blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
5
283
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
41
license_type
stringclasses
2 values
repo_name
stringlengths
7
96
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
58 values
visit_date
timestamp[us]
revision_date
timestamp[us]
committer_date
timestamp[us]
github_id
int64
12.7k
662M
star_events_count
int64
0
35.5k
fork_events_count
int64
0
20.6k
gha_license_id
stringclasses
11 values
gha_event_created_at
timestamp[us]
gha_created_at
timestamp[us]
gha_language
stringclasses
43 values
src_encoding
stringclasses
9 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
5.88M
extension
stringclasses
30 values
content
stringlengths
7
5.88M
authors
sequencelengths
1
1
author
stringlengths
0
73
607250c2ca29295053d3ba2e5639b4b102ba1fb8
5f5f9fb972d6c8236142413876fee737b11b0090
/Assignment4/comp/code_lstm/max_predictions.py
9da8ed5ca0836e69d7c306c3c2a0b5fe796f133f
[]
no_license
agarwal-ayushi/Machine-Learning-Assignments
c634d48996dd975874ff7383aac46e626bcb338d
53262ba02ce440946e0aa92d6385f94bd79b32c5
refs/heads/master
2022-12-17T00:15:25.626464
2020-09-16T17:19:33
2020-09-16T17:19:33
235,383,698
1
5
null
null
null
null
UTF-8
Python
false
false
1,353
py
import torch import torch.nn as nn import torch.nn.functional as F from models_rasha import Encoder_Rasha, Decoder_Rasha import numpy as np def to_device(data, device): if isinstance(data,(list,tuple)): return [to_device(x,device) for x in data] return data.to(device) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def max_prediction(encoded_features, decoder_model, vocab_dict, max_length=80): ''' Function to perform max prediction to generate captions ''' word_2_ix, ix_2_word = vocab_dict start_token = word_2_ix['<start>'] end_token = word_2_ix['<end>'] hidden = None # In the beginning the hidden state is None caption_word_id = [] for i in range(max_length): encoded_features = encoded_features.unsqueeze(1) if(hidden == None): output, hidden = decoder_model.get_pred(encoded_features.cuda()) else: output, hidden = decoder_model.get_pred(encoded_features.cuda(), to_device(hidden, device)) _ , predicted_id = output.max(1) caption_word_id.append(predicted_id) if (predicted_id == end_token): break encoded_features = decoder_model.embed(predicted_id) caption_word_id = torch.stack(caption_word_id, 1) return caption_word_id.cpu().numpy()[0]
74a2ad6e251baa847e24ec5c7ee551c2e7349fbe
a232988fe8f247fbd56f7a91748ccfbf73326265
/blog/blog/views.py
739eb639313cb9e904159fe63b5e39ce4fd5f797
[]
no_license
Vigs16/hello-world
32236f6258ce42e6d8f5ef5139ecd84090be37bd
4212e0669944f22d0d3148516b97bf9fec95b72d
refs/heads/master
2021-01-20T13:03:51.843003
2017-05-30T04:52:13
2017-05-30T04:52:13
90,442,917
0
0
null
null
null
null
UTF-8
Python
false
false
1,177
py
from flask import render_template from flask import request, redirect, url_for from . import app from .database import session, Entry PAGINATE_BY = 10 @app.route("/") @app.route("/page/<int:page>") def entries(page=1): # Zero-indexed page page_index = page - 1 count = session.query(Entry).count() start = page_index * PAGINATE_BY end = start + PAGINATE_BY total_pages = (count - 1) // PAGINATE_BY + 1 has_next = page_index < total_pages - 1 has_prev = page_index > 0 entries = session.query(Entry) entries = entries.order_by(Entry.datetime.desc()) entries = entries[start:end] return render_template("entries.html", entries=entries, has_next=has_next, has_prev=has_prev, page=page, total_pages=total_pages ) @app.route("/entry/add", methods=["GET"]) def add_entry_get(): return render_template("add_entry.html") @app.route("/entry/add", methods=["POST"]) def add_entry_post(): entry = Entry( title=request.form["title"], content=request.form["content"], ) session.add(entry) session.commit() return redirect(url_for("entries"))
123de62f0fc26c6891df29d80121cecdcef6d869
bdea01d7702bec417772442f54744a5abcab8090
/contours.py
133c0683fc36f14bed0b04a8bd385e80397e1ea8
[]
no_license
arbaza/open-cv
6e21565e34e9e208d39a8d391137d038cef930f0
576d4f210f1ca764f9ae8d442e730bd6ee9a798a
refs/heads/main
2023-02-10T11:27:05.228090
2020-12-30T18:19:09
2020-12-30T18:19:09
325,618,524
0
0
null
null
null
null
UTF-8
Python
false
false
749
py
import numpy as np import cv2 as cv img = cv.imread('Photos\Euro.jpg') cv.imshow('image', img) cv.waitKey(0) #Grayscale gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) blank = np.zeros(img.shape[:2], dtype = 'uint8') cv.imshow('Blank', blank) #blur # blur = cv.GaussianBlur(gray, (5,5), cv.BORDER_DEFAULT) # cv.imshow("Blur", blur ) # cv.waitKey(0) #Canny/edge detection canny = cv.Canny(img, 127, 175) # ret, thresh = cv.threshold(gray, 125, 255, cv.THRESH_BINARY) #Contour detection contours, hierarchies = cv.findContours(canny, cv.RETR_LIST, cv.CHAIN_APPROX_NONE) print(len(contours)) cv.drawContours(blank, contours, -1, (0, 0, 255 ), 1) cv.imshow('Contours drawn', blank) cv.waitKey(0) # cv.imshow("Thresholded", thresh ) cv.waitKey(0)
1767ed91cd5ecb9dc4967b259a9c41f4baf56d84
093d2e689823e5716c46b09511d8adebb2320573
/Python Competitive Program/count occurance in tuple.py
c4103e6f394595ad87dceed955728d81a0eb86fe
[]
no_license
gauravk268/Competitive_Coding
02813a908e4cd023e4a7039997e750d1fdae6d92
783c246dbaf36425a5b7cb76b4e79e2b7ba1a10c
refs/heads/master
2022-10-15T02:25:41.598723
2022-10-03T06:09:17
2022-10-03T06:09:17
235,630,000
20
22
null
2022-10-03T06:09:18
2020-01-22T17:45:32
C++
UTF-8
Python
false
false
138
py
# Count occurrences of an element str=input("Enter the string : ") word_count={char:str.count(char) for char in str} print(word_count)
d0ca2d9cd484b355ced743af6aebbbdb18d8529a
3cf8d34cc1ea0ef7857742211bed333ee0400e63
/46.py
422649ee9f326b4384db1ce35c43258bbd08ace6
[]
no_license
ElseVladimir/py_tasks
2dd11130cae83af772f4cb89d04e80da9dbcf070
bdfa6e4dbb06b67eb79f3a06ba4ab1bf6052d1a6
refs/heads/master
2023-01-27T21:54:18.911645
2020-12-02T15:51:55
2020-12-02T15:51:55
303,987,477
0
0
null
null
null
null
UTF-8
Python
false
false
5,203
py
""" В этой задаче вам необходимо воспользоваться API сайта artsy.net API проекта Artsy предоставляет информацию о некоторых деятелях искусства, их работах, выставках. В рамках данной задачи вам понадобятся сведения о деятелях искусства (назовем их, условно, художники). Вам даны идентификаторы художников в базе Artsy. Для каждого идентификатора получите информацию о имени художника и годе рождения. Выведите имена художников в порядке неубывания года рождения. В случае если у художников одинаковый год рождения, выведите их имена в лексикографическом порядке. Работа с API Artsy Полностью открытое и свободное API предоставляют совсем немногие проекты. В большинстве случаев, для получения доступа к API необходимо зарегистрироваться в проекте, создать свое приложение, и получить уникальный ключ (или токен), и в дальнейшем все запросы к API осуществляются при помощи этого ключа. Чтобы начать работу с API проекта Artsy, вам необходимо пройти на стартовую страницу документации к API https://developers.artsy.net/start и выполнить необходимые шаги, а именно зарегистрироваться, создать приложение, и получить пару идентификаторов Client Id и Client Secret. Не публикуйте эти идентификаторы. После этого необходимо получить токен доступа к API. На стартовой странице документации есть примеры того, как можно выполнить запрос и как выглядит ответ сервера. Мы приведем пример запроса на Python. import requests import json client_id = '...' client_secret = '...' # инициируем запрос на получение токена r = requests.post("https://api.artsy.net/api/tokens/xapp_token", data={ "client_id": client_id, "client_secret": client_secret }) # разбираем ответ сервера j = json.loads(r.text) # достаем токен token = j["token"] Теперь все готово для получения информации о художниках. На стартовой странице документации есть пример того, как осуществляется запрос и как выглядит ответ сервера. Пример запроса на Python. # создаем заголовок, содержащий наш токен headers = {"X-Xapp-Token" : token} # инициируем запрос с заголовком r = requests.get("https://api.artsy.net/api/artists/4d8b92b34eb68a1b2c0003f4", headers=headers) # разбираем ответ сервера j = json.loads(r.text) Примечание: В качестве имени художника используется параметр sortable_name в кодировке UTF-8. Пример входных данных: 4d8b92b34eb68a1b2c0003f4 537def3c139b21353f0006a6 4e2ed576477cc70001006f99 Пример выходных данных: Abbott Mary Warhol Andy Abbas Hamra Примечание для пользователей Windows При открытии файла для записи на Windows по умолчанию используется кодировка CP1251, в то время как для записи имен на сайте используется кодировка UTF-8, что может привести к ошибке при попытке записать в файл имя с необычными символами. Вы можете использовать print, или аргумент encoding функции open. У вас есть неограниченное число попыток. Время одной попытки: 5 mins """ import requests import json idlist = [] artists = dict() with open('dataset_24476_4.txt', 'r') as f: for i in f: idlist.append(i.strip()) token = 'token' headers = {"X-Xapp-Token" : token} for ident in idlist: r = requests.get("https://api.artsy.net/api/artists/{}".format(ident), headers=headers) j = json.loads(r.text) artists.update({j['sortable_name']: j['birthday']}) srtd_artists = sorted(artists.items(), key=lambda x: (x[1], x[0])) for i in srtd_artists: print(i[0])
feaced22bf438e634a1320d815dfdf7b85c5bbe9
5f5fb1cec25f432a8cc1c73fb9943b0b45588042
/Base/BaseElementEnmu.py
c2416f791cdbf7aa1296caec5b556acaa7dc11fd
[]
no_license
qijianxiaobai/Python-Appium
732f64c8e982f1a660b1c45bdf3a73c692e04417
caef97e5eaa6f739b08a85194bfb61a2666419b6
refs/heads/master
2020-04-11T11:36:43.266070
2018-12-17T10:10:02
2018-12-17T10:10:02
161,753,770
0
0
null
null
null
null
UTF-8
Python
false
false
1,549
py
class Element(object): # 常用操作关键字 find_element_by_id = "id" find_elements_by_id = "ids" INDEX = "index" find_elements_by_xpath = "xpaths" find_element_by_xpath = "xpath" find_element_by_css_selector = "css" find_element_by_class_name = "class_name" CLICK = "click" BACK = "back" TAP = "tap" ACCESSIBILITY = "accessibility" ADB_TAP = "adb_tap" SWIPE_DOWN = "swipe_down" SWIPE_UP = "swipe_up" SWIPE_LEFT = "swipe_left" SET_VALUE = "set_value" GET_VALUE = "get_value" WAIT_TIME = 20 PRESS_KEY_CODE = "press_keycode" GET_CONTENT_DESC = "get_content_desc" # 错误日志 TIME_OUT = "timeout" NO_SUCH = "noSuch" WEB_DROVER_EXCEPTION = "WebDriverException" INDEX_ERROR = "index_error" STALE_ELEMENT_REFERENCE_EXCEPTION = "StaleElementReferenceException" DEFAULT_ERROR = "default_error" # 检查点 CONTRARY = "contrary" # 相反检查点,表示如果检查元素存在就说明失败,如删除后,此元素依然存在 CONTRARY_GETVAL = "contrary_getval" # 检查点关键字contrary_getval: 相反值检查点,如果对比成功,说明失败 DEFAULT_CHECK = "default_check" # 默认检查点,就是查找页面元素 COMPARE = "compare" # 历史数据和实际数据对比 TOAST = "toast" RE_CONNECT = 1 # 是否打开失败后再次运行一次用例 INFO_FILE = "info.pickle" SUM_FILE = "sum.pickle" DEVICES_FILE = "devices.pickle" REPORT_FILE = "Report.xlsx"
b6223ed96517013e0969b1c9d814fc5c4699d324
9ee84830f4360c063c1bb9fe0d7312e5fdab47d9
/例子-0911-02.py
0e43c38a239c44c7dbc3d1b443786146afc9123d
[]
no_license
hcl621/python
05974f23548f7afd5d8643d9cf1fd4f5b1937186
af8972dc2918640451c13fa76447f2088054b38c
refs/heads/master
2020-07-09T22:07:52.317034
2019-10-08T12:40:53
2019-10-08T12:40:53
204,094,003
1
0
null
null
null
null
UTF-8
Python
false
false
70
py
#coding=utf-8 try: j except NameError as e: print('catch error!!!')
1638e966bc35966aa652f2387e6f29f7caad377c
9c4c895d23f8109d6ddd8c26937e33d905665b6e
/testing/readfile.py
6d4e684df232b8e6e6116a8e879e9fd3030994f6
[]
no_license
shaybix/Raazi
401b3b4cd8ef31248f9efb58d8750a25ad319718
1fee51d2bdfb0a023c51ae5bc906f03f4e055544
refs/heads/master
2021-01-21T21:39:43.959826
2016-03-21T00:42:02
2016-03-21T00:42:02
18,281,430
2
1
null
null
null
null
UTF-8
Python
false
false
708
py
import sqlite3 connection = sqlite3.connect('sample.sqlite3') cursor = connection.cursor() output = cursor.execute('Select * from main') f = open('sample2.txt', 'w') fetch = cursor.fetchone() #lines = [] # #for line in f: # lines.append(line) # # #print lines[] #print fetch[0] #print "----------------" #print fetch[1] #print "----------------" #info = fetch[2] # #encoded = info.encode('utf-8') # #f.write(encoded) #print "----------------" #encoded = fetch[3].encode('utf-8') #encoded = encoded.splitlines()[5].split(':')[-1].split('.')[0] info = fetch[-5:] # print info[1] #encoded = info.encode('utf-8') #print encoded #f.write(encoded) #print "----------------" #print fetch[4] f.close()
631a2dcb65f7b01f394a4887810810476c69ec19
933376c11498a6567da8d7eb7d2675100895c3ba
/pyzoo/zoo/chronos/forecaster/tcn_forecaster.py
1d2359d1cc2e54a9820e4f91c65c4ff5cd87761b
[ "Apache-2.0" ]
permissive
intel-analytics/analytics-zoo
320a461765f86d41dd456b598b1cf1d51d57f4c4
7cc3e2849057d6429d03b1af0db13caae57960a5
refs/heads/master
2023-08-13T20:47:58.621714
2023-07-06T00:49:11
2023-07-06T00:49:11
90,328,920
3,104
996
Apache-2.0
2023-09-06T01:51:18
2017-05-05T02:27:30
Jupyter Notebook
UTF-8
Python
false
false
5,894
py
# # Copyright 2018 Analytics Zoo Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from zoo.chronos.forecaster.base_forecaster import BasePytorchForecaster from zoo.chronos.forecaster.utils import set_pytorch_seed from zoo.chronos.model.tcn import TCNPytorch from zoo.chronos.model.tcn import model_creator, optimizer_creator, loss_creator class TCNForecaster(BasePytorchForecaster): """ Example: >>> #The dataset is split into x_train, x_val, x_test, y_train, y_val, y_test >>> forecaster = TCNForecaster(past_seq_len=24, future_seq_len=5, input_feature_num=1, output_feature_num=1, ...) >>> forecaster.fit((x_train, y_train)) >>> forecaster.to_local() # if you set distributed=True >>> test_pred = forecaster.predict(x_test) >>> test_eval = forecaster.evaluate((x_test, y_test)) >>> forecaster.save({ckpt_name}) >>> forecaster.restore({ckpt_name}) """ def __init__(self, past_seq_len, future_seq_len, input_feature_num, output_feature_num, num_channels=[30]*7, kernel_size=3, repo_initialization=True, dropout=0.1, optimizer="Adam", loss="mse", lr=0.001, metrics=["mse"], seed=None, distributed=False, workers_per_node=1, distributed_backend="torch_distributed"): """ Build a TCN Forecast Model. TCN Forecast may fall into local optima. Please set repo_initialization to False to alleviate the issue. You can also change a random seed to work around. :param past_seq_len: Specify the history time steps (i.e. lookback). :param future_seq_len: Specify the output time steps (i.e. horizon). :param input_feature_num: Specify the feature dimension. :param output_feature_num: Specify the output dimension. :param num_channels: Specify the convolutional layer filter number in TCN's encoder. This value defaults to [30]*7. :param kernel_size: Specify convolutional layer filter height in TCN's encoder. This value defaults to 3. :param repo_initialization: if to use framework default initialization, True to use paper author's initialization and False to use the framework's default initialization. The value defaults to True. :param dropout: Specify the dropout close possibility (i.e. the close possibility to a neuron). This value defaults to 0.1. :param optimizer: Specify the optimizer used for training. This value defaults to "Adam". :param loss: Specify the loss function used for training. This value defaults to "mse". You can choose from "mse", "mae" and "huber_loss". :param lr: Specify the learning rate. This value defaults to 0.001. :param metrics: A list contains metrics for evaluating the quality of forecasting. You may only choose from "mse" and "mae" for a distributed forecaster. You may choose from "mse", "me", "mae", "mse","rmse","msle","r2", "mpe", "mape", "mspe", "smape", "mdape" and "smdape" for a non-distributed forecaster. :param seed: int, random seed for training. This value defaults to None. :param distributed: bool, if init the forecaster in a distributed fashion. If True, the internal model will use an Orca Estimator. If False, the internal model will use a pytorch model. The value defaults to False. :param workers_per_node: int, the number of worker you want to use. The value defaults to 1. The param is only effective when distributed is set to True. :param distributed_backend: str, select from "torch_distributed" or "horovod". The value defaults to "torch_distributed". """ # config setting self.data_config = { "past_seq_len": past_seq_len, "future_seq_len": future_seq_len, "input_feature_num": input_feature_num, "output_feature_num": output_feature_num } self.config = { "lr": lr, "loss": loss, "num_channels": num_channels, "kernel_size": kernel_size, "repo_initialization": repo_initialization, "optim": optimizer, "dropout": dropout } # model creator settings self.local_model = TCNPytorch self.model_creator = model_creator self.optimizer_creator = optimizer_creator self.loss_creator = loss_creator # distributed settings self.distributed = distributed self.distributed_backend = distributed_backend self.workers_per_node = workers_per_node # other settings self.lr = lr self.metrics = metrics self.seed = seed super().__init__()
448adf2f39782bfbffbcd858cbcdfd29fa0d2642
d4822b0a4bf2279f31edf5eceddac884f77de5b0
/order/permissions.py
6f85f40a9a84eafa2238d36dbc52d85319088402
[]
no_license
xizlt/api_sport
bb05fa36272782bd91796ac8acb72e16cb38d881
55bbccfb344528016e4f903bcadad6ffaa02db17
refs/heads/master
2023-03-05T02:32:33.215134
2021-02-21T21:49:28
2021-02-21T21:49:28
297,443,990
0
0
null
null
null
null
UTF-8
Python
false
false
1,128
py
from rest_framework.permissions import SAFE_METHODS, BasePermission class OrderPermission(BasePermission): def has_object_permission(self, request, view, obj): return bool( request.method in SAFE_METHODS or request.user and request.user.is_authenticated and (obj.user == request.user or request.user.is_staff) ) def has_permission(self, request, view): if request.method == 'POST': return True return bool( request.method in SAFE_METHODS or request.user.is_authenticated or request.user.is_staff ) class ItemViewPermission(BasePermission): def has_object_permission(self, request, view, obj): return bool( request.method in SAFE_METHODS or request.user and request.user.is_authenticated and (obj.order.user.id == request.user.id or request.user.is_staff) ) def has_permission(self, request, view): return bool( request.method in SAFE_METHODS or request.user.is_authenticated or request.user.is_staff )
a74472db035ea74db466460bf3be92ed1ad179cf
5e5a2823a212f8b3b71863b95c73f7b259220070
/runspider.py
e769984489a93842dddebe27c14329e34c9a40e5
[]
no_license
everyday-stoke-phosphate/kyodo_scraping
85f28d59460507e357bf0f7d13c9778136420821
a7bf5c27507174217dbf8d8e3e79ddac7eb3c2f9
refs/heads/master
2021-03-04T06:49:03.876710
2020-03-15T01:55:37
2020-03-15T01:55:37
246,015,135
1
1
null
null
null
null
UTF-8
Python
false
false
449
py
# -*- coding: utf-8 -*- from scrapy.crawler import CrawlerProcess from scrapy.utils.project import get_project_settings def main(): # 設定の変更 基本的にsetting.pyに記述 # 特に何か変えるときには設定内容を指定 settings = get_project_settings() # FEED_URI='results.json') process = CrawlerProcess(settings) spider_name = "kyodo_articles_scraping" process.crawl(spider_name) process.start()
65eb25457df6d77b41c68d357cd137870ad8fe15
f23c47a5495799015c8b803420813a6ee8d6d2a4
/options/base_options.py
b8f879c556236b9d0b3fbbe242454ad2911e94d6
[]
no_license
eitan3/continuous_view_synthesis_gluon
d3f5e74553ddfb480ba24861cc4cd39acbb7a1ce
b3d90378f0e49a165ae85a9249ee3e5d208348eb
refs/heads/master
2022-12-02T16:16:37.440990
2020-08-21T17:17:33
2020-08-21T17:17:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,605
py
import argparse import os from util import util class BaseOptions(): def __init__(self): self.parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) self.initialized = False self.isTrain = True self.opt = None def initialize(self): # basic info self.parser.add_argument('--batchSize', type=int, default=16, help='input batch size') self.parser.add_argument('--name', type=str, default='experiment_name', help='name of the experiment. It decides where to store samples and models') self.parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here') # visualization related self.parser.add_argument('--display_winsize', type=int, default=256, help='display window size') self.parser.add_argument('--display_id', type=int, default=1, help='window id of the web display') self.parser.add_argument('--display_port', type=int, default=8097, help='visdom port of the web display') # data loading related self.parser.add_argument('--image_width', default=256, type=int, help='Image width') self.parser.add_argument('--image_height', default=256, type=int, help='Image height') # experiment related self.parser.add_argument('--nz_geo', type=int, default=256, help='number of latent points') self.parser.add_argument('--category', type=str, default='car', help='model category [car|chair|kitti]') self.parser.add_argument('--random_elevation', action='store_true', help='introduce elevation changes between training pairs') self.initialized = True def parse(self): if not self.initialized: self.initialize() self.opt = self.parser.parse_args() self.opt.isTrain = self.isTrain # train or test args = vars(self.opt) print('------------ Options -------------') for k, v in sorted(args.items()): print('%s: %s' % (str(k), str(v))) print('-------------- End ----------------') # save to the disk expr_dir = os.path.join(self.opt.checkpoints_dir, self.opt.name) util.mkdirs(expr_dir) file_name = os.path.join(expr_dir, 'opt.txt') with open(file_name, 'wt') as opt_file: opt_file.write('------------ Options -------------\n') for k, v in sorted(args.items()): opt_file.write('%s: %s\n' % (str(k), str(v))) opt_file.write('-------------- End ----------------\n') return self.opt
e3bffa2e9644e317f97a756bd852d57fe28c1fae
50d8f7a805546edd768a245a544d3a362b674a73
/03.image_stitch/image_stitch.py
41706bca2902d0384ccbd7b7ef406ad1dddb2547
[ "MIT" ]
permissive
Taishuaibo/pycv-training
0d3f812a7e57acc8496ced9ada5879ee9f8a33f5
a9ad8755c82bff62e907099ebac7587422b28ccd
refs/heads/main
2023-05-05T15:51:19.394705
2021-05-30T01:08:17
2021-05-30T01:08:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,064
py
import cv2 import numpy as np def cv_show(name, img): cv2.imshow(name, img) cv2.waitKey(0) cv2.destroyAllWindows() def createFeature(img): gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 建立SIFT生成器 sift = cv2.xfeatures2d.SIFT_create() # 检测SIFT特征点,并计算特征描述子 (kps, features) = sift.detectAndCompute(img, None) # 将结果转换成NumPy数组 kps = np.float32([kp.pt for kp in kps]) # 返回特征点集,及对应的特征描述子 return (kps, features) # 读取拼接图片 imageA = cv2.imread("./oriImgs/left.png") # 左图 imageB = cv2.imread("./oriImgs/right.png") # 右图 cv2.imshow('imageA', imageA) cv2.imshow('imageB', imageB) cv2.waitKey(0) cv2.destroyAllWindows() #检测A、B图片的SIFT关键特征点,并计算特征描述子 (kpsA, featuresA) = createFeature(imageA) (kpsB, featuresB) = createFeature(imageB) # 建立暴力匹配器 matcher = cv2.BFMatcher() # 使用KNN检测来自A、B图的SIFT特征匹配对,K=2 rawMatches = matcher.knnMatch(featuresA, featuresB, 2) goodMatches = [] for m in rawMatches: # 当最近距离跟次近距离的比值小于ratio(0.75)值时,保留此匹配对 if len(m) == 2 and m[0].distance < m[1].distance * 0.75: # 存储两个点在featuresA, featuresB中的索引值 goodMatches.append((m[0].trainIdx, m[0].queryIdx)) # 当筛选后的匹配对大于4时,才去计算视角变换矩阵 if len(goodMatches) > 4: # 获取匹配对的点坐标 ptsA = np.float32([kpsA[i] for (_, i) in goodMatches]) ptsB = np.float32([kpsB[i] for (i, _) in goodMatches]) # 计算视角变换矩阵 # !!!注意A,B坐标点的顺序!!! (H, status) = cv2.findHomography(ptsB, ptsA, cv2.RANSAC, 4.0) # 将图片B进行视角变换,res是变换后图片 res = cv2.warpPerspective(imageB, H, (imageA.shape[1] + imageB.shape[1], imageB.shape[0])) cv_show('result', res) # 将图片A传入result图片最左端 res[0:imageA.shape[0], 0:imageA.shape[1]] = imageA cv_show('result', res) # 初始化可视化图片,将A、B图左右连接到一起 (hA, wA) = imageA.shape[:2] (hB, wB) = imageB.shape[:2] vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8") vis[0:hA, 0:wA] = imageA vis[0:hB, wA:] = imageB # 联合遍历,画出匹配对 for ((trainIdx, queryIdx), s) in zip(goodMatches, status): # 当点对匹配成功时,画到可视化图上 if s == 1: # 画出匹配对 ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1])) ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1])) cv2.line(vis, ptA, ptB, (0, 255, 0), 1) # 显示所有图片 cv2.imshow('imageA', imageA) cv2.imshow('imageB', imageB) cv2.imshow('keypoint matches', vis) cv2.imwrite('./resImgs/keypointmatcher.png', vis) cv2.imshow('result', res) cv2.imwrite('./resImgs/result.png', res) cv2.waitKey(0) cv2.destroyAllWindows()
1cc38e8e931283f05c93bbaab335422b6e5f0351
61191088ee4a257b15fad0b8fe53641c70ca78f1
/vectdraw/draw/colour.py
b318d51482b6c8587b1dc0087345978adbb1cebc
[]
no_license
ajpen/Vectdraw
2e0394a6ff646f408a683033ef14692b6d7fd048
3b0d941b31f759737bd52210ac9738d1ef7b5aaa
refs/heads/master
2022-11-14T09:51:58.772146
2020-07-08T21:40:53
2020-07-08T21:40:53
277,761,591
1
0
null
null
null
null
UTF-8
Python
false
false
1,223
py
""" Class for rgba colour representation """ class Colour(object): red = 0 green = 0 blue = 0 alpha = 255 def __init__(self, rgba=None): """ Returns a colour instance. If nothing is passsed, the default is 0,0, 0, 255 for red, green, blue and alpha respectively :param rgba: a tuple containing numbers between 0-255 for red, green, blue and alpha respectively """ if rgba: self.SetColour(rgba) def SetColour(self, rgba): if not isinstance(rgba, tuple) and len(rgba) != 4: raise TypeError( "Unexpected type given. Expected tuple of size 4 " "(int, int, int, int), received {}".format(type(rgba))) for c in rgba: if c > 255 or c < 0: raise ValueError( "Colour values are outside of the domain (0-255)") self.red, self.green, self.blue, self.alpha = rgba def __eq__(self, other): if isinstance(other, self.__class__): return (self.red == other.red and self.green == other.green and self.blue == other.blue and self.alpha == other.alpha) else: raise NotImplemented
98166df402980f456d8048e29aa8a450f9257655
80d879a552ce00a9bc73a26d0ddb74c278867b1f
/scripts/080_hilo_concrete.py
4abf39886121d03650f95582dad542dc8c6f5d56
[]
no_license
whiskyching/WS-EscobedoGroup
4a25abe62fac91b82d3b1abd74ddc02af107457f
bd36d623ec2f60638fe3f330b9ad92c810804e8d
refs/heads/main
2023-03-20T07:03:19.594765
2021-03-16T13:15:14
2021-03-16T13:15:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,119
py
import os import compas from compas.utilities import pairwise from compas_rhino.artists import MeshArtist HERE = os.path.dirname(__file__) DATA = os.path.join(HERE, '../data') FILE = os.path.join(DATA, 'session.json') session = compas.json_load(FILE) mesh = session['mesh'] # ============================================================================== # Idos # ============================================================================== idos = mesh.copy() for face in mesh.faces_where({'is_loaded': False}): idos.delete_face(face) idos.remove_unused_vertices() offset = 0.02 for vertex, attr in idos.vertices(True): x, y, z = mesh.vertex_coordinates(vertex) nx, ny, nz = mesh.vertex_normal(vertex) if attr['nx'] is not None: nx = attr['nx'] if attr['ny'] is not None: ny = attr['ny'] if attr['nz'] is not None: nz = attr['nz'] attr['x'] = x + offset * nx attr['y'] = y + offset * ny attr['z'] = z + offset * nz # ============================================================================== # Edos # ============================================================================== edos = idos.copy() offset = 0.06 for vertex, attr in edos.vertices(True): x, y, z = idos.vertex_coordinates(vertex) nx, ny, nz = idos.vertex_normal(vertex) if attr['nx'] is not None: nx = attr['nx'] if attr['ny'] is not None: ny = attr['ny'] if attr['nz'] is not None: nz = attr['nz'] attr['x'] = x + offset * nx attr['y'] = y + offset * ny attr['z'] = z + offset * nz # ============================================================================== # Volume # ============================================================================== volume = idos.copy() volume.flip_cycles() max_vertex = volume._max_vertex + 1 max_face = volume._max_face + 1 for vertex, attr in edos.vertices(True): volume.add_vertex(key=vertex + max_vertex, **attr) for face in edos.faces(): vertices = edos.face_vertices(face) vertices = [vertex + max_vertex for vertex in vertices] volume.add_face(vertices) boundary = edos.vertices_on_boundary() boundary.append(boundary[0]) for a, b in pairwise(boundary): volume.add_face([b, a, a + max_vertex, b + max_vertex]) # ============================================================================== # Export # ============================================================================== session['idos'] = idos session['edos'] = edos session['volume'] = volume compas.json_dump(session, FILE) # ============================================================================== # visualize # ============================================================================== artist = MeshArtist(idos, layer="HiLo::Concrete1::Idos") artist.clear_layer() artist.draw_mesh(disjoint=True, color=(255, 0, 0)) artist = MeshArtist(edos, layer="HiLo::Concrete1::Edos") artist.clear_layer() artist.draw_mesh(disjoint=True, color=(0, 0, 255)) artist = MeshArtist(volume, layer="HiLo::Concrete1::Volume") artist.clear_layer() artist.draw_mesh(disjoint=True)
ecfbc6fbd378e0f496251bdb6fea828ba8ec686d
09d6a9e95f0156e577e068899f20959abb0f733a
/train/trainers/trainer_controller.py
483cbb084ec931370e279710580127352d459a36
[]
no_license
miyosuda/animalai
45267cd6dc63306e97f28d2217046f9e10b5b460
94d9d5e3acc593da878fa3dc3f38348567417578
refs/heads/master
2020-07-10T06:31:29.100908
2020-01-17T19:26:34
2020-01-17T19:26:34
204,193,068
0
0
null
null
null
null
UTF-8
Python
false
false
10,122
py
# -*- coding: utf-8 -*- # # Unity ML-Agents Toolkit # ## ML-Agent Learning """Launches trainers for each External Brains in a Unity Environment.""" import os import logging import shutil import sys from typing import * import numpy as np import tensorflow as tf from animalai.envs import BrainInfo from animalai.envs.exception import UnityEnvironmentException from trainers.ppo.trainer import PPOTrainer class TrainerController(object): def __init__(self, model_path: str, summaries_dir: str, run_id: str, save_freq: int, load: bool, train: bool, keep_checkpoints: int, lesson: Optional[int], external_brains: Dict[str, BrainInfo], training_seed: int, config=None): """ Arguments: model_path: Path to save the model. summaries_dir: Folder to save training summaries. run_id: The sub-directory name for model and summary statistics save_freq: Frequency at which to save model load: Whether to load the model or randomly initialize. train: Whether to train model, or only run inference. keep_checkpoints: How many model checkpoints to keep. lesson: Start learning from this lesson. external_brains: dictionary of external brain names to BrainInfo objects. training_seed: Seed to use for Numpy and Tensorflow random number generation. """ self.model_path = model_path self.summaries_dir = summaries_dir self.external_brains = external_brains self.external_brain_names = external_brains.keys() self.logger = logging.getLogger('mlagents.envs') self.run_id = run_id self.save_freq = save_freq self.lesson = lesson self.load_model = load self.train_model = train self.keep_checkpoints = keep_checkpoints self.trainers = {} self.global_step = 0 self.seed = training_seed self.config = config self.update_config = True np.random.seed(self.seed) tf.set_random_seed(self.seed) def _get_measure_vals(self): return None def _save_model(self, steps=0): """ Saves current model to checkpoint folder. steps: Current number of steps in training process. saver: Tensorflow saver for session. """ for brain_name in self.trainers.keys(): self.trainers[brain_name].save_model() self.logger.info('Saved Model') def _save_model_when_interrupted(self, steps=0): self.logger.info('Learning was interrupted. Please wait ' 'while the graph is generated.') self._save_model(steps) def initialize_trainers(self, trainer_config): """ Initialization of the trainers trainer_config: The configurations of the trainers """ trainer_parameters_dict = {} for brain_name in self.external_brains: # brain_nameは "Leaner" trainer_parameters = trainer_config['default'].copy() trainer_parameters['summary_path'] = '{basedir}/{name}'.format( basedir=self.summaries_dir, name=str(self.run_id) + '_' + brain_name) trainer_parameters['model_path'] = '{basedir}/{name}'.format( basedir=self.model_path, name=brain_name) trainer_parameters['keep_checkpoints'] = self.keep_checkpoints if brain_name in trainer_config: _brain_key = brain_name # "Learner" while not isinstance(trainer_config[_brain_key], dict): _brain_key = trainer_config[_brain_key] for k in trainer_config[_brain_key]: trainer_parameters[k] = trainer_config[_brain_key][k] trainer_parameters_dict[brain_name] = trainer_parameters.copy() for brain_name in self.external_brains: if trainer_parameters_dict[brain_name]['trainer'] == 'ppo': # ここで PPOTrainer 生成 self.trainers[brain_name] = PPOTrainer( self.external_brains[brain_name], 0, trainer_parameters_dict[brain_name], # trainer_configで指定した内容 self.train_model, self.load_model, self.seed, self.run_id) else: raise UnityEnvironmentException('The trainer config contains ' 'an unknown trainer type for ' 'brain {}' .format(brain_name)) @staticmethod def _create_model_path(model_path): try: if not os.path.exists(model_path): os.makedirs(model_path) except Exception: raise UnityEnvironmentException('The folder {} containing the ' 'generated model could not be ' 'accessed. Please make sure the ' 'permissions are set correctly.' .format(model_path)) def _reset_env(self, env): """Resets the environment. Returns: A Data structure corresponding to the initial reset state of the environment. """ if self.update_config: return env.reset(arenas_configurations=self.config) self.update_config = False else: return env.reset() def start_learning(self, env, trainer_config): # TODO: Should be able to start learning at different lesson numbers # for each curriculum. self._create_model_path(self.model_path) tf.reset_default_graph() # Prevent a single session from taking all GPU memory. # PPOTrainer を生成 self.initialize_trainers(trainer_config) for _, t in self.trainers.items(): self.logger.info(t) curr_info = self._reset_env(env) # Tensorboardにハイパーパラメータを記録 if self.train_model: for brain_name, trainer in self.trainers.items(): trainer.write_tensorboard_text('Hyperparameters', trainer.parameters) try: # 学習ループ while any([t.get_step <= t.get_max_steps for k, t in self.trainers.items()]) \ or not self.train_model: # 学習を1ステップ進める new_info = self.take_step(env, curr_info) self.global_step += 1 if self.global_step % self.save_freq == 0 and self.global_step != 0 \ and self.train_model: # 学習モデルの保存 self._save_model(steps=self.global_step) curr_info = new_info if self.global_step != 0 and self.train_model: # 最後にモデルを保存 self._save_model(steps=self.global_step) except KeyboardInterrupt: if self.train_model: self._save_model_when_interrupted(steps=self.global_step) pass env.close() def take_step(self, env, curr_info): # If any lessons were incremented or the environment is ready to be reset if env.global_done: curr_info = self._reset_env(env) for brain_name, trainer in self.trainers.items(): trainer.end_episode() # Decide and take an action take_action_vector, \ take_action_memories, \ take_action_text, \ take_action_value, \ take_action_outputs \ = {}, {}, {}, {}, {} for brain_name, trainer in self.trainers.items(): # Actionを決定する. 全arena分の配列になっている. (take_action_vector[brain_name], # 発行するAction take_action_memories[brain_name], # None (use_recurrent時に利用) take_action_text[brain_name], # 常にNone take_action_value[brain_name], # 各Arenaに一つの値 take_action_outputs[brain_name]) = trainer.take_action(curr_info) # take_action_outputsは action, log_probs, value, entropy, etc... # 選んだActionによって環境を1 step進める new_info = env.step(vector_action=take_action_vector, memory=take_action_memories, text_action=take_action_text, value=take_action_value) # BrainInfoには visual_observations, vector_observations, memories, rewards, local_done, # etc.. が入っている. # visual_observations = (4, 84, 84, 3) など for brain_name, trainer in self.trainers.items(): # ExperienceBufferに貯める trainer.add_experiences(curr_info, new_info, take_action_outputs[brain_name]) trainer.process_experiences(curr_info, new_info) if trainer.is_ready_update() and self.train_model \ and trainer.get_step <= trainer.get_max_steps: # ExperienceBuffer に溜まった内容で Policy の学習をSGDで行う. trainer.update_policy() # Write training statistics to Tensorboard. trainer.write_summary(self.global_step) if self.train_model and trainer.get_step <= trainer.get_max_steps: trainer.increment_step_and_update_last_reward() return new_info
b2b0b0aec75a1ce380bcdf00f88afd9502f5a719
5cfea22c5b2c401acae9d429915ed9ba7a73024a
/pausemenu/menues/mainmenu.py
bfd1af3639d97960f8a1cdb1a197442a06296a7d
[]
no_license
LookACastle/Oiram
f48fe3f0c9c6e3cc14737d37e5d91013414a4671
2302c929c874eb44fa38e6308d49e4d7a415095d
refs/heads/master
2022-03-15T06:09:09.106758
2019-10-26T23:09:57
2019-10-26T23:09:57
108,526,721
0
0
null
null
null
null
UTF-8
Python
false
false
1,284
py
