blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
5ae2ba41318e5cf923f6e71130b05474ea22e368
d3791c06d7a9434781330883aed6780283bd2e75
/fastgreedy.py
80355bdfa69608cb7ed9c91c3b179ea545feb979
[]
no_license
saisrirammortha/Text-Document-Processing-For-Classification
43f45a406c1dd7fe63bc82dfafb159ba135fff3a
99ad04b61d7939ca975282bcc1db455a92cb44b1
refs/heads/master
2022-11-28T20:11:54.386201
2020-08-07T13:49:57
2020-08-07T13:49:57
181,516,626
0
0
null
null
null
null
UTF-8
Python
false
false
2,006
py
def dist(a,b): import math n=len(a) k=0 for i in range(0,n): k=k+((a[i]-b[i])**2) return math.sqrt(k) def db(X,clusters): n=len(X) cno=0 temp=[] for i in clusters: if i not in temp: cno=cno+1 temp.append(i) index=0 centroid=[] for i in range(0,cno): cc=[] count=0 k=0 for j in range(0,n): if (clusters[j]==i): cc=X[j] k=j count=count+1 break for j in range(0,n): if (clusters[j]==i) and (k!=j): cc=cc+X[j] count=count+1 cc=cc/count centroid.append(cc) cluster=[] for i in range(0,cno): cluster.append([]) for i in range(0,cno): for j in range(0,n): if (clusters[j]==i): cluster[i].append(j) selfcluster=[] for i in range(0,cno): k=0 for j in cluster[i]: k=k+dist(X[j],centroid[i]) k=k/len(cluster[i]) selfcluster.append(k) diff=[] for i in range(0,cno): a=[] for j in range(0,cno): a.append(dist(centroid[i],centroid[j])) diff.append(a) index=[] for i in range(0,cno): a=[] for j in range(0,cno): if (i==j): a.append(0) else: k=(selfcluster[i]+selfcluster[j])/diff[i][j] a.append(k) index.append(a) value=[0,0] for i in range(0,cno): value[0]=value[0]+max(index[i]) value[0]=value[0]/cno den=max(selfcluster) new=[] for i in range(0,cno): for j in diff[i]: if (j!=0): new.append(j) num=min(new) value[1]=num/den print(value) return value f=open("finalvectors.txt","r") a=[] a=[[float(num) for num in line.split(",")] for line in f] import numpy as np myarray = np.asarray(a) from igraph import * g=Graph.Read("Finaldata.gml") d=g.community_fastgreedy() print("Fast Greedy Clustering ALgorithm\n") print(d.as_clustering()) p=d.as_clustering() assigned=[] for i in range(0,100): for j in range(0,2): if i in p[j]: assigned.append(j) break print(assigned) value=db(myarray,assigned)
42b3884ac70b7a2e76ae5bcede46e819ad0e8578
a36a320fe0124da12c94f93756f38c716874e534
/tst/tst_chk_srt.py
15840e5d19a6a7b0982e53ca00657719b7356ece
[ "BSD-3-Clause" ]
permissive
geoallen/rrr
76376431c30a9cf7369c1ea8e31f004cf9994c2d
a1b3f273b30d7fc034af63074ad6a6d6c19ba4eb
refs/heads/master
2021-05-05T01:53:34.058607
2018-04-16T21:01:06
2018-04-16T21:01:06
119,757,564
0
0
null
2018-01-31T23:39:56
2018-01-31T23:39:55
null
UTF-8
Python
false
false
5,362
py
#!/usr/bin/env python2 #******************************************************************************* #tst_chk_srt.py #******************************************************************************* #Purpose: #Given a river connectivity file and a river ID file, this program checks that #the river ID file is sorted from upstream to downstream. The river ID file #can contain all the rivers of the domain, or only a subset of it. #Author: #Cedric H. David, 2007-2017 #******************************************************************************* #Import Python modules #******************************************************************************* import sys import csv #******************************************************************************* #Declaration of variables (given as command line arguments) #******************************************************************************* # 1 - rrr_con_file # 2 - rrr_riv_file #******************************************************************************* #Get command line arguments #******************************************************************************* IS_arg=len(sys.argv) if IS_arg < 3 or IS_arg > 3: print('ERROR - 2 and only 2 arguments can be used') raise SystemExit(22) rrr_con_file=sys.argv[1] rrr_riv_file=sys.argv[2] #******************************************************************************* #Print input information #******************************************************************************* print('Command line inputs') print('- '+rrr_con_file) print('- '+rrr_riv_file) #******************************************************************************* #Check if files exist #******************************************************************************* try: with open(rrr_con_file) as file: pass except IOError as e: print('ERROR - Unable to open '+rrr_con_file) raise SystemExit(22) try: with open(rrr_riv_file) as file: pass except IOError as e: print('ERROR - Unable to open '+rrr_riv_file) raise SystemExit(22) #******************************************************************************* #Read files #******************************************************************************* print('Reading input files') #------------------------------------------------------------------------------- #rrr_con_file #------------------------------------------------------------------------------- IV_riv_tot_id=[] IV_down_id=[] with open(rrr_con_file,'rb') as csvfile: csvreader=csv.reader(csvfile) for row in csvreader: IV_riv_tot_id.append(int(row[0])) IV_down_id.append(int(row[1])) IS_riv_tot=len(IV_riv_tot_id) print('- Number of river reaches in rrr_con_file: '+str(IS_riv_tot)) #------------------------------------------------------------------------------- #rrr_riv_file #------------------------------------------------------------------------------- IV_riv_bas_id=[] with open(rrr_riv_file,'rb') as csvfile: csvreader=csv.reader(csvfile) for row in csvreader: IV_riv_bas_id.append(int(row[0])) IS_riv_bas=len(IV_riv_bas_id) print('- Number of river reaches in rrr_riv_file: '+str(IS_riv_bas)) #******************************************************************************* #Checking upstream to downstream sorting #******************************************************************************* print('Checking upstream to downstream sorting') #------------------------------------------------------------------------------- #Create hash table #------------------------------------------------------------------------------- IM_hsh={} for JS_riv_bas in range(IS_riv_bas): IM_hsh[IV_riv_bas_id[JS_riv_bas]]=JS_riv_bas #This hash table contains the index of each reach ID in rrr_riv_file #------------------------------------------------------------------------------- #Check sorting #------------------------------------------------------------------------------- for JS_riv_tot in range(IS_riv_tot): #Looping through all reach IDs in rrr_con_file if IV_riv_tot_id[JS_riv_tot] in IM_hsh: #Checking that the reach ID in rrr_con_file is in rrr_riv_file JS_riv_bas1=IM_hsh[IV_riv_tot_id[JS_riv_tot]] #JS_riv_bas1 is the index of reach ID in rrr_riv_file if IV_down_id[JS_riv_tot] in IM_hsh: #checking that the ID downstream of JS_riv_bas1 is in rrr_riv_file JS_riv_bas2=IM_hsh[IV_down_id[JS_riv_tot]] #JS_riv_bas2 is the index of the downstream ID in rrr_riv_file else: JS_riv_bas2=IS_riv_bas #Largest value if downstream ID not in rrr_riv_file (also #applies to ID=0. if JS_riv_bas1 > JS_riv_bas2: #checking that ID downstream is not earlier in rrr_riv_file print('ERROR - rrr_riv_file not sorted from upstream to ' \ 'downstream') print('Reach ID '+str(IV_riv_tot_id[JS_riv_bas1])+ \ ' is located above of '+str(IV_down_id[JS_riv_bas1])) raise SystemExit(22) print('Success!!!') #******************************************************************************* #End #*******************************************************************************
9e29b73e6b373690d991733fa6fcf7dc2ccec79c
4334fc4e5e500c5c97fef73a31add1b726abbe5e
/03.FindGroup/downloadzebodata.py
293e133e10a3f230f084533ca27ad2af29aad152
[]
no_license
tkrs/collective.intelligence
5a68d9774fa775d698a0419cd0522f79df8d946f
7180e03182be7f7f4050863523c2b7147aa6af74
refs/heads/master
2016-09-11T04:09:20.688577
2014-06-25T17:51:23
2014-06-25T17:51:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
929
py
from BeautifulSoup import BeautifulSoup import urllib2 import re chare = re.compile(r'[!-\.&]') itemowners = {} # ignore patterns dropwrds = ['a', 'new', 'some', 'more', 'my', 'own', 'the', 'many', 'other', 'another'] currentuser = 0 for i in range(1, 51): c = urllib2.urlopen( 'http://member.zebo.com/Main?event_key=USERSEARCH&wiowiw=wiw&keyword=car&page=%d' % (i)) soup = BeautifulSoup(c) for td in soup('td'): if ('class' in dict(td.attrs) and td['class'] == 'bgverdanasmall'): items = [re.sub(chare, '', str(a.countents[0]).lower()).strip() for a in td('a')] for item in items: # 余計な単語を除去 txt = ' '.join([t for t in item.split(' ') if not t in dropwrds]) if len(txt) < 2: continue itemowners.setdefault(txt, {}) itemowners[txt][currentuser] = 1 currentuser += 1
8815c48bbe620eaecd88f26cf0fccb55bd3142a6
9a1791bca8787b5e789e5017219b7dafe145ac89
/nnutil2/layers/debug.py
418ccee4bd94c0df87cbd8e85dcac3192ad44548
[ "BSD-3-Clause" ]
permissive
aroig/nnutil2
7f6086c0d555ec3820447ca64a948c29496a79a6
1fc77df351d4eee1166688e25a94287a5cfa27c4
refs/heads/master
2023-04-11T14:07:17.649496
2020-08-01T18:03:57
2020-08-01T18:03:57
196,260,872
0
0
BSD-3-Clause
2023-03-25T00:50:57
2019-07-10T19:04:00
Python
UTF-8
Python
false
false
673
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # nnutil2 - Tensorflow utilities for training neural networks # Copyright (c) 2019, Abdó Roig-Maranges <[email protected]> # # This file is part of 'nnutil2'. # # This file may be modified and distributed under the terms of the 3-clause BSD # license. See the LICENSE file for details. import tensorflow as tf from .layer import Layer class Debug(Layer): def __init__(self, **kwargs): super(Debug, self).__init__(**kwargs) def compute_output_shape(self, input_shape): return input_shape def call(self, inputs): print("Debug: shape = {}".format(inputs.shape)) return inputs
3df0debeaf2e1dc76b3f8d82907893aba2e5e5b0
fa455c127b669386a1b353554e1ecf14a13f173f
/FC_DenseNet_Tiramisu_org.py
2724e2e3dacc33d831133dbbc7cff01fa1de9a96
[]
no_license
gyeongchan-yun/computer-vision-project
f93340471baf132d8d5cdfa9d92d24722edd5b29
290d7ac7d57344d7b2482d13a9444e5ac19f97d5
refs/heads/master
2022-12-11T14:34:18.563367
2020-01-31T08:57:35
2020-01-31T08:57:35
237,391,713
0
0
null
2022-12-08T03:31:58
2020-01-31T08:46:32
Python
UTF-8
Python
false
false
6,074
py
from __future__ import division import os,time,cv2 import tensorflow as tf import tensorflow.contrib.slim as slim import numpy as np def preact_conv(inputs, n_filters, filter_size=[3, 3], dropout_p=0.2): """ Basic pre-activation layer for DenseNets Apply successivly BatchNormalization, ReLU nonlinearity, Convolution and Dropout (if dropout_p > 0) on the inputs """ preact = tf.nn.relu(slim.batch_norm(inputs)) conv = slim.conv2d(preact, n_filters, filter_size, activation_fn=None, normalizer_fn=None) if dropout_p != 0.0: conv = slim.dropout(conv, keep_prob=(1.0-dropout_p)) return conv def DenseBlock(stack, n_layers, growth_rate, dropout_p, scope=None): """ DenseBlock for DenseNet and FC-DenseNet Args: stack: input 4D tensor n_layers: number of internal layers growth_rate: number of feature maps per internal layer Returns: stack: current stack of feature maps (4D tensor) new_features: 4D tensor containing only the new feature maps generated in this block """ with tf.name_scope(scope) as sc: new_features = [] for j in range(n_layers): # Compute new feature maps layer = preact_conv(stack, growth_rate, dropout_p=dropout_p) new_features.append(layer) # stack new layer stack = tf.concat([stack, layer], axis=-1) new_features = tf.concat(new_features, axis=-1) return stack, new_features def TransitionLayer(inputs, n_filters, dropout_p=0.2, compression=1.0, scope=None): """ Transition layer for DenseNet Apply 1x1 BN + conv then 2x2 max pooling """ with tf.name_scope(scope) as sc: if compression < 1.0: n_filters = tf.to_int32(tf.floor(n_filters*compression)) l = preact_conv(inputs, n_filters, filter_size=[1, 1], dropout_p=dropout_p) l = slim.pool(l, [2, 2], stride=[2, 2], pooling_type='AVG') return l def TransitionDown(inputs, n_filters, dropout_p=0.2, scope=None): """ Transition Down (TD) for FC-DenseNet Apply 1x1 BN + ReLU + conv then 2x2 max pooling """ with tf.name_scope(scope) as sc: l = preact_conv(inputs, n_filters, filter_size=[1, 1], dropout_p=dropout_p) l = slim.pool(l, [2, 2], stride=[2, 2], pooling_type='MAX') return l def TransitionUp(block_to_upsample, skip_connection, n_filters_keep, scope=None): """ Transition Up for FC-DenseNet Performs upsampling on block_to_upsample by a factor 2 and concatenates it with the skip_connection """ with tf.name_scope(scope) as sc: # Upsample l = slim.conv2d_transpose(block_to_upsample, n_filters_keep, kernel_size=[3, 3], stride=[2, 2]) # Concatenate with skip connection l = tf.concat([l, skip_connection], axis=-1) return l def build_fc_densenet(inputs, preset_model='FC-DenseNet56', num_classes=12, n_filters_first_conv=48, n_pool=5, growth_rate=12, n_layers_per_block=4, dropout_p=0.2, scope=None): """ Args: n_classes: number of classes n_filters_first_conv: number of filters for the first convolution applied n_pool: number of pooling layers = number of transition down = number of transition up growth_rate: number of new feature maps created by each layer in a dense block n_layers_per_block: number of layers per block. Can be an int or a list of size 2 * n_pool + 1 dropout_p: dropout rate applied after each convolution (0. for not using) """ if preset_model == 'FC-DenseNet56': n_pool=5 growth_rate=12 n_layers_per_block=4 elif preset_model == 'FC-DenseNet67': n_pool=5 growth_rate=16 n_layers_per_block=5 elif preset_model == 'FC-DenseNet103': n_pool=5 growth_rate=16 n_layers_per_block=[4, 5, 7, 10, 12, 15, 12, 10, 7, 5, 4] if type(n_layers_per_block) == list: assert (len(n_layers_per_block) == 2 * n_pool + 1) elif type(n_layers_per_block) == int: n_layers_per_block = [n_layers_per_block] * (2 * n_pool + 1) else: raise ValueError with tf.variable_scope(scope, preset_model, [inputs]) as sc: ##################### # First Convolution # ##################### # We perform a first convolution. stack = slim.conv2d(inputs, n_filters_first_conv, [3, 3], scope='first_conv') n_filters = n_filters_first_conv ##################### # Downsampling path # ##################### skip_connection_list = [] for i in range(n_pool): # Dense Block stack, _ = DenseBlock(stack, n_layers_per_block[i], growth_rate, dropout_p, scope='denseblock%d' % (i+1)) n_filters += growth_rate * n_layers_per_block[i] # At the end of the dense block, the current stack is stored in the skip_connections list skip_connection_list.append(stack) # Transition Down stack = TransitionDown(stack, n_filters, dropout_p, scope='transitiondown%d'%(i+1)) skip_connection_list = skip_connection_list[::-1] ##################### # Bottleneck # ##################### # Dense Block # We will only upsample the new feature maps stack, block_to_upsample = DenseBlock(stack, n_layers_per_block[n_pool], growth_rate, dropout_p, scope='denseblock%d' % (n_pool + 1)) ####################### # Upsampling path # ####################### for i in range(n_pool): # Transition Up ( Upsampling + concatenation with the skip connection) n_filters_keep = growth_rate * n_layers_per_block[n_pool + i] stack = TransitionUp(block_to_upsample, skip_connection_list[i], n_filters_keep, scope='transitionup%d' % (n_pool + i + 1)) # Dense Block # We will only upsample the new feature maps stack, block_to_upsample = DenseBlock(stack, n_layers_per_block[n_pool + i + 1], growth_rate, dropout_p, scope='denseblock%d' % (n_pool + i + 2)) ##################### # Softmax # ##################### net = slim.conv2d(stack, num_classes, [1, 1], scope='logits') return net
d55a3164fd73e3a5fcbacf91e9d1ded395dafa83
366f6414e7ee6f5f032fb0ce395184aae1c24014
/projectAwwards/serializer.py
c77674711754190d3eef3d72e8026864064f13c8
[]
no_license
praize-laurine/Awwards
271910bce5d31e0cabe6e65ba3660e49871f30c3
4c6a10abe17b2f08e06c27967ea8d044d0630964
refs/heads/master
2023-02-22T15:05:33.301611
2021-01-29T07:00:48
2021-01-29T07:00:48
331,952,987
0
0
null
null
null
null
UTF-8
Python
false
false
356
py
from rest_framework import serializers from .models import Profile,Project class ProfileSerializer(serializers.ModelSerializer): class Meta: model = Profile fields = ('user','bio') class ProjectSerializer(serializers.ModelSerializer): class Meta: model = Project fields = ('title','description','url_link','user')
a95c69a39de74191a2cf07f7bbe52fda833d9226
58ee6d6e86a026cebcd51e146f37d30061f95e91
/tutorial/quickstart/views.py
99bc313def55a655d0ac568ab106cc8141d16847
[]
no_license
SFSeiei/tutorial
fa7e28dbba0bd0e7a43630c882d52b123a78fe8d
dcda7533d80b9c89975884a2676243058f38d944
refs/heads/master
2020-08-31T10:47:55.636779
2019-10-31T06:19:26
2019-10-31T06:19:26
218,673,324
0
0
null
null
null
null
UTF-8
Python
false
false
936
py
from django.shortcuts import render # Create your views here. from django.contrib.auth.models import User, Group from rest_framework import viewsets from tutorial.quickstart.serializers import UserSerializer, GroupSerializer from django.shortcuts import redirect, HttpResponse, reverse class UserViewSet(viewsets.ModelViewSet): """ API endpoint that allows users to be viewed or edited. """ queryset = User.objects.all().order_by('-date_joined') serializer_class = UserSerializer class GroupViewSet(viewsets.ModelViewSet): """ API endpoint that allows groups to be viewed or edited. """ queryset = Group.objects.all() serializer_class = GroupSerializer # 不知道为什么不行 class Test(viewsets.ModelViewSet): """ API endpoint that allows groups to be viewed or edited. """ print("this is test_class.") def test_func(): return HttpResponse("this is test_func.")
1cdb295c7d4c5f4d444031d64b2eaf82620aa1e4
058749c63b46987c371edb227669332f297316cc
/2_AddTwoNumbers.py
1256ea6dfb9a6709d9b324466b705a0d4bc0e29a
[]
no_license
gaosheng19920801/leetcode
764b6e5c1e8ee449f23b6999fb2820c0088e0921
f6752ba1010ed44e69f29274865f1788f0b31600
refs/heads/master
2021-06-21T18:43:36.838786
2021-05-10T13:43:02
2021-05-10T13:43:02
219,732,754
0
0
null
null
null
null
UTF-8
Python
false
false
1,348
py
# Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None def printList(self): while self: print(self.val) self = self.next class Solution: def addTwoNumbers(self, l1: ListNode, l2: ListNode) -> ListNode: dummyHead = ListNode(0) currNode = dummyHead carry = 0 while l1 or l2: if l1: x = l1.val else: x = 0 if l2: y = l2.val else: y = 0 sum = x + y + carry carry = sum // 10 currNode.next = ListNode(sum % 10) currNode = currNode.next if l1: l1 = l1.next if l2: l2 = l2.next if carry > 0: currNode.next = ListNode(carry) return dummyHead.next ''' def main(): num1 = ListNode(2) num1.next = ListNode(4) num1.next.next = ListNode(3) num2 = ListNode(5) num2.next = ListNode(6) num2.next.next = ListNode(4) solution = Solution() result = solution.addTwoNumbers(num1,num2) result.printList() print('end') if __name__ == '__main__': main() '''
a4aaf4f6008b047c676dfce3d862c91abf2f8237
d53dd5d21588e210e00b6d765179aff934e2f24a
/instrumentation/instrumentation.py
79657d9440b7e06a745e171c90d79dc820d828f9
[ "Apache-2.0" ]
permissive
iobeam/samples-python
8ad8a93b3fbd6478a0b5552a72b2545d9c261520
b275e9515785ae346478f3a69e01463cc19d5354
refs/heads/master
2020-05-17T06:06:46.365775
2016-01-28T22:21:49
2016-01-28T22:21:49
41,765,693
2
0
null
2015-12-19T00:09:36
2015-09-01T22:02:09
Python
UTF-8
Python
false
false
2,351
py
from iobeam import iobeam import datetime import time ########################### # Template for a basic instrumentation app. # # This template outlines a script that periodically transmits device instrumentation # data (e.g., temperature, humidity, gps, etc.) to iobeam. # # Instructions: # # 0. Add your project info below and name this device # # 1. Run with placeholder data from command line: # python instrumentation.py # # 2. Replace placeholder data with device specific code below in each of the # template functions # # 3. Run again with your real data! # # ########################### ########################### # Your project info ########################### PROJECT_ID = # YOUR PROJECT ID HERE (int) PROJECT_TOKEN = # YOUR PROJECT TOKEN HERE (String) DEVICE_ID = # ID FOR THIS DEVICE (String) DEVICE_NAME = # NAME FOR THIS DEVICE (String, can be the same as DEVICE_ID) ########################### # Template functions # NOTE: Fill your own code here ########################### def get_temperature(): return 72 # placeholder def get_humidity(): return 0.6 # placeholder def get_gps(): return (42.359155,-71.0952463) # placeholder ########################### # Data collection / transmission ########################### def main(): # Build iobeam client builder = iobeam.ClientBuilder(PROJECT_ID, PROJECT_TOKEN).saveToDisk().registerOrSetId(DEVICE_ID, deviceName=DEVICE_NAME) client = builder.build() # Create data store with schema for transmitted data # Note: Update this schema with any new instrumentation data types measurements = client.createDataStore(["temperature", "humidity", "lat", "long"]) # Loop while True: # Collect data now = int(time.time()*1000) temperature = get_temperature() humidity = get_humidity() gps_lat, gps_long = get_gps() # Add data points to data store measurements.add(now, {"temperature": temperature, "humidity": humidity, "lat": gps_lat, "long": gps_long}) # Send data to iobeam client.send() # Print out data for debugging dt = datetime.datetime.fromtimestamp(now/1000.0) print('Sent: (Temperature: {:.2f}, Humidity: {:.2f}, (Lat, Long): ({:.6f}, {:.6f}) at {}'.format(temperature, humidity*100, gps_lat, gps_long, dt)) # Sleep for a bit (30 sec) time.sleep(30) if __name__ == "__main__": main()
745610ac743cdea2d4adb68730d67d5a100c65b7
e50d7e173f76d4e0c9f297a1dca2ecff898daf7f
/config.py
f20bd8400b18a5dabee48365417d75b7d77f46a0
[]
no_license
joshandrews/emilymcintyre.ca
242d9f9bb5aa3b8ef40c718ca47968a3e6ae27ec
b22077896a90f7b77972bdd851329e3d0d030ceb
refs/heads/master
2021-01-18T12:54:56.776590
2015-01-16T00:35:33
2015-01-16T00:35:33
28,666,992
1
0
null
null
null
null
UTF-8
Python
false
false
2,721
py
#!/usr/bin/env python import ConfigParser import os.path class Config: def __init__(self): self.config = ConfigParser.ConfigParser() if not os.path.isfile("americano.ini"): cfgfile = open("americano.ini",'w') self.config.add_section('MySQL') self.config.add_section("Preferences") self.config.add_section("Info") self.config.set("Preferences", "ExtraHeaderEnabled", "False") self.config.set("Preferences", "Colors", "Default") self.config.set('Preferences', 'indexbackgroundurl', "http://photos-c.ak.instagram.com/hphotos-ak-xpa1/t51.2885-15/10369418_255518024631354_1092534291_n.jpg") self.config.set("Info", "Installed", "1") self.config.write(cfgfile) cfgfile.close() else: self.config.read("americano.ini") def setMySQLUsername(self, username): cfgfile = open("americano.ini",'w') self.config.set('MySQL','username',username) self.config.write(cfgfile) cfgfile.close() def setMySQLPassword(self, password): cfgfile = open("americano.ini",'w') self.config.set('MySQL','password',password) self.config.write(cfgfile) cfgfile.close() def setMySQLDatabase(self, database): cfgfile = open("americano.ini",'w') self.config.set('MySQL','database',database) self.config.write(cfgfile) cfgfile.close() def setName(self, name): cfgfile = open("americano.ini",'w') self.config.set('Info','name',name) self.config.write(cfgfile) cfgfile.close() def setInstalled(self, val): cfgfile = open("americano.ini",'w') self.config.set('Info','installed',val) self.config.write(cfgfile) cfgfile.close() def setIndexBackgroundUrl(self, val): cfgfile = open("americano.ini",'w') self.config.set('Preferences','indexbackgroundurl',val) self.config.write(cfgfile) cfgfile.close() def ConfigSectionMap(self, section): dict1 = {} self.config.read('americano.ini') options = self.config.options(section) for option in options: try: dict1[option] = self.config.get(section, option) if dict1[option] == -1: print "skip: %s" % option except: print("exception on %s!" % option) dict1[option] = None return dict1 if __name__ == '__main__': con = Config() con.setMySQLUsername("admin") con.setMySQLPassword("andre") con.setMySQLDatabase("blog") print con.ConfigSectionMap("MySQL")["database"]
b626ae56932dee05bae3412201691ec260ae1044
a8182e9ddf3229dc50c752bd3526fac1ae5862e6
/app/cabotapp/calendar.py
6759d13fb0b76e29667a70889b3974f3cfd53def
[ "MIT" ]
permissive
kowsik/heroku-cabot
bb2159cf24398060551e55e10d0d893c2a10f405
faa6b24606c7c30e8fdeb857d3ad0bf1347cb490
refs/heads/master
2021-01-17T18:05:26.269311
2014-04-28T18:04:41
2014-04-28T18:04:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
583
py
from django.conf import settings from icalendar import Calendar, Event import requests def get_calendar_data(): feed_url = settings.CALENDAR_ICAL_URL resp = requests.get(feed_url) cal = Calendar.from_ical(resp.content) return cal def get_events(): events = [] for component in get_calendar_data().walk(): if component.name == 'VEVENT': events.append({ 'start': component.decoded('dtstart'), 'end': component.decoded('dtend'), 'summary': component.decoded('summary'), 'uid': component.decoded('uid'), }) return events
5aa055671b51307ce7e5d87a5287cc6d5064c1a9
d1b1cd3710d0f5f248ace0d1230fc2a2170f7dc9
/sc2/agent/DRLAgentWithNaiveDQN_phil.py
a73861718d2fb825ed55d6ce84b6896ecdda9658
[]
no_license
prokokok/starcraft2_rl
a7e7a1d20972d232af83457a952cfbe9c52394fc
ade3b1cc3537f990a4581da132f40b2766518962
refs/heads/master
2022-12-28T01:12:16.085932
2020-09-22T01:36:26
2020-09-22T01:36:26
296,833,774
1
0
null
null
null
null
UTF-8
Python
false
false
17,690
py
import random import time import math import os.path import numpy as np import pandas as pd from pysc2.agents import base_agent from pysc2.env import sc2_env, run_loop from pysc2.lib import actions, features, units from absl import app import torch from torch.utils.tensorboard import SummaryWriter from skdrl.pytorch.model.mlp import NaiveMultiLayerPerceptron from skdrl.pytorch.model.naivedqn import NaiveDQN from skdrl.pytorch.util.train_util import EMAMeter device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") writer = SummaryWriter() class ProtossAgentWithRawActsAndRawObs(base_agent.BaseAgent): actions = ("do_nothing", "harvest_minerals", "build_pylons", "build_gateways", "train_zealot", "attack") def get_my_units_by_type(self, obs, unit_type): return [unit for unit in obs.observation.raw_units if unit.unit_type == unit_type and unit.alliance == features.PlayerRelative.SELF] def get_enemy_units_by_type(self, obs, unit_type): return [unit for unit in obs.observation.raw_units if unit.unit_type == unit_type and unit.alliance == features.PlayerRelative.ENEMY] def get_my_completed_units_by_type(self, obs, unit_type): return [unit for unit in obs.observation.raw_units if unit.unit_type == unit_type and unit.build_progress == 100 and unit.alliance == features.PlayerRelative.SELF] def get_enemy_completed_units_by_type(self, obs, unit_type): return [unit for unit in obs.observation.raw_units if unit.unit_type == unit_type and unit.build_progress == 100 and unit.alliance == features.PlayerRelative.ENEMY] def get_distances(self, obs, units, xy): units_xy = [(unit.x, unit.y) for unit in units] return np.linalg.norm(np.array(units_xy) - np.array(xy), axis=1) def getMeanLocation(self, unitList): sum_x = 0 sum_y = 0 for unit in unitList: sum_x += unit.x sum_y += unit.y mean_x = sum_x / len(unitList) mean_y = sum_y / len(unitList) return [mean_x, mean_y] def transformDistance(self, x, x_distance, y, y_distance): if not self.base_top_left: return [x - x_distance, y - y_distance] return [x + x_distance, y + y_distance] def step(self, obs): super(ProtossAgentWithRawActsAndRawObs, self).step(obs) if obs.first(): nexus = self.get_my_units_by_type( obs, units.Protoss.Nexus)[0] self.base_top_left = (nexus.x < 32) def do_nothing(self, obs): return actions.RAW_FUNCTIONS.no_op() def harvest_minerals(self, obs): probes = self.get_my_units_by_type(obs, units.Protoss.Probe) idle_probes = [probe for probe in probes if probe.order_length == 0] if len(idle_probes) > 0: mineral_patches = [unit for unit in obs.observation.raw_units if unit.unit_type in [ units.Neutral.BattleStationMineralField, units.Neutral.BattleStationMineralField750, units.Neutral.LabMineralField, units.Neutral.LabMineralField750, units.Neutral.MineralField, units.Neutral.MineralField750, units.Neutral.PurifierMineralField, units.Neutral.PurifierMineralField750, units.Neutral.PurifierRichMineralField, units.Neutral.PurifierRichMineralField750, units.Neutral.RichMineralField, units.Neutral.RichMineralField750 ]] probe = random.choice(idle_probes) distances = self.get_distances(obs, mineral_patches, (probe.x, probe.y)) mineral_patch = mineral_patches[np.argmin(distances)] return actions.RAW_FUNCTIONS.Harvest_Gather_unit( "now", probe.tag, mineral_patch.tag) return actions.RAW_FUNCTIONS.no_op() def build_pylons(self, obs): nexus = self.get_my_units_by_type(obs, units.Protoss.Nexus) pylons = self.get_my_units_by_type(obs, units.Protoss.Pylon) probes = self.get_my_units_by_type(obs, units.Protoss.Probe) if len(nexus) == 1 and len(pylons) == 0 and obs.observation.player.minerals >= 100: mean_x, mean_y = self.getMeanLocation(nexus) pylon_xy = self.transformDistance(int(mean_x), -20, int(mean_y), 30) distances = self.get_distances(obs, probes, pylon_xy) probe = probes[np.argmin(distances)] return actions.RAW_FUNCTIONS.Build_Pylon_pt( "now", probe.tag, pylon_xy) elif len(pylons) > 0: pylon_coordinate = [] for pylon in pylons: pylon_coordinate.append((pylon.x, pylon.y)) x_coordinate, y_coordinate = max(pylon_coordinate, key=lambda t: t[1]) pylon_xy = self.transformDistance(int(x_coordinate), 10, int(y_coordinate), 0) distances = self.get_distances(obs, probes, pylon_xy) probe = probes[np.argmin(distances)] return actions.RAW_FUNCTIONS.FUNCTIONS.Build_Pylon_pt("now", probe.tag, pylon_xy) return actions.RAW_FUNCTIONS.no_op() def build_gateways(self, obs): completed_pylons = self.get_my_completed_units_by_type(obs, units.Protoss.Pylon) gateways = self.get_my_units_by_type(obs, units.Protoss.Gateway) probes = self.get_my_units_by_type(obs, units.Protoss.Probe) if (len(completed_pylons) > 0 and len(gateways) == 0 and obs.observation.player.minerals >= 150 and len(probes) > 0): target_pylon = random.choice(completed_pylons) gateway_xy = self.transformDistance(int(target_pylon.x), 0, int(target_pylon.y), -10) distances = self.get_distances(obs, probes, gateway_xy) probe = probes[np.argmin(distances)] return actions.RAW_FUNCTIONS.Build_Gateway_pt("now", probe.tag, gateway_xy) return actions.RAW_FUNCTIONS.no_op() def train_marine(self, obs): completed_gateways = self.get_my_completed_units_by_type( obs, units.Protoss.Gateway) free_supply = (obs.observation.player.food_cap - obs.observation.player.food_used) if (len(completed_gateways) > 0 and obs.observation.player.minerals >= 100 and free_supply > 1): gateways = self.get_my_units_by_type(obs, units.Protoss.Gateway) gateway = random.choice(gateways) if gateway.order_length < 5: return actions.RAW_FUNCTIONS.Train_Zealot_quick("now", gateway.tag) return actions.RAW_FUNCTIONS.no_op() def attack(self, obs): zealots = self.get_my_units_by_type(obs, units.Protoss.Zealot) if len(zealots) > 0: attack_xy = (38, 44) if self.base_top_left else (19, 23) x_offset = random.randint(-4, 4) y_offset = random.randint(-4, 4) zealots_tags = [zealot.tag for zealot in zealots] return actions.RAW_FUNCTIONS.Attack_pt( "now", zealots_tags, (attack_xy[0] + x_offset, attack_xy[1] + y_offset)) return actions.RAW_FUNCTIONS.no_op() class ProtossRandomAgent(ProtossAgentWithRawActsAndRawObs): def step(self, obs): super(ProtossRandomAgent, self).step(obs) action = random.choice(self.actions) return getattr(self, action)(obs) class ProtossRLAgentWithRawActsAndRawObs(ProtossAgentWithRawActsAndRawObs): def __init__(self): super(ProtossRLAgentWithRawActsAndRawObs, self).__init__() self.s_dim = 21 self.a_dim = 6 self.lr = 1e-4 self.gamma = 1.0 self.epsilon = 1.0 self.qnetwork = NaiveMultiLayerPerceptron(input_dim=self.s_dim, output_dim=self.a_dim, num_neurons=[128], hidden_act_func='ReLU', out_act_func='Identity').to(device) self.data_file = 'rlagent_with_naive_dqn' if os.path.isfile(self.data_file + '.pt'): self.qnetwork.load_state_dict(torch.load(self.data_file + '.pt')) self.dqn = NaiveDQN(state_dim=self.s_dim, action_dim=self.a_dim, qnet=self.qnetwork, lr=self.lr, gamma=self.gamma, epsilon=self.epsilon).to(device) self.print_every = 50 self.ema_factor = 0.5 self.ema = EMAMeter(self.ema_factor) self.cum_reward = 0 self.cum_loss = 0 self.episode_count = 0 self.new_game() def reset(self): super(TerranRLAgentWithRawActsAndRawObs, self).reset() self.new_game() def new_game(self): self.base_top_left = None self.previous_state = None self.previous_action = None self.cum_reward = 0 self.cum_loss = 0 def get_state(self, obs): scvs = self.get_my_units_by_type(obs, units.Terran.SCV) idle_scvs = [scv for scv in scvs if scv.order_length == 0] command_centers = self.get_my_units_by_type(obs, units.Terran.CommandCenter) supply_depots = self.get_my_units_by_type(obs, units.Terran.SupplyDepot) completed_supply_depots = self.get_my_completed_units_by_type( obs, units.Terran.SupplyDepot) barrackses = self.get_my_units_by_type(obs, units.Terran.Barracks) completed_barrackses = self.get_my_completed_units_by_type( obs, units.Terran.Barracks) marines = self.get_my_units_by_type(obs, units.Terran.Marine) queued_marines = (completed_barrackses[0].order_length if len(completed_barrackses) > 0 else 0) free_supply = (obs.observation.player.food_cap - obs.observation.player.food_used) can_afford_supply_depot = obs.observation.player.minerals >= 100 can_afford_barracks = obs.observation.player.minerals >= 150 can_afford_marine = obs.observation.player.minerals >= 100 enemy_scvs = self.get_enemy_units_by_type(obs, units.Terran.SCV) enemy_idle_scvs = [scv for scv in enemy_scvs if scv.order_length == 0] enemy_command_centers = self.get_enemy_units_by_type( obs, units.Terran.CommandCenter) enemy_supply_depots = self.get_enemy_units_by_type( obs, units.Terran.SupplyDepot) enemy_completed_supply_depots = self.get_enemy_completed_units_by_type( obs, units.Terran.SupplyDepot) enemy_barrackses = self.get_enemy_units_by_type(obs, units.Terran.Barracks) enemy_completed_barrackses = self.get_enemy_completed_units_by_type( obs, units.Terran.Barracks) enemy_marines = self.get_enemy_units_by_type(obs, units.Terran.Marine) return (len(command_centers), len(scvs), len(idle_scvs), len(supply_depots), len(completed_supply_depots), len(barrackses), len(completed_barrackses), len(marines), queued_marines, free_supply, can_afford_supply_depot, can_afford_barracks, can_afford_marine, len(enemy_command_centers), len(enemy_scvs), len(enemy_idle_scvs), len(enemy_supply_depots), len(enemy_completed_supply_depots), len(enemy_barrackses), len(enemy_completed_barrackses), len(enemy_marines)) def step(self, obs): super(TerranRLAgentWithRawActsAndRawObs, self).step(obs) #time.sleep(0.5) state = self.get_state(obs) state = torch.tensor(state).float().view(1, self.s_dim).to(device) action_idx = self.dqn.choose_action(state) action = self.actions[action_idx] done = True if obs.last() else False if self.previous_action is not None: loss = self.dqn.learn(self.previous_state.to(device), torch.tensor(self.previous_action).view(1, 1).to(device), torch.tensor(obs.reward).view(1, 1).to(device), state.to(device), torch.tensor(done).float().view(1, 1).to(device) ) self.cum_loss += loss.detach().numpy() self.cum_reward += obs.reward self.previous_state = state self.previous_action = action_idx if obs.last(): self.episode_count = self.episode_count + 1 torch.save(self.dqn.qnet.state_dict(), self.data_file + '.pt') self.ema.update(self.cum_reward) writer.add_scalar("Loss/online", self.cum_loss/obs.observation.game_loop, self.episode_count) writer.add_scalar("Score", self.ema.s, self.episode_count) if self.episode_count % self.print_every == 0: print("Episode {} || EMA: {} || EPS : {}".format(self.episode_count, self.ema.s, self.dqn.epsilon)) if self.episode_count >= 150: self.dqn.epsilon *= 0.999 return getattr(self, action)(obs) # def main(unused_argv): # agent1 = TerranRLAgentWithRawActsAndRawObs() # agent2 = TerranRandomAgent() # try: # with sc2_env.SC2Env( # map_name="Simple64", # players=[sc2_env.Agent(sc2_env.Race.terran), # sc2_env.Agent(sc2_env.Race.terran)], # agent_interface_format=features.AgentInterfaceFormat( # action_space=actions.ActionSpace.RAW, # use_raw_units=True, # raw_resolution=64, # ), # step_mul=8, # disable_fog=True, # ) as env: # run_loop.run_loop([agent1, agent2], env, max_episodes=1000) # except KeyboardInterrupt: # pass # def main(unused_argv): # agent = TerranRLAgentWithRawActsAndRawObs() # try: # with sc2_env.SC2Env( # map_name="Simple64", # players=[sc2_env.Agent(sc2_env.Race.terran), # sc2_env.Bot(sc2_env.Race.terran, # sc2_env.Difficulty.very_easy)], # agent_interface_format=features.AgentInterfaceFormat( # action_space=actions.ActionSpace.RAW, # use_raw_units=True, # raw_resolution=64, # ), # step_mul=8, # disable_fog=True, # ) as env: # agent.setup(env.observation_spec(), env.action_spec()) # # timesteps = env.reset() # agent.reset() # # while True: # step_actions = [agent.step(timesteps[0])] # if timesteps[0].last(): # break # timesteps = env.step(step_actions) # except KeyboardInterrupt: # pass # def main(unused_argv): # agent = TerranRLAgentWithRawActsAndRawObs() # try: # while True: # with sc2_env.SC2Env( # map_name="Simple64", # players=[sc2_env.Agent(sc2_env.Race.terran), # sc2_env.Bot(sc2_env.Race.terran, # sc2_env.Difficulty.very_easy)], # agent_interface_format=features.AgentInterfaceFormat( # action_space=actions.ActionSpace.RAW, # use_raw_units=True, # raw_resolution=64, # ), # step_mul=8, # disable_fog=True, # game_steps_per_episode=0, # visualize=False) as env: # # agent.setup(env.observation_spec(), env.action_spec()) # # timesteps = env.reset() # agent.reset() # # while True: # step_actions = [agent.step(timesteps[0])] # if timesteps[0].last(): # break # timesteps = env.step(step_actions) # # except KeyboardInterrupt: # pass def main(unused_argv): agent1 = TerranRLAgentWithRawActsAndRawObs() try: with sc2_env.SC2Env( map_name="Simple64", players=[sc2_env.Agent(sc2_env.Race.terran), sc2_env.Bot(sc2_env.Race.terran, sc2_env.Difficulty.very_easy)], agent_interface_format=features.AgentInterfaceFormat( action_space=actions.ActionSpace.RAW, use_raw_units=True, raw_resolution=64, ), step_mul=8, disable_fog=True, visualize=False ) as env: run_loop.run_loop([agent1], env, max_episodes=1000) except KeyboardInterrupt: pass if __name__ == "__main__": app.run(main)
