bb670278b7faf82154d6256e6a283fa3e226c00b
[ "MIT" ]
22
2019-08-01T22:04:43.000Z
2021-12-23T07:53:59.000Z
src/console/commands/environment/terrain/environmentTerrainValleys.cpp
fantasiorona/LGen
bb670278b7faf82154d6256e6a283fa3e226c00b
[ "MIT" ]
15
2019-05-01T10:57:36.000Z
2019-05-27T11:23:42.000Z
src/console/commands/environment/terrain/environmentTerrainValleys.cpp
fantasiorona/LGen
bb670278b7faf82154d6256e6a283fa3e226c00b
[ "MIT" ]
4
2019-08-02T08:07:45.000Z
2022-01-22T00:46:03.000Z
#include "environmentTerrainValleys.h" #include "environment/terrain/terrainValleys.h" using namespace LGen; const std::string Command::Environment::Terrain::Valleys::KEYWORD = "valleys"; const std::string Command::Environment::Terrain::Valleys::FILE_HELP = "text/helpEnvironmentTerrainValleys.txt"; Command::Environment::Terrain::Valleys::Valleys() : Command({ KEYWORD }, FILE_HELP, 3) { } void Command::Environment::Terrain::Valleys::application( const std::vector<std::string> &arguments, Console &console) { if(!workspace.environment) { console << MSG_NO_ENVIRONMENT << std::endl; return; } try { const auto width = std::stof(arguments[ARG_WIDTH]); const auto height = std::stof(arguments[ARG_HEIGHT]); const auto resolution = std::stof(arguments[ARG_RESOLUTION]); workspace.environment->setTerrain(std::make_unique<TerrainValleys>(width, height, resolution)); } catch(...) { console << MSG_INVALID_INPUT << std::endl; } }
27.428571
111
0.734375
fantasiorona
275af587f3742e93eef69ddd318501c98c79f037
3,214
hpp
C++
Code/Engine/Renderer/Effects/Tonemapping.hpp
ntaylorbishop/Copycat
c02f2881f0700a33a2630fd18bc409177d80b8cd
[ "MIT" ]
2
2017-10-02T03:18:55.000Z
2018-11-21T16:30:36.000Z
Code/Engine/Renderer/Effects/Tonemapping.hpp
ntaylorbishop/Copycat
c02f2881f0700a33a2630fd18bc409177d80b8cd
[ "MIT" ]
null
null
null
Code/Engine/Renderer/Effects/Tonemapping.hpp
ntaylorbishop/Copycat
c02f2881f0700a33a2630fd18bc409177d80b8cd
[ "MIT" ]
null
null
null
#pragma once #include "Engine/General/Core/EngineCommon.hpp" #include "Engine/Renderer/General/RenderCommon.hpp" #include "Engine/Math/Objects/AABB3.hpp" class TextureBuffer; class Material; class Framebuffer; const float MIN_EXPOSURE = 1.6f; const float MAX_EXPOSURE = 6.f; ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //EXPOSURE VOLUME ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //--------------------------------------------------------------------------------------------------------------------------- struct ExposureVolume { ExposureVolume(); ExposureVolume(const AABB3& vol, float exposure) : m_volume(vol) , m_exposureVal(exposure) { } AABB3 m_volume = AABB3(); float m_exposureVal = 0.f; }; ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //TONEMAPPING PASS CLASS ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //--------------------------------------------------------------------------------------------------------------------------- class Tonemapping { public: //GET static Tonemapping* Get(); //UPDATE RENDER void Update(float deltaSeconds); void RunPass(); //ADD VOLUMES void AddExposureVolume(const AABB3& volume, float exposureVal); void SetMinExposure(float minExposure) { m_minExposure = minExposure; } void SetMaxExposure(float maxExposure) { m_maxExposure = maxExposure; } void SetExposureChangeRate(float changeRate) { m_exposureChangeRate = changeRate; } void SetDefaultExposure(float defExp) { m_defaultExposure = defExp; } void EnableDebugVisualizer() { m_debugVisualizer = true; } void DisableDebugVisualizer() { m_debugVisualizer = false; } void ToggleExposureVolumes(bool enabled) { m_exposureVolumesEnabled = enabled; } private: //STRUCTORS Tonemapping(); ~Tonemapping(); static void Shutdown(); TextureBuffer* m_colorTarget = nullptr; Material* m_tonemappingMat = nullptr; Framebuffer* m_tonemapFBO = nullptr; float m_minExposure = 0.f; float m_maxExposure = 0.f; float m_exposureChangeRate = 0.f; float m_exposure = 0.f; float m_targetExposure = 1.f; float m_defaultExposure = 1.f; MeshID m_fullScreenMesh = 0; bool m_debugDraw = false; bool m_debugVisualizer = false; bool m_exposureVolumesEnabled = true; std::vector<ExposureVolume> m_exposureVolumes; static Tonemapping* s_HDR; }; ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //INLINES ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //--------------------------------------------------------------------------------------------------------------------------- inline void Tonemapping::AddExposureVolume(const AABB3& volume, float exposureVal) { m_exposureVolumes.push_back(ExposureVolume(volume, exposureVal)); }
33.479167
125
0.47822
ntaylorbishop
275e4de2d23f93672a8e3a261c6cb895b631b1a2
18,965
cpp
C++
CaptureManagerSource/SampleAccumulatorNode/SampleAccumulator.cpp
luoyingwen/CaptureManagerSDK
e96395a120175a45c56ff4e2b3283b807a42fd75
[ "MIT" ]
64
2020-07-20T09:35:16.000Z
2022-03-27T19:13:08.000Z
CaptureManagerSource/SampleAccumulatorNode/SampleAccumulator.cpp
luoyingwen/CaptureManagerSDK
e96395a120175a45c56ff4e2b3283b807a42fd75
[ "MIT" ]
8
2020-07-30T09:20:28.000Z
2022-03-03T22:37:10.000Z
CaptureManagerSource/SampleAccumulatorNode/SampleAccumulator.cpp
luoyingwen/CaptureManagerSDK
e96395a120175a45c56ff4e2b3283b807a42fd75
[ "MIT" ]
28
2020-07-20T13:02:42.000Z
2022-03-18T07:36:05.000Z
/* MIT License Copyright(c) 2020 Evgeny Pereguda Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files(the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions : The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "SampleAccumulator.h" #include "../MediaFoundationManager/MediaFoundationManager.h" #include "../Common/MFHeaders.h" #include "../Common/Common.h" #include "../LogPrintOut/LogPrintOut.h" #include "../MemoryManager/MemoryManager.h" #include "../Common/Singleton.h" namespace CaptureManager { namespace Transform { namespace Accumulator { using namespace CaptureManager::Core; SampleAccumulator::SampleAccumulator( UINT32 aAccumulatorSize) : mAccumulatorSize(aAccumulatorSize), mPtrOutputSampleAccumulator(nullptr), mEndOfStream(false), mCurrentLength(0) { mPtrInputSampleAccumulator = &mFirstSampleAccumulator; mPtrOutputSampleAccumulator = &mSecondSampleAccumulator; Singleton<MemoryManager>::getInstance().initialize(); } SampleAccumulator::~SampleAccumulator() { } STDMETHODIMP SampleAccumulator::GetStreamLimits(DWORD* aPtrInputMinimum, DWORD* aPtrInputMaximum, DWORD* aPtrOutputMinimum, DWORD* aPtrOutputMaximum) { HRESULT lresult = E_FAIL; do { LOG_CHECK_STATE_DESCR(aPtrInputMinimum == NULL || aPtrInputMaximum == NULL || aPtrOutputMinimum == NULL || aPtrOutputMaximum == NULL, E_POINTER); *aPtrInputMinimum = 1; *aPtrInputMaximum = 1; *aPtrOutputMinimum = 1; *aPtrOutputMaximum = 1; lresult = S_OK; } while (false); return lresult; } STDMETHODIMP SampleAccumulator::GetStreamIDs(DWORD aInputIDArraySize, DWORD* aPtrInputIDs, DWORD aOutputIDArraySize, DWORD* aPtrOutputIDs) { return E_NOTIMPL; } STDMETHODIMP SampleAccumulator::GetStreamCount(DWORD* aPtrInputStreams, DWORD* aPtrOutputStreams) { HRESULT lresult = E_FAIL; do { LOG_CHECK_STATE_DESCR(aPtrInputStreams == NULL || aPtrOutputStreams == NULL, E_POINTER); *aPtrInputStreams = 1; *aPtrOutputStreams = 1; lresult = S_OK; } while (false); return lresult; } STDMETHODIMP SampleAccumulator::GetInputStreamInfo(DWORD aInputStreamID, MFT_INPUT_STREAM_INFO* aPtrStreamInfo) { HRESULT lresult = S_OK; do { std::lock_guard<std::mutex> lock(mMutex); LOG_CHECK_PTR_MEMORY(aPtrStreamInfo); LOG_CHECK_STATE_DESCR(aInputStreamID != 0, MF_E_INVALIDSTREAMNUMBER); aPtrStreamInfo->dwFlags = MFT_INPUT_STREAM_WHOLE_SAMPLES | MFT_INPUT_STREAM_SINGLE_SAMPLE_PER_BUFFER; aPtrStreamInfo->cbMaxLookahead = 0; aPtrStreamInfo->cbAlignment = 0; aPtrStreamInfo->hnsMaxLatency = 0; aPtrStreamInfo->cbSize = 0; } while (false); return lresult; } STDMETHODIMP SampleAccumulator::GetOutputStreamInfo(DWORD aOutputStreamID, MFT_OUTPUT_STREAM_INFO* aPtrStreamInfo) { HRESULT lresult = S_OK; do { std::lock_guard<std::mutex> lock(mMutex); LOG_CHECK_PTR_MEMORY(aPtrStreamInfo); LOG_CHECK_STATE_DESCR(aOutputStreamID != 0, MF_E_INVALIDSTREAMNUMBER); aPtrStreamInfo->dwFlags = MFT_OUTPUT_STREAM_WHOLE_SAMPLES | MFT_OUTPUT_STREAM_SINGLE_SAMPLE_PER_BUFFER | MFT_OUTPUT_STREAM_FIXED_SAMPLE_SIZE | MFT_OUTPUT_STREAM_PROVIDES_SAMPLES; aPtrStreamInfo->cbAlignment = 0; aPtrStreamInfo->cbSize = 0; } while (false); return lresult; } STDMETHODIMP SampleAccumulator::GetInputStreamAttributes(DWORD aInputStreamID, IMFAttributes** aPtrPtrAttributes) { return E_NOTIMPL; } STDMETHODIMP SampleAccumulator::GetOutputStreamAttributes(DWORD aOutputStreamID, IMFAttributes** aPtrPtrAttributes) { return E_NOTIMPL; } STDMETHODIMP SampleAccumulator::DeleteInputStream(DWORD aStreamID) { return E_NOTIMPL; } STDMETHODIMP SampleAccumulator::AddInputStreams(DWORD aStreams, DWORD* aPtrStreamIDs) { return E_NOTIMPL; } STDMETHODIMP SampleAccumulator::GetInputAvailableType(DWORD aInputStreamID, DWORD aTypeIndex, IMFMediaType** aPtrPtrType) { HRESULT lresult = S_OK; CComPtrCustom<IMFMediaType> lMediaType; do { std::lock_guard<std::mutex> lock(mMutex); LOG_CHECK_PTR_MEMORY(aPtrPtrType); LOG_CHECK_STATE_DESCR(aInputStreamID != 0, MF_E_INVALIDSTREAMNUMBER); *aPtrPtrType = NULL; if (!mInputMediaType) { *aPtrPtrType = lMediaType.Detach(); } else if (aTypeIndex == 0) { *aPtrPtrType = mInputMediaType.get(); (*aPtrPtrType)->AddRef(); } else { lresult = MF_E_NO_MORE_TYPES; } } while (false); return lresult; } STDMETHODIMP SampleAccumulator::GetOutputAvailableType(DWORD aOutputStreamID, DWORD aTypeIndex, IMFMediaType** aPtrPtrType) { HRESULT lresult = S_OK; CComPtrCustom<IMFMediaType> lMediaType; do { std::lock_guard<std::mutex> lock(mMutex); LOG_CHECK_PTR_MEMORY(aPtrPtrType); LOG_CHECK_STATE_DESCR(aOutputStreamID != 0, MF_E_INVALIDSTREAMNUMBER); if (!mOutputMediaType) { *aPtrPtrType = lMediaType.get(); (*aPtrPtrType)->AddRef(); } else { *aPtrPtrType = mOutputMediaType.get(); (*aPtrPtrType)->AddRef(); } } while (false); return lresult; } STDMETHODIMP SampleAccumulator::SetInputType(DWORD aInputStreamID, IMFMediaType* aPtrType, DWORD aFlags) { HRESULT lresult = S_OK; CComPtrCustom<IMFAttributes> lTypeAttributes; do { lTypeAttributes = aPtrType; std::lock_guard<std::mutex> lock(mMutex); LOG_CHECK_STATE_DESCR(aInputStreamID != 0, MF_E_INVALIDSTREAMNUMBER); LOG_CHECK_STATE_DESCR(!mFirstSampleAccumulator.empty() || !mSecondSampleAccumulator.empty(), MF_E_TRANSFORM_CANNOT_CHANGE_MEDIATYPE_WHILE_PROCESSING); if (aPtrType != nullptr && !(!mInputMediaType)) { BOOL lBoolResult = FALSE; LOG_INVOKE_MF_METHOD(Compare, aPtrType, lTypeAttributes, MF_ATTRIBUTES_MATCH_INTERSECTION, &lBoolResult); if (lBoolResult == FALSE) { lresult = MF_E_INVALIDMEDIATYPE; break; } } if (aFlags != MFT_SET_TYPE_TEST_ONLY) { mInputMediaType = aPtrType; PROPVARIANT lVarItem; LOG_INVOKE_MF_METHOD(GetItem, mInputMediaType, MF_MT_FRAME_SIZE, &lVarItem); UINT32 lHigh = 0, lLow = 0; DataParser::unpack2UINT32AsUINT64(lVarItem, lHigh, lLow); LONG lstride = 0; do { LOG_INVOKE_MF_METHOD(GetUINT32, mInputMediaType, MF_MT_DEFAULT_STRIDE, ((UINT32*)&lstride)); } while (false); //if (FAILED(lresult)) //{ // GUID lSubType; // LOG_INVOKE_MF_METHOD(GetGUID, // mInputMediaType, // MF_MT_SUBTYPE, // &lSubType); // // lresult = LOG_INVOKE_MF_FUNCTION(MFGetStrideForBitmapInfoHeader, // lSubType.Data1, // lHigh, // &lstride); // LOG_CHECK_STATE(lstride == 0); // LOG_INVOKE_MF_METHOD(SetUINT32, // mInputMediaType, // MF_MT_DEFAULT_STRIDE, // *((UINT32*)&lstride)); //} if (SUCCEEDED(lresult)) mCurrentLength = lLow * ::abs(lstride); lresult = S_OK; mOutputMediaType = aPtrType; } } while (false); return lresult; } STDMETHODIMP SampleAccumulator::SetOutputType(DWORD aOutputStreamID, IMFMediaType* aPtrType, DWORD aFlags) { HRESULT lresult = S_OK; CComPtrCustom<IMFMediaType> lType; do { lType = aPtrType; std::lock_guard<std::mutex> lock(mMutex); LOG_CHECK_STATE_DESCR(aOutputStreamID != 0, MF_E_INVALIDSTREAMNUMBER); LOG_CHECK_STATE_DESCR(!mFirstSampleAccumulator.empty() || !mSecondSampleAccumulator.empty(), MF_E_TRANSFORM_CANNOT_CHANGE_MEDIATYPE_WHILE_PROCESSING); if (!(!lType) && !(!mInputMediaType)) { DWORD flags = 0; LOG_INVOKE_MF_METHOD(IsEqual, lType, mInputMediaType, &flags); } if (aFlags != MFT_SET_TYPE_TEST_ONLY) { mOutputMediaType = lType.Detach(); } } while (false); return lresult; } STDMETHODIMP SampleAccumulator::GetInputCurrentType(DWORD aInputStreamID, IMFMediaType** aPtrPtrType) { HRESULT lresult = S_OK; do { std::lock_guard<std::mutex> lock(mMutex); LOG_CHECK_PTR_MEMORY(aPtrPtrType); LOG_CHECK_STATE_DESCR(aInputStreamID != 0, MF_E_INVALIDSTREAMNUMBER); LOG_CHECK_STATE_DESCR(!mInputMediaType, MF_E_TRANSFORM_TYPE_NOT_SET); *aPtrPtrType = mInputMediaType; (*aPtrPtrType)->AddRef(); } while (false); return lresult; } STDMETHODIMP SampleAccumulator::GetOutputCurrentType(DWORD aOutputStreamID, IMFMediaType** aPtrPtrType) { HRESULT lresult = S_OK; do { std::lock_guard<std::mutex> lock(mMutex); LOG_CHECK_PTR_MEMORY(aPtrPtrType); LOG_CHECK_STATE_DESCR(aOutputStreamID != 0, MF_E_INVALIDSTREAMNUMBER); LOG_CHECK_STATE_DESCR(!mOutputMediaType, MF_E_TRANSFORM_TYPE_NOT_SET); *aPtrPtrType = mOutputMediaType; (*aPtrPtrType)->AddRef(); } while (false); return lresult; } STDMETHODIMP SampleAccumulator::GetInputStatus(DWORD aInputStreamID, DWORD* aPtrFlags) { HRESULT lresult = S_OK; do { std::lock_guard<std::mutex> lock(mMutex); LOG_CHECK_PTR_MEMORY(aPtrFlags); LOG_CHECK_STATE_DESCR(aInputStreamID != 0, MF_E_INVALIDSTREAMNUMBER); *aPtrFlags = MFT_INPUT_STATUS_ACCEPT_DATA; } while (false); return lresult; } STDMETHODIMP SampleAccumulator::GetOutputStatus(DWORD* aPtrFlags) { return E_NOTIMPL; } STDMETHODIMP SampleAccumulator::SetOutputBounds(LONGLONG aLowerBound, LONGLONG aUpperBound) { return E_NOTIMPL; } STDMETHODIMP SampleAccumulator::ProcessEvent(DWORD aInputStreamID, IMFMediaEvent* aPtrEvent) { return E_NOTIMPL; } STDMETHODIMP SampleAccumulator::GetAttributes(IMFAttributes** aPtrPtrAttributes) { return E_NOTIMPL; } STDMETHODIMP SampleAccumulator::ProcessMessage(MFT_MESSAGE_TYPE aMessage, ULONG_PTR aParam) { HRESULT lresult = S_OK; do { std::lock_guard<std::mutex> lock(mMutex); if (aMessage == MFT_MESSAGE_COMMAND_FLUSH) { while (!mFirstSampleAccumulator.empty()) { mFirstSampleAccumulator.pop(); } while (!mSecondSampleAccumulator.empty()) { mSecondSampleAccumulator.pop(); } } else if (aMessage == MFT_MESSAGE_COMMAND_DRAIN) { while (!mFirstSampleAccumulator.empty()) { mFirstSampleAccumulator.pop(); } while (!mSecondSampleAccumulator.empty()) { mSecondSampleAccumulator.pop(); } } else if (aMessage == MFT_MESSAGE_NOTIFY_BEGIN_STREAMING) { } else if (aMessage == MFT_MESSAGE_NOTIFY_END_STREAMING) { } else if (aMessage == MFT_MESSAGE_NOTIFY_END_OF_STREAM) { mEndOfStream = true; } else if (aMessage == MFT_MESSAGE_NOTIFY_START_OF_STREAM) { } } while (false); return lresult; } STDMETHODIMP SampleAccumulator::ProcessInput(DWORD aInputStreamID, IMFSample* aPtrSample, DWORD aFlags) { HRESULT lresult = S_OK; DWORD dwBufferCount = 0; do { std::lock_guard<std::mutex> lock(mMutex); LOG_CHECK_PTR_MEMORY(aPtrSample); LOG_CHECK_STATE(aInputStreamID != 0 || aFlags != 0); LOG_CHECK_STATE_DESCR(!mInputMediaType, MF_E_NOTACCEPTING); LOG_CHECK_STATE_DESCR(!mOutputMediaType, MF_E_NOTACCEPTING); CComPtrCustom<IMFSample> lUnk; LOG_INVOKE_FUNCTION(copySample, aPtrSample, &lUnk); if (mPtrInputSampleAccumulator->size() >= mAccumulatorSize ) { mPtrInputSampleAccumulator->front().Release(); mPtrInputSampleAccumulator->pop(); } mPtrInputSampleAccumulator->push(lUnk); lresult = S_FALSE;// MF_E_TRANSFORM_NEED_MORE_INPUT; } while (false); return lresult; } HRESULT SampleAccumulator::copySample( IMFSample* aPtrOriginalSample, IMFSample** aPtrPtrCopySample) { class MediaBufferLock { public: MediaBufferLock( IMFMediaBuffer* aPtrInputBuffer, DWORD& aRefMaxLength, DWORD& aRefCurrentLength, BYTE** aPtrPtrInputBuffer, HRESULT& aRefResult) { HRESULT lresult; do { LOG_CHECK_PTR_MEMORY(aPtrInputBuffer); LOG_CHECK_PTR_MEMORY(aPtrPtrInputBuffer); LOG_INVOKE_POINTER_METHOD(aPtrInputBuffer, Lock, aPtrPtrInputBuffer, &aRefMaxLength, &aRefCurrentLength); LOG_CHECK_PTR_MEMORY(aPtrPtrInputBuffer); mInputBuffer = aPtrInputBuffer; } while (false); aRefResult = lresult; } ~MediaBufferLock() { if (mInputBuffer) { mInputBuffer->Unlock(); } } private: CComPtrCustom<IMFMediaBuffer> mInputBuffer; MediaBufferLock( const MediaBufferLock&){} MediaBufferLock& operator=( const MediaBufferLock&){ return *this; } }; HRESULT lresult; CComPtrCustom<IMFSample> lOutputSample; CComPtrCustom<IMFMediaBuffer> lMediaBuffer; CComPtrCustom<IMFMediaBuffer> lOriginalMediaBuffer; do { LOG_CHECK_PTR_MEMORY(aPtrOriginalSample); LOG_CHECK_PTR_MEMORY(aPtrPtrCopySample); LOG_INVOKE_MF_METHOD(GetBufferByIndex, aPtrOriginalSample, 0, &lOriginalMediaBuffer); DWORD lCurrentLength; LOG_INVOKE_MF_METHOD(GetCurrentLength, lOriginalMediaBuffer, &lCurrentLength); LOG_INVOKE_MF_FUNCTION(MFCreateSample, &lOutputSample); LOG_INVOKE_MF_FUNCTION(MFCreateMemoryBuffer, lCurrentLength, &lMediaBuffer); LOG_INVOKE_MF_FUNCTION(SetCurrentLength, lMediaBuffer, lCurrentLength); LOG_INVOKE_MF_METHOD(AddBuffer, lOutputSample, lMediaBuffer); LOG_INVOKE_MF_METHOD(CopyAllItems, aPtrOriginalSample, lOutputSample); MFTIME lTime; LOG_INVOKE_MF_METHOD(GetSampleDuration, aPtrOriginalSample, &lTime); LOG_INVOKE_MF_METHOD(SetSampleDuration, lOutputSample, lTime); LOG_INVOKE_MF_METHOD(GetSampleTime, aPtrOriginalSample, &lTime); LOG_INVOKE_MF_METHOD(SetSampleTime, lOutputSample, lTime); DWORD lMaxDestLength; DWORD lCurrentDestLength; BYTE* lPtrDestBuffer; MediaBufferLock lMediaBufferLock( lMediaBuffer, lMaxDestLength, lCurrentDestLength, &lPtrDestBuffer, lresult); if (FAILED(lresult)) { break; } DWORD lMaxScrLength; DWORD lCurrentScrLength; BYTE* lPtrScrBuffer; MediaBufferLock lScrMediaBufferLock( lOriginalMediaBuffer, lMaxScrLength, lCurrentScrLength, &lPtrScrBuffer, lresult); if (FAILED(lresult)) { break; } MemoryManager::memcpy(lPtrDestBuffer, lPtrScrBuffer, lCurrentLength > lCurrentScrLength ? lCurrentScrLength : lCurrentLength); LOG_INVOKE_QUERY_INTERFACE_METHOD(lOutputSample, aPtrPtrCopySample); } while (false); return lresult; } STDMETHODIMP SampleAccumulator::ProcessOutput(DWORD aFlags, DWORD aOutputBufferCount, MFT_OUTPUT_DATA_BUFFER* aPtrOutputSamples, DWORD* aPtrStatus) { HRESULT lresult = S_OK; do { LOG_CHECK_PTR_MEMORY(aPtrOutputSamples); LOG_CHECK_PTR_MEMORY(aPtrStatus); LOG_CHECK_STATE_DESCR(aOutputBufferCount != 1 || aFlags != 0, E_INVALIDARG); //LOG_CHECK_STATE_DESCR(!mSample, MF_E_TRANSFORM_NEED_MORE_INPUT); CComPtrCustom<IMFSample> lOutputSample; { std::lock_guard<std::mutex> lock(mMutex); if (mEndOfStream) { aPtrOutputSamples[0].pSample = lOutputSample.Detach(); aPtrOutputSamples[0].dwStatus = 0; *aPtrStatus = 0; lresult = MF_E_TRANSFORM_NEED_MORE_INPUT; break; } if (mFirstSampleAccumulator.empty() && mSecondSampleAccumulator.empty()) { CComPtrCustom<IMFMediaBuffer> lMediaBuffer; LOG_INVOKE_MF_FUNCTION(MFCreateSample, &lOutputSample); LOG_INVOKE_MF_FUNCTION(MFCreateMemoryBuffer, mCurrentLength, &lMediaBuffer); LOG_CHECK_PTR_MEMORY(lMediaBuffer); LOG_INVOKE_MF_METHOD(SetCurrentLength, lMediaBuffer, mCurrentLength); LOG_INVOKE_MF_METHOD(AddBuffer, lOutputSample, lMediaBuffer); aPtrOutputSamples[0].pSample = lOutputSample.Detach(); aPtrOutputSamples[0].dwStatus = 0; *aPtrStatus = 0; break; } else if (mPtrOutputSampleAccumulator->empty()) { auto ltempPtr = mPtrOutputSampleAccumulator; mPtrOutputSampleAccumulator = mPtrInputSampleAccumulator; mPtrInputSampleAccumulator = ltempPtr; //CComPtrCustom<IMFMediaBuffer> lMediaBuffer; //LOG_INVOKE_MF_FUNCTION(MFCreateSample, // &lOutputSample); //LOG_INVOKE_MF_FUNCTION(MFCreateMemoryBuffer, // 1, // &lMediaBuffer); //LOG_INVOKE_MF_METHOD(AddBuffer, // lOutputSample, // lMediaBuffer); //lMediaBuffer->SetCurrentLength(1); //aPtrOutputSamples[0].pSample = lOutputSample.Detach(); //aPtrOutputSamples[0].dwStatus = 0; //*aPtrStatus = 0; //break; } } aPtrOutputSamples[0].pSample = mPtrOutputSampleAccumulator->front().Detach(); mPtrOutputSampleAccumulator->pop(); aPtrOutputSamples[0].dwStatus = 0; *aPtrStatus = 0; } while (false); return lresult; } } } }
22.443787
131
0.670393
luoyingwen
275e5f0f0c8ed2d36c61c7e308e3de6edd03bc34
11,634
cpp
C++
source/io/net/TlsServer.cpp
tarm-project/tarm-io
6aebd85573f65017decf81be073c8b13ce6ac12c
[ "MIT" ]
4
2021-01-14T15:19:35.000Z
2022-01-09T09:22:18.000Z
source/io/net/TlsServer.cpp
ink-splatters/tarm-io
6aebd85573f65017decf81be073c8b13ce6ac12c
[ "MIT" ]
null
null
null
source/io/net/TlsServer.cpp
ink-splatters/tarm-io
6aebd85573f65017decf81be073c8b13ce6ac12c
[ "MIT" ]
1
2020-08-05T21:14:59.000Z
2020-08-05T21:14:59.000Z
/*---------------------------------------------------------------------------------------------- * Copyright (c) 2020 - present Alexander Voitenko * Licensed under the MIT License. See License.txt in the project root for license information. *----------------------------------------------------------------------------------------------*/ #include "net/TlsServer.h" #include "Convert.h" #include "net/TcpServer.h" #include "detail/ConstexprString.h" #include "detail/TlsContext.h" #include "detail/OpenSslContext.h" #include <openssl/pem.h> #include <openssl/evp.h> #include <openssl/ec.h> #include <openssl/bn.h> #include <iostream> #include <memory> #include <cstdio> namespace tarm { namespace io { namespace net { class TlsServer::Impl { public: Impl(EventLoop& loop, const fs::Path& certificate_path, const fs::Path& private_key_path, TlsVersionRange version_range, TlsServer& parent); ~Impl(); Error listen(const Endpoint endpoint, const NewConnectionCallback& new_connection_callback, const DataReceivedCallback& data_receive_callback, const CloseConnectionCallback& close_connection_callback, int backlog_size); void shutdown(const ShutdownServerCallback& shutdown_callback); void close(const CloseServerCallback& close_callback); std::size_t connected_clients_count() const; bool certificate_and_key_match(); TlsVersionRange version_range() const; bool schedule_removal(); protected: const SSL_METHOD* ssl_method(); // callbacks void on_new_connection(TcpConnectedClient& tcp_client, const Error& tcp_error); void on_data_receive(TcpConnectedClient& tcp_client, const DataChunk&, const Error& tcp_error); void on_connection_close(TcpConnectedClient& tcp_client, const Error& tcp_error); private: using X509Ptr = std::unique_ptr<::X509, decltype(&::X509_free)>; using EvpPkeyPtr = std::unique_ptr<::EVP_PKEY, decltype(&::EVP_PKEY_free)>; TlsServer* m_parent; EventLoop* m_loop; TcpServer* m_tcp_server; fs::Path m_certificate_path; fs::Path m_private_key_path; X509Ptr m_certificate; EvpPkeyPtr m_private_key; TlsVersionRange m_version_range; detail::OpenSslContext<TlsServer, TlsServer::Impl> m_openssl_context; NewConnectionCallback m_new_connection_callback = nullptr; DataReceivedCallback m_data_receive_callback = nullptr; CloseConnectionCallback m_close_connection_callback = nullptr; }; TlsServer::Impl::Impl(EventLoop& loop, const fs::Path& certificate_path, const fs::Path& private_key_path, TlsVersionRange version_range, TlsServer& parent) : m_parent(&parent), m_loop(&loop), m_tcp_server(new TcpServer(loop)), m_certificate_path(certificate_path), m_private_key_path(private_key_path), m_certificate(nullptr, ::X509_free), m_private_key(nullptr, ::EVP_PKEY_free), m_version_range(version_range), m_openssl_context(loop, parent) { } TlsServer::Impl::~Impl() { } bool TlsServer::Impl::schedule_removal() { LOG_TRACE(m_loop, m_parent, ""); if (m_parent->is_removal_scheduled()) { LOG_TRACE(m_loop, m_parent, "is_removal_scheduled: true"); return true; } if (m_tcp_server->is_open()) { m_tcp_server->close([this](TcpServer& server, const Error& error) { if (error.code() != StatusCode::NOT_CONNECTED) { LOG_ERROR(this->m_loop, error); } this->m_parent->schedule_removal(); server.schedule_removal(); }); m_parent->set_removal_scheduled(); return false; } else { m_tcp_server->schedule_removal(); return true; } } const SSL_METHOD* TlsServer::Impl::ssl_method() { return SSLv23_server_method(); // This call includes also TLS versions } TlsVersionRange TlsServer::Impl::version_range() const { return m_version_range; } void TlsServer::Impl::on_new_connection(TcpConnectedClient& tcp_client, const Error& tcp_error) { detail::TlsContext context { m_certificate.get(), m_private_key.get(), m_openssl_context.ssl_ctx(), m_version_range }; // Can not use unique_ptr here because TlsConnectedClient has proteted destructor and // TlsServer is a friend of TlsConnectedClient, but we can not transfer that friendhsip to unique_ptr. auto tls_client = new TlsConnectedClient(*m_loop, *m_parent, m_new_connection_callback, tcp_client, &context); if (tcp_error) { if (m_new_connection_callback) { m_new_connection_callback(*tls_client, tcp_error); } delete tls_client; return; } Error tls_init_error = tls_client->init_ssl(); if (tls_init_error) { if (m_new_connection_callback) { m_new_connection_callback(*tls_client, tls_init_error); } tcp_client.set_user_data(nullptr); // to not process deletion in on_connection_close tcp_client.close(); delete tls_client; } else { tls_client->set_data_receive_callback(m_data_receive_callback); } } void TlsServer::Impl::on_data_receive(TcpConnectedClient& tcp_client, const DataChunk& chunk, const Error& tcp_error) { auto& tls_client = *reinterpret_cast<TlsConnectedClient*>(tcp_client.user_data()); tls_client.on_data_receive(chunk.buf.get(), chunk.size, tcp_error); } void TlsServer::Impl::on_connection_close(TcpConnectedClient& tcp_client, const Error& tcp_error) { LOG_TRACE(this->m_loop, "Removing TLS client"); if (tcp_client.user_data()) { auto& tls_client = *reinterpret_cast<TlsConnectedClient*>(tcp_client.user_data()); if (m_close_connection_callback) { m_close_connection_callback(tls_client, tcp_error); } delete &tls_client; } } Error TlsServer::Impl::listen(const Endpoint endpoint, const NewConnectionCallback& new_connection_callback, const DataReceivedCallback& data_receive_callback, const CloseConnectionCallback& close_connection_callback, int backlog_size) { m_new_connection_callback = new_connection_callback; m_data_receive_callback = data_receive_callback; m_close_connection_callback = close_connection_callback; using FilePtr = std::unique_ptr<FILE, decltype(&std::fclose)>; FilePtr certificate_file(std::fopen(m_certificate_path.string().c_str(), "r"), &std::fclose); if (certificate_file == nullptr) { return Error(StatusCode::TLS_CERTIFICATE_FILE_NOT_EXIST); } m_certificate.reset(PEM_read_X509(certificate_file.get(), nullptr, nullptr, nullptr)); if (m_certificate == nullptr) { return Error(StatusCode::TLS_CERTIFICATE_INVALID); } FilePtr private_key_file(std::fopen(m_private_key_path.string().c_str(), "r"), &std::fclose); if (private_key_file == nullptr) { return Error(StatusCode::TLS_PRIVATE_KEY_FILE_NOT_EXIST); } m_private_key.reset(PEM_read_PrivateKey(private_key_file.get(), nullptr, nullptr, nullptr)); if (m_private_key == nullptr) { return Error(StatusCode::TLS_PRIVATE_KEY_INVALID); } if (!certificate_and_key_match()) { return Error(StatusCode::TLS_PRIVATE_KEY_AND_CERTIFICATE_NOT_MATCH); } const auto& context_init_error = m_openssl_context.init_ssl_context(ssl_method()); if (context_init_error) { return context_init_error; } const auto& version_error = m_openssl_context.set_tls_version(std::get<0>(m_version_range), std::get<1>(m_version_range)); if (version_error) { return version_error; } const auto& certificate_error = m_openssl_context.ssl_init_certificate_and_key(m_certificate.get(), m_private_key.get()); if (certificate_error) { return certificate_error; } using namespace std::placeholders; return m_tcp_server->listen(endpoint, std::bind(&TlsServer::Impl::on_new_connection, this, _1, _2), std::bind(&TlsServer::Impl::on_data_receive, this, _1, _2, _3), std::bind(&TlsServer::Impl::on_connection_close, this, _1, _2)); } void TlsServer::Impl::shutdown(const ShutdownServerCallback& shutdown_callback) { if (shutdown_callback) { m_tcp_server->shutdown([this, shutdown_callback](TcpServer&, const Error& error) { shutdown_callback(*m_parent, error); }); } else { m_tcp_server->shutdown(); } } void TlsServer::Impl::close(const CloseServerCallback& close_callback) { if (close_callback) { m_tcp_server->shutdown([this, close_callback](TcpServer&, const Error& error) { close_callback(*m_parent, error); }); } else { m_tcp_server->close(); } } std::size_t TlsServer::Impl::connected_clients_count() const { return m_tcp_server->connected_clients_count(); } namespace { //int ssl_key_type(::EVP_PKEY* pkey) { // assert(pkey); // return pkey ? EVP_PKEY_type(pkey->type) : NID_undef; //} } // namespace bool TlsServer::Impl::certificate_and_key_match() { assert(m_certificate); assert(m_private_key); return X509_verify(m_certificate.get(), m_private_key.get()) != 0; } ///////////////////////////////////////// implementation /////////////////////////////////////////// TlsServer::TlsServer(EventLoop& loop, const fs::Path& certificate_path, const fs::Path& private_key_path, TlsVersionRange version_range) : Removable(loop), m_impl(new Impl(loop, certificate_path, private_key_path, version_range, *this)) { } TlsServer::~TlsServer() { } Error TlsServer::listen(const Endpoint endpoint, const NewConnectionCallback& new_connection_callback, const DataReceivedCallback& data_receive_callback, const CloseConnectionCallback& close_connection_callback, int backlog_size) { return m_impl->listen(endpoint, new_connection_callback, data_receive_callback, close_connection_callback, backlog_size); } Error TlsServer::listen(const Endpoint endpoint, const DataReceivedCallback& data_receive_callback, int backlog_size) { return m_impl->listen(endpoint, nullptr, data_receive_callback, nullptr, backlog_size); } Error TlsServer::listen(const Endpoint endpoint, const NewConnectionCallback& new_connection_callback, const DataReceivedCallback& data_receive_callback, int backlog_size) { return m_impl->listen(endpoint, new_connection_callback, data_receive_callback, nullptr, backlog_size); } void TlsServer::shutdown(const CloseServerCallback& shutdown_callback) { return m_impl->shutdown(shutdown_callback); } void TlsServer::close(const CloseServerCallback& close_callback) { return m_impl->close(close_callback); } std::size_t TlsServer::connected_clients_count() const { return m_impl->connected_clients_count(); } TlsVersionRange TlsServer::version_range() const { return m_impl->version_range(); } void TlsServer::schedule_removal() { const bool ready_to_remove = m_impl->schedule_removal(); if (ready_to_remove) { Removable::schedule_removal(); } } } // namespace net } // namespace io } // namespace tarm
34.318584
144
0.670191
tarm-project
2763e7da0af34195ab15cee538b3c4b789795527
1,840
cpp
C++
docs/melb-cpp-talk-feb-2017/24a-cpp17-auto-template-parameter.cpp
RossBencina/StaticMode
04eead233a6a03aa4f47c22f81c1d89b4e5cf5ca
[ "MIT" ]
3
2017-02-15T22:49:40.000Z
2018-04-19T15:42:57.000Z
docs/melb-cpp-talk-feb-2017/24a-cpp17-auto-template-parameter.cpp
RossBencina/StaticMode
04eead233a6a03aa4f47c22f81c1d89b4e5cf5ca
[ "MIT" ]
14
2017-02-19T14:25:30.000Z
2017-02-20T10:11:42.000Z
docs/melb-cpp-talk-feb-2017/24a-cpp17-auto-template-parameter.cpp
RossBencina/StaticMode
04eead233a6a03aa4f47c22f81c1d89b4e5cf5ca
[ "MIT" ]
null
null
null
//!clang++ -std=c++1z -Weverything -Wno-c++98-compat 24a-cpp17-auto-template-parameter.cpp -o z24a.out && ./z24a.out // WARNING: bleeding edge. tested in gcc 7, possibly clang 4 // This file is optional. It's a side note about C++17 auto template parameters. // It requires clang 4 or GCC 7 to compile. // When C++17 arrives, "auto template parameter" syntax will allow us to // simplify the declaration of Mode instances as follows: // C++11: // template<typename T, T X> // struct Mode : ModeType<T> { ... }; // // constexpr Mode<LineStyle, LineStyle::dotted> dotted; // <-- notice that LineStyle appears twice // C++17: (this file) // template<auto X> // C++17: auto template parameter // struct Mode { ... }; // // constexpr Mode<LineStyle::dotted> dotted; // <-- simplified // // http://en.cppreference.com/w/cpp/language/auto #include <iostream> // cout // ............................................................................ // Library code template<typename T> struct ModeType {}; // aka mode category template<auto X> // C++17: auto template parameter struct Mode : ModeType<decltype(X)> { constexpr Mode() {} }; // ............................................................................ enum class LineStyle { dotted, dashed, solid }; constexpr Mode<LineStyle::dotted> dotted; // note simplified syntax constexpr Mode<LineStyle::dashed> dashed; constexpr Mode<LineStyle::solid> solid; class AsciiPainter { public: void drawLine(decltype(dotted)) { std::cout << "..........\n"; } void drawLine(decltype(dashed)) { std::cout << "----------\n"; } void drawLine(decltype(solid)) { std::cout << "__________\n"; } }; int main() { AsciiPainter painter; painter.drawLine(dotted); painter.drawLine(dashed); painter.drawLine(solid); }
27.462687
116
0.59837
RossBencina
2764a0b63daefb8e607a670a6a3612e9adc2079a
2,885
cpp
C++
test/test_main.cpp
ChrizZhuang/3D_particle_simulator
cc2a0c75dc67ec7e4f89a270bca736d9425dbec0
[ "MIT" ]
null
null
null
test/test_main.cpp
ChrizZhuang/3D_particle_simulator
cc2a0c75dc67ec7e4f89a270bca736d9425dbec0
[ "MIT" ]
null
null
null
test/test_main.cpp
ChrizZhuang/3D_particle_simulator
cc2a0c75dc67ec7e4f89a270bca736d9425dbec0
[ "MIT" ]
null
null
null
// File to test main functions #include <iostream> #include <fstream> #include <iomanip> #include <vector> #include <math.h> #include <cmath> #include <assert.h> #include <string> #include "Vector3D.hpp" #include "SimpleParticleList.hpp" #include "Spring1DForce.hpp" #include "LatticeParticleList.hpp" #include "LatticeParticleForce.hpp" #include "GravityForce.hpp" #include "FrictionForce.hpp" #include "verlet_integrator.hpp" #include "test_main.hpp" void test_func() { struct Args { int N = 64; // -n <N> (int), number of interior particles int Nstep = 1e4; // -nstep <Nstep> (int), number of time steps std::string test; // -test <test> (string), the type of test double L = 2; // -l <L> (double), length of the cubic simulation box double t_end = 2; // -time (double), end of simulation time. }; Args args; args.test = "equil"; // args.test = "shift"; // args.test = "moving"; /* * Struct to hold constants needed for the particle calculation * NOTE: we declare it here "static const" to avoid updating values */ struct ParticleConst { double gamma = 5; double c=0.5; // spring constant N/m double mass = 0.1; // mass per particle, kg }; static const ParticleConst pc; // Defensive programming: check that the input N is an integer to the third power int index = 0; // initiate a index to mark when the input N is not an integer to the third power for (int i=0; i<=args.N; i++) { if (args.N == pow(i, 3)) { index = 1; // change the index if the input N is an integer to the third power } } if (index == 0) { std::cout << "error: The input N is not an integer to the third power!" << std::endl; // print out message to indicate the possible mistakes } assert(index == 1); // Convert the mass value to a vector std::vector<double> mass_vec; mass_vec.assign(args.N, pc.mass); // Instantiate the LatticeParticleList LatticeParticleList lpl(args.N, mass_vec); // Instantiate verlet_integrator verlet_integrator vi(args.N, args.Nstep, args.test, args.L, args.t_end, pc.gamma, pc.c, pc.mass, lpl); // Initialize the particle positions, velocities and accelerations regarding the condition vi.init_particles(lpl); // Test init test_main tm(args.N, args.Nstep, args.test, args.L, args.t_end, pc.gamma, pc.c, pc.mass); tm.test_init(lpl); // Instantiate some objects double equil_distance = args.L/(std::cbrt(args.N)-1); LatticeParticleForce lpf(args.N, pc.c, equil_distance); double drag = 0.1; FrictionForce ff(args.N, drag); double g[3] = {0, 0, -9.8}; // gravity in z direction GravityForce gf(args.N, g); // Calculate the particle final position, velocity and acceleration vi.do_time_integration(lpl, lpf, ff, gf); // Test integration tm.test_results(lpl); std::cout << ".. Main tests passed!" << std::endl; }
29.141414
144
0.67383
ChrizZhuang
276533790d14865853af0f89f47ee160125a3ee4
169
cpp
C++
Code full house/buoi20 nguyen dinh trung duc/implement/bai 16 1352A.cpp
ducyb2001/CbyTrungDuc
0e93394dce600876a098b90ae969575bac3788e1
[ "Apache-2.0" ]
null
null
null
Code full house/buoi20 nguyen dinh trung duc/implement/bai 16 1352A.cpp
ducyb2001/CbyTrungDuc
0e93394dce600876a098b90ae969575bac3788e1
[ "Apache-2.0" ]
null
null
null
Code full house/buoi20 nguyen dinh trung duc/implement/bai 16 1352A.cpp
ducyb2001/CbyTrungDuc
0e93394dce600876a098b90ae969575bac3788e1
[ "Apache-2.0" ]
null
null
null
/*bai 16 1325A*/ #include<stdio.h> int main(){ int T; scanf("%d",&T); while (T--) { int x; scanf("%d",&x); printf("1 %d\n",x-1); } }
12.071429
26
0.408284
ducyb2001
2777883fc452b8b0d7f2cfb50caebc5a9ae8dcaa
539
cpp
C++
leetcode/88/main.cpp
yukienomiya/competitive-programming
6f5e502ba66da2f62fb37aaa786a841f64bb192a
[ "MIT" ]
null
null
null
leetcode/88/main.cpp
yukienomiya/competitive-programming
6f5e502ba66da2f62fb37aaa786a841f64bb192a
[ "MIT" ]
null
null
null
leetcode/88/main.cpp
yukienomiya/competitive-programming
6f5e502ba66da2f62fb37aaa786a841f64bb192a
[ "MIT" ]
null
null
null
#include <vector> using namespace std; class Solution { public: void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) { vector<int> nums3(m + n, 0); int idx1 = 0, idx2 = 0, idx3 = 0; while (idx1 < m && idx2 < n) { if (nums1[idx1] <= nums2[idx2]) nums3[idx3++] = nums1[idx1++]; else nums3[idx3++] = nums2[idx2++]; } while (idx1 < m) nums3[idx3++] = nums1[idx1++]; while (idx2 < n) nums3[idx3++] = nums2[idx2++]; for (int i = 0; i < m + n; i++) { nums1[i] = nums3[i]; } } };
26.95
68
0.526902
yukienomiya
277797464e507b139fac06991ad4b81922a4e221
8,478
cpp
C++
projects/Phantom.Code/phantom/lang/Project.cpp
vlmillet/Phantom.Code
05ed65bc4a456e76da4b2d9da1fe3dabe64ba1b3
[ "MIT" ]
null
null
null
projects/Phantom.Code/phantom/lang/Project.cpp
vlmillet/Phantom.Code
05ed65bc4a456e76da4b2d9da1fe3dabe64ba1b3
[ "MIT" ]
null
null
null
projects/Phantom.Code/phantom/lang/Project.cpp
vlmillet/Phantom.Code
05ed65bc4a456e76da4b2d9da1fe3dabe64ba1b3
[ "MIT" ]
null
null
null
// license [ // This file is part of the Phantom project. Copyright 2011-2020 Vivien Millet. // Distributed under the MIT license. Text available here at // https://github.com/vlmillet/phantom // ] #include "Project.h" #include "CompiledSource.h" #include "Compiler.h" #include "Solution.h" #include <fstream> #include <phantom/lang/Application.h> #include <phantom/lang/Module.h> #include <phantom/lang/Package.h> #include <phantom/lang/Plugin.h> #include <phantom/lang/SourceFile.h> #include <phantom/utils/Path.h> #include <phantom/utils/StringUtil.h> #include <system_error> namespace phantom { namespace lang { Project::~Project() { if (m_pModule) { // Compiler::Get()->cleanupProject(this); if (!m_pModule->isNative()) { if (m_pModule->getOwner()) Application::Get()->removeModule(m_pModule); Application::Get()->deleteModule(m_pModule); m_pModule = nullptr; } } } Projects Project::getDependenciesProjects() const { Projects projs; for (auto pMod : getDependencies()) { if (Project* pDep = getSolution()->getProjectFromModule(pMod)) projs.push_back(pDep); } return projs; } phantom::String Project::getSourcePath() const { return Path(m_Path).parentPath().genericString(); } Package* Project::getPackageForSourceStream(SourceStream* a_pStream) const { PHANTOM_ASSERT(std::find(m_SourceFiles.begin(), m_SourceFiles.end(), a_pStream) != m_SourceFiles.end()); Path p(Path(a_pStream->getPath()).relative(Path(getPath()).parentPath())); if (p.size() == 1) { return m_pModule->getOrCreatePackage("default"); } String packageName; for (size_t i = 0; i < p.size() - 1; ++i) { if (packageName.empty()) packageName = p[i]; else packageName += '.' + p[i]; } return m_pModule->getOrCreatePackage(packageName); } SourceFile* Project::getSourceFileByPath(StringView a_Path) const { for (SourceFile* pSourceFile : m_SourceFiles) if (Path::Equivalent(Path(pSourceFile->getPath()).relative(Path(getPath()).parentPath()), Path(a_Path).relative(Path(getPath()).parentPath()))) return pSourceFile; return nullptr; } void Project::addDependency(Module* a_pModule) { PHANTOM_ASSERT(std::find(m_Dependencies.begin(), m_Dependencies.end(), a_pModule) == m_Dependencies.end()); PHANTOM_ASSERT(m_pSolution->getProjectFromModule(a_pModule) || a_pModule->getPlugin(), "the module is neither a project neither a plugin"); m_Dependencies.push_back(a_pModule); m_pModule->addDependency(a_pModule); } bool Project::addDependency(StringView a_Name) { if (std::find_if(m_Dependencies.begin(), m_Dependencies.end(), [&](Module* m) { return m->getName() == a_Name; }) != m_Dependencies.end()) { PHANTOM_LOG(Warning, "'%.*s' : dependency project '%.*s' already declared", PHANTOM_STRING_AS_PRINTF_ARG(m_Path), PHANTOM_STRING_AS_PRINTF_ARG(a_Name)); return true; } if (Project* pProject = m_pSolution->getProjectFromName(a_Name)) { if (pProject == this || pProject->hasProjectDependencyCascade(this)) return false; addDependency(pProject->getModule()); return true; } if (Plugin* pPlugin = Application::Get()->getPlugin(a_Name)) { pPlugin->load(); addDependency(pPlugin->getModule()); return true; } return false; } void Project::removeDependency(Module* a_pModule) { PHANTOM_ASSERT(m_pSolution->getProjectFromModule(a_pModule) || a_pModule->getPlugin()); auto found = std::find(m_Dependencies.begin(), m_Dependencies.end(), a_pModule); PHANTOM_ASSERT(found != m_Dependencies.end()); m_pModule->removeDependency(a_pModule); m_Dependencies.erase(found); } bool Project::hasDependency(Module* a_pModule) const { auto found = std::find(m_Dependencies.begin(), m_Dependencies.end(), a_pModule); return found != m_Dependencies.end(); } bool Project::addSourceFile(SourceFile* a_pSourceFile) { PHANTOM_ASSERT(getSourceFileByPath(a_pSourceFile->getPath()) == nullptr, "source file already added"); m_SourceFiles.push_back(a_pSourceFile); return true; } SourceFile* Project::addSourceFile(StringView a_RelativePath, StringView a_Code /*= ""*/) { if (getSourceFileByPath(a_RelativePath)) return nullptr; Path projectFullPath(getPath()); Path sourcePath = a_RelativePath; if (!sourcePath.isAbsolute()) sourcePath = projectFullPath.parentPath().childPath(sourcePath); if (!sourcePath.exists()) { std::error_code errcode; if (!Path::CreateDirectories(sourcePath.parentPath(), errcode)) return nullptr; std::ofstream os(sourcePath.genericString().c_str()); if (!os.is_open()) return nullptr; os.write(a_Code.data(), a_Code.size()); } SourceFile* pSourceFile = new_<SourceFile>(sourcePath.genericString()); if (!addSourceFile(pSourceFile)) { delete_<SourceFile>(pSourceFile); return nullptr; } return pSourceFile; } void Project::removeSourceFile(SourceFile* a_pSourceFile) { auto found = std::find(m_SourceFiles.begin(), m_SourceFiles.end(), a_pSourceFile); PHANTOM_ASSERT(found != m_SourceFiles.end()); m_SourceFiles.erase(found); } bool Project::isPathExisting() const { Path path = getPath(); return path.exists() && path.isDirectory(); } bool Project::hasProjectDependencyCascade(Project* a_pOther) const { if (hasDependency(a_pOther->getModule())) return true; for (Module* pDep : m_Dependencies) { if (Project* pDepProj = m_pSolution->getProjectFromModule(pDep)) if (pDepProj->hasProjectDependencyCascade(a_pOther)) return true; } return false; } void Project::getCompiledSources(CompiledSources& _out) const { for (auto source : m_SourceFiles) { if (auto pCS = Compiler::Get()->getCompiledSource(source)) _out.push_back(pCS); } } phantom::lang::CompiledSources Project::getCompiledSources() const { CompiledSources sources; getCompiledSources(sources); return sources; } phantom::String Project::getPath() const { if (Path::IsAbsolute(m_Path)) { return m_Path; } return Path(m_pSolution->getPath()).parentPath().childPath(m_Path).genericString(); } Project::Project(Solution* a_pSolution, StringView a_Path, Module* a_pModule) : m_pSolution(a_pSolution), m_Path(a_Path), m_pModule(a_pModule) { } ProjectData Project::getData() const { ProjectData data; data.options = m_Options; for (SourceFile* pSourceFile : m_SourceFiles) { data.files.push_back(Path(pSourceFile->getPath()).relative(Path(getPath()).parentPath()).genericString()); } for (Module* pModule : m_Dependencies) { if (Project* pProject = m_pSolution->getProjectFromModule(pModule)) { data.dependencies.push_back(pProject->getName()); } else { PHANTOM_ASSERT(pModule->getPlugin()); data.dependencies.push_back(pModule->getPlugin()->getName()); } } return data; } int Project::getDependencyLevel() const { int maxLevel = 0; for (auto dep : m_Dependencies) { if (Project* pProject = m_pSolution->getProjectFromModule(dep)) { int level = pProject->getDependencyLevel() + 1; if (level > maxLevel) maxLevel = level; } } return maxLevel; } bool Project::setData(ProjectData _data) { PHANTOM_ASSERT(m_pModule); m_Options = _data.options; for (auto& file : _data.files) { Path p(Path(getPath()).parentPath().childPath(file)); if (getSourceFileByPath(p.genericString())) { PHANTOM_LOG(Warning, "file '%.*s' already exists in this project, skipping doublon", PHANTOM_STRING_AS_PRINTF_ARG(p.genericString())); continue; } addSourceFile(new_<SourceFile>(p.genericString())); } for (auto& dep : _data.dependencies) { if (!addDependency(dep)) return false; } return true; } void Project::removeFromDisk() { Path::Remove(getPath()); } } // namespace lang } // namespace phantom
28.935154
120
0.651215
vlmillet
277a4ebe107b13457f249f8345419ed6ebef086f
19,986
hpp
C++
include/chobo/vector_view.hpp
mikke89/chobo-shl
7f888d1c97e0a69da99ab147c7f691ca0c64038f
[ "MIT" ]
147
2016-09-23T19:33:11.000Z
2021-09-25T01:44:10.000Z
include/chobo/vector_view.hpp
mikke89/chobo-shl
7f888d1c97e0a69da99ab147c7f691ca0c64038f
[ "MIT" ]
14
2016-09-27T10:54:35.000Z
2020-10-15T03:56:41.000Z
include/chobo/vector_view.hpp
mikke89/chobo-shl
7f888d1c97e0a69da99ab147c7f691ca0c64038f
[ "MIT" ]
19
2016-09-25T15:49:26.000Z
2021-08-09T06:34:28.000Z
// chobo-vector-view v1.01 // // A view of a std::vector which makes it look as a vector of another type // // MIT License: // Copyright(c) 2016 Chobolabs Inc. // // Permission is hereby granted, free of charge, to any person obtaining // a copy of this software and associated documentation files(the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and / or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to // the following conditions : // // The above copyright notice and this permission notice shall be // included in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT.IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. // // // VERSION HISTORY // // 1.01 (2016-09-27) Added checks for unsupported resizes when // sizeof(view type) is less than half of sizeof(vec type) // 1.00 (2016-09-23) First public release // // // DOCUMENTATION // // Simply include this file wherever you need. // A vector view is a class which attaches to an existing std::vector // and provides a view to its data as an alternative type, along // with a working std::vector-like interface. // // THIS IS DANGEROUS, so you must know the risks ot doing so before // using this library. // // The library includes two classes, for viewing const and non-const // vectors: vector_view, and const_vector_view. To automatically generate // the appropriate pointer, use `make_vector_view<NewType>(your_vector)`. // // Example: // // vector<vector2D> geometry; // ... // fill geometry with data // auto float_view = make_vector_view<float>(geometry); // float_view[5] = 8; // equivalent to geometry[2].y = 8; // // auto view4d = make_vector_view<vector4D>(geometry); // // // add two elements to original array {1,2} and {3,4} // view4d.push_back(make_vector4D(1, 2, 3, 4)); // // Reference: // // vector_view has the most common std::vector methods and operators // const_vector_view has the most common std::vector const methods and operators // // besides that both have a method vector& vec() for getting the underlying // std::vector // // // Configuration // // chobo::vector_view has two configurable settings: // // Config bounds checks: // // By default bounds checks are made in debug mode (via an assert) when accessing // elements (with `at` or `[]`). Iterators are not checked (yet...) // // To disable them, you can define CHOBO_VECTOR_VIEW_NO_DEBUG_BOUNDS_CHECK // before including the header. // // Config POD check: // // By default the library checks that both the source and the target type of // the view are PODs. This is a good idea but sometimes a type is almost a POD // (say constructors to geometry vectors) and is still fit for a view // // To disable the POD checks, define CHOBO_VECTOR_VIEW_NO_POD_CHECK // before including the header. // // Using vector_view with non-POD types // // If you end up using the class with a non-pod type, you should take into // account that when changing the size of the vector via its view ONLY the // constructors and destructors of the source type (the one in the std::vector) // will be called. The target type's constructors and destructors will NEVER be // called. All assignments happen with its assignment operator (oprator=). // // // TESTS // // The tests are included in the header file and use doctest (https://github.com/onqtam/doctest). // To run them, define CHOBO_VECTOR_VIEW_TEST_WITH_DOCTEST before including // the header in a file which has doctest.h already included. // #pragma once #include <vector> #if defined(CHOBO_VECTOR_VIEW_NO_DEBUG_BOUNDS_CHECK) # define _CHOBO_VECTOR_VIEW_BOUNDS_CHECK(i) #else # include <cassert> # define _CHOBO_VECTOR_VIEW_BOUNDS_CHECK(i) assert((i) < this->size()) #endif #if defined(CHOBO_VECTOR_VIEW_NO_POD_CHECK) #define _CHOBO_VECTOR_VIEW_POD_CHECK(T) #else #include <type_traits> #define _CHOBO_VECTOR_VIEW_POD_CHECK(T) static_assert(std::is_pod<T>::value, #T " must be a pod"); #endif namespace chobo { template <typename T, typename U, typename Alloc = std::allocator<T>> class vector_view { _CHOBO_VECTOR_VIEW_POD_CHECK(T) _CHOBO_VECTOR_VIEW_POD_CHECK(U) public: typedef std::vector<T, Alloc> vector; typedef U value_type; typedef T vec_value_type; typedef Alloc allocator_type; typedef typename vector::size_type size_type; typedef typename vector::difference_type difference_type; typedef U& reference; typedef const U& const_reference; typedef U* pointer; typedef const U* const_pointer; typedef pointer iterator; typedef const_pointer const_iterator; typedef std::reverse_iterator<iterator> reverse_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator; explicit vector_view(vector& vec) : m_vector(vec) {} vector_view(const vector_view& other) = delete; vector_view& operator=(const vector_view& other) = delete; vector_view(vector_view&& other) : m_vector(other.m_vector) {} // intentionally don't inavlidate the other view vector_view& operator=(vector_view&& other) { m_vector = std::move(other.m_vector); } vector& vec() { return m_vector; } const vector& vec() const { return m_vector; } template <typename UAlloc> vector_view& operator=(const std::vector<U, UAlloc>& other) { size_type n = other.size(); resize(n); for (size_type i = 0; i < n; ++i) { this->at(i) = other[i]; } } iterator begin() noexcept { return reinterpret_cast<iterator>(m_vector.data()); } const_iterator begin() const noexcept { return reinterpret_cast<const_iterator>(m_vector.data()); } const_iterator cbegin() const noexcept { return begin(); } iterator end() noexcept { return begin() + size(); } const_iterator end() const noexcept { return begin() + size(); } const_iterator cend() const noexcept { return begin() + size(); } reverse_iterator rbegin() noexcept { return reverse_iterator(end()); } const_reverse_iterator rbegin() const noexcept { return const_reverse_iterator(end()); } const_reverse_iterator crbegin() const noexcept { return const_reverse_iterator(end()); } reverse_iterator rend() noexcept { return reverse_iterator(begin()); } const_reverse_iterator rend() const noexcept { return const_reverse_iterator(begin()); } const_reverse_iterator crend() const noexcept { return const_reverse_iterator(begin()); } size_type size() const noexcept { return (m_vector.size() * sizeof(vec_value_type)) / sizeof(value_type); } size_type capacity() const noexcept { return (m_vector.capacity() * sizeof(vec_value_type)) / sizeof(value_type); } size_type max_size() const noexcept { return (m_vector.max_size() * sizeof(vec_value_type)) / sizeof(value_type); } void resize(size_type n) { size_type s = (n * sizeof(value_type) + sizeof(vec_value_type) - 1) / sizeof(vec_value_type); m_vector.resize(s); #if !defined CHOBO_VECTOR_VIEW_NO_RESIZE_CHECK // Is this assert fails, here's what has happened: // The size of the type of the view is smaller than the half of the size of the vector. // Since the vector's number of elements must be a whole number, we cannot resize it to // hold cerrtain numbers of the type of the view (ie not multiples of the sizeof(vec_type)/sizeof(view_type)) // // In theory this could be supported if we add a custom size variable for the view class // However, besides the increase in complexity, this will cause us to lose a cruicial // feature - having changes to the vector from outside be automatically reflected on the view // because it's only a view, and has no state of its own. // Adding such size will be a state for this class. // Perhaps if there is need such a feature could be implemented but in a class // with another name, where it's clear that persisting it would be hurtful. // // So to avoid potential bugs this assertion, as well as the static assertions in // push_back and pop_back have been added. assert(size() == n && "unsupported resize"); #endif } void resize(size_type n, const value_type& val) { size_type prev_size = size(); resize(n); for (iterator i = begin() + prev_size; i != end(); ++i) { *i = val; } } bool empty() const noexcept { return m_vector.size() * sizeof(vec_value_type) < sizeof(value_type); } void reserve(size_type n) { n = (n * sizeof(value_type) + sizeof(vec_value_type) - 1) / sizeof(vec_value_type); m_vector.reserve(n); } void shrink_to_fit() { m_vector.shrink_to_fit(); } const_reference at(size_type i) const { _CHOBO_VECTOR_VIEW_BOUNDS_CHECK(i); return *(begin() + i); } reference at(size_type i) { _CHOBO_VECTOR_VIEW_BOUNDS_CHECK(i); return *(begin() + i); } const_reference operator[](size_type i) const { return at(i); } reference operator[](size_type i) { return at(i); } const_reference front() const { return at(0); } reference front() { return at(0); } const_reference back() const { return *(end() - 1); } reference back() { return *(end() - 1); } const_pointer data() const noexcept { return begin(); } pointer data() noexcept { return begin(); } void push_back(const value_type& val) { // see comment in resize for an explanation static_assert(sizeof(value_type) > sizeof(vec_value_type) / 2, "vector_view::push_back is not supported for value_type with size smaller than half of the viewed type"); resize(size() + 1, val); } void push_back(value_type&& val) { // see comment in resize for an explanation static_assert(sizeof(value_type) > sizeof(vec_value_type) / 2, "vector_view::push_back is not supported for value_type with size smaller than half of the viewed type"); resize(size() + 1); back() = std::move(val); } void pop_back() { // see comment in resize for an explanation static_assert(sizeof(value_type) > sizeof(vec_value_type) / 2, "vector_view::pop_back is not supported for value_type with size smaller than half of the viewed type"); resize(size() - 1); } void clear() noexcept { m_vector.clear(); } private: vector& m_vector; }; /////////////////////////////////////////////////////////////////////////////// template <typename T, typename U, typename Alloc = std::allocator<T>> class const_vector_view { _CHOBO_VECTOR_VIEW_POD_CHECK(T) _CHOBO_VECTOR_VIEW_POD_CHECK(U) public: typedef std::vector<T, Alloc> vector; typedef U value_type; typedef T vec_value_type; typedef Alloc allocator_type; typedef typename vector::size_type size_type; typedef typename vector::difference_type difference_type; typedef U& reference; typedef const U& const_reference; typedef U* pointer; typedef const U* const_pointer; typedef pointer iterator; typedef const_pointer const_iterator; typedef std::reverse_iterator<iterator> reverse_iterator; typedef std::reverse_iterator<const_iterator> const_reverse_iterator; explicit const_vector_view(const vector& vec) : m_vector(vec) {} const_vector_view(const const_vector_view& other) = delete; const_vector_view& operator=(const const_vector_view& other) = delete; const_vector_view(const_vector_view&& other) : m_vector(other.m_vector) {} // intentionally don't inavlidate the other view const_vector_view& operator=(const_vector_view&& other) = delete; const vector& vec() const { return m_vector; } const_iterator begin() const noexcept { return reinterpret_cast<const_iterator>(m_vector.data()); } const_iterator cbegin() const noexcept { return begin(); } const_iterator end() const noexcept { return begin() + size(); } const_iterator cend() const noexcept { return begin() + size(); } const_reverse_iterator rbegin() const noexcept { return const_reverse_iterator(end()); } const_reverse_iterator crbegin() const noexcept { return const_reverse_iterator(end()); } const_reverse_iterator rend() const noexcept { return const_reverse_iterator(begin()); } const_reverse_iterator crend() const noexcept { return const_reverse_iterator(begin()); } size_type size() const noexcept { return (m_vector.size() * sizeof(vec_value_type)) / sizeof(value_type); } size_type capacity() const noexcept { return (m_vector.capacity() * sizeof(vec_value_type)) / sizeof(value_type); } size_type max_size() const noexcept { return (m_vector.max_size() * sizeof(vec_value_type)) / sizeof(value_type); } bool empty() const noexcept { return m_vector.size() * sizeof(vec_value_type) < sizeof(value_type); } const_reference at(size_type i) const { _CHOBO_VECTOR_VIEW_BOUNDS_CHECK(i); return *(begin() + i); } const_reference operator[](size_type i) const { return at(i); } const_reference front() const { return at(0); } const_reference back() const { return *(end() - 1); } const_pointer data() const noexcept { return begin(); } private: const vector& m_vector; }; /////////////////////////////////////////////////////////////////////////////// template <typename U, typename T, typename Alloc> vector_view<T, U, Alloc> make_vector_view(std::vector<T, Alloc>& vec) { return vector_view<T, U, Alloc>(vec); } template <typename U, typename T, typename Alloc> const_vector_view<T, U, Alloc> make_vector_view(const std::vector<T, Alloc>& vec) { return const_vector_view<T, U, Alloc>(vec); } } #if defined(CHOBO_VECTOR_VIEW_TEST_WITH_DOCTEST) namespace chobo_vector_view_test { struct vector3D { int x, y, z; }; struct vector4D { int x, y, z, w; }; struct chobo_vector3D { int a, b, c; }; } TEST_CASE("[vector_view] test") { using namespace chobo; using namespace chobo_vector_view_test; std::vector<int> vec; auto v3dview = make_vector_view<vector3D>(vec); CHECK(v3dview.empty()); CHECK(v3dview.size() == 0); vec.push_back(5); CHECK(v3dview.empty()); CHECK(v3dview.size() == 0); vec.push_back(10); CHECK(v3dview.empty()); CHECK(v3dview.size() == 0); vec.push_back(15); CHECK(!v3dview.empty()); CHECK(v3dview.size() == 1); CHECK(v3dview.front().x == 5); CHECK(v3dview.front().y == 10); CHECK(v3dview.front().z == 15); CHECK(v3dview.back().x == 5); CHECK(v3dview.back().y == 10); CHECK(v3dview.back().z == 15); v3dview.resize(2); CHECK(vec.size() == 6); v3dview[1].x = 2; v3dview.at(1).y = 4; (v3dview.begin() + 1)->z = 6; CHECK(vec[3] == 2); CHECK(vec[4] == 4); CHECK(vec[5] == 6); CHECK((v3dview.rend() - 2)->z == 6); vector3D foo = { 1,3,5 }; v3dview.resize(4, foo); CHECK(vec.size() == 12); CHECK(vec.back() == 5); CHECK(vec[6] == 1); CHECK(v3dview.rbegin()->y == 3); v3dview.resize(3); CHECK(vec.size() == 9); CHECK(v3dview.crbegin()->z == 5); v3dview.push_back(foo); CHECK(vec.size() == 12); CHECK(vec[9] == 1); CHECK(vec[10] == 3); CHECK(vec[11] == 5); v3dview.pop_back(); CHECK(vec.size() == 9); v3dview.clear(); CHECK(vec.empty()); vec.resize(5); CHECK(v3dview.size() == 1); v3dview.resize(2); CHECK(vec.size() == 6); void* data = vec.data(); CHECK(v3dview.data() == data); // same std::vector<chobo_vector3D> vec3d; auto v3dview_chobo = make_vector_view<vector3D>(vec3d); vec3d.resize(5); CHECK(v3dview_chobo.size() == 5); vec3d[2].a = 7; vec3d[2].b = 8; vec3d[2].c = 9; CHECK(v3dview_chobo[2].x == 7); CHECK(v3dview_chobo.at(2).y == 8); CHECK((v3dview_chobo.begin() + 2)->z == 9); // unequal std::vector<vector4D> vec4d; auto v3dview4d = make_vector_view<vector3D>(vec4d); vec4d.resize(1); CHECK(v3dview4d.size() == 1); v3dview4d.resize(2); CHECK(v3dview4d.size() == 2); CHECK(vec4d.size() == 2); // smaller auto iview = make_vector_view<int>(vec4d); CHECK(iview.size() == 8); iview.resize(12); CHECK(vec4d.size() == 3); } TEST_CASE("[const_vector_view] test") { using namespace chobo; using namespace chobo_vector_view_test; std::vector<int> vvec; const auto& vec = vvec; auto v3dview = make_vector_view<vector3D>(vec); CHECK(v3dview.empty()); CHECK(v3dview.size() == 0); vvec.push_back(5); CHECK(v3dview.empty()); CHECK(v3dview.size() == 0); vvec.push_back(10); CHECK(v3dview.empty()); CHECK(v3dview.size() == 0); vvec.push_back(15); CHECK(!v3dview.empty()); CHECK(v3dview.size() == 1); CHECK(v3dview.front().x == 5); CHECK(v3dview.front().y == 10); CHECK(v3dview.front().z == 15); CHECK(v3dview.back().x == 5); CHECK(v3dview.back().y == 10); CHECK(v3dview.back().z == 15); vvec.resize(6); CHECK(v3dview.size() == 2); vvec[3] = 2; vvec[4] = 4; vvec[5] = 6; CHECK(v3dview[1].x == 2); CHECK(v3dview.at(1).y == 4); CHECK((v3dview.begin() + 1)->z == 6); CHECK((v3dview.rend() - 2)->z == 6); vvec.resize(12); CHECK(v3dview.size() == 4); vvec[10] = 3; CHECK(v3dview.rbegin()->y == 3); vvec.resize(9); CHECK(v3dview.size() == 3); vvec.clear(); CHECK(v3dview.empty()); vvec.resize(5); CHECK(v3dview.size() == 1); const void* data = vec.data(); CHECK(v3dview.data() == data); // same std::vector<chobo_vector3D> vvec3d; const auto& vec3d = vvec3d; auto v3dview_chobo = make_vector_view<vector3D>(vec3d); vvec3d.resize(5); CHECK(v3dview_chobo.size() == 5); vvec3d[2].a = 7; vvec3d[2].b = 8; vvec3d[2].c = 9; CHECK(v3dview_chobo[2].x == 7); CHECK(v3dview_chobo.at(2).y == 8); CHECK((v3dview_chobo.begin() + 2)->z == 9); // unequal std::vector<vector4D> vvec4d; const auto& vec4d = vvec4d; auto v3dview4d = make_vector_view<vector3D>(vec4d); vvec4d.resize(1); CHECK(v3dview4d.size() == 1); vvec4d.resize(2); CHECK(v3dview4d.size() == 2); vvec4d.resize(3); CHECK(v3dview4d.size() == 4); // smaller auto iview = make_vector_view<int>(vec4d); CHECK(iview.size() == 12); } #endif