from pausemenu.menuitem.button import * from constants import * class MainMenu: def __init__(self, screen): options = ["Resume", "Options", "Save", "Exit"] actions = [resumeAction, optionAction, saveAction, quitAction] self.objects = [] y = 0 maxwidth = 0 for i in range(0, len(options)): button = Button(options[i], 45, y + 30, screen, 2, actions[i], 0) if (button.width > maxwidth): maxwidth = button.width self.objects.append(button) y += 30 for o in self.objects: o.center(maxwidth) def resetHover(self): for o in self.objects: if (o.isHoverAble): o.hover = False def resetPress(self): for o in self.objects: if (o.isPressAble()): o.pressed = False def getCollision(self, x, y): collided = [] for o in self.objects: if (o.checkCollision(x, y)): collided.append(o) return collided def render(self, screen, x, y): for o in self.objects: o.render(screen, x, y) def quitAction(main): if (main.player.onMap): main.stop() else: main.saveConfig() main.levelManager.changeLevel(main.player) main.pausemenu.active = False def resumeAction(main): main.pausemenu.active = False def optionAction(main): main.pausemenu.changeMenu("option") def saveAction(main): main.pausemenu.changeMenu("save")
92296cabb36cdc43ac8a55f79c416c6d3190cc2b
f332244831040530c8d4d3ff42ee4e06078ca22b
/cart/views.py
eed5c0e9c50a9e6889b30cec001caa5258639029
[]
no_license
worlddeleteRin/cosmetics
f8f1bd8a3d9b6b149ae29126fa6f4bd6bb5e72b1
f7d593f3206606d24084d6281bd6d5472654da25
refs/heads/master
2023-03-04T04:34:59.349269
2021-02-13T19:43:37
2021-02-13T19:43:37
296,117,694
0
0
null
null
null
null
UTF-8
Python
false
false
12,561
py
from django.shortcuts import render from django.http import HttpResponse, HttpResponse, HttpResponseRedirect, JsonResponse from django.shortcuts import render, get_object_or_404 from django.urls import reverse from .models import * from products.models import * from collections import defaultdict import pandas as pd import urllib.parse # to serialize to json format from django.core import serializers from django.core.mail import send_mail from django.conf import settings from django.template.loader import render_to_string from django.utils.html import strip_tags # Create your views here. def index(request): allcategories = Category.objects.all() allbrands = Brand.objects.all() if not request.session.session_key: request.session.create() current_session_key = request.session.session_key else: current_session_key = request.session.session_key cart = Cart.objects.get_or_create( session_key = current_session_key ) cart_items = cart[0].item_set.all() return render(request, 'cart/index.html', { 'allbrands': allbrands, 'categories': allcategories, 'session_key': current_session_key, 'items': cart_items, 'current_cart': cart[0], }) def add_item(request, product_id): product = Product.objects.get(id = product_id) if not request.session.session_key: request.session.create() current_session_key = request.session.session_key else: current_session_key = request.session.session_key cart = Cart.objects.get_or_create(session_key = current_session_key)[0] cart_items = cart.item_set.all() if Item.objects.filter(cart = cart, name = product.name).exists(): current_item = Item.objects.get(cart = cart, name = product.name) current_item.quantity += 1 current_item.save() else: new_item = Item( cart = cart, name = product.name, price = product.price, sale_price = product.sale_price, imgurl = product.imgurl, brand = product.pr_brand.name, series = product.pr_series.name, obiem = product.obiem, ) new_item.save() return HttpResponseRedirect(reverse('cart:index')) def add_quantity(request, item_id): current_item = Item.objects.get(id = item_id) current_item.quantity += 1 current_item.save() return HttpResponseRedirect(reverse('cart:index')) def remove_quantity(request, item_id): current_session_key = request.session.session_key cart = Cart.objects.get_or_create(session_key = current_session_key)[0] current_item = Item.objects.get(id = item_id) if current_item.quantity == 1: current_item.delete() else: current_item.quantity -= 1 current_item.save() return HttpResponseRedirect(reverse('cart:index')) def remove_item_ajax(request): current_session_key = request.session.session_key cart = Cart.objects.get(session_key = current_session_key) item_id = request.GET['item_id'] current_item = Item.objects.get(id = item_id, cart = cart) if current_item.quantity == 1: current_item.delete() return JsonResponse({ 'message': 'everything is ok', 'need_delete': 'yes', }, status = 200) check_items = cart.if_items_empty() if check_items == True: cart.promo = None cart.save() else: current_item.quantity -= 1 current_item.save() quantity = current_item.quantity return JsonResponse({ 'message': 'everything is ok', 'need_delete': 'no', 'quantity': quantity, }, status = 200) def add_item_ajax(request): if not request.session.session_key: request.session.create() current_session_key = request.session.session_key else: current_session_key = request.session.session_key cart = Cart.objects.get_or_create(session_key = current_session_key)[0] item_id = request.GET['item_id'] current_item = Item.objects.get(id = item_id, cart = cart) current_item.quantity += 1 current_item.save() quantity = current_item.quantity return JsonResponse({ 'message': 'everything is ok', 'quantity': quantity, }, status = 200) def update_item_amount_ajax(request): current_session_key = request.session.session_key cart = Cart.objects.get(session_key = current_session_key) item_id = request.GET['item_id'] current_item = Item.objects.get(id = item_id, cart = cart) if current_item.sale_price: amount = current_item.quantity * current_item.sale_price else: amount = current_item.quantity * current_item.price return JsonResponse({ 'message': 'everything is ok', 'item_amount': amount, }, status = 200) def update_total_amount_ajax(request): current_session_key = request.session.session_key cart = Cart.objects.get(session_key = current_session_key) total_amount = cart.get_total() if cart.promo != None: total_amount_promo = cart.get_total_promo() has_promo = 'true' return JsonResponse({ 'total_amount_promo': total_amount_promo, 'message': 'everything is ok', 'total_amount': total_amount, 'has_promo': has_promo, }, status = 200) else: has_promo = 'false' return JsonResponse({ 'message': 'everything is ok', 'total_amount': total_amount, 'has_promo': has_promo, }, status = 200) def remove_item_from_cart_ajax(request): current_session_key = request.session.session_key cart = Cart.objects.get(session_key = current_session_key) current_item_id = request.GET['item_id'] print('item id is',current_item_id ) current_item = Item.objects.get(cart = cart, id = current_item_id) print(current_item) current_item.delete() check_items = cart.if_items_empty() if check_items == True: cart.promo = None cart.save() return JsonResponse({ 'message': 'everything is ok', }, status = 200) def add_to_cart_ajax(request): if not request.session.session_key: request.session.create() current_session_key = request.session.session_key else: current_session_key = request.session.session_key cart = Cart.objects.get_or_create(session_key = current_session_key)[0] current_product_id = request.GET['product_id'] current_product = Product.objects.get(id = current_product_id) message = "" if Item.objects.filter(cart = cart, name = current_product.name, price = current_product.price).exists(): item = Item.objects.get(cart = cart, name = current_product.name, price = current_product.price) item.quantity += 1 item.save() else: item = Item( cart = cart, name = current_product.name, price = current_product.price, sale_price = current_product.sale_price, imgurl = current_product.imgurl, brand = current_product.pr_brand.name, series = current_product.pr_series.name, obiem = current_product.obiem, ) item.save() return JsonResponse({ 'message': 'Товар добавлен в корзину!', }, status = 200) def create_order_ajax(request): current_session_key = request.session.session_key cart = Cart.objects.get(session_key = current_session_key) cart_items = cart.item_set.all() # parse cart info delivery_method = request.GET['delivery_method'] delivery_method = urllib.parse.unquote(delivery_method) delivery_cost = request.GET['delivery_cost'] payment_method = request.GET['payment_method'] payment_method = urllib.parse.unquote(payment_method) customer_name = request.GET['customer_name'] customer_name = urllib.parse.unquote(customer_name) customer_phone = request.GET['customer_phone'] customer_city = request.GET['customer_city'] customer_city = urllib.parse.unquote(customer_city) customer_address = request.GET['customer_address'] customer_address = urllib.parse.unquote(customer_address) order_comment = request.GET['cart_comment'] order_comment = urllib.parse.unquote(order_comment) customer_email = request.GET['customer_email'] customer_email = urllib.parse.unquote(customer_email) order_price = int(delivery_cost) + cart.get_total_promo() new_order = Orders( name = customer_name, phone = customer_phone, email = customer_email, delivery = delivery_method + ' ' + delivery_cost, payment = payment_method, city = customer_city, address = customer_address, order_price = order_price, comment = order_comment, ) new_order.save() cart_items_mail = [] order_price_mail = order_price order_comment_mail = order_comment customer_address_mail = customer_city + ', ' + customer_address delivery_method_mail = delivery_method order_id = new_order.id for item in cart_items: new_order.item_set.add(item) cart_items_mail.append([item.name, item.quantity, item.price]) for item in cart.item_set.all(): cart.item_set.remove(item) cart.promo = None cart.save() cart_items_all = new_order.item_set.all() context = { 'order_id': order_id, 'order_price_mail': order_price_mail, 'name': customer_name, 'phone': customer_phone, 'email': customer_email, 'delivery_address': customer_address_mail, 'delivery_cost': delivery_cost, 'cart_items_all': cart_items_all, 'delivery_method_mail': delivery_method_mail, 'order_comment_mail': order_comment_mail, } client_html_message = render_to_string('cart/blocks/order_mail_template.html', context) client_html_message_plain = strip_tags(client_html_message) admin_html_message = render_to_string('cart/blocks/order_mail_template_admin.html', context) admin_html_message_plain = strip_tags(admin_html_message) try: send_mail( 'Заказ № {}'.format(order_id), admin_html_message_plain, settings.EMAIL_HOST_USER, [ # '[email protected]', '[email protected]' ], html_message = admin_html_message ) print('mail is sent') print('try to send mail') send_mail( 'Заказ № {}'.format(order_id), client_html_message_plain, settings.EMAIL_HOST_USER, [ customer_email, # '[email protected]' ], html_message = client_html_message ) except: print('was an error when send mail') return JsonResponse({ 'order_created': 'yes', }, status = 200) def update_nav_total(request): if not request.session.session_key: request.session.create() current_session_key = request.session.session_key else: current_session_key = request.session.session_key cart = Cart.objects.get_or_create(session_key = current_session_key)[0] cart_total = cart.get_total() return JsonResponse({ 'cart_total': cart_total, }, status = 200) def check_promo_ajax(request): current_session_key = request.session.session_key cart = Cart.objects.get(session_key = current_session_key) current_promo = request.GET['promo'] if Promocode.objects.filter(name = current_promo).exists(): print('this promo exist') promo = Promocode.objects.get(name = current_promo) cart.promo = promo cart.save() return JsonResponse({ 'exist': 'yes', }, status = 200) else: print('this promo not exist') return JsonResponse({ 'exist': 'no', }, status = 200) def set_promo(request): current_session_key = request.session.session_key cart = Cart.objects.get(session_key = current_session_key) if cart.promo != None: print('promo exist') promo_name = cart.promo.name return JsonResponse({ 'promo_name': promo_name, 'exist': 'yes' }, status = 200) else: return JsonResponse({ 'exist': 'no' }, status = 200)
25239a74775ef3920fb3ecec660792a627e451bc
e69053a7cc99efc9ed560b32f378920613e77517
/coins_optimal.py
04fcbabd8130821f86d267f59ed2c2ff2b0ab462
[]
no_license
aantillonl/CakeInterviewProblems
41a2a719364440a11af6841ce3b2e334c207c456
d671aa6b196a433963f62ef5217582d3f80c6c63
refs/heads/master
2021-08-23T12:13:22.811133
2017-12-04T21:34:52
2017-12-04T21:34:52
112,225,821
0
0
null
null
null
null
UTF-8
Python
false
false
1,355
py
# Your quirky boss collects rare, old coins... # They found out you're a programmer and asked you to solve something they've been wondering for a long time. # Write a function that, given: # an amount of money # a list of coin denominations # computes the number of ways to make the amount of money with coins of the available denominations. # Example: for amount=4 (4¢) and denominations=[1,2,3][1,2,3] (1¢, 2¢ and 3¢), your program would output 4—the number of ways to make 4¢ with those denominations: # 1¢, 1¢, 1¢, 1¢ # 1¢, 1¢, 2¢ # 1¢, 3¢ # 2¢, 2¢ coins = [1,2,3] target = 5 N = len(coins) output = [] # Consider base cases: No coins given. And, amount = 0 # sol[ x = num of coins. y => target] solutions = [[0 for x in range(N + 1)] for x in range(0,target + 1)] # Fill the enteries for 0 value case (n = 0) for i in range(N + 1): solutions[0][i] = 1 for y in range(1, target + 1): for x in range(1, N + 1): curr_coin = coins[x-1] sol_without_coin = solutions[y][x-1] if curr_coin <= y: sol_with_coin = solutions[y - curr_coin][x] solutions[y][x] = sol_with_coin + sol_without_coin else: solutions[y][x] = sol_without_coin print(solutions[target][N]) # Daamn, this was tough as hell, i dont know how i can make it for my solution
803fe059f40e4b681949b8595a78dbf9f235cec5
7fbd07ed9d23381f73d408cb3a845e94c81ca496
/mysite/settings.py
6e3598873769ed4c12d9fe5ad4c2b240db9f6a16
[]
no_license
halildilaver/E-CommercewithDjango
a1be0ce32f07f7b8874571140f845a8bf1ecc205
b867a87bf4c272c461a75a5bc50af0895bcb85f7
refs/heads/master
2020-06-03T14:51:21.131135
2019-06-12T17:08:06
2019-06-12T17:08:06
191,613,313
0
0
null
null
null
null
UTF-8
Python
false
false
3,641
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 2.2.1. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '2kx52jjxr@@xv=@^q+e#hbz%$ujy6x8un*ie$vd!z45j_#v!^d' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'product.apps.ProductConfig', 'home.apps.HomeConfig', 'polls.apps.PollsConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'ckeditor', 'ckeditor_uploader' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' MEDIA_URL = '/images/' MEDIA_ROOT = os.path.join(BASE_DIR, 'uploads') #################################### ## CKEDITOR CONFIGURATION ## #################################### SITE_ID = 1 CKEDITOR_JQUERY_URL = 'https://ajax.googleapis.com/ajax/libs/jquery/2.2.4/jquery.min.js' CKEDITOR_UPLOAD_PATH = 'uploads/' CKEDITOR_IMAGE_BACKEND = "pillow" CKEDITOR_CONFIGS = { 'default': { 'toolbar': None, }, }
5e2e9ee1d976ed4b9dae0c19f9e48d49c14d8d4a
d4442db5a7ab9db2b04fef640a9864f3fba54758
/src/python/WMCore/Services/Dashboard/DashboardAPI.py
9f90e4842ae59431378744395dc3404a30601661
[]
no_license
stuartw/WMCore
fa25ff19ab5058a635d35d3c58a0ac56a3e079a1
38c39c43f7237fd316930839674ac9be3c0ee8cc
refs/heads/master
2021-01-18T07:18:18.324604
2012-10-18T22:30:34
2012-10-18T22:30:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,823
py
#!/usr/bin/python """ This is the Dashboard API Module for the Worker Node """ from WMCore.Services.Dashboard import apmon import time from types import DictType, StringType, ListType # # Methods for manipulating the apmon instance # # Internal attributes apmonInstance = None apmonInit = False # Monalisa configuration apmonConf = ["cms-wmagent-job.cern.ch"] # # Method to create a single apmon instance at a time # def getApmonInstance( logr, apmonServer ): global apmonInstance global apmonInit if apmonInstance is None and not apmonInit : apmonInit = True if apmonInstance is None : try : if not apmonServer: apmonInstance = apmon.ApMon(apmonConf, logr) #apmonLoggingLevel) else: apmonInstance = apmon.ApMon(apmonServer, logr) except Exception, e : pass return apmonInstance # # Method to free the apmon instance # def apmonFree() : global apmonInstance global apmonInit if apmonInstance is not None : try : apmonInstance.free() except Exception, e : pass apmonInstance = None apmonInit = False # # Method to send params to Monalisa service # def apmonSend(taskid, jobid, params, logr, apmonServer) : apm = getApmonInstance( logr, apmonServer ) if apm is not None : if not isinstance(params, DictType) and not isinstance(params, ListType) : params = {'unknown' : '0'} if not isinstance(taskid, StringType) : taskid = 'unknown' if not isinstance(jobid, StringType) : jobid = 'unknown' try : apm.sendParameters(taskid, jobid, params) return 0 except Exception, e: pass return 1
[ "sfoulkes@4525493e-7705-40b1-a816-d608a930855b" ]
sfoulkes@4525493e-7705-40b1-a816-d608a930855b
1bd71c4ddec832e0d21c4f00197795038c20d8e4
e5b5e21451f21bab50ed40eba73fbb1146a166b5
/ecommerceproject/cart/views.py
a97556adf7f9f6ee15a81b6041b207180a3c90e5
[]
no_license
Ebyprogramz/grocerystore
64b46f16c98523bca9b5664bb7437ba549cb51e6
91afce25766879d3891f8b1e46b42cef09560f0f
refs/heads/master
2023-08-15T01:45:16.668194
2021-09-29T05:37:30
2021-09-29T05:37:30
410,158,276
0
0
null
null
null
null
UTF-8
Python
false
false
2,121
py
from django.shortcuts import render, redirect, get_object_or_404 from store.models import Product from .models import Cart,Cart_Item from django.core.exceptions import ObjectDoesNotExist # Create your views here. def cart_id(request): cart=request.session.session_key if not cart: cart=request.session.create() return cart def add_cart(request,product_id): product=Product.objects.get(id=product_id) try: cart=Cart.objects.get(cart_id=cart_id(request)) except Cart.DoesNotExist: cart=Cart.objects.create(cart_id=cart_id(request)) cart.save(), try: cart_item=Cart_Item.objects.get(product=product,cart=cart) if cart_item.quantity < cart_item.product.stock: cart_item.quantity +=1 cart_item.save() except Cart_Item.DoesNotExist: cart_item=Cart_Item.objects.create( product=product, quantity=1, cart=cart ) cart_item.save() return redirect('cart:cart_detail') def cart_detail(request,total=0,counter=0,cart_items=None): try: cart=Cart.objects.get(cart_id=cart_id(request)) cart_items=Cart_Item.objects.filter(cart=cart,active=True) for cart_item in cart_items: total+=(cart_item.product.price * cart_item.quantity) counter +=cart_item.quantity except ObjectDoesNotExist: pass return render(request,'cart.html',dict(cart_items=cart_items,total=total,counter=counter)) def cart_remove(request,product_id): cart=Cart.objects.get(cart_id=cart_id(request)) product=get_object_or_404(Product,id=product_id) cart_item=Cart_Item.objects.get(product=product,cart=cart) if cart_item.quantity >1: cart_item.quantity -=1 cart_item.save() else: cart_item.delete() return redirect('cart:cart_detail') def full_remove(request,product_id): cart=Cart.objects.get(cart_id=cart_id(request)) product=get_object_or_404(Product,id=product_id) cart_item=Cart_Item.objects.get(product=product,cart=cart) cart_item.delete() return redirect('cart:cart_detail')
69de6c1c8c8510d0f6fd116fd216eb399a3db19a
a3d73905af9102c6388b7501aa5067e4008d4c6a
/Programming Assignment 3/histogram.py
73be3f9db0101a93413a4962ca936d1b64d4ba93
[]
no_license
ShumbaBrown/CSCI-100
b9a5b6c4446a5fdec3044d82eca3f59e502d5372
8eec33e39b26e10ddf9b8395fafe861cf1eb53ec
refs/heads/master
2020-05-23T06:25:34.908759
2016-10-07T05:25:15
2016-10-07T05:25:15
70,217,597
0
0
null
null
null
null
UTF-8
Python
false
false
620
py
def PrintHistogram(nums): # Prints the histogram for a list of numbers # Dictionary to hold each key (number) and value (number of occurences) numbers = { } # Iterate through all the values in the list for i in nums: # Increment the number of asterics for the corresponding value in the dictionary if i not in numbers: numbers[i] = '*' else: numbers[i] = numbers[i] + '*' # Print the histogram values for i in numbers: print('%s: %s' % (str(i), numbers[i])) PrintHistogram([-2, -2, -3, -2]) PrintHistogram([1, 2.5, 3, 4, 4, 3, 6])
4670ba9b785563921ebd4e8eb26fa337062abb5b
1625edfe28b4b0979fd32b4a3c5e55249a993fd5
/baekjoon14915.py
7648498a85fccf5a369e7197408b17d1726a754d
[]
no_license
beOk91/baekjoon2
b8bf504c506c6278899d4107ecfe51974ef13f5e
39569f8effb8e32405a7d74d98bdabcab783ec56
refs/heads/master
2023-05-11T20:11:19.015113
2020-09-14T23:58:49
2020-09-14T23:58:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
198
py
m,n=map(int,input().strip().split()) def conversion(m,n): c="0123456789ABCDEF" if m<n: return str(c[m]) else: return conversion(m//n,n)+str(c[m%n]) print(conversion(m,n))
d7551e573e1989b8a7920c2d5ef568749c8cd130
642716a67e15459d713217ed02aa38d56348ff89
/SF_Movies/urls.py
2462fc91656ad0ae785117573efd3b5c33275fe6
[]
no_license
zxzhang/coding-challenge-tools
42eaa2355ad66e82abe2ac6401d702f505d3ff06
cfc8c3a446331d2f29dae4fe972cfa7f7fdcb25d
refs/heads/master
2021-01-19T07:24:06.713307
2015-05-20T01:43:52
2015-05-20T01:43:52
34,290,457
0
0
null
null
null
null
UTF-8
Python
false
false
317
py
from django.conf.urls import include, url from django.contrib import admin from django.views.generic import RedirectView RedirectView.permanent = True urlpatterns = [ url(r'^$', RedirectView.as_view(url='/movies')), url(r'^movies/', include('movies.urls')), url(r'^admin/', include(admin.site.urls)), ]
f28822e33cbfcd736db6cbcf9f5ff11dd18a9614
abcc4679e9977e8e92f029da56f80e3cad69ecbb
/app/models.py
00c875aec8e8ce243df5431ff3a634beb7b9d1a0
[]
no_license
emjrymer/MovieRating
ecf2d5d1c096d65c5861f6b6e0511e368a1d4307
3785eeab01ffb23efe402f19bdc1a26bbb6f192c
refs/heads/master
2021-06-04T16:05:58.996506
2016-03-15T20:41:59
2016-03-15T20:41:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,812
py
from django.db import models # Create your models here. class Rater(models.Model): age = models.IntegerField() gender = models.CharField(max_length=2) occupation = models.CharField(max_length=50) zip_code = models.CharField(max_length=10) class Movie(models.Model): movie_title = models.CharField(max_length=30) release_date = models.CharField(max_length=30) video_release_date = models.CharField(max_length=30, blank=True, default="") imdb = models.URLField() unknown_genre = models.BooleanField(default=0) action = models.BooleanField(default=0) adventure = models.BooleanField(default=0) animation = models.BooleanField(default=0) childrens = models.BooleanField(default=0) comedy = models.BooleanField(default=0) crime = models.BooleanField(default=0) documentary = models.BooleanField(default=0) drama = models.BooleanField(default=0) fantasy = models.BooleanField(default=0) filmnoir = models.BooleanField(default=0) horror = models.BooleanField(default=0) musical = models.BooleanField(default=0) mystery = models.BooleanField(default=0) romance = models.BooleanField(default=0) scifi = models.BooleanField(default=0) thriller = models.BooleanField(default=0) war = models.BooleanField(default=0) western = models.BooleanField(default=0) avg_rating = models.FloatField(null=True) def __str__(self): return self.movie_title class Review(models.Model): reviewer = models.ForeignKey(Rater) movie = models.ForeignKey(Movie) rating = models.IntegerField() def __str__(self): return self.movie.movie_title class Ureview(models.Model): user_review = models.TextField() user_movie = models.TextField() class Meta: ordering = ["-id"]
00c251321617e1466a341cd899b00c702a0c9568
bf5058783d658d958bf84910721e828f1316dbbe
/SisconcBNB/apps/alumnos/forms.py
3345e54865c0d2970346942ce640ffe139b4b2fa
[]
no_license
djangoadminn/jose
3acfe5a2861305c94658f3177d61ea8c557b3d01
1567894037548b7b452ac202b972cf0b1867a064
refs/heads/master
2021-01-22T08:38:31.707532
2017-05-27T22:20:12
2017-05-27T22:20:12
92,627,631
0
0
null
null
null
null
UTF-8
Python
false
false
7,729
py
#!/usr/bin/python # -*- coding: utf-8 -*- from django import forms from SisconcBNB.apps.alumnos.models import Alumno from SisconcBNB.apps.alumnos.models import Seccion from SisconcBNB.apps.alumnos.models import Inscripcion from SisconcBNB.apps.alumnos.models import Enfermedad from SisconcBNB.apps.alumnos.models import Enfermedad_alumno from SisconcBNB.apps.alumnos.models import Profesor from SisconcBNB.apps.alumnos.models import Seccion_profesor from SisconcBNB.apps.alumnos.forms_date import DateInput #formulario del alumno 1 class alumnForm(forms.ModelForm): class Meta: model = Alumno fields = [ 'codigo_hab', 'cedula_escolar', 'procedencia_alumn', 'plantel_retiro_alumn', 'lugar_habi_alumn', 'punto_referencia_alumn', 'religion', ] labels = { 'codigo_hab':'codigo_hab', 'cedula_escolar':'cedula_escolar', 'procedencia_alumn':'procedencia_alumn', 'plantel_retiro_alumn':'plantel_retiro_alumn', 'lugar_habi_alumn':'Lugar_habi_alumn', 'punto_referencia_alumn':'punto_referencia_alumn', 'religion':'religion', } widgets = { 'codigo_hab':forms.Select(attrs={'class':'material-control tooltips-general'}), 'cedula_escolar':forms.Select(attrs={'class':'material-control tooltips-general','autocomplete': 'off'}), 'procedencia_alumn':forms.TextInput(attrs={'class':'material-control tooltips-general','placeholder':'procedencia','size':'40','autocomplete': 'off'}), 'plantel_retiro_alumn':forms.TextInput(attrs={'class':'material-control tooltips-general','placeholder':'plantel','size':'40','autocomplete': 'off'}), 'lugar_habi_alumn':forms.TextInput(attrs={'class':'material-control tooltips-general','placeholder':'lugar','size':'40','autocomplete': 'off'}), 'punto_referencia_alumn':forms.TextInput(attrs={'class':'material-control tooltips-general','placeholder':'punto de referencia','size':'40','autocomplete': 'off'}), 'religion':forms.Select(attrs={'class':'material-control tooltips-general'}), } #formulario de seccion 2 class seccForm(forms.ModelForm): class Meta: model = Seccion fields = [ 'codigo_seccion', 'turno', 'seccion', 'grado', ] labels = { 'codigo_seccion':'codigo_seccion', 'turno':'turno', 'seccion':'seccion', 'grado':'grado', } widgets = { 'codigo_seccion':forms.NumberInput(attrs={'class':'material-control tooltips-general','placeholder':'codigo','size':'40','autocomplete': 'off'}), 'turno':forms.Select(attrs={'class':'material-control tooltips-general'}), 'seccion':forms.Select(attrs={'class':'material-control tooltips-general'}), 'grado':forms.Select(attrs={'class':'material-control tooltips-general'}), } #formulario de inscripcion 3 class inscripForm(forms.ModelForm): beca_estudiantil=forms.BooleanField(label='beca_estudiantil', required=True,initial=False) class Meta: model = Inscripcion fields = [ 'cod_inscri', 'cedula_escolar', 'codigo_seccion', 'talla_pantalon', 'talla_franela', 'talla_Zapato', 'beca_estudiantil', 'ano_escolar', ] labels = { 'cod_inscri':'cod_inscri', 'cedula_escolar':'cedula_escolar', 'codigo_seccion':'codigo_seccion', 'talla_pantalon':'talla_pantalon', 'talla_franela':'talla_franela', 'talla_Zapato':'talla_Zapato', 'beca_estudiantil':'beca_estudiantil', 'ano_escolar':'ano_escolar', } widgets = { 'cod_inscri':forms.NumberInput(attrs={'class':'material-control tooltips-general'}), 'cedula_escolar':forms.Select(attrs={'class':'material-control tooltips-general'}), 'codigo_seccion':forms.Select(attrs={'class':'material-control tooltips-general'}), 'talla_pantalon':forms.Select(attrs={'class':'material-control tooltips-general'}), 'talla_franela':forms.Select(attrs={'class':'material-control tooltips-general'}), 'talla_Zapato':forms.Select(attrs={'class':'material-control tooltips-general'}), 'ano_escolar':forms.Select(attrs={'class':'material-control tooltips-general'}), } #enfermedad de alumno 4 class enferForm(forms.ModelForm): class Meta: model = Enfermedad fields = [ 'codigo_enfermedad', 'nombres_enfermedad', 'descripcion_enfermedad', ] labels = { 'codigo_enfermedad':'codigo_enfermedad', 'nombres_enfermedad':'nombres_enfermedad', 'descripcion_enfermedad':'descripcion_enfermedad', } widgets = { 'codigo_enfermedad':forms.NumberInput(attrs={'class':'material-control tooltips-general','placeholder':'código','size':'40','autocomplete': 'off'}), 'nombres_enfermedad':forms.TextInput(attrs={'class':'material-control tooltips-general','placeholder':'nombre de la enfermedad','size':'40','autocomplete': 'off'}), 'descripcion_enfermedad':forms.Textarea(attrs={'class':'material-control tooltips-general','placeholder':'descripción','size':'40','autocomplete': 'off'}), } #formulario del alumnos 5 class enfermalumnForm(forms.ModelForm): #fecha_enfer=forms.DateField() class Meta: model = Enfermedad_alumno fields = [ 'cedula_escolar', 'codigo_enfermedad', 'fecha_enfer', ] labels = { 'cedula_escolar':'cedula_escolar', 'codigo_enfermedad':'codigo_enfermedad', 'fecha_enfer':'fecha_enfer', } widgets = { 'cedula_escolar':forms.Select(attrs={'class':'material-control tooltips-general'}), 'codigo_enfermedad':forms.Select(attrs={'class':'material-control tooltips-general'}), 'fecha_enfer': DateInput(format = '%Y-%m-%d'), } #formulario del pofesor 6 class profeForm(forms.ModelForm): class Meta: model = Profesor fields = [ #'codigo_prof', 'codigo_hab', 'turno', 'especialidad_prof', 'fecha_ingreso', ] labels = { #'codigo_prof':'codigo_prof', 'codigo_hab':'codigo_hab', 'turno':'turno', 'especialidad_prof':'especialidad_prof', 'fecha_ingreso':'fecha_ingreso', } widgets = { 'codigo_prof':forms.NumberInput(attrs={'class':'material-control tooltips-general','placeholder':'codigo','size':'40','autocomplete': 'off'}), 'codigo_hab':forms.Select(attrs={'class':'material-control tooltips-general'}), 'turno':forms.Select(attrs={'class':'material-control tooltips-general'}), 'especialidad_prof':forms.TextInput(attrs={'class':'material-control tooltips-general','placeholder':'especialidad','size':'40','autocomplete': 'off'}), 'fecha_ingreso':DateInput(format = '%Y-%m-%d'), } #formulario de la seccion de profesor 7 class seccproForm(forms.ModelForm): class Meta: model = Seccion_profesor fields = [ 'codigo_prof', 'codigo_seccion', ] labels = { 'codigo_prof':'codigo_prof', 'codigo_seccion':'codigo_seccion', } widgets = { 'codigo_prof':forms.Select(attrs={'class':'material-control tooltips-general','autocomplete': 'off'}), 'codigo_seccion':forms.Select(attrs={'class':'material-control tooltips-general','autocomplete': 'off'}), }
b3ffb1f7298e5fec7c80d71946a31e424ff4682d
f3a31d0692f0cc4deb5d23f9da38eb69623ca8d1
/Dynamics/Finite-sized_SIAM/fig_4.py
2ada6228f29e1b93cfd3e04bbda484ce20125030
[]
no_license
soumyodipto/SIAM
f2039d5796412db1e2204b65f1b43189227c521b
4c7a96684dff759d0da453ed437827dd1b3da0fd
refs/heads/master
2021-09-09T09:25:10.994397
2018-03-14T19:01:36
2018-03-14T19:01:36
107,188,950
0
0
null
null
null
null
UTF-8
Python
false
false
5,409
py
from os import path import h5py import numpy as np import matplotlib import matplotlib.patches as mpatches import pylab as plt from matplotlib.ticker import AutoMinorLocator from matplotlib.ticker import AutoMinorLocator from matplotlib.ticker import FormatStrFormatter majorFormatter = FormatStrFormatter('%g') plt.rc('text.latex', preamble = '\usepackage{amsmath},' '\usepackage{yfonts},' '\usepackage[T1]{fontenc},' '\usepackage[latin1]{inputenc},' '\usepackage{txfonts},' '\usepackage{times},' '\usepackage{blindtext},' '\usepackage{braket}' ) plt.rc('font',**{'family':'sans-serif','sans-serif':['Helvetica'],'size':8}) plt.rc('lines', linewidth=0.7) plt.rc('xtick', labelsize='small') plt.rc('ytick', labelsize='small') plt.rc('legend', fontsize='medium') plt.rc('text', usetex=True) nsites=8 delta=0.005 nimps=[1,2] Us = [0.0, 2.5, 5.0, 7.5] omega_grid = np.arange(-1.,1.,0.01) edy=[] emb1y=[] emb2y=[] #emb4y=[] for ind, U in enumerate(Us): eddir = './siam_ED/siam_dos_ed_U'+str(U)+'_nsites'+str(nsites)+'_delta'+str(delta)+'/siam_dos_ed_nsites'+str(nsites)+'_U'+str(U)+'_eta'+str(delta) data_ed = np.loadtxt(eddir) edy.append(data_ed[:,1]) emb1dir = './siam_emb/siam_emb_dos_nsites'+str(nsites)+'_U'+str(U/10)+'_nimp'+str(1)+'_eta'+str(delta) data_emb1 = np.loadtxt(emb1dir) emb1y.append(data_emb1[:,1]) emb2dir = './siam_emb/siam_emb_dos_nsites'+str(nsites)+'_U'+str(U/10)+'_nimp'+str(2)+'_eta'+str(delta) data_emb2 = np.loadtxt(emb2dir) emb2y.append(data_emb2[:,1]) #emb4dir = './siam_emb/siam_emb_dos_nsites'+str(nsites)+'_U'+str(U/10)+'_nimp'+str(4)+'_eta'+str(delta) #data_emb4 = np.loadtxt(emb4dir) #emb4y.append(data_emb4[:,1]) fig_size = (3.375,3.375/1.3) f1, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=fig_size, dpi=200, sharex='col', sharey='row') #dashes = [5,2,10,5] dashes=[2, 1] dashes1 = [5,2] #ax1 = plt.subplot(221) line1, = ax1.plot(omega_grid[120:190], edy[0][120:190],'k', markersize=1.5,markevery=1) line2, = ax1.plot(omega_grid[120:190], emb1y[0][120:190], 'b--') line3, = ax1.plot(omega_grid[120:190], emb2y[0][120:190], 'r--') line2.set_dashes(dashes) line3.set_dashes(dashes1) #line4, = ax1.plot(omega_grid, emb4y[0], 'r--') #ax1.legend(('ED','Emb(2)','Emb(1)'),'upper right',ncol=1,prop={'size':6}) ax1.set_ylim(0,8) #textstr = '$\eta='+str(delta)+'$' #plt.text(0.1, 0.7, textstr ,verticalalignment='top', horizontalalignment='left',transform=ax1.transAxes, color='black', fontsize=20) textstr = '$U/V=0$' plt.text(0.1, 0.9, textstr ,verticalalignment='top', horizontalalignment='left',transform=ax1.transAxes, color='black') #ax1.set_xlabel(r'$\omega$') ax1.set_ylabel(r'$A(\omega)$') ax1.yaxis.set_ticks(np.arange(0,10,2)) minorLocator = AutoMinorLocator() ax1.yaxis.set_minor_locator(minorLocator) ax1.tick_params(which='both', width=0.5) ax1.tick_params(which='major', length=4) ax1.tick_params(which='minor', length=1.5) ax1.yaxis.set_major_formatter(majorFormatter) #ax2 = plt.subplot(222, sharex=ax1, sharey=ax1) line1, = ax2.plot(omega_grid[120:190], edy[1][120:190],'k', markersize=1.5,markevery=1, label='ED') line2, = ax2.plot(omega_grid[120:190], emb1y[1][120:190], 'b--', label='Emb(1)') line3, = ax2.plot(omega_grid[120:190], emb2y[1][120:190], 'r--', label='Emb(2)') line2.set_dashes(dashes) line3.set_dashes(dashes1) ax2.legend(loc='upper right',frameon=True,ncol=1,prop={'size':6}) #line4, = ax2.plot(omega_grid, emb4y[1], 'r--') textstr = '$U/V=2.5$' plt.text(0.1, 0.9, textstr ,verticalalignment='top', horizontalalignment='left',transform=ax2.transAxes, color='black') #ax2.tick_params(axis='x',length=0, width=0) #ax3 = plt.subplot(223, sharex=ax1, sharey=ax1) line1, = ax3.plot(omega_grid[120:190], edy[2][120:190],'k', markersize=1.5,markevery=1) line2, = ax3.plot(omega_grid[120:190], emb1y[2][120:190], 'b--') line3, = ax3.plot(omega_grid[120:190], emb2y[2][120:190], 'r--') line2.set_dashes(dashes) line3.set_dashes(dashes1) #line4, = ax3.plot(omega_grid, emb4y[2], 'r--') ax3.set_xlabel(r'$\omega$') ax3.set_ylabel(r'$A(\omega)$') ax3.set_ylim(0,8) textstr = '$U/V=5.0$' plt.text(0.1, 0.9, textstr ,verticalalignment='top', horizontalalignment='left',transform=ax3.transAxes, color='black') ax3.yaxis.set_ticks(np.arange(0,10,2)) ax3.xaxis.set_ticks([0.2,0.4,0.6,0.8]) minorLocator = AutoMinorLocator() ax3.yaxis.set_minor_locator(minorLocator) ax3.tick_params(which='both', width=0.5) ax3.tick_params(which='major', length=4) ax3.tick_params(which='minor', length=1.5) ax3.xaxis.set_major_formatter(majorFormatter) ax3.yaxis.set_major_formatter(majorFormatter) #ax4 = plt.subplot(224, sharex=ax1, sharey=ax1) line1, = ax4.plot(omega_grid[120:190], edy[3][120:190],'k', markersize=1.5,markevery=1) line2, = ax4.plot(omega_grid[120:190], emb1y[3][120:190], 'b--') line3, = ax4.plot(omega_grid[120:190], emb2y[3][120:190], 'r--') line2.set_dashes(dashes) line3.set_dashes(dashes1) ax4.xaxis.set_ticks([0.2,0.4,0.6,0.8]) #line4, = ax4.plot(omega_grid, emb4y[3], 'r--') textstr = '$U/V=7.5$' plt.text(0.1, 0.9, textstr ,verticalalignment='top', horizontalalignment='left',transform=ax4.transAxes, color='black') ax4.set_xlabel(r'$\omega$') ax4.xaxis.set_major_formatter(majorFormatter) f1.subplots_adjust(hspace=0) #f.subplots_adjust(wspace=0.05) f1.tight_layout(pad=0.15) f1.subplots_adjust(wspace=0.1) f1.savefig('ref1_reply_fig2.pdf') plt.show()
983aa7b87ff0971ad8a96fbf487455eb742081e6
27cf8262cbe20597e61f89bdc2849aaa5c5ce4f4
/dao/reaction_dao.py
420b1a99c48e129bdc5294de13579a84b212162b
[]
no_license
rfgsantos/Moodler-Web-Server
dfa69efa01a7ac10a170c69b4ff969daae82114e
be6b1d414a9f5ff201ce9f01fb721102af1473e3
refs/heads/master
2022-12-10T22:00:29.131783
2018-07-16T03:31:50
2018-07-16T03:31:50
139,902,354
1
1
null
2022-12-08T02:15:15
2018-07-05T21:27:13
Python
UTF-8
Python
false
false
1,756
py
from datetime import date, datetime, timedelta from utils.python_database_connector import DatabaseConnector from dtos.reaction_dto import Reaction class ReactionDao: def __init__(self): self.db = DatabaseConnector() def __new__(cls): if not hasattr(cls, 'instance'): cls.instance = super(ReactionDao, cls).__new__(cls) return cls.instance def get_all_reaction(self): query = "SELECT * FROM reaction" self.db.executeQuery(query) return list(map(lambda reaction: self.map_reaction(reaction), self.db.getQueryResult())) def get_reaction_by_id(self,id): query = "SELECT * FROM reaction WHERE reaction.id='%s'" % id self.db.executeQuery(query) return list(map(lambda reaction: self.map_reaction(reaction), self.db.getQueryResult())) def insert_reaction(self,json_params): params = (json_params['id'],json_params['user_id'],json_params['track_id'],json_params['hrv'],json_params['evaluation'], json_params['user_evaluation']) query = "INSERT INTO reaction (id,user_id,track_id,hrv,evaluation,user_evaluation) VALUES ('%s','%s','%s','%s','%s','%s')" % params return self.db.executeQuery(query,isInsert=True) def delete_reaction(self,id): query = "DELETE FROM reaction WHERE reaction.id='%s'" % id return self.db.executeQuery(query,isInsert=True) def map_reaction(self,reaction_input): reaction = Reaction( reaction_input['id'], reaction_input['user_id'], reaction_input['track_id'], reaction_input['hrv'], reaction_input['evaluation'], reaction_input['user_evaluation'] ) return reaction.__dict__