3f18c535d464c3fa0364386235cbbb1f472cbbf5
8a433500d1e66df60fdfe3ee7104e3591e2489d3
/homework3/31.py
344012ef0c5d9e8701910e7643a32b0dc126faef
[]
no_license
ratmirdudin/numerical
091c4f1810f2225bc2dff741a04e500a9bf272bb
2d16f4a5419d441b25016879fb838596e73a3979
refs/heads/master
2022-10-11T13:51:53.129953
2020-06-10T19:10:21
2020-06-10T19:10:21
264,369,663
0
0
null
null
null
null
UTF-8
Python
false
false
1,171
py
import numpy as np import matplotlib.pyplot as plt train_x = open('data1/train.dat', 'r') train_y = open('data1/train.ans', 'r') test_x = open('data1/test.dat', 'r') test_y = open('data1/test.ans', 'w') x = [float(i) for i in train_x.readline().split()] y = [float(i) for i in train_y.readline().split()] z = [float(i) for i in test_x.readline().split()] n = len(x) m = len(z) A = np.zeros(n) B = np.zeros(n) f = np.zeros(m) for i in range(n - 1): A[i] = (y[i + 1] - y[i]) / (x[i + 1] - x[i]) B[i] = y[i] for j in range(m): for i in range(n - 1): if z[j] < x[0]: f[j] = A[0] * (z[j] - x[0]) + B[0] if z[j] >= x[n - 1]: f[j] = A[n - 2] * (z[j] - x[n - 2]) + B[n - 2] if x[i] < z[j] <= x[i + 1]: f[j] = A[i] * (z[j] - x[i]) + B[i] test_y.write(str(f[j]) + ' ') print('Count train = ', n) print('x = ', x) print('y = ', y) print('Count of test = ', m) print('z = ', z) print('f = ', f) train_x.close() train_y.close() test_x.close() test_y.close() plt.plot(x, y, 'b', label = 'interpolation') plt.plot(x, y, 'o', label = 'train') plt.plot(z, f, 'r*', label = 'test') plt.ylabel('y(x), f(z)') plt.xlabel('x, z') plt.legend() plt.grid() plt.show()
ce26fc7a6b6d61f812f05ba974c34ce227688d94
9e328530c7e96b9229cc7a7a06e433fd3e8a5b34
/python/project2.py
8c476f54aec71bb9c91045c738605e4609c76c6a
[]
no_license
anirudhRowjee/Class11
e5bdc5b4dd2895fe278cf7caa0a12b36e58d2188
dc90a5efd33ca71cfffa3e2f154621f064a1e2c1
refs/heads/master
2021-06-26T14:28:56.700587
2018-08-09T17:53:51
2018-08-09T17:53:51
143,626,058
2
2
null
2020-10-07T09:15:26
2018-08-05T15:42:49
Python
UTF-8
Python
false
false
232
py
a = float(input("please input a")) b = float(input("please input b")) c = float(input("please input c")) x = float(input("please input x")) answer = (((a*x*x*x) - (3*x*x))/(2*x)) + (((b*x*x) - (4*x)) / (c*x)) print answer
4cfa849ee0707d7f4584967ead32663365e3e83a
e86f88bd05d2dfc3197191245a28734e0a94306c
/scripts/manage_donors_db.py
3c4a29bd2ebd82ae9f17f1414497b0935e76ab61
[]
no_license
transreductionist/API-Project-1
b83e008a8dcf19f690109d89b298111062f760c0
d5ffcc5d276692d1578cea704125b1b3952beb1c
refs/heads/master
2022-01-16T06:31:06.951095
2019-05-09T15:22:44
2019-05-09T15:22:44
185,820,751
0
0
null
null
null
null
UTF-8
Python
false
false
3,882
py
"""The following script will DROP ALL tables and then CREATE ALL. Use with caution! It will remove all existing data, and then reconstruct the tables with no entries. Other functions can be added to manage other database tasks. To run a function navigate to the project root and, for example, on the command line type: python -c "import scripts.manage_donors_db;scripts.manage_donors_db.drop_all_and_create()" python -c "import scripts.manage_donors_db;scripts.manage_donors_db.create_database_tables()" """ import uuid from application.app import create_app from application.flask_essentials import database from application.schemas.agent import AgentSchema from application.schemas.caged_donor import CagedDonorSchema from application.schemas.queued_donor import QueuedDonorSchema from tests.helpers.default_dictionaries import get_caged_donor_dict app = create_app( 'DEV' ) # pylint: disable=C0103 def drop_all_and_create(): """A function to drop and then recreate the database tables.""" with app.app_context(): database.reflect() database.drop_all() database.create_all() def create_database_tables(): """Function to create the DONATE database tables, specifically the CagedDonorModel and QueuedDonorModel with UUID. All that is said here for the CagedDonorModel also holds for the QueuedDonorModel. The CagedDonorModel is built using Marshmallow schema CagedDonorSchema, which deserializes a dictionary to the model. The searchable_id in the donor_json is: donor_json[ 'searchable_id' ] = uuid.uuid4() This gets passed to the CagedDonorSchema where: searchable_id = fields.UUID() And so the validation step is passed. MySql does not have a UUID type though and there we have ( CagedDonorModel ): searchable_id = database.Column( database.BINARY( 16 ), nullable=False, default=uuid.uuid4().bytes ) The helper model class BinaryUUID in binary_uuid.py handles the serialization in and out. """ with app.app_context(): drop_all_and_create() caged_donors = [] queued_donors = [] # Create 100 caged donors. for i in range( 0, 100 ): donor_json = get_caged_donor_dict( { 'gift_searchable_id': uuid.uuid4() } ) donor_json[ 'gift_id' ] = i + 1 donor_json[ 'customer_id' ] = str( ( i + 1 ) + 1000 ) del donor_json[ 'id' ] caged_donor = CagedDonorSchema().load( donor_json ).data queued_donor = QueuedDonorSchema().load( donor_json ).data caged_donors.append( caged_donor ) queued_donors.append( queued_donor ) # Create the agents. agent_jsons = [ { 'name': 'Donate API', 'user_id': None, 'staff_id': None, 'type': 'Automated' }, { 'name': 'Braintree', 'user_id': None, 'staff_id': None, 'type': 'Organization' }, { 'name': 'PayPal', 'user_id': None, 'staff_id': None, 'type': 'Organization' }, { 'name': 'Credit Card Issuer', 'user_id': None, 'staf_id': None, 'type': 'Organization' }, { 'name': 'Unspecified NumbersUSA Staff', 'user_id': None, 'staff_id': None, 'type': 'Staff Member' }, { 'name': 'Dan Marsh', 'user_id': 1234, 'staff_id': 4321, 'type': 'Staff Member' }, { 'name': 'Joshua Turcotte', 'user_id': 7041, 'staff_id': 1407, 'type': 'Staff Member' }, { 'name': 'Donate API', 'user_id': None, 'staff_id': None, 'type': 'Automated' } ] agents = [] for agent_json in agent_jsons: agent_model = AgentSchema().load( agent_json ).data agents.append( agent_model ) database.session.bulk_save_objects( caged_donors ) database.session.bulk_save_objects( queued_donors ) database.session.bulk_save_objects( agents ) database.session.commit()
76165af58121e1b0a60e11a06bbd03a474677c14
248e9951f171425a21d30f4f9789b4780aef83a7
/test/functional/rpc_scantxoutset.py
84f69aff87facfef64e6d6695718a5fb529559c2
[ "MIT" ]
permissive
bitcoinrtx/BitcoinRTX-V0.1
8dd4f2b79e40d1eba39a1dc8e27bffe5c34785d4
defcb5024837d0a17152d1304e6de3fb338436f5
refs/heads/master
2023-03-12T11:16:08.751490
2021-03-06T20:05:56
2021-03-06T20:05:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,467
py
#!/usr/bin/env python3 # # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the scantxoutset rpc call.""" from test_framework.test_framework import BitcoinTestFramework from test_framework.util import assert_equal, assert_raises_rpc_error from decimal import Decimal import shutil import os def descriptors(out): return sorted(u['desc'] for u in out['unspents']) class ScantxoutsetTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.setup_clean_chain = True def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): self.log.info("Mining blocks...") self.nodes[0].generate(110) addr_P2SH_SEGWIT = self.nodes[0].getnewaddress("", "p2sh-segwit") pubk1 = self.nodes[0].getaddressinfo(addr_P2SH_SEGWIT)['pubkey'] addr_LEGACY = self.nodes[0].getnewaddress("", "legacy") pubk2 = self.nodes[0].getaddressinfo(addr_LEGACY)['pubkey'] addr_BECH32 = self.nodes[0].getnewaddress("", "bech32") pubk3 = self.nodes[0].getaddressinfo(addr_BECH32)['pubkey'] self.nodes[0].sendtoaddress(addr_P2SH_SEGWIT, 0.001) self.nodes[0].sendtoaddress(addr_LEGACY, 0.002) self.nodes[0].sendtoaddress(addr_BECH32, 0.004) #send to child keys of tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK self.nodes[0].sendtoaddress("mkHV1C6JLheLoUSSZYk7x3FH5tnx9bu7yc", 0.008) # (m/0'/0'/0') self.nodes[0].sendtoaddress("mipUSRmJAj2KrjSvsPQtnP8ynUon7FhpCR", 0.016) # (m/0'/0'/1') self.nodes[0].sendtoaddress("n37dAGe6Mq1HGM9t4b6rFEEsDGq7Fcgfqg", 0.032) # (m/0'/0'/1500') self.nodes[0].sendtoaddress("mqS9Rpg8nNLAzxFExsgFLCnzHBsoQ3PRM6", 0.064) # (m/0'/0'/0) self.nodes[0].sendtoaddress("mnTg5gVWr3rbhHaKjJv7EEEc76ZqHgSj4S", 0.128) # (m/0'/0'/1) self.nodes[0].sendtoaddress("mketCd6B9U9Uee1iCsppDJJBHfvi6U6ukC", 0.256) # (m/0'/0'/1500) self.nodes[0].sendtoaddress("mj8zFzrbBcdaWXowCQ1oPZ4qioBVzLzAp7", 0.512) # (m/1/1/0') self.nodes[0].sendtoaddress("mfnKpKQEftniaoE1iXuMMePQU3PUpcNisA", 1.024) # (m/1/1/1') self.nodes[0].sendtoaddress("mou6cB1kaP1nNJM1sryW6YRwnd4shTbXYQ", 2.048) # (m/1/1/1500') self.nodes[0].sendtoaddress("mtfUoUax9L4tzXARpw1oTGxWyoogp52KhJ", 4.096) # (m/1/1/0) self.nodes[0].sendtoaddress("mxp7w7j8S1Aq6L8StS2PqVvtt4HGxXEvdy", 8.192) # (m/1/1/1) self.nodes[0].sendtoaddress("mpQ8rokAhp1TAtJQR6F6TaUmjAWkAWYYBq", 16.384) # (m/1/1/1500) self.nodes[0].generate(1) self.log.info("Stop node, remove wallet, mine again some blocks...") self.stop_node(0) shutil.rmtree(os.path.join(self.nodes[0].datadir, "regtest", 'wallets')) self.start_node(0) self.nodes[0].generate(110) scan = self.nodes[0].scantxoutset("start", []) info = self.nodes[0].gettxoutsetinfo() assert_equal(scan['success'], True) assert_equal(scan['height'], info['height']) assert_equal(scan['txouts'], info['txouts']) assert_equal(scan['bestblock'], info['bestblock']) self.restart_node(0, ['-nowallet']) self.log.info("Test if we have found the non HD unspent outputs.") assert_equal(self.nodes[0].scantxoutset("start", [ "pkh(" + pubk1 + ")", "pkh(" + pubk2 + ")", "pkh(" + pubk3 + ")"])['total_amount'], Decimal("0.002")) assert_equal(self.nodes[0].scantxoutset("start", [ "wpkh(" + pubk1 + ")", "wpkh(" + pubk2 + ")", "wpkh(" + pubk3 + ")"])['total_amount'], Decimal("0.004")) assert_equal(self.nodes[0].scantxoutset("start", [ "sh(wpkh(" + pubk1 + "))", "sh(wpkh(" + pubk2 + "))", "sh(wpkh(" + pubk3 + "))"])['total_amount'], Decimal("0.001")) assert_equal(self.nodes[0].scantxoutset("start", [ "combo(" + pubk1 + ")", "combo(" + pubk2 + ")", "combo(" + pubk3 + ")"])['total_amount'], Decimal("0.007")) assert_equal(self.nodes[0].scantxoutset("start", [ "addr(" + addr_P2SH_SEGWIT + ")", "addr(" + addr_LEGACY + ")", "addr(" + addr_BECH32 + ")"])['total_amount'], Decimal("0.007")) assert_equal(self.nodes[0].scantxoutset("start", [ "addr(" + addr_P2SH_SEGWIT + ")", "addr(" + addr_LEGACY + ")", "combo(" + pubk3 + ")"])['total_amount'], Decimal("0.007")) self.log.info("Test range validation.") assert_raises_rpc_error(-8, "End of range is too high", self.nodes[0].scantxoutset, "start", [ {"desc": "desc", "range": -1}]) assert_raises_rpc_error(-8, "Range should be greater or equal than 0", self.nodes[0].scantxoutset, "start", [ {"desc": "desc", "range": [-1, 10]}]) assert_raises_rpc_error(-8, "End of range is too high", self.nodes[0].scantxoutset, "start", [ {"desc": "desc", "range": [(2 << 31 + 1) - 1000000, (2 << 31 + 1)]}]) assert_raises_rpc_error(-8, "Range specified as [begin,end] must not have begin after end", self.nodes[0].scantxoutset, "start", [ {"desc": "desc", "range": [2, 1]}]) assert_raises_rpc_error(-8, "Range is too large", self.nodes[0].scantxoutset, "start", [ {"desc": "desc", "range": [0, 1000001]}]) self.log.info("Test extended key derivation.") # Run various scans, and verify that the sum of the amounts of the matches corresponds to the expected subset. # Note that all amounts in the UTXO set are powers of 2 multiplied by 0.001 BTC, so each amounts uniquely identifies a subset. assert_equal(self.nodes[0].scantxoutset("start", [ "combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/0'/0h/0h)"])['total_amount'], Decimal("0.008")) assert_equal(self.nodes[0].scantxoutset("start", [ "combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/0'/0'/1h)"])['total_amount'], Decimal("0.016")) assert_equal(self.nodes[0].scantxoutset("start", [ "combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/0h/0'/1500')"])['total_amount'], Decimal("0.032")) assert_equal(self.nodes[0].scantxoutset("start", [ "combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/0h/0h/0)"])['total_amount'], Decimal("0.064")) assert_equal(self.nodes[0].scantxoutset("start", [ "combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/0'/0h/1)"])['total_amount'], Decimal("0.128")) assert_equal(self.nodes[0].scantxoutset("start", [ "combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/0h/0'/1500)"])['total_amount'], Decimal("0.256")) assert_equal(self.nodes[0].scantxoutset("start", [ {"desc": "combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/0'/0h/*h)", "range": 1499}])['total_amount'], Decimal("0.024")) assert_equal(self.nodes[0].scantxoutset("start", [ {"desc": "combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/0'/0'/*h)", "range": 1500}])['total_amount'], Decimal("0.056")) assert_equal(self.nodes[0].scantxoutset("start", [ {"desc": "combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/0h/0'/*)", "range": 1499}])['total_amount'], Decimal("0.192")) assert_equal(self.nodes[0].scantxoutset("start", [ {"desc": "combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/0'/0h/*)", "range": 1500}])['total_amount'], Decimal("0.448")) assert_equal(self.nodes[0].scantxoutset("start", [ "combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/0')"])['total_amount'], Decimal("0.512")) assert_equal(self.nodes[0].scantxoutset("start", [ "combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/1')"])['total_amount'], Decimal("1.024")) assert_equal(self.nodes[0].scantxoutset("start", [ "combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/1500h)"])['total_amount'], Decimal("2.048")) assert_equal(self.nodes[0].scantxoutset("start", [ "combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/0)"])['total_amount'], Decimal("4.096")) assert_equal(self.nodes[0].scantxoutset("start", [ "combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/1)"])['total_amount'], Decimal("8.192")) assert_equal(self.nodes[0].scantxoutset("start", [ "combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/1500)"])['total_amount'], Decimal("16.384")) assert_equal(self.nodes[0].scantxoutset("start", [ "combo(tpubD6NzVbkrYhZ4WaWSyoBvQwbpLkojyoTZPRsgXELWz3Popb3qkjcJyJUGLnL4qHHoQvao8ESaAstxYSnhyswJ76uZPStJRJCTKvosUCJZL5B/1/1/0)"])['total_amount'], Decimal("4.096")) assert_equal(self.nodes[0].scantxoutset("start", [ "combo([abcdef88/1/2'/3/4h]tpubD6NzVbkrYhZ4WaWSyoBvQwbpLkojyoTZPRsgXELWz3Popb3qkjcJyJUGLnL4qHHoQvao8ESaAstxYSnhyswJ76uZPStJRJCTKvosUCJZL5B/1/1/1)"])['total_amount'], Decimal("8.192")) assert_equal(self.nodes[0].scantxoutset("start", [ "combo(tpubD6NzVbkrYhZ4WaWSyoBvQwbpLkojyoTZPRsgXELWz3Popb3qkjcJyJUGLnL4qHHoQvao8ESaAstxYSnhyswJ76uZPStJRJCTKvosUCJZL5B/1/1/1500)"])['total_amount'], Decimal("16.384")) assert_equal(self.nodes[0].scantxoutset("start", [ {"desc": "combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/*')", "range": 1499}])['total_amount'], Decimal("1.536")) assert_equal(self.nodes[0].scantxoutset("start", [ {"desc": "combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/*')", "range": 1500}])['total_amount'], Decimal("3.584")) assert_equal(self.nodes[0].scantxoutset("start", [ {"desc": "combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/*)", "range": 1499}])['total_amount'], Decimal("12.288")) assert_equal(self.nodes[0].scantxoutset("start", [ {"desc": "combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/*)", "range": 1500}])['total_amount'], Decimal("28.672")) assert_equal(self.nodes[0].scantxoutset("start", [ {"desc": "combo(tpubD6NzVbkrYhZ4WaWSyoBvQwbpLkojyoTZPRsgXELWz3Popb3qkjcJyJUGLnL4qHHoQvao8ESaAstxYSnhyswJ76uZPStJRJCTKvosUCJZL5B/1/1/*)", "range": 1499}])['total_amount'], Decimal("12.288")) assert_equal(self.nodes[0].scantxoutset("start", [ {"desc": "combo(tpubD6NzVbkrYhZ4WaWSyoBvQwbpLkojyoTZPRsgXELWz3Popb3qkjcJyJUGLnL4qHHoQvao8ESaAstxYSnhyswJ76uZPStJRJCTKvosUCJZL5B/1/1/*)", "range": 1500}])['total_amount'], Decimal("28.672")) assert_equal(self.nodes[0].scantxoutset("start", [ {"desc": "combo(tpubD6NzVbkrYhZ4WaWSyoBvQwbpLkojyoTZPRsgXELWz3Popb3qkjcJyJUGLnL4qHHoQvao8ESaAstxYSnhyswJ76uZPStJRJCTKvosUCJZL5B/1/1/*)", "range": [1500,1500]}])['total_amount'], Decimal("16.384")) # Test the reported descriptors for a few matches assert_equal(descriptors(self.nodes[0].scantxoutset("start", [ {"desc": "combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/0h/0'/*)", "range": 1499}])), ["pkh([0c5f9a1e/0'/0'/0]026dbd8b2315f296d36e6b6920b1579ca75569464875c7ebe869b536a7d9503c8c)#dzxw429x", "pkh([0c5f9a1e/0'/0'/1]033e6f25d76c00bedb3a8993c7d5739ee806397f0529b1b31dda31ef890f19a60c)#43rvceed"]) assert_equal(descriptors(self.nodes[0].scantxoutset("start", [ "combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/0)"])), ["pkh([0c5f9a1e/1/1/0]03e1c5b6e650966971d7e71ef2674f80222752740fc1dfd63bbbd220d2da9bd0fb)#cxmct4w8"]) assert_equal(descriptors(self.nodes[0].scantxoutset("start", [ {"desc": "combo(tpubD6NzVbkrYhZ4WaWSyoBvQwbpLkojyoTZPRsgXELWz3Popb3qkjcJyJUGLnL4qHHoQvao8ESaAstxYSnhyswJ76uZPStJRJCTKvosUCJZL5B/1/1/*)", "range": 1500}])), ['pkh([0c5f9a1e/1/1/0]03e1c5b6e650966971d7e71ef2674f80222752740fc1dfd63bbbd220d2da9bd0fb)#cxmct4w8', 'pkh([0c5f9a1e/1/1/1500]03832901c250025da2aebae2bfb38d5c703a57ab66ad477f9c578bfbcd78abca6f)#vchwd07g', 'pkh([0c5f9a1e/1/1/1]030d820fc9e8211c4169be8530efbc632775d8286167afd178caaf1089b77daba7)#z2t3ypsa']) # Check that status and abort don't need second arg assert_equal(self.nodes[0].scantxoutset("status"), None) assert_equal(self.nodes[0].scantxoutset("abort"), False) # Check that second arg is needed for start assert_raises_rpc_error(-1, "scanobjects argument is required for the start action", self.nodes[0].scantxoutset, "start") if __name__ == '__main__': ScantxoutsetTest().main()
6a6ffca20c1c9cc02781e1c479389521f4e3e993
0be6823ef69ce50f35063aad98cba913abfca3d4
/deepr/hooks/num_params.py
f7808e1823f80c1ab60b65387bdf8db04ea1edda
[ "Apache-2.0" ]
permissive
Mbompr/deepr
944e827c114be60f73ad5882130a531bb2332559
1fb28e15aeeac6ef2d8e5b678feb380f2b1951f2
refs/heads/master
2022-11-11T10:02:01.929598
2020-05-20T16:29:38
2020-05-25T10:36:52
266,785,156
0
0
Apache-2.0
2020-05-25T13:23:03
2020-05-25T13:23:02
null
UTF-8
Python
false
false
1,408
py
"""Log Number of Parameters after session creation""" from typing import Tuple, List import logging import tensorflow as tf from deepr.utils import mlflow LOGGER = logging.getLogger(__name__) class NumParamsHook(tf.train.SessionRunHook): """Log Number of Parameters after session creation""" def __init__(self, use_mlflow: bool): self.use_mlflow = use_mlflow def after_create_session(self, session, coord): super().after_create_session(session, coord) num_global, num_trainable = get_num_params() LOGGER.info(f"Number of parameters (global) = {num_global}") LOGGER.info(f"Number of parameters (trainable) = {num_trainable}") if self.use_mlflow: mlflow.log_metrics({"num_params_global": num_global, "num_params_trainable": num_trainable}) def get_num_params() -> Tuple[int, int]: """Get number of global and trainable parameters Returns ------- Tuple[int, int] num_global, num_trainable """ def _count(variables: List): total = 0 for var in variables: shape = var.get_shape() var_params = 1 for dim in shape: var_params *= dim.value total += var_params return total num_global = _count(tf.global_variables()) num_trainable = _count(tf.trainable_variables()) return num_global, num_trainable
c0964f7a176be551ea3d34649e8c502828aa6ad1
ecd3051e5baed08d2b987a36820a764223ceb7fd
/algo/leetcode/dp/perfect_square-279.py
5afe06502d2b1a80d98a04de7d71aa57688dd3e3
[ "CC0-1.0" ]
permissive
Hasaber8/cheatsheets
5493cfbd178d01a1ab9cf6e216263299c9425776
94b44424e8661a74e2ded8445455d00b122f167f
refs/heads/master
2021-04-16T20:09:17.095374
2018-07-08T04:34:26
2018-07-08T04:34:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,033
py
import math class Solution(object): def numSquares(self, n): """ :type n: int :rtype: int >>> s = Solution() >>> s.numSquares(1) 1 >>> s.numSquares(2) 2 >>> s.numSquares(3) 3 >>> s.numSquares(4) 1 >>> s.numSquares(5) 2 >>> s.numSquares(6) 3 >>> s.numSquares(7) 4 >>> s.numSquares(8) 2 >>> s.numSquares(9) 1 >>> s.numSquares(10) 2 """ if math.floor(math.sqrt(n)) ** 2 == n: return 1 d = [0 for i in range(n)] for i in range(n): if math.floor(math.sqrt(n)) ** 2 == i + 1: d[i] = 1 else: d[i] = 1 + d[0] + d[i-1] for j in range(i-1): if d[i] > 1 + d[j] + d[i- 1 - j]: d[i] = 1 + d[j] + d[i - 1 - j] return d[n-1] if __name__ == '__main__': import doctest doctest.testmod()
e2502517508c67dd94bb252188d8778ab806099e
2fa075e320c1331dbef73d36f3697f29b72aa42a
/linkedin/11.binarytreeordertraversal.py
383d0309216b00abc4a57079e1bde2ba6fc96ac8
[]
no_license
ashushekar/python-advance-samples
c35313940a8c03eeef2446485fd2101a581f2c1b
a9acf02a1ac96eee0020284babc1102ebaab6b07
refs/heads/master
2020-09-11T09:47:30.126094
2019-11-25T13:29:26
2019-11-25T13:29:26
222,026,874
1
0
null
null
null
null
UTF-8
Python
false
false
726
py
# Definition for a binary tree node. class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def levelOrder(self, root: TreeNode) -> List[List[int]]: result = [] if not root: return result current_level = [root] while len(current_level): # sort of bfs next_level = [] for x in current_level: if x and x.left: next_level.append(x.left) if x and x.right: next_level.append(x.right) result.append([x.val for x in current_level if x]) current_level = next_level return result
8143a6a3909f400bc57671bbfe5c265e553dee59
dc9bd4397878980f708ee10b978a55880bcfcc4f
/posts/migrations/0001_initial.py
6e351f5c4b67abb839d9e122baac1cd7507fd765
[]
no_license
eslam2002/Socialsite-
e2dcdb01a622b39cd6a71ccf44a95410bf5cd3d7
c97d97b1c0be24f9acf667b8e55bf9ae6ea1df63
refs/heads/master
2020-03-28T20:40:29.088657
2018-09-17T08:24:39
2018-09-17T08:24:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,216
py
# Generated by Django 2.0.5 on 2018-06-09 15:25 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('groups', '0001_initial'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now=True)), ('massage', models.TextField()), ('group', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts', to='groups.Group')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='posts', to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['-created_at'], }, ), migrations.AlterUniqueTogether( name='post', unique_together={('user', 'massage')}, ), ]
0bda8a3cbb74408a4b46cea22f14d231b62063c4
218007ee08f382d5cebcf79b8bafb9d98d78b85a
/FugModel/MIM.py
fc920171842186666f9e207fac2b52bc526096df
[ "MIT" ]
permissive
DiamondModels/FugModel
30222eff446787f6a5db03e61d3e902d673218f2
d0247fe784439c97aa3c3d34934edf85e301059c
refs/heads/master
2020-03-25T02:43:41.542865
2019-03-15T15:44:25
2019-03-15T15:44:25
143,304,689
0
1
MIT
2019-03-15T15:44:26
2018-08-02T14:20:28
Python
UTF-8
Python
false
false
1,408
py
# -*- coding: utf-8 -*- """ Created on Fri Aug 3 11:22:09 2018 @author: Tim Rodgers """ import numpy as np import pandas as pd from HelperFuncs import vant_conv, arr_conv from FugModel import FugModel class MIM(FugModel): """Multimedia Indoor Model fugacity model object. Implementation of the model by ?? as updated by Adjei-Kyereme (2018) and Kvasnicka (in prep) Attributes: ---------- ic input_calc (df): Dataframe describing the system up to the point of matrix solution, which includes D values DTi and D_IJ """ def __init__(self,locsumm,chemsumm,params,num_compartments = 6,name = None): FugModel. __init__(self,locsumm,chemsumm,params,num_compartments,name) self.ic = self.input_calc(self.locsumm,self.chemsumm,self.params) def input_calc(self,locsumm,chemsumm,params,pp): """ Perform the initial calulations to set up the fugacity matrix. A steady state MIM object is an n compartment fugacity model solved at steady state using the compartment parameters from locsumm and the chemical parameters from chemsumm, other parameters from params """ #Declare constants R = 8.314 #Ideal gas constant, J/mol/K #Initialize results by copying the chemsumm dataframe res = pd.DataFrame.copy(chemsumm,deep=True) return res
4b74be3a151dab7cac6d990d8d186b1b84de6013
92fa526d5ca2e31f5908f17bb95c529b09ac9995
/fun_models/game_2/gif2frame.py
9270f8d5aded0cf8b274c0041422a5da62ac243d
[]
no_license
KevinLongkk/IFit
55e1f7f872dbdd28e23066c9b96465315061ca2a
438fbdbd63d7cf4059038623e2739fc0a860c26b
refs/heads/master
2020-03-21T02:08:49.538064
2018-06-20T04:53:56
2018-06-20T04:53:56
137,982,728
0
0
null
null
null
null
UTF-8
Python
false
false
325
py
from PIL import Image, ImageSequence import cv2 import numpy as np pit_path = r'/home/kevin/IFit/fun_models/game_2/picture/p2motion_1.gif' ii = Image.open(pit_path) ite = ImageSequence.Iterator(ii) index = 0 for i in ite: i.save("/home/kevin/IFit/fun_models/game_2/picture/p2motion_1/frame%d.png" % index) index+=1
513b4655b7e6f455c974cd3837e7f4a99a34df90
d8b5aba2a1f53fbf3fcfc388c26e547afa76b13f
/modules/DEFA/plugin_text.py
e479b7a07afd519822d75554439bc5126dafbe03
[ "Apache-2.0" ]
permissive
dfrc-korea/carpe
e88b4e3bcb536355e2a64d00e807bccd631f8c93
f9299b8ad0cb2a6bbbd5e65f01d2ba06406c70ac
refs/heads/master
2023-04-28T01:12:49.138443
2023-04-18T07:37:39
2023-04-18T07:37:39
169,518,336
75
38
Apache-2.0
2023-02-08T00:42:41
2019-02-07T04:21:23
Python
UTF-8
Python
false
false
1,172
py
# -*- coding: utf-8 -*- import os import datetime from modules import defa_connector from modules.DEFA import interface from modules.DEFA.MappingDocuments import MappingDocuments from modules import logger class TextPlugin(interface.DEFAPlugin): NAME = "TEXT" DESCRIPTION = "text(txt/log) plugin" def Process(self, **kwargs): # fp: file_path, meta: document_info super(TextPlugin, self).Process(**kwargs) file_path = kwargs['fp'] meta = kwargs['meta'] data = MappingDocuments() data.date = None data.version = None data.category = None try: with open(file_path, 'r', encoding='utf-8') as f: data.content = f.read() f.close() except UnicodeDecodeError: with open(file_path, 'r', encoding='utf-16-le') as f: data.content = f.read() f.close() else: log_msg = 'UnicodeDecodeError error occurred when read {}'.format(file_path) logger.error(log_msg) #raise Exception(log_msg) return data defa_connector.DEFAConnector.RegisterPlugin(TextPlugin)
1e538e961da6d1f2cac2ea265c1da47f058b9c51
165d117a5c969c76f193adc477e53e7290ca7cdb
/ch_10/alice.py
58eaaba0bef9184e450bd7dc010b57059e48beeb
[]
no_license
shubhammuramkar/pythonwork
b8beaf203bcb98718f0afcfa489bc3b96d5da406
b43845a8fceec1bc05d257922b2c952e2e3b9462
refs/heads/master
2021-01-20T21:44:45.366588
2017-08-29T16:54:26
2017-08-29T16:54:26
101,785,026
0
0
null
null
null
null
UTF-8
Python
false
false
242
py
file = "alice.txt" try: with open(file) as f: data = f.read() except FileNotFoundError: msg = "Sorry, the file " + file + " does not exist." print(msg) else: data.split() l = len(data) print(file + " file have " + str(l) + " words ")
642d8566dd86655cd61f51f62c96be0d14eb0791
823ce1bb953187f59a2569ae8f5fdac0372e109f
/app1/admin.py
a9b718982e3943cb17b2e908f2da96d9cccab105
[]
no_license
Devdeepsinh0591/Enhanced-Product-Management-System
7c4984c47b03b90fa49490748e6e5315f7bf4340
460fe1498d8eaf558aaa566de688bac58154380f
refs/heads/main
2023-07-07T16:24:20.043115
2021-08-18T10:22:34
2021-08-18T10:22:34
394,928,524
0
0
null
null
null
null
UTF-8
Python
false
false
299
py
from django.contrib import admin from .models import Company_Details, Customer_Order,Company_Customers,Company_Product # Register your models here. admin.site.register(Company_Details) admin.site.register(Company_Customers) admin.site.register(Company_Product) admin.site.register(Customer_Order)
8598a1df14804656d5d40abba2e7cc1ff46f7e9b
8063bf621b0f7e54b9c31bbb4c0b27557c08978b
/src/model/_Model.py
b6bb34a2454ddc3c83de1119f32699907d921ba6
[ "MIT" ]
permissive
hukuda222/Chat-Yojo-Bot
8c703a8bfccc3d55a4df87a83a3bd77161d13ee6
b431506ae85335f1b6fe7fe35074594dcd8fa6ca
refs/heads/master
2020-03-26T21:26:37.745204
2019-01-21T08:21:39
2019-01-21T08:21:39
145,388,579
2
0
null
null
null
null
UTF-8
Python
false
false
14,499
py
import os import sys import copy import time import math import random import numpy as np import functools as ft import chainer from chainer import cuda from chainer import optimizers, serializers from chainer import Chain import chainer.functions as F import chainer.links as L yaju = 810 # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # for decoder class NLayerLSTM(chainer.ChainList): def __init__(self, eDim, hDim): layers = [0] * 1 # get place holder for each layer layers[0] = L.LSTM(eDim, hDim) super(NLayerLSTM, self).__init__(*layers) # process a lstm for every layer def __call__(self, hin): hout = self[0](hin) return hout # initialize all layer's lstm's state def reset_state(self): self[0].reset_state() # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # for passing cell and hidden state from encoder to decoder and # beam search where multiple lstm apply is not able # [0c, 0h, # 1c, 1h, # 2c, 2h, # ... # nc, nh] # ic, ih: np.array # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # def getAllLSTMStates(self): h = self[0].h c = self[0].c return (h, c) def setAllLSTMStates(self, states): # states: (h, c) self[0].h = states[0] self[0].c = states[1] class EncoderDecoder: def __init__(self, encoderVocab, decoderVocab, trainData, setting): self.encw2i = encoderVocab # dict self.decw2i = decoderVocab # dict self.encVocabSize = len(encoderVocab) self.decVocabSize = len(decoderVocab) # dictionary for get vocabulary from index self.enci2w = {v: k for k, v in self.encw2i.items()} self.deci2w = {v: k for k, v in self.decw2i.items()} self.eDim_enc = setting.eDim_enc self.eDim_dec = setting.eDim_dec self.hDim = setting.hDim self.n_layers = setting.n_layers self.dropout_rate = setting.dropout_rate self.gpu = setting.gpu # encoder-docoder network def initModel(self): self.model = chainer.Chain( encoderEmbed=L.EmbedID(self.encVocabSize, self.eDim_enc), # encoder embedding layer decoderEmbed=L.EmbedID(self.decVocabSize, self.eDim_dec), # decoder embedding layer decOutputL=L.Linear(self.hDim, self.decVocabSize), # output layer encoder_bak=L.NStepLSTM(n_layers=self.n_layers, in_size=self.eDim_enc, out_size=self.hDim, dropout=self.dropout_rate), # encoder backward encoder_fwd=L.NStepLSTM(n_layers=self.n_layers, in_size=self.eDim_enc, out_size=self.hDim, dropout=self.dropout_rate), # encoder forward decoder_=NLayerLSTM(eDim=self.eDim_dec, hDim=self.hDim), # decoder attnIn=L.Linear(self.hDim, self.hDim, nobias=True), # attn attnOut=L.Linear(self.hDim + self.hDim, self.hDim, nobias=True) # attn ) def getLastSavedIndex(self, dirname): for dirpath, dirnames, filenames in os.walk(dirname): # model_0.npz norm_filenames = [fn for fn in filenames if not(fn == ".DS_Store")] ansind = 0 if (len(norm_filenames) == 0) else max([int(fn.split(".")[0].split("_")[1]) for fn in list(norm_filenames)]) return ansind def saveModel(self, dirname, diffepoch): ind = self.getLastSavedIndex(dirname) fname = dirname + "model_{}".format(int(ind) + int(diffepoch)) copied_model = copy.deepcopy(self.model) copied_model.to_cpu() sys.stdout.write("# Saved model: {}\n".format(fname)) serializers.save_npz(fname, copied_model) def loadModel(self, dirname): ind = self.getLastSavedIndex(dirname) if ind > 0: fname = dirname + "model_{}".format(int(ind)) sys.stdout.write("# Loaded model: {}\n".format(fname)) serializers.load_npz(fname, self.model) else: sys.stdout.write("# No model loaded\n") def setToGPUs(self): if self.gpu >= 0: sys.stderr.write("# Working on GPU [gpu=%d]\n" % (self.gpu)) self.model.encoderEmbed.to_gpu(self.gpu) self.model.decoderEmbed.to_gpu(self.gpu) self.model.decOutputL.to_gpu(self.gpu) self.model.encoder_bak.to_gpu(self.gpu) self.model.encoder_fwd.to_gpu(self.gpu) self.model.decoder_.to_gpu(self.gpu) self.model.attnIn.to_gpu(self.gpu) self.model.attnOut.to_gpu(self.gpu) else: sys.stderr.write("# Working on CPU [cpu=%d]\n" % (self.gpu)) # get embedding for encoder def getEncoderInputEmbeddings(self, xs): # xs: [arr(l1), ...], still on cpu x_len = [len(x) for x in xs] x_section = np.cumsum(x_len[:-1]) vxs = [F.copy(chainer.Variable(x), self.gpu) for x in xs] # to gpu ex = self.model.encoderEmbed(F.concat(tuple(vxs), axis=0)) exs = F.split_axis(ex, x_section, 0) return list(exs) # get embedding for decoder def getDecoderInputEmbeddings(self, xs): # xs: [arr(l1), ...], still on cpu x_len = [len(x) for x in xs] x_section = np.cumsum(x_len[:-1]) vxs = [F.copy(chainer.Variable(x), self.gpu) for x in xs] # to gpu ex = self.model.decoderEmbed(F.concat(tuple(vxs), axis=0)) exs = F.split_axis(ex, x_section, 0) return list(exs) def outputMerging(self, bak, fwd): # bak, fwd: [(encLen, hDim)] ys = [b + f for b, f in zip(bak, fwd)] return ys def statesMerging(self, sb, sf): # sb, sf: (layer, batch, hDim) s_added = sb + sf; s = F.stack([s_added[-1]]) # use last encoder's layer's hidden state for decoder's state return s def calcAttention(self, h1, encList, encLen, batchsize): # attention, h1: (batch, hDim) target1 = self.model.attnIn(h1) # convert # (batchsize, self.hDim) => (batchsize, self.hDim) target2 = F.expand_dims(target1, axis=1) # (batchsize, self.hDim) => (batchsize, 1, self.hDim) target3 = F.broadcast_to(target2, (batchsize, encLen, self.hDim)) # (batchsize, 1, self.hDim) => (batchsize, encLen, self.hDim) # bilinear # target3: (batchsize, encLen, self.hDim) tensor # encList: (batchsize, encLen, self.hDim) tensor # [[[...], [...], [...], ...]] # * * * # [[[...], [...], [...], ...]] # [[ a0, a1, a2, ...]] aval = F.sum(target3 * encList, axis=2) # shape: (batchsize, encLen) """ # MLP # convert for attnSum t1 = F.reshape(target3, (batchsize * encLen, self.hDim)) # (batchsize * encLen, self.hDim) => (batchsize * encLen, 1) t2 = self.model.attnSum(F.tanh(t1 + aList)) # shape: (batchsize, encLen) aval = F.reshape(t2, (batchsize, encLen)) """ # 3, calc softmax cAttn1 = F.softmax(aval) # (batchsize, encLen) => (batchsize, encLen) # 4, make context vector using attention cAttn2 = F.expand_dims(cAttn1, axis=1) # (batchsize, encLen) => (batchsize, 1, encLen) cAttn3 = F.batch_matmul(cAttn2, encList) # (1, encLen) x (encLen, hDim) matmul for batchsize times => (batchsize, 1, hDim) context = F.reshape(cAttn3, (batchsize, self.hDim)) # (batchsize, hDim) # 6, attention時の最終隠れ層の計算 c1 = F.concat((h1, context)) c2 = self.model.attnOut(c1) finalH = F.tanh(c2) return finalH # context def encodingInput(self, encarrs): xs_bak = [x[::-1] for x in encarrs] # for backward xs_fwd = [x for x in encarrs] # for forward exs_bak = self.getEncoderInputEmbeddings(xs_bak) # for backward exs_fwd = self.getEncoderInputEmbeddings(xs_fwd) # for forward hx_bak, cx_bak, xs_bak = self.model.encoder_bak(None, None, exs_bak) # for backward hx_fwd, cx_fwd, xs_fwd = self.model.encoder_fwd(None, None, exs_fwd) # for forward xs = self.outputMerging(xs_bak, xs_fwd) hx = self.statesMerging(hx_bak, hx_fwd) # (1, batch, hDim) cx = self.statesMerging(cx_bak, cx_fwd) # (1, batch, hDim) return hx, cx, xs def train(self, optimizer, trainData, epoch): xp = cuda.get_array_module(self.model.decOutputL.W.data) total_loss_val = 0 for enu, (enc, dec) in enumerate(trainData): begin = time.time() # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # hy, cy, ys = self.encodingInput(enc) # encoding # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # data preparing and embedding dec_ind_dom = [y[:-1] for y in dec] # for pred dec_ind_cod = [F.copy(chainer.Variable(y[1:]), self.gpu) for y in dec] # for true cword = sum([len(y) for y in dec_ind_cod]) decoder_dom = self.getDecoderInputEmbeddings(dec_ind_dom) # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # decoding self.model.decoder_.reset_state() self.model.decoder_.setAllLSTMStates((hy[0], cy[0])) zs_ = [] # [(batch, hDim)] decoder_dom_ = F.swapaxes(F.stack(decoder_dom), 0, 1) # (decLen, batch, hDim) dec_ind_cod_ = F.swapaxes(F.stack(dec_ind_cod), 0, 1) # (decLen, batch) for i in range(len(decoder_dom_)): hout_ = self.model.decoder_(decoder_dom_[i]) hout_att = self.calcAttention(h1=hout_, encList=F.stack(ys), encLen=len(ys[0]), batchsize=len(ys)) zs_.append(hout_att) concat_zs_pred_ = F.concat(tuple(zs_), axis=0) concat_zs_true_ = F.concat(tuple(dec_ind_cod_), axis=0) closs_ = F.sum(F.softmax_cross_entropy(self.model.decOutputL(concat_zs_pred_), concat_zs_true_, reduce="no")) / cword # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # if (xp.isnan(closs_.data)): sys.stderr.write("Nan occured! skip :(\n") continue total_loss_val += closs_.data optimizer.target.cleargrads() closs_.backward() optimizer.update() end = time.time() sys.stdout.write("epoch: {:3d}, enu: {:3d}, X-entropy: {:5.6f}, total_word: {:5d}, time: {:2.5f}\n".format( int(epoch), int(enu), float(closs_.data), int(cword), float(end - begin))) if enu == 1200: break next_test_index = random.randint(0, len(trainData) - 1) arr_list = trainData[next_test_index][0] for arr in arr_list[:5]: fuck = self.translate([arr]) sys.stdout.write("# Test: {}, utter: [{}], rep: [{}]\n".format( int(epoch), "".join([self.enci2w[x] for x in arr]), fuck[0][3:-4])) sys.stderr.write("total_loss: {:4.5f}\n".format(float(total_loss_val))) def translate(self, encarrs, max_length=10, beam_width=5): # len(xs) = 1 xp = cuda.get_array_module(self.model.decOutputL.W.data) assert (len(encarrs) == 1), "Batch size is too match!" with chainer.no_backprop_mode(), chainer.using_config("train", False): hx, cx, xs = self.encodingInput(encarrs) # [(log (p1 * p2 * ...), (h, c), [word1, worc2, ...])] # result = [(0, (hx, cx), ["<s>"])] # priority queue for beam search # [(log (p1 * p2 * ...), ((1, batch, hDim), (batch, hDim)), [word1, worc2, ...])] result_ = [(0.0, (hx[0], cx[0]), ["<s>"])] # priority queue for beam search # [(log (p1 * p2 * ...), ((batch, hDim), (batch, hDim)), [word1, worc2, ...])] # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # i_ = 0 #beam search while True: c_result_ = [] for (logp, (h, c), stkwords) in result_: lastword_ = stkwords[-1] y_ = xp.full(1, self.decw2i[lastword_], 'i') ey_ = self.model.decoderEmbed(y_) self.model.decoder_.reset_state() self.model.decoder_.setAllLSTMStates((h, c)) dy_ = self.model.decoder_(ey_) dy_att = self.calcAttention(h1=dy_, encList=F.stack(xs), encLen=len(xs[0]), batchsize=len(xs)) (nh_, nc_) = self.model.decoder_.getAllLSTMStates() wy_ = F.softmax(self.model.decOutputL(dy_att)) yind_ = xp.argmax(wy_.data, axis=1).astype('i') probs_list_ = cuda.to_cpu(wy_.data)[0].tolist() index_prob_list_ = list(zip(list(range(len(probs_list_))), probs_list_)) for idx, prob in index_prob_list_: if self.deci2w[idx] == "<\s>": c_result_.append((logp + 0, (nh_, nc_), stkwords + [self.deci2w[idx]])) sys.stdout.write("{}\n", c_result_) else: c_result_.append((logp + math.log(prob + 1e-100), (nh_, nc_), stkwords + [self.deci2w[idx]])) sorted_c_result_ = sorted(c_result_, key=lambda x: x[0], reverse=True) result_ = sorted_c_result_[:beam_width] end = ft.reduce(lambda a, b: a or b, ["<\s>" in x[2] for x in result_]) # check output "</s>" or not i_ += 1 if end or i_ == max_length: break outs_ = [x[2] for x in result_] outs_ = ["".join(x).split("</s>")[0] + "</s>" if ("</s>" in x) else "".join(x) + "</s>" for x in outs_] # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # return outs_
