blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
4781b424d9b9fbdd8f44d282b49b55a5e2d91486
cf7b827958166c8569eb58deb511cc3f07567741
/in_Python/0018 4Sum.py
60ae17d9a8e2a5f6ae27d81501ae8a1beba56d71
[]
no_license
YangLiyli131/Leetcode2020
e4e36eb36b1983f73b0e733455b4a7953dfebe6d
20623defecf65cbc35b194d8b60d8b211816ee4f
refs/heads/master
2023-08-22T06:00:55.924112
2021-09-18T19:04:15
2021-09-18T19:04:15
251,426,203
0
0
null
null
null
null
UTF-8
Python
false
false
1,259
py
class Solution(object): def threesum(self, nums, target): res = [] for i in range(len(nums)-2): if i > 0 and nums[i] == nums[i-1]: continue l = i+1 r = len(nums)-1 while l < r: s = nums[i] + nums[l] + nums[r] if s < target: l += 1 elif s > target: r -= 1 else: res.append([nums[i],nums[l],nums[r]]) while l < r and nums[l] == nums[l+1]: l += 1 while l < r and nums[r] == nums[r-1]: r -= 1 l += 1 r -= 1 return res def fourSum(self, nums, target): """ :type nums: List[int] :type target: int :rtype: List[List[int]] """ res = [] nums.sort() for i in range(len(nums)-3): if i > 0 and nums[i] == nums[i-1]: continue cur = nums[i] x = self.threesum(nums[i+1:], target - cur) for item in x: res.append([cur] + item) return res
faf9386e8572b52f4ebd7b6ed69b8ca7c28b3c9e
70ff4bfa6af83a1754b6d75f4d372d643ec66bbc
/main.py
f2bf5f0a2a7cebce9b0b056ced3a6afa2e570261
[]
no_license
benmali/Resty
ca1ba091f2275463e67849b3e0195c96be14d47a
bfbdd3cdfe18e6d2d845d0f9ca81dcaf754e5d35
refs/heads/master
2023-07-24T17:05:58.788126
2021-08-16T16:03:04
2021-08-16T16:03:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,837
py
from flask import Flask, session from backend.register import registerBP from backend.send_hours import sendHoursBP from backend.main_page import mainBP from backend.arrangement import arrangementBP from backend.login import loginBP from backend.log_working_hours import log_workBP from backend.restore_shifts import restore_shiftsBP from backend.week_templates import week_templatesBP from backend.template_info import templates_infoBP from backend.send_hours_info import sendHoursInfoBP from backend.arrangement_info import arrangementInfoBP app = Flask(__name__) #bp of main - get #bp register employee - post + get #bp show arrangement - get #bp create arrangment - get/post #bp login - post/get #bp register to the website app.register_blueprint(registerBP, url_prefix="") app.register_blueprint(sendHoursBP, url_prefix="") app.register_blueprint(mainBP, url_prefix="") app.register_blueprint(arrangementBP, url_prefix="") app.register_blueprint(loginBP, url_prefix="") app.register_blueprint(log_workBP, url_prefix="") app.register_blueprint(restore_shiftsBP, url_prefix="") app.register_blueprint(week_templatesBP, url_prefix="") app.register_blueprint(templates_infoBP, url_prefix="") app.register_blueprint(sendHoursInfoBP, url_prefix="") app.register_blueprint(arrangementInfoBP, url_prefix="") app.secret_key = "sxchahsdiusd324wdasd" # run scheduled tasks # import time # import atexit # # from apscheduler.schedulers.background import BackgroundScheduler # # # def print_date_time(): # print(time.strftime("%A, %d. %B %Y %I:%M:%S %p")) # # # scheduler = BackgroundScheduler() # scheduler.add_job(func=print_date_time, trigger="interval", seconds=3) # scheduler.start() # # # Shut down the scheduler when exiting the app # atexit.register(lambda: scheduler.shutdown()) if __name__ == "__main__": app.run(debug=True)
4ffea9d60227c13597c035fcec909aa0f5efba0a
9b187191ffca9cd84191ad0b086bf1f3450311cf
/migrations/versions/6dcc3fec26a4_posts_table.py
e1e3e83d7992ff186e314b3de496b14f94b422e3
[]
no_license
shivam2211/flask_1
7ae7c170b4cf9efdd103a0528b02f766445a79bf
9ba2c82ea3d21dc985e518a0d0cda3fba39c66f0
refs/heads/master
2022-11-30T16:48:58.714298
2019-08-16T05:50:30
2019-08-16T05:50:30
202,662,534
0
1
null
2022-11-29T09:49:15
2019-08-16T05:14:14
Python
UTF-8
Python
false
false
1,057
py
"""posts table Revision ID: 6dcc3fec26a4 Revises: 14c1433eaa17 Create Date: 2019-08-07 18:39:59.461452 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '6dcc3fec26a4' down_revision = '14c1433eaa17' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('post', sa.Column('id', sa.Integer(), nullable=False), sa.Column('body', sa.String(length=140), nullable=True), sa.Column('timestamp', sa.DateTime(), nullable=True), sa.Column('user_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['user_id'], ['user.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_index(op.f('ix_post_timestamp'), 'post', ['timestamp'], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_post_timestamp'), table_name='post') op.drop_table('post') # ### end Alembic commands ###
2e65701776453eaac4caa781ef041ef94faf4efa
a905f5b56732cb49d5d692b75c7334d772b67144
/pydevs_abc/src/test/hex.py
9c4f617649392474728cb4ea418e60a10a63452d
[]
no_license
weilaidb/PythonExample2
d859acee3eb3e9b6448553b4f444c95ab2b2fc8f
492fa2d687a8f3b9370ed8c49ffb0d06118246c7
refs/heads/master
2022-04-20T00:35:35.456199
2020-04-26T00:32:12
2020-04-26T00:32:12
114,774,595
0
0
null
null
null
null
WINDOWS-1252
Python
false
false
890
py
#!/usr/bin/python # -*- coding: GBK -*- ''' Created on 2017Äê12ÔÂ23ÈÕ @author: Administrator ''' from test import num print (("%x " % 108)) print ("%X" % 108) print ("%#x" % 108) print ("%#X " % 108) print ('%f' % 1234.567890) print ('%.2f' % 1234.67890) print ('%E' % 1234.567890) print ('%e' % 1234.567890) print ('%g' % 1234.567890) print ('%G' % 1234.567890) print ("%e" % 11111111111111111111111111111111) print ("%+d" % 4) print ("%+d" % -4) print ("we are at %d%%" % 100) print ('Your host is: %s' % 'earth') print ('Host:%s\tPort:%d' % ('mars', 80)) num = 123 print ('dec:%d/ oct:%#o/ hex:%#X' % (num, num, num)) print ("MM/DD/YY = %02d/%02d/%d" % (2,15, 67)) w,p = 'Web', 'page' print ('http://xxx.yyy.zzz/%s/%s.html' % (w, p)) print ('There are %(howmany)d %(lang)s Quotation Symbols' % \ {'lang': 'Python', 'howmany': 3})
d5c3d573dd671d8acd86f5bffe5b659ddbd1f738
3a46874efa8238c516c70768c677dbd7e8f9225c
/utility/logging/base_logger.py
5f1ec9eef95f1d0bf0f840f4d4be0ee98e138498
[]
no_license
hungntt/WorldModelPlanning
ad36d8086275086dae0625dc040bdcce0f9d9aef
1e58be1870bae952f104971d082999852f48a51b
refs/heads/master
2023-05-28T14:39:04.194597
2021-01-12T12:40:04
2021-01-12T12:40:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
604
py
class BaseLogger: def __init__(self, is_logging): self.log_dir_root = 'utility/logging/tensorboard_runs' self._is_logging = is_logging def start_log(self, name): pass def commit_log(self): pass def end_log(self): pass def _add_text(self, tag, value, step, logger): if not self._is_logging: return logger.add_text(tag=tag, text_string=value, global_step=step) def _add_scalar(self, tag, value, step, logger): if not self._is_logging: return logger.add_scalar(tag, value, step)
91ff9a717c2a2c75bf69aa2faee3c27419ad23c0
a7757ca757eedc7d17c840e5f726f8d5f067a544
/djangoweb/wsgi.py
9472b1c747a5e851da254aacaa47261f1aed4cf5
[]
no_license
spicycouscous/apscp-project-thing
fcd613515f37ec9e26940bd2c972fa0965a48f25
bea47ce027a986d9f4a5b49450c8310feed4c960
refs/heads/master
2020-05-30T01:03:15.925589
2019-06-03T20:39:17
2019-06-03T20:39:17
189,469,933
1
0
null
null
null
null
UTF-8
Python
false
false
1,105
py
""" WSGI config for djangoweb project. This module contains the WSGI application used by Django's development server and any production WSGI deployments. It should expose a module-level variable named ``application``. Django's ``runserver`` and ``runfcgi`` commands discover this application via the ``WSGI_APPLICATION`` setting. Usually you will have the standard Django WSGI application here, but it also might make sense to replace the whole Django WSGI application with a custom one that later delegates to the Django one. For example, you could introduce WSGI middleware here, or combine a Django application with an application of another framework. For more information, visit https://docs.djangoproject.com/en/2.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault( 'DJANGO_SETTINGS_MODULE', 'djangoweb.settings') # This application object is used by any WSGI server configured to use this # file. This includes Django's development server, if the WSGI_APPLICATION # setting points here. application = get_wsgi_application()
[ "nope" ]
nope
c458fef4201fe3d3cee5e187f12aea981b5cab02
8f2adafcc2fd52870986b17863b39ded83b730a0
/ryu_multipath_1_5.py
26c5df5dd2704572ec222f5739da91e2b68e925d
[]
no_license
josecarlosjr/SDN-CONTEXT
197664fd8a5908cb8f8f5f11c65bc813abe8d0a4
78ccff317d6c79e07544d428a9112d757290181b
refs/heads/master
2020-04-02T10:06:37.004598
2019-11-13T12:04:09
2019-11-13T12:04:09
154,324,652
1
0
null
null
null
null
UTF-8
Python
false
false
87,429
py
#-*- coding: utf-8 -*- from ryu.base import app_manager from ryu.controller import mac_to_port, ofp_event from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER, DEAD_DISPATCHER, set_ev_cls from ryu.ofproto import ofproto_v1_4 from ryu.ofproto import ofproto_v1_4_parser from ryu.lib.mac import haddr_to_bin from ryu.lib.packet import packet, arp, ethernet, ipv4, ipv6, ether_types, icmp from ryu.lib import mac, ip, hub from ryu.topology.api import get_switch, get_link, get_all_link, get_all_switch from ryu.app.wsgi import ControllerBase from ryu.topology import event, switches from termcolor import colored from collections import defaultdict from operator import itemgetter from operator import attrgetter import os import random import time, copy from datetime import datetime import pandas as pd #MAX_PATHS = 2 IP_1 = '192.168.1.1' IP_2 = '192.168.2.2' IP_3 = '192.168.3.3' IP_4 = '192.168.4.4' IP = ['192.168.1.1','192.168.2.2','192.168.3.3','192.168.4.4'] MAX_BAND = 800 #Mbps adjacency = defaultdict(lambda: defaultdict(lambda: None)) #################################### class ProjectController(app_manager.RyuApp): OFP_VERSIONS = [ofproto_v1_4.OFP_VERSION] #ADICIONADO 26/09/2018 variavel global ################################ global dp, C, c, b, src, dst, first_port, last_port, out_ports, PL, PL1_3#, ipDFrame_src, arpDFrame_src, ipDFrame_dst, arpDFrame_dst ####################################################################################################################### #Variaveis globais para calculo de banda #DP 1 global band_1_1, result_1_1, band_rx_1_1, result_rx_1_1, tx_ini_1_1, tx_fin_1_1, rx_ini_1_1, rx_fin_1_1 #dp 1 port 1 global band_1_2, result_1_2, band_rx_1_2, result_rx_1_2, tx_ini_1_2, tx_fin_1_2, rx_ini_1_2, rx_fin_1_2 #dp 1 port 2 global band_1_3, result_1_3, band_rx_1_3, result_rx_1_3, tx_ini_1_3, tx_fin_1_3, rx_ini_1_3, rx_fin_1_3 #dp 1 port 3 global tx_1_2_packet, tx_1_3_packet, rx_1_2_packet, rx_1_3_packet, L1_2, L1_3 #DP 2 global band_2_1, result_2_1, band_rx_2_1, result_rx_2_1, tx_ini_2_1, tx_fin_2_1, rx_ini_2_1, rx_fin_2_1 #dp 2 port 1 global band_2_2, result_2_2, band_rx_2_2, result_rx_2_2, tx_ini_2_2, tx_fin_2_2, rx_ini_2_2, rx_fin_2_2 #dp 2 port 2 global band_2_3, result_2_3, band_rx_2_3, result_rx_2_3, tx_ini_2_3, tx_fin_2_3, rx_ini_2_3, rx_fin_2_3 #dp 2 port 3 global tx_2_2_packet, tx_2_3_packet, rx_2_2_packet, rx_2_3_packet, L2_2, L2_3 #DP 3 global band_3_1, result_3_1, band_rx_3_1, result_rx_3_1, tx_ini_3_1, tx_fin_3_1, rx_ini_3_1, rx_fin_3_1 #dp 3 port 1 global band_3_2, result_3_2, band_rx_3_2, result_rx_3_2, tx_ini_3_2, tx_fin_3_2, rx_ini_3_2, rx_fin_3_2 #dp 3 port 2 global band_3_3, result_3_3, band_rx_3_3, result_rx_3_3, tx_ini_3_3, tx_fin_3_3, rx_ini_3_3, rx_fin_3_3 #dp 3 port 3 global tx_3_2_packet, tx_3_3_packet, rx_3_2_packet, rx_3_3_packet, L3_2, L3_3 #DP 4 global band_4_1, result_4_1, band_rx_4_1, result_rx_4_1, tx_ini_4_1, tx_fin_4_1, rx_ini_4_1, rx_fin_4_1 #dp 4 port 1 global band_4_2, result_4_2, band_rx_4_2, result_rx_4_2, tx_ini_4_2, tx_fin_4_2, rx_ini_4_2, rx_fin_4_2 #dp 4 port 2 global band_4_3, result_4_3, band_rx_4_3, result_rx_4_3, tx_ini_4_3, tx_fin_4_3, rx_ini_4_3, rx_fin_4_3 #dp 4 port 3 global tx_4_2_packet, tx_4_3_packet, rx_4_2_packet, rx_4_3_packet, L4_2, L4_3 ######################################################################################################################## #inicializando variáveis globais C = c = b = out_ports = PL = PL1_3 = 0 #ipDFrame_src = pd.DataFrame([]) #DP 1 band_1_1 = result_1_1 = band_rx_1_1 = result_rx_1_1 = tx_ini_1_1 = tx_fin_1_1 = rx_ini_1_1 = rx_fin_1_1 = 0 #dp 1 port 1 band_1_2 = result_1_2 = band_rx_1_2 = result_rx_1_2 = tx_ini_1_2 = tx_fin_1_2 = rx_ini_1_2 = rx_fin_1_2 = 0 #dp 1 port 2 band_1_3 = result_1_3 = band_rx_1_3 = result_rx_1_3 = tx_ini_1_3 = tx_fin_1_3 = rx_ini_1_3 = rx_fin_1_3 = 0 #dp 1 port 3 tx_1_2_packet = tx_1_3_packet = rx_1_2_packet = rx_1_3_packet = L1_2 = L1_3 = 0 #DP 2 band_2_1 = result_2_1 = band_rx_2_1 = result_rx_2_1 = tx_ini_2_1 = tx_fin_2_1 = rx_ini_2_1 = rx_fin_2_1 = 0 #dp 2 port 1 band_2_2 = result_2_2 = band_rx_2_2 = result_rx_2_2 = tx_ini_2_2 = tx_fin_2_2 = rx_ini_2_2 = rx_fin_2_2 = 0 #dp 2 port 2 band_2_3 = result_2_3 = band_rx_2_3 = result_rx_2_3 = tx_ini_2_3 = tx_fin_2_3 = rx_ini_2_3 = rx_fin_2_3 = 0 #dp 2 port 2 tx_2_2_packet = tx_2_3_packet = rx_2_2_packet = rx_2_3_packet = L2_2 = L2_3 = 0 #DP3 band_3_1 = result_3_1 = band_rx_3_1 = result_rx_3_1 = tx_ini_3_1 = tx_fin_3_1 = rx_ini_3_1 = rx_fin_3_1 = 0 #dp 3 port 1 band_3_2 = result_3_2 = band_rx_3_2 = result_rx_3_2 = tx_ini_3_2 = tx_fin_3_2 = rx_ini_3_2 = rx_fin_3_2 = 0 #dp 3 port 2 band_3_3 = result_3_3 = band_rx_3_3 = result_rx_3_3 = tx_ini_3_3 = tx_fin_3_3 = rx_ini_3_3 = rx_fin_3_3 = 0 #dp 3 port 3 tx_3_2_packet = tx_3_3_packet = rx_3_2_packet = rx_3_3_packet = L3_2 = L3_3 = 0 #DP4 band_4_1 = result_4_1 = band_rx_4_1 = result_rx_4_1 = tx_ini_4_1 = tx_fin_4_1 = rx_ini_4_1 = rx_fin_4_1 = 0 #dp 4 port 1 band_4_2 = result_4_2 = band_rx_4_2 = result_rx_4_2 = tx_ini_4_2 = tx_fin_4_2 = rx_ini_4_2 = rx_fin_4_2 = 0 #dp 4 port 2 band_4_3 = result_4_3 = band_rx_4_3 = result_rx_4_3 = tx_ini_4_3 = tx_fin_4_3 = rx_ini_4_3 = rx_fin_4_3 = 0 #dp 4 port 3 tx_4_2_packet = tx_4_3_packet = rx_4_2_packet = rx_4_3_packet = L4_2 = L4_3 = 0 def __init__(self, *args, **kwargs): super(ProjectController, self).__init__(*args, **kwargs) #self.mac_to_port = {} self.ipDFrame_src = self.arpDFrame_src = self.ipDFrame_dst = self.arpDFrame_dst = pd.DataFrame([]) self.topology_api_app = self self.datapath_list = {} self.arp_table = {} self.switches = [] self.hosts = {} self.multipath_group_ids = {} self.group_ids = [] self.adjacency = defaultdict(dict) #ADICIONADO 22/09/2018 ################################################## self.monitor_thread = hub.spawn(self._monitor) self.eventos = [] ################################################## ###################################################### #Algoritmo Depth First Search def get_paths(self, src, dst): ''' Get all paths from src to dst using DFS (Depth First Search) algorithm ''' if src == dst: # host target is on the same switch return [[src]] paths = [] stack = [(src, [src])] while stack: (node, path) = stack.pop() for next in set(self.adjacency[node].keys()) - set(path): if next is dst: paths.append(path + [next]) else: stack.append((next, path + [next])) return paths ##################################################### def add_ports_to_paths(self, paths, first_port, last_port): ''' Add the ports that connects the switches for all paths ''' #print ("add port to path is called") paths_p = [] for path in paths: p = {} in_port = first_port for s1, s2 in zip(path[:-1], path[1:]): out_port = self.adjacency[s1][s2] p[s1] = (in_port, out_port) in_port = self.adjacency[s2][s1] p[path[-1]] = (in_port, last_port) paths_p.append(p) #print "add_port_to_path", paths_p return paths_p ########################################################## def install_paths(self, src, first_port, dst, last_port, ip_src, eth_src, ip_dst, eth_dst): computation_start = time.time() #paths = self.get_optimal_paths(src, dst) paths = self.get_paths(src, dst) paths_with_ports = self.add_ports_to_paths(paths, first_port, last_port) switches_in_paths = set().union(*paths) for node in switches_in_paths: dp = self.datapath_list[node] ofp = dp.ofproto ofp_parser = dp.ofproto_parser ports = defaultdict(list) actions = [] i = 0 for path in paths_with_ports: if node in path: in_port = path[node][0] out_port = path[node][1] if (out_port) not in ports[in_port]: ports[in_port].append((out_port)) i += 1 for in_port in ports: match_ip = ofp_parser.OFPMatch( eth_type=0x0800, ipv4_src=ip_src, ipv4_dst=ip_dst # eth_dst=eth_dst ) match_arp = ofp_parser.OFPMatch( eth_type=0x0806, arp_spa=ip_src, arp_tpa=ip_dst # eth_dst=eth_dst ) out_ports = ports[in_port] #elif len(out_ports) == 1: #print "datapath tive apenas 1 caminho:" actions = [ofp_parser.OFPActionOutput(out_ports[0])] self.add_flow(dp, 32766, match_ip, actions) self.add_flow(dp, 1, match_arp, actions) return paths_with_ports[0][src][1] ############################################################ def add_flow(self, datapath, priority, match, actions, buffer_id=None): # print "Adding flow ", match, actions ofproto = datapath.ofproto parser = datapath.ofproto_parser inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)] if buffer_id: mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id, priority=priority, match=match, instructions=inst) else: mod = parser.OFPFlowMod(datapath=datapath, priority=priority, match=match, instructions=inst) datapath.send_msg(mod) @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER) def _switch_features_handler(self, ev): global dp #print "switch_features_handler is called" datapath = ev.msg.datapath #dp = ev.msg.datapath ofproto = datapath.ofproto parser = datapath.ofproto_parser match = parser.OFPMatch() actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)] self.add_flow(datapath, 0, match, actions) #@set_ev_cls(ofp_event.EventOFPPortDescStatsReply, MAIN_DISPATCHER) #def port_desc_stats_reply_handler(self, ev): # switch = ev.msg.datapath # for p in ev.msg.body: # self.bandwidths[switch.id][p.port_no] = p.curr_speed @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER) def _packet_in_handler(self, ev): msg = ev.msg datapath = msg.datapath ofproto = datapath.ofproto parser = datapath.ofproto_parser in_port = msg.match['in_port'] pkt = packet.Packet(data=msg.data) eth = pkt.get_protocol(ethernet.ethernet) arp_pkt = pkt.get_protocol(arp.arp) pkt_icmp = pkt.get_protocol(icmp.icmp) #evita broadcast from LLDP if eth.ethertype == 35020: return if pkt.get_protocol(ipv6.ipv6): # Drop the IPV6 Packets. match = parser.OFPMatch(eth_type=eth.ethertype) actions = [] self.add_flow(datapath, 1, match, actions) return None dst = eth.dst src = eth.src dpid = datapath.id if src not in self.hosts: self.hosts[src] = (dpid, in_port) #print src #print dst out_port = ofproto.OFPP_FLOOD if arp_pkt: src_ip = arp_pkt.src_ip dst_ip = arp_pkt.dst_ip if arp_pkt.opcode == arp.ARP_REPLY: self.arp_table[src_ip] = src print colored('ARP_REPLY','blue') h1 = self.hosts[src] h2 = self.hosts[dst] #chama o self.install_path primeiro out_port = self.install_paths(h1[0], h1[1], h2[0], h2[1], src_ip, src, dst_ip, dst) self.install_paths(h2[0], h2[1], h1[0], h1[1], dst_ip, dst, src_ip, src) # reverse elif arp_pkt.opcode == arp.ARP_REQUEST: print colored('ARP_REQUEST','blue') if dst_ip in self.arp_table: self.arp_table[src_ip] = src dst_mac = self.arp_table[dst_ip] h1 = self.hosts[src] h2 = self.hosts[dst_mac] out_port = self.install_paths(h1[0], h1[1], h2[0], h2[1], src_ip, src, dst_ip, dst) self.install_paths(h2[0], h2[1], h1[0], h1[1], dst_ip, dst, src_ip, src) # reverse actions = [parser.OFPActionOutput(out_port)] data = None if msg.buffer_id == ofproto.OFP_NO_BUFFER: data = msg.data out = parser.OFPPacketOut( datapath=datapath, buffer_id=msg.buffer_id, in_port=in_port, actions=actions, data=data) datapath.send_msg(out) @set_ev_cls(event.EventSwitchEnter) def switch_enter_handler(self, ev): #print "switch enter handler" switch = ev.switch.dp ofp_parser = switch.ofproto_parser if switch.id not in self.switches: self.switches.append(switch.id) self.datapath_list[switch.id] = switch # Request port/link descriptions, useful for obtaining bandwidth req = ofp_parser.OFPPortDescStatsRequest(switch) #print req switch.send_msg(req) @set_ev_cls(event.EventSwitchLeave, MAIN_DISPATCHER) def switch_leave_handler(self, ev): #print ("Switch leave handler", ev) switch = ev.switch.dp.id if switch in self.switches: self.switches.remove(switch) del self.datapath_list[switch] del self.adjacency[switch] @set_ev_cls(event.EventLinkAdd, MAIN_DISPATCHER) def link_add_handler(self, ev): global src, dst, ipDFrame_src, arpDFrame_src, ipDFrame_dst, arpDFrame_dst s1 = ev.link.src s2 = ev.link.dst print '\033[1;34;47m Link Switch', s1.dpid, 'Porta', s1.port_no, 'Up\033[1;m' self.adjacency[s1.dpid][s2.dpid] = s1.port_no self.adjacency[s2.dpid][s1.dpid] = s2.port_no #Variaveis globais sem valores try/except para tratar o erro de NameError or KeyError #pq ao iniciar o experimento é acionada o evento de adicao de link entre switches event.EventLinkAdd # ########################################################## try: #SRC ofp_src = src.ofproto ofp_parser_src = src.ofproto_parser buffer_id_src = ofp_src.OFP_NO_BUFFER #DST ofp_dst = dst.ofproto ofp_parser_dst = dst.ofproto_parser buffer_id_dst = ofp_dst.OFP_NO_BUFFER #print self.ipDFrame_src.at[i,'DST'] #print #print self.ipDFrame_src.loc[1], '\n' #print self.ipDFrame_src #print #DST = self.ipDFrame_src.loc["DST"] #print self.ipDFrame_src.iloc[[0],[0]] if s1.dpid == src.id: i=0 for row in self.ipDFrame_src.iterrows(): match = ofp_parser_src.OFPMatch(eth_type=0x800, ipv4_dst=str(self.ipDFrame_src.at[i,'DST']), ipv4_src=str(self.ipDFrame_src.at[i,'SRC'])) actions = [ofp_parser_src.OFPActionOutput(self.ipDFrame_src.at[i,'PORT'])] self.add_flow(src, 32768, match, actions) i += 1 i=0 for row in self.arpDFrame_src.iterrows(): match = ofp_parser_src.OFPMatch(eth_type=0x806, arp_tpa=str(self.arpDFrame_src.at[i,'TPA']), arp_spa=str(self.arpDFrame_src.at[i,'SPA'])) actions = [ofp_parser_src.OFPActionOutput(self.arpDFrame_src.at[i,'PORT'])] self.add_flow(src, 1, match, actions) i += 1 self.ipDFrame_src = self.arpDFrame_src = pd.DataFrame([]) elif s1.dpid == dst.id: i=0 for row in self.ipDFrame_dst.iterrows(): #print colored('Second FOR','red') match = ofp_parser_dst.OFPMatch(eth_type=0x800, ipv4_dst=str(self.ipDFrame_dst.at[i,'DST']), ipv4_src=str(self.ipDFrame_dst.at[i,'SRC'])) actions = [ofp_parser_dst.OFPActionOutput(self.ipDFrame_dst.at[i,'PORT'])] self.add_flow(dst, 32768, match, actions) i += 1 i=0 for row in self.arpDFrame_dst.iterrows(): match = ofp_parser_dst.OFPMatch(eth_type=0x806, arp_tpa=str(self.arpDFrame_dst.at[i,'TPA']), arp_spa=str(self.arpDFrame_dst.at[i,'SPA'])) actions = [ofp_parser_dst.OFPActionOutput(self.arpDFrame_dst.at[i,'PORT'])] self.add_flow(dst, 1, match, actions) i += 1 self.ipDFrame_dst = self.arpDFrame_dst = pd.DataFrame([]) else: pass except NameError, KeyError: pass @set_ev_cls(event.EventLinkDelete, MAIN_DISPATCHER) def link_delete_handler(self, ev): global c, adjacency, src, dst s1 = ev.link.src s2 = ev.link.dst adjacency[s1.dpid][s2.dpid] = None adjacency[s2.dpid][s1.dpid] = None ########################################################## #Exception handling if switch already deleted try: del self.adjacency[s1.dpid][s2.dpid] del self.adjacency[s2.dpid][s1.dpid] except KeyError: pass #ADICIONADO 14/10/2018 ####################################################################### def install_controller(self, datapath): ofproto = datapath.ofproto parser = datapath.ofproto_parser match = parser.OFPMatch() actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)] inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)] mod = datapath.ofproto_parser.OFPFlowMod( datapath=datapath, match=match, cookie=0, command=ofproto.OFPFC_ADD, idle_timeout=0, hard_timeout=0, priority=0, instructions=inst) datapath.send_msg(mod) ###################################################################### #=============================================================================================== #ADICIONADO 22/09/2018 #Monitoramento para exibicao de estatisticas imprime na tela ########################################################### def _monitor(self): while True: for dp in self.datapath_list.values(): #print #print self.datapath_list.values() #print self._request_stats(dp) hub.sleep(1)#Valor ajustavel (1) = 1 segundo ########################################################### #ADICIONADO 22/09/2018 ########################################################### @set_ev_cls(ofp_event.EventOFPStateChange, [MAIN_DISPATCHER, DEAD_DISPATCHER]) def _state_change_handler(self, ev): datapath = ev.datapath if ev.state == MAIN_DISPATCHER: if not datapath.id in self.datapath_list: # self.logger.debug('register datapath: %016x', datapath.id) #print 'register datapath:', datapath.id self.datapath_list[datapath.id] = datapath elif ev.state == DEAD_DISPATCHER: if datapath.id in self.datapath_list: # self.logger.debug('unregister datapath: %016x', datapath.id) #print 'unregister datapath:', datapath.id del self.datapath_list[datapath.id] ############################################################ #ADICIONADO 23/09/2018 ############################################################ def _request_stats(self, datapath): ofproto = datapath.ofproto parser = datapath.ofproto_parser #req = parser.OFPFlowStatsRequest(datapath) #datapath.send_msg(req) req = parser.OFPPortStatsRequest(datapath, 0, ofproto.OFPP_ANY) datapath.send_msg(req) ofp = ofproto _parser_ = parser dp = datapath #print colored('dp _request_stats','blue') #exibe os 4 switchs na tela #print (dp.id) ############################################################# @set_ev_cls(ofp_event.EventOFPPortStatsReply, MAIN_DISPATCHER) def _port_stats_reply_handler(self, ev): start_time = time.time() global c, b, PL, PL1_3 ####dp1 global band_1_1, result_1_1, band_rx_1_1, result_rx_1_1, tx_ini_1_1, tx_fin_1_1, rx_ini_1_1, rx_fin_1_1 #dp 1 port 1 global band_1_2, result_1_2, band_rx_1_2, result_rx_1_2, tx_ini_1_2, tx_fin_1_2, rx_ini_1_2, rx_fin_1_2 #dp 1 port 2 global band_1_3, result_1_3, band_rx_1_3, result_rx_1_3, tx_ini_1_3, tx_fin_1_3, rx_ini_1_3, rx_fin_1_3 #dp 1 port 3 global tx_1_2_packet, tx_1_3_packet, rx_1_2_packet, rx_1_3_packet, L1_2, L1_3 ####dp2 global band_2_1, result_2_1, band_rx_2_1, result_rx_2_1, tx_ini_2_1, tx_fin_2_1, rx_ini_2_1, rx_fin_2_1 #dp 2 port 1 global band_2_2, result_2_2, band_rx_2_2, result_rx_2_2, tx_ini_2_2, tx_fin_2_2, rx_ini_2_2, rx_fin_2_2 #dp 2 port 2 global band_2_3, result_2_3, band_rx_2_3, result_rx_2_3, tx_ini_2_3, tx_fin_2_3, rx_ini_2_3, rx_fin_2_3 #dp 2 port 3 global tx_2_2_packet, tx_2_3_packet, rx_2_2_packet, rx_2_3_packet, L2_2, L2_3 ####dp3 global band_3_1, result_3_1, band_rx_3_1, result_rx_3_1, tx_ini_3_1, tx_fin_3_1, rx_ini_3_1, rx_fin_3_1 #dp 3 port 1 global band_3_2, result_3_2, band_rx_3_2, result_rx_3_2, tx_ini_3_2, tx_fin_3_2, rx_ini_3_2, rx_fin_3_2 #dp 3 port 2 global band_3_3, result_3_3, band_rx_3_3, result_rx_3_3, tx_ini_3_3, tx_fin_3_3, rx_ini_3_3, rx_fin_3_3 #dp 3 port 3 global tx_3_2_packet, tx_3_3_packet, rx_3_2_packet, rx_3_3_packet, L3_2, L3_3 ####dp4 global band_4_1, result_4_1, band_rx_4_1, result_rx_4_1, tx_ini_4_1, tx_fin_4_1, rx_ini_4_1, rx_fin_4_1 #dp 4 port 1 global band_4_2, result_4_2, band_rx_4_2, result_rx_4_2, tx_ini_4_2, tx_fin_4_2, rx_ini_4_2, rx_fin_4_2 #dp 4 port 2 global band_4_3, result_4_3, band_rx_4_3, result_rx_4_3, tx_ini_4_3, tx_fin_4_3, rx_ini_4_3, rx_fin_4_3 #dp 4 port 3 global tx_4_2_packet, tx_4_3_packet, rx_4_2_packet, rx_4_3_packet, L4_2, L4_3 ####### ####### body = ev.msg.body dpid = ev.msg.datapath.id datapath = ev.msg.datapath #contador de segundos #t = time.localtime().tm_sec #print colored(t,'green') ################################################################################################ ################################################################################################ #seleciona o dp 1 #SELECIONA PORTA 1 if dpid == 1: for stat in sorted(body, key=attrgetter('port_no')): if stat.port_no == 1: self.logger.info('switch ' 'Port_no ' 'Rec_bytes Rec_Banda ' 'Trans_bytes Trans_banda ') #'Rx_packets Tx_packets ') self.logger.info('%04x %8x ' '%8d %8d Mbps %8d %8d Mbps', #'%8d %8d ', ev.msg.datapath.id, stat.port_no, stat.rx_bytes, result_rx_1_1, stat.tx_bytes, result_1_1) #stat.rx_packets, stat.tx_packets) print # Calculo de banda para bytes transmitidos (tx_bytes) # Se o valor bytes transmitidos iniciais forem 0 if tx_ini_1_1 == 0: tx_ini_1_1 = stat.tx_bytes # valor inicial bytes armazenado tx_fin_1_1 = stat.tx_bytes band_1_1 = (tx_fin_1_1-tx_ini_1_1)*8 result_1_1 = int(band_1_1/1048576) tx_ini_1_1 = tx_fin_1_1 #Calculo de banda para bytes recebidos (rx_bytes) if rx_ini_1_1 == 0: rx_ini_1_1 = stat.rx_bytes rx_fin_1_1 = stat.rx_bytes band_rx_1_1 = (rx_fin_1_1-rx_ini_1_1)*8 result_rx_1_1 = int(band_rx_1_1/1048576) rx_ini_1_1 = rx_fin_1_1 ############################################################################### #SELECIONA A PORTA 2 if stat.port_no == 2: self.logger.info('switch ' 'Port_no ' 'Rec_bytes Rec_Banda ' 'Trans_bytes Trans_banda ') #'Packet_loss ') #'Rx_packets Tx_packets Packet_loss') self.logger.info('%04x %8x ' '%8d %8d Mbps %8d %8d Mbps', #'%8d ', #'%8d %8d %8d', ev.msg.datapath.id, stat.port_no, stat.rx_bytes, result_rx_1_2, stat.tx_bytes, result_1_2) #stat.rx_packets, stat.tx_packets, L1_2) #stat.rx_packets, stat.tx_packets) #stat.rx_dropped, stat.rx_errors, stat.tx_dropped, stat.tx_errors, #stat.properties[0].collisions, stat.properties[0].rx_crc_err, stat.properties[0].rx_frame_err, #stat.properties[0].rx_over_err) print #pacote transmitido(dp1) - pacote recebido(dp2) dividido pelos pacotes transmitidos #resultado é a % de pacotes perdidos #if stat.tx_packets == 0: tx_1_2_packet = stat.tx_packets #PL = rx_2_2_packet-tx_1_2_packet #tx_1_2_packet = rx_2_2_packet #L1_2 = (tx_1_2_packet - rx_2_2_packet)/stat.tx_packets # Calculo de banda para bytes transmitidos (tx_bytes) # Se o valor bytes transmitidos iniciais forem 0 if tx_ini_1_2 == 0: tx_ini_1_2 = stat.tx_bytes # valor inicial bytes armazenado tx_fin_1_2 = stat.tx_bytes band_1_2 = (tx_fin_1_2-tx_ini_1_2)*8 result_1_2 = int(band_1_2/1048576) tx_ini_1_2 = tx_fin_1_2 #Calculo de banda para bytes recebidos (rx_bytes) if rx_ini_1_2 == 0: rx_ini_1_2 = stat.rx_bytes rx_fin_1_2 = stat.rx_bytes band_rx_1_2 = (rx_fin_1_2-rx_ini_1_2)*8 result_rx_1_2 = int(band_rx_1_2/1048576) rx_ini_1_2 = rx_fin_1_2 ############################################################################### #SELECIONA A PORTA 3 if stat.port_no == 3: self.logger.info('switch ' 'Port_no ' 'Rec_bytes Rec_Banda ' 'Trans_bytes Trans_banda ') #'Packet_Loss ') self.logger.info('%04x %8x ' '%8d %8d Mbps %8d %8d Mbps', #'%8d ', ev.msg.datapath.id, stat.port_no, stat.rx_bytes, result_rx_1_3, stat.tx_bytes, result_1_3) #L1_3) #stat.rx_dropped, stat.rx_errors, stat.tx_dropped, stat.tx_errors, #stat.properties[0].collisions, stat.properties[0].rx_crc_err, stat.properties[0].rx_frame_err, #stat.properties[0].rx_over_err) print #if stat.tx_packets == 0: tx_1_3_packet = stat.tx_packets #PL1_3 = rx_4_2_packet-tx_1_3_packet #tx_1_3_packet = rx_4_2_packet # Calculo de banda para bytes transmitidos (tx_bytes) # Se o valor bytes transmitidos iniciais forem 0 if tx_ini_1_3 == 0: tx_ini_1_3 = stat.tx_bytes # valor inicial bytes armazenado tx_fin_1_3 = stat.tx_bytes band_1_3 = (tx_fin_1_3-tx_ini_1_3)*8 result_1_3 = int(band_1_3/1048576) tx_ini_1_3 = tx_fin_1_3 #Calculo de banda para bytes recebidos (rx_bytes) if rx_ini_1_3 == 0: rx_ini_1_3 = stat.rx_bytes rx_fin_1_3 = stat.rx_bytes band_rx_1_3 = (rx_fin_1_3-rx_ini_1_3)*8 result_rx_1_3 = int(band_rx_1_3/1048576) rx_ini_1_3 = rx_fin_1_3 ################################################################################################ #seleciona o dp 2 if dpid == 2: for stat in sorted(body, key=attrgetter('port_no')): #SELECIONA PORTA 1 if stat.port_no == 1: self.logger.info('switch ' 'Port_no ' 'Rec_bytes Rec_Banda ' 'Trans_bytes Trans_banda ') #'Rx_packets Tx_packets ') self.logger.info('%04x %8x ' '%8d %8d Mbps %8d %8d Mbps', #'%8d %8d ', ev.msg.datapath.id, stat.port_no, stat.rx_bytes, result_rx_2_1, stat.tx_bytes, result_2_1) #stat.rx_packets, stat.tx_packets) print # Calculo de banda para bytes transmitidos (tx_bytes) # Se o valor bytes transmitidos iniciais forem 0 if tx_ini_2_1 == 0: tx_ini_2_1 = stat.tx_bytes # valor inicial bytes armazenado tx_fin_2_1 = stat.tx_bytes band_2_1 = (tx_fin_2_1-tx_ini_2_1)*8 # 8 bits result_2_1 = int(band_2_1/1048576) #divide 1Mb tx_ini_2_1 = tx_fin_2_1 #Calculo de banda para bytes recebidos (rx_bytes) if rx_ini_2_1 == 0: rx_ini_2_1 = stat.rx_bytes rx_fin_2_1 = stat.rx_bytes band_rx_2_1 = (rx_fin_2_1-rx_ini_2_1)*8 result_rx_2_1 = int(band_rx_2_1/1048576) rx_ini_2_1 = rx_fin_2_1 ################################################################################### #Seleciona a porta 2 if stat.port_no == 2: self.logger.info('switch ' 'Port_no ' 'Rec_bytes Rec_Banda ' 'Trans_bytes Trans_banda ') #'Packet_loss ') self.logger.info('%04x %8x ' '%8d %8d Mbps %8d %8d Mbps', #'%8d ', ev.msg.datapath.id, stat.port_no, stat.rx_bytes, result_rx_2_2, stat.tx_bytes, result_2_2) #L2_2) print # Calculo de banda para bytes transmitidos # Se o valor bytes transmitidos iniciais forem 0 if tx_ini_2_2 == 0: tx_ini_2_2 = stat.tx_bytes # valor inicial bytes armazenado tx_fin_2_2 = stat.tx_bytes band_2_2 = (tx_fin_2_2-tx_ini_2_2)*8 result_2_2 = int(band_2_2/1048576) #print((int(band/1048576)), 'Mbit/s') tx_ini_2_2 = tx_fin_2_2 #Calculo de banda para bytes recebidos #Se o valor de bytes recebidos for 0 if rx_ini_2_2 == 0: rx_ini_2_2 = stat.rx_bytes # valor inicial bytes armazenado rx_fin_2_2 = stat.rx_bytes band_rx_2_2 = (rx_fin_2_2-rx_ini_2_2)*8 result_rx_2_2 = int(band_rx_2_2/1048576) rx_ini_2_2 = rx_fin_2_2 #Seleciona a porta 3 if stat.port_no == 3: self.logger.info('switch ' 'Port_no ' 'Rec_bytes Rec_Banda ' 'Trans_bytes Trans_banda ') #'Rx_packets Tx_packets ') self.logger.info('%04x %8x ' '%8d %8d Mbps %8d %8d Mbps', #'%8d %8d ', ev.msg.datapath.id, stat.port_no, stat.rx_bytes, result_rx_2_3, stat.tx_bytes, result_2_3) #stat.rx_packets, stat.tx_packets) print L2_3 = (tx_2_3_packet - rx_3_2_packet)/stat.tx_packets #calculo de banda para bytes transmitidos na porta 3 if tx_ini_2_3 == 0: tx_ini_2_3 = stat.tx_bytes # valor inicial bytes armazenado tx_fin_2_3 = stat.tx_bytes band_2_3 = (tx_fin_2_3-tx_ini_2_3)*8 result_2_3 = int(band_2_3/1048576) tx_ini_2_3 = tx_fin_2_3 #calculo de banda para bytes recebidos na porta 3 if rx_ini_2_3 == 0: rx_ini_2_3 = stat.rx_bytes rx_fin_2_3 = stat.rx_bytes band_rx_2_3 = (rx_fin_2_3-rx_ini_2_3)*8 result_rx_2_3 = int(band_rx_2_3/1048576) rx_ini_2_3 = rx_fin_2_3 ################################################################################################ #SELECIONA O DP 3 if dpid == 3: for stat in sorted(body, key=attrgetter('port_no')): ######################################################################################## #PORTA 1 if stat.port_no == 1: self.logger.info('switch ' 'Port_no ' 'Rec_bytes Rec_Banda ' 'Trans_bytes Trans_banda ') #'Rx_packets Tx_packets ') self.logger.info('%04x %8x ' '%8d %8d Mbps %8d %8d Mbps', #'%8d %8d ', ev.msg.datapath.id, stat.port_no, stat.rx_bytes, result_rx_3_1, stat.tx_bytes, result_3_1) #stat.rx_packets, stat.tx_packets) print # Calculo de banda para bytes transmitidos (tx_bytes) # Se o valor bytes transmitidos iniciais forem 0 if tx_ini_3_1 == 0: tx_ini_3_1 = stat.tx_bytes # valor inicial bytes armazenado tx_fin_3_1 = stat.tx_bytes band_3_1 = (tx_fin_3_1-tx_ini_3_1)*8 result_3_1 = int(band_3_1/1048576) tx_ini_3_1 = tx_fin_3_1 #Calculo de banda para bytes recebidos (rx_bytes) if rx_ini_3_1 == 0: rx_ini_3_1 = stat.rx_bytes rx_fin_3_1 = stat.rx_bytes band_rx_3_1 = (rx_fin_3_1-rx_ini_3_1)*8 result_rx_3_1 = int(band_rx_3_1/1048576) rx_ini_3_1 = rx_fin_3_1 #################################################################################### #SELECIONA A PORTA 3 if stat.port_no == 3: self.logger.info('switch ' 'Port_no ' 'Rec_bytes Rec_Banda ' 'Trans_bytes Trans_banda ') #'Rx_packets Tx_packets ') self.logger.info('%04x %8x ' '%8d %8d Mbps %8d %8d Mbps', #'%8d %8d ', ev.msg.datapath.id, stat.port_no, stat.rx_bytes, result_rx_3_2, stat.tx_bytes, result_3_2) #stat.rx_packets, stat.tx_packets) print #L3_2 = (tx_3_2_packet - rx_2_3_packet)/stat.tx_packets # Calculo de banda para bytes transmitidos (tx_bytes) # Se o valor bytes transmitidos iniciais forem 0 if tx_ini_3_2 == 0: tx_ini_3_2 = stat.tx_bytes # valor inicial bytes armazenado tx_fin_3_2 = stat.tx_bytes band_3_2 = (tx_fin_3_2-tx_ini_3_2)*8#Multiplica por 8(bits) result_3_2 = int(band_3_2/1048576)#Divide por 8 tx_ini_3_2 = tx_fin_3_2 #Calculo de banda para bytes recebidos (rx_bytes) if rx_ini_3_2 == 0: rx_ini_3_2 = stat.rx_bytes rx_fin_3_2 = stat.rx_bytes band_rx_3_2 = (rx_fin_3_2-rx_ini_3_2)*8 result_rx_3_2 = int(band_rx_3_2/1048576) rx_ini_3_2 = rx_fin_3_2 ################################################################################### throuput3_2 = result_3_2 + result_rx_3_2 ################################################################################### if c == 1: c += 1 #variavel de controle alcancada na porta 2 e adiciona + 1 if (throuput3_2 > MAX_BAND*0.8) and c == 2:# print '\033[1;31;47m Porta 3 Congestionada\033[1;m'# mensagem de porta entrevista c += 1 elif (throuput3_2 < MAX_BAND*0.8) and c == 3:# quando a banda normalizar c = 0 # zera a variável de controle self.send_flow_mod(datapath, stat.port_no, IP_3)# e modifica o fluxo de volta para porta 3 print '\033[1;34;47m Tráfego normalizado na porta ', stat.port_no,'\033[1;m' ################################################################################### #SELECIONA A PORTA 2 if stat.port_no == 2: self.logger.info('switch ' 'Port_no ' 'Rec_bytes Rec_Banda ' 'Trans_bytes Trans_banda ') #'Rx_packets Tx_packets ') #'Rec_Dropped Rec_Errors ' #'Trans_Dropped Trans_Errors ' #'Propriedades(colisão,rx_crc_err, rx_frame_err, rx_over_err ') self.logger.info('%04x %8x ' '%8d %8d Mbps %8d %8d Mbps', #'%8d %8d ' #'%8d %8d %8d %8d ' #'%s %s %s %s', ev.msg.datapath.id, stat.port_no, stat.rx_bytes, result_rx_3_3, stat.tx_bytes, result_3_3) #stat.rx_packets, stat.tx_packets) #stat.rx_dropped, stat.rx_errors, stat.tx_dropped, stat.tx_errors, #stat.properties[0].collisions, stat.properties[0].rx_crc_err, stat.properties[0].rx_frame_err, #stat.properties[0].rx_over_err) print #L3_3 = (tx_3_3_packet - rx_4_3_packet)/stat.tx_packets # Calculo de banda para bytes transmitidos (tx_bytes) # Se o valor bytes transmitidos iniciais forem 0 if tx_ini_3_3 == 0: tx_ini_3_3 = stat.tx_bytes # valor inicial bytes armazenado tx_fin_3_3 = stat.tx_bytes band_3_3 = (tx_fin_3_3-tx_ini_3_3)*8 #Multiplica por 8 (bits) result_3_3 = int(band_3_3/1048576) #Divide por 1Mb tx_ini_3_3 = tx_fin_3_3 #Calculo de banda para bytes recebidos (rx_bytes) if rx_ini_3_3 == 0: rx_ini_3_3 = stat.rx_bytes rx_fin_3_3 = stat.rx_bytes band_rx_3_3 = (rx_fin_3_3-rx_ini_3_3)*8 result_rx_3_3 = int(band_rx_3_3/1048576) rx_ini_3_3 = rx_fin_3_3 throughput3_3 = result_3_3 + result_rx_3_3 ################################################################################### #Regras