blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
045849a6dcf37e6dfd8deaa91796aebe1f3f2334
c6609c161df66949656ca91d8a3d9f4d27a4c399
/rates_project_04122021/rates_client/rates_client/rate_client.py
71771ba20ad4886144213eb414be5cd5d7451817
[ "MIT" ]
permissive
t4d-classes/advanced-python_04122021
b93ea38c5b35af2b1eb06bc1d5fe6d3f0c1cf39f
07b27aea8ac3c7170eb66d5243c5cd841f41322c
refs/heads/master
2023-04-11T11:45:18.114381
2021-04-20T12:36:04
2021-04-20T12:36:04
357,016,025
0
0
null
null
null
null
UTF-8
Python
false
false
1,063
py
""" rate client module """ import socket import sys import pathlib import yaml from rates_shared.utils import read_config def main() -> None: """Main Function""" try: config = read_config() host = config["server"]["host"] port = int(config["server"]["port"]) with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as client_socket: client_socket.connect((host, port)) print(client_socket.recv(2048).decode("UTF-8")) while True: command = input("> ") if command == "exit": break else: client_socket.sendall(command.encode("UTF-8")) print(client_socket.recv(2048).decode("UTF-8")) client_socket.close() except ConnectionResetError: print("Server connection was closed.") except ConnectionRefusedError: print("Server is not running.") except KeyboardInterrupt: pass sys.exit(0) if __name__ == '__main__': main()
6b542f6ede6cde3cb763bfadd5e6b97c989bfb7f
051293c8772878ec04d9e7a81839ac1b4b7b01ee
/samples/sample_cli.py
dae2abcd1f8a8089cb4c7e33b9935f299b292489
[ "Apache-2.0" ]
permissive
siliconjesus/TCGstorageAPI
055b70b8db1de313137dc40017ed68f745f363f3
7fd3096d152e604bb836921f7cf3a03ffc987cab
refs/heads/master
2022-04-25T02:26:33.950835
2020-04-27T17:16:13
2020-04-27T17:16:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
26,386
py
#---------------------------------------------------------------------------- # Do NOT modify or remove this copyright # # Copyright (c) 2020 Seagate Technology LLC and/or its Affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # #**************************************************************************** # \file sample_cli.py # \brief Sample script showing how to use the TCGstorageAPI # Note: this script is an example only and uses hardcoded passwords; please change them. #-------------------------------------------------------------------------------------------------- import os import sys import logging import logging.handlers import argparse import struct import uuid from TCGstorageAPI.tcgapi import PskCipherSuites from TCGstorageAPI.tcgapi import Sed from TCGstorageAPI import keymanager as keymanager import TCGstorageAPI.tcgSupport as tcgSupport import helper as verifyidentity import datetime class Sedcfg(object): ''' This is a class for performing operations on the SED drive Attributes: dev: Device handle of the drive. ''' # # WARNING! WARNING! WARNING! # This sample script uses hardcoded values for the drive credentials. # This is not a good security practice. # Change these credential values to something more secure (up to 32-bytes in length)! # cred_table = { 'SID': 'ADMIN', 'C_PIN_Admin1': 'ADMIN1', 'Admin1': 'ADMIN1', 'C_PIN_User1': 'USER1', 'User1' : 'USER1', 'User2' : 'USER2', 'C_PIN_User2': 'USER2', 'EraseMaster': 'ERASEMASTER', 'BandMaster0': 'BANDMASTER0', 'BandMaster1': 'BANDMASTER1', 'BandMaster2': 'BANDMASTER2' } def __init__(self, dev): ''' The constructor for the class. Parameters: dev:Device handle of the drive. ''' os_type = {'linux2':self.linux_platform,'linux':self.linux_platform, 'win32':self.windows_platform, 'freebsd12':self.freebsd_platform} os_type[sys.platform](dev) logging.basicConfig( filename=self.log_filename, format="%(asctime)s %(name)s (%(threadName)s) - %(message)s", level=logging.DEBUG ) self.logger = logging.getLogger(self.log_filename) self.logger.debug('Start sedcfg Logger') self.psk = None self.keymanager = keymanager.KeyManager() # Build the SED object for the drive self.sed = Sed(self.devname, callbacks=self) for key, val in list(self.cred_table.items()): self.keymanager.setKey(key, val) self.BandLayout = sedbandlayout() self.BandLayout.bandauth(self) self.initial_cred = self.sed.mSID def linux_platform(self, devname): ''' The function to initialize parameters for the linux platform. Parameters: devname:Device handle of the drive. ''' self.log_filename = os.path.join(os.path.dirname(__file__), 'sedcfg.log') self.devname = devname def windows_platform(self, devname): ''' The function to initialize parameters for the windows platform. Parameters: devname:Device handle of the drive. ''' if getattr(sys, 'frozen', False): # frozen self.log_filename = os.path.join(os.path.dirname(sys.executable), 'sedcfg.log') else: # unfrozen self.log_filename = os.path.join(os.path.dirname(__file__), 'sedcfg.log') # For Windows we need to modify the input value from PD to the physical volume # Extract PD from string and take the number value to be used and extrapolate into \\.\PhysicalDrive# if ("PD" not in devname): print("Please pass drive in as PD<drive number>") print("Example: Disk 1 is PD1") exit (1) drive_number = devname[-1:] self.devname = "\\\\.\\PhysicalDrive" + drive_number def freebsd_platform(self, devname): ''' The function to initialize parameters for the bsd platorm. Parameters: devanme:Device handle of the drive. ''' self.log_filename = os.path.join(os.path.dirname(__file__), 'sedcfg.log') self.devname = devname def TlsOperation(self, args=None): ''' The function to enable and disable TLS on the drive. Parameters: args - Commandline arguments,i.e enable/disable ''' if sys.platform=="win32": print("Tls support not provided for Windows") return False if self.BandLayout.authority[1] == 'Admin1'and self.sed.checkPIN(self.BandLayout.authority[0], self.sed.mSID) == True: print("Please perform operation changecreds before Tls enable") return False auth = (self.BandLayout.authority[0], self.BandLayout.authority[1]) key = tcgSupport.getPsk(self.sed) if key == None: print("Pre-Shared Key not generated") return False toUse = self.sed.getPskEntry(0) for entryId in range(4): psk = self.sed.getPskEntry(entryId) if psk is None: print("Drive doesn't support TLS") return True if psk.Enabled == True and int(psk.CipherSuite,16) == PskCipherSuites.Value(self.sed.cipherSuite): if args.enabledisable == 'enable': print("Tls already enabled") return True if args.enabledisable == 'disable': return self.sed.setPskEntry(auth, toUse, Enabled=False, CipherSuite=self.sed.cipherSuite, PSK=key) if args.enabledisable == 'enable': return self.sed.setPskEntry(auth, toUse, Enabled=True, CipherSuite=self.sed.cipherSuite, PSK=key) elif args.enabledisable == 'disable': print(" TLS already disabled on the drive") return True else: print("Please enter your input to either enable or disable Tls on the drive") return False def device_identification(self): ''' The function to perform device identity attestation by validating the device certificate and digital signature Uses Tpersign method to sign an input string to return the signature. Succeeds if a drive is Seagate specific,fails otherwise ''' self.sed.fipsCompliance = self.sed.fipsCompliance() if self.sed.fipsCompliance != None: print("Drive being tested is a FIPS drive, device identification not supported") return # Pull the drive certificate self.logger.debug('Obtaining Drive certificate') device_cert = self.sed.get_tperSign_cert() # Validate the drive_certificate against the root certificate identity = verifyidentity.VerifyIdentity(device_cert) identity.validate_drive_cert() # Send a string to obtain the device signature string = str(datetime.datetime.today()) self.logger.debug('Performing digital signing operation') signature = self.sed.tperSign(bytes(string,encoding='utf8')) # Validate drive signature verify = identity.validate_signature(string, signature) if verify == True: print("Device identification successfull, drive being tested is a Seagate drive") else: print("Drive being tested is not a Seagate drive") return def take_ownership(self, args=None): ''' The function to take owenership of the drive by changing default Admin credentials, to create band authorities and changing credentials of the created band authorities. Parameters: args - Commandline arguments Returns: True: Successful completion of taking drive ownership. False: Failure of taking drive ownership. ''' self.logger.debug('Taking ownership of the drive') if self.sed.checkPIN(self.BandLayout.authority[0], bytes(self.sed.mSID,encoding='utf8')) == False: print("Revert the drive to factory state,Drive ownership already taken") return False # Change PIN of Admin to a new PIN from default value good = self.sed.changePIN(self.BandLayout.authority[0], self.keymanager.getKey(self.BandLayout.authority[0]), (None, self.initial_cred)) if good is True: if self.BandLayout.authority[1] == 'Admin1': # Activate the Locking SP of the drive only for OPAL case if self.sed.activate(self.BandLayout.authority[0]) == False: return False self.initial_cred = tcgSupport.getCred(self.keymanager,'SID') # Change PIN of Admin of Locking SP if self.sed.changePIN(self.BandLayout.authority[1], self.keymanager.getKey(self.BandLayout.authority[1]), (None, self.initial_cred), self.BandLayout.auth_objs[0]) == False: return False if self.enable_authority() is True: print('Credentials of the drive are changed successfully') return True return False def enable_authority(self): ''' The function to enable authorities and change their credentials. Returns: True: Enable Authority successfull. False: Failure to Enable Authority. ''' self.logger.debug('Enable Authority on the drive') # Enable two users User1 and User2 and change their password to USER1 and USER2, Bandmaster1 is enabled by default in case of Enterprise. for obj in self.BandLayout.auth_objs[3:]: if self.sed.enableAuthority(self.BandLayout.authority[1], True, obj) is True: continue else: return False # By default global range is enabled in Entperise drives if self.BandLayout.enabled_bands: if self.sed.changePIN(self.BandLayout.enabled_bands[0], self.keymanager.getKey(self.BandLayout.enabled_bands[0]), (None, self.initial_cred), self.BandLayout.enabled_bands[0])!= True: return False # Change pin of band authorities to a new value for (obj, auth) in zip(self.BandLayout.auth_objs[1:], self.BandLayout.authority[2:]): if self.BandLayout.authority[1] == 'Admin1': auth = 'Admin1' self.initial_cred = self.keymanager.getKey(auth) if self.sed.changePIN(auth, self.keymanager.getKey(obj), (None, self.initial_cred), obj) == False: return False else: continue return True def configure_bands(self, args): ''' The function to configure bands on the drive and assign bands to authorities. Parameters: args - Commandline arguments: Bandno: Bandnumber to be configured RangeStart: RangeStart value Rangelength:Rangelength value LockOnReset: True or False Returns: True: Successfull completion of configuring bands. False: Failure to configure bands. ''' self.logger.debug('Configuring bands on the drive') if self.sed.checkPIN(self.BandLayout.authority[0], self.sed.mSID) == True: print("Take ownership of the drive before configuring the drive") return False # Enable band and set ranges for band if self.BandLayout.authority[1] == 'Admin1': auth = 'Admin1' else: auth = 'BandMaster' + args.Bandno if auth == 'Admin1' and args.Bandno == '0': print("Global range not present in Opal drives") return False elif args.Bandno == '0' and args.RangeStart != None: print("Can't change range for global locking range") return False elif args.Bandno != '0'and args.RangeStart == None: print("Please provide RangeStart and RangeLength values") return False configure = self.sed.setRange(auth, int(args.Bandno), authAs=(auth, self.keymanager.getKey(auth)), RangeStart=int(args.RangeStart) if args.RangeStart is not None else None, RangeLength=int(args.RangeLength) if args.RangeLength is not None else None, ReadLockEnabled=1, WriteLockEnabled=1, LockOnReset=args.LockOnReset, ReadLocked=0, WriteLocked=0) if auth == 'Admin1' and configure is True: # Give access to users to read and write unlock range only in OPAL case, Bands are assigned to authorities by default in case of Enterprise. range_objs = ['ACE_Locking_Range1_Set_RdLocked', 'ACE_Locking_Range1_Set_WrLocked', 'ACE_Locking_Range2_Set_RdLocked', 'ACE_Locking_Range2_Set_WrLocked'] if args.Bandno == '1': range_obj = range_objs[:2] else: range_obj = range_objs[2:] for objts in range_obj: ret = self.sed.enable_range_access(objts, 'User' + args.Bandno, auth) if ret == False: return False if configure == True: print('Band{} is configured'.format(args.Bandno)) return True return False def enable_fipsmode(self, args=None): ''' The function to enable FIPS mode on the drive. Returns: True: Successfull completion of enable fips. False: Failure to enable fips. ''' self.logger.debug('Enabling FIPS mode') # Retrieve FIPS status if self.fips_status(self.sed) is True: return True # Check the credentials of authorities to confirm ownership for auth in self.BandLayout.authority: if self.sed.checkPIN(auth, self.sed.mSID) is True: print("Please take the ownership of the drive before FIPS enable operation") return False # Check whether Locking is enabled for any of the bands if self.BandLayout.authority[1] == 'Admin1': auth, start = 'Admin1', 1 else: auth, start = 'Anybody', 0 lock_enabled = False for bandnumber in range (start, 3): locking_info, status = self.sed.getRange(bandnumber, auth) if status is True and locking_info is not None: if getattr(locking_info, 'ReadLockEnabled') == True or getattr(locking_info, 'WriteLockEnabled') == True: lock_enabled = True break if lock_enabled == False: print("Please set ReadLockEnabled and WriteLockEnabled to True for any of the enabled bands by performing configure operation") return False # Disable Makers Authority if self.sed.enableAuthority('SID', False, 'C_PIN_Makers') == False: print("Failed to disable Makers Authority") return False # Disable Firmware Download for uid in self.sed.ports.keys(): p = self.sed.getPort(uid) if p is not None and hasattr(p, 'Name') and p.Name == 'FWDownload': if p.PortLocked != True: if self.sed.setPort(uid, PortLocked=True, LockOnReset=True) == False: print("Failed to disable firmware download port") return False print("FIPS mode of the drive enabled successfully") return True def lock_unlock_bands(self, args): ''' The function to lock and unlock the bands present on the drive Parameters: args - Command line arguments: lock/unlock: Lock/Unlock the band bandno: Bandnumber Returns: True : Successfull completion of the operation. False: Failure of the operation ''' if self.sed.checkPIN(self.BandLayout.authority[0], self.sed.mSID) == True: print("Take ownership of the drive and configure band before lock/unlock") return False if args.bandno == '0' and self.BandLayout.authority[1] == 'Admin1': print("Global range not present in Opal drives") return False Range_info = self.sed.getRange(int(args.bandno), self.BandLayout.authority[1]) if Range_info == False: return False print("Band state before lock/unlock =\n{}".format(Range_info[0])) self.logger.debug('Locking/Unlocking bands on the drive') if(args.lockunlock == "lock"): lock_unlock = 1 if (Range_info[0].ReadLocked == 1): print("Band{} already in locked state".format(args.bandno)) return True elif(args.lockunlock == "unlock"): lock_unlock = 0 if (Range_info[0].ReadLocked == 0): print("Band{} already in unlocked state".format(args.bandno)) return True # Perform a lock-unlock on the range auth = 'User' + args.bandno if self.BandLayout.authority[1] == 'Admin1' else 'BandMaster' + args.bandno lock_unlock = self.sed.setRange(auth, int(args.bandno), authAs=(auth, self.keymanager.getKey(auth)), ReadLocked=lock_unlock, WriteLocked=lock_unlock) if lock_unlock == True: print("Band{} {}ed successfully by {}".format(args.bandno, args.lockunlock, auth)) #print(self.sed.getRange(int(args.bandno), self.BandLayout.authority[1])[0]) return True print("Range not configured properly") return False def datastore(self, args): ''' The function to read/write small amount of data to the datastore on the drive. Returns: True: Successfull completion of read/write data. False: Failure to read/write data. ''' auth = self.BandLayout.authority[1] self.table_number = 0 if auth == 'Admin1' and self.sed.checkPIN('SID', self.sed.mSID): print("Please perform operation changecreds before using the datastore") return False for entryId in range(4): psk = self.sed.getPskEntry(entryId) if psk is None: break if psk.Enabled == True and psk.CipherSuite == self.sed.cipherSuite: print("Please disable Tls") return False self.data = nvdata = { 'fips': self.sed.fipsCompliance , # Store the FIPS status of the drive. 'iv': uuid.uuid4().bytes, # initialization vector used for hashes/wrappings 'Ids': [None, None, None, None], # keyID for each credential } self.sed.data_length = (len(tcgSupport.serialize(self.data))) self.logger.debug('Reading/Writing data to the datastore on the drive') if args.readwrite == "write": if auth == 'Admin1': if self.sed.writeaccess('User1', self.table_number) == False: return False if self.sed.writeData(self.BandLayout.authority[2], self.data) == True: return True return False if args.readwrite == "read": if auth == 'Admin1': if self.sed.readaccess('User1', self.table_number) == False: return False readData = self.sed.readData(self.BandLayout.authority[2]) if readData == None: print("DataStore is empty, no data to read") return True elif readData == False: return False print(readData) return True def erase_drive(self, args): ''' The function to revert the drive back to factory state. Parameters: args - Commadline arguments. psid: PSID number of the drive Returns: True : Successfull completion of the operation. False: Failure of the operation ''' self.logger.debug('Erasing the drive') result = self.sed.revert(args.psid) if (result == True): return True else: print("Wrong PSID") return False @staticmethod def fips_status(sed): ''' The function to retrieve the FIPS compliance and FIPS operating mode from the drive Parameters: sed - SED object Returns: True - If drive is FIPS and drive not operating in FIPS mode. False - If drive is not FIPS and if drive is FIPS and operating in FIPS mode. ''' # Checking Fips Compliance Descriptor if sed.fipsCompliance == None or sed.fipsCompliance["standard"] != "FIPS 140-2" and sed.fipsCompliance["standard"] != "FIPS 140-3": print("Drive doesn't support FIPS 140-2 or FIPS 140-3 Standard") return True # Checking FIPS approved mode if sed.fipsApprovedMode is True: print("Drive operating in FIPS mode") return True class sedbandlayout(object): ''' This a class defining the band Layout of the drive. ''' # Class can be modified to add multiple users in a dynamic fashion def __init__(self): ''' The function defines parameters for the BandLayout of the drive. ''' self.Ent_auth = ['SID', 'EraseMaster', 'BandMaster1', 'BandMaster2'] self.Opal_auth = ['SID', 'Admin1', 'User1', 'User2'] self.Ent_objs = ['EraseMaster', 'BandMaster1', 'BandMaster2', 'C_PIN_BandMaster1', 'C_PIN_BandMaster2'] self.Opal_objs = ['C_PIN_Admin1', 'C_PIN_User1', 'C_PIN_User2', 'User1', 'User2'] def bandauth(self, sedbandcfg): ''' The function to choose between Enterprise and Opal band layout. ''' if sedbandcfg.sed.SSC == 'Enterprise': self.authority = self.Ent_auth self.auth_objs = self.Ent_objs self.enabled_bands = ['BandMaster0'] else: self.authority = self.Opal_auth self.auth_objs = self.Opal_objs self.enabled_bands = None class argParser(object): ''' This is a class to parse the command line arguments. ''' prog = 'sample_cli' description = 'Sample CLI that implements TCG protocol for SED operations' def getParser(self): ''' The Function to parse command line arguments and initialize operations. ''' main = self.main = argparse.ArgumentParser( prog=self.prog, description=self.description, ) main.add_argument('device', help='Specific wwn or device names of drives to operate on') subparser = main.add_subparsers(title='subcommand') enableTls = subparser.add_parser('Tls', help='EnableTls on the Drive') enableTls.add_argument('enabledisable', help='enable or disable Tls communication') enableTls.set_defaults(operation=Sedcfg.TlsOperation) datastore = subparser.add_parser('store', help='Use the DataStore on the Drive') datastore.add_argument('readwrite', help='Read/Write the data from the DataStore') datastore.set_defaults(operation=Sedcfg.datastore) revert = subparser.add_parser('revert', help='Revert the drive back to factory state') revert.add_argument('psid', help='PSID of the drive used to revert the drive back to factory state') revert.set_defaults(operation=Sedcfg.erase_drive) changecreds = subparser.add_parser('changecreds', help='Change the drive default credentials') changecreds.set_defaults(operation=Sedcfg.take_ownership) configure = subparser.add_parser('configure', help='Configure the bands by setting new band ranges') configure.add_argument('Bandno', help='Band number to configure') configure.add_argument('--RangeStart', help='Rangestart value, Default(4097)') configure.add_argument('--RangeLength', help='RangeLength value, Default(219749770)') configure.add_argument('LockOnReset', help='True or False value for LockOnReset') configure.set_defaults(operation=Sedcfg.configure_bands) enablefips = subparser.add_parser('enablefips', help='Enable FIPS mode on the fips drive') enablefips.set_defaults(operation=Sedcfg.enable_fipsmode) bandops = subparser.add_parser('bandops', help='Perform a lock or an unlock on the band') bandops.add_argument('lockunlock', help='Lock, Unlock the band') bandops.add_argument('bandno', help='band number to be locked unlocked') bandops.set_defaults(operation=Sedcfg.lock_unlock_bands) return main def doParse(self, args): ''' The function to obtain arguments. ''' if args is not None: args = shlex.split(args) else: args = sys.argv[1:] namespace = self.getParser().parse_args(args) return namespace def main(args=None): drive_namespace = argParser().doParse(args) sedcfg = Sedcfg(drive_namespace.device) if sedcfg.sed.SSC != 'Enterprise' and sedcfg.sed.SSC != 'Opalv2': print("Unable to retrieve SED functionality of the device. Enable OS to allow secure commands ") return 1 sedcfg.device_identification() rv = drive_namespace.operation(sedcfg, drive_namespace) if rv is not True: print("Operation failed") return 1 else: print("Operation completed successfully") if __name__ == "__main__": sys.exit(main())
58ef79ce89e1f6bd6f29e494daffced31fdb85b4
f51f978026c9b04f78ede0a7465cf0db0a863777
/Packages/numerical.py
cb77cf4829203f873f68cd4cb8dbfdb50c2bd828
[]
no_license
TurakaSrilakshmi123/Problem-Solving-Programming-in-Python-June-2019
ef7397caa5aad561155784e48e5dedfe82f46e1f
de943b797e2345b9d3b187dd588b2d689097618e
refs/heads/master
2020-06-03T08:34:32.422311
2019-06-27T04:16:35
2019-06-27T04:16:35
191,511,063
0
0
null
null
null
null
UTF-8
Python
false
false
401
py
def isPrime(n): flag = 1 if n == 2: return True for i in range(2,n//2+1): if n % i == 0: flag = 0 return False if flag == 1: return True def numberOfPrimeFactors(n): if isPrime(n): return 1 count = 0 for i in range(2,n//2+1): if(isPrime(i) and n % i == 0): count = count + 1 return count
6ebdda91bfa552e387b3967c6aef821e345699a3
97e6c6c61154f7d40846c01b34e6cec7bb09d980
/quickdb/sql2mapreduce/agg.py
465fef43f1a3fc8014a4bf6c6e5b462102ac9185
[]
no_license
michitaro/quickdb
f975f0a979517299911f797c519fea78f9c48168
6444795ddb869545bf166c870f5ba0d1f0d56944
refs/heads/master
2020-06-15T14:00:38.701760
2020-02-19T01:13:07
2020-02-19T01:13:07
195,318,222
0
0
null
null
null
null
UTF-8
Python
false
false
7,521
py
import abc from quickdb.datarake.safeevent import SafeEvent from typing import ( Any, Callable, Dict, List, NamedTuple, Optional, Tuple, Type, Union, cast) import numpy from quickdb.datarake.interface import Progress, ProgressCB, RunMakeEnv from quickdb.sql2mapreduce.numpy_context import NumpyContext from quickdb.sql2mapreduce.sqlast.sqlast import ( ColumnRefExpression, Context, Expression, FuncCallExpression, Select, SqlError) from quickdb.sspcatalog.patch import Patch class AggCall(metaclass=abc.ABCMeta): # pragma: no cover @abc.abstractmethod def __init__(self, args: List[Expression], named_args: Dict[str, Expression], agg_star: bool): ... @abc.abstractmethod def mapper(self, context: Context): ... @abc.abstractmethod def reducer(self, a, b): ... @abc.abstractmethod def finalizer(self, a): ... @property def subaggrs(self) -> List['AggCall']: return [] def result(self, context: 'AggContext'): return context._agg_results[self][context._group_value] class AggContext(NumpyContext): def __init__(self, patch: Patch, agg_results: Dict, group_value, shared: Dict = None): super().__init__(patch, shared=shared) self._group_value = group_value self._agg_results = agg_results def evaluate_FuncCallExpression(self, e: FuncCallExpression): if e in self._agg_results: return self._agg_results[e][self._group_value] return super().evaluate_FuncCallExpression(e) def sliced_context(self, slice: Union[slice, numpy.ndarray], group_value): return AggContext(self._patch[slice], self._agg_results, group_value, self._shared) @property def size(self): return self._patch.size class FinalizeContext(AggContext): def __init__(self, agg_results: Dict, group_value, shared: Dict = None): super().__init__(None, agg_results, group_value, shared=shared) # type: ignore class AggQueryResult(NamedTuple): group_by: Dict[Any, List] target_names: List[str] class PickOneAggCall(AggCall): def __init__(self, args: List[Expression], named_args: Dict[str, Expression]): self.a = args[0] def mapper(self, context: Context): a = self.a(context) if len(numpy.unique(a)) >= 2: # pragma: no cover raise SqlError(f'Non unique values in {self.a}') return a[0] def reducer(self, a, b): if a != b: # pragma: no cover raise SqlError(f'Non unique values in {self.a}') return a def finalizer(self, a): return a def run_agg_query(select: Select, run_make_env: RunMakeEnv, shared: Dict = None, progress: ProgressCB = None, interrupt_notifiyer: SafeEvent = None): from .agg_functions import agg_functions make_env = ''' from quickdb.sql2mapreduce.agg import agg1_env rerun, mapper, reducer, finalizer = agg1_env(agg, select, agg_results, shared) ''' check_select(select) aggs: List[Tuple[Optional[Expression], AggCall]] = [] def pick_aggs(e: Expression): if isinstance(e, FuncCallExpression) and e.name in agg_functions: cls = cast(Type[AggCall], agg_functions[e.name]) # We need `cast` due to pyright's bug a = cls(e.args, e.named_args, e.agg_star) walk_subaggrs(a, lambda sa: aggs.append((None, sa))) aggs.append((e, a)) for target in select.target_list: target.val.walk(pick_aggs) if is_context_dependent(target.val): aggs.append((target.val, PickOneAggCall([target.val], {}))) if len(aggs) == 0: raise SqlError(f'No aggregation operation') # run aggregation queries agg_results: Dict[Union[Expression, AggCall], Any] = {} for i, (e, agg) in enumerate(aggs): def progress1(p1: Progress): if progress: progress(Progress(done=p1.done + i * p1.total, total=p1.total * len(aggs))) env_context = {'agg': agg, 'select': select, 'agg_results': agg_results, 'shared': shared} result = run_make_env(make_env, env_context, progress1, interrupt_notifiyer) agg_results[agg] = result if e: agg_results[e] = result group_values = next(iter(agg_results.values())).keys() target_list = {} for gv in group_values: context = FinalizeContext(agg_results, gv, shared=shared) target_list[gv] = [ agg_results[t.val][gv] if t.val in agg_results else t.val(context) for t in select.target_list ] return AggQueryResult( target_list, [t.name or f'col{i}' for i, t in enumerate(select.target_list)], ) def is_context_dependent(root: Expression): from .agg_functions import agg_functions context_dependent_expressions: List[Expression] = [] def probe(e: Expression): if isinstance(e, ColumnRefExpression): context_dependent_expressions.append(e) def is_agg(e: Expression): return isinstance(e, FuncCallExpression) and e.name in agg_functions root.walk(probe, is_agg) return len(context_dependent_expressions) > 0 def check_select(select: Select): # pragma: no cover if select.sort_clause: raise SqlError(f'ORDER clause is not allowed in aggregation query') if select.limit_count: raise SqlError('LIMIT clause is not allowed in aggregation query') if select.limit_offset is not None: raise SqlError('OFFSET is not supported') def walk_subaggrs(a: AggCall, f: Callable[[AggCall], None]): q = a.subaggrs while len(q) > 0: a = q.pop(0) f(a) q += a.subaggrs MapperResult = Dict def agg1_env(agg: AggCall, select: Select, agg_results: Dict, shared: Dict): rerun = select.from_clause.relname def mapper(patch: Patch) -> MapperResult: context = AggContext(patch, agg_results, group_value=None, shared=shared) if select.where_clause: context = context.sliced_context(select.where_clause(context), None) if select.group_clause: mapped_values = {} group_values = [gc(context) for gc in select.group_clause] gvs, gi = multi_column_unique(group_values) for i, gv in enumerate(gvs): mapped_values[gv] = agg.mapper(context.sliced_context(gi == i, gv)) return mapped_values else: if context.size > 0: return {None: agg.mapper(context)} else: return {} def reducer(a: MapperResult, b: MapperResult): for k, v in b.items(): if k in a: a[k] = agg.reducer(a[k], v) else: a[k] = v return a def finalizer(a): return {k: agg.finalizer(v) for k, v in a.items()} return rerun, mapper, reducer, finalizer def multi_column_unique(arr: List[numpy.ndarray]) -> Tuple[List[Tuple], numpy.ndarray]: ''' Returns V, I V: list of group values I: group index ''' if len(arr) == 1: # just for performance V, I = numpy.unique(arr[0], return_inverse=True) V = [(v,) for v in V] else: u = [numpy.unique(a, return_inverse=True) for a in arr] ii = numpy.array([i for v, i in u]).T vv = [v for v, i in u] II, I = numpy.unique(ii, axis=0, return_inverse=True) V = [tuple(vv[k][l] for k, l in enumerate(j)) for j in II] return V, I # type: ignore
abe2dcd4cac371c04bab58961142da554d221fc3
6cc14ff36ef4a6f46000e2b5b1ecbe9d9ffa289d
/Python/Regular_Expressions.py
57420cb310a87f716551312c2c8dc9f51ab1d162
[]
no_license
mominpasha/Practice-Code-Samples
bc45b5b49b68252c67b57a7a031b27d1018c6474
f241a4e35a35d414fee0ee529dd090a438d0dbee
refs/heads/master
2021-08-28T14:14:30.519680
2017-12-12T12:42:24
2017-12-12T12:42:24
103,299,216
0
0
null
null
null
null
UTF-8
Python
false
false
1,524
py
#%% import re result = re.match("Momin","My name is Momin Pasha") print(result) #%% result = re.search("Momin","My name is Momin Pasha") print(result) #%% result.group() result.start() result.end() result.span() #%% result = re.findall("the","The history of the great king of the kingdom of the apes lies in the east of the west of the world") print(result) #%% result = re.search("\d","My name is Momin Pasha. My ID is 3301") print(result.group(),result.span()) result = re.search("\D","My name is Momin Pasha") print(result.group(),result.span()) result = re.search("\s","My name is Momin Pasha") print(result.group(),result.span()) result = re.search("\S","My name is Momin Pasha") print(result.group(),result.span()) result = re.search("\w"," My name is Momin Pasha") print(result.group(),result.span()) result = re.search("\W","My name is Momin Pasha") print(result.group(),result.span()) #%% result = re.search(".","My name is Momin Pasha")#matches any charcter other than newline character print(result.group(),result.span()) result = re.search(".","\nMy name is Momin Pasha") print(result.group(),result.span()) #%% #[] specifies a character class one wishes to match result = re.search("[1$]","My name is Momin Pasha") print(result.group(),result.span()) #%% po = re.compile("momin") #returns a pattern object which can be used anywhere print(re.search(po,"my name is momin pasha")) #%% po = re.compile("wipro") string = "wipro wipro wipro wipro wipro" re.split(po,string)
f9ed10bc581a959ecacc6f7e395dd6fef7ea68b0
016f96e528141db111f15a4c00a0fc46e61cdff6
/lib/emailses/urls.py
5fb0d6077dd92bf4cd7ecabb113f5b0498156de9
[ "BSD-2-Clause" ]
permissive
hdknr/emailqueue
3d02407b06a492cdf9b89fde2b06c766cd500555
05e108562f4fb612440f769973b9a3d02c11afcd
refs/heads/master
2021-01-23T20:13:04.807258
2015-10-08T08:41:51
2015-10-08T08:41:51
20,243,165
0
0
null
null
null
null
UTF-8
Python
false
false
131
py
from django.conf.urls import url import views urlpatterns = [ url(r'(?P<topic>.+)', views.notify, name='emailses_notify'), ]
193e2e78f289aa1bb05e4b344b5c7d17b61c984e
6b0161214e4db57a81d3b4432d82c874c7106f13
/couchbase/_pyport.py
20700a813860e5ed162b08ac93b31aa54775c92d
[ "Apache-2.0" ]
permissive
neilalbrock/couchbase-python-client
de9d6115d1240f56f4cb7b57aee7e8765c5c7d1f
95789e3d49c42613fe719bbd02e6d9ad30216334
refs/heads/master
2021-01-15T18:51:31.311163
2013-10-14T13:58:28
2013-10-14T13:58:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,140
py
# # Copyright 2013, Couchbase, Inc. # All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This module contains various mappings for modules which have had # their names changed across Python major versions try: import urllib.parse as ulp from urllib.request import urlopen from urllib.parse import parse_qs except ImportError: import urllib as ulp from urllib2 import urlopen from urlparse import parse_qs try: long = long except NameError: long = int try: xrange = xrange except NameError: xrange = range try: basestring = basestring except NameError: basestring = str
bf90be02d2fafe1561a49ed955d60d56bb46aba3
466114a10af7b2e148cc39a4af1461fd169d42af
/apps/movies/urls.py
f40b4e2921541aaa75d58c8c657d193fa9fef670
[]
no_license
peter-zsn/api_test
0c46b91d7ed5f98d15c67c5caa9cee994ea2e880
4bc4e866a79810affa5020d9da8fbabcec2c7bb3
refs/heads/master
2023-02-24T10:32:46.156718
2021-01-25T08:02:08
2021-01-25T08:02:08
209,009,071
0
0
null
null
null
null
UTF-8
Python
false
false
192
py
# coding: utf-8 from django.conf.urls import url, include from apps.movies import views urlpatterns = [ url(r'^getList$', views.getList), # 获取电影列表信息接口 ]
3055ffae2a22fc351a17eea8579fba30bbc3769e
d6f67251c016e7d105f8ce2fd3a94af449657e8e
/2021/day_02/__init__.py
9ca25cf3a85cf0452b140ce915fa65f028fe97ab
[]
no_license
DanaMC18/advent_of_code
6f8dedec0907f34bd99a4b50798cdbb852f800b6
32ab8170e25bf375db8ddc5e42fb6cc9379fce4a
refs/heads/master
2022-12-15T14:27:16.524364
2022-12-08T04:14:52
2022-12-08T04:14:52
225,783,965
0
0
null
null
null
null
UTF-8
Python
false
false
23
py
"""Init 2021 day 2."""