a17ee63004936c7173f0f09cc22d22f71b8bff3a
dc612714dbde7fc1d6060599035333d9cd182a53
/databasemysql.py
3ed29735f48a511986b6604cbd96eee6d6d975b6
[]
no_license
ratsi-boy/blood-donation
b88e4d6b07a1540396f9ee887d2cc4a263574473
b5d2d8a96bfac48f43e79f9c99de7994f639bc89
refs/heads/main
2023-03-31T12:14:30.988621
2021-03-29T07:48:18
2021-03-29T07:48:18
null
0
0
null
null
null
null
UTF-8
Python
false
false
22,790
py
from tkinter import * from tkinter import messagebox from tkinter import ttk from tkinter import colorchooser import mysql.connector import datetime from PIL import ImageTk, Image root= Tk() root.title("Blood Bank System") root.geometry("1024x686+-8+-8") root.configure(background='white') root.bind("<Return>") my_menu= Menu(root) root.config(menu=my_menu) root.iconbitmap("blood.ico") now= datetime.datetime.now() conn= mysql.connector.connect( host="localhost", user="username", passwd="password", database="blood") c=conn.cursor() def color(): global my_color global buttn_edit global buttn_delete my_color= colorchooser.askcolor() root.config(menu=my_menu,background=my_color[1]) buttn_submit.config(bg=my_color[1], activebackground=my_color[1]) search_buttn.config(bg=my_color[1], activebackground=my_color[1]) buttn_show.config(bg=my_color[1]) buttn_delete.config(bg=my_color[1]) buttn_edit.config(bg=my_color[1]) def admin_login(): global command1 global command2 global entry1 global entry2 global top global bttn1 top= Toplevel() top.title("Login Screen") top.geometry("500x500") top.bind("<Return>") top.configure(background="white") global admin_img admin_img= PhotoImage(file="12.png") label3= Label(top, image=admin_img, bg="white") label3.pack() global entry1 global entry2 label1= Label(top, text="Username", font=('Halvetica',25),bg='white') label1.pack() entry1= Entry(top, bd=5) entry1.pack() label2= Label(top, text="Password", font=('Halvetica',25),bg='white') label2.pack() entry2= Entry(top, show="*") entry2.pack() entry2.bind("<Return>", command1) global bttn_login bttn_login= PhotoImage(file="login.png") bttn1= Button(top, text="Login", image=bttn_login, command= lambda: command1(1), bd=0, bg="white") bttn1.pack() bttn1.bind("<Return>", command1) global bttn_close bttn_close= PhotoImage(file="close.png") bttn2= Button(top, text="Close", image=bttn_close, command=open_admin_panel, bd=0, bg="white") bttn2.pack() root.withdraw() def logout(): global buttn_edit global edit global buttn_delete global delete global select_id_label global buttn_show buttn_edit.destroy() buttn_delete.destroy() buttn_show.destroy() select_id_label.destroy() select_id.destroy() global tools_menu tools_menu.entryconfig("Admin Login", state=NORMAL) tools_menu.delete("Logout") def edit_root_window(): #Creating buttons global buttn_edit global edit global buttn_delete global delete global select_id_label select_id_label= Label(root,text="Select Id ",font=('Halvetica',10), bg="white") select_id_label.grid(row=10,column=0, stick=W,pady=2) global select_id select_id = Entry(root,bd=5,bg="white",font=('Halvetica',10)) select_id.grid(row=10,column=1, stick=W+E+N+S,pady=2, padx=3) global bttn_edit_img bttn_edit_img= PhotoImage(file='3.png') global buttn_edit buttn_edit= Button(root, text="Update Record",image=bttn_edit_img,command=lambda: edit(1), pady=5, bd=0, bg="white",font=('Halvetica',10)) buttn_edit.grid(row=11,column=0,columnspan=2, stick=W+E+N+S, padx=3) buttn_edit.bind("<Return>", edit) global bttn_delete_img bttn_delete_img= PhotoImage(file='2.png') global buttn_delete buttn_delete= Button(root, text="Delete Record",image=bttn_delete_img,command=lambda: delete(1), pady=5, bd=0, bg="white",font=('Halvetica',10)) buttn_delete.grid(row=12,column=0,columnspan=2, stick=W+E+N+S, padx=3) buttn_delete.bind("<Return>", delete) global sort sortby=["Sort By..", "Name", "Gender", "Blood Group", "Date Update" ] sort= ttk.Combobox(root, value=sortby) sort.set("Sort By..") sort.grid(row=13,column=1, stick=W+E+N+S,pady=2) global sort_label sort_label= Label(root,text="Sort By ",font=('Halvetica',10), bg="white") sort_label.grid(row=13,column=0, stick=W,pady=2, padx=3) global enter_name enter_name = Entry(root, bd=5, bg="white",font=('Halvetica',10)) enter_name.grid(row=14, column=0, columnspan=2, stick=W+E+N+S, pady=2, padx=3) global bttn_show bttn_show= PhotoImage(file='5.png') global buttn_show buttn_show= Button(root, text="Show All", image=bttn_show, command=lambda:show(1), pady=5, bd=0, bg="white",font=('Halvetica',10)) buttn_show.grid(row=15,column=0,columnspan=2, stick=W+E+N+S, padx=3) buttn_show.bind("<Return>", show) global tools_menu tools_menu.entryconfig("Admin Login", state=DISABLED) tools_menu.add_cascade(label='Logout', command=logout) if my_color: buttn_show.config(bg=my_color[1]) buttn_delete.config(bg=my_color[1]) buttn_edit.config(bg=my_color[1]) def command1(e): if entry1.get()=="admin" and entry2.get()== "admin" or entry1.get()=="root" and entry2.get()== "root": root.deiconify() top.destroy() edit_root_window() else: messagebox.showerror("Error", "Please Enter Valid Username or Password") entry1.delete(0, END) entry2.delete(0, END) def open_admin_panel(): root.deiconify() top.destroy() def new_file(): pass def find(): pass def find_next(): pass def next_file(): pass def previous_file(): pass def contact_us(): pass def read_tnc(): pass def submit(e): # Label(root,text=full_name.get() +gender.get()+address.get()+city.get()+state.get()+zip_code.get()).grid(row=7,column=0) if full_name.get() =="" or drop.get() == "Select gender" or drop_blood.get()== "Select Blood Group" or address.get() =="" or contact.get()== "" or city.get() =="" or state.get()== "Select State" or zip_code.get() =="": messagebox.showinfo("Error", "Enter Valid Details !!!! ") else: try: conn= mysql.connector.connect( host="localhost", user="username", passwd="password", database="blood" ) decide=messagebox.askyesno("Confirmation","You Want To Save These Details") if decide == 1: c=conn.cursor() c.execute("INSERT INTO donors(name, gender, blood_group, address, contact, city, state, zip_code, date_updated) VALUES ('"+full_name.get().title()+"','"+drop.get()+"','"+drop_blood.get()+"','"+address.get().title()+"','"+contact.get()+"','"+city.get().title()+"','"+state.get()+"','"+zip_code.get()+"', '"+now.strftime("%Y/%m/%d")+"')") messagebox.showinfo("Success", "Record Submitted Successfully") full_name.delete(0, END) drop.set("Select gender") drop_blood.set("Select Blood Group") address.delete(0, END) contact.delete(0, END) city.delete(0, END) state.set("Select State") zip_code.delete(0, END) conn.commit() conn.close() except Exception as e: print(e) messagebox.showinfo("Error", "Enter Correct zip Code or contact no. !!! ") def exit(e): root.destroy() def show(e): try: conn= mysql.connector.connect( host="localhost", user="username", passwd="password", database="blood" ) c=conn.cursor() global result if sort.get()=="Sort By..": c.execute("SELECT * FROM donors") result=c.fetchall() elif sort.get()=="Name": if enter_name.get()=="": c.execute("SELECT * FROM donors order by name") result=c.fetchall() else: c.execute("SELECT * FROM donors WHERE name=('"+enter_name.get().title()+"')") result=c.fetchall() elif sort.get()=="Date Update": c.execute("SELECT * FROM donors order by date_updated desc") result=c.fetchall() elif sort.get()=="Gender": c.execute("SELECT * FROM donors order by gender") result=c.fetchall() elif sort.get()=="Blood Group": c.execute("SELECT * FROM donors order by blood_group") result=c.fetchall() conn.commit() conn.close() sort.set("Sort By..") enter_name.delete(0,END) if len(result) ==0: messagebox.showerror("Error", "No Record Found") else: show_windows() except Exception as e: messagebox.showerror("Error", "Error Occured") def show_windows(): global show_window show_window= Toplevel() show_window.title("Show records") show_window.geometry("1024x686+-8+-8") show_window.config(bg='white') main_frame= Frame(show_window) main_frame.pack(fill=BOTH, expand=1) my_canvas= Canvas(main_frame,bg='white') my_canvas.pack(side=LEFT, fill=BOTH, expand=1) my_scrollbar= ttk.Scrollbar(main_frame, orient=VERTICAL, command=my_canvas.yview) my_scrollbar.pack(side=RIGHT, fill=Y) my_canvas.configure(yscrollcommand=my_scrollbar.set) my_canvas.bind('<Configure>' , lambda e: my_canvas.configure(scrollregion= my_canvas.bbox("all"))) second_frame = Frame(my_canvas,bg='white') my_canvas.create_window((0,0), window=second_frame, anchor="nw") global label_show label_list=[ "Id", "Name", "Gender", "Blood Group", "Address", "Contact", "City", "State", "Zip Code", "Date Updated" ] for ind, k in enumerate(label_list): top_label= Label(second_frame,text=k,bg="white") top_label.grid(row=0,column=ind,stick=W, padx=5) for index, i in enumerate(result): num=0 for j in i: label_show=Label(second_frame,text=j,bg="white") label_show.grid(row=index+1,column=num, stick=W, padx=5) num+=1 def delete(e): if select_id.get()== "": messagebox.showinfo("Caution", "Enter Valid Id") select_id.delete(0, END) else: try: conn= mysql.connector.connect( host="localhost", user="username", passwd="password", database="blood" ) c=conn.cursor() c.execute("SELECT * FROM donors WHERE iddonors=('"+select_id.get()+"')") global res res=c.fetchall() conn.commit() conn.close() if len(res) == 0: messagebox.showinfo("Error","Record Not Found") select_id.delete(0, END) else: conn= mysql.connector.connect( host="localhost", user="username", passwd="password", database="blood" ) c=conn.cursor() c.execute("DELETE FROM donors WHERE iddonors=('"+select_id.get()+"')") conn.commit() conn.close() show() messagebox.showinfo("Success","Successfully Deleted Record") select_id.delete(0, END) except Exception as e: messagebox.showinfo("Error", "Enter Valid Id") select_id.delete(0, END) def update(e): if full_name_editor.get() =="" or dro.get() == "Select gender" or dro_blood.get()== "Select Blood Group" or address_editor.get() =="" or contact_editor.get()== "" or city_editor.get() =="" or dro_state.get()== "Select State" or zip_code_editor.get() =="": messagebox.showinfo("Error", "Enter Valid Details !!!! ") else: try: conn= mysql.connector.connect( host="localhost", user="username", passwd="password", database="blood") c=conn.cursor() c.execute("UPDATE donors SET name=('"+full_name_editor.get().title()+"'), gender=('"+dro.get()+"'), blood_group=('"+dro_blood.get()+"'), address=('"+address_editor.get().title()+"'), contact=('"+contact_editor.get()+"'), city=('"+city_editor.get().title()+"'), state=('"+dro_state.get()+"'), zip_code=('"+zip_code_editor.get()+"'), date_updated=('"+now.strftime("%Y/%m/%d")+"') WHERE iddonors=('"+select_id.get()+"')") conn.commit() conn.close() messagebox.showinfo("Success!", "Successfully Updated Record !") editor.destroy() select_id.delete(0, END) show(e) except Exception as e: print(e) messagebox.showinfo("Error", "Error Occured...") def edit(e): if select_id.get()=="": messagebox.showinfo("Caution", "Enter Valid Id") select_id.delete(0, END) else: try: global editor editor= Toplevel() editor.title("Edit Record") global full_name_editor global gender_editor global blood_group_editor global address_editor global contact_editor global city_editor global state_editor global zip_code_editor global dro global dro_blood global dro_state dro= StringVar() dro_state= StringVar() dro_blood= StringVar() full_name_editor= Entry(editor,bd=5) full_name_editor.grid(row=0,column=1, stick=W+E) gender_editor=OptionMenu(editor,dro, "Select gender", "Male", "Female", "Other") gender_editor.grid(row=1,column=1, stick=W+E) blood_group_editor= OptionMenu(editor,dro_blood, *bloodgroups) blood_group_editor.grid(row=2,column=1, stick=W+E) address_editor= Entry(editor,bd=5) address_editor.grid(row=3,column=1, stick=W+E) contact_editor= Entry(editor,bd=5) contact_editor.grid(row=4,column=1, stick=W+E) city_editor= Entry(editor,bd=5) city_editor.grid(row=5,column=1, stick=W+E) state_editor= OptionMenu(editor,dro_state, *states) state_editor.grid(row=6,column=1, stick=W+E) zip_code_editor= Entry(editor,bd=5) zip_code_editor.grid(row=7,column=1, stick=W+E) full_name_label_editor= Label(editor,text="Full Name") full_name_label_editor.grid(row=0,column=0, stick=W+E) gender_label_editor=Label(editor,text="Gender") gender_label_editor.grid(row=1,column=0, stick=W+E) blood_group_label_editor= Label(editor,text="Enter Blood Group") blood_group_label_editor.grid(row=2,column=0, stick=W+E) address_label_editor= Label(editor,text="Address") address_label_editor.grid(row=3,column=0, stick=W+E) contact_label_editor= Label(editor, text="Contact No.") contact_label_editor.grid(row=4,column=0, stick=W+E) city_label_editor= Label(editor,text="City") city_label_editor.grid(row=5,column=0, stick=W+E) state_label_editor= Label(editor,text="State") state_label_editor.grid(row=6,column=0, stick=W+E) zip_code_label_editor= Label(editor,text="Zip Code") zip_code_label_editor.grid(row=7,column=0, stick=W+E) buttn_save= Button(editor, text="Save",command=lambda: update(1), pady=5,bg="green") buttn_save.grid(row=8,column=0,columnspan=2, stick=W+E, pady=5) buttn_save.bind("<Return>", update) conn= mysql.connector.connect( host="localhost", user="username", passwd="password", database="blood" ) c=conn.cursor() c.execute("SELECT * FROM donors WHERE iddonors=('"+select_id.get()+"')") result= c.fetchall() for rslt in result: full_name_editor.insert(0, rslt[1]) dro.set(rslt[2]) dro_blood.set(rslt[3]) address_editor.insert(0, rslt[4]) contact_editor.insert(0, rslt[5]) city_editor.insert(0, rslt[6]) dro_state.set(rslt[7]) zip_code_editor.insert(0, rslt[8]) conn.commit() conn.close() editor.mainloop() except Exception as e: messagebox.showinfo("Error","Please Enter Valid Id") def search(e): global select_blood if select_blood.get() == "Select Blood Group": messagebox.showinfo("Caution", "Enter Valid Blood Group") select_blood.delete(0, END) else: conn= mysql.connector.connect( host="localhost", user="username", passwd="password", database="blood") c= conn.cursor() c.execute("SELECT name, gender,blood_group,contact,city,state,date_updated FROM donors WHERE blood_group=('"+select_blood.get()+"') order by date_updated desc") re=c.fetchall() conn.commit() conn.close() if len(re) ==0: messagebox.showinfo("Error", "NO Record Found") else: search_window= Toplevel() search_window.title("Search Result") search_window.config(bg="white") search_window.geometry("1024x686+-8+-8") main_frame= Frame(search_window) main_frame.pack(fill=BOTH, expand=1) my_canvas= Canvas(main_frame,bg='white') my_canvas.pack(side=LEFT, fill=BOTH, expand=1) my_scrollbar= ttk.Scrollbar(main_frame, orient=VERTICAL, command=my_canvas.yview) my_scrollbar.pack(side=RIGHT, fill=Y) my_canvas.configure(yscrollcommand=my_scrollbar.set) my_canvas.bind('<Configure>' , lambda e: my_canvas.configure(scrollregion= my_canvas.bbox("all"))) second_frame = Frame(my_canvas,bg='white') my_canvas.create_window((0,0), window=second_frame, anchor="nw") global label_show label_list=[ "Name", "Gender", "Blood Group", "Contact", "City", "State", "Date Updated" ] for ind, k in enumerate(label_list): top_label= Label(second_frame,text=k,bg="white") top_label.grid(row=0,column=ind,stick=W, padx=5) for index, i in enumerate(re): num=0 for j in i: label_show=Label(second_frame,text=j,bg="white") label_show.grid(row=index+1,column=num, stick=W, padx=5) num+=1 select_blood.set("Select Blood Group") def menus(): # Creating menus global file_menu global my_menu global edit_menu global tools_menu global help_menu file_menu= Menu(my_menu, tearoff=False) my_menu.add_cascade(label='File', menu=file_menu) file_menu.add_cascade(label='New...', command=new_file) file_menu.add_separator() file_menu.add_cascade(label='Exit', command=root.quit) edit_menu= Menu(my_menu, tearoff=False) my_menu.add_cascade(label='Edit', menu=edit_menu) edit_menu.add_cascade(label='Find', command=find) edit_menu.add_cascade(label='Find next', command=find_next) tools_menu= Menu(my_menu, tearoff=False) my_menu.add_cascade(label='Tools', menu=tools_menu) tools_menu.add_cascade(label='Next', command=next_file) tools_menu.add_cascade(label='Previous', command=previous_file) tools_menu.add_cascade(label='Background Color', command=color) tools_menu.add_cascade(label='Admin Login', command=admin_login) help_menu= Menu(my_menu, tearoff=False) my_menu.add_cascade(label='Help', menu=help_menu) help_menu.add_cascade(label='Contact Us', command=contact_us) help_menu.add_cascade(label='Read T&C..', command=read_tnc) def button_label(): # Creating main heading label global head head= Label(root,text= "Blood Donation Portal", font=('Halvetica',25),bg='white') head.grid(row=0,column=0,columnspan=2) global states global bloodgroups # States Lists states = [ "Select State", "Andhra Pradesh", "Arunachal Pradesh ", "Assam", "Bihar", "Chhattisgarh", "Goa", "Gujarat", "Haryana", "Himachal Pradesh", "Jammu and Kashmir", "Jharkhand", "Karnataka", "Kerala", "Madhya Pradesh", "Maharashtra", "Manipur", "Meghalaya", "Mizoram", "Nagaland", "Odisha", "Punjab", "Rajasthan", "Sikkim", "Tamil Nadu", "Telangana", "Tripura", "Uttar Pradesh", "Uttarakhand", "West Bengal", "Andaman and Nicobar Islands", "Chandigarh", "Dadra and Nagar Haveli", "Daman and Diu", "Lakshadweep", "National Capital Territory of Delhi", "Puducherry" ] # Blood Groups Lists bloodgroups=[ "Select Blood Group", "A+", "A-", "B+", "B-", "O+", "O-", "AB+", "AB-" ] # Creating entry widgets global full_name global drop global gender global drop_blood global blood_group global address global contact global city global state global zip_code full_name= Entry(root,bd=5,bg="white",font=('Halvetica',10)) full_name.grid(row=1,column=1, stick=W+E+N+S,pady=2) drop= StringVar() gender=OptionMenu(root,drop, "Select gender", "Male", "Female", "Other") drop.set("Select gender") gender.grid(row=2,column=1, stick=W+E+N+S,pady=2) drop_blood= StringVar() blood_group= OptionMenu(root,drop_blood, *bloodgroups) drop_blood.set("Select Blood Group") blood_group.grid(row=3,column=1, stick=W+E+N+S,pady=2) address= Entry(root,bd=5,bg="white",font=('Halvetica',10)) address.grid(row=4,column=1, stick=W+E+N+S,pady=2) contact= Entry(root,bd=5,bg="white",font=('Halvetica',10)) contact.grid(row=5,column=1, stick=W+E+N+S,pady=2) city= Entry(root,bd=5,bg="white",font=('Halvetica',10)) city.grid(row=6,column=1, stick=W+E+N+S,pady=2) state= ttk.Combobox(root, value=states) state.set("Select State") state.grid(row=7,column=1, stick=W+E+N+S,pady=2) zip_code= Entry(root,bd=5,bg="white",font=('Halvetica',10)) zip_code.grid(row=8,column=1, stick=W+E+N+S,pady=2) # Creating submit and show buttons global bttn_submit bttn_submit= PhotoImage(file='1.png') global buttn_submit buttn_submit= Button(root, text="Submit", image=bttn_submit, command=lambda: submit(1), bd=0, pady=5, bg="white",font=('Halvetica',10)) buttn_submit.grid(row=9,column=0,columnspan=2, stick=W+E+N+S, pady=(5,0), padx=3) buttn_submit.bind("<Return>", submit) # creating labels global full_name_label global gender_label global blood_group_label global address_label global contact_label global city_label global state_label global zip_code_label full_name_label= Label(root,text="Full Name ",font=('Halvetica',10), bg="white") full_name_label.grid(row=1,column=0, stick=W,pady=2, padx=3) gender_label=Label(root,text="Gender ",font=('Halvetica',10), bg="white") gender_label.grid(row=2,column=0, stick=W,pady=2, padx=3) blood_group_label= Label(root,text="Enter Blood Group ",font=('Halvetica',10), bg="white") blood_group_label.grid(row=3,column=0, stick=W,pady=2, padx=3) address_label= Label(root,text="Address ",font=('Halvetica',10), bg="white") address_label.grid(row=4,column=0, stick=W,pady=2, padx=3) contact_label= Label(root, text="Contact No. ",font=('Halvetica',10), bg="white") contact_label.grid(row=5,column=0, stick=W,pady=2, padx=3) city_label= Label(root,text="City ",font=('Halvetica',10), bg="white") city_label.grid(row=6,column=0, stick=W,pady=2, padx=3) state_label= Label(root,text="State ",font=('Halvetica',10), bg="white") state_label.grid(row=7,column=0, stick=W,pady=2, padx=3) zip_code_label= Label(root,text="Zip Code ",font=('Halvetica',10), bg="white") zip_code_label.grid(row=8,column=0, stick=W,pady=2, padx=3) # global bttn_exit # bttn_exit= PhotoImage(file='exit.png') # buttn_exit= Button(root, text="Exit",image=bttn_exit, command=lambda: exit(1), pady=5, bd=5, bg="red",font=('Halvetica',10)) # buttn_exit.grid(row=14,column=0,columnspan=2, stick=W+E+N+S) # buttn_exit.bind("<Return>", exit) # Creating Labels for search global head_1 head_1 = Label(root,text= "Search For Donor", font=('Halvetica',25),bg='white') head_1.grid(row=0, column=2,columnspan=2,stick=W+E+N+S, padx=50) global label_blood label_blood= Label(root,text="Select Blood Group ",font=('Halvetica',10), bg="white") label_blood.grid(row=1, column=2, stick=W, pady=2, padx=50) global select_blood select_blood= ttk.Combobox(root, value=bloodgroups) select_blood.set("Select Blood Group") select_blood.grid(row=1, column=3, stick=W, pady=2, padx=50) # Creating Search Button to search donors global bttn_search bttn_search= PhotoImage(file='4.png') global search_buttn search_buttn= Button(root, text="Search For Donors",image=bttn_search, command=lambda: search(1), bg="white", pady=2, bd=0, font=('Halvetica',10)) search_buttn.grid(row=2, column=2, columnspan=2, stick=W+E+N+S, padx=50) search_buttn.bind("<Return>", search) menus() button_label() conn.commit() conn.close() root.mainloop()
f1e94113114ac69c0633da7f51734a3613a42aa1
45ec599e17e8b848f694f9d091b2fdd05efdb4e9
/2.1-databases/work_with_database/phones/models.py
e904ab93191dc8bba335b39769ac54fa7f034252
[]
no_license
TVP-18/hw_Django
042ffc45a45c248fcdc7c7a4c65c1dd64e515649
4b4eade4fe7feb364adad63bf32e8fc634264dd0
refs/heads/master
2023-08-25T13:47:13.037055
2021-10-10T08:37:44
2021-10-10T08:37:44
392,289,184
0
0
null
null
null
null
UTF-8
Python
false
false
370
py
from django.db import models class Phone(models.Model): name = models.CharField(max_length=255) price = models.DecimalField(max_digits=10, decimal_places=2) image = models.TextField() release_date = models.DateField() lte_exists = models.BooleanField() slug = models.SlugField() def __str__(self): return f"{self.id}: {self.name}"
672e718a1caa49c808935d85d027e983ba5e9a4c
044da5aa2acc9e92888dd40b06a8d2f50cccfca0
/blog/migrations/0003_post_tags.py
ea622c3bdd266741783036ae4a4bf24209a76490
[]
no_license
KunalKP4042/KPs-Resto-Bar
b189f591eb42827a9813a14e40b569312281bac8
8ccc73d1425965fe65a31c4345538de00715becb
refs/heads/master
2023-04-09T13:56:25.573775
2021-04-18T07:16:27
2021-04-18T07:16:27
337,150,644
1
0
null
null
null
null
UTF-8
Python
false
false
572
py
# Generated by Django 3.1.3 on 2021-01-11 15:23 from django.db import migrations import taggit.managers class Migration(migrations.Migration): dependencies = [ ('taggit', '0003_taggeditem_add_unique_index'), ('blog', '0002_auto_20210111_1959'), ] operations = [ migrations.AddField( model_name='post', name='tags', field=taggit.managers.TaggableManager(blank=True, help_text='A comma-separated list of tags.', through='taggit.TaggedItem', to='taggit.Tag', verbose_name='Tags'), ), ]
e5f14a4bfe366c2341e18edf43b7120c578dd466
487f4987f7ade541c673f2c6571545c09d345a84
/main.py
001a420a8bdf948d8a8694bc729f149c64fd3bf9
[]
no_license
tolulope-od/Diagonal-FileTraverse-Python3
9afb7e13b179b98fa4bcf32d859e36c8a79d7932
42c431578e37ed05f7fd7ff98eaad14fa297d5b6
refs/heads/master
2020-04-02T00:24:13.297318
2018-10-19T15:22:33
2018-10-19T15:22:33
153,802,843
1
0
null
null
null
null
UTF-8
Python
false
false
1,128
py
#import the xlrd module for working with xlsx extension files import xlrd traverseresult = list() #create an empty list to hold results of the data gotten from the file #create a class that can make instances of xlsx file objects class ReadXlsx(object): #Create a method to open the file and traverse it def traversefile(self, filepath): #Open the spreadsheet file workbook = xlrd.open_workbook(filepath) #Open the first sheet in the file worksheet = workbook.sheet_by_index(0) #Create a for loop to iterate through all the colums in the file diagonally #store them into an Array/List for further actions total_cols = worksheet.ncols for i in range(total_cols): traverseresult.append(worksheet.cell(i, i).value) return traverseresult #Add a method to display the values stored in the list dynamically printed on one line def displayTraverseValues(self): print(" ".join(str(x) for x in traverseresult)) ''' for i in traverseresult: print(i, end = " ") ''' def main(): test = ReadXlsx() test.traversefile("qzAjJo.xlsx") test.displayTraverseValues() if __name__ == '__main__': main()
e0eade989224a93aace44ec5a8e10d22abaee72e
646d4d2e4457f30c602610e36afc81b461ff31ca
/taskproject/auth_backends.py
c340c90a32346f53da0f5b4afc6e85813e429e75
[]
no_license
rupeshdeoria/customuser
f25d7c4e14f0c0a521020d2770e1d0e6b53c7daa
24e7cd6c70d94ad9b338284998a0a7e4b1674282
refs/heads/master
2021-03-12T20:09:28.652690
2014-10-21T07:19:41
2014-10-21T07:19:41
25,507,924
1
0
null
null
null
null
UTF-8
Python
false
false
1,156
py
# import the User object from django.contrib.auth.models import User # Name my backend 'MyCustomBackend' class MyCustomBackend: # Create an authentication method # This is called by the standard Django login procedure def authenticate(self, username=None, password=None): try: # Try to find a user matching your username user = User.objects.get(email=username) # Check the password is the reverse of the username '''if password == username[::-1]: # Yes? return the Django user object return user''' if user.check_password(password): return user else: # No? return None - triggers default login failed return None except User.DoesNotExist: # No user was found, return None - triggers default login failed return None # Required for your backend to work properly - unchanged in most scenarios def get_user(self, user_id): try: return User.objects.get(pk=user_id) except User.DoesNotExist: return None
1ff6304e4f44581cb3db2507410b0bcf616e211c
896c304b4b44945b7c00753dc929c404ba220e05
/ChatServer.py
2e41e9a5b1bac62f9d8c660c9c6490ebb537e3a9
[]
no_license
essigs13/Chat-room-Server-and-Client
97d22ac2c88bc8e4af850e897409a73729a884fc
b7b326a3b7643178b5621fbbb7042477eb3e70c5
refs/heads/master
2020-04-17T01:21:43.536168
2019-01-16T18:28:26
2019-01-16T18:28:26
166,088,907
0
0
null
null
null
null
UTF-8
Python
false
false
1,603
py
#assn1 server program written by Steven Essig import socket # Create a TCP socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Bind the socket to the port server_address = ('localhost', 12222) sock.bind(server_address) print("listening on: %s and port: %s" % server_address) #Listen for incoming connections sock.listen(1) while True: # Wait for a connection connection, client_address = sock.accept() print("Client Found! \n") print("Users take turns sending messages back and forth") print("The session will be closed if either user sends the message: Good bye my friend") print("The client goes first \n") print("Session is starting\n") try: # Receive the data and retransmit it back while True: data = connection.recv(256) decoded = data.decode() if 'Good bye my friend' in decoded: print("receiving: %s" % decoded) print("\nSession is closing") break # Echos back any data received that was not "Echo" or "Exit" else: print("receiving: %s" % decoded) data = input("sending: ") if 'Good bye my friend' in data: connection.sendall(data.encode()) print("\nSession is closing") break else: connection.sendall(data.encode()) finally: # Close up the connection and exit the server connection.close() exit()
4f4c63844906ccc546fe71211dcb411fb127f080
0e37e0f2427b05cc1f583327c9e9b31a1dd4ebf8
/melon-production/shipping_procedure.py
fb24a9463c32add8965f0fb953f8c8963799e75a
[]
no_license
EmmaOnThursday/hackbright-homework
c271c5c2e4bec53eef85d17a105cec7cc940a01b
e9831afd297a1256648622b62c21f9ddad73ca64
refs/heads/master
2016-08-12T23:46:57.955461
2016-02-02T04:59:14
2016-02-02T04:59:14
50,083,478
0
0
null
null
null
null
UTF-8
Python
false
false
3,846
py
"""Shipping procedures for Ubermelon.""" import robots import sys MELON_LIMIT = 200 class Melon(object): """Melon.""" def __init__(self, melon_type): """Initialize melon. melon_type: type of melon being built. """ self.melon_type = melon_type self.weight = 0.0 self.color = None self.stickers = [] def prep(self): """Prepare the melon.""" robots.cleanerbot.clean(self) robots.stickerbot.apply_logo(self) def __str__(self): """Print out information about melon.""" if self.weight <= 0: return self.melon_type else: return "{} {:.2f} lbs {}".format(self.color, self.weight, self.melon_type) # FIXME: Add Squash Class definition here. class Squash(Melon): """Winter Squash""" def prep(self): """Prepare the melon.""" robots.cleanerbot.clean(self) robots.stickerbot.apply_logo(self) robots.painterbot.paint(self) def show_help(): print """ shipping_procedure.py Master Control Program for Automated Melon Order Fullfillment This program processes order from an order log file and controls the robots used to fulfill the orders. Usage: python shipping_procedure.py [logfile] Where: [logfile] The name of the log file you would like to process. Hint: There are two files included in this project folder. """ def main(): """Assesses and packs order objects. Distinguishes between melons/squashes.""" # Check to make sure we've been passed an argument on the # command line. If not, display instructions. if len(sys.argv) < 2: show_help() sys.exit() # Get the name of the log file to open from the command line logfilename = sys.argv[1] # Open the log file f = open(logfilename) # Read each line from the log file and process it for line in f: # Each line should be in the format: # <melon name>: <quantity> # Unpacks each line into variables melon_type, quantity = line.rstrip().split(':') quantity = int(quantity) print "\n-----" print "Fullfilling order of {} {}".format(quantity, melon_type) print "-----\n" count = 0 melons = [] # Pick melons until we reach the requested quantity while len(melons) < quantity: # Make sure we haven't reached our limit for the total # number of melons we're allowed to pick if count > MELON_LIMIT: print "\n------------------------------" print "ALL MELONS HAVE BEEN PICKED" print "ORDERS FAILED TO BE FULFILLED!" print "------------------------------\n" sys.exit() # Have the robot pick a 'melon' -- check to # see if it is a Winter Squash or not. if melon_type != "Winter Squash": m = Melon(melon_type) else: m = Squash(melon_type) robots.pickerbot.pick(m) count += 1 # Prepare the melon m.prep() # Evaluate the melon presentable = robots.inspectorbot.evaluate(m) if presentable: melons.append(m) else: robots.trashbot.trash(m) continue print "------" print "Robots Picked {} {} for order of {}".format(count, melon_type, quantity) # Pack the melons for shipping boxes = robots.packerbot.pack(melons) # Ship the boxes robots.shipperbot.ship(boxes) print "------\n" main()
6d28be97f2afbd88a2e1dc0864ef9d921ab270b3
f70b87f3f5e690c149a5034528f2e1dd10b5096e
/python/strings.py
af964df1b00c4d254d10d6c25e34ba38236044eb
[]
no_license
kriti-ixix/ml-230
02ebfb0a85a73f52683e59bf513e25e949b163da
d7dac60034677b82de51c9197c4f9d38938322b6
refs/heads/main
2023-07-09T07:09:19.134665
2021-08-18T07:05:11
2021-08-18T07:05:11
386,823,869
0
2
null
null
null
null
UTF-8
Python
false
false
669
py
myString = "Hello world!" myString2 = "How are you?" #String Indexing print(myString[2]) print(myString[7]) print(myString[-1]) #Negative Indexing #String slicing #string[start=0 : stop=len(exclusive) : step=1] print(myString[2:8]) print(myString[2:8:2]) print(myString[::-1]) #Reverse a string #Length of a string print(len(myString)) #String concatenation print(myString + " " + myString2) #String casing print(myString.upper()) print(myString.lower()) #String splitting print(myString.split()) print(myString2.split()) tweet = "Good morning #niceweather #feelinggood #sunny" print(tweet.split("#")) print(tweet.split("#", 1)) for x in myString: print(x)
1de6e990459f2886842476ffbf3f9018c7bb01db
72c732f0e7e8bae3a14700368b3a4ec54f8958b7
/scripts/parse_wiki.py
7b645f7e3d8e5b64bee3410e8fd95e37a0744e0f
[]
no_license
colinsongf/medical_lexical_simplification
7b0db42993fe985e4beca3b8817f5118475abac7
4bfe189265bc64c095a8ec0889cf8f3137194dbf
refs/heads/master
2020-08-29T06:04:03.295970
2019-10-09T10:10:26
2019-10-09T10:10:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,190