26.262812
117
0.631992
mikke89
277c302017dae8c7514180218fc0b1412a451c54
3,057
cpp
C++
array_inversion/main.cpp
8alery/algorithms
67cf12724f61cdae7eff1788062c1b7c26f98ca4
[ "Apache-2.0" ]
null
null
null
array_inversion/main.cpp
8alery/algorithms
67cf12724f61cdae7eff1788062c1b7c26f98ca4
[ "Apache-2.0" ]
null
null
null
array_inversion/main.cpp
8alery/algorithms
67cf12724f61cdae7eff1788062c1b7c26f98ca4
[ "Apache-2.0" ]
null
null
null
#include <iostream> #include <vector> #include <random> #include <algorithm> #include <queue> #include <limits> void printVector(std::vector<int> array){ for (auto v:array){ std::cout << v << " "; } std::cout << std::endl; } int next_power_of_two(int v){ v--; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; return v++; } long merge_sort_iterative(std::vector<int> array){ long inversions = 0; int sizeModified = next_power_of_two(array.size()); std::queue<std::vector<int>> queue; for (auto value:array){ queue.push(std::vector<int>{ value }); } for (int i = array.size(); i <= sizeModified; i++){ queue.push(std::vector<int>{ std::numeric_limits<int>::max() }); } while (queue.size() > 1){ auto first = queue.front(); queue.pop(); auto second = queue.front(); queue.pop(); std::cout << "first: "; printVector(first); std::cout << "second: "; printVector(second); int i = 0, j = 0, totalSize = first.size() + second.size(); std::vector<int> sorted; int current; long currentInversions = 0; while (i < first.size() && j < second.size()){ if (first[i] <= second[j]){ current = first[i++]; } else { current = second[j++]; currentInversions += (first.size() - i); } sorted.push_back(current); } while (i < first.size()) { sorted.push_back(first[i++]); } while (j < second.size()) { sorted.push_back(second[j++]); } queue.push(sorted); std::cout << "inversions: " << currentInversions << std::endl; std::cout << "sorted: "; printVector(sorted); inversions += currentInversions; } std::cout << "inversions: " << inversions << std::endl; std::cout << "sorted: "; printVector(queue.front()); return inversions; } int main() { // std::vector<int> array = {7, 6, 5, 4, 3, 2, 1 }; // int n = array.size(); int n; std::cin >> n; std::vector<int> array; for (int i = 0; i < n; i++){ int element = 0; //dis(gen); std::cin >> element; array.push_back(element); } long inversionsCount = merge_sort_iterative(array); std::cout << inversionsCount << std::endl; return 0; // int n = 100000; // std::vector<int> array; // std::random_device rd; //Will be used to obtain a seed for the random number engine // std::mt19937 gen(rd()); //Standard mersenne_twister_engine seeded with rd() // std::uniform_int_distribution<> dis(1, 1000000000); // for (int i = 0; i < n; i++){ // int element = dis(gen); // array.push_back(element); // } // long inversionsCount = merge_sort_iterative(array); // std::cout << inversionsCount << std::endl; // return 0; }
26.815789
94
0.514884
8alery
277d97de0c9342aa004f99d363161c6cd19d89b8
54
cpp
C++
App/FIFOServer/ClientB.cpp
Lw-Cui/Compression-server
3501d746f14145d3764700d40d3672a0da0b2eae
[ "MIT" ]
3
2016-12-10T16:06:20.000Z
2017-06-25T12:47:06.000Z
App/FIFOServer/ClientB.cpp
Lw-Cui/Compression-server
3501d746f14145d3764700d40d3672a0da0b2eae
[ "MIT" ]
2
2017-05-15T15:22:36.000Z
2017-05-20T15:01:25.000Z
App/FIFOServer/ClientB.cpp
Lw-Cui/Tiny-server
3501d746f14145d3764700d40d3672a0da0b2eae
[ "MIT" ]
null
null
null
#define CLIENT "ClientB" #include "ClientBody.cpp"
9
25
0.722222
Lw-Cui
277ec282bacc3d331bb049b9c28b4d96dc43d669
4,003
cpp
C++
src/Samples/Synthetic_TwoView/main.cpp
eivan/one-ac-pose
79451626238f47130578c18b65e37cabd7332de1
[ "MIT" ]
4
2020-07-31T19:12:44.000Z
2022-02-22T14:34:48.000Z
src/Samples/Synthetic_TwoView/main.cpp
eivan/OneAC
79451626238f47130578c18b65e37cabd7332de1
[ "MIT" ]
null
null
null
src/Samples/Synthetic_TwoView/main.cpp
eivan/OneAC
79451626238f47130578c18b65e37cabd7332de1
[ "MIT" ]
null
null
null
#include <iostream> #include <time.h> #include <common/numeric.hpp> #include <common/camera_radial.hpp> #include <common/local_affine_frame.hpp> #include <common/pose_estimation.hpp> using namespace OneACPose; void compute_synthetic_LAF( const Mat34& P, const common::CameraPtr& cam, const Vec3& X, const Mat32& dX_dx, common::Feature_LAF_D& laf); int main() { srand(time(0)); // ========================================================================== // initialize two poses // ========================================================================== const Vec3 target{ Vec3::Random() }; const double distance_from_target = 5; // init pose 0 const Vec3 C0{ Vec3::Random().normalized() * distance_from_target }; const Mat3 R0{ common::LookAt(target - C0) }; const Mat34 P0{ (Mat34() << R0, -R0 * C0).finished() }; // init pose 1 const Vec3 C1{ Vec3::Random().normalized() * distance_from_target }; const Mat3 R1{ common::LookAt(target - C1) }; const Mat34 P1{ (Mat34() << R1, -R1 * C1).finished() }; // ========================================================================== // initialize two cameras // ========================================================================== common::CameraPtr cam0 = std::make_shared<common::Camera_Radial>(); cam0->set_params({ 1000.0, 1000.0, 500.0, 500.0, 0.0, 0.0, 0.0 }); common::CameraPtr cam1 = std::make_shared<common::Camera_Radial>(); cam1->set_params({ 1000.0, 1000.0, 500.0, 500.0, 0.0, 0.0, 0.0 }); // ========================================================================== // initialize 3D structure // ========================================================================== // surface point const Vec3 X{ Vec3::Random() }; // surface normal at X const Vec3 N{ Vec3::Random().normalized() }; // local frame of surface around X (perpendicular to N) const Mat32 dX_dx{ common::nullspace(N) }; // ========================================================================== // compute synthetic LAFs with depths, by projecting X and dX_dx onto the image plane // ========================================================================== common::Feature_LAF_D laf0; compute_synthetic_LAF(P0, cam0, X, dX_dx, laf0); common::Feature_LAF_D laf1; compute_synthetic_LAF(P1, cam1, X, dX_dx, laf1); // ========================================================================== // perform estimation // ========================================================================== double scale; Mat3 R; Vec3 t; estimatePose_1ACD( cam0, cam1, // calibrated cameras laf0, // LAF 0: 2d location, 2D shape, depth and depth derivatives laf1, // LAF 1, 2d location, 2D shape, depth and depth derivatives scale, R, t); // ========================================================================== // measure errors wrt ground truth // ========================================================================== std::cout << "R_gt:\t" << (R1 * R0.transpose()) << std::endl; std::cout << "R_est:\t" << R << std::endl; std::cout << "t_est:\t" << (t).transpose() << std::endl; std::cout << "t_gt:\t" << (R1 * (C0 - C1)).transpose() << std::endl; std::cout << "scale:\t" << scale << std::endl; } void compute_synthetic_LAF( const Mat34& P, const common::CameraPtr& cam, const Vec3& X, const Mat32& dX_dx, common::Feature_LAF_D& laf) { const Vec3 Y = P * X.homogeneous(); const Mat32 dY_dx = P.topLeftCorner<3, 3>() * dX_dx; Mat23 dx_dY; //std::tie(laf.x.noalias(), dx_dY.noalias()) = cam->p_gradient(Y); // g++8 error, msvc works std::tie(laf.x, dx_dY) = cam->p_gradient(Y); // affine shape around x, aka dx0_dx laf.M.noalias() = dx_dY * dY_dx; RowVec3 dlambda_dY; //std::tie(laf.lambda, dlambda_dY.noalias()) = cam->depth_gradient(Y); // g++8 error, msvc works std::tie(laf.lambda, dlambda_dY) = cam->depth_gradient(Y); // aka dlambda_dx laf.dlambda_dx.noalias() = dlambda_dY * dY_dx; }
36.390909
98
0.501624
eivan
95970213c76d95fd6fc8c0f6d18e242c1c502780
4,419
cpp
C++
code/clustered_setup/fgm-master/LSGMcode-master/algorithms/graphm-0.52/algorithm_umeyama.cpp
mk2510/jointGraphMatchingAndClustering
52f579a07d106cb241d21dbc29a2ec9e9c77b254
[ "Unlicense" ]
10
2015-08-27T14:10:38.000Z
2021-02-08T21:38:55.000Z
code/clustered_setup/fgm-master/LSGMcode-master/algorithms/graphm-0.52/algorithm_umeyama.cpp
mk2510/jointGraphMatchingAndClustering
52f579a07d106cb241d21dbc29a2ec9e9c77b254
[ "Unlicense" ]
2
2015-02-20T01:53:58.000Z
2016-08-24T11:14:00.000Z
code/clustered_setup/fgm-master/LSGMcode-master/algorithms/graphm-0.52/algorithm_umeyama.cpp
mk2510/jointGraphMatchingAndClustering
52f579a07d106cb241d21dbc29a2ec9e9c77b254
[ "Unlicense" ]
7
2016-08-23T11:44:05.000Z
2021-08-06T01:41:25.000Z
/*************************************************************************** * Copyright (C) 2008 by Mikhail Zaslavskiy * * [email protected] * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #include "algorithm_umeyama.h" match_result algorithm_umeyama::match(graph& g, graph& h,gsl_matrix* gm_P_i,gsl_matrix* gm_ldh,double dalpha_ldh) { if (bverbose) *gout<<"Umeyama algorithm"<<std::endl; bool bblast_match_end=(get_param_i("blast_match_proj")==1); //some duplicate variables gsl_matrix* gm_Ag_d=g.get_descmatrix(cdesc_matrix); gsl_matrix* gm_Ah_d=h.get_descmatrix(cdesc_matrix); if (pdebug.ivalue) gsl_matrix_printout(gm_Ag_d,"Ag",pdebug.strvalue); if (pdebug.ivalue) gsl_matrix_printout(gm_Ah_d,"Ah",pdebug.strvalue); //memory allocation gsl_eigen_symmv_workspace * gesw= gsl_eigen_symmv_alloc (N); gsl_vector* eval_g=gsl_vector_alloc(N); gsl_vector* eval_h=gsl_vector_alloc(N); gsl_matrix* evec_g=gsl_matrix_alloc(N,N); gsl_matrix* evec_h=gsl_matrix_alloc(N,N); if (bverbose) *gout<<"Memory allocation finished"<<std::endl; //eigenvalues and eigenvectors for both matrices gsl_eigen_symmv (gm_Ag_d, eval_g,evec_g,gesw); if (bverbose) *gout<<"Ag eigen vectors"<<std::endl; gsl_eigen_symmv (gm_Ah_d, eval_h,evec_h,gesw); gsl_matrix_free(gm_Ag_d); gsl_matrix_free(gm_Ah_d); if (bverbose) *gout<<"Ah eigen vectors"<<std::endl; gsl_eigen_symmv_sort (eval_g, evec_g, GSL_EIGEN_SORT_VAL_DESC); gsl_eigen_symmv_sort (eval_h, evec_h, GSL_EIGEN_SORT_VAL_DESC); if (pdebug.ivalue){ gsl_matrix_printout(eval_g,"eval_g",pdebug.strvalue); gsl_matrix_printout(eval_h,"eval_h",pdebug.strvalue); gsl_matrix_printout(evec_g,"evec_g",pdebug.strvalue); gsl_matrix_printout(evec_h,"evec_h",pdebug.strvalue);}; gsl_matrix_abs(evec_g); gsl_matrix_abs(evec_h); if (pdebug.ivalue) gsl_matrix_printout(evec_g,"abs(evec_g)",pdebug.strvalue); if (pdebug.ivalue) gsl_matrix_printout(evec_h,"abs(evec_h)",pdebug.strvalue); //loss matrix construction gsl_matrix* C=gsl_matrix_alloc(N,N); if (bverbose) *gout<<"Loss function matrix allocation"<<std::endl; gsl_blas_dgemm(CblasNoTrans,CblasTrans,1,evec_g,evec_h,0,C); if (pdebug.ivalue) gsl_matrix_printout(C,"C=abs(evec_g)*abs(evec_h')",pdebug.strvalue); //label cost matrix update_C_hungarian(C,-1); //scaling for hungarian double dscale_factor =gsl_matrix_max_abs(C); dscale_factor=(dscale_factor>EPSILON)?dscale_factor:EPSILON; dscale_factor=10000/dscale_factor; gsl_matrix_scale(C,-dscale_factor); gsl_matrix_transpose(C); if (pdebug.ivalue) gsl_matrix_printout(C,"scale(C)",pdebug.strvalue); gsl_matrix* gm_P=gsl_matrix_alloc(N,N); gsl_matrix_hungarian(C,gm_P,NULL,NULL,false,(bblast_match_end?gm_ldh:NULL),false); if (pdebug.ivalue) gsl_matrix_printout(gm_P,"gm_P",pdebug.strvalue); if (bverbose) *gout<<"Hungarian solved"<<std::endl; match_result mres; mres.gm_P=gm_P; //initial score mres.vd_trace.push_back(graph_dist(g,h,cscore_matrix)); //final score mres.vd_trace.push_back(graph_dist(g,h,gm_P,cscore_matrix)); //other output parameters mres.dres=mres.vd_trace.at(1); mres.inum_iteration=2; //transpose matrix save mres.gm_P=gm_P; mres.gm_P_exact=NULL; return mres; }
47.010638
113
0.661914
mk2510
9598d34a7577c3b1097b2cdac4e5058f7affa603
683
cpp
C++
drivers/port_io/port_io.cpp
Tomer2003/ro-os
843b0258e8d14de7cc24f9ae9bfa19fe02ccd00d
[ "MIT" ]
null
null
null
drivers/port_io/port_io.cpp
Tomer2003/ro-os
843b0258e8d14de7cc24f9ae9bfa19fe02ccd00d
[ "MIT" ]
null
null
null
drivers/port_io/port_io.cpp
Tomer2003/ro-os
843b0258e8d14de7cc24f9ae9bfa19fe02ccd00d
[ "MIT" ]
null
null
null
#include "port_io.hpp" void portWriteByte(unsigned short portAddress, unsigned char data) { __asm__ __volatile__("out %%al, %%dx" :: "a"(data), "d"(portAddress)); } unsigned char portReadByte(unsigned short portAddress) { unsigned char result; __asm__ __volatile__("in %%dx, %%al" : "=a"(result) : "d"(portAddress)); return result; } void portWriteWord(unsigned short portAddress, unsigned short data) { __asm__ __volatile__("out %%ax, %%dx" :: "a"(data), "d"(portAddress)); } unsigned short portReadWord(unsigned short portAddress) { unsigned short result; __asm__ __volatile__("in %%dx, %%ax" : "=a"(result) : "d"(portAddress)); return result; }
27.32
76
0.679356
Tomer2003
95a2502d0f83bdf392fc3037a78b0db10a6d1f06
15,415
cpp
C++
src/apps/mplayerc/EditListEditor.cpp
chinajeffery/MPC-BE--1.2.3
2229fde5535f565ba4a496a7f73267bd2c1ad338
[ "MIT" ]
null
null
null
src/apps/mplayerc/EditListEditor.cpp
chinajeffery/MPC-BE--1.2.3
2229fde5535f565ba4a496a7f73267bd2c1ad338
[ "MIT" ]
1
2019-11-14T04:18:32.000Z
2019-11-14T04:18:32.000Z
src/apps/mplayerc/EditListEditor.cpp
chinajeffery/MPC-BE--1.2.3
2229fde5535f565ba4a496a7f73267bd2c1ad338
[ "MIT" ]
null
null
null
/* * $Id: EditListEditor.cpp 2326 2013-03-21 12:41:26Z aleksoid $ * * (C) 2006-2013 see Authors.txt * * This file is part of MPC-BE. * * MPC-BE is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * MPC-BE is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ #include "stdafx.h" #include "EditListEditor.h" CClip::CClip() { m_rtIn = INVALID_TIME; m_rtOut = INVALID_TIME; } void CClip::SetIn(LPCTSTR strVal) { m_rtIn = StringToReftime (strVal); } void CClip::SetOut(LPCTSTR strVal) { m_rtOut = StringToReftime (strVal); } void CClip::SetIn (REFERENCE_TIME rtVal) { m_rtIn = rtVal; if (m_rtIn > m_rtOut) { m_rtOut = INVALID_TIME; } }; void CClip::SetOut (REFERENCE_TIME rtVal) { m_rtOut = rtVal; if (m_rtIn > m_rtOut) { m_rtIn = INVALID_TIME; } }; CString CClip::GetIn() { if (m_rtIn == INVALID_TIME) { return _T(""); } else { return ReftimeToString(m_rtIn); } } CString CClip::GetOut() { if (m_rtOut == INVALID_TIME) { return _T(""); } else { return ReftimeToString(m_rtOut); } } IMPLEMENT_DYNAMIC(CEditListEditor, CPlayerBar) CEditListEditor::CEditListEditor(void) { m_CurPos = NULL; m_bDragging = FALSE; m_nDragIndex = -1; m_nDropIndex = -1; m_bFileOpen = false; } CEditListEditor::~CEditListEditor(void) { SaveEditListToFile(); } BEGIN_MESSAGE_MAP(CEditListEditor, CPlayerBar) ON_WM_SIZE() ON_NOTIFY(LVN_ITEMCHANGED, IDC_EDITLIST, OnLvnItemchanged) ON_NOTIFY(LVN_KEYDOWN, IDC_EDITLIST, OnLvnKeyDown) ON_WM_DRAWITEM() ON_NOTIFY(LVN_BEGINDRAG, IDC_EDITLIST, OnBeginDrag) ON_WM_MOUSEMOVE() ON_WM_LBUTTONUP() ON_WM_TIMER() ON_NOTIFY(LVN_BEGINLABELEDIT, IDC_EDITLIST, OnBeginlabeleditList) ON_NOTIFY(LVN_DOLABELEDIT, IDC_EDITLIST, OnDolabeleditList) ON_NOTIFY(LVN_ENDLABELEDIT, IDC_EDITLIST, OnEndlabeleditList) END_MESSAGE_MAP() BOOL CEditListEditor::Create(CWnd* pParentWnd, UINT defDockBarID) { if (!__super::Create(ResStr(IDS_EDIT_LIST_EDITOR), pParentWnd, ID_VIEW_EDITLISTEDITOR, defDockBarID, _T("Edit List Editor"))) { return FALSE; } m_stUsers.Create (_T("User :"), WS_VISIBLE|WS_CHILD, CRect (5,5,100,21), this, 0); m_cbUsers.Create (WS_CHILD|WS_VISIBLE|CBS_DROPDOWNLIST, CRect (90,0, 260, 21), this, 0); FillCombo(_T("Users.txt"), m_cbUsers, false); m_stHotFolders.Create (_T("Hot folder :"), WS_VISIBLE|WS_CHILD, CRect (5,35,100,51), this, 0); m_cbHotFolders.Create (WS_CHILD|WS_VISIBLE|CBS_DROPDOWNLIST, CRect (90,30, 260, 21), this, 0); FillCombo(_T("HotFolders.txt"), m_cbHotFolders, true); m_list.CreateEx( WS_EX_DLGMODALFRAME|WS_EX_CLIENTEDGE, WS_CHILD|WS_VISIBLE|WS_CLIPSIBLINGS|WS_CLIPCHILDREN|WS_TABSTOP |LVS_OWNERDRAWFIXED |LVS_REPORT|LVS_SINGLESEL|LVS_AUTOARRANGE|LVS_NOSORTHEADER, CRect(0,0,100,100), this, IDC_EDITLIST); m_list.SetExtendedStyle(m_list.GetExtendedStyle()|LVS_EX_FULLROWSELECT|LVS_EX_DOUBLEBUFFER); m_list.InsertColumn(COL_IN, _T("Nb."), LVCFMT_LEFT, 35); m_list.InsertColumn(COL_IN, _T("In"), LVCFMT_LEFT, 100); m_list.InsertColumn(COL_OUT, _T("Out"), LVCFMT_LEFT, 100); m_list.InsertColumn(COL_NAME, _T("Name"), LVCFMT_LEFT, 150); m_fakeImageList.Create(1, 16, ILC_COLOR4, 10, 10); m_list.SetImageList(&m_fakeImageList, LVSIL_SMALL); return TRUE; } void CEditListEditor::OnSize(UINT nType, int cx, int cy) { CSizingControlBarG::OnSize(nType, cx, cy); ResizeListColumn(); } void CEditListEditor::ResizeListColumn() { if (::IsWindow(m_list.m_hWnd)) { CRect r; GetClientRect(r); r.DeflateRect(2, 2); r.top += 60; m_list.SetRedraw(FALSE); m_list.MoveWindow(r); m_list.GetClientRect(r); m_list.SetRedraw(TRUE); } } void CEditListEditor::SaveEditListToFile() { if ((m_bFileOpen || m_EditList.GetCount() >0) && !m_strFileName.IsEmpty()) { CStdioFile EditListFile; if (EditListFile.Open (m_strFileName, CFile::modeCreate|CFile::modeWrite)) { CString strLine; int nIndex; CString strUser; CString strHotFolders; nIndex = m_cbUsers.GetCurSel(); if (nIndex >= 0) { m_cbUsers.GetLBText(nIndex, strUser); } nIndex = m_cbHotFolders.GetCurSel(); if (nIndex >= 0) { m_cbHotFolders.GetLBText(nIndex, strHotFolders); } POSITION pos = m_EditList.GetHeadPosition(); for (int i = 0; pos; i++, m_EditList.GetNext(pos)) { CClip& CurClip = m_EditList.GetAt(pos); if (CurClip.HaveIn() && CurClip.HaveOut()) { strLine.Format(_T("%s\t%s\t%s\t%s\t%s\n"), CurClip.GetIn(), CurClip.GetOut(), CurClip.GetName(), strUser, strHotFolders); EditListFile.WriteString (strLine); } } EditListFile.Close(); } } } void CEditListEditor::CloseFile() { SaveEditListToFile(); m_EditList.RemoveAll(); m_list.DeleteAllItems(); m_CurPos = NULL; m_strFileName = ""; m_bFileOpen = false; m_cbHotFolders.SetCurSel(0); } void CEditListEditor::OpenFile(LPCTSTR lpFileName) { CString strLine; CStdioFile EditListFile; CString strUser; CString strHotFolders; CloseFile(); m_strFileName.Format(_T("%s.edl"), lpFileName); if (EditListFile.Open (m_strFileName, CFile::modeRead)) { m_bFileOpen = true; while (EditListFile.ReadString(strLine)) { //int nPos = 0; CString strIn; // = strLine.Tokenize(_T(" \t"), nPos); CString strOut; // = strLine.Tokenize(_T(" \t"), nPos); CString strName; // = strLine.Tokenize(_T(" \t"), nPos); AfxExtractSubString (strIn, strLine, 0, _T('\t')); AfxExtractSubString (strOut, strLine, 1, _T('\t')); AfxExtractSubString (strName, strLine, 2, _T('\t')); if (strUser.IsEmpty()) { AfxExtractSubString (strUser, strLine, 3, _T('\t')); SelectCombo(strUser, m_cbUsers); } if (strHotFolders.IsEmpty()) { AfxExtractSubString (strHotFolders, strLine, 4, _T('\t')); SelectCombo(strHotFolders, m_cbHotFolders); } if (!strIn.IsEmpty() && !strOut.IsEmpty()) { CClip NewClip; NewClip.SetIn (strIn); NewClip.SetOut (strOut); NewClip.SetName(strName); InsertClip (NULL, NewClip); } } EditListFile.Close(); } else { m_bFileOpen = false; } if (m_NameList.GetCount() == 0) { CStdioFile NameFile; CString str; if (NameFile.Open (_T("EditListNames.txt"), CFile::modeRead)) { while (NameFile.ReadString(str)) { m_NameList.Add(str); } NameFile.Close(); } } } void CEditListEditor::SetIn (REFERENCE_TIME rtIn) { if (m_CurPos != NULL) { CClip& CurClip = m_EditList.GetAt (m_CurPos); CurClip.SetIn (rtIn); m_list.Invalidate(); } } void CEditListEditor::SetOut(REFERENCE_TIME rtOut) { if (m_CurPos != NULL) { CClip& CurClip = m_EditList.GetAt (m_CurPos); CurClip.SetOut (rtOut); m_list.Invalidate(); } } void CEditListEditor::NewClip(REFERENCE_TIME rtVal) { CClip NewClip; if (m_CurPos != NULL) { CClip& CurClip = m_EditList.GetAt (m_CurPos); if (CurClip.HaveIn()) { if (!CurClip.HaveOut()) { CurClip.SetOut (rtVal); } } } m_CurPos = InsertClip (m_CurPos, NewClip); m_list.Invalidate(); } void CEditListEditor::Save() { SaveEditListToFile(); } int CEditListEditor::FindIndex(POSITION pos) { int iItem = 0; POSITION CurPos = m_EditList.GetHeadPosition(); while (CurPos && CurPos != pos) { m_EditList.GetNext (CurPos); iItem++; } return iItem; } POSITION CEditListEditor::InsertClip(POSITION pos, CClip& NewClip) { LVITEM lv; POSITION NewClipPos; if (pos == NULL) { NewClipPos = m_EditList.AddTail (NewClip); } else { NewClipPos = m_EditList.InsertAfter (pos, NewClip); } lv.mask = LVIF_STATE | LVIF_TEXT; lv.iItem = FindIndex (pos); lv.iSubItem = 0; lv.pszText = _T(""); lv.state = m_list.GetItemCount()==0 ? LVIS_SELECTED : 0; m_list.InsertItem(&lv); return NewClipPos; } void CEditListEditor::OnDrawItem(int nIDCtl, LPDRAWITEMSTRUCT lpDrawItemStruct) { if (nIDCtl != IDC_EDITLIST) { return; } int nItem = lpDrawItemStruct->itemID; CRect rcItem = lpDrawItemStruct->rcItem; POSITION pos = m_EditList.FindIndex(nItem); if (pos != NULL) { bool fSelected = (pos == m_CurPos); UNREFERENCED_PARAMETER(fSelected); CClip& CurClip = m_EditList.GetAt(pos); CString strTemp; CDC* pDC = CDC::FromHandle(lpDrawItemStruct->hDC); if (!!m_list.GetItemState(nItem, LVIS_SELECTED)) { FillRect(pDC->m_hDC, rcItem, CBrush(0xf1dacc)); FrameRect(pDC->m_hDC, rcItem, CBrush(0xc56a31)); } else { FillRect(pDC->m_hDC, rcItem, CBrush(GetSysColor(COLOR_WINDOW))); } COLORREF textcolor = RGB(0,0,0); if (!CurClip.HaveIn() || !CurClip.HaveOut()) { textcolor = RGB(255,0,0); } for (int i=0; i<COL_MAX; i++) { m_list.GetSubItemRect(nItem, i, LVIR_LABEL, rcItem); pDC->SetTextColor(textcolor); switch (i) { case COL_INDEX : strTemp.Format (_T("%d"), nItem+1); pDC->DrawText (strTemp, rcItem, DT_CENTER | DT_VCENTER); break; case COL_IN : pDC->DrawText (CurClip.GetIn(), rcItem, DT_CENTER | DT_VCENTER); break; case COL_OUT : pDC->DrawText (CurClip.GetOut(), rcItem, DT_CENTER | DT_VCENTER); break; case COL_NAME : pDC->DrawText (CurClip.GetName(), rcItem, DT_LEFT | DT_VCENTER); break; } } } } void CEditListEditor::OnLvnItemchanged(NMHDR *pNMHDR, LRESULT *pResult) { LPNMLISTVIEW pNMLV = reinterpret_cast<LPNMLISTVIEW>(pNMHDR); if (pNMLV->iItem >= 0) { m_CurPos = m_EditList.FindIndex (pNMLV->iItem); } } void CEditListEditor::OnLvnKeyDown(NMHDR* pNMHDR, LRESULT* pResult) { LPNMLVKEYDOWN pLVKeyDown = reinterpret_cast<LPNMLVKEYDOWN>(pNMHDR); *pResult = FALSE; if (pLVKeyDown->wVKey == VK_DELETE) { POSITION pos = m_list.GetFirstSelectedItemPosition(); POSITION ClipPos; int nItem = -1; while (pos) { nItem = m_list.GetNextSelectedItem(pos); ClipPos = m_EditList.FindIndex (nItem); if (ClipPos) { m_EditList.RemoveAt (ClipPos); } m_list.DeleteItem (nItem); } if (nItem != -1) { m_list.SetItemState (min (nItem, m_list.GetItemCount()-1), LVIS_SELECTED, LVIS_SELECTED); } m_list.Invalidate(); } } void CEditListEditor::OnBeginDrag(NMHDR* pNMHDR, LRESULT* pResult) { ModifyStyle(WS_EX_ACCEPTFILES, 0); m_nDragIndex = ((LPNMLISTVIEW)pNMHDR)->iItem; CPoint p(0, 0); m_pDragImage = m_list.CreateDragImageEx(&p); CPoint p2 = ((LPNMLISTVIEW)pNMHDR)->ptAction; m_pDragImage->BeginDrag(0, p2 - p); m_pDragImage->DragEnter(GetDesktopWindow(), ((LPNMLISTVIEW)pNMHDR)->ptAction); m_bDragging = TRUE; m_nDropIndex = -1; SetCapture(); } void CEditListEditor::OnMouseMove(UINT nFlags, CPoint point) { if (m_bDragging) { m_ptDropPoint = point; ClientToScreen(&m_ptDropPoint); m_pDragImage->DragMove(m_ptDropPoint); m_pDragImage->DragShowNolock(FALSE); WindowFromPoint(m_ptDropPoint)->ScreenToClient(&m_ptDropPoint); m_pDragImage->DragShowNolock(TRUE); { int iOverItem = m_list.HitTest(m_ptDropPoint); int iTopItem = m_list.GetTopIndex(); int iBottomItem = m_list.GetBottomIndex(); if (iOverItem == iTopItem && iTopItem != 0) { // top of list SetTimer(1, 100, NULL); } else { KillTimer(1); } if (iOverItem >= iBottomItem && iBottomItem != (m_list.GetItemCount() - 1)) { // bottom of list SetTimer(2, 100, NULL); } else { KillTimer(2); } } } __super::OnMouseMove(nFlags, point); } void CEditListEditor::OnTimer(UINT_PTR nIDEvent) { int iTopItem = m_list.GetTopIndex(); int iBottomItem = iTopItem + m_list.GetCountPerPage() - 1; if (m_bDragging) { m_pDragImage->DragShowNolock(FALSE); if (nIDEvent == 1) { m_list.EnsureVisible(iTopItem - 1, false); m_list.UpdateWindow(); if (m_list.GetTopIndex() == 0) { KillTimer(1); } } else if (nIDEvent == 2) { m_list.EnsureVisible(iBottomItem + 1, false); m_list.UpdateWindow(); if (m_list.GetBottomIndex() == (m_list.GetItemCount() - 1)) { KillTimer(2); } } m_pDragImage->DragShowNolock(TRUE); } __super::OnTimer(nIDEvent); } void CEditListEditor::OnLButtonUp(UINT nFlags, CPoint point) { if (m_bDragging) { ::ReleaseCapture(); m_bDragging = FALSE; m_pDragImage->DragLeave(GetDesktopWindow()); m_pDragImage->EndDrag(); delete m_pDragImage; m_pDragImage = NULL; KillTimer(1); KillTimer(2); CPoint pt(point); ClientToScreen(&pt); if (WindowFromPoint(pt) == &m_list) { DropItemOnList(); } } ModifyStyle(0, WS_EX_ACCEPTFILES); __super::OnLButtonUp(nFlags, point); } void CEditListEditor::DropItemOnList() { m_ptDropPoint.y -= 10; m_nDropIndex = m_list.HitTest(CPoint(10, m_ptDropPoint.y)); POSITION DragPos = m_EditList.FindIndex (m_nDragIndex); POSITION DropPos = m_EditList.FindIndex (m_nDropIndex); if ((DragPos!=NULL) && (DropPos!=NULL)) { CClip& DragClip = m_EditList.GetAt(DragPos); m_EditList.InsertAfter (DropPos, DragClip); m_EditList.RemoveAt (DragPos); m_list.Invalidate(); } } void CEditListEditor::OnBeginlabeleditList(NMHDR* pNMHDR, LRESULT* pResult) { LV_DISPINFO* pDispInfo = (LV_DISPINFO*)pNMHDR; LV_ITEM* pItem = &pDispInfo->item; *pResult = FALSE; if (pItem->iItem < 0) { return; } if (pItem->iSubItem == COL_NAME) { *pResult = TRUE; } } void CEditListEditor::OnDolabeleditList(NMHDR* pNMHDR, LRESULT* pResult) { LV_DISPINFO* pDispInfo = (LV_DISPINFO*)pNMHDR; LV_ITEM* pItem = &pDispInfo->item; *pResult = FALSE; if (pItem->iItem < 0) { return; } if (m_CurPos != NULL && pItem->iSubItem == COL_NAME) { CClip& CurClip = m_EditList.GetAt (m_CurPos); int nSel = FindNameIndex (CurClip.GetName()); CAtlList<CString> sl; for (int i=0; i<m_NameList.GetCount(); i++) { sl.AddTail(m_NameList.GetAt(i)); } m_list.ShowInPlaceComboBox(pItem->iItem, pItem->iSubItem, sl, nSel, true); *pResult = TRUE; } } void CEditListEditor::OnEndlabeleditList(NMHDR* pNMHDR, LRESULT* pResult) { LV_DISPINFO* pDispInfo = (LV_DISPINFO*)pNMHDR; LV_ITEM* pItem = &pDispInfo->item; *pResult = FALSE; if (!m_list.m_fInPlaceDirty) { return; } if (pItem->iItem < 0) { return; } CString& CurName = m_NameList.GetAt(pItem->lParam); if (m_CurPos != NULL && pItem->iSubItem == COL_NAME) { CClip& CurClip = m_EditList.GetAt (m_CurPos); CurClip.SetName(CurName); *pResult = TRUE; } } int CEditListEditor::FindNameIndex(LPCTSTR strName) { int nResult = -1; for (int i = 0; i<m_NameList.GetCount(); i++) { CString& CurName = m_NameList.GetAt(i); if (CurName == strName) { nResult = i; break; } } return nResult; } void CEditListEditor::FillCombo(LPCTSTR strFileName, CComboBox& Combo, bool bAllowNull) { CStdioFile NameFile; CString str; if (NameFile.Open (strFileName, CFile::modeRead)) { if (bAllowNull) { Combo.AddString(_T("")); } while (NameFile.ReadString(str)) { Combo.AddString(str); } NameFile.Close(); } } void CEditListEditor::SelectCombo(LPCTSTR strValue, CComboBox& Combo) { for (int i=0; i<Combo.GetCount(); i++) { CString strTemp; Combo.GetLBText(i, strTemp); if (strTemp == strValue) { Combo.SetCurSel(i); break; } } }
22.50365
128
0.69108
chinajeffery
95ac5b8bf81d55048ebc62024c8209171266b8cd
7,064
cpp
C++
Nacro/SDK/FN_QuestUpdatesLog_functions.cpp
Milxnor/Nacro
eebabf662bbce6d5af41820ea0342d3567a0aecc
[ "BSD-2-Clause" ]
11
2021-08-08T23:25:10.000Z
2022-02-19T23:07:22.000Z
Nacro/SDK/FN_QuestUpdatesLog_functions.cpp
Milxnor/Nacro
eebabf662bbce6d5af41820ea0342d3567a0aecc
[ "BSD-2-Clause" ]
1
2022-01-01T22:51:59.000Z
2022-01-08T16:14:15.000Z
Nacro/SDK/FN_QuestUpdatesLog_functions.cpp
Milxnor/Nacro
eebabf662bbce6d5af41820ea0342d3567a0aecc
[ "BSD-2-Clause" ]
8
2021-08-09T13:51:54.000Z
2022-01-26T20:33:37.000Z
// Fortnite (1.8) SDK #ifdef _MSC_VER #pragma pack(push, 0x8) #endif #include "../SDK.hpp" namespace SDK { //--------------------------------------------------------------------------- //Functions //--------------------------------------------------------------------------- // Function QuestUpdatesLog.QuestUpdatesLog_C.CanDisplayAnotherObjective // (Public, HasOutParms, BlueprintCallable, BlueprintEvent, BlueprintPure) // Parameters: // bool Result (Parm, OutParm, ZeroConstructor, IsPlainOldData) void UQuestUpdatesLog_C::CanDisplayAnotherObjective(bool* Result) { static auto fn = UObject::FindObject<UFunction>("Function QuestUpdatesLog.QuestUpdatesLog_C.CanDisplayAnotherObjective"); UQuestUpdatesLog_C_CanDisplayAnotherObjective_Params params; auto flags = fn->FunctionFlags; UObject::ProcessEvent(fn, &params); fn->FunctionFlags = flags; if (Result != nullptr) *Result = params.Result; } // Function QuestUpdatesLog.QuestUpdatesLog_C.GetTotalDisplayedObjectives // (Public, HasOutParms, BlueprintCallable, BlueprintEvent, BlueprintPure) // Parameters: // int NumObjectives (Parm, OutParm, ZeroConstructor, IsPlainOldData) void UQuestUpdatesLog_C::GetTotalDisplayedObjectives(int* NumObjectives) { static auto fn = UObject::FindObject<UFunction>("Function QuestUpdatesLog.QuestUpdatesLog_C.GetTotalDisplayedObjectives"); UQuestUpdatesLog_C_GetTotalDisplayedObjectives_Params params; auto flags = fn->FunctionFlags; UObject::ProcessEvent(fn, &params); fn->FunctionFlags = flags; if (NumObjectives != nullptr) *NumObjectives = params.NumObjectives; } // Function QuestUpdatesLog.QuestUpdatesLog_C.CreateAnnouncementUpdate // (Public, HasDefaults, BlueprintCallable, BlueprintEvent) // Parameters: // struct FDynamicQuestUpdateInfo UpdateInfo (Parm) void UQuestUpdatesLog_C::CreateAnnouncementUpdate(const struct FDynamicQuestUpdateInfo& UpdateInfo) { static auto fn = UObject::FindObject<UFunction>("Function QuestUpdatesLog.QuestUpdatesLog_C.CreateAnnouncementUpdate"); UQuestUpdatesLog_C_CreateAnnouncementUpdate_Params params; params.UpdateInfo = UpdateInfo; auto flags = fn->FunctionFlags; UObject::ProcessEvent(fn, &params); fn->FunctionFlags = flags; } // Function QuestUpdatesLog.QuestUpdatesLog_C.HandleQuestUpdateWidgetFinished // (Public, HasDefaults, BlueprintCallable, BlueprintEvent) // Parameters: // class UQuestUpdateEntry_C* UpdateWidget (Parm, ZeroConstructor, IsPlainOldData) void UQuestUpdatesLog_C::HandleQuestUpdateWidgetFinished(class UQuestUpdateEntry_C* UpdateWidget) { static auto fn = UObject::FindObject<UFunction>("Function QuestUpdatesLog.QuestUpdatesLog_C.HandleQuestUpdateWidgetFinished"); UQuestUpdatesLog_C_HandleQuestUpdateWidgetFinished_Params params; params.UpdateWidget = UpdateWidget; auto flags = fn->FunctionFlags; UObject::ProcessEvent(fn, &params); fn->FunctionFlags = flags; } // Function QuestUpdatesLog.QuestUpdatesLog_C.GetAvailableQuestUpdateWidget // (Public, HasOutParms, BlueprintCallable, BlueprintEvent) // Parameters: // struct FDynamicQuestUpdateInfo UpdateInfo (Parm) // class UQuestUpdateEntry_C* AvailableWIdget (Parm, OutParm, ZeroConstructor, IsPlainOldData) void UQuestUpdatesLog_C::GetAvailableQuestUpdateWidget(const struct FDynamicQuestUpdateInfo& UpdateInfo, class UQuestUpdateEntry_C** AvailableWIdget) { static auto fn = UObject::FindObject<UFunction>("Function QuestUpdatesLog.QuestUpdatesLog_C.GetAvailableQuestUpdateWidget"); UQuestUpdatesLog_C_GetAvailableQuestUpdateWidget_Params params; params.UpdateInfo = UpdateInfo; auto flags = fn->FunctionFlags; UObject::ProcessEvent(fn, &params); fn->FunctionFlags = flags; if (AvailableWIdget != nullptr) *AvailableWIdget = params.AvailableWIdget; } // Function QuestUpdatesLog.QuestUpdatesLog_C.TryDisplayDynamicQuestStatusUpdate // (Public, HasDefaults, BlueprintCallable, BlueprintEvent) void UQuestUpdatesLog_C::TryDisplayDynamicQuestStatusUpdate() { static auto fn = UObject::FindObject<UFunction>("Function QuestUpdatesLog.QuestUpdatesLog_C.TryDisplayDynamicQuestStatusUpdate"); UQuestUpdatesLog_C_TryDisplayDynamicQuestStatusUpdate_Params params; auto flags = fn->FunctionFlags; UObject::ProcessEvent(fn, &params); fn->FunctionFlags = flags; } // Function QuestUpdatesLog.QuestUpdatesLog_C.CreateQuestUpdateWIdgets // (Public, BlueprintCallable, BlueprintEvent) void UQuestUpdatesLog_C::CreateQuestUpdateWIdgets() { static auto fn = UObject::FindObject<UFunction>("Function QuestUpdatesLog.QuestUpdatesLog_C.CreateQuestUpdateWIdgets"); UQuestUpdatesLog_C_CreateQuestUpdateWIdgets_Params params; auto flags = fn->FunctionFlags; UObject::ProcessEvent(fn, &params); fn->FunctionFlags = flags; } // Function QuestUpdatesLog.QuestUpdatesLog_C.HandleDisplayDynamicQuestUpdate // (Public, HasDefaults, BlueprintCallable, BlueprintEvent) // Parameters: // class UFortQuestObjectiveInfo* QuestObjective (Parm, ZeroConstructor, IsPlainOldData) // bool bDisplayStatusUpdate (Parm, ZeroConstructor, IsPlainOldData) // bool bDisplayAnnouncementUpdate (Parm, ZeroConstructor, IsPlainOldData) void UQuestUpdatesLog_C::HandleDisplayDynamicQuestUpdate(class UFortQuestObjectiveInfo* QuestObjective, bool bDisplayStatusUpdate, bool bDisplayAnnouncementUpdate) { static auto fn = UObject::FindObject<UFunction>("Function QuestUpdatesLog.QuestUpdatesLog_C.HandleDisplayDynamicQuestUpdate"); UQuestUpdatesLog_C_HandleDisplayDynamicQuestUpdate_Params params; params.QuestObjective = QuestObjective; params.bDisplayStatusUpdate = bDisplayStatusUpdate; params.bDisplayAnnouncementUpdate = bDisplayAnnouncementUpdate; auto flags = fn->FunctionFlags; UObject::ProcessEvent(fn, &params); fn->FunctionFlags = flags; } // Function QuestUpdatesLog.QuestUpdatesLog_C.Construct // (BlueprintCosmetic, Event, Public, BlueprintEvent) void UQuestUpdatesLog_C::Construct() { static auto fn = UObject::FindObject<UFunction>("Function QuestUpdatesLog.QuestUpdatesLog_C.Construct"); UQuestUpdatesLog_C_Construct_Params params; auto flags = fn->FunctionFlags; UObject::ProcessEvent(fn, &params); fn->FunctionFlags = flags; } // Function QuestUpdatesLog.QuestUpdatesLog_C.ExecuteUbergraph_QuestUpdatesLog // () // Parameters: // int EntryPoint (Parm, ZeroConstructor, IsPlainOldData) void UQuestUpdatesLog_C::ExecuteUbergraph_QuestUpdatesLog(int EntryPoint) { static auto fn = UObject::FindObject<UFunction>("Function QuestUpdatesLog.QuestUpdatesLog_C.ExecuteUbergraph_QuestUpdatesLog"); UQuestUpdatesLog_C_ExecuteUbergraph_QuestUpdatesLog_Params params; params.EntryPoint = EntryPoint; auto flags = fn->FunctionFlags; UObject::ProcessEvent(fn, &params); fn->FunctionFlags = flags; } } #ifdef _MSC_VER #pragma pack(pop) #endif
31.67713
163
0.76359
Milxnor
95afc1b5eb96e3c20a7a848421c691ce9c46a11a
12,766
cpp
C++
EXAMPLES/Controls/SingleInst/singleinstance.cpp
earthsiege2/borland-cpp-ide
09bcecc811841444338e81b9c9930c0e686f9530
[ "Unlicense", "FSFAP", "Apache-1.1" ]
1
2022-01-13T01:03:55.000Z
2022-01-13T01:03:55.000Z
EXAMPLES/Controls/SingleInst/singleinstance.cpp
earthsiege2/borland-cpp-ide
09bcecc811841444338e81b9c9930c0e686f9530
[ "Unlicense", "FSFAP", "Apache-1.1" ]
null
null
null
EXAMPLES/Controls/SingleInst/singleinstance.cpp
earthsiege2/borland-cpp-ide
09bcecc811841444338e81b9c9930c0e686f9530
[ "Unlicense", "FSFAP", "Apache-1.1" ]
null
null
null
//--------------------------------------------------------------------------- #include <vcl.h> #pragma hdrstop #define NDEBUG #include <cassert> #include "SingleInstance.h" #pragma package(smart_init) //--------------------------------------------------------------------------- // ValidCtrCheck is used to assure that the components created do not have // any pure virtual functions. // static inline void ValidCtrCheck(TSingleAppInstance *) { new TSingleAppInstance(NULL); } //--------------------------------------------------------------------------- // We introduce a global boolean to serve as // a marker. If a component is "activated" // to serve as a single instance guarantee, // we flag this here. // This provides a mechanism that prevents // more than a single component from getting // active at any time. // This is extremely important in those cases // where the user might accidentally instatiate // a second copy of the component in *the same* // process. // Alert: as with all global variables this // is NOT thread-safe. bool SingleAppInstanceComponentActive = false; //--------------------------------------------------------------------------- void __fastcall TSingleAppInstance::AssertValidMarkerText(const String& Value) { int Len; // Note the Windows API documentation: // "The name can contain any character except the backslash character (\)" Len = Value.Length(); for (int i = 1; i <= Len; ++i) { if (Value[i] == '\\') { throw Exception("A marker may not contain the '\\' character"); } } } bool __fastcall TSingleAppInstance::IsValidMarkerText(const String& Value) { int Len; bool IsValid; // Note the Windows API documentation: // "The name can contain any character except the backslash character (\)" IsValid = true; Len = Value.Length(); for (int i = 1; i <= Len; ++i) { if (Value[i] == '\\') { IsValid = false; break; } } return IsValid; } String __fastcall TSingleAppInstance::TranslateSlashes(const String& Value) { // Since slashes are not allowed in certain // strings (see above), provide an internal // mapping that replaces these slashes with // something else. const char ReplacementCharacter = '_'; int Len; String Result; Result = Value; Len = Result.Length(); for (int i = 1; i <= Len; ++i) { if (Result[i] == '\\') { Result[i] = ReplacementCharacter; } } return Result; } //--------------------------------------------------------------------------- // We are storing some data in the marking // memory-mapped file. The following struct // makes the data structure reasonably opaque. struct MappedData { HANDLE FirstInstanceHandle; }; typedef MappedData* PMappedData; //--------------------------------------------------------------------------- __fastcall TSingleAppInstance::TSingleAppInstance(TComponent* Owner) : TComponent(Owner) { InitializeCriticalSection(&FWndProcCriticalSection); FHiddenWindow = AllocateHWnd(LocalWinProc); FPassCommandLine = true; // If we are loaded as part of a stream, // set Enabled = true - the default streaming // value specified in the property declaration. // // If this is not the case, it is very likely // that the user manually instantiates the // component. Start disabled then and allow // (rather: force) the user to assign events // and only then enable the component. FEnabled = true; FEnabled = (Owner != NULL) && Owner->ComponentState.Contains(csLoading); } __fastcall TSingleAppInstance::~TSingleAppInstance(void) { ReleaseInternalMapFile(); DeleteCriticalSection(&FWndProcCriticalSection); DeallocateHWnd(FHiddenWindow); FHiddenWindow = INVALID_HANDLE_VALUE; delete[] FPassedCommandLine; FPassedCommandLine = NULL; } void __fastcall TSingleAppInstance::DoOnSecondInstance(bool& DoTerminate) { if (FOnSecondInstance != NULL) FOnSecondInstance(this, DoTerminate); } void __fastcall TSingleAppInstance::Loaded(void) { inherited::Loaded(); if (!ComponentState.Contains(csDesigning)) { if (SingleAppInstanceComponentActive) { // In case an instance is already active, // we simply unconditionally set FEnabled // to false. if (FEnabled) FEnabled = false; } else { PerformSingletonCode(); } } } void __fastcall TSingleAppInstance::LocalWinProc(Messages::TMessage &Message) { if (Message.Msg != WM_COPYDATA) { Message.Result = DefWindowProc(FHiddenWindow, Message.Msg, Message.WParam, Message.LParam); } else { DWORD CountData; PCOPYDATASTRUCT PassedCopyDataStruct; // We need to be left alone for a moment, // so lock everyone out of this code sequence. // // Design issue: // // This piece of code will BLOCK the SENDING // application until we have made our call // to ReplyMessage below. // This means that if multiple "single-instance" // processes are launched roughly at the same // time ALL these processes will block at the // same time. // The provided critical section should guarantee, // though, that we have a nice, serialized access. // (no mutex, since we stay inside the same process) EnterCriticalSection(&FWndProcCriticalSection); try { if (FPassedCommandLine != NULL) { delete[] FPassedCommandLine; FPassedCommandLine = NULL; } assert(Message.LParam != NULL); PassedCopyDataStruct = reinterpret_cast<COPYDATASTRUCT*>(Message.LParam); // We copy the passed command-line to a local // buffer in order to be able to return to the // calling application as soon as possible, // without it waiting for us to process the data. CountData = PassedCopyDataStruct->cbData; if (CountData > 0) { FPassedCommandLine = new char[CountData]; if (PassedCopyDataStruct->lpData != NULL) memmove(FPassedCommandLine, PassedCopyDataStruct->lpData, CountData); } FPassedData = PassedCopyDataStruct->dwData; // Fine, so we have the data let the other process // off the SendMessage "hook" (metaphorically speaking). Win32Check( ReplyMessage(true) ); DoReceiveCommandLine(FPassedCommandLine); } __finally { LeaveCriticalSection(&FWndProcCriticalSection); } } } void __fastcall TSingleAppInstance::DoReceiveCommandLine(const char * const CommandLine) { if (FOnReceiveCommandLine != NULL) { FOnReceiveCommandLine(this, FPassedCommandLine); } } // Return true if the memory mapped file was successfully created; // false if this was not done. bool __fastcall TSingleAppInstance::CreateInternalMapFile(void) { LPVOID MapView; bool CreateResult; DWORD LastErrorCode; CreateResult = false; assert(FMappingObject == NULL); FMappingObject = CreateFileMapping( reinterpret_cast<HANDLE>(0xFFFFFFFF), NULL, PAGE_READWRITE | SEC_COMMIT, 0, sizeof(MappedData), FMarker.c_str() ); if (FMappingObject == NULL) RaiseLastWin32Error(); LastErrorCode = GetLastError(); if (LastErrorCode == ERROR_ALREADY_EXISTS) { // Whoops. Somebody already has created this memory mapped file. // Do nothing; CreateResult has the right value // already and will signal that the memory mapped file // (and thus the marker) already existed. // TODO: Is this the right thing to do? Return with false? Or throw an exception? } else { MapView = MapViewOfFile(FMappingObject, FILE_MAP_ALL_ACCESS, 0, 0, 0); if (MapView == NULL) RaiseLastWin32Error(); try { assert(FHiddenWindow != INVALID_HANDLE_VALUE); static_cast<PMappedData>(MapView)->FirstInstanceHandle = FHiddenWindow; } __finally { Win32Check( UnmapViewOfFile(MapView) ); } CreateResult = true; } return CreateResult; } void __fastcall TSingleAppInstance::ReleaseInternalMapFile(void) { if (FMappingObject != NULL) { Win32Check( CloseHandle(FMappingObject) ); FMappingObject = NULL; } } void __fastcall TSingleAppInstance::PerformSingletonCode(void) { if (FEnabled) { // It is pretty pointless to have an empty marker. // Use a default marker (i.e. the name of the executable) // if we are in dire need of one. if (FMarker.Length() == 0) { // Note that we have to translate backslashes ('\') // into something else (here: underscores ('_')) // as the Windows API does not allow names for // memory mapped files that contain backslashes. // And we use the creating process's name // as the "default" marker which definitely does // contain backslashes. SetMarker(TranslateSlashes(ParamStr(0))); } if (CreateInternalMapFile()) { SingleAppInstanceComponentActive = true; } else { // The memory mapped file already existed. TakeSecondInstanceAction(); } } else { ReleaseInternalMapFile(); } } void __fastcall TSingleAppInstance::PassThisInstanceCommandLine(void) { HANDLE FileMapping; LPVOID MapView; HANDLE FirstInstance; // Before sending over the command line, we need to // retrieve the handle from the present memory-mapped // file. FileMapping = OpenFileMapping(FILE_MAP_READ, false, FMarker.c_str()); if (FileMapping == NULL) RaiseLastWin32Error(); try { MapView = MapViewOfFile(FileMapping, FILE_MAP_READ, 0, 0, 0); if (MapView == NULL) RaiseLastWin32Error(); try { FirstInstance = static_cast<PMappedData>(MapView)->FirstInstanceHandle; } __finally { Win32Check( UnmapViewOfFile(MapView) ); } } __finally { Win32Check( CloseHandle(FileMapping) ); } // Now we pass on our command-line. Note that we must // use SendMessage in combination with WM_COPYDATA; only // then does the Win32 kernel marshal the data across // process boundaries. COPYDATASTRUCT CopyData = { 0, strlen(CmdLine) + sizeof(char), CmdLine }; // We don't bother about a return value... SendMessage( FirstInstance, WM_COPYDATA, reinterpret_cast<WPARAM>(FHiddenWindow), reinterpret_cast<LPARAM>(&CopyData)); } void __fastcall TSingleAppInstance::TakeSecondInstanceAction(void) { bool TerminateApplication; // Send command line to other application if this is desired. if (FPassCommandLine) PassThisInstanceCommandLine(); // Fire the event for this application, "notifying" // it that there is something else. // By default, terminate the application. TerminateApplication = true; if (FOnSecondInstance != NULL) { FOnSecondInstance(this, TerminateApplication); } if (TerminateApplication) Application->Terminate(); } void __fastcall TSingleAppInstance::SetEnabled(const bool Value) { if (Value != FEnabled) { // Is there an attempt to enable a second // instance of the component at runtime? // We cannot allow this to pass through, // as there can be only one entry point // for command line parameter messages. if (SingleAppInstanceComponentActive && Value /* == true */ && !ComponentState.Contains(csDesigning)) { // TODO: Possibly throw an exception here? /* AnsiString ExceptionMessage; ExceptionMessage.sprintf( "Only one instance of %s may be active at a time", AnsiString(this->ClassName()).c_str() ); throw Exception(ExceptionMessage); */ return; } FEnabled = Value; // We only react to changes in the Enabled // state if // a) this happens at runtime (!csDesigning) // b) the component data is not streaming // [because for *streaming*, we use the Loaded // method which is a tad bit better.] if (!ComponentState.Contains(csDesigning) && !ComponentState.Contains(csReading)) { PerformSingletonCode(); } } } void __fastcall TSingleAppInstance::SetMarker(const String Value) { if (Value != FMarker) { AssertValidMarkerText(Value); FMarker = Value; } }
26.819328
96
0.624315
earthsiege2
95aff5bb20c5b67c58315b74f1a3c25b255d2b2f
996
hpp
C++
library/ATF/_attack_selfdestruction_result_zoclInfo.hpp
lemkova/Yorozuya
f445d800078d9aba5de28f122cedfa03f26a38e4
[ "MIT" ]
29
2017-07-01T23:08:31.000Z
2022-02-19T10:22:45.000Z
library/ATF/_attack_selfdestruction_result_zoclInfo.hpp
kotopes/Yorozuya
605c97d3a627a8f6545cc09f2a1b0a8afdedd33a
[ "MIT" ]
90
2017-10-18T21:24:51.000Z
2019-06-06T02:30:33.000Z
library/ATF/_attack_selfdestruction_result_zoclInfo.hpp
kotopes/Yorozuya
605c97d3a627a8f6545cc09f2a1b0a8afdedd33a
[ "MIT" ]
44
2017-12-19T08:02:59.000Z
2022-02-24T23:15:01.000Z
// This file auto generated by plugin for ida pro. Generated code only for x64. Please, dont change manually #pragma once #include <common/common.h> #include <_attack_selfdestruction_result_zocl.hpp> START_ATF_NAMESPACE namespace Info { using _attack_selfdestruction_result_zoclctor__attack_selfdestruction_result_zocl2_ptr = void (WINAPIV*)(struct _attack_selfdestruction_result_zocl*); using _attack_selfdestruction_result_zoclctor__attack_selfdestruction_result_zocl2_clbk = void (WINAPIV*)(struct _attack_selfdestruction_result_zocl*, _attack_selfdestruction_result_zoclctor__attack_selfdestruction_result_zocl2_ptr); using _attack_selfdestruction_result_zoclsize4_ptr = int (WINAPIV*)(struct _attack_selfdestruction_result_zocl*); using _attack_selfdestruction_result_zoclsize4_clbk = int (WINAPIV*)(struct _attack_selfdestruction_result_zocl*, _attack_selfdestruction_result_zoclsize4_ptr); }; // end namespace Info END_ATF_NAMESPACE
55.333333
241
0.828313
lemkova
95b10c3e682f252f91eb832efa205268280b326f
3,264
cpp
C++
NativePlugin/CaptainAsteroid/src/physics/Game.cpp
axoloto/CaptainAsteroid
fcdcb6bc6987ecf53226daa7027116e40d74401a
[ "Apache-2.0" ]
null
null
null
NativePlugin/CaptainAsteroid/src/physics/Game.cpp
axoloto/CaptainAsteroid
fcdcb6bc6987ecf53226daa7027116e40d74401a
[ "Apache-2.0" ]
null
null
null
NativePlugin/CaptainAsteroid/src/physics/Game.cpp
axoloto/CaptainAsteroid
fcdcb6bc6987ecf53226daa7027116e40d74401a
[ "Apache-2.0" ]
null
null
null
#include "Game.hpp" #include "Logging.hpp" #include "systems/ControlByPlayer.hpp" #include "systems/Move.hpp" #include "systems/Collide.hpp" #include "systems/FireLaser.hpp" #include "systems/ReduceLifeTime.hpp" #include "systems/SplitAsteroid.hpp" #include "systems/RemoveDead.hpp" #include "components/Motion.hpp" #include "components/Position.hpp" #include "components/PlayerControl.hpp" #include "components/Laser.hpp" #include "events/PlayGame.hpp" namespace CaptainAsteroidCPP { Game::Game() : m_eventManager(), m_entityManager(m_eventManager), m_systemManager(m_entityManager, m_eventManager), m_gameManager(m_entityManager, m_eventManager), m_spaceShip(m_entityManager), m_asteroidField(m_entityManager, m_eventManager), m_laserShots(m_entityManager) { Utils::InitializeLogger(); LOG_INFO("Game Created"); } void Game::init(Def::InitParams initParams) { m_gameManager.init(); m_spaceShip.init(); m_asteroidField.init(initParams); createSystems(initParams.boundaryDomainV, initParams.boundaryDomainH); m_eventManager.emit<Ev::PlayGame>(); LOG_INFO("Game Initialized"); } void Game::createSystems(float boundaryV, float boundaryH) { m_systemManager.add<Sys::ControlByPlayer>(); m_systemManager.add<Sys::Move>(boundaryV, boundaryH); m_systemManager.add<Sys::Collide>(); m_systemManager.add<Sys::FireLaser>(m_laserShots); m_systemManager.add<Sys::ReduceLifeTime>(); m_systemManager.add<Sys::SplitAsteroid>(m_asteroidField); m_systemManager.add<Sys::RemoveDead>(m_asteroidField, m_laserShots); m_systemManager.configure(); LOG_INFO("DOD Systems Initialized"); } void Game::update(Def::KeyState keyState, float deltaTime) { m_eventManager.emit<Ev::PlayerInput>(keyState); if (m_gameManager.isGameRunning()) { m_systemManager.update<Sys::ControlByPlayer>(deltaTime); m_systemManager.update<Sys::Move>(deltaTime); m_systemManager.update<Sys::Collide>(deltaTime); m_systemManager.update<Sys::FireLaser>(deltaTime); m_systemManager.update<Sys::ReduceLifeTime>(deltaTime); m_systemManager.update<Sys::SplitAsteroid>(deltaTime); m_systemManager.update<Sys::RemoveDead>(deltaTime); } } void Game::getSpaceShipCoords(float &x, float &y, float &angle) const { const std::array<float, 3> coordsAndRot = m_spaceShip.getPosAndDir(); x = coordsAndRot[0]; y = coordsAndRot[1]; angle = coordsAndRot[2]; } void Game::fillPosEntityList(float *posEntities, int size, int *nbEntities, Def::EntityType entityType) const { if (entityType & Def::EntityType::Asteroid_XXL || entityType & Def::EntityType::Asteroid_M || entityType & Def::EntityType::Asteroid_S) { m_asteroidField.fillPosEntityList(posEntities, size, nbEntities, entityType); } else if (entityType & Def::EntityType::LaserShot) { m_laserShots.fillPosEntityList(posEntities, size, nbEntities, entityType); } } Def::GameState Game::currentGameState() const { return m_gameManager.gameState(); } std::int32_t Game::currentScore() const { return m_gameManager.score(); } std::int32_t Game::currentNbAsteroids() const { return m_asteroidField.totalNbAsteroids(); } }// namespace CaptainAsteroidCPP
27.897436
109
0.739583
axoloto
95b24eb6996724fd198d8985c5323221ad48343b
1,240
cpp
C++
dep/include/yse/synth/synthManager.cpp
ChrSacher/MyEngine
8fe71fd9e84b9536148e0d4ebb4e53751ab49ce8
[ "Apache-2.0" ]
2
2015-10-27T21:36:59.000Z
2017-03-17T21:52:19.000Z
dep/include/yse/synth/synthManager.cpp
ChrSacher/MyEngine
8fe71fd9e84b9536148e0d4ebb4e53751ab49ce8
[ "Apache-2.0" ]
null
null
null
dep/include/yse/synth/synthManager.cpp
ChrSacher/MyEngine
8fe71fd9e84b9536148e0d4ebb4e53751ab49ce8
[ "Apache-2.0" ]
null
null
null
/* ============================================================================== synthManager.cpp Created: 6 Jul 2014 10:01:40pm Author: yvan ============================================================================== */ #include "synthManager.h" #include "../internalHeaders.h" YSE::SYNTH::managerObject & YSE::SYNTH::Manager() { static managerObject m; return m; } YSE::SYNTH::implementationObject * YSE::SYNTH::managerObject::addImplementation(YSE::SYNTH::interfaceObject * head) { implementations.emplace_front(head); return &implementations.front(); } void YSE::SYNTH::managerObject::update() { bool remove = false; for (auto i = implementations.begin(); i != implementations.end(); ++i) { if (!(*i).sync()) { remove = true; } } // I assume that removing a synth happens not very often. So it's // faster to do a second run if this is the case, instead of updating // 2 iterators all the time if (remove) { auto previous = implementations.before_begin(); for (auto i = implementations.begin(); i != implementations.end(); ++i) { if (!(*i).hasInterface()) { implementations.erase_after(previous); return; } previous++; } } }
27.555556
117
0.560484
ChrSacher
95b3726da577384740325b9d5cb46370d37a5f58
789
cpp
C++
Applications/cli/commands/less.cpp
mschwartz/amos
345a4f8f52b9805722c10ac4cedb24b480fe2dc7
[ "MIT" ]
4
2020-08-18T00:11:09.000Z
2021-04-05T11:16:32.000Z
Applications/cli/commands/less.cpp
mschwartz/amos
345a4f8f52b9805722c10ac4cedb24b480fe2dc7
[ "MIT" ]
1
2020-08-15T20:39:13.000Z
2020-08-15T20:39:13.000Z
Applications/cli/commands/less.cpp
mschwartz/amos
345a4f8f52b9805722c10ac4cedb24b480fe2dc7
[ "MIT" ]
null
null
null
#include "commands.hpp" TInt64 CliTask::command_less(TInt ac, char **av) { if (ac != 2) { return Error("%s requires 1 argument", av[0]); } FileDescriptor *fd; fd = OpenFile(av[1]); if (!fd) { return Error("Could not open %s", av[1]); } else { char buf[512]; TInt count = 0; for (;;) { TUint64 actual = ReadFile(fd, buf, 512); if (actual == 0) { break; } // TODO: count lines, use mWindow console height (rows) for (TUint64 x = 0; x < actual; x++) { if (buf[x] == '\n') { mWindow->Write(buf[x]); count++; if (count >= mWindow->Rows()) { count = 0; } } else { mWindow->Write(buf[x]); } } } CloseFile(fd); } return 0; }
20.230769
61
0.47275
mschwartz
95c156ec977b003837947dd71df125dc1385831e
2,106
cpp
C++
cci/graph.cpp
vino-ebe/int-pgms
124e63d46092bd974d44afe67bd17727892afefa
[ "BSD-2-Clause" ]
null
null
null
cci/graph.cpp
vino-ebe/int-pgms
124e63d46092bd974d44afe67bd17727892afefa
[ "BSD-2-Clause" ]
null
null
null
cci/graph.cpp
vino-ebe/int-pgms
124e63d46092bd974d44afe67bd17727892afefa
[ "BSD-2-Clause" ]
null
null
null
#include<iostream> using namespace std; struct graphNode { int vertex; struct graphNode* next; }; class graph { private: static const int NUM_VERTEX = 10; graphNode* V[NUM_VERTEX]; int numEdges[NUM_VERTEX]; bool visited[NUM_VERTEX]; graphNode* createNode(int vertex) { graphNode *temp = new graphNode(); temp->vertex = vertex; temp->next = NULL; return temp; } public: graph() { for (int i = 0; i < NUM_VERTEX; i++) { V[i] = NULL; numEdges[i] = 0; visited = false; } } void addEdge(int fromVertex, int toVertex) { if (!V[fromVertex]) { V[fromVertex] = createNode(fromVertex); } graphNode* temp = createNode(toVertex); temp->next = V[fromVertex]->next; V[fromVertex]->next = temp; } void printGraph() { graphNode *temp = NULL; for (int i = 0; i < NUM_VERTEX; i++) { temp = V[i]; if (temp) { cout<<"Vertex ["<<i<<"] --->"; while (temp) { cout<<temp->vertex; temp = temp->next; cout<<"--->"; } } cout<<endl; } } bool routeExist(int vertex1, int vertex2) { graphNode* temp = V[vertex1]; while (temp) { if (temp->vertex == vertex2) { return true; } temp = temp->next; } return false; } }; int main() { graph g; g.addEdge(1,2); g.addEdge(1,3); g.addEdge(2,1); g.addEdge(2,3); g.addEdge(3,1); g.addEdge(3,2); g.addEdge(3,4); g.addEdge(4,3); g.printGraph(); if (g.routeExist(3,5)) { cout<<"Route Exist"<<endl; } else { cout<<"Route does not exist"<<endl; } }
22.645161
55
0.420228
vino-ebe
95c32850a295113d071f24e4730031c3f0412056
2,712
cpp
C++
LinkDelay/LinkDelay.cpp
kravitz/transims4
ea0848bf3dc71440d54724bb3ecba3947b982215
[ "NASA-1.3" ]
2
2018-04-27T11:07:02.000Z
2020-04-24T06:53:21.000Z
LinkDelay/LinkDelay.cpp
idkravitz/transims4
ea0848bf3dc71440d54724bb3ecba3947b982215
[ "NASA-1.3" ]
null
null
null
LinkDelay/LinkDelay.cpp
idkravitz/transims4
ea0848bf3dc71440d54724bb3ecba3947b982215
[ "NASA-1.3" ]
null
null
null
//********************************************************* // LinkDelay.cpp - manipulate the link delay file //********************************************************* #include "LinkDelay.hpp" char * LinkDelay::PREVIOUS_LINK_DELAY_FILE = "PREVIOUS_LINK_DELAY_FILE"; char * LinkDelay::PREVIOUS_LINK_DELAY_FORMAT = "PREVIOUS_LINK_DELAY_FORMAT"; char * LinkDelay::PREVIOUS_WEIGHTING_FACTOR = "PREVIOUS_WEIGHTING_FACTOR"; char * LinkDelay::PREVIOUS_LINK_FILE = "PREVIOUS_LINK_FILE"; char * LinkDelay::TIME_OF_DAY_FORMAT = "TIME_OF_DAY_FORMAT"; char * LinkDelay::PROCESSING_METHOD = "PROCESSING_METHOD"; char * LinkDelay::SMOOTH_GROUP_SIZE = "SMOOTH_GROUP_SIZE"; char * LinkDelay::PERCENT_MOVED_FORWARD = "PERCENT_MOVED_FORWARD"; char * LinkDelay::PERCENT_MOVED_BACKWARD = "PERCENT_MOVED_BACKWARD"; char * LinkDelay::NUMBER_OF_ITERATIONS = "NUMBER_OF_ITERATIONS"; char * LinkDelay::CIRCULAR_GROUP_FLAG = "CIRCULAR_GROUP_FLAG"; char * LinkDelay::TIME_PERIOD_SORT = "TIME_PERIOD_SORT"; //--------------------------------------------------------- // LinkDelay constructor //--------------------------------------------------------- LinkDelay::LinkDelay (void) : Demand_Service () { Program ("LinkDelay"); Version ("4.0.11"); Title ("Manipulate the Link Delay File"); Network_File required_network [] = { LINK, END_NETWORK }; Network_File optional_network [] = { DIRECTORY, LANE_CONNECTIVITY, END_NETWORK }; Demand_File required_demand [] = { NEW_LINK_DELAY, END_DEMAND }; Demand_File optional_demand [] = { LINK_DELAY, END_DEMAND }; char *keys [] = { PREVIOUS_LINK_DELAY_FILE, PREVIOUS_LINK_DELAY_FORMAT, PREVIOUS_WEIGHTING_FACTOR, PREVIOUS_LINK_FILE, PROCESSING_METHOD, SMOOTH_GROUP_SIZE, PERCENT_MOVED_FORWARD, PERCENT_MOVED_BACKWARD, NUMBER_OF_ITERATIONS, CIRCULAR_GROUP_FLAG, TIME_PERIOD_SORT, NULL }; Key_List (keys); Required_Network_Files (required_network); Optional_Network_Files (optional_network); Required_Demand_Files (required_demand); Optional_Demand_Files (optional_demand); previous_flag = link_flag = false; method = SIMPLE_AVERAGE; factor = 1.0; nerror = 0; niter = 3; naverage = 3; forward = 20.0; backward = 20.0; loop_flag = true; sort_flag = false; } //--------------------------------------------------------- // LinkDelay destructor //--------------------------------------------------------- LinkDelay::~LinkDelay (void) { } //--------------------------------------------------------- // main program //--------------------------------------------------------- int main (int commands, char *control []) { LinkDelay *exe = new LinkDelay (); return (exe->Start_Execution (commands, control)); }
28.25
76
0.620575
kravitz
95c41364396c72ef419b126279ffe3586e0ae5df
475
cpp
C++
Train/T.cpp
dangercard/Uva_Challenges
735bf80da5d1995fece4614d38174d1ea276e7c2
[ "Apache-2.0" ]
null
null
null
Train/T.cpp
dangercard/Uva_Challenges
735bf80da5d1995fece4614d38174d1ea276e7c2
[ "Apache-2.0" ]
null
null
null
Train/T.cpp
dangercard/Uva_Challenges
735bf80da5d1995fece4614d38174d1ea276e7c2
[ "Apache-2.0" ]
null
null
null
#include <iostream> #include <stack> #include <string> using namespace std ; int main() { string stI, stO ; int j = 0 ; cin >> stI ; cin >> stO ; stack <char> S ; // S.push(stI[0]) ; for(int i = 0; i < stI.length() ; i++) { if(stO[j] == S.top()) { S.pop() ; j++ ; } else { S.push(stI[i]) ; } } if(S.empty()) { cout << "True" << endl ; } else { cout << "False" << endl ; } return 0 ; }
11.046512
40
0.427368
dangercard
95cbec5d7d2291e6f2b109179f40f62aa22c908a
623
cpp
C++
USACO Bronze/December 2016 Contest/cowsignal.cpp
Alecs-Li/Competitive-Programming
39941ff8e2c8994abbae8c96a1ed0a04b10058b8
[ "MIT" ]
1
2021-07-06T02:14:03.000Z
2021-07-06T02:14:03.000Z
USACO Bronze/December 2016 Contest/cowsignal.cpp
Alex01890-creator/competitive-programming
39941ff8e2c8994abbae8c96a1ed0a04b10058b8
[ "MIT" ]
null
null
null
USACO Bronze/December 2016 Contest/cowsignal.cpp
Alex01890-creator/competitive-programming
39941ff8e2c8994abbae8c96a1ed0a04b10058b8
[ "MIT" ]
null
null
null
#include <iostream> #include <fstream> using namespace std; int main() { ifstream fin("cowsignal.in"); ofstream fout("cowsignal.out"); int m, n, k; fin >> m >> n >> k; char arr[m*n]; string temp = ""; char ans[(m*k)*(n*k)]; for(int a=0; a<m*n; a++){ fin >> arr[a]; } for(int a=0; a<=m*n; a++){ if(a % n == 0 && a != 0){ fout << "\n"; for(int b=0; b<k-1; b++){ fout << temp << "\n"; } temp = ""; if(a == m*n){ break; } } for(int b=0; b<k; b++){ ans[a + b] = arr[a]; temp += arr[a]; fout << ans[a+b]; } } }
18.323529
34
0.410915
Alecs-Li
95d1cf50c77c13f8caa762f74792d59c3b2dcdb1
1,396
hpp
C++
framework/include/planet.hpp
der-freddy/computergrafik
c47e32de23edc1c2aff45f2c789286219afcbf8f
[ "MIT" ]
null
null
null
framework/include/planet.hpp
der-freddy/computergrafik
c47e32de23edc1c2aff45f2c789286219afcbf8f
[ "MIT" ]
null
null
null
framework/include/planet.hpp
der-freddy/computergrafik
c47e32de23edc1c2aff45f2c789286219afcbf8f
[ "MIT" ]
null
null
null