7e768dbc4e7dc51e1a08a60fbd0065f7bdc79ec2
c2ebcd88d1ba2324530ab9e6ff89a63a5242900f
/plugins/gavanna_plugin.py
c535bd0920161def32ca6b0f86235ac54ba25cc1
[ "MIT" ]
permissive
joel-wright/DDRPi
83ddc326f7be4871f46a076909452be8ed4bcf8b
9d51f0f8702af0fba068f0346e051d6579e05e16
refs/heads/master
2016-09-06T15:08:38.974215
2013-02-17T16:49:24
2013-02-17T16:49:24
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,204
py
__authors__ = ['Andrew Taylor'] import logging import pygame import random import time from datetime import datetime from DDRPi import DDRPiPlugin class GavannaPlugin(DDRPiPlugin): pulse_rate = 2000 pulse_increasing = 1 pulse_last_ratio = 0 def post_invalidate(self): self.changed = 1 def configure(self, config, image_surface): """ This is an example of an end user module - need to make sure we can get the main image surface and config to write to them both... """ self.ddrpi_config = config self.ddrpi_surface = image_surface self.clock = pygame.time.Clock() def __name__(self): return 'Text Plugin' def start(self): """ Start writing to the surface """ # Setup recurring events return None def stop(self): """ Stop writing to the surface and clean up """ # Stop recurring events return None def pause(self): return None def resume(self): self.post_invalidate() return None def handle(self, event): """ Handle the pygame event sent to the plugin from the main loop """ return None def draw_heart(self, colour, x_pos, y_pos, fill): w = self.ddrpi_surface.width h = self.ddrpi_surface.height heart = (0x06, 0x09, 0x11, 0x22, 0x11, 0x09, 0x06); if (fill > 0): heart = (0x06, 0x0F, 0x1F, 0x3E, 0x1F, 0x0F, 0x06); heart_height = 6 heart_width = len(heart) for x in range(0, heart_width): for y in range(0, heart_height): pixel_value = (heart[x] >> y) & 0x01 if (pixel_value == 1): self.ddrpi_surface.draw_tuple_pixel(x+x_pos,y+y_pos, colour) return None def update_surface(self): """ Write the updated plugin state to the dance surface and blit """ w = self.ddrpi_surface.width h = self.ddrpi_surface.height for x in range(0,w): for y in range(0,h): self.ddrpi_surface.draw_tuple_pixel(x,y, (0,0,0)) self.ddrpi_surface.draw_text("Gav", (0xFF,0xFF,0xFF), 3, 0) self.ddrpi_surface.draw_text("Anna", (0xFF,0xFF,0xFF), 0, 11) # Calculate the red value for the heart's centre ratio = int(255.0 * (float(pygame.time.get_ticks() % self.pulse_rate) / float(self.pulse_rate))) # Increase then decrease the value self.pulse_increasing = 1 pulse_mod = pygame.time.get_ticks() % (2*self.pulse_rate) # Calculate which if (pygame.time.get_ticks() % (2*self.pulse_rate) > self.pulse_rate): self.pulse_increasing = -1 # Work out the red value red_value = ratio if (self.pulse_increasing == -1): red_value = 255 - ratio # Draw the fading heart... self.draw_heart((red_value, 0x00, 0x00), w/2 -4, h/2 - 2, 1) # .. and a solid outline self.draw_heart((0xFF, 0x00, 0x00), w/2 -4, h/2 - 2, 0) # Limit the frame rate self.ddrpi_surface.blit() # Rate limit it self.clock.tick(25) def display_preview(self): """ Construct a splash screen suitable to display for a plugin selection menu """ w = self.ddrpi_surface.width h = self.ddrpi_surface.height # Background is black for x in range(0,w): for y in range(0,h): self.ddrpi_surface.draw_tuple_pixel(x,y, (0,0,0)) # Draw a solid red heart in the middle (ish) self.draw_heart((0xFF, 0x00, 0x00), w/2 -4, h/2 - 2, 1) self.ddrpi_surface.blit()
6c1b90f51e34233524e5e26a5c9a8f7430194532
30e7adc325de1f52c624047dfd8775d9713ef74f
/bin/rename_contigs.py
fbfd52a6e67c1443ba7e599e61f23f7daa20e904
[ "MIT" ]
permissive
Arcadia-Science/metagenomics
f44572e256baf7125d48c7984d2399754605c866
3f49be3a1706a9561a68051d34065c2464acf726
refs/heads/main
2023-06-11T08:31:48.251809
2023-05-25T18:28:00
2023-05-25T18:28:00
550,378,025
27
2
MIT
2023-05-24T21:51:22
2022-10-12T16:57:58
Nextflow
UTF-8
Python
false
false
1,926
py
#!/usr/bin/env python3 import argparse import os import sys import gzip from Bio import SeqIO from Bio.SeqRecord import SeqRecord # Arguments def parse_args(args=None): Description = "Rename contigs in a FASTA file after assembly." Epilog = "Example usage: rename_contigs.py <FASTA> <ASSEMBLER> <OUTPUT>" parser = argparse.ArgumentParser(description="Rename assembled contig headers produced from assembly programs") parser.add_argument("--input", metavar="FASTA", help="Assembly file in FASTA format") parser.add_argument( "--assembler", metavar="ASSEMBLER", nargs="?", help="Assembly algorithm that produced the FASTA file for propagating in contig names", ) parser.add_argument( "--output", metavar="OUTPUT", help="Output name of reconfigured assembly FASTA file with new contig header names", ) return parser.parse_args(args) # Read in fasta file and rename contigs def rename_contigs(fasta, assembler, output): contig_id = 0 name = os.path.basename(fasta).replace(".fasta.gz", "").strip().splitlines()[0] with gzip.open(output, "wb") as outfile: with gzip.open(fasta, "rt") as handle: for seq_record in SeqIO.parse(handle, "fasta"): contig_id = contig_id + 1 newid = str(contig_id).zfill(7) if assembler is not None: header = ">" + assembler + "_" + name + "_contig_" + str(newid) + "\n" else: header = ">" + name + "_contig_" + str(newid) + "\n" seq = str(seq_record.seq) + "\n" outfile.write(header.encode()) outfile.write(seq.encode()) handle.close() outfile.close() def main(args=None): args = parse_args(args) rename_contigs(args.input, args.assembler, args.output) if __name__ == "__main__": sys.exit(main())
219d2f333e3269a900b48b27c08cc48a24363b80
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02707/s167454120.py
27b53e15e36617817a3cd3b043a523410132faad
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
115
py
import math n = int(input()) c= [0]*n s = map(int,input().split()) for i in s: c[i-1]+=1 for i in c: print(i)
d0be37c6a1df802e6cf7ddcc9ab9bcf87b07dd64
3aed304ea163b9b910133bb8e33c29028a5ca8c0
/setup.py
8d64c26b2060fb79e23fda1bcf245264cc5fab5a
[ "ISC" ]
permissive
arnaudrenaud/django-djaffar
cce4e3cb6922783d9e2dc92079dedd46cb0c20bd
068851951729d4a1de0b8beca4fbde510517ac59
refs/heads/master
2022-07-12T22:06:52.456444
2017-01-04T11:28:21
2017-01-04T11:28:21
77,291,688
1
0
ISC
2019-11-15T09:28:17
2016-12-24T16:37:59
Python
UTF-8
Python
false
false
2,512
py
import os from setuptools import find_packages, setup with open(os.path.join(os.path.dirname(__file__), 'README.rst')) as readme: README = readme.read() # allow setup.py to be run from any path os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) package = 'djaffar' def get_packages(package): """ Return root package and all sub-packages. """ return [dirpath for dirpath, dirnames, filenames in os.walk(package) if os.path.exists(os.path.join(dirpath, '__init__.py'))] def get_package_data(package): """ Return all files under the root package, that are not in a package themselves. """ walk = [(dirpath.replace(package + os.sep, '', 1), filenames) for dirpath, dirnames, filenames in os.walk(package) if not os.path.exists(os.path.join(dirpath, '__init__.py'))] filepaths = [] for base, filenames in walk: filepaths.extend([os.path.join(base, filename) for filename in filenames]) return {package: filepaths} setup( name='django-djaffar', version='0.1.10', packages=get_packages(package), package_data=get_package_data(package), include_package_data=True, license='BSD License', description='An asynchronous user activity tracking API for Django.', long_description=README, url='https://github.com/arnaudrenaud/django-djaffar', download_url='https://github.com/arnaudrenaud/django-djaffar/tarball/0.1.10', author='Arnaud Renaud', author_email='[email protected]', install_requires=[ 'Django>=1.8', 'djangorestframework>=3.3', 'python-dateutil>=2.6', ], classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Web Environment', 'Framework :: Django', 'Framework :: Django :: 1.8', 'Framework :: Django :: 1.9', 'Framework :: Django :: 1.10', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Natural Language :: English', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Topic :: Internet :: WWW/HTTP', ], test_suite="runtests.runtests", )
2f0c54950c0ab91c97cc12a6797f81d91b85ec0b
c9ddbdb5678ba6e1c5c7e64adf2802ca16df778c
/cases/pa3/sample/stmt_for_str_same_var-9.py
f87144cd7e69039ad5482181a2f622e922dcd6a8
[]
no_license
Virtlink/ccbench-chocopy
c3f7f6af6349aff6503196f727ef89f210a1eac8
c7efae43bf32696ee2b2ee781bdfe4f7730dec3f
refs/heads/main
2023-04-07T15:07:12.464038
2022-02-03T15:42:39
2022-02-03T15:42:39
451,969,776
0
0
null
null
null
null
UTF-8
Python
false
false
42
py
x:str = $STRING for x in x: print(x)
84c1a89c806b2cba9d39dadc938e2b05f0a7bd4f
e7ce192fb7a4c980af71b42a3a89383f4a3f1396
/EmployeeWage.py
b48614e6adcc9a741540e97e4906d3b0d41c2965
[]
no_license
Archana-Bhamare/Employee_Wage_Python
112c2152c9f97b42ddc5b93da1d40e8ae66ae213
7ece8ccdcbbc4ba1ba0237e4d3d1d4341a41760a
refs/heads/master
2023-01-19T00:45:09.222132
2020-11-29T13:11:18
2020-11-29T13:11:18
316,681,224
0
0
null
2020-11-29T13:11:19
2020-11-28T07:33:44
Python
UTF-8
Python
false
false
1,685
py
import random class EmployeeWage: IS_FULL_TIME = 1 IS_PART_TIME = 2 empHours = 0 EMP_WAGE_PER_HOUR = 20 NUM_OF_WORKING_DAYS = 20 MAX_HRS_IN_MONTH = 100 dailyWages = [] day = {} def checkEmpAttendance(self): attendance = random.randint(0, 2) if attendance == EmployeeWage.IS_FULL_TIME: EmployeeWage.empHours = 8 print("Employee is present for Full Time") elif attendance == EmployeeWage.IS_PART_TIME: EmployeeWage.empHours = 4 print("Employee is present for Part Time") else: EmployeeWage.empHours = 0 print("Employee is Absent") def calculateMonthlyWages(self): totalSalary = 0 totalEmpHours = 0 totalWorkingDays = 0 while totalEmpHours < EmployeeWage.MAX_HRS_IN_MONTH and totalWorkingDays < EmployeeWage.NUM_OF_WORKING_DAYS: totalWorkingDays += 1 self.checkEmpAttendance() totalEmpHours += EmployeeWage.empHours dailyWage = dailyWage = EmployeeWage.EMP_WAGE_PER_HOUR * EmployeeWage.empHours print(f"Day : {totalWorkingDays}\tEmployee Hours : {EmployeeWage.empHours}") print(f"Employee Daily Wage : {dailyWage}") EmployeeWage.dailyWages.append(dailyWage) totalSalary = EmployeeWage.EMP_WAGE_PER_HOUR * totalEmpHours for (i,item) in enumerate(EmployeeWage.dailyWages,start=1): print("Day : " + str(i) + "\tDailyWage : " + str(item)) print(f"Employee Wage for Month is : {totalSalary}") if __name__ == "__main__": employee = EmployeeWage() employee.calculateMonthlyWages()
b055872ca036b87a5294a9e1ff3502871bb0dbd5
6b7efc1fbc4ec9fa47e9b91876a8abd319fa762a
/manage.py
1b022f576275907781a701bd98e87bf82c21ccf1
[]
no_license
hectwor/API_sneapp-DJango
6cd6bbca12c4c337c44edfdac141c7ba65a93fb9
a5a3cc177050b23dbf6232929db215542e24b434
refs/heads/master
2020-03-23T06:46:53.795678
2018-07-17T03:59:43
2018-07-17T03:59:43
141,229,235
1
0
null
null
null
null
UTF-8
Python
false
false
808
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "API_sneapp.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
b274c5b6d77f22cc1da6e46b67d0d9571653bfef
b82c7b44c28e27519626e29bb74ec0d7dfae1177
/snmpdesk/traffic.py
a6c7339e4b456920bcee3eb3fa0567dfd51bab73
[]
no_license
uralbash/snmpdesk
77f59f80ce550390cb7689cb737f4899333d0b4c
afde63a3060d4405e1033092900229b205bf9e6d
refs/heads/master
2020-04-06T04:22:12.387805
2012-03-15T06:24:23
2012-03-15T06:24:23
3,039,100
0
0
null
null
null
null
UTF-8
Python
false
false
3,440
py
import sys import collections from pysnmp.entity.rfc3413.oneliner import cmdgen '''def datafrommib(mib, community, ip): value = tuple([int(i) for i in mib.split('.')]) generator = cmdgen.CommandGenerator() comm_data = cmdgen.CommunityData('server', community, 1) # 1 means version SNMP v2c transport = cmdgen.UdpTransportTarget((ip, 161)) real_fun = getattr(generator, 'nextCmd') res = (errorIndication, errorStatus, errorIndex, varBindTable)\ = real_fun(comm_data, transport, value) if not errorIndication is None or errorStatus is True: print "Error: %s %s %s %s" % res yield None else: for varBindTableRow in varBindTable: # varBindTableRow: # in: [(ObjectName(1.3.6.1.2.1.2.2.1.10.8), Counter32(180283794))] data = varBindTableRow[0] port = data[0]._value[len(value):] octets = data[1] yield {'port': port[0], 'octets': octets} ''' def datafrommib(mib, community, conn): value = tuple([int(i) for i in mib.split('.')]) #res = (errorIndication, errorStatus, errorIndex, varBindTable)\ # = real_fun(comm_data, transport, value) res = (errorIndication, errorStatus, errorIndex, varBindTable)\ = conn[3](conn[1], conn[2], value) if not errorIndication is None or errorStatus is True: print "Error: %s %s %s %s" % res yield None else: for varBindTableRow in varBindTable: # varBindTableRow: # in: [(ObjectName(1.3.6.1.2.1.2.2.1.10.8), Counter32(180283794))] data = varBindTableRow[0] port = data[0]._value[len(value):] octets = data[1] yield {'port': port[0], 'octets': octets} def load(ip, community): # for use snmptool try: # In: snmpwalk -c mymypub -v2c <ip> 1.3.6.1.2.1.2.2.1.10.2 # Out: snmpwalk -c mymypub -v2c <ip> 1.3.6.1.2.1.2.2.1.16.2 # e.t.c... generator = cmdgen.CommandGenerator() comm_data = cmdgen.CommunityData('server', community, 1) # 1 means version SNMP v2c transport = cmdgen.UdpTransportTarget((ip, 161)) real_fun = getattr(generator, 'nextCmd') conn = (generator, comm_data, transport, real_fun) mibs = [('1.3.6.1.2.1.2.2.1.16', 'out'), ('1.3.6.1.2.1.2.2.1.10', 'in'), ('1.3.6.1.2.1.2.2.1.11', 'ucast'), ('1.3.6.1.2.1.2.2.1.12', 'nucast'), ('1.3.6.1.2.1.2.2.1.13', 'discards'), ('1.3.6.1.2.1.2.2.1.14', 'errors')] ports = collections.defaultdict(dict) for mib in mibs: data = datafrommib(mib[0], community, conn) for row in data: if row: ports[row['port']][mib[1]] = int(row['octets']) else: return None return ports if __name__ == '__main__': try: ip = sys.argv[1] community = sys.argv[2] except IndexError: print "Please run command like:" print "python %s <ip> <community>" % __file__ sys.exit(0) # == debug == #import profile #profile.run("load('%s', '%s')" % (ip, community)) ports = load(ip, community) if ports: for key, value in ports.items(): print key, ('in: %(in)s out: %(out)s ucast: %(ucast)s' +\ ' nucast: %(nucast)s discards: %(discards)s' +\ ' errors: %(errors)s') % value
1bfe7aea8483c772458514da7fd037f980ab3784
9a77adbac4aa41a3a230d551369f613bda796473
/codes/MyPoisson.py
66390b21deeb57354e857e98850ffb9646fa13f4
[ "MIT" ]
permissive
statcompute/py_countreg
6d74565ff6042cd1cf621c1a4cd0c0837b064a66
3f62b8f16b95be5be46cacb93f544bbca6b1ec55
refs/heads/main
2023-03-01T15:59:06.107550
2021-02-07T04:21:30
2021-02-07T04:21:30
328,307,867
0
0
null
null
null
null
UTF-8
Python
false
false
1,105
py
import numpy, scipy from statsmodels.base.model import GenericLikelihoodModel def _negll_poisson(y, X, beta): mu = numpy.exp(numpy.dot(X, beta)) pr = numpy.exp(-mu) * numpy.power(mu, y) / scipy.special.factorial(y) ll = numpy.log(pr) return(-ll) class StdPoisson(GenericLikelihoodModel): def __init__(self, endog, exog, **kwds): super(StdPoisson, self).__init__(endog, exog, **kwds) def nloglikeobs(self, params): beta = params ll = _negll_poisson(self.endog, self.exog, beta) return(ll) def fit(self, start_params = None, maxiter = 10000, maxfun = 5000, **kwds): if start_params == None: start_params = numpy.zeros(self.exog.shape[1]) start_params[-1] = numpy.log(self.endog.mean()) return(super(StdPoisson, self).fit(start_params = start_params, maxiter = maxiter, maxfun = maxfun, **kwds)) import pandas df = pandas.read_csv("data/credit_count.csv") y = df.MAJORDRG xnames = ['AGE', 'ACADMOS', 'MINORDRG', 'OWNRENT'] X = df.loc[:, xnames] X["constant"] = 1 mdl = StdPoisson(y, X) mdl.fit().summary()
2ce770cc188a83a86cae96a14bc9779493541139
2053a90c97b277cf8f816efc938c16482a68bcb2
/3-1线性回归.py
f743e4bfbbccd8392e6b938521cfd9489326967d
[]
no_license
xxNB/tensorflow_study
703365e3a47b73364131d6ed969ca44918a7169b
3749574e9d7bd0f67b1f57be6ff71c3c8ffed3f0
refs/heads/master
2021-03-30T15:37:09.235052
2017-11-23T08:04:50
2017-11-23T08:04:50
110,522,570
1
0
null
null
null
null
UTF-8
Python
false
false
1,538
py
# -*- coding: utf-8 -*- """ Created on 2017/11/13 下午4:37 @author: SimbaZhang """ import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #使用numpy生成200个随机点 x_data = np.linspace(-0.5, 0.5, 200)[:, np.newaxis] # print(x_data) noise = np.random.normal(0, 0.02, x_data.shape) y_data = np.square(x_data) + noise # 定义俩个placehold, float32:浮点型 x = tf.placeholder(tf.float32, [None, 1]) y = tf.placeholder(tf.float32, [None, 1]) #定义一个神经网络的中间层 Weight_L1 = tf.Variable(tf.random_normal([1, 10])) biase_L1 = tf.Variable(tf.zeros([1, 10])) Wx_plus_b_L1 = tf.matmul(x, Weight_L1) + biase_L1 L1 = tf.nn.tanh(Wx_plus_b_L1) #定义神经网络输出层 Weight_L2 = tf.Variable(tf.random_normal([10, 1])) biase_L2 = tf.Variable(tf.zeros([1, 1])) Wx_plus_b_L2 = tf.matmul(L1, Weight_L2) + biase_L2 prediction = tf.nn.tanh(Wx_plus_b_L2) #定义一个二次代价函数, reduce_mean:求平均值 loss = tf.reduce_mean(tf.square(prediction - y)) #定义一个梯度下降法来训练的优化器 optimizer = tf.train.GradientDescentOptimizer(0.1) #最小化代价函数 train = optimizer.minimize(loss) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for _ in range(2000): sess.run(train, feed_dict={x:x_data, y:y_data}) #获得预测值 prediction_value = sess.run(prediction, feed_dict={x:x_data}) plt.figure() plt.scatter(x_data, y_data) plt.plot(x_data, prediction_value, 'r-', lw=5) plt.show()
2d9971c4c44a021182d7e06c30a1b9cfe7dff063
cfb08ae8db8f20985ce3f6aa6426642f9891f67d
/apps/users/auth.py
1fced72c4d1c82603d506af2eeddd3ec9e94abac
[]
no_license
mylove132/web_backed
707b7df236c2ffaddf2720a0f5df45530629273b
f30a32d33bd0eabcb2cae515ac1c57897cd4bc21
refs/heads/master
2022-05-01T16:46:21.597813
2019-06-26T09:55:43
2019-06-26T09:55:43
188,396,244
0
0
null
2022-04-22T21:19:48
2019-05-24T09:44:45
Python
UTF-8
Python
false
false
1,545
py
from rest_framework.authentication import BaseAuthentication from rest_framework import exceptions from .models import Token class TokenAuthentication(BaseAuthentication): def authenticate(self, request): token = request.META.get("HTTP_TOKEN") if not token: raise exceptions.AuthenticationFailed('请传入token值') else: token_obj = Token.objects.filter(token=token).first() if not token_obj: raise exceptions.AuthenticationFailed('token验证失败,请检查') else: update_time = token_obj.update_time import datetime update_time = update_time.strftime('%Y-%m-%d %H:%M:%S') now_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') delta = datetime.datetime.strptime(now_time, '%Y-%m-%d %H:%M:%S') - datetime.datetime.strptime( update_time, '%Y-%m-%d %H:%M:%S') import web_backed.settings as setting if delta.seconds > setting.TOKEN_EFFETIVE_TIME: raise exceptions.AuthenticationFailed('token失效') else: return token_obj.user, token_obj.token def authenticate_header(self, request): """ Return a string to be used as the value of the `WWW-Authenticate` header in a `401 Unauthenticated` response, or `None` if the authentication scheme should return `403 Permission Denied` responses. """ pass
4b2f0957666496d3fd757c2ee95c3310fcc03314
173624dde6173ac15d2bf5b9737d3934116dc6cd
/Leetcode题解/31. 下一个排列.py
363ce4f96f1300d4c01ee006cda5cf4f4e012a70
[]
no_license
jiufang7/git_repository
79bb780e563f1aad5fe91ce53b091abaaf5b9a31
e3d69ec8640f1caab74f1a4473888022f72de644
refs/heads/master
2023-01-21T01:31:18.265359
2020-12-01T05:21:31
2020-12-01T05:21:31
304,177,217
0
0
null
null
null
null
UTF-8
Python
false
false
1,013
py
class Solution: def nextPermutation(self, nums): """ Do not return anything, modify nums in-place instead. """ if len(nums) < 2: return i = len(nums) - 1 while i > 0 and nums[i] <= nums[i-1]: i -= 1 a, b = i, len(nums)-1 while a < b: nums[a],nums[b] = nums[b],nums[a] a += 1 b -= 1 j = i-1 for k in range(i, len(nums)): if nums[k] > nums[j]: nums[j], nums[k] = nums[k], nums[j] break # 2020.11.16 # 源于离散数学及其应用的算法:(以3 4 5 2 1 为例) # 从后往前寻找第一次出现的正序对:(找到 4,5) # 之后因为从5 开始都是逆序,所以把他们反转就是正序:3 4 1 2 5 # 之后4 的位置应该是:在它之后的,比他大的最小值(5) # 交换这两个值:得到 3 5 1 2 4 # 对于初始即为逆序的序列,将在反转步骤直接完成
392cb84f7fb97fc10dd40ee30b52ea4dccc43d0f
990ae6fd62d25eefe033003716827951c5fdac16
/HW3/hw2/attention.py
332eee2b39e92c972e19bf9936dc50d33ae61f42
[]
no_license
wwzoe/MT
3df537b609bd028392868597cffee16c3cb78dee
acd437b23bc1d756f621692d41c6c41a98253d35
refs/heads/master
2021-01-01T06:19:25.100293
2017-07-16T20:12:12
2017-07-16T20:12:12
97,404,501
0
0
null
null
null
null
UTF-8
Python
false
false
12,689
py
# coding: utf-8 #--------------------------------------------------------------------- ''' Neural Machine Translation - Encoder Decoder model Chainer implementation of an encoder-decoder sequence to sequence model using bi-directional LSTM encoder ''' #--------------------------------------------------------------------- # In[]: import numpy as np import chainer from chainer import cuda, Function, gradient_check, report, training, utils, Variable from chainer import datasets, iterators, optimizers, serializers from chainer import Link, Chain, ChainList import chainer.functions as F import chainer.links as L from chainer.training import extensions from chainer.functions.array import concat # In[]: # Import configuration file from nmt_config import * # In[]: class EncoderDecoder(Chain): ''' Constructor to initialize model Params: vsize_enc - vocabulary size for source language (fed into encoder) vsize_dec - vocabulary size for target language (fed into decoder) n_units - size of the LSTMs attn - specifies whether to use attention ''' def __init__(self, vsize_enc, vsize_dec, nlayers_enc, nlayers_dec, n_units, gpuid, attn=False): super(EncoderDecoder, self).__init__() #-------------------------------------------------------------------- # add encoder layers #-------------------------------------------------------------------- # add embedding layer self.add_link("embed_enc", L.EmbedID(vsize_enc, n_units)) ''' ___QUESTION-1-DESCRIBE-A-START___ - Explain the following lines of code - Think about what add_link() does and how can we access Links added in Chainer. - Why are there two loops or adding links? ''' self.lstm_enc = ["L{0:d}_enc".format(i) for i in range(nlayers_enc)] for lstm_name in self.lstm_enc: self.add_link(lstm_name, L.LSTM(n_units, n_units)) self.lstm_rev_enc = ["L{0:d}_rev_enc".format(i) for i in range(nlayers_enc)] for lstm_name in self.lstm_rev_enc: self.add_link(lstm_name, L.LSTM(n_units, n_units)) ''' ___QUESTION-1-DESCRIBE-A-END___ ''' #-------------------------------------------------------------------- # add decoder layers #-------------------------------------------------------------------- # add embedding layer ''' ___QUESTION-1-DESCRIBE-B-START___ Comment on the input and output sizes of the following layers: - L.EmbedID(vsize_dec, 2*n_units) - L.LSTM(2*n_units, 2*n_units) - L.Linear(2*n_units, vsize_dec) Why are we using multipliers over the base number of units (n_units)? ''' self.add_link("embed_dec", L.EmbedID(vsize_dec, 2*n_units)) # add LSTM layers self.lstm_dec = ["L{0:d}_dec".format(i) for i in range(nlayers_dec)] for lstm_name in self.lstm_dec: self.add_link(lstm_name, L.LSTM(2*n_units, 2*n_units)) if attn > 0: # __QUESTION Add attention pass self.add_link("attention", L.Linear(2*2*n_units, 2*n_units)) # Save the attention preference # __QUESTION you should use this flag to check if attention # has been selected. Your code should work with and without attention self.attn = attn # add output layer self.add_link("out", L.Linear(2*n_units, vsize_dec)) ''' ___QUESTION-1-DESCRIBE-B-END___ ''' # Store GPU id self.gpuid = gpuid self.n_units = n_units def reset_state(self): # reset the state of LSTM layers for lstm_name in self.lstm_enc + self.lstm_rev_enc + self.lstm_dec: self[lstm_name].reset_state() self.loss = 0 ''' ___QUESTION-1-DESCRIBE-C-START___ Describe what the function set_decoder_state() is doing. What are c_state and h_state? ''' def set_decoder_state(self): xp = cuda.cupy if self.gpuid >= 0 else np c_state = F.concat((self[self.lstm_enc[-1]].c, self[self.lstm_rev_enc[-1]].c)) h_state = F.concat((self[self.lstm_enc[-1]].h, self[self.lstm_rev_enc[-1]].h)) self[self.lstm_dec[0]].set_state(c_state, h_state) '''___QUESTION-1-DESCRIBE-C-END___''' ''' Function to feed an input word through the embedding and lstm layers args: embed_layer: embeddings layer to use lstm_layer: list of names of lstm layers to use ''' def feed_lstm(self, word, embed_layer, lstm_layer_list, train): # get embedding for word embed_id = embed_layer(word) embed_id=F.dropout(embed_id,ratio=0.3) # feed into first LSTM layer hs = self[lstm_layer_list[0]](embed_id) hs=F.dropout(hs,ratio=0.3) # feed into remaining LSTM layers for lstm_layer in lstm_layer_list[1:]: hs = self[lstm_layer](hs) hs=F.dropout(hs,ratio=0.3) # Function to encode an source sentence word def encode(self, word, lstm_layer_list, train): self.feed_lstm(word, self.embed_enc, lstm_layer_list, train) # Function to decode a target sentence word def decode(self, word, train): self.feed_lstm(word, self.embed_dec, self.lstm_dec, train) ''' ''' def encode_list(self, in_word_list, train=True): xp = cuda.cupy if self.gpuid >= 0 else np # convert list of tokens into chainer variable list var_en = (Variable(xp.asarray(in_word_list, dtype=np.int32).reshape((-1,1)), volatile=(not train))) var_rev_en = (Variable(xp.asarray(in_word_list[::-1], dtype=np.int32).reshape((-1,1)), volatile=(not train))) # array to store hidden states for each word # enc_states = xp.empty((0,2*self.n_units), dtype=xp.float32) first_entry = True # encode tokens for f_word, r_word in zip(var_en, var_rev_en): ''' ___QUESTION-1-DESCRIBE-D-START___ - Explain why we are performing two encode operations ''' self.encode(f_word, self.lstm_enc, train) self.encode(r_word, self.lstm_rev_enc, train) '''___QUESTION-1-DESCRIBE-D-END___''' # __QUESTION -- Following code is to assist with ATTENTION # enc_states stores the hidden state vectors of the encoder # this can be used for implementing attention if first_entry == False: forward_states = F.concat((forward_states, self[self.lstm_enc[-1]].h), axis=0) backward_states = F.concat((self[self.lstm_rev_enc[-1]].h, backward_states), axis=0) else: forward_states = self[self.lstm_enc[-1]].h backward_states = self[self.lstm_rev_enc[-1]].h first_entry = False enc_states = F.concat((forward_states, backward_states), axis=1) return enc_states # Select a word from a probability distribution # should return a chainer variable def select_word(self, prob, train=True, sample=False): xp = cuda.cupy if self.gpuid >= 0 else np if not sample: indx = xp.argmax(prob.data[0]) pred_word = Variable(xp.asarray([indx], dtype=np.int32), volatile=not train) else: prob = xp.argmax(prob.data[0]) index=xp.random.choice(range(len(prob)),p=prob) pred_word = Variable(xp.asarray([indx], dtype=np.int32), volatile=not train) ''' ___QUESTION-2-SAMPLE - Add code to sample from the probability distribution to choose the next word ''' pass return pred_word def encode_decode_train(self, in_word_list, out_word_list, train=True, sample=False): xp = cuda.cupy if self.gpuid >= 0 else np self.reset_state() # Add GO_ID, EOS_ID to decoder input decoder_word_list = [GO_ID] + out_word_list + [EOS_ID] # encode list of words/tokens enc_states = self.encode_list(in_word_list, train=train) # initialize decoder LSTM to final encoder state self.set_decoder_state() # decode and compute loss # convert list of tokens into chainer variable list var_dec = (Variable(xp.asarray(decoder_word_list, dtype=np.int32).reshape((-1,1)), volatile=not train)) # Initialise first decoded word to GOID pred_word = Variable(xp.asarray([GO_ID], dtype=np.int32), volatile=not train) # compute loss self.loss = 0 # decode tokens for next_word_var in var_dec[1:]: self.decode(pred_word, train=train) if self.attn == NO_ATTN: predicted_out = self.out(self[self.lstm_dec[-1]].h) else: # __QUESTION Add attention pass c=F.matmul((self[self.lstm_dec[-1]].h),enc_states,transb=True) score=F.softmax(c) ct=F.matmul(score,enc_states) s=F.concat((ct, (self[self.lstm_dec[-1]].h))) hs=F.tanh(s) predict=self.attention(hs) predicted_out=self.out(predict) # compute loss prob = F.softmax(predicted_out) pred_word = self.select_word(prob, train=train, sample=False) # pred_word = Variable(xp.asarray([pred_word.data], dtype=np.int32), volatile=not train) ''' ___QUESTION-1-DESCRIBE-E-START___ Explain what loss is computed with an example What does this value mean? ''' self.loss += F.softmax_cross_entropy(predicted_out, next_word_var) '''___QUESTION-1-DESCRIBE-E-END___''' report({"loss":self.loss},self) return self.loss def decoder_predict(self, start_word, enc_states, max_predict_len=MAX_PREDICT_LEN, sample=False): xp = cuda.cupy if self.gpuid >= 0 else np # __QUESTION -- Following code is to assist with ATTENTION # alpha_arr should store the alphas for every predicted word alpha_arr = xp.empty((0,enc_states.shape[0]), dtype=xp.float32) # return list of predicted words predicted_sent = [] # load start symbol pred_word = Variable(xp.asarray([start_word], dtype=np.int32), volatile=True) pred_count = 0 # start prediction loop while pred_count < max_predict_len and (int(pred_word.data) != (EOS_ID)): self.decode(pred_word, train=False) if self.attn == NO_ATTN: prob = F.softmax(self.out(self[self.lstm_dec[-1]].h)) else: # __QUESTION Add attention pass c=F.matmul((self[self.lstm_dec[-1]].h),enc_states,transb=True) score=F.softmax(c) alpha=F.softmax(score) alpha_arr=xp.append(alpha_arr,alpha.data,axis=0) ct=F.matmul(score,enc_states) s=F.concat((ct, (self[self.lstm_dec[-1]].h))) hs=F.tanh(s) predict=self.attention(hs) predicted_out=self.out(predict) prob = F.softmax(predicted_out) pred_word = self.select_word(prob, train=False, sample=sample) # add integer id of predicted word to output list predicted_sent.append(int(pred_word.data)) pred_count += 1 # __QUESTION Add attention # When implementing attention, make sure to use alpha_array to store # your attention vectors. # The visualisation function in nmt_translate.py assumes such an array as input. return predicted_sent, alpha_arr def encode_decode_predict(self, in_word_list, max_predict_len=20, sample=False): xp = cuda.cupy if self.gpuid >= 0 else np self.reset_state() # encode list of words/tokens in_word_list_no_padding = [w for w in in_word_list if w != PAD_ID] enc_states = self.encode_list(in_word_list, train=False) # initialize decoder LSTM to final encoder state self.set_decoder_state() # decode starting with GO_ID predicted_sent, alpha_arr = self.decoder_predict(GO_ID, enc_states, max_predict_len, sample=sample) return predicted_sent, alpha_arr # In[]:
b49a99e04713d520e0e7809f8c87bf5075857b17
059f13774530ba14cac8da46baf60aecabf48770