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Sep 17 12:29:09 2018 @author: Samuele Garda """ import argparse import logging import multiprocessing import bz2 import functools from collections import defaultdict import smart_open from gensim.corpora import wikicorpus from gensim.utils import to_unicode,to_utf8,chunkize from gensim.parsing import preprocessing as pp from io_utils import IOManager as iom logger = logging.getLogger(__name__) logging.basicConfig(format = '%(asctime)s : %(levelname)s : %(module)s: %(message)s', level = 'INFO') def parse_args(): """ Parse command line arguments """ parser = argparse.ArgumentParser(description='Parse Wikipedia dump') parser.add_argument('--input',required = True, type = str, help = "File containing wikipedia dump : XML.BZ2 format") parser.add_argument('--out', required = True, type = str, help = "Output directory where store files") parser.add_argument('--limit',default = 1000, type = int, help = "Parse only this many examples") parser.add_argument('--cores',default = 4, type = int, help = "How many cores to use") return parser.parse_args() # gensim preprocessing functions FILTERS = [lambda x : x.lower(), pp.strip_tags, pp.strip_punctuation, pp.strip_multiple_whitespaces, pp.remove_stopwords] def preprocess_fn(text): """ Preprocess string. Args: text (str) : input text Return: out (list) : list of tokens """ out = pp.preprocess_string(text, filters = FILTERS) return out def process_wikipedia_article(wiki_page,preprocess_fn): """ Parse single wikipedia article. Args: wiki_page (tuple) : tuple of (str or None, str, str) preprocess_fn (function) : preprocessing function Return: title,text (str) : tuple containing title and text of wiki page """ title, text, page_id = wiki_page title = to_unicode(title.replace('\t', ' ')) text = wikicorpus.filter_wiki(text) text = preprocess_fn(text) return title,text def parse_wiki_dump(infile, min_words, process_function, processes=multiprocessing.cpu_count()-2): """ Yield articles from a bz2 Wikipedia dump `infile` as (title, tokens) 2-tuples. Only articles of sufficient length are returned (short articles & redirects etc are ignored). Uses multiple processes to speed up the parsing in parallel. Args: infile (str) : path to bz2 Wikipedia dump min_words (int) : skip article if it has less than this many words process_function (function) : preprocessing function processes (int) : number of cores to be used """ logger.info("Start processing Wikipedia dump `{}`".format(infile)) articles, articles_all = 0, 0 pool = multiprocessing.Pool(processes) # process the corpus in smaller chunks of docs, because multiprocessing.Pool # is dumb and would try to load the entire dump into RAM... texts = wikicorpus._extract_pages(bz2.BZ2File(infile)) # generator ignore_namespaces = 'Wikipedia Category File Portal Template MediaWiki User Help Book Draft'.split() for group in chunkize(texts, chunksize=10 * processes): for title,tokens in pool.imap(process_function, group): if articles_all % 10000 == 0: logger.info("PROGRESS: at article #{} accepted {} articles".format(articles_all, articles)) articles_all += 1 # article redirects and short stubs are pruned here if any(title.startswith(ignore + ':') for ignore in ignore_namespaces) or len(tokens) < min_words: continue # all good: use this article articles += 1 yield title,tokens pool.terminate() logger.info("finished iterating over Wikipedia corpus of {} documents with total {} articles".format(articles, articles_all)) if __name__ == "__main__": args = parse_args() infile = args.input out_dir = args.out limit = args.limit cores = args.cores min_words = 50 iom.make_dir(out_dir) out_name = iom.base_name(out_dir) out_path = iom.join_paths([out_dir,out_name+".txt.gz"]) counts_path = iom.join_paths([out_dir,out_name+".freqs"]) wiki_counts = defaultdict(int) process_article = functools.partial(process_wikipedia_article, preprocess_fn = preprocess_fn) with smart_open.open(out_path ,'wb') as fout: for docno,(title,tokens) in enumerate(parse_wiki_dump(infile = infile, min_words = min_words, process_function = process_article, processes = cores)): if limit is not None and docno > limit: break for tok in tokens: wiki_counts[tok] += 1 bytes_line = to_utf8(' '.join(tokens)) # make sure we're storing proper utf8 fout.write(bytes_line) if limit and docno > limit: break logger.info("Completed processing wikipedia dump") logger.info("Saving english wiki word frequencies at : `{}`".format(counts_path)) iom.save_pickle(wiki_counts,counts_path)
34ae655ceb66bb79bd0c2a65c932b65b98108990
ce680c45968e7f7c6c6906b24fab90487d860f69
/ml_gym/environments/attention_allocation_test.py
d70b9658cd652ff238503121a4deaedfb2a0555b
[ "Apache-2.0" ]
permissive
olliethomas/ml-fairness-gym
884420d058301be342ae68b72a2dcf2d2651525b
adaa878596d3ce7dc0ee821f53f99cdf0cd2ef5f
refs/heads/master
2021-03-30T05:40:39.356381
2020-03-17T16:48:35
2020-03-17T16:48:35
248,021,897
0
0
Apache-2.0
2020-03-17T16:41:11
2020-03-17T16:41:10
null
UTF-8
Python
false
false
5,508
py
# coding=utf-8 # Copyright 2020 The ML Fairness Gym Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python2, python3 """Tests for attention_allocation environment.""" from __future__ import absolute_import, division, print_function import numpy as np from absl.testing import absltest from six.moves import range import test_util from ml_gym.agents import random_agents from ml_gym.environments import attention_allocation class LocationAllocationTest(absltest.TestCase): def test_sample_incidents_centered_on_incident_rates(self): """Check sample_incidents return follows expected distribution. This test verifies the incident rates across locations returned by _sample_incidents are centered on the underling incident_rates. """ n_trials = 100 rng = np.random.RandomState() rng.seed(0) params = attention_allocation.Params() # _sample_incidents returns occurred incidents and reported incidents. # They are generated identically so we are testing on ocurred incidents, # which is at index 0. samples = [attention_allocation._sample_incidents(rng, params)[0] for _ in range(n_trials)] means = np.mean(samples, axis=0) std = np.std(samples, axis=0) errors_in_tolerance = [ (np.abs(means[i] - params.incident_rates[i]) < (std[i] / 3.0)) for i in range(params.n_locations) ] self.assertTrue(np.all(errors_in_tolerance)) def test_update_state(self): """Check that state is correctly updated with incidents_seen. This tests checks that numbers of incidents_seen are no more than the incidents generated and the attention deployed as specified in the action, if allocating without attention replacement. """ env = attention_allocation.LocationAllocationEnv() env.seed(0) agent = random_agents.RandomAgent(env.action_space, None, env.observation_space) observation = env.reset() action = agent.act(observation, False) crimes, reported_incidents = attention_allocation._sample_incidents( env.state.rng, env.state.params ) attention_allocation._update_state(env.state, crimes, reported_incidents, action) incidents_seen = env.state.incidents_seen self.assertTrue((incidents_seen <= crimes).all()) if not env.state.params.attention_replacement: self.assertTrue((incidents_seen <= action).all()) def test_parties_can_interact(self): test_util.run_test_simulation(env=attention_allocation.LocationAllocationEnv()) def test_dynamic_rate_change(self): params = attention_allocation.Params() params.dynamic_rate = 0.1 params.incident_rates = [4.0, 2.0] params.n_attention_units = 2 env = attention_allocation.LocationAllocationEnv(params=params) env.seed(0) env.step(action=np.array([2, 0])) new_rates = env.state.params.incident_rates expected_rates = [3.8, 2.1] self.assertEqual(expected_rates, new_rates) def test_features_centered_correctly_no_noise(self): params = attention_allocation.Params() params.n_locations = 3 params.prior_incident_counts = (500, 500, 500) params.incident_rates = [1.0, 1.0, 1.0] params.miss_incident_prob = (0.2, 0.2, 0.2) params.extra_incident_prob = (0.0, 0.0, 0.0) params.feature_covariances = [[0, 0], [0, 0]] rng = np.random.RandomState() rng.seed(0) expected_features_shape = (params.n_locations, len(params.feature_means)) features = attention_allocation._get_location_features(params, rng, [1, 1, 1]) self.assertEqual(features.shape, expected_features_shape) expected_feautres = np.array([[1.0, 2.0], [1.0, 2.0], [1.0, 2.0]]) self.assertTrue(np.array_equal(expected_feautres, features)) def test_features_centered_correctly(self): params = attention_allocation.Params() params.n_locations = 3 params.prior_incident_counts = (500, 500, 500) params.incident_rates = [1.0, 1.0, 1.0] params.miss_incident_prob = (0.2, 0.2, 0.2) params.extra_incident_prob = (0.0, 0.0, 0.0) rng = np.random.RandomState() rng.seed(0) n_samples = 200 expected_features_shape = (params.n_locations, len(params.feature_means)) features = np.zeros(expected_features_shape) for _ in range(n_samples): new_features = attention_allocation._get_location_features(params, rng, [1, 1, 1]) self.assertEqual(new_features.shape, expected_features_shape) features = features + new_features expected_feature_average = np.array([[1.0, 2.0], [1.0, 2.0], [1.0, 2.0]]) self.assertTrue( np.all(np.isclose(features / n_samples, expected_feature_average, atol=0.1)) ) if __name__ == "__main__": absltest.main()
0e8a3cb11dc43c1866ed7af41b88fab6d7a8deaf
81c280d8a6187615b9a80b7c8870523d531d5edb
/policy_eval_recurrenct.py
a564d15a49bdc4dc098ba4c801e80bc77cc37ccb
[]
no_license
haoranyuan/MasterThesis
02ab80ca775051822bee175272bcbcf5a402d619
f12501b6cf4ecde7d04e738697d04dde3cbc4e7f
refs/heads/master
2022-12-19T12:11:14.844840
2020-09-10T07:44:59
2020-09-10T07:44:59
294,337,807
0
0
null
null
null
null
UTF-8
Python
false
false
3,641
py
from matplotlib import pyplot as plt import numpy as np from rl_policy_dir import RL_Multi from rewardconstruct import FeatureExpectation from demo_discrete import Discretize import os def policy_eval(DIR, iter, PLOT=False, force_evaluate=False): # import mixed policies dis = Discretize(data=None) fe = FeatureExpectation() Feature_expectation = [] # if not os.path.isfile(DIR + 'mixed_feature_expectations.csv') and force_evaluate: if True: print('Evaluating un-fuzzy policy') for i in range(iter): RL_Multi(QUAD_DYNAMICS_UPDATE=0.2, render=False, validation=1, episode=231, file_dir=DIR + 'iter' + str(i) + '/', policy_dir=DIR + 'iter' + str(i) + '/mixed_policy.csv') dis.data = np.genfromtxt(DIR + 'iter' + str(i) + '/agentdata_mp.csv', delimiter=',') traj = dis.discretize_data() feat, _ = fe.featureexpectations(trajectories=traj, header_exist=True) Feature_expectation.append(feat) np.savetxt(DIR + 'mixed_feature_expectations.csv', Feature_expectation, delimiter=',') Feature_expectation = [] # if not os.path.isfile(DIR + 'mixedfuzzy_feature_expectations.csv') and force_evaluate: if True: print('Evaluating fuzzy policy') for i in range(iter): RL_Multi(QUAD_DYNAMICS_UPDATE=0.2, render=False, validation=1, episode=231, file_dir=DIR + 'iter' + str(i) + '/', policy_dir=DIR + 'iter' + str(i) + '/mixedfuzzy_policy.csv', fuzzy=True) dis.data = np.genfromtxt(DIR + 'iter' + str(i) + '/agentdata_fuzzymp.csv', delimiter=',') traj = dis.discretize_data() feat, _ = fe.featureexpectations(trajectories=traj, header_exist=True) Feature_expectation.append(feat) np.savetxt(DIR + 'mixedfuzzy_feature_expectations.csv', Feature_expectation, delimiter=',') mixed_fea = np.genfromtxt(DIR + 'mixed_feature_expectations.csv', delimiter=',') mixedfuzzy_fea = np.genfromtxt(DIR + 'mixedfuzzy_feature_expectations.csv', delimiter=',') fea__ = np.genfromtxt(DIR + 'feature_expectation_AL.csv', delimiter=',') fea_e = np.genfromtxt(DIR + 'feature_expectations.csv', delimiter=',')[0, :-1] fea = np.genfromtxt(DIR + 'feature_expectations.csv', delimiter=',')[1:, :-1] print([np.linalg.norm(f - fea_e) for f in fea]) print([np.linalg.norm(f - fea_e) for f in fea__]) print([np.linalg.norm(f - fea_e) for f in mixed_fea]) print([np.linalg.norm(f - fea_e) for f in mixedfuzzy_fea]) Lambda = np.genfromtxt(DIR + 'Lambda.csv', delimiter=',') ''' #print([l for l in Lambda]) lam = [l for l in Lambda] fig = plt.figure() ax1 = fig.add_subplot(111) ax1.set_ylabel('distance to $\mu_e$') ax1.set_xlabel('iterations') ax1.plot([np.linalg.norm(f - fea_e) for f in fea], label='$\mu$ using reward functions') ax1.plot([np.linalg.norm(f - fea_e) for f in fea__], label=r"$\bar \mu$") ax1.plot([np.linalg.norm(f - fea_e) for f in mixedfuzzy_fea], label= 'mixed non-deterministic'+r'$\hat\mu$') ax1.plot([np.linalg.norm(f - fea_e) for f in mixed_fea], label= 'mixed deterministic'+r'$\hat\mu$') ax2 = ax1.twinx() ax2.plot(np.arange(len(lam))+1, lam, 'o--', label='$\lambda$') ax2.set_ylabel('$\lambda$') ax1.set_xticks(np.arange(0, 20)) #ax2.set_yticks(lam) ax1.grid() fig.legend() ''' if PLOT: plt.show() if __name__ == '__main__': DIR = 'AL_results/projection_good/projection_good6/' iter = 20 policy_eval(DIR, iter, PLOT=True)
80ba13b0f9ecdfd7d0b9ad1d2b306231339bd5f4
05a9ebf253d821cf8a5d408b20fbbb73797edb9e
/python/tvm/driver/tvmc/composite_target.py
ba7862378557c905811c6293c23e9c5bc6a8fd0d
[ "Apache-2.0", "Zlib", "MIT", "BSD-2-Clause", "LicenseRef-scancode-unknown-license-reference", "Unlicense" ]
permissive
axistek/tvm
af881afcd336cdc370ea19c000c0443f2df55b09
c559855c2738f98cb5d925fb9924acbe50e91278
refs/heads/main
2023-08-21T03:33:22.671864
2021-10-27T01:02:30
2021-10-27T01:02:30
344,383,241
0
2
Apache-2.0
2021-03-04T07:12:26
2021-03-04T07:12:26
null
UTF-8
Python
false
false
3,088
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Provides support to composite target on TVMC. """ import logging # Make sure Vitis AI codegen is registered import tvm.contrib.target.vitis_ai # pylint: disable=unused-import from tvm.relay.op.contrib.arm_compute_lib import partition_for_arm_compute_lib from tvm.relay.op.contrib.ethosn import partition_for_ethosn from tvm.relay.op.contrib.cmsisnn import partition_for_cmsisnn from tvm.relay.op.contrib.ethosu import partition_for_ethosu from tvm.relay.op.contrib.bnns import partition_for_bnns from tvm.relay.op.contrib.vitis_ai import partition_for_vitis_ai from .common import TVMCException # pylint: disable=invalid-name logger = logging.getLogger("TVMC") # Global dictionary to map targets # # Options # ------- # config_key : str # The configuration key to be used in the PassContext (if any). # pass_pipeline : Callable # A function to transform a Module before compilation, mainly used # for partitioning for the target currently. REGISTERED_CODEGEN = { "compute-library": { "config_key": None, "pass_pipeline": partition_for_arm_compute_lib, }, "cmsis-nn": { "config_key": None, "pass_pipeline": partition_for_cmsisnn, }, "ethos-n77": { "config_key": "relay.ext.ethos-n.options", "pass_pipeline": partition_for_ethosn, }, "ethos-u": { "config_key": "relay.ext.ethosu.options", "pass_pipeline": partition_for_ethosu, }, "bnns": { "config_key": None, "pass_pipeline": partition_for_bnns, }, "vitis-ai": { "config_key": "relay.ext.vitis_ai.options", "pass_pipeline": partition_for_vitis_ai, }, } def get_codegen_names(): """Return a list of all registered codegens. Returns ------- list of str all registered targets """ return list(REGISTERED_CODEGEN.keys()) def get_codegen_by_target(name): """Return a codegen entry by name. Parameters ---------- name : str The name of the target for which the codegen info should be retrieved. Returns ------- dict requested target codegen information """ try: return REGISTERED_CODEGEN[name] except KeyError: raise TVMCException("Composite target %s is not defined in TVMC." % name)
e89af17f04f427784e2cae3449287fb1f36f07e6
fea1810e5e08687bd631d7d824429a32a748b606
/moving_rectangles.py
f2d1c10edd2165d8654540316b107f921d412e38
[]
no_license
digipodium/sophomore_python_1230_oct_21
a72938a3e7db09e8f0d7a29bcfdac7c27875e258
e723cbac406114f6b88675491245a540a21a57ac
refs/heads/main
2023-08-28T03:07:37.939849
2021-10-25T08:30:59
2021-10-25T08:30:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
359
py
# Write your code here :-) WIDTH = 500 HEIGHT = 500 box = Rect((20,20), (60,60)) box2 = Rect((400,350),(60,60)) def draw(): screen.clear() screen.draw.rect(box,'yellow') screen.draw.filled_rect(box2,'orange') def update(): box.x = box.x + 10 if box.x > WIDTH: box.x = 0 box2.x +=2 if box2.x > WIDTH: box2.x = 0
81c456913d2484e9f7bda48bacf4d1eb2c6b9a04
e9bbf3133c91c3323cb4750bcaaad288ac830f24
/reports/report.py
57e752cf4b15b8897cbd6fa263fcbe56afbe25b5
[]
no_license
ricardocr18/igo_vereador
ff89942fbb874f5ec8f6ccf8c46c9449e013218d
95bb0c17ff0ed4e0b7878a772e0354dda31dcf8a
refs/heads/main
2023-07-12T04:20:37.371384
2021-08-17T06:11:35
2021-08-17T06:11:35
383,234,224
0
0
null
null
null
null
UTF-8
Python
false
false
2,530
py
# -*- coding: utf-8 -*- from odoo import models, fields, api,tools,exceptions, _, SUPERUSER_ID class RelatorioSolicitacao(models.TransientModel): _name = 'report_solicitacao' #Campos para o usuario selecionar status = fields.Selection([('andamento', 'Em andamento'), ('pendente', 'Pendente'), ('concluido', 'Concluído')], string="Status") cpf = fields.Char("CPF") def get_report(self): #Funcao que retorna o campo solucionado data = { 'ids': self.ids, 'model': self._name, 'form': { 'status': self.status, 'cpf': self.cpf, }, } #Retorno para a view pdf_report com o ID recap_report return self.env.ref('igo_vereador.recap_report').report_action(self, data=data) class ReportRelatorioSolicitacao(models.AbstractModel): #Model de construcao do relatorio o nome da model deve sempre começar com report _name = 'report.igo_vereador.solicitacao_report_view' @api.model def _get_report_values(self, docids, data=None): status = data['form']['status'] cpf = data['form']['cpf'] docs = [] print (status,cpf) if status != False and cpf == False: solicitacoes = self.env['cadastro.cidadao'].search([('status', '=', status),], order='data_solicitacao asc') if cpf != False and status == False: solicitacoes = self.env['cadastro.cidadao'].search([('cpf', '=', cpf), ], order='data_solicitacao asc') if cpf != False and status != False: solicitacoes = self.env['cadastro.cidadao'].search([('status', '=', status),('cpf', '=', cpf), ], order='data_solicitacao asc') for solicitacao in solicitacoes: docs.append({ 'name': solicitacao.name, 'cpf': solicitacao.cpf, 'email': solicitacao.email, 'telefone': solicitacao.telefone, 'celular': solicitacao.celular, 'descricao_pedido': solicitacao.descricao_pedido, 'categoria': solicitacao.categoria, 'data_solicitacao': solicitacao.data_solicitacao, 'data_entrega': solicitacao.data_entrega, 'status': solicitacao.status, }) return { 'doc_ids': data['ids'], 'doc_model': data['model'], 'status': status, 'docs': docs, }
a3a925b906dc6944d5f8c7f307fb6c90fddcbefa
e33eb3bd25f4e7f0612a32cbee94b3f0c61e1c76
/tests/mealpy_test.py
6938fc4d75cc4079cbb432ed0ad047aeb460a6fc
[ "MIT" ]
permissive
pmbranco/mealpy
107e8178b05d21fe16ec66f939422ac160af620d
5d2eef36d1003b85d048ebab7c16d9987332571e
refs/heads/master
2022-01-19T01:05:45.382003
2019-05-14T02:02:49
2019-05-14T02:02:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
20,328
py
from collections import namedtuple from unittest import mock import pytest import requests import responses from mealpy import mealpy City = namedtuple('City', 'name objectId') @pytest.fixture(autouse=True) def mock_responses(): with responses.RequestsMock() as _responses: yield _responses class TestCity: @staticmethod def test_get_cities(mock_responses): response = { 'result': [ { 'id': 'mock_id1', 'objectId': 'mock_objectId1', 'state': 'CA', 'name': 'San Francisco', 'city_code': 'SFO', 'latitude': 'mock_latitude', 'longitude': 'mock_longitude', 'timezone': -7, 'countryCode': 'usa', 'countryCodeAlphaTwo': 'us', 'defaultLocale': 'en-US', 'dinner': False, 'neighborhoods': [ { 'id': 'mock_fidi_id', 'name': 'Financial District', }, { 'id': 'mock_soma_id', 'name': 'SoMa', }, ], }, { 'id': 'mock_id2', 'objectId': 'mock_objectId2', 'state': 'WA', 'name': 'Seattle', 'city_code': 'SEA', 'latitude': 'mock_latitude', 'longitude': 'mock_longitude', 'timezone': -7, 'countryCode': 'usa', 'countryCodeAlphaTwo': 'us', 'defaultLocale': 'en-US', 'dinner': False, 'neighborhoods': [ { 'id': 'mock_belltown_id', 'name': 'Belltown', }, ], }, ], } mock_responses.add( responses.RequestsMock.POST, mealpy.CITIES_URL, json=response, ) cities = mealpy.MealPal.get_cities() city = [i for i in cities if i['name'] == 'San Francisco'][0] assert city.items() >= { 'id': 'mock_id1', 'state': 'CA', 'name': 'San Francisco', }.items() @staticmethod def test_get_cities_bad_response(mock_responses): mock_responses.add( responses.RequestsMock.POST, mealpy.CITIES_URL, status=400, ) with pytest.raises(requests.exceptions.HTTPError): mealpy.MealPal.get_cities() class TestLogin: @staticmethod def test_login(mock_responses): mock_responses.add( responses.RequestsMock.POST, mealpy.LOGIN_URL, status=200, json={ 'id': 'GUID', 'email': 'email', 'status': 3, 'firstName': 'first_name', 'lastName': 'last_name', 'sessionToken': 'r:GUID', 'city': { 'id': 'GUID', 'name': 'San Francisco', 'city_code': 'SFO', 'countryCode': 'usa', '__type': 'Pointer', 'className': 'City', 'objectId': 'GUID', }, }, ) mealpal = mealpy.MealPal() assert mealpal.login('username', 'password') == 200 @staticmethod def test_login_fail(mock_responses): mock_responses.add( method=responses.RequestsMock.POST, url=mealpy.LOGIN_URL, status=404, json={ 'code': 101, 'error': 'An error occurred while blah blah, try agian.', }, ) mealpal = mealpy.MealPal() with pytest.raises(requests.HTTPError): mealpal.login('username', 'password') class TestSchedule: @staticmethod @pytest.fixture def mock_city(): yield City('mock_city', 'mock_city_object_id') @staticmethod @pytest.fixture def success_response(): """A complete response example for MENU_URL endpoint.""" yield { 'city': { 'id': 'GUID', 'name': 'San Francisco', 'state': 'CA', 'time_zone_name': 'America/Los_Angeles', }, 'generated_at': '2019-04-01T00:00:00Z', 'schedules': [{ 'id': 'GUID', 'priority': 9, 'is_featured': True, 'date': '20190401', 'meal': { 'id': 'GUID', 'name': 'Spam and Eggs', 'description': 'Soemthign sometlhing python', 'cuisine': 'asian', 'image': 'https://example.com/image.jpg', 'portion': 2, 'veg': False, }, 'restaurant': { 'id': 'GUID', 'name': 'RestaurantName', 'address': 'RestaurantAddress', 'state': 'CA', 'latitude': '111.111', 'longitude': '-111.111', 'neighborhood': { 'name': 'Financial District', 'id': 'GUID', }, 'city': { 'name': 'San Francisco', 'id': 'GUID', 'timezone_offset_hours': -7, }, 'open': '2019-04-01T00:00:00Z', 'close': '2019-04-01T00:00:00Z', 'mpn_open': '2019-04-01T00:00:00Z', 'mpn_close': '2019-04-01T00:00:00Z', }, }], } @staticmethod @pytest.fixture def menu_url_response(mock_responses, success_response, mock_city): mock_responses.add( responses.RequestsMock.GET, mealpy.MENU_URL.format(mock_city.objectId), status=200, json=success_response, ) yield mock_responses @staticmethod @pytest.fixture def mock_get_city(mock_responses, mock_city): mock_responses.add( method=responses.RequestsMock.POST, url=mealpy.CITIES_URL, json={ 'result': [{ 'id': 'mock_id1', 'objectId': mock_city.objectId, 'name': mock_city.name, }], }, ) yield @staticmethod @pytest.mark.usefixtures('mock_get_city', 'menu_url_response') def test_get_schedule_by_restaurant_name(mock_city): schedule = mealpy.MealPal.get_schedule_by_restaurant_name('RestaurantName', mock_city.name) meal = schedule['meal'] restaurant = schedule['restaurant'] assert meal.items() >= { 'id': 'GUID', 'name': 'Spam and Eggs', }.items() assert restaurant.items() >= { 'id': 'GUID', 'name': 'RestaurantName', 'address': 'RestaurantAddress', }.items() @staticmethod @pytest.mark.usefixtures('mock_get_city', 'menu_url_response') @pytest.mark.xfail( raises=StopIteration, reason='#24 Invalid restaurant input not handled', ) def test_get_schedule_by_restaurant_name_not_found(mock_city): mealpy.MealPal.get_schedule_by_restaurant_name('NotFound', mock_city.name) @staticmethod @pytest.mark.usefixtures('mock_get_city', 'menu_url_response') @pytest.mark.xfail( raises=StopIteration, reason='#24 Invalid meal name not handled', ) def test_get_schedule_by_meal_name_not_found(mock_city): mealpy.MealPal.get_schedule_by_meal_name('NotFound', mock_city.name) @staticmethod @pytest.mark.usefixtures('mock_get_city', 'menu_url_response') def test_get_schedule_by_meal_name(mock_city): schedule = mealpy.MealPal.get_schedule_by_meal_name('Spam and Eggs', mock_city.name) meal = schedule['meal'] restaurant = schedule['restaurant'] assert meal.items() >= { 'id': 'GUID', 'name': 'Spam and Eggs', }.items() assert restaurant.items() >= { 'id': 'GUID', 'name': 'RestaurantName', 'address': 'RestaurantAddress', }.items() @staticmethod @pytest.mark.usefixtures('mock_get_city') def test_get_schedules_fail(mock_responses, mock_city): mock_responses.add( method=responses.RequestsMock.GET, url=mealpy.MENU_URL.format(mock_city.objectId), status=400, ) with pytest.raises(requests.HTTPError): mealpy.MealPal.get_schedules(mock_city.name) class TestCurrentMeal: @staticmethod @pytest.fixture def current_meal(): yield { 'id': 'GUID', 'createdAt': '2019-03-20T02:53:28.908Z', 'date': 'March 20, 2019', 'pickupTime': '12:30-12:45', 'pickupTimeIso': ['12:30', '12:45'], 'googleCalendarLink': ( 'https://www.google.com/calendar/render?action=TEMPLATE&text=Pick Up Lunch from MealPal&' 'details=Pick up lunch from MealPal: MEALNAME from RESTAURANTNAME\nPickup instructions: BLAHBLAH&' 'location=ADDRESS, CITY, STATE&dates=20190320T193000Z/20190320T194500Z&sf=true&output=xml' ), 'mealpalNow': False, 'orderNumber': '1111', 'emojiWord': None, 'emojiCharacter': None, 'emojiUrl': None, 'meal': { 'id': 'GUID', 'image': 'https://example.com/image.jpg', 'description': 'spam, eggs, and bacon. Served on avocado toast. With no toast.', 'name': 'Spam Eggs', }, 'restaurant': { 'id': 'GUID', 'name': 'RESTURANTNAME', 'address': 'ADDRESS', 'city': { '__type': 'Object', 'className': 'cities', 'createdAt': '2016-06-22T14:33:23.000Z', 'latitude': '111.111', 'longitude': '-111.111', 'name': 'San Francisco', 'city_code': 'SFO', 'objectId': 'GUID', 'state': 'CA', 'timezone': -7, 'updatedAt': '2019-03-18T16:08:22.577Z', }, 'latitude': '111.1111', 'longitude': '-111.1111', 'lunchOpen': '11:30am', 'lunchClose': '2:30pm', 'pickupInstructions': 'BLAH BLAH', 'state': 'CA', 'timezoneOffset': -7, 'neighborhood': { 'id': 'GUID', 'name': 'SoMa', }, }, 'schedule': { '__type': 'Object', 'objectId': 'GUID', 'className': 'schedules', 'date': { '__type': 'Date', 'iso': '2019-03-20T00:00:00.000Z', }, }, } @staticmethod @pytest.fixture def success_response_no_reservation(): yield { 'result': { 'status': 'OPEN', 'kitchenMode': 'classic', 'time': '19:59', 'reserveUntil': '2019-03-20T10:30:00-07:00', 'cancelUntil': '2019-03-20T15:00:00-07:00', 'kitchenTimes': { 'openTime': '5pm', 'openTimeMilitary': 1700, 'openHourMilitary': 17, 'openMinutesMilitary': 0, 'openHour': '5', 'openMinutes': '00', 'openPeriod': 'pm', 'closeTime': '10:30am', 'closeTimeMilitary': 1030, 'closeHourMilitary': 10, 'closeMinutesMilitary': 30, 'closeHour': '10', 'closeMinutes': '30', 'closePeriod': 'am', 'lateCancelHour': 15, 'lateCancelMinutes': 0, }, 'today': { '__type': 'Date', 'iso': '2019-03-20T02:59:42.000Z', }, }, } @staticmethod @pytest.fixture def kitchen_url_response(mock_responses, success_response_no_reservation): mock_responses.add( responses.RequestsMock.POST, mealpy.KITCHEN_URL, status=200, json=success_response_no_reservation, ) yield mock_responses @staticmethod @pytest.fixture def kitchen_url_response_with_reservation(mock_responses, success_response_no_reservation, current_meal): success_response_no_reservation['reservation'] = current_meal mock_responses.add( responses.RequestsMock.POST, mealpy.KITCHEN_URL, status=200, json=success_response_no_reservation, ) yield mock_responses @staticmethod @pytest.mark.usefixtures('kitchen_url_response') def test_get_current_meal_no_meal(): mealpal = mealpy.MealPal() current_meal = mealpal.get_current_meal() assert 'reservation' not in current_meal @staticmethod @pytest.mark.usefixtures('kitchen_url_response_with_reservation') def test_get_current_meal(): mealpal = mealpy.MealPal() current_meal = mealpal.get_current_meal() assert current_meal['reservation'].keys() >= { 'id', 'pickupTime', 'orderNumber', 'meal', 'restaurant', 'schedule', } @staticmethod @pytest.mark.xfail(raises=NotImplementedError) def test_cancel_current_meal(): mealpal = mealpy.MealPal() mealpal.cancel_current_meal() class TestReserve: @staticmethod @pytest.fixture() def reserve_response(mock_responses): # pragma: no cover # Current unused response = { 'result': { 'date': 'March 20, 2019', 'user_id': 'GUID', 'google_calendar_link': ( 'https://www.google.com/calendar/render?' 'action=TEMPLATE&' 'text=Pick Up Lunch from MealPal&' 'details=Pick up lunch from MealPal: BLAH BLAH BLAH&' 'location=LOCATION&' 'dates=20190320T194500Z/20190320T200000Z&' 'sf=true&' 'output=xml' ), 'encoded_google_calendar_link': 'URI_ENCODED', 'schedule': { 'schedule_id': 'GUID', 'ordered_quantity': 1, 'late_canceled_quantity': 0, 'pickup_window_start': '2019-03-20T12:45:00-07:00', 'pickup_window_end': '2019-03-20T13:00:00-07:00', 'google_calendar_link': 'LOL_WHAT_THIS_IS_DUPLICATE', 'encoded_google_calendar_link': 'ENCODED_URI', 'order_number': '1111', 'mealpal_now': False, 'emoji_word': None, 'emoji_character': None, 'emoji_url': None, 'reserve_until': '2019-03-20T10:30:00-07:00', 'cancel_until': '2019-03-20T15:00:00-07:00', 'meal': { 'name': 'MEAL_NAME', 'image_url': 'https://example.com/image.jpg', 'ingredients': 'INGREDIENT_DESCRIPTION', }, 'restaurant': { 'lunch_open_at': '2019-03-20T11:30:00-07:00', 'lunch_close_at': '2019-03-20T14:30:00-07:00', 'name': 'RESTAURANT_NAME', 'address': 'ADDRESS', 'latitude': '111.111', 'longitude': '-111.111', 'pickup_strategy': 'qr_codes', 'pickup_strategy_set': 'online', 'pickup_instructions': 'INSTRUCTIONS', 'city_name': 'San Francisco', 'city_state': 'CA', }, }, }, } mock_responses.add( responses.RequestsMock.POST, mealpy.KITCHEN_URL, status=200, json=response, ) yield mock_responses @staticmethod @pytest.fixture() def reserve_response_failed(mock_responses): # pragma: no cover # Current unused response = {'error': 'ERROR_RESERVATION_LIMIT'} mock_responses.add( responses.RequestsMock.POST, mealpy.KITCHEN_URL, status=400, json=response, ) yield mock_responses @staticmethod def test_reserve_meal_by_meal_name(): mealpal = mealpy.MealPal() schedule_id = 1 timing = 'mock_timing' with mock.patch.object( mealpy.MealPal, 'get_schedule_by_meal_name', return_value={'id': schedule_id}, ) as mock_get_schedule_by_meal, \ mock.patch.object(mealpal, 'session') as mock_requests: mealpal.reserve_meal( timing, 'mock_city', meal_name='meal_name', ) assert mock_get_schedule_by_meal.called assert mock_requests.post.called_with( mealpy.RESERVATION_URL, { 'quantity': 1, 'schedule_id': schedule_id, 'pickup_time': timing, 'source': 'Web', }, ) @staticmethod def test_reserve_meal_by_restaurant_name(): mealpal = mealpy.MealPal() schedule_id = 1 timing = 'mock_timing' with mock.patch.object( mealpy.MealPal, 'get_schedule_by_restaurant_name', return_value={'id': schedule_id}, ) as mock_get_schedule_by_restaurant, \ mock.patch.object(mealpal, 'session') as mock_requests: mealpal.reserve_meal( timing, 'mock_city', restaurant_name='restaurant_name', ) assert mock_get_schedule_by_restaurant.called assert mock_requests.post.called_with( mealpy.RESERVATION_URL, { 'quantity': 1, 'schedule_id': schedule_id, 'pickup_time': timing, 'source': 'Web', }, ) @staticmethod def test_reserve_meal_missing_params(): """Need to set restaurant_name or meal_name.""" mealpal = mealpy.MealPal() with pytest.raises(AssertionError): mealpal.reserve_meal(mock.sentinel.timing, mock.sentinel.city) @staticmethod @pytest.mark.xfail(raises=NotImplementedError) def test_reserve_meal_cancel_meal(): """Test that meal can be canceled before reserving. This test is a little redundant atm. But it'll probably make more sense if cancellation is moved to an cli arg. At least this gives test coverage. """ mealpal = mealpy.MealPal() mealpal.reserve_meal( 'mock_timing', 'mock_city', restaurant_name='restaurant_name', cancel_current_meal=True, )
066dff68cd6fc3bdfb737f2e654f0e3701cfb805
9b568abb1d2ecb56b8f5f68c6291fb3dac46a53e
/squares.py
df70233e73e96c32742c08395b5ee043364afa1d
[]
no_license
lnc31/PythonX
e15da81f8bb0c7fd809a7ab51ec652909be0c5d4
a327748d24272dce80de5de00e5d7ef8421ab0a6
refs/heads/master
2023-04-15T04:34:39.234851
2021-04-24T18:33:34
2021-04-24T18:33:34
361,239,262
0
0
null
null
null
null
UTF-8
Python
false
false
94
py
from Functions import square for i in range(10): print(f"The square of {i} is {square(i)}")
8ac8bab9bee70c5b61b4c9bf716b822881de78e0
19595705c8dfe4d21d672ba344a4bbfd2dd9b56d
/fantasyStocks/fantasyStocks/settings.py
2ecd914356bad70f80806593acc3d986f7d38055
[ "Apache-2.0" ]
permissive
Newzald/FantasyStocks
f80ea70bc4b04ee5bf695d67a7681bf5393238f4
65671bec2d65da0bade27d19e4bbd29da3bbddb9
refs/heads/master
2021-01-15T09:02:56.183594
2016-06-20T01:17:02
2016-06-20T01:17:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,429
py
""" Django settings for fantasyStocks project. Generated by 'django-admin startproject' using Django 1.8.4. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os from django.core.urlresolvers import reverse_lazy import dj_database_url SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! # One of these days, I should get a way to keep this safer while still having # in source control. Someday... SECRET_KEY = '*imh(^2l3_!uoxr$z#((vovmj4xmqp*@p2&phrlqt7xyau*aqw' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['*'] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'stocks', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) ROOT_URLCONF = 'fantasyStocks.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] LOGIN_URL = reverse_lazy("home") WSGI_APPLICATION = 'fantasyStocks.wsgi.application' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } if os.environ.get("DATABASE_URL", None): DATABASES["default"] = dj_database_url.config() # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'America/Chicago' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_ROOT = 'staticfiles' STATIC_URL = '/static/' STATICFILES_DIRS = ( os.path.join(BASE_DIR, "static"), ) MEDIA_ROOT = BASE_DIR + "/res/" MEDIA_URL = "/images/" FIXTURE_DIRS = [os.path.join(BASE_DIR, "/stocks/fixtures/")] EMAIL_HOST = "aspmx.l.google.com" EMAIL_PORT = 25
52e7d93a3be694d33c6f756375b712af5059afe2
91053fd1765a1ea747f7b01537badf21c574c577
/src/baseline/features.py
f58db342f3c834907283a1449087eba3927d5ca6
[]
no_license
yaya-sy/mwe-extraction
2812b0531ef21ccfa8f54db0be9472bf508b173d
30a259a9a6cefd22db6fb46b9a76115d949a5631
refs/heads/main
2023-06-07T00:04:35.907068
2021-06-24T20:47:13
2021-06-24T20:47:13
372,106,500
0
0
null
null
null
null
UTF-8
Python
false
false
2,524
py
"""Ce module module contient des fonction d'extraction de caractéristiques pour la baseline """ from itertools import chain def features(phrase, tags, span_w, span_s, position) : """ Fonction qui extrait les features en créant un dictionnaire : pour chaque mot (par exemeple 'désinfection'), on regarde - pref1 (son préfixe de longueur 1) : 'd' - pref2 (son préfixe de longueur 2) : 'dé' - etc - suff1 (son suffixe de longueur 1) : 'n' - suff2 (son suffixe de longueur 2) : 'on' - suff3 (son suffixe de longueur 3) : 'ion' - etc. """ beg, end = list(zip(*((f"@BEG{i}@", f"@END{i}@") for i in range(span_s)))) beg, end = list(beg), list(end) span_s += 1 l = len(phrase) p = beg + phrase + end t = beg + tags + beg features = [] if p[position] not in beg + end : #and mot in mc and mot not in mots : for spann in chain.from_iterable([(-i, i) for i in range(1, span_s)]) : features.append("w_" + str(spann) + " = " + p[position + spann]) if spann < 0 : features.append("t_" + str(spann) + " = " + t[position + spann]) for span in chain.from_iterable([(-i, i) for i in range(1, span_w + 1)]): if span < 0 : if len(p[position]) >= abs(span) : features.append("pref" + str(abs(span)) + "=" + p[position][:-span]) else : features.append("pref" + str(abs(span)) + "=" + "HayDara") else : if len(p[position]) >= abs(span) : features.append("suff" + str(span) + "=" + p[position][-span:]) else : features.append("suff" + str(abs(span)) + "=HayDara") features.append("maj" + "=" + str(p[position][0].isupper())) features.append("mot" + "=" + p[position]) features.append("Maj" + "=" + str(p[position].isupper())) if bool(features) : return features, t[position] def get_features(corpus) : """ fonction qui parcourt les phrase pour extraire les caractéristiques Returns ------- - tuple : les caractéristiques et les classes """ fts = [] golds = [] for phrase, labels in corpus : if len(phrase) <= 1:continue for i in range(len(phrase)) : f = features(list(phrase), list(labels), 4, 1, i) if f != None : f,g = f fts.append(f) golds.append(g) return fts, golds