ec232876bf6ba4dec0f2ee9821f5917b1a88791d
584aefa111a279250bde4d2d0fa3fc64fda8706b
/models/WGANGP.py
ff09e4911cd4bc750e115cbf2f42ba8bc9bbbbd4
[]
no_license
shotakikuchi/GenerativeDeepLearning
cce2b851ba722b44432566a7b5bc02d1c950c0f7
a67bc43986df63065e81a3a840160e25099653bc
refs/heads/master
2020-07-02T16:43:09.508058
2019-08-17T13:10:14
2019-08-17T13:10:14
201,592,820
0
0
null
null
null
null
UTF-8
Python
false
false
14,689
py
from keras.layers import Input, Conv2D, Flatten, Dense, Conv2DTranspose, Reshape, Lambda, Activation, \ BatchNormalization, LeakyReLU, Dropout, ZeroPadding2D, UpSampling2D from keras.layers.merge import _Merge from keras.models import Model, Sequential from keras import backend as K from keras.optimizers import Adam, RMSprop from keras.utils import plot_model from keras.initializers import RandomNormal from functools import partial import numpy as np import os import pickle import matplotlib.pyplot as plt class RandomWeightedAverage(_Merge): def __init__(self, batch_size): super().__init__() self.batch_size = batch_size """ Provides a random weighted average between real and generated image samples. """ def _merge_function(self, inputs): alpha = K.random_uniform((self.batch_size, 1, 1, 1)) return (alpha * inputs[0]) + ((1 - alpha) * inputs[1]) class WGANGP(): def __init__(self, input_dim, critic_conv_filters, critic_conv_kernel_size, critic_conv_strides, critic_batch_norm_momentum, critic_activation, critic_dropout_rate, critic_learning_rate, generator_initial_dense_layer_size, generator_upsample, generator_conv_filters, generator_conv_kernel_size, generator_conv_strides, generator_batch_norm_momentum, generator_activation, generator_dropout_rate, generator_learning_rate, optimizer, grad_weight, z_dim, batch_size ): self.name = 'gan' self.input_dim = input_dim self.critic_conv_filters = critic_conv_filters self.critic_conv_kernel_size = critic_conv_kernel_size self.critic_conv_strides = critic_conv_strides self.critic_batch_norm_momentum = critic_batch_norm_momentum self.critic_activation = critic_activation self.critic_dropout_rate = critic_dropout_rate self.critic_learning_rate = critic_learning_rate self.generator_initial_dense_layer_size = generator_initial_dense_layer_size self.generator_upsample = generator_upsample self.generator_conv_filters = generator_conv_filters self.generator_conv_kernel_size = generator_conv_kernel_size self.generator_conv_strides = generator_conv_strides self.generator_batch_norm_momentum = generator_batch_norm_momentum self.generator_activation = generator_activation self.generator_dropout_rate = generator_dropout_rate self.generator_learning_rate = generator_learning_rate self.optimiser = optimizer self.z_dim = z_dim self.n_layers_critic = len(critic_conv_filters) self.n_layers_generator = len(generator_conv_filters) # 'he normal' self.weight_init = RandomNormal(mean=0, stddev=0.02) self.grad_weight = grad_weight self.batch_size = batch_size self.d_losses = [] self.g_losses = [] self.epoch = 0 self._build_critic() self._build_generator() self._build_adversarial() def gradient_penalty_loss(self, y_true, y_pred, interpolated_samples): """Computes gradient penalty based on prediction and weighted real / fake samples. """ gradients = K.gradients(y_pred, interpolated_samples)[0] # compute the euclidean norm by squaring... gradients_sqr = K.square(gradients) # summing over the rows gradients_sqr_sum = K.sum(gradients_sqr, axis=np.arange(1, len(gradients_sqr.shape))) # and sqrt gradients_l2_norm = K.sqrt(gradients_sqr_sum) # compute lambda * (1 - ||grad||)^2 still for each single sample gradients_penalty = K.square(1 - gradients_l2_norm) # return the mean as loss over all tha batch sample return K.mean(gradients_penalty) def wasserstein(self, y_true, y_pred): return -K.mean(y_true * y_pred) def get_activation(self, activation): if activation == 'leaky_relu': layer = LeakyReLU(alpha=0.2) else: layer = Activation(activation) return layer def _build_critic(self): critic_input = Input(shape=self.input_dim, name='critic_input') x = critic_input for i in range(self.n_layers_critic): x = Conv2D( filters=self.critic_conv_filters[i] , kernel_size=self.critic_conv_kernel_size[i] , strides=self.critic_conv_strides[i] , padding='same' , name='critic_conv_' + str(i) , kernel_initializer=self.weight_init )(x) if self.critic_batch_norm_momentum and i > 0: x = BatchNormalization(momentum=self.critic_batch_norm_momentum)(x) x = self.get_activation(self.critic_activation)(x) if self.critic_dropout_rate: x = Dropout(rate=self.critic_dropout_rate)(x) x = Flatten()(x) critic_output = Dense(1, activation=None , kernel_initializer=self.weight_init )(x) self.critic = Model(critic_input, critic_output) def _build_generator(self): generator_input = Input(shape=(self.z_dim,), name='generator_input') x = generator_input x = Dense(np.prod(self.generator_initial_dense_layer_size), kernel_initializer=self.weight_init)(x) if self.generator_batch_norm_momentum: x = BatchNormalization(momentum=self.generator_batch_norm_momentum)(x) x = self.get_activation(self.generator_activation)(x) x = Reshape(self.generator_initial_dense_layer_size)(x) if self.generator_dropout_rate: x = Dropout(rate=self.generator_dropout_rate)(x) for i in range(self.n_layers_generator): if self.generator_upsample[i] == 2: x = UpSampling2D()(x) x = Conv2D( filters=self.generator_conv_filters[i] , kernel_size=self.generator_conv_kernel_size[i] , padding='same' , name='generator_conv_' + str(i) , kernel_initializer=self.weight_init )(x) else: x = Conv2DTranspose( filters=self.generator_conv_filters[i] , kernel_size=self.generator_conv_kernel_size[i] , padding='same' , strides=self.generator_conv_strides[i] , name='generator_conv_' + str(i) , kernel_initializer=self.weight_init )(x) if i < self.n_layers_generator - 1: if self.generator_batch_norm_momentum: x = BatchNormalization(momentum=self.generator_batch_norm_momentum)(x) x = self.get_activation(self.generator_activation)(x) else: x = Activation('tanh')(x) generator_output = x self.generator = Model(generator_input, generator_output) def get_opti(self, lr): if self.optimiser == 'adam': opti = Adam(lr=lr, beta_1=0.5) elif self.optimiser == 'rmsprop': opti = RMSprop(lr=lr) else: opti = Adam(lr=lr) return opti def set_trainable(self, m, val): m.trainable = val for l in m.layers: l.trainable = val def _build_adversarial(self): # For critic # Freeze generator's layers while training critic self.set_trainable(self.generator, False) # Image input (real image) real_img = Input(shape=self.input_dim) # Fake image z_disc = Input(shape=(self.z_dim,)) fake_img = self.generator(z_disc) # critic determines validity of the real and fake images fake = self.critic(fake_img) valid = self.critic(real_img) # Construct weighted average between real and fake images interpolated_img = RandomWeightedAverage(self.batch_size)([real_img, fake_img]) # Determine validity of weighted sample validity_interpolated = self.critic(interpolated_img) # Use Python partial to provide loss function with additional # 'interpolated_samples' argument partial_gp_loss = partial(self.gradient_penalty_loss, interpolated_samples=interpolated_img) partial_gp_loss.__name__ = 'gradient_penalty' # Keras requires function names self.critic_model = Model(inputs=[real_img, z_disc], outputs=[valid, fake, validity_interpolated]) self.critic_model.compile( loss=[self.wasserstein, self.wasserstein, partial_gp_loss] , optimizer=self.get_opti(self.critic_learning_rate) , loss_weights=[1, 1, self.grad_weight] ) # For generator self.set_trainable(self.critic, False) self.set_trainable(self.generator, True) # Sampled noise for input to generator model_input = Input(shape=(self.z_dim,)) # Generate images besed of noise img = self.generator(model_input) # Discriminator determines validity model_output = self.critic(img) # Defines generator model self.model = Model(model_input, model_output) self.model.compile(optimizer=self.get_opti(self.generator_learning_rate) , loss=self.wasserstein ) self.set_trainable(self.critic, True) def train_critic(self, x_train, batch_size, using_generator): valid = np.ones((batch_size, 1), dtype=np.float32) fake = -np.ones((batch_size, 1), dtype=np.float32) dummy = np.zeros((batch_size, 1), dtype=np.float32) # Dummy gt for gradient penalty if using_generator: true_imgs = next(x_train)[0] if true_imgs.shape[0] != batch_size: true_imgs = next(x_train)[0] else: idx = np.random.randint(0, x_train.shape[0], batch_size) true_imgs = x_train[idx] noise = np.random.normal(0, 1, (batch_size, self.z_dim)) d_loss = self.critic_model.train_on_batch([true_imgs, noise], [valid, fake, dummy]) return d_loss def train_generator(self, batch_size): noise = np.random.normal(0, 1, (batch_size, self.z_dim)) valid = np.ones((batch_size, 1), dtype=np.float32) return self.model.train_on_batch(noise, valid) def train(self, x_train, batch_size, epochs, run_folder, print_every_n_batches=10, n_critic=5, using_generator=False): for epoch in range(self.epoch, epochs + epochs): if epoch % 100 == 0: critic_loops = 5 else: critic_loops = n_critic for _ in range(critic_loops): d_loss = self.train_critic(x_train, batch_size, using_generator) g_loss = self.train_generator(batch_size) print("%d (%d, %d) [D loss: (%.1f)(R %.1f, F %.1f, G %.1f)] [G loss: %.1f]" % ( epoch, critic_loops, 1, d_loss[0], d_loss[1], d_loss[2], d_loss[3], g_loss)) self.d_losses.append(d_loss) self.g_losses.append(g_loss) # If at save interval => save generated image samples if epoch % print_every_n_batches == 0: self.sample_images(run_folder) self.model.save_weights(os.path.join(run_folder, 'weights/weights-%d.h5' % (epoch))) self.model.save_weights(os.path.join(run_folder, 'weights/weights.h5')) self.save_model(run_folder) self.epoch += 1 def sample_images(self, run_folder): r, c = 5, 5 noise = np.random.normal(0, 1, (r * c, self.z_dim)) gen_imgs = self.generator.predict(noise) # Rescale images 0 - 1 gen_imgs = 0.5 * (gen_imgs + 1) gen_imgs = np.clip(gen_imgs, 0, 1) fig, axs = plt.subplots(r, c, figsize=(15, 15)) cnt = 0 for i in range(r): for j in range(c): axs[i, j].imshow(np.squeeze(gen_imgs[cnt, :, :, :]), cmap='gray_r') axs[i, j].axis('off') cnt += 1 fig.savefig(os.path.join(run_folder, "images/sample_%d.png" % self.epoch)) plt.close() def plot_model(self, run_folder): plot_model(self.model, to_file=os.path.join(run_folder, 'viz/model.png'), show_shapes=True, show_layer_names=True) plot_model(self.critic, to_file=os.path.join(run_folder, 'viz/critic.png'), show_shapes=True, show_layer_names=True) plot_model(self.generator, to_file=os.path.join(run_folder, 'viz/generator.png'), show_shapes=True, show_layer_names=True) def save(self, folder): with open(os.path.join(folder, 'params.pkl'), 'wb') as f: pickle.dump([ self.input_dim , self.critic_conv_filters , self.critic_conv_kernel_size , self.critic_conv_strides , self.critic_batch_norm_momentum , self.critic_activation , self.critic_dropout_rate , self.critic_learning_rate , self.generator_initial_dense_layer_size , self.generator_upsample , self.generator_conv_filters , self.generator_conv_kernel_size , self.generator_conv_strides , self.generator_batch_norm_momentum , self.generator_activation , self.generator_dropout_rate , self.generator_learning_rate , self.optimiser , self.grad_weight , self.z_dim , self.batch_size ], f) self.plot_model(folder) def save_model(self, run_folder): self.model.save(os.path.join(run_folder, 'model.h5')) self.critic.save(os.path.join(run_folder, 'critic.h5')) self.generator.save(os.path.join(run_folder, 'generator.h5')) pickle.dump(self, open(os.path.join(run_folder, "obj.pkl"), "wb")) def load_weights(self, filepath): self.model.load_weights(filepath)
fc87922135a12612cfa4e49ab3c08ee5f38e1ebe
af69497f9f5fb62ee894646a1804494f167f25a7
/genbci/run_wgan_SSVEP.py
b6cead987f96a4be0902f71c396b33af585bd50e
[]
no_license
dpstart/genbci
afa1cacff63080d12337b98e066e5ebb2c733c03
aeccce878a5d6ba668f65d4d181874059fe1b8f9
refs/heads/master
2022-12-28T02:00:23.647306
2020-10-09T13:32:27
2020-10-09T13:32:27
260,474,268
1
1
null
null
null
null
UTF-8
Python
false
false
7,280
py
import argparse import numpy as np import random import os import matplotlib.pyplot as plt import torch.nn as nn import torch.nn.functional as F import torch.autograd as autograd import torch from genbci.generate.model import ( SSVEP_Discriminator as Discriminator, SSVEP_Generator as Generator, ) # from genbci.scripts import ssvep_sample from genbci.util import init_torch_and_get_device, weights_init, get_exo_data torch.set_num_threads(8) parser = argparse.ArgumentParser() parser.add_argument( "--modelpath", type=str, default="models/", help="Path to dave model" ) parser.add_argument( "--n_epochs", type=int, default=5000, help="number of epochs of training" ) parser.add_argument("--lr", type=float, default=0.0001, help="adam: learning rate") parser.add_argument( "--b1", type=float, default=0.1, help="adam: decay of first order momentum of gradient", ) parser.add_argument( "--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient", ) parser.add_argument( "--n_cpu", type=int, default=4, help="number of cpu threads to use during batch generation", ) parser.add_argument( "--latent_dim", type=int, default=32, help="dimensionality of the latent space" ) parser.add_argument( "--img_size", type=int, default=28, help="size of each image dimension" ) parser.add_argument("--channels", type=int, default=1, help="number of image channels") parser.add_argument( "--n_critic", type=int, default=5, help="number of training steps for discriminator per iter", ) parser.add_argument( "--clip_value", type=float, default=0.01, help="lower and upper clip value for disc. weights", ) parser.add_argument( "--sample_interval", type=int, default=200, help="interval between image samples" ) parser.add_argument( "--nz", type=int, default=64, help="size of the latent z vector used as the generator input.", ) opt = parser.parse_args() opt.device = init_torch_and_get_device() ### Setting some defaults opt.batch_size = 16 opt.dropout_level = 0.05 # opt.img_shape = (9, 1500) opt.plot_steps = 250 opt.jobid = 2 opt.modelname = "ssvep_wgan%s" if not os.path.exists(opt.modelpath): os.makedirs(opt.modelpath) # dataloader = torch.utils.data.DataLoader( # dataset=ssvep_sample.dataset, batch_size=opt.batch_size, shuffle=True # ) epochs_exo = get_exo_data( "/Users/daniele/Desktop/thesis/library/genbci/ssvep/data/dataset-ssvep-exoskeleton", plot=False, ) data = epochs_exo.get_data() labels = epochs_exo.events[:, 2] - 1 data = data[labels == 1, :, :] labels = labels[labels == 1] # Electrodes 2 and 3 should be O1 and O2 thus occipital datatrain = torch.from_numpy(data[:, 1:3, :728]).float() labels = torch.from_numpy(labels) dataset = torch.utils.data.TensorDataset(datatrain, labels) dataloader = torch.utils.data.DataLoader( dataset=dataset, batch_size=opt.batch_size, shuffle=True ) def train_fn(dataloader, generator, discriminator, opt): losses_d, losses_g = [], [] for epoch in range(opt.n_epochs): for i, (real_imgs, _) in enumerate(dataloader): generator.train() discriminator.train() real_imgs = real_imgs.to(opt.device) # --------------------- # Train Discriminator # --------------------- # Sample noise for generator input z = torch.randn(opt.batch_size, opt.nz).to(opt.device) # Generate a batch of fake images fake_imgs = generator(z) # Let the discriminator judge and learn loss_real_d, loss_fake_d = discriminator.train_batch(real_imgs, fake_imgs) loss_d = loss_real_d + loss_fake_d losses_d.append(loss_d) # Train the generator every n_critic steps if i % opt.n_critic == 0: z = torch.randn(opt.batch_size, opt.nz).to(opt.device) loss_g = generator.train_batch(z, discriminator) losses_g.append(loss_g) print( "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, opt.n_epochs, i, len(dataloader), loss_d, loss_g) ) eval_fn( dataloader, generator, discriminator, epoch, opt, losses_d, losses_g ) def eval_fn(dataloader, generator, discriminator, epoch, opt, losses_d, losses_g): generator.eval() discriminator.eval() if epoch % opt.plot_steps == 0: freqs_tmp = np.fft.rfftfreq(dataset.tensors[0].shape[2], d=1 / 250.0) # Compute FFT frequencies train_fft = np.fft.rfft(dataset.tensors[0], axis=2) # Compute FFT on training data train_amps = np.abs(train_fft).mean(axis=1).mean(axis=0) # Noise for generator z = torch.rand(opt.batch_size, opt.nz).to(opt.device) # Get a batch of fake data and compute FFT batch_fake = generator(z) fake_fft = np.fft.rfft(batch_fake.data.cpu().numpy(), axis=2) fake_amps = np.abs(fake_fft).mean(axis=1).mean(axis=0) plt.figure() plt.plot(freqs_tmp, np.log(fake_amps), label="Fake") plt.plot(freqs_tmp, np.log(train_amps), label="Real") plt.title("Frequency Spectrum") plt.xlabel("Hz") plt.legend() plt.savefig( os.path.join( opt.modelpath, opt.modelname % opt.jobid + "_fft_%d.png" % epoch ) ) plt.close() batch_fake = batch_fake.data.cpu().numpy() plt.figure(figsize=(10, 10)) for i in range(10): plt.subplot(10, 1, i + 1) # Working with 2 channels, plot only first one. A bit ugly. plt.plot(batch_fake[i, 0, ...].squeeze()) plt.xticks((), ()) plt.yticks((), ()) plt.subplots_adjust(hspace=0) plt.savefig( os.path.join( opt.modelpath, opt.modelname % opt.jobid + "_fakes_%d.png" % epoch ) ) plt.close() plt.figure(figsize=(10, 15)) plt.plot(np.asarray(losses_d)) plt.title("Loss Discriminator") plt.savefig( os.path.join( opt.modelpath, opt.modelname % opt.jobid + "loss_disc_%d.png" % epoch ) ) plt.close() plt.figure(figsize=(10, 15)) plt.plot(np.asarray(losses_g)) plt.title("Loss generator") plt.savefig( os.path.join( opt.modelpath, opt.modelname % opt.jobid + "loss_gen_%d.png" % epoch ) ) plt.close() discriminator.save_model( os.path.join(opt.modelpath, opt.modelname % opt.jobid + ".disc") ) generator.save_model( os.path.join(opt.modelpath, opt.modelname % opt.jobid + ".gen") ) # Initialize generator and discriminator discriminator = Discriminator() discriminator.apply(weights_init) discriminator.train_init() discriminator.to(opt.device) generator = Generator(opt.nz) generator.apply(weights_init) generator.train_init() generator.to(opt.device) train_fn(dataloader, generator, discriminator, opt)
1c848701cc7ee159f0646499637a78c5cdd12204
8337a3098a922b37185ab8bf3e1abe52d527c25e
/my_app/migrations/0002_auto_20151104_1503.py
f9d9637d9b77d8e1c662664586618f5272e3a86a
[]
no_license
dimejy2/StatsFootball
f1e72cf29a658985725774e6145802e2f2c1d713
dce84f9a5c217243dba9e1f49efe959e5c90c695
refs/heads/master
2021-01-10T21:59:25.003768
2015-12-01T17:21:13
2015-12-01T17:21:13
47,205,570
0
0
null
null
null
null
UTF-8
Python
false
false
1,222
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('my_app', '0001_initial'), ] operations = [ migrations.CreateModel( name='Balances', fields=[ ('id', models.AutoField(serialize=False, verbose_name='ID', auto_created=True, primary_key=True)), ('currency_id', models.CharField(max_length=3)), ('value', models.FloatField(default=0.0)), ], ), migrations.CreateModel( name='Investor', fields=[ ('id', models.AutoField(serialize=False, verbose_name='ID', auto_created=True, primary_key=True)), ('account_number', models.CharField(max_length=10)), ('user', models.OneToOneField(to=settings.AUTH_USER_MODEL)), ], ), migrations.AddField( model_name='balances', name='account_holder', field=models.ForeignKey(to='my_app.Investor'), ), ]
601e04d3f95736775c8e3eee23c2ea0fc2a6192b
216ddf61c5be758efde2b50fa476ada5354aced5
/galaxy/gen_test.py
dddbbbb2c8f96cf24df4b8d0981a9c43604dbf60
[]
no_license
cameronfabbri/ICGANs
4600020238d6884b710ea0b035b84e86c73705f1
d6be1a3e752959754be1dbf8af2ead8f75048b37
refs/heads/master
2021-01-16T18:11:38.596295
2017-11-26T22:35:16
2017-11-26T22:35:16
100,050,914
5
1
null
null
null
null
UTF-8
Python
false
false
2,823
py
''' Generates a dataset of encodings from real images using the trained encoder. ''' import matplotlib.pyplot as plt from tqdm import tqdm from matplotlib.pyplot import cm import scipy.misc as misc import tensorflow as tf import tensorflow.contrib.layers as tcl import cPickle as pickle import numpy as np import argparse import random import ntpath import glob import time import sys import cv2 import os sys.path.insert(0, '../ops/') from tf_ops import * import data_ops from nets import * if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--CHECKPOINT_DIR', required=True,help='checkpoint directory',type=str) parser.add_argument('--DATASET', required=False,help='The DATASET to use', type=str,default='celeba') parser.add_argument('--DATA_DIR', required=False,help='Directory where data is', type=str,default='./') parser.add_argument('--OUTPUT_DIR', required=False,help='Directory to save data', type=str,default='./') parser.add_argument('--ACTIVATION', required=False,help='Activation function', type=str,default='lrelu') a = parser.parse_args() CHECKPOINT_DIR = a.CHECKPOINT_DIR DATASET = a.DATASET DATA_DIR = a.DATA_DIR OUTPUT_DIR = a.OUTPUT_DIR ACTIVATION = a.ACTIVATION try: os.makedirs(OUTPUT_DIR) except: pass # placeholders for data going into the network global_step = tf.Variable(0, name='global_step', trainable=False) images = tf.placeholder(tf.float32, shape=(1, 64, 64, 3), name='images') encoded = encZ(images, ACTIVATION) saver = tf.train.Saver(max_to_keep=1) init = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) sess = tf.Session() sess.run(init) # restore previous model if there is one ckpt = tf.train.get_checkpoint_state(CHECKPOINT_DIR) if ckpt and ckpt.model_checkpoint_path: print "Restoring previous model..." try: saver.restore(sess, ckpt.model_checkpoint_path) print "Model restored" except: print "Could not restore model" pass print 'Loading data...' # images and annots: _, __ train_images, train_annots, test_images, test_annots, paths = data_ops.load_galaxy(DATA_DIR) test_len = len(test_annots) print 'test num:',test_len info = {} # want to write out a file with the image path and z vector for p,img,label in tqdm(zip(paths, test_images, test_annots)): img = data_ops.normalize(img) batch_images = np.expand_dims(img, 0) encoding = sess.run([encoded], feed_dict={images:batch_images})[0][0] info[p] = [encoding, label] # write out dictionary to pickle file p = open(OUTPUT_DIR+'data.pkl', 'wb') data = pickle.dumps(info) p.write(data) p.close()
c8ae13ad78da181556b71e88b5de8e8f6e4b91ab
38e622a5daafbf115c88e7a1def650e14eedc455
/apps/users/adminx.py
15a5d9dfdfcc6058c2809c0e8ee1c43dee8e9da1
[]
no_license
sunysir/Django-1.10-xadmin-mooc
aa66ae39c4204d24cb472a706382b606b48f9b19
4188590daedff52d34e2155c78e68735f5cdf690
refs/heads/master
2020-03-21T15:57:25.423422
2018-07-29T14:28:36
2018-07-29T14:28:36
138,742,365
0
0
null
null
null
null
UTF-8
Python
false
false
1,046
py
# _*_ encoding: utf-8 _*_ import xadmin from users.models import Banner, EmailVerifyRecord from xadmin import views __author__ = 'suny' __date__ = '2018/7/20 16:27' class BaseSetting(object): enable_themes = True use_bootswatch = True class GlobalSetting(object): site_title = '慕学在线后台管理系统' site_footer = '慕学在线网' menu_style = 'accordion' class EmailVerifyRecordAdmin(object): list_display = ['code', 'email', 'send_type', 'send_time'] list_filter = ['code', 'email', 'send_type', 'send_time'] search_fields = ['code', 'email', 'send_type'] class BannerAdmin(object): list_display = ['titile', 'image', 'url', 'index', 'add_time'] list_filter = ['titile', 'image', 'url', 'index', 'add_time'] search_fields = ['titile', 'image', 'url', 'index'] xadmin.site.register(EmailVerifyRecord, EmailVerifyRecordAdmin) xadmin.site.register(Banner, BannerAdmin) xadmin.site.register(views.BaseAdminView, BaseSetting) xadmin.site.register(views.CommAdminView, GlobalSetting)
8426e077cebea70246a5e452b3422803b8c9272e
4b2b6a8c2caf0f06e0ce47bbb9174ec4db07adaf
/code/stg_node.py
bcbc4a9401548f48edd347e32cd99be7b3057024
[ "MIT" ]
permissive
StanfordASL/NHumanModeling
052e89e8950b54a63a40655527ab29aeed5a48d9
0ae2297f563599601b1777a3fc825c43f1a461cd
refs/heads/master
2021-03-27T20:53:13.930366
2019-02-10T01:11:42
2019-02-10T01:11:42
123,646,313
15
11
null
null
null
null
UTF-8
Python
false
false
731
py
class STGNode(object): def __init__(self, node_name, node_type): self.name = node_name self.type = node_type def __eq__(self, other): return (isinstance(other, self.__class__) and self.name == other.name and self.type == other.type) def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash((self.name, self.type)) def __repr__(self): type_str = self.type.replace(' ', '') name_str = self.name.replace(' ', '').replace("'", "") return type_str + "/" + name_str def convert_to_label_node(node): return STGNode(node.name + '_label', node.type)
52a6526d5fb09f675ab48c251acde7cab3c2e1fc
3329be589ec0376495948d52c234a31f8ed07cf8
/utils/ckpt_utils.py
0ba977f956bdac4fa96f168c7e709765e5746e2b
[]
no_license
arthurtibame/tensorflow_api_utils
908a68a9c7524b91a340c6a7a02d8d12b8a69ae4
d6b5fd42dd3445989b9db15431bda0f2e8358c02
refs/heads/main
2023-01-18T21:46:20.804311
2020-11-26T08:21:48
2020-11-26T08:21:48
316,155,729
0
0
null
null
null
null
UTF-8
Python
false
false
6,365
py
import json import os def chk_model(model_name): return os.path.isdir(model_name) def download_ckpt(model_name): r""" if model folder not exists then download the check point from tensorflow model zoo model names are as following url: https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md Model name Speed (ms) COCO mAP Outputs CenterNet HourGlass104 512x512 70 41.9 Boxes CenterNet HourGlass104 Keypoints 512x512 76 40.0/61.4 Boxes/Keypoints CenterNet HourGlass104 1024x1024 197 44.5 Boxes CenterNet HourGlass104 Keypoints 1024x1024 211 42.8/64.5 Boxes/Keypoints CenterNet Resnet50 V1 FPN 512x512 27 31.2 Boxes CenterNet Resnet50 V1 FPN Keypoints 512x512 30 29.3/50.7 Boxes/Keypoints CenterNet Resnet101 V1 FPN 512x512 34 34.2 Boxes CenterNet Resnet50 V2 512x512 27 29.5 Boxes CenterNet Resnet50 V2 Keypoints 512x512 30 27.6/48.2 Boxes/Keypoints EfficientDet D0 512x512 39 33.6 Boxes EfficientDet D1 640x640 54 38.4 Boxes EfficientDet D2 768x768 67 41.8 Boxes EfficientDet D3 896x896 95 45.4 Boxes EfficientDet D4 1024x1024 133 48.5 Boxes EfficientDet D5 1280x1280 222 49.7 Boxes EfficientDet D6 1280x1280 268 50.5 Boxes EfficientDet D7 1536x1536 325 51.2 Boxes SSD MobileNet v2 320x320 19 20.2 Boxes SSD MobileNet V1 FPN 640x640 48 29.1 Boxes SSD MobileNet V2 FPNLite 320x320 22 22.2 Boxes SSD MobileNet V2 FPNLite 640x640 39 28.2 Boxes SSD ResNet50 V1 FPN 640x640 (RetinaNet50) 46 34.3 Boxes SSD ResNet50 V1 FPN 1024x1024 (RetinaNet50) 87 38.3 Boxes SSD ResNet101 V1 FPN 640x640 (RetinaNet101) 57 35.6 Boxes SSD ResNet101 V1 FPN 1024x1024 (RetinaNet101) 104 39.5 Boxes SSD ResNet152 V1 FPN 640x640 (RetinaNet152) 80 35.4 Boxes SSD ResNet152 V1 FPN 1024x1024 (RetinaNet152) 111 39.6 Boxes Faster R-CNN ResNet50 V1 640x640 53 29.3 Boxes Faster R-CNN ResNet50 V1 1024x1024 65 31.0 Boxes Faster R-CNN ResNet50 V1 800x1333 65 31.6 Boxes Faster R-CNN ResNet101 V1 640x640 55 31.8 Boxes Faster R-CNN ResNet101 V1 1024x1024 72 37.1 Boxes Faster R-CNN ResNet101 V1 800x1333 77 36.6 Boxes Faster R-CNN ResNet152 V1 640x640 64 32.4 Boxes Faster R-CNN ResNet152 V1 1024x1024 85 37.6 Boxes Faster R-CNN ResNet152 V1 800x1333 101 37.4 Boxes Faster R-CNN Inception ResNet V2 640x640 206 37.7 Boxes Faster R-CNN Inception ResNet V2 1024x1024 236 38.7 Boxes Mask R-CNN Inception ResNet V2 1024x1024 301 39.0/34.6 Boxes/Masks """ with open ("./utils/models.json", "r") as f: url = json.loads(f.read())[model_name] model_name_tar = url.split("/")[-1] model_name_dir = url.split("/")[-1].split(".")[0] if not chk_model(model_name_dir): try: print('Downloading %s to %s...' % (url, model_name_tar)) os.system("wget {}".format(str(url))) os.system("tar xvf {}".format(str(model_name_tar))) os.remove(model_name_tar) # assert os.path.exists()# check return model_name_dir except Exception as e: print(e) return model_name_dir def customized_ckpt_cofig( pipeline_config_path, fine_tune_checkpoint, train_record_fname, test_record_fname, label_map_pbtxt_fname, batch_size, num_steps, num_classes ): import re print('writing custom configuration file') with open(pipeline_config_path) as f: s = f.read() with open(pipeline_config_path, 'w') as f: # fine_tune_checkpoint s = re.sub('fine_tune_checkpoint: ".*?"', 'fine_tune_checkpoint: "{}"'.format(fine_tune_checkpoint), s) # tfrecord files train and test. s = re.sub( '(input_path: ".*?)(PATH_TO_BE_CONFIGURED)(.*?")', 'input_path: "{}"'.format(train_record_fname), s, count=1) s = re.sub( '(input_path: ".*?)(PATH_TO_BE_CONFIGURED)(.*?")', 'input_path: "{}"'.format(test_record_fname), s, count=1) # label_map_path s = re.sub( 'label_map_path: ".*?"', 'label_map_path: "{}"'.format(label_map_pbtxt_fname), s) # Set training batch_size. s = re.sub('batch_size: [0-9]+', 'batch_size: {}'.format(batch_size), s) # Set training steps, num_steps s = re.sub('num_steps: [0-9]+', 'num_steps: {}'.format(num_steps), s) s = re.sub('total_steps: [0-9]+', 'total_steps: {}'.format(num_steps), s) # Set number of classes num_classes. s = re.sub('num_classes: [0-9]+', 'num_classes: {}'.format(num_classes), s) #fine-tune checkpoint type s = re.sub( 'fine_tune_checkpoint_type: "classification"', 'fine_tune_checkpoint_type: "{}"'.format('detection'), s) f.write(s)
4fed9fbfe9b53e716ee5f6989ea66c9f22c91f8b
2c311a5ce7dd08fd56de05dfcbcf2717406e12a3
/examples/bootswatch_example/bootswatch_example/urls.py
21479c51d35af7cf6f0a144ed704deb4bde8fc7a
[ "BSD-2-Clause" ]
permissive
nschlemm/django-themeswitch
b2e40c067fa008cb32f02a6114b2c374e644a1cc
371495b05abe14fddc2cabc9468f4fb2aedf77f7
refs/heads/master
2021-01-22T10:19:36.535062
2014-04-08T15:19:48
2014-04-08T15:19:48
17,511,440
11
1
null
2014-03-07T16:19:16
2014-03-07T11:00:24
Python
UTF-8
Python
false
false
192
py
from django.conf.urls import patterns, include, url urlpatterns = patterns( '', url(r'', include('themeswitch.urls')), url(r'^$', 'bootswatch_example.views.home', name='home'), )
abe1005bd1d0c5882d3e588d9d3a1e4a7486c579
44197b58b52349b0557f4d2327be292d1c01ea50
/test/test_data_62.py
2dd9de7ce8a273d4da81d28b4534861d76aaff37
[]
no_license
jonpurdy/netbox-swagger-python-client
58b2b7984ea24a690d8910f6a6a496b99e5098f9
6bfe8cf3bb753c4d293dd56a541fac026642207f
refs/heads/master
2021-06-28T03:16:09.670793
2017-09-17T18:15:54
2017-09-17T18:15:54
103,851,068
0
0
null
null
null
null
UTF-8
Python
false
false
861
py
# coding: utf-8 """ NetBox API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import os import sys import unittest import swagger_client from swagger_client.rest import ApiException from swagger_client.models.data_62 import Data62 class TestData62(unittest.TestCase): """ Data62 unit test stubs """ def setUp(self): pass def tearDown(self): pass def testData62(self): """ Test Data62 """ # FIXME: construct object with mandatory attributes with example values #model = swagger_client.models.data_62.Data62() pass if __name__ == '__main__': unittest.main()
6d11a2a08e99746fcf09d5f7a1e8b2a1c35a11e3
9716316eb0c5b5a1487866d37b58efc116511d22
/charmdet/runReconstruction.py
7e60609548ccbac61bb0a6d7f587dec8d911689f
[]
no_license
klleung/FairShip
68245fcd042f47a5ed2feeaad1c2e84e5aa21241
a7e67ac58387f651722068e8325513b5e0d6832a
refs/heads/master
2020-06-06T23:02:00.991756
2019-07-19T12:23:35
2019-07-19T12:23:35
192,870,986
2
0
null
2019-06-20T07:26:44
2019-06-20T07:26:44
null
UTF-8
Python
false
false
15,856
py
import os,subprocess,ROOT,time,multiprocessing from rootpyPickler import Unpickler from rootpyPickler import Pickler import pwd ncpus = int(multiprocessing.cpu_count()*3./4.) pathToMacro = '$FAIRSHIP/charmdet/' def count_python_processes(macroName): username = pwd.getpwuid(os.getuid()).pw_name callstring = "ps -f -u " + username # only works if screen is wide enough to print full name! status = subprocess.check_output(callstring,shell=True) n=0 for x in status.split('\n'): if not x.find(macroName)<0 and not x.find('python') <0: n+=1 return n fileList = {} badFiles = [] run = "RUN_8000_2395" # "RUN_8000_2396" eospath='/eos/experiment/ship/data/muflux/DATA_Rebuild_8000/rootdata/'+run def getFilesFromEOS(): # list of files temp = subprocess.check_output("xrdfs "+os.environ['EOSSHIP']+" ls -l "+eospath,shell=True) for x in temp.split('\n'): if x.find('.root')<0: continue if not x.find('START')<0: continue fname = x[x.find('/eos'):] nentries = 0 try: f=ROOT.TFile.Open(os.environ['EOSSHIP']+fname) nentries=f.cbmsim.GetEntries() fileList[fname]=nentries except: print "problem accessing file",fname badFiles.append(fname) Nfiles = len(fileList) tmp = {} for fname in fileList: newName = fname[fname.rfind('/')+1:] rc = os.system("xrdcp -f $EOSSHIP"+fname+" "+newName) tmp[newName]=fileList[fname] fnames = tmp.keys() fnames.sort() return tmp,fnames def getFilesLocal(): # list of files for fname in os.listdir('.'): if fname.find('.root')<0: continue if not fname.find('_RT')<0: continue test = fname.replace('.root','_RT.root') if os.path.isfile(test): continue nentries = 0 try: f=ROOT.TFile.Open(fname) nentries=f.cbmsim.GetEntries() fileList[fname]=nentries except: print "problem accessing file",fname badFiles.append(fname) Nfiles = len(fileList) fnames = fileList.keys() fnames.sort() return fileList,fnames def recoStep0(local=False): if local: tmp,fnames = getFilesLocal() else: tmp,fnames = getFilesFromEOS() Nfiles = len(fnames) print "fileList established ",Nfiles Ndone = 0 while Ndone < Nfiles: cmd = "python "+pathToMacro+"drifttubeMonitoring.py -c recoStep0 -f " # group files to get better stats Ntot = 0 sample = [] i = 0 for k in range(Ndone,Nfiles): Ntot += tmp[fnames[k]] sample.append(fnames[k]) i+=1 if Ntot>350000: break Ndone += i # check that enough files remain Nextsample = [] Ntot = 0 for k in range(Ndone,Nfiles): Ntot += tmp[fnames[k]] Nextsample.append(fnames[k]) if Ntot>350000: break if Ntot < 350000: for s in Nextsample: sample.append(s) Ndone += len(Nextsample) if len(sample)==0: break for s in sample: cmd+=s+',' print 'step 0:',cmd[:cmd.rfind(',')],Ndone,Nfiles os.system(cmd[:cmd.rfind(',')]+" &") while 1>0: if count_python_processes('drifttubeMonitoring')<ncpus: break time.sleep(200) if Ndone%100==0: cleanUp() while count_python_processes('drifttubeMonitoring')>0: time.sleep(200) print "files created with RT relations " cleanUp() def checkFilesWithRT(): fok = [] fNotok = [] fRaw = [] for fname in os.listdir('.'): if not fname.find('histo')<0: continue if not fname.find('_RT')<0: f=ROOT.TFile(fname) RT = f.Get('tMinAndTmax') if RT: fok.append(fname) else: fNotok.append(fname) elif fname.find('root')>0 and not fname.find('SPILL')<0: fRaw.append(fname) print len(fok),len(fNotok),len(fRaw) return fok,fNotok,fRaw def checkMinusTwo(): fok,fNotok,fRaw = checkFilesWithRT() for fname in fRaw: if fname in fok: continue N=0 f=ROOT.TFile(fname) sTree = f.cbmsim for n in range(sTree.GetEntries()): rc = sTree.GetEvent(n) for m in sTree.Digi_MufluxSpectrometerHits: if m.GetDetectorID()<0: N+=1 print sTree.GetCurrentFile(),N def recoStep1(): fileList=[] # all RT files for x in os.listdir('.'): if x.find('_RT')>0 and x.find('histos')<0: test = ROOT.TFile(x) if test.cbmsim.GetBranch("FitTracks"): continue fileList.append(x) fileList.sort() for fname in fileList: cmd = "python "+pathToMacro+"drifttubeMonitoring.py -c recoStep1 -u 1 -f "+fname+' &' print 'step 1:', cmd os.system(cmd) time.sleep(100) while 1>0: if count_python_processes('drifttubeMonitoring')<ncpus: break time.sleep(100) print "finished all the tasks." def checkAlignment(fileList=[]): # all RT files if len(fileList)==0: for x in os.listdir('.'): if x.find('_RT')>0 and x.find('histos-residuals')<0: fileList.append(x) fileList.sort() for fname in fileList: cmd = "python "+pathToMacro+"drifttubeMonitoring.py -c alignment -f "+fname+' &' print 'make residual plots:', cmd os.system(cmd) time.sleep(10) while 1>0: if count_python_processes('drifttubeMonitoring')<ncpus: break time.sleep(100) print "finished all the tasks." def runMC(): # fast MC inputFile = "/eos/experiment/ship/data/Mbias/background-prod-2018/pythia8_Geant4_10.0_withCharmandBeauty0_mu.root" # entries 13450391L os.system("python $FAIRSHIP/macro/run_simScript.py -n 100000 --MuonBack --charm=1 --CharmdetSetup=0 -f "+inputFile) # full simulation os.system("python $SHIPBUILD/FairShip/macro/run_simScript.py --Muflux -n 1000 --charm=1 --CharmdetSetup=0 --charm=1 --CharmdetSetup=0") def checkFilesWithTracks(D='.'): fileList=[] rest=[] zombie=[] # all RT files if D.find('eos')<0: for x in os.listdir(D): if x.find('_RT')>0 and x.find('histos')<0: test = ROOT.TFile(D+'/'+x) if not test.GetKey('cbmsim'): zombie.append(x) elif test.cbmsim.GetBranch("FitTracks"): fileList.append(x) else: rest.append(x) else: temp = subprocess.check_output("xrdfs "+os.environ['EOSSHIP']+" ls -l "+D,shell=True) for x in temp.split('\n'): if x.find('.root')<0: continue fname = x[x.find('/eos'):] try: test=ROOT.TFile.Open(os.environ['EOSSHIP']+fname) if not test.GetKey('cbmsim'): zombie.append(fname) elif test.cbmsim.GetBranch("FitTracks"): fileList.append(fname) else: rest.append(fname) except:zombie.append(fname) fileList.sort() print "n with tracks",len(fileList),' rest:',len(rest),' zombies:',zombie return fileList def checkFilesWithTracks2(D='.'): badFile=[] # all RT files for x in os.listdir(D): if x.find('_RT')>0 and x.find('histos')<0: test = ROOT.TFile(D+'/'+x) sTree = test.cbmsim if not sTree: badFile.append(x+"?") elif sTree.GetBranch("FitTracks"): prev = 0 for n in range(min(20000,sTree.GetEntries())): rc = sTree.GetEvent(n) if sTree.FitTracks.GetEntries()>0: st = sTree.FitTracks[0].getFitStatus() if not st.isFitConverged(): continue if prev==st.getChi2(): badFile.append(x) break else: prev=st.getChi2() return badFile def checkFilesWithTracks3(D='.'): badFile={} # all RT files for x in os.listdir(D): if x.find('_RT')>0 and x.find('histos')<0: test = ROOT.TFile(D+'/'+x) sTree = test.cbmsim if not sTree: badFile.append(x+"?") continue b = sTree.GetBranch("FitTracks") if b: if b.GetZipBytes()/1.E6 < 1.: badFile[x]= b.GetZipBytes()/1.E6 return badFile # for f in bf: os.system('cp ../../ship-ubuntu-1710-64/RUN_8000_2395/'+f+' .') def cleanUp(D='.'): # remove raw data files for files with RT relations fok,fNotok,fRaw = checkFilesWithRT() for x in fok: r = x.replace('_RT','') cmd = 'rm '+r os.system(cmd) def copyMissingFiles(remote="../../ship-ubuntu-1710-64/RUN_8000_2395",exclude=[]): toCopy=[] allFilesR = os.listdir(remote) allFilesL = os.listdir(".") for fname in allFilesR: if not fname.find('histos')<0: continue if fname.find('RT')<0: continue if fname in exclude: continue if not fname in allFilesL: toCopy.append(fname) print "len",len(toCopy) for fname in toCopy: os.system('cp '+remote+"/"+fname+' .') def importRTFiles(local='.',remote='/home/truf/ship-ubuntu-1710-32/home/truf/muflux/Jan08'): # mkdir /media/truf/disk2/home/truf/ShipSoft/ship-ubuntu-1710-32 # sshfs ship-ubuntu-1710-32.cern.ch:/home/truf/muflux /media/truf/disk2/home/truf/ShipSoft/ship-ubuntu-1710-32 fileWithTracks = checkFilesWithTracks(local) allFiles = os.listdir(remote) for x in allFiles: if x.find('_RT')>0 and x.find('histos')<0 and not x in fileWithTracks: os.system('cp '+remote+'/'+x+' .') def importRecoFiles(local='.',remote='/media/truf/disk2/home/truf/ShipSoft/ship-ubuntu-1710-16/home/truf/muflux/Jan08'): fileWithTracks = checkFilesWithTracks(remote) for x in fileWithTracks: os.system('cp '+remote+'/'+x+' .') def mergeHistos(local='.',case='residuals'): allFiles = os.listdir(local) if case == 'residuals': dest = 'residuals.root' tag = 'histos-residuals' else: dest = 'momDistributions.root' tag = 'histos-analysis' cmd = "hadd -f "+dest+' ' N=0 for x in allFiles: if not x.find(tag)<0 : cmd += (local+'/'+x+' ') N+=1 if N>500: os.system(cmd) os.system('cp '+dest+' tmp.root') cmd = "hadd -f "+dest+' tmp.root ' N=0 os.system(cmd) def checkRecoRun(eosLocation=eospath,local='.'): temp = subprocess.check_output("xrdfs "+os.environ['EOSSHIP']+" ls -l "+eosLocation,shell=True) for x in temp.split('\n'): if x.find('.root')<0: continue if not x.find('START')<0: continue fname = x[x.rfind('/')+1:] RTname = fname.replace('.root','_RT.root') histosName = "histos-residuals-"+RTname if not os.path.isfile(RTname): print "missing RT file",fname if not os.path.isfile(histosName): print "missing histogram file",fname def exportRunToEos(eosLocation="/eos/experiment/ship/user/truf/muflux-reco",run=run,local="."): temp = os.system("xrdfs "+os.environ['EOSSHIP']+" mkdir "+eosLocation+"/"+run) failures = [] for x in os.listdir(local): if x.find('.root')<0: continue cmd = "xrdcp -f "+x+" $EOSSHIP/"+eosLocation+"/"+run+"/"+x rc = os.system(cmd) if rc != 0: failures.append(x) if len(failures)!