#ifndef PLANETS_HPP #define PLANETS_HPP #include <memory> #include <map> #include <glbinding/gl/gl.h> #include <glm/gtc/type_precision.hpp> #include <glm/gtc/matrix_transform.hpp> #define GLFW_INCLUDE_NONE #include <GLFW/glfw3.h> // use gl definitions from glbinding using namespace gl; struct Planet{ Planet(glm::fvec3 rotation = glm::fvec3(), glm::fvec3 translation = glm::fvec3(), glm::fvec3 scale = glm::fvec3(), double rotationSpeed = 1.0f, glm::vec3 color = glm::fvec3(), float glossyness = 1.0f, std::shared_ptr<Planet> ref_pl = nullptr, texture_object texObj = texture_object()) { rotation_ = rotation; translation_ = translation; scale_ = scale; rotationSpeed_ = rotationSpeed; color_ = color; ref_pl_ = ref_pl; glossyness_ = glossyness; texObj_ = texObj; } glm::fvec3 rotation_; glm::fvec3 translation_; glm::fvec3 scale_; double rotationSpeed_; glm::fvec3 color_; std::shared_ptr<Planet> ref_pl_; float glossyness_; texture_object texObj_; }; glm::fmat4 model_matrix(std::shared_ptr<Planet> const& planet) { glm::fmat4 matrix{}; if(planet->ref_pl_ != nullptr) { matrix *= model_matrix(planet->ref_pl_); } matrix *= glm::rotate(glm::fmat4{}, float(glfwGetTime()*planet->rotationSpeed_), planet->rotation_); matrix *= glm::translate(glm::fmat4{}, planet->translation_); return matrix; } #endif
25.381818
117
0.699857
der-freddy
95dbd0f6c9879cd5d0f0fab70fffbcf8e675ba91
106
hpp
C++
src/health.hpp
BUDDGAF/eft-packet-1
cd10a52f4ea6e98219a14e17a8a5ba6bd7d98cc0
[ "MIT" ]
13
2020-05-02T00:32:14.000Z
2021-12-28T03:01:28.000Z
src/health.hpp
BUDDGAF/eft-packet-1
cd10a52f4ea6e98219a14e17a8a5ba6bd7d98cc0
[ "MIT" ]
null
null
null
src/health.hpp
BUDDGAF/eft-packet-1
cd10a52f4ea6e98219a14e17a8a5ba6bd7d98cc0
[ "MIT" ]
8
2020-05-01T19:24:55.000Z
2022-03-14T14:47:51.000Z
std::unordered_map<std::string, std::string> healthItems = { { "544fb45d4bdc2dee738b4568", "Salewa"}, };
35.333333
61
0.707547
BUDDGAF
95de790876c884e506a77dba01c034af8b4d3503
2,009
cpp
C++
libs/viewport/impl/src/viewport/impl/center.cpp
cpreh/spacegameengine
313a1c34160b42a5135f8223ffaa3a31bc075a01
[ "BSL-1.0" ]
2
2016-01-27T13:18:14.000Z
2018-05-11T01:11:32.000Z
libs/viewport/impl/src/viewport/impl/center.cpp
cpreh/spacegameengine
313a1c34160b42a5135f8223ffaa3a31bc075a01
[ "BSL-1.0" ]
null
null
null
libs/viewport/impl/src/viewport/impl/center.cpp
cpreh/spacegameengine
313a1c34160b42a5135f8223ffaa3a31bc075a01
[ "BSL-1.0" ]
3
2018-05-11T01:11:34.000Z
2021-04-24T19:47:45.000Z
// Copyright Carl Philipp Reh 2006 - 2019. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #include <sge/renderer/dim2.hpp> #include <sge/renderer/pixel_rect.hpp> #include <sge/renderer/pixel_unit.hpp> #include <sge/renderer/target/viewport.hpp> #include <sge/viewport/impl/center.hpp> #include <sge/window/dim.hpp> #include <fcppt/assert/error.hpp> #include <fcppt/cast/size.hpp> #include <fcppt/cast/to_signed.hpp> #include <fcppt/cast/to_signed_fun.hpp> #include <fcppt/math/dim/structure_cast.hpp> #include <fcppt/math/vector/null.hpp> namespace { sge::renderer::pixel_unit center_position( sge::window::dim::value_type const _target_size, sge::window::dim::value_type const _window_size) { FCPPT_ASSERT_ERROR(_window_size >= _target_size); return fcppt::cast::size<sge::renderer::pixel_unit>( fcppt::cast::to_signed((_window_size - _target_size) / 2U)); } } sge::renderer::target::viewport sge::viewport::impl::center(sge::window::dim const &_ref_dim, sge::window::dim const &_window_dim) { return _ref_dim.w() > _window_dim.w() || _ref_dim.h() > _window_dim.h() ? sge::renderer::target::viewport(sge::renderer::pixel_rect( fcppt::math::vector::null<sge::renderer::pixel_rect::vector>(), fcppt::math::dim:: structure_cast<sge::renderer::pixel_rect::dim, fcppt::cast::to_signed_fun>( _window_dim))) : sge::renderer::target::viewport(sge::renderer::pixel_rect( sge::renderer::pixel_rect::vector( center_position(_ref_dim.w(), _window_dim.w()), center_position(_ref_dim.h(), _window_dim.h())), fcppt::math::dim:: structure_cast<sge::renderer::pixel_rect::dim, fcppt::cast::to_signed_fun>( _ref_dim))); }
39.392157
98
0.644102
cpreh
95df578aff1c8a74dd14af06aaf5eb825204fbf2
5,648
cpp
C++
node/silkworm/db/genesis_test.cpp
elmato/silkworm
711c73547cd1f7632ff02d5f86dfac5b0d249344
[ "Apache-2.0" ]
87
2020-08-03T11:40:39.000Z
2022-03-31T10:27:58.000Z
node/silkworm/db/genesis_test.cpp
elmato/silkworm
711c73547cd1f7632ff02d5f86dfac5b0d249344
[ "Apache-2.0" ]
452
2020-08-17T16:32:00.000Z
2022-03-28T19:19:59.000Z
node/silkworm/db/genesis_test.cpp
elmato/silkworm
711c73547cd1f7632ff02d5f86dfac5b0d249344
[ "Apache-2.0" ]
28
2020-08-27T02:06:50.000Z
2022-03-03T22:30:46.000Z
/* Copyright 2021 The Silkworm Authors Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "genesis.hpp" #include <catch2/catch.hpp> #include <silkworm/chain/genesis.hpp> #include <silkworm/common/test_context.hpp> namespace silkworm { namespace db { TEST_CASE("Database genesis initialization") { test::Context context; auto& txn{context.txn()}; SECTION("Initialize with Mainnet") { auto source_data{silkworm::read_genesis_data(silkworm::kMainnetConfig.chain_id)}; auto genesis_json = nlohmann::json::parse(source_data, nullptr, /*allow_exceptions=*/false); REQUIRE(db::initialize_genesis(txn, genesis_json, /*allow_exceptions=*/false)); context.commit_and_renew_txn(); CHECK(db::read_chain_config(txn) == silkworm::kMainnetConfig); } SECTION("Initialize with Goerli") { auto source_data{silkworm::read_genesis_data(silkworm::kGoerliConfig.chain_id)}; auto genesis_json = nlohmann::json::parse(source_data, nullptr, /*allow_exceptions=*/false); REQUIRE(db::initialize_genesis(txn, genesis_json, /*allow_exceptions=*/false)); CHECK(db::read_chain_config(txn) == silkworm::kGoerliConfig); } SECTION("Initialize with Rinkeby") { auto source_data{silkworm::read_genesis_data(silkworm::kRinkebyConfig.chain_id)}; auto genesis_json = nlohmann::json::parse(source_data, nullptr, /*allow_exceptions=*/false); REQUIRE(db::initialize_genesis(txn, genesis_json, /*allow_exceptions=*/false)); CHECK(db::read_chain_config(txn) == silkworm::kRinkebyConfig); } SECTION("Initialize with Ropsten") { auto source_data{silkworm::read_genesis_data(silkworm::kRopstenConfig.chain_id)}; auto genesis_json = nlohmann::json::parse(source_data, nullptr, /*allow_exceptions=*/false); // We don't have json data (yet) REQUIRE(db::initialize_genesis(txn, genesis_json, /*allow_exceptions=*/false) == false); } SECTION("Initialize with invalid Json") { std::string source_data{"{chainId="}; auto genesis_json = nlohmann::json::parse(source_data, nullptr, /*allow_exceptions=*/false); REQUIRE_THROWS(db::initialize_genesis(txn, genesis_json, /*allow_exceptions=*/true)); } SECTION("Initialize with errors in Json payload") { // Base is mainnet auto source_data{silkworm::read_genesis_data(silkworm::kMainnetConfig.chain_id)}; nlohmann::json notHex = "0xgg"; // Remove mandatory members { auto genesis_json = nlohmann::json::parse(source_data, nullptr, /*allow_exceptions=*/false); REQUIRE(genesis_json.is_discarded() == false); auto removed_count = genesis_json.erase("difficulty"); removed_count += genesis_json.erase("gaslimit"); removed_count += genesis_json.erase("timestamp"); removed_count += genesis_json.erase("extraData"); removed_count += genesis_json.erase("config"); const auto& [valid, errors]{db::validate_genesis_json(genesis_json)}; REQUIRE(valid == false); CHECK(errors.size() == removed_count); } // Tamper with hex values { auto genesis_json = nlohmann::json::parse(source_data, nullptr, /*allow_exceptions=*/false); REQUIRE(genesis_json.is_discarded() == false); genesis_json["difficulty"] = notHex; genesis_json["nonce"] = notHex; const auto& [valid, errors]{db::validate_genesis_json(genesis_json)}; REQUIRE(valid == false); CHECK(errors.size() == 2); genesis_json = nlohmann::json::parse(source_data, nullptr, /*allow_exceptions=*/false); genesis_json["alloc"]["c951900c341abbb3bafbf7ee2029377071dbc36a"]["balance"] = notHex; } // Tamper with hex values on allocations { auto genesis_json = nlohmann::json::parse(source_data, nullptr, /*allow_exceptions=*/false); genesis_json["alloc"]["c951900c341abbb3bafbf7ee2029377071dbc36a"]["balance"] = notHex; genesis_json["alloc"]["c951900c341abbb3bafbf7ee2029377071dbc"]["balance"] = notHex; const auto& [valid, errors]{db::validate_genesis_json(genesis_json)}; REQUIRE(valid == false); CHECK(errors.size() == 2); } // Remove chainId from config member { auto genesis_json = nlohmann::json::parse(source_data, nullptr, /*allow_exceptions=*/false); genesis_json["config"].erase("chainId"); const auto& [valid, errors]{db::validate_genesis_json(genesis_json)}; REQUIRE(valid == false); CHECK(errors.size() == 1); } } } } // namespace db } // namespace silkworm
47.066667
108
0.625354
elmato
95df962b0c35f50c2c5dd71789129eebb8683eed
438
cpp
C++
src/ByteEngine/Utility/Shapes/ConeWithFalloff.cpp
Facundo961/Game-Studio
8f404fd9b5659e65e7c5a7fe5f191d39b7a5a071
[ "MIT" ]
10
2020-05-05T03:21:34.000Z
2022-01-22T23:01:22.000Z
src/ByteEngine/Utility/Shapes/ConeWithFalloff.cpp
Facundo961/Game-Studio
8f404fd9b5659e65e7c5a7fe5f191d39b7a5a071
[ "MIT" ]
null
null
null
src/ByteEngine/Utility/Shapes/ConeWithFalloff.cpp
Facundo961/Game-Studio
8f404fd9b5659e65e7c5a7fe5f191d39b7a5a071
[ "MIT" ]
1
2020-09-07T03:04:48.000Z
2020-09-07T03:04:48.000Z
#include "ConeWithFalloff.h" #include <GTSL/Math/Math.hpp> ConeWithFalloff::ConeWithFalloff(const float Radius, const float Length) : Cone(Radius, Length) { } ConeWithFalloff::ConeWithFalloff(const float Radius, const float Length, const float ExtraRadius) : Cone(Radius, Length), ExtraRadius(ExtraRadius) { } float ConeWithFalloff::GetOuterConeInnerRadius() const { return GTSL::Math::ArcTangent((Radius + ExtraRadius) / Length); }
25.764706
146
0.773973
Facundo961
95e1341ada4a78caed6969a85bf6aa78612254b5
28,086
cpp
C++
__Source__/Jimara/Physics/PhysX/PhysXScene.cpp
TheDonsky/Jimara
d677090e61dc1ddfd8c1be61d5202fbf09b1e3ab
[ "MIT" ]
1
2022-03-28T13:57:09.000Z
2022-03-28T13:57:09.000Z
__Source__/Jimara/Physics/PhysX/PhysXScene.cpp
TheDonsky/Jimara
d677090e61dc1ddfd8c1be61d5202fbf09b1e3ab
[ "MIT" ]
null
null
null
__Source__/Jimara/Physics/PhysX/PhysXScene.cpp
TheDonsky/Jimara
d677090e61dc1ddfd8c1be61d5202fbf09b1e3ab
[ "MIT" ]
1
2021-02-02T13:34:57.000Z
2021-02-02T13:34:57.000Z
#include "PhysXScene.h" #include "PhysXStaticBody.h" #include "PhysXDynamicBody.h" #include "../../Core/Unused.h" #include "PhysXCollider.h" #pragma warning(disable: 26812) namespace Jimara { namespace Physics { namespace PhysX { namespace { #define JIMARA_PHYSX_LAYER_COUNT 256 #define JIMARA_PHYSX_LAYER_DATA_BYTE_ID(layerId) (layerId >> 3) #define JIMARA_PHYSX_LAYER_DATA_WIDTH JIMARA_PHYSX_LAYER_DATA_BYTE_ID(JIMARA_PHYSX_LAYER_COUNT) #define JIMARA_PHYSX_LAYER_FILTER_DATA_SIZE (JIMARA_PHYSX_LAYER_COUNT * JIMARA_PHYSX_LAYER_DATA_WIDTH) #define JIMARA_PHYSX_GET_LAYER_DATA_BYTE(data, layerA, layerB) data[(layerA * JIMARA_PHYSX_LAYER_DATA_WIDTH) + JIMARA_PHYSX_LAYER_DATA_BYTE_ID(layerB)] #define JIMARA_PHYSX_LAYER_DATA_BIT(layerB) static_cast<uint8_t>(1u << (layerB & 7)) #define JIMARA_PHYSX_GET_LAYER_DATA_BIT(data, layerA, layerB) ((JIMARA_PHYSX_GET_LAYER_DATA_BYTE(data, layerA, layerB) & JIMARA_PHYSX_LAYER_DATA_BIT(layerB)) != 0) static PX_INLINE physx::PxFilterFlags SimulationFilterShader( physx::PxFilterObjectAttributes attributes0, physx::PxFilterData filterData0, physx::PxFilterObjectAttributes attributes1, physx::PxFilterData filterData1, physx::PxPairFlags& pairFlags, const void* constantBlock, physx::PxU32 constantBlockSize) { Unused(attributes0, attributes1, constantBlockSize, constantBlock); PhysicsCollider::Layer layerA = PhysXCollider::GetLayer(filterData0); PhysicsCollider::Layer layerB = PhysXCollider::GetLayer(filterData1); if (!JIMARA_PHYSX_GET_LAYER_DATA_BIT(static_cast<const uint8_t*>(constantBlock), layerA, layerB)) return physx::PxFilterFlag::eSUPPRESS; if ((PhysXCollider::GetFilterFlags(filterData0) & static_cast<PhysXCollider::FilterFlags>(PhysXCollider::FilterFlag::IS_TRIGGER)) != 0 || (PhysXCollider::GetFilterFlags(filterData1) & static_cast<PhysXCollider::FilterFlags>(PhysXCollider::FilterFlag::IS_TRIGGER)) != 0) { pairFlags = physx::PxPairFlag::eTRIGGER_DEFAULT; } else pairFlags = physx::PxPairFlag::eCONTACT_DEFAULT | physx::PxPairFlag::eNOTIFY_CONTACT_POINTS; pairFlags |= physx::PxPairFlag::eNOTIFY_TOUCH_CCD | physx::PxPairFlag::eNOTIFY_TOUCH_FOUND | physx::PxPairFlag::eNOTIFY_TOUCH_PERSISTS | physx::PxPairFlag::eNOTIFY_TOUCH_LOST | physx::PxPairFlag::eNOTIFY_THRESHOLD_FORCE_FOUND | physx::PxPairFlag::eNOTIFY_THRESHOLD_FORCE_PERSISTS | physx::PxPairFlag::eNOTIFY_THRESHOLD_FORCE_LOST; return physx::PxFilterFlag::eDEFAULT; } } PhysXScene::PhysXScene(PhysXInstance* instance, size_t maxSimulationThreads, const Vector3 gravity) : PhysicsScene(instance) { m_dispatcher = physx::PxDefaultCpuDispatcherCreate(static_cast<uint32_t>(max(maxSimulationThreads, static_cast<size_t>(1u)))); if (m_dispatcher == nullptr) { APIInstance()->Log()->Fatal("PhysicXScene - Failed to create the dispatcher!"); return; } physx::PxSceneDesc sceneDesc((*instance)->getTolerancesScale()); sceneDesc.gravity = physx::PxVec3(gravity.x, gravity.y, gravity.z); sceneDesc.cpuDispatcher = m_dispatcher; sceneDesc.filterShader = SimulationFilterShader; sceneDesc.simulationEventCallback = &m_simulationEventCallback; sceneDesc.kineKineFilteringMode = physx::PxPairFilteringMode::eKEEP; sceneDesc.staticKineFilteringMode = physx::PxPairFilteringMode::eKEEP; sceneDesc.flags |= physx::PxSceneFlag::eENABLE_CCD; m_scene = (*instance)->createScene(sceneDesc); if (m_scene == nullptr) { APIInstance()->Log()->Fatal("PhysicXScene - Failed to create the scene!"); return; } m_layerFilterData = new uint8_t[JIMARA_PHYSX_LAYER_FILTER_DATA_SIZE]; for (size_t i = 0; i < JIMARA_PHYSX_LAYER_FILTER_DATA_SIZE; i++) m_layerFilterData[i] = ~((uint8_t)0); physx::PxPvdSceneClient* pvdClient = m_scene->getScenePvdClient(); if (pvdClient != nullptr) { pvdClient->setScenePvdFlag(physx::PxPvdSceneFlag::eTRANSMIT_CONSTRAINTS, true); pvdClient->setScenePvdFlag(physx::PxPvdSceneFlag::eTRANSMIT_CONTACTS, true); pvdClient->setScenePvdFlag(physx::PxPvdSceneFlag::eTRANSMIT_SCENEQUERIES, true); pvdClient->setScenePvdFlag(physx::PxPvdSceneFlag::eTRANSMIT_CONTACTS, true); } } PhysXScene::~PhysXScene() { if (m_scene != nullptr) { m_scene->release(); m_scene = nullptr; } if (m_dispatcher != nullptr) { m_dispatcher->release(); m_dispatcher = nullptr; } if (m_layerFilterData != nullptr) { delete[] m_layerFilterData; m_layerFilterData = nullptr; } } Vector3 PhysXScene::Gravity()const { ReadLock lock(this); physx::PxVec3 gravity = m_scene->getGravity(); return Vector3(gravity.x, gravity.y, gravity.z); } void PhysXScene::SetGravity(const Vector3& value) { WriteLock lock(this); m_scene->setGravity(physx::PxVec3(value.x, value.y, value.z)); } bool PhysXScene::LayersInteract(PhysicsCollider::Layer a, PhysicsCollider::Layer b)const { if (m_layerFilterData == nullptr) return false; else return JIMARA_PHYSX_GET_LAYER_DATA_BIT(m_layerFilterData, a, b); } void PhysXScene::FilterLayerInteraction(PhysicsCollider::Layer a, PhysicsCollider::Layer b, bool enableIntaraction) { if (m_layerFilterData == nullptr) { APIInstance()->Log()->Fatal("PhysXScene::FilterLayerInteraction - layer filter data missing!"); return; } if (enableIntaraction) { JIMARA_PHYSX_GET_LAYER_DATA_BYTE(m_layerFilterData, a, b) |= JIMARA_PHYSX_LAYER_DATA_BIT(b); JIMARA_PHYSX_GET_LAYER_DATA_BYTE(m_layerFilterData, b, a) |= JIMARA_PHYSX_LAYER_DATA_BIT(a); } else { JIMARA_PHYSX_GET_LAYER_DATA_BYTE(m_layerFilterData, a, b) &= ~JIMARA_PHYSX_LAYER_DATA_BIT(b); JIMARA_PHYSX_GET_LAYER_DATA_BYTE(m_layerFilterData, b, a) &= ~JIMARA_PHYSX_LAYER_DATA_BIT(a); } m_layerFilterDataDirty = true; } Reference<DynamicBody> PhysXScene::AddRigidBody(const Matrix4& pose, bool enabled) { PhysXScene::WriteLock lock(this); return Object::Instantiate<PhysXDynamicBody>(this, pose, enabled); } Reference<StaticBody> PhysXScene::AddStaticBody(const Matrix4& pose, bool enabled) { PhysXScene::WriteLock lock(this); return Object::Instantiate<PhysXStaticBody>(this, pose, enabled); } namespace { struct LocationHitTranslator { inline static RaycastHit TranslateHit(const physx::PxLocationHit& hitInfo) { RaycastHit hit; hit.collider = ((PhysXCollider::UserData*)hitInfo.shape->userData)->Collider(); hit.normal = Translate(hitInfo.normal); hit.point = Translate(hitInfo.position); hit.distance = hitInfo.distance; return hit; } }; struct OverlapHitTranslator { inline static PhysicsCollider* TranslateHit(const physx::PxOverlapHit& hitInfo) { return ((PhysXCollider::UserData*)hitInfo.shape->userData)->Collider(); } }; struct QueryFilterCallback : public physx::PxQueryFilterCallback { const PhysicsCollider::LayerMask layers; const Function<PhysicsScene::QueryFilterFlag, PhysicsCollider*>* const preFilterCallback = nullptr; const Function<PhysicsScene::QueryFilterFlag, const RaycastHit&>* const postFilterCallback = nullptr; const bool findAll = false; const physx::PxQueryFilterData filterData; inline physx::PxQueryHitType::Enum TypeFromFlag(PhysicsScene::QueryFilterFlag flag) { return (flag == PhysicsScene::QueryFilterFlag::REPORT) ? (findAll ? physx::PxQueryHitType::eTOUCH : physx::PxQueryHitType::eBLOCK) : (flag == PhysicsScene::QueryFilterFlag::REPORT_BLOCK) ? physx::PxQueryHitType::eBLOCK : physx::PxQueryHitType::eNONE; } inline virtual physx::PxQueryHitType::Enum preFilter( const physx::PxFilterData& filterData, const physx::PxShape* shape, const physx::PxRigidActor* actor, physx::PxHitFlags& queryFlags) override { Unused(filterData, actor, queryFlags); PhysXCollider::UserData* data = (PhysXCollider::UserData*)shape->userData; if (data == nullptr) return physx::PxQueryHitType::eNONE; PhysicsCollider* collider = data->Collider(); if (collider == nullptr) return physx::PxQueryHitType::eNONE; else if (!layers[collider->GetLayer()]) return physx::PxQueryHitType::eNONE; else if (preFilterCallback != nullptr) return TypeFromFlag((*preFilterCallback)(collider)); else return (findAll ? physx::PxQueryHitType::eTOUCH : physx::PxQueryHitType::eBLOCK); } inline virtual physx::PxQueryHitType::Enum postFilter(const physx::PxFilterData& filterData, const physx::PxQueryHit& hit) override { Unused(filterData); if (hit.shape->userData == nullptr) return physx::PxQueryHitType::eNONE; RaycastHit checkHit = LocationHitTranslator::TranslateHit((physx::PxLocationHit&)hit); if (checkHit.collider == nullptr) return physx::PxQueryHitType::eNONE; else return TypeFromFlag((*postFilterCallback)(checkHit)); } inline QueryFilterCallback(const PhysicsCollider::LayerMask& mask , const Function<PhysicsScene::QueryFilterFlag, PhysicsCollider*>* preFilterCall , const Function<PhysicsScene::QueryFilterFlag, const RaycastHit&>* postFilterCall , PhysicsScene::QueryFlags flags, bool ignoreOrder = false) : layers(mask) , preFilterCallback(preFilterCall), postFilterCallback(postFilterCall) , findAll((flags & PhysicsScene::Query(PhysicsScene::QueryFlag::REPORT_MULTIPLE_HITS)) != 0) , filterData([&]() { physx::PxQueryFilterData data; data.flags = physx::PxQueryFlag::ePREFILTER; if ((flags & PhysicsScene::Query(PhysicsScene::QueryFlag::EXCLUDE_STATIC_BODIES)) == 0) data.flags |= physx::PxQueryFlag::eSTATIC; if ((flags & PhysicsScene::Query(PhysicsScene::QueryFlag::EXCLUDE_DYNAMIC_BODIES)) == 0) data.flags |= physx::PxQueryFlag::eDYNAMIC; if (postFilterCall != nullptr) data.flags |= physx::PxQueryFlag::ePOSTFILTER; bool queryAll = ((flags & PhysicsScene::Query(PhysicsScene::QueryFlag::REPORT_MULTIPLE_HITS)) != 0); if (queryAll) { if (ignoreOrder || (preFilterCall == nullptr && postFilterCall == nullptr)) data.flags |= physx::PxQueryFlag::eNO_BLOCK; } else if (ignoreOrder) data.flags |= physx::PxQueryFlag::eANY_HIT; return data; }()) {} }; template<typename HitType, typename ReportedType = const RaycastHit&, typename HitTranslator = LocationHitTranslator> class MultiHitCallbacks : public virtual physx::PxHitCallback<HitType> { private: HitType m_touchBuffer[128]; const Callback<ReportedType>* m_onHitFound; size_t m_numTouches = 0; public: inline MultiHitCallbacks(const Callback<ReportedType>* onHitFound) : physx::PxHitCallback<HitType>(m_touchBuffer, static_cast<physx::PxU32>(sizeof(m_touchBuffer) / sizeof(HitType))) , m_onHitFound(onHitFound) { } inline virtual physx::PxAgain processTouches(const HitType* buffer, physx::PxU32 nbHits) override { for (physx::PxU32 i = 0; i < nbHits; i++) (*m_onHitFound)(HitTranslator::TranslateHit(buffer[i])); m_numTouches += nbHits; return true; } inline size_t NumTouches()const { return m_numTouches; } }; inline static bool FixDirection(const Vector3& direction, float& maxDistance, physx::PxVec3& dir) { if (maxDistance < 0.0f) { maxDistance = -maxDistance; dir = -Translate(direction); } else dir = Translate(direction); float rawDirMagn = dir.magnitude(); if (rawDirMagn <= 0.0f) return false; else { dir /= rawDirMagn; return true; } } inline static size_t PhysXSweep(physx::PxScene* scene, const physx::PxGeometry& shape, const physx::PxTransform& transform , const Vector3& direction, float maxDistance, const Callback<const RaycastHit&>& onHitFound , const PhysicsCollider::LayerMask& layerMask, PhysicsScene::QueryFlags flags , const Function<PhysicsScene::QueryFilterFlag, PhysicsCollider*>* preFilter , const Function<PhysicsScene::QueryFilterFlag, const RaycastHit&>* postFilter) { physx::PxVec3 dir; if (!FixDirection(direction, maxDistance, dir)) return 0; QueryFilterCallback filterCallback(layerMask, preFilter, postFilter, flags); physx::PxHitFlags hitFlags = physx::PxHitFlag::ePOSITION | physx::PxHitFlag::eNORMAL; if (filterCallback.findAll) { MultiHitCallbacks<physx::PxSweepHit> hitBuff(&onHitFound); scene->sweep(shape, transform, dir, maxDistance, hitBuff, hitFlags | physx::PxHitFlag::eMESH_MULTIPLE, filterCallback.filterData, &filterCallback); if (hitBuff.hasBlock) { onHitFound(LocationHitTranslator::TranslateHit(hitBuff.block)); return hitBuff.NumTouches() + 1; } else return hitBuff.NumTouches(); } else { physx::PxSweepBuffer hitBuff; if (scene->sweep(shape, transform, dir, maxDistance, hitBuff, hitFlags, filterCallback.filterData, &filterCallback)) { assert(hitBuff.hasBlock); onHitFound(LocationHitTranslator::TranslateHit(hitBuff.block)); return 1; } else return 0; } } inline static size_t PhysXOverlap(physx::PxScene* scene, const physx::PxGeometry& shape, const physx::PxTransform& transform , const Callback<PhysicsCollider*>& onHitFound, const PhysicsCollider::LayerMask& layerMask, PhysicsScene::QueryFlags flags , const Function<PhysicsScene::QueryFilterFlag, PhysicsCollider*>* filter) { QueryFilterCallback filterCallback(layerMask, filter, nullptr, flags, true); if (filterCallback.findAll) { MultiHitCallbacks<physx::PxOverlapHit, PhysicsCollider*, OverlapHitTranslator> hitBuff(&onHitFound); scene->overlap(shape, transform, hitBuff, filterCallback.filterData, &filterCallback); if (hitBuff.hasBlock) { onHitFound(OverlapHitTranslator::TranslateHit(hitBuff.block)); return hitBuff.NumTouches() + 1; } else return hitBuff.NumTouches(); } else { physx::PxOverlapBuffer hitBuff; if (scene->overlap(shape, transform, hitBuff, filterCallback.filterData, &filterCallback)) { assert(hitBuff.hasBlock); onHitFound(OverlapHitTranslator::TranslateHit(hitBuff.block)); return 1; } else return 0; } } } size_t PhysXScene::Raycast(const Vector3& origin, const Vector3& direction, float maxDistance , const Callback<const RaycastHit&>& onHitFound, const PhysicsCollider::LayerMask& layerMask, QueryFlags flags , const Function<QueryFilterFlag, PhysicsCollider*>* preFilter, const Function<QueryFilterFlag, const RaycastHit&>* postFilter)const { static_assert(sizeof(physx::PxFilterData) >= sizeof(PhysicsCollider::LayerMask*)); physx::PxVec3 dir; if (!FixDirection(direction, maxDistance, dir)) return 0; QueryFilterCallback filterCallback(layerMask, preFilter, postFilter, flags); physx::PxHitFlags hitFlags = physx::PxHitFlag::ePOSITION | physx::PxHitFlag::eNORMAL; if (filterCallback.findAll) { MultiHitCallbacks<physx::PxRaycastHit> hitBuff(&onHitFound); ReadLock lock(this); m_scene->raycast(Translate(origin), dir, maxDistance, hitBuff, hitFlags | physx::PxHitFlag::eMESH_MULTIPLE, filterCallback.filterData, &filterCallback); if (hitBuff.hasBlock) { onHitFound(LocationHitTranslator::TranslateHit(hitBuff.block)); return hitBuff.NumTouches() + 1; } else return hitBuff.NumTouches(); } else { physx::PxRaycastBuffer hitBuff; ReadLock lock(this); if (m_scene->raycast(Translate(origin), dir, maxDistance, hitBuff, hitFlags, filterCallback.filterData, &filterCallback)) { assert(hitBuff.hasBlock); onHitFound(LocationHitTranslator::TranslateHit(hitBuff.block)); return 1; } else return 0; } } size_t PhysXScene::Sweep(const SphereShape& shape, const Matrix4& pose, const Vector3& direction, float maxDistance , const Callback<const RaycastHit&>& onHitFound, const PhysicsCollider::LayerMask& layerMask, QueryFlags flags , const Function<QueryFilterFlag, PhysicsCollider*>* preFilter, const Function<QueryFilterFlag, const RaycastHit&>* postFilter)const { ReadLock lock(this); return PhysXSweep( m_scene, PhysXSphereCollider::Geometry(shape), physx::PxTransform(Translate(pose)) , direction, maxDistance, onHitFound, layerMask, flags, preFilter, postFilter); } size_t PhysXScene::Sweep(const CapsuleShape& shape, const Matrix4& pose, const Vector3& direction, float maxDistance , const Callback<const RaycastHit&>& onHitFound, const PhysicsCollider::LayerMask& layerMask, QueryFlags flags , const Function<QueryFilterFlag, PhysicsCollider*>* preFilter, const Function<QueryFilterFlag, const RaycastHit&>* postFilter)const { ReadLock lock(this); return PhysXSweep( m_scene, PhysXCapusuleCollider::Geometry(shape), physx::PxTransform(Translate(pose * PhysXCapusuleCollider::Wrangle(shape.alignment).first)) , direction, maxDistance, onHitFound, layerMask, flags, preFilter, postFilter); } size_t PhysXScene::Sweep(const BoxShape& shape, const Matrix4& pose, const Vector3& direction, float maxDistance , const Callback<const RaycastHit&>& onHitFound, const PhysicsCollider::LayerMask& layerMask, QueryFlags flags , const Function<QueryFilterFlag, PhysicsCollider*>* preFilter, const Function<QueryFilterFlag, const RaycastHit&>* postFilter)const { ReadLock lock(this); return PhysXSweep( m_scene, PhysXBoxCollider::Geometry(shape), physx::PxTransform(Translate(pose)) , direction, maxDistance, onHitFound, layerMask, flags, preFilter, postFilter); } size_t PhysXScene::Overlap(const SphereShape& shape, const Matrix4& pose, const Callback<PhysicsCollider*>& onOverlapFound , const PhysicsCollider::LayerMask& layerMask, QueryFlags flags, const Function<QueryFilterFlag, PhysicsCollider*>* filter)const { ReadLock lock(this); return PhysXOverlap(m_scene, PhysXSphereCollider::Geometry(shape), physx::PxTransform(Translate(pose)), onOverlapFound, layerMask, flags, filter); } size_t PhysXScene::Overlap(const CapsuleShape& shape, const Matrix4& pose, const Callback<PhysicsCollider*>& onOverlapFound , const PhysicsCollider::LayerMask& layerMask, QueryFlags flags, const Function<QueryFilterFlag, PhysicsCollider*>* filter)const { ReadLock lock(this); return PhysXOverlap( m_scene, PhysXCapusuleCollider::Geometry(shape), physx::PxTransform(Translate(pose * PhysXCapusuleCollider::Wrangle(shape.alignment).first)), onOverlapFound, layerMask, flags, filter); } size_t PhysXScene::Overlap(const BoxShape& shape, const Matrix4& pose, const Callback<PhysicsCollider*>& onOverlapFound , const PhysicsCollider::LayerMask& layerMask, QueryFlags flags, const Function<QueryFilterFlag, PhysicsCollider*>* filter)const { ReadLock lock(this); return PhysXOverlap(m_scene, PhysXBoxCollider::Geometry(shape), physx::PxTransform(Translate(pose)), onOverlapFound, layerMask, flags, filter); } void PhysXScene::SimulateAsynch(float deltaTime) { WriteLock lock(this); if (m_layerFilterDataDirty) { m_scene->setFilterShaderData(m_layerFilterData, static_cast<physx::PxU32>(JIMARA_PHYSX_LAYER_FILTER_DATA_SIZE)); m_layerFilterDataDirty = false; } m_scene->simulate(deltaTime); } void PhysXScene::SynchSimulation() { { WriteLock lock(this); m_scene->fetchResults(true); } m_simulationEventCallback.NotifyEvents(); } PhysXScene::operator physx::PxScene* () const { return m_scene; } physx::PxScene* PhysXScene::operator->()const { return m_scene; } void PhysXScene::SimulationEventCallback::onConstraintBreak(physx::PxConstraintInfo* constraints, physx::PxU32 count) { Unused(constraints, count); } void PhysXScene::SimulationEventCallback::onWake(physx::PxActor** actors, physx::PxU32 count) { Unused(actors, count); } void PhysXScene::SimulationEventCallback::onSleep(physx::PxActor** actors, physx::PxU32 count) { Unused(actors, count); } void PhysXScene::SimulationEventCallback::onContact(const physx::PxContactPairHeader& pairHeader, const physx::PxContactPair* pairs, physx::PxU32 nbPairs) { Unused(pairHeader); std::unique_lock<std::mutex> lock(m_eventLock); uint8_t bufferId = m_backBuffer; std::vector<PhysicsCollider::ContactPoint>& pointBuffer = m_contactPoints[bufferId]; for (size_t i = 0; i < nbPairs; i++) { const physx::PxContactPair& pair = pairs[i]; PhysXCollider::UserData* data[2] = { (PhysXCollider::UserData*)pair.shapes[0]->userData, (PhysXCollider::UserData*)pair.shapes[1]->userData }; if (data[0] == nullptr || data[1] == nullptr) continue; bool isTriggerContact = data[0]->Collider()->IsTrigger() || data[1]->Collider()->IsTrigger(); ContactPairInfo info = {}; info.info.type = (((physx::PxU16)pair.events & physx::PxPairFlag::eNOTIFY_TOUCH_FOUND) != 0) ? (isTriggerContact ? PhysicsCollider::ContactType::ON_TRIGGER_BEGIN : PhysicsCollider::ContactType::ON_COLLISION_BEGIN) : (((physx::PxU16)pair.events & physx::PxPairFlag::eNOTIFY_TOUCH_LOST) != 0) ? (isTriggerContact ? PhysicsCollider::ContactType::ON_TRIGGER_END : PhysicsCollider::ContactType::ON_COLLISION_END) : (((physx::PxU16)pair.events & physx::PxPairFlag::eNOTIFY_TOUCH_PERSISTS) != 0) ? (isTriggerContact ? PhysicsCollider::ContactType::ON_TRIGGER_PERSISTS : PhysicsCollider::ContactType::ON_COLLISION_PERSISTS) : PhysicsCollider::ContactType::CONTACT_TYPE_COUNT; if (info.info.type >= PhysicsCollider::ContactType::CONTACT_TYPE_COUNT) continue; if (pair.shapes[0] < pair.shapes[1]) { info.shapes[0] = pair.shapes[0]; info.shapes[1] = pair.shapes[1]; info.info.reverseOrder = false; } else { info.shapes[0] = pair.shapes[1]; info.shapes[1] = pair.shapes[0]; info.info.reverseOrder = true; } if (m_contactPointBuffer.size() < pair.contactCount) m_contactPointBuffer.resize(pair.contactCount); size_t contactCount = pair.extractContacts(m_contactPointBuffer.data(), (uint32_t)m_contactPointBuffer.size()); info.info.pointBuffer = bufferId; info.info.firstContactPoint = pointBuffer.size(); for (size_t i = 0; i < contactCount; i++) { const physx::PxContactPairPoint& point = m_contactPointBuffer[i]; PhysicsCollider::ContactPoint info = {}; info.position = Translate(point.position); info.normal = Translate(point.normal); pointBuffer.push_back(info); } info.info.lastContactPoint = pointBuffer.size(); m_contacts.push_back(info); } } void PhysXScene::SimulationEventCallback::onTrigger(physx::PxTriggerPair* pairs, physx::PxU32 count) { std::unique_lock<std::mutex> lock(m_eventLock); uint8_t bufferId = m_backBuffer; for (size_t i = 0; i < count; i++) { const physx::PxTriggerPair& pair = pairs[i]; ContactPairInfo info = {}; info.info.type = (pair.status == physx::PxPairFlag::eNOTIFY_TOUCH_FOUND) ? PhysicsCollider::ContactType::ON_TRIGGER_BEGIN : (pair.status == physx::PxPairFlag::eNOTIFY_TOUCH_LOST) ? PhysicsCollider::ContactType::ON_TRIGGER_END : PhysicsCollider::ContactType::CONTACT_TYPE_COUNT; if (info.info.type >= PhysicsCollider::ContactType::CONTACT_TYPE_COUNT) continue; if (pair.triggerShape < pair.otherShape) { info.shapes[0] = pair.triggerShape; info.shapes[1] = pair.otherShape; info.info.reverseOrder = false; } else { info.shapes[0] = pair.otherShape; info.shapes[1] = pair.triggerShape; info.info.reverseOrder = true; } if (info.shapes[0]->userData == nullptr || info.shapes[1]->userData == nullptr) continue; info.info.pointBuffer = bufferId; m_contacts.push_back(info); } } void PhysXScene::SimulationEventCallback::onAdvance(const physx::PxRigidBody* const* bodyBuffer, const physx::PxTransform* poseBuffer, const physx::PxU32 count) { Unused(bodyBuffer, poseBuffer, count); } void PhysXScene::SimulationEventCallback::NotifyEvents() { std::unique_lock<std::mutex> lock(m_eventLock); // Current contact point buffer: const uint8_t bufferId = m_backBuffer; std::vector<PhysicsCollider::ContactPoint>& pointBuffer = m_contactPoints[bufferId]; // Notifies listeners about the pair contact (returns false, if the shapes are no longer valid): auto notifyContact = [&](const ShapePair& pair, ContactInfo& info) { PhysXCollider::UserData* listener = (PhysXCollider::UserData*)pair.shapes[0]->userData; PhysXCollider::UserData* otherListener = (PhysXCollider::UserData*)pair.shapes[1]->userData; if (listener == nullptr || otherListener == nullptr) return false; PhysicsCollider::ContactPoint* const contactPoints = pointBuffer.data() + info.firstContactPoint; const size_t contactPointCount = (info.lastContactPoint - info.firstContactPoint); auto reverse = [&]() { for (size_t i = 0; i < contactPointCount; i++) { PhysicsCollider::ContactPoint& point = contactPoints[i]; point.normal = -point.normal; } info.reverseOrder ^= 1; }; if (info.reverseOrder) { otherListener->OnContact(pair.shapes[1], pair.shapes[0], info.type, contactPoints, contactPointCount); reverse(); listener->OnContact(pair.shapes[0], pair.shapes[1], info.type, contactPoints, contactPointCount); } else { listener->OnContact(pair.shapes[0], pair.shapes[1], info.type, contactPoints, contactPointCount); reverse(); otherListener->OnContact(pair.shapes[1], pair.shapes[0], info.type, contactPoints, contactPointCount); } return true; }; // Notifies about the newly contacts and saves persistent contacts in case the actors start sleeping: for (size_t contactId = 0; contactId < m_contacts.size(); contactId++) { ContactPairInfo& info = m_contacts[contactId]; ShapePair pair; pair.shapes[0] = info.shapes[0]; pair.shapes[1] = info.shapes[1]; notifyContact(pair, info.info); if (info.info.type == PhysicsCollider::ContactType::ON_COLLISION_END || info.info.type == PhysicsCollider::ContactType::ON_TRIGGER_END) m_persistentContacts.erase(pair); else { ContactInfo contact = info.info; if (contact.type == PhysicsCollider::ContactType::ON_COLLISION_BEGIN) contact.type = PhysicsCollider::ContactType::ON_COLLISION_PERSISTS; else if (contact.type == PhysicsCollider::ContactType::ON_TRIGGER_BEGIN) contact.type = PhysicsCollider::ContactType::ON_TRIGGER_PERSISTS; m_persistentContacts[pair] = contact; } } // Notifies about sleeping persistent contacts: for (PersistentContactMap::iterator it = m_persistentContacts.begin(); it != m_persistentContacts.end(); ++it) { ContactInfo& info = it->second; if (info.pointBuffer == bufferId) continue; const size_t contactPointCount = (info.lastContactPoint - info.firstContactPoint); const PhysicsCollider::ContactPoint* const contactPoints = m_contactPoints[info.pointBuffer].data() + info.firstContactPoint; info.firstContactPoint = pointBuffer.size(); for (size_t i = 0; i < contactPointCount; i++) pointBuffer.push_back(contactPoints[i]); info.lastContactPoint = pointBuffer.size(); info.pointBuffer = bufferId; if (!notifyContact(it->first, info)) m_pairsToRemove.push_back(it->first); } // Remove invalidated persistent contacts: for (size_t i = 0; i < m_pairsToRemove.size(); i++) m_persistentContacts.erase(m_pairsToRemove[i]); m_pairsToRemove.clear(); // Swaps contact buffers: m_backBuffer ^= 1; m_contacts.clear(); m_contactPoints[m_backBuffer].clear(); } } } } #pragma warning(default: 26812)
48.257732
166
0.719504
TheDonsky
95e4a43f68f6cc9a521e6035d8e96e5bf407b08a
3,916
hpp
C++
include/polycalc/quadrature/gauss_lobatto.hpp
BryanFlynt/PolyCalc
9fe70f83647c6f5683e6e8f5cfee23b417974ebb
[ "Apache-2.0" ]
null
null
null
include/polycalc/quadrature/gauss_lobatto.hpp
BryanFlynt/PolyCalc
9fe70f83647c6f5683e6e8f5cfee23b417974ebb
[ "Apache-2.0" ]
null
null
null
include/polycalc/quadrature/gauss_lobatto.hpp
BryanFlynt/PolyCalc
9fe70f83647c6f5683e6e8f5cfee23b417974ebb
[ "Apache-2.0" ]
null
null
null
/** * \file gauss_lobatto.hpp * \author Bryan Flynt * \date Sep 02, 2021 * \copyright Copyright (C) 2021 Bryan Flynt - All Rights Reserved */ #pragma once #include <cassert> #include <vector> #include "polycalc/parameters.hpp" #include "polycalc/polynomial/jacobi.hpp" namespace polycalc { namespace quadrature { template <typename T, typename P = DefaultParameters<T>> class GaussLobatto { public: using value_type = T; using params = P; using size_type = std::size_t; using polynomial = ::polycalc::polynomial::Jacobi<T, P>; GaussLobatto() = delete; GaussLobatto(const GaussLobatto& other) = default; GaussLobatto(GaussLobatto&& other) = default; ~GaussLobatto() = default; GaussLobatto& operator=(const GaussLobatto& other) = default; GaussLobatto& operator=(GaussLobatto&& other) = default; GaussLobatto(const value_type a, const value_type b) : alpha_(a), beta_(b) {} /** Quadrature Locations * * Returns the Gauss-Lobatto quadrature locations at n locations. */ std::vector<value_type> zeros(const unsigned n) const; /** Quadrature Weights * * Returns the Gauss-Jacobi weights at n Lobatto zeros. */ std::vector<value_type> weights(const unsigned n) const; private: value_type alpha_; value_type beta_; }; template <typename T, typename P> std::vector<typename GaussLobatto<T, P>::value_type> GaussLobatto<T, P>::zeros(const unsigned n) const { assert(n > 0); // Good Decimal Calculator found at following site // https://keisan.casio.com/exec/system/1280801905 // Zeros to return std::vector<value_type> x(n); switch (n) { case 1: x[0] = 0.0; break; case 2: x[0] = -1.0; x[1] = +1.0; break; case 3: x[0] = -1.0; x[1] = 0.0; x[2] = +1.0; break; default: polynomial jac(alpha_ + 1, beta_ + 1); auto zeros = jac.zeros(n - 2); x.front() = -1.0; std::copy(zeros.begin(), zeros.end(), x.begin() + 1); x.back() = +1.0; if (!(n % 2 == 0)) { x[std::ptrdiff_t(n / 2)] = 0; // Correct 10E-16 error at zero } } return x; } template <typename T, typename P> std::vector<typename GaussLobatto<T, P>::value_type> GaussLobatto<T, P>::weights(const unsigned n) const { assert(n > 0); // Good Decimal Calculator found at following site // https://keisan.casio.com/exec/system/1280801905 // Weights to return std::vector<value_type> w(n); switch (n) { case 1: w[0] = +2.0; break; case 2: w[0] = +1.0; w[1] = +1.0; break; case 3: w[0] = 1.0L / 3.0L; w[1] = 4.0L / 3.0L; w[2] = 1.0L / 3.0L; break; default: // Get location of zeros auto z = this->zeros(n); // Evaluate Jacobi n-1 polynomial at each zero polynomial jac(alpha_, beta_); for (size_type i = 0; i < n; ++i) { w[i] = jac.eval(n - 1, z[i]); } const value_type one = 1; const value_type two = 2; const value_type apb = alpha_ + beta_; value_type fac; fac = std::pow(two, apb + one) * std::tgamma(alpha_ + n) * std::tgamma(beta_ + n); fac /= (n - 1) * std::tgamma(n) * std::tgamma(alpha_ + beta_ + n + one); for (size_type i = 0; i < n; ++i) { w[i] = fac / (w[i] * w[i]); } w[0] *= (beta_ + one); w[n - 1] *= (alpha_ + one); } return w; } } // namespace quadrature } // namespace polycalc
27.77305
106
0.522472
BryanFlynt
95e5037325108bcb3a68d454b1596a032466ddf7
1,277
cpp
C++
RPSolver/conditions/ColorConditionPosition.cpp
igui/OppositeRenderer
2442741792b3f0f426025c2015002694fab692eb
[ "MIT" ]
9
2016-06-25T15:52:05.000Z
2020-01-15T17:31:49.000Z
RPSolver/conditions/ColorConditionPosition.cpp
igui/OppositeRenderer
2442741792b3f0f426025c2015002694fab692eb
[ "MIT" ]
null
null
null
RPSolver/conditions/ColorConditionPosition.cpp
igui/OppositeRenderer
2442741792b3f0f426025c2015002694fab692eb
[ "MIT" ]
2
2018-10-17T18:33:37.000Z
2022-03-14T20:17:30.000Z
#include "ColorConditionPosition.h" #include "renderer/PMOptixRenderer.h" #include <QLocale> #include <QVector> #include <QColor> ColorConditionPosition::ColorConditionPosition(const QString& node, const optix::float3& hsvColor) : m_node(node), m_hsvColor(hsvColor) { } /// adapted from http://www.cs.rit.edu/~ncs/color/t_convert.html optix::float3 ColorConditionPosition::rgbColor() const { QColor color = QColor::fromHsvF(m_hsvColor.x / 360.f, m_hsvColor.y, m_hsvColor.z); return optix::make_float3(color.redF(), color.greenF(), color.blueF()); } void ColorConditionPosition::apply(PMOptixRenderer *renderer) const { renderer->setNodeDiffuseMaterialKd(m_node, rgbColor()); } optix::float3 ColorConditionPosition::hsvColor() const { return m_hsvColor; } float ColorConditionPosition::value() const { return m_hsvColor.z; } QString ColorConditionPosition::node() const { return m_node; } QVector<float> ColorConditionPosition::normalizedPosition() const { return QVector<float>() << value(); } QStringList ColorConditionPosition::info() const { QLocale locale; auto color = rgbColor(); auto x = locale.toString(color.x, 'f', 2); auto y = locale.toString(color.y, 'f', 2); auto z = locale.toString(color.z, 'f', 2); return QStringList() << x << y << z; }
23.648148
100
0.740016
igui
95e691961ebfa6bbdb05b501023cc8f9232bca74
470
cpp
C++
test/one_pole_test.cpp
hansen-audio/dsp-tool-box
4b73b39c4149b1a160ff9baa58830d6a4478feef
[ "MIT" ]
null
null
null
test/one_pole_test.cpp
hansen-audio/dsp-tool-box
4b73b39c4149b1a160ff9baa58830d6a4478feef
[ "MIT" ]
null
null
null
test/one_pole_test.cpp
hansen-audio/dsp-tool-box
4b73b39c4149b1a160ff9baa58830d6a4478feef
[ "MIT" ]
null
null
null
// Copyright(c) 2021 Hansen Audio. #include "ha/dsp_tool_box/filtering/one_pole.h" #include "gtest/gtest.h" using namespace ha::dtb::filtering; /** * @brief one_pole_test */ TEST(one_pole_test, test_one_pole_initialisation) { auto one_pole = OnePoleImpl::create(); EXPECT_FLOAT_EQ(one_pole.a, 0.9); EXPECT_FLOAT_EQ(one_pole.b, 0.1); EXPECT_FLOAT_EQ(one_pole.z, 0.0); } //-----------------------------------------------------------------------------
24.736842
79
0.595745
hansen-audio
95ebda8d3be8708b52ecab9bc614b240388f153f
944
cpp
C++
codeforces/1567B.cpp
sgrade/cpptest
84ade6ec03ea394d4a4489c7559d12b4799c0b62
[ "MIT" ]
null
null
null
codeforces/1567B.cpp
sgrade/cpptest
84ade6ec03ea394d4a4489c7559d12b4799c0b62
[ "MIT" ]
null
null
null
codeforces/1567B.cpp
sgrade/cpptest
84ade6ec03ea394d4a4489c7559d12b4799c0b62
[ "MIT" ]
null
null
null
// B. MEXor Mixup #include <iostream> using namespace std; // Method to calculate xor int computeXOR(int n) { // Source - https://www.geeksforgeeks.org/calculate-xor-1-n/ // If n is a multiple of 4 if (n % 4 == 0) { return n; } // If n%4 gives remainder 1 if (n % 4 == 1) { return 1; } // If n%4 gives remainder 2 if (n % 4 == 2) { return n + 1; } // If n%4 gives remainder 3 return 0; } int main() { int t; cin >> t; while (t--) { int a, b; cin >> a >> b; int ans; // Editorial - https://codeforces.com/blog/entry/94581 int x = computeXOR(a-1); if (x == b) { ans = a; } else { if ((x ^ b) != a) { ans = a + 1; } else { ans = a + 2; } } cout << ans << endl; } }
15.225806
64
0.400424
sgrade
95ec924801c63c19c0604cdbd92f81fcfb7c89c5
2,081
cpp
C++
lib/netdata/fragments_server.cpp
siilky/catomania
cb3a05cbef523d16b8929b390e190e0cd5924ee9
[ "MIT" ]
1
2021-02-05T23:20:07.000Z
2021-02-05T23:20:07.000Z
lib/netdata/fragments_server.cpp
siilky/catomania
cb3a05cbef523d16b8929b390e190e0cd5924ee9
[ "MIT" ]
null
null
null
lib/netdata/fragments_server.cpp
siilky/catomania
cb3a05cbef523d16b8929b390e190e0cd5924ee9
[ "MIT" ]
null
null
null
#include "stdafx.h" #include "netdata/fragments_server.h" namespace serverdata { static const fragmentCollection_t fragments[] = { COLLECTION_ELEMENT(Array), COLLECTION_ELEMENT(ArrayPacked), COLLECTION_ELEMENT(GameinfoSet), COLLECTION_ELEMENT(AccInfo), COLLECTION_ELEMENT(ErrorInfo), COLLECTION_ELEMENT(StatusAnnounce), COLLECTION_ELEMENT(PlayerLogout), COLLECTION_ELEMENT(SelectRoleRe), // 50 COLLECTION_ELEMENT(ChatMessage), COLLECTION_ELEMENT(CreateRoleRe), COLLECTION_ELEMENT(RoleListRe), COLLECTION_ELEMENT(Keepalive), COLLECTION_ELEMENT(PlayerBaseInfoRe), // 60 COLLECTION_ELEMENT(PrivateChat), COLLECTION_ELEMENT(BannedMessage), COLLECTION_ELEMENT(WorldChat), COLLECTION_ELEMENT(LoginIpInfo), COLLECTION_ELEMENT(GetFriendsRe), COLLECTION_ELEMENT(SetLockTimeRe), COLLECTION_ELEMENT(BattleGetMapRe), COLLECTION_ELEMENT(BattleChallengeMapRe), // COLLECTION_ELEMENT(ComissionShop), COLLECTION_ELEMENT(ComissionShopList), COLLECTION_ELEMENT(TradeStartRe), COLLECTION_ELEMENT(TradeRequest), COLLECTION_ELEMENT(TradeAddGoodsRe), COLLECTION_ELEMENT(TradeRemoveGoodsRe), COLLECTION_ELEMENT(TradeSubmitRe), COLLECTION_ELEMENT(TradeConfirmRe), COLLECTION_ELEMENT(TradeDiscardRe), COLLECTION_ELEMENT(TradeEnd), // 1200 COLLECTION_ELEMENT(FactionChat), COLLECTION_ELEMENT(GetFactionBaseInfoRe), COLLECTION_ELEMENT(ACWhoami), COLLECTION_ELEMENT(ACRemoteCode), COLLECTION_ELEMENT(ACProtoStat), COLLECTION_ELEMENT(ACStatusAnnounce), COLLECTION_ELEMENT(ACReportCheater), COLLECTION_ELEMENT(ACTriggerQuestion), COLLECTION_ELEMENT(ACQuestion), COLLECTION_ELEMENT(ACAnswer), COLLECTION_END }; FragmentFactory fragmentFactory(identifyFragment, fragments, fragment_static_ctor<Fragment>); } // namespace
32.515625
97
0.702547
siilky
95eead97864fb897edd4dd8a2cbc86b300d5d66f
775
cpp
C++
graph-source-code/296-D/10047350.cpp
AmrARaouf/algorithm-detection
59f3028d2298804870b32729415d71eec6116557
[ "MIT" ]
null
null
null
graph-source-code/296-D/10047350.cpp
AmrARaouf/algorithm-detection
59f3028d2298804870b32729415d71eec6116557
[ "MIT" ]
null
null
null
graph-source-code/296-D/10047350.cpp
AmrARaouf/algorithm-detection
59f3028d2298804870b32729415d71eec6116557
[ "MIT" ]
null
null
null
//Language: GNU C++ //In the name of God #include <iostream> #include <algorithm> #include <vector> #include <cstdlib> #include <map> #include <cstdio> using namespace std; #define mp make_pair #define X first #define Y second #define lol long long const int MAXN=510; lol dis[MAXN][MAXN],a[MAXN],ans[MAXN]; int main() { int n; cin>>n; for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) cin>>dis[i][j]; for(int i=1;i<=n;i++) cin>>a[i]; for(int i=n;i>0;i--) { for(int j=1;j<=n;j++) for(int k=1;k<=n;k++) dis[a[j]][a[k]]=min(dis[a[j]][a[k]],dis[a[j]][a[i]]+dis[a[i]][a[k]]); for(int j=i;j<=n;j++) for(int k=i;k<=n;k++) ans[i]+=dis[a[j]][a[k]]; } for(int i=1;i<=n;i++) cout<<ans[i]<<" "; cout<<endl; return 0; }
17.613636
72
0.536774
AmrARaouf
95f63141ee8879d95b09b6d158efeaadc1b9224a
981
cpp
C++
topic_wise/binarysearch/russianDollEnvelopes.cpp
archit-1997/LeetCode
7c0f74da0836d3b0855f09bae8960f81a384f3f3
[ "MIT" ]
1
2021-01-27T16:37:36.000Z
2021-01-27T16:37:36.000Z
topic_wise/binarysearch/russianDollEnvelopes.cpp
archit-1997/LeetCode
7c0f74da0836d3b0855f09bae8960f81a384f3f3
[ "MIT" ]
null
null
null
topic_wise/binarysearch/russianDollEnvelopes.cpp
archit-1997/LeetCode
7c0f74da0836d3b0855f09bae8960f81a384f3f3
[ "MIT" ]
null
null
null
/** * @author : archit * @GitHub : archit-1997 * @Email : [email protected] * @file : russianDollEnvelopes.cpp * @created : Friday Aug 20, 2021 19:49:02 IST */ #include <bits/stdc++.h> using namespace std; bool compare(const vector<int> &a,const vector<int> &b){ if(a[0]==b[0]) return a[1]>b[1]; return a[0]<b[0]; } class Solution { public: int maxEnvelopes(vector<vector<int>>& envelopes) { int n=envelopes.size(); //we will sort on the basis of the first param and in descending on the basis of the second param vector<int> ans; sort(envelopes.begin(),envelopes.end(),compare); for(int i=0;i<n;i++){ int index=lower_bound(ans.begin(),ans.end(),envelopes[i][1])-ans.begin(); if(index==ans.size()) ans.push_back(envelopes[i][1]); else ans[index]=envelopes[i][1]; } return ans.size(); } };
27.25
105
0.559633
archit-1997
2507f8068640fc6f36eb0b4121359f400f7b1814
1,034
cpp
C++
C++/problem0125.cpp
1050669722/LeetCode-Answers
c8f4d1ccaac09cda63b60d75144335347b06dc81
[ "MIT" ]
null
null
null
C++/problem0125.cpp
1050669722/LeetCode-Answers
c8f4d1ccaac09cda63b60d75144335347b06dc81
[ "MIT" ]
null
null
null
C++/problem0125.cpp
1050669722/LeetCode-Answers
c8f4d1ccaac09cda63b60d75144335347b06dc81
[ "MIT" ]
null
null
null
class Solution { public: bool isPalindrome(string s) { if (s.size() == 0) { return true; } vector<char> v; for (int i = 0; i < s.size(); ++i) { if (isalnum(s[i])) { v.push_back(s[i]); // cout << s[i] << ' '; } } int i = 0, j = v.size() - 1; while (i < j) { // cout << v[i] << ' ' << v[j] << endl; if (toupper(v[i]) != toupper(v[j])) // if (strupr(v[i]) != strupr(v[j])) { return false; } i++, j--; } // vector<char>::iterator it_i = v.begin(), it_j = v.end() - 1; // cout << *it_i << ' ' << *it_j << endl; // while (it_i < it_j) // { // if (toupper(*it_i) != toupper(*it_j)) // { // return false; // } // it_i++, it_j--; // } return true; } };
22
71
0.305609
1050669722
2508bfcdb6b42e2a10b88a833dd0167bfe49dda3
476
hpp
C++
king/include/king/Math/VectorType.hpp
tobiasbu/king
7a6892a93d5d4c5f14e2618104f2955281f0bada
[ "MIT" ]
3
2017-03-10T13:57:25.000Z
2017-05-31T19:05:35.000Z
king/include/king/Math/VectorType.hpp
tobiasbu/king
7a6892a93d5d4c5f14e2618104f2955281f0bada
[ "MIT" ]
null
null
null
king/include/king/Math/VectorType.hpp
tobiasbu/king
7a6892a93d5d4c5f14e2618104f2955281f0bada
[ "MIT" ]
null
null
null
#ifndef KING_VECTORTYPE_HPP #define KING_VECTORTYPE_HPP namespace king { // Vectors Types Predefinition template <typename T> class Vector2; template <typename T> class Vector3; template <typename T> class Vector4; // Most Commom Vectors Types typedef Vector2<float> Vector2f; typedef Vector2<int> Vector2i; typedef Vector2<unsigned int> Vector2ui; typedef Vector3<float> Vector3f; typedef Vector3<int> Vector3i; typedef Vector4<float> Vector4f; } #endif
18.307692
41
0.771008
tobiasbu
250c942de9921b043307f0332d526be930225d62
1,961
cpp
C++
src/PrintHelper.cpp
TB989/Game
9cf6e1267f1bc08b2e7f5f9a8278914f930c7c51
[ "MIT" ]
null
null
null
src/PrintHelper.cpp
TB989/Game
9cf6e1267f1bc08b2e7f5f9a8278914f930c7c51
[ "MIT" ]
null
null
null
src/PrintHelper.cpp
TB989/Game
9cf6e1267f1bc08b2e7f5f9a8278914f930c7c51
[ "MIT" ]
null
null
null
#include <string> #include <iostream> void startHeader(std::string locationName){ std::cout << "**********" << locationName << "**********\n"; } void finishHeader(std::string locationName){ std::cout << "**********"; for(unsigned int i=0;i<locationName.length();i++){ std::cout << "*"; } std::cout<< "**********\n"; } void printChoices(std::string option1){ std::cout << "What do you want to do?\n"; std::cout << "1: " << option1 << "\n"; } void printChoices(std::string option1,std::string option2){ std::cout << "What do you want to do?\n"; std::cout << "1: " << option1 << "\n"; std::cout << "2: " << option2 << "\n"; } void printChoices(std::string option1,std::string option2,std::string option3){ std::cout << "What do you want to do?\n"; std::cout << "1: " << option1 << "\n"; std::cout << "2: " << option2 << "\n"; std::cout << "3: " << option3 << "\n"; } void printChoices(std::string option1,std::string option2,std::string option3,std::string option4){ std::cout << "What do you want to do?\n"; std::cout << "1: " << option1 << "\n"; std::cout << "2: " << option2 << "\n"; std::cout << "3: " << option3 << "\n"; std::cout << "4: " << option4 << "\n"; } int getChoice(int maxChoices){ int choice; while(true){ std::cout << "Your choice: "; std::cin >> choice; std::cin.ignore(32767, '\n'); if(!std::cin.fail()){ if(choice==0){ exit(0); } else if(0<choice&&choice<=maxChoices){ return choice; } else{ std::cin.clear(); std::cin.ignore(32767, '\n'); std::cout << "Invalid choice, try again!\n"; } } else{ std::cin.clear(); std::cin.ignore(32767, '\n'); std::cout << "Invalid choice, try again!\n"; } } }
28.42029
99
0.481387
TB989
251e742f8655e82fa15cf61f177b17e665922ff0
4,157
cpp
C++
src/types/Criteria.cpp
Mostah/parallel-pymcda
d5f5bb0de95dec90b88be9d00a3860e52eed4003
[ "MIT" ]
2
2020-12-12T22:48:57.000Z
2021-02-24T09:37:40.000Z
src/types/Criteria.cpp
Mostah/parallel-pymcda
d5f5bb0de95dec90b88be9d00a3860e52eed4003
[ "MIT" ]
5
2021-01-07T19:34:24.000Z
2021-03-17T13:52:22.000Z
src/types/Criteria.cpp
Mostah/parallel-pymcda
d5f5bb0de95dec90b88be9d00a3860e52eed4003
[ "MIT" ]
3
2020-12-12T22:49:56.000Z
2021-09-08T05:26:38.000Z
#include "../../include/types/Criteria.h" #include "../../include/types/Criterion.h" #include "../../include/utils.h" #include <algorithm> #include <iostream> #include <numeric> #include <string> #include <vector> Criteria::Criteria(std::vector<Criterion> &criterion_vect) { std::vector<std::string> crit_id_vect; for (Criterion crit : criterion_vect) { // ensure there is no criterion with duplicated name if (std::find(crit_id_vect.begin(), crit_id_vect.end(), crit.getId()) != crit_id_vect.end()) { throw std::invalid_argument("Each criterion must have different ids."); } crit_id_vect.push_back(crit.getId()); criterion_vect_.push_back(Criterion(crit)); } } Criteria::Criteria(int nb_of_criteria, std::string prefix) { for (int i = 0; i < nb_of_criteria; i++) { criterion_vect_.push_back(Criterion(prefix + std::to_string(i))); } } Criteria::Criteria(const Criteria &crits) { // deep copy for (int i = 0; i < crits.criterion_vect_.size(); i++) { criterion_vect_.push_back(Criterion(crits.criterion_vect_[i])); } } Criteria::~Criteria() {} std::ostream &operator<<(std::ostream &out, const Criteria &crits) { out << "Criteria("; for (Criterion crit : crits.criterion_vect_) { out << crit << ", "; } out << ")"; return out; } void Criteria::setCriterionVect(std::vector<Criterion> &criterion_vect) { criterion_vect_.clear(); // deep copy for (int i = 0; i < criterion_vect.size(); i++) { criterion_vect_.push_back(Criterion(criterion_vect[i])); } } std::vector<Criterion> Criteria::getCriterionVect() const { return criterion_vect_; }; float Criteria::getMinWeight() { if (criterion_vect_.size() == 0) { return 0; } float min = criterion_vect_[0].getWeight(); for (Criterion crit : criterion_vect_) { if (crit.getWeight() < min) { min = crit.getWeight(); } } return min; } float Criteria::getMaxWeight() { if (criterion_vect_.size() == 0) { return 0; } float max = criterion_vect_[0].getWeight(); for (Criterion crit : criterion_vect_) { if (crit.getWeight() > max) { max = crit.getWeight(); } } return max; } float Criteria::getSumWeight() { float sum = 0; for (Criterion crit : criterion_vect_) { sum += crit.getWeight(); } return sum; } std::vector<float> Criteria::getWeights() const { std::vector<float> weights; for (Criterion c : criterion_vect_) { weights.push_back(c.getWeight()); } return weights; } void Criteria::setWeights(std::vector<float> newWeigths) { if (newWeigths.size() != criterion_vect_.size()) { throw std::invalid_argument( "New weight vector must have same length as Criteria ie have the same " "value as the number of criteria"); } for (int i = 0; i < criterion_vect_.size(); i++) { criterion_vect_[i].setWeight(newWeigths[i]); } } void Criteria::normalizeWeights() { float sum = Criteria::getSumWeight(); std::vector<float> weights = Criteria::getWeights(); std::transform(weights.begin(), weights.end(), weights.begin(), [&sum](float &c) { return c / sum; }); for (int i = 0; i < weights.size(); i++) { criterion_vect_[i].setWeight(weights[i]); } } // TODO Generation is not completely uniform here, might need to find an other // method void Criteria::generateRandomCriteriaWeights(unsigned long int seed) { std::vector<float> weights; for (int i = 0; i < criterion_vect_.size(); i++) { weights.push_back(getRandomUniformFloat(seed)); } float totSum = std::accumulate(weights.begin(), weights.end(), 0.00f); std::transform(weights.begin(), weights.end(), weights.begin(), [totSum](float &c) { return c / totSum; }); Criteria::setWeights(weights); } Criterion Criteria::operator[](std::string name) const { for (Criterion c : criterion_vect_) { if (c.getId() == name) { return c; } } throw std::invalid_argument("Criterion not found in this Criteria vector"); } Criterion Criteria::operator[](int index) { return criterion_vect_[index]; } Criterion Criteria::operator[](int index) const { return criterion_vect_[index]; }
28.087838
79
0.660573
Mostah
2520af0b6c32847350b4e715a9d45c750e9af6c2
15,144
hpp
C++
libmesh/include/sirikata/mesh/Meshdata.hpp
pathorn/sirikata
5d366a822ef2fb57cd9f64cc4f6085c0a635fdfa
[ "BSD-3-Clause" ]
1
2016-05-09T03:34:51.000Z
2016-05-09T03:34:51.000Z
libmesh/include/sirikata/mesh/Meshdata.hpp
pathorn/sirikata
5d366a822ef2fb57cd9f64cc4f6085c0a635fdfa
[ "BSD-3-Clause" ]
null
null
null
libmesh/include/sirikata/mesh/Meshdata.hpp
pathorn/sirikata
5d366a822ef2fb57cd9f64cc4f6085c0a635fdfa
[ "BSD-3-Clause" ]
null
null
null