f5819bc1758f11c02fccbff2b04871087efe5580
e70ae13dfd1db072941b24b51a452de9b42e838e
/xorKeras/test.py
b67efdb96f0b149222ce0c19bd05941008201d9f
[]
no_license
mohanmanju/tensorFlow
136670c28e1afe95e35767f171e24c5172bcfbd9
38db20420a2ff40875ff532cdbc9c5a7c77a6e06
refs/heads/master
2021-01-02T08:35:41.483827
2018-07-30T18:26:59
2018-07-30T18:26:59
99,025,346
0
0
null
null
null
null
UTF-8
Python
false
false
654
py
from keras.models import Sequential from keras.layers import Dense from keras.models import model_from_json import numpy as np import os json_file = open('model.json', 'r') loaded_model_json = json_file.read() json_file.close() loaded_model = model_from_json(loaded_model_json) loaded_model.load_weights("model.h5") loaded_model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) dataTest = np.random.binomial(1,0.5,(1000,2)) result = np.transpose(dataTest) labelsTest = result[0]^result[1] score = loaded_model.evaluate(dataTest, labelsTest, verbose=0) print("%s: %.2f%%" % (loaded_model.metrics_names[1], score[1]*100))
d5f9b10607579fcf1a3df619faa2d5218ff61628
ee4c4c2cc6c663d4233d8145b01ae9eb4fdeb6c0
/tools/r3det_kl/train.py
68a4bf224bda39eb73ffa6aa70f6eb0d96e4a9d9
[ "Apache-2.0" ]
permissive
yangcyz/RotationDetection
c86f40f0be1142c30671d4fed91446aa01ee31c1
82706f4c4297c39a6824b9b53a55226998fcd2b2
refs/heads/main
2023-09-01T23:25:31.956004
2021-11-23T13:57:31
2021-11-23T13:57:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,816
py
# -*- coding:utf-8 -*- # Author: Xue Yang <[email protected]>, <[email protected]> # License: Apache-2.0 license # Copyright (c) SJTU. ALL Rights Reserved. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import numpy as np import tensorflow as tf import tensorflow.contrib.slim as slim sys.path.append("../../") from tools.train_base import Train from configs import cfgs from alpharotate.libs.models.detectors.r3det_kl import build_whole_network from alpharotate.libs.utils.coordinate_convert import backward_convert, get_horizen_minAreaRectangle from alpharotate.utils.pretrain_zoo import PretrainModelZoo os.environ["CUDA_VISIBLE_DEVICES"] = cfgs.GPU_GROUP class TrainR3DetKL(Train): def get_gtboxes_and_label(self, gtboxes_and_label_h, gtboxes_and_label_r, num_objects): return gtboxes_and_label_h[:int(num_objects), :].astype(np.float32), \ gtboxes_and_label_r[:int(num_objects), :].astype(np.float32) def main(self): with tf.Graph().as_default() as graph, tf.device('/cpu:0'): num_gpu = len(cfgs.GPU_GROUP.strip().split(',')) global_step = slim.get_or_create_global_step() lr = self.warmup_lr(cfgs.LR, global_step, cfgs.WARM_SETP, num_gpu) tf.summary.scalar('lr', lr) optimizer = tf.train.MomentumOptimizer(lr, momentum=cfgs.MOMENTUM) r3det_kl = build_whole_network.DetectionNetworkR3DetKL(cfgs=self.cfgs, is_training=True) with tf.name_scope('get_batch'): if cfgs.IMAGE_PYRAMID: shortside_len_list = tf.constant(cfgs.IMG_SHORT_SIDE_LEN) shortside_len = tf.random_shuffle(shortside_len_list)[0] else: shortside_len = cfgs.IMG_SHORT_SIDE_LEN img_name_batch, img_batch, gtboxes_and_label_batch, num_objects_batch, img_h_batch, img_w_batch = \ self.reader.next_batch(dataset_name=cfgs.DATASET_NAME, batch_size=cfgs.BATCH_SIZE * num_gpu, shortside_len=shortside_len, is_training=True) # data processing inputs_list = [] for i in range(num_gpu): img = tf.expand_dims(img_batch[i], axis=0) pretrain_zoo = PretrainModelZoo() if self.cfgs.NET_NAME in pretrain_zoo.pth_zoo or self.cfgs.NET_NAME in pretrain_zoo.mxnet_zoo: img = img / tf.constant([cfgs.PIXEL_STD]) gtboxes_and_label_r = tf.py_func(backward_convert, inp=[gtboxes_and_label_batch[i]], Tout=tf.float32) gtboxes_and_label_r = tf.reshape(gtboxes_and_label_r, [-1, 6]) gtboxes_and_label_h = get_horizen_minAreaRectangle(gtboxes_and_label_batch[i]) gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h, [-1, 5]) num_objects = num_objects_batch[i] num_objects = tf.cast(tf.reshape(num_objects, [-1, ]), tf.float32) img_h = img_h_batch[i] img_w = img_w_batch[i] inputs_list.append([img, gtboxes_and_label_h, gtboxes_and_label_r, num_objects, img_h, img_w]) tower_grads = [] biases_regularizer = tf.no_regularizer weights_regularizer = tf.contrib.layers.l2_regularizer(cfgs.WEIGHT_DECAY) with tf.variable_scope(tf.get_variable_scope()): for i in range(num_gpu): with tf.device('/gpu:%d' % i): with tf.name_scope('tower_%d' % i): with slim.arg_scope( [slim.model_variable, slim.variable], device='/device:CPU:0'): with slim.arg_scope([slim.conv2d, slim.conv2d_in_plane, slim.conv2d_transpose, slim.separable_conv2d, slim.fully_connected], weights_regularizer=weights_regularizer, biases_regularizer=biases_regularizer, biases_initializer=tf.constant_initializer(0.0)): gtboxes_and_label_h, gtboxes_and_label_r = tf.py_func(self.get_gtboxes_and_label, inp=[inputs_list[i][1], inputs_list[i][2], inputs_list[i][3]], Tout=[tf.float32, tf.float32]) gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h, [-1, 5]) gtboxes_and_label_r = tf.reshape(gtboxes_and_label_r, [-1, 6]) img = inputs_list[i][0] img_shape = inputs_list[i][-2:] img = tf.image.crop_to_bounding_box(image=img, offset_height=0, offset_width=0, target_height=tf.cast(img_shape[0], tf.int32), target_width=tf.cast(img_shape[1], tf.int32)) outputs = r3det_kl.build_whole_detection_network(input_img_batch=img, gtboxes_batch_h=gtboxes_and_label_h, gtboxes_batch_r=gtboxes_and_label_r, gpu_id=i) gtboxes_in_img_h = self.drawer.draw_boxes_with_categories(img_batch=img, boxes=gtboxes_and_label_h[ :, :-1], labels=gtboxes_and_label_h[ :, -1], method=0) gtboxes_in_img_r = self.drawer.draw_boxes_with_categories(img_batch=img, boxes=gtboxes_and_label_r[ :, :-1], labels=gtboxes_and_label_r[ :, -1], method=1) tf.summary.image('Compare/gtboxes_h_gpu:%d' % i, gtboxes_in_img_h) tf.summary.image('Compare/gtboxes_r_gpu:%d' % i, gtboxes_in_img_r) if cfgs.ADD_BOX_IN_TENSORBOARD: detections_in_img = self.drawer.draw_boxes_with_categories_and_scores( img_batch=img, boxes=outputs[0], scores=outputs[1], labels=outputs[2], method=1) tf.summary.image('Compare/final_detection_gpu:%d' % i, detections_in_img) loss_dict = outputs[-1] total_loss_dict, total_losses = self.loss_dict(loss_dict, num_gpu) if i == num_gpu - 1: regularization_losses = tf.get_collection( tf.GraphKeys.REGULARIZATION_LOSSES) # weight_decay_loss = tf.add_n(slim.losses.get_regularization_losses()) total_losses = total_losses + tf.add_n(regularization_losses) tf.get_variable_scope().reuse_variables() grads = optimizer.compute_gradients(total_losses) if cfgs.GRADIENT_CLIPPING_BY_NORM is not None: grads = slim.learning.clip_gradient_norms(grads, cfgs.GRADIENT_CLIPPING_BY_NORM) tower_grads.append(grads) self.log_printer(r3det_kl, optimizer, global_step, tower_grads, total_loss_dict, num_gpu, graph) if __name__ == '__main__': trainer = TrainR3DetKL(cfgs) trainer.main()
f54baea6e40dbc71d63547b07f97abfce23a5921
5a61cd84b3ef2d154258b72c6594c61779d02e24
/robeep/core/exceptions.py
cd696fba766a82c6fb691d7141f4839f76ae1e4e
[ "MIT" ]
permissive
k-nii0211/rbp_agent
c925a6c6815e9dbee349858c7145f3ea0cba916a
53724797ee7b579fc98d63809b9551867929476e
refs/heads/master
2021-01-10T09:32:54.873043
2016-04-01T09:09:15
2016-04-01T09:09:15
55,218,803
0
0
null
null
null
null
UTF-8
Python
false
false
96
py
class ConfigurationError(Exception): pass class DiscardDataException(Exception): pass
14334a24ea2719d723061d0662ccc472d18deae4
df350a0d14afdc30b38194104f5e3e3d927ec95f
/origin/main_03_visualize_and_generate_video.py
022ee365c6aecc2439d5c8742e34c6802f4a4b2d
[]
no_license
sugartom/fromXiaochen
80945e97fe36aaba399ad6d87124933572212999
16aa4052406b1ead135cfbb42b26981798ee57a0
refs/heads/master
2020-03-19T22:54:56.356696
2018-08-20T05:28:49
2018-08-20T05:28:49
136,986,052
0
0
null
null
null
null
UTF-8
Python
false
false
11,936
py
import numpy as np import os import json import cv2 import argparse from time import time VIDEO_OUT_FOLDER = './output_videos/' TUBE_COLORS = np.random.rand(300,3) * 255 TUBE_COLORS = TUBE_COLORS.astype(int) with open('label_conversion.json') as fp: LABEL_CONV = json.load(fp) # "training2real": {"0": [15, "answer_phone"], ... # "real2training": {"15": [0, "answer_phone"], ... def main(): parser = argparse.ArgumentParser() parser.add_argument('-i', '--input_video', type=str, required=True) parser.add_argument('-v', '--visualize_video', type=int, required=False, default=1) parser.add_argument('-s', '--save_video', type=int, required=False, default=1) args = parser.parse_args() video_path = args.input_video visualize_flag = bool(args.visualize_video) save_video = bool(args.save_video) visualize_generate_result(video_path, visualize_flag, save_video) def visualize_generate_result(video_path, visualize_flag, save_video): if save_video: print('\nGenerating output video!\n') video_name = video_path.split('/')[-1].split('.')[0] print('Visualization: %s' % ('yes' if visualize_flag else 'no')) print('Saving output video: %s' % ('yes' if save_video else 'no')) tubes_json = './jsons/%s_tubes.json' % video_name actions_json = './jsons/%s_actions.json' % video_name if os.path.exists(tubes_json): with open(tubes_json) as fp: tubelet_infos = json.load(fp) else: print('Error: Tubes json not found! Run extract tubes first') raise IOError if os.path.exists(actions_json): with open(actions_json) as fp: actions_info = json.load(fp) else: print('Error: Actions json not found! Run detect actions first') raise IOError tubelet_ids = actions_info.keys() # combine annotations tubelets_w_actions = [] for tubelet_info in tubelet_infos: tubelet_id = tubelet_info['tube_id'] tubelet_key = 'person_%.3i' % tubelet_id action_probs = actions_info[tubelet_key] tubelet_length = len(tubelet_info['avg_box_list']) action_length = len(action_probs) slope = action_length / float(tubelet_length) # if tubelet_id == 3: import pdb;pdb.set_trace() # TODO add some filtering/smoothing here actions_for_each_frame = [] for ii in range(tubelet_length): cur_action = action_probs[int(ii * slope)] actions_for_each_frame.append(cur_action) tubelet_info['frame_actions'] = actions_for_each_frame tubelet_info['tube_key'] = tubelet_key vcap = cv2.VideoCapture(video_path) ## Video Properties vidfps = vcap.get(cv2.CAP_PROP_FPS) # sometimes opencv fails at getting the fps if vidfps == 0: vidfps = 20 W = vcap.get(cv2.CAP_PROP_FRAME_WIDTH) # float H = vcap.get(cv2.CAP_PROP_FRAME_HEIGHT) # float H, W = int(H), int(W) if save_video: out_path = VIDEO_OUT_FOLDER + '%s_results.avi' % video_name fourcc = cv2.VideoWriter_fourcc(*'XVID') # fourcc = cv2.VideoWriter_fourcc(*'MJPG') out = cv2.VideoWriter(out_path,fourcc, vidfps, (5*W//4,H)) frame_no = 0 cur_time = time() while vcap.isOpened(): ret, frame = vcap.read() if not ret: break trackers = [] lost_trackers = [] for tubelet_info in tubelet_infos: start_frame = tubelet_info['starting_frame'] end_frame = tubelet_info['lost_since_frame'] if frame_no >= start_frame and frame_no < end_frame: relative_frame = frame_no - start_frame current_box = tubelet_info['avg_box_list'][relative_frame] current_detections = [tubelet_info['detections'][0]] tubelet_id = tubelet_info['tube_id'] tube_key = tubelet_info['tube_key'] current_actions = tubelet_info['frame_actions'][relative_frame] new_tracker = {'box': current_box, 'detections': current_detections, 'tube_id': tubelet_id, 'tube_key': tube_key, 'action_probs': current_actions} trackers.append(new_tracker) elif frame_no > start_frame and frame_no <= end_frame + 30: # relative_frame = frame_no - start_frame current_box = tubelet_info['avg_box_list'][-1] current_detections = [tubelet_info['detections'][0]] tubelet_id = tubelet_info['tube_id'] current_actions = tubelet_info['frame_actions'][-1] new_tracker = {'box': current_box, 'detections': current_detections, 'tube_id': tubelet_id, 'tube_key': tube_key, 'action_probs': current_actions} lost_trackers.append(new_tracker) else: continue img_with_objects = visualize(frame, trackers, lost_trackers, visualize_flag) sidebar = add_action_sidebars(frame, trackers, H, W) img_with_actions = np.concatenate([sidebar, img_with_objects], axis=1) if visualize_flag: cv2.imshow('Results', img_with_actions) k = cv2.waitKey(0) if k == ord('q'): break if save_video: out.write(img_with_actions) frame_no += 1 print('To result: %0.2f' % ((time() - cur_time)/frame_no)) vcap.release() if save_video: out.release() print('Video %s is saved!' % out_path) def visualize(frame, trackers, lost_trackers, visualize_flag): imgcv = np.copy(frame) colors = np.load('object_detector/colors.npy') for tracker in trackers: box = tracker['box'] detection_info = tracker['detections'][-1] top, left, bottom, right = box # conf = detection_info['score'] label = detection_info['class_str'] label_indx = min(detection_info['class_no'] - 1, 79) tube_id = tracker['tube_id'] # message = '%.3i_%s: %.2f' % (tube_id, label , conf) message = '%.3i_%s' % (tube_id, label) if visualize_flag: print(message) thick = 3 label_indx = int(label_indx) # color = colors[label_indx] color = TUBE_COLORS[tube_id] cv2.rectangle(imgcv, (left,top), (right,bottom), color, thick) font_size = max(0.5,(right - left)/50.0/float(len(message))) # font_size = (right - left)/float(len(message))/10.0 cv2.rectangle(imgcv, (left, top-int(font_size*40)), (right,top), color, -1) cv2.putText(imgcv, message, (left, top-12), 0, font_size, (255,255,255)-color, thick//2) for lost_tracker in lost_trackers: box = lost_tracker['box'] top, left, bottom, right = box cv2.rectangle(imgcv, (left,top), (right,bottom), (0,0,255), 1) if visualize_flag:print('\n\n') return imgcv def add_action_sidebars(frame, trackers, H, W): black_bar_left = np.zeros([H,W//4,3], np.uint8) # black_bar_right = np.zeros([H,W//4,C], np.uint8) if trackers: for ii, tracker in enumerate(trackers): box = tracker['box'] top, left, bottom, right = box bb_label = tracker['tube_key'] bb_frame = extract_box_frame(frame, box) bb_frame = np.copy(bb_frame) bbH, bbW = H//8, int(bb_frame.shape[1] / float(bb_frame.shape[0]) * H // 8) bb_frame = cv2.resize(bb_frame, (bbW, bbH)) current_action_probs = tracker['action_probs'] bb_acts = get_act_strs(current_action_probs, 5) # bbH, bbW, bbC = bb_frame.shape starting_index = H//24 + ii * H//8 + ii * 10 if starting_index + bbH < H: black_bar_left[starting_index: starting_index+bbH, 20:20+bbW, :] = bb_frame cur_HH = starting_index + 10 # label font_size = 0.5 tube_color = TUBE_COLORS[tracker['tube_id']] cv2.putText(black_bar_left, bb_label, (40+bbW, cur_HH), 0, font_size, tube_color, 1) # Actions for act in bb_acts: cur_HH += 13 cv2.putText(black_bar_left, act, (40+bbW, cur_HH+13), 0, font_size, (255,255,255), 1) return black_bar_left # try: # black_bar_left[cur_H:cur_H+bbH, 20:20+bbW, :] = bb_frame # # label # cv2.putText(black_bar, bb_label, (40+bbW, cur_H + 20), 0, font_size, (255,255,255), thick//2) # # Actions # cur_HH = cur_H + 30 # for act in bb_acts: # cur_HH += 13 # cv2.putText(black_bar, act, (40+bbW, cur_HH), 0, font_size, (255,255,255), thick//2) # except ValueError: # break def get_act_strs(action_probs, topk): class_probs = np.array(action_probs) class_order = np.argsort(class_probs) [::-1] probs_order = class_probs[class_order] class_strs = [LABEL_CONV['training2real'][str(class_no)][1] for class_no in class_order] printable = [ '%s : %.3f' % (class_str, prob) for class_str, prob in zip(class_strs,probs_order)] return printable[0:topk] # print(printable) # no_print = 5 # pixel_distance = 25 # black_bar = np.zeros([(no_print+2) * pixel_distance, T * W,C], np.uint8) # for ii in range(no_print): # cur_printable = printable[ii] # cv2.putText(black_bar, cur_printable, (T * W // 2, (ii+2) * pixel_distance), 0, 1, (255,255,255), 1) def extract_box_frame(frame, box): # extracts the box from the full frame # takes into account if the box coords are outside of frame boundaries and fills with zeros H, W, C = frame. shape top, left, bottom, right = box # initialize with zeros so out of boundary areas are black extracted_box = np.zeros((bottom - top, right - left, 3), np.uint8) # sometimes tracker get confused and gives a box completely outside img boundaries if left >= W or top >= H: # then just return a black frame print('Tracker box completely out of range') return extracted_box if left >= 0: # bounding box coords are within frame boundary frame_left = left ebox_left = 0 else: # bounding box coords are outside frame boundary frame_left = 0 ebox_left = 0 - left if top >= 0: # bounding box coords are within frame boundary frame_top = top ebox_top = 0 else: # bounding box coords are outside frame boundary frame_top = 0 ebox_top = 0 - top if right <= W: # bounding box coords are within frame boundary frame_right = right ebox_right = extracted_box.shape[1] else: # bounding box coords are outside frame boundary frame_right = W ebox_right = extracted_box.shape[1] + (W - right) if bottom <= H: # bounding box coords are within frame boundary frame_bottom = bottom ebox_bottom = extracted_box.shape[0] else: # bounding box coords are outside frame boundary frame_bottom = H ebox_bottom = extracted_box.shape[0] + (H - bottom) extracted_box[ebox_top:ebox_bottom, ebox_left:ebox_right, :] = \ frame[frame_top:frame_bottom, frame_left:frame_right, :] # try: # extracted_box[ebox_top:ebox_bottom, ebox_left:ebox_right, :] = \ # frame[frame_top:frame_bottom, frame_left:frame_right, :] # except ValueError: # import pdb;pdb.set_trace() return extracted_box if __name__ == '__main__': main()
f4f44e30aaa47a84790961c15312ca28b5d5b394
8a5ab3d33e3b653c4c64305d81a85f6a4582d7ac
/PySide/QtGui/QStringListModel.py
73f8b4abdbcfac2c25221147365010e9ac073514
[ "Apache-2.0" ]
permissive
sonictk/python-skeletons
be09526bf490856bb644fed6bf4e801194089f0d
49bc3fa51aacbc2c7f0c7ab86dfb61eefe02781d
refs/heads/master
2020-04-06T04:38:01.918589
2016-06-09T20:37:43
2016-06-09T20:37:43
56,334,503
0
0
null
2016-04-15T16:30:42
2016-04-15T16:30:42
null
UTF-8
Python
false
false
1,377
py
# encoding: utf-8 # module PySide.QtGui # from /corp.blizzard.net/BFD/Deploy/Packages/Published/ThirdParty/Qt4.8.4/2015-05-15.163857/prebuilt/linux_x64_gcc41_python2.7_ucs4/PySide/QtGui.so # by generator 1.138 # no doc # imports import PySide.QtCore as __PySide_QtCore class QStringListModel(__PySide_QtCore.QAbstractListModel): # no doc def data(self, *args, **kwargs): # real signature unknown pass def flags(self, *args, **kwargs): # real signature unknown pass def insertRows(self, *args, **kwargs): # real signature unknown pass def removeRows(self, *args, **kwargs): # real signature unknown pass def rowCount(self, *args, **kwargs): # real signature unknown pass def setData(self, *args, **kwargs): # real signature unknown pass def setStringList(self, *args, **kwargs): # real signature unknown pass def sort(self, *args, **kwargs): # real signature unknown pass def stringList(self, *args, **kwargs): # real signature unknown pass def supportedDropActions(self, *args, **kwargs): # real signature unknown pass def __init__(self, *more): # real signature unknown; restored from __doc__ """ x.__init__(...) initializes x; see help(type(x)) for signature """ pass staticMetaObject = None __new__ = None
f6f7f79e264f3dc7c08372cc1a93769028e1ca8a
ea515ab67b832dad3a9b69bef723bd9d918395e7
/03_Implementacao/DataBase/true_or_false_question_frequent_nums_rotate_and_roman_nums/question/version_2/program2.py
782a9221cbec6629fd468a1175446f7f77203c96
[]
no_license
projeto-exercicios/Exercicios-Python-de-correccao-automatica
b52be3211e75d97cb55b6cdccdaa1d9f9d84f65b
a7c80ea2bec33296a3c2fbe4901ca509df4b1be6
refs/heads/master
2022-12-13T15:53:59.283232
2020-09-20T21:25:57
2020-09-20T21:25:57
295,470,320
0
0
null
null
null
null
UTF-8
Python
false
false
234
py
from random import randint from random import seed seed(1486166) def int_to_roman(num): def most_frequent(List): def least_frequent(List): def rotate_list(nums, h): e = [] for j in range(19222): e.append(randint(30, 570))
ea4d718083ea5fed390d5f996879d6489332aded
6a965a7e9a3691c77c1e0e9980de8d17baa8e3d2
/todo/migrations/0001_initial.py
91e40c017b8a92b86699fe3f68a207eb3ba91dff
[]
no_license
laurence100795/Django-First-Look
10fd40b2491b09a72e07ccc8a20dcd63f01458f0
80c1293e3dc1ce87438bcc894ef3d611c2aa177f
refs/heads/master
2023-08-04T01:40:23.179937
2020-06-20T16:47:01
2020-06-20T16:47:01
270,749,532
0
0
null
2021-09-22T19:11:29
2020-06-08T16:53:53
HTML
UTF-8
Python
false
false
545
py
# Generated by Django 3.0.7 on 2020-06-09 17:04 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Item', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('done', models.BooleanField(default=False)), ], ), ]
97cf1fadf12602012e1aa3ec11e2b6f0aeff22ae
72dc7d124cdac8f2dcab3f72e95e9a646154a6a0
/scripts/create_database_tables.py
a1e12ba385835734338ff86ff143500afb84177c
[ "LicenseRef-scancode-unknown-license-reference", "BSD-3-Clause" ]
permissive
m-ober/byceps
e6569802ee76e8d81b892f1f547881010359e416
4d0d43446f3f86a7888ed55395bc2aba58eb52d5
refs/heads/master
2020-11-30T23:31:33.944870
2020-02-12T23:53:55
2020-02-12T23:56:04
40,315,983
0
0
null
2015-08-06T16:41:36
2015-08-06T16:41:36
null
UTF-8
Python
false
false
679
py
#!/usr/bin/env python """Create the initial database structure. Existing tables will be ignored, and those not existing will be created. :Copyright: 2006-2020 Jochen Kupperschmidt :License: Modified BSD, see LICENSE for details. """ import click from byceps.database import db from byceps.util.system import get_config_filename_from_env_or_exit from _util import app_context @click.command() def execute(): click.echo('Creating database tables ... ', nl=False) db.create_all() click.secho('done.', fg='green') if __name__ == '__main__': config_filename = get_config_filename_from_env_or_exit() with app_context(config_filename): execute()
ce69df129364894f433ebc76cdfc03d2a08f13a5
7029dcf95ef133431e376a121b720b810d2b7e39
/backend/mobile_app_dev_1693/settings.py
ab679299c67e25c38465c3a376854417ed2e3e39
[]
no_license
crowdbotics-apps/mobile-app-dev-1693
880a3a9fe3466578573743b208237a25b0ae79e5
0a84178ba92f857525857dcebcecc79d9c126695
refs/heads/master
2022-04-04T20:30:14.633621
2020-02-21T07:36:37
2020-02-21T07:36:37
241,854,741
0
0
null
null
null
null
UTF-8
Python
false
false
5,741
py
""" Django settings for mobile_app_dev_1693 project. Generated by 'django-admin startproject' using Django 2.2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import environ env = environ.Env() # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool("DEBUG", default=False) # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str("SECRET_KEY") ALLOWED_HOSTS = env.list("HOST", default=["*"]) SITE_ID = 1 SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") SECURE_SSL_REDIRECT = env.bool("SECURE_REDIRECT", default=False) # Application definition INSTALLED_APPS = [ "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.messages", "django.contrib.staticfiles", "django.contrib.sites", ] LOCAL_APPS = [ "home", "users.apps.UsersConfig", ] THIRD_PARTY_APPS = [ "rest_framework", "rest_framework.authtoken", "rest_auth", "rest_auth.registration", "bootstrap4", "allauth", "allauth.account", "allauth.socialaccount", "allauth.socialaccount.providers.google", "django_extensions", "drf_yasg", # start fcm_django push notifications "fcm_django", # end fcm_django push notifications ] INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS MIDDLEWARE = [ "django.middleware.security.SecurityMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", ] ROOT_URLCONF = "mobile_app_dev_1693.urls" TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", ], }, }, ] WSGI_APPLICATION = "mobile_app_dev_1693.wsgi.application" # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { "default": { "ENGINE": "django.db.backends.sqlite3", "NAME": os.path.join(BASE_DIR, "db.sqlite3"), } } if env.str("DATABASE_URL", default=None): DATABASES = {"default": env.db()} # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator", }, {"NAME": "django.contrib.auth.password_validation.MinimumLengthValidator",}, {"NAME": "django.contrib.auth.password_validation.CommonPasswordValidator",}, {"NAME": "django.contrib.auth.password_validation.NumericPasswordValidator",}, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = "en-us" TIME_ZONE = "UTC" USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = "/static/" MIDDLEWARE += ["whitenoise.middleware.WhiteNoiseMiddleware"] AUTHENTICATION_BACKENDS = ( "django.contrib.auth.backends.ModelBackend", "allauth.account.auth_backends.AuthenticationBackend", ) STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATICFILES_DIRS = [os.path.join(BASE_DIR, "static")] STATICFILES_STORAGE = "whitenoise.storage.CompressedManifestStaticFilesStorage" # allauth / users ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = "email" ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = "mandatory" ACCOUNT_CONFIRM_EMAIL_ON_GET = True ACCOUNT_LOGIN_ON_EMAIL_CONFIRMATION = True ACCOUNT_UNIQUE_EMAIL = True LOGIN_REDIRECT_URL = "users:redirect" ACCOUNT_ADAPTER = "users.adapters.AccountAdapter" SOCIALACCOUNT_ADAPTER = "users.adapters.SocialAccountAdapter" ACCOUNT_ALLOW_REGISTRATION = env.bool("ACCOUNT_ALLOW_REGISTRATION", True) SOCIALACCOUNT_ALLOW_REGISTRATION = env.bool("SOCIALACCOUNT_ALLOW_REGISTRATION", True) REST_AUTH_SERIALIZERS = { # Replace password reset serializer to fix 500 error "PASSWORD_RESET_SERIALIZER": "home.api.v1.serializers.PasswordSerializer", } REST_AUTH_REGISTER_SERIALIZERS = { # Use custom serializer that has no username and matches web signup "REGISTER_SERIALIZER": "home.api.v1.serializers.SignupSerializer", } # Custom user model AUTH_USER_MODEL = "users.User" EMAIL_HOST = env.str("EMAIL_HOST", "smtp.sendgrid.net") EMAIL_HOST_USER = env.str("SENDGRID_USERNAME", "") EMAIL_HOST_PASSWORD = env.str("SENDGRID_PASSWORD", "") EMAIL_PORT = 587 EMAIL_USE_TLS = True # start fcm_django push notifications FCM_DJANGO_SETTINGS = {"FCM_SERVER_KEY": env.str("FCM_SERVER_KEY", "")} # end fcm_django push notifications if DEBUG: # output email to console instead of sending EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend"
fc574674773d487563c29aaf36bef49acd284013
65b2c16b3e04cf9f0c5f341718a5c8ab9e74c268
/blog_cookiecutter/blog-cookiecutter/docs/conf.py
8cf6fe0a60ceb83d32f85ebf2924cffd1deddef7
[ "MIT", "BSD-3-Clause" ]
permissive
Jaleleddine/blog-projects
bbe5407daa6cf4c9796781db5a0936c78d406a59
5f71ec9d5558f354856373adac12406ee345bb1c
refs/heads/master
2022-12-14T20:13:09.323100
2020-06-08T06:28:06
2020-06-08T06:28:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,914
py
# -*- coding: utf-8 -*- # # blog_cookiecutter documentation build configuration file, created by # sphinx-quickstart. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import os import sys # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'blog_cookiecutter' copyright = u"2016, Krzysztof Żuraw" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.1' # The full version, including alpha/beta/rc tags. release = '0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'blog-cookiecutterdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'blog-cookiecutter.tex', u'blog_cookiecutter Documentation', u"Krzysztof Żuraw", 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'blog-cookiecutter', u'blog_cookiecutter Documentation', [u"Krzysztof Żuraw"], 1) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'blog-cookiecutter', u'blog_cookiecutter Documentation', u"Krzysztof Żuraw", 'blog_cookiecutter', 'This is example of cookiecutter django usage', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote'
87be869d242f2572f7ccf70c6c233552612f5b9b
957387796af9ea12af26bc17dc2c0ce75bebffd0
/dj_medical_reminder/asgi.py
a8f5bce4f5a853ba847d078b8c7b96ad0e08737f
[]
no_license
iamgaddiel/typmeAPI
e152871b3b72f268518f5c5aee109943dc5eb637
bff3aa10c505dca7b1265c2a693dcb6334aa9993
refs/heads/main
2023-02-19T17:28:57.730511
2021-01-22T00:30:49
2021-01-22T00:30:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
415
py
""" ASGI config for dj_medical_reminder project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'dj_medical_reminder.settings') application = get_asgi_application()
fb9ddbb0e53ee6a524821b91c6f3d4bad3b8bb85
5da3c9ff915dd4ee53d0db57babbe2bcd832bfd0
/pago/models.py
8e7e096a783467da3d86516cecf25c400d84f6f3
[]
no_license
LopsanAMO/ejemplo-django-conekta
3f90def1f4116483a023b1b0a8d2996abc3959d1
9f4e92066e47fb95855b2c2f53a90ca9988b6d78
refs/heads/master
2021-01-11T06:06:52.802869
2016-10-23T08:06:44
2016-10-23T08:06:44
71,689,745
0
0
null
null
null
null
UTF-8
Python
false
false
1,780
py
from __future__ import unicode_literals from django.db import models from django.conf import settings import conekta import json class Sale(models.Model): def __init__(self, *args, **kwargs): super(Sale, self).__init__(*args, **kwargs) conekta.api_key = settings.CONEKTA_PRIVATE_KEY def charge(self, price_in_cents, token_id): try: charge = conekta.Charge.create({ "description":"Stogies", "amount": price_in_cents, "currency":"MXN", "reference_id":"9839-wolf_pack", "card": token_id, "details": { "name": "Arnulfo Quimare", "phone": "403-342-0642", "email": "[email protected]", "line_items": [{ "name": "Box of Cohiba S1s", "description": "Imported From Mex.", "unit_price": price_in_cents, "quantity": 1, "sku": "cohb_s1", "category": "food" }], "shipment": { "carrier":"estafeta", "service":"international", "price": price_in_cents, "address": { "street1": "250 Alexis St", "street2": "Interior 303", "street3": "Col. Condesa", "city":"Red Deer", "state":"Alberta", "zip":"T4N 0B8", "country":"Canada" } } } }) return json.dumps(charge.__dict__) except conekta.ConektaError as e: return e.error_json['message']
f981c59ed5948e48e7b95680c69b2d4ed02de4c9
78ae6050590464bcfe37eed2dcfcc62c46f40c45
/TF4_Overfitting.py
ffa1653f2dcec2452fa87b4cf3bdb9574b858b56
[]
no_license
JesusUrtasun/MachineLearningRep
3c7c6c38f3fca172763006f175aa6a341e0f6a56
83a603df2845fce5883b087623b107f1d447f978
refs/heads/master
2020-04-20T01:53:40.513058
2019-03-21T12:01:00
2019-03-21T12:01:00
168,557,489
0
0
null
null
null
null
UTF-8
Python
false
false
6,556
py
# TensorFlow Chapter 4. Overfitting and underfitting import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow import keras # Check the version of TensorFlow print("TensorFlow version: {}".format(tf.__version__)) print("TensorFlow Chapter 4: Overfitting and underfitting") # As seen in previous chapters, accuracy on the validation set peaks at a particular number of epochs, and the starts decreasing # Overfitting has happened. The network learns patterns on the train set that do not generalize to the test data # Prevent overfitting by use more training data. When not possible, use regularization techniques # Download the Internet Movie Database IMDB. Multi-hot encode the sentences (turning them into vectors of 0s and 1s) # Example, the sequence [3, 5] will be a 10000-dim vector with all zeros except for the indices 3 and 5, being there ones NUM_WORDS = 10000 (train_data, train_labels), (test_data, test_labels) = keras.datasets.imdb.load_data(num_words = NUM_WORDS) def multi_hot_sequences(sequences, dimension = NUM_WORDS): # Create an zero matrix of shape (len(sequences), dimension) results = np.zeros((len(sequences), dimension)) for i, word_indices in enumerate(sequences): # Set specific indices of results[i] to be 1 results[i, word_indices] = 1.0 return results train_data = multi_hot_sequences(train_data) test_data = multi_hot_sequences(test_data) # Look at the multi-hot encoded vectors. Word indices are sorted by frequency, so there are more one-values near index zero print("Example. 1st element of the training set:") plt.plot(train_data[0]) plt.show() # Demonstrate overfitting. # Simplest way to avoid it is by reducing the model. Then, there are less parameters to learn. Number of parameters to learn, "capacity" # Recall, deep learning models are good at fitting to the training data, but real goal is generalization, not fitting # Start by building a simple model with only Dense layers print("\n1. Build baseline model") baseline_model = keras.Sequential([ # input shape is required only required so that .summary() works keras.layers.Dense(16, activation = tf.nn.relu, input_shape = (NUM_WORDS,)), keras.layers.Dense(16, activation = tf.nn.relu), keras.layers.Dense(1, activation = tf.nn.sigmoid) ]) baseline_model.compile(optimizer = "adam", loss = "binary_crossentropy", metrics = ["accuracy", "binary_crossentropy"]) baseline_model.summary() print("\nTrain the baseline model") baseline_history = baseline_model.fit(train_data, train_labels, epochs = 20, batch_size = 512, validation_data = (test_data, test_labels), verbose = 1) # Build a bigger model print("\n2. Build bigger model") bigger_model = keras.Sequential([ # input shape is required only required so that .summary() works keras.layers.Dense(256, activation = tf.nn.relu, input_shape = (NUM_WORDS,)), keras.layers.Dense(256, activation = tf.nn.relu), keras.layers.Dense(1, activation = tf.nn.sigmoid) ]) bigger_model.compile(optimizer = "adam", loss = "binary_crossentropy", metrics = ["accuracy", "binary_crossentropy"]) bigger_model.summary() print("\n Train the bigger model") bigger_history = bigger_model.fit(train_data, train_labels, epochs = 20, batch_size = 512, validation_data = (test_data, test_labels), verbose = 1) # Plot the training and validation loss def plot_history(histories, key = "binary_crossentropy"): plt.figure(figsize = (16, 10)) for name, history in histories: val = plt.plot(history.epoch, history.history["val_"+key], "--", label = name.title() + "Val") plt.plot(history.epoch, history.history[key], color = val[0].get_color(), label = name.title() + "Train") plt.xlabel("Epochs") plt.ylabel(key.replace("_", " ").title()) plt.legend() plt.xlim([0, max(history.epoch)]) print("\n3. Plot the training and validation loss for every model") plot_history([("baseline", baseline_history), ("bigger", bigger_history)]) plt.show() # The larger network begins overfitting almost right away, after just one epoch and overfits much more severely # The more capacity a network has, the quicker it will be able to model the training data (low training loss) # Strategies. # Weight regularization print("\n5. Add weight regularization") # Occam's priciple. There are multiple sets of weights that can fit the data, and simple models are less likely to overfit # Simple model, where the distribution of parameter values has less entropy. # Force the weights to take small values, making the distribution more "regular" # Add to the loss function a cost associated with having large weights. L1 and L2 regularization L2_model = keras.models.Sequential([ keras.layers.Dense(16, kernel_regularizer = keras.regularizers.l2(0.001), activation = tf.nn.relu, input_shape = (NUM_WORDS,)), keras.layers.Dense(16, kernel_regularizer = keras.regularizers.l2(0.001), activation = tf.nn.relu), keras.layers.Dense(1, activation = tf.nn.sigmoid) ]) L2_model.compile(optimizer = "adam", loss = "binary_crossentropy", metrics = ["accuracy", "binary_crossentropy"]) L2_history = L2_model.fit(train_data, train_labels, epochs = 20, batch_size = 512, validation_data = (test_data, test_labels), verbose = 1) print("\nPlot loss after weight regularization") plot_history([("baseline", baseline_history), ("L2", L2_history)]) plt.show() # Dropout print("\n6. Add dropout") # Applied to a layer, randomly "dropping out" a number of output features of the layer during training # [0.2, 0.5, 1.3, 8, 1, 1] will become [0, 0.5, 1.3, 0, 1, 1]. Dropout rate usually from 0.2 to 0.5 # At test time no values are dropped out. Instead, the output values are scaled down by a factor equal to the dropout rate # This balances the fact that now more units are active that during the training Dpt_model = keras.models.Sequential([ keras.layers.Dense(16, activation = tf.nn.relu, input_shape = (NUM_WORDS,)), keras.layers.Dropout(0.5), keras.layers.Dense(16, activation = tf.nn.relu), keras.layers.Dropout(0.5), keras.layers.Dense(1, activation = tf.nn.sigmoid) ]) Dpt_model.compile(optimizer = "adam", loss = "binary_crossentropy", metrics = ["accuracy", "binary_crossentropy"]) Dpt_history = L2_model.fit(train_data, train_labels, epochs = 20, batch_size = 512, validation_data = (test_data, test_labels), verbose = 1) print("\nPlot loss after weight regularization") plot_history([("baseline", baseline_history), ("Dropout", Dpt_history)]) plt.show()
4254377a5d2940c8d357014eda1cb62590da6ef7
4f946107165c8be6380f7399fc1170f64d4e1a61
/Projectionable/urls.py
82ad876fddbb3728b3bde18112bb8840ed90544f
[]
no_license
vail130/projectionable
744a74afbe16354f937c5a2f6f0f4916a581299a
a7c749f616e57895847d6583e9e522c5452152b7
refs/heads/master
2021-01-20T04:33:26.459509