de Contexto: Congestionamento severo #Se o throuput maior que 80% da banda a porta de saida sera trocada #O Status da porta é modificado e o sentido do fluxo modificado if (throughput3_3 > MAX_BAND*0.8) and c == 0: #variavel c de controle start_time_1 = time.time() time_2 = start_time_1 - start_time #salva o tempo de captura de evento captura = open('cenario_2_captura.txt','a') captura.writelines(str(time_2)) captura.writelines("\n") captura.close() print '\033[1;31;47m Porta 2 Congestionada\033[1;m' print '\033[1;34;47m Redirecionando o Tráfego\033[1;m' self.send_flow_mod(datapath, stat.port_no, IP_3) c += 1 #adiciona + 1 a variavel de controle #elif (throuput3_3 < MAX_BAND*0.8) and c > 1: # c = 0 # print # print '\033[1;34;47m Restaurando fluxo anterior\033[1;m' # print total_time = time.time() - start_time #Salva o tempo de inferencia em um arquivo TXT inference = open('cenario_2_inference.txt', 'a') inference.writelines(str(total_time)) inference.writelines("\n") inference.close() print "informações salvas" elif (throughput3_3 > MAX_BAND*0.6) and b == 0: print "Congestionamento Leve" else: pass ################################################################################################ #SELECIONA O DP 4 if dpid == 4: for stat in sorted(body, key=attrgetter('port_no')): #SELECIONA A PORTA 1 if stat.port_no == 1: self.logger.info('switch ' 'Port_no ' 'Rec_bytes Rec_Banda ' 'Trans_bytes Trans_banda ') #'Rx_packets Tx_packets ') #'Rec_Dropped Rec_Errors ' #'Trans_Dropped Trans_Errors ' #'Propriedades(colisão,rx_crc_err, rx_frame_err, rx_over_err ' self.logger.info('%04x %8x ' '%8d %8d Mbps %8d %8d Mbps', #'%8d %8d ', #'%8d %8d %8d %8d ' #'%s %s %s %s', ev.msg.datapath.id, stat.port_no, stat.rx_bytes, result_rx_4_1, stat.tx_bytes, result_4_1) #stat.rx_packets, stat.tx_packets) #stat.rx_dropped, stat.rx_errors, stat.tx_dropped, stat.tx_errors, #stat.properties[0].collisions, stat.properties[0].rx_crc_err, stat.properties[0].rx_frame_err, #stat.properties[0].rx_over_err) print # Calculo de banda para bytes transmitidos (tx_bytes) # Se o valor bytes transmitidos iniciais forem 0 if tx_ini_4_1 == 0: tx_ini_4_1 = stat.tx_bytes # valor inicial bytes armazenado tx_fin_4_1 = stat.tx_bytes band_4_1 = (tx_fin_4_1-tx_ini_4_1)*8 # 8 bits result_4_1 = int(band_4_1/1048576) #divide a banda por 1Mb tx_ini_4_1 = tx_fin_4_1 #Calculo de banda para bytes recebidos (rx_bytes) if rx_ini_4_1 == 0: rx_ini_4_1 = stat.rx_bytes rx_fin_4_1 = stat.rx_bytes band_rx_4_1 = (rx_fin_4_1-rx_ini_4_1)*8 result_rx_4_1 = int(band_rx_4_1/1048576) rx_ini_4_1 = rx_fin_4_1 ####################################################################################### #SELECIONA A PORTA 2 if stat.port_no == 2: self.logger.info('switch ' 'Port_no ' 'Rec_bytes Rec_Banda ' 'Trans_bytes Trans_banda ') #'Rx_packets Tx_packets ') #'Rec_Dropped Rec_Errors ' #'Trans_Dropped Trans_Errors ' #'Propriedades(colisão,rx_crc_err, rx_frame_err, rx_over_err ') self.logger.info('%04x %8x ' '%8d %8d Mbps %8d %8d Mbps', #'%8d %8d ', #'%8d %8d %8d %8d ' #'%s %s %s %s', ev.msg.datapath.id, stat.port_no, stat.rx_bytes, result_rx_4_2, stat.tx_bytes, result_4_2) #stat.rx_packets, stat.tx_packets) #stat.rx_dropped, stat.rx_errors, stat.tx_dropped, stat.tx_errors, #stat.properties[0].collisions, stat.properties[0].rx_crc_err, stat.properties[0].rx_frame_err, #stat.properties[0].rx_over_err) print #L4_2 = (tx_4_2_packet - rx_1_3_packet) /stat.tx_packets # Calculo de banda para bytes transmitidos (tx_bytes) # Se o valor bytes transmitidos iniciais forem 0 if tx_ini_4_2 == 0: tx_ini_4_2 = stat.tx_bytes # valor inicial bytes armazenado tx_fin_4_2 = stat.tx_bytes band_4_2 = (tx_fin_4_2-tx_ini_4_2)*8 result_4_2 = int(band_4_2/1048576) tx_ini_4_2 = tx_fin_4_2 #Calculo de banda para bytes recebidos (rx_bytes) if rx_ini_4_2 == 0: rx_ini_4_2 = stat.rx_bytes rx_fin_4_2 = stat.rx_bytes band_rx_4_2 = (rx_fin_4_2-rx_ini_4_2)*8 result_rx_4_2 = int(band_rx_4_2/1048576) rx_ini_4_2 = rx_fin_4_2 ###################################################################################### #SELECIONA A PORTA 3 if stat.port_no == 3: self.logger.info('switch ' 'Port_no ' 'Rec_bytes Rec_Banda ' 'Trans_bytes Trans_banda ') #'Rx_packets Tx_packets ' #'Rec_Dropped Rec_Errors ' #'Trans_Dropped Trans_Errors ' #'Propriedades(colisão,rx_crc_err, rx_frame_err, rx_over_err ') self.logger.info('%04x %8x ' '%8d %8d Mbps %8d %8d Mbps', #'%8d %8d ' #'%8d %8d %8d %8d ' #'%s %s %s %s', ev.msg.datapath.id, stat.port_no, stat.rx_bytes, result_rx_4_3, stat.tx_bytes, result_4_3) #stat.rx_packets, stat.tx_packets, L4_3) #stat.rx_dropped, stat.rx_errors, stat.tx_dropped, stat.tx_errors, #stat.properties[0].collisions, stat.properties[0].rx_crc_err, stat.properties[0].rx_frame_err, #stat.properties[0].rx_over_err) print #L4_3 = (tx_4_3_packet - rx_3_3_packet) /stat.tx_packets # Calculo de banda para bytes transmitidos (tx_bytes) # Se o valor bytes transmitidos iniciais forem 0 if tx_ini_4_3 == 0: tx_ini_4_3 = stat.tx_bytes # valor inicial bytes armazenado tx_fin_4_3 = stat.tx_bytes band_4_3 = (tx_fin_4_3-tx_ini_4_3)*8 result_4_3 = int(band_4_3/1048576) tx_ini_4_3 = tx_fin_4_3 #Calculo de banda para bytes recebidos (rx_bytes) if rx_ini_4_3 == 0: rx_ini_4_3 = stat.rx_bytes rx_fin_4_3 = stat.rx_bytes band_rx_4_3 = (rx_fin_4_3-rx_ini_4_3)*8 result_rx_4_3 = int(band_rx_4_3/1048576) rx_ini_4_3 = rx_fin_4_3 ############################################################################################### ############################################################################################### #ADICIONADO 24/10/2018 #FUNCAO PARA MODIFICAR O FLUXO CENARIO 02 def send_flow_mod(self, datapath, out_ports, ip_n): #Variavel de tempo inicial para a remoção das linhas de fluxos #start = time.time() ofp = datapath.ofproto ofp_parser = datapath.ofproto_parser cookie = cookie_mask = 0 table_id = 0 idle_timeout = hard_timeout = 0 priority = 32766 importance = 0 buffer_id = ofp.OFP_NO_BUFFER ########################################################################################## #Match field (de acordo com a tabela de fluxo 0) match_ip = ofp_parser.OFPMatch(eth_type=0x800, ipv4_src=ip_n, ipv4_dst='192.168.1.1') match_arp = ofp_parser.OFPMatch(eth_type=0x806, arp_spa=ip_n, arp_tpa='192.168.1.1') ########################################################################################## #remove fluxo com match para ipv4 actions = [ofp_parser.OFPActionOutput(ofp.OFPP_NORMAL, 0)] inst = [ofp_parser.OFPInstructionActions(ofp.OFPIT_APPLY_ACTIONS, actions)] #OFPFC_DELETE para deletar req = ofp_parser.OFPFlowMod(datapath, cookie, cookie_mask, table_id, ofp.OFPFC_DELETE, idle_timeout, hard_timeout, priority, buffer_id, ofp.OFPP_ANY, ofp.OFPG_ANY, ofp.OFPFF_SEND_FLOW_REM, importance, match_ip, inst) datapath.send_msg(req) ########################################################################################### #remove fluxo com match para arp actions = [ofp_parser.OFPActionOutput(ofp.OFPP_NORMAL, 0)] inst = [ofp_parser.OFPInstructionActions(ofp.OFPIT_APPLY_ACTIONS, actions)] #OFPFC_DELETE req2 = ofp_parser.OFPFlowMod(datapath, cookie, cookie_mask, table_id, ofp.OFPFC_DELETE, idle_timeout, hard_timeout, priority, buffer_id, ofp.OFPP_ANY, ofp.OFPG_ANY, ofp.OFPFF_SEND_FLOW_REM, importance, match_arp, inst) datapath.send_msg(req2) ############################################################################################ #Adiciona um novo fluxo apontando para outra porta if out_ports == 3: out_ports = out_ports - 1 elif out_ports == 2: out_ports +=1 else: pass actions = [ofp_parser.OFPActionOutput(out_ports)] self.add_flow(datapath, 32767, match_ip, actions) self.add_flow(datapath, 32767, match_arp, actions) #variavel de tempo para medir o tempo de atualização de fluxos #tempo final - tempo inicial #end_time = time.time() - start #print "Tempo de tabelas de fluxos modificadas ", end_time #Salva o tempo em um arquivo TXT #flow_mod_time = open('flow_mod_time.txt', 'a') #flow_mod_time.writelines(str(end_time)) #flow_mod_time.writelines("\n") #flow_mod_time.close() #print "informações salvas" ############################################################################################# ##ADICONANDO A GROUP TABLE CENARIO 03? def send_features_request(self, datapath): ofp_parser = datapath.ofproto_parser req = ofp_parser.OFPFeaturesRequest(datapath) datapath.send_msg(req) #CENARIO 03? @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER) def switch_features_handler(self, ev): msg = ev.msg datapath = ev.msg.datapath ofproto = datapath.ofproto parser = datapath.ofproto_parser cookie = cookie_mask = 0 table_id = 0 idle_timeout = hard_timeout = 0 priority = 32767 importance = 0 buffer_id = ofproto.OFP_NO_BUFFER port_1 = 2 queue_1 = parser.OFPActionSetQueue(0) actions_1 = [queue_1, parser.OFPActionOutput(port_1)] port_2 = 2 queue_2 = parser.OFPActionSetQueue(0) actions_2 = [queue_2, parser.OFPActionOutput(port_2)] weight_1 = 10 weight_2 = 90 watch_port = ofproto_v1_4.OFPP_ANY watch_group = ofproto_v1_4.OFPQ_ALL buckets = [ parser.OFPBucket(weight_1, watch_port, watch_group, actions_1), parser.OFPBucket(weight_2, watch_port, watch_group, actions_2)] group_id = 50 req = parser.OFPGroupMod(datapath, datapath.ofproto.OFPFC_ADD, datapath.ofproto.OFPGT_SELECT, group_id, buckets) datapath.send_msg(req) ############################################################################################### ############################################################################################### #REQUISICAO PARA LINHAS DE FLUXOS CENARIO 01 def send_flow_stats_request(self, datapath): ofp = datapath.ofproto ofp_parser = datapath.ofproto_parser cookie = cookie_mask = 0 #REQUISICAO PARA LINHA DE FLUXO MATCH IP match_ip = ofp_parser.OFPMatch(eth_type=0x800) req = ofp_parser.OFPFlowStatsRequest(datapath, 0, ofp.OFPTT_ALL, ofp.OFPP_ANY, ofp.OFPG_ANY, cookie, cookie_mask, match_ip) datapath.send_msg(req) #REQUISICAO PARA LINHA DE FLUXO MATCH ARP match_arp = ofp_parser.OFPMatch(eth_type=0x806) req = ofp_parser.OFPFlowStatsRequest(datapath, 0, ofp.OFPTT_ALL, ofp.OFPP_ANY, ofp.OFPG_ANY, cookie, cookie_mask, match_arp) datapath.send_msg(req) ###################################################################################################3 #RESPOSTA E EXIBICAO PARA REQUISICAO DE LINHAS DE FLUXOS CENARIO 01 @set_ev_cls(ofp_event.EventOFPFlowStatsReply, MAIN_DISPATCHER) def flow_stats_reply_handler(self, ev): global src, dst, first_port, last_port, ipDFrame_src, arpFrame_src, ipFrame_dst, arpFrame_dst, resultado #SRC ofp_src = src.ofproto ofp_parser_src = src.ofproto_parser buffer_id_src = ofp_src.OFP_NO_BUFFER #DST ofp_dst = dst.ofproto ofp_parser_dst = dst.ofproto_parser buffer_id_dst = ofp_dst.OFP_NO_BUFFER ###################################### cookie = cookie_mask = 0 table_id = 0 idle_timeout = hard_timeout = 0 priority = 32766 importance = 0 ips = [ip_src, ip_dst] flows = [] #for stat in ev.msg.body: if ev.msg.datapath.id == src.id: for stat in sorted(ev.msg.body, key=attrgetter('match')): flows.append('table_id=%s ' 'duration_sec=%d duration_nsec=%d ' 'priority=%d ' 'idle_timeout=%d hard_timeout=%d flags=0x%04x ' 'importance=%d cookie=%d packet_count=%d ' 'byte_count=%d match=%s instructions=%s' % (stat.table_id, stat.duration_sec, stat.duration_nsec, stat.priority, stat.idle_timeout, stat.hard_timeout, stat.flags, stat.importance, stat.cookie, stat.packet_count, stat.byte_count, stat.match, stat.instructions)) #self.logger.info('FlowStats: %s', flows) #DELETE/MODIFICA LINHAS DE FLUXO DO SRC PARA IP if stat.match['eth_type'] == 2048 and stat.instructions[0].actions[0].port == first_port: #Cria um DataFrame para armazenar linhas de fluxos que serão deletadas self.ipDFrame_src = self.ipDFrame_src.append(pd.DataFrame({ 'SRC': [stat.match['ipv4_src']], 'DST': [stat.match['ipv4_dst']], 'PORT':[stat.instructions[0].actions[0].port]}), ignore_index=True) #print colored('ipDFrame_src','blue') #print(self.ipDFrame_src) match_ip = ofp_parser_src.OFPMatch(eth_type=0x800, ipv4_dst=stat.match['ipv4_dst'], ipv4_src=stat.match['ipv4_src']) actions = [ofp_parser_src.OFPActionOutput(ofp_src.OFPP_NORMAL, 0)] inst = [ofp_parser_src.OFPInstructionActions(ofp_src.OFPIT_APPLY_ACTIONS, actions)] #DELETA A LINHAS DE FLUXOS ARMAZENADAS req = ofp_parser_src.OFPFlowMod(src, cookie, cookie_mask, table_id, ofp_src.OFPFC_DELETE, idle_timeout, hard_timeout, priority, buffer_id_src, ofp_src.OFPP_ANY, ofp_src.OFPG_ANY, ofp_src.OFPFF_SEND_FLOW_REM, importance, match_ip, inst) src.send_msg(req) #ADICIONA UM CAMINHO ENTRE EXTREMIDADES P\ O DP SRC #print "EXTREMIDADE DP SRC" #match_ip = ofp_parser_src.OFPMatch(eth_type=0x800, ipv4_src=ip_src, ipv4_dst=ip_dst) #ESCOLHE A PORTA UP if first_port == 2: out_put = first_port + 1 elif first_port == 3: out_put = first_port - 1 else: pass #actions = [ofp_parser_src.OFPActionOutput(out_put)] #inst = [ofp_parser_src.OFPInstructionActions(ofp_src.OFPIT_APPLY_ACTIONS, # actions)] #req = ofp_parser_src.OFPFlowMod(src, cookie, cookie_mask, # table_id, ofp_src.OFPFC_ADD, # idle_timeout, hard_timeout, # priority, buffer_id_src, # ofp_src.OFPP_ANY, ofp_src.OFPG_ANY, # ofp_src.OFPFF_SEND_FLOW_REM, # importance, match_ip, inst) #src.send_msg(req) #self.add_flow(src, 32767, match_ip, actions) #MELHORAR #VERIFICA SE TEM CAMINHO PARA DST 192.168.1.1 SE N ADICIONA UM #if stat.match['ipv4_dst'] == '192.168.1.1' and stat.instructions[0].actions[0].port == out_put: # print "BREAK" # break if src.id == 1: print "POP SRC IP" dest_ip = ofp_parser_src.OFPMatch(eth_type=0x800, ipv4_src='192.168.1.1', ipv4_dst=stat.match['ipv4_dst']) actions = [ofp_parser_src.OFPActionOutput(out_put)] inst = [ofp_parser_src.OFPInstructionActions(ofp_src.OFPIT_APPLY_ACTIONS, actions)] req = ofp_parser_src.OFPFlowMod(src, cookie, cookie_mask, table_id, ofp_src.OFPFC_ADD, idle_timeout, hard_timeout, 32767, buffer_id_src, ofp_src.OFPP_ANY, ofp_src.OFPG_ANY, 0, 1, dest_ip, inst) src.send_msg(req) pass elif stat.match['ipv4_dst'] == '192.168.1.1' and stat.instructions[0].actions[0].port != out_put: print "SRC IP 192.168.1.1 adicionado" dest_ip = ofp_parser_src.OFPMatch(eth_type=0x800, ipv4_src=ip_src, ipv4_dst='192.168.1.1') actions = [ofp_parser_src.OFPActionOutput(out_put)] #self.add_flow(src, 32767, dest_ip, actions) inst = [ofp_parser_src.OFPInstructionActions(ofp_src.OFPIT_APPLY_ACTIONS, actions)] req = ofp_parser_src.OFPFlowMod(src, cookie, cookie_mask, table_id, ofp_src.OFPFC_ADD, idle_timeout, hard_timeout, 32767, buffer_id_src, ofp_src.OFPP_ANY, ofp_src.OFPG_ANY, 0, 1, dest_ip, inst) #ofp_src.OFPFF_SEND_FLOW_REM src.send_msg(req) #MODIFICA LINHAS DE FLUXO PARA ARP SRC elif stat.match['eth_type'] == 2054 and stat.instructions[0].actions[0].port == first_port: #Cria um DF com informacoes ARP de ip e portas que serã deletados self.arpDFrame_src = self.arpDFrame_src.append(pd.DataFrame({ 'SPA': [stat.match['arp_spa']], 'TPA': [stat.match['arp_tpa']], 'PORT':[stat.instructions[0].actions[0].port]}), ignore_index=True) match_arp = ofp_parser_src.OFPMatch(eth_type=0x806, arp_tpa=stat.match['arp_tpa'], arp_spa=stat.match['arp_spa']) actions = [ofp_parser_src.OFPActionOutput(ofp_src.OFPP_NORMAL, 0)] inst = [ofp_parser_src.OFPInstructionActions(ofp_src.OFPIT_APPLY_ACTIONS, actions)] #DELETA A LINHAS DE FLUXOS ARMAZENADAS req = ofp_parser_src.OFPFlowMod(src, cookie, cookie_mask, table_id, ofp_src.OFPFC_DELETE, idle_timeout, hard_timeout, 1, buffer_id_src, ofp_src.OFPP_ANY, ofp_src.OFPG_ANY, ofp_src.OFPFF_SEND_FLOW_REM, importance, match_arp, inst) src.send_msg(req) #ADICIONA UM CAMINHO ENTRE EXTREMIDADES P\ O DP SRC #print "EXTREMIDADE DP ARP SRC" #match_arp = ofp_parser_src.OFPMatch(eth_type=0x806, arp_spa=ip_src, arp_tpa=ip_dst) #ESCOLHE A PORTA UP if first_port == 2: out_put = first_port + 1 elif first_port == 3: out_put = first_port - 1 else: pass #actions = [ofp_parser_src.OFPActionOutput(out_put)] #self.add_flow(src, 32767, match_arp, actions) #inst = [ofp_parser_src.OFPInstructionActions(ofp_src.OFPIT_APPLY_ACTIONS, # actions)] #req = ofp_parser_src.OFPFlowMod(src, cookie, cookie_mask, # table_id, ofp_src.OFPFC_ADD, # idle_timeout, hard_timeout, # priority, buffer_id_src, # ofp_src.OFPP_ANY, ofp_src.OFPG_ANY, # ofp_src.OFPFF_SEND_FLOW_REM, # importance, match_arp, inst) #src.send_msg(req) #MELHORAR #VERIFICA SE TEM CAMINHO PARA DST 192.168.1.1 N ADICIONA UM #if stat.match['arp_tpa'] == '192.168.1.1' and stat.instructions[0].actions[0].port == out_put: # print "BREAK" # break if src.id == 1: print "POP SRC ARP" dest_ip = ofp_parser_src.OFPMatch(eth_type=0x806, arp_spa='192.168.1.1', arp_tpa=stat.match['arp_tpa']) actions = [ofp_parser_src.OFPActionOutput(out_put)] inst = [ofp_parser_src.OFPInstructionActions(ofp_src.OFPIT_APPLY_ACTIONS, actions)] req = ofp_parser_src.OFPFlowMod(src, cookie, cookie_mask, table_id, ofp_src.OFPFC_ADD, idle_timeout, hard_timeout, 32767, buffer_id_src, ofp_src.OFPP_ANY, ofp_src.OFPG_ANY, 0, 1, dest_ip, inst) src.send_msg(req) continue elif stat.match['arp_tpa'] == '192.168.1.1' and stat.instructions[0].actions[0].port != out_put: print "SRC ARP 192.168.1.1" dest_ip = ofp_parser_src.OFPMatch(eth_type=0x806, arp_spa=ip_src, arp_tpa='192.168.1.1') actions = [ofp_parser_src.OFPActionOutput(out_put)] #self.add_flow(src, 32767, dest_ip, actions) inst = [ofp_parser_src.OFPInstructionActions(ofp_src.OFPIT_APPLY_ACTIONS, actions)] req = ofp_parser_src.OFPFlowMod(src, cookie, cookie_mask, table_id, ofp_src.OFPFC_ADD, idle_timeout, hard_timeout, 32767, buffer_id_src, ofp_src.OFPP_ANY, ofp_src.OFPG_ANY, 0, 1, dest_ip, inst) src.send_msg(req) #elif stat.match['eth_type'] != 2048: # print "quantas vezes esta linha iaparece" else: continue #DATAPATH DE DST elif ev.msg.datapath.id == dst.id: for stat in sorted(ev.msg.body, key=attrgetter('match')): flows.append('table_id=%s ' 'duration_sec=%d duration_nsec=%d ' 'priority=%d ' 'idle_timeout=%d hard_timeout=%d flags=0x%04x ' 'importance=%d cookie=%d packet_count=%d ' 'byte_count=%d match=%s instructions=%s' % (stat.table_id, stat.duration_sec, stat.duration_nsec, stat.priority, stat.idle_timeout, stat.hard_timeout, stat.flags, stat.importance, stat.cookie, stat.packet_count, stat.byte_count, stat.match, stat.instructions)) #DELETE/MODIFICA LINHAS DE FLUXO DO DST IP if stat.match['eth_type'] == 2048 and stat.instructions[0].actions[0].port == last_port: #Cria um DF com informações de porta e ip que serao deletados para switch DST self.ipDFrame_dst = self.ipDFrame_dst.append(pd.DataFrame({ 'SRC': [stat.match['ipv4_src']], 'DST': [stat.match['ipv4_dst']], 'PORT': [stat.instructions[0].actions[0].port]}), ignore_index=True) match_ip = ofp_parser_dst.OFPMatch(eth_type=0x800, ipv4_dst=stat.match['ipv4_dst'], ipv4_src=stat.match['ipv4_src']) actions = [ofp_parser_dst.OFPActionOutput(ofp_dst.OFPP_NORMAL, 0)] inst = [ofp_parser_dst.OFPInstructionActions(ofp_dst.OFPIT_APPLY_ACTIONS, actions)] req = ofp_parser_dst.OFPFlowMod(dst, cookie, cookie_mask, table_id, ofp_dst.OFPFC_DELETE, idle_timeout, hard_timeout, priority, buffer_id_dst, ofp_dst.OFPP_ANY, ofp_dst.OFPG_ANY, ofp_dst.OFPFF_SEND_FLOW_REM, importance, match_ip, inst) dst.send_msg(req) #ADICIONA UM CAMINHO ENTRE EXTREMIDADES P\ O DP SRC #print "EXTREMIDADE DP IP DST" #match_ip = ofp_parser_dst.OFPMatch(eth_type=0x800, ipv4_src=ip_dst, ipv4_dst=ip_src) #ESCOLHE A PORTA UP if last_port == 2: out_put = last_port + 1 elif last_port == 3: out_put = last_port - 1 else: pass #actions = [ofp_parser_dst.OFPActionOutput(out_put)] #self.add_flow(dst, 32767, match_ip, actions) #inst = [ofp_parser_dst.OFPInstructionActions(ofp_dst.OFPIT_APPLY_ACTIONS, # actions)] #req = ofp_parser_dst.OFPFlowMod(dst, cookie, cookie_mask, # table_id, ofp_dst.OFPFC_ADD, # idle_timeout, hard_timeout, # priority, buffer_id_dst, # ofp_dst.OFPP_ANY, ofp_dst.OFPG_ANY, # ofp_dst.OFPFF_SEND_FLOW_REM, # importance, match_ip, inst) #dst.send_msg(req) #MELHORAR #VERIFICA SE TEM CAMINHO P/ DST 192.168.1.1 SE N ADICIONA UM #if stat.match['ipv4_dst'] == '192.168.1.1' and stat.instructions[0].actions[0].port == out_put: # print "BREAK DST IP" # break if dst.id == 1: dest_ip = ofp_parser_dst.OFPMatch(eth_type=0x800, ipv4_src='192.168.1.1', ipv4_dst=stat.match['ipv4_src']) actions = [ofp_parser_dst.OFPActionOutput(out_put)] inst = [ofp_parser_dst.OFPInstructionActions(ofp_dst.OFPIT_APPLY_ACTIONS, actions)] req2 = ofp_parser_dst.OFPFlowMod(dst, cookie, cookie_mask, table_id, ofp_dst.OFPFC_ADD, idle_timeout, hard_timeout, 32767, buffer_id_dst, ofp_dst.OFPP_ANY, ofp_dst.OFPG_ANY, 0, 1, dest_ip, inst) dst.send_msg(req2) elif stat.match['ipv4_dst'] == '192.168.1.1' and stat.instructions[0].actions[0].port != out_put: print "DST IP 192.168.1.1" dest_ip = ofp_parser_dst.OFPMatch(eth_type=0x800, ipv4_src=ip_dst, ipv4_dst='192.168.1.1') actions = [ofp_parser_dst.OFPActionOutput(out_put)] #self.add_flow(dst, 32767, dest_ip, actions) inst = [ofp_parser_dst.OFPInstructionActions(ofp_dst.OFPIT_APPLY_ACTIONS, actions)] req = ofp_parser_dst.OFPFlowMod(dst, cookie, cookie_mask, table_id, ofp_dst.OFPFC_ADD, idle_timeout, hard_timeout, 32767, buffer_id_dst, ofp_dst.OFPP_ANY, ofp_dst.OFPG_ANY, 0, 1, dest_ip, inst) dst.send_msg(req) else: pass #ofp_dst.OFPFF_SEND_FLOW_REM #DELETA/MODIFICA LINHAS DE FLUXOS DO DST ARP elif stat.match['eth_type'] == 2054 and stat.instructions[0].actions[0].port == last_port: #Cria um DF com informacoes ARP de port e ip q serao deletados para switch DST self.arpDFrame_dst = self.arpDFrame_dst.append(pd.DataFrame({ 'SPA': [stat.match['arp_spa']], 'TPA': [stat.match['arp_tpa']], 'PORT': [stat.instructions[0].actions[0].port]}), ignore_index=True) match_arp = ofp_parser_dst.OFPMatch(eth_type=0x806, arp_tpa=stat.match['arp_tpa'], arp_spa=stat.match['arp_spa']) actions = [ofp_parser_dst.OFPActionOutput(ofp_src.OFPP_NORMAL, 0)] inst = [ofp_parser_dst.OFPInstructionActions(ofp_dst.OFPIT_APPLY_ACTIONS, actions)] req = ofp_parser_dst.OFPFlowMod(dst, cookie, cookie_mask, table_id, ofp_dst.OFPFC_DELETE, idle_timeout, hard_timeout, 1, buffer_id_dst, ofp_dst.OFPP_ANY, ofp_dst.OFPG_ANY, ofp_dst.OFPFF_SEND_FLOW_REM, importance, match_arp, inst) dst.send_msg(req) #ADICIONA UM CAMINHO ENTRE EXTREMIDADES P\ O DP DST #print "EXTREMIDADES DP ARP DST" #match_arp = ofp_parser_dst.OFPMatch(eth_type=0x806, ipv4_src=ip_dst, ipv4_dst=ip_src) if last_port == 2: out_put = last_port + 1 elif last_port == 3: out_put = last_port - 1 else: pass #actions = [ofp_parser_dst.OFPActionOutput(out_put)] #self.add_flow(dst, 32767, match_arp, actions) #inst = [ofp_parser_dst.OFPInstructionActions(ofp_dst.OFPIT_APPLY_ACTIONS, # actions)] #req = ofp_parser_dst.OFPFlowMod(dst, cookie, cookie_mask, # table_id, ofp_dst.OFPFC_ADD, # idle_timeout, hard_timeout, # priority, buffer_id_dst, # ofp_dst.OFPP_ANY, ofp_dst.OFPG_ANY, # ofp_dst.OFPFF_SEND_FLOW_REM, # importance, match_arp, inst) #dst.send_msg(req) ################# #if stat.match['arp_tpa'] == '192.168.1.1' and stat.instructions[0].actions[0].port == out_put: # print "BREAK DST ARP" # break if dst.id == 1: dest_ip = ofp_parser_dst.OFPMatch(eth_type=0x806, arp_spa='192.168.1.1', arp_tpa=stat.match['arp_spa']) actions = [ofp_parser_dst.OFPActionOutput(out_put)] inst = [ofp_parser_dst.OFPInstructionActions(ofp_dst.OFPIT_APPLY_ACTIONS, actions)] req2 = ofp_parser_dst.OFPFlowMod(dst, cookie, cookie_mask, table_id, ofp_dst.OFPFC_ADD, idle_timeout, hard_timeout, 32767, buffer_id_dst, ofp_dst.OFPP_ANY, ofp_dst.OFPG_ANY, 0, 1, dest_ip, inst) dst.send_msg(req2) elif stat.match['arp_tpa'] == '192.168.1.1' and stat.instructions[0].actions[0].port != out_put: print "DST ARP 192.168.1.1" dest_ip = ofp_parser_dst.OFPMatch(eth_type=0x806, arp_spa=ip_dst, arp_tpa='192.168.1.1') actions = [ofp_parser_dst.OFPActionOutput(out_put)] #self.add_flow(dst, 32767, dest_ip, actions) inst = [ofp_parser_dst.OFPInstructionActions(ofp_dst.OFPIT_APPLY_ACTIONS, actions)] req = ofp_parser_dst.OFPFlowMod(dst, cookie, cookie_mask, table_id, ofp_dst.OFPFC_ADD, idle_timeout, hard_timeout, 32767, buffer_id_dst, ofp_dst.OFPP_ANY, ofp_dst.OFPG_ANY, 0, 1, dest_ip, inst) #ofp_dst.OFPFF_SEND_FLOW_REM dst.send_msg(req) else: pass #ADICIONADO 23/09/2018 #Exibe o status de portas do switch #classe utilizada ryu.controller.controller.Datapath #ryu.ofproto.ofproto_v1_4_parser.OFPPort #ryu.ofproto.ofproto_v1_4 #flags OFPPS_LINK_DOWN ############################################################################# @set_ev_cls(ofp_event.EventOFPPortStatus, MAIN_DISPATCHER) def port_status_handler(self, ev): #start_time = time.time() start_time = datetime.now() print(start_time.microsecond) #variaveis usadas nessa função global C, src_id, dst_id, src, dst, first_port, last_port, ip_src, ip_dst #global mac_addr_1_1, mac_addr_1_2, mac_addr_1_3, mac_addr_2_1, mac_addr_2_2, mac_addr_2_3 #global mac_addr_3_1, mac_addr_3_2, mac_addr_3_3, mac_addr_4_1, mac_addr_4_2, mac_addr_4_3 #eth_src = eth_dst = None msg = ev.msg #armazena a mensagem do evento dp = msg.datapath #dp.id ofp = dp.ofproto parser = dp.ofproto_parser if msg.desc.state == ofp.OFPPR_ADD: print 'link adicionado' if msg.desc.state == ofp.OFPPS_LINK_DOWN: #print "STATE", msg.desc.state #start_time_1 = time.time() start_time_1 = datetime.now() print(start_time_1.microsecond) time_1_2 = start_time_1 - start_time print "tempo de captura de evento =", time_1_2 #Salva o tempo em um arquivo TXT captura = open('cenario_1_captura.txt', 'a') captura.writelines(str(time_1_2)) captura.writelines("\n") captura.close() print "tempo de inferencia salvo" #print dp.id print print '\033[1;31;47m Nome da interface:', msg.desc.name, '\033[1;m' print '\033[1;31;47m Porta: ', msg.desc.port_no, 'Porta status DOWN\033[1;m' if (C == 0): #Condicional para armazenar o dp e in_port origem primeira iteração 0 src_id = dp.id first_port = msg.desc.port_no dst_id = 0 elif (C != 0): #Condicional para armazenar o dp e out_port destino apos a primeira iteração dst_id = dp.id last_port = msg.desc.port_no #if (C > 0 and src and dst and first_port and last_port): ip_src = ip_dst = None #inicia as variaveis else: pass C += 1 #incrementa a variável de controle #armazena o endereço Mac das insterfaces 2 e 3 dos datapath's #eth_src #if C == 1: if src_id == 1: ip_src = IP_1 elif src_id== 2: ip_src = IP_2 elif src_id == 3: ip_src = IP_3 elif src_id == 4: ip_src = IP_4 else: pass #armazena o endereço Mac das insterfaces 2 e 3 dos datapath's #eth_dst #if C == 2: if dst_id == 1: ip_dst = IP_1 elif dst_id == 2: ip_dst = IP_2 elif dst_id == 3: ip_dst = IP_3 elif dst_id == 4: ip_dst = IP_4 else: pass if (C == 2): C = 0 #zera a variavel de controle ao alcançar 2 print '\033[1;31;47m Deletando tabela de fluxos\033[1;m' if src_id and dst_id: for datapath in self.datapath_list.values(): if datapath.id == src_id: src = datapath if datapath.id == dst_id: dst = datapath #print '\033[1;42m Redirecionando o Tráfego\033[1;m' #REMOVE LINHAS DE FLUXOS self.send_flow_stats_request(src) self.send_flow_stats_request(dst) #self.send_flow_mod(src, first_port, ip_src) #self.send_flow_mod(dst, last_port, ip_dst) #DELETE CONTROLLER SRC #match = src.ofproto_parser.OFPMatch(eth_type=0x88cc) #actions = [src.ofproto_parser.OFPActionOutput(src.ofproto.OFPP_CONTROLLER, src.ofproto.OFPCML_NO_BUFFER)] #REMOVE TABELA 0 #self.remove_flows(src, 0)#chama a função para remover fluxo do dp adjacente #self.remove_flows(dst, 0)#chama a função para remover fluxo do dp adjacente #self.install_controller(src) #self.install_controller(dst) #tempo medido das tabelas apagadas e reescritas end_time = time.time() - start_time_1 print "Tempo de inferencia ", end_time #Salva o tempo em um arquivo TXT inference = open('cenario_1_inference.txt', 'a') inference.writelines(str(end_time)) inference.writelines("\n") inference.close() #print "tempo de inferencia salvo" soma = start_time + start_time_1 #Salva a soma capture and inference summe = open('cenario_1_soma.txt', 'a') summe.writelines(str(soma)) summe.writelines("\n") summe.close() else: reason = 'UNKNOWN' pass
729039bc1346bdb0938344b828fd0e78aca84c84
8dc84558f0058d90dfc4955e905dab1b22d12c08
/third_party/blink/tools/blinkpy/tool/commands/queries_unittest.py
9d7214548f8855b08c2b70d812721dd9d733433e
[ "LGPL-2.0-or-later", "GPL-1.0-or-later", "MIT", "Apache-2.0", "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause" ]
permissive
meniossin/src
42a95cc6c4a9c71d43d62bc4311224ca1fd61e03
44f73f7e76119e5ab415d4593ac66485e65d700a
refs/heads/master
2022-12-16T20:17:03.747113
2020-09-03T10:43:12
2020-09-03T10:43:12
263,710,168
1
0
BSD-3-Clause
2020-05-13T18:20:09
2020-05-13T18:20:08
null
UTF-8
Python
false
false
7,907
py
# Copyright (C) 2009 Google Inc. All rights reserved. # Copyright (C) 2012 Intel Corporation. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import optparse import unittest from blinkpy.common.system.output_capture import OutputCapture from blinkpy.tool.commands.queries import PrintBaselines, PrintExpectations from blinkpy.tool.mock_tool import MockBlinkTool class PrintExpectationsTest(unittest.TestCase): def run_test(self, tests, expected_stdout, platform='test-win-win7', **kwargs): options_defaults = { 'all': False, 'csv': False, 'full': False, 'platform': platform, 'include_keyword': [], 'exclude_keyword': [], 'paths': False, } options_defaults.update(kwargs) options = optparse.Values(dict(**options_defaults)) tool = MockBlinkTool() tool.port_factory.all_port_names = lambda: [ 'test-linux-trusty', 'test-linux-precise', 'test-mac-mac10.11', 'test-mac-mac10.10', 'test-win-win10', 'test-win-win7' ] command = PrintExpectations() oc = OutputCapture() try: oc.capture_output() command.execute(options, tests, tool) finally: stdout, _, _ = oc.restore_output() self.assertMultiLineEqual(stdout, expected_stdout) def test_basic(self): self.run_test(['failures/expected/text.html', 'failures/expected/timeout.html'], ('// For test-win-win7\n' 'failures/expected/text.html [ Failure ]\n' 'failures/expected/timeout.html [ Timeout ]\n')) def test_multiple(self): self.run_test(['failures/expected/text.html', 'failures/expected/timeout.html'], ('// For test-win-win10\n' 'failures/expected/text.html [ Failure ]\n' 'failures/expected/timeout.html [ Timeout ]\n' '\n' '// For test-win-win7\n' 'failures/expected/text.html [ Failure ]\n' 'failures/expected/timeout.html [ Timeout ]\n'), platform='test-win-*') def test_full(self): self.run_test(['failures/expected/text.html', 'failures/expected/timeout.html'], ('// For test-win-win7\n' 'Bug(test) failures/expected/text.html [ Failure ]\n' 'Bug(test) failures/expected/timeout.html [ Timeout ]\n'), full=True) def test_exclude(self): self.run_test(['failures/expected/text.html', 'failures/expected/crash.html'], ('// For test-win-win7\n' 'failures/expected/text.html [ Failure ]\n'), exclude_keyword=['crash']) def test_include(self): self.run_test(['failures/expected/text.html', 'failures/expected/crash.html'], ('// For test-win-win7\n' 'failures/expected/crash.html\n'), include_keyword=['crash']) def test_csv(self): self.run_test(['failures/expected/text.html', 'failures/expected/image.html'], ('test-win-win7,failures/expected/image.html,Bug(test),,FAIL\n' 'test-win-win7,failures/expected/text.html,Bug(test),,FAIL\n'), csv=True) def test_paths(self): self.run_test([], ('LayoutTests/TestExpectations\n' 'LayoutTests/NeverFixTests\n' 'LayoutTests/StaleTestExpectations\n' 'LayoutTests/SlowTests\n'), paths=True) class PrintBaselinesTest(unittest.TestCase): def setUp(self): self.oc = None self.tool = MockBlinkTool() self.test_port = self.tool.port_factory.get('test-win-win7') self.tool.port_factory.get = lambda port_name=None: self.test_port self.tool.port_factory.all_port_names = lambda: [ 'test-linux-trusty', 'test-linux-precise', 'test-mac-mac10.11', 'test-mac-mac10.10', 'test-win-win10', 'test-win-win7' ] def tearDown(self): if self.oc: self.restore_output() def capture_output(self): self.oc = OutputCapture() self.oc.capture_output() def restore_output(self): stdout, stderr, logs = self.oc.restore_output() self.oc = None return (stdout, stderr, logs) def test_basic(self): command = PrintBaselines() self.capture_output() options = optparse.Values({'all': False, 'include_virtual_tests': False, 'csv': False, 'platform': None}) command.execute(options, ['passes/text.html'], self.tool) stdout, _, _ = self.restore_output() self.assertMultiLineEqual(stdout, ('// For test-win-win7\n' 'passes/text-expected.png\n' 'passes/text-expected.txt\n')) def test_multiple(self): command = PrintBaselines() self.capture_output() options = optparse.Values({'all': False, 'include_virtual_tests': False, 'csv': False, 'platform': 'test-win-*'}) command.execute(options, ['passes/text.html'], self.tool) stdout, _, _ = self.restore_output() self.assertMultiLineEqual(stdout, ('// For test-win-win10\n' 'passes/text-expected.png\n' 'passes/text-expected.txt\n' '\n' '// For test-win-win7\n' 'passes/text-expected.png\n' 'passes/text-expected.txt\n')) def test_csv(self): command = PrintBaselines() self.capture_output() options = optparse.Values({'all': False, 'platform': '*win7', 'csv': True, 'include_virtual_tests': False}) command.execute(options, ['passes/text.html'], self.tool) stdout, _, _ = self.restore_output() self.assertMultiLineEqual(stdout, ('test-win-win7,passes/text.html,None,png,passes/text-expected.png,None\n' 'test-win-win7,passes/text.html,None,txt,passes/text-expected.txt,None\n'))
0a31f183176667b3ccb7ef41a3aae879976e561e
b595a24b07662a89826a1b6d334dfcaa3ec1c4b0
/venv/lib/python3.6/_bootlocale.py
eacdd540c7def6405335d26557019be25b1bb7e2
[ "CC0-1.0" ]
permissive
kentarofujiy/base1
4629b638f96b3ed091ea695c81b3b7837af1ec79
f820b9b379cda86ca5b446c63800fbe4bb8f3bce
refs/heads/master
2021-07-13T02:06:01.371773
2017-03-11T12:43:19
2017-03-11T12:43:19
84,649,225
0
1
CC0-1.0
2020-07-26T01:08:25
2017-03-11T12:43:32
Python
UTF-8
Python
false
false
101
py
/usr/local/Cellar/python3/3.6.0/Frameworks/Python.framework/Versions/3.6/lib/python3.6/_bootlocale.py
f20ae300239e95b18221dae69c1ce376ca36d924
8729478cd46625a8403894677bf616a34846a248
/Django/hexocomments/migrations/0001_initial.py
23e9389dd42b18441bae64f5c4e298c51ac2d7c1
[]
no_license
dongdatangjie/Django
5528e81c438b39eea94ee022283ac9b8b4cb4594
57dcef7182e1cc8b3f27c8f8c44643ec0755cf62
refs/heads/master
2020-12-03T06:44:56.795787
2017-06-29T02:18:02
2017-06-29T02:18:02
95,729,066
0
0
null
null
null
null
UTF-8
Python
false
false
973
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.2 on 2017-06-28 07:35 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('Hexo', '0002_auto_20170628_1535'), ] operations = [ migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('email', models.EmailField(max_length=255)), ('url', models.URLField(blank=True)), ('text', models.TextField()), ('created_time', models.DateTimeField(auto_now_add=True)), ('post', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='Hexo.Post')), ], ), ]
36f8862cb75c3b1df9d93265b47e29c0730ba897
eb73cc75bcda7a26784674c09a1cd14227889547
/use_model.py
22f59a9c2329ea44733b241afc6f92743d2d392c
[]
no_license
junTaniguchi/python
232fc43b8650b4168264120fba1b0f686ada042f
09ca809bee9a96ff0a79e84f827afd9256a1f15a
refs/heads/master
2021-01-22T05:28:23.793408
2017-03-25T12:44:54
2017-03-25T12:44:54
81,666,610
1
0
null
null
null
null
UTF-8
Python
false
false
3,242
py
# -*- coding: utf-8 -*- """ Created on Thu Mar 9 17:15:52 2017 @author: j13-taniguchi """ import os import cv2 import keras from keras.applications.imagenet_utils import preprocess_input from keras.backend.tensorflow_backend import set_session from keras.models import Model from keras.models import model_from_json from keras.preprocessing import image import matplotlib.pyplot as plt import numpy as np from scipy.misc import imread import tensorflow as tf from ssd import SSD300 from ssd_utils import BBoxUtility plt.rcParams['figure.figsize'] = (8, 8) plt.rcParams['image.interpolation'] = 'nearest' np.set_printoptions(suppress=True) path = "/Users/j13-taniguchi/study_tensorflow/keras_project/ssd_keras" os.chdir(path) config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.45 set_session(tf.Session(config=config)) # 地名のリストを作成 with open("./param/place_tokyo.txt", "r") as place_file: place_list = place_file.readlines() place_list = [place_str.strip() for place_str in place_list] NUM_CLASSES = len(place_list) # 入力ファイルの次元を定義 input_shape=(300, 300, 1) # modelのロード model = model_from_json("./param/learning_place_name.json") #model = SSD300(input_shape, num_classes=NUM_CLASSES) #model.load_weights('weights_SSD300.hdf5', by_name=True) model.load_weights('./param/learning_place_name.hdf5', by_name=True) bbox_util = BBoxUtility(NUM_CLASSES) inputs = [] images = [] img_path = 'XXXXXXXXX(入力とするファイルのパス)' img = image.load_img(img_path, grayscale=True, target_size=(300, 300)) img = image.img_to_array(img) images.append(imread(img_path)) inputs.append(img.copy()) preds = model.predict(inputs, batch_size=1, verbose=1) results = bbox_util.detection_out(preds) for i, img in enumerate(images): # Parse the outputs. det_label = results[i][:, 0] det_conf = results[i][:, 1] det_xmin = results[i][:, 2] det_ymin = results[i][:, 3] det_xmax = results[i][:, 4] det_ymax = results[i][:, 5] # Get detections with confidence higher than 0.6. top_indices = [i for i, conf in enumerate(det_conf) if conf >= 0.6] top_conf = det_conf[top_indices] top_label_indices = det_label[top_indices].tolist() top_xmin = det_xmin[top_indices] top_ymin = det_ymin[top_indices] top_xmax = det_xmax[top_indices] top_ymax = det_ymax[top_indices] colors = plt.cm.hsv(np.linspace(0, 1, 21)).tolist() plt.imshow(img / 255.) currentAxis = plt.gca() for i in range(top_conf.shape[0]): xmin = int(round(top_xmin[i] * img.shape[1])) ymin = int(round(top_ymin[i] * img.shape[0])) xmax = int(round(top_xmax[i] * img.shape[1])) ymax = int(round(top_ymax[i] * img.shape[0])) score = top_conf[i] label = int(top_label_indices[i]) label_name = NUM_CLASSES[label - 1] display_txt = '{:0.2f}, {}'.format(score, label_name) coords = (xmin, ymin), xmax-xmin+1, ymax-ymin+1 color = colors[label] currentAxis.add_patch(plt.Rectangle(*coords, fill=False, edgecolor=color, linewidth=2)) currentAxis.text(xmin, ymin, display_txt, bbox={'facecolor':color, 'alpha':0.5}) plt.show()
56f0e42e930e5b0e72947b0bfbd26a4fa58d4071
12e6e0c818de61deabeeac039af16f440572faa6
/exerc_01_b.py
bd95e79d52c5a9e5997c9cb637ec722340f8be15
[ "MIT" ]
permissive
rmmariano/final_project_scientific-program
379682365e899820da9407985b62057441d8d2bc
95d06ecca39056436b5361a8486ab4449b712742
refs/heads/master
2020-05-20T06:03:51.171072
2016-09-15T22:52:59
2016-09-15T22:52:59
68,248,299
0
0
null
null
null
null
UTF-8
Python
false
false
239
py
# Exerc. 01) b) import matplotlib.pyplot as plt import numpy as np # create 200 values between 0 and 1 x = np.random.rand(200) # do the values between -0.5 and 0.5 x = x - 0.5 print("values of x: ") print(x) plt.hist(x) plt.show()
ba158f2eb3e6552542d82191472d68f317100f75
9b4d7689a8b8dfea5971eb85637b76f52ab54bc6
/ddMS/wsgi.py
9b4cdaaeaa8fd5bbc808680487670c17697f2815
[]
no_license
007janus/MS
af610ce2633a88c5a5e1d851542d6a50b83d3b29
f92c73ab6ecb031d11ec659f6b7f1d24a82c1402
refs/heads/master
2021-01-13T01:04:15.414333