/* Sirikata * Meshdata.hpp * * Copyright (c) 2010, Daniel B. Miller * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Sirikata nor the names of its contributors may * be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _SIRIKATA_MESH_MESHDATA_HPP_ #define _SIRIKATA_MESH_MESHDATA_HPP_ #include <sirikata/mesh/Platform.hpp> #include <sirikata/mesh/Visual.hpp> #include "LightInfo.hpp" #include <stack> namespace Sirikata { namespace Mesh { // Typedefs for NodeIndices, which refer to scene graph nodes in the model typedef int32 NodeIndex; extern SIRIKATA_MESH_EXPORT NodeIndex NullNodeIndex; typedef std::vector<NodeIndex> NodeIndexList; typedef std::vector<LightInfo> LightInfoList; typedef std::vector<std::string> TextureList; struct Meshdata; typedef std::tr1::shared_ptr<Meshdata> MeshdataPtr; typedef std::tr1::weak_ptr<Meshdata> MeshdataWPtr; /** Represents a skinned animation. A skinned animation is directly associated * with a SubMeshGeometry. */ struct SIRIKATA_MESH_EXPORT SkinController { // Joints for this controls Indexes into the Meshdata.joints array // (which indexes into Meshdata.nodes). std::vector<uint32> joints; Matrix4x4f bindShapeMatrix; ///n+1 elements where n is the number of vertices, so that we can do simple ///subtraction to find out how many joints influence each vertex std::vector<unsigned int> weightStartIndices; // weights and jointIndices are the same size and are a sparse // representation of the (vertex,bone) = weight matrix: the // weightStartIndices let you figure out the range in these arrays that // correspond to a single vertex. In that range, each pair represents the // weight for one joint for the current vertex, with the rest of the joints // having weight 0. std::vector<float> weights; std::vector<unsigned int>jointIndices; // One inverse bind matrix per joint. std::vector<Matrix4x4f> inverseBindMatrices; }; typedef std::vector<SkinController> SkinControllerList; struct SIRIKATA_MESH_EXPORT SubMeshGeometry { std::string name; std::vector<Sirikata::Vector3f> positions; std::vector<Sirikata::Vector3f> normals; std::vector<Sirikata::Vector3f> tangents; std::vector<Sirikata::Vector4f> colors; struct TextureSet { unsigned int stride; std::vector<float> uvs; }; std::vector<TextureSet>texUVs; struct Primitive { std::vector<unsigned short> indices; enum PrimitiveType { TRIANGLES, LINES, POINTS, LINESTRIPS, TRISTRIPS, TRIFANS }primitiveType; typedef size_t MaterialId; MaterialId materialId; }; std::vector<Primitive> primitives; BoundingBox3f3f aabb; double radius; void recomputeBounds(); SkinControllerList skinControllers; /** Append the given SubMeshGeometry to the end of this one. Use the given * transformation to transform the geometry before adding it. This is a * useful primitive when trying to merge/simplify geometry. */ void append(const SubMeshGeometry& rhs, const Matrix4x4f& xform); }; typedef std::vector<SubMeshGeometry> SubMeshGeometryList; struct SIRIKATA_MESH_EXPORT GeometryInstance { typedef std::map<SubMeshGeometry::Primitive::MaterialId,size_t> MaterialBindingMap; MaterialBindingMap materialBindingMap;//maps materialIndex to offset in Meshdata's materials unsigned int geometryIndex; // Index in SubMeshGeometryList NodeIndex parentNode; // Index of node holding this instance /** Compute the bounds of this instance with the given transform. This is * more precise, and much more expensive, than transforming the * SubMeshGeometry's bounds. */ BoundingBox3f3f computeTransformedBounds(MeshdataPtr parent, const Matrix4x4f& xform) const; BoundingBox3f3f computeTransformedBounds(const Meshdata& parent, const Matrix4x4f& xform) const; void computeTransformedBounds(MeshdataPtr parent, const Matrix4x4f& xform, BoundingBox3f3f* bounds_out, double* radius_out) const; void computeTransformedBounds(const Meshdata& parent, const Matrix4x4f& xform, BoundingBox3f3f* bounds_out, double* radius_out) const; }; typedef std::vector<GeometryInstance> GeometryInstanceList; struct SIRIKATA_MESH_EXPORT LightInstance { int lightIndex; // Index in LightInfoList NodeIndex parentNode; // Index of node holding this instance }; typedef std::vector<LightInstance> LightInstanceList; struct SIRIKATA_MESH_EXPORT MaterialEffectInfo { struct Texture { std::string uri; Vector4f color;//color while the texture is pulled in, or if the texture is 404'd size_t texCoord; enum Affecting { DIFFUSE, SPECULAR, EMISSION, AMBIENT, REFLECTIVE, OPACITY, }affecting; enum SamplerType { SAMPLER_TYPE_UNSPECIFIED, SAMPLER_TYPE_1D, SAMPLER_TYPE_2D, SAMPLER_TYPE_3D, SAMPLER_TYPE_CUBE, SAMPLER_TYPE_RECT, SAMPLER_TYPE_DEPTH, SAMPLER_TYPE_STATE } samplerType; enum SamplerFilter { SAMPLER_FILTER_UNSPECIFIED, SAMPLER_FILTER_NONE, SAMPLER_FILTER_NEAREST, SAMPLER_FILTER_LINEAR, SAMPLER_FILTER_NEAREST_MIPMAP_NEAREST, SAMPLER_FILTER_LINEAR_MIPMAP_NEAREST, SAMPLER_FILTER_NEAREST_MIPMAP_LINEAR, SAMPLER_FILTER_LINEAR_MIPMAP_LINEAR }; SamplerFilter minFilter; SamplerFilter magFilter; enum WrapMode { WRAP_MODE_UNSPECIFIED=0, // NONE == GL_CLAMP_TO BORDER The defined behavior for NONE is // consistent with decal texturing where the border is black. // Mapping this calculation to GL_CLAMP_TO_BORDER is the best // approximation of this. WRAP_MODE_NONE, // WRAP == GL_REPEAT Ignores the integer part of texture coordinates, // using only the fractional part. WRAP_MODE_WRAP, // MIRROR == GL_MIRRORED_REPEAT First mirrors the texture coordinate. // The mirrored coordinate is then clamped as described for CLAMP_TO_EDGE. WRAP_MODE_MIRROR, // CLAMP == GL_CLAMP_TO_EDGE Clamps texture coordinates at all // mipmap levels such that the texture filter never samples a // border texel. Note: GL_CLAMP takes any texels beyond the // sampling border and substitutes those texels with the border // color. So CLAMP_TO_EDGE is more appropriate. This also works // much better with OpenGL ES where the GL_CLAMP symbol was removed // from the OpenGL ES specification. WRAP_MODE_CLAMP, // BORDER GL_CLAMP_TO_BORDER Clamps texture coordinates at all // MIPmaps such that the texture filter always samples border // texels for fragments whose corresponding texture coordinate // is sufficiently far outside the range [0, 1]. WRAP_MODE_BORDER }; WrapMode wrapS,wrapT,wrapU; unsigned int maxMipLevel; float mipBias; bool operator==(const Texture& rhs) const; bool operator!=(const Texture& rhs) const; }; typedef std::vector<Texture> TextureList; TextureList textures; float shininess; float reflectivity; bool operator==(const MaterialEffectInfo& rhs) const; bool operator!=(const MaterialEffectInfo& rhs) const; }; typedef std::vector<MaterialEffectInfo> MaterialEffectInfoList; struct SIRIKATA_MESH_EXPORT InstanceSkinAnimation { }; /** Represents a series of key frames */ struct SIRIKATA_MESH_EXPORT TransformationKeyFrames { typedef std::vector<float> TimeList; TimeList inputs; typedef std::vector<Matrix4x4f> TransformationList; TransformationList outputs; }; // A scene graph node. Contains a transformation, set of children nodes, // camera instances, geometry instances, skin controller instances, light // instances, and instances of other nodes. struct SIRIKATA_MESH_EXPORT Node { Node(); Node(NodeIndex par, const Matrix4x4f& xform); Node(const Matrix4x4f& xform); bool containsInstanceController; // Parent node in the actual hierarchy (not instantiated). NodeIndex parent; // Transformation to apply when traversing this node. Matrix4x4f transform; // Direct children, i.e. they are contained by this node directly and their // parent NodeIndex will reflect that. NodeIndexList children; // Instantiations of other nodes (and their children) into this // subtree. Because they are instantiations, their // instanceChildren[i]->parent != this node's index. NodeIndexList instanceChildren; // Map of name -> animation curve. typedef std::map<String, TransformationKeyFrames> AnimationMap; AnimationMap animations; }; typedef std::vector<Node> NodeList; struct SIRIKATA_MESH_EXPORT Meshdata : public Visual { private: static String sType; public: virtual ~Meshdata(); virtual const String& type() const; SubMeshGeometryList geometry; TextureList textures; LightInfoList lights; MaterialEffectInfoList materials; long id; bool hasAnimations; GeometryInstanceList instances; LightInstanceList lightInstances; // The global transform should be applied to all nodes and instances Matrix4x4f globalTransform; // We track two sets of nodes: roots and the full list. (Obviously the roots // are a subset of the full list). The node list is just the full set, // usually only used to look up children/parents. The roots list is just a // set of indices into the full list. NodeList nodes; NodeIndexList rootNodes; //Stores a list of transforms on the path from the scene root //to the instance controller for the skeleton. std::vector<Matrix4x4f> mInstanceControllerTransformList; // Joints are tracked as indices of the nodes they are associated with. NodeIndexList joints; // Be careful using these methods. Since there are no "parent" links for // instance nodes (and even if there were, there could be more than one), // these methods cannot correctly compute the transform when instance_nodes // are involved. Matrix4x4f getTransform(NodeIndex index) const; private: // A stack of NodeState is used to track the current traversal state for // instance iterators struct SIRIKATA_MESH_EXPORT NodeState { enum Step { Init, Nodes, InstanceNodes, InstanceGeometries, InstanceLights, Done }; NodeIndex index; Matrix4x4f transform; Step step; int32 currentChild; }; struct SIRIKATA_MESH_EXPORT JointNodeState : public NodeState { uint32 joint_id; std::vector<Matrix4x4f> transformList; }; public: // Allows you to generate a list of GeometryInstances with their transformations. class SIRIKATA_MESH_EXPORT GeometryInstanceIterator { public: GeometryInstanceIterator(const Meshdata* const mesh); // Get the next GeometryInstance and its transform. Returns true if // values were set, false if there were no more instances. The index // returned is of the geometry instance. bool next(uint32* geoinst_idx, Matrix4x4f* xform); private: const Meshdata* mMesh; int32 mRoot; std::stack<NodeState> mStack; }; GeometryInstanceIterator getGeometryInstanceIterator() const; /** Get count of instanced geometry. This can differ from instances.size() * because many nodes may refer to the same InstanceGeometry. */ uint32 getInstancedGeometryCount() const; // Allows you to generate a list of joints with their transformations. class SIRIKATA_MESH_EXPORT JointIterator { public: JointIterator(const Meshdata* const mesh); // Get the next Joint's unique ID, its index in the list of joints, its // transform, and parent joint ID. Also gets the list of transforms from the root node // to the instance controller of the skeleton referencing the joint. Returns true if // values were set, false if there were no more joints. Joint IDs are // non-zero, so you can check for, e.g., no parent with parent_id == 0 // or if (parent_id). The joint_idx is an index into Meshdata::joints. bool next(uint32* joint_id, uint32* joint_idx, Matrix4x4f* xform, uint32* parent_id, std::vector<Matrix4x4f>& transformList); private: const Meshdata* mMesh; int32 mRoot; std::stack<JointNodeState> mStack; uint32 mNextID; }; JointIterator getJointIterator() const; /** Get count of joints geometry. This can differ from joints.size() * because nodes acting as joints may be instantiated multiple times. */ uint32 getJointCount() const; // Allows you to generate a list of GeometryInstances with their transformations. class SIRIKATA_MESH_EXPORT LightInstanceIterator { public: LightInstanceIterator(const Meshdata* const mesh); // Get the next LightInstance and its transform. Returns true if // values were set, false if there were no more instances. The index // returned is of the light instance. bool next(uint32* lightinst_idx, Matrix4x4f* xform); private: const Meshdata* mMesh; int32 mRoot; std::stack<NodeState> mStack; }; LightInstanceIterator getLightInstanceIterator() const; /** Get count of instanced lights. This can differ from * lightInstances.size() because many nodes may refer to the same * InstanceLight. */ uint32 getInstancedLightCount() const; }; } // namespace Mesh } // namespace Sirikata #endif //_SIRIKATA_MESH_MESHDATA_HPP_
36.757282
138
0.719427
pathorn
2532703c98e156e338f8abd5c4d6dcc28a4dc5d0
8,616
cpp
C++
PrgApps4/17-MMFSparse/MMFSparse.cpp
JimYang365/samples
920c2d98b1ef0dc3d3b861b9b73ab6a3d0e5ced0
[ "MIT" ]
null
null
null
PrgApps4/17-MMFSparse/MMFSparse.cpp
JimYang365/samples
920c2d98b1ef0dc3d3b861b9b73ab6a3d0e5ced0
[ "MIT" ]
null
null
null
PrgApps4/17-MMFSparse/MMFSparse.cpp
JimYang365/samples
920c2d98b1ef0dc3d3b861b9b73ab6a3d0e5ced0
[ "MIT" ]
null
null
null
/****************************************************************************** Module: MMFSparse.cpp Notices: Copyright (c) 2000 Jeffrey Richter ******************************************************************************/ #include "..\CmnHdr.h" /* See Appendix A. */ #include <tchar.h> #include <WindowsX.h> #include <WinIoCtl.h> #include "SparseStream.h" #include "Resource.h" ////////////////////////////////////////////////////////////////////////////// // This class makes it easy to work with memory-mapped sparse files class CMMFSparse : public CSparseStream { private: HANDLE m_hfilemap; // File-mapping object PVOID m_pvFile; // Address to start of mapped file public: // Creates a Sparse MMF and maps it in the process's address space. CMMFSparse(HANDLE hstream = NULL, SIZE_T dwStreamSizeMax = 0); // Closes a Sparse MMF virtual ~CMMFSparse() { ForceClose(); } // Creates a sparse MMF and maps it in the process's address space. BOOL Initialize(HANDLE hstream, SIZE_T dwStreamSizeMax); // MMF to BYTE cast operator returns address of first byte // in the memory-mapped sparse file. operator PBYTE() const { return((PBYTE) m_pvFile); } // Allows you to explicitly close the MMF without having // to wait for the destructor to be called. VOID ForceClose(); }; ////////////////////////////////////////////////////////////////////////////// CMMFSparse::CMMFSparse(HANDLE hstream, SIZE_T dwStreamSizeMax) { Initialize(hstream, dwStreamSizeMax); } ////////////////////////////////////////////////////////////////////////////// BOOL CMMFSparse::Initialize(HANDLE hstream, SIZE_T dwStreamSizeMax) { if (m_hfilemap != NULL) ForceClose(); // Initialize to NULL in case something goes wrong m_hfilemap = m_pvFile = NULL; BOOL fOk = TRUE; // Assume success if (hstream != NULL) { if (dwStreamSizeMax == 0) { DebugBreak(); // Illegal stream size } CSparseStream::Initialize(hstream); fOk = MakeSparse(); // Make the stream sparse if (fOk) { // Create a file-mapping object m_hfilemap = ::CreateFileMapping(hstream, NULL, PAGE_READWRITE, (DWORD) (dwStreamSizeMax >> 32I64), (DWORD) dwStreamSizeMax, NULL); if (m_hfilemap != NULL) { // Map the stream into the process's address space m_pvFile = ::MapViewOfFile(m_hfilemap, FILE_MAP_WRITE | FILE_MAP_READ, 0, 0, 0); } else { // Failed to map the file, cleanup CSparseStream::Initialize(NULL); ForceClose(); fOk = FALSE; } } } return(fOk); } ////////////////////////////////////////////////////////////////////////////// VOID CMMFSparse::ForceClose() { // Cleanup everything that was done sucessfully if (m_pvFile != NULL) { ::UnmapViewOfFile(m_pvFile); m_pvFile = NULL; } if (m_hfilemap != NULL) { ::CloseHandle(m_hfilemap); m_hfilemap = NULL; } } ////////////////////////////////////////////////////////////////////////////// #define STREAMSIZE (1 * 1024 * 1024) // 1 MB (1024 KB) TCHAR szPathname[] = TEXT("C:\\MMFSparse."); HANDLE g_hstream = INVALID_HANDLE_VALUE; CMMFSparse g_mmf; /////////////////////////////////////////////////////////////////////////////// BOOL Dlg_OnInitDialog(HWND hwnd, HWND hwndFocus, LPARAM lParam) { chSETDLGICONS(hwnd, IDI_MMFSPARSE); // Initialize the dialog box controls. EnableWindow(GetDlgItem(hwnd, IDC_OFFSET), FALSE); Edit_LimitText(GetDlgItem(hwnd, IDC_OFFSET), 4); SetDlgItemInt(hwnd, IDC_OFFSET, 1000, FALSE); EnableWindow(GetDlgItem(hwnd, IDC_BYTE), FALSE); Edit_LimitText(GetDlgItem(hwnd, IDC_BYTE), 3); SetDlgItemInt(hwnd, IDC_BYTE, 5, FALSE); EnableWindow(GetDlgItem(hwnd, IDC_WRITEBYTE), FALSE); EnableWindow(GetDlgItem(hwnd, IDC_READBYTE), FALSE); EnableWindow(GetDlgItem(hwnd, IDC_FREEALLOCATEDREGIONS), FALSE); return(TRUE); } /////////////////////////////////////////////////////////////////////////////// void Dlg_ShowAllocatedRanges(HWND hwnd) { // Fill in the Allocated Ranges edit control DWORD dwNumEntries; FILE_ALLOCATED_RANGE_BUFFER* pfarb = g_mmf.QueryAllocatedRanges(&dwNumEntries); if (dwNumEntries == 0) { SetDlgItemText(hwnd, IDC_FILESTATUS, TEXT("No allocated ranges in the file")); } else { TCHAR sz[4096] = { 0 }; for (DWORD dwEntry = 0; dwEntry < dwNumEntries; dwEntry++) { wsprintf(_tcschr(sz, 0), TEXT("Offset: %7.7u, Length: %7.7u\r\n"), pfarb[dwEntry].FileOffset.LowPart, pfarb[dwEntry].Length.LowPart); } SetDlgItemText(hwnd, IDC_FILESTATUS, sz); } g_mmf.FreeAllocatedRanges(pfarb); } /////////////////////////////////////////////////////////////////////////////// void Dlg_OnCommand(HWND hwnd, int id, HWND hwndCtl, UINT codeNotify) { switch (id) { case IDCANCEL: if (g_hstream != INVALID_HANDLE_VALUE) CloseHandle(g_hstream); EndDialog(hwnd, id); break; case IDC_CREATEMMF: // Create the file g_hstream = CreateFile(szPathname, GENERIC_READ | GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL); if (g_hstream == INVALID_HANDLE_VALUE) { chFAIL("Failed to create file."); } // Create a 1MB (1024 KB) MMF using the file if (!g_mmf.Initialize(g_hstream, STREAMSIZE)) { chFAIL("Failed to initialize Sparse MMF."); } Dlg_ShowAllocatedRanges(hwnd); // Enable/disable the other controls. EnableWindow(GetDlgItem(hwnd, IDC_CREATEMMF), FALSE); EnableWindow(GetDlgItem(hwnd, IDC_OFFSET), TRUE); EnableWindow(GetDlgItem(hwnd, IDC_BYTE), TRUE); EnableWindow(GetDlgItem(hwnd, IDC_WRITEBYTE), TRUE); EnableWindow(GetDlgItem(hwnd, IDC_READBYTE), TRUE); EnableWindow(GetDlgItem(hwnd, IDC_FREEALLOCATEDREGIONS), TRUE); // Force the Offset edit control to have the focus. SetFocus(GetDlgItem(hwnd, IDC_OFFSET)); break; case IDC_WRITEBYTE: { BOOL fTranslated; DWORD dwOffset = GetDlgItemInt(hwnd, IDC_OFFSET, &fTranslated, FALSE); if (fTranslated) { g_mmf[dwOffset * 1024] = (BYTE) GetDlgItemInt(hwnd, IDC_BYTE, NULL, FALSE); Dlg_ShowAllocatedRanges(hwnd); } } break; case IDC_READBYTE: { BOOL fTranslated; DWORD dwOffset = GetDlgItemInt(hwnd, IDC_OFFSET, &fTranslated, FALSE); if (fTranslated) { SetDlgItemInt(hwnd, IDC_BYTE, g_mmf[dwOffset * 1024], FALSE); Dlg_ShowAllocatedRanges(hwnd); } } break; case IDC_FREEALLOCATEDREGIONS: // Normally the destructor causes the file-mapping to close. // But, in this case, we wish to force it so that we can reset // a portion of the file back to all zeroes. g_mmf.ForceClose(); // We call ForceClose above because attempting to zero a portion of // the file while it is mapped, causes DeviceIoControl to fail with // error ERROR_USER_MAPPED_FILE ("The requested operation cannot // be performed on a file with a user-mapped section open.") g_mmf.DecommitPortionOfStream(0, STREAMSIZE); g_mmf.Initialize(g_hstream, STREAMSIZE); Dlg_ShowAllocatedRanges(hwnd); break; } } /////////////////////////////////////////////////////////////////////////////// INT_PTR WINAPI Dlg_Proc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { switch (uMsg) { chHANDLE_DLGMSG(hwnd, WM_INITDIALOG, Dlg_OnInitDialog); chHANDLE_DLGMSG(hwnd, WM_COMMAND, Dlg_OnCommand); } return(FALSE); } /////////////////////////////////////////////////////////////////////////////// int WINAPI _tWinMain(HINSTANCE hinstExe, HINSTANCE, PTSTR pszCmdLine, int) { chWindows2000Required(); DialogBox(hinstExe, MAKEINTRESOURCE(IDD_MMFSPARSE), NULL, Dlg_Proc); return(0); } //////////////////////////////// End of File //////////////////////////////////
31.445255
80
0.543988
JimYang365
253595dff9926cc3c167493f95b92c4e424811a0
1,565
cpp
C++
treefunctions.cpp
waha99922/JuicyBros_TOOLBOX_V1.0
ff59f3842e9a4bf1b40e18613f555b923cd9b949
[ "MIT" ]
null
null
null
treefunctions.cpp
waha99922/JuicyBros_TOOLBOX_V1.0
ff59f3842e9a4bf1b40e18613f555b923cd9b949
[ "MIT" ]
null
null
null
treefunctions.cpp
waha99922/JuicyBros_TOOLBOX_V1.0
ff59f3842e9a4bf1b40e18613f555b923cd9b949
[ "MIT" ]
null
null
null
#include <iostream> #include "Tree.h" using namespace std; Tree::Tree() { root = NULL; } void Tree::insert(double value) { Tnode* ptr = new Tnode(value); Tnode* temp = root; if (root == NULL) { root = ptr; } else { while (temp != NULL) { if (temp->data > value && temp->left == NULL) { temp->left = ptr; break; } else if (temp->data < value && temp->right == NULL) { temp->right = ptr; break; } else if (temp->data > value && temp->left != NULL) { temp = temp->left; } else if (temp->data < value && temp->right != NULL) { temp = temp->right; } } } } Tnode* Tree::Inorder_print(Tnode* temp) { if (temp == NULL) { return NULL; } else { Inorder_print(temp->left); cout << temp->data <<endl; Inorder_print(temp->right); } } Tnode* Tree::Postorder_print(Tnode* temp) { if (temp == NULL) { return NULL; } else { Postorder_print(temp->left); Postorder_print(temp->right); cout << temp->data <<endl; } } Tnode* Tree::Preorder_print(Tnode* temp) { if (temp == NULL) { return NULL; } else { cout << temp->data <<endl; Preorder_print(temp->left); Postorder_print(temp->right); } } Tnode* Tree::search(Tnode* temp,double key) { if (temp == NULL) { return NULL; } else if (temp->data == key) { return temp; } else if (key < temp->data) { search(temp->left, key); } else if (key>temp->data) { search(temp->right, key); } }
14.490741
55
0.532907
waha99922
2536ba074888894f3711036500cd7a040eb22d84
4,865
cpp
C++
main.cpp
gnole/CG-HW3
9c0859bda43291d49a47b929352d6ba5da2bdae9
[ "MIT" ]
null
null
null
main.cpp
gnole/CG-HW3
9c0859bda43291d49a47b929352d6ba5da2bdae9
[ "MIT" ]
null
null
null
main.cpp
gnole/CG-HW3
9c0859bda43291d49a47b929352d6ba5da2bdae9
[ "MIT" ]
null
null
null
#include <SFML/Graphics.hpp> #include <unistd.h> #include <cmath> #include <iostream> void drawLineRed(int x1, int y1, int x2, int y2, sf::RenderWindow &window) { const int deltaX = abs(x2 - x1); const int deltaY = abs(y2 - y1); const int signX = x1 < x2 ? 1 : -1; const int signY = y1 < y2 ? 1 : -1; int error = deltaX - deltaY; sf::Vertex point(sf::Vector2f(x2, y2), sf::Color::Red); window.draw(&point, 1, sf::Points); while (x1 != x2 || y1 != y2) { sf::Vertex point1(sf::Vector2f(x1, y1), sf::Color::Red); window.draw(&point1, 1, sf::Points); int error2 = error * 2; if (error2 > -deltaY) { error -= deltaY; x1 += signX; } if (error2 < deltaX) { error += deltaX; y1 += signY; } } } int dot(std::pair<int, int> p0, std::pair<int, int> p1) { return p0.first * p1.first + p0.second * p1.second; } float max(std::vector<float> t) { float maximum = -1000000; for (int i = 0; i < t.size(); i++) if (t[i] > maximum) maximum = t[i]; return maximum; } float min(std::vector<float> t) { float minimum = 1000000; for (int i = 0; i < t.size(); i++) if (t[i] < minimum) minimum = t[i]; return minimum; } void cyrusBeck(std::vector<std::pair<int, int>> vertices, std::vector<std::pair<int, int>> line, std::vector<std::pair<int, int>> &vec_line_cb) { const int n = vertices.size(); std::pair<int, int> *newPair = new std::pair<int, int>[2]; std::pair<int, int> *normal = new std::pair<int, int>[n]; for (int i = 0; i < n; i++) { normal[i].second = vertices[(i + 1) % n].first - vertices[i].first; normal[i].first = vertices[i].second - vertices[(i + 1) % n].second; } std::pair<int, int> P1_P0 = std::make_pair(line[1].first - line[0].first, line[1].second - line[0].second); std::pair<int, int> *P0_PEi = new std::pair<int, int>[n]; for (int i = 0; i < n; i++) { P0_PEi[i].first = vertices[i].first - line[0].first; P0_PEi[i].second = vertices[i].second - line[0].second; } int *numerator = new int[n], *denominator = new int[n]; for (int i = 0; i < n; i++) { numerator[i] = dot(normal[i], P0_PEi[i]); denominator[i] = dot(normal[i], P1_P0); } float *t = new float[n]; std::vector<float> tE, tL; for (int i = 0; i < n; i++) { t[i] = (float)(numerator[i]) / (float)(denominator[i]); if (denominator[i] > 0) tE.push_back(t[i]); else tL.push_back(t[i]); } float temp[2]; tE.push_back(0.f); temp[0] = max(tE); tL.push_back(1.f); temp[1] = min(tL); if (temp[0] > temp[1]) { newPair[0] = std::make_pair(-1, -1); newPair[1] = std::make_pair(-1, -1); vec_line_cb.push_back(std::make_pair(newPair[0].first, newPair[0].second)); vec_line_cb.push_back(std::make_pair(newPair[1].first, newPair[1].second)); } else { newPair[0].first = (float)line[0].first + (float)P1_P0.first * (float)temp[0]; newPair[0].second = (float)line[0].second + (float)P1_P0.second * (float)temp[0]; newPair[1].first = (float)line[0].first + (float)P1_P0.first * (float)temp[1]; newPair[1].second = (float)line[0].second + (float)P1_P0.second * (float)temp[1]; } vec_line_cb.push_back(std::make_pair(newPair[0].first, newPair[0].second)); vec_line_cb.push_back(std::make_pair(newPair[1].first, newPair[1].second)); } int main() { sf::RenderWindow window(sf::VideoMode(740, 680), "HW3"); window.setFramerateLimit(50); std::vector<std::pair<int, int>> vec_points; std::vector<std::pair<int, int>> vec_line; std::vector<std::pair<int, int>> vec_line_cb; bool dr = false; while (window.isOpen()) { sf::Event event; while (window.pollEvent(event)) { switch (event.type) { case sf::Event::Closed: { window.close(); return 0; } case sf::Event::MouseButtonPressed: { if (sf::Mouse::isButtonPressed(sf::Mouse::Left)) { if (dr) { vec_line.insert(vec_line.begin(), 1, std::make_pair(event.mouseButton.x, event.mouseButton.y)); } else { vec_points.push_back(std::make_pair(event.mouseButton.x, event.mouseButton.y)); } } if (sf::Mouse::isButtonPressed(sf::Mouse::Right)) { dr = true; auto itend = vec_points.begin(); vec_points.push_back(std::make_pair(itend->first, itend->second)); } } } } window.clear(sf::Color::White); if (vec_points.size() >= 2) { auto it0 = vec_points.begin(); auto it1 = vec_points.begin(); ++it1; for (; it1 != vec_points.end(); ++it0, ++it1) { drawLineRed(it0->first, it0->second, it1->first, it1->second, window); } } if (vec_line.size() >= 2) { if (vec_line.size() % 2 == 0) { cyrusBeck(vec_points, vec_line, vec_line_cb); } auto it0 = vec_line_cb.begin(); auto it1 = vec_line_cb.begin(); ++it1; for (int i = 0; it1 != vec_line_cb.end(); ++it1, ++it0, ++i) { if (i % 2 == 0) { drawLineRed(it0->first, it0->second, it1->first, it1->second, window); } } } window.display(); } return 0; }
29.131737
101
0.610277
gnole
2536d4a70dc875741c6131f4b37f41f5ebd314dd
780
cpp
C++
Team01/Game/Project/SceneGame.cpp
OiCGame/GameJam03
535fff1e39a3c509c4104029bd40386c5d8b4a69
[ "MIT" ]
null
null
null
Team01/Game/Project/SceneGame.cpp
OiCGame/GameJam03
535fff1e39a3c509c4104029bd40386c5d8b4a69
[ "MIT" ]
null
null
null
Team01/Game/Project/SceneGame.cpp
OiCGame/GameJam03
535fff1e39a3c509c4104029bd40386c5d8b4a69
[ "MIT" ]
1
2021-02-01T02:48:17.000Z
2021-02-01T02:48:17.000Z
#include "SceneGame.h" CSceneGame::CSceneGame() { } CSceneGame::~CSceneGame() { } bool CSceneGame::Load() { return false; } void CSceneGame::Initialize() { m_Game.Initialize(); } void CSceneGame::Update() { FadeInOut(); if (m_bEndStart) { return; } m_Game.Update(); // if (g_pInput->IsKeyPush(MOFKEY_F2)) { if (m_Game.GetPhaseNo() == 2) { m_Alpha = 255; } // if (m_Game.IsAllPhaseEnd()) { if (m_Game.BossDead()) { m_bEndStart = true; m_NextSceneNo = SCENENO_GAMECLEAR; } // if (g_pInput->IsKeyPush(MOFKEY_F3)) { if (m_Game.IsPlayerDead()) { m_bEndStart = true; m_NextSceneNo = SCENENO_GAMEOVER; } } void CSceneGame::Render() { m_Game.Render(); RenderFade(); } void CSceneGame::RenderDebug() { } void CSceneGame::Release() { m_Game.Release(); }
15.6
41
0.664103
OiCGame
2538fdd3e154e6fe6f933447ee849fa4d272cdfc
18
cpp
C++
src/root/root.cpp
keithalewis/libfms
8389d2d022af2a23764653f13addf989d6d9e7fe
[ "MIT" ]
null
null
null
src/root/root.cpp
keithalewis/libfms
8389d2d022af2a23764653f13addf989d6d9e7fe
[ "MIT" ]
null
null
null
src/root/root.cpp
keithalewis/libfms
8389d2d022af2a23764653f13addf989d6d9e7fe
[ "MIT" ]
null
null
null
#include "root.h"
9
17
0.666667
keithalewis
253a85ba64ff7c4ced3e3c7c26e811efead82d1f
1,306
hh
C++
elements/local/autodpaint.hh
MacWR/Click-changed-for-ParaGraph
18285e5da578fbb7285d10380836146e738dee6e
[ "Apache-2.0" ]
null
null
null
elements/local/autodpaint.hh
MacWR/Click-changed-for-ParaGraph
18285e5da578fbb7285d10380836146e738dee6e
[ "Apache-2.0" ]
null
null
null
elements/local/autodpaint.hh
MacWR/Click-changed-for-ParaGraph
18285e5da578fbb7285d10380836146e738dee6e
[ "Apache-2.0" ]
null
null
null
#ifndef CLICK_AUTODPAINT_HH #define CLICK_AUTODPAINT_HH #include <click/element.hh> CLICK_DECLS /* =c AutoDPaint(COLORANGE,OPERATIONCOLOR) =s autoDpaint sets packet two layers' autodpaint annotations =d The first layer Paint is to protect the consistency of the packet copys: Sets each packet's first Paint annotation (default is startanno=8 )to STARTCOLOR, an integer 0-2^16-1, default is startcolor=0; The second layer Paint is to mark the operation on the packert copys: Set each packert's second Paint annotation ( default is startanno+1 ) to COLOR, an integer 250..254, default is color=0(operation: read); The ANNO argument can specify any one-byte annotation. =h color read/write Get/set the color to autodpaint. =a Paint, PaintTee */ class AutoDPaint : public Element { public: AutoDPaint() CLICK_COLD; const char *class_name() const { return "AutoDPaint"; } const char *port_count() const { return PORTS_1_1; } int configure(Vector<String> &, ErrorHandler *) CLICK_COLD; bool can_live_reconfigure() const { return true; } void add_handlers() CLICK_COLD; Packet *simple_action(Packet *); private: uint16_t _startcolor; uint16_t _nowcolor; uint8_t _operationcolor; int _colorange; uint16_t _nowrange; }; CLICK_ENDDECLS #endif
24.185185
137
0.743492
MacWR
253ce622b9954c1ada6315da36f8d6ad38172cf0
388
cpp
C++
IOST14.cpp
aaryan0348/E-Lab-Object-Oriented-Programming
29f3ca80dbf2268441b5b9e426415650a607195a
[ "MIT" ]
null
null
null
IOST14.cpp
aaryan0348/E-Lab-Object-Oriented-Programming
29f3ca80dbf2268441b5b9e426415650a607195a
[ "MIT" ]
null
null
null
IOST14.cpp
aaryan0348/E-Lab-Object-Oriented-Programming
29f3ca80dbf2268441b5b9e426415650a607195a
[ "MIT" ]
null
null
null
#include <iostream> using namespace std; int main() { float n; float pi; cin>>n; int i=0; int n1=n; while(n>0) { pi=(float)22/7; cout.precision(n); cout<<pi; while(i) { cout<<'*'; i--; } i=n1-n+1; n--; cout<<endl; } cout<<"3"<<endl<<"Fill Setting:*"; return 0; } void d(){ cout.fill('a'); cout.width(10); }
12.125
37
0.466495
aaryan0348
2540014eae291b7d481e70e6939ec48afa99fdfb
200,731
inl
C++
2d_samples/pmj02_180.inl
st-ario/rayme
315c57c23f4aa4934a8a80e84e3243acd3400808
[ "MIT" ]
1
2021-12-10T23:35:04.000Z
2021-12-10T23:35:04.000Z
2d_samples/pmj02_180.inl
st-ario/rayme
315c57c23f4aa4934a8a80e84e3243acd3400808
[ "MIT" ]
null
null
null
2d_samples/pmj02_180.inl
st-ario/rayme
315c57c23f4aa4934a8a80e84e3243acd3400808
[ "MIT" ]
null
null
null
{std::array<float,2>{0.407800078f, 0.8442536f}, std::array<float,2>{0.587527096f, 0.23548229f}, std::array<float,2>{0.978728712f, 0.646827936f}, std::array<float,2>{0.130732656f, 0.300448418f}, std::array<float,2>{0.103660405f, 0.522768974f}, std::array<float,2>{0.782684922f, 0.481478781f}, std::array<float,2>{0.713951111f, 0.962670207f}, std::array<float,2>{0.30073148f, 0.00499550067f}, std::array<float,2>{0.340997994f, 0.709573328f}, std::array<float,2>{0.648365676f, 0.339554101f}, std::array<float,2>{0.820601285f, 0.807329476f}, std::array<float,2>{0.018924525f, 0.151460499f}, std::array<float,2>{0.247321576f, 0.877124131f}, std::array<float,2>{0.905929983f, 0.0813911036f}, std::array<float,2>{0.548345804f, 0.61819613f}, std::array<float,2>{0.456791341f, 0.432048112f}, std::array<float,2>{0.277148992f, 0.982685149f}, std::array<float,2>{0.743986547f, 0.0501060486f}, std::array<float,2>{0.757856607f, 0.535368085f}, std::array<float,2>{0.0630864277f, 0.44095251f}, std::array<float,2>{0.162640274f, 0.68412447f}, std::array<float,2>{0.967815936f, 0.25990811f}, std::array<float,2>{0.619917929f, 0.837838233f}, std::array<float,2>{0.393650919f, 0.188003272f}, std::array<float,2>{0.476973504f, 0.5719226f}, std::array<float,2>{0.531063199f, 0.381219268f}, std::array<float,2>{0.923539579f, 0.924037337f}, std::array<float,2>{0.191263899f, 0.0944396406f}, std::array<float,2>{0.0406171195f, 0.760097921f}, std::array<float,2>{0.868816078f, 0.172067776f}, std::array<float,2>{0.685444176f, 0.730339706f}, std::array<float,2>{0.372586936f, 0.344608366f}, std::array<float,2>{0.346662909f, 0.789863229f}, std::array<float,2>{0.669065595f, 0.134517998f}, std::array<float,2>{0.852965176f, 0.687735915f}, std::array<float,2>{0.0509867892f, 0.323053598f}, std::array<float,2>{0.215056375f, 0.595274866f}, std::array<float,2>{0.909260869f, 0.420297325f}, std::array<float,2>{0.506124198f, 0.902223229f}, std::array<float,2>{0.48880133f, 0.0654655099f}, std::array<float,2>{0.378038228f, 0.637833595f}, std::array<float,2>{0.608418703f, 0.283659577f}, std::array<float,2>{0.950592816f, 0.869384646f}, std::array<float,2>{0.179770336f, 0.222733393f}, std::array<float,2>{0.0919908658f, 0.949330807f}, std::array<float,2>{0.78020376f, 0.0236400198f}, std::array<float,2>{0.732879877f, 0.504261851f}, std::array<float,2>{0.260396898f, 0.489553899f}, std::array<float,2>{0.445002854f, 0.91425705f}, std::array<float,2>{0.54076916f, 0.11024221f}, std::array<float,2>{0.884152472f, 0.5799734f}, std::array<float,2>{0.222507253f, 0.395714849f}, std::array<float,2>{0.00965865608f, 0.739356577f}, std::array<float,2>{0.834269226f, 0.371792018f}, std::array<float,2>{0.637296796f, 0.775155663f}, std::array<float,2>{0.312705249f, 0.161678031f}, std::array<float,2>{0.284860462f, 0.554244876f}, std::array<float,2>{0.69564271f, 0.464865297f}, std::array<float,2>{0.804718673f, 0.99447161f}, std::array<float,2>{0.117304727f, 0.0337151326f}, std::array<float,2>{0.148720101f, 0.826953292f}, std::array<float,2>{0.990704f, 0.207547486f}, std::array<float,2>{0.567569375f, 0.667353034f}, std::array<float,2>{0.42272976f, 0.281058222f}, std::array<float,2>{0.49331224f, 0.77315557f}, std::array<float,2>{0.508405089f, 0.1653613f}, std::array<float,2>{0.914393485f, 0.742680132f}, std::array<float,2>{0.206856087f, 0.365188807f}, std::array<float,2>{0.054897882f, 0.587071419f}, std::array<float,2>{0.847211301f, 0.404284149f}, std::array<float,2>{0.663582563f, 0.911589146f}, std::array<float,2>{0.354949206f, 0.124640524f}, std::array<float,2>{0.256600976f, 0.662967324f}, std::array<float,2>{0.726482093f, 0.271277845f}, std::array<float,2>{0.765996695f, 0.814541519f}, std::array<float,2>{0.0816338062f, 0.217510566f}, std::array<float,2>{0.173378974f, 0.988176823f}, std::array<float,2>{0.941348612f, 0.0421277247f}, std::array<float,2>{0.599058151f, 0.562450945f}, std::array<float,2>{0.38435784f, 0.459767342f}, std::array<float,2>{0.323674768f, 0.895264328f}, std::array<float,2>{0.631596744f, 0.0706630498f}, std::array<float,2>{0.841234326f, 0.603139997f}, std::array<float,2>{0.00163358485f, 0.406949043f}, std::array<float,2>{0.227949619f, 0.697604775f}, std::array<float,2>{0.882083654f, 0.315044045f}, std::array<float,2>{0.53641504f, 0.783590555f}, std::array<float,2>{0.449078381f, 0.127173364f}, std::array<float,2>{0.433736444f, 0.514228582f}, std::array<float,2>{0.57316649f, 0.497259825f}, std::array<float,2>{0.997710943f, 0.939372659f}, std::array<float,2>{0.144460827f, 0.0183427017f}, std::array<float,2>{0.110407591f, 0.862124979f}, std::array<float,2>{0.799519837f, 0.232644349f}, std::array<float,2>{0.694805741f, 0.629477739f}, std::array<float,2>{0.290382296f, 0.290739834f}, std::array<float,2>{0.310096264f, 0.834093034f}, std::array<float,2>{0.70742619f, 0.201512501f}, std::array<float,2>{0.791399121f, 0.6784724f}, std::array<float,2>{0.0972860381f, 0.25335598f}, std::array<float,2>{0.139236212f, 0.542568684f}, std::array<float,2>{0.970144689f, 0.450458378f}, std::array<float,2>{0.580245674f, 0.973264396f}, std::array<float,2>{0.417151004f, 0.059310738f}, std::array<float,2>{0.466592312f, 0.719223619f}, std::array<float,2>{0.556581616f, 0.356821895f}, std::array<float,2>{0.895227373f, 0.75231415f}, std::array<float,2>{0.234469935f, 0.18720001f}, std::array<float,2>{0.025924528f, 0.936584175f}, std::array<float,2>{0.815787315f, 0.108674511f}, std::array<float,2>{0.653830111f, 0.565007627f}, std::array<float,2>{0.328151435f, 0.388601631f}, std::array<float,2>{0.40212363f, 0.957877576f}, std::array<float,2>{0.610874712f, 0.00954037812f}, std::array<float,2>{0.953150094f, 0.524623334f}, std::array<float,2>{0.164949998f, 0.475803316f}, std::array<float,2>{0.0756694227f, 0.651290834f}, std::array<float,2>{0.757591903f, 0.306503564f}, std::array<float,2>{0.74129349f, 0.854687214f}, std::array<float,2>{0.270782471f, 0.249976739f}, std::array<float,2>{0.363641679f, 0.614321113f}, std::array<float,2>{0.671944261f, 0.424458712f}, std::array<float,2>{0.861762941f, 0.885710657f}, std::array<float,2>{0.0333211236f, 0.0891774967f}, std::array<float,2>{0.20086661f, 0.799280822f}, std::array<float,2>{0.937116027f, 0.142556131f}, std::array<float,2>{0.522614956f, 0.712271154f}, std::array<float,2>{0.470711589f, 0.333427578f}, std::array<float,2>{0.388623744f, 0.812211156f}, std::array<float,2>{0.594500422f, 0.15287149f}, std::array<float,2>{0.942827761f, 0.706393301f}, std::array<float,2>{0.176652983f, 0.342898756f}, std::array<float,2>{0.0826201364f, 0.624080956f}, std::array<float,2>{0.772027135f, 0.436022013f}, std::array<float,2>{0.719068646f, 0.879550219f}, std::array<float,2>{0.252090663f, 0.0858609527f}, std::array<float,2>{0.357299477f, 0.642480254f}, std::array<float,2>{0.657624066f, 0.304558963f}, std::array<float,2>{0.848836362f, 0.850528717f}, std::array<float,2>{0.0611987561f, 0.241425619f}, std::array<float,2>{0.208286315f, 0.967661738f}, std::array<float,2>{0.92110914f, 0.00182187103f}, std::array<float,2>{0.513671815f, 0.518064857f}, std::array<float,2>{0.49717018f, 0.479422539f}, std::array<float,2>{0.294903666f, 0.928037763f}, std::array<float,2>{0.690481901f, 0.0981527194f}, std::array<float,2>{0.801632762f, 0.576050162f}, std::array<float,2>{0.114739195f, 0.377047062f}, std::array<float,2>{0.146478072f, 0.73282963f}, std::array<float,2>{0.996013701f, 0.34807539f}, std::array<float,2>{0.576001108f, 0.762289166f}, std::array<float,2>{0.433488071f, 0.178781077f}, std::array<float,2>{0.449219137f, 0.532912254f}, std::array<float,2>{0.533353984f, 0.441479385f}, std::array<float,2>{0.878864169f, 0.976987422f}, std::array<float,2>{0.233585164f, 0.0512894504f}, std::array<float,2>{0.00665393565f, 0.840637386f}, std::array<float,2>{0.838939846f, 0.191796377f}, std::array<float,2>{0.626270533f, 0.680124104f}, std::array<float,2>{0.327953875f, 0.264478862f}, std::array<float,2>{0.333593756f, 0.871495247f}, std::array<float,2>{0.648543477f, 0.218937173f}, std::array<float,2>{0.817587376f, 0.636083603f}, std::array<float,2>{0.0294836741f, 0.288520604f}, std::array<float,2>{0.240476608f, 0.500685334f}, std::array<float,2>{0.893328726f, 0.48801285f}, std::array<float,2>{0.561872005f, 0.948143542f}, std::array<float,2>{0.461407006f, 0.0290995762f}, std::array<float,2>{0.420626223f, 0.691942036f}, std::array<float,2>{0.583666682f, 0.32808277f}, std::array<float,2>{0.975660086f, 0.796263754f}, std::array<float,2>{0.135991469f, 0.14061299f}, std::array<float,2>{0.100726105f, 0.905622959f}, std::array<float,2>{0.796414614f, 0.0698261335f}, std::array<float,2>{0.70628202f, 0.599173486f}, std::array<float,2>{0.306217939f, 0.415550143f}, std::array<float,2>{0.47600463f, 0.998870194f}, std::array<float,2>{0.516188204f, 0.0353293344f}, std::array<float,2>{0.932674825f, 0.549348891f}, std::array<float,2>{0.198199302f, 0.461116254f}, std::array<float,2>{0.0376486517f, 0.671339035f}, std::array<float,2>{0.864086986f, 0.275141418f}, std::array<float,2>{0.677708209f, 0.82406503f}, std::array<float,2>{0.36273697f, 0.204850554f}, std::array<float,2>{0.267366916f, 0.583033502f}, std::array<float,2>{0.735691011f, 0.391706198f}, std::array<float,2>{0.752574503f, 0.92045176f}, std::array<float,2>{0.0722872168f, 0.115434937f}, std::array<float,2>{0.168665215f, 0.780546784f}, std::array<float,2>{0.957067549f, 0.159333989f}, std::array<float,2>{0.614732146f, 0.734807014f}, std::array<float,2>{0.405130297f, 0.370120108f}, std::array<float,2>{0.457224429f, 0.817982376f}, std::array<float,2>{0.552010417f, 0.212290391f}, std::array<float,2>{0.900605857f, 0.658466458f}, std::array<float,2>{0.244201586f, 0.268995106f}, std::array<float,2>{0.0221697409f, 0.557135999f}, std::array<float,2>{0.82716471f, 0.456625611f}, std::array<float,2>{0.643815041f, 0.988455474f}, std::array<float,2>{0.336760014f, 0.0442448184f}, std::array<float,2>{0.30262661f, 0.747653723f}, std::array<float,2>{0.715126157f, 0.361557931f}, std::array<float,2>{0.788158417f, 0.767303407f}, std::array<float,2>{0.107898936f, 0.169469029f}, std::array<float,2>{0.128565311f, 0.908115089f}, std::array<float,2>{0.980905652f, 0.120990574f}, std::array<float,2>{0.593687594f, 0.591980577f}, std::array<float,2>{0.41259262f, 0.400172234f}, std::array<float,2>{0.370026022f, 0.941775084f}, std::array<float,2>{0.680722654f, 0.0196406413f}, std::array<float,2>{0.874131262f, 0.508871913f}, std::array<float,2>{0.0440699011f, 0.494355112f}, std::array<float,2>{0.19265607f, 0.62503469f}, std::array<float,2>{0.926576257f, 0.294730186f}, std::array<float,2>{0.526447475f, 0.865051866f}, std::array<float,2>{0.481470257f, 0.23011978f}, std::array<float,2>{0.398376912f, 0.607328475f}, std::array<float,2>{0.621509016f, 0.41038543f}, std::array<float,2>{0.961684406f, 0.892019808f}, std::array<float,2>{0.158998922f, 0.0745794326f}, std::array<float,2>{0.0666533113f, 0.786859274f}, std::array<float,2>{0.764476836f, 0.13115485f}, std::array<float,2>{0.746237934f, 0.70230335f}, std::array<float,2>{0.279104769f, 0.317477107f}, std::array<float,2>{0.26199457f, 0.75700599f}, std::array<float,2>{0.729268909f, 0.180913851f}, std::array<float,2>{0.775640368f, 0.725953639f}, std::array<float,2>{0.0885100886f, 0.352957755f}, std::array<float,2>{0.184136584f, 0.567822278f}, std::array<float,2>{0.946556151f, 0.385947883f}, std::array<float,2>{0.601894855f, 0.93338871f}, std::array<float,2>{0.379741549f, 0.104967512f}, std::array<float,2>{0.486559421f, 0.673461676f}, std::array<float,2>{0.50235188f, 0.255850315f}, std::array<float,2>{0.911413252f, 0.831084311f}, std::array<float,2>{0.214753106f, 0.198372915f}, std::array<float,2>{0.0477297679f, 0.971329689f}, std::array<float,2>{0.855946898f, 0.057430502f}, std::array<float,2>{0.667217255f, 0.546526074f}, std::array<float,2>{0.350905031f, 0.447329879f}, std::array<float,2>{0.425847024f, 0.890043318f}, std::array<float,2>{0.565899849f, 0.0931400359f}, std::array<float,2>{0.987779438f, 0.610598147f}, std::array<float,2>{0.15334034f, 0.428494334f}, std::array<float,2>{0.121543474f, 0.717390954f}, std::array<float,2>{0.811366141f, 0.331563771f}, std::array<float,2>{0.699797571f, 0.801396489f}, std::array<float,2>{0.287676424f, 0.145555481f}, std::array<float,2>{0.319651484f, 0.530496657f}, std::array<float,2>{0.636328042f, 0.471472651f}, std::array<float,2>{0.829169333f, 0.954607129f}, std::array<float,2>{0.0131604057f, 0.0139937364f}, std::array<float,2>{0.225607395f, 0.857046247f}, std::array<float,2>{0.888626575f, 0.245189324f}, std::array<float,2>{0.544569075f, 0.654186547f}, std::array<float,2>{0.437935233f, 0.311698079f}, std::array<float,2>{0.39214474f, 0.839653254f}, std::array<float,2>{0.618335426f, 0.191159308f}, std::array<float,2>{0.966076553f, 0.686898708f}, std::array<float,2>{0.160930097f, 0.259198308f}, std::array<float,2>{0.0650830716f, 0.537700951f}, std::array<float,2>{0.760437727f, 0.438577086f}, std::array<float,2>{0.744758725f, 0.981775403f}, std::array<float,2>{0.273723453f, 0.0476011299f}, std::array<float,2>{0.374456614f, 0.727907181f}, std::array<float,2>{0.686308622f, 0.345900267f}, std::array<float,2>{0.869488478f, 0.758589745f}, std::array<float,2>{0.041853413f, 0.174592376f}, std::array<float,2>{0.188433394f, 0.92213279f}, std::array<float,2>{0.924613476f, 0.095964618f}, std::array<float,2>{0.529154301f, 0.573418677f}, std::array<float,2>{0.47916761f, 0.380441248f}, std::array<float,2>{0.297846705f, 0.96310854f}, std::array<float,2>{0.71203506f, 0.00652603153f}, std::array<float,2>{0.784033f, 0.520200968f}, std::array<float,2>{0.10276103f, 0.484083772f}, std::array<float,2>{0.131277591f, 0.645650327f}, std::array<float,2>{0.978118181f, 0.298546523f}, std::array<float,2>{0.589101374f, 0.847303033f}, std::array<float,2>{0.409638077f, 0.237477913f}, std::array<float,2>{0.454192549f, 0.620211184f}, std::array<float,2>{0.549742162f, 0.43054077f}, std::array<float,2>{0.902784348f, 0.875646591f}, std::array<float,2>{0.249286845f, 0.0784615055f}, std::array<float,2>{0.0169686191f, 0.806392491f}, std::array<float,2>{0.823862433f, 0.148619682f}, std::array<float,2>{0.646289229f, 0.707868695f}, std::array<float,2>{0.342205524f, 0.337391883f}, std::array<float,2>{0.315231621f, 0.776924908f}, std::array<float,2>{0.639747798f, 0.162384361f}, std::array<float,2>{0.833170116f, 0.741469502f}, std::array<float,2>{0.0109010097f, 0.374350637f}, std::array<float,2>{0.219952822f, 0.581498027f}, std::array<float,2>{0.884854734f, 0.398058474f}, std::array<float,2>{0.541159809f, 0.917203605f}, std::array<float,2>{0.44165957f, 0.111978024f}, std::array<float,2>{0.425078541f, 0.665395021f}, std::array<float,2>{0.570168078f, 0.277795851f}, std::array<float,2>{0.990105629f, 0.825835466f}, std::array<float,2>{0.151464283f, 0.210772812f}, std::array<float,2>{0.119205862f, 0.993170321f}, std::array<float,2>{0.80824244f, 0.0319462791f}, std::array<float,2>{0.697387338f, 0.5517537f}, std::array<float,2>{0.281361759f, 0.467261165f}, std::array<float,2>{0.491174787f, 0.900075853f}, std::array<float,2>{0.504326582f, 0.06432724f}, std::array<float,2>{0.907155395f, 0.596960008f}, std::array<float,2>{0.217191711f, 0.41828841f}, std::array<float,2>{0.0530938096f, 0.689706624f}, std::array<float,2>{0.85476613f, 0.32189849f}, std::array<float,2>{0.671329916f, 0.792057216f}, std::array<float,2>{0.344777822f, 0.135309562f}, std::array<float,2>{0.258722007f, 0.506961823f}, std::array<float,2>{0.730477273f, 0.491352886f}, std::array<float,2>{0.77793628f, 0.952292621f}, std::array<float,2>{0.0913099721f, 0.0273388624f}, std::array<float,2>{0.182279229f, 0.868515432f}, std::array<float,2>{0.952219188f, 0.225858644f}, std::array<float,2>{0.605646968f, 0.639111698f}, std::array<float,2>{0.375875086f, 0.282675385f}, std::array<float,2>{0.445404589f, 0.781529486f}, std::array<float,2>{0.538246989f, 0.1264759f}, std::array<float,2>{0.880136192f, 0.697002411f}, std::array<float,2>{0.228771269f, 0.313969582f}, std::array<float,2>{0.00351237855f, 0.604052246f}, std::array<float,2>{0.84204495f, 0.408901244f}, std::array<float,2>{0.630729795f, 0.897060633f}, std::array<float,2>{0.321703434f, 0.0739533752f}, std::array<float,2>{0.291474074f, 0.632784128f}, std::array<float,2>{0.691957355f, 0.291982383f}, std::array<float,2>{0.797536612f, 0.860208631f}, std::array<float,2>{0.111967944f, 0.231501773f}, std::array<float,2>{0.14119415f, 0.940890551f}, std::array<float,2>{0.999885261f, 0.016818149f}, std::array<float,2>{0.571309745f, 0.51296401f}, std::array<float,2>{0.436867148f, 0.499112517f}, std::array<float,2>{0.353077561f, 0.912769496f}, std::array<float,2>{0.660629272f, 0.12277998f}, std::array<float,2>{0.844532609f, 0.588145912f}, std::array<float,2>{0.0577432141f, 0.404488564f}, std::array<float,2>{0.203638941f, 0.745908856f}, std::array<float,2>{0.917910814f, 0.365257829f}, std::array<float,2>{0.509824693f, 0.770660162f}, std::array<float,2>{0.494715363f, 0.167087689f}, std::array<float,2>{0.38607648f, 0.560364246f}, std::array<float,2>{0.600943089f, 0.457492501f}, std::array<float,2>{0.938341141f, 0.986161768f}, std::array<float,2>{0.174110338f, 0.03928826f}, std::array<float,2>{0.0785425678f, 0.813009799f}, std::array<float,2>{0.767648339f, 0.216300324f}, std::array<float,2>{0.723633349f, 0.661445677f}, std::array<float,2>{0.254109144f, 0.27322191f}, std::array<float,2>{0.272639006f, 0.853186011f}, std::array<float,2>{0.739504397f, 0.24658379f}, std::array<float,2>{0.754607141f, 0.648792922f}, std::array<float,2>{0.0764547735f, 0.307633311f}, std::array<float,2>{0.166501865f, 0.525849998f}, std::array<float,2>{0.955955684f, 0.473437935f}, std::array<float,2>{0.611508846f, 0.960688055f}, std::array<float,2>{0.39849925f, 0.0110436622f}, std::array<float,2>{0.470601052f, 0.713797033f}, std::array<float,2>{0.520832181f, 0.335666627f}, std::array<float,2>{0.933807135f, 0.797804058f}, std::array<float,2>{0.201264814f, 0.144331768f}, std::array<float,2>{0.0328588635f, 0.883463562f}, std::array<float,2>{0.861020923f, 0.0878087804f}, std::array<float,2>{0.675451458f, 0.615429759f}, std::array<float,2>{0.366024435f, 0.42353031f}, std::array<float,2>{0.415228248f, 0.974789023f}, std::array<float,2>{0.579960048f, 0.0605898872f}, std::array<float,2>{0.971613467f, 0.540011108f}, std::array<float,2>{0.137899518f, 0.451973766f}, std::array<float,2>{0.0953332856f, 0.675859809f}, std::array<float,2>{0.789370656f, 0.250897408f}, std::array<float,2>{0.709659755f, 0.833530605f}, std::array<float,2>{0.31154865f, 0.199481249f}, std::array<float,2>{0.330471218f, 0.563907802f}, std::array<float,2>{0.655210733f, 0.389783412f}, std::array<float,2>{0.813119292f, 0.934480965f}, std::array<float,2>{0.0248409901f, 0.106917977f}, std::array<float,2>{0.238140345f, 0.750756979f}, std::array<float,2>{0.898065567f, 0.183640629f}, std::array<float,2>{0.557583332f, 0.720808864f}, std::array<float,2>{0.468466222f, 0.357581168f}, std::array<float,2>{0.430905491f, 0.765448213f}, std::array<float,2>{0.577270508f, 0.176731616f}, std::array<float,2>{0.992563665f, 0.731974721f}, std::array<float,2>{0.147867993f, 0.351103067f}, std::array<float,2>{0.115861207f, 0.577195525f}, std::array<float,2>{0.80364424f, 0.375787735f}, std::array<float,2>{0.68773663f, 0.92656517f}, std::array<float,2>{0.295378029f, 0.101396635f}, std::array<float,2>{0.32509473f, 0.683481514f}, std::array<float,2>{0.627925873f, 0.263487279f}, std::array<float,2>{0.835987747f, 0.842866421f}, std::array<float,2>{0.00517386151f, 0.194847926f}, std::array<float,2>{0.232182413f, 0.979006529f}, std::array<float,2>{0.876427412f, 0.0531123169f}, std::array<float,2>{0.532134235f, 0.534440517f}, std::array<float,2>{0.452620506f, 0.444689512f}, std::array<float,2>{0.251265764f, 0.882345796f}, std::array<float,2>{0.722341955f, 0.0822830945f}, std::array<float,2>{0.770029426f, 0.621996701f}, std::array<float,2>{0.0855053812f, 0.433835208f}, std::array<float,2>{0.179474682f, 0.7044487f}, std::array<float,2>{0.943846822f, 0.341133028f}, std::array<float,2>{0.596171558f, 0.809433043f}, std::array<float,2>{0.388905346f, 0.155820951f}, std::array<float,2>{0.49941203f, 0.516616166f}, std::array<float,2>{0.514285088f, 0.476798654f}, std::array<float,2>{0.919676006f, 0.965253651f}, std::array<float,2>{0.210526913f, 0.00233853213f}, std::array<float,2>{0.0587263219f, 0.848745763f}, std::array<float,2>{0.851372361f, 0.239263117f}, std::array<float,2>{0.659098685f, 0.643137634f}, std::array<float,2>{0.359024376f, 0.300859272f}, std::array<float,2>{0.361200035f, 0.821722746f}, std::array<float,2>{0.678126097f, 0.205832973f}, std::array<float,2>{0.866943777f, 0.668590486f}, std::array<float,2>{0.0360662341f, 0.275914341f}, std::array<float,2>{0.195727512f, 0.548553765f}, std::array<float,2>{0.930145204f, 0.462957323f}, std::array<float,2>{0.518704295f, 0.997960448f}, std::array<float,2>{0.473420173f, 0.0387429297f}, std::array<float,2>{0.403534442f, 0.737801433f}, std::array<float,2>{0.615316033f, 0.369112462f}, std::array<float,2>{0.959219456f, 0.777662694f}, std::array<float,2>{0.170337498f, 0.158167362f}, std::array<float,2>{0.0720550716f, 0.918954432f}, std::array<float,2>{0.750513911f, 0.114521116f}, std::array<float,2>{0.736694872f, 0.584249556f}, std::array<float,2>{0.26795125f, 0.394394636f}, std::array<float,2>{0.46346879f, 0.946514845f}, std::array<float,2>{0.558665276f, 0.0312227216f}, std::array<float,2>{0.891808748f, 0.50200516f}, std::array<float,2>{0.238801822f, 0.484907538f}, std::array<float,2>{0.0278833583f, 0.633889019f}, std::array<float,2>{0.818944156f, 0.28541857f}, std::array<float,2>{0.650577664f, 0.874738693f}, std::array<float,2>{0.335067898f, 0.221357748f}, std::array<float,2>{0.308271408f, 0.59967196f}, std::array<float,2>{0.704034269f, 0.416461587f}, std::array<float,2>{0.793772876f, 0.903361857f}, std::array<float,2>{0.0979364812f, 0.0678821802f}, std::array<float,2>{0.133110151f, 0.793952525f}, std::array<float,2>{0.97360152f, 0.137770861f}, std::array<float,2>{0.585564792f, 0.693700552f}, std::array<float,2>{0.419803143f, 0.324950069f}, std::array<float,2>{0.483108222f, 0.865911782f}, std::array<float,2>{0.523747623f, 0.226751938f}, std::array<float,2>{0.929680824f, 0.628245294f}, std::array<float,2>{0.194428846f, 0.295606941f}, std::array<float,2>{0.0465325862f, 0.510032058f}, std::array<float,2>{0.872163355f, 0.493478417f}, std::array<float,2>{0.682685316f, 0.945297837f}, std::array<float,2>{0.368669152f, 0.0224835165f}, std::array<float,2>{0.280736566f, 0.700398207f}, std::array<float,2>{0.749181747f, 0.319896191f}, std::array<float,2>{0.762358367f, 0.788493335f}, std::array<float,2>{0.0684948266f, 0.130726665f}, std::array<float,2>{0.15652056f, 0.894476831f}, std::array<float,2>{0.963696182f, 0.0772592872f}, std::array<float,2>{0.624921024f, 0.608892918f}, std::array<float,2>{0.395222336f, 0.413482219f}, std::array<float,2>{0.339586556f, 0.991027355f}, std::array<float,2>{0.642169297f, 0.0454329811f}, std::array<float,2>{0.824472785f, 0.556195617f}, std::array<float,2>{0.0209426042f, 0.454979181f}, std::array<float,2>{0.243461072f, 0.656735778f}, std::array<float,2>{0.899548411f, 0.267387092f}, std::array<float,2>{0.554203153f, 0.819984972f}, std::array<float,2>{0.459265471f, 0.214704335f}, std::array<float,2>{0.411329597f, 0.590845764f}, std::array<float,2>{0.590169489f, 0.401060343f}, std::array<float,2>{0.983068347f, 0.908992529f}, std::array<float,2>{0.125382155f, 0.118383616f}, std::array<float,2>{0.107131861f, 0.768579841f}, std::array<float,2>{0.785319686f, 0.170786366f}, std::array<float,2>{0.716955781f, 0.749455512f}, std::array<float,2>{0.303002685f, 0.361108392f}, std::array<float,2>{0.286008298f, 0.803569257f}, std::array<float,2>{0.702156246f, 0.147713408f}, std::array<float,2>{0.809389651f, 0.716467679f}, std::array<float,2>{0.123463891f, 0.329362005f}, std::array<float,2>{0.156219363f, 0.611963391f}, std::array<float,2>{0.985434592f, 0.427625269f}, std::array<float,2>{0.564112067f, 0.888247311f}, std::array<float,2>{0.429311663f, 0.0916610658f}, std::array<float,2>{0.440047115f, 0.654954672f}, std::array<float,2>{0.545056999f, 0.310478568f}, std::array<float,2>{0.889341295f, 0.858947515f}, std::array<float,2>{0.223955408f, 0.243080422f}, std::array<float,2>{0.0147097073f, 0.956411362f}, std::array<float,2>{0.831688523f, 0.0130475787f}, std::array<float,2>{0.633896351f, 0.527444959f}, std::array<float,2>{0.316465527f, 0.469010949f}, std::array<float,2>{0.382679313f, 0.930815578f}, std::array<float,2>{0.605376482f, 0.102565587f}, std::array<float,2>{0.948376238f, 0.568876565f}, std::array<float,2>{0.187056631f, 0.384312034f}, std::array<float,2>{0.0876016542f, 0.722934186f}, std::array<float,2>{0.77419591f, 0.354108214f}, std::array<float,2>{0.726570308f, 0.755042791f}, std::array<float,2>{0.26454249f, 0.18279773f}, std::array<float,2>{0.348626792f, 0.543819487f}, std::array<float,2>{0.664188921f, 0.445757776f}, std::array<float,2>{0.857609153f, 0.97066313f}, std::array<float,2>{0.0506838895f, 0.0564820096f}, std::array<float,2>{0.212611273f, 0.828845441f}, std::array<float,2>{0.913470507f, 0.196137995f}, std::array<float,2>{0.500569224f, 0.674351037f}, std::array<float,2>{0.484903544f, 0.256354392f}, std::array<float,2>{0.376459539f, 0.870499015f}, std::array<float,2>{0.607164085f, 0.224390805f}, std::array<float,2>{0.952095628f, 0.637283921f}, std::array<float,2>{0.182621986f, 0.284826636f}, std::array<float,2>{0.0902179256f, 0.504964769f}, std::array<float,2>{0.77900821f, 0.488304257f}, std::array<float,2>{0.731606126f, 0.950235069f}, std::array<float,2>{0.259710371f, 0.0250334367f}, std::array<float,2>{0.344691813f, 0.688612938f}, std::array<float,2>{0.670178771f, 0.323929697f}, std::array<float,2>{0.853683412f, 0.790087104f}, std::array<float,2>{0.0546334051f, 0.133054763f}, std::array<float,2>{0.218740776f, 0.90112406f}, std::array<float,2>{0.907901049f, 0.0650304556f}, std::array<float,2>{0.505827487f, 0.59418124f}, std::array<float,2>{0.491839677f, 0.421582669f}, std::array<float,2>{0.28226614f, 0.995607376f}, std::array<float,2>{0.698809326f, 0.0345584527f}, std::array<float,2>{0.807386398f, 0.55290693f}, std::array<float,2>{0.120490715f, 0.466003388f}, std::array<float,2>{0.150694445f, 0.666873991f}, std::array<float,2>{0.988608003f, 0.279513985f}, std::array<float,2>{0.568589032f, 0.827696323f}, std::array<float,2>{0.423949659f, 0.208357364f}, std::array<float,2>{0.442815781f, 0.57909286f}, std::array<float,2>{0.542569816f, 0.394723088f}, std::array<float,2>{0.886312544f, 0.915612876f}, std::array<float,2>{0.218952641f, 0.11088632f}, std::array<float,2>{0.00989048835f, 0.774101913f}, std::array<float,2>{0.832580566f, 0.160498753f}, std::array<float,2>{0.639636815f, 0.739238262f}, std::array<float,2>{0.316321254f, 0.372581959f}, std::array<float,2>{0.3435013f, 0.808181286f}, std::array<float,2>{0.644578695f, 0.151331261f}, std::array<float,2>{0.822710037f, 0.709987283f}, std::array<float,2>{0.0160662606f, 0.338420063f}, std::array<float,2>{0.248915061f, 0.618043423f}, std::array<float,2>{0.903545499f, 0.432664007f}, std::array<float,2>{0.550261259f, 0.878105462f}, std::array<float,2>{0.453282386f, 0.080662027f}, std::array<float,2>{0.408750236f, 0.648035944f}, std::array<float,2>{0.588666558f, 0.298881143f}, std::array<float,2>{0.977033079f, 0.844861865f}, std::array<float,2>{0.132707208f, 0.234413043f}, std::array<float,2>{0.101574905f, 0.961701512f}, std::array<float,2>{0.784790516f, 0.00421790034f}, std::array<float,2>{0.711446404f, 0.52232635f}, std::array<float,2>{0.297994524f, 0.480702877f}, std::array<float,2>{0.479888201f, 0.92501682f}, std::array<float,2>{0.528006434f, 0.0954090804f}, std::array<float,2>{0.925130725f, 0.570543647f}, std::array<float,2>{0.189114705f, 0.382377386f}, std::array<float,2>{0.0423936322f, 0.728835762f}, std::array<float,2>{0.871021926f, 0.345499039f}, std::array<float,2>{0.687429428f, 0.760900497f}, std::array<float,2>{0.373556674f, 0.173598468f}, std::array<float,2>{0.275066525f, 0.536201596f}, std::array<float,2>{0.745346904f, 0.439867288f}, std::array<float,2>{0.761407793f, 0.983957589f}, std::array<float,2>{0.0656989068f, 0.0493787155f}, std::array<float,2>{0.161449969f, 0.836049259f}, std::array<float,2>{0.965679348f, 0.189048722f}, std::array<float,2>{0.617403865f, 0.685312212f}, std::array<float,2>{0.391496897f, 0.261234999f}, std::array<float,2>{0.467300534f, 0.75330925f}, std::array<float,2>{0.557764292f, 0.186118051f}, std::array<float,2>{0.897328794f, 0.719989479f}, std::array<float,2>{0.236956045f, 0.356038988f}, std::array<float,2>{0.0235385634f, 0.565487146f}, std::array<float,2>{0.813557863f, 0.387227327f}, std::array<float,2>{0.655467629f, 0.935987532f}, std::array<float,2>{0.331843883f, 0.107720755f}, std::array<float,2>{0.311129004f, 0.678910792f}, std::array<float,2>{0.710621059f, 0.252783537f}, std::array<float,2>{0.790814996f, 0.835925281f}, std::array<float,2>{0.094620578f, 0.203106955f}, std::array<float,2>{0.137295321f, 0.97423929f}, std::array<float,2>{0.972596288f, 0.0601938553f}, std::array<float,2>{0.57903707f, 0.54172045f}, std::array<float,2>{0.414721668f, 0.449500263f}, std::array<float,2>{0.366809279f, 0.885893762f}, std::array<float,2>{0.674702823f, 0.0885955691f}, std::array<float,2>{0.860233068f, 0.613550067f}, std::array<float,2>{0.0312910043f, 0.425566196f}, std::array<float,2>{0.202985033f, 0.711746275f}, std::array<float,2>{0.934612572f, 0.332081437f}, std::array<float,2>{0.520301282f, 0.800258517f}, std::array<float,2>{0.469712973f, 0.141132846f}, std::array<float,2>{0.399699062f, 0.52429682f}, std::array<float,2>{0.612982929f, 0.47521618f}, std::array<float,2>{0.956517816f, 0.958076537f}, std::array<float,2>{0.167156205f, 0.00850879867f}, std::array<float,2>{0.0774962306f, 0.854030788f}, std::array<float,2>{0.755422413f, 0.248809159f}, std::array<float,2>{0.738822579f, 0.651418328f}, std::array<float,2>{0.271925956f, 0.304934502f}, std::array<float,2>{0.255490571f, 0.816147149f}, std::array<float,2>{0.723543167f, 0.218168363f}, std::array<float,2>{0.76913923f, 0.664053202f}, std::array<float,2>{0.0794734433f, 0.269759893f}, std::array<float,2>{0.17531839f, 0.560569048f}, std::array<float,2>{0.938538432f, 0.460465014f}, std::array<float,2>{0.599831223f, 0.986390531f}, std::array<float,2>{0.385582596f, 0.0410644636f}, std::array<float,2>{0.495855033f, 0.744065225f}, std::array<float,2>{0.51141125f, 0.363902956f}, std::array<float,2>{0.916514993f, 0.771777272f}, std::array<float,2>{0.20460549f, 0.164634943f}, std::array<float,2>{0.0567004979f, 0.910267174f}, std::array<float,2>{0.845273077f, 0.123851426f}, std::array<float,2>{0.661600947f, 0.586175859f}, std::array<float,2>{0.351780057f, 0.402463019f}, std::array<float,2>{0.436403453f, 0.93843776f}, std::array<float,2>{0.570840478f, 0.0189837012f}, std::array<float,2>{0.9985376f, 0.515240073f}, std::array<float,2>{0.141820237f, 0.49670884f}, std::array<float,2>{0.112319827f, 0.62989527f}, std::array<float,2>{0.798111975f, 0.289840937f}, std::array<float,2>{0.692741215f, 0.863097906f}, std::array<float,2>{0.292010695f, 0.233917177f}, std::array<float,2>{0.32042405f, 0.601844788f}, std::array<float,2>{0.629326642f, 0.408151329f}, std::array<float,2>{0.843470335f, 0.896361351f}, std::array<float,2>{0.00206798222f, 0.0718520433f}, std::array<float,2>{0.230197668f, 0.784939468f}, std::array<float,2>{0.879524171f, 0.128044263f}, std::array<float,2>{0.537745893f, 0.69887954f}, std::array<float,2>{0.446859509f, 0.316368014f}, std::array<float,2>{0.418053657f, 0.795366466f}, std::array<float,2>{0.584742904f, 0.139049143f}, std::array<float,2>{0.974215806f, 0.693143845f}, std::array<float,2>{0.134502068f, 0.32632646f}, std::array<float,2>{0.0993236229f, 0.598320127f}, std::array<float,2>{0.794411182f, 0.41447562f}, std::array<float,2>{0.704905272f, 0.904529274f}, std::array<float,2>{0.30711025f, 0.0686947182f}, std::array<float,2>{0.334843874f, 0.635603428f}, std::array<float,2>{0.651846707f, 0.287139893f}, std::array<float,2>{0.820027649f, 0.872361839f}, std::array<float,2>{0.028539177f, 0.219814628f}, std::array<float,2>{0.240137905f, 0.948646784f}, std::array<float,2>{0.890851796f, 0.0283090621f}, std::array<float,2>{0.560022891f, 0.501750648f}, std::array<float,2>{0.464656323f, 0.486664116f}, std::array<float,2>{0.269000173f, 0.921161711f}, std::array<float,2>{0.737701297f, 0.116913483f}, std::array<float,2>{0.751786292f, 0.582403779f}, std::array<float,2>{0.0708467737f, 0.391563952f}, std::array<float,2>{0.171693087f, 0.735697269f}, std::array<float,2>{0.960732102f, 0.369711101f}, std::array<float,2>{0.616650581f, 0.779664636f}, std::array<float,2>{0.403000206f, 0.158514649f}, std::array<float,2>{0.473880798f, 0.550210416f}, std::array<float,2>{0.51833719f, 0.462442309f}, std::array<float,2>{0.931203246f, 0.999309301f}, std::array<float,2>{0.196913257f, 0.0362814888f}, std::array<float,2>{0.0364864022f, 0.822332025f}, std::array<float,2>{0.865887582f, 0.203423738f}, std::array<float,2>{0.679496765f, 0.670399129f}, std::array<float,2>{0.359502286f, 0.273779809f}, std::array<float,2>{0.357751429f, 0.850634813f}, std::array<float,2>{0.659470081f, 0.240767285f}, std::array<float,2>{0.850506425f, 0.641406596f}, std::array<float,2>{0.0605247132f, 0.302908272f}, std::array<float,2>{0.209277168f, 0.518821657f}, std::array<float,2>{0.918260872f, 0.480232149f}, std::array<float,2>{0.515459239f, 0.968669891f}, std::array<float,2>{0.49846971f, 0.000748933235f}, std::array<float,2>{0.390472919f, 0.705357313f}, std::array<float,2>{0.597103894f, 0.342516482f}, std::array<float,2>{0.94500041f, 0.811356068f}, std::array<float,2>{0.178156868f, 0.153825387f}, std::array<float,2>{0.084174782f, 0.880134404f}, std::array<float,2>{0.771352649f, 0.0840693712f}, std::array<float,2>{0.721473753f, 0.623227656f}, std::array<float,2>{0.250576586f, 0.437077254f}, std::array<float,2>{0.451882422f, 0.978259146f}, std::array<float,2>{0.533202052f, 0.0524256825f}, std::array<float,2>{0.875500083f, 0.531882524f}, std::array<float,2>{0.2312987f, 0.443274736f}, std::array<float,2>{0.00452649267f, 0.681139886f}, std::array<float,2>{0.837599277f, 0.264894783f}, std::array<float,2>{0.628586233f, 0.841314554f}, std::array<float,2>{0.325563431f, 0.19239825f}, std::array<float,2>{0.296355695f, 0.574750483f}, std::array<float,2>{0.689161003f, 0.378573209f}, std::array<float,2>{0.804176807f, 0.929275036f}, std::array<float,2>{0.116496317f, 0.0989582017f}, std::array<float,2>{0.147132516f, 0.763458848f}, std::array<float,2>{0.993406653f, 0.177735746f}, std::array<float,2>{0.576456368f, 0.734049737f}, std::array<float,2>{0.43064779f, 0.349180013f}, std::array<float,2>{0.485663086f, 0.830744445f}, std::array<float,2>{0.501947939f, 0.197766542f}, std::array<float,2>{0.91265893f, 0.672255933f}, std::array<float,2>{0.211672813f, 0.254376829f}, std::array<float,2>{0.0490491092f, 0.545874119f}, std::array<float,2>{0.858745873f, 0.448950946f}, std::array<float,2>{0.665929377f, 0.971852779f}, std::array<float,2>{0.348823309f, 0.0578030683f}, std::array<float,2>{0.265157461f, 0.725150526f}, std::array<float,2>{0.728509009f, 0.352082103f}, std::array<float,2>{0.775253475f, 0.756405175f}, std::array<float,2>{0.0865998641f, 0.180600807f}, std::array<float,2>{0.185992599f, 0.932274461f}, std::array<float,2>{0.948005259f, 0.104339719f}, std::array<float,2>{0.603986681f, 0.566938221f}, std::array<float,2>{0.381632924f, 0.385520637f}, std::array<float,2>{0.317738503f, 0.953937232f}, std::array<float,2>{0.633229852f, 0.0155791715f}, std::array<float,2>{0.830186963f, 0.529971182f}, std::array<float,2>{0.0140524302f, 0.472050428f}, std::array<float,2>{0.223530605f, 0.65310216f}, std::array<float,2>{0.889989614f, 0.311094701f}, std::array<float,2>{0.546420157f, 0.856321394f}, std::array<float,2>{0.440610975f, 0.244575948f}, std::array<float,2>{0.427925199f, 0.609758615f}, std::array<float,2>{0.562998712f, 0.428962916f}, std::array<float,2>{0.985062718f, 0.889469326f}, std::array<float,2>{0.154654533f, 0.0923320502f}, std::array<float,2>{0.124463506f, 0.802360296f}, std::array<float,2>{0.810037017f, 0.145193785f}, std::array<float,2>{0.701862156f, 0.717888296f}, std::array<float,2>{0.286426365f, 0.331032693f}, std::array<float,2>{0.304061592f, 0.765637398f}, std::array<float,2>{0.718061924f, 0.168540061f}, std::array<float,2>{0.786136866f, 0.74673593f}, std::array<float,2>{0.106005415f, 0.363132119f}, std::array<float,2>{0.126614153f, 0.593155146f}, std::array<float,2>{0.983712554f, 0.398658484f}, std::array<float,2>{0.59151721f, 0.906806171f}, std::array<float,2>{0.410429358f, 0.119958267f}, std::array<float,2>{0.460206151f, 0.659730017f}, std::array<float,2>{0.553032637f, 0.268211246f}, std::array<float,2>{0.898987412f, 0.817274272f}, std::array<float,2>{0.242266729f, 0.211315915f}, std::array<float,2>{0.0199743286f, 