=0: print failures def makeMomDistributions(run=0): if run==0: fileList = checkFilesWithTracks(D='.') else: eospathReco = '/eos/experiment/ship/user/odurhan/muflux-recodata/'+run fileList = [] temp = subprocess.check_output("xrdfs "+os.environ['EOSSHIP']+" ls -l "+eospathReco,shell=True) for x in temp.split('\n'): if x.find('.root')<0: continue fileList.append( os.environ['EOSSHIP'] + x[x.find('/eos'):]) # all RT files with tracks for fname in fileList: if not fname.find('sys')<0: continue if os.path.isfile('histos-analysis-'+fname[fname.rfind('/')+1:]): continue cmd = "python "+pathToMacro+"drifttubeMonitoring.py -c anaResiduals -f "+fname+' &' print 'momentum analysis:', cmd os.system(cmd) time.sleep(10) while 1>0: if count_python_processes('drifttubeMonitoring')<ncpus: break time.sleep(10) print "finished all the tasks." zeroField = ['2199','2200','2201'] noRPC = ['2144','2154','2192','2210','2217','2218','2235','2236','2237','2240','2241','2243','2291','2345','2359'] def massProduction(keyword = 'RUN_8000_23',fnames=[],merge=False): pathToMacro = "$FAIRSHIP/charmdet/" eospathReco = '/eos/experiment/ship/user/odurhan/muflux-recodata/' if merge: for run in os.listdir('.'): if run.find(keyword)<0: continue os.chdir(run) mergeHistos(local='.',case='momDistributions') os.chdir('../') else: if len(fnames)==0: temp = subprocess.check_output("xrdfs "+os.environ['EOSSHIP']+" ls -l "+eospathReco,shell=True) fnames = temp.split('\n') for x in fnames: if x.find(keyword)<0: continue run = x[x.rfind('/')+1:] if not run in os.listdir('.'): os.system('mkdir '+run) temp2 = subprocess.check_output("xrdfs "+os.environ['EOSSHIP']+" ls -l "+eospathReco+run,shell=True) if temp2.find('.root')<0: continue skip = False for x in zeroField: if not run.find(x)<0: skip = True if skip: continue os.chdir(run) makeMomDistributions(run) os.chdir('../') def massProductionAlignment(keyword = 'RUN_8000_2395',fnames=[],merge=False): pathToMacro = "$FAIRSHIP/charmdet/" eospathReco = '/eos/experiment/ship/user/odurhan/muflux-recodata/' if merge: for run in os.listdir('.'): if run.find(keyword)<0: continue os.chdir(run) mergeHistos(local='.') os.chdir('../') else: if len(fnames)==0: temp = subprocess.check_output("xrdfs "+os.environ['EOSSHIP']+" ls -l "+eospathReco,shell=True) fnames = temp.split('\n') for x in fnames: if x.find(keyword)<0: continue run = x[x.rfind('/')+1:] if not run in os.listdir('.'): print "directory for this run does not exist",run # os.system('mkdir '+run) continue temp2 = subprocess.check_output("xrdfs "+os.environ['EOSSHIP']+" ls -l "+eospathReco+run,shell=True) if temp2.find('.root')<0: continue os.chdir(run) fileList = [] for x in temp2.split('\n'): if x.find('.root')<0: continue fileList.append( os.environ['EOSSHIP'] + x[x.find('/eos'):]) checkAlignment(fileList) os.chdir('../') def redoMuonTracks(): fileList = checkFilesWithTracks(D='.') for fname in fileList: cmd = "python "+pathToMacro+"drifttubeMonitoring.py -c recoMuonTaggerTracks -u 1 -f "+fname+' &' print 'redo muonTracks:', cmd os.system(cmd) time.sleep(10) while 1>0: if count_python_processes('drifttubeMonitoring')<ncpus: break time.sleep(10) print "finished all the tasks." def reRunReco(r,fname): fRT = fname.replace('.root','_RT2.root') os.system('xrdcp -f $EOSSHIP/eos/experiment/ship/data/muflux/DATA_Rebuild_8000/rootdata/'+r+'/'+fname+' '+fRT) f = ROOT.TFile.Open(os.environ['EOSSHIP']+'/eos/experiment/ship/user/odurhan/muflux-recodata/'+r+'/'+fname.replace('.root','_RT.root')) ftemp = ROOT.TFile(fRT,'update') ftemp.cd('') upkl = Unpickler(f) tMinAndTmax = upkl.load('tMinAndTmax') pkl = Pickler(ftemp) pkl.dump(tMinAndTmax,'tMinAndTmax') ftemp.mkdir('histos') ftemp.histos.cd('') for tc in ['TDCMapsX','hitMapsX']: tmp = f.histos.Get(tc) X = tmp.Clone() X.Write() ftemp.Write("",ROOT.TFile.kOverwrite) ftemp.Close() cmd = "python "+pathToMacro+"drifttubeMonitoring.py -c recoStep1 -u 1 -f "+fRT+' &' os.system(cmd) print 'step 1:', cmd def pot(): fileList=[] # all RT files for x in os.listdir('.'): if x.find('_RT')>0 and x.find('histos')<0: fileList.append(x) fileList.sort() scalerStat = {} for fname in fileList: f=ROOT.TFile(fname) if not f.FindKey("scalers"): print "no scalers in this file",fname continue scalers = f.scalers scalers.GetEntry(0) for x in scalers.GetListOfBranches(): name = x.GetName() s = eval('scalers.'+name) if name!='slices': if not scalerStat.has_key(name):scalerStat[name]=0 scalerStat[name]+=s keys = scalerStat.keys() keys.sort() for k in keys: print k,':',scalerStat[k] def makeDTEfficiency(merge=False): cmd = "hadd -f DTEff.root " for fname in os.listdir('.'): if not merge and fname.find('SPILL')==0: cmd = "python "+pathToMacro+"drifttubeMonitoring.py -c DTeffWithRPCTracks -f "+fname+' &' os.system(cmd) time.sleep(10) while 1>0: if count_python_processes('drifttubeMonitoring')<ncpus: break time.sleep(10) elif merge and fname.find('histos-DTEff')==0: cmd+=fname+' ' if merge: os.system(cmd) print "finished all the tasks." def importMomDistr(keyword = 'RUN_8000_2'): pathHistos = '/media/truf/disk2/home/truf/ShipSoft/ship-ubuntu-1710-64/' temp = os.listdir(pathHistos) for x in temp: if x.find(keyword)<0: continue run = x if not run in os.listdir('.'): os.system('mkdir '+run) os.system('cp '+pathHistos+run+'/momDistributions.root '+run)
8716e411d7d36e6f03e049d7e4f758924e44cc44
169d68e02baceb04ce672c7771db351f71a1e47e
/untitled1/venv/Scripts/easy_install-script.py
bf6482875831339e7b62872ab6bf7d1f6f64f1fc
[]
no_license
yycarry1994/Pycharm_Project
056959b2b14c171d1d5d87388ce0bd9bc97bd7d5
da0d6176cccc365554aa46d47f33e7e1120e6e33
refs/heads/master
2020-06-28T10:12:29.711669
2019-08-02T09:23:41
2019-08-02T09:23:41
200,204,861
0
0
null
null
null
null
UTF-8
Python
false
false
452
py
#!C:\Users\86181\PycharmProjects\untitled1\venv\Scripts\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'setuptools==40.8.0','console_scripts','easy_install' __requires__ = 'setuptools==40.8.0' import re import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit( load_entry_point('setuptools==40.8.0', 'console_scripts', 'easy_install')() )
94fa74e2b0d75f11f63daaf66cc8d206618c6999
a9dd70520385b155d2f929127616d496fd89cd53
/onecollect.py
4ccf00cf62c39d3e08e3b1e5a884cf93f6fa30d1
[]
no_license
singer0503/auto_show_mac_address
ce6917e1d05fab40f3d2a9c1017003eb30096580
9cce22d167a734335de04dde65d07359c8b8a587
refs/heads/main
2023-01-01T14:26:07.620655
2020-10-20T10:07:51
2020-10-20T10:07:51
305,604,979
0
0
null
null
null
null
UTF-8
Python
false
false
6,659
py
import time,multiprocessing,os import paramiko #Note: 提供 ssh 功能模組 import re #Noet: 正則表達式模組 import sys #Noet: 檢測錯誤模組 import traceback #Noet: 檢測錯誤模組 try: from config import * #Note: 把 config.py 讀進來 except: hosts = '' username = '' password = '' cmds = '' stdmore = re.compile(r"-[\S\s]*[Mm]ore[\S\s]*-") hostname_endcondition = re.compile(r"\S+[#>\]]\s*$") class ssh_comm(object): def __init__(self,address,username,password,port=22): self.client = paramiko.SSHClient() self.client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) #Note: 自動添加主機名及密鑰到本地並保存,不依賴load_system_host_keys()配置,即如果known_hosts裡沒有遠程主機的公鑰時,默認連接會提示yes/no,自動yes print('ssh_comm connection...') self.client.connect(address, port=port, username=username, password=password, timeout=10, look_for_keys=True,allow_agent=False) self.shell = self.client.invoke_shell() while True: time.sleep(0.5) if self.shell.recv_ready() or self.shell.recv_stderr_ready(): break self.shell.recv(4096).decode('utf-8') self.shell.send('\n') output = self.shell.recv(4096).decode('utf-8') output = output while True: if hostname_endcondition.findall(output): self.hostname = hostname_endcondition.findall(output)[0].strip().strip('<>[]#') break while True: time.sleep(0.1) if self.shell.recv_ready() or self.shell.recv_stderr_ready(): break output += self.shell.recv(4096).decode('utf-8') def recv_all(self,interval,stdjudge,stdconfirm): endcondition = re.compile(r"%s\S*[#>\]]\s*$"%self.hostname) while True: time.sleep(interval) if self.shell.recv_ready() or self.shell.recv_stderr_ready(): break output = self.shell.recv(99999).decode('utf-8') if (stdjudge != '') and (stdjudge in output): self.shell.send(stdconfirm+'\n') while True: if stdmore.findall(output.split('\n')[-1]): break elif endcondition.findall(output): break while True: time.sleep(interval) if self.shell.recv_ready() or self.shell.recv_stderr_ready(): break output += self.shell.recv(99999).decode('utf-8') return output def send_command(self,command_interval,command,stdjudge,stdconfirm): command += "\n" self.shell.send(command) if ('hostname' in command) or ('sysname' in command): while True: time.sleep(0.5) if self.shell.recv_ready() or self.shell.recv_stderr_ready(): break stdout = self.shell.recv(4096).decode('utf-8') self.hostname = hostname_endcondition.findall(stdout)[-1].strip().strip('<>[]#') else: stdout = self.recv_all(interval=command_interval,stdjudge=stdjudge,stdconfirm=stdconfirm) data = stdout.split('\n') while stdmore.findall(data[-1]): self.shell.send(" ") tmp = self.recv_all(interval=command_interval,stdjudge=stdjudge,stdconfirm=stdconfirm) data = tmp.split('\n') stdout += tmp return stdout def close(self): if self.client is not None: self.client.close() def run(self,cmds,command_interval,stdjudge,stdconfirm): stdout = '' rc = 'success' for cmd in cmds.split('\n'): if cmd.strip(): stdout += self.send_command(command=cmd,command_interval=command_interval,stdjudge=stdjudge,stdconfirm=stdconfirm) return rc, stdout def writeoutput(address,username,password,cmds): try: connection = ssh_comm(address=address, username=username, password=password, port=22) except Exception as e: error_class = e.__class__.__name__ #取得錯誤類型 detail = e.args[0] #取得詳細內容 cl, exc, tb = sys.exc_info() #取得Call Stack lastCallStack = traceback.extract_tb(tb)[-1] #取得Call Stack的最後一筆資料 fileName = lastCallStack[0] #取得發生的檔案名稱 lineNum = lastCallStack[1] #取得發生的行號 funcName = lastCallStack[2] #取得發生的函數名稱 errMsg = "File \"{}\", line {}, in {}: [{}] {}".format(fileName, lineNum, funcName, error_class, detail) print(errMsg) rc = 'connection failed' return address,rc stdjudge = 'Y/N' stdconfirm = 'Y' rc,stdout = connection.run(cmds=cmds,command_interval=0.1,stdjudge=stdjudge,stdconfirm=stdconfirm) connection.close() hostname = connection.hostname.split('/')[-1].split(':')[-1] #Note: 若有需要可以使用 SNMP v2c 做事情 #hostname = os.popen('/usr/local/net-snmp/bin/snmpwalk -v 2c -c tcnw %s sysname -Oqv'%address).read().strip() #Note: 根據各機器名稱產生目錄 if not os.path.exists(hostname): os.makedirs(hostname) filename = hostname+'-'+time.strftime('%Y-%m-%d-%H-%M-%S',time.localtime(time.time())) #Note: 產生 txt 檔保存資料 with open ('%s/%s.txt'%(hostname,filename),'w') as f: f.write(stdout) return address,rc #Note: 主程式呼叫 main def main(username,password,hosts,cmds): print('main('+username+','+password+','+hosts+','+cmds+')') #Note: 檢查欄位是否有問題 if username == '': username = raw_input('請輸入使用者名稱:') if password == '': password = raw_input('請輸入密碼: ') if hosts == '': hosts = raw_input('請輸入主機地址: ') if cmds == '': cmds = raw_input('請輸入採集命令: ') host_list = hosts.split('\n') if len(host_list) < 5: processnum = len(host_list) else: processnum = 5 #Note: 可以調整多執行緒的地方,預設最高是 5 個 thread 再跑 pool = multiprocessing.Pool(processes=processnum ) process = [] for host in host_list: if host: process.append(pool.apply_async(writeoutput, (host.strip(),username,password,cmds))) pool.close() pool.join() outs = '' for o in process: rc,ip = o.get() print('[ '+ip+' : '+rc+' ]') #Note: 主程式入口 if __name__== '__main__': main(username,password,hosts,cmds)
072edfb2aef8eea1bcec97a890b4d476ea0fb2ba
e3fbb84151f39c3e576bd857a94256e9ecfc2817
/0x07-python-test_driven_development/tests/6-max_integer_test.py
73b68c8c52f56476a1d8122a16c47d872dda234f
[]
no_license
Myduzo/holbertonschool-higher_level_programming
1a6ed5eb499b16f968aed4522c464e5c9f89a41e
aee7350473a8f740f6eb8e3f1abbb359d88cae0f
refs/heads/master
2022-12-19T18:59:29.672269
2020-09-24T15:18:24
2020-09-24T15:18:24
259,302,536
0
0
null
null
null
null
UTF-8
Python
false
false
1,044
py
#!/usr/bin/python3 """Unittest for max_integer([..]) """ import unittest max_integer = __import__('6-max_integer').max_integer class TestMaxInteger(unittest.TestCase): def test_list(self): """Empty list test""" self.assertEqual(max_integer([5, 0, 2, 9]), 9) self.assertEqual(max_integer([0, 0, 0]), 0) self.assertEqual(max_integer([-5, -1, 0]), 0) self.assertEqual(max_integer([-2, -3, -7]), -2) self.assertEqual(max_integer([3]), 3) self.assertEqual(max_integer([-4]), -4) self.assertEqual(max_integer([1.5, 3.9, 4.25, 2.7]), 4.25) def test_empty(self): """Empty list test""" self.assertIsNone(max_integer([]), None) def test_error(self): with self.assertRaises(TypeError): max_integer(7) with self.assertRaises(TypeError): max_integer(None) with self.assertRaises(TypeError): max_integer([4, "", 1, 6]) with self.assertRaises(TypeError): max_integer([4, "x", 1, 6])
3d9f60873d750960d9d30489e80d15c58a53b641
152d5204595c4f38be21d85907af54012fb3fece
/python/A1014280203/0/0.py
d1aa0de267004157929207e14a6341ce63895ea3
[]
no_license
Fayostyle/spiderstudy
09f7dc0792c64083cbdb7e5b19a025dc05d5d1f2
6687e9a192f83f125d532b5df898790acc47f965
refs/heads/master
2022-11-30T10:45:21.260739
2019-09-19T07:31:50
2019-09-19T07:31:50
132,615,459
0
0
null
2022-11-22T00:37:43
2018-05-08T13:47:01
HTML
UTF-8
Python
false
false
252
py
from PIL import Image, ImageFont, ImageDraw image = Image.open('0.png') w, h = image.size font = ImageFont.truetype('arial.ttf', 50) draw = ImageDraw.Draw(image) draw.text((4*w/5, h/5), '5', fill=(255, 10, 10), font=font) image.save('0.0.png', 'png')
1ec736c4ee5667fdac6c32e4c815c223c8fd9563
183892abe5d5481d037e5568c4505f0fc3370a23
/nn_sa.py
125440347ced3cad9e15a827a21f423212b28fd8
[]
no_license
nani67/SportsAnalytics_ML_DL
0c921b384a6f6c1f0a4de57ff1a556979f4be310
3c0f492130324e813e33444e7ee1a197b2e5697c
refs/heads/master
2020-08-28T10:49:39.629789
2019-10-27T12:47:27
2019-10-27T12:47:27
217,677,816
2
0
null
null
null
null
UTF-8
Python
false
false
1,096
py
import keras from keras.models import Sequential from keras.layers import Dense import pandas as pd import numpy as np dataset = pd.read_csv("sample_data.csv") X = dataset.drop(["Date","Referee"],axis=1) Y = dataset["FTR"] X_train = X[0:15] X_test = X[15:] Y_train = Y[0:15] Y_test = Y[15:] model = Sequential(); firstLayer = Dense(units = 16, activation='relu', kernel_initializer='uniform',input_dim = 20) model.add(firstLayer); secondLayer = Dense(units = 1, activation = 'relu', kernel_initializer = 'uniform') model.add(secondLayer); model.compile(optimizer = 'adam', loss = 'mse', metrics=['accuracy']) history = model.fit(X_train, Y_train, epochs = 300, batch_size = 50) import matplotlib.pyplot as plt plt.plot(history.history['accuracy']) plt.title('Model accuracy') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.show() plt.plot(history.history['loss']) plt.title('Model loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['Train', 'Test'], loc='upper left') plt.show()
6dee1b5890f0ba2108624a4a64c8378c3f83a85a
1f5d98c97ac9ff75b1d6b81f0a4a5110b05d4284
/posts/api/views.py
a71629961d4f008f12bdb8916786235c9f681cc8
[]
no_license
DukhDmytro/social_network
70cdd4aeb1448fdbacce6d32f627b421b8614a8c
a8d563b17ffc90dc467c67150fd4f0e7aa5f3992
refs/heads/master
2022-12-12T21:04:17.354395
2020-03-03T13:34:45
2020-03-03T13:34:45
241,352,402
0
0
null
2022-12-08T03:38:56
2020-02-18T12:12:34
Python
UTF-8
Python
false
false
1,764
py
from django.shortcuts import get_object_or_404 from rest_framework import status from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from rest_framework.viewsets import ModelViewSet from rest_framework.decorators import action from rest_framework.pagination import PageNumberPagination from posts.models import Post from .serializers import PostSerializer from .permissions import IsOwnerOrReadOnly class PostViewSet(ModelViewSet): serializer_class = PostSerializer queryset = Post.objects.all() lookup_field = 'slug' pagination_class = PageNumberPagination def get_permissions(self): if self.action in ['update', 'partial_update', 'destroy']: self.permission_classes = IsAuthenticated, IsOwnerOrReadOnly else: self.permission_classes = IsAuthenticated, return super().get_permissions() def create(self, request, *args, **kwargs): serializer = PostSerializer(data=request.data) if serializer.is_valid(): serializer.save(author=request.user) return Response(serializer.data, status=status.HTTP_201_CREATED) @action(detail=True) def like(self, request, slug): post = get_object_or_404(Post, slug=slug) post.like.add(request.user) post.unlike.remove(request.user) post.save() return Response({'response': 'you like this post'}, status=status.HTTP_200_OK) @action(detail=True) def unlike(self, request, slug): post = get_object_or_404(Post, slug=slug) post.unlike.add(request.user) post.like.remove(request.user) post.save() return Response({'response': 'you unlike this post'}, status=status.HTTP_200_OK)
49d91b038609858a956b8fc002568e272efc77f6
f7c3b1f65cc4d6dba1dc9dcf70f523497a14d791
/mujoco/tf_commons/ops.py
ff3b576def5ff27fcc5369b938fb8a9e04891c09
[ "MIT" ]
permissive
hiwonjoon/ICML2019-TREX
b9cac1ac5d97b22374a92f2f3cf5d8956cdb2482
44f92b61ca6c79ac22d468382d4f2fbee164fb7a
refs/heads/master
2021-06-16T15:52:33.325054
2021-04-10T04:57:24
2021-04-10T04:57:24
184,654,702
76
24
MIT
2020-01-28T22:11:19
2019-05-02T21:36:24
Python
UTF-8
Python
false
false
19,966
py
import tensorflow as tf class Conv2d(object) : def __init__(self,name,input_dim,output_dim,k_h=4,k_w=4,d_h=2,d_w=2, stddev=0.02, data_format='NCHW',padding='SAME') : with tf.variable_scope(name) : assert(data_format == 'NCHW' or data_format == 'NHWC') self.w = tf.get_variable('w', [k_h, k_w, input_dim, output_dim], initializer=tf.truncated_normal_initializer(stddev=stddev)) self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(0.0)) if( data_format == 'NCHW' ) : self.strides = [1, 1, d_h, d_w] else : self.strides = [1, d_h, d_w, 1] self.data_format = data_format self.padding = padding def __call__(self,input_var,name=None,w=None,b=None,**kwargs) : w = w if w is not None else self.w b = b if b is not None else self.b if( self.data_format =='NCHW' ) : return tf.nn.bias_add( tf.nn.conv2d(input_var, w, use_cudnn_on_gpu=True,data_format='NCHW', strides=self.strides, padding=self.padding), b,data_format='NCHW',name=name) else : return tf.nn.bias_add( tf.nn.conv2d(input_var, w,data_format='NHWC', strides=self.strides, padding=self.padding), b,data_format='NHWC',name=name) def get_variables(self): return {'w':self.w,'b':self.b} class WeightNormConv2d(object): def __init__(self,name,input_dim,output_dim,k_h=4,k_w=4,d_h=2,d_w=2, stddev=0.02, data_format='NHWC',padding='SAME',epsilon=1e-9) : with tf.variable_scope(name) : assert data_format == 'NHWC' self.v = tf.get_variable('v', [k_h, k_w, input_dim, output_dim], initializer=tf.truncated_normal_initializer(stddev=stddev)) self.g = tf.get_variable('g',[output_dim], initializer=tf.constant_initializer(float('nan'))) self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(float('nan'))) self.strides = [1, d_h, d_w, 1] self.padding = padding self.epsilon = epsilon def __call__(self,input_var,name=None,**kwargs) : def _init(): v_norm = tf.nn.l2_normalize(self.v,axis=[0,1,2]) t = tf.nn.conv2d(input_var,v_norm,self.strides,self.padding,data_format='NHWC') mu,var = tf.nn.moments(t,axes=[0,1,2]) std = tf.sqrt(var+self.epsilon) return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)] require_init = tf.reduce_any(tf.is_nan(self.g)) init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b]) with tf.control_dependencies(init_ops): w = tf.reshape(self.g,[1,1,1,tf.shape(self.v)[-1]]) * tf.nn.l2_normalize(self.v,axis=[0,1,2]) return tf.nn.bias_add( tf.nn.conv2d(input_var, w,data_format='NHWC', strides=self.strides, padding=self.padding), self.b,data_format='NHWC',name=name) def get_variables(self): #TODO: self.v should be l2-normalized or not? / currently not. return {'v':self.v,'b':self.b,'g':self.g} class DepthConv2d(object) : def __init__(self,name,input_dim,channel_multiplier,k_h=4,k_w=4,d_h=2,d_w=2, stddev=0.02, data_format='NCHW', padding='SAME') : with tf.variable_scope(name) : assert(data_format == 'NCHW' or data_format == 'NHWC') self.w = tf.get_variable('w', [k_h, k_w, input_dim, channel_multiplier], initializer=tf.truncated_normal_initializer(stddev=stddev)) self.b = tf.get_variable('b',[input_dim*channel_multiplier], initializer=tf.constant_initializer(0.0)) if( data_format == 'NCHW' ) : self.strides = [1, 1, d_h, d_w] else : self.strides = [1, d_h, d_w, 1] self.data_format = data_format self.padding = padding def __call__(self,input_var,name=None,**xargs) : return tf.nn.bias_add( tf.nn.depthwise_conv2d(input_var, self.w, data_format=self.data_format, strides=self.strides, padding=self.padding), self.b,data_format=self.data_format,name=name) class Conv3d(object) : def __init__(self,name,input_dim,output_dim,k_t=2,k_h=4,k_w=4,d_t=1,d_h=1,d_w=1, stddev=0.02, data_format='NDHWC') : with tf.variable_scope(name) : assert(data_format == 'NDHWC') self.w = tf.get_variable('w', [k_t, k_h, k_w, input_dim, output_dim], initializer=tf.truncated_normal_initializer(stddev=stddev)) self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(0.0)) self.strides = [d_t,d_h,d_w] def __call__(self,input_var,name=None,w=None,b=None,**kwargs) : w = w if w is not None else self.w b = b if b is not None else self.b #k_t,k_h,k_w,_,_ = self.w.get_shape().as_list() #_t = tf.pad(input_var, [[0,0],[0,0],[k_h//2,k_h//2],[k_w//2,k_w//2],[0,0]], "SYMMETRIC") return tf.nn.bias_add( tf.nn.convolution(input_var, w, strides=self.strides, data_format='NDHWC', padding='SAME'), b,name=name) def get_variables(self): return {'w':self.w,'b':self.b} class DilatedConv3D(object) : def __init__(self,name,input_dim,output_dim,k_t=2,k_h=3,k_w=3,d_t=2,d_h=1,d_w=1, stddev=0.02, data_format='NDHWC') : with tf.variable_scope(name) : assert(data_format == 'NDHWC') self.w = tf.get_variable('w', [k_t, k_h, k_w, input_dim, output_dim], initializer=tf.truncated_normal_initializer(stddev=stddev)) self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(0.0)) self.strides = [1,1,1] self.dilates = [d_t, d_h, d_w] def __call__(self,input_var,name=None) : k_t,k_h,k_w,_,_ = self.w.get_shape().as_list() _t = tf.pad(input_var, [[0,0],[0,0],[k_h//2,k_h//2],[k_w//2,k_w//2],[0,0]], "SYMMETRIC") return tf.nn.bias_add( tf.nn.convolution(_t, self.w, strides=self.strides, dilation_rate=self.dilates, padding='VALID'), self.b,name=name) class Linear(object) : def __init__(self,name,input_dim,output_dim,stddev=0.02) : with tf.variable_scope(name) : self.w = tf.get_variable('w',[input_dim, output_dim], initializer=tf.random_normal_initializer(stddev=stddev)) self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(0.0)) def __call__(self,input_var,name=None,w=None,b=None,**kwargs) : w = w if w is not None else self.w b = b if b is not None else self.b if( input_var.shape.ndims > 2 ) : dims = tf.reduce_prod(tf.shape(input_var)[1:]) return tf.matmul(tf.reshape(input_var,[-1,dims]),w) + b else : return tf.matmul(input_var,w)+b def get_variables(self): return {'w':self.w,'b':self.b} class WeightNormLinear(object): def __init__(self,name,input_dim,output_dim,stddev=0.02,epsilon=1e-10) : with tf.variable_scope(name) : self.v = tf.get_variable('v',[input_dim, output_dim], initializer=tf.random_normal_initializer(stddev=stddev)) self.g = tf.get_variable('g',[output_dim], initializer=tf.constant_initializer(float('nan'))) self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(float('nan'))) self.epsilon = epsilon def __call__(self,input_var,name=None,**kwargs) : if( input_var.shape.ndims > 2 ) : dims = tf.reduce_prod(tf.shape(input_var)[1:]) input_var = tf.reshape(input_var,[-1,dims]) def _init(): v_norm = tf.nn.l2_normalize(self.v,axis=0) t = tf.matmul(input_var,v_norm) mu,var = tf.nn.moments(t,axes=[0]) std = tf.sqrt(var+self.epsilon) return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)] require_init = tf.reduce_any(tf.is_nan(self.g)) init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b]) with tf.control_dependencies(init_ops): w = tf.expand_dims(self.g,axis=0) * tf.nn.l2_normalize(self.v,axis=0) return tf.matmul(input_var,w)+self.b def get_variables(self): #TODO: self.v should be l2-normalized or not? / currently not. return {'v':self.v,'b':self.b,'g':self.g} class SymPadConv2d(object): #Resize and Convolution(upsacle by 2) def __init__(self,name,input_dim,output_dim, k_h=3,k_w=3,stddev=0.02) : assert k_h%2==1 and k_w%2==1, 'kernel size should be odd numbers to ensure exact size' with tf.variable_scope(name) : self.w = tf.get_variable('w', [k_h, k_w, input_dim, output_dim], initializer=tf.random_normal_initializer(stddev=stddev)) self.b = tf.get_variable('b',[output_dim], initializer=tf.constant_initializer(0.0)) self.padding = [ [0,0],[k_h//2,k_h//2],[k_w//2,k_w//2],[0,0] ] def __call__(self,input_var,name=None,**kwargs): _,h,w,c = input_var.shape.as_list() _t = tf.image.resize_nearest_neighbor(input_var, [h*2, w*2]) _t = tf.pad(_t,self.padding, mode='SYMMETRIC') return tf.nn.bias_add( tf.nn.conv2d(_t, self.w, data_format='NHWC', #we can't use cudnn due to resize method... strides=[1,1,1,1], padding="VALID"), self.b,data_format='NHWC',name=name) def get_variables(self): return {'w':self.w,'b':self.b} class WeightNormSymPadConv2d(object): #Resize and Convolution(upsacle by 2) def __init__(self,name,input_dim,output_dim, k_h=3,k_w=3,stddev=0.02) : assert k_h%2==1 and k_w%2==1, 'kernel size should be odd numbers to ensure exact size' with tf.variable_scope(name) : self.conv2d = WeightNormConv2d('conv',input_dim,output_dim,k_h,k_w,1,1,data_format='NHWC',padding='VALID') self.padding = [ [0,0],[k_h//2,k_h//2],[k_w//2,k_w//2],[0,0] ] def __call__(self,input_var,name=None,**kwargs): _,h,w,c = input_var.shape.as_list() _t = tf.image.resize_nearest_neighbor(input_var, [h*2, w*2]) _t = tf.pad(_t,self.padding, mode='SYMMETRIC') return self.conv2d(_t) def get_variables(self): return self.conv2d.get_variables() class TransposedConv2d(object): def __init__(self,name,input_dim,out_dim, k_h=4,k_w=4,d_h=2,d_w=2,stddev=0.02,data_format='NCHW') : with tf.variable_scope(name) : self.w = tf.get_variable('w', [k_h, k_w, out_dim, input_dim], initializer=tf.random_normal_initializer(stddev=stddev)) self.b = tf.get_variable('b',[out_dim], initializer=tf.constant_initializer(0.0)) self.data_format = data_format if( data_format =='NCHW' ): self.strides = [1, 1, d_h, d_w] else: self.strides = [1, d_h, d_w, 1] def __call__(self,input_var,name=None,**xargs): shapes = tf.shape(input_var) if( self.data_format == 'NCHW' ): shapes = tf.stack([shapes[0],tf.shape(self.b)[0],shapes[2]*self.strides[2],shapes[3]*self.strides[3]]) else: shapes = tf.stack([shapes[0],shapes[1]*self.strides[1],shapes[2]*self.strides[2],tf.shape(self.b)[0]]) return tf.nn.bias_add( tf.nn.conv2d_transpose(input_var,self.w,output_shape=shapes, data_format=self.data_format, strides=self.strides,padding='SAME'), self.b,data_format=self.data_format,name=name) def get_variables(self): return {'w':self.w,'b':self.b} class WeightNormTransposedConv2d(object): def __init__(self,name,input_dim,out_dim, k_h=4,k_w=4,d_h=2,d_w=2,stddev=0.02,data_format='NHWC',epsilon=1e-9) : with tf.variable_scope(name) : assert data_format == 'NHWC' self.v = tf.get_variable('v', [k_h, k_w, out_dim, input_dim], initializer=tf.truncated_normal_initializer(stddev=stddev)) self.g = tf.get_variable('g',[out_dim], initializer=tf.constant_initializer(float('nan'))) self.b = tf.get_variable('b',[out_dim], initializer=tf.constant_initializer(float('nan'))) self.strides = [1, d_h, d_w, 1] self.epsilon = epsilon def __call__(self,input_var,name=None,**kwargs) : shapes = tf.shape(input_var) shapes = tf.stack([shapes[0],shapes[1]*self.strides[1],shapes[2]*self.strides[2],tf.shape(self.b)[0]]) def _init(): v_norm = tf.nn.l2_normalize(self.v,axis=[0,1,3]) t = tf.nn.conv2d_transpose(input_var,v_norm, output_shape=shapes, strides=self.strides, padding='SAME', data_format='NHWC') mu,var = tf.nn.moments(t,axes=[0,1,2]) std = tf.sqrt(var+self.epsilon) return [tf.assign(self.g,1/std),tf.assign(self.b,-1.*mu/std)] require_init = tf.reduce_any(tf.is_nan(self.g)) init_ops = tf.cond(require_init,_init,lambda : [self.g,self.b]) with tf.control_dependencies(init_ops): w = tf.reshape(self.g,[1,1,tf.shape(self.v)[2],1]) * tf.nn.l2_normalize(self.v,axis=[0,1,3]) return tf.nn.bias_add( tf.nn.conv2d_transpose(input_var,w, output_shape=shapes, strides=self.strides, padding='SAME', data_format='NHWC'), self.b,data_format='NHWC',name=name) def get_variables(self): #TODO: self.v should be l2-normalized or not? / currently not. return {'v':self.v,'b':self.b,'g':self.g} class LayerNorm(): def __init__(self,name,axis,out_dim=None,epsilon=1e-7,data_format='NHWC') : """ out_dim: Recentering by adding bias again. The previous bias can be ignored while normalization. (when you normalize over channel only) """ assert data_format=='NCHW' or data_format=='NHWC' assert len(axis) != 1 or (len(axis) == 1 and out_dim != None) """ TODO: Track Moving mean and variance, and use this statistics. with tf.variable_scope(name): self.moving_mean = tf.get_variable('moving_mean',[dims], initializer=tf.constant_initializer(0.0), trainable=False) self.moving_variance = tf.get_variable('moving_variance',[dims], initializer=tf.constant_initializer(1.0), trainable=False) """ if out_dim is not None: with tf.variable_scope(name) : self.gamma= tf.get_variable('gamma',[1,1,1,out_dim], initializer=tf.constant_initializer(1.0)) self.beta = tf.get_variable('beta',[out_dim], initializer=tf.constant_initializer(0.0)) else: self.gamma = None self.beta = None self.axis = axis self.epsilon = epsilon self.data_format = data_format self.name = name def __call__(self,input_var,**kwargs) : mean, var = tf.nn.moments(input_var, self.axis, keep_dims=True) ret = (input_var - mean) / tf.sqrt(var+self.epsilon) if self.gamma is None : return ret else: return tf.nn.bias_add(ret*self.gamma, self.beta,data_format=self.data_format) def get_variables(self): return {'gamma':self.gamma,'beta':self.beta} if self.gamma is not None else {} class InstanceNorm(): def __init__(self,name,format='NCHW',epsilon=1e-5) : assert(format=='NCHW' or format=='NHWC') self.axis = [2,3] if format == 'NCHW' else [1,2] self.epsilon = epsilon self.name = name def __call__(self,input_var) : mean, var = tf.nn.moments(input_var, self.axis, keep_dims=True) return (input_var - mean) / tf.sqrt(var+self.epsilon) class BatchNorm(object): def __init__(self,name,dims,axis=1,epsilon=1e-3,momentum=0.999,center=True,scale=True) : self.momentum = momentum self.epsilon = epsilon self.axis = axis self.center=center self.scale=scale with tf.variable_scope(name) as scope: with tf.variable_scope('bn') : self.gamma= tf.get_variable('gamma',[dims], initializer=tf.constant_initializer(1.0)) self.beta = tf.get_variable('beta',[dims], initializer=tf.constant_initializer(0.0)) self.moving_mean = tf.get_variable('moving_mean',[dims], initializer=tf.constant_initializer(0.0), trainable=False) self.moving_variance = tf.get_variable('moving_variance',[dims], initializer=tf.constant_initializer(1.0), trainable=False) self.scope = scope def __call__(self,input_var,is_training,**xargs) : with tf.variable_scope(self.scope) : return tf.layers.batch_normalization( input_var, axis=self.axis, momentum=self.momentum, epsilon=self.epsilon, center=self.center, scale=self.scale, training=is_training, reuse=True, name='bn') """ ---Do NOT forget to add update_ops dependencies for your loss function.--- update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS,tf.get_default_graph().get_name_scope()) #And, do not make any scope inside map_fn, since scope.name will not work...(it is corrupted by map_fn.) print(update_ops) with tf.control_dependencies(update_ops): """ def get_variables(self): return {} class Lrelu(object): def __init__(self,leak=0.2,name='lrelu') : self.leak = leak self.name = name def __call__(self, x, **kwargs) : return tf.maximum(x, self.leak*x, name=self.name) def get_variables(self): return {} class ResidualBlock() : def __init__(self,name,filters,filter_size=3,non_linearity=Lrelu,normal_method=InstanceNorm) : self.conv_1 = Conv2d(name+'_1',filters,filters,filter_size,filter_size,1,1) self.normal = normal_method(name+'_norm') self.nl = non_linearity() self.conv_2 = Conv2d(name+'_2',filters,filters,filter_size,filter_size,1,1) def __call__(self,input_var) : _t = self.conv_1(input_var) _t = self.normal(_t) _t = self.nl(_t) _t = self.conv_2(_t) return input_var + _t
6cc605df33d06fc2f8575460a8beca5e972c9fe6
f65b633d0760e20ef5e0066be10aa18168f5659e
/documents/views.py
448b7e5a09e37e05fa8e98adc18b108ace1694e2
[ "BSD-2-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
boxed/curia
a2b5ce5feda114bac1637de112b20026dabee5ae
c19f12f77b570b180acf4ec1ee05ea77b87b5fc9
refs/heads/master
2021-03-12T22:53:36.748160
2014-10-20T16:56:45
2014-10-20T16:56:45
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,834
py