2015-12-24T05:06:21
2015-12-24T05:06:21
48,355,127
0
0
null
null
null
null
UTF-8
Python
false
false
383
py
""" WSGI config for ddMS project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.7/howto/deployment/wsgi/ """ import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "ddMS.settings") from django.core.wsgi import get_wsgi_application application = get_wsgi_application()
c57e95274668910124ec3d3e16b4c0c86d1dabc4
1584ef7c2cbde323fe43675225a583154a9fe6de
/11_evaluate_det_lable.py
0c5e29d6e97dbb8589f26077c0f5fc16538f7eef
[]
no_license
haima1998/dataset
1620fa91c9b16a50c3037825c6836eb8ebd4cc5e
acaf2194f3e5fe59af99d3f1dff79defc2e34bfb
refs/heads/master
2020-07-14T09:56:14.924563
2020-06-15T02:28:55
2020-06-15T02:28:55
205,295,836
0
0
null
null
null
null
UTF-8
Python
false
false
12,188
py
import numpy as np import sys,os import cv2 from lxml.etree import Element, SubElement, tostring from xml.dom.minidom import parseString import json import xml.etree.ElementTree as ET ROOT_DIR = '/home/charlie/disk2/dataset/number/data_dataset_voc' #ROOT_DIR = '/home/charlie/disk2/dataset/number/test_data_dataset_voc' detect_result_dir = os.path.join(ROOT_DIR, "det_result/all_xml/") #detect_result_dir = os.path.join(ROOT_DIR, "result/02ssd_test_all/") #test_files = os.path.join(ROOT_DIR, "ImageSets/Main/trainval.txt") test_files = os.path.join(ROOT_DIR, "ImageSets/Main/test.txt") #test_files = os.path.join(ROOT_DIR, "ImageSets/Main/all.txt") lable_dir = os.path.join(ROOT_DIR, "Annotations/") image_dir = os.path.join(ROOT_DIR, "JPEGImages/") bad_case_image_dir = os.path.join(ROOT_DIR, "det_result/all_xml/all_badcase/") global detect_obj_count global lable_obj_count detect_obj_count = 0 lable_obj_count = 0 global TP global FP global FN TP = 0 FP = 0 FN = 0 global MIN_IOU MIN_IOU = 0.5 global NEED_CHECK_TYPE NEED_CHECK_TYPE = True SHOW_ERROR_DETECTION = True class DetObject: def __init__(self, type, conf,x1,y1,x2,y2): self.type = type self.conf = conf self.x1 = x1 self.y1 = y1 self.x2 = x2 self.y2 = y2 def get_detect_result(file_name): detect_result_file = detect_result_dir + file_name + '.xml' print(detect_result_file) object_array = [] tree = ET.parse(detect_result_file) root = tree.getroot() for child in root: #print('child-tag:', child.tag, ',child.attrib', child.attrib, ',child.text:', child.text) x1 = 0 y1 = 0 x2 = 1 y2 = 1 lable_str = '' conf = 0.0 for sub in child: #print('sub-tag:', sub.tag, ',sub.attrib:', sub.attrib, ',sub.text:', sub.text) if sub.tag == 'name': lable_str = sub.text if sub.tag == 'conf': conf = float(sub.text) for subsub in sub: #print('subsub-tag:', subsub.tag, ',subsub.attrib:', subsub.attrib, ',subsub.text:', subsub.text) if subsub.tag == 'xmin': x1 = int(subsub.text) if subsub.tag == 'ymin': y1 = int(subsub.text) if subsub.tag == 'xmax': x2 = int(subsub.text) if subsub.tag == 'ymax': y2 = int(subsub.text) if conf > 0.01: #print(lable_str) #print(conf) #print(x1) #print(y1) #print(x2) #print(y2) obj = DetObject(lable_str,conf,x1,y1,x2,y2) object_array.append(obj) #else: #print('no detect result') return object_array def get_lable_objects(file_name): detect_result_file = lable_dir + file_name + '.xml' print(detect_result_file) object_array = [] tree = ET.parse(detect_result_file) root = tree.getroot() for child in root: #print('child-tag:', child.tag, ',child.attrib', child.attrib, ',child.text:', child.text) x1 = 0 y1 = 0 x2 = 1 y2 = 1 lable_str = '' for sub in child: #print('sub-tag:', sub.tag, ',sub.attrib:', sub.attrib, ',sub.text:', sub.text) have_obj = False if sub.tag == 'name': lable_str = sub.text for subsub in sub: #print('subsub-tag:', subsub.tag, ',subsub.attrib:', subsub.attrib, ',subsub.text:', subsub.text) if subsub.tag == 'xmin': x1 = int(subsub.text) if subsub.tag == 'ymin': y1 = int(subsub.text) if subsub.tag == 'xmax': x2 = int(subsub.text) if subsub.tag == 'ymax': y2 = int(subsub.text) have_obj = True if have_obj == True: #print(lable_str) #print(x1) #print(y1) #print(x2) #print(y2) obj = DetObject(lable_str,1,x1,y1,x2,y2) object_array.append(obj) return object_array def get_short_name(obj_type): short_name = "UNK" if obj_type == "zero": short_name = "0" if obj_type == "one": short_name = "1" if obj_type == "two": short_name = "2" if obj_type == "three": short_name = "3" if obj_type == "four": short_name = "4" if obj_type == "five": short_name = "5" if obj_type == "six": short_name = "6" if obj_type == "seven": short_name = "7" if obj_type == "eight": short_name = "8" if obj_type == "nine": short_name = "9" return short_name def show_result(file_name,det_obj_list,lable_obj_list): image_file = image_dir + file_name + '.jpg' print(image_file) img = cv2.imread(image_file) #height, width, depth = img.shape img_lable = cv2.imread(image_file) for obj in det_obj_list: cv2.rectangle(img, (obj.x1, obj.y1), (obj.x2, obj.y2), (255, 255, 0), 1) cv2.putText(img, get_short_name(obj.type), (obj.x1 + 3, obj.y1 - 3), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 1, cv2.LINE_AA) #cv2.putText(img, str(obj.conf), (obj.x1 + 3, obj.y1 - 23), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 1, cv2.LINE_AA) lable_width = 0 lable_height = 0 for obj in lable_obj_list: cv2.rectangle(img_lable, (obj.x1, obj.y1), (obj.x2, obj.y2), (0, 255, 0), 1) cv2.putText(img_lable, get_short_name(obj.type), (obj.x1 + 3, obj.y1 - 3), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 125, 255), 1, cv2.LINE_AA) lable_width = obj.x2 - obj.x1 lable_height = obj.y2 - obj.y1 gt_win_str = "GT(" + str(lable_width) + "," + str(lable_height) + ")" cv2.imshow("Detect(" + file_name + ")", img) cv2.imshow(gt_win_str, img_lable) cv2.moveWindow(gt_win_str, 580, 0) k = cv2.waitKey(0) if k == 27: # sys.ext() cv2.destroyAllWindows() os._exit(0) else: print k def write_badcase(file_name,det_obj_list,lable_obj_list): image_file = image_dir + file_name + '.jpg' print(image_file) img = cv2.imread(image_file) #height, width, depth = img.shape img_lable = cv2.imread(image_file) for obj in det_obj_list: cv2.rectangle(img, (obj.x1, obj.y1), (obj.x2, obj.y2), (255, 255, 0), 1) cv2.putText(img, get_short_name(obj.type), (obj.x1 + 3, obj.y1 - 3), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 1, cv2.LINE_AA) lable_width = 0 lable_height = 0 for obj in lable_obj_list: cv2.rectangle(img_lable, (obj.x1, obj.y1), (obj.x2, obj.y2), (0, 255, 0), 1) cv2.putText(img_lable, get_short_name(obj.type), (obj.x1 + 3, obj.y1 - 3), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 125, 255), 1, cv2.LINE_AA) lable_width = obj.x2 - obj.x1 lable_height = obj.y2 - obj.y1 gt_image_file = bad_case_image_dir + file_name + "_gt_" + str(lable_width) + "_" +str(lable_height) + ".jpg" det_image_file = bad_case_image_dir + file_name + "_det_" + str(len(det_obj_list)) + ".jpg" print(gt_image_file) print(det_image_file) cv2.imwrite(gt_image_file,img_lable) cv2.imwrite(det_image_file,img) def compute_iou(rec1, rec2): """ computing IoU :param rec1: (y0, x0, y1, x1), which reflects (top, left, bottom, right) :param rec2: (y0, x0, y1, x1) :return: scala value of IoU """ # computing area of each rectangles S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1]) S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1]) # computing the sum_area sum_area = S_rec1 + S_rec2 # find the each edge of intersect rectangle left_line = max(rec1[1], rec2[1]) right_line = min(rec1[3], rec2[3]) top_line = max(rec1[0], rec2[0]) bottom_line = min(rec1[2], rec2[2]) # judge if there is an intersect if left_line >= right_line or top_line >= bottom_line: #print('no intersect ret (%d,%d,%d,%d)' % (left_line,right_line,top_line,bottom_line)) return 0 else: intersect = (right_line - left_line) * (bottom_line - top_line) print('have intersect ret (%d,%d,%d,%d,%d)' % (left_line,right_line,top_line,bottom_line,intersect)) print('iou ret (%d,%d,%d)' % (sum_area,intersect,sum_area - intersect)) return float(intersect) / float(sum_area - intersect) def check_detect_result(det_obj_list,lable_obj_list): #print('enter check_detect_result') global TP global FP global FN global MIN_IOU global NEED_CHECK_TYPE ret = True for lable_obj in lable_obj_list: have_match = False for det_obj in det_obj_list: det_obj_ret = (det_obj.x1,det_obj.y1,det_obj.x2,det_obj.y2) lable_obj_ret = (lable_obj.x1,lable_obj.y1,lable_obj.x2,lable_obj.y2) #print('det rect(%d,%d,%d,%d)' % (det_obj.x1,det_obj.y1,det_obj.x2,det_obj.y2)) #print('lable rect(%d,%d,%d,%d)' % (lable_obj.x1,lable_obj.y1,lable_obj.x2,lable_obj.y2)) iou = compute_iou(det_obj_ret,lable_obj_ret) print(' det type:%s ' % det_obj.type) print(' lable type:%s' % lable_obj.type) print('iou = %f' % iou) if iou > MIN_IOU and (det_obj.type == lable_obj.type or NEED_CHECK_TYPE == False): have_match = True if have_match == False: ret = False FN = FN + 1 #print('lable w:%d h:%d ' % (lable_obj.x2 - lable_obj.x1,lable_obj.y2 - lable_obj.y1)) for det_obj in det_obj_list: have_match = False for lable_obj in lable_obj_list: det_obj_ret = (det_obj.x1,det_obj.y1,det_obj.x2,det_obj.y2) lable_obj_ret = (lable_obj.x1,lable_obj.y1,lable_obj.x2,lable_obj.y2) #print('det rect(%d,%d,%d,%d)' % (det_obj.x1,det_obj.y1,det_obj.x2,det_obj.y2)) #print('lable rect(%d,%d,%d,%d)' % (lable_obj.x1,lable_obj.y1,lable_obj.x2,lable_obj.y2)) iou = compute_iou(det_obj_ret,lable_obj_ret) #print('iou = %f' % iou) if iou > MIN_IOU and (det_obj.type == lable_obj.type or NEED_CHECK_TYPE == False): #if iou > MIN_IOU and (det_obj.type == lable_obj.type or (det_obj.type == 'red_only' and lable_obj.type == 'yellow_only') or NEED_CHECK_TYPE == False): have_match = True if have_match == False: ret = False FP = FP + 1 else: TP = TP + 1 return ret def eval_one_frame(file_name): global detect_obj_count global lable_obj_count #print('eval_one_frame') det_obj_list = get_detect_result(file_name) detect_obj_count = detect_obj_count + len(det_obj_list) #print('detect one frame result') print(len(det_obj_list)) lable_obj_list = get_lable_objects(file_name) lable_obj_count = lable_obj_count + len(lable_obj_list) #print('one frame lable count') #print(len(lable_obj_list)) ret = check_detect_result(det_obj_list,lable_obj_list) if((len(det_obj_list) != len(lable_obj_list)) or ret != True): print(' det_num:%d lable_num:%d ret:%d' % (len(det_obj_list),len(lable_obj_list),ret)) if SHOW_ERROR_DETECTION == True: show_result(file_name,det_obj_list,lable_obj_list) else: write_badcase(file_name,det_obj_list,lable_obj_list) def main(): global detect_obj_count global lable_obj_count global TP global FP global FN print("eval main enter") with open(test_files, "r") as lf: for line in lf.readlines(): line = line.strip('\n') #print(line) eval_one_frame(line) print(' TP: %d, FP: %d, FN: %d , lable_cout %d, detect count:%d' % (TP,FP,FN,lable_obj_count,detect_obj_count)) recall = float(TP)/float(lable_obj_count) precision = float(TP) / float(TP + FP) print(' recall:%f precision:%f' % (recall,precision)) if __name__ == "__main__": main()
97978976bbcc9a6bb1444b2a6c8d5159f0d88aa7
198289bcb6bccc9fd53f927db6f0bcdbd7d1e72e
/LoanApprovalSVM.py
db4eb814c49e6bca82959cf97b2f214ca7b396f0
[]
no_license
arunbaruah/MLexamples
c1da1e19f4b10c0192c31bc5fa913bc5c63b1317
b74c971ef44d1bda22d0766342fce5cafff1213b
refs/heads/master
2020-08-24T01:51:02.384516
2020-05-07T08:42:25
2020-05-07T08:42:25
216,743,227
0
0
null
null
null
null
UTF-8
Python
false
false
1,532
py
#Build the Support Vector Classifier Model # Predict the loan approval status based on # Gender, Marital Status, Credit History, Income and Loan Amount #import the data import pandas as pd #read the data dataset = pd.read_csv("LoanDataset-1.csv") #check for null value dataset.isnull().sum(axis=0) # Replace Missing Values. Drop the rows. dataset = dataset.dropna() # Drop the column gender as we do not need it in this example dataset = dataset.drop(['gender'], axis=1) # Create Dummy variables dataset.dtypes dataset = pd.get_dummies(dataset, drop_first=True) # Normalize Income and Loan Amount using StandardScaler from sklearn.preprocessing import StandardScaler scalar_ = StandardScaler() dataset['income'] = scalar_.fit_transform(dataset[['income']]) dataset['loanamt'] = scalar_.fit_transform(dataset[['loanamt']]) # Create the X and Y Y = dataset[['status_Y']] X = dataset.drop(['status_Y'], axis=1) # Split the X and Y dataset into trai test set in 70:30 ratio from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = \ train_test_split(X, Y, test_size = 0.3, random_state = 1234, stratify=Y) # Build the model from sklearn.svm import SVC svc = SVC() svc.fit(X_train, Y_train) # Predict the outcome using Test data Y_predict = svc.predict(X_test) # Build the conufsion matrix and get the accuracy/score from sklearn.metrics import confusion_matrix cm = confusion_matrix(Y_test, Y_predict) score = svc.score(X_test, Y_test)
3baad59fe65bdc3700e08030e2fac3f88bc8d20a
f4dedea53630c9cbdc6297ae4a7e2a8195fd7691
/7 Mathematics/31 Another Game.py
9fee062c97127af344f06717d0ffe41c0d4a9c6c
[]
no_license
nikkisora/cses_problemset
d089db048444e07e002f131b4323adc9df95b05b
03160f33e36cdc6d538403357b36bcb015b4dba7
refs/heads/master
2023-07-03T10:34:23.487709
2021-08-05T21:13:49
2021-08-05T21:13:49
379,251,540
0
0
null
null
null
null
UTF-8
Python
false
false
971
py
''' CSES - Another Game Time limit: 1.00 s Memory limit: 512 MB There are n heaps of coins and two players who move alternately. On each move, a player selects some of the nonempty heaps and removes one coin from each heap. The player who removes the last coin wins the game. Your task is to find out who wins if both players play optimally. Input The first input line contains an integer t: the number of tests. After this, t test cases are described: The first line contains an integer n: the number of heaps. The next line has n integers x_1,x_2,...,x_n: the number of coins in each heap. Output For each test case, print "first" if the first player wins the game and "second" if the second player wins the game. Constraints 1 <= t <= 2 * 10^5 1 <= n <= 2 * 10^5 1 <= x_i <= 10^9 the sum of all n is at most 2 * 10^5 Example Input: 3 3 1 2 3 2 2 2 4 5 5 4 5 Output: first second first '''
c3da4bca0ba8fb33dc93aead0dff65d72e62a31a
30a621afb2a42e4750ee09decb1a82329dd30e1a
/datasets/__init__.py
3e6321d5f899656136679120a60023baede9eb4b
[]
no_license
hongfel3/car_segmentation
c828e955d965f766f97ebed6f00cc01158b1fe63
2e815a27468d4d37fa9ed4477b2246e4072d8fab
refs/heads/master
2020-03-08T13:12:28.949875
2017-09-15T21:49:05
2017-09-15T21:49:05
null
0
0
null
null
null
null
UTF-8
Python
false
false
50
py
from .carvana import CARVANA __ALL__ = [CARVANA]
56d130728bdf1a465e5ffc8e16b294e68834aa4c
e397de5c8ec8b6a0973ee4a22c2dc3a11b06c0bc
/bot.py
a46658d76f4de29834061e7bed4fed3b7d107fc4
[]
no_license
VnyC/tweetbook
e94c4f9e735d00acee86c506ebc8daf73ced4b20
8127319c97a27cc556527958749695856f2fa7b6
refs/heads/main
2023-05-14T16:08:01.185580
2021-06-10T16:29:57
2021-06-10T16:29:57
375,762,851
0
0
null
null
null
null
UTF-8
Python
false
false
1,424
py
import tweepy import time print("Welcome back Vinay") consumer_key = 'wGNE1qCPjhjfcOYMWsOik6g0O' consumer_secret = 'kF1Y0jVAZviLfvODQVmYJJ3NIQvBkVAoStsqajzvclihcejxDk' key = '1238345000678653952-qE5mHVLjjYE45Qjfqg2bZBvMsjYelq' secret = 'E61WoMrFfVgb21ovryHrMr7KNx5mtwMgMxRyhlWJoCJca' auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(key, secret) api = tweepy.API(auth) # api.update_status('All Good things are wild and free!') filename = 'last_seen.txt' def read_last_seen(filename): file_read = open(filename, 'r') last_seen_id = int(file_read.read().strip()) file_read.close() return last_seen_id def write_last_seen(filename, last_seen_id): file_write = open(filename, 'w') file_write.write(str(last_seen_id)) file_write.close return def reply(): tweets = api.home_timeline(read_last_seen(filename), tweet_mode='extended') for tweet in reversed(tweets): try: if 'life' in tweet.full_text.lower(): print(str(tweet.id)+' - '+tweet.full_text) api.update_status('@'+tweet.user.screen_name+' Auto reply and like works ;)', tweet.id) api.create_favorite(tweet.id) write_last_seen(filename, tweet.id) except tweepy.TweepError as e: print(e.reason) while True: reply() time.sleep(20)
4f9371a99c122b5c7f63b63291b8d9fcad56880e
d0e0268584916b8e31dd99a26c693dfe33b24663
/chatire/urls.py
133c013062e2b05a3950620aa5c191f54542ded3
[]
no_license
wesleymutwiri/emailgram
1e5e31282f4efaf7bbb5708ad0ee7c4439554fb7
56cde06197ebcb97d0748085d7adf9bd7f3df81c
refs/heads/master
2020-03-19T05:00:52.614342
2018-06-03T19:45:06
2018-06-03T19:45:06
135,891,588
0
0
null
null
null
null
UTF-8
Python
false
false
940
py
"""chatire URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url from django.contrib import admin from django.urls import path,include urlpatterns = [ url(r'^admin/', admin.site.urls), path('auth/', include('djoser.urls')), path('auth/', include('djoser.urls.authtoken')), path('api/', include('chats.urls')), ]
72ba460bc33d2377356cfe0aa0cd91894117102f
20b7df94a756200fc38853b9897b37dfbfd27d77
/src/hdiutils/HDIimport/imzml_reader.py
8659b95c3db5eab2b798007e7d0652a625b36944
[ "MIT" ]
permissive
JoshuaHess12/hdi-utils
6cbb8f84a3d7bb6455f55499f85a8f6ea07dea00
2b2923e74391eccf5963b161d5fc302ac6b214f3
refs/heads/main
2023-06-24T15:38:36.183314
2021-07-14T20:47:31
2021-07-14T20:47:31
361,567,309
0
0
null
null
null
null
UTF-8
Python
false
false
10,929
py
# Module for imzML parsing of imaging mass spectrometry (IMS) data # Developer: Joshua M. Hess, BSc # Developed at the Vaccine & Immunotherapy Center, Mass. General Hospital # Import external modules from pathlib import Path import os from pyimzml.ImzMLParser import getionimage from pyimzml.ImzMLParser import ImzMLParser import numpy as np import pandas as pd from operator import itemgetter import scipy import skimage import skimage.io # Import custom modules from .utils import SubsetCoordinates # Create a class object to store attributes and functions in class imzMLreader: """Class for parsing and storing IMS data that is in the imzML format. Depends on and contains the pyimzML python package distributed from the Alexandrov team: https://github.com/alexandrovteam/pyimzML in a data object. path_to_imzML: string indicating path to imzML file (Ex: 'path/IMSdata.imzML') """ def __init__( self, path_to_imzML, flatten, subsample, mask=None, path_to_markers=None, **kwargs ): """Initialize class to store data in. Ensure appropriate file format and return a data object with pixel table. """ # Create a pathlib object for the path_to_imzML path_to_imzML = Path(path_to_imzML) # check to see if the input is a folder if path_to_imzML.is_dir(): # parse the inputs as ibd and imzml path_to_ibd = [x for x in path_to_imzML.rglob('*.ibd')][0] path_to_imzML = [x for x in path_to_imzML.rglob('*.imzML')][0] # Set the file extensions that we can use with this class ext = [".imzML"] # Check to make sure the string is a valid path if not os.path.exists(str(path_to_imzML)): print("Not a valid path. Try again") else: print("Valid path...") # Check to see if there is a valid file extension for this class if str(path_to_imzML).endswith(tuple(ext)): print( "Valid file extension...", "\nfile name:", str(path_to_imzML), "\nparsing imzML...", ) # Read imzML and return the parsed data self.data = ImzMLParser(str(path_to_imzML)) print("Finished parsing imzML") else: print("Not a valid file extension") # Add the image size to the data object self.data.array_size = ( self.data.imzmldict["max count of pixels y"], self.data.imzmldict["max count of pixels x"], ) # Check to see if the mask exists if mask is not None: # Check to see if the mask is a path (string) if isinstance(mask, Path): ##############Change in future to take arbitrary masks not just tiff################ mask = skimage.io.imread(str(mask), plugin="tifffile") # Ensure the mask is a sparse boolean array mask = scipy.sparse.coo_matrix(mask, dtype=np.bool) # Add the mask to the class object -- even if it is none. Will not be applied to image yet self.data.mask = mask # Create an object for a filtered/processed working self.data.processed_image = None # Check to see if creating a pixel table (used for dimension reduction) if flatten: # Check to see if we are using a mask if mask is not None: # Ensure that the mask is boolean mask = np.array(mask.toarray(), dtype=np.bool) # Get the coordinates where the mask is where = np.where(mask) # Create list of tuples where mask coordinates are (1-indexed) -- form (x,y,z) with z=1 (same as imzML) coords = list( zip( where[1] + 1, where[0] + 1, np.ones(len(where[0]), dtype=np.int) ) ) # intersect the mask coordinates with the IMS coordinates from imzML parser mask_coords = list(set(coords) & set(self.data.coordinates)) # Reorder the mask coordinates for F style column major format (imzml format) mask_coords = sorted(mask_coords, key=itemgetter(0, 1)) # Clear the old coordinates for memory coords, where, mask = None, None, None # Zip the coordinates into dictionary with list index (Faster with itemgetter) full_coords_dict = dict( zip(self.data.coordinates, range(0, len(self.data.coordinates))) ) # Find the indices of the mask coordinates -- need for creating dataframe coords_idx = list(itemgetter(*mask_coords)(full_coords_dict)) # Remove the dictionary to save memory full_coords_dict = None # Reset the coordinates object to be only the mask coordinates self.data.coordinates = mask_coords # Otherwise create a coords_idx from the full list of coordinates else: # Create list coords_idx = [x for x in range(len(self.data.coordinates))] # Check to see if subsampling if subsample is not None: # Use the coordinates for subsampling sub_mask, coords = SubsetCoordinates( coords=self.data.coordinates, array_size=self.data.array_size, **kwargs ) # Alter the order to be in column major format Fortran style coords = sorted(coords, key=itemgetter(0, 1)) # Clear space with the mask sub_mask = None # Get the indices now of these coordinates from the coords_idx # coords_idx = [self.data.coordinates.index(x) for x in coords] # Zip the coordinates into dictionary with list index (Faster with itemgetter) tmp_coords_dict = dict( zip(self.data.coordinates, range(0, len(self.data.coordinates))) ) # Find the indices of the mask coordinates -- need for creating dataframe coords_idx = list(itemgetter(*coords)(tmp_coords_dict)) # Clear the coordinates dictionary to save memory tmp_coords_dict = None # Add the subset coordinates to our object self.data.sub_coordinates = coords # Otherwise there is no subsampling so leave the coordinates as they are else: # Keep the full list of coordinates coords = self.data.coordinates # Add the subset coordinates as None self.data.sub_coordinates = None # Create numpy array with cols = m/zs an rows = pixels (create pixel table) tmp = np.empty([len(coords), len(self.data.getspectrum(0)[0])]) # iterate through pixels and add to the array print("Fetching Spectrum Table...") for i, (x, y, z) in enumerate(coords): # Get the coordinate index idx = coords_idx[i] # Now use the index to extract the spectrum mzs, intensities = self.data.getspectrum(idx) # Use the original i index to add to the array the data tmp[i, :] = intensities # Clear memory by removing mzs and intensities mzs, intensities = None, None # Create a pandas dataframe from numpy array tmp_frame = pd.DataFrame( tmp, index=coords, columns=self.data.getspectrum(0)[0] ) # Delete the temporary object to save memory tmp = None # Assign the data to an array in the data object self.data.pixel_table = tmp_frame # Get the image shape of the data self.data.image_shape = ( self.data.imzmldict["max count of pixels y"], self.data.imzmldict["max count of pixels x"], self.data.pixel_table.shape[1], ) else: # Create a pixel table as None self.data.pixel_table = None # Set the image shape as None self.data.image_shape = None # Add the filename to the data object self.data.filename = path_to_imzML # Add None to the data image (not currently parsing full array) self.data.image = None # get number of channels # here, we assume that each of the pixels has the same number of # m/z peaks, so we can take only the first element of the list self.data.num_channels = self.data.mzLengths[0] # update the data type self.data.hdi_type = "raster" # Print an update that the import is finished print("Finished") def SubsetData(self, range=None): """Subset an IMS peak list to fall between a range of values. range: tuple indicating range (Ex (400,1000)). Note for memory reasons the PixelTable is overwritten, and a new subset of the peak list isnt created. """ # Get the lowest value low = next( x for x, val in enumerate(self.data.pixel_table.columns) if val >= range[0] ) # Get the highest value hi = [n for n, i in enumerate(self.data.pixel_table.columns) if i <= range[1]][ -1 ] # Assign the new peak list to the pixel_table (add +1 because python isnt inclusive) self.data.pixel_table = self.data.pixel_table.iloc[:, low : hi + 1] def ExportChannels(self): """Export a txt file with channel names for downstream analysis.""" # Print a sheet for m/z and channel numbers sheet = pd.DataFrame(self.data.pixel_table.columns, columns=["channels"]) # Write out the sheet to csv sheet.to_csv(path_to_imzML.stem + "_channels.csv", sep="\t") def CreateSingleChannelArray(self, idx): """ Function for extracting a single channel image from the array given an index """ # create temporary image of all 0s to fill im = np.zeros((self.data.array_size[0], self.data.array_size[1]), dtype=np.float32) # Run through the data coordinates and fill array for i, (x, y, z) in enumerate(self.data.coordinates): # Add data to this slice -- only extact this index for each pixel # getspectrum returns mzs, intensities for pixels --> take only the intensity im[y - 1, x - 1] = self.data.getspectrum(i)[1][idx] # return the filled array return im
46d412c1bb1b2739c159e119a2dbbb4235dcc3f3
2d064be157ce2ec9a37aef53c3d50c0f57027a7c
/code_monkey/node/assignment.py
631023e32ff654bedb7bce1ab68a02459624b366
[]
no_license
davidwallacejackson/code_monkey
4cd447555ffaf4ed31f64b2c45db4a891f095804
8aae3dfb2cc78e52a1aceda583ec70763eb3ae53
refs/heads/master
2021-05-29T10:27:55.915608
2015-09-20T05:34:46
2015-09-20T05:34:46
42,385,062
2
0
null
null
null
null
UTF-8
Python
false
false
4,506
py
from ast import literal_eval from code_monkey.change import VariableChangeGenerator from code_monkey.node.source import SourceNode from code_monkey.utils import ( absolute_index_to_line_column, find_termination) class AssignmentNode(SourceNode): '''Node representing a variable assignment inside Python source code. The body of the variable is considered to be everything on the right of the = sign, beginning with the first non-whitespace character. Unlike classes and functions, a variable's source does NOT include a newline at the end.''' def __init__(self, parent, astroid_object, siblings): super(AssignmentNode, self).__init__( parent=parent, astroid_object=astroid_object, siblings=siblings) #the _astroid_object (an Assign object) has TWO children that we need to #consider: the variable name, and another astroid node (the 'right #hand' value) self._astroid_name = astroid_object.targets[0] self._astroid_value = astroid_object.value try: self.name = self._astroid_name.name except AttributeError: #'subscript' assignments (a[b] = ...) don't have a name in astroid. #instead, we give them one by reading their source #TODO: this can result in names containing dots, which is invalid. #need a better solution self.name = self._astroid_name.as_string() def eval_body(self): '''Attempt to evaluate the body (i.e., the value) of this AssignmentNode using ast.literal_eval (which will evaluate ONLY Python literals). Return the value if successful, otherwise, return None.''' try: return literal_eval(self.get_body_source()) except (SyntaxError, ValueError): return None @property def fs_path(self): return self.parent.fs_path @property def change(self): return VariableChangeGenerator(self) #the 'whole source' of a AssignmentNode includes the name and the value @property def start_line(self): return self._astroid_name.fromlineno - 1 @property def start_column(self): return self._astroid_name.col_offset #in a AssignmentNode, the _astroid_value represents the body @property def body_start_line(self): return self._astroid_value.fromlineno - 1 @property def body_start_column(self): return self._astroid_value.col_offset @property def end_index(self): #there's a bug in astroid where it doesn't correctly detect the last #line of multiline enclosed blocks (parens, brackets, etc.) -- it gives #the last line with content, rather than the line containing the #terminating character #we have to work around this by scanning through the source ourselves to #find the terminating point #astroid bug report submitted: #https://bitbucket.org/logilab/astroid/issue/31/astroid-sometimes-reports-the-wrong file_source_lines = self.get_file_source_code().splitlines(True) #we start by finding the line/column at which the next 'sibling' of #this node begins. if the node is at the end of the file, we get the #end of the file instead next_sibling = self._astroid_object.next_sibling() if next_sibling: scan_from_line = next_sibling.fromlineno scan_from_column = next_sibling.col_offset - 1 else: scan_from_line = len(file_source_lines) - 1 scan_from_column = len(file_source_lines[scan_from_line]) - 1 #this string doesn't have the right formatting, but it should be #otherwise correct -- so we can use it to see what character our #variable ends on terminating_char = self._astroid_value.as_string()[-1] return find_termination( file_source_lines, scan_from_line, scan_from_column, terminating_char) #for variable nodes, it's easiest to find an absolute end index first, then #work backwards to get line and column numbers @property def end_line(self): return absolute_index_to_line_column( self.get_file_source_code(), self.end_index)[0] @property def end_column(self): return absolute_index_to_line_column( self.get_file_source_code(), self.end_index)[1]
7b5a8df56a92afdaa085b6dd78e03a066d5dcbf0
997c3b34d65105cb3e02cb427344637557f35d3e
/mecanografia/version orientada a objetos/data/clock.py
0ffbd8210a98953cf3fd0ae95ee7f135b858be14
[]
no_license
TomiProgramm/telegramconaku
7db34d510937f4e31937b2aa1fd12e689231209f
b28b4c5e07c1b0c532ae875b08c16f3fcae00296
refs/heads/main
2023-03-07T04:39:31.948411
2021-02-16T17:23:32
2021-02-16T17:23:32
338,463,631
0
0
null
null
null
null
UTF-8
Python
false
false
385
py
from datetime import datetime from math import floor from .config import * class Clock(): def __init__(self): self.time = TIME self.start = int() self.end = int() def start_count(self): self.start = datetime.now() def update(self): difference = datetime.now() - self.start self.time = TIME - floor(difference.seconds)
85cbb1571c577c9e96a89e14e876ecbdc9d02336
649f0e0593219ea8c4fe932c6be8457e2898011b
/data_split_impute.py
55d9643b0c9b032e7872c7855aa1ea37bfd2a415
[]
no_license
Xiaoting05/ML-final-project
83a5c2c8bdbabea4d17ef7f51c8d93d65ab1060e
7235afa84a66f61d1143bb6e4aaa1670dccdbfd6
refs/heads/main
2023-05-13T12:24:13.168085
2021-06-04T05:00:32
2021-06-04T05:00:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,952
py
import math import numpy as np import pandas as pd import matplotlib.pyplot as plt import pylab as pl from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.pipeline import Pipeline from sklearn import metrics from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.metrics import confusion_matrix, plot_confusion_matrix, plot_roc_curve, plot_precision_recall_curve import warnings warnings.filterwarnings('ignore') FEATURES = ['province','age','education', 'if_urban', 'wealth_index', 'if_own_house', 'if_employment', 'if_employment_current','employment_pay_method', 'if_earn_more', 'partner_edu', 'num_child','sex_head_household', 'sexual_activity', 'ideal_num_child', 'partner_ideal_child', 'money_decide_person'] NUMERIC_FEATURES = ['age','education','if_own_house','if_employment_current','partner_edu','num_child','ideal_num_child'] CATGORICAL_FEATURES = ['if_urban', 'wealth_index', 'employment_pay_method','if_earn_more', 'sex_head_household', 'sexual_activity', 'partner_ideal_child', 'money_decide_person'] TARGET_LST = ['if_emo_vio', 'if_phy_vio', 'if_sex_vio', 'if_vio', 'num_vio'] #need hot-code need_one_hot=['if_urban','wealth_index','if_earn_more','sex_head_household', \ 'partner_ideal_child','money_decide_person','country'] #already dummy dummy=['if_own_house','if_employment_current'] #need normalize need_normalize=['age','education','num_household','num_child','partner_edu'] features_col = need_normalize + dummy + need_one_hot # Data Split def split_data(features, target, test_size=0.20, random_state=505): X_train, X_test, y_train, y_test = train_test_split(features, target, test_size, random_state) return X_train, X_test, y_train, y_test def detect_null(df): return df.isnull.any() def detect_outliers(df, feature): ''' Detect possible outliers in a dataframe. Inputs: df: dataframe feature: str, the feature to be detected on finding outliers. Return: a list of possible outlier values. ''' mean = df[feature].mean() std = df[feature].std() outliers = [] for index, data in df.iterrows(): if abs((data.loc[feature] - mean)/std)> 2: outliers.append(index) return outliers def impute_missing_median(df, col_lst): ''' Impute missing values of continuous variables using the median value ''' for col in col_lst: df.loc[(df[col] == "don't know") | (df[col] == "non-numeric response") , col] = None median = df[col].median() df[col].fillna(median,inplace=True) return df
c34c133b43595f122a6f0a44e7439e75a1ea200c
b5a5daf6f3312b25ad8899dd46c1f3a1c3d83295
/src/chime_dash/app/components/container.py
ec606b7086bf9566a22c8cd567509091c2510f09
[ "MIT" ]
permissive
quinn-dougherty/chime
ed4a8e8f300c95793622645e7ff59ebb6436ab7a
76a4a5751a084e6d0167f10ff1bd0ad06092bafc
refs/heads/master
2021-03-26T21:11:44.602107
2020-03-28T15:25:52
2020-03-28T15:25:52
247,750,339
0
0
MIT
2020-03-16T15:41:29
2020-03-16T15:41:29
null
UTF-8
Python
false
false
1,728
py
"""Initializes the dash html """ from collections import OrderedDict import dash_bootstrap_components as dbc from chime_dash.app.components.base import Component, HTMLComponentError from chime_dash.app.components.content import Content from chime_dash.app.components.sidebar import Sidebar from penn_chime.models import SimSirModel class Container(Component): """ """ def __init__(self, language, defaults): """ """ super().__init__(language, defaults) self.components = OrderedDict( sidebar=Sidebar(language, defaults), content=Content(language, defaults), ) self.callback_outputs = [] self.callback_inputs = OrderedDict() for component in self.components.values(): self.callback_outputs += component.callback_outputs self.callback_inputs.update(component.callback_inputs) def get_html(self): """Initializes the content container dash html """ container = dbc.Container( children=dbc.Row(self.components["sidebar"].html + self.components["content"].html), fluid=True, className="mt-5", ) return [container] def callback(self, *args, **kwargs): """ """ pars = self.components["sidebar"].parse_form_parameters(**kwargs) kwargs["model"] = SimSirModel(pars) kwargs["pars"] = pars callback_returns = [] for component in self.components.values(): try: callback_returns += component.callback(**kwargs) except Exception as error: raise HTMLComponentError(component, error) return callback_returns
1ba26800a9ca397933e9387e3d361639a6d795ab
3376d59bb048943970d9ab13c255e558317329bc
/iocage/cli/list.py
9086404b9a516b2baa0f29a0f48cf249f32bb862
[ "BSD-2-Clause" ]
permissive
jungle-boogie/iocage
69aeca238d3e80ed18b0517ba6ea6b0004c70e9b
6175e93409cfb0db1afef8daf15993d43c9293b7
refs/heads/master
2021-01-11T22:35:17.480965
2017-01-13T23:13:39
2017-01-13T23:13:39
78,992,068
0
0
null
2017-01-15T03:20:46
2017-01-15T03:20:46
null
UTF-8
Python
false
false
897
py
""" List module for the cli. """ import click from iocage.lib.ioc_list import IOCList __cmdname__ = "list_cmd" @click.command(name="list", help="List a specified dataset type") @click.option("--release", "--base", "-r", "-b", "dataset_type", flag_value="base", help="List all bases.") @click.option("--template", "-t", "dataset_type", flag_value="template", help="List all templates.") @click.option("--header", "-h", "-H", is_flag=True, default=True, help="For scripting, use tabs for separators.") @click.option("--long", "-l", "_long", is_flag=True, default=False, help="Show the full uuid and ip4 address.") def list_cmd(dataset_type, header, _long): """This passes the arg and calls the jail_datasets function.""" if dataset_type is None: dataset_type = "all" IOCList(dataset_type, header, _long).get_datasets()
b950ba242ff0b1513e26655c11ccb47456c94b10
7fc9a1d1c66922ea8389a55a807633c1d5c6eeb8
/bin/django-admin
6d809e3c62cafc21b3413c656774336d3682fdb0
[]
no_license
Ibtisam-a/Web-services-and-web-data
84898758f7a0791b0a8d2092e7174d7a6861398e
2f3de6fba9f2e92822b8a6cf831193e611218a33
refs/heads/master
2021-04-08T00:32:55.073909
2020-08-14T08:59:20
2020-08-14T08:59:20
248,720,104
0
0
null
null
null
null
UTF-8
Python
false
false
305
#!/home/cserv1_a/soc_msc/ml18ikfa/courseworkK/bin/python # -*- coding: utf-8 -*- import re import sys from django.core.management import execute_from_command_line if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(execute_from_command_line())
e957ea449283848311d7d2e96ec5d74a7c796e20
6f23fadd1a5071d4c211802de620784740045443
/presentation/part2/code/MultLayer.py
a5b4032487a45de97275b89ef12d3e55bc0bdcf7
[]
no_license
abhijat01/deepnn4se
35fa369e0226d6f3712760d13e8510156864cccb
f863ee573f52c0526a15a21220fdc41a3f2b4a40
refs/heads/master
2023-08-15T14:01:24.093712
2021-10-05T13:04:43
2021-10-05T13:04:43
287,421,424
0
0
null
null
null
null
UTF-8
Python
false
false
384
py
class MultiplicationLayer1D: def __init__(self): self.cache = {} def forward(self, x, w): self.cache['x'] = x self.cache['w'] = w return w * x def backprop(self, incoming_grad): x_grad = self.cache['w'] w_grad = self.cache['x'] x_grad *= incoming_grad w_grad *= incoming_grad return x_grad, w_grad
102678c00a5a71158d91b82481969944b9ac7f02
0adb68bbf576340c8ba1d9d3c07320ab3bfdb95e
/regexlib/python_re2_test_file/regexlib_8007.py
8f321fc6b1879f147d7566e9824b54c9f43cfb25
[ "MIT" ]
permissive
agentjacker/ReDoS-Benchmarks
c7d6633a3b77d9e29e0ee2db98d5dfb60cde91c6
f5b5094d835649e957bf3fec6b8bd4f6efdb35fc
refs/heads/main
2023-05-10T13:57:48.491045
2021-05-21T11:19:39
2021-05-21T11:19:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
705
py
# 8007 # ^[\.\w&#230;&#248;&#229;-]+@([a-z&#230;&#248;&#229;0-9]+([\.-]{0,1}[a-z&#230;&#248;&#229;0-9]+|[a-z&#230;&#248;&#229;0-9]?))+\.[a-z]{2,6}$ # EXPONENT # nums:5 # EXPONENT AttackString:".@"+"a"*16+"!1 __NQ" import re2 as re from time import perf_counter regex = """^[\.\w&#230;&#248;&#229;-]+@([a-z&#230;&#248;&#229;0-9]+([\.-]{0,1}[a-z&#230;&#248;&#229;0-9]+|[a-z&#230;&#248;&#229;0-9]?))+\.[a-z]{2,6}$""" REGEX = re.compile(regex) for i in range(0, 150000): ATTACK = ".@" + "a" * i * 1 + "!1 __NQ" LEN = len(ATTACK) BEGIN = perf_counter() m = REGEX.search(ATTACK) # m = REGEX.match(ATTACK) DURATION = perf_counter() - BEGIN print(f"{i *1}: took {DURATION} seconds!")