0.990069807f}, std::array<float,2>{0.825275123f, 0.0431098081f}, std::array<float,2>{0.640656054f, 0.558422506f}, std::array<float,2>{0.338356733f, 0.455570877f}, std::array<float,2>{0.395828009f, 0.891275227f}, std::array<float,2>{0.623734772f, 0.0759909675f}, std::array<float,2>{0.964636981f, 0.606342852f}, std::array<float,2>{0.157513633f, 0.411737472f}, std::array<float,2>{0.0693995208f, 0.701793611f}, std::array<float,2>{0.763148785f, 0.316643834f}, std::array<float,2>{0.748185754f, 0.785794258f}, std::array<float,2>{0.279856175f, 0.132796571f}, std::array<float,2>{0.367726505f, 0.507973492f}, std::array<float,2>{0.68258661f, 0.49522084f}, std::array<float,2>{0.871758521f, 0.942952871f}, std::array<float,2>{0.0458465517f, 0.0209367611f}, std::array<float,2>{0.194050387f, 0.863344252f}, std::array<float,2>{0.928185523f, 0.229142323f}, std::array<float,2>{0.524787247f, 0.626341641f}, std::array<float,2>{0.483579844f, 0.29344064f}, std::array<float,2>{0.423804909f, 0.824314177f}, std::array<float,2>{0.56657064f, 0.209874839f}, std::array<float,2>{0.991378069f, 0.664655745f}, std::array<float,2>{0.149548203f, 0.279154092f}, std::array<float,2>{0.118850097f, 0.552557826f}, std::array<float,2>{0.806639016f, 0.467967838f}, std::array<float,2>{0.696538329f, 0.992567778f}, std::array<float,2>{0.283796132f, 0.0328660272f}, std::array<float,2>{0.314189762f, 0.741178751f}, std::array<float,2>{0.637880802f, 0.37378028f}, std::array<float,2>{0.835584939f, 0.77613312f}, std::array<float,2>{0.00823593326f, 0.164037064f}, std::array<float,2>{0.221650198f, 0.916425765f}, std::array<float,2>{0.883384228f, 0.113207817f}, std::array<float,2>{0.539912105f, 0.581026316f}, std::array<float,2>{0.444196612f, 0.397096485f}, std::array<float,2>{0.261107653f, 0.951215446f}, std::array<float,2>{0.733538568f, 0.0258203913f}, std::array<float,2>{0.780318737f, 0.50667274f}, std::array<float,2>{0.0930427536f, 0.490946501f}, std::array<float,2>{0.181404293f, 0.640071452f}, std::array<float,2>{0.949292183f, 0.281808376f}, std::array<float,2>{0.607560217f, 0.868091762f}, std::array<float,2>{0.37773487f, 0.225194246f}, std::array<float,2>{0.489298642f, 0.596473157f}, std::array<float,2>{0.507626653f, 0.419551075f}, std::array<float,2>{0.908667803f, 0.898741901f}, std::array<float,2>{0.216460451f, 0.0632154718f}, std::array<float,2>{0.0527336001f, 0.791709602f}, std::array<float,2>{0.85237056f, 0.136321336f}, std::array<float,2>{0.668735147f, 0.691106498f}, std::array<float,2>{0.347245336f, 0.320707053f}, std::array<float,2>{0.371774286f, 0.759105504f}, std::array<float,2>{0.684216976f, 0.17515716f}, std::array<float,2>{0.86731261f, 0.726894915f}, std::array<float,2>{0.0400292799f, 0.347100675f}, std::array<float,2>{0.189761549f, 0.572828352f}, std::array<float,2>{0.922669053f, 0.379596323f}, std::array<float,2>{0.529628575f, 0.923188567f}, std::array<float,2>{0.477970898f, 0.0968795717f}, std::array<float,2>{0.393248767f, 0.686493337f}, std::array<float,2>{0.620525062f, 0.25837332f}, std::array<float,2>{0.967521906f, 0.837955117f}, std::array<float,2>{0.163972318f, 0.190299824f}, std::array<float,2>{0.0639365241f, 0.980696142f}, std::array<float,2>{0.759680331f, 0.0482412204f}, std::array<float,2>{0.743148565f, 0.538461268f}, std::array<float,2>{0.275785536f, 0.438086331f}, std::array<float,2>{0.455468088f, 0.876775622f}, std::array<float,2>{0.547042131f, 0.0791949704f}, std::array<float,2>{0.904308498f, 0.61940825f}, std::array<float,2>{0.24649246f, 0.43143782f}, std::array<float,2>{0.0179843493f, 0.708352208f}, std::array<float,2>{0.822244406f, 0.336013347f}, std::array<float,2>{0.646979094f, 0.805657208f}, std::array<float,2>{0.340123087f, 0.149518594f}, std::array<float,2>{0.299512088f, 0.520962656f}, std::array<float,2>{0.713368773f, 0.482845306f}, std::array<float,2>{0.781320572f, 0.96417737f}, std::array<float,2>{0.105316751f, 0.00773037784f}, std::array<float,2>{0.129154086f, 0.846604049f}, std::array<float,2>{0.980275273f, 0.237093464f}, std::array<float,2>{0.586190164f, 0.645110965f}, std::array<float,2>{0.406785399f, 0.297395766f}, std::array<float,2>{0.472018212f, 0.798360229f}, std::array<float,2>{0.521528125f, 0.143361717f}, std::array<float,2>{0.936358809f, 0.714828432f}, std::array<float,2>{0.200173199f, 0.334332407f}, std::array<float,2>{0.0350981876f, 0.616347373f}, std::array<float,2>{0.862828493f, 0.422419459f}, std::array<float,2>{0.672921479f, 0.884250402f}, std::array<float,2>{0.364282906f, 0.0860977024f}, std::array<float,2>{0.270137936f, 0.650131345f}, std::array<float,2>{0.740709901f, 0.307519764f}, std::array<float,2>{0.756203294f, 0.852238297f}, std::array<float,2>{0.0745345056f, 0.247197345f}, std::array<float,2>{0.165090844f, 0.95986712f}, std::array<float,2>{0.95450139f, 0.0105340006f}, std::array<float,2>{0.609431565f, 0.527290583f}, std::array<float,2>{0.401360601f, 0.474294215f}, std::array<float,2>{0.329347163f, 0.934995353f}, std::array<float,2>{0.652624965f, 0.105718881f}, std::array<float,2>{0.815019429f, 0.562531769f}, std::array<float,2>{0.0270480122f, 0.389276683f}, std::array<float,2>{0.235965669f, 0.722253621f}, std::array<float,2>{0.8962152f, 0.359205872f}, std::array<float,2>{0.555155396f, 0.751655757f}, std::array<float,2>{0.465303779f, 0.1854067f}, std::array<float,2>{0.416093498f, 0.540374398f}, std::array<float,2>{0.581656814f, 0.452189356f}, std::array<float,2>{0.969161749f, 0.976484239f}, std::array<float,2>{0.140077457f, 0.0618839711f}, std::array<float,2>{0.0960148796f, 0.83231312f}, std::array<float,2>{0.792116821f, 0.200756162f}, std::array<float,2>{0.708954513f, 0.677160442f}, std::array<float,2>{0.309047192f, 0.251071423f}, std::array<float,2>{0.28966549f, 0.860384703f}, std::array<float,2>{0.694029987f, 0.230987817f}, std::array<float,2>{0.799845934f, 0.630889058f}, std::array<float,2>{0.110273845f, 0.29227376f}, std::array<float,2>{0.143345445f, 0.512009442f}, std::array<float,2>{0.996772468f, 0.49805066f}, std::array<float,2>{0.573302567f, 0.940125942f}, std::array<float,2>{0.435074776f, 0.0157894976f}, std::array<float,2>{0.448213339f, 0.695974767f}, std::array<float,2>{0.535925686f, 0.313241422f}, std::array<float,2>{0.881143808f, 0.782463729f}, std::array<float,2>{0.227479771f, 0.125102609f}, std::array<float,2>{0.000939437421f, 0.89796114f}, std::array<float,2>{0.840144336f, 0.0724379346f}, std::array<float,2>{0.632361889f, 0.605256259f}, std::array<float,2>{0.322332472f, 0.409288317f}, std::array<float,2>{0.383167475f, 0.984912038f}, std::array<float,2>{0.598345101f, 0.0402359813f}, std::array<float,2>{0.939927578f, 0.558672845f}, std::array<float,2>{0.172383472f, 0.458608657f}, std::array<float,2>{0.0804190487f, 0.660974324f}, std::array<float,2>{0.767491162f, 0.272453666f}, std::array<float,2>{0.724770308f, 0.814031124f}, std::array<float,2>{0.257017374f, 0.215471417f}, std::array<float,2>{0.354272515f, 0.589432716f}, std::array<float,2>{0.662653208f, 0.405542284f}, std::array<float,2>{0.846511006f, 0.913895845f}, std::array<float,2>{0.0564602204f, 0.121749312f}, std::array<float,2>{0.205626443f, 0.770393729f}, std::array<float,2>{0.915755808f, 0.166362494f}, std::array<float,2>{0.509572566f, 0.744632483f}, std::array<float,2>{0.492780179f, 0.366280735f}, std::array<float,2>{0.405980468f, 0.778943777f}, std::array<float,2>{0.613506973f, 0.157153621f}, std::array<float,2>{0.958705604f, 0.736665845f}, std::array<float,2>{0.169676825f, 0.368036032f}, std::array<float,2>{0.0734835863f, 0.585382998f}, std::array<float,2>{0.753194451f, 0.392895371f}, std::array<float,2>{0.734619379f, 0.918498278f}, std::array<float,2>{0.265755564f, 0.113915555f}, std::array<float,2>{0.36167562f, 0.669611752f}, std::array<float,2>{0.676344097f, 0.277254999f}, std::array<float,2>{0.865169644f, 0.82096678f}, std::array<float,2>{0.0384238474f, 0.206785306f}, std::array<float,2>{0.19876416f, 0.996252716f}, std::array<float,2>{0.931950748f, 0.0374734811f}, std::array<float,2>{0.516627252f, 0.547351539f}, std::array<float,2>{0.474995673f, 0.464432478f}, std::array<float,2>{0.30529967f, 0.902602732f}, std::array<float,2>{0.705233634f, 0.0672708005f}, std::array<float,2>{0.795737207f, 0.600812972f}, std::array<float,2>{0.100361057f, 0.417465895f}, std::array<float,2>{0.134860262f, 0.694823086f}, std::array<float,2>{0.975465178f, 0.325906932f}, std::array<float,2>{0.582380056f, 0.793346584f}, std::array<float,2>{0.420962065f, 0.13692677f}, std::array<float,2>{0.462299228f, 0.503693879f}, std::array<float,2>{0.560991228f, 0.486041844f}, std::array<float,2>{0.893957734f, 0.945813656f}, std::array<float,2>{0.242177978f, 0.0293587334f}, std::array<float,2>{0.030626867f, 0.873350561f}, std::array<float,2>{0.817261636f, 0.222623512f}, std::array<float,2>{0.649861872f, 0.633044899f}, std::array<float,2>{0.332767963f, 0.286857992f}, std::array<float,2>{0.326959878f, 0.842234373f}, std::array<float,2>{0.625262737f, 0.19348304f}, std::array<float,2>{0.838798225f, 0.681680083f}, std::array<float,2>{0.00729339151f, 0.26185295f}, std::array<float,2>{0.233273834f, 0.534092844f}, std::array<float,2>{0.877615809f, 0.443835258f}, std::array<float,2>{0.534923434f, 0.979539454f}, std::array<float,2>{0.450421274f, 0.0546697862f}, std::array<float,2>{0.432572663f, 0.730549097f}, std::array<float,2>{0.57514292f, 0.350457937f}, std::array<float,2>{0.99476546f, 0.764297128f}, std::array<float,2>{0.144738019f, 0.177033827f}, std::array<float,2>{0.114152871f, 0.926862121f}, std::array<float,2>{0.801759005f, 0.100080013f}, std::array<float,2>{0.690189481f, 0.576596975f}, std::array<float,2>{0.293357134f, 0.375976652f}, std::array<float,2>{0.496321619f, 0.966626167f}, std::array<float,2>{0.512036502f, 0.00381708657f}, std::array<float,2>{0.92016542f, 0.516104937f}, std::array<float,2>{0.207455084f, 0.478405863f}, std::array<float,2>{0.0619154423f, 0.643727541f}, std::array<float,2>{0.847747326f, 0.301975042f}, std::array<float,2>{0.656853795f, 0.848040402f}, std::array<float,2>{0.355493069f, 0.238774642f}, std::array<float,2>{0.253041059f, 0.622274399f}, std::array<float,2>{0.720412314f, 0.435212135f}, std::array<float,2>{0.773156703f, 0.88170898f}, std::array<float,2>{0.0832161829f, 0.083129935f}, std::array<float,2>{0.17725037f, 0.809876263f}, std::array<float,2>{0.941451728f, 0.154539704f}, std::array<float,2>{0.595532417f, 0.703380942f}, std::array<float,2>{0.387016982f, 0.340691358f}, std::array<float,2>{0.439113438f, 0.85757941f}, std::array<float,2>{0.543832362f, 0.243839264f}, std::array<float,2>{0.886741459f, 0.656211317f}, std::array<float,2>{0.225569069f, 0.308739394f}, std::array<float,2>{0.0119907688f, 0.529229641f}, std::array<float,2>{0.828632176f, 0.469853491f}, std::array<float,2>{0.635550499f, 0.956044137f}, std::array<float,2>{0.319265544f, 0.0121656619f}, std::array<float,2>{0.288840413f, 0.71523875f}, std::array<float,2>{0.700471759f, 0.32821238f}, std::array<float,2>{0.812123418f, 0.804047048f}, std::array<float,2>{0.122171022f, 0.146621227f}, std::array<float,2>{0.153058395f, 0.887075543f}, std::array<float,2>{0.987053692f, 0.0906333253f}, std::array<float,2>{0.565403163f, 0.612420142f}, std::array<float,2>{0.427049309f, 0.426202863f}, std::array<float,2>{0.349714011f, 0.969111145f}, std::array<float,2>{0.666494012f, 0.0554511994f}, std::array<float,2>{0.857327402f, 0.544358492f}, std::array<float,2>{0.048037827f, 0.44657737f}, std::array<float,2>{0.213778049f, 0.675662637f}, std::array<float,2>{0.910261214f, 0.256864011f}, std::array<float,2>{0.50353241f, 0.829127312f}, std::array<float,2>{0.488038093f, 0.196512967f}, std::array<float,2>{0.379993081f, 0.570219219f}, std::array<float,2>{0.603135109f, 0.383307517f}, std::array<float,2>{0.945506334f, 0.929703057f}, std::array<float,2>{0.184980735f, 0.101928234f}, std::array<float,2>{0.089577049f, 0.754421353f}, std::array<float,2>{0.776800573f, 0.1825753f}, std::array<float,2>{0.729620755f, 0.724348009f}, std::array<float,2>{0.262916178f, 0.354956567f}, std::array<float,2>{0.2775428f, 0.787388861f}, std::array<float,2>{0.74799484f, 0.129109412f}, std::array<float,2>{0.765153408f, 0.699424267f}, std::array<float,2>{0.067578651f, 0.319093525f}, std::array<float,2>{0.160035506f, 0.607596397f}, std::array<float,2>{0.962509274f, 0.412130564f}, std::array<float,2>{0.622997522f, 0.892901182f}, std::array<float,2>{0.39686358f, 0.0768947005f}, std::array<float,2>{0.480494499f, 0.627587795f}, std::array<float,2>{0.525887728f, 0.296204984f}, std::array<float,2>{0.927369595f, 0.867089689f}, std::array<float,2>{0.191804826f, 0.227992535f}, std::array<float,2>{0.0434516035f, 0.943893552f}, std::array<float,2>{0.873166203f, 0.0219417159f}, std::array<float,2>{0.680279553f, 0.511380553f}, std::array<float,2>{0.370534748f, 0.492984891f}, std::array<float,2>{0.413623273f, 0.909745932f}, std::array<float,2>{0.591871917f, 0.117482617f}, std::array<float,2>{0.98228246f, 0.590554118f}, std::array<float,2>{0.12754038f, 0.40222156f}, std::array<float,2>{0.10936591f, 0.74854207f}, std::array<float,2>{0.788062811f, 0.359661222f}, std::array<float,2>{0.716437578f, 0.767733037f}, std::array<float,2>{0.301213175f, 0.171808943f}, std::array<float,2>{0.336987197f, 0.555022776f}, std::array<float,2>{0.643104315f, 0.45377925f}, std::array<float,2>{0.826611161f, 0.991888821f}, std::array<float,2>{0.0224857721f, 0.0460524112f}, std::array<float,2>{0.24531433f, 0.818624735f}, std::array<float,2>{0.901433647f, 0.213521063f}, std::array<float,2>{0.551652312f, 0.657415152f}, std::array<float,2>{0.458275437f, 0.265950203f}, std::array<float,2>{0.434903204f, 0.862482488f}, std::array<float,2>{0.573967695f, 0.233684912f}, std::array<float,2>{0.996415496f, 0.630732f}, std::array<float,2>{0.142717481f, 0.289439559f}, std::array<float,2>{0.109754421f, 0.515018702f}, std::array<float,2>{0.800626457f, 0.496471494f}, std::array<float,2>{0.693416476f, 0.937712491f}, std::array<float,2>{0.289190054f, 0.0195184126f}, std::array<float,2>{0.322761416f, 0.698679745f}, std::array<float,2>{0.632073045f, 0.315458298f}, std::array<float,2>{0.84060812f, 0.784510076f}, std::array<float,2>{4.65709418e-05f, 0.1287435f}, std::array<float,2>{0.226916984f, 0.895791352f}, std::array<float,2>{0.881369174f, 0.0713513717f}, std::array<float,2>{0.535403609f, 0.602194309f}, std::array<float,2>{0.447490662f, 0.407583922f}, std::array<float,2>{0.257786691f, 0.986943424f}, std::array<float,2>{0.725209951f, 0.041861739f}, std::array<float,2>{0.766702235f, 0.561302602f}, std::array<float,2>{0.0806553513f, 0.460306048f}, std::array<float,2>{0.172203094f, 0.663380146f}, std::array<float,2>{0.940150678f, 0.27030921f}, std::array<float,2>{0.597935021f, 0.815765083f}, std::array<float,2>{0.38340044f, 0.218570888f}, std::array<float,2>{0.492256999f, 0.586623788f}, std::array<float,2>{0.508927166f, 0.403036356f}, std::array<float,2>{0.91524905f, 0.911055565f}, std::array<float,2>{0.2055372f, 0.123408221f}, std::array<float,2>{0.0560934544f, 0.772442698f}, std::array<float,2>{0.846017957f, 0.164162204f}, std::array<float,2>{0.662156224f, 0.74346751f}, std::array<float,2>{0.353699803f, 0.36362049f}, std::array<float,2>{0.364990115f, 0.800649583f}, std::array<float,2>{0.673812807f, 0.140955999f}, std::array<float,2>{0.862476289f, 0.711374462f}, std::array<float,2>{0.034324903f, 0.332737058f}, std::array<float,2>{0.199489772f, 0.613873243f}, std::array<float,2>{0.935969412f, 0.424955398f}, std::array<float,2>{0.522133648f, 0.88640362f}, std::array<float,2>{0.472638041f, 0.0878945887f}, std::array<float,2>{0.400485426f, 0.652016282f}, std::array<float,2>{0.610176861f, 0.305594236f}, std::array<float,2>{0.955020368f, 0.853993118f}, std::array<float,2>{0.16568248f, 0.248281136f}, std::array<float,2>{0.0751129016f, 0.958824277f}, std::array<float,2>{0.756365418f, 0.00792081095f}, std::array<float,2>{0.740886807f, 0.523506105f}, std::array<float,2>{0.269681275f, 0.474845976f}, std::array<float,2>{0.465630591f, 0.936196387f}, std::array<float,2>{0.555514574f, 0.108374104f}, std::array<float,2>{0.89577347f, 0.566277802f}, std::array<float,2>{0.23547855f, 0.386828512f}, std::array<float,2>{0.0265270341f, 0.720324457f}, std::array<float,2>{0.814841986f, 0.355782121f}, std::array<float,2>{0.653213501f, 0.753614187f}, std::array<float,2>{0.329997569f, 0.185597524f}, std::array<float,2>{0.309332669f, 0.541105747f}, std::array<float,2>{0.708294272f, 0.450154006f}, std::array<float,2>{0.792877555f, 0.973876417f}, std::array<float,2>{0.0964665711f, 0.0595910661f}, std::array<float,2>{0.140616432f, 0.835283518f}, std::array<float,2>{0.969691038f, 0.202306166f}, std::array<float,2>{0.581239164f, 0.679402351f}, std::array<float,2>{0.416550815f, 0.252039015f}, std::array<float,2>{0.478384852f, 0.761442363f}, std::array<float,2>{0.5301404f, 0.173162133f}, std::array<float,2>{0.922305286f, 0.729480922f}, std::array<float,2>{0.190420419f, 0.345162749f}, std::array<float,2>{0.0392670296f, 0.571051776f}, std::array<float,2>{0.86780113f, 0.381844848f}, std::array<float,2>{0.683955967f, 0.925477862f}, std::array<float,2>{0.371356755f, 0.0952112824f}, std::array<float,2>{0.276215076f, 0.684867859f}, std::array<float,2>{0.742409945f, 0.260892898f}, std::array<float,2>{0.758836985f, 0.836791456f}, std::array<float,2>{0.0643258318f, 0.188756779f}, std::array<float,2>{0.163221732f, 0.983656287f}, std::array<float,2>{0.966870308f, 0.0490773246f}, std::array<float,2>{0.620764434f, 0.537050068f}, std::array<float,2>{0.392642051f, 0.440360695f}, std::array<float,2>{0.340680033f, 0.878702223f}, std::array<float,2>{0.646525383f, 0.0802309811f}, std::array<float,2>{0.821358383f, 0.617300391f}, std::array<float,2>{0.0184756164f, 0.433312416f}, std::array<float,2>{0.246941254f, 0.710795283f}, std::array<float,2>{0.904820502f, 0.337997139f}, std::array<float,2>{0.547604799f, 0.80761838f}, std::array<float,2>{0.455736279f, 0.150822461f}, std::array<float,2>{0.406563699f, 0.521500289f}, std::array<float,2>{0.586585462f, 0.481292635f}, std::array<float,2>{0.979724407f, 0.961321056f}, std::array<float,2>{0.129775017f, 0.00445871288f}, std::array<float,2>{0.104603641f, 0.845463276f}, std::array<float,2>{0.781998336f, 0.235194445f}, std::array<float,2>{0.713516831f, 0.647575259f}, std::array<float,2>{0.298875421f, 0.299384803f}, std::array<float,2>{0.283458441f, 0.827389836f}, std::array<float,2>{0.697049499f, 0.208507583f}, std::array<float,2>{0.805731833f, 0.666116297f}, std::array<float,2>{0.118210115f, 0.280197918f}, std::array<float,2>{0.150174856f, 0.553698361f}, std::array<float,2>{0.991982698f, 0.466616929f}, std::array<float,2>{0.566910565f, 0.99537915f}, std::array<float,2>{0.423035085f, 0.0347298533f}, std::array<float,2>{0.443731517f, 0.738612175f}, std::array<float,2>{0.539203703f, 0.372246653f}, std::array<float,2>{0.882880569f, 0.773726404f}, std::array<float,2>{0.220884457f, 0.160873801f}, std::array<float,2>{0.00837633666f, 0.915375829f}, std::array<float,2>{0.835214376f, 0.110709623f}, std::array<float,2>{0.638447762f, 0.578561425f}, std::array<float,2>{0.313905209f, 0.395380557f}, std::array<float,2>{0.377083659f, 0.950912893f}, std::array<float,2>{0.608244956f, 0.0246934425f}, std::array<float,2>{0.950082898f, 0.505780995f}, std::array<float,2>{0.180998564f, 0.488942266f}, std::array<float,2>{0.0936926752f, 0.637114644f}, std::array<float,2>{0.780918837f, 0.284603655f}, std::array<float,2>{0.733985603f, 0.870696902f}, std::array<float,2>{0.261245191f, 0.224024624f}, std::array<float,2>{0.347075015f, 0.59436363f}, std::array<float,2>{0.668431163f, 0.421314955f}, std::array<float,2>{0.851842105f, 0.9008407f}, std::array<float,2>{0.0519385561f, 0.0648909062f}, std::array<float,2>{0.216168627f, 0.79064554f}, std::array<float,2>{0.9091416f, 0.133375317f}, std::array<float,2>{0.506891549f, 0.689225793f}, std::array<float,2>{0.489974171f, 0.323346943f}, std::array<float,2>{0.397284597f, 0.785383761f}, std::array<float,2>{0.622351646f, 0.13201949f}, std::array<float,2>{0.962081611f, 0.701234519f}, std::array<float,2>{0.159544215f, 0.316923231f}, std::array<float,2>{0.0681659579f, 0.605509937f}, std::array<float,2>{0.764656663f, 0.411351711f}, std::array<float,2>{0.747206032f, 0.890885413f}, std::array<float,2>{0.278244883f, 0.0754690692f}, std::array<float,2>{0.370920837f, 0.626655936f}, std::array<float,2>{0.679987133f, 0.293934256f}, std::array<float,2>{0.873564065f, 0.864048123f}, std::array<float,2>{0.043666359f, 0.228735551f}, std::array<float,2>{0.191922724f, 0.942487061f}, std::array<float,2>{0.926946223f, 0.0213090051f}, std::array<float,2>{0.525584757f, 0.508771181f}, std::array<float,2>{0.481023401f, 0.495700896f}, std::array<float,2>{0.301342815f, 0.906346977f}, std::array<float,2>{0.716154277f, 0.119549274f}, std::array<float,2>{0.787149191f, 0.593749881f}, std::array<float,2>{0.108719423f, 0.39915356f}, std::array<float,2>{0.127359524f, 0.746482015f}, std::array<float,2>{0.981682241f, 0.362523198f}, std::array<float,2>{0.592318118f, 0.766179681f}, std::array<float,2>{0.413393795f, 0.168233439f}, std::array<float,2>{0.458846271f, 0.557714462f}, std::array<float,2>{0.550984085f, 0.455233365f}, std::array<float,2>{0.901932955f, 0.989303648f}, std::array<float,2>{0.245985493f, 0.0437498912f}, std::array<float,2>{0.0234236624f, 0.816509187f}, std::array<float,2>{0.827013791f, 0.211566776f}, std::array<float,2>{0.642980158f, 0.65956825f}, std::array<float,2>{0.337807536f, 0.267911166f}, std::array<float,2>{0.318725318f, 0.855534554f}, std::array<float,2>{0.634845614f, 0.244716182f}, std::array<float,2>{0.828153968f, 0.652640224f}, std::array<float,2>{0.0123262014f, 0.310793668f}, std::array<float,2>{0.224923268f, 0.529489696f}, std::array<float,2>{0.887235463f, 0.472413719f}, std::array<float,2>{0.543381095f, 0.953283012f}, std::array<float,2>{0.438571036f, 0.0147293713f}, std::array<float,2>{0.427470654f, 0.718530238f}, std::array<float,2>{0.564531565f, 0.330478102f}, std::array<float,2>{0.986380517f, 0.802087069f}, std::array<float,2>{0.152489051f, 0.144984841f}, std::array<float,2>{0.122734696f, 0.888882279f}, std::array<float,2>{0.811899781f, 0.0918048918f}, std::array<float,2>{0.701112092f, 0.610049069f}, std::array<float,2>{0.288396269f, 0.429445505f}, std::array<float,2>{0.487331212f, 0.972392797f}, std::array<float,2>{0.503135085f, 0.0581240878f}, std::array<float,2>{0.910828829f, 0.544991314f}, std::array<float,2>{0.213244349f, 0.448333502f}, std::array<float,2>{0.0486672632f, 0.672374964f}, std::array<float,2>{0.856888592f, 0.254505575f}, std::array<float,2>{0.66651994f, 0.830432832f}, std::array<float,2>{0.350245386f, 0.197426066f}, std::array<float,2>{0.263376117f, 0.566771269f}, std::array<float,2>{0.73037076f, 0.384765983f}, std::array<float,2>{0.777144015f, 0.931872904f}, std::array<float,2>{0.0891217738f, 0.103843138f}, std::array<float,2>{0.185131267f, 0.75594002f}, std::array<float,2>{0.945833206f, 0.179734811f}, std::array<float,2>{0.602926314f, 0.724816918f}, std::array<float,2>{0.380484581f, 0.351599455f}, std::array<float,2>{0.450910926f, 0.841092348f}, std::array<float,2>{0.534508228f, 0.193352342f}, std::array<float,2>{0.877335906f, 0.681238472f}, std::array<float,2>{0.232800037f, 0.265502572f}, std::array<float,2>{0.00745793339f, 0.53131932f}, std::array<float,2>{0.838280201f, 0.442857057f}, std::array<float,2>{0.625822783f, 0.977896512f}, std::array<float,2>{0.326573581f, 0.051983051f}, std::array<float,2>{0.293880433f, 0.733472645f}, std::array<float,2>{0.689764857f, 0.348854274f}, std::array<float,2>{0.802473009f, 0.763165772f}, std::array<float,2>{0.113494866f, 0.178462565f}, std::array<float,2>{0.14524889f, 0.929112613f}, std::array<float,2>{0.994346678f, 0.0991394594f}, std::array<float,2>{0.574266911f, 0.574607432f}, std::array<float,2>{0.431859761f, 0.378212899f}, std::array<float,2>{0.356127799f, 0.967989624f}, std::array<float,2>{0.656417668f, 0.000169046209f}, std::array<float,2>{0.848543763f, 0.51909095f}, std::array<float,2>{0.0624896511f, 0.479787081f}, std::array<float,2>{0.207629532f, 0.640856743f}, std::array<float,2>{0.920443773f, 0.303278595f}, std::array<float,2>{0.512306631f, 0.85144496f}, std::array<float,2>{0.496977895f, 0.240342915f}, std::array<float,2>{0.387299329f, 0.624000609f}, std::array<float,2>{0.595087707f, 0.436943322f}, std::array<float,2>{0.942375362f, 0.880673945f}, std::array<float,2>{0.177082747f, 0.0845698863f}, std::array<float,2>{0.0836105421f, 0.810658038f}, std::array<float,2>{0.772755265f, 0.153324381f}, std::array<float,2>{0.720098019f, 0.705728769f}, std::array<float,2>{0.25350818f, 0.342103004f}, std::array<float,2>{0.266317129f, 0.780126452f}, std::array<float,2>{0.735224724f, 0.159121901f}, std::array<float,2>{0.753603816f, 0.735865712f}, std::array<float,2>{0.0738992169f, 0.369481087f}, std::array<float,2>{0.169118911f, 0.582532465f}, std::array<float,2>{0.958129227f, 0.390887141f}, std::array<float,2>{0.614050388f, 0.921428859f}, std::array<float,2>{0.405298352f, 0.11658553f}, std::array<float,2>{0.475472569f, 0.670599759f}, std::array<float,2>{0.517257631f, 0.274051517f}, std::array<float,2>{0.932240844f, 0.822862327f}, std::array<float,2>{0.198268279f, 0.203748494f}, std::array<float,2>{0.038582202f, 0.999626875f}, std::array<float,2>{0.864306867f, 0.0366216116f}, std::array<float,2>{0.67597419f, 0.5505597f}, std::array<float,2>{0.362200797f, 0.462084442f}, std::array<float,2>{0.421696544f, 0.905002773f}, std::array<float,2>{0.582973599f, 0.0688713118f}, std::array<float,2>{0.974710345f, 0.597954929f}, std::array<float,2>{0.135652259f, 0.414920866f}, std::array<float,2>{0.0997019783f, 0.692708552f}, std::array<float,2>{0.795091927f, 0.326726049f}, std::array<float,2>{0.706018984f, 0.795464516f}, std::array<float,2>{0.304807216f, 0.13961038f}, std::array<float,2>{0.332154453f, 0.501135886f}, std::array<float,2>{0.650370955f, 0.487110287f}, std::array<float,2>{0.816813648f, 0.949175775f}, std::array<float,2>{0.03107691f, 0.0277459398f}, std::array<float,2>{0.241650641f, 0.872740507f}, std::array<float,2>{0.894360185f, 0.220289931f}, std::array<float,2>{0.561074138f, 0.635004699f}, std::array<float,2>{0.462684393f, 0.287791789f}, std::array<float,2>{0.385166287f, 0.813661218f}, std::array<float,2>{0.600306213f, 0.215120539f}, std::array<float,2>{0.939129293f, 0.660352647f}, std::array<float,2>{0.174964458f, 0.271774918f}, std::array<float,2>{0.079677701f, 0.559326053f}, std::array<float,2>{0.769017518f, 0.458432287f}, std::array<float,2>{0.722729623f, 0.98462224f}, std::array<float,2>{0.25498423f, 0.0408877321f}, std::array<float,2>{0.352071375f, 0.744479418f}, std::array<float,2>{0.662030637f, 0.367133349f}, std::array<float,2>{0.844870985f, 0.769865394f}, std::array<float,2>{0.0572891496f, 0.166793898f}, std::array<float,2>{0.204388052f, 0.913372159f}, std::array<float,2>{0.916046441f, 0.121429063f}, std::array<float,2>{0.511031687f, 0.58927083f}, std::array<float,2>{0.495406181f, 0.406005323f}, std::array<float,2>{0.292727143f, 0.939823389f}, std::array<float,2>{0.693194687f, 0.0164075848f}, std::array<float,2>{0.79840076f, 0.512606204f}, std::array<float,2>{0.112871788f, 0.498751044f}, std::array<float,2>{0.14214921f, 0.631417274f}, std::array<float,2>{0.998314798f, 0.292859733f}, std::array<float,2>{0.5704633f, 0.860888839f}, std::array<float,2>{0.436018497f, 0.230488658f}, std::array<float,2>{0.446371257f, 0.604897738f}, std::array<float,2>{0.537562013f, 0.40984571f}, std::array<float,2>{0.879062057f, 0.897481501f}, std::array<float,2>{0.229595885f, 0.0731116459f}, std::array<float,2>{0.00245260284f, 0.783008277f}, std::array<float,2>{0.842989862f, 0.125803888f}, std::array<float,2>{0.629507005f, 0.695364654f}, std::array<float,2>{0.321254075f, 0.312594324f}, std::array<float,2>{0.331091166f, 0.751369536f}, std::array<float,2>{0.655984044f, 0.184755132f}, std::array<float,2>{0.814400792f, 0.72180897f}, std::array<float,2>{0.0243893676f, 0.358800471f}, std::array<float,2>{0.236776382f, 0.56331706f}, std::array<float,2>{0.896623313f, 0.389131755f}, std::array<float,2>{0.558391333f, 0.935212851f}, std::array<float,2>{0.467212021f, 0.10599412f}, std::array<float,2>{0.414168358f, 0.677278101f}, std::array<float,2>{0.578388512f, 0.251892835f}, std::array<float,2>{0.971913517f, 0.832913697f}, std::array<float,2>{0.136899918f, 0.200246662f}, std::array<float,2>{0.0937905014f, 0.975885987f}, std::array<float,2>{0.790141106f, 0.0620838478f}, std::array<float,2>{0.70999068f, 0.540707171f}, std::array<float,2>{0.310608923f, 0.452982157f}, std::array<float,2>{0.468859166f, 0.884758294f}, std::array<float,2>{0.51960206f, 0.086885348f}, std::array<float,2>{0.935413539f, 0.616894484f}, std::array<float,2>{0.202210218f, 0.422077745f}, std::array<float,2>{0.032065697f, 0.714248776f}, std::array<float,2>{0.859482646f, 0.334664404f}, std::array<float,2>{0.674031436f, 0.797872245f}, std::array<float,2>{0.366434783f, 0.142699197f}, std::array<float,2>{0.272196025f, 0.526818514f}, std::array<float,2>{0.738382101f, 0.473998755f}, std::array<float,2>{0.755304039f, 0.95909673f}, std::array<float,2>{0.0777859911f, 0.00993445795f}, std::array<float,2>{0.16759029f, 0.851597369f}, std::array<float,2>{0.956695497f, 0.247885227f}, std::array<float,2>{0.612324059f, 0.649445653f}, std::array<float,2>{0.400300711f, 0.306858748f}, std::array<float,2>{0.453623444f, 0.804728508f}, std::array<float,2>{0.550431013f, 0.149986789f}, std::array<float,2>{0.90401727f, 0.708501101f}, std::array<float,2>{0.248431414f, 0.336491674f}, std::array<float,2>{0.01642498f, 0.620072603f}, std::array<float,2>{0.82277447f, 0.430844337f}, std::array<float,2>{0.645206213f, 0.876282573f}, std::array<float,2>{0.343141258f, 0.0798662975f}, std::array<float,2>{0.29854086f, 0.644632101f}, std::array<float,2>{0.711424947f, 0.296933413f}, std::array<float,2>{0.784605205f, 0.845829725f}, std::array<float,2>{0.102162659f, 0.236539587f}, std::array<float,2>{0.132231459f, 0.964532137f}, std::array<float,2>{0.977120757f, 0.00727838976f}, std::array<float,2>{0.588061273f, 0.521141052f}, std::array<float,2>{0.408523083f, 0.483073652f}, std::array<float,2>{0.373397648f, 0.923512638f}, std::array<float,2>{0.686956823f, 0.0974674523f}, std::array<float,2>{0.870212197f, 0.572742581f}, std::array<float,2>{0.0429662094f, 0.379040718f}, std::array<float,2>{0.188591883f, 0.727199793f}, std::array<float,2>{0.925655603f, 0.347195536f}, std::array<float,2>{0.527805388f, 0.759284914f}, std::array<float,2>{0.480457872f, 0.175316706f}, std::array<float,2>{0.390738815f, 0.538699269f}, std::array<float,2>{0.617688298f, 0.437649578f}, std::array<float,2>{0.964885652f, 0.981116116f}, std::array<float,2>{0.16208005f, 0.0488024466f}, std::array<float,2>{0.0661819279f, 0.838831186f}, std::array<float,2>{0.760979593f, 0.189595729f}, std::array<float,2>{0.745612323f, 0.685707629f}, std::array<float,2>{0.274605453f, 0.257938743f}, std::array<float,2>{0.258820266f, 0.867325425f}, std::array<float,2>{0.731953621f, 0.224690929f}, std::array<float,2>{0.77840817f, 0.640551269f}, std::array<float,2>{0.0906326622f, 0.281464934f}, std::array<float,2>{0.18335703f, 0.505947173f}, std::array<float,2>{0.951572895f, 0.490628242f}, std::array<float,2>{0.606576562f, 0.951866448f}, std::array<float,2>{0.376937419f, 0.0260633379f}, std::array<float,2>{0.491232127f, 0.690645516f}, std::array<float,2>{0.50507313f, 0.320843965f}, std::array<float,2>{0.907351851f, 0.791077197f}, std::array<float,2>{0.21825774f, 0.135973021f}, std::array<float,2>{0.0537401475f, 0.899170995f}, std::array<float,2>{0.854211152f, 0.0628786907f}, std::array<float,2>{0.670770288f, 0.596064389f}, std::array<float,2>{0.343888938f, 0.419398218f}, std::array<float,2>{0.424379975f, 0.993010879f}, std::array<float,2>{0.569305658f, 0.0325559527f}, std::array<float,2>{0.989095688f, 0.552240252f}, std::array<float,2>{0.15123105f, 0.468719184f}, std::array<float,2>{0.120799452f, 0.664149106f}, std::array<float,2>{0.806911588f, 0.278638482f}, std::array<float,2>{0.6985237f, 0.825019121f}, std::array<float,2>{0.283064425f, 0.209319457f}, std::array<float,2>{0.315728635f, 0.58047235f}, std::array<float,2>{0.638733566f, 0.396694273f}, std::array<float,2>{0.832118392f, 0.916514874f}, std::array<float,2>{0.010717757f, 0.112589367f}, std::array<float,2>{0.219363108f, 0.775865614f}, std::array<float,2>{0.886201084f, 0.163502589f}, std::array<float,2>{0.542461336f, 0.740642726f}, std::array<float,2>{0.443012416f, 0.373316258f}, std::array<float,2>{0.410952538f, 0.768401384f}, std::array<float,2>{0.590873539f, 0.171018869f}, std::array<float,2>{0.984011173f, 0.7483055f}, std::array<float,2>{0.126204133f, 0.359954745f}, std::array<float,2>{0.10580641f, 0.590038896f}, std::array<float,2>{0.787058711f, 0.401489705f}, std::array<float,2>{0.718747973f, 0.909661055f}, std::array<float,2>{0.304518372f, 0.117764205f}, std::array<float,2>{0.338632315f, 0.657897711f}, std::array<float,2>{0.641450167f, 0.266585529f}, std::array<float,2>{0.825757146f, 0.819252729f}, std::array<float,2>{0.0204297341f, 0.213188037f}, std::array<float,2>{0.242976218f, 0.991266072f}, std::array<float,2>{0.898566008f, 0.0467512086f}, std::array<float,2>{0.55360353f, 0.555582345f}, std::array<float,2>{0.460808277f, 0.453307241f}, std::array<float,2>{0.279417098f, 0.893297851f}, std::array<float,2>{0.748588741f, 0.0764652416f}, std::array<float,2>{0.763385236f, 0.608303905f}, std::array<float,2>{0.0702528507f, 0.412805021f}, std::array<float,2>{0.157828271f, 0.700048864f}, std::array<float,2>{0.964182615f, 0.318501115f}, std::array<float,2>{0.623446286f, 0.787798285f}, std::array<float,2>{0.396165967f, 0.129402325f}, std::array<float,2>{0.484100878f, 0.511129022f}, std::array<float,2>{0.525052607f, 0.492656559f}, std::array<float,2>{0.928357363f, 0.943841815f}, std::array<float,2>{0.193477303f, 0.0219933689f}, std::array<float,2>{0.0450383276f, 0.866586089f}, std::array<float,2>{0.87151593f, 0.228136092f}, std::array<float,2>{0.682058394f, 0.627296865f}, std::array<float,2>{0.367582768f, 0.296498388f}, std::array<float,2>{0.349575579f, 0.829743266f}, std::array<float,2>{0.665132165f, 0.197063819f}, std::array<float,2>{0.85900569f, 0.675135911f}, std::array<float,2>{0.0498030186f, 0.257644415f}, std::array<float,2>{0.211161941f, 0.544490337f}, std::array<float,2>{0.912474513f, 0.447012991f}, std::array<float,2>{0.501008213f, 0.969461381f}, std::array<float,2>{0.486297101f, 0.0549251214f}, std::array<float,2>{0.381224632f, 0.723808646f}, std::array<float,2>{0.604375184f, 0.355233878f}, std::array<float,2>{0.947720528f, 0.75430572f}, std::array<float,2>{0.186226368f, 0.18189612f}, std::array<float,2>{0.0861159861f, 0.930523217f}, std::array<float,2>{0.774699926f, 0.102315895f}, std::array<float,2>{0.728013277f, 0.5697335f}, std::array<float,2>{0.264903784f, 0.382885486f}, std::array<float,2>{0.441009641f, 0.955379725f}, std::array<float,2>{0.546068072f, 0.0124696046f}, std::array<float,2>{0.890602112f, 0.5287323f}, std::array<float,2>{0.222961128f, 0.470361143f}, std::array<float,2>{0.0145290224f, 0.65566802f}, std::array<float,2>{0.830931067f, 0.309309036f}, std::array<float,2>{0.633654118f, 0.85823518f}, std::array<float,2>{0.317947984f, 0.243339419f}, std::array<float,2>{0.286827087f, 0.613219738f}, std::array<float,2>{0.701650023f, 0.426751941f}, std::array<float,2>{0.810505509f, 0.887312233f}, std::array<float,2>{0.124618322f, 0.0898522958f}, std::array<float,2>{0.155143172f, 0.8043136f}, std::array<float,2>{0.984452009f, 0.147360146f}, std::array<float,2>{0.562974393f, 0.715665519f}, std::array<float,2>{0.428588927f, 0.328701377f}, std::array<float,2>{0.498728901f, 0.848170817f}, std::array<float,2>{0.514950335f, 0.238640308f}, std::array<float,2>{0.918747544f, 0.644062042f}, std::array<float,2>{0.209675908f, 0.302565873f}, std::array<float,2>{0.0596758984f, 0.516128182f}, std::array<float,2>{0.849956691f, 0.477876335f}, std::array<float,2>{0.660117924f, 0.965857685f}, std::array<float,2>{0.358293086f, 0.00307745743f}, std::array<float,2>{0.250031769f, 0.70396167f}, std::array<float,2>{0.721049547f, 0.340115905f}, std::array<float,2>{0.770854592f, 0.810065389f}, std::array<float,2>{0.0845821649f, 0.155269429f}, std::array<float,2>{0.178486004f, 0.880942345f}, std::array<float,2>{0.944434643f, 0.0834986046f}, std::array<float,2>{0.597481251f, 0.622595251f}, std::array<float,2>{0.390011489f, 0.434954703f}, std::array<float,2>{0.325695664f, 0.98043859f}, std::array<float,2>{0.627988279f, 0.0540323891f}, std::array<float,2>{0.837070644f, 0.533410728f}, std::array<float,2>{0.00416932767f, 0.444033563f}, std::array<float,2>{0.230611533f, 0.68244499f}, std::array<float,2>{0.875272274f, 0.262377739f}, std::array<float,2>{0.532279253f, 0.842511892f}, std::array<float,2>{0.451361597f, 0.193874225f}, std::array<float,2>{0.430104673f, 0.576975822f}, std::array<float,2>{0.577055097f, 0.376625657f}, std::array<float,2>{0.993995428f, 0.927345872f}, std::array<float,2>{0.146493554f, 0.100277506f}, std::array<float,2>{0.117137991f, 0.763813019f}, std::array<float,2>{0.804620028f, 0.177466363f}, std::array<float,2>{0.688520432f, 0.731415629f}, std::array<float,2>{0.296508819f, 0.350015998f}, std::array<float,2>{0.307262689f, 0.793879151f}, std::array<float,2>{0.704521954f, 0.137487531f}, std::array<float,2>{0.794797719f, 0.695219755f}, std::array<float,2>{0.0987502113f, 0.32534349f}, std::array<float,2>{0.134065747f, 0.601180017f}, std::array<float,2>{0.97390908f, 0.417953908f}, std::array<float,2>{0.584391415f, 0.903011382f}, std::array<float,2>{0.418707132f, 0.0666323826f}, std::array<float,2>{0.464107096f, 0.633359492f}, std::array<float,2>{0.560079336f, 0.286135703f}, std::array<float,2>{0.891550004f, 0.87378186f}, std::array<float,2>{0.23939772f, 0.221949905f}, std::array<float,2>{0.0292278156f, 0.945623279f}, std::array<float,2>{0.819418132f, 0.0298630241f}, std::array<float,2>{0.65211302f, 0.503237128f}, std::array<float,2>{0.334234506f, 0.485687405f}, std::array<float,2>{0.402351588f, 0.918415904f}, std::array<float,2>{0.617109716f, 0.11345385f}, std::array<float,2>{0.960117519f, 0.585812807f}, std::array<float,2>{0.170922056f, 0.393364429f}, std::array<float,2>{0.0707706213f, 0.737270832f}, std::array<float,2>{0.751389563f, 0.367467761f}, std::array<float,2>{0.738068342f, 0.77865082f}, std::array<float,2>{0.269298732f, 0.156592742f}, std::array<float,2>{0.360130519f, 0.547446966f}, std::array<float,2>{0.678911984f, 0.46421814f}, std::array<float,2>{0.865611196f, 0.996984363f}, std::array<float,2>{0.0368964076f, 0.0378252566f}, std::array<float,2>{0.196368814f, 0.820683241f}, std::array<float,2>{0.930782318f, 0.206229985f}, std::array<float,2>{0.51775825f, 0.669364512f}, std::array<float,2>{0.47455129f, 0.276589364f}, std::array<float,2>{0.398948282f, 0.855033755f}, std::array<float,2>{0.611934781f, 0.249025166f}, std::array<float,2>{0.955199063f, 0.650580585f}, std::array<float,2>{0.166662425f, 0.305927694f}, std::array<float,2>{0.0770287588f, 0.525291145f}, std::array<float,2>{0.754369318f, 0.476544231f}, std::array<float,2>{0.739915609f, 0.95723331f}, std::array<float,2>{0.273107976f, 0.00892534014f}, std::array<float,2>{0.365698129f, 0.712466598f}, std::array<float,2>{0.674975574f, 0.333983272f}, std::array<float,2>{0.860525012f, 0.799517572f}, std::array<float,2>{0.0323596746f, 0.141856179f}, std::array<float,2>{0.201911986f, 0.884906828f}, std::array<float,2>{0.934107304f, 0.0897863209f}, std::array<float,2>{0.521068633f, 0.614954174f}, std::array<float,2>{0.469775915f, 0.42411238f}, std::array<float,2>{0.312205225f, 0.973005772f}, std::array<float,2>{0.709163547f, 0.0590748787f}, std::array<float,2>{0.789875269f, 0.542158306f}, std::array<float,2>{0.0948834866f, 0.451120675f}, std::array<float,2>{0.138196945f, 0.677782834f}, std::array<float,2>{0.970748782f, 0.253476232f}, std::array<float,2>{0.579330623f, 0.834783316f}, std::array<float,2>{0.415571928f, 0.202012554f}, std::array<float,2>{0.467798531f, 0.564701259f}, std::array<float,2>{0.556988537f, 0.387736738f}, std::array<float,2>{0.897583365f, 0.937430024f}, std::array<float,2>{0.2374219f, 0.10907083f}, std::array<float,2>{0.0251401775f, 0.752659261f}, std::array<float,2>{0.812536776f, 0.186527371f}, std::array<float,2>{0.654566288f, 0.719652474f}, std::array<float,2>{0.330572009f, 0.357119799f}, std::array<float,2>{0.321822822f, 0.783744216f}, std::array<float,2>{0.629950404f, 0.12748605f}, std::array<float,2>{0.842705131f, 0.697947264f}, std::array<float,2>{0.00317999674f, 0.314698637f}, std::array<float,2>{0.229391798f, 0.602913082f}, std::array<float,2>{0.880471647f, 0.40661037f}, std::array<float,2>{0.53897351f, 0.894581854f}, std::array<float,2>{0.44600752f, 0.070961453f}, std::array<float,2>{0.437035769f, 0.629324079f}, std::array<float,2>{0.571874022f, 0.290103137f}, std::array<float,2>{0.999075472f, 0.861589611f}, std::array<float,2>{0.140857831f, 0.233087167f}, std::array<float,2>{0.111783579f, 0.938701749f}, std::array<float,2>{0.796927869f, 0.0178311877f}, std::array<float,2>{0.691585481f, 0.513702512f}, std::array<float,2>{0.29170537f, 0.497902811f}, std::array<float,2>{0.494573742f, 0.91179651f}, std::array<float,2>{0.510733485f, 0.124448173f}, std::array<float,2>{0.917477965f, 0.587459505f}, std::array<float,2>{0.203476712f, 0.403808117f}, std::array<float,2>{0.0581548922f, 0.742411077f}, std::array<float,2>{0.844007075f, 0.36434117f}, std::array<float,2>{0.661031842f, 0.772674263f}, std::array<float,2>{0.352850527f, 0.16570577f}, std::array<float,2>{0.25469923f, 0.56161654f}, std::array<float,2>{0.724502444f, 0.459131628f}, std::array<float,2>{0.768128514f, 0.987408936f}, std::array<float,2>{0.0786182508f, 0.042538695f}, std::array<float,2>{0.174400732f, 0.81499958f}, std::array<float,2>{0.937602043f, 0.216939852f}, std::array<float,2>{0.601357698f, 0.662430525f}, std::array<float,2>{0.386427879f, 0.270546675f}, std::array<float,2>{0.44221431f, 0.774848342f}, std::array<float,2>{0.541956425f, 0.161365375f}, std::array<float,2>{0.885713816f, 0.739838183f}, std::array<float,2>{0.220216021f, 0.371566772f}, std::array<float,2>{0.0113577163f, 0.579187453f}, std::array<float,2>{0.833759665f, 0.39633128f}, std::array<float,2>{0.640606403f, 0.91484046f}, std::array<float,2>{0.314939737f, 0.109675363f}, std::array<float,2>{0.282116055f, 0.667621076f}, std::array<float,2>{0.698000491f, 0.280542552f}, std::array<float,2>{0.807942271f, 0.826490819f}, std::array<float,2>{0.119642474f, 0.207425669f}, std::array<float,2>{0.152249902f, 0.994685411f}, std::array<float,2>{0.989306688f, 0.0334448777f}, std::array<float,2>{0.569723189f, 0.55379194f}, std::array<float,2>{0.425632894f, 0.465749502f}, std::array<float,2>{0.345451683f, 0.901646316f}, std::array<float,2>{0.671708703f, 0.066326119f}, std::array<float,2>{0.855012715f, 0.594924629f}, std::array<float,2>{0.0535083003f, 0.420423329f}, std::array<float,2>{0.217717737f, 0.688036799f}, std::array<float,2>{0.90665108f, 0.322370887f}, std::array<float,2>{0.504778624f, 0.789231896f}, std::array<float,2>{0.490353525f, 0.134091228f}, std::array<float,2>{0.375040025f, 0.504584014f}, std::array<float,2>{0.605990469f, 0.489888459f}, std::array<float,2>{0.952682555f, 0.949933827f}, std::array<float,2>{0.181979612f, 0.0243427493f}, std::array<float,2>{0.0909060687f, 0.869813085f}, std::array<float,2>{0.777542949f, 0.223359317f}, std::array<float,2>{0.73104763f, 0.63838762f}, std::array<float,2>{0.258128017f, 0.283724785f}, std::array<float,2>{0.274096072f, 0.837011337f}, std::array<float,2>{0.744173467f, 0.187527746f}, std::array<float,2>{0.760019183f, 0.68401885f}, std::array<float,2>{0.0649147555f, 0.260560542f}, std::array<float,2>{0.160218582f, 0.535777509f}, std::array<float,2>{0.966464043f, 0.440680504f}, std::array<float,2>{0.61910969f, 0.982960284f}, std::array<float,2>{0.39188236f, 0.050488852f}, std::array<float,2>{0.478875816f, 0.729738832f}, std::array<float,2>{0.52879113f, 0.344057858f}, std::array<float,2>{0.923885405f, 0.760333717f}, std::array<float,2>{0.187802628f, 0.172606781f}, std::array<float,2>{0.0410389006f, 0.924528897f}, std::array<float,2>{0.869750798f, 0.0940210298f}, std::array<float,2>{0.685667694f, 0.57139653f}, std::array<float,2>{0.374745488f, 0.381558597f}, std::array<float,2>{0.410062134f, 0.962168872f}, std::array<float,2>{0.589743555f, 0.00572682824f}, std::array<float,2>{0.977992535f, 0.523436487f}, std::array<float,2>{0.131500259f, 0.481979489f}, std::array<float,2>{0.103148252f, 0.647278666f}, std::array<float,2>{0.783618033f, 0.299844533f}, std::array<float,2>{0.712582707f, 0.843854547f}, std::array<float,2>{0.296922088f, 0.236224279f}, std::array<float,2>{0.342378229f, 0.618726552f}, std::array<float,2>{0.645941436f, 0.432489932f}, std::array<float,2>{0.823313594f, 0.877453864f}, std::array<float,2>{0.0173686706f, 0.0818014145f}, std::array<float,2>{0.249624446f, 0.806668818f}, std::array<float,2>{0.902849019f, 0.152108461f}, std::array<float,2>{0.549048305f, 0.70929569f}, std::array<float,2>{0.454639465f, 0.339140534f}, std::array<float,2>{0.42912516f, 0.801063716f}, std::array<float,2>{0.563814461f, 0.146388888f}, std::array<float,2>{0.985840976f, 0.716887712f}, std::array<float,2>{0.155464828f, 0.3313196f}, std::array<float,2>{0.123882234f, 0.610855937f}, std::array<float,2>{0.808654845f, 0.427805841f}, std::array<float,2>{0.702697098f, 0.890408516f}, std::array<float,2>{0.285220832f, 0.09329734f}, std::array<float,2>{0.317285687f, 0.653652966f}, std::array<float,2>{0.634557784f, 0.312301666f}, std::array<float,2>{0.83149749f, 0.856558263f}, std::array<float,2>{0.0154928565f, 0.245782569f}, std::array<float,2>{0.224191844f, 0.954196751f}, std::array<float,2>{0.888774812f, 0.0143245216f}, std::array<float,2>{0.545466065f, 0.531011105f}, std::array<float,2>{0.439819723f, 0.470890433f}, std::array<float,2>{0.263966531f, 0.932807624f}, std::array<float,2>{0.727528334f, 0.105378129f}, std::array<float,2>{0.773457885f, 0.567871511f}, std::array<float,2>{0.0870598927f, 0.386498123f}, std::array<float,2>{0.186593592f, 0.726530492f}, std::array<float,2>{0.94903636f, 0.353037119f}, std::array<float,2>{0.604708314f, 0.757485092f}, std::array<float,2>{0.381964326f, 0.181407616f}, std::array<float,2>{0.484585881f, 0.545991004f}, std::array<float,2>{0.500098467f, 0.448050976f}, std::array<float,2>{0.913683712f, 0.971158326f}, std::array<float,2>{0.211951882f, 0.0568984151f}, std::array<float,2>{0.0501320027f, 0.831584394f}, std::array<float,2>{0.858241379f, 0.198741063f}, std::array<float,2>{0.664638877f, 0.67319864f}, std::array<float,2>{0.347779363f, 0.254987419f}, std::array<float,2>{0.368218392f, 0.864421785f}, std::array<float,2>{0.683120131f, 0.229842037f}, std::array<float,2>{0.872693121f, 0.625638247f}, std::array<float,2>{0.0461226925f, 0.294298768f}, std::array<float,2>{0.194862574f, 0.509305835f}, std::array<float,2>{0.92893523f, 0.494850457f}, std::array<float,2>{0.52431792f, 0.942364395f}, std::array<float,2>{0.482455969f, 0.02038729f}, std::array<float,2>{0.394942492f, 0.702849805f}, std::array<float,2>{0.624037087f, 0.318081051f}, std::array<float,2>{0.963323236f, 0.786501408f}, std::array<float,2>{0.157180652f, 0.131811529f}, std::array<float,2>{0.0689287633f, 0.892265499f}, std::array<float,2>{0.761780143f, 0.0749478042f}, std::array<float,2>{0.749609947f, 0.606668532f}, std::array<float,2>{0.280866355f, 0.410697252f}, std::array<float,2>{0.459952712f, 0.989005268f}, std::array<float,2>{0.553952932f, 0.0447551422f}, std::array<float,2>{0.90007174f, 0.556738436f}, std::array<float,2>{0.243676975f, 0.456534535f}, std::array<float,2>{0.021371549f, 0.658802152f}, std::array<float,2>{0.824891925f, 0.269306481f}, std::array<float,2>{0.64180088f, 0.817753017f}, std::array<float,2>{0.33911401f, 0.212677523f}, std::array<float,2>{0.303587198f, 0.592572093f}, std::array<float,2>{0.717395604f, 0.399499327f}, std::array<float,2>{0.785680294f, 0.907693624f}, std::array<float,2>{0.106631555f, 0.120570637f}, std::array<float,2>{0.125516981f, 0.766848266f}, std::array<float,2>{0.982650518f, 0.169343099f}, std::array<float,2>{0.590725005f, 0.747525632f}, std::array<float,2>{0.411724061f, 0.362195075f}, std::array<float,2>{0.473109007f, 0.82343328f}, std::array<float,2>{0.519161403f, 0.204298675f}, std::array<float,2>{0.930443168f, 0.671683371f}, std::array<float,2>{0.195952684f, 0.274422497f}, std::array<float,2>{0.0355343372f, 0.549257159f}, std::array<float,2>{0.866263509f, 0.461611658f}, std::array<float,2>{0.678223252f, 0.998232305f}, std::array<float,2>{0.360390961f, 0.0356768519f}, std::array<float,2>{0.268091679f, 0.735035717f}, std::array<float,2>{0.736918271f, 0.371001244f}, std::array<float,2>{0.750180781f, 0.781143248f}, std::array<float,2>{0.0717041641f, 0.16009374f}, std::array<float,2>{0.170890912f, 0.920302987f}, std::array<float,2>{0.959850013f, 0.11619892f}, std::array<float,2>{0.615725994f, 0.583529711f}, std::array<float,2>{0.40415293f, 0.39213562f}, std::array<float,2>{0.335785598f, 0.947508991f}, std::array<float,2>{0.651148498f, 0.0283562578f}, std::array<float,2>{0.818636715f, 0.500138581f}, std::array<float,2>{0.0274496563f, 0.487519115f}, std::array<float,2>{0.238595814f, 0.636713684f}, std::array<float,2>{0.892571867f, 0.28902927f}, std::array<float,2>{0.55935055f, 0.871654809f}, std::array<float,2>{0.463140607f, 0.219659358f}, std::array<float,2>{0.419158876f, 0.598677456f}, std::array<float,2>{0.585392416f, 0.415185541f}, std::array<float,2>{0.972848356f, 0.905853391f}, std::array<float,2>{0.133521497f, 0.0694709122f}, std::array<float,2>{0.0984888077f, 0.796401143f}, std::array<float,2>{0.793411314f, 0.13997671f}, std::array<float,2>{0.703439236f, 0.691682577f}, std::array<float,2>{0.307904959f, 0.327176929f}, std::array<float,2>{0.295809507f, 0.762160599f}, std::array<float,2>{0.68804729f, 0.179402307f}, std::array<float,2>{0.80295217f, 0.733283341f}, std::array<float,2>{0.115533948f, 0.348319978f}, std::array<float,2>{0.148034051f, 0.575607896f}, std::array<float,2>{0.992724776f, 0.377903014f}, std::array<float,2>{0.578052819f, 0.928565502f}, std::array<float,2>{0.431175113f, 0.0979187116f}, std::array<float,2>{0.452838928f, 0.680455446f}, std::array<float,2>{0.531693876f, 0.263763905f}, std::array<float,2>{0.876799762f, 0.840220094f}, std::array<float,2>{0.231528431f, 0.192118675f}, std::array<float,2>{0.00568123441f, 0.977223337f}, std::array<float,2>{0.836568177f, 0.0507828705f}, std::array<float,2>{0.627322912f, 0.532425642f}, std::array<float,2>{0.324389726f, 0.442122877f}, std::array<float,2>{0.389511406f, 0.879236102f}, std::array<float,2>{0.596421719f, 0.0852827579f}, std::array<float,2>{0.944006562f, 0.624709487f}, std::array<float,2>{0.178862706f, 0.436172992f}, std::array<float,2>{0.0852004588f, 0.706918001f}, std::array<float,2>{0.769671261f, 0.34366709f}, std::array<float,2>{0.721939266f, 0.81197226f}, std::array<float,2>{0.251512945f, 0.15243268f}, std::array<float,2>{0.358500719f, 0.518147171f}, std::array<float,2>{0.658566713f, 0.478964329f}, std::array<float,2>{0.85084188f, 0.967176199f}, std::array<float,2>{0.0595397502f, 0.00134706427f}, std::array<float,2>{0.209995806f, 0.849865079f}, std::array<float,2>{0.919130743f, 0.242157295f}, std::array<float,2>{0.513985872f, 0.641785324f}, std::array<float,2>{0.499516636f, 0.303754091f}, std::array<float,2>{0.417568773f, 0.833139956f}, std::array<float,2>{0.580828488f, 0.199865863f}, std::array<float,2>{0.970460355f, 0.676294506f}, std::array<float,2>{0.139077231f, 0.250479549f}, std::array<float,2>{0.0969912112f, 0.539368391f}, std::array<float,2>{0.791796029f, 0.451411813f}, std::array<float,2>{0.707693577f, 0.975185156f}, std::array<float,2>{0.309944838f, 0.0613415837f}, std::array<float,2>{0.329086572f, 0.72137624f}, std::array<float,2>{0.65374583f, 0.358317077f}, std::array<float,2>{0.815947354f, 0.750408351f}, std::array<float,2>{0.0258051325f, 0.184161022f}, std::array<float,2>{0.235350817f, 0.933662176f}, std::array<float,2>{0.894858837f, 0.107271805f}, std::array<float,2>{0.555897593f, 0.564082265f}, std::array<float,2>{0.465948015f, 0.390283883f}, std::array<float,2>{0.271449417f, 0.960149169f}, std::array<float,2>{0.741799772f, 0.0114228241f}, std::array<float,2>{0.757059216f, 0.526248574f}, std::array<float,2>{0.0760218278f, 0.472941637f}, std::array<float,2>{0.164414346f, 0.6492818f}, std::array<float,2>{0.953715682f, 0.308273464f}, std::array<float,2>{0.610383034f, 0.852672696f}, std::array<float,2>{0.401640654f, 0.246137783f}, std::array<float,2>{0.471585006f, 0.616130769f}, std::array<float,2>{0.523193538f, 0.423130244f}, std::array<float,2>{0.936822236f, 0.882912755f}, std::array<float,2>{0.200537592f, 0.0872243568f}, std::array<float,2>{0.0341355726f, 0.79712975f}, std::array<float,2>{0.862132668f, 0.143896654f}, std::array<float,2>{0.672424078f, 0.713332057f}, std::array<float,2>{0.364252985f, 0.335441262f}, std::array<float,2>{0.355139524f, 0.771211445f}, std::array<float,2>{0.663551986f, 0.167801484f}, std::array<float,2>{0.846771598f, 0.745537341f}, std::array<float,2>{0.0552212894f, 0.365847826f}, std::array<float,2>{0.206353486f, 0.588581324f}, std::array<float,2>{0.914818943f, 0.40501371f}, std::array<float,2>{0.507888794f, 0.912259161f}, std::array<float,2>{0.493932992f, 0.122521043f}, std::array<float,2>{0.383865207f, 0.661813021f}, std::array<float,2>{0.599466443f, 0.272614956f}, std::array<float,2>{0.940834224f, 0.812574625f}, std::array<float,2>{0.17321527f, 0.216541573f}, std::array<float,2>{0.0812852681f, 0.985512555f}, std::array<float,2>{0.766297877f, 0.0399381109f}, std::array<float,2>{0.725984275f, 0.559699476f}, std::array<float,2>{0.255871505f, 0.457853258f}, std::array<float,2>{0.448604137f, 0.896610379f}, std::array<float,2>{0.537092388f, 0.0733457804f}, std::array<float,2>{0.882657826f, 0.603625834f}, std::array<float,2>{0.228176236f, 0.408614427f}, std::array<float,2>{0.00130258664f, 0.696547866f}, std::array<float,2>{0.841375291f, 0.313951105f}, std::array<float,2>{0.630892813f, 0.781744301f}, std::array<float,2>{0.32411167f, 0.126381636f}, std::array<float,2>{0.290658146f, 0.51349777f}, std::array<float,2>{0.694948137f, 0.499703646f}, std::array<float,2>{0.799046814f, 0.941207767f}, std::array<float,2>{0.111126222f, 0.0174720604f}, std::array<float,2>{0.143812016f, 0.85974735f}, std::array<float,2>{0.997380018f, 0.232060879f}, std::array<float,2>{0.572434306f, 0.631971896f}, std::array<float,2>{0.434261739f, 0.291301101f}, std::array<float,2>{0.488445371f, 0.792529583f}, std::array<float,2>{0.506618977f, 0.135225788f}, std::array<float,2>{0.909687817f, 0.690203905f}, std::array<float,2>{0.21572943f, 0.321304768f}, std::array<float,2>{0.0514055677f, 0.597187161f}, std::array<float,2>{0.853117168f, 0.418791205f}, std::array<float,2>{0.669902146f, 0.899693489f}, std::array<float,2>{0.34589991f, 0.0635732785f}, std::array<float,2>{0.25984633f, 0.639278471f}, std::array<float,2>{0.733376324f, 0.283028603f}, std::array<float,2>{0.779304266f, 0.869059503f}, std::array<float,2>{0.0923987478f, 0.226494536f}, std::array<float,2>{0.180507809f, 0.953031182f}, std::array<float,2>{0.950934291f, 0.0264862943f}, std::array<float,2>{0.609125495f, 0.507335544f}, std::array<float,2>{0.378569365f, 0.491830647f}, std::array<float,2>{0.313349128f, 0.917873144f}, std::array<float,2>{0.636813343f, 0.111639388f}, std::array<float,2>{0.834525049f, 0.581956029f}, std::array<float,2>{0.0089543378f, 0.39761135f}, std::array<float,2>{0.222018734f, 0.741765559f}, std::array<float,2>{0.884742975f, 0.374852568f}, std::array<float,2>{0.540486455f, 0.776638269f}, std::array<float,2>{0.444605052f, 0.162785769f}, std::array<float,2>{0.422350019f, 0.551062107f}, std::array<float,2>{0.568338156f, 0.467619002f}, std::array<float,2>{0.99119848f, 0.993662238f}, std::array<float,2>{0.149389356f, 0.0314262807f}, std::array<float,2>{0.117746949f, 0.825339615f}, std::array<float,2>{0.805330455f, 0.210350454f}, std::array<float,2>{0.696243107f, 0.66589421f}, std::array<float,2>{0.284517199f, 0.27824834f}, std::array<float,2>{0.300039172f, 0.847056627f}, std::array<float,2>{0.714727879f, 0.238243565f}, std::array<float,2>{0.782840431f, 0.646002769f}, std::array<float,2>{0.104294091f, 0.298124999f}, std::array<float,2>{0.130171269f, 0.519610345f}, std::array<float,2>{0.979030788f, 0.483639985f}, std::array<float,2>{0.587014198f, 0.963846266f}, std::array<float,2>{0.407575607f, 0.00626713922f}, std::array<float,2>{0.456422418f, 0.70706749f}, std::array<float,2>{0.547931552f, 0.337802619f}, std::array<float,2>{0.905697703f, 0.806093395f}, std::array<float,2>{0.248029381f, 0.149106786f}, std::array<float,2>{0.0190595593f, 0.875291407f}, std::array<float,2>{0.821269572f, 0.0790501535f}, std::array<float,2>{0.647680163f, 0.62105906f}, std::array<float,2>{0.341414183f, 0.429931015f}, std::array<float,2>{0.394420922f, 0.982172489f}, std::array<float,2>{0.619151473f, 0.0472220443f}, std::array<float,2>{0.968529224f, 0.537393272f}, std::array<float,2>{0.162581339f, 0.439017802f}, std::array<float,2>{0.0627167076f, 0.687307477f}, std::array<float,2>{0.758537292f, 0.259755731f}, std::array<float,2>{0.743335366f, 0.839312494f}, std::array<float,2>{0.276584446f, 0.190504357f}, std::array<float,2>{0.372113019f, 0.573987842f}, std::array<float,2>{0.684902549f, 0.379902393f}, std::array<float,2>{0.868534207f, 0.922472656f}, std::array<float,2>{0.0404684357f, 0.0964252949f}, std::array<float,2>{0.190643772f, 0.757923961f}, std::array<float,2>{0.922960699f, 0.173900634f}, std::array<float,2>{0.530578554f, 0.728486776f}, std::array<float,2>{0.477538109f, 0.346610606f}, std::array<float,2>{0.379352778f, 0.755673587f}, std::array<float,2>{0.602239609f, 0.183388963f}, std::array<float,2>{0.947222173f, 0.723214924f}, std::array<float,2>{0.18387866f, 0.353798866f}, std::array<float,2>{0.0882273838f, 0.568683386f}, std::array<float,2>{0.776317716f, 0.383957446f}, std::array<float,2>{0.728612125f, 0.931393445f}, std::array<float,2>{0.262514174f, 0.103030786f}, std::array<float,2>{0.351499528f, 0.674268961f}, std::array<float,2>{0.667818069f, 0.255909622f}, std::array<float,2>{0.856256843f, 0.828385115f}, std::array<float,2>{0.04712734f, 0.195537314f}, std::array<float,2>{0.214315861f, 0.969863653f}, std::array<float,2>{0.911918581f, 0.0559158921f}, std::array<float,2>{0.502443373f, 0.543173671f}, std::array<float,2>{0.486959279f, 0.445887387f}, std::array<float,2>{0.287578642f, 0.887789667f}, std::array<float,2>{0.699478507f, 0.0909899324f}, std::array<float,2>{0.810788155f, 0.611488223f}, std::array<float,2>{0.121636696f, 0.427085042f}, std::array<float,2>{0.153897583f, 0.716065168f}, std::array<float,2>{0.987871945f, 0.32990396f}, std::array<float,2>{0.566285729f, 0.803172886f}, std::array<float,2>{0.42633006f, 0.148198888f}, std::array<float,2>{0.438127369f, 0.528185129f}, std::array<float,2>{0.544405639f, 0.469536424f}, std::array<float,2>{0.887698889f, 0.956947803f}, std::array<float,2>{0.22630173f, 0.0132665047f}, std::array<float,2>{0.0132395541f, 0.858768344f}, std::array<float,2>{0.829919398f, 0.242396116f}, std::array<float,2>{0.6359272f, 0.65456003f}, std::array<float,2>{0.319956869f, 0.309654057f}, std::array<float,2>{0.336167246f, 0.819654286f}, std::array<float,2>{0.644477665f, 0.214276865f}, std::array<float,2>{0.827743888f, 0.657167435f}, std::array<float,2>{0.0219235774f, 0.267023623f}, std::array<float,2>{0.24508287f, 0.555875778f}, std::array<float,2>{0.90098083f, 0.454327583f}, std::array<float,2>{0.5525617f, 0.990450084f}, std::array<float,2>{0.45796454f, 0.0450804234f}, std::array<float,2>{0.413069665f, 0.749570429f}, std::array<float,2>{0.593220294f, 0.360579461f}, std::array<float,2>{0.981055915f, 0.769072711f}, std::array<float,2>{0.128164127f, 0.170073733f}, std::array<float,2>{0.107933886f, 0.90838486f}, std::array<float,2>{0.788773835f, 0.119043991f}, std::array<float,2>{0.715599477f, 0.591663063f}, std::array<float,2>{0.301826984f, 0.400506973f}, std::array<float,2>{0.481981456f, 0.944431484f}, std::array<float,2>{0.527310431f, 0.0229677428f}, std::array<float,2>{0.926250577f, 0.510657847f}, std::array<float,2>{0.193048418f, 0.493914336f}, std::array<float,2>{0.0448804051f, 0.628578722f}, std::array<float,2>{0.874630451f, 0.295120925f}, std::array<float,2>{0.681318581f, 0.865495741f}, std::array<float,2>{0.369242191f, 0.227211401f}, std::array<float,2>{0.278449893f, 0.608460903f}, std::array<float,2>{0.747036338f, 0.413692564f}, std::array<float,2>{0.764108956f, 0.893739045f}, std::array<float,2>{0.0673556626f, 0.0780302286f}, std::array<float,2>{0.15865007f, 0.788824856f}, std::array<float,2>{0.961397231f, 0.13033019f}, std::array<float,2>{0.621894836f, 0.7010656f}, std::array<float,2>{0.397551209f, 0.319501787f}, std::array<float,2>{0.461590141f, 0.874398947f}, std::array<float,2>{0.562374532f, 0.221066758f}, std::array<float,2>{0.892933846f, 0.634490252f}, std::array<float,2>{0.240839899f, 0.285744607f}, std::array<float,2>{0.0300006699f, 0.50273174f}, std::array<float,2>{0.818049133f, 0.484770238f}, std::array<float,2>{0.649331391f, 0.947219431f}, std::array<float,2>{0.333305568f, 0.0303160623f}, std::array<float,2>{0.305882454f, 0.694013178f}, std::array<float,2>{0.706594169f, 0.324304253f}, std::array<float,2>{0.796379924f, 0.794761002f}, std::array<float,2>{0.101412095f, 0.138547391f}, std::array<float,2>{0.136530921f, 0.903963566f}, std::array<float,2>{0.976195693f, 0.0675817057f}, std::array<float,2>{0.58302784f, 0.600570738f}, std::array<float,2>{0.420343816f, 0.416980505f}, std::array<float,2>{0.362924755f, 0.997407317f}, std::array<float,2>{0.676855505f, 0.0381727628f}, std::array<float,2>{0.863423228f, 0.5481444f}, std::array<float,2>{0.0372209065f, 0.463565648f}, std::array<float,2>{0.197356254f, 0.668095112f}, std::array<float,2>{0.933237731f, 0.275512367f}, std::array<float,2>{0.515832007f, 0.821897924f}, std::array<float,2>{0.4762806f, 0.205232218f}, std::array<float,2>{0.404782087f, 0.584562361f}, std::array<float,2>{0.614943743f, 0.393989712f}, std::array<float,2>{0.957768679f, 0.919537306f}, std::array<float,2>{0.167992607f, 0.115189508f}, std::array<float,2>{0.0732236058f, 0.778184652f}, std::array<float,2>{0.752029479f, 0.157649606f}, std::array<float,2>{0.735848129f, 0.73737973f}, std::array<float,2>{0.266863078f, 