import re from datetime import datetime from django.contrib.auth.views import login_required from django.http import HttpResponse, HttpResponseRedirect from django.utils.simplejson import dumps from django.contrib.auth.models import User,Group from django.utils.encoding import smart_unicode from curia.documents.models import Document, Version from curia.shortcuts import * from curia import * from django.utils.translation import ugettext as _ from sets import Set from curia.labels import get_labels from curia.labels.models import Label from curia.labels import handle_labels, mark_labels_as_deleted # helper def get_latest(document_id): try: return Version.objects.filter(document=document_id).order_by('-id')[0] except Version.DoesNotExist: return None; def validate_wiki_links(owner_user, owner_group, form, contents_name = 'contents'): from django.utils.encoding import smart_unicode contents = smart_unicode(form.data[contents_name]) links = list(re.finditer(r'(\[(.*?)\])', contents)) errors = [] link_targets = {} # examples of use: # [images/groups/1/sets/3] for link in links: title = link.groups()[1] if ';' in title: group_name, title = title.split(u';') group = get_objects_from(Group, name=group_name) if len(group) == 1: owner_group = group[0] else: user = get_objects_from(User, username=group_name) if len(user) == 1: owner_user = user[0] else: errors.append(_('%s is not a valid group or user name') % group_name) continue documents = get_objects_from(Document, owner_user=owner_user, owner_group=owner_group, title=title, deleted=False) if len(documents) != 1: errors.append(_('Could not find document %s') % link.groups()[1]) else: link_targets[link.groups()[1]] = documents[0] if len(errors) != 0: form.errors[contents_name] = errors else: # replace from the end as to not change the string in a way that interferes with the following replace operation links.reverse() for link in links: target = link_targets[link.groups()[1]] contents = contents.replace(link.groups()[0], '<a href="'+target.get_absolute_url()+'">'+smart_unicode(target)+'</a>') return contents # views def version_response(request, v): return render_to_response(request, 'documents/version.html', {'version': v, 'document': v.document, 'owner':get_owner(v.document)}) def view_latest(request, document_id): v = get_latest(document_id) check_access(request.user, obj=v.document, command='view') if v == None: raise Http404 return version_response(request, v) def view_version(request, version_id, document_id): v = get_object_or_404_and_check_access(request, Version, pk=version_id, command='view') check_access(request.user, obj=v.document, command='view') #if v.document.id != document_id: # raise something return version_response(request, v) def view_version_list(request, document_id): document = get_object_or_404_and_check_access(request, Document, pk=document_id, command='view') return render_to_response(request, 'documents/version_list.html', {'version_list': Version.objects.filter(document=document_id), 'document': Document.objects.get(pk=document_id)}) def add_document(request): is_presentation = get_boolean(request,'is_presentation') owner_group = None owner_user = None class DocumentForm(django.forms.Form): title = django.forms.CharField(max_length=1024, label=_('Title')) #labels = django.forms.CharField(required=False, label=_('Labels')) contents = django.forms.CharField(required=False, widget = django.forms.Textarea, label=_('Contents')) group_id = get_integer(request,'group_id') user_id = get_integer(request,'user_id') if group_id: owner_group = get_object_or_404_and_check_access(request, Group, pk=group_id, command='add') check_access(request.user, obj=owner_group, command='add document') else: owner_user = get_object_or_404_and_check_access(request, User, pk=user_id, command='add') check_access(request.user, obj=owner_user, command='add document') if request.POST: form = DocumentForm(request.POST) if form.is_valid(): #Handle the document if owner_group != None: document = Document.objects.create(owner_group=owner_group, owner_user=owner_user, is_presentation=is_presentation) else: document = Document.objects.create(owner_user=owner_user, is_presentation=is_presentation) if document.is_presentation: if group == 0: title = owner_user.username + 's Presentation' else: owner_group = get_object_or_404_and_check_access(request, Group, pk=group, command='add') title = owner_group.name + 's Presentation' else: title = form.cleaned_data['title'] new_version = Version(document=document,title=title, contents=strip_p(form.cleaned_data['contents']), owner=request.user) new_version.save() #Handle the labels #handle_labels(request,document) if document.is_presentation: if document.owner_group: return HttpResponseRedirect(document.owner_group.get_absolute_url()) else: return HttpResponseRedirect(document.owner_user.get_absolute_url()) return HttpResponseRedirect(document.get_absolute_url()) else: form = DocumentForm() return render_to_response(request, 'documents/add.html', {'form':form}) def edit_document(request, document_id, is_creating=False): group_id = get_integer(request, 'group_id') document = get_object_or_404_and_check_access(request, Document, pk=document_id, command='edit') user = request.user class DocumentForm(django.forms.Form): if not document.is_presentation: title = django.forms.CharField(max_length=1024, label=_('Title')) #labels = django.forms.CharField(required=False, label=_('Labels')) contents = django.forms.CharField(required=False, widget = django.forms.Textarea, label=_('Contents')) edit_version = django.forms.IntegerField(widget = django.forms.HiddenInput, required=True) if request.POST: form = DocumentForm(request.POST) if int(request.POST['edit_version']) != document.get_latest_version().id: post = request.POST.copy() post['edit_version'] = document.get_latest_version().id form = DocumentForm(post) form.errors['contents'] = [_('Document was changed after you began editing it, please review the changes and then press save again')] if form.is_valid(): #Handle the labels #handle_labels(request,document) #Handle the document if not document.is_presentation: if form.cleaned_data.has_key('title'): title = form.cleaned_data['title'] else: title = document.get_latest_version().title else: if user.first_name.endswith('s'): title=user.first_name+' presentation' else: title = user.first_name+'s presentation' new_version = Version(document=document,title=title, contents=strip_p(form.cleaned_data['contents']), owner=request.user) new_version.save() if request.external: from curia.homepage.models import MenuItem try: menu = MenuItem.objects.get(content_type=get_content_type(document), object_id=document.id) menu.title = title menu.save() except MenuItem.DoesNotExist: pass if document.is_presentation: if document.owner_group: return HttpResponseRedirect(document.owner_group.get_absolute_url()) else: return HttpResponseRedirect(document.owner_user.get_absolute_url()) return HttpResponseRedirect(document.get_absolute_url()) else: latest_version = document.get_latest_version() form = DocumentForm(initial={'title': latest_version.title, 'contents': latest_version.contents, 'edit_version':latest_version.id}) return render_to_response(request, 'documents/edit.html', {'form':form, 'document':document}) def delete_document(request, document_id): document = get_object_or_404_and_check_access(request, Document, pk=document_id, command='delete') from curia import delete_objects delete_objects(document) if request.external: from curia.homepage.models import MenuItem try: menu = MenuItem.objects.get(content_type=get_content_type(document), object_id=document.id) menu.delete() except MenuItem.DoesNotExist: pass return HttpResponse(dumps(document_id, ensure_ascii=False), content_type="text/json; charset=UTF-8") def view_documents_of_user(request, user_id): user = get_object_or_404_and_check_access(request, User, pk=user_id, command='view') objects = get_objects_from(Document, deleted=False, owner_user=user, owner_group=None, is_presentation=False) return render_to_response(request, 'documents/document_list.html', {'owner':user, 'objects':objects, 'type':'users'}) def view_documents_of_group(request, group_id=None): if group_id != None: group = get_object_or_404_and_check_access(request, Group, pk=group_id, command='view') else: group = get_current_community() objects = get_objects_from(Document, deleted=False, owner_group=group, is_presentation=False) return render_to_response(request, 'documents/document_list.html', {'owner':group, 'objects':objects, 'type':'groups'}) def revert_to_version(request, document_id, version_id): old_version = Version.objects.get(pk = version_id) document = Document.objects.get(pk = document_id) new_version = Version(document=document,title=old_version.title, contents=old_version.contents, owner=request.user) new_version.save() return version_response(request, new_version)
6e42e56cfec64fcecc126ae040f1964ab67867ca
adde969450333a4a459e7122521eb20fea9659f7
/python-flask/openapi_server/test/test_default_controller.py
16f79d5d61294677c3ddcdee117e032d41c016dd
[]
no_license
mishin/money-tracker-api-docs
49c480765ecaacd8ff448fa7d264de590239b572
9b0f03fd054f54f136d1d28f2d20ecec9515210a
refs/heads/master
2022-04-12T23:14:33.557855
2019-12-07T15:08:19
2019-12-07T15:08:19
271,111,873
1
0
null
2020-06-09T21:18:06
2020-06-09T21:18:05
null
UTF-8
Python
false
false
2,819
py
# coding: utf-8 from __future__ import absolute_import import unittest from flask import json from six import BytesIO from openapi_server.models.expense_request import ExpenseRequest # noqa: E501 from openapi_server.models.expense_response import ExpenseResponse # noqa: E501 from openapi_server.models.expenses_response import ExpensesResponse # noqa: E501 from openapi_server.models.not_found import NotFound # noqa: E501 from openapi_server.models.result_response import ResultResponse # noqa: E501 from openapi_server.test import BaseTestCase class TestDefaultController(BaseTestCase): """DefaultController integration test stubs""" def test_add_expense(self): """Test case for add_expense adds a expense """ expense_request = { "date" : "2019-10-22T00:00:00.000+0000", "amount" : 100, "content" : "おにぎり" } headers = { 'Content-Type': 'application/json', } response = self.client.open( '/v1/expenses', method='POST', headers=headers, data=json.dumps(expense_request), content_type='application/json') self.assert200(response, 'Response body is : ' + response.data.decode('utf-8')) def test_get_expense(self): """Test case for get_expense gets a expense """ headers = { 'Accept': 'application/json', } response = self.client.open( '/v1/expenses/{expense_id}'.format(expense_id='expense_id_example'), method='GET', headers=headers) self.assert200(response, 'Response body is : ' + response.data.decode('utf-8')) def test_get_expenses(self): """Test case for get_expenses gets expenses """ query_string = [('beginDate', Tue Oct 01 09:00:00 JST 2019), ('endDate', Thu Oct 31 09:00:00 JST 2019)] headers = { 'Accept': 'application/json', } response = self.client.open( '/v1/expenses', method='GET', headers=headers, query_string=query_string) self.assert200(response, 'Response body is : ' + response.data.decode('utf-8')) def test_get_result(self): """Test case for get_result gets Result """ headers = { 'Accept': 'application/json', } response = self.client.open( '/v1/results/{result_id}'.format(result_id=2019-10), method='GET', headers=headers) self.assert200(response, 'Response body is : ' + response.data.decode('utf-8')) if __name__ == '__main__': unittest.main()
5c4f26641289e95cd612cadb24473c07e4a66f3e
94551b3b0513f4f2b3930d9c28b36de079fac487
/config_param_creator.py
47c0c32a11d039deac4b9fd6858cc6a93e1a3bf1
[]
no_license
KWiecko/su2_gui_pub
92b0f10f0a208c57cad62b216b0f1d1e4e1e1566
8d781f1a3c1c231527c47f1289277a7851a64329
refs/heads/master
2020-07-13T07:19:52.893502
2019-09-25T07:36:55
2019-09-25T07:36:55
205,030,690
1
0
null
null
null
null
UTF-8
Python
false
false
4,470
py
import pyforms from pyforms.basewidget import BaseWidget from pyforms.controls import ControlButton, ControlBase from su2_basic_widget import SU2BasicWidget from su2_config_creator import SU2Config from config_param_creator_ctrl import ConfigParamCreatorCtrl class ConfigParamCreator(SU2BasicWidget): # label = '', initial_max_width = None, initial_max_height = None, # initial_min_width = None, initial_min_height = None) # @property # def param_name_ctrl(self) -> ControlBase: # return self._param_name_ctrl # # @param_name_ctrl.setter # def param_name_ctrl(self, new_val: ControlBase): # self._param_name_ctrl = new_val @property def param_name_ctrl_grpbx(self) -> ControlBase: return self._param_name_ctrl_grpbx @param_name_ctrl_grpbx.setter def param_name_ctrl_grpbx(self, new_val: ControlBase): self._param_name_ctrl_grpbx = new_val # @property # def allwd_vals_ctrl(self) -> ControlBase: # return self._allwd_vals_ctrl # # @allwd_vals_ctrl.setter # def allwd_vals_ctrl(self, new_val: ControlBase): # self._allwd_vals_ctrl = new_val @property def allwd_vals_ctrl_grpbx(self) -> ControlBase: return self._allwd_vals_ctrl_grpbx @allwd_vals_ctrl_grpbx.setter def allwd_vals_ctrl_grpbx(self, new_val: ControlBase): self._allwd_vals_ctrl_grpbx = new_val # @property # def default_val_ctrl(self) -> ControlBase: # return self._default_val_ctrl # # @default_val_ctrl.setter # def default_val_ctrl(self, new_val: ControlBase): # self._default_val_ctrl = new_val @property def default_val_ctrl_grpbx(self) -> ControlBase: return self._default_val_ctrl_grpbx @default_val_ctrl_grpbx.setter def default_val_ctrl_grpbx(self, new_val: ControlBase): self._default_val_ctrl_grpbx = new_val # @property # def tooltip_ctrl(self) -> ControlBase: # return self._tooltip_ctrl # # @tooltip_ctrl.setter # def tooltip_ctrl(self, new_val: ControlBase): # self._tooltip_ctrl = new_val @property def tooltip_ctrl_grpbx(self) -> ControlBase: return self._tooltip_ctrl_grpbx @tooltip_ctrl_grpbx.setter def tooltip_ctrl_grpbx(self, new_val: ControlBase): self._tooltip_ctrl_grpbx = new_val @property def ctrld_cfg_f_creator(self) -> object: return self._ctrld_cfg_f_creator @ctrld_cfg_f_creator.setter def ctrld_cfg_f_creator(self, new_val: object): self._ctrld_cfg_f_creator = new_val @property def config_field_creator_ctr(self) -> ConfigParamCreatorCtrl: return self._config_field_creator_ctr @config_field_creator_ctr.setter def config_field_creator_ctr(self, new_val: ConfigParamCreatorCtrl): self._config_field_creator_ctr = new_val @property def set_param_button(self) -> ControlButton: return self._set_param_button @set_param_button.setter def set_param_button(self, new_val: ControlButton): self._set_param_button = new_val @property def cancel_button(self) -> ControlButton: return self._cancel_button @cancel_button.setter def cancel_button(self, new_val: ControlButton): self._cancel_button = new_val def __init__( self, tabs_ctrl: object, label='Config param creator', initial_max_width: int = 400, initial_max_height: int = 700, initial_min_width: int = 200, initial_min_height: int = 500, su2_cfg_obj: SU2Config = None, # {'example_sect': {}}, des_cfg_section: str = 'INPUT_OUTPUT_INFORMATION'): super(ConfigParamCreator, self).__init__( label=label, initial_max_width=initial_max_width, initial_max_height=initial_max_height, initial_min_width=initial_min_width, initial_min_height=initial_min_height) if not su2_cfg_obj: print('SU2 cfg was not found') su2_cfg_obj = SU2Config() input('SU2 cfg was not found') self.config_field_creator_ctr = \ ConfigParamCreatorCtrl( su2_cfg_obj=su2_cfg_obj, des_cfg_section=des_cfg_section, ctrld_cfg_f_creator=self, tabs_ctrl=tabs_ctrl) if __name__ == '__main__': pyforms.start_app(ConfigParamCreator, geometry=(400, 500, 500, 500)) # test_cfc = ConfigFieldCreator()
5738640214bb8de04103ec491a2e51acea88a2f5
4182189a2624d4aa36619915b7dba42fc5ecdaad
/xxxRekt/urls.py
e179cc2dd01d6dffeacffb8380cffad8d245d708
[]
no_license
HackerProjects/lindahearts
3b74e187176404b587bb55b03301f285966d393f
37492d88ebd28d65b225125b9c75547cb8687a10
refs/heads/master
2020-03-21T15:34:51.570455
2018-06-26T11:08:07
2018-06-26T11:08:07
138,721,065
0
0
null
null
null
null
UTF-8
Python
false
false
393
py
from django.contrib import admin from django.urls import path, re_path, include from django.contrib.staticfiles.urls import static, staticfiles_urlpatterns from . import settings urlpatterns = [ path('admin/', admin.site.urls), re_path(r'', include('home.urls')) ] urlpatterns += staticfiles_urlpatterns() urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
0c61ce225d80072549a004ed2591a718c5672896
7bededcada9271d92f34da6dae7088f3faf61c02
/pypureclient/flashblade/FB_2_8/models/target_get_response.py
ac033a0a864676d3ec597b61877bb7714e0e01c8
[ "BSD-2-Clause" ]
permissive
PureStorage-OpenConnect/py-pure-client
a5348c6a153f8c809d6e3cf734d95d6946c5f659
7e3c3ec1d639fb004627e94d3d63a6fdc141ae1e
refs/heads/master
2023-09-04T10:59:03.009972
2023-08-25T07:40:41
2023-08-25T07:40:41
160,391,444
18
29
BSD-2-Clause
2023-09-08T09:08:30
2018-12-04T17:02:51
Python
UTF-8
Python
false
false
4,220
py
# coding: utf-8 """ FlashBlade REST API A lightweight client for FlashBlade REST API 2.8, developed by Pure Storage, Inc. (http://www.purestorage.com/). OpenAPI spec version: 2.8 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flashblade.FB_2_8 import models class TargetGetResponse(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'continuation_token': 'str', 'total_item_count': 'int', 'items': 'list[Target]' } attribute_map = { 'continuation_token': 'continuation_token', 'total_item_count': 'total_item_count', 'items': 'items' } required_args = { } def __init__( self, continuation_token=None, # type: str total_item_count=None, # type: int items=None, # type: List[models.Target] ): """ Keyword args: continuation_token (str): Continuation token that can be provided in the `continuation_token` query param to get the next page of data. If you use the `continuation_token` to page through data you are guaranteed to get all items exactly once regardless of how items are modified. If an item is added or deleted during the pagination then it may or may not be returned. The `continuation_token` is generated if the `limit` is less than the remaining number of items, and the default sort is used (no sort is specified). total_item_count (int): Total number of items after applying `filter` params. items (list[Target]): A list of target objects. """ if continuation_token is not None: self.continuation_token = continuation_token if total_item_count is not None: self.total_item_count = total_item_count if items is not None: self.items = items def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `TargetGetResponse`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): return None else: return value def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(TargetGetResponse, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, TargetGetResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
048f1454876a4040818f971ff05431b5505e1f2b
4e31845d08ae3d8a525ce67bb1abab271e037eca
/FirefoxBotAD/fb.sikuli/sikuli.puller.v1.1/puller.py
f1a63ecf8fb0612ea8c16c81a1b1770b513c721d
[]
no_license
AdCrushMedia/sikuli
d1a17b814ec5b80c6107828dd0d8c2c89ae24995
7dd03f7653a3ecef25eb1ceb1970baca4e4cfd9b
refs/heads/master
2021-06-15T22:08:46.487573
2017-05-02T19:23:33
2017-05-02T19:23:33
73,114,145
0
0
null
null
null
null
UTF-8
Python
false
false
10,196
py
import os import sys import json import time import getopt import shutil import ctypes import zipfile import hashlib import paramiko import functools import subprocess from collections import defaultdict _NEW_ = "*new*" _UPD_ = "*upd*" _DEL_ = "*del*" _ZIP_ = '.zip' _JSON_ = '.json' _PKGVER_ = 'version'+ _JSON_ _CHANGES_ = 'changes'+ _JSON_ _FILE_MAP_ = 'filemap'+ _JSON_ _SETTINGS_ = 'settings'+ _JSON_ __home = os.getcwd() __temp_path = os.path.join(__home, 'temp') __pkgver_path = os.path.join(__home, _PKGVER_) __settings_path = os.path.join(__home, _SETTINGS_) class AllowAnythingPolicy(paramiko.MissingHostKeyPolicy): def missing_host_key(self, client, hostname, key): return def sftp_transcb(filepath, trans, spinner, bytes_so_far, bytes_total): sys.stdout.write('> sftp %s: %r %s (%d/%d) \r' % (trans, os.path.basename(filepath), spinner.next(), bytes_so_far, bytes_total)) sys.stdout.flush() def sftp_rexists(sftp, path): try: sftp.stat(path) return True except IOError, e: if e.errno == 2: return False return True def sftp_upload(sftp, local_path, remote_path): spinner = spinning_cursor() cb = functools.partial(sftp_transcb, remote_path, 'put', spinner) remote_stat = sftp.put(local_path, remote_path, callback=cb, confirm=True) sys.stdout.write("\n") local_stat = os.stat(local_path) if remote_stat.st_size == local_stat.st_size: print '> transfer complete! remote file last modified: %s\n' % ( time.ctime(remote_stat.st_mtime)) return True else: print '> An error occured during the transfer..' return False def sftp_download(sftp, remote_path, local_path): spinner = spinning_cursor() cb = functools.partial(sftp_transcb, remote_path, 'get', spinner) try: sftp.get(remote_path, local_path, callback=cb) sys.stdout.write("\n") return True except Exception, e: print "\n> An error occured during donwload" return False def ask(question): # raw_input returns the empty string for "enter" yes = set(['yes','y', 'ye', '']) no = set(['no','n']) sys.stdout.write(question + ' [Y/n] ') while True: choice = raw_input().lower() if choice in yes: return True elif choice in no: return False else: sys.stdout.write('Please respond with [Y/n] ') def Mbox(title, text, style=1): return ctypes.windll.user32.MessageBoxA(0, text, title, style) ## Styles: ## 0 : OK ## 1 : OK | Cancel ## 2 : Abort | Retry | Ignore ## 3 : Yes | No | Cancel ## 4 : Yes | No ## 5 : Retry | No ## 6 : Cancel | Try Again | Continue def spinning_cursor(): while True: for cursor in '|/-\\': yield cursor def checksum(fname): hash_md5 = hashlib.md5() with open(fname, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_md5.update(chunk) return hash_md5.hexdigest() def get_hasver(sftp, rmt_ver_path): if not sftp_rexists(sftp, rmt_ver_path): return False else: return True def rmvfile(filepath): if os.path.isfile(filepath): os.remove(filepath) def rmvdir_contents(dirpath): for the_file in os.listdir(dirpath): file_path = os.path.join(dirpath, the_file) try: if os.path.isfile(file_path): os.unlink(file_path) elif os.path.isdir(file_path): shutil.rmtree(file_path) except Exception as e: print "> READ ONLY folder cant be deleted" print "> %S" % file_path def reset(): rmvfile(__pkgver_path) with open(__settings_path) as settings_file: settings = json.load(settings_file) watch_folder = settings['watch_folder'] rmvdir_contents(watch_folder) rmvdir_contents(__temp_path) def extract(zipath, dest): filename = os.path.basename(zipath) print "> Extracting package '%s'" % filename with zipfile.ZipFile(zipath, "r") as z: try: z.extractall(dest) z.close() return True except: print "> Error on zip extract. \n>'%s'" % filename return False def check_integrity(watch_folder): print '# Checking for file integrity' fmap = defaultdict(dict) spinner = spinning_cursor() filemap_path = os.path.join(watch_folder, _FILE_MAP_) with open(filemap_path) as fmout: fmap = json.load(fmout) for path, csum in fmap['map'].items(): target = os.path.join(watch_folder, path) if os.path.isfile(target): localcsum = checksum(target) same = localcsum == csum if same: sys.stdout.write('> %s %s\r' % (csum, spinner.next())) sys.stdout.flush() time.sleep(0.002) else: print "> Bad checksum: %s %s" % (csum, path) print "\n> done.." def checkploy(tempver_path, watch_folder): changes = defaultdict(dict) fmap = defaultdict(dict) changes_path = os.path.join(tempver_path, _CHANGES_) with open(changes_path) as fileout: changes = json.load(fileout) csum = changes['checksum'] filemap_path = os.path.join(tempver_path, _FILE_MAP_) with open(filemap_path) as fmout: fmap = json.load(fmout) pkgzip_path = os.path.join(tempver_path, csum + _ZIP_) extr_dest = os.path.join(tempver_path, csum) if not os.path.exists(extr_dest): os.makedirs(extr_dest) if extract(pkgzip_path, extr_dest): print '> Checking for file integrity at temp level' for path, csum in fmap['map'].items(): target = os.path.join(extr_dest, path) if os.path.isfile(target): localcsum = checksum(target) same = localcsum == csum if same: sys.stdout.write('> %s\r' % csum) sys.stdout.flush() else: print "> Bad checksum: local: %s >> %s %s" % (csum, localcsum, path) return False print '> checksum passed.. ' rmvdir_contents(extr_dest) os.rmdir(extr_dest) print "\n# Deploying version package" if not extract(pkgzip_path, watch_folder): return False for path, tag in changes['pkg'].items(): if tag == _DEL_: abspath = os.path.join(watch_folder, path) rmvfile(abspath) return True def deploy_pkg(pkgpath, watch_folder, version): filename = os.path.basename(pkgpath) fn, fe = os.path.splitext(filename) extr_dest = os.path.join(__temp_path, fn) if not os.path.exists(extr_dest): os.makedirs(extr_dest) if not extract(pkgpath, extr_dest): return False if not checkploy(extr_dest, watch_folder): return False else: pkgver = defaultdict(dict) pkgver['version'] = version with open(__pkgver_path, 'w') as pvout: json.dump(pkgver, pvout) print "> Package deployed. Current version: %d\n" % version return True def analyze(watch_folder, ver): changes = defaultdict(dict) changes_path = os.path.join(watch_folder, _CHANGES_) with open(changes_path) as fileout: changes = json.load(fileout) if ver != changes['version']: print '> package version not the same [%d.zip]' % ver return False zipname = changes['checksum']+ _ZIP_ pkgzip = os.path.join(watch_folder, zipname) if not os.path.isfile(pkgzip): print "> package %s not found in '%s.zip'" % (changes['checksum'], ver) return False extract(pkgzip, watch_folder, zipname) rmvfile(pkgzip) print '> root folder: %s' % watch_folder for path, tag in changes['pkg'].items(): print "> %s %s" % (tag, path) if tag == _DEL_: abspath = os.path.join(watch_folder, path) rmvfile(abspath) rmvfile(changes_path) def run_cmd(exe, arg): print "> running defined command.." if os.path.isfile(exe): p = subprocess.Popen([exe, arg]) else: print "> Cant find defined 'exe_to_run' path" print '> Please check your settings' # --- main def main_puller(): _pkgver = defaultdict(dict) if not os.path.isfile(__settings_path): print '> Cant find required file \'%s\'' %(_SETTINGS_) sys.exit() # -- load settings variables with open(__settings_path) as settings_file: _settings = json.load(settings_file) _address = _settings['ftp']['address'] _username = _settings['ftp']['username'] _password = _settings['ftp']['password'] _keep_pkg = _settings['keep_pkg'] _ftp_home = _settings['ftp_home'] _app_title = _settings['app_title'] _watch_folder = _settings['watch_folder'] _exe_to_run = _settings['exe_to_run'] _exe_argument = _settings['exe_argument'] if not os.path.exists(_watch_folder): print "> Defined watch folder not found!" print "> %s" % _watch_folder print "\n> Please check your settings" errmsg = "> Defined watch folder not found!\n> %s\n> Please check your settings" % _watch_folder Mbox( "Settings Problem", str(errmsg), 0) sys.exit() if not os.path.exists(__temp_path): os.makedirs(__temp_path) if not os.path.isfile(__pkgver_path): print "> Cant find '%s'. Assumed first pull setting version to 0" % _PKGVER_ _pkgver['version'] = 0 else: with open(__pkgver_path) as pkgver_file: _pkgver = json.load(pkgver_file) print "# Current version: %d" % _pkgver['version'] user_ok = False box_title = "Package Update for '%s'" % _app_title box_msg = "An update has been detected. Click 'OK' to download or 'Cancel' to ingore." print '# Connecting to server \'%s\'' % _address client = paramiko.SSHClient() client.set_missing_host_key_policy(AllowAnythingPolicy()) client.connect(_address, username=_username, password=_password) _sftp = client.open_sftp() print '# Checking for updates..' version = _pkgver['version'] while True: version += 1 verzip = str(version)+ _ZIP_ remote_verpkg = os.path.join(_ftp_home, verzip) if not get_hasver(_sftp, remote_verpkg): print '> No updates detected..' break else: if not user_ok: if Mbox( str(box_title), box_msg) == 1: user_ok = True else: sys.exit() pkgver_zip = os.path.join(__temp_path, verzip) if not sftp_download(_sftp, remote_verpkg, pkgver_zip): sys.exit() if not deploy_pkg(pkgver_zip, _watch_folder, version): sys.exit() _sftp.close() client.close() run_cmd(_exe_to_run, _exe_argument) def print_help(): print 'puller.py [-h]' def main(argv): try: opts,args = getopt.getopt(argv,"hxp", ['help', 'reset', 'pull']) except getopt.GetoptError: print_help() for opt, arg in opts: if opt == '-h': print_help() sys.exit() elif opt in ("-x", "--reset"): reset() # for debugging only sys.exit() elif opt in ("-p", "--pull"): print '' main_puller() if __name__ == "__main__": main(sys.argv[1:])
c9baa64f4b82950354c16fb73ca806ec1d27be5f
a9c3be4041c2a93fcdf3407a03ca33ceb839dc12
/Hostel Management Project/hostel_mgmt/right_frame.py
25d8a4c86dbe4ae8f65cebd1bd6f2edf351c440e
[]
no_license
Soham-Chatterjee/Hostel_mgmt
082bcbeb76fe06ddf606b517c8d690ebb7184014
8225181ff8cc1fbcf6c9cf35087d9bd6123ce5eb
refs/heads/main
2023-02-20T17:15:36.119611
2021-01-23T16:25:35
2021-01-23T16:25:35
317,414,832
0
0
null
null
null
null
UTF-8
Python
false
false
1,947
py
import tkinter from hostel_mgmt import root from PIL import Image, ImageTk from hostel_mgmt.design import right_frame def on_enter(btn): btn['bg'] = "bisque" def on_leave(btn): btn['bg'] = "bisque3" image_load = Image.open("./Fee Chart.png") image_render = ImageTk.PhotoImage(image_load) pos = {'x': 12, 'btn1': 10, 'btn2': 60, 'btn3': 110, 'btn4': 160, 'btn5': 210, 'btn6': 260, 'btn7':310} btn1 = tkinter.Button(right_frame, text="Button 1", bg="bisque3", activebackground="bisque3", relief="flat", font=("Courier New", 12), cursor="hand2", width=26) btn2 = tkinter.Button(right_frame, text="Button 2", bg="bisque3", activebackground="bisque3", relief="flat", font=("Courier New", 12), cursor="hand2", width=26) btn3 = tkinter.Button(right_frame, text="Button 3", bg="bisque3", activebackground="bisque3", relief="flat", font=("Courier New", 12), cursor="hand2", width=26) btn4 = tkinter.Button(right_frame, text="Button 4", bg="bisque3", activebackground="bisque3", relief="flat", font=("Courier New", 12), cursor="hand2", width=26) btn5 = tkinter.Button(right_frame, text="Button 4", bg="bisque3", activebackground="bisque3", relief="flat", font=("Courier New", 12), cursor="hand2", width=26) img = tkinter.Label(right_frame, image=image_render) img.image = image_render img.config(bg='bisque4') img.place(x=5, y=435) btn_list = [btn1, btn2, btn3, btn4, btn5] btn1.bind("<Enter>", lambda event: on_enter(btn1)) btn1.bind("<Leave>", lambda event: on_leave(btn1)) btn2.bind("<Enter>", lambda event: on_enter(btn2)) btn2.bind("<Leave>", lambda event: on_leave(btn2)) btn3.bind("<Enter>", lambda event: on_enter(btn3)) btn3.bind("<Leave>", lambda event: on_leave(btn3)) btn4.bind("<Enter>", lambda event: on_enter(btn4)) btn4.bind("<Leave>", lambda event: on_leave(btn4)) btn5.bind("<Enter>", lambda event: on_enter(btn5)) btn5.bind("<Leave>", lambda event: on_leave(btn5))
36fd9544ce7e5544264fcd2e31e7b8e4bac2fe1b
70caddd0199b026b9fae11bc8da4bbc875b3a737
/test1/sentence_test.py
1b40fd4ee85bc018354c8ad8ba5cfc080b841880
[]
no_license
zzxzzg/python
997e36fc9e8676dfb108082d273c03eb40eb2fae
d58d142ea5d5fb7f1197cf2981ece85909ddb0ba
refs/heads/master
2020-06-13T12:39:53.612822
2016-12-20T10:35:18
2016-12-20T10:35:18
75,379,307
0
0
null
null
null
null
UTF-8
Python
false
false
1,042
py
#! /usr/bin/env python3 # 使用 elif替代 else if ,去掉大括号,使用缩进来分割代码块 # if condition_1: # statement_block_1 # elif condition_2: # statement_block_2 # else: # statement_block_3 #注意冒号!!! # while 判断条件: # 语句 #另外,在Python中没有do..while循环。 # while还提供了else的语句配对,当不满足条件的时候运行else(只运行一次) count = 0 while count < 5: print (count, " 小于 5") count = count + 1 else: print (count, " 大于或等于 5") # Python for循环可以遍历任何序列的项目,如一个列表或者一个字符串。 # for循环的一般格式如下: # for <variable> in <sequence>: # <statements> # else: # <statements> #如果你需要遍历数字序列,可以使用内置range()函数 for i in range(5) for i in range(5,9) # Python pass是空语句,是为了保持程序结构的完整性。 # pass 不做任何事情,一般用做占位语句,如下实例 while True: pass
445508632ba9ca0cb62f6858ef1bb3b3b3ba0625
f98dc868a74dc7a9b128a2d4ce2c53224dd11f63
/intermediate_source/pipeline_tutorial.py
49b37b1f564e74c3f8bc8ff8d8be0e03ec5f33b8
[ "BSD-3-Clause" ]
permissive
walkingpanda/tutorials
ebe69e3fa8818b596922136273c74f6b0ab3b479
973193b4e28f4c277e14dcd93fd199f26cd1038b
refs/heads/master
2023-05-29T23:34:27.635650
2021-06-14T21:05:10
2021-06-14T21:05:10
null
0
0
null
null
null
null
UTF-8
Python
false
false
19,273
py