5cefd90a4c04739c5b4ed617546cd65496b62ca5
8106a563f5e52c84483736d7f8331818030c2eda
/dz3/5.py
6d5b299701d740afaffe916286cb776faf05cdf1
[]
no_license
romanfffg/vsu_programming
7340f75c473df8bb33312ca55dc0974abd98f644
6967df6b062f9f42798738b3333c46a5c6a86f9c
refs/heads/master
2022-12-12T11:40:04.380911
2020-09-17T20:06:45
2020-09-17T20:06:45
296,305,896
0
0
null
null
null
null
UTF-8
Python
false
false
101
py
a = int(input()) lst = [] while a: lst.append(int(a)) a = input() print(sum(lst) / len(lst))
186ba64144442a69bc12003089f9b8d7fd1d387e
2e57d94047c47a2c7d8b0cd9bdedce78cfc9e9a3
/pretraining_and_competitors/segmentation/Unet_noskips.py
9efe61f295bfdc090590e69dfcdbd2921f1e1186
[]
no_license
PollastriFederico/skin_lesion_segmentation_ensemble
fd1e0ec9b90a8821321416947002dd9c30535957
ebde6f8191af556fd31737a38cb0d42cb3372492
refs/heads/master
2020-06-07T23:15:53.230445
2019-06-21T14:50:19
2019-06-21T14:50:19
193,113,146
1
0
null
null
null
null
UTF-8
Python
false
false
2,711
py
import torch import torch.nn.functional as F from torch import nn from utils import initialize_weights class _EncoderBlock(nn.Module): def __init__(self, in_channels, out_channels, dropout=False): super(_EncoderBlock, self).__init__() layers = [ nn.Conv2d(in_channels, out_channels, kernel_size=3), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, kernel_size=3), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), ] if dropout: layers.append(nn.Dropout()) layers.append(nn.MaxPool2d(kernel_size=2, stride=2)) self.encode = nn.Sequential(*layers) def forward(self, x): return self.encode(x) class _DecoderBlock(nn.Module): def __init__(self, in_channels, middle_channels, out_channels): super(_DecoderBlock, self).__init__() self.decode = nn.Sequential( nn.Conv2d(in_channels, middle_channels, kernel_size=3), nn.BatchNorm2d(middle_channels), nn.ReLU(inplace=True), nn.Conv2d(middle_channels, middle_channels, kernel_size=3), nn.BatchNorm2d(middle_channels), nn.ReLU(inplace=True), nn.ConvTranspose2d(middle_channels, out_channels, kernel_size=2, stride=2), ) def forward(self, x): return self.decode(x) class UNet(nn.Module): def __init__(self, num_classes): super(UNet, self).__init__() self.name = 'U-Net' self.enc1 = _EncoderBlock(3, 64) self.enc2 = _EncoderBlock(64, 128) self.enc3 = _EncoderBlock(128, 256) self.enc4 = _EncoderBlock(256, 512, dropout=True) self.center = _DecoderBlock(512, 1024, 512) self.dec4 = _DecoderBlock(512, 512, 256) self.dec3 = _DecoderBlock(256, 256, 128) self.dec2 = _DecoderBlock(128, 128, 64) self.dec1 = nn.Sequential( nn.Conv2d(64, 64, kernel_size=3), nn.BatchNorm2d(64), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3), nn.BatchNorm2d(64), nn.ReLU(inplace=True), ) self.final = nn.Conv2d(64, num_classes, kernel_size=1) initialize_weights(self) def forward(self, x): enc1 = self.enc1(x) enc2 = self.enc2(enc1) enc3 = self.enc3(enc2) enc4 = self.enc4(enc3) center = self.center(enc4) dec4 = self.dec4(center) dec3 = self.dec3(dec4) dec2 = self.dec2(dec3) dec1 = self.dec1(dec2) final = self.final(dec1) return F.upsample(final, x.size()[2:], mode='bilinear')
4b4a50988580ded53a3099b5bf1d46c08ccf1474
a88ceaf127ad66c0c419684a65a3eaa68bdac807
/c2b.py
cc116b67953e038a5e21b1377d9e29ebdcdf94a7
[ "MIT" ]
permissive
EvansKaranja/darajaApi-
54631586c3a472af1a34ff8163c0460840575adc
402d0fa5949b81f4273908762af8141a00d2277d
refs/heads/master
2020-07-11T21:50:41.977044
2019-08-27T12:46:02
2019-08-27T12:46:02
204,650,969
0
0
null
null
null
null
UTF-8
Python
false
false
1,136
py
import requests import keys from keys import get_access_token def register_url(): access_token = get_access_token() api_url = "https://sandbox.safaricom.co.ke/mpesa/c2b/v1/registerurl" headers = {"Authorization": "Bearer %s" % access_token} request = { "ShortCode": keys.shortcode, "ResponseType": "Completed", "ConfirmationURL": "https://fullstackdjango.com/confirmation_url", "ValidationURL": "https://fullstackdjango.com/validation_url", } response = requests.post(api_url, json=request, headers=headers) print(response.text) # register_url() def simulate_c2b_transaction(): access_token = get_access_token() api_url = "https://sandbox.safaricom.co.ke/mpesa/c2b/v1/simulate" headers = {"Authorization": "Bearer %s" % access_token} request = { "ShortCode": keys.shortcode, "CommandID": "CustomerPayBillOnline", "Amount": "2", "Msisdn": keys.test_msisdn, "BillRefNumber": "12345678", } response = requests.post(api_url, json=request, headers=headers) print(response.text) simulate_c2b_transaction()
c9ecef2696dc4e74fc257405b04245662007e250
7c6b0694b88d2ab29744f8f8b606879409811dc3
/backend/vehicle/migrations/0001_initial.py
b434c4cf712b1260cbe8a81b3b715ebbb2110958
[]
no_license
crowdbotics-apps/mobile-3777-18387
85192498f9970a7fc9d58c6d105271bd6b481515
1870ba38a9a48d61ae9d140f048149ad7f5e65db
refs/heads/master
2022-11-10T06:07:31.811885
2020-06-24T09:05:40
2020-06-24T09:05:40
274,621,815
0
0
null
null
null
null
UTF-8
Python
false
false
2,309
py
# Generated by Django 2.2.13 on 2020-06-24 08:57 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ("taxi_profile", "0001_initial"), ] operations = [ migrations.CreateModel( name="VehicleType", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("name", models.CharField(max_length=255)), ("icon", models.URLField()), ("base_rate", models.FloatField()), ], ), migrations.CreateModel( name="Vehicle", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("type_description", models.CharField(max_length=255)), ("plate_number", models.CharField(max_length=10)), ("timestamp_registered", models.DateTimeField(auto_now_add=True)), ("is_on_duty", models.BooleanField(blank=True, null=True)), ( "driver", models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="vehicle_driver", to="taxi_profile.DriverProfile", ), ), ( "vehicle_type", models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="vehicle_vehicle_type", to="vehicle.VehicleType", ), ), ], ), ]
8802c5f5b5fb018edabed52a443a6732d2cdba69
a2531d7b363b7bf35f3f4254fa0e34722b858321
/experiment/experiment_code/mnist_nag.py
350a3f7cbb961e5e4876ddbb1ca6aeaa6f6c6c46
[]
no_license
sgflower66/SPI-Optimizer
08c7fc110ef3ff6299de5c1cc3a8f218840b5b05
1cece09f350bbbeb1105e209c20292dad77e1c2a
refs/heads/master
2020-04-29T08:04:26.039221
2019-03-16T14:02:48
2019-03-16T14:02:48
175,973,850
4
1
null
null
null
null
UTF-8
Python
false
false
4,745
py
import torch import torch.nn as nn import torchvision.datasets as dsets import torchvision.transforms as transforms from torch.autograd import Variable from sgd import SGD import os from utils import Bar, Logger, AverageMeter, accuracy, mkdir_p, savefig import torch.nn.functional as F import random import numpy as np seed = 5000 torch.manual_seed(seed) np.random.seed(seed) # seed for weight initialization random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) # Hyper Parameters input_size = 784 hidden_size = 1000 num_classes = 10 num_epochs = 20 batch_size = 100 learning_rate = 0.12 #logger = Logger('m_0.03.txt', title='mnist') logger = Logger(os.path.join('NAG_netj3_'+str(learning_rate)+'_'+str(seed)+'.txt'), title='mnist') logger.set_names(['Learning Rate', 'Train Loss', 'Valid Loss', 'Train Acc.', 'Valid Acc.']) # MNIST Dataset train_dataset = dsets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = dsets.MNIST(root='./data', train=False, transform=transforms.ToTensor()) # Data Loader (Input Pipeline) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # Neural Network Model (1 hidden layer) #class Net(nn.Module): # def __init__(self, input_size, hidden_size, num_classes): # super(Net, self).__init__() # self.fc1 = nn.Linear(input_size, hidden_size) # self.fc2 = nn.Linear(hidden_size, num_classes) # # def forward(self, x): # out = self.fc1(x) # out = F.relu(out) # out = self.fc2(out) # return out #net = Net(input_size, hidden_size, num_classes) from lenet3 import LeNet net = LeNet() net.cuda() net.train() # Loss and Optimizer criterion = nn.CrossEntropyLoss() #optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate) optimizer = SGD(net.parameters(), lr=learning_rate, weight_decay=0.0001, momentum=0.9,nesterov=True) # Train the Model for epoch in range(num_epochs): train_loss_log = AverageMeter() train_acc_log = AverageMeter() val_loss_log = AverageMeter() val_acc_log = AverageMeter() for i, (images, labels) in enumerate(train_loader): # Convert torch tensor to Variable # if i>0: # break # images = Variable(images.view(-1, 28*28).cuda()) images = Variable(images.cuda()) labels = Variable(labels.cuda()) # print(labels) # Forward + Backward + Optimize optimizer.zero_grad() # zero the gradient buffer outputs = net(images) train_loss = criterion(outputs, labels) if i == 0: # print(labels) # check dataLoader randomness if epoch == 0: # loss of the 1st mini-batch in the 1st epoch before backgrop, verify randomness of weight initialization train_init_loss = train_loss logger.append([0, train_init_loss, 0, 0, 0]) train_loss.backward() optimizer.step() prec1, prec5 = accuracy(outputs.data, labels.data, topk=(1, 5)) train_loss_log.update(train_loss.data[0], images.size(0)) train_acc_log.update(prec1[0], images.size(0)) if (i+1) % 100 == 0: print ('Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Acc: %.8f' %(epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, train_loss_log.avg, train_acc_log.avg)) # Test the Model net.eval() correct = 0 loss = 0 total = 0 for images, labels in test_loader: # images = Variable(images.view(-1, 28*28)).cuda() images = Variable(images.cuda()) labels = Variable(labels).cuda() outputs = net(images) test_loss = criterion(outputs, labels) val_loss_log.update(test_loss.data[0], images.size(0)) prec1, prec5 = accuracy(outputs.data, labels.data, topk=(1, 5)) val_acc_log.update(prec1[0], images.size(0)) logger.append([learning_rate, train_loss_log.avg, val_loss_log.avg, train_acc_log.avg, val_acc_log.avg]) print('Accuracy of the network on the 10000 test images: %.8f %%' % (val_acc_log.avg)) print('Loss of the network on the 10000 test images: %.8f' % (val_loss_log.avg)) logger.close() logger.plot()
60c27b9b2d5592e9cfd29c966e30307bdf9dd261
6a591980ff8b85801163880383e4ff6b83b2375f
/testchild.py
31138eb006398a68710ee2091ba4dd482c99a1e5
[]
no_license
crosseyedlion/testrepo
2f37bf4baaca9a3708faa112feabec3da6d99c63
0ee506da10ea96d8a8f895282b7345a3fd96e3b0
refs/heads/main
2023-06-21T17:55:46.413060
2021-07-21T17:08:13
2021-07-21T17:08:13
388,185,814
0
0
null
2021-07-21T17:08:14
2021-07-21T16:50:45
Python
UTF-8
Python
false
false
66
py
## Adding a new file in childbranch print ("inside child branch")
3de0defe6015bb5872be5677642e3b6e1f8bfd76
22013212df1e21f29d0180f2109841177a2a8791
/basic_addons/planilla/models/contabilidad/planilla_detalle_linea_nomina.py
29af5e120796aae5ad9f32c01c818921cea7571c
[]
no_license
butagreeza/DTDATA_A
f965236c0d7faf0ec4082d27e2a0ff8e7dafe1c6
90b09f89714349a3f26de671a440a979aeebd54c
refs/heads/master
2023-06-18T00:41:02.521432
2021-06-14T21:17:06
2021-06-14T21:17:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,099
py
# -*- coding: utf-8 -*- from odoo import models, fields, api from odoo.exceptions import ValidationError from odoo.addons.base.res.res_request import referenceable_models from datetime import datetime class PlanillaDetalleLineaNomina(models.Model): _name = 'planilla.detalle.linea.nomina' _auto = False fecha_ini = fields.Date() fecha_fin = fields.Date() name = fields.Char() dni = fields.Char() nombres = fields.Char() sequence = fields.Char() concepto = fields.Char() cuenta_debe = fields.Char() cuenta_haber = fields.Char() monto = fields.Float('Monto', digits=(12, 2)) slip_id = fields.Integer() salary_rule_id = fields.Integer() employee_id = fields.Integer() contract_id = fields.Integer() class PlanillaDetalleLineaNominaWizard(models.TransientModel): _name = "planilla.detalle.linea.nomina.wizard" hr_payslip_run_id = fields.Many2one( 'hr.payslip.run', string=u'Periodo de nomina', required=True, ondelete='cascade' ) date_start_rel = fields.Date("Fecha inicio",related='hr_payslip_run_id.date_start', readonly="1") date_end_rel = fields.Date("Fecha Fin",related='hr_payslip_run_id.date_end', readonly="1") @api.multi def do_rebuild(self): query_vista = """ DROP VIEW IF EXISTS planilla_detalle_linea_nomina; create or replace view planilla_detalle_linea_nomina as ( select row_number() OVER () AS id,* from ( select a6.date_start as fecha_ini, a6.date_end as fecha_fin, a6.name, a4.identification_id as dni, a4.name_related as nombres, a5.sequence, a5.name as concepto, a7.code as cuenta_debe, a8.code as cuenta_haber, a1.amount as monto, a1.slip_id,a1.salary_rule_id,a1.employee_id,a1.contract_id from hr_payslip_line a1 left join hr_payslip a2 on a2.id=a1.slip_id left join hr_contract a3 on a3.id=a1.contract_id left join hr_employee a4 on a4.id=a1.employee_id left join hr_salary_rule a5 on a5.id=a1.salary_rule_id left join hr_payslip_run a6 on a6.id=a2.payslip_run_id left join account_account a7 on a7.id=a5.account_debit left join account_account a8 on a8.id=a5.account_credit where char_length(trim(concat(a7.code,a8.code)))> 0 and a6.date_start='%s' and a6.date_end='%s' order by a5.sequence ) T )""" % (self.date_start_rel,self.date_end_rel) self.env.cr.execute(query_vista) return { 'type': 'ir.actions.act_window', 'res_model': 'planilla.detalle.linea.nomina', 'view_type': 'form', 'view_mode': 'tree', 'target': 'current' }
0aa3c239919591a7da1a732bb8b313608a8b22dc
5e6d8b9989247801718dd1f10009f0f7f54c1eb4
/sdk/python/pulumi_azure_native/documentdb/v20210701preview/sql_resource_sql_role_definition.py
3952f82004d3f80c5a9692dd2d9b3041ef281f9e
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
vivimouret29/pulumi-azure-native
d238a8f91688c9bf09d745a7280b9bf2dd6d44e0
1cbd988bcb2aa75a83e220cb5abeb805d6484fce
refs/heads/master
2023-08-26T05:50:40.560691
2021-10-21T09:25:07
2021-10-21T09:25:07
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,723
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['SqlResourceSqlRoleDefinitionArgs', 'SqlResourceSqlRoleDefinition'] @pulumi.input_type class SqlResourceSqlRoleDefinitionArgs: def __init__(__self__, *, account_name: pulumi.Input[str], resource_group_name: pulumi.Input[str], assignable_scopes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, permissions: Optional[pulumi.Input[Sequence[pulumi.Input['PermissionArgs']]]] = None, role_definition_id: Optional[pulumi.Input[str]] = None, role_name: Optional[pulumi.Input[str]] = None, type: Optional[pulumi.Input['RoleDefinitionType']] = None): """ The set of arguments for constructing a SqlResourceSqlRoleDefinition resource. :param pulumi.Input[str] account_name: Cosmos DB database account name. :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive. :param pulumi.Input[Sequence[pulumi.Input[str]]] assignable_scopes: A set of fully qualified Scopes at or below which Role Assignments may be created using this Role Definition. This will allow application of this Role Definition on the entire database account or any underlying Database / Collection. Must have at least one element. Scopes higher than Database account are not enforceable as assignable Scopes. Note that resources referenced in assignable Scopes need not exist. :param pulumi.Input[Sequence[pulumi.Input['PermissionArgs']]] permissions: The set of operations allowed through this Role Definition. :param pulumi.Input[str] role_definition_id: The GUID for the Role Definition. :param pulumi.Input[str] role_name: A user-friendly name for the Role Definition. Must be unique for the database account. :param pulumi.Input['RoleDefinitionType'] type: Indicates whether the Role Definition was built-in or user created. """ pulumi.set(__self__, "account_name", account_name) pulumi.set(__self__, "resource_group_name", resource_group_name) if assignable_scopes is not None: pulumi.set(__self__, "assignable_scopes", assignable_scopes) if permissions is not None: pulumi.set(__self__, "permissions", permissions) if role_definition_id is not None: pulumi.set(__self__, "role_definition_id", role_definition_id) if role_name is not None: pulumi.set(__self__, "role_name", role_name) if type is not None: pulumi.set(__self__, "type", type) @property @pulumi.getter(name="accountName") def account_name(self) -> pulumi.Input[str]: """ Cosmos DB database account name. """ return pulumi.get(self, "account_name") @account_name.setter def account_name(self, value: pulumi.Input[str]): pulumi.set(self, "account_name", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group. The name is case insensitive. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="assignableScopes") def assignable_scopes(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ A set of fully qualified Scopes at or below which Role Assignments may be created using this Role Definition. This will allow application of this Role Definition on the entire database account or any underlying Database / Collection. Must have at least one element. Scopes higher than Database account are not enforceable as assignable Scopes. Note that resources referenced in assignable Scopes need not exist. """ return pulumi.get(self, "assignable_scopes") @assignable_scopes.setter def assignable_scopes(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "assignable_scopes", value) @property @pulumi.getter def permissions(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['PermissionArgs']]]]: """ The set of operations allowed through this Role Definition. """ return pulumi.get(self, "permissions") @permissions.setter def permissions(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['PermissionArgs']]]]): pulumi.set(self, "permissions", value) @property @pulumi.getter(name="roleDefinitionId") def role_definition_id(self) -> Optional[pulumi.Input[str]]: """ The GUID for the Role Definition. """ return pulumi.get(self, "role_definition_id") @role_definition_id.setter def role_definition_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "role_definition_id", value) @property @pulumi.getter(name="roleName") def role_name(self) -> Optional[pulumi.Input[str]]: """ A user-friendly name for the Role Definition. Must be unique for the database account. """ return pulumi.get(self, "role_name") @role_name.setter def role_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "role_name", value) @property @pulumi.getter def type(self) -> Optional[pulumi.Input['RoleDefinitionType']]: """ Indicates whether the Role Definition was built-in or user created. """ return pulumi.get(self, "type") @type.setter def type(self, value: Optional[pulumi.Input['RoleDefinitionType']]): pulumi.set(self, "type", value) class SqlResourceSqlRoleDefinition(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, account_name: Optional[pulumi.Input[str]] = None, assignable_scopes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, permissions: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['PermissionArgs']]]]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, role_definition_id: Optional[pulumi.Input[str]] = None, role_name: Optional[pulumi.Input[str]] = None, type: Optional[pulumi.Input['RoleDefinitionType']] = None, __props__=None): """ An Azure Cosmos DB SQL Role Definition. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] account_name: Cosmos DB database account name. :param pulumi.Input[Sequence[pulumi.Input[str]]] assignable_scopes: A set of fully qualified Scopes at or below which Role Assignments may be created using this Role Definition. This will allow application of this Role Definition on the entire database account or any underlying Database / Collection. Must have at least one element. Scopes higher than Database account are not enforceable as assignable Scopes. Note that resources referenced in assignable Scopes need not exist. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['PermissionArgs']]]] permissions: The set of operations allowed through this Role Definition. :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive. :param pulumi.Input[str] role_definition_id: The GUID for the Role Definition. :param pulumi.Input[str] role_name: A user-friendly name for the Role Definition. Must be unique for the database account. :param pulumi.Input['RoleDefinitionType'] type: Indicates whether the Role Definition was built-in or user created. """ ... @overload def __init__(__self__, resource_name: str, args: SqlResourceSqlRoleDefinitionArgs, opts: Optional[pulumi.ResourceOptions] = None): """ An Azure Cosmos DB SQL Role Definition. :param str resource_name: The name of the resource. :param SqlResourceSqlRoleDefinitionArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(SqlResourceSqlRoleDefinitionArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, account_name: Optional[pulumi.Input[str]] = None, assignable_scopes: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, permissions: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['PermissionArgs']]]]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, role_definition_id: Optional[pulumi.Input[str]] = None, role_name: Optional[pulumi.Input[str]] = None, type: Optional[pulumi.Input['RoleDefinitionType']] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = SqlResourceSqlRoleDefinitionArgs.__new__(SqlResourceSqlRoleDefinitionArgs) if account_name is None and not opts.urn: raise TypeError("Missing required property 'account_name'") __props__.__dict__["account_name"] = account_name __props__.__dict__["assignable_scopes"] = assignable_scopes __props__.__dict__["permissions"] = permissions if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["role_definition_id"] = role_definition_id __props__.__dict__["role_name"] = role_name __props__.__dict__["type"] = type __props__.__dict__["name"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:documentdb/v20210701preview:SqlResourceSqlRoleDefinition"), pulumi.Alias(type_="azure-native:documentdb:SqlResourceSqlRoleDefinition"), pulumi.Alias(type_="azure-nextgen:documentdb:SqlResourceSqlRoleDefinition"), pulumi.Alias(type_="azure-native:documentdb/v20200601preview:SqlResourceSqlRoleDefinition"), pulumi.Alias(type_="azure-nextgen:documentdb/v20200601preview:SqlResourceSqlRoleDefinition"), pulumi.Alias(type_="azure-native:documentdb/v20210301preview:SqlResourceSqlRoleDefinition"), pulumi.Alias(type_="azure-nextgen:documentdb/v20210301preview:SqlResourceSqlRoleDefinition"), pulumi.Alias(type_="azure-native:documentdb/v20210401preview:SqlResourceSqlRoleDefinition"), pulumi.Alias(type_="azure-nextgen:documentdb/v20210401preview:SqlResourceSqlRoleDefinition"), pulumi.Alias(type_="azure-native:documentdb/v20210415:SqlResourceSqlRoleDefinition"), pulumi.Alias(type_="azure-nextgen:documentdb/v20210415:SqlResourceSqlRoleDefinition"), pulumi.Alias(type_="azure-native:documentdb/v20210515:SqlResourceSqlRoleDefinition"), pulumi.Alias(type_="azure-nextgen:documentdb/v20210515:SqlResourceSqlRoleDefinition"), pulumi.Alias(type_="azure-native:documentdb/v20210615:SqlResourceSqlRoleDefinition"), pulumi.Alias(type_="azure-nextgen:documentdb/v20210615:SqlResourceSqlRoleDefinition")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(SqlResourceSqlRoleDefinition, __self__).__init__( 'azure-native:documentdb/v20210701preview:SqlResourceSqlRoleDefinition', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'SqlResourceSqlRoleDefinition': """ Get an existing SqlResourceSqlRoleDefinition resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = SqlResourceSqlRoleDefinitionArgs.__new__(SqlResourceSqlRoleDefinitionArgs) __props__.__dict__["assignable_scopes"] = None __props__.__dict__["name"] = None __props__.__dict__["permissions"] = None __props__.__dict__["role_name"] = None __props__.__dict__["type"] = None return SqlResourceSqlRoleDefinition(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="assignableScopes") def assignable_scopes(self) -> pulumi.Output[Optional[Sequence[str]]]: """ A set of fully qualified Scopes at or below which Role Assignments may be created using this Role Definition. This will allow application of this Role Definition on the entire database account or any underlying Database / Collection. Must have at least one element. Scopes higher than Database account are not enforceable as assignable Scopes. Note that resources referenced in assignable Scopes need not exist. """ return pulumi.get(self, "assignable_scopes") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the database account. """ return pulumi.get(self, "name") @property @pulumi.getter def permissions(self) -> pulumi.Output[Optional[Sequence['outputs.PermissionResponse']]]: """ The set of operations allowed through this Role Definition. """ return pulumi.get(self, "permissions") @property @pulumi.getter(name="roleName") def role_name(self) -> pulumi.Output[Optional[str]]: """ A user-friendly name for the Role Definition. Must be unique for the database account. """ return pulumi.get(self, "role_name") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ The type of Azure resource. """ return pulumi.get(self, "type")
05eefbd6347b2717c3294d3bacc4001917e74fa8
a3626b65e8881da7e5b74fa1bb433478b22e4587
/hacktj8/manage.py
46c7f9291d376b65943c51442aef5e0f0dba1d32
[]
no_license
saisree27/hacktj-8.0-project
ae779dfb6a45b394cdd18973f3205fb694294496
ea8f99c3b45574d7741a2347b56bf0befbb909dc
refs/heads/main
2023-04-09T20:13:52.938541
2021-04-11T19:42:22
2021-04-11T19:42:22
356,609,809
0
0
null
null
null
null
UTF-8
Python
false
false
685
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'hacktj8.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
e8b54a4cad8e629c9f2ec0a179d49743ddc5deb5
c81a68fd49fd3f41648a54d467b655a3c3ba1a00
/activity/page/activity.py
c4c18e48701ce1229bb66626e228c50e456c44d0
[]
no_license
yellowsea19/join
e505a8d1f9445432bce56c9372a17c576adbae44
878ac9585778f9a6261ecc7ae1d7e612d191ac74
refs/heads/master
2020-03-26T10:48:14.289820
2018-08-15T06:48:00
2018-08-15T06:48:00
144,816,057
0
0
null
null
null
null
UTF-8
Python
false
false
12,282
py
from page.login import loginPage,url # from selenium import webdriver # import requests from selenium.webdriver.common.keys import Keys import time,datetime # name_td=datetime.datetime.strftime(datetime.datetime.now(),'%Y-%m-%d %H:%M') # td1=datetime.timedelta(hours=1) # td2=datetime.timedelta(hours=2) # td3=datetime.timedelta(hours=-1)#自定义签到开始时间差 # newtd1=td1+datetime.datetime.now() # newtd2=td2+datetime.datetime.now() # newtd3=td3+datetime.datetime.now() # dt1=datetime.datetime.strftime(newtd1,'%Y-%m-%d %H:%M') # dt2=datetime.datetime.strftime(newtd2,'%Y-%m-%d %H:%M') # dt3=datetime.datetime.strftime(newtd3,'%Y-%m-%d %H:%M') idlist=[] # print(dt3) class activitypage(loginPage): all=('xpath','//span[contains(text(),"活动管理") and @ng-bind="menu.name"]') all1=('xpath','//span[contains(text(),"全部活动") ]') new=('xpath','//span[contains(text(),"新增") ]')#点击新增 abi_name=('xpath','//input[@placeholder="请输入活动名称"]')#输入活动名称 unit=('xpath','//div[@placeholder="请选择发布单位"]')#发布单位 choose_unit=('xpath','//a/div[contains(text(),"345")]')#选择发布单位 scope=('xpath','//span[contains(text(),"请选择报名范围")]')#点击报名范围 scope1=('xpath','//div[contains(text(),"科大")]')#选择报名范围 sponsor=('xpath','//ul/li/input[@placeholder="请选择主办方"]')#点击主办方 sponsor1=('xpath','//div[contains(text(),"校学生会")]')#选择主办方 organizer=('xpath','//input[@placeholder="请选择承办方"]')#承办方 choose_organizer=('xpath','//div[contains(text(),"校学生会")]') # abi_type=('xpath','//*[@id="editformDiv"]/bootstrap-decorator[24]/div/div/div[1]/div/div/span')#点击活动类别 abi_type1=('xpath','//span[contains(text(),"请选择活动类别")]')#点击活动类别 abi_type2=('xpath','//div[contains(text(),"学术科技类")]')#选择活动类别 # abi_type3=('xpath','//*[@id="ui-select-choices-row-4-1"]/a/div') # target0=('xpath','//*[@id="editformDiv"]/bootstrap-decorator[30]/div/div') img=('xpath','//button[contains(text(),"从图片库选择") |@class="btn btn-success picture-lib-btn"]')#点击从图片库选择 img1=('xpath','//div/div[1]/div/img')#选择图片 img_sure=('xpath','//div[@class="picture-poppup-footer ng-scope"]/button[@ng-click="save()"]')#点击确定 intro=('xpath','//div[@class="fr-element fr-view"]')#活动简介 meaning=('xpath','//div/textarea[@placeholder="请输入活动意义"]')#活动意义 target1=('xpath','//*[@id="editformDiv"]/bootstrap-decorator[45]/div/label') abi_starttime=('xpath','//*[@id="abiStartTime"]')#点击开始时间 abi_endtime=('xpath','//*[@id="abiEndTime"]')#点击活动结束时间 # sure=('xpath','/html/body/div[13]/div[3]/div/button[1]') shichang=('xpath','//input[@placeholder="请输入活动时长"]')#输入活动时长 allow=('xpath','//input[@placeholder="请输入允许报名人数"]')#输入报名人数 sign=('xpath','//select/option[contains(text(),"不需要签到")]')#点击签到模式 signnomal=('xpath','//select/option[contains(text(),"普通签到")]')#选择普通签到 signscan=('xpath',' //option[@label="扫描签到"]')#扫描签到 signadmin=('xpath',' //option[@label="管理员扫描签到"]')#管理员扫描签到 signticket=('xpath',' //option[@label="验票签到"]')#验票签到 signout=('xpath',' //option[@label="不需要签退"]')#点击签退 signoutnomal=('xpath',' //option[@label="普通签退"]')#普通签退 signoutscan=('xpath',' //option[@label="扫描签退"]')#扫描签退 signoutadmin=('xpath',' //option[@label="管理员扫描签退"]')#管理员扫描签退 signoutticket=('xpath',' //option[@label="验票签退"]')#验票签退 signtime=('xpath','//option[@label="默认(活动开始前15分钟)"]')#点击签到开始时间 signtime1=('xpath','//option[@label="自定义(在报名开始之后与活动结束之前)"]')#点击自义定签到时间 signstarttime=('xpath','//input[@placeholder="请选择签到开始时间"]')#自定义签到开始时间 # customtime=('xpath','//*[@id="signinStartTime"]')#点击自定义时间 # signbutton=('xpath','/html/body/div[14]/div[3]/div/button[1]')#确定 # map=('xpath','//span[@class="icon-activities_icon_add1"]')#点击地图 # maps=('xpath','//span[@ng-if="form.icon"]') map=('xpath','//span[@class="icon-activities_icon_add1"]')#点击地图 mapbutton=('xpath','//div/button[@class="btn btn-success ng-binding ng-scope"]')#点击确定 target2=('xpath','//*[@id="editformDiv"]/bootstrap-decorator[119]/div/label')#定位 save=('xpath','//input[@value="保存"]')#点击保存 save1=('xpath','//button[@class="btn btn-primary ng-binding"]')#确定保存 a = ('xpath', '//tr[1]/td[3]/a/span') # audit_button=('xpath','//div/button[@class="btn btn-success btn-joinpost"]') # audit_agree=('xpath','//span[contains(text(),"通过")]') # save_button=('xpath','//button[contains(text(),"审核")]') # sure_button=('xpath','//button[@class="btn btn-primary ng-binding"]') def activity(self,abi_property='普通活动',abi_name='autotest',choose_unit='345',choose_scope='科大',abi_label='学术科技类',abi_label_child='',intro='autotest',meaning='autotest',dt1='dt1',dt2='dt2',shichang='30',allowmember='100',sign=0,signout=0): # time.sleep(3) # self.click(self.all)#点击活动管理 # self.click(self.all1)#点击全部活动 self.click(('xpath','//span[text()="个人中心"]'))#点击个人中心 time.sleep(0.5) self.click(('xpath','//span[text()="我的活动"]')) self.click(self.new)#点击新增 time.sleep(3) if self.is_exists(('xpath','//select/option[text()="普通活动"]')):#判断是否区分普通活动和论文征集活动 self.click(('xpath','//select/option[text()="普通活动"]')) self.click(('xpath','//select/option[text()="%s"]'%abi_property)) self.send_keys(self.abi_name,abi_name)#输入活动名称 self.click(self.unit)#点击发布单位 time.sleep(1) self.click(('xpath','//a/div[contains(text(),"%s")]'%choose_unit))#选择发布单位 self.click(self.scope) #点击报名范围 self.click(('xpath','//div[contains(text(),"%s")]'%choose_scope))#选择报名范围 self.click(self.sponsor)#点击主办方 self.click(self.sponsor1)#选择主办方 self.click(self.organizer)#点击承办方 self.click(self.choose_organizer)#选择承办方校学生会 self.click(self.abi_type1)#点击活动类别 self.click(('xpath','//div[contains(text(),"%s")]'%abi_label))#选择活动类别 if self.is_exists(('xpath','//span[text()="请选择活动子类别"]')):#判断是否有活动子类别 self.click(('xpath','//span[text()="请选择活动子类别"]'))#点击活动子类别 time.sleep(0.5) self.click(('xpath','//div[text()="%s"]'%abi_label_child)) # self.js_focus_element(self.target0)#定位 self.click(self.img)#点击从图片库选择 self.click(self.img1)#选择图片 self.click(self.img_sure)#确定 self.send_keys(self.intro,intro)#输入简介 self.send_keys(self.meaning,meaning)#活动意义 # self.js_focus_element(self.target1)#元素聚焦 self.click(self.abi_starttime)#点击活动开始时间 time.sleep(1) self.send_keys(self.abi_starttime,'2')#开始时间 # js='document.getElementById("abiStartTime").value="%s"'%dt1 # # print(js) # self.js_execute(js) # time.sleep(5) # self.send_keys(self.abi_starttime,Keys.BACK_SPACE) # time.sleep(5) # self.send_keys(self.abi_starttime,Keys.TAB) self.send_keys(self.abi_starttime,'2')#开始时间 self.send_keys(self.abi_starttime,dt1) self.click(self.abi_endtime) time.sleep(1) # self.send_keys(self.abi_endtime,'2') # js='document.getElementById("abiEndTime").value="%s"'%dt2 # self.js_execute(js) # time.sleep(5) # self.send_keys(self.abi_endtime,Keys.BACK_SPACE) # time.sleep(5) # self.send_keys(self.abi_endtime,Keys.TAB) self.click(self.abi_endtime) #结束时间 self.send_keys(self.abi_endtime,'2') self.send_keys(self.abi_endtime,dt2) # self.send_keys(self.abi_endtime,dt2,is_clear=True) time.sleep(1) self.click(self.shichang) self.send_keys(self.shichang,shichang)#时长 self.send_keys(self.allow,allowmember)#输入报名人数 if sign==0: pass if sign==1: self.click(self.sign) self.click(self.signnomal)#普通签到 if sign==2: self.click(self.sign) self.click(self.signscan)#扫码签到 if sign==3: self.click(self.sign) self.click(self.signadmin)#管理员扫码签到 if sign==4: self.click(self.sign) self.click(self.signticket)#验票签到 if signout==0: pass #不需要签退 if signout==1: self.click(self.signout) self.click(self.signoutnomal)#普通签退 if signout==2: self.click(self.signout) self.click(self.signoutscan)#扫描签退 if signout==3: self.click(self.signout) self.click(self.signoutadmin)#管理员扫描签退 if signout==4: self.click(self.signout) self.click(self.signoutticket)#验票签退 # self.click(self.map)#点击地图 self.click(self.map) time.sleep(2) self.click(self.mapbutton)#点击确定 if abi_property=='论文征集活动': time.sleep(1) self.click(('xpath','//div[@placeholder="请选择荣誉类别"]/span')) time.sleep(0.5) self.click(('xpath','//div[text()="专利证书"]')) time.sleep(2) f=('xpath','//input[@class="form-control col-width-100 ng-pristine ng-untouched ng-valid"]') num_list=self.find_elements(f) time.sleep(3) # print(num_list) # self.send_keys(num_list[1],'5') for num in num_list: num.send_keys('1') time.sleep(1) self.click(('xpath','//input[@placeholder="请选择二评人员"]')) time.sleep(1) self.click(('xpath','//a[text()="脚印大学2800"]')) time.sleep(1) self.click(('xpath','//a[text()="院系"]')) time.sleep(1) self.click(('xpath','//div[text()="院系人员"]')) time.sleep(1) self.click(('xpath','//div[@class="modal-footer ng-scope"]/button[text()="确定"]')) time.sleep(1) self.send_keys(('xpath','//input[@placeholder="请输入公示周期"]'),'1') # self.js_focus_element(self.target2) time.sleep(2) self.click(self.save)#点击确定 time.sleep(1) self.click(self.save1)#确认保存 time.sleep(3) self.click(self.a)#点击新增的活动进入活动详情 time.sleep(3) addurl=self.get_url() id=addurl.split('/')[-1] with open('idlist.txt','a+') as f: f.write(id+'\n') f.close() # idlist.append(id) # print("id=",id) # def audit1(self,id): # print(id) # auditurl=url+'#/activitybaseinfo/edit/show/5/'+id # self.open(auditurl) # self.click(self.audit_button) # self.click(self.audit_agree) # self.click(self.save_button) # self.click(self.sure_button) # # def audit2(self,id): # auditurl=url+'#/activitybaseinfo/edit/show/7/'+id # self.open(auditurl) # time.sleep(3) # self.click(self.audit_button) # self.click(self.audit_agree) # self.click(self.save_button) # self.click(self.sure_button)
d3a02d8a0d5dc8a84e62e77c3a8635fac1e9942f
ce105dfbcb2acb78ba19f3410d87249a75eecbd9
/FastGCN/models.py
5bde38cf93ef28040331c704a0f9d3b2ab2abf28
[ "MIT" ]
permissive
CEfanmin/DataMiningProjects
8209670f65332681d0de39ba6e702077a7ab4602
b6375f542c68c0001ae2971dd7e8046a0b4afc7a
refs/heads/master
2021-04-06T02:05:52.868605
2020-02-29T03:41:33
2020-02-29T03:41:33
124,988,979
3
1
null
null
null
null
UTF-8
Python
false
false
12,271
py
from layers import * from metrics import * flags = tf.app.flags FLAGS = flags.FLAGS class Model(object): def __init__(self, **kwargs): allowed_kwargs = {'name', 'logging'} for kwarg in kwargs.keys(): assert kwarg in allowed_kwargs, 'Invalid keyword argument: ' + kwarg name = kwargs.get('name') if not name: name = self.__class__.__name__.lower() self.name = name logging = kwargs.get('logging', False) self.logging = logging self.vars = {} self.placeholders = {} self.layers = [] self.activations = [] self.inputs = None self.outputs = None self.loss = 0 self.accuracy = 0 self.optimizer = None self.opt_op = None def _build(self): raise NotImplementedError def build(self): """ Wrapper for _build() """ with tf.variable_scope(self.name): self._build() # Build sequential layer model self.activations.append(self.inputs) for layer in self.layers: hidden = layer(self.activations[-1]) self.activations.append(hidden) self.outputs = self.activations[-1] # Store model variables for easy access variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name) self.vars = {var.name: var for var in variables} # Build metrics self._loss() self._accuracy() self.opt_op = self.optimizer.minimize(self.loss) def predict(self): pass def _loss(self): raise NotImplementedError def _accuracy(self): raise NotImplementedError def save(self, sess=None): if not sess: raise AttributeError("TensorFlow session not provided.") saver = tf.train.Saver(self.vars) save_path = saver.save(sess, "tmp/%s.ckpt" % self.name) print("Model saved in file: %s" % save_path) def load(self, sess=None): if not sess: raise AttributeError("TensorFlow session not provided.") saver = tf.train.Saver(self.vars) save_path = "tmp/%s.ckpt" % self.name saver.restore(sess, save_path) print("Model restored from file: %s" % save_path) class MLP(Model): def __init__(self, placeholders, input_dim, **kwargs): super(MLP, self).__init__(**kwargs) self.inputs = placeholders['features'] self.input_dim = input_dim # self.input_dim = self.inputs.get_shape().as_list()[1] # To be supported in future Tensorflow versions self.output_dim = placeholders['labels'].get_shape().as_list()[1] self.placeholders = placeholders self.optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate) self.build() def _loss(self): # Weight decay loss for var in self.layers[0].vars.values(): self.loss += FLAGS.weight_decay * tf.nn.l2_loss(var) # Cross entropy error self.loss += masked_softmax_cross_entropy(self.outputs, self.placeholders['labels'], self.placeholders['labels_mask']) def _accuracy(self): self.accuracy = masked_accuracy(self.outputs, self.placeholders['labels'], self.placeholders['labels_mask']) def _build(self): self.layers.append(Dense(input_dim=self.input_dim, output_dim=FLAGS.hidden1, placeholders=self.placeholders, act=tf.nn.relu, dropout=True, sparse_inputs=True, logging=self.logging)) self.layers.append(Dense(input_dim=FLAGS.hidden1, output_dim=self.output_dim, placeholders=self.placeholders, act=lambda x: x, dropout=True, logging=self.logging)) def predict(self): return tf.nn.softmax(self.outputs) class GCN(Model): def __init__(self, placeholders, input_dim, **kwargs): super(GCN, self).__init__(**kwargs) self.inputs = placeholders['features'] self.input_dim = input_dim # self.input_dim = self.inputs.get_shape().as_list()[1] # To be supported in future Tensorflow versions self.output_dim = placeholders['labels'].get_shape().as_list()[1] self.placeholders = placeholders self.optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate) self.build() def _loss(self): # Weight decay loss for var in self.layers[0].vars.values(): self.loss += FLAGS.weight_decay * tf.nn.l2_loss(var) # Cross entropy error self.loss += masked_softmax_cross_entropy(self.outputs, self.placeholders['labels'], self.placeholders['labels_mask']) def _accuracy(self): self.accuracy = masked_accuracy(self.outputs, self.placeholders['labels'], self.placeholders['labels_mask']) def _build(self): self.layers.append(GraphConvolution(input_dim=self.input_dim, output_dim=FLAGS.hidden1, placeholders=self.placeholders, act=tf.nn.relu, dropout=True, sparse_inputs=True, logging=self.logging)) self.layers.append(GraphConvolution(input_dim=FLAGS.hidden1, output_dim=self.output_dim, placeholders=self.placeholders, act=lambda x: x, dropout=True, logging=self.logging)) def predict(self): return tf.nn.softmax(self.outputs) class GCN_APPRO(Model): def __init__(self, placeholders, input_dim, **kwargs): super(GCN_APPRO, self).__init__(**kwargs) self.inputs = placeholders['features'] self.input_dim = input_dim # self.input_dim = self.inputs.get_shape().as_list()[1] # To be supported in future Tensorflow versions self.output_dim = placeholders['labels'].get_shape().as_list()[1] self.placeholders = placeholders self.supports = placeholders['support'] self.optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate) self.build() def _loss(self): # Weight decay loss for var in self.layers[0].vars.values(): self.loss += FLAGS.weight_decay * tf.nn.l2_loss(var) # Cross entropy error self.loss += softmax_cross_entropy(self.outputs, self.placeholders['labels']) def _accuracy(self): self.accuracy = accuracy(self.outputs, self.placeholders['labels']) def _build(self): # appr_support = self.placeholders['support'][0] self.layers.append(GraphConvolution(input_dim=self.input_dim, output_dim=FLAGS.hidden1, placeholders=self.placeholders, support=self.supports[0], act=tf.nn.relu, dropout=True, sparse_inputs=False, logging=self.logging)) self.layers.append(GraphConvolution(input_dim=FLAGS.hidden1, output_dim=self.output_dim, placeholders=self.placeholders, support=self.supports[1], act=lambda x: x, dropout=True, logging=self.logging)) def predict(self): return tf.nn.softmax(self.outputs) class GCN_APPRO_Mix(Model): # mixture of dense and gcn def __init__(self, placeholders, input_dim, **kwargs): super(GCN_APPRO_Mix, self).__init__(**kwargs) self.inputs = placeholders['AXfeatures']# A*X for the bottom layer, not original feature X self.input_dim = input_dim # self.input_dim = self.inputs.get_shape().as_list()[1] # To be supported in future Tensorflow versions self.output_dim = placeholders['labels'].get_shape().as_list()[1] self.placeholders = placeholders self.support = placeholders['support'] self.optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate) self.build() def _loss(self): # Weight decay loss for var in self.layers[0].vars.values(): self.loss += FLAGS.weight_decay * tf.nn.l2_loss(var) # Cross entropy error self.loss += softmax_cross_entropy(self.outputs, self.placeholders['labels']) def _accuracy(self): self.accuracy = accuracy(self.outputs, self.placeholders['labels']) def _build(self): self.layers.append(Dense(input_dim=self.input_dim, output_dim=FLAGS.hidden1, placeholders=self.placeholders, act=tf.nn.relu, dropout=True, sparse_inputs=False, logging=self.logging)) self.layers.append(GraphConvolution(input_dim=FLAGS.hidden1, output_dim=self.output_dim, placeholders=self.placeholders, support=self.support, act=lambda x: x, dropout=True, logging=self.logging)) def predict(self): return tf.nn.softmax(self.outputs) class GCN_APPRO_Onelayer(Model): def __init__(self, placeholders, input_dim, **kwargs): super(GCN_APPRO_Onelayer, self).__init__(**kwargs) self.inputs = placeholders['features'] self.input_dim = input_dim # self.input_dim = self.inputs.get_shape().as_list()[1] # To be supported in future Tensorflow versions self.output_dim = placeholders['labels'].get_shape().as_list()[1] self.placeholders = placeholders self.supports = placeholders['support'] self.optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate) self.build() def _loss(self): # Weight decay loss for var in self.layers[0].vars.values(): self.loss += FLAGS.weight_decay * tf.nn.l2_loss(var) # Cross entropy error self.loss += masked_softmax_cross_entropy(self.outputs, self.placeholders['labels'], self.placeholders['labels_mask']) def _accuracy(self): self.accuracy = masked_accuracy(self.outputs, self.placeholders['labels'], self.placeholders['labels_mask']) def _build(self): appr_support = self.placeholders['support'][0] self.layers.append(GraphConvolution(input_dim=self.input_dim, output_dim=self.output_dim, placeholders=self.placeholders, support=self.supports[0], act=tf.nn.relu, dropout=True, sparse_inputs=True, logging=self.logging)) def predict(self): return tf.nn.softmax(self.outputs)