/lang/preprocess_lm.py
e12fbc1233c8728b48a43ecd8ef569a2a5e23912
[ "BSD-3-Clause" ]
permissive
rainyrainyguo/ARAE
76796501ee8180d20dac44225e6bb9ddf891a43a
f12499d70f5fe61ca36bae4d2f57ccae28b1c5bc
refs/heads/master
2020-03-27T05:45:18.550942
2018-08-24T23:41:41
2018-08-24T23:41:41
146,047,307
0
1
BSD-3-Clause
2018-08-24T23:04:36
2018-08-24T23:04:36
null
UTF-8
Python
false
false
8,788
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """Create the data for the LSTM. """ import os import sys import argparse import numpy as np import h5py import itertools from collections import defaultdict class Indexer: def __init__(self, symbols = ["<pad>","<unk>","<s>","</s>"]): self.vocab = defaultdict(int) self.PAD = symbols[0] self.UNK = symbols[1] self.BOS = symbols[2] self.EOS = symbols[3] self.d = {self.PAD: 0, self.UNK: 1, self.BOS: 2, self.EOS: 3} self.idx2word = {} def add_w(self, ws): for w in ws: if w not in self.d: self.d[w] = len(self.d) def convert(self, w): return self.d[w] if w in self.d else self.d[self.UNK] def convert_sequence(self, ls): return [self.convert(l) for l in ls] def write(self, outfile): out = open(outfile, "w") items = [(v, k) for k, v in self.d.items()] items.sort() for v, k in items: out.write(" ".join([k, str(v)]) + "\n") out.close() def prune_vocab(self, k, cnt = False): vocab_list = [(word, count) for word, count in self.vocab.items()] if cnt: self.pruned_vocab = {pair[0]:pair[1] for pair in vocab_list if pair[1] > k} else: vocab_list.sort(key = lambda x: x[1], reverse=True) k = min(k, len(vocab_list)) self.pruned_vocab = {pair[0]:pair[1] for pair in vocab_list[:k]} for word in self.pruned_vocab: if word not in self.d: self.d[word] = len(self.d) for word, idx in self.d.items(): self.idx2word[idx] = word def load_vocab(self, vocab_file): self.d = {} for line in open(vocab_file, 'r'): v, k = line.strip().split() self.d[v] = int(k) for word, idx in self.d.items(): self.idx2word[idx] = word def pad(ls, length, symbol): if len(ls) >= length: return ls[:length] return ls + [symbol] * (length -len(ls)) def get_data(args): indexer = Indexer(["<pad>","<unk>","<s>","</s>"]) def make_vocab(textfile, seqlength, train=1): num_sents = 0 for sent in open(textfile, 'r'): sent = sent.strip().split() if len(sent) > seqlength or len(sent) < 1: continue num_sents += 1 if train == 1: for word in sent: indexer.vocab[word] += 1 return num_sents def convert(textfile, batchsize, seqlength, outfile, num_sents, max_sent_l=0,shuffle=0): newseqlength = seqlength + 2 #add 2 for EOS and BOS sents = np.zeros((num_sents, newseqlength), dtype=int) sent_lengths = np.zeros((num_sents,), dtype=int) dropped = 0 sent_id = 0 for sent in open(textfile, 'r'): sent = [indexer.BOS] + sent.strip().split() + [indexer.EOS] max_sent_l = max(len(sent), max_sent_l) if len(sent) > seqlength + 2 or len(sent) < 3: dropped += 1 continue sent_pad = pad(sent, newseqlength, indexer.PAD) sents[sent_id] = np.array(indexer.convert_sequence(sent_pad), dtype=int) sent_lengths[sent_id] = (sents[sent_id] != 0).sum() sent_id += 1 if sent_id % 100000 == 0: print("{}/{} sentences processed".format(sent_id, num_sents)) print(sent_id, num_sents) if shuffle == 1: rand_idx = np.random.permutation(sent_id) sents = sents[rand_idx] sent_lengths = sent_lengths[rand_idx] #break up batches based on source lengths sent_lengths = sent_lengths[:sent_id] sent_sort = np.argsort(sent_lengths) sents = sents[sent_sort] sent_l = sent_lengths[sent_sort] curr_l = 1 l_location = [] #idx where sent length changes for j,i in enumerate(sent_sort): if sent_lengths[i] > curr_l: curr_l = sent_lengths[i] l_location.append(j) l_location.append(len(sents)) #get batch sizes curr_idx = 0 batch_idx = [0] nonzeros = [] batch_l = [] batch_w = [] for i in range(len(l_location)-1): while curr_idx < l_location[i+1]: curr_idx = min(curr_idx + batchsize, l_location[i+1]) batch_idx.append(curr_idx) for i in range(len(batch_idx)-1): batch_l.append(batch_idx[i+1] - batch_idx[i]) batch_w.append(sent_l[batch_idx[i]]) # Write output f = h5py.File(outfile, "w") f["source"] = sents f["batch_l"] = np.array(batch_l, dtype=int) f["source_l"] = np.array(batch_w, dtype=int) f["sents_l"] = np.array(sent_l, dtype = int) f["batch_idx"] = np.array(batch_idx[:-1], dtype=int) f["vocab_size"] = np.array([len(indexer.d)]) print("Saved {} sentences (dropped {} due to length/unk filter)".format( len(f["source"]), dropped)) f.close() return max_sent_l print("First pass through data to get vocab...") num_sents_train = make_vocab(args.trainfile, args.seqlength) print("Number of sentences in training: {}".format(num_sents_train)) num_sents_valid = make_vocab(args.valfile, args.seqlength, 0) print("Number of sentences in valid: {}".format(num_sents_valid)) num_sents_test = make_vocab(args.testfile, args.seqlength, 0) print("Number of sentences in test: {}".format(num_sents_test)) if args.vocabminfreq >= 0: indexer.prune_vocab(args.vocabminfreq, True) else: indexer.prune_vocab(args.vocabsize, False) if args.vocabfile != '': print('Loading pre-specified source vocab from ' + args.vocabfile) indexer.load_vocab(args.vocabfile) indexer.write(args.outputfile + ".dict") print("Vocab size: Original = {}, Pruned = {}".format(len(indexer.vocab), len(indexer.d))) max_sent_l = 0 max_sent_l = convert(args.valfile, args.batchsize, args.seqlength, args.outputfile + "-val.hdf5", num_sents_valid, max_sent_l, args.shuffle) max_sent_l = convert(args.testfile, args.batchsize, args.seqlength, args.outputfile + "-test.hdf5", num_sents_test, max_sent_l, args.shuffle) max_sent_l = convert(args.trainfile, args.batchsize, args.seqlength, args.outputfile + "-train.hdf5", num_sents_train, max_sent_l, args.shuffle) print("Max sent length (before dropping): {}".format(max_sent_l)) def main(arguments): parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--vocabsize', help="Size of source vocabulary, constructed " "by taking the top X most frequent words. " " Rest are replaced with special UNK tokens.", type=int, default=70000) parser.add_argument('--vocabminfreq', help="Minimum frequency for vocab, if using frequency cutoff", type=int, default=-1) parser.add_argument('--trainfile', help="Path to training data.", required=True) parser.add_argument('--valfile', help="Path validation data.", required=True) parser.add_argument('--testfile', help="Path to test data.", required=True) parser.add_argument('--batchsize', help="Size of each minibatch.", type=int, default=32) parser.add_argument('--seqlength', help="Maximum source sequence length. Sequences longer " "than this are dropped.", type=int, default=200) parser.add_argument('--outputfile', help="Prefix of the output file names. ", type=str) parser.add_argument('--vocabfile', help="If working with a preset vocab, " "then including this will ignore srcvocabsize and use the" "vocab provided here.", type = str, default='') parser.add_argument('--shuffle', help="If = 1, shuffle sentences before sorting (based on " "source length).", type = int, default = 1) args = parser.parse_args(arguments) get_data(args) if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
e83b9d3c0be7a33e00b85393338fd4d1bb2d0e8d
cbc7ca332ff4cb8c98cb9eb37af654ee63297802
/torch/_C/_distributed_c10d.pyi
1cbf030e4afedebc674b36fe035faa072792c35e
[ "BSD-2-Clause", "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "BSL-1.0", "Apache-2.0" ]
permissive
yfzheng11/pytorch
307ebedbf6c5f23ed49584cf9536e47cff0a3ab0
1aa14fcb14dd1ecc8382f747de6f2070d929ed02
refs/heads/master
2023-05-26T14:07:05.459920
2021-06-03T20:28:45
2021-06-03T20:30:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
9,379
pyi
from datetime import timedelta from enum import Enum from typing import Optional, List, Any, Tuple, overload from torch import Tensor # This module is defined in torch/csrc/distributed/c10d/init.cpp _DEFAULT_FIRST_BUCKET_BYTES: int _DEFAULT_NO_TIMEOUT: timedelta _DEFAULT_PG_TIMEOUT: timedelta class BuiltinCommHookType(Enum): ALLREDUCE = ... FP16_COMPRESS = ... def _register_comm_hook(reducer: Reducer, state: Any, comm_hook: Any): ... def _register_builtin_comm_hook( reducer: Reducer, comm_hook_type: BuiltinCommHookType ): ... class GradBucket: def __init__( self, index: int, tensor: Tensor, offsets: List[int], lengths: List[int], sizes_list: List[Tuple[int]], ): ... def get_index(self) -> int: ... def get_tensor(self) -> Tensor: ... def get_per_parameter_tensors(self) -> List[Tensor]: ... def is_the_last_bucket_to_allreduce(self) -> bool: ... def set_tensor(self, tensor: Tensor) -> None: ... class Reducer: def __init__( self, replicas: List[List[Tensor]], bucket_indices: List[List[int]], process_group: ProcessGroup, expect_sparse_gradients: List[List[bool]], bucket_bytes_cap: int, find_unused_parameters: bool, gradient_as_bucket_view: bool, ): ... ... class Logger: def __init__(self, reducer: Reducer): ... def set_construction_data_and_log( self, module_name: str, device_ids: List[int], output_device: int, broadcast_buffers: bool, ): ... ... def _get_debug_mode(): ... class _DistributedDebugLevel(Enum): OFF = ... INFO = ... DETAIL = ... class ReduceOp(Enum): SUM = ... PRODUCT = ... MIN = ... MAX = ... BAND = ... BOR = ... BXOR = ... UNUSED = ... class BroadcastOptions: rootRank: int rootTensor: int timeout: timedelta class AllreduceOptions: reduceOp: ReduceOp timeout: timedelta class AllreduceCoalescedOptions(AllreduceOptions): ... class ReduceOptions: reduceOp: ReduceOp rootRank: int rootTensor: int timeout: timedelta class AllGatherOptions: timeout: timedelta class GatherOptions: rootRank: int timeout: timedelta class ScatterOptions: rootRank: int timeout: timedelta class ReduceScatterOptions: reduceOp: ReduceOp timeout: timedelta class BarrierOptions: device_ids: List[int] timeout: timedelta class AllToAllOptions: timeout: timedelta class Store: def set(self, key: str, value: str): ... def get(self, key: str) -> bytes: ... def add(self, key: str, value: int) -> int: ... def compare_set(self, key: str, expected_value: str, desired_value: str) -> bytes: ... def delete_key(self, key: str) -> bool: ... def num_keys(self) -> int: ... def set_timeout(self, timeout: timedelta): ... @overload def wait(self, keys: List[str]): ... @overload def wait(self, keys: List[str], timeout: timedelta): ... class FileStore(Store): def __init__(self, path: str, numWorkers: int): ... class HashStore(Store): def __init__(self): ... class TCPStore(Store): def __init__( self, host_name: str, port: int, world_size: int = ..., is_master: bool = ..., timeout: timedelta = ..., wait_for_workers: bool = ... ): ... class PrefixStore(Store): def __init__(self, prefix: str, store: Store): ... class Work: def is_completed(self) -> bool: ... def is_success(self) -> bool: ... def exception(self) -> Any: ... def wait(self, timeout: timedelta = _DEFAULT_NO_TIMEOUT) -> bool: ... def source_rank(self) -> int: ... def _source_rank(self) -> int: ... def result(self) -> List[Tensor]: ... def synchronize(self): ... ... class ProcessGroup: class Options: ... def __init__(self): ... def rank(self) -> int: ... def size(self) -> int: ... @overload def broadcast( self, tensors: List[Tensor], opts=BroadcastOptions(), ) -> Work: ... @overload def broadcast( self, tensor: Tensor, root: int, ) -> Work: ... @overload def allreduce( self, tensors: List[Tensor], opts: AllreduceOptions = AllreduceOptions(), ) -> Work: ... @overload def allreduce( self, tensors: List[Tensor], op=ReduceOp.SUM, ) -> Work: ... @overload def allreduce( self, tensor: Tensor, op=ReduceOp.SUM, ) -> Work: ... def allreduce_coalesced( self, tensors: List[Tensor], opts=AllreduceCoalescedOptions(), ) -> Work: ... @overload def reduce( self, tensors: List[Tensor], opts=ReduceOptions(), ) -> Work: ... @overload def reduce( self, tensor: Tensor, root: int, op=ReduceOp.SUM, ) -> Work: ... @overload def allgather( self, output_tensors: List[List[Tensor]], input_tensors: List[Tensor], opts=AllGatherOptions(), ) -> Work: ... @overload def allgather( self, output_tensors: List[Tensor], input_tensor: Tensor, ) -> Work: ... def _allgather_base( self, output: Tensor, input: Tensor, opts = AllGatherOptions(), ) -> Work: ... def allgather_coalesced( self, output_lists: List[List[Tensor]], input_list: List[Tensor], opts=AllGatherOptions(), ) -> Work: ... @overload def gather( self, output_tensors: List[List[Tensor]], input_tensors: List[Tensor], opts=GatherOptions(), ) -> Work: ... @overload def gather( self, output_tensors: List[Tensor], input_tensor: Tensor, root: int, ) -> Work: ... @overload def scatter( self, output_tensors: List[Tensor], input_tensors: List[List[Tensor]], opts=ScatterOptions(), ) -> Work: ... @overload def scatter( self, output_tensor: Tensor, input_tensors: List[Tensor], root: int, ) -> Work: ... @overload def reduce_scatter( self, output_tensors: List[Tensor], input_tensors: List[List[Tensor]], opts=ReduceScatterOptions(), ) -> Work: ... @overload def reduce_scatter( self, output_tensors: Tensor, input_tensor: List[Tensor], ) -> Work: ... @overload def alltoall_base( self, output_tensor: Tensor, input_tensor: Tensor, output_split_sizes: List[int], input_split_sizes: List[int], opts=AllToAllOptions(), ) -> Work: ... @overload def alltoall_base( self, output: Tensor, input: Tensor, output_split_sizes: List[int], input_split_sizes: List[int], ) -> Work: ... @overload def alltoall( self, output_tensor: List[Tensor], input_tensor: List[Tensor], opts=AllToAllOptions(), ) -> Work: ... @overload def alltoall( self, output: List[Tensor], input: List[Tensor], ) -> Work: ... def send( self, tensors: List[Tensor], dstRank: int, tag: int, ) -> Work: ... def recv( self, tensors: List[Tensor], srcRank: int, tag: int, ) -> Work: ... def recv_anysource(self, tensors: List[Tensor], tag: int) -> Work: ... def barrier(self, opts=BarrierOptions()) -> Work: ... class ProcessGroupRoundRobin(ProcessGroup): ... def _round_robin_process_groups( process_groups: List[ProcessGroup], ) -> ProcessGroupRoundRobin: ... class ProcessGroupGloo(ProcessGroup): class Device: ... class Options: ... def __init__( self, store: Store, rank: int, size: int, timeout: timedelta, ): ... @staticmethod def create_device(hostname=str(), interface=str()) -> Device: ... ... @staticmethod def create_default_device() -> Device: ... ... class _ProcessGroupWrapper(ProcessGroup): def __init__( self, pg: ProcessGroup, gloo_pg: ProcessGroupGloo ): ... class ProcessGroupNCCL(ProcessGroup): class Options: ... def __init__( self, store: Store, rank: int, size: int, timeout: timedelta, ): ... @staticmethod def _group_start() -> None: ... @staticmethod def _group_end() -> None: ... ... class ProcessGroupMPI(ProcessGroup): def __init__( self, rank: int, size: int, pgComm: int, ): ... @staticmethod def create(ranks: List[int]) -> ProcessGroupMPI: ... def _compute_bucket_assignment_by_size( tensors: List[Tensor], bucket_size: int, expect_sparse_gradient: List[bool], tensor_indices: List[int], ) -> List[List[int]]: ... def _broadcast_coalesced( process_group: ProcessGroup, tensors: List[Tensor], buffer_size: int, src: int, ): ... def _test_python_store(store: Store): ... def _verify_model_across_ranks( process_group: ProcessGroup, replicas: List[List[Tensor]] ): ...
50682e61b81b2e670fa3d045ccd01007692a04f2
9b3160cf14c2be19cd4bb573272de22e2cbfc58e
/catkin_ws/build/catkin_generated/generate_cached_setup.py
69aad08a3b4171c8ddd89ecf4e94b5bd12ff42e3
[]
no_license
tdnvl/ROS
4395628252da32fa6e0aada1182adf7ec9bcb418
95f2ca2003279f719757be191fd19942ea8113ce
refs/heads/master
2021-01-02T23:01:48.193996
2017-09-08T11:30:04
2017-09-08T11:30:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,311
py
# -*- coding: utf-8 -*- from __future__ import print_function import argparse import os import stat import sys # find the import for catkin's python package - either from source space or from an installed underlay if os.path.exists(os.path.join('/opt/ros/kinetic/share/catkin/cmake', 'catkinConfig.cmake.in')): sys.path.insert(0, os.path.join('/opt/ros/kinetic/share/catkin/cmake', '..', 'python')) try: from catkin.environment_cache import generate_environment_script except ImportError: # search for catkin package in all workspaces and prepend to path for workspace in "/home/thomas/catkin_ws/devel;/opt/ros/kinetic".split(';'): python_path = os.path.join(workspace, 'lib/python2.7/dist-packages') if os.path.isdir(os.path.join(python_path, 'catkin')): sys.path.insert(0, python_path) break from catkin.environment_cache import generate_environment_script code = generate_environment_script('/home/thomas/ros/catkin_ws/devel/env.sh') output_filename = '/home/thomas/ros/catkin_ws/build/catkin_generated/setup_cached.sh' with open(output_filename, 'w') as f: #print('Generate script for cached setup "%s"' % output_filename) f.write('\n'.join(code)) mode = os.stat(output_filename).st_mode os.chmod(output_filename, mode | stat.S_IXUSR)
08f55e2eb709522cf7653be85bcdd8dc564d7a75
c2ec0817c6a9573a67f616860bb18bde23b5ef91
/BossSpider/pipelines.py
1e92c7b57cf012052c0be5f1bdf02035599b8716
[]
no_license
shuguo-ma/BossSpider
a3437d1a523af75cbf986c2459fb45dd9e17a360
3b429c797bc39a6343f941a04072f0e111916982
refs/heads/master
2020-03-18T21:47:47.798886
2018-05-29T13:54:11
2018-05-29T13:54:11
135,303,752
0
0
null
null
null
null
UTF-8
Python
false
false
1,084
py
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html ''' import sqlite3 class BossspiderPipeline(object): #打开爬虫时,连接数据库connect('database_name') def open_spider(self,spider): self.con = sqlite3.connect("zhipin.sqlite") self.cu = self.con.cursor() def process_item(self, item, spider): #sql插入语句,将爬取的数据插入到数据库 insert_sql = "insert into zhipin (post,salary,company,area,exp,edu,industry) VALUES ('{}','{}','{}','{}','{}','{}','{}')"\ .format(item['post'],item['salary'],item['company'],item['area'],item['exp'],item['edu'],item['industry']) #执行插入语句 self.cu.execute(insert_sql) #数据提交(数据插入或更新)需要commit self.con.commit() return item #爬虫结束时,数据库关闭 def spider_close(self,spider): self.con.close() ''' import pymysql
930737c12616f230b3bc3b9803ca7fc4d51929cc
390d2a378fd60d35f34d4e140887451ba74cc9e7
/gamestonk_terminal/stocks/technical_analysis/finnhub_model.py
f344acf2f2601118b994c50f387f8c28144df069
[ "MIT" ]
permissive
sechours/GamestonkTerminal
ebb7ae44c7ede1bbf40d7b3802cbf63cfa4be2cf
0b554c6893aa4e805c27b606f7de7ae6c0eb454d
refs/heads/main
2023-07-31T18:19:09.487365
2021-09-13T18:07:00
2021-09-13T18:07:00
406,403,995
1
0
MIT
2021-09-14T14:37:11
2021-09-14T14:37:10
null
UTF-8
Python
false
false
1,074
py
"""Finnhub model""" __docformat__ = "numpy" import requests import pandas as pd from gamestonk_terminal import config_terminal as cfg def get_pattern_recognition(ticker: str, resolution: str) -> pd.DataFrame: """Get pattern recognition data Parameters ---------- ticker : str Ticker to get pattern recognition data resolution : str Resolution of data to get pattern recognition from Returns ------- pd.DataFrame Get datapoints corresponding to pattern signal data """ response = requests.get( f"https://finnhub.io/api/v1/scan/pattern?symbol={ticker}&resolution={resolution}&token={cfg.API_FINNHUB_KEY}" ) # pylint:disable=no-else-return if response.status_code == 200: d_data = response.json() if "points" in d_data: return pd.DataFrame(d_data["points"]).T else: print("Response is empty") return pd.DataFrame() else: print(f"Error in requests with code: {response.status_code}") return pd.DataFrame()
02275546e99d17fd7465ff2cbf3e4eacf57003e3
a64757759a7170478ad3e9c71429c484491426be
/autoconv.py
85e7b1b45b29a9ad766ab17c57193b68b5453c93
[]
no_license
fy0/autoconv
940928810bcda472bf401c14c2452ef64359fd9c
1073934a0d03eba5e5192ffb583629308ff74d13
refs/heads/master
2021-07-01T01:30:25.249292
2017-09-18T08:11:57
2017-09-18T08:11:57
103,892,929
1
1
null
null
null
null
UTF-8
Python
false
false
2,704
py
""" { "global": { "encoder": "opusenc.exe", "input_dir": "input", "output_dir": "output", "watch_ext": [".wav"], "output_ext": ".opus" }, "types": { "music": { "--title": "track title" } } } """ import os import json import time import subprocess from shlex import quote from pathlib import Path # py3.4+ from watchdog.observers import Observer from watchdog.events import FileSystemEventHandler config = {} def convert(type_name, filepath): if len(filepath.parts) == 1: type_name = '' if filepath.suffix not in config['global']['watch_ext']: return if type_name in config['types']: typeinfo = config['types'][type_name] params = [] for k, v in typeinfo.items(): params.append('%s %s' % (k, v)) out_path = Path(config['global']['output_dir']).joinpath(filepath) out_ext = config['global']['output_ext'] encoder = subprocess.list2cmdline([config['global']['encoder']]) cmd = [ str(Path(config['global']['input_dir']).joinpath(filepath)), str(out_path)[:-len(out_path.suffix)] + out_ext # .absolute() ] os.makedirs(os.path.dirname(out_path), exist_ok=True) cmd_txt = encoder + ' ' + ' '.join(params) + subprocess.list2cmdline(cmd) print('Running: %s' % cmd_txt) os.system(cmd_txt) return True class FileEventHandler(FileSystemEventHandler): def on_moved(self, event): if event.is_directory: print("directory moved from {0} to {1}".format(event.src_path,event.dest_path)) else: path = Path(event.dest_path).relative_to(config['global']['input_dir']) if convert(path.parts[0], path): #print("file moved from {0} to {1}".format(event.src_path,event.dest_path)) print('[Encoded] %s' % event.src_path) def on_modified(self, event): if not event.is_directory: path = Path(event.src_path).relative_to(config['global']['input_dir']) if convert(path.parts[0], path): #print("file modified: %s" % event.src_path) print('[Encoded] %s' % event.src_path) def main(): global config config = json.loads(open('config.json', encoding='utf-8').read()) observer = Observer() event_handler = FileEventHandler() observer.schedule(event_handler, config['global']['input_dir'], True) observer.start() try: while True: time.sleep(1) except KeyboardInterrupt: observer.stop() observer.join() if __name__ == '__main__': main()
6c6e0e149c60270d3573a57dfa2fd3aa115c5361
e1fe1ed4f2ba8ab0146ce7c08d65bc7947150fc8
/credit11315/spiders/no_redis_detail_info_scrapy.py
3fb233a4bbd3603929edc4969dbae24a6847b673
[]
no_license
yidun55/credit11315
0d88ceef314efa444de58eb5da8939c1acff3abe
b048ec9db036a382287d5faacb9490ccbf50735c
refs/heads/master
2021-01-20T01:03:30.617914
2015-07-31T09:58:24
2015-07-31T09:58:24
38,853,611
0
1
null
null
null
null
UTF-8
Python
false
false
5,621
py
#!usr/bin/env python #coding: utf-8 """ 从11315全国企业征信系统http://www.11315.com/上 爬取企业信息 """ from scrapy.spider import Spider from scrapy.http import Request from scrapy import log from scrapy import signals from scrapy import Selector from scrapy.exceptions import DontCloseSpider import sys from credit11315.items import * from credit11315.middlewares import UnknownResponseError, ForbbidenResponseError from credit11315.tool.for_ominated_strip import for_ominated_data from credit11315.tool.for_JCXX import extract_combine_JCXX from credit11315.tool.for_all_blocks_info_extract import block_info_extract from credit11315.tool.for_fundation_info_extract import fundation_info_extract import HTMLParser import redis import urllib2 reload(sys) sys.setdefaultencoding("utf-8") class GetDetailInfo(Spider): """ 从redis上读取url,并提取企业的信息 """ name = 'noredisdetail' start_urls = ['http://www.11315.com'] def set_crawler(self,crawler): super(GetDetailInfo, self).set_crawler(crawler) self.crawler.signals.connect(self.spider_idle,\ signal=signals.spider_idle) def spider_idle(self): raise DontCloseSpider def parse(self,response): urlPath = '/home/dyh/data/credit11315/detailUrl\ /uniq_all_detail_url' f = open(urlPath, "r") for url in f: yield Request(url.strip(),callback=my_parse,\ dont_filter=True) def my_parse(self, response): """ 解析 """ sel = Selector(text=response.body) print len(sel.xpath(u"//b[text()='单位名称']"))!= 0, "parse 条件" log.msg("parse 条件=%s"%str(len(sel.xpath(u"//b[text()='单位名称']")) != 0), level=log.INFO) if (len(sel.xpath(u"//b[text()='单位名称']")) != 0): #判别是否为要输入验证码 pass else: log.msg("code=%s, %s"%(str(response.status),response.body), level=log.INFO) raise UnknownResponseError #======================================================== """ 第一部分:企业信用档案 """ item = DetailInformation() item['basic_info'] = fundation_info_extract(response) #======================================================== #======================================================== """ 第一部分 政府监管信息 """ item['regulatory_info'] = extract_combine_JCXX(response) #======================================================== #======================================================== """ 第三部分 行业评价信息 """ keywords_list = ['2-1.体系/产品/行业认证信息', '2-2.行业协会(社会组织)评价信息',\ '2-3.水电气通讯等公共事业单位评价'] item['envaluated_info'] = block_info_extract(response,\ keywords_list) #======================================================== """ 第四部分 媒体评价信息 """ keywords_list = ['3-1.媒体评价信息'] item['media_env'] = block_info_extract(response, keywords_list) #======================================================== """ 第五部分 金融信贷信息 """ #url = 'http://www.11315.com/\ #getTradeLendingCount?companyId=%s'%response.url[7:15] #header = {'User-Agent':"Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2272.89 Safari/537.36", # 'Referer':response.url} #req = urllib2.Request(url=url, headers=header) #xtml = urllib2.urlopen(req) #Nums = xtml.read() #print Nums, "this is Nums" #Nums = eval(Nums).split(",") #print Nums, "this is anothor Nums" #total = str(sum([int(i) for i in Nums])) #Nums.insert(0, total) #在头部插入 #if total == '0': # t_url = "" #else: # t_url = sel.xpath(u"//script").re(ur"html\(\'<a href=\"([\w\W]*?)\"")[0] #Nums.append(t_url) #Nums_re = "|".join(Nums) keywords_list = ['4-2.民间借贷评价信息'] item["credit_fin"] = block_info_extract(response, keywords_list) #======================================================= """ 第六部分 企业运营信息 """ #keywords_list = ['5-3.水电煤气电话费信息', #'5-4.纳税信息'] #要么运行js,要么模拟请求,破网站,就两行数据至于吗 #item['operation_info'] = block_info_extract(response, keywords_list) #======================================================== """ 第七部分 市场反馈信息 """ keywords_list = ['6-1.消费者评价信息', '6-2.企业之间履约评价','6-3.员工评价信息', '6-4.其他'] item['feedback_info'] = block_info_extract(response, keywords_list) #======================================================== return item #else: # print "raise unknownresponseError in spider", response.request.meta # #raise UnknownResponseError # #raise ForbbidenResponseError("work or no nnnnnn") # request = response.request # retryreq = request.copy() # retryreq.dont_filter = True # log.msg("UnknowResponseError %s"%response.body, level=log.INFO) # yield retryreq
eaea7564dec27050ddfd3d3746903d8608f0a40b
c842ae21582fb91a19605744d3d9b026b5bf9cc5
/cl3/settings.py
ae097bc7e618daea589f8c37329b6d28b6d8b32d
[]
no_license
Carlos-Daniel260/cl3
2e94bdf3254e38d646f8634092d2d3302886ee1a
bdaf12b3b88078e62cc6f59470892e01c653209f
refs/heads/master
2022-04-05T16:02:20.765358
2020-02-22T18:13:03
2020-02-22T18:13:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,128
py
""" Django settings for cl3 project. Generated by 'django-admin startproject' using Django 3.0.2. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.0/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '0&gvsoh!d=guow=z4yxgf4nfs)ug6joyhe9b*8=n$i+nap2=*0' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['18.206.127.19', 'localhost', 'myhostup.ddns.net'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'cl3.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'cl3.wsgi.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ STATIC_URL = '/static/'
733be284b833d1981ed58e617f84b58ca2f8dc00
d7a6502e2bad57aefa1a509e13074f014821abfd
/00x-isolate_digits_from_number.py
d6486ccd0a9989a6235762b25840b6e3f5284dda
[]
no_license
anibalvy/katas
5d63d5db6d7ec784f1e60de9c380be318fcb04f7
a28c26e8e2c9c174594fa4b81e14d9733ba44dc3
refs/heads/main
2023-07-16T08:47:31.494670
2021-08-24T06:44:28
2021-08-24T06:44:28
399,362,593
0
0
null
null
null
null
UTF-8
Python
false
false
1,188
py
>> 1234//1000 1 >> 1234%1000//100 2 >> 1234%100//10 3 >> 1234%100%10 4
f36e4bac20c903f91a082d88b22b765caafeac35
a708f1d36586d2b01c99f2cb44aa4612b10192f6
/周赛/week183/5376非递增顺序.py
eb36dbf409919c8981dd21302f726a93af63edc0
[]
no_license
LeopoldACC/Algorithm
2477e8a371e9cdc5a47b582ca2a454539b96071e
fc1b0bec0e28d31e9a6ff722b3a66eacb0278148
refs/heads/master
2023-01-25T02:28:14.422447
2020-12-03T15:01:10
2020-12-03T15:01:10
197,297,197
2
0
null
null
null
null
UTF-8
Python
false
false
1,041
py
class Solution:###最终版 def minSubsequence(self, nums): nums = sorted(nums) prefix_sum = nums[:] for i in range(len(nums)-2,-1,-1): prefix_sum[i]+=prefix_sum[i+1] index = -1 for i in range(len(nums)-1,-1,-1): if prefix_sum[i]>prefix_sum[0]//2: index = i break return nums[index:][::-1] class Solution0: def minSubsequence(self, nums): nums = sorted(nums) prefix_sum =nums[:] for i in range(len(nums)): prefix_sum[i]+=nums[i] target = prefix_sum[-1]//2 index = self.bisec(prefix_sum,target) return nums[index:][::-1] def bisec(self,prefix,target): start,end = 0,len(prefix)-1 while start+1<end: mid = (start+end)//2 if prefix[mid]<=target: start = mid else: end = mid return end if prefix[end]>target else start s = Solution() s.minSubsequence([4,4,7,6,7])
499a03357c8ae0101e94a0ea850bdfd693fd861f
77fc5af96da1d461c86c7f9668b64b99ca04a1b6
/codes/montecarlo.py
32c0ce13aa246aa42786f17cd7c0371a3c56965c
[]
no_license
rene-d/edupython
5b6bc8ddb5eb8ec896ee70fb961d4e689af1075a
1261d0c7aae17bb2d4ff3370860768b73ba4172d
refs/heads/master
2020-11-24T10:07:18.504472
2019-12-21T21:03:08
2019-12-21T21:03:08
228,099,675
0
0
null
null
null
null
UTF-8
Python
false
false
924
py
# Découpe d'un carré en 3 zones # https://edupython.tuxfamily.org/sources/view.php?code=montecarlo # Les zones sont les domaines du plan délimitées par les courbes # des fonctions carré et racine carrée, à l'intérieur du carré unité, # dans un repère orthonormal. # Les aires sont obtenues par la méthode de Monte Carlo. # On choisit un point au hasard dans le carré unité 10 000 fois # Et on estime ainsi l'aire de chaque domaine. a, b, c = 0, 0, 0 for i in range (10000) : x, y = random(), random() if y > sqrt (x) : a = a + 1 elif y > x * x : b = b + 1 else : c = c + 1 print ("On est dans la zone A", a, "fois sur 10 000.") print ("On est dans la zone B", b, "fois sur 10 000.") print ("On est dans la zone C", c, "fois sur 10 000.") print ("Donc les aires respectives des zones A, B et C",end="") print ("sont estimées à", a / 10000, ",", b / 10000, "et", c / 10000, "unités d'aire.")