""" Training Transformer models using Pipeline Parallelism ====================================================== **Author**: `Pritam Damania <https://github.com/pritamdamania87>`_ This tutorial demonstrates how to train a large Transformer model across multiple GPUs using pipeline parallelism. This tutorial is an extension of the `Sequence-to-Sequence Modeling with nn.Transformer and TorchText <https://pytorch.org/tutorials/beginner/transformer_tutorial.html>`__ tutorial and scales up the same model to demonstrate how pipeline parallelism can be used to train Transformer models. Prerequisites: * `Pipeline Parallelism <https://pytorch.org/docs/stable/pipeline.html>`__ * `Sequence-to-Sequence Modeling with nn.Transformer and TorchText <https://pytorch.org/tutorials/beginner/transformer_tutorial.html>`__ """ ###################################################################### # Define the model # ---------------- # ###################################################################### # In this tutorial, we will split a Transformer model across two GPUs and use # pipeline parallelism to train the model. The model is exactly the same model # used in the `Sequence-to-Sequence Modeling with nn.Transformer and TorchText # <https://pytorch.org/tutorials/beginner/transformer_tutorial.html>`__ tutorial, # but is split into two stages. The largest number of parameters belong to the # `nn.TransformerEncoder <https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html>`__ layer. # The `nn.TransformerEncoder <https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html>`__ # itself consists of ``nlayers`` of `nn.TransformerEncoderLayer <https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html>`__. # As a result, our focus is on ``nn.TransformerEncoder`` and we split the model # such that half of the ``nn.TransformerEncoderLayer`` are on one GPU and the # other half are on another. To do this, we pull out the ``Encoder`` and # ``Decoder`` sections into seperate modules and then build an nn.Sequential # representing the original Transformer module. import sys import math import torch import torch.nn as nn import torch.nn.functional as F import tempfile from torch.nn import TransformerEncoder, TransformerEncoderLayer if sys.platform == 'win32': print('Windows platform is not supported for pipeline parallelism') sys.exit(0) if torch.cuda.device_count() < 2: print('Need at least two GPU devices for this tutorial') sys.exit(0) class Encoder(nn.Module): def __init__(self, ntoken, ninp, dropout=0.5): super(Encoder, self).__init__() self.pos_encoder = PositionalEncoding(ninp, dropout) self.encoder = nn.Embedding(ntoken, ninp) self.ninp = ninp self.init_weights() def init_weights(self): initrange = 0.1 self.encoder.weight.data.uniform_(-initrange, initrange) def forward(self, src): # Need (S, N) format for encoder. src = src.t() src = self.encoder(src) * math.sqrt(self.ninp) return self.pos_encoder(src) class Decoder(nn.Module): def __init__(self, ntoken, ninp): super(Decoder, self).__init__() self.decoder = nn.Linear(ninp, ntoken) self.init_weights() def init_weights(self): initrange = 0.1 self.decoder.bias.data.zero_() self.decoder.weight.data.uniform_(-initrange, initrange) def forward(self, inp): # Need batch dimension first for output of pipeline. return self.decoder(inp).permute(1, 0, 2) ###################################################################### # ``PositionalEncoding`` module injects some information about the # relative or absolute position of the tokens in the sequence. The # positional encodings have the same dimension as the embeddings so that # the two can be summed. Here, we use ``sine`` and ``cosine`` functions of # different frequencies. class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:x.size(0), :] return self.dropout(x) ###################################################################### # Load and batch data # ------------------- # ###################################################################### # The training process uses Wikitext-2 dataset from ``torchtext``. The # vocab object is built based on the train dataset and is used to numericalize # tokens into tensors. Starting from sequential data, the ``batchify()`` # function arranges the dataset into columns, trimming off any tokens remaining # after the data has been divided into batches of size ``batch_size``. # For instance, with the alphabet as the sequence (total length of 26) # and a batch size of 4, we would divide the alphabet into 4 sequences of # length 6: # # .. math:: # \begin{bmatrix} # \text{A} & \text{B} & \text{C} & \ldots & \text{X} & \text{Y} & \text{Z} # \end{bmatrix} # \Rightarrow # \begin{bmatrix} # \begin{bmatrix}\text{A} \\ \text{B} \\ \text{C} \\ \text{D} \\ \text{E} \\ \text{F}\end{bmatrix} & # \begin{bmatrix}\text{G} \\ \text{H} \\ \text{I} \\ \text{J} \\ \text{K} \\ \text{L}\end{bmatrix} & # \begin{bmatrix}\text{M} \\ \text{N} \\ \text{O} \\ \text{P} \\ \text{Q} \\ \text{R}\end{bmatrix} & # \begin{bmatrix}\text{S} \\ \text{T} \\ \text{U} \\ \text{V} \\ \text{W} \\ \text{X}\end{bmatrix} # \end{bmatrix} # # These columns are treated as independent by the model, which means that # the dependence of ``G`` and ``F`` can not be learned, but allows more # efficient batch processing. # import io import torch from torchtext.utils import download_from_url, extract_archive from torchtext.data.utils import get_tokenizer from torchtext.vocab import build_vocab_from_iterator url = 'https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip' test_filepath, valid_filepath, train_filepath = extract_archive(download_from_url(url)) tokenizer = get_tokenizer('basic_english') vocab = build_vocab_from_iterator(map(tokenizer, iter(io.open(train_filepath, encoding="utf8")))) def data_process(raw_text_iter): data = [torch.tensor([vocab[token] for token in tokenizer(item)], dtype=torch.long) for item in raw_text_iter] return torch.cat(tuple(filter(lambda t: t.numel() > 0, data))) train_data = data_process(iter(io.open(train_filepath, encoding="utf8"))) val_data = data_process(iter(io.open(valid_filepath, encoding="utf8"))) test_data = data_process(iter(io.open(test_filepath, encoding="utf8"))) device = torch.device("cuda") def batchify(data, bsz): # Divide the dataset into bsz parts. nbatch = data.size(0) // bsz # Trim off any extra elements that wouldn't cleanly fit (remainders). data = data.narrow(0, 0, nbatch * bsz) # Evenly divide the data across the bsz batches. data = data.view(bsz, -1).t().contiguous() return data.to(device) batch_size = 20 eval_batch_size = 10 train_data = batchify(train_data, batch_size) val_data = batchify(val_data, eval_batch_size) test_data = batchify(test_data, eval_batch_size) ###################################################################### # Functions to generate input and target sequence # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # ###################################################################### # ``get_batch()`` function generates the input and target sequence for # the transformer model. It subdivides the source data into chunks of # length ``bptt``. For the language modeling task, the model needs the # following words as ``Target``. For example, with a ``bptt`` value of 2, # we'd get the following two Variables for ``i`` = 0: # # .. image:: ../_static/img/transformer_input_target.png # # It should be noted that the chunks are along dimension 0, consistent # with the ``S`` dimension in the Transformer model. The batch dimension # ``N`` is along dimension 1. # bptt = 35 def get_batch(source, i): seq_len = min(bptt, len(source) - 1 - i) data = source[i:i+seq_len] target = source[i+1:i+1+seq_len].view(-1) # Need batch dimension first for pipeline parallelism. return data.t(), target ###################################################################### # Model scale and Pipe initialization # ----------------------------------- # ###################################################################### # To demonstrate training large Transformer models using pipeline parallelism, # we scale up the Transformer layers appropriately. We use an embedding # dimension of 4096, hidden size of 4096, 16 attention heads and 12 total # transformer layers (``nn.TransformerEncoderLayer``). This creates a model with # **~1.4 billion** parameters. # # We need to initialize the `RPC Framework <https://pytorch.org/docs/stable/rpc.html>`__ # since Pipe depends on the RPC framework via `RRef <https://pytorch.org/docs/stable/rpc.html#rref>`__ # which allows for future expansion to cross host pipelining. We need to # initialize the RPC framework with only a single worker since we're using a # single process to drive multiple GPUs. # # The pipeline is then initialized with 8 transformer layers on one GPU and 8 # transformer layers on the other GPU. # # .. note:: # For efficiency purposes we ensure that the ``nn.Sequential`` passed to # ``Pipe`` only consists of two elements (corresponding to two GPUs), this # allows the Pipe to work with only two partitions and avoid any # cross-partition overheads. ntokens = len(vocab.stoi) # the size of vocabulary emsize = 4096 # embedding dimension nhid = 4096 # the dimension of the feedforward network model in nn.TransformerEncoder nlayers = 12 # the number of nn.TransformerEncoderLayer in nn.TransformerEncoder nhead = 16 # the number of heads in the multiheadattention models dropout = 0.2 # the dropout value from torch.distributed import rpc tmpfile = tempfile.NamedTemporaryFile() rpc.init_rpc( name="worker", rank=0, world_size=1, rpc_backend_options=rpc.TensorPipeRpcBackendOptions( init_method="file://{}".format(tmpfile.name), # Specifying _transports and _channels is a workaround and we no longer # will have to specify _transports and _channels for PyTorch # versions >= 1.8.1 _transports=["ibv", "uv"], _channels=["cuda_ipc", "cuda_basic"], ) ) num_gpus = 2 partition_len = ((nlayers - 1) // num_gpus) + 1 # Add encoder in the beginning. tmp_list = [Encoder(ntokens, emsize, dropout).cuda(0)] module_list = [] # Add all the necessary transformer blocks. for i in range(nlayers): transformer_block = TransformerEncoderLayer(emsize, nhead, nhid, dropout) if i != 0 and i % (partition_len) == 0: module_list.append(nn.Sequential(*tmp_list)) tmp_list = [] device = i // (partition_len) tmp_list.append(transformer_block.to(device)) # Add decoder in the end. tmp_list.append(Decoder(ntokens, emsize).cuda(num_gpus - 1)) module_list.append(nn.Sequential(*tmp_list)) from torch.distributed.pipeline.sync import Pipe # Build the pipeline. chunks = 8 model = Pipe(torch.nn.Sequential(*module_list), chunks = chunks) def get_total_params(module: torch.nn.Module): total_params = 0 for param in module.parameters(): total_params += param.numel() return total_params print ('Total parameters in model: {:,}'.format(get_total_params(model))) ###################################################################### # Run the model # ------------- # ###################################################################### # `CrossEntropyLoss <https://pytorch.org/docs/master/nn.html?highlight=crossentropyloss#torch.nn.CrossEntropyLoss>`__ # is applied to track the loss and # `SGD <https://pytorch.org/docs/master/optim.html?highlight=sgd#torch.optim.SGD>`__ # implements stochastic gradient descent method as the optimizer. The initial # learning rate is set to 5.0. `StepLR <https://pytorch.org/docs/master/optim.html?highlight=steplr#torch.optim.lr_scheduler.StepLR>`__ is # applied to adjust the learn rate through epochs. During the # training, we use # `nn.utils.clip_grad_norm\_ <https://pytorch.org/docs/master/nn.html?highlight=nn%20utils%20clip_grad_norm#torch.nn.utils.clip_grad_norm_>`__ # function to scale all the gradient together to prevent exploding. # criterion = nn.CrossEntropyLoss() lr = 5.0 # learning rate optimizer = torch.optim.SGD(model.parameters(), lr=lr) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95) import time def train(): model.train() # Turn on the train mode total_loss = 0. start_time = time.time() ntokens = len(vocab.stoi) # Train only for 50 batches to keep script execution time low. nbatches = min(50 * bptt, train_data.size(0) - 1) for batch, i in enumerate(range(0, nbatches, bptt)): data, targets = get_batch(train_data, i) optimizer.zero_grad() # Since the Pipe is only within a single host and process the ``RRef`` # returned by forward method is local to this node and can simply # retrieved via ``RRef.local_value()``. output = model(data).local_value() # Need to move targets to the device where the output of the # pipeline resides. loss = criterion(output.view(-1, ntokens), targets.cuda(1)) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optimizer.step() total_loss += loss.item() log_interval = 10 if batch % log_interval == 0 and batch > 0: cur_loss = total_loss / log_interval elapsed = time.time() - start_time print('| epoch {:3d} | {:5d}/{:5d} batches | ' 'lr {:02.2f} | ms/batch {:5.2f} | ' 'loss {:5.2f} | ppl {:8.2f}'.format( epoch, batch, nbatches // bptt, scheduler.get_lr()[0], elapsed * 1000 / log_interval, cur_loss, math.exp(cur_loss))) total_loss = 0 start_time = time.time() def evaluate(eval_model, data_source): eval_model.eval() # Turn on the evaluation mode total_loss = 0. ntokens = len(vocab.stoi) # Evaluate only for 50 batches to keep script execution time low. nbatches = min(50 * bptt, data_source.size(0) - 1) with torch.no_grad(): for i in range(0, nbatches, bptt): data, targets = get_batch(data_source, i) output = eval_model(data).local_value() output_flat = output.view(-1, ntokens) # Need to move targets to the device where the output of the # pipeline resides. total_loss += len(data) * criterion(output_flat, targets.cuda(1)).item() return total_loss / (len(data_source) - 1) ###################################################################### # Loop over epochs. Save the model if the validation loss is the best # we've seen so far. Adjust the learning rate after each epoch. best_val_loss = float("inf") epochs = 3 # The number of epochs best_model = None for epoch in range(1, epochs + 1): epoch_start_time = time.time() train() val_loss = evaluate(model, val_data) print('-' * 89) print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | ' 'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time), val_loss, math.exp(val_loss))) print('-' * 89) if val_loss < best_val_loss: best_val_loss = val_loss best_model = model scheduler.step() ###################################################################### # Evaluate the model with the test dataset # ------------------------------------- # ###################################################################### # Apply the best model to check the result with the test dataset. test_loss = evaluate(best_model, test_data) print('=' * 89) print('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format( test_loss, math.exp(test_loss))) print('=' * 89) ###################################################################### # Output # ------ # ###################################################################### #.. code-block:: py # # Total parameters in model: 1,847,087,215 # | epoch 1 | 10/ 50 batches | lr 5.00 | ms/batch 2387.45 | loss 42.16 | ppl 2036775646369743616.00 # | epoch 1 | 20/ 50 batches | lr 5.00 | ms/batch 2150.93 | loss 48.24 | ppl 891334049215401558016.00 # | epoch 1 | 30/ 50 batches | lr 5.00 | ms/batch 2155.23 | loss 34.66 | ppl 1125676483188404.62 # | epoch 1 | 40/ 50 batches | lr 5.00 | ms/batch 2158.42 | loss 38.87 | ppl 76287208340888368.00 # ----------------------------------------------------------------------------------------- # | end of epoch 1 | time: 119.65s | valid loss 2.95 | valid ppl 19.15 # ----------------------------------------------------------------------------------------- # | epoch 2 | 10/ 50 batches | lr 4.51 | ms/batch 2376.16 | loss 34.92 | ppl 1458001430957104.00 # | epoch 2 | 20/ 50 batches | lr 4.51 | ms/batch 2160.96 | loss 34.75 | ppl 1232463826541886.50 # | epoch 2 | 30/ 50 batches | lr 4.51 | ms/batch 2160.66 | loss 28.10 | ppl 1599598251136.51 # | epoch 2 | 40/ 50 batches | lr 4.51 | ms/batch 2160.07 | loss 20.25 | ppl 621174306.77 # ----------------------------------------------------------------------------------------- # | end of epoch 2 | time: 119.76s | valid loss 0.87 | valid ppl 2.38 # ----------------------------------------------------------------------------------------- # | epoch 3 | 10/ 50 batches | lr 4.29 | ms/batch 2376.49 | loss 13.20 | ppl 537727.23 # | epoch 3 | 20/ 50 batches | lr 4.29 | ms/batch 2160.12 | loss 10.98 | ppl 58548.58 # | epoch 3 | 30/ 50 batches | lr 4.29 | ms/batch 2160.05 | loss 12.01 | ppl 164152.79 # | epoch 3 | 40/ 50 batches | lr 4.29 | ms/batch 2160.03 | loss 10.63 | ppl 41348.00 # ----------------------------------------------------------------------------------------- # | end of epoch 3 | time: 119.76s | valid loss 0.78 | valid ppl 2.17 # ----------------------------------------------------------------------------------------- # ========================================================================================= # | End of training | test loss 0.69 | test ppl 1.99 # =========================================================================================
bb4bfb31dbd4a51179b6d3da13cc9b01c3d47928
a691ae93f31f7fac56027c9f5205731ea1d63c66
/euler/euler1/euler1.py
b6bc320e2955d56cfc1ca2eb988f97a3f83d111c
[]
no_license
KnoxMakers/CodingWorkshops
c5cbb4ac0dd8abd7a68efc3b8eb3ad1f6b107658
12a0698f31d05c4e63d964dd3f9bc134086636e5
refs/heads/master
2021-01-19T07:56:27.199119
2018-12-05T23:57:33
2018-12-05T23:57:33
7,244,457
0
0
null
null
null
null
UTF-8
Python
false
false
188
py
#!/usr/bin/python x = range(1,1000) woot = 0 for i in x: if not i%3 or not i%5: print i, "is a multiple of 3 or 5" #woot += i woot = woot + i print "Total:",woot
20f03c830a4454b43d9ab80e86ffc4f75dbfde63
370090ab025824b5d38618a6c845fb5f293efe38
/manage.py
070e489cdb724e330a0ddd103793cf82b814ab50
[ "MIT" ]
permissive
Antavio/Moringa-Project-Awards
4bcb1d325226cc9dcd239556c085e8d8d47491ab
941d6ca0e8978cbb54bb8858ac02bed34fd73306
refs/heads/master
2021-09-08T04:06:14.895597
2019-05-29T07:37:46
2019-05-29T07:37:46
188,390,930
0
1
MIT
2021-09-08T01:00:56
2019-05-24T09:12:00
Python
UTF-8
Python
false
false
812
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "Project_Awards.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
d1e5565535aa6454248bea2abdc3892524a84c42
36c95182453f97bc5587ac8f5f763641b9739dce
/src/video/urls.py
a32614ee211a03c78eb98a09f2c48450c2ca6018
[]
no_license
DreamfoxTeam/MyDream.API.Video
ea8d4194ccbc2f4f247645cf116070bc44b4c4b8
72abd0258a8e0a46cc337210b32c69720f81a858
refs/heads/master
2020-04-05T02:21:45.808768
2018-11-25T13:37:15
2018-11-25T13:37:15
156,474,229
0
0
null
2018-11-25T13:37:16
2018-11-07T01:44:14
Python
UTF-8
Python
false
false
825
py
"""video URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from django.conf.urls import url,include urlpatterns = [ url(r'^', include('api.urls')), url(r'^admin/', admin.site.urls), ]
7ea45cbd4ae13f3f6d4ca94d080968135b93965b
af9c3ca608bd3c0b9aa664756fad5f4da495a163
/second.py
af911857c52401f822e540b0d1b302e42872dfc8
[]
no_license
1186141415/COVID-19
6f3e397fa73f1b6e845a8db69c02300aa5157e7e
52f4788b563dae776059a621125e605051175cdf
refs/heads/master
2022-09-27T16:58:27.788021
2020-06-06T04:21:54
2020-06-06T04:21:54
255,866,776
1
3
null
2020-06-06T03:23:58
2020-04-15T09:23:55
Jupyter Notebook
UTF-8
Python
false
false
10,964
py
import pandas as pd # 导入matplotlib import matplotlib.pyplot as plt import matplotlib.dates as dates import matplotlib.ticker as ticker import datetime # 读取数据 today_world = pd.read_csv("today_world_2020_04_03.csv") name_dict = {'date':'日期','name':'名称','id':'编号','lastUpdateTime':'更新时间', 'today_confirm':'当日新增确诊','today_suspect':'当日新增疑似', 'today_heal':'当日新增治愈','today_dead':'当日新增死亡', 'today_severe':'当日新增重症','today_storeConfirm':'当日现存确诊', 'total_confirm':'累计确诊','total_suspect':'累计疑似', 'total_heal':'累计治愈','total_dead':'累计死亡','total_severe':'累计重症', 'total_input':'累计输入病例','today_input':'当日输入病例'} # 更改列名 today_world.rename(columns=name_dict,inplace=True) # inplace参数判断是否在原数据上进行修改 # 缺失值处理 today_world['当日现存确诊'] = today_world['累计确诊']-today_world['累计治愈']-today_world['累计死亡'] print(today_world.head()) print(today_world.info())# 查看数据基本信息 print(today_world.describe())# 默认只计算数值型特征的统计信息 # 计算缺失值比例 today_world_nan = today_world.isnull().sum()/len(today_world) # 转变为百分数 print(today_world_nan.apply(lambda x: format(x, '.1%')) ) # 计算病死率,且保留两位小数 today_world['病死率'] = (today_world['累计死亡']/today_world['累计确诊']).apply(lambda x: format(x, '.2f')) # 将病死率数据类型转换为float today_world['病死率'] = today_world['病死率'].astype('float') # 根据病死率降序排序 today_world.sort_values('病死率',ascending=False,inplace=True) print(today_world.head(10))# 显示病死率前十国家 # 将国家名称设为索引 today_world.set_index('名称',inplace=True) print(today_world.head(3)) print(today_world.loc['中国'])#可以通过传入列表获取指定国家的数据 # 查看当前累计确诊人数前十国家 world_top10 = today_world.sort_values(['累计确诊'],ascending=False)[:10] world_top10 = world_top10[['累计确诊','累计死亡','病死率']] print(world_top10) #绘图准备 plt.rcParams['font.sans-serif']=['SimHei'] #正常显示中文 plt.rcParams['figure.dpi'] = 120 #设置所有图片的清晰度 # 绘制条形图 world_top10.sort_values('累计确诊').plot.barh(subplots=True,layout=(1,3),sharex=False, figsize=(7,4),legend=False,sharey=True) plt.tight_layout() #调整子图间距 plt.show() # 读取数据 today_province = pd.read_csv("today_province_2020_04_03.csv") # 创建中文列名字典 name_dict = {'date':'日期','name':'名称','id':'编号','lastUpdateTime':'更新时间', 'today_confirm':'当日新增确诊','today_suspect':'当日新增疑似', 'today_heal':'当日新增治愈','today_dead':'当日新增死亡', 'today_severe':'当日新增重症','today_storeConfirm':'当日现存确诊', 'total_confirm':'累计确诊','total_suspect':'累计疑似', 'total_heal':'累计治愈','total_dead':'累计死亡','total_severe':'累计重症', 'total_input':'累计输入病例','today_input':'当日输入病例'} # 更改列名 today_province.rename(columns=name_dict,inplace=True) # inplace参数是否在原对象基础上进行修改 print(today_province.head()) print(today_province.info())# 查看数据基本信息 print(today_province.describe())# 查看数值型特征的统计量 # 计算各省当日现存确诊人数 today_province['当日现存确诊'] = today_province['累计确诊']-today_province['累计治愈']-today_province['累计死亡'] # 将各省名称设置为索引 today_province.set_index('名称',inplace=True) print(today_province.info()) # 查看全国新增确诊top10的地区,new_top6 就是指代新增确诊的10个地区 new_top6 = today_province['当日新增确诊'].sort_values(ascending=False)[:10] print(new_top6) # 绘制条形图和饼图 fig,ax = plt.subplots(1,2,figsize=(10,5)) new_top6.sort_values(ascending=True).plot.barh(fontsize=10,ax=ax[0]) new_top6.plot.pie(autopct='%.1f%%',fontsize=10,ax=ax[1]) plt.ylabel('') plt.title('全国新增确诊top10地区',size=15) plt.show() # 查看全国现存确诊人数top10的省市 store_top10 = today_province['当日现存确诊'].sort_values(ascending=False)[:10] print(store_top10) # 绘制条形图 store_top10.sort_values(ascending=True).plot.barh(fontsize=10) plt.title('全国现存确诊top10地区',size=15) plt.show() #全国历史数据探索性分析 # 读取数据 alltime_china = pd.read_csv("alltime_China_2020_04_03.csv") # 创建中文列名字典 name_dict = {'date':'日期','name':'名称','id':'编号','lastUpdateTime':'更新时间', 'today_confirm':'当日新增确诊','today_suspect':'当日新增疑似', 'today_heal':'当日新增治愈','today_dead':'当日新增死亡', 'today_severe':'当日新增重症','today_storeConfirm':'当日现存确诊', 'total_confirm':'累计确诊','total_suspect':'累计疑似', 'total_heal':'累计治愈','total_dead':'累计死亡','total_severe':'累计重症', 'total_input':'累计输入病例','today_input':'当日输入病例'} # 更改列名 alltime_china.rename(columns=name_dict,inplace=True) print(alltime_china.head()) print(alltime_china.info()) print(alltime_china.describe()) # 缺失值处理 # 计算当日现存确诊人数 alltime_china['当日现存确诊'] = alltime_china['累计确诊']-alltime_china['累计治愈']-alltime_china['累计死亡'] # 删除更新时间一列 alltime_china.drop(['更新时间','当日新增重症'],axis=1,inplace=True) print(alltime_china.info()) # 将日期改成datetime格式 alltime_china['日期'] = pd.to_datetime(alltime_china['日期']) # 设置日期为索引 alltime_china.set_index('日期',inplace=True) # 也可使用pd.read_csv("./input/alltime_China_2020_03_27.csv",parse_dates=['date'],index_col='date') print(alltime_china.index) # 举例 print(alltime_china.loc['2020-01']) # 时间序列数据绘制折线图 fig, ax = plt.subplots(figsize=(8,4)) alltime_china.plot(marker='o',ms=2,lw=1,ax=ax) ax.xaxis.set_major_locator(dates.MonthLocator()) #设置间距 ax.xaxis.set_major_formatter(dates.DateFormatter('%b')) #设置日期格式 fig.autofmt_xdate() #自动调整日期倾斜 # 图例位置调整 plt.legend(bbox_to_anchor = [1,1]) plt.title('全国新冠肺炎数据折线图',size=15) plt.ylabel('人数') plt.grid(axis='y') plt.box(False) plt.show() # 时间序列数据绘制折线图 fig, ax = plt.subplots(figsize=(8,4)) alltime_china['当日新增确诊'].plot(ax=ax, style='-',lw=1,color='c',marker='o',ms=3) ax.xaxis.set_major_locator(dates.MonthLocator()) #设置间距 ax.xaxis.set_major_formatter(dates.DateFormatter('%b')) #设置日期格式 fig.autofmt_xdate() #自动调整日期倾斜 plt.title('全国新冠肺炎新增确诊病例折线图',size=15) plt.ylabel('人数') plt.grid(axis='y') plt.box(False) plt.show() #世界各国历史数据探索性分析 # 读取数据 alltime_world = pd.read_csv("alltime_world_2020_04_04.csv") # 创建中文列名字典 name_dict = {'date':'日期','name':'名称','id':'编号','lastUpdateTime':'更新时间', 'today_confirm':'当日新增确诊','today_suspect':'当日新增疑似', 'today_heal':'当日新增治愈','today_dead':'当日新增死亡', 'today_severe':'当日新增重症','today_storeConfirm':'当日现存确诊', 'total_confirm':'累计确诊','total_suspect':'累计疑似', 'total_heal':'累计治愈','total_dead':'累计死亡','total_severe':'累计重症', 'total_input':'累计输入病例','today_input':'当日输入病例'} # 更改列名 alltime_world.rename(columns=name_dict,inplace=True) print(alltime_world.head()) print(alltime_world.info())# 查看数据基本信息 print(alltime_world.describe()) # 将日期一列数据类型变为datetime alltime_world['日期'] = pd.to_datetime(alltime_world['日期']) # 计算当日现存确诊 alltime_world['当日现存确诊'] = alltime_world['累计确诊']-alltime_world['累计治愈']-alltime_world['累计死亡'] print(alltime_world.info()) # 查看唯一值,可使用len()查看个数 alltime_world['名称'].unique() # 统计每天有多少国家出现疫情,即哪20天疫情出现的最多 alltime_world['日期'].value_counts().head(20) # 设置日期索引 alltime_world.set_index('日期',inplace=True) # 3月31日数据统计不完全,我们将其删除 alltime_world = alltime_world.loc[:'2020-03-31'] # groupby创建层次化索引 data = alltime_world.groupby(['日期','名称']).mean() print(data.head()) # 提取部分数据 data_part = data.loc(axis=0)[:,['中国','日本','韩国','美国','意大利','英国','西班牙','德国']] print(data_part.head()) # 将层级索引还原 data_part.reset_index('名称',inplace=True) print(data_part.head()) # 绘制多个国家的累计确诊人数折线图 fig, ax = plt.subplots(figsize=(8,4)) data_part['2020-02':].groupby('名称')['累计确诊'].plot(legend=True,marker='o',ms=3,lw=1) ax.xaxis.set_major_locator(dates.MonthLocator()) #设置间距 ax.xaxis.set_major_formatter(dates.DateFormatter('%b')) #设置日期格式 fig.autofmt_xdate() #自动调整日期倾斜 plt.title('各国新冠肺炎累计确诊病例折线图',size=15) plt.ylabel('人数') plt.grid(axis='y') plt.box(False) plt.legend(bbox_to_anchor = [1,1]) plt.show() # 绘制各国新增确诊人数折线图 fig, ax = plt.subplots(figsize=(8,4)) data_part['2020-03':'2020-03-29'].groupby('名称')['当日新增确诊'].plot(legend=True,marker='o',ms=3,lw=1) ax.xaxis.set_major_locator(dates.MonthLocator()) #设置间距 ax.xaxis.set_major_formatter(dates.DateFormatter('%b')) #设置日期格式 fig.autofmt_xdate() #自动调整日期倾斜 plt.title('各国新冠肺炎新增确诊病例折线图',size=15) plt.ylabel('人数') plt.grid(axis='y') plt.box(False) plt.legend(bbox_to_anchor = [1,1]) plt.show() #绘制日本新冠肺炎疫情折线图 japan = alltime_world[alltime_world['名称']=='日本'] fig, ax = plt.subplots(figsize=(8,4)) japan['累计确诊'].plot(ax=ax, fontsize=10, style='-',lw=1,color='c',marker='o',ms=3,legend=True) ax.set_ylabel('人数', fontsize=10) ax1 = ax.twinx() ax1.bar(japan.index, japan['当日新增确诊']) ax1.xaxis.set_major_locator(dates.DayLocator(interval = 5)) ax1.xaxis.set_major_formatter(dates.DateFormatter('%b %d')) ax1.legend(['当日新增确诊'],loc='upper left',bbox_to_anchor=(0.001, 0.9)) plt.grid(axis='y') plt.box(False) plt.title('日本新冠肺炎疫情折线图',size=15) plt.show()
419e7e0ab8339ade64f7a829744f7147b5e4a0f3
72e3cb4dbc09423433040bf0ef56c07b8539c136
/6/7.py
c39351cdf3d3ae53bf24f4ced3a453606d6ef94b
[]
no_license
refanr/2020
50cefe20519f2693d2133181a718046734f2ca3d
51ae536f21f0c5b20dc067180d54392a09b3d5cb
refs/heads/master
2023-01-04T21:38:08.327450
2020-10-20T14:48:30
2020-10-20T14:48:30
292,705,419
0
0
null
null
null
null
UTF-8
Python
false
false
369
py
my_int = int(input('Give me an int >= 0: ')) # Fill in the missing code working_int = my_int quotient = 1 bin_str = '' while quotient > 0: if working_int % 2: bin_str += '1' else: bin_str += '0' quotient = working_int // 2 working_int = quotient bin_str = bin_str[::-1] print("The binary of {} is {}".format(my_int,bin_str))
6fe67275ed3c74ae869826a226fcfe2957de6f5b
0aeb4ce84990053523a95b7d260bb89ea8958de4
/Python_Labs/Remote File Inclusion/app/RFI.py
5dba120b7f28b83d3f554958710598fa90ba9d66
[]
no_license
Helmanso/Lplatform_All_Labs
52474256b73662edf3e72c2be75345ac79162764
963438e7f0f55130a2241bd7124b8b9c3563277a
refs/heads/master
2022-12-08T02:43:10.359270
2020-08-29T14:11:48
2020-08-29T14:11:48
288,520,358
0
0
null
null
null
null
UTF-8
Python
false
false
1,196
py
from flask import Flask, request, url_for, render_template, redirect import datetime, requests, os, validators try: from urllib.parse import urlparse except ImportError: from urlparse import urlparse app = Flask(__name__, static_url_path='/static', template_folder='.', static_folder='static') app.config['DEBUG'] = True @app.route("/") def start(): return render_template("index.html") @app.route("/cmd", methods=['POST']) def cmd(): filename = request.form['filename'] try: if "http" not in str(urlparse(filename).scheme): host = request.url[:-4] filename = host+"/static/" + filename result = eval(requests.get(filename).text) return render_template("index.html", result=result) else: result = eval(requests.get(filename).text) return render_template("index.html", result=result) except Exception: return render_template("index.html", result="Unexpected error during the execution of the predefined command.") @app.errorhandler(404) def page_not_found(e): return render_template("404.html") if __name__ == "__main__": app.run(host='0.0.0.0', threaded=True)
fd282217f2a3abbd3385cb2e72791deea7441668
771ed599c431f7cc05b4b90895cea24dac3895ba
/utils/edit_misc.py
d3baf8250121fd7a05b544a6510ad407f7a5672b
[]
no_license
baaaad/coco-edit
8e5395a52f1f1b85db62393c2ac2ab1d00230c7a
b70e36bf05be5af16923f5ca0b8cce91ec9c29d1
refs/heads/main
2023-07-14T23:40:54.684513
2021-08-13T07:22:57
2021-08-13T07:22:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,978
py
import numpy as np def edit_distance(sent1, sent2): # edit from sent1 to sent2 # Create a table to store results of subproblems m = len(sent1) n = len(sent2) dp = [[0 for x in range(n+1)] for x in range(m+1)] # Fill d[][] in bottom up manner for i in range(m+1): for j in range(n+1): # If first string is empty, only option is to # isnert all characters of second string if i == 0: dp[i][j] = j # Min. operations = j # If second string is empty, only option is to # remove all characters of second string elif j == 0: dp[i][j] = i # Min. operations = i # If last characters are same, ignore last char # and recur for remaining string elif sent1[i-1] == sent2[j-1]: dp[i][j] = dp[i-1][j-1] # If last character are different, consider all # possibilities and find minimum else: dp[i][j] = 1 + min( dp[i][j-1], # Insert dp[i-1][j] # Remove ) return dp def sent2edit(sent1, sent2): dp = edit_distance(sent1, sent2) edits = [] pos = [] m, n = len(sent1), len(sent2) while m != 0 or n != 0: curr = dp[m][n] if m==0: #have to insert all here while n>0: left = dp[1][n-1] edits.append(sent2[n-1]) pos.append(left) n-=1 elif n==0: while m>0: top = dp[m-1][n] edits.append('DEL') pos.append(top) m -=1 else: # we didn't reach any special cases yet diag = dp[m-1][n-1] left = dp[m][n-1] top = dp[m-1][n] if sent2[n-1] == sent1[m-1]: # keep edits.append('KEEP') pos.append(diag) m -= 1 n -= 1 elif curr == top+1: # INSERT preferred before DEL edits.append('DEL') pos.append(top) # (sent2[n-1]) m -= 1 else: #insert edits.append(sent2[n - 1]) pos.append(left) # (sent2[n-1]) n -= 1 edits = edits[::-1] # replace the keeps at the end to stop, this helps a bit with imbalanced classes (KEEP,INS,DEL,STOP) # for i in range(len(edits))[::-1]: #reversely checking # if edits[i] == 'KEEP': # if edits[i-1] =='KEEP': # edits.pop(i) # else: # edits[i] = 'STOP' # break # if edits == []: # do we learn edits if input and output are the same? # edits.append('STOP') #in the case that input and output sentences are the same return edits def edit2sent(sent, edits, last=False): """ Edit the sentence given the edit operations. :param sent: sentence to edit, list of string :param edits: a sequence of edits in ['KEEP','DEL','STOP']+INS_vocab_set :return: the new sentence, as the edit sequence is deterministic based on the edits labels """ new_sent = [] sent_pointer = 0 #counter the total of KEEP and DEL, then align with original sentence if len(edits) == 0 or len(sent) ==0: # edit_list empty, return original sent return sent for i, edit in enumerate(edits): if len(sent) > sent_pointer: #there are tokens left for editing if edit =="KEEP": new_sent.append(sent[sent_pointer]) sent_pointer += 1 elif edit =="DEL": sent_pointer += 1 elif edit == 'STOP': break # go outside the loop and copy everything after current sent_pointer into the new sentence else: #insert the word in new_sent.append(edit) if sent_pointer < len(sent): for i in range(sent_pointer,len(sent)): new_sent.append(sent[i]) return new_sent def decode_edit(p_pos, p_edit, p_wins, p_wsub): ''' Edit the sentence given the prediction of the model ''' bsz = p_wins.shape[0] edit = np.argmax(p_edit, axis=-1) pos = np.argmax(p_pos, axis=-1) wins = np.argmax(p_wins, axis=-1)[np.arange(bsz), pos] wsub = np.argmax(p_wsub, axis=-1)[np.arange(bsz), pos] #print(edit.shape, pos.shape, wins.shape, wsub.shape) return edit, pos, wins, wsub def main(): #this prints an example of doing minimum editing distance sent1 = "Military experts say the line between combat is getting blurry .".split() sent2 = "Military experts say war is changing .".split() A = edit_distance(sent1, sent2) print('\n'.join([''.join(['{:4}'.format(item) for item in row]) for row in A])) B = sent2edit(sent1, sent2) print(B) print(edit2sent(sent1,B)) if __name__ == '__main__': main()
a8aed15c162e96815fa1961c2bdd1299d9c3454d
a29a73de4df917da642adec96286d7ed3b2a0a42
/TankDPPO/kankan.py
0315d142c18ecb16f26c20009d72880e4e7f967d
[]
no_license
tankche1/Learn-To-Run
9f0546f2d2c74cf18879579a3ccb2aeb3bea2765
27a48c8e1ec5864ab58caa9df4098a1089641cc0
refs/heads/master
2021-03-24T11:07:15.949621
2017-10-18T14:43:41
2017-10-18T14:43:41
101,266,609
2
0
null
null
null
null
UTF-8
Python
false
false
8,281
py
""" A simple version of OpenAI's Proximal Policy Optimization (PPO). [https://arxiv.org/abs/1707.06347] Distributing workers in parallel to collect data, then stop worker's roll-out and train PPO on collected data. Restart workers once PPO is updated. The global PPO updating rule is adopted from DeepMind's paper (DPPO): Emergence of Locomotion Behaviours in Rich Environments (Google Deepmind): [https://arxiv.org/abs/1707.02286] View more on my tutorial website: https://morvanzhou.github.io/tutorials Dependencies: tensorflow r1.3 gym 0.9.2 """ import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import gym, threading, queue EP_MAX = 1000 EP_LEN = 200 N_WORKER = 4 # parallel workers GAMMA = 0.9 # reward discount factor A_LR = 0.0001 # learning rate for actor C_LR = 0.001 # learning rate for critic MIN_BATCH_SIZE = 64 # minimum batch size for updating PPO UPDATE_STEP = 5 # loop update operation n-steps EPSILON = 0.2 # for clipping surrogate objective GAME = 'Pendulum-v0' S_DIM, A_DIM = 3, 1 # state and action dimension class PPO(object): def __init__(self): self.sess = tf.Session() self.tfs = tf.placeholder(tf.float32, [None, S_DIM], 'state') # critic l1 = tf.layers.dense(self.tfs, 100, tf.nn.relu) self.v = tf.layers.dense(l1, 1) self.tfdc_r = tf.placeholder(tf.float32, [None, 1], 'discounted_r') self.advantage = self.tfdc_r - self.v self.closs = tf.reduce_mean(tf.square(self.advantage)) self.ctrain_op = tf.train.AdamOptimizer(C_LR).minimize(self.closs) # actor pi, pi_params = self._build_anet('pi', trainable=True) oldpi, oldpi_params = self._build_anet('oldpi', trainable=False) self.sample_op = tf.squeeze(pi.sample(1), axis=0) # operation of choosing action self.update_oldpi_op = [oldp.assign(p) for p, oldp in zip(pi_params, oldpi_params)] self.tfa = tf.placeholder(tf.float32, [None, A_DIM], 'action') self.tfadv = tf.placeholder(tf.float32, [None, 1], 'advantage') # ratio = tf.exp(pi.log_prob(self.tfa) - oldpi.log_prob(self.tfa)) ratio = pi.prob(self.tfa) / (oldpi.prob(self.tfa) + 1e-5) surr = ratio * self.tfadv # surrogate loss self.aloss = -tf.reduce_mean(tf.minimum( # clipped surrogate objective surr, tf.clip_by_value(ratio, 1. - EPSILON, 1. + EPSILON) * self.tfadv)) self.atrain_op = tf.train.AdamOptimizer(A_LR).minimize(self.aloss) self.sess.run(tf.global_variables_initializer()) def update(self): global GLOBAL_UPDATE_COUNTER while not COORD.should_stop(): if GLOBAL_EP < EP_MAX: UPDATE_EVENT.wait() # wait until get batch of data self.sess.run(self.update_oldpi_op) # copy pi to old pi data = [QUEUE.get() for _ in range(QUEUE.qsize())] # collect data from all workers data = np.vstack(data) s, a, r = data[:, :S_DIM], data[:, S_DIM: S_DIM + A_DIM], data[:, -1:] adv = self.sess.run(self.advantage, {self.tfs: s, self.tfdc_r: r}) # update actor and critic in a update loop [self.sess.run(self.atrain_op, {self.tfs: s, self.tfa: a, self.tfadv: adv}) for _ in range(UPDATE_STEP)] [self.sess.run(self.ctrain_op, {self.tfs: s, self.tfdc_r: r}) for _ in range(UPDATE_STEP)] UPDATE_EVENT.clear() # updating finished GLOBAL_UPDATE_COUNTER = 0 # reset counter ROLLING_EVENT.set() # set roll-out available def _build_anet(self, name, trainable): with tf.variable_scope(name): l1 = tf.layers.dense(self.tfs, 200, tf.nn.relu, trainable=trainable) mu = 2 * tf.layers.dense(l1, A_DIM, tf.nn.tanh, trainable=trainable) sigma = tf.layers.dense(l1, A_DIM, tf.nn.softplus, trainable=trainable) norm_dist = tf.distributions.Normal(loc=mu, scale=sigma) params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=name) return norm_dist, params def choose_action(self, s): s = s[np.newaxis, :] a = self.sess.run(self.sample_op, {self.tfs: s})[0] return np.clip(a, -2, 2) def get_v(self, s): if s.ndim < 2: s = s[np.newaxis, :] return self.sess.run(self.v, {self.tfs: s})[0, 0] class Worker(object): def __init__(self, wid): self.wid = wid self.env = gym.make(GAME).unwrapped self.ppo = GLOBAL_PPO def work(self): global GLOBAL_EP, GLOBAL_RUNNING_R, GLOBAL_UPDATE_COUNTER while not COORD.should_stop(): s = self.env.reset() ep_r = 0 buffer_s, buffer_a, buffer_r = [], [], [] for t in range(EP_LEN): if not ROLLING_EVENT.is_set(): # while global PPO is updating ROLLING_EVENT.wait() # wait until PPO is updated buffer_s, buffer_a, buffer_r = [], [], [] # clear history buffer, use new policy to collect data a = self.ppo.choose_action(s) s_, r, done, _ = self.env.step(a) buffer_s.append(s) buffer_a.append(a) buffer_r.append((r + 8) / 8) # normalize reward, find to be useful s = s_ ep_r += r GLOBAL_UPDATE_COUNTER += 1 # count to minimum batch size, no need to wait other workers if t == EP_LEN - 1 or GLOBAL_UPDATE_COUNTER >= MIN_BATCH_SIZE: v_s_ = self.ppo.get_v(s_) discounted_r = [] # compute discounted reward for r in buffer_r[::-1]: v_s_ = r + GAMMA * v_s_ discounted_r.append(v_s_) discounted_r.reverse() bs, ba, br = np.vstack(buffer_s), np.vstack(buffer_a), np.array(discounted_r)[:, np.newaxis] buffer_s, buffer_a, buffer_r = [], [], [] QUEUE.put(np.hstack((bs, ba, br))) # put data in the queue if GLOBAL_UPDATE_COUNTER >= MIN_BATCH_SIZE: ROLLING_EVENT.clear() # stop collecting data UPDATE_EVENT.set() # globalPPO update if GLOBAL_EP >= EP_MAX: # stop training COORD.request_stop() break # record reward changes, plot later if len(GLOBAL_RUNNING_R) == 0: GLOBAL_RUNNING_R.append(ep_r) else: GLOBAL_RUNNING_R.append(GLOBAL_RUNNING_R[-1]*0.9+ep_r*0.1) GLOBAL_EP += 1 print('{0:.1f}%'.format(GLOBAL_EP/EP_MAX*100), '|W%i' % self.wid, '|Ep_r: %.2f' % ep_r,) if __name__ == '__main__': GLOBAL_PPO = PPO() UPDATE_EVENT, ROLLING_EVENT = threading.Event(), threading.Event() UPDATE_EVENT.clear() # not update now ROLLING_EVENT.set() # start to roll out workers = [Worker(wid=i) for i in range(N_WORKER)] GLOBAL_UPDATE_COUNTER, GLOBAL_EP = 0, 0 GLOBAL_RUNNING_R = [] COORD = tf.train.Coordinator() QUEUE = queue.Queue() # workers putting data in this queue threads = [] for worker in workers: # worker threads t = threading.Thread(target=worker.work, args=()) t.start() # training threads.append(t) # add a PPO updating thread threads.append(threading.Thread(target=GLOBAL_PPO.update,)) threads[-1].start() COORD.join(threads) # plot reward change and test plt.plot(np.arange(len(GLOBAL_RUNNING_R)), GLOBAL_RUNNING_R) plt.xlabel('Episode'); plt.ylabel('Moving reward'); plt.ion(); plt.show() env = gym.make('Pendulum-v0') while True: s = env.reset() for t in range(300): env.render() s = env.step(GLOBAL_PPO.choose_action(s))[0]
c99a631a7811780613dfb8c523090511e72b47ed
7e2198e218bbec882cce3d2db246e3e41db70f51
/getIamgeStatsPytorch.py
54ba8af415ee43a98282091f7ed4e3272c26d3be
[ "MIT" ]
permissive
adityag6994/pytorch_ssd_training
72445d1150f0115aac4c978b6cf9c28c1e4cdab4
404f3cbef815e314337ec2c1b4f06a2403a7ce03
refs/heads/master
2023-05-08T21:13:34.538207
2021-05-25T02:06:06
2021-05-25T02:06:06
368,198,205
0
0
null
null
null
null
UTF-8
Python
false
false
1,363
py
import torch.utils.data from datasets import * from utils import * # Data parameters data_folder = 'data/rafeeq/' # folder with data files keep_difficult = True # use objects considered difficult to detect? # Model parameters # Not too many here since the SSD300 has a very specific structure n_classes = len(label_map) # number of different types of objects device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Learning parameters batch_size = 1 # batch size workers = 1 # number of workers for loading data in the DataLoader # Custom dataloaders train_dataset = PascalVOCDataset(data_folder, split='test', keep_difficult=keep_difficult) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=train_dataset.collate_fn, num_workers=workers, pin_memory=True) # note that we're passing the collate function here # find mean variance of dataset mean, std = zzzf_mean_and_std(train_loader) # mean, std = xwkuang_mean_and_std(train_loader) print(mean, std) ## test hard | zzzf || xwkuang # tensor([0.5881, 0.5617, 0.4820]) # tensor([0.2968, 0.3004, 0.2938]) ## train # mean = [0.4898, 0.4867, 0.4050] # std = [0.2774, 0.2832, 0.2501]
d9e0220046732ed6ddb31fb31a5d9bdbd1e08ecf
a28df6dc7901e0799ddbcdd43dc17f1f966e5eb5
/interview_preperation_kit/arrays/array_manipulation/editorial.py
586037ec6827623696fb06fc01fac1bee8c27853
[]
no_license
jlucasldm/hackerrank