7959884d04bc3ce0e004bf3583549026b6fc1b1a
3a9c1bc10588073920d55f72be5fbbbd3781cf9e
/word_count_python/word_count_reducer.py
5378d6844129a68307411949c3b6a5875c627786
[]
no_license
adcohen-tech/tech_challenge
3224ff9e2278ebaca33361527cb313cc9d8f8b0f
2d6bfe541998149cf056022ad2b3e626cf7bc8b9
refs/heads/master
2016-09-05T12:53:20.981228
2014-11-25T16:51:12
2014-11-25T16:51:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
623
py
#!/usr/bin/env python import sys if __name__ == '__main__': current_word = None key_count = 0 for line in sys.stdin: key,value = line.strip().split("\t") try: record_count = int(value) except ValueError: continue #?!? if key != current_word: if current_word != None: print "{0}\t{1}".format(key, key_count) key_count = record_count current_word = key else: key_count += record_count if current_word == key: print "{0}\t{1}".format(key, key_count)
5488b240e57097bb3539fc1125cba122aa285455
b0cd6f73c3a2c4bf9d30cf2db06de937415f6ae5
/loadData.py
61101777354833673295041ac9fedaff8e5fe713
[]
no_license
BinbinBian/TextualEntailment
9d76b8c4ddb8c6f37172f12844646f736fb68434
a81980e038762d325330d6852d17e9a32800e1b9
refs/heads/master
2021-01-18T03:55:47.090212
2015-12-08T14:07:48
2015-12-08T14:07:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
41,457
py
import cPickle import gzip import os import sys sys.setrecursionlimit(6000) import time import numpy import theano import theano.tensor as T import theano.sandbox.neighbours as TSN from logistic_sgd import LogisticRegression from WPDefined import ConvFoldPoolLayer, dropout_from_layer, shared_dataset, repeat_whole_matrix from cis.deep.utils.theano import debug_print from theano.tensor.signal import downsample from theano.tensor.nnet import conv from operator import itemgetter def load_ibm_corpus(vocabFile, trainFile, devFile, maxlength): #first load word vocab read_vocab=open(vocabFile, 'r') vocab={} word_ind=1 for line in read_vocab: tokens=line.strip().split() vocab[tokens[1]]=word_ind #word2id word_ind+=1 read_vocab.close() sentlength_limit=1040 #load train file def load_train_file(file, word2id): read_file=open(file, 'r') data=[] Lengths=[] leftPad=[] rightPad=[] line_control=0 for line in read_file: tokens=line.strip().split('\t') # label, question, answer #question for i in range(1,3): sent=[] words=tokens[i].strip().split() length=len(words) if length>sentlength_limit: words=words[:sentlength_limit] length=sentlength_limit Lengths.append(length) left=(maxlength-length)/2 right=maxlength-left-length leftPad.append(left) rightPad.append(right) if left<0 or right<0: print 'Too long sentence:\n'+tokens[i] exit(0) sent+=[0]*left for word in words: sent.append(word2id.get(word)) sent+=[0]*right data.append(sent) del sent del words line_control+=1 if line_control%100==0: print line_control read_file.close() return numpy.array(data),numpy.array(Lengths), numpy.array(leftPad),numpy.array(rightPad) def load_dev_file(file, word2id): read_file=open(file, 'r') data=[] Y=[] Lengths=[] leftPad=[] rightPad=[] line_control=0 for line in read_file: tokens=line.strip().split('\t') Y.append(int(tokens[0])) # make the label starts from 0 to 4 for i in range(1,3): sent=[] words=tokens[i].strip().split() length=len(words) if length>sentlength_limit: words=words[:sentlength_limit] length=sentlength_limit Lengths.append(length) left=(maxlength-length)/2 right=maxlength-left-length leftPad.append(left) rightPad.append(right) if left<0 or right<0: print 'Too long sentence:\n'+line exit(0) sent+=[0]*left for word in words: sent.append(word2id.get(word)) sent+=[0]*right data.append(sent) line_control+=1 #if line_control==1000: # break read_file.close() return numpy.array(data),Y, numpy.array(Lengths), numpy.array(leftPad),numpy.array(rightPad) indices_train, trainLengths, trainLeftPad, trainRightPad=load_train_file(trainFile, vocab) print 'train file loaded over, total pairs: ', len(trainLengths)/2 indices_dev, devY, devLengths, devLeftPad, devRightPad=load_dev_file(devFile, vocab) print 'dev file loaded over, total pairs: ', len(devLengths)/2 def shared_dataset(data_y, borrow=True): shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX), # @UndefinedVariable borrow=borrow) return T.cast(shared_y, 'int32') #return shared_y train_set_Lengths=shared_dataset(trainLengths) valid_set_Lengths = shared_dataset(devLengths) train_left_pad=shared_dataset(trainLeftPad) train_right_pad=shared_dataset(trainRightPad) dev_left_pad=shared_dataset(devLeftPad) dev_right_pad=shared_dataset(devRightPad) #valid_set_y = shared_dataset(devY) rval = [(indices_train,train_set_Lengths, train_left_pad, train_right_pad), (indices_dev, devY, valid_set_Lengths, dev_left_pad, dev_right_pad)] return rval, word_ind-1 def load_word2vec_to_init(rand_values, file): readFile=open(file, 'r') line_count=1 for line in readFile: tokens=line.strip().split() rand_values[line_count]=numpy.array(map(float, tokens[1:])) line_count+=1 readFile.close() print 'initialization over...' return rand_values def load_msr_corpus(vocabFile, trainFile, testFile, maxlength): #maxSentLength=60 #first load word vocab read_vocab=open(vocabFile, 'r') vocab={} word_ind=1 for line in read_vocab: tokens=line.strip().split() vocab[tokens[1]]=word_ind #word2id word_ind+=1 read_vocab.close() #load train file def load_train_file(file, word2id): read_file=open(file, 'r') data=[] Y=[] Lengths=[] leftPad=[] rightPad=[] line_control=0 for line in read_file: tokens=line.strip().split('\t') # label, sent1, sent2 Y.append(int(tokens[0])) #repeat Y.append(int(tokens[0])) #question for i in [1,2,2,1]: #shuffle the example sent=[] words=tokens[i].strip().lower().split() length=0 for word in words: id=word2id.get(word) if id is not None: sent.append(id) length+=1 Lengths.append(length) left=(maxlength-length)/2 right=maxlength-left-length leftPad.append(left) rightPad.append(right) if left<0 or right<0: print 'Too long sentence:\n'+tokens[i] exit(0) sent=[0]*left+sent+[0]*right data.append(sent) #line_control+=1 read_file.close() ''' #normalized length arr=numpy.array(Lengths) max=numpy.max(arr) min=numpy.min(arr) normalized_lengths=(arr-min)*1.0/(max-min) ''' #return numpy.array(data),numpy.array(Y), numpy.array(Lengths), numpy.array(leftPad),numpy.array(rightPad) return numpy.array(data),numpy.array(Y), numpy.array(Lengths), numpy.array(leftPad),numpy.array(rightPad) def load_test_file(file, word2id): read_file=open(file, 'r') data=[] Y=[] Lengths=[] leftPad=[] rightPad=[] line_control=0 for line in read_file: tokens=line.strip().split('\t') Y.append(int(tokens[0])) # make the label starts from 0 to 4 #Y.append(int(tokens[0])) for i in [1,2]: sent=[] words=tokens[i].strip().lower().split() length=0 for word in words: id=word2id.get(word) if id is not None: sent.append(id) length+=1 Lengths.append(length) left=(maxlength-length)/2 right=maxlength-left-length leftPad.append(left) rightPad.append(right) if left<0 or right<0: print 'Too long sentence:\n'+tokens[i] exit(0) sent=[0]*left+sent+[0]*right data.append(sent) #line_control+=1 #if line_control==1000: # break read_file.close() ''' #normalized lengths arr=numpy.array(Lengths) max=numpy.max(arr) min=numpy.min(arr) normalized_lengths=(arr-min)*1.0/(max-min) ''' #return numpy.array(data),numpy.array(Y), numpy.array(Lengths), numpy.array(leftPad),numpy.array(rightPad) return numpy.array(data),numpy.array(Y), numpy.array(Lengths), numpy.array(leftPad),numpy.array(rightPad) indices_train, trainY, trainLengths, trainLeftPad, trainRightPad=load_train_file(trainFile, vocab) print 'train file loaded over, total pairs: ', len(trainLengths)/2 indices_test, testY, testLengths, testLeftPad, testRightPad=load_test_file(testFile, vocab) print 'test file loaded over, total pairs: ', len(testLengths)/2 #now, we need normaliza sentence length in the whole dataset (training and test) concate_matrix=numpy.concatenate((trainLengths, testLengths), axis=0) max=numpy.max(concate_matrix) min=numpy.min(concate_matrix) normalized_trainLengths=(trainLengths-min)*1.0/(max-min) normalized_testLengths=(testLengths-min)*1.0/(max-min) def shared_dataset(data_y, borrow=True): shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX), # @UndefinedVariable borrow=borrow) return T.cast(shared_y, 'int64') #return shared_y #indices_train=shared_dataset(indices_train) #indices_test=shared_dataset(indices_test) train_set_Lengths=shared_dataset(trainLengths) test_set_Lengths=shared_dataset(testLengths) normalized_train_length=theano.shared(numpy.asarray(normalized_trainLengths, dtype=theano.config.floatX), borrow=True) normalized_test_length = theano.shared(numpy.asarray(normalized_testLengths, dtype=theano.config.floatX), borrow=True) train_left_pad=shared_dataset(trainLeftPad) train_right_pad=shared_dataset(trainRightPad) test_left_pad=shared_dataset(testLeftPad) test_right_pad=shared_dataset(testRightPad) train_set_y=shared_dataset(trainY) test_set_y = shared_dataset(testY) rval = [(indices_train,train_set_y, train_set_Lengths, normalized_train_length, train_left_pad, train_right_pad), (indices_test, test_set_y, test_set_Lengths, normalized_test_length, test_left_pad, test_right_pad)] return rval, word_ind-1 def load_mts(train_file, test_file): read_train=open(train_file, 'r') train_values=[] for line in read_train: tokens=map(float, line.strip().split()) train_values.append(tokens) train_values.append(tokens)#repeat once read_train.close() read_test=open(test_file, 'r') test_values=[] for line in read_test: tokens=map(float, line.strip().split()) test_values.append(tokens) read_test.close() train_values=theano.shared(numpy.asarray(train_values, dtype=theano.config.floatX), borrow=True) test_values=theano.shared(numpy.asarray(test_values, dtype=theano.config.floatX), borrow=True) return train_values, test_values def load_mts_wikiQA(train_file, test_file): read_train=open(train_file, 'r') train_values=[] for line in read_train: tokens=map(float, line.strip().split()) train_values.append(tokens) read_train.close() read_test=open(test_file, 'r') test_values=[] for line in read_test: tokens=map(float, line.strip().split()) test_values.append(tokens) read_test.close() train_values=theano.shared(numpy.asarray(train_values, dtype=theano.config.floatX), borrow=True) test_values=theano.shared(numpy.asarray(test_values, dtype=theano.config.floatX), borrow=True) return train_values, test_values def load_extra_features(train_file, test_file): read_train=open(train_file, 'r') train_values=[] for line in read_train: tokens=map(float, line.strip().split()) train_values.append(tokens) read_train.close() read_test=open(test_file, 'r') test_values=[] for line in read_test: tokens=map(float, line.strip().split()) test_values.append(tokens) read_test.close() train_values=theano.shared(numpy.asarray(train_values, dtype=theano.config.floatX), borrow=True) test_values=theano.shared(numpy.asarray(test_values, dtype=theano.config.floatX), borrow=True) return train_values, test_values def load_wmf_wikiQA(train_file, test_file): read_train=open(train_file, 'r') train_values=[] for line in read_train: tokens=map(float, line.strip().split()) train_values.append(tokens) read_train.close() read_test=open(test_file, 'r') test_values=[] for line in read_test: tokens=map(float, line.strip().split()) test_values.append(tokens) read_test.close() train_values=theano.shared(numpy.asarray(train_values, dtype=theano.config.floatX), borrow=True) test_values=theano.shared(numpy.asarray(test_values, dtype=theano.config.floatX), borrow=True) return train_values, test_values def load_wikiQA_corpus(vocabFile, trainFile, testFile, max_truncate,maxlength): #maxSentLength=45 #first load word vocab read_vocab=open(vocabFile, 'r') vocab={} word_ind=1 for line in read_vocab: tokens=line.strip().split() vocab[tokens[1]]=word_ind #word2id word_ind+=1 read_vocab.close() #load train file def load_train_file(file, word2id): read_file=open(file, 'r') data=[] Y=[] Lengths=[] #true_lengths=[] leftPad=[] rightPad=[] line_control=0 for line in read_file: tokens=line.strip().split('\t') # question, answer, label Y.append(int(tokens[2])) #question for i in [0,1]: sent=[] words=tokens[i].strip().split() #true_lengths.append(len(words)) length=0 for word in words: id=word2id.get(word) if id is not None: sent.append(id) length+=1 if length==max_truncate: #we consider max 43 words break if length==0: #print 'shit sentence: ', tokens[i] #exit(0) break Lengths.append(length) left=(maxlength-length)/2 right=maxlength-left-length leftPad.append(left) rightPad.append(right) sent=[0]*left+sent+[0]*right data.append(sent) line_control+=1 #if line_control==50: # break read_file.close() ''' #normalized length arr=numpy.array(Lengths) max=numpy.max(arr) min=numpy.min(arr) normalized_lengths=(arr-min)*1.0/(max-min) ''' #return numpy.array(data),numpy.array(Y), numpy.array(Lengths), numpy.array(leftPad),numpy.array(rightPad) return numpy.array(data),numpy.array(Y), numpy.array(Lengths), numpy.array(leftPad),numpy.array(rightPad) def load_test_file(file, word2id): read_file=open(file, 'r') data=[] Y=[] Lengths=[] #true_lengths=[] leftPad=[] rightPad=[] line_control=0 for line in read_file: tokens=line.strip().split('\t') Y.append(int(tokens[2])) # make the label starts from 0 to 4 #Y.append(int(tokens[0])) for i in [0,1]: sent=[] words=tokens[i].strip().split() #true_lengths.append(len(words)) length=0 for word in words: id=word2id.get(word) if id is not None: sent.append(id) length+=1 if length==max_truncate: #we consider max 43 words break if length==0: #print 'shit sentence: ', tokens[i] #exit(0) break Lengths.append(length) left=(maxlength-length)/2 right=maxlength-left-length leftPad.append(left) rightPad.append(right) sent=[0]*left+sent+[0]*right data.append(sent) #line_control+=1 #if line_control==1000: # break read_file.close() ''' #normalized lengths arr=numpy.array(Lengths) max=numpy.max(arr) min=numpy.min(arr) normalized_lengths=(arr-min)*1.0/(max-min) ''' #return numpy.array(data),numpy.array(Y), numpy.array(Lengths), numpy.array(leftPad),numpy.array(rightPad) return numpy.array(data),numpy.array(Y), numpy.array(Lengths), numpy.array(leftPad),numpy.array(rightPad) indices_train, trainY, trainLengths, trainLeftPad, trainRightPad=load_train_file(trainFile, vocab) print 'train file loaded over, total pairs: ', len(trainLengths)/2 indices_test, testY, testLengths, testLeftPad, testRightPad=load_test_file(testFile, vocab) print 'test file loaded over, total pairs: ', len(testLengths)/2 #now, we need normaliza sentence length in the whole dataset (training and test) concate_matrix=numpy.concatenate((trainLengths, testLengths), axis=0) max=numpy.max(concate_matrix) min=numpy.min(concate_matrix) normalized_trainLengths=(trainLengths-min)*1.0/(max-min) normalized_testLengths=(testLengths-min)*1.0/(max-min) def shared_dataset(data_y, borrow=True): shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX), # @UndefinedVariable borrow=borrow) return T.cast(shared_y, 'int32') # for ARC-II on gpu #return shared_y #indices_train=shared_dataset(indices_train) #indices_test=shared_dataset(indices_test) train_set_Lengths=shared_dataset(trainLengths) test_set_Lengths=shared_dataset(testLengths) normalized_train_length=theano.shared(numpy.asarray(normalized_trainLengths, dtype=theano.config.floatX), borrow=True) normalized_test_length = theano.shared(numpy.asarray(normalized_testLengths, dtype=theano.config.floatX), borrow=True) train_left_pad=shared_dataset(trainLeftPad) train_right_pad=shared_dataset(trainRightPad) test_left_pad=shared_dataset(testLeftPad) test_right_pad=shared_dataset(testRightPad) train_set_y=shared_dataset(trainY) test_set_y = shared_dataset(testY) rval = [(indices_train,train_set_y, train_set_Lengths, normalized_train_length, train_left_pad, train_right_pad), (indices_test, test_set_y, test_set_Lengths, normalized_test_length, test_left_pad, test_right_pad)] return rval, word_ind-1 def load_entailment_corpus(vocabFile, trainFile, testFile, max_truncate,maxlength): #maxSentLength=45 #first load word vocab read_vocab=open(vocabFile, 'r') vocab={} word_ind=1 for line in read_vocab: tokens=line.strip().split() vocab[tokens[1]]=word_ind #word2id word_ind+=1 read_vocab.close() #load train file def load_train_file(file, word2id): read_file=open(file, 'r') data=[] Y=[] Lengths=[] #true_lengths=[] leftPad=[] rightPad=[] line_control=0 for line in read_file: tokens=line.strip().split('\t') # question, answer, label question=tokens[1].strip().lower().split() answer=tokens[2].strip().lower().split() if len(question)>max_truncate or len(answer)>max_truncate or len(question)< 2 or len(answer)<2: continue #skip this pair else: Y.append(int(tokens[0])) sents=[question, answer] #question for i in [0,1]: sent=[] words=sents[i] #true_lengths.append(len(words)) length=0 for word in words: id=word2id.get(word) if id is not None: sent.append(id) length+=1 #if length==max_truncate: #we consider max 43 words # break if length==0: print 'shit sentence: ', sents[i] #exit(0) break Lengths.append(length) left=(maxlength-length)/2 right=maxlength-left-length leftPad.append(left) rightPad.append(right) sent=[0]*left+sent+[0]*right data.append(sent) line_control+=1 if line_control==10000: break read_file.close() if len(Lengths)/2 !=len(Y): print 'len(Lengths)/2 !=len(Y)' exit(0) #return numpy.array(data),numpy.array(Y), numpy.array(Lengths), numpy.array(leftPad),numpy.array(rightPad) return numpy.array(data),numpy.array(Y), numpy.array(Lengths), numpy.array(leftPad),numpy.array(rightPad) def load_test_file(file, word2id): read_file=open(file, 'r') data=[] Y=[] Lengths=[] #true_lengths=[] leftPad=[] rightPad=[] line_control=0 for line in read_file: tokens=line.strip().split('\t') # question, answer, label question=tokens[1].strip().lower().split() answer=tokens[2].strip().lower().split() if len(question)>max_truncate or len(answer)>max_truncate or len(question)< 2 or len(answer)<2: continue #skip this pair else: Y.append(int(tokens[0])) sents=[question, answer] for i in [0,1]: sent=[] words=sents[i] #true_lengths.append(len(words)) length=0 for word in words: id=word2id.get(word) if id is not None: sent.append(id) length+=1 if length==0: print 'shit sentence: ', sents[i] #exit(0) break Lengths.append(length) left=(maxlength-length)/2 right=maxlength-left-length leftPad.append(left) rightPad.append(right) sent=[0]*left+sent+[0]*right data.append(sent) line_control+=1 #if line_control==500: # break read_file.close() ''' #normalized lengths arr=numpy.array(Lengths) max=numpy.max(arr) min=numpy.min(arr) normalized_lengths=(arr-min)*1.0/(max-min) ''' #return numpy.array(data),numpy.array(Y), numpy.array(Lengths), numpy.array(leftPad),numpy.array(rightPad) return numpy.array(data),numpy.array(Y), numpy.array(Lengths), numpy.array(leftPad),numpy.array(rightPad) indices_train, trainY, trainLengths, trainLeftPad, trainRightPad=load_train_file(trainFile, vocab) print 'train file loaded over, total pairs: ', len(trainLengths)/2 indices_test, testY, testLengths, testLeftPad, testRightPad=load_test_file(testFile, vocab) print 'test file loaded over, total pairs: ', len(testLengths)/2 #now, we need normaliza sentence length in the whole dataset (training and test) concate_matrix=numpy.concatenate((trainLengths, testLengths), axis=0) max=numpy.max(concate_matrix) min=numpy.min(concate_matrix) normalized_trainLengths=(trainLengths-min)*1.0/(max-min) normalized_testLengths=(testLengths-min)*1.0/(max-min) def shared_dataset(data_y, borrow=True): shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX), # @UndefinedVariable borrow=borrow) return T.cast(shared_y, 'int64') #return T.cast(shared_y, 'int32') # for gpu #return shared_y #indices_train=shared_dataset(indices_train) #indices_test=shared_dataset(indices_test) train_set_Lengths=shared_dataset(trainLengths) test_set_Lengths=shared_dataset(testLengths) normalized_train_length=theano.shared(numpy.asarray(normalized_trainLengths, dtype=theano.config.floatX), borrow=True) normalized_test_length = theano.shared(numpy.asarray(normalized_testLengths, dtype=theano.config.floatX), borrow=True) train_left_pad=shared_dataset(trainLeftPad) train_right_pad=shared_dataset(trainRightPad) test_left_pad=shared_dataset(testLeftPad) test_right_pad=shared_dataset(testRightPad) train_set_y=shared_dataset(trainY) test_set_y = shared_dataset(testY) rval = [(indices_train,train_set_y, train_set_Lengths, normalized_train_length, train_left_pad, train_right_pad), (indices_test, test_set_y, test_set_Lengths, normalized_test_length, test_left_pad, test_right_pad)] return rval, word_ind-1 def load_SICK_corpus(vocabFile, trainFile, testFile, max_truncate,maxlength, entailment): #maxSentLength=45 #first load word vocab read_vocab=open(vocabFile, 'r') vocab={} word_ind=1 for line in read_vocab: tokens=line.strip().split() vocab[tokens[1]]=word_ind #word2id word_ind+=1 read_vocab.close() #load train file def load_train_file(file, word2id): read_file=open(file, 'r') data=[] Y=[] Lengths=[] #true_lengths=[] leftPad=[] rightPad=[] line_control=0 for line in read_file: tokens=line.strip().split('\t') # question, answer, label if entailment: Y.append(int(tokens[2])) else: Y.append(float(tokens[3])) #question for i in [0,1]: sent=[] words=tokens[i].strip().split() #true_lengths.append(len(words)) length=0 for word in words: id=word2id.get(word) if id is not None: sent.append(id) length+=1 if length==max_truncate: #we consider max 43 words break if length==0: print 'shit sentence: ', tokens[i] #exit(0) break Lengths.append(length) left=(maxlength-length)/2 right=maxlength-left-length leftPad.append(left) rightPad.append(right) sent=[0]*left+sent+[0]*right data.append(sent) line_control+=1 #if line_control==500: # break read_file.close() if len(Lengths)/2 !=len(Y): print 'len(Lengths)/2 !=len(Y)' exit(0) #return numpy.array(data),numpy.array(Y), numpy.array(Lengths), numpy.array(leftPad),numpy.array(rightPad) return numpy.array(data),numpy.array(Y), numpy.array(Lengths), numpy.array(leftPad),numpy.array(rightPad) def load_test_file(file, word2id): read_file=open(file, 'r') data=[] Y=[] Lengths=[] #true_lengths=[] leftPad=[] rightPad=[] line_control=0 for line in read_file: tokens=line.strip().split('\t') if entailment: Y.append(int(tokens[2])) else: Y.append(float(tokens[3])) #Y.append(int(tokens[0])) for i in [0,1]: sent=[] words=tokens[i].strip().split() #true_lengths.append(len(words)) length=0 for word in words: id=word2id.get(word) if id is not None: sent.append(id) length+=1 if length==max_truncate: #we consider max 43 words break if length==0: print 'shit sentence: ', tokens[i] #exit(0) break Lengths.append(length) left=(maxlength-length)/2 right=maxlength-left-length leftPad.append(left) rightPad.append(right) sent=[0]*left+sent+[0]*right data.append(sent) line_control+=1 #if line_control==200: # break read_file.close() ''' #normalized lengths arr=numpy.array(Lengths) max=numpy.max(arr) min=numpy.min(arr) normalized_lengths=(arr-min)*1.0/(max-min) ''' #return numpy.array(data),numpy.array(Y), numpy.array(Lengths), numpy.array(leftPad),numpy.array(rightPad) return numpy.array(data),numpy.array(Y), numpy.array(Lengths), numpy.array(leftPad),numpy.array(rightPad) indices_train, trainY, trainLengths, trainLeftPad, trainRightPad=load_train_file(trainFile, vocab) print 'train file loaded over, total pairs: ', len(trainLengths)/2 indices_test, testY, testLengths, testLeftPad, testRightPad=load_test_file(testFile, vocab) print 'test file loaded over, total pairs: ', len(testLengths)/2 #now, we need normaliza sentence length in the whole dataset (training and test) concate_matrix=numpy.concatenate((trainLengths, testLengths), axis=0) max=numpy.max(concate_matrix) min=numpy.min(concate_matrix) normalized_trainLengths=(trainLengths-min)*1.0/(max-min) normalized_testLengths=(testLengths-min)*1.0/(max-min) def shared_dataset(data_y, borrow=True): shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX), # @UndefinedVariable borrow=borrow) #return T.cast(shared_y, 'int64') return T.cast(shared_y, 'int64') # #return shared_y def shared_dataset_float(data_y, borrow=True): return theano.shared(numpy.asarray(data_y,dtype=theano.config.floatX), borrow=borrow) #indices_train=shared_dataset(indices_train) #indices_test=shared_dataset(indices_test) train_set_Lengths=shared_dataset(trainLengths) test_set_Lengths=shared_dataset(testLengths) normalized_train_length=theano.shared(numpy.asarray(normalized_trainLengths, dtype=theano.config.floatX), borrow=True) normalized_test_length = theano.shared(numpy.asarray(normalized_testLengths, dtype=theano.config.floatX), borrow=True) train_left_pad=shared_dataset(trainLeftPad) train_right_pad=shared_dataset(trainRightPad) test_left_pad=shared_dataset(testLeftPad) test_right_pad=shared_dataset(testRightPad) if entailment: train_set_y=shared_dataset(trainY) test_set_y = shared_dataset(testY) else: train_set_y=shared_dataset_float(trainY) test_set_y = shared_dataset_float(testY) rval = [(indices_train,train_set_y, train_set_Lengths, normalized_train_length, train_left_pad, train_right_pad), (indices_test, test_set_y, test_set_Lengths, normalized_test_length, test_left_pad, test_right_pad)] return rval, word_ind-1 def load_SICK_corpus_binary_feature(vocabFile, trainFile, testFile, max_truncate,maxlength, entailment): #maxSentLength=45 #first load word vocab read_vocab=open(vocabFile, 'r') vocab={} word_ind=1 for line in read_vocab: tokens=line.strip().split() vocab[tokens[1]]=word_ind #word2id word_ind+=1 read_vocab.close() #load train file def load_train_file(file, word2id): read_file=open(file, 'r') data=[] binarys=[] Y=[] Lengths=[] #true_lengths=[] leftPad=[] rightPad=[] line_control=0 for line in read_file: tokens=line.strip().split('\t') # question, answer, label if entailment: Y.append(int(tokens[2])) else: Y.append(float(tokens[3])) #question for i in [0,1]: sent=[] words=tokens[i].strip().split() #true_lengths.append(len(words)) length=0 for word in words: id=word2id.get(word) if id is not None: sent.append(id) length+=1 if length==max_truncate: #we consider max 43 words break if length==0: print 'shit sentence: ', tokens[i] #exit(0) break Lengths.append(length) left=(maxlength-length)/2 right=maxlength-left-length leftPad.append(left) rightPad.append(right) sent=[0]*left+sent+[0]*right data.append(sent) #binary feature words1=tokens[0].strip().split() words2=tokens[1].strip().split() set1=set(words1) set2=set(words2) len1=len(words1) len2=len(words2) binary1=[] binary2=[] for word in words1: if word in set2: binary1.append(1.0) else: binary1.append(1e-10) binary1=[0.0]*((maxlength-len1)/2)+binary1+[0.0]*(maxlength-(maxlength-len1)/2-len1) for word in words2: if word in set1: binary2.append(1.0) else: binary2.append(1e-10) binary2=[0.0]*((maxlength-len2)/2)+binary2+[0.0]*(maxlength-(maxlength-len2)/2-len2) binarys.append(binary1) binarys.append(binary2) line_control+=1 #if line_control==500: # break read_file.close() if len(Lengths)/2 !=len(Y): print 'len(Lengths)/2 !=len(Y)' exit(0) #return numpy.array(data),numpy.array(Y), numpy.array(Lengths), numpy.array(leftPad),numpy.array(rightPad) return numpy.array(data),numpy.array(binarys), numpy.array(Y), numpy.array(Lengths), numpy.array(leftPad),numpy.array(rightPad) def load_test_file(file, word2id): read_file=open(file, 'r') data=[] binarys=[] Y=[] Lengths=[] #true_lengths=[] leftPad=[] rightPad=[] line_control=0 for line in read_file: tokens=line.strip().split('\t') if entailment: Y.append(int(tokens[2])) else: Y.append(float(tokens[3])) #Y.append(int(tokens[0])) for i in [0,1]: sent=[] words=tokens[i].strip().split() #true_lengths.append(len(words)) length=0 for word in words: id=word2id.get(word) if id is not None: sent.append(id) length+=1 if length==max_truncate: #we consider max 43 words break if length==0: print 'shit sentence: ', tokens[i] #exit(0) break Lengths.append(length) left=(maxlength-length)/2 right=maxlength-left-length leftPad.append(left) rightPad.append(right) sent=[0]*left+sent+[0]*right data.append(sent) #binary feature words1=tokens[0].strip().split() words2=tokens[1].strip().split() set1=set(words1) set2=set(words2) len1=len(words1) len2=len(words2) binary1=[] binary2=[] for word in words1: if word in set2: binary1.append(1.0) else: binary1.append(1e-10) binary1=[0.0]*((maxlength-len1)/2)+binary1+[0.0]*(maxlength-(maxlength-len1)/2-len1) for word in words2: if word in set1: binary2.append(1.0) else: binary2.append(1e-10) binary2=[0.0]*((maxlength-len2)/2)+binary2+[0.0]*(maxlength-(maxlength-len2)/2-len2) binarys.append(binary1) binarys.append(binary2) line_control+=1 #if line_control==200: # break read_file.close() ''' #normalized lengths arr=numpy.array(Lengths) max=numpy.max(arr) min=numpy.min(arr) normalized_lengths=(arr-min)*1.0/(max-min) ''' #return numpy.array(data),numpy.array(Y), numpy.array(Lengths), numpy.array(leftPad),numpy.array(rightPad) return numpy.array(data),numpy.array(binarys),numpy.array(Y), numpy.array(Lengths), numpy.array(leftPad),numpy.array(rightPad) indices_train, binary_train, trainY, trainLengths, trainLeftPad, trainRightPad=load_train_file(trainFile, vocab) print 'train file loaded over, total pairs: ', len(trainLengths)/2 indices_test, binary_test, testY, testLengths, testLeftPad, testRightPad=load_test_file(testFile, vocab) print 'test file loaded over, total pairs: ', len(testLengths)/2 #now, we need normaliza sentence length in the whole dataset (training and test) concate_matrix=numpy.concatenate((trainLengths, testLengths), axis=0) max=numpy.max(concate_matrix) min=numpy.min(concate_matrix) normalized_trainLengths=(trainLengths-min)*1.0/(max-min) normalized_testLengths=(testLengths-min)*1.0/(max-min) def shared_dataset(data_y, borrow=True): shared_y = theano.shared(numpy.asarray(data_y, dtype=theano.config.floatX), # @UndefinedVariable borrow=borrow) #return T.cast(shared_y, 'int64') return T.cast(shared_y, 'int64') # #return shared_y def shared_dataset_float(data_y, borrow=True): return theano.shared(numpy.asarray(data_y,dtype=theano.config.floatX), borrow=borrow) #indices_train=shared_dataset(indices_train) #indices_test=shared_dataset(indices_test) train_set_Lengths=shared_dataset(trainLengths) test_set_Lengths=shared_dataset(testLengths) normalized_train_length=theano.shared(numpy.asarray(normalized_trainLengths, dtype=theano.config.floatX), borrow=True) normalized_test_length = theano.shared(numpy.asarray(normalized_testLengths, dtype=theano.config.floatX), borrow=True) train_left_pad=shared_dataset(trainLeftPad) train_right_pad=shared_dataset(trainRightPad) test_left_pad=shared_dataset(testLeftPad) test_right_pad=shared_dataset(testRightPad) if entailment: train_set_y=shared_dataset(trainY) test_set_y = shared_dataset(testY) else: train_set_y=shared_dataset_float(trainY) test_set_y = shared_dataset_float(testY) train_binary=shared_dataset_float(binary_train) test_binary=shared_dataset_float(binary_test) rval = [(indices_train,train_binary, train_set_y, train_set_Lengths, normalized_train_length, train_left_pad, train_right_pad), (indices_test, test_binary, test_set_y, test_set_Lengths, normalized_test_length, test_left_pad, test_right_pad)] return rval, word_ind-1
61eec9209783882bdf2ed14473c988499d502c47
489b07587ac1ce7956e62295b0c2fa5fed0a79de
/testing.py
dd0ed56da4ca7134c6ad62baf659446bea1c809a
[]
no_license
rlhjansen/Paper_netlists
daa8c8a8ac849e8e8f04018f8670ead05e1f5535
34e05a6ceb15bb64d764f6b2f0c20f5af595a473
refs/heads/master
2021-06-06T11:49:32.605626
2019-11-05T10:34:58
2019-11-05T10:34:58
124,765,871
0
0
null
null
null
null
UTF-8
Python
false
false
2,138
py
import os import code.algorithms.simplyX as simple def count_slash(str): return sum([c=='/' for c in str]) for ind, elem in enumerate(os.walk('./results')): if count_slash(elem[0]) == 10: # these give datafiles try: datafile = os.path.join(elem[0], elem[2][0]) print(datafile) with open(datafile, 'r') as data: print(data.readline().split(';')[-1][:-1]) print(datafile.split('/')) break except: pass def get_datafiles(size, ncount, nlist): abspath = os.path.abspath(__file__) abspath = os.path.dirname(abspath) abspath = os.path.join(abspath, "data") if self.generated: abspath = os.path.join(abspath, "official_reference") abspath = os.path.join(abspath, "generated") abspath = os.path.join(abspath, "x"+str(size)+"y"+str(self.y)) abspath = os.path.join(abspath, "g0") else: abspath = os.path.join(abspath, "baseline") abspath = os.path.join(abspath, 'C'+str(self.c)) abspath = os.path.join(abspath, 'C'+str(self.c)+"_"+str(self.cX)) self.circuit_path = abspath+".csv" abspath = os.path.join(abspath, "N"+str(self.n)) abspath = os.path.join(abspath, "N"+str(self.n)+"_"+str(self.nX)+".csv") self.netlist_path = abspath def check_7(order, size, netcount, netlist, iters): """toplayers is a dictionary saving the toplayers of each routing""" toplayers = {} tag='test-okt' start_add=10 lens = [i+start_add for i in range(81)] for n in lens: pool = mp.Pool(mp.cpu_count()-1) Simples = simple_generator(100, 0, n, 20, size, size, tag=tag, iters=iters) grid = file_to_grid(self.circuit_path, None, max_g=max_g) self.circuit.read_nets(self.netlist_path) simple.SIMPLY(100, 0, n, net_num, x, y, tag, iters=iters) pool.map(meh, Simples) pool.close() simple_obj.circuit.connect() circuit = simple_obj.circuit if not ord: ord = circuit.get_random_net_order() g_coords, paths, _ = get_circuit_basics(circuit, ord)
00b3db52cbf83200b0f4fb99b314fb59143ff2ae
fcee5f9afb4444c1ba2b81b672e78eed3fb721c4
/make_voc_list.py
97f929dc083e8c852934981f624f23da4c75a5c5
[]
no_license
Abandon-ht/k210_yolov2
2c90ac8a599e8f096801134af46daba6305da921
0ff4d4dc84a8d3f53e03ded10159381774fe7d55
refs/heads/main
2023-07-18T20:18:07.865204
2021-09-22T10:49:57
2021-09-22T10:49:57
408,284,500
0
0
null
null
null
null
UTF-8
Python
false
false
872
py
import os import re import numpy as np import sys import argparse # image_txt_path = '/home/ncy/PycharmProjects/VOCdevkit/VOC2012/ImageSets/Main/train.txt' def main(train_file: str): image_path_list = np.loadtxt(train_file, dtype=str) if not os.path.exists('data'): os.makedirs('data') np.savetxt('data/voc_img.list', image_path_list, fmt='%s') ann_list = list(image_path_list) ann_list = [re.sub(r'JPEGImages', 'labels', s) for s in ann_list] ann_list = [re.sub(r'.jpg', '.txt', s) for s in ann_list] np.savetxt('data/voc_ann.list', ann_list, fmt='%s') def parse_arguments(argv): parser = argparse.ArgumentParser() parser.add_argument('train_file', type=str, help='trian.txt file path') return parser.parse_args(argv) if __name__ == "__main__": args = parse_arguments(sys.argv[1:]) main(args.train_file)
45e3cc0a6ee8e036392a8bceaabbd1267b9d866e
064b0a858f5d03dcba2bcdfe763fa46c0e507770
/mas_common_robotics/mcr_navigation/mcr_navigation_tools/ros/scripts/navigation_goals_as_marker
738c49dad3386c280a1594b87450d609af1a4e3b
[]
no_license
deebuls/robocup-at-work
ff7ebff2453d768fa4a118b179e4366ea1bc99d5
f67f841dcbadfe4ba3c6b13eef6a939fe7d52c0b
refs/heads/brazil-2014
2020-04-06T06:53:23.497667
2014-08-12T11:12:05
2014-08-12T11:12:05
43,391,473
0
0
null
2015-09-29T20:08:39
2015-09-29T20:08:39
null
UTF-8
Python
false
false
2,442
#!/usr/bin/python import rospy import tf from visualization_msgs.msg import * if (__name__ == "__main__"): rospy.init_node('mcr_navigation_goals_as_marker', anonymous=True) location_publisher = rospy.Publisher("/visualization_marker_array", MarkerArray) while not rospy.is_shutdown(): rospy.sleep(5) marker_array = MarkerArray() if not rospy.has_param('/script_server/base'): continue param_list = rospy.get_param('/script_server/base') counter=0 for item in param_list: pose = rospy.get_param('/script_server/base/' + item) single_marker = Marker() single_marker_text = Marker() single_marker.header.frame_id = single_marker_text.header.frame_id = "/map" single_marker.header.stamp = single_marker_text.header.stamp = rospy.Time.now() single_marker.ns = single_marker_text.ns = "base navigation goals" single_marker.action = single_marker_text.action = 0 single_marker.id = counter single_marker_text.id = counter+1 counter+=2 single_marker_text.type = 9 single_marker.type = 0 single_marker.pose.position.x = single_marker_text.pose.position.x = pose[0] single_marker.pose.position.y = single_marker_text.pose.position.y = pose[1] single_marker.pose.position.z = single_marker_text.pose.position.z = 0.0 (qx,qy,qz,qw) = tf.transformations.quaternion_from_euler(0.0, 0.0, pose[2]) single_marker.pose.orientation.x = single_marker_text.pose.orientation.x = qx single_marker.pose.orientation.y = single_marker_text.pose.orientation.y = qy single_marker.pose.orientation.z = single_marker_text.pose.orientation.z = qz single_marker.pose.orientation.w = single_marker_text.pose.orientation.w = qw single_marker_text.text = item single_marker.scale.x = 0.6 single_marker.scale.y = 0.05 single_marker.scale.z = 0.05 single_marker.color.r = 1.0 single_marker.color.g = 0.0 single_marker.color.b = 0.0 single_marker.color.a = 0.5 single_marker_text.scale.x = 0.17 single_marker_text.scale.y = 0.17 single_marker_text.scale.z = 0.17 single_marker_text.color.r = 1.0 single_marker_text.color.g = 1.0 single_marker_text.color.b = 1.0 single_marker_text.color.a = 1.0 single_marker.lifetime = single_marker_text.lifetime = rospy.Duration(5) marker_array.markers.append(single_marker) marker_array.markers.append(single_marker_text) location_publisher.publish(marker_array)
6350b28ce677c4102b1d0be5c87748350f2aa9e6
c58bfb0d7a293cc471f2921db57b00d5c3e56bac
/Backups/Old-DIKB-Micropublication/scripts/query-DIKB-DDIs.py
4aa6f9c61687c0fefd78be1965e8e28e369068b3
[ "Apache-2.0" ]
permissive
dbmi-pitt/DIKB-Micropublication
0a2f29b704c269d2ccfe091f8faff1b2374d626d
0fa264903414ac0b552d363d139746ead198f06a
refs/heads/master
2020-12-24T16:32:04.206847
2020-01-22T18:33:58
2020-01-22T18:33:58
22,527,994
6
2
null
2015-07-15T14:39:09
2014-08-01T20:51:07
Python
UTF-8
Python
false
false
6,141
py