2013-11-02T18:04:32
2013-11-02T18:04:32
14,071,601
1
0
null
null
null
null
UTF-8
Python
false
false
2,655
py
from django.conf.urls import patterns, url from django.conf import settings from app.views import * from project_api.views import * from account_api.views import * urlpatterns = patterns('', url(r'^$', App.as_view(), name='app'), url(r'^home/?$', Home.as_view(), name='home'), url(r'^signup/?$', Signup.as_view(), name='signup'), url(r'^signin/?(?:\?.*)?$', Signin.as_view(), name='signin'), url(r'^verify_email/?(?:\?.*)?$', VerifyEmail.as_view(), name='verifyemail'), url(r'^reset_password/?(?:\?.*)?$', ResetPassword.as_view(), name='resetpassword'), url(r'^verify_invitation/?(?:\?.*)?$', VerifyInvitation.as_view(), name='verifyinvitation'), url(r'^contact/?$', ContactUs.as_view(), name='contact'), url(r'^terms/?$', Terms.as_view(), name='terms'), url(r'^privacy/?$', Privacy.as_view(), name='privacy'), url(r'^api/permissions/(?P<permission_id>[^/\?]+)/?(?:\?.*)?$', PermissionEditor.as_view(), name='permissioneditor'), url(r'^api/permissions/?(?:\?.*)?$', PermissionManager.as_view(), name='permissionmanager'), url(r'^api/projects/(?P<project_id>[^/\?]+)/?(?:\?.*)?$', ProjectEditor.as_view(), name='projecteditor'), url(r'^api/projects/?(?:\?.*)?$', ProjectManager.as_view(), name='projectmanager'), url(r'^api/groups/(?P<group_id>[^/\?]+)/?(?:\?.*)?$', GroupEditor.as_view(), name='groupeditor'), url(r'^api/groups/?(?:\?.*)?$', GroupManager.as_view(), name='groupmanager'), url(r'^api/requirements/(?P<req_id>[^/\?]+)/?(?:\?.*)?$', RequirementEditor.as_view(), name='requirementeditor'), url(r'^api/requirements/?(?:\?.*)?$', RequirementManager.as_view(), name='requirementmanager'), url(r'^api/sessions/(?P<session_id>[^/\?]+)/?(?:\?.*)?$', SessionEditor.as_view(), name='sessioneditor'), url(r'^api/sessions/?(?:\?.*)?$', SessionManager.as_view(), name='sessionmanager'), url(r'^api/accounts/?(?:\?.*)?$', AccountManager.as_view(), name='accountmanager'), url(r'^api/accounts(?:/(?P<account_id>[0-9]+)/?)?(?:\?.*)?$', AccountEditor.as_view(), name='accounteditor'), url(r'^api/contacts/(?P<contact_id>[^/\?]+)/?(?:\?.*)?$', ContactEditor.as_view(), name='contacteditor'), url(r'^api/contacts/?(?:\?.*)?$', ContactManager.as_view(), name='contactmanager'), #url(r'^api/payments/?(?:\?.*)?$', PaymentManager.as_view(), name='paymentmanager'), #url(r'^api/payments(?:/(?P<payment_id>[0-9]+)/?)?(?:\?.*)?$', PaymentEditor.as_view(), name='paymenteditor'), ) urlpatterns += patterns('', url(r'^static/(?P<path>.*)$', 'django.views.static.serve', {'document_root': settings.STATIC_ROOT}), )
d6628e565916deb25682028f7bc00649b17deace
c06efd90533c51c2b29b7e92cd13723388de25ee
/actions/patchCoreV1NamespacedPod.py
e554a7d6a49f7318cebf1d3759cd8ba3c64fc0e8
[]
no_license
ajohnstone/stackstorm-kubernetes
490e4a73daad3713d7c5b5b639d5f30ff1ab3e58
99ffad27f5947583a2ab1b56e80c06003d014c47
refs/heads/master
2021-01-11T23:29:49.642435
2016-12-07T13:20:34
2016-12-07T13:20:34
78,588,572
0
0
null
2017-01-11T00:48:59
2017-01-11T00:48:59
null
UTF-8
Python
false
false
892
py
from lib import k8s from st2actions.runners.pythonrunner import Action class patchCoreV1NamespacedPod(Action): def run(self,body,name,namespace,config_override=None,pretty=None): myk8s = k8s.K8sClient(self.config) args = {} if body is not None: args['body'] = body else: return (False, "body is a required parameter") if name is not None: args['name'] = name else: return (False, "name is a required parameter") if namespace is not None: args['namespace'] = namespace else: return (False, "namespace is a required parameter") if config_override is not None: args['config_override'] = config_override if pretty is not None: args['pretty'] = pretty return (True, myk8s.runAction('patchCoreV1NamespacedPod', **args))
caaefd1f715b30c6abb83cedb29f149cf97de3d9
58263e881e677a76ace8d4c0587d34db893dba97
/ExtractionManager.py
5aacc9a60ffaefa904adb45d77dc4d3eb1a47bab
[ "MIT" ]
permissive
AndresRestrepoRodriguez/NLPTweets
9874d6a5e29de6077e1c66ce0710f220d2941acc
a3222c543cf73905639d104c9a975b464f93923b
refs/heads/main
2023-01-24T06:22:25.857865
2020-12-10T12:31:20
2020-12-10T12:31:20
315,610,420
1
0
null
null
null
null
UTF-8
Python
false
false
1,857
py
from datetime import datetime, timedelta import json from APIConnection import APIConnection from Extraction import Extraction class ExtractionManager: def __init__(self): self._dates = list() self._credentials = dict() self._dataExtracted = list() def setCredentials(self, pathfile): with open(pathfile, "r") as read_file: self._credentials = json.load(read_file) def getCredentials(self): return self._credentials def setDates(self): today = datetime.today() dateFormat = "%Y-%m-%d" self._dates = [str((today-timedelta(days=val)).strftime(dateFormat)) for val in range(7)] def getDates(self): return self._dates @staticmethod def generateConnection(credentials, connection): apiconnection = APIConnection(credentials["costumer_key"], credentials["consumer_secret"], credentials["access_token"], credentials["access_token_secret"], connection) apiconnection.setConnection(apiconnection.getAccessToken(), apiconnection.getAccessTokenSecret(), apiconnection.getCustomerKey(), apiconnection.getCustomerSecret(), connection) return apiconnection.getConnection() def setDataExtracted(self, parameters, connection): extractor = Extraction(parameters["phrases"], parameters["account"], parameters["words"], parameters["hashtags"]) extractor.setQuery(extractor.getPhrases(), extractor.getWords(), extractor.getHashtags(), extractor.getAccount(), parameters["logicaloption"]) self.setDates() extractor.setTweets(connection, extractor.getQuery(), self.getDates()) self._dataExtracted = extractor.getTweets() def getDataExtracted(self): return self._dataExtracted
b4b9d6422487b26d0713f3b750b3210f9a67418c
6d11d48fb6d6ce45d2f9866f05310ae873a727dc
/code/deeplab/datasets/data_generator.py
a5802794f4f5bd487117cb6823901cf0d85ba4ca
[ "MIT" ]
permissive
BasemElbarashy/image-compression-and-semantic-segmentation
634b107154377d4ac1a41fba5777d21d6f8ad075
760d7f779e97659f3f8f59f68eaa4268ec08618b
refs/heads/master
2020-12-19T02:05:02.249473
2020-01-22T15:08:14
2020-01-22T15:08:14
235,588,116
0
0
null
null
null
null
UTF-8
Python
false
false
12,276
py
# Copyright 2018 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Wrapper for providing semantic segmentaion data. The SegmentationDataset class provides both images and annotations (semantic segmentation and/or instance segmentation) for TensorFlow. Currently, we support the following datasets: 1. PASCAL VOC 2012 (http://host.robots.ox.ac.uk/pascal/VOC/voc2012/). PASCAL VOC 2012 semantic segmentation dataset annotates 20 foreground objects (e.g., bike, person, and so on) and leaves all the other semantic classes as one background class. The dataset contains 1464, 1449, and 1456 annotated images for the training, validation and test respectively. 2. Cityscapes dataset (https://www.cityscapes-dataset.com) The Cityscapes dataset contains 19 semantic labels (such as road, person, car, and so on) for urban street scenes. 3. ADE20K dataset (http://groups.csail.mit.edu/vision/datasets/ADE20K) The ADE20K dataset contains 150 semantic labels both urban street scenes and indoor scenes. References: M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams, J. Winn, and A. Zisserman, The pascal visual object classes challenge a retrospective. IJCV, 2014. M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, "The cityscapes dataset for semantic urban scene understanding," In Proc. of CVPR, 2016. B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, A. Torralba, "Scene Parsing through ADE20K dataset", In Proc. of CVPR, 2017. """ import collections import os import tensorflow as tf from deeplab import common from deeplab import input_preprocess # Named tuple to describe the dataset properties. DatasetDescriptor = collections.namedtuple( 'DatasetDescriptor', [ 'splits_to_sizes', # Splits of the dataset into training, val and test. 'num_classes', # Number of semantic classes, including the # background class (if exists). For example, there # are 20 foreground classes + 1 background class in # the PASCAL VOC 2012 dataset. Thus, we set # num_classes=21. 'ignore_label', # Ignore label value. ]) _CITYSCAPES_INFORMATION = DatasetDescriptor( splits_to_sizes={ 'train': 2975, 'val': 500, }, num_classes=19, ignore_label=255, ) _PASCAL_VOC_SEG_INFORMATION = DatasetDescriptor( splits_to_sizes={ 'train': 1464, 'train_aug': 10582, 'trainval': 2913, 'val': 1449, }, num_classes=21, ignore_label=255, ) _ADE20K_INFORMATION = DatasetDescriptor( splits_to_sizes={ 'train': 20210, # num of samples in images/training 'val': 2000, # num of samples in images/validation }, num_classes=151, ignore_label=0, ) _DATASETS_INFORMATION = { 'cityscapes': _CITYSCAPES_INFORMATION, 'pascal_voc_seg': _PASCAL_VOC_SEG_INFORMATION, 'ade20k': _ADE20K_INFORMATION, } # Default file pattern of TFRecord of TensorFlow Example. _FILE_PATTERN = '%s-*' def get_cityscapes_dataset_name(): return 'cityscapes' class Dataset(object): """Represents input dataset for deeplab model.""" def __init__(self, dataset_name, split_name, dataset_dir, batch_size, crop_size, min_resize_value=None, max_resize_value=None, resize_factor=None, min_scale_factor=1., max_scale_factor=1., scale_factor_step_size=0, model_variant=None, num_readers=1, is_training=False, should_shuffle=False, should_repeat=False): """Initializes the dataset. Args: dataset_name: Dataset name. split_name: A train/val Split name. dataset_dir: The directory of the dataset sources. batch_size: Batch size. crop_size: The size used to crop the image and label. min_resize_value: Desired size of the smaller image side. max_resize_value: Maximum allowed size of the larger image side. resize_factor: Resized dimensions are multiple of factor plus one. min_scale_factor: Minimum scale factor value. max_scale_factor: Maximum scale factor value. scale_factor_step_size: The step size from min scale factor to max scale factor. The input is randomly scaled based on the value of (min_scale_factor, max_scale_factor, scale_factor_step_size). model_variant: Model variant (string) for choosing how to mean-subtract the images. See feature_extractor.network_map for supported model variants. num_readers: Number of readers for data provider. is_training: Boolean, if dataset is for training or not. should_shuffle: Boolean, if should shuffle the input data. should_repeat: Boolean, if should repeat the input data. Raises: ValueError: Dataset name and split name are not supported. """ if dataset_name not in _DATASETS_INFORMATION: raise ValueError('The specified dataset is not supported yet.') self.dataset_name = dataset_name splits_to_sizes = _DATASETS_INFORMATION[dataset_name].splits_to_sizes if split_name not in splits_to_sizes: raise ValueError('data split name %s not recognized' % split_name) if model_variant is None: tf.logging.warning('Please specify a model_variant. See ' 'feature_extractor.network_map for supported model ' 'variants.') self.split_name = split_name self.dataset_dir = dataset_dir self.batch_size = batch_size self.crop_size = crop_size self.min_resize_value = min_resize_value self.max_resize_value = max_resize_value self.resize_factor = resize_factor self.min_scale_factor = min_scale_factor self.max_scale_factor = max_scale_factor self.scale_factor_step_size = scale_factor_step_size self.model_variant = model_variant self.num_readers = num_readers self.is_training = is_training self.should_shuffle = should_shuffle self.should_repeat = should_repeat self.num_of_classes = _DATASETS_INFORMATION[self.dataset_name].num_classes self.ignore_label = _DATASETS_INFORMATION[self.dataset_name].ignore_label def _parse_function(self, example_proto): """Function to parse the example proto. Args: example_proto: Proto in the format of tf.Example. Returns: A dictionary with parsed image, label, height, width and image name. Raises: ValueError: Label is of wrong shape. """ # Currently only supports jpeg and png. # Need to use this logic because the shape is not known for # tf.image.decode_image and we rely on this info to # extend label if necessary. def _decode_image(content, channels): return tf.cond( tf.image.is_jpeg(content), lambda: tf.image.decode_jpeg(content, channels), lambda: tf.image.decode_png(content, channels)) features = { 'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''), 'image/filename': tf.FixedLenFeature((), tf.string, default_value=''), 'image/format': tf.FixedLenFeature((), tf.string, default_value='jpeg'), 'image/height': tf.FixedLenFeature((), tf.int64, default_value=0), 'image/width': tf.FixedLenFeature((), tf.int64, default_value=0), 'image/segmentation/class/encoded': tf.FixedLenFeature((), tf.string, default_value=''), 'image/depth/filled/encoded': tf.FixedLenFeature((), tf.string, default_value=''), 'image/segmentation/class/format': tf.FixedLenFeature((), tf.string, default_value='png'), } parsed_features = tf.parse_single_example(example_proto, features) image = _decode_image(parsed_features['image/encoded'], channels=3) depth = _decode_image(parsed_features['image/depth/filled/encoded'], channels=1) label = None if self.split_name != common.TEST_SET: label = _decode_image( parsed_features['image/segmentation/class/encoded'], channels=1) image_name = parsed_features['image/filename'] if image_name is None: image_name = tf.constant('') sample = { common.IMAGE: image, common.IMAGE_NAME: image_name, common.HEIGHT: parsed_features['image/height'], common.WIDTH: parsed_features['image/width'], 'depth':depth } if label is not None: if label.get_shape().ndims == 2: label = tf.expand_dims(label, 2) elif label.get_shape().ndims == 3 and label.shape.dims[2] == 1: pass else: raise ValueError('Input label shape must be [height, width], or ' '[height, width, 1].') label.set_shape([None, None, 1]) sample[common.LABELS_CLASS] = label return sample def _preprocess_image(self, sample): """Preprocesses the image and label. Args: sample: A sample containing image and label. Returns: sample: Sample with preprocessed image and label. Raises: ValueError: Ground truth label not provided during training. """ image = sample[common.IMAGE] label = sample[common.LABELS_CLASS] depth = sample['depth'] original_image, image, label, depth = input_preprocess.preprocess_image_and_label( image=image, label=label, depth=depth, crop_height=self.crop_size[0], crop_width=self.crop_size[1], min_resize_value=self.min_resize_value, max_resize_value=self.max_resize_value, resize_factor=self.resize_factor, min_scale_factor=self.min_scale_factor, max_scale_factor=self.max_scale_factor, scale_factor_step_size=self.scale_factor_step_size, ignore_label=self.ignore_label, is_training=self.is_training, model_variant=self.model_variant) sample[common.IMAGE] = image sample['depth'] = depth if not self.is_training: # Original image is only used during visualization. sample[common.ORIGINAL_IMAGE] = original_image if label is not None: sample[common.LABEL] = label # Remove common.LABEL_CLASS key in the sample since it is only used to # derive label and not used in training and evaluation. sample.pop(common.LABELS_CLASS, None) return sample def get_one_shot_iterator(self): """Gets an iterator that iterates across the dataset once. Returns: An iterator of type tf.data.Iterator. """ files = self._get_all_files() dataset = ( tf.data.TFRecordDataset(files, num_parallel_reads=self.num_readers) .map(self._parse_function, num_parallel_calls=self.num_readers) .map(self._preprocess_image, num_parallel_calls=self.num_readers)) if self.should_shuffle: dataset = dataset.shuffle(buffer_size=100) if self.should_repeat: dataset = dataset.repeat() # Repeat forever for training. else: dataset = dataset.repeat(1) dataset = dataset.batch(self.batch_size).prefetch(self.batch_size) return dataset.make_one_shot_iterator() def _get_all_files(self): """Gets all the files to read data from. Returns: A list of input files. """ file_pattern = _FILE_PATTERN file_pattern = os.path.join(self.dataset_dir, file_pattern % self.split_name) return tf.gfile.Glob(file_pattern)
5e66ca3f880c62a693021918fb5172b2376c63ff
8cdaf9c49ae75bcc24d0c01860bb12bd5f7b5cfb
/svs_only_tsr.py
f72e37daaa03d88e4e3d42d5351f668332f41b37
[]
no_license
TheSimpleRobotics/tsr_carla_scripts
e9cad8a3163956ce20313b198e1c96ad1b1ec118
e7ec995d54eb2895a5574b542373098408abd229
refs/heads/master
2020-04-29T07:09:30.339650
2019-03-17T13:49:06
2019-03-17T13:49:06
175,941,876
0
0
null
2019-03-17T14:14:48
2019-03-16T07:43:48
Python
UTF-8
Python
false
false
18,061
py
#!/usr/bin/env python # Copyright (c) 2018 The simple robotics # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. # Allows controlling a vehicle with a keyboard. For a simpler and more # documented example, please take a look at tutorial.py. """ Welcome to TSR manual control. Use ARROWS or WASD keys for control. W : throttle S : brake AD : steer Q : toggle reverse Space : hand-brake P : toggle autopilot C : change weather (Shift+C reverse) ESC : quit """ from __future__ import print_function import glob import os import sys # ============================================================================== # -- imports ------------------------------------------------------------------- # ============================================================================== import carla from carla import ColorConverter as cc import argparse import collections import datetime import logging import math import random import re import weakref try: import pygame from pygame.locals import KMOD_CTRL from pygame.locals import KMOD_SHIFT from pygame.locals import K_0 from pygame.locals import K_9 from pygame.locals import K_BACKQUOTE from pygame.locals import K_BACKSPACE from pygame.locals import K_COMMA from pygame.locals import K_DOWN from pygame.locals import K_ESCAPE from pygame.locals import K_F1 from pygame.locals import K_LEFT from pygame.locals import K_PERIOD from pygame.locals import K_RIGHT from pygame.locals import K_SLASH from pygame.locals import K_SPACE from pygame.locals import K_TAB from pygame.locals import K_UP from pygame.locals import K_a from pygame.locals import K_c from pygame.locals import K_d from pygame.locals import K_h from pygame.locals import K_m from pygame.locals import K_p from pygame.locals import K_q from pygame.locals import K_r from pygame.locals import K_s from pygame.locals import K_w from pygame.locals import K_MINUS from pygame.locals import K_EQUALS except ImportError: raise RuntimeError( 'cannot import pygame, make sure pygame package is installed') try: import numpy as np except ImportError: raise RuntimeError( 'cannot import numpy, make sure numpy package is installed') svs_resolution = ['1280', '800'] # ============================================================================== # -- TSR functions ---------------------------------------------------------- # ============================================================================== class CameraTsr(object): def __init__(self, vehicle, width, height, fov='90', tick='0.0', pygame_disp=False): self.vehicle = vehicle self.width = width self.height = height self.fov = fov self.tick = tick self._pygame_disp = pygame_disp # display for pygame self._surface = None # image to render fom array for pygame display self.camera = None def add_camera(self, x=-6.5, y=0.0, z=2.7, roll=0, pitch=0, yaw=0, camera_type='sensor.camera.rgb', ): ''' The camera type can be also: 'sensor.camera.semantic_segmentation' 'sensor.camera.depth' ''' if self.camera is None: # Find the blueprint of the sensor. blueprint = self.vehicle.get_world().get_blueprint_library().find(camera_type) # Modify the attributes of the blueprint to set image resolution and field of view. blueprint.set_attribute('image_size_x', self.width) blueprint.set_attribute('image_size_y', self.height) blueprint.set_attribute('fov', self.fov) # Set the time in seconds between sensor captures blueprint.set_attribute('sensor_tick', self.tick) # Provide the position of the sensor relative to the vehicle. transform = carla.Transform(carla.Location( x=x, y=y, z=z), carla.Rotation(roll=roll, pitch=pitch, yaw=yaw)) # Tell the world to spawn the sensor, don't forget to attach it to your vehicle actor. self.camera = self.vehicle.get_world().spawn_actor( blueprint, transform, attach_to=self.vehicle) # Subscribe to the sensor stream by providing a callback function, this function is # called each time a new image is generated by the sensor. self.camera.listen(lambda data: self._process_image(data)) else: Print("The camera sensor is already initialized") def _process_image(self, image): ''' The callback function which gets raw image and convert it to array ''' array = np.frombuffer(image.raw_data, dtype=np.dtype("uint8")) array = np.reshape(array, (image.height, image.width, 4)) array = array[:, :, :3] array = array[:, :, ::-1] if self._pygame_disp: self._surface = pygame.surfarray.make_surface(array.swapaxes(0, 1)) def render(self, display): ''' The function gets display class from pygame window and render the image from the current camera. ''' if self._surface is not None: display.blit(self._surface, (0, 0)) # ============================================================================== # -- Global functions ---------------------------------------------------------- # ============================================================================== def find_weather_presets(): rgx = re.compile('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)') def name(x): return ' '.join(m.group(0) for m in rgx.finditer(x)) presets = [x for x in dir(carla.WeatherParameters) if re.match('[A-Z].+', x)] return [(getattr(carla.WeatherParameters, x), name(x)) for x in presets] def get_actor_display_name(actor, truncate=250): name = ' '.join(actor.type_id.replace('_', '.').title().split('.')[1:]) return (name[:truncate-1] + u'\u2026') if len(name) > truncate else name # ============================================================================== # -- World --------------------------------------------------------------------- # ============================================================================== class World(object): def __init__(self, carla_world, actor_filter): self.world = carla_world self.map = self.world.get_map() self.player = None self._weather_presets = find_weather_presets() self._weather_index = 0 self._actor_filter = actor_filter # Camera view self.camera_view = None self.restart() # SVS cameras self.cam1_svs_front = None self.cam2_svs_rigtht = None self.cam3_svs_back = None self.cam4_svs_rear = None # SVS semseg cameras self.sem_cam1_svs_front = None self.sem_cam2_svs_rigtht = None self.sem_cam3_svs_back = None self.sem_cam4_svs_rear = None def restart(self): # Get a vehicle mercedes. blueprint_library = self.world.get_blueprint_library() vehicle_bp = blueprint_library.find('vehicle.mercedes-benz.coupe') vehicle_bp.set_attribute('role_name', 'hero') vehicle_bp.set_attribute('color', '255,0,0') # Spawn the player. if self.player is not None: spawn_point = self.player.get_transform() spawn_point.location.z += 2.0 spawn_point.rotation.roll = 0.0 spawn_point.rotation.pitch = 0.0 self.destroy() self.player = self.world.try_spawn_actor(vehicle_bp, spawn_point) while self.player is None: spawn_points = self.map.get_spawn_points() spawn_point = random.choice( spawn_points) if spawn_points else carla.Transform() self.player = self.world.try_spawn_actor(vehicle_bp, spawn_point) # Svs front camera self.cam1_svs_front = CameraTsr( vehicle=self.player, width=svs_resolution[0], height=svs_resolution[1], fov="90", pygame_disp=True) self.cam1_svs_front.add_camera( x=0.8, y=0.0, z=1.7, roll=0, pitch=-15, yaw=0) self.camera_view = self.cam1_svs_front # Svs semseg gt camera self.sem_cam1_svs_front = CameraTsr( vehicle=self.player, width=svs_resolution[0], height=svs_resolution[1], fov="90") self.sem_cam1_svs_front.add_camera( x=0.8, y=0.0, z=1.7, roll=0, pitch=-15, yaw=0, camera_type='sensor.camera.semantic_segmentation') # Svs right camera self.cam2_svs_right = CameraTsr( vehicle=self.player, width=svs_resolution[0], height=svs_resolution[1], fov="90") self.cam2_svs_right.add_camera( x=0.0, y=0.5, z=1.7, roll=0, pitch=-15, yaw=90) # Svs semseg gt camera self.sem_cam2_svs_rigtht = CameraTsr( vehicle=self.player, width=svs_resolution[0], height=svs_resolution[1], fov="90") self.sem_cam2_svs_rigtht.add_camera( x=0.0, y=0.5, z=1.7, roll=0, pitch=-15, yaw=90, camera_type='sensor.camera.semantic_segmentation') # Svs back camera self.cam3_svs_back = CameraTsr( vehicle=self.player, width=svs_resolution[0], height=svs_resolution[1], fov="90") self.cam3_svs_back.add_camera( x=-0.8, y=0.0, z=1.7, roll=0, pitch=-15, yaw=180) # Svs semseg gt camera self.sem_cam3_svs_back = CameraTsr( vehicle=self.player, width=svs_resolution[0], height=svs_resolution[1], fov="90") self.sem_cam3_svs_back.add_camera( x=-0.8, y=0.0, z=1.7, roll=0, pitch=-15, yaw=180, camera_type='sensor.camera.semantic_segmentation') # Svs left camera self.cam4_svs_left = CameraTsr( vehicle=self.player, width=svs_resolution[0], height=svs_resolution[1], fov="90") self.cam4_svs_left.add_camera( x=0.0, y=-0.5, z=1.7, roll=0, pitch=-15, yaw=270) # Svs semseg gt camera self.sem_cam4_svs_rear = CameraTsr( vehicle=self.player, width=svs_resolution[0], height=svs_resolution[1], fov="90") self.sem_cam4_svs_rear.add_camera( x=0.0, y=-0.5, z=1.7, roll=0, pitch=-15, yaw=270, camera_type='sensor.camera.semantic_segmentation') def next_weather(self, reverse=False): self._weather_index += -1 if reverse else 1 self._weather_index %= len(self._weather_presets) preset = self._weather_presets[self._weather_index] self.player.get_world().set_weather(preset[0]) def render(self, display): self.camera_view.render(display) def destroy(self): actors = [ self.player, self.camera_view.camera, self.cam1_svs_front.camera, self.cam2_svs_rigtht.camera, self.cam3_svs_back.camera, self.cam4_svs_rear.camera, self.sem_cam1_svs_front.camera, self.sem_cam2_svs_rigtht.camera, self.sem_cam3_svs_back.camera, self.sem_cam4_svs_rear.camera ] for actor in actors: if actor is not None: actor.destroy() # ============================================================================== # -- KeyboardControl ----------------------------------------------------------- # ============================================================================== class KeyboardControl(object): def __init__(self, world, start_in_autopilot): self._autopilot_enabled = start_in_autopilot if isinstance(world.player, carla.Vehicle): self._control = carla.VehicleControl() world.player.set_autopilot(self._autopilot_enabled) elif isinstance(world.player, carla.Walker): self._control = carla.WalkerControl() self._autopilot_enabled = False self._rotation = world.player.get_transform().rotation else: raise NotImplementedError("Actor type not supported") self._steer_cache = 0.0 def parse_events(self, client, world, clock): for event in pygame.event.get(): if event.type == pygame.QUIT: return True elif event.type == pygame.KEYUP: if self._is_quit_shortcut(event.key): return True elif event.key == K_c and pygame.key.get_mods() & KMOD_SHIFT: world.next_weather(reverse=True) elif event.key == K_c: world.next_weather() if isinstance(self._control, carla.VehicleControl): if event.key == K_q: self._control.gear = 1 if self._control.reverse else -1 elif event.key == K_p and not (pygame.key.get_mods() & KMOD_CTRL): self._autopilot_enabled = not self._autopilot_enabled world.player.set_autopilot(self._autopilot_enabled) if not self._autopilot_enabled: if isinstance(self._control, carla.VehicleControl): self._parse_vehicle_keys( pygame.key.get_pressed(), clock.get_time()) self._control.reverse = self._control.gear < 0 elif isinstance(self._control, carla.WalkerControl): self._parse_walker_keys( pygame.key.get_pressed(), clock.get_time()) world.player.apply_control(self._control) def _parse_vehicle_keys(self, keys, milliseconds): self._control.throttle = 1.0 if keys[K_UP] or keys[K_w] else 0.0 steer_increment = 5e-4 * milliseconds if keys[K_LEFT] or keys[K_a]: self._steer_cache -= steer_increment elif keys[K_RIGHT] or keys[K_d]: self._steer_cache += steer_increment else: self._steer_cache = 0.0 self._steer_cache = min(0.7, max(-0.7, self._steer_cache)) self._control.steer = round(self._steer_cache, 1) self._control.brake = 1.0 if keys[K_DOWN] or keys[K_s] else 0.0 self._control.hand_brake = keys[K_SPACE] def _parse_walker_keys(self, keys, milliseconds): self._control.speed = 0.0 if keys[K_DOWN] or keys[K_s]: self._control.speed = 0.0 if keys[K_LEFT] or keys[K_a]: self._control.speed = .01 self._rotation.yaw -= 0.08 * milliseconds if keys[K_RIGHT] or keys[K_d]: self._control.speed = .01 self._rotation.yaw += 0.08 * milliseconds if keys[K_UP] or keys[K_w]: self._control.speed = 5.556 if pygame.key.get_mods() & KMOD_SHIFT else 2.778 self._control.jump = keys[K_SPACE] self._rotation.yaw = round(self._rotation.yaw, 1) self._control.direction = self._rotation.get_forward_vector() @staticmethod def _is_quit_shortcut(key): return (key == K_ESCAPE) or (key == K_q and pygame.key.get_mods() & KMOD_CTRL) # ============================================================================== # -- game_loop() --------------------------------------------------------------- # ============================================================================== def game_loop(args): pygame.init() pygame.font.init() world = None try: client = carla.Client(args.host, args.port) client.set_timeout(2.0) display = pygame.display.set_mode( (args.width, args.height), pygame.HWSURFACE | pygame.DOUBLEBUF) world = World(client.get_world(), args.filter) controller = KeyboardControl(world, args.autopilot) clock = pygame.time.Clock() while True: clock.tick_busy_loop(60) if controller.parse_events(client, world, clock): return world.render(display) pygame.display.flip() finally: if world is not None: world.destroy() pygame.quit() # ============================================================================== # -- main() -------------------------------------------------------------------- # ============================================================================== def main(): argparser = argparse.ArgumentParser( description='CARLA Manual Control Client') argparser.add_argument( '-v', '--verbose', action='store_true', dest='debug', help='print debug information') argparser.add_argument( '--host', metavar='H', default='127.0.0.1', help='IP of the host server (default: 127.0.0.1)') argparser.add_argument( '-p', '--port', metavar='P', default=2000, type=int, help='TCP port to listen to (default: 2000)') argparser.add_argument( '-a', '--autopilot', action='store_true', help='enable autopilot') argparser.add_argument( '--res', metavar='WIDTHxHEIGHT', default='1280x800', help='window resolution (default: 1280x800)') argparser.add_argument( '--filter', metavar='PATTERN', default='vehicle.*', help='actor filter (default: "vehicle.*")') args = argparser.parse_args() args.width, args.height = [int(x) for x in args.res.split('x')] log_level = logging.DEBUG if args.debug else logging.INFO logging.basicConfig(format='%(levelname)s: %(message)s', level=log_level) logging.info('listening to server %s:%s', args.host, args.port) print(__doc__) try: game_loop(args) except KeyboardInterrupt: print('\nCancelled by user. Bye!') if __name__ == '__main__': main()
e4e921e27952df4763b04936511b286bd092123e
4bcd94d568aee06e638d6f451ec4a2136714d9e1
/HW_1_1.py
90c7106bc37ca101f236dba19efdc8f92bfb2321
[]
no_license
kuchabska/python_cource
82a582071361163446d9e63be9d54058416244eb
72ef68b9c55af18f41467e3d07ef7926a9ecdab8
refs/heads/master
2020-07-11T07:23:26.573974
2019-08-26T13:10:29
2019-08-26T13:10:29
204,477,471
0
0
null
null
null
null
UTF-8
Python
false
false
123
py
a = float (input ( 'input a \n')) b = float (input ( 'input b \n')) print (a + b) print (a - b) print (a * b) print (a / b)
2540b0d2ce8d3f80b974b15498b4478fcfb42135
32535cc2c4a2ec52a0031d34e3125cbc7751a3e4
/project_name/project_name/configuracion/base.py
32fcfb9b1c327eaee4f110d735be7bbcaed109b9
[]
no_license
lizceth/prueba2
0bd5024abfb0d8095f421bb49d2d354a2929f19e
4c4c5d68ef3f715adbc18d1b9e7a7b0b55e8f148
refs/heads/master
2021-01-20T03:26:00.468046
2014-09-19T18:50:06
2014-09-19T18:50:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,096
py
import os from os.path import dirname, basename, normpath, abspath, join from sys import path #muestra la ruta del proyecto django DJANGO_ROOT=dirname(dirname(abspath(__file__))) #muestra la ruta del repositorio del proyecto SITE_ROOT=dirname(DJANGO_ROOT) #muestra el nombre del projecto dajngo SITE_NAME=basename(DJANGO_ROOT) path.append(DJANGO_ROOT) #configuracion para mostrar los errores que haya en el proyecto DEBUG = True #configuracion para mostrar los errores de la plantilla del proyecto TEMPLATE_DEBUG = DEBUG ALLOWED_HOSTS = [] #configuracion del administrador django ADMINS=( ('name','[email protected]'), ) MANAGER=ADMINS #configuracion de la base de datos, la ruta y y el nombre con que se guardara al generase DATABASES = { 'default': { 'ENGINE': 'django.db.backends.', 'NAME': '', 'USER': '', 'PASSWORD': '', 'HOST': '', 'PORT': '', } } ########## END DATABASE CONFIGURATION ########## GENERAL CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#time-zone TIME_ZONE = 'UTC' # See: https://docs.djangoproject.com/en/dev/ref/settings/#language-code LANGUAGE_CODE = 'es-pe' # See: https://docs.djangoproject.com/en/dev/ref/settings/#site-id SITE_ID = 1 # See: https://docs.djangoproject.com/en/dev/ref/settings/#use-i18n USE_I18N = True # See: https://docs.djangoproject.com/en/dev/ref/settings/#use-l10n USE_L10N = True # See: https://docs.djangoproject.com/en/dev/ref/settings/#use-tz USE_TZ = True ########## END GENERAL CONFIGURATION ########## MEDIA CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#media-root MEDIA_ROOT = normpath(join(SITE_ROOT, 'media')) # See: https://docs.djangoproject.com/en/dev/ref/settings/#media-url MEDIA_URL = '/media/' ########## END MEDIA CONFIGURATION ########## STATIC FILE CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#static-root STATIC_ROOT = normpath(join(SITE_ROOT, 'assets')) # See: https://docs.djangoproject.com/en/dev/ref/settings/#static-url STATIC_URL = '/static/' # See: https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#std:setting-STATICFILES_DIRS STATICFILES_DIRS = ( normpath(join(SITE_ROOT, 'static')), ) # See: https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#staticfiles-finders STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ) ########## END STATIC FILE CONFIGURATION ########## SECRET CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#secret-key # Note: This key should only be used for development and testing. #SECRET_KEY = r"{{ secret_key }}" ########## END SECRET CONFIGURATION ########## SITE CONFIGURATION # Hosts/domain names that are valid for this site # See https://docs.djangoproject.com/en/1.5/ref/settings/#allowed-hosts ALLOWED_HOSTS = [] ########## END SITE CONFIGURATION ########## FIXTURE CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-FIXTURE_DIRS FIXTURE_DIRS = ( normpath(join(SITE_ROOT, 'fixtures')), ) ########## END FIXTURE CONFIGURATION ########## TEMPLATE CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-context-processors TEMPLATE_CONTEXT_PROCESSORS = ( 'django.contrib.auth.context_processors.auth', 'django.core.context_processors.debug', 'django.core.context_processors.i18n', 'django.core.context_processors.media', 'django.core.context_processors.static', 'django.core.context_processors.tz', 'django.contrib.messages.context_processors.messages', 'django.core.context_processors.request', ) # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-loaders TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', ) # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-dirs TEMPLATE_DIRS = ( normpath(join(SITE_ROOT, 'template')), ) ########## END TEMPLATE CONFIGURATION ########## MIDDLEWARE CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#middleware-classes MIDDLEWARE_CLASSES = ( # Default Django middleware. 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ########## END MIDDLEWARE CONFIGURATION ########## URL CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#root-urlconf ROOT_URLCONF = '%s.urls' % SITE_NAME ########## END URL CONFIGURATION ########## APP CONFIGURATION DJANGO_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.admin', ) # Apps specific for this project go here. LOCAL_APPS = ( ) # See: https://docs.djangoproject.com/en/dev/ref/settings/#installed-apps INSTALLED_APPS = DJANGO_APPS + LOCAL_APPS ########## END APP CONFIGURATION ########## LOGGING CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#logging # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' } }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } } ########## END LOGGING CONFIGURATION ########## WSGI CONFIGURATION # See: https://docs.djangoproject.com/en/dev/ref/settings/#wsgi-application WSGI_APPLICATION = '%s.wsgi.application' % SITE_NAME ########## END WSGI CONFIGURATION #clave que se genera por cada proyecto realizado, esta debe ser unica. # SECURITY WARNING: keep the secret key used in production secret! #SECRET_KEY = 'q*194oc8pwre*$^udru%)#l94o52ug%^o8#hzsge5tp711n42)' SECRET_KEY=r"{{ secret_key }}" # SECURITY WARNING: don't run with debug turned on in production! ########## SOUTH CONFIGURATION # See: http://south.readthedocs.org/en/latest/installation.html#configuring-your-django-installation INSTALLED_APPS += ( # Database migration helpers: #'south', ) # Don't need to use South when setting up a test database. SOUTH_TESTS_MIGRATE = False ########## END SOUTH CONFIGURATION