ede7aafa0131171a358c1601a0ccb26da4f3b5dc
3189c3b9844eaff5873f4d4cf6c94aaf3b88b864
refs/heads/master
2023-07-30T22:18:30.166508
2021-09-12T20:15:00
2021-09-12T20:15:00
396,453,482
0
0
null
null
null
null
UTF-8
Python
false
false
398
py
def arrayManipulation(n, queries): arr = [0] * (n+1) # add the value at first index # subtract the value at last index + 1 for q in queries: start, end, amt = q arr[start-1] += amt arr[end] -= amt # max value and running sum mv = -1 running = 0 for a in arr: running += a if running > mv: mv = running return mv
5c8fe94773b018fec08156dff5a0e0e776f1b94c
159a08aeb28fecfaeaa85cd253d1435255aad466
/HW13/HW13.py
6a47e237671b35e83c0ac065e22a314261858c4b
[ "MIT" ]
permissive
ji3g4aunaun/assignment-speech-recognition
ee5220fb8588fee11316d63545935f562a1531c1
794907a417d054477812c1f50695312601eae929
refs/heads/master
2020-03-24T07:33:05.884142
2018-07-25T20:49:48
2018-07-25T20:49:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,926
py
import numpy as np from dspBox import str2ndar obs1 = str2ndar(open('observation1.txt', 'r').read()) obs2 = str2ndar(open('observation2.txt', 'r').read()) obs3 = str2ndar(open('observation3.txt', 'r').read()) # 助教附的oberservation3.txt跟上次一樣沒有換行,所以只會讀到49個狀態,如果加了換行可以讀到50個。 a1 = np.array([[0.2, 0.7, 0.1], [0.1, 0.2, 0.7], [0.7, 0.1, 0.2]]) b1 = np.array([[0.5, 0.4, 0.1], [0.7, 0.2, 0.1], [0.7, 0.1, 0.2]]) pi1 = np.array([0.7, 0.2, 0.1]) a2 = np.array([[0.7, 0.2, 0.1], [0.3, 0.6, 0.1], [0.1, 0.2, 0.7]]) b2 = np.array([[0.1, 0.8, 0.1], [0.2, 0.7, 0.1], [0.4, 0.5, 0.1]]) pi2 = np.array([0.1, 0.7, 0.2]) a3 = np.array([[0.2, 0.7, 0.1], [0.6, 0.3, 0.1], [0.2, 0.7, 0.1]]) b3 = np.array([[0.1, 0.2, 0.7], [0.2, 0.2, 0.6], [0.3, 0.1, 0.6]]) pi3 = np.array([0.2, 0.2, 0.6]) obs, a ,b, pi = [obs1, obs2, obs3], [a1, a2, a3], [b1, b2, b3], [pi1, pi2, pi3] # ------------------- for obsi in range(3): # Index of observation size = len(obs[obsi]) print("\nobser" + str(obsi + 1)) for mi in range(3): # Index of model # =====viterbi algorithm===== p = np.zeros((size, 3)) # possibility s = np.zeros((size, 3)) # max state p[0] = [pi[mi][state] * b[mi][state, obs[obsi][0]] for state in range(3)] s[0] = [state for state in range(3)] for i in range(1, size): for state in range(3): evaluate = [p[i-1, from_] * a[mi][from_, state] * b[mi][state, obs[obsi][i]] for from_ in range(3)] p[i, state] = np.max(evaluate) s[i, state] = np.argmax(evaluate) seq = np.zeros((size), dtype=int) seq[-1] = np.argmax(p[-1]) for i in range(size-2, -1, -1): seq[i] = s[i+1, seq[i+1]] print("viterbi max state sequence", np.array_str(seq, 100)) print('model_{:d} probability:{:.6e}'.format(mi+1, np.max(p[-1])))
9ff1afa9d84a4c4fd731361a64cad925d42d083b
b69314d436bc921289a418a373ef6035d40886d5
/Top.py
a2396ba726fcc614f1215667d07bccc3a0f51ab0
[]
no_license
Ashfaaq98/SDN_POX_Controller-Load_Balancer
c4329d18b6e1dc1d85ec62c9fbfaf2b371c083cb
0e1b96120264e574393c964f051bd366c21767ca
refs/heads/main
2023-08-26T00:11:48.368747
2021-10-17T18:09:29
2021-10-17T18:09:29
413,499,988
1
0
null
null
null
null
UTF-8
Python
false
false
1,055
py
#! /usr/bin/python from mininet.net import Mininet from mininet.node import Controller, OVSKernelSwitch, RemoteController from mininet.cli import CLI from mininet.log import setLogLevel, info def emptyNet(): net = Mininet(controller=RemoteController, switch=OVSKernelSwitch) c1 = net.addController('c1', controller=RemoteController, ip="127.0.0.1", port=6633) h1 = net.addHost( 'h1', ip='10.0.0.1' ) h2 = net.addHost( 'h2', ip='10.0.0.2' ) # h3 = net.addHost( 'h3', ip='10.0.0.3') # h4 = net.addHost( 'h4', ip='10.0.0.4') # h5 = net.addHost( 'h5', ip='10.0.0.5') # h6 = net.addHost( 'h6', ip='10.0.0.6') s1 = net.addSwitch( 's1' ) # s2 = net.addSwitch( 's2' ) # s3 = net.addSwitch( 's3' ) s1.linkTo( h1 ) s1.linkTo( h2 ) # s2.linkTo( h3 ) # s2.linkTo( h4 ) # s3.linkTo( h5 ) # s3.linkTo( h6 ) net.build() c1.start() s1.start([c1]) # s2.start([c1]) # s3.start([c1]) CLI( net ) net.stop() if __name__ == '__main__': setLogLevel( 'info' ) emptyNet()
33cb9493d7550749594d94675bba7dd68faf783d
d92cd1bce2af9d86e83a732a26419be0d76ae8eb
/demo_final/mvc/controllers/alumnos/delete.py
b4f77f02691bb3d8c541d728780cb34b2d8396fd
[]
no_license
MariaFernandaReyesLopez/demo_web_page
fd0973d0cc362dc3cc24784c0fdf10cb58154e2a
40879f2265c068fed226b4bc560efd975d56974d
refs/heads/master
2022-11-29T13:03:08.334216
2020-08-13T21:18:04
2020-08-13T21:18:04
287,380,767
0
0
null
null
null
null
UTF-8
Python
false
false
751
py
import web import mvc.models.alumnos as alumnos model_alumnos = alumnos.Alumnos() render = web.template.render("mvc/views/alumnos/", base="template") class Delete(): def GET(self, id_alumno): try: result = model_alumnos.view(id_alumno)[0] return render.delete(result) # renderizando delete.html except Exception as e: print(e) return "Error" def POST(self, id_alumno): try: form = web.input() id_alumno = form.id_alumno #hidden result = model_alumnos.delete(id_alumno) web.seeother('/alumnos_list') except Exception as e: print(e) return "Error"
5a346858f79c757e13d5570ec88addd3bfc652ac
0ae6e24fa95b8a22d9fe9d36f8786cdc4adbceac
/tests/test_api.py
1c95830966214ef48771a702eba86858d69f7bfe
[]
no_license
lopezjimenezjesus/flasktaskr
cd0c407d7dec0920a1bf2eabb39f1b40ea04fa03
f7167092a0a99969a730c3d80290ce0919de8ddb
refs/heads/master
2022-11-10T00:31:22.165929
2016-12-18T01:15:41
2016-12-18T01:15:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,473
py
import os import unittest from datetime import date from project import app, db from project._config import basedir from project.models import Task TEST_DB = 'test.db' class APITest(unittest.TestCase): ####################### # setup and tear down # ####################### def setUp(self): app.config['TESTING'] = True app.config['WTF_CSRF_ENABLED'] = False app.config['DEBUG'] = False app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///' + \ os.path.join(basedir, TEST_DB) self.app = app.test_client() db.create_all() self.assertEquals(app.debug, False) # executed after each test def tearDown(self): db.session.remove() db.drop_all() ################## # helper methods # ################## def add_tasks(self): db.session.add( Task( "Run around in circles", date(2015, 10, 5), '10', date(2015, 10, 5), 1, 1 ) ) db.session.commit() db.session.add( Task( "Purchase Real Python", date(2016, 2, 23), 10, date(2016, 2, 7), 1, 1 ) ) db.session.commit() def login(self, name, password): return self.app.post('/', data=dict( name=name, password=password), follow_redirects=True) def register(self, name, email, password, confirm): return self.app.post( 'register/', data=dict(name=name, email=email, password=password, confirm=confirm), follow_redirects=True ) ######### # tests # ######### def test_collection_endpoint_returns_correct(self): self.register('Michael', '[email protected]', 'python', 'python') self.login('Michael', 'python') self.add_tasks() response = self.app.get('api/v1/tasks/', follow_redirects=True) self.assertEquals(response.status_code, 200) self.assertEquals(response.mimetype, 'application/json') self.assertIn(b'Run around in circles', response.data) self.assertIn(b'Purchase Real Python', response.data) def test_resource_endpoint_returns_correct_data(self): self.register('Michael', '[email protected]', 'python', 'python') self.login('Michael', 'python') self.add_tasks() response = self.app.get('api/v1/tasks/2', follow_redirects=True) self.assertEquals(response.status_code, 200) self.assertEquals(response.mimetype, 'application/json') self.assertIn(b'Purchase Real Python', response.data) self.assertNotIn(b'Run around in circles', response.data) def test_invalid_resource_endpoint_returns_error(self): self.register('Michael', '[email protected]', 'python', 'python') self.login('Michael', 'python') self.add_tasks() response = self.app.get('api/v1/tasks/209', follow_redirects=True) self.assertEquals(response.status_code, 404) self.assertEquals(response.mimetype, 'application/json') self.assertIn(b'Element does not exists', response.data) if __name__ == "__main__": unittest.main()
b91ee62ab15974dcb724ceeb00d00689410e332f
7bf1dc58ba0884ed957efdb5459ae44851b2b36e
/practice_450/greedy/33_rearrange_characters.py
858f75ba242070202848f0f4f1146c91f0ceea28
[]
no_license
ksaubhri12/ds_algo
672260f07f41bcfc33f8ac23a64085a1f27ab4a5
46505b89371cae3321f48609dd755c7e5cfed302
refs/heads/master
2023-05-12T08:37:06.789111
2023-05-03T03:06:49
2023-05-03T03:06:49
211,793,312
0
0
null
null
null
null
UTF-8
Python
false
false
935
py
def rearrange_characters(input_string: str): n = len(input_string) dict_value = {} for i in range(0, n): if input_string[i] in dict_value: dict_value[input_string[i]] = dict_value[input_string[i]] + 1 else: dict_value[input_string[i]] = 1 sorted_count_list = sorted(dict_value, key=dict_value.get, reverse=True) i = 0 start = 0 char_list = list(input_string) while len(sorted_count_list) > 0: char = sorted_count_list.pop(0) count = dict_value[char] if count > n / 2: return -1 start = start + 1 for k in range(0, count): char_list[i] = char i = i + 2 if i >= n: i = 1 return ''.join(char_list) if __name__ == '__main__': print(rearrange_characters('geeksforgeeks')) print(rearrange_characters('bbbbb')) print(rearrange_characters('kkk'))
ab7a78b9db6f60371ee1fac74f8b8411ff23aa43
a179d2abea58ee4d987bf05729a5e7df727af3cd
/instaclone/settings.py
6e13a5e35aa00ba74ca16a19dd70fe50c0cb34ee
[ "MIT" ]
permissive
Derrick-Nyongesa/instagram-clone
ced05a4c334c9e95e96bec9a3883b448c5fa95c6
2f3c018c33aa440160401f0c1878a2670f2f0081
refs/heads/main
2023-05-14T01:32:36.211904
2021-05-26T13:42:26
2021-05-26T13:42:26
369,403,582
0
0
null
null
null
null
UTF-8
Python
false
false
4,796
py
""" Django settings for instaclone project. Generated by 'django-admin startproject' using Django 3.2.2. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path import os from decouple import config, Csv import cloudinary import cloudinary.uploader import cloudinary.api import django_heroku import dj_database_url # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = config("SECRET_KEY") # SECURITY WARNING: don't run with debug turned on in production! DEBUG = config('DEBUG', default=False, cast=bool) # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'instagram', 'bootstrap3', 'cloudinary' ] MIDDLEWARE = [ 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'instaclone.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'django.template.context_processors.media', ], }, }, ] WSGI_APPLICATION = 'instaclone.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases if config('MODE')=="dev": DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': config('DB_NAME'), 'USER': config('DB_USER'), 'PASSWORD': config('DB_PASSWORD'), 'HOST': config('DB_HOST'), 'PORT': '', } } # production else: DATABASES = { 'default': dj_database_url.config( default=config('DATABASE_URL') ) } db_from_env = dj_database_url.config(conn_max_age=500) DATABASES['default'].update(db_from_env) ALLOWED_HOSTS = config('ALLOWED_HOSTS', cast=Csv()) # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Africa/Nairobi' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, "static"), ] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') LOGIN_REDIRECT_URL = '/' LOGOUT_REDIRECT_URL = '/accounts/login/' #AUTH_PROFILE_MODULE = 'accounts.Profile' EMAIL_USE_TLS = config('EMAIL_USE_TLS') EMAIL_HOST = config('EMAIL_HOST') EMAIL_PORT = config('EMAIL_PORT') EMAIL_HOST_USER = config('EMAIL_HOST_USER') EMAIL_HOST_PASSWORD = config('EMAIL_HOST_PASSWORD') cloudinary.config( cloud_name = config("CLOUDINARY_NAME"), api_key = config("CLOUDINARY_KEY"), api_secret = config("CLOUDINARY_SECRET") ) STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') django_heroku.settings(locals())
acd62ee375dff59ca59e70a02bc32374c22f0693
02f25642ee890ef749e29ead0009309519412906
/serverCS.py
58c4bc85c86c48f3550e3d72e54eb0ded880163f
[]
no_license
romantikatara/Analytics_Model_Deployment
c753da09b8df26f6a20780316fbcf5f36668a4cf
6e70c3cc8fe095a97350483ec7e3321a4f8967d5
refs/heads/master
2020-07-30T19:05:05.015626
2019-09-23T14:14:12
2019-09-23T14:14:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,185
py
# Membuat API dari model Machine Learning dengan menggunakan flask # Ingin mengeload model .pkl ke suatu server ''' Code ini mengambil data JSON dengan POST request suatu tampilan prediksi menggunakan model yang telah di-load. Kemudian mengeluarkan hasil dengan format JSON. ''' # Import libraries import numpy as np from flask import Flask, request, jsonify import pickle app = Flask(__name__) # Load Model Random Forest # De-serialization model = pickle.load(open('modelcreditscoring.pkl','rb')) @app.route('/api',methods=['POST']) #menerima masukan/POST/API def predict(): # Get the data from the POST request. data = request.get_json(force=True) # Make prediction using model loaded from disk as per the data. prediction = model.predict([np.array([data['AGE'], data['MARRIAGE'], data['PAY_1'], data['PAY_2'], data['PAY_3']])]) # Take the first value of prediction output = int(prediction[0]) return jsonify(output) if __name__ == '__main__': app.run(port=5000, debug=True)
ec491a079245a58e14d42601f0fca085af3e714e
12738d4511f72cf8ac2f8a63df635f74698d5f63
/configs/fpn_resnext50_32x4d_cityscapes_2gpu_f.py
77269bafb8deda39295a9c1c77835019749bb104
[ "MIT" ]
permissive
ternaus/iglovikov_segmentation
5731bbd0cbf7125bdc121e7357820b8bec8297ae
5a9463031e5da7c2cf34c967a4f2657416c11bd2
refs/heads/master
2020-08-09T12:26:44.779660
2019-12-15T21:59:42
2019-12-15T21:59:42
214,087,415
18
1
MIT
2020-04-03T02:16:36
2019-10-10T04:35:44
Python
UTF-8
Python
false
false
3,589
py
# Cityscapes. 2 x TeslaV100 from pathlib import Path import albumentations as albu import cv2 import segmentation_models_pytorch as smp import torch from torch.optim import Adam from src.loss import CCE ignore_index = 255 num_classes = 19 encoder_type = "resnext50_32x4d" preprocess_parameters = smp.encoders.get_preprocessing_params(encoder_type) mean = preprocess_parameters["mean"] std = preprocess_parameters["std"] num_gpu = 2 num_samples = None train_parameters = dict( lr=0.001, train_batch_size=8 * num_gpu, val_batch_size=num_gpu, fp16=False, num_epochs=300, height_crop_size=512, width_crop_size=512, ignore_index=ignore_index, tta=None, # can be None, d4 or lr downsample_mask_factor=None, # can be 4 for FPN ) if train_parameters["downsample_mask_factor"] is not None: if not train_parameters["height_crop_size"] / train_parameters["downsample_mask_factor"]: raise ValueError( f"Height crop size ({train_parameters['height_crop_size']}) " f"should be divisible by the downsample_mask_factor " f"({train_parameters['downsample_mask_factor']})" ) if not train_parameters["width_crop_size"] / train_parameters["downsample_mask_factor"]: raise ValueError( f"Width crop size ({train_parameters['width_crop_size']}) " f"should be divisible by the downsample_mask_factor" f"({train_parameters['downsample_mask_factor']})" ) final_upsampling = None else: final_upsampling = 4 model = smp.FPN( encoder_type, encoder_weights="imagenet", classes=num_classes, activation=None, final_upsampling=final_upsampling, dropout=0.5, decoder_merge_policy="cat", ) pad_factor = 64 imread_library = "cv2" # can be cv2 or jpeg4py optimizer = Adam( [ {"params": model.decoder.parameters(), "lr": train_parameters["lr"]}, # decrease lr for encoder in order not to permute # pre-trained weights with large gradients on training start {"params": model.encoder.parameters(), "lr": train_parameters["lr"] / 100}, ], weight_decay=1e-3, ) normalization = albu.Normalize(mean=mean, std=std, p=1) train_augmentations = albu.Compose( [ albu.RandomSizedCrop( min_max_height=( int(0.5 * (train_parameters["height_crop_size"])), int(2 * (train_parameters["height_crop_size"])), ), height=train_parameters["height_crop_size"], width=train_parameters["width_crop_size"], w2h_ratio=1.0, p=1, ), albu.ShiftScaleRotate(rotate_limit=20, scale_limit=0, p=0.5, mask_value=ignore_index), albu.RandomBrightnessContrast(p=0.5), albu.RandomGamma(p=0.5), albu.HueSaturationValue(p=0.5), albu.HorizontalFlip(p=0.5), normalization, ], p=1, ) val_augmentations = albu.Compose( [ albu.PadIfNeeded( min_height=1024, min_width=2048, border_mode=cv2.BORDER_CONSTANT, mask_value=ignore_index, p=1 ), normalization, ], p=1, ) test_augmentations = albu.Compose([normalization], p=1) scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[200, 250, 280], gamma=0.1) train_image_path = Path("data/train/images") train_mask_path = Path("data/train/masks") val_image_path = Path("data/val/images") val_mask_path = Path("data/val/masks") loss = CCE(ignore_index=ignore_index) callbacks = [] logdir = f"runs/2gpu_{model.name}_f/baseline"
298c5334b8cb8458e240533cc78ba90bc20dd8b5
5964e11c3d1ea543e139c6a4a66751a611fd0ac5
/test/test_forest_delete.py
63d8f63b4002dea380136151df3c75eb74080640
[ "Apache-2.0" ]
permissive
codycollier/booster
333a60caeb4df554d49d1cd8251fc4c58b57c76c
8639d74cc98c4276fba281bbe244795e8f44a833
refs/heads/master
2020-04-16T17:42:04.494735
2019-07-12T03:25:21
2019-07-12T03:25:21
2,858,765
1
0
null
null
null
null
UTF-8
Python
false
false
3,131
py
#!/usr/bin/env python import unittest import boostertest class TestForestDelete(boostertest.BoosterTestCase): """ Test the forest-delete action """ def setUp(self): """ Set the action and other commonly used fixture data """ self.params = {} self.params['action'] = "forest-delete" self.params['forest-name'] = "pinecone-a" self.params['delete-data'] = "true" # collect forest names for later teardown self.teardown_forests = [] def tearDown(self): """ Remove items from server created during tests """ params = {} params['action'] = "forest-delete" params['delete-data'] = "true" for forest in self.teardown_forests: params['forest-name'] = forest response, body = self.booster.request(params) self.assertTrue(response.status in (404, 200)) def test_basic_forest_deletion_results_in_200(self): """ A successful forest deletion should result in 200 """ # create the forest params = {} params['action'] = "forest-create" params['forest-name'] = "firs" params['host-name'] = "localhost" params['data-directory'] = "" self.teardown_forests.append(params['forest-name']) response, body = self.booster.request(params) err = response.get("x-booster-error", "none") self.assertEqual(response.status, 201) self.assertEqual(err, "none") # delete and assert params = self.params params['forest-name'] = "firs" response, body = self.booster.request(params) err = response.get("x-booster-error", "none") self.assertEqual(response.status, 200) self.assertEqual(err, "none") def test_delete_nonexistent_forest_results_in_404(self): """ Attempting to delete a non-existent forest should return 404 """ params = self.params params['forest-name'] = "no-such-forest-exists-here" response, body = self.booster.request(params) err = response.get("x-booster-error", "") self.assertEqual(response.status, 404) self.assertTrue(err.find("does not exist") != 1) def test_empty_forest_name_results_in_404(self): """ A forest-delete with empty forest-name value should result in 404 """ params = self.params params['forest-name'] = "" response, body = self.booster.request(params) err = response.get("x-booster-error", "none") self.assertEqual(response.status, 404) self.assertTrue(err.find("Forest '' does not exist") != 1) def test_delete_forest_with_no_forest_name_results_in_400(self): """ A forest-delete with missing forest-name should result in 400 """ params = self.params del params['forest-name'] response, body = self.booster.request(self.params) err = response.get("x-booster-error", "") self.assertEqual(response.status, 400) self.assertTrue(err.find("valid set of arguments was not provided") != 1) if __name__=="__main__": unittest.main()
b2db820fc500dacc8d7771ff92eaa649fc902760
cb28de2d461cb7f099ca8b61bb5b2015dff0c776
/spyder_scripts/jan_workshop/ex4.py
27323317afdf37ef6f16d56f2e58bb6d7681a0bc
[]
no_license
chuymtz/python_scripts
04082241ae3e3c3a4772aa45f6d667e665f7200c
6b06a44671ddbafd073764e50bab9117ee72d2cc
refs/heads/master
2021-01-17T17:37:03.486857
2016-06-11T03:11:22
2016-06-11T03:11:22
60,887,842
0
0
null
null
null
null
UTF-8
Python
false
false
578
py
# -*- coding: utf-8 -*- """ Python Workshop 1/30/2015 Exercise 4 1. Write a function that returns its GC-content when a sequence is given GC_Content = (#G + #C) / length(seq) 2. SeqForEX4.txt contains 5 different DNA sequences with its corresponding headers, find a way to read in the 5 sequences alone and print them out, respectively 3. Calculate the GC-content for all 5 sequences * Find the sequence with the highest GC-content, write its ID from header and its coresponding GC-content to a file named 'result.txt' @author: Yuan """
dc764acc87abd223ec64716f693f78733a9ce009
acdbaf53db693f63313ee5811b15c810b6f2df60
/backend/test_flaskr.py
763983588893e2501ddf8728dcbbe0672423c72d
[]
no_license
fanchenjie/Trivia
5de5482b163496f6126cadd51cae8b4b797a4499
6fe9fc8175fd6d651a582f40a1ad67cbf68425e8
refs/heads/main
2023-01-15T11:26:08.678506
2020-11-20T23:10:32
2020-11-20T23:10:32
302,809,023
0
0
null
null
null
null
UTF-8
Python
false
false
7,213
py
import os import unittest import json from flask_sqlalchemy import SQLAlchemy from flaskr import create_app from models import setup_db, Question, Category class TriviaTestCase(unittest.TestCase): """This class represents the trivia test case""" def setUp(self): """Define test variables and initialize app.""" self.app = create_app() self.client = self.app.test_client self.database_name = "triviatest" self.database_path = "postgres://{}/{}".format('xiaofan@localhost:5432', self.database_name) setup_db(self.app, self.database_path) # binds the app to the current context with self.app.app_context(): self.db = SQLAlchemy() self.db.init_app(self.app) # create all tables self.db.create_all() self.new_question = { 'question':'question1', 'answer':'answer1', 'difficulty':1, 'category':1 } # edit to test serch by term self.search_term_with_result = { 'searchTerm':'question' } # self.total_questions_with_search_term = 6 self.search_term_without_result = { 'searchTerm':'xxxxxxxxxx' } # edit these to test delete # res = self.client().post('/questions', json = self.new_question) # id = json.loads(res.data)['question_id'] self.exist_question_ID_to_delete = 11 self.non_exist_question_ID_to_delete = 1000 # edit these to test non_valid page self.non_valid_page = 1000 # edit these to test get question by category self.exist_category_ID = 1 # edit these to test post quiz type and previous question self.quiz_type_previous_questions = { 'quiz_category':{'id':2}, 'previous_questions':[16] } def tearDown(self): """Executed after reach test""" pass """ TODO Write at least one test for each test for successful operation and for expected errors. """ def test_get_categories(self): res = self.client().get('/categories') data = json.loads(res.data) self.assertEqual(res.status_code, 200) self.assertEqual(data['success'], True) self.assertTrue(len(data['categories'])) # get questions def test_get_paginated_questions(self): res = self.client().get('/questions?page=1') data = json.loads(res.data) self.assertEqual(res.status_code, 200) self.assertEqual(data['success'], True) self.assertTrue(data['total_questions']) self.assertTrue(len(data['questions'])) self.assertTrue(len(data['categories'])) self.assertFalse(data['current_category']) def test_404_sent_requesting_beyond_valid_page(self): res = self.client().get('/questions?page={}'.format(self.non_valid_page)) data = json.loads(res.data) self.assertEqual(res.status_code, 404) self.assertEqual(data['success'], False) self.assertEqual(data['message'],'Not Found') # search by term def test_search_question_by_searchTerm_with_result(self): res = self.client().post('/questions/searchTerm?page=1', json=self.search_term_with_result) data = json.loads(res.data) self.assertEqual(res.status_code, 200) self.assertTrue(data['success']) self.assertTrue(len(data['questions'])) self.assertTrue(data['total_questions']) self.assertFalse(data['current_category']) self.assertTrue(data['search_term']) # self.assertEqual(data['total_questions'], self.total_questions_with_search_term) def test_search_question_by_searchTerm_without_result(self): res = self.client().post('/questions/searchTerm?page=1', json=self.search_term_without_result) data = json.loads(res.data) self.assertEqual(res.status_code, 200) self.assertTrue(data['success']) self.assertEqual(len(data['questions']), 0) self.assertFalse(data['current_category']) self.assertTrue(data['search_term']) self.assertEqual(data['total_questions'], 0) def test_400_bad_search_post_without_body(self): res = self.client().post('/questions/searchTerm') data = json.loads(res.data) self.assertEqual(res.status_code, 400) self.assertFalse(data['success']) self.assertEqual(data['message'], 'Bad Request') # get questions by category def test_get_questions_by_category(self): res = self.client().get('/categories/{}/questions'.format(self.exist_category_ID)) data = json.loads(res.data) self.assertEqual(res.status_code, 200) self.assertTrue(data['success']) self.assertTrue(len(data['questions'])) self.assertTrue(data['total_questions']) # self.assertTrue(data['current_category']) self.assertFalse(data['search_term']) def test_404_questions_by_category_beyond_valid_page(self): res = self.client().get('/categories/{}/questions?page={}'.format(self.exist_category_ID, self.non_valid_page)) data = json.loads(res.data) self.assertEqual(res.status_code, 404) self.assertEqual(data['success'], False) self.assertEqual(data['message'],'Not Found') # quizzes def test_post_quiz_type_previous_questions(self): res = self.client().post('/quizzes', json=self.quiz_type_previous_questions) data = json.loads(res.data) self.assertEqual(res.status_code, 200) self.assertTrue(data['success']) self.assertTrue(data['question']) def test_400_bad_quiz_post_without_body(self): res = self.client().post('/quizzes') data = json.loads(res.data) self.assertEqual(res.status_code, 400) self.assertFalse(data['success']) self.assertEqual(data['message'], 'Bad Request') # post question def test_post_question(self): res = self.client().post('/questions', json=self.new_question) data = json.loads(res.data) self.assertEqual(res.status_code, 200) self.assertTrue(data['success']) def test_400_bad_post_request_without_body(self): res = self.client().post('/questions') data = json.loads(res.data) self.assertEqual(res.status_code, 400) self.assertFalse(data['success']) self.assertEqual(data['message'], 'Bad Request') # delete question # def test_delete_question_by_id(self): # res = self.client().delete('/questions/{}'.format(self.exist_question_ID_to_delete)) # data = json.loads(res.data) # self.assertEqual(res.status_code, 200) # self.assertEqual(data['success'], True) def test_404_if_question_does_not_exist(self): res = self.client().delete('/questions/{}'.format(self.non_exist_question_ID_to_delete)) data = json.loads(res.data) self.assertEqual(res.status_code, 404) self.assertEqual(data['success'], False) self.assertEqual(data['message'],'Not Found') # Make the tests conveniently executable if __name__ == "__main__": unittest.main()
ee760f49be6ef89ccf152093972a09626ddee30f
6d0eb72dfbc165b6129d955b9fe5e4a1d8b1681e
/rules/file_dialogue.py
ca404e0aed146b539dd034ef7b3ef3ab64df350a
[]
no_license
seekM/.caster
4ee55974e75ef8cab04b21866959664d551e14a5
f36152e6d60a2b9a486493c3271d204388b1bfaf
refs/heads/master
2020-05-17T14:31:23.156785
2019-06-18T22:02:17
2019-06-18T22:02:17
183,766,412
0
0
null
null
null
null
UTF-8
Python
false
false
1,700
py
from dragonfly import (AppContext, Dictation, Grammar, IntegerRef, Key, MappingRule, Pause, Repeat, Text) from dragonfly.actions.action_mimic import Mimic from castervoice.lib import control, settings from castervoice.lib.dfplus.additions import IntegerRefST from castervoice.lib.dfplus.merge import gfilter from castervoice.lib.dfplus.merge.mergerule import MergeRule from castervoice.lib.dfplus.state.short import R class FileDialogueRule(MergeRule): pronunciation = "file dialogue" mapping = { "get up [<n>]": R(Key("a-up"))*Repeat(extra="n"), "get back [<n>]": R(Key("a-left"))*Repeat(extra="n"), "get forward [<n>]": R(Key("a-right"))*Repeat(extra="n"), "new folder": R(Key("cs-n")), "address bar": R(Key("c-l")), "search": R(Key("c-l, tab")), "left pane": R(Key("c-l, tab:3")), "center pane": R(Key("c-l, tab:4")), "sort": R(Key("c-l, tab:5")), "organize": R(Key("c-l, tab:2")), "(dateiname | filename)": R(Key("c-l, tab:6")), "(dateityp | file type)": R(Key("c-l, tab:7")), } extras = [IntegerRefST("n", 1, 10)] defaults = { "n": 1, } dialogue_names = [ "open", "ffnen", "speichern", "select", ] context = AppContext(title="save") for name in dialogue_names: context = context | AppContext(title=name) grammar = Grammar("FileDialogue", context=context) rule = FileDialogueRule() gfilter.run_on(rule) grammar.add_rule(FileDialogueRule(name="filedialogue")) grammar.load()
ce74370ba73cd08e5d80892ce3594a66fbe400e2
1496fd578daaf13bebccd68057c455b74481b8de
/week3/hangman/ps3_hangman.py
89ffb62c683272716b7e0678921ac1462f6ae894
[]
no_license
leahfrye/MITx-6.00.1x
274c58a6d7ca4c64dbd1bda5c2f102012f4a4f17
41e26ded3606b83b21998777ff32cf862e2b7f1d
refs/heads/master
2021-09-03T14:43:04.654759
2018-01-09T21:43:45
2018-01-09T21:43:45
115,056,698
0
0
null
null
null
null
UTF-8
Python
false
false
4,980
py
# Hangman game # # ----------------------------------- # Helper code # You don't need to understand this helper code, # but you will have to know how to use the functions # (so be sure to read the docstrings!) import random import string WORDLIST_FILENAME = "C:\projects\mitCourse6.00.1x\week3\hangman\words.txt" def loadWords(): """ Returns a list of valid words. Words are strings of lowercase letters. Depending on the size of the word list, this function may take a while to finish. """ print("Loading word list from file...") # inFile: file inFile = open(WORDLIST_FILENAME, 'r') # line: string line = inFile.readline() # wordlist: list of strings wordlist = line.split() print(" ", len(wordlist), "words loaded.") return wordlist def chooseWord(wordlist): """ wordlist (list): list of words (strings) Returns a word from wordlist at random """ return random.choice(wordlist) wordlist = loadWords() # end of helper code # ----------------------------------- def isWordGuessed(secretWord, lettersGuessed): ''' secretWord: string, the word the user is guessing lettersGuessed: list, what letters have been guessed so far returns: boolean, True if all the letters of secretWord are in lettersGuessed; False otherwise ''' # FILL IN YOUR CODE HERE... guessedString = "" for letter in secretWord: if letter in lettersGuessed: guessedString += letter else: guessedString += "_" if secretWord == guessedString: return True else: return False def getGuessedWord(secretWord, lettersGuessed): ''' secretWord: string, the word the user is guessing lettersGuessed: list, what letters have been guessed so far returns: string, comprised of letters and underscores that represents what letters in secretWord have been guessed so far. ''' # FILL IN YOUR CODE HERE... string = "" for letter in secretWord: if letter in lettersGuessed: string += letter else: string += "_" return string def getAvailableLetters(lettersGuessed): ''' lettersGuessed: list, what letters have been guessed so far returns: string, comprised of letters that represents what letters have not yet been guessed. ''' # FILL IN YOUR CODE HERE... alphabet = string.ascii_lowercase for letter in lettersGuessed: alphabet = alphabet.replace(letter, "") return alphabet def hangman(secretWord): ''' secretWord: string, the secret word to guess. Starts up an interactive game of Hangman. * At the start of the game, let the user know how many letters the secretWord contains. * Ask the user to supply one guess (i.e. letter) per round. * The user should receive feedback immediately after each guess about whether their guess appears in the computers word. * After each round, you should also display to the user the partially guessed word so far, as well as letters that the user has not yet guessed. Follows the other limitations detailed in the problem write-up. ''' # FILL IN YOUR CODE HERE... ## Add correct number of spaces to lettersGuessed list letterLength = len(secretWord) correctGuesses = [] incorrectGuesses = [] print("Welcome to the game Hangman!") print("I am thinking of a word that is " + str(letterLength) + " letters long") print("-------------") turn = 8; while turn > 0: print("You have " + str(turn) + " guesses left") print("Available letters: " + getAvailableLetters(correctGuesses + incorrectGuesses)) guess = input("Please guess a letter: ") guess = guess.lower() wordSoFar = getGuessedWord(secretWord, correctGuesses) if isWordGuessed(secretWord, correctGuesses): print("Congratulations, you won!") else: if guess in incorrectGuesses or guess in correctGuesses: print("Oops! You've already guessed that letter: " + wordSoFar) elif guess not in secretWord: print("Oops! That letter is not in my word: " + wordSoFar); turn -= 1 incorrectGuesses.append(guess) else: correctGuesses.append(guess) wordSoFar = getGuessedWord(secretWord, correctGuesses) print("Good guess: " + wordSoFar) if isWordGuessed(secretWord, correctGuesses): print("-------------") print("Congratulations, you won!") print("-------------") if "_" in wordSoFar: print("Sorry, you ran out of guesses. The word was " + secretWord + ".") # When you've completed your hangman function, uncomment these two lines # and run this file to test! (hint: you might want to pick your own # secretWord while you're testing) secretWord = chooseWord(wordlist).lower() hangman(secretWord)
2f43fcb6f336490af1bbc1d36b02d53bc911db08
78cff47ad6e4c8dc600249915aff2a3c54b723a2
/AntiAlias.py
c2d25ee7bdcaf3239d2397ab1d5d6b0e1b66e246
[]
no_license
willstem/Research_Tools
c6e7e526863abbe048a1c973430211a2bfa36b5b
42e5dbed7ed786e212a1115974c2235de26cf63a
refs/heads/master
2020-03-22T05:57:43.184438
2018-07-03T15:17:08
2018-07-03T15:17:08
139,602,555
0
0
null
null
null
null
UTF-8
Python
false
false
3,083
py
# -*- coding: utf-8 -*- """ Created on Sat Jun 30 11:24:23 2018 @author: will """ import matplotlib.pyplot as plt import numpy as np from scipy.signal import butter, lfilter def cosine(t, amp, freq, phase = 0): return amp*np.cos(2*np.pi*freq*t + phase) def view_section(datax, datay, samp_density, osc_win, Nosc = 10): #Just take a section for viewing: first Nosc oscillations Psamp = samp_density/osc_win #number of samples per period sec = int(Psamp*Nosc) return datax[0:sec], datay[0:sec] def no_off_spectrum(sig, t): f = np.fft.rfftfreq(len(sig), d = t[1]-t[0]) sig -= np.mean(sig) y = np.fft.rfft(sig) return f, y class anti_alias: def __init__(self, tdata, ydata): self.ydata = ydata self.tdata = tdata def butter_bandpass(self, lowcut, highcut, fs, order=5): nyq = 0.5*fs low = lowcut/nyq high = highcut/nyq b, a = butter(order, [low, high], btype='band') return b, a def butter_bandpass_filter(self, lowcut, highcut, fs, order=5): b, a = self.butter_bandpass(lowcut, highcut, fs, order=order) y = lfilter(b, a, self.ydata) return y def sig_shift(self, freq): return self.tdata*freq def sample(self, samp_f): return self.ydata[0::samp_f] def aa_filt(self, freq, fs): yfilt = self.butter_bandpass_filter(freq - 0.1*freq, freq + 0.1*freq, fs) yshift = self.sig_shift(freq) #STILL NEED TO FINISH THIS!! MAKE SURE YOU DON'T MIX UP X's and Y's def main(): #define some parameters Amp = 2. freq = 50. nyq = 2*freq window = 100 osc_win = window*freq #number of oscillations in the window samp_dense = 1e6 t = np.linspace(0, window, samp_dense) y = cosine(t, Amp, freq) t_sec, y_sec = view_section(t, y, samp_dense, osc_win) #samp_sparse eps = 0.01*osc_win samp_sparse = 1.9*osc_win #samp_sparse = 2*osc_win - eps ts = np.linspace(0, window, samp_sparse) ys = cosine(ts, Amp, freq) ts_sec, ys_sec = view_section(ts, ys, samp_sparse, osc_win) #Now use anti-aliasing BPF before sampling T = 1/freq fs = samp_dense/T filt = anti_alias(t, y) #Take some FFTs fd, yd = no_off_spectrum(y, t) fs, ys = no_off_spectrum(ys, ts) #plot formatting plt.rc('text', usetex = False) plt.rc('font', family = 'serif') plt.rc('font', size = 22) plt.rc('axes', linewidth = 2) plt.rc('lines', linewidth = 3) plt.rc('legend', fontsize = 16) plt.rc('figure', figsize = (10, 6)) plt.rc('lines', markersize = 15) #plots plt.figure(1) plt.plot(t_sec, y_sec) plt.plot(ts_sec, ys_sec, '.', color = 'red') plt.ylim(-2*Amp, 2*Amp) #plot FFTs plt.figure(2) plt.plot(fd, abs(yd)/max(abs(yd))) plt.plot((fs-1.9*freq)*-1, abs(ys)/max(abs(ys))) plt.xlim(-freq-eps, freq+eps) plt.ylim(-0.5, 1.5) if __name__ == "__main__": main()
e3baf698b803e39d4869c69af482d97836496848
91d96fc4084a55a74f761ed7bc7d0adba533618a
/projects/pset2.0_Forkable_Difficulty_Adjusting/blockchain-visualizer/visualize.py
352b2f7230f8cd77c28efa64538cda9744295698
[ "MIT" ]
permissive
Averylamp/mas.s62
169bb76f1289a3d4569a952075bfb8e7842e1dca
382dc036ae014785be4c464ed8c4aef533fd52ab
refs/heads/master
2020-03-17T16:14:56.613227
2018-05-17T03:56:09
2018-05-17T03:56:09
133,741,785
4
1
null
null
null
null
UTF-8
Python
false
false
3,143
py