## query-DIKB-DDIs.py ## ## Simple Python script to query http://dbmi-icode-01.dbmi.pitt.edu:2020/sparql for DIKB observed DDIs" ## No extra libraries required. # Authors: Richard D Boyce, Yifan Ning # # August 2014 # ## This code is licensed under Apache License Version 2.0, January ## 2004. Please see the license in the root folder of this project import json import urllib2 import urllib import traceback import pickle import sys sys.path = sys.path + ['.'] from PDDI_Model import getPDDIDict def query(q,epr,f='application/sparql-results+json'): """Function that uses urllib/urllib2 to issue a SPARQL query. By default it requests json as data format for the SPARQL resultset""" try: params = {'query': q} params = urllib.urlencode(params) opener = urllib2.build_opener(urllib2.HTTPHandler) request = urllib2.Request(epr+'?'+params) request.add_header('Accept', f) request.get_method = lambda: 'GET' url = opener.open(request) return url.read() except Exception, e: traceback.print_exc(file=sys.stdout) raise e if __name__ == "__main__": # load all observed DDIs pddiDictL = [] sparql_service = "http://dbmi-icode-01.dbmi.pitt.edu/dikb/sparql" query_string = """ PREFIX swanpav: <http://purl.org/swan/1.2/pav/> PREFIX meta: <http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/metadata#> PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX prvTypes: <http://purl.org/net/provenance/types#> PREFIX swandr: <http://purl.org/swan/1.2/discourse-relationships/> PREFIX d2r: <http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2r-server/config.rdf#> PREFIX map: <file:////home/rdb20/Downloads/d2r-server-0.7-DIKB/mapping.n3#> PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX swande: <http://purl.org/swan/1.2/discourse-elements#> PREFIX dc: <http://purl.org/dc/elements/1.1/> PREFIX prv: <http://purl.org/net/provenance/ns#> PREFIX db: <http://dbmi-icode-01.dbmi.pitt.edu:2020/resource/> PREFIX siocns: <http://rdfs.org/sioc/ns#> PREFIX foaf: <http://xmlns.com/foaf/0.1/> PREFIX prvFiles: <http://purl.org/net/provenance/files#> PREFIX ndfrt: <http://purl.bioontology.org/ontology/NDFRT/> PREFIX obo: <http://purl.obolibrary.org/obo/> PREFIX ncbit: <http://ncicb.nci.nih.gov/xml/owl/EVS/Thesaurus.owl#> PREFIX dikbEvidence: <http://dbmi-icode-01.dbmi.pitt.edu/dikb-evidence/DIKB_evidence_ontology_v1.3.owl#> PREFIX dikbD2R: <http://dbmi-icode-01.dbmi.pitt.edu:2020/vocab/resource/> PREFIX swanco: <http://purl.org/swan/1.2/swan-commons#> PREFIX prvIV: <http://purl.org/net/provenance/integrity#> PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> PREFIX owl: <http://www.w3.org/2002/07/owl#> PREFIX swanci: <http://purl.org/swan/1.2/citations/> SELECT DISTINCT * WHERE { ?s a dikbD2R:DDIObservation; dikbD2R:PharmacokineticDDIAssertion ?asrt; dikbD2R:ObjectDrugOfInteraction ?object; dikbD2R:PrecipitantDrugOfInteraction ?precip; rdfs:label ?label. ?object a ncbit:Pharmacologic_Substance; owl:sameAs ?objectURI. ?precip a ncbit:Pharmacologic_Substance; owl:sameAs ?precipURI. ?asrt a swande:ResearchStatement; foaf:homepage ?homepage; dikbD2R:Assertions_numeric_val ?numericVal; dikbD2R:Assertions_cont_val ?contVal; dikbD2R:slot ?ddiPkEffect; swanco:citesAsSupportingEvidence ?evidence; rdfs:label ?researchStatementLabel. ?evidence a ncbit:Evidence; dikbEvidence:Evidence_type ?evType; rdfs:seeAlso ?evSource; siocns:content ?content; dc:date ?dateAnnotated; dc:creator ?whoAnnotated. } """ print "OBSERVED DDIs query_string: %s" % query_string json_string = query(query_string, sparql_service) resultset=json.loads(json_string) print resultset.values() if len(resultset["results"]["bindings"]) == 0: print "INFO: No result!" else: #print json.dumps(resultset,indent=1) for i in range(0, len(resultset["results"]["bindings"])): newPDDI = getPDDIDict() newPDDI["evidence"] = resultset["results"]["bindings"][i]["evidence"]["value"] newPDDI["researchStatement"] = resultset["results"]["bindings"][i]["asrt"]["value"] newPDDI["uri"] = resultset["results"]["bindings"][i]["s"]["value"] obj = resultset["results"]["bindings"][i]["object"]["value"] newPDDI["object"] = obj.replace(u"http://dbmi-icode-01.dbmi.pitt.edu/dikb/resource/Drugs/",u"").upper() precip = resultset["results"]["bindings"][i]["precip"]["value"] newPDDI["precip"] = precip.replace(u"http://dbmi-icode-01.dbmi.pitt.edu/dikb/resource/Drugs/",u"").upper() newPDDI["objectURI"] = resultset["results"]["bindings"][i]["objectURI"]["value"] newPDDI["precipURI"] = resultset["results"]["bindings"][i]["precipURI"]["value"] newPDDI["label"] = resultset["results"]["bindings"][i]["label"]["value"] newPDDI["homepage"] = resultset["results"]["bindings"][i]["homepage"]["value"] newPDDI["numericVal"] = resultset["results"]["bindings"][i]["numericVal"]["value"] newPDDI["contVal"] = resultset["results"]["bindings"][i]["contVal"]["value"] newPDDI["ddiPkEffect"] = resultset["results"]["bindings"][i]["ddiPkEffect"]["value"] newPDDI["evidenceSource"] = resultset["results"]["bindings"][i]["evSource"]["value"] newPDDI["evidenceType"] = resultset["results"]["bindings"][i]["evType"]["value"] newPDDI["evidenceStatement"] = resultset["results"]["bindings"][i]["content"]["value"] newPDDI["dateAnnotated"] = resultset["results"]["bindings"][i]["dateAnnotated"]["value"] newPDDI["whoAnnotated"] = resultset["results"]["bindings"][i]["whoAnnotated"]["value"] newPDDI["researchStatementLabel"] = resultset["results"]["bindings"][i]["researchStatementLabel"]["value"] pddiDictL.append(newPDDI) f = open("dikb-observed-ddis.pickle","w") pickle.dump(pddiDictL, f) f.close()
d52327859a2773b746a3751f55e4a4b9a7224608
5f2b22d4ffec7fc1a4e40932acac30256f63d812
/tensorflow-study/AI_Drive_3D_Car/Driving_3D_Car/env.py
e5bf1bf7f0a584e5d2feb28a0bfb8734e741b3ea
[]
no_license
Thpffcj/Python-Learning
45734dd31e4d8d047eec5c5d26309bc7449bfd0d
5dacac6d33fcb7c034ecf5be58d02f506fd1d6ad
refs/heads/master
2023-08-04T21:02:36.984616
2021-09-21T01:30:04
2021-09-21T01:30:04
111,358,872
6
0
null
null
null
null
UTF-8
Python
false
false
9,074
py
# -*- coding: UTF-8 -*- # Created by thpffcj on 2019-02-13. """ 配置 Neon Race(霓虹赛车)的游戏环境,以方便我们训练 """ import cv2 import time import numpy as np import logging import gym from gym import spaces from gym.spaces.box import Box import universe from universe import vectorized from universe import spaces as vnc_spaces from universe.spaces.vnc_event import keycode from universe.wrappers import BlockingReset, GymCoreAction, EpisodeID, Unvectorize, Vectorize, Vision, Logger # 配置日志系统 logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) universe.configure_logging() # 游戏:Neon Race GAME = "flashgames.NeonRace-v0" # 创建并配置游戏环境 def create_env(client_id, remotes): env = gym.make(GAME) env = Vision(env) env = Logger(env) env = BlockingReset(env) reg = universe.runtime_spec('flashgames').server_registry height = reg[GAME]["height"] width = reg[GAME]["width"] env = CropScreen(env, height, width, 84, 18) env = Rescale(env) # 可用的按键:左,右,上,左上,右上,下,用 Turbo 来加速 keys = ['left', 'right', 'up', 'left up', 'right up', 'down', 'up x'] env = DiscreteToFixedKeysVNCActions(env, keys) env = EpisodeID(env) env = DiagnosticsInfo(env) env = Unvectorize(env) env.configure(fps=5.0, remotes=remotes, start_timeout=15 * 60, client_id=client_id, vnc_driver='go', vnc_kwargs={ 'encoding': 'tight', 'compress_level': 0, 'fine_quality_level': 50, 'subsample_level': 3}) return env # 给环境加上记录诊断信息的功能 def DiagnosticsInfo(env, *args, **kwargs): return vectorized.VectorizeFilter(env, DiagnosticsInfoI, *args, **kwargs) # 诊断信息的类 class DiagnosticsInfoI(vectorized.Filter): def __init__(self, log_interval=503): super(DiagnosticsInfoI, self).__init__() self._episode_time = time.time() self._last_time = time.time() self._local_t = 0 self._log_interval = log_interval self._episode_reward = 0 self._episode_length = 0 self._all_rewards = [] self._num_vnc_updates = 0 self._last_episode_id = -1 def _after_reset(self, observation): logger.info('重置环境中') self._episode_reward = 0 self._episode_length = 0 self._all_rewards = [] return observation def _after_step(self, observation, reward, done, info): to_log = {} if self._episode_length == 0: self._episode_time = time.time() self._local_t += 1 if info.get("stats.vnc.updates.n") is not None: self._num_vnc_updates += info.get("stats.vnc.updates.n") if self._local_t % self._log_interval == 0: cur_time = time.time() elapsed = cur_time - self._last_time fps = self._log_interval / elapsed self._last_time = cur_time cur_episode_id = info.get('vectorized.episode_id', 0) to_log["diagnostics/fps"] = fps if self._last_episode_id == cur_episode_id: to_log["diagnostics/fps_within_episode"] = fps self._last_episode_id = cur_episode_id if info.get("stats.gauges.diagnostics.lag.action") is not None: to_log["diagnostics/action_lag_lb"] = info["stats.gauges.diagnostics.lag.action"][0] to_log["diagnostics/action_lag_ub"] = info["stats.gauges.diagnostics.lag.action"][1] if info.get("reward.count") is not None: to_log["diagnostics/reward_count"] = info["reward.count"] if info.get("stats.gauges.diagnostics.clock_skew") is not None: to_log["diagnostics/clock_skew_lb"] = info["stats.gauges.diagnostics.clock_skew"][0] to_log["diagnostics/clock_skew_ub"] = info["stats.gauges.diagnostics.clock_skew"][1] if info.get("stats.gauges.diagnostics.lag.observation") is not None: to_log["diagnostics/observation_lag_lb"] = info["stats.gauges.diagnostics.lag.observation"][0] to_log["diagnostics/observation_lag_ub"] = info["stats.gauges.diagnostics.lag.observation"][1] if info.get("stats.vnc.updates.n") is not None: to_log["diagnostics/vnc_updates_n"] = info["stats.vnc.updates.n"] to_log["diagnostics/vnc_updates_n_ps"] = self._num_vnc_updates / elapsed self._num_vnc_updates = 0 if info.get("stats.vnc.updates.bytes") is not None: to_log["diagnostics/vnc_updates_bytes"] = info["stats.vnc.updates.bytes"] if info.get("stats.vnc.updates.pixels") is not None: to_log["diagnostics/vnc_updates_pixels"] = info["stats.vnc.updates.pixels"] if info.get("stats.vnc.updates.rectangles") is not None: to_log["diagnostics/vnc_updates_rectangles"] = info["stats.vnc.updates.rectangles"] if info.get("env_status.state_id") is not None: to_log["diagnostics/env_state_id"] = info["env_status.state_id"] if reward is not None: self._episode_reward += reward if observation is not None: self._episode_length += 1 self._all_rewards.append(reward) if done: logger.info('回合结束: 回合奖励=%s 回合长度=%s', self._episode_reward, self._episode_length) total_time = time.time() - self._episode_time to_log["global/episode_reward"] = self._episode_reward to_log["global/episode_length"] = self._episode_length to_log["global/episode_time"] = total_time to_log["global/reward_per_time"] = self._episode_reward / total_time self._episode_reward = 0 self._episode_length = 0 self._all_rewards = [] return observation, reward, done, to_log # 限定的按键状态 class FixedKeyState(object): def __init__(self, keys): self._keys = [keycode(key) for key in keys] self._down_keysyms = set() def apply_vnc_actions(self, vnc_actions): for event in vnc_actions: if isinstance(event, vnc_spaces.KeyEvent): if event.down: self._down_keysyms.add(event.key) else: self._down_keysyms.discard(event.key) def to_index(self): action_n = 0 for key in self._down_keysyms: if key in self._keys: # 如果按下多个 key(按键),只用第一个 key action_n = self._keys.index(key) + 1 break return action_n # 定义一个确定的 action space(动作空间) class DiscreteToFixedKeysVNCActions(vectorized.ActionWrapper): def __init__(self, env, keys): super(DiscreteToFixedKeysVNCActions, self).__init__(env) self._keys = keys self._generate_actions() self.action_space = spaces.Discrete(len(self._actions)) # 生成 action def _generate_actions(self): self._actions = [] uniq_keys = set() for key in self._keys: for cur_key in key.split(' '): uniq_keys.add(cur_key) for key in [''] + self._keys: split_keys = key.split(' ') cur_action = [] for cur_key in uniq_keys: cur_action.append(vnc_spaces.KeyEvent.by_name(cur_key, down=(cur_key in split_keys))) self._actions.append(cur_action) self.key_state = FixedKeyState(uniq_keys) def _action(self, action_n): # 每个 action 可能是一个长度为 1 的 np.array # 转换成 int 类型,以避免 warning(警告) return [self._actions[int(action)] for action in action_n] # 裁剪屏幕区域 class CropScreen(vectorized.ObservationWrapper): """ 从左上角开始裁剪 height(高)x width(宽)大小的区域 """ def __init__(self, env, height, width, top=0, left=0): super(CropScreen, self).__init__(env) self.height = height self.width = width self.top = top self.left = left self.observation_space = Box(0, 255, shape=(height, width, 3)) def _observation(self, observation_n): return [ob[self.top:self.top+self.height, self.left:self.left+self.width, :] if ob is not None else None for ob in observation_n] # 处理 Frame(帧) def _process_frame(frame): frame = cv2.resize(frame, (200, 128)) frame = frame.mean(2).astype(np.float32) frame *= (1.0 / 255.0) frame = np.reshape(frame, [128, 200, 1]) return frame # 调节观测空间的大小 class Rescale(vectorized.ObservationWrapper): def __init__(self, env=None): super(Rescale, self).__init__(env) self.observation_space = Box(0.0, 1.0, [128, 200, 1]) def _observation(self, observation_n): return [_process_frame(observation) for observation in observation_n]
d731866885db9fe81a9f2fb738a972218db51623
00e21a29e078f5216e66a71f591c4b1a7b6465b9
/Level.1/Arrange String in Descending.py
22a2e702010fc14f902458aba2e033f04f755da0
[]
no_license
minji-OH/Python_Programmers_Solution
6bdd0d251f883ab03e8deb990656d17757178de2
395b5459e026bfb0449383840d3bf3b17eb38754
refs/heads/master
2021-05-27T04:11:50.439360
2020-10-13T06:27:10
2020-10-13T06:27:10
254,211,270
0
0
null
null
null
null
UTF-8
Python
false
false
392
py
def solution(s): answer = '' #대소문자 구분하기 lower = [] upper = [] for i in range(len(s)): if s[i] >='a' and s[i] <='z': lower.append(s[i]) else: upper.append(s[i]) #각각 정렬 lower.sort(reverse=True) upper.sort(reverse=True) #조인 answer = ''.join(lower) + ''.join(upper) return answer
6aefd1ec8f70dea375cd31b19055bc75bd9b5da9
51cfc2ff8b2bf98f6abacf6f3bb4bd19bf88fd81
/user/migrations/0003_auto_20191230_2314.py
69dfae1e43f64df86c6fd96a42849e1f26f7dd6d
[]
no_license
AndreiiZh/cnip
f1cac9e0f84d409acf8bb682e270608364921137
4dd31b507d94f42f1bb3a2258166add938ca8af8
refs/heads/master
2022-12-12T13:18:03.728428
2020-03-13T11:49:42
2020-03-13T11:49:42
227,101,711
0
0
null
2022-04-22T23:07:27
2019-12-10T11:22:34
HTML
UTF-8
Python
false
false
451
py
# Generated by Django 2.2.8 on 2019-12-30 21:14 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('user', '0002_auto_20191230_2249'), ] operations = [ migrations.AlterField( model_name='listservice', name='price', field=models.DecimalField(decimal_places=2, max_digits=6, null=True, verbose_name='Вартість'), ), ]
54361217ef28c9e0c8e6a9fccca0f48c5ea11222
aedbc5b8cb95ba346137d21a636a37f3b24e76d7
/restaurants/views.py
9d6e98760ea565ca3361d1780cb3e35504f1d603
[]
no_license
jayabhavana342/Learning_Django
39df268612826c656e56eb2333516a92f38adfae
fc2a18f3920c23ed49d58cad40ffa84fb67154f9
refs/heads/master
2021-09-04T07:01:18.064031
2018-01-16T23:24:30
2018-01-16T23:24:30
116,726,696
0
0
null
null
null
null
UTF-8
Python
false
false
1,631
py
from django.contrib.auth.mixins import LoginRequiredMixin from django.views.generic import ListView, DetailView, CreateView, UpdateView from .forms import RestaurantLocationCreateForm from .models import RestaurantLocation class RestaurantListView(LoginRequiredMixin, ListView): def get_queryset(self): return RestaurantLocation.objects.filter(owner=self.request.user) class RestaurantDetailView(LoginRequiredMixin, DetailView): def get_queryset(self): return RestaurantLocation.objects.filter(owner=self.request.user) class RestaurantCreateView(LoginRequiredMixin, CreateView): form_class = RestaurantLocationCreateForm login_url = '/login/' template_name = 'form.html' def form_valid(self, form): instance = form.save(commit=False) instance.owner = self.request.user return super(RestaurantCreateView, self).form_valid(form) def get_context_data(self, *args, **kwargs): context = super(RestaurantCreateView, self).get_context_data(**kwargs) context['title'] = 'Add Restaurant' return context class RestaurantUpdateView(LoginRequiredMixin, UpdateView): form_class = RestaurantLocationCreateForm login_url = '/login/' template_name = 'restaurants/detail-update.html' def get_context_data(self, *args, **kwargs): context = super(RestaurantUpdateView, self).get_context_data(**kwargs) name = self.get_object().name context['title'] = 'Update Restaurant: ' + name return context def get_queryset(self): return RestaurantLocation.objects.filter(owner=self.request.user)
95485ccb37d5016b6bc455ec89bb27e6274ca8a0
049a40bd4e44636fe13656a815daaca860a98db1
/forms.py
87f85f44c8a2d2a6bb51e30d5cc6a0751b9f8ea3
[]
no_license
heggy231/wdi-capstone-project-4-zom
ccbce32015838076fed969844ff2ec906d2f6b38
ffe957ae44311d91c35888a3644d4fe5c4aa1db0
refs/heads/master
2023-02-06T11:01:55.088763
2020-04-15T01:22:03
2020-04-15T01:22:03
178,492,782
3
0
null
2023-02-02T05:44:18
2019-03-30T00:38:00
HTML
UTF-8
Python
false
false
1,955
py
# forms.py defines class to represent our form. Add the field we need which will eventually be used with a form builder on the front end https://git.generalassemb.ly/sf-wdi-51/Flask-Models # import the tools, fields we need from flask_wtf import FlaskForm as Form # from models import User from wtforms import StringField, PasswordField, TextAreaField, TextField, SubmitField from wtforms.validators import (DataRequired, Regexp, ValidationError, Email, Length, EqualTo) from models import User from models import Post def email_exists(form, field): if User.select().where(User.email == field.data).exists(): raise ValidationError('Oops!! User with that email already exists.') return # create the class and variable to house Field definitions class RegisterForm(Form): # pass Form class obj to inherits WTForm field like StringField(), PasswordField() email = StringField( # function I am bringing in from WTF 'Email', validators=[ DataRequired(), Email(), email_exists ]) password = PasswordField( 'Password', validators=[ DataRequired(), Length(min=2), EqualTo( 'password2', message='Passwords must match') ]) password2 = PasswordField( 'Confirm Password', validators=[DataRequired()] ) # We are passing WTF Form Super class so it knows to get the functions from WTF form (Inheritance) class SigninForm(Form): email = StringField( 'Email', validators=[ DataRequired(), Email() ]) password = PasswordField( 'Password', validators=[ DataRequired() ]) class PostForm(Form): #pass in Form class obj to inherit StringField() method and TextField title = StringField( 'Title', validators=[ DataRequired() ]) content = TextAreaField( 'Tell your story...', validators=[ DataRequired() ])
523a8bd5d2d8793658e493383d612fb1445cc0eb
0ce955a125f729b6dff17c4a507162c8b86e4812
/flip_zero_max_sum.py
07ec8fcee1e2cc5029e710f6358e8228716bd30b
[]
no_license
changediyasunny/Challenges
f1b1f0fda490c53bfe8de4648c29b501ec7180a1
df2ce669049ca040631dc6cc05cf5b5e8d2cc376
refs/heads/master
2021-01-10T13:29:53.137452
2019-10-10T05:19:39
2019-10-10T05:19:39
52,062,048
0
0
null
null
null
null
UTF-8
Python
false
false
799
py
""" Sliding window Problem... """ def flip(list1, n): wL =0 wR = 0 Lindex = 0 window = 0 zero_cnt = 0 while wR < len(list1): # Widen window if zero-count is < given flips... if zero_cnt <= n: if list1[wR] == 0: zero_cnt = zero_cnt + 1 wR = wR + 1 # zero-cnt is more... if zero_cnt > n: if list1[wL] == 0: zero_cnt = zero_cnt - 1 wL = wL + 1 # Keep track of maximum window found yet... # ALways max is preserved under (wR - wL) condition... if (wR-wL) > window: window = wR - wL Lindex = wL #...................... for i in range(window): if list1[Lindex+i] == 0: print(Lindex+i) def main(): list1 = [1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1] n = 1 flip(list1, n) if __name__ == '__main__': main()
beeaa747f14ea060a718efff86b3fd69fa3fa66b
2275e9c3147a5284f36c1fc2da7a8dcf53cc2383
/params/blend3.py
627fbb0b7e708598d26ec087e6101ea71394c352
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
puttak/nrel-efr
cb39197c362569922e69d65b3e7abf96e42ec992
2b6ebf1ce6136d13dfff741e8ff7c2b50ed65e85
refs/heads/master
2022-11-02T14:35:14.617027
2020-06-16T21:11:00
2020-06-16T21:11:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,683
py
""" Blend3 feedstock parameters. ultimate_analysis : list Elements listed as [C, H, O, N, S, ash, moisture] chemical_analysis : dict Biomass composition determined from chemical analysis data. These values are used for the pyrolysis kinetics. Values are given as mass fraction (-) on dry ash-free basis (% daf). """ feedstock = { 'name': 'Blend3', 'ultimate_analysis': [49.52, 5.28, 38.35, 0.15, 0.02, 0.64, 6.04], 'chemical_analysis': { 'cellulose': 39.19, 'hemicellulose': 23.26, 'lignin_c': 9.89, 'lignin_h': 9.89, 'lignin_o': 9.89, 'tannins': 7.88, 'triglycerides': 0.00 }, 'biomass_characterization': { 'yc': 0.51, 'yh': 0.06, 'alpha': 0.56, 'beta': 0.6, 'gamma': 0.6, 'delta': 0.78, 'epsilon': 0.88 } } """ Entrained flow reactor (EFR) parameters. energy : str Used by the Cantera reactor model. If set to `off` then disable the energy equation. If `on` then enable the energy and use the provided thermo data for the reactions. """ reactor = { 'name': 'Entrained flow reactor (EFR)', 'pressure': 101_325.0, 'temperature': 773.15, 'time_duration': 10.0, 'energy': 'on' } """ Sensitivity analysis parameters for the Debiagi 2018 kinetics. """ sensitivity_analysis = { 'n_samples': 10, 'num_vars': 7, 'names': ['CELL', 'GMSW', 'LIGC', 'LIGH', 'LIGO', 'TANN', 'TGL'], 'bounds': [[0.01, 0.99], [0.01, 0.99], [0.01, 0.99], [0.01, 0.99], [0.01, 0.99], [0.01, 0.99], [0.01, 0.99]] }
d67459851bcc2e99ac347e2321788fbb44de2d73
61e23efe2d623da80d59fd98f62d98620512d0ae
/analyze_seqresults.py
28dd2e3b284b04f80b64684b1e99753b0f338d1b
[]
no_license
sara-kassani/Embryo-Stage-Onset-Detection
8e61634e47e72b538a35d73d81e5833eed91e633
98f7d327e4ca4d032258495762b7a52410f7f1f8
refs/heads/main
2023-08-06T00:16:55.829341
2021-09-29T14:27:14
2021-09-29T14:27:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,254
py
import numpy as np import pandas as pd import argparse import math parser = argparse.ArgumentParser() parser.add_argument("--train_name", type=str, help="Training/Experiment name") parser.add_argument("--suffix", type=str, help="Folder Suffix") parser.add_argument("--cross_val", type=bool, help="Whether 5-fold cross-validation was performed", default=False) args = parser.parse_args() training_name = args.train_name suffix = args.suffix OUT_PATH = training_name + '/Predictions{}/'.format(suffix) CROSS_VAL = args.cross_val def read_preds(fold): data_df = pd.read_csv( OUT_PATH + 'Preds-fold{}.csv'.format(fold), usecols=['Filenames', 'Labels', 'Preds']) data_df['Folder'] = [filename.split('/')[0] for filename in data_df['Filenames']] return data_df def _analyze(): folds = 5 if CROSS_VAL else 1 for fold in range(folds): data_df = read_preds(fold) test_folders = data_df.Folder.unique() vals = np.zeros((len(test_folders), 6)) for i,folder in enumerate(test_folders): print(folder) folder_df = data_df[data_df['Folder'] == folder].reset_index() true_morula = folder_df.index[folder_df['Labels'] == 1].min() pred_morula = folder_df.index[folder_df['Preds'] == 1].min() true_blast = folder_df.index[folder_df['Labels'] == 2].min() pred_blast = folder_df.index[folder_df['Preds'] == 2].min() if math.isnan(pred_blast): print('nan', folder) pred_blast = folder_df.index.values.max() dif_morula = np.abs(pred_morula - true_morula) dif_blast = np.abs(pred_blast - true_blast) vals[i,:] = np.array([ true_morula, pred_morula, true_blast, pred_blast, dif_morula, dif_blast]) val_df = pd.DataFrame({ 'Folder': test_folders, 'TrueMorula': vals[:,0], 'TrueBlast': vals[:,1], 'PredMorula': vals[:,2], 'PredBlast': vals[:,3], 'DifMorula': vals[:,4], 'DifBlast': vals[:,5]}) val_df.to_csv(OUT_PATH + 'SeqAnalysis-fold{}.csv'.format(fold), index=False) if __name__ == '__main__': _analyze()
a31c303649e88c74d60cf8c7bb1455f75042f804
5cf982f0d16c4084b8c0b519a4856e4f5160e70d
/accountapp/forms.py
002e95b59f712e8b73ea36fbc6b63657f74024be
[]
no_license
minzyk/Django_1
4b5ab942a45a61c368466b91f54af2acaac5cb63
1200db8a638ce5332e82c7785b483155f0d855a4
refs/heads/master
2023-06-07T18:31:57.527188
2021-07-01T05:44:38
2021-07-01T05:44:38
373,013,718
0
0
null
null
null
null
UTF-8
Python
false
false
424
py
from django.contrib.auth.forms import UserCreationForm class AccountUpdateForm(UserCreationForm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['username'].disabled = True # username 을 비활성화 시킨것 (정보수정 할 경우에 ID 는 수정하지 못하도록) - disabled를 true로 바꿔주면 수정을 해도 서버에 반영이 되지 않는다
077b5149d9a43b8f848cf4db9db2caa0bca1888a
d15ed15aa3df11ce3bc5a007d65dc90ad7b7471d
/manage.py
a271f08565de2725fd8a4d22c732429e233aa742
[]
no_license
dansgithubuser/dansMap
95947005c74f975355858f4b059b8913410814e9
48e035b1d6c308e83d5ddb5884475bfb88fb3eae
refs/heads/master
2020-03-17T02:18:56.329812
2018-06-24T15:34:22
2018-06-24T15:34:22
133,185,552
0
0
null
null
null
null
UTF-8
Python
false
false
539
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "dansmap.settings") try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
c355599110224238645664085a3d8c5b3a4781f3
ccc55c7a05cd115e029f04cd577b11b70d0d3fdc
/Chapter 4/D4 TI C/Nurul Kamila (1184038)/Teori/7.py
f5bf61d9618b21cc7d772c42d310445c76f0ab7a
[]
no_license
ariqrafikusumah/Tugas
6019be8c3219c930730d29076efd4494a3c70c79
6903117a91ad3002033c6d0297b4d1d06903088d
refs/heads/master
2020-09-15T19:51:29.066553
2020-02-29T12:08:36
2020-02-29T12:08:36
216,065,279
0
0
null
2019-10-18T16:28:46
2019-10-18T16:28:45
null
UTF-8
Python
false
false
141
py
#Menulis File CSV dengan Fungsi to csv dengan Library Pandas import pandas df = pandas.read_csv('praktikum.csv') df.to_csv('praktikum4.csv')
001a7c30b6353f7f46ae2652312694e726f9a87e
637b9d443b84039cb3943ec186eb7e4872258c1e
/setup.py
d47f28936baf28bc9b27dc28fcb15c12dee19616
[ "MIT" ]
permissive
ncod3/vprimer
d71a0c97c0a8583d57fd07e19dac01d82ecdab01
403151788e2df5138509cb444dd3eeebe4a78f1a
refs/heads/main
2023-07-08T18:54:17.950399
2023-07-01T01:06:27
2023-07-01T01:06:27
278,553,047
0
0
null
null
null
null
UTF-8
Python
false
false
558
py
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="vprimer", version="1.0.7", author="satoshi-natsume", author_email="[email protected]", description="V-primer", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/ncod3/vprimer", packages=setuptools.find_packages(), license='MIT', entry_points = { 'console_scripts': ['vprimer = vprimer.main:main'] }, python_requires='>=3.7', )
4decefeabc83feb66925607a6c3965c9dbc63df9
92cfe7677656056abaec6c6b349546260fbeb895
/chplot.py
de7ef0630b47f49b1215c3adb579f3c8d9a35384
[ "MIT" ]
permissive
cheolheil/control_chart
ea11eae0a13587ffd9bebd2d232d141699129a77
adce7c5d6af27aab8053dba15518e531846434e5
refs/heads/main
2023-08-30T08:21:17.593741
2021-11-15T16:32:41
2021-11-15T16:32:41
428,305,384
1
0
null
null
null
null
UTF-8
Python
false
false
964
py
import matplotlib.pyplot as plt class ccplot: # this class accepts an instance of schewart_chart def __init__(self, chart, X_test, figsize=(18, 6)): self.chart_name = chart.stat.__repr__() self.figsize = figsize self.fig, self.ax = plt.subplots(figsize=self.figsize) self.ax.set_xlabel('Time') self.ax.set_ylabel(self.chart_name) self.ax.set_title(self.chart_name + ' Control Chart') self.ax.axhline(y=chart.upper_limit, color='grey', linestyle='--', lw=0.5) self.ax.axhline(y=chart.lower_limit, color='grey', linestyle='--', lw=0.5) self.ax.axhline(y=chart.center_line, color='black', lw=0.75) stat_test, ooc_indices = chart.run(X_test, verbose=False) self.ax.plot(stat_test, color='lightseagreen', lw=1.25) self.ax.scatter(ooc_indices, stat_test[ooc_indices], facecolor='crimson', marker='s', s=10) plt.show()
60048c313e05bbc5f0b93f2fa2ea0123d4309b37
e68bb9b3f1befb0116967981783d1bc1f8ce1eef
/project-addons/lot_states/wizard/mrp_consume_quarantine.py
37d40eb405b3b559b0f11ceb44d8db656e9e1276
[]
no_license
maurolguin1/PXGO_00064_2014_PHA
a0732e3c59a5a606b37f2a860642ba6550a3d099
50d341a0fb69529160e59c0ceb03fe6264ef7ae1
refs/heads/master
2020-03-22T16:37:39.396576
2015-05-14T08:47:56
2015-05-14T08:47:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,540
py
# -*- coding: utf-8 -*- ############################################################################## # # Copyright (C) 2015 Pexego All Rights Reserved # $Jesús Ventosinos Mayor <[email protected]>$ # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from openerp import models, fields, api, exceptions, _ class MrpConsumeQuarantine(models.TransientModel): _name = 'mrp.production.consume.quarantine' product_id = fields.Many2one('product.product', 'Product') lot_id = fields.Many2one('stock.production.lot', 'Lot', required=True) line_ids = fields.One2many('mrp.production.consume.quarantine.line', 'wizard_id', 'Lots') @api.model def default_get(self, fields): res = super(MrpConsumeQuarantine, self).default_get(fields) move_id = self.env.context.get('active_id', []) move = self.env['stock.move'].browse(move_id) res['product_id'] = move.product_id.id lots = self.env['stock.production.lot'].search([('product_id', '=', move.product_id.id), ('state', '=', 'in_rev')]) lines = [] my_context = dict(self.env.context) my_context['location_id'] = move.warehouse_id.wh_qc_stock_loc_id.id for lot in lots: my_context['lot_id'] = lot.id qty = lot.product_id.with_context(my_context)._product_available() qty = qty[lot.product_id.id]['qty_available'] lines.append((0,0, {'lot_id': lot.id, 'qty': qty, 'entry_date': lot.entry_quarantine})) res['line_ids'] = lines return res @api.multi def consume(self): group = self.env.ref('lot_states.mrp_use_quarantine') if group not in self.env.user.groups_id: raise exceptions.Warning(_('Permission error'), _('No permission to consume quarantine')) move_id = self.env.context.get('active_id', []) move = self.env['stock.move'].browse(move_id) quality_location = move.warehouse_id.wh_qc_stock_loc_id move.restrict_lot_id = self.lot_id.id previous_move = self.env['stock.move'].search([('move_dest_id', '=', move.id)]) previous_move.restrict_lot_id = self.lot_id.id previous_move.location_id = move.warehouse_id.wh_qc_stock_loc_id.id previous_move.write({'restrict_lot_id': self.lot_id.id, 'location_id': quality_location.id}) read_domain = [('location_id', '=', quality_location.id), ('product_id', '=', move.product_id.id), ('lot_id', '=', self.lot_id.id)] q_quants = self.env['stock.quant'].read_group( read_domain, ['reservation_id', 'qty'], ['reservation_id']) q_move = False for quant in q_quants: if quant['qty'] > move.product_uom_qty: move_id = quant['reservation_id'][0] q_move = self.env['stock.move'].browse(move_id) break if q_move: q_move.do_unreserve() q_move.product_uom_qty -= previous_move.product_uom_qty q_move.action_assign() previous_move.original_move = move.original_move = q_move else: raise exceptions.Warning(_('quarantine error'), _('Not found the move from quarantine')) move.raw_material_production_id.final_lot_id.write( {'state_depends': [(4, self.lot_id.id)]}) return True class MrpConsumeQuarantineLine(models.TransientModel): _name = 'mrp.production.consume.quarantine.line' lot_id = fields.Many2one('stock.production.lot', 'Lot') wizard_id = fields.Many2one('mrp.production.consume.quarantine', 'wizard') qty = fields.Float('Quantity') entry_date = fields.Date('Entry quarantine')
4dc218da7a5113da958b27d32acefa665a10695e
ef79ff6fdc3e2c3e162792c7f56c6c31c12efb9d
/account_makeover/report/aged_partner_balance.py
e5cbd63841fa2a111ad69903e31526e0b5d32ec7
[]
no_license
3dfxmadscientist/odoo_isa
dee0197d03b7c9775b71a5e909f591035698c9ed
898895da18ce78c702e0191cd64d2056559faeab
refs/heads/master
2020-04-10T09:25:00.743961
2014-07-04T07:25:15
2014-07-04T07:25:15
21,499,414
0
1
null
null
null
null
UTF-8
Python
false
false
1,616
py
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import os from openerp.report import report_sxw # from openerp.addons.account.report.common_report_header import common_report_header from openerp.addons.account.report.account_aged_partner_balance import aged_trial_report class parser_aged_trial_report(aged_trial_report): def __init__(self, cr, uid, name, context): aged_trial_report.__init__(self, cr, uid, name, context=context) report_sxw.report_sxw('report.makeover.aged.trial.balance', 'res.partner', os.path.dirname(os.path.realpath(__file__)) + '/aged_partner_balance.rml', parser=parser_aged_trial_report, header="internal landscape")
5886c639f14ce10db24b8b4ca5e7007774e40d9c
486318571da84691363fa5f090237318c4217dd8
/tests/unittests/test_models.py
e8b7445f1218055f13d4c0f290532a0ce8219eeb
[]
no_license
klfoulk16/personal_website
f731912a2e67771ca75ba4a83aa1b620efac61fb
0820b2beaba7bd2fc790dc11de05e1f44a36eca0
refs/heads/main
2023-04-18T04:02:52.752460
2021-05-05T16:10:09
2021-05-05T16:10:09
315,940,441
10
1
null
2021-03-11T15:48:21
2020-11-25T12:59:32
Python
UTF-8
Python
false
false
2,065
py
import pytest from application.database import Posts, BodyImages, Subscribers, Admin import datetime def test_posts_model(): """ GIVEN a Posts model WHEN a new Post is created THEN check the h1, header_path, youtube_vid, sample, body, category, and date fields are defined correctly """ h1 = "Hi" header_path = "/stuff/stuff/stuff/stuff" youtube_vid = "80938203" sample = "Hi this is a sample" body = "<p>hi I edited this</p>" category = "code" post = Posts(h1, sample, header_path, youtube_vid, body, category) assert post.h1 == h1 assert post.header_path == header_path assert post.youtube_vid == youtube_vid assert post.sample == sample assert post.body == body assert post.category == category def test_body_images(): """ GIVEN a Body Images model WHEN a new Body Image is created THEN check the post_id and img_path fields are defined correctly """ post_id = 1 img_path = "stuff/stuff/stuff/stuff" body_img = BodyImages(post_id, img_path) assert body_img.post_id == post_id assert body_img.img_path == img_path def test_subscribers(): """ GIVEN a Subscribers model WHEN a new Subscriber is created THEN check the first, last, email, and date_subscribed fields are defined correctly """ first = "Nelly" last = "Kelly" email = "[email protected]" sub = Subscribers(first, last, email) assert sub.first == first assert sub.last == last assert sub.email == email assert sub.date_subscribed == datetime.date.today() def test_admin(): """ GIVEN a Admin model WHEN a new Admin is created THEN check the email, password_hash and authenticated fields are defined correctly THEN also check that methods are properly defined """ username = "[email protected]" password = "weeeeeeeeeeee" #this is not encrypted but should be when sending to database admin = Admin(username, password) assert admin.username == username assert admin.password_hash == password
19a69838af72624333f25bcd7754605562b07419
1f0c6179a0d755dc7ac2521ea6ab500475239d72
/transmitter.py
cef4a8bd6ac45862044d2b58792b79be19de57ba
[ "Apache-2.0" ]
permissive
aritrog/sarathi
7034b9ccad3fc152667e5607778b94f8cc55313c
aeae111405656dc334e366ea42a5a8e2c7b26c5d
refs/heads/master
2021-08-22T16:45:15.371830
2020-07-04T23:08:21
2020-07-04T23:08:21
202,331,724
3
1
Apache-2.0
2019-11-16T12:37:52
2019-08-14T10:51:56
Python
UTF-8
Python
false
false
1,547
py
import os ,random,struct,binascii,base64 from nanpy import (ArduinoApi, SerialManager) from time import sleep from Crypto import Random from Crypto.Cipher import AES import hashlib class transmit(): def __init__(self,key): self.bs=AES.block_size self.key=hashlib.sha256(key.encode()).digest() def encrypt(self, raw): raw=self. _pad(raw) iv= Random.new().read(AES.block_size) cipher=AES.new(self.key, AES.MODE_CBC,iv) return base64.b64encode(iv + cipher.encrypt(raw)) def decrypt(self, enc): enc=base64.b64decode(enc) iv= enc[:AES.block_size] cipher=AES.new(self.key, AES.MODE_CBC, iv) return self._unpad(cipher.decrypt(enc[AES.block_size:])).decode('utf-8') def _pad(self, s): return s + (self.bs - len(s) % self.bs) * chr(self.bs - len(s) % self.bs) @staticmethod def _unpad(s): return s[:-ord(s[len(s)-1:])] #this part of the code is not compiled but the rest is while i upload this to github on 14/11/19 1 in the morning def get_data(): #this peice of code corresponds to a code which is required to form a connection to the arduino #that code will be a part of the boot procedure and will hence establish a #connection before any funtion of the transmit is called #we here crete a object of arduino_connect and use the already completed connection to get data using the arduino ob=transmit("passwordkey") txt="hi this is a text sample for encrption" #txt=txt.encode('UTF-8') print(txt) while(len(txt)%16!=0): txt=txt+"n" print(ob.encrypt(txt)) print(ob.decrypt(ob.encrypt(txt)))
2d1a6eafcbbdf684f1e6ac28f727e3e6a3c14ddd
783324290a8c23ba03050032ecbf2be13558a536
/pymethods/algorithms/elliptic_mesh_generation/meshStretch2d.py
64c0b49286339634048edcb344307f3ca847fa15
[]
no_license
IFF-0303/pymethods
4a3a39af00554c2ed5e21528188214049766791f
c8690379dd9ca383cf3257a281094e4851677faa
refs/heads/master
2023-07-03T21:30:59.695292
2020-12-14T03:18:03
2020-12-14T03:18:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,311
py
import numpy as np inner = np.s_[1:-1] ip1 = np.s_[2:] im1 = np.s_[0:-2] def f1Prime(alpha, zeta): return alpha * np.exp(alpha * zeta) / (np.exp(alpha) - 1) def f1PrimePrime(alpha, zeta): return (alpha**2) * np.exp(alpha * zeta) / (np.exp(alpha)-1) def f2Prime(beta, eta): return beta * np.exp(beta * eta) / (np.exp(beta)-1) def f2PrimePrime(beta, eta): return (beta**2) * np.exp(beta * eta) / (np.exp(beta)-1) def G11(mesh, zeta, eta): x, y = mesh numerator_1 = x[inner, ip1] - x[inner, im1] denominator_1 = 2 * zeta numerator_2 = y[inner, ip1] - y[inner, im1] denominator_2 = 2 * zeta a = (numerator_1/denominator_1)**2 b = (numerator_2/denominator_2)**2 return a+b def G22(mesh, zeta, eta): x, y = mesh numerator_1 = x[ip1, inner] - x[im1, inner] denominator_1 = 2 * eta numerator_2 = y[ip1, inner] - y[im1, inner] denominator_2 = 2 * eta a = (numerator_1/denominator_1)**2 b = (numerator_2/denominator_2)**2 return a+b def constructCoefficients( mesh, zeta_delta, eta_delta, zeta_params, eta_params, alpha, beta ): x, y = mesh height, length = x.shape g11 = G11(mesh, zeta_delta, eta_delta) g22 = G22(mesh, zeta_delta, eta_delta) f2_double_over_single_prime = ( f2PrimePrime(beta, eta_params[inner, inner])/f2Prime(beta, eta_params[inner, inner]) ) f1_double_over_single_prime = ( f1PrimePrime(alpha, zeta_params[inner, inner])/f1Prime(alpha, zeta_params[inner, inner]) ) b = 2 * (g11/(eta_delta**2) + g22/(zeta_delta**2)) a = f2_double_over_single_prime * g11 / (2*eta_delta) + g11/(eta_delta ** 2) c = - f2_double_over_single_prime * g11 / (2*eta_delta) + g11/(eta_delta**2) dTerm = ( g22 / zeta_delta * ( x[inner, im1]/zeta_delta + f1_double_over_single_prime * x[inner, im1]/2 + x[inner, ip1]/zeta_delta - f1_double_over_single_prime * x[inner, ip1]/2 ) ) eTerm = ( g22 / zeta_delta * ( y[inner, im1]/zeta_delta + f1_double_over_single_prime * y[inner, im1] / 2 + y[inner, ip1]/zeta_delta - f1_double_over_single_prime * y[inner, ip1]/2 ) ) return a, b, c, dTerm, eTerm def solveTDMA(phi, a, b, c, dTerm): P = np.zeros(phi.shape[1]) Q = np.zeros(phi.shape[1]) bArr = np.zeros(phi.shape[1]) aArr = np.zeros(phi.shape[1]) for i in np.arange(1, phi.shape[1]-1): Q[0] = phi[0][i] for j in np.arange(1, phi.shape[0]-1): P[j] = c[j-1][i-1] Q[j] = dTerm[j-1][i-1] bArr[j] = b[j-1][i-1] aArr[j] = a[j-1][i-1] term = 1.0 / (bArr[j] - aArr[j] * P[j - 1]) Q[j] = (Q[j] + aArr[j] * Q[j - 1]) * term P[j] = P[j] * term for j in np.arange(phi.shape[-1]-2, -1, -1): phi[j][i] = P[j] * phi[j + 1][i] + Q[j] def optimize(new_mesh, zeta_delta, eta_delta, zeta_params, eta_params, alpha=0.01, beta=0.01, epsilon=1e-5, max_repeats=1000, residualInit=1000): n_iters = 0 residual = residualInit while residual > epsilon: old_mesh = new_mesh.copy() n_iters += 1 a, b, c, dTerm, eTerm = constructCoefficients( new_mesh, zeta_delta, eta_delta, zeta_params, eta_params, alpha, beta ) solveTDMA(new_mesh[0], a, b, c, dTerm) solveTDMA(new_mesh[1], a, b, c, eTerm) residual = (np.abs(old_mesh-new_mesh)).mean() if n_iters > max_repeats: break return new_mesh class meshStretch2d: def __init__(self, mesh2d, zeta_delta, eta_delta, zeta_orig, eta_orig): mesh2d = mesh2d[0:2] assert mesh2d.shape[0] == 2 self.mesh = mesh2d self.zeta_delta = zeta_delta self.eta_delta = eta_delta self.zeta_orig = zeta_orig self.eta_orig = eta_orig def __call__(self, **kwargs): new_mesh = self.mesh.copy() zeta_delta, eta_delta, zeta_orig, eta_orig = [ self.zeta_delta, self.eta_delta, self.zeta_orig, self.eta_orig] new_mesh = optimize( new_mesh, zeta_delta, eta_delta, zeta_orig, eta_orig, **kwargs) return new_mesh
9fe9ea9d09007ef7568122aac18607ee2e1cdc33
75212bbbbe9b09e6b920af3fe28d68987e8c4f2f
/Algorithm-Python/Week-2/fibonacci.py
71cab665dbb9c9d28ed306cc76e2e38d172621b4
[]
no_license
definito/Algorithm
001a93c9cf63af1e5867e0bc49769c6d8f8dc8b7
31a71a96245ff94c80d1f9435c4512b0bf07f85c
refs/heads/master
2021-06-10T08:41:58.389782
2020-05-27T22:20:24
2020-05-27T22:20:24
95,305,608
0
0
null
null
null
null
UTF-8
Python
false
false
383
py
import sys def fibonacci(n): a = 0 b = 1 if n < 0: print("Incorrect input") elif n == 0: return a elif n == 1: return b else: for i in range(2,n+1): c = a + b a = b b = c return b if __name__ == '__main__': input_n = int(input()) print(fibonacci(input_n))
33e5cd4b2657c61467c435a3db9d60da3799993f
98b8f1b1705f1ad8f36c68166770516f5717d9b1
/contrib/kmb_search/topk_impl.py
4a7f66ea0bb53e3bb8bb0055b16148411753f3b4
[ "MIT" ]
permissive
gauenk/faiss_fork
b4fad9bfe7e027d52cd9f96a2ba00abd9e133245
f51ffb536f829358bd1907acda89dfc8c1bc4146
refs/heads/main
2023-08-27T09:05:10.553656
2021-11-12T01:15:10
2021-11-12T01:15:10
408,296,953
0
0
null
null
null
null
UTF-8
Python
false
false
8,537
py