6a6975ede1ec62e3b6946074fc686843e6cf3c4a
d1cf5e22ddf7f03ca032a405455802794273bd7b
/init.wsgi
9e8ff9cd8f5edeb7e8328139524937a2c02b3c63
[]
no_license
bibek-p/psabots
4af99dac0b4d2f3d82396ccb85bd3c2bde03ac3d
a9b763ae132cdab73a91794dbd6568e2d3be3e05
refs/heads/main
2023-08-02T16:41:04.053578
2021-09-16T05:56:40
2021-09-16T05:56:40
405,976,248
0
0
null
null
null
null
UTF-8
Python
false
false
274
wsgi
activate_this = '/home/bitspan/testing_bitspanindia_com/venv/bin/activate_this.py' with open(activate_this) as file_: exec(file_.read(), dict(__file__=activate_this)) import sys sys.path.insert(0,"/home/bitspan/") from testing_bitspanindia_com import app as application
86ed1a431a9ff503d5f122745fcd477b8c57065b
a379f5c5578ebd50998f634345f77f519c6b31a6
/share/gnuradio/examples/digital/ofdm/tunnel.py
aaf7ca5ee5e83217c9b78b60295d1565a29327a1
[]
no_license
bjarkimb/EQ2443-2445-Project-Group2
867cf3533ee2325b9966232cead6b3531031b3dc
dcbabc70fd0c865ab6e6ac724c6be606f9c61a38
refs/heads/master
2020-04-12T09:54:11.257264
2018-12-19T10:58:43
2018-12-19T10:58:43
162,412,306
1
1
null
null
null
null
UTF-8
Python
false
false
9,352
py
#!/usr/bin/python2 # # Copyright 2005,2006,2011 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # # ///////////////////////////////////////////////////////////////////////////// # # This code sets up up a virtual ethernet interface (typically gr0), # and relays packets between the interface and the GNU Radio PHY+MAC # # What this means in plain language, is that if you've got a couple # of USRPs on different machines, and if you run this code on those # machines, you can talk between them using normal TCP/IP networking. # # ///////////////////////////////////////////////////////////////////////////// from gnuradio import gr, digital from gnuradio import eng_notation from gnuradio.eng_option import eng_option from optparse import OptionParser # from current dir from receive_path import receive_path from transmit_path import transmit_path from uhd_interface import uhd_transmitter from uhd_interface import uhd_receiver import os, sys import random, time, struct #print os.getpid() #raw_input('Attach and press enter') # ///////////////////////////////////////////////////////////////////////////// # # Use the Universal TUN/TAP device driver to move packets to/from kernel # # See /usr/src/linux/Documentation/networking/tuntap.txt # # ///////////////////////////////////////////////////////////////////////////// # Linux specific... # TUNSETIFF ifr flags from <linux/tun_if.h> IFF_TUN = 0x0001 # tunnel IP packets IFF_TAP = 0x0002 # tunnel ethernet frames IFF_NO_PI = 0x1000 # don't pass extra packet info IFF_ONE_QUEUE = 0x2000 # beats me ;) def open_tun_interface(tun_device_filename): from fcntl import ioctl mode = IFF_TAP | IFF_NO_PI TUNSETIFF = 0x400454ca tun = os.open(tun_device_filename, os.O_RDWR) ifs = ioctl(tun, TUNSETIFF, struct.pack("16sH", "gr%d", mode)) ifname = ifs[:16].strip("\x00") return (tun, ifname) # ///////////////////////////////////////////////////////////////////////////// # the flow graph # ///////////////////////////////////////////////////////////////////////////// class my_top_block(gr.top_block): def __init__(self, callback, options): gr.top_block.__init__(self) self.source = uhd_receiver(options.args, options.bandwidth, options.rx_freq, options.lo_offset, options.rx_gain, options.spec, options.antenna, options.clock_source, options.verbose) self.sink = uhd_transmitter(options.args, options.bandwidth, options.tx_freq, options.lo_offset, options.tx_gain, options.spec, options.antenna, options.clock_source, options.verbose) self.txpath = transmit_path(options) self.rxpath = receive_path(callback, options) self.connect(self.txpath, self.sink) self.connect(self.source, self.rxpath) def carrier_sensed(self): """ Return True if the receive path thinks there's carrier """ return self.rxpath.carrier_sensed() def set_freq(self, target_freq): """ Set the center frequency we're interested in. """ self.u_snk.set_freq(target_freq) self.u_src.set_freq(target_freq) # ///////////////////////////////////////////////////////////////////////////// # Carrier Sense MAC # ///////////////////////////////////////////////////////////////////////////// class cs_mac(object): """ Prototype carrier sense MAC Reads packets from the TUN/TAP interface, and sends them to the PHY. Receives packets from the PHY via phy_rx_callback, and sends them into the TUN/TAP interface. Of course, we're not restricted to getting packets via TUN/TAP, this is just an example. """ def __init__(self, tun_fd, verbose=False): self.tun_fd = tun_fd # file descriptor for TUN/TAP interface self.verbose = verbose self.tb = None # top block (access to PHY) def set_flow_graph(self, tb): self.tb = tb def phy_rx_callback(self, ok, payload): """ Invoked by thread associated with PHY to pass received packet up. Args: ok: bool indicating whether payload CRC was OK payload: contents of the packet (string) """ if self.verbose: print "Rx: ok = %r len(payload) = %4d" % (ok, len(payload)) if ok: os.write(self.tun_fd, payload) def main_loop(self): """ Main loop for MAC. Only returns if we get an error reading from TUN. FIXME: may want to check for EINTR and EAGAIN and reissue read """ min_delay = 0.001 # seconds while 1: payload = os.read(self.tun_fd, 10*1024) if not payload: self.tb.txpath.send_pkt(eof=True) break if self.verbose: print "Tx: len(payload) = %4d" % (len(payload),) delay = min_delay while self.tb.carrier_sensed(): sys.stderr.write('B') time.sleep(delay) if delay < 0.050: delay = delay * 2 # exponential back-off self.tb.txpath.send_pkt(payload) # ///////////////////////////////////////////////////////////////////////////// # main # ///////////////////////////////////////////////////////////////////////////// def main(): parser = OptionParser (option_class=eng_option, conflict_handler="resolve") expert_grp = parser.add_option_group("Expert") parser.add_option("-m", "--modulation", type="choice", choices=['bpsk', 'qpsk'], default='bpsk', help="Select modulation from: bpsk, qpsk [default=%%default]") parser.add_option("-v","--verbose", action="store_true", default=False) expert_grp.add_option("-c", "--carrier-threshold", type="eng_float", default=30, help="set carrier detect threshold (dB) [default=%default]") expert_grp.add_option("","--tun-device-filename", default="/dev/net/tun", help="path to tun device file [default=%default]") digital.ofdm_mod.add_options(parser, expert_grp) digital.ofdm_demod.add_options(parser, expert_grp) transmit_path.add_options(parser, expert_grp) receive_path.add_options(parser, expert_grp) uhd_receiver.add_options(parser) uhd_transmitter.add_options(parser) (options, args) = parser.parse_args () if len(args) != 0: parser.print_help(sys.stderr) sys.exit(1) if options.rx_freq is None or options.tx_freq is None: sys.stderr.write("You must specify -f FREQ or --freq FREQ\n") parser.print_help(sys.stderr) sys.exit(1) # open the TUN/TAP interface (tun_fd, tun_ifname) = open_tun_interface(options.tun_device_filename) # Attempt to enable realtime scheduling r = gr.enable_realtime_scheduling() if r == gr.RT_OK: realtime = True else: realtime = False print "Note: failed to enable realtime scheduling" # instantiate the MAC mac = cs_mac(tun_fd, verbose=True) # build the graph (PHY) tb = my_top_block(mac.phy_rx_callback, options) mac.set_flow_graph(tb) # give the MAC a handle for the PHY print "modulation: %s" % (options.modulation,) print "freq: %s" % (eng_notation.num_to_str(options.tx_freq)) tb.rxpath.set_carrier_threshold(options.carrier_threshold) print "Carrier sense threshold:", options.carrier_threshold, "dB" print print "Allocated virtual ethernet interface: %s" % (tun_ifname,) print "You must now use ifconfig to set its IP address. E.g.," print print " $ sudo ifconfig %s 192.168.200.1" % (tun_ifname,) print print "Be sure to use a different address in the same subnet for each machine." print tb.start() # Start executing the flow graph (runs in separate threads) mac.main_loop() # don't expect this to return... tb.stop() # but if it does, tell flow graph to stop. tb.wait() # wait for it to finish if __name__ == '__main__': try: main() except KeyboardInterrupt: pass
6ed1bc1d026edbcc0983015edc3b0d6b6c053af7
ea8e945af461ae6e5a2dcd9dce244391f14ec695
/koyama/chapter10/knock98.py
e465cc971c6708ec9fbbc0331c437272abe9da90
[]
no_license
tmu-nlp/100knock2020
b5a98485e52b88003fa97966c8d6eef292c9f036
1133fa833ea32ad3e54833e420bcb1433f3ec2f3
refs/heads/master
2023-04-09T06:48:04.571566
2020-08-13T05:38:25
2020-08-13T05:38:25
258,825,143
1
2
null
2020-08-12T15:56:56
2020-04-25T16:43:13
Python
UTF-8
Python
false
false
1,304
py
# 98. ドメイン適応 # Japanese-English Subtitle Corpus (JESC)やJParaCrawlなどの翻訳データを活用し, # KFTTのテストデータの性能向上を試みよ. ''' CUDA_VISIBLE_DEVICES=6 nohup fairseq-train \ /work/aomi/100knock2020/chapter10/data/JESC/processed/bin \ --save-dir /work/aomi/100knock2020/chapter10/knock98/models/model_1111/pretraining \ --arch transformer \ --optimizer adam --adam-betas '(0.9, 0.98)' \ --lr 0.0005 --lr-scheduler inverse_sqrt \ --min-lr '1e-09' --warmup-init-lr '1e-07' \ --warmup-updates 4000 \ --dropout 0.3 \ --max-epoch 10 \ --clip-norm 1.0 \ --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \ --max-tokens 1024 \ --seed 1111 > train.log & ''' ''' CUDA_VISIBLE_DEVICES=6 nohup fairseq-train \ /work/aomi/100knock2020/chapter10/data/KFTT/processed/bin \ --save-dir /work/aomi/100knock2020/chapter10/knock98/models/model_1111/fine_tuning \ --arch transformer \ --optimizer adam --adam-betas '(0.9, 0.98)' \ --lr 0.0005 --lr-scheduler inverse_sqrt \ --min-lr '1e-09' --warmup-init-lr '1e-07' \ --warmup-updates 4000 \ --dropout 0.3 \ --max-epoch 40 \ --clip-norm 1.0 \ --criterion label_smoothed_cross_entropy --label-smoothing 0.1 \ --max-tokens 1024 \ --seed 1111 > train.log & '''
dd755e188ecdc91d717143c7321fa6eaf8bdb91a
99dcb18a9e3ea367272f740b8cbf3c34285a0c08
/.sample_configs/param_handlers/cancel_data_labeling_job_sample.py
b11a0a22ff20d8c981aefa487bf8a6a00db46715
[ "Apache-2.0" ]
permissive
googleapis/python-aiplatform
926a4873f35dbea15b2fd86c0e16b5e6556d803e
76b95b92c1d3b87c72d754d8c02b1bca652b9a27
refs/heads/main
2023-08-19T23:49:02.180075
2023-08-19T13:25:59
2023-08-19T13:27:27
298,017,988
418
240
Apache-2.0
2023-09-14T21:08:33
2020-09-23T15:43:39
Python
UTF-8
Python
false
false
716
py
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # def make_name(name: str) -> str: # Sample function parameter name in cancel_data_labeling_job_sample name = name return name
bdb70c823e7f2efc492d211d2b17fc90893b5be9
40c4ffab36810c3d43825f61a14c61a4ede8b6d2
/venv/mysite/polls/models.py
d347611bf71a2f8a1fa47626da08b2f7df5d760d
[]
no_license
Andrei705/pythonProject
d2ffa0c1731e4bc42f98a51edd0df5ccf6620260
ac9c97b24c982edb6615e16a598583cbc828490f
refs/heads/master
2023-09-01T03:05:25.929920
2021-10-19T10:55:53
2021-10-19T10:55:53
388,744,103
1
0
null
null
null
null
UTF-8
Python
false
false
565
py
from django.db import models # Create your models here. class Object_folder(models.Model): name = models.CharField('Папка', max_length=100) name_films = models.CharField('Название фильма', max_length=100) name_cinema = models.CharField('Название кинотеатра', max_length=100) def __str__(self): return self.name class Meta: verbose_name = 'Заполнение данными' # class filing_folder(models.Model): # folder = models.ForeignKey(Object_folder,on_delete=models.PROTECT)
80f832455983b37492aabb45c118bac2cd8e5ae4
e49f2251e07a70c943b70bbae27c439631a31552
/tfx/components/model_validator/component.py
d6bc178a4182f17e0e083067fa3c9cd3df96c6b5
[ "Apache-2.0" ]
permissive
hephaex/tfx
eac03c1ab670368088ec2a49af28ff374dc95c4a
76d8731cb54be3451e10d270d8bcb0589401135f
refs/heads/master
2020-09-16T11:52:06.198631
2019-11-23T21:01:50
2019-11-23T21:45:46
223,760,941
1
0
Apache-2.0
2019-11-24T14:53:08
2019-11-24T14:53:08
null
UTF-8
Python
false
false
4,026
py
# Lint as: python2, python3 # Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TFX ModelValidator component definition.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from typing import Optional, Text from tfx import types from tfx.components.base import base_component from tfx.components.base import executor_spec from tfx.components.model_validator import driver from tfx.components.model_validator import executor from tfx.types import standard_artifacts from tfx.types.standard_component_specs import ModelValidatorSpec class ModelValidator(base_component.BaseComponent): """A TFX component to validate a newly trained model against a prior model. The model validator component can be used to check model metrics threshold and validate current model against a previously validated model. If there isn't a prior validated model, model validator will just make sure the threshold passed. Otherwise, ModelValidator compares a newly trained models against a known good model, specifically the last model "blessed" by this component. A model is "blessed" if the exported model's metrics are within predefined thresholds around the prior model's metrics. *Note:* This component includes a driver to resolve last blessed model. ## Possible causes why model validation fails Model validation can fail for many reasons, but these are the most common: - problems with training data. For example, negative examples are dropped or features are missing. - problems with the test or evaluation data. For example, skew exists between the training and evaluation data. - changes in data distribution. This indicates the user behavior may have changed over time. - problems with the trainer. For example, the trainer was stopped before model is converged or the model is unstable. ## Example ``` # Performs quality validation of a candidate model (compared to a baseline). model_validator = ModelValidator( examples=example_gen.outputs['examples'], model=trainer.outputs['model']) ``` """ SPEC_CLASS = ModelValidatorSpec EXECUTOR_SPEC = executor_spec.ExecutorClassSpec(executor.Executor) DRIVER_CLASS = driver.Driver def __init__(self, examples: types.Channel, model: types.Channel, blessing: Optional[types.Channel] = None, instance_name: Optional[Text] = None): """Construct a ModelValidator component. Args: examples: A Channel of 'ExamplesPath' type, usually produced by [ExampleGen](https://www.tensorflow.org/tfx/guide/examplegen) component. _required_ model: A Channel of 'ModelExportPath' type, usually produced by [Trainer](https://www.tensorflow.org/tfx/guide/trainer) component. _required_ blessing: Output channel of 'ModelBlessingPath' that contains the validation result. instance_name: Optional name assigned to this specific instance of ModelValidator. Required only if multiple ModelValidator components are declared in the same pipeline. """ blessing = blessing or types.Channel( type=standard_artifacts.ModelBlessing, artifacts=[standard_artifacts.ModelBlessing()]) spec = ModelValidatorSpec(examples=examples, model=model, blessing=blessing) super(ModelValidator, self).__init__(spec=spec, instance_name=instance_name)
be22c1e11ed28eafca08cf5bcfe0da6b20b66836
7c13de6b7831f99b8790452e03953e5ded0aca64
/classy_vision/generic/distributed_util.py
ec5211f4123496d80e7c9396eef6df0d0e8b1338
[ "MIT" ]
permissive
vreis/ClassyVision-2
3f99d3c06ec422e81e29b0f38f02a7ce56e480d6
80aa4d421d1203b4b92bb9b848ccc866816e4f6d
refs/heads/master
2021-07-15T18:03:14.212417
2019-12-06T16:48:19
2019-12-06T16:50:46
226,377,934
0
0
MIT
2019-12-06T17:27:46
2019-12-06T17:27:45
null
UTF-8
Python
false
false
5,284
py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch # Default to GPU 0 _cuda_device_index: int = 0 # Setting _cuda_device_index to -1 internally implies that we should use CPU _CPU_DEVICE_INDEX = -1 def convert_to_distributed_tensor(tensor): """ For some backends, such as NCCL, communication only works if the tensor is on the GPU. This helper function converts to the correct device and returns the tensor + original device. """ orig_device = "cpu" if not tensor.is_cuda else "gpu" if ( torch.distributed.is_available() and torch.distributed.get_backend() == torch.distributed.Backend.NCCL and not tensor.is_cuda ): tensor = tensor.cuda() return (tensor, orig_device) def convert_to_normal_tensor(tensor, orig_device): """ For some backends, such as NCCL, communication only works if the tensor is on the GPU. This converts the tensor back to original device. """ if tensor.is_cuda and orig_device == "cpu": tensor = tensor.cpu() return tensor def is_distributed_training_run(): return ( torch.distributed.is_available() and torch.distributed.is_initialized() and (torch.distributed.get_world_size() > 1) ) def is_master(): """ Returns True if this is rank 0 of a distributed training job OR if it is a single trainer job. Otherwise False. """ return get_rank() == 0 def all_reduce_mean(tensor): """ Wrapper over torch.distributed.all_reduce for performing mean reduction of tensor over all processes. """ if is_distributed_training_run(): tensor, orig_device = convert_to_distributed_tensor(tensor) torch.distributed.all_reduce(tensor, torch.distributed.ReduceOp.SUM) tensor = tensor / torch.distributed.get_world_size() tensor = convert_to_normal_tensor(tensor, orig_device) return tensor def all_reduce_sum(tensor): """ Wrapper over torch.distributed.all_reduce for performing sum reduction of tensor over all processes in both distributed / non-distributed scenarios. """ if is_distributed_training_run(): tensor, orig_device = convert_to_distributed_tensor(tensor) torch.distributed.all_reduce(tensor, torch.distributed.ReduceOp.SUM) tensor = convert_to_normal_tensor(tensor, orig_device) return tensor def gather_tensors_from_all(tensor): """ Wrapper over torch.distributed.all_gather for performing 'gather' of 'tensor' over all processes in both distributed / non-distributed scenarios. """ if tensor.ndim == 0: # 0 dim tensors cannot be gathered. so unsqueeze tensor = tensor.unsqueeze(0) if is_distributed_training_run(): tensor, orig_device = convert_to_distributed_tensor(tensor) gathered_tensors = [ torch.zeros_like(tensor) for _ in range(torch.distributed.get_world_size()) ] torch.distributed.all_gather(gathered_tensors, tensor) gathered_tensors = [ convert_to_normal_tensor(_tensor, orig_device) for _tensor in gathered_tensors ] else: gathered_tensors = [tensor] return gathered_tensors def gather_from_all(tensor): gathered_tensors = gather_tensors_from_all(tensor) gathered_tensor = torch.cat(gathered_tensors, 0) return gathered_tensor def barrier(): """ Wrapper over torch.distributed.barrier, returns without waiting if the distributed process group is not initialized instead of throwing error. """ if not torch.distributed.is_available() or not torch.distributed.is_initialized(): return torch.distributed.barrier() def get_world_size(): """ Simple wrapper for correctly getting worldsize in both distributed / non-distributed settings """ return ( torch.distributed.get_world_size() if torch.distributed.is_available() and torch.distributed.is_initialized() else 1 ) def get_rank(): """ Simple wrapper for correctly getting rank in both distributed / non-distributed settings """ return ( torch.distributed.get_rank() if torch.distributed.is_available() and torch.distributed.is_initialized() else 0 ) def set_cuda_device_index(idx: int): global _cuda_device_index _cuda_device_index = idx torch.cuda.set_device(_cuda_device_index) def set_cpu_device(): global _cuda_device_index _cuda_device_index = _CPU_DEVICE_INDEX def get_cuda_device_index() -> int: return _cuda_device_index def init_distributed_data_parallel_model(model): global _cuda_device_index if _cuda_device_index == _CPU_DEVICE_INDEX: # CPU-only model, don't specify device return torch.nn.parallel.DistributedDataParallel(model, broadcast_buffers=False) else: # GPU model return torch.nn.parallel.DistributedDataParallel( model, device_ids=[_cuda_device_index], output_device=_cuda_device_index, broadcast_buffers=False, )
e0b5ee0cd516322f32a722536ad76fe2471c92fa
f682815bff031cf04e958ac39380d73b2e671fe5
/ml_experiment.py
01388edb34d76c41b99b015822717c06d053d5dd
[]
no_license
crocodoyle/deep-mri-qc
8ec6665d48d8f92ea5baf034027dc04e4ac5e3d7
35058166ef1460f841728bd97a676d0758d13317
refs/heads/master
2020-06-28T18:39:13.509219
2018-12-06T22:54:21
2018-12-06T22:54:21
74,483,623
5
7
null
2018-01-12T01:33:55
2016-11-22T15:00:58
Python
UTF-8
Python
false
false
573
py
import os, pickle def setup_experiment(workdir): try: experiment_number = pickle.load(open(workdir + 'experiment_number.pkl', 'rb')) experiment_number += 1 except: print('Couldnt find the file to load experiment number') experiment_number = 0 print('This is experiment number:', experiment_number) results_dir = workdir + '/experiment-' + str(experiment_number) + '/' os.makedirs(results_dir) pickle.dump(experiment_number, open(workdir + 'experiment_number.pkl', 'wb')) return results_dir, experiment_number
73a032a0612a77d65c7a07200994e83c69f92ce3
6b2a8dd202fdce77c971c412717e305e1caaac51
/solutions_2751486_0/Python/TheTaintedOne/solution.py
746f30c4b1aac93a50dee4c7e781e4c5746595eb
[]
no_license
alexandraback/datacollection
0bc67a9ace00abbc843f4912562f3a064992e0e9
076a7bc7693f3abf07bfdbdac838cb4ef65ccfcf
refs/heads/master
2021-01-24T18:27:24.417992
2017-05-23T09:23:38
2017-05-23T09:23:38
84,313,442
2
4
null
null
null
null
UTF-8
Python
false
false
1,092
py
import sys lines = sys.stdin.readlines() ntests = int(lines[0]) vowels = set(["a", "e", "i", "o", "u"]) linenum = 1; for c in xrange(0, ntests): name, csize = lines[linenum].split() csize = int(csize) # print "[" + name + "]" # print start_size, num_others cons = []; for cc in name: if cc in vowels: cons.append(0) else: cons.append(1) # print cons runs = []; curr_run = 0; for pos in xrange(len(name)): if cons[pos]==1: curr_run = curr_run + 1 else: curr_run = 0 if curr_run>= csize: runs.append((pos, curr_run)) # print runs res = 0 list_pos = 0 for pos in xrange(len(name)): if list_pos < len(runs): if pos>runs[list_pos][0]-csize+1: list_pos = list_pos+1 if list_pos < len(runs): res = res + (len(name)-runs[list_pos][0]) # print pos, runs[list_pos] print "Case #" + str(c+1) + ": ", str(res) linenum = linenum + 1
5661147fb32392e5da9c640eb4c2970ac23560ef
f5b95b7b520d6986eed909eebba7a13d839b2164
/function/variable length arguments/demo2.py
45287652be2149fa1b24093b8f42d125b7be27e1
[]
no_license
NeenaBenny1995/Luminaronlineclassneenabeny
0a5e2e80c70aca5d60aee39f3e4872818abf4f20
2753b7f293e072b6654bf4b5efab05a6fe98756c
refs/heads/master
2023-04-30T08:30:10.908393
2021-05-20T08:25:54
2021-05-20T08:25:54
368,791,834
0
0
null
null
null
null
UTF-8
Python
false
false
130
py
def print_employee(**kwargs):#accept argument as key value pair print(kwargs) print_employee(id=100,name="Arjun",salary=10000)
3a87d592cde203deedef3e8df7131bca17d15baf
f508d22d4ce8a350c14dfbc783991a1fe59e5547
/Video/Django_StreamingHttpResponse_and_countdown_in_loop.py
a753a1b1f057470f2356a97858ffb9af31804835
[]
no_license
zDragon117/SomeCrapCode
e7459e42325e29c051da6d5065ea77cc1db600ac
812c6fade4e4e63eea5ddfd75e3b629d68c6b0e9
refs/heads/master
2021-10-25T00:08:12.040472
2021-04-15T16:08:51
2021-04-15T16:08:51
249,888,341
0
0
null
null
null
null
UTF-8
Python
false
false
1,618
py
globalIsOver = False def gen_camera_stream_resp( camera_source, fps=10, scale_width=720, scale_height=-1, ): countdown(120) while True and not over(): try: frame = camera_source.get_stream_data( scale_width=scale_width, scale_height=scale_height, ).tobytes() yield ( b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n' ) time.sleep(float(1) / fps) except Exception: time.sleep(0.3) break def countdown(time): t = Timer(time, set_over) t.start() def set_over(): global globalIsOver globalIsOver = True def over(): return globalIsOver @gzip.gzip_page @api_view(['GET']) def live_stream(request, camera_id): try: global globalIsOver globalIsOver = False fps = int(request.GET.get('fps', 10)) scale_width = int(request.GET.get('scale_width', 720)) scale_height = int(request.GET.get('scale_height', -1)) camera_source = AlarmBus.get_worker(camera_id).get_video_source() return StreamingHttpResponse( gen_camera_stream_resp( camera_source, fps=fps, scale_width=scale_width, scale_height=scale_height, ), content_type='multipart/x-mixed-replace;boundary=frame', ) except Exception as exc: return JsonResponse({ 'Error': f'Bad Request: {exc}' }, status=400)
6cfeff895436cedefcd17101ee2bfb6460f6e66d
da4dcd5dc90c8b3bbcc4b250da65017e090aafd5
/9.27/scrapy/scrapyboss/scrapyboss/pipelines.py
33d0caf8124ddacaacf491d9dcea3527ae61f6d2
[]
no_license
yuebanwanwan/9.27
2a8100d987597056d1611590256114c67e77e24f
1ee29ac21371524764c4be43c5dd90a3082e1ac6
refs/heads/master
2020-03-29T23:55:00.608808
2018-09-26T22:12:43
2018-09-26T22:12:43
150,495,992
0
0
null
null
null
null
UTF-8
Python
false
false
2,333
py
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html import pymongo import pymysql from scrapy.exceptions import DropItem class MongoPipeline(object): def __init__(self, mongo_uri, mongo_db): self.mongo_uri = mongo_uri self.mongo_db = mongo_db @classmethod def from_crawler(cls, crawler): return cls( mongo_uri=crawler.settings.get('MONGO_URI'), mongo_db=crawler.settings.get('MONGO_DB') ) def open_spider(self, spider): print('Mongo_open_spider') self.client = pymongo.MongoClient(self.mongo_uri) self.db = self.client[self.mongo_db] def process_item(self, item, spider): name = item.collection self.db[name].insert(dict(item)) return item def close_spider(self, spider): print('Mongo_close_spider') self.client.close() class MysqlPipeline(): def __init__(self, host, database, user, password, port): self.host = host self.database = database self.user = user self.password = password self.port = port @classmethod def from_crawler(cls, crawler): return cls( host=crawler.settings.get('MYSQL_HOST'), database=crawler.settings.get('MYSQL_DATABASE'), user=crawler.settings.get('MYSQL_USER'), password=crawler.settings.get('MYSQL_PASSWORD'), port=crawler.settings.get('MYSQL_PORT'), ) def open_spider(self, spider): print('Mysql_open_spider') self.db = pymysql.connect(self.host, self.user, self.password, self.database, charset='utf8', port=self.port) self.cursor = self.db.cursor() def close_spider(self, spider): print('Mysql_close_spider') self.db.close() def process_item(self, item, spider): data = dict(item) keys = ', '.join(data.keys()) values = ', '.join(['%s'] * len(data)) sql = 'insert into %s (%s) values (%s)' % (item.table, keys, values) self.cursor.execute(sql, tuple(data.values())) self.db.commit() return item
7cb7899c5d50aeeb8857f7c68469cd872242a07d
37183206f6b97a329367df0913f7bd1e9504278b
/services/equity_parser.py
dbe8f05e9ddc3c5e38ad56d0979784f2c80986ff
[]
no_license
imaayush/Equity
d9b31b45d7f57d22006c5cbcb0356884e15250c7
5a5851f1d436c874e383c78098f9342632f967a7
refs/heads/master
2021-09-02T00:02:11.163788
2017-12-29T09:13:55
2017-12-29T09:13:55
115,530,509
0
0
null
2017-12-29T08:41:49
2017-12-27T14:47:18
Python
UTF-8
Python
false
false
3,013
py
import os from .constants import FIELDS_NAMES class EquityParser(): """Take .csv file path as input and return list of dic""" def _is_readable_file(self, path): return os.path.isfile(path) and os.access(path, os.R_OK) def __init__(self): self.column_names = FIELDS_NAMES self.erros = {} def _covert_line_into_dic(self, line, column_names_with_index): """Input is line and cloumn names with its index convert it into dic Ex: Input: 500002,ABB LTD.,A ,Q,1389.00,1399.90,1374.15,1391.05,1391.05,1378.05,321,95555,132897086.00, Output: {"SC_CODE: 500002, "SC_NAME": "ABB LTD.", "OPEN":1393.45, "HIGH":1433.40, "LOW": 1383.85, "CLOSE": 1388.15} """ company_raw_details = line.split(',') company_details = {} for key, value in column_names_with_index.iteritems(): company_details[key] = company_raw_details[value].strip() return company_details def _find_company_columns_with_index(self, columns_in_file): """find position of cloumn name Ex: Input: SC_CODE,SC_NAME,SC_GROUP,SC_TYPE,OPEN,HIGH,LOW,CLOSE,LAST,PREVCLOSE,NO_TRADES,NO_OF_SHRS,NET_TURNOV,TDCLOINDI Ouput:{"SC_CODE: 0, "SC_NAME": 1, "OPEN":4, "HIGH":5, "LOW": 6, "CLOSE": 7} """ if not self._check_required_columns(columns_in_file): raise ValueError('missing, required field') column_names_with_index = {} for index_num in range(0, len(columns_in_file)): if columns_in_file[index_num] in self.column_names: column_names_with_index[columns_in_file[index_num]] = index_num return column_names_with_index def parse(self, path): """Take .csv file path as input and return list of dic""" companies_details = [] if not self._is_readable_file(path): return ValueError( '{}: file "{}" does not exist, or is not readable'.format(path, path) ) with open(path, "rb") as finput: self.lines = finput.read().split('\n') column_names_with_index = self._find_company_columns_with_index( self.lines[0].split(',')) companies_details = [] for line in self.lines[1:]: if line: companies_details.append(self._covert_line_into_dic( line, column_names_with_index)) return companies_details def _check_required_columns(self, columns_in_file): clean_cloumn_names = [] for column_name in columns_in_file: clean_cloumn_names.append(column_name.strip()) for column_name in self.column_names: if not (column_name in clean_cloumn_names): return False return True
00df633d7c8b33c3a85ec2a26c6b5ab806db56b6
d2b4a7bcf22f494edd7bc8d91e256f2c95fc3e46
/0x0A-python-inheritance/1-my_list.py
586dffe1974e28f7ddbb7e400964310cf48a0d3c
[]
no_license
sidcarrollworks/holbertonschool-higher_level_programming
72c56d90b24eab9b7fcb1861be17be2019db4041
26295d1e3c1e68ad22a7b3fe28fae2e938fadd9a
refs/heads/master
2022-05-03T23:10:49.527658
2018-05-10T19:40:40
2018-05-10T19:40:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
105
py
#!/usr/bin/python3 ''' Inherit ''' class MyList(list): def print_sorted(self): print(sorted(self))
6eff69d26d7e3eaee11c0cb00bccf058d78dcb99
7640f7e8ea742cd8938e62d165929a044036cd31
/BTransR_train.py
c4897af6963778cae662897ed0a2e671b06ded2a
[]
no_license
Jason101616/BTransX
94fffe0598ca7f073e28319cbea3ca54a5cc9c39
ab3e11b693705b3cd74c92404932b0542d988ad9
refs/heads/master
2021-06-20T19:49:28.063663
2017-08-15T03:51:03
2017-08-15T03:51:03
100,281,164
0
0
null
null
null
null
UTF-8
Python
false
false
13,347
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # @Time : 2017-03-29 14:06 # @Author : Zhang Du # @File : BTransR_train.py import numpy as np from constants import * import json import random class BTransR: def __init__(self, step = 0.001): def load_aligned_triples(): with open(path_aligned_triples, mode='r', encoding='utf8') as file: # aligned triples: [ZH_h, ZH_t, ZH_r, ZH_h_index, ZH_t_index, ZH_r_index, # EN_h, EN_t, EN_r, EN_h_index, EN_t_index, EN_r_index] self.aligned_triples = json.load(file) def find_unique_zh_en_triples(): def delete_duplicate_triples(list_triples): if len(list_triples) <= 1: return list_triples list_triples.sort(key=lambda x: (x[3], x[4], x[5])) index = 0 for i in range(1, len(list_triples)): if list_triples[index] != list_triples[i]: index = index + 1 list_triples[index] = list_triples[i] return list_triples[0: index + 1] # extract Chinese and English triples in aligned triples and delete duplication for i in self.aligned_triples: temp_zh = i[0: 6] # ZH part temp_en = i[6: 12] # EN part self.Chinese_triples.append(temp_zh) self.English_triples.append(temp_en) self.Chinese_triples = delete_duplicate_triples(self.Chinese_triples) self.English_triples = delete_duplicate_triples(self.English_triples) def subscript_zh_en_triples(): # {num: [h, t, r, h_num, t_num, r_num], …, } for i in range(len(self.Chinese_triples)): self.zh_subscript_triples[i] = self.Chinese_triples[i] for i in range(len(self.English_triples)): self.en_subscript_triples[i] = self.English_triples[i] def zh_en_dict_aligned_triples(): # self.zh_subscript_triples = {Chinese triple: [English triples,…,], … , } # self.en_subscript_triples = {English triple: [Chinese triples, …,], …, } for i in self.aligned_triples: temp_zh = tuple(i[0: 6]) # cannot hash a list temp_en = i[6: 12] if self.zh_dict_aligned_triples.get(temp_zh) == None: self.zh_dict_aligned_triples[temp_zh] = [temp_en] else: self.zh_dict_aligned_triples[temp_zh].append(temp_en) for i in self.aligned_triples: temp_zh = i[0: 6] temp_en = tuple(i[6: 12]) # cannot hash a list if self.en_dict_aligned_triples.get(temp_en) == None: self.en_dict_aligned_triples[temp_en] = [temp_zh] else: self.en_dict_aligned_triples[temp_en].append(temp_zh) def num2embedding(): for i in range(len(path_vec)): with open(path_vec[i], mode='r', encoding='utf8') as file: while True: line = file.readline() if line: vectors = line.split('\t') vectors = vectors[0: -1] for j in range(len(vectors)): vectors[j] = float(vectors[j]) # convert to numpy and transpose to column vector vectors = np.array(vectors).transpose() self.num_vector_list[i].append(vectors) else: break # BTransR basic attibutes self.dimension = 50 self.step = step self.margin = 1 self.aligned_triples = [] load_aligned_triples() self.BTransR_length = len(self.aligned_triples) self.nbatches = 1 self.BTransR_batch = int(self.BTransR_length / self.nbatches) self.BTransR_train_times = 3000 self.loss = 0 # assistant attributes # find corrupted triples self.Chinese_triples = [] self.English_triples = [] self.zh_subscript_triples = {} self.en_subscript_triples = {} find_unique_zh_en_triples() self.length_zh_triples = len(self.Chinese_triples) self.length_en_triples = len(self.English_triples) subscript_zh_en_triples() self.zh_dict_aligned_triples = {} self.en_dict_aligned_triples = {} zh_en_dict_aligned_triples() # transition between num and embeddings self.num_vector_entities_en = [] self.num_vector_relations_en = [] self.num_vector_entities_zh = [] self.num_vector_relations_zh = [] self.num_vector_list = [self.num_vector_entities_en, self.num_vector_relations_en, self.num_vector_entities_zh, self.num_vector_relations_zh] num2embedding() self.matrix = [] for i in range(len(self.num_vector_relations_en)): self.matrix.append(np.eye(self.dimension)) self.loss_list = [] self.min_loss = 9999 def norm(self, t3_h, t3_t, t3_r, corrupt_is_zh): ''' ||M*h||2 <= 1 ||M*t||2 <= 1 ''' def norm_specific(entity_embedding): lambda_step = 1 while True: x = 0 mul = self.matrix[t3_r].dot(entity_embedding) for i in mul: # x += i ** 0.5 x += i * i x = x ** 0.5 if x > 1: for ii in range(self.dimension): tmp = self.matrix[t3_r][ii, 0: self.dimension].dot(entity_embedding) for jj in range(self.dimension): self.matrix[t3_r][ii][jj] -= self.step * lambda_step * tmp * entity_embedding[jj] # entity_embedding[jj] -= self.step * lambda_step * tmp * self.matrix_head[ii][[jj]] else: break if corrupt_is_zh: pass else: norm_specific(self.num_vector_entities_en[t3_h]) norm_specific(self.num_vector_entities_en[t3_t]) def BTransR(self): for epoch in range(self.BTransR_train_times): self.loss = 0 for batch in range(self.nbatches): for k in range(self.BTransR_batch): i = random.randint(0, self.BTransR_length - 1) # randomize an aligned triples random_num = random.randint(1, 1000) if random_num <= 500: corrupt_is_zh = True corrupt_tri = self.corrupt_triples_former(self.aligned_triples[i]) # corrupted aligned triples, substitute a random triples self.train_trans(self.aligned_triples[i][3], self.aligned_triples[i][4], self.aligned_triples[i][5], self.aligned_triples[i][9], self.aligned_triples[i][10], self.aligned_triples[i][11], corrupt_tri[0], corrupt_tri[1], corrupt_tri[2], self.aligned_triples[i][9], self.aligned_triples[i][10], self.aligned_triples[i][11]) else: corrupt_is_zh = False corrupt_tri = self.corrupt_triples_latter(self.aligned_triples[i]) self.train_trans(self.aligned_triples[i][3], self.aligned_triples[i][4], self.aligned_triples[i][5], self.aligned_triples[i][9], self.aligned_triples[i][10], self.aligned_triples[i][11], self.aligned_triples[i][3], self.aligned_triples[i][4], self.aligned_triples[i][5], corrupt_tri[0], corrupt_tri[1], corrupt_tri[2]) self.norm(corrupt_tri[0], corrupt_tri[1], corrupt_tri[2], corrupt_is_zh) print("Step:", self.step, "epoch:", epoch, "loss:", self.loss) self.loss_list.append(self.loss) if min(self.min_loss, self.loss) == self.loss: self.min_loss = self.loss self.out_BTransR() print("Current min_loss is", self.min_loss, "In epoch", epoch) def out_BTransR(self): for i in range(len(self.num_vector_relations_en)): self.matrix[i].tofile(path_BTransR_Matrix[i]) def train_trans(self, t1_h, t1_t, t1_r, t2_h, t2_t, t2_r, t3_h, t3_t, t3_r, t4_h, t4_t, t4_r): sum1 = self.calc_sum(t1_h, t1_t, t1_r, t2_h, t2_t, t2_r) sum2 = self.calc_sum(t3_h, t3_t, t3_r, t4_h, t4_t, t4_r) if sum1 + self.margin > sum2: self.loss += self.margin + sum1 - sum2 self.gradient(t1_h, t1_t, t1_r, t2_h, t2_t, t2_r, -1, 1) self.gradient(t3_h, t3_t, t3_r, t4_h, t4_t, t4_r, 1, 1) def calc_sum(self, t1_h, t1_t, t1_r, t2_h, t2_t, t2_r): t1_h_embedding = self.num_vector_entities_zh[t1_h] t1_t_embedding = self.num_vector_entities_zh[t1_t] t1_r_embedding = self.num_vector_relations_zh[t1_r] t2_h_embedding = self.num_vector_entities_en[t2_h] t2_t_embedding = self.num_vector_entities_en[t2_t] t2_r_embedding = self.num_vector_relations_en[t2_r] head = self.matrix[t2_r].dot(t2_h_embedding) - t1_h_embedding head_fabs = np.fabs(head) head_sum = np.sum(head_fabs) tail = self.matrix[t2_r].dot(t2_t_embedding) - t1_t_embedding tail_fabs = np.fabs(tail) tail_sum = np.sum(tail_fabs) relation = t2_r_embedding - t1_r_embedding relation_fabs = np.fabs(relation) relation_sum = np.sum(relation_fabs) return head_sum + tail_sum + relation_sum def gradient(self, t1_h, t1_t, t1_r, t2_h, t2_t, t2_r, belta, same): t1_h_embedding = self.num_vector_entities_zh[t1_h] t1_t_embedding = self.num_vector_entities_zh[t1_t] t1_r_embedding = self.num_vector_relations_zh[t1_r] t2_h_embedding = self.num_vector_entities_en[t2_h] t2_t_embedding = self.num_vector_entities_en[t2_t] t2_r_embedding = self.num_vector_relations_en[t2_r] for ii in range(self.dimension): x_head = t2_h_embedding[ii] - self.matrix[t2_r][ii, 0: self.dimension].dot(t1_h_embedding) if x_head > 0: x_head = belta * self.step else: x_head = -belta * self.step for jj in range(self.dimension): self.matrix[t2_r][ii][jj] -= x_head * (t1_h_embedding[jj] - t2_h_embedding[jj]) x_tail = t2_t_embedding[ii] - self.matrix[t2_r][ii, 0: self.dimension].dot(t1_t_embedding) if x_tail > 0: x_tail = belta * self.step else: x_tail = -belta * self.step for jj in range(self.dimension): self.matrix[t2_r][ii][jj] -= x_tail * (t1_t_embedding[jj]- t2_t_embedding[jj]) x_relation = t2_r_embedding[ii] - t1_r_embedding[ii] if x_relation > 0: x_relation = belta * self.step else: x_relation = -belta * self.step for jj in range(self.dimension): self.matrix[t2_r][ii][jj] -= x_relation * (t1_r_embedding[jj]- t2_r_embedding[jj]) # randomize a Chinese triple, guarantee this pair of triples is not aligned triples # otherwise randomize again. def corrupt_triples_former(self, aligned_triples): aligned_en_triples = aligned_triples[6: 12] while True: rand_zh_subscript = random.randint(0, self.length_zh_triples - 1) # randomize the subscript of a Chinese triple rand_Chinese_triple = self.zh_subscript_triples[rand_zh_subscript] aligned_zh_triples = self.en_dict_aligned_triples[tuple(aligned_en_triples)] if rand_Chinese_triple not in aligned_zh_triples: return rand_Chinese_triple[3: 6] # randomize an English triple, guarantee this pair of triples is not aligned triples # otherwise randomize again. def corrupt_triples_latter(self, aligned_triples): aligned_zh_triples = aligned_triples[0: 6] while True: # randomize the subscript of a English triple rand_en_subscript = random.randint(0, self.length_en_triples - 1) # use subscript to find the original English triple rand_English_triple = self.en_subscript_triples[rand_en_subscript] # find English triples according to the original Chinese triple aligned_en_triples = self.zh_dict_aligned_triples[tuple(aligned_zh_triples)] # ensure the newly randomized triple is not in the original En and Zh triples set if rand_English_triple not in aligned_en_triples: return rand_English_triple[3: 6] # return the subscription of corrupt English triple if __name__ == '__main__': timenow("Program begin.") test = BTransR() test.BTransR() timenow("Program end.")