import pickle from datetime import datetime from datetime import timedelta import matplotlib.pyplot as plt import graphviz def mine_rate_info(endpoint_block, origin_block, block_information, time_interval): endpoint_dt = datetime.fromtimestamp(highest_block[0]['timestamp']) origin_dt = datetime.fromtimestamp(block_information[origin_block]['timestamp']) block_hash = endpoint_block num_buckets = int((endpoint_dt - origin_dt).total_seconds() / time_interval) + 5 mined_buckets = [0]*num_buckets times_list = [origin_dt + timedelta(seconds=x*time_interval) for x in range(0, num_buckets)] assert len(times_list) == len(mined_buckets) while block_hash != '': block_info = block_information[block_hash] timestamp = block_information[block_hash]['timestamp'] dt = datetime.fromtimestamp(timestamp) bucket_ind = int((dt - origin_dt).total_seconds() / time_interval) mined_buckets[bucket_ind] += 1 block_hash = block_info['blockInformation']['previousHash'] return times_list, mined_buckets def aggregate_info(mined_buckets): num_buckets = len(mined_buckets) aggregate_buckets = [0]*num_buckets for i in range(num_buckets): if i == 0: aggregate_buckets[0] = mined_buckets[0] else: aggregate_buckets[i] = aggregate_buckets[i-1] + mined_buckets[i] return aggregate_buckets def generate_graphviz(block_information): g = graphviz.Digraph('G', filename='block_information.gv') g.node("origin", "") for block_hash in block_information: g.node(block_hash, "") prev_hash = block_information[block_hash]['blockInformation']['previousHash'] if prev_hash == '': prev_hash = "origin" g.edge(prev_hash, block_hash) g.view() block_information = pickle.load(open("../server-python/block_information.pickle", 'rb')) highest_block = pickle.load(open("../server-python/highest_block.pickle", 'rb')) print("Creating graphviz...") # generate_graphviz(block_information) print("Done.") # exit() # block height 0: 6c179f21e6f62b629055d8ab40f454ed02e48b68563913473b857d3638e23b28 origin_block = "6c179f21e6f62b629055d8ab40f454ed02e48b68563913473b857d3638e23b28" forked_block = "00001d87846888b85e4b9b757b59a936b0ff33d8128518c78efaa092572efbfd" # Put the hash of another tip here to graph it as well endpoint_block = highest_block[0]['blockHash'] print(endpoint_block) time_interval = 0.5 # seconds times_list, mined_buckets = mine_rate_info(endpoint_block, origin_block, block_information, time_interval) forked_times_list, forked_mined_buckets = mine_rate_info(forked_block, origin_block, block_information, time_interval) aggregate_buckets = aggregate_info(mined_buckets) forked_aggregate_buckets = aggregate_info(forked_mined_buckets) print("Plotting data...") # line1, = plt.plot(times_list, mined_buckets, label="blocks mined / {}s".format(time_interval)) line2, = plt.plot(times_list, aggregate_buckets, label="total blocks mined") # line3, = plt.plot(times_list, forked_mined_buckets, label="attacker blocks mined / {}s".format(time_interval)) line4, = plt.plot(times_list, forked_aggregate_buckets, label="attacker total blocks mined") plt.legend(handles=[line2, line4]) plt.show() print("Done")
8c08e9331e2a444c62e36c3a44d664c13b4c40df
122cef3b7e5c65f4df2b5d17b88bbb6986c16b3f
/script_1.py
462eafb9a1a567ee22ba559cf0538723cbbe4ca1
[ "MIT" ]
permissive
markregine/FHIR_Python_fhirclient_testing_open
98d843c6d2c223256afbb948c256d09fa7276e84
44061ee1522bfc7de5fe553683d6cb778c4b5f4e
refs/heads/master
2020-04-30T02:44:19.943085
2019-03-19T18:13:00
2019-03-19T18:13:00
176,568,630
0
0
null
null
null
null
UTF-8
Python
false
false
772
py
#!/usr/bin/env python # coding: utf-8 # In[1]: from fhirclient import client import fhirclient.models.patient as p import fhirclient.models.bundle as bundle settings = {'app_id':'xxxx', 'api_base': 'https://r2.smarthealthit.org', 'patient_id': 'smart-1137192'} # In[2]: settings = {'app_id': 'my-app', 'api_base': 'https://fhir.sitenv.org/open/fhir', 'app_secret':'my-app-secret-123', 'launch_token': 'bXktYXBwOm15LWFwcC1zZWNyZXQtMTIz' } # In[3]: smart = client.FHIRClient(settings=settings) # In[4]: #smart.ready #smart.prepare() #smart.ready #smart.authorize_url # In[5]: patient = p.Patient.read('?_id=1&_format=json', smart.server) patient.birthDate.isostring # In[ ]:
447215391bd91ac4d5a721c47f8d0298d4eb5b3f
c001d8cff7e634bfa19d682ccdcf5261bc7bf397
/cotizacionweb/migrations/0005_auto_20160420_1104.py
f9051f65ba22309b3fc40fa1bad989072d8ebdc8
[]
no_license
yusnelvy/mtvmcotizacionv02
4053a6883519901e3652a141ef83c297c5aa0ccd
f0d94faff9c721f25018b7db12a07786508da565
refs/heads/master
2021-01-21T12:58:49.014716
2016-05-06T20:49:59
2016-05-06T20:49:59
50,135,715
0
0
null
2016-05-25T12:32:34
2016-01-21T20:48:27
CSS
UTF-8
Python
false
false
2,464
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('contenedor', '0005_contenedortipicopormueble_tipo_de_contenido'), ('cotizacionweb', '0004_auto_20160414_1529'), ] operations = [ migrations.RenameField( model_name='serviciomueble', old_name='porcentaje_complejidad', new_name='cantidad', ), migrations.RenameField( model_name='serviciomueble', old_name='descripcion_monto_servicio', new_name='descripcion_cantidad', ), migrations.RemoveField( model_name='cotizacionhistoricofecha', name='fecha_actual', ), migrations.RemoveField( model_name='cotizacionhistoricofecha', name='hora_actual', ), migrations.RemoveField( model_name='serviciomueble', name='complejidad_servicio', ), migrations.RemoveField( model_name='serviciomueble', name='incluido', ), migrations.RemoveField( model_name='serviciomueble', name='monto_servicio', ), migrations.RemoveField( model_name='serviciomueble', name='monto_servicio_asignado', ), migrations.AddField( model_name='contenedormueble', name='tipo_de_contenido', field=models.ForeignKey(to='contenedor.TipoDeContenido', default=1), preserve_default=False, ), migrations.AddField( model_name='cotizacionhistoricofecha', name='fecha', field=models.DateTimeField(default='2016-04-01 00:00:00'), preserve_default=False, ), migrations.AddField( model_name='cotizacionservicio', name='cantidad_servicio', field=models.DecimalField(max_digits=7, decimal_places=2, default=1), preserve_default=False, ), migrations.AddField( model_name='fechadecotizacion', name='obligatoria', field=models.BooleanField(default=None), ), migrations.AlterField( model_name='cotizacionestado', name='fecha_registro', field=models.DateTimeField(auto_now_add=True), ), ]
5957173b293dfaea06fcdce0d133e9d754b9f80c
c030e3de3b6822c859f453456dc5f34845ae86da
/2.add-two-numbers.py
511ca1d156495ca20cf1d8ba552cce7057e77629
[]
no_license
xxli807/PythonForFun
5ca07e5728d04e08019efe33f8bc126256ec05e6
5c980466146450309949388ca3ab0cedcf5f12fc
refs/heads/master
2020-05-16T23:24:57.798569
2019-05-11T12:28:38
2019-05-11T12:28:38
183,364,431
0
0
null
null
null
null
UTF-8
Python
false
false
795
py
# # @lc app=leetcode id=2 lang=python3 # # [2] Add Two Numbers # # Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def addTwoNumbers(self, l1: ListNode, l2: ListNode) -> ListNode: root = ListNode((l1.val + l2.val) % 10) carry = (l1.val + l2.val) // 10 node = root while l1.next or l2.next: s = (l1.next.val if l1.next else 0) + (l2.next.val if l2.next else 0) + carry node.next = ListNode(s % 10) if l1.next: l1 = l1.next if l2.next: l2 = l2.next node = node.next carry = s // 10 if carry: node.next = ListNode(carry) return root
8ffd467913fac03b01efbb61d71509207cf1337c
c5cee987dd9fc79778ae0804048af13f76d7567f
/perTreatment.py
9b3b7a6b280e3e55d11461e487913dfcd2ed9ed5
[]
no_license
LingGuguang/new-word-discover
063dcdf0cc3d95be2306ed8405e3c8cf43d8e829
37640afeb8c10216fb44d05d7ed7a1171910f710
refs/heads/master
2020-06-01T16:25:11.812212
2019-06-08T06:07:35
2019-06-08T06:07:35
190,849,114
1
0
null
null
null
null
UTF-8
Python
false
false
667
py
from Delete import Delete import pandas as pd import jieba import re # #以下为弹幕去重 txt = 'danmu.txt' save_txt = 'save.txt' ammos = [] with open(txt, 'r', encoding='utf-8') as t: for ammo in t.readlines(): ammos.append(ammo[:-1]) #print(len(ammos)) = (48000) dele = Delete(ammos) ammos = dele.delete() ammos = [re.sub(r"[0-9\s+\.\!\/_,$%^*()?;;:-【】+\"\']+|[+——!,;:。?、~@#¥%……&*()]+", " ", ammo) for ammo in ammos] ammos = [ammo.replace(' ','') for ammo in ammos] with open(save_txt, 'w', encoding='utf-8') as f: for ammo in ammos: if(len(ammo)>2): f.write(ammo + '\n')
c856a237edfe16a2af62af7f31bb6f4ea80ef390
c96a5c821a24cdb41095d33ee734f94f35e81fb2
/octoprint_rgbcontrol/__init__.py
055ce2c4304023baf7719c59ff01a1c596c927cd
[]
no_license
mikedmor/Octoprint_RGBControl
7915c806942f53c930ed672be71bdd7a2784699b
0711896004079cc2efcdf74775a44f2892c16d0f
refs/heads/master
2020-03-16T23:10:44.868686
2018-05-12T20:31:27
2018-05-12T20:31:27
133,068,066
0
0
null
null
null
null
UTF-8
Python
false
false
1,607
py
# coding=utf-8 from __future__ import absolute_import import octoprint.plugin import octoprint.settings class RGBControlPlugin(octoprint.plugin.StartupPlugin, octoprint.plugin.TemplatePlugin, octoprint.plugin.SettingsPlugin, octoprint.plugin.AssetPlugin): def get_assets(self): return dict( js=["js/jscolor/jscolor.js","js/rgbcontrol.js"], css=["css/rgbcontrol.css","css/iris.css"] ) def get_template_configs(self): return [ dict(type="generic", template="rgbcontrol.jinja2", custom_bindings=True) ] ##~~ Softwareupdate hook def get_version(self): return self._plugin_version def get_update_information(self): return dict( multicam=dict( displayName="RGBControl", displayVersion=self._plugin_version, # version check: github repository type="github_release", user="mikedmor", repo="OctoPrint_RGBControl", current=self._plugin_version, # update method: pip pip="https://github.com/mikedmor/OctoPrint_RGBControl/archive/{target_version}.zip" ) ) __plugin_name__ = "RGBControl" def __plugin_load__(): global __plugin_implementation__ __plugin_implementation__ = RGBControlPlugin() global __plugin_hooks__ __plugin_hooks__ = { "octoprint.plugin.softwareupdate.check_config": __plugin_implementation__.get_update_information }
dd9b515004d1932557315b736706692edce7c9f4
a7a11639a6c7fddc702b55530b7a86e77796813c
/green_rose_shop/settings.py
43f273257b1b5a1fa5f4fca49f6f37292fd1e069
[]
no_license
venindobhasa/green_rose_shop
2f9f9ec7eaa25e7e9f85d7d5da8c9dcf15e195c3
44ae92c29fe9eebbdc5c63177292907697263a17
refs/heads/master
2022-11-05T04:30:14.459444
2020-06-19T02:50:21
2020-06-19T02:50:21
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,458
py
""" Django settings for green_rose_shop project. Generated by 'django-admin startproject' using Django 2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'dsiim%c=7h#lup128-qn+v^6j3qv!9&3d*e%%1s0jn**-2qmzc' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', #custom apps 'user_login', 'rest_framework', 'rest_framework.authtoken', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'green_rose_shop.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'green_rose_shop.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases # DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.sqlite3', # 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), # } # } DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'green_rose', 'USER': 'mysql_username', 'PASSWORD': 'mysql_password', 'HOST': '127.0.0.1', 'PORT' : '3306', } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/'
f25e7844fc3f123aff20df8ed51e37a677b10356
1107279f4447455a2fea8ff4341e856845cf8e57
/testes/I2C_sniffer.py
faa21308ec2891c94910ec8d4369c332d9d2c356
[]
no_license
rmborges/Distributed-Lighting-Control
a0d9cea26b5c538bc41d328e94bc805c97b56a9f
e59a8c5f299cbf739352d1db98787e934e9c4c16
refs/heads/master
2021-03-30T18:03:04.574228
2018-01-07T15:59:11
2018-01-07T15:59:11
113,502,261
0
0
null
null
null
null
UTF-8
Python
false
false
3,913
py
#!/usr/bin/env python import time import pigpio class sniffer: """ A class to passively monitor activity on an I2C bus. This should work for an I2C bus running at 100kbps or less. You are unlikely to get any usable results for a bus running any faster. """ def __init__(self, pi, SCL, SDA, set_as_inputs=False): """ Instantiate with the Pi and the gpios for the I2C clock and data lines. If you are monitoring one of the Raspberry Pi buses you must set set_as_inputs to False so that they remain in I2C mode. The pigpio daemon should have been started with a higher than default sample rate. For an I2C bus rate of 100Kbps sudo pigpiod -s 2 should work. A message is printed for each I2C transaction formatted with "[" for the START "XX" two hex characters for each data byte "+" if the data is ACKd, "-" if the data is NACKd "]" for the STOP E.g. Reading the X, Y, Z values from an ADXL345 gives: [A6+32+] [A7+01+FF+F2+FF+06+00-] """ self.pi = pi self.gSCL = SCL self.gSDA = SDA self.FALLING = 0 self.RISING = 1 self.STEADY = 2 self.in_data = False self.byte = 0 self.bit = 0 self.oldSCL = 1 self.oldSDA = 1 self.transact = "" if set_as_inputs: self.pi.set_mode(SCL, pigpio.INPUT) self.pi.set_mode(SDA, pigpio.INPUT) self.cbA = self.pi.callback(SCL, pigpio.EITHER_EDGE, self._cb) self.cbB = self.pi.callback(SDA, pigpio.EITHER_EDGE, self._cb) def _parse(self, SCL, SDA): """ Accumulate all the data between START and STOP conditions into a string and output when STOP is detected. """ if SCL != self.oldSCL: self.oldSCL = SCL if SCL: xSCL = self.RISING else: xSCL = self.FALLING else: xSCL = self.STEADY if SDA != self.oldSDA: self.oldSDA = SDA if SDA: xSDA = self.RISING else: xSDA = self.FALLING else: xSDA = self.STEADY if xSCL == self.RISING: if self.in_data: if self.bit < 8: self.byte = (self.byte << 1) | SDA self.bit += 1 else: self.transact += '{:02X}'.format(self.byte) if SDA: self.transact += '-' else: self.transact += '+' self.bit = 0 self.byte = 0 elif xSCL == self.STEADY: if xSDA == self.RISING: if SCL: self.in_data = False self.byte = 0 self.bit = 0 self.transact += ']' # STOP print (self.transact) self.transact = "" if xSDA == self.FALLING: if SCL: self.in_data = True self.byte = 0 self.bit = 0 self.transact += '[' # START def _cb(self, gpio, level, tick): """ Check which line has altered state (ignoring watchdogs) and call the parser with the new state. """ SCL = self.oldSCL SDA = self.oldSDA if gpio == self.gSCL: if level == 0: SCL = 0 elif level == 1: SCL = 1 if gpio == self.gSDA: if level == 0: SDA = 0 elif level == 1: SDA = 1 self._parse(SCL, SDA) def cancel(self): """Cancel the I2C callbacks.""" self.cbA.cancel() self.cbB.cancel() if __name__ == "__main__": import time import pigpio import I2C_sniffer pi = pigpio.pi() s = I2C_sniffer.sniffer(pi,3,2, False) # leave gpios 1/0 in I2C mode time.sleep(60000) s.cancel() pi.stop()
40723c472ada5bfb1875a6690c1f32bc5eb18c60
ee193c0df3494673769e107094402a28bfbeba74
/remove_topics.py
49749093c06a9e673d5cc0b266c106b56ab9ef08
[]
no_license
always-akshat/summarization
a41ad675989712def846af32d49ec87a65fe826d
25f65abfcd2301c4879e8f21e5f5d0e4973aa31c
refs/heads/master
2020-04-14T09:25:03.713117
2014-10-28T05:50:40
2014-10-28T05:50:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
22
py
__author__ = 'akshat'
77b98aa829530524b65763daa60caaacde33ebbb
6a0ae86bca2d2ece6c92efd5594c0e3b1777ead7
/EDBRCommon/python/datasets/summer12_MWp_350_gg_cff.py
990eb65ae0bde2bdcbdbdfc05e23b0bd86d0be75
[]
no_license
wangmengmeng/ExoDiBosonResonances
c4b5d277f744e1b1986df9317ac60b46d202a29f
bf5d2e79f59ad25c7a11e7f97552e2bf6a283428
refs/heads/master
2016-09-06T14:54:53.245508
2014-06-05T15:02:37
2014-06-05T15:02:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
16,971
py
import FWCore.ParameterSet.Config as cms readFiles = cms.untracked.vstring() source = cms.Source("PoolSource", noEventSort = cms.untracked.bool(True), duplicateCheckMode = cms.untracked.string("noDuplicateCheck"), fileNames = readFiles ) readFiles.extend([ '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_10_1_BYR.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_11_1_mnN.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_12_1_p9d.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_13_1_mZc.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_14_1_I6o.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_15_1_NBO.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_16_1_L2E.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_17_1_WWV.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_18_1_O71.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_19_1_gsK.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_1_1_WXk.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_20_1_J7a.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_21_1_mmN.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_22_1_I5O.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_23_1_Viu.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_24_1_Voj.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_25_1_uHN.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_26_1_uew.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_27_1_Gaa.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_28_1_e7z.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_29_1_FfO.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_2_1_HVa.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_30_1_gOp.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_31_1_V1o.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_32_1_c1S.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_33_1_rI6.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_34_1_JGi.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_35_1_agq.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_36_1_Yfb.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_37_1_TY7.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_38_1_zd0.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_39_1_L7L.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_3_1_Scl.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_40_1_cVm.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_41_1_Wg0.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_42_1_ffs.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_43_1_heS.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_44_1_46A.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_45_1_YhP.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_46_1_OZD.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_47_1_f6v.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_48_1_A3s.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_49_1_bqW.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_4_1_dUY.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_50_1_GNz.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_51_1_bYJ.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_5_1_QW1.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_6_1_U9k.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_7_1_KVy.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_8_1_OQf.root', '/store/cmst3/group/exovv/mwang/EDBR_PATtuple_edbr_wh_20140210_Summer12MC_WprimeWH_gg_20140213_153713/mwang/EXOWH_Wprime_M350_GENSIM_V2/EDBR_PATtuple_edbr_wh_20140210/0d71bd6eec2b8c7cc5eafcee05a85e30/EXOWH_Wprime_M350_GENSIM_V2__mwang-EXOWH_Wprime_M350_AODSIM_V2-2c74483358b1f8805e5601fc325d256c__USER_9_1_mjs.root', ] )
d8740f4f41ffea793ecdef962f03b008182d8ec7
c07ecb7b177d3296580dec755e4c5a34c01f4132
/120_Triangle.py
3b5add816517340c3027d281b3ef7a59950e827b
[]
no_license
bokveizen/leetcode
78c6e00a97ab9b658752dfcbf6380918ce5611d7
7c7eb77e23310563dbbabae4ff9c726620a8dd6d
refs/heads/master
2021-07-09T19:59:15.338846
2021-03-18T06:28:14
2021-03-18T06:28:14
231,543,847
0
0
null
null
null
null
UTF-8
Python
false
false
433
py
# https://leetcode-cn.com/problems/triangle/ class Solution: def minimumTotal(self, triangle: List[List[int]]) -> int: n = len(triangle) temp = triangle[-1] # triangle[n-1] while True: if n == 1: return temp[0] temp = [min(temp[i], temp[i + 1]) for i in range(n - 1)] n -= 1 for i in range(n): temp[i] += triangle[n - 1][i]
edb0dd2db6e36653e6d52a2316956c6790eed846
e3fe44de92acb664c65dfc53c4dc7450ea994c81
/utils/fast_inverse.py
1ede5e863c4570d8c6bc7af2a213ff1c3677bc66
[]
no_license
chixma/Visual-Template-Free-Form-Parsing
a723022857b1a9adb641d1f9c9f39564ed65f67f
b05e80f5fbc5b1296ab1e4b968ae206b7e556e4b
refs/heads/master
2020-07-22T13:27:39.873315
2019-09-06T20:42:32
2019-09-06T20:42:32
207,217,082
1
0
null
2019-09-09T03:33:43
2019-09-09T03:33:43
null
UTF-8
Python
false
false
1,420
py
import numpy as np import torch def adjoint(A): """compute inverse without division by det; ...xv3xc3 input, or array of matrices assumed""" AI = np.empty_like(A) for i in xrange(3): AI[...,i,:] = np.cross(A[...,i-2,:], A[...,i-1,:]) return AI def inverse_transpose(A): """ efficiently compute the inverse-transpose for stack of 3x3 matrices """ I = adjoint(A) det = dot(I, A).mean(axis=-1) return I / det[...,None,None] def inverse(A): """inverse of a stack of 3x3 matrices""" return np.swapaxes( inverse_transpose(A), -1,-2) def dot(A, B): """dot arrays of vecs; contract over last indices""" return np.einsum('...i,...i->...', A, B) def adjoint_torch(A): AI = A.clone() for i in xrange(3): AI[...,i,:] = torch.cross(A[...,i-2,:], A[...,i-1,:]) return AI def inverse_transpose_torch(A): I = adjoint_torch(A) det = dot_torch(I, A).mean(dim=-1) return I / det[:,None,None] def inverse_torch(A): return inverse_transpose_torch(A).transpose(1, 2) def dot_torch(A, B): A_view = A.view(-1,1,3) B_view = B.contiguous().view(-1,3,1) out = torch.bmm(A_view, B_view) out_view = out.view(A.size()[:-1]) return out_view if __name__ == "__main__": A = np.random.rand(2,3,3) I = inverse(A) A_torch = torch.from_numpy(A) I_torch = inverse_torch(A_torch) print(I) print(I_torch)
ddebfadd0c2daa17807f8177153eeb52ef49dbd9
df2499ddc1e44aa36cf82d652a3d4501efdeea14
/burnerbotserver/admin.py
3ae9dd6521daad321efcb966d5637ac8d4d5ae87
[]
no_license
johngrantuk/burnerbotserver
5e232c85df58076818c4d5353440bfa0b82545c2
3a102d46073a6ed25ca8cca8a4cea465f6d65cdc
refs/heads/master
2020-05-17T00:19:01.545866
2019-04-25T09:04:06
2019-04-25T09:04:06
183,393,293
0
1
null
null
null
null
UTF-8
Python
false
false
97
py
from django.contrib import admin from .models import UserDetail admin.site.register(UserDetail)
c869b985f6efcc06cb7b2c9d71bff7a64242bbeb
856c2ce82997975f747f04b823819e6c65624477
/blog/urls.py
f69c1a3a567d53eeb5703fa1058d4968a4795da9
[]
no_license
leadmeout/simple_blog
348f83db921d6b0a9cf46d24cdb87b160552d61f
edfef1295dbaa9a35d60e6d7fa4cfb0c9a267da0
refs/heads/master
2023-01-04T10:30:15.605104
2020-10-28T20:14:49
2020-10-28T20:14:49
308,122,152
2
0
null
null
null
null
UTF-8
Python
false
false
797
py
"""blog URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.1/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import include, path urlpatterns = [ path('admin/', admin.site.urls), path('', include('blog_posts.urls')), ]
2a46dd981ecb739e9e46f9c71da3e33492974bb5
a075ee186532121edbe5febd9978d9c98fb7d888
/app/test/test_service.py
2d99be24b353940df520ed27d15ce723d6f85acc
[]
no_license
HoonJin/fastapi-sample
ef68c77b4129bf6d855ef23d19089aba4e81f3ee
0b535711e47bf0c0b2d2b2e984859223d0bfb502
refs/heads/master
2022-12-24T00:27:41.655204
2020-09-29T10:10:52
2020-09-29T10:10:52
249,173,393
0
0
null
null
null
null
UTF-8
Python
false
false
870
py
from config.exceptions import NotFoundException from database import db from .test_dao import TestDao class TestService: @staticmethod async def get_all_pagination(page: int, per_page: int) -> dict: total_cnt = await TestDao.get_all_count() total_page = int(total_cnt / per_page) + (0 if total_cnt % per_page == 0 else 1) offset = (page - 1) * per_page result = await TestDao.get_all_with_offset_and_limit(offset, per_page) return { 'content': result, 'total_cnt': total_cnt, 'total_page': total_page } @staticmethod async def delete(t_id: int) -> None: row = await TestDao.find_by_id(t_id) if row is not None: async with db.transaction(): await TestDao.delete_by_id(t_id) else: raise NotFoundException
7e6327db88706423541fdcd736a385bd77c5cb65
4cbe1145ef29aab3ef17c5ebd74dd94c2fece7c7
/Guess_the_country_name.py
90fcc438f7e08aaa6de061bf0db40eacbdddfe9e
[ "MIT" ]
permissive
jyothi1910/Guess_the_country_name
2903b4d943b8d9495559c8d68756fbc9ce88e0d8
fc154488a4f3ff6aa7e27a127963f2c5a4c42628
refs/heads/main
2023-06-06T09:53:28.414026
2021-06-21T07:00:16
2021-06-21T07:00:16
378,835,740
0
0
null
null
null
null
UTF-8
Python
false
false
528
py
import random Country_names=["India","Korea","Japan","China","USA"] print(Country_names) randomName = random.choice(Country_names) for guessTaken in range(1,4): guess=input("Take a guess:") if guess != randomName: print("Your guess is wrong, try another guess") elif guess == randomName: print("Well done you guess is correct, you guessed country name in ",end="") print(str(guessTaken)+" guess") break else: print("Nope, The correct country name is "+randomName)
f956625b352f998eb26833b0e51195907af6cf82
b3bac39420c4864de4a9f53a27845ba71e4f08fa
/App.py
864555395f640864608ca50ba8d233c23cbcf07b
[]
no_license
nickbetke/Music-Mood-Recognition
bb2c6377de99b47b3e629bb02853412e63494e80
3811e0d3bb28ae4e06039f7d2ab463cbcc7a667f
refs/heads/master
2021-02-10T02:55:55.878712
2020-10-17T14:35:53
2020-10-17T14:35:53
244,346,711
3
0
null
null
null
null
UTF-8
Python
false
false
6,490
py
import tkinter as tk # python 3 from tkinter import * from tkinter.ttk import * from tkinter import font as tkFont from tkinter.filedialog import askopenfilename from tkinter import messagebox import numpy as np from pydub import AudioSegment as pas import librosa as lr import joblib global do class SampleApp(tk.Tk): def __init__(self, *args, **kwargs): tk.Tk.__init__(self, *args, **kwargs) self.title_font = tkFont.Font(family='Helvetica', size=20, weight="bold", slant="italic") self.mood_font = tkFont.Font(family='Helvetica', size=16, slant="italic") container = tk.Frame(self) container.pack(side="top", fill="both", expand=True) container.grid_rowconfigure(0, weight=1) container.grid_columnconfigure(0, weight=1) self.frames = {} for F in (StartPage, PageOne): page_name = F.__name__ frame = F(parent=container, controller=self) self.frames[page_name] = frame frame.grid(row=0, column=0, sticky="nsew") self.show_frame("StartPage") def show_frame(self, page_name): frame = self.frames[page_name] frame.tkraise() class StartPage(tk.Frame): def __init__(self, parent, controller): tk.Frame.__init__(self, parent,bg = "crimson") self.controller = controller label = tk.Label(self, text="Music Mood Recogniser", font=controller.title_font) label.pack(side="top", fill="x", pady=20) #for sending filename to other page self.filename = "" self.lbl = tk.Label(self, text="Select an Audio file", font=controller.mood_font, bg = "bisque", fg="black") self.lbl.pack(side="top", fill="x", pady=200) #================================================== # style = Style() # style.configure('TButton', font = # ('calibri', 20, 'bold'), # borderwidth = '4') # style.configure('TButton', font = # ('calibri', 10, 'bold', 'underline'), # foreground = 'red') #================================================ self.button1 = tk.Button(self, text="Browse", bg="greenyellow", command=self.clicked) self.button1.place(x =250, y = 400) self.button2 = tk.Button(self, text="Next", bg="chartreuse",command=lambda: controller.show_frame("PageOne")) self.button2["state"] = "disabled" self.button2.place(x =400, y = 400) def lop(self): PageOne.predict() def clicked(self): global do self.filename = askopenfilename(title = "Select an audio file", filetypes = (("mp3 files", "*.mp3*"), ("m4a files", "*.m4a*"), ("All files", "*.*"))) if self.filename: do.set(self.filename) self.button2["state"] = "normal" self.lbl.configure(text=self.filename) print(self.filename) #Frame 2 class PageOne(tk.Frame): def __init__(self, parent, controller): tk.Frame.__init__(self, parent, bg = "crimson") self.controller = controller # global do # k1 = do.get() label = tk.Label(self, text="Music Mood Recogniser", font=controller.title_font) label.pack(side="top", fill="x", pady=20) button = tk.Button(self, text="Go Back", bg="chartreuse", command=lambda: controller.show_frame("StartPage")) button.pack() button2 = tk.Button(self, text="Recognize", bg="chartreuse", command = self.testg) button2.pack() #mood Label label2 = tk.Label(self, text="mood", font=controller.title_font, bg = "cornsilk", fg = "black") label2.pack(side="top", fill="x", pady=50) # label2.place(x=100 ,y=250) #self.predict() def testg(self): global do f1 = do.get() print("mooded") print(f1) self.predict() def predict(self): global do ad = do.get() n = ad.split('/') i = 'cutpiece.mp3' i = n[-1] if 'mp3' in i: song = pas.from_mp3(ad) if 'm4a' in i: song = pas.from_file(ad) ii = i[:-3] + 'wav' op = song[:30000] op.export('/home/nick/1PROjectX/trash/' + ii, format = 'wav') feat1 = np.empty((0,181)) audio, freq = lr.load('/trash/' + ii) stft = np.abs(lr.stft(audio)) mfcc = np.mean(lr.feature.mfcc(y = audio, sr = freq, n_mfcc=40).T, axis=0) mel = np.mean(lr.feature.melspectrogram(audio, sr = freq).T, axis=0) contrast = np.mean(lr.feature.spectral_contrast(S = stft, sr = freq).T, axis=0) tonnetz = np.mean(lr.feature.tonnetz(y = lr.effects.harmonic(audio), sr = freq).T, axis=0) ext_feat = np.hstack([mfcc, mel, contrast, tonnetz]) feat1 = np.vstack([feat1, ext_feat]) filename = '/46/decison-tree-model36.sav' x = joblib.load(filename) ww = x.predict(feat1)[0] print(x.predict(feat1)[0]) label3 = tk.Label(self, text="DTree: " + str(ww), font='Helvetica 12 bold', bg = "lightsteelblue4", fg = "white") label3.pack(side="top", fill="x", pady=20) filename = '/46/linear-svm-model36.sav' x = joblib.load(filename) ww = x.predict(feat1)[0] label4 = tk.Label(self, text="SVM: " + str(ww), font='Helvetica 12 bold', bg = "lightsteelblue4", fg = "white") label4.pack(side="top", fill="x", pady=20) filename = '/46/naive-bayes-model36.sav' x = joblib.load(filename) ww = x.predict(feat1)[0] label5 = tk.Label(self, text="NaiveBayes: " + str(ww), font='Helvetica 12 bold', bg = "lightsteelblue4", fg = "white") label5.pack(side="top", fill="x", pady=20) filename = '/46/random-forest-model36.sav' x = joblib.load(filename) ww = x.predict(feat1)[0] label6 = tk.Label(self, text="Randomforest: " + str(ww), font='Helvetica 12 bold', bg = "lightsteelblue4", fg = "white") label6.pack(side="top", fill="x", pady=20) # label2['text'] = 'mood: ' + str(ww) if __name__ == "__main__": app = SampleApp() app.title("Music Mood Recogniser") app.geometry("800x720+0+0") app.resizable(True, True) do = StringVar() app.mainloop()
da05f206093955bc97ef19a62bc0a70e69711fc6
5e9dacbb7a9613b7c8d8c92398bb66926a314c38
/script.py
ecff88305875f987118660b170ce2849290d9f87
[]
no_license
pol9111/tencent_WechatOffAcc_auto
645b95bfd893706df4651f1e8f67ea1dc57a03de
3aa2a9a8a78796d5b829f9bf49cc849713ed41b7
refs/heads/master
2020-03-24T16:24:08.783424
2018-07-30T04:07:14
2018-07-30T04:07:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,250
py
import json import pymongo import re from config import * def response(flow): global like_num, title, pub_time, read_num, comment_num client = pymongo.MongoClient(MONGO_URL) db = client[MONGO_DB] table = db[MONGO_COLLECTION] # 获取微信广告json文件, 里面有阅读数和点赞数 url_msg = 'mp.weixin.qq.com/mp/getappmsgext?' if url_msg in flow.request.url: text_msg = flow.response.text data_py = json.loads(text_msg) content = data_py.get('appmsgstat') like_num = content.get('like_num') read_num = content.get('read_num') comment_num = data_py.get('comment_count') # 获取文章响应文件, 并匹配标题和发布时间 url_article = 'mp.weixin.qq.com/s?' if url_article in flow.request.url: text_arti = flow.response.text pub_time = re.findall(r'publish_time.*"(\d+-\d+-\d+)".*', text_arti)[0] title = re.findall(r'msg_title\s=\s"(.*?)";', text_arti)[0] data = { '文章标题': title, '发布时间': pub_time, '阅读数': read_num, '点赞数': like_num, '评论数': comment_num, } print(data) table.update({'文章标题': title}, {'$set': data}, True)
f9da954cdcb17cee51e9d873568d288fdf2c9cdb
f6f29c2fa719c53eee73de2acd86db9e1278182e
/code_wars/calculating_with_functions.py
a3f2c7e84a244f5b3dd4d6052494c5ab40d538cb
[]
no_license
byt3-m3/python_code_practice
ca08320e1778449d30204b65f15903d5830b7975
40e215c4d4ab62cf7d55d2456d94550335825906
refs/heads/master
2023-07-24T08:29:06.624850
2021-09-04T02:39:32
2021-09-04T02:39:32
256,984,457
0
0
null
null
null
null
UTF-8
Python
false
false
2,290
py
''' This time we want to write calculations using functions and get the results. Let's have a look at some examples: seven(times(five())) # must return 35 four(plus(nine())) # must return 13 eight(minus(three())) # must return 5 six(divided_by(two())) # must return 3 Requirements: There must be a function for each number from 0 ("zero") to 9 ("nine") There must be a function for each of the following mathematical operations: plus, minus, times, dividedBy (divided_by in Ruby and Python) Each calculation consist of exactly one operation and two numbers The most outer function represents the left operand, the most inner function represents the right operand Divison should be integer division. For example, this should return 2, not 2.666666...: ''' def _process(data, base): num = data[0] oper = data[1] if oper == "*": return base * num if oper == "/": return base // num if oper == "+": return base + num if oper == "-": return base - num def zero(data=None): if isinstance(data, tuple): return _process(data, 0) return 0 def one(data=None): if isinstance(data, tuple): return _process(data, 1) return 1 def two(data=None): if isinstance(data, tuple): return _process(data, 2) return 2 def three(data=None): if isinstance(data, tuple): return _process(data, 3) return 3 def four(data=None): if isinstance(data, tuple): return _process(data, 4) return 4 def five(data=None): if isinstance(data, tuple): return _process(data, 5) return 5 def six(data=None): if isinstance(data, tuple): return _process(data, 6) return 6 def seven(data=None): if isinstance(data, tuple): return _process(data, 7) return 7 def eight(data=None): if isinstance(data, tuple): return _process(data, 8) return 8 def nine(data=None): if isinstance(data, tuple): return _process(data, 9) return 9 def plus(num): return (num, "+") def minus(num): return (num, "-") def times(num): return (num, "*") def divided_by(num): return (num, "/") result_1 = one(minus(five())) result_2 = five(times(seven())) print(result_1) print(result_2)
a901c6830b2d98e5814d5c7d028e4744d7464039
fa8344a5f37ffd5f10bef00a6f7cab6acc6382f7
/apps/family/views.py
5b69f137536d5f86284785fb0032fdfff6f28e77
[]
no_license
hustels/django-crud-ajax-demo
2fcd8d3e1c050a76ec1d7e16cfd04fbf1175d8fa
06de79bf60918b7e270491e4d5cbc7e1422ffd23
refs/heads/master
2021-01-12T19:43:44.480199
2011-11-16T01:07:31
2011-11-16T01:07:31
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,466
py
# -*- coding: utf-8 -*- from django.views.generic.simple import direct_to_template from django.http import HttpResponse from django.db.models import Q from family.models import People from family.forms import PeopleForm, ImporterForm def index(request, form=None, peoples=None, importer_form=None): if form is None: form = PeopleForm() if peoples is None: peoples = People.objects.all() if importer_form is None: importer_form = ImporterForm() context = {'form': form, 'importer_form': importer_form, 'peoples': peoples} return direct_to_template(request, 'family_tree.html', context) def add(request): if request.POST: form = PeopleForm(request.POST) if form.is_valid(): form.save() form = PeopleForm() return index(request, form) return HttpResponse('Fill the form') def filter(request): if request.GET: s = request.GET.get('s') peoples = People.objects.filter(Q(first_name__icontains=s) | Q(last_name__icontains=s)) return index(request, None, peoples) return HttpResponse('Enter a valid string to search') def importer(request): if request.POST: form = ImporterForm(request.POST, request.FILES) if form.is_valid(): form = ImporterForm() return index(request, None, None, form) return HttpResponse('Select the file')
ec9c7d2a3db1de8e236b53724f1cbf8c028163a0
8638bf84783732f87d88b02ad0a41f68684fbe1f
/plotsprecht.py
4bb13dda0e82bafc31cdb209b2b5a4505d07baeb
[]
no_license
JLammering/V-351
fa7f43d025e44426e143b12e4517a4bd734fe559
2532300f9ae01a3acc68afc2061efacf349b12e4
refs/heads/master
2021-01-10T16:30:20.834091
2016-01-13T12:43:44
2016-01-13T12:45:33
48,593,866
0
0
null
null
null
null
UTF-8
Python
false
false
1,216
py
import matplotlib.pyplot as plt import numpy as np #from itertools import chain #Messdaten einladen # k, U = np.genfromtxt('datenb_1.txt', unpack = True) # #plt.plot(f, U, 'k.', label = r'Messdaten') # # N=9 # # ind = np.arange(N) # width = 0.3 # ax = plt.subplots() # # # rects = ax.bar(ind, U, width, color ='r') # ax.set_ylabel(r'$U\:/\:\si{\milli\volt}$') # ax.set_xlabel(r'$\text{Frequenz}$') # ax.set_xticks(ind) # ax.set_xticklabels((r'$\nu$', r'$3\nu$', r'$5\nu$', r'$7\nu$', r'$9\nu$', r'$11\nu$', # r'$13\nu$', r'$15\nu$', r'$17\nu$')) # # ax.legend((rects[0]),('Linienspektrum')) # # autolabel(rects) # # # plt.tight_layout(pad=0, h_pad=1.08, w_pad=1.08) # plt.savefig('build/plotsprecht.pdf') k, U = np.genfromtxt('datenb_1.txt', unpack = True) #plt.plot(k, U, 'k.', label = r'Messdaten') #k_1 = list (chain.from_iterable((x, x)for x in k)) #U_1 = list (chain.from_iterable((0, x)for x in U)) #plt.plot(k_1, U_1, 'r-', label = r'Linien') for a in zip(k,U): keins, Ueins = a plt.plot((keins, keins), (0,Ueins),label = r'Amplituden') plt.xlabel(r'$\text{Frequenz}$') plt.ylabel(r'$U\:/\:\si{\milli\volt}$') plt.tight_layout(pad=0, h_pad=1.08, w_pad=1.08) plt.savefig('build/plotsprecht.pdf')