# -- python -- import math import numpy as np from einops import rearrange,repeat from numba import jit,njit,prange # -- project -- from pyutils import save_image # -- pytorch -- import torch import torch.nn.functional as nnF def pad_first_dim(tensor,pad): tensor = torch.transpose(tensor,0,-1) tensor = nnF.pad(tensor,(0,pad),value=float("nan")) tensor = torch.transpose(tensor,0,-1) return tensor # ------------------------------------------- # # Update State with Randomness # # ------------------------------------------- def update_state(propDists,prevDists,propModes,prevModes, propInds,prevInds,sframes,s_iter): """ kmb_topk_rand: Jump out of local optima by picking an element of the search space that is not optimal propDist/prevDist ratio: Jump out of local optima by picking a new distance that was not smaller than the previous distance """ # -- take top 1 of proposed -- # print("prevInds.shape: ",prevInds.shape) propDists,propModes,propInds = kmb_topk_rand(propDists,propModes,propInds,s_iter) # -- create modified dists for selection -- mPropDists = torch.nanmean(torch.abs(propDists-propModes),dim=0) mPrevDists = torch.nanmean(torch.abs(prevDists-prevModes),dim=0) mPrevDists[torch.where(torch.isnan(mPrevDists))] = 1000. mPropDists[torch.where(torch.isnan(mPropDists))] = 1000. assert mPrevDists.shape[0] == 1,"k == 1" # -- compute ratio -- prior = 0.90 if s_iter > 1 else 1. ratioDists = mPropDists/mPrevDists * prior pexp = 2*math.log10(s_iter+1)+1#math.exp(2*math.log10(s+1)) pexp = pexp if s_iter > 1 else 1000. ratioDists = torch.pow(ratioDists,pexp) coin_flip = torch.rand_like(ratioDists) toChange = torch.where(coin_flip > ratioDists) # -- init next state -- nextDists = prevDists.clone() nextInds = prevInds.clone() nextModes = prevModes.clone() # print("nextInds.shape: ",nextInds.shape) # print("propInds.shape: ",propInds.shape) # print(propInds[:,:,0,9,6]) # print("nextInds.shape: ",nextInds.shape) # print(coin_flip.shape) # print(propInds[:,:,:,9,6]) # -- fill in state -- # print("pre: ",nextInds[:,:,0,9,6]) nframes = propInds.shape[1] nfsearch = len(sframes) for ti,tj in enumerate(sframes): nextDists[tj][toChange] = propDists[ti][toChange] nextModes[tj][toChange] = propModes[ti][toChange] for t in range(nframes): nextInds[0,t][toChange] = propInds[0,t][toChange] nextInds[1,t][toChange] = propInds[1,t][toChange] # print("nextInds.shape: ",nextInds.shape) # print("post: ",nextInds[:,:,0,9,6]) return nextDists,nextModes,nextInds def kmb_topk_update(propDists,prevDists,propModes,prevModes, propInds,prevInds,propSFrames,prevSFrames): # -- pad across first dimension -- # print("prevDists.shape: ",prevDists.shape) # print("propDists.shape: ",propDists.shape) # print("propModes.shape: ",propModes.shape) # pad = prevDists.shape[0] - propDists.shape[0] # propDists = pad_first_dim(propDists,pad) # propModes = pad_first_dim(propModes,pad) # print("propDists.shape: ",propDists.shape) # print("propModes.shape: ",propModes.shape) # -- insert proposed into prev -- # b = propDists.shape[1] # propDists_raw = propDists.clone() # propModes_raw = propModes.clone() # propDists = prevDists.clone().repeat(1,b,1,1) # propModes = prevModes.clone().repeat(1,b,1,1) # propDists[propSFrames] = propDists_raw # propModes[propSFrames] = propModes_raw # -- create stacks -- aug_vals = torch.cat([prevDists,propDists],dim=1) aug_modes = torch.cat([prevModes,propModes],dim=1) aug_inds = torch.cat([prevInds,propInds],dim=2) # -- exec and return -- K = prevDists.shape[1] return kmb_topk(aug_vals,aug_modes,aug_inds,K) def kmb_topk_rand(vals,modes,inds,s_iter): # -- init -- device = vals.device tK,s,h,w = vals.shape two,t,s,h,w = inds.shape # -- run pytorch topk -- mvals = torch.nanmean(torch.abs(vals - modes),dim=0) # -- misc -- # print(inds[:,:,0,9,6]) # print(inds[:,:,1,9,6]) # print(inds[:,:,5,9,6]) # print(mvals[:,9,6]) vals_topk,modes_topk,inds_topk = topk_torch_rand(mvals,vals,modes,inds,s_iter) # print("inds_topk.shape: ",inds_topk.shape) # print(inds_topk[:,:,0,9,6]) return vals_topk,modes_topk,inds_topk def kmb_topk(vals,modes,inds,K): # -- init -- device = vals.device tK,s,h,w = vals.shape two,t,s,h,w = inds.shape # -- creat output vars -- # vals = vals.cpu().numpy() # inds = inds.cpu().numpy() # vals_topk = np.zeros((K,h,w)) # inds_topk = np.zeros((two,t,K,h,w)) # -- run pytorch topk -- mvals = torch.nanmean(torch.abs(vals - modes),dim=0) # print("-- pre top k --") # print("inds.shape: ",inds.shape) # print("mvals.shape: ",mvals.shape) # print(inds[:,:,0,4,5]) # print(mvals[:,4,5]) # print(vals[:,:,4,5]) # print(vals[:,:,4,5].shape) vals_topk,modes_topk,inds_topk = topk_torch(mvals,vals,modes,inds,K) # print("inds_topk.shape: ",inds_topk.shape) # print(inds_topk[:,:,0,9,6]) # print("-- post top k --") # print("vals_topk.shape: ",vals_topk.shape) # print(inds_topk[:,:,0,4,5]) # print(vals_topk[:,:,4,5]) # -- launch numba -- # kmb_topk_numba(vals,inds,vals_topk,inds_topk) # -- pytorch to numpy -- # vals_topk = torch.FloatTensor(vals_topk).to(device) # inds_topk = torch.IntTensor(inds_topk).to(device) return vals_topk,modes_topk,inds_topk def topk_torch_rand(mvals,vals,modes,inds,s_iter,K=1): """ Jump out of local optima by picking an element of the search space that is not optimal """ # -- take min -- assert K == 1,"only K = 1 right now." topk = torch.topk(mvals,K,dim=0,largest=False,sorted=True) topk_mvals = topk.values # -- take ratio w.r.t. [ideal?] min -- eps = 1e-8 ratio_mvals = (topk_mvals+eps) / (mvals+eps) # [0,1] by construction # -- sample using ratios as weights -- s,h,w = ratio_mvals.shape weights = ratio_mvals pexp = 5*math.log10(s_iter+1)+1#math.exp(2*math.log10(s+1)) pexp = pexp if s_iter > 1 else 1000. weights = torch.pow(weights,pexp) # -- save weights not equal to 1 on exh. search -- # wsum = torch.sum(weights,dim=0) # wimg = torch.abs(wsum-1.)<1e-5 # wimg = wimg.type(torch.float) # save_image("tkmb_wimg.png",wimg) # -- sample across search space using weights -- weights = rearrange(weights,'s h w -> (h w) s') samples = torch.multinomial(weights,1) samples = rearrange(samples,'(h w) 1 -> 1 h w',h=h) # print("samples.shape: ",samples.shape) # print("topk.indices.shape: ",topk.indices.shape) # print(ratio_mvals) # print(samples) # print(topk.indices) # -- use indices to return index_topk(vals,modes,inds,K,samples) def topk_torch(mvals,vals,modes,inds,K): # print("pre") topk = torch.topk(mvals,K,dim=0,largest=False,sorted=True) # torch.cuda.synchronize() # print("post") return index_topk(vals,modes,inds,K,topk.indices) def index_topk(vals,modes,inds,K,indices): two = inds.shape[0] assert two == 2,"check [modes,inds] order." tK = vals.shape[0] vals_topk = torch.zeros_like(vals)[:,:K] modes_topk = torch.zeros_like(modes)[:,:K] # print(vals.shape,indices.shape,modes.shape,vals_topk.shape) # exit() # for tk in range(tK): # print(vals_topk.shape,vals.shape) # vals_topk[tk] = torch.gather(vals[tk],dim=0,index=indices) # modes_topk[tk] = torch.gather(modes[tk],dim=0,index=indices) # exit() inds_topk = torch.zeros_like(inds)[:,:,:K] # print("inds.shape: ",inds.shape) # print("indices.shape: ",indices.shape) # print(inds[:,:,6,4,5]) # print(indices[0,4,5]) for i in range(inds.shape[0]): for t in range(inds.shape[1]): inds_topk[i,t] = torch.gather(inds[i,t],dim=0,index=indices) # print(inds_topk[:,:,0,4,5]) return vals_topk,modes_topk,inds_topk def kmb_topk_numba(vals,inds,vals_topk,inds_topk): pass # s,h,w = vals.shape # K,h,w = vals_topk.shape # for hi in prange(h): # for wi in prange(w): # for si in range(s): # # -- update --
2825869abf0d80c2fbadd1499c8068f1d7a3f4cf
a7ee6ca2121c0d6478a631df0b670e3280abb664
/SConstruct
7b4598fdea4b4de74adb25997180e2ec55e73df4
[ "MIT" ]
permissive
Boyquotes/crash-bandicoot-godot
fdf0fcb8ea8289dc0b154e0f49b594ae64c1cfff
863294fa44936f45748efe364601e8ec65ecc500
refs/heads/master
2023-06-14T11:30:33.249550
2020-09-03T11:29:46
2020-09-03T11:29:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,039
#!python import os, subprocess, sys # Workaround for MinGW. See: # http://www.scons.org/wiki/LongCmdLinesOnWin32 print("this is cool eh :D") if (os.name=="nt"): import subprocess def mySubProcess(cmdline,env): #print "SPAWNED : " + cmdline startupinfo = subprocess.STARTUPINFO() startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW proc = subprocess.Popen(cmdline, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, startupinfo=startupinfo, shell = False, env = env) data, err = proc.communicate() rv = proc.wait() if rv: print("=====") print(err.decode("utf-8")) print("=====") return rv def mySpawn(sh, escape, cmd, args, env): newargs = ' '.join(args[1:]) cmdline = cmd + " " + newargs rv=0 if len(cmdline) > 32000 and cmd.endswith("ar") : cmdline = cmd + " " + args[1] + " " + args[2] + " " for i in range(3,len(args)) : rv = mySubProcess( cmdline + args[i], env ) if rv : break else: rv = mySubProcess( cmdline, env ) return rv opts = Variables([], ARGUMENTS) # Gets the standard flags CC, CCX, etc. env = DefaultEnvironment() # Try to detect the host platform automatically. # This is used if no `platform` argument is passed if sys.platform.startswith('linux'): host_platform = 'linux' elif sys.platform == 'darwin': host_platform = 'osx' elif sys.platform == 'win32' or sys.platform == 'msys': host_platform = 'windows' else: raise ValueError( 'Could not detect platform automatically, please specify with ' 'platform=<platform>' ) # Define our options opts.Add(EnumVariable('target', "Compilation target", 'debug', ['d', 'debug', 'r', 'release'])) opts.Add(EnumVariable('platform', "Compilation platform", host_platform, ['', 'windows', 'x11', 'linux', 'osx'])) opts.Add(EnumVariable('p', "Compilation target, alias for 'platform'", '', ['', 'windows', 'x11', 'linux', 'osx'])) opts.Add(BoolVariable('use_llvm', "Use the LLVM / Clang compiler", 'no')) opts.Add(PathVariable('target_path', 'The path where the lib is installed.', 'bin/')) opts.Add(PathVariable('target_name', 'The library name.', 'libcdt-gd', PathVariable.PathAccept)) opts.Add(BoolVariable( 'use_mingw', 'Use the MinGW compiler instead of MSVC - only effective on Windows', False )) # Local dependency paths, adapt them to your setup godot_headers_path = "thirdparty/godot-cpp/godot_headers/" cpp_bindings_path = "thirdparty/godot-cpp/" cpp_library = "libgodot-cpp" # only support 64 at this time.. bits = 64 # Updates the environment with the option variables. opts.Update(env) # Process some arguments if env['use_llvm']: env['CC'] = 'clang' env['CXX'] = 'clang++' if env['p'] != '': env['platform'] = env['p'] if env['platform'] == '': print("No valid target platform selected.") quit(); # Check our platform specifics if env['platform'] == "osx": env['target_path'] += 'osx/' cpp_library += '.osx' if env['target'] in ('debug', 'd'): env.Append(CCFLAGS = ['-g','-O2', '-arch', 'x86_64', '-std=c++17']) env.Append(LINKFLAGS = ['-arch', 'x86_64']) else: env.Append(CCFLAGS = ['-g','-O3', '-arch', 'x86_64', '-std=c++17']) env.Append(LINKFLAGS = ['-arch', 'x86_64']) elif env['platform'] in ('x11', 'linux'): env['target_path'] += 'x11/' cpp_library += '.linux' if env['target'] in ('debug', 'd'): env.Append(CCFLAGS = ['-fPIC', '-g3','-Og', '-std=c++17']) else: env.Append(CCFLAGS = ['-fPIC', '-g','-O3', '-std=c++17']) elif env['platform'] == "windows": env['target_path'] += 'windows/x64/' cpp_library += '.windows' if host_platform == 'windows' and not env['use_mingw']: # This makes sure to keep the session environment variables on windows, # that way you can run scons in a vs 2017 prompt and it will find all the required tools env.Append(ENV = os.environ) env.Append(CCFLAGS = ['-DWIN32', '-D_WIN32', '-D_WINDOWS', '-W3', '-GR', '-D_CRT_SECURE_NO_WARNINGS']) if env['target'] in ('debug', 'd'): env.Append(CCFLAGS = ['-EHsc', '-D_DEBUG', '-MDd']) else: env.Append(CCFLAGS = ['-O2', '-EHsc', '-DNDEBUG', '-MD']) elif host_platform == 'linux' or host_platform == 'osx': env['CXX'] = 'x86_64-w64-mingw32-g++' env['AR'] = "x86_64-w64-mingw32-ar" env['RANLIB'] = "x86_64-w64-mingw32-ranlib" env['LINK'] = "x86_64-w64-mingw32-g++" elif host_platform == 'windows' and env['use_mingw']: env = env.Clone(tools=['mingw']) env["SPAWN"] = mySpawn if host_platform == 'linux' or host_platform == 'osx' or env['use_mingw']: if env['target'] in ('debug', 'd'): env.Append(CCFLAGS = ['-fPIC', '-g3','-Og', '-std=c++17']) else: env.Append(CCFLAGS = ['-fPIC', '-g0','-s','-O3', '-std=c++17']) env.Append(LINKFLAGS=[ '--static', '-Wl,--no-undefined', '-static-libgcc', '-static-libstdc++', ]) if env['target'] in ('debug', 'd'): cpp_library += '.debug' else: cpp_library += '.release' cpp_library += '.' + str(bits) # make sure our binding library is properly includes env.Append(CPPPATH=['CDT/include/', '.', godot_headers_path, cpp_bindings_path + 'include/', cpp_bindings_path + 'include/core/', cpp_bindings_path + 'include/gen/']) env.Append(LIBPATH=[cpp_bindings_path + 'bin/']) env.Append(LIBS=[cpp_library]) # tweak this if you want to use different folders, or more folders, to store your source code in. env.Append(CPPPATH=['src/']) sources = Glob('src/*.cpp') library = env.SharedLibrary(target=env['target_path'] + env['target_name'] , source=sources) Default(library) # Generates help for the -h scons option. Help(opts.GenerateHelpText(env))
05847e11fb76457486afad1b7417b96292f4bfe7
1e9f6e914bdb9ad79f74636eca5e2384a36595c5
/pyronn/ct_reconstruction/__init__.py
9843791cf969842ee18375bd3a8a15eb3386b687
[ "Apache-2.0" ]
permissive
theHamsta/PYRO-NN
18c1dea96659b44b4def2979b256d21133090840
c454527c5edebc2cf4f351c6453ba013abf6a701
refs/heads/master
2020-07-29T10:30:44.480120
2019-09-17T12:38:05
2019-09-17T12:38:05
209,763,348
0
0
Apache-2.0
2019-09-20T10:16:07
2019-09-20T10:16:06
null
UTF-8
Python
false
false
599
py
# Copyright [2019] [Christopher Syben, Markus Michen] # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
8c40010ee1ea291323b93a24c8d96a24315a25d0
fa33e457dbf78453f71795fe8e6ed07dbacec1db
/maingui.py
58a1f2cfca5106e3a12e49d0553fc12cf0bb1cca
[]
no_license
Mountagha/projet-Automate
91e879862420b21955a279ecccca608a46084c00
db2336d9639a189b8e3170c4f0ffc2dc497104c1
refs/heads/master
2021-01-22T05:24:22.422731
2017-03-01T00:58:39
2017-03-01T00:58:39
81,659,770
3
2
null
null
null
null
UTF-8
Python
false
false
360
py
#!/usr/bin/env python #! -*- coding:utf-8 -*- from Automate import Automate from Tkinter import * from gui import InterfaceGraphique #on crée une interface graphique minimale pour récupérer les input des utilisateurs et afficher les automates #on crée notre fenêtre principale window = Tk() interface = InterfaceGraphique(window) interface.mainloop()
bb205e0d3be5a05f7828eef5c267e833e58a348b
9c7b2965396867b7d1459fafacd87b0ed14959c3
/LowerSaxony/06_subset_shps_per_tile.py
086fa6a524efdbd88d2049a7c1be41e738e581eb
[]
no_license
clejae/forland_repo
461cd7fcd85615c2d33b0a5985d5d8ee37164032
3387eed69fc3a60e1d3a948b12fe23538f0b79da
refs/heads/master
2023-08-17T06:30:37.571058
2023-08-09T08:46:49
2023-08-09T08:46:49
241,071,590
0
0
null
null
null
null
UTF-8
Python
false
false
6,678
py
# # github Repo: https://github.com/clejae # ------------------------------------------ LOAD PACKAGES ---------------------------------------------------# import os import time import glob from osgeo import ogr, osr import joblib ## CJ REPO import vector import forland_wrapper import general # ------------------------------------------ DEFINE FUNCTIONS ------------------------------------------------# # ------------------------------------------ START TIME ------------------------------------------------------# stime = time.strftime("%a, %d %b %Y %H:%M:%S", time.localtime()) print("start: " + stime) # ------------------------------------------ USER VARIABLES ------------------------------------------------# wd = r'\\141.20.140.91\SAN_Projects\FORLand\Clemens\\' # ------------------------------------------ LOAD DATA & PROCESSING ------------------------------------------# os.chdir(wd) #################################################################### ## ADD ID column # for pth in lst: def workFunc(year): pth = r'data\vector\IACS\LS\IACS_LS_{0}.shp'.format(year) print("\n", year) inv_shp = ogr.Open(pth, 1) inv_lyr = inv_shp.GetLayer() field_def = ogr.FieldDefn('ID', ogr.OFTInteger64) inv_lyr.CreateField(field_def) for f, feat in enumerate(inv_lyr): feat.SetField("ID", f) inv_lyr.SetFeature(feat) inv_lyr.ResetReading() print(year, "done") if __name__ == '__main__': joblib.Parallel(n_jobs=12)(joblib.delayed(workFunc)(year) for year in range(2019,2020)) #################################################################### ## write tile names to txt file # for i in range(1,4): # pth = r"data\vector\grid\LS\Invekos_grid_LS_15km_sub{}.shp".format(i) # shp = ogr.Open(pth) # lyr = shp.GetLayer() # # file = open(r"data\vector\tile_list_LS_sub{}.txt".format(i), 'w+') # # for feat in lyr: # fid = feat.GetField("POLYID") # file.write(fid + "\n") # lyr.ResetReading() # file.close() # #################################################################### ## Explore data structure for year in range(2019, 2020): pth = r'data\vector\IACS\LS\IACS_LS_{0}.shp'.format(year) print("\n", year) inv_shp = ogr.Open(pth) inv_lyr = inv_shp.GetLayer() vector.printFieldNames(inv_lyr) fnames = vector.getFieldNames(inv_shp) print(fnames) for i in range(10): feat = inv_lyr.GetFeature(i) attrs = [feat.GetField(fname) for fname in fnames] print(attrs) #################################################################### # remove none geoms for year in range(2019, 2020): print('######################\n{0}\n######################'.format(year)) in_pth = r'data\vector\IACS\LS\IACS_LS_{0}.shp'.format(year) out_pth = r'data\vector\IACS\LS\IACS_LS_{0}_no_nones.shp'.format(year) forland_wrapper.removingNoneGeoms(in_pth, out_pth) print(year, "done!") ## ALL Shapes don't have none geometries ## NAMING stays the same #################################################################### ## make geoms valid # lst = list(range(2006,2011)) + list(range(2012,2020)) # lst = [2005, 2018, 2019] lst = list(range(2011,2020)) import forland_wrapper for year in lst: print('######################\n{0}\n######################'.format(year)) in_pth = r'data\vector\IACS\LS\IACS_LS_{0}.shp'.format(year) forland_wrapper.validityChecking(in_shp_pth = in_pth, id_field_name="ID") print(year, "done!\n") #################################################################### ## subset invekos on TILE basis in parallel for one year for i in range(1,4): with open(r"data\vector\tile_list_LS_sub{}.txt".format(i)) as file: tiles_lst = file.readlines() tiles_lst = [item.strip() for item in tiles_lst] for tile in tiles_lst: def workFunc(year): # year = 2017 pth = r'data\vector\IACS\LS\IACS_LS_{0}.shp'.format(year) grid_pth = r'data\vector\grid\Invekos_grid_LS_15km.shp' grid_shp = ogr.Open(grid_pth) grid_lyr = grid_shp.GetLayer() grid_lyr.SetAttributeFilter("POLYID = '" + tile + "'") feat_grid = grid_lyr.GetNextFeature() # year = general.findBetween(pth, 'Nutzung', '.shp') print(year, tile) # print("\n", pth) inv_shp = ogr.Open(pth) inv_lyr = inv_shp.GetLayer() # print(year, "Number of features:", inv_lyr.GetFeatureCount()) # print("Extent:", inv_lyr.GetExtent()) inv_sr = inv_lyr.GetSpatialRef() # transform = osr.CoordinateTransformation(grid_sr, inv_sr) geom = feat_grid.geometry().Clone() # print(year, "Geometry before transformation:\n", geom) # geom.Transform(transform) # print("Geometry after transformation:\n", geom) inv_lyr.SetSpatialFilter(geom) out_pth = r"data\vector\IACS\LS\tiles\{}".format(tile) general.createFolder(out_pth) out_shp_pth = r"data\vector\IACS\LS\tiles\{1}\IACS_{0}_{1}.shp".format(year, tile) drv_shp = ogr.GetDriverByName('ESRI Shapefile') inv_lyr_defn = inv_lyr.GetLayerDefn() if os.path.exists(out_shp_pth): drv_shp.DeleteDataSource(out_shp_pth) out_shp = drv_shp.CreateDataSource(out_shp_pth) lyr_name = os.path.splitext(os.path.split(out_shp_pth)[1])[0] geom_type = ogr.wkbPolygon out_lyr = out_shp.CreateLayer(lyr_name, inv_sr, geom_type=geom_type) for i in range(0, inv_lyr_defn.GetFieldCount()): field_def = inv_lyr_defn.GetFieldDefn(i) out_lyr.CreateField(field_def) for feat in inv_lyr: out_feat = feat out_lyr.CreateFeature(out_feat) ouf_feat = None inv_lyr.ResetReading() del inv_shp, inv_lyr del out_shp, out_lyr print(year, tile, "done") # if __name__ == '__main__': # joblib.Parallel(n_jobs=22)(joblib.delayed(workFunc)(tile) for tile in tiles_lst) if __name__ == '__main__': joblib.Parallel(n_jobs=1)(joblib.delayed(workFunc)(year) for year in range(2011,2020)) # ------------------------------------------ END TIME --------------------------------------------------------# etime = time.strftime("%a, %d %b %Y %H:%M:%S", time.localtime()) print("start: " + stime) print("end: " + etime) # ------------------------------------------ UNUSED BUT USEFUL CODE SNIPPETS ---------------------------------#
4fab9b6d74e6e9291d5d6b793838630fdaa4ac61
c901830bafc8035aa28eed8c84ab7255f6afe923
/unfolding/runCorrectionEnergyFakeTrgCutoff.py
d2acbb8199754ee9b5dce19b21d684302b55d95e
[]
no_license
mfasDa/SubstructureAnalysis
b003882418e0f8eae8188eafaa9b54cec8b3030e
fc365c285a148911fcab96677c653d5140d18d86
refs/heads/master
2022-06-13T04:14:15.877728
2022-05-31T16:33:23
2022-05-31T16:33:23
118,133,369
5
2
null
2022-12-09T15:53:41
2018-01-19T14:14:57
C++
UTF-8
Python
false
false
2,481
py
#! /usr/bin/env python from __future__ import print_function import argparse import os import subprocess import sys from threading import Thread, Lock class workpool: def __init__(self): self.__tasks = [] self.__mutex = Lock() def insert(self, task): self.__mutex.acquire() self.__tasks.append(task) self.__mutex.release() def pop(self): payload = None self.__mutex.acquire() if len(self.__tasks): payload = self.__tasks.pop(0) self.__mutex.release() return payload class Processor(Thread): def __init__(self, workqueue): Thread.__init__(self) self.__workqueue = workqueue def run(self): task = self.__workqueue.pop() while task != None: subprocess.call(task, shell = True) task = self.__workqueue.pop() def getrepo(): sciptname = os.path.abspath(sys.argv[0]) return os.path.dirname(sciptname) if __name__ == "__main__": REPO = getrepo() parser = argparse.ArgumentParser(prog="runCorrrectionEnregy.py", description="Run correction chain 1D") parser.add_argument("datadir", metavar="DATADIR", help="Location where to find the data") parser.add_argument("-z", "--zleading", type=float, default=1.1, help="Cut on the leading neutral constituent") args = parser.parse_args() SCRIPTS = ["runCorrectionChain1DBayes_SysFakeTrgSwap.cpp"] #SCRIPTS = ["runCorrectionChain1DBayes_SysRegTrgSwap.cpp"] DATADIR = args.datadir ZCUT= args.zleading #CUTOFFS = [50., 60., 70., 80., 90., 100., 120.] CUTOFFS = [120.] BASEDIR = os.getcwd() for CUT in CUTOFFS: cutoffdir = os.path.join(BASEDIR, "cutoff%d" %(int(CUT))) if not os.path.exists(cutoffdir): os.makedirs(cutoffdir, 0755) os.chdir(cutoffdir) WORKQUEUE = workpool() for RADIUS in range(2, 6): print("Unfolding R=%.1f" %(float(RADIUS)/10.)) for SCRIPT in SCRIPTS: cmd="root -l -b -q \'%s(%f, %f, %f, \"%s\")'" %(os.path.join(REPO, SCRIPT), float(RADIUS)/10., ZCUT, CUT, DATADIR) print("Command: %s" %cmd) WORKQUEUE.insert(cmd) WORKERS = [] for IWORK in range(0, 4): WORKER = Processor(WORKQUEUE) WORKER.start() WORKERS.append(WORKER) for WORKER in WORKERS: WORKER.join() os.chdir(BASEDIR)
69a1bb73fc99c15a7457dfafc605f31130d4167e
18137ede97006561de0bf109055be06b7bab3e71
/第四周/最小基因变化.py
e25ead2f8aad811c3d859d5f7b6f782a0fe390bd
[]
no_license
aisen-x/git_learn
0defe07eb5ee27d138cd69cbff37ee58ef980acb
44f385fd269329503f4176a0dafaf7b9fd8b3070
refs/heads/master
2023-05-10T03:45:12.765662
2021-06-14T15:37:09
2021-06-14T15:37:09
354,201,344
0
0
null
null
null
null
UTF-8
Python
false
false
717
py
from typing import List class Solution: def minMutation(self, start: str, end: str, bank: List[str]) -> int: bank = set(bank) if end not in bank: return -1 dict_ = { "A": "CGT", "C": "AGT", "G": "CAT", "T": "CGA" } queue = [(start, 0)] while queue: node, step = queue.pop(0) if node == end: return step for i, s in enumerate(node): for c in dict_[s]: new = node[:i] + c + node[i+1:] if new in bank: queue.append((new, step+1)) bank.remove(new) return -1
d4d98a04bb227001091d27832dc6dda7e8bdb711
ecaf7a4af0e68296363ad62080d38889b6ffdd1d
/student/migrations/0002_auto_20160803_1417.py
e9943a29c7142169e163fdeacf5ace64ae6f5924
[]
no_license
Patch67/openmis2
3c45cd394d3a09f3a8fda903f37f111073c086eb
92d35da308ab586a6b34c0332b46a028c3c005d8
refs/heads/master
2021-01-19T04:19:44.286109
2016-08-12T06:49:25
2016-08-12T06:49:25
65,443,742
0
0
null
null
null
null
UTF-8
Python
false
false
635
py
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2016-08-03 13:17 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('student', '0001_initial'), ] operations = [ migrations.AddField( model_name='student', name='first_name', field=models.CharField(default='forename', max_length=50), ), migrations.AddField( model_name='student', name='last_name', field=models.CharField(default='surname', max_length=30), ), ]
94febc2b579cb0ba9226d746eb929b24ac66b9b7
d37ae956875dcff4ba4d8ca4ce4057c9acc2a314
/Py_Practice/Tkinter_屏保/screensaver_V01.py
399239b2a0994f46867b7d3fa72a5d0cd39402fc
[]
no_license
w976994214/Project
d74904fe2215ae38b027dbb714d90f5e67ad7065
8a7a0a35c62e73e8b72e17f3842ae023d90bafda
refs/heads/master
2020-05-16T02:47:27.228346
2019-08-29T08:57:48
2019-08-29T08:57:48
182,638,424
0
0
null
null
null
null
UTF-8
Python
false
false
4,965
py
""" tkinter项目实战-屏保 分析: 屏幕保护可以自己启动,也可手动启动 一旦敲击键盘或移动鼠标,或者其他事件,则停止 如果屏保事一幅画的话,则没有画框 图像的运作时随机的,具有随机性,可能包括颜色、大小、数量、运动方向、变形 构成: ScreenSaver 需要一个canvas,大小等于屏幕大小,没有边框 ball 颜色、大小、数量、运动方向、变形 可移动,可以被调用 """ import random import tkinter class RandomBall(object): """ 定义运动的球的类 """ def __init__(self, canvas, scrnwidth, scrnheight): """ canvas:画布,所有的内容都应该在画布上呈现出来,此处通过次变量传入 scrnwidth/scrnheigh:屏幕的宽高 """ self.canvas = canvas self.item = 0 # 球的大小随机 # 球的大小用半径表示 self.radius = random.randint(20, 120) # 球出现的初始位置要随机,表示球的圆心的位置 # xpos表示位置的X坐标 self.xpos = random.randint(self.radius, int(scrnwidth)-self.radius) # ypos表示位置的Y坐标 self.ypos = random.randint(self.radius, int(scrnheight)-self.radius) # 定义球的运动的速度 # 模拟运动,随机运动速度,不断地擦掉原来的画,然后在新的地方从新绘制(每次移动一点) # 模拟X轴运动 self.xvelocity = random.randint(4, 20) # 模拟Y轴运动 self.yvelocity = random.randint(4, 20) # 定义屏幕的宽度 self.scrnwidth = scrnwidth # 定义屏幕的高度 self.scrnheight = scrnheight # 定义颜色 # RGB表示法:三个数字每个数字值0-255之间表示红绿蓝三个颜色的大小 # 在某些系统中,用英文单词也可以表示,比如red,green # 此处用lambda表达式 def c(): return random.randint(0, 255) self.color = '#%02x%02x%02x' % (c(), c(), c()) def create_ball(self): """ 用构造函数定义的变量值,在canvas上画一个球 """ # tkinter没有画圆形函数 # 只有一个画椭圆函数,画椭圆需要定义两个坐标 # 在一个长方形内画椭圆,我们只需要定义长方形左上角和右下角就行 x1 = self.xpos - self.radius x2 = self.xpos + self.radius y1 = self.ypos - self.radius y2 = self.ypos + self.radius # fill表示填充颜色 # outline表示边框颜色 self.item = self.canvas.create_oval(x1, y1, x2, y2, fill=self.color, outline=self.color) def move_ball(self): # 移动球的时候,需要控制球的方向 # 每次移动后,球都有一个新的坐标 self.xpos += self.xvelocity self.ypos += self.yvelocity # 判断撞墙 if self.xpos + self.radius >= self.scrnwidth: self.xvelocity *= -1 # 也可写成self.xvelocity = -self.xvelocity if self.xpos - self.radius <= 0: self.xvelocity *= -1 if self.ypos + self.radius >= self.scrnheight: self.yvelocity *= -1 if self.ypos - self.radius <= 0: self.yvelocity *= -1 # 在画布上挪动图画 self.canvas.move(self.item, self.xvelocity, self.yvelocity) class ScreenSaver(object): """ 定义屏保的类 可以被启动 """ # 如何装随机产生的球 balls = list() def __init__(self): # 每次启动球的数量随机 self.num_balls = random.randint(6, 20) self.root = tkinter.Tk() # 取消边框 self.root.overrideredirect(1) # 任何鼠标移动都取消 self.root.bind('<Motion>', lambda e: self.root.destroy()) # 同理按动键盘都退出屏保 self.root.bind('<Key>', lambda e: self.root.destroy()) # 得到屏幕大小规格 w, h = self.root.winfo_screenwidth(), self.root.winfo_screenheight() # 创建画布,包括画布的归属,规格 self.canvas = tkinter.Canvas(self.root, width=w, height=h) self.canvas.pack() # 在画布上画球 for i in range(self.num_balls): ball = RandomBall(self.canvas, scrnwidth=w, scrnheight=h) ball.create_ball() self.balls.append(ball) self.run_screen_saver() self.root.mainloop() def run_screen_saver(self): for ball in self.balls: ball.move_ball() # after是指定毫秒后启动一个函数,需要启动的函数是第二个参数,这里用200毫秒 # 可以理解为200毫秒动一次球 self.canvas.after(200, self.run_screen_saver) if __name__ == "__main__": ScreenSaver()
5723936537563bf8d80ec19210d44c360aaeea77
42a3aaf2347c8eaa83a61ecb65bca40b0320fc6f
/socket05s.py
8d947dee9285add7e6db559aa7d5a56a0735f13e
[]
no_license
qinfena/python_net
5893281525144c68c6f98c297bcf4f4e517de4ca
72f8df6d77dcdcbb737fc66318fd9c2b21e875c0
refs/heads/main
2023-03-05T08:45:53.721116
2021-02-20T10:01:34
2021-02-20T10:01:34
340,620,403
0
0
null
null
null
null
UTF-8
Python
false
false
647
py
import socket import psutil def do_cpu(): data = str(psutil.cpu_percent(0)) + '%\n' count = 0 for process in psutil.process_iter(): data = data + process.name() data = data + ',' + str(process.pid) cpu_usage_rate_process = str(process.cpu_percent(0)) + '%' data = data + ',' + cpu_usage_rate_process + '\n' count += 1 if count == 10: break return data s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) s.bind(('192.168.12.76', 8090)) print('Bind UDP on 8090') while True: (info,addr) = s.recvfrom(1024) data = do_cpu() s.snedto(data.encode(utf-8,addr)) print('The client is ', addr) print('Sended CPU data is :', data)
02c5e834dc1df9cbf54266b2bca5a7a80ac5c957
f820ac21e543206c9b345144827cc0702653c6a0
/env2/bin/freeze_graph
7ae934acd3d69abf5adb5c7e548ae5dd28566ed0
[ "Apache-2.0" ]
permissive
HweheeChung/acai-iclr-2019
1885b0d23e04febcb7387947e482782488665a99
60eaef7c6a238396b784bcc57dc689b62461d29f
refs/heads/master
2020-05-15T09:37:36.179629
2019-04-29T12:26:39
2019-04-29T12:26:39
182,180,758
0
0
null
2019-04-19T01:25:43
2019-04-19T01:25:43
null
UTF-8
Python
false
false
273
#!/Data/github/acai-iclr-2019/env2/bin/python # -*- coding: utf-8 -*- import re import sys from tensorflow.python.tools.freeze_graph import run_main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(run_main())
aed6a5cee7db41042619ae1167ba4ccf10c709b3
daba182ef8dca49585c9a97ed379072eb4565931
/21.py
8d09105eb5c63fffef86e2135963b3a091aeaa93
[]
no_license
krlos097/21
f4e52ae703c7cdc1782f343ca152fc8f6268fca3
40e81a799ad96fe5cda7f34cc14321a3b7542fdf
refs/heads/master
2021-06-26T14:58:06.396200
2017-09-11T22:14:23
2017-09-11T22:14:23
102,394,870
0
0
null
null
null
null
UTF-8
Python
false
false
3,995
py
import random #Crear el Mazo (1 a 10 y J,Q,K) def crearMazo(): return range(1,11) + [10, 10, 10] def crearPalos(palos): if (palos == 0): return [] else: return crearMazo() + crearPalos(palos - 1) def Barajar(mazo): random.shuffle(mazo) return mazo def crearBaraja(): return Barajar(crearPalos(4)) def analizarCartas(cartas): print [str(carta) if carta != 1 else "1/11" for carta in cartas] def Ases(cartas, ases): if (ases == 0): return sum(cartas) elif (sum(cartas) + 10 * ases <= 21): return sum(cartas) + 10 * ases; else: return Ases(cartas, ases - 1) #Obtener el puntaje de las cartas que hay en la Mano def Puntaje(cartas): return Ases(cartas, cartas.count(1)) def T_Jugador(cartas): print "Sus cartas son: " analizarCartas(cartas[0]) if (Puntaje(cartas[0]) < 21 and bool(input("Pedir cartas (1) / Plantarse (0): "))): return T_Jugador([cartas[0] + [cartas[2][0]]] + [cartas[1]] + [cartas[2][1:]]) else: return cartas def T_Repartidor(cartas): if (Puntaje(cartas[1]) < 22): return T_Repartidor([cartas[0]] + [cartas[1] + [cartas[2][0]]] + [cartas[2][1:]]) else: print "Las cartas del Repartidor son:" analizarCartas(cartas[1]) return cartas def ResultadoFinal(Pjugador, Prepartidor): print "Puntaje jugador: " + str(Pjugador) + "\nPuntaje repartidor: " + str(Prepartidor) + "\n-----------------------------" if (Pjugador > 21): print "El Repartidor GANA el juego." elif Pjugador == 21 and (Prepartidor > 21 or Prepartidor < 21): print "El Jugador GANA el juego." elif (Pjugador == 21 and Prepartidor == 21): print "GANA EL REPARTIDOR." elif (Pjugador < 21 and (Prepartidor > 21 or Prepartidor < Pjugador)): print "Jugador GANA el juego." elif (Pjugador < 21 and Prepartidor > Pjugador and Prepartidor <22): print "El Repartidor GANA el juego." elif (Pjugador == Prepartidor): print "Gana el repartidor" #Funcion principal del Juego, donde se compila todo (Crear Mazo/Repartir Cartas/Establecer los Turnos/Imprimir el Resultado del Juego). def ElJuego(cartas,Turno): if cartas[2] == []: print "\nCreando Baraja..." ElJuego(cartas[0:2] + [crearBaraja()], Turno) elif cartas[0] == []: print "Repartiendo primeras cartas..." ElJuego([cartas[2][0:2]] + [cartas[1]] + [cartas[2][2:]], Turno) elif cartas[1] == []: print "Repartiendo segundas cartas..." ElJuego([cartas[0]] + [[cartas[2][0]]] + [cartas[2][1:]], Turno) elif Turno == 'Jugador': print "-------------------------------" print "Turno del Jugador\n" ElJuego(T_Jugador((cartas)),'Repartidor') elif Turno == 'Repartidor': print "\n-------------------------------" print "Turno del Repartidor\n" if (Puntaje(cartas[0])<22 and Puntaje(cartas[1])<Puntaje(cartas[0])): ElJuego(T_Repartidor((cartas)), 'FIN') else: print "Las cartas finales del Repartidor son: " analizarCartas(cartas[1]) ResultadoFinal(Puntaje(cartas[0]),Puntaje(cartas[1])) else: print "\n\n--- RESULTADO DEL JUEGO ---\n" print "Las cartas finales del Jugador son: " analizarCartas(cartas[0]) print "Las cartas finales del Repartidor son: " analizarCartas(cartas[1]) print "\n--------------------------------------------" print "El puntaje final de los participantes es:" ResultadoFinal(Puntaje(cartas[0]),Puntaje(cartas[1])) #Funcion Main del Juego def Juego(): print "JUEGO DE 21" ElJuego([[], [], []], 'Jugador') print "\nFin Del Juego" #Iniciar el Juego Juego()
cff95b961d789ca9c8dc2aa750326f673898db1e
e2af7750bfc3e1834c9b46be5d8ac0fd20d61e0b
/ticket/migrations/0001_initial.py
154e341c449854f4cda538b977057a44ae2f7207
[]
no_license
MahanaElbana/CinemaTicketsReservation_Api
5cca784c01e83663dca002035def8010aebfccc5
3be30bc504b8283db5ba179a2cac81d9eeb99cc8
refs/heads/main
2023-08-08T09:57:01.366960
2021-09-06T09:15:37
2021-09-06T09:15:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,474
py
# Generated by Django 3.2.6 on 2021-09-01 08:05 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Geust', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=10)), ('mobile', models.CharField(max_length=10)), ], ), migrations.CreateModel( name='Movie', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('hall', models.CharField(max_length=10)), ('movie', models.CharField(max_length=10)), ('data', models.DateField()), ], ), migrations.CreateModel( name='Reservation', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('geust', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='reservation', to='ticket.geust')), ('movie', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='reservation', to='ticket.movie')), ], ), ]
2263dba5a2e7dcfcb1a99554ec165e4b8d52d3af
89b6997b24e404c176358073626a8bfad7bcdb8e
/.history/courses/api/urls_20210426132401.py
a7fabb6eb22b1afeeebd95f123329c5eaeb754d1
[]
no_license
mohamedhawas123/Education-platform-django
513e64ac112880385402ce609077796578b4e9ee
7b83e66bba66b8b2b1a007f5818a534653e6abfb
refs/heads/main
2023-07-18T16:19:52.177886
2021-09-24T12:04:09
2021-09-24T12:04:09
352,306,462
1
0
null
null
null
null
UTF-8
Python
false
false
629
py
from django.urls import path, include from .views import SubjectListView, SubjectDetailView, CourseViewList from rest_framework import routers from . import views app_name = 'courses' router = routers.DefaultRouter() router.register('courses', views.CourseViewList) urlpatterns = [ path('subjects/', SubjectListView.as_view(), name="subject_list" ), path('subjects/<pk>/', SubjectDetailView.as_view(), name="subject_detail"), # path('courses/', ModuleListView.as_view(), name="course_list" ), path('', include(router.urls)), path('courses/<pk>/enroll/', CourseViewList.as_view(), name='course_enroll'), ]
1b891071e90ee29ffabeab565da595a88b22ffa0
9c6a05d671049913b6f811b30967ecc79794ca68
/dhtserver.py
0ba4753e9e29a7dbf0742044a8ae176dc868df66
[]
no_license
yucy/DHT
955d2e0ca393c417367988256a33e46335c26aba
d5d2aeff5fb49c7b11afb4e41ddd239a7d316e01
refs/heads/master
2021-01-19T02:30:12.425330
2017-06-11T07:22:38
2017-06-11T07:22:38
87,285,511
0
0
null
null
null
null
UTF-8
Python
false
false
1,114
py
# -*- coding:utf-8 -*- import hashlib,time import socket # 初始化公网节点 BOOTSTRAP_NODES = ( ("67.215.246.10", 6881), ("82.221.103.244", 6881), ("23.21.224.150", 6881), ("localhost", 6881), ) # 使用sha1算法,返回key加密后的字符串 def str_encrypt(key): sha = hashlib.sha1(key) encrypts = sha.hexdigest() print encrypts return encrypts # socket 使用方法介绍:http://blog.csdn.net/rebelqsp/article/details/22109925 # 用于发出请求,相当于是client def ping(): m_client = socket.socket(socket.AF_INET,socket.SOCK_DGRAM) m_client.sendto(b'this is a test',BOOTSTRAP_NODES[3]) m_client.close() # 用于答复客户端请求,相当于是server def dong(): m_server = socket.socket(socket.AF_INET,socket.SOCK_DGRAM) m_server.bind('',68810) print '正在等待介入' while True: time.sleep(5) # 接受数据 data,addr = m_server.recvfrom(1024) print addr print data if __name__ == '__main__': # str_encrypt('lamda') ping() ''' DHT协议,共4条: ping find_node get_peers (在edonkey kad中这叫find_value) announce_peer '''
64a6001c461b63871f2473e2890588b8d3d3dff6
ae7d1e7cfb16aa5c330ff3903699bdae7a57d2fe
/zoo_catagories_rnn.py
683f3d1cc13b4f980d836dd31b65d977604f6b40
[]
no_license
Christopher-Braun/zoo_animal_classification
e933f2ada35a85d22731194df83524574ad51c0c
bdfa7dc08e5083d05052d0203661361a9116e821
refs/heads/master
2021-08-31T07:09:57.404068
2017-12-20T16:11:43
2017-12-20T16:11:43
114,904,531
0
0
null
null
null
null
UTF-8
Python
false
false
3,607
py
import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset dataset = pd.read_csv('zoo.csv') X = dataset.iloc[:, 1:17].values y = dataset.iloc[:, -1].values y[:][y[:]==7]=int(0) X[:,12][X[:,12]==2]=int(1) X[:,12][X[:,12]==4]=int(2) X[:,12][X[:,12]==6]=int(3) X[:,12][X[:,12]==8]=int(4) y_som = y from sklearn.preprocessing import OneHotEncoder onehotencoder = OneHotEncoder(categorical_features = [0]) X12 = onehotencoder.fit_transform(X[:, 12].reshape(-1, 1)).toarray() y = onehotencoder.fit_transform(y.reshape(-1,1)).toarray() y = np.asarray(y, dtype = int) X12 = np.asarray(X12, dtype = int) Xnew = np.append(X, X12, axis=1) X = np.delete(Xnew, 12, axis=1) # Feature Scaling from sklearn.preprocessing import MinMaxScaler sc = MinMaxScaler(feature_range = (0, 1)) X_SOM = sc.fit_transform(X) # Training the SOM from minisom import MiniSom som = MiniSom(x = 10, y = 10, input_len = 21, sigma = 1.0, learning_rate = 0.5) som.random_weights_init(X_SOM) som.train_random(data = X_SOM, num_iteration = 100) # Visualizing the results from pylab import bone, pcolor, colorbar, plot, show bone() pcolor(som.distance_map().T) colorbar() markers = ['o', 's', 'x', 'o', 's', 'x', 'v'] colors = ['r', 'g', 'b', 'w', 'y', 'c', 'm'] for i, x in enumerate(X_SOM): w = som.winner(x) plot(w[0] + 0.5, w[1] + 0.5, markers[y_som[i]], markeredgecolor = colors[y_som[i]], markerfacecolor = 'None', markersize = 10, markeredgewidth = 2) show() mappings = som.win_map(X_SOM) # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) # Part 2 - Make the ANN # Importing the Keras libraries and packages import keras from keras.models import Sequential from keras.layers import Dense # Initialising the ANN classifier = Sequential() # Adding the input layer and the first hidden layer classifier.add(Dense(units = 7, kernel_initializer = 'uniform', activation = 'relu', input_dim = 21)) # Adding the second hidden layer classifier.add(Dense(units = 21, kernel_initializer = 'uniform', activation = 'relu')) # Adding the output layer classifier.add(Dense(units = 7, kernel_initializer = 'uniform', activation = 'softmax')) # Compiling the ANN classifier.compile(optimizer = 'rmsprop', loss = 'categorical_crossentropy', metrics = ['accuracy']) # Fitting the ANN to the Training set classifier.fit(X_train, y_train, batch_size = 10, epochs = 200) # Part 3 - Making predictions and evaluating the model # Predicting the Test set results y_pred = classifier.predict(X_train) y_pred_test = classifier.predict(X_test) y_pred_cat = np.argmax(y_pred, axis=1) y_pred_test_cat = np.argmax(y_pred_test, axis=1) y_train_cat = np.argmax(y_train, axis=1) y_test_cat = np.argmax(y_test, axis=1) #Making the Confusion Matrix (compares actual values with predictions) from sklearn.metrics import confusion_matrix cm = confusion_matrix(y_train_cat, y_pred_cat) cm_test = confusion_matrix(y_test_cat, y_pred_test_cat) cm_count=0 cm_wrong=0 for i in range(len(cm)): cm_count += cm[i,i] for v in range(len(cm)): cm_wrong += cm[i,v] cm_wrong -= cm_count cm_test_count=0 cm_test_wrong=0 for i in range(len(cm_test)): cm_test_count += cm_test[i,i] for v in range(len(cm_test)): cm_test_wrong += cm_test[i,v] cm_test_wrong -= cm_test_count accuracy = cm_count/(cm_count + cm_wrong) accuracy_test = cm_test_count/(cm_test_count + cm_test_wrong)
b8968b3b65bf1de5df78c3c1473ecaf43be8aed9
2aace9bb170363e181eb7520e93def25f38dbe5c
/build/idea-sandbox/system/python_stubs/cache/2e033ce6e3a2cdde5174895cadb3b406b2a013729dd641fee2cebd9f7ed97879/cv2/cv2/xfeatures2d_BoostDesc.py
ee8d24abbfaff2a33bb993d84a1fd7baffc4e439
[]
no_license
qkpqkp/PlagCheck
13cb66fd2b2caa2451690bb72a2634bdaa07f1e6
d229904674a5a6e46738179c7494488ca930045e
refs/heads/master
2023-05-28T15:06:08.723143
2021-06-09T05:36:34
2021-06-09T05:36:34
375,235,940
1
0
null
null
null
null
UTF-8
Python
false
false
3,949
py
# encoding: utf-8 # module cv2.cv2 # from C:\Users\Doly\Anaconda3\lib\site-packages\cv2\cv2.cp37-win_amd64.pyd # by generator 1.147 """ Python wrapper for OpenCV. """ # imports import cv2.cv2 as # C:\Users\Doly\Anaconda3\lib\site-packages\cv2\cv2.cp37-win_amd64.pyd import cv2.Error as Error # <module 'cv2.Error'> import cv2.aruco as aruco # <module 'cv2.aruco'> import cv2.bgsegm as bgsegm # <module 'cv2.bgsegm'> import cv2.bioinspired as bioinspired # <module 'cv2.bioinspired'> import cv2.cuda as cuda # <module 'cv2.cuda'> import cv2.datasets as datasets # <module 'cv2.datasets'> import cv2.detail as detail # <module 'cv2.detail'> import cv2.dnn as dnn # <module 'cv2.dnn'> import cv2.face as face # <module 'cv2.face'> import cv2.fisheye as fisheye # <module 'cv2.fisheye'> import cv2.flann as flann # <module 'cv2.flann'> import cv2.ft as ft # <module 'cv2.ft'> import cv2.hfs as hfs # <module 'cv2.hfs'> import cv2.img_hash as img_hash # <module 'cv2.img_hash'> import cv2.instr as instr # <module 'cv2.instr'> import cv2.ipp as ipp # <module 'cv2.ipp'> import cv2.kinfu as kinfu # <module 'cv2.kinfu'> import cv2.line_descriptor as line_descriptor # <module 'cv2.line_descriptor'> import cv2.linemod as linemod # <module 'cv2.linemod'> import cv2.ml as ml # <module 'cv2.ml'> import cv2.motempl as motempl # <module 'cv2.motempl'> import cv2.multicalib as multicalib # <module 'cv2.multicalib'> import cv2.ocl as ocl # <module 'cv2.ocl'> import cv2.ogl as ogl # <module 'cv2.ogl'> import cv2.omnidir as omnidir # <module 'cv2.omnidir'> import cv2.optflow as optflow # <module 'cv2.optflow'> import cv2.plot as plot # <module 'cv2.plot'> import cv2.ppf_match_3d as ppf_match_3d # <module 'cv2.ppf_match_3d'> import cv2.quality as quality # <module 'cv2.quality'> import cv2.reg as reg # <module 'cv2.reg'> import cv2.rgbd as rgbd # <module 'cv2.rgbd'> import cv2.saliency as saliency # <module 'cv2.saliency'> import cv2.samples as samples # <module 'cv2.samples'> import cv2.structured_light as structured_light # <module 'cv2.structured_light'> import cv2.text as text # <module 'cv2.text'> import cv2.utils as utils # <module 'cv2.utils'> import cv2.videoio_registry as videoio_registry # <module 'cv2.videoio_registry'> import cv2.videostab as videostab # <module 'cv2.videostab'> import cv2.xfeatures2d as xfeatures2d # <module 'cv2.xfeatures2d'> import cv2.ximgproc as ximgproc # <module 'cv2.ximgproc'> import cv2.xphoto as xphoto # <module 'cv2.xphoto'> import cv2 as __cv2 class xfeatures2d_BoostDesc(__cv2.Feature2D): # no doc def create(self, desc=None, use_scale_orientation=None, scale_factor=None): # real signature unknown; restored from __doc__ """ create([, desc[, use_scale_orientation[, scale_factor]]]) -> retval . """ pass def getScaleFactor(self): # real signature unknown; restored from __doc__ """ getScaleFactor() -> retval . """ pass def getUseScaleOrientation(self): # real signature unknown; restored from __doc__ """ getUseScaleOrientation() -> retval . """ pass def setScaleFactor(self, scale_factor): # real signature unknown; restored from __doc__ """ setScaleFactor(scale_factor) -> None . """ pass def setUseScaleOrientation(self, use_scale_orientation): # real signature unknown; restored from __doc__ """ setUseScaleOrientation(use_scale_orientation) -> None . """ pass def __init__(self, *args, **kwargs): # real signature unknown pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __repr__(self, *args, **kwargs): # real signature unknown """ Return repr(self). """ pass
14808a94e6859ea984b7599bc4c6afbd5f24d8d4