0.368311882f}, std::array<float,2>{0.252587199f, 0.808692575f}, std::array<float,2>{0.719420075f, 0.155342937f}, std::array<float,2>{0.771606207f, 0.705016136f}, std::array<float,2>{0.0820452869f, 0.341472775f}, std::array<float,2>{0.175798655f, 0.621390045f}, std::array<float,2>{0.942923725f, 0.434277147f}, std::array<float,2>{0.594114482f, 0.88218528f}, std::array<float,2>{0.388018787f, 0.0829027966f}, std::array<float,2>{0.497853786f, 0.642679453f}, std::array<float,2>{0.513165355f, 0.301560014f}, std::array<float,2>{0.921655297f, 0.849584103f}, std::array<float,2>{0.20856522f, 0.23983252f}, std::array<float,2>{0.0610159673f, 0.965371072f}, std::array<float,2>{0.849409044f, 0.00257579167f}, std::array<float,2>{0.657726884f, 0.517558098f}, std::array<float,2>{0.356853217f, 0.477093786f}, std::array<float,2>{0.433052033f, 0.92609024f}, std::array<float,2>{0.575537324f, 0.100950196f}, std::array<float,2>{0.995535433f, 0.577787519f}, std::array<float,2>{0.145963982f, 0.375014901f}, std::array<float,2>{0.114807032f, 0.731453419f}, std::array<float,2>{0.800947964f, 0.350732684f}, std::array<float,2>{0.690980375f, 0.76500982f}, std::array<float,2>{0.2942518f, 0.176238477f}, std::array<float,2>{0.327413738f, 0.534912944f}, std::array<float,2>{0.626797855f, 0.445222437f}, std::array<float,2>{0.839492857f, 0.978855133f}, std::array<float,2>{0.00586049212f, 0.0533290841f}, std::array<float,2>{0.234214112f, 0.843461931f}, std::array<float,2>{0.878363609f, 0.194602385f}, std::array<float,2>{0.534135818f, 0.682679534f}, std::array<float,2>{0.449750692f, 0.262750655f}, std::array<float,2>{0.426845312f, 0.856715441f}, std::array<float,2>{0.565141618f, 0.246032476f}, std::array<float,2>{0.987115204f, 0.653375983f}, std::array<float,2>{0.153090373f, 0.31219551f}, std::array<float,2>{0.122458376f, 0.530915439f}, std::array<float,2>{0.812412858f, 0.471046418f}, std::array<float,2>{0.700404227f, 0.954437673f}, std::array<float,2>{0.288721323f, 0.0146147516f}, std::array<float,2>{0.319081455f, 0.717280805f}, std::array<float,2>{0.63536799f, 0.331158787f}, std::array<float,2>{0.828975797f, 0.800969243f}, std::array<float,2>{0.0118858591f, 0.14618884f}, std::array<float,2>{0.225152448f, 0.890350521f}, std::array<float,2>{0.887029946f, 0.0935789272f}, std::array<float,2>{0.543547988f, 0.611137211f}, std::array<float,2>{0.439280242f, 0.428020447f}, std::array<float,2>{0.263127506f, 0.970886528f}, std::array<float,2>{0.729802191f, 0.0568394996f}, std::array<float,2>{0.77659291f, 0.546328962f}, std::array<float,2>{0.0897878036f, 0.447755903f}, std::array<float,2>{0.184800386f, 0.673093855f}, std::array<float,2>{0.945766866f, 0.255351365f}, std::array<float,2>{0.603450239f, 0.831788361f}, std::array<float,2>{0.380246818f, 0.199046746f}, std::array<float,2>{0.487917036f, 0.568196833f}, std::array<float,2>{0.503869772f, 0.386365503f}, std::array<float,2>{0.910444677f, 0.932997882f}, std::array<float,2>{0.213517442f, 0.105165742f}, std::array<float,2>{0.048132617f, 0.757668972f}, std::array<float,2>{0.857145607f, 0.181211457f}, std::array<float,2>{0.666238725f, 0.726159275f}, std::array<float,2>{0.350012332f, 0.353351712f}, std::array<float,2>{0.370166093f, 0.786136389f}, std::array<float,2>{0.680421233f, 0.131427601f}, std::array<float,2>{0.873317778f, 0.702898562f}, std::array<float,2>{0.043098297f, 0.318182319f}, std::array<float,2>{0.191489562f, 0.606910765f}, std::array<float,2>{0.927615941f, 0.411125571f}, std::array<float,2>{0.526193678f, 0.892546535f}, std::array<float,2>{0.480732024f, 0.0750040412f}, std::array<float,2>{0.396585763f, 0.625815392f}, std::array<float,2>{0.622733474f, 0.2940301f}, std::array<float,2>{0.962753177f, 0.864662826f}, std::array<float,2>{0.159886286f, 0.229638025f}, std::array<float,2>{0.0677131414f, 0.942115307f}, std::array<float,2>{0.765473247f, 0.0201748051f}, std::array<float,2>{0.747648358f, 0.509741604f}, std::array<float,2>{0.277706653f, 0.495091707f}, std::array<float,2>{0.458060443f, 0.907318354f}, std::array<float,2>{0.551315904f, 0.120157026f}, std::array<float,2>{0.901637256f, 0.592310369f}, std::array<float,2>{0.245599732f, 0.399660081f}, std::array<float,2>{0.0227594059f, 0.747307837f}, std::array<float,2>{0.826368034f, 0.36201027f}, std::array<float,2>{0.643472135f, 0.766820371f}, std::array<float,2>{0.337333769f, 0.169176042f}, std::array<float,2>{0.300948411f, 0.55692631f}, std::array<float,2>{0.71671927f, 0.456262708f}, std::array<float,2>{0.787641764f, 0.989197731f}, std::array<float,2>{0.108951814f, 0.0446775146f}, std::array<float,2>{0.127840027f, 0.817589581f}, std::array<float,2>{0.982069433f, 0.212579027f}, std::array<float,2>{0.592150271f, 0.659061074f}, std::array<float,2>{0.413863361f, 0.269124657f}, std::array<float,2>{0.474691421f, 0.780841053f}, std::array<float,2>{0.51688993f, 0.159794122f}, std::array<float,2>{0.931776762f, 0.735216439f}, std::array<float,2>{0.198976249f, 0.370701849f}, std::array<float,2>{0.0383008122f, 0.583861351f}, std::array<float,2>{0.864771664f, 0.392397612f}, std::array<float,2>{0.67667377f, 0.920069873f}, std::array<float,2>{0.361342251f, 0.115856826f}, std::array<float,2>{0.266020894f, 0.671470761f}, std::array<float,2>{0.734516263f, 0.274772435f}, std::array<float,2>{0.75306344f, 0.823707998f}, std::array<float,2>{0.0736780465f, 0.204566896f}, std::array<float,2>{0.16987446f, 0.998462915f}, std::array<float,2>{0.958790481f, 0.0359734222f}, std::array<float,2>{0.613602817f, 0.548891246f}, std::array<float,2>{0.406218708f, 0.461739361f}, std::array<float,2>{0.332547814f, 0.906100154f}, std::array<float,2>{0.649578214f, 0.06973885f}, std::array<float,2>{0.817138076f, 0.598904371f}, std::array<float,2>{0.0304994788f, 0.415516406f}, std::array<float,2>{0.241851255f, 0.691495478f}, std::array<float,2>{0.893792868f, 0.327563584f}, std::array<float,2>{0.560565412f, 0.796633363f}, std::array<float,2>{0.461952746f, 0.139814094f}, std::array<float,2>{0.421359837f, 0.500274122f}, std::array<float,2>{0.582056463f, 0.487582356f}, std::array<float,2>{0.975221097f, 0.947688103f}, std::array<float,2>{0.135243267f, 0.0285752993f}, std::array<float,2>{0.100260757f, 0.871979475f}, std::array<float,2>{0.795653641f, 0.219411254f}, std::array<float,2>{0.70553565f, 0.636266172f}, std::array<float,2>{0.305506706f, 0.288665652f}, std::array<float,2>{0.293100834f, 0.839993298f}, std::array<float,2>{0.690033734f, 0.192168251f}, std::array<float,2>{0.802033484f, 0.680328488f}, std::array<float,2>{0.11377418f, 0.264091909f}, std::array<float,2>{0.144915432f, 0.532573044f}, std::array<float,2>{0.995022118f, 0.442176342f}, std::array<float,2>{0.574754417f, 0.977316022f}, std::array<float,2>{0.432323188f, 0.0511201322f}, std::array<float,2>{0.45067516f, 0.732988954f}, std::array<float,2>{0.534753442f, 0.348600268f}, std::array<float,2>{0.877799749f, 0.761953473f}, std::array<float,2>{0.232933402f, 0.179464787f}, std::array<float,2>{0.00695443712f, 0.928348899f}, std::array<float,2>{0.83851862f, 0.0978141353f}, std::array<float,2>{0.625197291f, 0.575208068f}, std::array<float,2>{0.326835871f, 0.377671152f}, std::array<float,2>{0.386758626f, 0.966845751f}, std::array<float,2>{0.595276892f, 0.00104215799f}, std::array<float,2>{0.941689491f, 0.518464386f}, std::array<float,2>{0.177566558f, 0.478624016f}, std::array<float,2>{0.0833874866f, 0.642056465f}, std::array<float,2>{0.773366392f, 0.304015487f}, std::array<float,2>{0.720670521f, 0.84972471f}, std::array<float,2>{0.253203303f, 0.241941437f}, std::array<float,2>{0.355771214f, 0.624951839f}, std::array<float,2>{0.657162249f, 0.436513811f}, std::array<float,2>{0.847941756f, 0.878979445f}, std::array<float,2>{0.0617368817f, 0.0849631578f}, std::array<float,2>{0.207193896f, 0.811765969f}, std::array<float,2>{0.920246303f, 0.152807042f}, std::array<float,2>{0.511838913f, 0.706685126f}, std::array<float,2>{0.496493042f, 0.343265712f}, std::array<float,2>{0.400990546f, 0.799804628f}, std::array<float,2>{0.609658122f, 0.141769126f}, std::array<float,2>{0.954310238f, 0.712765694f}, std::array<float,2>{0.165392488f, 0.333513319f}, std::array<float,2>{0.0743840784f, 0.615026057f}, std::array<float,2>{0.755968988f, 0.423936039f}, std::array<float,2>{0.740370691f, 0.885204256f}, std::array<float,2>{0.270400941f, 0.0895434618f}, std::array<float,2>{0.364637882f, 0.650684476f}, std::array<float,2>{0.673163414f, 0.305802137f}, std::array<float,2>{0.86317569f, 0.855425656f}, std::array<float,2>{0.0347638093f, 0.249510184f}, std::array<float,2>{0.199729756f, 0.957358003f}, std::array<float,2>{0.936258197f, 0.00921436958f}, std::array<float,2>{0.521865666f, 0.525039673f}, std::array<float,2>{0.471795678f, 0.476198107f}, std::array<float,2>{0.308734357f, 0.937086463f}, std::array<float,2>{0.708525419f, 0.109205693f}, std::array<float,2>{0.792350113f, 0.564456463f}, std::array<float,2>{0.0957593396f, 0.388058394f}, std::array<float,2>{0.139744624f, 0.719419539f}, std::array<float,2>{0.96879673f, 0.357393473f}, std::array<float,2>{0.581922293f, 0.752881408f}, std::array<float,2>{0.416457683f, 0.186962366f}, std::array<float,2>{0.464908153f, 0.54240942f}, std::array<float,2>{0.554741502f, 0.45078212f}, std::array<float,2>{0.896321595f, 0.972875595f}, std::array<float,2>{0.236191779f, 0.0587468483f}, std::array<float,2>{0.0272912886f, 0.834631383f}, std::array<float,2>{0.815326035f, 0.201749042f}, std::array<float,2>{0.652533591f, 0.678077281f}, std::array<float,2>{0.329209059f, 0.253869593f}, std::array<float,2>{0.322539121f, 0.8613922f}, std::array<float,2>{0.63276577f, 0.233308956f}, std::array<float,2>{0.839992821f, 0.628965855f}, std::array<float,2>{0.000610792194f, 0.290496618f}, std::array<float,2>{0.227290317f, 0.514034688f}, std::array<float,2>{0.881076574f, 0.497559011f}, std::array<float,2>{0.535835326f, 0.938838363f}, std::array<float,2>{0.447960168f, 0.0175982397f}, std::array<float,2>{0.435403168f, 0.698157668f}, std::array<float,2>{0.573515594f, 0.314577997f}, std::array<float,2>{0.996864319f, 0.78396976f}, std::array<float,2>{0.143105134f, 0.12779206f}, std::array<float,2>{0.110082805f, 0.894854307f}, std::array<float,2>{0.800222576f, 0.0710584968f}, std::array<float,2>{0.694163501f, 0.602542996f}, std::array<float,2>{0.289803654f, 0.406287968f}, std::array<float,2>{0.492980242f, 0.987668753f}, std::array<float,2>{0.509333491f, 0.0429482721f}, std::array<float,2>{0.915962994f, 0.561855197f}, std::array<float,2>{0.206004322f, 0.459458113f}, std::array<float,2>{0.0561535917f, 0.662296414f}, std::array<float,2>{0.84627229f, 0.270793319f}, std::array<float,2>{0.66305995f, 0.815368056f}, std::array<float,2>{0.354237854f, 0.21707575f}, std::array<float,2>{0.257088453f, 0.587831557f}, std::array<float,2>{0.724956453f, 0.40351662f}, std::array<float,2>{0.767104506f, 0.911869347f}, std::array<float,2>{0.0801032931f, 0.124177642f}, std::array<float,2>{0.172723785f, 0.772876322f}, std::array<float,2>{0.939666688f, 0.166002288f}, std::array<float,2>{0.598529518f, 0.742491305f}, std::array<float,2>{0.382954061f, 0.364569187f}, std::array<float,2>{0.444077015f, 0.826262951f}, std::array<float,2>{0.539583802f, 0.207156822f}, std::array<float,2>{0.883632362f, 0.667945981f}, std::array<float,2>{0.221266717f, 0.280435175f}, std::array<float,2>{0.00802631304f, 0.55396229f}, std::array<float,2>{0.835693836f, 0.465404868f}, std::array<float,2>{0.638160229f, 0.99510181f}, std::array<float,2>{0.314347267f, 0.0335065909f}, std::array<float,2>{0.284129798f, 0.740087092f}, std::array<float,2>{0.696478903f, 0.371281832f}, std::array<float,2>{0.806356013f, 0.774632454f}, std::array<float,2>{0.118901432f, 0.161415264f}, std::array<float,2>{0.149791464f, 0.914597213f}, std::array<float,2>{0.991459131f, 0.109489195f}, std::array<float,2>{0.566801131f, 0.57948786f}, std::array<float,2>{0.423378915f, 0.396012247f}, std::array<float,2>{0.347414076f, 0.950170636f}, std::array<float,2>{0.668559968f, 0.0241433736f}, std::array<float,2>{0.85226053f, 0.504811823f}, std::array<float,2>{0.0522994027f, 0.4900814f}, std::array<float,2>{0.216782004f, 0.638537705f}, std::array<float,2>{0.908280849f, 0.284169495f}, std::array<float,2>{0.507411301f, 0.869918525f}, std::array<float,2>{0.489733696f, 0.2235239f}, std::array<float,2>{0.377540171f, 0.595036447f}, std::array<float,2>{0.607794106f, 0.420837492f}, std::array<float,2>{0.949533641f, 0.901590168f}, std::array<float,2>{0.181256667f, 0.065998584f}, std::array<float,2>{0.0928008854f, 0.789448798f}, std::array<float,2>{0.780733883f, 0.133796573f}, std::array<float,2>{0.733709455f, 0.688451111f}, std::array<float,2>{0.260932058f, 0.322661489f}, std::array<float,2>{0.275529206f, 0.760623872f}, std::array<float,2>{0.742749214f, 0.172666535f}, std::array<float,2>{0.759512126f, 0.729545951f}, std::array<float,2>{0.0637051016f, 0.343937725f}, std::array<float,2>{0.163692713f, 0.571582317f}, std::array<float,2>{0.967745185f, 0.381694943f}, std::array<float,2>{0.620303094f, 0.92468518f}, std::array<float,2>{0.39339301f, 0.0939459577f}, std::array<float,2>{0.477637798f, 0.683812082f}, std::array<float,2>{0.529298127f, 0.260366768f}, std::array<float,2>{0.922530055f, 0.837290645f}, std::array<float,2>{0.189557895f, 0.187933221f}, std::array<float,2>{0.0397377163f, 0.983300984f}, std::array<float,2>{0.867498219f, 0.0506579019f}, std::array<float,2>{0.684550703f, 0.535992742f}, std::array<float,2>{0.37197426f, 0.440616339f}, std::array<float,2>{0.407007694f, 0.877846599f}, std::array<float,2>{0.586069822f, 0.0815518573f}, std::array<float,2>{0.980170131f, 0.619083524f}, std::array<float,2>{0.128966734f, 0.432372242f}, std::array<float,2>{0.105209529f, 0.709097147f}, std::array<float,2>{0.781524956f, 0.338976741f}, std::array<float,2>{0.712948263f, 0.807012975f}, std::array<float,2>{0.299593717f, 0.151864514f}, std::array<float,2>{0.339953333f, 0.523038805f}, std::array<float,2>{0.647392392f, 0.482282043f}, std::array<float,2>{0.821973145f, 0.962119401f}, std::array<float,2>{0.0177558828f, 0.00540096499f}, std::array<float,2>{0.246164247f, 0.844087422f}, std::array<float,2>{0.90457958f, 0.236073762f}, std::array<float,2>{0.547181368f, 0.647118628f}, std::array<float,2>{0.45531258f, 0.300051242f}, std::array<float,2>{0.381394029f, 0.828191578f}, std::array<float,2>{0.603520036f, 0.195765138f}, std::array<float,2>{0.947835326f, 0.673856139f}, std::array<float,2>{0.185708284f, 0.256287873f}, std::array<float,2>{0.086803928f, 0.543436885f}, std::array<float,2>{0.775021136f, 0.446243972f}, std::array<float,2>{0.7281937f, 0.970204175f}, std::array<float,2>{0.265407562f, 0.0558401942f}, std::array<float,2>{0.349070996f, 0.723609209f}, std::array<float,2>{0.665683925f, 0.353719711f}, std::array<float,2>{0.8585127f, 0.755607963f}, std::array<float,2>{0.0492553301f, 0.183206975f}, std::array<float,2>{0.211665362f, 0.931482077f}, std::array<float,2>{0.912923217f, 0.103325434f}, std::array<float,2>{0.501483738f, 0.568477631f}, std::array<float,2>{0.485567659f, 0.384097457f}, std::array<float,2>{0.286359817f, 0.956604064f}, std::array<float,2>{0.701966882f, 0.0135846687f}, std::array<float,2>{0.809649169f, 0.528044224f}, std::array<float,2>{0.124182373f, 0.469283015f}, std::array<float,2>{0.154408425f, 0.654340088f}, std::array<float,2>{0.985338986f, 0.309991986f}, std::array<float,2>{0.563311994f, 0.858519256f}, std::array<float,2>{0.428077072f, 0.242608353f}, std::array<float,2>{0.440850884f, 0.611810446f}, std::array<float,2>{0.546662867f, 0.42693907f}, std::array<float,2>{0.88980943f, 0.887998641f}, std::array<float,2>{0.223366141f, 0.0910921246f}, std::array<float,2>{0.0137026226f, 0.802923799f}, std::array<float,2>{0.830358207f, 0.148099169f}, std::array<float,2>{0.633020341f, 0.715950191f}, std::array<float,2>{0.317564577f, 0.329806864f}, std::array<float,2>{0.337961555f, 0.769476712f}, std::array<float,2>{0.6409024f, 0.170292974f}, std::array<float,2>{0.825485528f, 0.74976629f}, std::array<float,2>{0.0196597576f, 0.360635906f}, std::array<float,2>{0.24244453f, 0.591421545f}, std::array<float,2>{0.899174213f, 0.400787175f}, std::array<float,2>{0.552927494f, 0.908499599f}, std::array<float,2>{0.460099638f, 0.118690029f}, std::array<float,2>{0.410207808f, 0.656858444f}, std::array<float,2>{0.591575146f, 0.266605198f}, std::array<float,2>{0.983398855f, 0.819453835f}, std::array<float,2>{0.126727849f, 0.213917136f}, std::array<float,2>{0.106405221f, 0.990701497f}, std::array<float,2>{0.786558211f, 0.0453686342f}, std::array<float,2>{0.717875659f, 0.556150079f}, std::array<float,2>{0.303809643f, 0.454529166f}, std::array<float,2>{0.483738899f, 0.893839896f}, std::array<float,2>{0.524465621f, 0.0778089315f}, std::array<float,2>{0.927764654f, 0.608779132f}, std::array<float,2>{0.194310725f, 0.414033234f}, std::array<float,2>{0.0456297174f, 0.700733244f}, std::array<float,2>{0.872049749f, 0.319632083f}, std::array<float,2>{0.682216525f, 0.788746059f}, std::array<float,2>{0.367954373f, 0.129943475f}, std::array<float,2>{0.280234337f, 0.510323703f}, std::array<float,2>{0.748408437f, 0.493852526f}, std::array<float,2>{0.762771189f, 0.9448089f}, std::array<float,2>{0.0696095005f, 0.0233096872f}, std::array<float,2>{0.157422364f, 0.865258336f}, std::array<float,2>{0.964386344f, 0.227360889f}, std::array<float,2>{0.623873115f, 0.628700256f}, std::array<float,2>{0.395680338f, 0.29519701f}, std::array<float,2>{0.464501381f, 0.794444203f}, std::array<float,2>{0.559746385f, 0.138425708f}, std::array<float,2>{0.891084552f, 0.694104433f}, std::array<float,2>{0.239845723f, 0.324491411f}, std::array<float,2>{0.0287363753f, 0.600280881f}, std::array<float,2>{0.820295513f, 0.416604012f}, std::array<float,2>{0.651441276f, 0.904116929f}, std::array<float,2>{0.33460182f, 0.067816034f}, std::array<float,2>{0.306880504f, 0.634631753f}, std::array<float,2>{0.704595327f, 0.285890371f}, std::array<float,2>{0.793968201f, 0.874166131f}, std::array<float,2>{0.0995323434f, 0.220806614f}, std::array<float,2>{0.134585604f, 0.946981966f}, std::array<float,2>{0.974471569f, 0.030656008f}, std::array<float,2>{0.584565282f, 0.502460837f}, std::array<float,2>{0.418256015f, 0.484531105f}, std::array<float,2>{0.359828234f, 0.919851959f}, std::array<float,2>{0.679212987f, 0.114982739f}, std::array<float,2>{0.866009295f, 0.584816456f}, std::array<float,2>{0.0362176038f, 0.393653899f}, std::array<float,2>{0.197214693f, 0.737644374f}, std::array<float,2>{0.931412935f, 0.368642926f}, std::array<float,2>{0.518075287f, 0.778048515f}, std::array<float,2>{0.473861963f, 0.157363176f}, std::array<float,2>{0.403131038f, 0.54796505f}, std::array<float,2>{0.616442919f, 0.463787287f}, std::array<float,2>{0.960527718f, 0.997260749f}, std::array<float,2>{0.171441883f, 0.0384694785f}, std::array<float,2>{0.0711093396f, 0.822107136f}, std::array<float,2>{0.751566112f, 0.205448046f}, std::array<float,2>{0.737356603f, 0.668250382f}, std::array<float,2>{0.268579215f, 0.275873244f}, std::array<float,2>{0.250927866f, 0.849364877f}, std::array<float,2>{0.721426368f, 0.240146473f}, std::array<float,2>{0.770999491f, 0.642871439f}, std::array<float,2>{0.0844154581f, 0.301393479f}, std::array<float,2>{0.177750021f, 0.517166257f}, std::array<float,2>{0.945215106f, 0.477513283f}, std::array<float,2>{0.596797943f, 0.96575141f}, std::array<float,2>{0.390188873f, 0.00275294832f}, std::array<float,2>{0.498188317f, 0.704818726f}, std::array<float,2>{0.51521337f, 0.341702729f}, std::array<float,2>{0.918089092f, 0.808954239f}, std::array<float,2>{0.209066406f, 0.155558854f}, std::array<float,2>{0.0601837076f, 0.881924808f}, std::array<float,2>{0.850247502f, 0.0827098265f}, std::array<float,2>{0.659283936f, 0.621289372f}, std::array<float,2>{0.357428432f, 0.434355795f}, std::array<float,2>{0.430265665f, 0.978522122f}, std::array<float,2>{0.57620877f, 0.0534764864f}, std::array<float,2>{0.993552923f, 0.534673154f}, std::array<float,2>{0.147268876f, 0.445042402f}, std::array<float,2>{0.116266102f, 0.683045566f}, std::array<float,2>{0.80373913f, 0.263035208f}, std::array<float,2>{0.689213693f, 0.843634367f}, std::array<float,2>{0.296070904f, 0.194377869f}, std::array<float,2>{0.325383455f, 0.578007817f}, std::array<float,2>{0.628888249f, 0.375355482f}, std::array<float,2>{0.837846756f, 0.92592442f}, std::array<float,2>{0.00475392397f, 0.100704186f}, std::array<float,2>{0.231114328f, 0.764847755f}, std::array<float,2>{0.875793278f, 0.175977334f}, std::array<float,2>{0.532843709f, 0.731852829f}, std::array<float,2>{0.452054888f, 0.351044148f}, std::array<float,2>{0.41493538f, 0.750160038f}, std::array<float,2>{0.578832209f, 0.184347302f}, std::array<float,2>{0.972410202f, 0.721547663f}, std::array<float,2>{0.137537777f, 0.357981086f}, std::array<float,2>{0.0944679752f, 0.564426899f}, std::array<float,2>{0.790683448f, 0.390423954f}, std::array<float,2>{0.710865796f, 0.93390882f}, std::array<float,2>{0.311522782f, 0.107149243f}, std::array<float,2>{0.331560493f, 0.67666769f}, std::array<float,2>{0.655725241f, 0.25016582f}, std::array<float,2>{0.813916385f, 0.833337784f}, std::array<float,2>{0.0237646773f, 0.200179398f}, std::array<float,2>{0.237169102f, 0.975388467f}, std::array<float,2>{0.897175908f, 0.0610900186f}, std::array<float,2>{0.557942092f, 0.53930074f}, std::array<float,2>{0.467584819f, 0.451416254f}, std::array<float,2>{0.2716389f, 0.883221865f}, std::array<float,2>{0.739221632f, 0.0869182125f}, std::array<float,2>{0.755705893f, 0.615826786f}, std::array<float,2>{0.0773420632f, 0.422981024f}, std::array<float,2>{0.167293504f, 0.712981701f}, std::array<float,2>{0.956208169f, 0.335035741f}, std::array<float,2>{0.613061786f, 0.79700315f}, std::array<float,2>{0.399444699f, 0.14371191f}, std::array<float,2>{0.469294608f, 0.525910378f}, std::array<float,2>{0.520195425f, 0.472843766f}, std::array<float,2>{0.934955239f, 0.960244358f}, std::array<float,2>{0.202827811f, 0.0116242478f}, std::array<float,2>{0.0317158476f, 0.852835178f}, std::array<float,2>{0.859906554f, 0.246392861f}, std::array<float,2>{0.674344838f, 0.648980856f}, std::array<float,2>{0.367164314f, 0.308493525f}, std::array<float,2>{0.352034301f, 0.812753141f}, std::array<float,2>{0.661375284f, 0.216585323f}, std::array<float,2>{0.845551729f, 0.662082016f}, std::array<float,2>{0.057105083f, 0.272797048f}, std::array<float,2>{0.204946026f, 0.559838593f}, std::array<float,2>{0.916944325f, 0.457639337f}, std::array<float,2>{0.511520386f, 0.985687912f}, std::array<float,2>{0.495754063f, 0.0396431684f}, std::array<float,2>{0.385419488f, 0.745191038f}, std::array<float,2>{0.599899948f, 0.366017997f}, std::array<float,2>{0.938885152f, 0.771273494f}, std::array<float,2>{0.17565462f, 0.167718843f}, std::array<float,2>{0.0791095942f, 0.91246897f}, std::array<float,2>{0.769352555f, 0.122084863f}, std::array<float,2>{0.723193407f, 0.588828027f}, std::array<float,2>{0.255664974f, 0.405032516f}, std::array<float,2>{0.44724068f, 0.940943062f}, std::array<float,2>{0.537890673f, 0.0172485691f}, std::array<float,2>{0.879791439f, 0.513354599f}, std::array<float,2>{0.230307773f, 0.499916732f}, std::array<float,2>{0.002296953f, 0.632202625f}, std::array<float,2>{0.84351182f, 0.291025639f}, std::array<float,2>{0.629050314f, 0.859601319f}, std::array<float,2>{0.320667893f, 0.232347444f}, std::array<float,2>{0.292474151f, 0.603896201f}, std::array<float,2>{0.692491651f, 0.408342242f}, std::array<float,2>{0.797989309f, 0.896861434f}, std::array<float,2>{0.112567335f, 0.0735147893f}, std::array<float,2>{0.14188914f, 0.782068253f}, std::array<float,2>{0.998840213f, 0.125993699f}, std::array<float,2>{0.571130991f, 0.69648695f}, std::array<float,2>{0.436048239f, 0.313588411f}, std::array<float,2>{0.492029071f, 0.868828833f}, std::array<float,2>{0.50554955f, 0.226310596f}, std::array<float,2>{0.908193052f, 0.639488399f}, std::array<float,2>{0.218289122f, 0.282734543f}, std::array<float,2>{0.0544329025f, 0.507713795f}, std::array<float,2>{0.853968441f, 0.492156476f}, std::array<float,2>{0.670057595f, 0.952657998f}, std::array<float,2>{0.344423473f, 0.0267154425f}, std::array<float,2>{0.259390503f, 0.690139234f}, std::array<float,2>{0.731698513f, 0.321738333f}, std::array<float,2>{0.77918154f, 0.79275322f}, std::array<float,2>{0.0898703709f, 0.134836718f}, std::array<float,2>{0.182872355f, 0.899580359f}, std::array<float,2>{0.951861203f, 0.0637301654f}, std::array<float,2>{0.607347131f, 0.597582459f}, std::array<float,2>{0.375999004f, 0.418671548f}, std::array<float,2>{0.315951198f, 0.994051695f}, std::array<float,2>{0.63930732f, 0.0316412225f}, std::array<float,2>{0.832983792f, 0.551009655f}, std::array<float,2>{0.0101194698f, 0.467376888f}, std::array<float,2>{0.219162986f, 0.665602803f}, std::array<float,2>{0.886580527f, 0.277940452f}, std::array<float,2>{0.542884767f, 0.825640619f}, std::array<float,2>{0.442530334f, 0.210024968f}, std::array<float,2>{0.42410171f, 0.581745088f}, std::array<float,2>{0.568785369f, 0.397764325f}, std::array<float,2>{0.988419473f, 0.917628706f}, std::array<float,2>{0.150465503f, 0.111396611f}, std::array<float,2>{0.120354675f, 0.776370943f}, std::array<float,2>{0.807308257f, 0.162887201f}, std::array<float,2>{0.698993504f, 0.741952062f}, std::array<float,2>{0.282706082f, 0.374713928f}, std::array<float,2>{0.298321784f, 0.805726647f}, std::array<float,2>{0.711795866f, 0.149243489f}, std::array<float,2>{0.784991562f, 0.707282603f}, std::array<float,2>{0.10185241f, 0.337442547f}, std::array<float,2>{0.132365078f, 0.620784223f}, std::array<float,2>{0.976615906f, 0.430026531f}, std::array<float,2>{0.588484228f, 0.875133157f}, std::array<float,2>{0.409088522f, 0.0788330808f}, std::array<float,2>{0.453561395f, 0.646443248f}, std::array<float,2>{0.54987222f, 0.297959745f}, std::array<float,2>{0.903772414f, 0.846766353f}, std::array<float,2>{0.248622298f, 0.237912908f}, std::array<float,2>{0.0157421175f, 0.963525057f}, std::array<float,2>{0.822423995f, 0.00591851771f}, std::array<float,2>{0.644958496f, 0.520005047f}, std::array<float,2>{0.34368062f, 0.483644247f}, std::array<float,2>{0.391357213f, 0.922840297f}, std::array<float,2>{0.617605805f, 0.0966167077f}, std::array<float,2>{0.965389967f, 0.573963821f}, std::array<float,2>{0.161335602f, 0.380204737f}, std::array<float,2>{0.0654303208f, 0.728118122f}, std::array<float,2>{0.761490464f, 0.346377045f}, std::array<float,2>{0.745396554f, 0.758221745f}, std::array<float,2>{0.275319576f, 0.174306765f}, std::array<float,2>{0.373892725f, 0.537116885f}, std::array<float,2>{0.687236845f, 0.439299017f}, std::array<float,2>{0.870657742f, 0.982350647f}, std::array<float,2>{0.0421062857f, 0.0469038524f}, std::array<float,2>{0.189382434f, 0.839034736f}, std::array<float,2>{0.925047755f, 0.190765977f}, std::array<float,2>{0.52811265f, 0.687105119f}, std::array<float,2>{0.479605436f, 0.259285808f}, std::array<float,2>{0.395483702f, 0.863883197f}, std::array<float,2>{0.624594688f, 0.228800505f}, std::array<float,2>{0.963486552f, 0.626744807f}, std::array<float,2>{0.156423792f, 0.293475419f}, std::array<float,2>{0.068730399f, 0.508359551f}, std::array<float,2>{0.762461841f, 0.49608928f}, std::array<float,2>{0.749292016f, 0.94286418f}, std::array<float,2>{0.280336559f, 0.0211066213f}, std::array<float,2>{0.369014859f, 0.701517105f}, std::array<float,2>{0.682940483f, 0.317239165f}, std::array<float,2>{0.872348905f, 0.785457432f}, std::array<float,2>{0.0467051938f, 0.132208198f}, std::array<float,2>{0.19460687f, 0.890643656f}, std::array<float,2>{0.92936182f, 0.075430125f}, std::array<float,2>{0.523646533f, 0.605751991f}, std::array<float,2>{0.483250409f, 0.411500812f}, std::array<float,2>{0.302797258f, 0.989693284f}, std::array<float,2>{0.71718961f, 0.0434936471f}, std::array<float,2>{0.785552323f, 0.557991922f}, std::array<float,2>{0.1072478f, 0.45540458f}, std::array<float,2>{0.125171497f, 0.659397721f}, std::array<float,2>{0.983223975f, 0.26776123f}, std::array<float,2>{0.590077937f, 0.816700697f}, std::array<float,2>{0.411453217f, 0.21169883f}, std::array<float,2>{0.45899421f, 0.593443751f}, std::array<float,2>{0.554586291f, 0.399345577f}, std::array<float,2>{0.899802983f, 0.906659186f}, std::array<float,2>{0.243394852f, 0.119149901f}, std::array<float,2>{0.0206396487f, 0.766546547f}, std::array<float,2>{0.824284375f, 0.168166235f}, std::array<float,2>{0.642452776f, 0.746326685f}, std::array<float,2>{0.339618564f, 0.36256364f}, std::array<float,2>{0.316705436f, 0.801922858f}, std::array<float,2>{0.63408047f, 0.144762516f}, std::array<float,2>{0.83192414f, 0.718294144f}, std::array<float,2>{0.0149632469f, 0.330177337f}, std::array<float,2>{0.223749205f, 0.610129178f}, std::array<float,2>{0.889503896f, 0.429428577f}, std::array<float,2>{0.545347273f, 0.889000058f}, std::array<float,2>{0.440192938f, 0.0921988785f}, std::array<float,2>{0.429679036f, 0.652478576f}, std::array<float,2>{0.564427614f, 0.310751796f}, std::array<float,2>{0.985823452f, 0.855765522f}, std::array<float,2>{0.155853286f, 0.244925708f}, std::array<float,2>{0.123099834f, 0.953581154f}, std::array<float,2>{0.80916065f, 0.0150241954f}, std::array<float,2>{0.702453673f, 0.529559255f}, std::array<float,2>{0.285814613f, 0.472366631f}, std::array<float,2>{0.48512736f, 0.93194145f}, std::array<float,2>{0.50077188f, 0.103753358f}, std::array<float,2>{0.91321975f, 0.566582084f}, std::array<float,2>{0.212704986f, 0.385111064f}, std::array<float,2>{0.0503021739f, 0.724955201f}, std::array<float,2>{0.857806027f, 0.352000773f}, std::array<float,2>{0.664523482f, 0.7562024f}, std::array<float,2>{0.348383427f, 0.179961577f}, std::array<float,2>{0.264337152f, 0.545269012f}, std::array<float,2>{0.726868272f, 0.44855395f}, std::array<float,2>{0.774099708f, 0.97254318f}, std::array<float,2>{0.0877190158f, 0.0583856963f}, std::array<float,2>{0.187331915f, 0.830218196f}, std::array<float,2>{0.948673308f, 0.19754754f}, std::array<float,2>{0.605111003f, 0.672649205f}, std::array<float,2>{0.382423699f, 0.254836023f}, std::array<float,2>{0.452250183f, 0.762845278f}, std::array<float,2>{0.531876683f, 0.178699389f}, std::array<float,2>{0.876074374f, 0.733673632f}, std::array<float,2>{0.232012749f, 0.349097401f}, std::array<float,2>{0.00502374023f, 0.574278951f}, std::array<float,2>{0.836325884f, 0.378102213f}, std::array<float,2>{0.627574146f, 0.928872108f}, std::array<float,2>{0.324907213f, 0.0994309634f}, std::array<float,2>{0.295032322f, 0.681439102f}, std::array<float,2>{0.687749982f, 0.265158027f}, std::array<float,2>{0.80330801f, 0.840918243f}, std::array<float,2>{0.116068006f, 0.193092898f}, std::array<float,2>{0.147474915f, 0.977556884f}, std::array<float,2>{0.992404938f, 0.0520928167f}, std::array<float,2>{0.577525914f, 0.53156209f}, std::array<float,2>{0.430915117f, 0.442426085f}, std::array<float,2>{0.359188527f, 0.880422711f}, std::array<float,2>{0.658829212f, 0.0848377571f}, std::array<float,2>{0.851099193f, 0.623576045f}, std::array<float,2>{0.058917705f, 0.436628014f}, std::array<float,2>{0.210776389f, 0.705889225f}, std::array<float,2>{0.919864714f, 0.34201932f}, std::array<float,2>{0.514506698f, 0.810812294f}, std::array<float,2>{0.499180526f, 0.15363355f}, std::array<float,2>{0.388986051f, 0.519394338f}, std::array<float,2>{0.595921695f, 0.479548514f}, std::array<float,2>{0.943466067f, 0.96823138f}, std::array<float,2>{0.179253861f, 0.000381717226f}, std::array<float,2>{0.0859122351f, 0.851234615f}, std::array<float,2>{0.770475745f, 0.240499422f}, std::array<float,2>{0.722425938f, 0.641049981f}, std::array<float,2>{0.25116688f, 0.303615928f}, std::array<float,2>{0.267645985f, 0.823104441f}, std::array<float,2>{0.736368775f, 0.203980893f}, std::array<float,2>{0.750831306f, 0.67072463f}, std::array<float,2>{0.0718821511f, 0.2743527f}, std::array<float,2>{0.170076355f, 0.550312579f}, std::array<float,2>{0.959430516f, 0.462254792f}, std::array<float,2>{0.61552f, 0.999863744f}, std::array<float,2>{0.403599143f, 0.0370328277f}, std::array<float,2>{0.473214865f, 0.736157775f}, std::array<float,2>{0.518971264f, 0.369349718f}, std::array<float,2>{0.929763675f, 0.779806674f}, std::array<float,2>{0.195415735f, 0.158877701f}, std::array<float,2>{0.0358537398f, 0.921796203f}, std::array<float,2>{0.866939127f, 0.116214834f}, std::array<float,2>{0.677949667f, 0.582878649f}, std::array<float,2>{0.360868424f, 0.390820146f}, std::array<float,2>{0.4195126f, 0.948965132f}, std::array<float,2>{0.585889459f, 0.0273634531f}, std::array<float,2>{0.973249316f, 0.501228094f}, std::array<float,2>{0.132933065f, 0.486971021f}, std::array<float,2>{0.0978096575f, 0.635249913f}, std::array<float,2>{0.79352963f, 0.288009971f}, std::array<float,2>{0.703644633f, 0.872878075f}, std::array<float,2>{0.308354616f, 0.220647633f}, std::array<float,2>{0.335370272f, 0.597676218f}, std::array<float,2>{0.650747597f, 0.414774179f}, std::array<float,2>{0.81916064f, 0.905194283f}, std::array<float,2>{0.0282349102f, 0.0691218898f}, std::array<float,2>{0.239201233f, 0.795846343f}, std::array<float,2>{0.892037094f, 0.139192909f}, std::array<float,2>{0.558877468f, 0.69244051f}, std::array<float,2>{0.463630646f, 0.326946527f}, std::array<float,2>{0.436720699f, 0.784326971f}, std::array<float,2>{0.571676552f, 0.128446728f}, std::array<float,2>{0.999578655f, 0.698250055f}, std::array<float,2>{0.141513661f, 0.315798491f}, std::array<float,2>{0.112299025f, 0.602392793f}, std::array<float,2>{0.797614455f, 0.407438874f}, std::array<float,2>{0.69217211f, 0.895696342f}, std::array<float,2>{0.291239172f, 0.0717325732f}, std::array<float,2>{0.321334124f, 0.630419672f}, std::array<float,2>{0.630481958f, 0.289199263f}, std::array<float,2>{0.84201628f, 0.862680435f}, std::array<float,2>{0.00382983452f, 0.233615398f}, std::array<float,2>{0.228759408f, 0.937871575f}, std::array<float,2>{0.880063832f, 0.0191791151f}, std::array<float,2>{0.538369536f, 0.514717758f}, std::array<float,2>{0.445565909f, 0.496299654f}, std::array<float,2>{0.254386753f, 0.91072768f}, std::array<float,2>{0.724031687f, 0.123211339f}, std::array<float,2>{0.767839789f, 0.586699307f}, std::array<float,2>{0.0783141628f, 0.403225183f}, std::array<float,2>{0.17394796f, 0.74340409f}, std::array<float,2>{0.938081622f, 0.363417953f}, std::array<float,2>{0.600736439f, 0.77216953f}, std::array<float,2>{0.385829031f, 0.164506838f}, std::array<float,2>{0.494907975f, 0.561092615f}, std::array<float,2>{0.510143697f, 0.460178465f}, std::array<float,2>{0.917657852f, 0.987225294f}, std::array<float,2>{0.203937903f, 0.0416217893f}, std::array<float,2>{0.0579147525f, 0.815539837f}, std::array<float,2>{0.844353676f, 0.218341425f}, std::array<float,2>{0.660196602f, 0.663114786f}, std::array<float,2>{0.353459895f, 0.270058334f}, std::array<float,2>{0.365832686f, 0.85361892f}, std::array<float,2>{0.675546288f, 0.248303533f}, std::array<float,2>{0.861180663f, 0.652248859f}, std::array<float,2>{0.0330201127f, 0.305219233f}, std::array<float,2>{0.201575547f, 0.523741186f}, std::array<float,2>{0.934049785f, 0.47502625f}, std::array<float,2>{0.520675659f, 0.958499253f}, std::array<float,2>{0.470404565f, 0.00815539621f}, std::array<float,2>{0.398823291f, 0.711040735f}, std::array<float,2>{0.611738801f, 0.332853496f}, std::array<float,2>{0.955711663f, 0.800393283f}, std::array<float,2>{0.166165039f, 0.14077881f}, std::array<float,2>{0.076208733f, 0.886525035f}, std::array<float,2>{0.754712939f, 0.0881382376f}, std::array<float,2>{0.73934114f, 0.614178121f}, std::array<float,2>{0.272734612f, 0.425136209f}, std::array<float,2>{0.468573362f, 0.973971009f}, std::array<float,2>{0.557214618f, 0.0599621534f}, std::array<float,2>{0.898433626f, 0.541436136f}, std::array<float,2>{0.238001198f, 0.449743658f}, std::array<float,2>{0.0246225838f, 0.679521263f}, std::array<float,2>{0.81331569f, 0.252387285f}, std::array<float,2>{0.654864311f, 0.835012853f}, std::array<float,2>{0.330292344f, 0.202455431f}, std::array<float,2>{0.311843842f, 0.566013455f}, std::array<float,2>{0.709717989f, 0.387204558f}, std::array<float,2>{0.789304495f, 0.936302185f}, std::array<float,2>{0.0955414996f, 0.107955143f}, std::array<float,2>{0.138026506f, 0.753802836f}, std::array<float,2>{0.971267462f, 0.185856745f}, std::array<float,2>{0.579625964f, 0.720495224f}, std::array<float,2>{0.41541642f, 0.355683982f}, std::array<float,2>{0.479415566f, 0.836595118f}, std::array<float,2>{0.528967798f, 0.188672036f}, std::array<float,2>{0.924503803f, 0.684638381f}, std::array<float,2>{0.188169792f, 0.261178732f}, std::array<float,2>{0.0416950732f, 0.53681314f}, std::array<float,2>{0.86938262f, 0.440035909f}, std::array<float,2>{0.686161041f, 0.983532906f}, std::array<float,2>{0.374086797f, 0.049000185f}, std::array<float,2>{0.273613036f, 0.729247212f}, std::array<float,2>{0.745091259f, 0.344939083f}, std::array<float,2>{0.760572195f, 0.761576533f}, std::array<float,2>{0.0653455183f, 0.172906414f}, std::array<float,2>{0.160853028f, 0.925753117f}, std::array<float,2>{0.966000736f, 0.0947791114f}, std::array<float,2>{0.618644536f, 0.571000397f}, std::array<float,2>{0.392491579f, 0.382210672f}, std::array<float,2>{0.341834277f, 0.960979223f}, std::array<float,2>{0.646159947f, 0.00476366561f}, std::array<float,2>{0.824152052f, 0.521963894f}, std::array<float,2>{0.0167356636f, 0.481019825f}, std::array<float,2>{0.249142498f, 0.647931278f}, std::array<float,2>{0.90237242f, 0.299614072f}, std::array<float,2>{0.549366951f, 0.845370591f}, std::array<float,2>{0.454460412f, 0.235049188f}, std::array<float,2>{0.409363329f, 0.617437005f}, std::array<float,2>{0.589274883f, 0.433440685f}, std::array<float,2>{0.978336394f, 0.878617585f}, std::array<float,2>{0.13097471f, 0.0803843886f}, std::array<float,2>{0.103016056f, 0.80808413f}, std::array<float,2>{0.78372848f, 0.150607005f}, std::array<float,2>{0.712319136f, 0.710658014f}, std::array<float,2>{0.297544032f, 0.338298142f}, std::array<float,2>{0.281681776f, 0.77351743f}, std::array<float,2>{0.697547734f, 0.161115885f}, std::array<float,2>{0.808367908f, 0.738405943f}, std::array<float,2>{0.119487956f, 0.372342348f}, std::array<float,2>{0.151819289f, 0.578293502f}, std::array<float,2>{0.989822865f, 0.395139694f}, std::array<float,2>{0.569895208f, 0.915242195f}, std::array<float,2>{0.424892992f, 0.110556364f}, std::array<float,2>{0.441468447f, 0.666396916f}, std::array<float,2>{0.541334033f, 0.279928952f}, std::array<float,2>{0.885230601f, 0.827407837f}, std::array<float,2>{0.220085219f, 0.208868146f}, std::array<float,2>{0.01106284f, 0.995273948f}, std::array<float,2>{0.833484352f, 0.035075102f}, std::array<float,2>{0.639980912f, 0.553453088f}, std::array<float,2>{0.315070629f, 0.466393054f}, std::array<float,2>{0.375618935f, 0.90050441f}, std::array<float,2>{0.605881155f, 0.0646582469f}, std::array<float,2>{0.952610791f, 0.594590843f}, std::array<float,2>{0.182603836f, 0.421043515f}, std::array<float,2>{0.0916456133f, 0.689171612f}, std::array<float,2>{0.778280854f, 0.32369107f}, std::array<float,2>{0.730838299f, 0.790884256f}, std::array<float,2>{0.258414954f, 0.133726269f}, std::array<float,2>{0.345183104f, 0.505594492f}, std::array<float,2>{0.671056926f, 0.489257127f}, std::array<float,2>{0.854614854f, 0.950934589f}, std::array<float,2>{0.0529371127f, 0.024631571f}, std::array<float,2>{0.216911867f, 0.870936096f}, std::array<float,2>{0.906882584f, 0.223758966f}, std::array<float,2>{0.504133403f, 0.636787772f}, std::array<float,2>{0.490935504f, 0.284210235f}, std::array<float,2>{0.412200838f, 0.818851888f}, std::array<float,2>{0.593491137f, 0.212902039f}, std::array<float,2>{0.980687022f, 0.658125818f}, std::array<float,2>{0.128698915f, 0.266140282f}, std::array<float,2>{0.107579015f, 0.555194855f}, std::array<float,2>{0.788384259f, 0.453471243f}, std::array<float,2>{0.7149809f, 0.991669714f}, std::array<float,2>{0.302426904f, 0.0465502478f}, std::array<float,2>{0.33650285f, 0.748211265f}, std::array<float,2>{0.643758476f, 0.360241503f}, std::array<float,2>{0.827553749f, 0.768278122f}, std::array<float,2>{0.0223970171f, 0.171240196f}, std::array<float,2>{0.244417906f, 0.909350216f}, std::array<float,2>{0.900728285f, 0.11796163f}, std::array<float,2>{0.551897824f, 0.590091944f}, std::array<float,2>{0.457346588f, 0.401629359f}, std::array<float,2>{0.278847903f, 0.943386555f}, std::array<float,2>{0.746422648f, 0.0224461276f}, std::array<float,2>{0.764216661f, 0.510892391f}, std::array<float,2>{0.0665290207f, 0.492420316f}, std::array<float,2>{0.158899426f, 0.627121985f}, std::array<float,2>{0.961443841f, 0.296867549f}, std::array<float,2>{0.621284246f, 0.866277874f}, std::array<float,2>{0.398101777f, 0.228327185f}, std::array<float,2>{0.48179698f, 0.608093679f}, std::array<float,2>{0.52662009f, 0.413080454f}, std::array<float,2>{0.926324129f, 0.893376827f}, std::array<float,2>{0.19254972f, 0.0761782676f}, std::array<float,2>{0.0444051474f, 0.788058877f}, std::array<float,2>{0.8743788f, 0.12978898f}, std::array<float,2>{0.681079209f, 0.699779153f}, std::array<float,2>{0.369704306f, 0.318679333f}, std::array<float,2>{0.350817144f, 0.754056752f}, std::array<float,2>{0.667405069f, 0.181822956f}, std::array<float,2>{0.855527401f, 0.723959386f}, std::array<float,2>{0.0474753641f, 0.35512045f}, std::array<float,2>{0.214520991f, 0.56941098f}, std::array<float,2>{0.911339164f, 0.383226156f}, std::array<float,2>{0.502139747f, 0.930414498f}, std::array<float,2>{0.486673862f, 0.10208644f}, std::array<float,2>{0.379554838f, 0.674993336f}, std::array<float,2>{0.601672232f, 0.257499129f}, std::array<float,2>{0.946310937f, 0.82990855f}, std::array<float,2>{0.184476793f, 0.196829766f}, std::array<float,2>{0.0888095722f, 0.969675839f}, std::array<float,2>{0.775471866f, 0.054945007f}, std::array<float,2>{0.729070365f, 0.544796407f}, std::array<float,2>{0.261816621f, 0.447251409f}, std::array<float,2>{0.437553823f, 0.88749826f}, std::array<float,2>{0.544774055f, 0.0901410505f}, std::array<float,2>{0.88832891f, 0.612887084f}, std::array<float,2>{0.225868568f, 0.426443368f}, std::array<float,2>{0.0128933135f, 0.715468109f}, std::array<float,2>{0.829569757f, 0.329078346f}, std::array<float,2>{0.636702299f, 0.804661632f}, std::array<float,2>{0.319356233f, 0.147120088f}, std::array<float,2>{0.287984639f, 0.528441668f}, std::array<float,2>{0.700186372f, 0.470501214f}, std::array<float,2>{0.811104715f, 0.95530206f}, std::array<float,2>{0.121265918f, 0.0122993691f}, std::array<float,2>{0.153598145f, 0.85804081f}, std::array<float,2>{0.987538338f, 0.243581638f}, std::array<float,2>{0.565539241f, 0.655454695f}, std::array<float,2>{0.426257879f, 0.309454471f}, std::array<float,2>{0.497478813f, 0.810492218f}, std::array<float,2>{0.513387501f, 0.15493004f}, std::array<float,2>{0.92120862f, 0.703828096f}, std::array<float,2>{0.208082065f, 0.339959621f}, std::array<float,2>{0.0614755228f, 0.622868717f}, std::array<float,2>{0.849085629f, 0.434747189f}, std::array<float,2>{0.657446623f, 0.881311953f}, std::array<float,2>{0.35715121f, 0.0838502571f}, std::array<float,2>{0.252431035f, 0.644527614f}, std::array<float,2>{0.718987107f, 0.302467436f}, std::array<float,2>{0.772316813f, 0.848442137f}, std::array<float,2>{0.0827998146f, 0.238385469f}, std::array<float,2>{0.176453263f, 0.966191947f}, std::array<float,2>{0.942405164f, 0.00322241383f}, std::array<float,2>{0.594351828f, 0.516548872f}, std::array<float,2>{0.388388872f, 0.477561325f}, std::array<float,2>{0.327671796f, 0.9275949f}, std::array<float,2>{0.626134396f, 0.100533985f}, std::array<float,2>{0.839326382f, 0.576835036f}, std::array<float,2>{0.00652248319f, 0.376873374f}, std::array<float,2>{0.233802766f, 0.731044054f}, std::array<float,2>{0.878660023f, 0.349822879f}, std::array<float,2>{0.533627629f, 0.763923585f}, std::array<float,2>{0.449528813f, 0.177537784f}, std::array<float,2>{0.433114916f, 0.533533037f}, std::array<float,2>{0.575791121f, 0.444288969f}, std::array<float,2>{0.995698392f, 0.980034709f}, std::array<float,2>{0.146140561f, 0.053876169f}, std::array<float,2>{0.114398688f, 0.842529953f}, std::array<float,2>{0.801353157f, 0.194299683f}, std::array<float,2>{0.69068408f, 0.682257414f}, std::array<float,2>{0.294575155f, 0.262613416f}, std::array<float,2>{0.306590647f, 0.873589456f}, std::array<float,2>{0.706441343f, 0.221920565f}, std::array<float,2>{0.796711326f, 0.633778453f}, std::array<float,2>{0.101018056f, 0.286470801f}, std::array<float,2>{0.135836318f, 0.503123343f}, std::array<float,2>{0.975848615f, 0.485439509f}, std::array<float,2>{0.583788335f, 0.94537884f}, std::array<float,2>{0.420761645f, 0.0302591287f}, std::array<float,2>{0.461111814f, 0.694862008f}, std::array<float,2>{0.561607659f, 0.325619161f}, std::array<float,2>{0.893128455f, 0.793694258f}, std::array<float,2>{0.240641326f, 0.137306973f}, std::array<float,2>{0.0296976846f, 0.903273523f}, std::array<float,2>{0.817678392f, 0.0666977316f}, std::array<float,2>{0.648777783f, 0.601403832f}, std::array<float,2>{0.333749473f, 0.417623073f}, std::array<float,2>{0.405028105f, 0.996703506f}, std::array<float,2>{0.614366949f, 0.0379928052f}, std::array<float,2>{0.957352638f, 0.547670841f}, std::array<float,2>{0.16877611f, 0.463914186f}, std::array<float,2>{0.0725876838f, 0.669021249f}, std::array<float,2>{0.752728164f, 0.276626289f}, std::array<float,2>{0.735510647f, 0.820393085f}, std::array<float,2>{0.267192274f, 0.206310377f}, std::array<float,2>{0.36246559f, 0.58568418f}, std::array<float,2>{0.677403808f, 0.393213779f}, std::array<float,2>{0.863932312f, 0.917982101f}, std::array<float,2>{0.0380633585f, 0.113586567f}, std::array<float,2>{0.197799221f, 0.778398931f}, std::array<float,2>{0.932937622f, 0.156466752f}, std::array<float,2>{0.516404867f, 0.736828864f}, std::array<float,2>{0.475817144f, 0.367336869f}, std::array<float,2>{0.384538889f, 0.76961112f}, std::array<float,2>{0.598764777f, 0.166551843f}, std::array<float,2>{0.941115737f, 0.744241416f}, std::array<float,2>{0.173715115f, 0.366794109f}, std::array<float,2>{0.0818772167f, 0.58887291f}, std::array<float,2>{0.765670478f, 0.406128734f}, std::array<float,2>{0.726163685f, 0.913197637f}, std::array<float,2>{0.256424457f, 0.121259779f}, std::array<float,2>{0.354592234f, 0.660537183f}, std::array<float,2>{0.664021611f, 0.271627188f}, std::array<float,2>{0.84746325f, 0.813782096f}, std::array<float,2>{0.0550211854f, 0.214983687f}, std::array<float,2>{0.206709385f, 0.984587967f}, std::array<float,2>{0.914241135f, 0.0405671038f}, std::array<float,2>{0.508546114f, 0.559375286f}, std::array<float,2>{0.493443549f, 0.458030343f}, std::array<float,2>{0.290203482f, 0.897909999f}, std::array<float,2>{0.694418907f, 0.0729010478f}, std::array<float,2>{0.799683213f, 0.604536116f}, std::array<float,2>{0.110802703f, 0.409968674f}, std::array<float,2>{0.144251212f, 0.695573509f}, std::array<float,2>{0.997930229f, 0.312799871f}, std::array<float,2>{0.572774649f, 0.782858014f}, std::array<float,2>{0.43385601f, 0.125623569f}, std::array<float,2>{0.448921591f, 0.512350619f}, std::array<float,2>{0.536278129f, 0.498872727f}, std::array<float,2>{0.882009506f, 0.939565063f}, std::array<float,2>{0.227746263f, 0.0163097531f}, std::array<float,2>{0.00189035281f, 0.861184835f}, std::array<float,2>{0.84094888f, 0.230925158f}, std::array<float,2>{0.631462097f, 0.631656647f}, std::array<float,2>{0.323392004f, 0.292480707f}, std::array<float,2>{0.32844159f, 0.832742393f}, std::array<float,2>{0.654063225f, 0.200502753f}, std::array<float,2>{0.815662086f, 0.677662969f}, std::array<float,2>{0.026230149f, 0.251607537f}, std::array<float,2>{0.23485966f, 0.540784955f}, std::array<float,2>{0.895278811f, 0.452752739f}, std::array<float,2>{0.556323469f, 0.975746095f}, std::array<float,2>{0.466447115f, 0.0624607243f}, std::array<float,2>{0.417373478f, 0.721960008f}, std::array<float,2>{0.580501318f, 0.358514756f}, std::array<float,2>{0.969885588f, 0.751140714f}, std::array<float,2>{0.13960509f, 0.184898779f}, std::array<float,2>{0.0976536348f, 0.935384691f}, std::array<float,2>{0.791042089f, 0.106231242f}, std::array<float,2>{0.707222819f, 0.563218236f}, std::array<float,2>{0.310305506f, 0.38886717f}, std::array<float,2>{0.471097976f, 0.959272325f}, std::array<float,2>{0.522848964f, 0.0100175152f}, std::array<float,2>{0.937465906f, 0.526386499f}, std::array<float,2>{0.201062351f, 0.473651588f}, std::array<float,2>{0.0335000902f, 0.649883747f}, std::array<float,2>{0.861422658f, 0.306988239f}, std::array<float,2>{0.672160268f, 0.851811111f}, std::array<float,2>{0.36330542f, 0.247737333f}, std::array<float,2>{0.270524561f, 0.616956592f}, std::array<float,2>{0.741499364f, 0.422352105f}, std::array<float,2>{0.757476926f, 0.884384453f}, std::array<float,2>{0.0752856135f, 0.0865098983f}, std::array<float,2>{0.164638638f, 0.798295438f}, std::array<float,2>{0.953445911f, 0.142982394f}, std::array<float,2>{0.611236751f, 0.7140522f}, std::array<float,2>{0.401912212f, 0.334770769f}, std::array<float,2>{0.456785679f, 0.845959127f}, std::array<float,2>{0.548774183f, 0.236742005f}, std::array<float,2>{0.906124949f, 0.645016372f}, std::array<float,2>{0.247216299f, 0.297121167f}, std::array<float,2>{0.0186332762f, 0.521455884f}, std::array<float,2>{0.820503414f, 0.483213782f}, std::array<float,2>{0.647969484f, 0.964614511f}, std::array<float,2>{0.341244221f, 0.00703766989f}, std::array<float,2>{0.300442606f, 0.708853126f}, std::array<float,2>{0.714171648f, 0.336683929f}, std::array<float,2>{0.782289684f, 0.805131078f}, std::array<float,2>{0.10378255f, 0.150175452f}, std::array<float,2>{0.130413309f, 0.876098931f}, std::array<float,2>{0.978906691f, 0.0796626657f}, std::array<float,2>{0.587666929f, 0.619848907f}, std::array<float,2>{0.408110738f, 0.430996746f}, std::array<float,2>{0.372881621f, 0.981215894f}, std::array<float,2>{0.685108542f, 0.0485782996f}, std::array<float,2>{0.86902684f, 0.538853586f}, std::array<float,2>{0.0409852378f, 0.437981874f}, std::array<float,2>{0.191103056f, 0.685959399f}, std::array<float,2>{0.923702836f, 0.25822252f}, std::array<float,2>{0.531000912f, 0.838466465f}, std::array<float,2>{0.476581991f, 0.189940855f}, std::array<float,2>{0.394038647f, 0.57244885f}, std::array<float,2>{0.619686127f, 0.379205346f}, std::array<float,2>{0.968229949f, 0.923694015f}, std::array<float,2>{0.163026437f, 0.0972186103f}, std::array<float,2>{0.0633258596f, 0.759691834f}, std::array<float,2>{0.758160889f, 0.175669417f}, std::array<float,2>{0.743734419f, 0.727475345f}, std::array<float,2>{0.276968956f, 0.347549707f}, std::array<float,2>{0.260632962f, 0.791410863f}, std::array<float,2>{0.732619941f, 0.136104107f}, std::array<float,2>{0.779884219f, 0.690717041f}, std::array<float,2>{0.0922437757f, 0.321078092f}, std::array<float,2>{0.180165425f, 0.595752835f}, std::array<float,2>{0.950308859f, 0.419149637f}, std::array<float,2>{0.608852983f, 0.898931324f}, std::array<float,2>{0.378378928f, 0.0626559779f}, std::array<float,2>{0.489046544f, 0.640266478f}, std::array<float,2>{0.505960226f, 0.281565964f}, std::array<float,2>{0.909430146f, 0.867456853f}, std::array<float,2>{0.215183735f, 0.225080028f}, std::array<float,2>{0.0512568913f, 0.952142835f}, std::array<float,2>{0.852584362f, 0.0261850972f}, std::array<float,2>{0.669379473f, 0.506190658f}, std::array<float,2>{0.346361876f, 0.490257144f}, std::array<float,2>{0.422562838f, 0.916755021f}, std::array<float,2>{0.567850173f, 0.112469055f}, std::array<float,2>{0.990312338f, 0.580261409f}, std::array<float,2>{0.148441046f, 0.396834403f}, std::array<float,2>{0.117510639f, 0.740338445f}, std::array<float,2>{0.8050403f, 0.373200983f}, std::array<float,2>{0.695531726f, 0.77555865f}, std::array<float,2>{0.28504777f, 0.16322124f}, std::array<float,2>{0.312905639f, 0.55196476f}, std::array<float,2>{0.637534022f, 0.468462765f}, std::array<float,2>{0.834197521f, 0.99291271f}, std::array<float,2>{0.00935503468f, 0.0322534032f}, std::array<float,2>{0.222379774f, 0.824861526f}, std::array<float,2>{0.883929372f, 0.209078386f}, std::array<float,2>{0.540908754f, 0.664360583f}, std::array<float,2>{0.445280045f, 0.278517634f}, std::array<float,2>{0.419933856f, 0.872077525f}, std::array<float,2>{0.583411694f, 0.220103204f}, std::array<float,2>{0.976506412f, 0.635271728f}, std::array<float,2>{0.136235133f, 0.287481606f}, std::array<float,2>{0.101267755f, 0.501594901f}, std::array<float,2>{0.795985937f, 0.486474723f}, std::array<float,2>{0.706806123f, 0.948436439f}, std::array<float,2>{0.306047618f, 0.027985448f}, std::array<float,2>{0.333037674f, 0.69289583f}, std::array<float,2>{0.649003327f, 0.326423645f}, std::array<float,2>{0.818323553f, 0.79513377f}, std::array<float,2>{0.0301029757f, 0.138700619f}, std::array<float,2>{0.24117361f, 0.904692948f}, std::array<float,2>{0.892600358f, 0.0684049651f}, std::array<float,2>{0.562230349f, 0.59847635f}, std::array<float,2>{0.461802751f, 0.414188385f}, std::array<float,2>{0.26676023f, 0.99917978f}, std::array<float,2>{0.736239433f, 0.0365125872f}, std::array<float,2>{0.752402008f, 0.550041258f}, std::array<float,2>{0.0729930103f, 0.46284011f}, std::array<float,2>{0.16844593f, 0.669926584f}, std::array<float,2>{0.957750201f, 0.273631871f}, std::array<float,2>{0.615014374f, 0.822633624f}, std::array<float,2>{0.404354304f, 0.203353375f}, std::array<float,2>{0.476449668f, 0.582190335f}, std::array<float,2>{0.515876174f, 0.391273677f}, std::array<float,2>{0.933466971f, 0.921081901f}, std::array<float,2>{0.197520509f, 0.117073998f}, std::array<float,2>{0.0375053585f, 0.779318631f}, std::array<float,2>{0.863580704f, 0.158409312f}, std::array<float,2>{0.677223861f, 0.735497594f}, std::array<float,2>{0.363264382f, 0.369916946f}, std::array<float,2>{0.356669188f, 0.811058462f}, std::array<float,2>{0.658103824f, 0.154146075f}, std::array<float,2>{0.849123538f, 0.705216348f}, std::array<float,2>{0.0607155599f, 0.342667818f}, std::array<float,2>{0.208855093f, 0.623430669f}, std::array<float,2>{0.921558678f, 0.437359065f}, std::array<float,2>{0.51282239f, 0.880126894f}, std::array<float,2>{0.497568905f, 0.0843525901f}, std::array<float,2>{0.387857497f, 0.641146302f}, std::array<float,2>{0.593793035f, 0.303152919f}, std::array<float,2>{0.943304002f, 0.851056755f}, std::array<float,2>{0.176166356f, 0.241048992f}, std::array<float,2>{0.0823335499f, 0.968306065f}, std::array<float,2>{0.771966517f, 0.000499712361f}, std::array<float,2>{0.719528794f, 0.518684864f}, std::array<float,2>{0.252854466f, 0.480051339f}, std::array<float,2>{0.450187355f, 0.929620385f}, std::array<float,2>{0.533837676f, 0.0988567024f}, std::array<float,2>{0.878109932f, 0.575158656f}, std::array<float,2>{0.233924493f, 0.378825456f}, std::array<float,2>{0.00622655917f, 0.734175324f}, std::array<float,2>{0.839832723f, 0.349382013f}, std::array<float,2>{0.626664639f, 0.763363779f}, std::array<float,2>{0.327299207f, 0.178221658f}, std::array<float,2>{0.294166505f, 0.532191157f}, std::array<float,2>{0.691368639f, 0.443079531f}, std::array<float,2>{0.801068723f, 0.978314519f}, std::array<float,2>{0.115207925f, 0.0525341071f}, std::array<float,2>{0.145549566f, 0.841652274f}, std::array<float,2>{0.995151758f, 0.192844719f}, std::array<float,2>{0.575293243f, 0.680742025f}, std::array<float,2>{0.432790965f, 0.264670312f}, std::array<float,2>{0.48713398f, 0.756800413f}, std::array<float,2>{0.502816021f, 0.180264443f}, std::array<float,2>{0.911757827f, 0.725534141f}, std::array<float,2>{0.21401459f, 0.352505326f}, std::array<float,2>{0.0470804572f, 0.567166507f}, std::array<float,2>{0.856018066f, 0.385393292f}, std::array<float,2>{0.667665422f, 0.932548523f}, std::array<float,2>{0.351182848f, 0.104015902f}, std::array<float,2>{0.262398154f, 0.672114134f}, std::array<float,2>{0.728810012f, 0.253922284f}, std::array<float,2>{0.775889218f, 0.831051886f}, std::array<float,2>{0.087978825f, 0.19806461f}, std::array<float,2>{0.183606818f, 0.971968055f}, std::array<float,2>{0.946840763f, 0.0578945689f}, std::array<float,2>{0.602394402f, 0.545432508f}, std::array<float,2>{0.378922731f, 0.449032396f}, std::array<float,2>{0.320281029f, 0.889206409f}, std::array<float,2>{0.636117816f, 0.0926540941f}, std::array<float,2>{0.829740226f, 0.609613538f}, std::array<float,2>{0.013431685f, 0.428760529f}, std::array<float,2>{0.226336971f, 0.718098342f}, std::array<float,2>{0.888167441f, 0.330669552f}, std::array<float,2>{0.544079542f, 0.802525878f}, std::array<float,2>{0.438449234f, 0.145396054f}, std::array<float,2>{0.426527292f, 0.530081868f}, std::array<float,2>{0.565995216f, 0.471871167f}, std::array<float,2>{0.988183677f, 0.953769505f}, std::array<float,2>{0.154075906f, 0.0152695794f}, std::array<float,2>{0.122020103f, 0.856199801f}, std::array<float,2>{0.810954928f, 0.244288951f}, std::array<float,2>{0.699288428f, 0.652952313f}, std::array<float,2>{0.287190288f, 0.311337322f}, std::array<float,2>{0.30205375f, 0.816899002f}, std::array<float,2>{0.715417206f, 0.211100787f}, std::array<float,2>{0.788841844f, 0.659972787f}, std::array<float,2>{0.108305089f, 0.268463641f}, std::array<float,2>{0.128248945f, 0.558215678f}, std::array<float,2>{0.981210351f, 0.45584169f}, std::array<float,2>{0.592986941f, 0.989897013f}, std::array<float,2>{0.412608236f, 0.0432427004f}, std::array<float,2>{0.457676172f, 0.747030318f}, std::array<float,2>{0.552435815f, 0.362836719f}, std::array<float,2>{0.9011935f, 0.765975177f}, std::array<float,2>{0.244730368f, 0.168833092f}, std::array<float,2>{0.0215433259f, 0.907008886f}, std::array<float,2>{0.828122854f, 0.119796984f}, std::array<float,2>{0.644228816f, 0.592827022f}, std::array<float,2>{0.336289823f, 0.398789138f}, std::array<float,2>{0.397709638f, 0.943271518f}, std::array<float,2>{0.621740937f, 0.0206059571f}, std::array<float,2>{0.961049139f, 0.508057058f}, std::array<float,2>{0.158241421f, 0.495462596f}, std::array<float,2>{0.0670877099f, 0.626090586f}, std::array<float,2>{0.763817847f, 0.293207794f}, std::array<float,2>{0.746701598f, 0.86361903f}, std::array<float,2>{0.278777629f, 0.229350567f}, std::array<float,2>{0.369435728f, 0.606182694f}, std::array<float,2>{0.681493163f, 0.412095457f}, std::array<float,2>{0.874961913f, 0.891430676f}, std::array<float,2>{0.0445710458f, 0.0758327171f}, std::array<float,2>{0.193268493f, 0.785918653f}, std::array<float,2>{0.925913692f, 0.132461205f}, std::array<float,2>{0.52708143f, 0.701910496f}, std::array<float,2>{0.482254952f, 0.316703349f}, std::array<float,2>{0.378850937f, 0.790362537f}, std::array<float,2>{0.60929817f, 0.133150533f}, std::array<float,2>{0.950847745f, 0.688808322f}, std::array<float,2>{0.180329844f, 0.323990017f}, std::array<float,2>{0.0927595124f, 0.593977332f}, std::array<float,2>{0.779599786f, 0.421773791f}, std::array<float,2>{0.733036339f, 0.900911033f}, std::array<float,2>{0.260038167f, 0.0653600097f}, std::array<float,2>{0.34596023f, 0.637474895f}, std::array<float,2>{0.669644296f, 0.285003364f}, std::array<float,2>{0.853298664f, 0.870144129f}, std::array<float,2>{0.051702641f, 0.224293664f}, std::array<float,2>{0.215467453f, 0.950615346f}, std::array<float,2>{0.910004735f, 0.0253311992f}, std::array<float,2>{0.506493688f, 0.505136013f}, std::array<float,2>{0.488569438f, 0.488592297f}, std::array<float,2>{0.28435412f, 0.915992975f}, std::array<float,2>{0.695970297f, 0.111323066f}, std::array<float,2>{0.805516303f, 0.578748703f}, std::array<float,2>{0.118159622f, 0.394839913f}, std::array<float,2>{0.149105087f, 0.738891602f}, std::array<float,2>{0.990936995f, 0.372927725f}, std::array<float,2>{0.568022966f, 0.774240851f}, std::array<float,2>{0.421923071f, 0.160282135f}, std::array<float,2>{0.444419831f, 0.553099215f}, std::array<float,2>{0.540240347f, 0.466087103f}, std::array<float,2>{0.884311795f, 0.995962739f}, std::array<float,2>{0.22183679f, 0.0342938006f}, std::array<float,2>{0.00921876077f, 0.828055143f}, std::array<float,2>{0.834930301f, 0.20814988f}, std::array<float,2>{0.637096047f, 0.666648507f}, std::array<float,2>{0.313166738f, 0.279772282f}, std::array<float,2>{0.341686338f, 0.845157564f}, std::array<float,2>{0.647707701f, 0.234700739f}, std::array<float,2>{0.820905149f, 0.648318231f}, std::array<float,2>{0.0193005335f, 0.299225658f}, std::array<float,2>{0.247725859f, 0.522096395f}, std::array<float,2>{0.905430079f, 0.480767787f}, std::array<float,2>{0.548226357f, 0.961511314f}, std::array<float,2>{0.456262678f, 0.00402234541f}, std::array<float,2>{0.407296509f, 0.710412204f}, std::array<float,2>{0.587177098f, 0.338664353f}, std::array<float,2>{0.979359806f, 0.808397233f}, std::array<float,2>{0.130084708f, 0.151096404f}, std::array<float,2>{0.104142703f, 0.878363371f}, std::array<float,2>{0.783084631f, 0.0808997154f}, std::array<float,2>{0.714408875f, 0.617765069f}, std::array<float,2>{0.300108135f, 0.433098316f}, std::array<float,2>{0.477068096f, 0.984155297f}, std::array<float,2>{0.530447662f, 0.0496076085f}, std::array<float,2>{0.923337042f, 0.536599576f}, std::array<float,2>{0.190737456f, 0.439623058f}, std::array<float,2>{0.0401771367f, 0.68516767f}, std::array<float,2>{0.868376851f, 0.261496931f}, std::array<float,2>{0.684608281f, 0.836395621f}, std::array<float,2>{0.372412354f, 0.189239398f}, std::array<float,2>{0.276786983f, 0.570713878f}, std::array<float,2>{0.743636131f, 0.382625997f}, std::array<float,2>{0.758632958f, 0.925279796f}, std::array<float,2>{0.0627870709f, 0.0956088901f}, std::array<float,2>{0.162148952f, 0.761007667f}, std::array<float,2>{0.968345046f, 0.173581287f}, std::array<float,2>{0.619593918f, 0.728726447f}, std::array<float,2>{0.394172728f, 0.345370144f}, std::array<float,2>{0.466295183f, 0.835538626f}, std::array<float,2>{0.555942178f, 0.202737167f}, std::array<float,2>{0.894737244f, 0.679136038f}, std::array<float,2>{0.234917507f, 0.252654701f}, std::array<float,2>{0.0254957452f, 0.541979313f}, std::array<float,2>{0.816356897f, 0.44939819f}, std::array<float,2>{0.653327286f, 0.974551439f}, std::array<float,2>{0.328748137f, 0.0603811257f}, std::array<float,2>{0.309755206f, 0.719750643f}, std::array<float,2>{0.70778352f, 0.356366664f}, std::array<float,2>{0.791657746f, 0.753152132f}, std::array<float,2>{0.0968813226f, 0.186362535f}, std::array<float,2>{0.138852268f, 0.935719788f}, std::array<float,2>{0.970386982f, 0.107521862f}, std::array<float,2>{0.580648661f, 0.565712094f}, std::array<float,2>{0.417814732f, 0.387681723f}, std::array<float,2>{0.3638677f, 0.958367467f}, std::array<float,2>{0.672669172f, 0.00855880231f}, std::array<float,2>{0.861994624f, 