da2d4be10dbde9b53d5252fb39575bc48970029f
9225ad5fb5dd92af547f4c4e04874bc812620d04
/0.Dev Training/1.Junior/22.绘制并定制化图表/moveax.py
31e2697b37e24ebbcdd193de787acc00f050b56c
[]
no_license
skynimrod/dt_python
6fb50d354d3e8cef995edc459ef45fe42b234c48
bd822140634ae56d1f2331bde9877c871f62507a
refs/heads/master
2021-05-16T06:55:32.840279
2017-09-15T04:11:10
2017-09-15T04:11:10
103,612,926
0
0
null
null
null
null
UTF-8
Python
false
false
484
py
import matplotlib.pyplot as plt import numpy as np x = np.linspace( -np.pi, np.pi, 500, endpoint = True ) y = np.sin(x) plt.plot(x, y) ax = plt.gca() # hide two spines ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') # move bottom and left spine to 0,0 ax.spines['bottom'].set_position(('data',0)) ax.spines['left'].set_position( ('data',0) ) # move ticks positions ax.xaxis.set_ticks_position( 'bottom' ) ax.yaxis.set_ticks_position( 'left' ) plt.show()
43f48b573d2b18f3d9446e41b86481c7d77fef58
4b5d0b71b6a1d5615f7678037bca48a45ce1dc22
/basic_app/views.py
5f7ea383f42bbd684805bcdf3caea2be99be67a5
[]
no_license
Gigi1111/django-deployment-example
71b91e79557d0a2579676582442e647f817fb9f3
f1b125bb7546d47072a0150fbf2cdfc617b82229
refs/heads/master
2020-07-08T23:36:18.461744
2019-08-22T15:10:08
2019-08-22T15:10:08
203,812,325
0
0
null
null
null
null
UTF-8
Python
false
false
2,523
py
from django.shortcuts import render from basic_app.forms import UserForm, UserProfileInfoForm # Create your views here. # login from django.contrib.auth import authenticate, login, logout from django.http import HttpResponseRedirect, HttpResponse # before django 2.0 from django.core.urlresolvers import reverse from django.urls import reverse from django.contrib.auth.decorators import login_required def index(request): return render(request, 'basic_app/index.html') # only logged in user can see it @login_required def special(request): return HttpResponse("You are logged in, Nice!") @login_required def user_logout(request): logout(request) return HttpResponseRedirect(reverse('index')) def register(request): registered = False if request.method == "POST": user_form = UserForm(data=request.POST) profile_form = UserProfileInfoForm(data=request.POST) if user_form.is_valid() and profile_form.is_valid(): user = user_form.save() # hashing password with set user.set_password(user.password) user.save() # not saving to db yet, incaseof collision, # see if there's pic before save profile = profile_form.save(commit=False) profile.user = user if 'profile_pic' in request.FILES: profile.profile_pic = request.FILES['profile_pic'] profile.save() registered = True else: print(user_form.errors, profile_form.errors) # no request yet else: user_form = UserForm() profile_form = UserProfileInfoForm() return render(request, 'basic_app/register.html', {'registered': registered, 'user_form': user_form, 'profile_form': profile_form}) def user_login(request): if request.method == "POST": username = request.POST.get('username') password = request.POST.get('password') user = authenticate(username=username, password=password) if user: if user.is_active: login(request, user) return HttpResponseRedirect(reverse('index')) else: return HttpResponse("Account not Active") else: print("Someone tried to login and failed") print("Username: {} and password {}".format(username, password)) return HttpResponse("invalid login details supplied") else: return render(request, 'basic_app/login.html', {})
e89a4fa08e2efb9d31175514312fd1b1f0d96881
b657f54555330af28ef9f22ee935bfed697a91f0
/Exercicios Loop/exercicio 40 - secao 06.py
68b3bded1e4b36e98db190cdf57dbd3d25668c08
[ "MIT" ]
permissive
cristinamais/exercicios_python
cecadd29a5f610b30ee929b94b00a4491d90d116
8a09b0b68ffaa62d13afb952998e890a79667c7e
refs/heads/master
2021-06-12T18:58:35.595609
2020-04-09T14:01:43
2020-04-09T14:01:43
254,380,930
0
0
null
null
null
null
UTF-8
Python
false
false
421
py
""" 40 - Elabore um programa que faça leitura de vários números inteiros, até que se digite um número negativo. O programa tem que retornar o maior e o menor número lido. """ lista = [] numero = int(input(f'Digite o número: ')) while numero >= 0: lista.append(numero) numero = int(input(f'Digite o número: ')) print('O maior valor da lista é:', max(lista), '\nO menor valor da lista é:', min(lista))
e545daf7555bd993e6f754da1bdbdf23ba23b0d4
b79c76bfba65afb209eff02293e8f73fbeced7fd
/3-11.py
771fd8e5a9cf7bd6667be998059d625bc0001f11
[]
no_license
MyeongJun88/homework
c4d910a2802f9675f78f773f8553efb47763438b
c9a13407f726700eea87c0bee3ca03752db9f20c
refs/heads/master
2020-03-24T16:27:20.910258
2018-07-30T04:33:52
2018-07-30T04:33:52
142,825,325
0
0
null
null
null
null
UTF-8
Python
false
false
37
py
def calculate_change(payment, cost):
069841c93b19d8461a30d4b06d90309bc17b5cf9
a371e9122dacaf433d6fc1619955cf6173ec79fd
/app/my_settings/settings.py
4b6967026dfd5dbc9bd6fbc7a73d6f017e5733dd
[]
no_license
Jason-Oleana/from-classification-to-web-application
978768d1b38b44d23ae7b64ca570631232eac899
a6568172c5f9ee5a754736b63e122ba182c13159
refs/heads/main
2023-04-16T08:09:16.170501
2021-04-29T15:47:47
2021-04-29T15:47:47
360,296,904
0
0
null
null
null
null
UTF-8
Python
false
false
3,376
py
""" Django settings for project. Generated by 'django-admin startproject' using Django 2.2.5. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'qslmozm3+))#m_p@7b6_u!$7o_z$1ifv2jc6d=@^pd4jm+xhdx' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ["*","167.71.6.96"] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'webapp.apps.Config', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'my_settings.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': ["templates"], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'my_settings.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' #STATIC_ROOT = os.path.join(BASE_DIR, "static/") STATICFILES_DIRS = (os.path.join(BASE_DIR, 'static'),)
2adbc4e7e758cf4da8dc63ae807a98e4c7ac40f2
6e517b4043d1ed39462621e592c5536b519fae2d
/algorithms/python/datastruct/nchoosek.py
96af871e0b88a9dd6cee5c0b227b2141ef209baa
[]
no_license
ziXiong/leetcode
c4552d725358ccab33bfd5755add79e34b4c2be4
2bedcdb585661cbb5addf0ff8bc1a23343a120ce
refs/heads/master
2022-04-30T11:13:42.126460
2022-04-10T11:27:04
2022-04-10T11:27:04
25,695,519
0
0
null
null
null
null
UTF-8
Python
false
false
277
py
# -*- coding: utf-8 -*- def nchoosek(nums, k): if k == 0: return [[]] if k == len(nums): return [nums] return nchoosek(nums[:-1], k) + [[nums[-1]] + res for res in nchoosek(nums[:-1], k - 1)] nums = [1, 2, 3, 4, 9] * 10 print(nchoosek(nums, 5))
a6f81a9adc3eb8a103dfdd5fb1363a4b70f26c5e
586e6c48ac0a29c35882c73d53a8eab59847c53c
/sigteca/settings/active.py
b1f54383e2dafab2b9225c512ab9d746fd97cc0a
[]
no_license
rodolphopivetta/sigteca
cf831bdec997ac002b757cdd5e68dfa81e4a0c01
58390c22be5600d21c62639452839ec609c497fc
refs/heads/master
2020-04-10T00:48:41.253951
2016-03-08T22:47:08
2016-03-08T22:47:08
40,916,167
2
0
null
null
null
null
UTF-8
Python
false
false
67
py
# -*- coding: utf-8 -*- from sigteca.settings.development import *
163c63c277b114424bc9dd73fa5d4a369238a9ab
aeea3a1183773a375190806f6022b78ef6bfebea
/blog/search_indexes.py
a065e105ee8c40566f2dbe43152ed1e1f2306144
[]
no_license
hnlisf/myblog-0.6
cb57ae3db779cad6a73cd8f6e9c14693f819554f
b5fae2a27ca9a3a2f81debae0a69ad6641cccd12
refs/heads/master
2021-08-30T10:55:26.663980
2017-12-17T15:28:10
2017-12-17T15:28:10
114,540,902
0
0
null
null
null
null
UTF-8
Python
false
false
428
py
#!/root/myenv1/bin python3.5 # -*- coding: utf-8 -*- from haystack import indexes from .models import Post # 全文检索模块 class PostIndex(indexes.SearchIndex,indexes.Indexable): text = indexes.CharField(document=True,use_template=True) def get_model(self): return Post def index_queryset(self, using=None): print(self.get_model().objects.all()) return self.get_model().objects.all()
5d077083bf21613f0ecaf29e149ad0d24d8c2b4b
443f2d8ef26de8bd17512c64a9c1a7565cdb3f21
/app/libs/redprint.py
bd3d0c8d73893f3928f7d4706b524d48048f3a43
[]
no_license
AaronTesting/ginger
fc4040cedb782543440cb527b9206d5122b0f66d
f63bb8c20b1f92c8f4d015d4e330a28ab4acd08a
refs/heads/master
2021-05-20T00:31:13.420675
2020-04-01T16:26:33
2020-04-01T16:26:33
252,108,175
0
0
null
null
null
null
UTF-8
Python
false
false
671
py
# -*- coding: utf-8 -*- __author__ = 'Aaron' __date__ = '2020/4/1 0001 17:20' class Redprint: def __init__(self, name): self.name = name self.mound = [] def route(self, rule, **options): def decorator(f): self.mound.append((f, rule, options)) return f return decorator def register(self, bp, url_prefix=None): if url_prefix is None: url_prefix = '/' + self.name for f, rule, options in self.mound: endpoint = self.name + '+' + \ options.pop("endpoint", f.__name__) bp.add_url_rule(url_prefix + rule, endpoint, f, **options)
51dcaf59b1453a68599a83e6cda3997c59335edf
3c157d4e652be07d867088387bfdd8b1b2b7560d
/example.py
681b4fa6ac848842d49f21d1ba76a51aff95b5e6
[ "MIT" ]
permissive
zotsing/WealthEngine-Python-SDK
6b318ce085cc71a2d08f51d6ceb2534567c70c81
f59801e0ac07030caca1f0aad5d21fe1937af22c
refs/heads/master
2020-03-07T07:46:38.014486
2015-07-05T20:41:50
2015-07-05T20:41:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
974
py
from wealthengine_python_sdk import WealthEngineClient #Instantiate the WealtheEngine SDK with API Key and Environment WeAPI = WealthEngineClient('ddb26e11-9348-4ead-9e2a-5a3b80a01b52', 'prod') #Look up a WealthEngine Profile by email address post_fields = { "email": "[email protected]", "first_name": "zack", "last_name": "proser" } print WeAPI.getProfileByEmail(post_fields) #Look up a WealthEngine profile by address post_fields = { "first_name": "Hamburt", "last_name": "Porkington", "address_line1": "756 Jambon Dr", "city": "Baton Rouge", "state": "LA", "zip": 70801 } print WeAPI.getProfileByAddress(post_fields) #Look up a WealthEngine profile by phone number post_fields = { "first_name": "Hamburt", "last_name": "Porkington", "phone": "1231231234" } print WeAPI.getProfileByPhone(post_fields) #Create a session - passing desired duration in milliseconds post_fields = { "duration": 7200 } print WeAPI.createSession(post_fields)
c48abf9be04d7fb8c779c33c68b4c60769dc4e78
2dff30dc6d6fbadf499b61fa0eb4b0b98459f278
/chapter9/src/dict_comp.py
5a685cb507c34a6dd7cc1d6b187beabe453c7128
[]
no_license
Vignesh77/python-learning
7133549123df24dc6e75114c858f58d38d064ec4
ed4034aba0d17db1299aa9dcbdcb6f2014240892
refs/heads/master
2021-01-19T14:18:41.238465
2018-03-20T13:51:02
2018-03-20T13:51:02
88,144,674
0
0
null
2017-05-26T05:30:11
2017-04-13T08:49:47
Python
UTF-8
Python
false
false
317
py
""" @file :dict_comp.py @brief :Create the dictionary dict_sample = {1:1, 2:2} using dictionary comprehension @author :vignesh """ def print_dict(): """ function for creating dictionary comprehension """ dict1 = {n:n for n in range(1, 11)} print dict1 print_dict()
3bb065239227e8de41c95b1c3570296e2f87de46
39aa8f4c6260b5307f1c427780ef462b7dfc751f
/data/actions/sum.py
24c7b3713e47259c983426249e091278456898f9
[]
no_license
ovkhasch/procflow
51e66c8048292e64a9679da3432003c1a19276e7
c58dcc538c54cbc876938254fa871cfda200d458
refs/heads/master
2022-11-17T00:00:15.814910
2020-07-08T07:44:34
2020-07-08T07:44:34
277,301,816
0
0
null
null
null
null
UTF-8
Python
false
false
51
py
res = arg1 + arg2 print(f'{arg1}+{arg2}={res}') res
76820e8e2f4659673c77d3ece8a36ecaa9983766
12ceb4b82994048d1aa4561afc7e98b56a9b629d
/Hugo Bohácsek/mx_cif.py
c15f9130684738275789aadcaf7bd76452092b79
[]
no_license
oguh43/bilicka
c5a3006f82cfcfec0d25bc012f6bdb7cc2877ceb
8df20f487ad553f66b29004f2009a12819fe9cc6
refs/heads/master
2023-02-16T12:40:47.844257
2023-02-15T10:46:45
2023-02-15T10:46:45
220,057,073
8
1
null
2019-11-06T20:09:36
2019-11-06T17:52:33
null
UTF-8
Python
false
false
199
py
inp = list(input("Číselko? > ")) print(f'Najväčšia cifra je {max(inp)}!') mx = 0 inp = map(int,inp) for c in inp: if c > mx: mx = c print(f'Najväčšia cifra je {mx}!')
786aba9b3e6665e708a3db46f46a3a40c11ec478
224f314304bb3d6ae6c89d9a438233b740116323
/versioningproj/versioningproj/wsgi.py
fadc28262c35e0e7ae3bff6b7a03fe53ce24d3cb
[]
no_license
thanhgit/backend-contest
29f2b5a6947b2960759a41f7b7c8f46a244185fb
4995210fab6d40bd05dd699386274db8dd6427ff
refs/heads/master
2020-07-11T05:21:55.190418
2020-06-21T09:23:06
2020-06-21T09:23:06
204,455,094
0
0
null
null
null
null
UTF-8
Python
false
false
405
py
""" WSGI config for versioningproj project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/2.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'versioningproj.settings') application = get_wsgi_application()
e9e8cf762df89cb9437ef0b569dc75287034fb2a
4c974c8bbb0c0b24db263f0db447fb92d7bc5cbd
/evaluations/evaluation_friends.py
eb63af40a183603c6106c4e3a21df6551aa70648
[]
no_license
QualityMinds/classroom-reputation-simulator
62aba472025de214bcab6b1105d442a573d462d0
36627c452a0a5d75db00d531e3891ed888e05c4f
refs/heads/master
2020-03-11T09:21:47.064345
2018-05-24T07:54:08
2018-05-24T07:54:08
129,908,430
1
0
null
null
null
null
UTF-8
Python
false
false
2,325
py
from centrality.eigentrust import EigenTrust from centrality.indegree import InDegree from centrality.indegree_positive import InDegreePositive from centrality.pagerank import PageRank from evaluations.community.online_discussion_group import OnlineDiscussionGroup from output.chart import chart from output.metrics import print_metrics, print_stddev_metrics from simulation.community import ActionProfile from simulation.member import Member if __name__ == '__main__': """ In this test, it is evaluated how many friends who are significantly less competent than their peers are required to trick the system so that they reach top position in the reputation ranking. """ test_name = "Friends" community = OnlineDiscussionGroup() ALL_CENTRALITY_SCORES = [ PageRank(), EigenTrust(), InDegree(), InDegreePositive() ] # Possible Actions actions: ActionProfile = community.action_profile # Group unaffiliated num_unaffiliated = 25 unaffiliated = Member("unaffiliated", [ (0.27, actions.post_good_comment), (0.03, actions.post_bad_comment), (0.32, actions.vote_bad_comment_negative), (0.03, actions.vote_any_comment_negative), (0.32, actions.vote_good_comment_positive), (0.03, actions.vote_any_comment_positive), ]) community.create_members_by_prototype(unaffiliated, num_unaffiliated) # Group friends friends = Member("f", [ (0.06, actions.post_good_comment), (0.24, actions.post_bad_comment), (0.7, actions.vote_good_comment_by_friend_positive), ]) friends.set_friends([num_unaffiliated, num_unaffiliated + 1]) community.create_members_by_prototype(friends, 2) # Run groups = ('f', 'unaffiliated') colors = {'f': 'c', 'unaffiliated': 'b'} results = community.simulate(ALL_CENTRALITY_SCORES, 100, 100) for (name, result, intermediate_results) in results: c = chart(result, groups, colors, test_name + " - " + name) path = '{}-{}.png'.format(test_name, name) c.savefig(path, bbox_inches='tight', dpi=400) print("Saved " + path) print_metrics(name, result, groups) print_stddev_metrics(name, intermediate_results, groups)
b089325c3b000bf90d4528103da4c099ebdfef77
068d271e241d8cdb46dbf4243166e4b8ee7025b2
/day05/day5/作业.py
8002d8c0a0cc3a7e25803679291ab1221c2456f4
[]
no_license
caiqinxiong/python
f6e226e76cb62aac970bcfbcb6c8adfc64858b60
9029f6c528d2cb742b600af224e803baa74cbe6a
refs/heads/master
2023-05-26T19:41:34.911885
2020-05-15T09:02:08
2020-05-15T09:02:08
195,261,757
1
0
null
2021-06-10T23:33:33
2019-07-04T15:01:42
JavaScript
UTF-8
Python
false
false
1,011
py
# 1.注册一个账号,创建一个自己的博客主页 # 你的博客主页贴给我们的 # 每一周-两周 有一篇产出 # 2.递归函数 - 三级菜单 # 递归函数 - 二分查找 # 3.random 实现一个验证码,可以是4位或者6位,可以是纯数字,数字+字母 # 大作业:re模块和正则表达式 循环 不推荐用递归 exp = '1 - 2 * ( (60-30 +(-40/5) * (9-2*5/3 + 7 /3*99/4*2998 +10 * 568/14 )) - (-4*3)/ (16-3*2) )' # exp = 2*3 # exp = 2+3 # exp = 2-3 # exp = 2/3 # 2+3*5 # print(eval(exp)) # 通过正则表达式 匹配出"内部不再有小括号的表达式" 9-10/3 + 7 /3*99/4*2998 +10 * 568/14 # 匹配第一个乘法或者除法 '2*5' # 计算这个表达式的结果 # 循环一直到所有的乘除法都计算完毕 # 处理加减法 # 匹配第一个乘法或者除法 '2*5' # 计算这个表达式的结果 # 循环一直到加减法也都计算完毕 # 基本需求 :只考虑整数 和 加减乘除四则运算 # 进阶需求 :考虑小数 和 加减乘除+()
c17e6e15b7fd656e21bd5cc3fdeef62ebc17e120
189a8025592f58dd0f0f90fe6197c0d7b865ea93
/EulerFuncTester.py
4b5ba9dc263d912542f971c38dba8f3faa13934f
[]
no_license
stepzhou/Project-Euler
526c6c5085038f33cb72e444d46a442f6e9a3ab9
e45db80cbdb87520e2264766b7913018995312c9
refs/heads/master
2021-01-19T11:26:16.631291
2012-10-16T19:19:37
2012-10-16T19:19:37
3,293,788
0
0
null
null
null
null
UTF-8
Python
false
false
784
py
''' Created on Jan 8, 2012 @author: Admin ''' import EulerFuncs import timeit def test_sieve_time(): TRIALS = 20 t = timeit.Timer("EulerFuncs.primes_below(1000000)", "import EulerFuncs") print "Own: %.4f s/pass" % (t.timeit(number=TRIALS)/TRIALS) t = timeit.Timer("EulerFuncs.primes_under(1000000)", "import EulerFuncs") print "Old: %.4f s/pass" % (t.timeit(number=TRIALS)/TRIALS) def test_pandigital(): print EulerFuncs.is_pandigital(12345678) print EulerFuncs.is_pandigital(123456789) print EulerFuncs.is_pandigital(1234567890) print EulerFuncs.is_pandigital(203456789) print EulerFuncs.is_pandigital(234567189) if __name__ == "__main__": print sum(EulerFuncs.primes_below(1000)[3:24]) print EulerFuncs.primes_below(1000)[23]
b1b7fad020c7a06528fed6a5731846ed727c0807
5bf5baf1bb79affd4756c1a6b40a8701ebef4cdb
/store/urls.py
7ffc65c5a0376193b8f114567d631ed604ea18a2
[]
no_license
sgithub99/E-Shop
42b4144f37b7e3771cf3dbe5cb50ff340cc51477
6830bda9484f4964d5f0a0104b2d1c108186e30c
refs/heads/master
2023-06-10T17:19:54.200585
2021-06-23T17:03:51
2021-06-23T17:03:51
378,679,007
0
0
null
null
null
null
UTF-8
Python
false
false
1,267
py
"""Eshop URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from .views.home import Index from .views.signup import Signup from .views.login import Login, logout from .views.cart import Cart from .views.checkout import CheckOut from .views.order import OrderView urlpatterns = [ path('', Index.as_view(), name='homepage'), path('signup', Signup.as_view(), name='signup'), path('login', Login.as_view(), name='login'), path('logout', logout, name='logout'), path('cart', Cart.as_view(), name='cart'), path('check-out', CheckOut.as_view(), name='checkout'), path('order', OrderView.as_view(), name='order') ]
a406bd698bd55916814911f3075806d30eda981b
e177c23ce7763551ca6c0d0c763e26887e136a4e
/MoreExampleOfMouseEvent.py
d9df12aa31a647df547b18132c06b5ad64530201
[]
no_license
happyiminjay1/PythonOpenCVPractice
8786e46d9d3ef3b9acc08d878535e2e91159e99b
2c4930b990ed5b9531f0b70e91bf3e3c0ad25cc5
refs/heads/master
2020-07-05T15:08:46.508950
2019-08-19T07:51:47
2019-08-19T07:51:47
202,681,274
0
0
null
null
null
null
UTF-8
Python
false
false
536
py
import numpy as np import cv2 #events = [i for i in dir(cv2)] #print(events) def click_event(event,x,y,flags,param) : if event == cv2.EVENT_LBUTTONDOWN: cv2.circle(img,(x,y),3,(0,0,255),-1) points.append((x,y)) if len(points) >= 2 : cv2.line(img cv2.imshow('image', img) #img = np.zeros((512,512,3),np.uint8) img = cv2.imread('lena.jpg') cv2.imshow('image',img) points = [] cv2.setMouseCallback('image',click_event) #windwo name should be same cv2.waitKey(0) cv2.destroyAllWindows()
b6c7bba737c9ddcc917d06d094c7fb376bf00b31
dcdeb1935f73fd5090a1f5146c0e0cd52b9803c5
/main.py
17815c158456469eb423f0bb73bcb9163d2aedb8
[]
no_license
RetroDude128/EpicBot-Discord
d6a18f95217f5d7100fb8dc95d61c4a00fac292f
5b763264d99c22f39df0ffa1abb75704058248ec
refs/heads/main
2023-06-25T06:37:08.180569
2021-07-31T13:45:52
2021-07-31T13:45:52
391,253,960
0
0
null
null
null
null
UTF-8
Python
false
false
299
py
from discord.ext import commands import discord print("token?") TOKEN = input() I = 1 di = 1 prefix = "!" bot = commands.Bot(prefix) print("Bot is ready!") @bot.command() async def die(ctx): await ctx.send("So you have chosen death") print("Someone used the command [!die]") bot.run(TOKEN)
3efd5fde40d40b037e28cde351d3d54173d164f9
3cdd026cb269ca0c009016500cd2ba09655a6de6
/server/instapic/tests/test_user.py
4517ca9dd2a83a74a4facd275dd6c9aa3d1e5882
[]
no_license
mileswong/instapic
3034e7c768426dc4973dd65a0c7fde7695cfaf85
335229200e70e21d76495f36998b56deee6fc55c
refs/heads/master
2022-03-02T23:32:01.314901
2019-05-28T14:54:42
2019-05-29T06:03:17
188,964,347
0
0
null
2022-02-10T17:50:42
2019-05-28T06:05:22
JavaScript
UTF-8
Python
false
false
2,950
py
import pytest import logging import json from instapic.models import db, User from instapic.config import Config from flask_jwt_extended import ( create_access_token, create_refresh_token, ) def get_test_client(app): return app.test_client() def post_client(client, url, data=None, headers=None): return client.post(url, data=json.dumps(data), content_type='application/json', headers=headers) def signup_user(client, username, password): return post_client(client=client, url='/v1/users/signup', data=dict(username=username, password=password)) def login_user(client, username, password): return post_client(client=client, url='/v1/users/login', data=dict(username=username, password=password)) def refresh_user(client, headers): return post_client(client=client, url='v1/users/refresh', headers=headers) def test_user(app): client = get_test_client(app) username = 'Edwin' password = '123456' # First signup res = signup_user(client, username, password) user = json.loads(res.data)['user'] user_id = user['id'] assert user['username'] == username # Attempt to signup with the same username res = signup_user(client, username, password) message = json.loads(res.data)['message'] assert message == 'ERR_USERNAME_IS_USED' # Attempt to signup with invalid type res = signup_user(client, username, 500) message = json.loads(res.data)['message'] assert message == 'INVALID_PAYLOAD' # Successfully login with the same credentials res = login_user(client, username, password) user = json.loads(res.data)['user'] assert user['id'] == user_id assert user['username'] == username # Attempt to login with incorrect password res = login_user(client, username, 'i_am_a_wrong_password') message = json.loads(res.data)['message'] assert message == 'ERR_INVALID_USERNAME_OR_PASSWORD' # Successfully refresh user token identity = { "id": user_id, "username": "Edwin" } refresh_token = create_refresh_token(identity=identity) access_token = create_access_token(identity=identity) headers = { 'Authorization': 'Bearer {}'.format(refresh_token) } res = refresh_user(client, headers) assert user_id == json.loads(res.data)['id'] assert username == json.loads(res.data)['username'] # Successfully get user post of empty list res = client.get('v1/users/{user_id}/posts'.format(user_id=user_id)) posts = json.loads(res.data)['posts'] assert len(posts) == 0 # No posts in db res = app.test_client().get('/v1/posts') posts = json.loads(res.data)['posts'] assert len(posts) == 0
6911200ffb465a9a5709a7ade0f83c5c5ac558b3
f880f230f90241dbfd2e729c02cf329ad27ca082
/lab1/graph_results.py
a6230876d1d8161c40f161892010a08c76d1086e
[]
no_license
c-brenn/conc_sys_labs
bc666ec1870e8fea07557af785b58f9e24c0fbd7
24b21dd780b9a17b32a8125895f06c6d8af32549
refs/heads/master
2016-09-08T02:38:01.893716
2015-03-04T23:12:06
2015-03-04T23:12:06
30,213,969
0
0
null
null
null
null
UTF-8
Python
false
false
788
py
import matplotlib.pyplot as pyplot import json import sys #get the name of the file containing #the results to be plotted file_name = sys.argv[1] #open the file and load the contents as JSON data = open(file_name, 'r') data = data.read() results = json.loads(data) #extract the x and y values to plot x = results['x'] y = results['y'] #get the number of cores cpu_count = results['cpu_count'] #plot the x values against the y values pyplot.plot(x,y) #label the axes pyplot.ylabel('time (sec)') pyplot.xlabel('threads used') #set the scale on the axes pyplot.axis([1, len(x), 0, max(y) + min(y)], 'o') #add a vertical line at 'cpu_count' pyplot.axvline(cpu_count, color='r') #add a title and display the plot pyplot.title('A plot of time vs threads used to calculate pi') pyplot.show()
1e2311f171807948b3c2b3e2d22c964acf347270
aa52f688fc9203d4dc78c8a80b6938ef385780b5
/week6/Lecture_6/printing_to_binary.py
8e123059e9deb4ab2312189b818c42647d964bb3
[]
no_license
mohitKhanna1411/COMP9021-Principles-of-Programming-1
9ec91753de914b1ed3abb72468a66ce0cac9224a
f04dec815e0c8a29a86e7ab2bdd2d6d0f5d0558f
refs/heads/master
2020-08-31T20:32:38.336752
2018-09-11T10:36:11
2018-09-11T10:36:11
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,367
py
# Prints out the representation of a nonnegative number in base 2, # using two recursive procedures, one of which is tail-recursive. # # Written by Eric Martin for COMP9021 def print_binary_representation_1(n): ''' >>> print_binary_representation_1(0) 0 >>> print_binary_representation_1(1) 1 >>> print_binary_representation_1(2) 10 >>> print_binary_representation_1(5) 101 >>> print_binary_representation_1(23) 10111 ''' _print_binary_representation_1(n) print() def _print_binary_representation_1(n): if n >= 2: _print_binary_representation_1(n // 2) print(n % 2, end = '') def print_binary_representation_2(n): ''' >>> print_binary_representation_1(0) 0 >>> print_binary_representation_1(1) 1 >>> print_binary_representation_1(2) 10 >>> print_binary_representation_1(5) 101 >>> print_binary_representation_1(23) 10111 ''' _print_binary_representation_2(n, n.bit_length() - 1) def _print_binary_representation_2(n, exp): if exp < 0: print() if 2 ** exp <= n: print(1, end = '') _print_binary_representation_2(n - 2 ** exp, exp - 1) else: print(0, end = '') _print_binary_representation_2(n, exp - 1) if __name__ == '__main__': import doctest doctest.testmod()
d05a52b546234ab73ee386e23bc8b67c8fd8b956
fdf946b10a1478ea490e96d22bb4b04be30d0f39
/flask_demo/1_get_hello_world.py
34af100f93a44156b5fa044af6fb850e88a94ab2
[]
no_license
ermakovpetr/rsoi
b27ae054bb7a6f0ea2fda74893025ce0f3accfd2
23f680d0090a8353621151b2872a22466fa82e92
refs/heads/master
2021-01-22T22:53:07.938139
2015-10-05T16:38:16
2015-10-05T16:38:16
35,239,405
0
0
null
null
null
null
UTF-8
Python
false
false
186
py
# coding=utf-8 from flask import Flask app = Flask(__name__) @app.route('/hello_world') def hello_world(): return 'hello world' if __name__ == '__main__': app.run(debug=True)
b9e27aec2cd9a9e2fa16db440f40306ebc490801
2db9b4efc9a5f62213e18d0241f3179916b8a5de
/using-python-to-access-web-data/extensible_markup_language(XML)_chapter13/parsing_XML.py
1d59bba777cc88cc443846f21d3b9170a1837f71
[]
no_license
Pratimathulung/python-tutorial
52ced7b40087e1791a94cc5d52eee2a1f2505dd9
4d0136d849c6bd784181fb85ca4943a86d5b1d8d
refs/heads/master
2020-03-20T22:59:09.199034
2019-01-25T18:48:55
2019-01-25T18:48:55
137,824,110
0
0
null
null
null
null
UTF-8
Python
false
false
759
py
import xml.etree.ElementTree as ET # data = '''<person> # <name>Pratima</name> # <phone type="intl"> # +17039609603 # </phone> # <email hide="yes"/> # </person>''' # # tree = ET.fromstring(data) # print('Name:', tree.find('name').text) # print('Attr:', tree.find('email').get('hide')) input = '''<stuff> <users> <user x='2'> <id>001</id> <name>Pratima</name> </user> <user x='3'> <id>007</id> <name>Yogen</name> </user> </users> </stuff>''' stuff = ET.fromstring(input) lst = stuff.findall('users/user') print('User count:',len(lst)) for item in lst: print('Name:',item.find('name').text) print('Id:',item.find('id').text) print('Attribute:',item.get('x'))
4559d843f122d32a32c92fec1111354c7de91b94
24046530f58ecb5f90cdf65e8fb65a3135e4615f
/src/server_test.py
911bad81fc2366d8b78225c0371a840577e56449
[]
no_license
HappyYusuke/door_open_ver2
d73d1c89e910fbb3877a3d053fe7c73674a85820
600f5cbf1e0016848c73e31bea637d38dca028a3
refs/heads/main
2023-06-30T18:05:09.290460
2021-08-04T11:07:12
2021-08-04T11:07:12
392,164,640
0
0
null
null
null
null
UTF-8
Python
false
false
1,728
py
#!/usr/bin/env python # -*- coding: utf-8 -*- #---------------------------------------------------------------------- #Title: door_open_ver2のサービスサーバ #Author: Kanazawa Yusuke #Data: 2021/7/2 #memo: サービスサーバーから進行速度、入室してからの進行距離を指定できる #---------------------------------------------------------------------- import rospy from sensor_msgs.msg import LaserScan from geometry_msgs.msg import Twist from door_open_ver2.srv import door_open_ver2 from door_open_ver2.srv import door_open_ver2Response MAX_LINER_VELOCITY = 0.23 MIN_LINER_VELOCITY = 0.0 MAX_PROCRESS_DISTANCE = 10.0 MIN_PROGRESS_DISTANCE = 0.0 def value_set(request): vel = Twist() is_set_success = True if request.linear_vel <= MAX_LINER_VELOCITY and (request.linear_vel >= MIN_LINER_VELOCITY): vel.linear.x = request.linear_vel else: is_set_success = False if request.target_dist <= MAX_PROCRESS_DISTANCE and (request.target_dist >= MIN_PROGRESS_DISTANCE): target_dist = request.target_dist else: is_set_success = False if is_set_success: time = request.target_dist / request.linear_vel start_time = rospy.get_time() while not rospy.is_shutdown() and (rospy.get_time() - start_time) <= time: print('now_time = ', rospy.get_time() - start_time) pub.publish(vel) return door_open_ver2Response(result = is_set_success) if __name__ == '__main__': rospy.init_node('door_open_server_test') pub = rospy.Publisher('/mobile_base/commands/velocity',Twist, queue_size = 10) service_server = rospy.Service('door_open_ver2', door_open_ver2, value_set) rospy.spin()
9cf1e8ef1a108dc58dd252619ae16129a83d49ed
ca58f8e1696e6275116dfb3eea68ff17eec3bbe1
/PyQt5开发与实战(网易云课堂)/src/dialogs/QFileDialogDemo.py
d43697b37326b45d10d3714df30cc967736fd162
[]
no_license
piperpi/python_book_code
9b8f99d08ed9840d34389aa008fd9ff5fd15e1ae
19d35e33624923a764711469bed9006549a59d52
refs/heads/master
2022-07-15T05:34:53.226952
2020-06-30T10:20:40
2020-06-30T10:20:40
217,888,567
3
2
null
2022-07-06T20:42:49
2019-10-27T17:10:00
Python
UTF-8
Python
false
false
1,525
py
''' 文件对话框:QFileDialog ''' import sys from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtWidgets import * class QFileDialogDemo(QWidget): def __init__(self): super(QFileDialogDemo,self).__init__() self.initUI() def initUI(self): layout = QVBoxLayout() self.button1 = QPushButton('加载图片') self.button1.clicked.connect(self.loadImage) layout.addWidget(self.button1) self.imageLabel = QLabel() layout.addWidget(self.imageLabel) self.button2 = QPushButton('加载文本文件') self.button2.clicked.connect(self.loadText) layout.addWidget(self.button2) self.contents = QTextEdit() layout.addWidget(self.contents) self.setLayout(layout) self.setWindowTitle('文件对话框演示 ') def loadImage(self): fname,_ = QFileDialog.getOpenFileName(self,'打开文件','.','图像文件(*.jpg *.png)') self.imageLabel.setPixmap(QPixmap(fname)) def loadText(self): dialog = QFileDialog() dialog.setFileMode(QFileDialog.AnyFile) dialog.setFilter(QDir.Files) if dialog.exec(): filenames = dialog.selectedFiles() f = open(filenames[0],encoding='utf-8',mode='r') with f: data = f.read() self.contents.setText(data) if __name__ == '__main__': app = QApplication(sys.argv) main = QFileDialogDemo() main.show() sys.exit(app.exec_())
d0628825b606d2a282727436ee6ae01b097cec5d
11ba1df6ef160aea4459e1f98cd44d3232647ff8
/game_stats.py
ca15ebfba0c9ca267b4d1d80fcfb2619f5893901
[]
no_license
frankTheCodeBoy/PYGAME_GAME_DEVELOPMENT
ddd4d79eea94bd3b40d2fa392277491809453662
1a58123e39b02ed559fc33583ac71a14a7cfc8d3
refs/heads/main
2023-03-21T14:19:03.934349
2021-03-12T13:49:11
2021-03-12T13:49:11
343,720,872
0
0
null
null
null
null
UTF-8
Python
false
false
639
py
class GameStats: """Track statistics for Alien Invasion.""" def __init__(self,first_play): """Initialize statistics.""" self.settings = first_play.settings self.reset_stats() # Start game in an inactive state. self.game_active = False # High score should never be reset import json with open("high_scores.json",'r') as f: self.high_score = json.load(f) def reset_stats(self): """Initialize statistics that can change during the game""" self.goku_left = self.settings.goku_lives self.score = 0 self.level = 1
40ceb780fe2991fec43e0dd14528fcefa02c234d
82ed7d2c21c5576a193ceafd30e74c1c48c6ad47
/max2cookie.py
d9fc37a423ef25d599571340fe4e9529f59df740
[]
no_license
alixedi/Max2Cookie
4483d45b3588e081334f7a95e4c9cc1866868237
ab42bb2a9ea9bc8a4109eed645f6051ec6def44e
refs/heads/master
2016-08-03T18:46:24.365224
2014-12-12T13:05:37
2014-12-12T13:05:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,746
py
""" max_to_cookie ============= Usage ----- max_to_cookie.py <project_path> <stem_name> Where: <project>: Name of the project directory that is generated using the MaxIDE. <stem_name>: Value of one of the fields in the project creation dialogue. At the moment, for simplicity, we do not support override of naming options. About ----- This is a quick and dirty script I have written for automatically creating cokiecutter templates out of regular MaxCompiler project. You can find out more about cookiecutter [here](https://github.com/audreyr/cookiecutter). The logic of project creation which has been automated in this script is based on reverse-engineering - I generated a few project by selecting various options, and diff-ed the project folders to get an idea of what went on behind the scenes. As a result, the correctness of this script is questionable at the moment. """ import os, sys import shutil project = sys.argv[1] stem = sys.argv[2] # try and copy the cpu code template with all the slic interfaces print 'Copying CpuCode template...' shutil.copyfile(os.path.join('./templates', 'CpuCode.c'), os.path.join('./' + project, 'CPUCode/' + stem + 'CpuCode.c')) print 'Done.' # try and copy the manager code template with standard as well as custom manager print 'Coping ManagerCode template...' shutil.copyfile(os.path.join('./templates', 'Manager.maxj'), os.path.join('./' + project, 'EngineCode/src/' + stem.lower() + '/' + stem + 'Manager.maxj')) print 'Done.' # try and replace project name with context variable print 'Replacing project name with {{cookiecutter.project_name}}...' os.system('grep -rl %s ./ | xargs sed -i "s/%s/{{cookiecutter.project_name}}/g"' % (project, project)) print 'Done.' #try and replace {{cookiecutter.dfe_model}} with context variable print 'Replacing {{cookiecutter.dfe_model}} with {{cookiecutter.dfe_model}}...' os.system('grep -rl {{cookiecutter.dfe_model}} ./ | xargs sed -i "s/{{cookiecutter.dfe_model}}/{{cookiecutter.dfe_model}}/g"') print 'Done.' # try and replace stem name with context variable print 'Replaceing given stem name with {{cookiecutter.stem_name}}' os.system('grep -rl %s ./ | xargs sed -i "s/%s/{{cookiecutter.stem_name}}/g"' % (stem, stem)) print 'Done.' # try and replace stem name lower with context variable print 'Replacing given stem name (lowercase) with {{cookiecutter.stem_name|lower}}...' os.system('grep -rl %s ./ | xargs sed -i "s/%s/{{cookiecutter.stem_name|lower}}/g"' % (stem.lower(), stem.lower())) print 'Done.' # try and replace the mpcx setting with context variable print 'Replacing enableMPCX setting with template logic...' os.system('grep -rl "<enableMPCX enabled=\\"false\\"/>" ./ | xargs sed -i "s@<enableMPCX enabled=\\"false\\"/>@<enableMPCX enabled=\\"{% if cookiecutter.optimize_for_mpcx %}true{% else %}false{% endif %}\\"/>@g"') print 'Done.' # try and rename all the files now print 'Replacing files names containing stem name with {{cookiecutter.stem_name}}...' for root, dirs, files in os.walk("./" + project): for x in files: if stem in x: os.rename(os.path.join(root, x), os.path.join(root, x.replace(stem, '{{cookiecutter.stem_name}}'))) print 'Done.' # try and rename all the directories print 'Replacing directory names containint stem name (lowercase) with {{cookiecutter.stem_name|lower}}' for root, dirs, files in os.walk("./" + project): for x in dirs: if stem.lower() in x: os.rename(os.path.join(root, x), os.path.join(root, x.replace(stem.lower(), '{{cookiecutter.stem_name|lower}}'))) print 'Done.' # try and rename the whole project folder print 'Renaming project folder...' os.rename('./' + project, '{{cookiecutter.project_name}}') print 'Done.'