6b6edacfc343e60ee82b74bf82248ba8685d5007
/backend/base/migrations/0001_initial.py
e560d4770812c27ad2df904d59b7860caa7c4d74
[]
no_license
wchandler2020/django-react-ecommerce
0e6c591227c118a8492bb6f89727e907f303b1db
cc62f9eadf89fa417dc1cd2f183dca65a736da90
refs/heads/main
2023-03-04T20:34:40.950457
2021-02-21T20:49:22
2021-02-21T20:49:22
338,858,097
0
0
null
null
null
null
UTF-8
Python
false
false
1,453
py
# Generated by Django 3.1.6 on 2021-02-15 19:20 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Product', fields=[ ('name', models.CharField(blank=True, max_length=200, null=True)), ('brand', models.CharField(blank=True, max_length=200, null=True)), ('category', models.CharField(blank=True, max_length=200, null=True)), ('description', models.TextField(blank=True, null=True)), ('rating', models.DecimalField(blank=True, decimal_places=2, max_digits=7, null=True)), ('numReviews', models.IntegerField(blank=True, default=0, null=True)), ('price', models.DecimalField(blank=True, decimal_places=2, max_digits=7, null=True)), ('countInStock', models.IntegerField(blank=True, default=0, null=True)), ('createdAt', models.DateTimeField(auto_now_add=True)), ('_id', models.AutoField(editable=False, primary_key=True, serialize=False)), ('user', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), ], ), ]
f72d4da9cfe29c981f9e132cef7c27f0de2a1a42
02a2ecc29102387120db40bbb64ea5a564b00a3d
/protocol/src/com/teltonika/Codec/IMEI_validation_test.py
d0d23c2002a2530c6d1b12cf09671a16f1717953
[]
no_license
pkumarray91/production
f86a96b9fa603f8e6c2282466384edef4fde644c
41adcc02738ffef07d72d019386bbb2253ffe9af
refs/heads/master
2023-03-21T19:21:13.761448
2021-03-12T07:35:41
2021-03-12T07:35:41
346,977,662
0
0
null
null
null
null
UTF-8
Python
false
false
2,089
py
from protocol.src.com.teltonika.Codec.IMEI_validation import * """ It is Driver code which calls IMEI_validation class and get the result 1. Get the hex_num 1.a. which contain the imei_number where the first 2 bytes gives the length of IMEI (000F) 1.b. and the digit '3' is present before every imei_number 2. To get the proper imei_number wehave to split it 3. If the return is True then it is correct valid IMEI 4. If the return is False then it is invalid IMEI generate imei at: https://generate.plus/en/number/imei """ #myimei = IMEI_validation(356307042441013) #myimei = IMEI_validation(359632107452945) #myimei = IMEI_validation(502695398174524) #hex_num ='000F333536333037303432343431303133' #invalid imei #hex_num ='000F333539363332313037343532393435' #valid imei #hex_num ='000F353032363935333938313734353234' #valid imei #hex_num ='000F353032363935333938313734353234' #invalid imei #hex_num = '000F353333383031353132353831313036' #valid imei #hex_num = '000F333037383733303036373436323539' #valid imei #hex_num = '000F353234303231333732303138313436' #valid imei #hex_num = '000F343939383133373531373833393634' #valid imei #hex_num = '000F313033343536353635373937323937' #valid imei hex_num = '000F313033343536353635373937323637' #invalid imei # split the hex_num to get first 4 bytes #hex_split1 = hex_num[:4] # split the hex_num to get the remaining value #hex_split2 = hex_num[4:] #if int(hex_split1,16) != 15 : #print ("wrong size", hex_split1) #else: #print("15 digit imei") #test1 = len(str(hex_split2)) #to get the imei_number and remove the '3' digit from the hex_num #my_imei = hex_split2[1:test1:2] #print(my_imei) myimei = IMEI_validation(hex_num) valid_yes_no, imei_num = myimei.check_my_imei() if valid_yes_no: print('IMEI valid ', imei_num) else: print('IMEI invalid ', imei_num) # raw_data, valid = myimei.checkIMEI() # # if valid: # val_imei = myimei.ImeiIsValid(self, raw_data) # if val_imei == True: # print("valid IMEI") # else: # print("Invalid IMEI") # # else: # print("Invalid IMEI")
3bb2626e106e0aed2af16a86f65070cf26d1077d
548666cccda576bf1e13070a58e9cbbbc11c7f6b
/Assignment3/get_print_string.py
05bc6d955a163a9fa043ea577d00f580ab206ebc
[]
no_license
Kiran0343/Python
cfd0cf3171323b7a4f532c05628213b6a71cf3c8
46d640fd251cdf55733891c8a2a61fdc520bad50
refs/heads/master
2020-06-27T22:38:09.894204
2018-04-16T01:39:30
2018-04-16T01:39:30
97,076,850
0
0
null
null
null
null
UTF-8
Python
false
false
451
py
""" python script which has class having two below methods and access those methods in another class: """ class parent(): def __init__(self): print "hello from parent" def getString(self): self.word = str(raw_input("Enter string : ")) def printString(self): print "string is : ", self.word class child(parent): def __init__(self): print "hello from child" c = child() c.getString() c.printString()
6236e03243994ff3486a24f3d867d6b68ee24e25
5cc5a3063c98719662899d52e176d4df1dc4147e
/application/model/report.py
df2343d773c689157f418c1e7c2be0e2458a5db4
[]
no_license
yuxd/pile
fef8b6005556eb1ab994830956363ff44bdc2025
d1b0d4e53b4379e4878ef6dba36cb66414af39e4
refs/heads/master
2021-01-11T22:06:30.397223
2016-09-08T01:39:30
2016-09-08T01:39:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,016
py
from datetime import datetime from .helper import to_ts from .. import db class Report(db.Model): """ This class defines report structure. id : record id user_id : user id comment : comment evidence : evidence dt : timestamp handled : whether the report is handled """ id = db.Column(db.Integer, primary_key=True) user_id = db.Column(db.ForeignKey('user.id')) comment = db.Column(db.Text()) evidence = db.Column(db.String(80)) dt = db.Column(db.DateTime) handled = db.Column(db.Boolean) def __init__(self, user_id, evidence, comment, dt=None, handled=False): self.user_id = user_id self.comment = comment self.evidence = evidence self.dt = dt if dt else datetime.utcnow() self.handled = handled def to_json(self): attrs = ('id', 'user_id', 'comment', 'evidence', 'handled') ans = {attr: getattr(self, attr, None) for attr in attrs} ans['dt'] = to_ts(self.dt) return ans
3f36a95e1faafb80203d5e7e414bfc856688ba93
2009832522a7f4f9c79da1dc16efea74975ef218
/events/migrations/0012_auto_20190412_1822.py
914d70996c725b954896831319d10fdc5568c9d1
[]
no_license
siobahnv/communityeventsapp
47f472f08f2921e8991d64dbc1cb3f5aee7e4f3f
ae30ab721d1c93f1ba8e9ae289676bfe6811afcc
refs/heads/master
2022-12-09T07:55:15.292261
2019-04-17T17:29:46
2019-04-17T17:29:46
180,808,021
1
0
null
2022-12-08T04:58:54
2019-04-11T14:19:45
Python
UTF-8
Python
false
false
442
py
# Generated by Django 2.2 on 2019-04-12 18:22 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('events', '0011_auto_20190412_1755'), ] operations = [ migrations.AlterField( model_name='event', name='tags', field=models.ManyToManyField(blank=True, help_text='Select a tag for this event.', to='events.Tag'), ), ]
ee6d6b096a33d9847e60bfe9a67807cf517e81db
a947c8c5ded83187d11944e21681dae71d027afa
/core_spider/core_spider/items.py
ad5381856bad8986353e32cc1ee4e2a814e3aef0
[]
no_license
minfun/scrapeqq
f84cea349a476e1a25b0dec9d87776abab6d8d3b
04bac71d22700d6eddb85a7194bbc44ab6def8f3
refs/heads/master
2020-12-30T15:41:55.101008
2017-05-14T08:51:49
2017-05-14T08:51:49
91,165,582
0
0
null
null
null
null
UTF-8
Python
false
false
289
py
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html import scrapy class CoreSpiderItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() pass
e82fb68fa15cb53c49889f6939ecfd1fccf3035c
8e0df595ef441a2c57a209728f2b2f6bf5d13265
/blogapi/api/serializers.py
1cd635351a91a26e83fb0a9ffcc61046af926384
[]
no_license
saddamphp/blog_api_django
eb5bd52e424150da9e3745adb94d0ade01f9be52
c8fb1b5ba82c12f94a43fb0d6e59ea026e3c6635
refs/heads/master
2023-01-09T11:57:06.343348
2020-11-14T19:03:28
2020-11-14T19:03:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
846
py
from django.contrib.auth import get_user_model, password_validation from django.contrib.auth.models import BaseUserManager from rest_framework import serializers from .models import Post,Profile class blogserializer(serializers.ModelSerializer): class Meta: model = Post fields ='__all__' class profileserializer(serializers.ModelSerializer): class Meta: model = Profile fields ='__all__' User = get_user_model() class UserRegisterSerializer(serializers.ModelSerializer): """ A user serializer for registering the user """ class Meta: model = User fields = ('id','username' ,'email', 'password', 'first_name', 'last_name') def validate_password(self, value): password_validation.validate_password(value) return value
33a1bd5faf0881009d06ebde82f8871fe939b812
8beeebe1ea8e9d13e1a2c1ef851d91c6fd9fa156
/Date.py
01d61a789821302f93e9ee532b80618a94cc345a
[]
no_license
jamanges/raspberrypi
101a6b65036df8ef25395aaebe44706b5878ab3b
83527f9e478565871785f4c45db215282ab42d12
refs/heads/master
2016-09-06T03:56:18.291574
2015-01-03T04:15:50
2015-01-03T04:15:50
28,611,998
0
0
null
null
null
null
UTF-8
Python
false
false
570
py
import RPi.GPIO as GPIO import time ledPin=15 GPIO.setmode(GPIO.BOARD) GPIO.setup(ledPin,GPIO.OUT) month = int(float(time.strftime("%m"))) day = int(float(time.strftime("%d"))) while month > 0: global month GPIO.output(ledPin,GPIO.HIGH) time.sleep(.25) GPIO.output(ledPin,GPIO.LOW) time.sleep(.25) print month month = month - 1 time.sleep(2) while day > 0: global day GPIO.output(ledPin,GPIO.HIGH) time.sleep(.25) GPIO.output(ledPin,GPIO.LOW) time.sleep(.25) print day day = day - 1 time.sleep(2)
1def6138482e78b1cb11607f3c331914c0a37927
cdfb5ba3e6210672f6e69a9370503544867d8ef6
/Module 3 Labs/Module 3.2.py
be614a7d3aabcb2720977bf719c2787e35146c5f
[]
no_license
Dannyh0198/Module-3-Labs
a436a82c42eb580fe9df5945c78a67c52062239e
68d430ba9a836ef9f955aaa71358232e35ae166c
refs/heads/master
2023-07-19T06:17:34.930581
2021-09-23T18:35:05
2021-09-23T18:35:05
408,910,116
0
0
null
null
null
null
UTF-8
Python
false
false
7,798
py
# 3.2.1.3 LAB: Essentials of the while loop - Guess the secret number # A junior magician has picked a secret number. He has hidden it in a variable named secret_number. He wants everyone # who run his program to play the Guess the secret number game, and guess what number he has picked for them. # Those who don't guess the number will be stuck in an endless loop forever! Unfortunately, he does not know how to complete the code. # Your task is to help the magician complete the code in the editor in such a way so that the code: # will ask the user to enter an integer number; # will use a while loop; # will check whether the number entered by the user is the same as the number picked by the magician. #the number chosen by the user is different than the magician's secret number, the user should see the message "Ha ha! You're stuck in my loop!" # and be prompted to enter a number again. If the number entered by the user matches the number picked by the magician, the number should be printed to the screen, # and the magician should say the following words: "Well done, muggle! You are free now." secret_number = 777 print( """ +================================+ | Welcome to my game, muggle! | | Enter an integer number | | and guess what number I've | | picked for you. | | So, what is the secret number? | +================================+ """) number = int(input("Guess the secret number:")) while number != 777: print("Ha ha! You're stuck in my loop!") number = int(input("Guess the secret number:")) else: print("Well done, muggle! You are free now.") #3.2.1.6 LAB: Essentials of the for loop - counting mississippily # Your task is very simple here: write a program that uses a for loop to "count mississippily" to five. # Having counted to five, the program should print to the screen the final message "Ready or not, here I come!" # For the time being, we'd just like you to know that we've imported the time module and used the sleep() # method to suspend the execution of each subsequent print() function inside the for loop for one second, so that the message outputted to the console resembles an actual counting. Don't worry - you'll soon learn more about modules and methods. import time for n in range (1,6): # Write a for loop that counts to five. print (n,"Mississippi") # Body of the loop - print the loop iteration number and the word "Mississippi". time.sleep(1) # Body of the loop - use: time.sleep(1) print ("Ready or not, here I come!") # Write a print function with the final message. # 3.2.1.9 LAB: The break statement - Stuck in a loop # Design a program that uses a while loop and continuously asks the user to enter a word unless the user enters "chupacabra" as the secret exit word # in which case the message "You've successfully left the loop." should be printed to the screen, and the loop should terminate. while True: word = str(input("What is the word:")) # Asks to input a string if word == ("chupacabra"): # If the string is equal to chupacabra print ("You've successfully left the loop.") # Print the following output break # Stop the loop. # 3.2.1.10 LAB: The continue statement - the Ugly Vowel Eater # Your task here is very special: you must design a vowel eater! Write a program that uses: user_word = str(input("Enter a word: ")) # ask the user to enter a word; user_word = user_word.upper() # use user_word = user_word.upper() to convert the word entered by the user to upper case; for letter in user_word: #use conditional execution if letter == ("A"): # "eat" the following vowels A, E, I, O, U from the inputted word; continue elif letter == ("E"): continue elif letter == ("I"): continue elif letter == ("O"): continue elif letter == ("U"): continue else: print (letter) # 3.2.1.11 LAB: The continue statement - the Pretty Vowel Eater # Your task here is even more special than before: you must redesign the (ugly) vowel eater from the previous lab (3.1.2.10) # create a better, upgraded (pretty) vowel eater! Write a program that uses: word_without_vowels = "" # Look at the code in the editor. We've created word_without_vowels and assigned an empty string to it user_word = str(input("Enter a word: ")) # ask the user to enter a word; user_word = user_word.upper() # use user_word = user_word.upper() to convert the word entered by the user to upper case; for letter in user_word: #use conditional execution if letter == ("A"): # "eat" the following vowels A, E, I, O, U from the inputted word; continue elif letter == "E": continue elif letter == "I": continue elif letter == "O": continue elif letter == "U": continue else: word_without_vowels += letter # assign the uneaten letters to the word_without_vowels variable and print the variable to the screen. print(word_without_vowels) # 3.2.1.14 LAB: Essentials of the while loop # The pyramid is stacked according to one simple principle: each lower layer contains one block more than the layer above. blocks = int(input("Enter the number of blocks: ")) # Ask user to input a number height = 0 # Set the height variable at 0 Blocks_needed_for_next_level = 0 # Set variable for the ammount of blocks you need to build the next level. while True: Blocks_needed_for_next_level += 1 # Every itteration of the while loop will increment the ammount of blocks needed by +1. blocks = blocks - Blocks_needed_for_next_level # Every increment in height will deduct the number of blocks needed to build the next level. if blocks <= 0: # Checks the block variable counter. If it is equal to or less than zero. End the loop. If not add 1 to the height. break # Following on from the IF statement. Break the while loop. height = height + 1 # Each itteration of the while loop will increment the height by 1. # When the appropriate ammount of blocks can not be deducted from the total, the while loop will stop. print("The height of the pyramid:", height) # When the while rule has completed its execution. It will print the current "height" variable. #3.2.1.15 LAB: Collatz's hypothesis # take any non-negative and non-zero integer number and name it c0; # if it's even, evaluate a new c0 as c0 ÷ 2; # otherwise, if it's odd, evaluate a new c0 as 3 × c0 + 1; # if c0 ≠ 1, skip to point 2. # Write a program which reads one natural number and executes the above steps as long as c0 remains different from 1. # We also want you to count the steps needed to achieve the goal. c0 = int(input("Input Number:")) # take any non-negative and non-zero integer number and name it c0; counter = 0 while True: if c0 <= 0: # Must be a non-negative and non zero integer. This would flag up an error print ("Invalid Input") break # If a non negative or non zero value is entered it would stop the while loop if c0 % 2 == 0: # Is c0 a multiple of 2? I.e is it even? c0 = c0//2 # If it is devide it by 2 print (c0) # print the resultant c0 after the division counter += 1 # add a 1 to the counter to mark the number of steps the process has been through. if c0 == 1: # Check to see if c0 = 0. If it is the while rule will end. print ("steps:", counter) # Print the word steps + the counter that is keeping track of how many iterations the cycle has been through. break # Stops the while rule if c0 % 2 != 0: # Is c0 not divisible by 2. I.e is it odd? c0 = 3 * c0 + 1 # If if is multiply c0 by 3 and add 1. print (c0) # print the resultant c0 after the equation. counter += 1 # add a 1 to the counter to mark the number of steps the process has been through.
bd443cac36cd8112754d692cea7d260869ab626d
7789f4c84a250ce45accdecbf73630519bfc4aa1
/devel/lib/python2.7/dist-packages/rail_manipulation_msgs/srv/_PrepareGrasp.py
de78ffe163fbb53ac02bd322fbc7c0c91ccb1710
[]
no_license
JerryHu1994/NRI-authoring-Backend
33610913692c3ba8ac2e7fd47b735d193771526c
d130201224deb8696ae4b2dbc451c251693040d3
refs/heads/master
2021-09-15T23:15:01.061392
2018-06-12T15:56:40
2018-06-12T15:56:40
113,100,927
0
2
null
2018-06-12T15:56:41
2017-12-04T22:11:56
HTML
UTF-8
Python
false
false
12,030
py
# This Python file uses the following encoding: utf-8 """autogenerated by genpy from rail_manipulation_msgs/PrepareGraspRequest.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct import geometry_msgs.msg import std_msgs.msg class PrepareGraspRequest(genpy.Message): _md5sum = "f48a95707774bb6708f0bd8158e612f7" _type = "rail_manipulation_msgs/PrepareGraspRequest" _has_header = False #flag to mark the presence of a Header object _full_text = """geometry_msgs/PoseStamped graspPose ================================================================================ MSG: geometry_msgs/PoseStamped # A Pose with reference coordinate frame and timestamp Header header Pose pose ================================================================================ MSG: std_msgs/Header # Standard metadata for higher-level stamped data types. # This is generally used to communicate timestamped data # in a particular coordinate frame. # # sequence ID: consecutively increasing ID uint32 seq #Two-integer timestamp that is expressed as: # * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs') # * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs') # time-handling sugar is provided by the client library time stamp #Frame this data is associated with # 0: no frame # 1: global frame string frame_id ================================================================================ MSG: geometry_msgs/Pose # A representation of pose in free space, composed of position and orientation. Point position Quaternion orientation ================================================================================ MSG: geometry_msgs/Point # This contains the position of a point in free space float64 x float64 y float64 z ================================================================================ MSG: geometry_msgs/Quaternion # This represents an orientation in free space in quaternion form. float64 x float64 y float64 z float64 w """ __slots__ = ['graspPose'] _slot_types = ['geometry_msgs/PoseStamped'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: graspPose :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(PrepareGraspRequest, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.graspPose is None: self.graspPose = geometry_msgs.msg.PoseStamped() else: self.graspPose = geometry_msgs.msg.PoseStamped() def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: _x = self buff.write(_get_struct_3I().pack(_x.graspPose.header.seq, _x.graspPose.header.stamp.secs, _x.graspPose.header.stamp.nsecs)) _x = self.graspPose.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_7d().pack(_x.graspPose.pose.position.x, _x.graspPose.pose.position.y, _x.graspPose.pose.position.z, _x.graspPose.pose.orientation.x, _x.graspPose.pose.orientation.y, _x.graspPose.pose.orientation.z, _x.graspPose.pose.orientation.w)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: if self.graspPose is None: self.graspPose = geometry_msgs.msg.PoseStamped() end = 0 _x = self start = end end += 12 (_x.graspPose.header.seq, _x.graspPose.header.stamp.secs, _x.graspPose.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.graspPose.header.frame_id = str[start:end].decode('utf-8') else: self.graspPose.header.frame_id = str[start:end] _x = self start = end end += 56 (_x.graspPose.pose.position.x, _x.graspPose.pose.position.y, _x.graspPose.pose.position.z, _x.graspPose.pose.orientation.x, _x.graspPose.pose.orientation.y, _x.graspPose.pose.orientation.z, _x.graspPose.pose.orientation.w,) = _get_struct_7d().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: _x = self buff.write(_get_struct_3I().pack(_x.graspPose.header.seq, _x.graspPose.header.stamp.secs, _x.graspPose.header.stamp.nsecs)) _x = self.graspPose.header.frame_id length = len(_x) if python3 or type(_x) == unicode: _x = _x.encode('utf-8') length = len(_x) buff.write(struct.pack('<I%ss'%length, length, _x)) _x = self buff.write(_get_struct_7d().pack(_x.graspPose.pose.position.x, _x.graspPose.pose.position.y, _x.graspPose.pose.position.z, _x.graspPose.pose.orientation.x, _x.graspPose.pose.orientation.y, _x.graspPose.pose.orientation.z, _x.graspPose.pose.orientation.w)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: if self.graspPose is None: self.graspPose = geometry_msgs.msg.PoseStamped() end = 0 _x = self start = end end += 12 (_x.graspPose.header.seq, _x.graspPose.header.stamp.secs, _x.graspPose.header.stamp.nsecs,) = _get_struct_3I().unpack(str[start:end]) start = end end += 4 (length,) = _struct_I.unpack(str[start:end]) start = end end += length if python3: self.graspPose.header.frame_id = str[start:end].decode('utf-8') else: self.graspPose.header.frame_id = str[start:end] _x = self start = end end += 56 (_x.graspPose.pose.position.x, _x.graspPose.pose.position.y, _x.graspPose.pose.position.z, _x.graspPose.pose.orientation.x, _x.graspPose.pose.orientation.y, _x.graspPose.pose.orientation.z, _x.graspPose.pose.orientation.w,) = _get_struct_7d().unpack(str[start:end]) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_3I = None def _get_struct_3I(): global _struct_3I if _struct_3I is None: _struct_3I = struct.Struct("<3I") return _struct_3I _struct_7d = None def _get_struct_7d(): global _struct_7d if _struct_7d is None: _struct_7d = struct.Struct("<7d") return _struct_7d # This Python file uses the following encoding: utf-8 """autogenerated by genpy from rail_manipulation_msgs/PrepareGraspResponse.msg. Do not edit.""" import sys python3 = True if sys.hexversion > 0x03000000 else False import genpy import struct class PrepareGraspResponse(genpy.Message): _md5sum = "358e233cde0c8a8bcfea4ce193f8fc15" _type = "rail_manipulation_msgs/PrepareGraspResponse" _has_header = False #flag to mark the presence of a Header object _full_text = """bool success """ __slots__ = ['success'] _slot_types = ['bool'] def __init__(self, *args, **kwds): """ Constructor. Any message fields that are implicitly/explicitly set to None will be assigned a default value. The recommend use is keyword arguments as this is more robust to future message changes. You cannot mix in-order arguments and keyword arguments. The available fields are: success :param args: complete set of field values, in .msg order :param kwds: use keyword arguments corresponding to message field names to set specific fields. """ if args or kwds: super(PrepareGraspResponse, self).__init__(*args, **kwds) #message fields cannot be None, assign default values for those that are if self.success is None: self.success = False else: self.success = False def _get_types(self): """ internal API method """ return self._slot_types def serialize(self, buff): """ serialize message into buffer :param buff: buffer, ``StringIO`` """ try: buff.write(_get_struct_B().pack(self.success)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize(self, str): """ unpack serialized message in str into this message instance :param str: byte array of serialized message, ``str`` """ try: end = 0 start = end end += 1 (self.success,) = _get_struct_B().unpack(str[start:end]) self.success = bool(self.success) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill def serialize_numpy(self, buff, numpy): """ serialize message with numpy array types into buffer :param buff: buffer, ``StringIO`` :param numpy: numpy python module """ try: buff.write(_get_struct_B().pack(self.success)) except struct.error as se: self._check_types(struct.error("%s: '%s' when writing '%s'" % (type(se), str(se), str(locals().get('_x', self))))) except TypeError as te: self._check_types(ValueError("%s: '%s' when writing '%s'" % (type(te), str(te), str(locals().get('_x', self))))) def deserialize_numpy(self, str, numpy): """ unpack serialized message in str into this message instance using numpy for array types :param str: byte array of serialized message, ``str`` :param numpy: numpy python module """ try: end = 0 start = end end += 1 (self.success,) = _get_struct_B().unpack(str[start:end]) self.success = bool(self.success) return self except struct.error as e: raise genpy.DeserializationError(e) #most likely buffer underfill _struct_I = genpy.struct_I def _get_struct_I(): global _struct_I return _struct_I _struct_B = None def _get_struct_B(): global _struct_B if _struct_B is None: _struct_B = struct.Struct("<B") return _struct_B class PrepareGrasp(object): _type = 'rail_manipulation_msgs/PrepareGrasp' _md5sum = '8918ac08fe533980834453f23389b29a' _request_class = PrepareGraspRequest _response_class = PrepareGraspResponse
f779f90897b4b3140cf74c2e61e30e9eb35861fd
c52bf4544fc0224c4db5c6a4a5457d9b2e7fee4b
/core/models.py
c225807f5459e5b00d3326e884fb58339d7da2e5
[]
no_license
sntciitbhu/website1
c4efe48479cb092d0f5db0a257563b42d4e343ef
7063a747abbaec0254fe04a2c2eefde7db656589
refs/heads/master
2022-10-13T11:30:58.307699
2019-11-09T08:33:51
2019-11-09T08:33:51
216,588,378
1
2
null
2022-09-23T22:31:37
2019-10-21T14:26:24
CSS
UTF-8
Python
false
false
62
py
from django.db import models #class Students(models.Model):
c68bcdaaf52094708cc8f1606bed4ef43235f013
99b7b8cef0f28aa93e87da82f9f75b65f91208f1
/Game.py
a45b8541dd8e5733a0952b0e43ddfad28a2a43da
[]
no_license
ghosts1995/fjsss
b3a01115832fac2f0140baacd51ea6b4c3f63489
526a69378067e3632cf41d9c1f4943628ce4201a
refs/heads/master
2022-03-05T18:56:28.358968
2019-10-30T10:17:43
2019-10-30T10:17:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,160
py
import sys from MainPageUi import Ui_MainWindow from PyQt5 import QtWidgets from PyQt5.QtWidgets import QApplication, QWidget,QMainWindow,QLabel,QPushButton from PyQt5.QtGui import QMovie,QPixmap,QCursor,QPalette,QBrush,QFont,QIcon from PyQt5 import QtCore import linkServer import execjs POKE_SIZE=(50,68) class Room(QWidget): def __init__(self): super(QWidget,self).__init__() self.setWindowTitle('游戏界面') # self.setObjectName('GameWindow') self.setMinimumSize(1200, 811) self.setMaximumSize(1200, 811) # self.setStyleSheet("#MainWindow{border-image:url(./src/room_bc1.png);}") try: self.initData() self.initUi() self.hall=None except Exception as e: print(e) def initUi(self): #注意控制加载图片的顺序 #加载房间背景 self.setCursor(QCursor(QPixmap('./src/mouse40.png'))) palette = QPalette() palette.setBrush(self.backgroundRole(), QBrush(QPixmap('./src/room_bc1.png'))) self.setPalette(palette) #加载桌子的图片 table = QLabel(self) table.setPixmap(QPixmap('./src/桌子.png')) table.setGeometry(150, 410, 900, 700) table.setScaledContents(True) # 让图片自适应label大小 # 加载头像 headFrame = QLabel(self) # 加载头像边框 headFrame.setPixmap(QPixmap('./src/headTopFrame.png')) headFrame.setGeometry(295, 700, 100, 100) headFrame.setScaledContents(True) # 让图片自适应label大小 avatar = QLabel(self) # 加载头像图片,默认男性头像 avatar.setPixmap(QPixmap('./src/headBoy.png')) avatar.setGeometry(300, 705, 90, 90) avatar.setScaledContents(True) # 让图片自适应label大小 #加载扑克牌位置 self.showMyPai() #加载三个按钮 再来一局、开始游戏和离开游戏三个 self.gameAgain=QPushButton(self) self.gameAgain.setStyleSheet("QPushButton{border-image: url(./src/再来一局.png)}") self.gameAgain.setGeometry(800, 10, 125, 50) self.startBtn = QPushButton(self) self.startBtn.setStyleSheet("QPushButton{border-image: url(./src/开始游戏.png)}") self.startBtn.setGeometry(540, 400, 125, 60) self.quitBtn = QPushButton(self) self.quitBtn.setStyleSheet("QPushButton{border-image: url(./src/top_btn_exit.png)}") self.quitBtn.setGeometry(0, 8, 60, 62) self.startBtn.clicked.connect(self.startGame) self.quitBtn.clicked.connect(self.quitRoom) self.gameAgain.clicked.connect(self.startGame) def initData(self): self.mypokes=[] self.server=linkServer.Game() def getUserInfo(self,userInfo): try: self.userInfo = userInfo except Exception as e: print(e) def showMyPai(self): self.pokes=[] for i in range(13): x = QPushButton(self) x.setStyleSheet("QPushButton{border-image: url(./src/cardBack.png)}") x.setGeometry(450+22*i, 680, 73, 100) self.pokes.append(x) def quitRoom(self): self.close() def startGame(self): try: self.startBtn.close() print(self.userInfo["token"]) self.mypokes=self.server.openGame(self.userInfo["token"]) #开始发牌!!! print("token",self.mypokes) #将牌传入出牌算法 for y in self.pokes: x=self.mypokes[self.pokes.index(y)] if '$' in x: index=13*3 elif '&' in x: index=13*2 elif '*' in x: index=13*1 else: index=0 if 'A' in x: index+=1 elif 'K' in x: index+=13 elif 'Q' in x: index+=12 elif 'J' in x: index+=11 else: index+=int(x[1:]) try: # print(index) url='./src/pokes/Images_Cards_Card_1_'+str(index)+'.png' y.setStyleSheet("QPushButton{border-image: url("+url+")}") except Exception as e: print(e) #出牌 # card=[] # one=self.mypokes[0]+' '+self.mypokes[1]+' '+self.mypokes[2] # two=self.mypokes[3]+' '+self.mypokes[4]+' '+self.mypokes[5]+' '+self.mypokes[6]+' '+self.mypokes[7] # three=self.mypokes[8]+' '+self.mypokes[9]+' '+self.mypokes[10]+' '+self.mypokes[11]+' '+self.mypokes[12] # card.append(one) # card.append(two) # card.append(three) # print(card) self.server.submitPoke(self.userInfo["token"],self.mypokes) except Exception as e: print('Game/startgame',e) if __name__=="__main__": app = QApplication(sys.argv) demo = Room() demo.show() sys.exit(app.exec_())
5c2a44299f26b665135279bbbcbf5363c8df7b19
df2282a02ae0dd788dc6bd5bd6457415cb1e1771
/scoket/socketserver.py
e9f953d8793a87f13b14a325e3fc2df2e9b09a4d
[]
no_license
randian666/MPython3
6f6b6fc31734840c87322d5b0b74e4afd7e2165f
6de046262ba1ad37a3072ee5d064b6e4cfa57df0
refs/heads/master
2021-01-21T01:11:27.491355
2018-01-05T10:44:30
2018-01-05T10:44:30
101,870,090
0
0
null
null
null
null
UTF-8
Python
false
false
1,325
py
#!/usr/bin/env python3 ''' scoket服务端 大多数连接都是可靠的TCP连接。创建TCP连接时,主动发起连接的叫客户端,被动响应连接的叫服务器 ''' # 导入socket库: import socket,threading,time # 创建Socket时,AF_INET指定使用IPv4协议,如果要用更先进的IPv6,就指定为AF_INET6。SOCK_STREAM指定使用面向流的TCP协议,这样,一个Socket对象就创建成功 s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) # 监听端口: s.bind(('127.0.0.1',9999)) # 紧接着,调用listen()方法开始监听端口,传入的参数指定等待连接的最大数量 s.listen(5) def tcplink(sock,addr): print('Accept new connection from %s:%s...' % addr) sock.send('hi~你好!'.encode('utf-8')); #给客户端发送消息 while True: data=sock.recv(1024) #接受客户端消息 print(data.decode('utf-8')) time.sleep(1); if not data or data.decode('utf-8')=='exit': break; send_msg=input('please to input:') sock.send(send_msg.encode('utf-8')); #给客户端发送消息 sock.close(); print('Connection from %s:%s closed.' % addr) while True: sock,addr=s.accept(); # 创建新线程来处理TCP连接: t=threading.Thread(target=tcplink,args=(sock,addr)) t.start();
1858d23256a8661d9d4359342a7148db7f925449
b4adeaad18998e818da63e98d58c35a072b7d3d6
/faktor.py
0fa83d9076b9d49f4ce086939cf7368db5431fc9
[]
no_license
mmncit/kattis
c3a7bd72f00ccec7c5bb3cd808789eda3c49372f
fbdee694d9ecc00531ca00bd6d559db65f61e672
refs/heads/master
2020-04-26T06:31:45.988378
2019-03-07T01:39:08
2019-03-07T01:39:08
173,367,148
0
0
null
null
null
null
UTF-8
Python
false
false
85
py
a, i = list(map(int, input().split())) # read input and split print((a * (i-1)) + 1)
431b065c5c92a9cc3b0e0da46ebaeaac958573ac
7b2b9d66d3972714e9951d4664773e2d0b2012eb
/processAnnotationforGT.py
9985d1f883cd89bbda7e4ed61e680fc722ea3d4a
[]
no_license
JASON7033/vigilant-barnacle
ff0f8194333b401994cc44638db7cf82f3eeee14
7c379c86f55d938388c3a7d095da04b49d0a7125
refs/heads/main
2023-04-20T12:33:39.950484
2021-05-30T15:00:02
2021-05-30T15:00:02
372,241,097
0
0
null
null
null
null
UTF-8
Python
false
false
2,326
py
''' 生成测试集 修改图像信息的宽度 高度 bbox area的大小 删掉一个category的vehicle ''' import json ''' :type annotations images categories ''' #写入文件的位置 out_file="panda_test_gt_for_tiny.json" #读取anno文件 anno_src_file_panda_coco="anno.json" src_annos=json.load(open(anno_src_file_panda_coco)) #生成目标文件的副本 避免修改源文件 tiny_test_annos={} #需要修改的部分为 images:图像本身的大小*0.1 annos:bbox的大小*0.1 seg的大小*0.1 顺便把area的大小更改一下w*h resize_src_annos={} resize_src_annos['images']=src_annos['images'] resize_src_annos['annotations']=src_annos['annotations'] for item in resize_src_annos['images']: item['height']=(int)(item['height']/10) item['width']=(int)(item['width']/10) # print("-"*10,"test output for src_anno['images'] ","-"*10) # for item in resize_src_annos['images']: # print("{0} , {1} ".format(item['height'],item['width'])) # print("-"*10,"end test output for src_anno['images'] ","-"*10) for item in resize_src_annos['annotations']: bbox=item['bbox'] for i in range(0,len(bbox)): item['bbox'][i]=(int)(item['bbox'][i]/10) seg=item['segmentation'] for i in range(0,len(seg[0])): item['segmentation'][0][i]=(int)(item['segmentation'][0][i]/10) item['area']=(int)(bbox[2]*bbox[3]) #为每个annotation添加logo uncertain in_dense_image==false 同时ignore 为false item['ignore']=False item['uncertain']=False item['logo']=False item['in_dense_image']=False # print("-"*10,"test output for src_anno['annotations']['bbox']","-"*10) # for item in resize_src_annos['annotations']: # print(item['bbox'],item['area']) # print("-"*10,"end test output for src_anno['annotations']['bbox']","-"*10) # print("-"*10,"test output for src_anno['annotations']['bbox']","-"*10) # for item in resize_src_annos['annotations']: # print(item['segmentation']) # print("-"*10,"end test output for src_anno['annotations']['bbox']","-"*10) tiny_test_annos['type']=src_annos['type'] tiny_test_annos['annotations']=resize_src_annos['annotations'] tiny_test_annos['images']=resize_src_annos['images'] tiny_test_annos['categories']=[src_annos['categories'][0]] with open(out_file,'w') as f: json.dump(tiny_test_annos,f) print("success!")
aa0fc14548faba731a4e211d376b0d6b65f8d387
5ec7a72cab10dd39e0cc877caa1cb97c3cd9f3de
/tests/unit/models/dq/test_operation.py
2641a03a60137ae33d350e1327c0bbce25d716ca
[]
no_license
raufer/spark-dsl
a1d311263fe48f64859c04cd63a79f48d8cd8fa4
a0fbf9561ba4567bc5d40bf2c7d289e214712aa6
refs/heads/main
2023-04-11T19:29:11.661273
2021-01-26T18:34:23
2021-01-26T18:34:23
367,982,697
0
0
null
null
null
null
UTF-8
Python
false
false
2,539
py
import unittest import pyspark.sql.types as T import pyspark.sql.functions as F from garuda.engine.graph.eval import resolve_operation from garuda.models.dq.operation import Operation from garuda.constants.argument_types import ARGUMENT_TYPES as AT from garuda.constants.operations_ids import OPERATION_ID as OID from garuda.models.dq.argument import Argument from tests.utils.spark_test_case import SparkTestCase from tests import spark class TestOperation(SparkTestCase): def test_parse(self): data = { 'id': OID.NOT_NULL, 'arguments': [ { 'type': 'column', 'value': 'age' } ] } operation = Operation(**data) arguments = [Argument(type=AT.COLUMN, value='age')] self.assertEqual(operation.id, OID.NOT_NULL) self.assertListEqual(operation.arguments, arguments) data = { "id": OID.IS_BETWEEN, "arguments": [ { "type": "column", "value": "salary" }, { "type": "integer", "value": 70000 }, { "type": "integer", "value": 100000 } ] } operation = Operation(**data) arguments = [ Argument(type=AT.COLUMN, value='salary'), Argument(type=AT.INTEGER, value=70000), Argument(type=AT.INTEGER, value=100000) ] self.assertEqual(operation.id, OID.IS_BETWEEN) self.assertListEqual(operation.arguments, arguments) def test_call(self): data = { 'id': OID.NOT_NULL, 'arguments': [ { 'type': 'column', 'value': 'age' } ] } operation = Operation(**data) data = [ ('Joe', 30), ('Sue', None) ] df = spark.createDataFrame(data, ['name', 'age']) result = df.withColumn('res', resolve_operation(operation)) data = [ ('Joe', 30, True), ('Sue', None, False) ] schema = T.StructType([ T.StructField('name', T.StringType(), True), T.StructField('age', T.LongType(), True), T.StructField('res', T.BooleanType(), False) ]) expected = spark.createDataFrame(data, schema) self.assertDataFrameEqual(result, expected)
57ed4ed1637ba7d77a5067ac736bd9e3f23767d2
992e59b87f87afb950e5eaf8e348e2073e5183af
/ADT/Stack/linked_stack.py
29d127385c45ecd72b878352179787b9149e703c
[ "MIT" ]
permissive
daesookimds/data-structure
3167e31046370acf2db7d5f8c2500b0bad50642c
b5bb69e1ae533ff723280e991e6dd8d372368697
refs/heads/main
2023-03-14T02:37:19.279377
2021-03-02T15:05:24
2021-03-02T15:05:24
343,374,857
0
0
null
null
null
null
UTF-8
Python
false
false
982
py
# Stack with Node class Node(object): def __init__(self, value=None, pointer=None): self.value = value self.pointer = pointer class Stack(object): def __init__(self): self.head = None self.count = 0 def isEmpty(self): return not bool(self.head) def push(self, value): self.head = Node(value, self.head) self.count += 1 def pop(self): if self.count > 0 and self.head: node = self.head self.head = node.pointer self.count -= 1 return node.value else: print("Stack is empty.") def peek(self): if self.count > 0 and self.head: return self.head.value else: print("Stack is empty.") def size(self): return self.size def printList(self): node = self.head while node: print(node.value, end=" ") node = node.pointer print()
8758d8c4012938721a0f27e3b0a175dd8d14cdd9
5eb961d4961db6e32f59945edb51af3d76a382a3
/matrimony/user_management/views.py
edfdb4b40fadbbc72cd26d1c89a17286e9466ec7
[]
no_license
prakashgun/matrimony-app
e0e9ba4c18cc627886644937cd9eb8f1846f569c
b8f9f96e8c73055162888e9111f805afaf8f87c9
refs/heads/master
2023-04-20T20:13:36.244947
2021-05-09T05:55:13
2021-05-09T05:55:13
365,545,104
0
0
null
null
null
null
UTF-8
Python
false
false
662
py
from django.contrib.auth import get_user_model from django.contrib.auth.models import Group from rest_framework import generics from .permissions import IsPostOrIsAuthenticated from .serializers import UserSerializer, GroupSerializer class UserList(generics.ListCreateAPIView): permission_classes = [IsPostOrIsAuthenticated] queryset = get_user_model().objects.all() serializer_class = UserSerializer class UserDetail(generics.RetrieveAPIView): queryset = get_user_model().objects.all() serializer_class = UserSerializer class GroupList(generics.ListAPIView): queryset = Group.objects.all() serializer_class = GroupSerializer
0e57498e17dbb1188ff5803eaac005b6c4135d6c
07a9efcd778003ca90dba01db64e5e21c02d256d
/project/cultboard/admin.py
06c9eacb125393eb93dd82bbadc8cfdca28dee87
[]
no_license
rakeshgithub00/cultboard
099f1bb326dc61ae446bd9685ef5d170499b8a24
290b87ab1c33dd6f5c91a03fe353c7887d1f6a1b
refs/heads/master
2023-06-11T13:45:46.918673
2021-06-25T05:06:27
2021-06-25T05:06:27
380,130,750
0
0
null
null
null
null
UTF-8
Python
false
false
367
py
from django.contrib import admin from .models import Note, Detail, TeamMember, GallaryEvent, MajorEvent, Club, UpcomingEvent # Register your models here. admin.site.register(Note) admin.site.register(Detail) admin.site.register(TeamMember) admin.site.register(GallaryEvent) admin.site.register(MajorEvent) admin.site.register(Club) admin.site.register(UpcomingEvent)