0.52400279f}, std::array<float,2>{0.0337983295f, 0.475464642f}, std::array<float,2>{0.200268283f, 0.651807368f}, std::array<float,2>{0.936646879f, 0.304824114f}, std::array<float,2>{0.523179293f, 0.854314268f}, std::array<float,2>{0.471391946f, 0.248763576f}, std::array<float,2>{0.401521415f, 0.613463342f}, std::array<float,2>{0.610830188f, 0.425327957f}, std::array<float,2>{0.954086781f, 0.886072099f}, std::array<float,2>{0.164293766f, 0.0887828469f}, std::array<float,2>{0.0757485256f, 0.799872816f}, std::array<float,2>{0.757156968f, 0.1415921f}, std::array<float,2>{0.74203974f, 0.711627245f}, std::array<float,2>{0.271071881f, 0.332484752f}, std::array<float,2>{0.256258428f, 0.771497309f}, std::array<float,2>{0.725681961f, 0.164926305f}, std::array<float,2>{0.766383648f, 0.743806303f}, std::array<float,2>{0.0813604817f, 0.364183217f}, std::array<float,2>{0.172996446f, 0.586212635f}, std::array<float,2>{0.940663278f, 0.402659357f}, std::array<float,2>{0.599287629f, 0.910583079f}, std::array<float,2>{0.384273887f, 0.123580821f}, std::array<float,2>{0.493735343f, 0.663799763f}, std::array<float,2>{0.508289993f, 0.269931853f}, std::array<float,2>{0.914775372f, 0.816318631f}, std::array<float,2>{0.206234574f, 0.217944741f}, std::array<float,2>{0.0555047505f, 0.986733556f}, std::array<float,2>{0.847056866f, 0.0414342284f}, std::array<float,2>{0.663156688f, 0.560804188f}, std::array<float,2>{0.355421662f, 0.460777789f}, std::array<float,2>{0.434372783f, 0.896062195f}, std::array<float,2>{0.57254988f, 0.072213009f}, std::array<float,2>{0.997193635f, 0.601745546f}, std::array<float,2>{0.143654704f, 0.407911032f}, std::array<float,2>{0.111079723f, 0.69918853f}, std::array<float,2>{0.799104631f, 0.316135466f}, std::array<float,2>{0.695127487f, 0.784860492f}, std::array<float,2>{0.290999144f, 0.128372103f}, std::array<float,2>{0.323840499f, 0.515574038f}, std::array<float,2>{0.631141484f, 0.49693644f}, std::array<float,2>{0.841667831f, 0.938059926f}, std::array<float,2>{0.00110281678f, 0.0187396072f}, std::array<float,2>{0.228273407f, 0.863012791f}, std::array<float,2>{0.882459581f, 0.234278783f}, std::array<float,2>{0.536785603f, 0.630215704f}, std::array<float,2>{0.448457181f, 0.28965956f}, std::array<float,2>{0.403850228f, 0.821119428f}, std::array<float,2>{0.616049588f, 0.206932425f}, std::array<float,2>{0.959491253f, 0.669883907f}, std::array<float,2>{0.170421645f, 0.277012438f}, std::array<float,2>{0.0713521168f, 0.547058225f}, std::array<float,2>{0.750264645f, 0.464781135f}, std::array<float,2>{0.737139404f, 0.996506035f}, std::array<float,2>{0.268391222f, 0.0371719673f}, std::array<float,2>{0.360772878f, 0.736353636f}, std::array<float,2>{0.678578973f, 0.367857426f}, std::array<float,2>{0.866500556f, 0.779286504f}, std::array<float,2>{0.0352348983f, 0.156892031f}, std::array<float,2>{0.196260929f, 0.918817222f}, std::array<float,2>{0.930194974f, 0.114161462f}, std::array<float,2>{0.519527614f, 0.585183978f}, std::array<float,2>{0.472798884f, 0.392803758f}, std::array<float,2>{0.307740539f, 0.946276903f}, std::array<float,2>{0.70328331f, 0.0296325218f}, std::array<float,2>{0.793164372f, 0.503532648f}, std::array<float,2>{0.0981710181f, 0.486188531f}, std::array<float,2>{0.133781075f, 0.633261919f}, std::array<float,2>{0.972926199f, 0.287059724f}, std::array<float,2>{0.585187674f, 0.873167634f}, std::array<float,2>{0.419396847f, 0.222269386f}, std::array<float,2>{0.463051766f, 0.600844145f}, std::array<float,2>{0.559138894f, 0.417102575f}, std::array<float,2>{0.892319024f, 0.902390778f}, std::array<float,2>{0.238449544f, 0.0669826642f}, std::array<float,2>{0.0277437046f, 0.793059766f}, std::array<float,2>{0.818405688f, 0.137015045f}, std::array<float,2>{0.650988877f, 0.694563568f}, std::array<float,2>{0.335508853f, 0.326089382f}, std::array<float,2>{0.324626237f, 0.764560223f}, std::array<float,2>{0.627174318f, 0.176790535f}, std::array<float,2>{0.836771131f, 0.730789721f}, std::array<float,2>{0.00560027594f, 0.350217074f}, std::array<float,2>{0.231794238f, 0.576222122f}, std::array<float,2>{0.876663864f, 0.376409501f}, std::array<float,2>{0.531464219f, 0.927006483f}, std::array<float,2>{0.452980399f, 0.0997619256f}, std::array<float,2>{0.431488425f, 0.681906581f}, std::array<float,2>{0.57777679f, 0.262063891f}, std::array<float,2>{0.993125081f, 0.841905534f}, std::array<float,2>{0.148386657f, 0.193780527f}, std::array<float,2>{0.115418859f, 0.979890764f}, std::array<float,2>{0.803109407f, 0.0542180315f}, std::array<float,2>{0.68833226f, 0.533851743f}, std::array<float,2>{0.295560122f, 0.443541914f}, std::array<float,2>{0.499906331f, 0.881572187f}, std::array<float,2>{0.513783097f, 0.083254829f}, std::array<float,2>{0.919336081f, 0.62250942f}, std::array<float,2>{0.210355565f, 0.435325772f}, std::array<float,2>{0.0591307245f, 0.703177154f}, std::array<float,2>{0.850624204f, 0.340334117f}, std::array<float,2>{0.658299327f, 0.809796393f}, std::array<float,2>{0.358645558f, 0.154650137f}, std::array<float,2>{0.251819074f, 0.51575768f}, std::array<float,2>{0.721751213f, 0.478130072f}, std::array<float,2>{0.769783556f, 0.966464639f}, std::array<float,2>{0.0853745714f, 0.00355182006f}, std::array<float,2>{0.178987816f, 0.847864091f}, std::array<float,2>{0.944268465f, 0.239051014f}, std::array<float,2>{0.596658349f, 0.644007206f}, std::array<float,2>{0.389361739f, 0.302236527f}, std::array<float,2>{0.439521819f, 0.803854823f}, std::array<float,2>{0.545661867f, 0.146860659f}, std::array<float,2>{0.889155984f, 0.714927852f}, std::array<float,2>{0.22459273f, 0.32847479f}, std::array<float,2>{0.015274819f, 0.61257565f}, std::array<float,2>{0.831136703f, 0.425888091f}, std::array<float,2>{0.63432318f, 0.886876345f}, std::array<float,2>{0.316961735f, 0.0904507264f}, std::array<float,2>{0.285637707f, 0.655798018f}, std::array<float,2>{0.702926457f, 0.308918417f}, std::array<float,2>{0.809001207f, 0.857863426f}, std::array<float,2>{0.123700388f, 0.243997052f}, std::array<float,2>{0.155529916f, 0.95577389f}, std::array<float,2>{0.986169636f, 0.0118106399f}, std::array<float,2>{0.563669801f, 0.528891563f}, std::array<float,2>{0.428821564f, 0.470187664f}, std::array<float,2>{0.347974271f, 0.93009001f}, std::array<float,2>{0.664858758f, 0.101579174f}, std::array<float,2>{0.857995391f, 0.569884717f}, std::array<float,2>{0.0500170216f, 0.383568734f}, std::array<float,2>{0.21237047f, 0.724568307f}, std::array<float,2>{0.913944542f, 0.354549438f}, std::array<float,2>{0.500466049f, 0.754640996f}, std::array<float,2>{0.484790325f, 0.182282835f}, std::array<float,2>{0.382080883f, 0.54417491f}, std::array<float,2>{0.604900837f, 0.446435571f}, std::array<float,2>{0.94880569f, 0.968832433f}, std::array<float,2>{0.186855763f, 0.0553635545f}, std::array<float,2>{0.0871851519f, 0.829432845f}, std::array<float,2>{0.773723364f, 0.196559891f}, std::array<float,2>{0.727122664f, 0.675403416f}, std::array<float,2>{0.26368323f, 0.257318765f}, std::array<float,2>{0.281145215f, 0.866869867f}, std::array<float,2>{0.749967992f, 0.227648944f}, std::array<float,2>{0.762115777f, 0.627809644f}, std::array<float,2>{0.0690959543f, 0.296079755f}, std::array<float,2>{0.156801507f, 0.51167357f}, std::array<float,2>{0.963058531f, 0.492690355f}, std::array<float,2>{0.624281883f, 0.944124341f}, std::array<float,2>{0.394541711f, 0.0214890093f}, std::array<float,2>{0.482877284f, 0.699568033f}, std::array<float,2>{0.524041831f, 0.318980485f}, std::array<float,2>{0.929043233f, 0.78729713f}, std::array<float,2>{0.195237115f, 0.12921907f}, std::array<float,2>{0.046238035f, 0.892609477f}, std::array<float,2>{0.872938752f, 0.0770472363f}, std::array<float,2>{0.683465958f, 0.60781616f}, std::array<float,2>{0.368482679f, 0.412364572f}, std::array<float,2>{0.411866426f, 0.99202919f}, std::array<float,2>{0.590462863f, 0.0463270172f}, std::array<float,2>{0.982852817f, 0.55473578f}, std::array<float,2>{0.125937998f, 0.453865558f}, std::array<float,2>{0.106770918f, 0.65764451f}, std::array<float,2>{0.786016285f, 0.265802652f}, std::array<float,2>{0.717642069f, 0.818422794f}, std::array<float,2>{0.303310573f, 0.213725388f}, std::array<float,2>{0.338947564f, 0.590786636f}, std::array<float,2>{0.641962886f, 0.401963472f}, std::array<float,2>{0.825192809f, 0.909962356f}, std::array<float,2>{0.0211889651f, 0.117224567f}, std::array<float,2>{0.243993297f, 0.76797992f}, std::array<float,2>{0.900352836f, 0.17159231f}, std::array<float,2>{0.554007709f, 0.748848081f}, std::array<float,2>{0.459546387f, 0.35953021f}, std::array<float,2>{0.425477833f, 0.775994062f}, std::array<float,2>{0.569503665f, 0.163688883f}, std::array<float,2>{0.989646673f, 0.740912139f}, std::array<float,2>{0.151961848f, 0.373600453f}, std::array<float,2>{0.120100781f, 0.580705106f}, std::array<float,2>{0.807621777f, 0.397449613f}, std::array<float,2>{0.697779238f, 0.916201413f}, std::array<float,2>{0.2818425f, 0.113028511f}, std::array<float,2>{0.31451115f, 0.664911568f}, std::array<float,2>{0.640217304f, 0.27884227f}, std::array<float,2>{0.833508968f, 0.824463665f}, std::array<float,2>{0.011504868f, 0.209624335f}, std::array<float,2>{0.220496431f, 0.992412508f}, std::array<float,2>{0.885386586f, 0.0331671275f}, std::array<float,2>{0.541740239f, 0.552400768f}, std::array<float,2>{0.442015141f, 0.468143284f}, std::array<float,2>{0.257885844f, 0.898670912f}, std::array<float,2>{0.731381714f, 0.0634494796f}, std::array<float,2>{0.777604342f, 0.596300066f}, std::array<float,2>{0.091081731f, 0.419715434f}, std::array<float,2>{0.181753442f, 0.691275954f}, std::array<float,2>{0.952975333f, 0.320337802f}, std::array<float,2>{0.606252015f, 0.79186815f}, std::array<float,2>{0.375254124f, 0.136608377f}, std::array<float,2>{0.490534037f, 0.506579995f}, std::array<float,2>{0.504533887f, 0.49102819f}, std::array<float,2>{0.906480551f, 0.951416135f}, std::array<float,2>{0.21743992f, 0.0255964585f}, std::array<float,2>{0.0533746369f, 0.867845118f}, std::array<float,2>{0.855319798f, 0.225512102f}, std::array<float,2>{0.671391845f, 0.639696062f}, std::array<float,2>{0.345531613f, 0.282209873f}, std::array<float,2>{0.374823868f, 0.838288188f}, std::array<float,2>{0.6858899f, 0.190158471f}, std::array<float,2>{0.86994046f, 0.686273456f}, std::array<float,2>{0.0414038338f, 0.258555353f}, std::array<float,2>{0.187677965f, 0.538308203f}, std::array<float,2>{0.924170196f, 0.438256174f}, std::array<float,2>{0.528449178f, 0.980813146f}, std::array<float,2>{0.478680581f, 0.0478859618f}, std::array<float,2>{0.391775936f, 0.726705015f}, std::array<float,2>{0.618706286f, 0.346895754f}, std::array<float,2>{0.966769934f, 0.75891614f}, std::array<float,2>{0.160434738f, 0.175041631f}, std::array<float,2>{0.0646419004f, 0.92287004f}, std::array<float,2>{0.759977877f, 0.0969254002f}, std::array<float,2>{0.744585991f, 0.573168933f}, std::array<float,2>{0.27440235f, 0.379690737f}, std::array<float,2>{0.454834163f, 0.963964581f}, std::array<float,2>{0.549278975f, 0.00753859105f}, std::array<float,2>{0.903238177f, 0.520605564f}, std::array<float,2>{0.249816522f, 0.482465863f}, std::array<float,2>{0.0172228236f, 0.645401537f}, std::array<float,2>{0.823673368f, 0.297695965f}, std::array<float,2>{0.645728171f, 0.84619844f}, std::array<float,2>{0.342622727f, 0.236822888f}, std::array<float,2>{0.297126859f, 0.619271755f}, std::array<float,2>{0.712886095f, 0.431208134f}, std::array<float,2>{0.783203781f, 0.876560509f}, std::array<float,2>{0.103283465f, 0.079583995f}, std::array<float,2>{0.131785065f, 0.805333197f}, std::array<float,2>{0.977592051f, 0.149804145f}, std::array<float,2>{0.589431226f, 0.708185554f}, std::array<float,2>{0.409692258f, 0.336221725f}, std::array<float,2>{0.470170856f, 0.852446318f}, std::array<float,2>{0.521260083f, 0.247470096f}, std::array<float,2>{0.934459925f, 0.650369227f}, std::array<float,2>{0.201733321f, 0.307147086f}, std::array<float,2>{0.0325707197f, 0.527048409f}, std::array<float,2>{0.860729992f, 0.474395305f}, std::array<float,2>{0.675111175f, 0.95963335f}, std::array<float,2>{0.365423977f, 0.0104455324f}, std::array<float,2>{0.273330152f, 0.714462817f}, std::array<float,2>{0.740177214f, 0.334217459f}, std::array<float,2>{0.754070103f, 0.79864198f}, std::array<float,2>{0.0768844932f, 0.143131629f}, std::array<float,2>{0.16685456f, 0.883866727f}, std::array<float,2>{0.955545306f, 0.0862141997f}, std::array<float,2>{0.612103701f, 0.616665184f}, std::array<float,2>{0.399402291f, 0.422838062f}, std::array<float,2>{0.330831707f, 0.976090491f}, std::array<float,2>{0.654514194f, 0.0615309179f}, std::array<float,2>{0.812983274f, 0.540175736f}, std::array<float,2>{0.0251521599f, 0.452401012f}, std::array<float,2>{0.237663165f, 0.676796138f}, std::array<float,2>{0.897848368f, 0.251401454f}, std::array<float,2>{0.556662977f, 0.832143247f}, std::array<float,2>{0.46815896f, 0.201130062f}, std::array<float,2>{0.415822208f, 0.562979817f}, std::array<float,2>{0.579529762f, 0.389484882f}, std::array<float,2>{0.971089005f, 0.934681833f}, std::array<float,2>{0.138429418f, 0.105654269f}, std::array<float,2>{0.0950267762f, 0.751803756f}, std::array<float,2>{0.789573133f, 0.185071751f}, std::array<float,2>{0.709367871f, 0.722558618f}, std::array<float,2>{0.312294543f, 0.358964026f}, std::array<float,2>{0.291875273f, 0.782690167f}, std::array<float,2>{0.691766858f, 0.125374466f}, std::array<float,2>{0.797203183f, 0.696053147f}, std::array<float,2>{0.111537285f, 0.313051522f}, std::array<float,2>{0.141047597f, 0.605078936f}, std::array<float,2>{0.999276698f, 0.409468055f}, std::array<float,2>{0.572204471f, 0.898358405f}, std::array<float,2>{0.437375754f, 0.0726688802f}, std::array<float,2>{0.446247339f, 0.631320655f}, std::array<float,2>{0.538727939f, 0.292034656f}, std::array<float,2>{0.880714834f, 0.860595942f}, std::array<float,2>{0.229197159f, 0.231378615f}, std::array<float,2>{0.00298855361f, 0.940421343f}, std::array<float,2>{0.842499495f, 0.0159182306f}, std::array<float,2>{0.630254805f, 0.511929989f}, std::array<float,2>{0.322112978f, 0.498396337f}, std::array<float,2>{0.386508644f, 0.913596213f}, std::array<float,2>{0.601125419f, 0.121888638f}, std::array<float,2>{0.937906623f, 0.589751899f}, std::array<float,2>{0.174792081f, 0.405503154f}, std::array<float,2>{0.0789716542f, 0.745087206f}, std::array<float,2>{0.76832968f, 0.366603166f}, std::array<float,2>{0.724151969f, 0.770256996f}, std::array<float,2>{0.254637748f, 0.166096076f}, std::array<float,2>{0.352758765f, 0.559072256f}, std::array<float,2>{0.660648942f, 0.458933085f}, std::array<float,2>{0.843922198f, 0.985217333f}, std::array<float,2>{0.0585144721f, 0.040460173f}, std::array<float,2>{0.203162938f, 0.814444125f}, std::array<float,2>{0.917029083f, 0.215588182f}, std::array<float,2>{0.510443389f, 0.66073662f}, std::array<float,2>{0.494281173f, 0.272004366f}, std::array<float,2>{0.389658123f, 0.850231111f}, std::array<float,2>{0.597402155f, 0.241485104f}, std::array<float,2>{0.944676995f, 0.642121732f}, std::array<float,2>{0.178433552f, 0.304427534f}, std::array<float,2>{0.0849258304f, 0.517691195f}, std::array<float,2>{0.770588815f, 0.479079694f}, std::array<float,2>{0.720943451f, 0.96737963f}, std::array<float,2>{0.250396103f, 0.00166133582f}, std::array<float,2>{0.358091652f, 0.706145465f}, std::array<float,2>{0.659846544f, 0.34325552f}, std::array<float,2>{0.849812627f, 0.812494099f}, std::array<float,2>{0.0598543882f, 0.153196707f}, std::array<float,2>{0.209756896f, 0.879797161f}, std::array<float,2>{0.918660641f, 0.0855960846f}, std::array<float,2>{0.514801264f, 0.624480665f}, std::array<float,2>{0.498890996f, 0.435654312f}, std::array<float,2>{0.296813756f, 0.976734638f}, std::array<float,2>{0.688859582f, 0.0517518669f}, std::array<float,2>{0.804295838f, 0.533172309f}, std::array<float,2>{0.116844505f, 0.441765815f}, std::array<float,2>{0.146960989f, 0.679880202f}, std::array<float,2>{0.993843019f, 0.264255792f}, std::array<float,2>{0.576753438f, 0.840420306f}, std::array<float,2>{0.429911315f, 0.19163847f}, std::array<float,2>{0.451436162f, 0.575748682f}, std::array<float,2>{0.532495201f, 0.377210557f}, std::array<float,2>{0.875197291f, 0.927951813f}, std::array<float,2>{0.230921254f, 0.0985286087f}, std::array<float,2>{0.00405143527f, 0.762690485f}, std::array<float,2>{0.837195456f, 0.179062843f}, std::array<float,2>{0.628375769f, 0.732574582f}, std::array<float,2>{0.326145321f, 0.347857386f}, std::array<float,2>{0.334215492f, 0.796111703f}, std::array<float,2>{0.651896536f, 0.14026162f}, std::array<float,2>{0.819698036f, 0.692304015f}, std::array<float,2>{0.0289969407f, 0.327814728f}, std::array<float,2>{0.239555955f, 0.599588037f}, std::array<float,2>{0.891345263f, 0.415864944f}, std::array<float,2>{0.560465276f, 0.905346096f}, std::array<float,2>{0.464332461f, 0.0702067241f}, std::array<float,2>{0.418668181f, 0.635760188f}, std::array<float,2>{0.58405292f, 0.288302571f}, std::array<float,2>{0.973861814f, 0.871196866f}, std::array<float,2>{0.133896589f, 0.219103888f}, std::array<float,2>{0.0990633443f, 0.947925508f}, std::array<float,2>{0.794568598f, 0.0289363526f}, std::array<float,2>{0.704239905f, 0.500894487f}, std::array<float,2>{0.307373285f, 0.488082439f}, std::array<float,2>{0.474317014f, 0.920696735f}, std::array<float,2>{0.51803565f, 0.115710102f}, std::array<float,2>{0.931139588f, 0.583477736f}, std::array<float,2>{0.196607724f, 0.392001629f}, std::array<float,2>{0.0367599875f, 0.734595239f}, std::array<float,2>{0.865429878f, 0.370542645f}, std::array<float,2>{0.679192066f, 0.780359089f}, std::array<float,2>{0.360078365f, 0.159521386f}, std::array<float,2>{0.269049764f, 0.549705029f}, std::array<float,2>{0.737885177f, 0.461237371f}, std::array<float,2>{0.75099349f, 0.998722553f}, std::array<float,2>{0.0703311488f, 0.0355375186f}, std::array<float,2>{0.171159953f, 0.823920727f}, std::array<float,2>{0.960278511f, 0.204634607f}, std::array<float,2>{0.61690414f, 0.670956314f}, std::array<float,2>{0.402633965f, 0.275307626f}, std::array<float,2>{0.460508734f, 0.767347157f}, std::array<float,2>{0.553284287f, 0.169838592f}, std::array<float,2>{0.898883641f, 0.747972906f}, std::array<float,2>{0.242837399f, 0.361744702f}, std::array<float,2>{0.020109864f, 0.592214286f}, std::array<float,2>{0.825978339f, 0.400000632f}, std::array<float,2>{0.641169131f, 0.907957852f}, std::array<float,2>{0.338389069f, 0.120753251f}, std::array<float,2>{0.304224432f, 0.658327699f}, std::array<float,2>{0.718384624f, 0.268789887f}, std::array<float,2>{0.786804318f, 0.818213046f}, std::array<float,2>{0.105584458f, 0.211919844f}, std::array<float,2>{0.126405969f, 0.988664865f}, std::array<float,2>{0.984186053f, 0.0441602021f}, std::array<float,2>{0.591079473f, 0.557421148f}, std::array<float,2>{0.410847664f, 0.456826061f}, std::array<float,2>{0.367342472f, 0.891691446f}, std::array<float,2>{0.681674421f, 0.0742577985f}, std::array<float,2>{0.871178269f, 0.607119024f}, std::array<float,2>{0.0451921523f, 0.410568416f}, std::array<float,2>{0.193712875f, 0.70241183f}, std::array<float,2>{0.928512275f, 0.317787528f}, std::array<float,2>{0.525297701f, 0.786999345f}, std::array<float,2>{0.484244853f, 0.130868495f}, std::array<float,2>{0.396461457f, 0.509276032f}, std::array<float,2>{0.623287976f, 0.494598389f}, std::array<float,2>{0.964082897f, 0.941571832f}, std::array<float,2>{0.158075899f, 0.0199701898f}, std::array<float,2>{0.0698464662f, 0.86491698f}, std::array<float,2>{0.76353848f, 0.2303859f}, std::array<float,2>{0.748867869f, 0.62545836f}, std::array<float,2>{0.279554754f, 0.29463926f}, std::array<float,2>{0.264651209f, 0.831514955f}, std::array<float,2>{0.727549016f, 0.198613122f}, std::array<float,2>{0.774636447f, 0.673717916f}, std::array<float,2>{0.0862419903f, 0.255529583f}, std::array<float,2>{0.186307624f, 0.546760261f}, std::array<float,2>{0.947301626f, 0.44773677f}, std::array<float,2>{0.604035556f, 0.971630096f}, std::array<float,2>{0.381102294f, 0.0572090186f}, std::array<float,2>{0.485887617f, 0.725654483f}, std::array<float,2>{0.501226723f, 0.352716446f}, std::array<float,2>{0.91220963f, 0.757316709f}, std::array<float,2>{0.211354703f, 0.180761799f}, std::array<float,2>{0.0493744537f, 0.933120251f}, std::array<float,2>{0.85928905f, 0.104709566f}, std::array<float,2>{0.665451765f, 0.567606032f}, std::array<float,2>{0.349337071f, 0.386220604f}, std::array<float,2>{0.428266406f, 0.954907656f}, std::array<float,2>{0.562573254f, 0.0138804009f}, std::array<float,2>{0.984694242f, 0.530667663f}, std::array<float,2>{0.15501155f, 0.47121951f}, std::array<float,2>{0.124854296f, 0.65396893f}, std::array<float,2>{0.810066462f, 0.311923683f}, std::array<float,2>{0.701197624f, 0.85740298f}, std::array<float,2>{0.286919534f, 0.245463073f}, std::array<float,2>{0.318200797f, 0.610485256f}, std::array<float,2>{0.633490801f, 0.428332597f}, std::array<float,2>{0.830783606f, 0.889798343f}, std::array<float,2>{0.0142585272f, 0.0929040834f}, std::array<float,2>{0.222728401f, 0.801641524f}, std::array<float,2>{0.890334487f, 0.145801038f}, std::array<float,2>{0.546371639f, 0.717639565f}, std::array<float,2>{0.441330999f, 0.331793129f}, std::array<float,2>{0.408313543f, 0.807496965f}, std::array<float,2>{0.588174939f, 0.15173997f}, std::array<float,2>{0.977411389f, 0.709938884f}, std::array<float,2>{0.13184464f, 0.339600027f}, std::array<float,2>{0.102380551f, 0.618583739f}, std::array<float,2>{0.784325004f, 0.431737155f}, std::array<float,2>{0.711120725f, 0.877203941f}, std::array<float,2>{0.298820674f, 0.0812735111f}, std::array<float,2>{0.34282431f, 0.646565259f}, std::array<float,2>{0.645421565f, 0.300713956f}, std::array<float,2>{0.823117137f, 0.844503939f}, std::array<float,2>{0.01612233f, 0.235623196f}, std::array<float,2>{0.248229399f, 0.96244812f}, std::array<float,2>{0.904260218f, 0.00531441532f}, std::array<float,2>{0.550636172f, 0.522517443f}, std::array<float,2>{0.454081684f, 0.481713027f}, std::array<float,2>{0.274805248f, 0.924239218f}, std::array<float,2>{0.746059179f, 0.0945355818f}, std::array<float,2>{0.761021852f, 0.572173953f}, std::array<float,2>{0.0661041215f, 0.380863279f}, std::array<float,2>{0.161739036f, 0.730189502f}, std::array<float,2>{0.965245545f, 0.344266862f}, std::array<float,2>{0.618030667f, 0.759864509f}, std::array<float,2>{0.390953213f, 0.172317266f}, std::array<float,2>{0.480030894f, 0.535433888f}, std::array<float,2>{0.527410209f, 0.441294074f}, std::array<float,2>{0.925355375f, 0.982480049f}, std::array<float,2>{0.188745528f, 0.049943056f}, std::array<float,2>{0.042523209f, 0.837571561f}, std::array<float,2>{0.870565057f, 0.18840532f}, std::array<float,2>{0.686630905f, 0.684368432f}, std::array<float,2>{0.373066932f, 0.260244429f}, std::array<float,2>{0.344169647f, 0.869583249f}, std::array<float,2>{0.670511782f, 0.223104954f}, std::array<float,2>{0.854348361f, 0.638121426f}, std::array<float,2>{0.0539767221f, 0.283248127f}, std::array<float,2>{0.217966557f, 0.504079282f}, std::array<float,2>{0.907533526f, 0.489364356f}, std::array<float,2>{0.505183756f, 0.949689448f}, std::array<float,2>{0.491545856f, 0.0238004792f}, std::array<float,2>{0.37657693f, 0.687957346f}, std::array<float,2>{0.606722116f, 0.322975218f}, std::array<float,2>{0.951300144f, 0.789741457f}, std::array<float,2>{0.183118567f, 0.13463971f}, std::array<float,2>{0.0905439332f, 0.901910603f}, std::array<float,2>{0.778589785f, 0.0658864379f}, std::array<float,2>{0.732284188f, 0.595582962f}, std::array<float,2>{0.259225309f, 0.420154363f}, std::array<float,2>{0.443262994f, 0.994144201f}, std::array<float,2>{0.542149246f, 0.0340421237f}, std::array<float,2>{0.885818899f, 0.554585516f}, std::array<float,2>{0.219546646f, 0.4652147f}, std::array<float,2>{0.0104943439f, 0.66701138f}, std::array<float,2>{0.832277238f, 0.280827492f}, std::array<float,2>{0.639040351f, 0.826775312f}, std::array<float,2>{0.315617174f, 0.207846642f}, std::array<float,2>{0.282740712f, 0.579623461f}, std::array<float,2>{0.698351085f, 0.395860672f}, std::array<float,2>{0.806834996f, 0.914440811f}, std::array<float,2>{0.120997936f, 0.109925926f}, std::array<float,2>{0.150987774f, 0.775096416f}, std::array<float,2>{0.989002168f, 0.161979526f}, std::array<float,2>{0.568921506f, 0.739679039f}, std::array<float,2>{0.424762696f, 0.372016519f}, std::array<float,2>{0.495315373f, 0.814735889f}, std::array<float,2>{0.510780752f, 0.217585593f}, std::array<float,2>{0.916455388f, 0.662729025f}, std::array<float,2>{0.204339057f, 0.271125525f}, std::array<float,2>{0.0575501844f, 0.56206274f}, std::array<float,2>{0.845073402f, 0.45965147f}, std::array<float,2>{0.661668658f, 0.987887204f}, std::array<float,2>{0.352392167f, 0.0423837863f}, std::array<float,2>{0.255326957f, 0.743100584f}, std::array<float,2>{0.723082066f, 0.364912182f}, std::array<float,2>{0.768623829f, 0.773227274f}, std::array<float,2>{0.0799219161f, 0.165252209f}, std::array<float,2>{0.175281823f, 0.911273837f}, std::array<float,2>{0.939232111f, 0.124942362f}, std::array<float,2>{0.600392878f, 0.587219477f}, std::array<float,2>{0.384778559f, 0.40402627f}, std::array<float,2>{0.320987761f, 0.939052761f}, std::array<float,2>{0.629823983f, 0.0182402041f}, std::array<float,2>{0.84319675f, 0.514451802f}, std::array<float,2>{0.00280778063f, 0.497558594f}, std::array<float,2>{0.229902878f, 0.62965858f}, std::array<float,2>{0.87926966f, 0.290852726f}, std::array<float,2>{0.537235439f, 0.861890376f}, std::array<float,2>{0.446671307f, 0.232769579f}, std::array<float,2>{0.435684741f, 0.603318214f}, std::array<float,2>{0.570667624f, 0.407086462f}, std::array<float,2>{0.998182595f, 0.895146132f}, std::array<float,2>{0.142434463f, 0.0704170689f}, std::array<float,2>{0.113228723f, 0.783447087f}, std::array<float,2>{0.798729241f, 0.127422988f}, std::array<float,2>{0.692883551f, 0.697469354f}, std::array<float,2>{0.29258737f, 0.315378696f}, std::array<float,2>{0.31089139f, 0.75218606f}, std::array<float,2>{0.710238099f, 0.187406346f}, std::array<float,2>{0.790383339f, 0.718969643f}, std::array<float,2>{0.0941190347f, 0.356580973f}, std::array<float,2>{0.137164518f, 0.565262377f}, std::array<float,2>{0.97192955f, 0.388366371f}, std::array<float,2>{0.578302801f, 0.936893165f}, std::array<float,2>{0.414548934f, 0.10842973f}, std::array<float,2>{0.466852844f, 0.678225517f}, std::array<float,2>{0.55831778f, 0.253055453f}, std::array<float,2>{0.896835268f, 0.834346533f}, std::array<float,2>{0.236373484f, 0.201298118f}, std::array<float,2>{0.0239528958f, 0.973473907f}, std::array<float,2>{0.814046502f, 0.0593678616f}, std::array<float,2>{0.656199217f, 0.542828381f}, std::array<float,2>{0.331385016f, 0.450331807f}, std::array<float,2>{0.400104493f, 0.885331988f}, std::array<float,2>{0.612646043f, 0.0889476016f}, std::array<float,2>{0.956905007f, 0.61471504f}, std::array<float,2>{0.167967901f, 0.424786359f}, std::array<float,2>{0.0779289678f, 0.711937666f}, std::array<float,2>{0.75506562f, 0.333100438f}, std::array<float,2>{0.738632023f, 0.798879683f}, std::array<float,2>{0.272358805f, 0.142196298f}, std::array<float,2>{0.366694659f, 0.524802685f}, std::array<float,2>{0.67419976f, 0.476016313f}, std::array<float,2>{0.859767973f, 0.957613766f}, std::array<float,2>{0.0319541432f, 0.00949833728f}, std::array<float,2>{0.20251675f, 0.854949594f}, std::array<float,2>{0.935220242f, 0.249536306f}, std::array<float,2>{0.519920766f, 0.651003659f}, std::array<float,2>{0.469016373f, 0.306267351f}, std::array<float,2>{0.431893528f, 0.84303534f}, std::array<float,2>{0.574488163f, 0.19511655f}, std::array<float,2>{0.994472742f, 0.683241367f}, std::array<float,2>{0.145323426f, 0.263209403f}, std::array<float,2>{0.113679551f, 0.534366846f}, std::array<float,2>{0.802688539f, 0.444409758f}, std::array<float,2>{0.689529419f, 0.979463935f}, std::array<float,2>{0.293560863f, 0.0529296026f}, std::array<float,2>{0.326399714f, 0.732195556f}, std::array<float,2>{0.625711799f, 0.351348966f}, std::array<float,2>{0.838037729f, 0.765330136f}, std::array<float,2>{0.00766497944f, 0.1763293f}, std::array<float,2>{0.232501775f, 0.926323175f}, std::array<float,2>{0.877000391f, 0.101289779f}, std::array<float,2>{0.534378529f, 0.577462316f}, std::array<float,2>{0.451153964f, 0.375522345f}, std::array<float,2>{0.25385052f, 0.964892328f}, std::array<float,2>{0.719763041f, 0.00203259452f}, std::array<float,2>{0.772541404f, 0.516986787f}, std::array<float,2>{0.0838040486f, 0.477050245f}, std::array<float,2>{0.176996112f, 0.643315911f}, std::array<float,2>{0.942036092f, 0.30124414f}, std::array<float,2>{0.594816625f, 0.848947108f}, std::array<float,2>{0.387545437f, 0.239636987f}, std::array<float,2>{0.496590585f, 0.621590734f}, std::array<float,2>{0.51269412f, 0.434066653f}, std::array<float,2>{0.920871496f, 0.882615089f}, std::array<float,2>{0.207784846f, 0.0821063593f}, std::array<float,2>{0.0620933063f, 0.809179366f}, std::array<float,2>{0.8483513f, 0.156143472f}, std::array<float,2>{0.656649888f, 0.704276979f}, std::array<float,2>{0.356379658f, 0.340893388f}, std::array<float,2>{0.361847997f, 0.777512193f}, std::array<float,2>{0.676086783f, 0.157739282f}, std::array<float,2>{0.864738643f, 0.738080561f}, std::array<float,2>{0.0389008857f, 0.368809015f}, std::array<float,2>{0.198501855f, 0.58412993f}, std::array<float,2>{0.932431042f, 0.394269615f}, std::array<float,2>{0.517438471f, 0.919331729f}, std::array<float,2>{0.475232601f, 0.114298426f}, std::array<float,2>{0.405715048f, 0.668854773f}, std::array<float,2>{0.613960922f, 0.276344925f}, std::array<float,2>{0.958323658f, 0.821301937f}, std::array<float,2>{0.169432744f, 0.205607951f}, std::array<float,2>{0.07420066f, 0.997756958f}, std::array<float,2>{0.753714621f, 0.0388533771f}, std::array<float,2>{0.734925091f, 0.548770308f}, std::array<float,2>{0.266512752f, 0.463367343f}, std::array<float,2>{0.462454647f, 0.903802395f}, std::array<float,2>{0.561323524f, 0.0682739466f}, std::array<float,2>{0.89428246f, 0.600013494f}, std::array<float,2>{0.241373107f, 0.416052669f}, std::array<float,2>{0.0309173521f, 0.693426371f}, std::array<float,2>{0.816516399f, 0.325108886f}, std::array<float,2>{0.650036335f, 0.794245362f}, std::array<float,2>{0.332497805f, 0.13795948f}, std::array<float,2>{0.305008262f, 0.502345502f}, std::array<float,2>{0.705753088f, 0.485310823f}, std::array<float,2>{0.795371056f, 0.946624279f}, std::array<float,2>{0.0999370068f, 0.0308481976f}, std::array<float,2>{0.135384202f, 0.874824882f}, std::array<float,2>{0.975065887f, 0.221597537f}, std::array<float,2>{0.582721472f, 0.634201348f}, std::array<float,2>{0.421603769f, 0.285169184f}, std::array<float,2>{0.481379122f, 0.788141131f}, std::array<float,2>{0.525799453f, 0.130581334f}, std::array<float,2>{0.927231371f, 0.70065403f}, std::array<float,2>{0.192216441f, 0.320240468f}, std::array<float,2>{0.0437896587f, 0.609248817f}, std::array<float,2>{0.874019682f, 0.413163364f}, std::array<float,2>{0.679774642f, 0.894099295f}, std::array<float,2>{0.370740861f, 0.0774086416f}, std::array<float,2>{0.277864248f, 0.628020823f}, std::array<float,2>{0.747541666f, 0.295747548f}, std::array<float,2>{0.765019834f, 0.866005838f}, std::array<float,2>{0.0679436028f, 0.226970911f}, std::array<float,2>{0.159423068f, 0.944930136f}, std::array<float,2>{0.962380707f, 0.022803193f}, std::array<float,2>{0.622223258f, 0.509984016f}, std::array<float,2>{0.397001445f, 0.493384004f}, std::array<float,2>{0.337547153f, 0.908848464f}, std::array<float,2>{0.642719269f, 0.118584655f}, std::array<float,2>{0.826847494f, 0.591222048f}, std::array<float,2>{0.0230418872f, 0.401286781f}, std::array<float,2>{0.245804191f, 0.749181628f}, std::array<float,2>{0.902316809f, 0.360858619f}, std::array<float,2>{0.551057339f, 0.768942714f}, std::array<float,2>{0.458525449f, 0.170575082f}, std::array<float,2>{0.413203984f, 0.556516767f}, std::array<float,2>{0.592729151f, 0.454637289f}, std::array<float,2>{0.98179549f, 0.990763485f}, std::array<float,2>{0.127101973f, 0.0457284674f}, std::array<float,2>{0.108483583f, 0.820075095f}, std::array<float,2>{0.787363112f, 0.214504197f}, std::array<float,2>{0.715934217f, 0.656334698f}, std::array<float,2>{0.301701456f, 0.267211348f}, std::array<float,2>{0.288283587f, 0.859234929f}, std::array<float,2>{0.700766325f, 0.242834374f}, std::array<float,2>{0.811552644f, 0.655181646f}, std::array<float,2>{0.122880101f, 0.310191602f}, std::array<float,2>{0.152613655f, 0.52780515f}, std::array<float,2>{0.986617565f, 0.468921125f}, std::array<float,2>{0.564770877f, 0.956129432f}, std::array<float,2>{0.427685142f, 0.0127791492f}, std::array<float,2>{0.438770324f, 0.716731787f}, std::array<float,2>{0.543034792f, 0.329321414f}, std::array<float,2>{0.887491405f, 0.803433597f}, std::array<float,2>{0.224723458f, 0.147611767f}, std::array<float,2>{0.0125314975f, 0.888538718f}, std::array<float,2>{0.828488171f, 0.0914451629f}, std::array<float,2>{0.6350227f, 0.612102866f}, std::array<float,2>{0.3185727f, 0.427342445f}, std::array<float,2>{0.380687892f, 0.970373809f}, std::array<float,2>{0.602720857f, 0.0562855937f}, std::array<float,2>{0.946052909f, 0.543598831f}, std::array<float,2>{0.185465813f, 0.445483446f}, std::array<float,2>{0.0889889672f, 0.674784958f}, std::array<float,2>{0.776984036f, 0.256630361f}, std::array<float,2>{0.730171919f, 0.828941941f}, std::array<float,2>{0.263482511f, 0.19593358f}, std::array<float,2>{0.350383282f, 0.569254816f}, std::array<float,2>{0.666885078f, 0.384536088f}, std::array<float,2>{0.856630981f, 0.931080043f}, std::array<float,2>{0.0484970286f, 0.102783501f}, std::array<float,2>{0.213109821f, 0.755273819f}, std::array<float,2>{0.910926044f, 0.183078542f}, std::array<float,2>{0.503188789f, 0.722662926f}, std::array<float,2>{0.487633616f, 0.354286462f}, std::array<float,2>{0.392963767f, 0.758478642f}, std::array<float,2>{0.62100327f, 0.174324006f}, std::array<float,2>{0.967209756f, 0.727678239f}, std::array<float,2>{0.163459599f, 0.346135557f}, std::array<float,2>{0.0640544444f, 0.573661745f}, std::array<float,2>{0.759039462f, 0.380764127f}, std::array<float,2>{0.742651641f, 0.921921015f}, std::array<float,2>{0.275970757f, 0.0959455818f}, std::array<float,2>{0.371285349f, 0.686601877f}, std::array<float,2>{0.683625102f, 0.258908361f}, std::array<float,2>{0.867949367f, 0.839382112f}, std::array<float,2>{0.0394759849f, 0.191319078f}, std::array<float,2>{0.190137938f, 0.981585801f}, std::array<float,2>{0.921922386f, 0.0476316884f}, std::array<float,2>{0.52980423f, 0.538014889f}, std::array<float,2>{0.478118151f, 0.43894574f}, std::array<float,2>{0.299307853f, 0.875792086f}, std::array<float,2>{0.71373409f, 0.0781665891f}, std::array<float,2>{0.781802952f, 0.620604038f}, std::array<float,2>{0.104969606f, 0.430193484f}, std::array<float,2>{0.129495412f, 0.707542658f}, std::array<float,2>{0.979883671f, 0.337006509f}, std::array<float,2>{0.586863756f, 0.806612909f}, std::array<float,2>{0.406490266f, 0.148683012f}, std::array<float,2>{0.456021667f, 0.520471156f}, std::array<float,2>{0.547751307f, 0.484305054f}, std::array<float,2>{0.90512687f, 0.963278472f}, std::array<float,2>{0.246704742f, 0.00667117722f}, std::array<float,2>{0.0180723909f, 0.847625971f}, std::array<float,2>{0.821733117f, 0.237655252f}, std::array<float,2>{0.646802187f, 0.645800173f}, std::array<float,2>{0.340561658f, 0.29875949f}, std::array<float,2>{0.313714623f, 0.825974643f}, std::array<float,2>{0.638294518f, 0.210664615f}, std::array<float,2>{0.835040867f, 0.665191293f}, std::array<float,2>{0.00855642278f, 0.277401179f}, std::array<float,2>{0.221063837f, 0.551338911f}, std::array<float,2>{0.883177221f, 0.466885298f}, std::array<float,2>{0.539307714f, 0.99341476f}, std::array<float,2>{0.443431258f, 0.0321873426f}, std::array<float,2>{0.423138022f, 0.741447806f}, std::array<float,2>{0.567139983f, 0.374124229f}, std::array<float,2>{0.99171108f, 0.77723074f}, std::array<float,2>{0.150121823f, 0.162229016f}, std::array<float,2>{0.118529759f, 0.917436957f}, std::array<float,2>{0.806106031f, 0.112202436f}, std::array<float,2>{0.69683212f, 0.581237316f}, std::array<float,2>{0.283376515f, 0.398288637f}, std::array<float,2>{0.490107536f, 0.952600658f}, std::array<float,2>{0.507113993f, 0.026937779f}, std::array<float,2>{0.908851683f, 0.507128298f}, std::array<float,2>{0.21602793f, 0.491575032f}, std::array<float,2>{0.0522372983f, 0.638748109f}, std::array<float,2>{0.851749599f, 0.282386214f}, std::array<float,2>{0.667997777f, 0.868321717f}, std::array<float,2>{0.346898168f, 0.225687757f}, std::array<float,2>{0.261611968f, 0.596848369f}, std::array<float,2>{0.73414433f, 0.418123543f}, std::array<float,2>{0.781115055f, 0.900331318f}, std::array<float,2>{0.093295902f, 0.0641842112f}, std::array<float,2>{0.180690169f, 0.792435467f}, std::array<float,2>{0.949932516f, 0.135623023f}, std::array<float,2>{0.607915521f, 0.689680159f}, std::array<float,2>{0.377427846f, 0.322155356f}, std::array<float,2>{0.447753131f, 0.860022902f}, std::array<float,2>{0.535184443f, 0.231692702f}, std::array<float,2>{0.881603479f, 0.632484078f}, std::array<float,2>{0.226691589f, 0.291740268f}, std::array<float,2>{0.000370884605f, 0.5127545f}, std::array<float,2>{0.840553463f, 0.499308407f}, std::array<float,2>{0.632302821f, 0.94048214f}, std::array<float,2>{0.323186129f, 0.0170011651f}, std::array<float,2>{0.289489895f, 0.697196841f}, std::array<float,2>{0.693827331f, 0.314235836f}, std::array<float,2>{0.800329506f, 0.781408191f}, std::array<float,2>{0.109588124f, 0.126737133f}, std::array<float,2>{0.142955676f, 0.897396743f}, std::array<float,2>{0.996101618f, 0.0739929453f}, std::array<float,2>{0.574115396f, 0.604478419f}, std::array<float,2>{0.434720725f, 0.408972919f}, std::array<float,2>{0.353975743f, 0.986008048f}, std::array<float,2>{0.662354648f, 0.0395469405f}, std::array<float,2>{0.845856786f, 0.560233176f}, std::array<float,2>{0.0556917451f, 0.457083076f}, std::array<float,2>{0.205255151f, 0.661179662f}, std::array<float,2>{0.915353537f, 0.273012012f}, std::array<float,2>{0.509259999f, 0.81342262f}, std::array<float,2>{0.492432594f, 0.216023371f}, std::array<float,2>{0.383761495f, 0.587902248f}, std::array<float,2>{0.597772956f, 0.404593438f}, std::array<float,2>{0.940387845f, 0.913030744f}, std::array<float,2>{0.172063813f, 0.122950569f}, std::array<float,2>{0.0808824524f, 0.770782769f}, std::array<float,2>{0.766876638f, 0.167362213f}, std::array<float,2>{0.725536287f, 0.745843649f}, std::array<float,2>{0.257352769f, 0.365554661f}, std::array<float,2>{0.269785047f, 0.797463536f}, std::array<float,2>{0.740984261f, 0.144070804f}, std::array<float,2>{0.756677449f, 0.713508904f}, std::array<float,2>{0.0749332905f, 0.33589384f}, std::array<float,2>{0.165997028f, 0.615666151f}, std::array<float,2>{0.954616129f, 0.423597008f}, std::array<float,2>{0.609913111f, 0.883545101f}, std::array<float,2>{0.400723934f, 0.0874790177f}, std::array<float,2>{0.472297162f, 0.648561001f}, std::array<float,2>{0.522265017f, 0.307907641f}, std::array<float,2>{0.935745358f, 0.853369415f}, std::array<float,2>{0.19934319f, 0.246876791f}, std::array<float,2>{0.0345808268f, 0.960715711f}, std::array<float,2>{0.862619042f, 0.0109427599f}, std::array<float,2>{0.673530996f, 0.525599718f}, std::array<float,2>{0.365111172f, 0.473147482f}, std::array<float,2>{0.416992158f, 0.934325576f}, std::array<float,2>{0.581542492f, 0.106640384f}, std::array<float,2>{0.96940583f, 0.563605368f}, std::array<float,2>{0.140212789f, 0.390095264f}, std::array<float,2>{0.096392706f, 0.721104443f}, std::array<float,2>{0.79268688f, 0.357698679f}, std::array<float,2>{0.708065033f, 0.750505567f}, std::array<float,2>{0.30928424f, 0.184020296f}, std::array<float,2>{0.329709262f, 0.539556623f}, std::array<float,2>{0.65301764f, 0.451826185f}, std::array<float,2>{0.814564943f, 0.975010157f}, std::array<float,2>{0.0267291255f, 0.0610029921f}, std::array<float,2>{0.235713214f, 0.833980739f}, std::array<float,2>{0.895558238f, 0.199434459f}, std::array<float,2>{0.555389762f, 0.676100671f}, std::array<float,2>{0.465560883f, 0.250514925f}}
49.006592
51
0.734725
st-ario
2542029350b0b404fbb1ac81123e1b99e37bef78
1,206
hpp
C++
src/utils/io.hpp
aligungr/ue-ran-sim
564f9d228723f03adfa2b02df2ea019bdf305085
[ "MIT" ]
16
2020-04-16T02:07:37.000Z
2020-07-23T10:48:27.000Z
src/utils/io.hpp
aligungr/ue-ran-sim
564f9d228723f03adfa2b02df2ea019bdf305085
[ "MIT" ]
8
2020-07-13T17:11:35.000Z
2020-08-03T16:46:31.000Z
src/utils/io.hpp
aligungr/ue-ran-sim
564f9d228723f03adfa2b02df2ea019bdf305085
[ "MIT" ]
9
2020-03-04T15:05:08.000Z
2020-07-30T06:18:18.000Z
// // This file is a part of UERANSIM open source project. // Copyright (c) 2021 ALİ GÜNGÖR. // // The software and all associated files are licensed under GPL-3.0 // and subject to the terms and conditions defined in LICENSE file. // #pragma once #include <string> #include <vector> namespace io { void CreateDirectory(const std::string &path); bool Exists(const std::string &path); std::string ReadAllText(const std::string &file); void WriteAllText(const std::string &path, const std::string &content); void RelaxPermissions(const std::string &path); bool Remove(const std::string &path); std::vector<std::string> GetEntries(const std::string &path); std::vector<std::string> GetAllEntries(const std::string &path); void PreOrderEntries(const std::string &root, std::vector<std::string> &visitor); bool IsDirectory(const std::string &path); bool IsRegularFile(const std::string &path); std::string GetStem(const std::string &path); void AppendPath(std::string &source, const std::string &target); std::string GetIp4OfInterface(const std::string &ifName); std::string GetIp6OfInterface(const std::string &ifName); std::string GetHostByName(const std::string& name); } // namespace io
24.12
81
0.740464
aligungr
25434081e9cb5acc2e145d1a614574615f6f255f
136
cpp
C++
cpp/pb_large_map/LargeMap.cpp
patrit/playground
6ace43f81123a06e9b5820e1f75e5a9af0cb37b9
[ "MIT" ]
null
null
null
cpp/pb_large_map/LargeMap.cpp
patrit/playground
6ace43f81123a06e9b5820e1f75e5a9af0cb37b9
[ "MIT" ]
null
null
null
cpp/pb_large_map/LargeMap.cpp
patrit/playground
6ace43f81123a06e9b5820e1f75e5a9af0cb37b9
[ "MIT" ]
null
null
null
#include "LargeMap.hpp" LargeMap::Map LargeMap::_map{ {"foo", {{"bar42", 42}, {"bar43", 43}, } }, };
13.6
29
0.426471
patrit
25452d7b66752b9252960b9985a8b6186e1030b4
1,095
hpp
C++
src/engine/mapset.hpp
eXl-Nic/eXl
a5a0f77f47db3179365c107a184bb38b80280279
[ "MIT" ]
null
null
null
src/engine/mapset.hpp
eXl-Nic/eXl
a5a0f77f47db3179365c107a184bb38b80280279
[ "MIT" ]
null
null
null
src/engine/mapset.hpp
eXl-Nic/eXl
a5a0f77f47db3179365c107a184bb38b80280279
[ "MIT" ]
null
null
null
#pragma once #include <dunatk/map/map.hpp> #include <dunatk/map/tile.hpp> #include <dunatk/map/tileblock.hpp> namespace eXl { class MapSet : public HeapObject { MapSet(); public: IntrusivePtr<SpriteDesc const> texFloor; IntrusivePtr<SpriteDesc const> texFloorBorder; IntrusivePtr<SpriteDesc const> texFloorIntCorner; IntrusivePtr<SpriteDesc const> texFloorExtCorner; IntrusivePtr<SpriteDesc const> texWall; IntrusivePtr<SpriteDesc const> texFill; IntrusivePtr<SpriteDesc const> texIntCorner; IntrusivePtr<SpriteDesc const> texExtCorner; TileLoc locFloor; TileLoc locFloorBorder; TileLoc locFloorIntCorner; TileLoc locFloorExtCorner; TileLoc locWall; TileLoc locWallIntCorner; TileLoc locWallExtCorner; TileLoc locFill; Tile_OLD tileFloor; Tile_OLD tileFloorBorder; Tile_OLD tileFloorIntCorner; Tile_OLD tileFloorExtCorner; Tile_OLD tileWall; Tile_OLD tileWallIntCorner; Tile_OLD tileWallExtCorner; Tile_OLD tileFill; public: Old::TileSet mapSet; static MapSet& Get(); }; }
24.886364
53
0.742466
eXl-Nic
8584124fdaa67095b42aa00325694a65e9782bcb
5,735
cpp
C++
cocos2dx_playground/Classes/step_rain_of_chaos_game_test_ActorMoveScene.cpp
R2Road/cocos2dx_playground
6e6f349b5c9fc702558fe8720ba9253a8ba00164
[ "Apache-2.0" ]
9
2020-06-11T17:09:44.000Z
2021-12-25T00:34:33.000Z
cocos2dx_playground/Classes/step_rain_of_chaos_game_test_ActorMoveScene.cpp
R2Road/cocos2dx_playground
6e6f349b5c9fc702558fe8720ba9253a8ba00164
[ "Apache-2.0" ]
9
2019-12-21T15:01:01.000Z
2020-12-05T15:42:43.000Z
cocos2dx_playground/Classes/step_rain_of_chaos_game_test_ActorMoveScene.cpp
R2Road/cocos2dx_playground
6e6f349b5c9fc702558fe8720ba9253a8ba00164
[ "Apache-2.0" ]
1
2020-09-07T01:32:16.000Z
2020-09-07T01:32:16.000Z
#include "step_rain_of_chaos_game_test_ActorMoveScene.h" #include <new> #include <numeric> #include "2d/CCLabel.h" #include "2d/CCLayer.h" #include "base/CCDirector.h" #include "base/CCEventDispatcher.h" #include "base/CCEventListenerKeyboard.h" #include "base/ccUTF8.h" #include "cpg_SStream.h" #include "cpg_StringTable.h" #include "step_mole_CircleCollisionComponentConfig.h" #include "step_rain_of_chaos_game_PlayerNode.h" USING_NS_CC; namespace { const int TAG_PlayerNode = 20140416; const int TAG_MoveSpeedNode = 20160528; } namespace step_rain_of_chaos { namespace game_test { ActorMoveScene::ActorMoveScene( const helper::FuncSceneMover& back_to_the_previous_scene_callback ) : helper::BackToThePreviousScene( back_to_the_previous_scene_callback ) , mKeyboardListener( nullptr ) , mKeyCodeCollector() , mMoveSpeed( 150.f ) {} Scene* ActorMoveScene::create( const helper::FuncSceneMover& back_to_the_previous_scene_callback ) { auto ret = new ( std::nothrow ) ActorMoveScene( back_to_the_previous_scene_callback ); if( !ret || !ret->init() ) { delete ret; ret = nullptr; } else { ret->autorelease(); } return ret; } bool ActorMoveScene::init() { if( !Scene::init() ) { return false; } schedule( schedule_selector( ActorMoveScene::UpdateForInput ) ); const auto visibleSize = _director->getVisibleSize(); const auto visibleOrigin = _director->getVisibleOrigin(); // // Summury // { std::stringstream ss; ss << "+ " << getTitle(); ss << cpg::linefeed; ss << cpg::linefeed; ss << "[ESC] : Return to Root"; ss << cpg::linefeed; ss << cpg::linefeed; ss << "[1] : Move Speed Up"; ss << cpg::linefeed; ss << "[2] : Move Speed Down"; ss << cpg::linefeed; ss << cpg::linefeed; ss << "[Arrow Key] : Move"; auto label = Label::createWithTTF( ss.str(), cpg::StringTable::GetFontPath(), 9, Size::ZERO, TextHAlignment::LEFT ); label->setAnchorPoint( Vec2( 0.f, 1.f ) ); label->setPosition( Vec2( visibleOrigin.x , visibleOrigin.y + visibleSize.height ) ); addChild( label, std::numeric_limits<int>::max() ); } // // Background // { auto background_layer = LayerColor::create( Color4B( 63, 23, 14, 255 ) ); addChild( background_layer, std::numeric_limits<int>::min() ); } // // Current Life Time // { auto label = Label::createWithTTF( "", cpg::StringTable::GetFontPath(), 12, Size::ZERO, TextHAlignment::LEFT ); label->setTag( TAG_MoveSpeedNode ); label->setAnchorPoint( Vec2( 1.f, 1.f ) ); label->setColor( Color3B::GREEN ); label->setPosition( Vec2( visibleOrigin.x + visibleSize.width , visibleOrigin.y + visibleSize.height ) ); addChild( label, std::numeric_limits<int>::max() ); updateMoveSpeedView(); } // // Player Node // { auto player_node = game::PlayerNode::create( 5.f, game::PlayerNode::DebugConfig{ true }, step_mole::CircleCollisionComponentConfig{ true, true, true } ); player_node->setTag( TAG_PlayerNode ); player_node->setPosition( Vec2( static_cast<int>( visibleOrigin.x + ( visibleSize.width * 0.5f ) ) , static_cast<int>( visibleOrigin.y + ( visibleSize.height * 0.5f ) ) ) ); addChild( player_node ); } return true; } void ActorMoveScene::onEnter() { Scene::onEnter(); assert( !mKeyboardListener ); mKeyboardListener = EventListenerKeyboard::create(); mKeyboardListener->onKeyPressed = CC_CALLBACK_2( ActorMoveScene::onKeyPressed, this ); mKeyboardListener->onKeyReleased = CC_CALLBACK_2( ActorMoveScene::onKeyReleased, this ); getEventDispatcher()->addEventListenerWithSceneGraphPriority( mKeyboardListener, this ); } void ActorMoveScene::onExit() { assert( mKeyboardListener ); getEventDispatcher()->removeEventListener( mKeyboardListener ); mKeyboardListener = nullptr; Scene::onExit(); } void ActorMoveScene::UpdateForInput( float delta_time ) { Vec2 move_vector; if( mKeyCodeCollector.isActiveKey( EventKeyboard::KeyCode::KEY_UP_ARROW ) ) { move_vector.y += 1.f; } if( mKeyCodeCollector.isActiveKey( EventKeyboard::KeyCode::KEY_DOWN_ARROW ) ) { move_vector.y -= 1.f; } if( mKeyCodeCollector.isActiveKey( EventKeyboard::KeyCode::KEY_RIGHT_ARROW ) ) { move_vector.x += 1.f; } if( mKeyCodeCollector.isActiveKey( EventKeyboard::KeyCode::KEY_LEFT_ARROW ) ) { move_vector.x -= 1.f; } if( 0.f != move_vector.x || 0.f != move_vector.y ) { move_vector.normalize(); move_vector.scale( mMoveSpeed * delta_time ); auto animation_node = getChildByTag( TAG_PlayerNode ); animation_node->setPosition( animation_node->getPosition() + move_vector ); updateMoveSpeedView(); } } void ActorMoveScene::onKeyPressed( EventKeyboard::KeyCode keycode, Event* /*event*/ ) { if( EventKeyboard::KeyCode::KEY_ESCAPE == keycode ) { helper::BackToThePreviousScene::MoveBack(); return; } if( EventKeyboard::KeyCode::KEY_1 == keycode ) { mMoveSpeed += 1.f; updateMoveSpeedView(); } if( EventKeyboard::KeyCode::KEY_2 == keycode ) { mMoveSpeed = std::max( 1.f, mMoveSpeed - 1.f ); updateMoveSpeedView(); } mKeyCodeCollector.onKeyPressed( keycode ); } void ActorMoveScene::onKeyReleased( EventKeyboard::KeyCode keycode, Event* /*event*/ ) { mKeyCodeCollector.onKeyReleased( keycode ); } void ActorMoveScene::updateMoveSpeedView() { auto label = static_cast<Label*>( getChildByTag( TAG_MoveSpeedNode ) ); label->setString( StringUtils::format( "Move Speed : %.2f", mMoveSpeed ) ); } } }
26.068182
157
0.668178
R2Road
8587631e041c8479eaedc531b415d9a88ae52421
2,957
cpp
C++
src/io/serialPort.cpp
oblaser/omw
3206f5faf8ec26c63004de358235ba7efbd10c4f
[ "MIT" ]
null
null
null
src/io/serialPort.cpp
oblaser/omw
3206f5faf8ec26c63004de358235ba7efbd10c4f
[ "MIT" ]
null
null
null
src/io/serialPort.cpp
oblaser/omw
3206f5faf8ec26c63004de358235ba7efbd10c4f
[ "MIT" ]
null
null
null
/* author Oliver Blaser date 17.12.2021 copyright MIT - Copyright (c) 2021 Oliver Blaser */ #include <algorithm> #include <string> #include <vector> #include "omw/defs.h" #include "omw/io/serialPort.h" #include "omw/string.h" #include "omw/windows/windows.h" namespace { #ifdef OMW_PLAT_WIN bool isCom0com(const std::string& device) { const omw::string tmpDevice = (omw::string(device)).toLower_asciiExt(); const std::vector<omw::string> info = omw::windows::queryDosDevice(device); for (size_t i = 0; i < info.size(); ++i) { const omw::string tmpInfo = info[i].toLower_asciiExt(); if (tmpInfo.contains("com0com") && !tmpDevice.contains("com0com#port#")) { return true; } } return false; } #endif // OMW_PLAT_WIN } #ifndef OMWi_SERIAL_PORT_PREVIEW omw::SerialPort::SerialPort() { } #endif std::vector<omw::string> omw::getSerialPortList(bool onlyCOMx) { std::vector<omw::string> serialPorts; #ifdef OMW_PLAT_WIN const std::vector<omw::string> devices = omw::windows::getAllDosDevices(); for (size_t i = 0; i < devices.size(); ++i) { bool isC0C = false; if (!onlyCOMx) isC0C = ::isCom0com(devices[i]); if ((devices[i].compare(0, 3, "COM") == 0) || (!onlyCOMx && isC0C)) { serialPorts.push_back(devices[i]); } } #endif // OMW_PLAT_WIN return serialPorts; } void omw::sortSerialPortList(std::vector<omw::string>& ports) { #ifdef OMW_PLAT_WIN #if /*simple*/ 0 std::sort(ports.begin(), ports.end()); #else const char* const comStr = "COM"; std::vector<int> comPorts; std::vector<omw::string> otherPorts; for (size_t i = 0; i < ports.size(); ++i) { try { omw::string port = ports[i]; if (port.compare(0, 3, comStr) == 0) { const omw::string intStr = port.substr(3); if (omw::isUInteger(intStr)) comPorts.push_back(std::stoi(intStr)); else throw (-1); } else throw (-1); } catch (...) { otherPorts.push_back(ports[i]); } } std::sort(comPorts.begin(), comPorts.end()); std::sort(otherPorts.begin(), otherPorts.end()); ports.clear(); ports.reserve(comPorts.size() + otherPorts.size()); for (size_t i = 0; i < comPorts.size(); ++i) { ports.push_back(comStr + std::to_string(comPorts[i])); } for (size_t i = 0; i < otherPorts.size(); ++i) { ports.push_back(otherPorts[i]); } #endif #else // OMW_PLAT_WIN std::sort(ports.begin(), ports.end()); #endif // OMW_PLAT_WIN } void omw::sortSerialPortList(std::vector<std::string>& ports) { omw::stringVector_t tmpPorts = omw::stringVector(ports); omw::sortSerialPortList(tmpPorts); ports = omw::stdStringVector(tmpPorts); }
22.233083
84
0.578627
oblaser
858b3f66f848eea4e5fe243506ea4b0584394681
531
cpp
C++
Source/URoboViz/Private/Controllers/RobotController.cpp
HoangGiang93/URoboViz
dcaab223c30827977d15300f7ae4b19ba0ddfa4f
[ "MIT" ]
null
null
null
Source/URoboViz/Private/Controllers/RobotController.cpp
HoangGiang93/URoboViz
dcaab223c30827977d15300f7ae4b19ba0ddfa4f
[ "MIT" ]
null
null
null
Source/URoboViz/Private/Controllers/RobotController.cpp
HoangGiang93/URoboViz
dcaab223c30827977d15300f7ae4b19ba0ddfa4f
[ "MIT" ]
null
null
null
// Copyright (c) 2022, Hoang Giang Nguyen - Institute for Artificial Intelligence, University Bremen #include "Controllers/RobotController.h" #include "Animation/SkeletalMeshActor.h" DEFINE_LOG_CATEGORY_STATIC(LogRobotController, Log, All); URobotController::URobotController() { } void URobotController::Init(ASkeletalMeshActor *InOwner) { if (InOwner == nullptr) { UE_LOG(LogRobotController, Error, TEXT("Owner of %s is nullptr"), *GetName()) return; } SetOwner(InOwner); Init(); }
22.125
101
0.709981
HoangGiang93
858d1219e9e1be331ca432ebb6a99d65c36bf1a1
2,023
cpp
C++
android/app/src/cpp/src/base/tools/Timer.cpp
FlameSalamander/react-native-xmrig
6a6e3b301bd78b88459989f334d759f65e434082
[ "MIT" ]
28
2021-05-11T03:28:57.000Z
2022-03-09T14:34:57.000Z
android/app/src/cpp/src/base/tools/Timer.cpp
FlameSalamander/react-native-xmrig
6a6e3b301bd78b88459989f334d759f65e434082
[ "MIT" ]
10
2021-05-16T19:50:31.000Z
2022-01-30T03:56:45.000Z
android/app/src/cpp/src/base/tools/Timer.cpp
FlameSalamander/react-native-xmrig
6a6e3b301bd78b88459989f334d759f65e434082
[ "MIT" ]
12
2021-07-19T22:14:58.000Z
2022-02-08T02:24:05.000Z
/* XMRig * Copyright 2018-2020 SChernykh <https://github.com/SChernykh> * Copyright 2016-2020 XMRig <https://github.com/xmrig>, <[email protected]> * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "base/tools/Timer.h" #include "base/kernel/interfaces/ITimerListener.h" #include "base/tools/Handle.h" xmrig::Timer::Timer(ITimerListener *listener) : m_listener(listener) { init(); } xmrig::Timer::Timer(ITimerListener *listener, uint64_t timeout, uint64_t repeat) : m_listener(listener) { init(); start(timeout, repeat); } xmrig::Timer::~Timer() { Handle::close(m_timer); } uint64_t xmrig::Timer::repeat() const { return uv_timer_get_repeat(m_timer); } void xmrig::Timer::setRepeat(uint64_t repeat) { uv_timer_set_repeat(m_timer, repeat); } void xmrig::Timer::singleShot(uint64_t timeout, int id) { m_id = id; stop(); start(timeout, 0); } void xmrig::Timer::start(uint64_t timeout, uint64_t repeat) { uv_timer_start(m_timer, onTimer, timeout, repeat); } void xmrig::Timer::stop() { setRepeat(0); uv_timer_stop(m_timer); } void xmrig::Timer::init() { m_timer = new uv_timer_t; m_timer->data = this; uv_timer_init(uv_default_loop(), m_timer); } void xmrig::Timer::onTimer(uv_timer_t *handle) { const auto timer = static_cast<Timer *>(handle->data); timer->m_listener->onTimer(timer); }
21.521277
82
0.695502
FlameSalamander
859144fe3502ca1d0a582301f21ac43a1abcc4b9
4,268
hpp
C++
include/codegen/include/System/DateTimeResult.hpp
Futuremappermydud/Naluluna-Modifier-Quest
bfda34370764b275d90324b3879f1a429a10a873
[ "MIT" ]
1
2021-11-12T09:29:31.000Z
2021-11-12T09:29:31.000Z
include/codegen/include/System/DateTimeResult.hpp
Futuremappermydud/Naluluna-Modifier-Quest
bfda34370764b275d90324b3879f1a429a10a873
[ "MIT" ]
null
null
null
include/codegen/include/System/DateTimeResult.hpp
Futuremappermydud/Naluluna-Modifier-Quest
bfda34370764b275d90324b3879f1a429a10a873
[ "MIT" ]
2
2021-10-03T02:14:20.000Z
2021-11-12T09:29:36.000Z
// Autogenerated from CppHeaderCreator // Created by Sc2ad // ========================================================================= #pragma once #pragma pack(push, 8) // Begin includes #include "extern/beatsaber-hook/shared/utils/typedefs.h" // Including type: System.ValueType #include "System/ValueType.hpp" // Including type: System.ParseFlags #include "System/ParseFlags.hpp" // Including type: System.TimeSpan #include "System/TimeSpan.hpp" // Including type: System.DateTime #include "System/DateTime.hpp" // Including type: System.ParseFailureKind #include "System/ParseFailureKind.hpp" // Completed includes // Begin forward declares // Forward declaring namespace: System::Globalization namespace System::Globalization { // Forward declaring type: Calendar class Calendar; } // Completed forward declares // Type namespace: System namespace System { // Autogenerated type: System.DateTimeResult struct DateTimeResult : public System::ValueType { public: // System.Int32 Year // Offset: 0x0 int Year; // System.Int32 Month // Offset: 0x4 int Month; // System.Int32 Day // Offset: 0x8 int Day; // System.Int32 Hour // Offset: 0xC int Hour; // System.Int32 Minute // Offset: 0x10 int Minute; // System.Int32 Second // Offset: 0x14 int Second; // System.Double fraction // Offset: 0x18 double fraction; // System.Int32 era // Offset: 0x20 int era; // System.ParseFlags flags // Offset: 0x24 System::ParseFlags flags; // System.TimeSpan timeZoneOffset // Offset: 0x28 System::TimeSpan timeZoneOffset; // System.Globalization.Calendar calendar // Offset: 0x30 System::Globalization::Calendar* calendar; // System.DateTime parsedDate // Offset: 0x38 System::DateTime parsedDate; // System.ParseFailureKind failure // Offset: 0x40 System::ParseFailureKind failure; // System.String failureMessageID // Offset: 0x48 ::Il2CppString* failureMessageID; // System.Object failureMessageFormatArgument // Offset: 0x50 ::Il2CppObject* failureMessageFormatArgument; // System.String failureArgumentName // Offset: 0x58 ::Il2CppString* failureArgumentName; // Creating value type constructor for type: DateTimeResult DateTimeResult(int Year_ = {}, int Month_ = {}, int Day_ = {}, int Hour_ = {}, int Minute_ = {}, int Second_ = {}, double fraction_ = {}, int era_ = {}, System::ParseFlags flags_ = {}, System::TimeSpan timeZoneOffset_ = {}, System::Globalization::Calendar* calendar_ = {}, System::DateTime parsedDate_ = {}, System::ParseFailureKind failure_ = {}, ::Il2CppString* failureMessageID_ = {}, ::Il2CppObject* failureMessageFormatArgument_ = {}, ::Il2CppString* failureArgumentName_ = {}) : Year{Year_}, Month{Month_}, Day{Day_}, Hour{Hour_}, Minute{Minute_}, Second{Second_}, fraction{fraction_}, era{era_}, flags{flags_}, timeZoneOffset{timeZoneOffset_}, calendar{calendar_}, parsedDate{parsedDate_}, failure{failure_}, failureMessageID{failureMessageID_}, failureMessageFormatArgument{failureMessageFormatArgument_}, failureArgumentName{failureArgumentName_} {} // System.Void Init() // Offset: 0xA2CEB0 void Init(); // System.Void SetDate(System.Int32 year, System.Int32 month, System.Int32 day) // Offset: 0xA2CED0 void SetDate(int year, int month, int day); // System.Void SetFailure(System.ParseFailureKind failure, System.String failureMessageID, System.Object failureMessageFormatArgument) // Offset: 0xA2CEDC void SetFailure(System::ParseFailureKind failure, ::Il2CppString* failureMessageID, ::Il2CppObject* failureMessageFormatArgument); // System.Void SetFailure(System.ParseFailureKind failure, System.String failureMessageID, System.Object failureMessageFormatArgument, System.String failureArgumentName) // Offset: 0xA2CF18 void SetFailure(System::ParseFailureKind failure, ::Il2CppString* failureMessageID, ::Il2CppObject* failureMessageFormatArgument, ::Il2CppString* failureArgumentName); }; // System.DateTimeResult } #include "extern/beatsaber-hook/shared/utils/il2cpp-type-check.hpp" DEFINE_IL2CPP_ARG_TYPE(System::DateTimeResult, "System", "DateTimeResult"); #pragma pack(pop)
43.55102
862
0.714855
Futuremappermydud
85930680ecaf000349ed02a841828353c188a384
10,830
cc
C++
Third-party/Sokol/src/d3d11/imgui-d3d11.cc
VLiance/Demos
fa8435c2fa0f46e1324a71501fdf646326936148
[ "Unlicense" ]
null
null
null
Third-party/Sokol/src/d3d11/imgui-d3d11.cc
VLiance/Demos
fa8435c2fa0f46e1324a71501fdf646326936148
[ "Unlicense" ]
null
null
null
Third-party/Sokol/src/d3d11/imgui-d3d11.cc
VLiance/Demos
fa8435c2fa0f46e1324a71501fdf646326936148
[ "Unlicense" ]
null
null
null