7ba038517977014232bb369d1a1be06c6546ca03
fcc47f227245e523e5603c7ac2b86ed301e91874
/chapter02/work04.py
eccc4f7cd6998df9d0ba6c7685efc6f4151b0cde
[]
no_license
programmingkids/python-level3
f420566c104f2ffe411afbad0a67ae72acfd3584
52a0abdf3410060edfcf69f0395b85f754def06b
refs/heads/master
2022-12-15T02:16:01.102846
2020-09-17T08:18:00
2020-09-17T08:18:00
289,796,755
0
0
null
null
null
null
UTF-8
Python
false
false
49
py
colors = ["red","blue","green","yellow","pink"]
0a458cffdfd12e0e313827f589640df8bbc8290b
b2b532b74a89510d71e108cf7d20507384d115d4
/print_index.py
5ddb8aa6ad516d27e645ef43e5c3f7a38368fbe2
[]
no_license
jyurick/cmput397Assignment1
6b624cc2fb187be4cbae0e52cd3e5a4fbf5801cf
363985076fd251d7a623a6826f933f325c8c7f2c
refs/heads/master
2020-04-06T05:47:16.724276
2017-02-28T06:09:15
2017-02-28T06:09:15
82,961,893
0
0
null
null
null
null
UTF-8
Python
false
false
965
py
import sqlite3 import sys #takes in system argument as the sqlite3 db_Name and connects to it db_name = sys.argv[1] conn = sqlite3.connect(db_name) #selects data required and orders it by term and docid stmt = """ SELECT TERM, DOCID, POSITIONS FROM LISTINGS ORDER BY TERM, DOCID ASC; """ curs = conn.execute(stmt) count = 0 docPositions = dict() for row in curs: #in the very first row, print the term and then set old_term to that term if count == 0: old_term = row[0] print(old_term + "\t", end = '') term = row[0] docid = row[1] positions = row[2] #once a new term is found, print a newline, the new term and the #first doc/positions for the term if term != old_term: print("\n"+term + "\t" + docid + ":"+ str(positions) + ";", end = '') #if the term is the same as the old_term, print the doc/positions along the same line else: print(docid + ":"+ str(positions) + ";", end = '') old_term = term count += 1 conn.close()
3b731d40bb96886cefc781104bd86c32f03bdaea
67c2b8719515a00714ae07e6be1257d5986b9528
/pyQT/笔记/列表.py
697b5217758465f5b48de7193aa605a2a8f69167
[]
no_license
zhangxf2020/jeee
b980cfda0e2b79b1e736ff5b4fea38fdfea9a89d
922a9ec42591397bf1a7f94cd84f63d459f2dbae
refs/heads/master
2021-02-19T10:04:53.804492
2020-03-16T01:25:40
2020-03-16T01:25:40
245,301,223
0
0
null
null
null
null
UTF-8
Python
false
false
29
py
a = '32.123' print('.' in a)
d95e8925cc8de16faad7f38369d751625be57b1b
1dacbf90eeb384455ab84a8cf63d16e2c9680a90
/pkgs/networkx-1.11-py27_0/lib/python2.7/site-packages/networkx/algorithms/centrality/betweenness.py
b8c2b125f647b1c691d87810ce7eb454c7f0ab78
[ "Apache-2.0", "BSD-3-Clause", "LicenseRef-scancode-unknown" ]
permissive
wangyum/Anaconda
ac7229b21815dd92b0bd1c8b7ec4e85c013b8994
2c9002f16bb5c265e0d14f4a2314c86eeaa35cb6
refs/heads/master
2022-10-21T15:14:23.464126
2022-10-05T12:10:31
2022-10-05T12:10:31
76,526,728
11
10
Apache-2.0
2022-10-05T12:10:32
2016-12-15T05:26:12
Python
UTF-8
Python
false
false
11,680
py
# coding=utf8 """ Betweenness centrality measures. """ # Copyright (C) 2004-2015 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. from heapq import heappush, heappop from itertools import count import networkx as nx import random __author__ = """Aric Hagberg ([email protected])""" __all__ = ['betweenness_centrality', 'edge_betweenness_centrality', 'edge_betweenness'] def betweenness_centrality(G, k=None, normalized=True, weight=None, endpoints=False, seed=None): r"""Compute the shortest-path betweenness centrality for nodes. Betweenness centrality of a node `v` is the sum of the fraction of all-pairs shortest paths that pass through `v` .. math:: c_B(v) =\sum_{s,t \in V} \frac{\sigma(s, t|v)}{\sigma(s, t)} where `V` is the set of nodes, `\sigma(s, t)` is the number of shortest `(s, t)`-paths, and `\sigma(s, t|v)` is the number of those paths passing through some node `v` other than `s, t`. If `s = t`, `\sigma(s, t) = 1`, and if `v \in {s, t}`, `\sigma(s, t|v) = 0` [2]_. Parameters ---------- G : graph A NetworkX graph k : int, optional (default=None) If k is not None use k node samples to estimate betweenness. The value of k <= n where n is the number of nodes in the graph. Higher values give better approximation. normalized : bool, optional If True the betweenness values are normalized by `2/((n-1)(n-2))` for graphs, and `1/((n-1)(n-2))` for directed graphs where `n` is the number of nodes in G. weight : None or string, optional If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight. endpoints : bool, optional If True include the endpoints in the shortest path counts. Returns ------- nodes : dictionary Dictionary of nodes with betweenness centrality as the value. See Also -------- edge_betweenness_centrality load_centrality Notes ----- The algorithm is from Ulrik Brandes [1]_. See [4]_ for the original first published version and [2]_ for details on algorithms for variations and related metrics. For approximate betweenness calculations set k=#samples to use k nodes ("pivots") to estimate the betweenness values. For an estimate of the number of pivots needed see [3]_. For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite number of equal length paths between pairs of nodes. References ---------- .. [1] Ulrik Brandes: A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25(2):163-177, 2001. http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf .. [2] Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008. http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf .. [3] Ulrik Brandes and Christian Pich: Centrality Estimation in Large Networks. International Journal of Bifurcation and Chaos 17(7):2303-2318, 2007. http://www.inf.uni-konstanz.de/algo/publications/bp-celn-06.pdf .. [4] Linton C. Freeman: A set of measures of centrality based on betweenness. Sociometry 40: 35–41, 1977 http://moreno.ss.uci.edu/23.pdf """ betweenness = dict.fromkeys(G, 0.0) # b[v]=0 for v in G if k is None: nodes = G else: random.seed(seed) nodes = random.sample(G.nodes(), k) for s in nodes: # single source shortest paths if weight is None: # use BFS S, P, sigma = _single_source_shortest_path_basic(G, s) else: # use Dijkstra's algorithm S, P, sigma = _single_source_dijkstra_path_basic(G, s, weight) # accumulation if endpoints: betweenness = _accumulate_endpoints(betweenness, S, P, sigma, s) else: betweenness = _accumulate_basic(betweenness, S, P, sigma, s) # rescaling betweenness = _rescale(betweenness, len(G), normalized=normalized, directed=G.is_directed(), k=k) return betweenness def edge_betweenness_centrality(G, k=None, normalized=True, weight=None, seed=None): r"""Compute betweenness centrality for edges. Betweenness centrality of an edge `e` is the sum of the fraction of all-pairs shortest paths that pass through `e` .. math:: c_B(e) =\sum_{s,t \in V} \frac{\sigma(s, t|e)}{\sigma(s, t)} where `V` is the set of nodes,`\sigma(s, t)` is the number of shortest `(s, t)`-paths, and `\sigma(s, t|e)` is the number of those paths passing through edge `e` [2]_. Parameters ---------- G : graph A NetworkX graph k : int, optional (default=None) If k is not None use k node samples to estimate betweenness. The value of k <= n where n is the number of nodes in the graph. Higher values give better approximation. normalized : bool, optional If True the betweenness values are normalized by `2/(n(n-1))` for graphs, and `1/(n(n-1))` for directed graphs where `n` is the number of nodes in G. weight : None or string, optional If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight. Returns ------- edges : dictionary Dictionary of edges with betweenness centrality as the value. See Also -------- betweenness_centrality edge_load Notes ----- The algorithm is from Ulrik Brandes [1]_. For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite number of equal length paths between pairs of nodes. References ---------- .. [1] A Faster Algorithm for Betweenness Centrality. Ulrik Brandes, Journal of Mathematical Sociology 25(2):163-177, 2001. http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf .. [2] Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008. http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf """ betweenness = dict.fromkeys(G, 0.0) # b[v]=0 for v in G # b[e]=0 for e in G.edges() betweenness.update(dict.fromkeys(G.edges(), 0.0)) if k is None: nodes = G else: random.seed(seed) nodes = random.sample(G.nodes(), k) for s in nodes: # single source shortest paths if weight is None: # use BFS S, P, sigma = _single_source_shortest_path_basic(G, s) else: # use Dijkstra's algorithm S, P, sigma = _single_source_dijkstra_path_basic(G, s, weight) # accumulation betweenness = _accumulate_edges(betweenness, S, P, sigma, s) # rescaling for n in G: # remove nodes to only return edges del betweenness[n] betweenness = _rescale_e(betweenness, len(G), normalized=normalized, directed=G.is_directed()) return betweenness # obsolete name def edge_betweenness(G, k=None, normalized=True, weight=None, seed=None): return edge_betweenness_centrality(G, k, normalized, weight, seed) # helpers for betweenness centrality def _single_source_shortest_path_basic(G, s): S = [] P = {} for v in G: P[v] = [] sigma = dict.fromkeys(G, 0.0) # sigma[v]=0 for v in G D = {} sigma[s] = 1.0 D[s] = 0 Q = [s] while Q: # use BFS to find shortest paths v = Q.pop(0) S.append(v) Dv = D[v] sigmav = sigma[v] for w in G[v]: if w not in D: Q.append(w) D[w] = Dv + 1 if D[w] == Dv + 1: # this is a shortest path, count paths sigma[w] += sigmav P[w].append(v) # predecessors return S, P, sigma def _single_source_dijkstra_path_basic(G, s, weight='weight'): # modified from Eppstein S = [] P = {} for v in G: P[v] = [] sigma = dict.fromkeys(G, 0.0) # sigma[v]=0 for v in G D = {} sigma[s] = 1.0 push = heappush pop = heappop seen = {s: 0} c = count() Q = [] # use Q as heap with (distance,node id) tuples push(Q, (0, next(c), s, s)) while Q: (dist, _, pred, v) = pop(Q) if v in D: continue # already searched this node. sigma[v] += sigma[pred] # count paths S.append(v) D[v] = dist for w, edgedata in G[v].items(): vw_dist = dist + edgedata.get(weight, 1) if w not in D and (w not in seen or vw_dist < seen[w]): seen[w] = vw_dist push(Q, (vw_dist, next(c), v, w)) sigma[w] = 0.0 P[w] = [v] elif vw_dist == seen[w]: # handle equal paths sigma[w] += sigma[v] P[w].append(v) return S, P, sigma def _accumulate_basic(betweenness, S, P, sigma, s): delta = dict.fromkeys(S, 0) while S: w = S.pop() coeff = (1.0 + delta[w]) / sigma[w] for v in P[w]: delta[v] += sigma[v] * coeff if w != s: betweenness[w] += delta[w] return betweenness def _accumulate_endpoints(betweenness, S, P, sigma, s): betweenness[s] += len(S) - 1 delta = dict.fromkeys(S, 0) while S: w = S.pop() coeff = (1.0 + delta[w]) / sigma[w] for v in P[w]: delta[v] += sigma[v] * coeff if w != s: betweenness[w] += delta[w] + 1 return betweenness def _accumulate_edges(betweenness, S, P, sigma, s): delta = dict.fromkeys(S, 0) while S: w = S.pop() coeff = (1.0 + delta[w]) / sigma[w] for v in P[w]: c = sigma[v] * coeff if (v, w) not in betweenness: betweenness[(w, v)] += c else: betweenness[(v, w)] += c delta[v] += c if w != s: betweenness[w] += delta[w] return betweenness def _rescale(betweenness, n, normalized, directed=False, k=None): if normalized is True: if n <= 2: scale = None # no normalization b=0 for all nodes else: scale = 1.0 / ((n - 1) * (n - 2)) else: # rescale by 2 for undirected graphs if not directed: scale = 1.0 / 2.0 else: scale = None if scale is not None: if k is not None: scale = scale * n / k for v in betweenness: betweenness[v] *= scale return betweenness def _rescale_e(betweenness, n, normalized, directed=False, k=None): if normalized is True: if n <= 1: scale = None # no normalization b=0 for all nodes else: scale = 1.0 / (n * (n - 1)) else: # rescale by 2 for undirected graphs if not directed: scale = 1.0 / 2.0 else: scale = None if scale is not None: if k is not None: scale = scale * n / k for v in betweenness: betweenness[v] *= scale return betweenness
72739765e377bc2c3ededd2471ef4acd179e7817
f0f80303b43aa2b248eb8bd8b97c0fa42e8dd7c2
/src/data_visualization/display_pairwise.py
22c49dc6d722b1fdd7ff44550dde17a85c52b273
[ "MIT" ]
permissive
CrivelliLab/Deep-Protein-Scoring
7377bb02bbd72ccddf4faaa25a5d90310097f767
059791a54133c2d03eb14cf98fba1c6ef27c8f49
refs/heads/master
2020-05-04T23:55:23.606379
2019-03-23T19:17:28
2019-03-23T19:17:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
666
py
''' display_pairwise.py Updated: 3/20/18 ''' import os import h5py as hp import numpy as np import matplotlib.pyplot as plt # Data parameters data_folder = '../../data/T0882/' ################################################################################ if __name__ == '__main__': # Set paths relative to this file os.chdir(os.path.dirname(os.path.realpath(__file__))) # Load pairwise data f = hp.File(data_folder+'pairwise_data.hdf5', "r") data_set = f['dataset'] x = np.array(data_set[list(data_set.keys())[0]]) # Display histogram for i in range(x.shape[2]): plt.imshow(x[:,:,i], cmap='Blues') plt.show()
168173786349698c8ae6e3a87590ff088b046c10
13119e54911404e9be9fe6a9b7732f23a16f5e1f
/lists/tests/test_models.py
d70ca968d7fd6ac126e80610e5b95ae2db78d6ef
[ "MIT" ]
permissive
PatrickLeonard/superlists
d290f24c96f5faa3e06f7934ca301ac787f2b4c0
c99cdb5ed32009a878016da9e3bb2659a267f851
refs/heads/master
2021-01-11T02:29:49.721734
2016-11-14T02:01:54
2016-11-14T02:01:54
70,960,400
0
0
null
null
null
null
UTF-8
Python
false
false
3,197
py
from django.contrib.auth import get_user_model User = get_user_model() from django.core.exceptions import ValidationError from django.test import TestCase from lists.models import Item, List class ItemModelTest(TestCase): def test_default_test(self): item = Item() self.assertEqual(item.text, '') def test_item_is_related_to_list(self): list_ = List.objects.create() item = Item() item.list = list_ item.save() self.assertIn(item, list_.item_set.all()) def test_list_ordering(self): list1 = List.objects.create() item1 = Item.objects.create(list=list1, text='i1') item2 = Item.objects.create(list=list1, text='item 2') item3 = Item.objects.create(list=list1, text='3') self.assertEqual( list(Item.objects.all()), [item1, item2, item3] ) def test_string_representation(self): item = Item(text='some text') self.assertEqual(str(item), 'some text') def test_cannot_save_empty_list_items(self): list_ = List.objects.create() item = Item(list=list_, text='') with self.assertRaises(ValidationError): item.save() item.full_clean() def test_duplicate_items_are_invalid(self): list_ = List.objects.create() Item.objects.create(list=list_, text='bla') with self.assertRaises(ValidationError): item = Item(list=list_, text='bla') item.full_clean() def test_CAN_save_same_item_to_different_lists(self): list1 = List.objects.create() list2 = List.objects.create() Item.objects.create(list=list1,text='bla') item = Item(list=list2, text='bla') item.full_clean() # should not raise class ListModelTest(TestCase): def test_get_absolute_url(self): list_ = List.objects.create() self.assertEqual(list_.get_absolute_url(), '/lists/%d/' % (list_.id,)) def test_create_new_creates_list_and_first_item(self): List.create_new(first_item_text='new item text') new_item = Item.objects.first() self.assertEqual(new_item.text, 'new item text') new_list = List.objects.first() self.assertEqual(new_item.list, new_list) def test_create_new_optionally_saves_owner(self): user = User.objects.create() List.create_new(first_item_text='new item text', owner=user) new_list = List.objects.first() self.assertEqual(new_list.owner, user) def test_lists_can_have_owners(self): List(owner=User()) # should not raise def test_list_owner_is_optional(self): List().full_clean() # should not raise def test_list_name_is_first_item_text(self): list_ = List.objects.create() Item.objects.create(list=list_, text='first item') Item.objects.create(list=list_, text='second item') self.assertEqual(list_.name, 'first item') def test_create_return_new_list_object(self): returned = List.create_new(first_item_text='new item text') new_list = List.objects.first() self.assertEqual(returned, new_list)
83497eb9655ea0c266abbffacf149e61e78c537c
f521f594f6c9189433b4fcab5155d1194fcbeac2
/parse/log_decorator.py
83d1568cc5671d5fc685d6ac4f49e3d36e860ef2
[]
no_license
easyinplay/tor_spider_scrapy
cd1a8241ff1e744a10d812998ea49ce38a6c310e
736285d1bd0a82b4e1db2857a232a1623993482a
refs/heads/master
2023-02-02T11:03:45.312559
2020-12-22T08:57:43
2020-12-22T08:57:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,334
py
import os import logging import functools from datetime import datetime def _logger(): logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) sh = logging.StreamHandler() today = datetime.now() path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # 上一级目录 # fh = logging.FileHandler(path + "{}log{}es-{}-{}-{}.log".format(os.sep, os.sep, today.year, today.month, today.day), encoding='utf-8') fmt = "[%(asctime)s][%(filename)s:%(lineno)d][%(levelname)s] - %(message)s" formatter = logging.Formatter(fmt) sh.setFormatter(formatter) # fh.setFormatter(formatter) logger.addHandler(sh) # logger.addHandler(fh) return logger def exception_logger(logger): """ A decorator that wraps the passed in function and logs exceptions should one occur @param logger: The logging object """ def decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except: # log the exception err = "There was an exception in " err += func.__name__ logger.exception(err) # re-raise the exception raise return wrapper return decorator
14bfb45539a15719c26658a0696082529fc4bc0f
65465c6a8ffde330dea87c347b5a6f8345f0bdca
/p3/urls.py
2cdfbf5928658f3f5bc0f17c9e063acab2b297b6
[]
no_license
Saranyaram890/p3
27a0fa81ea16772e73b8a61fb306893c63977ba5
48fad442244da2d97f2444806540bc0a133e3e45
refs/heads/master
2022-11-22T14:51:58.800929
2020-07-23T02:04:37
2020-07-23T02:04:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,189
py
"""p3 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from p3 import views urlpatterns = [ path('admin/', admin.site.urls), path('index/',views.index,name="index"), path('',views.home,name="home"), path('second/',views.second,name="second"), path('third/',views.third,name='third'), path('fourth/',views.fourth,name="fourth"), path('fifth/',views.fifth,name="fifth"), path("url_data/<name>",views.urls_data,name="urls_data"), path("ab/<ab>",views.ab,name="ab"), path('vowels/<str>', views.vowels, name="vowels"), ]
c8d58bad12f2d00dbaaa0a198b391fe827e89ccc
79a60fa1daeaa9dbe0cb551423fe28c2f2cf7da3
/websocket/bottle/mqttwsweb.py
a0e1c343be062aba3efa12502005552a8a3d9e11
[ "MIT" ]
permissive
swkim01/mqtt
a505494815cd5f487cbc1e434fd0546c1bc08eac
030d9106bf791b54538aac8789df872abaa96e17
refs/heads/master
2021-01-10T22:07:04.788958
2019-07-19T01:41:07
2019-07-19T01:41:07
42,844,241
5
2
null
null
null
null
UTF-8
Python
false
false
499
py
#-*- coding: utf-8 -*- from bottle import route, get, request, template, response, static_file from bottle import run #import json host="<HOST IP>" port=8008 wsport=9001 @route('/mqttws31.js') def mqttws31(): return static_file("mqttws31.js", root=".") @get('/mqttwschart') def dht22chart(): return template("mqttwschart", host=host, port=wsport) @get('/') def index(): return template("mqttwsindex", host=host, port=wsport) if __name__ == '__main__': run(host=host, port=port)
e0008060475c57100422a4370823f602a7d1dbaf
de4f05070b7194b00facd823ce369e2733034ea1
/EC2/GetEC2Instance.py
065371954d97b7998fa4965e5e5df48296e69405
[]
no_license
JeongWonjae/AWS_CLI_Script
2679e6072c210665f0c7c65705f73c67a6c591b6
91c5c122799a0b930f9eb3652ae1570ef1abbcec
refs/heads/master
2023-06-01T22:27:32.824199
2021-06-24T05:46:59
2021-06-24T05:46:59
345,669,623
0
0
null
null
null
null
UTF-8
Python
false
false
3,707
py
import boto3 import json session=boto3.session.Session(profile_name='DemoUser', region_name='us-east-1') client=session.client('ec2') instances=[] # for minimize call API set 'MaxResults=1000' response=client.describe_instances(MaxResults=1000) # response = {'Reservations': [{'Groups': [], 'Instances': [{'AmiLaunchIndex': 0, 'ImageId': 'ami-0533f2ba8a1995cf9', 'InstanceId': 'i-09bbe296b89xxxxx', 'InstanceType': 't2.micro', 'KeyName': 'EC2DemoKey', 'LaunchTime': datetime.datetime(2021, 3, 23, 14, 28, 8, tzinfo=tzutc()), 'Monitoring': {'State': 'disabled'}, 'Placement': {'AvailabilityZone': 'us-east-1a', 'GroupName': '', 'Tenancy': 'default'}, 'PrivateDnsName': 'ip-172-31-1-111.ec2.internal', 'PrivateIpAddress': '172.31.1.111', 'ProductCodes': [], 'PublicDnsName': '', 'State': {'Code': 16, 'Name': 'running'}, 'StateTransitionReason': '', 'SubnetId': 'subnet-0245c04d58e1998d3', 'VpcId': 'vpc-4f65d132', 'Architecture': 'x86_64', 'BlockDeviceMappings': [{'DeviceName': '/dev/xvda', 'Ebs': {'AttachTime': datetime.datetime(2021, 3, 23, 14, 28, 9, tzinfo=tzutc()), 'DeleteOnTermination': True, 'Status': 'attached', 'VolumeId': 'vol-0d4dcaf9ea658bf8e'}}], 'ClientToken': '', 'EbsOptimized': False, 'EnaSupport': True, 'Hypervisor': 'xen', 'NetworkInterfaces': [{'Attachment': {'AttachTime': datetime.datetime(2021, 3, 23, 14, 28, 8, tzinfo=tzutc()), 'AttachmentId': 'eni-attach-04ef9e8fe41f0b730', 'DeleteOnTermination': True, 'DeviceIndex': 0, 'Status': 'attached', 'NetworkCardIndex': 0}, 'Description': 'Primary network interface', 'Groups': [{'GroupName': 'launch-wizard-1', 'GroupId': 'sg-028e98f8644954d4f'}], 'Ipv6Addresses': [], 'MacAddress': '12:f7:a1:50:f6:3f', 'NetworkInterfaceId': 'eni-0989b13d333faecaa', 'OwnerId': '416168070872', 'PrivateDnsName': 'ip-172-31-1-111.ec2.internal', 'PrivateIpAddress': '172.31.1.111', 'PrivateIpAddresses': [{'Primary': True, 'PrivateDnsName': 'ip-172-31-1-111.ec2.internal', 'PrivateIpAddress': '172.31.1.111'}], 'SourceDestCheck': True, 'Status': 'in-use', 'SubnetId': 'subnet-0245c04d58e1998d3', 'VpcId': 'vpc-4f65d132', 'InterfaceType': 'interface'}], 'RootDeviceName': '/dev/xvda', 'RootDeviceType': 'ebs', 'SecurityGroups': [{'GroupName': 'launch-wizard-1', 'GroupId': 'sg-028e98f8644954d4f'}], 'SourceDestCheck': True, 'VirtualizationType': 'hvm', 'CpuOptions': {'CoreCount': 1, 'ThreadsPerCore': 1}, 'CapacityReservationSpecification': {'CapacityReservationPreference': 'open'}, 'HibernationOptions': {'Configured': False}, 'MetadataOptions': {'State': 'applied', 'HttpTokens': 'optional', 'HttpPutResponseHopLimit': 1, 'HttpEndpoint': 'enabled'}, 'EnclaveOptions': {'Enabled': False}}], 'OwnerId': '416168070872', 'ReservationId': 'r-057f164d12660c27d'}], 'ResponseMetadata': {'RequestId': 'f136cfd9-fe0b-4b87-b0de-b9d755045070', 'HTTPStatusCode': 200, 'HTTPHeaders': {'x-amzn-requestid': 'f136cfd9-fe0b-4b87-b0de-b9d755045070', 'cache-control': 'no-cache, no-store', 'strict-transport-security': 'max-age=31536000; includeSubDomains', 'content-type': 'text/xml;charset=UTF-8', 'content-length': '6267', 'vary': 'accept-encoding', 'date': 'Tue, 23 Mar 2021 14:31:47 GMT', 'server': 'AmazonEC2'}, 'RetryAttempts': 0}} # get information of instance up to 1000 for rev in response['Reservations']: if rev.get('Instances'): instances.extend(rev['Instances']) # if ec2 instances are over 1000 while response.get('NextToken'): response=client.describe_instances(MaxResults=1000, NextToken=response['NextToken']) for rev in response['Reservations']: if rev.get('Instances'): instances.extend(rev['Instances']) with open('./ec2-instances.json', 'w+') as f: json.dump(instances, f, indent=4, default=str)
64822061c6bd698ceeda74ad46900f76caebdc88
bfc5b2f0743c6e9adb877fa891d874529760b007
/deb-update.py
18034002a5b26f694c39deac88fe1fe16ca05cfc
[]
no_license
MrNathanSmith/arbitrary-python
930603b760bf46250a71e5729517e90f8bff3f5e
80e5dd256bddae750a1ab941dedbef8319870ed1
refs/heads/master
2021-01-21T23:24:02.032325
2017-06-23T18:10:11
2017-06-23T18:10:11
95,242,187
0
0
null
null
null
null
UTF-8
Python
false
false
1,054
py
#!/usr/bin/python import os import sys, traceback import time print "" print "A Simple Update/Upgrade Python Script For Debian" print "" #Options print "~~~~~~~~~~~~~~~~~~~~~~~" print "Update/Upgrade Debian" print "~~~~~~~~~~~~~~~~~~~~~~~" print "(1) System Update" print "(2) System Upgrade" print "(3) Distribution Upgrade" print "(4) Exit" print "" choice = raw_input ("Please Select an Option: ") if choice == "1": print "System Update Selected, Please Wait..." time.sleep(5) cmd1 = os.system ("sudo apt-get update") print "" print "System Update Complete" print "" elif choice == "2": print "System Upgrade Selected, Please Wait..." time.sleep(5) cmd1 = os.system ("sudo apt-get upgrade -y") print "" print "System Upgrade Complete" print "" elif choice == "3": print "Distribution Upgrade Selected, Please Wait..." time.sleep(5) cmd1 = os.system ("sudo apt-get dist-upgrade -y") print "" print "Distribution Upgrade Complete" print "" elif choice == "4": print "" print "Goodbye, Have a nice day :)" print "" sys.exit(0)
050414edb4e192e13b8368dffaf21774c78ca1cb
163554ecfd9c3b059171e42166cf2b4c550e0ea7
/dataclassificationapp/wsgi.py
406ce971ba6d58416e1052f9bf20c706db98d671
[]
no_license
danielRos01/DataCassifierBackend
9ca2e18aa08a75538373f14570d2589c3bf26038
6fba2f5c5ca0f4c2e248e65223f33d17606d0e63
refs/heads/main
2023-01-19T02:38:12.629536
2020-11-22T20:22:32
2020-11-22T20:22:32
315,088,996
0
0
null
null
null
null
UTF-8
Python
false
false
419
py
""" WSGI config for dataclassificationapp project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'dataclassificationapp.settings') application = get_wsgi_application()
80bfdaf5259b84ac700aab294d7db8d5372259c3
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02546/s914300427.py
3dad5d294d902104d5bf9e91b64a4bd3c9b6633e
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
71
py
S = input() if(S[-1] == "s"): S += "es" else: S += "s" print(S)
b34e8eb425d1099c4b4358e74814477818dfc003
88ae8695987ada722184307301e221e1ba3cc2fa
/third_party/vulkan-deps/vulkan-validation-layers/src/scripts/common_ci.py
88e5f1af7cda75fbf03793a27e6bf5f32ce53c52
[ "LicenseRef-scancode-unknown-license-reference", "Apache-2.0", "LGPL-2.0-or-later", "MIT", "GPL-1.0-or-later", "BSD-3-Clause" ]
permissive
iridium-browser/iridium-browser
71d9c5ff76e014e6900b825f67389ab0ccd01329
5ee297f53dc7f8e70183031cff62f37b0f19d25f
refs/heads/master
2023-08-03T16:44:16.844552
2023-07-20T15:17:00
2023-07-23T16:09:30
220,016,632
341
40
BSD-3-Clause
2021-08-13T13:54:45
2019-11-06T14:32:31
null
UTF-8
Python
false
false
10,787
py