15bd7ffc90a297cef5a326704f3d014f642e5396
006341ca12525aa0979d6101600e78c4bd9532ab
/CMS/Zope-3.2.1/Dependencies/twisted-Zope-3.2.1/twisted/internet/iocpreactor/ops.py
ab8211afcfdec329364da2053fefe05b753acb86
[ "ZPL-2.1", "Python-2.0", "ICU", "LicenseRef-scancode-public-domain", "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference", "ZPL-2.0", "MIT" ]
permissive
germanfriday/code-examples-sandbox
d0f29e20a3eed1f8430d06441ac2d33bac5e4253
4c538584703754c956ca66392fdcecf0a0ca2314
refs/heads/main
2023-05-30T22:21:57.918503
2021-06-15T15:06:47
2021-06-15T15:06:47
377,200,448
0
0
null
null
null
null
UTF-8
Python
false
false
4,752
py
# Copyright (c) 2001-2004 Twisted Matrix Laboratories. # See LICENSE for details. import struct, socket, os, errno #import time from twisted.internet import error from twisted.python import failure from _iocp import have_connectex SO_UPDATE_ACCEPT_CONTEXT = 0x700B SO_UPDATE_CONNECT_CONTEXT = 0x7010 ERROR_CONNECTION_REFUSED = 1225 winerrcodeMapping = {ERROR_CONNECTION_REFUSED: errno.WSAECONNREFUSED} class OverlappedOp: def __init__(self, transport): from twisted.internet import reactor self.reactor = reactor self.transport = transport def ovDone(self, ret, bytes, arg): raise NotImplementedError def initiateOp(self): raise NotImplementedError class ReadFileOp(OverlappedOp): def ovDone(self, ret, bytes, (handle, buffer)): if ret or not bytes: self.transport.readErr(ret, bytes) else: self.transport.readDone(bytes) def initiateOp(self, handle, buffer): self.reactor.issueReadFile(handle, buffer, self.ovDone, (handle, buffer)) class WriteFileOp(OverlappedOp): def ovDone(self, ret, bytes, (handle, buffer)): # log.msg("WriteFileOp.ovDone", time.time()) if ret or not bytes: self.transport.writeErr(ret, bytes) else: self.transport.writeDone(bytes) def initiateOp(self, handle, buffer): # log.msg("WriteFileOp.initiateOp", time.time()) self.reactor.issueWriteFile(handle, buffer, self.ovDone, (handle, buffer)) class WSASendToOp(OverlappedOp): def ovDone(self, ret, bytes, (handle, buffer)): if ret or not bytes: self.transport.writeErr(ret, bytes) else: self.transport.writeDone(bytes) def initiateOp(self, handle, buffer, addr): max_addr, family, type, protocol = self.reactor.getsockinfo(handle) self.reactor.issueWSASendTo(handle, buffer, family, addr, self.ovDone, (handle, buffer)) class WSARecvFromOp(OverlappedOp): def ovDone(self, ret, bytes, (handle, buffer, ab)): if ret or not bytes: self.transport.readErr(ret, bytes) else: self.transport.readDone(bytes, self.reactor.interpretAB(ab)) def initiateOp(self, handle, buffer): ab = self.reactor.AllocateReadBuffer(1024) self.reactor.issueWSARecvFrom(handle, buffer, ab, self.ovDone, (handle, buffer, ab)) class AcceptExOp(OverlappedOp): def ovDone(self, ret, bytes, (handle, buffer, acc_sock)): if ret == 64: # ERROR_NETNAME_DELETED # yay, recursion self.initiateOp(handle) elif ret: self.transport.acceptErr(ret, bytes) else: try: acc_sock.setsockopt(socket.SOL_SOCKET, SO_UPDATE_ACCEPT_CONTEXT, struct.pack("I", handle)) except socket.error, se: self.transport.acceptErr(ret, bytes) else: self.transport.acceptDone(acc_sock, acc_sock.getpeername()) def initiateOp(self, handle): max_addr, family, type, protocol = self.reactor.getsockinfo(handle) acc_sock = socket.socket(family, type, protocol) buffer = self.reactor.AllocateReadBuffer(max_addr*2 + 32) self.reactor.issueAcceptEx(handle, acc_sock.fileno(), self.ovDone, (handle, buffer, acc_sock), buffer) class ConnectExOp(OverlappedOp): def ovDone(self, ret, bytes, (handle, sock)): if ret: # print "ConnectExOp err", ret self.transport.connectErr(failure.Failure(error.errnoMapping.get(winerrcodeMapping.get(ret), error.ConnectError)())) # finish the mapping in error.py else: if have_connectex: try: sock.setsockopt(socket.SOL_SOCKET, SO_UPDATE_CONNECT_CONTEXT, "") except socket.error, se: self.transport.connectErr(failure.Failure(error.ConnectError())) self.transport.connectDone() def threadedDone(self, _): self.transport.connectDone() def threadedErr(self, err): self.transport.connectErr(err) def initiateOp(self, sock, addr): handle = sock.fileno() if have_connectex: max_addr, family, type, protocol = self.reactor.getsockinfo(handle) self.reactor.issueConnectEx(handle, family, addr, self.ovDone, (handle, sock)) else: from twisted.internet.threads import deferToThread d = deferToThread(self.threadedThing, sock, addr) d.addCallback(self.threadedDone) d.addErrback(self.threadedErr) def threadedThing(self, sock, addr): res = sock.connect_ex(addr) if res: raise error.getConnectError((res, os.strerror(res)))
f3d4bbace67d36667abafa32f72fc581eac19388
62e53c576274ef8734300c44edb00f857e01b9cc
/utils/coco_utils.py
e51aec46956f1c61893c9dc85b36684688d82d87
[]
no_license
dmatos2012/torch-object-detection
ca26457df050d35255aca71a0a3fa9b67297442c
de1ff8fe55d40a185ef6a6748485993ca0ce0959
refs/heads/master
2023-07-25T11:08:51.627728
2021-08-24T11:56:06
2021-08-24T11:56:06
380,284,151
0
0
null
null
null
null
UTF-8
Python
false
false
8,078
py
# Taken from https://github.com/pytorch/vision/blob/master/references/detection/coco_utils.py # Modified slightly to fit my needs import copy import numpy as np import torch import torch.utils.data import torchvision from pycocotools import mask as coco_mask from pycocotools.coco import COCO class FilterAndRemapCocoCategories(object): def __init__(self, categories, remap=True): self.categories = categories self.remap = remap def __call__(self, image, target): anno = target["annotations"] anno = [obj for obj in anno if obj["category_id"] in self.categories] if not self.remap: target["annotations"] = anno return image, target anno = copy.deepcopy(anno) for obj in anno: obj["category_id"] = self.categories.index(obj["category_id"]) target["annotations"] = anno return image, target def convert_coco_poly_to_mask(segmentations, height, width): masks = [] for polygons in segmentations: rles = coco_mask.frPyObjects(polygons, height, width) mask = coco_mask.decode(rles) if len(mask.shape) < 3: mask = mask[..., None] mask = torch.as_tensor(mask, dtype=torch.uint8) mask = mask.any(dim=2) masks.append(mask) if masks: masks = torch.stack(masks, dim=0) else: masks = torch.zeros((0, height, width), dtype=torch.uint8) return masks class ConvertCocoPolysToMask(object): def __call__(self, image, target): w, h = image.size image_id = target["image_id"] image_id = torch.tensor([image_id]) anno = target["annotations"] anno = [obj for obj in anno if obj["iscrowd"] == 0] boxes = [obj["bbox"] for obj in anno] # guard against no boxes via resizing boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4) boxes[:, 2:] += boxes[:, :2] boxes[:, 0::2].clamp_(min=0, max=w) boxes[:, 1::2].clamp_(min=0, max=h) classes = [obj["category_id"] for obj in anno] classes = torch.tensor(classes, dtype=torch.int64) segmentations = [obj["segmentation"] for obj in anno] masks = convert_coco_poly_to_mask(segmentations, h, w) keypoints = None if anno and "keypoints" in anno[0]: keypoints = [obj["keypoints"] for obj in anno] keypoints = torch.as_tensor(keypoints, dtype=torch.float32) num_keypoints = keypoints.shape[0] if num_keypoints: keypoints = keypoints.view(num_keypoints, -1, 3) keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0]) boxes = boxes[keep] classes = classes[keep] masks = masks[keep] if keypoints is not None: keypoints = keypoints[keep] target = {} target["boxes"] = boxes target["labels"] = classes target["masks"] = masks target["image_id"] = image_id if keypoints is not None: target["keypoints"] = keypoints # for conversion to coco api area = torch.tensor([obj["area"] for obj in anno]) iscrowd = torch.tensor([obj["iscrowd"] for obj in anno]) target["area"] = area target["iscrowd"] = iscrowd return image, target def _coco_remove_images_without_annotations(dataset, cat_list=None): def _has_only_empty_bbox(anno): return all(any(o <= 1 for o in obj["bbox"][2:]) for obj in anno) def _count_visible_keypoints(anno): return sum(sum(1 for v in ann["keypoints"][2::3] if v > 0) for ann in anno) min_keypoints_per_image = 10 def _has_valid_annotation(anno): # if it's empty, there is no annotation if len(anno) == 0: return False # if all boxes have close to zero area, there is no annotation if _has_only_empty_bbox(anno): return False # keypoints task have a slight different critera for considering # if an annotation is valid if "keypoints" not in anno[0]: return True # for keypoint detection tasks, only consider valid images those # containing at least min_keypoints_per_image if _count_visible_keypoints(anno) >= min_keypoints_per_image: return True return False assert isinstance(dataset, torchvision.datasets.CocoDetection) ids = [] for ds_idx, img_id in enumerate(dataset.ids): ann_ids = dataset.coco.getAnnIds(imgIds=img_id, iscrowd=None) anno = dataset.coco.loadAnns(ann_ids) if cat_list: anno = [obj for obj in anno if obj["category_id"] in cat_list] if _has_valid_annotation(anno): ids.append(ds_idx) dataset = torch.utils.data.Subset(dataset, ids) return dataset def convert_to_coco_api(ds): coco_ds = COCO() # annotation IDs need to start at 1, not 0, see torchvision issue #1530 ann_id = 1 dataset = {"images": [], "categories": [], "annotations": []} categories = set() for img_idx in range(len(ds)): # find better way to get target # targets = ds.get_annotations(img_idx) img, targets = ds[img_idx] image_id = targets["img_idx"].item() img_dict = {} img_dict["id"] = image_id img_dict["height"] = img.shape[-2] img_dict["width"] = img.shape[-1] dataset["images"].append(img_dict) bboxes = targets["boxes"] bboxes[:, 2:] -= bboxes[:, :2] # bboxes = bboxes.tolist() labels = targets["labels"].tolist() # areas = np.array((bboxes[:, 2] - bboxes[:, 0]) * (bboxes[:, 3] - bboxes[:, 1])) areas = bboxes[:, 2] * bboxes[:, 3] # areas = targets['area'].tolist() areas = areas.tolist() bboxes = bboxes.tolist() iscrowd = np.zeros((len(bboxes))).tolist() # iscrowd = targets['iscrowd'].tolist() if "masks" in targets: masks = targets["masks"] # make masks Fortran contiguous for coco_mask masks = masks.permute(0, 2, 1).contiguous().permute(0, 2, 1) if "keypoints" in targets: keypoints = targets["keypoints"] keypoints = keypoints.reshape(keypoints.shape[0], -1).tolist() num_objs = len(bboxes) for i in range(num_objs): ann = {} ann["image_id"] = image_id ann["bbox"] = bboxes[i] ann["category_id"] = labels[i] categories.add(labels[i]) ann["area"] = areas[i] ann["iscrowd"] = iscrowd[i] ann["id"] = ann_id if "masks" in targets: ann["segmentation"] = coco_mask.encode(masks[i].numpy()) if "keypoints" in targets: ann["keypoints"] = keypoints[i] ann["num_keypoints"] = sum(k != 0 for k in keypoints[i][2::3]) dataset["annotations"].append(ann) ann_id += 1 dataset["categories"] = [{"id": i} for i in sorted(categories)] coco_ds.dataset = dataset coco_ds.createIndex() return coco_ds def get_coco_api_from_dataset(dataset): for _ in range(10): if isinstance(dataset, torchvision.datasets.CocoDetection): break if isinstance(dataset, torch.utils.data.Subset): dataset = dataset.dataset if isinstance(dataset, torchvision.datasets.CocoDetection): return dataset.coco return convert_to_coco_api(dataset) class CocoDetection(torchvision.datasets.CocoDetection): def __init__(self, img_folder, ann_file, transforms): super(CocoDetection, self).__init__(img_folder, ann_file) self._transforms = transforms def __getitem__(self, idx): img, target = super(CocoDetection, self).__getitem__(idx) image_id = self.ids[idx] target = dict(image_id=image_id, annotations=target) if self._transforms is not None: img, target = self._transforms(img, target) return img, target
f4181c7e25478f21c87d670378495933b5304fb8
f3b233e5053e28fa95c549017bd75a30456eb50c
/CDK2_input/L30/30-26_MD_NVT_rerun/set_4.py
8cf73f4cd9548453c53991a4c27c186eeea9f7b8
[]
no_license
AnguseZhang/Input_TI
ddf2ed40ff1c0aa24eea3275b83d4d405b50b820
50ada0833890be9e261c967d00948f998313cb60
refs/heads/master
2021-05-25T15:02:38.858785
2020-02-18T16:57:04
2020-02-18T16:57:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
740
py
import os dir = '/mnt/scratch/songlin3/run/CDK2/L30/MD_NVT_rerun/ti_one-step/30_26/' filesdir = dir + 'files/' temp_prodin = filesdir + 'temp_prod_4.in' temp_pbs = filesdir + 'temp_4.pbs' lambd = [ 0.00922, 0.04794, 0.11505, 0.20634, 0.31608, 0.43738, 0.56262, 0.68392, 0.79366, 0.88495, 0.95206, 0.99078] for j in lambd: os.chdir("%6.5f" %(j)) workdir = dir + "%6.5f" %(j) + '/' #prodin prodin = workdir + "%6.5f_prod_4.in" %(j) os.system("cp %s %s" %(temp_prodin, prodin)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, prodin)) #PBS pbs = workdir + "%6.5f_4.pbs" %(j) os.system("cp %s %s" %(temp_pbs, pbs)) os.system("sed -i 's/XXX/%6.5f/g' %s" %(j, pbs)) #submit pbs #os.system("qsub %s" %(pbs)) os.chdir(dir)
fb8191dad12514eabd745e1a21bf0a4e1f269672
c1960138a37d9b87bbc6ebd225ec54e09ede4a33
/adafruit-circuitpython-bundle-py-20210402/lib/adafruit_sgp30.py
4a58560aa73b763fdcb32ad065a5317380db7802
[]
no_license
apalileo/ACCD_PHCR_SP21
76d0e27c4203a2e90270cb2d84a75169f5db5240
37923f70f4c5536b18f0353470bedab200c67bad
refs/heads/main
2023-04-07T00:01:35.922061
2021-04-15T18:02:22
2021-04-15T18:02:22
332,101,844
0
0
null
null
null
null
UTF-8
Python
false
false
6,228
py
# SPDX-FileCopyrightText: 2017 ladyada for Adafruit Industries # # SPDX-License-Identifier: MIT """ `adafruit_sgp30` ==================================================== I2C driver for SGP30 Sensirion VoC sensor * Author(s): ladyada Implementation Notes -------------------- **Hardware:** * Adafruit `SGP30 Air Quality Sensor Breakout - VOC and eCO2 <https://www.adafruit.com/product/3709>`_ (Product ID: 3709) **Software and Dependencies:** * Adafruit CircuitPython firmware for the ESP8622 and M0-based boards: https://github.com/adafruit/circuitpython/releases * Adafruit's Bus Device library: https://github.com/adafruit/Adafruit_CircuitPython_BusDevice """ import time from adafruit_bus_device.i2c_device import I2CDevice from micropython import const __version__ = "2.3.4" __repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_SGP30.git" _SGP30_DEFAULT_I2C_ADDR = const(0x58) _SGP30_FEATURESETS = (0x0020, 0x0022) _SGP30_CRC8_POLYNOMIAL = const(0x31) _SGP30_CRC8_INIT = const(0xFF) _SGP30_WORD_LEN = const(2) class Adafruit_SGP30: """ A driver for the SGP30 gas sensor. """ def __init__(self, i2c, address=_SGP30_DEFAULT_I2C_ADDR): """Initialize the sensor, get the serial # and verify that we found a proper SGP30""" self._device = I2CDevice(i2c, address) # get unique serial, its 48 bits so we store in an array self.serial = self._i2c_read_words_from_cmd([0x36, 0x82], 0.01, 3) # get featureset featureset = self._i2c_read_words_from_cmd([0x20, 0x2F], 0.01, 1) if featureset[0] not in _SGP30_FEATURESETS: raise RuntimeError("SGP30 Not detected") self.iaq_init() @property # pylint: disable=invalid-name def TVOC(self): """Total Volatile Organic Compound in parts per billion.""" return self.iaq_measure()[1] @property # pylint: disable=invalid-name def baseline_TVOC(self): """Total Volatile Organic Compound baseline value""" return self.get_iaq_baseline()[1] @property # pylint: disable=invalid-name def eCO2(self): """Carbon Dioxide Equivalent in parts per million""" return self.iaq_measure()[0] @property # pylint: disable=invalid-name def baseline_eCO2(self): """Carbon Dioxide Equivalent baseline value""" return self.get_iaq_baseline()[0] @property # pylint: disable=invalid-name def Ethanol(self): """Ethanol Raw Signal in ticks""" return self.raw_measure()[1] @property # pylint: disable=invalid-name def H2(self): """H2 Raw Signal in ticks""" return self.raw_measure()[0] def iaq_init(self): """Initialize the IAQ algorithm""" # name, command, signals, delay self._run_profile(["iaq_init", [0x20, 0x03], 0, 0.01]) def iaq_measure(self): """Measure the eCO2 and TVOC""" # name, command, signals, delay return self._run_profile(["iaq_measure", [0x20, 0x08], 2, 0.05]) def raw_measure(self): """Measure H2 and Ethanol (Raw Signals)""" # name, command, signals, delay return self._run_profile(["raw_measure", [0x20, 0x50], 2, 0.025]) def get_iaq_baseline(self): """Retreive the IAQ algorithm baseline for eCO2 and TVOC""" # name, command, signals, delay return self._run_profile(["iaq_get_baseline", [0x20, 0x15], 2, 0.01]) def set_iaq_baseline(self, eCO2, TVOC): # pylint: disable=invalid-name """Set the previously recorded IAQ algorithm baseline for eCO2 and TVOC""" if eCO2 == 0 and TVOC == 0: raise RuntimeError("Invalid baseline") buffer = [] for value in [TVOC, eCO2]: arr = [value >> 8, value & 0xFF] arr.append(self._generate_crc(arr)) buffer += arr self._run_profile(["iaq_set_baseline", [0x20, 0x1E] + buffer, 0, 0.01]) def set_iaq_humidity(self, gramsPM3): # pylint: disable=invalid-name """Set the humidity in g/m3 for eCO2 and TVOC compensation algorithm""" tmp = int(gramsPM3 * 256) buffer = [] for value in [tmp]: arr = [value >> 8, value & 0xFF] arr.append(self._generate_crc(arr)) buffer += arr self._run_profile(["iaq_set_humidity", [0x20, 0x61] + buffer, 0, 0.01]) # Low level command functions def _run_profile(self, profile): """Run an SGP 'profile' which is a named command set""" # pylint: disable=unused-variable name, command, signals, delay = profile # pylint: enable=unused-variable # print("\trunning profile: %s, command %s, %d, delay %0.02f" % # (name, ["0x%02x" % i for i in command], signals, delay)) return self._i2c_read_words_from_cmd(command, delay, signals) def _i2c_read_words_from_cmd(self, command, delay, reply_size): """Run an SGP command query, get a reply and CRC results if necessary""" with self._device: self._device.write(bytes(command)) time.sleep(delay) if not reply_size: return None crc_result = bytearray(reply_size * (_SGP30_WORD_LEN + 1)) self._device.readinto(crc_result) # print("\tRaw Read: ", crc_result) result = [] for i in range(reply_size): word = [crc_result[3 * i], crc_result[3 * i + 1]] crc = crc_result[3 * i + 2] if self._generate_crc(word) != crc: raise RuntimeError("CRC Error") result.append(word[0] << 8 | word[1]) # print("\tOK Data: ", [hex(i) for i in result]) return result # pylint: disable=no-self-use def _generate_crc(self, data): """8-bit CRC algorithm for checking data""" crc = _SGP30_CRC8_INIT # calculates 8-Bit checksum with given polynomial for byte in data: crc ^= byte for _ in range(8): if crc & 0x80: crc = (crc << 1) ^ _SGP30_CRC8_POLYNOMIAL else: crc <<= 1 return crc & 0xFF
c810a8c7f61382cb93aa85d97410ffbc095726b3
7baebc3c3e8cb27a0e21ffd118e7ec11ad1dc1d3
/first_assignement/section4.py
4587b531fdd628a74359fe747547ba1374cd9dae
[]
no_license
robin-libert/INFO8003-1-OPTIMAL-DECISION-MAKING-FOR-COMPLEX-PROBLEMS
8e67a869d6cd9072d7bb3133c6c981f3331cd749
4374b33b2d660c8fb98a58418434d8d2e5598340
refs/heads/master
2021-01-02T03:01:39.420136
2020-04-13T11:29:03
2020-04-13T11:29:03
239,462,283
0
0
null
null
null
null
UTF-8
Python
false
false
4,713
py
from domain import Domain import random random.seed(42)#for reproductibility domain = Domain() def my_routine(T): """ Compute r(x,u) and p(x'|x,u) and a trajectory of size T """ p = {} r = {} #counters to compute the mean nr = {} np = {} counter = 0 ht = [] for i in domain.state_space: for state in i: for j in domain.state_space: for newState in j: for action in domain.action_space: r[(state, action)] = 0. p[(state, action, newState)] = 0. nr[(state, action)] = 0. np[(state, action, newState)] = 0. state = (3,0)#initial state ht.append(state) while counter < T: action = domain.action_space[random.randint(0,3)] ht.append(action) newState = domain.move(state, action) #new state with maybe some disturbance reward = domain.reward_signal(newState) ht.append(reward) ht.append(newState) newState2 = (min(max(state[0]+action[0],0),domain.n-1), min(max(state[1]+action[1],0),domain.m-1))#new state if there is no disturbances r[(state, action)] += reward nr[(state, action)] += 1. if newState == newState2: p[(state, action, newState2)] += 1. np[(state, action, newState2)] += 1. else: np[(state, action, newState2)] += 1. state = newState counter += 1 for i in domain.state_space: for state in i: for action in domain.action_space: if nr[(state, action)] > 0: r[(state, action)] = r[(state, action)] / nr[(state, action)] for i in domain.state_space: for state in i: for j in domain.state_space: for newState in j: for action in domain.action_space: if np[(state, action, newState)] != 0: p[(state, action, newState)] = p[(state, action, newState)] /np[(state, action, newState)] return (p, r, ht) def memoize(f): """ To optimize the Q function """ memo = {} def helper(a,b,c,d,e): if (a,b,c) not in memo: memo[(a,b,c)] = f(a,b,c,d,e) return memo[(a,b,c)] return helper @memoize def Q(state, action, N, r, p): """ Return the value of the state_action value function. state: a tuple (n,m) where 0<=n,m<=4 action: a tuple (a,b) where -1<=a,b<= 1 which belongs to domain.action_space N: the nnumber of steps r: dictionary containing r(x,u) previously computed for each state, action p: dictionary containing p(x'|x,u) previously computed for each state, action, new state """ if N == 0: return 0 else: mysum = 0 recurse = 0 for i in domain.state_space: for newState in i: recurse = max(Q(newState, domain.action_space[0], N-1, r, p),Q(newState, domain.action_space[1], N-1, r, p),Q(newState, domain.action_space[2], N-1, r, p),Q(newState, domain.action_space[3], N-1, r, p)) mysum += p[(state,action,newState)] * recurse return r[(state,action)] + domain.discount_factor * mysum def compute_JN_and_optimal_policy(N, rewards, probabilities): """ Compute an optimal policy and the value function """ optimal_J_mu_N = {} optimal_policy = {} for i in domain.state_space: for state in i: best_action = domain.action_space[0] maxi = Q(state, domain.action_space[0],N, rewards, probabilities) for action in domain.action_space[1:4]: current = Q(state, action,N, rewards, probabilities) if current > maxi: maxi = current best_action = action optimal_policy[state] = best_action optimal_J_mu_N[state] = maxi return (optimal_J_mu_N, optimal_policy) def tune_N(gamma=0.99, Br=19, erreur = 0.5): """ return the best value of N """ N = 1 e = ((2*(gamma**N))/(1-gamma)**2)*Br while e > erreur: N += 1 e = ((2*(gamma**N))/(1-gamma)**2)*Br return N if __name__ == "__main__": domain.setting = 0 T = 10000 N = tune_N()#compute N to have an error <= 0.5 probabilities, rewards, trajectory = my_routine(T) optimal_J_mu_N, optimal_policy = compute_JN_and_optimal_policy(N, rewards, probabilities) for i in domain.state_space: for state in i: print('current state = {} | optimal_JN = {}'.format(state, optimal_J_mu_N[state]))
760bd612f39858593c024b41140e20e18fedf54b
633be23fe191d1daf6adee05fc455520d6a378bd
/json-to-xml/json_to_xml.py
91cb119280de173bd0a1cca079366ee36df53078
[]
no_license
gabrielw33/Xml_Test
524745c9619289135aabfea278b7714b2f14497b
d79b0f4eee80a673e09fbdd9e7511431bb52db2e
refs/heads/master
2020-07-05T15:04:04.565633
2019-08-19T11:15:36
2019-08-19T11:15:36
202,680,084
0
0
null
2019-08-16T11:38:41
2019-08-16T07:27:33
Python
UTF-8
Python
false
false
748
py
import xml.etree.ElementTree as ET import json import sys import argparse import Function as F parser = argparse.ArgumentParser(description='') parser.add_argument('json', help='json file with configurations') parser.add_argument('xml', help='xml base file') parser.add_argument('-id', help='product id', default="mxb") args = parser.parse_args() if len(sys.argv) < 3: print("error:no params") tree = ET.parse(str(args.xml)) root = tree.getroot() with open(str(args.json)) as json_file: data = json.load(json_file) json_file.close() for k, v in data.items(): if v != -2: element = ET.SubElement( root.find('nvm'), 'param', F.DictForParamTAG(k, v)) root.set('productID', str(args.id)) tree.write('max4.xml')
1f344a548e0eb08347b4cbbc2725414f705f0872
5d89e400ab38309e144a3ff2082fe8500f70d952
/ProjectStructure/__init__.py
0e15df4929e7ef46a01ddefc566046afddc7ab84
[]
no_license
GarageManager/Doc_Converter
f9dbdb2b587a52fbd92b4f4fa046fa1970fbbcb6
b5655ed747107850b1c832cc48fbbd5c4d8f2f7c
refs/heads/master
2022-12-20T04:10:49.503929
2020-10-07T07:54:58
2020-10-07T07:54:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
522
py
from ProjectStructure.InterfaceInfo import InterfaceInfo from ProjectStructure.NamespaceInfo import NamespaceInfo from ProjectStructure.PropertyInfo import PropertyInfo from ProjectStructure.StructInfo import StructInfo from ProjectStructure.MethodInfo import MethodInfo, Method from ProjectStructure.ClassInfo import ClassInfo from ProjectStructure.FieldInfo import FieldInfo from ProjectStructure.EnumInfo import EnumInfo from ProjectStructure.CsFileInfo import FileInfo from ProjectStructure.EventInfo import EventInfo