//------------------------------------------------------------------------------ // imgui-d3d11.cc // Dear ImGui integration sample with D3D11 backend. //------------------------------------------------------------------------------ #include "d3d11entry.h" #define SOKOL_IMPL #define SOKOL_D3D11 #define SOKOL_D3D11_SHADER_COMPILER #define SOKOL_LOG(s) OutputDebugStringA(s) #include "sokol_gfx.h" #include "sokol_time.h" #include "imgui.h" const int Width = 1024; const int Height = 768; const int MaxVertices = (1<<16); const int MaxIndices = MaxVertices * 3; uint64_t last_time = 0; bool show_test_window = true; bool show_another_window = false; sg_draw_state draw_state = { }; sg_pass_action pass_action = { }; ImDrawVert vertices[MaxVertices]; uint16_t indices[MaxIndices]; typedef struct { ImVec2 disp_size; } vs_params_t; void imgui_draw_cb(ImDrawData*); int WINAPI WinMain(_In_ HINSTANCE hInstance, _In_opt_ HINSTANCE hPrevInstance, _In_ LPSTR lpCmdLine, _In_ int nCmdShow) { // setup d3d11 app wrapper, sokol_gfx, sokol_time d3d11_init(Width, Height, 1, L"Sokol Dear ImGui D3D11"); sg_desc desc = { }; desc.d3d11_device = d3d11_device(); desc.d3d11_device_context = d3d11_device_context(); desc.d3d11_render_target_view_cb = d3d11_render_target_view; desc.d3d11_depth_stencil_view_cb = d3d11_depth_stencil_view; sg_setup(&desc); stm_setup(); // input forwarding d3d11_mouse_pos([] (float x, float y) { ImGui::GetIO().MousePos = ImVec2(x, y); }); d3d11_mouse_btn_down([] (int btn) { ImGui::GetIO().MouseDown[btn] = true; }); d3d11_mouse_btn_up([] (int btn) { ImGui::GetIO().MouseDown[btn] = false; }); d3d11_mouse_wheel([](float v) { ImGui::GetIO().MouseWheel = v; }); d3d11_char([] (wchar_t c) { ImGui::GetIO().AddInputCharacter(c); }); d3d11_key_down([] (int key) { if (key < 512) ImGui::GetIO().KeysDown[key] = true; }); d3d11_key_up([] (int key) { if (key < 512) ImGui::GetIO().KeysDown[key] = false; }); // setup Dear Imgui ImGui::CreateContext(); ImGui::StyleColorsDark(); ImGuiIO& io = ImGui::GetIO(); io.IniFilename = nullptr; io.RenderDrawListsFn = imgui_draw_cb; io.Fonts->AddFontDefault(); io.KeyMap[ImGuiKey_Tab] = VK_TAB; io.KeyMap[ImGuiKey_LeftArrow] = VK_LEFT; io.KeyMap[ImGuiKey_RightArrow] = VK_RIGHT; io.KeyMap[ImGuiKey_UpArrow] = VK_UP; io.KeyMap[ImGuiKey_DownArrow] = VK_DOWN; io.KeyMap[ImGuiKey_Home] = VK_HOME; io.KeyMap[ImGuiKey_End] = VK_END; io.KeyMap[ImGuiKey_Delete] = VK_DELETE; io.KeyMap[ImGuiKey_Backspace] = VK_BACK; io.KeyMap[ImGuiKey_Enter] = VK_RETURN; io.KeyMap[ImGuiKey_Escape] = VK_ESCAPE; io.KeyMap[ImGuiKey_A] = 'A'; io.KeyMap[ImGuiKey_C] = 'C'; io.KeyMap[ImGuiKey_V] = 'V'; io.KeyMap[ImGuiKey_X] = 'X'; io.KeyMap[ImGuiKey_Y] = 'Y'; io.KeyMap[ImGuiKey_Z] = 'Z'; // dynamic vertex- and index-buffers for imgui-generated geometry sg_buffer_desc vbuf_desc = { }; vbuf_desc.usage = SG_USAGE_STREAM; vbuf_desc.size = sizeof(vertices); draw_state.vertex_buffers[0] = sg_make_buffer(&vbuf_desc); sg_buffer_desc ibuf_desc = { }; ibuf_desc.type = SG_BUFFERTYPE_INDEXBUFFER; ibuf_desc.usage = SG_USAGE_STREAM; ibuf_desc.size = sizeof(indices); draw_state.index_buffer = sg_make_buffer(&ibuf_desc); // font texture for imgui's default font unsigned char* font_pixels; int font_width, font_height; io.Fonts->GetTexDataAsRGBA32(&font_pixels, &font_width, &font_height); sg_image_desc img_desc = { }; img_desc.width = font_width; img_desc.height = font_height; img_desc.pixel_format = SG_PIXELFORMAT_RGBA8; img_desc.wrap_u = SG_WRAP_CLAMP_TO_EDGE; img_desc.wrap_v = SG_WRAP_CLAMP_TO_EDGE; img_desc.content.subimage[0][0].ptr = font_pixels; img_desc.content.subimage[0][0].size = font_width * font_height * 4; draw_state.fs_images[0] = sg_make_image(&img_desc); // shader object for imgui rendering sg_shader_desc shd_desc = { }; auto& ub = shd_desc.vs.uniform_blocks[0]; ub.size = sizeof(vs_params_t); shd_desc.vs.source = "cbuffer params {\n" " float2 disp_size;\n" "};\n" "struct vs_in {\n" " float2 pos: POSITION;\n" " float2 uv: TEXCOORD0;\n" " float4 color: COLOR0;\n" "};\n" "struct vs_out {\n" " float2 uv: TEXCOORD0;\n" " float4 color: COLOR0;\n" " float4 pos: SV_Position;\n" "};\n" "vs_out main(vs_in inp) {\n" " vs_out outp;\n" " outp.pos = float4(((inp.pos/disp_size)-0.5)*float2(2.0,-2.0), 0.5, 1.0);\n" " outp.uv = inp.uv;\n" " outp.color = inp.color;\n" " return outp;\n" "}\n"; shd_desc.fs.images[0].type = SG_IMAGETYPE_2D; shd_desc.fs.source = "Texture2D<float4> tex: register(t0);\n" "sampler smp: register(s0);\n" "float4 main(float2 uv: TEXCOORD0, float4 color: COLOR0): SV_Target0 {\n" " return tex.Sample(smp, uv) * color;\n" "}\n"; sg_shader shd = sg_make_shader(&shd_desc); // pipeline object for imgui rendering sg_pipeline_desc pip_desc = { }; pip_desc.layout.buffers[0].stride = sizeof(ImDrawVert); auto& attrs = pip_desc.layout.attrs; attrs[0].sem_name="POSITION"; attrs[0].offset=offsetof(ImDrawVert, pos); attrs[0].format=SG_VERTEXFORMAT_FLOAT2; attrs[1].sem_name="TEXCOORD"; attrs[1].offset=offsetof(ImDrawVert, uv); attrs[1].format=SG_VERTEXFORMAT_FLOAT2; attrs[2].sem_name="COLOR"; attrs[2].offset=offsetof(ImDrawVert, col); attrs[2].format=SG_VERTEXFORMAT_UBYTE4N; pip_desc.shader = shd; pip_desc.index_type = SG_INDEXTYPE_UINT16; pip_desc.blend.enabled = true; pip_desc.blend.src_factor_rgb = SG_BLENDFACTOR_SRC_ALPHA; pip_desc.blend.dst_factor_rgb = SG_BLENDFACTOR_ONE_MINUS_SRC_ALPHA; pip_desc.blend.color_write_mask = SG_COLORMASK_RGB; draw_state.pipeline = sg_make_pipeline(&pip_desc); // initial clear color pass_action.colors[0].action = SG_ACTION_CLEAR; pass_action.colors[0].val[0] = 0.0f; pass_action.colors[0].val[1] = 0.5f; pass_action.colors[0].val[2] = 0.7f; pass_action.colors[0].val[3] = 1.0f; // draw loop while (d3d11_process_events()) { const int cur_width = d3d11_width(); const int cur_height = d3d11_height(); // this is standard ImGui demo code ImGuiIO& io = ImGui::GetIO(); io.DisplaySize = ImVec2(float(cur_width), float(cur_height)); io.DeltaTime = (float) stm_sec(stm_laptime(&last_time)); ImGui::NewFrame(); // 1. Show a simple window // Tip: if we don't call ImGui::Begin()/ImGui::End() the widgets appears in a window automatically called "Debug" static float f = 0.0f; ImGui::Text("Hello, world!"); ImGui::SliderFloat("float", &f, 0.0f, 1.0f); ImGui::ColorEdit3("clear color", &pass_action.colors[0].val[0]); if (ImGui::Button("Test Window")) show_test_window ^= 1; if (ImGui::Button("Another Window")) show_another_window ^= 1; ImGui::Text("Application average %.3f ms/frame (%.1f FPS)", 1000.0f / ImGui::GetIO().Framerate, ImGui::GetIO().Framerate); // 2. Show another simple window, this time using an explicit Begin/End pair if (show_another_window) { ImGui::SetNextWindowSize(ImVec2(200,100), ImGuiSetCond_FirstUseEver); ImGui::Begin("Another Window", &show_another_window); ImGui::Text("Hello"); ImGui::End(); } // 3. Show the ImGui test window. Most of the sample code is in ImGui::ShowTestWindow() if (show_test_window) { ImGui::SetNextWindowPos(ImVec2(460, 20), ImGuiSetCond_FirstUseEver); ImGui::ShowTestWindow(); } // the sokol_gfx draw pass sg_begin_default_pass(&pass_action, cur_width, cur_height); ImGui::Render(); sg_end_pass(); sg_commit(); d3d11_present(); } ImGui::DestroyContext(); sg_shutdown(); d3d11_shutdown(); } // imgui draw callback void imgui_draw_cb(ImDrawData* draw_data) { assert(draw_data); if (draw_data->CmdListsCount == 0) { return; } // copy vertices and indices int num_vertices = 0; int num_indices = 0; int num_cmdlists = 0; for (num_cmdlists = 0; num_cmdlists < draw_data->CmdListsCount; num_cmdlists++) { const ImDrawList* cl = draw_data->CmdLists[num_cmdlists]; const int cl_num_vertices = cl->VtxBuffer.size(); const int cl_num_indices = cl->IdxBuffer.size(); // overflow check if ((num_vertices + cl_num_vertices) > MaxVertices) { break; } if ((num_indices + cl_num_indices) > MaxIndices) { break; } // copy vertices memcpy(&vertices[num_vertices], &cl->VtxBuffer.front(), cl_num_vertices*sizeof(ImDrawVert)); // copy indices, need to 'rebase' indices to start of global vertex buffer const ImDrawIdx* src_index_ptr = &cl->IdxBuffer.front(); const uint16_t base_vertex_index = num_vertices; for (int i = 0; i < cl_num_indices; i++) { indices[num_indices++] = src_index_ptr[i] + base_vertex_index; } num_vertices += cl_num_vertices; } // update vertex and index buffers const int vertex_data_size = num_vertices * sizeof(ImDrawVert); const int index_data_size = num_indices * sizeof(uint16_t); sg_update_buffer(draw_state.vertex_buffers[0], vertices, vertex_data_size); sg_update_buffer(draw_state.index_buffer, indices, index_data_size); // render the command list vs_params_t vs_params; vs_params.disp_size = ImGui::GetIO().DisplaySize; sg_apply_draw_state(&draw_state); sg_apply_uniform_block(SG_SHADERSTAGE_VS, 0, &vs_params, sizeof(vs_params)); int base_element = 0; for (int cl_index=0; cl_index<num_cmdlists; cl_index++) { const ImDrawList* cmd_list = draw_data->CmdLists[cl_index]; for (const ImDrawCmd& pcmd : cmd_list->CmdBuffer) { if (pcmd.UserCallback) { pcmd.UserCallback(cmd_list, &pcmd); } else { const int sx = (int) pcmd.ClipRect.x; const int sy = (int) pcmd.ClipRect.y; const int sw = (int) (pcmd.ClipRect.z - pcmd.ClipRect.x); const int sh = (int) (pcmd.ClipRect.w - pcmd.ClipRect.y); sg_apply_scissor_rect(sx, sy, sw, sh, true); sg_draw(base_element, pcmd.ElemCount, 1); } base_element += pcmd.ElemCount; } } }
39.525547
130
0.637027
VLiance
8594dcfafda4d2bda1e07bb9eb18ee8bd8228b10
2,771
cpp
C++
engine/RenderPipelineManager.cpp
shanysheng/orange3d
9ee081a98e14fdeb3aaafd6bbb49fe027d4cd3c0
[ "BSD-2-Clause" ]
11
2017-06-06T17:22:30.000Z
2022-03-23T11:56:49.000Z
engine/RenderPipelineManager.cpp
shanysheng/orange3d
9ee081a98e14fdeb3aaafd6bbb49fe027d4cd3c0
[ "BSD-2-Clause" ]
null
null
null
engine/RenderPipelineManager.cpp
shanysheng/orange3d
9ee081a98e14fdeb3aaafd6bbb49fe027d4cd3c0
[ "BSD-2-Clause" ]
5
2018-02-07T02:48:59.000Z
2021-08-23T05:16:59.000Z
#include "RenderPipelineManager.h" namespace pipeline{ CRenderPipelineManager::CRenderPipelineManager():m_pRenderingEngine(NULL) { } CRenderPipelineManager::~CRenderPipelineManager() { ClearRenderPipeline(); ClearPrototypes(); } IRenderPipeline*CRenderPipelineManager::Give( const std::string& Name, const std::string& PrototypeName ) { std::unordered_map< std::string, IRenderPipeline *>::iterator pos; pos = m_RenderPipelines.find(Name); if (pos!=m_RenderPipelines.end()) { return pos->second; } pos = m_Prototypes.find(PrototypeName); if (pos!=m_Prototypes.end()) { IRenderPipeline* pRenderPipeline = pos->second->Clone(); pRenderPipeline->SetContext(this->m_pRenderingEngine); m_RenderPipelines.insert(std::make_pair(Name, pRenderPipeline)); return pRenderPipeline; } return NULL; } void CRenderPipelineManager::Register(const std::string& PrototypeName, IRenderPipeline * pPrototype ) { std::unordered_map< std::string, IRenderPipeline *>::iterator pos; pos = m_Prototypes.find(PrototypeName); if (pos!=m_Prototypes.end()) { if (pos->second) delete pos->second; pos->second = pPrototype; return ; } m_Prototypes.insert(std::make_pair(PrototypeName, pPrototype)); } IRenderPipeline * CRenderPipelineManager::operator [](const std::string& Name) { std::unordered_map< std::string, IRenderPipeline *>::iterator pos; pos = m_RenderPipelines.find(Name); if(pos == m_RenderPipelines.end()) return NULL; return pos->second; } void CRenderPipelineManager::ClearPrototypes() { std::unordered_map< std::string, IRenderPipeline *>::iterator pos; pos = m_Prototypes.begin(); while (pos!=m_Prototypes.end()) { if (pos->second) delete pos->second; ++pos; } m_Prototypes.clear(); } void CRenderPipelineManager::ClearRenderPipeline() { std::unordered_map< std::string, IRenderPipeline *>::iterator pos; pos = m_RenderPipelines.begin(); while (pos!=m_RenderPipelines.end()) { if (pos->second) delete pos->second; ++pos; } m_RenderPipelines.clear(); } CRenderModuleManager& CRenderPipelineManager::GetRenderModuleManager() { return m_RenderModuleMgr; } }
27.71
109
0.568748
shanysheng
85a95df74baa0d5171c000bcde253f924c623d5d
4,791
hpp
C++
contrib/autoboost/autoboost/mpl/aux_/logical_op.hpp
CaseyCarter/autowiring
48e95a71308318c8ffb7ed1348e034fd9110f70c
[ "Apache-2.0" ]
87
2015-01-18T00:43:06.000Z
2022-02-11T17:40:50.000Z
contrib/autoboost/autoboost/mpl/aux_/logical_op.hpp
CaseyCarter/autowiring
48e95a71308318c8ffb7ed1348e034fd9110f70c
[ "Apache-2.0" ]
274
2015-01-03T04:50:49.000Z
2021-03-08T09:01:09.000Z
contrib/autoboost/autoboost/mpl/aux_/logical_op.hpp
CaseyCarter/autowiring
48e95a71308318c8ffb7ed1348e034fd9110f70c
[ "Apache-2.0" ]
15
2015-09-30T20:58:43.000Z
2020-12-19T21:24:56.000Z
// Copyright Aleksey Gurtovoy 2000-2004 // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/mpl for documentation. // $Id$ // $Date$ // $Revision$ // NO INCLUDE GUARDS, THE HEADER IS INTENDED FOR MULTIPLE INCLUSION! #if !defined(AUTOBOOST_MPL_PREPROCESSING_MODE) # include <autoboost/mpl/bool.hpp> # include <autoboost/mpl/aux_/nested_type_wknd.hpp> # include <autoboost/mpl/aux_/na_spec.hpp> # include <autoboost/mpl/aux_/lambda_support.hpp> #endif #include <autoboost/mpl/limits/arity.hpp> #include <autoboost/mpl/aux_/preprocessor/params.hpp> #include <autoboost/mpl/aux_/preprocessor/ext_params.hpp> #include <autoboost/mpl/aux_/preprocessor/def_params_tail.hpp> #include <autoboost/mpl/aux_/preprocessor/enum.hpp> #include <autoboost/mpl/aux_/preprocessor/sub.hpp> #include <autoboost/mpl/aux_/config/ctps.hpp> #include <autoboost/mpl/aux_/config/workaround.hpp> #include <autoboost/preprocessor/dec.hpp> #include <autoboost/preprocessor/inc.hpp> #include <autoboost/preprocessor/cat.hpp> namespace autoboost { namespace mpl { # define AUX778076_PARAMS(param, sub) \ AUTOBOOST_MPL_PP_PARAMS( \ AUTOBOOST_MPL_PP_SUB(AUTOBOOST_MPL_LIMIT_METAFUNCTION_ARITY, sub) \ , param \ ) \ /**/ # define AUX778076_SHIFTED_PARAMS(param, sub) \ AUTOBOOST_MPL_PP_EXT_PARAMS( \ 2, AUTOBOOST_MPL_PP_SUB(AUTOBOOST_PP_INC(AUTOBOOST_MPL_LIMIT_METAFUNCTION_ARITY), sub) \ , param \ ) \ /**/ # define AUX778076_SPEC_PARAMS(param) \ AUTOBOOST_MPL_PP_ENUM( \ AUTOBOOST_PP_DEC(AUTOBOOST_MPL_LIMIT_METAFUNCTION_ARITY) \ , param \ ) \ /**/ namespace aux { #if !defined(AUTOBOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) template< bool C_, AUX778076_PARAMS(typename T, 1) > struct AUTOBOOST_PP_CAT(AUX778076_OP_NAME,impl) : AUTOBOOST_PP_CAT(AUX778076_OP_VALUE1,_) { }; template< AUX778076_PARAMS(typename T, 1) > struct AUTOBOOST_PP_CAT(AUX778076_OP_NAME,impl)< AUX778076_OP_VALUE2,AUX778076_PARAMS(T, 1) > : AUTOBOOST_PP_CAT(AUX778076_OP_NAME,impl)< AUTOBOOST_MPL_AUX_NESTED_TYPE_WKND(T1)::value , AUX778076_SHIFTED_PARAMS(T, 1) , AUTOBOOST_PP_CAT(AUX778076_OP_VALUE2,_) > { }; template<> struct AUTOBOOST_PP_CAT(AUX778076_OP_NAME,impl)< AUX778076_OP_VALUE2 , AUX778076_SPEC_PARAMS(AUTOBOOST_PP_CAT(AUX778076_OP_VALUE2,_)) > : AUTOBOOST_PP_CAT(AUX778076_OP_VALUE2,_) { }; #else template< bool C_ > struct AUTOBOOST_PP_CAT(AUX778076_OP_NAME,impl) { template< AUX778076_PARAMS(typename T, 1) > struct result_ : AUTOBOOST_PP_CAT(AUX778076_OP_VALUE1,_) { }; }; template<> struct AUTOBOOST_PP_CAT(AUX778076_OP_NAME,impl)<AUX778076_OP_VALUE2> { template< AUX778076_PARAMS(typename T, 1) > struct result_ : AUTOBOOST_PP_CAT(AUX778076_OP_NAME,impl)< AUTOBOOST_MPL_AUX_NESTED_TYPE_WKND(T1)::value >::template result_< AUX778076_SHIFTED_PARAMS(T,1),AUTOBOOST_PP_CAT(AUX778076_OP_VALUE2,_) > { }; #if AUTOBOOST_WORKAROUND(AUTOBOOST_MSVC, == 1300) template<> struct result_<AUX778076_SPEC_PARAMS(AUTOBOOST_PP_CAT(AUX778076_OP_VALUE2,_))> : AUTOBOOST_PP_CAT(AUX778076_OP_VALUE2,_) { }; }; #else }; template<> struct AUTOBOOST_PP_CAT(AUX778076_OP_NAME,impl)<AUX778076_OP_VALUE2> ::result_< AUX778076_SPEC_PARAMS(AUTOBOOST_PP_CAT(AUX778076_OP_VALUE2,_)) > : AUTOBOOST_PP_CAT(AUX778076_OP_VALUE2,_) { }; #endif // AUTOBOOST_MSVC == 1300 #endif // AUTOBOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION } // namespace aux template< typename AUTOBOOST_MPL_AUX_NA_PARAM(T1) , typename AUTOBOOST_MPL_AUX_NA_PARAM(T2) AUTOBOOST_MPL_PP_DEF_PARAMS_TAIL(2, typename T, AUTOBOOST_PP_CAT(AUX778076_OP_VALUE2,_)) > struct AUX778076_OP_NAME #if !defined(AUTOBOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) : aux::AUTOBOOST_PP_CAT(AUX778076_OP_NAME,impl)< AUTOBOOST_MPL_AUX_NESTED_TYPE_WKND(T1)::value , AUX778076_SHIFTED_PARAMS(T,0) > #else : aux::AUTOBOOST_PP_CAT(AUX778076_OP_NAME,impl)< AUTOBOOST_MPL_AUX_NESTED_TYPE_WKND(T1)::value >::template result_< AUX778076_SHIFTED_PARAMS(T,0) > #endif { AUTOBOOST_MPL_AUX_LAMBDA_SUPPORT( AUTOBOOST_MPL_LIMIT_METAFUNCTION_ARITY , AUX778076_OP_NAME , (AUX778076_PARAMS(T, 0)) ) }; AUTOBOOST_MPL_AUX_NA_SPEC2( 2 , AUTOBOOST_MPL_LIMIT_METAFUNCTION_ARITY , AUX778076_OP_NAME ) }} #undef AUX778076_SPEC_PARAMS #undef AUX778076_SHIFTED_PARAMS #undef AUX778076_PARAMS #undef AUX778076_OP_NAME #undef AUX778076_OP_VALUE1 #undef AUX778076_OP_VALUE2
28.861446
104
0.736798
CaseyCarter
85b0c4fb364783a7874cf6a4da39e9523835dede
666
cpp
C++
server/memory.cpp
FaresMehanna/Monitor-And-Control-Server-Room
29caea1501a5174c63ba87c47545c889b9cf2e51
[ "MIT" ]
null
null
null
server/memory.cpp
FaresMehanna/Monitor-And-Control-Server-Room
29caea1501a5174c63ba87c47545c889b9cf2e51
[ "MIT" ]
null
null
null
server/memory.cpp
FaresMehanna/Monitor-And-Control-Server-Room
29caea1501a5174c63ba87c47545c889b9cf2e51
[ "MIT" ]
null
null
null
#include <stdio.h> #include <pthread.h> #include <unistd.h> #include <stdlib.h> #include "device.h" #include "memory.h" void acquire(DeviceData* device_data) { printf("acquire.\n"); pthread_mutex_lock(&(device_data->itmes_mutex)); (device_data->memory_pointers)++; pthread_mutex_unlock(&(device_data->itmes_mutex)); } void release(DeviceData* device_data) { printf("release.\n"); pthread_mutex_lock(&(device_data->itmes_mutex)); (device_data->memory_pointers)--; if(0 == device_data->memory_pointers) { close(device_data->sockfd); delete(device_data); printf("delete.\n"); } pthread_mutex_unlock(&(device_data->itmes_mutex)); }
26.64
54
0.71021
FaresMehanna
85c2389dec561ca7a80bd6c08f9934a6746ac57a
7,736
cpp
C++
appsrc/DistributedConfigGenerator.cpp
slashdotted/PomaPure
c469efba9813b4b897129cff9699983c3f90b24b
[ "BSD-3-Clause" ]
2
2017-12-11T01:07:45.000Z
2021-08-21T20:57:04.000Z
appsrc/DistributedConfigGenerator.cpp
slashdotted/PomaPure
c469efba9813b4b897129cff9699983c3f90b24b
[ "BSD-3-Clause" ]
null
null
null
appsrc/DistributedConfigGenerator.cpp
slashdotted/PomaPure
c469efba9813b4b897129cff9699983c3f90b24b
[ "BSD-3-Clause" ]
1
2017-08-29T17:53:20.000Z
2017-08-29T17:53:20.000Z
/* * Copyright (C)2015,2016,2017 Amos Brocco ([email protected]) * Scuola Universitaria Professionale della * Svizzera Italiana (SUPSI) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the Scuola Universitaria Professionale della Svizzera * Italiana (SUPSI) nor the names of its contributors may be used * to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include <boost/property_tree/json_parser.hpp> #include <boost/lexical_cast.hpp> #include <cstdlib> #include "DistributedConfigGenerator.h" #include <iostream> namespace poma { DistributedConfigGenerator::DistributedConfigGenerator(const std::string &p_source_mid, const std::map<std::string, Module> &p_modules, const std::vector<Link> &p_links, unsigned int base_port) : m_source_mid{p_source_mid}, m_modules{p_modules}, m_links{p_links}, m_base_port{base_port} { } void DistributedConfigGenerator::process() { for (auto &it : m_modules) { auto v{m_modules.find(it.first)}; const Module &mod{v->second}; m_host_modules_map.insert(std::make_pair(mod.mhost, mod)); m_module_host_map.insert(std::make_pair(mod.mid, mod.mhost)); } std::string source_host{m_module_host_map.find(m_source_mid)->second}; Link lnkprocessor; lnkprocessor.fid = Module::source(source_host); lnkprocessor.tid = m_source_mid; m_host_link_map.insert(std::make_pair(source_host, lnkprocessor)); for (auto &lnk : m_links) { if (lnk.fid == "" || m_module_host_map.count(lnk.fid) == 0) { die("invalid link definition: invalid or no source specified: " + lnk.fid + ", to " + lnk.tid + ", channel " + lnk.channel); } if (lnk.tid == "" || m_module_host_map.count(lnk.tid) == 0) { die("invalid link definition: invalid or no destination specified: " + lnk.tid + ", from " + lnk.fid + ", channel " + lnk.channel); } if (lnk.channel == "") { die("invalid link definition: channel cannot be empty"); } std::string fhost{m_module_host_map[lnk.fid]}; std::string thost{m_module_host_map[lnk.tid]}; if (fhost == thost) { std::cout << fhost << "<->" << thost << std::endl; m_host_link_map.insert(std::make_pair(fhost, lnk)); } else { // Insert ZeroMQ bridge Module sink; sink.mid = Module::unique("__net_sink_"); sink.mtype = "ZeroMQSink"; sink.mhost = fhost; sink.mparams["sinkaddress"] = Module::address(thost, m_base_port); sink.mparams["#bandwidth"] = lnk.bandwidth; Module source; source.mid = Module::unique("__net_source"); source.mtype = "ZeroMQSource"; source.mhost = thost; source.mparams["sourceaddress"] = Module::address("*", m_base_port); source.mparams["#bandwidth"] = lnk.bandwidth; ++m_base_port; m_host_modules_map.insert(std::make_pair(sink.mhost, sink)); m_host_modules_map.insert(std::make_pair(source.mhost, source)); m_module_host_map[sink.mid] = sink.mhost; m_module_host_map[source.mid] = source.mhost; Link lnksink; lnksink.fid = lnk.fid; lnksink.tid = sink.mid; lnksink.channel = lnk.channel; lnksink.debug = lnk.debug; lnksink.bandwidth = lnk.bandwidth; m_host_link_map.insert(std::make_pair(fhost, lnksink)); Link lnksource; lnksource.fid = source.mid; lnksource.tid = lnk.tid; lnksource.channel = lnk.channel; lnksource.debug = lnk.debug; lnksource.bandwidth = lnk.bandwidth; m_host_link_map.insert(std::make_pair(thost, lnksource)); Link lnkprocessor; lnkprocessor.fid = Module::source(thost); lnkprocessor.tid = source.mid; m_host_link_map.insert(std::make_pair(thost, lnkprocessor)); } } // Each host must have a ParProcessor module as source for (auto const &h: hosts()) { Module source_pp; source_pp.mid = Module::source(h); source_pp.mhost = h; source_pp.mtype = "ParProcessor"; m_host_modules_map.insert(std::make_pair(source_pp.mhost, source_pp)); m_module_host_map.insert(std::make_pair(source_pp.mid, source_pp.mhost)); } } void DistributedConfigGenerator::get_config(const std::string &host, std::string &p_source_mid, std::map<std::string, Module> &p_modules, std::vector<Link> &p_links) { p_source_mid = Module::source(host); auto iter = m_host_modules_map.equal_range(host); for (auto it = iter.first; it != iter.second; ++it) { const Module& module{it->second}; p_modules[module.mid] = module; } auto iter2 = m_host_link_map.equal_range(host); for (auto it = iter2.first; it != iter2.second; ++it) { p_links.push_back(it->second); } } std::set<std::string> DistributedConfigGenerator::hosts() const { std::set<std::string> hosts; for(auto const& h: m_host_modules_map) { hosts.insert(h.first); } return hosts; } std::set<std::string> DistributedConfigGenerator::modules(const std::string &host) const { std::set<std::string> modules; auto iter = m_host_modules_map.equal_range(host); for (auto it = iter.first; it != iter.second; ++it) { const Module& module{it->second}; modules.insert(module.mtype); } return modules; } }
47.460123
118
0.586608
slashdotted
85c3a32ec8a115fac835f0e829db3cbda2aa6e23
35,918
cpp
C++
csl/cslbase/arith07.cpp
arthurcnorman/general
5e8fef0cc7999fa8ab75d8fdf79ad5488047282b
[ "BSD-2-Clause" ]
null
null
null
csl/cslbase/arith07.cpp
arthurcnorman/general
5e8fef0cc7999fa8ab75d8fdf79ad5488047282b
[ "BSD-2-Clause" ]
null
null
null
csl/cslbase/arith07.cpp
arthurcnorman/general
5e8fef0cc7999fa8ab75d8fdf79ad5488047282b
[ "BSD-2-Clause" ]
null
null
null
// arith07.cpp Copyright (C) 1990-2020 Codemist // // Arithmetic functions. negation plus a load of Common Lisp things // for support of complex numbers. // // /************************************************************************** * Copyright (C) 2020, Codemist. A C Norman * * * * Redistribution and use in source and binary forms, with or without * * modification, are permitted provided that the following conditions are * * met: * * * * * Redistributions of source code must retain the relevant * * copyright notice, this list of conditions and the following * * disclaimer. * * * Redistributions in binary form must reproduce the above * * copyright notice, this list of conditions and the following * * disclaimer in the documentation and/or other materials provided * * with the distribution. * * * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * * COPYRIGHT OWNERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR * * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF * * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH * * DAMAGE. * *************************************************************************/ // $Id: arith07.cpp 5387 2020-08-20 19:40:24Z arthurcnorman $ #include "headers.h" LispObject copyb(LispObject a) // // copy a bignum. // { LispObject b; size_t len = bignum_length(a), i; push(a); b = get_basic_vector(TAG_NUMBERS, TYPE_BIGNUM, len); pop(a); len = (len-CELL)/4; for (i=0; i<len; i++) bignum_digits(b)[i] = vbignum_digits(a)[i]; return b; } LispObject negateb(LispObject a) // // Negate a bignum. Note that negating the 1-word bignum // value of 0x08000000 will produce a fixnum as a result (for 32 bits), // which might confuse the caller... in a similar way negating // the value -0x40000000 will need to promote from a one-word // bignum to a 2-word bignum. How messy just for negation! // And on 64 bit systems the same effect applies but with larger values! // In an analogous manner negating the positive number of the style // 0x40000000 can lead to a negative result that uses one less digit. // Well on a 64-bit machine it is a 2-word bignum that can end up // negated to get a fixnum result. // { LispObject b; size_t len = bignum_length(a), i; int32_t carry; // There are two messy special cases here. The first is that there is a // positive value (2^27 or 2^59) which has to be represented as a bignum, // but when you negate it you get a fixnum. // Then there will be negative values (the smallest being -2^31 or -2^62) // that fit in a certain number of words of bignum, but their absolute // value needs one more word... // Note that on a 64-bit machine there ought never to be any one-word // bignums because all the values representable with just one 31-bit digit // can be handled as fixnums instead. if (SIXTY_FOUR_BIT && len == CELL+8) // two-word bignum - do specially { if (bignum_digits(a)[0] == 0 && bignum_digits(a)[1] == (int32_t)0x10000000) return MOST_NEGATIVE_FIXNUM; else if (bignum_digits(a)[0] == 0 && (int32_t)bignum_digits(a)[1] == -(int32_t)(1<<30)) return make_three_word_bignum(0, 1<<30, 0); uint32_t d0 = bignum_digits(a)[0]; int32_t d1 = (int32_t)~bignum_digits(a)[1]; if (d0 == 0) d1++; else return make_two_word_bignum(d1, (-d0) & 0x7fffffff); } if (!SIXTY_FOUR_BIT && len == CELL+4) // one-word bignum - do specially { int32_t d0 = -(int32_t)bignum_digits(a)[0]; if (d0 == MOST_NEGATIVE_FIXVAL) return MOST_NEGATIVE_FIXNUM; else if (d0 == 0x40000000) return make_two_word_bignum(0, d0); else return make_one_word_bignum(d0); } push(a); b = get_basic_vector(TAG_NUMBERS, TYPE_BIGNUM, len); pop(a); len = (len-CELL-4)/4; carry = -1; for (i=0; i<len; i++) { // The next couple of lines really caught me out wrt compiler optimisation // before I put in all the casts. I used to have what was in effect // carry = (signed_x ^ 0x7fffffff) + (int32_t)((uint32_t)carry>>31); // ... ((uint32_t)carry >> 31); // and a compiler seems to have observed that the masking leaves the left // operand of the addition positive, and that the unsigned shift right // leaves the right operand positive too. So based on an assumption that // signed integer overflow will not happen it deduces that the sum will also // be positive, and hence that on the next line (carry>>31) will be zero. // For the assumption to fail there will have had to be integer overflow, and // the C/C++ standards say that the consequence of that are undefined - a term // that can include behaviour as per the optimised code here. // // To avoid that I am working on the basis that casts between int32_t and // uint32_t will leave bit representations unchanged and that arithmetic uses // twos complement for signed values. Then by casting to unsigned at times // I can allow a carry to propagate into the top bit of a word without that // counting as an overflow, and that should force the compiler to do the // arithmetic in full. // // Having spotted this particular case I now worry about how many related // ones there may be hiding in the code! // carry = ADD32(clear_top_bit(~bignum_digits(a)[i]), top_bit(carry)); bignum_digits(b)[i] = clear_top_bit(carry); } // Handle the top digit separately since it is signed. carry = ADD32(~bignum_digits(a)[i], top_bit(carry)); if (!signed_overflow(carry)) { // If the most significant word ends up as -1 then I just might // have 0x40000000 in the next word down and so I may need to shrink // the number. Since I handled 1-word bignums specially I have at // least two words to deal with here. if (carry == -1 && (bignum_digits(b)[i-1] & 0x40000000) != 0) { bignum_digits(b)[i-1] |= ~0x7fffffff; setnumhdr(b, numhdr(b) - pack_hdrlength(1)); if (SIXTY_FOUR_BIT) { if ((i & 1) != 0) bignum_digits(b)[i] = 0; else *reinterpret_cast<Header *>(&bignum_digits(b)[i]) = make_bighdr( 2); } else { if ((i & 1) == 0) bignum_digits(b)[i] = 0; else *reinterpret_cast<Header *>(&bignum_digits(b)[i]) = make_bighdr( 2); } } else bignum_digits(b)[i] = carry; // no shrinking needed return b; } // Here I have overflow: this can only happen when I negate a number // that started off with 0xc0000000 in the most significant digit, // and I have to pad a zero word onto the front. bignum_digits(b)[i] = clear_top_bit(carry); return lengthen_by_one_bit(b, carry); } // // generic negation // LispObject negate(LispObject a) { switch (static_cast<int>(a) & TAG_BITS) { case TAG_FIXNUM: if (!SIXTY_FOUR_BIT && is_sfloat(a)) return a ^ 0x80000000U; if (SIXTY_FOUR_BIT && is_sfloat(a)) return a ^ UINT64_C(0x8000000000000000); else return make_lisp_integer64(-int_of_fixnum(a)); case TAG_NUMBERS: { int32_t ha = type_of_header(numhdr(a)); switch (ha) { case TYPE_BIGNUM: return negateb(a); case TYPE_RATNUM: { LispObject n = numerator(a), d = denominator(a); push(d); n = negate(n); pop(d); return make_ratio(n, d); } case TYPE_COMPLEX_NUM: { LispObject r = real_part(a), i = imag_part(a); push(i); r = negate(r); pop(i); push(r); i = negate(i); pop(r); return make_complex(r, i); } default: return aerror1("bad arg for minus", a); } } case TAG_BOXFLOAT: switch (type_of_header(flthdr(a))) { case TYPE_SINGLE_FLOAT: return make_boxfloat(-single_float_val(a), TYPE_SINGLE_FLOAT); case TYPE_DOUBLE_FLOAT: return make_boxfloat(-double_float_val(a), TYPE_DOUBLE_FLOAT); #ifdef HAVE_SOFTFLOAT case TYPE_LONG_FLOAT: { float128_t aa = long_float_val(a); f128M_negate(&aa); return make_boxfloat128(aa); } #endif // HAVE_SOFTFLOAT } default: return aerror1("bad arg for minus", a); } } /*****************************************************************************/ //** Transcendental functions etcetera. ** /*****************************************************************************/ // // Much of the code here is extracted from the portable Fortran library // used by Codemist with its Fortran compiler. // // // The object of the following macro is to adjust the floating point // variables concerned so that the more significant one can be squared // with NO LOSS OF PRECISION. It is only used when there is no danger // of over- or under-flow. // // This code is NOT PORTABLE but can be modified for use elsewhere // It should, however, serve for IEEE and IBM FP formats. // typedef union _char_double { double d; char c[8]; } char_double_union; #ifdef LITTLEENDIAN #define LOW_BITS_OFFSET 0 #else #define LOW_BITS_OFFSET 4 #endif // The code here explictly puns between a double and a row of char values // so that it can force the bottom 32-bits of the represenattion of the // double to be zero. The use of the char type here and then memset to clear // it is intended to keep me safe from strict-aliasing concerns, and modern // C compilers are liable to map the use of memset onto a simple store // instruction. #define _fp_normalize(high, low) \ { char_double_union temp; /* access to representation */ \ temp.d = high; /* take original number */ \ std::memset(&temp.c[LOW_BITS_OFFSET], 0, 4); \ /* make low part of mantissa 0 */ \ low += (high - temp.d); /* add into low-order result */ \ high = temp.d; \ } // // A modern C system will provide a datatype "complex double" which // will (I hope) provide direct implementations of some things I need // here. However in the end I may prefer not to use it because for // real floating point I am using crlibm that implements correctly // rounded and hence consistent across all platforms values. If I use // that as a basis for my complex code I will at least get bit-for-bit // identical results everywhere even if I do not manage to achieve // correctly rounded last-bit performance in all cases. // log, sqrt and all the inverse trig functions here need careful review // as to their treatment of -0.0 on branch-cuts! // double Cabs(Complex z) { // // Obtain the absolute value of a complex number - note that the main // agony here is in ensuring that neither overflow nor underflow can // wreck the calculation. Given ideal arithmetic the sum could be carried // through as just sqrt(x^2 + y^2). // double x = z.real, y = z.imag; double scale; int n1, n2; if (x==0.0) return std::fabs(y); else if (y==0.0) return std::fabs(x); static_cast<void>(std::frexp(x, &n1)); static_cast<void>(std::frexp(y, &n2)); // The exact range of values returned by frexp does not matter here if (n2>n1) n1 = n2; // n1 is now the exponent of the larger (in absolute value) of x, y scale = std::ldexp(1.0, n1); // can not be 0.0 x /= scale; y /= scale; // The above scaling operation introduces no rounding error (since the // scale factor is exactly a power of 2). It reduces the larger of x, y // to be somewhere near 1.0 so overflow in x*x+y*y is impossible. It is // still possible that one of x*x and y*y will underflow (but not both) // but this is harmless. return scale * std::sqrt(x*x + y*y); } Complex Ccos(Complex z) { double x = z.real, y = z.imag; // // cos(x + iy) = cos(x)*cosh(y) - i sin(x)*sinh(y) // For smallish y this can be used directly. For |y| > 50 I will // compute sinh and cosh as just +/- exp(|y|)/2 // double s = std::sin(x), c = std::cos(x); double absy = std::fabs(y); if (absy <= 50.0) { double sh = std::sinh(y), ch = std::cosh(y); z.real = c*ch; z.imag = - s*sh; return z; } else { double w; int n = _reduced_exp(absy, &w) - 1; z.real = std::ldexp(c*w, n); if (y < 0.0) z.imag = std::ldexp(s*w, n); else z.imag = std::ldexp(-s*w, n); return z; } } static double reduced_power(double a, int n) { // // Compute (1 + a)^n - 1 avoiding undue roundoff error. // Assumes n >= 1 on entry and that a is small. // if (n == 1) return a; { double d = reduced_power(a, n/2); d = (2.0 + d)*d; if (n & 1) d += (1.0 + d)*a; return d; } } // // The following value is included for documentation purposes - it // give the largest args that can be given to exp() without leading to // overflow on IEEE-arithmetic machines. // #define _exp_arg_limit 709.78271289338397 // Note that in any case exp(50.0) will not overflow (it is only 5.2e21), // so it can be evaluated the simple direct way. // int _reduced_exp(double x, double *r) { // // (*r) = exp(x)/2^n; return n; // where n will be selected so that *r gets set to a fairly small value // (precise range of r unimportant provided it will be WELL away from // chances of overflow, even when exp(x) would actually overflow). This // function may only be called with argument x that is positive and // large enough that n will end up satisfying n>=1. The coding here // will ensure that if x>4.0, and in general the use of this function // will only be for x > 50. // For IBM hardware it would be good to be able to control the value // of n mod 4, maybe, to help counter wobbling precision. This is not // done here. // int n; double f; n = static_cast<int>(x / 7.625 + 0.5); // // 7.625 = 61/8 and is expected to have an exact floating point // representation here, so f is computed without any rounding error. // (do I need something like the (x - 0.5) - 0.5 trick here?) // f = std::exp(x - 7.625*static_cast<double>(n)); // // the magic constant is ((exp(61/8) / 2048) - 1) and it arises because // 61/88 is a decent rational approximation to log(2), hence exp(61/8) // is almost 2^11. Thus I compute exp(x) as // 2^(11*n) * (exp(61/8)/2^11)^n * exp(f) // The first factor is exact, the second is (1+e)^n where e is small and // n is an integer, so can be computer accurately, and the residue f at the // end is small enough not to give over-bad trouble. // The numeric constant given here was calculated with the REDUCE 3.3 // bigfloat package. // #define _e61q8 3.81086435594567676751e-4 *r = reduced_power(_e61q8, n)*f + f; #undef _e61q8 return 11*n; } Complex Cexp(Complex z) { double x = z.real, y = z.imag; // // value is exp(x)*(cos(y) + i sin(y)) but have care with overflow // Here (and throughout the complex library) there is an opportunity // to save time by computing sin(y) and cos(y) together. Since this // code is (to begin with) to sit on top of an arbitrary C library, // perhaps with hardware support for the calculation of real-valued // trig functions I am not going to try to realise this saving. // double s = std::sin(y), c = std::cos(y); // // if x > 50 I will use a cautious sceme which computes exp(x) with // its (binary) exponent separated. Note that 50.0 is chosen as a // number noticably smaller than _exp_arg_limit (exp(50) = 5.18e21), // but is not a critical very special number. // if (x <= 50.0) // includes x < 0.0, of course { double w = std::exp(x); z.real = w*c; z.imag = w*s; return z; } else { double w; int n = _reduced_exp(x, &w); z.real = std::ldexp(w*c, n); z.imag = std::ldexp(w*s, n); return z; } } Complex Cln(Complex z) { double x = z.real, y = z.imag; // // if x and y are both very large then cabs(z) may be out of range // even though log or if is OK. Thus it is necessary to perform an // elaborate scaled calculation here, and not just // z.real = log(cabs(z)); // double scale, r; int n1, n2; if (x==0.0) r = std::log(std::fabs(y)); else if (y==0.0) r = std::log(std::fabs(x)); else { static_cast<void>(std::frexp(x, &n1)); static_cast<void>(std::frexp(y, &n2)); // The exact range of values returned by frexp does not matter here if (n2>n1) n1 = n2; scale = std::ldexp(1.0, n1); x /= scale; y /= scale; r = std::log(scale) + 0.5*std::log(x*x + y*y); } z.real = r; // // The C standard is not very explicit about the behaviour of atan2(0.0, -n) // while for Fortran it is necessary that this returns +pi not -pi. Hence // with extreme caution I put a special test here. // if (y == 0.0) if (x < 0.0) z.imag = _pi; else z.imag = 0.0; else z.imag = std::atan2(y, x); return z; } // // Complex raising to a power. This seems to be pretty nasty // to get right, and the code includes extra high precision variants // on atan() and log(). Further refinements wrt efficiency may be // possible later on. // This code has been partially tested, and seems to be uniformly // better than using just a**b = exp(b*log(a)), but much more careful // study is needed before it can possibly be claimed that it is // right in the sense of not throwing away accuracy when it does not // have to. I also need to make careful checks to verify that the // correct (principal) value is computed. // // // The next function is used after arithmetic has been done on extra- // precision numbers so that the relationship between high and low parts // is no longer known. Re-instate it. // #define _two_minus_25 2.98023223876953125e-8 // 2^(-25) static double fp_add(double a, double b, double *lowres) { // Result is the high part of a+b, with the low part assigned to *lowres double absa, absb; if (a >= 0.0) absa = a; else absa = -a; if (b >= 0.0) absb = b; else absb = -b; if (absa < absb) { double t = a; a = b; b = t; } // Now a is the larger (in absolute value) of the two numbers if (absb > absa * _two_minus_25) { double al = 0.0, bl = 0.0; // // If the exponent difference beweeen a and b is no more than 25 then // I can add the top part (20 or 24 bits) of a to the top part of b // without going beyond the 52 or 56 bits that a full mantissa can hold. // _fp_normalize(a, al); _fp_normalize(b, bl); a = a + b; // No rounding needed here b = al + bl; if (a == 0.0) { a = b; b = 0.0; } } // // The above step leaves b small wrt the value in a (unless a+b led // to substantial cancellation of leading digits), but leaves the high // part a with bits everywhere. Force low part of a to zero. // { double al = 0.0; _fp_normalize(a, al); b = b + al; } if (a >= 0.0) absa = a; else absa = -a; if (b >= 0.0) absb = b; else absb = -b; if (absb > absa * _two_minus_25) // // If on input a is close to -b, then a+b is close to zero. In this // case the exponents of a abd b matched, and so earlier calculations // have all been done exactly. Go around again to split residue into // high and low parts. // { double al = 0.0, bl = 0.0; _fp_normalize(b, bl); a = a + b; _fp_normalize(a, al); b = bl + al; } *lowres = b; return a; } #undef _two_minus_25 static void extended_atan2(double b, double a, double *thetah, double *thetal) { int octant; double rh, rl, thh, thl; // // First reduce the argument to the first octant (i.e. a, b both +ve, // and b <= a). // if (b < 0.0) { octant = 4; a = -a; b = -b; } else octant = 0; if (a < 0.0) { double t = a; octant += 2; a = b; b = -t; } if (b > a) { double t = a; octant += 1; a = b; b = t; } { static struct { double h; double l; } _atan[] = { // // The table here gives atan(n/16) in 1.5-precision for n=0..16 // Note that all the magic numbers used in this file were calculated // using the REDUCE bigfloat package, and all the 'exact' parts have // a denominator of at worst 2^26 and so are expected to have lots // of trailing zero bits in their floating point representation. // { 0.0, 0.0 }, { 0.06241881847381591796875, -0.84778585694947708870e-8 }, { 0.124355018138885498046875, -2.35921240630155201508e-8 }, { 0.185347974300384521484375, -2.43046897565983490387e-8 }, { 0.2449786663055419921875, -0.31786778380154175187e-8 }, { 0.302884876728057861328125, -0.83530864557675689054e-8 }, { 0.358770668506622314453125, 0.17639499059427950639e-8 }, { 0.412410438060760498046875, 0.35366268088529162896e-8 }, { 0.4636476039886474609375, 0.50121586552767562314e-8 }, { 0.512389481067657470703125, -2.07569197640365239794e-8 }, { 0.558599293231964111328125, 2.21115983246433832164e-8 }, { 0.602287352085113525390625, -0.59501493437085023057e-8 }, { 0.643501102924346923828125, 0.58689374629746842287e-8 }, { 0.6823165416717529296875, 1.32029951485689299817e-8 }, { 0.71882998943328857421875, 1.01883359311982641515e-8 }, { 0.75315129756927490234375, -1.66070805128190106297e-8 }, { 0.785398185253143310546875, -2.18556950009312141541e-8 } }; int k = static_cast<int>(16.0*(b/a + 0.03125)); // 0 to 16 double kd = static_cast<double>(k)/16.0; double ah = a, al = 0.0, bh = b, bl = 0.0, ch, cl, q, q2; _fp_normalize(ah, al); _fp_normalize(bh, bl); ch = bh - ah*kd; cl = bl - al*kd; ah = ah + bh*kd; al = al + bl*kd; bh = ch; bl = cl; // Now |(a/b)| <= 1/32 ah = fp_add(ah, al, &al); // Re-normalise bh = fp_add(bh, bl, &bl); // Compute approximation to b/a rh = (bh + bl)/(ah + al); rl = 0.0; _fp_normalize(rh, rl); bh -= ah*rh; bl -= al*rh; rl = (bh + bl)/(ah + al); // Quotient now formed // // Now it is necessary to compute atan(q) to one-and-a-half precision. // Since |q| < 1/32 I will leave just q as the high order word of // the result and compute atan(q)-q as a single precision value. This // gives about 16 bits accuracy beyond regular single precision work. // q = rh + rl; q2 = q*q; // The expansion the follows could be done better using a minimax poly rl -= q*q2*(0.33333333333333333333 - q2*(0.20000000000000000000 - q2*(0.14285714285714285714 - q2*(0.11111111111111111111 - q2* 0.09090909090909090909)))); // OK - now (rh, rl) is atan(reduced b/a). Need to add on atan(kd) rh += _atan[k].h; rl += _atan[k].l; } // // The following constants give high precision versions of pi and pi/2, // and the high partwords (p2h and pih) have lots of low order zero bits // in their binary representation. Expect (=require) that the arithmetic // that computes thh is done without introduced rounding error. // #define _p2h 1.57079632580280303955078125 #define _p2l 9.92093579680540441639751e-10 #define _pih 3.14159265160560607910156250 #define _pil 1.984187159361080883279502e-9 switch (octant) { default: case 0: thh = rh; thl = rl; break; case 1: thh = _p2h - rh; thl = _p2l - rl; break; case 2: thh = _p2h + rh; thl = _p2l + rl; break; case 3: thh = _pih - rh; thl = _pil - rl; break; case 4: thh = -_pih + rh; thl = -_pil + rl; break; case 5: thh = -_p2h - rh; thl = -_p2l - rl; break; case 6: thh = -_p2h + rh; thl = -_p2l + rl; break; case 7: thh = -rh; thl = -rl; break; } #undef _p2h #undef _p2l #undef _pih #undef _pil *thetah = fp_add(thh, thl, thetal); } static void extended_log(int k, double a, double b, double *logrh, double *logrl) { // // If we had exact arithmetic this procedure could be: // k*log(2) + 0.5*log(a^2 + b^2) // double al = 0.0, bl = 0.0, all = 0.0, bll = 0.0, c, ch, cl, cll; double w, q, qh, ql, rh, rl; int n; // // First (a^2 + b^2) is calculated, using extra precision. // Because any rounding at this stage can lead to bad errors in // the power that I eventually want to compute, I use 3-word // arithmetic here, and with the version of _fp_normalize given // above and IEEE or IBM370 arithmetic this part of the // computation is exact. // _fp_normalize(a, al); _fp_normalize(al, all); _fp_normalize(b, bl); _fp_normalize(bl, bll); ch = a*a + b*b; cl = 2.0*(a*al + b*bl); cll = (al*al + bl*bl) + all*(2.0*(a + al) + all) + bll*(2.0*(b + bl) + bll); _fp_normalize(ch, cl); _fp_normalize(cl, cll); c = ch + (cl + cll); // single precision approximation // // At this stage the scaling of the input value will mean that we // have 0.25 <= c <= 2.0 // // Now rewrite things as // (2*k + n)*log(s) + 0.5*log((a^2 + b^2)/2^n)) // where s = sqrt(2) // and where the arg to the log is in sqrt(0.5), sqrt(2) // #define _sqrt_half 0.70710678118654752440 #define _sqrt_two 1.41421356237309504880 k = 2*k; while (c < _sqrt_half) { k -= 1; ch *= 2.0; cl *= 2.0; cll *= 2.0; c *= 2.0; } while (c > _sqrt_two) { k += 1; ch *= 0.5; cl *= 0.5; cll *= 0.5; c *= 0.5; } #undef _sqrt_half #undef _sqrt_two n = static_cast<int>(16.0/c + 0.5); w = static_cast<double>(n) / 16.0; ch *= w; cl *= w; cll *= w; // Now |c-1| < 0.04317 ch = (ch - 0.5) - 0.5; ch = fp_add(ch, cl, &cl); cl = cl + cll; // // (ch, cl) is now the reduced argument ready for calculating log(1+c), // and now that the reduction is over I can drop back to the use of just // two doubleprecision values to represent c. // c = ch + cl; qh = c / (2.0 + c); ql = 0.0; _fp_normalize(qh, ql); ql = ((ch - qh*(2.0 + ch)) + cl - qh*cl) / (2.0 + c); // (qh, ql) is now c/(2.0 + c) rh = qh; // 18 bits bigger than low part will end up q = qh + ql; w = q*q; rl = ql + q*w*(0.33333333333333333333 + w*(0.20000000000000000000 + w*(0.14285714285714285714 + w*(0.11111111111111111111 + w*(0.09090909090909090909))))); // // (rh, rl) is now atan(c) correct to double precision plus about 18 bits. // { double temp; static struct { double h; double l; } _log_table[] = { // // The following values are (in extra precision) -log(n/16)/2 for n // in the range 11 to 23 (i.e. roughly over sqrt(2)/2 to sqrt(2)) // { 0.1873466968536376953125, 2.786706765149099245e-8 }, { 0.1438410282135009765625, 0.801238948715710950e-8 }, { 0.103819668292999267578125, 1.409612298322959552e-8 }, { 0.066765725612640380859375, -2.930037906928620319e-8 }, { 0.0322692394256591796875, 2.114312640614896196e-8 }, { 0.0, 0.0 }, { -0.0303122997283935546875, -1.117982386660280307e-8 }, { -0.0588915348052978515625, 1.697710612429310295e-8 }, { -0.08592510223388671875, -2.622944289242004947e-8 }, { -0.111571788787841796875, 1.313073691899185245e-8 }, { -0.135966837406158447265625, -2.033566243215020975e-8 }, { -0.159226894378662109375, 2.881939480146987639e-8 }, { -0.18145275115966796875, 0.431498374218108783e-8 } }; rh = fp_add(rh, _log_table[n-11].h, &temp); rl = temp + _log_table[n-11].l + rl; } #define _exact_part_logroot2 0.3465735912322998046875 #define _approx_part_logroot2 (-9.5232714997888393927e-10) // Multiply this by k and add it in { double temp, kd = static_cast<double>(k); rh = fp_add(rh, kd*_exact_part_logroot2, &temp); rl = rl + temp + kd*_approx_part_logroot2; } #undef _exact_part_logroot2 #undef _approx_part_logroot2 *logrh = rh; *logrl = rl; return; } Complex Cpow(Complex z1, Complex z2) { double a = z1.real, b = z1.imag, c = z2.real, d = z2.imag; int k, m, n; double scale; double logrh, logrl, thetah, thetal; double r, i, rh, rl, ih, il, clow, dlow, q; double cw, sw, cost, sint; if (b == 0.0 && d == 0.0 && a >= 0.0)// Simple case if both args are real { z1.real = std::pow(a, c); z1.imag = 0.0; return z1; } // // Start by scaling z1 by dividing out a power of 2 so that |z1| is // fairly close to 1 // if (a == 0.0) { if (b == 0.0) return z1; // 0.0**anything is really an error // The exact values returned by frexp do not matter here static_cast<void>(std::frexp(b, &k)); } else { static_cast<void>(std::frexp(a, &k)); if (b != 0.0) { int n; static_cast<void>(std::frexp(b, &n)); if (n > k) k = n; } } scale = std::ldexp(1.0, k); a /= scale; b /= scale; // // The idea next is to express z1 as r*exp(i theta), then z1**z2 // is exp(z2*log(z1)) and the exponent simplifies to // (c*log r - d*theta) + i(c theta + d log r). // Note r = scale*sqrt(a*a + b*b) now. // The argument for exp() must be computed to noticably more than // regular precision, since otherwise exp() greatly magnifies the // error in the real part (if it is large and positive) and range // reduction in the imaginary part can equally lead to accuracy // problems. Neither c nor d can usefully be anywhere near the // extreme range of floating point values, so I will not even try // to scale them, thus I will end up happy(ish) if I can compute // atan2(b, a) and log(|z1|) in one-and-a-half precision form. // It would be best to compute theta in units of pi/4 rather than in // raidians, since then the case of z^n (integer n) with arg(z) an // exact multiple of pi/4 would work out better. However at present I // just hope that the 1.5-precision working is good enough. // extended_atan2(b, a, &thetah, &thetal); extended_log(k, a, b, &logrh, &logrl); // Normalise all numbers clow = 0.0; dlow = 0.0; _fp_normalize(c, clow); _fp_normalize(d, dlow); // (rh, rl) = c*logr - d*theta; rh = c*logrh - d*thetah; // No rounding in this computation rl = c*logrl + clow*(logrh + logrl) - d*thetal - dlow* (thetah + thetal); // (ih, il) = c*theta + d*logr; ih = c*thetah + d*logrh; // No rounding in this computation il = c*thetal + clow*(thetah + thetal) + d*logrl + dlow* (logrh + logrl); // // Now it remains to take the exponential of the extended precision // value in ((rh, rl), (ih, il)). // Range reduce the real part by multiples of log(2), and the imaginary // part by multiples of pi/2. // rh = fp_add(rh, rl, &rl); // renormalise r = rh + rl; // Approximate value #define _recip_log_2 1.4426950408889634074 q = r * _recip_log_2; m = (q < 0.0) ? static_cast<int>(q - 0.5) : static_cast<int>(q + 0.5); q = static_cast<double>(m); #undef _recip_log_2 // // log 2 = 11629080/2^24 - 0.000 00000 19046 54299 95776 78785 // to reasonable accuracy. It is vital that the exact part be // read in as a number with lots of low zero bits, so when it gets // multiplied by the integer q there is NO rounding needed. // #define _exact_part_log2 0.693147182464599609375 #define _approx_part_log2 (-1.9046542999577678785418e-9) rh = rh - q*_exact_part_log2; rl = rl - q*_approx_part_log2; #undef _exact_part_log2 #undef _approx_part_log2 r = std::exp(rh + rl); // This should now be accurate enough ih = fp_add(ih, il, &il); i = ih + il; // Approximate value #define _recip_pi_by_2 0.6366197723675813431 q = i * _recip_pi_by_2; n = (q < 0.0) ? static_cast<int>(q - 0.5) : static_cast<int>(q + 0.5); q = static_cast<double>(n); // // pi/2 = 105414357/2^26 + 0.000 00000 09920 93579 68054 04416 39751 // to reasonable accuracy. It is vital that the exact part be // read in as a number with lots of low zero bits, so when it gets // multiplied by the integer q there is NO rounding needed. // #define _exact_part_pi2 1.57079632580280303955078125 #define _approx_part_pi2 9.92093579680540441639751e-10 ih = ih - q*_exact_part_pi2; il = il - q*_approx_part_pi2; #undef _recip_pi_by_2 #undef _exact_part_pi2 #undef _approx_part_pi2 i = ih + il; // Now accurate enough // // Having done super-careful range reduction I can call the regular // sin/cos routines here. If sin/cos could both be computed together // that could speed things up a little bit, but by this stage they have // not much in common. // cw = std::cos(i); sw = std::sin(i); switch (n & 3) // quadrant control { default: case 0: cost = cw; sint = sw; break; case 1: cost = -sw; sint = cw; break; case 2: cost = -cw; sint = -sw; break; case 3: cost = sw; sint = -cw; break; } // // Now, at long last, I can assemble the results and return. // z1.real = std::ldexp(r*cost, m); z1.imag = std::ldexp(r*sint, m); return z1; } // // End of complex-to-complex-power code. // // end of arith07.cpp
36.914697
85
0.587143
arthurcnorman
85c99d2b6b4215afc6f0ae82c6234c5939f9b5cc
7,056
cpp
C++
src/testcase/backtrace.cpp
jjg1914/testcase
1edca3295ea65d654f0b363bd0bde8c0f0b653f3
[ "MIT" ]
null
null
null
src/testcase/backtrace.cpp
jjg1914/testcase
1edca3295ea65d654f0b363bd0bde8c0f0b653f3
[ "MIT" ]
null
null
null
src/testcase/backtrace.cpp
jjg1914/testcase
1edca3295ea65d654f0b363bd0bde8c0f0b653f3
[ "MIT" ]
null
null
null
#include <bfd.h> #include <execinfo.h> #include <cxxabi.h> #include <csignal> #include <cmath> #include <map> #include <string> #include <sstream> #include <iostream> #include <iomanip> #include <memory> #include "testcase/backtrace.h" using namespace std; using namespace testcase; #define BACKTRACE_BUF_SIZE \ (sizeof(backtrace_buf)/sizeof(backtrace_buf[0])) namespace { backtrace_exception_f exception_handler; void* backtrace_buf[1024]; struct BFD_info { bool found; string filename; string functionname; unsigned int line; }; struct BFD { static void init(); BFD(const string &fname); ~BFD(); BFD_info addr_info(const string &addr); bfd_vma addr_vma(const string &addr); private: static void find_addr(bfd* p, asection *section, void *data); bfd* ptr_bfd; map<string,bfd_vma> map_syms; static bfd_vma pc; static asymbol **info_symtab; static bfd_boolean info_found; static const char* info_filename; static const char* info_functionname; static unsigned int info_line; }; std::string sym2fname(const char *sym); std::string sym2addr(const char *sym); void handle_terminate(); void handle_sigsegv(int); void handle_sigfpe(int); void handle_sigill(int); void handle_sigbus(int); } bfd_vma BFD::pc; asymbol **BFD::info_symtab = NULL; bfd_boolean BFD::info_found = 0; const char* BFD::info_filename; const char* BFD::info_functionname; unsigned int BFD::info_line; void BFD::init() { bfd_init(); } BFD::BFD(const string &fname) : ptr_bfd(bfd_openr(fname.c_str(),NULL)) { char **matching; if (ptr_bfd && !bfd_check_format(ptr_bfd, bfd_archive) && bfd_check_format_matches(ptr_bfd, bfd_object, &matching) && bfd_get_file_flags(ptr_bfd) & HAS_SYMS) { unsigned int size; asymbol **symtab; long symc = bfd_read_minisymbols(ptr_bfd, 0, (void**) &symtab, &size); if (symc == 0) { symc = bfd_read_minisymbols(ptr_bfd, 1, (void**) &symtab, &size); } for (int i = 0; i < symc; ++i) { symbol_info info; bfd_symbol_info(symtab[i], &info); map_syms.emplace(symtab[i]->name, info.value); } } } BFD::~BFD() { if (ptr_bfd) { bfd_close(ptr_bfd); } } BFD_info BFD::addr_info(const string &addr) { BFD_info rval; pc = addr_vma(addr); rval.found = (info_found = 0); bfd_map_over_sections(ptr_bfd,BFD::find_addr, NULL); if (info_found) { rval.found = true; rval.filename = (info_filename ? info_filename : ""); rval.functionname = (info_functionname ? info_functionname : "Anonymous Function"); rval.line = info_line; } return rval; } bfd_vma BFD::addr_vma(const string &addr) { int i = addr.find_last_of('+'); bfd_vma base = 0; if (i > 0) { string sym = addr.substr(0,i); auto it = map_syms.find(sym); if (it != map_syms.end()) { base = it->second; } } bfd_vma offset = bfd_scan_vma(addr.substr(i + 1).c_str(), NULL, 16); return base + offset; } void BFD::find_addr(bfd* p, asection *section, void *) { bfd_vma vma; bfd_size_type size; if (info_found) return; if ((bfd_get_section_flags(p, section) & SEC_ALLOC) == 0) return; vma = bfd_get_section_vma(p, section); if (pc < vma) return; size = bfd_get_section_size(section); if (pc >= vma + size) return; info_found = bfd_find_nearest_line(p, section, info_symtab, pc - vma, &info_filename, &info_functionname, &info_line); } namespace { std::string sym2fname(const char *sym) { string base(sym); int i = base.size() - 1; while (base[i] != '(') { --i; } return base.substr(0,i); } std::string sym2addr(const char *sym) { string base(sym); int e = base.size() - 1, s; while (base[e] != ')') { --e; } s = e; while (base[s] != '(') { --s; } if (e - s == 1) { e = base.size() - 1; while (base[e] != ']') { --e; } s = e; while (base[s] != '[') { --s; } } return base.substr(s + 1,e - s - 1); } void handle_terminate() { static bool recursive_guard = 0; static int init_depth = 0; ErrorInfo info(ErrorInfo::ETERM, backtrace_depth()); try { if (recursive_guard) { exception e; info.depth = init_depth; exception_handler(info, e); } else { recursive_guard = true; init_depth = info.depth;; throw; } } catch (exception &e) { info.eno = ErrorInfo::EEXP; exception_handler(info, e); } catch (...) { exception e; info.eno = ErrorInfo::EUNKNOWN; exception_handler(info, e); } } void handle_sigsegv(int) { ErrorInfo info(ErrorInfo::ESEGV, backtrace_depth()); exception e; exception_handler(info, e); } void handle_sigfpe(int) { ErrorInfo info(ErrorInfo::EFPE, backtrace_depth()); exception e; exception_handler(info, e); } void handle_sigill(int) { ErrorInfo info(ErrorInfo::EILL, backtrace_depth()); exception e; exception_handler(info, e); } void handle_sigbus(int) { ErrorInfo info(ErrorInfo::EBUS, backtrace_depth()); exception e; exception_handler(info, e); } } testcase::ErrorInfo::ErrorInfo(Errno eno, int depth) : eno(eno), depth(depth) {} std::string testcase::sbacktrace(int bottom, int top) { stringstream ss; int size = backtrace((void**)&backtrace_buf,BACKTRACE_BUF_SIZE); char **sym = backtrace_symbols(backtrace_buf, size); BFD::init(); map<string,BFD> str2bfd; int s = size - bottom + 1; int width = log10(size - top - 1 - s) + 1; for (int i = s; i < size - top - 1; ++i) { string fname(sym2fname(sym[i])); BFD& rbfd = str2bfd.emplace(fname, fname).first->second; BFD_info info = rbfd.addr_info(sym2addr(sym[i])); if (info.found) { ss << setw(width) << (i - s); ss << ": " << backtrace_demangle(info.functionname) << endl; ss << string(width + 2,' '); ss << "[" << info.filename << ":" << info.line << "]" << endl; ss << string(width + 2,' '); ss << fname << "(+0x" << hex << rbfd.addr_vma(sym2addr(sym[i])) << ")"; ss << dec << endl; } else { ss << setw(width) << (i - s) << ": " << sym[i] << endl; } } free(sym); return ss.str(); } void testcase::backtrace_exception(const std::function<void(const ErrorInfo&, const std::exception &e)> &f) { exception_handler = f; set_terminate(handle_terminate); signal(SIGSEGV,handle_sigsegv); signal(SIGFPE,handle_sigfpe); signal(SIGILL,handle_sigill); signal(SIGBUS,handle_sigbus); } std::string testcase::backtrace_demangle(const std::string &sym) { int status; unique_ptr<char> realname(abi::__cxa_demangle(sym.c_str(), 0, 0, &status)); if (status) { return sym; } else { return realname.get(); } } int testcase::backtrace_depth() { return backtrace((void**)&backtrace_buf,BACKTRACE_BUF_SIZE) - 1; } void testcase::backtrace_trap() { raise(SIGTRAP); }
21.512195
77
0.618906
jjg1914
85cb6cbecfb350484fccd1aee3264ef374dbd7b6
4,152
cpp
C++
src/guacamole/guac_clipboard.cpp
unk0rrupt/collab-vm-server
30a18cc91b757216a08e900826b589ce29bc3bf0
[ "Apache-2.0" ]
74
2020-12-20T19:29:21.000Z
2021-12-04T14:59:29.000Z
src/guacamole/guac_clipboard.cpp
unk0rrupt/collab-vm-server
30a18cc91b757216a08e900826b589ce29bc3bf0
[ "Apache-2.0" ]
2
2020-12-27T12:10:50.000Z
2021-01-24T12:38:24.000Z
src/guacamole/guac_clipboard.cpp
unk0rrupt/collab-vm-server
30a18cc91b757216a08e900826b589ce29bc3bf0
[ "Apache-2.0" ]
4
2020-12-20T14:28:11.000Z
2021-08-20T17:01:11.000Z
/* * Copyright (C) 2014 Glyptodon LLC * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #define _CRT_SECURE_NO_WARNINGS #include "config.h" #include "guac_clipboard.h" #include "guacamole/protocol.h" #include "guacamole/stream.h" #include "GuacClient.h" #include "GuacUser.h" #include <string.h> #include <stdlib.h> guac_common_clipboard* guac_common_clipboard_alloc(int size) { guac_common_clipboard* clipboard = (guac_common_clipboard*)malloc(sizeof(guac_common_clipboard)); /* Init clipboard */ clipboard->mimetype[0] = '\0'; clipboard->buffer = (char*)malloc(size); clipboard->length = 0; clipboard->available = size; return clipboard; } void guac_common_clipboard_free(guac_common_clipboard* clipboard) { free(clipboard->buffer); free(clipboard); } /** * Callback for guac_client_foreach_user() which sends clipboard data to each * connected client. */ static void __send_user_clipboard(GuacUser* user, void* data) { guac_common_clipboard* clipboard = (guac_common_clipboard*) data; char* current = clipboard->buffer; int remaining = clipboard->length; /* Begin stream */ guac_stream* stream = user->AllocStream(); guac_protocol_send_clipboard(user->socket_, stream, clipboard->mimetype); user->Log(GUAC_LOG_DEBUG, "Created stream %i for %s clipboard data.", stream->index, clipboard->mimetype); /* Split clipboard into chunks */ while (remaining > 0) { /* Calculate size of next block */ int block_size = GUAC_COMMON_CLIPBOARD_BLOCK_SIZE; if (remaining < block_size) block_size = remaining; /* Send block */ guac_protocol_send_blob(user->socket_, stream, current, block_size); user->Log(GUAC_LOG_DEBUG, "Sent %i bytes of clipboard data on stream %i.", block_size, stream->index); /* Next block */ remaining -= block_size; current += block_size; } user->Log(GUAC_LOG_DEBUG, "Clipboard stream %i complete.", stream->index); /* End stream */ guac_protocol_send_end(user->socket_, stream); user->FreeStream(stream); } void guac_common_clipboard_send(guac_common_clipboard* clipboard, GuacClient* client) { //guac_client_log(client, GUAC_LOG_DEBUG, "Broadcasting clipboard to all connected users."); //guac_client_foreach_user(client, __send_user_clipboard, clipboard); //guac_client_log(client, GUAC_LOG_DEBUG, "Broadcast of clipboard complete."); } void guac_common_clipboard_reset(guac_common_clipboard* clipboard, const char* mimetype) { clipboard->length = 0; strncpy(clipboard->mimetype, mimetype, sizeof(clipboard->mimetype)-1); } void guac_common_clipboard_append(guac_common_clipboard* clipboard, const char* data, int length) { /* Truncate data to available length */ int remaining = clipboard->available - clipboard->length; if (remaining < length) length = remaining; /* Append to buffer */ memcpy(clipboard->buffer + clipboard->length, data, length); /* Update length */ clipboard->length += length; }
32.692913
99
0.71315
unk0rrupt