#!/usr/bin/python3 -i # # Copyright (c) 2015-2017, 2019-2023 The Khronos Group Inc. # Copyright (c) 2015-2017, 2019-2023 Valve Corporation # Copyright (c) 2015-2017, 2019-2023 LunarG, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import subprocess import platform import shutil import argparse if sys.version_info[0] != 3: print("This script requires Python 3. Run script with [-h] option for more details.") sys_exit(0) # Use Ninja for all platforms for performance/simplicity os.environ['CMAKE_GENERATOR'] = "Ninja" # Utility for creating a directory if it does not exist. Behaves similarly to 'mkdir -p' def make_dirs(path, clean=False): if clean and os.path.isdir(path): shutil.rmtree(path) os.makedirs(path, exist_ok=True) # helper to define paths relative to the repo root def RepoRelative(path): return os.path.abspath(os.path.join(os.path.dirname(__file__), '..', path)) PROJECT_ROOT = os.path.abspath(os.path.join(os.path.split(os.path.abspath(__file__))[0], '..')) # TODO: Pass this in as arg, may be useful for running locally EXTERNAL_DIR_NAME = "external" BUILD_DIR_NAME = "build" VVL_BUILD_DIR = RepoRelative(BUILD_DIR_NAME) TEST_INSTALL_DIR = RepoRelative("build/install") def externalDir(config): return os.path.join(RepoRelative(EXTERNAL_DIR_NAME), config) # Runs a command in a directory and returns its return code. # Directory is project root by default, or a relative path from project root def RunShellCmd(command, start_dir = PROJECT_ROOT, env=None, verbose=False): if start_dir != PROJECT_ROOT: start_dir = RepoRelative(start_dir) cmd_list = command.split(" ") if verbose or ('VVL_CI_VERBOSE' in os.environ and os.environ['VVL_CI_VERBOSE'] != '0'): print(f'CICMD({cmd_list}, env={env})') subprocess.check_call(cmd_list, cwd=start_dir, env=env) # # Check if the system is Windows def IsWindows(): return 'windows' == platform.system().lower() # # Set MACOSX_DEPLOYMENT_TARGET def SetupDarwin(osx): if platform.system() != "Darwin": return # By default it will use the latest MacOS SDK available on the system. if osx == 'latest': return # Currently the Vulkan SDK targets 10.15 as the minimum for MacOS support. # If we need to we can raise the minimim like we did for C++17 support. os.environ['MACOSX_DEPLOYMENT_TARGET'] = "10.15" print(f"Targeting {os.environ['MACOSX_DEPLOYMENT_TARGET']} MacOS Deployment Target", flush=True) # # Run VVL scripts def CheckVVL(config): ext_dir = externalDir(config) vulkan_registry = ext_dir + "/Vulkan-Headers/registry" spirv_unified = ext_dir + "/SPIRV-Headers/include/spirv/unified1/" # Verify consistency of generated source code print("Check Generated Source Code Consistency") gen_check_cmd = f'python scripts/generate_source.py --verify {vulkan_registry} {spirv_unified}' RunShellCmd(gen_check_cmd) print('Run vk_validation_stats.py') valid_usage_json = vulkan_registry + "/validusage.json" text_file = RepoRelative(f'{VVL_BUILD_DIR}/layers/vuid_coverage_database.txt') gen_check_cmd = f'python scripts/vk_validation_stats.py {valid_usage_json} -text {text_file}' RunShellCmd(gen_check_cmd) # # Prepare the Validation Layers for testing def BuildVVL(config, cmake_args, build_tests): print("Log CMake version") cmake_ver_cmd = 'cmake --version' RunShellCmd(cmake_ver_cmd) print("Run CMake for Validation Layers") cmake_cmd = f'cmake -S . -B {VVL_BUILD_DIR} -DUPDATE_DEPS=ON -DCMAKE_BUILD_TYPE={config}' # By default BUILD_WERROR is OFF, CI should always enable it. cmake_cmd += ' -DBUILD_WERROR=ON' cmake_cmd += f' -DBUILD_TESTS={build_tests}' if cmake_args: cmake_cmd += f' {cmake_args}' RunShellCmd(cmake_cmd) print("Build Validation Layers and Tests") build_cmd = f'cmake --build {VVL_BUILD_DIR}' RunShellCmd(build_cmd) print("Install Validation Layers") install_cmd = f'cmake --install {VVL_BUILD_DIR} --prefix {TEST_INSTALL_DIR}' RunShellCmd(install_cmd) # # Prepare Loader for executing Layer Validation Tests def BuildLoader(): LOADER_DIR = RepoRelative(os.path.join("%s/Vulkan-Loader" % EXTERNAL_DIR_NAME)) # Clone Loader repo if not os.path.exists(LOADER_DIR): print("Clone Loader Source Code") clone_loader_cmd = 'git clone https://github.com/KhronosGroup/Vulkan-Loader.git' RunShellCmd(clone_loader_cmd, EXTERNAL_DIR_NAME) print("Run CMake for Loader") LOADER_BUILD_DIR = RepoRelative("%s/Vulkan-Loader/%s" % (EXTERNAL_DIR_NAME, BUILD_DIR_NAME)) print("Run CMake for Loader") cmake_cmd = f'cmake -S {LOADER_DIR} -B {LOADER_BUILD_DIR}' cmake_cmd += ' -D UPDATE_DEPS=ON -D BUILD_TESTS=OFF -D CMAKE_BUILD_TYPE=Release' # This enables better stack traces from tools like leak sanitizer by using the loader feature which prevents unloading of libraries at shutdown. cmake_cmd += ' -D LOADER_DISABLE_DYNAMIC_LIBRARY_UNLOADING=ON' if not IsWindows(): cmake_cmd += ' -D LOADER_ENABLE_ADDRESS_SANITIZER=ON' RunShellCmd(cmake_cmd) print("Build Loader") build_cmd = f'cmake --build {LOADER_BUILD_DIR}' RunShellCmd(build_cmd) print("Install Loader") install_cmd = f'cmake --install {LOADER_BUILD_DIR} --prefix {TEST_INSTALL_DIR}' RunShellCmd(install_cmd) # # Prepare Mock ICD for use with Layer Validation Tests def BuildMockICD(): VT_DIR = RepoRelative("%s/Vulkan-Tools" % EXTERNAL_DIR_NAME) if not os.path.exists(VT_DIR): print("Clone Vulkan-Tools Repository") clone_tools_cmd = 'git clone https://github.com/KhronosGroup/Vulkan-Tools.git' RunShellCmd(clone_tools_cmd, EXTERNAL_DIR_NAME) ICD_BUILD_DIR = RepoRelative("%s/Vulkan-Tools/%s" % (EXTERNAL_DIR_NAME,BUILD_DIR_NAME)) print("Run CMake for ICD") cmake_cmd = f'cmake -S {VT_DIR} -B {ICD_BUILD_DIR} -D CMAKE_BUILD_TYPE=Release ' cmake_cmd += '-DBUILD_CUBE=NO -DBUILD_VULKANINFO=NO -D INSTALL_ICD=ON -D UPDATE_DEPS=ON' RunShellCmd(cmake_cmd) print("Build Mock ICD") build_cmd = f'cmake --build {ICD_BUILD_DIR}' RunShellCmd(build_cmd) print("Install Mock ICD") install_cmd = f'cmake --install {ICD_BUILD_DIR} --prefix {TEST_INSTALL_DIR}' RunShellCmd(install_cmd) # # Prepare Profile Layer for use with Layer Validation Tests def BuildProfileLayer(): RunShellCmd('pip3 install jsonschema', EXTERNAL_DIR_NAME) VP_DIR = RepoRelative("%s/Vulkan-Profiles" % EXTERNAL_DIR_NAME) if not os.path.exists(VP_DIR): print("Clone Vulkan-Profiles Repository") clone_cmd = 'git clone https://github.com/KhronosGroup/Vulkan-Profiles.git' RunShellCmd(clone_cmd, EXTERNAL_DIR_NAME) BUILD_DIR = RepoRelative("%s/Vulkan-Profiles/%s" % (EXTERNAL_DIR_NAME, BUILD_DIR_NAME)) print("Run CMake for Profile Layer") cmake_cmd = f'cmake -S {VP_DIR} -B {BUILD_DIR}' cmake_cmd += ' -D CMAKE_BUILD_TYPE=Release' cmake_cmd += ' -D UPDATE_DEPS=ON' cmake_cmd += ' -D PROFILES_BUILD_TESTS=OFF' RunShellCmd(cmake_cmd) print("Build Profile Layer") build_cmd = f'cmake --build {BUILD_DIR}' RunShellCmd(build_cmd) print("Install Profile Layer") install_cmd = f'cmake --install {BUILD_DIR} --prefix {TEST_INSTALL_DIR}' RunShellCmd(install_cmd) # # Run the Layer Validation Tests def RunVVLTests(): print("Run Vulkan-ValidationLayer Tests using Mock ICD") if IsWindows(): print("Not implemented yet") exit(-1) lvt_cmd = os.path.join(PROJECT_ROOT, BUILD_DIR_NAME, 'tests', 'vk_layer_validation_tests') lvt_env = dict(os.environ) # Because we installed everything to TEST_INSTALL_DIR all the libraries/json files are in pre-determined locations # defined by GNUInstallDirs. This makes adding the LD_LIBRARY_PATH and VK_LAYER_PATH trivial/robust. lvt_env['LD_LIBRARY_PATH'] = os.path.join(TEST_INSTALL_DIR, 'lib') lvt_env['VK_LAYER_PATH'] = os.path.join(TEST_INSTALL_DIR, 'share/vulkan/explicit_layer.d') lvt_env['VK_DRIVER_FILES'] = os.path.join(TEST_INSTALL_DIR, 'share/vulkan/icd.d/VkICD_mock_icd.json') lvt_env['VK_INSTANCE_LAYERS'] = 'VK_LAYER_KHRONOS_validation' + os.pathsep + 'VK_LAYER_KHRONOS_profiles' lvt_env['VK_KHRONOS_PROFILES_SIMULATE_CAPABILITIES'] = 'SIMULATE_API_VERSION_BIT,SIMULATE_FEATURES_BIT,SIMULATE_PROPERTIES_BIT,SIMULATE_EXTENSIONS_BIT,SIMULATE_FORMATS_BIT,SIMULATE_QUEUE_FAMILY_PROPERTIES_BIT' # By default use the max_profile.json if "VK_KHRONOS_PROFILES_PROFILE_FILE" not in os.environ: lvt_env['VK_KHRONOS_PROFILES_PROFILE_FILE'] = RepoRelative('tests/device_profiles/max_profile.json') # By default set portability to false if "VK_KHRONOS_PROFILES_EMULATE_PORTABILITY" not in os.environ: lvt_env['VK_KHRONOS_PROFILES_EMULATE_PORTABILITY'] = 'false' lvt_env['VK_KHRONOS_PROFILES_DEBUG_REPORTS'] = 'DEBUG_REPORT_ERROR_BIT' RunShellCmd(lvt_cmd, env=lvt_env) print("Re-Running multithreaded tests with VK_LAYER_FINE_GRAINED_LOCKING disabled") lvt_env['VK_LAYER_FINE_GRAINED_LOCKING'] = '0' RunShellCmd(lvt_cmd + ' --gtest_filter=*Thread*', env=lvt_env) def GetArgParser(): configs = ['release', 'debug'] default_config = configs[0] osx_choices = ['min', 'latest'] osx_default = osx_choices[1] parser = argparse.ArgumentParser() parser.add_argument( '-c', '--config', dest='configuration', metavar='CONFIG', action='store', choices=configs, default=default_config, help='Build target configuration. Can be one of: {0}'.format( ', '.join(configs))) parser.add_argument( '--cmake', dest='cmake', metavar='CMAKE', type=str, default='', help='Additional args to pass to cmake') parser.add_argument( '--build', dest='build', action='store_true', help='Build the layers') parser.add_argument( '--test', dest='test', action='store_true', help='Tests the layers') parser.add_argument( '--osx', dest='osx', action='store', choices=osx_choices, default=osx_default, help='Sets MACOSX_DEPLOYMENT_TARGET on Apple platforms.') return parser
ef91d187951a98f0a2cc58320241353d9beb1284
dd24ca271419b49be54a0f632eeaf684da3f4a71
/python3/exercise/csdn.py
2d1aca3e0e27ffb2b9403eb1adb22208f1a8af2b
[]
no_license
Soulor0725/PycharmProjects
fd766d7760900f7aa2c47f130974017f13c184db
664bb3c54b7ece844263b5a3e3adc4731ea772ff
refs/heads/master
2021-09-14T22:22:49.920606
2018-05-21T07:12:52
2018-05-21T07:12:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,789
py
''''' program: csdn博客爬虫 function: 实现对我的csdn主页所有博文的日期、主题、访问量、评论个数信息爬取 version: python 3.5.1 time: 2016/05/29 author: yr ''' import urllib.request,re,time,random,gzip #定义保存文件函数 def saveFile(data,i): path = str(i+1)+".txt" file = open(path,'wb') page = '当前页:'+str(i+1)+'\n' file.write(page.encode('gbk')) #将博文信息写入文件(以utf-8保存的文件声明为gbk) for d in data: d = str(d)+'\n' file.write(d.encode('gbk')) file.close() #解压缩数据 def ungzip(data): try: #print("正在解压缩...") data = gzip.decompress(data) #print("解压完毕...") except: print("未经压缩,无需解压...") return data #CSDN爬虫类 class CSDNSpider: def __init__(self,pageIdx=1,url="http://blog.csdn.net/fly_yr/article/list/1"): #默认当前页 self.pageIdx = pageIdx self.url = url[0:url.rfind('/') + 1] + str(pageIdx) self.headers = { "Connection": "keep-alive", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 " "(KHTML, like Gecko) Chrome/51.0.2704.63 Safari/537.36", "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8", "Accept-Encoding": "gzip, deflate, sdch", "Accept-Language": "zh-CN,zh;q=0.8", "Host": "blog.csdn.net" } #求总页数 def getPages(self): req = urllib.request.Request(url=self.url, headers=self.headers) res = urllib.request.urlopen(req) # 从我的csdn博客主页抓取的内容是压缩后的内容,先解压缩 data = res.read() data = ungzip(data) data = data.decode('utf-8') pages = r'<div.*?pagelist">.*?<span>.*?共(.*?)页</span>' #link = r'<div.*?pagelist">.*?<a.*?href="(.*?)".*?</a>' # 计算我的博文总页数 pattern = re.compile(pages, re.DOTALL) pagesNum = re.findall(pattern, data) return pagesNum #设置要抓取的博文页面 def setPage(self,idx): self.url = self.url[0:self.url.rfind('/')+1]+str(idx) #读取博文信息 def readData(self): ret=[] str = r'<dl.*?list_c clearfix">.*?date_t"><span>(.*?)</span><em>(.*?)</em>.*?date_b">(.*?)</div>.*?'+r'<a.*?set_old">(.*?)</a>.*?<h3.*?list_c_t"><a href="(.*?)">(.*?)</a></h3>.*?'+r'<div.*?fa fa-eye"></i><span>(.∗?)</span>.*?fa-comment-o"></i><span>(.∗?)</span></div>' req = urllib.request.Request(url=self.url, headers=self.headers) res = urllib.request.urlopen(req) # 从我的csdn博客主页抓取的内容是压缩后的内容,先解压缩 data = res.read() data = ungzip(data) data = data.decode('utf-8') pattern = re.compile(str,re.DOTALL) items = re.findall(pattern,data) for item in items: ret.append(item[0]+'年'+item[1]+'月'+item[2]+'日'+'\t'+item[3]+'\n标题:'+item[5] +'\n链接:http://blog.csdn.net'+item[4] +'\n'+'阅读:'+item[6]+'\t评论:'+item[7]+'\n') return ret #定义爬虫对象 cs = CSDNSpider() #求取 pagesNum = int(cs.getPages()) print("博文总页数: ",pagesNum) for idx in range(pagesNum): cs.setPage(idx) print("当前页:",idx+1) #读取当前页的所有博文,结果为list类型 papers = cs.readData() saveFile(papers,idx)
[ "" ]
cb32c7cea02c9d8b4ab326ff7d7b6217ae6c00d9
1d67056d57c656f6d64ab315b60c36c62317ad50
/nameGender.py
538bf13eedfa42510b9133812260f40bee940b4f
[]
no_license
Drob-AI/Book2Ontology
dd7d6462bf14f6c721368eb2afca90ed3284f1f5
b3daa6a491acafe0b4388f4de9b566d7ec760792
refs/heads/master
2021-01-17T17:25:34.073352
2016-07-08T00:51:21
2016-07-08T00:51:21
62,723,047
0
0
null
null
null
null
UTF-8
Python
false
false
5,844
py
from nltk.collocations import TrigramAssocMeasures from nltk.collocations import TrigramCollocationFinder from random import sample def read_raw_data(file_name): f = open(file_name, 'r') raw_data = [] for line in f: raw_data.append(line) f.close() return raw_data def char_type(character): if character in '\n y': return character if character in "aeiou": return 'V' if character in "bdgvz": return 'SC' if character in "ptkfs": return 'NC' return 'C' def char_with_type(character): return (character, char_type(character)) def generate_corpus(raw_names): corpus = []; for name in raw_names: corpus.append(char_with_type('\n')) for character in name: corpus.append(char_with_type(character)) # corpus.extend(name) corpus.append(char_with_type('\n')) corpus.append(char_with_type('\n')) return corpus def get_word_end_probabilites(names): names_count = len(names) letter_counts = {} for name in names: letter = name[-1:] if not letter_counts.has_key(letter): letter_counts[letter] = 0 letter_counts[letter] = letter_counts[letter] + 1 for key in letter_counts.keys(): letter_counts[key] = (letter_counts[key] + 0.0) / names_count return letter_counts # def vowel_count_probabilities(names): # total_letter_count = 1.0 # vowel_count = 1.0 # for name in names: # total_letter_count = total_letter_count + len(name) # for character in name: # if character in 'aoueiy': # vowel_count = vowel_count + 1 # return vowel_count / total_letter_count; def calculate_name_len_probabilites(names): names_count = len(names) name_len_counts = {} for name in names: name_len = len(name) if not name_len_counts.has_key(name_len): name_len_counts[name_len] = 0 name_len_counts[name_len] = name_len_counts[name_len] + 1 for key in name_len_counts.keys(): name_len_counts[key] = (name_len_counts[key] + 0.0) / names_count return name_len_counts class NameGenderData: def __init__(self, raw_data, unisex_names): self.data = raw_data self.name_count = len(raw_data) sample_size = len(raw_data) / 10 self.testing_set = set(sample(raw_data, sample_size)) self.training_set = (set(raw_data) - self.testing_set) - unisex_names self.name_len_probabilities = calculate_name_len_probabilites(self.training_set); self.last_letter_probabilities = get_word_end_probabilites(self.training_set); self.base_name_len_probability = 1.0 / len(self.training_set); corpus = generate_corpus(self.training_set) invalid_trigram_count = self.name_count - 1 self.trigram_count = len(corpus) - 2 - invalid_trigram_count self.base_frequency = 1.0 / self.trigram_count colloc_finder = TrigramCollocationFinder.from_words(corpus) colloc_finder.apply_freq_filter(3) colloc_finder.apply_ngram_filter(lambda w1, w2, w3: w1 == '\n' and w2 == '\n') self.colloc_finder = colloc_finder def getNameScore(name, data): name = name + '\n' trigram_measures = TrigramAssocMeasures() name_len = len(name) - 2 score = 1 for i in range(0, name_len): trigram_score = data.colloc_finder.score_ngram(trigram_measures.raw_freq, char_with_type(name[i]), char_with_type(name[i + 1]), char_with_type(name[i + 2])) if trigram_score is None: score = score * data.base_frequency else: score = score * trigram_score name_len_score = 0 if data.name_len_probabilities.has_key(len(name)): name_len_score = data.name_len_probabilities[len(name)] else: name_len_score = data.base_name_len_probability # last_letter_score = data.base_name_len_probability # if data.last_letter_probabilities.has_key(name[-1:]): # last_letter_score = data.last_letter_probabilities[name[-1:]] return score * name_len_score * data.name_probability def getNameGenderRatio(name): maleScore = getNameScore(name, male_name_data) femaleScore = getNameScore(name, female_name_data) # print 'Scores for ' + name # print 'male ' + str(maleScore) # print 'female ' + str(femaleScore) # print 'total ' + str(maleScore / (maleScore + femaleScore)) # print '-------------------' return maleScore / (maleScore + femaleScore) def train(): global male_name_data, female_name_data male_names = set(read_raw_data('male.txt')) female_names = set(read_raw_data('female.txt')) unisex_names = male_names.intersection(female_names); male_name_data = NameGenderData(male_names, unisex_names) female_name_data = NameGenderData(female_names, unisex_names) total_name_count = len(male_name_data.training_set) + len(female_name_data.training_set) male_name_data.name_probability = (len(male_name_data.training_set) + 0.0) / total_name_count female_name_data.name_probability = (len(female_name_data.training_set) + 0.0) / total_name_count def test(): total_len = len(male_name_data.testing_set) + len(female_name_data.testing_set) guessed_len = 0.0; for name in male_name_data.testing_set: if getNameGenderRatio(name) >= 0.5: guessed_len = guessed_len + 1 for name in female_name_data.testing_set: if getNameGenderRatio(name) < 0.5: guessed_len = guessed_len + 1 return guessed_len / total_len def run(): train() return test() sum = 0 test_runs = 100 for i in range(test_runs): sum += run() print i print sum / test_runs
68ea6c85f64c98acc2cb88a841724df7e5d89167
925cb9f77ca120fa33f5b68bb0e733942c33fe0c
/Dojo_survey_with_validation/server.py
4d011a44228c28efa4ee729c1b6a81967212a02e
[]
no_license
dhurataK/Python_Flask
58c309813ad455e247b1e653ec8134f23e0667f4
dd55a6800addf8eb6a87f65b4ef8f7b41d511d1b
refs/heads/master
2020-12-31T06:22:40.073635
2016-09-23T15:28:43
2016-09-23T15:28:43
68,420,179
0
1
null
2016-09-18T22:47:04
2016-09-16T23:05:18
HTML
UTF-8
Python
false
false
1,082
py
from flask import Flask, render_template, request, redirect, session, flash app = Flask(__name__) app.secret_key = "verySecret!" @app.route('/') def home(): return render_template('index.html') @app.route('/result', methods=['POST']) def validate(): name = request.form['name'] location = request.form['location'] language = request.form['language'] comment = request.form['comment'] if len(name) == 0 and len(comment) == 0: flash("Name shouldn't be blank!") flash("Comment field shouldn't be blank!") return redirect('/') elif len(name) > 0 and len(comment) == 0: flash("Comment field shouldn't be blank!") return redirect('/') elif len(name) == 0 and len(comment) > 0: flash("Name shouldn't be blank!") return redirect('/') elif len(comment) > 120: flash("Comments shouldn't exceed 120 characters!") return redirect('/') else: return render_template('result.html', name= name, location= location, language = language, comment = comment) app.run(debug=True)
a24404703336545fc6ae88cede1fb645987258ff
8c409c79ef8a9aeacb2ba8af99fcb8456529257f
/python/png2svg/png2svg.py
cc74b3131ad3546c06b263f5f417e292f9a29522
[]
no_license
damo-wang/book
97cec663770c6565d92f9657542b2fe38f851a0a
3254d1d2afc4dac239b65c80a9ec425a628fd1e1
refs/heads/master
2022-10-16T17:36:34.127248
2022-10-14T15:04:17
2022-10-14T15:05:12
107,131,334
0
0
null
null
null
null
UTF-8
Python
false
false
154
py
import aspose.words as aw doc=aw.Document() builder=aw.DocumentBuilder(doc) shape=builder.insert_image("Input.png") shape.image_data.save("Output.svg")
c15f0bec4691b59ccddfa52d5cf261f07b0ea133
1789386464cb22e1d00fec011b440970cf4a923c
/ch2/ch2p1.py
2a3e816d27344def35a743d2263c36b76696b3a7
[]
no_license
milnorms/pearson_revel
06f14d382ed106e24705c91e87b0244bfe81f2f4
ac72692394962d3952888a90791e7468b73d9bf3
refs/heads/master
2020-12-01T16:56:45.509114
2019-12-29T05:05:25
2019-12-29T05:05:25
230,703,946
0
0
null
null
null
null
UTF-8
Python
false
false
743
py
''' (Financial application: calculate tips) Write a program that reads the subtotal and the gratuity rate and computes the gratuity and total. For example, if the user enters 10 for the subtotal and 15% for the gratuity rate, the program displays 1.5 as the gratuity and 11.5 as the total. Here is another sample run: Enter the subtotal: 15.69 Enter the gratuity rate: 15 The gratuity is 2.35 and the total is 18.04 ''' userSubtotal = float(input("Enter the subtotal: ")) userGratuity = float(input("Enter the gratuity rate: ")) gratuity = userGratuity * 0.01 total = round(((userSubtotal * gratuity) + userSubtotal), 2) grat = round((gratuity * userSubtotal), 2) print("The gratuity is " + str(grat) + " and the total is " + str(total))
227893b265ced510ed159a0e46ff9adff34c2178
ba1d012f951b0d96c43805d79195bfa1d9c7892e
/backend/base/migrations/0003_auto_20210423_1734.py
de050484f5dbb22671769c496d0c2ccfca8cc833
[]
no_license
ramoncelestino/react-django-blog
89c22bf00b35ae35ca0a1e27e0d74e79a4b3dea3
7820bfb50bb9bdeaa0dce1d95a3b460c3074fae6
refs/heads/main
2023-04-28T01:04:24.984416
2021-05-01T01:26:13
2021-05-01T01:26:13
361,168,701
0
0
null
null
null
null
UTF-8
Python
false
false
538
py
# Generated by Django 3.2 on 2021-04-23 20:34 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('base', '0002_auto_20210423_1730'), ] operations = [ migrations.RenameField( model_name='city', old_name='city', new_name='name', ), migrations.AddField( model_name='address', name='street', field=models.CharField(default=False, max_length=40, null=True), ), ]
5961d295b23abd4a5c1995b3f10bf6ccb333c741
44600adf1731a449ff2dd5c84ce92c7f8b567fa4
/colour_down/adaptation/fairchild1990.py
4ce1a10481213f117c2508f1c43f594b728df699
[]
no_license
ajun73/Work_Code
b6a3581c5be4ccde93bd4632d8aaaa9ecc782b43
017d12361f7f9419d4b45b23ed81f9856278e849
refs/heads/master
2020-04-11T23:16:43.994397
2019-12-28T07:48:44
2019-12-28T07:48:44
162,161,852
0
1
null
null
null
null
UTF-8
Python
false
false
7,432
py
# -*- coding: utf-8 -*- """ Fairchild (1990) Chromatic Adaptation Model =========================================== Defines *Fairchild (1990)* chromatic adaptation model objects: - :func:`colour.adaptation.chromatic_adaptation_Fairchild1990` See Also -------- `Fairchild (1990) Chromatic Adaptation Model Jupyter Notebook <http://nbviewer.jupyter.org/github/colour-science/colour-notebooks/\ blob/master/notebooks/adaptation/fairchild1990.ipynb>`_ References ---------- - :cite:`Fairchild1991a` : Fairchild, M. D. (1991). Formulation and testing of an incomplete-chromatic-adaptation model. Color Research & Application, 16(4), 243-250. doi:10.1002/col.5080160406 - :cite:`Fairchild2013s` : Fairchild, M. D. (2013). FAIRCHILD'S 1990 MODEL. In Color Appearance Models (3rd ed., pp. 4418-4495). Wiley. ISBN:B00DAYO8E2 """ from __future__ import division, unicode_literals import numpy as np from colour.adaptation import VON_KRIES_CAT from colour.utilities import dot_vector, row_as_diagonal, tsplit, tstack __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2018 - Colour Developers' __license__ = 'New BSD License - http://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = '[email protected]' __status__ = 'Production' __all__ = [ 'FAIRCHILD1990_XYZ_TO_RGB_MATRIX', 'FAIRCHILD1990_RGB_TO_XYZ_MATRIX', 'chromatic_adaptation_Fairchild1990', 'XYZ_to_RGB_Fairchild1990', 'RGB_to_XYZ_Fairchild1990', 'degrees_of_adaptation' ] FAIRCHILD1990_XYZ_TO_RGB_MATRIX = VON_KRIES_CAT """ *Fairchild (1990)* colour appearance model *CIE XYZ* tristimulus values to cone responses matrix. FAIRCHILD1990_XYZ_TO_RGB_MATRIX : array_like, (3, 3) """ FAIRCHILD1990_RGB_TO_XYZ_MATRIX = np.linalg.inv(VON_KRIES_CAT) """ *Fairchild (1990)* colour appearance model cone responses to *CIE XYZ* tristimulus values matrix. FAIRCHILD1990_RGB_TO_XYZ_MATRIX : array_like, (3, 3) """ def chromatic_adaptation_Fairchild1990(XYZ_1, XYZ_n, XYZ_r, Y_n, discount_illuminant=False): """ Adapts given stimulus *CIE XYZ_1* tristimulus values from test viewing conditions to reference viewing conditions using *Fairchild (1990)* chromatic adaptation model. Parameters ---------- XYZ_1 : array_like *CIE XYZ_1* tristimulus values of test sample / stimulus in domain [0, 100]. XYZ_n : array_like Test viewing condition *CIE XYZ_n* tristimulus values of whitepoint. XYZ_r : array_like Reference viewing condition *CIE XYZ_r* tristimulus values of whitepoint. Y_n : numeric or array_like Luminance :math:`Y_n` of test adapting stimulus in :math:`cd/m^2`. discount_illuminant : bool, optional Truth value indicating if the illuminant should be discounted. Returns ------- ndarray Adapted *CIE XYZ_2* tristimulus values of stimulus. Warning ------- The input domain and output range of that definition are non standard! Notes ----- - Input *CIE XYZ_1*, *CIE XYZ_n* and *CIE XYZ_r* tristimulus values are in domain [0, 100]. - Output *CIE XYZ_2* tristimulus values are in range [0, 100]. References ---------- - :cite:`Fairchild1991a` - :cite:`Fairchild2013s` Examples -------- >>> XYZ_1 = np.array([19.53, 23.07, 24.97]) >>> XYZ_n = np.array([111.15, 100.00, 35.20]) >>> XYZ_r = np.array([94.81, 100.00, 107.30]) >>> Y_n = 200 >>> chromatic_adaptation_Fairchild1990(XYZ_1, XYZ_n, XYZ_r, Y_n) ... # doctest: +ELLIPSIS array([ 23.3252634..., 23.3245581..., 76.1159375...]) """ XYZ_1 = np.asarray(XYZ_1) XYZ_n = np.asarray(XYZ_n) XYZ_r = np.asarray(XYZ_r) Y_n = np.asarray(Y_n) LMS_1 = dot_vector(FAIRCHILD1990_XYZ_TO_RGB_MATRIX, XYZ_1) LMS_n = dot_vector(FAIRCHILD1990_XYZ_TO_RGB_MATRIX, XYZ_n) LMS_r = dot_vector(FAIRCHILD1990_XYZ_TO_RGB_MATRIX, XYZ_r) p_LMS = degrees_of_adaptation( LMS_1, Y_n, discount_illuminant=discount_illuminant) a_LMS_1 = p_LMS / LMS_n a_LMS_2 = p_LMS / LMS_r A_1 = row_as_diagonal(a_LMS_1) A_2 = row_as_diagonal(a_LMS_2) LMSp_1 = dot_vector(A_1, LMS_1) c = 0.219 - 0.0784 * np.log10(Y_n) C = row_as_diagonal(tstack((c, c, c))) LMS_a = dot_vector(C, LMSp_1) LMSp_2 = dot_vector(np.linalg.inv(C), LMS_a) LMS_c = dot_vector(np.linalg.inv(A_2), LMSp_2) XYZ_c = dot_vector(FAIRCHILD1990_RGB_TO_XYZ_MATRIX, LMS_c) return XYZ_c def XYZ_to_RGB_Fairchild1990(XYZ): """ Converts from *CIE XYZ* tristimulus values to cone responses. Parameters ---------- XYZ : array_like *CIE XYZ* tristimulus values. Returns ------- ndarray Cone responses. Examples -------- >>> XYZ = np.array([19.53, 23.07, 24.97]) >>> XYZ_to_RGB_Fairchild1990(XYZ) # doctest: +ELLIPSIS array([ 22.1231935..., 23.6054224..., 22.9279534...]) """ return dot_vector(FAIRCHILD1990_XYZ_TO_RGB_MATRIX, XYZ) def RGB_to_XYZ_Fairchild1990(RGB): """ Converts from cone responses to *CIE XYZ* tristimulus values. Parameters ---------- RGB : array_like Cone responses. Returns ------- ndarray *CIE XYZ* tristimulus values. Examples -------- >>> RGB = np.array([22.12319350, 23.60542240, 22.92795340]) >>> RGB_to_XYZ_Fairchild1990(RGB) # doctest: +ELLIPSIS array([ 19.53, 23.07, 24.97]) """ return dot_vector(FAIRCHILD1990_RGB_TO_XYZ_MATRIX, RGB) def degrees_of_adaptation(LMS, Y_n, v=1 / 3, discount_illuminant=False): """ Computes the degrees of adaptation :math:`p_L`, :math:`p_M` and :math:`p_S`. Parameters ---------- LMS : array_like Cone responses. Y_n : numeric or array_like Luminance :math:`Y_n` of test adapting stimulus in :math:`cd/m^2`. v : numeric or array_like, optional Exponent :math:`v`. discount_illuminant : bool, optional Truth value indicating if the illuminant should be discounted. Returns ------- ndarray Degrees of adaptation :math:`p_L`, :math:`p_M` and :math:`p_S`. Examples -------- >>> LMS = np.array([20.00052060, 19.99978300, 19.99883160]) >>> Y_n = 31.83 >>> degrees_of_adaptation(LMS, Y_n) # doctest: +ELLIPSIS array([ 0.9799324..., 0.9960035..., 1.0233041...]) >>> degrees_of_adaptation(LMS, Y_n, 1 / 3, True) array([ 1., 1., 1.]) """ LMS = np.asarray(LMS) if discount_illuminant: return np.ones(LMS.shape) Y_n = np.asarray(Y_n) v = np.asarray(v) L, M, S = tsplit(LMS) LMS_E = dot_vector(VON_KRIES_CAT, np.ones(LMS.shape)) # E illuminant. L_E, M_E, S_E = tsplit(LMS_E) Ye_n = Y_n ** v def m_E(x, y): """ Computes the :math:`m_E` term. """ return (3 * (x / y)) / (L / L_E + M / M_E + S / S_E) def P_c(x): """ Computes the :math:`P_L`, :math:`P_M` or :math:`P_S` terms. """ return (1 + Ye_n + x) / (1 + Ye_n + 1 / x) p_L = P_c(m_E(L, L_E)) p_M = P_c(m_E(M, M_E)) p_S = P_c(m_E(S, S_E)) p_LMS = tstack((p_L, p_M, p_S)) return p_LMS
68e3dbcc684161b2f8d32f752aaad8f778937993
9f6b9a40444df2b09960b5b531232ee6975e74dd
/level_1.py
13d4ca664e2d9291979dc351d30188b94817ea48
[]
no_license
nildiert/hodor
f60e94f4a64b8b0217c760104f501a6a586d4129
3c8b2df854ed2af6c5345250bc8f557b52761aee
refs/heads/master
2020-06-02T06:19:44.740188
2019-06-10T02:59:23
2019-06-10T02:59:23
191,067,129
0
0
null
null
null
null
UTF-8
Python
false
false
751
py
from lxml import html import requests import time def req_values(url): page = requests.get(url) tree = html.fromstring(page.content) me = tree.xpath(next_val) return ([page, tree, me]) try: url = 'http://158.69.76.135/level1.php' data = {'id':'730','holdthedoor':'submit'} next_val = '//td[contains(text(), "730")]/following-sibling::node()/text()' page, tree, me = req_values(url) data.update({"key":page.cookies["HoldTheDoor"]}) while ("".join(me) != '\n4095 '): page, tree, me = req_values(url) data.update({"key":page.cookies["HoldTheDoor"]}) status = requests.post(url, data, cookies=page.cookies) print("{} {}".format(status ,me)) except Exception as e: print(e)
685535ed109dab696f4e5360794e0b67396276b8
91905ec87a4724d8e8d3c084574b616cc3ae03d4
/mysite/urls.py
9352a7c1d4216b202affaf2e23dedfb5b1c249c6
[ "MIT" ]
permissive
evvrivas/mis_proyectos
c64a58ff2ad506063947f9cf1ac426ab6a7383a4
ed4c9c1bc1b1ae8eeca968a10f77b8e1c1515e92
refs/heads/master
2021-05-06T15:42:54.998970
2020-06-11T05:45:01
2020-06-11T05:45:01
113,632,393
0
0
null
null
null
null
UTF-8
Python
false
false
5,617
py
#from django.conf.urls import patterns, include, url #from django.contrib import admin #from mysite.views import Index ########################## #!/usr/bin/env python # -*- coding: utf-8 -*- from django.conf.urls import url,include from django.contrib import admin from django.conf import settings import mysite.settings from django.contrib.auth.views import login, logout from django.conf.urls.static import static from django.contrib import admin from django.contrib.staticfiles.urls import staticfiles_urlpatterns from mysite.views import * from django.conf.urls import url from django.views.generic import TemplateView urlpatterns = [ # Examples: # url(r'^$', 'artetronica.views.home', name='home'), # url(r'^blog/', include('blog.urls')), url(r'^admin/', admin.site.urls), #url(r'^admin/',include(admin.site.urls)), #url(r'^$', Index.as_view(), name='index'), url(r'^accounts/login/$', login,{'template_name': 'login.html'}), url(r'^accounts/logout/$', logout), url(r'^accounts/profile/$', pagina_principal), #url(r'^static/(?P<path>.*)$','django.views.static.serve',{'document_root': settings.STATIC_ROOT}), #url(r'^media/(?P<path>.*)$', 'django.views.static.serve', {'document_root': settings.MEDIA_ROOT}), url(r'^$', pagina_principal), url(r'^catalogo/(\d+)$', catalogo), url(r'^informacion/$', informacion), url(r'^informacion_vendedor/([^/]+)/$', informacion_vendedor), url(r'^informacion_comprador/([^/]+)/$', informacion_comprador), url(r'^crear_usuario/$',crear_usuario), url(r'^editar_usuario/$',editar_usuario), url(r'^crear_tienda/$',crear_tienda), url(r'^editar_tienda/(\d+)/$',editar_tienda), url(r'^crear_producto/([^/]+)/([^/]+)/$',crear_producto), url(r'^editar_producto/([^/]+)/([^/]+)/(\d+)/$',editar_producto), url(r'^ver_categorias/([^/]+)/$', ver_categorias), url(r'^ver_categorias_tienda/([^/]+)/([^/]+)/([^/]+)/$', ver_mis_categorias), url(r'^busqueda/([^/]+)/$', busqueda), url(r'^busqueda_tienda/([^/]+)/([^/]+)/$', busqueda_tienda), url(r'^busqueda_desde_app/([^/]+)/$', busqueda_desde_app), url(r'^editar_pedido/([^/]+)/([^/]+)/(\d+)/$',editar_pedido), url(r'^hacer_pedido/([^/]+)/([^/]+)/$',hacer_pedido), url(r'^cambiar_estado_pedido/([^/]+)/([^/]+)/(\d+)/$',cambiar_estado_pedido), url(r'^listado_pedido/([^/]+)/([^/]+)/([A-Z]+)/$', listado_pedido), url(r'^carrusel/(\d+)/([^/]+)/([^/]+)/$', carrusel), url(r'^carrusel_pedidos/(\d+)/([^/]+)/([^/]+)/$', carrusel_pedidos), url(r'^cambiar_estado_producto/([^/]+)/([^/]+)/(\d+)/([^/]+)/$',cambiar_estado_producto), url(r'^cambiar_estado_tienda/([^/]+)/(\d+)/([^/]+)/$',cambiar_estado_tienda), url(r'^descargar/([^/]+)/([^/]+)/(\d+)/$',descargar), url(r'^centro_comercial/([^/]+)/([^/]+)/$',centro_comercial), url(r'^crear_categorias/$',crear_categorias), url(r'^ver_las_preferidas/$',ver_las_preferidas), url(r'^mis_cuentas/$',mis_cuentas), url(r'^agregar_producto_al_carrito/(\d+)/([^/]+)/$',agregar_producto_al_carrito), url(r'^ver_el_carrito/([^/]+)/$',ver_el_carrito), url(r'^ver_el_carrito_personal_y_de_tienda/([^/]+)/(\d+)/$',ver_el_carrito_personal_y_de_tienda), url(r'^ver_el_carrito_de_tienda/(\d+)/$',ver_el_carrito_de_tienda), url(r'^ver_el_carrito_personal/([^/]+)/$',ver_el_carrito_personal), url(r'^eliminar_producto_del_carrito/(\d+)/$',eliminar_producto_del_carrito), url(r'^editar_producto_del_carrito/(\d+)/$',editar_producto_del_carrito), url(r'^editar_estado_producto_del_carrito/(\d+)/([^/]+)/$',editar_estado_producto_del_carrito), url(r'^realizar_compra_individual/(\d+)/$',realizar_compra_individual), url(r'^realizar_compra/$',realizar_compra), url(r'^enviar_mensaje/(\d+)/$', enviar_mensaje), url(r'^ver_mis_mensajes/([^/]+)/([^/]+)/$',ver_mis_mensajes), url(r'^responder_mensaje/(\d+)/$',responder_mensaje), url(r'^cambiar_tipo_de_vista/(\d+)/$',cambiar_tipo_de_vista), url(r'^agregar_a_preferidas/(\d+)/$',agregar_a_preferidas), url(r'^configurar_vista_pagina_principal/$',configurar_vista_pagina_principal), url(r'^evaluar/(\d+)/([^/]+)/$',evaluar), url(r'^administrar_mis_categorias/(\d+)/$',administrar_mis_categorias), url(r'^traspasar_tienda/(\d+)/$',traspasar_tienda), url(r'^editar_categoria_de_mi_tienda/(\d+)/(\d+)/$',editar_categoria_de_mi_tienda), url(r'^borrar_categoria_de_mi_tienda/(\d+)/(\d+)/$',borrar_categoria_de_mi_tienda), url(r'^comunicacion_tienda/(\d+)/([^/]+)/$',comunicacion_tienda), url(r'^seleccion_compra/(\d+)/(\d+)/$',seleccion_compra), url(r'^notificar_a_todos_que/$',notificar_a_todos_que), url(r'^guardar_token/$',guardar_token, name='guardar_token'), url(r'^serviceworker(.*.js)$', TemplateView.as_view(template_name='serviceworker.js', content_type='application/x-javascript')), url(r'^realizar_lista_de_compras/(\d+)/$',realizar_lista_de_compras), url(r'^agregar_lista_de_compra_al_carrito/(\d+)/$',agregar_lista_de_compra_al_carrito), url(r'^crear_super_producto/(\d+)/$',crear_super_producto), url(r'^go_tipo_uber/$',go_tipo_uber), url(r'^go_delivery/$',go_delivery), url(r'^([^/]+)/$', mis_tiendas), url(r'^([^/]+)/([^/]+)/$', mi_tienda), ] urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
64402309d95926900ca65d4eebb29551360c1b03
1def774fa7899e53de2f63578518a634050c1e82
/section6/security.py
62396f43b2da68138c6f88accf1c0ffbf869ea3b
[]
no_license
albayona/flask_content
f570e937c92c2813e5db8919cfa1707918178034
7030da7a8457ec818112bacee011d21343cab841
refs/heads/master
2023-01-29T00:54:59.864671
2020-12-17T04:27:34
2020-12-17T04:27:34
314,171,948
0
0
null
null
null
null
UTF-8
Python
false
false
2,399
py
from flask import request, jsonify from flask_jwt_extended import create_access_token, get_jwt_claims, create_refresh_token, jwt_required, get_raw_jwt, \ jwt_refresh_token_required, get_jwt_identity from blacklist import BLACKLIST from models.user import UserModel from functools import update_wrapper from flask_restful import abort, Resource, reqparse from werkzeug.security import safe_str_cmp def authenticate(username, password): user = UserModel.find_by_username(username) if user and safe_str_cmp(user.password, password): return user def identity(payload): user_id = payload['identity'] return UserModel.find_by_id(user_id) def role_required(role): def decorator(fn): def wrapped_function(*args, **kwargs): # For authorization er return status code 403 if not safe_str_cmp(get_jwt_claims(), role): return {"msg": "You do not meet the roles required for this operation"}, 403 return fn(*args, **kwargs) return update_wrapper(wrapped_function, fn) return decorator class Login(Resource): parser = reqparse.RequestParser() parser.add_argument('username', type=str, required=True, help="This field cannot be blank") parser.add_argument('password', type=str, required=True, help="This field cannot be blank") parser.add_argument('type', type=str, required=True, help="This field cannot be blank") def post(self): data = Login.parser.parse_args() user = UserModel.find_by_username(data['username']) if user and safe_str_cmp(user.password, data['password']): access_token = create_access_token(identity=user, fresh=True) refresh_token = create_refresh_token(user) return { 'access_token': access_token, 'refresh_token': refresh_token }, 200 return {"message": "Invalid Credentials!"}, 401 class Logout(Resource): @jwt_required def post(self): jti = get_raw_jwt()['jti'] BLACKLIST.add(jti) return {"message": "Successfully logged out"}, 200 class TokenRefresh(Resource): @jwt_refresh_token_required def post(self): current_user = get_jwt_identity() new_token = create_access_token(identity=current_user, fresh=False) return {'access_token': new_token}, 200
907b8d2e4fbac6eb91146f0df7ba54c27035b164
3da93763bbc39692ef6f468a91c42b335674af44
/python/tautau.py
4b3b070d64b461333e438d27ae701bc767b0a60c
[]
no_license
mbirostris/cpt
59f5fd0a45bf2c044b55156835dbb1c5c460ee84
5bae5d82647e271e686f892b0b762425563f1e50
refs/heads/master
2020-06-06T03:07:26.096708
2015-06-23T08:04:12
2015-06-23T08:04:12
27,839,425
0
0
null
null
null
null
UTF-8
Python
false
false
2,947
py
import sys import ROOT#gROOT, TCanvas, TF1, TFile from root_numpy import root2array, root2rec, tree2rec import os import shutil import math from ROOT import * #gROOT, TCanvas, TF1, TFile import pylab as pl import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import host_subplot import mpl_toolkits.axisartist as AA from matplotlib import gridspec from matplotlib.backends.backend_pdf import PdfPages import HistMacro as mac import bins from array import array from subprocess import call gROOT.Reset() gROOT.SetBatch() ########################################### # control plots ########################################### try: shutil.rmtree("./plots/") except: print "OK..." try: os.mkdir("./plots/") except: print "Jedziemyyyy...." def page(category, HiggsMass): fig = plt.figure(figsize=(16, 16)) plt.axis([0, 10, 0, 10]) plt.text(5, 7, "Kategoria:\n" + category + "\nHiggsMass: " + HiggsMass, fontsize=50,color='b', ha='center', va='top') return fig; #category = ['0jet_low', '0jet_high', 'inclusive', 'boost_high', 'vbf']#'inclusive','boost_high', 'vbf']; # variable = ["MtLeg1MVA"]; bin_width = [1]; bin_min=[0]; bin_max=[150] #category = ['inclusive', 'btag', 'btag_low', 'btag_high', 'nobtag'] category = [ 'nobtag_medium'] #variable = ["diTauNSVfitMass","diTauVisMass","visibleTauMass" ] #, "decayMode", "MEtMVA", "MEtMVAPhi", "MtLeg1MVA", "ptL1", "ptL2", "etaL1", "etaL2", "phiL1", "phiL2", "pt1", "pt2", "eta1", "eta2", "phi1", "phi2", "Deta", "Dphi", "Mjj", "diTauRecoPt", "numPV"]; variable = ["diTauNSVfitMass"]; for i in ['0jet_low']: call("hadd ./root/" +i+ "/QCD.root ./root/"+i+"/QCD_*.root", shell=True) for i in ['btag','btag_low','btag_high','inclusive', 'nobtag', 'nobtag_low', 'nobtag_medium']: call("hadd ./root/" +i+ "/Embedded.root ./root/"+i+"/Data_Embedded.root ./root/"+i+"/TTbarEmb.root", shell=True) #call(["hadd", "./root/inclusive/QCD.root", "./root/inclusive/QCD_Data.root", "./root/inclusive/QCD_DY->ll, j->t.root", "./root/inclusive/QCD_DY->ll, l->t.root", "./root/inclusive/QCD_DY->tautau.root", "./root/inclusive/QCD_DY->tt, jj.root", "./root/inclusive/QCD_LL.root", "./root/inclusive/QCD_Others.root", "./root/inclusive/QCD_TTbar.root", "./root/inclusive/QCD_WJets.root"]) HiggsMass = []; for i in range(115,130,5): HiggsMass.append(str(i)); print "Proccesed Higgs Masses: ", HiggsMass; pp = PdfPages('./plots/analysis.pdf') for mass in HiggsMass: for j in xrange(0, len(category)): fih = page( category[j], mass) pp.savefig(fih) for i in xrange(0, len(variable)): if (category[j] == 'MtLeg1MVA' and variable[i] != 'MtLeg1MVA'): continue else: fig = mac.plot(variable[i], category[j], bins.get(category[j], variable[i]), mass) pp.savefig(fig) plt.close() pp.close()
e55b0c7aae5064490a387ff915342f70c51b626a
336705b43988965b7601cdb47b0588e31c88b880
/TG_AutoConfigurator/plugins/inline.py
6f87931dcaba06a65cd9f69b2c5707eab79ddc4c
[ "MIT" ]
permissive
qwertyadrian/TG_AutoConfigurator
13b251fe5477cb6918286d08816e3d0d0e827d70
d3aee59076ae4b1e77f2c0d487d56b6d74021f5a
refs/heads/master
2022-06-22T15:03:33.685971
2022-06-08T15:10:36
2022-06-08T15:10:36
192,208,383
5
2
null
null
null
null
UTF-8
Python
false
false
1,035
py
from pyrogram import InlineQuery, InlineQueryResultArticle, InputTextMessageContent from ..TG_AutoConfigurator import AutoConfigurator from ..utils import tools @AutoConfigurator.on_inline_query() def inline(bot: AutoConfigurator, query: InlineQuery): if tools.admin_check(bot, query): string = query.query.lower() results = [] bot.reload_config() sources_list = bot.config.sections()[3:] if bot.config.has_section("proxy") else bot.config.sections()[2:] for source in sources_list: if not string or source.startswith(string): text, reply_markup = tools.generate_setting_info(bot, source) results.append( InlineQueryResultArticle( title=source, input_message_content=InputTextMessageContent(text, disable_web_page_preview=True), reply_markup=reply_markup, ) ) query.answer(results=results, cache_time=0)
69f9dd47463c7924f4b97ceba4c0412bd8f0fad0
4addd4aa5f38387be3ee1fc9cefff69485d74e1a
/GOPE/Gopesa/principal/migrations/0001_initial.py
8fbff4085107be2c0cfcfefd2c190f1af34c8f6c
[]
no_license
A01701833/GOPESA
a40f2a328dd9f7e108ab5a7e85f1d99c6a047a0e
33dda28a8fe66ef3f76d22c16ace9e37c7ff1937
refs/heads/master
2020-04-08T09:29:24.321695
2018-11-26T20:14:09
2018-11-26T20:14:09
159,226,471
0
0
null
null
null
null
UTF-8
Python
false
false
677
py
# Generated by Django 2.1.1 on 2018-11-16 20:45 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Propiedades', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nombre', models.CharField(max_length=100)), ('terreno', models.CharField(max_length=20)), ('cuartos', models.CharField(max_length=20)), ('banos', models.CharField(max_length=20)), ], ), ]
c58367f57e3a973de97e3542dc625d0ddef9babe
2f23f2ddce5b44950c0ecc8fac11d7eb7cd6c6ca
/src/bptl/camunda/migrations/0011_auto_20200226_1441.py
21914fbf0fd13fb6906b4a40f4d6683c3cc5aad5
[]
no_license
Amsterdam/bptl-lite
c989c22f0efb2ae866e1b81b0f2effdeb18917c9
7dd8a13cef455e34a7432e310978f7871a81de23
refs/heads/master
2023-07-09T21:20:13.028609
2021-08-10T08:09:00
2021-08-10T08:09:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
904
py
# Generated by Django 2.2.10 on 2020-02-26 13:41 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("camunda", "0010_copy_tasks_to_parent"), ] operations = [ migrations.RemoveField( model_name="externaltask", name="execution_error", ), migrations.RemoveField( model_name="externaltask", name="id", ), migrations.RemoveField( model_name="externaltask", name="result_variables", ), migrations.RemoveField( model_name="externaltask", name="status", ), migrations.RemoveField( model_name="externaltask", name="topic_name", ), migrations.RemoveField( model_name="externaltask", name="variables", ), ]
4061b69cd1a0426dd429f731702ee97b4ae88e23
90bc2d33954d4db8608e77d0430a3f8c0a920d64
/midaasTask/asgi.py
b37d065f6e1f66323b5d92de7d437d3e0dbdbf95
[]
no_license
anil-bothe/midaasTask
873512a7bb31ba7c7a711e2c3a4085cc6e2505fe
33420cb97682dbba8246b388cf3ac990e314df64
refs/heads/master
2023-07-09T18:49:46.301471
2021-08-02T05:59:56
2021-08-02T05:59:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
397
py
""" ASGI config for midaasTask project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'midaasTask.settings') application = get_asgi_application()
3a3796bf98f90c15d5b4c72280decdc7e412449c
7e5c96cf9091f3912b51215f98e4e75a1fd5fe56
/lucky/lucky.py
1d572cd3c5a6d7528c63213dd644cac608dfe1a7
[ "BSD-3-Clause" ]
permissive
aenon/shiba_cogs
ef3cdff2d274cb8029b9fc7204a119c5c92e4c80
cb65b75f648698f63913b8b38ed7bafa33df6f4c
refs/heads/master
2021-07-13T06:09:02.672212
2017-10-18T07:04:34
2017-10-18T07:04:34
105,968,419
1
0
null
null
null
null
UTF-8
Python
false
false
437
py
import discord from discord.ext import commands class lucky: """Cog for Husky Lucky""" def __init__(self, bot): self.bot = bot @commands.command() async def lucky(self): """Cog for Husky Lucky instagram https://www.instagram.com/thehuskylucky/ get random post: description and url""" await self.bot.say("This is work in progress!") def setup(bot): bot.add_cog(lucky(bot))
9e02a82736c3444d9a8a3e3f92dc8fc5eb8cd8bc
c3f4e09bba013cc1ac99830077b89edad23b21f7
/hello.py
dd4d12ce9e04dc511fd3be04347eaad83ca7458d
[]
no_license
mkemper/herokupythonwebapp
70477d990c8640ac467f6e406b04a87b61f6ebe7
55e76253ac2ae346e8958a00792b50c2820ac7a9
refs/heads/master
2020-05-28T14:08:07.801003
2014-05-02T19:54:06
2014-05-02T19:54:06
18,992,699
0
1
null
null
null
null
UTF-8
Python
false
false
225
py
import os from flask import Flask from flask import render_template app = Flask(__name__) @app.route('/') @app.route('/hello') def hello(): return render_template("index.html",title = 'TestApp',user = 'Gustave Gans')
a366043bb5e6902c35d10a0d2a4c4f20f7c00e59
09790593dd44a1ad31b387bbe4adea927697d3ef
/gitrepo/python/potega.py
bc854f3e91c77fa6df3de3052f801055ae4470c6
[]
no_license
kuba332211/gitrepo
0baa6179725fee3f200c619f0b436e89906a76a1
b80b1931337b886bd6cff343b0feae4ce3055dbb
refs/heads/master
2020-03-28T01:02:56.559496
2019-10-11T06:36:16
2019-10-11T06:36:16
147,471,508
0
0
null
null
null
null
UTF-8
Python
false
false
700
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # # potega.py # obliczanie potęgi podstawy podniesionej do wykładnika def potega_it(a, n): wynik = 1 for i in range(n): wynik = wynik * a #print(wynik) return wynik def main(args): #a =int(input("Podaj podstawę: ")) #n =int(input("wykładnik: ")) #print("Potęga {} do {} wynosi {}".format(a,n, potega_it(a, n))) assert(potega_it(1,1) == 1) assert(potega_it(2,1) == 2) assert(potega_it(2,2) == 4) assert(potega_it(0,4) == 0) assert(potega_it(1,0) == 1) assert(potega_it(4,0) == 1) return 0 if __name__ == '__main__': import sys sys.exit(main(sys.argv))
c862a250c2c47d807e95c99304745e82a2d09ea8
fa60cc12d59d73376e5812c11613c238c2e17447
/performance/stat.py
f5f255373f674e68f841a6e5920a0e80f710348e
[]
no_license
ftao/playzmq
1a466c364d0f4c935d678656cd6eb8aceb571703
dde945f27850159c0cfc4d1ecda53e9f32331612
refs/heads/master
2020-03-30T11:30:52.107291
2012-02-06T15:10:34
2012-02-06T15:10:34
3,289,587
0
0
null
null
null
null
UTF-8
Python
false
false
740
py
#!/usr/bin/env python ''' Do stat calucation on data ''' import time import json import sys import itertools import zmq def stat(data, field): total = 0 count = 0 for item in data: total += item[field] count += 1 return total, count, total * 1.0 /count def get_data_stream(socket): while True: msg = socket.recv() if msg == '': break yield json.loads(msg) def main(): input_addr = sys.argv[1] ctx = zmq.Context() input_socket = ctx.socket(zmq.SUB) input_socket.connect(input_addr) input_socket.setsockopt(zmq.SUBSCRIBE, '') ret = stat(get_data_stream(input_socket), 'hlen') print time.time(), ret if __name__ == "__main__": main()
49387a3cdc6c6e23837c5436d99d317dbd2554eb
40b262d813d07a113914d6009af8737898f2e096
/Platos test/apps/schedules/migrations/0001_initial.py
8cf8f0fa053f62e70fdc4f248d417b5c4d27999c
[]
no_license
Nish8192/Python
cb6de3b96e790464a0a4ad10eda86ce4f79688b4
5c03beff6f3669d5cfb6b31c5749827db8b6a627
refs/heads/master
2020-12-23T16:56:18.301723
2017-05-27T02:09:02
2017-05-27T02:09:02
92,563,061
0
0
null
null
null
null
UTF-8
Python
false
false
3,560
py
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-02-28 22:44 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('login_register', '0001_initial'), ] operations = [ migrations.CreateModel( name='Day', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('h9to10', models.BooleanField(verbose_name=False)), ('h10to11', models.BooleanField(verbose_name=False)), ('h11to12', models.BooleanField(verbose_name=False)), ('h12to13', models.BooleanField(verbose_name=False)), ('h13to14', models.BooleanField(verbose_name=False)), ('h14to15', models.BooleanField(verbose_name=False)), ('h15to16', models.BooleanField(verbose_name=False)), ('h16to17', models.BooleanField(verbose_name=False)), ('h17to18', models.BooleanField(verbose_name=False)), ('h18to19', models.BooleanField(verbose_name=False)), ('h19to20', models.BooleanField(verbose_name=False)), ('h20to21', models.BooleanField(verbose_name=False)), ('h21to22', models.BooleanField(verbose_name=False)), ('h22to23', models.BooleanField(verbose_name=False)), ('h23to0', models.BooleanField(verbose_name=False)), ('h0to1', models.BooleanField(verbose_name=False)), ('h1to2', models.BooleanField(verbose_name=False)), ('h2to3', models.BooleanField(verbose_name=False)), ('h3to4', models.BooleanField(verbose_name=False)), ('h4to5', models.BooleanField(verbose_name=False)), ('h5to6', models.BooleanField(verbose_name=False)), ('h6to7', models.BooleanField(verbose_name=False)), ('h7to8', models.BooleanField(verbose_name=False)), ('h8to9', models.BooleanField(verbose_name=False)), ], ), migrations.CreateModel( name='Schedule', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('fri', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='fri_schedule', to='schedules.Day')), ('mon', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='mon_schedule', to='schedules.Day')), ('sat', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='sat_schedule', to='schedules.Day')), ('sun', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='sun_schedule', to='schedules.Day')), ('thu', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='thu_schedule', to='schedules.Day')), ('tue', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='tue_schedule', to='schedules.Day')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='schedule_user', to='login_register.User')), ('wed', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='wed_schedule', to='schedules.Day')), ], ), ]
020f0da0cd7aa01961d16151a1bafcc96e78372c
dc696115f95a173c358f749b3ab867681f4b4cbb
/code/centroid_plot_csv_new_1.py
86c267194d2e750849c67b552f803d94a68bbf6d
[]
no_license
smohammed/GalexScanCalibration
2c81a660f6a19b5c5125f9fcce1b5a0857152d7c
59953cd2312b2f639891e434a54c5b9e8aabd155
refs/heads/master
2020-04-27T18:58:27.816939
2018-08-30T12:31:35
2018-08-30T12:31:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,166
py
import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import c3 from astropy.io import fits as pyfits import numpy as np from astropy import wcs as pywcs import sys import aplpy import os from sklearn.neighbors import KernelDensity import csv import math import asp_cal import glob from astropy.coordinates import SkyCoord from astropy.coordinates import ICRS, Galactic, FK4, FK5 from astropy.coordinates import Angle, Latitude, Longitude from astropy.io.fits import update import re from scipy.interpolate import splev, splrep def _find_centroid(filename): try: hdulist = pyfits.open(filename) except IOError as e: print "I/O error({0}): {1}".format(e.errno, e.strerror) hdulist = None except: print "Unexpected error:", sys.exc_info()[0] raise if hdulist is not None: w = pywcs.WCS(hdulist[0].header, hdulist) data = hdulist[0].data data = data.byteswap(True).newbyteorder() cy, cx = c3.find_centroid(data) else: return None return cx,cy def find_centroid(filename): try: hdulist = pyfits.open(filename) except IOError as e: print "I/O error({0}): {1}: {2}".format(e.errno, e.strerror, filename) hdulist = None except: print "Unexpected error:", sys.exc_info()[0] raise if hdulist is not None: hdulist = pyfits.open(filename) w = pywcs.WCS(hdulist[0].header, hdulist) data = hdulist[0].data data = data.byteswap(True).newbyteorder() cy, cx = c3.find_centroid(data) centroid = w.wcs_pix2world(w.sip_foc2pix([[cx, cy]],1),1)[0] if centroid[0]>1: centroid[0] = centroid[0]-360. else: centroid = [0,0] return centroid def get_centers(initial, final): centers = [] for i in range(initial, final+1): filename = '../fits/co/right/co_map%d_%d_zoom_nocal.fits'%(i,i+1) centroid = find_centroid(filename) centers.append(centroid) centers = np.array(centers) return centers def get_centers_half(initial, final): centers = [] for i in range(initial, final+1): for j in range(10): filename = '../fits/test/co_map%d_%d_10.fits'%(i,j) centroid = find_centroid(filename) centers.append(centroid) centers = np.array(centers) return centers def corr_plot(centroid, filename, title): print filename #centroid = find_centroid(filename) #centroid = np.load('../data/offsets300-899_half_r.npy')[7] print centroid fig = aplpy.FITSFigure(filename) fig.add_label(centroid[0], centroid[1], 'X', color='red') fig.show_grayscale(invert=True) fig.tick_labels.set_xformat('d.ddd') fig.tick_labels.set_yformat('d.ddd') fig.recenter(0., 0., radius=0.01) fig.add_grid() fig.set_title(title) basename = os.path.basename(filename) preffix, ext = os.path.splitext(basename) fig.save('../plots/corr_10/%s.png'%preffix) def load_data(filename): data = [] with open(filename, 'rb') as csvfile: reader = csv.reader(csvfile) for row in reader: if math.fabs(float(row[0]))>0.008 or math.fabs(float(row[1]))>0.008: pass else: data.append(row) csvfile.close() return data def moving_stat(data, out_mask, half_win=10): moving_mask = np.zeros(data.shape) moving_mask[0:2*half_win+1] = 1 mean = np.zeros(data.shape) median = np.zeros(data.shape) abs_dev = np.zeros(data.shape) std = np.zeros(data.shape) z = np.zeros(data.shape) mz = np.zeros(data.shape) for i in range(half_win): if out_mask[i] == 1: std[i] = 1 abs_dev[i] = 1 else: tmp_out_mask = -out_mask[:half_win+i+1]+1 #print i, data[:half_win+i+1][tmp_out_mask>0].shape mean[i] = np.mean(data[:half_win+i+1][tmp_out_mask>0], axis=0) std[i] = np.std(data[:half_win+i+1][tmp_out_mask>0], axis=0) median[i] = np.median(data[:half_win+i+1][tmp_out_mask>0], axis=0) abs_dev[i] = np.median(np.absolute(data[:half_win+i+1][tmp_out_mask>0]-median[i]), axis=0) if out_mask[-i-1] == 1: std[-i-1] = 1 abs_dev[-i-1] =1 else: tmp_out_mask = -out_mask[-half_win-i-1:]+1 median[-i-1] = np.median(data[-half_win-i-1:][tmp_out_mask>0], axis=0) abs_dev[-i-1] = np.median(np.absolute(data[-half_win-i-1:][tmp_out_mask>0]-median[-i-1]), axis=0) mean[-i-1] = np.mean(data[-half_win-i-1:][tmp_out_mask>0], axis=0) std[-i-1] = np.std(data[-half_win-i-1:][tmp_out_mask>0], axis=0) #print -i-1, data[-half_win-i-1:][tmp_out_mask>0].shape for i in range(data.shape[0]-2*half_win): if out_mask[half_win+i] == 1: std[half_win+i] = 1 abs_dev[half_win+i] =1 moving_mask_tmp = np.roll(moving_mask, i) tmp_out_mask = -out_mask[moving_mask_tmp>0]+1 mean[half_win+i] = np.mean(data[moving_mask_tmp>0][tmp_out_mask>0], axis=0) std[half_win+i] = np.std(data[moving_mask_tmp>0][tmp_out_mask>0], axis=0) median[half_win+i] = np.median(data[moving_mask_tmp>0][tmp_out_mask>0], axis=0) abs_dev[half_win+i] = np.median(np.absolute(data[moving_mask_tmp>0][tmp_out_mask>0]-median[half_win+i]), axis=0) #print half_win+i, data[moving_mask_tmp>0][tmp_out_mask>0].shape z = np.absolute((data - mean)/std) mz = np.absolute(0.6745*(data-median)/abs_dev) return z, mz def generate_zero_offsets(name): print name hdulist = pyfits.open('../AIS_GAL_SCAN/asprta/%s-asprta.fits'%name) initial = 1 final = hdulist[1].data['T'].shape[0]-1 centers = [] for i in range(initial, final+1): centers.append(np.load('../data/%s/cata/centroids_photon%d.npy'%(name, i))) centroids = np.concatenate(centers, axis=0) print centroids.shape np.save('../data/%s/cata/offsets%d_10_new_photon.npy'%(name, initial), centroids) asp_cal.interpolate_offsets(name) output = "../plots/%s/cata/output.csv"%(name) dir = os.path.dirname(output) if not os.path.exists(dir): os.makedirs(dir) def generate_first_offsets(name): print name hdulist = pyfits.open('../AIS_GAL_SCAN/asprta/%s-asprta.fits'%name) initial = 1 final = hdulist[1].data['T'].shape[0]-1 centers = [] center_time = [] for i in range(initial, final+1): c = np.load('../data/%s/cata/centroids_rot%d.npy'%(name, i)) #if c.shape == (1,3): # c = c[:,:2] centers.append(c) center_time.append(np.load('../data/%s/cata/time_rot%d.npy'%(name, i))) print c.shape centroids = np.concatenate(centers, axis=0) time = np.concatenate(center_time, axis=0) print centroids.shape out_mask = np.zeros(centroids.shape[0]) z, mz = moving_stat(centroids[:,0], out_mask, half_win=100) outliers = np.zeros(centroids.shape[0]) outliers[mz>3.5] = 1 outliers[out_mask>0] = 1 outliers = outliers>0 index = np.arange(centroids.shape[0]) centroids[outliers, 0] = np.interp(index[outliers], index[~outliers], centroids[~outliers,0]) z, mz = moving_stat(centroids[:,1], out_mask, half_win=100) outliers = np.zeros(centroids.shape[0]) outliers[mz>3.5] = 1 outliers[out_mask>0] = 1 outliers = outliers>0 index = np.arange(centroids.shape[0]) centroids[outliers, 1] = np.interp(index[outliers], index[~outliers], centroids[~outliers,1]) output = "../plots/%s/cata/output.csv"%(name) dir = os.path.dirname(output) if not os.path.exists(dir): os.makedirs(dir) plt.plot(centroids[:,0], '.b') plt.savefig('../plots/%s/cata/offsets_10_new_half.pdf'%name, dpi=190) plt.clf() np.save('../data/%s/cata/time%d_10_new_half.npy'%(name, initial), time) np.save('../data/%s/cata/offsets%d_10_new_half.npy'%(name, initial), centroids) co_data = hdulist[1].data T = co_data['T'] ra = co_data['ra'] dec = co_data['dec'] roll = co_data['roll'] ra_new = np.interp(time, T, ra) - centroids[:,0] dec_new = np.interp(time, T, dec) - centroids[:,1] roll_new = np.interp(time, T, roll) - centroids[:,2] other = np.zeros((time.shape[0], 8)) array = np.concatenate([np.array([time, ra_new, dec_new, roll_new]).T, other], axis=1) data = np.core.records.fromarrays(array.transpose(), dtype=[('T', float), ('RA', float), ('DEC', float), ('ROLL', float),\ ('STATUS_FLAG', int), ('ROLL_RAD', float), ('X', float), ('Y', float), ('Z', float), ('XDOT', float), ('YDOT', float), ('ZDOT', float)]) new_file = '../AIS_GAL_SCAN/asprta/%s-cal-asprta.fits'%(name) os.system('cp ../AIS_GAL_SCAN/asprta/%s-asprta.fits ../AIS_GAL_SCAN/asprta/%s-cal-asprta.fits'%(name, name)) update(new_file, data, 1) hdu = pyfits.open(new_file) print hdu[1].data['RA'].shape print hdu[1].data['DEC'].shape hdu.close() #asp_cal.interpolate_offsets(name, 1., centroids) tmp_files = glob.glob("../data/%s/cata/centroids_rot*"%name) for tmp_file in tmp_files: os.remove(tmp_file) tmp_files = glob.glob("../data/%s/cata/time_rot*"%name) for tmp_file in tmp_files: os.remove(tmp_file) ''' print centroids.shape os.system('cp ../AIS_GAL_SCAN/asprta/%s-asprta.fits ../AIS_GAL_SCAN/asprta/%s-asprta-cal.fits'%(name, name)) hdu = pyfits.open('../AIS_GAL_SCAN/asprta/%s-asprta-cal.fits'%(name), 'update') hdu[1].data['RA'][1:] -= centroids[:,0] hdu[1].data['DEC'][1:] -= centroids[:,1] print hdu[1].data['RA'][1:] print hdu[1].data['DEC'][1:] hdu.flush() hdu.close() ''' def generate_sec_offsets(name): print name hdulist = pyfits.open('../AIS_GAL_SCAN/asprta/%s-asprta.fits'%name) initial = 1 final = hdulist[1].data['T'].shape[0]-1 centers = [] for i in range(initial, final+1): centers.append(np.load('../data/%s/cata/centroids_sec%d.npy'%(name, i))) centroids = np.concatenate(centers, axis=0) print centroids.shape plt.plot(centroids[:,0], '.b') plt.savefig('../plots/%s/cata/offsets_10_new_sec.pdf'%name, dpi=190) plt.clf() np.save('../data/%s/cata/offsets%d_10_new_sec.npy'%(name, initial), centroids) asp_cal.secondary_cal(name) tmp_files = glob.glob("../data/%s/cata/centroids_sec*"%name) print tmp_files for tmp_file in tmp_files: os.remove(tmp_file) def generate_sec_offsets_new(name): print name hdulist = pyfits.open('../AIS_GAL_SCAN/asprta/%s-asprta.fits'%name) initial = 0 final = hdulist[1].data['T'].shape[0]-1 centers = [] center_time = [] for i in range(initial, final+1): #center = np.load('../data/%s/cata/centroids_rot%d.npy'%(name, i)) #if center.shape!=(2,3): # print i, center.shape centers.append(np.load('../data/%s/cata/centroids_rot%d.npy'%(name, i))) center_time.append(np.load('../data/%s/cata/time_rot%d.npy'%(name, i))) centroids = np.concatenate(centers, axis=0) time = np.concatenate(center_time, axis=0) print centroids.shape print time.shape output = '../plots/%s/cata/offsets_10_new_sec.pdf'%name dir = os.path.dirname(output) if not os.path.exists(dir): os.makedirs(dir) plt.plot(centroids[:,0], '.b') plt.savefig('../plots/%s/cata/offsets_10_new_sec.pdf'%name, dpi=190) plt.clf() np.save('../data/%s/cata/offsets%d_10_new_sec.npy'%(name, initial), centroids) np.save('../data/%s/cata/time%d_10_new_sec.npy'%(name, initial), time) co_data = hdulist[1].data T = co_data['T'] ra = co_data['ra'] dec = co_data['dec'] roll = co_data['roll'] ra_new = np.interp(time, T, ra) - centroids[:,0] dec_new = np.interp(time, T, dec) - centroids[:,1] roll_new = np.interp(time, T, roll) - centroids[:,2] other = np.zeros((time.shape[0], 8)) array = np.concatenate([np.array([time, ra_new, dec_new, roll_new]).T, other], axis=1) data = np.core.records.fromarrays(array.transpose(), dtype=[('T', float), ('RA', float), ('DEC', float), ('ROLL', float),\ ('STATUS_FLAG', int), ('ROLL_RAD', float), ('X', float), ('Y', float), ('Z', float), ('XDOT', float), ('YDOT', float), ('ZDOT', float)]) new_file = '../AIS_GAL_SCAN/asprta/%s-sec-asprta.fits'%(name) os.system('cp ../AIS_GAL_SCAN/asprta/%s-asprta.fits ../AIS_GAL_SCAN/asprta/%s-sec-asprta.fits'%(name, name)) update(new_file, data, 1) hdu = pyfits.open(new_file) print hdu[1].data['RA'].shape print hdu[1].data['DEC'].shape hdu.close() tmp_files = glob.glob("../data/%s/cata/centroids_rot*"%name) for tmp_file in tmp_files: os.remove(tmp_file) tmp_files = glob.glob("../data/%s/cata/time_rot*"%name) for tmp_file in tmp_files: os.remove(tmp_file) def generate_new_offsets_new(name, asprta, suffix, tmp_dir, num_p): print name try: centroids = np.load(tmp_dir+'/offsets_%s.npy'%(suffix)) time = np.load(tmp_dir+'/time_%s.npy'%(suffix)) except IOError: try: centroids = np.load(tmp_dir+'/offsets0_%s.npy'%(suffix)) time = np.load(tmp_dir+'/time0_%s.npy'%(suffix)) except IOError: print 'no file' return 0 print centroids.shape print time.shape output = '../plots/1/%s-%s.pdf'%(name, suffix) dir = os.path.dirname(output) if not os.path.exists(dir): os.makedirs(dir) plt.plot(centroids[:,0], '.k') plt.savefig('../plots/1/%s-%s_ra.pdf'%(name, suffix), dpi=190) plt.clf() plt.plot(centroids[:,1], '.k') plt.savefig('../plots/1/%s-%s_dec.pdf'%(name, suffix), dpi=190) plt.clf() #np.save(tmp_dir+'/offsets_%s.npy'%(suffix), centroids) #np.save(tmp_dir+'/time_%s.npy'%(suffix), time) hdulist = pyfits.open(asprta) co_data = hdulist[1].data T = co_data['T'] ra = co_data['ra'] dec = co_data['dec'] roll = co_data['roll'] ra_new = np.interp(time, T, ra) - centroids[:,0] dec_new = np.interp(time, T, dec) - centroids[:,1] roll_new = np.interp(time, T, roll) - centroids[:,2] other = np.zeros((time.shape[0], 8)) array = np.concatenate([np.array([time, ra_new, dec_new, roll_new]).T, other], axis=1) data = np.core.records.fromarrays(array.transpose(), dtype=[('T', float), ('RA', float), ('DEC', float), ('ROLL', float),\ ('STATUS_FLAG', int), ('ROLL_RAD', float), ('X', float), ('Y', float), ('Z', float), ('XDOT', float), ('YDOT', float), ('ZDOT', float)]) new_file = re.split('-asprta.fits', asprta)[0]+'-'+suffix+'-asprta.fits' os.system('cp {0} {1}'.format(asprta, new_file)) update(new_file, data, 1) hdu = pyfits.open(new_file) print hdu[1].data['RA'].shape print hdu[1].data['DEC'].shape hdu.close() if __name__ == '__main__': if True: name = sys.argv[1] suffix = sys.argv[2] generate_new_offsets_new(name, suffix)
3317db01ff8d0d5eff65cd314197024a8f717d5c
cc196a0111bbdcc04af7e579bc87e808cc0c7b02
/trident/__init__.py
880dacc18d173da5184a33655707722ed4ae11ab
[ "MIT" ]
permissive
Jackliaoall-AI-Framework/trident
73819a95121d9d4dbf81d28ae32aea43c0541840
cd26c1108c05c3ab4c262f9b416a126b2ad2f858
refs/heads/master
2023-01-15T15:15:10.544946
2020-11-23T04:15:33
2020-11-23T04:15:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
466
py
"""trident api""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys from importlib import reload from sys import stderr defaultencoding = 'utf-8' if sys.getdefaultencoding() != defaultencoding: reload(sys) sys.setdefaultencoding(defaultencoding) __version__ = '0.6.1' stderr.write('trident {0}\n'.format(__version__)) from trident.backend import * import threading import random
2da7f4194e18775060afca1bfc1dcd85d1009570
3411ad233c411c06765f4b07f8670c12025178b6
/201-300/231-240/237-deleteNodeInLinkedList/deleteNodeInLinkedList.py
9b19cef457feb64cb67a51b92b91f733e6ae73ed
[ "MIT" ]
permissive
xuychen/Leetcode
7d9d31fed898ce58440f5ae6665d2ccaf1a4b256
c8bf33af30569177c5276ffcd72a8d93ba4c402a
refs/heads/master
2021-11-19T20:39:43.741589
2021-10-24T16:26:52
2021-10-24T16:26:52
140,212,398
0
0
null
null
null
null
UTF-8
Python
false
false
395
py
# Definition for singly-linked list. # class ListNode(object): # def __init__(self, x): # self.val = x # self.next = None class Solution(object): def deleteNode(self, node): """ :type node: ListNode :rtype: void Do not return anything, modify node in-place instead. """ node.val = node.next.val node.next = node.next.next
912e2103ce003cb1d9fcd5a02369716b032b4a25
63872807248066ffd0435dcd12ea37d60dc4a9e2
/pyCDFTOOLS/draw_clock.py
c02c4946e1043f9c0b18b75c93bb072decd01a2e
[ "MIT" ]
permissive
malzubairy/NEMO-related
8214d80216a874b710c487e14f586596941fa587
81ea5a5e94aa40b90e95093384bf769ec269afc4
refs/heads/master
2020-04-27T02:59:48.745286
2019-03-04T09:28:04
2019-03-04T09:28:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,159
py
#!/usr/bin/env python3 # JM: 27 Nov 2018 # draw a clock import matplotlib.pyplot as plt import numpy as np from matplotlib.colors import LinearSegmentedColormap # units in radians def draw_clock(yyyymmdd, clock_color = "xkcd:grey", progress_color = "Spectral", fontsize = 14, ax = None): """ fairly dumb way of drawing a clock, takes input as yyyymmdd and draws a clock through drawing some filled circles with contourf in polar plot the plot will not automatically scale but the "fontsize" number can be modified accordingly to make it scale, so test this with some sample images first input: yyyymmdd string of yyyy/mm/dd, how you grab from data is up to you clock_color default is "xkcd:grey", modify accordingly as RGB, hex, python words etc. progress_color default is orange progress lime background from "Spectral", change it by inputing a colormap if you like fontsize default 14, modify this depending on clock size ax subplot axes to plot it, suggestion is in the parent axes do say a = plt.axes([0.95, .6, .2, .2], polar = True) draw_clock("19510630", ax = a, fontsize = 10) """ if ax is None: ax = plt.axes(projection = 'polar') # set up the clock as a circle ax.set_theta_offset(np.pi / 2.0) # start counting at 12 o'clock ax.set_theta_direction("clockwise") # go clockwise ax.set_xticks([]) # kill all the ticks ax.set_rticks([]) ax.set_rlim(0, 1) # set the clockface ax.set_facecolor(clock_color) # set up an array to plot the invariant parts outer_line = 0.70 inner_line = 0.45 theta_vec = np.linspace(0, 2 * np.pi, 71) r_vec = np.linspace(inner_line, outer_line, 31) theta, r = np.meshgrid(theta_vec, r_vec) # set up some settings (hand tuned for now...) months = {} months["label"] = ["J", "F", "M", "A", "M", "J", "J", "A", "S", "O", "N", "D"] months["theta"] = np.arange(0, 12, 1) * np.pi / 6.0 + np.pi / 12.0 months["days"] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] # assume no leap years # work out the date in radians year = int(yyyymmdd[0:4]) month = int(yyyymmdd[4:6]) day = int(yyyymmdd[6::]) if (year > 9999) or (year < 0): print("year grabbed is %.4d and is out of bounds?" % year) return if (month > 12) or (month < 0): print("month grabbed is %.2d and is out of bounds?" % month) return if (day > months["days"][month - 1]) or (day < 0): print("month grabbed is %.2d" % month) print("but date grabbed is %.2d so is out of bounds?" % day) return date_in_rad = (month - 1) * np.pi / 6.0 + (day / months["days"][month - 1]) * np.pi / 6.0 ax.plot(theta_vec, inner_line * np.ones(theta_vec.shape), 'k') ax.plot(theta_vec, outer_line * np.ones(theta_vec.shape), 'k') ax.plot(theta_vec, 1.0 * np.ones(theta_vec.shape), 'k', linewidth = 2) ax.text(3 * np.pi / 2.0, 0.0, "%.4d" % year, ha = 'center', va = 'center', fontsize = fontsize) for month in range(12): ax.plot([month * np.pi / 6.0, month * np.pi / 6.0], [outer_line, 1.0], 'k-') ax.text(months["theta"][month], 0.85, months["label"][month], ha = 'center', va = 'center', fontsize = fontsize) filled_region = np.where(theta < date_in_rad + 0.01, -1, 1) # ad a little increment to push the contour over ax.contourf(theta, r, filled_region, levels = np.linspace(-2, 2, 3), cmap = progress_color) def hex_to_rgb(color_hex): color_rgb = tuple(int(color_hex[i:i+2], 16) / 255 for i in (0, 2 ,4)) return color_rgb def hex_duple_colormap(color_hex1, color_hex2, sample = False): colors = [hex_to_rgb(color_hex1), hex_to_rgb(color_hex2)] cmap = LinearSegmentedColormap.from_list("murp", colors, N = 2) if sample: x = np.arange(0, np.pi, 0.1) y = np.arange(0, 2*np.pi, 0.1) X, Y = np.meshgrid(x, y) Z = np.cos(X) * np.sin(Y) * 10 ax = plt.axes() im = ax.imshow(Z, interpolation='nearest', origin='lower', cmap = cmap) fig.colorbar(im, ax = ax) plt.show() return cmap
78c173508b8ba231c1887527ff227333e548ecf8
f010d4693aa8c3a8ba10220cec010a1138fc9311
/venv/bin/faker
85b96713c2cc50149d465d9527ac94eb10891e19
[]
no_license
difasdfs/project_crisbardashboard
a4cf028e65a76688bd347e12b888cad910db5ae5
5c47bff0d491c29abb1cddaad152e66d5624336d
refs/heads/main
2023-02-03T09:58:09.859779
2020-12-26T03:53:56
2020-12-26T03:53:56
315,183,117
0
0
null
null
null
null
UTF-8
Python
false
false
295
#!/home/itcrisbar/project_crisbardashboard/venv/bin/python3 # -*- coding: utf-8 -*- import re import sys from faker.cli import execute_from_command_line if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(execute_from_command_line())
b0c14efa30aa6296d714f88a56de72b29a3cb346
821d830910c354cb89767a77e00c77deb592ca0c
/bayesnet/math/__init__.py
a7e1743bd4c1a5cdfed8a8de29633ed4e5c1f037
[ "MIT" ]
permissive
zxsted/BayesianNetwork
c61aa77a511e96852dec38f268f0dc31b6752cac
efe75b5416a262741fa60ad09380684886e91eff
refs/heads/master
2021-05-09T05:38:43.513255
2017-10-25T06:58:26
2017-10-25T06:58:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,193
py
from bayesnet.math.add import add from bayesnet.math.divide import divide, rdivide from bayesnet.math.exp import exp from bayesnet.math.log import log from bayesnet.math.matmul import matmul, rmatmul from bayesnet.math.mean import mean from bayesnet.math.multiply import multiply from bayesnet.math.negative import negative from bayesnet.math.power import power, rpower from bayesnet.math.product import prod from bayesnet.math.sqrt import sqrt from bayesnet.math.square import square from bayesnet.math.subtract import subtract, rsubtract from bayesnet.math.sum import sum from bayesnet.tensor.tensor import Tensor Tensor.__add__ = add Tensor.__radd__ = add Tensor.__truediv__ = divide Tensor.__rtruediv__ = rdivide Tensor.mean = mean Tensor.__matmul__ = matmul Tensor.__rmatmul__ = rmatmul Tensor.__mul__ = multiply Tensor.__rmul__ = multiply Tensor.__neg__ = negative Tensor.__pow__ = power Tensor.__rpow__ = rpower Tensor.prod = prod Tensor.__sub__ = subtract Tensor.__rsub__ = rsubtract Tensor.sum = sum __all__ = [ "add", "divide", "exp", "log", "matmul", "mean", "multiply", "power", "prod", "sqrt", "square", "subtract", "sum" ]
ca2d354525667e6ce05dcbd15758dec072a1e2c1
0559941516569d39a040341ab0861975fa70a327
/Code/src/hellopython/第二章/test/monthrate.py
a933543be04d02f56c353bc94fe127fb1b402d5d
[]
no_license
LYTXJY/python_full_stack
e4cadfea45a711a72d56229d6032d46c0b752899
9e99b0d9d44e7191b0358a02e114bbcd18eee635
refs/heads/master
2021-02-03T22:34:13.939998
2020-03-11T14:05:29
2020-03-11T14:05:29
243,561,201
0
0
null
null
null
null
UTF-8
Python
false
false
433
py
#计算利率 #月供 = 贷款数*月利率 / (1 - 1/(1+月利率)**(年限*12)) years = eval(input("请输入贷款年限:")) money = eval(input("请输入贷款金额:")) monthrate = eval(input("请输入贷款月利率:")) monthmoney = money * monthrate / (1 - 1 / (1 + monthrate) ** (years * 12)) totalmoney = monthmoney * years * 12 print("月供:", monthmoney, "总还款:", totalmoney)
5b16d88b43724df85472827ca9a1de35f189620b
6ed48bf3c72e61fe53144a3545ab305112c93501
/appengine/findit/handlers/test/help_triage_test.py
ef11561424031e1e74e5d088f7422bb54953dd08
[ "BSD-3-Clause" ]
permissive
eunchong/infra
ee5f7a9379977de8c814f90dbba3f6adbf06a75c
ce3728559112bfb3e8b32137eada517aec6d22f9
refs/heads/master
2022-11-27T06:26:57.415805
2016-04-08T12:34:36
2016-04-08T12:34:36
55,699,880
0
0
null
null
null
null
UTF-8
Python
false
false
10,341
py
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import json import os import webapp2 from testing_utils import testing from common.git_repository import GitRepository from handlers import help_triage from model.wf_analysis import WfAnalysis from model.wf_build import WfBuild from waterfall import buildbot from waterfall.build_info import BuildInfo from waterfall import build_util EXPECTED_RESULTS_120 = { '598ed4fa15e6a1d0d92b2b7df04fc31ab5d6e829': { 'fixed_cl_review_url': 'https://codereview.chromium.org/12578123', 'fixing_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/121'), 'fixed_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/120'), 'fixed_build_number': 120, 'fixing_cl_review_url': 'https://codereview.chromium.org/1280463001', 'fixing_cl_commit_position': 342013, 'fixed_cl_commit_position': 341971, 'fixed_revision': '598ed4fa15e6a1d0d92b2b7df04fc31ab5d6e829', 'fixing_build_number': 121, 'action': 'Reverted', 'fixing_revision': '598sd489df74g125svf35s04fc3' }, '062a6f974d7c08d27902060c241149ce193e4dd5': { 'fixed_cl_review_url': 'https://codereview.chromium.org/1268183002', 'fixing_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/121'), 'fixed_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/120'), 'fixed_build_number': 120, 'fixing_cl_review_url': 'https://codereview.chromium.org/1280463006', 'fixing_cl_commit_position': 342015, 'fixed_cl_commit_position': 341977, 'fixed_revision': '062a6f974d7c08d27902060c241149ce193e4dd5', 'fixing_build_number': 121, 'action': 'Reverted', 'fixing_revision': '123456789c08d27902060c241149ce193e4dd5dd' }, '584de1b73f811bcdb98eae1fb0d92b2b7df04fc3': { 'fixed_cl_review_url': 'https://codereview.chromium.org/1263223005', 'fixing_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/122'), 'fixed_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/120'), 'fixed_build_number': 120, 'fixing_cl_review_url': 'https://codereview.chromium.org/1280463003', 'fixing_cl_commit_position': 342014, 'fixed_cl_commit_position': 341976, 'fixed_revision': '584de1b73f811bcdb98eae1fb0d92b2b7df04fc3', 'fixing_build_number': 122, 'action': 'Reverted', 'fixing_revision': '123456671bcdb98eae1fb0d92b2b7df04fc3' }, '3e4aaaa45c528d4ab0670331a6c0ebfc4f3ab8e6': { 'fixed_cl_review_url': 'https://codereview.chromium.org/1260813007', 'fixing_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/123'), 'fixed_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/120'), 'fixed_build_number': 120, 'fixing_cl_review_url': 'https://codereview.chromium.org/1280463100', 'fixing_cl_commit_position': 332070, 'fixed_cl_commit_position': 341978, 'fixed_revision': '3e4aaaa45c528d4ab0670331a6c0ebfc4f3ab8e6', 'fixing_build_number': 123, 'action': 'Reverted', 'fixing_revision': '123455668d4ab0670331a6c0ebfc4f3ab8e6' } } EXPECTED_RESULTS_121 = { '3e4aaaa45c528d4ab0670331a6c0ebfc4f3ab8e6': { 'fixed_cl_review_url': 'https://codereview.chromium.org/1260813007', 'fixing_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/123'), 'fixed_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/120'), 'fixed_build_number': 120, 'fixing_cl_review_url': 'https://codereview.chromium.org/1280463100', 'action': 'Reverted', 'fixed_cl_commit_position': 341978, 'fixed_revision': '3e4aaaa45c528d4ab0670331a6c0ebfc4f3ab8e6', 'fixing_build_number': 123, 'fixing_cl_commit_position': 332070, 'fixing_revision': '123455668d4ab0670331a6c0ebfc4f3ab8e6' }, '584de1b73f811bcdb98eae1fb0d92b2b7df04fc3': { 'fixed_cl_review_url': 'https://codereview.chromium.org/1263223005', 'fixing_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/122'), 'fixed_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/120'), 'fixed_build_number': 120, 'fixing_cl_review_url': 'https://codereview.chromium.org/1280463003', 'action': 'Reverted', 'fixed_cl_commit_position': 341976, 'fixed_revision': '584de1b73f811bcdb98eae1fb0d92b2b7df04fc3', 'fixing_build_number': 122, 'fixing_cl_commit_position': 342014, 'fixing_revision': '123456671bcdb98eae1fb0d92b2b7df04fc3' }, '123456789c08d27902060c241149ce193e4dd5dd': { 'fixed_cl_review_url': 'https://codereview.chromium.org/1280463006', 'fixing_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/122'), 'fixed_build_url': ( 'https://build.chromium.org/p/m/builders/b/builds/121'), 'fixed_build_number': 121, 'fixing_cl_review_url': 'https://codereview.chromium.org/1161773008', 'action': 'Reverted', 'fixed_cl_commit_position': 342015, 'fixed_revision': '123456789c08d27902060c241149ce193e4dd5dd', 'fixing_build_number': 122, 'fixing_cl_commit_position': 332062, 'fixing_revision': '062a6f974d7c01234569ce193e4dd5' } } class HelpTriageTest(testing.AppengineTestCase): app_module = webapp2.WSGIApplication([ ('/help-triage', help_triage.HelpTriage), ], debug=True) def _GetBuildInfo(self, master_name, builder_name, build_number): file_name = os.path.join( os.path.dirname(__file__), 'data', 'help_triage_test_data', 'build_data_%s_%s_%s.json' % ( master_name, builder_name, build_number)) if not os.path.isfile(file_name): return None with open(file_name, 'r') as f: return f.read() def _MockDownloadBuildData( self, master_name, builder_name, build_number): build = WfBuild.Get(master_name, builder_name, build_number) if not build: # pragma: no cover build = WfBuild.Create(master_name, builder_name, build_number) build.data = self._GetBuildInfo(master_name, builder_name, build_number) build.put() return build def _MockDownloadChangeLogData(self, revision): file_name = os.path.join( os.path.dirname(__file__), 'data', 'help_triage_test_data', 'change_log_' + revision) with open(file_name) as f: commit_log = f.read() return revision, json.loads(commit_log[len(')]}\'\n'):]) def setUp(self): super(HelpTriageTest, self).setUp() self.master_name = 'm' self.builder_name = 'b' self.mock_current_user(user_email='[email protected]', is_admin=True) self.mock(build_util, 'DownloadBuildData', self._MockDownloadBuildData) self.mock(GitRepository, '_DownloadChangeLogData', self._MockDownloadChangeLogData) def _CreateAnalysis(self, build_number, first_failure, last_pass=None): analysis = WfAnalysis.Create( self.master_name, self.builder_name, build_number) analysis.result = { 'failures': [ { 'last_pass': last_pass, 'first_failure': first_failure, 'suspected_cls': [], 'step_name': 'gn_check' } ] } analysis.put() def testGetFirstFailedBuild(self): self._CreateAnalysis(120, 118, 117) first_build, failed_steps = help_triage._GetFirstFailedBuild( self.master_name, self.builder_name, 120) self.assertEqual(118, first_build) self.assertEqual(['gn_check'], failed_steps) def testGetFirstFailedBuildNoLastPass(self): self._CreateAnalysis(120, 118) first_build, failed_steps = help_triage._GetFirstFailedBuild( self.master_name, self.builder_name, 120) self.assertEqual(118, first_build) self.assertEqual(['gn_check'], failed_steps) def testGetFirstFailedBuildNoAnalysis(self): first_build, failed_steps = help_triage._GetFirstFailedBuild( self.master_name, self.builder_name, 120) self.assertIsNone(first_build) self.assertIsNone(failed_steps) def testCheckReverts(self): self._CreateAnalysis(120, 120) results = help_triage._CheckReverts( self.master_name, self.builder_name, 120) self.assertEqual(EXPECTED_RESULTS_120, results) def testCheckRevertsReturnNoneWhenNoGreenBuild(self): self._CreateAnalysis(124, 124) expected_results = {} results = help_triage._CheckReverts( self.master_name, self.builder_name, 124) self.assertEqual(expected_results, results) def testCheckRevertsReturnNoneWhenNoReverts(self): self._CreateAnalysis(118, 118) expected_results = {} results = help_triage._CheckReverts( self.master_name, self.builder_name, 118) self.assertEqual(expected_results, results) def testHelpTriageHandler(self): build_url = buildbot.CreateBuildUrl( self.master_name, self.builder_name, 121) analysis = WfAnalysis.Create(self.master_name, self.builder_name, 121) analysis.result = { 'failures': [ { 'last_pass': None, 'first_failure': 120, 'suspected_cls': [], 'step_name': 'gn_check' } ] } analysis.put() response = self.test_app.get('/help-triage', params={'url': build_url}) self.assertEqual(200, response.status_int) self.assertEqual(EXPECTED_RESULTS_121, response.json_body) def testHelpTriageHandlerReturnNoneForGreenBuild(self): build_url = buildbot.CreateBuildUrl( self.master_name, self.builder_name, 123) build = WfBuild.Create(self.master_name, self.builder_name, 123) build.data = self._GetBuildInfo(self.master_name, self.builder_name, 123) build.put() response = self.test_app.get('/help-triage', params={'url': build_url}) expected_results = {} self.assertEqual(200, response.status_int) self.assertEqual(expected_results, response.json_body)
afff7325a984dc8bfcc0c081baafbff71099bdcd
8d7d847f109183365022112a6b76cb20fa158255
/Crawler/Crawler/settings.py
fd19646728c9c25cb290559bf94c5142869e8503
[]
no_license
Xarliend/DataViewSite
42e59fed9483ff2f877a40b4f31a1b82c5435ecd
59921492547d68908e6e8f54a062baeb05b19580
refs/heads/master
2022-11-24T15:12:01.842042
2020-01-04T22:21:17
2020-01-04T22:21:17
227,699,982
0
0
null
2022-11-04T19:31:04
2019-12-12T21:29:47
Python
UTF-8
Python
false
false
3,089
py
# -*- coding: utf-8 -*- # Scrapy settings for Crawler project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://docs.scrapy.org/en/latest/topics/settings.html # https://docs.scrapy.org/en/latest/topics/downloader-middleware.html # https://docs.scrapy.org/en/latest/topics/spider-middleware.html BOT_NAME = 'Crawler' SPIDER_MODULES = ['Crawler.spiders'] NEWSPIDER_MODULE = 'Crawler.spiders' # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'Crawler (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = True # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://docs.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'Crawler.middlewares.CrawlerSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'Crawler.middlewares.CrawlerDownloaderMiddleware': 543, #} # Enable or disable extensions # See https://docs.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://docs.scrapy.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { 'Crawler.pipelines.CrawlerPipeline': 300, } # Enable and configure the AutoThrottle extension (disabled by default) # See https://docs.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
b0395f5306037472584cb31f83bbac95066c2fa6
7e293e5992eea0e139f9420925a9bcb64d0fd7c2
/data_sets/generate_data.py
4f9c0ce0032bc0049e8a5d47b4efcaf54e9a29cd
[ "MIT" ]
permissive
xcleancode/Distributed_GPU_LSH_using_SYCL
5dd0ee84220119ef8b1577b0dc3f357e9caf8195
a1763670fa4e9df8ac1df4ffcc89b0c5ceed36cb
refs/heads/master
2023-05-13T04:45:41.573043
2021-06-07T12:31:52
2021-06-07T12:31:52
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,743
py
# @author Marcel Breyer # @date 2020-08-06 # @brief Python3 script for generating data sets. import argparse import sklearn.datasets import sklearn.preprocessing import numpy as np import sys import csv from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt def size_in_bytes(numpy_type): return np.dtype(numpy_type).itemsize # real_type = np.float32 real_type = np.uint32 size_type = np.uint32 # setup command line arguments parser parser = argparse.ArgumentParser() parser.add_argument("--size", help="the number of data points", type=int, required=True) parser.add_argument("--dims", help="the number of dimensions per data point", type=int, required=True) parser.add_argument("--output_file", help="the file to write the generated data points to", type=str, required=True) parser.add_argument("--num_cluster", help="the number of different clusters", type=int, default=3, required=False) parser.add_argument("--cluster_std", help="the clusters standard deviation", type=float, default=1.0, required=False) parser.add_argument("--scale", help="scales the data points to [0, 1]", action="store_true") parser.add_argument("--binary", help="saves the data in binary format", action="store_true") parser.add_argument("--debug", help="uses debug data", action="store_true") args = parser.parse_args() # generate data points if args.debug: data = np.arange(args.size * args.dims, dtype=real_type) % args.size data = np.reshape(data, (args.size, args.dims)) else: data = sklearn.datasets.make_blobs(n_samples=args.size, n_features=args.dims, centers=args.num_cluster, \ cluster_std=args.cluster_std, shuffle=True, random_state=1)[0].astype(real_type) # scale data to [0, 1] if requested if args.scale: sklearn.preprocessing.minmax_scale(data, feature_range=(0, 1), copy=False) if args.binary: # write data points to file in binary format with open(args.output_file, 'wb') as file: file.write(args.size.to_bytes(size_in_bytes(size_type), sys.byteorder)) file.write(args.dims.to_bytes(size_in_bytes(size_type), sys.byteorder)) file.write(data.tobytes()) else: # write data points to file in text format with open(args.output_file, 'w', newline='\n') as file: writer = csv.writer(file, delimiter=',') writer.writerow([args.size]) writer.writerow([args.dims]) writer.writerows(data) # draw data points if dims == 2 || dims == 3 # if args.dims == 2: # plt.scatter(data[:, 0], data[:, 1], s=10) # plt.show() # elif args.dims == 3: # fig = plt.figure() # ax = fig.add_subplot(111, projection='3d') # ax.scatter(data[:, 0], data[:, 1], data[:, 2], s=10) # plt.show()
57b500dbbccbef6d98b6b6d9293526c6082141e2
3ff9a091e9546b336b5d167fb3678c315e2a6e44
/testing/test_calc.py
cbc579781beafe9ef19d32d8a33b008117c3ab31
[]
no_license
titoeb/python_tuts
7b2a8b7a6a3d5afc83d0f44a7ec46c575ec6ef3b
4efb0e364ba929ce2cf8dd21a7fa86fec5e049f6
refs/heads/master
2021-05-25T07:30:19.292777
2020-04-07T11:27:36
2020-04-07T11:27:36
253,715,003
0
0
null
null
null
null
UTF-8
Python
false
false
1,316
py
import unittest from unittest.mock import patch import calc class TestCalc(unittest.TestCase): def test_add(self): self.assertEqual(calc.add(10, 5), 15) self.assertEqual(calc.add(5, -5), 0) self.assertEqual(calc.add(-10, -5), -15) def test_subtract(self): self.assertEqual(calc.subtract(10, 5), 5) self.assertEqual(calc.subtract(5, -5), 10) self.assertEqual(calc.subtract(-10, -5), -5) def test_multiply(self): self.assertEqual(calc.multiply(10, 5), 50) self.assertEqual(calc.multiply(5, -5), -25) self.assertEqual(calc.multiply(-10, -5), 50) def test_divide(self): self.assertEqual(calc.divide(10, 5), 2) self.assertEqual(calc.divide(5, -5), -1) self.assertEqual(calc.divide(-10, -5), 2) self.assertEqual(calc.divide(5, 2), 2.5) self.assertRaises(ValueError, calc.divide, 10, 0) def test_get_website_1(self): with patch('calc.requests.get') as mocket_get: mocket_get.return_value.ok = True mocket_get.return_value.text = 'Success' schedule = calc.get_website() mocket_get.assert_called_with('http://company.com/tim/1') self.assertEqual(schedule, 'Success') if __name__ == "__main__": unittest.main()
82bf1eea5257be4934bb0ac54853d03f28b2cab4
fcf656dccbf69fd2fe6abe4fa82b5e9722bc3052
/util/__init__.py
e8c2b4443a05f4f240f2f5008f3ef4edd7fc6b3e
[]
no_license
tetrapus/Karkat
7630374fe3d3ecea3706b29ccfa1ec08722db5fd
6e898ce3e6814924314bd0106b1b844adced7258
refs/heads/master
2021-01-17T08:55:42.857753
2017-10-31T03:51:07
2017-10-31T03:51:07
9,131,639
9
10
null
2023-06-28T11:38:30
2013-03-31T15:01:06
Python
UTF-8
Python
false
false
1,381
py
import threading from . import services from . import irc from . import text from . import dcc from . import images from . import files from . import throttle from . import database # Taken straight from the xchat source. Thanks, xchat! rfc_tolowertab = {'A': 'a', 'G': 'g', '\\': '|', '^': '~', 'D': 'd', 'C': 'c', 'T': 't', 'M': 'm', 'I': 'i', 'B': 'b', 'N': 'n', 'R': 'r', 'W': 'w', 'L': 'l', 'F': 'f', 'Y': 'y', '[': '{', 'P': 'p', 'S': 's', 'H': 'h', ']': '}', 'O': 'o', 'Q': 'q', 'U': 'u', 'V': 'v', 'J': 'j', 'K': 'k', 'E': 'e', 'Z': 'z', 'X': 'x'} def cmp(a, b): return (a > b) - (a < b) def rfc_nickkey(nick: str) -> str: return "".join(rfc_tolowertab.get(i, i) for i in nick) def average(x): return float(sum(x))/len(x) if x else 0.00 # TODO: Move to submodule class Job(threading.Thread): def __init__(self, job): threading.Thread.__init__(self) self.job = job self.answer = None def run(self): self.answer = self.job() def parallelise(jobs): # Do all jobs in parallel and return their results. threads = [Job(i) for i in jobs] # Start all threads for i in threads: i.start() # Join all threads for i in threads: i.join() return [i.answer for i in threads] __all__ = ["services", "irc", "text", "parallelise", "cmp", "rfc_nickkey", "average", "dcc", "images", "files", "throttle"]
42fed63039e8e6390da8ccfcffd357ec6875fbb3
08aec07b5db889e586a56e36efea31c21c5695f2
/day009/ex56.py
9e14fad93694867afc15eb03ad6e7d9908ee1a76
[]
no_license
nileshnegi/hackerrank-python
7bb19929d2b963f02b37259c06b893c6520f33dc
0d2ab9ee40156e81b568ab4d5a6d5cd4f6ca7385
refs/heads/master
2023-01-07T07:20:44.859336
2020-11-11T14:30:21
2020-11-11T14:30:21
279,877,061
0
0
null
null
null
null
UTF-8
Python
false
false
435
py
""" Introduction to Sets Ms. Gabriel Williams is a botany professor at District College. One day, she asked her student Mickey to compute the average of all the ```N``` plants with distinct heights in her greenhouse. """ def average(array): array = set(array) return sum(array) / len(array) if __name__ == '__main__': n = int(input()) arr = list(map(int, input().split())) result = average(arr) print(result)
f2e42d00a9c9ec787e590be61a586dcb7a5ca218
938645067e93c08e8c4f2bf26a03565e0dc9002b
/filter/particle_filter.py
bb8b15b5700119d309c42c3cf2e1186bc15661ed
[ "MIT" ]
permissive
kolaszko/particle_filter
51d584e90d78a3837a21dad1025dc8550c93c7fd
9fedcee5ef2eb00a1fa85398327121e3df53f94c
refs/heads/main
2023-02-27T17:51:39.468016
2021-02-04T11:12:56
2021-02-04T11:12:56
335,359,281
11
1
null
null
null
null
UTF-8
Python
false
false
227
py
import abc class ParticleFilter(abc.ABC): @abc.abstractmethod def resample(self): pass @abc.abstractmethod def predict(self): pass @abc.abstractmethod def update(self): pass
0a86e4fc0405ed8ccd273d8afd97faa2407ff8a0
1f9f0f53555a32417cd4f8a84ca65b766b7b5230
/sequence_operations/nucleotides_and_complements.py
256313ac7ac21c94612ccff312c05ba9636c9dd5
[]
no_license
AlexThePav/biopython_tutorial
56044ca924e04fbce545cb712efa4fb5e23050fd
ed8950ba0e199498340c54e8dc5eba0b0cc7b69d
refs/heads/master
2020-05-27T11:28:49.980694
2019-06-06T15:58:38
2019-06-06T15:58:38
188,601,366
0
0
null
null
null
null
UTF-8
Python
false
false
247
py
from Bio.Seq import Seq from Bio.Alphabet import IUPAC my_seq = Seq("GATCGATGGGCCTATATAGGATCGAAAATCGC", IUPAC.unambiguous_dna) print(repr(my_seq)) print(repr(my_seq.complement())) print(repr(my_seq.reverse_complement())) print(repr(my_seq[::-1]))
f5aa93af1b204622e971696dced1aaeadd31c668
9b7ccf0deba84b8d53efcd42d407a7650feb1848
/djangoAnswer/djangoAnswer/manage.py
dc86f99c714f93995a3a750e48089906ae5e7f68
[]
no_license
Ryu-Morimoto/Django-Training
37ba72232714164b992f333630172d638a91238f
3e5a1a4501e2bb04a841f8ae7b3155ef204192eb
refs/heads/master
2022-12-10T00:26:46.832692
2020-01-21T04:29:55
2020-01-21T04:29:55
298,179,922
0
0
null
2020-09-24T05:42:46
2020-09-24T05:42:45
null
UTF-8
Python
false
false
632
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'djangoAnswer.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
5c28ac9cbfe8f5ad592a4cfcd48b4f8f7a649334
3553129c1ddef3cab5f4aa7670c8c2f7dc970884
/GuardCam_Test.py
b092b2dc7896273bc44b396a53586454c046a853
[]
no_license
kichichoi102/GuardCam_HackATL
f979d8f3f00d6f451fb8744d494955af6deb0ea0
f70f6ecc1abd9b3b74b46524dd68c3e43cfb6e29
refs/heads/main
2022-12-23T13:45:14.721945
2020-10-04T03:51:43
2020-10-04T03:51:43
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,211
py
import os, io from google.cloud import vision_v1 import pandas as pd request = vision_v1.GetProductSetRequest(name="name") os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = r'###Directory to Google Cloud Key#####' client = vision_v1.ImageAnnotatorClient() file_name = "offenders1.png" image_path = f'.\Images\{file_name}' with io.open(image_path, "rb") as image_file: content = image_file.read() image = vision_v1.types.Image(content=content) response = client.face_detection(image=image) faceAnnotations = response.face_annotations print("Faces Borders:") for face in faceAnnotations: face_vertices = ['({0},{1})'.format(vertex.x, vertex.y) for vertex in face.bounding_poly.vertices] print("Face Bound: {0}".format(",".join(face_vertices))) print("") question = input("Do you want to see all the details? (y/N)\n") question.lower() if question == "y": print(faceAnnotations) # # print("Faces Borders:") # for face in faceAnnotations: # for position in face.landmarks: # landmark_nose_tip = ['({0},{1},{2})'.format(position.x, position.y, position.z)] # # print("Face Bound: {0}".format(",".join(face_vertices))) # # print("")
9bdbd72fc4ed1a170536032760d6ca6dc7f9be45
f4133969204cdc43719dd9da6edd1e438bc94d29
/feb15/r1.py
bce2e6cae9073fd780db27e8cf61b782e909b185
[]
no_license
elake/inclass
305def75f832c963cfb0bfc12c2f150481e02903
f64a1d93aff317af2b79d64ed64d2f0eecac8764
refs/heads/master
2021-01-20T11:23:34.937770
2013-04-03T23:51:31
2013-04-03T23:51:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
46
py
while True: x = input() print(x)
[ "cmput296@ubuntu.(none)" ]
cmput296@ubuntu.(none)